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CE

A Changing

This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician, whose interest in differential equations may be highly theoretical, intensely
practical, or somewhere in between. We have sought to combine a sound and accurate
(but not abstract) exposition of the elementary theory of differential equations with
considerable material on methods of solution, analysis, and approximation that have
proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent.

Learning Environment

The environment in which instructors teach, and students learn, differential equations
has changed enormously in the past few years and continues to evolve at a rapid pace.
Computing equipment of some kind, whether a graphing calculator, a notebook com-
puter, or a desktop workstation is available to most students of differential equations.
This equipment makes it relatively easy to execute extended numerical calculations,
to generate graphical displays of a very high quality, and, in many cases, to carry out
complex symbolic manipulations. A high-speed Internet connection offers an enormous
range of further possibilities.

The fact that so many students now have these capabilities enables instructors, if
they wish, to modify very substantially their presentation of the subject and their
expectations of student performance. Not surprisingly, instructors have widely varying
opinions as to how a course on differential equations should be taught under these
circumstances. Nevertheless, at many colleges and universities courses on differential
eqguations are becoming more visual, more quantitative, more project-oriented, and less
formula-centered than in the past.

vii



viii Preface

Mathematical Modeling

The main reason for solving many differential equations is to try to learn something
about an underlying physical process that the equation is believed to model. It is basic
to the importance of differential equations that even the simplest equations correspond
to useful physical models, such as exponential growth and decay, spring-mass systems,
or electrical circuits. Gaining an understanding of a complex natural process is usually
accomplished by combining or building upon simpler and more basic models. Thus
a thorough knowledge of these models, the equations that describe them, and their
solutions, is the first and indispensable step toward the solution of more complex and
realistic problems.

More difficult problems often require the use of a variety of tools, both analytical and
numerical. We believe strongly that pencil and paper methods must be combined with
effective use of a computer. Quantitative results and graphs, often produced by a com-
puter, serve to illustrate and clarify conclusions that may be obscured by complicated
analytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis — to determine the
gualitative features of the solution as a guide to computation, to investigate limiting or
special cases, or to discover which ranges of the variables or parameters may require
or merit special attention.

Thus, a student should come to realize that investigating a difficult problem may
well require both analysis and computation; that good judgment may be required to
determine which tool is best-suited for a particular task; and that results can often be
presented in a variety of forms.

A Flexible Approach

To be widely useful a textbook must be adaptable to a variety of instructional strategies.
This implies at least two things. First, instructors should have maximum flexibility to
choose both the particular topics that they wish to cover and also the order in which
they want to cover them. Second, the book should be useful to students having access
to a wide range of technological capability.

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic parts
of the first three chapters are completed (roughly Sections 1.1 through 1.3, 2.1 through
2.5, and 3.1 through 3.6) the selection of additional topics, and the order and depth in
which they are covered, is at the discretion of the instructor. For example, while there is
a good deal of material on applications of various kinds, especially in Chagielis|2, 3, 9,
and 10, most of this material appears in separate sections, so that an instructor can easily
choose which applications to include and which to omit. Alternatively, an instructor
who wishes to emphasize a systems approach to differential equations can take up
(Linear Systems) and perhaps gven Chagter 9 (Nonlinear Autonomous
Systems) immediately after Chaptér 2. Or, while we present the basic theory of linear
equations first in the context of a single second order equdtion (Chapter 3), many
instructors have combined this material with the corresponding treatment of higher

order equations (Chaptef 4) or of linear systdms (Chapter 7). Many other choices and



Preface

iX

combinations are also possible and have been used effectively with earlier editions of
this book.

With respect to technology, we note repeatedly in the text that computers are ex-
tremely useful for investigating differential equations and their solutions, and many
of the problems are best approached with computational assistance. Nevertheless, the
book is adaptable to courses having various levels of computer involvement, ranging
from little or none to intensive. The text is independent of any particular hardware
platform or software package. More than 450 problems are marked with the sppmbol
to indicate that we consider them to be technologically intensive. These problems may
call for a plot, or for substantial numerical computation, or for extensive symbolic ma-
nipulation, or for some combination of these requirements. Naturally, the designation
of a problem as technologically intensive is a somewhat subjective judgment, and the
» is intended only as a guide. Many of the marked problems can be solved, at least in
part, without computational help, and a computer can be used effectively on many of
the unmarked problems.

From a student’s point of view, the problems that are assigned as homework and
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number, and above all the variety and range, of the problems
that it contains. Many problems are entirely straightforward, but many others are more
challenging, and some are fairly open-ended, and can serve as the basis for independent
student projects. There are far more problems than any instructor can use in any given
course, and this provides instructors with a multitude of possible choices in tailoring
their course to meet their own goals and the needs of their students.

One of the choices that an instructor now has to make concerns the role of computing
inthe course. Forinstance, many more or less routine problems, such as those requesting
the solution of a first or second order initial value problem, are now easy to solve by
a computer algebra system. This edition includes quite a few such problems, just as
its predecessors did. We do not state in these problems how they should be solved,
because we believe that it is up to each instructor to specify whether their students
should solve such problems by hand, with computer assistance, or perhaps both ways.
Also, there are many problems that call for a graph of the solution. Instructors have
the option of specifying whether they want an accurate computer-generated plot or a
hand-drawn sketch, or perhaps both.

There are also a great many problems, as well as some examples in the text, that
call for conclusions to be drawn about the solution. Sometimes this takes the form of
asking for the value of the independent variable at which the solution has a certain
property. Other problems ask for the effect of variations in a parameter, or for the
determination of a critical value of a parameter at which the solution experiences a
substantial change. Such problems are typical of those that arise in the applications of
differential equations, and, depending on the goals of the course, an instructor has the
option of assigning few or many of these problems.

Supplementary Materials

Three software packages that are widely used in differential equations courses are

Maple, Mathematica, andMatlab. The bookDifferential Equations with Maple, Dif-
ferential Equationswith Mathematica, andDifferential Equationswith Matlab by K. R.
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[Coombes, B. R. Hunt, R. L. Lipsman, J. E. Osborn, and G. J. $tuck, all at the University
of Maryland, provide detailed instructions and examples on the use of these software
packages for the investigation and analysis of standard topics in the course.

For the first time, this text is available in &nteractive Edition, featuring an eBook
version of the text linked to the award-winni@PE Architect. The interactive eBook
links live elements in each chapter@DE Architect's powerful, yet easy-to-use, nu-
merical differential equations solver and multimedia modules. The eBook provides a
highly interactive environment in which students can construct and explore mathemat-
ical models using differential equations to investigate both real-world and hypothetical
situations. A _companion e-workbogk that contains additional problems sets, called
Explorations, provides background and opportunities for students to extend the ideas
contained in each module. A stand-alone versio®DE Architect is also available.

There is & Student Solutions Manjial, by Charles W. Haines of Rochester Institute
of Technology, that contains detailed solutions to many of the problems in the book. A
complete set of solutions, prepared by Josef Torok of Rochester Institute of Technology,

is available to instructors via the Wiley websit@naatiw.wiley.com/college/Boyce. |

Important Changes in the Seventh Edition

Readers who are familiar with the preceding edition will notice a humber of mod-
ifications, although the general structure remains much the same. The revisions are
designed to make the book more readable by students and more usable in a modern
basic course on differential equations. Some changes have to do with content; for
example, mathematical modeling, the ideas of stability and instability, and numerical
approximations via Euler's method appear much earlier now than in previous editions.
Other modifications are primarily organizational in nature. Most of the changes include
new examples to illustrate the underlying ideas.

1. The first two sections pf Chaptefr 1 are new and include an immediate introduction
to some problems that lead to differential equations and their solutions. These sections
also give an early glimpse of mathematical modeling, of direction fields, and of the
basic ideas of stability and instability.

2. now includes a néw Section| 2.7 on Euler's method of numerical ap-
proximation. Another change is that most of the material on applications has been
consolidated into a single section. Finally, the separate section on first order homoge-
neous equations has been eliminated and this material has been placed in the problem
set on separable equations instead.

3.[Section 48 on the method of undetermined coefficients for higher order equations
has been simplified by using examples rather than giving a general discussion of the
method.

4. The discussion of eigenvalues and eigenvectdrs in Sectipn 7.3 has been shortened
by removing the material relating to diagonalization of matrices and to the possible
shortage of eigenvectors when an eigenvalue is repeated. This material now appears
in later sections of the same chapter where the information is actually used. Sections
[7.7]land 7.8 have been modified to give somewhat greater emphasis to fundamental
matrices and somewhat less to problems involving repeated eigenvalues.
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5. An example illustrating the instabilities that can be encountered when dealing
with stiff equations has been added to Section 8.5.

6.[Section 9]2 has been streamlined by considerably shortening the discussion of au-
tonomous systems in general and including instead two examples in which trajectories
can be found by integrating a single first order equation.

7. There is a ney section 10.1 on two-point boundary value problems for ordinary
differential equations. This material can then be called on as the method of separation
of variables is developed for partial differential equations. There are also some new
three-dimensional plots of solutions of the heat conduction equation and of the wave
equation.

As the subject matter of differential equations continues to grow, as new technologies
become commonplace, as old areas of application are expanded, and as new ones
appear on the horizon, the content and viewpoint of courses and their textbooks must
also evolve. This is the spirit we have sought to express in this book.

William E. Boyce
Troy, New York
April, 2000
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CHAPTER

1

Introduction

In this chapter we try in several different ways to give perspective to your study of
differential equations. First, we use two problems to illustrate some of the basic ideas
that we will return to and elaborate upon frequently throughout the remainder of the
book. Later, we indicate several ways of classifying equations, in order to provide
organizational structure for the book. Finally, we outline some of the mgjor figures and
trends in the historical development of the subject. The study of differential equations
has attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields

Before embarking on a serious study of differential equations (for example, by reading
this book or major portions of it) you should have some idea of the possible benefits
to be gained by doing so. For some students the intrinsic interest of the subject itself is
enough motivation, but for most it is the likelihood of important applications to other
fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed in
mathematical terms the relations are equations and the rates are derivatives. Equations
containing derivatives are differential equations. Therefore, to understand and to
investigate problems involving the motion of fluids, the flow of current in electric

1



Chapter 1. Introduction

EXAMPLE

1

A Falling
Object

circuits, the dissipation of heat in solid objects, the propagation and detection of
seismic waves, or the increase or decrease of populations, among many others, it is
necessary to know something about differential equations.

A differential equation that describes some physical process is often called ajmathd
lematical model |of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to eguations that are easy
to solve. It is noteworthy that even the smplest differential equations provide useful
models of important physical processes.

Suppose that an object is falling in the atmosphere near sea level. Formulate a differ-
ential equation that describes the motion.

We begin by introducing letters to represent various quantities of possible interest
in this problem. The motion takes place during a certain time interval, so let us use t
to denote time. Also, let us use v to represent the velocity of the falling object. The
velocity will presumably change with time, so we think of v as a function of t; in
other words, t is the independent variable and v is the dependent variable. The choice
of units of measurement is somewhat arbitrary, and there is nothing in the statement
of the problem to suggest appropriate units, so we are free to make any choice that
seems reasonable. To be specific, let us measure time t in seconds and velocity v in
meters/second. Further, we will assume that v is positive in the downward direction,
that is, when the object isfalling.

The physical law that governs the motion of objects is Newton's second law, which
states that the mass of the object times its acceleration is equal to the net force on the
object. In mathematical terms this law is expressed by the equation

F=ma @

In this equation m is the mass of the object, a isits acceleration, and F isthe net force
exerted on the object. To keep our units consistent, we will measure min kilograms, a
in meters/second?, and F in newtons. Of course, a isrelated to v by a = dv/dt, sowe
can rewrite Eq. (1) in theform

F = m(dv/dt). @)

Next, consider the forcesthat act on the object asit falls. Gravity exertsaforce equal to
the weight of the object, or mg, where g is the acceleration due to gravity. In the units
we have chosen, g has been determined experimentally to be approximately equal to
9.8 m/sec? near the earth’s surface. Thereis also aforce due to air resistance, or drag,
which is more difficult to model. This is not the place for an extended discussion of
the drag force; suffice it to say that it is often assumed that the drag is proportional
to the velocity, and we will make that assumption here. Thus the drag force has the
magnitude y v, where y isa constant called the drag coefficient.

Inwriting an expression for the net force F we need to remember that gravity always
acts in the downward (positive) direction, while drag acts in the upward (negative)
direction, asshown in Figure 1.1.1. Thus

F=mg—yv (©)
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EXAMPLE

2

A Falling
Object
(continued)

and|Eq. (2) then becomes

dv

m T mg— yv. 4
Equation (4) is a mathematical model of an object falling in the atmosphere near sea
level. Note that the model contains the three constants m, g, and y. The constants m
and y depend very much on the particular object that is falling, and usually will be
different for different objects. It is common to refer to them as parameters, since they
may take on arange of values during the course of an experiment. On the other hand,
the value of g isthe same for al objects.

yu
@m

mg

y

FIGURE 1.1.1 Free-body diagram of the forces on afalling object.

To solve Eqg. (4) we need to find a function v = v(t) that satisfies the equation. It
is not hard to do this and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any of
them. Our task is simplified dightly if we assign numerical valuesto m and y, but the
procedure is the same regardless of which values we choose. So, let us suppose that
m = 10 kg and y = 2 kg/sec. If the unitsfor y seem peculiar, remember that v must
have the units of force, namely, kg-m/sec®. Then Eq. (4) can be rewritten as

— =98— . )

Investigate the behavior of solutions of Eq. (5) without actualy finding the solutions
in question.

We will proceed by looking at Eqg. (5) from a geometrical viewpoint. Suppose that
v has a certain value. Then, by evaluating the right side of Eqg. (5), we can find the
corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8. This means
that the slope of a solution v = v(t) has the value 1.8 at any point where v = 40. We
candisplay thisinformation graphically inthetv-plane by drawing short line segments,
or arrows, with slope 1.8 at severa pointsontheline v = 40. Similarly, if v = 50, then
dv/dt = —0.2, so we draw line segments with slope —0.2 at severa points on theline
v = 50. We obtain Figure 1.1.2 by proceeding in the same way with other values of

v. Figure 1.1.2 is an example of what is called adirection field Jor sometimes a slope
field.

The importance of Figure 1.1.2 is that each line segment is a tangent line to the
graph of asolution of Eg. (5). Thus, even though we have not found any solutions, and
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FIGURE 1.1.2 A direction field for|Eq. (5).

no graphs of solutions appear in the figure, we can nonetheless draw some qualitative
conclusions about the behavior of solutions. For instance, if v is less than a certain
critical value, then al the line segments have positive slopes, and the speed of the
falling object increases as it falls. On the other hand, if v is greater than the critical
value, then the line segments have negative slopes, and the falling object slowsdown as
it falls. What is this critical value of v that separates objects whose speed isincreasing
from those whose speed is decreasing? Referring again to[Eg. (5)] we ask what value
of v will cause dv/dt to be zero? The answer isv = (5)(9.8) = 49 m/sec.

In fact, the constant function v(t) = 49 is a solution of To verify this
statement, substitute v(t) = 49 into[Eq. (5) Jand observe that each side of the equation
is zero. Because it does not change with time, the solution v(t) = 49 is caled an
|equilibrium solution] It is the solution that corresponds to a balance between gravity
and drag. In Figure 1.1.3 we show the equilibrium solution v(t) = 49 superimposed
on the direction field. From this figure we can draw another conclusion, namely, that
all other solutions seem to be converging to the equilibrium solution ast increases.
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FIGURE 1.1.3 Direction field and equilibrium solution for|Eq. (5).
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The approach illustrated in [Example 2]can be applied equally well to the more
genera [EQ. (4),]where the parameters m and y are unspecified positive numbers. The
results are essentially identical to those of [Example 2. [The equilibrium solution of
Eg. (4 Jisv(t) = mg/y. Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution ast becomes large.

Direction Fields. Direction fields are valuable tools in studying the solutions of
differential equations of the form

dy
gt = fey. (6)
where f is a given function of the two variables t and y, sometimes referred to as
the[rate function.] The equation in [Example 2)is somewhat simpler in that init f isa
function of the dependent variable alone and not of the independent variable. A useful
direction field for equations of the general form (6) can be constructed by evaluating f
at each point of a rectangular grid consisting of at least a few hundred points. Then,
at each point of the grid, a short line segment is drawn whose slope is the value of f
at that point. Thus each line segment is tangent to the graph of the solution passing
through that point. A direction field drawn on afairly fine grid gives a good picture
of the overall behavior of solutions of a differential equation. The construction of a
direction field is often a useful first step in the investigation of a differential equation.
Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6), but merely evaluate the given function f (t, y)
many times. Thus direction fields can be readily constructed even for equations that
may be quite difficult to solve. Second, repeated evaluation of a given function is a
task for which a computer is well suited and you should usually use a computer to
draw adirection field. All the direction fields shown in this book, such as the one in

Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another quite different example. Consider
apopulation of field mice who inhabit a certain rural area. In the absence of predators
we assume that the mouse population increases at a rate proportiona to the current
population. Thisassumption is not awell-established physical law (as Newton’slaw of
motionisin Example 1), but itisacommon initial hypothesi sTin astudy of population
growth. If we denote time by t and the mouse population by p(t), then the assumption
about population growth can be expressed by the equation

dp
—_— = 7
=P ()

where the proportionality factor r is called the rate constant| or growth rate. To be

specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eqg. (7) has the units of mice/month.

Now let us add to the problem by supposing that severa owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information

1A somewnhat better model of population growth is discussed later in|Section 2.5/
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EXAMPLE

3

into the model, we must add another term to the differential so that it
becomes

dp

— = 0.5p — 450. 8

4 = 0P ®)
Observe that the predation term is —450 rather than —15 because time is measured in
months and the monthly predation rate is needed.

Investigate the solutions of Eq. (8) graphically.

A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values
of pit can be seen from thefigure, or directly from Eqg. (8) itself, that dp/dt is positive,
so that solutions increase. On the other hand, for small values of p the oppositeisthe
case. Again, the critical value of p that separates sol utions that increase from those that
decrease is the value of p for which dp/dt is zero. By setting dp/dt equal to zero in
Eg. (8) and then solving for p, we find the equilibrium solution p(t) = 900 for which
the growth term and the predation term in Eq. (8) are exactly balanced. The equilibrium
solution is also shown in Figure 1.1.4.
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FIGURE 1.1.4 A direction field for Eg. (8).

Comparing this example with[Example 2] we note that in both cases the equilibrium
solution separates increasing from decreasing solutions. However, in[Example 2 bther
solutions converge to, or are attracted by, the equilibrium solution, while in Example 3
other solutions diverge from, or are repelled by, the equilibrium solution. In both cases
the equilibrium solution is very important in understanding how solutions of the given
differential equation behave.

A more general version of Eq. (8) is

dp_

—rp—k, 9
S =P ©
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where the growth rater and the predation rate k are unspecified. Solutions of this more
general equation behave very much like those of Eg. (8). The equilibrium solution of
[Eq. (9)]is p(t) = k/r. Solutions above the equilibrium solution increase, while those
below it decrease.

You should keep in mind that both of the models discussed in this section have their
limitations. The model (5) of the falling object ceases to be valid as soon as the object
hits the ground, or anything else that stops or slows its fall. The population model

[(8)]eventually predicts negative numbers of mice (if p < 900) or enormously large
numbers (if p > 900). Both these predictions are unrealistic, so this model becomes
unacceptable after afairly short timeinterval.

Constructing Mathematical Models. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to formulate the appropri-
ate differential equation that describes, or models, the problem being investigated. In
this section we have looked at two examples of this modeling process, one drawn from
physics and the other from ecology. In constructing future mathematical models your-
self, you should recognize that each problem is different, and that successful modeling
isnot askill that can be reduced to the observance of a set of prescribed rules. Indeed,
constructing a satisfactory model is sometimes the most difficult part of the problem.
Nevertheless, it may be helpful to list some steps that are often part of the process:

1. Identify the independent and dependent variables and assign letters to represent
them. The independent variable is often time.

2. Choose the units of measurement for each variable. In a sense the choice of units
is arbitrary, but some choices may be much more convenient than others. For
example, we chose to measure time in seconds in the falling object problem and
in months in the popul ation problem.

3. Articulate the basic principle that underlies or governs the problem you are inves-
tigating. This may be awidely recognized physical law, such as Newton’s law of
motion, or it may be a more speculative assumption that may be based on your
own experience or observations. In any case, this step is likely not to be a purely
mathematical one, but will require you to be familiar with the field in which the
problem lies.

4. Express the principle or law in step 3 in terms of the variables you chose in
step 1. This may be easier said than done. It may require the introduction of
physical constants or parameters (such as the frag coefficient In Example 1)|
and the determination of appropriate values for them. Or it may involve the use
of auxiliary or intermediate variables that must then be related to the primary
variables.

5. Make sure that each term in your equation has the same physical units. If thisis
not the case, then your equation is wrong and you should seek to repair it. If the
units agree, then your equation at least is dimensionally consistent, although it
may have other shortcomings that this test does not reveal.

6. Intheproblemsconsidered heretheresult of step 4 isasingledifferential equation,
which constitutes the desired mathematical model. Keep in mind, though, that in
more complex problems the resulting mathematical model may be much more
complicated, perhaps involving a system of severa differential equations, for
example.
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PROBLEMS

In each of Problems 1 through 6 draw adirection field for the given differential equation. Based
on the direction field, determine the behavior of y ast — oo. If this behavior depends on the
initial value of y at t = 0, describe this dependency.

v

1 y=3-2y > 2. y=2y-3
3.y =3+2y > 4 y=-1-2y
5 y =1+2y > 6. y=y+2

In each of Problems 7 through 10 writedown adifferential equation of theformdy/dt =ay+ b
whose solutions have the required behavior ast — oo.

7. All solutions approach y = 3. 8. All solutions approachy = 2/3.
9. All other solutionsdiverge fromy = 2. 10. All other solutionsdivergefromy = 1/3.

In each of Problems 11 through 14 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y ast — oo. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that in these problems the
equations are not of theform y’ = ay + b and the behavior of their solutionsis somewhat more
complicated than for the equations in the text.

11 Y =y@4-y > 12 y=-y5-y)
13. y =y? > 14y =y(y—2)?

15. A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable
chemical. Water containing 0.01 gram of this chemical per gallon flows into the pond at a
rate of 300 gal/min. The mixture flows out at the same rate so the amount of water in the
pond remains constant. Assume that the chemical is uniformly distributed throughout the
pond.

(8 Write adifferential equation whose solution is the amount of chemica in the pond at
any time.

(b) How much of the chemical will bein the pond after avery long time? Doesthislimiting
amount depend on the amount that was present initially?

16. A spherical raindrop evaporates at arate proportional to its surface area. Writeadifferential
equation for the volume of the raindrop as a function of time.

17. A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/cm® of the drug enters the patient’s bloodstream at a rate of 100 cm®/hr. The drug is
absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to the
amount present, with a rate constant of 0.4 (hr)~2.

(8 Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
a any time.

(b) How much of the drug is present in the bloodstream after along time?

18. For small, slowly falling objects the assumption made in the text that the drag force is
proportional to the velocity isagood one. For larger, morerapidly falling objectsitismore
accurate to assume that the drag force is proportional to the square of the velocityl2
(8 Write adifferential equation for the velocity of afalling object of mass m if the drag
force is proportional to the square of the velocity.

(b) Determinethe limiting velocity after along time.
(c) If m= 10Kkg, find the drag coefficient so that the limiting velocity is 49 m/sec.
(d) Usingthe datain part (c), draw adirection field and compare it with Figure 1.1.3.

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for Mathe-
maticians,” Amer. Math. Monthly 108 (1999), pp. 127-135.
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In each of Problems 19 through 26 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y ast — oo. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that the right sides of these
equations depend on t as well as y; therefore their solutions can exhibit more complicated
behavior than those in the text.

> 19 y=-2+t—-y > 20. Y =te -2y

> 2l y=€e'l+y > 22,y =t+2y

> 23 y=3sint+1+y P24y =2t—1-y?

> 25y = (A +Y)/2Y] > 26. Yy =y3/6—y—1t?/3

1.2 Solutions of Some Differential Equations

EXAMPLE

1

Field Mice
and Owls
(continued)

In the preceding section we derived differential equations,

dv
— _ 1
mdt mg— yv D
and
dp
T —_rp—-k 2
G =Pk @

which model a falling object and a population of field mice preyed upon by owls,
respectively. Both these equations are of the general form
dy

L _ay—b, 3
=ay ©

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Egs. (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however, we
need to find the solutions themselves, and we now investigate how to do that.

Consider the equation

dp
T 0.5p — 450, 4
which describes the interaction of certain populations of field mice and owls [see Eq|
[(8)]of Section 1.1]. Find solutions of this equation.
To solve Eq. (4) we need to find functions p(t) that, when substituted into the
equation, reduce it to an obvious identity. Here is one way to proceed. First, rewrite

Eg. (4) intheform

dp p—900
dat — 2 ©)
or, if p = 900,
dp/dt 1
p—900 2 ©)
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Since, by the chain rule, the left side of Eq. (6) fis the derivative of In|p — 900] with
respect to t, it follows that

d 1
— | —900| = —. 7
gi/nie =3 ()

Then, by integrating both sides of Eq. (7), we obtain
In|p—900|:t§+C, (8

where C isan arbitrary constant of integration. Therefore, by taking the exponential of
both sides of Eq. (8), we find that

|p — 900] = e“€'/2, 9)
or
p — 900 = +e€'/2, (10)
and finally
p = 900 + c€’?, (1)

where ¢ = +€° isalso an arbitrary (nonzero) constant. Note that the constant function
p = 900 is also a solution of [EQ. (5)|and that it is contained in the expression (11) if
we alow c to take the value zero. Graphs of Eq. (11) for several values of ¢ are shown
inFigure 1.2.1.

1200 [~
1100
1000 [—
\
1 2 3 4 5 t

900

800

700

600

FIGURE 1.2.1 Graphsof Eq. (11) for several values of c.

Note that they have the character inferred from the direction field in Figure 1.1.4.
For instance, solutionslying on either side of the equilibrium solution p = 900 tend to
diverge from that solution.

In Example 1 we found infinitely many solutions of the differential
corresponding to the infinitely many values that the arbitrary constant ¢ in Eq. (11)



1.2 Solutions of Some Differential Equations 11

might have. This is typical of what happens when you solve a differential equation.
The solution processinvolves an integration, which bringswith it an arbitrary constant,
whose possible values generate an infinite family of solutions.

Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine thelconstant c in Eq. (11) Jwe could require that the population
have agiven value at acertain time, such asthe value 850 at timet = 0. In other words,
the graph of the solution must pass through the point (0, 850). Symbolically, we can
express this condition as

p(0) = 850. (12
Then, substitutingt = 0 and p = 850 into|Eqg. (11)| we obtain
850 = 900 + c.

Hence c = —50, and by inserting thisvaluein we obtain the desired solution,
namely,

p = 900 — 50e"/2. (13)

The additional condition (12) that we used to determine c is an example of anfinitial]

The differential [equation (4) fogether with the initial condition (12) form
aninitial value problem.|

Now consider the more general problem consisting of the differential
dy _
dt

ay—b
and the initial condition

y(o) = Yos (14)

where y, is an arbitrary initial value. We can solve this problem by the same method
asin Example 1. If a # 0 and y # b/a, then we can rewrite|Eq. (3)|as

dy/dt
7" —a 15
y — (b/a) =
By integrating both sides, we find that
Inly — (b/a)| = at + C, (16)

where C isarbitrary. Then, taking the exponential of both sides of Eg. (16) and solving
for y, we obtain
y = (b/a) + c€, (17)

where ¢ = +€° is also arbitrary. Observe that ¢ = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that ¢ =y, — (b/a), so
the solution of theinitial value problem (3), (14) is

y = (b/a) + [y, — (b/a)]e™. (18)

The expression (17) contains all possible solutions of |[Eq. (3)| and is caled the
[general solution. The geometrical representation of the general solution (17) is an
infinite family of curves, called|integral curves. Eachintegral curveis associated with
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EXAMPLE

2

A Falling
Object
(continued)

aparticular value of ¢, and isthe graph of the solution corresponding to that value of c.
Satisfying an initial condition amounts to identifying the integral curve that passes
through the given initial point.

To relate the solution o[Eq. (2),|which models the field mouse population, we
need only replace a by the growth rater and b by the predation rate k. Then the solution

[(18) becomes
p=(k/r)+[p,— (k/r)]€", (19)

where p, is the initial population of field mice. The solution (19) confirms the con-
clusions reached on the basis of the direction field and [Example 1.]If p, = k/r, then
from Eq. (19) it follows that p = k/r for all t; this is the constant, or equilibrium,
solution. If p, # k/r, then the behavior of the solution depends on the sign of the
coefficient p, — (k/r) of the exponential term in Eq. (19). If p, > k/r, then p grows
exponentially with time t; if p, < k/r, then p decreases and eventually becomes
zero, corresponding to extinction of the field mouse population. Negative values of p,
while possible for the expression (19), make no sense in the context of this particular
problem.

To put the falling object equation (1) in the form (3), we must identify a with —y/m
and b with —g. Making these substitutions in the solution[(18)} we obtain

v =(Mmg/y) + [v, — (mg/y)]e /™, (20)

where v, is the initial velocity. Again, this solution confirms the conclusions reached
in[Section T.T]on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/y, and al other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
—y/m. Thus, for a given mass m the velocity approaches the equilibrium value faster
as the drag coefficient y increases.

Suppose that, as in|[Example 2 of Section 1.1, we consider a falling object of mass
m = 10 kg and drag coefficient y = 2 kg/sec. Then the equation of motion (1) becomes
dv v

— =98-—. 21
dt 5 @
Suppose this object is dropped from a height of 300 m. Find its velocity at any timet.
How long will it take to fall to the ground, and how fast will it be moving at the time
of impact?

The first step is to state an appropriate initial condition for Eg. (21). The word
“dropped” in the statement of the problem suggests that the initial velocity is zero, so
we will use theinitia condition

v(0) = 0. (22)

The solution of Eg. (21) can be found by substituting the values of the coefficients
into the solution (20), but we will proceed instead to solve Eq. (21) directly. First,
rewrite the equation as

dv/dt 1

v—49 &5 (23)
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By integrating both sides we obtain
In|v—49|=—%+C, (24)
and then the general solution of [Eq. (21) ]s
v=149+ce '/, (25)

where c is arbitrary. To determine ¢, we substitute t = 0 and v = 0 from the initial
fcondition (22) |nto Eq. (25), with the result that ¢ = —49. Then the solution of the

initial value problem [21), (22) is
v=149(1—e %), (26)

Equation (26) givesthe velocity of the falling object at any positive time (before it hits
the ground, of course).

Graphs of the solution (25) for several valuesof c areshown in Figure 1.2.2, with the
solution (26) shown by the heavy curve. It isevident that al solutions tend to approach
the equilibrium solution v = 49. This confirms the conclusions we reached in Section
[1.1]on the basis of the direction fieldsin Figures 1.1.2 and 1.1.3.

100 <

80 =

& X

40 ”.on
\

20 v =49 (1-e15)

\ \ \ \ \ \
2 4 6 8 10 12t

FIGURE 1.2.2 Graphs of the solution (25) for several values of c.

To find the velocity of the object when it hits the ground, we need to know the time
at which impact occurs. In other words, we need to determine how long it takes the
object to fall 300 m. To do this, we note that the distance x the object has falen is
related to its velocity v by the equation v = dx/dt, or

dx

. _at/5
5 =40 —e). 27)

Consequently,
X = 49t 4 245e7Y/° 4 c, (28)
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where c is an arbitrary constant of integration. The object starts to fall whent =0,
so we know that x = 0 when t = 0. From [Eq. (28) |it follows that ¢ = —245, so the
distance the object hasfallen at timet is given by

X = 49t 4 245¢71/° — 245, (29)

Let T be the time at which the object hits the ground; then x = 300 whent = T. By
substituting these values in Eq. (29) we obtain the equation

49T 4 245e1/°> — 545 = Q. (30)

Thevaueof T satisfying Eg. (30) can be readily approximated by a numerical process
using a scientific calculator or computer, with the result that T = 10.51 sec. At this
time, the corresponding velocity v isfound fro to be v; = 43.01 m/sec.

Further Remarks on Mathematical Modeling. Up to this point we have related our
discussion of differential equations to mathematical models of a falling object and of
a hypothetical relation between field mice and owls. The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree with
observations or experimental results. We have no actual observations or experimental
results to use for comparison purposes here, but there are several sources of possible
discrepancies.

In the case of the falling object the underlying physical principle (Newton's law of
motion) is well-established and widely applicable. However, the assumption that the
drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient 1 by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly, for example,
by measuring the time of fall from a given height, and then calculating the value of y
that predictsthistime.

The model of the field mouse population is subject to various uncertainties. The
determination of the growth rate r and the predation rate k depends on observations
of actual populations, which may be subject to considerable variation. The assumption
that r and k are constants may also be questionable. For example, a constant predation
rate becomes harder to sustain as the population becomes smaller. Further, the model
predicts that a population above the equilibrium value will grow exponentially larger
and larger. This seems at variance with the behavior of actual populations;

[further discussion of population dynamicsin Section 2.5. |

Even if a mathematical model isincomplete or somewhat inaccurate, it may never-
theless be useful in explaining qualitative features of the problem under investigation.
It may also be valid under some circumstances but not others. Thus you should always
use good judgment and common sense in constructing mathematical models and in
using their predictions.

1. Solve each of thefollowing initial value problems and plot the solutions for several values
of y,. Then describe in a few words how the solutions resemble, and differ from, each
other.

(@ dy/dt=-y+5, y(©0) =Y, (b) dy/dt=—-2y+5, y(©0) =Y,
(0 dy/dt= -2y + 10, y(0) =y,
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> 2. Follow theinstructions for Problem 1 for the following initial value problems:
(@ dy/dt=y-5, y(©0) =y,
(b) dy/dt=2y—-5 y@0) =Yy,
(c) dy/dt=2y—-10,  y(0) =y,
3. Consider the differential equation

dy/dt = —ay+b,

where both a and b are positive numbers.
(8) Solvethe differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:
i. aincreases.
ii. bincreases.
iii. Botha and b increase, but the ratio b/a remains the same.
4. Hereisan aternative way to solve the equation

dy/dt =ay—b. 0]
(@) Solvethe simpler equation
dy/dt = ay. (i)

Call the solution y, (t).
(b) Observethat the only difference between Egs. (i) and (ii) isthe constant —b in Eq. (i).
Therefore it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k so that
y =y, (t) +kisasolution of Eq. (i).
(c) Compare your solution from part (b) with the solution given in the text in Eq. (17).
Note: This method can also be used in some cases in which the constant b is replaced by
afunction g(t). It depends on whether you can guess the general form that the solution is
likely to take. This method is described in detail in[Section 3.6]in connection with second
order equations.

5. Usethe method of Problem 4 to solve the equation

dy/dt = —ay+b.
6. The field mouse population in Example 1 satisfies the differential equation
dp/dt = 0.5p — 450.

(a) Find thetime at which the popul ation becomes extinct if p(0) = 850.
(b) Find thetime of extinctionif p(0) = p,, where0 < p, < 900.
(c) Findtheinitial population p, if the population is to become extinct in 1 year.
7. Consider a population p of field mice that grows at a rate proportiona to the current
population, so that dp/dt = rp.
(a) Findtherate constant r if the population doublesin 30 days.
(b) Findr if the population doublesin N days.
8. Thefalling object in Example 2 satisfies the initial value problem

dv/dt =9.8 - (v/5), v(0) =0.

(8) Find thetime that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?
9. Modify Example 2 so that the falling object experiences no air resistance.
(@ Write down the modified initial value problem.
(b) Determine how long it takes the object to reach the ground.
(c) Determineitsvelocity at the time of impact.
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10.

11.

12.

13.

14.

15.

A radioactive material, such asthe isotope thorium-234, disintegrates at arate proportional
totheamount currently present. If Q(t) istheamount present at timet, thend Q/dt = —r Q,
wherer > 0 isthe decay rate.

(8 If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rater .
(b) Find an expression for the amount of thorium-234 present at any timet.

(c) Find thetime required for the thorium-234 to decay to one-half its original amount.
The half-lifelof a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that, for any radioactive material that decays
accordingtotheequation Q' = —r Q, thehalf-lifet andthedecay rater satisfy theequation
rc=In2

Radium-226 hasahalf-life of 1620 years. Find thetime period during which agiven amount
of this materid is reduced by one-quarter.

Consider an electric circuit containing a capacitor, rr, and battery; see Figure 1.2.3.
The charge Q(t) on the capacitor satisfies the equation’

where R isthe resistance, C isthe capacitance, and V is the constant voltage supplied by
the battery.

FIGURE 1.2.3 Theélectric circuit of Problem 13.

(@ If Q(0) =0, find Q(t) a any timet, and sketch the graph of Q versust.

(b) Findthelimiting value Q that Q(t) approaches after along time.

(c) Supposethat Q(t;) = Q, and that the battery is removed from the circuit at t =t,.
Find Q(t) for t > t, and sketch its graph.

A pond containing 1,000,000 gal of water isinitially free of acertain undesirable chemical
(see Problem 15 of Section 1.1). Water containing 0.01 g/gal of the chemical flowsinto the
pond at arate of 300 gal/hr and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.

(8 Let Q(t) bethe amount of the chemical in the pond at time t. Write down an initial
value problem for Q(t).

(b) Solvetheproblemin part (a) for Q(t). How much chemical isin the pond after 1 year?
(c) Attheend of 1 year the source of the chemical in the pond is removed and thereafter
pure water flows into the pond and the mixture flows out at the same rate as before. Write
down theinitial value problem that describes this new situation.

(d) Solve theinitia value problem in part (c). How much chemica remainsin the pond
after 1 additional year (2 years from the beginning of the problem)?

(e) How long doesit take for Q(t) to be reduced to 10 g?

(f) Plot Q(t) versust for 3 years.

Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering

®This equation results from Kirchhoff’s laws, which are discussed |ater in[Secfion 3.8.]
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system can take water from the pool, remove the dye, and return the water to the pool at a
rate of 200 gal/min.

(@ Write down theinitial value problem for the filtering process; let q(t) be the amount
of dyein the pool at any timet.

(b) Solvethe problemin part (a).

(c) Youhaveinvited several dozen friendsto apool party that isscheduled to beginin 4 hr.
You have also determined that the effect of the dye isimperceptible if its concentration is
less than 0.02 g/gal. Is your filtering system capable of reducing the dye concentration to
thislevel within 4 hr?

(d) FindthetimeT at which the concentration of dye first reaches the value 0.02 g/gal.
(e) Findtheflow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 hr.

1.3 Classification of Differential Equations

The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to describe some of the methods that have proved effective
in finding solutions, or in some cases approximating them. To provide a framework
for our presentation we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One of the more obvious classifications
is based on whether the unknown function depends on a single independent variable or
on several independent variables. In the first case, only ordinary derivatives appear in
the differential equation, and it is said to be anjordinary differential equation] In the
second case, the derivatives are partial derivatives, and the equation is called apartial
differential equation.

All the differential egquations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

d’Qt) | _dQ) | 1 B
L=~ + R + ¢ QU =EW, @

for the charge Q(t) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in|Section 3.8.| Typical examples of partial
differential equations are the heat conduction eguation
,02u(x,t)  du(x,b)
o = B
x> at

@)
and the wave equation
,0%U(X,)  %u(x,b)
a > = -
aX ot
Here, o and a® are certain physical constants. The heat conduction equation describes
the conduction of heat in a solid body and the wave equation arises in a variety of

problems involving wave motion in solids or fluids. Note that in both Egs. (2) and (3)
the dependent variable u depends on the two independent variables x and t.

©)
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Systems of Differential Equations. Another classification of differential equations
depends on the number of unknown functions that are involved. If there is a single
function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example,
the Lotka—Volterra, or predator—prey, equations are important in ecological modeling.
They have the form

dx/dt = ax — axy 4
dy/dt = —cy + yxy,

where x(t) and y(t) are the respective populations of the prey and predator species.
The constants a, «, ¢, and y are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in
and[9] in particular, the Lotka-Volterra equations are examined in[Section 9.5] It is not
unusua in some areas of application to encounter systems containing a large number
of equations.

Order. Theorder of adifferential equation isthe order of the highest derivative that
appears in the equation. The equations in the preceding sections are all first order
equations, whileEq. (1)]is a second order equation. [Equations (2) and (3) jare second
order partia differential equations. More generally, the equation

F[t, ut), u'(t),...,u™®)] =0 (5)

isan ordinary differential equation of the nth order. Equation (5) expresses a relation
between the independent variable t and the values of the function u and its first n

derivativesu’, u”, ..., u™. It is convenient and customary in differential equationsto
write y for u(t), with y', y”, ..., y™ standing for u'(t), u”(t), ..., u™(t). Thus Eq.
(5) iswritten as

Ft.y.y,....y™") =0. (6)
For example,

y" +2¢y +yy =t (7

is a third order differential equation for y = u(t). Occasionally, other letters will be
used instead of t and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining

yO =ty Y.y, YY) )

We study only equations of theform (8). Thisismainly to avoid the ambiguity that may
arise because a single equation of the form (6) may correspond to several equations of
the form (8). For example, the equation

y2+ty +4y=0 ©)
leads to the two equations

y = it Yt — 16y
B 2

o y=_—Y (10)
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Linear and Nonlinear Equations. A crucial classification of differential equationsis
whether they are linear or nonlinear. The ordinary differential equation

Ft,y,y,....,y") =0

is said to be linear if F isalinear function of the variables y, y', ..., y™: asimilar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order nis

a,OY"™ +a,O)Yy" P+ +a,)y = g). (12)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in[Sections 1.1] and|[1.2] describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) isalinear ordinary differential equation
and[Egs. (2) and (3) lare linear partial differential equations. An equation that is not of
the form (11) is a honlinear equation.|Equation (7)|is nonlinear because of the term
yy'. Similarly, each equation in the §ystem (4)]is nonlinear because of the terms that
involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle 6 that an oscillating pendulum of length L makeswith
the vertical direction (see Figure 1.3.1) satisfies the equation

d0 g .

qe + 3 snd =0, (12
whose derivation is outlined in The presence of the term involving sin@
makes Eq. (12) nonlinear.

The mathematical theory and methods for solving linear equations are highly devel -
oped. In contrast, for nonlinear equations the theory is more complicated and methods
of solution are less satisfactory. In view of this, it is fortunate that many significant
problemslead to linear ordinary differential equationsor can be approximated by linear
equations. For example, for the pendulum, if the angle 6 is small, then sing = 6 and
Eq. (12) can be approximated by the linear equation

— +20=0. (13)

This process of approximating anonlinear equation by alinear oneiscalled lineariza-
tion and it is an extremely valuable way to deal with nonlinear equations. Neverthe-
less, there are many physical phenomenathat simply cannot be represented adequately

FIGURE 1.3.1 An oscillating pendulum.
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by linear equations; to study these phenomena it is essential to deal with nonlinear
equations.

In an elementary text it is natural to emphasize the simpler and more straightforward
parts of the subject. Thereforethe greater part of thisbook isdevoted to linear equations
and various methods for solving them. However, [Chapters 8]and[9,]as well as parts
of are concerned with nonlinear equations. Whenever it is appropriate, we
point out why nonlinear equations are, in general, more difficult, and why many of the
techniques that are useful in solving linear equations cannot be applied to nonlinear
equations.

Solutions. A solution of the ordinary differential fequation (8) lon the interval o <
t < Bisafunction ¢ suchthat ¢', ¢”, ..., '™ exist and satisfy

p™ () = ft, o), ¢’ (1), ..., 0" V()] (14)

foreverytina <t < B. Unlessstated otherwise, we assume that thefunction f of Eq.
[(8) Jis areal-valued function, and we are interested in obtaining real-valued solutions
y = o).

Recall that in e found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp

— =05p—-4 1

at 0.5p 50 (15
has the solution

p= 900 + Cet/z, (16)

where ¢ is an arbitrary constant. It is often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usualy relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in thisway
it is easy to show that the function y, (t) = cost isasolution of

y'+y=0 (17)

for all t. To confirm this, observe that y;(t) = —sint and yj(t) = — cost; then it
followsthat y; (t) + y,(t) = 0. In the same way you can easily show that y,(t) = sint
isalso asolution of Eq. (17). Of course, this does not constitute a satisfactory way to
solve most differential equations because there are far too many possible functions for
you to have agood chance of finding the correct one by arandom choice. Nevertheless,
it isimportant to realize that you can verify whether any proposed solution is correct
by substituting it into the differential equation. For a problem of any importance this
can be avery useful check and is one that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able
to verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the always have a solution? The answer is “No.” Merely writing
down an equation of the[form (8)] does not necessarily mean that there is a function
y = ¢(t) that satisfiesit. So, how can we tell whether some particular equation has a
solution? Thisisthe question of existencef asolution, and it is answered by theorems
stating that under certain restrictions on the function f in[Eq. (8),the equation always
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has solutions. However, this is not a purely mathematical concern, for at least two
reasons. If aproblem hasno solution, wewould prefer to know that fact beforeinvesting
time and effort in a vain attempt to solve the problem. Further, if a sensible physical
problem is model ed mathematically asadifferential equation, then the equation should
have a solution. If it does not, then presumably there is something wrong with the
formulation. In this sense an engineer or scientist has some check on the validity of the
mathematical model.

Second, if we assume that a given differential equation has at |east one solution, the
guestion arises as to how many solutions it has, and what additional conditions must
be specified to single out a particular solution. This is the question of uniquenessin
general, solutions of differential equations contain one or more arbitrary constants of
integration, as does the solution|(16) of Eq. (15)} [Equation (16)|represents an infinity
of functions corresponding to the infinity of possible choices of the constant c. Aswe
saw in[Section 1.2,]if p is specified at some time t, this condition will determine a
value for c; even so, we have not yet ruled out the possibility that there may be other
solutions of [Eq. (15)]that also have the prescribed value of p at the prescribed timet.
The issue of uniqueness also has practical implications. If we are fortunate enough
to find a solution of a given problem, and if we know that the problem has a unique
solution, then we can be sure that we have completely solved the problem. If there may
be other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the[form (8)] can we
actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of
a solution. However, without knowledge of existence theory we might, for example,
use a computer to find a numerical approximation to a “solution” that does not exist.
On the other hand, even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—polynomial,
trigonometric, exponential, logarithmic, and hyperbolic functions. Unfortunately, this
is the situation for most differential equations. Thus, while we discuss elementary
methods that can be used to obtain solutions of certain relatively simple problems, it
is also important to consider methods of a more general nature that can be applied to
more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable
tool in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8,]to construct
numerical approximations to solutions of differential equations. At the present time
these algorithms have been refined to an extremely high level of generality and effi-
ciency. A few lines of computer code, written in a high-level programming language
and executed (often within afew seconds) on arelatively inexpensive computer, suffice
to solve numerically awiderange of differential equations. M ore sophisticated routines
are also readily available. These routines combine the ability to handle very large and
complicated systems with numerous diagnostic features that alert the user to possible
problems as they are encountered.

The usual output from a numerical algorithm is atable of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differential
equation graphically, whether the sol ution has been obtained numerically or astheresult
of an analytical procedure of some kind. Such a graphical display is often much more
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illuminating and helpful in understanding and interpreting the solution of adifferential
equation than a table of numbers or a complicated analytical formula. There are on
the market several well-crafted and relatively inexpensive special-purpose software
packages for the graphical investigation of differential equations. The widespread
availability of personal computers has brought powerful computational and graphical
capability within the reach of individual students. You should consider, in the light
of your own circumstances, how best to take advantage of the available computing
resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equationsisthe availability of extremely powerful and general software packages that
can perform a wide variety of mathematical operations. Among these are Maple!’
Mathematica and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive numerical
computations and have versatile graphical facilities. In addition, Mapleand Mathemat-
ica also have very extensive anaytical capabilities. For example, they can perform the
analytical steps involved in solving many differential equations, often in response to
a single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examplesin detail. However,
eventually you should plan to delegate as many as possible of the routine (often repeti-
tive) detailsto acomputer, while you focus more attention on the proper formulation of
the problem and on the interpretation of the solution. Our viewpoint is that you should
always try to use the best methods and tools available for each task. In particular, you
should strive to combine numerical, graphical, and analytical methods so as to attain
maximum understanding of the behavior of the solution and of the underlying process
that the problem models. You should also remember that some tasks can best be done
with pencil and paper, while others require a calculator or computer. Good judgment
is often needed in selecting a judicious combination.

PROBLEMS  Ineachof Problems 1 through 6 determine the order of the given differential equation; also state
—  whether the equation is linear or nonlinear.

d’y . dy . d’y . dy
1 t2=—2 +t=2 + 2y = sint 2. A+yH)—2 +t-2 =¢
dt2+dt+y sin (+y)dt2+dt+y e
dy d®% d?y dy dy
e 22 4L iy=1 4, L4ty =
3 dt* dt3+dt2+dt+y dt"’ty 0
dy . . d®y dy 3

In each of Problems 7 through 14 verify that the given function or functionsis a solution of the
differential equation.

7.y —y=0 y(®)=¢€, y,t)=cosht
8. y'+2y —3y=0. yt=e¥ y,it)=¢
9. ty —y=t5  y=3t+t?
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10. v +4y" +3y=t; y,t)=t/3, y,t)=e"+1/3

11. 2t%y" 43ty —y=0, t=>0; y,0 =t"2 yt) =t
12. t2y" +5ty +4y=0, t=>0; y,0) =t"%  y,(t) =t?Int
13. Y +y=sect, O<t<m/2 y = (cost) Incost + t sint

2 t 2 2
14, y —2ty=1; y=e‘/e*S ds+ ¢
0

In each of Problems 15 through 18 determine the values of r for which the given differential
equation has solutions of theformy = €.

15, y+2y=0 16. y—-y=0

17. v +y —6y=0 18. yv"—-3y"+2y =0

In each of Problems 19 and 20 determinethevaluesof r for which the given differential equation
has solutions of theformy =t" fort > Q.

19. t2y" +4ty' +2y=0 20. t?y" —4ty' +4y=0

In each of Problems 21 through 24 determine the order of the given partial differential equation;
also statewhether theequationislinear or nonlinear. Partial derivativesare denoted by subscripts.

2L u,+u,+u,=0 22. u,, +u, +uy +uu +u=0

23. Uyt 205, U =0 24, u +uu, =1+u

In each of Problems 25 through 28 verify that the given function or functions is a solution of
the given partia differential equation.

25. U, +u, =0 U, (X, y) = cosxcoshy, U,(X,y) = In(x?+ y?

26. azuxx = ut; Ul(X, t) = eﬂxzI SinX, UZ(X’ 1) = 67‘)42)L2t s'n)\'x’ A areal constant
27. azuxx = Uy u,(x,t) =sinixsiniat, u,(x,t) =sin(x — at), A areal constant
28. aZUXX = ut; u= (ﬂ/t)l/2e7X2/4a2t7 t>0

29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eqg. (12)
in the text. Assume that the rod is rigid and weightless, that the massis a point mass, and
that thereis no friction or drag anywhere in the system.

(d) Assume that the mass isin an arbitrary displaced position, indicated by the angle 6.
Draw afree-body diagram showing the forces acting on the mass.

(b) Apply Newton'slaw of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe that
you need to find the component of thegravitational forceinthetangential direction. Observe
asothat the linear accel eration, as opposed to the angular acceleration, is Ld?0/dt?, where
L isthe length of therod.

(c) Simplify the result from part (b) to obtain|Eq. (12) of the text.|

1.4 Historical Remarks

Without knowing something about differential equations and methods of solving them,
it isdifficult to appreciate the history of thisimportant branch of mathematics. Further,
the development of differential equations is intimately interwoven with the genera
development of mathematics and cannot be separated from it. Nevertheless, to provide
some historical perspective, we indicate here some of the major trendsin the history of
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the subject, and identify the most prominent early contributors. Other historical infor-
mation is contained in footnotes scattered throughout the book and in the references
listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642-1727) and Gottfried Wilhelm Leibniz (1646-1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity College,
Cambridge, and became Lucasian Professor of Mathematicstherein 1669. His epochal
discoveriesof calculusand of thefundamental laws of mechanicsdate from 1665. They
were circulated privately among his friends, but Newton was extremely sensitive to
criticism, and did not begin to publish his results until 1687 with the appearance of
his most famous book, Philosophiae Naturalis Principia Mathematicé/hile Newton
did relatively little work in differential equations as such, his development of the
calculus and elucidation of the basic principles of mechanics provided abasisfor their
applications in the eighteenth century, most notably by Euler. Newton classified first
order differential equations according to the forms dy/dx = f (x), dy/dx = f(y),
anddy/dx = f(x,y). For the latter equation he devel oped a method of solution using
infinite series when f (x,y) is a polynomial in x and y. Newton’s active research in
mathematics ended in the early 1690s except for the solution of occasional challenge
problems and the revision and publication of results obtained much earlier. He was
appointed Warden of the British Mint in 1696 and resigned his professorship a few
years later. He was knighted in 1705 and, upon his death, was buried in Westminster
Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the age
of 20 at the University of Altdorf. Throughout hislife he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since hisinterest in
this subject devel oped when he was in his twenties. Leibniz arrived at the fundamental
resultsof calculusindependently, although alittlelater than Newton, but wasthefirst to
publish them, in 1684. Leibniz was very conscious of the power of good mathematical
notation, and our notation for the derivative, dy/dx, and the integral sign are due
to him. He discovered the method of separation of variables (Section 2.2) in 1691,
the reduction of homogeneous equations to separable ones (Section 2.2, Problem 3(0)
in 1691, and the procedure for solving first order linear equations (Section 2.1) in
1694. He spent his life as ambassador and adviser to several German royal families,
which permitted him to travel widely and to carry on an extensive correspondence
with other mathematicians, especialy the Bernoulli brothers. In the course of this
correspondence many problems in differential equations were solved during the latter
part of the seventeenth century.

The brothers Jakob (1654-1705) and Johann (1667—1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus they solved a number of problemsin mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y' = [a3/(b%y — a®)]*/? in 1690 and in the same paper first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able to
solve the equation dy/dx = y/ax. One problem to which both brothers contributed,
and which led to much friction between them, was the[brachistochrongroblem (see]
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[Problem 33 of Section 2.3)] The brachistochrone problem was also solved by Leibniz
and Newton in addition to the Bernoulli brothers. It is said, perhaps apocryphally, that
Newton learned of the problem late in the afternoon of atiring day at the Mint, and
solved it that evening after dinner. He published the solution anonymously, but on
seeing it, Johann Bernoulli exclaimed, “Ah, | know the lion by his paw.”

Daniel Bernoulli (1700-1782), son of Johann, migrated to St. Petersburg as ayoung
man to join the newly established St. Petersburg Academy, but returned to Basel in
1733 as professor of botany, and later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was aso the first
to encounter the functions that a century later became known as Bessel functions

Se 3)).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707-1783),
grew up near Basel and was astudent of Johann Bernoulli. Hefollowed hisfriend Daniel
Bernoulli to St. Petersburg in 1727. For the remainder of his life he was associated
with the St. Petersburg Academy (1727-1741 and 1766-1783) and the Berlin Academy
(1741-1766). Euler wasthe most prolific mathematician of al time; his collected works
fill more than 70 large volumes. His interests ranged over all areas of mathematics and
many fields of application. Even though he was blind during the last 17 years of his
life, his work continued undiminished until the very day of his death. Of particular
interest here is his formulation of problems in mechanics in mathematical language
and his development of methods of solving these mathematical problems. Lagrange
said of Euler’s work in mechanics, “The first great work in which analysisis applied
to the science of movement.” Among other things, Euler identified the condition for
exactness of first order differential equations (Section 2.6) in 173435, developed the
theory of integrating factors in the same paper, and gave the general
solution of homogeneous linear equations with constant coefficients B4
E]and in 1743. He extended the latter results to nonhomogeneous equations in
1750-51. Beginning about 1750, Euler made frequent use of power series (Chapter 5)
in solving differential equations. He also proposed a numerical procedure (Sections
P.7land[8.1) in 176869, made important contributionsin partial differential equations,
and gave the first systematic treatment of the calculus of variations.

Joseph-Louis Lagrange (1736—-1813) became professor of mathematicsin his native
Turin at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in 1766, and moved on to the Paris Academy in 1787. He is most famous
for his monumental work Mécanique analytiquepublished in 1788, an elegant and
comprehensive treatise of Newtonian mechanics. With respect to elementary differen-
tial equations, Lagrange showed in 1762—65 that the general solution of an nth order
linear homogeneous differential equation is a linear combination of n independent

solutions (Sections 3.2,8.3| and[4.1). Later, in 1774-75, he gave a complete devel-

opment of the method of variation of parameters (Bections 3.7|and [4.4). Lagrange is
also known for fundamental work in partial differential equations and the calculus of

variations.

Pierre-Simon de Laplace (1749-1827) lived in Normandy as a boy but came to
Parisin 1768 and quickly made his mark in scientific circles, winning election to the
Académie des Sciencesin 1773. He was preeminent in the field of celestial mechanics;
his greatest work, Traité de meanique ¢eeste was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics, and Laplace studied it extensively in connection with gravitational attraction.
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REFERENCES

The Laplace transform (Chapter 6) is also named for him although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and unigueness and
to the development of less elementary methods such as those based on power series
expansions (see[Chapter 5). These methods find their natural setting in the complex
plane. Consequently, they benefitted from, and to some extent stimulated, the more
or less simultaneous devel opment of the theory of complex analytic functions. Partial
differential equations also began to be studied intensively, as their crucia role in
mathematical physics became clear. In this connection a number of functions, arising
as solutions of certain ordinary differential equations, occurred repeatedly and were
studied exhaustively. Known collectively as higher transcendental functions, many of
them are associated with the names of mathematicians, including Bessel, Legendre,
Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical meansledto
theinvestigation of methods of humerical approximation (see Chapter 8)|. By 1900fairly
effective numerical integration methods had been devised, but their implementation
was severdly restricted by the need to execute the computations by hand or with very
primitive computing equipment. In the last 50 years the development of increasingly
powerful and versatile computers has vastly enlarged the range of problems that can
be investigated effectively by numerical methods. During the same period extremely
refined and robust numerical integrators have been devel oped and arereadily available.
Versions appropriate for personal computers have brought the ability to solve a great
many significant problems within the reach of individual students.

Another characteristic of differential equationsin the twentieth century has been the
creation of geometrical or topological methods, especially for nonlinear equations. The
goal isto understand at |east the qualitative behavior of solutions from a geometrical,
aswell as from an analytical, point of view. If more detailed information is needed, it
can usually be obtained by using numerical approximations. An introduction to these
geometrical methods appearsin Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given a new impetus to the study of systems of
nonlinear differential equations. Unexpected phenomena (Section 9.8), referred to
by terms such as strange attractors, chaos, and fractals, have been discovered, are
being intensively studied, and are leading to important new insights in a variety of
applications. Although it is an old subject about which much is known, differential
equations at the dawn of the twenty-first century remains afertile source of fascinating
and important unsolved problems.

Computer software for differential equations changes too fast for particulars to be given in a book such as
this. A good source of information is the Software Review and Computer Corner sections of The College
Mathematics Journapublished by the Mathematical Association of America.

