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P R E F A C E

This edition, like its predecessors, is written from the viewpoint of the applied mathe-
matician, whose interest in differential equations may be highly theoretical, intensely
practical, or somewhere in between. We have sought to combine a sound and accurate
(but not abstract) exposition of the elementary theory of differential equations with
considerable material on methods of solution, analysis, and approximation that have
proved useful in a wide variety of applications.

The book is written primarily for undergraduate students of mathematics, science,
or engineering, who typically take a course on differential equations during their first
or second year of study. The main prerequisite for reading the book is a working
knowledge of calculus, gained from a normal two- or three-semester course sequence
or its equivalent.

A Changing Learning Environment

The environment in which instructors teach, and students learn, differential equations
has changed enormously in the past few years and continues to evolve at a rapid pace.
Computing equipment of some kind, whether a graphing calculator, a notebook com-
puter, or a desktop workstation is available to most students of differential equations.
This equipment makes it relatively easy to execute extended numerical calculations,
to generate graphical displays of a very high quality, and, in many cases, to carry out
complex symbolic manipulations. A high-speed Internet connection offers an enormous
range of further possibilities.

The fact that so many students now have these capabilities enables instructors, if
they wish, to modify very substantially their presentation of the subject and their
expectations of student performance. Not surprisingly, instructors have widely varying
opinions as to how a course on differential equations should be taught under these
circumstances. Nevertheless, at many colleges and universities courses on differential
equations are becoming more visual, more quantitative, more project-oriented, and less
formula-centered than in the past.

vii



viii Preface

Mathematical Modeling

The main reason for solving many differential equations is to try to learn something
about an underlying physical process that the equation is believed to model. It is basic
to the importance of differential equations that even the simplest equations correspond
to useful physical models, such as exponential growth and decay, spring-mass systems,
or electrical circuits. Gaining an understanding of a complex natural process is usually
accomplished by combining or building upon simpler and more basic models. Thus
a thorough knowledge of these models, the equations that describe them, and their
solutions, is the first and indispensable step toward the solution of more complex and
realistic problems.

More difficult problems often require the use of a variety of tools, both analytical and
numerical. We believe strongly that pencil and paper methods must be combined with
effective use of a computer. Quantitative results and graphs, often produced by a com-
puter, serve to illustrate and clarify conclusions that may be obscured by complicated
analytical expressions. On the other hand, the implementation of an efficient numerical
procedure typically rests on a good deal of preliminary analysis – to determine the
qualitative features of the solution as a guide to computation, to investigate limiting or
special cases, or to discover which ranges of the variables or parameters may require
or merit special attention.

Thus, a student should come to realize that investigating a difficult problem may
well require both analysis and computation; that good judgment may be required to
determine which tool is best-suited for a particular task; and that results can often be
presented in a variety of forms.

A Flexible Approach

To be widely useful a textbook must be adaptable to a variety of instructional strategies.
This implies at least two things. First, instructors should have maximum flexibility to
choose both the particular topics that they wish to cover and also the order in which
they want to cover them. Second, the book should be useful to students having access
to a wide range of technological capability.

With respect to content, we provide this flexibility by making sure that, so far as
possible, individual chapters are independent of each other. Thus, after the basic parts
of the first three chapters are completed (roughly Sections 1.1 through 1.3, 2.1 through
2.5, and 3.1 through 3.6) the selection of additional topics, and the order and depth in
which they are covered, is at the discretion of the instructor. For example, while there is
a good deal of material on applications of various kinds, especially in Chapters 2, 3, 9,
and 10, most of this material appears in separate sections, so that an instructor can easily
choose which applications to include and which to omit. Alternatively, an instructor
who wishes to emphasize a systems approach to differential equations can take up
Chapter 7 (Linear Systems) and perhaps even Chapter 9 (Nonlinear Autonomous
Systems) immediately after Chapter 2. Or, while we present the basic theory of linear
equations first in the context of a single second order equation (Chapter 3), many
instructors have combined this material with the corresponding treatment of higher
order equations (Chapter 4) or of linear systems (Chapter 7). Many other choices and
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combinations are also possible and have been used effectively with earlier editions of
this book.

With respect to technology, we note repeatedly in the text that computers are ex-
tremely useful for investigating differential equations and their solutions, and many
of the problems are best approached with computational assistance. Nevertheless, the
book is adaptable to courses having various levels of computer involvement, ranging
from little or none to intensive. The text is independent of any particular hardware
platform or software package. More than 450 problems are marked with the symbol�

to indicate that we consider them to be technologically intensive. These problems may
call for a plot, or for substantial numerical computation, or for extensive symbolic ma-
nipulation, or for some combination of these requirements. Naturally, the designation
of a problem as technologically intensive is a somewhat subjective judgment, and the
� is intended only as a guide. Many of the marked problems can be solved, at least in
part, without computational help, and a computer can be used effectively on many of
the unmarked problems.

From a student’s point of view, the problems that are assigned as homework and
that appear on examinations drive the course. We believe that the most outstanding
feature of this book is the number, and above all the variety and range, of the problems
that it contains. Many problems are entirely straightforward, but many others are more
challenging, and some are fairly open-ended, and can serve as the basis for independent
student projects. There are far more problems than any instructor can use in any given
course, and this provides instructors with a multitude of possible choices in tailoring
their course to meet their own goals and the needs of their students.

One of the choices that an instructor now has to make concerns the role of computing
in the course. For instance, many more or less routine problems, such as those requesting
the solution of a first or second order initial value problem, are now easy to solve by
a computer algebra system. This edition includes quite a few such problems, just as
its predecessors did. We do not state in these problems how they should be solved,
because we believe that it is up to each instructor to specify whether their students
should solve such problems by hand, with computer assistance, or perhaps both ways.
Also, there are many problems that call for a graph of the solution. Instructors have
the option of specifying whether they want an accurate computer-generated plot or a
hand-drawn sketch, or perhaps both.

There are also a great many problems, as well as some examples in the text, that
call for conclusions to be drawn about the solution. Sometimes this takes the form of
asking for the value of the independent variable at which the solution has a certain
property. Other problems ask for the effect of variations in a parameter, or for the
determination of a critical value of a parameter at which the solution experiences a
substantial change. Such problems are typical of those that arise in the applications of
differential equations, and, depending on the goals of the course, an instructor has the
option of assigning few or many of these problems.

Supplementary Materials

Three software packages that are widely used in differential equations courses are
Maple, Mathematica, andMatlab. The booksDifferential Equations with Maple, Dif-
ferential Equations with Mathematica, andDifferential Equations with Matlab by K. R.

http://www.wiley.com/college/math/mathem/cg/differen.html
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Coombes, B. R. Hunt, R. L. Lipsman, J. E. Osborn, and G. J. Stuck, all at the University
of Maryland, provide detailed instructions and examples on the use of these software
packages for the investigation and analysis of standard topics in the course.

For the first time, this text is available in anInteractive Edition, featuring an eBook
version of the text linked to the award-winningODE Architect. The interactive eBook
links live elements in each chapter toODE Architect’s powerful, yet easy-to-use, nu-
merical differential equations solver and multimedia modules. The eBook provides a
highly interactive environment in which students can construct and explore mathemat-
ical models using differential equations to investigate both real-world and hypothetical
situations. A companion e-workbook that contains additional problems sets, called
Explorations, provides background and opportunities for students to extend the ideas
contained in each module. A stand-alone version ofODE Architect is also available.

There is a Student Solutions Manual, by Charles W. Haines of Rochester Institute
of Technology, that contains detailed solutions to many of the problems in the book. A
complete set of solutions, prepared by Josef Torok of Rochester Institute of Technology,
is available to instructors via the Wiley website atwww.wiley.com/college/Boyce.

Important Changes in the Seventh Edition

Readers who are familiar with the preceding edition will notice a number of mod-
ifications, although the general structure remains much the same. The revisions are
designed to make the book more readable by students and more usable in a modern
basic course on differential equations. Some changes have to do with content; for
example, mathematical modeling, the ideas of stability and instability, and numerical
approximations via Euler’s method appear much earlier now than in previous editions.
Other modifications are primarily organizational in nature. Most of the changes include
new examples to illustrate the underlying ideas.

1. The first two sections of Chapter 1 are new and include an immediate introduction
to some problems that lead to differential equations and their solutions. These sections
also give an early glimpse of mathematical modeling, of direction fields, and of the
basic ideas of stability and instability.

2. Chapter 2 now includes a new Section 2.7 on Euler’s method of numerical ap-
proximation. Another change is that most of the material on applications has been
consolidated into a single section. Finally, the separate section on first order homoge-
neous equations has been eliminated and this material has been placed in the problem
set on separable equations instead.

3. Section 4.3 on the method of undetermined coefficients for higher order equations
has been simplified by using examples rather than giving a general discussion of the
method.

4. The discussion of eigenvalues and eigenvectors in Section 7.3 has been shortened
by removing the material relating to diagonalization of matrices and to the possible
shortage of eigenvectors when an eigenvalue is repeated. This material now appears
in later sections of the same chapter where the information is actually used. Sections
7.7 and 7.8 have been modified to give somewhat greater emphasis to fundamental
matrices and somewhat less to problems involving repeated eigenvalues.

http://www.wiley.com/college/math/mathem/cg/sales/coombes.html
http://www.wiley.com/college/boyce/
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5. An example illustrating the instabilities that can be encountered when dealing
with stiff equations has been added to Section 8.5.

6. Section 9.2 has been streamlined by considerably shortening the discussion of au-
tonomous systems in general and including instead two examples in which trajectories
can be found by integrating a single first order equation.

7. There is a new section 10.1 on two-point boundary value problems for ordinary
differential equations. This material can then be called on as the method of separation
of variables is developed for partial differential equations. There are also some new
three-dimensional plots of solutions of the heat conduction equation and of the wave
equation.

As the subject matter of differential equations continues to grow, as new technologies
become commonplace, as old areas of application are expanded, and as new ones
appear on the horizon, the content and viewpoint of courses and their textbooks must
also evolve. This is the spirit we have sought to express in this book.

William E. Boyce
Troy, New York
April, 2000
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C H A P T E R

1

Introduction

In this chapter we try in several different ways to give perspective to your study of
differential equations. First, we use two problems to illustrate some of the basic ideas
that we will return to and elaborate upon frequently throughout the remainder of the
book. Later, we indicate several ways of classifying equations, in order to provide
organizational structure for the book. Finally, we outline some of the major figures and
trends in the historical development of the subject. The study of differential equations
has attracted the attention of many of the world’s greatest mathematicians during the
past three centuries. Nevertheless, it remains a dynamic field of inquiry today, with
many interesting open questions.

1.1 Some Basic Mathematical Models; Direction Fields

Before embarking on a serious study of differential equations (for example, by reading
this book or major portions of it) you should have some idea of the possible benefits
to be gained by doing so. For some students the intrinsic interest of the subject itself is
enough motivation, but for most it is the likelihood of important applications to other
fields that makes the undertaking worthwhile.

Many of the principles, or laws, underlying the behavior of the natural world are
statements or relations involving rates at which things happen. When expressed in
mathematical terms the relations are equations and the rates are derivatives. Equations
containing derivatives are differential equations. Therefore, to understand and to
investigate problems involving the motion of fluids, the flow of current in electric

1



2 Chapter 1. Introduction

circuits, the dissipation of heat in solid objects, the propagation and detection of
seismic waves, or the increase or decrease of populations, among many others, it is
necessary to know something about differential equations.

A differential equation that describes some physical process is often called a math-
ematical model of the process, and many such models are discussed throughout this
book. In this section we begin with two models leading to equations that are easy
to solve. It is noteworthy that even the simplest differential equations provide useful
models of important physical processes.

E X A M P L E

1
A Falling

Object

Suppose that an object is falling in the atmosphere near sea level. Formulate a differ-
ential equation that describes the motion.

We begin by introducing letters to represent various quantities of possible interest
in this problem. The motion takes place during a certain time interval, so let us use t
to denote time. Also, let us use v to represent the velocity of the falling object. The
velocity will presumably change with time, so we think of v as a function of t ; in
other words, t is the independent variable and v is the dependent variable. The choice
of units of measurement is somewhat arbitrary, and there is nothing in the statement
of the problem to suggest appropriate units, so we are free to make any choice that
seems reasonable. To be specific, let us measure time t in seconds and velocity v in
meters/second. Further, we will assume that v is positive in the downward direction,
that is, when the object is falling.

The physical law that governs the motion of objects is Newton’s second law, which
states that the mass of the object times its acceleration is equal to the net force on the
object. In mathematical terms this law is expressed by the equation

F = ma. (1)

In this equation m is the mass of the object, a is its acceleration, and F is the net force
exerted on the object. To keep our units consistent, we will measure m in kilograms, a
in meters/second2, and F in newtons. Of course, a is related to v by a = dv/dt, so we
can rewrite Eq. (1) in the form

F = m(dv/dt). (2)

Next, consider the forces that act on the object as it falls. Gravity exerts a force equal to
the weight of the object, or mg, where g is the acceleration due to gravity. In the units
we have chosen, g has been determined experimentally to be approximately equal to
9.8 m/sec2 near the earth’s surface. There is also a force due to air resistance, or drag,
which is more difficult to model. This is not the place for an extended discussion of
the drag force; suffice it to say that it is often assumed that the drag is proportional
to the velocity, and we will make that assumption here. Thus the drag force has the
magnitude γ v, where γ is a constant called the drag coefficient.

In writing an expression for the net force F we need to remember that gravity always
acts in the downward (positive) direction, while drag acts in the upward (negative)
direction, as shown in Figure 1.1.1. Thus

F = mg− γ v (3)
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and Eq. (2) then becomes

m
dv

dt
= mg− γ v. (4)

Equation (4) is a mathematical model of an object falling in the atmosphere near sea
level. Note that the model contains the three constants m, g, and γ . The constants m
and γ depend very much on the particular object that is falling, and usually will be
different for different objects. It is common to refer to them as parameters, since they
may take on a range of values during the course of an experiment. On the other hand,
the value of g is the same for all objects.

γ υ

mg

m

FIGURE 1.1.1 Free-body diagram of the forces on a falling object.

To solve Eq. (4) we need to find a function v = v(t) that satisfies the equation. It
is not hard to do this and we will show you how in the next section. For the present,
however, let us see what we can learn about solutions without actually finding any of
them. Our task is simplified slightly if we assign numerical values to m and γ , but the
procedure is the same regardless of which values we choose. So, let us suppose that
m = 10 kg and γ = 2 kg/sec. If the units for γ seem peculiar, remember that γ v must
have the units of force, namely, kg-m/sec2. Then Eq. (4) can be rewritten as

dv

dt
= 9.8 − v

5
. (5)

E X A M P L E

2
A Falling

Object
(continued)

Investigate the behavior of solutions of Eq. (5) without actually finding the solutions
in question.

We will proceed by looking at Eq. (5) from a geometrical viewpoint. Suppose that
v has a certain value. Then, by evaluating the right side of Eq. (5), we can find the
corresponding value of dv/dt. For instance, if v = 40, then dv/dt = 1.8. This means
that the slope of a solution v = v(t) has the value 1.8 at any point where v = 40. We
can display this information graphically in the tv-plane by drawing short line segments,
or arrows, with slope 1.8 at several points on the line v = 40. Similarly, if v = 50, then
dv/dt = −0.2, so we draw line segments with slope −0.2 at several points on the line
v = 50. We obtain Figure 1.1.2 by proceeding in the same way with other values of
v. Figure 1.1.2 is an example of what is called a direction field or sometimes a slope
field.

The importance of Figure 1.1.2 is that each line segment is a tangent line to the
graph of a solution of Eq. (5). Thus, even though we have not found any solutions, and
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FIGURE 1.1.2 A direction field for Eq. (5).

no graphs of solutions appear in the figure, we can nonetheless draw some qualitative
conclusions about the behavior of solutions. For instance, if v is less than a certain
critical value, then all the line segments have positive slopes, and the speed of the
falling object increases as it falls. On the other hand, if v is greater than the critical
value, then the line segments have negative slopes, and the falling object slows down as
it falls. What is this critical value of v that separates objects whose speed is increasing
from those whose speed is decreasing? Referring again to Eq. (5), we ask what value
of v will cause dv/dt to be zero? The answer is v = (5)(9.8) = 49 m/sec.

In fact, the constant function v(t) = 49 is a solution of Eq. (5). To verify this
statement, substitute v(t) = 49 into Eq. (5) and observe that each side of the equation
is zero. Because it does not change with time, the solution v(t) = 49 is called an
equilibrium solution. It is the solution that corresponds to a balance between gravity
and drag. In Figure 1.1.3 we show the equilibrium solution v(t) = 49 superimposed
on the direction field. From this figure we can draw another conclusion, namely, that
all other solutions seem to be converging to the equilibrium solution as t increases.

2 4 t6 8 10
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FIGURE 1.1.3 Direction field and equilibrium solution for Eq. (5).
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The approach illustrated in Example 2 can be applied equally well to the more
general Eq. (4), where the parameters m and γ are unspecified positive numbers. The
results are essentially identical to those of Example 2. The equilibrium solution of
Eq. (4) is v(t) = mg/γ . Solutions below the equilibrium solution increase with time,
those above it decrease with time, and all other solutions approach the equilibrium
solution as t becomes large.

Direction Fields. Direction fields are valuable tools in studying the solutions of
differential equations of the form

dy

dt
= f (t, y), (6)

where f is a given function of the two variables t and y, sometimes referred to as
the rate function. The equation in Example 2 is somewhat simpler in that in it f is a
function of the dependent variable alone and not of the independent variable. A useful
direction field for equations of the general form (6) can be constructed by evaluating f
at each point of a rectangular grid consisting of at least a few hundred points. Then,
at each point of the grid, a short line segment is drawn whose slope is the value of f
at that point. Thus each line segment is tangent to the graph of the solution passing
through that point. A direction field drawn on a fairly fine grid gives a good picture
of the overall behavior of solutions of a differential equation. The construction of a
direction field is often a useful first step in the investigation of a differential equation.

Two observations are worth particular mention. First, in constructing a direction
field, we do not have to solve Eq. (6), but merely evaluate the given function f (t, y)

many times. Thus direction fields can be readily constructed even for equations that
may be quite difficult to solve. Second, repeated evaluation of a given function is a
task for which a computer is well suited and you should usually use a computer to
draw a direction field. All the direction fields shown in this book, such as the one in
Figure 1.1.2, were computer-generated.

Field Mice and Owls. Now let us look at another quite different example. Consider
a population of field mice who inhabit a certain rural area. In the absence of predators
we assume that the mouse population increases at a rate proportional to the current
population. This assumption is not a well-established physical law (as Newton’s law of
motion is in Example 1), but it is a common initial hypothesis 1 in a study of population
growth. If we denote time by t and the mouse population by p(t), then the assumption
about population growth can be expressed by the equation

dp

dt
= rp, (7)

where the proportionality factor r is called the rate constant or growth rate. To be
specific, suppose that time is measured in months and that the rate constant r has the
value 0.5/month. Then each term in Eq. (7) has the units of mice/month.

Now let us add to the problem by supposing that several owls live in the same
neighborhood and that they kill 15 field mice per day. To incorporate this information

1A somewhat better model of population growth is discussed later in Section 2.5.
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into the model, we must add another term to the differential equation (7), so that it
becomes

dp

dt
= 0.5p − 450. (8)

Observe that the predation term is −450 rather than −15 because time is measured in
months and the monthly predation rate is needed.

E X A M P L E

3

Investigate the solutions of Eq. (8) graphically.
A direction field for Eq. (8) is shown in Figure 1.1.4. For sufficiently large values

of p it can be seen from the figure, or directly from Eq. (8) itself, that dp/dt is positive,
so that solutions increase. On the other hand, for small values of p the opposite is the
case. Again, the critical value of p that separates solutions that increase from those that
decrease is the value of p for which dp/dt is zero. By setting dp/dt equal to zero in
Eq. (8) and then solving for p, we find the equilibrium solution p(t) = 900 for which
the growth term and the predation term in Eq. (8) are exactly balanced. The equilibrium
solution is also shown in Figure 1.1.4.

1 2 t3 4 5

900
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800

950

1000

p

FIGURE 1.1.4 A direction field for Eq. (8).

Comparing this example with Example 2, we note that in both cases the equilibrium
solution separates increasing from decreasing solutions. However, in Example 2 other
solutions converge to, or are attracted by, the equilibrium solution, while in Example 3
other solutions diverge from, or are repelled by, the equilibrium solution. In both cases
the equilibrium solution is very important in understanding how solutions of the given
differential equation behave.

A more general version of Eq. (8) is

dp

dt
= rp − k, (9)



1.1 Some Basic Mathematical Models; Direction Fields 7

where the growth rate r and the predation rate k are unspecified. Solutions of this more
general equation behave very much like those of Eq. (8). The equilibrium solution of
Eq. (9) is p(t) = k/r . Solutions above the equilibrium solution increase, while those
below it decrease.

You should keep in mind that both of the models discussed in this section have their
limitations. The model (5) of the falling object ceases to be valid as soon as the object
hits the ground, or anything else that stops or slows its fall. The population model
(8) eventually predicts negative numbers of mice (if p < 900) or enormously large
numbers (if p > 900). Both these predictions are unrealistic, so this model becomes
unacceptable after a fairly short time interval.

Constructing Mathematical Models. In applying differential equations to any of the
numerous fields in which they are useful, it is necessary first to formulate the appropri-
ate differential equation that describes, or models, the problem being investigated. In
this section we have looked at two examples of this modeling process, one drawn from
physics and the other from ecology. In constructing future mathematical models your-
self, you should recognize that each problem is different, and that successful modeling
is not a skill that can be reduced to the observance of a set of prescribed rules. Indeed,
constructing a satisfactory model is sometimes the most difficult part of the problem.
Nevertheless, it may be helpful to list some steps that are often part of the process:

1. Identify the independent and dependent variables and assign letters to represent
them. The independent variable is often time.

2. Choose the units of measurement for each variable. In a sense the choice of units
is arbitrary, but some choices may be much more convenient than others. For
example, we chose to measure time in seconds in the falling object problem and
in months in the population problem.

3. Articulate the basic principle that underlies or governs the problem you are inves-
tigating. This may be a widely recognized physical law, such as Newton’s law of
motion, or it may be a more speculative assumption that may be based on your
own experience or observations. In any case, this step is likely not to be a purely
mathematical one, but will require you to be familiar with the field in which the
problem lies.

4. Express the principle or law in step 3 in terms of the variables you chose in
step 1. This may be easier said than done. It may require the introduction of
physical constants or parameters (such as the drag coefficient in Example 1)
and the determination of appropriate values for them. Or it may involve the use
of auxiliary or intermediate variables that must then be related to the primary
variables.

5. Make sure that each term in your equation has the same physical units. If this is
not the case, then your equation is wrong and you should seek to repair it. If the
units agree, then your equation at least is dimensionally consistent, although it
may have other shortcomings that this test does not reveal.

6. In the problems considered here the result of step 4 is a single differential equation,
which constitutes the desired mathematical model. Keep in mind, though, that in
more complex problems the resulting mathematical model may be much more
complicated, perhaps involving a system of several differential equations, for
example.
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PROBLEMS In each of Problems 1 through 6 draw a direction field for the given differential equation. Based
on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the
initial value of y at t = 0, describe this dependency.

� 1. y′ = 3 − 2y � 2. y′ = 2y − 3

� 3. y′ = 3 + 2y � 4. y′ = −1 − 2y

� 5. y′ = 1 + 2y � 6. y′ = y + 2

In each of Problems 7 through 10 write down a differential equation of the form dy/dt = ay + b
whose solutions have the required behavior as t → ∞.

7. All solutions approach y = 3. 8. All solutions approach y = 2/3.
9. All other solutions diverge from y = 2. 10. All other solutions diverge from y = 1/3.

In each of Problems 11 through 14 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that in these problems the
equations are not of the form y′ = ay + b and the behavior of their solutions is somewhat more
complicated than for the equations in the text.

� 11. y′ = y(4 − y) � 12. y′ = −y(5 − y)

� 13. y′ = y2 � 14. y′ = y(y − 2)2

15. A pond initially contains 1,000,000 gal of water and an unknown amount of an undesirable
chemical. Water containing 0.01 gram of this chemical per gallon flows into the pond at a
rate of 300 gal/min. The mixture flows out at the same rate so the amount of water in the
pond remains constant. Assume that the chemical is uniformly distributed throughout the
pond.
(a) Write a differential equation whose solution is the amount of chemical in the pond at
any time.
(b) How much of the chemical will be in the pond after a very long time? Does this limiting
amount depend on the amount that was present initially?

16. A spherical raindrop evaporates at a rate proportional to its surface area. Write a differential
equation for the volume of the raindrop as a function of time.

17. A certain drug is being administered intravenously to a hospital patient. Fluid containing
5 mg/cm3 of the drug enters the patient’s bloodstream at a rate of 100 cm3/hr. The drug is
absorbed by body tissues or otherwise leaves the bloodstream at a rate proportional to the
amount present, with a rate constant of 0.4 (hr)−1.
(a) Assuming that the drug is always uniformly distributed throughout the bloodstream,
write a differential equation for the amount of the drug that is present in the bloodstream
at any time.
(b) How much of the drug is present in the bloodstream after a long time?

� 18. For small, slowly falling objects the assumption made in the text that the drag force is
proportional to the velocity is a good one. For larger, more rapidly falling objects it is more
accurate to assume that the drag force is proportional to the square of the velocity.2

(a) Write a differential equation for the velocity of a falling object of mass m if the drag
force is proportional to the square of the velocity.
(b) Determine the limiting velocity after a long time.
(c) If m = 10 kg, find the drag coefficient so that the limiting velocity is 49 m/sec.
(d) Using the data in part (c), draw a direction field and compare it with Figure 1.1.3.

2See Lyle N. Long and Howard Weiss, “The Velocity Dependence of Aerodynamic Drag: A Primer for Mathe-
maticians,” Amer. Math. Monthly 106, 2 (1999), pp. 127–135.
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In each of Problems 19 through 26 draw a direction field for the given differential equation.
Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends
on the initial value of y at t = 0, describe this dependency. Note that the right sides of these
equations depend on t as well as y; therefore their solutions can exhibit more complicated
behavior than those in the text.

� 19. y′ = −2 + t − y � 20. y′ = te−2t − 2y

� 21. y′ = e−t + y � 22. y′ = t + 2y

� 23. y′ = 3 sin t + 1 + y � 24. y′ = 2t − 1 − y2

� 25. y′ = −(2t + y)/2y � 26. y′ = y3/6 − y − t2/3

1.2 Solutions of Some Differential Equations

In the preceding section we derived differential equations,

m
dv

dt
= mg− γ v (1)

and
dp

dt
= rp − k, (2)

which model a falling object and a population of field mice preyed upon by owls,
respectively. Both these equations are of the general form

dy

dt
= ay − b, (3)

where a and b are given constants. We were able to draw some important qualitative
conclusions about the behavior of solutions of Eqs. (1) and (2) by considering the
associated direction fields. To answer questions of a quantitative nature, however, we
need to find the solutions themselves, and we now investigate how to do that.

E X A M P L E

1
Field Mice
and Owls

(continued)

Consider the equation

dp

dt
= 0.5p − 450, (4)

which describes the interaction of certain populations of field mice and owls [see Eq.
(8) of Section 1.1]. Find solutions of this equation.

To solve Eq. (4) we need to find functions p(t) that, when substituted into the
equation, reduce it to an obvious identity. Here is one way to proceed. First, rewrite
Eq. (4) in the form

dp

dt
= p − 900

2
, (5)

or, if p �= 900,

dp/dt

p − 900
= 1

2
. (6)
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Since, by the chain rule, the left side of Eq. (6) is the derivative of ln |p − 900| with
respect to t , it follows that

d

dt
ln |p − 900| = 1

2
. (7)

Then, by integrating both sides of Eq. (7), we obtain

ln |p − 900| = t

2
+ C, (8)

where C is an arbitrary constant of integration. Therefore, by taking the exponential of
both sides of Eq. (8), we find that

|p − 900| = eCet/2, (9)

or

p − 900 = ±eCet/2, (10)

and finally

p = 900 + cet/2, (11)

where c = ±eC is also an arbitrary (nonzero) constant. Note that the constant function
p = 900 is also a solution of Eq. (5) and that it is contained in the expression (11) if
we allow c to take the value zero. Graphs of Eq. (11) for several values of c are shown
in Figure 1.2.1.
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FIGURE 1.2.1 Graphs of Eq. (11) for several values of c.

Note that they have the character inferred from the direction field in Figure 1.1.4.
For instance, solutions lying on either side of the equilibrium solution p = 900 tend to
diverge from that solution.

In Example 1 we found infinitely many solutions of the differential equation (4),
corresponding to the infinitely many values that the arbitrary constant c in Eq. (11)
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might have. This is typical of what happens when you solve a differential equation.
The solution process involves an integration, which brings with it an arbitrary constant,
whose possible values generate an infinite family of solutions.

Frequently, we want to focus our attention on a single member of the infinite family
of solutions by specifying the value of the arbitrary constant. Most often, we do this
indirectly by specifying instead a point that must lie on the graph of the solution. For
example, to determine the constant c in Eq. (11), we could require that the population
have a given value at a certain time, such as the value 850 at time t = 0. In other words,
the graph of the solution must pass through the point (0, 850). Symbolically, we can
express this condition as

p(0) = 850. (12)

Then, substituting t = 0 and p = 850 into Eq. (11), we obtain

850 = 900 + c.

Hence c = −50, and by inserting this value in Eq. (11), we obtain the desired solution,
namely,

p = 900 − 50et/2. (13)

The additional condition (12) that we used to determine c is an example of an initial
condition. The differential equation (4) together with the initial condition (12) form
an initial value problem.

Now consider the more general problem consisting of the differential equation (3)

dy

dt
= ay − b

and the initial condition

y(0) = y0, (14)

where y0 is an arbitrary initial value. We can solve this problem by the same method
as in Example 1. If a �= 0 and y �= b/a, then we can rewrite Eq. (3) as

dy/dt

y − (b/a)
= a. (15)

By integrating both sides, we find that

ln |y − (b/a)| = at + C, (16)

where C is arbitrary. Then, taking the exponential of both sides of Eq. (16) and solving
for y, we obtain

y = (b/a) + ceat, (17)

where c = ±eC is also arbitrary. Observe that c = 0 corresponds to the equilibrium
solution y = b/a. Finally, the initial condition (14) requires that c = y0 − (b/a), so
the solution of the initial value problem (3), (14) is

y = (b/a) + [y0 − (b/a)]eat. (18)

The expression (17) contains all possible solutions of Eq. (3) and is called the
general solution. The geometrical representation of the general solution (17) is an
infinite family of curves, called integral curves. Each integral curve is associated with
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a particular value of c, and is the graph of the solution corresponding to that value of c.
Satisfying an initial condition amounts to identifying the integral curve that passes
through the given initial point.

To relate the solution (18) to Eq. (2), which models the field mouse population, we
need only replace a by the growth rate r and b by the predation rate k. Then the solution
(18) becomes

p = (k/r ) + [p0 − (k/r )]ert , (19)

where p0 is the initial population of field mice. The solution (19) confirms the con-
clusions reached on the basis of the direction field and Example 1. If p0 = k/r , then
from Eq. (19) it follows that p = k/r for all t ; this is the constant, or equilibrium,
solution. If p0 �= k/r , then the behavior of the solution depends on the sign of the
coefficient p0 − (k/r ) of the exponential term in Eq. (19). If p0 > k/r , then p grows
exponentially with time t ; if p0 < k/r , then p decreases and eventually becomes
zero, corresponding to extinction of the field mouse population. Negative values of p,
while possible for the expression (19), make no sense in the context of this particular
problem.

To put the falling object equation (1) in the form (3), we must identify a with −γ /m
and b with −g. Making these substitutions in the solution (18), we obtain

v = (mg/γ ) + [v0 − (mg/γ )]e−γ t/m, (20)

where v0 is the initial velocity. Again, this solution confirms the conclusions reached
in Section 1.1 on the basis of a direction field. There is an equilibrium, or constant,
solution v = mg/γ , and all other solutions tend to approach this equilibrium solution.
The speed of convergence to the equilibrium solution is determined by the exponent
−γ /m. Thus, for a given mass m the velocity approaches the equilibrium value faster
as the drag coefficient γ increases.

E X A M P L E

2
A Falling

Object
(continued)

Suppose that, as in Example 2 of Section 1.1, we consider a falling object of mass
m = 10 kg and drag coefficient γ = 2 kg/sec. Then the equation of motion (1) becomes

dv

dt
= 9.8 − v

5
. (21)

Suppose this object is dropped from a height of 300 m. Find its velocity at any time t .
How long will it take to fall to the ground, and how fast will it be moving at the time
of impact?

The first step is to state an appropriate initial condition for Eq. (21). The word
“dropped” in the statement of the problem suggests that the initial velocity is zero, so
we will use the initial condition

v(0) = 0. (22)

The solution of Eq. (21) can be found by substituting the values of the coefficients
into the solution (20), but we will proceed instead to solve Eq. (21) directly. First,
rewrite the equation as

dv/dt

v − 49
= −1

5
. (23)
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By integrating both sides we obtain

ln |v − 49| = − t

5
+ C, (24)

and then the general solution of Eq. (21) is

v = 49 + ce−t/5, (25)

where c is arbitrary. To determine c, we substitute t = 0 and v = 0 from the initial
condition (22) into Eq. (25), with the result that c = −49. Then the solution of the
initial value problem (21), (22) is

v = 49(1 − e−t/5). (26)

Equation (26) gives the velocity of the falling object at any positive time (before it hits
the ground, of course).

Graphs of the solution (25) for several values of c are shown in Figure 1.2.2, with the
solution (26) shown by the heavy curve. It is evident that all solutions tend to approach
the equilibrium solution v = 49. This confirms the conclusions we reached in Section
1.1 on the basis of the direction fields in Figures 1.1.2 and 1.1.3.
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v = 49 (1 – e–t/5) 

(10.51, 43.01)

FIGURE 1.2.2 Graphs of the solution (25) for several values of c.

To find the velocity of the object when it hits the ground, we need to know the time
at which impact occurs. In other words, we need to determine how long it takes the
object to fall 300 m. To do this, we note that the distance x the object has fallen is
related to its velocity v by the equation v = dx/dt, or

dx

dt
= 49(1 − e−t/5). (27)

Consequently,

x = 49t + 245e−t/5 + c, (28)
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where c is an arbitrary constant of integration. The object starts to fall when t = 0,
so we know that x = 0 when t = 0. From Eq. (28) it follows that c = −245, so the
distance the object has fallen at time t is given by

x = 49t + 245e−t/5 − 245. (29)

Let T be the time at which the object hits the ground; then x = 300 when t = T . By
substituting these values in Eq. (29) we obtain the equation

49T + 245e−T/5 − 545 = 0. (30)

The value of T satisfying Eq. (30) can be readily approximated by a numerical process
using a scientific calculator or computer, with the result that T ∼= 10.51 sec. At this
time, the corresponding velocity vT is found from Eq. (26) to be vT

∼= 43.01 m/sec.

Further Remarks on Mathematical Modeling. Up to this point we have related our
discussion of differential equations to mathematical models of a falling object and of
a hypothetical relation between field mice and owls. The derivation of these models
may have been plausible, and possibly even convincing, but you should remember
that the ultimate test of any mathematical model is whether its predictions agree with
observations or experimental results. We have no actual observations or experimental
results to use for comparison purposes here, but there are several sources of possible
discrepancies.

In the case of the falling object the underlying physical principle (Newton’s law of
motion) is well-established and widely applicable. However, the assumption that the
drag force is proportional to the velocity is less certain. Even if this assumption is
correct, the determination of the drag coefficient γ by direct measurement presents
difficulties. Indeed, sometimes one finds the drag coefficient indirectly, for example,
by measuring the time of fall from a given height, and then calculating the value of γ

that predicts this time.
The model of the field mouse population is subject to various uncertainties. The

determination of the growth rate r and the predation rate k depends on observations
of actual populations, which may be subject to considerable variation. The assumption
that r and k are constants may also be questionable. For example, a constant predation
rate becomes harder to sustain as the population becomes smaller. Further, the model
predicts that a population above the equilibrium value will grow exponentially larger
and larger. This seems at variance with the behavior of actual populations; see the
further discussion of population dynamics in Section 2.5.

Even if a mathematical model is incomplete or somewhat inaccurate, it may never-
theless be useful in explaining qualitative features of the problem under investigation.
It may also be valid under some circumstances but not others. Thus you should always
use good judgment and common sense in constructing mathematical models and in
using their predictions.

PROBLEMS

� 1. Solve each of the following initial value problems and plot the solutions for several values
of y0. Then describe in a few words how the solutions resemble, and differ from, each
other.
(a) dy/dt = −y + 5, y(0) = y0 (b) dy/dt = −2y + 5, y(0) = y0
(c) dy/dt = −2y + 10, y(0) = y0
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� 2. Follow the instructions for Problem 1 for the following initial value problems:
(a) dy/dt = y − 5, y(0) = y0
(b) dy/dt = 2y − 5, y(0) = y0
(c) dy/dt = 2y − 10, y(0) = y0

3. Consider the differential equation

dy/dt = −ay + b,

where both a and b are positive numbers.
(a) Solve the differential equation.
(b) Sketch the solution for several different initial conditions.
(c) Describe how the solutions change under each of the following conditions:

i. a increases.
ii. b increases.

iii. Both a and b increase, but the ratio b/a remains the same.
4. Here is an alternative way to solve the equation

dy/dt = ay − b. (i)

(a) Solve the simpler equation

dy/dt = ay. (ii)

Call the solution y1(t).
(b) Observe that the only difference between Eqs. (i) and (ii) is the constant −b in Eq. (i).
Therefore it may seem reasonable to assume that the solutions of these two equations
also differ only by a constant. Test this assumption by trying to find a constant k so that
y = y1(t) + k is a solution of Eq. (i).
(c) Compare your solution from part (b) with the solution given in the text in Eq. (17).
Note:This method can also be used in some cases in which the constant b is replaced by
a function g(t). It depends on whether you can guess the general form that the solution is
likely to take. This method is described in detail in Section 3.6 in connection with second
order equations.

5. Use the method of Problem 4 to solve the equation

dy/dt = −ay + b.

6. The field mouse population in Example 1 satisfies the differential equation

dp/dt = 0.5p − 450.

(a) Find the time at which the population becomes extinct if p(0) = 850.
(b) Find the time of extinction if p(0) = p0, where 0 < p0 < 900.
(c) Find the initial population p0 if the population is to become extinct in 1 year.

7. Consider a population p of field mice that grows at a rate proportional to the current
population, so that dp/dt = rp.
(a) Find the rate constant r if the population doubles in 30 days.
(b) Find r if the population doubles in N days.

8. The falling object in Example 2 satisfies the initial value problem

dv/dt = 9.8 − (v/5), v(0) = 0.

(a) Find the time that must elapse for the object to reach 98% of its limiting velocity.
(b) How far does the object fall in the time found in part (a)?

9. Modify Example 2 so that the falling object experiences no air resistance.
(a) Write down the modified initial value problem.
(b) Determine how long it takes the object to reach the ground.
(c) Determine its velocity at the time of impact.
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10. A radioactive material, such as the isotope thorium-234, disintegrates at a rate proportional
to the amount currently present. If Q(t) is the amount present at time t , then d Q/dt = −r Q,
where r > 0 is the decay rate.
(a) If 100 mg of thorium-234 decays to 82.04 mg in 1 week, determine the decay rate r .
(b) Find an expression for the amount of thorium-234 present at any time t .
(c) Find the time required for the thorium-234 to decay to one-half its original amount.

11. The half-life of a radioactive material is the time required for an amount of this material
to decay to one-half its original value. Show that, for any radioactive material that decays
according to the equation Q′ = −r Q, the half-life τ and the decay rate r satisfy the equation
r τ = ln 2.

12. Radium-226 has a half-life of 1620 years. Find the time period during which a given amount
of this material is reduced by one-quarter.

13. Consider an electric circuit containing a capacitor, resistor, and battery; see Figure 1.2.3.
The charge Q(t) on the capacitor satisfies the equation3

R
d Q

dt
+ Q

C
= V,

where R is the resistance, C is the capacitance, and V is the constant voltage supplied by
the battery.

V

R

C

FIGURE 1.2.3 The electric circuit of Problem 13.

(a) If Q(0) = 0, find Q(t) at any time t , and sketch the graph of Q versus t .
(b) Find the limiting value QL that Q(t) approaches after a long time.
(c) Suppose that Q(t1) = QL and that the battery is removed from the circuit at t = t1.
Find Q(t) for t > t1 and sketch its graph.

� 14. A pond containing 1,000,000 gal of water is initially free of a certain undesirable chemical
(see Problem 15 of Section 1.1). Water containing 0.01 g/gal of the chemical flows into the
pond at a rate of 300 gal/hr and water also flows out of the pond at the same rate. Assume
that the chemical is uniformly distributed throughout the pond.
(a) Let Q(t) be the amount of the chemical in the pond at time t . Write down an initial
value problem for Q(t).
(b) Solve the problem in part (a) for Q(t). How much chemical is in the pond after 1 year?
(c) At the end of 1 year the source of the chemical in the pond is removed and thereafter
pure water flows into the pond and the mixture flows out at the same rate as before. Write
down the initial value problem that describes this new situation.
(d) Solve the initial value problem in part (c). How much chemical remains in the pond
after 1 additional year (2 years from the beginning of the problem)?
(e) How long does it take for Q(t) to be reduced to 10 g?
(f) Plot Q(t) versus t for 3 years.

15. Your swimming pool containing 60,000 gal of water has been contaminated by 5 kg of
a nontoxic dye that leaves a swimmer’s skin an unattractive green. The pool’s filtering

3This equation results from Kirchhoff’s laws, which are discussed later in Section 3.8.
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system can take water from the pool, remove the dye, and return the water to the pool at a
rate of 200 gal/min.
(a) Write down the initial value problem for the filtering process; let q(t) be the amount
of dye in the pool at any time t .
(b) Solve the problem in part (a).
(c) You have invited several dozen friends to a pool party that is scheduled to begin in 4 hr.
You have also determined that the effect of the dye is imperceptible if its concentration is
less than 0.02 g/gal. Is your filtering system capable of reducing the dye concentration to
this level within 4 hr?
(d) Find the time T at which the concentration of dye first reaches the value 0.02 g/gal.
(e) Find the flow rate that is sufficient to achieve the concentration 0.02 g/gal within 4 hr.

1.3 Classification of Differential Equations

The main purpose of this book is to discuss some of the properties of solutions of
differential equations, and to describe some of the methods that have proved effective
in finding solutions, or in some cases approximating them. To provide a framework
for our presentation we describe here several useful ways of classifying differential
equations.

Ordinary and Partial Differential Equations. One of the more obvious classifications
is based on whether the unknown function depends on a single independent variable or
on several independent variables. In the first case, only ordinary derivatives appear in
the differential equation, and it is said to be an ordinary differential equation. In the
second case, the derivatives are partial derivatives, and the equation is called a partial
differential equation.

All the differential equations discussed in the preceding two sections are ordinary
differential equations. Another example of an ordinary differential equation is

L
d2 Q(t)

dt2 + R
d Q(t)

dt
+ 1

C
Q(t) = E(t), (1)

for the charge Q(t) on a capacitor in a circuit with capacitance C, resistance R, and
inductance L; this equation is derived in Section 3.8. Typical examples of partial
differential equations are the heat conduction equation

α2 ∂2u(x,t)

∂x2 = ∂u(x,t)

∂t
, (2)

and the wave equation

a2 ∂2u(x,t)

∂x2 = ∂2u(x,t)

∂t2 . (3)

Here, α2 and a2 are certain physical constants. The heat conduction equation describes
the conduction of heat in a solid body and the wave equation arises in a variety of
problems involving wave motion in solids or fluids. Note that in both Eqs. (2) and (3)
the dependent variable u depends on the two independent variables x and t .
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Systems of Differential Equations. Another classification of differential equations
depends on the number of unknown functions that are involved. If there is a single
function to be determined, then one equation is sufficient. However, if there are two
or more unknown functions, then a system of equations is required. For example,
the Lotka–Volterra, or predator–prey, equations are important in ecological modeling.
They have the form

dx/dt = ax − αxy
dy/dt = −cy + γ xy,

(4)

where x(t) and y(t) are the respective populations of the prey and predator species.
The constants a, α, c, and γ are based on empirical observations and depend on the
particular species being studied. Systems of equations are discussed in Chapters 7
and 9; in particular, the Lotka–Volterra equations are examined in Section 9.5. It is not
unusual in some areas of application to encounter systems containing a large number
of equations.

Order. The order of a differential equation is the order of the highest derivative that
appears in the equation. The equations in the preceding sections are all first order
equations, while Eq. (1) is a second order equation. Equations (2) and (3) are second
order partial differential equations. More generally, the equation

F[t, u(t), u′(t), . . . , u(n)(t)] = 0 (5)

is an ordinary differential equation of the nth order. Equation (5) expresses a relation
between the independent variable t and the values of the function u and its first n
derivatives u′, u′′, . . . , u(n). It is convenient and customary in differential equations to
write y for u(t), with y′, y′′, . . . , y(n) standing for u′(t), u′′(t), . . . , u(n)(t). Thus Eq.
(5) is written as

F(t, y, y′, . . . , y(n)) = 0. (6)

For example,

y′′′ + 2et y′′ + yy′ = t4 (7)

is a third order differential equation for y = u(t). Occasionally, other letters will be
used instead of t and y for the independent and dependent variables; the meaning
should be clear from the context.

We assume that it is always possible to solve a given ordinary differential equation
for the highest derivative, obtaining

y(n) = f (t, y, y′, y′′, . . . , y(n−1)). (8)

We study only equations of the form (8). This is mainly to avoid the ambiguity that may
arise because a single equation of the form (6) may correspond to several equations of
the form (8). For example, the equation

y′2 + ty′ + 4y = 0 (9)

leads to the two equations

y′ = −t +
√

t2 − 16y

2
or y′ = −t −

√
t2 − 16y

2
. (10)
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Linear and Nonlinear Equations. A crucial classification of differential equations is
whether they are linear or nonlinear. The ordinary differential equation

F(t, y, y′, . . . , y(n)) = 0

is said to be linear if F is a linear function of the variables y, y′, . . . , y(n); a similar
definition applies to partial differential equations. Thus the general linear ordinary
differential equation of order n is

a0(t)y(n) + a1(t)y(n−1) + · · · + an(t)y = g(t). (11)

Most of the equations you have seen thus far in this book are linear; examples are
the equations in Sections 1.1 and 1.2 describing the falling object and the field mouse
population. Similarly, in this section, Eq. (1) is a linear ordinary differential equation
and Eqs. (2) and (3) are linear partial differential equations. An equation that is not of
the form (11) is a nonlinear equation. Equation (7) is nonlinear because of the term
yy′. Similarly, each equation in the system (4) is nonlinear because of the terms that
involve the product xy.

A simple physical problem that leads to a nonlinear differential equation is the
oscillating pendulum. The angle θ that an oscillating pendulum of length L makes with
the vertical direction (see Figure 1.3.1) satisfies the equation

d2θ

dt2 + g

L
sin θ = 0, (12)

whose derivation is outlined in Problem 29. The presence of the term involving sin θ

makes Eq. (12) nonlinear.
The mathematical theory and methods for solving linear equations are highly devel-

oped. In contrast, for nonlinear equations the theory is more complicated and methods
of solution are less satisfactory. In view of this, it is fortunate that many significant
problems lead to linear ordinary differential equations or can be approximated by linear
equations. For example, for the pendulum, if the angle θ is small, then sin θ ∼= θ and
Eq. (12) can be approximated by the linear equation

d2θ

dt2 + g

L
θ = 0. (13)

This process of approximating a nonlinear equation by a linear one is called lineariza-
tion and it is an extremely valuable way to deal with nonlinear equations. Neverthe-
less, there are many physical phenomena that simply cannot be represented adequately

L

m

mg

θ

FIGURE 1.3.1 An oscillating pendulum.
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by linear equations; to study these phenomena it is essential to deal with nonlinear
equations.

In an elementary text it is natural to emphasize the simpler and more straightforward
parts of the subject. Therefore the greater part of this book is devoted to linear equations
and various methods for solving them. However, Chapters 8 and 9, as well as parts
of Chapter 2, are concerned with nonlinear equations. Whenever it is appropriate, we
point out why nonlinear equations are, in general, more difficult, and why many of the
techniques that are useful in solving linear equations cannot be applied to nonlinear
equations.

Solutions. A solution of the ordinary differential equation (8) on the interval α <

t < β is a function φ such that φ′, φ′′, . . . , φ(n) exist and satisfy

φ(n)(t) = f [t, φ(t), φ′(t), . . . , φ(n−1)(t)] (14)

for every t in α < t < β. Unless stated otherwise, we assume that the function f of Eq.
(8) is a real-valued function, and we are interested in obtaining real-valued solutions
y = φ(t).

Recall that in Section 1.2 we found solutions of certain equations by a process of
direct integration. For instance, we found that the equation

dp

dt
= 0.5p − 450 (15)

has the solution

p = 900 + cet/2, (16)

where c is an arbitrary constant. It is often not so easy to find solutions of differential
equations. However, if you find a function that you think may be a solution of a given
equation, it is usually relatively easy to determine whether the function is actually a
solution simply by substituting the function into the equation. For example, in this way
it is easy to show that the function y1(t) = cos t is a solution of

y′′ + y = 0 (17)

for all t . To confirm this, observe that y′
1(t) = − sin t and y′′

1 (t) = − cos t ; then it
follows that y′′

1 (t) + y1(t) = 0. In the same way you can easily show that y2(t) = sin t
is also a solution of Eq. (17). Of course, this does not constitute a satisfactory way to
solve most differential equations because there are far too many possible functions for
you to have a good chance of finding the correct one by a random choice. Nevertheless,
it is important to realize that you can verify whether any proposed solution is correct
by substituting it into the differential equation. For a problem of any importance this
can be a very useful check and is one that you should make a habit of considering.

Some Important Questions. Although for the equations (15) and (17) we are able
to verify that certain simple functions are solutions, in general we do not have such
solutions readily available. Thus a fundamental question is the following: Does an
equation of the form (8) always have a solution? The answer is “No.” Merely writing
down an equation of the form (8) does not necessarily mean that there is a function
y = φ(t) that satisfies it. So, how can we tell whether some particular equation has a
solution? This is the question of existenceof a solution, and it is answered by theorems
stating that under certain restrictions on the function f in Eq. (8), the equation always
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has solutions. However, this is not a purely mathematical concern, for at least two
reasons. If a problem has no solution, we would prefer to know that fact before investing
time and effort in a vain attempt to solve the problem. Further, if a sensible physical
problem is modeled mathematically as a differential equation, then the equation should
have a solution. If it does not, then presumably there is something wrong with the
formulation. In this sense an engineer or scientist has some check on the validity of the
mathematical model.

Second, if we assume that a given differential equation has at least one solution, the
question arises as to how many solutions it has, and what additional conditions must
be specified to single out a particular solution. This is the question of uniqueness. In
general, solutions of differential equations contain one or more arbitrary constants of
integration, as does the solution (16) of Eq. (15). Equation (16) represents an infinity
of functions corresponding to the infinity of possible choices of the constant c. As we
saw in Section 1.2, if p is specified at some time t , this condition will determine a
value for c; even so, we have not yet ruled out the possibility that there may be other
solutions of Eq. (15) that also have the prescribed value of p at the prescribed time t .
The issue of uniqueness also has practical implications. If we are fortunate enough
to find a solution of a given problem, and if we know that the problem has a unique
solution, then we can be sure that we have completely solved the problem. If there may
be other solutions, then perhaps we should continue to search for them.

A third important question is: Given a differential equation of the form (8), can we
actually determine a solution, and if so, how? Note that if we find a solution of the
given equation, we have at the same time answered the question of the existence of
a solution. However, without knowledge of existence theory we might, for example,
use a computer to find a numerical approximation to a “solution” that does not exist.
On the other hand, even though we may know that a solution exists, it may be that the
solution is not expressible in terms of the usual elementary functions—polynomial,
trigonometric, exponential, logarithmic, and hyperbolic functions. Unfortunately, this
is the situation for most differential equations. Thus, while we discuss elementary
methods that can be used to obtain solutions of certain relatively simple problems, it
is also important to consider methods of a more general nature that can be applied to
more difficult problems.

Computer Use in Differential Equations. A computer can be an extremely valuable
tool in the study of differential equations. For many years computers have been used
to execute numerical algorithms, such as those described in Chapter 8, to construct
numerical approximations to solutions of differential equations. At the present time
these algorithms have been refined to an extremely high level of generality and effi-
ciency. A few lines of computer code, written in a high-level programming language
and executed (often within a few seconds) on a relatively inexpensive computer, suffice
to solve numerically a wide range of differential equations. More sophisticated routines
are also readily available. These routines combine the ability to handle very large and
complicated systems with numerous diagnostic features that alert the user to possible
problems as they are encountered.

The usual output from a numerical algorithm is a table of numbers, listing selected
values of the independent variable and the corresponding values of the dependent
variable. With appropriate software it is easy to display the solution of a differential
equation graphically, whether the solution has been obtained numerically or as the result
of an analytical procedure of some kind. Such a graphical display is often much more
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illuminating and helpful in understanding and interpreting the solution of a differential
equation than a table of numbers or a complicated analytical formula. There are on
the market several well-crafted and relatively inexpensive special-purpose software
packages for the graphical investigation of differential equations. The widespread
availability of personal computers has brought powerful computational and graphical
capability within the reach of individual students. You should consider, in the light
of your own circumstances, how best to take advantage of the available computing
resources. You will surely find it enlightening to do so.

Another aspect of computer use that is very relevant to the study of differential
equations is the availability of extremely powerful and general software packages that
can perform a wide variety of mathematical operations. Among these are Maple,

Mathematica, and MATLAB, each of which can be used on various kinds of personal
computers or workstations. All three of these packages can execute extensive numerical
computations and have versatile graphical facilities. In addition, Mapleand Mathemat-
ica also have very extensive analytical capabilities. For example, they can perform the
analytical steps involved in solving many differential equations, often in response to
a single command. Anyone who expects to deal with differential equations in more
than a superficial way should become familiar with at least one of these products and
explore the ways in which it can be used.

For you, the student, these computing resources have an effect on how you should
study differential equations. To become confident in using differential equations, it
is essential to understand how the solution methods work, and this understanding is
achieved, in part, by working out a sufficient number of examples in detail. However,
eventually you should plan to delegate as many as possible of the routine (often repeti-
tive) details to a computer, while you focus more attention on the proper formulation of
the problem and on the interpretation of the solution. Our viewpoint is that you should
always try to use the best methods and tools available for each task. In particular, you
should strive to combine numerical, graphical, and analytical methods so as to attain
maximum understanding of the behavior of the solution and of the underlying process
that the problem models. You should also remember that some tasks can best be done
with pencil and paper, while others require a calculator or computer. Good judgment
is often needed in selecting a judicious combination.

PROBLEMS In each of Problems 1 through 6 determine the order of the given differential equation; also state
whether the equation is linear or nonlinear.

1. t2 d2 y

dt2 + t
dy

dt
+ 2y = sin t 2. (1 + y2)

d2y

dt2 + t
dy

dt
+ y = et

3.
d4 y

dt4 + d3 y

dt3 + d2 y

dt2 + dy

dt
+ y = 1 4.

dy

dt
+ ty2 = 0

5.
d2 y

dt2 + sin(t + y) = sin t 6.
d3y

dt3 + t
dy

dt
+ (cos2 t)y = t3

In each of Problems 7 through 14 verify that the given function or functions is a solution of the
differential equation.

7. y′′ − y = 0; y1(t) = et , y2(t) = cosh t
8. y′′ + 2y′ − 3y = 0; y1(t) = e−3t , y2(t) = et

9. ty′ − y = t2; y = 3t + t2
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10. y′′′′ + 4y′′′ + 3y = t; y1(t) = t/3, y2(t) = e−t + t/3
11. 2t2 y′′ + 3ty′ − y = 0, t > 0; y1(t) = t1/2, y2(t) = t−1

12. t2 y′′ + 5ty′ + 4y = 0, t > 0; y1(t) = t−2, y2(t) = t−2 ln t
13. y′′ + y = sec t, 0 < t < π/2; y = (cos t) ln cos t + t sin t

14. y′ − 2ty = 1; y = et2
∫ t

0
e−s2

ds+ et2

In each of Problems 15 through 18 determine the values of r for which the given differential
equation has solutions of the form y = ert .

15. y′ + 2y = 0 16. y′′ − y = 0
17. y′′ + y′ − 6y = 0 18. y′′′ − 3y′′ + 2y′ = 0

In each of Problems 19 and 20 determine the values of r for which the given differential equation
has solutions of the form y = tr for t > 0.

19. t2 y′′ + 4ty′ + 2y = 0 20. t2 y′′ − 4ty′ + 4y = 0

In each of Problems 21 through 24 determine the order of the given partial differential equation;
also state whether the equation is linear or nonlinear. Partial derivatives are denoted by subscripts.

21. uxx + uyy + uzz = 0 22. uxx + uyy + uux + uuy + u = 0

23. uxxxx + 2uxxyy + uyyyy = 0 24. ut + uux = 1 + uxx

In each of Problems 25 through 28 verify that the given function or functions is a solution of
the given partial differential equation.

25. uxx + uyy = 0; u1(x, y) = cos x cosh y, u2(x, y) = ln(x2 + y2)

26. α2uxx = ut ; u1(x, t) = e−α2t sin x, u2(x, t) = e−α2λ2t sin λx, λ a real constant
27. a2uxx = utt ; u1(x, t) = sin λx sin λat, u2(x, t) = sin(x − at), λ a real constant

28. α2uxx = ut ; u = (π/t)1/2e−x2/4α2t , t > 0

29. Follow the steps indicated here to derive the equation of motion of a pendulum, Eq. (12)
in the text. Assume that the rod is rigid and weightless, that the mass is a point mass, and
that there is no friction or drag anywhere in the system.
(a) Assume that the mass is in an arbitrary displaced position, indicated by the angle θ .
Draw a free-body diagram showing the forces acting on the mass.
(b) Apply Newton’s law of motion in the direction tangential to the circular arc on which
the mass moves. Then the tensile force in the rod does not enter the equation. Observe that
you need to find the component of the gravitational force in the tangential direction. Observe
also that the linear acceleration, as opposed to the angular acceleration, is Ld2θ/dt2, where
L is the length of the rod.
(c) Simplify the result from part (b) to obtain Eq. (12) of the text.

1.4 Historical Remarks

Without knowing something about differential equations and methods of solving them,
it is difficult to appreciate the history of this important branch of mathematics. Further,
the development of differential equations is intimately interwoven with the general
development of mathematics and cannot be separated from it. Nevertheless, to provide
some historical perspective, we indicate here some of the major trends in the history of
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the subject, and identify the most prominent early contributors. Other historical infor-
mation is contained in footnotes scattered throughout the book and in the references
listed at the end of the chapter.

The subject of differential equations originated in the study of calculus by Isaac
Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) in the seventeenth
century. Newton grew up in the English countryside, was educated at Trinity College,
Cambridge, and became Lucasian Professor of Mathematics there in 1669. His epochal
discoveries of calculus and of the fundamental laws of mechanics date from 1665. They
were circulated privately among his friends, but Newton was extremely sensitive to
criticism, and did not begin to publish his results until 1687 with the appearance of
his most famous book, Philosophiae Naturalis Principia Mathematica. While Newton
did relatively little work in differential equations as such, his development of the
calculus and elucidation of the basic principles of mechanics provided a basis for their
applications in the eighteenth century, most notably by Euler. Newton classified first
order differential equations according to the forms dy/dx = f (x), dy/dx = f (y),
and dy/dx = f (x,y). For the latter equation he developed a method of solution using
infinite series when f (x,y) is a polynomial in x and y. Newton’s active research in
mathematics ended in the early 1690s except for the solution of occasional challenge
problems and the revision and publication of results obtained much earlier. He was
appointed Warden of the British Mint in 1696 and resigned his professorship a few
years later. He was knighted in 1705 and, upon his death, was buried in Westminster
Abbey.

Leibniz was born in Leipzig and completed his doctorate in philosophy at the age
of 20 at the University of Altdorf. Throughout his life he engaged in scholarly work in
several different fields. He was mainly self-taught in mathematics, since his interest in
this subject developed when he was in his twenties. Leibniz arrived at the fundamental
results of calculus independently, although a little later than Newton, but was the first to
publish them, in 1684. Leibniz was very conscious of the power of good mathematical
notation, and our notation for the derivative, dy/dx, and the integral sign are due
to him. He discovered the method of separation of variables (Section 2.2) in 1691,
the reduction of homogeneous equations to separable ones (Section 2.2, Problem 30)
in 1691, and the procedure for solving first order linear equations (Section 2.1) in
1694. He spent his life as ambassador and adviser to several German royal families,
which permitted him to travel widely and to carry on an extensive correspondence
with other mathematicians, especially the Bernoulli brothers. In the course of this
correspondence many problems in differential equations were solved during the latter
part of the seventeenth century.

The brothers Jakob (1654–1705) and Johann (1667–1748) Bernoulli of Basel did
much to develop methods of solving differential equations and to extend the range
of their applications. Jakob became professor of mathematics at Basel in 1687, and
Johann was appointed to the same position upon his brother’s death in 1705. Both
men were quarrelsome, jealous, and frequently embroiled in disputes, especially with
each other. Nevertheless, both also made significant contributions to several areas of
mathematics. With the aid of calculus they solved a number of problems in mechanics
by formulating them as differential equations. For example, Jakob Bernoulli solved
the differential equation y′ = [a3/(b2y − a3)]1/2 in 1690 and in the same paper first
used the term “integral” in the modern sense. In 1694 Johann Bernoulli was able to
solve the equation dy/dx = y/ax. One problem to which both brothers contributed,
and which led to much friction between them, was the brachistochroneproblem (see
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Problem 33 of Section 2.3). The brachistochrone problem was also solved by Leibniz
and Newton in addition to the Bernoulli brothers. It is said, perhaps apocryphally, that
Newton learned of the problem late in the afternoon of a tiring day at the Mint, and
solved it that evening after dinner. He published the solution anonymously, but on
seeing it, Johann Bernoulli exclaimed, “Ah, I know the lion by his paw.”

Daniel Bernoulli (1700–1782), son of Johann, migrated to St. Petersburg as a young
man to join the newly established St. Petersburg Academy, but returned to Basel in
1733 as professor of botany, and later, of physics. His interests were primarily in
partial differential equations and their applications. For instance, it is his name that
is associated with the Bernoulli equation in fluid mechanics. He was also the first
to encounter the functions that a century later became known as Bessel functions
(Section 5.8).

The greatest mathematician of the eighteenth century, Leonhard Euler (1707–1783),
grew up near Basel and was a student of Johann Bernoulli. He followed his friend Daniel
Bernoulli to St. Petersburg in 1727. For the remainder of his life he was associated
with the St. Petersburg Academy (1727–1741 and 1766–1783) and the Berlin Academy
(1741–1766). Euler was the most prolific mathematician of all time; his collected works
fill more than 70 large volumes. His interests ranged over all areas of mathematics and
many fields of application. Even though he was blind during the last 17 years of his
life, his work continued undiminished until the very day of his death. Of particular
interest here is his formulation of problems in mechanics in mathematical language
and his development of methods of solving these mathematical problems. Lagrange
said of Euler’s work in mechanics, “The first great work in which analysis is applied
to the science of movement.” Among other things, Euler identified the condition for
exactness of first order differential equations (Section 2.6) in 1734–35, developed the
theory of integrating factors (Section 2.6) in the same paper, and gave the general
solution of homogeneous linear equations with constant coefficients (Sections 3.1, 3.4,
3.5, and 4.2) in 1743. He extended the latter results to nonhomogeneous equations in
1750–51. Beginning about 1750, Euler made frequent use of power series (Chapter 5)
in solving differential equations. He also proposed a numerical procedure (Sections
2.7 and 8.1) in 1768–69, made important contributions in partial differential equations,
and gave the first systematic treatment of the calculus of variations.

Joseph-Louis Lagrange (1736–1813) became professor of mathematics in his native
Turin at the age of 19. He succeeded Euler in the chair of mathematics at the Berlin
Academy in 1766, and moved on to the Paris Academy in 1787. He is most famous
for his monumental work Mécanique analytique, published in 1788, an elegant and
comprehensive treatise of Newtonian mechanics. With respect to elementary differen-
tial equations, Lagrange showed in 1762–65 that the general solution of an nth order
linear homogeneous differential equation is a linear combination of n independent
solutions (Sections 3.2, 3.3, and 4.1). Later, in 1774–75, he gave a complete devel-
opment of the method of variation of parameters (Sections 3.7 and 4.4). Lagrange is
also known for fundamental work in partial differential equations and the calculus of
variations.

Pierre-Simon de Laplace (1749–1827) lived in Normandy as a boy but came to
Paris in 1768 and quickly made his mark in scientific circles, winning election to the
Académie des Sciences in 1773. He was preeminent in the field of celestial mechanics;
his greatest work, Traitéde mécanique ce´leste, was published in five volumes between
1799 and 1825. Laplace’s equation is fundamental in many branches of mathematical
physics, and Laplace studied it extensively in connection with gravitational attraction.
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The Laplace transform (Chapter 6) is also named for him although its usefulness in
solving differential equations was not recognized until much later.

By the end of the eighteenth century many elementary methods of solving ordinary
differential equations had been discovered. In the nineteenth century interest turned
more toward the investigation of theoretical questions of existence and uniqueness and
to the development of less elementary methods such as those based on power series
expansions (see Chapter 5). These methods find their natural setting in the complex
plane. Consequently, they benefitted from, and to some extent stimulated, the more
or less simultaneous development of the theory of complex analytic functions. Partial
differential equations also began to be studied intensively, as their crucial role in
mathematical physics became clear. In this connection a number of functions, arising
as solutions of certain ordinary differential equations, occurred repeatedly and were
studied exhaustively. Known collectively as higher transcendental functions, many of
them are associated with the names of mathematicians, including Bessel, Legendre,
Hermite, Chebyshev, and Hankel, among others.

The numerous differential equations that resisted solution by analytical means led to
the investigation of methods of numerical approximation (see Chapter 8). By 1900 fairly
effective numerical integration methods had been devised, but their implementation
was severely restricted by the need to execute the computations by hand or with very
primitive computing equipment. In the last 50 years the development of increasingly
powerful and versatile computers has vastly enlarged the range of problems that can
be investigated effectively by numerical methods. During the same period extremely
refined and robust numerical integrators have been developed and are readily available.
Versions appropriate for personal computers have brought the ability to solve a great
many significant problems within the reach of individual students.

Another characteristic of differential equations in the twentieth century has been the
creation of geometrical or topological methods, especially for nonlinear equations. The
goal is to understand at least the qualitative behavior of solutions from a geometrical,
as well as from an analytical, point of view. If more detailed information is needed, it
can usually be obtained by using numerical approximations. An introduction to these
geometrical methods appears in Chapter 9.

Within the past few years these two trends have come together. Computers, and
especially computer graphics, have given a new impetus to the study of systems of
nonlinear differential equations. Unexpected phenomena (Section 9.8), referred to
by terms such as strange attractors, chaos, and fractals, have been discovered, are
being intensively studied, and are leading to important new insights in a variety of
applications. Although it is an old subject about which much is known, differential
equations at the dawn of the twenty-first century remains a fertile source of fascinating
and important unsolved problems.

REFERENCES Computer software for differential equations changes too fast for particulars to be given in a book such as
this. A good source of information is the Software Review and Computer Corner sections of The College
Mathematics Journal, published by the Mathematical Association of America.

There are a number of books that deal with the use of computer algebra systems for differential equations.
The following are associated with this book, although they can be used independently as well:

Coombes, K. R., Hunt, B. R., Lipsman, R. L., Osborn, J. E., and Stuck, G. J., Differential Equations
with Maple(2nd ed.) and Differential Equations with Mathematica(2nd ed.) (New York: Wiley,
1997) and Differential Equations withMATLAB (New York: Wiley 1999).

http://www.wiley.com/college/math/mathem/cg/sales/coombes.html
http://www.wiley.com/college/math/mathem/cg/sales/coombes.html
http://www.wiley.com/college/math/mathem/cg/differen.html
http://www.wiley.com/college/math/mathem/cg/differen.html
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For further reading in the history of mathematics see books such as those listed below:

Boyer, C. B., and Merzbach, U. C., A History of Mathematics(2nd ed.) (New York: Wiley, 1989).

Kline, M., Mathematical Thought from Ancient to Modern Times(New York: Oxford University
Press, 1972).

A useful historical appendix on the early development of differential equations appears in:

Ince, E. L., Ordinary Differential Equations(London: Longmans, Green, 1927; New York: Dover,
1956).

An encyclopedic source of information about the lives and achievements of mathematicians of the past is:

Gillespie, C. C., ed., Dictionary of Scientific Biography(15 vols.) (New York: Scribner’s, 1971).

http://www.wiley.com/college/math/mathem/cg/history.html
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C H A P T E R

2

First Order
Differential
Equations

This chapter deals with differential equations of first order,

dy

dt
= f (t, y), (1)

where f is a given function of two variables. Any differentiable function y = φ(t) that
satisfies this equation for all t in some interval is called a solution, and our object is to
determine whether such functions exist and, if so, to develop methods for finding them.
Unfortunately, for an arbitrary function f , there is no general method for solving the
equation in terms of elementary functions. Instead, we will describe several methods,
each of which is applicable to a certain subclass of first order equations. The most
important of these are linear equations (Section 2.1), separable equations (Section 2.2),
and exact equations (Section 2.6). Other sections of this chapter describe some of
the important applications of first order differential equations, introduce the idea of
approximating a solution by numerical computation, and discuss some theoretical
questions related to existence and uniqueness of solutions. The final section deals with
first order difference equations, which have some important points of similarity with
differential equations and are in some respects simpler to investigate.

2.1 Linear Equations with Variable Coefficients

If the function f in Eq. (1) depends linearly on the dependent variable y, then Eq. (1)
is called a first order linear equation. In Sections 1.1 and 1.2 we discussed a restricted

29
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type of first order linear equation in which the coefficients are constants. A typical
example is

dy

dt
= −ay + b, (2)

where a and b are given constants. Recall that an equation of this form describes the
motion of an object falling in the atmosphere. Now we want to consider the most
general first order linear equation, which is obtained by replacing the coefficients a
and b in Eq. (2) by arbitrary functions of t . We will usually write the general first
order linear equation in the form

dy

dt
+ p(t)y = g(t), (3)

where p and g are given functions of the independent variable t .
Equation (2) can be solved by the straightforward integration method introduced in

Section 1.2. That is, we rewrite the equation as

dy/dt

y − (b/a)
= −a. (4)

Then, by integration we obtain

ln |y − (b/a)| = −at + C,

from which it follows that the general solution of Eq. (2) is

y = (b/a)+ ce−at , (5)

where c is an arbitrary constant. For example, if a = 2 and b = 3, then Eq. (2) becomes

dy

dt
+ 2y = 3, (6)

and its general solution is

y = 3
2 + ce−2t . (7)

Unfortunately, this direct method of solution cannot be used to solve the general
equation (3), so we need to use a different method of solution for it. The method is due
to Leibniz; it involves multiplying the differential equation (3) by a certain function
µ(t), chosen so that the resulting equation is readily integrable. The function µ(t) is
called an integrating factor and the main difficulty is to determine how to find it. To
make the initial presentation as simple as possible, we will first use this method to solve
Eq. (6), later showing how to extend it to other first order linear equations, including
the general equation (3).

E X A M P L E

1

Solve Eq. (6),

dy

dt
+ 2y = 3,

by finding an integrating factor for this equation.
The first step is to multiply Eq. (6) by a function µ(t), as yet undetermined; thus

µ(t)
dy

dt
+ 2µ(t)y = 3µ(t). (8)
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The question now is whether we can choose µ(t) so that the left side of Eq. (8)
is recognizable as the derivative of some particular expression. If so, then we can
integrate Eq. (8), even though we do not know the function y. To guide our choice
of the integrating factor µ(t), observe that the left side of Eq. (8) contains two terms
and that the first term is part of the result of differentiating the product µ(t)y. Thus,
let us try to determine µ(t) so that the left side of Eq. (8) becomes the derivative of
the expression µ(t)y. If we compare the left side of Eq. (8) with the differentiation
formula

d

dt
[µ(t)y] = µ(t)

dy

dt
+ dµ(t)

dt
y, (9)

we note that the first terms are identical and that the second terms also agree, provided
we choose µ(t) to satisfy

dµ(t)

dt
= 2µ(t). (10)

Therefore our search for an integrating factor will be successful if we can find a
solution of Eq. (10). Perhaps you can readily identify a function that satisfies Eq. (10):
What function has a derivative that is equal to two times the original function? More
systematically, rewrite Eq. (10) as

dµ(t)/dt

µ(t)
= 2, (11)

which is equivalent to

d

dt
ln |µ(t)| = 2. (12)

Then it follows that

ln |µ(t)| = 2t + C, (13)

or

µ(t) = ce2t . (14)

The function µ(t) given by Eq. (14) is the integrating factor for Eq. (6). Since we do
not need the most general integrating factor, we will choose c to be one in Eq. (14) and
use µ(t) = e2t .

Now we return to Eq. (6), multiply it by the integrating factor e2t , and obtain

e2t dy

dt
+ 2e2t y = 3e2t . (15)

By the choice we have made of the integrating factor, the left side of Eq. (15) is the
derivative of e2t y, so that Eq. (15) becomes

d

dt
(e2t y) = 3e2t . (16)

By integrating both sides of Eq. (16) we obtain

e2t y = 3
2 e2t + c, (17)
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where c is an arbitrary constant. Finally, on solving Eq. (17) for y, we have the general
solution of Eq. (6), namely,

y = 3
2 + ce−2t . (18)

Of course, the solution (18) is the same as the solution (7) found earlier. Figure 2.1.1
shows the graph of Eq. (18) for several values of c. The solutions converge to the
equilibrium solution y = 3/2, which corresponds to c = 0.

3

2

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 t

y

2

FIGURE 2.1.1 Integral curves of y′ + 2y = 3.

Now that we have shown how the method of integrating factors works in this simple
example, let us extend it to other classes of equations. We will do this in three stages.
First, consider again Eq. (2), which we now write in the form

dy

dt
+ ay = b. (19)

The derivation in Example 1 can now be repeated line for line, the only changes being
that the coefficients 2 and 3 in Eq. (6) are replaced by a and b, respectively. The
integrating factor is µ(t) = eat and the solution is given by Eq. (5), which is the same
as Eq. (18) with 2 replaced by a and 3 replaced by b.

The next stage is to replace the constant b by a given function g(t), so that the
differential equation becomes

dy

dt
+ ay = g(t). (20)

The integrating factor depends only on the coefficient of y so for Eq. (20) the integrating
factor is again µ(t) = eat . Multiplying Eq. (20) by µ(t), we obtain

eat dy

dt
+ aeat y = eat g(t),

or

d

dt
(eat y) = eat g(t). (21)
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By integrating both sides of Eq. (21) we find that

eat y =
∫

eas g(s) ds + c, (22)

where c is an arbitrary constant. Note that we have used s to denote the integration
variable to distinguish it from the independent variable t . By solving Eq. (22) for y we
obtain the general solution

y = e−at
∫

eas g(s) ds + ce−at . (23)

For many simple functions g(s) the integral in Eq. (23) can be evaluated and the solution
y expressed in terms of elementary functions, as in the following examples. However,
for more complicated functions g(s), it may be necessary to leave the solution in the
integral form given by Eq. (23).

E X A M P L E

2

Solve the differential equation

dy

dt
+ 1

2 y = 2 + t. (24)

Sketch several solutions and find the particular solution whose graph contains the point
(0, 2).

In this case a = 1/2, so the integrating factor is µ(t) = et/2. Multiplying Eq. (24)
by this factor leads to the equation

d

dt
(et/2 y) = 2et/2 + tet/2. (25)

By integrating both sides of Eq. (25), using integration by parts on the second term on
the right side, we obtain

et/2 y = 4et/2 + 2tet/2 − 4et/2 + c,

where c is an arbitrary constant. Thus

y = 2t + ce−t/2. (26)

To find the solution that passes through the initial point (0, 2), we set t = 0 and
y = 2 in Eq. (26), with the result that 2 = 0 + c, so that c = 2. Hence the desired
solution is

y = 2t + 2e−t/2. (27)

Graphs of the solution (26) for several values of c are shown in Figure 2.1.2. Ob-
serve that the solutions converge, not to a constant solution as in Example 1 and
in the examples in Chapter 1, but to the solution y = 2t , which corresponds to
c = 0.
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FIGURE 2.1.2 Integral curves of y′ + 1
2 y = 2 + t .

E X A M P L E

3

Solve the differential equation

dy

dt
− 2y = 4 − t (28)

and sketch the graphs of several solutions. Find the initial point on the y-axis that
separates solutions that grow large positively from those that grow large negatively as
t → ∞.

Since the coefficient of y is −2, the integrating factor for Eq. (28) is µ(t) = e−2t .
Multiplying the differential equation by µ(t), we obtain

d

dt
(e−2t y) = 4e−2t − te−2t . (29)

Then, by integrating both sides of this equation, we have

e−2t y = −2e−2t + 1
2 te−2t + 1

4 e−2t + c,

where we have used integration by parts on the last term in Eq. (29). Thus the general
solution of Eq. (28) is

y = − 7
4 + 1

2 t + ce2t . (30)

Graphs of the solution (30) for several values of c are shown in Figure 2.1.3. The
behavior of the solution for large values of t is determined by the term ce2t . If c �= 0,
then the solution grows exponentially large in magnitude, with the same sign as c
itself. Thus the solutions diverge as t becomes large. The boundary between solu-
tions that ultimately grow positively from those that ultimately grow negatively oc-
curs when c = 0. If we substitute c = 0 into Eq. (30) and then set t = 0, we find
that y = −7/4. This is the separation point on the y-axis that was requested. Note
that, for this initial value, the solution is y = − 7

4 + 1
2 t ; it grows positively (but not

exponentially).
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FIGURE 2.1.3 Integral curves of y′ − 2y = 4 − t .

Examples 2 and 3 are special cases of Eq. (20),

dy

dt
+ ay = g(t),

whose solutions are given by Eq. (23),

y = e−at
∫

eas g(s) ds + ce−at .

The solutions converge if a > 0, as in Example 2, and diverge if a < 0, as in Example
3. In contrast to the equations considered in Sections 1.1 and 1.2, however, Eq. (20)
does not have an equilibrium solution.

The final stage in extending the method of integrating factors is to the general first
order linear equation (3),

dy

dt
+ p(t)y = g(t),

where p and g are given functions. If we multiply Eq. (3) by an as yet undetermined
function µ(t), we obtain

µ(t)
dy

dt
+ p(t)µ(t)y = µ(t)g(t). (31)

Following the same line of development as in Example 1, we see that the left side of
Eq. (31) is the derivative of the product µ(t)y, provided that µ(t) satisfies the equation

dµ(t)

dt
= p(t)µ(t). (32)

If we assume temporarily that µ(t) is positive, then we have

dµ(t)/dt

µ(t)
= p(t),
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and consequently

lnµ(t) =
∫

p(t) dt + k.

By choosing the arbitrary constant k to be zero, we obtain the simplest possible function
for µ, namely,

µ(t) = exp
∫

p(t) dt. (33)

Note that µ(t) is positive for all t , as we assumed. Returning to Eq. (31), we have

d

dt
[µ(t)y] = µ(t)g(t). (34)

Hence

µ(t)y =
∫
µ(s)g(s) ds + c,

so the general solution of Eq. (3) is

y =
∫
µ(s)g(s) ds + c

µ(t)
. (35)

Observe that, to find the solution given by Eq. (35), two integrations are required: one
to obtain µ(t) from Eq. (33) and the other to obtain y from Eq. (35).

E X A M P L E

4

Solve the initial value problem

t y′ + 2y = 4t2, (36)

y(1) = 2. (37)

Rewriting Eq. (36) in the standard form (3), we have

y′ + (2/t)y = 4t, (38)

so p(t) = 2/t and g(t) = 4t . To solve Eq. (38) we first compute the integrating factor
µ(t):

µ(t) = exp
∫

2

t
dt = e2 ln |t | = t2. (39)

On multiplying Eq. (38) by µ(t) = t2, we obtain

t2 y′ + 2t y = (t2 y)′ = 4t3,

and therefore

t2 y = t4 + c,

where c is an arbitrary constant. It follows that

y = t2 + c

t2 (40)
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is the general solution of Eq. (36). Integral curves of Eq. (36) for several values of c
are shown in Figure 2.1.4. To satisfy the initial condition (37) it is necessary to choose
c = 1; thus

y = t2 + 1

t2 , t > 0 (41)

is the solution of the initial value problem (36), (37). This solution is shown by the
heavy curve in Figure 2.1.4. Note that it becomes unbounded and is asymptotic to the
positive y-axis as t → 0 from the right. This is the effect of the infinite discontinuity
in the coefficient p(t) at the origin. The function y = t2 + (1/t2) for t < 0 is not part
of the solution of this initial value problem.

This is the first example in which the solution fails to exist for some values of t .
Again, this is due to the infinite discontinuity in p(t) at t = 0, which restricts the
solution to the interval 0 < t < ∞.

y

t
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1

–1

–1 1

(1, 2)

FIGURE 2.1.4 Integral curves of t y′ + 2y = 4t2.

Looking again at Figure 2.1.4, we see that some solutions (those for which c > 0)
are asymptotic to the positive y-axis as t → 0 from the right, while other solutions
(for which c < 0) are asymptotic to the negative y-axis. The solution for which c = 0,
namely, y = t2, remains bounded and differentiable even at t = 0. If we generalize the
initial condition (37) to

y(1) = y0, (42)

then c = y0 − 1 and the solution (41) becomes

y = t2 + y0 − 1

t2 , t > 0. (43)

As in Example 3, this is another instance where there is a critical initial value, namely,
y0 = 1, that separates solutions that behave in two quite different ways.
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PROBLEMS In each of Problems 1 through 12:
(a) Draw a direction field for the given differential equation.
(b) Based on an inspection of the direction field, describe how solutions behave for large t .
(c) Find the general solution of the given differential equation and use it to determine how
solutions behave as t → ∞.

� 1. y′ + 3y = t + e−2t � 2. y′ − 2y = t2e2t

� 3. y′ + y = te−t + 1 � 4. y′ + (1/t)y = 3 cos 2t, t > 0

� 5. y′ − 2y = 3et � 6. t y′ + 2y = sin t, t > 0

� 7. y′ + 2t y = 2te−t2
� 8. (1 + t2)y′ + 4t y = (1 + t2)−2

� 9. 2y′ + y = 3t � 10. t y′ − y = t2e−t

� 11. y′ + y = 5 sin 2t � 12. 2y′ + y = 3t2

In each of Problems 13 through 20 find the solution of the given initial value problem.
13. y′ − y = 2te2t , y(0) = 1
14. y′ + 2y = te−2t , y(1) = 0
15. t y′ + 2y = t2 − t + 1, y(1) = 1

2 , t > 0
16. y′ + (2/t)y = (cos t)/t2 y(π) = 0, t > 0
17. y′ − 2y = e2t , y(0) = 2 18. t y′ + 2y = sin t, y(π/2) = 1
19. t3 y′ + 4t2 y = e−t , y(−1) = 0 20. t y′ + (t + 1)y = t, y(ln 2) = 1

In each of Problems 21 and 22:
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t becomes large? Does the behavior depend on the choice of the initial value
a? Let a0 be the value of a for which the transition from one type of behavior to another
occurs. Estimate the value of a0.
(b) Solve the initial value problem and find the critical value a0 exactly.
(c) Describe the behavior of the solution corresponding to the initial value a0.

� 21. y′ − 1
2 y = 2 cos t, y(0) = a � 22. 2y′ − y = et/3, y(0) = a

In each of Problems 23 and 24:
(a) Draw a direction field for the given differential equation. How do solutions appear to
behave as t → 0? Does the behavior depend on the choice of the initial value a? Let a0
be the value of a for which the transition from one type of behavior to another occurs.
Estimate the value of a0.
(b) Solve the initial value problem and find the critical value a0 exactly.
(c) Describe the behavior of the solution corresponding to the initial value a0.

� 23. t y′ + (t + 1)y = 2te−t , y(1) = a � 24. t y′ + 2y = (sin t)/t, y(−π/2) = a

� 25. Consider the initial value problem

y′ + 1
2 y = 2 cos t, y(0) = −1.

Find the coordinates of the first local maximum point of the solution for t > 0.
� 26. Consider the initial value problem

y′ + 2
3 y = 1 − 1

2 t, y(0) = y0.

Find the value of y0 for which the solution touches, but does not cross, the t-axis.
� 27. Consider the initial value problem

y′ + 1
4 y = 3 + 2 cos 2t, y(0) = 0.

(a) Find the solution of this initial value problem and describe its behavior for large t .
(b) Determine the value of t for which the solution first intersects the line y = 12.
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28. Find the value of y0 for which the solution of the initial value problem

y′ − y = 1 + 3 sin t, y(0) = y0

remains finite as t → ∞.
29. Consider the initial value problem

y′ − 3
2 y = 3t + 2et , y(0) = y0.

Find the value of y0 that separates solutions that grow positively as t → ∞ from those that
grow negatively. How does the solution that corresponds to this critical value of y0 behave
as t → ∞?

30. Show that if a and λ are positive constants, and b is any real number, then every solution
of the equation

y′ + ay = be−λt

has the property that y → 0 as t → ∞.
Hint: Consider the cases a = λ and a �= λ separately.

In each of Problems 31 through 34 construct a first order linear differential equation whose
solutions have the required behavior as t → ∞. Then solve your equation and confirm that the
solutions do indeed have the specified property.
31. All solutions have the limit 3 as t → ∞.
32. All solutions are asymptotic to the line y = 3 − t as t → ∞.
33. All solutions are asymptotic to the line y = 2t − 5 as t → ∞.
34. All solutions approach the curve y = 4 − t2 as t → ∞.

35. Variation of Parameters. Consider the following method of solving the general linear
equation of first order:

y′ + p(t)y = g(t). (i)

(a) If g(t) is identically zero, show that the solution is

y = A exp

[
−
∫

p(t) dt

]
, (ii)

where A is a constant.
(b) If g(t) is not identically zero, assume that the solution is of the form

y = A(t) exp

[
−
∫

p(t) dt

]
, (iii)

where A is now a function of t . By substituting for y in the given differential equation,
show that A(t) must satisfy the condition

A′(t) = g(t) exp

[∫
p(t) dt

]
. (iv)

(c) Find A(t) from Eq. (iv). Then substitute for A(t) in Eq. (iii) and determine y. Verify
that the solution obtained in this manner agrees with that of Eq. (35) in the text. This
technique is known as the method of variation of parameters; it is discussed in detail in
Section 3.7 in connection with second order linear equations.

In each of Problems 36 and 37 use the method of Problem 35 to solve the given differential
equation.

36. y′ − 2y = t2e2t 37. y′ + (1/t)y = 3 cos 2t, t > 0
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2.2 Separable Equations

In Sections 1.2 and 2.1 we used a process of direct integration to solve first order linear
equations of the form

dy

dt
= ay + b, (1)

where a and b are constants. We will now show that this process is actually applicable
to a much larger class of equations.

We will use x to denote the independent variable in this section rather than t for two
reasons. In the first place, different letters are frequently used for the variables in a
differential equation, and you should not become too accustomed to using a single pair.
In particular, x often occurs as the independent variable. Further, we want to reserve t
for another purpose later in the section.

The general first order equation is

dy

dx
= f (x, y). (2)

Linear equations were considered in the preceding section, but if Eq. (2) is nonlinear,
then there is no universally applicable method for solving the equation. Here, we
consider a subclass of first order equations for which a direct integration process can
be used.

To identify this class of equations we first rewrite Eq. (2) in the form

M(x, y)+ N (x, y)
dy

dx
= 0. (3)

It is always possible to do this by setting M(x, y) = − f (x, y) and N (x, y) = 1, but
there may be other ways as well. In the event that M is a function of x only and N is a
function of y only, then Eq. (3) becomes

M(x)+ N (y)
dy

dx
= 0. (4)

Such an equation is said to be separable, because if it is written in the differential form

M (x ) dx  + N (y ) dy = 0, (5)

then, if you wish, terms involving each variable may be separated by the equals sign.
The differential form (5) is also more symmetric and tends to diminish the distinction
between independent and dependent variables.

E X A M P L E

1

Show that the equation

dy

dx
= x2

1 − y2 (6)

is separable, and then find an equation for its integral curves.
If we write Eq. (6) as

−x2 + (1 − y2)
dy

dx
= 0, (7)
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then it has the form (4) and is therefore separable. Next, observe that the first term in
Eq. (7) is the derivative of −x3/3 and that the second term, by means of the chain rule,
is the derivative with respect to x of y − y3/3. Thus Eq. (7) can be written as

d

dx

(
− x3

3

)
+ d

dx

(
y − y3

3

)
= 0,

or

d

dx

(
− x3

3
+ y − y3

3

)
= 0.

Therefore

−x3 + 3y − y3 = c, (8)

where c is an arbitrary constant, is an equation for the integral curves of Eq. (6). A
direction field and several integral curves are shown in Figure 2.2.1. An equation of the
integral curve passing through a particular point (x0, y0) can be found by substituting
x0 and y0 for x and y, respectively, in Eq. (8) and determining the corresponding value
of c. Any differentiable function y = φ(x) that satisfies Eq. (8) is a solution of Eq. (6).
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FIGURE 2.2.1 Direction field and integral curves of y′ = x2/(1 − y2).

Essentially the same procedure can be followed for any separable equation. Returning
to Eq. (4), let H1 and H2 be any functions such that

H ′
1(x) = M(x), H ′

2(y) = N (y); (9)



42 Chapter 2. First Order Differential Equations

then Eq. (4) becomes

H ′
1(x)+ H ′

2(y)
dy

dx
= 0. (10)

According to the chain rule,

H ′
2(y)

dy

dx
= d

dx
H2(y). (11)

Consequently, Eq. (10) becomes

d

dx
[H1(x)+ H2(y)] = 0. (12)

By integrating Eq. (12) we obtain

H1(x)+ H2(y) = c, (13)

where c is an arbitrary constant. Any differentiable function y = φ(x) that satisfies
Eq. (13) is a solution of Eq. (4); in other words, Eq. (13) defines the solution implicitly
rather than explicitly. The functions H1 and H2 are any antiderivatives of M and N ,
respectively. In practice, Eq. (13) is usually obtained from Eq. (5) by integrating the
first term with respect to x and the second term with respect to y.

If, in addition to the differential equation, an initial condition

y(x0) = y0 (14)

is prescribed, then the solution of Eq. (4) satisfying this condition is obtained by setting
x = x0 and y = y0 in Eq. (13). This gives

c = H1(x0)+ H2(y0). (15)

Substituting this value of c in Eq. (13) and noting that

H1(x)− H1(x0) =
∫ x

x0

M(s) ds, H2(y)− H2(y0) =
∫ y

y0

N (s) ds,

we obtain ∫ x

x0

M(s) ds +
∫ y

y0

N (s) ds = 0. (16)

Equation (16) is an implicit representation of the solution of the differential equation
(4) that also satisfies the initial condition (14). You should bear in mind that the
determination of an explicit formula for the solution requires that Eq. (16) be solved
for y as a function of x . Unfortunately, it is often impossible to do this analytically;
in such cases one can resort to numerical methods to find approximate values of y for
given values of x .

E X A M P L E

2

Solve the initial value problem

dy

dx
= 3x2 + 4x + 2

2(y − 1)
, y(0) = −1, (17)

and determine the interval in which the solution exists.
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The differential equation can be written as

2(y − 1) dy = (3x2 + 4x + 2) dx .

Integrating the left side with respect to y and the right side with respect to x gives

y2 − 2y = x3 + 2x2 + 2x + c, (18)

where c is an arbitrary constant. To determine the solution satisfying the prescribed
initial condition, we substitute x = 0 and y = −1 in Eq. (18), obtaining c = 3. Hence
the solution of the initial value problem is given implicitly by

y2 − 2y = x3 + 2x2 + 2x + 3. (19)

To obtain the solution explicitly we must solve Eq. (19) for y in terms of x . This is a
simple matter in this case, since Eq. (19) is quadratic in y, and we obtain

y = 1 ±
√

x3 + 2x2 + 2x + 4. (20)

Equation (20) gives two solutions of the differential equation, only one of which,
however, satisfies the given initial condition. This is the solution corresponding to the
minus sign in Eq. (20), so that we finally obtain

y = φ(x) = 1 −
√

x3 + 2x2 + 2x + 4 (21)

as the solution of the initial value problem (17). Note that if the plus sign is chosen by
mistake in Eq. (20), then we obtain the solution of the same differential equation that
satisfies the initial condition y(0) = 3. Finally, to determine the interval in which the
solution (21) is valid, we must find the interval in which the quantity under the radical
is positive. The only real zero of this expression is x = −2, so the desired interval is
x > −2. The solution of the initial value problem and some other integral curves of
the differential equation are shown in Figure 2.2.2. Observe that the boundary of the
interval of validity of the solution (20) is determined by the point (−2, 1) at which the
tangent line is vertical.

y

x–1 1–2

(–2, 1)

2

–2

–1

1

2

3

(0, –1)

FIGURE 2.2.2 Integral curves of y′ = (3x2 + 4x + 2)/2(y − 1).
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E X A M P L E

3

Find the solution of the initial value problem

dy

dx
= y cos x

1 + 2y2 , y(0) = 1. (22)

Observe that y = 0 is a solution of the given differential equation. To find other
solutions, assume that y �= 0 and write the differential equation in the form

1 + 2y2

y
dy = cos x dx . (23)

Then, integrating the left side with respect to y and the right side with respect to x , we
obtain

ln |y| + y2 = sin x + c. (24)

To satisfy the initial condition we substitute x = 0 and y = 1 in Eq. (24); this gives
c = 1. Hence the solution of the initial value problem (22) is given implicitly by

ln |y| + y2 = sin x + 1. (25)

Since Eq. (25) is not readily solved for y as a function of x , further analysis of this
problem becomes more delicate. One fairly evident fact is that no solution crosses the
x-axis. To see this, observe that the left side of Eq. (25) becomes infinite if y = 0;
however, the right side never becomes unbounded, so no point on the x-axis satisfies
Eq. (25). Thus, for the solution of Eqs. (22) it follows that y > 0 always. Consequently,
the absolute value bars in Eq. (25) can be dropped. It can also be shown that the interval
of definition of the solution of the initial value problem (22) is the entire x-axis. Some
integral curves of the given differential equation, including the solution of the initial
value problem (22), are shown in Figure 2.2.3.

2

1

–1

–3 –2 –1 1 2 3

y

x

(0, 1)

FIGURE 2.2.3 Integral curves of y′ = (y cos x)/(1 + 2y2).

The investigation of a first order nonlinear equation can sometimes be facilitated by
regarding both x and y as functions of a third variable t . Then

dy

dx
= dy/dt

dx/dt
. (26)
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If the differential equation is

dy

dx
= F(x, y)

G(x, y)
, (27)

then, by comparing numerators and denominators in Eqs. (26) and (27), we obtain the
system

dx/dt = G(x, y), dy/dt = F(x, y). (28)

At first sight it may seem unlikely that a problem will be simplified by replacing a single
equation by a pair of equations, but, in fact, the system (28) may well be more amenable
to investigation than the single equation (27). Chapter 9 is devoted to nonlinear systems
of the form (28).

Note: In Example 2 it was not difficult to solve explicitly for y as a function of x
and to determine the exact interval in which the solution exists. However, this situation
is exceptional, and often it will be better to leave the solution in implicit form, as in
Examples 1 and 3. Thus, in the problems below and in other sections where nonlinear
equations appear, the terminology “solve the following differential equation” means to
find the solution explicitly if it is convenient to do so, but otherwise to find an implicit
formula for the solution.

PROBLEMS In each of Problems 1 through 8 solve the given differential equation.

1. y′ = x2/y 2. y′ = x2/y(1 + x3)

3. y′ + y2 sin x = 0 4. y′ = (3x2 − 1)/(3 + 2y)
5. y′ = (cos2 x)(cos2 2y) 6. xy′ = (1 − y2)1/2

7.
dy

dx
= x − e−x

y + ey 8.
dy

dx
= x2

1 + y2

In each of Problems 9 through 20:

(a) Find the solution of the given initial value problem in explicit form.
(b) Plot the graph of the solution.
(c) Determine (at least approximately) the interval in which the solution is defined.

� 9. y′ = (1 − 2x)y2, y(0) = −1/6 � 10. y′ = (1 − 2x)/y, y(1) = −2

� 11. x dx + ye−x dy = 0, y(0) = 1 � 12. dr/dθ = r2/θ, r(1) = 2

� 13. y′ = 2x/(y + x2 y), y(0) = −2 � 14. y′ = xy3(1 + x2)−1/2, y(0) = 1

� 15. y′ = 2x/(1 + 2y), y(2) = 0 � 16. y′ = x(x2 + 1)/4y3, y(0) = −1/
√

2

� 17. y′ = (3x2 − ex )/(2y − 5), y(0) = 1

� 18. y′ = (e−x − ex )/(3 + 4y), y(0) = 1

� 19. sin 2x dx + cos 3y dy = 0, y(π/2) = π/3

� 20. y2(1 − x2)1/2dy = arcsin x dx, y(0) = 0

Some of the results requested in Problems 21 through 28 can be obtained either by solving
the given equations analytically, or by plotting numerically generated approximations to the
solutions. Try to form an opinion as to the advantages and disadvantages of each approach.

� 21. Solve the initial value problem

y′ = (1 + 3x2)/(3y2 − 6y), y(0) = 1

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a vertical
tangent.
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� 22. Solve the initial value problem

y′ = 3x2/(3y2 − 4), y(1) = 0

and determine the interval in which the solution is valid.
Hint: To find the interval of definition, look for points where the integral curve has a vertical
tangent.

� 23. Solve the initial value problem

y′ = 2y2 + xy2, y(0) = 1

and determine where the solution attains its minimum value.
� 24. Solve the initial value problem

y′ = (2 − ex )/(3 + 2y), y(0) = 0

and determine where the solution attains its maximum value.
� 25. Solve the initial value problem

y′ = 2 cos 2x/(3 + 2y), y(0) = −1

and determine where the solution attains its maximum value.
� 26. Solve the initial value problem

y′ = 2(1 + x)(1 + y2), y(0) = 0

and determine where the solution attains its minimum value.
� 27. Consider the initial value problem

y′ = t y(4 − y)/3, y(0) = y0.

(a) Determine how the behavior of the solution as t increases depends on the initial
value y0.
(b) Suppose that y0 = 0.5. Find the time T at which the solution first reaches the value
3.98.

� 28. Consider the initial value problem

y′ = t y(4 − y)/(1 + t), y(0) = y0 > 0.

(a) Determine how the solution behaves as t → ∞.
(b) If y0 = 2, find the time T at which the solution first reaches the value 3.99.
(c) Find the range of initial values for which the solution lies in the interval 3.99 < y <
4.01 by the time t = 2.

29. Solve the equation

dy

dx
= ay + b

cy + d
,

where a, b, c, and d are constants.

Homogeneous Equations. If the right side of the equation dy/dx = f (x, y) can be expressed
as a function of the ratio y/x only, then the equation is said to be homogeneous. Such equations
can always be transformed into separable equations by a change of the dependent variable.
Problem 30 illustrates how to solve first order homogeneous equations.

� 30. Consider the equation

dy

dx
= y − 4x

x − y
. (i)
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(a) Show that Eq. (i) can be rewritten as

dy

dx
= (y/x)− 4

1 − (y/x)
; (ii)

thus Eq. (i) is homogeneous.
(b) Introduce a new dependent variable v so that v = y/x , or y = xv(x). Express dy/dx
in terms of x , v, and dv/dx .
(c) Replace y and dy/dx in Eq. (ii) by the expressions from part (b) that involve v and
dv/dx . Show that the resulting differential equation is

v + x
dv

dx
= v − 4

1 − v
,

or

x
dv

dx
= v2 − 4

1 − v
. (iii)

Observe that Eq. (iii) is separable.
(d) Solve Eq. (iii) for v in terms of x .
(e) Find the solution of Eq. (i) by replacing v by y/x in the solution in part (d).
(f) Draw a direction field and some integral curves for Eq. (i). Recall that the right side
of Eq. (1) actually depends only on the ratio y/x . This means that integral curves have the
same slope at all points on any given straight line through the origin, although the slope
changes from one line to another. Therefore the direction field and the integral curves are
symmetric with respect to the origin. Is this symmetry property evident from your plot?

The method outlined in Problem 30 can be used for any homogeneous equation. That is, the
substitution y = xv(x) transforms a homogeneous equation into a separable equation. The latter
equation can be solved by direct integration, and then replacing v by y/x gives the solution to
the original equation. In each of Problems 31 through 38:

(a) Show that the given equation is homogeneous.
(b) Solve the differential equation.
(c) Draw a direction field and some integral curves. Are they symmetric with respect to
the origin?

� 31.
dy

dx
= x2 + xy + y2

x2 � 32.
dy

dx
= x2 + 3y2

2xy

� 33.
dy

dx
= 4y − 3x

2x − y
� 34.

dy

dx
= −4x + 3y

2x + y

� 35.
dy

dx
= x + 3y

x − y
� 36. (x2 + 3xy + y2) dx − x2dy = 0

� 37.
dy

dx
= x2 − 3y2

2xy
� 38.

dy

dx
= 3y2 − x2

2xy

2.3 Modeling with First Order Equations

Differential equations are of interest to nonmathematicians primarily because of the
possibility of using them to investigate a wide variety of problems in the physical,
biological, and social sciences. One reason for this is that mathematical models and



48 Chapter 2. First Order Differential Equations

their solutions lead to equations relating the variables and parameters in the problem.
These equations often enable you to make predictions about how the natural process will
behave in various circumstances. It is often easy to vary parameters in the mathematical
model over wide ranges, whereas this may be very time-consuming or expensive
in an experimental setting. Nevertheless, mathematical modeling and experiment or
observation are both critically important and have somewhat complementary roles in
scientific investigations. Mathematical models  s are validated by comparison of their
predictions with experimental results. On the other hand, mathematical analyses may
suggest the most promising directions to explore experimentally, and may indicate
fairly precisely what experimental data will be most helpful.

In Sections 1.1 and 1.2 we formulated and investigated a few simple mathemati-
cal models. We begin by recapitulating and expanding on some of the conclusions
reached in those sections. Regardless of the specific field of application, there are three
identifiable steps that are always present in the process of mathematical modeling.

Construction of the Model. This involves a translation of the physical situation into
mathematical terms, often using the steps listed at the end of Section 1.1. Perhaps
most critical at this stage is to state clearly the physical principle(s) that are believed
to govern the process. For example, it has been observed that in some circumstances
heat passes from a warmer to a cooler body at a rate proportional to the temperature
difference, that objects move about in accordance with Newton’s laws of motion, and
that isolated insect populations grow at a rate proportional to the current population.
Each of these statements involves a rate of change (derivative) and consequently, when
expressed mathematically, leads to a differential equation. The differential equation is
a mathematical model of the process.

It is important to realize that the mathematical equations are almost always only an
approximate description of the actual process. For example, bodies moving at speeds
comparable to the speed of light are not governed by Newton’s laws, insect popula-
tions do not grow indefinitely as stated because of eventual limitations on their food
supply, and heat transfer is affected by factors other than the temperature difference.
Alternatively, one can adopt the point of view that the mathematical equations exactly
describe the operation of a simplified physical model, which has been constructed (or
conceived of) so as to embody the most important features of the actual process. Some-
times, the process of mathematical modeling involves the conceptual replacement of a
discrete process by a continuous one. For instance, the number of members in an insect
population changes by discrete amounts; however, if the population is large, it seems
reasonable to consider it as a continuous variable and even to speak of its derivative.

Analysis of the Model. Once the problem has been formulated mathematically, one
is often faced with the problem of solving one or more differential equations or,
failing that, of finding out as much as possible about the properties of the solution.
It may happen that this mathematical problem is quite difficult and, if so, further
approximations may be indicated at this stage to make the problem mathematically
tractable. For example, a nonlinear equation may be approximated by a linear one,
or a slowly varying coefficient may be replaced by a constant. Naturally, any such
approximations must also be examined from the physical point of view to make
sure that the simplified mathematical problem still reflects the essential features of
the physical process under investigation. At the same time, an intimate knowledge
of the physics of the problem may suggest reasonable mathematical approximations
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that will make the mathematical problem more amenable to analysis. This interplay
of understanding of physical phenomena and knowledge of mathematical techniques
and their limitations is characteristic of applied mathematics at its best, and is indis-
pensable in successfully constructing useful mathematical models of intricate physical
processes.

Comparison with Experiment or Observation. Finally, having obtained the solution
(or at least some information about it), you must interpret this information in the context
in which the problem arose. In particular, you should always check that the mathe-
matical solution appears physically reasonable. If possible, calculate the values of the
solution at selected points and compare them with experimentally observed values. Or,
ask whether the behavior of the solution after a long time is consistent with observa-
tions. Or, examine the solutions corresponding to certain special values of parameters
in the problem. Of course, the fact that the mathematical solution appears to be reason-
able does not guarantee it is correct. However, if the predictions of the mathematical
model are seriously inconsistent with observations of the physical system it purports to
describe, this suggests that either errors have been made in solving the mathematical
problem, or the mathematical model itself needs refinement, or observations must be
made with greater care.

The examples in this section are typical of applications in which first order differential
equations arise.

E X A M P L E

1
Mixing

At time t = 0 a tank contains Q0 lb of salt dissolved in 100 gal of water; see Figure
2.3.1. Assume that water containing 1

4 lb of salt/gal is entering the tank at a rate of
r gal/min, and that the well-stirred mixture is draining from the tank at the same rate.
Set up the initial value problem that describes this flow process. Find the amount of
salt Q(t) in the tank at any time, and also find the limiting amount QL that is present
after a very long time. If r = 3 and Q0 = 2QL , find the time T after which the salt
level is within 2% of QL . Also find the flow rate that is required if the value of T is not
to exceed 45 min.

r gal/min,    lb/gal
1
4

r gal/min

FIGURE 2.3.1 The water tank in Example 1.
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We assume that salt is neither created nor destroyed in the tank. Therefore variations
in the amount of salt are due solely to the flows in and out of the tank. More precisely,
the rate of change of salt in the tank, d Q/dt , is equal to the rate at which salt is flowing
in minus the rate at which it is flowing out. In symbols,

d Q

dt
= rate in − rate out. (1)

The rate at which salt enters the tank is the concentration 1
4 lb/gal times the flow rate

r gal/min, or (r/4) lb/min. To find the rate at which salt leaves the tank we need to
multiply the concentration of salt in the tank by the rate of outflow, r gal/min. Since the
rates of flow in and out are equal, the volume of water in the tank remains constant at
100 gal, and since the mixture is “well-stirred,” the concentration throughout the tank
is the same, namely, [Q(t)/100] lb/gal. Therefore the rate at which salt leaves the tank
is [r Q(t)/100] lb/min. Thus the differential equation governing this process is

d Q

dt
= r

4
− r Q

100
. (2)

The initial condition is

Q(0) = Q0. (3)

Upon thinking about the problem physically, we might anticipate that eventually
the mixture originally in the tank will be essentially replaced by the mixture flowing
in, whose concentration is 1

4 lb/gal. Consequently, we might expect that ultimately
the amount of salt in the tank would be very close to 25 lb. We can reach the same
conclusion from a geometrical point of view by drawing a direction field for Eq. (2)
for any positive value of r .

To solve the problem analytically note that Eq. (2) is both linear and separable.
Rewriting it in the usual form for a linear equation, we have

d Q

dt
+ r Q

100
= r

4
. (4)

Thus the integrating factor is ert/100 and the general solution is

Q(t) = 25 + ce−r t/100, (5)

where c is an arbitrary constant. To satisfy the initial condition (3) we must choose
c = Q0 − 25. Therefore the solution of the initial value problem (2), (3) is

Q(t) = 25 + (Q0 − 25)e−r t/100 (6)

or

Q(t) = 25(1 − e−r t/100)+ Q0e−r t/100. (7)

From Eq. (6) or (7), you can see that Q(t) → 25 (lb) as t → ∞, so the limiting value
QL is 25, confirming our physical intuition. In interpreting the solution (7), note that
the second term on the right side is the portion of the original salt that remains at time
t , while the first term gives the amount of salt in the tank due to the action of the flow
processes. Plots of the solution for r = 3 and for several values of Q0 are shown in
Figure 2.3.2.
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FIGURE 2.3.2 Solutions of the initial value problem (2), (3) for r = 3 and several
values of Q0.

Now suppose that r = 3 and Q0 = 2QL = 50; then Eq. (6) becomes

Q(t) = 25 + 25e−0.03t . (8)

Since 2% of 25 is 0.5, we wish to find the time T at which Q(t) has the value 25.5.
Substituting t = T and Q = 25.5 in Eq. (8) and solving for T , we obtain

T = (ln 50)/0.03 ∼= 130.4 (min). (9)

To determine r so that T = 45, return to Eq. (6), set t = 45, Q0 = 50, Q(t) = 25.5,
and solve for r . The result is

r = (100/45) ln 50 ∼= 8.69 gal/min. (10)

Since this example is hypothetical, the validity of the model is not in question. If
the flow rates are as stated, and if the concentration of salt in the tank is uniform, then
the differential equation (1) is an accurate description of the flow process. While this
particular example has no special significance, it is important that models of this kind
are often used in problems involving a pollutant in a lake, or a drug in an organ of the
body, for example, rather than a tank of salt water. In such cases the flow rates may not
be easy to determine, or may vary with time. Similarly, the concentration may be far
from uniform in some cases. Finally, the rates of inflow and outflow may be different,
which means that the variation of the amount of liquid in the problem must also be
taken into account.

E X A M P L E

2
Compound

Interest

Suppose that a sum of money is deposited in a bank or money fund that pays interest at
an annual rate r . The value S(t) of the investment at any time t depends on the frequency
with which interest is compounded as well as the interest rate. Financial institutions have
various policies concerning compounding: some compound monthly, some weekly,
some even daily. If we assume that compounding takes place continuously, then we
can set up a simple initial value problem that describes the growth of the investment.
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The rate of change of the value of the investment is d S/dt , and this quantity is equal
to the rate at which interest accrues, which is the interest rate r times the current value
of the investment S(t). Thus

d S/dt = r S (11)

is the differential equation that governs the process. Suppose that we also know the
value of the investment at some particular time, say,

S(0) = S0. (12)

Then the solution of the initial value problem (11), (12) gives the balance S(t) in the
account at any time t . This initial value problem is readily solved, since the differential
equation (11) is both linear and separable. Consequently, by solving Eqs. (11) and (12),
we find that

S(t) = S0ert . (13)

Thus a bank account with continuously compounding interest grows exponentially.
Let us now compare the results from this continuous model with the situation in

which compounding occurs at finite time intervals. If interest is compounded once a
year, then after t years

S(t) = S0(1 + r)t .

If interest is compounded twice a year, then at the end of 6 months the value of the
investment is S0[1 + (r/2)], and at the end of 1 year it is S0[1 + (r/2)]2. Thus, after t
years we have

S(t) = S0

(
1 + r

2

)2t
.

In general, if interest is compounded m times per year, then

S(t) = S0

(
1 + r

m

)mt
. (14)

The relation between formulas (13) and (14) is clarified if we recall from calculus that

lim
m→∞ S0

(
1 + r

m

)mt
= S0ert .

The same model applies equally well to more general investments in which dividends
and perhaps capital gains can also accumulate, as well as interest. In recognition of this
fact, we will from now on refer to r as the rate of return.

Table 2.3.1 shows the effect of changing the frequency of compounding for a return
rate r of 8%. The second and third columns are calculated from Eq. (14) for quarterly
and daily compounding, respectively, and the fourth column is calculated from Eq. (13)
for continuous compounding. The results show that the frequency of compounding
is not particularly important in most cases. For example, during a 10-year period
the difference between quarterly and continuous compounding is $17.50 per $1000
invested, or less than $2/year. The difference would be somewhat greater for higher
rates of return and less for lower rates. From the first row in the table, we see that for
the return rate r = 8%, the annual yield for quarterly compounding is 8.24% and for
daily or continuous compounding it is 8.33%.
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TABLE 2.3.1 Growth of Capital at a Return Rate r = 8%
for Several Modes of Compounding

S(t)/S(t0) from Eq. (14)
S(t)/S(t0)

Years m = 4 m = 365 from Eq. (13)

1 1.0824 1.0833 1.0833
2 1.1717 1.1735 1.1735
5 1.4859 1.4918 1.4918

10 2.2080 2.2253 2.2255
20 4.8754 4.9522 4.9530
30 10.7652 11.0203 11.0232
40 23.7699 24.5239 24.5325

Returning now to the case of continuous compounding, let us suppose that there may
be deposits or withdrawals in addition to the accrual of interest, dividends, or capital
gains. If we assume that the deposits or withdrawals take place at a constant rate k,
then Eq. (11) is replaced by

d S/dt = r S + k,

or, in standard form,

d S/dt − r S = k, (15)

where k is positive for deposits and negative for withdrawals.
Equation (15) is linear with the integrating factor e−r t , so its general solution is

S(t) = cert − (k/r),

where c is an arbitrary constant. To satisfy the initial condition (12) we must choose
c = S0 + (k/r). Thus the solution of the initial value problem (15), (12) is

S(t) = S0ert + (k/r)(ert − 1). (16)

The first term in expression (16) is the part of S(t) that is due to the return accumulated
on the initial amount S0, while the second term is the part that is due to the deposit or
withdrawal rate k.

The advantage of stating the problem in this general way without specific values for
S0, r , or k lies in the generality of the resulting formula (16) for S(t). With this formula
we can readily compare the results of different investment programs or different rates
of return.

For instance, suppose that one opens an individual retirement account (IRA) at age 25
and makes annual investments of $2000 thereafter in a continuous manner. Assuming
a rate of return of 8%, what will be the balance in the IRA at age 65? We have S0 = 0,
r = 0.08, and k = $2000, and we wish to determine S(40). From Eq. (16) we have

S(40) = (25,000)(e3.2 − 1) = $588,313. (17)

It is interesting to note that the total amount invested is $80,000, so the remain-
ing amount of $508,313 results from the accumulated return on the investment.
The balance after 40 years is also fairly sensitive to the assumed rate. For instance,
S(40) = $508,948 if r = 0.075 and S(40) = $681,508 if r = 0.085.
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Let us now examine the assumptions that have gone into the model. First, we have
assumed that the return is compounded continuously and that additional capital is
invested continuously. Neither of these is true in an actual financial situation. We have
also assumed that the return rate r is constant for the entire period involved, whereas
in fact it is likely to fluctuate considerably. Although we cannot reliably predict future
rates, we can use expression (16) to determine the approximate effect of different rate
projections. It is also possible to consider r and k in Eq. (15) to be functions of t rather
than constants; in that case, of course, the solution may be much more complicated
than Eq. (16).

The initial value problem (15), (12) and the solution (16) can also be used to analyze
a number of other financial situations, including annuities, mortgages, and automobile
loans among others.

E X A M P L E

3
Chemicals
in a Pond

Consider a pond that initially contains 10 million gal of fresh water. Water containing
an undesirable chemical flows into the pond at the rate of 5 million gal/year and the
mixture in the pond flows out at the same rate. The concentration γ (t) of chemical in
the incoming water varies periodically with time according to the expression γ (t) =
2 + sin 2t g/gal. Construct a mathematical model of this flow process and determine
the amount of chemical in the pond at any time. Plot the solution and describe in words
the effect of the variation in the incoming concentration.

Since the incoming and outgoing flows of water are the same, the amount of water
in the pond remains constant at 107 gal. Let us denote time by t , measured in years,
and the chemical by Q(t), measured in grams. This example is similar to Example 1
and the same inflow/outflow principle applies. Thus

d Q

dt
= rate in − rate out,

where “rate in” and “rate out” refer to the rates at which the chemical flows into and
out of the pond, respectively. The rate at which the chemical flows in is given by

rate in = (5 × 106) gal/yr (2 + sin 2t) g/gal. (18)

The concentration of chemical in the pond is Q(t)/107 g/gal, so the rate of flow out is

rate out = (5 × 106) gal/yr[Q(t)/107] g/gal = Q(t)/2 g/yr. (19)

Thus we obtain the differential equation

d Q

dt
= (5 × 106)(2 + sin 2t)− Q(t)

2
, (20)

where each term has the units of g/yr.
To make the coefficients more manageable, it is convenient to introduce a new

dependent variable defined by q(t) = Q(t)/106 or Q(t) = 106 q(t). This means that
q(t) is measured in millions of grams, or megagrams. If we make this substitution in
Eq. (20), then each term contains the factor 106, which can be cancelled. If we also
transpose the term involving q(t) to the left side of the equation, we finally have

dq

dt
+ 1

2 q = 10 + 5 sin 2t. (21)
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Originally, there is no chemical in the pond, so the initial condition is

q(0) = 0. (22)

Equation (21) is linear and, although the right side is a function of time, the coefficient
of q is a constant. Thus the integrating factor is et/2. Multiplying Eq. (21) by this factor
and integrating the resulting equation, we obtain the general solution

q(t) = 20 − 40
17 cos 2t + 10

17 sin 2t + ce−t/2. (23)

The initial condition (22) requires that c = −300/17, so the solution of the initial value
problem (21), (22) is

q(t) = 20 − 40
17 cos 2t + 10

17 sin 2t − 300
17 e−t/2. (24)

A plot of the solution (24) is shown in Figure 2.3.3, along with the line q = 20.
The exponential term in the solution is important for small t , but diminishes rapidly
as t increases. Later, the solution consists of an oscillation, due to the sin 2t and
cos 2t terms, about the constant level q = 20. Note that if the sin 2t term were
not present in Eq. (21), then q = 20 would be the equilibrium solution of that
equation.

2

22
20
18
16
14
12
10
8

4
6

2

8 104 6 t12 14 16 18 20

q

FIGURE 2.3.3 Solution of the initial value problem (21), (22).

Let us now consider the adequacy of the mathematical model itself for this problem.
The model rests on several assumptions that have not yet been stated explicitly. In
the first place, the amount of water in the pond is controlled entirely by the rates of
flow in and out—none is lost by evaporation or by seepage into the ground, or gained
by rainfall. Further, the same is also true of the chemical; it flows in and out of the
pond, but none is absorbed by fish or other organisms living in the pond. In addition,
we assume that the concentration of chemical in the pond is uniform throughout the
pond. Whether the results obtained from the model are accurate depends strongly on
the validity of these simplifying assumptions.
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E X A M P L E

4
Escape

Velocity

A body of constant mass m is projected away from the earth in a direction perpendicular
to the earth’s surface with an initial velocity v0. Assuming that there is no air resistance,
but taking into account the variation of the earth’s gravitational field with distance, find
an expression for the velocity during the ensuing motion. Also find the initial velocity
that is required to lift the body to a given maximum altitude ξ above the surface of the
earth, and the smallest initial velocity for which the body will not return to the earth;
the latter is the escape velocity.

Let the positive x-axis point away from the center of the earth along the line of
motion with x = 0 lying on the earth’s surface; see Figure 2.3.4. The figure is drawn

xm

 mgR2

 (R + x)2

R

FIGURE 2.3.4 A body in the earth’s gravitational field.

horizontally to remind you that gravity is directed toward the center of the earth, which
is not necessarily downward from a perspective away from the earth’s surface. The
gravitational force acting on the body (that is, its weight) is inversely proportional to the
square of the distance from the center of the earth and is given byw(x) = −k/(x + R)2,
where k is a constant, R is the radius of the earth, and the minus sign signifies that
w(x) is directed in the negative x direction. We know that on the earth’s surface w(0)
is given by −mg, where g is the acceleration due to gravity at sea level. Therefore
k = mgR2 and

w(x) = − mgR2

(R + x)2
. (25)

Since there are no other forces acting on the body, the equation of motion is

m
dv

dt
= − mgR2

(R + x)2
, (26)

and the initial condition is

v(0) = v0. (27)

Unfortunately, Eq. (26) involves too many variables since it depends on t , x , and v.
To remedy this situation we can eliminate t from Eq. (26) by thinking of x , rather than
t , as the independent variable. Then we must express dv/dt in terms of dv/dx by the
chain rule; hence

dv

dt
= dv

dx

dx

dt
= v

dv

dx
,

and Eq. (26) is replaced by

v
dv

dx
= − gR2

(R + x)2
. (28)
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Equation (28) is separable but not linear, so by separating the variables and integrating
we obtain

v2

2
= gR2

R + x
+ c. (29)

Since x = 0 when t = 0, the initial condition (27) at t = 0 can be replaced by the
condition that v = v0 when x = 0. Hence c = (v2

0/2)− gR and

v = ±
√
v2

0 − 2gR + 2gR2

R + x
. (30)

Note that Eq. (30) gives the velocity as a function of altitude rather than as a function
of time. The plus sign must be chosen if the body is rising, and the minus sign if it is
falling back to earth.

To determine the maximum altitude ξ that the body reaches, we set v = 0 and x = ξ

in Eq. (30) and then solve for ξ , obtaining

ξ = v2
0 R

2gR − v2
0

. (31)

Solving Eq. (31) for v0, we find the initial velocity required to lift the body to the
altitude ξ , namely,

v0 =
√

2gR
ξ

R + ξ
. (32)

The escape velocity ve is then found by letting ξ → ∞. Consequently,

ve =
√

2gR. (33)

The numerical value of ve is approximately 6.9 miles/sec or 11.1 km/sec.
The preceding calculation of the escape velocity neglects the effect of air resistance,

so the actual escape velocity (including the effect of air resistance) is somewhat higher.
On the other hand, the effective escape velocity can be significantly reduced if the
body is transported a considerable distance above sea level before being launched.
Both gravitational and frictional forces are thereby reduced; air resistance, in particular,
diminishes quite rapidly with increasing altitude. You should keep in mind also that it
may well be impractical to impart too large an initial velocity instantaneously; space
vehicles, for instance, receive their initial acceleration during a period of a few minutes.

PROBLEMS 1. Consider a tank used in certain hydrodynamic experiments. After one experiment the tank
contains 200 liters of a dye solution with a concentration of 1 g/liter. To prepare for the
next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 liters/min,
the well-stirred solution flowing out at the same rate. Find the time that will elapse before
the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 liters of pure water. A mixture containing a concentration of
γ g/liter of salt enters the tank at a rate of 2 liters/min, and the well-stirred mixture leaves
the tank at the same rate. Find an expression in terms of γ for the amount of salt in the tank
at any time t . Also find the limiting amount of salt in the tank as t → ∞.
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3. A tank originally contains 100 gal of fresh water. Then water containing 1
2 lb of salt per

gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 lb of salt
in solution. Water containing 1 lb of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point of
overflowing. Compare this concentration with the theoretical limiting concentration if the
tank had infinite capacity.

� 5. A tank contains 100 gallons of water and 50 oz of salt. Water containing a salt concentration
of 1

4 (1 + 1
2 sin t) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the

tank flows out at the same rate.
(a) Find the amount of salt in the tank at any time.
(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph.
(c) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?

6. Suppose that a sum S0 is invested at an annual rate of return r compounded continuously.
(a) Find the time T required for the original sum to double in value as a function of r .
(b) Determine T if r = 7%.
(c) Find the return rate that must be achieved if the initial investment is to double in
8 years.

7. A young person with no initial capital invests k dollars per year at an annual rate of
return r . Assume that investments are made continuously and that the return is compounded
continuously.
(a) Determine the sum S(t) accumulated at any time t .
(b) If r = 7.5%, determine k so that $1 million will be available for retirement in 40 years.
(c) If k = $2000/year, determine the return rate r that must be obtained to have $1 million
available in 40 years.

� 8. Person A opens an IRA at age 25, contributes $2000/year for 10 years, but makes no addi-
tional contributions thereafter. Person B waits until age 35 to open an IRA and contributes
$2000/year for 30 years. There is no initial investment in either case.
(a) Assuming a return rate of 8%, what is the balance in each IRA at age 65?
(b) For a constant, but unspecified, return rate r , determine the balance in each IRA at age
65 as a function of r .
(c) Plot the difference in the balances from part (b) for 0 ≤ r ≤ 0.10.
(d) Determine the return rate for which the two IRA’s have equal value at age 65.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at
an annual rate of 10%. Assuming that interest is compounded continuously and that the
borrower makes payments continuously at a constant annual rate k, determine the payment
rate k that is required to pay off the loan in 3 years. Also determine how much interest is
paid during the 3-year period.

10. A home buyer can afford to spend no more than $800/month on mortgage payments.
Suppose that the interest rate is 9% and that the term of the mortgage is 20 years. Assume
that interest is compounded continuously and that payments are also made continuously.
(a) Determine the maximum amount that this buyer can afford to borrow.
(b) Determine the total interest paid during the term of the mortgage.

11. How are the answers to Problem 10 changed if the term of the mortgage is 30 years?
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� 12. A recent college graduate borrows $100,000 at an interest rate of 9% to purchase a con-
dominium. Anticipating steady salary increases, the buyer expects to make payments at a
monthly rate of 800(1 + t/120), where t is the number of months since the loan was made.
(a) Assuming that this payment schedule can be maintained, when will the loan be fully
paid?
(b) Assuming the same payment schedule, how large a loan could be paid off in exactly
20 years?

13. A retired person has a sum S(t) invested so as to draw interest at an annual rate r com-
pounded continuously. Withdrawals for living expenses are made at a rate of k dollars/year;
assume that the withdrawals are made continuously.
(a) If the initial value of the investment is S0, determine S(t) at any time.
(b) Assuming that S0 and r are fixed, determine the withdrawal rate k0 at which S(t) will
remain constant.
(c) If k exceeds the value k0 found in part (b), then S(t) will decrease and ultimately
become zero. Find the time T at which S(t) = 0.
(d) Determine T if r = 8% and k = 2k0.
(e) Suppose that a person retiring with capital S0 wishes to withdraw funds at an annual
rate k for not more than T years. Determine the maximum possible rate of withdrawal.
(f) How large an initial investment is required to permit an annual withdrawal of $12,000
for 20 years, assuming an interest rate of 8%?

14. Radiocarbon Dating. An important tool in archeological research is radiocarbon dating.
This is a means of determining the age of certain wood and plant remains, hence of animal
or human bones or artifacts found buried at the same levels. The procedure was developed
by the American chemist Willard Libby (1908–1980) in the early 1950s and resulted in his
winning the Nobel prize for chemistry in 1960. Radiocarbon dating is based on the fact that
some wood or plant remains contain residual amounts of carbon-14, a radioactive isotope of
carbon. This isotope is accumulated during the lifetime of the plant and begins to decay at
its death. Since the half-life of carbon-14 is long (approximately 5730 years1), measurable
amounts of carbon-14 remain after many thousands of years. Libby showed that if even
a tiny fraction of the original amount of carbon-14 is still present, then by appropriate
laboratory measurements the proportion of the original amount of carbon-14 that remains
can be accurately determined. In other words, if Q(t) is the amount of carbon-14 at time t
and Q0 is the original amount, then the ratio Q(t)/Q0 can be determined, at least if this
quantity is not too small. Present measurement techniques permit the use of this method
for time periods up to about 50,000 years, after which the amount of carbon-14 remaining
is only about 0.00236 of the original amount.
(a) Assuming that Q satisfies the differential equation Q ′ = −r Q, determine the decay
constant r for carbon-14.
(b) Find an expression for Q(t) at any time t , if Q(0) = Q0.
(c) Suppose that certain remains are discovered in which the current residual amount of
carbon-14 is 20% of the original amount. Determine the age of these remains.

15. The population of mosquitoes in a certain area increases at a rate proportional to the
current population and, in the absence of other factors, the population doubles each week.
There are 200,000 mosquitoes in the area initially, and predators (birds, etc.) eat 20,000
mosquitoes/day. Determine the population of mosquitoes in the area at any time.

� 16. Suppose that a certain population has a growth rate that varies with time and that this
population satisfies the differential equation

dy/dt = (0.5 + sin t)y/5.

1McGraw-Hill Encyclopedia of Science and Technology (8th ed.) (New York: McGraw-Hill, 1997), Vol. 5, p. 48.
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(a) If y(0) = 1, find (or estimate) the time τ at which the population has doubled. Choose
other initial conditions and determine whether the doubling time τ depends on the initial
population.
(b) Suppose that the growth rate is replaced by its average value 1/10. Determine the
doubling time τ in this case.
(c) Suppose that the term sin t in the differential equation is replaced by sin 2π t ; that is,
the variation in the growth rate has a substantially higher frequency. What effect does this
have on the doubling time τ?
(d) Plot the solutions obtained in parts (a), (b), and (c) on a single set of axes.

� 17. Suppose that a certain population satisfies the initial value problem

dy/dt = r(t)y − k, y(0) = y0,

where the growth rate r(t) is given by r(t) = (1 + sin t)/5 and k represents the rate of
predation.
(a) Suppose that k = 1/5. Plot y versus t for several values of y0 between 1/2 and 1.
(b) Estimate the critical initial population yc below which the population will become
extinct.
(c) Choose other values of k and find the corresponding yc for each one.
(d) Use the data you have found in parts (a) and (b) to plot yc versus k.

18. Newton’s law of cooling states that the temperature of an object changes at a rate pro-
portional to the difference between its temperature and that of its surroundings. Suppose
that the temperature of a cup of coffee obeys Newton’s law of cooling. If the coffee has a
temperature of 200◦F when freshly poured, and 1 min later has cooled to 190◦F in a room
at 70◦F, determine when the coffee reaches a temperature of 150◦F.

19. Suppose that a room containing 1200 ft3 of air is originally free of carbon monoxide.
Beginning at time t = 0 cigarette smoke, containing 4% carbon monoxide, is introduced
into the room at a rate of 0.1 ft3/min, and the well-circulated mixture is allowed to leave
the room at the same rate.
(a) Find an expression for the concentration x(t) of carbon monoxide in the room at any
time t > 0.
(b) Extended exposure to a carbon monoxide concentration as low as 0.00012 is harmful
to the human body. Find the time τ at which this concentration is reached.

20. Consider a lake of constant volume V containing at time t an amount Q(t) of pollutant,
evenly distributed throughout the lake with a concentration c(t), where c(t) = Q(t)/V .
Assume that water containing a concentration k of pollutant enters the lake at a rate r ,
and that water leaves the lake at the same rate. Suppose that pollutants are also added
directly to the lake at a constant rate P . Note that the given assumptions neglect a number
of factors that may, in some cases, be important; for example, the water added or lost by
precipitation, absorption, and evaporation; the stratifying effect of temperature differences
in a deep lake; the tendency of irregularities in the coastline to produce sheltered bays;
and the fact that pollutants are not deposited evenly throughout the lake, but (usually) at
isolated points around its periphery. The results below must be interpreted in the light of
the neglect of such factors as these.
(a) If at time t = 0 the concentration of pollutant is c0, find an expression for the concen-
tration c(t) at any time. What is the limiting concentration as t → ∞?
(b) If the addition of pollutants to the lake is terminated (k = 0 and P = 0 for t > 0),
determine the time interval T that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original value.
(c) Table 2.3.2 contains data2 for several of the Great Lakes. Using these data determine

2This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,” Science 155
(1967), pp. 1242–1243; the information in the table was taken from that source.
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TABLE 2.3.2 Volume and Flow Data for the
Great Lakes

Lake V (km3 × 103) r (km3/year)

Superior 12.2 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

from part (b) the time T necessary to reduce the contamination of each of these lakes to
10% of the original value.

� 21. A ball with mass 0.15 kg is thrown upward with initial velocity 20 m/sec from the roof of
a building 30 m high. Neglect air resistance.
(a) Find the maximum height above the ground that the ball reaches.
(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.
(c) Plot the graphs of velocity and position versus time.

� 22. Assume that the conditions are as in Problem 21 except that there is a force due to air
resistance of |v|/30, where the velocity v is measured in m/sec.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problem 21.

� 23. Assume that the conditions are as in Problem 21 except that there is a force due to air
resistance of v2/1325, where the velocity v is measured in m/sec.
(a) Find the maximum height above the ground that the ball reaches.
(b) Find the time that the ball hits the ground.
(c) Plot the graphs of velocity and position versus time. Compare these graphs with the
corresponding ones in Problems 21 and 22.

� 24. A sky diver weighing 180 lb (including equipment) falls vertically downward from an
altitude of 5000 ft, and opens the parachute after 10 sec of free fall. Assume that the force
of air resistance is 0.75|v| when the parachute is closed and 12|v| when the parachute is
open, where the velocity v is measured in ft/sec.
(a) Find the speed of the sky diver when the parachute opens.
(b) Find the distance fallen before the parachute opens.
(c) What is the limiting velocity vL after the parachute opens?
(d) Determine how long the sky diver is in the air after the parachute opens.
(e) Plot the graph of velocity versus time from the beginning of the fall until the skydiver
reaches the ground.

25. A body of constant mass m is projected vertically upward with an initial velocity v0
in a medium offering a resistance k|v|, where k is a constant. Neglect changes in the
gravitational force.
(a) Find the maximum height xm attained by the body and the time tm at which this
maximum height is reached.
(b) Show that if kv0/mg < 1, then tm and xm can be expressed as

tm = v0

g

[
1 − 1

2

kv0

mg
+ 1

3

(
kv0

mg

)2

− · · ·
]
,

xm = v2
0

2g

[
1 − 2

3

kv0

mg
+ 1

2

(
kv0

mg

)2

− · · ·
]
.
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(c) Show that the quantity kv0/mg is dimensionless.
26. A body of mass m is projected vertically upward with an initial velocity v0 in a medium

offering a resistance k|v|, where k is a constant. Assume that the gravitational attraction of
the earth is constant.
(a) Find the velocity v(t) of the body at any time.
(b) Use the result of part (a) to calculate the limit of v(t) as k → 0, that is, as the resistance
approaches zero. Does this result agree with the velocity of a mass m projected upward
with an initial velocity v0 in a vacuum?
(c) Use the result of part (a) to calculate the limit of v(t) as m → 0, that is, as the mass
approaches zero.

27. A body falling in a relatively dense fluid, oil for example, is acted on by three forces (see
Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity. The
buoyant force is equal to the weight of the fluid displaced by the object. For a slowly moving
spherical body of radius a, the resistive force is given by Stokes’3 law R = 6πµa|v|, where
v is the velocity of the body, and µ is the coefficient of viscosity of the surrounding fluid.

R

w

a

B

FIGURE 2.3.5 A body falling in a dense fluid.

(a) Find the limiting velocity of a solid sphere of radius a and density ρ falling freely in
a medium of density ρ ′ and coefficient of viscosity µ.
(b) In 1910 the American physicist R. A. Millikan (1868–1953) determined the charge
on an electron by studying the motion of tiny droplets of oil falling in an electric field. A
field of strength E exerts a force Ee on a droplet with charge e. Assume that E has been
adjusted so the droplet is held stationary (v = 0), and that w and B are as given above.
Find a formula for e. Millikan was able to identify e as the charge on an electron and to
determine that e = 4.803 × 10−10 esu.

� 28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where
v is measured in m/sec.
(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.
(b) If the mass is to attain a velocity of no more than 10 m/sec, find the maximum height
from which it can be dropped.
(c) Suppose that the resistive force is k|v|, where v is measured in m/sec and k is a
constant. If the mass is dropped from a height of 30 m and must hit the ground with a
velocity of no more than 10 m/sec, determine the coefficient of resistance k that is required.

3George Gabriel Stokes (1819–1903), professor at Cambridge, was one of the foremost applied mathematicians
of the nineteenth century. The basic equations of fluid mechanics (the Navier–Stokes equations) are named partly
in his honor, and one of the fundamental theorems of vector calculus bears his name. He was also one of the
pioneers in the use of divergent (asymptotic) series, a subject of great interest and importance today.
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29. Suppose that a rocket is launched straight up from the surface of the earth with initial
velocity v0 = √

2gR, where R is the radius of the earth. Neglect air resistance.
(a) Find an expression for the velocity v in terms of the distance x from the surface of the
earth.
(b) Find the time required for the rocket to go 240,000 miles (the approximate distance
from the earth to the moon). Assume that R = 4000 miles.