Thereareanumber of booksthat deal with the use of computer algebrasystemsfor differential equations.
Thefollowing are associated with this book, although they can be used independently as well:
Coombes, K. R., Hunt, B. R., Lipsman, R. L., Oshorn, J. E., and Stuck, G. J., Differential Equations
with Maple (2nd ed.) and Differential Equations with Mathematid@nd ed.) (New York: Wiley,
1997) and Differential Equations wittmATLAB (New York: Wiley 1999).


http://www.wiley.com/college/math/mathem/cg/sales/coombes.html
http://www.wiley.com/college/math/mathem/cg/sales/coombes.html
http://www.wiley.com/college/math/mathem/cg/differen.html
http://www.wiley.com/college/math/mathem/cg/differen.html
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For further reading in the history of mathematics see books such as those listed below:
Boyer, C. B., and Merzbach, U. C., A History of Mathematicé&2nd ed.) (New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Tin{dew York: Oxford University
Press, 1972).

A useful historical appendix on the early development of differential equations appearsin:

Ince, E. L., Ordinary Differential EquationgLondon: Longmans, Green, 1927; New York: Dover,
1956).

An encyclopedic source of information about the lives and achievements of mathematicians of thepastis:
Gillespie, C. C., ed., Dictionary of Scientific Biographgl5 vols.) (New York: Scribner’s, 1971).


http://www.wiley.com/college/math/mathem/cg/history.html
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CHAPTER

2

First Order
Differential
Equations

This chapter deals with differential equations of first order,

dy

where f isagiven function of two variables. Any differentiablefunction y = ¢ (t) that
satisfies this equation for all t in some interval is called a solution, and our object isto
determine whether such functions exist and, if so, to develop methodsfor finding them.
Unfortunately, for an arbitrary function f, there is no general method for solving the
equation in terms of elementary functions. Instead, we will describe several methods,
each of which is applicable to a certain subclass of first order equations. The most
important of these are linear equations (Section 2.1), separabl e equations (Section 2.7),
and exact equations (Section 2.6). Other sections of this chapter describe some of
the important applications of first order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical
guestions related to existence and uniqueness of solutions. The final section dealswith
first order difference equations, which have some important points of similarity with
differential equations and are in some respects simpler to investigate.

2.1 Linear Equations with Variable Coefficients

iscalled afirst order linear equation. In[Sections 1.1 and [1.2]we discussed a restricted

If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
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EXAMPLE

1

type of first order linear equation in which the coefficients are constants. A typical
exampleis

pr —ay + b, 2
where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
genera first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of t. We will usually write the general[first]
forder Tinear equation in the form

dy _
Fri p(ty = g(t), (3

where p and g are given functions of the independent variablet.
Equation (2) can be solved by the straightforward integration method introduced in
Section 1.2. That is, we rewrite the equation as

dy/dt
—— = —a. 4
y — (b/a) @
Then, by integration we obtain
Inly — (b/a)| = —at + C,
from which it follows that the general solution of Eq. (2) is

y = (b/a) +ce™®, )
wherecisan arbitrary constant. For example, if a = 2and b = 3, then Eq. (2) becomes
dy
—= +2y =3, 6
R (6)
and its general solutionis
y=32+ce?. @)

Unfortunately, this direct method of solution cannot be used to solve the general
equation (3), so we need to use a different method of solution for it. The method is due
to Leibniz; it involves multiplying the differential equation (3) by a certain function
w(t), chosen so that the resulting equation is readily integrable. The function w(t) is
called an|integrating factor|and the main difficulty is to determine how to find it. To
maketheinitial presentation assimple as possible, wewill first use this method to solve
Eg. (6), later showing how to extend it to other first order linear equations, including
the general equation (3).

Solve Eq. (6),

dy

— 4+2y=3

dt + y 9
by finding an integrating factor for this equation.

Thefirst step isto multiply Eqg. (6) by afunction w.(t), as yet undetermined; thus

d
u(t)d—f +2u(t)y = 3u(). ®)
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The question now is whether we can choose s(t) so that the left side of
is recognizable as the derivative of some particular expression. If so, then we can
integrate[Eq. (8), even though we do not know the function y. To guide our choice
of the integrating factor s.(t), observe that the left side of contains two terms
and that the first term is part of the result of differentiating the product w(t)y. Thus,
let us try to determine w.(t) so that the left side of [Eg. (8)]becomes the derivative of
the expression w(t)y. If we compare the left side of [Eq. (8)]with the differentiation
formula

d dy du(t)

giH OV = n® G + =5V, )
we note that thefirst terms are identical and that the second terms also agree, provided
we choose . (t) to satisfy

du(t)
dt

Therefore our search for an integrating factor will be successful if we can find a
solution of Eqg. (10). Perhaps you can readily identify afunction that satisfies Eq. (10):
What function has a derivative that is equal to two times the original function? More
systematically, rewrite Eg. (10) as

= 2u(t). (10)

dp®/dt _ (1)
()
which is equivalent to
d
at Injp®| =2 (12)
Then it follows that
Inu)| =2t +C, (13)
or
wu(t) = ce?. (14)

The function w(t) given by Eq. (14) is the integrating factor for[Eq. (6)] Since we do
not need the most general integrating factor, we will choose ¢ to be onein Eq. (14) and
use u(t) = e*.

Now we return to[Eq. (6), multiply it by the integrating factor €, and obtain

eZt%+ze2ty=3e2t. (15)

By the choice we have made of the integrating factor, the left side of Eq. (15) is the
derivative of e?'y, so that Eq. (15) becomes

%(e2t y) = 3e*. (16)

By integrating both sides of Eq. (16) we obtain
ey =3 +c, (17)
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where c isan arbitrary constant. Finally, on solving|Eg. (17)|for y, we have the general
solution of namely,
y=3+ce?. (18)

Of course, the solution (18) is the same as the solution (7) found earlier. Figure 2.1.1
shows the graph of Eq. (18) for severa values of c. The solutions converge to the
equilibrium solution y = 3/2, which correspondsto ¢ = 0.

\ \ \ \ \ \ \ \ \ \
02 04 06 08 1 12 14 16 18 2t

FIGURE 2.1.1 Integral curvesof y' + 2y = 3.

Now that we have shown how the method of integrating factors worksin thissimple
example, let us extend it to other classes of equations. We will do this in three stages.

First, consider again Eq. (2)| which we now write in the form

dy
— =b. 19
Gt (19)
The derivation i an now be repeated line for line, the only changes being
that the coefficients 2 and 3 in Eq. (6) |are replaced by a and b, respectively. The
integrating factor is u(t) = * and the solution is given by[Eq. (5)} which is the same
as Eqg. (18) with 2 replaced by a and 3 replaced by b.
The next stage is to replace the constant b by a given function g(t), so that the
differential equation becomes
dy
—= =g(). 20
g Ty =90 (20)
Theintegrating factor depends only on the coefficient of y sofor Eq. (20) theintegrating
factor isagain wu(t) = e®. Multiplying Eq. (20) by 1(t), we obtain

a dy

at at
= t’
€ dt-i—aey e?g(t)

or

d
a(eat y) = e¥g(t). (21)
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EXAMPLE

2

By integrating both sides of| Eq. (21)|we find that
ey = / e*g(s)ds+c, (22)

where c is an arbitrary constant. Note that we have used s to denote the integration
variable to distinguish it from the independent variablet. By solving Eq. (22) for y we
obtain the general solution

y=ea / e*g(s)ds + ce ™. (23)

For many simplefunctionsg(s) theintegral in Eq. (23) can be evaluated and the solution
y expressed in terms of elementary functions, as in the following examples. However,
for more complicated functions g(s), it may be necessary to leave the solution in the
integral form given by Eq. (23).

Solve the differential equation

dy
dt
Sketch several solutions and find the particul ar solution whose graph contains the point
O, 2).
In this case a = 1/2, so the integrating factor is u(t) = €/2. Multiplying Eq. (24)
by this factor |eads to the equation

+iy=2+t (24)

d
a(et/zy) = 26"/% + teV/2. (25)

By integrating both sides of Eq. (25), using integration by parts on the second term on
the right side, we obtain

e'/2y = 4e'/? 1 2te'/? — 4e'/? ¢,
where c is an arbitrary constant. Thus
y =2t +ce /2, (26)

To find the solution that passes through the initial point (0, 2), we set t =0 and
y = 2 in Eqg. (26), with the result that 2 =0+ ¢, so that ¢ = 2. Hence the desired
solutionis

y =2t 4272, (27)
Graphs of the solution (26) for severa values of ¢ are shown in Figure 2.1.2. Ob-
serve that the solutions converge, not to a constant solution as in and

in the examples in [Chapter 1| but to the solution y = 2t, which corresponds to
c=0.
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EXAMPLE

3

[N
N
w
N
(6]
—

FIGURE 2.1.2 Integral curvesof y' + 3y = 2+ 1.

Solve the differential equation

dy
2 _oy=4-—t 28
i (28)
and sketch the graphs of several solutions. Find the initial point on the y-axis that
separates solutions that grow large positively from those that grow large negatively as
t - oo.

Since the coefficient of y is —2, the integrating factor for Eq. (28) is u(t) = e 2.
Multiplying the differential equation by .(t), we obtain

d
a(e‘Zty) =4e 2 —te 2, (29)

Then, by integrating both sides of this equation, we have
ely=-2e?+lte?+ie?tc

where we have used integration by parts on the last term in Eq. (29). Thus the genera
solution of Eq. (28) is

y=—1+1t+ce®. (30)

Graphs of the solution (30) for severa values of ¢ are shown in Figure 2.1.3. The
behavior of the solution for large values of t is determined by the term ce?. If ¢ # 0,
then the solution grows exponentialy large in magnitude, with the same sign as ¢
itself. Thus the solutions diverge as t becomes large. The boundary between solu-
tions that ultimately grow positively from those that ultimately grow negatively oc-
curs when ¢ = 0. If we substitute ¢ = 0 into Eq. (30) and then set t = 0, we find
that y = —7/4. This is the separation point on the y-axis that was requested. Note
that, for this initial value, the solution isy = —% + %t; it grows positively (but not
exponentially).
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FIGURE 2.1.3 Integra curvesof y — 2y =4 —t.

Examples 2 and 3 are special cases of [EQ. (20),

dy+a =g(t)
dt y_g ’

whose solutions are given by
y=¢e / e*g(s) ds + ce ™.

The solutions convergeif a > 0, asin[Example 2} and divergeif a < 0, asin[Example]

[3.]In contrast to the equations considered in[Sections 1.1 and[1.2] however,[Eq._(20)
does not have an equilibrium solution.

The final stage in extending the method of integrating factors is to the general first
order linear equation (3),

dy )y = g(t
dt+p)y—g(),

where p and g are given functions. If we multiply Eq. (3) by an as yet undetermined
function . (t), we obtain

d
u(t)d—’t’ + OOy = ndg). (31)

Following the same line of development as in|[Example 1, we see that the left side of
Eqg. (31) isthe derivative of the product w(t)y, provided that . (t) satisfiesthe equation

du(t)
— = PR (32)
If we assume temporarily that () is positive, then we have

du(t)/dt
/T — p(),
) p(t)
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EXAMPLE

4

and consequently

Inu(t)=/ p(t)dt + k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function
for ., namely,

uaw=ag[pmdn (33)

Note that . (t) is positive for all t, as we assumed. Returning to[Eq. (31), we have

d
a[u(t)y] = n(®g(). (34)

Hence
n(t)y = / (9GS ds + ¢,

so the general solution of [Eq. (3)]is
_ [ n(s)g(s)ds+c
n(t) '

Observe that, to find the solution given by Eqg. (35), two integrations are required: one
to obtain . (t) from Eq. (33) and the other to obtain y from Eg. (35).

(35)

Solve theinitial value problem

ty + 2y = 4t?, (36)
y(1) = 2. (37)

Rewriting Eq. (36) in the[standard form (3), we have
Y+ 2/)y = 4, (38)

SO p(t) = 2/t and g(t) = 4t. To solve Eq. (38) we first compute the integrating factor
p(t):

u(t) = exp/ %dt =Nl = ¢2, (39)

On multiplying Eq. (38) by u(t) = t2, we obtain
t?y + 2ty = (t%y) = 4t3,
and therefore
t’y =t*+c,
where c is an arbitrary constant. It follows that

C
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is the general solution of[EQ. (36). Integral curves of [Eq. (36) ffor several values of ¢
are shown in Figure 2.1.4. To satisfy thefinitial condition (37) it is necessary to choose
c = 1; thus

1
y:t2+t—2, t>0 (42)

is the solution of the initial value problem [(36), [(37)l This solution is shown by the
heavy curvein Figure 2.1.4. Note that it becomes unbounded and is asymptotic to the
positive y-axisast — 0 from the right. Thisis the effect of the infinite discontinuity
in the coefficient p(t) at the origin. The function y = t2 + (1/t?) for t < Oisnot part
of the solution of thisinitial value problem.

This is the first example in which the solution fails to exist for some values of t.
Again, this is due to the infinite discontinuity in p(t) at t = 0, which restricts the
solution to theinterval 0 < t < oo.

NN\

()

FIGURE 2.1.4 Integral curvesof ty’ + 2y = 4t2,

Looking again at Figure 2.1.4, we see that some solutions (those for which ¢ > 0)
are asymptotic to the positive y-axis ast — 0 from the right, while other solutions
(for which ¢ < 0) are asymptotic to the negative y-axis. The solution for which ¢ = 0,
namely, y = t2, remains bounded and differentiableeven at t = 0. If we generalizethe
[ritial condition (37)|to

y(l) = Yo (42)
then ¢ = y, — 1 and the solution (41) becomes
-1
y=t2+ %= t.0 (43)

Asin[Example 3, thisis another instance where thereis acritical initial value, namely,
Y, = 1, that separates solutions that behave in two quite different ways.
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PROBLEMS

VVVYVYYVYY

In each of Problems 1 through 12:

(@) Draw adirection field for the given differential equation.

(b) Based on aninspection of thedirection field, describe how solutionsbehavefor larget.
(c) Findthe general solution of the given differential equation and use it to determine how
solutions behave ast — oo.

1. y+3y=t+e? > 2.y —2y=t%?

3 y+y=te'+1 [» 4 y+@/y=3cos2t, t>0
5 y —2y=23¢ > 6. ty +2y=sint, t>0

7.y + 2ty = 2tet’ > 8 (1+t)y +4ty = (1+1t)2

9. 2y +y=3t > 10. ty —y=t2"

11y +y="5sn2t > 12, 2y +y=3t?

In each of Problems 13 through 20 find the solution of the given initial value problem.

13.
14.
15.
16.
17.
19.

y-—y=2e",  y0=1

y +2y=te %, y(1) =0

ty +2y=t>—t+1, y1) = 3, t>0

y + (2/t)y = (cost)/t?>  y(m) =0, t>0

y —2y =¢€*, y(0) =2 18. ty' 42y =sint, y(r/2) =1
3y + 4t%y = e, y(-1) =0 20. ty + (t+1y=t, y(n2) =1

In each of Problems 21 and 22:

21.

(a) Draw adirection field for the given differential equation. How do solutions appear to
behave as t becomes large? Does the behavior depend on the choice of the initial value
a? Let a, be the value of a for which the transition from one type of behavior to another
occurs. Estimate the value of a,,.

(b) Solvetheinitial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value a,.

y —ly=2cost, y(0=a > 22 2y -y=¢€B  y0=a

In each of Problems 23 and 24:

23.
25.

26.

27.

(@) Draw adirection field for the given differential equation. How do solutions appear to
behave ast — 0? Does the behavior depend on the choice of the initial value a? Let a
be the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of a,,.

(b) Solvetheinitial value problem and find the critical value a, exactly.

(c) Describe the behavior of the solution corresponding to the initial value a,.

ty +t+Dy=2tet, yh=a P 24 ty +2y=(snt)/t, y(-n/2)=a
Consider the initial value problem

y + 3y = 2cost, y(0) = —1.

Find the coordinates of the first local maximum point of the solution for t > 0.
Consider the initial value problem

y+3y=1-1t.  yO=y,

Find the value of y,, for which the solution touches, but does not cross, the t-axis.
Consider the initial value problem

y + 1y =3+ 2cos2t, y(0) = 0.

(a) Find the solution of thisinitia value problem and describe its behavior for largett.
(b) Determinethe value of t for which the solution first intersectstheliney = 12.
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28

29.

. Find the value of y, for which the solution of the initial value problem

y —y=1+3sint, y(0) =y,

remainsfiniteast — oo.
Consider the initial value problem

y-3y=3t+2¢, yO=y,

Find the value of y, that separates solutionsthat grow positively ast — oo from those that
grow negatively. How does the solution that corresponds to this critical value of y, behave
ast —> 00?

30.

In
sol
sol

3L
32.
33.
34.

35.

Show that if a and A are positive constants, and b is any real number, then every solution
of the equation

y +ay = be™

has the property that y — Oast — oo.
Hint: Consider the casesa = A and a # A separately.

each of Problems 31 through 34 construct a first order linear differential equation whose
utions have the required behavior ast — oo. Then solve your equation and confirm that the
utions do indeed have the specified property.

All solutions have the limit 3ast — oo.

All solutions are asymptoticto theliney = 3—t ast — oo.

All solutions are asymptoticto theliney = 2t — 5ast — oc.

All solutions approach the curve y = 4 — t2 ast — oo.

[Variation of Parameters| Consider the following method of solving the general linear
equation of first order:

Y + p)y = gv). 0]
(8 If g(t) isidentically zero, show that the solution is
y = Aexp [—/ p(t) dt} , (i)

where A isaconstant.
(b) If g(t) isnot identically zero, assume that the solution is of the form

y= A(t)exp[—/ p(t)dt], (iii)

where A is now a function of t. By substituting for y in the given differential equation,
show that A(t) must satisfy the condition

A(t) = g(t) exp [/ p(t) dt] . (iv)

(c) Find A(t) from Eq. (iv). Then substitute for A(t) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (35) in the text. This
technique is known as the method of{variation of parameters;|it is discussed in detail in
Section 3.7|in connection with second order linear equations.

In each of Problems 36 and 37 use the method of Problem 35 to solve the given differential

equation.

36

.y =2y =t%? 37. y' + (1/t)y = 3cos2t, t>0
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2.2 Separable Equations

EXAMPLE

1

In Sections|L.2]and[2.1Jwe used a process of direct integration to solvefirst order linear
equations of the form
dy

A 1
i ay + b, )

where a and b are constants. We will now show that this processis actually applicable
to amuch larger class of egquations.

We will use x to denote the independent variable in this section rather than t for two
reasons. In the first place, different letters are frequently used for the variables in a
differential equation, and you should not become too accustomed to using asingle pair.
In particular, x often occurs as the independent variable. Further, we want to reserve t
for another purpose later in the section.

The general first order equation is

dy

i = f(x,y). %)

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,
then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first order equations for which a direct integration process can
be used.

To identify this class of equations we first rewrite Eq. (2) in the form

d
M(x, y) + N(x, y)% —0. 3

It is always possible to do this by setting M(x, y) = — f (X, y) and N(x, y) = 1, but
there may be other ways aswell. In the event that M isafunction of x only and N isa
function of y only, then Eq. (3) becomes

dy
M N — = 0. 4
)+ Ny =0 4)
Such an equation is said to besepar able] becauseif it iswritten in the differential form
M(x) dx + N(y)dy =0, (5)

then, if you wish, terms involving each variable may be separated by the equals sign.
The differential form (5) is aso more symmetric and tends to diminish the distinction
between independent and dependent variables.

Show that the equation

dy  x?

&_1—y2

(6)

is separable, and then find an equation for itsintegral curves.
If wewrite EqQ. (6) as

dy
X2+ (1-vy? 2L = 7
X% 4+ ( y)dx 0, (7)
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then it has the|form (4)|and is therefore separable. Next, observe that the first termin
|Eq. ( ?) :is the derivative of —x*/3 and that the second term, by means of the chain rule,
is the derivative with respect to x of y — y3/3. Thus/Eq. (7)|can be written as

d x3 d y?
&(‘3)*&(“3)—0’
d X3 y3
dx (_3 Y- 3)_0'

—x3+3y—yi=c, (8)

Therefore

where c is an arbitrary constant, is an equation for the integral curves of [Eq. (6)] A
direction field and several integral curvesare shownin Figure2.2.1. An equation of the
integral curve passing through a particular point (x,, y,) can be found by substituting
X, and y, for x and y, respectively, in Eq. (8) and determining the corresponding value
of c. Any differentiable function y = ¢ (x) that satisfies Eq. (8) isasolution of [Eq. (6).

y
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FIGURE 2.2.1 Direction field and integral curvesof y' = x2/(1 — y?).

Essentially the same procedure can befoll owed for any separabl e equation. Returning
tg Eq. (4)} let H; and H, be any functions such that

H{(X) = M(x), Ha(y) = N(y); 9)
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EXAMPLE

2

then[Eg. (4)|becomes
d
H{O0 + Hy ) 2 =0, (10)
X
According to the chain rule,
ndy o d
Hz(Y)& = &HZ(Y)- (11)
Consequently, Eq. (10) becomes
d
d_X[Hl(X) + Hz(y)] = 0. (12)
By integrating Eq. (12) we obtain
H,(¥) + H,(y) =c, (13)

where c is an arbitrary constant. Any differentiable function y = ¢ (x) that satisfies
Eq. (13) isasolution o in other words, Eq. (13) defines the solution implicitly
rather than explicitly. The functions H, and H, are any antiderivatives of M and N,
respectively. In practice, Eq. (13) is usually obtained from by integrating the
first term with respect to x and the second term with respectto y.

If, in addition to the differential equation, an initial condition

Y(XO) = yO (14)
isprescribed, then the solution of|Eq. (4)|satisfying thiscondition is obtained by setting
X = X, and y =y, in Eq. (13). Thisgives

C= Hl(xo) + Hz(yo)- (15)
Substituting this value of ¢ in Eq. (13) and noting that

X y
Hl(X) - Hl(xo) = / M(s) dS, Hz(y) - Hz(yo) = f N(s) dS,

0 Yo
we obtain

/XM(s)ds+/yN(s)ds=0. (16)

X0 Yo

Equation (16) is an implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). You should bear in mind that the
determination of an explicit formula for the solution requires that Eq. (16) be solved
for y as afunction of x. Unfortunately, it is often impossible to do this analytically;
in such cases one can resort to numerical methods to find approximate values of y for
given values of x.

Solve theinitial value problem
dy  3x®4+4x +2
dx  2(y—-1 °
and determine the interval in which the solution exists.
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The differential equation can be written as
2(y — 1) dy = (3x? + 4x + 2) dx.
Integrating the left side with respect to y and the right side with respect to x gives
y2—2y=x34+ 22+ 2x +¢, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed
initial condition, we substitute x = 0and y = —1in Eq. (18), obtaining ¢ = 3. Hence
the solution of theinitial value problem is given implicitly by

y? =2y = x>+ 2% + 2x + 3. (19)

To obtain the solution explicitly we must solve Eq. (19) for y in terms of x. Thisisa
simple matter in this case, since Eq. (19) is quadratic in y, and we obtain

y=1+vx3+22+2x+4. (20)

Equation (20) gives two solutions of the differential equation, only one of which,
however, satisfies the given initial condition. Thisis the solution corresponding to the
minus sign in EQ. (20), so that we finally obtain

V=) =1—Vx2+2x>+2x + 4 (21)

asthesolution of the initial value problem (17). Note that if the plus sign is chosen by
mistake in EQ. (20), then we obtain the solution of the same differential equation that
satisfies the initial condition y(0) = 3. Finally, to determine the interval in which the
solution (21) isvalid, we must find the interval in which the quantity under the radical
is positive. The only real zero of this expression is x = —2, so the desired interval is
X > —2. The solution of the initial value problem and some other integral curves of
the differential equation are shown in Figure 2.2.2. Observe that the boundary of the
interval of validity of the solution (20) is determined by the point (—2, 1) at which the
tangent lineisvertical.

FIGURE 2.2.2 Integral curvesof y = (3x? + 4x + 2)/2(y — 1).
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EXAMPLE

3

Find the solution of the initial value problem
dy  ycosx
dx 1+ 2y
Observe that y = 0 is a solution of the given differential equation. To find other
solutions, assume that y # 0 and write the differential equation in the form
14 2y?
y

Then, integrating the |eft side with respect to y and the right side with respect to x, we
obtain

y(0) = 1. (22)

dy = cosx dx. (23

Inly| + y?> =sinx +c. (24)

To satisfy the initial condition we substitute x = 0 and y = 1 in Eq. (24); this gives
¢ = 1. Hence the solution of the initial value problem (22) is given implicitly by

Inly| 4+ y? =sinx + 1. (25)

Since Eq. (25) is not readily solved for y as a function of x, further analysis of this
problem becomes more delicate. One fairly evident fact is that no solution crosses the
x-axis. To see this, observe that the left side of Eq. (25) becomes infinite if y = 0;
however, the right side never becomes unbounded, so no point on the x-axis satisfies
Eq. (25). Thus, for the solution of Egs. (22) it followsthat y > 0 always. Consequently,
the absolute value barsin Eq. (25) can be dropped. It can also be shown that theinterval
of definition of the solution of the initial value problem (22) isthe entire x-axis. Some
integral curves of the given differential equation, including the solution of the initial
value problem (22), are shown in Figure 2.2.3.

FIGURE 2.2.3 Integral curvesof y = (ycosx)/(1+ 2y?).

The investigation of afirst order nonlinear equation can sometimes be facilitated by
regarding both x and y as functions of athird variablet. Then

dy _ dysdt
dx  dx/dt’

(26)
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If the differential equationis

dy FXy)
A , 27
dx  G(x,y) @)
then, by comparing numerators and denominators in|Egs. (26)|and (27), we obtain the
system
dx/dt = G(x, y), dy/dt = F(x, y). (28)

Atfirst sightit may seem unlikely that aproblemwill be simplified by replacing asingle
equation by apair of equations, but, in fact, the system (28) may well be more amenable
to investigation than the single equation (27).[Chapter 9jis devoted to nonlinear systems
of the form (28).

Note: In it was not difficult to solve explicitly for y as a function of x
and to determine the exact interval in which the solution exists. However, this situation
is exceptional, and often it will be better to leave the solution in implicit form, asin
Examples 1 and[3] Thus, in the problems below and in other sections where nonlinear
eguations appear, the terminology “ solve the following differential equation” meansto
find the solution explicitly if it is convenient to do so, but otherwise to find an implicit
formulafor the solution.

PROBLEMS  Ineach of Problems 1 through 8 solve the given differential equation.

1.y =x%y 2.y =x%/y(1+x3)
3. y+y?snx=0 4. y = (3x°—1)/(3+2y)
5. Yy = (cos’ X)(cos 2y) 6. xy =(1—y»)¥?
; dy x—e”* g dy — x?
T dx T y+¢ Cdx 14y

In each of Problems 9 through 20:

(@) Find the solution of the given initial value problem in explicit form.
(b) Plot the graph of the solution.
(c) Determine (at least approximately) the interval in which the solution is defined.

9. y =(1-2xYy2% y0O)=-1/6 » 10. y =(1-2x)/y, y(l1) = -2
11. xdx + ye *dy =0, y© =1 » 12. dr/do =r?/, r) =2
13. ¥ = 2x/(y + x3y), yO) =—-2 » 14 y =xy31+x>)"Y2 y(0) =1
15. y' = 2x/(1+ 2y), y(2 =0 > 16. Y =x(x*>+1)/4y3,  y0) =-1/v2
17 y =3¢ -e9/(y—-5, y0O=1
18 y=(*-¢€)/3+4y), y0=1
19. sin2xdx + cos3ydy =0, y(r/2) =7/3
20. y?(1—x®Y2dy = arcsinx dx, y(0) =0

VVVVYVYVYYVYY

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically, or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

- |21. Solvetheinitial value problem
Yy =@1+3%/@y*-6y), yO=1

and determine the interval in which the solution is valid.
Hint: Tofind theinterval of definition, look for pointswheretheintegral curve hasavertical
tangent.
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22.

23.

24,

25.

26.

27.

28.

29.

Solve the initial value problem
y =3¢/By* -4, yD=0

and determine the interval in which the solution isvalid.

Hint: Tofind theinterval of definition, look for pointswheretheintegral curve hasavertical
tangent.

Solve the initial value problem

y=2y+xy*>, y0=1

and determine where the solution attains its minimum value.
Solve the initial value problem

y =2-¢€)/3B+2y), y(0) =0

and determine where the solution attains its maximum value.
Solve the initial value problem

y = 2c0s2x/(3 + 2y), y(0) = -1

and determine where the solution attains its maximum value.
Solve the initial value problem

Yy =21+x)1+Yy%), y0) =0

and determine where the solution attains its minimum value.
Consider the initial value problem

y =tyd-y)/3 y(©0) =Y,

(@) Determine how the behavior of the solution as t increases depends on the initial
vaue y,.

(b) Suppose that y, = 0.5. Find the time T at which the solution first reaches the value
3.98.

Consider the initial value problem

y =ty(d—-y)/1+1), y(0) =y, > 0.

(@) Determine how the solution behavesast — oc.
(b) Ify, =2 findthetime T at which the solution first reaches the value 3.99.
(c) Find the range of initial values for which the solution liesin theinterval 3.99 < y <
4.01 by thetimet = 2.
Solve the equation
dy ay+b

dx cy+d’

where a, b, ¢, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f (X, y) can be expressed
asafunction of theratio y/x only, then the equation is said to be homogeneous. Such equations
can aways be transformed into separable equations by a change of the dependent variable.
Problem 30 illustrates how to solvefirst order homogeneous equations.

30.

Consider the equation
d_y _ y — 4X
dx  x-y’

0]
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b 31

(a) Show that Eq. (i) can be rewritten as

dy _ (/0 -4, (i)
dx  1—(y/x)’

thus Eq. (i) is homogeneous.

(b) Introduce anew dependent variable v so that v = y/X, or y = Xxv(x). Expressdy/dx
intermsof x, v, and dv/dx.

() Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx. Show that the resulting differential equationis

dv v—4

or

(iii)

Observe that Eq. (iii) is separable.

(d) Solve Eq. (iii) for v in terms of x.

(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).

(f) Draw adirection field and some integral curves for Eq. (i). Recall that the right side
of Eq. (1) actually depends only on theratio y/x. This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is, the
substitution y = xv(X) transforms ahomogeneous equation into a separabl e equation. Thelatter
equation can be solved by direct integration, and then replacing v by y/x gives the solution to
the original equation. In each of Problems 31 through 38:

(@) Show that the given equation is homogeneous.

(b) Solvethedifferentia equation.

(c) Draw adirection field and some integral curves. Are they symmetric with respect to
the origin?

2 2 2 2
ﬂ:w > 32 ﬂzx + 3y
dx NG dx 2xy
dy 4y —3x dy  4x+3y
dx ~ 2x-—y > 34 dx ~ 2x+4vy
dy x+3y 2 2 204y _
&_x—y P 36. (x4 3xy+y9)dx —x“dy =0
2 o2 2 _ 2
dy _ X =3y° R A
dx 2xy dx 2xy

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and socia sciences. One reason for this is that mathematical models and




48

Chapter 2. First Order Differential Equations

their solutions lead to equations relating the variables and parameters in the problem.
These equations often enabl e you to make predi ctions about how the natural processwill
behavein various circumstances. It isoften easy to vary parametersin the mathematical
model over wide ranges, whereas this may be very time-consuming or expensive
in an experimental setting. Nevertheless, mathematical modeling and experiment or
observation are both critically important and have somewhat complementary rolesin
scientific investigations. Mathematical modeksare validated by comparison of their
predictions with experimental results. On the other hand, mathematical analyses may
suggest the most promising directions to explore experimentally, and may indicate
fairly precisely what experimental datawill be most helpful.

In{Sections 1.1 Jand [I.Z]we formulated and investigated a few simple mathemati-
cal models. We begin by recapitulating and expanding on some of the conclusions
reached in those sections. Regardless of the specific field of application, there arethree
identifiable steps that are always present in the process of mathematical modeling.

Construction of the Model. Thisinvolves atrandation of the physical situation into
mathematical terms, often using the steps listed at the end of [Section 1.1. Perhaps
most critical at this stage is to state clearly the physical principle(s) that are believed
to govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton's laws of motion, and
that isolated insect populations grow at a rate proportional to the current population.
Each of these statementsinvolves arate of change (derivative) and consequently, when
expressed mathematically, leads to a differential equation. The differential equation is
amathematical model of the process.

It isimportant to realize that the mathematical equations are almost always only an
approximate description of the actual process. For example, bodies moving at speeds
comparable to the speed of light are not governed by Newton's laws, insect popula-
tions do not grow indefinitely as stated because of eventual limitations on their food
supply, and heat transfer is affected by factors other than the temperature difference.
Alternatively, one can adopt the point of view that the mathematical equations exactly
describe the operation of a simplified physical model, which has been constructed (or
conceived of) so asto embody the most important features of the actual process. Some-
times, the process of mathematical modeling involves the conceptual replacement of a
discrete process by acontinuous one. For instance, the number of membersin an insect
population changes by discrete amounts; however, if the population is large, it seems
reasonable to consider it as a continuous variable and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, one
is often faced with the problem of solving one or more differential equations or,
failing that, of finding out as much as possible about the properties of the solution.
It may happen that this mathematical problem is quite difficult and, if so, further
approximations may be indicated at this stage to make the problem mathematically
tractable. For example, a nonlinear equation may be approximated by a linear one,
or a slowly varying coefficient may be replaced by a constant. Naturally, any such
approximations must also be examined from the physical point of view to make
sure that the simplified mathematical problem still reflects the essential features of
the physical process under investigation. At the same time, an intimate knowledge
of the physics of the problem may suggest reasonable mathematical approximations
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EXAMPLE

1

Mixing

that will make the mathematical problem more amenable to analysis. This interplay
of understanding of physical phenomena and knowledge of mathematical techniques
and their limitations is characteristic of applied mathematics at its best, and is indis-
pensablein successfully constructing useful mathematical models of intricate physical
processes.

Comparison with Experiment or Observation. Finally, having obtained the solution
(or at least someinformation about it), you must interpret thisinformation in the context
in which the problem arose. In particular, you should always check that the mathe-
matical solution appears physically reasonable. If possible, calculate the values of the
solution at selected points and compare them with experimentally observed values. Or,
ask whether the behavior of the solution after along time is consistent with observa-
tions. Or, examine the solutions corresponding to certain specia values of parameters
in the problem. Of course, the fact that the mathematical solution appearsto be reason-
able does not guarantee it is correct. However, if the predictions of the mathematical
model are seriously inconsistent with observations of the physical system it purportsto
describe, this suggests that either errors have been made in solving the mathematical
problem, or the mathematical model itself needs refinement, or observations must be
made with greater care.

Theexamplesinthissection aretypical of applicationsinwhichfirst order differential
eguations arise.

Attimet = 0 atank contains Q, Ib of salt dissolved in 100 gal of water; see Figure
2.3.1. Assume that water containing ;11 Ib of salt/gal is entering the tank at a rate of
r gal/min, and that the well-stirred mixture is draining from the tank at the same rate.
Set up the initial value problem that describes this flow process. Find the amount of
sat Q(t) in the tank at any time, and also find the limiting amount Q, that is present
after avery long time. If r = 3 and Q, = 2Q_, find the time T after which the salt
level iswithin 2% of Q, . Also find the flow rate that isrequired if the value of T isnot
to exceed 45 min.

rgal/min,% Ib/gal

=T

r gal/min

FIGURE 2.3.1 Thewater tank in Example 1.



50

Chapter 2. First Order Differential Equations

We assumethat salt is neither created nor destroyed in thetank. Therefore variations
in the amount of salt are due solely to the flowsin and out of the tank. More precisely,
therate of change of salt inthetank, d Q/dt, isequal to therate at which salt isflowing
in minus the rate at which it is flowing out. In symbols,

dQ

dt
The rate at which salt enters the tank is the concentration ;11 Ib/gal times the flow rate
r gal/min, or (r/4) Ib/min. To find the rate at which salt leaves the tank we need to
multiply the concentration of salt in the tank by therate of outflow, r gal/min. Sincethe
rates of flow in and out are equal, the volume of water in the tank remains constant at
100 gal, and since the mixture is “well-stirred,” the concentration throughout the tank
isthe same, namely, [Q(t)/100] Ib/gal. Therefore the rate at which salt |eaves the tank
is[r Q(t)/100] Ib/min. Thusthe differential equation governing this processis

= ratein — rate out. (0]

dQ r rQ
dt ~ 4 100 @)
Theinitia condition is
Q(0) = Q,. 3

Upon thinking about the problem physically, we might anticipate that eventually
the mixture originally in the tank will be essentially replaced by the mixture flowing
in, whose concentration is ‘—11 Ib/gal. Consequently, we might expect that ultimately
the amount of salt in the tank would be very close to 25 Ib. We can reach the same
conclusion from a geometrical point of view by drawing a direction field for Eq. (2)
for any positive value of r.

To solve the problem analytically note that Eqg. (2) is both linear and separable.
Rewriting it in the usual form for alinear equation, we have

dQ rQ r
b VI S 4
dt + 100 4 “)
Thus the integrating factor is €/ and the general solution is
Q(t) = 25+ ce /1%, (5)

where ¢ is an arbitrary constant. To satisfy the initial condition (3) we must choose
¢ = Q, — 25. Therefore the solution of the initial value problem (2), (3) is

Q) =25+ (Q, — 25)e "/1® ©)
or
Q(t) = 25(1 — e "V/109) 4 Qoe—rt/loo' @

From Eq. (6) or (7), you can seethat Q(t) — 25 (Ib) ast — oo, so the limiting value
Q, is 25, confirming our physical intuition. In interpreting the solution (7), note that
the second term on the right side is the portion of the original salt that remains at time
t, while the first term gives the amount of salt in the tank due to the action of the flow
processes. Plots of the solution for r = 3 and for several values of Q, are shown in
Figure 2.3.2.
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EXAMPLE

2

Compound
Interest

Q
50

40

20

——

10

\
20 40 60 80 100 t

FIGURE 2.3.2 Solutions of the initial value problem (2), (3) for r = 3 and severd
vauesof Q.

Now supposethatr = 3and Q, = 2Q, = 50; then|Eq. (6) becomes
Q(t) = 25+ 25 0%, (8)

Since 2% of 25 is 0.5, we wish to find the time T at which Q(t) has the value 25.5.
Substitutingt = T and Q = 25.5in Eq. (8) and solving for T, we obtain

T = (In50)/0.03 = 130.4 (min). C)

Todeterminer sothat T = 45, returnto Eq. (6), sett = 45, Q, = 50, Q(t) = 25.5,
and solvefor r. Theresult is

r = (100/45) In50 = 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If
the flow rates are as stated, and if the concentration of salt in the tank is uniform, then
the differential equation (1) is an accurate description of the flow process. While this
particular example has no specia significance, it isimportant that models of this kind
are often used in problems involving a pollutant in alake, or adrug in an organ of the
body, for example, rather than atank of salt water. In such cases the flow rates may not
be easy to determine, or may vary with time. Similarly, the concentration may be far
from uniform in some cases. Finaly, the rates of inflow and outflow may be different,
which means that the variation of the amount of liquid in the problem must also be
taken into account.

Suppose that a sum of money is deposited in abank or money fund that paysinterest at
anannual rater . Thevalue S(t) of theinvestment at any timet depends on the frequency
withwhichinterestiscompounded aswell astheinterest rate. Financial institutionshave
various policies concerning compounding: some compound monthly, some weekly,
some even daily. If we assume that compounding takes place continuously, then we
can set up asimpleinitial value problem that describes the growth of the investment.
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Therate of change of the value of the investment isdS/dt, and this quantity is equal
to the rate at which interest accrues, which isthe interest rater times the current value
of the investment S(t). Thus

dS/dt =rS (11)

is the differential equation that governs the process. Suppose that we also know the
value of the investment at some particular time, say,

S0) =S, (12)

Then the solution of the initial value problem (11), (12) gives the balance S(t) in the
account at any timet. Thisinitial value problem isreadily solved, sincethe differential
equation (11) isboth linear and separable. Consequently, by solving Egs. (11) and (12),
we find that

St) = €. (13)

Thus a bank account with continuously compounding interest grows exponentialy.

Let us now compare the results from this continuous model with the situation in
which compounding occurs at finite time intervals. If interest is compounded once a
year, then after t years

S = A+

If interest is compounded twice a year, then at the end of 6 months the value of the
investment is §[1 + (r/2)], and at the end of 1 year itis §[1+ (r/2)]% Thus, after t
years we have

st =S, (1 + %)Z

In general, if interest is compounded m times per year, then

st =5 (1+ %)mt . (14)

The relation between formulas (13) and (14) is clarified if we recall from calculus that

. ro\m ;
dm s (1) =8

The same model appliesequally well to moregenera investmentsinwhich dividends
and perhaps capital gains can also accumulate, aswell asinterest. In recognition of this
fact, we will from now onrefer tor astherate of return.

[Table 2.3.1 bhows the effect of changing the frequency of compounding for areturn
rater of 8%. The second and third columns are calculated from Eq. (14) for quarterly
and daily compounding, respectively, and the fourth column is cal cul ated from Eq. (13)
for continuous compounding. The results show that the frequency of compounding
is not particularly important in most cases. For example, during a 10-year period
the difference between quarterly and continuous compounding is $17.50 per $1000
invested, or less than $2/year. The difference would be somewhat greater for higher
rates of return and less for lower rates. From the first row in the table, we see that for
the return rate r = 8%, the annual yield for quarterly compounding is 8.24% and for
daily or continuous compounding it is 8.33%.
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TABLE 2.3.1 Growth of Capital at a Return Rater = 8%
for Several Modes of Compounding

S(t)/S(t,) from Eq. (14)

S(t)/S(ty)
Years m=4 m = 365 from Eqg. (13)

1 1.0824 1.0833 1.0833

2 11717 11735 11735

5 1.4859 1.4918 1.4918
10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

Returning now to the case of continuous compounding, let us suppose that there may
be deposits or withdrawals in addition to the accrual of interest, dividends, or capital
gains. If we assume that the deposits or withdrawals take place at a constant rate k,

then[Eq. (11)]is replaced by
dS/dt =rS+Kk,
or, in standard form,
dS/dt —rS=Kk, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15) is linear with the integrating factor e, so its general solution is

S(t) = ¢t — (k/r),

where c is an arbitrary constant. To satisfy thelinitial condition (12)|we must choose
c = § + (k/r). Thusthe solution of theinitial value problem (15),[(12) is

Stt) = S+ (k/r)(Ee' —1). (16)

Thefirst term in expression (16) isthe part of S(t) that is due to the return accumulated
on theinitial amount §,, while the second term is the part that is due to the deposit or
withdrawal rate k.

The advantage of stating the problem in this general way without specific values for
S 1, orkliesinthe generality of theresulting formula (16) for S(t). With thisformula
we can readily compare the results of different investment programs or different rates
of return.

For instance, supposethat one opensanindividual retirement account (IRA) at age 25
and makes annual investments of $2000 thereafter in a continuous manner. Assuming
arate of return of 8%, what will be the balance in the IRA at age 65? We have §, = 0,
r = 0.08, and k = $2000, and we wish to determine S(40). From Eg. (16) we have

S(40) = (25,000) (32 — 1) = $588,313. (17)

It is interesting to note that the total amount invested is $80,000, so the remain-
ing amount of $508,313 results from the accumulated return on the investment.
The balance after 40 years is also fairly sensitive to the assumed rate. For instance,
S(40) = $508,948 if r = 0.075 and S(40) = $681,508 if r = 0.085.
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EXAMPLE

3

Chemicals

in a Pond

Let us now examine the assumptions that have gone into the model. First, we have
assumed that the return is compounded continuously and that additional capital is
invested continuously. Neither of theseistruein an actual financial situation. We have
also assumed that the return rater is constant for the entire period involved, whereas
infact it islikely to fluctuate considerably. Although we cannot reliably predict future
rates, we can use expression to determine the approximate effect of different rate
projections. It isalso possibleto consider r and k in|Eq. (15)|to be functions of t rather
than constants; in that case, of course, the solution may be much more complicated
than[Eq. (16)

Theinitial value problem|(15},[(12)]and the sol ution[(16)]can al'so be used to analyze
anumber of other financial situations, including annuities, mortgages, and automobile
|loans among others.

Consider a pond that initially contains 10 million gal of fresh water. Water containing
an undesirable chemical flows into the pond at the rate of 5 million gal/year and the
mixture in the pond flows out at the same rate. The concentration y (t) of chemical in
the incoming water varies periodically with time according to the expression y (t) =
2+ sin2t g/gal. Construct a mathematical model of this flow process and determine
the amount of chemical in the pond at any time. Plot the solution and describe in words
the effect of the variation in the incoming concentration.

Since the incoming and outgoing flows of water are the same, the amount of water
in the pond remains constant at 10’ gal. Let us denote time by t, measured in years,
and the chemical by Q(t), measured in grams. This example is similar to[Example 1]
and the same inflow/outflow principle applies. Thus

dQ

— = ratein — rate out,
dt

where “rate in” and “rate out” refer to the rates at which the chemical flows into and
out of the pond, respectively. The rate at which the chemical flowsinis given by

ratein = (5 x 10°) gal/yr (2+ sin2t) g/gal. (18)
The concentration of chemical in the pond is Q(t)/10’ g/gal, so the rate of flow out is
rate out = (5 x 10%) gal/yr[ Q(t)/107] g/gal = Q(t)/2 glyr. (19)

Thus we obtain the differential equation

deQ = (5x 106)(2+sin2t)—%, (20)
dt 2
where each term has the units of g/yr.

To make the coefficients more manageable, it is convenient to introduce a new
dependent variable defined by q(t) = Q(t)/10° or Q(t) = 10°q(t). This means that
q(t) is measured in millions of grams, or megagrams. If we make this substitution in
Eq. (20), then each term contains the factor 10°, which can be cancelled. If we also
transpose the term involving q(t) to the left side of the equation, we finally have

dq

E+%q=10+5$in2t. (21)
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Originally, thereis no chemical in the pond, so the initial condition is
q) =0. (22)

[Equation (21)|islinear and, althoughtheright sideisafunction of time, the coefficient
of g isaconstant. Thus the integrating factor ise"/2. Multiplying[Eq. (21)|by this factor
and integrating the resulting equation, we obtain the general solution

q(t) =20 — P cos2t + P sin2t + ce /2 (23)

Theinitia condition (22) requiresthat c = —300,/17, so the solution of theinitia value
problem[(21), (22) is

q(t) = 20 — P cos2t + P sin2t — Le /2, (24)

A plot of the solution (24) is shown in Figure 2.3.3, adong with the line q = 20.

The exponentia term in the solution is important for small t, but diminishes rapidly

as t increases. Later, the solution consists of an oscillation, due to the sin2t and

cos2t terms, about the constant level g = 20. Note that if the sin2t term were

not present in|Eqg. (21), then g =20 would be the equilibrium solution of that
equation.

AN A
\VAAVAAVAAVARV

FIGURE 2.3.3 Solution of theinitial value problem (21), (22).

Let us now consider the adequacy of the mathematical model itself for this problem.
The model rests on several assumptions that have not yet been stated explicitly. In
the first place, the amount of water in the pond is controlled entirely by the rates of
flow in and out—none is lost by evaporation or by seepage into the ground, or gained
by rainfall. Further, the same is also true of the chemical; it flows in and out of the
pond, but none is absorbed by fish or other organisms living in the pond. In addition,
we assume that the concentration of chemical in the pond is uniform throughout the
pond. Whether the results obtained from the model are accurate depends strongly on
the validity of these simplifying assumptions.
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EXAMPLE

4

Escape
Velocity

A body of constant mass mis projected awvay from the earth in adirection perpendicular
totheearth’ssurfacewith aninitial velocity v,. Assuming that thereisno air resistance,
but taking into account the variation of the earth’s gravitational field with distance, find
an expression for the velocity during the ensuing motion. Also find the initial velocity
that isrequired to lift the body to a given maximum altitude & above the surface of the
earth, and the smallest initial velocity for which the body will not return to the earth;
the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of
motion with x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn

mgR?2
(R+x)?
e—R——>|--——-———- - Q ---- —;
m

FIGURE 2.34 A body in the earth’s gravitational field.

horizontally to remind you that gravity isdirected toward the center of the earth, which
is not necessarily downward from a perspective away from the earth’s surface. The
gravitational force acting onthebody (that is, itsweight) isinversely proportional to the
square of thedistancefromthe center of theearth andisgiven by w(x) = —k/(x + R)?,
where k is a constant, R is the radius of the earth, and the minus sign signifies that
w(X) isdirected in the negative x direction. We know that on the earth’s surface w(0)
is given by —mg, where g is the acceleration due to gravity at sea level. Therefore
k = mgR? and

mgR?
w(X) = —m . (25)
Since there are no other forces acting on the body, the equation of motion is
dv _ __mgR® (26)
dt (R+x)?
and theinitial conditionis
v(0) = v, (27

Unfortunately, Eq. (26) involves too many variables sinceit dependsont, x, and v.
To remedy this situation we can eliminate t from Eq. (26) by thinking of x, rather than
t, asthe independent variable. Then we must express dv/dt in terms of dv/dx by the
chain rule; hence

dv_dudx _ dv
dt _dxdt  dx’
and Eq. (26) isreplaced by
dv gR?
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PROBLEMS

Equation (28)|is separable but not linear, so by separating the variables and integrating
we obtain

v? gR

2 R+x
Since x = 0 when t = 0, the initial condition[(27) at t = O can be replaced by the
condition that v = v, when x = 0. Hence ¢ = (v5/2) — gR and

2

+C. (29)

2gR?

R+x’

Note that Eq. (30) gives the velocity as a function of altitude rather than as afunction
of time. The plus sign must be chosen if the body isrising, and the minus signif itis
falling back to earth.

To determine the maximum altitude & that the body reaches, wesetv = 0andx = &
in Eq. (30) and then solve for &, obtaining
_ vSR
- 2gR—v2’
Solving Eq. (31) for v,, we find the initial velocity required to lift the body to the

atitude &£, namely,
§
= |2gR———. 2
o= IR (32)

The escape velocity v, isthen found by letting & — oo. Consequently,

§ (31)

v, = v/29R. (33)

The numerical value of v, is approximately 6.9 miles/sec or 11.1 km/sec.

The preceding calculation of the escape vel ocity neglectsthe effect of air resistance,
so the actual escape velocity (including the effect of air resistance) is somewhat higher.
On the other hand, the effective escape velocity can be significantly reduced if the
body is transported a considerable distance above sea level before being launched.
Both gravitational and frictional forcesare thereby reduced; air resistance, in particular,
diminishes quite rapidly with increasing altitude. You should keep in mind also that it
may well be impractical to impart too large an initial velocity instantaneously; space
vehicles, for instance, receivetheir initial acceleration during aperiod of afew minutes.

1. Consider atank used in certain hydrodynamic experiments. After one experiment the tank
contains 200 liters of a dye solution with a concentration of 1 g/liter. To prepare for the
next experiment, the tank isto be rinsed with fresh water flowing in at arate of 2 liters/min,
the well-stirred solution flowing out at the same rate. Find the time that will elapse before
the concentration of dye in the tank reaches 1% of its original value.

2. Atank initially contains 120 liters of pure water. A mixture containing a concentration of
y g/liter of salt entersthe tank at arate of 2 liters/min, and the well-stirred mixture leaves
the tank at the same rate. Find an expression in terms of y for the amount of salt in thetank
at any timet. Also find the limiting amount of salt in the tank ast — oo.
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10.

11.

A tank originally contains 100 gal of fresh water. Then water containing % Ib of salt per
gallon is poured into the tank at arate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at arate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
sat in the tank at the end of an additional 10 min.

A tank with a capacity of 500 gal originally contains 200 gal of water with 100 Ib of salt
in solution. Water containing 1 Ib of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point of
overflowing. Compare this concentration with the theoretical limiting concentration if the
tank had infinite capacity.

A tank contains 100 gallons of water and 50 0z of salt. Water containing asalt concentration
of 2(1+ $sint) oz/gal flows into the tank at arate of 2 gal/min, and the mixture in the
tank flows out at the same rate.

(&) Find the amount of salt in the tank at any time.

(b) Plot the solution for atime period long enough so that you see the ultimate behavior
of the graph.

(c) Thelong-time behavior of the solution is an oscillation about a certain constant level.
What isthislevel? What is the amplitude of the oscillation?

Suppose that asum § isinvested at an annual rate of return r compounded continuously.
(8 Findthetime T required for the original sum to doublein value as afunction of r.
(b) DetermineT if r = 7%.

(c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

A young person with no initial capital invests k dollars per year a an annual rate of
returnr . Assumethat investments are made continuously and that the return iscompounded
continuously.

(@) Determine the sum S(t) accumulated at any timet.

(b) Ifr = 7.5%, determinek so that $1 million will be availablefor retirement in 40 years.
(c) If k = $2000/year, determinethereturnrater that must be obtained to have $1 million
availablein 40 years.

Person A opensan IRA at age 25, contributes $2000/year for 10 years, but makes no addi-
tional contributions thereafter. Person B waits until age 35 to open an IRA and contributes
$2000/year for 30 years. Thereisno initial investment in either case.

(8 Assuming areturn rate of 8%, what isthe balancein each IRA at age 65?

(b) For aconstant, but unspecified, return rater, determine the balancein each IRA at age
65 asafunction of r.

(c) Plot the difference in the balances from part (b) for 0 < r < 0.10.

(d) Determinethereturn rate for which the two IRA’s have equal value at age 65.

A certain college graduate borrows $8000 to buy a car. The lender charges interest at
an annual rate of 10%. Assuming that interest is compounded continuously and that the
borrower makes payments continuously at a constant annual rate k, determine the payment
rate k that is required to pay off the loan in 3 years. Also determine how much interest is
paid during the 3-year period.

A home buyer can afford to spend no more than $800/month on mortgage payments.
Suppose that the interest rate is 9% and that the term of the mortgage is 20 years. Assume
that interest is compounded continuously and that payments are also made continuously.
(@) Determine the maximum amount that this buyer can afford to borrow.

(b) Determine the total interest paid during the term of the mortgage.

How are the answers to Problem 10 changed if the term of the mortgage is 30 years?
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>

12.

13.

14.

15.

16.

A recent college graduate borrows $100,000 at an interest rate of 9% to purchase a con-
dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800(1 + t /120), wheret isthe number of months since the loan was made.
(8 Assuming that this payment schedule can be maintained, when will the loan be fully
paid?

(b) Assuming the same payment schedule, how large aloan could be paid off in exactly
20 years?

A retired person has a sum S(t) invested so as to draw interest at an annual rate r com-
pounded continuously. Withdrawalsfor living expenses are made at arate of k dollars/year;
assume that the withdrawal s are made continuously.

(@ If theinitial value of the investment is §), determine S(t) at any time.

(b) Assumingthat S, andr are fixed, determine the withdrawal rate k, at which S(t) will
remain constant.

(c) If k exceeds the value k, found in part (b), then S(t) will decrease and ultimately
become zero. Find thetime T at which S(t) = 0.

(d) DetermineT ifr = 8% and k = 2k,,.

(e) Suppose that a person retiring with capital S, wishes to withdraw funds at an annual
rate k for not morethan T years. Determine the maximum possible rate of withdrawal.

(f) How largeaninitia investment is required to permit an annual withdrawal of $12,000
for 20 years, assuming an interest rate of 8%7?

Radiocarbon Dating. Animportant tool in archeological research isradiocarbon dating.
Thisisameans of determining the age of certain wood and plant remains, hence of animal
or human bones or artifacts found buried at the same levels. The procedure was devel oped
by the American chemist Willard Libby (1908-1980) in the early 1950s and resulted in his
winning the Nobel prizefor chemistry in 1960. Radiocarbon dating is based on the fact that
somewood or plant remains contain residual amountsof carbon-14, aradioactiveisotope of
carbon. Thisisotope is accumulated during the lifetime of the plant and begins to decay at
its death. Since the half-life of carbon-14 is long (approximately 5730 years'), measurable
amounts of carbon-14 remain after many thousands of years. Libby showed that if even
atiny fraction of the original amount of carbon-14 is still present, then by appropriate
laboratory measurements the proportion of the original amount of carbon-14 that remains
can be accurately determined. In other words, if Q(t) isthe amount of carbon-14 at time't
and Q, is the original amount, then the ratio Q(t)/Q, can be determined, at least if this
guantity is not too small. Present measurement techniques permit the use of this method
for time periods up to about 50,000 years, after which the amount of carbon-14 remaining
is only about 0.00236 of the original amount.

(a) Assuming that Q satisfies the differential equation Q' = —r Q, determine the decay
constant r for carbon-14.

(b) Findan expression for Q(t) at any timet, if Q(0) = Q,,.

(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

The population of mosquitoes in a certain area increases at a rate proportiona to the
current population and, in the absence of other factors, the population doubles each week.
There are 200,000 mosquitoes in the area initially, and predators (birds, etc.) eat 20,000
mosquitoes/day. Determine the population of mosquitoesin the area at any time.

Suppose that a certain population has a growth rate that varies with time and that this
popul ation satisfies the differential equation

dy/dt = (0.5+ sint)y/5.

IMcGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997), Vol. 5, p. 48.
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17.

18.

(& If y(0) =1, find (or estimate) thetime ¢ at which the population has doubled. Choose
other initial conditions and determine whether the doubling time t depends on the initial
population.

(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time 7 in this case.

(c) Suppose that the term sint in the differential equation is replaced by sin2rt; that is,
the variation in the growth rate has a substantially higher frequency. What effect does this
have on the doubling time ¢ ?

(d) Plot the solutions obtained in parts (@), (b), and (c) on asingle set of axes.

Suppose that a certain population satisfies the initial value problem

dy/dt =r(t)y —k, y(0) =,

where the growth rate r (t) is given by r (t) = (14 sint)/5 and k represents the rate of
predation.

(@ Supposethat k = 1/5. Plot y versust for several values of y, between 1/2 and 1.

(b) Estimate the critical initial population y, below which the population will become
extinct.

(c) Choose other values of k and find the corresponding y, for each one.

(d) Usethe datayou have found in parts (a) and (b) to plot y, versusk.

Newton's law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a
temperature of 200°F when freshly poured, and 1 min later has cooled to 190°F in aroom
at 70°F, determine when the coffee reaches a temperature of 150°F.

19.

20.

Suppose that a room containing 1200 ft* of air is originally free of carbon monoxide.
Beginning at time t = O cigarette smoke, containing 4% carbon monoxide, is introduced
into the room at a rate of 0.1 ft/min, and the well-circulated mixture is allowed to leave
the room at the same rate.

(a8 Find an expression for the concentration x(t) of carbon monoxide in the room at any
timet > 0.

(b) Extended exposure to a carbon monoxide concentration as low as 0.00012 is harmful
to the human body. Find the time ¢ at which this concentration is reached.

Consider alake of constant volume V containing at time t an amount Q(t) of pollutant,
evenly distributed throughout the lake with a concentration c(t), where c(t) = Q(t)/V.
Assume that water containing a concentration k of pollutant enters the lake at arater,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P. Note that the given assumptions neglect a number
of factors that may, in some cases, be important; for example, the water added or lost by
precipitation, absorption, and evaporation; the stratifying effect of temperature differences
in a deep lake; the tendency of irregularities in the coastline to produce sheltered bays;
and the fact that pollutants are not deposited evenly throughout the lake, but (usually) at
isolated points around its periphery. The results below must be interpreted in the light of
the neglect of such factors as these.