30. Find the escape velocity for a body projected upward with an initial velocity v0 from a
point x0 = ξ R above the surface of the earth, where R is the radius of the earth and ξ is
a constant. Neglect air resistance. Find the initial altitude from which the body must be
launched in order to reduce the escape velocity to 85% of its value at the earth’s surface.

� 31. Let v(t) and w(t) be the horizontal and vertical components of the velocity of a batted (or
thrown) baseball. In the absence of air resistance, v and w satisfy the equations

dv/dt = 0, dw/dt = −g.

(a) Show that

v = u cos A, w = −gt + u sin A,

where u is the initial speed of the ball and A is its initial angle of elevation.
(b) Let x(t) and y(t), respectively, be the horizontal and vertical coordinates of the ball at
time t . If x(0) = 0 and y(0) = h, find x(t) and y(t) at any time t .
(c) Let g = 32 ft/sec2, u = 125 ft/sec, and h = 3 ft. Plot the trajectory of the ball for
several values of the angle A, that is, plot x(t) and y(t) parametrically.
(d) Suppose the outfield wall is at a distance L and has height H . Find a relation between
u and A that must be satisfied if the ball is to clear the wall.
(e) Suppose that L = 350 ft and H = 10 ft. Using the relation in part (d), find (or estimate
from a plot) the range of values of A that correspond to an initial velocity of u = 110 ft/sec.
(f) For L = 350 and H = 10 find the minimum initial velocity u and the corresponding
optimal angle A for which the ball will clear the wall.

� 32. A more realistic model (than that in Problem 31) of a baseball in flight includes the effect
of air resistance. In this case the equations of motion are

dv/dt = −rv, dw/dt = −g − rw,

where r is the coefficient of resistance.
(a) Determine v(t) and w(t) in terms of initial speed u and initial angle of elevation A.
(b) Find x(t) and y(t) if x(0) = 0 and y(0) = h.
(c) Plot the trajectory of the ball for r = 1/5, u = 125, h = 3, and for several values of A.
How do the trajectories differ from those in Problem 31 with r = 0?
(d) Assuming that r = 1/5 and h = 3, find the minimum initial velocity u and the optimal
angle A for which the ball will clear a wall that is 350 ft distant and 10 ft high. Compare
this result with that in Problem 31(f).

33. Brachistochrone Problem. One of the famous problems in the history of mathematics
is the brachistochrone problem: to find the curve along which a particle will slide without
friction in the minimum time from one given point P to another Q, the second point being
lower than the first but not directly beneath it (see Figure 2.3.6). This problem was posed by
Johann Bernoulli in 1696 as a challenge problem to the mathematicians of his day. Correct
solutions were found by Johann Bernoulli and his brother Jakob Bernoulli, and by Isaac
Newton, Gottfried Leibniz, and Marquis de L’Hospital. The brachistochrone problem is
important in the development of mathematics as one of the forerunners of the calculus of
variations.

In solving this problem it is convenient to take the origin as the upper point P and to
orient the axes as shown in Figure 2.3.6. The lower point Q has coordinates (x0,y0). It is
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xP

y

Q(x0, y0)

FIGURE 2.3.6 The brachistochrone.

then possible to show that the curve of minimum time is given by a function y = φ(x) that
satisfies the differential equation

(1 + y′ 2)y = k2, (i)

where k2 is a certain positive constant to be determined later.
(a) Solve Eq. (i) for y′. Why is it necessary to choose the positive square root?
(b) Introduce the new variable t by the relation

y = k2 sin2 t. (ii)

Show that the equation found in part (a) then takes the form

2k2 sin2 t dt = dx . (iii)

(c) Letting θ = 2t , show that the solution of Eq. (iii) for which x = 0 when y = 0 is
given by

x = k2(θ − sin θ)/2, y = k2(1 − cos θ)/2. (iv)

Equations (iv) are parametric equations of the solution of Eq. (i) that passes through (0, 0).
The graph of Eqs. (iv) is called a cycloid.
(d) If we make a proper choice of the constant k, then the cycloid also passes through
the point (x0, y0) and is the solution of the brachistochrone problem. Find k if x0 = 1 and
y0 = 2.

2.4 Differences Between Linear and Nonlinear Equations

Up to now, we have been primarily concerned with showing that first order differential
equations can be used to investigate many different kinds of problems in the natural
sciences, and with presenting methods of solving such equations if they are either linear
or separable. Now it is time to turn our attention to some more general questions about
differential equations and to explore in more detail some important ways in which
nonlinear equations differ from linear ones.

Existence and Uniqueness of Solutions. So far, we have encountered a number of
initial value problems, each of which had a solution and apparently only one solution.
This raises the question of whether this is true of all initial value problems for first order
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equations. In other words, does every initial value problem have exactly one solution?
This may be an important question even for nonmathematicians. If you encounter an
initial value problem in the course of investigating some physical problem, you might
want to know that it has a solution before spending very much time and effort in
trying to find it. Further, if you are successful in finding one solution, you might be
interested in knowing whether you should continue a search for other possible solutions
or whether you can be sure that there are no other solutions. For linear equations the
answers to these questions are given by the following fundamental theorem.

Theorem 2.4.1 If the functions p and g are continuous on an open interval I :α < t < β containing the
point t = t0, then there exists a unique function y = φ(t) that satisfies the differential
equation

y′ + p(t)y = g(t) (1)

for each t in I , and that also satisfies the initial condition

y(t0) = y0, (2)

where y0 is an arbitrary prescribed initial value.

Observe that Theorem 2.4.1 states that the given initial value problem has a solution
and also that the problem has only one solution. In other words, the theorem asserts
both the existence and uniqueness of the solution of the initial value problem (1), (2).
In addition, it states that the solution exists throughout any interval I containing the
initial point t0 in which the coefficients p and g are continuous. That is, the solution
can be discontinuous or fail to exist only at points where at least one of p and g is
discontinuous. Such points can often be identified at a glance.

The proof of this theorem is partly contained in the discussion in Section 2.1 leading
to the formula [Eq. (35) in Section 2.1]

y =
∫
µ(s)g(s) ds + c

µ(t)
, (3)

where

µ(t) = exp
∫

p(s) ds. (4)

The derivation in Section 2.1 shows that if Eq. (1) has a solution, then it must be given
by Eq. (3). By looking slightly more closely at that derivation, we can also conclude
that the differential equation (1) must indeed have a solution. Since p is continuous for
α < t < β, it follows that µ is defined in this interval and is a nonzero differentiable
function. Upon multiplying Eq. (1) by µ(t) we obtain

[µ(t)y]′ = µ(t)g(t). (5)

Since both µ and g are continuous, the function µg is integrable, and Eq. (3) follows
from Eq. (5). Further, the integral of µg is differentiable, so y as given by Eq. (3) exists
and is differentiable throughout the interval α < t < β. By substituting the expression
for y in Eq. (3) into either Eq. (1) or Eq. (5), one can easily verify that this expression
satisfies the differential equation throughout the interval α < t < β. Finally, the initial
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condition (2) determines the constant c uniquely, so there is only one solution of the
initial value problem, thus completing the proof.

Equation (4) determines the integrating factor µ(t) only up to a multiplicative factor
that depends on the lower limit of integration. If we choose this lower limit to be t0,
then

µ(t) = exp
∫ t

t0

p(s) ds, (6)

and it follows thatµ(t0) = 1. Using the integrating factor given by Eq. (6) and choosing
the lower limit of integration in Eq. (3) also to be t0, we obtain the general solution of
Eq. (1) in the form

y =
∫ t

t0
µ(s)g(s) ds + c

µ(t)
.

To satisfy the initial condition (2) we must choose c = y0. Thus the solution of the
initial value problem (1), (2) is

y =
∫ t

t0
µ(s)g(s) ds + y0

µ(t)
, (7)

where µ(t) is given by Eq. (6).
Turning now to nonlinear differential equations, we must replace Theorem 2.4.1 by

a more general theorem, such as the following.

Theorem 2.4.2 Let the functions f and ∂ f/∂y be continuous in some rectangle α < t < β, γ < y < δ

containing the point (t0,y0). Then, in some interval t0 − h < t < t0 + h contained in
α < t < β, there is a unique solution y = φ(t) of the initial value problem

y′ = f (t, y), y(t0) = y0. (8)

Observe that the hypotheses in Theorem 2.4.2 reduce to those in Theorem 2.4.1 if the
differential equation is linear. For then f (t, y) = −p(t)y + g(t) and ∂ f (t, y)/∂y =
−p(t), so the continuity of f and ∂ f/∂y is equivalent to the continuity of p and g
in this case. The proof of Theorem 2.4.1 was comparatively simple because it could
be based on the expression (3) that gives the solution of an arbitrary linear equation.
There is no corresponding expression for the solution of the differential equation (8),
so the proof of Theorem 2.4.2 is much more difficult. It is discussed to some extent in
Section 2.8 and in greater depth in more advanced books on differential equations.

Here we note that the conditions stated in Theorem 2.4.2 are sufficient to guarantee
the existence of a unique solution of the initial value problem (8) in some interval
t0 − h < t < t0 + h, but they are not necessary. That is, the conclusion remains true
under slightly weaker hypotheses about the function f . In fact, the existence of a
solution (but not its uniqueness) can be established on the basis of the continuity of f
alone.

We now consider some examples.
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E X A M P L E

1

Use Theorem 2.4.1 to find an interval in which the initial value problem

t y′ + 2y = 4t2, (9)

y(1) = 2 (10)

has a unique solution.
Rewriting Eq. (9) in the standard form (1), we have

y′ + (2/t)y = 4t, (11)

so p(t) = 2/t and g(t) = 4t . Thus, for this equation, g is continuous for all t , while
p is continuous only for t < 0 or for t > 0. The interval t > 0 contains the initial
point; consequently, Theorem 2.4.1 guarantees that the problem (9), (10) has a unique
solution on the interval 0 < t < ∞. In Example 4 of Section 2.1 we found the solution
of this initial value problem to be

y = t2 + 1

t2 , t > 0. (12)

Now suppose that the initial condition (10) is changed to y(−1) = 2. Then Theorem
2.4.1 asserts the existence of a unique solution for t < 0. As you can readily verify, the
solution is again given by Eq. (12), but now on the interval −∞ < t < 0.

E X A M P L E

2

Apply Theorem 2.4.2 to the initial value problem

dy

dx
= 3x2 + 4x + 2

2(y − 1)
, y(0) = −1. (13)

Note that Theorem 2.4.1 is not applicable to this problem since the differential
equation is nonlinear. To apply Theorem 2.4.2, observe that

f (x, y) = 3x2 + 4x + 2

2(y − 1)
,

∂ f

∂y
(x, y) = −3x2 + 4x + 2

2(y − 1)2
.

Thus both these functions are continuous everywhere except on the line y = 1. Con-
sequently, a rectangle can be drawn about the initial point (0,−1) in which both f
and ∂ f/∂y are continuous. Therefore Theorem 2.4.2 guarantees that the initial value
problem has a unique solution in some interval about x = 0. However, even though the
rectangle can be stretched infinitely far in both the positive and negative x directions,
this does not necessarily mean that the solution exists for all x . Indeed, the initial value
problem (13) was solved in Example 2 of Section 2.2 and the solution exists only for
x > −2.

Now suppose we change the initial condition to y(0) = 1. The initial point now lies
on the line y = 1 so no rectangle can be drawn about it within which f and ∂ f/∂y are
continuous. Consequently, Theorem 2.4.2 says nothing about possible solutions of this
modified problem. However, if we separate the variables and integrate, as in Section
2.2, we find that

y2 − 2y = x3 + 2x2 + 2x + c.

Further, if x = 0 and y = 1, then c = −1. Finally, by solving for y, we obtain

y = 1 ±
√

x3 + 2x2 + 2x . (14)
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Equation (14) provides two functions that satisfy the given differential equation for
x > 0 and also satisfy the initial condition y(0) = 1.

E X A M P L E

3

Consider the initial value problem

y′ = y1/3, y(0) = 0 (15)

for t ≥ 0. Apply Theorem 2.4.2 to this initial value problem, and then solve the problem.
The function f (t, y) = y1/3 is continuous everywhere, but ∂ f/∂y = y−2/3/3 is not

continuous when y = 0. Thus Theorem 2.4.2 does not apply to this problem and no
conclusion can be drawn from it. However, by the remark following Theorem 2.4.2 the
continuity of f does assure the existence of solutions, but not their uniqueness.

To understand the situation more clearly, we must actually solve the problem, which
is easy to do since the differential equation is separable. Thus we have

y−1/3dy = dt,

so

3
2 y2/3 = t + c

and

y = [
2
3(t + c)

]3/2
.

The initial condition is satisfied if c = 0, so

y = φ1(t) = (
2
3 t
)3/2

, t ≥ 0 (16)

satisfies both of Eqs. (15). On the other hand, the function

y = φ2(t) = − ( 2
3 t
)3/2

, t ≥ 0 (17)

is also a solution of the initial value problem. Moreover, the function

y = ψ(t) = 0, t ≥ 0 (18)

is yet another solution. Indeed, it is not hard to show that, for an arbitrary positive t0,
the functions

y = χ(t) =
{

0, if 0 ≤ t < t0,

± [ 2
3 (t − t0)

]3/2
, if t ≥ t0

(19)

are continuous, differentiable (in particular at t = t0), and are solutions of the ini-
tial value problem (15). Hence this problem has an infinite family of solutions; see
Figure 2.4.1, where a few of these solutions are shown.

As already noted, the nonuniqueness of the solutions of the problem (15) does not
contradict the existence and uniqueness theorem, since the theorem is not applicable
if the initial point lies on the t-axis. If (t0, y0) is any point not on the t-axis, however,
then the theorem guarantees that there is a unique solution of the differential equation
y′ = y1/3 passing through (t0, y0).
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FIGURE 2.4.1 Several solutions of the initial value problem y′ = y1/3, y(0) = 0.

Interval of Definition. According to Theorem 2.4.1, the solution of a linear equa-
tion (1),

y′ + p(t)y = g(t),

subject to the initial condition y(t0) = y0, exists throughout any interval about t = t0
in which the functions p and g are continuous. Thus, vertical asymptotes or other
discontinuities in the solution can occur only at points of discontinuity of p or g. For
instance, the solutions in Example 1 (with one exception) are asymptotic to the y-axis,
corresponding to the discontinuity at t = 0 in the coefficient p(t) = 2/t , but none of
the solutions has any other point where it fails to exist and to be differentiable. The
one exceptional solution shows that solutions may sometimes remain continuous even
at points of discontinuity of the coefficients.

On the other hand, for a nonlinear initial value problem satisfying the hypotheses of
Theorem 2.4.2, the interval in which a solution exists may be difficult to determine.
The solution y = φ(t) is certain to exist as long as the point [t, φ(t)] remains within a
region in which the hypotheses of Theorem 2.4.2 are satisfied. This is what determines
the value of h in that theorem. However, since φ(t) is usually not known, it may be
impossible to locate the point [t, φ(t)] with respect to this region. In any case, the
interval in which a solution exists may have no simple relationship to the function f
in the differential equation y′ = f (t, y). This is illustrated by the following example.

E X A M P L E

4

Solve the initial value problem

y′ = y2, y(0) = 1, (20)

and determine the interval in which the solution exists.
Theorem 2.4.2 guarantees that this problem has a unique solution since f (t, y) = y2

and ∂ f/∂y = 2y are continuous everywhere. To find the solution we separate the
variables and integrate with the result that

y−2 dy = dt (21)
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and

−y−1 = t + c.

Then, solving for y, we have

y = − 1

t + c
. (22)

To satisfy the initial condition we must choose c = −1, so

y = 1

1 − t
(23)

is the solution of the given initial value problem. Clearly, the solution becomes un-
bounded as t → 1; therefore, the solution exists only in the interval −∞ < t < 1.
There is no indication from the differential equation itself, however, that the point
t = 1 is in any way remarkable. Moreover, if the initial condition is replaced by

y(0) = y0, (24)

then the constant c in Eq. (22) must be chosen to be c = −1/y0, and it follows that

y = y0

1 − y0t
(25)

is the solution of the initial value problem with the initial condition (24). Observe that
the solution (25) becomes unbounded as t → 1/y0, so the interval of existence of the
solution is −∞ < t < 1/y0 if y0 > 0, and is 1/y0 < t < ∞ if y0 < 0. This example
illustrates another feature of initial value problems for nonlinear equations; namely, the
singularities of the solution may depend in an essential way on the initial conditions as
well as on the differential equation.

General Solution. Another way in which linear and nonlinear equations differ is in
connection with the concept of a general solution. For a first order linear equation it is
possible to obtain a solution containing one arbitrary constant, from which all possible
solutions follow by specifying values for this constant. For nonlinear equations this
may not be the case; even though a solution containing an arbitrary constant may
be found, there may be other solutions that cannot be obtained by giving values to
this constant. For instance, for the differential equation y′ = y2 in Example 4, the
expression in Eq. (22) contains an arbitrary constant, but does not include all solutions
of the differential equation. To show this, observe that the function y = 0 for all t is
certainly a solution of the differential equation, but it cannot be obtained from Eq. (22)
by assigning a value to c. In this example we might anticipate that something of this
sort might happen because to rewrite the original differential equation in the form (21),
we must require that y is not zero. However, the existence of “additional” solutions is
not uncommon for nonlinear equations; a less obvious example is given in Problem 22.
Thus we will use the term “general solution” only when discussing linear equations.

Implicit Solutions. Recall again that, for an initial value problem for a first order
linear equation, Eq. (7) provides an explicit formula for the solution y = φ(t). As long
as the necessary antiderivatives can be found, the value of the solution at any point can
be determined merely by substituting the appropriate value of t into the equation. The
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situation for nonlinear equations is much less satisfactory. Usually, the best that we can
hope for is to find an equation

F(t, y) = 0 (26)

involving t and y that is satisfied by the solution y = φ(t). Even this can be done
only for differential equations of certain particular types, of which separable equations
are the most important. The equation (26) is called an integral, or first integral, of the
differential equation, and (as we have already noted) its graph is an integral curve, or
perhaps a family of integral curves. Equation (26), assuming it can be found, defines
the solution implicitly; that is, for each value of t we must solve Eq. (26) to find the
corresponding value of y. If Eq. (26) is simple enough, it may be possible to solve
it for y by analytical means and thereby obtain an explicit formula for the solution.
However, more frequently this will not be possible, and you will have to resort to a
numerical calculation to determine the value of y for a given value of t . Once several
pairs of values of t and y have been calculated, it is often helpful to plot them and
then to sketch the integral curve that passes through them. You should arrange for a
computer to do this for you, if possible.

Examples 2, 3, and 4 are nonlinear problems in which it is easy to solve for
an explicit formula for the solution y = φ(t). On the other hand, Examples 1 and
3 in Section 2.2 are cases in which it is better to leave the solution in implicit
form, and to use numerical means to evaluate it for particular values of the inde-
pendent variable. The latter situation is more typical; unless the implicit relation is
quadratic in y, or has some other particularly simple form, it is unlikely that it can
be solved exactly by analytical methods. Indeed, more often than not, it is impos-
sible even to find an implicit expression for the solution of a first order nonlinear
equation.

Graphical or Numerical Construction of Integral Curves. Because of the difficulty
in obtaining exact analytic solutions of nonlinear differential equations, methods that
yield approximate solutions or other qualitative information about solutions are of
correspondingly greater importance. We have already described in Section 1.1 how
the direction field of a differential equation can be constructed. The direction field
can often show the qualitative form of solutions and can also be helpful in identi-
fying regions of the t y-plane where solutions exhibit interesting features that merit
more detailed analytical or numerical investigation. Graphical methods for first order
equations are discussed further in Section 2.5. An introduction to numerical meth-
ods for first order equations is given in Section 2.7 and a systematic discussion of
numerical methods appears in Chapter 8. However, it is not necessary to study the
numerical algorithms themselves in order to use effectively one of the many software
packages that generate and plot numerical approximations to solutions of initial value
problems.

Summary. Linear equations have several nice properties that can be summarized in
the following statements:

1. Assuming that the coefficients are continuous, there is a general solution, contain-
ing an arbitrary constant, that includes all solutions of the differential equation.
A particular solution that satisfies a given initial condition can be picked out by
choosing the proper value for the arbitrary constant.
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2. There is an expression for the solution, namely, Eq. (3) or Eq. (7). Moreover,
although it involves two integrations, the expression is an explicit one for the
solution y = φ(t) rather than an equation that defines φ implicitly.

3. The possible points of discontinuity, or singularities, of the solution can be identi-
fied (without solving the problem) merely by finding the points of discontinuity of
the coefficients. Thus, if the coefficients are continuous for all t , then the solution
also exists and is continuous for all t .

None of these statements is true, in general, of nonlinear equations. While a nonlinear
equation may well have a solution involving an arbitrary constant, there may also
be other solutions. There is no general formula for solutions of nonlinear equations.
If you are able to integrate a nonlinear equation, you are likely to obtain an equation
defining solutions implicitly rather than explicitly. Finally, the singularities of solutions
of nonlinear equations can usually be found only by solving the equation and examining
the solution. It is likely that the singularities will depend on the initial condition as well
as the differential equation.

PROBLEMS In each of Problems 1 through 6 determine (without solving the problem) an interval in which
the solution of the given initial value problem is certain to exist.

1. (t − 3)y′ + (ln t)y = 2t, y(1) = 2
2. t (t − 4)y′′ + (t − 2)y′ + y = 0, y(2) = 1
3. y′ + (tan t)y = sin t, y(π) = 0
4. (4 − t2)y′ + 2t y = 3t2, y(−3) = 1
5. (4 − t2)y′ + 2t y = 3t2, y(1) = −3
6. (ln t)y′ + y = cot t, y(2) = 3

In each of Problems 7 through 12 state the region in the t y-plane where the hypotheses of
Theorem 2.4.2 are satisfied. Thus there is a unique solution through each given initial point in
this region.

7. y′ = t − y

2t + 5y
8. y′ = (1 − t2 − y2)1/2

9. y′ = ln |t y|
1 − t2 + y2 10. y′ = (t2 + y2)3/2

11.
dy

dt
= 1 + t2

3y − y2 12.
dy

dt
= (cot t)y

1 + y

In each of Problems 13 through 16 solve the given initial value problem and determine how the
interval in which the solution exists depends on the initial value y0.

13. y′ = −4t/y, y(0) = y0 14. y′ = 2t y2, y(0) = y0

15. y′ + y3 = 0, y(0) = y0 16. y′ = t2/y(1 + t3), y(0) = y0

In each of Problems 17 through 20 draw a direction field and plot (or sketch) several solutions
of the given differential equation. Describe how solutions appear to behave as t increases, and
how their behavior depends on the initial value y0 when t = 0.

� 17. y′ = t y(3 − y) � 18. y′ = y(3 − t y)

� 19. y′ = −y(3 − t y) � 20. y′ = t − 1 − y2

21. Consider the initial value problem y′ = y1/3, y(0) = 0 from Example 3 in the text.
(a) Is there a solution that passes through the point (1, 1)? If so, find it.
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(b) Is there a solution that passes through the point (2, 1)? If so, find it.
(c) Consider all possible solutions of the given initial value problem. Determine the set of
values that these solutions have at t = 2.

22. (a) Verify that both y1(t) = 1 − t and y2(t) = −t2/4 are solutions of the initial value
problem

y′ = −t + (t2 + 4y)1/2

2
, y(2) = −1.

Where are these solutions valid?
(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2.
(c) Show that y = ct + c2, where c is an arbitrary constant, satisfies the differential
equation in part (a) for t ≥ −2c. If c = −1, the initial condition is also satisfied, and the
solution y = y1(t) is obtained. Show that there is no choice of c that gives the second
solution y = y2(t).

23. (a) Show that φ(t) = e2t is a solution of y′ − 2y = 0 and that y = cφ(t) is also a solution
of this equation for any value of the constant c.
(b) Show that φ(t) = 1/t is a solution of y′ + y2 = 0 for t > 0, but that y = cφ(t) is
not a solution of this equation unless c = 0 or c = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) is linear.

24. Show that if y = φ(t) is a solution of y′ + p(t)y = 0, then y = cφ(t) is also a solution for
any value of the constant c.

25. Let y = y1(t) be a solution of

y′ + p(t)y = 0, (i)

and let y = y2(t) be a solution of

y′ + p(t)y = g(t). (ii)

Show that y = y1(t)+ y2(t) is also a solution of Eq. (ii).
26. (a) Show that the solution (3) of the general linear equation (1) can be written in the form

y = cy1(t)+ y2(t), (i)

where c is an arbitrary constant. Identify the functions y1 and y2.
(b) Show that y1 is a solution of the differential equation

y′ + p(t)y = 0, (ii)

corresponding to g(t) = 0.
(c) Show that y2 is a solution of the full linear equation (1). We see later (for example, in
Section 3.6) that solutions of higher order linear equations have a pattern similar to Eq. (i).

Bernoulli Equations. Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important such
equation has the form

y′ + p(t)y = q(t)yn,

and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27. (a) Solve Bernoulli’s equation when n = 0; when n = 1.
(b) Show that if n �= 0, 1, then the substitution v = y1−n reduces Bernoulli’s equation to
a linear equation. This method of solution was found by Leibniz in 1696.
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In each of Problems 28 through 31 the given equation is a Bernoulli equation. In each case solve
it by using the substitution mentioned in Problem 27(b).

28. t2 y′ + 2t y − y3 = 0, t > 0
29. y′ = r y − ky2, r > 0 and k > 0. This equation is important in population dynamics and

is discussed in detail in Section 2.5.
30. y′ = εy − σ y3, ε > 0 and σ > 0. This equation occurs in the study of the stability of fluid

flow.
31. dy/dt = (� cos t + T )y − y3, where � and T are constants. This equation also occurs in

the study of the stability of fluid flow.

Discontinuous Coefficients. Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If t0 is such a point of discontinuity,
then it is necessary to solve the equation separately for t < t0 and t > t0. Afterward, the two
solutions are matched so that y is continuous at t0; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y′ continuous at t0.

32. Solve the initial value problem

y′ + 2y = g(t), y(0) = 0,

where

g(t) =
{

1, 0 ≤ t ≤ 1,
0, t > 1.

33. Solve the initial value problem

y′ + p(t)y = 0, y(0) = 1,

where

p(t) =
{

2, 0 ≤ t ≤ 1,
1, t > 1.

2.5 Autonomous Equations and Population Dynamics

An important class of first order equations are those in which the independent variable
does not appear explicitly. Such equations are called autonomous and have the form

dy/dt = f (y). (1)

We will discuss these equations in the context of the growth or decline of the population
of a given species, an important issue in fields ranging from medicine to ecology to
global economics. A number of other applications are mentioned in some of the
problems. Recall that in Sections 1.1 and 1.2 we have already considered the special
case of Eq. (1) in which f (y) = ay + b.

Equation (1) is separable, so the discussion in Section 2.2 is applicable to it, but
our main object now is to show how geometric methods can be used to obtain im-
portant qualitative information directly from the differential equation, without solving
the equation. Of fundamental importance in this effort are the concepts of stability
and instability of solutions of differential equations. These ideas were introduced in
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Chapter 1, are discussed further here, and will be examined in greater depth and in a
more general setting in Chapter 9.

Exponential Growth. Let y = φ(t) be the population of the given species at time t .
The simplest hypothesis concerning the variation of population is that the rate of change
of y is proportional4 to the current value of y, that is,

dy/dt = ry, (2)

where the constant of proportionality r is called the rate of growth or decline, depend-
ing on whether it is positive or negative. Here, we assume that r > 0, so the population
is growing.

Solving Eq. (2) subject to the initial condition

y(0) = y0, (3)

we obtain

y = y0ert . (4)

Thus the mathematical model consisting of the initial value problem (2), (3) with
r > 0 predicts that the population will grow exponentially for all time, as shown in
Figure 2.5.1. Under ideal conditions Eq. (4) has been observed to be reasonably accurate
for many populations, at least for limited periods of time. However, it is clear that such
ideal conditions cannot continue indefinitely; eventually, limitations on space, food
supply, or other resources will reduce the growth rate and bring an end to uninhibited
exponential growth.

y

t

FIGURE 2.5.1 Exponential growth: y versus t for dy/dt = r y.

Logistic Growth. To take account of the fact that the growth rate actually depends
on the population, we replace the constant r in Eq. (2) by a function h(y) and thereby
obtain the modified equation

dy/dt = h(y)y. (5)

4It was apparently the British economist Thomas Malthus (1766–1834) who first observed that many biological
populations increase at a rate proportional to the population. His first paper on populations appeared in 1798.
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We now want to choose h(y) so that h(y) ∼= r > 0 when y is small, h(y) decreases
as y grows larger, and h(y) < 0 when y is sufficiently large. The simplest function
having these properties is h(y) = r − ay, where a is also a positive constant. Using
this function in Eq. (5), we obtain

dy/dt = (r − ay)y. (6)

Equation (6) is known as the Verhulst5 equation or the logistic equation. It is often
convenient to write the logistic equation in the equivalent form

dy

dt
= r

(
1 − y

K

)
y, (7)

where K = r/a. The constant r is called the intrinsic growth rate, that is, the growth
rate in the absence of any limiting factors. The interpretation of K will become clear
shortly.

We first seek solutions of Eq. (7) of the simplest possible type, that is, constant
functions. For such a solution dy/dt = 0 for all t , so any constant solution of Eq. (7)
must satisfy the algebraic equation

r(1 − y/K )y = 0.

Thus the constant solutions are y = φ1(t) = 0 and y = φ2(t) = K . These solutions
are called equilibrium solutions of Eq. (7) because they correspond to no change or
variation in the value of y as t increases. In the same way, any equilibrium solutions of
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FIGURE 2.5.2 Direction field for dy/dt = r(1 − y/K )y with r = 1/2 and K = 3.

5P. F. Verhulst (1804–1849) was a Belgian mathematician who introduced Eq. (6) as a model for human population
growth in 1838. He referred to it as logistic growth; hence Eq. (6) is often called the logistic equation. He was
unable to test the accuracy of his model because of inadequate census data, and it did not receive much attention
until many years later. Reasonable agreement with experimental data was demonstrated by R. Pearl (1930) for
Drosophila melanogaster (fruit fly) populations, and by G. F. Gause (1935) for Paramecium and Tribolium (flour
beetle) populations.
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the more general Eq. (1) can be found by locating the roots of f (y) = 0. The zeros of
f (y) are also called critical points.

To visualize other solutions of Eq. (7), let us draw a direction field for a typical
case, as shown in Figure 2.5.2 when r = 1/2 and K = 3. Observe that the elements of
the direction field have the same slope at all points on each particular horizontal line
although the slope changes from one line to another. This property follows from the fact
that the right side of the logistic equation does not depend on the independent variable t .
Observe also that the equilibrium solutions y = 0 and y = 3 seem to be of particular
importance. Other solutions appear to approach the solution y = 3 asymptotically as
t → ∞, whereas solutions on either side of y = 0 diverge from it.

To understand more clearly the nature of the solutions of Eq. (7) and to sketch their
graphs quickly, we can start by drawing the graph of f (y) versus y. In the case of
Eq. (7), f (y) = r(1 − y/K )y, so the graph is the parabola shown in Figure 2.5.3. The
intercepts are (0, 0) and (K , 0), corresponding to the critical points of Eq. (7), and
the vertex of the parabola is (K/2, r K/4). Observe that dy/dt > 0 for 0 < y < K ;
therefore, y is an increasing function of t when y is in this interval; this is indicated by
the rightward-pointing arrows near the y-axis in Figure 2.5.3, or by the upward-pointing
arrows in Figure 2.5.4. Similarly, if y > K , then dy/dt < 0; hence y is decreasing, as
indicated by the leftward-pointing arrow in Figure 2.5.3, or by the downward-pointing

rK /4

f (y)

K/2

(K/2, rK /4)

K y

FIGURE 2.5.3 f (y) versus y for dy/dt = r(1 − y/K )y.

y

t

K/2

K

   2(t) = Kφ

  1(t) = 0φ

FIGURE 2.5.4 Logistic growth: y versus t for dy/dt = r(1 − y/K )y.
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arrow in Figure 2.5.4. Further, note that if y is near zero or K , then the slope f (y)
is near zero, so the solution curves are relatively flat. They become steeper as the
value of y leaves the neighborhood of zero or K . These observations mean that the
graphs of solutions of Eq. (7) must have the general shape shown in Figure 2.5.4,
regardless of the values of r and K .

To carry the investigation one step further, we can determine the concavity of the
solution curves and the location of inflection points by finding d2 y/dt2. From the
differential equation (1) we obtain (using the chain rule)

d2 y

dt2 = f ′(y)
dy

dt
= f ′(y) f (y). (8)

The graph of y versus t is concave up when y′′ > 0, that is, when f and f ′ have the
same sign. Similarly, it is concave down when y′′ < 0, which occurs when f and f ′

have opposite signs. The signs of f and f ′ can be easily identified from the graph of
f (y) versus y. Inflection points may occur when f ′(y) = 0.

In the case of Eq. (7) solutions are concave up for 0 < y < K/2 where f is positive
and increasing (see Figure 2.5.3), so that both f and f ′ are positive. Solutions are
also concave up for y > K where f is negative and decreasing (both f and f ′ are
negative). For K/2 < y < K solutions are concave down since here f is positive and
decreasing, so f is positive but f ′ is negative. There is an inflection point whenever
the graph of y versus t crosses the line y = K/2. The graphs in Figure 2.5.4 exhibit
these properties.

Finally, recall that Theorem 2.4.2, the fundamental existence and uniqueness theo-
rem, guarantees that two different solutions never pass through the same point. Hence,
while solutions approach the equilibrium solution y = K as t → ∞, they do not attain
this value at any finite time. Since K is the upper bound that is approached, but not
exceeded, by growing populations starting below this value, it is natural to refer to
K as the saturation level, or the environmental carrying capacity, for the given
species.

A comparison of Figures 2.5.1 and 2.5.4 reveals that solutions of the nonlinear
equation (6) are strikingly different from those of the linear equation (1), at least for
large values of t . Regardless of the value of K , that is, no matter how small the nonlinear
term in Eq. (6), solutions of that equation approach a finite value as t → ∞, whereas
solutions of Eq. (1) grow (exponentially) without bound as t → ∞. Thus even a tiny
nonlinear term in the differential equation has a decisive effect on the solution for
large t .

In many situations it is sufficient to have the qualitative information about the solution
y = φ(t) of Eq. (7) that is shown in Figure 2.5.4. This information was obtained
entirely from the graph of f (y) versus y, and without solving the differential equation
(7). However, if we wish to have a more detailed description of logistic growth—for
example, if we wish to know the value of the population at some particular time—then
we must solve Eq. (7) subject to the initial condition (3). Provided that y �= 0 and
y �= K , we can write Eq. (7) in the form

dy

(1 − y/K )y
= r dt.
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Using a partial fraction expansion on the left side, we have

(
1

y
+ 1/K

1 − y/K

)
dy = r dt.

Then by integrating both sides we obtain

ln |y| − ln
∣∣∣1 − y

K

∣∣∣ = r t + c, (9)

where c is an arbitrary constant of integration to be determined from the initial condition
y(0) = y0. We have already noted that if 0 < y0 < K , then y remains in this interval
for all time. Thus in this case we can remove the absolute value bars in Eq. (9), and by
taking the exponential of both sides, we find that

y

1 − (y/K )
= Cert , (10)

where C = ec. To satisfy the initial condition y(0) = y0 we must choose C = y0/[1 −
(y0/K )]. Using this value for C in Eq. (10) and solving for y, we obtain

y = y0 K

y0 + (K − y0)e
−r t . (11)

We have derived the solution (11) under the assumption that 0 < y0 < K . If y0 > K ,
then the details of dealing with Eq. (9) are only slightly different, and we leave it to
you to show that Eq. (11) is also valid in this case. Finally, note that Eq. (11) also
contains the equilibrium solutions y = φ1(t) = 0 and y = φ2(t) = K corresponding
to the initial conditions y0 = 0 and y0 = K , respectively.

All the qualitative conclusions that we reached earlier by geometric reasoning can
be confirmed by examining the solution (11). In particular, if y0 = 0, then Eq. (11)
requires that y(t) = 0 for all t . If y0 > 0, and if we let t → ∞ in Eq. (11), then we
obtain

lim
t→∞ y(t) = y0 K/y0 = K .

Thus for each y0 > 0 the solution approaches the equilibrium solution y = φ2(t) = K
asymptotically (in fact, exponentially) as t → ∞. Therefore we say that the constant
solution φ2(t) = K is an asymptotically stable solution of Eq. (7), or that the point
y = K is an asymptotically stable equilibrium or critical point. This means that after
a long time the population is close to the saturation level K regardless of the initial
population size, as long as it is positive.

On the other hand, the situation for the equilibrium solution y = φ1(t) = 0 is quite
different. Even solutions that start very near zero grow as t increases and, as we
have seen, approach K as t → ∞. We say that φ1(t) = 0 is an unstable equilibrium
solution or that y = 0 is an unstable equilibrium or critical point. This means that the
only way to guarantee that the solution remains near zero is to make sure its initial
value is exactly equal to zero.
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E X A M P L E

1

The logistic model has been applied to the natural growth of the halibut population in
certain areas of the Pacific Ocean.6 Let y, measured in kilograms, be the total mass,
or biomass, of the halibut population at time t . The parameters in the logistic equation
are estimated to have the values r = 0.71/year and K = 80.5 × 106 kg. If the initial
biomass is y0 = 0.25K , find the biomass 2 years later. Also find the time τ for which
y(τ ) = 0.75K .

It is convenient to scale the solution (11) to the carrying capacity K ; thus we write
Eq. (11) in the form

y

K
= y0/K

(y0/K )+ [1 − (y0/K )]e−r t . (12)

Using the data given in the problem, we find that

y(2)

K
= 0.25

0.25 + 0.75e−1.42
∼= 0.5797.

Consequently, y(2) ∼= 46.7 × 106 kg.
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2 31

τ 
4 5 6 t

y /K

≅ 3.095

FIGURE 2.5.5 y/K versus t for population model of halibut in the Pacific Ocean.

To find τ we can first solve Eq. (12) for t . We obtain

e−r t = (y0/K )[1 − (y/K )]

(y/K )[1 − (y0/K )]
;

hence

t = −1

r
ln
(y0/K )[1 − (y/K )]

(y/K )[1 − (y0/K )]
. (13)

Using the given values of r and y0/K and setting y/K = 0.75, we find that

τ = − 1

0.71
ln
(0.25)(0.25)

(0.75)(0.75)
= 1

0.71
ln 9 ∼= 3.095 years.

6A good source of information on the population dynamics and economics involved in making efficient use of a
renewable resource, with particular emphasis on fisheries, is the book by Clark (see the references at the end of
this chapter). The parameter values used here are given on page 53 of this book and were obtained as a result of a
study by M. S. Mohring.
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The graphs of y/K versus t for the given parameter values and for several initial
conditions are shown in Figure 2.5.5.

A Critical Threshold. We now turn to a consideration of the equation

dy

dt
= −r

(
1 − y

T

)
y, (14)

where r and T are given positive constants. Observe that (except for replacing the
parameter K by T ) this equation differs from the logistic equation (7) only in the
presence of the minus sign on the right side. However, as we will see, the solutions of
Eq. (14) behave very differently from those of Eq. (7).

For Eq. (14) the graph of f (y) versus y is the parabola shown in Figure 2.5.6.
The intercepts on the y-axis are the critical points y = 0 and y = T , corresponding
to the equilibrium solutions φ1(t) = 0 and φ2(t) = T . If 0 < y < T , then dy/dt < 0,
and y decreases as t increases. On the other hand, if y > T , then dy/dt > 0, and y
grows as t increases. Thus φ1(t) = 0 is an asymptotically stable equilibrium solution
and φ2(t) = T is an unstable one. Further, f ′(y) is negative for 0 < y < T/2 and
positive for T/2 < y < T , so the graph of y versus t is concave up and concave down,
respectively, in these intervals. Also, f ′(y) is positive for y > T , so the graph of y
versus t is also concave up there. By making use of all of the information that we
have obtained from Figure 2.5.6, we conclude that graphs of solutions of Eq. (14) for
different values of y0 must have the qualitative appearance shown in Figure 2.5.7. From
this figure it is clear that as time increases, y either approaches zero or grows without
bound, depending on whether the initial value y0 is less than or greater than T . Thus T
is a threshold level, below which growth does not occur.

We can confirm the conclusions that we have reached through geometric reasoning
by solving the differential equation (14). This can be done by separating the variables
and integrating, just as we did for Eq. (7). However, if we note that Eq. (14) can be
obtained from Eq. (7) by replacing K by T and r by −r , then we can make the same
substitutions in the solution (11) and thereby obtain

y = y0T

y0 + (T − y0)e
rt , (15)

which is the solution of Eq. (14) subject to the initial condition y(0) = y0.

f ( y)

–rT /4
(T/2, –rT /4)

T /2 T y

FIGURE 2.5.6 f (y) versus y for dy/dt = −r(1 − y/T )y.
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FIGURE 2.5.7 y versus t for dy/dt = −r(1 − y/T )y.

If y0 < T , then it follows from Eq. (15) that y → 0 as t → ∞. This agrees with
our qualitative geometric analysis. If y0 > T , then the denominator on the right side of
Eq. (15) is zero for a certain finite value of t . We denote this value by t∗, and calculate
it from

y0 − (y0 − T )ert∗ = 0,

which gives

t∗ = 1

r
ln

y0

y0 − T
. (16)

Thus, if the initial population y0 is above the threshold T , the threshold model predicts
that the graph of y versus t has a vertical asymptote at t = t∗; in other words, the
population becomes unbounded in a finite time, which depends on the initial value
y0 and the threshold value T . The existence and location of this asymptote were
not apparent from the geometric analysis, so in this case the explicit solution yields
additional important qualitative, as well as quantitative, information.

The populations of some species exhibit the threshold phenomenon. If too few are
present, the species cannot propagate itself successfully and the population becomes
extinct. However, if a population larger than the threshold level can be brought together,
then further growth occurs. Of course, the population cannot become unbounded, so
eventually Eq. (14) must be modified to take this into account.

Critical thresholds also occur in other circumstances. For example, in fluid mechan-
ics, equations of the form (7) or (14) often govern the evolution of a small disturbance
y in a laminar (or smooth) fluid flow. For instance, if Eq. (14) holds and y < T , then
the disturbance is damped out and the laminar flow persists. However, if y > T , then
the disturbance grows larger and the laminar flow breaks up into a turbulent one. In
this case T is referred to as the critical amplitude. Experimenters speak of keeping the
disturbance level in a wind tunnel sufficiently low so that they can study laminar flow
over an airfoil, for example.

The same type of situation can occur with automatic control devices. For example,
suppose that y corresponds to the position of a flap on an airplane wing that is regulated
by an automatic control. The desired position is y = 0. In the normal motion of the
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plane the changing aerodynamic forces on the flap will cause it to move from its set
position, but then the automatic control will come into action to damp out the small
deviation and return the flap to its desired position. However, if the airplane is caught in
a high gust of wind, the flap may be deflected so much that the automatic control cannot
bring it back to the set position (this would correspond to a deviation greater than T ).
Presumably, the pilot would then take control and manually override the automatic
system!

Logistic Growth with a Threshold. As we mentioned in the last subsection, the
threshold model (14) may need to be modified so that unbounded growth does not
occur when y is above the threshold T . The simplest way to do this is to introduce
another factor that will have the effect of making dy/dt negative when y is large. Thus
we consider

dy

dt
= −r

(
1 − y

T

) (
1 − y

K

)
y, (17)

where r > 0 and 0 < T < K .
The graph of f (y) versus y is shown in Figure 2.5.8. In this problem there are three

critical points: y = 0, y = T , and y = K , corresponding to the equilibrium solutions
φ1(t) = 0, φ2(t) = T , and φ3(t) = K , respectively. From Figure 2.5.8 it is clear that
dy/dt > 0 for T < y < K , and consequently y is increasing there. The reverse is true
for y < T and for y > K . Consequently, the equilibrium solutions φ1(t) and φ3(t) are
asymptotically stable, and the solution φ2(t) is unstable. Graphs of y versus t have
the qualitative appearance shown in Figure 2.5.9. If y starts below the threshold T ,
then y declines to ultimate extinction. On the other hand, if y starts above T , then y
eventually approaches the carrying capacity K . The inflection points on the graphs of
y versus t in Figure 2.5.9 correspond to the maximum and minimum points, y1 and
y2, respectively, on the graph of f (y) versus y in Figure 2.5.8. These values can be
obtained by differentiating the right side of Eq. (17) with respect to y, setting the result
equal to zero, and solving for y. We obtain

y1,2 = (K + T ±
√

K 2 − K T + T 2)/3, (18)

where the plus sign yields y1 and the minus sign y2.
A model of this general sort apparently describes the population of the passenger

pigeon,7 which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently its

y2 y1

f ( y)

yKT

FIGURE 2.5.8 f (y) versus y for dy/dt = −r(1 − y/T )(1 − y/K )y.

7See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143–145.
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FIGURE 2.5.9 y versus t for dy/dt = −r(1 − y/T )(1 − y/K )y.

numbers were drastically reduced by the 1880s. Unfortunately, the passenger pigeon
could apparently breed successfully only when present in a large concentration, cor-
responding to a relatively high threshold T . Although a reasonably large number of
individual birds remained alive in the late 1880s, there were not enough in any one place
to permit successful breeding, and the population rapidly declined to extinction. The
last survivor died in 1914. The precipitous decline in the passenger pigeon population
from huge numbers to extinction in scarcely more than three decades was one of the
early factors contributing to a concern for conservation in this country.

PROBLEMS Problems 1 through 6 involve equations of the form dy/dt = f (y). In each problem sketch the
graph of f (y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable.

1. dy/dt = ay + by2, a > 0, b > 0, y0 ≥ 0
2. dy/dt = ay + by2, a > 0, b > 0, −∞ < y0 < ∞
3. dy/dt = y(y − 1)(y − 2), y0 ≥ 0
4. dy/dt = ey − 1, −∞ < y0 < ∞
5. dy/dt = e−y − 1, −∞ < y0 < ∞
6. dy/dt = −2(arctan y)/(1 + y2), −∞ < y0 < ∞
7. Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the

property that solutions lying on one side of the equilibrium solution tend to approach it,
whereas solutions lying on the other side depart from it (see Figure 2.5.10). In this case the
equilibrium solution is said to be semistable.
(a) Consider the equation

dy/dt = k(1 − y)2, (i)

where k is a positive constant. Show that y = 1 is the only critical point, with the corre-
sponding equilibrium solution φ(t) = 1.
(b) Sketch f (y) versus y. Show that y is increasing as a function of t for y < 1 and also
for y > 1. Thus solutions below the equilibrium solution approach it, while those above it
grow farther away. Therefore φ(t) = 1 is semistable.
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FIGURE 2.5.10 In both cases the equilibrium solution φ(t) = k is semistable. (a) dy/dt ≤ 0;
(b) dy/dt ≥ 0.

(c) Solve Eq. (i) subject to the initial condition y(0) = y0 and confirm the conclusions
reached in part (b).

Problems 8 through 13 involve equations of the form dy/dt = f (y). In each problem sketch
the graph of f (y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable, unstable, or semistable (see Problem 7).

8. dy/dt = −k(y − 1)2, k > 0, −∞ < y0 < ∞
9. dy/dt = y2(y2 − 1), −∞ < y0 < ∞

10. dy/dt = y(1 − y2), −∞ < y0 < ∞
11. dy/dt = ay − b

√
y, a > 0, b > 0, y0 ≥ 0

12. dy/dt = y2(4 − y2), −∞ < y0 < ∞
13. dy/dt = y2(1 − y)2, −∞ < y0 < ∞
14. Consider the equation dy/dt = f (y) and suppose that y1 is a critical point, that is,

f (y1) = 0. Show that the constant equilibrium solution φ(t) = y1 is asymptotically stable
if f ′(y1) < 0 and unstable if f ′(y1) > 0.

15. Suppose that a certain population obeys the logistic equation dy/dt = r y[1 − (y/K )].
(a) If y0 = K/3, find the time τ at which the initial population has doubled. Find the value
of τ corresponding to r = 0.025 per year.
(b) If y0/K = α, find the time T at which y(T )/K = β, where 0 < α, β < 1. Observe
that T → ∞ as α → 0 or as β → 1. Find the value of T for r = 0.025 per year, α = 0.1,
and β = 0.9.

16. Another equation that has been used to model population growth is the Gompertz equation:

dy/dt = r y ln(K/y),

where r and K are positive constants.
(a) Sketch the graph of f (y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.
(b) For 0 ≤ y ≤ K determine where the graph of y versus t is concave up and where it is
concave down.
(c) For each y in 0 < y ≤ K show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

17. (a) Solve the Gompertz equation

dy/dt = r y ln(K/y),

subject to the initial condition y(0) = y0.
Hint: You may wish to let u = ln(y/K ).
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(b) For the data given in Example 1 in the text [r = 0.71 per year, K = 80.5 × 106 kg,
y0/K = 0.25], use the Gompertz model to find the predicted value of y(2).
(c) For the same data as in part (b), use the Gompertz model to find the time τ at which
y(τ ) = 0.75K .

18. A pond forms as water collects in a conical depression of radius a and depth h. Suppose
that water flows in at a constant rate k and is lost through evaporation at a rate proportional
to the surface area.
(a) Show that the volume V (t) of water in the pond at time t satisfies the differential
equation

dV/dt = k − απ(3a/πh)2/3V 2/3,

where α is the coefficient of evaporation.
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?
(c) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom of the
tank. From Torricelli’s theorem in hydrodynamics it follows that the rate at which water
flows through the hole is αa

√
2gh, where h is the current depth of water in the tank, g is the

acceleration due to gravity, and α is a contraction coefficient that satisfies 0.5 ≤ α ≤ 1.0.
(a) Show that the depth of water in the tank at any time satisfies the equation

dh/dt = (k − αa
√

2gh )/A.

(b) Determine the equilibrium depth he of water and show that it is asymptotically stable.
Observe that he does not depend on A.

Harvesting a Renewable Resource. Suppose that the population y of a certain species of fish
(for example, tuna or halibut) in a given area of the ocean is described by the logistic equation

dy/dt = r(1 − y/K )y.

While it is desirable to utilize this source of food, it is intuitively clear that if too many fish
are caught, then the fish population may be reduced below a useful level, and possibly even
driven to extinction. Problems 20 and 21 explore some of the questions involved in formulating
a rational strategy for managing the fishery.8

20. At a given level of effort, it is reasonable to assume that the rate at which fish are caught
depends on the population y: The more fish there are, the easier it is to catch them. Thus we
assume that the rate at which fish are caught is given by Ey, where E is a positive constant,
with units of 1/time, that measures the total effort made to harvest the given species of fish.
To include this effect, the logistic equation is replaced by

dy/dt = r(1 − y/K )y − Ey. (i)

This equation is known as the Schaefer model after the biologist, M. B. Schaefer, who
applied it to fish populations.
(a) Show that if E < r , then there are two equilibrium points, y1 = 0 and y2 = K (1 −
E/r) > 0.
(b) Show that y = y1 is unstable and y = y2 is asymptotically stable.

8An excellent treatment of this kind of problem, which goes far beyond what is outlined here, may be found in
the book by Clark mentioned previously, especially in the first two chapters. Numerous additional references are
given there.
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(c) A sustainable yield Y of the fishery is a rate at which fish can be caught indefinitely.
It is the product of the effort E and the asymptotically stable population y2. Find Y as a
function of the effort E ; the graph of this function is known as the yield-effort curve.
(d) Determine E so as to maximize Y and thereby find the maximum sustainable yield Ym .

21. In this problem we assume that fish are caught at a constant rate h independent of the size
of the fish population. Then y satisfies

dy/dt = r(1 − y/K )y − h. (i)

The assumption of a constant catch rate h may be reasonable when y is large, but becomes
less so when y is small.
(a) If h < r K/4, show that Eq. (i) has two equilibrium points y1 and y2 with y1 < y2;
determine these points.
(b) Show that y1 is unstable and y2 is asymptotically stable.
(c) From a plot of f (y) versus y show that if the initial population y0 > y1, then y → y2
as t → ∞, but that if y0 < y1, then y decreases as t increases. Note that y = 0 is not an
equilibrium point, so if y0 < y1, then extinction will be reached in a finite time.
(d) If h > r K/4, show that y decreases to zero as t increases regardless of the value of y0.
(e) If h = r K/4, show that there is a single equilibrium point y = K/2 and that this
point is semistable (see Problem 7). Thus the maximum sustainable yield is hm = r K/4,
corresponding to the equilibrium value y = K/2. Observe that hm has the same value as
Ym in Problem 20(d). The fishery is considered to be overexploited if y is reduced to a level
below K/2.

Epidemics. The use of mathematical methods to study the spread of contagious diseases goes
back at least to some work by Daniel Bernoulli in 1760 on smallpox. In more recent years many

mathematical models have been proposed and studied for many different diseases.9 Problems
22 through 24 deal with a few of the simpler models and the conclusions that can be drawn from
them. Similar models have also been used to describe the spread of rumors and of consumer
products.

22. Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be the
proportion of susceptible individuals and y the proportion of infectious individuals; then
x + y = 1. Assume that the disease spreads by contact between sick and well members
of the population, and that the rate of spread dy/dt is proportional to the number of such
contacts. Further, assume that members of both groups move about freely among each
other, so the number of contacts is proportional to the product of x and y. Since x = 1 − y,
we obtain the initial value problem

dy/dt = αy(1 − y), y(0) = y0, (i)

where α is a positive proportionality factor, and y0 is the initial proportion of infectious
individuals.
(a) Find the equilibrium points for the differential equation (i) and determine whether
each is asymptotically stable, semistable, or unstable.
(b) Solve the initial value problem (i) and verify that the conclusions you reached in part (a)
are correct. Show that y(t) → 1 as t → ∞, which means that ultimately the disease spreads
through the entire population.

23. Some diseases (such as typhoid fever) are spread largely by carriers, individuals who can
transmit the disease, but who exhibit no overt symptoms. Let x and y, respectively, denote

9A standard source is the book by Bailey listed in the references. The models in Problems 22 through 24 are
discussed by Bailey in Chapters 5, 10, and 20, respectively.
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the proportion of susceptibles and carriers in the population. Suppose that carriers are
identified and removed from the population at a rate β, so

dy/dt = −βy. (i)

Suppose also that the disease spreads at a rate proportional to the product of x and y; thus

dx/dt = αxy. (ii)

(a) Determine y at any time t by solving Eq. (i) subject to the initial condition y(0) = y0.
(b) Use the result of part (a) to find x at any time t by solving Eq. (ii) subject to the initial
condition x(0) = x0.
(c) Find the proportion of the population that escapes the epidemic by finding the limiting
value of x as t → ∞.

24. Daniel Bernoulli’s work in 1760 had the goal of appraising the effectiveness of a con-
troversial inoculation program against smallpox, which at that time was a major threat to
public health. His model applies equally well to any other disease that, once contracted and
survived, confers a lifetime immunity.

Consider the cohort of individuals born in a given year (t = 0), and let n(t) be the
number of these individuals surviving t years later. Let x(t) be the number of members of
this cohort who have not had smallpox by year t , and who are therefore still susceptible.
Let β be the rate at which susceptibles contract smallpox, and let ν be the rate at which
people who contract smallpox die from the disease. Finally, let µ(t) be the death rate from
all causes other than smallpox. Then dx/dt , the rate at which the number of susceptibles
declines, is given by

dx/dt = −[β + µ(t)]x; (i)

the first term on the right side of Eq. (i) is the rate at which susceptibles contract smallpox,
while the second term is the rate at which they die from all other causes. Also

dn/dt = −νβx − µ(t)n, (ii)

where dn/dt is the death rate of the entire cohort, and the two terms on the right side are
the death rates due to smallpox and to all other causes, respectively.
(a) Let z = x/n and show that z satisfies the initial value problem

dz/dt = −βz(1 − νz), z(0) = 1. (iii)

Observe that the initial value problem (iii) does not depend on µ(t).
(b) Find z(t) by solving Eq. (iii).
(c) Bernoulli estimated that ν = β = 1

8 . Using these values, determine the proportion of
20-year-olds who have not had smallpox.

Note: Based on the model just described and using the best mortality data available at
the time, Bernoulli calculated that if deaths due to smallpox could be eliminated (ν = 0),
then approximately 3 years could be added to the average life expectancy (in 1760) of 26
years 7 months. He therefore supported the inoculation program.

25. Bifurcation Points. In many physical problems some observable quantity, such as a
velocity, waveform, or chemical reaction, depends on a parameter describing the physical
state. As this parameter is increased, a critical value is reached at which the velocity, or
waveform, or reaction suddenly changes its character. For example, as the amount of one
of the chemicals in a certain mixture is increased, spiral wave patterns of varying color
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suddenly emerge in an originally quiescent fluid. In many such cases the mathematical
analysis ultimately leads to an equation10 of the form

dx/dt = (R − Rc)x − ax3. (i)

Here a and Rc are positive constants, and R is a parameter that may take on various values.
For example, R may measure the amount of a certain chemical and x may measure a
chemical reaction.
(a) If R < Rc, show that there is only one equilibrium solution x = 0 and that it is
asymptotically stable.
(b) If R > Rc, show that there are three equilibrium solutions, x = 0 and x =
±√(R − Rc)/a, and that the first solution is unstable while the other two are asymp-
totically stable.
(c) Draw a graph in the Rx-plane showing all equilibrium solutions and label each one as
asymptotically stable or unstable.

The point R = Rc is called a bifurcation point. For R < Rc one observes the asymp-
totically stable equilibrium solution x = 0. However, this solution loses its stability as R
passes through the value Rc, and for R > Rc the asymptotically stable (and hence the
observable) solutions are x = √

(R − Rc)/a and x = −√(R − Rc)/a. Because of the way
in which the solutions branch at Rc, this type of bifurcation is called a pitchfork bifurcation;
your sketch should suggest that this name is appropriate.

26. Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce one
molecule of a new substance X ; this is denoted by P + Q → X . Suppose that p and q ,
where p �= q , are the initial concentrations of P and Q, respectively, and let x(t) be the
concentration of X at time t . Then p − x(t) and q − x(t) are the concentrations of P and Q
at time t , and the rate at which the reaction occurs is given by the equation

dx/dt = α(p − x)(q − x), (i)

where α is a positive constant.
(a) If x(0) = 0, determine the limiting value of x(t) as t → ∞ without solving the
differential equation. Then solve the initial value problem and find x(t) for any t .
(b) If the substances P and Q are the same, then p = q and Eq. (i) is replaced by

dx/dt = α(p − x)2. (ii)

If x(0) = 0, determine the limiting value of x(t) as t → ∞ without solving the differential
equation. Then solve the initial value problem and determine x(t) for any t .

2.6 Exact Equations and Integrating Factors

For first order equations there are a number of integration methods that are applicable
to various classes of problems. The most important of these are linear equations and
separable equations, which we have discussed previously. Here, we consider a class of

10 In fluid mechanics Eq. (i) arises in the study of the transition from laminar to turbulent flow; there it is often
called the Landau equation. L. D. Landau (1908–1968) was a Russian physicist who received the Nobel prize in
1962 for his contributions to the understanding of condensed states, particularly liquid helium. He was also the
coauthor, with E. M. Lifschitz, of a well-known series of physics textbooks.



90 Chapter 2. First Order Differential Equations

equations known as exact equations for which there is also a well-defined method of
solution. Keep in mind, however, that those first order equations that can be solved by
elementary integration methods are rather special; most first order equations cannot be
solved in this way.

E X A M P L E

1

Solve the differential equation

2x + y2 + 2xyy′ = 0. (1)

The equation is neither linear nor separable, so the methods suitable for those types
of equations are not applicable here. However, observe that the function ψ(x, y) =
x2 + xy2 has the property that

2x + y2 = ∂ψ

∂x
, 2xy = ∂ψ

∂y
. (2)

Therefore the differential equation can be written as

∂ψ

∂x
+ ∂ψ

∂y

dy

dx
= 0. (3)

Assuming that y is a function of x and calling upon the chain rule, we can write Eq. (3)
in the equivalent form

dψ

dx
= d

dx
(x2 + xy2) = 0. (4)

Therefore

ψ(x, y) = x2 + xy2 = c, (5)

where c is an arbitrary constant, is an equation that defines solutions of Eq. (1) implicitly.

In solving Eq. (1) the key step was the recognition that there is a function ψ that
satisfies Eq. (2). More generally, let the differential equation

M(x, y)+ N (x, y)y′ = 0 (6)

be given. Suppose that we can identify a function ψ such that

∂ψ

∂x
(x, y) = M(x, y),

∂ψ

∂y
(x, y) = N (x, y), (7)

and such that ψ(x, y) = c defines y = φ(x) implicitly as a differentiable function of
x . Then

M(x, y)+ N (x, y)y′ = ∂ψ

∂x
+ ∂ψ

∂y

dy

dx
= d

dx
ψ[x, φ(x)]

and the differential equation (6) becomes

d

dx
ψ[x, φ(x)] = 0. (8)

In this case Eq. (6) is said to be an exact differential equation. Solutions of Eq. (6), or
the equivalent Eq. (8), are given implicitly by

ψ(x, y) = c, (9)

where c is an arbitrary constant.
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In Example 1 it was relatively easy to see that the differential equation was exact
and, in fact, easy to find its solution, by recognizing the required function ψ . For more
complicated equations it may not be possible to do this so easily. A systematic way of
determining whether a given differential equation is exact is provided by the following
theorem.

Theorem 2.6.1 Let the functions M, N ,My, and Nx , where subscripts denote partial derivatives, be

continuous in the rectangular11 region R:α < x < β, γ < y < δ. Then Eq. (6),

M(x, y)+ N (x, y)y′ = 0,

is an exact differential equation in R if and only if

My(x, y) = Nx(x, y) (10)

at each point of R. That is, there exists a function ψ satisfying Eqs. (7),

ψx(x, y) = M(x, y), ψy(x, y) = N (x, y),

if and only if M and N satisfy Eq. (10).

The proof of this theorem has two parts. First, we show that if there is a function ψ
such that Eqs. (7) are true, then it follows that Eq. (10) is satisfied. Computing My and
Nx from Eqs. (7), we obtain

My(x, y) = ψxy(x, y), Nx(x, y) = ψyx(x, y). (11)

Since My and Nx are continuous, it follows that ψxy and ψyx are also continuous. This
guarantees their equality, and Eq. (10) follows.

We now show that if M and N satisfy Eq. (10), then Eq. (6) is exact. The proof
involves the construction of a function ψ satisfying Eqs. (7),

ψx(x, y) = M(x, y), ψy(x, y) = N (x, y).

Integrating the first of Eqs. (7) with respect to x , holding y constant, we find that

ψ(x, y) =
∫

M(x, y) dx + h(y). (12)

The function h is an arbitrary function of y, playing the role of the arbitrary constant.
Now we must show that it is always possible to choose h(y) so that ψy = N . From
Eq. (12)

ψy(x, y) = ∂

∂y

∫
M(x, y) dx + h′(y)

=
∫

My(x, y) dx + h′(y).

11It is not essential that the region be rectangular, only that it be simply connected. In two dimensions this means
that the region has no holes in its interior. Thus, for example, rectangular or circular regions are simply connected,
but an annular region is not. More details can be found in most books on advanced calculus.
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Setting ψy = N and solving for h′(y), we obtain

h′(y) = N (x, y)−
∫

My(x, y) dx . (13)

To determine h(y) from Eq. (13), it is essential that, despite its appearance, the right
side of Eq. (13) be a function of y only. To establish this fact, we can differentiate the
quantity in question with respect to x , obtaining

Nx(x, y)− My(x, y),

which is zero on account of Eq. (10). Hence, despite its apparent form, the right side
of Eq. (13) does not, in fact, depend on x , and a single integration then gives h(y).
Substituting for h(y) in Eq. (12), we obtain as the solution of Eqs. (7)

ψ(x, y) =
∫

M(x, y) dx +
∫ [

N (x, y)−
∫

My(x, y) dx

]
dy. (14)

It should be noted that this proof contains a method for the computation of ψ(x, y)
and thus for solving the original differential equation (6). It is usually better to go
through this process each time it is needed rather than to try to remember the result
given in Eq. (14). Note also that the solution is obtained in implicit form; it may or
may not be feasible to find the solution explicitly.

E X A M P L E

2

Solve the differential equation

(y cos x + 2xey)+ (sin x + x2ey − 1)y′ = 0. (15)

It is easy to see that

My(x, y) = cos x + 2xey = Nx(x, y),

so the given equation is exact. Thus there is a ψ(x, y) such that

ψx(x, y) = y cos x + 2xey,

ψy(x, y) = sin x + x2ey − 1.

Integrating the first of these equations, we obtain

ψ(x, y) = y sin x + x2ey + h(y). (16)

Setting ψy = N gives

ψy(x, y) = sin x + x2ey + h′(y) = sin x + x2ey − 1.

Thus h′(y) = −1 and h(y) = −y. The constant of integration can be omitted since
any solution of the preceding differential equation is satisfactory; we do not require the
most general one. Substituting for h(y) in Eq. (16) gives

ψ(x, y) = y sin x + x2ey − y.

Hence solutions of Eq. (15) are given implicitly by

y sin x + x2ey − y = c. (17)
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E X A M P L E

3

Solve the differential equation

(3xy + y2)+ (x2 + xy)y′ = 0. (18)

Here,

My(x, y) = 3x + 2y, Nx(x, y) = 2x + y;
since My �= Nx , the given equation is not exact. To see that it cannot be solved by the
procedure described previously, let us seek a function ψ such that

ψx(x, y) = 3xy + y2, ψy(x, y) = x2 + xy. (19)

Integrating the first of Eqs. (19) gives

ψ(x,y) = 3
2 x2 y + xy2 + h(y), (20)

where h is an arbitrary function of y only. To try to satisfy the second of Eqs. (19) we
compute ψy from Eq. (20) and set it equal to N , obtaining

3
2 x2 + 2xy + h′(y) = x2 + xy

or

h′(y) = − 1
2 x2 − xy. (21)

Since the right side of Eq. (21) depends on x as well as y, it is impossible to solve
Eq. (21) for h(y). Thus there is no ψ(x, y) satisfying both of Eqs. (19).

Integrating Factors. It is sometimes possible to convert a differential equation that is
not exact into an exact equation by multiplying the equation by a suitable integrating
factor. Recall that this is the procedure that we used in solving linear equations in
Section 2.1. To investigate the possibility of implementing this idea more generally, let
us multiply the equation

M(x, y) dx + N (x, y) dy = 0 (22)

by a function µ and then try to choose µ so that the resulting equation

µ(x, y)M(x, y) dx + µ(x, y)N (x, y) dy = 0 (23)

is exact. By Theorem 2.6.1 Eq. (23) is exact if and only if

(µM)y = (µN )x . (24)

Since M and N are given functions, Eq. (24) states that the integrating factor µ must
satisfy the first order partial differential equation

Mµy − Nµx + (My − Nx)µ = 0. (25)

If a function µ satisfying Eq. (25) can be found, then Eq. (23) will be exact. The
solution of Eq. (23) can then be obtained by the method described in the first part of
this section. The solution found in this way also satisfies Eq. (22), since the integrating
factor µ can be canceled out of Eq. (23).

A partial differential equation of the form (25) may have more than one solution; if
this is the case, any such solution may be used as an integrating factor of Eq. (22). This
possible nonuniqueness of the integrating factor is illustrated in Example 4.
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Unfortunately, Eq. (25), which determines the integrating factor µ, is ordinarily at
least as difficult to solve as the original equation (22). Therefore, while in principle
integrating factors are powerful tools for solving differential equations, in practice they
can be found only in special cases. The most important situations in which simple
integrating factors can be found occur when µ is a function of only one of the variables
x or y, instead of both. Let us determine necessary conditions on M and N so that
Eq. (22) has an integrating factor µ that depends on x only. Assuming that µ is a
function of x only, we have

(µM)y = µMy, (µN )x = µNx + N
dµ

dx
.

Thus, if (µM)y is to equal (µN )x , it is necessary that

dµ

dx
= My − Nx

N
µ. (26)

If (My − Nx)/N is a function of x only, then there is an integrating factor µ that also
depends only on x ; further, µ(x) can be found by solving Eq. (26), which is both linear
and separable.