(a) If attimet = O the concentration of pollutant is c,, find an expression for the concen-
tration c(t) at any time. What isthe limiting concentration ast — oco?

(b) If the addition of pollutants to the lake is terminated (k =0 and P = 0 for t > Q),
determine the time interval T that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original value.

(c) Table 2.3.2 contains data’ for several of the Great Lakes. Using these data determine

’This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,” Science 155

(1967), pp. 1242-1243; the information in the table was taken from that source.
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25.

TABLE 2.3.2 Volume and Flow Datafor the

Great Lakes
Lake V (km® x 10%) r (km®/year)
Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

from part (b) the time T necessary to reduce the contamination of each of these lakes to
10% of the original value.

. A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/sec from the roof of

abuilding 30 m high. Neglect air resistance.

(a) Find the maximum height above the ground that the ball reaches.

(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.

(c) Plot the graphs of velocity and position versus time.

. Assume that the conditions are as in Problem 21 except that there is a force due to air

resistance of |v|/30, where the velocity v is measured in m/sec.

(a) Find the maximum height above the ground that the ball reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding onesin Problem 21.

. Assume that the conditions are as in Problem 21 except that there is a force due to air

resistance of v?/1325, where the velocity v is measured in m/sec.

(8 Find the maximum height above the ground that the ball reaches.

(b) Find the time that the ball hits the ground.

(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 21 and 22.

. A sky diver weighing 180 Ib (including equipment) falls vertically downward from an

altitude of 5000 ft, and opens the parachute after 10 sec of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and 12|v| when the parachute is
open, where the velocity v is measured in ft/sec.

(a) Find the speed of the sky diver when the parachute opens.

(b) Find the distance fallen before the parachute opens.

(c) What isthelimiting velocity v, after the parachute opens?

(d) Determine how long the sky diver isin the air after the parachute opens.

(e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the ground.

A Dbody of constant mass m is projected vertically upward with an initial velocity v,
in a medium offering a resistance k|v|, where k is a constant. Neglect changes in the
gravitational force.

(@ Find the maximum height x_, attained by the body and the time t, at which this
maximum height is reached.

(b) Show that if kv,/mg < 1, thent, and X, can be expressed as

. 1_}m+1(@)2_...,
g 2mg 3\mg

ae§[-3m it
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(c) Show that the quantity kv,/mg is dimensionless.

26. A body of mass m is projected vertically upward with an initial velocity v, in a medium
offering aresistance k|v|, where k is a constant. Assume that the gravitational attraction of
the earth is constant.

(a) Findthevelocity v(t) of the body at any time.

(b) Usetheresult of part (a) to calculatethelimit of v(t) ask — O, that is, astheresistance
approaches zero. Does this result agree with the velocity of a mass m projected upward
with aninitial velocity v, in avacuum?

(c) Usetheresult of part (a) to calculate the limit of v(t) asm — 0, that is, as the mass
approaches zero.

27. A body faling in arelatively dense fluid, oil for example, is acted on by three forces (see
Figure 2.3.5): aresistive force R, abuoyant force B, and its weight w due to gravity. The
buoyant forceisequal to theweight of thefluid displaced by the object. For aslowly movin
spherical body of radiusa, theresistiveforceisgiven by Stokes®law R = 67 pajv|, where
v isthe velocity of the body, and w isthe coefficient of viscosity of the surrounding fluid.

RHB
P

§

FIGURE 2.3.5 A body falling in adensefluid.

(a8 Find thelimiting velocity of a solid sphere of radius a and density p faling freely in
amedium of density 0" and coefficient of viscosity 1.
(b) In 1910 the American physicist R. A. Millikan (1868-1953) determined the charge
on an electron by studying the motion of tiny droplets of cil falling in an electric field. A
field of strength E exerts aforce Ee on a droplet with charge e. Assume that E has been
adjusted so the droplet is held stationary (v = 0), and that w and B are as given above.
Find a formula for e. Millikan was able to identify e as the charge on an electron and to
determine that e = 4.803 x 10720 esu.

28. A massof 0.25 kg is dropped from rest in amedium offering a resistance of 0.2|v|, where
v is measured in m/sec.
(a) If the massisdropped from aheight of 30 m, find its velocity when it hits the ground.
(b) If themassisto attain avelocity of no more than 10 m/sec, find the maximum height
from which it can be dropped.
(c) Suppose that the resistive force is k|v|, where v is measured in m/sec and k is a
constant. If the mass is dropped from a height of 30 m and must hit the ground with a
velocity of no morethan 10 m/sec, determine the coefficient of resistancek that isrequired.

3George Gabriel Stokes (1819-1903), professor at Cambridge, was one of the foremost applied mathematicians
of the nineteenth century. The basic equations of fluid mechanics (the Navier—Stokes equations) are named partly
in his honor, and one of the fundamental theorems of vector calculus bears his name. He was also one of the
pioneersin the use of divergent (asymptotic) series, a subject of great interest and importance today.
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29.

30.

33.

Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity v, = +/2gR, where Risthe radius of the earth. Neglect air resistance.

(@) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.

(b) Find the time required for the rocket to go 240,000 miles (the approximate distance
from the earth to the moon). Assume that R = 4000 miles.

Find the escape velocity for a body projected upward with an initial velocity v, from a
point x, = & R above the surface of the earth, where R is the radius of the earth and & is
a constant. Neglect air resistance. Find the initia atitude from which the body must be
launched in order to reduce the escape velocity to 85% of its value at the earth’s surface.

. Let v(t) and w(t) bethe horizontal and vertical components of the velocity of a batted (or

thrown) baseball. In the absence of air resistance, v and w satisfy the equations
dv/dt =0, dw/dt = —qg.
(@ Show that
v = UCOSA, w=—gt+usinA,

where u isthe initial speed of the ball and A isitsinitial angle of elevation.

(b) Let x(t) and y(t), respectively, be the horizontal and vertical coordinates of the ball at
timet. If x(0) = O and y(0) = h, find x(t) and y(t) a any timet.

(c) Let g = 32 ft/sec?, u = 125 ft/sec, and h = 3 ft. Plot the trajectory of the ball for
several values of the angle A, that is, plot x(t) and y(t) parametricaly.

(d) Supposethe outfield wall isat adistance L and has height H. Find arelation between
u and A that must be satisfied if the ball is to clear the wall.

(e) Supposethat L = 350ftand H = 10ft. Using therelationin part (d), find (or estimate
from aplot) therange of values of A that correspond to aninitial velocity of u = 110 ft/sec.
(f) For L =350 and H = 10 find the minimum initial velocity u and the corresponding
optimal angle A for which the ball will clear the wall.

. A more realistic model (than that in Problem 31) of a baseball in flight includes the effect

of air resistance. In this case the equations of motion are
dv/dt = —rv, dw/dt = —g —rw,

wherer isthe coefficient of resistance.
() Determine v(t) and w(t) intermsof initial speed u and initial angle of elevation A.
(b) Find x(t) and y(t) if x(0) = 0and y(0) = h.
(c) Plotthetrajectory of theball forr = 1/5,u = 125, h = 3, and for several valuesof A.
How do the trgjectories differ from those in Problem 31 withr = 0?
(d) Assumingthatr = 1/5and h = 3, find the minimum initial velocity u and the optimal
angle A for which the ball will clear awall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 31(f).
Brachistochrone Problem. One of the famous problems in the history of mathematics
is the brachistochrone problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another Q, the second point being
lower than thefirst but not directly beneath it (see Figure 2.3.6). This problem was posed by
Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day. Correct
solutions were found by Johann Bernoulli and his brother Jakob Bernoulli, and by Isaac
Newton, Gottfried Leibniz, and Marquis de L' Hospital. The brachistochrone problem is
important in the development of mathematics as one of the forerunners of the calculus of
variations.

In solving this problem it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (X, Y,). Itis
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FIGURE 2.3.6 The brachistochrone.

then possible to show that the curve of minimum timeisgiven by afunction y = ¢ (x) that
satisfies the differential equation

1L+y?y =Kk, (i)

where k? is a certain positive constant to be determined | ater.
(a) SolveEq. (i) for y'. Why isit necessary to choose the positive square root?
(b) Introducethe new variablet by the relation

y = k?sin’t. (i)
Show that the equation found in part (a) then takes the form
2k?sin?t dt = dx. (iii)
(c) Letting 6 = 2t, show that the solution of Eq. (iii) for which x =0 when y =0 is
given by
x = k%6 — sing)/2, y = k?(1 — cos6)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passesthrough (0, 0).
The graph of Egs. (iv) is called acycloid.

(d) If we make a proper choice of the constant k, then the cycloid also passes through
the point (x,, Y,) and isthe solution of the brachistochrone problem. Find k if x, = 1 and

Yo =2

2.4 Differences Between Linear and Nonlinear Equations

Up to now, we have been primarily concerned with showing that first order differential
equations can be used to investigate many different kinds of problems in the natural
sciences, and with presenting methods of solving such equationsif they areeither linear
or separable. Now it istimeto turn our attention to some more general questions about
differential equations and to explore in more detail some important ways in which
nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. So far, we have encountered a number of
initial value problems, each of which had a solution and apparently only one solution.
Thisraisesthe question of whether thisistrue of all initial value problemsfor first order
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Theorem 2.4.1

eguations. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter an
initial value problem in the course of investigating some physical problem, you might
want to know that it has a solution before spending very much time and effort in
trying to find it. Further, if you are successful in finding one solution, you might be
interested in knowing whether you should continue asearch for other possible solutions
or whether you can be sure that there are no other solutions. For linear equations the
answers to these questions are given by the following fundamental theorem.

If thefunctions p and g arecontinuousonanopeninterval | : @ <t < g containingthe
pointt = t, thenthere existsaunique function y = ¢(t) that satisfiesthe differential
eguation

Yy + py = g(t) Q)
foreacht in |, and that also satisfies the initial condition
y(to) = Yo (2)

where y, is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem has a solution
and also that the problem has only one solution. In other words, the theorem asserts
both the existence and uniqueness of the solution of the initial value problem (1), (2).
In addition, it states that the solution exists throughout any interval | containing the
initia point t, in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of thistheorem is partly contained in the discussion infSection 2.1 leading
to the formula in Section 2.1]

_[re9Eds+c

, 3
wu(t) )

where
n(t) = exp / p(s)ds. 4)

The{derivation in Section 2.1 shows that if Eq. (1) has asolution, then it must be given
by Eqg. (3). By looking slightly more closely at that derivation, we can also conclude
that the differential equation (1) must indeed have asolution. Since p is continuous for
a <t < B,itfollowsthat  is defined in thisinterval and is a nonzero differentiable
function. Upon multiplying Eqg. (1) by w(t) we obtain

[k®Y] = n®OIM). ®)

Since both . and g are continuous, the function ug is integrable, and Eq. (3) follows
from Eq. (5). Further, theintegral of ng isdifferentiable, so y asgiven by Eq. (3) exists
and is differentiable throughout theinterval @ <t < 8. By substituting the expression
for y in EqQ. (3) into either Eq. (1) or Eq. (5), one can easily verify that this expression
satisfies the differential equation throughout theinterval @ <t < . Finaly, theinitia
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condition (2) determines the constant ¢ uniquely, so there is only one solution of the

initial value problem, thus completing the proof.
Equation (4)| determines the integrating factor 1. (t) only up to amultiplicative factor
that depends on the lower limit of integration. If we choose this lower limit to be t,,
then

t
w(t) = exp / p(s) ds, (6)
ty

anditfollowsthat n(t,) = 1. Using theintegrating factor given by Eq. (6) and choosing
the lower limit of integration in|Eq. (3)|also to be t,, we obtain the general solution of

in the form
Jy n(®)9(s) ds +c
y =
()

To satisfy the initial[condition (2)] we must choose ¢ = y,,. Thus the solution of the
initial value problem[(1), (2)]is

Sy 1Y) ds+ v,
Y= ()

: )

where (1) isgiven by Eq. (6).

Turning now to nonlinear differential equations, we must replace|Theorem 2.4.1 by
amore general theorem, such as the following.

Theorem 2.4.2 Letthefunctions f andaf /0y becontinuousinsomerectangle <t < 8,y <y < 3§

containing the point (t,,y,). Then, in someinterval t, —h <t < t; + h contained in
a <t < B, thereisaunique solution y = ¢ (t) of theinitial value problem

y = f(t,y), y(ty) = Yo (8)

Observethat the hypothesesin Theorem 2.4.2 reduce to those in[Theorem 2.4.1if the
differential equation is linear. For then f(t,y) = —p(t)y + g(t) and af (t, y) /oy =
—p(t), so the continuity of f and af/dy is equivalent to the continuity of p and g
in this case. Thelproof of Theorem 2.4.7l was comparatively simple because it could
be based on the expronthat gives the solution of an arbitrary linear equation.
There is no corresponding expression for the solution of the differential equation (8),
so the proof of Theorem 2.4.2 is much more difficult. It is discussed to some extent in
Section 2.8|and in greater depth in more advanced books on differential equations.

Here we note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (8) in some interval
t,—h <t <t,+h, but they are not necessary. That is, the conclusion remains true
under dlightly weaker hypotheses about the function f. In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of f
alone.

We now consider some examples.
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EXAMPLE

1

EXAMPLE

2

Use Theorem 2.4.1 to find an interval in which theinitial value problem

ty' + 2y = 4t?, 9)
y() =2 (10)

has a unique solution.
Rewriting Eq. (9) in the standard form (1), we have

Y+ 2/ty =4, (11)

so p(t) = 2/t and g(t) = 4t. Thus, for this equation, g is continuous for all t, while
p is continuous only for t < O or for t > 0. The interval t > 0 contains the initial
point; consequently,[ Theorem 2.4.1 guarantees that the problem (9), (10) has a unique
solution on theinterval 0 < t < oo. In|[Example 4 of Section 2.1/ we found the solution
of thisinitial value problem to be

1
y=t2+t—2, t>0. (12)

Now suppose that the initial condition (10) is changed to y(—1) = 2. Then[Theorem
asserts the existence of aunique solution fort < 0. Asyou can readily verify, the
solution is again given by Eq. (12), but now ontheinterval —co <t < 0.

Apply[Theorem 2.4.2|to the initial value problem
dy  3x°+4x +2
dx  2y-1) °

Note that is not applicable to this problem since the differential
equation is nonlinear. To apply[Theorem 2.4.2] observe that

3x2+4x +2 af 3x% 4 4x + 2

fon="S—7 V="
y-21 dy 2y-1
Thus both these functions are continuous everywhere except on the line y = 1. Con-
sequently, a rectangle can be drawn about the initial point (0, —1) in which both f
and df /0y are continuous. Therefore[Theorem 2.4.3 guarantees that the initial value
problem has a unique solution in someinterval about x = 0. However, even though the
rectangle can be stretched infinitely far in both the positive and negative x directions,
this does not necessarily mean that the solution existsfor all x. Indeed, theinitia value
problem (13) was solved in|Example 2 of Section 2.2/and the solution exists only for
X > —2.

Now suppose we change the initial conditionto y(0) = 1. Theinitial point now lies
ontheliney = 1 so no rectangle can be drawn about it within which f and af/dy are
continuous. Consequently, Theorem 2.4.2 says nothing about possible solutions of this
modified problem. However, if we separate the variables and integrate, as in Section

[2.2, wefind that

y(0) = -1 (13)

y? —2y = x3+2x2 + 2x +C.
Further, if x = 0and y = 1, then c = —1. Finally, by solving for y, we obtain

y =14 vVx3+2x2 + 2x. (14)
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EXAMPLE

3

Equation (14) provides two functions that satisfy the given differential equation for
X > 0 and also satisfy theinitia condition y(0) = 1.

Consider the initial value problem
y=y"  y0=0 (15)

fort > 0. Applothisi nitial value problem, and then solvethe problem.
The function f (t, y) = y*/* is continuous everywhere, but 3f /dy = y~%°/3 is not
continuous when y = 0. Thus[Theorem 2.4.2]does not apply to this problem and no
conclusion can be drawn from it. However, by the remark following[Theorem 2.4.2]the
continuity of f does assure the existence of solutions, but not their uniqueness.
To understand the situation more clearly, we must actually solve the problem, which
is easy to do since the differential equation is separable. Thus we have

y dy = dt,

3yl =t+c

and

y=[4t+ C)]S/Z.

Theinitial condition is satisfied if c = 0, so

y=o,0=(2)"?, t=0 (16)
satisfies both of Egs. (15). On the other hand, the function
y=¢,) =—(2)”*, t=0 17)
isalso asolution of theinitial value problem. Moreover, the function
y=v(@) =0, t>0 (18)

is yet another solution. Indeed, it is not hard to show that, for an arbitrary positive t,,
the functions

— () = , ifo<t<t,,
Y=XO= 22a -], ift >t

are continuous, differentiable (in particular at t = t;), and are solutions of the ini-
tial value problem (15). Hence this problem has an infinite family of solutions; see
Figure 2.4.1, where afew of these solutions are shown.

As dready noted, the nonuniqueness of the solutions of the problem (15) does not
contradict the existence and unigqueness theorem, since the theorem is not applicable
if theinitial point lies on the t-axis. If (t,, y,) isany point not on the t-axis, however,
then the theorem guarantees that there is a unique solution of the differential equation
y' = y*/3 passing through (t,, y,)-

(19)
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EXAMPLE

4

y
X(®

X(®)

FIGURE 2.4.1 Severa solutions of theinitia value problem y’ = y*/3, y(0) = 0.

Interval of Definition. According to Theorem 2.4.1, the solution of a linear equa
tion (1),

y + pt)y =g(t),

subject to the initial condition y(t,) = Y, exists throughout any interval about t = t,
in which the functions p and g are continuous. Thus, vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g. For
instance, the[solutionsin Example 1 (with one exception) are asymptotic to the y-axis,
corresponding to the discontinuity at t = 0 in the coefficient p(t) = 2/t, but none of
the solutions has any other point where it fails to exist and to be differentiable. The
one exceptional solution shows that solutions may sometimes remain continuous even
at points of discontinuity of the coefficients.

On the other hand, for anonlinear initial value problem satisfying the hypotheses of
[Theorem 2.4.7, the interval in which a solution exists may be difficult to determine.
Thesolutiony = ¢ (1) iscertainto exist aslong as the point [t, ¢ (t)] remainswithin a
region in which the hypotheses of are satisfied. Thisiswhat determines
the value of h in that theorem. However, since ¢ (t) is usually not known, it may be
impossible to locate the point [t, ¢ (t)] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
inthe differential equation y’ = f (t, y). Thisisillustrated by the following example.

Solve theinitial value problem

Y=y, yO0O=1 (20)

and determine the interval in which the solution exists.

guarantees that this problem hasaunique solution since f (t, y) = y?
and of /a9y = 2y are continuous everywhere. To find the solution we separate the
variables and integrate with the result that

y2dy = dt (21)
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and
—yl=t+c
Then, solving for y, we have
1
=——. 22
y t+c (22)
To satisfy the initial condition we must choosec = —1, so
1
- 2
=1 (23)

is the solution of the given initial value problem. Clearly, the solution becomes un-
bounded as t — 1; therefore, the solution exists only in the interval —co <t < 1.
There is no indication from the differential equation itself, however, that the point
t = lisinany way remarkable. Moreover, if theinitial condition is replaced by

y(0) =Y, (24)
then the constant ¢ in Eq. (22) must be chosento be ¢ = —1/y,,, and it follows that
Yo
=—— 25
Y= 1237 (25)

isthe solution of theinitial value problem with the initial condition (24). Observe that
the solution (25) becomes unbounded ast — 1/y,,, so theinterval of existence of the
solution is —oo <t < 1/y, if y, > 0,andis1/y, <t < oo if y, < 0. This example
illustrates another feature of initial value problemsfor nonlinear equations; namely, the
singularities of the solution may depend in an essential way on theinitial conditions as
well as on the differential equation.

General Solution. Anocther way in which linear and nonlinear equations differ isin
connection with the concept of a general solution. For afirst order linear equationitis
possible to obtain a solution containing one arbitrary constant, from which all possible
solutions follow by specifying values for this constant. For nonlinear equations this
may not be the case; even though a solution containing an arbitrary constant may
be found, there may be other solutions that cannot be obtained by giving values to
this constant. For instance, for the differential equation|y’ = y° in Example 4, the
expression in Eq. (22) contains an arbitrary constant, but does not include al solutions
of the differential equation. To show this, observe that the functiony = Ofor al t is
certainly asolution of the differential equation, but it cannot be obtained from Eg. (22)
by assigning a value to c. In this example we might anticipate that something of this
sort might happen because to rewrite the original differential equation in the form (21)]
we must require that y is not zero. However, the existence of “additional” solutionsis
not uncommon for nonlinear equations; aless obvious exampleisgiveninProblem 22.
Thus we will use the term “ general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order

linear equation Eq. (7)|provides an explicit formulafor the solution y = ¢ (t). Aslong
as the necessary antiderivatives can be found, the value of the solution at any point can

be determined merely by substituting the appropriate value of t into the equation. The
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situation for nonlinear equationsis much less satisfactory. Usually, the best that we can
hope for isto find an equation

Ft,y)=0 (26)

involving t and y that is satisfied by the solution y = ¢ (t). Even this can be done
only for differential equations of certain particular types, of which separable equations
are the most important. The equation (26) is called an integral, or first integral, of the
differential equation, and (as we have already noted) its graph is an integral curve, or
perhaps a family of integral curves. Equation (26), assuming it can be found, defines
the solution implicitly; that is, for each value of t we must solve Eqg. (26) to find the
corresponding value of y. If Eq. (26) is simple enough, it may be possible to solve
it for y by analytical means and thereby obtain an explicit formula for the solution.
However, more frequently this will not be possible, and you will have to resort to a
numerical calculation to determine the value of y for a given value of t. Once several
pairs of values of t and y have been calculated, it is often helpful to plot them and
then to sketch the integral curve that passes through them. You should arrange for a
computer to do thisfor you, if possible.

[Examples 2, [3) and[4] are nonlinear problems in which it is easy to solve for
an explicit formula for the solution y = ¢ (t). On the other hand, and
in Section 2.2 are cases in which it is better to leave the solution in implicit
form, and to use numerical means to evaluate it for particular values of the inde-
pendent variable. The latter situation is more typical; unless the implicit relation is
quadratic in y, or has some other particularly simple form, it is unlikely that it can
be solved exactly by analytical methods. Indeed, more often than not, it is impos-
sible even to find an implicit expression for the solution of a first order nonlinear
equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty
in obtaining exact analytic solutions of nonlinear differential equations, methods that
yield approximate solutions or other qualitative information about solutions are of
correspondingly greater importance. We have already described in[Section 1.1 how
the direction field of a differential equation can be constructed. The direction field
can often show the qualitative form of solutions and can also be helpful in identi-
fying regions of the ty-plane where solutions exhibit interesting features that merit
more detailed analytical or numerical investigation. Graphical methods for first order
equations are discussed further in[Section 2.5] An introduction to numerical meth-
ods for first order equations is given in and a systematic discussion of
numerical methods appears in[Chapier 8 However, it is not necessary to study the
numerical algorithms themselves in order to use effectively one of the many software
packages that generate and plot numerical approximations to solutions of initial value
problems.

Summary. Linear equations have several nice properties that can be summarized in
the following statements:

1. Assuming that the coefficients are continuous, thereis a general solution, contain-
ing an arbitrary constant, that includes al solutions of the differential equation.
A particular solution that satisfies a given initial condition can be picked out by
choosing the proper value for the arbitrary constant.
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2. There is an expression for the solution, namely, [Eq. (3) or[Eq. (7)] Moreover,
although it involves two integrations, the expression is an explicit one for the
solution y = ¢ (t) rather than an equation that defines ¢ implicitly.

3. Thepossible points of discontinuity, or singularities, of the solution can be identi-
fied (without solving the problem) merely by finding the points of discontinuity of
the coefficients. Thus, if the coefficients are continuous for al t, then the solution
also exists and is continuous for all t.

None of these statementsistrue, in general, of nonlinear equations. While a nonlinear
equation may well have a solution involving an arbitrary constant, there may also
be other solutions. There is no general formula for solutions of nonlinear equations.
If you are able to integrate a nonlinear equation, you are likely to obtain an equation
defining solutionsimplicitly rather than explicitly. Finally, the singularities of solutions
of nonlinear equations can usually befound only by solving the equation and examining
the solution. Itislikely that the singularitieswill depend on theinitial condition aswell
asthe differential equation.

PROBLEMS

In each of Problems 1 through 6 determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

t -3y + (nt)y =21, y(1) =2

tt -4y +t -2y +y=0, y2 =1
y' + (tant)y = sint, y(m) =0
(4—t2)y + 2ty = 3t2, y(-3) =1
(4—t2)y + 2ty = 3t2, y(1) = -3
(Int)y' + y = cott, y(2) =3

Ok wWwdH

In each of Problems 7 through 12 state the region in the ty-plane where the hypotheses of
Theorem 2.4.2 are satisfied. Thus there is a unique solution through each given initia point in
thisregion.

/ t—y / 2 212
7. = 8. =1-t°-
y 2t + 5y y = y9)
In|ty| 2 213/2
9. vV=—+-°-"— 10. vy =(t /
e y =t2+y?)
" dy 1412 1 dy _ (cott)y
Cdt 3y —y? Tdt T 14y

In each of Problems 13 through 16 solve the given initial value problem and determine how the
interval in which the solution exists depends on the initial value y,.

138y =-4/y,  yO =y, 4.y =2y, y0) =y,

15 y+y'=0,  yO =y, 16. Yy =t?/yd+t%,  yO =y,

In each of Problems 17 through 20 draw adirection field and plot (or sketch) several solutions
of the given differential equation. Describe how solutions appear to behave ast increases, and
how their behavior depends on the initial value y, whent = 0.

17. y =tyB—vy) > 18. y =y(3—-ty)

19. y = —y@3—ty) > 20 y=t—1-y?

21. Consider theinitial value problem y’ = y¥/3, y(0) = 0 from Example 3in the text.
(8) Isthere asolution that passes through the point (1, 1)?If so, find it.
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(b) Isthere asolution that passes through the point (2, 1)? If so, find it.
(c) Consider al possible solutions of the given initial value problem. Determine the set of
values that these solutionshave at t = 2.

22.

(@) Verify that both y,(t) = 1—t and y,(t) = —t“/4 are solutions of the initial value
problem

, =t (P +Ay)?
Where are these solutions valid?
(b) Explain why the existence of two solutions of the given problem does not contradict

the unigueness part of Theorem 2.4.2.

23.

24,

25,

(c) Show that y = ct + ¢, where c is an arbitrary constant, satisfies the differential
equation in part (a) fort > —2c. If c = —1, theinitia condition is also satisfied, and the
solution y =y, (1) is obtained. Show that there is no choice of ¢ that gives the second
solution y = y,(t).

(@ Showthat ¢ (t) = €® isasolutionof y — 2y = Oandthat y = c¢ (t) isalsoasolution
of this eguation for any value of the constant c.

(b) Show that ¢ (t) = 1/t is a solution of y' + y?> =0 for t > 0, but that y = c¢(t) is
not a solution of this equation unless c = 0 or ¢ = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) islinear.

Show that if y = ¢ (t) isasolutionof y' + p(t)y = 0, theny = c¢ (t) isalso asolution for
any value of the constant c.

Lety =y, (t) beasolution of

y + p)y =0, (i)
and let y = y,(t) beasolution of

y' + pMy = g). (i)
Show that y = vy, (t) + v, (t) isalso asolution of Eg. (ii).

26.

(a) Show that the solution (3) of the general linear equation (1) can be written in the form

y = ¢y, (1) + y,(1), 0]

where c is an arbitrary constant. Identify the functions y, and y,,.
(b) Show that y, isasolution of the differential equation

y + pt)yy =0, (ii)

corresponding to g(t) = 0.
(c) Show that y, isasolution of the full linear equation (1). We see later (for example, in
Section 3.6) that solutions of higher order linear equations have a pattern similar to Eq. (i).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variablethat convertsit into alinear equation. The most important such
equation has the form

Yy + ptyy = q(t)y",

and is called a Bernoulli equation after|Jakob Bernoulli. Problems 27 through 31 deal with
equations of thistype.

27.

(@) Solve Bernoulli’s equation when n = 0; whenn = 1.
(b) Show that if n # 0, 1, then the substitution v = y*™" reduces Bernoulli’s equation to
alinear equation. This method of solution was found by Leibniz in 1696.
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In each of Problems 28 through 31 the given egquation isa Bernoulli equation. In each case solve
it by using the substitution mentioned in Problem 27(b).

28. t°y +2ty—y°> =0, t>0

29. y =ry—ky? r > 0andk > 0. This equation is important in population dynamics and
isdiscussed in detail in Section 2.5.

30. Y =ey—oYy® e > 0ando > 0. Thisequation occursin the study of the stability of fluid
flow.

31. dy/dt = (I'cost 4+ T)y — y°, where " and T are constants. This equation also occursin
the study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If t, is such a point of discontinuity,
then it is necessary to solve the equation separately for t < t; andt > t,. Afterward, the two
solutions are matched so that y is continuous at t,; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it isimpossible also to make y’ continuous at t,,.

32. Solvetheinitial value problem
y+2y=9®, y0=0,
where

_ 1, O<t<l,
g(t)—{ 0, t> 1

33. Solvetheinitial value problem
Y+pty=0  y0O=1,
where

2, O<t<l,
1, t> 1

o= |

2.5 Autonomous Equations and Population Dynamics

An important class of first order equations are those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dy/dt = f(y). o

Wewill discussthese equationsin the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to
global economics. A number of other applications are mentioned in some of the
problems. Recall that in[Sections 1.1|and[1.2]we have already considered the special
case of Eq. (1) inwhich f(y) =ay + b.

Equation (1) is separable, so the discussion in[Section 2.2]is applicable to it, but
our main object now is to show how geometric methods can be used to obtain im-
portant qualitative information directly from the differential equation, without solving
the equation. Of fundamental importance in this effort are the concepts of stability
and instability of solutions of differential equations. These ideas were introduced in
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[Chapter T} are discussed further here, and will be examined in greater depth and in a
more general setting in Chapter 9.

Exponential Growth. Lety = ¢(t) be the population of the given species at timet.
Thesimplest hypothesisconcerning the variation of population isthat therate of change
of y is proportiona®to the current value of y, that is,

dy/dt =ry, 2

where the constant of proportionaity r iscalled thefrate of growth or decline, depend-
ing on whether it is positive or negative. Here, we assumethat r > 0, so the population

isgrowing.
Solving Eq. (2) subject to the initial condition
we obtain
y =ye". @)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown in
Figure2.5.1. Under ideal conditionsEq. (4) hasbeen observed to be reasonably accurate
for many populations, at least for limited periods of time. However, it is clear that such
ideal conditions cannot continue indefinitely; eventualy, limitations on space, food
supply, or other resources will reduce the growth rate and bring an end to uninhibited
exponential growth.

FIGURE 25.1 Exponentia growth: y versust for dy/dt =ry.

To take account of the fact that the growth rate actually depends
on the population, we replace the constant r in Eq. (2) by afunction h(y) and thereby
obtain the modified equation

dy/dt = h(y)y. %)

41t was apparently the British economist Thomas Malthus (1766—1834) who first observed that many biological
populations increase at arate proportional to the population. His first paper on populations appeared in 1798.
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We now want to choose h(y) so that h(y) =r > 0wheny issmall, h(y) decreases
as y grows larger, and h(y) < 0 when vy is sufficiently large. The simplest function
having these propertiesis h(y) =r — ay, where a is also a positive constant. Using

this function in[Eq. (5), we obtain
dy/dt = (r —ay)y. (6)

Equation (6) is known as the Verhuluation or theflogistic equation| It is often
convenient to write the logistic equation in the equivalent form

where K =r/a. Theconstant r iscalled thelintrinsic growth rate)|that is, the growth
rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We first seek solutions of Eq. (7) of the simplest possible type, that is, constant
functions. For such a solution dy/dt = O for all t, so any constant solution of Eq. (7)
must satisfy the algebraic equation

rad—y/Kyy=0.

Thus the constant solutions are y = ¢,(t) = 0 and y = ¢,(t) = K. These solutions
are called pquilibrium solutions|of Eq. (7) because they correspond to no change or
variation in thevalue of y ast increases. In the same way, any equilibrium solutions of
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FIGURE 2.5.2 Directionfield for dy/dt =r (1 — y/K)y withr = 1/2and K = 3.

5P F Verhulst (1804-1849) was a Bel gian mathematician who introduced Eq. (6) asamodel for human population
growth in 1838. He referred to it as logistic growth; hence Eg. (6) is often called the logistic equation. He was
unable to test the accuracy of his model because of inadequate census data, and it did not receive much attention
until many years later. Reasonable agreement with experimental data was demonstrated by R. Pearl (1930) for
Drosophila melanogaster (fruit fly) populations, and by G. F. Gause (1935) for Paramecium and Tribolium (flour
beetle) populations.



2.5 Autonomous Equations and Population Dynamics 77

the more general can be found by locating the roots of f (y) = 0. The zeros of
f (y) are dso called[critical points|

To visualize other solutions of let us draw a direction field for a typical
case, asshownin Figure 2.5.2whenr = 1/2 and K = 3. Observe that the elements of
the direction field have the same slope at al points on each particular horizontal line
although the slope changes from oneline to another. This property followsfrom thefact
that theright side of thelogistic equation does not depend on the independent variablet.
Observe also that the equilibrium solutions y = 0 and y = 3 seem to be of particular
importance. Other solutions appear to approach the solution y = 3 asymptoticaly as
t — oo, whereas solutions on either side of y = 0 diverge fromit.

To understand more clearly the nature of the solutions of |Eq. (7) and to sketch their
graphs quickly, we can start by drawing the graph of f(y) versus y. In the case of
f(y) =r(1 - y/K)y, sothegraph isthe parabolashownin Figure 2.5.3. The
intercepts are (0, 0) and (K, 0), corresponding to the critical points of and
the vertex of the parabolais (K /2, r K/4). Observe that dy/dt > O for 0 <y < K;
therefore, y isanincreasing function of t when y isin thisinterval; thisisindicated by
therightward-pointing arrows near the y-axisin Figure 2.5.3, or by the upward-pointing
arrowsin Figure 2.5.4. Similarly, if y > K, thendy/dt < 0; hence y isdecreasing, as
indicated by the leftward-pointing arrow in Figure 2.5.3, or by the downward-pointing

f(y)
rK/4 —

(K/2, rK/4)

FIGURE 253 f(y) versusy fordy/dt =r(1— y/K)y.

() =K

t

FIGURE 254 Logistic growth: y versust for dy/dt =r (1 — y/K)y.
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arrow in Figure 2.5.4. Further, note that if y is near zero or K, then the dlope f (y)
is near zero, so the solution curves are relatively flat. They become steeper as the
value of y leaves the neighborhood of zero or K. These observations mean that the
graphs of solutions of [Eq. (7)]must have the general shape shown in Figure 2.5.4,
regardless of the values of r and K.

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d?y/dt?. From the
differential equation (1) we obtain (using the chain rule)

dy _ ., dy

e f'(y) i f'(y) f(y). )]
The graph of y versust is concave up when y” > 0, that is, when f and f’ have the
same sign. Similarly, it is concave down when y” < 0, which occurs when f and f’
have opposite signs. The signsof f and f’ can be easily identified from the graph of
f (y) versus y. Inflection points may occur when f'(y) = 0.

In the case of [Eq. (7) solutions are concave up for 0 < y < K /2 where f ispositive
and increasing (see Figure 2.5.3), so that both f and f’ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f’ are
negative). For K/2 < y < K solutions are concave down since here f is positive and
decreasing, so f is positive but f’ is negative. There is an inflection point whenever
the graph of y versust crosses the line y = K /2. The graphs in Figure 2.5.4 exhibit
these properties.

Finaly, recall that the fundamental existence and uniqueness theo-
rem, guarantees that two different solutions never pass through the same point. Hence,
while solutions approach the equilibrium solution y = K ast — oo, they do not attain
this value at any finite time. Since K is the upper bound that is approached, but not
exceeded, by growing populations starting below this value, it is natural to refer to
K as the saturation level, or the environmental carrying capacity, for the given
species.

A comparison of Figures 2.5.1 and 2.5.4 reveds that solutions of the nonlinear
equation are strikingly different from those of the linear equation , at least for
largevaluesof t. Regardless of thevalueof K, that is, no matter how small the nonlinear
term in Eq.[(6)] solutions of that equation approach afinite value ast — oo, whereas
solutions of Eq.|(1)|grow (exponentialy) without bound ast — oo. Thus even atiny
nonlinear term in the differentia eguation has a decisive effect on the solution for
larget.

In many situationsit issufficient to have the qualitativeinformation about the solution
y = ¢(t) of [Eq. (7)]that is shown in Figure 2.5.4. This information was obtained
entirely from the graph of f (y) versusy, and without solving the differential equation

However, if we wish to have a more detailed description of logistic growth—for

example, if we wish to know the value of the population at some particular time—then
we must solve Eq.|(7)| subject to the initial condition (3). Provided that y # 0 and
y # K, we can write Eq|(7)]in the form

dy

— —rdt.
A—y/Ky |
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Using a partial fraction expansion on the left side, we have

1 1/K )
-+ dy =r dt.
(y 1-y/K
Then by integrating both sides we obtain
mwp4ﬂ1—iwzn+c ©
K ’

wherecisanarbitrary constant of integration to be determined fromtheinitial condition
y(0) = y,. We have already noted that if 0 < y, < K, then y remainsin this interval
for al time. Thusin this case we can remove the absolute value bars in Eq. (9), and by
taking the exponential of both sides, we find that

y rt
— =C¢€", 10
1=K~ ¢ (10

where C = €. To satisfy theinitia condition y(0) = y, wemust choose C = y,/[1 —
(Yo/K)]. Using this value for C in Eq. (10) and solving for y, we obtain

Yo+ (K —ype "’

y (11)

We have derived the solution (11) under theassumptionthat 0 < y, < K. Ify, > K,
then the details of dealing with Eq. (9) are only dlightly different, and we leave it to
you to show that Eq. (11) is also valid in this case. Finaly, note that Eq. (11) also
contains the equilibrium solutions y = ¢, (t) = 0 and y = ¢,(t) = K corresponding
to theinitial conditions y, = 0 and y, = K, respectively.

All the qualitative conclusions that we reached earlier by geometric reasoning can
be confirmed by examining the solution (11). In particular, if y, = 0, then Eq. (11)
requires that y(t) = O for al t. If y, > 0, and if welet t — oo in Eqg. (11), then we
obtain

tl_l)rgoy(t) = yoK/yo =K.

Thusfor each y, > 0 the solution approaches the equilibrium solution y = ¢,(t) = K
asymptotically (in fact, exponentially) ast — oco. Therefore we say that the constant
solution ¢,(t) = K is an[asymptotically stable solution|of [Eq. (7)} or that the point
y = K isan asymptotically stable equilibrium or critical point. This means that after
along time the population is close to the saturation level K regardless of the initia
population size, aslong asit is positive.

On the other hand, the situation for the equilibrium solution y = ¢, (t) = O is quite
different. Even solutions that start very near zero grow as t increases and, as we
have seen, approach K ast — oo. We say that ¢, (t) = 0isanjunstable equilibrium|
solution or that y = 0 is an unstable equilibrium or critical point. This means that the
only way to guarantee that the solution remains near zero is to make sure its initial
valueis exactly equal to zero.
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EXAMPLE

1

The logistic model has been applied to the natural growth of the halibut population in
certain areas of the Pacific OceartlL et y, measured in kilograms, be the total mass,
or biomass, of the halibut population at timet. The parameters in the logistic equation
are estimated to have the valuesr = 0.71/year and K = 80.5 x 10° kg. If the initial
biomassisy, = 0.25K, find the biomass 2 years |ater. Also find the time ¢ for which
y(t) = 0.75K.

It is convenient to scale the solution (11) to the carrying capacity K; thus we write

Eq. (11)|in theform

S = Yo/ K : 12
K (yp/K) + 1= (yp/ K™
Using the data given in the problem, we find that
2 .2
Yo _ 9% 5797,
K 0.25+ 0.75e™~
Consequently, y(2) = 46.7 x 10° kg.
y/IK
1.75
1.50
1.25
1.00
0.75
0.50
0.25
FIGURE 25.5 y/K versust for population model of halibut in the Pacific Ocean.
To find T we can first solve Eq. (12) for t. We obtain
ort _ Wo/KIL = (/K]
(y/ K1 = (yo/ K]
hence
K)[1- (y/K
L O6/OML = (v/K)] 13

r (/KL= (/K]
Using the given values of r and y,/K and setting y/K = 0.75, we find that
_ 1 In (0.25)(0.25) _ 1
0.71 (0.75)(0.75) 0.71

In9 = 3.095 years.

A good source of information on the population dynamics and economics involved in making efficient use of a
renewabl e resource, with particular emphasis on fisheries, is the book by Clark (see the references at the end of
this chapter). The parameter values used here are given on page 53 of this book and were obtained as aresult of a
study by M. S. Mohring.
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The graphs of y/K versust for the given parameter values and for severa initial
conditions are shown in Figure 2.5.5.

A Critical Threshold. We now turn to a consideration of the equation

o3y oo

wherer and T are given positive constants. Observe that (except for replacing the
parameter K by T) this equation differs from the logistic equation|(7)|only in the
presence of the minus sign on the right side. However, as we will see, the solutions of
Eq. (14) behave very differently from those of[Eg. (7).

For Eg. (14) the graph of f(y) versus y is the parabola shown in Figure 2.5.6.
The intercepts on the y-axis are the critical pointsy =0 and y = T, corresponding
to the equilibrium solutions ¢, (t) = 0Oand ¢,(t) = T. If 0 < y < T, thendy/dt < 0,
and y decreases ast increases. On the other hand, if y > T, then dy/dt > 0, and y
grows ast increases. Thus ¢, (t) = 0 is an asymptotically stable equilibrium solution
and ¢,(t) = T is an unstable one. Further, f'(y) is negative for 0 <y < T/2 and
positivefor T/2 < y < T, so the graph of y versust is concave up and concave down,
respectively, in these intervals. Also, f'(y) is positive for y > T, so the graph of y
versus t is aso concave up there. By making use of all of the information that we
have obtained from Figure 2.5.6, we conclude that graphs of solutions of Eq. (14) for
different values of y, must have the qualitative appearance shownin Figure 2.5.7. From
thisfigureit is clear that as time increases, y either approaches zero or grows without
bound, depending on whether theinitial value y, islessthan or greater than T. Thus T
isathreshold level, below which growth does not occur.

We can confirm the conclusions that we have reached through geometric reasoning
by solving the differential equation (14). This can be done by separating the variables
and integrating, just as we did for|Eq. (7)| However, if we note that Eq. (14) can be
obtained from[Eq. (7)]by replacing K by T and r by —r, then we can make the same
substitutions in the solution (11) and thereby obtain

N
yo + (T - yo)ert ’
which is the solution of Eq. (14) subject to the initial condition y(0) = y,,.

y= (15)

f(y)

-rT/4—
(T/2, —rT/4)

FIGURE 25.6 f(y) versusyfordy/dt = —-r(1—y/T)y.
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// Q) =T

— g — <

T/2

FIGURE 25.7 vyversust fordy/dt = —r(1—y/T)y.

If y, < T, then it follows from| Eq. (15)|that y — O ast — oo. This agrees with
our qualitative geometric analysis. If y, > T, then the denominator on the right side of

Eqg. (15)|is zero for acertain finite value of t. We denote this value by t*, and calculate
it from

Yo— (Yo — TE" =0,
which gives

Yo
yo =T
Thus, if theinitial population y, is above the threshold T, the threshold model predicts
that the graph of y versust has a vertical asymptote at t = t*; in other words, the
population becomes unbounded in a finite time, which depends on the initial value
Y, and the threshold value T. The existence and location of this asymptote were
not apparent from the geometric analysis, so in this case the explicit solution yields
additional important qualitative, as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few are
present, the species cannot propagate itself successfully and the population becomes
extinct. However, if apopulationlarger than the threshold level can be brought together,
then further growth occurs. Of course, the population cannot become unbounded, so
eventually|Eq. (14) /must be modified to take thisinto account.

Critical thresholds also occur in other circumstances. For example, in fluid mechan-
ics, equations of the form|(7)]or[(14)| often govern the evolution of asmall disturbance
y inalaminar (or smooth) fluid flow. For instance, if [Eq. (14)|holdsand y < T, then
the disturbance is damped out and the laminar flow persists. However, if y > T, then
the disturbance grows larger and the laminar flow breaks up into a turbulent one. In
thiscase T isreferred to asthe critical amplitude. Experimenters speak of keeping the
disturbance level in awind tunnel sufficiently low so that they can study laminar flow
over an airfoil, for example.

The same type of situation can occur with automatic control devices. For example,
supposethat y correspondsto the position of aflap on an airplane wing that isregulated
by an automatic control. The desired position is y = 0. In the normal motion of the

1
t* = >In (16)
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plane the changing aerodynamic forces on the flap will cause it to move from its set
position, but then the automatic control will come into action to damp out the small
deviation and return the flap to its desired position. However, if theairplaneiscaught in
ahigh gust of wind, the flap may be deflected so much that the automatic control cannot
bring it back to the set position (this would correspond to a deviation greater than T).
Presumably, the pilot would then take control and manually override the automatic
system!

| Logistic Growth with a Threshold.| As we mentioned in the last subsection, the
threshold model may need to be modified so that unbounded growth does not
occur when y is above the threshold T. The simplest way to do this is to introduce
another factor that will have the effect of making dy/dt negativewhen y islarge. Thus

we consider
dy y y

dt r<1 T) (1 K)y’ (0
wherer > 0and0 < T < K.

The graph of f (y) versusy isshown in Figure 2.5.8. In this problem there are three
critical points: y =0,y =T, and y = K, corresponding to the equilibrium solutions
¢,(1) =0, ¢,(1) =T, and ¢,(t) = K, respectively. From Figure 2.5.8 it is clear that
dy/dt > Ofor T < y < K, and consequently y isincreasing there. Thereverseistrue
fory < T andfor y > K. Consequently, the equilibrium solutions ¢, (t) and ¢,(t) are
asymptotically stable, and the solution ¢,(t) is unstable. Graphs of y versust have
the qualitative appearance shown in Figure 2.5.9. If y starts below the threshold T,
then y declines to ultimate extinction. On the other hand, if y starts above T, then y
eventually approaches the carrying capacity K. The inflection points on the graphs of
y versust in Figure 2.5.9 correspond to the maximum and minimum points, y, and
Y, respectively, on the graph of f(y) versusy in Figure 2.5.8. These values can be
obtained by differentiating the right side of Eq. (17) with respect to y, setting the result
equal to zero, and solving for y. We obtain

Vi, =(K+TEVKZ-KT +T%/3, (18)

where the plus sign yields y;, and the minussign y,,.

A model of this general sort apparently describes the population of the passenger
pigeohich was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently its

f(y)

FIGURE 25.8 f(y) versusyfordy/dt = —r(1—y/T)(1 - y/K)y.

"See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.
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FIGURE 25.9 yversust fordy/dt = —r(1—y/T)(1—y/K)y.

numbers were drastically reduced by the 1880s. Unfortunately, the passenger pigeon
could apparently breed successfully only when present in a large concentration, cor-
responding to a relatively high threshold T. Although a reasonably large number of
individual birdsremained aliveinthelate 1880s, there were not enough in any one place
to permit successful breeding, and the population rapidly declined to extinction. The
last survivor died in 1914. The precipitous decline in the passenger pigeon population
from huge numbers to extinction in scarcely more than three decades was one of the
early factors contributing to a concern for conservation in this country.

PROBLEMS Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch the
graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable.

1

N oukrwd

dy/dt = ay + by?, a>0, b>0, Yo =0

dy/dt = ay + by?, a>o0, b >0, —00 < Y, < 00
dy/dt = y(y — 1)(y — 2), Yo =0

dy/dt =¢¥ -1, —00 < Y, < 00

dy/dt =e¥ -1, —00 < Y, < 00

dy/dt = —2(arctany) /(1 + y?), —00 < Y < 00

Semistable Equilibrium Solutions.  Sometimes a constant equilibrium solution has the
property that solutions lying on one side of the equilibrium solution tend to approach it,
whereas solutions lying on the other side depart from it (see Figure 2.5.10). In this case the
equilibrium solution is said to be semistable.

(@) Consider the equation

dy/dt = k(1 — y)?, (i)

where k is a positive constant. Show that y = 1 is the only critical point, with the corre-
sponding equilibrium solution ¢ (t) = 1.

(b) Sketch f (y) versusy. Show that y isincreasing as afunction of t for y < 1 and also
for y > 1. Thus solutions bel ow the equilibrium solution approach it, while those above it
grow farther away. Therefore ¢ (t) = 1is semistable.
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\ o) =k %

(@) (b)

FIGURE 2.5.10 Inboth casesthe equilibrium solution ¢ (t) = kissemistable. (a) dy/dt < 0;
(b) dy/dt > 0.

(c) Solve Eg. (i) subject to the initia condition y(0) =y, and confirm the conclusions
reached in part (b).

Problems 8 through 13 involve equations of the form dy/dt = f (y). In each problem sketch
the graph of f (y) versusy, determine the critical (equilibrium) points, and classify each one as
asymptotically stable, unstable, or semistable (see Problem 7).

8.

9.
10.
11
12.
13.

dy/dt = —k(y — 1)?, k>0, —00 < Y, < 00
dy/dt = y2(y? — 1), —00 < Y, < 00

dy/dt = y(1 — y?), —00 < Y, < 00

dy/dt = ay — b./y, a>o0, b>0, Yo >0
dy/dt = y?(4 — y?), —00 < Y, < 00

dy/dt = y?(1 — y)?, —00 < Y, < 00

14.

Consider the equation dy/dt = f(y) and suppose that y, is a critical point, that is,
f(y,) = 0. Show that the constant equilibrium solution ¢ (t) =y, isasymptotically stable
if f'(y,) < 0andunstableif f'(y,) > 0.

15.

16.

17.

Suppose that a certain population obeys the logistic equation dy/dt = ry[1 — (y/K)].

(@ Ify, = K/3,findthetimez at whichtheinitial population has doubled. Find the value
of = correspondingtor = 0.025 per year.

(b) If yo/K =a, find thetime T at which y(T)/K = 8, where 0 < «, 8 < 1. Observe
thaa T - coasa — Ooras B — 1. Findthevalueof T forr = 0.025 per year, « = 0.1,
and 8 =0.9.

Another equation that has been used to model population growth isthe Gompertz equation:

dy/dt =ryIn(K/y),

wherer and K are positive constants.

(a) Sketchthegraphof f (y) versusy, findthecritical points, and determine whether each
is asymptotically stable or unstable.

(b) For 0 <y < K determine where the graph of y versust is concave up and whereit is
concave down.

() Foreachyin0O <y < K show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

(a) Solvethe Gompertz equation

dy/dt =rylIn(K/y),

subject to theinitial condition y(0) = y,,.
Hint: You may wishto let u = In(y/K).
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18.

19.

(b) For the data given in Example 1 in the text [r = 0.71 per year, K = 80.5 x 10° kg,
Yo/ K = 0.25], use the Gompertz model to find the predicted value of y(2).

(c) For the same data as in part (b), use the Gompertz model to find the time = at which
y(r) = 0.75K.

A pond forms as water collects in a conical depression of radius a and depth h. Suppose
that water flowsin at aconstant rate k and islost through evaporation at arate proportional
to the surface area.

(8 Show that the volume V (t) of water in the pond at time t satisfies the differential
equation

dV/dt = k — amr(3a/7rh)?3Vv?/3,

where « isthe coefficient of evaporation.

(b) Find the equilibrium depth of water in the pond. Is the eguilibrium asymptotically
stable?

(c) Find acondition that must be satisfied if the pond is not to overflow.

Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom of the
tank. From Torricelli’s theorem in hydrodynamics it follows that the rate at which water
flowsthrough the holeisaa./2gh, where h isthe current depth of water inthetank, g isthe
acceleration due to gravity, and « is a contraction coefficient that satisfies 0.5 < o < 1.0.
(@) Show that the depth of water in the tank at any time satisfies the equation

dh/dt = (k — aa/2gh)/A.

(b) Determine the equilibrium depth h, of water and show that it is asymptotically stable.
Observe that h, does not depend on A.

Harvesting a Renewable Resource.  Supposethat the population y of acertain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt =r(1-y/K)y.

While it is desirable to utilize this source of food, it is intuitively clear that if too many fish

are caught, then the fish population may be reduced below a useful level, and possibly even

driven to extinction. Problems 20 and 21 explore some of the questions involved in formulating
arational strategy for managing the fisher

P0.

At agiven level of effort, it is reasonable to assume that the rate at which fish are caught
depends on the population y: The more fish there are, the easier it isto catch them. Thuswe
assumethat therate at which fish are caught isgiven by Ey, where E isapositive constant,
with units of 1/time, that measuresthetotal effort made to harvest the given species of fish.
To include this effect, the logistic equation is replaced by

dy/dt =r(1-y/K)y — Ey. (i)

This eguation is known as the Schaefer model after the biologist, M. B. Schaefer, who
applied it to fish populations.

(@ Show that if E < r, then there are two equilibrium points, y, =0 and y, = K(1 -
E/r) > 0.

(b) Showthaty =y, isunstableand y =y, isasymptotically stable.

8An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be found in
the book by Clark mentioned previously, especially in the first two chapters. Numerous additional references are
given there.
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21.

(c) A sustainableyield Y of the fishery isarate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y,. Find Y as a
function of the effort E; the graph of this function is known as the yield-effort curve.

(d) Determine E soastomaximizeY andthereby find themaximum sustainableyield Y, .
In this problem we assume that fish are caught at a constant rate h independent of the size
of the fish population. Then y satisfies

dy/dt =r(1 - y/K)y —h. 0]

The assumption of a constant catch rate h may be reasonable when y islarge, but becomes
less so when y is small.

(@ If h <rKy/4, show that Eq. (i) has two equilibrium points y, and y, with y; < y,;
determine these points.

(b) Show that y, isunstable and y, is asymptotically stable.

(c) Fromaplotof f(y) versusy show that if theinitial population y, > vy,,theny — vy,
ast — oo, but that if y, < y,, then y decreases as't increases. Note that y = 0 is not an
equilibrium point, soif y, <y, then extinction will be reached in afinite time.

(d) Ifh > rK/4,show that y decreasesto zero ast increases regardless of the value of y,,.
(e) If h=rK/4, show that there is a single equilibrium point y = K/2 and that this
point is semistable (see Problem 7). Thus the maximum sustainable yield ish,, =rK /4,
corresponding to the equilibrium value y = K /2. Observe that h, has the same value as
Y., in Problem 20(d). The fishery is considered to be overexploited if y isreduced to alevel
below K /2.

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes
back at least to some work by|Daniel Bernoullilin 1760 on smallpox. In more recent years many

mathematical models have been proposed and studied for many different diseases® Problems
22 through 24 deal with afew of the simpler models and the conclusionsthat can be drawn from
them. Similar models have also been used to describe the spread of rumors and of consumer
products.

22.

23.

Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
X +y = 1. Assume that the disease spreads by contact between sick and well members
of the population, and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contactsis proportional to the product of x and y. Sincex = 1 —,
we obtain the initial value problem

dy/dt = ay(1-y), y(0) =y, (i)

where o is a positive proportionality factor, and vy, is the initial proportion of infectious
individuals.

(8 Find the equilibrium points for the differential equation (i) and determine whether
each isasymptotically stable, semistable, or unstable.

(b) Solvetheinitial valueproblem (i) and verify that the conclusionsyou reachedin part (a)
arecorrect. Show that y(t) — last — oo, which meansthat ultimately the di sease spreads
through the entire population.

Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease, but who exhibit no overt symptoms. Let x and v, respectively, denote

°A standard source is the book by|Bailey listed in the references The models in Problems 22 through 24 are
discussed by Bailey in Chapters 5, 10, and 20, respectively.
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24,

the proportion of susceptibles and carriers in the population. Suppose that carriers are
identified and removed from the population at arate 8, so

dy/dt = —By. 0]
Suppose aso that the disease spreads at a rate proportiona to the product of x and y; thus
dx/dt = axy. (i)

(@) Determiney at any timet by solving Eq. (i) subject to theinitial condition y(0) =y,
(b) Usetheresult of part (a) to find x at any timet by solving Eq. (ii) subject to the initia
condition x(0) = X,

(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x ast — oo.

Daniel Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a con-
troversial inoculation program against smallpox, which at that time was a major threat to
public health. Hismodel appliesequally well to any other disease that, once contracted and
survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (t = 0), and let n(t) be the
number of these individuals surviving t years later. Let x(t) be the number of members of
this cohort who have not had smallpox by year t, and who are therefore till susceptible.
Let B be the rate at which susceptibles contract smallpox, and let v be the rate at which
people who contract smallpox die from the disease. Finally, let n(t) be the death rate from
all causes other than smallpox. Then dx/dt, the rate at which the number of susceptibles
declines, is given by

dx/dt = —[B + n®]x; (i)

thefirst term on the right side of Eq. (i) isthe rate at which susceptibles contract smallpox,
while the second term is the rate at which they die from all other causes. Also

dn/dt = —vBx — p()n, (ii)

where dn/dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.
(@) Letz= x/n and show that z satisfiesthe initial value problem

dz/dt = —Bz(1 - vz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend on u(t).

(b) Find z(t) by solving Eq. (iii).

(c) Bernoulli estimated that v = 8 = % Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Note: Based on the model just described and using the best mortality data available at
the time, Bernoulli calculated that if deaths due to smallpox could be eliminated (v = 0),
then approximately 3 years could be added to the average life expectancy (in 1760) of 26
years 7 months. He therefore supported the inoculation program.

25. [Bifurcation Points| In many physical problems some observable quantity, such as a

velocity, waveform, or chemical reaction, depends on a parameter describing the physical
state. As this parameter is increased, a critical value is reached at which the velocity, or
waveform, or reaction suddenly changes its character. For example, as the amount of one
of the chemicals in a certain mixture is increased, spiral wave patterns of varying color
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suddenly emerge in an originally quiescent fluid. In many such cases the mathematical
analysis ultimately leadsto an equatioof the form

dx/dt = (R— R)x —ax®. (i)

Herea and R, are positive constants, and R is aparameter that may take on various val ues.
For example, R may measure the amount of a certain chemical and x may measure a
chemical reaction.

(@ If R< R, show that there is only one equilibrium solution x = 0 and that it is
asymptotically stable.

(b) If R> R, show that there are three equilibrium solutions, x =0 and x =
+,/(R—R,)/a, and that the first solution is unstable while the other two are asymp-
totically stable.

(c) Draw agraphinthe Rx-plane showing all equilibrium solutions and label each one as
asymptotically stable or unstable.

The point R = R, is called gbifurcation point} For R < R, one observes the asymp-
totically stable equilibrium solution x = 0. However, this solution loses its stability as R
passes through the value R, and for R > R_ the asymptotically stable (and hence the
observable) solutionsarex = ,/(R— R)/aandx = —,/(R— R))/a. Because of theway
inwhichthesolutionsbranchat R, thistype of bifurcationis called apitchfork bifurcation;
your sketch should suggest that this name is appropriate.

26.

Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of asubstance P with one molecule of a substance Q to produce one
molecule of a new substance X; thisis denoted by P + Q — X. Suppose that p and q,
where p # q, are the initial concentrations of P and Q, respectively, and let x(t) be the
concentration of X attimet. Then p — x(t) and g — x(t) arethe concentrationsof P and Q
at timet, and the rate at which the reaction occurs is given by the equation

dx/dt = a(p — x)(q — X), 0]

where « is a positive constant.

(@ If x(0) =0, determine the limiting value of x(t) as t — oo without solving the
differential equation. Then solve the initial value problem and find x(t) for any t.

(b) If the substances P and Q are the same, then p = g and Eq. (i) is replaced by

dx/dt = a(p — x)2. (ii)

If x(0) = 0, determinethelimiting value of x(t) ast — oo without solving the differential
equation. Then solve the initial value problem and determine x(t) for any t.

2.6 Exact Equations and Integrating Factors

For first order equations there are a number of integration methods that are applicable
to various classes of problems. The most important of these are linear equations and
separable equations, which we have discussed previously. Here, we consider a class of

101N fluid mechanics Eq. (i) arises in the study of the transition from laminar to turbulent flow; there it is often
called the Landau equation. L. D. Landau (1908—-1968) was a Russian physicist who received the Nobel prizein
1962 for his contributions to the understanding of condensed states, particularly liquid helium. He was also the
coauthor, with E. M. Lifschitz, of awell-known series of physics textbooks.
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EXAMPLE

1

eguations known as exact equations for which there is also a well-defined method of
solution. Keep in mind, however, that those first order equations that can be solved by
elementary integration methods are rather special; most first order equations cannot be
solved in thisway.

Solve the differential equation
2x 4 y? 4 2xyy' = 0. (1)

The equation is neither linear nor separable, so the methods suitable for those types
of equations are not applicable here. However, observe that the function v (X, y) =
x2 + xy? has the property that

oY Iy

2 2= T 2Xy = —. 2
X +y o Xy 3y 2

Therefore the differential equation can be written as
dy | oy dy
—+——=0. 3
X + ay dx 3
Assuming that y isafunction of x and calling upon the chain rule, we can write Eq. (3)
in the equivalent form

a_&(x +xy) =0. 4
Therefore
Y (X, y) = X*+xy* =, (5)

wherecisanarbitrary constant, isan equation that defines sol utionsof Eg. (1) implicitly.

In solving Eq. (1) the key step was the recognition that there is a function  that
satisfies Eq. (2). More generally, let the differential equation

M(x,y) + N(x,y)y' =0 (6)
be given. Suppose that we can identify a function  such that
Y _ Y _
T V) =MXx. ), 3¢KW—NMW, )

and such that (X, y) = ¢ defines y = ¢ (x) implicitly as a differentiable function of
x. Then

, Yy oy d
me+NWWy=%#3%%:

and the differential equation (6) becomes
d
d—xlﬁ[x, ()] =0. ()

In this case Eq. (6) is said to be anexact differential equation| Solutions of Eq. (6), or
the equivalent Eqg. (8), are given implicitly by

v(X,y) =¢c, )

9 six. 6 0]

where c is an arbitrary constant.
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Theorem 2.6.1

In[Example 1]it was relatively easy to see that the differential equation was exact
and, in fact, easy to find its solution, by recognizing the required function . For more
complicated equations it may not be possible to do this so easily. A systematic way of
determining whether a given differential equation isexact is provided by the following
theorem.

Let the functions M, N, My, and N, , where subscripts denote partial derivatives, be
continuous in the rectangulregion Ria <X <8,y <y <. ThenEq. (6),

M(x,y) + N(x, y)y' =0,
isan exact differential equation in R if and only if
My (X, y) = Ny(X, y) (10)
at each point of R. That is, there exists afunction v satisfying[Egs. (7)|
v, (X, y) = M(X, y), vy (X, y) = N(X, y),
if and only if M and N satisfy Eq. (10).

The proof of this theorem has two parts. First, we show that if there is afunction v
such that aretrue, then it follows that Eq. (10) is satisfied. Computing M, and

N, from[EGS. (7}, we obtain
My, Y) = ¥, (X, Y), Ny, y) =, (X, Y). (11)

Since M, and N, are continuous, it followsthat v, and v, arealso continuous. This
guarantees their equality, and Eq. (10) follows.

We now show that if M and N satisfy Eqg. (10), then[Eq. (6)]is exact. The proof
involves the construction of afunction v satisfying[Egs. (7)),

v, (X, y) = M(X,y), Uy (X, y) = N(X, y).
Integrating the first of [Egs. (7)|with respect to x, holding y constant, we find that
vy = [ Moy dx+ oy, 12

The function h is an arbitrary function of y, playing the role of the arbitrary constant.
Now we must show that it is aways possible to choose h(y) so that ¥, = N. From
Eq. (12)

d
vy (X, y) = @/ M(x, y)dx + h'(y)

= / M, (X, y) dx + h'(y).

Yt isnot essential that the region be rectangular, only that it be ssmply connected. In two dimensions this means
that the region has no holesinitsinterior. Thus, for example, rectangular or circular regionsare simply connected,
but an annular region is not. More details can be found in most books on advanced calculus.
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2

Setting v, = N and solving for h'(y), we obtain

h'(y) = N(x, y)—/lvly(x, y) dx. (13)

To determine h(y) from Eq. (13), it is essential that, despite its appearance, the right
side of Eq. (13) be afunction of y only. To establish this fact, we can differentiate the
guantity in question with respect to x, obtaining

NX(X’ y) - My(X, Y),

which is zero on account of| Eq. (10)| Hence, despite its apparent form, the right side
of Eq. (13) does not, in fact, depend on x, and a single integration then gives h(y).
Substituting for h(y) in|Eq. (12), we obtain as the solution of Egs. (7)

y(X, y)z/M(x, y)dX+/[N(x, y)—/My(x, y)dX] dy. (14)

It should be noted that this proof contains a method for the computation of ¥ (x, y)
and thus for solving the original differential equation (6). It is usually better to go
through this process each time it is needed rather than to try to remember the result
given in Eq. (14). Note aso that the solution is obtained in implicit form; it may or
may not be feasible to find the solution explicitly.

Solve the differential equation
(ycosx + 2xe¥) + (sinx + x%¢¥ — 1)y’ = 0. (15)
It iseasy to seethat
M, (X, y) = cosx + 2xe’ = N (X, y),
so the given equation is exact. Thusthereisay (X, y) such that
¥, (X, y) = ycosx + 2xe’,
¥, (X, y) =sinx + x%¢ — 1.
Integrating the first of these equations, we obtain
v (X, y) = ysinx + x%€” + h(y). (16)
Setting ¥, =N gives
¥, (X, y) = sinx + x2e + h'(y) = sinx + x%e” — 1.

Thus h'(y) = —1 and h(y) = —y. The constant of integration can be omitted since
any solution of the preceding differential equation is satisfactory; we do not require the
most general one. Substituting for h(y) in Eq. (16) gives

(X, y) = ysinx + x%’ —y.
Hence solutions of Eq. (15) are given implicitly by

ysinx + x% —y =c. (17)
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3

Solve the differential equation
(3xy + ¥?) + (x> + xy)y' = 0. (18)
Here,
M (X, y) = 3x + 2y, N, (X, y) = 2x +Y;

since My # N,, the given equation is not exact. To see that it cannot be solved by the
procedure described previoudly, let us seek afunction ¢ such that

YY) =3y + Y5 (X Y) = X2 4 xy. (19)
Integrating the first of Egs. (19) gives
Y (X.Y) = 53Xy +xy? + h(y), (20)

where h isan arbitrary function of y only. To try to satisfy the second of Egs. (19) we
compute ¥, from Eq. (20) and set it equal to N, obtaining

3x2 4+ 2xy + h'(y) = X* + xy
or
h'(y) = —3x® — xy. (21)

Since the right side of Eq. (21) depends on x as well as 'y, it is impossible to solve
Eqg. (21) for h(y). Thusthereisno ¥ (x, y) satisfying both of Egs. (19).

|Integrating Factors] It is sometimes possible to convert adifferential equation that is

not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
To investigate the possibility of implementing thisideamore generally, let
us multiply the equation

M(X,y)dx + N(x,y)dy =0 (22)
by afunction . and then try to choose 11 so that the resulting equation
(X, YYM(X, y) dx + pu(x, y)N(x, y) dy = 0 (23)
is exact. By[Theorem 2.6.1 Eq. (23) isexact if and only if
(uM), = (uN),. (24)

Since M and N are given functions, Eq. (24) states that the integrating factor .« must
satisfy thefirst order partial differential equation

MpLy— NMX+(My— N = 0. (25

If afunction p satisfying Eq. (25) can be found, then Eq. (23) will be exact. The
solution of Eq. (23) can then be obtained by the method described in|the first part of |
this section. The solution found in this way al so satisfies Eq. (22), since the integrating
factor u can be canceled out of Eq. (23).

A partial differential equation of the form (25) may have more than one solution; if
thisisthe case, any such solution may be used as an integrating factor of Eq. (22). This

possible nonuniqueness of the integrating factor isillustrated in
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4

Unfortunately, which determines the integrating factor s, is ordinarily at
least as difficult to solve as the original fequation (22). Therefore, while in principle
integrating factors are powerful tools for solving differential equations, in practice they
can be found only in special cases. The most important situations in which simple
integrating factors can be found occur when w isafunction of only one of the variables
X ory, instead of both. Let us determine necessary conditions on M and N so that
has an integrating factor . that depends on x only. Assuming that . is a
function of x only, we have

du
(M), = uM,, (MN)X=MNX+Nd—X-
Thus, if (M), istoequal (uN),, itisnecessary that
du M, —N,
A 26
X N M (26)

If (My = N,)/N isafunction of x only, then there is an integrating factor u that also
depends only on x; further, 1 (x) can befound by solving Eqg. (26), which isboth linear
and separable.

A similar procedure can be used to determine a condition under which|Eg. (22)| has

an integrating factor depending only on y; see Problem 23|

Find an integrating factor for the equation
(Bxy +y%) + (x> +xy)y' =0 (18)

and then solve the equation.

In[Example 3we showed that this equation is not exact. Let us determine whether
it has an integrating factor that depends on x only. On computing the quantity (M, —
N,)/N, we find that

My, y) = N (X, y)  3x 42y —(2x+y) 1 27)

N(X, ) x2 4+ xy X

Thus there is an integrating factor u that is a function of x only, and it satisfies the
differential equation

3—‘; — % . (29)
Hence
w(X) = X. (29
Multiplying Eq. (18) by thisintegrating factor, we obtain
3%y +xy?) + (¢ + x?y)y’ = 0. (30)

The latter equation is exact and it is easy to show that its solutions are given implicitly
by

X%y + 1x%y? = c. (31)
Solutions may also be readily found in explicit form since Eq. (31) isquadraticin y.
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PROBLEMS

You may also verify that a second integrating factor of|[Eq. (18)|is
X? = T A < 9
p(X,y) Y2x 1Y)

and that the same solution is obtained, though with much greater difficulty, if this
integrating factor is used (See Problem 32).

Determine whether or not each of the equationsin Problems 1 through 12 isexact. If it is exact,
find the solution.

1L 2x+3+R2y—-2y =0 2. 2x+4y)+(2x—-2y)y =0

3. (3X*—2xy+2)dx+ (6y> — x*+3)dy =0

4. (2xy* +2y) + 2%y +2x)y =0

5 ﬂ__ax—kby 6 Q__ax—by
dx bx + cy " dx T bx—cy

7. (e*siny — 2ysinx)dx + (e*cosy + 2cosx) dy =0

8

9

0

1

. (esiny+3y)dx — (3x —€'siny) dy =0

. (ye¥ cos2x — 2eY sin2x + 2x) dx + (x€*Y cos2x — 3) dy = 0

. (Y/X+6x)dx+ (Inx —2) dy =0, x>0

. (XIny 4+ xy)dx + (yInx + xy) dy = 0; x>0 y>0
x dx ydy

0C+ )2 " 2 YA =

In each of Problems 13 and 14 solve the given initia value problem and determine at least
approximately where the solution isvalid.

13. (2x —y)dx + (2y — x) dy = 0, y(1) =3

14, (9x?>+y—1)dx — (4y —x) dy =0, y(1) =0

In each of Problems 15 and 16 find the value of b for which the given equation is exact and then
solveit using that value of b.

15. (xy? +bx?y)dx + (x+y)x>dy =0 16. (ye® + x)dx + bxe*¥dy =0

17. Consider the exact differential equation

M(X, y)dx + N(x, y)dy = 0.

Find an implicit formula ¥ (x, y) = ¢ for the solution analogous to Eq. (14) by first
integrating the equation ¢, = N, rather than ¢y, = M, asin the text.

18. Show that any separable equation,
M(x) 4+ N(y)y =0,
isalso exact.

Show that the equations in Problems 19 through 22 are not exact, but become exact when
multiplied by the given integrating factor. Then solve the equations.

19. XY+ x(L+yd)y =0, uxy) =1/xy?
. — X
20. (S;y‘ —2e7" sinX) dx + (M) dy =0, n(x,y) = ye"

21 ydx+ (2x —ye¥) dy =0, nwx,y)=y
22. (x+2)sinydx+xcosydy =0,  u(X,y) = xe
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23.

Show that if (N, — My)/M = Q, where Q is afunction of y only, then the differentia
equation

M+ Ny =0
has an integrating factor of the form

u(y) = exp/ Q(y) dy.

24.

25,
26.
217.
28.
29.
30.

31.

Show that if (N, — M))/(XM —yN) = R, where R depends on the quantity xy only, then
the differential equation

M+ Ny =0

has an integrating factor of the form w(xy). Find a general formula for this integrating
factor.

In each of Problems 25 through 31 find an integrating factor and solve the given equation.

(3x%y +2xy + ¥3) dx + (x* + y?) dy =0

y/ — e2X + y _ l

dx + (x/y —siny)dy =0
ydx+@2xy—e¥)dy=0

€ dx + (e*coty + 2ycscy) dy =0

[40¢3/y?) + (3/y)] dx + [3(x/y®) + 4y] dy =0

2
(3x+9)+(x_+3z)d_v:o
y y X | dx

32.

Hint: See Problem 24.
Solve the differential equation

3Bxy +y) + (X2 +xy)y =0

using the integrating factor (X, y) = [xy(2x + y)] 2. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method

Recall two important facts about the first order initial value problem

dy
pri f(t,y), y(ty) = Y, D

First, if f and af/dy are continuous, then the initial value problem (1) has a unique
solution y = ¢(t) in some interval surrounding the initial point t = t,. Second, it is
usually not possibleto find the solution ¢ by symbolic manipulations of the differential
equation. Up to now we have considered the main exceptions to this statement, namely,
differential equations that are linear, separable, or exact, or that can be transformed
into one of these types. Nevertheless, it remains true that solutions of the vast magjority
of first order initial value problems cannot be found by analytical means such as those
considered in the first part of this chapter.
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Thereforeitisimportant to be ableto approach the problemin other ways. Aswe have
already seen, one of these waysisto draw adirection field for the differential equation
(which does not involve solving the equation) and then to visualize the behavior of
solutions from the direction field. This has the advantage of being arelatively simple
process, even for complicated differential equations. However, it does not lend itself to
guantitative computations or comparisons, and thisis often a critical shortcoming.

Another alternative is to compute approximate values of the solution y = ¢ (t) of
the initial value problem (1) at a selected set of t-values. Ideally, the approximate
solution values will be accompanied by error bounds that assure the level of accuracy
of the approximations. Today there are numerous methods that produce numerical
approximations to solutions of differential equations, and is devoted to a
fuller discussion of some of them. Here, we introduce the oldest and simplest such
method, originated by Euler about 1768. It is caled the[tangent line method|or the

Let us consider how we might approximate the solution y = ¢ (t) of [Egs. (1)] near
t = t,. We know that the solution passes through the initial point (t,, y,) and, from the
differential equation, we also know that its slope at thispoint is f (t, y,). Thus we can
write down an equation for the line tangent to the solution curve at (t,, y,), namely,

Y=Y, + f (t(y yo)(t - to)- (2)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
value at the initial point; see Figure 2.7.1. Thus, if t, is close enough to t,, we can
approximate ¢ (t,) by the value y, determined by substituting t = t, into the tangent
line approximation at t = t,; thus

Y1 =Y + f (toa yo) (tl - to)- (3)

To proceed further, we can try to repeat the process. Unfortunately, we do not know
thevalue ¢ (t,) of the solution at t,. The best we can do isto use the approximate value
y, instead. Thus we construct the line through (t,, y,) with the slope f (t,, y,),

Y=Y + f (tl, yl)(t - tl)- (4)
To approximate the value of ¢ (t) at anearby point t,, we use Eq. (4) instead, obtaining
Yo=Y, + f (tl, yl) (tz - tl)' (5)
y
Tangent line
Y=Yt f (tov yo) (t- t())
S D Soluti
e y0=u r/;c()tr;
Yol--

FIGURE 2.7.1 A tangent line approximation.
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Continuing in this manner, we use the value of y calculated at each step to determine
the slope of the approximation for the next step. The general expression for y, ., in
termsof t ,t . ., andy, is

n’ n+41’
Yop1 = Yo+ F(t V) (G — t)s n=0,12,.... (6)
If we introduce the notation f = f(t .y, ), then we can rewrite Eq. (6) as
Yoi1 = Yot fr- (s — 1), n=012.... (7)

Finaly, if we assumethat thereisauniform step size h betweenthepointst, t,, t,, ...,
thent ., =t + hfor each n and we obtain Euler's formulain the form

Yoi1 = Yo + fih, n=012.... (8

To use Euler’'s method you simply evaluate Eq. (7) or Eq. (8) repeatedly, depending
on whether or not the step size is constant, using the result of each step to execute the
next step. In thisway you generate asequenceof valuesy, , y,, s, . . . that approximate
the values of the solution ¢(t) at the pointst,, t,, t,, ... If, instead of a sequence of
points, you need an actual function to approximate the solution ¢ (t), then you can use
the piecewise linear function constructed from the collection of tangent line segments.

That is, let y be given by|Eq. (2) jn [t,, t,], by[Eq. (4)|in[t;, t,], and, in general, by
y = yn + f(tn’ yn)(t - tn) (9)

inft,, t,. ]

Consider the initia value problem

‘;—{ =3+e'-1y, yO=1 (10)

Use Euler's method with step size h = 0.1 to find approximate values of the solution
of Egs. (10) att = 0.1, 0.2, 0.3, and 0.4. Compare them with the corresponding values
of the actual solution of the initial value problem.

Proceeding as in|Section 2.1, we find the solution of Egs. (10) to be

y=¢(t)=6—2e" 32 (11)

To use Euler's method we note that in this case f (t,y) = 3+e' — y/2. Using the
initial valuest, = 0 and y, = 1, wefind that

fo=f(ty ¥ = f(0,1) =3+€°-05=3+1-05=35
and then, from Eq. (8) withn = 0,
Y, =Y, + foh =1+ (35)(0.1) = 1.35.
At the next step we have
f, = £(0.1,1.35) = 3+ e %! — (0.5)(1.35) = 3+ 0.904837 — 0.675 = 3.229837
and then

y, =Yy, + f;h = 1.35 4 (3.229837)(0.1) = 1.672984.
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Repeating the computation two more times, we obtain

f, = 2.982239, y; = 1.971208
and

f; = 2.755214, y, = 2.246729.

Table2.7.1 showsthese computed val ues, the corresponding val ues of the solution (11)
and the differences between the two, which isthe error in the numerical approximation.

TABLE 2.7.1 A Comparison of Exact Solution
with Euler Method for h = 0.1 for
y=3+e'-3y. yO=1

Euler
t Exact withh =0.1 Error
0.0 1.0000 1.0000 0.0000
0.1 1.3366 1.3500 0.0134
0.2 1.6480 1.6730 0.0250
0.3 1.9362 1.9712 0.0350
0.4 2.2032 2.2467 0.0435

The purpose of Example 1 isto show you the details of implementing afew steps of
Euler's method so that it will be clear exactly what computations are being executed.
Of course, computations such as those in Example 1 are usually done on a computer.
Some software packages include code for the Euler method, while others do not. In
any case, it is easy to write a computer program to carry out the calculations required
to produce results such as those in Table 2.7.1. The outline of such a program is
given below; the specific instructions can be written in any high-level programming
language.

The Euler Method

Step 1. define f (t, y)

Step 2. input initial valuest0 and yO

Step 3. input step size h and number of stepsn
Step 4. output t0 and yO

Step 5. for j from1tondo

Step 6. kl= f(t,y)
y=y+hxkl
t=t+h

Step 7. outputt and y

Step 8. end

The output of this algorithm can be numbers listed on the screen or printed on a
printer, asin the third column of Table 2.7.1. Alternatively, the calculated results can
be displayed in graphical form.
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EXAMPLE

2

Consider again theinitial value problem (10),

— =3+e' -1y, 0) =1
Use Euler's method with various step sizes to calculate approximate values of the
solution for 0 < t < 5. Compare the calculated results with the corresponding values

of the exact sol ution

y=¢t)=6—2e"t —3eV2

We used step sizesh = 0.1, 0.05, 0.025, and 0.01, corresponding respectively to 50,
100, 200, and 500 stepsto go fromt = 0 to t = 5. The results of these calculations,
along with the values of the exact solution, are presented in Table 2.7.2. All computed
entries are rounded to four decimal places, athough more digits were retained in the
intermediate cal culations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler Method for
Several Step Sizeshfory =3+e' -1y, y(0) =1

t Exact h=0.1 h=0.05 h =0.025 h=0.01
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 3.4446 3.5175 3.4805 3.4624 3.4517
20 4.6257 4.7017 4.6632 4.6443 4.6331
3.0 5.2310 5.2918 5.2612 5.2460 5.2370
4.0 5.5574 5.6014 5.5793 5.5683 5.5617
50 5.7403 5.7707 5.7555 5.7479 5.7433

What conclusions can we draw from the data in Table 2.7.2? In the first place, for
a fixed value of t the computed approximate values become more accurate as the
step size h decreases. This is what we would expect, of course, but it is encouraging
that the data confirm our expectations. For example, for t = 1 the approximate value
with h = 0.1 istoo large by about 2%, while the value with h = 0.01 is too large by
only 0.2%. In this case, reducing the step size by a factor of 10 (and performing 10
times as many computations) also reduces the error by a factor of about 10. A second
observation from Table 2.7.2 isthat, for afixed step size h, the approximations become
more accurate ast increases. For instance, for h = 0.1 the error for t = 5isonly about
0.5% compared with 2% for t = 1. An examination of data at intermediate points not
recorded in Table 2.7.2 would reveal where the maximum error occurs for a given step
sizeand how largeitis.

All in al, Euler's method seems to work rather well for this problem. Reason-
ably good results are obtained even for a moderately large step size h = 0.1 and the
approximation can be improved by decreasing h.

Let us now look at another example.
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EXAMPLE

3

Consider the initial value problem

d
d_i’ —4-t+2y, yO =1 (12)
The general solution of this differential equation was found in of Section

2.1, and the solution of theinitial value problem (12) is
y=—1+1it+ e (13)

Use Euler’'s method with several step sizes to find approximate values of the solution
on the interval 0 <t < 5. Compare the results with the corresponding values of the
solution (13).

Using the same range of step sizes asin[Example 2] we obtain the results presented
in Table 2.7.3.

TABLE 2.7.3 A Comparison of Exact Solution with Euler Method for Several Step Sizesh for
y=4—-1t+2y, y0 =1

t Exact h=0.1 h=0.05 h =0.025 h=0.01
0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
5.0 60573.53 25026.95 37897.43 47555.35 54881.32

The data in Table 2.7.3 again confirm our expectation that for a given value of t,
accuracy improves as the step size h is reduced. For example, for t = 1 the percentage
error diminishes from 17.3% when h = 0.1 to 2.1% when h = 0.01. However, the
error increasesfairly rapidly ast increasesfor afixed h. Evenfor h = 0.01, the error at
t =5is9.4%, and it is much greater for larger step sizes. Of course, the accuracy that
is needed depends on the purpose for which the results are intended, but the errorsin
Table 2.7.3 aretoo large for most scientific or engineering applications. To improvethe
situation, one might either try even smaller step sizes or else restrict the computations
to arather short interval away from theinitial point. Nevertheless, itisclear that Euler's

method is much less effective in this example than in[Example 2]

To understand better what is happening in these examples, et uslook again at Euler’'s
method for the general initia value problem (1)
dy

a = f(t, Y), y(to) = Yo

whose solution we denote by ¢ (t). Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant ¢, and that the initial
condition picks out one member of thisinfinite family by determining the value of c.
Thus ¢ (1) is the member of the infinite family of solutions that satisfies the initial
condition ¢ (t)) = Y,.
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At the first step Euler’s method uses the tangent line approximation to the graph
of y = ¢(t) passing through the initial point (t,, y,) and this produces the approxi-
mate value y, at t,. Usually y; # ¢(t;), so at the second step Euler’'s method uses
the tangent line approximation not to y = ¢(t), but to a nearby solution y = ¢, (t)
that passes through the point (t,, y,). So it is at each following step. Euler’s method
uses a succession of tangent line approximations to a sequence of different solutions
o (1), (1), d,(1), ... of the differential equation. At each step the tangent line is
constructed to the solution passing through the point determined by the result of the
preceding step, as shown in Figure 2.7.2. The quality of the approximation after many
steps depends strongly on the behavior of the set of solutions that pass through the
points (t,,y,)forn=1,2,3,....

Inthe general solution of the differential equation is

y=6—2e" 4 cet/? (14)

and the solution of the initia value problem (10) corresponds to ¢ = —3. This family
of solutions is a converging family since the term involving the arbitrary constant
C approaches zero ast — oo. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since al the
solutions are getting closer and closer to each other ast increases.

On the other hand, in[Example 3|the general solution of the differential equation is

y=—1+it+ce?, (15)

and thisis adiverging family. Note that solutions corresponding to two nearby values
of ¢ separate arbitrarily far ast increases. Ine are trying to follow the
solution for ¢ = 11/4, but in the use of Euler's method we are actually at each step
following another solution that separates from the desired one faster and faster as t
increases. This explains why the errorsin Example 3 are so much larger than those in

Example 2
n using a numerical procedure such as the Euler method, one must aways keep

in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be ascertained
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed, so

(ty Yy)

FIGURE 2.7.2 The Euler method.
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PROBLEMS

vy

\ A A A 4

what is needed are bounds for, or at least estimates of, the error that do not require
a knowledge of the exact solution. InChapter 8|we present some information on the
analysis of errors and also discuss severa algorithms that are computationally more
efficient than the Euler method. However, the best that we can expect, or hope for, from
anumerical approximation isthat it reflect the behavior of the actual solution. Thus a
member of a diverging family of solutions will always be harder to approximate than
a member of a converging family. Finally, remember that drawing a direction field is
often a helpful first step in understanding the behavior of differential equations and
their solutions.

Many of the problems in this section call for fairly extensive numerical computations. The
amount of computing that it is reasonable for you to do depends strongly on the type of
computing equipment that you have. A few steps of the requested calculations can be carried
out on amost any pocket calculator, or even by hand if necessary. To do more, you will find at
least a programmabl e cal cul ator desirable, whilefor some problems a computer may be needed.

Remember aso that numerical results may vary somewhat depending on how your program
isconstructed, and how your computer executes arithmetic steps, rounds off, and so forth. Minor
variations in the last decimal place may be due to such causes and do not necessarily indicate
that something isamiss. Answersin the back of the book are recorded to six digitsin most cases,
although more digits were retained in the intermediate calcul ations.

In each of Problems 1 through 4:

(a) Find approximate values of the solution of the given initial value problematt = 0.1,
0.2, 0.3, and 0.4 using the Euler method with h = 0.1.

(b) Repeat part (a) with h = 0.05. Compare the results with those found in (a).

(¢) Repeat part (a) with h = 0.025. Compare the results with those found in (&) and (b).
(d) Findthesolutiony = ¢(t) of the given problem and evaluate ¢ (t) at t = 0.1, 0.2, 0.3,
and 0.4. Compare these values with the results of (a), (b), and (c).

1L y=3+t-y, y(0) =1 > 2 y=2y-—1 y(0) =1
3.y =05-1+2y, y(0) =1 > 4. y =3cost -2y, y(0) =0

In each of Problems 5 through 10 draw a direction field for the given differential equation and
state whether you think that the solutions are converging or diverging.

5 y =5-3/y > 6. Y =y3B-ty)
7.y =@ -ty)/A+y? > 8 y =—ty+01y?
9.y =t?4y? > 10. y = (y*+2ty)/B+1?)

In each of Problems 11 through 14 use Euler’s method to find approximate val ues of the solution
of the giveninitia valueproblematt = 0.5, 1, 1.5, 2, 2.5, and 3:

(8 Withh =0.1.
(b) With h = 0.05.
() Withh = 0.025.
(d) Withh = 0.01.

11. y=5-3y, y(0) =2 > 12. ¥y =y(@B-ty), y(0) = 0.5
1By =@-ty/A+y),  yO=-2

14. y = -ty + 0.1y3, y() =1

15. Consider theinitial value problem

y =3t%/@y* -4, y@ =0
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16.

(8 Usethe Euler formula (6) with h = 0.1 to obtain approximate values of the solution
at=121416and1.8.

(b) Repeat part (a) with h = 0.05.

(c) Comparetheresultsof parts(a) and (b). Notethat they arereasonably closefort = 1.2,
1.4, and 1.6, but are quite different for t = 1.8. Also note (from the differential equation)
that the line tangent to the solution is parallel to the y-axiswhen y = +2//3 = 41.155.
Explain how this might cause such a difference in the calculated values.

Consider the initial value problem

y=t+y>,  yO=1

Use Euler's method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 <t < 1. What is your best estimate of the value of the solutionatt = 0.8?
Att = 1? Areyour results consistent with the direction field in Problem 9?

17.

18.

19.

Consider the initial value problem
Y = +2y)/@+t), yD=2

Use Euler's method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 <t < 3. What is your best estimate of the value of the solutionat t = 2.5?
Att = 3? Areyour results consistent with the direction field in Problem 10?

Consider the initial value problem

y=-ty+0ly’,  y0) =a

where « isagiven number.

(a) Draw adirection field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of « intheinterval 2 < « < 3 that separates
converging solutions from diverging ones. Call this critical value a,.

(b) Use Euler's method with h = 0.01 to estimate . Do this by restricting «, to an
interval [a, b], whereb — a = 0.01.

Consider the initial value problem

y=y"-t%,  y0 =a,

where « isagiven number.

() Draw adirectionfield for thedifferential equation. Observethat thereisacritical value
of o intheinterval 0 < o < 1 that separates converging solutions from diverging ones.
Call this critical value «,.

(b) Use Euler's method with h = 0.01 to estimate o,. Do this by restricting o, to an
interval [a, b], whereb — a = 0.01.

20.

Conver gence of It can be shown that, under suitable conditionson f,
the numerical approximation generated by the Euler method for the initial value problem
y = f(t,y), y(t,) =y, converges to the exact solution as the step size h decreases. This
isillustrated by the following example. Consider the initial value problem

y=1-t+y, y(ty) = Y-

(@) Show that the exact solutionisy = ¢ (t) = (y, — ty)e" o +t.
(b) Using the Euler formula, show that

Y, ={A+hy, ,+h-ht_,, k=12....
(c) Notingthat y, = (1+ h)(y, —t,) +t;, show by induction that
yn = (1 + h)n(yo - to) + tn (I)

for each positive integer n.
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(d) Consider afixed point t > t, and for agiven n choose h = (t —t))/n. Thent =t
for every n. Note also that h — 0 asn — oo. By substituting for h in Eqg. (i) and letting
n — oo, show that y, — ¢(t) asn — oo.

Hint: nIim A+a/m" =€

In each of Problems 21 through 23 use the technique discussed in Problem 20 to show that the
approximation obtained by the Euler method converges to the exact solution at any fixed point

ash — 0.

21, y =y, y(0) =1

2. y=2y—1, y0 =1 Hinty, = (1+2h)/2+1/2
23 y=3-t+2y, y(0) =1 Hint: y, = (14 2h) +t,/2

2.8 The Existence and Uniqueness Theorem

In this section we discuss the proof of [Theorem 2.4.2] the fundamental existence and
uniguenesstheorem for first order initial value problems. Thistheorem statesthat under
certain conditionson f (t, y), theinitia value problem

y/ = f(t’ Y)7 y(to) =Y (1)

has a unique solution in some interval containing the point t,.

In some cases (for example, if the differential equation is linear) the existence of
a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case it is necessary to
adopt an indirect approach that demonstrates the existence of a solution of Egs. (1), but
usually does not provide a practical means of finding it. The heart of this method isthe
construction of asequence of functionsthat convergesto alimit function satisfying the
initial value problem, athough the members of the sequence individually do not. Asa
rule, it isimpossible to compute explicitly more than afew members of the sequence;
therefore, the limit function can be determined only in rare cases. Neverthel ess, under
the restrictions on f (t, y) stated in it is possible to show that the
sequence in question converges and that the limit function has the desired properties.
The argument isfairly intricate and depends, in part, on techniques and results that are
usually encountered for the first time in a course on advanced cal culus. Consequently,
we do not go into all of the details of the proof here; we do, however, indicate its main
features and point out some of the difficultiesinvolved.

First of al, we note that it is sufficient to consider the problem in which the initial
point (t,, y,) istheorigin; that is, the problem

If some other initial point is given, then we can always make a preliminary change of
variables, corresponding to atrandation of the coordinate axes, that will take the given
point (t,, y,) into the origin. The existence and uniqueness theorem can now be stated
in the following way.
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Theorem 2.8.1

If f andof/0y arecontinuousin arectangle R: |t] < a, |y| < b, then there is some
interval |t| < h < a in which there exists a unique solution y = ¢ (t) of the initial
value|problem (2)

To prove thistheorem it is necessary to transform the initial valug problem (2) into a
more convenient form. If we suppose temporarily that thereisafunction y = ¢ (t) that
satisfies the initial value problem, then f[t, ¢ (t)] is a continuous function of t only.
Hence we canintegrate y' = f (t, y) from the initial point t = 0 to an arbitrary value
of t, obtaining

t
¢aw=£ s, 6(9)] ds, &)

where we have made use of theinitial condition ¢ (0) = 0. We also denote the dummy
variable of integration by s.

Since Eq. (3) contains an integral of the unknown function ¢, itiscaled anintegral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Egs. (2).
Conversely, suppose that there is a continuous function y = ¢ (t) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, wefirst substitute zero for t in Eq. (3), which showsthat theinitial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that ¢'(t) = f[t, ¢(t)]. Therefore the initial value
problem and the integral equation are equivalent in the sense that any solution of oneis
also asolution of the other. It is more convenient to show that thereisaunique solution
of the integral equation in a certain interval |t| < h. The same conclusion will then
hold also for the initial value problem.

One method of showing that theintegral equation (3) has aunique solution isknown
as the|method of successive approximations, or Picard §Zliteration method. In
using this method, we start by choosing an initial function ¢,, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choiceis

¢0(t) =0 4)

then ¢, at least satisfies the initial condition in Egs. (2), although presumably not the
differential equation. The next approximation ¢, is obtained by substituting ¢,(s) for
¢ (s) intheright side of Eq. (3), and calling the result of this operation ¢, (t). Thus

t
%m:ﬂfm%@ws 5)

Charles-Emile Picard (1856-1914), except for Henri Poincaré, perhaps the most distinguished French math-
ematician of his generation, was appointed professor at the Sorbonne before the age of 30. He is known for
important theorems in complex variables and algebraic geometry as well as differential equations. A special
case of the method of successive approximations was first published by Liouvillein 1838. However, the method
is usually credited to Picard, who established it in a general and widely applicable form in a series of papers
beginning in 1890.
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EXAMPLE

1

Similarly, ¢, is obtained from ¢, :

t
0,0 = [ f15.0,9] s ®)
and, in general,
t
bra® = [ 150,91 ds ™
Inthis manner we generate the sequence of functions {¢,} = ¢, ¢,, ..., ¢, .... Each

member of the sequence satisfies the initial condition, but in general none satisfies the

differential equation. However, if at some stage, say for n = k, we find that P (D) =

¢, (1), thenit followsthat ¢, isasolution of theintegral equation (3). Hence ¢, isalsoa

solution of theinitial value problem|(Z), and the sequenceisterminated at this point. In

general, this does not occur, and it is necessary to consider the entire infinite sequence.
To establish four principal questions must be answered:

1. Doall membersof the sequence {¢, } exist, or may the process break down at some
stage?
2. Does the sequence converge?

3. What are the properties of the limit function? In particular, does it satisfy the
integral equation|(3), and hence the initial value problem (2]?

4. Isthisthe only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example, and then comment on some of the difficulties that may be encountered in the
general case.

Solve theinitial value problem
y=2t1+y), y0=0. 8)

by the method of successive approximations.
Note first that if y = ¢ (1), then the corresponding integral equation is

t
o0 = [ 2s(1+0©] s ©
If theinitial approximationis ¢,(t) = 0, it follows that
t t
P, (1) = / 2s[1+ ¢,(9)] ds = / 2sds = t2. (10)
0 0
Similarly,
t t t4
¢, (1) = / 2s[1+ ¢,(9)] ds = / 25[1+ s?] ds = t% + 5 (11)
0 0
and

t t S4 t4 t6
¢3(t)=/ 2[1 + ¢,(9)] ds:/ 25|:1+82+—i| ds=t’+ - +-—. (12
0 0 2 2 2-3



108 Chapter 2. First Order Differential Equations

Equations|(10)] [(11)) and|(12)|suggest that

Tt (13)
for each n > 1, and this result can be established by mathematical induction. Equa-
tion (13) is certainly true for n = 1; see|Eq. (10)l We must show that if it is true for
n =k, thenit aso holdsfor n = k + 1. We have

¢, (1) =12+

t
%H®=A2$+%©NS

t ) S4 SZk
= 2s|{1+s"+—=+---+—] ds
/0 HS S

) t4 t6 t2k+2
=t —t — 4 —
Tttt s
and the inductive proof is complete.
A plot of the first four iterates, ¢,(t), ..., ¢,(t) is shown in Figure 2.8.1. As Kk
increases, the iterates seem to remain close over a gradually increasing interval, sug-
gesting eventual convergenceto alimit function.

(14)

| | |
-15 -1 -0.5

FIGURE 28.1 Plotsof ¢,(1), ..., ¢,(t) for Example 1.

It follows from Eq. (13) that ¢,,(t) isthe nth partial sum of the infinite series
00 t2k

— F ; (15)

k
hence nI im ¢, (1) existsif and only if the series (15) converges. Applying theratio tet,
we see that, for each t,

(k+ 1! %

t2
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thus the sericonverges for al t, and its sum ¢(t) is the limit of the sequence
{¢,(1)}. Further, since the seriesis a Taylor series, it can be differentiated or
integrated term by term aslong ast remains within the interval of convergence, which
in this case is the entire t-axis. Therefore, we can verify by direct computation that

o) =>" % /k! isasolution of theintegral equation (9). Alternatively, by substituting

k=1
¢ (t) for yin Egs. (8), we can verify that thisfunction satisfiestheinitial value problem.
In this example it is also possible, from the series[(I5)} to identify ¢ in terms of

elementary functions, namely, ¢ (t) = e’ 1. However, this is not necessary for the
discussion of existence and uniqueness.

Explicit knowledge of ¢ (t) does make it possible to visualize the convergence of
the sequence of iterates more clearly by plotting ¢ (t) — ¢, (t) for various values of k.
Figure 2.8.2 showsthisdifferencefork = 1, .. ., 4. Thisfigure clearly showsthe grad-
ually increasing interval over which successive iterates provide a good approximation
to the solution of theinitial value problem.

y k=2
1 et
0.8+ S k=3
0.6
0.4
0.2+ <=4
\ \
15 -1 05 0.5 1 15 t

FIGURE 28.2 Plotsof ¢(t) — ¢, (t) for Example Lfork=1,..., 4,

Finally, to deal with the question of uniqueness, let us suppose that the initial value
problem hastwo solutions¢ and 1. Since ¢ and v both satisfy theintegral equation@
we have by subtraction that

t
B(t) — P(t) = /0 25[¢p(S) — ¥ (9)] ds.

Taking absolute values of both sides, we have, if t > 0,

t t
lpt) — v ()| = ]/O 25[¢p(s) — ¥ (9)] dS‘ 5/0 2s|¢p(s) — ¥ ()| ds.
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If werestrict t to lieintheinterval 0 <t < A/2, where A is arbitrary, then 2t < A,
and

lp(t) — Y (O] < A/Ot l$(s) — ¥ (9)] ds. 17
It is now convenient to introduce the function U defined by
v = [ 16— (o)l ds (19
Then it follows at once that
U(0) =0, (19)
u() >0, for t>0. (20
Further, U isdifferentiable, and U’(t) = |¢ (t) — ¥ (1)|. Hence, by Eq. (17),
U’(t) — AU(t) < 0. (21)
Multiplying Eq. (21) by the positive quantity e gives
[e U] <o (22)

Then, upon integrating Eq. (22) from zero to t and using Eq. (19), we obtain
eMut)<0 for t=>0.

HenceU (t) < Ofort > 0, andinconjunction with Eg. (20), thisrequiresthat U (t) = 0
for each t > 0. Thus U’'(t) = 0, and therefore v (t) = ¢(t), which contradicts the
original hypothesis. Consequently, there cannot be two different solutions of theinitial
value problem for t > 0. A dight modification of this argument leads to the same
conclusionfort < 0.

Returning now to the general problem of solving the integral equatio , let us
consider briefly each of the questions raised earlier:

1. Do al members of the sequence {¢,} exist? In the example f and 9f/dy were
continuous in the whole ty-plane, and each member of the sequence could be
explicitly calculated. In contrast, in the general case, f and df/dy are assumed to
be continuous only intherectangle R: |t| < a, |y| < b (seeFigure 2.8.3). Further-
more, the members of the sequence cannot as arule be explicitly determined. The
danger is that at some stage, say for n =k, the graph of y = ¢, (t) may contain
points that lie outside of the rectangle R. Hence at the next stage—in the compu-
tation of ¢, , (t)—it would be necessary to evauate f (t, y) at points where it is
not known to be continuous or even to exist. Thusthe calculation of ¢, . , (t) might
be impossible.

To avoid this danger it may be necessary to restrict t to a smaller interval than
[t] < a. Tofind such an interval we make use of the fact that a continuous function
on aclosed bounded region isbounded. Hence f isbounded on R; thusthere exists
apositive number M such that

[ft, yI<M, t,y)inR. (23)
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(-a,b) (a,b)

(-a,—b) (a,—b)

FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

We have mentioned before that
$,(00=0

for each n. Since f[t, ¢, (t)] is equal to ¢, ,(t), the maximum absolute slope
of the graph of the equation y = ¢, ,(t) is M. Since this graph contains the
point (0, 0) it must lie in the wedge-shaped shaded region in Figure 2.8.4. Hence
the point [t, ¢, ,(t)] remains in R at least as long as R contains the wedge-
shaped region, which is for |t| < b/M. We hereafter consider only the rectangle
D:|t] < h,]y| < b, where h isequal either to a or to b/M, whichever is smaller.
With this restriction, all members of the sequence {¢, ()} exist. Note that if
b/M < a, then a larger value of h can be obtained by finding a better bound
for | f(t, y)|, provided that M is not aready equa to the maximum vaue of
[ ft Yl

2. Doesthe sequence {¢, (1)} converge? Asin the example, we can identify ¢, (t) =
d, (1) + [d,() —p, (D] + - - - + [0, (1) — ¢, (1] as the nth partial sum of the
series

$1(0) + Y [B1 () — B D). (24)
k=1

The convergence of the sequence {¢, (1)} is established by showing that the
series (24) converges. To do this, it is necessary to estimate the magnitude
|1 (D) — ¢ (V)] of the general term. The argument by which this is done is

Y=o y y=em®

< 77y:b ——y:b

* \\

t t

n Y Ty
- —_b b - -
t=-a t=-- t—ﬁ} t=-a t=a

t=a

@) (b)

FIGURE 2.84 Regionsinwhich successiveiterateslie. (a) b/M < a; (b) b/M > a.
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indicated in|Problems 15 through 18|and will be omitted here. Assuming that the
sequence converges, we denote the limit function by ¢, so that

() = lim ¢, (0. (25)

What are the properties of the limit function ¢? In thefirst place, we would like to
know that ¢ is continuous. This is not, however, a necessary consequence of the
convergence of the sequence {¢, (1)}, even though each member of the sequence
isitself continuous. Sometimes a sequence of continuous functions converges to
a limit function that is discontinuous. A simple example of this phenomenon is
given in Problem 13| One way to show that ¢ is continuous is to show not only
that the sequence {4, } converges, but also that it converges in a certain manner,
known as uniform convergence. We do not take up this question here but note only
that the argument referred to in[paragraph 2lis sufficient to establish the uniform
convergence of the sequence {¢,,} and, hence, the continuity of the limit function
¢ intheinterval [t| < h.

Now let us return to
t
bra® = [ Fl5.0,] s

Allowing n to approach oo on both sides, we obtain

t
o) = Iim/ f[s, ¢,(s)] ds. (26)
n—oo 0

We would like to interchange the operations of integrating and taking the limit on
the right side of Eq. (26) so asto obtain

t
o) = / nIim f[s, ¢,(s)] ds. 27
o =
In general, such an interchange is not permissible (see Problem 14| for example),

but once again the fact that the sequence {¢, (t)} converges uniformly is sufficient
to allow usto take the limiting operation inside the integral sign. Next, we wish to
take the limit inside the function f, which would give

t
o) :/ f[s, lim ¢, (s)] ds (28)
O n—o0
and hence
t
pit) = fo f[s. ¢(s)] ds. (29)

The statement that nIim f[s, ¢,(9] = f[s, nIim ¢,(s)] is equivalent to the state-
ment that f is continuous in its second variable, which is known by hypothesis.
Hence Eq. (29) is valid and the function ¢ satisfies the integral equation| (3)|

Therefore ¢ isaso asolution of theinitial value problem (2).

Are there other solutions of the integral equation (3) beside y = ¢ (t)? To show
the uniqueness of the solution y = ¢ (t), we can proceed much as in the example.
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PROBLEMS

First, assume the existence of another solution y = v (t). It is then possible to

show that the difference ¢ (t) — v (t) satisfies the inequality
t
o) =¥ (O] = A/O [¢(s) — ¥ (s)] ds (30)

for 0 <t < h and a suitable positive number A. From this point the argument is
identical to that given in the example, and we conclude that there is no solution
of the initial value problem other than the one generated by the method of
successive approximations.

In each of Problems 1 and 2 transform the given initial value problem into an equivalent problem
with theinitial point at the origin.

1. dy/dt =t? + y?, y() =2 2. dy/dt =1-y3, y(-1) =3

In each of Problems 3 through 6 let ¢, (t) = 0 and use the method of successive approximations
to solve the given initial value problem.

() Determine ¢, (t) for an arbitrary value of n.
(b) Plotg,(t)forn=1,...,4. Observe whether the iterates appear to be converging.
(c) Express nIim ¢, (1) = ¢ (1) in terms of elementary functions; that is, solve the given
initial value problem.
(d) Plot]pt) —¢,(D[forn=1,..., 4. Foreachof ¢,(t), ..., ¢,(t) estimatetheinterval
inwhich it is areasonably good approximation to the actual solution.

3.y =2y+1), y(0) =0 > 4 Yy =-y-—1, y(0) =0

5 y =-y/2+t, y(0) =0 > 6 y=y+1-t, y(0) =0

In each of Problems 7 and 8 let ¢,(t) = 0 and use the method of successive approximations to
solve the given initia value problem.

(@) Determine ¢, (t) for an arbitrary value of n.
(b) Plotg,(t) forn=1,..., 4. Observe whether the iterates appear to be converging.

7.y =ty+1,  y0) =0 > 8 y=ty-t, y0=0

In each of Problems 9 and 10 let ¢,(t) = 0 and use the method of successive approximationsto
approximate the solution of the given initial value problem.

(@ Caculateg,(t), ..., ¢4().
(b) Plotg,(t), ..., ¢4(t) and observe whether the iterates appear to be converging.

9. y =t2+y? y(0) =0 > 10. Y =1-y3 y(0) =0

In each of Problems 11 and 12 let ¢,(t) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.
(@ Cdculate ¢,(1), ..., ¢,(), or (if necessary) Taylor approximations to these iterates.
Keep terms up to order six.
(b) Plot the functions you found in part () and observe whether they appear to be con-
verging.
11, Y =—-siny+1, y(0) =0
12. Yy =@ +4+2)/2(y-1), y0 =0

13. Letg, (x) = x"for 0 < x < 1 and show that

. ] 0, O0<x<1,
am,¢n (0 = { 1, x=1
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This example shows that a sequence of continuous functions may converge to a limit
function that is discontinuous. )

14. Consider the sequence ¢, (x) = 2nxe™™ ,0 < x < 1.
(a8 Show that nILTo ¢,(xX) =0for 0 < x < 1; hence

1
/ lim ¢, (x)dx =0.
0 n—o00

1
(b) Show that/ onxe ™ dx = 1 — e "; hence
0

1
Iim/ ¢, () dx = 1.
n—oo 0

Thus, in this example,

b b
tim [ g000x2 [ tim 9,00 dx,
even though nI im ¢, (x) exists and is continuous.

In Problems 15 through 18 we indicate how to prove that the sequence {¢,(t)}, defined by
Eqgs|(4)]throug converges.

15. If 9f/dy is continuous in the rectangle D, show that there is a positive constant K such
that
[ty — Fty)l < Kly, = ,l,

where(t,y,) and (t,y,) areany two pointsin D having thesamet coordinate. Thisinequality
isknown as a Lipschitz condition.
Hint: Holdt fixed and use the mean value theorem on f asafunction of y only. Choose K
to be the maximum value of |3f/dy| in D.

16. If ¢,_, (1) and ¢, (t) are members of the sequence {¢, (1)}, use the result of Problem 15 to
show that

[f[t, ¢, (D] = f[t, ¢, D]l < Klg, (1) —,_, D]
17. (a) Show thatif |t| < h, then
o, (D] < MIt],

where M ischosen so that | f (t,y)| < M for (t,y) in D.
(b) Usethe results of Problem 16 and part (a) of Problem 17 to show that

MK [t|?
16,(1) — (1)) < LRI

(c) Show, by mathematical induction, that

M Kn—1|t|n - M Kn—lhn
n! - n! '

1pn() — &, (D] =

18. Notethat
¢ (1) = @1 (1) + [(1) — oy D] + -+ + [9,() — ¢, ;D]
(@ Show that
19 (D] < 19O + [, (1) — ;O] + - - + |$, (1) — P, _; (DI
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(b) Usethe results of|Problem 17|to show that
Kh)2 Kh)"

2 n!

M
16, (O = [Kh +

(c) Show that the sumin part (b) convergesasn — oo and, hence, the sumin part (a) aso
converges as n — oo. Conclude therefore that the sequence {¢,,(t)} converges since it is
the sequence of partial sums of a convergent infinite series.

19. In this problem we deal with the question of uniqueness of the solution of the integra

equation
t
p(t) = /0 f[s. ¢(9)] ds.

(a) Supposethat ¢ and v are two solutions of Eq Show that, for t > 0,

O — (1) = /Ot{f[s,ms)] — fls, ¥(©)) ds.
(b) Show that
6O — v O] < /Ot |15, 6(s)] - f[s. w(s)]| ds.
(¢) Usetheresult of [Problem 15]to show that
6O — v O] < K /Ot () — ¥ (©)] ds.

where K is an upper bound for [3f /dy| in D. Thisis the same as Eq. and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations

While acontinuous model leading to adifferentia equation isreasonable and attractive
for many problems, there are some casesinwhich adiscrete model may be more natural.
For instance, the continuous model of compound interest used in Section 2.3isonly an
approximation to the actual discrete process. Similarly, sometimes population growth
may be described more accurately by a discrete than by a continuous model. Thisis
true, for example, of species whose generations do not overlap and that propagate at
regular intervals, such as at particular times of the calendar year. Then the population
Y,+1 Of the speciesinthe year n + 1 is some function of n and the population y,, in the
preceding year, that is,

Yopr = TN, Yy, n=0,12,.... D

Equation (1) is called alfirst order difference equation| It is first order because the
value of y, , depends on the value of y,, but not earlier values y, ,, y,_,, and so
forth. Asfor differential equations, the difference equation (1) islinear if f isalinear
function of y, ; otherwise, itis nonlinear. A solution of the difference equation (1) is
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asequence of numbers y,, y;, ¥,, . . . that satisfy the equation for each n. In addition
to the difference equation itself, there may also be aninitial condition]

Vo=« 2

that prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in|[Eq. (1)|depends only on vy, , but
not n. In this case

Yorr = F (Yo, n=012.... ©)
If y, is given, then successive terms of the solution can be found from Eq. (3). Thus

and

y2 = f(yl) = f[f(yo)]
The quantity f[f(y,)] is called the second iterate of the difference equation and is
sometimes denoted by f 2(yo). Similarly, the third iterate y, is given by

Ys= Ty = HILf ()]} = £3(yp).
and so on. In general, the nth iterate y,, is

Yo = f(yn,l) = fn(yo)

This procedure is referred to as iterating the difference equation. It is often of primary
interest to determinethe behavior of y, asn — oo, inparticular, whether y, approaches
alimit, and if so, to find it.

Solutionsfor which y,, hasthe samevaluefor all n are called|equilibrium solutions,|
They are frequently of special importance, just asin the study of differential equations.
If equilibrium solutions exist, one can find them by setting y,,,, equal to y, in Eq. (3)
and solving the resulting equation

Yo = f(¥) 4
fory,.

Linear Equations. Suppose that the population of a certain speciesin a given region
inyear n + 1, denoted by y, . ,, isapositive multiple p,, of the population y, inyear n;
that is,
Vi1 = OnYns n=0,12.... ©)

Note that the reproduction rate p,, may differ from year to year. The difference equa-
tion (5) islinear and can easily be solved by iteration. We obtain

Y1 = 0oYo

Yo = 01Y1 = 0100Y0
and, in general,

Yo = Pn_1 " PoYor n=12,.... (6)

Thus, if theinitial population y, is given, then the population of each succeeding gen-
eration is determined by Eq. (6). Although for a population problem p, isintrinsically
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positive, the solution (6) isalso validif p,, isnegative for some or all values of n. Note,
however, that if p, is zero for some n, then'y, ., and all succeeding values of y are
zero; in other words, the species has become extinct.

If the reproduction rate p,, has the same value p for each n, then the difference

equation|(5)|becomes

Yoi1 = PYn (7)
and its solution is

Yo =+r"Yo. ®)

Equation (7) also has an equilibrium solution, namely, y, = O for al n, corresponding
totheinitial valuey, = 0. Thelimiting behavior of y, iseasy to determinefrom Eq. (8).

In fact,
0, if |p] < 1,
limy, = 1Y, ifp=1 9)
oo does not exist, otherwise.

In other words, the equilibrium solution y, = 0 is asymptoticaly stable for [p] < 1
and unstableif |p| > 1.

Now we will modify the population model represented by to include the
effect of immigration or emigration. If b, is the net increase in population in year n
dueto immigration, then the population in year n + 1 isthe sum of those dueto natural
reproduction and those due to immigration. Thus

Yos1 = PYn + by, n=012..., (10)
where we are now assuming that the reproduction rate p is constant. We can solve
Eqg. (10) by iteration in the same manner as before. We have

Y, = oYy + by,
Y, = p(pYo + by + by = p?y, + pby + by,
Y3 = p(0°Yo + Py + by) +b, = p®y, + pby + pby + b,
and so forth. In general, we obtain

n—-1
Yo = "o+ 0" g+ by, by ="+ ) P by (12)
j=0
Note that the first term on the right side of Eq. (11) represents the descendants of the
origina population, while the other terms represent the population in year n resulting
from immigration in all preceding years.
In the special case where b, = b for all n, the difference equation is

Yni1 = PYy + b, (12)
and from Eq. (11) its solutionis
Yo =0"Yo+ @+ p+p"+ -+ p"Hb. (13)
If p # 1, we can write this solution in the more compact form
n 1- pn
Yo =0"Y+ 1_pb, (14)
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EXAMPLE

1

where again the two terms on the right side are the effects of the origina population
and of immigration, respectively. By rewriting Eq. (14) as

b b
yn:p” (yo—m>+m, (15)
the long-time behavior of y, is more evident. It follows from Eq. (15) that y, —
b/(1—p) if |[p| < 1and that y, has no limitif [p| > 1 or if p = —1. The quantity
b/(1 — p) is an equilibrium solution of[Eq. (12), as can readily be seen directly from
that equation. Of course,is not valid for p = 1. To dea with that case, we
must return to[Eq. (13)[andTet p = 1 there. It follows that

Y, =Y, + nb, (16)

sointhis case y,, becomes unbounded asn — oc.

The same model also provides aframework for solving many problems of afinancia
character. For such problems y, is the account balance in the nth time period, p,, =
1+r,, wherer, istheinterest rate for that period, and b, is the anount deposited or
withdrawn. The following is atypical example.

A recent college graduate takes out a $10,000 loan to purchase acar. If theinterest rate
is 12%, what monthly payment is required to pay off the loan in 4 years?

Therelevant difference equation isEq. (12), where y, istheloan balance outstanding
inthenthmonth, o = 1 4 r istheinterest rate per month, and b isthe monthly payment.
Note that b must be negative and p = 1.01, corresponding to a monthly interest rate
of 1%.

The solution of the difference equation|(12) |with this value for p and the initial
condition y, = 10,000 is given by Eq. (15), that is,

y, = (1.01)"(10,000 + 100b) — 100b. a7

The payment b needed to pay off the loan in 4 years is found by setting y,; = 0 and
solving for b. This gives

1.01)%®
b= —100% = —263.34. (18)
(rLop=* -1
Thetotal amount paid on theloan is 48 times b or $12,640.32. Of this amount $10,000
is repayment of the principal and the remaining $2640.32 isinterest.

Nonlinear Equations. Nonlinear difference equations are much more complicated
and have much morevaried sol utionsthan linear equations. Wewill restrict our attention
to asingle equation, the logistic difference equation

Y
Yni1 = PYn ( - ?n) ’ (19)
which is analogous to the logistic differential equation
dy y
L —ry(1-2 2
at ry ( K) (20



2.9 First Order Difference Equations 119

that was discussed i Notethat if thederivativedy/dt i isreplaced
by the difference (y,,, — ¥,)/h, then Eq. (20) reduces to Eq. (19) with p = 1+ hr
and k = (1 + hr)K/hr. To simplify [Eq. (I9)| a little more, we can scale the variable

Y, by introducing the new variable u,, = vy, /k. Then|Eq. (19)| becomes
Uppq = pU,(1—up), (21)

where p is a positive parameter.