A similar procedure can be used to determine a condition under which Eq. (22) has
an integrating factor depending only on y; see Problem 23.

E X A M P L E

4

Find an integrating factor for the equation

(3xy + y2)+ (x2 + xy)y′ = 0 (18)

and then solve the equation.
In Example 3 we showed that this equation is not exact. Let us determine whether

it has an integrating factor that depends on x only. On computing the quantity (My −
Nx)/N , we find that

My(x, y)− Nx(x, y)

N (x, y)
= 3x + 2y − (2x + y)

x2 + xy
= 1

x
. (27)

Thus there is an integrating factor µ that is a function of x only, and it satisfies the
differential equation

dµ

dx
= µ

x
. (28)

Hence

µ(x) = x . (29)

Multiplying Eq. (18) by this integrating factor, we obtain

(3x2 y + xy2)+ (x3 + x2 y)y′ = 0. (30)

The latter equation is exact and it is easy to show that its solutions are given implicitly
by

x3 y + 1
2 x2 y2 = c. (31)

Solutions may also be readily found in explicit form since Eq. (31) is quadratic in y.
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You may also verify that a second integrating factor of Eq. (18) is

µ(x, y) = 1

xy(2x + y)
,

and that the same solution is obtained, though with much greater difficulty, if this
integrating factor is used (see Problem 32).

PROBLEMS Determine whether or not each of the equations in Problems 1 through 12 is exact. If it is exact,
find the solution.

1. (2x + 3)+ (2y − 2)y′ = 0 2. (2x + 4y)+ (2x − 2y)y′ = 0
3. (3x2 − 2xy + 2) dx + (6y2 − x2 + 3) dy = 0
4. (2xy2 + 2y)+ (2x2 y + 2x)y′ = 0

5.
dy

dx
= −ax + by

bx + cy
6.

dy

dx
= −ax − by

bx − cy
7. (ex sin y − 2y sin x) dx + (ex cos y + 2 cos x) dy = 0
8. (ex sin y + 3y) dx − (3x − ex sin y) dy = 0
9. (yexy cos 2x − 2exy sin 2x + 2x) dx + (xexy cos 2x − 3) dy = 0

10. (y/x + 6x) dx + (ln x − 2) dy = 0, x > 0
11. (x ln y + xy) dx + (y ln x + xy) dy = 0; x > 0, y > 0

12.
x dx

(x2 + y2)3/2
+ y dy

(x2 + y2)3/2
= 0

In each of Problems 13 and 14 solve the given initial value problem and determine at least
approximately where the solution is valid.

13. (2x − y) dx + (2y − x) dy = 0, y(1) = 3
14. (9x2 + y − 1) dx − (4y − x) dy = 0, y(1) = 0

In each of Problems 15 and 16 find the value of b for which the given equation is exact and then
solve it using that value of b.
15. (xy2 + bx2 y) dx + (x + y)x2 dy = 0 16. (ye2xy + x) dx + bxe2xy dy = 0

17. Consider the exact differential equation

M(x, y) dx + N (x, y) dy = 0.

Find an implicit formula ψ(x, y) = c for the solution analogous to Eq. (14) by first
integrating the equation ψy = N , rather than ψx = M , as in the text.

18. Show that any separable equation,

M(x)+ N (y)y′ = 0,

is also exact.

Show that the equations in Problems 19 through 22 are not exact, but become exact when
multiplied by the given integrating factor. Then solve the equations.

19. x2 y3 + x(1 + y2)y′ = 0, µ(x, y) = 1/xy3

20.

(
sin y

y
− 2e−x sin x

)
dx +

(
cos y + 2e−x cos x

y

)
dy = 0, µ(x, y) = yex

21. y dx + (2x − yey) dy = 0, µ(x, y) = y

22. (x + 2) sin y dx + x cos y dy = 0, µ(x, y) = xex
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23. Show that if (Nx − My)/M = Q, where Q is a function of y only, then the differential
equation

M + N y′ = 0

has an integrating factor of the form

µ(y) = exp
∫

Q(y) dy.

24. Show that if (Nx − My)/(x M − yN ) = R, where R depends on the quantity xy only, then
the differential equation

M + N y′ = 0

has an integrating factor of the form µ(xy). Find a general formula for this integrating
factor.

In each of Problems 25 through 31 find an integrating factor and solve the given equation.

25. (3x2 y + 2xy + y3) dx + (x2 + y2) dy = 0
26. y′ = e2x + y − 1
27. dx + (x/y − sin y) dy = 0
28. y dx + (2xy − e−2y) dy = 0
29. ex dx + (ex cot y + 2y csc y) dy = 0
30. [4(x3/y2)+ (3/y)] dx + [3(x/y2)+ 4y] dy = 0

31.

(
3x + 6

y

)
+
(

x2

y
+ 3

y

x

)
dy

dx
= 0

Hint: See Problem 24.

32. Solve the differential equation

(3xy + y2)+ (x2 + xy)y′ = 0

using the integrating factor µ(x, y) = [xy(2x + y)]−1. Verify that the solution is the same
as that obtained in Example 4 with a different integrating factor.

2.7 Numerical Approximations: Euler’s Method

Recall two important facts about the first order initial value problem

dy

dt
= f (t, y), y(t0) = y0. (1)

First, if f and ∂ f/∂y are continuous, then the initial value problem (1) has a unique
solution y = φ(t) in some interval surrounding the initial point t = t0. Second, it is
usually not possible to find the solution φ by symbolic manipulations of the differential
equation. Up to now we have considered the main exceptions to this statement, namely,
differential equations that are linear, separable, or exact, or that can be transformed
into one of these types. Nevertheless, it remains true that solutions of the vast majority
of first order initial value problems cannot be found by analytical means such as those
considered in the first part of this chapter.
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Therefore it is important to be able to approach the problem in other ways. As we have
already seen, one of these ways is to draw a direction field for the differential equation
(which does not involve solving the equation) and then to visualize the behavior of
solutions from the direction field. This has the advantage of being a relatively simple
process, even for complicated differential equations. However, it does not lend itself to
quantitative computations or comparisons, and this is often a critical shortcoming.

Another alternative is to compute approximate values of the solution y = φ(t) of
the initial value problem (1) at a selected set of t-values. Ideally, the approximate
solution values will be accompanied by error bounds that assure the level of accuracy
of the approximations. Today there are numerous methods that produce numerical
approximations to solutions of differential equations, and Chapter 8 is devoted to a
fuller discussion of some of them. Here, we introduce the oldest and simplest such
method, originated by Euler about 1768. It is called the tangent line method or the
Euler method.

Let us consider how we might approximate the solution y = φ(t) of Eqs. (1) near
t = t0. We know that the solution passes through the initial point (t0, y0) and, from the
differential equation, we also know that its slope at this point is f (t0, y0). Thus we can
write down an equation for the line tangent to the solution curve at (t0, y0), namely,

y = y0 + f (t0, y0)(t − t0). (2)

The tangent line is a good approximation to the actual solution curve on an interval
short enough so that the slope of the solution does not change appreciably from its
value at the initial point; see Figure 2.7.1. Thus, if t1 is close enough to t0, we can
approximate φ(t1) by the value y1 determined by substituting t = t1 into the tangent
line approximation at t = t0; thus

y1 = y0 + f (t0, y0)(t1 − t0). (3)

To proceed further, we can try to repeat the process. Unfortunately, we do not know
the value φ(t1) of the solution at t1. The best we can do is to use the approximate value
y1 instead. Thus we construct the line through (t1, y1) with the slope f (t1, y1),

y = y1 + f (t1, y1)(t − t1). (4)

To approximate the value of φ(t) at a nearby point t2, we use Eq. (4) instead, obtaining

y2 = y1 + f (t1, y1)(t2 − t1). (5)

t

y

y1

y0

(t1)

t0 t1

Tangent line
y = y0 + f (t0, y0) (t – t0)

Solution
φφ

(t)y = 

FIGURE 2.7.1 A tangent line approximation.
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Continuing in this manner, we use the value of y calculated at each step to determine
the slope of the approximation for the next step. The general expression for yn+1 in
terms of tn , tn+1, and yn is

yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, . . . . (6)

If we introduce the notation fn = f (tn, yn), then we can rewrite Eq. (6) as

yn+1 = yn + fn · (tn+1 − tn), n = 0, 1, 2, . . . . (7)

Finally, if we assume that there is a uniform step size h between the points t0, t1, t2, . . . ,
then tn+1 = tn + h for each n and we obtain Euler’s formula in the form

yn+1 = yn + fnh, n = 0, 1, 2, . . . . (8)

To use Euler’s method you simply evaluate Eq. (7) or Eq. (8) repeatedly, depending
on whether or not the step size is constant, using the result of each step to execute the
next step. In this way you generate a sequence of values y1, y2, y3, . . . that approximate
the values of the solution φ(t) at the points t1, t2, t3, . . . . If, instead of a sequence of
points, you need an actual function to approximate the solution φ(t), then you can use
the piecewise linear function constructed from the collection of tangent line segments.
That is, let y be given by Eq. (2) in [t0, t1], by Eq. (4) in [t1, t2], and, in general, by

y = yn + f (tn, yn)(t − tn) (9)

in [tn, tn+1].

E X A M P L E

1

Consider the initial value problem

dy

dt
= 3 + e−t − 1

2 y, y(0) = 1. (10)

Use Euler’s method with step size h = 0.1 to find approximate values of the solution
of Eqs. (10) at t = 0.1, 0.2, 0.3, and 0.4. Compare them with the corresponding values
of the actual solution of the initial value problem.

Proceeding as in Section 2.1, we find the solution of Eqs. (10) to be

y = φ(t) = 6 − 2e−t − 3e−t/2. (11)

To use Euler’s method we note that in this case f (t, y) = 3 + e−t − y/2. Using the
initial values t0 = 0 and y0 = 1, we find that

f0 = f (t0, y0) = f (0, 1) = 3 + e0 − 0.5 = 3 + 1 − 0.5 = 3.5

and then, from Eq. (8) with n = 0,

y1 = y0 + f0h = 1 + (3.5)(0.1) = 1.35.

At the next step we have

f1 = f (0.1, 1.35) = 3 + e−0.1 − (0.5)(1.35) ∼= 3 + 0.904837 − 0.675 ∼= 3.229837

and then

y2 = y1 + f1h ∼= 1.35 + (3.229837)(0.1) ∼= 1.672984.
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Repeating the computation two more times, we obtain

f2
∼= 2.982239, y3

∼= 1.971208

and

f3
∼= 2.755214, y4

∼= 2.246729.

Table 2.7.1 shows these computed values, the corresponding values of the solution (11),
and the differences between the two, which is the error in the numerical approximation.

TABLE 2.7.1 A Comparison of Exact Solution
with Euler Method for h = 0.1 for
y′ = 3 + e−t − 1

2 y, y(0) = 1

Euler
t Exact with h = 0.1 Error

0.0 1.0000 1.0000 0.0000
0.1 1.3366 1.3500 0.0134
0.2 1.6480 1.6730 0.0250
0.3 1.9362 1.9712 0.0350
0.4 2.2032 2.2467 0.0435

The purpose of Example 1 is to show you the details of implementing a few steps of
Euler’s method so that it will be clear exactly what computations are being executed.
Of course, computations such as those in Example 1 are usually done on a computer.
Some software packages include code for the Euler method, while others do not. In
any case, it is easy to write a computer program to carry out the calculations required
to produce results such as those in Table 2.7.1. The outline of such a program is
given below; the specific instructions can be written in any high-level programming
language.

The Euler Method
Step 1. define f (t, y)
Step 2. input initial values t0 and y0
Step 3. input step size h and number of steps n
Step 4. output t0 and y0
Step 5. for j from 1 to n do
Step 6. k1 = f (t, y)

y = y + h ∗ k1
t = t + h

Step 7. output t and y
Step 8. end

The output of this algorithm can be numbers listed on the screen or printed on a
printer, as in the third column of Table 2.7.1. Alternatively, the calculated results can
be displayed in graphical form.



100 Chapter 2. First Order Differential Equations

E X A M P L E

2

Consider again the initial value problem (10),

dy

dt
= 3 + e−t − 1

2 y, y(0) = 1.

Use Euler’s method with various step sizes to calculate approximate values of the
solution for 0 ≤ t ≤ 5. Compare the calculated results with the corresponding values
of the exact solution (11),

y = φ(t) = 6 − 2e−t − 3e−t/2.

We used step sizes h = 0.1, 0.05, 0.025, and 0.01, corresponding respectively to 50,
100, 200, and 500 steps to go from t = 0 to t = 5. The results of these calculations,
along with the values of the exact solution, are presented in Table 2.7.2. All computed
entries are rounded to four decimal places, although more digits were retained in the
intermediate calculations.

TABLE 2.7.2 A Comparison of Exact Solution with Euler Method for
Several Step Sizes h for y′ = 3 + e−t − 1

2 y, y(0) = 1

t Exact h = 0.1 h = 0.05 h = 0.025 h = 0.01

0.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 3.4446 3.5175 3.4805 3.4624 3.4517
2.0 4.6257 4.7017 4.6632 4.6443 4.6331
3.0 5.2310 5.2918 5.2612 5.2460 5.2370
4.0 5.5574 5.6014 5.5793 5.5683 5.5617
5.0 5.7403 5.7707 5.7555 5.7479 5.7433

What conclusions can we draw from the data in Table 2.7.2? In the first place, for
a fixed value of t the computed approximate values become more accurate as the
step size h decreases. This is what we would expect, of course, but it is encouraging
that the data confirm our expectations. For example, for t = 1 the approximate value
with h = 0.1 is too large by about 2%, while the value with h = 0.01 is too large by
only 0.2%. In this case, reducing the step size by a factor of 10 (and performing 10
times as many computations) also reduces the error by a factor of about 10. A second
observation from Table 2.7.2 is that, for a fixed step size h, the approximations become
more accurate as t increases. For instance, for h = 0.1 the error for t = 5 is only about
0.5% compared with 2% for t = 1. An examination of data at intermediate points not
recorded in Table 2.7.2 would reveal where the maximum error occurs for a given step
size and how large it is.

All in all, Euler’s method seems to work rather well for this problem. Reason-
ably good results are obtained even for a moderately large step size h = 0.1 and the
approximation can be improved by decreasing h.

Let us now look at another example.
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E X A M P L E

3

Consider the initial value problem

dy

dt
= 4 − t + 2y, y(0) = 1. (12)

The general solution of this differential equation was found in Example 3 of Section
2.1, and the solution of the initial value problem (12) is

y = − 7
4 + 1

2 t + 11
4 e2t . (13)

Use Euler’s method with several step sizes to find approximate values of the solution
on the interval 0 ≤ t ≤ 5. Compare the results with the corresponding values of the
solution (13).

Using the same range of step sizes as in Example 2, we obtain the results presented
in Table 2.7.3.

TABLE 2.7.3 A Comparison of Exact Solution with Euler Method for Several Step Sizes h for
y′ = 4 − t + 2y, y(0) = 1

t Exact h = 0.1 h = 0.05 h = 0.025 h = 0.01

0.0 1.000000 1.000000 1.000000 1.000000 1.000000
1.0 19.06990 15.77728 17.25062 18.10997 18.67278
2.0 149.3949 104.6784 123.7130 135.5440 143.5835
3.0 1109.179 652.5349 837.0745 959.2580 1045.395
4.0 8197.884 4042.122 5633.351 6755.175 7575.577
5.0 60573.53 25026.95 37897.43 47555.35 54881.32

The data in Table 2.7.3 again confirm our expectation that for a given value of t ,
accuracy improves as the step size h is reduced. For example, for t = 1 the percentage
error diminishes from 17.3% when h = 0.1 to 2.1% when h = 0.01. However, the
error increases fairly rapidly as t increases for a fixed h. Even for h = 0.01, the error at
t = 5 is 9.4%, and it is much greater for larger step sizes. Of course, the accuracy that
is needed depends on the purpose for which the results are intended, but the errors in
Table 2.7.3 are too large for most scientific or engineering applications. To improve the
situation, one might either try even smaller step sizes or else restrict the computations
to a rather short interval away from the initial point. Nevertheless, it is clear that Euler’s
method is much less effective in this example than in Example 2.

To understand better what is happening in these examples, let us look again at Euler’s
method for the general initial value problem (1)

dy

dt
= f (t, y), y(t0) = y0,

whose solution we denote by φ(t). Recall that a first order differential equation has
an infinite family of solutions, indexed by an arbitrary constant c, and that the initial
condition picks out one member of this infinite family by determining the value of c.
Thus φ(t) is the member of the infinite family of solutions that satisfies the initial
condition φ(t0) = y0.
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At the first step Euler’s method uses the tangent line approximation to the graph
of y = φ(t) passing through the initial point (t0, y0) and this produces the approxi-
mate value y1 at t1. Usually y1 �= φ(t1), so at the second step Euler’s method uses
the tangent line approximation not to y = φ(t), but to a nearby solution y = φ1(t)
that passes through the point (t1, y1). So it is at each following step. Euler’s method
uses a succession of tangent line approximations to a sequence of different solutions
φ(t), φ1(t), φ2(t), . . . of the differential equation. At each step the tangent line is
constructed to the solution passing through the point determined by the result of the
preceding step, as shown in Figure 2.7.2. The quality of the approximation after many
steps depends strongly on the behavior of the set of solutions that pass through the
points (tn, yn) for n = 1, 2, 3, . . . .

In Example 2 the general solution of the differential equation is

y = 6 − 2e−t + ce−t/2 (14)

and the solution of the initial value problem (10) corresponds to c = −3. This family
of solutions is a converging family since the term involving the arbitrary constant
c approaches zero as t → ∞. It does not matter very much which solutions we are
approximating by tangent lines in the implementation of Euler’s method, since all the
solutions are getting closer and closer to each other as t increases.

On the other hand, in Example 3 the general solution of the differential equation is

y = − 7
4 + 1

2 t + ce2t , (15)

and this is a diverging family. Note that solutions corresponding to two nearby values
of c separate arbitrarily far as t increases. In Example 3 we are trying to follow the
solution for c = 11/4, but in the use of Euler’s method we are actually at each step
following another solution that separates from the desired one faster and faster as t
increases. This explains why the errors in Example 3 are so much larger than those in
Example 2.

In using a numerical procedure such as the Euler method, one must always keep
in mind the question of whether the results are accurate enough to be useful. In
the preceding examples, the accuracy of the numerical results could be ascertained
directly by a comparison with the solution obtained analytically. Of course, usually
the analytical solution is not available if a numerical procedure is to be employed, so

t

y

t0 t1 t2 t3

φ (t)y =
φ (t)y =

(t1, y1)

(t2, y2)

(t3, y3)

1

φ (t)y = 2

y0

FIGURE 2.7.2 The Euler method.
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what is needed are bounds for, or at least estimates of, the error that do not require
a knowledge of the exact solution. In Chapter 8 we present some information on the
analysis of errors and also discuss several algorithms that are computationally more
efficient than the Euler method. However, the best that we can expect, or hope for, from
a numerical approximation is that it reflect the behavior of the actual solution. Thus a
member of a diverging family of solutions will always be harder to approximate than
a member of a converging family. Finally, remember that drawing a direction field is
often a helpful first step in understanding the behavior of differential equations and
their solutions.

PROBLEMS Many of the problems in this section call for fairly extensive numerical computations. The
amount of computing that it is reasonable for you to do depends strongly on the type of
computing equipment that you have. A few steps of the requested calculations can be carried
out on almost any pocket calculator, or even by hand if necessary. To do more, you will find at
least a programmable calculator desirable, while for some problems a computer may be needed.

Remember also that numerical results may vary somewhat depending on how your program
is constructed, and how your computer executes arithmetic steps, rounds off, and so forth. Minor
variations in the last decimal place may be due to such causes and do not necessarily indicate
that something is amiss. Answers in the back of the book are recorded to six digits in most cases,
although more digits were retained in the intermediate calculations.

In each of Problems 1 through 4:

(a) Find approximate values of the solution of the given initial value problem at t = 0.1,
0.2, 0.3, and 0.4 using the Euler method with h = 0.1.
(b) Repeat part (a) with h = 0.05. Compare the results with those found in (a).
(c) Repeat part (a) with h = 0.025. Compare the results with those found in (a) and (b).
(d) Find the solution y = φ(t) of the given problem and evaluate φ(t) at t = 0.1, 0.2, 0.3,
and 0.4. Compare these values with the results of (a), (b), and (c).

� 1. y′ = 3 + t − y, y(0) = 1 � 2. y′ = 2y − 1, y(0) = 1

� 3. y′ = 0.5 − t + 2y, y(0) = 1 � 4. y′ = 3 cos t − 2y, y(0) = 0

In each of Problems 5 through 10 draw a direction field for the given differential equation and
state whether you think that the solutions are converging or diverging.

� 5. y′ = 5 − 3
√

y � 6. y′ = y(3 − t y)

� 7. y′ = (4 − t y)/(1 + y2) � 8. y′ = −t y + 0.1y3

� 9. y′ = t2 + y2 � 10. y′ = (y2 + 2t y)/(3 + t2)

In each of Problems 11 through 14 use Euler’s method to find approximate values of the solution
of the given initial value problem at t = 0.5, 1, 1.5, 2, 2.5, and 3:

(a) With h = 0.1.
(b) With h = 0.05.
(c) With h = 0.025.
(d) With h = 0.01.

� 11. y′ = 5 − 3
√

y, y(0) = 2 � 12. y′ = y(3 − t y), y(0) = 0.5

� 13. y′ = (4 − t y)/(1 + y2), y(0) = −2

� 14. y′ = −t y + 0.1y3, y(0) = 1

� 15. Consider the initial value problem

y′ = 3t2/(3y2 − 4), y(1) = 0.
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(a) Use the Euler formula (6) with h = 0.1 to obtain approximate values of the solution
at t = 1.2, 1.4, 1.6, and 1.8.
(b) Repeat part (a) with h = 0.05.
(c) Compare the results of parts (a) and (b). Note that they are reasonably close for t = 1.2,
1.4, and 1.6, but are quite different for t = 1.8. Also note (from the differential equation)
that the line tangent to the solution is parallel to the y-axis when y = ±2/

√
3 ∼= ±1.155.

Explain how this might cause such a difference in the calculated values.
� 16. Consider the initial value problem

y′ = t2 + y2, y(0) = 1.

Use Euler’s method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 0 ≤ t ≤ 1. What is your best estimate of the value of the solution at t = 0.8?
At t = 1? Are your results consistent with the direction field in Problem 9?

� 17. Consider the initial value problem

y′ = (y2 + 2t y)/(3 + t2), y(1) = 2.

Use Euler’s method with h = 0.1, 0.05, 0.025, and 0.01 to explore the solution of this
problem for 1 ≤ t ≤ 3. What is your best estimate of the value of the solution at t = 2.5?
At t = 3? Are your results consistent with the direction field in Problem 10?

� 18. Consider the initial value problem

y′ = −t y + 0.1y3, y(0) = α,

where α is a given number.
(a) Draw a direction field for the differential equation (or reexamine the one from Prob-
lem 8). Observe that there is a critical value of α in the interval 2 ≤ α ≤ 3 that separates
converging solutions from diverging ones. Call this critical value α0.
(b) Use Euler’s method with h = 0.01 to estimate α0. Do this by restricting α0 to an
interval [a, b], where b − a = 0.01.

� 19. Consider the initial value problem

y′ = y2 − t2, y(0) = α,

where α is a given number.
(a) Draw a direction field for the differential equation. Observe that there is a critical value
of α in the interval 0 ≤ α ≤ 1 that separates converging solutions from diverging ones.
Call this critical value α0.
(b) Use Euler’s method with h = 0.01 to estimate α0. Do this by restricting α0 to an
interval [a, b], where b − a = 0.01.

20. Convergence of Euler’s Method. It can be shown that, under suitable conditions on f ,
the numerical approximation generated by the Euler method for the initial value problem
y′ = f (t, y), y(t0) = y0 converges to the exact solution as the step size h decreases. This
is illustrated by the following example. Consider the initial value problem

y′ = 1 − t + y, y(t0) = y0.

(a) Show that the exact solution is y = φ(t) = (y0 − t0)e
t−t0 + t .

(b) Using the Euler formula, show that

yk = (1 + h)yk−1 + h − htk−1, k = 1, 2, . . . .

(c) Noting that y1 = (1 + h)(y0 − t0)+ t1, show by induction that

yn = (1 + h)n(y0 − t0)+ tn (i)

for each positive integer n.
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(d) Consider a fixed point t > t0 and for a given n choose h = (t − t0)/n. Then tn = t
for every n. Note also that h → 0 as n → ∞. By substituting for h in Eq. (i) and letting
n → ∞, show that yn → φ(t) as n → ∞.
Hint: lim

n→∞(1 + a/n)n = ea .

In each of Problems 21 through 23 use the technique discussed in Problem 20 to show that the
approximation obtained by the Euler method converges to the exact solution at any fixed point
as h → 0.

21. y′ = y, y(0) = 1
22. y′ = 2y − 1, y(0) = 1 Hint: y1 = (1 + 2h)/2 + 1/2
23. y′ = 1

2 − t + 2y, y(0) = 1 Hint: y1 = (1 + 2h)+ t1/2

2.8 The Existence and Uniqueness Theorem

In this section we discuss the proof of Theorem 2.4.2, the fundamental existence and
uniqueness theorem for first order initial value problems. This theorem states that under
certain conditions on f (t, y), the initial value problem

y′ = f (t, y), y(t0) = y0 (1)

has a unique solution in some interval containing the point t0.
In some cases (for example, if the differential equation is linear) the existence of

a solution of the initial value problem (1) can be established directly by actually
solving the problem and exhibiting a formula for the solution. However, in general,
this approach is not feasible because there is no method of solving the differential
equation that applies in all cases. Therefore, for the general case it is necessary to
adopt an indirect approach that demonstrates the existence of a solution of Eqs. (1), but
usually does not provide a practical means of finding it. The heart of this method is the
construction of a sequence of functions that converges to a limit function satisfying the
initial value problem, although the members of the sequence individually do not. As a
rule, it is impossible to compute explicitly more than a few members of the sequence;
therefore, the limit function can be determined only in rare cases. Nevertheless, under
the restrictions on f (t, y) stated in Theorem 2.4.2, it is possible to show that the
sequence in question converges and that the limit function has the desired properties.
The argument is fairly intricate and depends, in part, on techniques and results that are
usually encountered for the first time in a course on advanced calculus. Consequently,
we do not go into all of the details of the proof here; we do, however, indicate its main
features and point out some of the difficulties involved.

First of all, we note that it is sufficient to consider the problem in which the initial
point (t0, y0) is the origin; that is, the problem

y′ = f (t, y), y(0) = 0. (2)

If some other initial point is given, then we can always make a preliminary change of
variables, corresponding to a translation of the coordinate axes, that will take the given
point (t0, y0) into the origin. The existence and uniqueness theorem can now be stated
in the following way.
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Theorem 2.8.1 If f and ∂ f/∂y are continuous in a rectangle R: |t | ≤ a, |y| ≤ b, then there is some
interval |t | ≤ h ≤ a in which there exists a unique solution y = φ(t) of the initial
value problem (2).

To prove this theorem it is necessary to transform the initial value problem (2) into a
more convenient form. If we suppose temporarily that there is a function y = φ(t) that
satisfies the initial value problem, then f [t, φ(t)] is a continuous function of t only.
Hence we can integrate y′ = f (t, y) from the initial point t = 0 to an arbitrary value
of t , obtaining

φ(t) =
∫ t

0
f [s, φ(s)] ds, (3)

where we have made use of the initial condition φ(0) = 0. We also denote the dummy
variable of integration by s.

Since Eq. (3) contains an integral of the unknown function φ, it is called an integral
equation. This integral equation is not a formula for the solution of the initial value
problem, but it does provide another relation satisfied by any solution of Eqs. (2).
Conversely, suppose that there is a continuous function y = φ(t) that satisfies the
integral equation (3); then this function also satisfies the initial value problem (2). To
show this, we first substitute zero for t in Eq. (3), which shows that the initial condition
is satisfied. Further, since the integrand in Eq. (3) is continuous, it follows from the
fundamental theorem of calculus that φ′(t) = f [t, φ(t)]. Therefore the initial value
problem and the integral equation are equivalent in the sense that any solution of one is
also a solution of the other. It is more convenient to show that there is a unique solution
of the integral equation in a certain interval |t | ≤ h. The same conclusion will then
hold also for the initial value problem.

One method of showing that the integral equation (3) has a unique solution is known
as the method of successive approximations, or Picard’s12 iteration method. In
using this method, we start by choosing an initial function φ0, either arbitrarily or
to approximate in some way the solution of the initial value problem. The simplest
choice is

φ0(t) = 0; (4)

then φ0 at least satisfies the initial condition in Eqs. (2), although presumably not the
differential equation. The next approximation φ1 is obtained by substituting φ0(s) for
φ(s) in the right side of Eq. (3), and calling the result of this operation φ1(t). Thus

φ1(t) =
∫ t

0
f [s, φ0(s)] ds. (5)

12Charles-Émile Picard (1856–1914), except for Henri Poincaré, perhaps the most distinguished French math-
ematician of his generation, was appointed professor at the Sorbonne before the age of 30. He is known for
important theorems in complex variables and algebraic geometry as well as differential equations. A special
case of the method of successive approximations was first published by Liouville in 1838. However, the method
is usually credited to Picard, who established it in a general and widely applicable form in a series of papers
beginning in 1890.
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Similarly, φ2 is obtained from φ1:

φ2(t) =
∫ t

0
f [s, φ1(s)] ds, (6)

and, in general,

φn+1(t) =
∫ t

0
f [s, φn(s)] ds. (7)

In this manner we generate the sequence of functions {φn} = φ0, φ1, . . . , φn, . . . . Each
member of the sequence satisfies the initial condition, but in general none satisfies the
differential equation. However, if at some stage, say for n = k, we find that φk+1(t) =
φk(t), then it follows that φk is a solution of the integral equation (3). Hence φk is also a
solution of the initial value problem (2), and the sequence is terminated at this point. In
general, this does not occur, and it is necessary to consider the entire infinite sequence.

To establish Theorem 2.8.1 four principal questions must be answered:

1. Do all members of the sequence {φn} exist, or may the process break down at some
stage?

2. Does the sequence converge?
3. What are the properties of the limit function? In particular, does it satisfy the

integral equation (3), and hence the initial value problem (2)?
4. Is this the only solution, or may there be others?

We first show how these questions can be answered in a specific and relatively simple
example, and then comment on some of the difficulties that may be encountered in the
general case.

E X A M P L E

1

Solve the initial value problem

y′ = 2t (1 + y), y(0) = 0. (8)

by the method of successive approximations.
Note first that if y = φ(t), then the corresponding integral equation is

φ(t) =
∫ t

0
2s[1 + φ(s)] ds. (9)

If the initial approximation is φ0(t) = 0, it follows that

φ1(t) =
∫ t

0
2s[1 + φ0(s)] ds =

∫ t

0
2s ds = t2. (10)

Similarly,

φ2(t) =
∫ t

0
2s[1 + φ1(s)] ds =

∫ t

0
2s[1 + s2] ds = t2 + t4

2
(11)

and

φ3(t) =
∫ t

0
2s[1 + φ2(s)] ds =

∫ t

0
2s

[
1 + s2 + s4

2

]
ds = t2 + t4

2
+ t6

2 · 3
. (12)
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Equations (10), (11), and (12) suggest that

φn(t) = t2 + t4

2!
+ t6

3!
+ · · · + t2n

n!
(13)

for each n ≥ 1, and this result can be established by mathematical induction. Equa-
tion (13) is certainly true for n = 1; see Eq. (10). We must show that if it is true for
n = k, then it also holds for n = k + 1. We have

φk+1(t) =
∫ t

0
2s[1 + φk(s)] ds

=
∫ t

0
2s

(
1 + s2 + s4

2!
+ · · · + s2k

k!

)
ds

= t2 + t4

2!
+ t6

3!
+ · · · + t2k+2

(k + 1)!
, (14)

and the inductive proof is complete.
A plot of the first four iterates, φ1(t), . . . , φ4(t) is shown in Figure 2.8.1. As k

increases, the iterates seem to remain close over a gradually increasing interval, sug-
gesting eventual convergence to a limit function.

yy
3(t)φ

2(t)φ

1(t)φ

4(t)φ

–1.5 –1 –0.5 0.5 1 1.5

2.5
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1.5

1

0.5

t

FIGURE 2.8.1 Plots of φ1(t), . . . , φ4(t) for Example 1.

It follows from Eq. (13) that φn(t) is the nth partial sum of the infinite series

∞∑
k=1

t2k

k!
; (15)

hence lim
n→∞φn(t) exists if and only if the series (15) converges. Applying the ratio test,

we see that, for each t ,∣∣∣∣∣ t2k+2

(k + 1)!

k!

t2k

∣∣∣∣∣ = t2

k + 1
→ 0 as k → ∞; (16)
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thus the series (15) converges for all t , and its sum φ(t) is the limit of the sequence
{φn(t)}. Further, since the series (15) is a Taylor series, it can be differentiated or
integrated term by term as long as t remains within the interval of convergence, which
in this case is the entire t-axis. Therefore, we can verify by direct computation that

φ(t) =
∞∑

k=1
t2k/k! is a solution of the integral equation (9). Alternatively, by substituting

φ(t) for y in Eqs. (8), we can verify that this function satisfies the initial value problem.
In this example it is also possible, from the series (15), to identify φ in terms of
elementary functions, namely, φ(t) = et2 − 1. However, this is not necessary for the
discussion of existence and uniqueness.

Explicit knowledge of φ(t) does make it possible to visualize the convergence of
the sequence of iterates more clearly by plotting φ(t)− φk(t) for various values of k.
Figure 2.8.2 shows this difference for k = 1, . . . , 4. This figure clearly shows the grad-
ually increasing interval over which successive iterates provide a good approximation
to the solution of the initial value problem.

y

–1.5 –1 –0.5 0.5 1 1.5
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k = 2

k = 3

k = 4

t

FIGURE 2.8.2 Plots of φ(t)− φk(t) for Example 1 for k = 1, . . . , 4.

Finally, to deal with the question of uniqueness, let us suppose that the initial value
problem has two solutions φ andψ . Since φ andψ both satisfy the integral equation (9),
we have by subtraction that

φ(t)− ψ(t) =
∫ t

0
2s[φ(s)− ψ(s)] ds.

Taking absolute values of both sides, we have, if t > 0,

|φ(t)− ψ(t)| =
∣∣∣ ∫ t

0
2s[φ(s)− ψ(s)] ds

∣∣∣ ≤
∫ t

0
2s|φ(s)− ψ(s)| ds.
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If we restrict t to lie in the interval 0 ≤ t ≤ A/2, where A is arbitrary, then 2t ≤ A,
and

|φ(t)− ψ(t)| ≤ A
∫ t

0
|φ(s)− ψ(s)| ds. (17)

It is now convenient to introduce the function U defined by

U (t) =
∫ t

0
|φ(s)− ψ(s)| ds. (18)

Then it follows at once that

U (0) = 0, (19)

U (t) ≥ 0, for t ≥ 0. (20)

Further, U is differentiable, and U ′(t) = |φ(t)− ψ(t)|. Hence, by Eq. (17),

U ′(t)− AU (t) ≤ 0. (21)

Multiplying Eq. (21) by the positive quantity e−At gives

[e−AtU (t)]′ ≤ 0. (22)

Then, upon integrating Eq. (22) from zero to t and using Eq. (19), we obtain

e−AtU (t) ≤ 0 for t ≥ 0.

Hence U (t) ≤ 0 for t ≥ 0, and in conjunction with Eq. (20), this requires that U (t) = 0
for each t ≥ 0. Thus U ′(t) ≡ 0, and therefore ψ(t) ≡ φ(t), which contradicts the
original hypothesis. Consequently, there cannot be two different solutions of the initial
value problem for t ≥ 0. A slight modification of this argument leads to the same
conclusion for t ≤ 0.

Returning now to the general problem of solving the integral equation (3), let us
consider briefly each of the questions raised earlier:

1. Do all members of the sequence {φn} exist? In the example f and ∂ f/∂y were
continuous in the whole t y-plane, and each member of the sequence could be
explicitly calculated. In contrast, in the general case, f and ∂ f/∂y are assumed to
be continuous only in the rectangle R: |t | ≤ a, |y| ≤ b (see Figure 2.8.3). Further-
more, the members of the sequence cannot as a rule be explicitly determined. The
danger is that at some stage, say for n = k, the graph of y = φk(t) may contain
points that lie outside of the rectangle R. Hence at the next stage—in the compu-
tation of φk+1(t)—it would be necessary to evaluate f (t, y) at points where it is
not known to be continuous or even to exist. Thus the calculation of φk+1(t)might
be impossible.

To avoid this danger it may be necessary to restrict t to a smaller interval than
|t | ≤ a. To find such an interval we make use of the fact that a continuous function
on a closed bounded region is bounded. Hence f is bounded on R; thus there exists
a positive number M such that

| f (t, y)| ≤ M, (t, y) in R. (23)
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FIGURE 2.8.3 Region of definition for Theorem 2.8.1.

We have mentioned before that

φn(0) = 0

for each n. Since f [t, φk(t)] is equal to φ′
k+1(t), the maximum absolute slope

of the graph of the equation y = φk+1(t) is M . Since this graph contains the
point (0, 0) it must lie in the wedge-shaped shaded region in Figure 2.8.4. Hence
the point [t, φk+1(t)] remains in R at least as long as R contains the wedge-
shaped region, which is for |t | ≤ b/M . We hereafter consider only the rectangle
D: |t | ≤ h, |y| ≤ b, where h is equal either to a or to b/M , whichever is smaller.
With this restriction, all members of the sequence {φn(t)} exist. Note that if
b/M < a, then a larger value of h can be obtained by finding a better bound
for | f (t, y)|, provided that M is not already equal to the maximum value of
| f (t, y)|.

2. Does the sequence {φn(t)} converge? As in the example, we can identify φn(t) =
φ1(t)+ [φ2(t)− φ1(t)] + · · · + [φn(t)− φn−1(t)] as the nth partial sum of the
series

φ1(t)+
∞∑

k=1

[φk+1(t)− φk(t)]. (24)

The convergence of the sequence {φn(t)} is established by showing that the
series (24) converges. To do this, it is necessary to estimate the magnitude
|φk+1(t)− φk(t)| of the general term. The argument by which this is done is

(a) (b)

y = b

t = a
t = –a t = at = –a

y = –b

y = b

y = –b

t = – b
M

t = b
M

y

t

y

t

y =   n(t)φ y =   n(t)φ

FIGURE 2.8.4 Regions in which successive iterates lie. (a) b/M < a; (b) b/M > a.
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indicated in Problems 15 through 18 and will be omitted here. Assuming that the
sequence converges, we denote the limit function by φ, so that

φ(t) = lim
n→∞φn(t). (25)

3. What are the properties of the limit function φ? In the first place, we would like to
know that φ is continuous. This is not, however, a necessary consequence of the
convergence of the sequence {φn(t)}, even though each member of the sequence
is itself continuous. Sometimes a sequence of continuous functions converges to
a limit function that is discontinuous. A simple example of this phenomenon is
given in Problem 13. One way to show that φ is continuous is to show not only
that the sequence {φn} converges, but also that it converges in a certain manner,
known as uniform convergence. We do not take up this question here but note only
that the argument referred to in paragraph 2 is sufficient to establish the uniform
convergence of the sequence {φn} and, hence, the continuity of the limit function
φ in the interval |t | ≤ h.

Now let us return to Eq. (7),

φn+1(t) =
∫ t

0
f [s, φn(s)] ds.

Allowing n to approach ∞ on both sides, we obtain

φ(t) = lim
n→∞

∫ t

0
f [s, φn(s)] ds. (26)

We would like to interchange the operations of integrating and taking the limit on
the right side of Eq. (26) so as to obtain

φ(t) =
∫ t

0
lim

n→∞ f [s, φn(s)] ds. (27)

In general, such an interchange is not permissible (see Problem 14, for example),
but once again the fact that the sequence {φn(t)} converges uniformly is sufficient
to allow us to take the limiting operation inside the integral sign. Next, we wish to
take the limit inside the function f , which would give

φ(t) =
∫ t

0
f [s, lim

n→∞φn(s)] ds (28)

and hence

φ(t) =
∫ t

0
f [s, φ(s)] ds. (29)

The statement that lim
n→∞ f [s, φn(s)] = f [s, lim

n→∞φn(s)] is equivalent to the state-

ment that f is continuous in its second variable, which is known by hypothesis.
Hence Eq. (29) is valid and the function φ satisfies the integral equation (3).
Therefore φ is also a solution of the initial value problem (2).

4. Are there other solutions of the integral equation (3) beside y = φ(t)? To show
the uniqueness of the solution y = φ(t), we can proceed much as in the example.
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First, assume the existence of another solution y = ψ(t). It is then possible to
show (see Problem 19) that the difference φ(t)− ψ(t) satisfies the inequality

|φ(t)− ψ(t)| ≤ A
∫ t

0
|φ(s)− ψ(s)| ds (30)

for 0 ≤ t ≤ h and a suitable positive number A. From this point the argument is
identical to that given in the example, and we conclude that there is no solution
of the initial value problem (2) other than the one generated by the method of
successive approximations.

PROBLEMS In each of Problems 1 and 2 transform the given initial value problem into an equivalent problem
with the initial point at the origin.

1. dy/dt = t2 + y2, y(1) = 2 2. dy/dt = 1 − y3, y(−1) = 3

In each of Problems 3 through 6 let φ0(t) = 0 and use the method of successive approximations
to solve the given initial value problem.

(a) Determine φn(t) for an arbitrary value of n.
(b) Plot φn(t) for n = 1, . . . , 4. Observe whether the iterates appear to be converging.
(c) Express lim

n→∞φn(t) = φ(t) in terms of elementary functions; that is, solve the given

initial value problem.
(d) Plot |φ(t)− φn(t)| for n = 1, . . . , 4. For each of φ1(t), . . . , φ4(t) estimate the interval
in which it is a reasonably good approximation to the actual solution.

� 3. y′ = 2(y + 1), y(0) = 0 � 4. y′ = −y − 1, y(0) = 0

� 5. y′ = −y/2 + t, y(0) = 0 � 6. y′ = y + 1 − t, y(0) = 0

In each of Problems 7 and 8 let φ0(t) = 0 and use the method of successive approximations to
solve the given initial value problem.

(a) Determine φn(t) for an arbitrary value of n.
(b) Plot φn(t) for n = 1, . . . , 4. Observe whether the iterates appear to be converging.

� 7. y′ = t y + 1, y(0) = 0 � 8. y′ = t2 y − t, y(0) = 0

In each of Problems 9 and 10 let φ0(t) = 0 and use the method of successive approximations to
approximate the solution of the given initial value problem.

(a) Calculate φ1(t), . . . , φ3(t).
(b) Plot φ1(t), . . . , φ3(t) and observe whether the iterates appear to be converging.

� 9. y′ = t2 + y2, y(0) = 0 � 10. y′ = 1 − y3, y(0) = 0

In each of Problems 11 and 12 let φ0(t) = 0 and use the method of successive approximations
to approximate the solution of the given initial value problem.

(a) Calculate φ1(t), . . . , φ4(t), or (if necessary) Taylor approximations to these iterates.
Keep terms up to order six.
(b) Plot the functions you found in part (a) and observe whether they appear to be con-
verging.

� 11. y′ = − sin y + 1, y(0) = 0

� 12. y′ = (3t2 + 4t + 2)/2(y − 1), y(0) = 0

13. Let φn(x) = xn for 0 ≤ x ≤ 1 and show that

lim
n→∞φn(x) =

{
0, 0 ≤ x < 1,
1, x = 1.



114 Chapter 2. First Order Differential Equations

This example shows that a sequence of continuous functions may converge to a limit
function that is discontinuous.

14. Consider the sequence φn(x) = 2nxe−nx2
, 0 ≤ x ≤ 1.

(a) Show that lim
n→∞φn(x) = 0 for 0 ≤ x ≤ 1; hence

∫ 1

0
lim

n→∞φn(x) dx = 0.

(b) Show that
∫ 1

0
2nxe−nx2

dx = 1 − e−n ; hence

lim
n→∞

∫ 1

0
φn(x) dx = 1.

Thus, in this example,

lim
n→∞

∫ b

a
φn(x) dx �=

∫ b

a
lim

n→∞φn(x) dx,

even though lim
n→∞φn(x) exists and is continuous.

In Problems 15 through 18 we indicate how to prove that the sequence {φn(t)}, defined by
Eqs. (4) through (7), converges.

15. If ∂ f/∂y is continuous in the rectangle D, show that there is a positive constant K such
that

| f (t,y1)− f (t,y2)| ≤ K |y1 − y2|,
where (t,y1) and (t,y2) are any two points in D having the same t coordinate. This inequality
is known as a Lipschitz condition.
Hint: Hold t fixed and use the mean value theorem on f as a function of y only. Choose K
to be the maximum value of |∂ f/∂y| in D.

16. If φn−1(t) and φn(t) are members of the sequence {φn(t)}, use the result of Problem 15 to
show that

| f [t, φn(t)] − f [t, φn−1(t)]| ≤ K |φn(t)− φn−1(t)|.
17. (a) Show that if |t | ≤ h, then

|φ1(t)| ≤ M |t |,
where M is chosen so that | f (t,y)| ≤ M for (t,y) in D.
(b) Use the results of Problem 16 and part (a) of Problem 17 to show that

|φ2(t)− φ1(t)| ≤ M K |t |2
2

.

(c) Show, by mathematical induction, that

|φn(t)− φn−1(t)| ≤ M K n−1|t |n
n!

≤ M K n−1hn

n!
.

18. Note that

φn(t) = φ1(t)+ [φ2(t)− φ1(t)] + · · · + [φn(t)− φn−1(t)].

(a) Show that

|φn(t)| ≤ |φ1(t)| + |φ2(t)− φ1(t)| + · · · + |φn(t)− φn−1(t)|.
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(b) Use the results of Problem 17 to show that

|φn(t)| ≤ M

K

[
K h + (K h)2

2!
+ · · · + (K h)n

n!

]
.

(c) Show that the sum in part (b) converges as n → ∞ and, hence, the sum in part (a) also
converges as n → ∞. Conclude therefore that the sequence {φn(t)} converges since it is
the sequence of partial sums of a convergent infinite series.

19. In this problem we deal with the question of uniqueness of the solution of the integral
equation (3),

φ(t) =
∫ t

0
f [s, φ(s)] ds.

(a) Suppose that φ and ψ are two solutions of Eq. (3). Show that, for t ≥ 0,

φ(t)− ψ(t) =
∫ t

0
{ f [s, φ(s)] − f [s, ψ(s)]} ds.

(b) Show that

|φ(t)− ψ(t)| ≤
∫ t

0
| f [s, φ(s)] − f [s, ψ(s)]| ds.

(c) Use the result of Problem 15 to show that

|φ(t)− ψ(t)| ≤ K
∫ t

0
|φ(s)− ψ(s)| ds,

where K is an upper bound for |∂ f/∂y| in D. This is the same as Eq. (30), and the rest of
the proof may be constructed as indicated in the text.

2.9 First Order Difference Equations

While a continuous model leading to a differential equation is reasonable and attractive
for many problems, there are some cases in which a discrete model may be more natural.
For instance, the continuous model of compound interest used in Section 2.3 is only an
approximation to the actual discrete process. Similarly, sometimes population growth
may be described more accurately by a discrete than by a continuous model. This is
true, for example, of species whose generations do not overlap and that propagate at
regular intervals, such as at particular times of the calendar year. Then the population
yn+1 of the species in the year n + 1 is some function of n and the population yn in the
preceding year, that is,

yn+1 = f (n, yn), n = 0, 1, 2, . . . . (1)

Equation (1) is called a first order difference equation. It is first order because the
value of yn+1 depends on the value of yn , but not earlier values yn−1, yn−2, and so
forth. As for differential equations, the difference equation (1) is linear if f is a linear
function of yn; otherwise, it is nonlinear. A solution of the difference equation (1) is
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a sequence of numbers y0, y1, y2, . . . that satisfy the equation for each n. In addition
to the difference equation itself, there may also be an initial condition

y0 = α (2)

that prescribes the value of the first term of the solution sequence.
We now assume temporarily that the function f in Eq. (1) depends only on yn , but

not n. In this case

yn+1 = f (yn), n = 0, 1, 2, . . . . (3)

If y0 is given, then successive terms of the solution can be found from Eq. (3). Thus

y1 = f (y0),

and

y2 = f (y1) = f [ f (y0)].

The quantity f [ f (y0)] is called the second iterate of the difference equation and is
sometimes denoted by f 2(y0). Similarly, the third iterate y3 is given by

y3 = f (y2) = f { f [ f (y0)]} = f 3(y0),

and so on. In general, the nth iterate yn is

yn = f (yn−1) = f n(y0).

This procedure is referred to as iterating the difference equation. It is often of primary
interest to determine the behavior of yn as n → ∞, in particular, whether yn approaches
a limit, and if so, to find it.

Solutions for which yn has the same value for all n are called equilibrium solutions.
They are frequently of special importance, just as in the study of differential equations.
If equilibrium solutions exist, one can find them by setting yn+1 equal to yn in Eq. (3)
and solving the resulting equation

yn = f (yn) (4)

for yn .

Linear Equations. Suppose that the population of a certain species in a given region
in year n + 1, denoted by yn+1, is a positive multiple ρn of the population yn in year n;
that is,

yn+1 = ρn yn, n = 0, 1, 2, . . . . (5)

Note that the reproduction rate ρn may differ from year to year. The difference equa-
tion (5) is linear and can easily be solved by iteration. We obtain

y1 = ρ0 y0,

y2 = ρ1 y1 = ρ1ρ0 y0,

and, in general,

yn = ρn−1 · · · ρ0 y0, n = 1, 2, . . . . (6)

Thus, if the initial population y0 is given, then the population of each succeeding gen-
eration is determined by Eq. (6). Although for a population problem ρn is intrinsically
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positive, the solution (6) is also valid if ρn is negative for some or all values of n. Note,
however, that if ρn is zero for some n, then yn+1 and all succeeding values of y are
zero; in other words, the species has become extinct.

If the reproduction rate ρn has the same value ρ for each n, then the difference
equation (5) becomes

yn+1 = ρyn (7)

and its solution is

yn = ρn y0. (8)

Equation (7) also has an equilibrium solution, namely, yn = 0 for all n, corresponding
to the initial value y0 = 0.The limiting behavior of yn is easy to determine from Eq. (8).
In fact,

lim
n→∞ yn =




0, if |ρ| < 1;
y0, if ρ = 1;
does not exist, otherwise.

(9)

In other words, the equilibrium solution yn = 0 is asymptotically stable for |ρ| < 1
and unstable if |ρ| > 1.

Now we will modify the population model represented by Eq. (5) to include the
effect of immigration or emigration. If bn is the net increase in population in year n
due to immigration, then the population in year n + 1 is the sum of those due to natural
reproduction and those due to immigration. Thus

yn+1 = ρyn + bn, n = 0, 1, 2, . . . , (10)

where we are now assuming that the reproduction rate ρ is constant. We can solve
Eq. (10) by iteration in the same manner as before. We have

y1 = ρy0 + b0,

y2 = ρ(ρy0 + b0)+ b1 = ρ2 y0 + ρb0 + b1,

y3 = ρ(ρ2 y0 + ρb0 + b1)+ b2 = ρ3 y0 + ρ2b0 + ρb1 + b2,

and so forth. In general, we obtain

yn = ρn y0 + ρn−1b0 + · · · + ρbn−2 + bn−1 = ρn y0 +
n−1∑
j=0

ρn−1− j bj . (11)

Note that the first term on the right side of Eq. (11) represents the descendants of the
original population, while the other terms represent the population in year n resulting
from immigration in all preceding years.

In the special case where bn = b for all n, the difference equation is

yn+1 = ρyn + b, (12)

and from Eq. (11) its solution is

yn = ρn y0 + (1 + ρ + ρ2 + · · · + ρn−1)b. (13)

If ρ �= 1, we can write this solution in the more compact form

yn = ρn y0 + 1 − ρn

1 − ρ
b, (14)
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where again the two terms on the right side are the effects of the original population
and of immigration, respectively. By rewriting Eq. (14) as

yn = ρn

(
y0 − b

1 − ρ

)
+ b

1 − ρ
, (15)

the long-time behavior of yn is more evident. It follows from Eq. (15) that yn →
b/(1 − ρ) if |ρ| < 1 and that yn has no limit if |ρ| > 1 or if ρ = −1. The quantity
b/(1 − ρ) is an equilibrium solution of Eq. (12), as can readily be seen directly from
that equation. Of course, Eq. (14) is not valid for ρ = 1. To deal with that case, we
must return to Eq. (13) and let ρ = 1 there. It follows that

yn = y0 + nb, (16)

so in this case yn becomes unbounded as n → ∞.
The same model also provides a framework for solving many problems of a financial

character. For such problems yn is the account balance in the nth time period, ρn =
1 + rn , where rn is the interest rate for that period, and bn is the amount deposited or
withdrawn. The following is a typical example.

E X A M P L E

1

A recent college graduate takes out a $10,000 loan to purchase a car. If the interest rate
is 12%, what monthly payment is required to pay off the loan in 4 years?

The relevant difference equation is Eq. (12), where yn is the loan balance outstanding
in the nth month, ρ = 1 + r is the interest rate per month, and b is the monthly payment.
Note that b must be negative and ρ = 1.01, corresponding to a monthly interest rate
of 1%.

The solution of the difference equation (12) with this value for ρ and the initial
condition y0 = 10,000 is given by Eq. (15), that is,

yn = (1.01)n(10,000 + 100b)− 100b. (17)

The payment b needed to pay off the loan in 4 years is found by setting y48 = 0 and
solving for b. This gives

b = −100
(1.01)48

(1.01)48 − 1
= −263.34. (18)

The total amount paid on the loan is 48 times b or $12,640.32. Of this amount $10,000
is repayment of the principal and the remaining $2640.32 is interest.

Nonlinear Equations. Nonlinear difference equations are much more complicated
and have much more varied solutions than linear equations. We will restrict our attention
to a single equation, the logistic difference equation

yn+1 = ρyn

(
1 − yn

k

)
, (19)

which is analogous to the logistic differential equation

dy

dt
= ry

(
1 − y

K

)
(20)



2.9 First Order Difference Equations 119

that was discussed in Section 2.5. Note that if the derivative dy/dt in Eq. (20) is replaced
by the difference (yn+1 − yn)/h, then Eq. (20) reduces to Eq. (19) with ρ = 1 + hr
and k = (1 + hr)K/hr . To simplify Eq. (19) a little more, we can scale the variable
yn by introducing the new variable un = yn/k. Then Eq. (19) becomes

un+1 = ρun(1 − un), (21)

where ρ is a positive parameter.
We begin our investigation of Eq. (21) by seeking the equilibrium, or constant

solutions. These can be found by setting un+1 equal to un in Eq. (21), which corresponds
to setting dy/dt equal to zero in Eq. (20). The resulting equation is

un = ρun − ρu2
n, (22)

so it follows that the equilibrium solutions of Eq. (21) are

un = 0, un = ρ − 1

ρ
. (23)

The next question is whether the equilibrium solutions are asymptotically stable or
unstable; that is, for an initial condition near one of the equilibrium solutions, does
the resulting solution sequence approach or depart from the equilibrium solution? One
way to examine this question is by approximating Eq. (21) by a linear equation in the
neighborhood of an equilibrium solution. For example, near the equilibrium solution
un = 0, the quantity u2

n is small compared to un itself, so we assume that we can neglect
the quadratic term in Eq. (21) in comparison with the linear terms. This leaves us with
the linear difference equation

un+1 = ρun, (24)

which is presumably a good approximation to Eq. (21) for un sufficiently near zero.
However, Eq. (24) is the same as Eq. (7), and we have already concluded, in Eq. (9),
that un → 0 as n → ∞ if and only if |ρ| < 1, or since ρ must be positive, for 0 <
ρ < 1. Thus the equilibrium solution un = 0 is asymptotically stable for the linear
approximation (24) for this set of ρ values, so we conclude that it is also asymptotically
stable for the full nonlinear equation (21). This conclusion is correct, although our
argument is not complete. What is lacking is a theorem stating that the solutions of the
nonlinear equation (21) resemble those of the linear equation (24) near the equilibrium
solution un = 0. We will not take time to discuss this issue here; the same question is
treated for differential equations in Section 9.3.

Now consider the other equilibrium solution un = (ρ − 1)/ρ. To study solutions in
the neighborhood of this point, we write

un = ρ − 1

ρ
+ vn, (25)

where we assume that vn is small. By substituting from Eq. (25) in Eq. (21) and
simplifying the resulting equation, we eventually obtain

vn+1 = (2 − ρ)vn − ρv2
n . (26)

Since vn is small, we again neglect the quadratic term in comparison with the linear
terms and thereby obtain the linear equation

vn+1 = (2 − ρ)vn. (27)
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Referring to Eq. (9) once more, we find that vn → 0 as n → ∞ for |2 − ρ| < 1, that is,
for 1 < ρ < 3. Therefore we conclude that, for this range of values of ρ, the equilibrium
solution un = (ρ − 1)/ρ is asymptotically stable.

Figure 2.9.1 contains the graphs of solutions of Eq. (21) for ρ = 0.8, ρ = 1.5, and
ρ = 2.8, respectively. Observe that the solution converges to zero for ρ = 0.8 and to the
nonzero equilibrium solution for ρ = 1.5 and ρ = 2.8. The convergence is monotone
for ρ = 0.8 and ρ = 1.5 and is oscillatory for ρ = 2.8. While the graphs shown are
for particular initial conditions, the graphs for other initial conditions are similar.

Another way of displaying the solution of a difference equation is shown in Figure
2.9.2. In each part of this figure the graphs of the parabola y = ρx(1 − x) and of the
straight line y = x are shown. The equilibrium solutions correspond to the points of
intersection of these two curves. The piecewise linear graph consisting of successive
vertical and horizontal line segments, sometimes called a stairstep diagram, represents
the solution sequence. The sequence starts at the point u0 on the x-axis. The vertical
line segment drawn upward to the parabola at u0 corresponds to the calculation of
ρu0(1 − u0) = u1. This value is then transferred from the y-axis to the x-axis; this step
is represented by the horizontal line segment from the parabola to the line y = x . Then
the process is repeated over and over again. Clearly, the sequence converges to the
origin in Figure 2.9.2a and to the nonzero equilibrium solution in the other two cases.

To summarize our results so far: The difference equation (21) has two equilibrium
solutions, un = 0 and un = (ρ − 1)/ρ; the former is stable for 0 ≤ ρ < 1, and the latter
is stable for 1 < ρ < 3. This can be depicted as shown in Figure 2.9.3. The parameter
ρ is plotted on the horizontal axis and u on the vertical axis. The equilibrium solutions
u = 0 and u = (ρ − 1)/ρ are shown. The intervals in which each one is stable are
indicated by the heavy portions of the curves. Note that the two curves intersect atρ = 1,
where there is an exchange of stability from one equilibrium solution to the other.

For ρ > 3 neither of the equilibrium solutions is stable, and the solutions of Eq. (21)
exhibit increasing complexity as ρ increases. For ρ somewhat greater than 3 the se-
quence un rapidly approaches a steady oscillation of period 2; that is, un oscillates back
and forth between two distinct values. For ρ = 3.2 a solution is shown in Figure 2.9.4.
For n greater than about 20, the solution alternates between the values 0.5130 and
0.7995. The graph is drawn for the particular initial condition u0 = 0.3, but it is similar
for all other initial values between 0 and 1. Figure 2.9.4b also shows the same steady
oscillation as a rectangular path that is traversed repeatedly in the clockwise direction.

2 64 8

( c)

2 64 8

( b)

2 64 8

( a)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

un =      = 0.6429~1.8
2.8

nnn

un un un

un = 1
3

FIGURE 2.9.1 Solutions of un+1 = ρun(1 − un): (a) ρ = 0.8; (b) ρ = 1.5; (c) ρ = 2.8.
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FIGURE 2.9.4 A solution of un+1 = ρun(1 − un) for ρ = 3.2; period two. (a) un versus n;
(b) a two-cycle.

At about ρ = 3.449 each state in the oscillation of period two separates into two dis-
tinct states, and the solution becomes periodic with period four; see Figure 2.9.5, which
shows a solution of period four for ρ = 3.5. As ρ increases further, periodic solutions
of period 8, 16, . . . appear. The appearance of a new solution at a certain parameter
value is called a bifurcation.

The ρ-values at which the successive period doublings occur approach a limit that
is approximately 3.57. For ρ > 3.57 the solutions possess some regularity, but no
discernible detailed pattern for most values of ρ. For example, a solution for ρ = 3.65
is shown in Figure 2.9.6. It oscillates between approximately 0.3 and 0.9, but its fine
structure is unpredictable. The term chaotic is used to describe this situation. One of
the features of chaotic solutions is extreme sensitivity to the initial conditions. This is
illustrated in Figure 2.9.7, where two solutions of Eq. (21) for ρ = 3.65 are shown. One
solution is the same as that in Figure 2.9.6 and has the initial value u0 = 0.3, while the
other solution has the initial value u0 = 0.305. For about 15 iterations the two solutions
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FIGURE 2.9.7 Two solutions of un+1 = ρun(1 − un) for ρ = 3.65; u0 = 0.3 and u0 = 0.305.

remain close and are hard to distinguish from each other in the figure. After that, while
they continue to wander about in approximately the same set of values, their graphs
are quite dissimilar. It would certainly not be possible to use one of these solutions to
estimate the value of the other for values of n larger than about 15.

It is only in the last several years that chaotic solutions of difference and differential
equations have become widely known. Equation (20) was one of the first instances of
mathematical chaos to be found and studied in detail, by Robert May13 in 1974. On
the basis of his analysis of this equation as a model of the population of certain insect
species, May suggested that if the growth rate ρ is too large, then it will be impossible to
make effective long-range predictions about these insect populations. The occurrence of
chaotic solutions in simple problems has stimulated an enormous amount of research in
recent years, but many questions remain unanswered. It is increasingly clear, however,
that chaotic solutions are much more common than suspected at first and may be a part
of the investigation of a wide range of phenomena.

PROBLEMS In each of Problems 1 through 6 solve the given difference equation in terms of the initial value
y0. Describe the behavior of the solution as n → ∞.

1. yn+1 = −0.9yn 2. yn+1 = n + 1

n + 2
yn

3. yn+1 =
√

n + 3

n + 1
yn 4. yn+1 = (−1)n+1 yn

5. yn+1 = 0.5yn + 6 6. yn+1 = −0.5yn + 6

13R. M. May, “Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos,”
Science 186 (1974), pp. 645–647; “Biological Populations Obeying Difference Equations: Stable Points, Stable
Cycles, and Chaos,” Journal of Theoretical Biology 51 (1975), pp. 511–524.
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7. Find the effective annual yield of a bank account that pays interest at a rate of 7%,
compounded daily; that is, find the ratio of the difference between the final and initial
balances divided by the initial balance.

8. An investor deposits $1000 in an account paying interest at a rate of 8% compounded
monthly, and also makes additional deposits of $25 per month. Find the balance in the
account after 3 years.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at an
annual rate of 10%. What monthly payment rate is required to pay off the loan in 3 years?
Compare your result with that of Problem 9 in Section 2.3.

10. A homebuyer wishes to take out a mortgage of $100,000 for a 30-year period. What
monthly payment is required if the interest rate is (a) 9%, (b) 10%, (c) 12%?

11. A homebuyer takes out a mortgage of $100,000 with an interest rate of 9%. What monthly
payment is required to pay off the loan in 30 years? In 20 years? What is the total amount
paid during the term of the loan in each of these cases?

12. If the interest rate on a 20-year mortgage is fixed at 10% and if a monthly payment of
$1000 is the maximum that the buyer can afford, what is the maximum mortgage loan that
can be made under these conditions?

13. A homebuyer wishes to finance the purchase with a $95,000 mortgage with a 20-year term.
What is the maximum interest rate the buyer can afford, if the monthly payment is not to
exceed $900?

The Logistic Difference Equation. Problems 14 through 19 deal with the difference equa-
tion (21), un+1 = ρun(1 − un).

14. Carry out the details in the linear stability analysis of the equilibrium solution un =
(ρ − 1)/ρ; that is, derive the difference equation (26) in the text for the perturbation vn .

� 15. (a) For ρ = 3.2 plot or calculate the solution of the logistic equation (21) for several
initial conditions, say, u0 = 0.2, 0.4, 0.6, and 0.8. Observe that in each case the solution
approaches a steady oscillation between the same two values. This illustrates that the
long-term behavior of the solution is independent of the initial conditions.
(b) Make similar calculations and verify that the nature of the solution for large n is
independent of the initial condition for other values of ρ, such as 2.6, 2.8, and 3.4.

16. Assume that ρ > 1 in Eq. (21).
(a) Draw a qualitatively correct stairstep diagram and thereby show that if u0 < 0, then
un → −∞ as n → ∞.
(b) In a similar way determine what happens as n → ∞ if u0 > 1.

� 17. The solutions of Eq. (21) change from convergent sequences to periodic oscillations of
period two as the parameter ρ passes through the value 3. To see more clearly how this
happens, carry out the following calculations.
(a) Plot or calculate the solution for ρ = 2.9, 2.95, and 2.99, respectively, using an initial
value u0 of your choice in the interval (0, 1). In each case estimate how many iterations
are required for the solution to get “very close” to the limiting value. Use any convenient
interpretation of what “very close” means in the preceding sentence.
(b) Plot or calculate the solution for ρ = 3.01, 3.05, and 3.1, respectively, using the same
initial condition as in part (a). In each case estimate how many iterations are needed to
reach a steady-state oscillation. Also find or estimate the two values in the steady-state
oscillation.

� 18. By calculating or plotting the solution of Eq. (21) for different values of ρ, estimate the
value of ρ for which the solution changes from an oscillation of period two to one of period
four. In the same way estimate the value of ρ for which the solution changes from period
four to period eight.

� 19. Let ρk be the value of ρ for which the solution of Eq. (21) changes from period 2k−1 to
period 2k . Thus, as noted in the text, ρ1 = 3, ρ2

∼= 3.449, and ρ3
∼= 3.544.
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(a) Using these values of ρ1, ρ2, and ρ3, or those you found in Problem 18, calculate
(ρ2 − ρ1)/(ρ3 − ρ2).
(b) Let δn = (ρn − ρn−1)/(ρn+1 − ρn). It has been shown that δn approaches a limit δ as
n → ∞, where δ ∼= 4.6692 is known as the Feigenbaum number. Determine the percentage
difference between the limiting value δ and δ2, as calculated in part (a).
(c) Assume that δ3 = δ and use this relation to estimate ρ4, the value of ρ at which
solutions of period 16 appear.
(d) By plotting or calculating solutions near the value of ρ4 found in part (c), try to detect
the appearance of a period 16 solution.
(e) Observe that

ρn = ρ1 + (ρ2 − ρ1)+ (ρ3 − ρ2)+ · · · + (ρn − ρn−1).

Assuming that (ρ4 − ρ3) = (ρ3 − ρ2)δ
−1, (ρ5 − ρ4) = (ρ3 − ρ2)δ

−2, and so forth, express
ρn as a geometric sum. Then find the limit of ρn as n → ∞. This is an estimate of the value
of ρ at which the onset of chaos occurs in the solution of the logistic equation (21).

PROBLEMS Miscellaneous Problems One of the difficulties in solving first order equations is that there
are several methods of solution, each of which can be used on a certain type of equation. It
may take some time to become proficient in matching solution methods with equations. The
following problems are presented so that you may have some practice in identifying the method
or methods applicable to a given equation.

In each of Problems 1 through 32 solve the given differential equation. If an initial condition
is given, also find the solution that satisfies it.