We begin our investigation of Eq. (21) by seeking the equilibrium, or constant
solutions. These can befound by settingu,, ., equal tou,, in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

un = pun - puﬁ’ (22)
so it follows that the equilibrium solutions of Eq. (21) are
-1
u =0 u=2"<2 (23)
Jol

The next question is whether the equilibrium solutions are asymptotically stable or
unstable; that is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution? One
way to examine this question is by approximating Eq. (21) by alinear equation in the
neighborhood of an equilibrium solution. For example, near the equilibrium solution
u, = 0, thequantity u2 issmall compared to u,, itself, so we assume that we can neglect
the quadratic term in Eq. (21) in comparison with the linear terms. Thisleaves uswith
the linear difference equation

un+l = pUp, (24)
which is presumably a good approximation to Eq. (21) for u,, sufficiently near zero.

However, Eq. (24) is the same as[Eq. (7), and we have already concluded, ir{ Eq. (9)]
that u, — Oasn — oo if and only if |p| < 1, or since p must be positive, for 0 <
p < 1. Thus the equilibrium solution u, = 0 is asymptoticaly stable for the linear
approximation (24) for this set of p values, so we concludethat it isalso asymptotically
stable for the full nonlinear equation (21). This conclusion is correct, athough our
argument is not complete. What is lacking is atheorem stating that the solutions of the
nonlinear equation (21) resemble those of the linear equation (24) near the equilibrium
solution u, = 0. We will not take time to discuss this issue here; the same question is
treated for differential equationsin[Section 9.3]

Now consider the other equilibrium solution u, = (o — 1)/p. To study solutionsin
the neighborhood of this point, we write
o =2"1 (25)

Jol

where we assume that v, is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

Upp1 = 2= p)v, — ,ovﬁ. (26)

Since v, is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

V1 = (2= p)v,. (27
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Referring td Eq. (9)once more, wefind that v, — 0asn — oo for |2 — p| < 1, thatis,
forl < p < 3. Thereforeweconcludethat, for thisrange of valuesof p, theequilibrium
solutionu, = (p — 1)/ p isasymptotically stable.
Figure 2.9.1 contains the graphs of solutions of [Eq. (21)]for p = 0.8, p = 1.5, and
o = 2.8, respectively. Observethat the solution convergesto zerofor p = 0.8 andtothe
nonzero equilibrium solution for p = 1.5 and p = 2.8. The convergence is monotone
for p = 0.8 and p = 1.5 and is oscillatory for p = 2.8. While the graphs shown are
for particular initial conditions, the graphs for other initial conditions are similar.
Another way of displaying the solution of a difference equation is shown in Figure
2.9.2. In each part of this figure the graphs of the parabolay = px(1 — x) and of the
straight line y = x are shown. The equilibrium solutions correspond to the points of
intersection of these two curves. The piecewise linear graph consisting of successive
vertical and horizontal line segments, sometimes called a stairstep diagram, represents
the solution sequence. The sequence starts at the point u, on the x-axis. The vertical
line segment drawn upward to the parabola at u,, corresponds to the calculation of
pUG(1 —uy) = u,. Thisvaueisthentransferred from the y-axisto the x-axis; this step
isrepresented by the horizontal line segment from the parabolato theliney = x. Then
the process is repeated over and over again. Clearly, the sequence converges to the
origin in Figure 2.9.2a and to the nonzero equilibrium solution in the other two cases.
To summarize our results so far: The difference equation has two equilibrium
solutions,u,, = 0andu, = (p — 1)/p; theformerisstablefor0 < p < 1, andthelatter
isstablefor 1 < p < 3. This can be depicted as shown in Figure 2.9.3. The parameter
p isplotted on the horizontal axisand u on the vertical axis. The equilibrium solutions
u=0and u=(p—1)/p are shown. The intervals in which each one is stable are
indicated by theheavy portionsof the curves. Notethat thetwo curvesintersectat p = 1,
where there is an exchange of stability from one equilibrium solution to the other.
For p > 3neither of the equilibrium solutionsis stable, and the solutions of [Eq. (21)]
exhibit increasing complexity as p increases. For p somewhat greater than 3 the se-
quence u,, rapidly approaches a steady oscillation of period 2; that is, u,, oscillates back
and forth between two distinct values. For p = 3.2 asolutionisshownin Figure 2.9.4.
For n greater than about 20, the solution alternates between the values 0.5130 and
0.7995. The graph isdrawn for the particular initial condition u, = 0.3, but itissimilar
for al other initial values between 0 and 1. Figure 2.9.4b also shows the same steady
oscillation as arectangular path that is traversed repeatedly in the clockwise direction.

FIGURE 29.1 Solutionsof u,,, = pu (1 —u): (@) p = 0.8; (b) p = 1.5; (c) p = 2.8.
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FIGURE 29.2 Iteratesof u, ., = pu, (1 —u,). (@) p = 0.8;(b) p = L.5; (c) p = 2.8.
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FIGURE 2.9.3 Exchange of stability foru,,, = pu, (1 —u,).
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FIGURE 294 A solutionof u,,, = pu,(1—u,) for p = 3.2; period two. (a) u,, versusn;
(b) atwo-cycle.

At about p = 3.449 each state in the oscillation of period two separates into two dis-
tinct states, and the solution becomes periodic with period four; see Figure 2.9.5, which
shows a solution of period four for o = 3.5. As p increases further, periodic solutions
of period 8, 16, ... appear. The appearance of a new solution at a certain parameter

valueiscalled a
The p-values at which the successive period doublings occur approach a limit that

is approximately 3.57. For p > 3.57 the solutions possess some regularity, but no
discernible detailed pattern for most values of p. For example, asolution for p = 3.65
is shown in Figure 2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine
structure is unpredictable. The term[ChactiCis used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. Thisis
illustratedin Figure 2.9.7, wheretwo solutions of Eq. (21) for o = 3.65 areshown. One
solution isthe same asthat in Figure 2.9.6 and hastheinitial value u, = 0.3, whilethe
other solution hastheinitial valueu, = 0.305. For about 15 iterationsthe two solutions
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FIGURE 295 A solutionof u,,, = pu (1 —u,) for p = 3.5; period four. (a) u,, versusn;
(b) afour-cycle.
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FIGURE 29.6 A solutionofu, ., = pu, (1 —u,) for p = 3.65; achaotic solution.
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FIGURE29.7 Twosolutionsofu, , = pu, (1 —u,)forp = 3.65;u, = 0.3andu, = 0.305.

remain close and are hard to distinguish from each other in the figure. After that, while
they continue to wander about in approximately the same set of values, their graphs
are quite dissimilar. It would certainly not be possible to use one of these solutions to
estimate the value of the other for values of n larger than about 15.

Itisonly inthelast several yearsthat chaotic solutions of difference and differential
equations have become widely known. |Equation (20)|was one of the first instances of
mathematical chaos to be found and studied in detail, by Robert M in 1974. On
the basis of his analysis of this equation as a model of the population of certain insect
species, May suggested that if thegrowthrate p istoo large, thenit will beimpossibleto
make eff ectivelong-range predictions about theseinsect popul ations. The occurrence of
chaotic solutionsin simple problems has stimul ated an enormous amount of researchin
recent years, but many questions remain unanswered. It isincreasingly clear, however,
that chaotic solutions are much more common than suspected at first and may be apart
of the investigation of awide range of phenomena.

PROBLEMS

In each of Problems 1 through 6 solve the given difference equation in terms of theinitial value
Y,- Describe the behavior of the solutionasn — oo.

n+1
1. yn+1 = —Ogyn 2. yn+l = myn
n+3
3. Yoi1 = "1 1yn 4 Yo = (—1)n+1yn
5 V,,1=05y,+6 6. Y,.,=—-05y,+6

13R. M. May, “Biological Popul ationswith Nonoverl apping Generations; Stable Points, Stable Cycles, and Chaos;”
Science 186 (1974), pp. 645-647; “Biological Populations Obeying Difference Equations: Stable Points, Stable
Cycles, and Chaos,” Journal of Theoretical Biology 51 (1975), pp. 511-524.
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7.

Find the effective annual yield of a bank account that pays interest at a rate of 7%,
compounded daily; that is, find the ratio of the difference between the final and initial
balances divided by the initial balance.

An investor deposits $1000 in an account paying interest at a rate of 8% compounded
monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

A certain college graduate borrows $8000 to buy a car. The lender charges interest at an
annual rate of 10%. What monthly payment rateis required to pay off the loan in 3 years?|
Compare your result with that of Problem 9 in Section 2.3.

10.

11.

12.

13.

A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What
monthly payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%7?

A homebuyer takes out a mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage |oan that
can be made under these conditions?

A homebuyer wishesto finance the purchase with a $95,000 mortgage with a20-year term.
What is the maximum interest rate the buyer can afford, if the monthly payment is not to
exceed $9007

[The Logistic Difference Equation.| Problems 14 through 19 deal with the difference equa-

tion(21), u,,, = pu, (1 —u,).

14.

> 15

Carry out the details in the linear stability analysis of the equilibrium solution u =
(p — 1)/ p; that is, derive the difference equation|(26)in the text for the perturbation v, .
(@ For p = 3.2 plot or caculate the solution of the logistic equation for several
initial conditions, say, u, = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two vaues. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.

(b) Make similar calculations and verify that the nature of the solution for large n is
independent of theinitial condition for other values of p, such as 2.6, 2.8, and 3.4.

16.

Assumethat p > 1in Eq. (21).

(@) Draw aquditatively correct stairstep diagram and thereby show that if u, < 0, then
Un — —oc0 asn— oo.

(b) _In asimilar way determine what happensasn — oo if u, > 1.

> 17.

> 18.

The solutions of [Eq. (21) |change from convergent sequences to periodic oscillations of
period two as the parameter p passes through the value 3. To see more clearly how this
happens, carry out the following calculations.

(a) Plot or calculate the solution for p = 2.9, 2.95, and 2.99, respectively, using an initial
value u, of your choice in the interval (0, 1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close” means in the preceding sentence.

(b) Plot or calculate the solution for p = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part (a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation.

By calculating or plotting the solution of for different values of p, estimate the
value of p for which the solution changes from an oscillation of period two to one of period
four. In the same way estimate the value of p for which the solution changes from period
four to period eight.

Let p, be the value of p for which the solution of Eq. (21) changes from period 21to
period 2. Thus, as noted in the text, o, = 3, p, = 3.449, and p, = 3.544.
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PROBLEMS

(@ Using these values of p,, p,, ad p,, Or those you found in Problem 18, calculate
(:02 - ,01)/(,03 - :02)-

(b) Letd, = (p, — ph_1)/(Phi1 — P,)- It has been shown that &, approaches alimit § as
n — oo, where§ = 4.6692 isknown asthe Feigenbaum number. Determine the percentage
difference between the limiting value § and é,,, as calculated in part ().

(c) Assume that 6, = 6 and use this relation to estimate p,, the value of p at which
solutions of period 16 appear.

(d) By plotting or calculating solutions near the value of p, found in part (c), try to detect
the appearance of a period 16 solution.

(e) Observethat
Pp = Py (0 = py) + (P33 = py) + -+ (Py = Py_y)-

Assumlng that (,04 - :03) = (103 - pz)gila (105 - 104) = (p3 - :02)8721 andsoforth, express
0, asageometric sum. Then find thelimit of p, asn — oo. Thisisan estimate of the value

of p at which the onset of chaos occurs in the solution of the logistic equation (21).

Miscellaneous Praoblems  One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
following problems are presented so that you may have some practice in identifying the method
or methods applicable to a given equation.

In each of Problems 1 through 32 solve the given differential equation. If an initial condition

isgiven, aso find the solution that satisfiesit.

ay x° -2y _
1. Fvi < 2. X+y)ydx—x—y)dy=0
dy 2X+y
3 —=—, 0=0 4, x+€&)dy—dx=0
dx  3+4+3y?—x y©) ( ydy
dy 2xy +y? + 1 dy
5, &Y _ _2FY 2 6. X2 +xy=1— 1)=0
dx X2 + 2xy Xax Y oy
dy X . 2 dy sinx
7. — = ——— Hint: Letu = x“. 8 X—+2y=—— 2)=1
dx  x?y+y® " h=x X TA="% . Y@
d 2 1
g Y _ ¥+ 10. (3y2 + 2xy) dx — (2xy + X)) dy = 0
dx X2 42y dy 1
11. X +y)dx+ (x+€e)dy=0 12 = +4+y=—-
12 dx 1+¢€
13. xdy — ydx = (xy)““dx
14, (x+y)dx+ (x+2y)dy =0, y2) =3 ,
dy dy Xx°+vy
X =y )
15. (de +1)dx y — ye* 16. dx v
17. d—i=e2X+3y 18. (2y +3x)dx = —xdy
19. xdy —ydx = 2x?y?dy, y(l)=-2 20. y =&Y
dy x?>-1
21. xy =y+ xe¥* 2., —=———, -1H=1
y=y v y(=1)
23. xy +y—y** =0 24. 2sinycosxdx + cosysinxdy =0
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2
X y X X
25 (22 -2 Jdx+ |- -2 )dy=0
(y x2+y2) (x2+y2 y2) y

2_
26. (2y+1)dx+(x - y) dy =0

27. (cos2y —sinx)dx — 2tanxsin2ydy =0
dy 3x*—2y—y°

dy 2y+x*—y?
N 2

28. — = 29. —
dx 2x + 3xy? dx
dy y

30. —=—7"—, 0=1
dx  1-2xy? o

3L (XPy +xy—y)dx+ x?y —2x3)dy =0
dy 3%y +y?

2. ——=———,
dx 2x3 + 3xy

y(l) =-2
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CHAPTER

3

Second Order
Linear Equations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. Thefirst isthat linear equations have arich theoretical
structure that underlies anumber of systematic methods of solution. Further, asubstan-
tial portion of this structure and these methods are understandabl e at afairly elementary
mathematical level. In order to present the key ideas in the smplest possible context,
we describe them in this chapter for second order equations. Another reason to study
second order linear equations is that they are vital to any serious investigation of the
classical areas of mathematical physics. One cannot go very far in the devel opment of
fluid mechanics, heat conduction, wave motion, or el ectromagneti c phenomenawithout
finding it necessary to solve second order linear differential equations. Asan example,
we discuss the oscillations of some basic mechanical and electrical systems at the end
of the chapter.

3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

d?y dy
Yty ). 1
at2 (ydt) @)

where f issome given function. Usually, we will denote the independent variable by t
since time is often the independent variable in physical problems, but sometimes we
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will use x instead. We will use y, or occasionally some other letter, to designate the
dependent variable[Equation (1)[is said to be linear if the function f hasthe form

d d
f(nm%>=mw—muﬁ—qmm 2

that is, if f islineariny and y'. In Eq. (2) g, p, and q are specified functions of the
independent variable t but do not depend on y. In this case we usually rewrite|Eq. (1)
as

y'+ p)y +a@)y =g, (3)

where the primes denote differentiation with respect to t. Instead of Eq. (3), we often
see the equation

PMOY"+ Q)Y + Ry = G(1). )

Of courseg, if P(t) # 0, we can divide Eq. (4) by P(t) and thereby obtain Eq. (3) with
_Qw _R® _Gm

PO=Fg  dO=pg. 9O =F55- )

In discussing Eg. (3) and in trying to solve it, we will restrict ourselvesto intervalsin
which p, g, and g are continuous functions=:

If is not of the form (3) or (4), then it is called [nonlinear] Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in[Chapters 8]and[9] In addition, there are two
special types of second order nonlinear equations that can be solved by a change
of variables that reduces them to first order equations. This procedure is outlined in
|Problems 28 through 43|

Aninitia value problem consists of a differential equation such (3), or
(4) together with apair of initial conditions

y(to) = Yo y/(to) = yé)’ (6)

where y, and y, are given numbers. Observe that the initial conditions for a second
order equation prescribe not only a particular point (t,, y,) through which the graph of
the solution must pass, but also the slope y;, of the graph at that point. It is reasonable
to expect that two initial conditions are needed for a second order equation because,
roughly speaking, two integrations are required to find a solution and each integration
introduces an arbitrary constant. Presumably, two initial conditions will suffice to
determine values for these two constants.

A second order linear equation is said to be[homogeneouslif the term g(t) in
Eqg. (3), or the term G(t) in Eq. (4), is zero for all t. Otherwise, the equation is
called [nonhomogeneous, As aresult, the term g(t), or G(t), is sometimes called the
nonhomogeneous term. We begin our discussion with homogeneous equations, which
we will write in the form

Py’ + Qt)y + R(t)y =0. (7)

Thereis a corresponding treatment of higher order linear equations in|Chapter 4| If you wish, you may read the
appropriate parts of in parallel with Chapter 3.
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Later, in|Sections 3.6|and|3.7| we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nhonhomogeneous
or at least to expressthe solution in terms of anintegral. Thusthe problem
of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P, Q, and R are constants. In this case,[Eq. (7)oecomes

ay”’ + by +cy =0, (8)

where a, b, and ¢ are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is usually
much more difficult to solve[Eq. (7)]if the coefficients are not constants, and atreatment
of that case is deferred until [Chapter 5.

Before taking up Eq. (8), let us first gain some experience by looking at a simple,
but typical, example. Consider the equation

y'—y=0, 9)

which isjust Eg. (8) witha=1, b =0, and c = —1. In words, Eqg. (9) says that we
seek a function with the property that the second derivative of the function is the
same as the function itself. A little thought will probably produce at least one well-
known function from calculus with this property, namely, y, (t) = €', the exponential
function. A little more thought may also produce asecond function, y,(t) = e'. Some
further experimentation reveals that constant multiples of these two solutions are also
solutions. For example, thefunctions 2e' and 5e~t also satisfy Eq. (9), asyou can verify
by calculating their second derivatives. In the same way, the functions ¢, y, (t) = clet
andc,y,(t) = cze*t satisfy the differential equation (9) for all values of the constants
¢, and c,. Next, it is of paramount importance to notice that any sum of solutions of
Eq. (9) isalsoasolution. Inparticular, sincec, y, (t) and ¢, y,(t) aresolutions of Eq. (9),
so isthe function

y=Cy,(t) + C,Y,(t) =c,e + et (10)

for any values of ¢, and c,. Again, this can be verified by calculating the second
derivative y” from Eq. (10). We have y' = c,€' —c,e ' and y” = ¢, +c,e7'; thus
y” isthesame as y, and Eq. (9) is satisfied.

L et us summarize what we have done so far in this example. Once we notice that the
functionsy, (t) = €' and y,(t) = e are solutions of Eq. (9), it followsthat the general
linear combination (10) of these functions is also a solution. Since the coefficients ¢,
and c, in Eq. (10) are arbitrary, this expression represents a doubly infinite family of
solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite
family of solutions that also satisfies a given set of initial conditions. For example,
suppose that we want the solution of Eq. (9) that also satisfies the initial conditions

y(0) =2, y'(0) = -1 (11)

In other words, we seek the solution that passes through the point (0, 2) and at that
point hasthe slope —1. First, wesett = Oand y = 2in Eqg. (10); thisgivesthe equation

c,+¢C,=2. (12)
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Next, we differentiate Eq. (10)| with the result that

/ t —t
Yy _cle —Cze .

Then, settingt = 0and y’ = —1, we obtain
¢, —¢c,=-1 (13)
By solving[Egs. (12) and (13) simultaneously for ¢, and c, we find that

¢, =1 c,=3. (14)

Finally, inserting these values in|Eq. (10)} we obtain
y=3e+3e™, (15)
the solution of the initial value problem consisting of the differential [equation (9)|and

the initial|conditions (11).
We now return to the more general [equation (8)}

ay’ +by +cy=0,

which has arbitrary (real) constant coefficients. Based on our experience with|Eq. (9)|
let us also seek exponentia solutions of Thus we supposethat y = €7, where
r is aparameter to be determined. Then it follows that y =re't and y” = r2€t. By
substituting these expressionsfor y, y', and y” in[Eq. (8)] we obtain

(@ar?+br +cet =0,
or, since€’! # 0,
ar?4+br +c=0. (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if r isaroot of the polynomial equation (16), then
y =€ is a solution of the differential[equation (8) Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here, and the latter two
cases in Sections 3.4)and|3.5.

Assuming that the roots of the characteristic equation (16) are real and different, let
them be denoted by r, and r,, wherer, #r,. Then y,(t) = €1' and y,(t) = €' are
two solutions of Just as in the preceding example, it now follows that

y = C,Y; (1) +C,Y,(t) = c, €1 + ¢, 2! (17)

isalso asolution of [Eq. (8)l To verify that thisis so, we can differentiate the expression
in Eq. (17); hence

y =cr, €1 +c,r,e? (18)
and
y' =crégtt +crie?t. (19)

Substituting these expressions for y, y', and y” in|Eqg. (8)|and rearranging terms, we
obtain

ay” +by +cy = c(ar? + br, +0)€1' +c,(ar? + br, + c)e2t. (20)
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EXAMPLE

1

EXAMPLE

2

The quantity in each of the parentheses on the right side of Eq. (20)]is zero becauser
and r, are roots of [Eq. (16); therefore, y as given by |Eq. (17)]is indeed a solution of
[EQ. (8), aswe wished to verify.

Now suppose that we want to find the particular member of the family of solutions
that satisfies the initial conditions|(6),
y(to) = Yo y/(to) = y(/J
By substitutingt = t, and y = y,, i Eq. (17), we obtain

c, €10 4 c €20 =y, (21)
Similarly, settingt =ty and y’ = y; in[Eq. (18)|gives
C M, €1 + C,r €2 =y, (22)
On solving Egs. (21) and (22) simultaneously for ¢, and c,, we find that
c = L;’ __yrorze*rltO, c,= 7y?rl_—r Yo vty (23)
1 2 1 2

Thus, no matter what initial conditions are assigned, that is, regardless of the values
of t,, Yo, and y, in it is always possible to determine ¢, and ¢, so that the
initial conditions are satisfied, moreover, thereis only one possible choice of ¢, and ¢,
for each set of initial conditions. With the values of ¢, and c, given by Eq. (23), the
expression|(17) js the solution of the initial value problem

ay’+by +cy=0 Yyl =Y, Yt)=Yo (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of [Eq. (8)lare included in the expression at least for the
casein which theroots of[Eq. (16)]are real and different. Therefore, we call [Eq. (17)|the
general solution of Thefact that any possibleinitial conditions can be satisfied
by the proper choice of the constants in makes more plausible the idea that
this expression does include all solutions of

Find the general solution of
y’ + 5y + 6y =0. (25)

Weassumethat y = €, and it then followsthat r must be aroot of the characteristic
equation

r>+5r+6=( +2)( +3) =0.

Thus the possible values of r are r, = —2 and r, = —3; the general solution of
Eq. (25) is

+ce (26)

Find the solution of the initial value problem
y" +5y + 6y =0, y(0) =2, Y0 =3 27)
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EXAMPLE

3

The general solution of the differential equation wasfound in[Example 1jand isgiven
by [EqQ. (26)l To satisfy the first initial condition we sett = 0 and y = 2 in|Eq. (26);
an

thus ¢, and ¢, must satisfy
C,+¢C, =2 (28)

To use the second initial condition we must first differentiate [Eqg. (26)l This gives
y = —2c,e® — 3c,e”*. Then, settingt = 0 and y’ = 3, we obtain

—2c, — 3¢, =3. (29)

By solving Egs. (28) and (29) wefind that ¢, = 9 and ¢, = —7. Using these values in
the expression (26), we obtain the solution

y=92_7e% (30)
of theinitial value[problem (27). The graph of the solution is shown in Figure 3.1.1.

y = 9e 2t _ 7¢73t

FIGURE 3.1.1 Solutionof y” + 5y + 6y =0, y(0) = 2, y'(0) = 3.

Find the solution of the initial value problem
4y’ — 8y + 3y =0, y0 =2 VY0 =3. (31)
If y = €', then the characteristic equation is
4?—8 +3=0

anditsrootsarer = 3/2andr = 1/2. Thereforethe general solution of the differential
equationis

y = c,e*? +c,e’2 (32)
Applying the initial conditions, we obtain the following two equations for ¢, and c,:
c,+¢6=2 3¢ +13c,=1.
The solution of these equationsisc, = —3, ¢, = 2, and the solution of theinitial value
problem (31) is
y=—L1e¥2 4 52, (33)

shows the graph of the solution.
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EXAMPLE

4

y

—_ 132 5.2
=— =g32 4 24
y 2 2

1+

FIGURE 3.1.2 Solution of 4y” — 8y’ + 3y = 0, y(0) = 2, y'(0) = 0.5.

Thelsolution (30)|of theinitial value problem|(27)jinitially increases (becauseitsinitial
slope is positive) but eventually approaches zero (because both terms involve negative
exponential functions). Therefore the solution must have a maximum point and the
graph in Figure 3.1.1 confirms this. Determine the location of this maximum point.
One can estimate the coordinates of the maximum point from the graph, but to find

them more precisely we seek the point where the solution has a horizontal tangent line.
By differentiating thelsolution (30}, y = 9e=% — 7e~*, with respect to t we obtain
y = —18e2 + 21e7%. (34)

Setting y' equal to zero and multiplying by e*, wefind that the critical value t. satisfies
e' = 7/6; hence

t. = In(7/6) = 0.15415. (35)
The corresponding maximum value y,, is given by
108

yy = 9% — 7e7% = 20 = 2.20408. (36)

Inthisexampletheinitial lopeis 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In|Problem 26|you are
asked to determine how the coordinates of the maximum point depend on the initial
slope.

Returning to the equation ay” + by’ + cy = 0 with arbitrary coefficients, recall
that whenr, #r,, its genera is the sum of two exponential functions.
Therefore the solution has a relatively ssmple geometrical behavior: as t increases,
the magnitude of the solution either tends to zero (when both exponents are negative)
or else grows rapidly (when at least one exponent is positive). These two cases are
illustrated by the solutions of andwhich are shown in
and 3.1.2, respectively. There Is aso a third case that occurs less often; the solution
approaches a constant when one exponent is zero and the other is negative.
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PROBLEMS

In each of Problems 1 through 8 find the general solution of the given differential equation.

1L y+2y-3y=0 2.y +3y+2y=0
3. 6y—-y —-y=0 4. 2y" -3y +y=0
5 y' +5y =0 6. 4y -9y =0

7. —-9% +9y =0 8. y' -2y -2y=0

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch the
graph of the solution and describe its behavior ast increases.

9. ¥V'+y-2y=0, yO=1 yO=1
10. y"+4y +3y=0, y0 =2 Yy =-1
11. 6y" -5y +y=0, y0O) =4, y@0 =0
12. y"+3y =0, y0)=-2, y @0 =3
13. y"+5y +3y=0, yO =1 y(@©0 =0
14. 2y"+y -4y =0, y0 =0, y@©0=1
15. y"+8y — 9y =0, yb=1 y@=0
16. 4y" —y=0, y(=2)=1, y(-2)=-1
17. Find adifferential equation whose general solutionisy = cle2t + cze’3‘.
18. Find adifferential equation whose general solutionisy = c,e™"/% + c,e 2.
19. Find the solution of theinitial value problem

y'-y=0, yO=3 YO=-3

Plot the solution for 0 < t < 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y =3y +y=0, yO0=2 y0-=3

Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solvetheinitial valueproblemy” —y —2y =0, y(0) =«a, Y(0) =2 Thenfinda so
that the solution approaches zero ast — oo.

22. Solvetheinitial valueproblem4y” —y =0, y(0) =2, y'(0) = B.Thenfind g sothat
the solution approaches zero ast — oo.

In each of Problems 23 and 24 determine the values of «, if any, for which all solutionstend to
zeroast — oo; also determinethe values of «, if any, for which all (nonzero) solutions become
unbounded ast — oo.

23. V—2a—-1lYy +a(a—1)y=0 24, Y+ B—-a)y -2 —1y=0
25. Consider theinitial value problem

2y"+3y' -2y =0, yO =1, y (0 =-8,

where 8 > 0.
(@) Solvetheinitial value problem.
(b) Plot the solution when g = 1. Find the coordinates (t,,y,) of the minimum point of
the solution in this case.
(c) Find the smallest value of 8 for which the solution has no minimum point.
26. Consider theinitial value problem (see Example 4)

y'+5y +6y=0, y(0) =2, Yy(0) =8,

where 8 > 0.
(a8 Solvetheinitial value problem.
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(b) Determinethecoordinatest  andy, of themaximum point of the solution asfunctions
of B.

(c) Determine the smallest value of g for whichy, > 4.

(d) Determine the behavior of t andy,, as g — oo.

27. Find an equation of the form ay” + by’ + cy = 0 for which al solutions approach a
multipleof 7' ast — oco.

Equations with the Dependent Variable Missing. For a second order differential equation
of theformy” = f (t, y'), the substitution v = y', v = y” leads to afirst order equation of the
form v’ = f(t, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving thefirst order equation for v,
and a second isintroduced in the integration for y. In each of Problems 28 through 33 use this
substitution to solve the given equation.

28. t?y" +2ty —1=0, t>0 20. ty'+y =1, t>0
30. v +t(y)?=0 31 2%y + (y)3 =2y, t>0
32 y+y=¢ 33. t2y" = (y)?, t>0

Equations with the Independent Variable Missing. If a second order differential equation
hastheformy” = f(y, y'), then theindependent variable t does not appear explicitly, but only
through the dependent variable y. If welet v = Y/, then we obtain dv/dt = f(y, v). Since the
right side of this equation depends on y and v, rather than on t and v, this equation is not
of the form of the first order equations discussed in Chapter 2. However, if we think of y as
the independent variable, then by the chain ruledv/dt = (dv/dy)(dy/dt) = v(dv/dy). Hence
the original differential equation can be written asv(dv/dy) = f (y, v). Provided that thisfirst
order equation can be solved, we obtain v asafunction of y. A relation between y and t results
from solving dy/dt = v(y). Again, there are two arbitrary constantsin the final result. In each
of Problems 34 through 39 use this method to solve the given differential equation.

4. yw+ ) =0 35 y' 4+y=0

36. Y +y(y)>=0 37. 2y%y" +2y(y)2 =1

3. yy' —(y)*=0 39. y' 4 (y)2 =2

Hint: In Problem 39 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.

In each of Problems 40 through 43 solve the given initial value problem using the methods of
Problems 28 through 39.

40. yy' =2, yOoO =1 y@©0=2

41. y' —3y?>=0, yO) =2, Y0 =4

42. (1+t3)y’ +2ty +3t72=0, yb =2 y@=-1
43. y'y" —t =0, ybh=2 VyQ=1

3.2 Fundamental Solutions of Linear Homogeneous Equations

In the preceding section we showed how to solve some differential equations of the
form

ay’ +by +cy=0,

wherea, b, and c are constants. Now webuild on thoseresultsto provideacl earer picture
of the structure of the solutions of all second order linear homogeneous equations. In



138

Chapter 3. Second Order Linear Equations

Theorem 3.2.1

turn, this understanding will assist us in finding the solutions of other problems that
we will encounter later.

In developing the theory of linear differential equations, it is helpful to introduce a
differential operator notation. Let p and g be continuousfunctionsonanopeninterval |,
thatis, fora <t < B. Thecasesa = —o0, or B = oo, or both, areincluded. Then, for
any function ¢ that is twice differentiable on |, we define the differential operator L
by the equation

Llg] = ¢" + p¢’ + q¢. D
Notethat L[¢] isafunctionon |. Thevalue of L[¢] at apointtis
L[g](t) = ¢ (1) + p(t)¢'(t) + q®) (D).
For example, if p(t) = t2, q(t) = 1+t, and ¢ (t) = sin3t, then
L[¢](t) = (sin3t)” 4+ t3(sin3t) + (1 +t)sin3t
= —9sin3t + 3t?cos3t + (1+t) sin3t.

The operator L is often written as L = D2+ pD + g, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation L[¢](t) = O.
Since it is customary to use the symbol y to denote ¢ (t), we will usualy write this
equation in the form

LIyl =y "+ p®Y +a)y=0. 2
With Eq. (2) we associate a set of initial conditions
y(ty) = Yo y/(to) = Yor 3

where t, is any point in the interval |, and y, and y; are given real numbers. We
would like to know whether the initial value problem (2), (3) aways has a solution,
and whether it may have more than one solution. We would aso like to know whether
anything can be said about the form and structure of solutions that might be helpful in
finding solutions of particular problems. Answers to these questions are contained in
the theorems in this section.

The fundamental theoretical result for initial value problems for second order linear
equations is stated in Theorem 3.2.1, which is analogous to[Theorem 2.4.1] for first
order linear equations. The result applies equally well to nonhomogeneous equations,
so the theorem is stated in that form.

Consider theinitia value problem

y' 4+ p)y +a@d)y =g, Yt =Yy Yty = Yo (4)

where p, g, and g are continuous on an open interval 1. Then there is exactly one
solution y = ¢ (t) of this problem, and the solution exists throughout the interval | .

We emphasize that the theorem says three things:

1. Theinitial value problem has a solution; in other words, a solution exists.
2. Theinitial value problem has only one solution; that is, the solution is unique.
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EXAMPLE

2

3. The solution ¢ is defined throughout the interval | where the coefficients are
continuous and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For example, we

foundin that the initial value problem
y'—y=0 yO=2 y0O=-1 ©®)
has the solution
y=3€e+3e. (6)

Thefact that wefound asolution certainly establishesthat asolution existsfor thisinitial
value problem. Further, the solution (6) is twice differentiable, indeed differentiable
any number of times, throughout the interval (—oo, co) where the coefficients in the
differential equation are continuous. On the other hand, it is not obvious, and is more
difficult to show, that the initial value problem (5) has no solutions other than the one
given by Eq. (6). Nevertheless, states that this solution is indeed the
only solution of the initial value problem (5).

However, for most problems of thefform (4) )it is not possible to write down a useful
expression for the solution. Thisis a mgjor difference between first order and second
order linear equations. Therefore, al parts of the theorem must be proved by general
methods that do not involve having such an expression. The proof of Theorem 3.2.11is
fairly difficult, and we do not discussit hereZ\We will, however, accept Theorem 3.2.1
as true and make use of it whenever necessary.

Find the longest interval in which the solution of the initial value problem
(t* =30y +ty —t+3y=0, yD=2 y@=1

is certain to exist.

If the given differential equation is written in the form of [Eq. (4)] then p(t) =
1/t —3), q(t) = —(t 4+ 3)/t(t —3), and g(t) = 0. The only points of discontinuity
of the coefficientsaret = 0andt = 3. Therefore, thelongest open interval, containing
theinitial point t = 1, in which all the coefficients are continuousis0 < t < 3. Thus,
thisisthe longest interval in which Theorem 3.2.1 guarantees that the solution exists.

Find the unique solution of theinitial value problem

y'+pt)y +qit)y=0, y(ty) =0, Y(t)=0,

where p and g are continuous in an open interval | containing t,.

Thefunctiony = ¢(t) = O0for al t in | certainly satisfies the differential equation
and initia conditions. By the uniqueness part of Theorem 3.2.1 it is the only solution
of the given problem.

A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington listed
in the references.
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L et us now assume that y, and y, are two solutions of in other words,

/!

Lly,] =yi + py; +qy, =0, (7

and similarly for y,. Then, just as in the examples in|Section 3.1, we can generate
more solutions by forming linear combinations of y, and y,. We state this result as a
theorem.

Theorem 3.2.2 |(Principle of Superposition)| If y, and y, are two solutions of the differential

equation (2),
Llyl=y"+ p)y +q(t)y =0,

then the linear combination c,y, + c,Y, is also a solution for any values of the
constants ¢, and c,.

A special case of Theorem 3.2.2 occurs if either ¢, or c, is zero. Then we conclude
that any multiple of asolution of [Eq. (2)|is also asolution.
To prove Theorem 3.2.2 we need only substitute

Y =CY; (D) + CY,(0) )
for y in|EqQ. (2)} Theresultis

L[C]_yl + CzYz] = [Clyl + CzYz]N + p[clyl + C2Y2]/ + q[clyl + CzYz]
= CY{ + C,¥7 + C PY; + C,PY; + C,aY; + C,aY,
= Cyly1 + pY1 +ay;] + Gl¥z + pY; + Ayl
= Cll—[yl] + Czl—[yz]'

Since L[y;] =0and L[y,] =0, it follows that L[c,y, + C,Y,] = 0 also. Therefore,
regardless of the values of ¢, and c,, y as given by Eq. (8) does satisfy the differential
equation (2) and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of [Eq. (2), we can
construct adoubly infinite family of solutions by means of Eq. (8). The next questionis
whether all solutions of |Eq. (2)|are included in Eq. (8), or whether there may be other
solutions of adifferent form. We begin to address this question by examining whether
the constants ¢, and ¢, in Eq. (8) can be chosen so as to satisfy the initial conditions
. Theseinitial conditions require ¢, and c, to satisfy the equations

Clyl(to) + Czyz(to) = yO,

, , ) )
C1Y1(ty) + CyYa(ty) = Yo
Upon solving Egs. (9) for ¢, and c,, we find that
YoYa(ty) — Yo¥u(ty) —Yo¥1(ty) + VoY (t)
3 072\"0 0J2\'0 CZ_ 0Y1\0 0Y1\'0 (10)

- yl(to)yé(to) - yi(to)yz(to) ' B yl(to)yé(to) - yi(to)yz(to) ’
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Theorem 3.2.3

EXAMPLE

3

or, in terms of determinants,

‘ Yo Y,(to) ‘ y; () Yo '
Yo o Ya(ty) yi(ty) Yo
Y, (ty) Yo(ty) |’

y; (t) Yo (to)
y1(ty) Ya(to) yi(t) Ya(ty)

With these values for ¢; and c, thefexpression (8)|satisfies the initial[conditions (3)| as
well asthe differential

In order for the expressions for ¢, and c, in[Egs. (10)]or (11) to make sense, it is
necessary that the denominators be nonzero. For both ¢, and ¢, the denominator is the
same, namely, the determinant

Wz‘ww Yty
yl(to) y2 (to)

The determinant W is called the [Wronskianodeter minant] or simply the[Wronskian]
of the solutions y; and y,.. Sometimes we use the more extended notation W(y; , y,)(t;)
to stand for the expression on the right side of Eq. (12), thereby emphasizing that the
Wronskian depends on the functions y, and y,, and that it is evaluated at the point t,,.
The preceding argument suffices to establish the following result.

1=‘ 2=‘ . (11)

= Y1t ¥a(ty) — Y1ty Y, (tp). (12)

Suppose that y, and y, are two solutions of
LIVl =y’ + p)y +at)y =0,
and that the Wronskian
W=Y1¥2 = 1Y,
is not zero at the point t, where the initial
Yt =Y, V() = Yo
are assigned. Then there is a choice of the constants c,, ¢, for whichy = ¢y, (t) +

C,Y,(t) satisfies the differential jequation (2) land the initial{conditions (3)

In[Example 1 of Section 3.1 we found that y, (t) = e % and y,(t) = e are solutions
of the differential equation

y' + 5y +6y=0.

Find the Wronskian of y, and y,,.
The Wronskian of these two functionsis

—2t —3t
W = e e — _e B
- _ 2672t _Sef3t - .

3Wronskian determinants are named for Josef Maria Hoéné-Wronski (1776-1853), who was born in Poland but
spent most of his life in France. Wronski was a gifted but troubled man, and his life was marked by frequent
heated disputes with other individuals and institutions.
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Theorem 3.2.4

Since W is nonzero for all values of t, the functions y, and y, can be used to construct
solutions of the given differential equation, together with initial conditions prescribed
at any valueof t. Onesuchinitial value problem wassolved in[Example 2 of Section 3.1}

The next theorem justifies the term “ general solution” that we introduced in Section
for the linear combination ¢y, + C,Y,.

If y, and y, are two solutions of the differential jequation (2),

LIyl =y + p)y +q(t)y =0,

and if thereisapoint t, where the Wronskian of y, and y, is nonzero, then the family
of solutions

y= Clyl(t) + Czyz(t)
with arbitrary coefficients ¢, and c, includes every solution of [Eq. (2).

Let ¢ beany solution of[Eq. (2]. To prove thetheorem we must show that ¢ isincluded
in the linear combination c,y; + c,Y,; that is, for some choice of the constants ¢, and
C,, the linear combination is equal to ¢. Let t, be a point where the Wronskian of y,
and y, is nonzero. Then evaluate ¢ and ¢" at this point and call these values y, and yj,
respectively; thus

Yo = ¢(ty), Yo = ¢'(ty).
Next, consider the initial value problem
Y +phy +at)y =0, Yyt =Y, Yy ="Yo (13)
The function ¢ is certainly a solution of thisinitial value problem. On the other hand,
since W(y,,Y,)(t,) isnonzero, it is possible (by Theorem 3.2.3) to choose ¢, and ¢, so
that y = ¢y, (t) + C,Y,(1) isaso asolution of theinitial value problem (13). In fact,

the proper values of ¢, and c, are given by [Egs. (10)|or (11)] The uniqueness part of
Theorem 3.2.1 guarantees that these two solutions of the same initial value problem
are actually the same function; thus, for the proper choice of ¢, and c,,

P = Clyl(t) + Czyz(t),

and therefore ¢ is included in the family of functions of c,y, + c,y,. Finally, since
¢ isan arbitrary solution of it follows that every solution of this equation is
included in this family. This completes the proof of Theorem 3.2.4.

Theorem 3.2.4 states that, as long as the Wronskian of y; and y, is not everywhere
zero, thelinear combination ¢, y; + C,Y, containsall solutions of Itistherefore
natural (and we have already done thisin the preceding section) to call the expression

y= Clyl(t) + Czyz(t)

with arbitrary constant coefficients thejgeneral solution of [Eq. (2)| The solutions y,
and y,,, with anonzero Wronskian, are said to form a[fundamental set of solutions of
Eq. (2)|
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To restate the result of Theorem 3.2.4 in dlightly different language: To find the
general solution, and therefore all solutions, of an equation of the[form (2)] we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely thisin several examples in[Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions” in[Section 3.1]do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned in

, aswell as many other problems of asimilar type.

Supposethat y, (t) = €1 and y, (t) = €"2" are two solutions of an equation of the form
(2). Show that they form a fundamental set of solutionsif r, #r.,.
We calculate the Wronskian of y, and y.,:

gt gt
W = =, —r)exp[(r, +rt].
rlerlt rzerzt 2 1 1 2

Since the exponential function is never zero, and sincer, — r, # 0 by the statement of
the problem, it follows that W is nonzero for every value of t. Consequently, y, and y,
form afundamental set of solutions.

Show that y, (t) = t*? and y,(t) = t~* form afundamental set of solutions of
2%y’ +3ty —y=0, t>0. (14)

Wewill show in[Section 5.5 how to solve Eq. (14); seeal soProblem 381n Section 3.4)
However, at this stage we can verify by direct substitution that y, and y, are solutions
of the differential equation. Since y;(t) = 1t~%? and y{(t) = — 5t %%, we have

22—t Gt -t = (-3 + -2 =0
Similarly, y5(t) = —t=2 and y; (t) = 2t 3, s0
222 +3A(-tH -t rT=@d-3-Htt =0
Next we calculate the Wronskian W of y, and y,:
t1/2 t? _
Wl g e | =R )

Since W # Ofort > 0, we concludethat y, and y, form afundamental set of solutions
there.

In several cases, we have been able to find a fundamental set of solutions, and
therefore the general solution, of agiven differential equation. However, thisis often a
difficult task, and the question may arise asto whether or not a differential equation of
thelform (2)|always has afundamental set of solutions. The following theorem provides
an affirmative answer to this question.
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Theorem 3.2.5 Consider the differential

EXAMPLE

6

Llyl=y"+ p)y +q(t)y =0,

whose coefficients p and g are continuous on some open interval |. Choose some
point t, in | . Let y, be the solution of [Eq. (2)|that also satisfies the initial conditions

y(to) =1, y/(to) =0,

and let y, be the solution of Eq. (2)|that satisfies the initial conditions
y(to) =0, y/(to) =1

Then 'y, and y, form afundamental set of solutions of Eq. (2)

First observe that the existence of the functions y; and y, is assured by the existence
part of [Theorem 3.2.1. To show that they form a fundamental set of solutions we need
only calculate their Wronskian at t:

t t
WLy, () = | 1l Yol _‘ 1 0

y1(to) Ya(to) 0 1
Since their Wronskian is not zero at the point t, the functions y, and y, do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the difficult part of this proof, demonstrating the existence of a pair of
solutions, istaken care of by reference to[Theorem 3.2.1. Note also that Theorem 3.2.5
does not address the question of how to solve the specified initial value problems so
as to find the functions y, and y, indicated in the theorem. Nevertheless, it may be
reassuring to know that a fundamental set of solutions always exists.

-1

Find the fundamental set of solutions specified by Theorem 3.2.5 for the differential
equation

y'—y=0, (16)

using theinitial point t; = 0.

In[Section 3.1 we noted that two solutions of Eq. (16) are y, (t) = €' and y,(t) =
e~'. The Wronskian of these solutions is W(y,,Y,)(t) = =2 # 0, so they form a
fundamental set of solutions. However, they are not the fundamental solutionsindicated
by Theorem 3.2.5 because they do not satisfy the initial conditions mentioned in that
theorem at the pointt = 0.

To find the fundamental solutions specified by the theorem we need to find the
solutions satisfying the proper initial conditions. Let us denote by y,(t) the solution of
Eqg. (16) that satisfies the initial conditions

y©0 =1, y'(0) =0. 17
The general solution of Eq. (16) is
y=c€ +ce’l, (18)
and theinitial conditions (17) are satisfied if ¢, = 1/2and ¢, = 1/2. Thus

y5(t) = €' + 3" = cosht.
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Similarly, if y,(t) satisfiesthe initial conditions
y(0) =0, Y0 =1, (19)
then
y,(t) = 3¢' — 1e7' = sinht.
Since the Wronskian of y, and y, is
W(Y,,Y,) (1) = cosh?t — sinh?t = 1,

these functions also form a fundamental set of solutions, as stated by|Theorem 3.2.
Therefore, the general solution of |Eq. (16)|can be written as

y =k, cosht + k, sinht, (20)

as well as in the|form (18), We have used k; and k, for the arbitrary constants in
Eq. (20) because they are not the same as the constants ¢, and c, in One
purpose of this example is to make clear that a given differential equation has more
than one fundamental set of solutions; indeed, it has infinitely many. As arule, you
should choose the set that is most convenient.

We can summarize the discussion in this section as follows. To find the genera
solution of the differential equation

y'+ p)y +qt)y =0, a<t<§B,

we must first find two functions y, and y, that satisfy the differential equation in
a <t < B. Then we must make sure that there is a point in the interval where the
Wronskian W of y, and y, is nonzero. Under these circumstances y, and y, form a
fundamental set of solutions and the general solutionis

y= Clyl(t) + Czyz(t),

where ¢, and ¢, are arbitrary constants. If initial conditions are prescribed at apoint in
a <t < gwhereW # 0, then ¢, and ¢, can be chosen so asto satisfy these conditions.

In each of Problems 1 through 6 find the Wronskian of the given pair of functions.

1. &, g 3/2 2. cost, sint
3. e 2, te 2 4. x, xe*
5. €'sint, €' cost 6. cos?0, 1+ cos29

In each of Problems 7 through 12 determine the longest interval in which the given initial value
problem is certain to have a unique twice differentiable solution. Do not attempt to find the
solution.

7. ty"+3y=t, ybh=1 y@=2

8. (t—1y’ -3ty +4y =sint, y(-2)=2, y(=2=1

9. tt—4y" +3ty +4y =2, y@) =0, y@=-1
10. y” + (cost)y' + 3(In|t))y =0, y2 =3, y@=1
1L x=3)y"+xy' +(nixpy=0, y@D) =0 y@D=1
12 x=2y'+y+x-2(tanx)y=0, y@ =1 y@E=2
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13. Verify that y, (t) = t? and y,(t) = t~* aretwo solutions of the differential equation t?y” —
2y = Ofort > 0. Then show that c;t* + c,t * isalso asolution of thisequation for any c,
and c,.

14. Verify that y,(t) = 1 and y,(t) = t%? are solutions of the differential equation yy” -+
(y)? = Ofort > 0. Thenshow that ¢, + c,t*?isnot, ingeneral, asolution of thisequation.
Explain why this result does not contradict Theorem 3.2.2.

15. Showthatif y = ¢ (t) isasolution of thedifferential equationy” + p(t)y’ + q(t)y = g(t),
where g(t) isnot always zero, then y = c¢ (t), where c isany constant other than 1, isnot a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Cany = sin(t?) beasolution on aninterval containingt = 0 of anequation y” + p(t)y’ +
g(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and gis3e™, andif f(t) = €%, find g(t).

18. If the Wronskian W of f and gist2e', andif f(t) =t, find g(t).

19. If W(f, g)istheWronskianof f andg,andifu = 2f — g, v = f + 2g, findtheWronskian
W(u, v) of uand v interms of W(f, g).

20. If the Wronskian of f and g istcost —sint, and if u= f +3g,v = f — g, find the
Wronskian of u and v.

In each of Problems 21 and 22 find the fundamental set of solutions specified by Theorem 3.2.5
for the given differential equation and initial point.

21. y'+y -2y =0, t,=0 22. y'+4y +3y=0, t,=1

In each of Problems 23 through 26 verify that the functions y, and y, are solutions of the given

differential equation. Do they constitute a fundamental set of solutions?

23. y'+4y =0, y, (1) =cos2t, y,(t) =sin2t

24, y' -2y +y=0; y,() =€, y,t)=te

25. X2y —x(X+2)y + x+2)y=0, x>0; Y (X) =X, Y,(X) = xe"

26. (1—xcotx)y’ —xy'+y=0 0<X<m; Y, (X) =X, Y,(X) =sinx

27. Exact Equations. Theequation P(x)y” + Q(X)y' + R(x)y = O issaid to be exact if it
can be written in the form [P(X)y']" + [ f (X)y]’ = 0, where f (x) is to be determined in
terms of P(x), Q(x), and R(x). The latter equation can be integrated once immediately,
resulting in afirst order linear equation for y that can be solved as in Section 2.1. By
equating the coefficients of the preceding equations and then eliminating f (x), show that a
necessary condition for exactnessis P”(x) — Q'(x) + R(x) = 0. It can be shown that this
is also a sufficient condition.

In each of Problems 28 through 31 use the result of Problem 27 to determine whether the given

equation is exact. If so, solve the equation.

28. Yy +xy +y=0 29. v +3x%y +xy=0

30. xy’ —(cosx)y + (snx)y=0, x>0 31 x?'+xy—-y=0 x>0

32. TheAdjoint Equation. If asecond order linear homogeneous equationisnot exact, it can
be made exact by multiplying by an appropriate integrating factor 1(x). Thus we require
that .(x) besuchthat L (X) P(X)y” 4+ (X)) Q(X)Y’ + u(X)R(X)y = 0 can bewrittenin the
form [u(xX)P(xX)y'] +[f (X)y]’ = 0. By equating coefficients in these two equations and
eliminating f (x), show that the function « must satisfy

Pu’ + (2P = Q' + (P" — Q + R = 0.

This equation is known as the adjoint of the original equation and is important in the
advanced theory of differential equations. In general, the problem of solving the adjoint
differential equation is as difficult as that of solving the original equation, so only occa-
sionaly isit possible to find an integrating factor for a second order equation.
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In each of Problems 33 through 35 use the result of Problem 32 to find the adjoint of the given
differential equation.

33. X2y +xy + (x2 —1v?)y =0, Bessel’s equation

34, 1-x%y' —2xy +a(@+1y=0, Legendre’sequation

35. Yy’ —xy =0, Airy’s equation

36. For the second order linear equation P(X)y” + Q(X)y’ + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

37. A second order linear equation P(x)y” + Q(X)Y' + R(x)y = 0 is said to be self-adjoint
if its adjoint is the same as the original eguation. Show that a necessary condition for this
equation to be self-adjoint isthat P’(x) = Q(x). Determine whether each of the equations
in Problems 33 through 35 is self-adjoint.

3.3 Linear Independence and the Wronskian

EXAMPLE

1

The representation of the general solution of a second order linear homogeneous
differential equation as alinear combination of two solutions whose Wronskian is not
zero isintimately related to the concept of linear independence of two functions. This
isavery important algebraic idea and has significance far beyond the present context;
we briefly discussit in this section.

We will refer to the following basic property of systems of linear homogeneous
algebraic equations. Consider the two—by—two system

1% +a%, =0,

8% + axX, =0,
and let A = a;,a,, — a,,a,, be the corresponding determinant of coefficients. Then
x =0, y = 0 isthe only solution of the system (1) if and only if A # 0. Further, the
system (1) has nonzero solutionsif and only if A = 0.

Two functions f and g are said to beflinearly dependent|on an interval | if there
exist two constants k; and k,, not both zero, such that

k, f(t) +k,g(t) =0 (2

for al t in |. The functions f and g are said to be|linearly independent jon an
interval | if they are not linearly dependent; that is, Eq. (2) holds for al t in | only
if k, = k, = 0. In[Section 4.1]these definitions are extended to an arbitrary number of
functions. Although it may be difficult to determine whether alarge set of functionsis
linearly independent or linearly dependent, it is usually easy to answer this question
for a set of only two functions: they are linearly dependent if they are proportional
to each other, and linearly independent otherwise. The following examples illustrate
these definitions.

)

Determine whether the functions sint and cos(t — 7 /2) are linearly independent or
linearly dependent on an arbitrary interval.
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EXAMPLE

2

Theorem 3.3.1

The given functions are linearly dependent on any interval since
k,sint +k, cos(t —7/2) =0

for al t if wechoosek, = 1andk, = —1.

Show that the functions €' and e* are linearly independent on any interval.
To establish this result we suppose that

ke +ke* =0 ©)

for al t intheinterval; we must then show that k; = k, = 0. Choose two pointst, and
t, intheinterval, wheret, # t,. Evauating Eq. (3) at these points, we obtain

k€' + k%0 =0,

4
k €1 + k,e™1 = 0. @)

The determinant of coefficientsis
eoe?s — e?ogh = el (el — €lo).

Since this determinant is not zero, it follows that the only solution of Eq. (4) is
k, = k, = 0. Hence € and * are linearly independent.

The following theorem relates linear independence and dependence to the
Wronskian.

If f and g are differentiable functions on an open interval | and if W(f, g)(t)) # 0
for some point t, in |, then f and g are linearly independent on |. Moreover, if f
and g are linearly dependent on |, then W( f, g)(t) = Oforevery tin|.

To provethefirst statement in Theorem 3.3.1, consider alinear combinationk, f (t) +
k,9g(t), and suppose that this expression is zero throughout the interval . Evaluating the
expression and its derivative at t,, we have

k]_ f (to) + kzg(to) =0,
k, f'(ty) + kg (t) = O.

The determinant of coefficients of Eqgs. (5) is precisely W( f, g)(t,), whichis not zero
by hypothesis. Therefore, the only solution of Egs. (5) isk; =k, =0,s0 f and g are
linearly independent.

The second part of Theorem 3.3.1 follows immediately from the first. Let f and g
be linearly dependent, and suppose that the conclusion is false, that is, W( f, g) is not
everywhere zero in | . Then there is a point t, such that W(f, g)(t,) # 0; by the first
part of Theorem 3.3.1 thisimplies that f and g are linearly independent, which is a
contradiction, thus completing the proof.

©®)
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We can apply this result to the two functions f (t) = €' and g(t) = €* discussed in

Example 2 For any point t, we have

W(f, 9)(ty) =

o o2l

elo 26’

Thefunctions €' and € are therefore linearly independent on any interval.

You should be careful not to read too much into Theorem 3.3.1. In particular, two
functions f and g may be linearly independent even though W( f, g)(t) = O for every
tintheinterval |. Thisisillustrated in[Problem 28]

Now let us examine further the properties of the Wronskian of two solutions of a
second order linear homogeneousdifferential equation. Thefollowing theorem, perhaps
surprisingly, gives asimple explicit formulafor the Wronskian of any two solutions of
any such equation, even if the solutions themselves are not known.

=e% £0. (6)

Theorem 3.3.2 [Abel's Theorem)"|f y, and y, are solutions of the differential equation

LIYI=y"+ p®OYy +a®)y =0, ()

where p and g are continuous on an openinterval |, thenthe Wronskian W(y;, y,)(t)
isgiven by

W(y,,¥,)(t) = cexp [—/ p(t) dt] , (8)

where c is a certain constant that depends on y, and y,, but not on t. Further,
W(y,, ¥,)(t) iseither zerofor al tin | (if c = 0) or elseisnever zeroin | (if ¢ # 0).

To prove Abel’s theorem we start by noting that y; and y, satisfy
y1 + pM®Y; +a)y, =0,
Y2 + P®)Y; +q(t)y, = 0.

If we multiply the first equation by —y,, the second by y,, and add the resulting
equations, we obtain

9

(V1Y5 = Y1¥o) + PO (Y1 Y2 — V1Y) = 0. (10)
Next, we let W(t) = W(y,,y,)(t) and observe that
W' =y,y; — ¥1¥s. (11)
Then we can write Eg. (10) in the form
W + p(Hh)W = 0. (12)

“The result in Theorem 3.3.2 was derived by the Norwegian mathematician Niels Henrik Abel (1802-1829) in
1827 and is known as Abel’s formula. Abel also showed that there is no general formula for solving aquintic, or
fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients, thereby resolving
a question that had been open since the sixteenth century. His greatest contributions, however, were in analysis,
particularly in the study of elliptic functions. Unfortunately, hiswork was not widely noticed until after his death.
The distinguished French mathematician Legendre called it a“monument more lasting than bronze.”
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EXAMPLE

3

Theorem 3.3.3

Equation (12) can be solved immediately since it is both afirst order linear equation

Section 2.1) bnd a separable equation|(Section 2.2). Thus
W(t) = cexp [—/ p() dt] , (13)

where ¢ is a constant. The value of ¢ depends on which pair of solutions of is
involved. However, since the exponential functionisnever zero, W(t) isnot zero unless
¢ =0, in which case W(t) is zero for al t, which completes the proof of Theorem
3.3.2

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by amultiplicative constant, and that the Wronskian
of any fundamental set of solutions can be determined, up to a multiplicative constant,
without solving the differential equation.

In[Example 5 of Section 3.2we verified that y, (t) = t¥2 and y,(t) = t ! are solutions
of the equation

2t2y" + 3ty —y =0, t > 0. (14)
Verify that the Wronskian of y, and y, is given by Eq. (13).

From the example just cited we know that W(y,, y,)(t) = —(3/2)t~*/2. To use
Eqg. (13) we must write the differential equation (14) in the standard form with the
coefficient of y” equal to 1. Thus we obtain

/! + 3 / 1 _ 0
iy —py=>
S0 p(t) = 3/2t. Hence

3 3
W(y;, ¥,)(t) =c exp [—/ o dt] =cexp (_5 Int>
=ct %2, (15)

Equation (15) givesthe Wronskian of any pair of solutionsof Eq. (14). For the particul ar
solutions given in this example we must choosec = —3/2.

A stronger version of |Theorem 3.3.1|can be established if the two functionsinvolved
are solutions of a second order linear homogeneous differential equation.

Let y, and y, be the solutions of
LIyl =y"+ pt)Y +q®)y =0,

where p and g are continuous on an open interval |. Then y, and y, are linearly
dependent on | if and only if W(y,, y,)(t) iszerofor all t in |. Alternatively, y, and
y, arelinearly independent on | if and only if W(y,, y,)(t) isnever zeroin | .

Of course, we know by|Theorem 3.3.2Jthat W(y;,, Y,)(t) iseither everywhere zero or
nowhere zeroin | . In proving Theorem 3.3.3, observefirst that if y, and y, arelinearly
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dependent, then W(y,, y,)(t) iszeroforal tin | by Theorem 3.3.1. It remainsto prove
the converse; that is, if W(y,, y,)(t) is zero throughout |, then y, and y, are linearly
dependent. Let t, beany pointin I ; then necessarily W(y;, y,)(t,) = 0. Consequently,
the system of equations

C1Y1(tp) + C¥,(tg) =0,
Cly/l(to) + Czyé(to) =0

for ¢, and c, has a nontrivial solution. Using these values of ¢, and c,, let ¢(t) =

¢, ¥, (1) + C,y,(1). Then ¢ isasolution of [Eq. (7)), and by Egs. (16) ¢ also setisfiesthe
initial conditions

(16)

¢(to) =0, d)/(to) =0. (17)

Therefore, by the uniqueness part of [Theorem 3.2.1} or by [Example 2 of Section 3.2)
¢(t) = O0foraltinl.Since¢(t) = c,y,(t) + c,Y,(t) withc, and c, not both zero, this
meansthat y, and y, are linearly dependent. The alternative statement of the theorem
follows immediately.

We can now summarize the facts about fundamental sets of solutions, Wronskians,
and linear independence in the following way. Let y, and y, be solutions of

y' 4+ p)y +qt)y =0,

where p and g are continuous on an openinterval | . Then thefollowing four statements
are equivalent, in the sense that each one implies the other three:

1. Thefunctionsy, andy, are afundamental set of solutionson I.
2. Thefunctionsy, and y, arelinearly independent on I ..

3. W(y,, ¥,)(ty) # Ofor somet,in|.

4. W(y, Y,)(t) #O0foraltinl.

It is interesting to note the similarity between second order linear homogeneous
differential equations and two-dimensional vector algebra. Two vectors a and b are
said to belinearly dependent if there are two scalars k; and k,, not both zero, such that
k,a+ k,b = 0; otherwise, they are said to be linearly independent. Let i and j be unit
vectors directed along the positive x and y axes, respectively. Sincek,i + k,j = 0only
if k, =k, = 0, the vectorsi and j are linearly independent. Further, we know that any
vector a with components a, and a, can bewrittenasa = a,i + a,j, that is, asalinear
combination of the two linearly independent vectorsi and j. It is not difficult to show
that any vector in two dimensions can be expressed as alinear combination of any two
linearly independent two-dimensional vectors (segProblem 14). Such apair of linearly
independent vectors is said to form a basis for the vector space of two-dimensional
vectors.

The term vector space is also applied to other collections of mathematical objects
that obey the samelaws of addition and multiplication by scalarsthat geometric vectors
do. For example, it can be shown that the set of functions that are twice differentiable
on the open interval | forms avector space. Similarly, the set V of functions satisfying
also forms a vector space.

Since every member of V can be expressed as alinear combination of two linearly
independent members y; and y,, we say that such apair formsabasisfor V. Thisleads
tothe conclusion that V istwo-dimensional; therefore, it isanalogous in many respects
to the space of geometric vectorsin aplane. Later wefind that the set of solutions of an
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nth order linear homogeneous differential equation forms a vector space of dimension
n, and that any set of n linearly independent solutions of the differential equation
forms abasisfor the space. This connection between differential equations and vectors
congtitutes a good reason for the study of abstract linear algebra.

PROBLEMS In each of Problems 1 through 8 determine whether the given pair of functions is linearly
—  jndependent or linearly dependent.

20.

21.

22.

23.

1. f(t) =t?+5t, g(t) =t>—5t

2. f(0) = cos3, g(¥) = 4cos’6 — 3cose

3. f(t) =t cosut, gty =€e'snut, pu#0

4. f(x)=e*, g(x) = e*D

5. f()=3t—5 gt) =9t —15 6. f()=t. gt =t*

7. f(t) =3t, gt) = [t| |8 f0)=x g(x) = [x°

9. TheWronskian of two functionsis W(t) =t sin“t. Arethe functions linearly independent
or linearly dependent? Why?

10. The Wronskian of two functionsis W(t) = t> — 4. Are the functions linearly independent
or linearly dependent? Why?

11. If the functions y, and y, are linearly independent solutions of y” + p(t)y’ + q(t)y = 0,
prove that ¢,y and c,y, are also linearly independent solutions, provided that neither c,
nor c, is zero.

12. If thefunctionsy, and y, are linearly independent solutions of y” + p(t)y’ +q(t)y =0,
provethaty, =y, + y,andy, =y, — Y, asoformalinearly independent set of solutions.
Conversely, if y, and y, are linearly independent solutions of the differential equation,
show that y, and y, are also.

13. If thefunctionsy, and y, are linearly independent solutions of y” + p(t)y’ + q(t)y =0,
determine under what conditions the functions y, = a,y, +a,y, and y, = by, + b,y,
also form alinearly independent set of solutions.

14. (a) Provethat any two-dimensional vector can be written as alinear combination of i + j

andi—j.

(b) Prove that if the vectors x = x,i + X,j and y = y,i +y,j are linearly independent,
then any vector z = zi + z,j can be expressed as a linear combination of x and y. Note
that if x and y are linearly independent, then x,y, — x,y, # 0. Why?

In each of Problems 15 through 18 find the Wronskian of two solutions of the given differential
equation without solving the equation.

15.
17.
18.

19.

2y —t(t+2)y + (t+2y=0 16. (cost)y” + (sint)y' —ty =10

X2y £ xy + (x2 —v?)y =0, Bessel’s equation

(1—x%)y —2xy +a(@+1)y =0, Legendre's equation

Show that if p is differentiable and p(t) > O, then the Wronskian W(t) of two solutions
of [p(t)y] +q(t)y = 0isW(t) = c/p(t), where c isaconstant.

If y, and y, are linearly independent solutions of ty” + 2y + te'ly =0 and if
W(y,, ¥,)(1) = 2, find the value of W(y,, ¥,)(5).

If y, and y, are linearly independent solutions of t2y" — 2y + (3+t)y =0 and if
W(y;. ¥,)(2) = 3, find the value of W(y,, y,)(4).

If the Wronskian of any two solutions of y” + p(t)y’ + q(t)y = 0 is constant, what does
this imply about the coefficients p and q?

If f, g, and h are differentiable functions, show that W(fg, fh) = f2W(g, h).

In Problems 24 through 26 assume that p and g are continuous, and that the functionsy, and y,
are solutions of the differential equation y” + p(t)y’ + q(t)y = O on an openinterval | .
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24. Provethat if y, and y, are zero at the same point in |, then they cannot be a fundamental
set of solutions on that interval.

25. Provethatif y, and y, have maximaor minima at the same point in |, then they cannot be
afundamental set of solutions on that interval.

26. Provethat if y, and y, have a common point of inflection t, in I, then they cannot be a
fundamental set of solutionson | unlessboth p and g are zero at t,,.

27. Show that t and t2 are linearly independent on —1 <t < 1; indeed, they are linearly
independent on every interval. Show also that W(t, t?) is zero at t = 0. What can you
conclude from this about the possibility that t and t2 are solutions of adifferential equation
y' + p(t)y +q(t)y = 0? Verify that t and t? are solutions of the equation t?y” — 2ty’ +
2y = 0. Does this contradict your conclusion? Does the behavior of the Wronskian of t
and t2 contradict Theorem 3.3.2?

28. Show that the functions f (t) = t?|t| and g(t) = t> are linearly dependenton 0 <t < 1
andon —1 <t < 0, but are linearly independent on —1 <t < 1. Although f and g are
linearly independent there, show that W( f, g) iszeroforaltin—1 <t < 1. Hence f and
g cannot be solutions of an equation y” + p(t)y’ + q(t)y = 0 with p and g continuous on
—-1l<t<1

3.4 Complex Roots of the Characteristic Equation

We continue our discussion of the equation
ay’ +by +cy=0, @

where a, b, and ¢ are given real numbers. In|Section 3.1|we found that if we seek
solutions of theform y = €', thenr must be aroot of the characteristic equation

ar?+br+c=0. 2)

If the rootsr, and r, are real and different, which occurs whenever the discriminant
b? — 4ac is positive, then the general solution of Eq. (1) is

y =c, €1’ + &2, 3)

Suppose now that b? — 4ac is negative. Then the roots of Eq. (2) are conjugate
complex numbers; we denote them by

rh=»x+ipu, r,=»x—iu, (4)
where A and u are real. The corresponding expressions for y are
yi(O) =expl( +imt], Y1) = exp[(h —iwt]. ©)

Our first task isto explore what is meant by these expressions, which involve evaluating
the exponential function for a complex exponent. For example, if A = —1, u = 2, and
t = 3, then from Eq. (5)

y,(3) = e ©®)

What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler’s formula.
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Euler's Formula.  To assign ameaning to the expressions in[Egs. (5)|we need to give
a definition of the complex exponential function. Of course, we want the definition to
reduce to the familiar real exponentia function when the exponent is real. There are
several ways to accomplish this extension of the exponential function. Here we use a
method based on infinite series; an alternative is outlined in[Problem 28]
Recall from calculus that the Taylor seriesfor €' aboutt = Ois
o0 tn
e = — —00 <t < 0. @)

n’
n=0

If we now assume that we can substitute it for t in Eq. (7), then we have
it __
© _Z n!
n=0
( 1)nt2n ( 1)n 1t2n 1
8
Z (2n)! Z @n-1! °’ ®

n=0

where we have separated the sum into its real and imaginary parts, making use of the
factthati? = —1,i% = —i,i% = 1, and so forth. Thefirst seriesin Eq. (8) is precisely
the Taylor series for cost about t = 0, and the second is the Taylor series for sin t
about t = 0. Thus we have

€' = cost +i sint. (9)

Equation (9) is known as Euler’s formula and is an extremely important mathematical
relationship. While our derivation of Eqg. (9) isbased on the unverified assumption that
the series (7) can be used for complex aswell asreal values of theindependent variable,
our intention isto use this derivation only to make Eq. (9) seem plausible. We now put
matters on afirm foundation by adopting Eq. (9) asthe definition of €. In other words,
whenever we write €', we mean the expression on the right side of Eq. (9).

There are some variations of Euler’sformulathat are a so worth noting. If wereplace
t by —t in Eq. (9) and recall that cos(—t) = cost and sin(—t) = — sint, then we have

e 't = cost — i sint. (10)

Further, if t isreplaced by ut in Eg. (9), then we obtain ageneralized version of Euler’'s
formula, namely,

et = cosut + i sinut. (11)
Next, we want to extend the definition of the exponential function to arbitrary complex
exponents of theform (A + i w)t. Since we want the usual properties of the exponential
function to hold for complex exponents, we certainly want exp[ (A + i w)t] to satisfy
e(x+i wt e’“ei ut (12)
Then, substituting for et from Eq. (11), we obtain
et — e (cospt + i sinut)
= e cosut +ietsinut. (13)
We now take Eq. (13) as the definition of exp[ (A + i )t]. The value of the exponential

function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real and
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imaginary parts of exp[(A + i u)t] are expressed entirely in terms of elementary real -
valued functions. For example, the quantity in has the value

e 38 — e3cos6 +ie3sin6 = 0.0478041 — 0.0139113i.
With the[definitions (9) fand| (13)|it is straightforward to show that the usual laws of

exponents are valid for the complex exponential function. It is also easy to verify that
the differentiation formula

d ty et
& =re (14)

also holds for complex valuesof r.

Real-Valued Solutions. The functions y, (t) and y,(t), given by|Egs. (5)|and with
the meaning expressed by [Eq. (13)] are solutions of [Eq. (I)]when the roots of the
characteristigequation (2) pre complex numbers A =+ i .. Unfortunately, thesolutions y,
and y, are complex-valued functions, whereasin general we would prefer to have real-
valued solutions, if possible, becausethedifferential equationitself hasreal coefficients.
Such solutions can be found as a consequence of[Theorem 3.2.2] which states that if
y, and y, are solutions of| Eq. (1), then any linear combination of y, and y, isalso a
solution. In particular, let us form the sum and then the difference of y, and y,. We
have

Y, (1) + y,(t) = €' (cospt + i sinut) + € (cosut — i sinput)
= 2’ cos ut

and
y,(t) — Y, (t) = e'(cosut +i sinut) — e (cosut — i sinut)
=2 e’“ sinut.

Hence, neglecting the constant multipliers 2 and 2i, respectively, we have obtained a
pair of real-valued solutions

u(t) = e cosput, v(t) = etsinput. (15)

Observe that u and v are simply the real and imaginary parts, respectively, of y, .
By direct computation you can show that the Wronskian of u and v is

W(u, v)(t) = ue?t. (16)

Thus, aslong as i # 0, the Wronskian W is not zero, so u and v form afundamental
set of solutions. (Of courseg, if © = 0, then the roots are real and the discussionin this
section is not applicable.) Consequently, if the roots of the characteristic equation are
complex numbers A = i 11, with u # 0, then the general solution of[Eq. (1)]is

y = ¢, cosut + c,e" sinut, (17)

wherec, and ¢, are arbitrary constants. Note that the solution (17) can be written down
as soon as the values of A and & are known.
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EXAMPLE

EXAMPLE

| EXAMPLE

Find the general solution of

y'+y +y=0. (18)
The characteristic equation is
r’+r+1=0,
and itsroots are
_Z1lxd-4 1,3
2 2 2
Thusi = —1/2 and . = +/3/2, so the general solution of Eq. (18) is
y = c,e 2 cos(v/3t/2) + c,e V2 sin(v/3t/2) . (19)
Find the general solution of
y"+9y=0. (20)

The characteristic equation isr? + 9 = 0 with the roots r = £3i; thus A = 0 and
u = 3. The genera solutionis

y = ¢, cos3t +c,sin3t; (2D

note that if the rea part of the roots is zero, as in this example, then there is no
exponential factor in the solution.

Find the solution of the initial value problem
16y” — 8y’ + 145y = 0, y(0) = -2, Yy (0 =1 (22

The characteristic equation is 16r2 — 8r + 145 = O and itsrootsarer = 1/4 + 3i.
Thus the general solution of the differential equation is

y = c,6/%cos3t + c,e/*sin3t. (23)
To apply thefirst initial condition we sett = 0in Eq. (23); this gives
y(0) =c¢, = -2

For the second initial condition we must differentiate Eq. (23) and then sett = 0. In
this way we find that

y'(0) = %c, +3c, =1,
from which ¢, = 1/2. Using these values of ¢, and c, in Eq. (23), we obtain
y = —26"/*cos3t + 3e/*sin3t (24)

as the solution of the initial value problem (22).

We will discuss the geometrical properties of solutions such as these more fully in
| Section 3.8,|s0 we will be very brief here. Each of the solutions u and v in[Egs. (15)

represents an oscillation, because of the trigonometric factors, and also either grows or
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decaysexponentially, depending on thesign of A (unlessA = 0). In|Example 1we have

A= —1/2 < 0, so solutions are decaying oscillations. The graph of atypical solution
of is shown in Figure 3.4.1. On the other hand, » = 1/4 > 0 in Example
[3] so solutions of the differential are growing oscillations. The graph
of the[solution (24)] of the given Initia value problem is shown in Figure 3.4.2. The
intermediate case is illustrated in[Example 2Jin which 1 = 0. In this case the solution

neither grows nor decays exponentially, but oscillates steadily; a typical solution of
Eq. (20) fis shown in|Figure 3.4.3

y
2 |
1
4 6
| | | —i—
2 \/ 8 t

FIGURE 3.4.1 A typica solutionof y’ +y +y=0.

10— y = —2et4 cos 3t + et/4 sin 3t
| /\ /\
5 \/ \—/

FIGURE 3.4.2 Solution of 16y” — 8y' + 145y =0, y(0) = -2, y'(0) = 1.
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FIGURE 3.4.3 A typica solution of y” + 9y = 0.

PROBLEMS

In each of Problems 1 through 6 use Euler's formula to write the given expression in the form
a+ib.

1. exp(l+2i) 2. exp2-3i)
3 € 4, /2
5. 21—i 6. 7_[—1+2i

In each of Problems 7 through 16 find the general solution of the given differential equation.

7.y =2y +2y=0 8 y' —2y+6y=0
9. yv+2y—-8y=0 10. y'+2y+2y=0
11. y'+6y +13y=0 12. 4y +9y=0
13. y'+2y +125y=0 14. 9y"+9y —4y =0
15. y'+y + 125y =0 16. y'+4y +6.25y =0

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing t.
17. y'+4y =0, y(0) =0, y©O=1
18. y' +4y' +5y =0, y0) =1, VY0 =0
19. y' -2y +5y=0, y(@/2) =0, Y@/2)=2
20. y'+y=0, y(@/3) =2, Y(@/3)=-4
21. y'+y +1.25y =0, y0) =3, Y0 =1
22. Y +2y +2y=0, y(r/8) =2, Y(r/d)=-2
23. Consider theinitial value problem
U —u+2u=0, u0 =2 U@ =0.
(8 Find the solution u(t) of this problem.
(b) Findthefirst timeat which |u(t)| = 10.
24. Consider theinitial value problem

5u” +2u +7u =0, ul0) =2 U0 =1.

(&) Findthe solution u(t) of this problem.
(b) Findthesmallest T suchthat ju(t)] <O0.1foralt > T.

25. Consider theinitial value problem
y' +2y +6y=0, y0) =2, Y0 =ao>0.

(8 Findthe solution y(t) of this problem.
(b) Findo sothat y = Owhent = 1.
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(c) Find, asafunction of «, the smallest positive value of t for whichy = 0.
(d) Determine thelimit of the expression found in part (c) asa — oo.
p [ 26. Consider theinitial value problem

y' +2ay + (@®+ 1)y =0, y(0) =1, y(0) =0.

(a) Findthe solution y(t) of this problem.
(b) Fora = 1findthesmallest T suchthat |y(t)] < O0.1fort > T.
(¢) Repeat part (b) fora = 1/4, 1/2, and 2.
(d) Usingtheresultsof parts(b) and (c), plot T versusa and describe the relation between
T and a.
27. Show that W(e* cosut, e sinut) = ue?t.
28. Inthis problem we outline a different derivation of Euler’s formula.
(@) Show that y, (t) = cost and y,(t) = sint are a fundamental set of solutions of y” +
y = 0; that is, show that they are solutions and that their Wronskian is not zero.
(b) Show (formally) that y = €' isaso asolution of y’ + y = 0. Therefore,

€' = c, cost + ¢, sint (i)

for some constants ¢, and c,. Why is this so?
(c) Sett =0inEq. (i) toshow that c, = 1.
(d) Assuming that Eq. (14) istrue, differentiate Eq. (i) and then sett = 0 to conclude that
¢, =i.Usethevaluesof ¢, and ¢, in Eq. (i) to arrive at Euler's formula.
29. Using Euler’'sformula, show that

cost = (€' + e /2, sint = (€' —e Y /2i.

30. If €' isgiven by Eq. (13), show that €172 = 1'e’2" for any complex numbersr, andr,,.
31. If €' isgiven by Eq. (13), show that

d t _ t
ae’ =rd

for any complex number r.
32. Let the read-valued functions p and q be continuous on the open interval |, and let
y = ¢ () = u(t) +iv(t) beacomplex-valued solution of

y' 4+ p)y +qt)y =0, (i

where u and v are real-valued functions. Show that u and v are aso solutions of Eq. (i).
Hint: Substitute y = ¢ (t) in Eq. (i) and separate into real and imaginary parts.

33. If thefunctions y, and y, are linearly independent solutions of y” + p(t)y’ + q(t)y =0,
show that between consecutive zeros of y, there is one and only one zero of y,. Note that
this result is illustrated by the solutions y, (t) = cost and y,(t) = sint of the equation
y// + y — 0

Change of Variables. Often adifferential equation with variable coefficients,
y'+ p®Yy +at)y =0, 0]

can be put in amore suitable form for finding a solution by making a change of the independent
and/or dependent variables. We explore these ideas in Problems 34 through 42. In particular, in
Problem 34 we determine conditions under which Eq. (i) can be transformed into a differential
equation with constant coefficients and thereby becomes easily solvable. Problems 35 through
42 give specific applications of this procedure.

34. Inthis problem we determine conditions on p and g such that Eq. (i) can be transformed
into an equation with constant coefficients by a change of the independent variable. Let
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X = u(t) bethe new independent variable, with the relation between x and t to be specified

later.
(8 Show that
dy dx dy d?y  [dx)\?d% N d?x dy
dt — dt dx’ dt?  \dt/ dx?  dt? dx’
(b) Show that the differential equation (i) becomes
dx\?d?%y [d?x dx\ dy .
(%) ae+ ( @ T POG ) g Havy =0 o

(c) In order for Eq. (i) to have constant coefficients, the coefficients of d?y/dx? and of
y must be proportional. If q(t) > 0, then we can choose the constant of proportionality to
be 1; hence

X =u(t) = f[q(t)]l/z dt. (iii)

(d) With x chosen as in part (c) show that the coefficient of dy/dx in Eq. (ii) isaso a
constant, provided that the expression
q'(t) + 2pt)q(t)
2q®)]*?
is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients

by a change of the independent variable, provided that the function (q' + 2pq)/q¥? isa
constant. How must this result be modified if q(t) < 0?

(iv)

In each of Problems 35 through 37 try to transform the given equation into one with constant
coefficients by the method of Problem 34. If thisis possible, find the general solution of the
given equation.

3By 4ty +ety=0  —oo<t<oo
36. Yy +3ty +t2y =0, —00 <t <00
37. ty' + (2 -1y +t3y =0, O<t<oo
38. Euler Equations. An equation of the form

t2y’ +aty + By =0, t>0,

where « and B are real constants, is called an Euler equation. Show that the substitution
x = Int transforms an Euler equation into an equation with constant coefficients. Euler
equations are discussed in detail in Section 5.5.

In each of Problems 39 through 42 use the result of Problem 38 to solve the given equation for
t>0.

39. 2y 4ty +y=0 40. t?y" +4ty +2y=0
41. t2y" 4+ 3ty +1.25y =0 42. t2y" — 4ty —6y =0

3.5 Repeated Roots; Reduction of Order

In earlier sections we showed how to solve the equation

ay’ +by' +cy=0 QD
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EXAMPLE

1

when the roots of the characteristic equation
ar’+br+c=0 2

are either real and different, or are complex conjugates. Now we consider the third
possibility, namely, that the two rootsr, and r, are equal. This case occurs when the
discriminant b? — 4ac is zero, and it follows from the quadratic formula that

r,=r,=—b/2a. G
The difficulty isimmediately apparent; both roots yield the same solution
y,(t) = e/ )

of the differential|equation (1), and it is not obvious how to find a second solution.

Solve the differential equation
y' +4y +4y =0. 5)
The characteristic equationis
r’+4r +4=(r +272=0,

sor, =r, = —2. Therefore one solution of Eq. (5) isy,(t) = e 2. Tofind the general
solution of Eq. (5) we need a second solution that is not a multiple of y;. This second
solution can be found in several ways (see|Problems 20 through 22); here we use a
method originated by D’Alembert®in the eighteenth century. Recall that since y, (1) is
asolution of[Eq. (1)] soiscy, (t) for any constant c. The basic ideaisto generalize this
observation by replacing c by afunction v(t) and then trying to determine v(t) so that
the product v(t)y, (t) isasolution of

To carry out this program we substitutey = v(t)y, (t) i nand usetheresulting
eguation to find v(t). Starting with

y = vy, (t) = v(t)e ™, (6)
we have
y =v'(t)e? - 2ut)e? @)
and
Yy =v'(t)e? —4'(t)e ? + du(t)e 2. (8)

By substituting the expressionsin Egs. (6), (7), and (8) in Eq. (5) and collecting terms,
we obtain

[v"(t) — 4/ (1) + dv(t) 4+ 4 (1) — 8u(t) + 4v(t)]e? =0,
which simplifiesto
v'(t) = 0. (9)
5Jean d' Alembert (1717-1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli, and
isknown primarily for hiswork in mechanics and differential equations. D’ Alembert’s principlein mechanics and
d’ Alembert’s paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper on

vibrating stringsin 1747. In his later years he devoted himself primarily to philosophy and to his duties as science
editor of Diderot’s Encyclopédie.
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Therefore
v'(t) =c;
and
v(t) = ¢t +¢,, (10

where ¢, and c, are arbitrary constants. Finally, substituting for v(t) in(Eq. (6), we
obtain
y=cte?+ce (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y; (1) = exp(—2t), but the first term arises from a second solution, namely y,(t) =
t exp(—2t). These two solutions are obviously not proportional, but we can verify that
they are linearly independent by calculating their Wronskian:

e—2t te—2t
W(ylv yz)(t) == _2e—2t (1 _ Zt)e—ZI

=e M _2te*f2ae=e*£0.
Therefore
b =e?  yb=te? (12)

form afundamental set of solutions of |EqQ. (5){ and the genera solution of that equation
isgivenby Eq. (11). Notethat both y, (t) and y,(t) tendto zeroast — oo; consequently,
al solutions of behave in this way. The graph of atypical solution is shown in
Figure 3.5.1.

| | \ \
0.5 1 1.5 2 t

FIGURE 35.1 A typical solution of y” + 4y’ + 4y = 0.

The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients in
Eq. (1) satisfy b? — 4ac = 0, in which case

y]_(t) — e—bt/Za

is asolution. Then we assume that
y = vy, ) = v(t)e ™/ (13)
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2

and substitute in|Eg. (1)|to determine v(t). We have
b
y/ — v/(t)e—bt/Za _ 5U(t)e—bt/2a (14)

and
y// — v//(t)efbt/Za _ Ev/(t)efbt/Za + b_zv(t)efbt/Za‘ (15)
a 4a°

Then, by substituting in[Eq. (1), we obtain
” b ’ b2 l b —bt/2a __
{a |:v t) — av t) + Ev(t)] +b [v t) — %v(t)] + Cv(t)} e =0. (16

Canceling the factor exp(—Dbt/2a), which is nonzero, and rearranging the remaining
terms, we find that

b> b?
av’(t) + (=b+b)v'(t) + (E ~ % + C) v(t) =0. 17

Theterminvolving v’ (t)isobviously zero. Further, the coefficient of v(t) isc — (b?/4a),
which isalso zero because b? — 4ac = 0in the problem that we are considering. Thus,
just asin Example 1, Eq. (17) reducesto

v'(t) =0;
therefore,
v(t) = ¢t +¢,.

Hence, from|Eqg. (13), we have

y = cte ™™/ 4 c e 2, (18)
Thusy isalinear combination of the two solutions
y) =Ry =te R (19
The Wronskian of these two solutionsis
e—bt/2a te—bt/Za
W(y,, ¥,) () = _Eefbt/Za 1_ bt obt/za | = e /A, (20)
2a 2a

Since W(y,, ¥,)(t) is never zero, the solutions y, and y, given by Eqg. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of [Eq. (I)]when
the roots of the characteristic equation are equal. In other words, in this case, there is
one exponential solution corresponding to the repeated root, while a second solutionis
obtained by multiplying the exponential solution by t.

Find the solution of theinitial value problem
y' —y +0.25y =0, y0) =2 Y0 =23 (21)
The characteristic equation is
r?—r+025=0,
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sotherootsarer, =r, = 1/2. Thusthe general solution of the differential equationis
y = c,e/2 4+ c,te'’2 (22)
Thefirst initial condition requires that
y(0) =c, =2

To satisfy the second initial condition, wefirst differentiate Eq. (22) and thensett = 0.
This gives

y(© =1ic,+c,=1,
S0 ¢, = —2/3. Thus, the solution of the initial value problem is
y = 2e'/% — 2te'/2, (23)
The graph of this solution is shown in Figure 3.5.2.

y'(0) = 2: y = 2et2 + tet2

y'(0) = %: y =26t _ %te"2

1

FIGURE 352 Solutions of y' —Yy +0.25y = 0, y(0) = 2, with y'(0) = 1/3 and with
y'(0) = 2, respectively.

Let us now modify the initial valug problem (21)|by changing the initial slope; to
be specific, let the second initia condition be y'(0) = 2. The solution of this modified
problemis

y = 2e"/? 4 te'/2
and itsgraphisalso shownin Figure 3.5.2. The graphs shown in thisfigure suggest that
there is a critical initial slope, with a value between % and 2, that separates solutions
that grow positively from those that ultimately grow negatively. In|Problem 16|you are
asked to determine this critical initial slope.
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The geometrical behavior of solutionsissimilar in thiscaseto that when therootsare
real and different. If the exponents are either positive or negative, then the magnitude
of the solution grows or decays accordingly; the linear factor t has little influence.

A decaying solution is shown in| Figure 3.5.1|and growing solutions in[Figure 3.5.2.
However, if the repeated root is zero, then the differential equation is y” = 0 and the

general solution isalinear function of t.
Summary. We can now summarize the results that we have obtained for second order
linear homogeneous equations with constant coefficients,
ay” +by +cy=0. (@)
Letr, andr, be the roots of the corresponding characteristic polynomial
ar?+br+c=0. 2

If r, and r, are real but not equal, then the general solution of the differential
equation (1) is

y = c, €' + ¢, €. (24)
If r, andr, are complex conjugates A + i i, then the general solution is
y = ¢,e" cosut + €' sinut. (25)
If r, =r,, then the general solutionis
y =c, €1t + ¢t (26)
Reduction of Order. It isworth noting that the procedure used earlier in this section

for equationswith constant coefficientsismore generally applicable. Suppose weknow
one solution y, (t), not everywhere zero, of

y'+ p)y +a@®)y =0. (27)

To find a second solution, let
y =v(®)y,(t); (28)

then

y =00y (0) + v®)y;(t)
and

y' = 0"y, (1) + 20" (1) y;(t) + v(t)yy (b).

Substituting for y, y’, and y” in Eq. (27) and collecting terms, we find that

yiv" + (2yp + pypv' + (¥ + pyy +ay)v = 0. (29)

Sincey, isasolution of Eq. (27), the coefficient of v in Eq. (29) iszero, so that Eq. (29)
becomes

y,v” + (2y; + pyv' = 0. (30)

Despiteits appearance, Eqg. (30) isactually afirst order equation for the function v’ and
can be solved either as a first order linear equation or as a separable equation. Once
v’ has been found, then v is obtained by an integration. Finally, y is determined from
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EXAMPLE

3

PROBLEMS

his procedure is called the method of reduction of order because the crucial
step is the solution of afirst order differential equation for v’ rather than the original
second order equation for y. Although it is possible to write down aformulafor v(t),
we will instead illustrate how this method works by an example.

Given that y, (t) = t~* isasolution of
2t2y" + 3ty —y =0, t >0, (31)

find a second linearly independent solution.
Weset y = v(t)t~L; then

y = vt —ot? y = vt - 20t 4 20t 3
Substituting for y, y', and y” in Eq. (31) and collecting terms, we obtain

220"t — 20t 2+ 20t + 3t (Wt — vt ) — ot
=2t + (—4+3)v + @1 -3t -t
=2tv" —v =0. (32)

Note that the coefficient of v is zero, as it should be; this provides a useful check on
our algebra.
Separating the variables in Eq. (32) and solving for v'(t), we find that

v (t) = ct?;
then
v(t) = Zet¥? + k.
It follows that
y = Zct? 4kt 1, (33)

where ¢ and k are arbitrary constants. The second term on the right side of Eq. (33) is
amultiple of y, (t) and can be dropped, but the first term provides a new independent

solution. Neglecting the arbitrary multiplicative constant, we have y, (t) = t1/2,

In each of Problems 1 through 10 find the general solution of the given differential equation.

1L y-2y+y=0 2. 9y +6y +y=0

3. 4y’ —4y —3y=0 4, 4y" +12y' +9y =0
5 y' -2y +10y=0 6. y -6y +9y=0

7. 4y +17y +4y =0 8. 16y’ +24y +9y =0
9. 25y" —20y' +4y =0 10. 2y"+2y +y=0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing t.

11. 9y” — 12y’ +4y =0, y0) =2, Yy (0 =-1

12. y'—6y' +9y=0, y(0=0 y©0=2

13. 9y" + 6y + 82y = 0, y0)=-1,_ V() =2

|14. ¥ +4y' +4y =0, y-) =2 Vy(-1=1
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>

15. Consider the initial value problem
4y" + 12y +9y =0, yO =1, y(© =-4

(@) Solvetheinitial value problem and plot its solutionfor 0 <t < 5.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates (t,, Y,) of the minimum point.
(d) Change the second initial condition to y'(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

16. Consider the following modification of the initial value problem in Example 2:

y' —y +0.25y =0, y(0) =2, Y0 =h.

Find the solution as afunction of b and then determine the critical value of b that separates
solutions that grow positively from those that eventually grow negatively.
17. Consider theinitial value problem

4" +4y +y=0, yO=1 Yy0O=2

(@) Solvetheinitial value problem and plot the solution.
(b) Determine the coordinates (t,,y,,) of the maximum point.
(c) Changethesecondinitial conditiontoy’(0) = b > 0and find the solution asafunction
of b.
(d) Find the coordinates (t,,,y,,) of the maximum point in terms of b. Describe the
dependence of t,, and y,, on b asb increases.

18. Consider theinitial value problem

9y + 12y +4y =0, yO =a>0, y(@©=-1

(@) Solvetheinitial value problem.
(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

19. If therootsof the characteristic equation arereal, show that asolution of ay” + by’ + cy =
0 can take on the value zero at most once.

Problems 20 through 22 indi cate other ways of finding the second solution when thecharacteristic
equation has repeated roots.

20. (a) Consider the equation y” 4 2ay’ + a?y = 0. Show that the roots of the characteristic
equation arer, =r, = —a, s0 that one solution of the equation ise™".
(b) Use Abel’s formula [Eq. (8) of Section 3.3] to show that the Wronskian of any two

solutions of the given equation is
W) =y, (DY) = Vi Oy, (1) = ce ™,

where c, isaconstant.
(c) Let y (1) = e and use the result of part (b) to show that a second solution is
y,(t) =te ™.

21. Suppose that r, and r, are roots of ar?+br +c=0 and that r, #r,; then exp(r t)
and exp(r,t) are solutions of the differential equation ay” 4 by’ 4 cy = 0. Show that
(t;r,,r,) =[exp(r,t) — exp(r )] /(r, —r,) isalsoasolution of theequationforr, #r,.
Then think of r; asfixed and use L' Hospital’s rule to evaluate the limit of ¢ (t;r,r,) as
r, — r,, thereby obtaining the second solution in the case of equal roots.

22. (@) Ifar?+br +c = 0hasequal rootsr , show that

LI =a@E@)” +bEe") +cd' = ar —r))%". (i)
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Since the right side of Eq. (i) iszerowhenr =r, it follows that exp(r,t) is asolution of
Lly] =ay’+by +cy=0.

(b) Differentiate Eq. (i) with respect tor and interchange differentiation with respect to r
and with respect to t, thus showing that

E%L[e"] =L [i%e”] = L[te"] = ate"' (r —r)?+ 2a€''(r —r,). (i)

Sincetheright sideof Eq. (ii) iszerowhenr =r, concludethat t exp(r,t) isalso asolution
of L[y] =0.

In each of Problems 23 through 30 use the method of reduction of order to find a second solution
of the given differential equation.

23. t?y' — 4ty +6y=0, t>0; y, () =t?

24. t2y' 42ty —2y=0, t>0; y, (D) =t

25. t?y" 4+3ty +y=0, t>0; y,) =t

26. t2%y —t(t4+2y +(t+2y=0 t>0 y, () =t

27. xy' —y +43y =0, x>0; y,(X) = sinx?

28. x—1Yy' —xy+y=0, x>1, y,(X) = €

29. x?y' — (x—0.1875y =0, x> 0, y,(x) = xM4e2Vx

30. X2y +xy +(x>—025y=0, x>0 y,(X) = x"?sinx
31. Thedifferential equation

xy" — (x+ N)y' + Ny =0,

where N is a nonnegative integer, has been discussed by several authors® One reason it is
interesting is that it has an exponential solution and a polynomial solution.

(a) Verify that one solutionisy, (x) = €*.

(b) Show that a second solution has the form y, (x) = ce* [ xNe ™ dx. Calculate y,(X)
for N = 1and N = 2; convince yourself that, withc = —1/N!,

1. X x? xN
Notethat y,(x) isexactly thefirst N 4 1 termsin the Taylor series about x = 0 for €*, that

is, for y, (x).
32. Thedifferential equation

y'+8(xy'+y)=0

arisesin the study of the turbulent flow of a uniform stream past acircular cylinder. Verify
that y, (x) = exp(—38x2/2) is one solution and then find the general solution in the form of
an integral.

33. The method of Problem 20 can be extended to second order equations with variable
coefficients. If y, isaknown nonvanishing solution of y” + p(t)y’ + q(t)y = 0, show that
asecond solution y, satisfies (y,/y,)" = W(yl,yz)/yf, where W(y,,Y,) isthe Wronskian
of y, and y,. Then use Abel’s formula[Eq. (8) of Section 3.3] to determine .

In each of Problems 34 through 37 use the method of Problem 33 to find a second independent
solution of the given equation.

34. t2y 43ty +y=0, t>0; y,() =t~!

35ty —y +4t3%y =0, t>0; y, () = sin(t?)

5T. A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathematical Monthly
81 (1974), pp. 592—601. Also see the references given there.




3.6 Nonhomogeneous Equations; Method of Undetermined Coefficients 169

6. x—1y'—xy'+y=0, x>1 y,(X) = €
37. X2y +xy +(x*—025y=0, x>0 y,(x) = x Y2sinx

Behavior of Solutionsast — oco. Problems38through 40 are concerned with the behavior
of solutionsin thelimit ast — oo.

38. If a, b, and c are positive constants, show that all solutionsof ay” + by’ + cy = 0 approach
zeroast — oo.

39. (@ Ifa>0andc >0, butb=0, show that the result of Problem 38 is no longer true,
but that all solutions are bounded ast — oo.
(b) Ifa>0andb > 0, but c =0, show that the result of Problem 38 is no longer true,
but that all solutions approach a constant that depends on theinitial conditionsast — oo.
Determine this constant for theinitial conditions y(0) = y,.y'(0) = .

40. Show that y = sint isasolution of

Yy’ + (ksin’t)y + (1 —kcostsint)y =0

for any valueof theconstant k. If 0 < k < 2, showthat1 — kcost sint > Oandksin?t > 0.
Thus observe that even though the coefficients of this variable coefficient differential equa-
tion are nonnegative (and the coefficient of y' is zero only at the pointst = O, =, 27, .. .),
it has a solution that does not approach zero ast — oco. Compare this situation with the
result of Problem 38. Thus we observe anot unusual situation in the theory of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations.  Use the substitution introduced in Problem 38 in Section 3.4 to solve each
of the equations in Problems 41 and 42.

41. t?y" — 3ty +4y =0, t>0
42, 2y +2ty +025y =0, t=0

3.6 Nonhomogeneous Equations; Method of
Undetermined Coefficients

We now return to the nonhomogeneous eguation
LIyl =y’ + p®)y +a®y = g, @
where p, g, and g are given (continuous) functions on the open interval | . The equation
LIyl =y’ + p®Y +a®)y =0, 2

in which g(t) = O and p and g are the same asin Eq. (1), is called the homogeneous
equation corresponding to Eg. (1). The following two results describe the structure of
solutions of the nonhomogeneous equation (1) and provide a basis for constructing its
general solution.
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Theorem 3.6.1

Theorem 3.6.2

If Y, and Y, are two solutions of the nonhomogeneous |equation (1); then their
difference Y, — Y, is a solution of the corresponding homogeneousequation (2). If,
in addition, y, and y, are afundamental set of solutions of |Eq. (2), then

Y]_(t) - Yz(t) = C]_yj_(t) + Czyz(t)a (3)
where ¢, and c, are certain constants.

To prove this result, note that Y, and Y, satisfy the equations

L[Yl](t) = g(t)7 L[Yz](t) = g(t)- (4)
Subtracting the second of these equations from the first, we have
LY, — L[Y,](1) = gt) —gt) =0. )

However,
LLY,] — L[Y,] = L[Y, — Y,],
so Eq. (5) becomes
LY, — Y,](t) = 0. (6)
Equation (6) states that Y, — Y, isasolution of Eq. (2). Finaly, since all solutions of
[Eq. (2)|can be expressed as linear combinations of a fundamental set of solutions by

Theorem 3.2.4} it follows that the solution Y, — Y, can be so written. Hence Eq. (3)
holds and the proof is complete.

The genera solution of the nonhomogeneous can be written in the form

y=¢@1) =cy () +CY,t) + Y, ()
wherey, and y, areafundamental set of solutions of the corresponding homogeneous

¢, and ¢, are arbitrary constants, and Y is some specific solution of the
nonhomogeneous[equalTon (1)

The proof of Theorem 3.6.2 follows quickly from the preceding theorem. Note that
Eq. (3) holds if we identify Y, with an arbitrary solution ¢ of [Eq. (1)|and Y, with the
specific solution Y. From Eq. (3) we thereby obtain

¢ — Y (1) = Cy; (D) + Gy, (1), )

which isequivaent to Eq. (7). Since ¢ isan arbitrary solution of Eq. (1), the expression
on the right side of Eq. (7) includes all solutions of |Eq. (1)} thusit is natural to call it
the general solution of

In somewhat different words, Theorem 3.6.2 statesthat to solve the nonhomogeneous
equation (1), we must do three things:

1. Find the genera solution c,y, (t) 4 C,Y,(t) of the corresponding homogeneous
eguation. This solution is frequently called the complementary solution and may
be denoted by y,(t).

2. Find some single solution Y (t) of the nonhomogeneous equation. Often this solu-
tion isreferred to as a particular solution.

3. Add together the functions found in the two preceding steps.
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We have already discussed how to find y_(t), at least when the homogeneous equa-
has constant coefficients. Therefore, in the remainder of this section and in the
next, we will focus on finding a particular solution Y (t) of thefnoNhOMOgeneous equar|
There are two methods that we wish to discuss. They are known as the method
of undetermined coefficients and the method of variation of parameters, respectively.
Each has some advantages and some possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients re-
quiresthat wemake aninitial assumption about the form of the particular solution Y (t),
but with the coefficients left unspecified. We then substitute the assumed expression
into and attempt to determine the coefficients so as to satisfy that equation. If
we are successful, then we have found a solution of the differential [equation (1)|and
can useit for the particular solution Y (t). If we cannot determine the coefficients, then
this means that there is no solution of the form that we assumed. In this case we may
modify the initial assumption and try again.

The main advantage of the method of undetermined coefficientsisthat it is straight-
forward to execute once the assumption is made as to the form of Y(t). Its mgjor
limitationisthat it isuseful primarily for equations for which we can easily write down
the correct form of the particular solution in advance. For this reason, this method
is usually used only for problems in which the homogeneous equation has constant
coefficients and the nonhomogeneous term is restricted to a relatively small class of
functions. In particular, we consider only nonhomogeneous terms that consist of poly-
nomials, exponential functions, sines, and cosines. Despite this limitation, the method
of undetermined coefficients is useful for solving many problems that have important
applications. However, the algebraic details may become tedious and a computer alge-
bra system can be very helpful in practical applications. We will illustrate the method
of undetermined coefficients by several simple examples and then summarize some
rulesfor using it.

Find a particular solution of
y’ — 3y — 4y = 3e*. 9)

We seek a function Y such that the combination Y”(t) — 3Y’(t) — 4Y(t) is equa
to 3e?*. Since the exponential function reproduces itself through differentiation, the
most plausible way to achieve the desired result isto assumethat Y (t) issome multiple
of €%, that is,

Y(t) = Ae*,
where the coefficient A isyet to be determined. To find A we calculate
Y'(t) =2Ae?, Y1) = 4A¢€”,

and substitute for y, y’, and y” in Eq. (9). We obtain
(4A — BA — 4A)E* = 3.
Hence —6Ae* must equal 3e**, so A = —1/2. Thusaparticular solution is
Y(t) = —3e. (10)
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Find a particular solution of
y’" — 3y — 4y = 2sint. (1)

By analogy with|Example 1, let us first assume that Y (t) = Asint, where Aisa
constant to be determined. On substituting in Eq. (11) and rearranging the terms, we
obtain

—5Asint — 3Acost = 2sint,
or
(2+5A) sint + 3Acost = 0. (12)

Thefunctionssint and cost arelinearly independent, so Eq. (12) can hold on aninterval
only if the coefficients 2 + 5A and 3A are both zero. These contradictory regquirements
mean that there is no choice of the constant A that makes Eq. (12) true for all t. Thus
we conclude that our assumption concerning Y (t) isinadequate. The appearance of the
cosine term in Eq. (12) suggests that we modify our original assumption to include a
cosinetermin Y (t), that is,

Y (t) = Asint + B cost,
where A and B areto be determined. Then
Y'(t) = Acost — Bsint, Y”(t) = —Asint — B cost.

By substituting these expressionsfor y, y', and y” in Eq. (11) and collecting terms, we
obtain

(-=A+3B —4A)sint + (—B — 3A — 4B) cost = 2sint. (13)

To satisfy Eq. (13) we must match the coefficients of sint and cost on each side of the
equation; thus A and B must satisfy the equations

—5A+3B =2, —3A-5B=0.
Hence A = —5/17 and B = 3/17, so aparticular solution of Eq. (11) is

Y(t) = —2 sint + 2 cost.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y =3y —4y =42 — 1, (14)

weinitially assumethat Y (t) isapolynomial of the same degree asthe nonhomogeneous
term, that is, Y (t) = At? + Bt + C.

To summarize our conclusions up to this point: if the nonhomogeneous term g(t)
in[Eq. (1)]is an exponential function €', then assume that Y (t) is proportional to the
same exponential function; if g(t) issin Bt or cos t, then assumethat Y (t) isalinear
combination of sin Bt and cospt; if g(t) is a polynomial, then assume that Y (t) is
a polynomial of like degree. The same principle extends to the case where g(t) is
a product of any two, or al three, of these types of functions, as the next example
illustrates.
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Find a particular solution of
y’ — 3y — 4y = —8¢' cos2t. (15)

In this case we assume that Y (t) is the product of €' and a linear combination of
cos2t and sin2t, that is,

Y(t) = Ae' cos2t + Be' sin2t.
The algebrais more tediousin this example, but it follows that
Y'(t) = (A+ 2B)€' cos2t + (—2A + B)e' sin2t
and
Y’(t) = (—3A + 4B)e' cos2t + (—4A — 3B)e' sin2t.
By substituting these expressions in Eq. (15), wefind that A and B must satisfy
10A+2B =38, 2A—-10B =0.
Hence A = 10/13 and B = 2/13; therefore a particular solution of Eq. (15) is

Y(t) = 8¢ cos2t + Z€' sin2t.

Now suppose that g(t) is the sum of two terms, g(t) = g, (t) + g,(t), and suppose
that Y; and Y, are solutions of the equations

ay” + by’ +cy =g, (16)
and

ay” + by +cy = g,(1), (17)
respectively. Then'Y, + Y, isasolution of the equation

ay”’ + by’ +cy = g(t). (18)

To prove this statement, substitute Y, (t) + Y,(t) for y in Eqg. (18) and make use
of Egs. (16) and (17). A similar conclusion holds if g(t) is the sum of any finite
number of terms. The practical significance of thisresult isthat for an equation whose
nonhomogeneous function g(t) can be expressed as a sum, one can consider instead
several simpler equations and then add the results together. The following exampleis
an illustration of this procedure.

Find a particular solution of
y' — 3y — 4y = 3e* + 2sint — 8¢' cos2t. (19)
By splitting up the right side of Eq. (19), we obtain the three equations
y’ — 3y — 4y = 3e*,
y’" — 3y — 4y = 24dint,
and

y’ — 3y — 4y = —8¢e' cos2t.
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Sol utionsof these three equations have been found in[Examples 1] 2, an respectively.
Therefore a particular solution of [Eq. (19)|is their sum, namely,

Y(t) = —3e” + 2 cost — 2 sint + 2e' cos2t + Z€' sin2t.

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

Find a particular solution of
y" + 4y = 3cos2t. (20)

Proceeding as in|Example 2, we assume that Y (t) = Acos2t + Bsin2t. By substi-
tuting in Eq. (20), we then obtain

(4A — 4A)cos2t + (4B — 4B)sin2t = 3cos2t. (2D

Since the left side of Eq. (21) is zero, there is no choice of A and B that satisfies this
equation. Therefore, thereisno particular solution of Eq. (20) of the assumed form. The
reason for this possibly unexpected result becomes clear if we solve the homogeneous
eguation

y'+4y=0 (22)

that corresponds to Eq. (20). A fundamental set of solutions of Eq. (22) is y, (1) =
cos2t and y,(t) = sin2t. Thus our assumed particular solution of Eq. (20) is actually
a solution of the homogeneous equation (22); consequently, it cannot possibly be a
solution of the nonhomogeneous equation (20).

To find a solution of Eq. (20) we must therefore consider functions of a somewhat
different form. The simplest functions, other than cos2t and sin2t themselves, that
when differentiated lead to cos2t and sin2t aret cos2t andt sin2t. Hence we assume
that Y (t) = At cos2t + Bt sin2t. Then, upon calculating Y’(t) and Y”(t), substituting
them into Eqg. (20), and collecting terms, we find that

—4Asin2t + 4B cos2t = 3cos2t.
Therefore A = 0 and B = 3/4, so a particular solution of Eq. (20) is
Y(t) = 3tsin2t.

Thefact that in some circumstances apurely oscillatory forcing term leadsto asolution
that includes a linear factor t as well as an oscillatory factor is important in some

applications; seg Section 3.9|for afurther discussion.

The outcome of Example 5 suggests amodification of the principle stated previoudly:
If the assumed form of the particular solution duplicates a solution of the corresponding
homogeneous equation, then modify the assumed particular solution by multiplying it
by t. Occasionally, this modification will be insufficient to remove all duplication with
the solutions of the homogeneous equation, in which case it is necessary to multiply
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by t asecond time. For a second order equation, it will never be necessary to carry the
process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay’ +by +cy = g(t), (23)

where the coefficients a, b, and ¢ are constants, together with a given set of initial
conditions:

1
2.

Find the general solution of the corresponding homogeneous equation.

Make sure that the function g(t) in Eq. (23) belongs to the class of functions dis-
cussed in this section, that is, it involves nothing more than exponential functions,
sines, cosines, polynomials, or sums or products of such functions. If thisis not
the case, use the method of variation of parameters (discussed in the next section).
If gt) =g,(t) +---+ g, (), that is, if g(t) is asum of n terms, then form n
subproblems, each of which contains only one of theterms g, (1), ..., g,(t). The
i th subproblem consists of the equation

ay’ +by +cy=g ),
wherei runsfrom 1to n.
For the ith subproblem assume a particular solution Y, (t) consisting of the ap-
propriate exponential function, sine, cosine, polynomial, or combination thereof.
If there is any duplication in the assumed form of Y; (t) with the solutions of the
homogeneous equation (found in step 1), then multiply Y, (t) by t, or (if necessary)
by t2, so as to remove the duplication. See Table 3.6.1.
Find aparticular solution Y; (t) for each of the subproblems. ThenthesumY, (t) +
-+ 4 Y, (t) isaparticular solution of the full nonhomogeneous equation (23).
Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomaogeneous equation (step 5). This is the general
solution of the nonhomogeneous eguation.
Usetheinitial conditionsto determinethe values of the arbitrary constants remain-
ing in the general solution.

TABLE 3.6.1 The Particular Solution of ay” + by’ + cy = g, (t)

g ® Y (O

P =at"+at"™ + - +a, A"+ A" 4+ A)
P, (e A" + AT A e
sin gt _
P (e tS[(AL" + At 4.+ A )e* cos Bt
(D {cosﬁt [(Agt" + At "+ + A) B

+(Bot" + Byt" ' 4 - 4 B )& sint]

Notes. Here s isthe smallest nonnegative integer (s = 0, 1, or 2) that will ensurethat notermin
Y, (1) isasolution of the corresponding homogeneous equation. Equivalently, for the three cases,
sisthe number of timesQisaroot of the characteristic equation, « isaroot of the characteristic
equation, and « + i 8 isaroot of the characteristic equation, respectively.
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For some problems this entire procedure is easy to carry out by hand, but in many
cases it requires considerable algebra. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.

The method of undetermined coefficients is self-correcting in the sense that if one
assumes too little for Y (t), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if one
assumes too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at |east the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion
we have described the method of undetermined coefficients on the basis of severd
examples. To prove that the procedure always works as stated, we now give a general
argument, in which we consider several cases corresponding to different forms for the
nonhomogeneous term g(t).

g(t) = P,(t) = ayt"+ a,t" " + ... +a,. Inthiscase|Eq. (23)| becomes

ay’ +by +cy=at"+at"t+-- +a, (24)
To obtain a particular solution we assume that
Yt) = A"+ A" A P A AL (25)

Substituting in Eq. (24), we obtain
ain(n — DA 2+ - +2A L] +bMA" 4+ + A )

+C(A"F A A =at"+ -+ a. (26)
Equating the coefficients of like powers of t gives
CAy = 3y,

CA, +nbA, = a,,

CA,+DbA, _,+2aA ,=a,.

Provided that ¢ # 0, the solution of the first equationis A, = a,/c, and the remaining
equationsdetermine A, ..., A, successively. If ¢ = 0, but b # 0, then the polynomial
on the left side of Eq. (26) is of degree n — 1, and we cannot satisfy Eq. (26). To be
sure that aY”(t) + bY’(t) is a polynomial of degree n, we must choose Y (t) to be a
polynomial of degree n + 1. Hence we assume that

Y(O) =t(At"+ -+ A).

There is no constant term in this expression for Y (t), but there is no need to include
such aterm since a constant is a solution of the homogeneous equation when ¢ = 0.
Sinceb # 0, we have A, = a,/b(n + 1), and the other coefficients A,, ..., A canbe
determined similarly. If both ¢ and b are zero, we assume that

Y(©) = (A" + -+ A).

ThetermaY”(t) givesriseto aterm of degree n, and we can proceed as before. Again
the constant and linear terms in Y (t) are omitted, since in this case they are both
solutions of the homogeneous equation.
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g(t) = e P,(t). The problem of determining a particular solution of

ay” + by +cy = €'P, () (27)
can be reduced to the preceding case by a substitution. Let

Y(t) = etu(t);

then

Y'(t) = €U’ (t) + au(t)]
and

Y'(t) = e [u”(t) + 22U’ (t) + ¢?u(t)].

Substituting for y, y', and y” in Eq. (27), canceling the factor €', and collecting terms,
we obtain

au”(t) + (2ax + b)u'(t) + (@ + ba + c)u(t) = P, (t). (28)

The determination of a particular solution of Eq. (28) is precisely the same problem,
except for the names of the constants, as solving Therefore, if aw? + b + ¢
is not zero, we assume that u(t) = Agt" +--- + A, ; hence a particular solution of
Eq. (27) isof theform

Y(t) = € (A" + At" T+ A (29)

On the other hand, if ac? + ba + ¢ is zero, but 2a« + b is not, we must take u(t) to
be of the form t(AOtn +---+ A)). The corresponding form for Y(t) ist times the
expression on theright side of Eq. (29). Notethat if ac? + bo + ciszero, thene” isa
solution of the homogeneous equation. If both ao? + ba + ¢ and 2aa + b arezero (and
thisimpliesthat both €' and te” are solutions of the homogeneous equation), then the
correct form for u(t) ist?(At" +--- + A,). Hence Y (t) ist? times the expression on
the right side of Eq. (29).

g(t) = "' P, (t) cosBt or €' P, (t)sin Bt. These two cases are similar, so we con-
sider only the latter. We can reduce this problem to the preceding one by noting that,
as a consequence of Euler’s formula, sin gt = (€' — e ') /2i. Hence g(t) is of the
form

e(a+i,f3)t _ e(ot—iﬂ)t

2i

gt) = P,(t)
and we should choose
Y(t) = e(‘”iﬁ)t(AOt“ +-+A)+ e(“*iﬁ)t(Bot” +---+ B,
or equivaently,
Y(t) = e (At" + -+ A) cosBt + e (Byt" + - -- + B,) sinBt.

Usually, the latter form is preferred. If o + i8 satisfy the characteristic equation cor-
responding to the homogeneous equation, we must, of course, multiply each of the
polynomials by t to increase their degrees by one.

If the nonhomogeneous function involves both cos 8t and sin Bt, it is usually con-
venient to treat these terms together, since each one individually may give rise to the
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same form for a particular solution. For example, if g(t) =t sint + 2cost, the form
for Y (t) would be

Y(t) = (At + A) sint + (Bt + B,) cost,

provided that sint and cost are not solutions of the homogeneous equation.

PROBLEMS

VVYyVVYVYYVYY

In each of Problems 1 through 12 find the general solution of the given differential equation.
1 y' —2y —3y =23t 2. y'+2y +5y=3sn2t
3. y' —2y —3y=—3te" 4. y' 42y =3+4s8n2t
5 y' +9y=t%*+6 6. YV +2y+y=2e"
7. 2y +3y +y=1t?+3snt 8. y'+y=23sn2t+tcos2t
9. U +wiu=coswt,  @?# w} 10. U” + w3u = cosw,t
11. y" +y + 4y = 2sinht Hint: sinht = (' — e™")/2
12. y'—y —2y=cosh2t  Hint: cosht = (€' +e7%)/2
In each of Problems 13 through 18 find the solution of the given initial value problem.
13. y'+y —2y=2t, y0 =0 y©0=1
14. y' + 4y =t* + 3¢, y0) =0, y(@©0) =2
15. ¥/ =2y +y=te +4, yO =1 y0=1
16. y’ — 2y — 3y = 3te?, y0 =1, y@© =0
17. y" +4y =3sin2t, y0) =2, Yy (@0 =-1
18. y’' 42y +5y =4e ' cos2t, yO) =1, Y0 =0
In each of Problems 19 through 26:
(@) Determine asuitableform for Y (t) if the method of undetermined coefficientsisto be
used.
(b) Use acomputer algebra system to find a particular solution of the given equation.
19. y' 4+ 3y =2t +t2%e ¥ £ sn3t P 20. V' +y=t(l+sint)
21. y' — 5y +6y = € cos2t + e* (3t + 4) sint
22. y' +2y +2y=3e" 4 2e ' cost + e 't?sint
23. Yy — 4y +4y = 2t2 + 4te® +tsin2t
24. y' +4y =1?sin2t + (6t + 7) cos2t
25. y" +3y +2y =€'(t?+1)sin2t + 3e " cost + 4€'
26. y' 42y + 5y = 3te"' cos2t — 2te % cost
27. Determine the general solution of
N
y'+2%y =) a, sinmnrt,
m=1
whered > 0and A Zma form=1,..., N.
28. In many physical problems the nonhomogeneous term may be specified by different for-

mulasin different time periods. As an example, determine the solution y = ¢ (t) of

O<t<m,

t
/" _ s
y+y_{ et t >m,

satisfying the initial conditions y(0) = 0 and y'(0) = 1. Assume that y and y’ are also
continuous at t = 7. Plot the nonhomogeneous term and the solution as functions of time.
Hint: First solvetheinitial value problem for t < ; then solvefort > 7, determining the
constants in the latter solution from the continuity conditionsatt = 7.
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29. Follow theinstructionsin Problem 28 to solve the differential equation

" / 1 O0<t=<m/2,
y+2y+5y={ 0 t>n/2”/

with theinitial conditions y(0) = 0 and y'(0) = 0.