1.
dy

dx
= x3 − 2y

x
2. (x + y) dx − (x − y) dy = 0

3.
dy

dx
= 2x + y

3 + 3y2 − x
, y(0) = 0 4. (x + ey) dy − dx = 0

5.
dy

dx
= −2xy + y2 + 1

x2 + 2xy
6. x

dy

dx
+ xy = 1 − y, y(1) = 0

7.
dy

dx
= x

x2 y + y3 Hint: Let u = x2. 8. x
dy

dx
+ 2y = sin x

x
, y(2) = 1

9.
dy

dx
= −2xy + 1

x2 + 2y
10. (3y2 + 2xy) dx − (2xy + x2) dy = 0

11. (x2 + y) dx + (x + ey) dy = 0 12.
dy

dx
+ y = 1

1 + ex

13. x dy − y dx = (xy)1/2 dx

14. (x + y) dx + (x + 2y) dy = 0, y(2) = 3

15. (ex + 1)
dy

dx
= y − yex 16.

dy

dx
= x2 + y2

x2

17.
dy

dx
= e2x + 3y 18. (2y + 3x) dx = −x dy

19. x dy − y dx = 2x2 y2 dy, y(1) = −2 20. y′ = ex+y

21. xy′ = y + xey/x 22.
dy

dx
= x2 − 1

y2 + 1
, y(−1) = 1

23. xy′ + y − y2e2x = 0 24. 2 sin y cos x dx + cos y sin x dy = 0
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25.

(
2

x

y
− y

x2 + y2

)
dx +

(
x

x2 + y2 − x2

y2

)
dy = 0

26. (2y + 1) dx +
(

x2 − y

x

)
dy = 0

27. (cos 2y − sin x) dx − 2 tan x sin 2y dy = 0

28.
dy

dx
= 3x2 − 2y − y3

2x + 3xy2 29.
dy

dx
= 2y +

√
x2 − y2

2x

30.
dy

dx
= y3

1 − 2xy2 , y(0) = 1

31. (x2 y + xy − y) dx + (x2 y − 2x2) dy = 0

32.
dy

dx
= − 3x2 y + y2

2x3 + 3xy
, y(1) = −2
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C H A P T E R

3

Second Order
Linear Equations

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theoretical
structure that underlies a number of systematic methods of solution. Further, a substan-
tial portion of this structure and these methods are understandable at a fairly elementary
mathematical level. In order to present the key ideas in the simplest possible context,
we describe them in this chapter for second order equations. Another reason to study
second order linear equations is that they are vital to any serious investigation of the
classical areas of mathematical physics. One cannot go very far in the development of
fluid mechanics, heat conduction, wave motion, or electromagnetic phenomena without
finding it necessary to solve second order linear differential equations. As an example,
we discuss the oscillations of some basic mechanical and electrical systems at the end
of the chapter.

3.1 Homogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

d2 y

dt2 = f

(
t,y,

dy

dt

)
, (1)

where f is some given function. Usually, we will denote the independent variable by t
since time is often the independent variable in physical problems, but sometimes we

129
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will use x instead. We will use y, or occasionally some other letter, to designate the
dependent variable. Equation (1) is said to be linear if the function f has the form

f

(
t, y,

dy

dt

)
= g(t) − p(t)

dy

dt
− q(t)y, (2)

that is, if f is linear in y and y′. In Eq. (2) g, p, and q are specified functions of the
independent variable t but do not depend on y. In this case we usually rewrite Eq. (1)
as

y′′ + p(t)y′ + q(t)y = g(t), (3)

where the primes denote differentiation with respect to t . Instead of Eq. (3), we often
see the equation

P(t)y′′ + Q(t)y′ + R(t)y = G(t). (4)

Of course, if P(t) �= 0, we can divide Eq. (4) by P(t) and thereby obtain Eq. (3) with

p(t) = Q(t)

P(t)
, q(t) = R(t)

P(t)
, g(t) = G(t)

P(t)
. (5)

In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, q, and g are continuous functions.1

If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in Chapters 8 and 9. In addition, there are two
special types of second order nonlinear equations that can be solved by a change
of variables that reduces them to first order equations. This procedure is outlined in
Problems 28 through 43.

An initial value problem consists of a differential equation such as Eq. (1), (3), or
(4) together with a pair of initial conditions

y(t0) = y0, y′(t0) = y′
0, (6)

where y0 and y′
0 are given numbers. Observe that the initial conditions for a second

order equation prescribe not only a particular point (t0, y0) through which the graph of
the solution must pass, but also the slope y′

0 of the graph at that point. It is reasonable
to expect that two initial conditions are needed for a second order equation because,
roughly speaking, two integrations are required to find a solution and each integration
introduces an arbitrary constant. Presumably, two initial conditions will suffice to
determine values for these two constants.

A second order linear equation is said to be homogeneous if the term g(t) in
Eq. (3), or the term G(t) in Eq. (4), is zero for all t . Otherwise, the equation is
called nonhomogeneous. As a result, the term g(t), or G(t), is sometimes called the
nonhomogeneous term. We begin our discussion with homogeneous equations, which
we will write in the form

P(t)y′′ + Q(t)y′ + R(t)y = 0. (7)

1There is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may read the
appropriate parts of Chapter 4 in parallel with Chapter 3.
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Later, in Sections 3.6 and 3.7, we will show that once the homogeneous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous
equation (4), or at least to express the solution in terms of an integral. Thus the problem
of solving the homogeneous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P , Q, and R are constants. In this case, Eq. (7) becomes

ay′′ + by′ + cy = 0, (8)

where a, b, and c are given constants. It turns out that Eq. (8) can always be solved
easily in terms of the elementary functions of calculus. On the other hand, it is usually
much more difficult to solve Eq. (7) if the coefficients are not constants, and a treatment
of that case is deferred until Chapter 5.

Before taking up Eq. (8), let us first gain some experience by looking at a simple,
but typical, example. Consider the equation

y′′ − y = 0, (9)

which is just Eq. (8) with a = 1, b = 0, and c = −1. In words, Eq. (9) says that we
seek a function with the property that the second derivative of the function is the
same as the function itself. A little thought will probably produce at least one well-
known function from calculus with this property, namely, y1(t) = et , the exponential
function. A little more thought may also produce a second function, y2(t) = e−t . Some
further experimentation reveals that constant multiples of these two solutions are also
solutions. For example, the functions 2et and 5e−t also satisfy Eq. (9), as you can verify
by calculating their second derivatives. In the same way, the functions c1 y1(t) = c1et

and c2 y2(t) = c2e−t satisfy the differential equation (9) for all values of the constants
c1 and c2. Next, it is of paramount importance to notice that any sum of solutions of
Eq. (9) is also a solution. In particular, since c1 y1(t) and c2 y2(t) are solutions of Eq. (9),
so is the function

y = c1 y1(t) + c2 y2(t) = c1et + c2e−t (10)

for any values of c1 and c2. Again, this can be verified by calculating the second
derivative y′′ from Eq. (10). We have y′ = c1et − c2e−t and y′′ = c1et + c2e−t ; thus
y′′ is the same as y, and Eq. (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice that the
functions y1(t) = et and y2(t) = e−t are solutions of Eq. (9), it follows that the general
linear combination (10) of these functions is also a solution. Since the coefficients c1
and c2 in Eq. (10) are arbitrary, this expression represents a doubly infinite family of
solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite
family of solutions that also satisfies a given set of initial conditions. For example,
suppose that we want the solution of Eq. (9) that also satisfies the initial conditions

y(0) = 2, y′(0) = −1. (11)

In other words, we seek the solution that passes through the point (0, 2) and at that
point has the slope −1. First, we set t = 0 and y = 2 in Eq. (10); this gives the equation

c1 + c2 = 2. (12)



132 Chapter 3. Second Order Linear Equations

Next, we differentiate Eq. (10) with the result that

y′ = c1et − c2e−t .

Then, setting t = 0 and y′ = −1, we obtain

c1 − c2 = −1. (13)

By solving Eqs. (12) and (13) simultaneously for c1 and c2 we find that

c1 = 1
2 , c2 = 3

2 . (14)

Finally, inserting these values in Eq. (10), we obtain

y = 1
2 et + 3

2 e−t , (15)

the solution of the initial value problem consisting of the differential equation (9) and
the initial conditions (11).

We now return to the more general equation (8),

ay′′ + by′ + cy = 0,

which has arbitrary (real) constant coefficients. Based on our experience with Eq. (9),
let us also seek exponential solutions of Eq. (8). Thus we suppose that y = ert , where
r is a parameter to be determined. Then it follows that y′ = rert and y′′ = r2ert . By
substituting these expressions for y, y′, and y′′ in Eq. (8), we obtain

(ar2 + br + c)ert = 0,

or, since ert �= 0,

ar2 + br + c = 0. (16)

Equation (16) is called the characteristic equation for the differential equation (8).
Its significance lies in the fact that if r is a root of the polynomial equation (16), then
y = ert is a solution of the differential equation (8). Since Eq. (16) is a quadratic
equation with real coefficients, it has two roots, which may be real and different, real
but repeated, or complex conjugates. We consider the first case here, and the latter two
cases in Sections 3.4 and 3.5.

Assuming that the roots of the characteristic equation (16) are real and different, let
them be denoted by r1 and r2, where r1 �= r2. Then y1(t) = er1t and y2(t) = er2t are
two solutions of Eq. (8). Just as in the preceding example, it now follows that

y = c1 y1(t) + c2 y2(t) = c1er1t + c2er2t (17)

is also a solution of Eq. (8). To verify that this is so, we can differentiate the expression
in Eq. (17); hence

y′ = c1r1er1t + c2r2er2t (18)

and

y′′ = c1r2
1 er1t + c2r2

2 er2t . (19)

Substituting these expressions for y, y′, and y′′ in Eq. (8) and rearranging terms, we
obtain

ay′′ + by′ + cy = c1(ar2
1 + br1 + c)er1t + c2(ar2

2 + br2 + c)er2t . (20)
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The quantity in each of the parentheses on the right side of Eq. (20) is zero because r1
and r2 are roots of Eq. (16); therefore, y as given by Eq. (17) is indeed a solution of
Eq. (8), as we wished to verify.

Now suppose that we want to find the particular member of the family of solutions
(17) that satisfies the initial conditions (6),

y(t0) = y0, y′(t0) = y′
0.

By substituting t = t0 and y = y0 in Eq. (17), we obtain

c1er1t0 + c2er2t0 = y0. (21)

Similarly, setting t = t0 and y′ = y′
0 in Eq. (18) gives

c1r1er1t0 + c2r2er2t0 = y′
0. (22)

On solving Eqs. (21) and (22) simultaneously for c1 and c2, we find that

c1 = y′
0 − y0r2

r1 − r2

e−r1t0, c2 = y0r1 − y′
0

r1 − r2

e−r2t0 . (23)

Thus, no matter what initial conditions are assigned, that is, regardless of the values
of t0, y0, and y′

0 in Eqs. (6), it is always possible to determine c1 and c2 so that the
initial conditions are satisfied; moreover, there is only one possible choice of c1 and c2
for each set of initial conditions. With the values of c1 and c2 given by Eq. (23), the
expression (17) is the solution of the initial value problem

ay′′ + by′ + cy = 0, y(t0) = y0, y′(t0) = y′
0. (24)

It is possible to show, on the basis of the fundamental theorem cited in the next
section, that all solutions of Eq. (8) are included in the expression (17), at least for the
case in which the roots of Eq. (16) are real and different. Therefore, we call Eq. (17) the
general solution of Eq. (8). The fact that any possible initial conditions can be satisfied
by the proper choice of the constants in Eq. (17) makes more plausible the idea that
this expression does include all solutions of Eq. (8).

E X A M P L E

1

Find the general solution of

y′′ + 5y′ + 6y = 0. (25)

We assume that y = ert , and it then follows that r must be a root of the characteristic
equation

r2 + 5r + 6 = (r + 2)(r + 3) = 0.

Thus the possible values of r are r1 = −2 and r2 = −3; the general solution of
Eq. (25) is

y = c1e−2t + c2e−3t . (26)

E X A M P L E

2

Find the solution of the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3. (27)



134 Chapter 3. Second Order Linear Equations

The general solution of the differential equation was found in Example 1 and is given
by Eq. (26). To satisfy the first initial condition we set t = 0 and y = 2 in Eq. (26);
thus c1 and c2 must satisfy

c1 + c2 = 2. (28)

To use the second initial condition we must first differentiate Eq. (26). This gives
y′ = −2c1e−2t − 3c2e−3t . Then, setting t = 0 and y′ = 3, we obtain

−2c1 − 3c2 = 3. (29)

By solving Eqs. (28) and (29) we find that c1 = 9 and c2 = −7. Using these values in
the expression (26), we obtain the solution

y = 9e−2t − 7e−3t (30)

of the initial value problem (27). The graph of the solution is shown in Figure 3.1.1.

y

t

2

1

0.5 1 1.5 2

y = 9e–2 t – 7e–3t

FIGURE 3.1.1 Solution of y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3.

E X A M P L E

3

Find the solution of the initial value problem

4y′′ − 8y′ + 3y = 0, y(0) = 2, y′(0) = 1
2 . (31)

If y = ert , then the characteristic equation is

4r2 − 8r + 3 = 0

and its roots are r = 3/2 and r = 1/2. Therefore the general solution of the differential
equation is

y = c1e3t/2 + c2et/2. (32)

Applying the initial conditions, we obtain the following two equations for c1 and c2:

c1 + c2 = 2, 3
2 c1 + 1

2 c2 = 1
2 .

The solution of these equations is c1 = − 1
2 , c2 = 5

2 , and the solution of the initial value
problem (31) is

y = − 1
2 e3t/2 + 5

2 et/2. (33)

Figure 3.1.2 shows the graph of the solution.
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y = –    e3t/2 +    et/21

2
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y

t

FIGURE 3.1.2 Solution of 4y′′ − 8y′ + 3y = 0, y(0) = 2, y′(0) = 0.5.

E X A M P L E

4

The solution (30) of the initial value problem (27) initially increases (because its initial
slope is positive) but eventually approaches zero (because both terms involve negative
exponential functions). Therefore the solution must have a maximum point and the
graph in Figure 3.1.1 confirms this. Determine the location of this maximum point.

One can estimate the coordinates of the maximum point from the graph, but to find
them more precisely we seek the point where the solution has a horizontal tangent line.
By differentiating the solution (30), y = 9e−2t − 7e−3t , with respect to t we obtain

y′ = −18e−2t + 21e−3t . (34)

Setting y′ equal to zero and multiplying by e3t , we find that the critical value tc satisfies
et = 7/6; hence

tc = ln(7/6) ∼= 0.15415. (35)

The corresponding maximum value yM is given by

yM = 9e−2tc − 7e−3tc = 108

49
∼= 2.20408. (36)

In this example the initial slope is 3, but the solution of the given differential equation
behaves in a similar way for any other positive initial slope. In Problem 26 you are
asked to determine how the coordinates of the maximum point depend on the initial
slope.

Returning to the equation ay′′ + by′ + cy = 0 with arbitrary coefficients, recall
that when r1 �= r2, its general solution (17) is the sum of two exponential functions.
Therefore the solution has a relatively simple geometrical behavior: as t increases,
the magnitude of the solution either tends to zero (when both exponents are negative)
or else grows rapidly (when at least one exponent is positive). These two cases are
illustrated by the solutions of Examples 2 and 3, which are shown in Figures 3.1.1
and 3.1.2, respectively. There is also a third case that occurs less often; the solution
approaches a constant when one exponent is zero and the other is negative.
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PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation.

1. y′′ + 2y′ − 3y = 0 2. y′′ + 3y′ + 2y = 0
3. 6y′′ − y′ − y = 0 4. 2y′′ − 3y′ + y = 0
5. y′′ + 5y′ = 0 6. 4y′′ − 9y = 0
7. y′′ − 9y′ + 9y = 0 8. y′′ − 2y′ − 2y = 0

In each of Problems 9 through 16 find the solution of the given initial value problem. Sketch the
graph of the solution and describe its behavior as t increases.

9. y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1
10. y′′ + 4y′ + 3y = 0, y(0) = 2, y′(0) = −1
11. 6y′′ − 5y′ + y = 0, y(0) = 4, y′(0) = 0
12. y′′ + 3y′ = 0, y(0) = −2, y′(0) = 3
13. y′′ + 5y′ + 3y = 0, y(0) = 1, y′(0) = 0
14. 2y′′ + y′ − 4y = 0, y(0) = 0, y′(0) = 1
15. y′′ + 8y′ − 9y = 0, y(1) = 1, y′(1) = 0
16. 4y′′ − y = 0, y(−2) = 1, y′(−2) = −1

17. Find a differential equation whose general solution is y = c1e2t + c2e−3t .
18. Find a differential equation whose general solution is y = c1e−t/2 + c2e−2t .

� 19. Find the solution of the initial value problem

y′′ − y = 0, y(0) = 5
4 , y′(0) = − 3

4 .

Plot the solution for 0 ≤ t ≤ 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y′′ − 3y′ + y = 0, y(0) = 2, y′(0) = 1
2 .

Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solve the initial value problem y′′ − y′ − 2y = 0, y(0) = α, y′(0) = 2. Then find α so
that the solution approaches zero as t → ∞.

22. Solve the initial value problem 4y′′ − y = 0, y(0) = 2, y′(0) = β. Then find β so that
the solution approaches zero as t → ∞.

In each of Problems 23 and 24 determine the values of α, if any, for which all solutions tend to
zero as t → ∞; also determine the values of α, if any, for which all (nonzero) solutions become
unbounded as t → ∞.

23. y′′ − (2α − 1)y′ + α(α − 1)y = 0 24. y′′ + (3 − α)y′ − 2(α − 1)y = 0

� 25. Consider the initial value problem

2y′′ + 3y′ − 2y = 0, y(0) = 1, y′(0) = −β,

where β > 0.
(a) Solve the initial value problem.
(b) Plot the solution when β = 1. Find the coordinates (t0,y0) of the minimum point of
the solution in this case.
(c) Find the smallest value of β for which the solution has no minimum point.

� 26. Consider the initial value problem (see Example 4)

y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = β,

where β > 0.
(a) Solve the initial value problem.
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(b) Determine the coordinates tm and ym of the maximum point of the solution as functions
of β.
(c) Determine the smallest value of β for which ym ≥ 4.
(d) Determine the behavior of tm and ym as β → ∞.

27. Find an equation of the form ay′′ + by′ + cy = 0 for which all solutions approach a
multiple of e−t as t → ∞.

Equations with the Dependent Variable Missing. For a second order differential equation
of the form y′′ = f (t, y′), the substitution v = y′, v′ = y′′ leads to a first order equation of the
form v′ = f (t, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for v,
and a second is introduced in the integration for y. In each of Problems 28 through 33 use this
substitution to solve the given equation.

28. t2 y′′ + 2t y′ − 1 = 0, t > 0 29. t y′′ + y′ = 1, t > 0
30. y′′ + t (y′)2 = 0 31. 2t2 y′′ + (y′)3 = 2t y′, t > 0
32. y′′ + y′ = e−t 33. t2 y′′ = (y′)2, t > 0

Equations with the Independent Variable Missing. If a second order differential equation
has the form y′′ = f (y, y′), then the independent variable t does not appear explicitly, but only
through the dependent variable y. If we let v = y′, then we obtain dv/dt = f (y, v). Since the
right side of this equation depends on y and v, rather than on t and v, this equation is not
of the form of the first order equations discussed in Chapter 2. However, if we think of y as
the independent variable, then by the chain rule dv/dt = (dv/dy)(dy/dt) = v(dv/dy). Hence
the original differential equation can be written as v(dv/dy) = f (y, v). Provided that this first
order equation can be solved, we obtain v as a function of y. A relation between y and t results
from solving dy/dt = v(y). Again, there are two arbitrary constants in the final result. In each
of Problems 34 through 39 use this method to solve the given differential equation.

34. yy′′ + (y′)2 = 0 35. y′′ + y = 0
36. y′′ + y(y′)3 = 0 37. 2y2 y′′ + 2y(y′)2 = 1
38. yy′′ − (y′)3 = 0 39. y′′ + (y′)2 = 2e−y

Hint: In Problem 39 the transformed equation is a Bernoulli equation. See Problem 27 in
Section 2.4.

In each of Problems 40 through 43 solve the given initial value problem using the methods of
Problems 28 through 39.
40. y′y′′ = 2, y(0) = 1, y′(0) = 2
41. y′′ − 3y2 = 0, y(0) = 2, y′(0) = 4
42. (1 + t2)y′′ + 2t y′ + 3t−2 = 0, y(1) = 2, y′(1) = −1
43. y′y′′ − t = 0, y(1) = 2, y′(1) = 1

3.2 Fundamental Solutions of Linear Homogeneous Equations

In the preceding section we showed how to solve some differential equations of the
form

ay′′ + by′ + cy = 0,

where a, b, and c are constants. Now we build on those results to provide a clearer picture
of the structure of the solutions of all second order linear homogeneous equations. In
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turn, this understanding will assist us in finding the solutions of other problems that
we will encounter later.

In developing the theory of linear differential equations, it is helpful to introduce a
differential operator notation. Let p and q be continuous functions on an open interval I ,
that is, for α < t < β. The cases α = −∞, or β = ∞, or both, are included. Then, for
any function φ that is twice differentiable on I , we define the differential operator L
by the equation

L[φ] = φ′′ + pφ′ + qφ. (1)

Note that L[φ] is a function on I . The value of L[φ] at a point t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

For example, if p(t) = t2, q(t) = 1 + t , and φ(t) = sin 3t , then

L[φ](t) = (sin 3t)′′ + t2(sin 3t)′ + (1 + t) sin 3t

= −9 sin 3t + 3t2 cos 3t + (1 + t) sin 3t.

The operator L is often written as L = D2 + pD + q, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation L[φ](t) = 0.
Since it is customary to use the symbol y to denote φ(t), we will usually write this
equation in the form

L[y] = y′′ + p(t)y′ + q(t)y = 0. (2)

With Eq. (2) we associate a set of initial conditions

y(t0) = y0, y′(t0) = y′
0, (3)

where t0 is any point in the interval I , and y0 and y′
0 are given real numbers. We

would like to know whether the initial value problem (2), (3) always has a solution,
and whether it may have more than one solution. We would also like to know whether
anything can be said about the form and structure of solutions that might be helpful in
finding solutions of particular problems. Answers to these questions are contained in
the theorems in this section.

The fundamental theoretical result for initial value problems for second order linear
equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1 for first
order linear equations. The result applies equally well to nonhomogeneous equations,
so the theorem is stated in that form.

Theorem 3.2.1 Consider the initial value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0, (4)

where p, q, and g are continuous on an open interval I . Then there is exactly one
solution y = φ(t) of this problem, and the solution exists throughout the interval I .

We emphasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.
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3. The solution φ is defined throughout the interval I where the coefficients are
continuous and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For example, we
found in Section 3.1 that the initial value problem

y′′ − y = 0, y(0) = 2, y′(0) = −1 (5)

has the solution

y = 1
2 et + 3

2 e−t . (6)

The fact that we found a solution certainly establishes that a solution exists for this initial
value problem. Further, the solution (6) is twice differentiable, indeed differentiable
any number of times, throughout the interval (−∞,∞) where the coefficients in the
differential equation are continuous. On the other hand, it is not obvious, and is more
difficult to show, that the initial value problem (5) has no solutions other than the one
given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution is indeed the
only solution of the initial value problem (5).

However, for most problems of the form (4), it is not possible to write down a useful
expression for the solution. This is a major difference between first order and second
order linear equations. Therefore, all parts of the theorem must be proved by general
methods that do not involve having such an expression. The proof of Theorem 3.2.1 is
fairly difficult, and we do not discuss it here.2 We will, however, accept Theorem 3.2.1
as true and make use of it whenever necessary.

E X A M P L E

1

Find the longest interval in which the solution of the initial value problem

(t2 − 3t)y′′ + t y′ − (t + 3)y = 0, y(1) = 2, y′(1) = 1

is certain to exist.
If the given differential equation is written in the form of Eq. (4), then p(t) =

1/(t − 3), q(t) = −(t + 3)/t (t − 3), and g(t) = 0. The only points of discontinuity
of the coefficients are t = 0 and t = 3. Therefore, the longest open interval, containing
the initial point t = 1, in which all the coefficients are continuous is 0 < t < 3. Thus,
this is the longest interval in which Theorem 3.2.1 guarantees that the solution exists.

E X A M P L E

2

Find the unique solution of the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = 0, y′(t0) = 0,

where p and q are continuous in an open interval I containing t0.
The function y = φ(t) = 0 for all t in I certainly satisfies the differential equation

and initial conditions. By the uniqueness part of Theorem 3.2.1 it is the only solution
of the given problem.

2A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington listed
in the references.
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Let us now assume that y1 and y2 are two solutions of Eq. (2); in other words,

L[y1] = y′′
1 + py′

1 + qy1 = 0, (7)

and similarly for y2. Then, just as in the examples in Section 3.1, we can generate
more solutions by forming linear combinations of y1 and y2. We state this result as a
theorem.

Theorem 3.2.2 (Principle of Superposition) If y1 and y2 are two solutions of the differential
equation (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

then the linear combination c1 y1 + c2 y2 is also a solution for any values of the
constants c1 and c2.

A special case of Theorem 3.2.2 occurs if either c1 or c2 is zero. Then we conclude
that any multiple of a solution of Eq. (2) is also a solution.

To prove Theorem 3.2.2 we need only substitute

y = c1 y1(t) + c2 y2(t) (8)

for y in Eq. (2). The result is

L[c1 y1 + c2 y2] = [c1 y1 + c2 y2]′′ + p[c1 y1 + c2 y2]′ + q[c1 y1 + c2 y2]

= c1 y′′
1 + c2 y′′

2 + c1 py′
1 + c2 py′

2 + c1qy1 + c2qy2

= c1[y′′
1 + py′

1 + qy1] + c2[y′′
2 + py′

2 + qy2]

= c1L[y1] + c2L[y2].

Since L[y1] = 0 and L[y2] = 0, it follows that L[c1 y1 + c2 y2] = 0 also. Therefore,
regardless of the values of c1 and c2, y as given by Eq. (8) does satisfy the differential
equation (2) and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct a doubly infinite family of solutions by means of Eq. (8). The next question is
whether all solutions of Eq. (2) are included in Eq. (8), or whether there may be other
solutions of a different form. We begin to address this question by examining whether
the constants c1 and c2 in Eq. (8) can be chosen so as to satisfy the initial conditions
(3). These initial conditions require c1 and c2 to satisfy the equations

c1 y1(t0) + c2 y2(t0) = y0, (9)
c1 y′

1(t0) + c2 y′
2(t0) = y′

0.

Upon solving Eqs. (9) for c1 and c2, we find that

c1 = y0 y′
2(t0) − y′

0 y2(t0)

y1(t0)y′
2(t0) − y′

1(t0)y2(t0)
, c2 = −y0 y′

1(t0) + y′
0 y1(t0)

y1(t0)y′
2(t0) − y′

1(t0)y2(t0)
, (10)
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or, in terms of determinants,

c1 =

∣∣∣∣ y0 y2(t0)

y′
0 y′

2(t0)

∣∣∣∣∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣
, c2 =

∣∣∣∣ y1(t0) y0

y′
1(t0) y′

0

∣∣∣∣∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣
. (11)

With these values for c1 and c2 the expression (8) satisfies the initial conditions (3) as
well as the differential equation (2).

In order for the expressions for c1 and c2 in Eqs. (10) or (11) to make sense, it is
necessary that the denominators be nonzero. For both c1 and c2 the denominator is the
same, namely, the determinant

W =
∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣ = y1(t0)y′
2(t0) − y′

1(t0)y2(t0). (12)

The determinant W is called the Wronskian3 determinant, or simply the Wronskian,
of the solutions y1 and y2. Sometimes we use the more extended notation W (y1, y2)(t0)
to stand for the expression on the right side of Eq. (12), thereby emphasizing that the
Wronskian depends on the functions y1 and y2, and that it is evaluated at the point t0.
The preceding argument suffices to establish the following result.

Theorem 3.2.3 Suppose that y1 and y2 are two solutions of Eq. (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and that the Wronskian

W = y1 y′
2 − y′

1 y2

is not zero at the point t0 where the initial conditions (3),

y(t0) = y0, y′(t0) = y′
0,

are assigned. Then there is a choice of the constants c1, c2 for which y = c1 y1(t) +
c2 y2(t) satisfies the differential equation (2) and the initial conditions (3).

E X A M P L E

3

In Example 1 of Section 3.1 we found that y1(t) = e−2t and y2(t) = e−3t are solutions
of the differential equation

y′′ + 5y′ + 6y = 0.

Find the Wronskian of y1 and y2.
The Wronskian of these two functions is

W =
∣∣∣∣ e−2t e−3t

−2e−2t −3e−3t

∣∣∣∣ = −e−5t .

3 Wronskian determinants are named for Jósef Maria Hoëné-Wronski (1776–1853), who was born in Poland but
spent most of his life in France. Wronski was a gifted but troubled man, and his life was marked by frequent
heated disputes with other individuals and institutions.
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Since W is nonzero for all values of t , the functions y1 and y2 can be used to construct
solutions of the given differential equation, together with initial conditions prescribed
at any value of t . One such initial value problem was solved in Example 2 of Section 3.1.

The next theorem justifies the term “general solution” that we introduced in Section
3.1 for the linear combination c1 y1 + c2 y2.

Theorem 3.2.4 If y1 and y2 are two solutions of the differential equation (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

and if there is a point t0 where the Wronskian of y1 and y2 is nonzero, then the family
of solutions

y = c1 y1(t) + c2 y2(t)

with arbitrary coefficients c1 and c2 includes every solution of Eq. (2).

Let φ be any solution of Eq. (2). To prove the theorem we must show that φ is included
in the linear combination c1 y1 + c2 y2; that is, for some choice of the constants c1 and
c2, the linear combination is equal to φ. Let t0 be a point where the Wronskian of y1
and y2 is nonzero. Then evaluate φ and φ′ at this point and call these values y0 and y′

0,
respectively; thus

y0 = φ(t0), y′
0 = φ′(t0).

Next, consider the initial value problem

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = y′
0. (13)

The function φ is certainly a solution of this initial value problem. On the other hand,
since W (y1,y2)(t0) is nonzero, it is possible (by Theorem 3.2.3) to choose c1 and c2 so
that y = c1 y1(t) + c2 y2(t) is also a solution of the initial value problem (13). In fact,
the proper values of c1 and c2 are given by Eqs. (10) or (11). The uniqueness part of
Theorem 3.2.1 guarantees that these two solutions of the same initial value problem
are actually the same function; thus, for the proper choice of c1 and c2,

φ(t) = c1 y1(t) + c2 y2(t),

and therefore φ is included in the family of functions of c1 y1 + c2 y2. Finally, since
φ is an arbitrary solution of Eq. (2), it follows that every solution of this equation is
included in this family. This completes the proof of Theorem 3.2.4.

Theorem 3.2.4 states that, as long as the Wronskian of y1 and y2 is not everywhere
zero, the linear combination c1 y1 + c2 y2 contains all solutions of Eq. (2). It is therefore
natural (and we have already done this in the preceding section) to call the expression

y = c1 y1(t) + c2 y2(t)

with arbitrary constant coefficients the general solution of Eq. (2). The solutions y1
and y2, with a nonzero Wronskian, are said to form a fundamental set of solutions of
Eq. (2).
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To restate the result of Theorem 3.2.4 in slightly different language: To find the
general solution, and therefore all solutions, of an equation of the form (2), we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely this in several examples in Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions” in Section 3.1 do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned in
Section 3.1, as well as many other problems of a similar type.

E X A M P L E

4

Suppose that y1(t) = er1t and y2(t) = er2t are two solutions of an equation of the form
(2). Show that they form a fundamental set of solutions if r1 �= r2.

We calculate the Wronskian of y1 and y2:

W =
∣∣∣∣ er1t er2t

r1er1t r2er2t

∣∣∣∣ = (r2 − r1) exp[(r1 + r2)t].

Since the exponential function is never zero, and since r2 − r1 �= 0 by the statement of
the problem, it follows that W is nonzero for every value of t . Consequently, y1 and y2
form a fundamental set of solutions.

E X A M P L E

5

Show that y1(t) = t1/2 and y2(t) = t−1 form a fundamental set of solutions of

2t2 y′′ + 3t y′ − y = 0, t > 0. (14)

We will show in Section 5.5 how to solve Eq. (14); see also Problem 38 in Section 3.4.
However, at this stage we can verify by direct substitution that y1 and y2 are solutions
of the differential equation. Since y′

1(t) = 1
2 t−1/2 and y′′

1 (t) = − 1
4 t−3/2, we have

2t2(− 1
4 t−3/2) + 3t ( 1

2 t−1/2) − t1/2 = (− 1
2 + 3

2 − 1)t1/2 = 0.

Similarly, y′
2(t) = −t−2 and y′′

2 (t) = 2t−3, so

2t2(2t−3) + 3t (−t−2) − t−1 = (4 − 3 − 1)t−1 = 0.

Next we calculate the Wronskian W of y1 and y2:

W =
∣∣∣∣ t1/2 t−1

1
2 t−1/2 −t−2

∣∣∣∣ = − 3
2 t−3/2. (15)

Since W �= 0 for t > 0, we conclude that y1 and y2 form a fundamental set of solutions
there.

In several cases, we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is often a
difficult task, and the question may arise as to whether or not a differential equation of
the form (2) always has a fundamental set of solutions. The following theorem provides
an affirmative answer to this question.
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Theorem 3.2.5 Consider the differential equation (2),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

whose coefficients p and q are continuous on some open interval I . Choose some
point t0 in I . Let y1 be the solution of Eq. (2) that also satisfies the initial conditions

y(t0) = 1, y′(t0) = 0,

and let y2 be the solution of Eq. (2) that satisfies the initial conditions

y(t0) = 0, y′(t0) = 1.

Then y1 and y2 form a fundamental set of solutions of Eq. (2).

First observe that the existence of the functions y1 and y2 is assured by the existence
part of Theorem 3.2.1. To show that they form a fundamental set of solutions we need
only calculate their Wronskian at t0:

W (y1,y2)(t0) =
∣∣∣∣ y1(t0) y2(t0)

y′
1(t0) y′

2(t0)

∣∣∣∣ =
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1.

Since their Wronskian is not zero at the point t0, the functions y1 and y2 do form a
fundamental set of solutions, thus completing the proof of Theorem 3.2.5.

Note that the difficult part of this proof, demonstrating the existence of a pair of
solutions, is taken care of by reference to Theorem 3.2.1. Note also that Theorem 3.2.5
does not address the question of how to solve the specified initial value problems so
as to find the functions y1 and y2 indicated in the theorem. Nevertheless, it may be
reassuring to know that a fundamental set of solutions always exists.

E X A M P L E

6

Find the fundamental set of solutions specified by Theorem 3.2.5 for the differential
equation

y′′ − y = 0, (16)

using the initial point t0 = 0.

In Section 3.1 we noted that two solutions of Eq. (16) are y1(t) = et and y2(t) =
e−t . The Wronskian of these solutions is W (y1,y2)(t) = −2 �= 0, so they form a
fundamental set of solutions. However, they are not the fundamental solutions indicated
by Theorem 3.2.5 because they do not satisfy the initial conditions mentioned in that
theorem at the point t = 0.

To find the fundamental solutions specified by the theorem we need to find the
solutions satisfying the proper initial conditions. Let us denote by y3(t) the solution of
Eq. (16) that satisfies the initial conditions

y(0) = 1, y′(0) = 0. (17)

The general solution of Eq. (16) is

y = c1et + c2e−t , (18)

and the initial conditions (17) are satisfied if c1 = 1/2 and c2 = 1/2. Thus

y3(t) = 1
2 et + 1

2 e−t = cosh t.
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Similarly, if y4(t) satisfies the initial conditions

y(0) = 0, y′(0) = 1, (19)

then

y4(t) = 1
2 et − 1

2 e−t = sinh t.

Since the Wronskian of y3 and y4 is

W (y3,y4)(t) = cosh2 t − sinh2 t = 1,

these functions also form a fundamental set of solutions, as stated by Theorem 3.2.5.
Therefore, the general solution of Eq. (16) can be written as

y = k1 cosh t + k2 sinh t, (20)

as well as in the form (18). We have used k1 and k2 for the arbitrary constants in
Eq. (20) because they are not the same as the constants c1 and c2 in Eq. (18). One
purpose of this example is to make clear that a given differential equation has more
than one fundamental set of solutions; indeed, it has infinitely many. As a rule, you
should choose the set that is most convenient.

We can summarize the discussion in this section as follows. To find the general
solution of the differential equation

y′′ + p(t)y′ + q(t)y = 0, α < t < β,

we must first find two functions y1 and y2 that satisfy the differential equation in
α < t < β. Then we must make sure that there is a point in the interval where the
Wronskian W of y1 and y2 is nonzero. Under these circumstances y1 and y2 form a
fundamental set of solutions and the general solution is

y = c1 y1(t) + c2 y2(t),

where c1 and c2 are arbitrary constants. If initial conditions are prescribed at a point in
α < t < β where W �= 0, then c1 and c2 can be chosen so as to satisfy these conditions.

PROBLEMS In each of Problems 1 through 6 find the Wronskian of the given pair of functions.

1. e2t , e−3t/2 2. cos t, sin t
3. e−2t , te−2t 4. x, xex

5. et sin t, et cos t 6. cos2 θ, 1 + cos 2θ

In each of Problems 7 through 12 determine the longest interval in which the given initial value
problem is certain to have a unique twice differentiable solution. Do not attempt to find the
solution.

7. t y′′ + 3y = t, y(1) = 1, y′(1) = 2
8. (t − 1)y′′ − 3t y′ + 4y = sin t, y(−2) = 2, y′(−2) = 1
9. t (t − 4)y′′ + 3t y′ + 4y = 2, y(3) = 0, y′(3) = −1

10. y′′ + (cos t)y′ + 3(ln |t |)y = 0, y(2) = 3, y′(2) = 1
11. (x − 3)y′′ + xy′ + (ln |x |)y = 0, y(1) = 0, y′(1) = 1
12. (x − 2)y′′ + y′ + (x − 2)(tan x)y = 0, y(3) = 1, y′(3) = 2
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13. Verify that y1(t) = t2 and y2(t) = t−1 are two solutions of the differential equation t2 y′′ −
2y = 0 for t > 0. Then show that c1t2 + c2t−1 is also a solution of this equation for any c1
and c2.

14. Verify that y1(t) = 1 and y2(t) = t1/2 are solutions of the differential equation yy′′ +
(y′)2 = 0 for t > 0. Then show that c1 + c2t1/2 is not, in general, a solution of this equation.
Explain why this result does not contradict Theorem 3.2.2.

15. Show that if y = φ(t) is a solution of the differential equation y′′ + p(t)y′ + q(t)y = g(t),
where g(t) is not always zero, then y = cφ(t), where c is any constant other than 1, is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Can y = sin(t2) be a solution on an interval containing t = 0 of an equation y′′ + p(t)y′ +
q(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and g is 3e4t , and if f (t) = e2t , find g(t).
18. If the Wronskian W of f and g is t2et , and if f (t) = t, find g(t).
19. If W ( f, g) is the Wronskian of f and g, and if u = 2 f − g, v = f + 2g, find the Wronskian

W (u, v) of u and v in terms of W ( f, g).
20. If the Wronskian of f and g is t cos t − sin t , and if u = f + 3g, v = f − g, find the

Wronskian of u and v.

In each of Problems 21 and 22 find the fundamental set of solutions specified by Theorem 3.2.5
for the given differential equation and initial point.

21. y′′ + y′ − 2y = 0, t0 = 0 22. y′′ + 4y′ + 3y = 0, t0 = 1

In each of Problems 23 through 26 verify that the functions y1 and y2 are solutions of the given
differential equation. Do they constitute a fundamental set of solutions?

23. y′′ + 4y = 0; y1(t) = cos 2t, y2(t) = sin 2t
24. y′′ − 2y′ + y = 0; y1(t) = et , y2(t) = tet

25. x2 y′′ − x(x + 2)y′ + (x + 2)y = 0, x > 0; y1(x) = x, y2(x) = xex

26. (1 − x cot x)y′′ − xy′ + y = 0, 0 < x < π; y1(x) = x, y2(x) = sin x

27. Exact Equations. The equation P(x)y′′ + Q(x)y′ + R(x)y = 0 is said to be exact if it
can be written in the form [P(x)y′]′ + [ f (x)y]′ = 0, where f (x) is to be determined in
terms of P(x), Q(x), and R(x). The latter equation can be integrated once immediately,
resulting in a first order linear equation for y that can be solved as in Section 2.1. By
equating the coefficients of the preceding equations and then eliminating f (x), show that a
necessary condition for exactness is P ′′(x) − Q ′(x) + R(x) = 0. It can be shown that this
is also a sufficient condition.

In each of Problems 28 through 31 use the result of Problem 27 to determine whether the given
equation is exact. If so, solve the equation.

28. y′′ + xy′ + y = 0 29. y′′ + 3x2 y′ + xy = 0
30. xy′′ − (cos x)y′ + (sin x)y = 0, x > 0 31. x2 y′′ + xy′ − y = 0, x > 0

32. The Adjoint Equation. If a second order linear homogeneous equation is not exact, it can
be made exact by multiplying by an appropriate integrating factor µ(x). Thus we require
that µ(x) be such that µ(x)P(x)y′′ + µ(x)Q(x)y′ + µ(x)R(x)y = 0 can be written in the
form [µ(x)P(x)y′]′ + [ f (x)y]′ = 0. By equating coefficients in these two equations and
eliminating f (x), show that the function µ must satisfy

Pµ′′ + (2P ′ − Q)µ′ + (P ′′ − Q ′ + R)µ = 0.

This equation is known as the adjoint of the original equation and is important in the
advanced theory of differential equations. In general, the problem of solving the adjoint
differential equation is as difficult as that of solving the original equation, so only occa-
sionally is it possible to find an integrating factor for a second order equation.
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In each of Problems 33 through 35 use the result of Problem 32 to find the adjoint of the given
differential equation.

33. x2 y′′ + xy′ + (x2 − ν2)y = 0, Bessel’s equation
34. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre’s equation
35. y′′ − xy = 0, Airy’s equation

36. For the second order linear equation P(x)y′′ + Q(x)y′ + R(x)y = 0, show that the adjoint
of the adjoint equation is the original equation.

37. A second order linear equation P(x)y′′ + Q(x)y′ + R(x)y = 0 is said to be self-adjoint
if its adjoint is the same as the original equation. Show that a necessary condition for this
equation to be self-adjoint is that P ′(x) = Q(x). Determine whether each of the equations
in Problems 33 through 35 is self-adjoint.

3.3 Linear Independence and the Wronskian

The representation of the general solution of a second order linear homogeneous
differential equation as a linear combination of two solutions whose Wronskian is not
zero is intimately related to the concept of linear independence of two functions. This
is a very important algebraic idea and has significance far beyond the present context;
we briefly discuss it in this section.

We will refer to the following basic property of systems of linear homogeneous
algebraic equations. Consider the two–by–two system

a11x1 + a12x2 = 0,
(1)

a21x1 + a22x2 = 0,

and let � = a11a22 − a12a21 be the corresponding determinant of coefficients. Then
x = 0, y = 0 is the only solution of the system (1) if and only if � �= 0. Further, the
system (1) has nonzero solutions if and only if � = 0.

Two functions f and g are said to be linearly dependent on an interval I if there
exist two constants k1 and k2, not both zero, such that

k1 f (t) + k2g(t) = 0 (2)

for all t in I . The functions f and g are said to be linearly independent on an
interval I if they are not linearly dependent; that is, Eq. (2) holds for all t in I only
if k1 = k2 = 0. In Section 4.1 these definitions are extended to an arbitrary number of
functions. Although it may be difficult to determine whether a large set of functions is
linearly independent or linearly dependent, it is usually easy to answer this question
for a set of only two functions: they are linearly dependent if they are proportional
to each other, and linearly independent otherwise. The following examples illustrate
these definitions.

E X A M P L E

1
Determine whether the functions sin t and cos(t − π/2) are linearly independent or
linearly dependent on an arbitrary interval.
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The given functions are linearly dependent on any interval since

k1 sin t + k2 cos(t − π/2) = 0

for all t if we choose k1 = 1 and k2 = −1.

E X A M P L E

2

Show that the functions et and e2t are linearly independent on any interval.
To establish this result we suppose that

k1et + k2e2t = 0 (3)

for all t in the interval; we must then show that k1 = k2 = 0. Choose two points t0 and
t1 in the interval, where t1 �= t0. Evaluating Eq. (3) at these points, we obtain

k1et0 + k2e2t0 = 0,
(4)

k1et1 + k2e2t1 = 0.

The determinant of coefficients is

et0e2t1 − e2t0et1 = et0et1(et1 − et0).

Since this determinant is not zero, it follows that the only solution of Eq. (4) is
k1 = k2 = 0. Hence et and e2t are linearly independent.

The following theorem relates linear independence and dependence to the
Wronskian.

Theorem 3.3.1 If f and g are differentiable functions on an open interval I and if W ( f, g)(t0) �= 0
for some point t0 in I , then f and g are linearly independent on I . Moreover, if f
and g are linearly dependent on I , then W ( f, g)(t) = 0 for every t in I .

To prove the first statement in Theorem 3.3.1, consider a linear combination k1 f (t) +
k2g(t), and suppose that this expression is zero throughout the interval. Evaluating the
expression and its derivative at t0, we have

k1 f (t0) + k2g(t0) = 0,
(5)

k1 f ′(t0) + k2g′(t0) = 0.

The determinant of coefficients of Eqs. (5) is precisely W ( f, g)(t0), which is not zero
by hypothesis. Therefore, the only solution of Eqs. (5) is k1 = k2 = 0, so f and g are
linearly independent.

The second part of Theorem 3.3.1 follows immediately from the first. Let f and g
be linearly dependent, and suppose that the conclusion is false, that is, W ( f, g) is not
everywhere zero in I . Then there is a point t0 such that W ( f, g)(t0) �= 0; by the first
part of Theorem 3.3.1 this implies that f and g are linearly independent, which is a
contradiction, thus completing the proof.
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We can apply this result to the two functions f (t) = et and g(t) = e2t discussed in
Example 2. For any point t0 we have

W ( f, g)(t0) =
∣∣∣∣ et0 e2t0

et0 2e2t0

∣∣∣∣ = e3t0 �= 0. (6)

The functions et and e2t are therefore linearly independent on any interval.
You should be careful not to read too much into Theorem 3.3.1. In particular, two

functions f and g may be linearly independent even though W ( f, g)(t) = 0 for every
t in the interval I . This is illustrated in Problem 28.

Now let us examine further the properties of the Wronskian of two solutions of a
second order linear homogeneous differential equation. The following theorem, perhaps
surprisingly, gives a simple explicit formula for the Wronskian of any two solutions of
any such equation, even if the solutions themselves are not known.

Theorem 3.3.2 (Abel’s Theorem)4 If y1 and y2 are solutions of the differential equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (7)

where p and q are continuous on an open interval I , then the Wronskian W (y1, y2)(t)
is given by

W (y1,y2)(t) = c exp

[
−
∫

p(t) dt

]
, (8)

where c is a certain constant that depends on y1 and y2, but not on t . Further,
W (y1, y2)(t) is either zero for all t in I (if c = 0) or else is never zero in I (if c �= 0).

To prove Abel’s theorem we start by noting that y1 and y2 satisfy

y′′
1 + p(t)y′

1 + q(t)y1 = 0,
(9)

y′′
2 + p(t)y′

2 + q(t)y2 = 0.

If we multiply the first equation by −y2, the second by y1, and add the resulting
equations, we obtain

(y1 y′′
2 − y′′

1 y2) + p(t)(y1 y′
2 − y′

1 y2) = 0. (10)

Next, we let W (t) = W (y1,y2)(t) and observe that

W ′ = y1 y′′
2 − y′′

1 y2. (11)

Then we can write Eq. (10) in the form

W ′ + p(t)W = 0. (12)

4 The result in Theorem 3.3.2 was derived by the Norwegian mathematician Niels Henrik Abel (1802–1829) in
1827 and is known as Abel’s formula. Abel also showed that there is no general formula for solving a quintic, or
fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients, thereby resolving
a question that had been open since the sixteenth century. His greatest contributions, however, were in analysis,
particularly in the study of elliptic functions. Unfortunately, his work was not widely noticed until after his death.
The distinguished French mathematician Legendre called it a “monument more lasting than bronze.”
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Equation (12) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W (t) = c exp

[
−
∫

p(t) dt

]
, (13)

where c is a constant. The value of c depends on which pair of solutions of Eq. (7) is
involved. However, since the exponential function is never zero, W (t) is not zero unless
c = 0, in which case W (t) is zero for all t , which completes the proof of Theorem
3.3.2.

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by a multiplicative constant, and that the Wronskian
of any fundamental set of solutions can be determined, up to a multiplicative constant,
without solving the differential equation.

E X A M P L E

3

In Example 5 of Section 3.2 we verified that y1(t) = t1/2 and y2(t) = t−1 are solutions
of the equation

2t2 y′′ + 3t y′ − y = 0, t > 0. (14)

Verify that the Wronskian of y1 and y2 is given by Eq. (13).
From the example just cited we know that W (y1, y2)(t) = −(3/2)t−3/2. To use

Eq. (13) we must write the differential equation (14) in the standard form with the
coefficient of y′′ equal to 1. Thus we obtain

y′′ + 3

2t
y′ − 1

2t2 y = 0,

so p(t) = 3/2t . Hence

W (y1, y2)(t) = c exp

[
−
∫

3

2t
dt

]
= c exp

(
−3

2
ln t

)
= c t−3/2. (15)

Equation (15) gives the Wronskian of any pair of solutions of Eq. (14). For the particular
solutions given in this example we must choose c = −3/2.

A stronger version of Theorem 3.3.1 can be established if the two functions involved
are solutions of a second order linear homogeneous differential equation.

Theorem 3.3.3 Let y1 and y2 be the solutions of Eq. (7),

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on an open interval I . Then y1 and y2 are linearly
dependent on I if and only if W (y1, y2)(t) is zero for all t in I . Alternatively, y1 and
y2 are linearly independent on I if and only if W (y1, y2)(t) is never zero in I .

Of course, we know by Theorem 3.3.2 that W (y1, y2)(t) is either everywhere zero or
nowhere zero in I . In proving Theorem 3.3.3, observe first that if y1 and y2 are linearly
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dependent, then W (y1, y2)(t) is zero for all t in I by Theorem 3.3.1. It remains to prove
the converse; that is, if W (y1, y2)(t) is zero throughout I , then y1 and y2 are linearly
dependent. Let t0 be any point in I ; then necessarily W (y1, y2)(t0) = 0. Consequently,
the system of equations

c1 y1(t0) + c2 y2(t0) = 0,
(16)

c1 y′
1(t0) + c2 y′

2(t0) = 0

for c1 and c2 has a nontrivial solution. Using these values of c1 and c2, let φ(t) =
c1 y1(t) + c2 y2(t). Then φ is a solution of Eq. (7), and by Eqs. (16) φ also satisfies the
initial conditions

φ(t0) = 0, φ′(t0) = 0. (17)

Therefore, by the uniqueness part of Theorem 3.2.1, or by Example 2 of Section 3.2,
φ(t) = 0 for all t in I . Since φ(t) = c1 y1(t) + c2 y2(t) with c1 and c2 not both zero, this
means that y1 and y2 are linearly dependent. The alternative statement of the theorem
follows immediately.

We can now summarize the facts about fundamental sets of solutions, Wronskians,
and linear independence in the following way. Let y1 and y2 be solutions of Eq. (7),

y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on an open interval I . Then the following four statements
are equivalent, in the sense that each one implies the other three:

1. The functions y1 and y2 are a fundamental set of solutions on I .
2. The functions y1 and y2 are linearly independent on I .
3. W (y1, y2)(t0) �= 0 for some t0 in I .
4. W (y1, y2)(t) �= 0 for all t in I .

It is interesting to note the similarity between second order linear homogeneous
differential equations and two-dimensional vector algebra. Two vectors a and b are
said to be linearly dependent if there are two scalars k1 and k2, not both zero, such that
k1a + k2b = 0; otherwise, they are said to be linearly independent. Let i and j be unit
vectors directed along the positive x and y axes, respectively. Since k1i + k2j = 0 only
if k1 = k2 = 0, the vectors i and j are linearly independent. Further, we know that any
vector a with components a1 and a2 can be written as a = a1i + a2j, that is, as a linear
combination of the two linearly independent vectors i and j. It is not difficult to show
that any vector in two dimensions can be expressed as a linear combination of any two
linearly independent two-dimensional vectors (see Problem 14). Such a pair of linearly
independent vectors is said to form a basis for the vector space of two-dimensional
vectors.

The term vector space is also applied to other collections of mathematical objects
that obey the same laws of addition and multiplication by scalars that geometric vectors
do. For example, it can be shown that the set of functions that are twice differentiable
on the open interval I forms a vector space. Similarly, the set V of functions satisfying
Eq. (7) also forms a vector space.

Since every member of V can be expressed as a linear combination of two linearly
independent members y1 and y2, we say that such a pair forms a basis for V . This leads
to the conclusion that V is two-dimensional; therefore, it is analogous in many respects
to the space of geometric vectors in a plane. Later we find that the set of solutions of an
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nth order linear homogeneous differential equation forms a vector space of dimension
n, and that any set of n linearly independent solutions of the differential equation
forms a basis for the space. This connection between differential equations and vectors
constitutes a good reason for the study of abstract linear algebra.

PROBLEMS In each of Problems 1 through 8 determine whether the given pair of functions is linearly
independent or linearly dependent.

1. f (t) = t2 + 5t, g(t) = t2 − 5t
2. f (θ) = cos 3θ, g(θ) = 4 cos3 θ − 3 cos θ

3. f (t) = eλt cos µt, g(t) = eλt sin µt, µ �= 0
4. f (x) = e3x , g(x) = e3(x−1)

5. f (t) = 3t − 5, g(t) = 9t − 15 6. f (t) = t, g(t) = t−1

7. f (t) = 3t, g(t) = |t | 8. f (x) = x3, g(x) = |x |3
9. The Wronskian of two functions is W (t) = t sin2 t . Are the functions linearly independent

or linearly dependent? Why?
10. The Wronskian of two functions is W (t) = t2 − 4. Are the functions linearly independent

or linearly dependent? Why?
11. If the functions y1 and y2 are linearly independent solutions of y′′ + p(t)y′ + q(t)y = 0,

prove that c1 y1 and c2 y2 are also linearly independent solutions, provided that neither c1
nor c2 is zero.

12. If the functions y1 and y2 are linearly independent solutions of y′′ + p(t)y′ + q(t)y = 0,
prove that y3 = y1 + y2 and y4 = y1 − y2 also form a linearly independent set of solutions.
Conversely, if y3 and y4 are linearly independent solutions of the differential equation,
show that y1 and y2 are also.

13. If the functions y1 and y2 are linearly independent solutions of y′′ + p(t)y′ + q(t)y = 0,
determine under what conditions the functions y3 = a1 y1 + a2 y2 and y4 = b1 y1 + b2 y2
also form a linearly independent set of solutions.

14. (a) Prove that any two-dimensional vector can be written as a linear combination of i + j
and i − j.
(b) Prove that if the vectors x = x1i + x2j and y = y1i + y2j are linearly independent,
then any vector z = z1i + z2j can be expressed as a linear combination of x and y. Note
that if x and y are linearly independent, then x1 y2 − x2 y1 �= 0. Why?

In each of Problems 15 through 18 find the Wronskian of two solutions of the given differential
equation without solving the equation.

15. t2 y′′ − t (t + 2)y′ + (t + 2)y = 0 16. (cos t)y′′ + (sin t)y′ − t y = 0
17. x2 y′′ + xy′ + (x2 − ν2)y = 0, Bessel’s equation
18. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre’s equation

19. Show that if p is differentiable and p(t) > 0, then the Wronskian W (t) of two solutions
of [p(t)y′]′ + q(t)y = 0 is W (t) = c/p(t), where c is a constant.

20. If y1 and y2 are linearly independent solutions of t y′′ + 2y′ + tet y = 0 and if
W (y1, y2)(1) = 2, find the value of W (y1, y2)(5).

21. If y1 and y2 are linearly independent solutions of t2 y′′ − 2y′ + (3 + t)y = 0 and if
W (y1, y2)(2) = 3, find the value of W (y1, y2)(4).

22. If the Wronskian of any two solutions of y′′ + p(t)y′ + q(t)y = 0 is constant, what does
this imply about the coefficients p and q?

23. If f, g, and h are differentiable functions, show that W ( f g, f h) = f 2W (g, h).

In Problems 24 through 26 assume that p and q are continuous, and that the functions y1 and y2
are solutions of the differential equation y′′ + p(t)y′ + q(t)y = 0 on an open interval I .
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24. Prove that if y1 and y2 are zero at the same point in I , then they cannot be a fundamental
set of solutions on that interval.

25. Prove that if y1 and y2 have maxima or minima at the same point in I , then they cannot be
a fundamental set of solutions on that interval.

26. Prove that if y1 and y2 have a common point of inflection t0 in I , then they cannot be a
fundamental set of solutions on I unless both p and q are zero at t0.

27. Show that t and t2 are linearly independent on −1 < t < 1; indeed, they are linearly
independent on every interval. Show also that W (t, t2) is zero at t = 0. What can you
conclude from this about the possibility that t and t2 are solutions of a differential equation
y′′ + p(t)y′ + q(t)y = 0? Verify that t and t2 are solutions of the equation t2 y′′ − 2t y′ +
2y = 0. Does this contradict your conclusion? Does the behavior of the Wronskian of t
and t2 contradict Theorem 3.3.2?

28. Show that the functions f (t) = t2|t | and g(t) = t3 are linearly dependent on 0 < t < 1
and on −1 < t < 0, but are linearly independent on −1 < t < 1. Although f and g are
linearly independent there, show that W ( f, g) is zero for all t in −1 < t < 1. Hence f and
g cannot be solutions of an equation y′′ + p(t)y′ + q(t)y = 0 with p and q continuous on
−1 < t < 1.

3.4 Complex Roots of the Characteristic Equation

We continue our discussion of the equation

ay′′ + by′ + cy = 0, (1)

where a, b, and c are given real numbers. In Section 3.1 we found that if we seek
solutions of the form y = ert , then r must be a root of the characteristic equation

ar2 + br + c = 0. (2)

If the roots r1 and r2 are real and different, which occurs whenever the discriminant
b2 − 4ac is positive, then the general solution of Eq. (1) is

y = c1er1t + c2er2t . (3)

Suppose now that b2 − 4ac is negative. Then the roots of Eq. (2) are conjugate
complex numbers; we denote them by

r1 = λ + iµ, r2 = λ − iµ, (4)

where λ and µ are real. The corresponding expressions for y are

y1(t) = exp[(λ + iµ)t], y2(t) = exp[(λ − iµ)t]. (5)

Our first task is to explore what is meant by these expressions, which involve evaluating
the exponential function for a complex exponent. For example, if λ = −1, µ = 2, and
t = 3, then from Eq. (5)

y1(3) = e−3+6i . (6)

What does it mean to raise the number e to a complex power? The answer is provided
by an important relation known as Euler’s formula.
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Euler’s Formula. To assign a meaning to the expressions in Eqs. (5) we need to give
a definition of the complex exponential function. Of course, we want the definition to
reduce to the familiar real exponential function when the exponent is real. There are
several ways to accomplish this extension of the exponential function. Here we use a
method based on infinite series; an alternative is outlined in Problem 28.

Recall from calculus that the Taylor series for et about t = 0 is

et =
∞∑

n=0

tn

n!
, −∞ < t < ∞. (7)

If we now assume that we can substitute i t for t in Eq. (7), then we have

eit =
∞∑

n=0

(i t)n

n!

=
∞∑

n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=1

(−1)n−1t2n−1

(2n − 1)!
, (8)

where we have separated the sum into its real and imaginary parts, making use of the
fact that i2 = −1, i3 = −i , i4 = 1, and so forth. The first series in Eq. (8) is precisely
the Taylor series for cos t about t = 0, and the second is the Taylor series for sin t
about t = 0. Thus we have

eit = cos t + i sin t. (9)

Equation (9) is known as Euler’s formula and is an extremely important mathematical
relationship. While our derivation of Eq. (9) is based on the unverified assumption that
the series (7) can be used for complex as well as real values of the independent variable,
our intention is to use this derivation only to make Eq. (9) seem plausible. We now put
matters on a firm foundation by adopting Eq. (9) as the definition of eit . In other words,
whenever we write eit , we mean the expression on the right side of Eq. (9).

There are some variations of Euler’s formula that are also worth noting. If we replace
t by −t in Eq. (9) and recall that cos(−t) = cos t and sin(−t) = − sin t , then we have

e−i t = cos t − i sin t. (10)

Further, if t is replaced by µt in Eq. (9), then we obtain a generalized version of Euler’s
formula, namely,

eiµt = cos µt + i sin µt. (11)

Next, we want to extend the definition of the exponential function to arbitrary complex
exponents of the form (λ + iµ)t . Since we want the usual properties of the exponential
function to hold for complex exponents, we certainly want exp[(λ + iµ)t] to satisfy

e(λ+iµ)t = eλt eiµt . (12)

Then, substituting for eiµt from Eq. (11), we obtain

e(λ+iµ)t = eλt(cos µt + i sin µt)

= eλt cos µt + ieλt sin µt. (13)

We now take Eq. (13) as the definition of exp[(λ + iµ)t]. The value of the exponential
function with a complex exponent is a complex number whose real and imaginary
parts are given by the terms on the right side of Eq. (13). Observe that the real and
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imaginary parts of exp[(λ + iµ)t] are expressed entirely in terms of elementary real-
valued functions. For example, the quantity in Eq. (6) has the value

e−3+6i = e−3 cos 6 + ie−3 sin 6 ∼= 0.0478041 − 0.0139113i.

With the definitions (9) and (13) it is straightforward to show that the usual laws of
exponents are valid for the complex exponential function. It is also easy to verify that
the differentiation formula

d

dt
(ert) = rert (14)

also holds for complex values of r .

Real-Valued Solutions. The functions y1(t) and y2(t), given by Eqs. (5) and with
the meaning expressed by Eq. (13), are solutions of Eq. (1) when the roots of the
characteristic equation (2) are complex numbers λ ± iµ. Unfortunately, the solutions y1
and y2 are complex-valued functions, whereas in general we would prefer to have real-
valued solutions, if possible, because the differential equation itself has real coefficients.
Such solutions can be found as a consequence of Theorem 3.2.2, which states that if
y1 and y2 are solutions of Eq. (1), then any linear combination of y1 and y2 is also a
solution. In particular, let us form the sum and then the difference of y1 and y2. We
have

y1(t) + y2(t) = eλt(cos µt + i sin µt) + eλt(cos µt − i sin µt)

= 2eλt cos µt

and

y1(t) − y2(t) = eλt(cos µt + i sin µt) − eλt(cos µt − i sin µt)

= 2ieλt sin µt.

Hence, neglecting the constant multipliers 2 and 2i , respectively, we have obtained a
pair of real-valued solutions

u(t) = eλt cos µt, v(t) = eλt sin µt. (15)

Observe that u and v are simply the real and imaginary parts, respectively, of y1.
By direct computation you can show that the Wronskian of u and v is

W (u, v)(t) = µe2λt . (16)

Thus, as long as µ �= 0, the Wronskian W is not zero, so u and v form a fundamental
set of solutions. (Of course, if µ = 0, then the roots are real and the discussion in this
section is not applicable.) Consequently, if the roots of the characteristic equation are
complex numbers λ ± iµ, with µ �= 0, then the general solution of Eq. (1) is

y = c1eλt cos µt + c2eλt sin µt, (17)

where c1 and c2 are arbitrary constants. Note that the solution (17) can be written down
as soon as the values of λ and µ are known.
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E X A M P L E

1

Find the general solution of

y′′ + y′ + y = 0. (18)

The characteristic equation is

r2 + r + 1 = 0,

and its roots are

r = −1 ± (1 − 4)1/2

2
= −1

2
± i

√
3

2
.

Thus λ = −1/2 and µ = √
3/2, so the general solution of Eq. (18) is

y = c1e−t/2 cos(
√

3t/2) + c2e−t/2 sin(
√

3t/2) . (19)

E X A M P L E

2

Find the general solution of

y′′ + 9y = 0. (20)

The characteristic equation is r2 + 9 = 0 with the roots r = ±3i ; thus λ = 0 and
µ = 3. The general solution is

y = c1 cos 3t + c2 sin 3t; (21)

note that if the real part of the roots is zero, as in this example, then there is no
exponential factor in the solution.

E X A M P L E

3

Find the solution of the initial value problem

16y′′ − 8y′ + 145y = 0, y(0) = −2, y′(0) = 1. (22)

The characteristic equation is 16r2 − 8r + 145 = 0 and its roots are r = 1/4 ± 3i .
Thus the general solution of the differential equation is

y = c1et/4 cos 3t + c2et/4 sin 3t. (23)

To apply the first initial condition we set t = 0 in Eq. (23); this gives

y(0) = c1 = −2.

For the second initial condition we must differentiate Eq. (23) and then set t = 0. In
this way we find that

y′(0) = 1
4 c1 + 3c2 = 1,

from which c2 = 1/2. Using these values of c1 and c2 in Eq. (23), we obtain

y = −2et/4 cos 3t + 1
2 et/4 sin 3t (24)

as the solution of the initial value problem (22).

We will discuss the geometrical properties of solutions such as these more fully in
Section 3.8, so we will be very brief here. Each of the solutions u and v in Eqs. (15)
represents an oscillation, because of the trigonometric factors, and also either grows or
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decays exponentially, depending on the sign of λ (unless λ = 0). In Example 1 we have
λ = −1/2 < 0, so solutions are decaying oscillations. The graph of a typical solution
of Eq. (18) is shown in Figure 3.4.1. On the other hand, λ = 1/4 > 0 in Example
3, so solutions of the differential equation (22) are growing oscillations. The graph
of the solution (24) of the given initial value problem is shown in Figure 3.4.2. The
intermediate case is illustrated in Example 2 in which λ = 0. In this case the solution
neither grows nor decays exponentially, but oscillates steadily; a typical solution of
Eq. (20) is shown in Figure 3.4.3.

y

t

2

1

2

4 6

8

FIGURE 3.4.1 A typical solution of y′′ + y′ + y = 0.
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y = –2et/4 cos 3t +    et/4 sin 3t1
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FIGURE 3.4.2 Solution of 16y′′ − 8y′ + 145y = 0, y(0) = −2, y′(0) = 1.
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FIGURE 3.4.3 A typical solution of y′′ + 9y = 0.

PROBLEMS In each of Problems 1 through 6 use Euler’s formula to write the given expression in the form
a + ib.

1. exp(1 + 2i) 2. exp(2 − 3i)
3. eiπ 4. e2−(π/2)i

5. 21−i 6. π−1+2i

In each of Problems 7 through 16 find the general solution of the given differential equation.
7. y′′ − 2y′ + 2y = 0 8. y′′ − 2y′ + 6y = 0
9. y′′ + 2y′ − 8y = 0 10. y′′ + 2y′ + 2y = 0

11. y′′ + 6y′ + 13y = 0 12. 4y′′ + 9y = 0
13. y′′ + 2y′ + 1.25y = 0 14. 9y′′ + 9y′ − 4y = 0
15. y′′ + y′ + 1.25y = 0 16. y′′ + 4y′ + 6.25y = 0

In each of Problems 17 through 22 find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing t .

17. y′′ + 4y = 0, y(0) = 0, y′(0) = 1
18. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0
19. y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2
20. y′′ + y = 0, y(π/3) = 2, y′(π/3) = −4
21. y′′ + y′ + 1.25y = 0, y(0) = 3, y′(0) = 1
22. y′′ + 2y′ + 2y = 0, y(π/4) = 2, y′(π/4) = −2

� 23. Consider the initial value problem

3u′′ − u′ + 2u = 0, u(0) = 2, u′(0) = 0.

(a) Find the solution u(t) of this problem.
(b) Find the first time at which |u(t)| = 10.

� 24. Consider the initial value problem

5u′′ + 2u′ + 7u = 0, u(0) = 2, u′(0) = 1.

(a) Find the solution u(t) of this problem.
(b) Find the smallest T such that |u(t)| ≤ 0.1 for all t > T .

� 25. Consider the initial value problem

y′′ + 2y′ + 6y = 0, y(0) = 2, y′(0) = α ≥ 0.

(a) Find the solution y(t) of this problem.
(b) Find α so that y = 0 when t = 1.
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(c) Find, as a function of α, the smallest positive value of t for which y = 0.
(d) Determine the limit of the expression found in part (c) as α → ∞.

� 26. Consider the initial value problem

y′′ + 2ay′ + (a2 + 1)y = 0, y(0) = 1, y′(0) = 0.

(a) Find the solution y(t) of this problem.
(b) For a = 1 find the smallest T such that |y(t)| < 0.1 for t > T .
(c) Repeat part (b) for a = 1/4, 1/2, and 2.
(d) Using the results of parts (b) and (c), plot T versus a and describe the relation between
T and a.

27. Show that W (eλt cos µt, eλt sin µt) = µe2λt .

28. In this problem we outline a different derivation of Euler’s formula.
(a) Show that y1(t) = cos t and y2(t) = sin t are a fundamental set of solutions of y′′ +
y = 0; that is, show that they are solutions and that their Wronskian is not zero.
(b) Show (formally) that y = eit is also a solution of y′′ + y = 0. Therefore,

eit = c1 cos t + c2 sin t (i)

for some constants c1 and c2. Why is this so?
(c) Set t = 0 in Eq. (i) to show that c1 = 1.
(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set t = 0 to conclude that
c2 = i . Use the values of c1 and c2 in Eq. (i) to arrive at Euler’s formula.

29. Using Euler’s formula, show that

cos t = (eit + e−i t )/2, sin t = (eit − e−i t )/2i.

30. If ert is given by Eq. (13), show that e(r1+r2)t = er1t er2t for any complex numbers r1 and r2.
31. If ert is given by Eq. (13), show that

d

dt
ert = rert

for any complex number r .
32. Let the real-valued functions p and q be continuous on the open interval I , and let

y = φ(t) = u(t) + iv(t) be a complex-valued solution of

y′′ + p(t)y′ + q(t)y = 0, (i)

where u and v are real-valued functions. Show that u and v are also solutions of Eq. (i).
Hint: Substitute y = φ(t) in Eq. (i) and separate into real and imaginary parts.

33. If the functions y1 and y2 are linearly independent solutions of y′′ + p(t)y′ + q(t)y = 0,
show that between consecutive zeros of y1 there is one and only one zero of y2. Note that
this result is illustrated by the solutions y1(t) = cos t and y2(t) = sin t of the equation
y′′ + y = 0.

Change of Variables. Often a differential equation with variable coefficients,

y′′ + p(t)y′ + q(t)y = 0, (i)

can be put in a more suitable form for finding a solution by making a change of the independent
and/or dependent variables. We explore these ideas in Problems 34 through 42. In particular, in
Problem 34 we determine conditions under which Eq. (i) can be transformed into a differential
equation with constant coefficients and thereby becomes easily solvable. Problems 35 through
42 give specific applications of this procedure.

34. In this problem we determine conditions on p and q such that Eq. (i) can be transformed
into an equation with constant coefficients by a change of the independent variable. Let
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x = u(t) be the new independent variable, with the relation between x and t to be specified
later.
(a) Show that

dy

dt
= dx

dt

dy

dx
,

d2 y

dt2 =
(

dx

dt

)2 d2 y

dx2 + d2x

dt2

dy

dx
.

(b) Show that the differential equation (i) becomes(
dx

dt

)2 d2 y

dx2 +
(

d2x

dt2 + p(t)
dx

dt

)
dy

dx
+ q(t)y = 0. (ii)

(c) In order for Eq. (ii) to have constant coefficients, the coefficients of d2 y/dx2 and of
y must be proportional. If q(t) > 0, then we can choose the constant of proportionality to
be 1; hence

x = u(t) =
∫

[q(t)]1/2 dt. (iii)

(d) With x chosen as in part (c) show that the coefficient of dy/dx in Eq. (ii) is also a
constant, provided that the expression

q ′(t) + 2p(t)q(t)

2[q(t)]3/2 (iv)

is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients
by a change of the independent variable, provided that the function (q ′ + 2pq)/q3/2 is a
constant. How must this result be modified if q(t) < 0?

In each of Problems 35 through 37 try to transform the given equation into one with constant
coefficients by the method of Problem 34. If this is possible, find the general solution of the
given equation.

35. y′′ + t y′ + e−t2
y = 0, −∞ < t < ∞

36. y′′ + 3t y′ + t2 y = 0, −∞ < t < ∞
37. t y′′ + (t2 − 1)y′ + t3 y = 0, 0 < t < ∞
38. Euler Equations. An equation of the form

t2 y′′ + αt y′ + βy = 0, t > 0,

where α and β are real constants, is called an Euler equation. Show that the substitution
x = ln t transforms an Euler equation into an equation with constant coefficients. Euler
equations are discussed in detail in Section 5.5.

In each of Problems 39 through 42 use the result of Problem 38 to solve the given equation for
t > 0.

39. t2 y′′ + t y′ + y = 0 40. t2 y′′ + 4t y′ + 2y = 0
41. t2 y′′ + 3t y′ + 1.25y = 0 42. t2 y′′ − 4t y′ − 6y = 0

3.5 Repeated Roots; Reduction of Order

In earlier sections we showed how to solve the equation

ay′′ + by′ + cy = 0 (1)
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when the roots of the characteristic equation

ar2 + br + c = 0 (2)

are either real and different, or are complex conjugates. Now we consider the third
possibility, namely, that the two roots r1 and r2 are equal. This case occurs when the
discriminant b2 − 4ac is zero, and it follows from the quadratic formula that

r1 = r2 = −b/2a. (3)

The difficulty is immediately apparent; both roots yield the same solution

y1(t) = e−bt/2a (4)

of the differential equation (1), and it is not obvious how to find a second solution.

E X A M P L E

1

Solve the differential equation

y′′ + 4y′ + 4y = 0. (5)

The characteristic equation is

r2 + 4r + 4 = (r + 2)2 = 0,

so r1 = r2 = −2. Therefore one solution of Eq. (5) is y1(t) = e−2t . To find the general
solution of Eq. (5) we need a second solution that is not a multiple of y1. This second
solution can be found in several ways (see Problems 20 through 22); here we use a
method originated by D’Alembert5 in the eighteenth century. Recall that since y1(t) is
a solution of Eq. (1), so is cy1(t) for any constant c. The basic idea is to generalize this
observation by replacing c by a function v(t) and then trying to determine v(t) so that
the product v(t)y1(t) is a solution of Eq. (1).

To carry out this program we substitute y = v(t)y1(t) in Eq. (1) and use the resulting
equation to find v(t). Starting with

y = v(t)y1(t) = v(t)e−2t , (6)

we have

y′ = v′(t)e−2t − 2v(t)e−2t (7)

and

y′′ = v′′(t)e−2t − 4v′(t)e−2t + 4v(t)e−2t . (8)

By substituting the expressions in Eqs. (6), (7), and (8) in Eq. (5) and collecting terms,
we obtain

[v′′(t) − 4v′(t) + 4v(t) + 4v′(t) − 8v(t) + 4v(t)]e−2t = 0,

which simplifies to

v′′(t) = 0. (9)

5Jean d’Alembert (1717–1783), a French mathematician, was a contemporary of Euler and Daniel Bernoulli, and
is known primarily for his work in mechanics and differential equations. D’Alembert’s principle in mechanics and
d’Alembert’s paradox in hydrodynamics are named for him, and the wave equation first appeared in his paper on
vibrating strings in 1747. In his later years he devoted himself primarily to philosophy and to his duties as science
editor of Diderot’s Encyclopédie.
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Therefore

v′(t) = c1

and

v(t) = c1t + c2, (10)

where c1 and c2 are arbitrary constants. Finally, substituting for v(t) in Eq. (6), we
obtain

y = c1te−2t + c2e−2t . (11)

The second term on the right side of Eq. (11) corresponds to the original solution
y1(t) = exp(−2t), but the first term arises from a second solution, namely y2(t) =
t exp(−2t). These two solutions are obviously not proportional, but we can verify that
they are linearly independent by calculating their Wronskian:

W (y1, y2)(t) =
∣∣∣∣ e−2t te−2t

−2e−2t (1 − 2t)e−2t

∣∣∣∣
= e−4t − 2te−4t + 2te−4t = e−4t �= 0.

Therefore

y1(t) = e−2t , y2(t) = te−2t (12)

form a fundamental set of solutions of Eq. (5), and the general solution of that equation
is given by Eq. (11). Note that both y1(t) and y2(t) tend to zero as t → ∞; consequently,
all solutions of Eq. (5) behave in this way. The graph of a typical solution is shown in
Figure 3.5.1.

2

1

0.5 1 1.5 2

y

t

FIGURE 3.5.1 A typical solution of y′′ + 4y′ + 4y = 0.

The procedure used in Example 1 can be extended to a general equation whose
characteristic equation has repeated roots. That is, we assume that the coefficients in
Eq. (1) satisfy b2 − 4ac = 0, in which case

y1(t) = e−bt/2a

is a solution. Then we assume that

y = v(t)y1(t) = v(t)e−bt/2a (13)
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and substitute in Eq. (1) to determine v(t). We have

y′ = v′(t)e−bt/2a − b

2a
v(t)e−bt/2a (14)

and

y′′ = v′′(t)e−bt/2a − b

a
v′(t)e−bt/2a + b2

4a2 v(t)e−bt/2a . (15)

Then, by substituting in Eq. (1), we obtain{
a

[
v′′(t) − b

a
v′(t) + b2

4a2 v(t)

]
+ b

[
v′(t) − b

2a
v(t)

]
+ cv(t)

}
e−bt/2a = 0. (16)

Canceling the factor exp(−bt/2a), which is nonzero, and rearranging the remaining
terms, we find that

av′′(t) + (−b + b)v′(t) +
(

b2

4a
− b2

2a
+ c

)
v(t) = 0. (17)

The term involving v′(t)is obviously zero. Further, the coefficient of v(t) is c − (b2/4a),
which is also zero because b2 − 4ac = 0 in the problem that we are considering. Thus,
just as in Example 1, Eq. (17) reduces to

v′′(t) = 0;
therefore,

v(t) = c1t + c2.

Hence, from Eq. (13), we have

y = c1te−bt/2a + c2e−bt/2a. (18)

Thus y is a linear combination of the two solutions

y1(t) = e−bt/2a, y2(t) = te−bt/2a. (19)

The Wronskian of these two solutions is

W (y1, y2)(t) =
∣∣∣∣∣∣

e−bt/2a te−bt/2a

− b

2a
e−bt/2a

(
1 − bt

2a

)
e−bt/2a

∣∣∣∣∣∣ = e−bt/a. (20)

Since W (y1, y2)(t) is never zero, the solutions y1 and y2 given by Eq. (19) are a
fundamental set of solutions. Further, Eq. (18) is the general solution of Eq. (1) when
the roots of the characteristic equation are equal. In other words, in this case, there is
one exponential solution corresponding to the repeated root, while a second solution is
obtained by multiplying the exponential solution by t .

E X A M P L E

2

Find the solution of the initial value problem

y′′ − y′ + 0.25y = 0, y(0) = 2, y′(0) = 1
3 . (21)

The characteristic equation is

r2 − r + 0.25 = 0,
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so the roots are r1 = r2 = 1/2. Thus the general solution of the differential equation is

y = c1et/2 + c2tet/2. (22)

The first initial condition requires that

y(0) = c1 = 2.

To satisfy the second initial condition, we first differentiate Eq. (22) and then set t = 0.
This gives

y′(0) = 1
2 c1 + c2 = 1

3 ,

so c2 = −2/3. Thus, the solution of the initial value problem is

y = 2et/2 − 2
3 tet/2. (23)

The graph of this solution is shown in Figure 3.5.2.

4

3

2

1

–1

1 2 3

y

t

y'(0) = 2:  y = 2et/2 + tet/2

y'(0) =    :  y = 2et/2 –    tet/21
3

2
3

FIGURE 3.5.2 Solutions of y′′ − y′ + 0.25y = 0, y(0) = 2, with y′(0) = 1/3 and with
y′(0) = 2, respectively.

Let us now modify the initial value problem (21) by changing the initial slope; to
be specific, let the second initial condition be y′(0) = 2. The solution of this modified
problem is

y = 2et/2 + tet/2

and its graph is also shown in Figure 3.5.2. The graphs shown in this figure suggest that
there is a critical initial slope, with a value between 1

3 and 2, that separates solutions
that grow positively from those that ultimately grow negatively. In Problem 16 you are
asked to determine this critical initial slope.
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The geometrical behavior of solutions is similar in this case to that when the roots are
real and different. If the exponents are either positive or negative, then the magnitude
of the solution grows or decays accordingly; the linear factor t has little influence.
A decaying solution is shown in Figure 3.5.1 and growing solutions in Figure 3.5.2.
However, if the repeated root is zero, then the differential equation is y′′ = 0 and the
general solution is a linear function of t .

Summary. We can now summarize the results that we have obtained for second order
linear homogeneous equations with constant coefficients,

ay′′ + by′ + cy = 0. (1)

Let r1 and r2 be the roots of the corresponding characteristic polynomial

ar2 + br + c = 0. (2)

If r1 and r2 are real but not equal, then the general solution of the differential
equation (1) is

y = c1er1t + c2er2t . (24)

If r1 and r2 are complex conjugates λ ± iµ, then the general solution is

y = c1eλt cos µt + c2eλt sin µt. (25)

If r1 = r2, then the general solution is

y = c1er1t + c2ter1t . (26)

Reduction of Order. It is worth noting that the procedure used earlier in this section
for equations with constant coefficients is more generally applicable. Suppose we know
one solution y1(t), not everywhere zero, of

y′′ + p(t)y′ + q(t)y = 0. (27)

To find a second solution, let

y = v(t)y1(t); (28)

then

y′ = v′(t)y1(t) + v(t)y′
1(t)

and

y′′ = v′′(t)y1(t) + 2v′(t)y′
1(t) + v(t)y′′

1 (t).

Substituting for y, y′, and y′′ in Eq. (27) and collecting terms, we find that

y1v
′′ + (2y′

1 + py1)v
′ + (y′′

1 + py′
1 + qy1)v = 0. (29)

Since y1 is a solution of Eq. (27), the coefficient of v in Eq. (29) is zero, so that Eq. (29)
becomes

y1v
′′ + (2y′

1 + py1)v
′ = 0. (30)

Despite its appearance, Eq. (30) is actually a first order equation for the function v′ and
can be solved either as a first order linear equation or as a separable equation. Once
v′ has been found, then v is obtained by an integration. Finally, y is determined from
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Eq. (28). This procedure is called the method of reduction of order because the crucial
step is the solution of a first order differential equation for v′ rather than the original
second order equation for y. Although it is possible to write down a formula for v(t),
we will instead illustrate how this method works by an example.

E X A M P L E

3

Given that y1(t) = t−1 is a solution of

2t2 y′′ + 3t y′ − y = 0, t > 0, (31)

find a second linearly independent solution.
We set y = v(t)t−1; then

y′ = v′t−1 − vt−2, y′′ = v′′t−1 − 2v′t−2 + 2vt−3.

Substituting for y, y′, and y′′ in Eq. (31) and collecting terms, we obtain

2t2(v′′t−1 − 2v′t−2 + 2vt−3) + 3t (v′t−1 − vt−2) − vt−1

= 2tv′′ + (−4 + 3)v′ + (4t−1 − 3t−1 − t−1)v

= 2tv′′ − v′ = 0. (32)

Note that the coefficient of v is zero, as it should be; this provides a useful check on
our algebra.

Separating the variables in Eq. (32) and solving for v′(t), we find that

v′(t) = ct1/2 ;
then

v(t) = 2
3 ct3/2 + k.

It follows that

y = 2
3 ct1/2 + kt−1, (33)

where c and k are arbitrary constants. The second term on the right side of Eq. (33) is
a multiple of y1(t) and can be dropped, but the first term provides a new independent
solution. Neglecting the arbitrary multiplicative constant, we have y2(t) = t1/2.

PROBLEMS In each of Problems 1 through 10 find the general solution of the given differential equation.

1. y′′ − 2y′ + y = 0 2. 9y′′ + 6y′ + y = 0
3. 4y′′ − 4y′ − 3y = 0 4. 4y′′ + 12y′ + 9y = 0
5. y′′ − 2y′ + 10y = 0 6. y′′ − 6y′ + 9y = 0
7. 4y′′ + 17y′ + 4y = 0 8. 16y′′ + 24y′ + 9y = 0
9. 25y′′ − 20y′ + 4y = 0 10. 2y′′ + 2y′ + y = 0

In each of Problems 11 through 14 solve the given initial value problem. Sketch the graph of
the solution and describe its behavior for increasing t .

11. 9y′′ − 12y′ + 4y = 0, y(0) = 2, y′(0) = −1
12. y′′ − 6y′ + 9y = 0, y(0) = 0, y′(0) = 2
13. 9y′′ + 6y′ + 82y = 0, y(0) = −1, y′(0) = 2
14. y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1
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� 15. Consider the initial value problem

4y′′ + 12y′ + 9y = 0, y(0) = 1, y′(0) = −4.

(a) Solve the initial value problem and plot its solution for 0 ≤ t ≤ 5.
(b) Determine where the solution has the value zero.
(c) Determine the coordinates (t0,y0) of the minimum point.
(d) Change the second initial condition to y′(0) = b and find the solution as a function
of b. Then find the critical value of b that separates solutions that always remain positive
from those that eventually become negative.

16. Consider the following modification of the initial value problem in Example 2:

y′′ − y′ + 0.25y = 0, y(0) = 2, y′(0) = b.

Find the solution as a function of b and then determine the critical value of b that separates
solutions that grow positively from those that eventually grow negatively.

� 17. Consider the initial value problem

4y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 2.

(a) Solve the initial value problem and plot the solution.
(b) Determine the coordinates (t0,y0) of the maximum point.
(c) Change the second initial condition to y′(0) = b > 0 and find the solution as a function
of b.
(d) Find the coordinates (tM ,yM ) of the maximum point in terms of b. Describe the
dependence of tM and yM on b as b increases.

18. Consider the initial value problem

9y′′ + 12y′ + 4y = 0, y(0) = a > 0, y′(0) = −1.

(a) Solve the initial value problem.
(b) Find the critical value of a that separates solutions that become negative from those
that are always positive.

19. If the roots of the characteristic equation are real, show that a solution of ay′′ + by′ + cy =
0 can take on the value zero at most once.

Problems 20 through 22 indicate other ways of finding the second solution when the characteristic
equation has repeated roots.

20. (a) Consider the equation y′′ + 2ay′ + a2 y = 0. Show that the roots of the characteristic
equation are r1 = r2 = −a, so that one solution of the equation is e−at .
(b) Use Abel’s formula [Eq. (8) of Section 3.3] to show that the Wronskian of any two
solutions of the given equation is

W (t) = y1(t)y′
2(t) − y′

1(t)y2(t) = c1e−2at ,

where c1 is a constant.
(c) Let y1(t) = e−at and use the result of part (b) to show that a second solution is
y2(t) = te−at .

21. Suppose that r1 and r2 are roots of ar2 + br + c = 0 and that r1 �= r2; then exp(r1t)
and exp(r2t) are solutions of the differential equation ay′′ + by′ + cy = 0. Show that
φ(t; r1, r2) = [exp(r2t) − exp(r1t)]/(r2 − r1) is also a solution of the equation for r2 �= r1.
Then think of r1 as fixed and use L’Hospital’s rule to evaluate the limit of φ(t; r1, r2) as
r2 → r1, thereby obtaining the second solution in the case of equal roots.

22. (a) If ar2 + br + c = 0 has equal roots r1, show that

L[ert ] = a(ert )′′ + b(ert )′ + cert = a(r − r1)
2ert . (i)
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Since the right side of Eq. (i) is zero when r = r1, it follows that exp(r1t) is a solution of
L[y] = ay′′ + by′ + cy = 0.
(b) Differentiate Eq. (i) with respect to r and interchange differentiation with respect to r
and with respect to t , thus showing that

∂

∂r
L[ert ] = L

[
∂

∂r
ert

]
= L[tert ] = atert (r − r1)

2 + 2aert (r − r1). (ii)

Since the right side of Eq. (ii) is zero when r = r1, conclude that t exp(r1t) is also a solution
of L[y] = 0.

In each of Problems 23 through 30 use the method of reduction of order to find a second solution
of the given differential equation.

23. t2 y′′ − 4t y′ + 6y = 0, t > 0; y1(t) = t2

24. t2 y′′ + 2t y′ − 2y = 0, t > 0; y1(t) = t
25. t2 y′′ + 3t y′ + y = 0, t > 0; y1(t) = t−1

26. t2 y′′ − t (t + 2)y′ + (t + 2)y = 0, t > 0; y1(t) = t
27. xy′′ − y′ + 4x3 y = 0, x > 0; y1(x) = sin x2

28. (x − 1)y′′ − xy′ + y = 0, x > 1; y1(x) = ex

29. x2 y′′ − (x − 0.1875)y = 0, x > 0; y1(x) = x1/4e2
√

x

30. x2 y′′ + xy′ + (x2 − 0.25)y = 0, x > 0; y1(x) = x−1/2 sin x

31. The differential equation

xy′′ − (x + N )y′ + N y = 0,

where N is a nonnegative integer, has been discussed by several authors.6 One reason it is
interesting is that it has an exponential solution and a polynomial solution.
(a) Verify that one solution is y1(x) = ex .
(b) Show that a second solution has the form y2(x) = cex

∫
x N e−x dx . Calculate y2(x)

for N = 1 and N = 2; convince yourself that, with c = −1/N !,

y2(x) = 1 + x

1!
+ x2

2!
+ · · · + x N

N !
.

Note that y2(x) is exactly the first N + 1 terms in the Taylor series about x = 0 for ex , that
is, for y1(x).

32. The differential equation

y′′ + δ(xy′ + y) = 0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify
that y1(x) = exp(−δx2/2) is one solution and then find the general solution in the form of
an integral.

33. The method of Problem 20 can be extended to second order equations with variable
coefficients. If y1 is a known nonvanishing solution of y′′ + p(t)y′ + q(t)y = 0, show that
a second solution y2 satisfies (y2/y1)

′ = W (y1,y2)/y2
1 , where W (y1,y2) is the Wronskian

of y1 and y2. Then use Abel’s formula [Eq. (8) of Section 3.3] to determine y2.

In each of Problems 34 through 37 use the method of Problem 33 to find a second independent
solution of the given equation.

34. t2 y′′ + 3t y′ + y = 0, t > 0; y1(t) = t−1

35. t y′′ − y′ + 4t3 y = 0, t > 0; y1(t) = sin(t2)

6 T. A. Newton, “On Using a Differential Equation to Generate Polynomials,” American Mathematical Monthly
81 (1974), pp. 592–601. Also see the references given there.
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36. (x − 1)y′′ − xy′ + y = 0, x > 1; y1(x) = ex

37. x2 y′′ + xy′ + (x2 − 0.25)y = 0, x > 0; y1(x) = x−1/2 sin x

Behavior of Solutions as t → ∞. Problems 38 through 40 are concerned with the behavior
of solutions in the limit as t → ∞.

38. If a, b, and c are positive constants, show that all solutions of ay′′ + by′ + cy = 0 approach
zero as t → ∞.

39. (a) If a > 0 and c > 0, but b = 0, show that the result of Problem 38 is no longer true,
but that all solutions are bounded as t → ∞.
(b) If a > 0 and b > 0, but c = 0, show that the result of Problem 38 is no longer true,
but that all solutions approach a constant that depends on the initial conditions as t → ∞.
Determine this constant for the initial conditions y(0) = y0,y

′(0) = y′
0.

40. Show that y = sin t is a solution of

y′′ + (k sin2 t)y′ + (1 − k cos t sin t)y = 0

for any value of the constant k. If 0 < k < 2, show that 1 − k cos t sin t > 0 and k sin2 t ≥ 0.
Thus observe that even though the coefficients of this variable coefficient differential equa-
tion are nonnegative (and the coefficient of y′ is zero only at the points t = 0, π, 2π, . . .),
it has a solution that does not approach zero as t → ∞. Compare this situation with the
result of Problem 38. Thus we observe a not unusual situation in the theory of differential
equations: equations that are apparently very similar can have quite different properties.

Euler Equations. Use the substitution introduced in Problem 38 in Section 3.4 to solve each
of the equations in Problems 41 and 42.

41. t2 y′′ − 3t y′ + 4y = 0, t > 0
42. t2 y′′ + 2t y′ + 0.25y = 0, t > 0

3.6 Nonhomogeneous Equations; Method of
Undetermined Coefficients

We now return to the nonhomogeneous equation

L[y] = y′′ + p(t)y′ + q(t)y = g(t), (1)

where p, q, and g are given (continuous) functions on the open interval I . The equation

L[y] = y′′ + p(t)y′ + q(t)y = 0, (2)

in which g(t) = 0 and p and q are the same as in Eq. (1), is called the homogeneous
equation corresponding to Eq. (1). The following two results describe the structure of
solutions of the nonhomogeneous equation (1) and provide a basis for constructing its
general solution.
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Theorem 3.6.1 If Y1 and Y2 are two solutions of the nonhomogeneous equation (1), then their
difference Y1 − Y2 is a solution of the corresponding homogeneous equation (2). If,
in addition, y1 and y2 are a fundamental set of solutions of Eq. (2), then

Y1(t) − Y2(t) = c1 y1(t) + c2 y2(t), (3)

where c1 and c2 are certain constants.

To prove this result, note that Y1 and Y2 satisfy the equations

L[Y1](t) = g(t), L[Y2](t) = g(t). (4)

Subtracting the second of these equations from the first, we have

L[Y1](t) − L[Y2](t) = g(t) − g(t) = 0. (5)

However,

L[Y1] − L[Y2] = L[Y1 − Y2],

so Eq. (5) becomes

L[Y1 − Y2](t) = 0. (6)

Equation (6) states that Y1 − Y2 is a solution of Eq. (2). Finally, since all solutions of
Eq. (2) can be expressed as linear combinations of a fundamental set of solutions by
Theorem 3.2.4, it follows that the solution Y1 − Y2 can be so written. Hence Eq. (3)
holds and the proof is complete.

Theorem 3.6.2 The general solution of the nonhomogeneous equation (1) can be written in the form

y = φ(t) = c1 y1(t) + c2 y2(t) + Y (t), (7)

where y1 and y2 are a fundamental set of solutions of the corresponding homogeneous
equation (2), c1 and c2 are arbitrary constants, and Y is some specific solution of the
nonhomogeneous equation (1).

The proof of Theorem 3.6.2 follows quickly from the preceding theorem. Note that
Eq. (3) holds if we identify Y1 with an arbitrary solution φ of Eq. (1) and Y2 with the
specific solution Y . From Eq. (3) we thereby obtain

φ(t) − Y (t) = c1 y1(t) + c2 y2(t), (8)

which is equivalent to Eq. (7). Since φ is an arbitrary solution of Eq. (1), the expression
on the right side of Eq. (7) includes all solutions of Eq. (1); thus it is natural to call it
the general solution of Eq. (1).

In somewhat different words, Theorem 3.6.2 states that to solve the nonhomogeneous
equation (1), we must do three things:

1. Find the general solution c1 y1(t) + c2 y2(t) of the corresponding homogeneous
equation. This solution is frequently called the complementary solution and may
be denoted by yc(t).

2. Find some single solution Y (t) of the nonhomogeneous equation. Often this solu-
tion is referred to as a particular solution.

3. Add together the functions found in the two preceding steps.
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We have already discussed how to find yc(t), at least when the homogeneous equa-
tion (2) has constant coefficients. Therefore, in the remainder of this section and in the
next, we will focus on finding a particular solution Y (t) of the nonhomogeneous equa-
tion (1). There are two methods that we wish to discuss. They are known as the method
of undetermined coefficients and the method of variation of parameters, respectively.
Each has some advantages and some possible shortcomings.

Method of Undetermined Coefficients. The method of undetermined coefficients re-
quires that we make an initial assumption about the form of the particular solution Y (t),
but with the coefficients left unspecified. We then substitute the assumed expression
into Eq. (1) and attempt to determine the coefficients so as to satisfy that equation. If
we are successful, then we have found a solution of the differential equation (1) and
can use it for the particular solution Y (t). If we cannot determine the coefficients, then
this means that there is no solution of the form that we assumed. In this case we may
modify the initial assumption and try again.

The main advantage of the method of undetermined coefficients is that it is straight-
forward to execute once the assumption is made as to the form of Y (t). Its major
limitation is that it is useful primarily for equations for which we can easily write down
the correct form of the particular solution in advance. For this reason, this method
is usually used only for problems in which the homogeneous equation has constant
coefficients and the nonhomogeneous term is restricted to a relatively small class of
functions. In particular, we consider only nonhomogeneous terms that consist of poly-
nomials, exponential functions, sines, and cosines. Despite this limitation, the method
of undetermined coefficients is useful for solving many problems that have important
applications. However, the algebraic details may become tedious and a computer alge-
bra system can be very helpful in practical applications. We will illustrate the method
of undetermined coefficients by several simple examples and then summarize some
rules for using it.

E X A M P L E

1

Find a particular solution of

y′′ − 3y′ − 4y = 3e2t . (9)

We seek a function Y such that the combination Y ′′(t) − 3Y ′(t) − 4Y (t) is equal
to 3e2t . Since the exponential function reproduces itself through differentiation, the
most plausible way to achieve the desired result is to assume that Y (t) is some multiple
of e2t , that is,

Y (t) = Ae2t ,

where the coefficient A is yet to be determined. To find A we calculate

Y ′(t) = 2Ae2t , Y ′′(t) = 4Ae2t ,

and substitute for y, y′, and y′′ in Eq. (9). We obtain

(4A − 6A − 4A)e2t = 3e2t .

Hence −6Ae2t must equal 3e2t , so A = −1/2. Thus a particular solution is

Y (t) = − 1
2 e2t . (10)
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E X A M P L E

2

Find a particular solution of

y′′ − 3y′ − 4y = 2 sin t. (11)

By analogy with Example 1, let us first assume that Y (t) = A sin t , where A is a
constant to be determined. On substituting in Eq. (11) and rearranging the terms, we
obtain

−5A sin t − 3A cos t = 2 sin t,

or

(2 + 5A) sin t + 3A cos t = 0. (12)

The functions sin t and cos t are linearly independent, so Eq. (12) can hold on an interval
only if the coefficients 2 + 5A and 3A are both zero. These contradictory requirements
mean that there is no choice of the constant A that makes Eq. (12) true for all t . Thus
we conclude that our assumption concerning Y (t) is inadequate. The appearance of the
cosine term in Eq. (12) suggests that we modify our original assumption to include a
cosine term in Y (t), that is,

Y (t) = A sin t + B cos t,

where A and B are to be determined. Then

Y ′(t) = A cos t − B sin t, Y ′′(t) = −A sin t − B cos t.

By substituting these expressions for y, y′, and y′′ in Eq. (11) and collecting terms, we
obtain

(−A + 3B − 4A) sin t + (−B − 3A − 4B) cos t = 2 sin t. (13)

To satisfy Eq. (13) we must match the coefficients of sin t and cos t on each side of the
equation; thus A and B must satisfy the equations

−5A + 3B = 2, −3A − 5B = 0.

Hence A = −5/17 and B = 3/17, so a particular solution of Eq. (11) is

Y (t) = − 5
17 sin t + 3

17 cos t.

The method illustrated in the preceding examples can also be used when the right
side of the equation is a polynomial. Thus, to find a particular solution of

y′′ − 3y′ − 4y = 4t2 − 1, (14)

we initially assume that Y (t) is a polynomial of the same degree as the nonhomogeneous
term, that is, Y (t) = At2 + Bt + C .

To summarize our conclusions up to this point: if the nonhomogeneous term g(t)
in Eq. (1) is an exponential function eαt , then assume that Y (t) is proportional to the
same exponential function; if g(t) is sin βt or cos βt , then assume that Y (t) is a linear
combination of sin βt and cos βt ; if g(t) is a polynomial, then assume that Y (t) is
a polynomial of like degree. The same principle extends to the case where g(t) is
a product of any two, or all three, of these types of functions, as the next example
illustrates.
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E X A M P L E

3

Find a particular solution of

y′′ − 3y′ − 4y = −8et cos 2t. (15)

In this case we assume that Y (t) is the product of et and a linear combination of
cos 2t and sin 2t , that is,

Y (t) = Aet cos 2t + Bet sin 2t.

The algebra is more tedious in this example, but it follows that

Y ′(t) = (A + 2B)et cos 2t + (−2A + B)et sin 2t

and

Y ′′(t) = (−3A + 4B)et cos 2t + (−4A − 3B)et sin 2t.

By substituting these expressions in Eq. (15), we find that A and B must satisfy

10A + 2B = 8, 2A − 10B = 0.

Hence A = 10/13 and B = 2/13; therefore a particular solution of Eq. (15) is

Y (t) = 10
13 et cos 2t + 2

13 et sin 2t.

Now suppose that g(t) is the sum of two terms, g(t) = g1(t) + g2(t), and suppose
that Y1 and Y2 are solutions of the equations

ay′′ + by′ + cy = g1(t) (16)

and

ay′′ + by′ + cy = g2(t), (17)

respectively. Then Y1 + Y2 is a solution of the equation

ay′′ + by′ + cy = g(t). (18)

To prove this statement, substitute Y1(t) + Y2(t) for y in Eq. (18) and make use
of Eqs. (16) and (17). A similar conclusion holds if g(t) is the sum of any finite
number of terms. The practical significance of this result is that for an equation whose
nonhomogeneous function g(t) can be expressed as a sum, one can consider instead
several simpler equations and then add the results together. The following example is
an illustration of this procedure.

E X A M P L E

4

Find a particular solution of

y′′ − 3y′ − 4y = 3e2t + 2 sin t − 8et cos 2t. (19)

By splitting up the right side of Eq. (19), we obtain the three equations

y′′ − 3y′ − 4y = 3e2t ,

y′′ − 3y′ − 4y = 2 sin t,

and

y′′ − 3y′ − 4y = −8et cos 2t.
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Solutions of these three equations have been found in Examples 1, 2, and 3, respectively.
Therefore a particular solution of Eq. (19) is their sum, namely,

Y (t) = − 1
2 e2t + 3

17 cos t − 5
17 sin t + 10

13 et cos 2t + 2
13 et sin 2t.

The procedure illustrated in these examples enables us to solve a fairly large class
of problems in a reasonably efficient manner. However, there is one difficulty that
sometimes occurs. The next example illustrates how it arises.

E X A M P L E

5

Find a particular solution of

y′′ + 4y = 3 cos 2t. (20)

Proceeding as in Example 2, we assume that Y (t) = A cos 2t + B sin 2t . By substi-
tuting in Eq. (20), we then obtain

(4A − 4A) cos 2t + (4B − 4B) sin 2t = 3 cos 2t. (21)

Since the left side of Eq. (21) is zero, there is no choice of A and B that satisfies this
equation. Therefore, there is no particular solution of Eq. (20) of the assumed form. The
reason for this possibly unexpected result becomes clear if we solve the homogeneous
equation

y′′ + 4y = 0 (22)

that corresponds to Eq. (20). A fundamental set of solutions of Eq. (22) is y1(t) =
cos 2t and y2(t) = sin 2t . Thus our assumed particular solution of Eq. (20) is actually
a solution of the homogeneous equation (22); consequently, it cannot possibly be a
solution of the nonhomogeneous equation (20).

To find a solution of Eq. (20) we must therefore consider functions of a somewhat
different form. The simplest functions, other than cos 2t and sin 2t themselves, that
when differentiated lead to cos 2t and sin 2t are t cos 2t and t sin 2t . Hence we assume
that Y (t) = At cos 2t + Bt sin 2t . Then, upon calculating Y ′(t) and Y ′′(t), substituting
them into Eq. (20), and collecting terms, we find that

−4A sin 2t + 4B cos 2t = 3 cos 2t.

Therefore A = 0 and B = 3/4, so a particular solution of Eq. (20) is

Y (t) = 3
4 t sin 2t.

The fact that in some circumstances a purely oscillatory forcing term leads to a solution
that includes a linear factor t as well as an oscillatory factor is important in some
applications; see Section 3.9 for a further discussion.

The outcome of Example 5 suggests a modification of the principle stated previously:
If the assumed form of the particular solution duplicates a solution of the corresponding
homogeneous equation, then modify the assumed particular solution by multiplying it
by t . Occasionally, this modification will be insufficient to remove all duplication with
the solutions of the homogeneous equation, in which case it is necessary to multiply
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by t a second time. For a second order equation, it will never be necessary to carry the
process further than this.

Summary. We now summarize the steps involved in finding the solution of an initial
value problem consisting of a nonhomogeneous equation of the form

ay′′ + by′ + cy = g(t), (23)

where the coefficients a, b, and c are constants, together with a given set of initial
conditions:

1. Find the general solution of the corresponding homogeneous equation.
2. Make sure that the function g(t) in Eq. (23) belongs to the class of functions dis-

cussed in this section, that is, it involves nothing more than exponential functions,
sines, cosines, polynomials, or sums or products of such functions. If this is not
the case, use the method of variation of parameters (discussed in the next section).

3. If g(t) = g1(t) + · · · + gn(t), that is, if g(t) is a sum of n terms, then form n
subproblems, each of which contains only one of the terms g1(t), . . . , gn(t). The
i th subproblem consists of the equation

ay′′ + by′ + cy = gi (t),

where i runs from 1 to n.
4. For the i th subproblem assume a particular solution Yi (t) consisting of the ap-

propriate exponential function, sine, cosine, polynomial, or combination thereof.
If there is any duplication in the assumed form of Yi (t) with the solutions of the
homogeneous equation (found in step 1), then multiply Yi (t) by t , or (if necessary)
by t2, so as to remove the duplication. See Table 3.6.1.

5. Find a particular solution Yi (t) for each of the subproblems. Then the sum Y1(t) +
· · · + Yn(t) is a particular solution of the full nonhomogeneous equation (23).

6. Form the sum of the general solution of the homogeneous equation (step 1) and the
particular solution of the nonhomogeneous equation (step 5). This is the general
solution of the nonhomogeneous equation.

7. Use the initial conditions to determine the values of the arbitrary constants remain-
ing in the general solution.

TABLE 3.6.1 The Particular Solution of ay′′ + by′ + cy = gi (t)

gi (t) Yi (t)

Pn(t) = a0tn + a1tn−1 + · · · + an ts(A0tn + A1tn−1 + · · · + An)

Pn(t)e
αt t s(A0tn + A1tn−1 + · · · + An)e

αt

Pn(t)e
αt

{
sin βt

cos βt
t s[(A0tn + A1tn−1 + · · · + An)e

αt cos βt

+(B0tn + B1tn−1 + · · · + Bn)e
αt sin βt]

Notes. Here s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure that no term in
Yi (t) is a solution of the corresponding homogeneous equation. Equivalently, for the three cases,
s is the number of times 0 is a root of the characteristic equation, α is a root of the characteristic
equation, and α + iβ is a root of the characteristic equation, respectively.
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For some problems this entire procedure is easy to carry out by hand, but in many
cases it requires considerable algebra. Once you understand clearly how the method
works, a computer algebra system can be of great assistance in executing the details.

The method of undetermined coefficients is self-correcting in the sense that if one
assumes too little for Y (t), then a contradiction is soon reached that usually points the
way to the modification that is needed in the assumed form. On the other hand, if one
assumes too many terms, then some unnecessary work is done and some coefficients
turn out to be zero, but at least the correct answer is obtained.

Proof of the Method of Undetermined Coefficients. In the preceding discussion
we have described the method of undetermined coefficients on the basis of several
examples. To prove that the procedure always works as stated, we now give a general
argument, in which we consider several cases corresponding to different forms for the
nonhomogeneous term g(t).

g(t) = Pn(t) = a0 tn + a1 tn−1 + · · · + an. In this case Eq. (23) becomes

ay′′ + by′ + cy = a0tn + a1tn−1 + · · · + an . (24)

To obtain a particular solution we assume that

Y (t) = A0tn + A1tn−1 + · · · + An−2t2 + An−1t + An. (25)

Substituting in Eq. (24), we obtain

a[n(n − 1)A0tn−2 + · · · + 2An−2] + b(n A0tn−1 + · · · + An−1)

+ c(A0tn + A1tn−1 + · · · + An) = a0tn + · · · + an . (26)

Equating the coefficients of like powers of t gives

cA0 = a0,

cA1 + nbA0 = a1,

...

cAn + bAn−1 + 2a An−2 = an .

Provided that c �= 0, the solution of the first equation is A0 = a0/c, and the remaining
equations determine A1, . . . , An successively. If c = 0, but b �= 0, then the polynomial
on the left side of Eq. (26) is of degree n − 1, and we cannot satisfy Eq. (26). To be
sure that aY ′′(t) + bY ′(t) is a polynomial of degree n, we must choose Y (t) to be a
polynomial of degree n + 1. Hence we assume that

Y (t) = t (A0tn + · · · + An).

There is no constant term in this expression for Y (t), but there is no need to include
such a term since a constant is a solution of the homogeneous equation when c = 0.
Since b �= 0, we have A0 = a0/b(n + 1), and the other coefficients A1, . . . , An can be
determined similarly. If both c and b are zero, we assume that

Y (t) = t2(A0tn + · · · + An).

The term aY ′′(t) gives rise to a term of degree n, and we can proceed as before. Again
the constant and linear terms in Y (t) are omitted, since in this case they are both
solutions of the homogeneous equation.
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g(t) = eα t Pn(t). The problem of determining a particular solution of

ay′′ + by′ + cy = eαt Pn(t) (27)

can be reduced to the preceding case by a substitution. Let

Y (t) = eαt u(t);
then

Y ′(t) = eαt [u′(t) + αu(t)]

and

Y ′′(t) = eαt [u′′(t) + 2αu′(t) + α2u(t)].

Substituting for y, y′, and y′′ in Eq. (27), canceling the factor eαt , and collecting terms,
we obtain

au′′(t) + (2aα + b)u′(t) + (aα2 + bα + c)u(t) = Pn(t). (28)

The determination of a particular solution of Eq. (28) is precisely the same problem,
except for the names of the constants, as solving Eq. (24). Therefore, if aα2 + bα + c
is not zero, we assume that u(t) = A0tn + · · · + An; hence a particular solution of
Eq. (27) is of the form

Y (t) = eαt(A0tn + A1tn−1 + · · · + An). (29)

On the other hand, if aα2 + bα + c is zero, but 2aα + b is not, we must take u(t) to
be of the form t (A0tn + · · · + An). The corresponding form for Y (t) is t times the
expression on the right side of Eq. (29). Note that if aα2 + bα + c is zero, then eαt is a
solution of the homogeneous equation. If both aα2 + bα + c and 2aα + b are zero (and
this implies that both eαt and teαt are solutions of the homogeneous equation), then the
correct form for u(t) is t2(A0tn + · · · + An). Hence Y (t) is t2 times the expression on
the right side of Eq. (29).

g(t) = eα t Pn(t) cos β t or eα t Pn(t) sin β t. These two cases are similar, so we con-
sider only the latter. We can reduce this problem to the preceding one by noting that,
as a consequence of Euler’s formula, sin βt = (eiβt − e−iβt )/2i . Hence g(t) is of the
form

g(t) = Pn(t)
e(α+iβ)t − e(α−iβ)t

2i
and we should choose

Y (t) = e(α+iβ)t (A0tn + · · · + An) + e(α−iβ)t(B0tn + · · · + Bn),

or equivalently,

Y (t) = eαt (A0tn + · · · + An) cos βt + eαt (B0tn + · · · + Bn) sin βt.

Usually, the latter form is preferred. If α ± iβ satisfy the characteristic equation cor-
responding to the homogeneous equation, we must, of course, multiply each of the
polynomials by t to increase their degrees by one.

If the nonhomogeneous function involves both cos βt and sin βt , it is usually con-
venient to treat these terms together, since each one individually may give rise to the
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same form for a particular solution. For example, if g(t) = t sin t + 2 cos t , the form
for Y (t) would be

Y (t) = (A0t + A1) sin t + (B0t + B1) cos t,

provided that sin t and cos t are not solutions of the homogeneous equation.

PROBLEMS In each of Problems 1 through 12 find the general solution of the given differential equation.

1. y′′ − 2y′ − 3y = 3e2t 2. y′′ + 2y′ + 5y = 3 sin 2t
3. y′′ − 2y′ − 3y = −3te−t 4. y′′ + 2y′ = 3 + 4 sin 2t
5. y′′ + 9y = t2e3t + 6 6. y′′ + 2y′ + y = 2e−t

7. 2y′′ + 3y′ + y = t2 + 3 sin t 8. y′′ + y = 3 sin 2t + t cos 2t
9. u′′ + ω2

0u = cos ωt, ω2 �= ω2
0 10. u′′ + ω2

0u = cos ω0t
11. y′′ + y′ + 4y = 2 sinh t Hint: sinh t = (et − e−t )/2
12. y′′ − y′ − 2y = cosh 2t Hint: cosh t = (et + e−t )/2

In each of Problems 13 through 18 find the solution of the given initial value problem.

13. y′′ + y′ − 2y = 2t, y(0) = 0, y′(0) = 1
14. y′′ + 4y = t2 + 3et , y(0) = 0, y′(0) = 2
15. y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1
16. y′′ − 2y′ − 3y = 3te2t , y(0) = 1, y′(0) = 0
17. y′′ + 4y = 3 sin 2t, y(0) = 2, y′(0) = −1
18. y′′ + 2y′ + 5y = 4e−t cos 2t, y(0) = 1, y′(0) = 0

In each of Problems 19 through 26:

(a) Determine a suitable form for Y (t) if the method of undetermined coefficients is to be
used.
(b) Use a computer algebra system to find a particular solution of the given equation.

� 19. y′′ + 3y′ = 2t4 + t2e−3t + sin 3t � 20. y′′ + y = t (1 + sin t)

� 21. y′′ − 5y′ + 6y = et cos 2t + e2t (3t + 4) sin t

� 22. y′′ + 2y′ + 2y = 3e−t + 2e−t cos t + 4e−t t2 sin t

� 23. y′′ − 4y′ + 4y = 2t2 + 4te2t + t sin 2t

� 24. y′′ + 4y = t2 sin 2t + (6t + 7) cos 2t

� 25. y′′ + 3y′ + 2y = et (t2 + 1) sin 2t + 3e−t cos t + 4et

� 26. y′′ + 2y′ + 5y = 3te−t cos 2t − 2te−2t cos t

27. Determine the general solution of

y′′ + λ2 y =
N∑

m=1

am sin mπ t,

where λ > 0 and λ �= mπ for m = 1, . . . , N .

� 28. In many physical problems the nonhomogeneous term may be specified by different for-
mulas in different time periods. As an example, determine the solution y = φ(t) of

y′′ + y =
{

t, 0 ≤ t ≤ π,

πeπ−t , t > π,

satisfying the initial conditions y(0) = 0 and y′(0) = 1. Assume that y and y′ are also
continuous at t = π . Plot the nonhomogeneous term and the solution as functions of time.
Hint: First solve the initial value problem for t ≤ π ; then solve for t > π , determining the
constants in the latter solution from the continuity conditions at t = π .
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� 29. Follow the instructions in Problem 28 to solve the differential equation

y′′ + 2y′ + 5y =
{

1, 0 ≤ t ≤ π/2,

0, t > π/2

with the initial conditions y(0) = 0 and y′(0) = 0.

Behavior of Solutions as t ➞ �. In Problems 30 and 31 we continue the discussion started
with Problems 38 through 40 of Section 3.5. Consider the differential equation

ay′′ + by′ + cy = g(t), (i)

where a, b, and c are positive.

30. If Y1(t) and Y2(t) are solutions of Eq. (i), show that Y1(t) − Y2(t) → 0 as t → ∞. Is this
result true if b = 0?

31. If g(t) = d , a constant, show that every solution of Eq. (i) approaches d/c as t → ∞. What
happens if c = 0? What if b = 0 also?

32. In this problem we indicate an alternate procedure7 for solving the differential equation

y′′ + by′ + cy = (D2 + bD + c)y = g(t), (i)

where b and c are constants, and D denotes differentiation with respect to t . Let r1 and r2
be the zeros of the characteristic polynomial of the corresponding homogeneous equation.
These roots may be real and different, real and equal, or conjugate complex numbers.
(a) Verify that Eq. (i) can be written in the factored form

(D − r1)(D − r2)y = g(t),

where r1 + r2 = −b and r1r2 = c.
(b) Let u = (D − r2)y. Then show that the solution of Eq (i) can be found by solving the
following two first order equations:

(D − r1)u = g(t), (D − r2)y = u(t).

In each of Problems 33 through 36 use the method of Problem 32 to solve the given differential
equation.
33. y′′ − 3y′ − 4y = 3e2t (see Example 1)
34. 2y′′ + 3y′ + y = t2 + 3 sin t (see Problem 7)
35. y′′ + 2y′ + y = 2e−t (see Problem 6)
36. y′′ + 2y′ = 3 + 4 sin 2t (see Problem 4)

3.7 Variation of Parameters

In this section we describe another method of finding a particular solution of a non-
homogeneous equation. This method, known as variation of parameters, is due to
Lagrange and complements the method of undetermined coefficients rather well. The
main advantage of variation of parameters is that it is a general method; in principle at
least, it can be applied to any equation, and it requires no detailed assumptions about

7R. S. Luthar, “Another Approach to a Standard Differential Equation,” Two Year College Mathematics Journal 10
(1979), pp. 200–201; also see D. C. Sandell and F. M. Stein, “Factorization of Operators of Second Order Linear
Homogeneous Ordinary Differential Equations,” Two Year College Mathematics Journal 8 (1977), pp. 132–141,
for a more general discussion of factoring operators.
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the form of the solution. In fact, later in this section we use this method to derive a
formula for a particular solution of an arbitrary second order linear nonhomogeneous
differential equation. On the other hand, the method of variation of parameters even-
tually requires that we evaluate certain integrals involving the nonhomogeneous term
in the differential equation, and this may present difficulties. Before looking at this
method in the general case, we illustrate its use in an example.

E X A M P L E

1

Find a particular solution of

y′′ + 4y = 3 csc t. (1)

Observe that this problem does not fall within the scope of the method of un-
determined coefficients because the nonhomogeneous term g(t) = 3 csc t involves a
quotient (rather than a sum or a product) of sin t or cos t . Therefore, we need a different
approach. Observe also that the homogeneous equation corresponding to Eq. (1) is

y′′ + 4y = 0, (2)

and that the general solution of Eq. (2) is

yc(t) = c1 cos 2t + c2 sin 2t. (3)

The basic idea in the method of variation of parameters is to replace the constants c1
and c2 in Eq. (3) by functions u1(t) and u2(t), respectively, and then to determine these
functions so that the resulting expression

y = u1(t) cos 2t + u2(t) sin 2t (4)

is a solution of the nonhomogeneous equation (1).
To determine u1 and u2 we need to substitute for y from Eq. (4) in Eq. (1). However,

even without carrying out this substitution, we can anticipate that the result will be a
single equation involving some combination of u1, u2, and their first two derivatives.
Since there is only one equation and two unknown functions, we can expect that there
are many possible choices of u1 and u2 that will meet our needs. Alternatively, we
may be able to impose a second condition of our own choosing, thereby obtaining two
equations for the two unknown functions u1 and u2. We will soon show (following
Lagrange) that it is possible to choose this second condition in a way that makes the
computation markedly more efficient.

Returning now to Eq. (4), we differentiate it and rearrange the terms, thereby
obtaining

y′ = −2u1(t) sin 2t + 2u2(t) cos 2t + u′
1(t) cos 2t + u′

2(t) sin 2t. (5)

Keeping in mind the possibility of choosing a second condition on u1 and u2, let us
require the last two terms on the right side of Eq. (5) to be zero; that is, we require that

u′
1(t) cos 2t + u′

2(t) sin 2t = 0. (6)

It then follows from Eq. (5) that

y′ = −2u1(t) sin 2t + 2u2(t) cos 2t. (7)
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Although the ultimate effect of the condition (6) is not yet clear, at the very least it has
simplified the expression for y′. Further, by differentiating Eq. (7), we obtain

y′′ = −4u1(t) cos 2t − 4u2(t) sin 2t − 2u′
1(t) sin 2t + 2u′

2(t) cos 2t. (8)

Then, substituting for y and y′′ in Eq. (1) from Eqs. (4) and (8), respectively, we find
that u1 and u2 must satisfy

−2u′
1(t) sin 2t + 2u′

2(t) cos 2t = 3 csc t. (9)

Summarizing our results to this point, we want to choose u1 and u2 so as to satisfy
Eqs. (6) and (9). These equations can be viewed as a pair of linear algebraic equations
for the two unknown quantities u′

1(t) and u′
2(t). Equations (6) and (9) can be solved in

various ways. For example, solving Eq. (6) for u′
2(t), we have

u′
2(t) = −u′

1(t)
cos 2t

sin 2t
. (10)

Then, substituting for u′
2(t) in Eq. (9) and simplifying, we obtain

u′
1(t) = −3 csc t sin 2t

2
= −3 cos t. (11)

Further, putting this expression for u′
1(t) back in Eq. (10) and using the double angle

formulas, we find that

u′
2(t) = 3 cos t cos 2t

sin 2t
= 3(1 − 2 sin2 t)

2 sin t
= 3

2
csc t − 3 sin t. (12)

Having obtained u′
1(t) and u′

2(t), the next step is to integrate so as to obtain u1(t)
and u2(t). The result is

u1(t) = −3 sin t + c1 (13)

and

u2(t) = 3
2 ln | csc t − cot t | + 3 cos t + c2. (14)

Finally, on substituting these expressions in Eq. (4), we have

y = −3 sin t cos 2t + 3
2 ln | csc t − cot t | sin 2t + 3 cos t sin 2t

+ c1 cos 2t + c2 sin 2t,

or

y = 3 sin t + 3
2 ln | csc t − cot t | sin 2t + c1 cos 2t + c2 sin 2t. (15)

The terms in Eq. (15) involving the arbitrary constants c1 and c2 are the general solution
of the corresponding homogeneous equation, while the remaining terms are a particular
solution of the nonhomogeneous equation (1). Therefore Eq. (15) is the general solution
of Eq. (1).

In the preceding example the method of variation of parameters worked well in
determining a particular solution, and hence the general solution, of Eq. (1). The next
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question is whether this method can be applied effectively to an arbitrary equation.
Therefore we consider

y′′ + p(t)y′ + q(t)y = g(t), (16)

where p, q, and g are given continuous functions. As a starting point, we assume that
we know the general solution

yc(t) = c1 y1(t) + c2 y2(t) (17)

of the corresponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0. (18)

This is a major assumption because so far we have shown how to solve Eq. (18) only
if it has constant coefficients. If Eq. (18) has coefficients that depend on t , then usually
the methods described in Chapter 5 must be used to obtain yc(t).

The crucial idea, as illustrated in Example 1, is to replace the constants c1 and c2 in
Eq. (17) by functions u1(t) and u2(t), respectively; this gives

y = u1(t)y1(t) + u2(t)y2(t). (19)

Then we try to determine u1(t) and u2(t) so that the expression in Eq. (19) is a solution
of the nonhomogeneous equation (16) rather than the homogeneous equation (18).
Thus we differentiate Eq. (19), obtaining

y′ = u′
1(t)y1(t) + u1(t)y′

1(t) + u′
2(t)y2(t) + u2(t)y′

2(t). (20)

As in Example 1, we now set the terms involving u′
1(t) and u′

2(t) in Eq. (20) equal to
zero; that is, we require that

u′
1(t)y1(t) + u′

2(t)y2(t) = 0. (21)

Then, from Eq. (20), we have

y′ = u1(t)y′
1(t) + u2(t)y′

2(t). (22)

Further, by differentiating again, we obtain

y′′ = u′
1(t)y′

1(t) + u1(t)y′′
1 (t) + u′

2(t)y′
2(t) + u2(t)y′′

2 (t). (23)

Now we substitute for y, y′, and y′′ in Eq. (16) from Eqs. (19), (22), and (23),
respectively. After rearranging the terms in the resulting equation we find that

u1(t)[y′′
1 (t) + p(t)y′

1(t) + q(t)y1(t)]

+ u2(t)[y′′
2 (t) + p(t)y′

2(t) + q(t)y2(t)]

+ u′
1(t)y′

1(t) + u′
2(t)y′

2(t) = g(t). (24)

Each of the expressions in square brackets in Eq. (24) is zero because both y1 and y2
are solutions of the homogeneous equation (18). Therefore Eq. (24) reduces to

u′
1(t)y′

1(t) + u′
2(t)y′

2(t) = g(t). (25)

Equations (21) and (25) form a system of two linear algebraic equations for the
derivatives u′

1(t) and u′
2(t) of the unknown functions. They correspond exactly to

Eqs. (6) and (9) in Example 1.
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By solving the system (21), (25) we obtain

u′
1(t) = − y2(t)g(t)

W (y1,y2)(t)
, u′

2(t) = y1(t)g(t)

W (y1,y2)(t)
, (26)

where W (y1,y2) is the Wronskian of y1 and y2. Note that division by W is permissible
since y1 and y2 are a fundamental set of solutions, and therefore their Wronskian is
nonzero. By integrating Eqs. (26) we find the desired functions u1(t) and u2(t), namely,

u1(t) = −
∫

y2(t)g(t)

W (y1,y2)(t)
dt + c1, u2(t) =

∫
y1(t)g(t)

W (y1,y2)(t)
dt + c2. (27)

Finally, substituting from Eq. (27) in Eq. (19) gives the general solution of Eq. (16).
We state the result as a theorem.

Theorem 3.7.1 If the functions p, q, and g are continuous on an open interval I , and if the func-
tions y1 and y2 are linearly independent solutions of the homogeneous equation (18)
corresponding to the nonhomogeneous equation (16),

y′′ + p(t)y′ + q(t)y = g(t),

then a particular solution of Eq. (16) is

Y (t) = −y1(t)
∫

y2(t)g(t)

W (y1,y2)(t)
dt + y2(t)

∫
y1(t)g(t)

W (y1,y2)(t)
dt, (28)

and the general solution is

y = c1 y1(t) + c2 y2(t) + Y (t), (29)

as prescribed by Theorem 3.6.2.

By examining the expression (28) and reviewing the process by which we derived it,
we can see that there may be two major difficulties in using the method of variation of
parameters. As we have mentioned earlier, one is the determination of y1(t) and y2(t),
a fundamental set of solutions of the homogeneous equation (18), when the coefficients
in that equation are not constants. The other possible difficulty is in the evaluation of
the integrals appearing in Eq. (28). This depends entirely on the nature of the functions
y1, y2, and g. In using Eq. (28), be sure that the differential equation is exactly in the
form (16); otherwise, the nonhomogeneous term g(t) will not be correctly identified.

A major advantage of the method of variation of parameters is that Eq. (28) provides
an expression for the particular solution Y (t) in terms of an arbitrary forcing function
g(t). This expression is a good starting point if you wish to investigate the effect of
variations in the forcing function, or if you wish to analyze the response of a system to
a number of different forcing functions.

PROBLEMS In each of Problems 1 through 4 use the method of variation of parameters to find a particular
solution of the given differential equation. Then check your answer by using the method of
undetermined coefficients.

1. y′′ − 5y′ + 6y = 2et 2. y′′ − y′ − 2y = 2e−t

3. y′′ + 2y′ + y = 3e−t 4. 4y′′ − 4y′ + y = 16et/2
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In each of Problems 5 through 12 find the general solution of the given differential equation. In
Problems 11 and 12 g is an arbitrary continuous function.

5. y′′ + y = tan t, 0 < t < π/2 6. y′′ + 9y = 9 sec2 3t, 0 < t < π/6
7. y′′ + 4y′ + 4y = t−2e−2t , t > 0 8. y′′ + 4y = 3 csc 2t, 0 < t < π/2
9. 4y′′ + y = 2 sec(t/2), −π < t < π 10. y′′ − 2y′ + y = et/(1 + t2)

11. y′′ − 5y′ + 6y = g(t) 12. y′′ + 4y = g(t)

In each of Problems 13 through 20 verify that the given functions y1 and y2 satisfy the corre-
sponding homogeneous equation; then find a particular solution of the given nonhomogeneous
equation. In Problems 19 and 20 g is an arbitrary continuous function.

13. t2 y′′ − 2y = 3t2 − 1, t > 0; y1(t) = t2, y2(t) = t−1

14. t2 y′′ − t (t + 2)y′ + (t + 2)y = 2t3, t > 0; y1(t) = t, y2(t) = tet

15. t y′′ − (1 + t)y′ + y = t2e2t , t > 0; y1(t) = 1 + t, y2(t) = et

16. (1 − t)y′′ + t y′ − y = 2(t − 1)2e−t , 0 < t < 1; y1(t) = et , y2(t) = t
17. x2 y′′ − 3xy′ + 4y = x2 ln x, x > 0; y1(x) = x2, y2(x) = x2 ln x
18. x2 y′′ + xy′ + (x2 − 0.25)y = 3x3/2 sin x, x > 0; y1(x) = x−1/2 sin x, y2(x) =

x−1/2 cos x
19. (1 − x)y′′ + xy′ − y = g(x), 0 < x < 1; y1(x) = ex , y2(x) = x
20. x2 y′′ + xy′ + (x2 − 0.25)y = g(x), x > 0; y1(x) = x−1/2 sin x, y2(x) =

x−1/2 cos x

21. Show that the solution of the initial value problem

L[y] = y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′
0 (i)

can be written as y = u(t) + v(t), where u and v are solutions of the two initial value
problems

L[u] = 0, u(t0) = y0, u′(t0) = y′
0, (ii)

L[v] = g(t), v(t0) = 0, v′(t0) = 0, (iii)

respectively. In other words, the nonhomogeneities in the differential equation and in the
initial conditions can be dealt with separately. Observe that u is easy to find if a fundamental
set of solutions of L[u] = 0 is known.

22. By choosing the lower limit of integration in Eq. (28) in the text as the initial point t0, show
that Y (t) becomes

Y (t) =
∫ t

t0

y1(s)y2(t) − y1(t)y2(s)

y1(s)y′
2(s) − y′

1(s)y2(s)
g(s) ds.

Show that Y (t) is a solution of the initial value problem

L[y] = g(t), y(t0) = 0, y′(t0) = 0.

Thus Y can be identified with v in Problem 21.
23. (a) Use the result of Problem 22 to show that the solution of the initial value problem

y′′ + y = g(t), y(t0) = 0, y′(t0) = 0 (i)

is

y =
∫ t

t0

sin(t − s)g(s) ds. (ii)

(b) Find the solution of the initial value problem

y′′ + y = g(t), y(0) = y0, y′(0) = y′
0.
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24. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = (D − a)(D − b)y = g(t), y(t0) = 0, y′(t0) = 0,

where a and b are real numbers with a �= b.
25. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = [D2 − 2λD + (λ2 + µ2)]y = g(t), y(t0) = 0, y′(t0) = 0.

Note that the roots of the characteristic equation are λ ± iµ.

26. Use the result of Problem 22 to find the solution of the initial value problem

L[y] = (D − a)2 y = g(t), y(t0) = 0, y′(t0) = 0,

where a is any real number.
27. By combining the results of Problems 24 through 26, show that the solution of the initial

value problem

L[y] = (aD2 + bD + c)y = g(t), y(t0) = 0, y′(t0) = 0,

where a, b, and c are constants, has the form

y = φ(t) =
∫ t

t0

K (t − s)g(s) ds. (i)

The function K depends only on the solutions y1 and y2 of the corresponding homogeneous
equation and is independent of the nonhomogeneous term. Once K is determined, all
nonhomogeneous problems involving the same differential operator L are reduced to the
evaluation of an integral. Note also that although K depends on both t and s, only the
combination t − s appears, so K is actually a function of a single variable. Thinking of
g(t) as the input to the problem and φ(t) as the output, it follows from Eq. (i) that the
output depends on the input over the entire interval from the initial point t0 to the current
value t . The integral in Eq. (i) is called the convolution of K and g, and K is referred to
as the kernel.

28. The method of reduction of order (Section 3.5) can also be used for the nonhomogeneous
equation

y′′ + p(t)y′ + q(t)y = g(t), (i)

provided one solution y1 of the corresponding homogeneous equation is known. Let y =
v(t)y1(t) and show that y satisfies Eq. (i) if v is a solution of

y1(t)v
′′ + [2y′

1(t) + p(t)y1(t)]v
′ = g(t). (ii)

Equation (ii) is a first order linear equation for v′. Solving this equation, integrating the
result, and then multiplying by y1(t) lead to the general solution of Eq. (i).

In each of Problems 29 through 32 use the method outlined in Problem 28 to solve the given
differential equation.

29. t2 y′′ − 2t y′ + 2y = 4t2, t > 0; y1(t) = t
30. t2 y′′ + 7t y′ + 5y = t, t > 0; y1(t) = t−1

31. t y′′ − (1 + t)y′ + y = t2e2t , t > 0; y1(t) = 1 + t (see Problem 15)
32. (1 − t)y′′ + t y′ − y = 2(t − 1)2e−t , 0 < t < 1; y1(t) = et (see Problem 16)
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3.8 Mechanical and Electrical Vibrations

One of the reasons that second order linear equations with constant coefficients are
worth studying is that they serve as mathematical models of some important physical
processes. Two important areas of application are in the fields of mechanical and
electrical oscillations. For example, the motion of a mass on a vibrating spring, the
torsional oscillations of a shaft with a flywheel, the flow of electric current in a simple
series circuit, and many other physical problems are all described by the solution of an
initial value problem of the form

ay′′ + by′ + cy = g(t), y(0) = y0, y′(0) = y′
0. (1)

This illustrates a fundamental relationship between mathematics and physics: Many
physical problems may have the same mathematical model. Thus, once we know
how to solve the initial value problem (1), it is only necessary to make appropriate
interpretations of the constants a, b, and c, and the functions y and g, to obtain solutions
of different physical problems.

We will study the motion of a mass on a spring in detail because an understanding of
the behavior of this simple system is the first step in the investigation of more complex
vibrating systems. Further, the principles involved are common to many problems.
Consider a mass m hanging on the end of a vertical spring of original length l, as
shown in Figure 3.8.1. The mass causes an elongation L of the spring in the downward
(positive) direction. There are two forces acting at the point where the mass is attached
to the spring; see Figure 3.8.2. The gravitational force, or weight of the mass, acts
downward and has magnitude mg, where g is the acceleration due to gravity. There is
also a force Fs , due to the spring, that acts upward. If we assume that the elongation L
of the spring is small, the spring force is very nearly proportional to L; this is known

m
m

u

l + L + u

L

l

FIGURE 3.8.1 A spring–mass system.

Fs = –kL

w = mg

FIGURE 3.8.2 Force diagram for a spring–mass system.
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as Hooke’s8 law. Thus we write Fs = −kL , where the constant of proportionality k is
called the spring constant, and the minus sign is due to the fact that the spring force
acts in the upward (negative) direction. Since the mass is in equilibrium, the two forces
balance each other, which means that

mg − kL = 0. (2)

For a given weight w = mg, one can measure L and then use Eq. (2) to determine k.
Note that k has the units of force/length.

In the corresponding dynamic problem we are interested in studying the motion of
the mass when it is acted on by an external force or is initially displaced. Let u(t),
measured positive downward, denote the displacement of the mass from its equilibrium
position at time t ; see Figure 3.8.1. Then u(t) is related to the forces acting on the mass
through Newton’s law of motion,

mu′′(t) = f (t), (3)

where u′′ is the acceleration of the mass and f is the net force acting on the mass.
Observe that both u and f are functions of time. In determining f there are four
separate forces that must be considered:

1. The weight w = mg of the mass always acts downward.
2. The spring force Fs is assumed to be proportional to the total elongation L + u of

the spring and always acts to restore the spring to its natural position. If L + u > 0,
then the spring is extended, and the spring force is directed upward. In this case

Fs = −k(L + u). (4)

On the other hand, if L + u < 0, then the spring is compressed a distance |L + u|,
and the spring force, which is now directed downward, is given by Fs = k|L + u|.
However, when L + u < 0, it follows that |L + u| = −(L + u), so Fs is again
given by Eq. (4). Thus, regardless of the position of the mass, the force exerted by
the spring is always expressed by Eq. (4).