Behavior of Solutionsast I «. In Problems 30 and 31 we continue the discussion started
with Problems 38 through 40 of Section 3.5. Consider the differential equation

ay” + by +cy =g, 0]
where a, b, and ¢ are positive.

30. If Y, (t) and Y, (1) are solutions of Eq. (i), show that Y, (t) — Y,(t) — Oast — oo. Isthis
result trueif b = 0?

31. If g(t) = d, aconstant, show that every solution of Eq. (i) approachesd/c ast — oo. What
happensif c = 0? What if b = 0 also?

32. Inthisproblem we indicate an alternate proceduréz]for solving the differential equation

y’ 4+ by +cy = (D?+bD +c)y = g(t), @i

where b and ¢ are constants, and D denotes differentiation with respect tot. Letr, andr,
be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.

(@) Verify that Eq. (i) can be written in the factored form

(D —=r)(D—ry)y=g),
wherer, +r, = —bandrr,=c.

(b) Letu= (D —r,)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

(D =rpu=g®, (D =ryy=u.

In each of Problems 33 through 36 use the method of Problem 32 to solve the given differential
equation.

33, y'—3y —4y =3e® (seeExamplel)

34, 2y" +3y +y=1t243sint (seeProblem?7)

35. y'+2y +y=2e" (seeProblem 6)

36. y'+2y =3+4sin2t (seeProblem 4)

3.7 Variation of Parameters

In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, known as yariation of parameters| is due to
Lagrange and complements the method of undetermined coefficients rather well. The
main advantage of variation of parametersisthat it isageneral method; in principle at
least, it can be applied to any equation, and it requires no detailed assumptions about

R. S. Luthar, “Another Approach to a Standard Differential Equation,” Two Year College Mathematics Journal 10
(1979), pp. 200—201; also see D. C. Sandell and F. M. Stein, “Factorization of Operators of Second Order Linear
Homogeneous Ordinary Differential Equations,” Two Year College Mathematics Journal 8 (1977), pp. 132-141,
for amore general discussion of factoring operators.
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the form of the solution. In fact, later in this section we use this method to derive a
formulafor a particular solution of an arbitrary second order linear nonhomogeneous
differential equation. On the other hand, the method of variation of parameters even-
tually requires that we evaluate certain integrals involving the nonhomogeneous term
in the differential equation, and this may present difficulties. Before looking at this
method in the general case, we illustrate its use in an example.

Find a particular solution of
y’ + 4y = 3csct. 1)

Observe that this problem does not fall within the scope of the method of un-
determined coefficients because the nonhomogeneous term g(t) = 3csct involves a
guotient (rather than asum or aproduct) of sint or cost. Therefore, we need adifferent
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

y'+4y =0, ?
and that the general solution of Eq. (2) is
y.(t) = ¢, cos2t +c,sin2t. 3

The basic idea in the method of variation of parameters is to replace the constants ¢,
and c, in Eq. (3) by functionsu, (t) and u,(t), respectively, and then to determine these
functions so that the resulting expression

y = U, (t) cos2t + u,(t) sin2t 4)

isasolution of the nonhomogeneous equation (1).

To determine u, and u, we need to substitute for y from Eq. (4) in Eq. (1). However,
even without carrying out this substitution, we can anticipate that the result will be a
single equation involving some combination of u,, u,, and their first two derivatives.
Since thereis only one equation and two unknown functions, we can expect that there
are many possible choices of u; and u, that will meet our needs. Alternatively, we
may be able to impose a second condition of our own choosing, thereby obtaining two
equations for the two unknown functions u, and u,. We will soon show (following
Lagrange) that it is possible to choose this second condition in a way that makes the
computation markedly more efficient.

Returning now to Eqg. (4), we differentiate it and rearrange the terms, thereby
obtaining

y' = —2u,(t) Sin2t 4 2u,(t) cos2t + uy(t) cos2t + uy(t) sin2t. (5)

Keeping in mind the possibility of choosing a second condition on u, and u,, let us
require the last two terms on the right side of Eq. (5) to be zero; that is, we require that

uj(t) cos2t + uy(t)sin2t = 0. (6)
It then follows from Eqg. (5) that
y = —2u,(t)sin2t + 2u,(t) cos2t. @
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Although the ultimate effect of the[condition (6) is not yet clear, at the very least it has
simplified the expression for y'. Further, by differentiating we obtain

y" = —4u,(t) cos2t — 4u,(t) Sin2t — 2u3(t) Sin2t + 2u5(t) cos2t. (8)

Then, substituting for y and y” in|Eg. (1)|from|Eqs. (4)| and (8), respectively, we find
that u; and u, must satisfy

—2u}(t) Sin2t + 2u5(t) cos2t = 3csct. 9)

Summarizing our results to this point, we want to choose u, and u,, so as to satisfy

[Egs. (6)]and (9). These equations can be viewed as a pair of linear algebraic equations

for the two unknown quantities u; (t) and uj(t).[Equations (6)] Wand (9) can be solved in
[Eq. @)

various ways. For example, solving[Eg. (6)[for u5(t), we have

Cos2t
Up(t) = —Us ()<= - (10)
Then, substituting for u,(t) in Eq. (9) and simplifying, we obtain
Uy () = —w — _3cost. (11)

Further, putting this expression for u’(t) back in Eq. (10) and using the double angle
formulas, we find that

3cost cos2t 3(1 2sin’t) 3
L) = = = — 12
Uy (t) Snot 2ant chct 3sint. (12
Having obtained u’(t) and u(t), the next step is to integrate so as to obtain u, (t)
and u,(t). Theresult is

u,(t) = —-3sint + ¢, (13)
and
u,(t) = 3In|csct — cott| + 3cost + c,. (14)
Finally, on substituting these expressionsin we have

y = —3sint cos2t + g In|csct — cott|sin2t + 3cost sin2t
+ ¢, Ccos2t +C,sin2t,

y = 3sint + 3In|csct — cott|sin2t + ¢, cos2t + ¢, Sin2t. (15)

Thetermsin Eq. (15) involving the arbitrary constantsc, and ¢, arethe general solution
of the corresponding homogeneous equation, while the remaining terms are a particular

solution of the nonhomogeneouslequation (1)] Therefore Eq. (15) isthe general solution
of| Eq. (2)

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of{ Eq. (1)l The next
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guestion is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

y' '+ p)y +a)y =g, (16)

where p, g, and g are given continuous functions. As a starting point, we assume that
we know the general solution

yc(t) = C1y1(t) + Czyz(t) (17)
of the corresponding homogeneous equation
y'+ p®y +a®y=0. (18)

Thisis amajor assumption because so far we have shown how to solve Eq. (18) only
if it has constant coefficients. If Eq. (18) has coefficients that depend on t, then usually
the methods described in Chapter 5 must be used to obtain y,(t).

The crucial idea, asillustrated in[Example 1] is to replace the constants ¢, and ¢, in
Eq. (17) by functions u, (t) and u,(t), respectively; this gives

y = u ()y, (1) + u, () y,(t). (19)

Thenwetry to determine u, (t) and u,(t) so that the expressionin Eq. (19) isasolution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

Y = Uiy, () + U (O y; (1) 4 up )y, (1) + Uy (D) ya(t). (20)

Asin[Example 1] we now set the terms involving u (t) and u5(t) in Eq. (20) equal to
zero; that s, werequire that

up (DY (1) + U )y, = 0. (21)
Then, from Eq. (20), we have
Yy =u (Oyit) + U0 y;(0). (22)
Further, by differentiating again, we obtain
Y’ = Uiy (O + u )y ) + upt) ya(t) + uy®)y; (). (23)

Now we substitute for y, y', and y” in Eqg. (16) from Egs. (19), (22), and (23),
respectively. After rearranging the termsin the resulting equation we find that

u; (O ) + pOYL () +a®)y, ()]
+ ULy, () + POY(1) + D) Y, ()]
+ U Oy () + ux®)y5 ) = g(). (24)
Each of the expressions in square brackets in Eq. (24) is zero because both y, and y,
are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to
ur(DY; (1) + Ux Oy = g(b). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u;(t) and u,(t) of the unknown functions. They correspond exactly to
|Egs. (6)/and|(9) in Example 1|
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Theorem 3.7.1

PROBLEMS

By solving the system (21), (25) we obtain

Y,(H)g(t) y;(Hg(t)
Wy y)(®) Wy y) (®)
where W(y,,y,) isthe Wronskian of y, and y,. Note that division by W is permissible
since y; and y, are a fundamental set of solutions, and therefore their Wronskian is
nonzero. By integrating Eqgs. (26) wefind thedesired functionsu, (t) and u,(t), namely,

Y,(H)g(t) y;(Hg(t)
W(yy,¥,) (1) W(y;,¥,) (D)

Finally, substituting from Eq. (27) in Eq. (19) gives the general solution of Eq. (16).
We state the result as a theorem.

uj(t) = — Up(t) = (26)

uy(t) = — dt+c,  Uyt) = dt +c,. 27)

If the functions p, g, and g are continuous on an open interval |, and if the func-
tionsy, and y, are linearly independent solutions of the homogeneouslequation (18)]
corresponding to the nonhomogeneous|equation (16},

Y+ p®)y +a®y =g,
then a particular solution of |Eq. (16)|is

BRACLON / BRACLON
Y(t) = —vy,(t dt, 28
©=—%( )/ Wooyy® O | ey (8)
and the general solutionis
y =C Y, (1) + Gy, + Y(b), (29)

as prescribed by [Theorem 3.6.2.

By examining the expression (28) and reviewing the process by which we derived it,
we can see that there may be two major difficulties in using the method of variation of
parameters. As we have mentioned earlier, oneis the determination of y, (t) and y,(t),
afundamental set of solutions of the homogeneousequation (18)] when the coefficients
in that equation are not constants. The other possible difficulty isin the evaluation of
theintegrals appearing in Eq. (28). This depends entirely on the nature of the functions
V., ¥, and g. In using Eq. (28), be sure that the differential equation is exactly in the
otherwise, the nonhomogeneous term g(t) will not be correctly identified.

A major advantage of the method of variation of parametersisthat Eq. (28) provides
an expression for the particular solution Y (t) in terms of an arbitrary forcing function
g(t). This expression is a good starting point if you wish to investigate the effect of
variationsin the forcing function, or if you wish to analyze the response of a system to
anumber of different forcing functions.

In each of Problems 1 through 4 use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1y’ -5y +6y=2¢ 2.y —y -2y=2e"
3y 42y +y=3¢" 4. 4y' —4y +y =16/
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In each of Problems 5 through 12 find the general solution of the given differential equation. In
Problems 11 and 12 g is an arbitrary continuous function.

5 Yy +vy=tant, O<t<m/2 6. y' + 9y = 9sec? 3t, O<t<mn/6
7. YV 4+ 4y + 4y =t2e7 2, t>0 8. y' 44y =3csc2t, O<t<m/2
9. 4y" +y=2sec(t/2), —m<t<wm 10. Yy =2y +y=¢€/1+1?

11. y" -5y +6y =g() 12. y'+4y =g(t)

In each of Problems 13 through 20 verify that the given functions y, and y, satisfy the corre-

sponding homogeneous eguation; then find a particular solution of the given nonhomogeneous

equation. In Problems 19 and 20 g is an arbitrary continuous function.

13. t2y" —2y=3t2—-1, t>0; y,0) =t%  y,t) =t"t

14. 2y —tt+2y + t+2y =23, t>0; ) =t y,t) =te

15. ty" —(A+t)y +y=t%" t>0; y,) =1+t y,t)=¢€

16. 1-ty' +ty —y=2t-D1%", 0<t<1; y, () =€, y,t) =t

17. X2y’ —3xy +4y = x?Inx, x> 0; y,(¥) = X2, y,(X) = x?Inx

18. X%y +xy + (x* — 0.25)y = 3x*?sinx, x> 0; Y0 = xV2sinx,  y,(x) =
x~Y2 cosx

19 A—x)Y' +xy —-y=9gXx), 0<x<1; y, () =€, y,(x) =X

20. X2y" +xy +(x*—-025y=g(x), x>0 Y, () = xY2sinx,  y,(x) =

x~Y2 cosx
21. Show that the solution of the initial value problem
LIYI =y + p®Oy +q)y =91), Yt =Yy Y=Y 0)
can be written as y = u(t) + v(t), where u and v are solutions of the two initial value
problems
L[u] =0, u(ty) = Yo, u'(ty) = Yo, (i)
L[v] = g(®), v(ty) =0, v'(ty) =0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in the
initial conditionscan be dealt with separately. Observethat u iseasy tofind if afundamental
set of solutions of L[u] = 0 isknown.

22. By choosing the lower limit of integrationin Eq. (28) in thetext astheinitia point t;, show
that Y (t) becomes

! yl(s)yz(t) - yl(t)yz(s)
1o, Y1(9)Y2(S) = V1(S)Y,(S)
Show that Y (t) isasolution of theinitial value problem

L[y] =g(), y(to) =0, y/(to) =0.

ThusY can beidentified with v in Problem 21.
23. (@) Usetheresult of Problem 22 to show that the solution of the initial value problem

y'+y=9(), yty) =0, y(t)=0 (i)

Y(t) = g(s) ds.

t
y= / sin(t — s)g(s) ds. (ii)
f

(b) Find the solution of theinitial value problem
y'+y=91, yO =y, YO =y,
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29.
30.
31.
32.

24,

25.

26.

27.

28.

Use the result of Problem 22 to find the solution of theinitial value problem

L[yl = (D —a)(D —b)y = g(t), yty) =0, Y(t) =0,

wherea and b are real numberswith a # b.
Use the result of Problem 22 to find the solution of theinitial value problem

L[y] = [D? — 2oD + (A% + )]y = g(t), y(t,) =0, Yy(t)=0.

Note that the roots of the characteristic equation are A i .
Use the result of Problem 22 to find the solution of theinitial value problem

Llyl= (D -a’y=gt), Yyty)=0, Y(t)=0

where a is any real number.
By combining the results of Problems 24 through 26, show that the solution of the initial
value problem

Lly] = @D?+DbD +o)y=gt),  y(t)=0, y(t)=0,

where a, b, and ¢ are constants, has the form

t
y=¢(t)=/ K(t —s)g(s) ds. 0]

)

Thefunction K dependsonly onthe solutions y, and y, of the corresponding homogeneous
equation and is independent of the nonhomogeneous term. Once K is determined, all
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both t and s, only the
combination t — s appears, so K is actually a function of a single variable. Thinking of
g(t) as the input to the problem and ¢ (t) as the output, it follows from Eq. (i) that the
output depends on the input over the entire interval from the initial point t, to the current
valuet. Theintegra in Eq. (i) is called the[convolution|of K and g, and K is referred to
as theflerndl |

The method of reduction of order (Section 3.5) can aso be used for the nonhomogeneous
equation

y' 4+ p)y +q)y = g(t), (i)

provided one solution y, of the corresponding homogeneous equation is known. Let y =
v(t)y, (t) and show that y satisfies Eq. (i) if v isasolution of

Y (OV" + [2y3 () + pO)y; O]V = g(b). (if)

Equation (ii) is afirst order linear equation for v'. Solving this equation, integrating the
result, and then multiplying by y, (t) lead to the general solution of Eq. (i).

In each of Problems 29 through 32 use the method outlined in Problem 28 to solve the given
differential equation.

tzy” — Zty/ + 2y = 4t2, t>0; yl(t) =t
Py’ + 7ty +5y=t, t>0; yt)=t"
ty'—@A+0y +y=t%" t>0  y® =1+t (seeProblem15)

A=ty +ty —y=2t—-1%", O0<t<l1; y,(t) = € (see Problem 16)
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3.8 Mechanical and Electrical Vibrations

One of the reasons that second order linear equations with constant coefficients are
worth studying is that they serve as mathematical models of some important physical
processes. Two important areas of application are in the fields of mechanical and
electrical oscillations. For example, the motion of a mass on a vibrating spring, the
torsional oscillations of a shaft with aflywheel, the flow of electric current inasimple
series circuit, and many other physical problems are all described by the solution of an
initial value problem of the form

ay’+by +cy=g), yO =y, YO =y @

Thisillustrates afundamental relationship between mathematics and physics: Many
physical problems may have the same mathematical model. Thus, once we know
how to solve the initial value problem (1), it is only necessary to make appropriate
interpretations of the constantsa, b, and ¢, and the functions y and g, to obtain solutions
of different physical problems.

We will study the motion of amass on aspring in detail because an understanding of
the behavior of this simple system isthefirst step in the investigation of more complex
vibrating systems. Further, the principles involved are common to many problems.
Consider a mass m hanging on the end of a vertical spring of origina length I, as
shown in Figure 3.8.1. The mass causes an elongation L of the spring in the downward
(positive) direction. There are two forces acting at the point where the massis attached
to the spring; see Figure 3.8.2. The gravitational force, or weight of the mass, acts
downward and has magnitude mg, where g is the acceleration due to gravity. Thereis
also aforce F_, dueto the spring, that acts upward. If we assume that the elongation L
of the spring is small, the spring force is very nearly proportional to L; thisis known

FIGURE 3.8.1 A spring—mass system.

Fe=—kL

w=mg

FIGURE 3.8.2 Force diagram for a spring—mass system.
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as Hooke €law. Thus we write F, = —kL, where the constant of proportionality k is
called the spring constant, and the minus sign is due to the fact that the spring force
actsin the upward (negative) direction. Since the massisin equilibrium, the two forces
balance each other, which means that

mg — kL = 0. 2

For a given weight w = mg, one can measure L and then use Eq. (2) to determine k.
Note that k has the units of force/length.

In the corresponding dynamic problem we are interested in studying the motion of
the mass when it is acted on by an external force or is initially displaced. Let u(t),
measured positive downward, denote the displacement of the massfrom itsequilibrium

position at timet; seelFigure 3.8.1| Then u(t) isrelated to the forces acting on the mass
through Newton’s law of motion,

mu”(t) = f(t), ©)

where u” is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In determining f there are four
separate forces that must be considered:

1. Theweight w = mg of the mass aways acts downward.

2. The spring force F is assumed to be proportiona to the total elongation L + u of
the spring and always actsto restore the spring to its natural position. If L + u > 0,
then the spring is extended, and the spring forceis directed upward. In this case

F, = —k(L + u). ()

Ontheother hand, if L 4+ u < 0, then the spring is compressed adistance |L + ul,
and the spring force, which is now directed downward, isgivenby F, = K|L + ul.
However, when L 4+ u < 0, it follows that |[L +u| = —(L +u), so F, is again
given by Eq. (4). Thus, regardless of the position of the mass, the force exerted by
the spring is always expressed by Eq. (4).

3. Thedamping or resistiveforce F, alwaysactsinthe direction oppositeto the direc-
tion of motion of the mass. This force may arise from several sources: resistance
fromtheair or other medium in which the mass moves, internal energy dissipation
due to the extension or compression of the spring, friction between the mass and
the guides (if any) that constrain its motion to one dimension, or a mechanical
device (dashpot) that imparts aresistive force to the mass. In any case, we assume
that the resistive force is proportional to the speed |du/dt| of the mass; thisis
usually referred to as viscous damping. If du/dt > 0, then u isincreasing, so the
massis moving downward. Then F, is directed upward and is given by

Fg() = —yu'(t), ©)

where y is a positive constant of proportionality known as the damping constant.
Onthe other hand, if du/dt < 0, then u isdecreasing, the massis moving upward,
and F is directed downward. In this case, Fy = y|u'(t)[; since |u'(t)] = —U'(1),

8Robert Hooke (1635-1703) was an English scientist with wide-ranging interests. His most important book,
Micrographia, was published in 1665 and described avariety of microscopical observations. Hookefirst published
his law of elastic behavior in 1676 as an anagram: ceiiinosssttuv; in 1678 he gave the solution ut tensio sic vis,
which means, roughly, “as the force so is the displacement.”



188

Chapter 3. Second Order Linear Equations

EXAMPLE

1

it follows that Fy(t) isagain given by [Eq. (5)} Thus, regardless of the direction of
motion of the mass, the damping force is always expressed by [Eq. (5)

The damping force may be rather complicated and the assumption that it is
modeled adequately by[Eq. (5)|may be open to question. Some dashpots do behave
as|Eq. (5)|states, and if the other sources of dissipation aresmall, it may be possible
to neglect them altogether, or to adjust the damping constant y to approximate
them. An important benefit of thejassumption (5) Isthat it leadsto alinear (rather
than anonlinear) differential equation. In turn, this meansthat athorough analysis
of the system is straightforward, as we will show in this section and the next.

4. Anapplied external force F(t) isdirected downward or upward as F (t) is positive
or negative. This could be a force due to the motion of the mount to which the
spring is attached, or it could be a force applied directly to the mass. Often the
external forceis periodic.

Taking account of these forces, we can now rewrite|Newton's law (3) as
mu”(t) = mg + Fy(t) + F,(t) + F(t)

=mg — K[L + u®)] — yu'(t) + F(1). (6)
Since mg — kL = 0 by|Eq. (2)| it follows that the equation of motion of the massis
mu”(t) + yu'(t) + kut) = F(b), ()

where the constants m, y, and k are positive. Note that Eq. (7) has the same form as

[Ea. (@)

It Iis important to understand that Eq. (7) is only an approximate equation for the
displacement u(t). In particular, both[Egs. (4)|and|(5)]should be viewed as approxi-
mations for the spring force and the damping force, respectively. In our derivation we
have also neglected the mass of the spring in comparison with the mass of the attached
body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, theinitial position u, and the initial velocity v, of the mass:

u(0) = uy, u’(0) = . (8)

It follows from that these conditions give a mathematical problem
that has a unique solution. This is consistent with our physical intuition that if the
mass is set in motion with a given initial displacement and velocity, then its position
will be determined uniquely at al future times. The position of the mass is given
(approximately) by the solution of Eq. (7) subject to the prescribedinitial conditions(8).

A mass weighing 4 |b stretches a spring 2 in. Suppose that the mass is displaced an
additional 6in. in the positive direction and then released. The massisin amedium that
exerts a viscous resistance of 6 |b when the mass has a velocity of 3 ft/sec. Under the
assumptions discussed in this section, formulate the initial value problem that governs
the motion of the mass.

Therequired initial value problem consists of the differential equation (7) and initial
conditions (8), so our task is to determine the various constants that appear in these
equations. Thefirst step isto choose the units of measurement. Based on the statement
of theproblem, itisnatural to usethe English rather than the metric system of units. The
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only time unit mentioned is the second, so we will measuret in seconds. On the other
hand, both the foot and inch appear in the statement as units of length. It isimmaterial
which one we use, but having made a choice, it is important to be consistent. To be
definite, let us measure the displacement u in feet.

Since nothing is said in the statement of the problem about an external force, we
assume that F(t) = 0. To determine m note that

w 41b 1 lb-sec

g Rfyse? 8 ft

The damping coefficient y is determined from the statement that yu’ is equal to 6 Ib
when u’ is 3 ft/sec. Therefore

_ 6lb _lb-sec
T 3ftlsec T ft

The spring constant k is found from the statement that the mass stretches the spring by
2in., or by 1/6 ft. Thus

14

_ 4 0
1/6 ft ft’
Consequently, [Eq. (7)|becomes
TU” 4+ 2u' 4+ 24u =0,
or
u” + 16U’ + 192u = 0. 9)
Theinitia conditions are
u(0) = 3, u'(0) = 0. (10)

The second initia condition isimplied by the word “released” in the statement of the
problem, which we interpret to mean that the mass is set in motion with no initial
velocity.

Undamped Free Vibrations. If thereisno external force, then F (t) = Oin|Eq. (7)) Let
usalso supposethat thereisno damping, sothat y = 0; thisisanidealized configuration
of the system, seldom (if ever) completely attainable in practice. However, if the actual
damping is very small, the assumption of no damping may yield satisfactory results
over short to moderate time intervals. Then the equation of [motion (7)| reduces to

mu” + ku = 0. (11)
The general solution of Eq. (11) is
U= Acoswyt + Bsinagt, (12)
where
wg = k/m. (13)

The arbitrary constants A and B can be determined if initial conditions of thelform (8)
aregiven.
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In discussing the solution of itis convenient to rewrite[Eq. (12)]in the form
u = Rcos(w,t — §), (14)

or
U= Rcosd cosw,t + Rsind sinwt. (15)

By comparing Eqg. (15) with|Eq. (12), wefind that A, B, R, and § are related by the
equations

A = Rcosé, B = Rsins. (16)
Thus
R=+vA2+ B2 tans = B/A. (17)

In calculating § care must be taken to choose the correct quadrant; this can be done by
checking the signs of coss and sinég in Egs. (16).

The graph of Eq. (14), or the equival ent for atypical set of initial conditions
isshownin Figure 3.8.3. Thegraphisadisplaced cosine wave that describesaperiodic,
or smple harmonic, motion of the mass. The periodjof the motion is

T= i—’é = 2r (%)1/2. (18)

The circular frequency w, = +/k/m, measured in radians per unit time, is caled the
[natural frequencyjof the vibration. The maximum displacement R of the mass from
equilibrium is thg amplitude|of the motion. The dimensionless parameter § is called
the or phase angle, and measures the displacement of the wave from its normal
position corresponding to § = 0.

Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that in the absence of damping there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency w,, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, so larger masses vibrate more slowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

u

LR/‘\ ********* /\ )
R cos & ‘ ‘ ‘

FIGURE 3.8.3 Simple harmonic motion; u = Rcos(wyt — ).
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EXAMPLE

2

Suppose that a mass weighing 10 |b stretches a spring 2 in. If the massis displaced an
additional 2 in. and isthen set in motion with aninitial upward velocity of 1 ft/sec, de-
terminethe position of the massat any later time. Also determinethe period, amplitude,
and phase of the motion.

The spring constant is k = 10 1b/2 in. = 60 Ib/ft and the mass is m = w/g =
10/32 |b-sec?/ft. Hence the equation of motion reduces to

u’ +192u =0, (19)
and the general solutionis
u = Acos(8v/3t) + Bsin(8v3t).

The solution satisfying the initia conditions u(0) = 1/6 ft and u’(0) = —1 ft/secis

u= %cos(&/i—%t) - 8—\1@ sin(8v/3t). (20)

The natural frequency isw, = /192 = 13.856 rad/sec, so theperiodis T = 2 /w, =
0.45345 sec. The amplitude R and phase § are found from|Egs. (17)} We have

,_ 1, 1 _ 1

36 192 576

Thesecond of [Egs. (17)lyieldstan§ = —+/3/4. Therearetwo solutionsof thisequation,

onein the second quadrant and one in the fourth. In the present problem cosé > 0 and
sind < 0, so § isin the fourth quadrant, namely,

so R =0.18162 ft.

§ = — arctan(~/3/4) = —0.40864 rad.
The graph of the solution (20) is shown in Figure 3.8.4.

R =0.182 u =0.182 cos(8V3 t + 0.409)

ATANAWAY
IAVAYA VA

0.2

-0.2 = 0.453

FIGURE 3.8.4 An undamped freevibration; u” + 192u = 0, u(0) = 1/6, u’'(0) = —1.

Damped Free Vibrations. If weincludetheeffect of damping, thedifferential equation
governing the motion of the massis

mu” + yu’ + ku = 0. (22)
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We are especidly interested in examining the effect of variations in the damping
coefficient y for given values of the mass m and spring constant k. The roots of the
corresponding characteristic equation are

B —y £y? —4km Y 4km
[T, = = (-1+ /1-—|. (22)
2m 2m y

Depending on the sign of 32 — 4km, the solution u has one of the following forms:

y?—4km>0, u= A+ Be?; (23)
y2—4km=0, u=(A+ Bte /2, (24)

(4km _ )/2)1/2
=—F——>0

2m (2'5)
Sincem, y, andk are positive, y2 — 4kmisawayslessthan 2. Hence, if 2 — 4km >
0, then the values of r, and r,, given by Eq. (22) are negative. If y2 — 4km < 0, then
the values of r, and r, are complex, but with negative rea part. Thus, in all cases,
the solution u tends to zero as t — oo; this occurs regardless of the values of the
arbitrary constants A and B, that is, regardless of the initial conditions. This confirms
our intuitive expectation, namely, that damping gradually dissipatesthe energy initially
imparted to the system, and consequently the motion dies out with increasing time.

The most important case is the third one, which occurs when the damping is small.
If welet A= Rcosé and B = Rsiné in Eq. (25), then we obtain

u = Re 7'?Mcos(ut — §). (26)

y2—4km <0, u=e"Y?(Acosut+ Bsinut),

The displacement u lies between the curves u = +Re ""/?™; hence it resembles a
cosine wave whose amplitude decreases as t increases. A typical exampleis sketched
in Figure 3.8.5. The motion is called a damped oscillation, or a damped vibration. The
amplitude factor R dependson m, y, k, and the initial conditions.

Although the motion is not periodic, the parameter 1« determines the frequency
with which the mass oscillates back and forth; consequently, u is called the quasi
frequency. By comparing n with the frequency w, of undamped motion, we find that

1/2
wo_ (dkm y*)%/2m =1 v® / ~1 v" (27)
wy Jk/m B 4m) T 8km’
u
L RertJZm
R (;I;S N -
\ \ \ \

FIGURE 3.85 Damped vibration; u = Re™”"/2™ cos(uut — §).
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The last approximation is valid when y2/4km is small; we refer to this situation as
“small damping.” Thus, the effect of small damping isto reduce slightly the frequency
of the oscillation. By anal ogy witH Eqg. (18)|the quantity T, = 27 /u iscalled the quasi
period. It isthe time between successive maxima or successive minima of the position
of themass, or between successive passages of the massthrough itsequilibrium position
while going in the same direction. The relation between T, and T is given by

Ty © AN y?
S L [ R ~ 14+ -
T 4 (1 4km> (1 8km> ’ @9

whereagain thelast approximationisvalid when y2/4kmissmall. Thus, small damping
increases the quasi period.

[Equations (27)]and (28) reinforcethe significance of the dimensionlessratio y 2 /4km.
It is not the magnitude of y alone that determines whether damping is large or small,
but the magnitude of 12 compared to 4km. When y2/4km is small, then we can neglect
the effect of damping in cal culating the quasi frequency and quasi period of the motion.
On the other hand, if we want to study the detailed motion of the mass for al time,
then we can never neglect the damping force, no matter how small.

As y?/4km increases, the quasi frequency u decreases and the quasi period T,
increases. In fact, 1 — 0 and T, — oo as y — 2vkm. As indicated by [Egs. (23)
and[(25)] the nature of the solution changes as y passes through the value 2vkm.
Thisvalueisknown ascritical damping, whilefor larger values of y themotionissaid
to be overdamped. In these cases, given by [Egs. (24)|and/(23)} respectively, the mass
creeps back to its equilibrium position, but does not oscillate about it, as for small y.
Two typical examples of critically damped motion are shown in Figure 3.8.6, and the

situation i's discussed further in[Problems 2] and[22]

u©) =3, U=y
,Ju= (% + 2t) et/2

\{U(O) =2, u(0)=-1

(1 _3{et2
u (2 2t)e

FIGURE 3.8.6 Critically damped motions: u” + u’ + 0.25u = 0; u = (A + Bt)e "2,

-1

The motion of a certain spring—mass system is governed by the differential equation

EXAMPLE
3 u” 4+ 0.125u" +u = 0, (29)

where u ismeasured in feet and t in seconds. If u(0) = 2 and u’(0) = 0, determine the
position of the mass at any time. Find the quasi frequency and the quasi period, aswell
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as the time at which the mass first passes through its equilibrium position. Also find
thetime t such that |u(t)| < O.1foral t > 7.

The solution of [Eq. (29)|is
/255 /255
u=e4% |:Acos T t+ Bsin 1—6t:| :

To satisfy the initial conditions we must choose A = 2 and B = 2/4/255; hence the
solution of theinitial value problem is

u=g16 <2cos 255 2 sin 255t)

t
16 + /255 16

32 /255
— g /16 cos( ) ,

= A S (30)

16
wheretan$ = 1/4/255, so § = 0.06254. The displacement of the mass as afunction of
timeisshown in Figure 3.8.7. For the purpose of comparison we a so show the motion
if the damping term is neglected.

u
u'+u=0
u(@)=2,u(@©)=0
u'+0125u+u=0 W=z
2 ~ \ r i ~ .
/
I\ N A Iy A in !
I\ \ ,\ I\ | ;o\ I
I ! P! [ ! P |
I [ \ | [ i I
Iy | ll " \ | “ [ | |
| [ |
1 1 I (- P I )| ,
if \i [ Fy ;] [ Lo ]
| 'A! I P I | I
| ) | 1 | | \ | |
! if \ y\l‘ ,l ! [ ! ll |
| | ]
V\n\ S ||
\ 20 f N\_30 NA 07T S50 t
| ' i \ I \ I | | | |
W\ /! ! (. ! ! o
W\ Lo T Vo [ 1
I b o 1l I Lo
-1 p ! Lo [ L by [
| | |
Vo o i Lo ) -
‘, [ Vo [ \, 3
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/ \ A ‘o v 4
2 Y \/ S \/ W v

FIGURE 3.8.7 Vibration with small damping (solid curve) and with no damping (dashed
curve).

Thequasi frequency isu = +/255/16 = 0.998 andthe quasi periodisT, = 2r/u =
6.295 sec. These values differ only slightly from the corresponding values (1 and 27,
respectively) for the undamped oscillation. This is evident also from the graphs in
Figure 3.8.7, which rise and fall aimost together. The damping coefficient is small
in this example, only one-sixteenth of the critical value, in fact. Nevertheless, the
amplitude of the oscillation is reduced rather rapidly. shows the graph
of the solution for 40 <t < 60, together with the graphs of u = +0.1. From the
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graph it appears that ¢ is about 47.5 and by a more precise calculation we find that
T = 47.5149 sec.

To find the time at which the mass first passes through its equilibrium position, we

refer to Eq. (30) and set +/255t /16 — § equal to /2, the smallest positive zero of the
cosine function. Then, by solving for t, we obtain

f— 0 (” +5) ~ 1.637sec
V255 \ 2 - '
u
0.1 /\ u=0.1
_ 32 _ /255
u=-——e t16¢cos (Tt = 0.06254)
0.05—
\ [ \ \ \
40 45 | 50 55 YO t
|
~0.05- \
|
} u=-0.1
~01 -
|
~0.15 —\./

FIGURE 3.8.8 Solution of Example 3; determination of .

Electric Circuits. A second example of the occurrence of second order linear differ-
ential equations with constant coefficients is as a model of the flow of electric current
in the simple seriescircuit shown in Figure 3.8.9. The current |, measured in amperes,
is afunction of time t. The resistance R (ohms), the capacitance C (farads), and the
inductance L (henrys) are all positive and are assumed to be known constants. The
impressed voltage E (volts) isagiven function of time. Another physical quantity that
enters the discussion is the total charge Q (coulombs) on the capacitor at timet. The
relation between charge Q and current | is

| = dQ/dt. (31)

Resistance R Capacitance C
AW [
AV

(| Inductance L

Impressed voltage E(t)

FIGURE 3.8.9 A simpleé€lectric circuit.
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Theflow of currentin the circuit is governed by Kirchhoff 'Ssecond law: Inaclosed
circuit, the impressed voltage is equal to the sum of the voltage drops in the rest of the
circuit.

According to the elementary laws of electricity, we know that:

The voltage drop acrossthe resistor is | R.
The voltage drop across the capacitor is Q/C.
The voltage drop across the inductor is Ld| /dt.

Hence, by Kirchhoff’s law,

dl 1
Lo +RI+5Q=Ew. (32)

The units have been chosen so that 1 volt = 1 ohm - 1 ampere = 1 coulomb/1 farad =

1 henry - 1 ampere/1 second.
Substituting for | from|Eq. (31), we obtain the differential equation

LQ"+RQ' + 2Q = E®) (33

for the charge Q. Theinitial conditions are
Q(ty) = Qo Q'(ty) =1ty =, (34)
Thus we must know the charge on the capacitor and the current in the circuit at some

initial time .
Alternatively, we can obtain adifferential equationfor thecurrent | by differentiating
Eqg. (33) with respect to t, and then substituting for dQ/dt from|Eq. (31). Theresultis

1
LI"4+RI'+ 21 = E'®). (35)

with theinitial conditions

I (ty) = 1o, I'(ty) = ly. (36)
From Eq. (32) it follows that

,  Ety)—Rlg—(1/0)Q,
o= .
L
Hence | is also determined by the initial charge and current, which are physically
measurable quantities.

The most important conclusion from this discussion is that the flow of current in
the circuit is described by an initial value problem of precisely the same form as the
one that describes the motion of a spring—mass system. This is a good example of
the unifying role of mathematics. Once you know how to solve second order linear
equations with constant coefficients, you can interpret the results either in terms of
mechanical vibrations, electric circuits, or any other physical situation that leads to the
same problem.

(37)

SGustav Kirchhoff (1824-1887), professor at Breslau, Heidelberg, and Berlin, was one of the leading physicists
of the nineteenth century. He discovered the basic laws of electric circuits about 1845 while still a student at
Konigsberg. Heis also famous for fundamental work in electromagnetic absorption and emission and was one of
the founders of spectroscopy.
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PROBLEMS  1n each of Problems 1 through 4 determine w,, R, and 8 so as to write the given expression in

theform u = Rcos(wyt — §).

1. u=3cos2t +4sn2t 2. u= —cost ++/3sint
3. u=4cos3t —2sin3t 4. u= —-2cosnt — 3sinxt
> | 5. A massweighing 2 Ib stretchesaspring 6 in. If the massis pulled down an additional 3in.

11.

12.

13.

14.

15.

and then released, and if there is no damping, determine the position u of the mass at any
timet. Plot u versust. Find the frequency, period, and amplitude of the motion.

A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium
position with adownward velocity of 10 cm/sec, and if there is no damping, determine the
position u of the mass at any time t. When does the mass first return to its equilibrium
position?

A mass weighing 3 Ib stretches a spring 3 in. If the mass is pushed upward, contracting
the spring adistance of 1 in., and then set in motion with a downward vel ocity of 2 ft/sec,
and if there is no damping, find the position u of the mass at any time t. Determine the
frequency, period, amplitude, and phase of the mation.

A seriescircuit hasacapacitor of 0.25 x 10~° farad and an inductor of 1 henry. If theinitial
charge on the capacitor is 10~ coulomb and there is no initial current, find the charge Q
on the capacitor at any timet.

. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is aso attached to a

viscous damper with adamping constant of 400 dyne-sec/cm. If the massis pulled down an
additional 2 cm and thenreleased, find itsposition u at any timet. Plot u versust. Determine
the quasi frequency and the quasi period. Determine the ratio of the quasi period to the
period of the corresponding undamped motion. Also find thetime = such that |u(t)| < 0.05
cmforalt > t.

. A mass weighing 16 Ib stretches a spring 3 in. The mass is attached to a viscous damper

with a damping constant of 2 Ib-sec/ft. If the mass is set in motion from its equilibrium
position with a downward velocity of 3 in./sec, find its position u at any time t. Plot u
versus t. Determine when the mass first returns to its equilibrium position. Also find the
time t such that |u(t)| < 0.01in.foralt > t.

A spring isstretched 10 cm by aforce of 3 newtons. A mass of 2 kg ishung from the spring
and is also attached to a viscous damper that exerts aforce of 3 newtons when the velocity
of themassis 5 m/sec. If the massis pulled down 5 cm below its equilibrium position and
given an initial downward velocity of 10 cm/sec, determine its position u at any time't.
Find the quasi frequency u and theratio of u to the natural frequency of the corresponding
undamped motion.

A series circuit has a capacitor of 10~° farad, aresistor of 3 x 10% ohms, and an inductor
of 0.2 henry. The initial charge on the capacitor is 1076 coulomb and there is no initial
current. Find the charge Q on the capacitor at any timet.

A certain vibrating system satisfies the equation u” + yu’ + u = 0. Find the value of the
damping coefficient y for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

Show that the period of motion of an undamped vibration of amass hanging from avertical
spring is 27 /L /g, where L is the elongation of the spring due to the mass and g is the
acceleration due to gravity.

Show that the solution of the initial value problem

mu’ + )/U, +ku = 07 u(to) = UO’ u’(to) = U,o

can be expressed as the sum u = v + w, where v satisfies the initial conditions v(t;) =
Ug, v'(ty) = 0, w satisfies the initial conditions w(t,) = 0, w’'(t,) = uy, and both v and w
satisfy the same differential equation asu. Thisisanother instance of superposing solutions
of simpler problems to obtain the solution of a more general problem.
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16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

Show that Acoswyt + B sinwyt can be written in the form r sin(w,t — 6). Determine r
and @ intermsof A and B. If Rcos(wyt — 8) = r sin(w,t — ), determine the relationship
among R, r, §,and 6.
A massweighing 8 |b stretches a spring 1.5 in. The massis also attached to a damper with
coefficient y. Determine the value of y for which the system is critically damped; be sure
to give the unitsfor y .

If a series circuit has a capacitor of C = 0.8 x 10~° farad and an inductor of L = 0.2
henry, find the resistance R so that the circuit is critically damped.
Assume that the system described by the equation mu” 4 yu’ + ku = Oiseither critically
damped or overdamped. Show that the mass can pass through the equilibrium position at
most once, regardless of theinitial conditions.
Hint: Determine all possible values of t for whichu = 0.
Assumethat the system described by theequationmu” + yu’ + ku = Oiscritically damped
andtheinitial conditionsareu(0) = uy, Uu'(0) = v,. If v, = 0, show thatu — Oast — oo,
but that u is never zero. If u, is positive, determine a condition on v, that will assure that
the mass passes through its equilibrium position after it is released.

Logarithmic Decrement. (@) For the damped oscillation described by Eq. (26), show
that the time between successive maximais T, = 2 /.
(b) Show that the ratio of the displacements at two successive maxima is given by
exp(y T,/2m). Observe that this ratio does not depend on which pair of maximais chosen.
The natural logarithm of thisratio is called the logarithmic decrement and is denoted by A.
(c) Show that A = 7y/mu. Since m, u, and A are quantities that can be measured
easily for a mechanical system, this result provides a convenient and practical method
for determining the damping constant of the system, which is more difficult to measure
directly. In particular, for the motion of a vibrating mass in a viscous fluid the damping
constant depends on the viscosity of the fluid; for simple geometric shapes the form of this
dependence is known, and the preceding relation allows the determination of the viscosity
experimentally. Thisis one of the most accurate ways of determining the viscosity of agas
at high pressure.
Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.
For the system in Problem 17 suppose that A = 3 and T; = 0.3 sec. Referring to Problem
21, determine the value of the damping coefficient y .
The position of a certain spring—mass system satisfies the initial value problem

U+ ku=0, u@ =2, U0 =v.

If the period and amplitude of the resulting motion are observed to be = and 3, respectively,
determine the values of k and v.
Consider the initial value problem

u +yu +u=0, u0 =2 U@ =0.

We wish to explore how long a time interval is required for the solution to become
“negligible” and how this interval depends on the damping coefficient y. To be more
precise, let us seek the time t such that |u(t)| < 0.01 for al t > r. Note that critica
damping for this problem occursfor y = 2.

(8 Lety =0.25and determine 7, or at least estimate it fairly accurately from a plot of
the solution.

(b) Repeat part (a) for several other values of y intheinterval 0 < y < 1.5. Note that ©
steadily decreases as y increases for y in thisrange.

(c) Obtainagraph of T versus y by plotting the pairs of values found in parts (a) and (b).
Isthe graph a smooth curve?

(d) Repeat part (b) for values of y between 1.5 and 2. Show that = continues to de-
crease until y reaches a certain critical value y,, after which t increases. Find y,, and the
corresponding minimum value of t to two decimal places.
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26.

27.

30.

31

(e) Another way to proceed is to write the solution of the initial value problem in the
form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for t as a function of . Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

Consider the initial value problem

mu’ +yu +ku=0, U0 =u, U0 =uv,

Assumethat y? < 4km.

(@) Solvetheinitial value problem.

(b) Write the solution in the form u(t) = Rexp(—yt/2m) cos(ut — §). Determine R in
termsof m, y, k, u,, and v,.

(c) Investigate the dependence of R on the damping coefficient ¢ for fixed values of the
other parameters.

A cubic block of side| and mass density o per unit volume is floating in a fluid of mass
density p, per unit volume, where p, > p. If the block is slightly depressed and then
released, it oscillates in the vertical direction. Assuming that the viscous damping of the
fluid and air can be neglected, derive the differential equation of motion and determine the
period of the motion.

Hint: Use Archimedes' principle: An object that is completely or partialy submergedin a
fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.

. The position of a certain undamped spring—mass system satisfies the initial value problem

u” 4 2u =0, u0 =0, U(@© =2

(8 Find the solution of thisinitial value problem.

(b) Plotu versust and U’ versust on the same axes.

(c) Plot U’ versus u; that is, plot u(t) and u’(t) parametrically with t as the parameter.
This plot is known as a phase plot and the uu’-plane is called the phase plane. Observe
that a closed curve in the phase plane corresponds to a periodic solution u(t). What is the
direction of motion on the phase plot ast increases?

. The position of a certain spring—mass system satisfies the initial value problem

W +3iu+2u=0, u©0 =0 Uu®O=2

(@) Find the solution of thisinitial value problem.

(b) Plotu versust and U’ versust on the same axes.

(c) Plot U’ versus u in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase plot
ast increases?

In the absence of damping the mation of a spring—mass system satisfies the initial value
problem

mu” 4+ ku =0, ui0 =a, U0 =h.

(@ Show that the kinetic energy initially imparted to the mass is mb?/2 and that the
potential energy initially stored in the spring is ka?/2, so that initially the total energy in
the system is (ka? + mb?) /2.

(b) Solvethegiven initia value problem.

(c) Using the solution in part (b), determine the total energy in the system at any timett.
Your result should confirm the principle of conservation of energy for this system.
Suppose that a mass m slides without friction on ahorizontal surface. The massis attached
to a spring with spring constant k, as shown inFigure 3.8.10]and is al so subject to viscous
air resistance with coefficient . Show that the displacement u(t) of the mass from its
equilibrium position satisfies Eq. (21). How does the derivation of the equation of motion
in this case differ from the derivation given in the text?
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u(t)
M
m
|

FIGURE 3.8.10 A spring—mass system.

32. In the spring—mass system of Problem 31, suppose that the spring force is not given by
Hooke's law but instead setisfies the relation

F, = —(ku + eud),

where k > 0 and ¢ is small but may be of either sign. The spring is called a hardening
spring if € > 0 and a softening spring if ¢ < 0. Why are these terms appropriate?

(@) Show that the displacement u(t) of the mass from its equilibrium position satisfies the
differential equation

mu” 4+ yu' +ku + eu® = 0.
Suppose that the initial conditions are
u =0, U@ =1

In the remainder of this problem assumethatm =1,k =1,and y = 0.

(b) Find u(t) when e = 0 and also determine the amplitude and period of the motion.

(c) Lete = 0.1. Plot (anumerical approximation to) the solution. Does the motion appear
to be periodic? Estimate the amplitude and period.

(d) Repest part (c) fore = 0.2ande = 0.3.

(e) Plot your estimated values of the amplitude A and the period T versus . Describe the
way inwhich Aand T, respectively, depend on €.

(f) Repeat parts (c), (d), and (e) for negative values of e.

3.9 Forced Vibrations

Consider now the case in which a periodic external force, say F,coswt withw > 0, is
applied to a spring—mass system. Then the equation of motion is

mu” + yu’ + ku = F,coswt. (@)
First suppose that there is no damping; then Eg. (1) reduces to
mu” + ku = F,coswt. 2
If wy = vk/mM # o, then the general solution of Eq. (2) is
U = ¢, Coswyt + C, Snwyt + (ngi 5 cosat. ®3)

The congtants ¢, and c, are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (w, and w) and
amplitudes. There are two particularly interesting cases.
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Beats. Suppose that the massisinitialy at rest, so that u(0) = 0Oand u’(0) = 0. Then
it turns out that the constants ¢, and ¢, inEq. (3)|are given by

c, = Fo c,=0 (4
e m(wg — w?)’ 27
and the solution of |Eq. (2)|is
FO
U= ————-(Coswt — CoSwjyt). 5
m(a)g — a)z)( ot) ©®)

Thisis the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities for cos(A £ B) with A = (v, + w)t/2and
B = (v, — »)t/2, we can write Eq. (5) in the form

2F, — w)t t
u:[ . Zsin(wO w)}sin(wo-i_w)‘ (6)
m(w§ — »°) 2 2
If |wy— o| is small, then w, + » is much greater than |w, — w|. Consequently,
sin(w, + w)t/2 is a rapidly oscillating function compared to sin(w, — w)t/2. Thus

the motion is arapid oscillation with frequency (w, + )/2, but with aslowly varying
sinusoidal amplitude

2F, . (wy— ot
> 5 sSin .
m(w§ — »°) 2

hist peof motion, possessing aperiodic variation of amplitude, exhibitswhat iscalled
t| Such a phenomenon occurs in acoustics when two tuning forks of nearly equal
frequency are sounded simultaneously. In this case the periodic variation of amplitude
is quite apparent to the unaided ear. In electronics the variation of the amplitude with

u=2.77778 sin 0.1t
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FIGURE 3.9.1 A beat; solution of u” 4+ u = 0.5¢0s0.8t, u(0) = 0, u'(0) = 0;
u=277778sin0.1t sin0.9t.
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timeis called amplitude modulation. The graph of u as given by [Eq. (6)|in atypica
caseis shown inFigure 3.9.

Resonance. As a second example, consider the case w = w,; that is, the frequency
of the forcing function is the same as the natural frequency of the system. Then the
nonhomogeneous term F, coswt is a solution of the homogeneous equation. In this

case the solution ofis

U = C, COSwot + C, Sinwgt + 2;2)0

Because of theterm t sinw,t, the solution (7) predicts that the motion will become
unbounded as t — oo regardless of the values of ¢, and c,; see Figure 3.9.2 for a
typical example. Of course, in reality unbounded oscillations do not occur. As soon
as u becomes large, the mathematical model on which[Eq. (T)]is based is no longer
valid, since the assumption that the spring force depends linearly on the displacement
requires that u be small. If damping is included in the model, the predicted motion
remains bounded; however, the response to the input function F, coswt may be quite
large if the damping is small and o is close to w,. This phenomenon is known as
resonance.

Resonance can be either good or bad depending on the circumstances. It must be
taken very serioudly in the design of structures, such as buildings or bridges, where it
can produce instabilities possibly leading to the catastrophic failure of the structure.
For example, soldiers traditionally break step when crossing a bridge to eliminate the
periodic force of their marching that could resonate with a natural frequency of the
bridge. Another example occurredin the design of the high-pressurefuel turbopump for
the space shuttle main engine. The turbopump was unstable and could not be operated
over 20,000 rpm as compared to the design speed of 39,000 rpm. This difficulty led
to a shutdown of the space shuttle program for 6 months at an estimated cost of

tSinwyt. @

10—

u=0.25tsint
5 u= 025t /\ /\
5 u=—025t \/ \/ \/

-10—

FIGURE 3.9.2 Resonance; solution of u” + u = 0.5cost, u(0) =0, u'(0) =
u = 0.25tsint.
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$500,000/day.0n the other hand, resonance can be put to good use in the design of
instruments, such as seismographs, intended to detect weak periodic incoming signals.

Forced Vibrations with Damping. The motion of the spring—mass system with damp-
ing and the forcing function F, coswt can be determined in a straightforward manner,
although the computations are rather lengthy. The solution of is

u=c €1 4+ c,&2' + Reos(wt —8), 1, #T, )
where
F m(wé — &? ,
R:_O’ COS(S:M, Smg:m’ (9)
A A A
and
A= \/mz(a)g — 0?2 + 20 (20)

In Eq. (8) r, and r,, are the roots of the characteristic equation associated with[Eq. (1)}
they may be either real and negative or complex conjugates with negative real part. In
either case, both exp(r;t) and exp(r,t) approach zero ast — oo. Hence, ast — oo,
l:O
u—> U@ = cos(wt — §). (1D
\/mz(wg — 0?2 + 207

For this reason u,(t) = c,€1" + c,€2' is called the[fransient solution] U (t), which
represents a steady oscillation with the same frequency as the external force, is called
the[steady-state solution]or the forced response. The transient solution enables us to
satisfy whatever initial conditions areimposed; with increasing time the energy put into
the system by the initia displacement and velocity is dissipated through the damping
force, and the motion then becomes the response of the system to the externa force.
Without damping, the effect of the initial conditions would persist for al time.

It is interesting to investigate how the amplitude R of the steady-state oscillation
depends on the frequency w of the external force. For low-frequency excitation, that is,
asw — 0, it follows from Egs. (9) and (10) that R — F,/k. At the other extreme, for
very high-frequency excitation, Egs. (9) and (10) imply that R — O asw — oo. At an
intermediate value of w the amplitude may have a maximum. To find this maximum
point, we can differentiate R with respect to w and set the result equal to zero. In this

way we find that the maximum amplitude occurs when v = o, where
2 2
14 4
Wi = W5 — o s (1 - 2km> . (12)
Note that o, < @, and that o is close to w, when y is small. The maximum
vaueof Ris

Fo Fo y?
= = 1+ , (13)
R yog/1— (/2/4mk) Y@y ( 8mk

10F. Ehrich and D. Childs, “Self-Excited Vibration in High-Performance Turbomachinery,” Mechanical Engi-
neering (May 1984), p. 66.
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wherethelast expression isan approximation for small y. If y2/2km > 1, then Wox B
given by[Eq. (12)]isimaginary; in this case the maximum value of R occursfor & = 0
and R is amonotone decreasing function of . For small y it follows from|[Eq. (13)]
that R = Fy/v®,. Thus, for small y, the maximum responseis much larger than the
amplitude F, of the external force, and the smaller the value of y, the larger the ratio
R/ Fo- Figure 3.9.3 contains some representative graphs of Rk/F, versus w/w, for
several values of y.

The phase angle § aso dependsin aninteresting way on w. For o near zero, it follows
from Egs. (9) and (10) that cosé = 1 and sin§ = 0. Thus § = 0, and the response is
nearly in phase with the excitation, meaning that they rise and fall together, and in
particular, assume their respective maximanearly together and their respective minima
nearly together. For v = w,, wefind that cosé = 0andsin§ = 1,08 = nr/2. Inthis
case the response lags behind the excitation by 7 /2; that is, the peaks of the response
occur 7t /2 later than the peaks of the excitation, and similarly for the valeys. Finaly,
for w very large, we have cos§ = —1and sin§ = 0. Thus§ = x, so that the response
is nearly out of phase with the excitation; this means that the response is minimum
when the excitation is maximum, and vice versa.

In Figure 3.9.4 we show the graph of the solution of the initial value problem

u” +0.125u" + u = 3cos2t, u0 =2, U@ =0.

Thegraph of theforcing functionisalso shown for comparison. (Theunforced motion of
this system is shown in Figure 3.8.7.) Observe that the initial transient motion decays
ast increases, that the amplitude of the steady forced response is approximately 1,
and that the phase difference between the excitation and response is approximately 7.

RK/F,

3

1 2 wlwy

FIGURE 3.9.3 Forced vibration with damping: amplitude of steady-state response versus
frequency of driving force; T' = y?/m?w3.
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u
Solution of Forcing function 3 cos 2t
u' + 0.125u' + u = 3 cos 2t
u(0)=2,u@)=0
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FIGURE 3.9.4 A forced vibration with damping; solution of u” 4 0.125u’ 4+ u = 3cos2t,

u(0)

Moreprecisdly, wefindthat A =
c0sd = —3/A = —0.9965andsiné = 1/4A = 0.08305, sothat § =

=2,U (0 =0.

+/145/4 = 3.0104, 0 R = F,/ A = 0.9965. Further,
3.0585. Thusthe

calculated values of R and § are close to the values estimated from the graph.

PROBLEMS

In each of Problems 1 through 4 write the given expression as a product of two trigonometric
functions of different frequencies.

1
3.

5.

cos9t — cos7t 2. Sin7t —sin6t
cosmwt + cos2rt 4. sin3t +sin4t

A mass weighing 4 |b stretches a spring 1.5 in. The massis displaced 2 in. in the positive
direction from its equilibrium position and released with no initial velocity. Assuming that
there is no damping and that the mass is acted on by an externa force of 2 cos3t Ib,
formulate theinitial value problem describing the motion of the mass.

A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of
10sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when
the speed of the massis4 cm/sec. If the massis set in motion from its equilibrium position
with an initial velocity of 3 cm/sec, formulate the initial value problem describing the
motion of the mass.

(8) Find the solution of Problem 5.

(b) Plot the graph of the solution.

(c) If thegiven external forceisreplaced by aforce 4 sinwt of frequency w, find the value
of w for which resonance occurs.

(a) Find the solution of the initial value problem in Problem 6.

(b) Identify the transient and steady-state parts of the solution.

(c) Plot the graph of the steady-state solution.

(d) If thegiven external forceisreplaced by aforce 2 coswt of frequency w, find the value
of o for which the amplitude of the forced response is maximum.
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9. If an undamped spring—mass system with a mass that weighs 6 Ib and a spring constant
11b/in. issuddenly set in motion at t = 0 by an external force of 4 cos7t |b, determine the
position of the mass at any time and draw a graph of the displacement versust.

10. A massthat weighs 8 Ib stretchesaspring 6 in. The system is acted on by an external force
of 8sin8t Ib. If the massis pulled down 3 in. and then released, determine the position of
the mass at any time. Determine the first four times at which the velocity of the mass is
zero.

11. A springis stretched 6 in. by a mass that weighs 8 |b. The mass is attached to a dashpot
mechanism that has a damping constant of 0.25 Ib-sec/ft and is acted on by an externa
force of 4cos2t Ib.

(@) Determine the steady-state response of this system.
(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady-state response is maximum.

12. A spring—mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of 3cos3t — 2sin3t N, determine the steady-state response. Express your answer in
the form R cos(wt — §).

13. Furnish the details in determining when the steady-state response given by Eq. (11) is
maximum; that is, show that a)ﬁqax and R aregiven by Egs. (12) and (13), respectively.

14. (a) Show that thephaseof theforced responseof Eq. (1) satisfiestans = yw/m(w? — o?).
(b) Plot the phase § as a function of the forcing frequency w for the forced response of
u” 4+ 0.125u" + u = 3coswt.

15. Find the solution of theinitia value problem

u +u=F(@), u@© =0, U0 =0,
where
Fot. O<t=<m,
F@) = Fo2r —1), T <t <2nm,
0, 27 < t.
Hint: Treat each time interval separately and match the solutions in the different intervals
by requiring that u and U’ be continuous functions of t.

16. A seriescircuit has a capacitor of 0.25 x 10~° farad, a resistor of 5 x 10% ohms, and an
inductor of 1 henry. The initia charge on the capacitor is zero. If a 12-volt battery is
connected to the circuit and the circuit is closed at t = 0, determine the charge on the
capacitor att = 0.001 sec, at t = 0.01 sec, and at any timet. Also determine the limiting
chargeast — oc.