3. The damping or resistive force Fd always acts in the direction opposite to the direc-
tion of motion of the mass. This force may arise from several sources: resistance
from the air or other medium in which the mass moves, internal energy dissipation
due to the extension or compression of the spring, friction between the mass and
the guides (if any) that constrain its motion to one dimension, or a mechanical
device (dashpot) that imparts a resistive force to the mass. In any case, we assume
that the resistive force is proportional to the speed |du/dt | of the mass; this is
usually referred to as viscous damping. If du/dt > 0, then u is increasing, so the
mass is moving downward. Then Fd is directed upward and is given by

Fd(t) = −γ u′(t), (5)

where γ is a positive constant of proportionality known as the damping constant.
On the other hand, if du/dt < 0, then u is decreasing, the mass is moving upward,
and Fd is directed downward. In this case, Fd = γ |u′(t)|; since |u′(t)| = −u′(t),

8Robert Hooke (1635–1703) was an English scientist with wide-ranging interests. His most important book,
Micrographia, was published in 1665 and described a variety of microscopical observations. Hooke first published
his law of elastic behavior in 1676 as an anagram: ceiiinosssttuv; in 1678 he gave the solution ut tensio sic vis,
which means, roughly, “as the force so is the displacement.”
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it follows that Fd(t) is again given by Eq. (5). Thus, regardless of the direction of
motion of the mass, the damping force is always expressed by Eq. (5).

The damping force may be rather complicated and the assumption that it is
modeled adequately by Eq. (5) may be open to question. Some dashpots do behave
as Eq. (5) states, and if the other sources of dissipation are small, it may be possible
to neglect them altogether, or to adjust the damping constant γ to approximate
them. An important benefit of the assumption (5) is that it leads to a linear (rather
than a nonlinear) differential equation. In turn, this means that a thorough analysis
of the system is straightforward, as we will show in this section and the next.

4. An applied external force F(t) is directed downward or upward as F(t) is positive
or negative. This could be a force due to the motion of the mount to which the
spring is attached, or it could be a force applied directly to the mass. Often the
external force is periodic.

Taking account of these forces, we can now rewrite Newton’s law (3) as

mu′′(t) = mg + Fs(t) + Fd(t) + F(t)

= mg − k[L + u(t)] − γ u′(t) + F(t). (6)

Since mg − kL = 0 by Eq. (2), it follows that the equation of motion of the mass is

mu′′(t) + γ u′(t) + ku(t) = F(t), (7)

where the constants m, γ , and k are positive. Note that Eq. (7) has the same form as
Eq. (1).

It is important to understand that Eq. (7) is only an approximate equation for the
displacement u(t). In particular, both Eqs. (4) and (5) should be viewed as approxi-
mations for the spring force and the damping force, respectively. In our derivation we
have also neglected the mass of the spring in comparison with the mass of the attached
body.

The complete formulation of the vibration problem requires that we specify two
initial conditions, namely, the initial position u0 and the initial velocity v0 of the mass:

u(0) = u0, u′(0) = v0. (8)

It follows from Theorem 3.2.1 that these conditions give a mathematical problem
that has a unique solution. This is consistent with our physical intuition that if the
mass is set in motion with a given initial displacement and velocity, then its position
will be determined uniquely at all future times. The position of the mass is given
(approximately) by the solution of Eq. (7) subject to the prescribed initial conditions (8).

E X A M P L E

1

A mass weighing 4 lb stretches a spring 2 in. Suppose that the mass is displaced an
additional 6 in. in the positive direction and then released. The mass is in a medium that
exerts a viscous resistance of 6 lb when the mass has a velocity of 3 ft/sec. Under the
assumptions discussed in this section, formulate the initial value problem that governs
the motion of the mass.

The required initial value problem consists of the differential equation (7) and initial
conditions (8), so our task is to determine the various constants that appear in these
equations. The first step is to choose the units of measurement. Based on the statement
of the problem, it is natural to use the English rather than the metric system of units. The
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only time unit mentioned is the second, so we will measure t in seconds. On the other
hand, both the foot and inch appear in the statement as units of length. It is immaterial
which one we use, but having made a choice, it is important to be consistent. To be
definite, let us measure the displacement u in feet.

Since nothing is said in the statement of the problem about an external force, we
assume that F(t) = 0. To determine m note that

m = w

g
= 4 lb

32 ft/ sec2 = 1

8

lb-sec2

ft
.

The damping coefficient γ is determined from the statement that γ u′ is equal to 6 lb
when u′ is 3 ft/sec. Therefore

γ = 6 lb

3 ft/sec
= 2

lb-sec

ft
.

The spring constant k is found from the statement that the mass stretches the spring by
2 in., or by 1/6 ft. Thus

k = 4 lb

1/6 ft
= 24

lb

ft
.

Consequently, Eq. (7) becomes
1
8 u′′ + 2u′ + 24u = 0,

or

u′′ + 16u′ + 192u = 0. (9)

The initial conditions are

u(0) = 1
2 , u′(0) = 0. (10)

The second initial condition is implied by the word “released” in the statement of the
problem, which we interpret to mean that the mass is set in motion with no initial
velocity.

Undamped Free Vibrations. If there is no external force, then F(t) = 0 in Eq. (7). Let
us also suppose that there is no damping, so that γ = 0; this is an idealized configuration
of the system, seldom (if ever) completely attainable in practice. However, if the actual
damping is very small, the assumption of no damping may yield satisfactory results
over short to moderate time intervals. Then the equation of motion (7) reduces to

mu′′ + ku = 0. (11)

The general solution of Eq. (11) is

u = A cos ω0t + B sin ω0t, (12)

where

ω2
0 = k/m. (13)

The arbitrary constants A and B can be determined if initial conditions of the form (8)
are given.
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In discussing the solution of Eq. (11) it is convenient to rewrite Eq. (12) in the form

u = R cos(ω0t − δ), (14)

or

u = R cos δ cos ω0t + R sin δ sin ω0t. (15)

By comparing Eq. (15) with Eq. (12), we find that A, B, R, and δ are related by the
equations

A = R cos δ, B = R sin δ. (16)

Thus

R =
√

A2 + B2, tan δ = B/A. (17)

In calculating δ care must be taken to choose the correct quadrant; this can be done by
checking the signs of cos δ and sin δ in Eqs. (16).

The graph of Eq. (14), or the equivalent Eq. (12), for a typical set of initial conditions
is shown in Figure 3.8.3. The graph is a displaced cosine wave that describes a periodic,
or simple harmonic, motion of the mass. The period of the motion is

T = 2π

ω0

= 2π
(m

k

)1/2
. (18)

The circular frequency ω0 = √
k/m, measured in radians per unit time, is called the

natural frequency of the vibration. The maximum displacement R of the mass from
equilibrium is the amplitude of the motion. The dimensionless parameter δ is called
the phase, or phase angle, and measures the displacement of the wave from its normal
position corresponding to δ = 0.

Note that the motion described by Eq. (14) has a constant amplitude that does not
diminish with time. This reflects the fact that in the absence of damping there is no
way for the system to dissipate the energy imparted to it by the initial displacement
and velocity. Further, for a given mass m and spring constant k, the system always
vibrates at the same frequency ω0, regardless of the initial conditions. However, the
initial conditions do help to determine the amplitude of the motion. Finally, observe
from Eq. (18) that T increases as m increases, so larger masses vibrate more slowly.
On the other hand, T decreases as k increases, which means that stiffer springs cause
the system to vibrate more rapidly.

R

u

–R

δ

R cos δ

 + 2 πδ +  πδ 0tω

FIGURE 3.8.3 Simple harmonic motion; u = R cos(ω0t − δ).
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E X A M P L E

2

Suppose that a mass weighing 10 lb stretches a spring 2 in. If the mass is displaced an
additional 2 in. and is then set in motion with an initial upward velocity of 1 ft/sec, de-
termine the position of the mass at any later time. Also determine the period, amplitude,
and phase of the motion.

The spring constant is k = 10 lb/2 in. = 60 lb/ft and the mass is m = w/g =
10/32 lb-sec2/ft. Hence the equation of motion reduces to

u′′ + 192u = 0, (19)

and the general solution is

u = A cos(8
√

3t) + B sin(8
√

3t).

The solution satisfying the initial conditions u(0) = 1/6 ft and u′(0) = −1 ft/sec is

u = 1

6
cos(8

√
3t) − 1

8
√

3
sin(8

√
3t). (20)

The natural frequency is ω0 = √
192 ∼= 13.856 rad/sec, so the period is T = 2π/w0

∼=
0.45345 sec. The amplitude R and phase δ are found from Eqs. (17). We have

R2 = 1

36
+ 1

192
= 19

576
, so R ∼= 0.18162 ft.

The second of Eqs. (17) yields tan δ = −√
3/4. There are two solutions of this equation,

one in the second quadrant and one in the fourth. In the present problem cos δ > 0 and
sin δ < 0, so δ is in the fourth quadrant, namely,

δ = − arctan(
√

3/4) ∼= −0.40864 rad.

The graph of the solution (20) is shown in Figure 3.8.4.

0.2

– 0.2

0.5 1 1.5

T = 0.453~

u = 0.182 cos(8√3 t + 0.409)R = 0.182~

u

t

FIGURE 3.8.4 An undamped free vibration; u′′ + 192u = 0, u(0) = 1/6, u′(0) = −1.

Damped Free Vibrations. If we include the effect of damping, the differential equation
governing the motion of the mass is

mu′′ + γ u′ + ku = 0. (21)
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We are especially interested in examining the effect of variations in the damping
coefficient γ for given values of the mass m and spring constant k. The roots of the
corresponding characteristic equation are

r1, r2 = −γ ±
√

γ 2 − 4km

2m
= γ

2m

(
−1 ±

√
1 − 4km

γ 2

)
. (22)

Depending on the sign of γ 2 − 4km, the solution u has one of the following forms:

γ 2 − 4km > 0, u = Aer1t + Ber2t ; (23)

γ 2 − 4km = 0, u = (A + Bt)e−γ t/2m; (24)

γ 2 − 4km < 0, u = e−γ t/2m(A cos µt + B sin µt), µ = (4km − γ 2)1/2

2m
> 0.

(25)
Since m, γ , and k are positive, γ 2 − 4km is always less than γ 2. Hence, if γ 2 − 4km ≥
0, then the values of r1 and r2 given by Eq. (22) are negative. If γ 2 − 4km < 0, then
the values of r1 and r2 are complex, but with negative real part. Thus, in all cases,
the solution u tends to zero as t → ∞; this occurs regardless of the values of the
arbitrary constants A and B, that is, regardless of the initial conditions. This confirms
our intuitive expectation, namely, that damping gradually dissipates the energy initially
imparted to the system, and consequently the motion dies out with increasing time.

The most important case is the third one, which occurs when the damping is small.
If we let A = R cos δ and B = R sin δ in Eq. (25), then we obtain

u = Re−γ t/2m cos(µt − δ). (26)

The displacement u lies between the curves u = ±Re−γ t/2m ; hence it resembles a
cosine wave whose amplitude decreases as t increases. A typical example is sketched
in Figure 3.8.5. The motion is called a damped oscillation, or a damped vibration. The
amplitude factor R depends on m, γ , k, and the initial conditions.

Although the motion is not periodic, the parameter µ determines the frequency
with which the mass oscillates back and forth; consequently, µ is called the quasi
frequency. By comparing µ with the frequency ω0 of undamped motion, we find that

µ

ω0

= (4km − γ 2)1/2/2m√
k/m

=
(

1 − γ 2

4km

)1/2

∼= 1 − γ 2

8km
. (27)

u

δ  + 3

δR cos

Re–  t/2mγ

−Re–  t/2mγ

tµδ       π + 2δ       πδ    π+

FIGURE 3.8.5 Damped vibration; u = Re−γ t/2m cos(µt − δ).
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The last approximation is valid when γ 2/4km is small; we refer to this situation as
“small damping.” Thus, the effect of small damping is to reduce slightly the frequency
of the oscillation. By analogy with Eq. (18) the quantity Td = 2π/µ is called the quasi
period. It is the time between successive maxima or successive minima of the position
of the mass, or between successive passages of the mass through its equilibrium position
while going in the same direction. The relation between Td and T is given by

Td

T
= ω0

µ
=
(

1 − γ 2

4km

)−1/2

∼=
(

1 + γ 2

8km

)
, (28)

where again the last approximation is valid when γ 2/4km is small. Thus, small damping
increases the quasi period.

Equations (27) and (28) reinforce the significance of the dimensionless ratio γ 2/4km.
It is not the magnitude of γ alone that determines whether damping is large or small,
but the magnitude of γ 2 compared to 4km. When γ 2/4km is small, then we can neglect
the effect of damping in calculating the quasi frequency and quasi period of the motion.
On the other hand, if we want to study the detailed motion of the mass for all time,
then we can never neglect the damping force, no matter how small.

As γ 2/4km increases, the quasi frequency µ decreases and the quasi period Td

increases. In fact, µ → 0 and Td → ∞ as γ → 2
√

km. As indicated by Eqs. (23),
(24), and (25), the nature of the solution changes as γ passes through the value 2

√
km.

This value is known as critical damping, while for larger values of γ the motion is said
to be overdamped. In these cases, given by Eqs. (24) and (23), respectively, the mass
creeps back to its equilibrium position, but does not oscillate about it, as for small γ .
Two typical examples of critically damped motion are shown in Figure 3.8.6, and the
situation is discussed further in Problems 21 and 22.
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u(0) =   , u'(0) =1
2
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u =     + 2t e–t /21
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u(0) =   , u'(0) = –1
2

7
4

u =      –    t e–t /21
2

3
2( )

FIGURE 3.8.6 Critically damped motions: u′′ + u′ + 0.25u = 0; u = (A + Bt)e−t/2.
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The motion of a certain spring–mass system is governed by the differential equation

u′′ + 0.125u′ + u = 0, (29)

where u is measured in feet and t in seconds. If u(0) = 2 and u′(0) = 0, determine the
position of the mass at any time. Find the quasi frequency and the quasi period, as well
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as the time at which the mass first passes through its equilibrium position. Also find
the time τ such that |u(t)| < 0.1 for all t > τ .

The solution of Eq. (29) is

u = e−t/16

[
A cos

√
255

16
t + B sin

√
255

16
t

]
.

To satisfy the initial conditions we must choose A = 2 and B = 2/
√

255; hence the
solution of the initial value problem is

u = e−t/16

(
2 cos

√
255

16
t + 2√

255
sin

√
255

16
t

)

= 32√
255

e−t/16 cos

(√
255

16
t − δ

)
, (30)

where tan δ = 1/
√

255, so δ ∼= 0.06254. The displacement of the mass as a function of
time is shown in Figure 3.8.7. For the purpose of comparison we also show the motion
if the damping term is neglected.

2

1

–1

–2

u

t

u" + u = 0
u" + 0.125 u' + u = 0

u(0) = 2, u' (0) = 0

10 20 30 40 50

FIGURE 3.8.7 Vibration with small damping (solid curve) and with no damping (dashed
curve).

The quasi frequency is µ = √
255/16 ∼= 0.998 and the quasi period is Td = 2π/µ ∼=

6.295 sec. These values differ only slightly from the corresponding values (1 and 2π ,
respectively) for the undamped oscillation. This is evident also from the graphs in
Figure 3.8.7, which rise and fall almost together. The damping coefficient is small
in this example, only one-sixteenth of the critical value, in fact. Nevertheless, the
amplitude of the oscillation is reduced rather rapidly. Figure 3.8.8 shows the graph
of the solution for 40 ≤ t ≤ 60, together with the graphs of u = ±0.1. From the
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graph it appears that τ is about 47.5 and by a more precise calculation we find that
τ ∼= 47.5149 sec.

To find the time at which the mass first passes through its equilibrium position, we
refer to Eq. (30) and set

√
255t/16 − δ equal to π/2, the smallest positive zero of the

cosine function. Then, by solving for t , we obtain

t = 16√
255

(π

2
+ δ

) ∼= 1.637 sec .

0.1

0.05

–0.05

–0.1

–0.15

40 45 50 55 60

τ

u = –0.1

u = 0.1

u =         e–t/16 cos           t – 0.0625432

√255 16
√255( )

u

t

FIGURE 3.8.8 Solution of Example 3; determination of τ .

Electric Circuits. A second example of the occurrence of second order linear differ-
ential equations with constant coefficients is as a model of the flow of electric current
in the simple series circuit shown in Figure 3.8.9. The current I , measured in amperes,
is a function of time t . The resistance R (ohms), the capacitance C (farads), and the
inductance L (henrys) are all positive and are assumed to be known constants. The
impressed voltage E (volts) is a given function of time. Another physical quantity that
enters the discussion is the total charge Q (coulombs) on the capacitor at time t . The
relation between charge Q and current I is

I = d Q/dt. (31)

Resistance R Capacitance C

Inductance L

Impressed voltage E(t)

I

FIGURE 3.8.9 A simple electric circuit.
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The flow of current in the circuit is governed by Kirchhoff’s9 second law: In a closed
circuit, the impressed voltage is equal to the sum of the voltage drops in the rest of the
circuit.

According to the elementary laws of electricity, we know that:

The voltage drop across the resistor is I R.

The voltage drop across the capacitor is Q/C .

The voltage drop across the inductor is Ld I/dt .

Hence, by Kirchhoff’s law,

L
d I

dt
+ RI + 1

C
Q = E(t). (32)

The units have been chosen so that 1 volt = 1 ohm · 1 ampere = 1 coulomb/1 farad =
1 henry · 1 ampere/1 second.

Substituting for I from Eq. (31), we obtain the differential equation

L Q′′ + RQ′ + 1

C
Q = E(t) (33)

for the charge Q. The initial conditions are

Q(t0) = Q0, Q′(t0) = I (t0) = I0. (34)

Thus we must know the charge on the capacitor and the current in the circuit at some
initial time t0.

Alternatively, we can obtain a differential equation for the current I by differentiating
Eq. (33) with respect to t , and then substituting for d Q/dt from Eq. (31). The result is

L I ′′ + RI ′ + 1

C
I = E ′(t), (35)

with the initial conditions

I (t0) = I0, I ′(t0) = I ′
0. (36)

From Eq. (32) it follows that

I ′
0 = E(t0) − RI0 − (I/C)Q0

L
. (37)

Hence I ′
0 is also determined by the initial charge and current, which are physically

measurable quantities.
The most important conclusion from this discussion is that the flow of current in

the circuit is described by an initial value problem of precisely the same form as the
one that describes the motion of a spring–mass system. This is a good example of
the unifying role of mathematics: Once you know how to solve second order linear
equations with constant coefficients, you can interpret the results either in terms of
mechanical vibrations, electric circuits, or any other physical situation that leads to the
same problem.

9Gustav Kirchhoff (1824–1887), professor at Breslau, Heidelberg, and Berlin, was one of the leading physicists
of the nineteenth century. He discovered the basic laws of electric circuits about 1845 while still a student at
Königsberg. He is also famous for fundamental work in electromagnetic absorption and emission and was one of
the founders of spectroscopy.
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PROBLEMS In each of Problems 1 through 4 determine ω0, R, and δ so as to write the given expression in
the form u = R cos(ω0t − δ).

1. u = 3 cos 2t + 4 sin 2t 2. u = − cos t + √
3 sin t

3. u = 4 cos 3t − 2 sin 3t 4. u = −2 cos π t − 3 sin π t

� 5. A mass weighing 2 lb stretches a spring 6 in. If the mass is pulled down an additional 3 in.
and then released, and if there is no damping, determine the position u of the mass at any
time t . Plot u versus t . Find the frequency, period, and amplitude of the motion.

6. A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium
position with a downward velocity of 10 cm/sec, and if there is no damping, determine the
position u of the mass at any time t . When does the mass first return to its equilibrium
position?

7. A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting
the spring a distance of 1 in., and then set in motion with a downward velocity of 2 ft/sec,
and if there is no damping, find the position u of the mass at any time t . Determine the
frequency, period, amplitude, and phase of the motion.

8. A series circuit has a capacitor of 0.25 × 10−6 farad and an inductor of 1 henry. If the initial
charge on the capacitor is 10−6 coulomb and there is no initial current, find the charge Q
on the capacitor at any time t .

� 9. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a
viscous damper with a damping constant of 400 dyne-sec/cm. If the mass is pulled down an
additional 2 cm and then released, find its position u at any time t . Plot u versus t . Determine
the quasi frequency and the quasi period. Determine the ratio of the quasi period to the
period of the corresponding undamped motion. Also find the time τ such that |u(t)| < 0.05
cm for all t > τ .

� 10. A mass weighing 16 lb stretches a spring 3 in. The mass is attached to a viscous damper
with a damping constant of 2 lb-sec/ft. If the mass is set in motion from its equilibrium
position with a downward velocity of 3 in./sec, find its position u at any time t . Plot u
versus t . Determine when the mass first returns to its equilibrium position. Also find the
time τ such that |u(t)| < 0.01 in. for all t > τ .

11. A spring is stretched 10 cm by a force of 3 newtons. A mass of 2 kg is hung from the spring
and is also attached to a viscous damper that exerts a force of 3 newtons when the velocity
of the mass is 5 m/sec. If the mass is pulled down 5 cm below its equilibrium position and
given an initial downward velocity of 10 cm/sec, determine its position u at any time t .
Find the quasi frequency µ and the ratio of µ to the natural frequency of the corresponding
undamped motion.

12. A series circuit has a capacitor of 10−5 farad, a resistor of 3 × 102 ohms, and an inductor
of 0.2 henry. The initial charge on the capacitor is 10−6 coulomb and there is no initial
current. Find the charge Q on the capacitor at any time t .

13. A certain vibrating system satisfies the equation u′′ + γ u′ + u = 0. Find the value of the
damping coefficient γ for which the quasi period of the damped motion is 50% greater
than the period of the corresponding undamped motion.

14. Show that the period of motion of an undamped vibration of a mass hanging from a vertical
spring is 2π

√
L/g, where L is the elongation of the spring due to the mass and g is the

acceleration due to gravity.
15. Show that the solution of the initial value problem

mu′′ + γ u′ + ku = 0, u(t0) = u0, u′(t0) = u′
0

can be expressed as the sum u = v + w, where v satisfies the initial conditions v(t0) =
u0, v

′(t0) = 0, w satisfies the initial conditions w(t0) = 0, w′(t0) = u′
0, and both v and w

satisfy the same differential equation as u. This is another instance of superposing solutions
of simpler problems to obtain the solution of a more general problem.
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16. Show that A cos ω0t + B sin ω0t can be written in the form r sin(ω0t − θ). Determine r
and θ in terms of A and B. If R cos(ω0t − δ) = r sin(ω0t − θ), determine the relationship
among R, r , δ, and θ .

17. A mass weighing 8 lb stretches a spring 1.5 in. The mass is also attached to a damper with
coefficient γ . Determine the value of γ for which the system is critically damped; be sure
to give the units for γ .

18. If a series circuit has a capacitor of C = 0.8 × 10−6 farad and an inductor of L = 0.2
henry, find the resistance R so that the circuit is critically damped.

19. Assume that the system described by the equation mu′′ + γ u′ + ku = 0 is either critically
damped or overdamped. Show that the mass can pass through the equilibrium position at
most once, regardless of the initial conditions.
Hint: Determine all possible values of t for which u = 0.

20. Assume that the system described by the equation mu′′ + γ u′ + ku = 0 is critically damped
and the initial conditions are u(0) = u0, u′(0) = v0. If v0 = 0, show that u → 0 as t → ∞,
but that u is never zero. If u0 is positive, determine a condition on v0 that will assure that
the mass passes through its equilibrium position after it is released.

21. Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is Td = 2π/µ.
(b) Show that the ratio of the displacements at two successive maxima is given by
exp(γ Td/2m). Observe that this ratio does not depend on which pair of maxima is chosen.
The natural logarithm of this ratio is called the logarithmic decrement and is denoted by �.
(c) Show that � = πγ/mµ. Since m, µ, and � are quantities that can be measured
easily for a mechanical system, this result provides a convenient and practical method
for determining the damping constant of the system, which is more difficult to measure
directly. In particular, for the motion of a vibrating mass in a viscous fluid the damping
constant depends on the viscosity of the fluid; for simple geometric shapes the form of this
dependence is known, and the preceding relation allows the determination of the viscosity
experimentally. This is one of the most accurate ways of determining the viscosity of a gas
at high pressure.

22. Referring to Problem 21, find the logarithmic decrement of the system in Problem 10.
23. For the system in Problem 17 suppose that � = 3 and Td = 0.3 sec. Referring to Problem

21, determine the value of the damping coefficient γ .
24. The position of a certain spring–mass system satisfies the initial value problem

3
2 u′′ + ku = 0, u(0) = 2, u′(0) = v.

If the period and amplitude of the resulting motion are observed to be π and 3, respectively,
determine the values of k and v.

� 25. Consider the initial value problem

u′′ + γ u′ + u = 0, u(0) = 2, u′(0) = 0.

We wish to explore how long a time interval is required for the solution to become
“negligible” and how this interval depends on the damping coefficient γ . To be more
precise, let us seek the time τ such that |u(t)| < 0.01 for all t > τ . Note that critical
damping for this problem occurs for γ = 2.
(a) Let γ = 0.25 and determine τ , or at least estimate it fairly accurately from a plot of
the solution.
(b) Repeat part (a) for several other values of γ in the interval 0 < γ < 1.5. Note that τ

steadily decreases as γ increases for γ in this range.
(c) Obtain a graph of τ versus γ by plotting the pairs of values found in parts (a) and (b).
Is the graph a smooth curve?
(d) Repeat part (b) for values of γ between 1.5 and 2. Show that τ continues to de-
crease until γ reaches a certain critical value γ0, after which τ increases. Find γ0 and the
corresponding minimum value of τ to two decimal places.
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(e) Another way to proceed is to write the solution of the initial value problem in the
form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for τ as a function of γ . Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

26. Consider the initial value problem

mu′′ + γ u′ + ku = 0, u(0) = u0, u′(0) = v0.

Assume that γ 2 < 4km.
(a) Solve the initial value problem.
(b) Write the solution in the form u(t) = R exp(−γ t/2m) cos(µt − δ). Determine R in
terms of m, γ , k, u0, and v0.
(c) Investigate the dependence of R on the damping coefficient γ for fixed values of the
other parameters.

27. A cubic block of side l and mass density ρ per unit volume is floating in a fluid of mass
density ρ0 per unit volume, where ρ0 > ρ. If the block is slightly depressed and then
released, it oscillates in the vertical direction. Assuming that the viscous damping of the
fluid and air can be neglected, derive the differential equation of motion and determine the
period of the motion.
Hint: Use Archimedes’ principle: An object that is completely or partially submerged in a
fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.

� 28. The position of a certain undamped spring–mass system satisfies the initial value problem

u′′ + 2u = 0, u(0) = 0, u′(0) = 2.

(a) Find the solution of this initial value problem.
(b) Plot u versus t and u′ versus t on the same axes.
(c) Plot u′ versus u; that is, plot u(t) and u′(t) parametrically with t as the parameter.
This plot is known as a phase plot and the uu′-plane is called the phase plane. Observe
that a closed curve in the phase plane corresponds to a periodic solution u(t). What is the
direction of motion on the phase plot as t increases?

� 29. The position of a certain spring–mass system satisfies the initial value problem

u′′ + 1
4 u′ + 2u = 0, u(0) = 0, u′(0) = 2.

(a) Find the solution of this initial value problem.
(b) Plot u versus t and u′ versus t on the same axes.
(c) Plot u′ versus u in the phase plane (see Problem 28). Identify several corresponding
points on the curves in parts (b) and (c). What is the direction of motion on the phase plot
as t increases?

30. In the absence of damping the motion of a spring–mass system satisfies the initial value
problem

mu′′ + ku = 0, u(0) = a, u′(0) = b.

(a) Show that the kinetic energy initially imparted to the mass is mb2/2 and that the
potential energy initially stored in the spring is ka2/2, so that initially the total energy in
the system is (ka2 + mb2)/2.
(b) Solve the given initial value problem.
(c) Using the solution in part (b), determine the total energy in the system at any time t .
Your result should confirm the principle of conservation of energy for this system.

31. Suppose that a mass m slides without friction on a horizontal surface. The mass is attached
to a spring with spring constant k, as shown in Figure 3.8.10, and is also subject to viscous
air resistance with coefficient γ . Show that the displacement u(t) of the mass from its
equilibrium position satisfies Eq. (21). How does the derivation of the equation of motion
in this case differ from the derivation given in the text?
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k
m

u(t)

FIGURE 3.8.10 A spring–mass system.

� 32. In the spring–mass system of Problem 31, suppose that the spring force is not given by
Hooke’s law but instead satisfies the relation

Fs = −(ku + εu3),

where k > 0 and ε is small but may be of either sign. The spring is called a hardening
spring if ε > 0 and a softening spring if ε < 0. Why are these terms appropriate?
(a) Show that the displacement u(t) of the mass from its equilibrium position satisfies the
differential equation

mu′′ + γ u′ + ku + εu3 = 0.

Suppose that the initial conditions are

u(0) = 0, u′(0) = 1.

In the remainder of this problem assume that m = 1, k = 1, and γ = 0.
(b) Find u(t) when ε = 0 and also determine the amplitude and period of the motion.
(c) Let ε = 0.1. Plot (a numerical approximation to) the solution. Does the motion appear
to be periodic? Estimate the amplitude and period.
(d) Repeat part (c) for ε = 0.2 and ε = 0.3.
(e) Plot your estimated values of the amplitude A and the period T versus ε. Describe the
way in which A and T , respectively, depend on ε.
(f) Repeat parts (c), (d), and (e) for negative values of ε.

3.9 Forced Vibrations

Consider now the case in which a periodic external force, say F0 cos ωt with ω > 0, is
applied to a spring–mass system. Then the equation of motion is

mu′′ + γ u′ + ku = F0 cos ωt. (1)

First suppose that there is no damping; then Eq. (1) reduces to

mu′′ + ku = F0 cos ωt. (2)

If ω0 = √
k/m �= ω, then the general solution of Eq. (2) is

u = c1 cos ω0t + c2 sin ω0t + F0

m(ω2
0 − ω2)

cos ωt. (3)

The constants c1 and c2 are determined by the initial conditions. The resulting motion
is, in general, the sum of two periodic motions of different frequencies (ω0 and ω) and
amplitudes. There are two particularly interesting cases.
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Beats. Suppose that the mass is initially at rest, so that u(0) = 0 and u′(0) = 0. Then
it turns out that the constants c1 and c2 in Eq. (3) are given by

c1 = − F0

m(ω2
0 − ω2)

, c2 = 0, (4)

and the solution of Eq. (2) is

u = F0

m(ω2
0 − ω2)

(cos ωt − cos ω0t). (5)

This is the sum of two periodic functions of different periods but the same amplitude.
Making use of the trigonometric identities for cos(A ± B) with A = (ω0 + ω)t/2 and
B = (ω0 − ω)t/2, we can write Eq. (5) in the form

u =
[

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω)t

2

]
sin

(ω0 + ω)t

2
. (6)

If |ω0 − ω| is small, then ω0 + ω is much greater than |ω0 − ω|. Consequently,
sin(ω0 + ω)t/2 is a rapidly oscillating function compared to sin(ω0 − ω)t/2. Thus
the motion is a rapid oscillation with frequency (ω0 + ω)/2, but with a slowly varying
sinusoidal amplitude

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω)t

2
.

This type of motion, possessing a periodic variation of amplitude, exhibits what is called
a beat. Such a phenomenon occurs in acoustics when two tuning forks of nearly equal
frequency are sounded simultaneously. In this case the periodic variation of amplitude
is quite apparent to the unaided ear. In electronics the variation of the amplitude with

2
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u = 2.77778 sin 0.1t

u = –2.77778 sin 0.1t

u = 2.77778 sin 0.1 t sin 0.9 t

u

t10 20 30 40 50 60

FIGURE 3.9.1 A beat; solution of u′′ + u = 0.5 cos 0.8t , u(0) = 0, u′(0) = 0;
u = 2.77778 sin 0.1t sin 0.9t .
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time is called amplitude modulation. The graph of u as given by Eq. (6) in a typical
case is shown in Figure 3.9.1.

Resonance. As a second example, consider the case ω = ω0; that is, the frequency
of the forcing function is the same as the natural frequency of the system. Then the
nonhomogeneous term F0 cos ωt is a solution of the homogeneous equation. In this
case the solution of Eq. (2) is

u = c1 cos ω0t + c2 sin ω0t + F0

2mω0

t sin ω0t. (7)

Because of the term t sin ω0t , the solution (7) predicts that the motion will become
unbounded as t → ∞ regardless of the values of c1 and c2; see Figure 3.9.2 for a
typical example. Of course, in reality unbounded oscillations do not occur. As soon
as u becomes large, the mathematical model on which Eq. (1) is based is no longer
valid, since the assumption that the spring force depends linearly on the displacement
requires that u be small. If damping is included in the model, the predicted motion
remains bounded; however, the response to the input function F0 cos ωt may be quite
large if the damping is small and ω is close to ω0. This phenomenon is known as
resonance.

Resonance can be either good or bad depending on the circumstances. It must be
taken very seriously in the design of structures, such as buildings or bridges, where it
can produce instabilities possibly leading to the catastrophic failure of the structure.
For example, soldiers traditionally break step when crossing a bridge to eliminate the
periodic force of their marching that could resonate with a natural frequency of the
bridge. Another example occurred in the design of the high-pressure fuel turbopump for
the space shuttle main engine. The turbopump was unstable and could not be operated
over 20,000 rpm as compared to the design speed of 39,000 rpm. This difficulty led
to a shutdown of the space shuttle program for 6 months at an estimated cost of

10

10 20 30 40

5

–5

–10

u

t

u = 0.25 t sin t

u = 0.25t

u = – 0.25t

FIGURE 3.9.2 Resonance; solution of u′′ + u = 0.5 cos t , u(0) = 0, u′(0) = 0;
u = 0.25t sin t .
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$500,000/day.10 On the other hand, resonance can be put to good use in the design of
instruments, such as seismographs, intended to detect weak periodic incoming signals.

Forced Vibrations with Damping. The motion of the spring–mass system with damp-
ing and the forcing function F0 cos ωt can be determined in a straightforward manner,
although the computations are rather lengthy. The solution of Eq. (1) is

u = c1er1t + c2er2t + R cos(ωt − δ), r1 �= r2 (8)

where

R = F0

�
, cos δ = m(ω2

0 − ω2)

�
, sin δ = γω

�
, (9)

and

� =
√

m2(ω2
0 − ω2)2 + γ 2ω2. (10)

In Eq. (8) r1 and r2 are the roots of the characteristic equation associated with Eq. (1);
they may be either real and negative or complex conjugates with negative real part. In
either case, both exp(r1t) and exp(r2t) approach zero as t → ∞. Hence, as t → ∞,

u → U (t) = F0√
m2(ω2

0 − ω2)2 + γ 2ω2
cos(ωt − δ). (11)

For this reason uc(t) = c1er1t + c2er2t is called the transient solution; U (t), which
represents a steady oscillation with the same frequency as the external force, is called
the steady-state solution or the forced response. The transient solution enables us to
satisfy whatever initial conditions are imposed; with increasing time the energy put into
the system by the initial displacement and velocity is dissipated through the damping
force, and the motion then becomes the response of the system to the external force.
Without damping, the effect of the initial conditions would persist for all time.

It is interesting to investigate how the amplitude R of the steady-state oscillation
depends on the frequency ω of the external force. For low-frequency excitation, that is,
as ω → 0, it follows from Eqs. (9) and (10) that R → F0/k. At the other extreme, for
very high-frequency excitation, Eqs. (9) and (10) imply that R → 0 as ω → ∞. At an
intermediate value of ω the amplitude may have a maximum. To find this maximum
point, we can differentiate R with respect to ω and set the result equal to zero. In this
way we find that the maximum amplitude occurs when ω = ωmax, where

ω2
max = ω2

0 − γ 2

2m2 = ω2
0

(
1 − γ 2

2km

)
. (12)

Note that ωmax < ω0 and that ωmax is close to ω0 when γ is small. The maximum
value of R is

Rmax = F0

γω0

√
1 − (γ 2/4mk)

∼= F0

γω0

(
1 + γ 2

8mk

)
, (13)

10 F. Ehrich and D. Childs, “Self-Excited Vibration in High-Performance Turbomachinery,” Mechanical Engi-
neering (May 1984), p. 66.
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where the last expression is an approximation for small γ . If γ 2/2km > 1, then ωmax as
given by Eq. (12) is imaginary; in this case the maximum value of R occurs for ω = 0
and R is a monotone decreasing function of ω. For small γ it follows from Eq. (13)
that Rmax

∼= F0/γω0. Thus, for small γ , the maximum response is much larger than the
amplitude F0 of the external force, and the smaller the value of γ , the larger the ratio
Rmax/F0. Figure 3.9.3 contains some representative graphs of Rk/F0 versus ω/ω0 for
several values of γ .

The phase angle δ also depends in an interesting way on ω. For ω near zero, it follows
from Eqs. (9) and (10) that cos δ ∼= 1 and sin δ ∼= 0. Thus δ ∼= 0, and the response is
nearly in phase with the excitation, meaning that they rise and fall together, and in
particular, assume their respective maxima nearly together and their respective minima
nearly together. For ω = ω0, we find that cos δ = 0 and sin δ = 1, so δ = π/2. In this
case the response lags behind the excitation by π/2; that is, the peaks of the response
occur π/2 later than the peaks of the excitation, and similarly for the valleys. Finally,
for ω very large, we have cos δ ∼= −1 and sin δ ∼= 0. Thus δ ∼= π , so that the response
is nearly out of phase with the excitation; this means that the response is minimum
when the excitation is maximum, and vice versa.

In Figure 3.9.4 we show the graph of the solution of the initial value problem

u′′ + 0.125u′ + u = 3 cos 2t, u(0) = 2, u′(0) = 0.

The graph of the forcing function is also shown for comparison. (The unforced motion of
this system is shown in Figure 3.8.7.) Observe that the initial transient motion decays
as t increases, that the amplitude of the steady forced response is approximately 1,
and that the phase difference between the excitation and response is approximately π .

3

2

1

1 2

Rk/F0

/  0ω ω

 = 0Γ

= 0.5Γ
= 1.0Γ
= 2.0Γ
= 3.0Γ

FIGURE 3.9.3 Forced vibration with damping: amplitude of steady-state response versus
frequency of driving force; � = γ 2/m2ω2

0.
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u" + 0.125u' + u = 3 cos 2t
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Forcing function 3 cos 2t
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FIGURE 3.9.4 A forced vibration with damping; solution of u′′ + 0.125u′ + u = 3 cos 2t ,
u(0) = 2, u′(0) = 0.

More precisely, we find that � = √
145/4 ∼= 3.0104, so R = F0/�

∼= 0.9965. Further,
cos δ = −3/� ∼= −0.9965 and sin δ = 1/4� ∼= 0.08305, so that δ ∼= 3.0585. Thus the
calculated values of R and δ are close to the values estimated from the graph.

PROBLEMS In each of Problems 1 through 4 write the given expression as a product of two trigonometric
functions of different frequencies.

1. cos 9t − cos 7t 2. sin 7t − sin 6t
3. cos π t + cos 2π t 4. sin 3t + sin 4t

5. A mass weighing 4 lb stretches a spring 1.5 in. The mass is displaced 2 in. in the positive
direction from its equilibrium position and released with no initial velocity. Assuming that
there is no damping and that the mass is acted on by an external force of 2 cos 3t lb,
formulate the initial value problem describing the motion of the mass.

6. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force of
10 sin(t/2) N (newtons) and moves in a medium that imparts a viscous force of 2 N when
the speed of the mass is 4 cm/sec. If the mass is set in motion from its equilibrium position
with an initial velocity of 3 cm/sec, formulate the initial value problem describing the
motion of the mass.

� 7. (a) Find the solution of Problem 5.
(b) Plot the graph of the solution.
(c) If the given external force is replaced by a force 4 sin ωt of frequency ω, find the value
of ω for which resonance occurs.

� 8. (a) Find the solution of the initial value problem in Problem 6.
(b) Identify the transient and steady-state parts of the solution.
(c) Plot the graph of the steady-state solution.
(d) If the given external force is replaced by a force 2 cos ωt of frequency ω, find the value
of ω for which the amplitude of the forced response is maximum.
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9. If an undamped spring–mass system with a mass that weighs 6 lb and a spring constant
1 lb/in. is suddenly set in motion at t = 0 by an external force of 4 cos 7t lb, determine the
position of the mass at any time and draw a graph of the displacement versus t .

10. A mass that weighs 8 lb stretches a spring 6 in. The system is acted on by an external force
of 8 sin 8t lb. If the mass is pulled down 3 in. and then released, determine the position of
the mass at any time. Determine the first four times at which the velocity of the mass is
zero.

11. A spring is stretched 6 in. by a mass that weighs 8 lb. The mass is attached to a dashpot
mechanism that has a damping constant of 0.25 lb-sec/ft and is acted on by an external
force of 4 cos 2t lb.
(a) Determine the steady-state response of this system.
(b) If the given mass is replaced by a mass m, determine the value of m for which the
amplitude of the steady-state response is maximum.

12. A spring–mass system has a spring constant of 3 N/m. A mass of 2 kg is attached to the
spring and the motion takes place in a viscous fluid that offers a resistance numerically
equal to the magnitude of the instantaneous velocity. If the system is driven by an external
force of 3 cos 3t − 2 sin 3t N, determine the steady-state response. Express your answer in
the form R cos(ωt − δ).

13. Furnish the details in determining when the steady-state response given by Eq. (11) is
maximum; that is, show that ω2

max and Rmax are given by Eqs. (12) and (13), respectively.
� 14. (a) Show that the phase of the forced response of Eq. (1) satisfies tan δ = γω/m(ω2

0 − ω2).
(b) Plot the phase δ as a function of the forcing frequency ω for the forced response of
u′′ + 0.125u′ + u = 3 cos ωt .

15. Find the solution of the initial value problem

u′′ + u = F(t), u(0) = 0, u′(0) = 0,

where

F(t) =



F0t, 0 ≤ t ≤ π,

F0(2π − t), π < t ≤ 2π,

0, 2π < t.

Hint: Treat each time interval separately and match the solutions in the different intervals
by requiring that u and u′ be continuous functions of t .

16. A series circuit has a capacitor of 0.25 × 10−6 farad, a resistor of 5 × 103 ohms, and an
inductor of 1 henry. The initial charge on the capacitor is zero. If a 12-volt battery is
connected to the circuit and the circuit is closed at t = 0, determine the charge on the
capacitor at t = 0.001 sec, at t = 0.01 sec, and at any time t . Also determine the limiting
charge as t → ∞.

� 17. Consider a vibrating system described by the initial value problem

u′′ + 1
4 u′ + 2u = 2 cos ωt, u(0) = 0, u′(0) = 2.

(a) Determine the steady-state part of the solution of this problem.
(b) Find the amplitude A of the steady-state solution in terms of ω.
(c) Plot A versus ω.
(d) Find the maximum value of A and the frequency ω for which it occurs.

� 18. Consider the forced but undamped system described by the initial value problem

u′′ + u = 3 cos ωt, u(0) = 0, u′(0) = 0.

(a) Find the solution u(t) for ω �= 1.
(b) Plot the solution u(t) versus t for ω = 0.7, ω = 0.8, and ω = 0.9. Describe how the
response u(t) changes as ω varies in this interval. What happens as ω takes on values closer
and closer to 1? Note that the natural frequency of the unforced system is ω0 = 1.
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� 19. Consider the vibrating system described by the initial value problem

u′′ + u = 3 cos ωt, u(0) = 1, u′(0) = 1.

(a) Find the solution for ω �= 1.
(b) Plot the solution u(t) versus t for ω = 0.7, ω = 0.8, and ω = 0.9. Compare the results
with those of Problem 18, that is, describe the effect of the nonzero initial conditions.

� 20. For the initial value problem in Problem 18 plot u′ versus u for ω = 0.7, ω = 0.8, and
ω = 0.9; that is, draw the phase plot of the solution for these values of ω. Use a t interval
that is long enough so the phase plot appears as a closed curve. Mark your curve with
arrows to show the direction in which it is traversed as t increases.

Problems 21 through 23 deal with the initial value problem

u′′ + 0.125u′ + u = F(t), u(0) = 2, u′(0) = 0.

In each of these problems:
(a) Plot the given forcing function F(t) versus t and also plot the solution u(t) versus
t on the same set of axes. Use a t interval that is long enough so the initial transients
are substantially eliminated. Observe the relation between the amplitude and phase of the
forcing term and the amplitude and phase of the response. Note that ω0 = √

k/m = 1.
(b) Draw the phase plot of the solution, that is, plot u′ versus u.

� 21. F(t) = 3 cos(0.3t)

� 22. F(t) = 3 cos t

� 23. F(t) = 3 cos 3t

� 24. A spring–mass system with a hardening spring (Problem 32 of Section 3.8) is acted on by
a periodic external force. In the absence of damping, suppose that the displacement of the
mass satisfies the initial value problem

u′′ + u + 1
5 u3 = cos ωt, u(0) = 0, u′(0) = 0.

(a) Let ω = 1 and plot a computer-generated solution of the given problem. Does the
system exhibit a beat?
(b) Plot the solution for several values of ω between 1/2 and 2. Describe how the solution
changes as ω increases.

� 25. Suppose that the system of Problem 24 is modified to include a damping term and that the
resulting initial value problem is

u′′ + 1
5 u′ + u + 1

5 u3 = cos ωt, u(0) = 0, u′(0) = 0.

(a) Plot a computer-generated solution of the given problem for several values of ω

between 1/2 and 2 and estimate the amplitude R of the steady response in each case.
(b) Using the data from part (a), plot the graph of R versus ω. For what frequency ω is the
amplitude greatest?
(c) Compare the results of parts (a) and (b) with the corresponding results for the linear
spring.
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C H A P T E R

4

Higher Order
Linear Equations

The theoretical structure and methods of solution developed in the preceding chapter
for second order linear equations extend directly to linear equations of third and higher
order. In this chapter we briefly review this generalization, taking particular note
of those instances where new phenomena may appear, due to the greater variety of
situations that can occur for equations of higher order.

4.1 General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

P0(t)
dn y

dtn + P1(t)
dn−1 y

dtn−1 + · · · + Pn−1(t)
dy

dt
+ Pn(t)y = G(t). (1)

We assume that the functions P0, . . . , Pn and G are continuous real-valued functions
on some interval I : α < t < β, and that P0 is nowhere zero in this interval. Then,
dividing Eq. (1) by P0(t), we obtain

L[y] = dn y

dtn + p1(t)
dn−1 y

dtn−1 + · · · + pn−1(t)
dy

dt
+ pn(t)y = g(t). (2)

The linear differential operator L of order n defined by Eq. (2) is similar to the second
order operator introduced in Chapter 3. The mathematical theory associated with Eq. (2)
is completely analogous to that for the second order linear equation; for this reason we

209
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simply state the results for the nth order problem. The proofs of most of the results are
also similar to those for the second order equation and are usually left as exercises.

Since Eq. (2) involves the nth derivative of y with respect to t , it will, so to speak,
require n integrations to solve Eq. (2). Each of these integrations introduces an arbitrary
constant. Hence we can expect that, to obtain a unique solution, it is necessary to specify
n initial conditions,

y(t0) = y0, y′(t0) = y′
0, . . . , y(n−1)(t0) = y(n−1)

0 , (3)

where t0 may be any point in the interval I and y0, y′
0, . . . , y(n−1)

0 is any set of prescribed
real constants. That there does exist such a solution and that it is unique are assured by
the following existence and uniqueness theorem, which is similar to Theorem 3.2.1.

Theorem 4.1.1 If the functions p1, p2, . . . , pn , and g are continuous on the open interval I , then
there exists exactly one solution y = φ(t) of the differential equation (2) that also
satisfies the initial conditions (3). This solution exists throughout the interval I .

We will not give a proof of this theorem here. However, if the coefficients p1, . . . , pn
are constants, then we can construct the solution of the initial value problem (2), (3)
much as in Chapter 3; see Sections 4.2 through 4.4. Even though we may find a solution
in this case, we do not know that it is unique without the use of Theorem 4.1.1. A proof
of the theorem can be found in Ince (Section 3.32) or Coddington (Chapter 6).

The Homogeneous Equation. As in the corresponding second order problem, we first
discuss the homogeneous equation

L[y] = y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = 0. (4)

If the functions y1, y2, . . . , yn are solutions of Eq. (4), then it follows by direct com-
putation that the linear combination

y = c1 y1(t) + c2 y2(t) + · · · + cn yn(t), (5)

where c1, . . . , cn are arbitrary constants, is also a solution of Eq. (4). It is then natural
to ask whether every solution of Eq. (4) can be expressed as a linear combination of
y1, . . . , yn . This will be true if, regardless of the initial conditions (3) that are prescribed,
it is possible to choose the constants c1, . . . , cn so that the linear combination (5)
satisfies the initial conditions. Specifically, for any choice of the point t0 in I , and for
any choice of y0, y′

0, . . . , y(n−1)
0 , we must be able to determine c1, . . . , cn so that the

equations

c1 y1(t0) + · · · + cn yn(t0) = y0

c1 y′
1(t0) + · · · + cn y′

n(t0) = y′
0

(6)...

c1 y(n−1)
1 (t0) + · · · + cn y(n−1)

n (t0) = y(n−1)
0

are satisfied. Equations (6) can be solved uniquely for the constants c1, . . . , cn , provided
that the determinant of coefficients is not zero. On the other hand, if the determinant
of coefficients is zero, then it is always possible to choose values of y0, y′

0, . . . , y(n−1)
0
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such that Eqs. (6) do not have a solution. Hence a necessary and sufficient condition
for the existence of a solution of Eqs. (6) for arbitrary values of y0, y′

0, . . . , y(n−1)
0 is

that the Wronskian

W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′
1 y′

2 · · · y′
n

...
...

...
y(n−1)

1 y(n−1)
2 · · · y(n−1)

n

∣∣∣∣∣∣∣∣∣
(7)

is not zero at t = t0. Since t0 can be any point in the interval I , it is necessary and
sufficient that W (y1,y2, . . . , yn) be nonzero at every point in the interval. Just as for
the second order linear equation, it can be shown that if y1, y2, . . . , yn are solutions
of Eq. (4), then W (y1, y2, . . . , yn) is either zero for every t in the interval I or else is
never zero there; see Problem 20. Hence we have the following theorem.

Theorem 4.1.2 If the functions p1, p2, . . . , pn are continuous on the open interval I , if the functions
y1, y2, . . . , yn are solutions of Eq. (4), and if W (y1, y2, . . . , yn)(t) �= 0 for at least
one point in I , then every solution of Eq. (4) can be expressed as a linear combination
of the solutions y1, y2, . . . , yn .

A set of solutions y1, . . . , yn of Eq. (4) whose Wronskian is nonzero is referred to
as a fundamental set of solutions. The existence of a fundamental set of solutions
can be demonstrated in precisely the same way as for the second order linear equation
(see Theorem 3.2.5). Since all solutions of Eq. (4) are of the form (5), we use the term
general solution to refer to an arbitrary linear combination of any fundamental set of
solutions of Eq. (4).

The discussion of linear dependence and independence given in Section 3.3 can also
be generalized. The functions f1, f2, . . . , fn are said to be linearly dependent on I if
there exists a set of constants k1, k2, . . . , kn , not all zero, such that

k1 f1 + k2 f2 + · · · + kn fn = 0 (8)

for all t in I . The functions f1, . . . , fn are said to be linearly independent on I if they
are not linearly dependent there. If y1, . . . , yn are solutions of Eq. (4), then it can be
shown that a necessary and sufficient condition for them to be linearly independent is
that W (y1, . . . , yn)(t0) �= 0 for some t0 in I (see Problem 25). Hence a fundamental
set of solutions of Eq. (4) is linearly independent, and a linearly independent set of n
solutions of Eq. (4) forms a fundamental set of solutions.

The Nonhomogeneous Equation. Now consider the nonhomogeneous equation (2),

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y = g(t).

If Y1 and Y2 are any two solutions of Eq. (2), then it follows immediately from the
linearity of the operator L that

L[Y1 − Y2](t) = L[Y1](t) − L[Y2](t) = g(t) − g(t) = 0.

Hence the difference of any two solutions of the nonhomogeneous equation (2) is a
solution of the homogeneous equation (4). Since any solution of the homogeneous
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equation can be expressed as a linear combination of a fundamental set of solutions
y1, . . . , yn , it follows that any solution of Eq. (2) can be written as

y = c1 y1(t) + c2 y2(t) + · · · + cn yn(t) + Y (t), (9)

where Y is some particular solution of the nonhomogeneous equation (2). The linear
combination (9) is called the general solution of the nonhomogeneous equation (2).

Thus the primary problem is to determine a fundamental set of solutions y1, . . . , yn
of the homogeneous equation (4). If the coefficients are constants, this is a fairly
simple problem; it is discussed in the next section. If the coefficients are not constants,
it is usually necessary to use numerical methods such as those in Chapter 8 or series
methods similar to those in Chapter 5. These tend to become more cumbersome as the
order of the equation increases.

The method of reduction of order (Section 3.5) also applies to nth order linear
equations. If y1 is one solution of Eq. (4), then the substitution y = v(t)y1(t) leads to
a linear differential equation of order n − 1 for v′ (see Problem 26 for the case when
n = 3). However, if n ≥ 3, the reduced equation is itself at least of second order, and
only rarely will it be significantly simpler than the original equation. Thus, in practice,
reduction of order is seldom useful for equations of higher than second order.

PROBLEMS In each of Problems 1 through 6 determine intervals in which solutions are sure to exist.

1. yiv + 4y′′′ + 3y = t 2. t y′′′ + (sin t)y′′ + 3y = cos t
3. t (t − 1)yiv + et y′′ + 4t2 y = 0 4. y′′′ + t y′′ + t2 y′ + t3 y = ln t
5. (x − 1)yiv + (x + 1)y′′ + (tan x)y = 0 6. (x2 − 4)yvi + x2 y′′′ + 9y = 0

In each of Problems 7 through 10 determine whether the given set of functions is linearly
dependent or linearly independent. If they are linearly dependent, find a linear relation among
them.

7. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t
8. f1(t) = 2t − 3, f2(t) = 2t2 + 1, f3(t) = 3t2 + t
9. f1(t) = 2t − 3, f2(t) = t2 + 1, f3(t) = 2t2 − t , f4(t) = t2 + t + 1

10. f1(t) = 2t − 3, f2(t) = t3 + 1, f3(t) = 2t2 − t , f4(t) = t2 + t + 1

In each of Problems 11 through 16 verify that the given functions are solutions of the differential
equation, and determine their Wronskian.

11. y′′′ + y′ = 0; 1, cos t, sin t
12. yiv + y′′ = 0; 1, t, cos t, sin t
13. y′′′ + 2y′′ − y′ − 2y = 0; et , e−t , e−2t

14. yiv + 2y′′′ + y′′ = 0; 1, t, e−t , te−t

15. xy′′′ − y′′ = 0; 1, x, x3

16. x3 y′′′ + x2 y′′ − 2xy′ + 2y = 0; x, x2, 1/x

17. Show that W (5, sin2 t, cos 2t) = 0 for all t . Can you establish this result without direct
evaluation of the Wronskian?

18. Verify that the differential operator defined by

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y

is a linear differential operator. That is, show that

L[c1 y1 + c2 y2] = c1 L[y1] + c2 L[y2],
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where y1 and y2 are n times differentiable functions and c1 and c2 are arbitrary constants.
Hence, show that if y1, y2, . . . , yn are solutions of L[y] = 0, then the linear combination
c1 y1 + · · · + cn yn is also a solution of L[y] = 0.

19. Let the linear differential operator L be defined by

L[y] = a0 y(n) + a1 y(n−1) + · · · + an y,

where a0, a1, . . . , an are real constants.
(a) Find L[tn].
(b) Find L[ert ].
(c) Determine four solutions of the equation yiv − 5y′′ + 4y = 0. Do you think the four
solutions form a fundamental set of solutions? Why?

20. In this problem we show how to generalize Theorem 3.3.2 (Abel’s theorem) to higher order
equations. We first outline the procedure for the third order equation

y′′′ + p1(t)y′′ + p2(t)y′ + p3(t)y = 0.

Let y1, y2, and y3 be solutions of this equation on an interval I .
(a) If W = W (y1, y2, y3), show that

W ′ =

∣∣∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

y′′′
1 y′′′

2 y′′′
3

∣∣∣∣∣∣∣∣
.

Hint: The derivative of a 3-by-3 determinant is the sum of three 3-by-3 determinants
obtained by differentiating the first, second, and third rows, respectively.
(b) Substitute for y′′′

1 , y′′′
2 , and y′′′

3 from the differential equation; multiply the first row by
p3, the second row by p2, and add these to the last row to obtain

W ′ = −p1(t)W.

(c) Show that

W (y1, y2, y3)(t) = c exp

[
−

∫
p1(t) dt

]
.

It follows that W is either always zero or nowhere zero on I .
(d) Generalize this argument to the nth order equation

y(n) + p1(t)y(n−1) + · · · + pn(t)y = 0

with solutions y1, . . . , yn . That is, establish Abel’s formula,

W (y1, . . . , yn)(t) = c exp

[
−

∫
p1(t) dt

]
,

for this case.

In each of Problems 21 through 24 use Abel’s formula (Problem 20) to find the Wronskian of a
fundamental set of solutions of the given differential equation.

21. y′′′ + 2y′′ − y′ − 3y = 0 22. yiv + y = 0
23. t y′′′ + 2y′′ − y′ + t y = 0 24. t2 yiv + t y′′′ + y′′ − 4y = 0

25. The purpose of this problem is to show that if W (y1, . . . , yn)(t0) �= 0 for some t0 in an
interval I , then y1, . . . , yn are linearly independent on I , and if they are linearly independent
and solutions of

L[y] = y(n) + p1(t)y(n−1) + · · · + pn(t)y = 0 (i)

on I , then W (y1, . . . , yn) is nowhere zero in I .
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(a) Suppose that W (y1, . . . , yn)(t0) �= 0, and suppose that

c1 y1(t) + · · · + cn yn(t) = 0 (ii)

for all t in I . By writing the equations corresponding to the first n − 1 derivatives of Eq. (ii)
at t0, show that c1 = · · · = cn = 0. Therefore, y1, . . . , yn are linearly independent.
(b) Suppose that y1, . . . , yn are linearly independent solutions of Eq. (i). If
W (y1, . . . , yn)(t0) = 0 for some t0, show that there is a nonzero solution of Eq. (i) satisfying
the initial conditions

y(t0) = y′(t0) = · · · = y(n−1)(t0) = 0.

Since y = 0 is a solution of this initial value problem, the uniqueness part of Theorem
4.1.1 yields a contradiction. Thus W is never zero.

26. Show that if y1 is a solution of

y′′′ + p1(t)y′′ + p2(t)y′ + p3(t)y = 0,

then the substitution y = y1(t)v(t) leads to the following second order equation for v′:

y1v
′′′ + (3y′

1 + p1 y1)v
′′ + (3y′′

1 + 2p1 y′
1 + p2 y1)v

′ = 0.

In each of Problems 27 and 28 use the method of reduction of order (Problem 26) to solve the
given differential equation.

27. (2 − t)y′′′ + (2t − 3)y′′ − t y′ + y = 0, t < 2; y1(t) = et

28. t2(t + 3)y′′′ − 3t (t + 2)y′′ + 6(1 + t)y′ − 6y = 0, t > 0; y1(t) = t2, y2(t) = t3

4.2 Homogeneous Equations with Constant Coefficients

Consider the nth order linear homogeneous differential equation

L[y] = a0 y(n) + a1 y(n−1) + · · · + an−1 y′ + an y = 0, (1)

where a0, a1, . . . , an are real constants. From our knowledge of second order linear
equations with constant coefficients it is natural to anticipate that y = ert is a solution
of Eq. (1) for suitable values of r . Indeed,

L[ert ] = ert(a0rn + a1rn−1 + · · · + an−1r + an) = ert Z(r) (2)

for all r , where

Z(r) = a0rn + a1rn−1 + · · · + an−1r + an . (3)

For those values of r for which Z(r) = 0, it follows that L[ert ] = 0 and y = ert is a
solution of Eq. (1). The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the differential equation (1).
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A polynomial of degree n has n zeros,1 say r1, r2, . . . , rn , some of which may be equal;
hence we can write the characteristic polynomial in the form

Z(r) = a0(r − r1)(r − r2) · · · (r − rn). (4)

Real and Unequal Roots. If the roots of the characteristic equation are real and no
two are equal, then we have n distinct solutions er1t , er2t , . . . , ernt of Eq. (1). If these
functions are linearly independent, then the general solution of Eq. (1) is

y = c1er1t + c2er2t + · · · + cnernt . (5)

One way to establish the linear independence of er1t , er2t , . . . , ernt is to evaluate their
Wronskian determinant. Another way is outlined in Problem 40.

E X A M P L E

1

Find the general solution of

y′′′′ + y′′′ − 7y′′ − y′ + 6y = 0. (6)

Also find the solution that satisfies the initial conditions

y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = −1 (7)

and plot its graph.
Assuming that y = ert , we must determine r by solving the polynomial equation

r4 + r3 − 7r2 − r + 6 = 0. (8)

The roots of this equation are r1 = 1, r2 = −1, r3 = 2, and r4 = −3. Therefore the
general solution of Eq. (6) is

y = c1et + c2e−t + c3e2t + c4e−3t . (9)

The initial conditions (7) require that c1, . . . , c4 satisfy the four equations

c1 + c2 + c3 + c4 = 1,

c1 − c2 + 2c3 − 3c4 = 0,
(10)

c1 + c2 + 4c3 + 9c4 = −2,

c1 − c2 + 8c3 − 27c4 = −1.

By solving this system of four linear algebraic equations, we find that

c1 = 11/8, c2 = 5/12, c3 = −2/3, c4 = −1/8.

Therefore the solution of the initial value problem is

y = 11
8 et + 5

12 e−t − 2
3 e2t − 1

8 e−3t . (11)

The graph of the solution is shown in Figure 4.2.1.

1An important question in mathematics for more than 200 years was whether every polynomial equation has
at least one root. The affirmative answer to this question, the fundamental theorem of algebra, was given by
Carl Friedrich Gauss in his doctoral dissertation in 1799, although his proof does not meet modern standards of
rigor. Several other proofs have been discovered since, including three by Gauss himself. Today, students often
meet the fundamental theorem of algebra in a first course on complex variables, where it can be established as a
consequence of some of the basic properties of complex analytic functions.
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FIGURE 4.2.1 Solution of the initial value problem of Example 1.

As Example 1 illustrates, the procedure for solving an nth order linear differential
equation with constant coefficients depends on finding the roots of a corresponding
nth degree polynomial equation. If initial conditions are prescribed, then a system
of n linear algebraic equations must be solved to determine the proper values of the
constants c1, . . . , cn . While each of these tasks becomes much more complicated as n
increases, they can often be handled without difficulty with a calculator or computer.

For third and fourth degree polynomials there are formulas,2 analogous to the formula
for quadratic equations but more complicated, that give exact expressions for the roots.
Root-finding algorithms are readily available on calculators and computers. Sometimes
they are included in the differential equation solver, so that the process of factoring
the characteristic polynomial is hidden and the solution of the differential equation is
produced automatically.

If you are faced with the need to factor the characteristic polynomial by hand, here
is one result that is sometimes helpful. Suppose that the polynomial

a0rn + a1rn−1 + · · · + an−1r + an = 0 (12)

has integer coefficients. If r = p/q is a rational root, where p and q have no common
factors, then p must be a factor of an and q must be a factor of a0. For example, in
Eq. (8) the factors of a0 are ±1 and the factors of an are ±1, ±2, ±3, and ±6. Thus, the
only possible rational roots of this equation are ±1, ±2, ±3, and ±6. By testing these
possible roots, we find that 1, −1, 2, and −3 are actual roots. In this case there are no
other roots, since the polynomial is of fourth degree. If some of the roots are irrational
or complex, as is usually the case, then this process will not find them, but at least the
degree of the polynomial can be reduced by dividing out the factors corresponding to
the rational roots.

If the roots of the characteristic equation are real and different, we have seen that the
general solution (5) is simply a sum of exponential functions. For large values of t the

2The method for solving the cubic equation was apparently discovered by Scipione dal Ferro (1465–1526) about
1500, although it was first published in 1545 by Girolamo Cardano (1501–1576) in his Ars Magna. This book also
contains a method for solving quartic equations that Cardano attributes to his pupil Ludovico Ferrari (1522–1565).
The question of whether analogous formulas exist for the roots of higher degree equations remained open for more
than two centuries, until in 1826 Niels Abel showed that no general solution formulas can exist for polynomial
equations of degree five or higher. A more general theory was developed by Evariste Galois (1811–1832) in 1831,
but unfortunately it did not become widely known for several decades.
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solution will be dominated by the term corresponding to the algebraically largest root.
If this root is positive, then solutions will become exponentially unbounded, while if it
is negative, then solutions will tend exponentially to zero. Finally, if the largest root is
zero, then solutions will approach a nonzero constant as t becomes large. Of course, for
certain initial conditions the coefficient of the otherwise dominant term will be zero;
then the nature of the solution for large t is determined by the next largest root.

Complex Roots. If the characteristic equation has complex roots, they must occur in
conjugate pairs, λ ± iµ, since the coefficients a0, . . . , an are real numbers. Provided
that none of the roots is repeated, the general solution of Eq. (1) is still of the form (4).
However, just as for the second order equation (Section 3.4), we can replace the
complex-valued solutions e(λ+iµ)t and e(λ−iµ)t by the real-valued solutions

eλt cos µt, eλt sin µt (13)

obtained as the real and imaginary parts of e(λ+iµ)t . Thus, even though some of the
roots of the characteristic equation are complex, it is still possible to express the general
solution of Eq. (1) as a linear combination of real-valued solutions.

E X A M P L E

2

Find the general solution of

yiv − y = 0. (14)

Also find the solution that satisfies the initial conditions

y(0) = 7/2, y′(0) = −4, y′′(0) = 5/2, y′′′(0) = −2 (15)

and draw its graph.
Substituting ert for y, we find that the characteristic equation is

r4 − 1 = (r2 − 1)(r2 + 1) = 0.

Therefore the roots are r = 1, −1, i , −i , and the general solution of Eq. (14) is

y = c1et + c2e−t + c3 cos t + c4 sin t.

If we impose the initial conditions (15), we find that

c1 = 0, c2 = 3, c3 = 1/2, c4 = −1;
thus the solution of the given initial value problem is

y = 3e−t + 1
2 cos t − sin t. (16)

The graph of this solution is shown in Figure 4.2.2.
Observe that the initial conditions (15) cause the coefficient c1 of the exponentially

growing term in the general solution to be zero. Therefore this term is absent in the
solution (16), which describes an exponential decay to a steady oscillation, as Figure
4.2.2 shows. However, if the initial conditions are changed slightly, then c1 is likely to
be nonzero and the nature of the solution changes enormously. For example, if the first
three initial conditions remain the same, but the value of y′′′(0) is changed from −2 to
−15/8, then the solution of the initial value problem becomes

y = 1
32 et + 95

32 e−t + 1
2 cos t − 17

16 sin t. (17)
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The coefficients in Eq. (17) differ only slightly from those in Eq. (16), but the expo-
nentially growing term, even with the relatively small coefficient of 1/32, completely
dominates the solution by the time t is larger than about 4 or 5. This is clearly seen in
Figure 4.2.3, which shows the graphs of the two solutions (16) and (17).
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FIGURE 4.2.2 A plot of the solution (16).
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FIGURE 4.2.3 Plots of the solutions (16)
(light curve) and (17) (heavy curve).

Repeated Roots. If the roots of the characteristic equation are not distinct, that is, if
some of the roots are repeated, then the solution (5) is clearly not the general solution
of Eq. (1). Recall that if r1 is a repeated root for the second order linear equation
a0 y′′ + a1 y′ + a2 y = 0, then the two linearly independent solutions are er1t and ter1t .
For an equation of order n, if a root of Z(r) = 0, say r = r1, has multiplicity s (where
s ≤ n), then

er1t , ter1t , t2er1t , . . . , t s−1er1t (18)

are corresponding solutions of Eq. (1).
If a complex root λ + iµ is repeated s times, the complex conjugate λ − iµ is

also repeated s times. Corresponding to these 2s complex-valued solutions, we can
find 2s real-valued solutions by noting that the real and imaginary parts of e(λ+iµ)t ,
te(λ+iµ)t , . . . , t s−1e(λ+iµ)t are also linearly independent solutions:

eλt cos µt, eλt sin µt, teλt cos µt, teλt sin µt,

. . . , t s−1eλt cos µt, t s−1eλt sin µt.