17. Consider avibrating system described by the initial value problem

u” + U’ + 2u = 2cosot, u@ =0, U(©O =2
(a) Determine the steady-state part of the solution of this problem.
(b) Find the amplitude A of the steady-state solution in terms of w.
(c) Plot Aversusw.
(d) Find the maximum value of A and the frequency w for which it occurs.
18. Consider the forced but undamped system described by the initial value problem

u” 4+ u = 3cosat, u@ =0, U (@© =0.

(8 Findthesolution u(t) for w # 1.

(b) Plot the solution u(t) versust for w = 0.7, @ = 0.8, and w = 0.9. Describe how the
response u(t) changesasw variesin thisinterval. What happens as w takes on values closer
and closer to 1? Note that the natural frequency of the unforced systemis w, = 1.
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» |19. Consider the vibrating system described by the initial value problem
u” 4+ u = 3coswt, u0 =1, Uv(@©O =1.

() Find the solution for w # 1.
(b) Plotthesolutionu(t) versust for w = 0.7, w = 0.8, and w = 0.9. Comparetheresults
with those of Problem 18, that is, describe the effect of the nonzero initial conditions.

» 20. For the initial value problem in Problem 18 plot u’ versus u for = 0.7, v = 0.8, and
w = 0.9; that is, draw the phase plot of the solution for these values of w. Use at interval
that is long enough so the phase plot appears as a closed curve. Mark your curve with
arrows to show the direction in which it istraversed ast increases.

Problems 21 through 23 deal with theinitial value problem
u” +0.125u" +u = F(t), u@ =2, U@ =0.

In each of these problems:
(a) Plot the given forcing function F(t) versust and also plot the solution u(t) versus
t on the same set of axes. Use at interval that is long enough so the initial transients
are substantially eliminated. Observe the relation between the amplitude and phase of the
forcing term and the amplitude and phase of the response. Note that w, = /k/m = 1.
(b) Draw the phase plot of the solution, that is, plot u” versus u.

21. F(t) = 3cos(0.3t)

22. F(t) = 3cost

23. F(t) = 3cos3t

24. A spring—mass system with a hardening spring (Problem 32 of Section 3.8) is acted on by
aperiodic external force. In the absence of damping, suppose that the displacement of the
mass satisfies the initial value problem

vVvyvyy

u” +u+ tu® = cosat, u@© =0, U () =0.

(@) Let w =1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat?
(b) Plot the solution for several values of w between 1/2 and 2. Describe how the solution
changes as w increases.

> 25. Supposethat the system of Problem 24 is modified to include a damping term and that the
resulting initial value problemis

U’ + U +u + tud = cosat, u@) =0, U0 =0.

(@) Plot a computer-generated solution of the given problem for several values of w
between 1/2 and 2 and estimate the amplitude R of the steady response in each case.

(b) Usingthe datafrom part (a), plot the graph of R versus w. For what frequency w isthe
amplitude greatest?

(c) Compare the results of parts (a) and (b) with the corresponding results for the linear
spring.
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CHAPTER

4

Higher Order
Linear Equations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and higher
order. In this chapter we briefly review this generalization, taking particular note
of those instances where new phenomena may appear, due to the greater variety of
situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

dn n-1 d
Po g + POt +o + Py + POy =CM. ()
We assume that the functions B, ..., P, and G are continuous real-valued functions

on some interva |: o <t < B, and that P, is nowhere zero in this interval. Then,
dividing Eq. (1) by P,(t), we obtain

d"y d"y
L[yl = ar + pl(t)W

Thelinear differential operator L of order n defined by Eq. (2) issimilar to the second
order operator introduced in[Chapter 3. Themathematical theory associated with Eq. (2)
iscompletely analogous to that for the second order linear equation; for this reason we

209

1 dy
+ot pn_l(t)a + p, (DY = g(®). 2
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Theorem 4.1.1

simply state the results for the nth order problem. The proofs of most of the results are
also similar to those for the second order equation and are usually |eft as exercises.

Sincei nvolves the nth derivative of y with respect to t, it will, so to speak,
require nintegrationsto solveEq. (2)] Each of theseintegrationsintroduces an arbitrary
constant. Hence we can expect that, to obtain aunique solution, it isnecessary to specify
n initial conditions,

Yt =Y Y =Yo - Y=y, ©)
wheret, may beany pointintheinterval | andy,, yo, - - -, yé”_l) isany set of prescribed

real constants. That there does exist such a solution and that it is unique are assured by
the following existence and uniqueness theorem, which is similar to|Theorem 3.2.1.

If the functions p,, p,. ..., p,, and g are continuous on the open interval |, then

there exists exactly one solution y = ¢ (t) of the differential [equation (2)|that also
satisfies theinitial conditions (3). This solution exists throughout the interval | .

Wewill not giveaproof of thistheorem here. However, if the coefficients p, , .. ., p,
are constants, then we can construct the solution of the initial value]problem (2)] (3)
much asin Chapter 3; see Sections 4.2 through 4.4.|Even though we may find asolution
in this case, we do not know that it is unique without the use of Theorem 4.1.1. A proof

of the theorem can be found inSection 3.32) or|Coddington (Chapter 6).

The Homogeneous Equation.  Asin the corresponding second order problem, wefirst
discuss the homogeneous equation

LIyl =y + p,0)y" P + -+ p, ;)Y + p,()y = 0. ()

If the functions y,, v,, ..., Y, are solutions of Eq. (4), then it follows by direct com-
putation that the linear combination

y=Cy,(1) + Gy, (1) + - -+ Y, (1), %)

wherec,, ..., c, arearbitrary constants, is also a solution of Eq. (4). It isthen natural
to ask whether every solution of Eq. (4) can be expressed as a linear combination of
Yy, ---» Yy Thiswill betrueif, regardlessof theinitial conditions(3) that are prescribed,
it is possible to choose the constants c,, ..., ¢, so that the linear combination (5)
satisfies the initial conditions. Specifically, for any choice of the point t; in I, and for

any choice of Yy, ¥p, ..., Yo', we must be able to determine c,, ..., ¢, so that the

equations

CYy(ty) +---+C Y () =Y

CY1(ty) + - + ¢ Yn(ty) = Yo ©)
ClYin_l) () +---+ Cnyr(1nfl) () = y(()n_l)

are satisfied. Equations (6) can be solved uniquely for theconstantsc,, .. ., ¢, provided

that the determinant of coefficients is not zero. On the other hand, if the determinant

of coefficientsis zero, then it is always possible to choose values of y, ¥p, . - - , yé”’l)
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Theorem 4.1.2

such that|Egs. (6)|do not have a solution. Hence a necessary and sufficient condition
for the existence of a solution of |Egs. (6) for arbitrary values of y,, y;, . . -, é”_l) is
that the Wronskian

yl y2 e yn
y/ y/ . y/
Wy, ..y =] :2 ! )
yin—l) )}(n—l) . %}nfl)
is not zero at t =t,. Since t, can be any point in the interval 1, it is necessary and
sufficient that W(y,.Y,. ..., Y,) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if y,, y,, ..., Y, are solutions
of Eq. (4), then W(y,, Y,, ..., Y,) iseither zero for every t intheinterva | or elseis
never zero there; see/Problem 20] Hence we have the following theorem.
If the functions p,, p,. . ... p, are continuous on the open interval I, if the functions

Yir Yoo - -, Y, are solutions of[Eqg. (4)] and if W(y,, Y,, ..., y,)(t) # O for at least
onepointin |, then every solution of [Eq. (4)]can be expressed asalinear combination
of the solutions y,, y,, ..., Y,

A set of solutions y,, . .., ¥, of |Eq. (4)|whose Wronskian is nonzero is referred to
as a fundamental set of solutions. The existence of a fundamental set of solutions
can be demonstrated in precisely the same way as for the second order linear equation

(sed Theorem 3.2.5). Since all solutions of [Eq. (4)| are of thefform (5)] we use the term

general solution to refer to an arbitrary linear combination of any fundamental set of

solutions of

Thediscussion of linear dependence and independence given in|Section 3.3 can also
be generdized. Thefunctions f;, f,, ..., f_ aresaidto beflinearly dependentjon | if
there exists a set of constantsky, k,, .. ., k., not al zero, such that

K fy+ ko fy ook =0 ®

foraltinl. Thefunctions f,,..., f aresaidto be||inear|¥ind@endent on | if they
are not linearly dependent there. If y,, ..., y, are solutions of [Eq. (4)} then it can be

shown that a necessary and sufficient condition for them to be linearly independent is
that W(y;, ..., ¥,)(ty) # O for somet, in | (see[Problem 25). Hence a fundamental
set of solutions of is linearly independent, and a linearly independent set of n
solutions of Eqg. (4)]forms a fundamental set of solutions.

The Nonhomogeneous Equation. Now consider the nonhomogeneous|equation (2),

LIyl = y™ + p,)y"™ + - + p, (DY = g(1).

If Y, and Y, are any two solutions of [Eq. (2), then it follows immediately from the
linearity of the operator L that

L[Y]_ - Yz](t) = L[Y]_](t) - L[Yz](t) = g(t) —g) = 0.

Hence the difference of any two solutions of the nonhomogeneous [equation (2)|is a
solution of the homogeneous [equation (4). Since any solution of the homogeneous
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PROBLEMS

eguation can be expressed as a linear combination of a fundamental set of solutions
Yi, -+ -, Yy it followsthat any solution of [Eg. (2)[can be written as

y=cy,(H) + Gy, (1) +--- 4+ ¢y, (1) + YD), 9)

where Y is some particular solution of the nonhomogeneou The linear
combination (9) is called the general solution of the nonhomogeneous i

Thus the primary problem isto determine afundamental set of solutionsy,, -y,
of the homogeneous [equation (4)] If the coefficients are constants, this is a fairly
simple problem; it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in[Chapter 8|or series
methods similar to thosein These tend to become more cumbersome as the
order of the equation increases.

The method of reduction of order also applies to nth order linear
equations. If y, is one solution of [EQ. (4), then the substitution y = v(t)y, (t) leadsto
alinear differential equation of order n — 1 for v’ (see/Problem 26|for the case when
n = 3). However, if n > 3, the reduced equation isitself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

In each of Problems 1 through 6 determine intervals in which solutions are sure to exist.

1 yY+4y”" +3y=t 2. ty” + (sint)y” + 3y = cost
3. tt—DyY+ey +4a2y =0 4. y" +ty" +t%y +t3y = Int
5 (x—1yY+ (x+1y’ + (tanx)y =0 6. (X2 -4y +x%y" +9y=0

In each of Problems 7 through 10 determine whether the given set of functions is linearly
dependent or linearly independent. If they are linearly dependent, find a linear relation among
them.

7. f)=2t-3, f,0)=t2+1 ft)=2>—t

8 fh=2t-3 f0)=22+1 f,t) =32+t

9. L =2t-3 f,O=t2+1 f,0=22-t, f,O)=t*+t+1
10. f,)=2t-3, f,0=t3+1 fo=2>-t, fO=t*+t+1

In each of Problems 11 through 16 verify that the given functions are solutions of the differential
equation, and determine their Wronskian.

11 y'4+y =0; 1, cost, sint

12. YWy =0 1, t, cost, sint

13, Yy +2y —y =2y =0; e, et e?

14. yW42y"+y' =0 1, t, e te'

15. xy” —y’' =0; 1, x, x°

16. X3y + X%y —2xy +2y =0; X, X%, 1/x

17. Show that W(5, sin’t, cos2t) = O for dl t. Can you establish this result without direct
evaluation of the Wronskian?

18. Verify that the differential operator defined by

LIyl = y™ + p, )y + - + p (DY
isalinear differential operator. That is, show that

LI,y +GY,l = ¢ LIy ] + LIy,
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19.

20.

21.
23.

25.

where y, and y, are n times differentiable functions and ¢, and c, are arbitrary constants.
Hence, show that if y,, y,, ..., Y, are solutions of L[y] = O, then the linear combination
C,y, +---+c.y, isasoasolutionof L[y] = 0.
Let the linear differential operator L be defined by

LIyl =ay™ +ay"™ +--+ay.

wherea,, a,, ..., a, arereal constants.
(@ Find L[t"].
(b) Find L[€"]. .
(c) Determine four solutions of the equation y" — 5y” + 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?
In this problem we show how to generalize Theorem 3.3.2 (Abel’stheorem) to higher order
equations. We first outline the procedure for the third order equation
Y+ POy + p,OY + ps(y = 0.
Lety,, Y,, and y, be solutions of this equation on aninterval 1.
@ W =W(y,,Y,, Y, show that
Y1 \Z Y3

W=y v Y3

Z S

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.

(b) Substitutefor y;”, y,’, and y;' from the differential equation; multiply thefirst row by
p,, the second row by p,, and add these to the last row to obtain

W' = —p,(HW.
(c) Show that
W(y]_’ Y,, yg)(t) = Ccexp |:—/ pl(t) dt] .

It followsthat W is either always zero or nowhere zeroon | .
(d) Generalize this argument to the nth order equation

y® + p,)y" P + ...+ p,()y=0
with solutionsy,, ..., y,. That is, establish Abel’s formula,
W(y]_v cee yn)(t) =Ccexp |:_/ pl(t) dt:I s

for this case.

In each of Problems 21 through 24 use Abel’s formula (Problem 20) to find the Wronskian of a
fundamental set of solutions of the given differential equation.

y///+2y//_y/_3y=0 22 ylv+y=0

ty/// + 2y// _ y/ + ty -0 24. t2ylv + ty/// + y// _ 4y =0

The purpose of this problem is to show that if W(y,, ..., Y,)(t;) # 0 for somet; in an
interval | ,theny,, ..., y, arelinearly independent on I, andif they arelinearly independent
and sol utions of

LIyl =y™ + p,)y" P + -+ p,()y=0 (i)
onl,then W(y,,...,Y,) isnowherezeroin I.
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(@ Supposethat W(y,, ..., Y,)(t,) # 0, and suppose that
Gy, O+ +cy, =0 (ii)

foral tin|. By writing the equations corresponding to thefirst n — 1 derivativesof Eq. (ii)
aty, showthatc, = --- = ¢, = 0. Therefore, y,, ..., y, arelinearly independent.

(b) Suppose that vy,,...,y, ae linearly independent solutions of Eq. (i). If
W(y,, ..., ¥, (t,) = Ofor somet,, show that thereisanonzero sol ution of Eq. (i) satisfying
theinitial conditions

yty) =y ty) = =y" Pty =0.

Since y = 0 is a solution of this initial value problem, the uniqueness part of Theorem
4.1.1 yields a contradiction. Thus W is never zero.
26. Show that if y, isasolution of

y' + p Y+ p, DY + py()y =0,
then the substitution y =, (t)v(t) leads to the following second order equation for v":
y 0" + By + pyp)v” + (By; +2pY; + oy’ =0.

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation.

27. -ty + @ -3y —ty+y=0, t<2 y,(t) =€

28. 2t +3)y" -3t +2y +6(1+1)y —6y=0, t>0 y )=t y,t)=t

4.2 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation

LIyl = ay™ +ay"P + - +a, ¥ +a,y=0, Q)

where a,, a,, ..., a, are real constants. From our knowledge of second order linear
equations with constant coefficients it is natural to anticipate that y = €' isasolution
of Eq. (2) for suitable values of r. Indeed,

LI =€t @r"+ar"t+---+a, ,r +a,)=€"Z(r) 2

for al r, where
Zr) =ay"+ar" - +a, 4 f +a, ®
For those values of r for which Z(r) = 0, it follows that L[€''] = 0andy = €' isa

solution of Eq. (1). The polynomia Z(r) is called the char acteristic polynomial | and
the equation Z(r) = O isthe|characteristic equation| of the differential equation (1).
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EXAMPLE

1

A polynomial of degreen hasn zerossay sy ..., r,, someof which may beequal,
hence we can write the characteristic polynomial in the form
Z(r) =ay(r —r)(r —ry---(r —rpy). 4

Real and Unequal Roots. If the roots of the characteristic equation are real and no
two are equal, then we have n distinct solutions €1', €2, ..., ént of [Eq. (1)] If these
functions are linearly independent, then the general solution of [Eq. (T)]is

y=c €1 +c,e2 + ... +cen. (5)

One way to establish the linear independence of €1', €2', ..., €' isto evaluate their
Wronskian determinant. Another way is outlined in|Problem 40

Find the general solution of

y//// + y/// _ 7y// _ y/ _|_ 6y — O (6)
Also find the solution that satisfies the initial conditions
y(0) =1, y'(0) =0, y'(0) = -2, y"(0) = -1 (7)

and plot its graph.
Assuming that y = €', we must determiner by solving the polynomial equation

rA4+r3—mw?—r+6=0. (8)

The roots of this equation arer, =1,r, = —1,r; = 2, and r, = —3. Therefore the
generd solution of Eq. (6) is

y=C€ +cet +ce® + e )
Theinitial conditions (7) requirethat c,, ..., c, satisfy the four equations

¢, +C+ ¢+ ¢, = 1,
¢,—C+2c;— 3¢, = 0,

(10)
C,+C,+4c;+ 9, = -2,
¢, —¢C,+8c;—27c, = -1
By solving this system of four linear algebraic equations, we find that
c, =11/8, c, =5/12, Cy=—2/3, c,=-1/8.
Therefore the solution of the initial value problemis
y=2e + 2t -2 - le¥ (11)

The graph of the solution is shown in|Figure 4.2.1

1An important question in mathematics for more than 200 years was whether every polynomia equation has
at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was given by
Carl Friedrich Gauss in his doctoral dissertation in 1799, athough his proof does not meet modern standards of
rigor. Several other proofs have been discovered since, including three by Gauss himself. Today, students often
meet the fundamental theorem of algebrain afirst course on complex variables, where it can be established as a
consequence of some of the basic properties of complex analytic functions.
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FIGURE 4.2.1 Solution of theinitial value problem of Example 1.

As|Example i] illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constantsc,, .. ., ¢,. While each of these tasks becomes much more complicated as n
increases, they can often be handled without difficulty with a calculator or computer.

For third and fourth degree polynomial sthere are formul as2anal ogous to theformula
for quadratic equations but more complicated, that give exact expressionsfor the roots.
Root-finding algorithms are readily available on cal culators and computers. Sometimes
they are included in the differential equation solver, so that the process of factoring
the characteristic polynomial is hidden and the solution of the differential equation is
produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

af"+ar"t+..-+a, ;r+a =0 (12)

has integer coefficients. If r = p/q isarational root, where p and g have no common
factors, then p must be a factor of a, and g must be a factor of a,. For example, in
thefactorsof a, are +1 and thefactorsof a, are£1, £2, £3, and £6. Thus, the
only possible rational roots of this equation are +£1, +2, +3, and £6. By testing these
possible roots, wefind that 1, —1, 2, and —3 are actual roots. In this case there are no
other roots, since the polynomial is of fourth degree. If some of the roots areirrational
or complex, asis usually the case, then this process will not find them, but at least the
degree of the polynomial can be reduced by dividing out the factors corresponding to
the rationa roots.

If the roots of the characteristic equation are real and different, we have seen that the
general issimply asum of exponential functions. For large values of t the

2The method for solvi ng the cubic equation was apparently discovered by Scipione dal Ferro (1465-1526) about
1500, although it wasfirst published in 1545 by Girolamo Cardano (1501-1576) in his Ars Magna. This book also
containsamethod for solving quartic equationsthat Cardano attributesto his pupil Ludovico Ferrari (1522—1565).
The question of whether analogous formulas exist for the roots of higher degree equations remained open for more
than two centuries, until in 1826 Niels Abel showed that no general solution formulas can exist for polynomial
equations of degree five or higher. A more general theory was devel oped by Evariste Galois (1811-1832) in 1831,
but unfortunately it did not become widely known for several decades.
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solution will be dominated by the term corresponding to the algebraically largest root.
If thisroot is positive, then solutions will become exponentially unbounded, whileif it
is negative, then solutions will tend exponentially to zero. Finaly, if the largest root is
zero, then solutionswill approach anonzero constant ast becomeslarge. Of course, for
certain initial conditions the coefficient of the otherwise dominant term will be zero;
then the nature of the solution for large t is determined by the next largest root.

Complex Roots.  If the characteristic equation has complex roots, they must occur in

conjugate pairs, A £ ipu, since the coefficients a,, .. ., a, are real numbers. Provided
that none of the rootsis repeated, the general solution of isstill of thefform (4)]

However, just as for the second order equation (Section 3.4), we can replace the
complex-valued solutions €*# and e~ py the real-valued solutions

e cosput, e'tsinut (13)

obtained as the real and imaginary parts of eé**'"'. Thus, even though some of the
roots of the characteristic equation are complex, itisstill possibleto expressthe general
solution of |[Eq. (1)|as alinear combination of real-valued solutions.

Find the general solution of
y'—y=0. (14)
Also find the solution that satisfies theinitial conditions
y(0) =7/2, y'(0) = -4, y'(0) =5/2, y'(0 =-2 (15

and draw its graph.
Substituting €' for y, we find that the characteristic equation is

rf—1=(r%2-1@r2+1 =0.
Thereforetherootsarer = 1, —1, i, —i, and the general solution of Eq. (14) is
y = c,€' + ¢, + ¢ cost + ¢, sint.
If weimpose theinitial conditions (15), we find that
c, =0, c, =3 c;=1/2, c,=—1;
thus the solution of the given initial value problemis
y=3e"'+ 3 cost —sint. (16)

The graph of this solution is shown in[Figure 4.2.2]

Observe that the initial conditions (15) cause the coefficient ¢, of the exponentially
growing term in the general solution to be zero. Therefore this term is absent in the
solution (16), which describes an exponential decay to a steady oscillation, as|[Figure
[4.2.2]shows. However, if the initial conditions are changed slightly, then ¢, is Ii%y to
be nonzero and the nature of the solution changes enormously. For example, if thefirst
threeinitial conditions remain the same, but the value of y"’(0) is changed from —2to
—15/8, then the solution of theinitia value problem becomes

y =26+ Be ' + Lcost — Lsint. (17)
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The coefficients in|Eq. (17)|differ only dlightly from those in|Eq. (16),| but the expo-
nentially growing term, even with the relatively small coefficient of 1/32, completely
dominates the solution by thetimet is larger than about 4 or 5. Thisis clearly seenin

Figure 4.2.3, which shows the graphs of the two solutions|(Z6)]and| (17)

y

5 -
\ ydh N\ B
N4 6 \8_10 12 M4 t N
—2r \ e
T 4 6 t

FIGURE 4.2.2 A plot of thesolution (16). @ FIGURE 4.2.3 Plots of the solutions (16)
(light curve) and (17) (heavy curve).

N A O 00 <

Repeated Roots. If the roots of the characteristic equation are not distinct, that is, if
some of the roots are repeated, then the[solution (5)|is clearly not the general solution
of Recall that if r, is a repeated root for the second order linear equation
a,y’ +a,Y + a,y = 0, then the two linearly independent solutions are €' and te'+".
For an equation of order n, if aroot of Z(r) = 0, say r =r,, hasmultiplicity s (where
S < n), then

g, teht, t2dt, ..., STl (18)
are corresponding solutions of |Eq. (1)

If a complex root A +iu is repeated s times, the complex conjugate A — i is
also repeated s times. Corresponding to these 2s complex-valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e**®t,
teHWt 15710 H Mt gre also linearly independent solutions:

et cosut, etsinut, te™ cos ut, te’ sinput,
..., t5 e cosut, tS~teM sinut.

Hence the general solution of [Eq. (1) |can always be expressed as alinear combination
of n real-valued solutions. Consider the following example.

Find the general solution of
yV+2y" +y=0. (19)
The characteristic equationis
rf+2r°+1=0r?+1)@r°+1 =0.
Therootsarer =i,i, —i, —i, and the general solution of Eq. (19) is

y = ¢, cost + C, sint + c;t cost 4 ¢,t sint.
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PROBLEMS

[(1)lisstill of the

In determining theroots of the characteristic equation it may be hecessary to compute
thecuberoots, or fourth roots, or even higher roots of a(possibly complex) number. This
can usually be done most conveniently by using Euler’s formula €' = cost + i sint
and the algebraic laws given i Section 3.4] Thisisillustrated in the following example.

Find the general solution of
y'+y=0. (20)
The characteristic equation is
r*+1=0.

To solve the equation we must compute the fourth roots of —1. Now —1, thought of as
acomplex number, is —1 + 0i. It has magnitude 1 and polar angle . Thus

—1=cosm +isint =€~.
Moreover, the angle is determined only up to amultiple of 2. Thus
—1=cos(r 4+ 2mn) +i sin(z + 2mx) = € T+2m)

where mis zero or any positive or negative integer. Thus

, m. o m
(=DY4 = er/armr/2) — cos(% + —n) +isin (Z + —n) :

2 4 2
The four fourth roots of —1 are obtained by settingm = 0, 1, 2, and 3; they are
1+i —1+i —1—i 1-i
N2V A, IV

It is easy to verify that for any other value of m we obtain one of these four roots.

For example, corresponding to m = 4, we obtain (1 + i)/+/2. The general solution of
Eq. (20) is

t t t t
— g/v2 (c coS— + C sin—) 4 et/V2 (c cos— + ¢ sin—). 21
y 1 «/E 2 «/i 3 «/é 4 ﬁ ( )

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal, or merely very
closetogether. Recall that theform of the general solutionisdifferent in thesetwo cases.

If the constants a,, &, . . ., &, in[EQq. (T)] are complex numbers, the solution of Eq.

. In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of aroot isaso aroot. The corresponding solutions are complex-valued.

In each of Problems 1 through 6 express the given complex number in the form R(cos6 +
i sing) = Re'’.

1 1+i 2. —1+4/3i 3. -3
4, —i 5 /3-—i 6. —1—i
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In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 13 8. (1—i)t?

9. 1¥4 10. [2(cosm/3+isinm/3)]Y/?

In each of Problems 11 through 28 find the general sol uti on of the given differential equation.

1. y' -y -y +y=0 12. y -3y’ +3y—y 0

13. zy/// _ 4y// _ 2y/ +4y =0 14. y 4y/// + 4y _

15. YW +y=0 16. y 5y” +4y = O

17. y" —3y"+3y"—y=0 18. y -y —O

19. y'—3yY+3y"-3y"+2y =0 20. yV -8y =

21, y" +8yY +16y=0 22. YWy + y 0

23. v —-5y"+3y +y=0 24, y" +5y"+6y +2y=0

25. 18y” + 21y + 14y’ + 4y =0 > 26. YV —7y" + 6y’ +30y —36y =0
27. 12yV+31y"+ 75y +37y'+5y =0 B 28. yV 4+ 6y” +17y" +22y + 14y =0

In each of Problems 29 through 36 find the solution of the given initial value problem and plot

its graph. How doesthe solution behave ast — 00?

29. y'+y' = y0 =0, y©O=1 y'©0=2

3. yV+y= 0, y0 =0, y(©0 =0 y'©0=-1 y”"0=0

3L oy —4y"+4y'=0  yD=-1 yD=2 y@d=0 Yy D=0

2. Y-y +y-y=0  y0O=2 yO0=-1 y'(0=-

33. 2yV —y" —9y' 44y +4y=0; y(0) =-2, y(©0) =0 Yy'0)=-—
y"(0) =0

34. 4y"+y +5y=0  y0) =2 Yy0O=1 Yy 0=-

35. 6y +5y"+Yy =0; yO)y=-2, y0 =2 VY0 =

36. yV 46y + 17y’ + 22y + 14y = O; yO) =1, y(@©0 =-2 Y0 =0,
y"(0) =3

37. Show that the general solution of y" — y = 0 can be written as

y = ¢, cost + ¢, sint + ¢, cosht + ¢, sinht.

Determine the solution satisfying the initial conditions y(0) =0, y'(0) = 0, y”(0) = 1,
y/”I (0) = 1. Why is it convenient to use the solutions cosh t and sinh t rather than €' and
e ?

38. Consider the equation y"V — y = 0.

(@ Use Abd’sformula[Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.

(b) Determine the Wronskian of the solutions €', e™t, cost, and sint.

(c) Determine the Wronskian of the solutions cosht, sinht, cost, and sint.

39. Consider the spring—mass system, shown in[Figure 4.2.4] consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.

(@) Show that the displacements u, and u,, of the masses from their respective equilibrium
positions satisfy the equations

uy + 5u; = 2u,, Uy +2u, = 2u,. 0)

(b) Solve the first of Egs. (i) for u, and substitute into the second equation, thereby
obtaining the following fourth order equation for u,:

uy + 7uf + 6u, = 0. (ii)
Find the general solution of Eq. (ii).
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FIGURE 4.2.4 A two degree of freedom spring—mass system.

(c) Supposethat theinitial conditions are
u(0) =1, u;(0) =0, u,(0) = 2, u,(0) = 0. (iii)

Usethefirst of Egs. (i) and theinitia conditions (iii) to obtain values for uy(0) and u’(0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on u, is
u, (t) = cost. Show that the corresponding solution u, isu,(t) = 2 cost.

(d) Now suppose that the initial conditions are

u(0) = -2, u;(0) =0, u,(0) =1, u,(0) = 0. (@iv)

Proceed as in part (c) to show that the corresponding solutions are u, (t) = —2 cos+/6t
and u,(t) = cos+/6t.

(e) Observe that the solutions obtained in parts (c) and (d) describe two distinct modes of
vibration. In thefirst, the frequency of the motion is 1, and the two masses move in phase,
both moving up or down together. The second motion has frequency +/6, and the masses
move out of phase with each other, one moving down while the other is moving up and
vice versa. For other initial conditions, the motion of the massesis a combination of these
two modes.

40.

In this problem we outline one way to show that if r, ..., r  areall real and different, then
gt ..., énlarelinearly independent on —oo < t < co. To do this, we consider the linear
relation

Clerlt+...+cnernt:0, —0<t<oo (I)

and show that all the constants are zero.
(@ Multiply Eq. (i) by e 1" and differentiate with respect to t, thereby obtaining

Cy(r, —rpea T g (r, — 1) =0,
(b) Multiply the result of part (a) by e~ "2~"2" and differentiate with respect to t to obtain
Calfy — T ) (g — 1™ 4o e (r, —r,)(r, —rpeh ' =0
(c) Continue the procedure from parts (&) and (b), eventually obtaining

c(r —r

(" —Th_pt —
n\n noy) (= ryen -t =0
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Hence ¢, = 0 and therefore
c, €'+ +c, €1l =0

(d) Repeat the preceding argument to show that ¢, _, = 0. In asimilar way it follows that
¢, ,=---=¢, = 0. Thusthefunctions€t', ..., en' arelinearly independent.

4.3 The Method of Undetermined Coefficients

EXAMPLE

1

A particular solution'Y of the nonhomogeneous nth order linear equation with constant
coefficients

LIyl = ay™ +ay™ P +.--+a, .,y +ay=091 @

can be obtained by the method of undetermined coefficients, provided that g(t) isof an
appropriate form. While the method of undetermined coefficients is not as general as
the method of variation of parameters described in the next section, it is usually much
easier to use when applicable.

Just as for the second order linear equation, when the constant coefficient linear
differential operator L is applied to a polynomial Ajt™+ Ajt™ !t +... 4+ A, an
exponential function e, asine function sin t, or a cosine function cos At, the result
is a polynomial, an exponentia function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(t) is a sum of polynomials, exponentials, sines,
and cosines, or products of such functions, we can expect that it is possible to find
Y (t) by choosing a suitable combination of polynomials, exponentials, and so forth,
multiplied by a number of undetermined constants. The constants are then determined
so that Eq. (1) is setisfied.

The main difference in using this method for higher order equations stems from the
fact that roots of the characteristic polynomial equation may have multiplicity greater
than 2. Consequently, terms proposed for the nonhomogeneous part of the solution
may need to be multiplied by higher powers of t to make them different from termsin
the solution of the corresponding homogeneous equation.

Find the general solution of
y/// _ 3y// + 3y/ _ y — 4et. (2)

The characteristic polynomia for the homogeneous equation corresponding to
Eqg. (2)is

r3—3r243r—1=(0r —1>3,
so the general solution of the homogeneous equation is
y.(1) = ¢, + o tel + cyt?e. (3)

To find a particular solution Y (t) of Eq. (2), we start by assuming that Y (t) = A€'.
However, since €', te', and t%e' are all solutions of the homogeneous equation, we
must multiply thisinitial choice by t2. Thus our final assumptionisthat Y (t) = At3¢',
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EXAMPLE

3

where Aisan undetermined coefficient. To find the correct valuefor A, wedifferentiate
Y (t) three times, substitute for y and its derivativesi and collect termsin the
resulting equation. In this way we obtain

BAE" = 4€".
Thus A = £ and the particular solution is
Y(t) = 2t%. 4)
The general solution of [Eq. (2) fisthe sum of y,(t) from[Eg. (3)Jand Y (t) from Eq. (4).

Find a particular solution of the equation
yV +2y” +y = 3sint — 5cost. (5)

The general solution of the homogeneous equation was found in| Example 3| of
namely,

y,(t) = ¢, cost + ¢, sint + c;t cost + ¢,t sint, (6)

correspondingtotherootsr =i,i, —i,and —i of the characteristic equation. Our initial
assumption for a particular solutionis Y (t) = Asint + B cost, but we must multiply
this choice by t2 to make it different from all solutions of the homogeneous equation.
Thus our final assumption is

Y(t) = At?sint + Bt? cost.

Next, we differentiate Y (t) four times, substitute into the differential equation (4), and
collect terms, obtaining finally

—8Asint — 8B cost = 3sint — 5cost.
Thus A= —2, B = 2, and the particular solution of Eq. (4) is

Y(t) = —3t?sint + 2t* cost. (7

If g(t) isasum of several terms, it is often easier in practice to compute separately
the particular solution corresponding to each term in g(t). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example.

Find a particular solution of
y” —4y =t + 3cost + e 2. 8)

First we solve the homogeneous equation. Thecharacteristic equationisr® — 4r = 0,
and theroots are 0, +2; hence

V() = ¢, + C,e" + e
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We can write a particular solution of |Eq. (8)|as the sum of particular solutions of the
differential equations

y/// _ 4y/ — t, y/// _ 4y/ — 3C05t, y/// _ 4y/ — e—2t.

Our initial choice for a particular solution Y, (t) of the first equation is Ajt + A, but
since a constant is a solution of the homogeneous equation, we multiply by t. Thus

Y, (1) = t(Agt + A).
For the second equation we choose
Y,(t) = Bcost + Csint,

and there is no need to modify thisinitial choice sincecost and sint are not solutions
of the homogeneous equation. Finally, for the third equation, since e isasolution of
the homogeneous equation, we assume that

Y,(t) = Ete™®.

The constants are determined by substituting into the individual differential equations;
they are Ay=—%, A, =0,B=0,C = -, and E = 1. Hence a particular solution

8
of [Eq. (8)|is

Y(t) = -3t — Esint + Lte . 9)

The amount of algebrarequired to cal cul ate the coefficients may be quite substantial
for higher order equations, especially if the nonhomogeneous term is even moderately
complicated. A computer algebra system can be extremely helpful in executing these
algebraic calculations.

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (t). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

PROBLEMS

vVVvVYVYyY

In each of Problems 1 through 8 determine the general solution of the given differential equation.

1L y' —y' —y+y=2e"4+3 2. yV —y =3t +cost
Y'Yy +y+y=e'+4 4. y" —y =2sint

5. yV -4y =t 4 ¢ 6. yV+2y'+y=3+cos2t
7. yVI+y///:t 8 yIV+y///:Sin2t

In each of Problems 9 through 12 find the solution of the given initial value problem. Then plot
agraph of the solution.

9. y'+4y =t, y0)=y(©0) =0 y'©0=1
10. YV +2y' +y=23t+4, y0) =y (0 =0, y'©=y"0=1
11 y" —-3y' +2y =t + €, yoO =1 yO=-31 y©0=-3
12. YV +2y" 4y’ +8y — 12y = 12sint —e™", y(0) =3, Yy(0) =0,
y'0=-1 y"0) =2
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In each of Problems 13 through 18 determine a suitable form for Y (t) if the method of undeter-
mined coefficientsis to be used. Do not evaluate the constants.

13,y —2y' +y =t3+2¢ 14. y" —y =te™' + 2cost

15. yV -2y’ +y=¢ +sint 16. yV + 4y’ =sin2t +te' +4

17. YV —y" —y' +y =t> + 4+ tsint

18. yV 42y +2y" =3 +2te’t + e tsint

19. Consider the nonhomogeneous nth order linear differential equation

ay™ +ay" V4. +ay =g,
wherea,, ..., a, are constants. Verify that if g(t) is of the form
e(bpt™ + -+ by,
then the substitution y = e*tu(t) reduces the preceding equation to the form
kou™ + ku™ P ok u=bt™+ -+ b,

where k, ..., k, are constants. Determine k, and k in terms of the a's and . Thus
the problem of determining a particular solution of the original equation is reduced to
the simpler problem of determining a particular solution of an equation with constant
coefficients and a polynomial for the nonhomogeneous term.

Method of Annihilators. In Problems 20 through 22 we consider another way of arriving
at the proper form of Y (t) for use in the method of undetermined coefficients. The procedure
is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and
products of such terms) can be viewed as solutions of certain linear homogeneous differential
equations with constant coefficients. It is convenient to use the symbol D for d/dt. Then,
for example, e is a solution of (D + 1)y = 0; the differential operator D + 1 is said to
annihilate, or to be an annihilator of, e™'. Similarly, D? + 4 isan annihilator of sin2t or cos2t,
(D —3)2 = D? — 6D + 9isan annihilator of €* or te*, and so forth.

20. Show that linear differential operators with constant coefficients obey the commutative
law, that is,

(D-—ayD-bf=(D-b(D-af

for any twice differentiable function f and any constants a and b. The result extends at
once to any finite number of factors.
21. Consider the problem of finding the form of the particular solution Y (t) of

(D—-23D+1)Y =3 —te!, (i)

where the left side of the equation is written in aform corresponding to the factorization
of the characteristic polynomial.
(@ Show that D — 2 and (D + 1)2, respectively, are annihilators of the terms on theright
side of Eq. (i), and that the combined operator (D — 2)(D + 1)? annihilates both terms on
theright side of Eq. (i) simultaneously.
(b) Apply the operator (D — 2)(D + 1) to Eq. (i) and use the result of Problem 20 to
obtain

(D — 2*D + 1)%Y =0. (ii)
ThusY isasolution of the homogeneous equation (ii). By solving Eq. (ii), show that

Y(t) = c,€* + cté? + ¢ t%e? + ¢ t3e?
+ce !t +egte + ot (iii)

wherec,, ..., ¢, are constants, as yet undetermined.
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(c) Observe that €*, te®, t%e?, and e are solutions of the homogeneous equation
corresponding to; hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose ¢, C,, C;, and ¢, to be zero in|Eq. (iii)} so that

Y () = c,t%* + cite™ + ¢ t%e (iv)

Thisisthe form of the particular solution'Y of Eq. (i).| The values of the coefficientsc,, c;,
and ¢, can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that
L(D)y = g(®), ()

where L(D) is alinear differential operator with constant coefficients, and g(t) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of the particular
solution of Eq. (i), you can proceed as follows.

(8) Find adifferential operator H (D) with constant coefficients that annihilates g(t), that
is, an operator such that H(D)g(t) = 0.
(b) Apply H(D) to Eq. (i), obtaining

H(D)L(D)y =0, (i)

which is a homogeneous equation of higher order.
(c) SolveEgq. (ii).
(d) Eliminate from the solution found in step (c) the terms that also appear in the solution
of L(D)y = 0. The remaining terms constitute the correct form of the particular solution
of Eq. (i).

22. Use the method of annihilators to find the form of the particular solution Y (t) for each of
the equations in Problems 13 through 18. Do not eval uate the coefficients.

4.4 The Method of Variation of Parameters

The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

LIyl =y + p,Oy" P + - 4 p, ,OY + p, D)y = g(t) D

isadirect extension of themethod for the second order differential equation (see Section

As before, to use the method of variation of parameters, it is first necessary to

solve the corresponding homogeneous differential equation. In general, this may be
difficult unless the coefficients are constants. However, the method of variation of
parametersis still more general than the method of undetermined coefficientsin that it
leadsto an expression for the particular solution for any continuousfunction g, whereas
the method of undetermined coefficients is restricted in practice to a limited class of
functions g.

Suppose then that we know a fundamental set of solutions y,, v, ..., Y, of the
homogeneous equation. Then the general solution of the homogeneous equation is

Y.() = ¢y, (1) + Gy, +--- + ¢y, 1. 2
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The method of variation of parameters for determining a particular solution of
rests on the possibility of determining n functionsu,, u,, ..., u, such that Y(t) is of
the form

YO =u Oy (1) + Uy(OY,(0) + - - + U, (DY, (D). ©)

Since we have n functions to determine, we will have to specify n conditions. One of
theseis clearly that Y satisfy [Eq. (1)| The other n — 1 conditions are chosen so as to
make the cal culations as simpl e as possible. Sincewe can hardly expect asimplification

in determining Y if we must solve high order differential equations for u,, ..., u,, it
is natural to impose conditions to suppress the terms that lead to higher derivatives of
uy, ..., u,. From Eq. (3) we obtain

Y' = (Upyy + UpYs + - UpYy) 4 (ULY; + UpY, + -+ UpYy). @)

where we have omitted the independent variable t on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

uiy; +usy, 4+ - +upy, =0. (5)
Continuing this processin a similar manner through n — 1 derivatives of Y gives
YO —uy ™ puys™ 4 u Y™, m=0,1,2...,n—-1 (6
and the following n — 1 conditions on the functionsu,, ..., u,:

Uy Yy 4 uy™Y =0, m=12..,n-1 (7

The nth derivative of Y is
YO = Uy 4 U+ Uy ). ®)

Finally, weimpose the condition that Y must be a solution of [Eg. (1)} On substituting
for the derivatives of Y from Egs. (6) and (8), collecting terms, and making use of the
factthat L[y;] =0, i =1,2,...,n, weobtan

Uy Uy ey = g ©
Equation (9), coupled with the n — 1 equations (7), gives n simultaneous linear non-
homogeneous algebraic equations for u’, U5, ..., u:

y,up + Youo + -+ y up =0,
yiUi + YU + - + ypuy =0,
YiUi + YaUy + - -+ ypup =0, (10)

yinfl)

The system (10) is alinear algebraic system for the unknown quantitiesuy, ..., u,.
By solving this system and then integrating the resulting expressions, you can obtain
the coefficientsu,, .. ., u,. A sufficient condition for the existence of a solution of the
system of eguations (10) isthat the determinant of coefficientsisnonzero for each value
of t. However, the determinant of coefficientsis precisely W(y,, y,, ..., y,), anditis
nowhere zero sincey,, ..., y, arelinearly independent solutions of the homogeneous

4y = g
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EXAMPLE

1

equation. Hence it is possible to determine u, ..., uy,. Using Cramer’s rule, we find
that the solution of the system of is
gt W, (t)
u () = ——"1"——, =12...,n 11
== (12)

Here W(t) = W(y,.Y,, ..., ¥,) (1) and W_ is the determinant obtained from W by
replacing the mth column by thecolumn (0, O, .. ., 0, 1). With thisnotation aparticular

solution of |Eq. (1)|is given by

gOWL(S)
Y(t) = t S, 12
) = Zym()/o We (12)

wheret, isarbitrary. Whilethe procedureis straightforward, the algebrai c computations
involved in determining Y (t) from Eq. (12) become more and more complicated as n
increases. In some cases the calculations may be simplified to some extent by using
Abel’s identity (Problem 20 of Section 4.1)),

W(t) = W(y,, ..., y,){) =cexp [—/ p, (1) dt} .

The constant ¢ can be determined by evaluating W at some convenient point.

Giventhat y, (t) = €', y,(t) = te', and y,(t) = ™" are solutions of the homogeneous
equation corresponding to

Y'—y' =y +y=qg®), (13)

determine a particular solution of Eq. (13) in terms of an integral.
We use Eq. (12). First, we have

el tel et
W(t) = W(e te', e ) (t) = t+1et  —et
€ (t +2)€ et

Factoring €' from each of the first two columns and et from the third column, we
obtain

1 t 1
Wit =¢€| 1 t+1 -1
1 t+2 1

Then, by subtracting the first row from the second and third rows, we have

1 t 1
Wt)=¢€|0 1 -2
0 2 0

Finally, evaluating the latter determinant by minors associated with the first column,
we find that

W(t) = 4€'.
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vVvyyvyy

Next,
0 te' et
wt)y=| 0 t+De  —e"
1 (t +2)€ e!
Using minors associated with the first column, we obtain
. tel et |
Wi(® = (t + 1€ et | =721
Inasimilar way
t —t
e 0 e t _t
W,(t) = | ¢ 0 —et|=- gt _g_t -2,
e 1 e!
and
el te 0 o e ,
W,(t) =| € t 4+ 1)e 0|= =éet

Substituting these resultsin Eq. (12), we have

t 1 t
g(s)(—1—2s) ds + tet 9(3)§2) ds

e_t t g (S) eZS
4e® t

Y(t) =¢€ — ds

t t

t
/ [€75[-1+ 2t —9)] +e "} g(s) ds.
t

0

1

4

In each of Problems 1 through 6 use the method of variation of parameters to determine the
general solution of the given differential equation.

1L y"+y =tant, O<t<m 2. y'—y =t
3y -2y —y+2y=¢" 4. y"+y =sect, -m/2<t<m/2
5.y —y' +y —y=elsnt 6. yV+2y' +y=sdnt

In each of Problems 7 and 8 find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

7. y’”—y”-i-y/_y:SBCt’ —7'[/2<t<7T/2

o. y' —Yy =csct, O<t<m

In each of Problems 9 through 12 find the solution of the given initial value problem. Then plot
agraph of the solution.

/11

9. y'+y=sct, yO0O=2 yO=1 Yy©0=-2
10. yW+2y"+y=snt,  y0 =2 yO=0 yO=-1 y'©O=1
1L y"=y'+y -y=sct, y0=2 yO=-1 YyO=1
12. y" —y =csct, y(@/2) =2, Y@/2=1 VY'(r/2)=-1
13. Given that x, x?, and 1/x are solutions of the homogeneous equation corresponding to

N 2.\,

X3y + x2y" — 2xy’ + 2y = 2x4, x>0,

determine a particular solution.
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14. Find aformulainvolving integrals for a particular solution of the differential equation
y' =y +y —y=90.
15. Find aformulainvolving integrals for a particular solution of the differential equation
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If g(t) = t=2€', determine Y (t).
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Hint: Verify that x, x2, and x® are solutions of the homogeneous equation.

Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Pren-
tice Hall, 1961; New York: Dover, 1989).

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover,
1953).




CHAPTER

5

Series Solutions
of Second Order
Linear Equations

Finding the general solution of a linear differential equation rests on determining a
fundamental set of solutions of the homogeneous equation. So far, we have given a
systematic procedure for constructing fundamental solutions only if the equation has
constant coefficients. To deal with the much larger class of equations having variable
coefficients it is necessary to extend our search for solutions beyond the familiar
elementary functions of calculus. The principal tool that we need is the representation
of agiven function by a power series. The basic ideais similar to that in the method of
undetermined coefficients: We assumethat the solutions of agiven differential equation
have power series expansions, and then we attempt to determine the coefficients so as
to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are functions
of theindependent variable. We begin by summarizing very briefly the pertinent results
about power series that we need. Readers who are familiar with power series may go
on to[Section 5.2] Those who need more details than are presented here should consult
abook on calculus.

231
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EXAMPLE

1

A power series Y a, (X — X,)" issaid to converge at a point x if
n=0

lim > "a (x = xy)"
n=0

m—o00

existsfor that x. The series certainly converges for x = X,; it may converge for all
X, or it may converge for some values of x and not for others.

Theseries )~ a (x — X,)" is said to converge absolutely at apoint x if the series
n=0

D lax = x)" = layl1x — X"
n=0 n=0

converges. It can be shown that if the series converges absolutely, then the series
also converges; however, the converse is not necessarily true.

One of the most useful tests for the absolute convergence of a power seriesisthe
ratio test. If a, # 0, and if for afixed value of x

n+1

an+1(X B Xo)
a,(x — xp)"

then the power series converges absolutely at that value of x if |x — x| < 1/L,
and divergesif [x — x,| > 1/L.If [x — X,| = 1/L, the test isinconclusive.

lim

n—o0

= |X — X, nILm
o0

= L|X — X,

‘ A1
a,

For which values of x does the power series

Z (_1)n+1n(x _ 2)n

n=1
converge?
To test for convergence we use the ratio test. We have
i [CDTPO+ D=2
el (=DM inx - 2)"

. n+1
=|x—2] lim L=|x—2|.
n—o0 n

According to statement 3 the series converges absolutely for |[x — 2| < 1,0r 1 <
X < 3,and divergesfor |x — 2| > 1. Thevaluesof x correspondingto [x — 2| = 1
arex = 1 and x = 3. The series diverges for each of these values of x since the
nth term of the series does not approach zero asn — oo.

If the power series ) a,(x — X,)" converges at x = X, it converges absolutely
n=0

for [x — X, < [X; — X,|; and if it diverges at x = X, it diverges for |x — x;| >

[X, — Xl

There is a nonnegative number p, called the|radius of convergence| such that

o
nZ:Oan(x - xO)” converges absolutely for |x — X,| < p and divergesfor [x — X | >
p. For aseries that converges only at x,, we define p to be zero; for a series that
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convergesfor all x, wesay that p isinfinite. If p > 0, thentheinterval [x — x,| < p
iscaledtheinterval of convergence; itisindicated by the hatched linesin Figure
5.1.1. The series may either converge or diverge when |x — X;| = p.

Series Series Series
diverges converges " diverges
9 absolutely 9
‘ MMM\ /1)) ‘
AAARARARARRNR AN AR RN
Xo— P Xo Xo+p X

\ Series may /

converge or diverge

FIGURE 5.1.1 Theinterval of convergence of a power series.

Determine the radius of convergence of the power series

EXA;PLE (x4 1)"
We apply the ratio test:

x4+ D™t np2n _ Ix+1 im0 _ x+1

n—>oo [ (n + 1)2"1 (x + 1)" 2 nsoon+1 2

Thusthe series converges absolutely for [x + 1| < 2,0r —3 < X < 1, and diverges
for [x + 1] > 2. The radius of convergence of the power seriesis p = 2. Finally,
we check the endpoints of theinterval of convergence. At x = 1 the seriesbecomes
the harmonic series

o0

P

n=1
which diverges. At x = —3 we have

(— 3+1)
y, Y

n=1

Sk

o0

which converges, but does not converge absolutely. The seriesis said to converge
conditionally at x = —3. To summarize, the given power series converges for
—3 < X < 1, and diverges otherwise. It converges absolutely for —3 < x < 1, and
has aradius of convergence 2.

If Z a,(x — X,)" and Z b, (x — x,)" convergeto f (x) and g(x), respectively,

for |x — x0| <p,p >0, then the following are true for [x — x| < p.
6. The series can be added or subtracted termwise and

FOO£gx) =Y (@, £b)(x —x)".
n=0
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7.

10.

The series can be formally multiplied and

fO0gX) = [Z a,(x — xo)”} {Z b, (x — xo)”} = e (x — %",
n=0 n=0

n=0

where ¢, = agb, + a,b,_, +--- +a b,. Further, if g(x,) # 0O, the series can be
formally divided and

f) n
700 _§dn(x—xo) .

In most cases the coefficients d, can be most easily obtained by equating coeffi-
cientsin the equivalent relation

Z a,(x — X" [Z d, (x — %) } [Z b, (x — xo)”}

n=0

Also, inthe case of division, theradius of convergence of the resulting power series
may be lessthan p.

The function f is continuous and has derivatives of all orders for |x — x| < p.
Further, f/, 7, ... can be computed by differentiating the seriestermwise; that is,

f'(xX) =a, +2a,(x —X;) +--- +na,(x — Xo)n—l +
= Z nan(X - Xo)nil,
n=1
f7(x) = 2a, + 6a5(X — Xg) + - -+ + NN — Da,(Xx — X)" 2+ - --
=3 " n(—Da,(x — x)" 2
n=2
and so forth, and each of the series converges absolutely for [x — x| < p.

Thevalue of a_ isgiven by

fm (XO)
n
The seriesis called the TayI0|m seriesfor the function f about x = X,

If Zan(x—xo) —Zb(x—xo) for each x, then a, =b, for n=0,1,
n=0

2,3, .... In particular, if Zan(x—xo) =0foreach x,thena,=a, =--- =
=0
an:...:(). "

1Brook Taylor (1685—-1731) was the leading English mathematician in the generation following Newton. In 1715

he published a general statement of the expansion theorem that is named for him, aresult that is fundamental in
all branches of analysis. He was also one of the founders of the calculus of finite differences, and was the first to
recognize the existence of singular solutions of differential equations.
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EXAMPLE

3

EXAMPLE

4

A function f that has a Taylor series expansion about X = X,

o f (n)
100 =Y Do
n=0 '

with a radius of convergence p > 0, is said to belanalyticat x = x,. According to
statements6 and 7, if f and g areanalytic at x,,then f £, f - g,and f/g [provided
that g(x,) # O] areanalytic at X = X,.

Shift of Index of Summation. Theindex of summationinaninfiniteseriesisadummy

parameter just as the integration variable in a definite integral is a dummy variable.
Thusit isimmaterial which letter is used for the index of summation. For example,

iZ”x” © 2yl
I i
~ nl ~ !

Just as we make changes of the variable of integration in a definite integral, we find
it convenient to make changes of summation indices in calculating series solutions of
differential equations. We illustrate by several examples how to shift the summation
index.

o0
Write ) a, x" asaseries whose first term corresponds to n = O rather thann = 2.

n=2
Letm=n— 2;thenn = m+ 2and n = 2 corresponds to m = 0. Hence

Z; anxn = Z;)am+zxm+2' )

By writing out the first few terms of each of these series, you can verify that they
contain precisely the same terms. Finally, in the series on the right side of Eq. (1), we
can replace the dummy index m by n, obtaining

Z_; ax" = X; a, X" @)

In effect, we have shifted the index upward by 2, and compensated by starting to count
at alevel 2 lower than originally.

Write the series
Y (N +2)(n+ Da,(x — x)" 2 ®
n=2

as a series whose generic term involves (x — x,)" rather than (x — xo)"‘z.
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2
lower. We obtain

o0

> (n+ 4 +3)a, ,(x —x)". 4

n=0
You can readily verify that the termsin the series (3) and (4) are exactly the same.
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EXAMPLE

5

EXAMPLE

6

Write the expression
o0
X2 Z (r + n)anxl'+n—l (5)
n=0

as a series whose generic term involves x" .
First take the x? inside the summation, obtaining

Z r + n)anxr+”+1. (6)
n=0
Next, shift the index down by 1 and start counting 1 higher. Thus
D +max =3 +n-1Da,_x*". (7)
n=0 n=1

Again, you can easily verify that the two seriesin Eq. (7) are identical, and that both
are exactly the same as the expression (5).

Assume that
D naxt=%"ax" (8)
n=1 n=0

for all x, and determine what this implies about the coefficients a,,.

We want to usqg statement 10|to equate corresponding coefficients in the two series.
In order to do this, we must first rewrite Eq. (8) so that the series display the same

power of X in their generic terms. For instance, in the series on the left side of Eqg. (8),
we can replace n by n + 1 and start counting 1 lower. Thus Eq. (8) becomes

Do+ Da, x" =) ax". )
n=0 n=0

According to[statement 10jwe conclude that
(n+Da,,,=a, n=0123...

or
a,
= —0, n:0,1,2,3,... 10
1= 031 (10)
Hence, choosing successive values of n in Eq. (10), we have
_ _A_® _%2_ %
a'1_a0’ 32—2—2, a3_ _3|’

and so forth. In general,

_% _
a“_ﬁ’ n=123,.... 1D
Thus the relation (8) determines all the following coefficients in terms of a,. Finally,

using the coefficients given by Eqg. (11), we obtain

o0 N o0 Xn «
n;anx =aonZ=;m=a067

where we have followed the usual convention that 0! = 1.
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In each of Problems 1 through 8 determine the radius of convergence of the given power series.

[o] [o] n
L Y x-3)" 2. > =x"
n=0 n=0 2
0o y2N 00
3y — 4. > 2""
n=0 n! n=0
o (2x + 1" 0o (X — X,)"
5 Y —— 6. Y —9%
n=1 n n=1 n
7§ DT g o nixt
. n=1 3n . n=1 nn

In each of Problems 9 through 16 determine the Taylor series about the point x, for the given
function. Also determine the radius of convergence of the series.

9. sinx, X, =0 10. €, Xy =0
11. x,  x,=1 12. X%, x,=-1
1
13. Inx, X, =1 14. , X, =0
0 14+ x 0
1 1
15. = 16. =2
° 1-—x’ % =0 6 1-x’ %o

17. Giventhaty = > nx", compute y’ and y” and write out the first four terms of each series

n=0
aswell asthe coefficient of x" in the general term.

18. Giventhat y = )" a x", compute y’ and y” and write out the first four terms of each
n=0
series as well as the coefficient of x" in the general term. Show that if y” =y, then the
coefficients a, and a, are arbitrary, and determine a, and a, in terms of a, and a,. Show
thatan+2=ah/(n+2)(n+1),n=0, 1,23, ....

In each of Problems 19 and 20 verify the given equation.

19, foan(x = io:lan_l(x — 1"

20 Y a4+ Y ax = a + Y@, +a )Xk
k=0 k=0 k=1

In each of Problems 21 through 27 rewrite the given expression as a sum whose generic term
involves x".

o] (o]
21 Y n(n—Dax"?2 22, Yy ax"?
n=2 n=0

[o¢] o0 oo
23. x Y nax"t+ Y axk 24. (1-x% Y n(n—Da x"?
n=1 k=0 n=2
25. Y mm-Da x"?+xY kax“t 26, Y nax"t+x) ax"
m=2 k=1 n=1 n=0

27. xY nin-Dax" 2+ ax"
n=2 n=0
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28. Determine the a, so that the equation

i na x"'+2) ax"=0

n=1 n=0

is satisfied. Try to identify the function represented by the series 3~ a x".
n=0

5.2 Series Solutions near an Ordinary Point, Part |

In[Chapter 3jwe described methods of solving second order linear differential equations
with constant coefficients. We now consider methods of solving second order linear
equations when the coefficients are functions of the independent variable. In this
chapter we will denote the independent variable by x. It is sufficient to consider the
homogeneous equation
d?y dy
P(xX)— — +R =0 1
(X)dx2 + QM) + Ry =0, (1)

since the procedure for the corresponding nonhomogeneous equation is similar.

A wide class of problemsin mathematical physicsleads to equations of the form (1)
having polynomia coefficients; for example, the Bessel equation

X2y +xy' + (x* —vd)y =0,

where v is aconstant, and the Legendre equation
1—xdy —2xy +ala + 1)y =0,

where« isaconstant. For thisreason, aswell asto simplify the al gebraic computations,
we primarily consider the case in which the functions P, Q, and R are polynomials.
However, as we will see, the method of solution is also applicable when P, Q, and R
are general analytic functions.

For the present, then, suppose that P, Q, and R are polynomials, and that they have
no common factors. Suppose aso that we wish to solve Eq. (1) in the neighborhood
of apoint x,. The solution of Eq. (1) in an interval containing X, is closely associated
with the behavior of P in that interval.

A point x, such that P(x,) # Oiscalled arf ordinary point.|Since P is continuous,
it follows that ther