Hence the general solution of Eq. (1) can always be expressed as a linear combination
of n real-valued solutions. Consider the following example.

E X A M P L E

3

Find the general solution of

yiv + 2y′′ + y = 0. (19)

The characteristic equation is

r4 + 2r2 + 1 = (r2 + 1)(r2 + 1) = 0.

The roots are r = i, i,−i,−i, and the general solution of Eq. (19) is

y = c1 cos t + c2 sin t + c3t cos t + c4t sin t.
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In determining the roots of the characteristic equation it may be necessary to compute
the cube roots, or fourth roots, or even higher roots of a (possibly complex) number. This
can usually be done most conveniently by using Euler’s formula eit = cos t + i sin t
and the algebraic laws given in Section 3.4. This is illustrated in the following example.

E X A M P L E

4

Find the general solution of

yiv + y = 0. (20)

The characteristic equation is

r4 + 1 = 0.

To solve the equation we must compute the fourth roots of −1. Now −1, thought of as
a complex number, is −1 + 0i . It has magnitude 1 and polar angle π . Thus

−1 = cos π + i sin π = eiπ .

Moreover, the angle is determined only up to a multiple of 2π . Thus

−1 = cos(π + 2mπ) + i sin(π + 2mπ) = ei(π+2mπ),

where m is zero or any positive or negative integer. Thus

(−1)1/4 = ei(π/4+mπ/2) = cos
(π

4
+ mπ

2

)
+ i sin

(π

4
+ mπ

2

)
.

The four fourth roots of −1 are obtained by setting m = 0, 1, 2, and 3; they are

1 + i√
2

,
−1 + i√

2
,

−1 − i√
2

,
1 − i√

2
.

It is easy to verify that for any other value of m we obtain one of these four roots.
For example, corresponding to m = 4, we obtain (1 + i)/

√
2. The general solution of

Eq. (20) is

y = et/
√

2

(
c1 cos

t√
2

+ c2 sin
t√
2

)
+ e−t/

√
2

(
c3 cos

t√
2

+ c4 sin
t√
2

)
. (21)

In conclusion, we note that the problem of finding all the roots of a polynomial
equation may not be entirely straightforward, even with computer assistance. For
instance, it may be difficult to determine whether two roots are equal, or merely very
close together. Recall that the form of the general solution is different in these two cases.

If the constants a0, a1, . . . , an in Eq. (1) are complex numbers, the solution of Eq.
(1) is still of the form (4). In this case, however, the roots of the characteristic equation
are, in general, complex numbers, and it is no longer true that the complex conjugate
of a root is also a root. The corresponding solutions are complex-valued.

PROBLEMS In each of Problems 1 through 6 express the given complex number in the form R(cos θ +
i sin θ) = Reiθ .

1. 1 + i 2. −1 + √
3i 3. −3

4. −i 5.
√

3 − i 6. −1 − i
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In each of Problems 7 through 10 follow the procedure illustrated in Example 4 to determine
the indicated roots of the given complex number.

7. 11/3 8. (1 − i)1/2

9. 11/4 10. [2(cos π/3 + i sin π/3)]1/2

In each of Problems 11 through 28 find the general solution of the given differential equation.

11. y′′′ − y′′ − y′ + y = 0 12. y′′′ − 3y′′ + 3y′ − y = 0
13. 2y′′′ − 4y′′ − 2y′ + 4y = 0 14. yiv − 4y′′′ + 4y′′ = 0
15. yvi + y = 0 16. yiv − 5y′′ + 4y = 0
17. yvi − 3yiv + 3y′′ − y = 0 18. yvi − y′′ = 0
19. yv − 3yiv + 3y′′′ − 3y′′ + 2y′ = 0 20. yiv − 8y′ = 0
21. yviii + 8yiv + 16y = 0 22. yiv + 2y′′ + y = 0
23. y′′′ − 5y′′ + 3y′ + y = 0 24. y′′′ + 5y′′ + 6y′ + 2y = 0

� 25. 18y′′′ + 21y′′ + 14y′ + 4y = 0 � 26. yiv − 7y′′′ + 6y′′ + 30y′ − 36y = 0

� 27. 12yiv+ 31y′′′+ 75y′′+ 37y′+ 5y = 0 � 28. yiv + 6y′′′ + 17y′′ + 22y′ + 14y = 0

In each of Problems 29 through 36 find the solution of the given initial value problem and plot
its graph. How does the solution behave as t → ∞?

� 29. y′′′ + y′ = 0; y(0) = 0, y′(0) = 1, y′′(0) = 2

� 30. yiv + y = 0; y(0) = 0, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0

� 31. yiv − 4y′′′ + 4y′′ = 0; y(1) = −1, y′(1) = 2, y′′(1) = 0, y′′′(1) = 0

� 32. y′′′ − y′′ + y′ − y = 0; y(0) = 2, y′(0) = −1, y′′(0) = −2

� 33. 2yiv − y′′′ − 9y′′ + 4y′ + 4y = 0; y(0) = −2, y′(0) = 0, y′′(0) = −2,

y′′′(0) = 0

� 34. 4y′′′ + y′ + 5y = 0; y(0) = 2, y′(0) = 1, y′′(0) = −1

� 35. 6y′′′ + 5y′′ + y′ = 0; y(0) = −2, y′(0) = 2, y′′(0) = 0

� 36. yiv + 6y′′′ + 17y′′ + 22y′ + 14y = 0; y(0) = 1, y′(0) = −2, y′′(0) = 0,

y′′′(0) = 3

37. Show that the general solution of yiv − y = 0 can be written as

y = c1 cos t + c2 sin t + c3 cosh t + c4 sinh t.

Determine the solution satisfying the initial conditions y(0) = 0, y′(0) = 0, y′′(0) = 1,
y′′′(0) = 1. Why is it convenient to use the solutions cosh t and sinh t rather than et and
e−t ?

38. Consider the equation yiv − y = 0.
(a) Use Abel’s formula [Problem 20(d) of Section 4.1] to find the Wronskian of a funda-
mental set of solutions of the given equation.
(b) Determine the Wronskian of the solutions et , e−t , cos t , and sin t .
(c) Determine the Wronskian of the solutions cosh t , sinh t , cos t , and sin t .

39. Consider the spring–mass system, shown in Figure 4.2.4, consisting of two unit masses
suspended from springs with spring constants 3 and 2, respectively. Assume that there is
no damping in the system.
(a) Show that the displacements u1 and u2 of the masses from their respective equilibrium
positions satisfy the equations

u′′
1 + 5u1 = 2u2, u′′

2 + 2u2 = 2u1. (i)

(b) Solve the first of Eqs. (i) for u2 and substitute into the second equation, thereby
obtaining the following fourth order equation for u1:

uiv
1 + 7u′′

1 + 6u1 = 0. (ii)

Find the general solution of Eq. (ii).
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u1

k1 = 3

m1 = 1

m2 = 1

k2 = 2

u2

FIGURE 4.2.4 A two degree of freedom spring–mass system.

(c) Suppose that the initial conditions are

u1(0) = 1, u′
1(0) = 0, u2(0) = 2, u′

2(0) = 0. (iii)

Use the first of Eqs. (i) and the initial conditions (iii) to obtain values for u′′
1(0) and u′′′

1 (0).
Then show that the solution of Eq. (ii) that satisfies the four initial conditions on u1 is
u1(t) = cos t . Show that the corresponding solution u2 is u2(t) = 2 cos t .
(d) Now suppose that the initial conditions are

u1(0) = −2, u′
1(0) = 0, u2(0) = 1, u′

2(0) = 0. (iv)

Proceed as in part (c) to show that the corresponding solutions are u1(t) = −2 cos
√

6 t
and u2(t) = cos

√
6 t .

(e) Observe that the solutions obtained in parts (c) and (d) describe two distinct modes of
vibration. In the first, the frequency of the motion is 1, and the two masses move in phase,
both moving up or down together. The second motion has frequency

√
6, and the masses

move out of phase with each other, one moving down while the other is moving up and
vice versa. For other initial conditions, the motion of the masses is a combination of these
two modes.

40. In this problem we outline one way to show that if r1, . . . , rn are all real and different, then
er1t , . . . , ern t are linearly independent on −∞ < t < ∞. To do this, we consider the linear
relation

c1er1t + · · · + cnern t = 0, −∞ < t < ∞ (i)

and show that all the constants are zero.
(a) Multiply Eq. (i) by e−r1t and differentiate with respect to t , thereby obtaining

c2(r2 − r1)e
(r2−r1)t + · · · + cn(rn − r1)e

(rn−r1)t = 0.

(b) Multiply the result of part (a) by e−(r2−r1)t and differentiate with respect to t to obtain

c3(r3 − r2)(r3 − r1)e
(r3−r2)t + · · · + cn(rn − r2)(rn − r1)e

(rn−r2)t = 0.

(c) Continue the procedure from parts (a) and (b), eventually obtaining

cn(rn − rn−1) · · · (rn − r1)e
(rn−rn−1)t = 0.
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Hence cn = 0 and therefore

c1er1t + · · · + cn−1ern−1t = 0.

(d) Repeat the preceding argument to show that cn−1 = 0. In a similar way it follows that
cn−2 = · · · = c1 = 0. Thus the functions er1t , . . . , ern t are linearly independent.

4.3 The Method of Undetermined Coefficients

A particular solution Y of the nonhomogeneous nth order linear equation with constant
coefficients

L[y] = a0 y(n) + a1 y(n−1) + · · · + an−1 y′ + an y = g(t) (1)

can be obtained by the method of undetermined coefficients, provided that g(t) is of an
appropriate form. While the method of undetermined coefficients is not as general as
the method of variation of parameters described in the next section, it is usually much
easier to use when applicable.

Just as for the second order linear equation, when the constant coefficient linear
differential operator L is applied to a polynomial A0tm + A1tm−1 + · · · + Am , an
exponential function eαt , a sine function sin βt , or a cosine function cos βt , the result
is a polynomial, an exponential function, or a linear combination of sine and cosine
functions, respectively. Hence, if g(t) is a sum of polynomials, exponentials, sines,
and cosines, or products of such functions, we can expect that it is possible to find
Y (t) by choosing a suitable combination of polynomials, exponentials, and so forth,
multiplied by a number of undetermined constants. The constants are then determined
so that Eq. (1) is satisfied.

The main difference in using this method for higher order equations stems from the
fact that roots of the characteristic polynomial equation may have multiplicity greater
than 2. Consequently, terms proposed for the nonhomogeneous part of the solution
may need to be multiplied by higher powers of t to make them different from terms in
the solution of the corresponding homogeneous equation.

E X A M P L E

1

Find the general solution of

y′′′ − 3y′′ + 3y′ − y = 4et . (2)

The characteristic polynomial for the homogeneous equation corresponding to
Eq. (2) is

r3 − 3r2 + 3r − 1 = (r − 1)3,

so the general solution of the homogeneous equation is

yc(t) = c1et + c2tet + c3t2et . (3)

To find a particular solution Y (t) of Eq. (2), we start by assuming that Y (t) = Aet .
However, since et , tet , and t2et are all solutions of the homogeneous equation, we
must multiply this initial choice by t3. Thus our final assumption is that Y (t) = At3et ,
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where A is an undetermined coefficient. To find the correct value for A, we differentiate
Y (t) three times, substitute for y and its derivatives in Eq. (2), and collect terms in the
resulting equation. In this way we obtain

6Aet = 4et .

Thus A = 2
3 and the particular solution is

Y (t) = 2
3 t3et . (4)

The general solution of Eq. (2) is the sum of yc(t) from Eq. (3) and Y (t) from Eq. (4).

E X A M P L E

2

Find a particular solution of the equation

yiv + 2y′′ + y = 3 sin t − 5 cos t. (5)

The general solution of the homogeneous equation was found in Example 3 of
Section 4.2, namely,

yc(t) = c1 cos t + c2 sin t + c3t cos t + c4t sin t, (6)

corresponding to the roots r = i , i , −i , and −i of the characteristic equation. Our initial
assumption for a particular solution is Y (t) = A sin t + B cos t , but we must multiply
this choice by t2 to make it different from all solutions of the homogeneous equation.
Thus our final assumption is

Y (t) = At2 sin t + Bt2 cos t.

Next, we differentiate Y (t) four times, substitute into the differential equation (4), and
collect terms, obtaining finally

−8A sin t − 8B cos t = 3 sin t − 5 cos t.

Thus A = − 3
8 , B = 5

8 , and the particular solution of Eq. (4) is

Y (t) = − 3
8 t2 sin t + 5

8 t2 cos t. (7)

If g(t) is a sum of several terms, it is often easier in practice to compute separately
the particular solution corresponding to each term in g(t). As for the second order
equation, the particular solution of the complete problem is the sum of the particular
solutions of the individual component problems. This is illustrated in the following
example.

E X A M P L E

3

Find a particular solution of

y′′′ − 4y′ = t + 3 cos t + e−2t . (8)

First we solve the homogeneous equation. The characteristic equation is r3 − 4r = 0,
and the roots are 0, ±2; hence

yc(t) = c1 + c2e2t + c3e−2t .
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We can write a particular solution of Eq. (8) as the sum of particular solutions of the
differential equations

y′′′ − 4y′ = t, y′′′ − 4y′ = 3 cos t, y′′′ − 4y′ = e−2t .

Our initial choice for a particular solution Y1(t) of the first equation is A0t + A1, but
since a constant is a solution of the homogeneous equation, we multiply by t . Thus

Y1(t) = t (A0t + A1).

For the second equation we choose

Y2(t) = B cos t + C sin t,

and there is no need to modify this initial choice since cos t and sin t are not solutions
of the homogeneous equation. Finally, for the third equation, since e−2t is a solution of
the homogeneous equation, we assume that

Y3(t) = Ete−2t .

The constants are determined by substituting into the individual differential equations;
they are A0 = − 1

8 , A1 = 0, B = 0, C = − 3
5 , and E = 1

8 . Hence a particular solution
of Eq. (8) is

Y (t) = − 1
8 t2 − 3

5 sin t + 1
8 te−2t . (9)

The amount of algebra required to calculate the coefficients may be quite substantial
for higher order equations, especially if the nonhomogeneous term is even moderately
complicated. A computer algebra system can be extremely helpful in executing these
algebraic calculations.

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y (t). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the type described previously. For more complicated problems we can use the method
of variation of parameters, which is discussed in the next section.

PROBLEMS In each of Problems 1 through 8 determine the general solution of the given differential equation.

1. y′′′ − y′′ − y′ + y = 2e−t + 3 2. yiv − y = 3t + cos t
3. y′′′ + y′′ + y′ + y = e−t + 4t 4. y′′′ − y′ = 2 sin t
5. yiv − 4y′′ = t2 + et 6. yiv + 2y′′ + y = 3 + cos 2t
7. yvi + y′′′ = t 8. yiv + y′′′ = sin 2t

In each of Problems 9 through 12 find the solution of the given initial value problem. Then plot
a graph of the solution.

� 9. y′′′ + 4y′ = t, y(0) = y′(0) = 0, y′′(0) = 1

� 10. yiv + 2y′′ + y = 3t + 4, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1

� 11. y′′′ − 3y′′ + 2y′ = t + et , y(0) = 1, y′(0) = − 1
4 , y′′(0) = − 3

2

� 12. yiv + 2y′′′ + y′′ + 8y′ − 12y = 12 sin t − e−t , y(0) = 3, y′(0) = 0,

y′′(0) = −1, y′′′(0) = 2
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In each of Problems 13 through 18 determine a suitable form for Y (t) if the method of undeter-
mined coefficients is to be used. Do not evaluate the constants.

13. y′′′ − 2y′′ + y′ = t3 + 2et 14. y′′′ − y′ = te−t + 2 cos t
15. yiv − 2y′′ + y = et + sin t 16. yiv + 4y′′ = sin 2t + tet + 4
17. yiv − y′′′ − y′′ + y′ = t2 + 4 + t sin t
18. yiv + 2y′′′ + 2y′′ = 3et + 2te−t + e−t sin t

19. Consider the nonhomogeneous nth order linear differential equation

a0 y(n) + a1 y(n−1) + · · · + an y = g(t),

where a0, . . . , an are constants. Verify that if g(t) is of the form

eαt (b0tm + · · · + bm),

then the substitution y = eαt u(t) reduces the preceding equation to the form

k0u(n) + k1u(n−1) + · · · + knu = b0tm + · · · + bm,

where k0, . . . , kn are constants. Determine k0 and kn in terms of the a’s and α. Thus
the problem of determining a particular solution of the original equation is reduced to
the simpler problem of determining a particular solution of an equation with constant
coefficients and a polynomial for the nonhomogeneous term.

Method of Annihilators. In Problems 20 through 22 we consider another way of arriving
at the proper form of Y (t) for use in the method of undetermined coefficients. The procedure
is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and
products of such terms) can be viewed as solutions of certain linear homogeneous differential
equations with constant coefficients. It is convenient to use the symbol D for d/dt . Then,
for example, e−t is a solution of (D + 1)y = 0; the differential operator D + 1 is said to
annihilate, or to be an annihilator of, e−t . Similarly, D2 + 4 is an annihilator of sin 2t or cos 2t ,
(D − 3)2 = D2 − 6D + 9 is an annihilator of e3t or te3t , and so forth.

20. Show that linear differential operators with constant coefficients obey the commutative
law, that is,

(D − a)(D − b) f = (D − b)(D − a) f

for any twice differentiable function f and any constants a and b. The result extends at
once to any finite number of factors.

21. Consider the problem of finding the form of the particular solution Y (t) of

(D − 2)3(D + 1)Y = 3e2t − te−t , (i)

where the left side of the equation is written in a form corresponding to the factorization
of the characteristic polynomial.
(a) Show that D − 2 and (D + 1)2, respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D − 2)(D + 1)2 annihilates both terms on
the right side of Eq. (i) simultaneously.
(b) Apply the operator (D − 2)(D + 1)2 to Eq. (i) and use the result of Problem 20 to
obtain

(D − 2)4(D + 1)3Y = 0. (ii)

Thus Y is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that

Y (t) = c1e2t + c2te2t + c3t2e2t + c4t3e2t

+ c5e−t + c6te−t + c7t2e−t , (iii)

where c1, . . . , c7 are constants, as yet undetermined.
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(c) Observe that e2t , te2t , t2e2t , and e−t are solutions of the homogeneous equation
corresponding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose c1, c2, c3, and c5 to be zero in Eq. (iii), so that

Y (t) = c4t3e2t + c6te−t + c7t2e−t . (iv)

This is the form of the particular solution Y of Eq. (i). The values of the coefficients c4, c6,
and c7 can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that

L(D)y = g(t), (i)

where L(D) is a linear differential operator with constant coefficients, and g(t) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of the particular
solution of Eq. (i), you can proceed as follows.

(a) Find a differential operator H(D) with constant coefficients that annihilates g(t), that
is, an operator such that H(D)g(t) = 0.
(b) Apply H(D) to Eq. (i), obtaining

H(D)L(D)y = 0, (ii)

which is a homogeneous equation of higher order.
(c) Solve Eq. (ii).
(d) Eliminate from the solution found in step (c) the terms that also appear in the solution
of L(D)y = 0. The remaining terms constitute the correct form of the particular solution
of Eq. (i).

22. Use the method of annihilators to find the form of the particular solution Y (t) for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.

4.4 The Method of Variation of Parameters

The method of variation of parameters for determining a particular solution of the
nonhomogeneous nth order linear differential equation

L[y] = y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = g(t) (1)

is a direct extension of the method for the second order differential equation (see Section
3.7). As before, to use the method of variation of parameters, it is first necessary to
solve the corresponding homogeneous differential equation. In general, this may be
difficult unless the coefficients are constants. However, the method of variation of
parameters is still more general than the method of undetermined coefficients in that it
leads to an expression for the particular solution for any continuous function g, whereas
the method of undetermined coefficients is restricted in practice to a limited class of
functions g.

Suppose then that we know a fundamental set of solutions y1, y2, . . . , yn of the
homogeneous equation. Then the general solution of the homogeneous equation is

yc(t) = c1 y1(t) + c2 y2(t) + · · · + cn yn(t). (2)
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The method of variation of parameters for determining a particular solution of Eq. (1)
rests on the possibility of determining n functions u1, u2, . . . , un such that Y (t) is of
the form

Y (t) = u1(t)y1(t) + u2(t)y2(t) + · · · + un(t)yn(t). (3)

Since we have n functions to determine, we will have to specify n conditions. One of
these is clearly that Y satisfy Eq. (1). The other n − 1 conditions are chosen so as to
make the calculations as simple as possible. Since we can hardly expect a simplification
in determining Y if we must solve high order differential equations for u1, . . . , un , it
is natural to impose conditions to suppress the terms that lead to higher derivatives of
u1, . . . , un . From Eq. (3) we obtain

Y ′ = (u1 y′
1 + u2 y′

2 + · · · + un y′
n) + (u′

1 y1 + u′
2 y2 + · · · + u′

n yn), (4)

where we have omitted the independent variable t on which each function in Eq. (4)
depends. Thus the first condition that we impose is that

u′
1 y1 + u′

2 y2 + · · · + u′
n yn = 0. (5)

Continuing this process in a similar manner through n − 1 derivatives of Y gives

Y (m) = u1 y(m)
1 + u2 y(m)

2 + · · · + un y(m)
n , m = 0, 1, 2, . . . , n − 1, (6)

and the following n − 1 conditions on the functions u1, . . . , un:

u′
1 y(m−1)

1 + u′
2 y(m−1)

2 + · · · + u′
n y(m−1)

n = 0, m = 1, 2, . . . , n − 1. (7)

The nth derivative of Y is

Y (n) = (u1 y(n)
1 + · · · + un y(n)

n ) + (u′
1 y(n−1)

1 + · · · + u′
n y(n−1)

n ). (8)

Finally, we impose the condition that Y must be a solution of Eq. (1). On substituting
for the derivatives of Y from Eqs. (6) and (8), collecting terms, and making use of the
fact that L[yi ] = 0, i = 1, 2, . . . , n, we obtain

u′
1 y(n−1)

1 + u′
2 y(n−1)

2 + · · · + u′
n y(n−1)

n = g. (9)

Equation (9), coupled with the n − 1 equations (7), gives n simultaneous linear non-
homogeneous algebraic equations for u′

1, u′
2, . . . , u′

n:

y1u′
1 + y2u′

2 + · · · + ynu′
n = 0,

y′
1u′

1 + y′
2u′

2 + · · · + y′
nu′

n = 0,

y′′
1 u′

1 + y′′
2 u′

2 + · · · + y′′
n u′

n = 0, (10)
...

y(n−1)
1 u′

1 + · · · + y(n−1)
n u′

n = g.

The system (10) is a linear algebraic system for the unknown quantities u′
1, . . . , u′

n .
By solving this system and then integrating the resulting expressions, you can obtain
the coefficients u1, . . . , un . A sufficient condition for the existence of a solution of the
system of equations (10) is that the determinant of coefficients is nonzero for each value
of t . However, the determinant of coefficients is precisely W (y1, y2, . . . , yn), and it is
nowhere zero since y1, . . . , yn are linearly independent solutions of the homogeneous
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equation. Hence it is possible to determine u′
1, . . . , u′

n . Using Cramer’s rule, we find
that the solution of the system of equations (10) is

u′
m(t) = g(t)Wm(t)

W (t)
, m = 1, 2, . . . , n. (11)

Here W (t) = W (y1,y2, . . . , yn)(t) and Wm is the determinant obtained from W by
replacing the mth column by the column (0, 0, . . . , 0, 1). With this notation a particular
solution of Eq. (1) is given by

Y (t) =
n∑

m=1

ym(t)
∫ t

t0

g(s)Wm(s)

W (s)
ds, (12)

where t0 is arbitrary. While the procedure is straightforward, the algebraic computations
involved in determining Y (t) from Eq. (12) become more and more complicated as n
increases. In some cases the calculations may be simplified to some extent by using
Abel’s identity (Problem 20 of Section 4.1),

W (t) = W (y1, . . . , yn)(t) = c exp

[
−

∫
p1(t) dt

]
.

The constant c can be determined by evaluating W at some convenient point.

E X A M P L E

1

Given that y1(t) = et , y2(t) = tet , and y3(t) = e−t are solutions of the homogeneous
equation corresponding to

y′′′ − y′′ − y′ + y = g(t), (13)

determine a particular solution of Eq. (13) in terms of an integral.
We use Eq. (12). First, we have

W (t) = W (et , tet , e−t )(t) =
∣∣∣∣∣∣

et tet e−t

et (t + 1)et −e−t

et (t + 2)et e−t

∣∣∣∣∣∣ .

Factoring et from each of the first two columns and e−t from the third column, we
obtain

W (t) = et

∣∣∣∣∣∣
1 t 1
1 t + 1 −1
1 t + 2 1

∣∣∣∣∣∣ .

Then, by subtracting the first row from the second and third rows, we have

W (t) = et

∣∣∣∣∣∣
1 t 1
0 1 −2
0 2 0

∣∣∣∣∣∣ .

Finally, evaluating the latter determinant by minors associated with the first column,
we find that

W (t) = 4et .
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Next,

W1(t) =
∣∣∣∣∣∣

0 tet e−t

0 (t + 1)et −e−t

1 (t + 2)et e−t

∣∣∣∣∣∣ .
Using minors associated with the first column, we obtain

W1(t) =
∣∣∣∣ tet e−t

(t + 1)et −e−t

∣∣∣∣ = −2t − 1.

In a similar way

W2(t) =
∣∣∣∣∣∣

et 0 e−t

et 0 −e−t

et 1 e−t

∣∣∣∣∣∣ = −
∣∣∣∣ et e−t

et −e−t

∣∣∣∣ = 2,

and

W3(t) =
∣∣∣∣∣∣

et tet 0
et (t + 1)et 0
et (t + 2)et 1

∣∣∣∣∣∣ =
∣∣∣∣ et tet

et (t + 1)et

∣∣∣∣ = e2t .

Substituting these results in Eq. (12), we have

Y (t) = et
∫ t

t0

g(s)(−1 − 2s)

4es ds + tet
∫ t

t0

g(s)(2)

4es ds + e−t
∫ t

t0

g(s)e2s

4es ds

= 1

4

∫ t

t0

{
et−s[−1 + 2(t − s)] + e−(t−s)

}
g(s) ds.

PROBLEMS In each of Problems 1 through 6 use the method of variation of parameters to determine the
general solution of the given differential equation.

1. y′′′ + y′ = tan t, 0 < t < π 2. y′′′ − y′ = t
3. y′′′ − 2y′′ − y′ + 2y = e4t 4. y′′′ + y′ = sec t, −π/2 < t < π/2
5. y′′′ − y′′ + y′ − y = e−t sin t 6. yiv + 2y′′ + y = sin t

In each of Problems 7 and 8 find the general solution of the given differential equation. Leave
your answer in terms of one or more integrals.

7. y′′′ − y′′ + y′ − y = sec t, −π/2 < t < π/2
8. y′′′ − y′ = csc t, 0 < t < π

In each of Problems 9 through 12 find the solution of the given initial value problem. Then plot
a graph of the solution.

� 9. y′′′ + y′ = sec t, y(0) = 2, y′(0) = 1, y′′(0) = −2

� 10. yiv + 2y′′ + y = sin t, y(0) = 2, y′(0) = 0, y′′(0) = −1, y′′′(0) = 1

� 11. y′′′ − y′′ + y′ − y = sec t, y(0) = 2, y′(0) = −1, y′′(0) = 1

� 12. y′′′ − y′ = csc t, y(π/2) = 2, y′(π/2) = 1, y′′(π/2) = −1

13. Given that x, x2, and 1/x are solutions of the homogeneous equation corresponding to

x3 y′′′ + x2 y′′ − 2xy′ + 2y = 2x4, x > 0,

determine a particular solution.
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14. Find a formula involving integrals for a particular solution of the differential equation

y′′′ − y′′ + y′ − y = g(t).

15. Find a formula involving integrals for a particular solution of the differential equation

yiv − y = g(t).

Hint: The functions sin t , cos t , sinh t , and cosh t form a fundamental set of solutions of
the homogeneous equation.

16. Find a formula involving integrals for a particular solution of the differential equation

y′′′ − 3y′′ + 3y′ − y = g(t).

If g(t) = t−2et , determine Y (t).
17. Find a formula involving integrals for a particular solution of the differential equation

x3 y′′′ − 3x2 y′′ + 6xy′ − 6y = g(x), x > 0.

Hint: Verify that x, x2, and x3 are solutions of the homogeneous equation.

REFERENCES
Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Pren-

tice Hall, 1961; New York: Dover, 1989).

Ince, E. L., Ordinary Differential Equations (London: Longmans, Green, 1927; New York: Dover,
1953).



C H A P T E R

5

Series Solutions
of Second Order
Linear Equations

Finding the general solution of a linear differential equation rests on determining a
fundamental set of solutions of the homogeneous equation. So far, we have given a
systematic procedure for constructing fundamental solutions only if the equation has
constant coefficients. To deal with the much larger class of equations having variable
coefficients it is necessary to extend our search for solutions beyond the familiar
elementary functions of calculus. The principal tool that we need is the representation
of a given function by a power series. The basic idea is similar to that in the method of
undetermined coefficients: We assume that the solutions of a given differential equation
have power series expansions, and then we attempt to determine the coefficients so as
to satisfy the differential equation.

5.1 Review of Power Series

In this chapter we discuss the use of power series to construct fundamental sets of
solutions of second order linear differential equations whose coefficients are functions
of the independent variable. We begin by summarizing very briefly the pertinent results
about power series that we need. Readers who are familiar with power series may go
on to Section 5.2. Those who need more details than are presented here should consult
a book on calculus.

231



232 Chapter 5. Series Solutions of Second Order Linear Equations

1. A power series
∞∑

n=0
an(x − x0)

n is said to converge at a point x if

lim
m→∞

m∑
n=0

an(x − x0)
n

exists for that x . The series certainly converges for x = x0; it may converge for all
x , or it may converge for some values of x and not for others.

2. The series
∞∑

n=0
an(x − x0)

n is said to converge absolutely at a point x if the series

∞∑
n=0

|an(x − x0)
n| =

∞∑
n=0

|an||x − x0|n

converges. It can be shown that if the series converges absolutely, then the series
also converges; however, the converse is not necessarily true.

3. One of the most useful tests for the absolute convergence of a power series is the
ratio test. If an �= 0, and if for a fixed value of x

lim
n→∞

∣∣∣∣∣an+1(x − x0)
n+1

an(x − x0)
n

∣∣∣∣∣ = |x − x0| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L|x − x0|,

then the power series converges absolutely at that value of x if |x − x0| < 1/L ,
and diverges if |x − x0| > 1/L . If |x − x0| = 1/L , the test is inconclusive.

E X A M P L E

1

For which values of x does the power series
∞∑

n=1

(−1)n+1n(x − 2)n

converge?
To test for convergence we use the ratio test. We have

lim
n→∞

∣∣∣∣∣ (−1)n+2(n + 1)(x − 2)n+1

(−1)n+1n(x − 2)n

∣∣∣∣∣ = |x − 2| lim
n→∞

n + 1

n
= |x − 2|.

According to statement 3 the series converges absolutely for |x − 2| < 1, or 1 <

x < 3, and diverges for |x − 2| > 1. The values of x corresponding to |x − 2| = 1
are x = 1 and x = 3. The series diverges for each of these values of x since the
nth term of the series does not approach zero as n → ∞.

4. If the power series
∞∑

n=0
an(x − x0)

n converges at x = x1, it converges absolutely

for |x − x0| < |x1 − x0|; and if it diverges at x = x1, it diverges for |x − x0| >

|x1 − x0|.
5. There is a nonnegative number ρ, called the radius of convergence, such that

∞∑
n=0

an(x − x0)
n converges absolutely for |x − x0| < ρ and diverges for |x − x0| >

ρ. For a series that converges only at x0, we define ρ to be zero; for a series that
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converges for all x , we say that ρ is infinite. If ρ > 0, then the interval |x − x0| < ρ

is called the interval of convergence; it is indicated by the hatched lines in Figure
5.1.1. The series may either converge or diverge when |x − x0| = ρ.

x

Series
diverges

Series
diverges

Series 
converges
absolutely

x0 x0 + 

Series may
converge or diverge

x0 – ρ ρ

FIGURE 5.1.1 The interval of convergence of a power series.

E X A M P L E

2

Determine the radius of convergence of the power series
∞∑

n=1

(x + 1)n

n2n .

We apply the ratio test:

lim
n→∞

∣∣∣∣∣ (x + 1)n+1

(n + 1)2n+1

n2n

(x + 1)n

∣∣∣∣∣ = |x + 1|
2

lim
n→∞

n

n + 1
= |x + 1|

2
.

Thus the series converges absolutely for |x + 1| < 2, or −3 < x < 1, and diverges
for |x + 1| > 2. The radius of convergence of the power series is ρ = 2. Finally,
we check the endpoints of the interval of convergence. At x = 1 the series becomes
the harmonic series

∞∑
n=1

1

n
,

which diverges. At x = −3 we have
∞∑

n=1

(−3 + 1)n

n2n =
∞∑

n=1

(−1)n

n
,

which converges, but does not converge absolutely. The series is said to converge
conditionally at x = −3. To summarize, the given power series converges for
−3 ≤ x < 1, and diverges otherwise. It converges absolutely for −3 < x < 1, and
has a radius of convergence 2.

If
∞∑

n=0
an(x − x0)

n and
∞∑

n=0
bn(x − x0)

n converge to f (x) and g(x), respectively,

for |x − x0| < ρ, ρ > 0, then the following are true for |x − x0| < ρ.
6. The series can be added or subtracted termwise and

f (x) ± g(x) =
∞∑

n=0

(an ± bn)(x − x0)
n.
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7. The series can be formally multiplied and

f (x)g(x) =
[ ∞∑

n=0

an(x − x0)
n

][ ∞∑
n=0

bn(x − x0)
n

]
=

∞∑
n=0

cn(x − x0)
n,

where cn = a0bn + a1bn−1 + · · · + anb0. Further, if g(x0) �= 0, the series can be
formally divided and

f (x)

g(x)
=

∞∑
n=0

dn(x − x0)
n.

In most cases the coefficients dn can be most easily obtained by equating coeffi-
cients in the equivalent relation

∞∑
n=0

an(x − x0)
n =

[ ∞∑
n=0

dn(x − x0)
n

][ ∞∑
n=0

bn(x − x0)
n

]

=
∞∑

n=0

(
n∑

k=0

dkbn−k

)
(x − x0)

n.

Also, in the case of division, the radius of convergence of the resulting power series
may be less than ρ.

8. The function f is continuous and has derivatives of all orders for |x − x0| < ρ.
Further, f ′, f ′′, . . . can be computed by differentiating the series termwise; that is,

f ′(x) = a1 + 2a2(x − x0) + · · · + nan(x − x0)
n−1 + · · ·

=
∞∑

n=1

nan(x − x0)
n−1,

f ′′(x) = 2a2 + 6a3(x − x0) + · · · + n(n − 1)an(x − x0)
n−2 + · · ·

=
∞∑

n=2

n(n − 1)an(x − x0)
n−2,

and so forth, and each of the series converges absolutely for |x − x0| < ρ.
9. The value of an is given by

an = f (n)(x0)

n!
.

The series is called the Taylor1 series for the function f about x = x0.

10. If
∞∑

n=0
an(x − x0)

n =
∞∑

n=0
bn(x − x0)

n for each x , then an = bn for n = 0, 1,

2, 3, . . . . In particular, if
∞∑

n=0
an(x − x0)

n = 0 for each x , then a0 = a1 = · · · =
an = · · · = 0.

1Brook Taylor (1685–1731) was the leading English mathematician in the generation following Newton. In 1715
he published a general statement of the expansion theorem that is named for him, a result that is fundamental in
all branches of analysis. He was also one of the founders of the calculus of finite differences, and was the first to
recognize the existence of singular solutions of differential equations.
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A function f that has a Taylor series expansion about x = x0,

f (x) =
∞∑

n=0

f (n)(x0)

n!
(x − x0)

n,

with a radius of convergence ρ > 0, is said to be analytic at x = x0. According to
statements 6 and 7, if f and g are analytic at x0, then f ± g, f · g, and f/g [provided
that g(x0) �= 0] are analytic at x = x0.

Shift of Index of Summation. The index of summation in an infinite series is a dummy
parameter just as the integration variable in a definite integral is a dummy variable.
Thus it is immaterial which letter is used for the index of summation. For example,

∞∑
n=0

2nxn

n!
=

∞∑
j=0

2 j x j

j!
.

Just as we make changes of the variable of integration in a definite integral, we find
it convenient to make changes of summation indices in calculating series solutions of
differential equations. We illustrate by several examples how to shift the summation
index.

E X A M P L E

3

Write
∞∑

n=2
an xn as a series whose first term corresponds to n = 0 rather than n = 2.

Let m = n − 2; then n = m + 2 and n = 2 corresponds to m = 0. Hence
∞∑

n=2

an xn =
∞∑

m=0

am+2xm+2. (1)

By writing out the first few terms of each of these series, you can verify that they
contain precisely the same terms. Finally, in the series on the right side of Eq. (1), we
can replace the dummy index m by n, obtaining

∞∑
n=2

an xn =
∞∑

n=0

an+2xn+2. (2)

In effect, we have shifted the index upward by 2, and compensated by starting to count
at a level 2 lower than originally.

E X A M P L E

4

Write the series
∞∑

n=2

(n + 2)(n + 1)an(x − x0)
n−2 (3)

as a series whose generic term involves (x − x0)
n rather than (x − x0)

n−2.
Again, we shift the index by 2 so that n is replaced by n + 2 and start counting 2

lower. We obtain
∞∑

n=0

(n + 4)(n + 3)an+2(x − x0)
n. (4)

You can readily verify that the terms in the series (3) and (4) are exactly the same.
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E X A M P L E

5

Write the expression

x2
∞∑

n=0

(r + n)an xr+n−1 (5)

as a series whose generic term involves xr+n .
First take the x2 inside the summation, obtaining

∞∑
n=0

(r + n)an xr+n+1. (6)

Next, shift the index down by 1 and start counting 1 higher. Thus
∞∑

n=0

(r + n)an xr+n+1 =
∞∑

n=1

(r + n − 1)an−1xr+n. (7)

Again, you can easily verify that the two series in Eq. (7) are identical, and that both
are exactly the same as the expression (5).

E X A M P L E

6

Assume that
∞∑

n=1

nan xn−1 =
∞∑

n=0

an xn (8)

for all x , and determine what this implies about the coefficients an .
We want to use statement 10 to equate corresponding coefficients in the two series.

In order to do this, we must first rewrite Eq. (8) so that the series display the same
power of x in their generic terms. For instance, in the series on the left side of Eq. (8),
we can replace n by n + 1 and start counting 1 lower. Thus Eq. (8) becomes

∞∑
n=0

(n + 1)an+1xn =
∞∑

n=0

an xn. (9)

According to statement 10 we conclude that

(n + 1)an+1 = an, n = 0, 1, 2, 3, . . .

or

an+1 = an

n + 1
, n = 0, 1, 2, 3, . . . (10)

Hence, choosing successive values of n in Eq. (10), we have

a1 = a0, a2 = a1

2
= a0

2
, a3 = a2

3
= a0

3!
,

and so forth. In general,

an = a0

n!
, n = 1, 2, 3, . . . . (11)

Thus the relation (8) determines all the following coefficients in terms of a0. Finally,
using the coefficients given by Eq. (11), we obtain

∞∑
n=0

an xn = a0

∞∑
n=0

xn

n!
= a0ex ,

where we have followed the usual convention that 0! = 1.
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PROBLEMS In each of Problems 1 through 8 determine the radius of convergence of the given power series.

1.
∞∑

n=0
(x − 3)n 2.

∞∑
n=0

n

2n xn

3.
∞∑

n=0

x2n

n!
4.

∞∑
n=0

2n xn

5.
∞∑

n=1

(2x + 1)n

n2 6.
∞∑

n=1

(x − x0)
n

n

7.
∞∑

n=1

(−1)nn2(x + 2)n

3n 8.
∞∑

n=1

n!xn

nn

In each of Problems 9 through 16 determine the Taylor series about the point x0 for the given
function. Also determine the radius of convergence of the series.

9. sin x, x0 = 0 10. ex , x0 = 0

11. x, x0 = 1 12. x2, x0 = −1

13. ln x, x0 = 1 14.
1

1 + x
, x0 = 0

15.
1

1 − x
, x0 = 0 16.

1

1 − x
, x0 = 2

17. Given that y =
∞∑

n=0
nxn , compute y′ and y′′ and write out the first four terms of each series

as well as the coefficient of xn in the general term.

18. Given that y =
∞∑

n=0
an xn , compute y′ and y′′ and write out the first four terms of each

series as well as the coefficient of xn in the general term. Show that if y′′ = y, then the
coefficients a0 and a1 are arbitrary, and determine a2 and a3 in terms of a0 and a1. Show
that an+2 = an/(n + 2)(n + 1), n = 0, 1, 2, 3, . . . .

In each of Problems 19 and 20 verify the given equation.

19.
∞∑

n=0
an(x − 1)n+1 =

∞∑
n=1

an−1(x − 1)n

20.
∞∑

k=0
ak+1xk +

∞∑
k=0

ak xk+1 = a1 +
∞∑

k=1
(ak+1 + ak−1)xk

In each of Problems 21 through 27 rewrite the given expression as a sum whose generic term
involves xn .

21.
∞∑

n=2
n(n − 1)an xn−2 22.

∞∑
n=0

an xn+2

23. x
∞∑

n=1
nan xn−1 +

∞∑
k=0

ak xk 24. (1 − x2)
∞∑

n=2
n(n − 1)an xn−2

25.
∞∑

m=2
m(m − 1)am xm−2 + x

∞∑
k=1

kak xk−1 26.
∞∑

n=1
nan xn−1 + x

∞∑
n=0

an xn

27. x
∞∑

n=2
n(n − 1)an xn−2 +

∞∑
n=0

an xn



238 Chapter 5. Series Solutions of Second Order Linear Equations

28. Determine the an so that the equation

∞∑
n=1

nan xn−1 + 2
∞∑

n=0

an xn = 0

is satisfied. Try to identify the function represented by the series
∞∑

n=0
an xn .

5.2 Series Solutions near an Ordinary Point, Part I

In Chapter 3 we described methods of solving second order linear differential equations
with constant coefficients. We now consider methods of solving second order linear
equations when the coefficients are functions of the independent variable. In this
chapter we will denote the independent variable by x . It is sufficient to consider the
homogeneous equation

P(x)
d2 y

dx2 + Q(x)
dy

dx
+ R(x)y = 0, (1)

since the procedure for the corresponding nonhomogeneous equation is similar.
A wide class of problems in mathematical physics leads to equations of the form (1)

having polynomial coefficients; for example, the Bessel equation

x2 y′′ + xy′ + (x2 − ν2)y = 0,

where ν is a constant, and the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is a constant. For this reason, as well as to simplify the algebraic computations,
we primarily consider the case in which the functions P , Q, and R are polynomials.
However, as we will see, the method of solution is also applicable when P , Q, and R
are general analytic functions.

For the present, then, suppose that P , Q, and R are polynomials, and that they have
no common factors. Suppose also that we wish to solve Eq. (1) in the neighborhood
of a point x0. The solution of Eq. (1) in an interval containing x0 is closely associated
with the behavior of P in that interval.

A point x0 such that P(x0) �= 0 is called an ordinary point. Since P is continuous,
it follows that there is an interval about x0 in which P(x) is never zero. In that interval
we can divide Eq. (1) by P(x) to obtain

y′′ + p(x)y′ + q(x)y = 0, (2)

where p(x) = Q(x)/P(x) and q(x) = R(x)/P(x) are continuous functions. Hence,
according to the existence and uniqueness Theorem 3.2.1, there exists in that interval a
unique solution of Eq. (1) that also satisfies the initial conditions y(x0) = y0, y′(x0) =
y′

0 for arbitrary values of y0 and y′
0. In this and the following section we discuss the

solution of Eq. (1) in the neighborhood of an ordinary point.
On the other hand, if P(x0) = 0, then x0 is called a singular point of Eq. (1). In

this case at least one of Q(x0) and R(x0) is not zero. Consequently, at least one of the
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coefficients p and q in Eq. (2) becomes unbounded as x → x0, and therefore Theorem
3.2.1 does not apply in this case. Sections 5.4 through 5.8 deal with finding solutions
of Eq. (1) in the neighborhood of a singular point.

We now take up the problem of solving Eq. (1) in the neighborhood of an ordinary
point x0. We look for solutions of the form

y = a0 + a1(x − x0) + · · · + an(x − x0)
n + · · · =

∞∑
n=0

an(x − x0)
n, (3)

and assume that the series converges in the interval |x − x0| < ρ for some ρ > 0.
While at first sight it may appear unattractive to seek a solution in the form of a power
series, this is actually a convenient and useful form for a solution. Within their intervals
of convergence power series behave very much like polynomials and are easy to
manipulate both analytically and numerically. Indeed, even if we can obtain a solution
in terms of elementary functions, such as exponential or trigonometric functions, we
are likely to need a power series or some equivalent expression if we want to evaluate
them numerically or to plot their graphs.

The most practical way to determine the coefficients an is to substitute the series
(3) and its derivatives for y, y′, and y′′ in Eq. (1). The following examples illustrate
this process. The operations, such as differentiation, that are involved in the procedure
are justified so long as we stay within the interval of convergence. The differential
equations in these examples are also of considerable importance in their own right.

E X A M P L E

1

Find a series solution of the equation

y′′ + y = 0, −∞ < x < ∞. (4)

As we know, two linearly independent solutions of this equation are sin x and cos x , so
series methods are not needed to solve this equation. However, this example illustrates
the use of power series in a relatively simple case. For Eq. (4), P(x) = 1, Q(x) = 0,
and R(x) = 1; hence every point is an ordinary point.

We look for a solution in the form of a power series about x0 = 0,

y = a0 + a1x + a2x2 + · · · + an xn + · · · =
∞∑

n=0

an xn, (5)

and assume that the series converges in some interval |x | < ρ.
Differentiating term by term yields

y′ = a1 + 2a2x + · · · + nan xn−1 + · · · =
∞∑

n=1

nan xn−1, (6)

y′′ = 2a2 + · · · + n(n − 1)an xn−2 + · · · =
∞∑

n=2

n(n − 1)an xn−2. (7)

Substituting the series (5) and (7) for y and y′′ in Eq. (4) gives

∞∑
n=2

n(n − 1)an xn−2 +
∞∑

n=0

an xn = 0.
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To combine the two series we need to rewrite at least one of them so that both series
display the same generic term. Thus, in the first sum, we shift the index of summation
by replacing n by n + 2 and starting the sum at 0 rather than 2. We obtain

∞∑
n=0

(n + 2)(n + 1)an+2xn +
∞∑

n=0

an xn = 0

or
∞∑

n=0

[(n + 2)(n + 1)an+2 + an]xn = 0.

For this equation to be satisfied for all x , the coefficient of each power of x must be
zero; hence, we conclude that

(n + 2)(n + 1)an+2 + an = 0, n = 0, 1, 2, 3, . . . . (8)

Equation (8) is referred to as a recurrence relation. The successive coefficients can
be evaluated one by one by writing the recurrence relation first for n = 0, then for
n = 1, and so forth. In this example Eq. (8) relates each coefficient to the second one
before it. Thus the even-numbered coefficients (a0, a2, a4, . . .) and the odd-numbered
ones (a1, a3, a5, . . .) are determined separately. For the even-numbered coefficients we
have

a2 = − a0

2 · 1
= −a0

2!
, a4 = − a2

4 · 3
= +a0

4!
, a6 = − a4

6 · 5
= −a0

6!
, . . . .

These results suggest that in general, if n = 2k, then

an = a2k = (−1)k

(2k)!
a0, k = 1, 2, 3, . . . . (9)

We can prove Eq. (9) by mathematical induction. First observe that it is true for k = 1.
Next, assume that it is true for an arbitrary value of k and consider the case k + 1. We
have

a2k+2 = − a2k

(2k + 2)(2k + 1)
= − (−1)k

(2k + 2)(2k + 1)(2k)!
a0 = (−1)k+1

(2k + 2)!
a0.

Hence Eq. (9) is also true for k + 1 and consequently it is true for all positive integers k.
Similarly, for the odd-numbered coefficients

a3 = − a1

2 · 3
= −a1

3!
, a5 = − a3

5 · 4
= +a1

5!
, a7 = − a5

7 · 6
= −a1

7!
, . . . ,

and in general, if n = 2k + 1, then2

an = a2k+1 = (−1)k

(2k + 1)!
a1, k = 1, 2, 3, . . . . (10)

Substituting these coefficients into Eq. (5), we have

y = a0 + a1x − a0

2!
x2 − a1

3!
x3 + a0

4!
x4 + a1

5!
x5 +

2The result given in Eq. (10) and other similar formulas in this chapter can be proved by an induction argument
resembling the one just given for Eq. (9). We assume that the results are plausible and omit the inductive argument
hereafter.
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+ · · · + (−1)na0

(2n)!
x2n + (−1)na1

(2n + 1)!
x2n+1 + · · ·

= a0

[
1 − x2

2!
+ x4

4!
+ · · · + (−1)n

(2n)!
x2n + · · ·

]

+ a1

[
x − x3

3!
+ x5

5!
+ · · · + (−1)n

(2n + 1)!
x2n+1 + · · ·

]

= a0

∞∑
n=0

(−1)n

(2n)!
x2n + a1

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1. (11)

Now that we have formally obtained two series solutions of Eq. (4), we can test them
for convergence. Using the ratio test, it is easy to show that each of the series in Eq. (11)
converges for all x , and this justifies retroactively all the steps used in obtaining the
solutions. Indeed, we recognize that the first series in Eq. (11) is exactly the Taylor
series for cos x about x = 0 and the second is the Taylor series for sin x about x = 0.
Thus, as expected, we obtain the solution y = a0 cos x + a1 sin x .

Notice that no conditions are imposed on a0 and a1; hence they are arbitrary. From
Eqs. (5) and (6) we see that y and y′ evaluated at x = 0 are a0 and a1, respectively.
Since the initial conditions y(0) and y′(0) can be chosen arbitrarily, it follows that a0
and a1 should be arbitrary until specific initial conditions are stated.

Figures 5.2.1 and 5.2.2 show how the partial sums of the series in Eq. (11) ap-
proximate cos x and sin x . As the number of terms increases, the interval over which
the approximation is satisfactory becomes longer, and for each x in this interval the
accuracy of the approximation improves. However, you should always remember that
a truncated power series provides only a local approximation of the solution in a
neighborhood of the initial point x = 0; it cannot adequately represent the solution for
large |x |.

2

2 4 6

1

–1

–2

8 10

y = cos x

y

x

n = 4 n = 8 n = 20n = 16n = 12

n = 2 n = 6 n = 10 n = 14 n = 18

FIGURE 5.2.1 Polynomial approximations to cos x . The value of n is the degree of the
approximating polynomial.
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2

2 4 6

1

–1

–2

8 10

y

x

y = sin x

n = 5 n = 9 n = 13 n = 17 n = 21

n = 3 n = 7 n = 11 n = 15 n = 19

FIGURE 5.2.2 Polynomial approximations to sin x . The value of n is the degree of the
approximating polynomial.

In Example 1 we knew from the start that sin x and cos x form a fundamental set of
solutions of Eq. (4). However, if we had not known this and had simply solved Eq. (4)
using series methods, we would still have obtained the solution (11). In recognition of
the fact that the differential equation (4) often occurs in applications we might decide
to give the two solutions of Eq. (11) special names; perhaps,

C(x) =
∞∑

n=0

(−1)n

(2n)!
x2n, S(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x2n+1.

Then we might ask what properties these functions have. For instance, it follows
at once from the series expansions that C(0) = 1, S(0) = 0, C(−x) = C(x), and
S(−x) = −S(x). It is also easy to show that

S′(x) = C(x), C ′(x) = −S(x).

Moreover, by calculating with the infinite series3 we can show that the functions C(x)

and S(x) have all the usual analytical and algebraic properties of the cosine and sine
functions, respectively.

Although you probably first saw the sine and cosine functions defined in a more
elementary manner in terms of right triangles, it is interesting that these functions can
be defined as solutions of a certain simple second order linear differential equation.
To be precise, the function sin x can be defined as the unique solution of the initial
value problem y′′ + y = 0, y(0) = 0, y′(0) = 1; similarly, cos x can be defined as the
unique solution of the initial value problem y′′ + y = 0, y(0) = 1, y′(0) = 0. Many
other functions that are important in mathematical physics are also defined as solutions
of certain initial value problems. For most of these functions there is no simpler or
more elementary way to approach them.

3Such an analysis is given in Section 24 of K. Knopp, Theory and Applications of Infinite Series (New York:
Hafner, 1951).



5.2 Series Solutions near an Ordinary Point, Part I 243

E X A M P L E

2

Find a series solution in powers of x of Airy’s4 equation

y′′ − xy = 0, −∞ < x < ∞. (12)

For this equation P(x) = 1, Q(x) = 0, and R(x) = −x ; hence every point is an
ordinary point. We assume that

y =
∞∑

n=0

an xn, (13)

and that the series converges in some interval |x | < ρ. The series for y′′ is given by
Eq. (7); as explained in the preceding example, we can rewrite it as

y′′ =
∞∑

n=0

(n + 2)(n + 1)an+2xn. (14)

Substituting the series (13) and (14) for y and y′′ in Eq. (12), we obtain
∞∑

n=0

(n + 2)(n + 1)an+2xn = x
∞∑

n=0

an xn =
∞∑

n=0

an xn+1. (15)

Next, we shift the index of summation in the series on the right side of this equation by
replacing n by n − 1 and starting the summation at 1 rather than zero. Thus we have

2 · 1a2 +
∞∑

n=1

(n + 2)(n + 1)an+2xn =
∞∑

n=1

an−1xn.

Again, for this equation to be satisfied for all x it is necessary that the coefficients of
like powers of x be equal; hence a2 = 0, and we obtain the recurrence relation

(n + 2)(n + 1)an+2 = an−1 for n = 1, 2, 3, . . . . (16)

Since an+2 is given in terms of an−1, the a’s are determined in steps of three. Thus
a0 determines a3, which in turn determines a6, . . . ; a1 determines a4, which in turn
determines a7, . . . ; and a2 determines a5, which in turn determines a8, . . . . Since
a2 = 0, we immediately conclude that a5 = a8 = a11 = · · · = 0.

For the sequence a0, a3, a6, a9, . . . we set n = 1, 4, 7, 10, . . . in the recurrence rela-
tion:

a3 = a0

2 · 3
, a6 = a3

5 · 6
= a0

2 · 3 · 5 · 6
, a9 = a6

8 · 9
= a0

2 · 3 · 5 · 6 · 8 · 9
, . . . .

For this sequence of coefficients it is convenient to write a formula for a3n, n =
1, 2, 3, . . . . The preceding results suggest the general formula

a3n = a0

2 · 3 · 5 · 6 · · · (3n − 4)(3n − 3)(3n − 1)(3n)
, n = 1, 2, . . . .

For the sequence a1, a4, a7, a10, . . . , we set n = 2, 5, 8, 11, . . . in the recurrence
relation:

a4 = a1

3 · 4
, a7 = a4

6 · 7
= a1

3 · 4 · 6 · 7
, a10 = a7

9 · 10
= a1

3 · 4 · 6 · 7 · 9 · 10
, . . . .

4Sir George Airy (1801–1892), an English astronomer and mathematician, was director of the Greenwich Observa-
tory from 1835 to 1881. One reason Airy’s equation is of interest is that for x negative the solutions are oscillatory,
similar to trigonometric functions, and for x positive they are monotonic, similar to hyperbolic functions. Can
you explain why it is reasonable to expect such behavior?
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In the same way as before we find that

a3n+1 = a1

3 · 4 · 6 · 7 · · · (3n − 3)(3n − 2)(3n)(3n + 1)
, n = 1, 2, 3, . . . .

The general solution of Airy’s equation is

y = a0

[
1 + x3

2 · 3
+ x6

2 · 3 · 5 · 6
+ · · · + x3n

2 · 3 · · · (3n − 1)(3n)
+ · · ·

]

+ a1

[
x + x4

3 · 4
+ x7

3 · 4 · 6 · 7
+ · · · + x3n+1

3 · 4 · · · (3n)(3n + 1)
+ · · ·

]

= a0

[
1 +

∞∑
n=1

x3n

2 · 3 · · · (3n − 1)(3n)

]
+ a1

[
x +

∞∑
n=1

x3n+1

3 · 4 · · · (3n)(3n + 1)

]
.

(17)

Having obtained these two series solutions, we can now investigate their convergence.
Because of the rapid growth of the denominators of the terms in the series (17), we
might expect these series to have a large radius of convergence. Indeed, it is easy to
use the ratio test to show that both these series converge for all x ; see Problem 20.

Assuming for the moment that the series do converge for all x , let y1 and y2 denote
the functions defined by the expressions in the first and second sets of brackets,
respectively, in Eq. (17). Then, by first choosing a0 = 1, a1 = 0 and then a0 = 0, a1 =
1, it follows that y1 and y2 are individually solutions of Eq. (12). Notice that y1 satisfies
the initial conditions y1(0) = 1, y′

1(0) = 0 and that y2 satisfies the initial conditions
y2(0) = 0, y′

2(0) = 1. Thus W (y1, y2)(0) = 1 �= 0, and consequently y1 and y2 are
linearly independent. Hence the general solution of Airy’s equation is

y = a0 y1(x) + a1 y2(x), −∞ < x < ∞.

In Figures 5.2.3 and 5.2.4, respectively, we show the graphs of the solutions y1 and
y2 of Airy’s equation, as well as graphs of several partial sums of the two series in
Eq. (17). Again, the partial sums provide local approximations to the solutions in a
neighborhood of the origin. While the quality of the approximation improves as the
number of terms increases, no polynomial can adequately represent y1 and y2 for large
|x |. A practical way to estimate the interval in which a given partial sum is reasonably
accurate is to compare the graphs of that partial sum and the next one, obtained by
including one more term. As soon as the graphs begin to separate noticeably, one can
be confident that the original partial sum is no longer accurate. For example, in Figure
5.2.3 the graphs for n = 24 and n = 27 begin to separate at about x = −9/2. Thus,
beyond this point, the partial sum of degree 24 is worthless as an approximation to the
solution.

Observe that both y1 and y2 are monotone for x > 0 and oscillatory for x < 0.
One can also see from the figures that the oscillations are not uniform, but decay in
amplitude and increase in frequency as the distance from the origin increases. In contrast
to Example 1, the solutions y1 and y2 of Airy’s equation are not elementary functions
that you have already encountered in calculus. However, because of their importance
in some physical applications, these functions have been extensively studied and their
properties are well known to applied mathematicians and scientists.
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FIGURE 5.2.3 Polynomial approximations to the solution y1(x) of Airy’s equation. The value
of n is the degree of the approximating polynomial.
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FIGURE 5.2.4 Polynomial approximations to the solution y2(x) of Airy’s equation. The value
of n is the degree of the approximating polynomial.

E X A M P L E

3

Find a solution of Airy’s equation in powers of x − 1.
The point x = 1 is an ordinary point of Eq. (12), and thus we look for a solution of

the form

y =
∞∑

n=0

an(x − 1)n,

where we assume that the series converges in some interval |x − 1| < ρ. Then

y′ =
∞∑

n=1

nan(x − 1)n−1 =
∞∑

n=0

(n + 1)an+1(x − 1)n,
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and

y′′ =
∞∑

n=2

n(n − 1)an(x − 1)n−2 =
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n.

Substituting for y and y′′ in Eq. (12), we obtain
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n = x
∞∑

n=0

an(x − 1)n. (18)

Now to equate the coefficients of like powers of (x − 1) we must express x , the
coefficient of y in Eq. (12), in powers of x − 1; that is, we write x = 1 + (x − 1). Note
that this is precisely the Taylor series for x about x = 1. Then Eq. (18) takes the form

∞∑
n=0

(n + 2)(n + 1)an+2(x − 1)n = [1 + (x − 1)]
∞∑

n=0

an(x − 1)n

=
∞∑

n=0

an(x − 1)n +
∞∑

n=0

an(x − 1)n+1.

Shifting the index of summation in the second series on the right gives
∞∑

n=0

(n + 2)(n + 1)an+2(x − 1)n =
∞∑

n=0

an(x − 1)n +
∞∑

n=1

an−1(x − 1)n.

Equating coefficients of like powers of x − 1, we obtain

2a2 = a0,

(3 · 2)a3 = a1 + a0,

(4 · 3)a4 = a2 + a1,

(5 · 4)a5 = a3 + a2,

...

The general recurrence relation is

(n + 2)(n + 1)an+2 = an + an−1 for n ≥ 1. (19)

Solving for the first few coefficients an in terms of a0 and a1, we find that

a2 = a0

2
, a3 = a1

6
+ a0

6
, a4 = a2

12
+ a1

12
= a0

24
+ a1

12
, a5 = a3

20
+ a2

20
= a0

30
+ a1

120
.

Hence

y = a0

[
1 + (x − 1)2

2
+ (x − 1)3

6
+ (x − 1)4

24
+ (x − 1)5

30
+ · · ·

]

+ a1

[
(x − 1) + (x − 1)3

6
+ (x − 1)4

12
+ (x − 1)5

120
+ · · ·

]
. (20)

In general, when the recurrence relation has more than two terms, as in Eq. (19),
the determination of a formula for an in terms a0 and a1 will be fairly complicated, if
not impossible. In this example such a formula is not readily apparent. Lacking such a
formula, we cannot test the two series in Eq. (20) for convergence by direct methods
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such as the ratio test. However, even without knowing the formula for an we shall see
in Section 5.3 that it is possible to establish that the series in Eq. (20) converge for all
x , and further define functions y3 and y4 that are linearly independent solutions of the
Airy equation (12). Thus

y = a0 y3(x) + a1 y4(x)

is the general solution of Airy’s equation for −∞ < x < ∞.

It is worth emphasizing, as we saw in Example 3, that if we look for a solution of

Eq. (1) of the form y =
∞∑

n=0
an(x − x0)

n , then the coefficients P(x), Q(x), and R(x)

in Eq. (1) must also be expressed in powers of x − x0. Alternatively, we can make the
change of variable x − x0 = t , obtaining a new differential equation for y as a function

of t , and then look for solutions of this new equation of the form
∞∑

n=0
antn . When we

have finished the calculations, we replace t by x − x0 (see Problem 19).
In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The

functions y1 and y2 defined by the series in Eq. (17) are linearly independent solutions
of Eq. (12) for all x , and this is also true for the functions y3 and y4 defined by the
series in Eq. (20). According to the general theory of second order linear equations
each of the first two functions can be expressed as a linear combination of the latter two
functions and vice versa—a result that is certainly not obvious from an examination of
the series alone.

Finally, we emphasize that it is not particularly important if, as in Example 3, we are
unable to determine the general coefficient an in terms of a0 and a1. What is essential
is that we can determine as many coefficients as we want. Thus we can find as many
terms in the two series solutions as we want, even if we cannot determine the general
term. While the task of calculating several coefficients in a power series solution is
not difficult, it can be tedious. A symbolic manipulation package can be very helpful
here; some are able to find a specified number of terms in a power series solution in
response to a single command. With a suitable graphics package one can also produce
plots such as those shown in the figures in this section.

PROBLEMS In each of Problems 1 through 14 solve the given differential equation by means of a power
series about the given point x0. Find the recurrence relation; also find the first four terms in each
of two linearly independent solutions (unless the series terminates sooner). If possible, find the
general term in each solution.

1. y′′ − y = 0, x0 = 0 2. y′′ − xy′ − y = 0, x0 = 0
3. y′′ − xy′ − y = 0, x0 = 1 4. y′′ + k2x2 y = 0, x0 = 0, k a constant
5. (1 − x)y′′ + y = 0, x0 = 0 6. (2 + x2)y′′ − xy′ + 4y = 0, x0 = 0
7. y′′ + xy′ + 2y = 0, x0 = 0 8. xy′′ + y′ + xy = 0, x0 = 1
9. (1 + x2)y′′ − 4xy′ + 6y = 0, x0 = 0 10. (4 − x2)y′′ + 2y = 0, x0 = 0

11. (3 − x2)y′′ − 3xy′ − y = 0, x0 = 0 12. (1 − x)y′′ + xy′ − y = 0, x0 = 0
13. 2y′′ + xy′ + 3y = 0, x0 = 0 14. 2y′′ + (x + 1)y′ + 3y = 0, x0 = 2
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In each of Problems 15 through 18:
(a) Find the first five nonzero terms in the solution of the given initial value problem.
(b) Plot the four-term and the five-term approximations to the solution on the same axes.
(c) From the plot in part (b) estimate the interval in which the four-term approximation is
reasonably accurate.

� 15. y′′ − xy′ − y = 0, y(0) = 2, y′(0) = 1; see Problem 2

� 16. (2 + x2)y′′ − xy′ + 4y = 0, y(0) = −1, y′(0) = 3; see Problem 6

� 17. y′′ + xy′ + 2y = 0, y(0) = 4, y′(0) = −1; see Problem 7

� 18. (1 − x)y′′ + xy′ − y = 0, y(0) = −3, y′(0) = 2; see Problem 12
19. By making the change of variable x − 1 = t and assuming that y is a power series in t ,

find two linearly independent series solutions of

y′′ + (x − 1)2 y′ + (x2 − 1)y = 0

in powers of x − 1. Show that you obtain the same result directly by assuming that y is a
Taylor series in powers of x − 1 and also expressing the coefficient x2 − 1 in powers of
x − 1.

20. Show directly, using the ratio test, that the two series solutions of Airy’s equation about
x = 0 converge for all x ; see Eq. (17) of the text.

21. The Hermite Equation. The equation

y′′ − 2xy′ + λy = 0, −∞ < x < ∞,

where λ is a constant, is known as the Hermite5 equation. It is an important equation in
mathematical physics.
(a) Find the first four terms in each of two linearly independent solutions about x = 0.
(b) Observe that if λ is a nonnegative even integer, then one or the other of the series
solutions terminates and becomes a polynomial. Find the polynomial solutions for λ = 0,
2, 4, 6, 8, and 10. Note that each polynomial is determined only up to a multiplicative
constant.
(c) The Hermite polynomial Hn(x) is defined as the polynomial solution of the Hermite
equation with λ = 2n for which the coefficient of xn is 2n . Find H0(x), . . . , H5(x).

22. Consider the initial value problem y′ =
√

1 − y2, y(0) = 0.
(a) Show that y = sin x is the solution of this initial value problem.
(b) Look for a solution of the initial value problem in the form of a power series about
x = 0. Find the coefficients up to the term in x3 in this series.

In each of Problems 23 through 28 plot several partial sums in a series solution of the given
initial value problem about x = 0, thereby obtaining graphs analogous to those in Figures 5.2.1
through 5.2.4.

� 23. y′′ − xy′ − y = 0, y(0) = 1, y′(0) = 0; see Problem 2

� 24. (2 + x2)y′′ − xy′ + 4y = 0, y(0) = 1, y′(0) = 0; see Problem 6

� 25. y′′ + xy′ + 2y = 0, y(0) = 0, y′(0) = 1; see Problem 7

� 26. (4 − x2)y′′ + 2y = 0, y(0) = 0, y′(0) = 1; see Problem 10

� 27. y′′ + x2 y = 0, y(0) = 1, y′(0) = 0; see Problem 4

� 28. (1 − x)y′′ + xy′ − 2y = 0, y(0) = 0, y′(0) = 1

5Charles Hermite (1822–1901) was an influential French analyst and algebraist. He introduced the Hermite
functions in 1864, and showed in 1873 that e is a transcendental number (that is, e is not a root of any polynomial
equation with rational coefficients). His name is also associated with Hermitian matrices (see Section 7.3), some
of whose properties he discovered.
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5.3 Series Solutions near an Ordinary Point, Part II

In the preceding section we considered the problem of finding solutions of

P(x)y′′ + Q(x)y′ + R(x)y = 0, (1)

where P , Q, and R are polynomials, in the neighborhood of an ordinary point x0.
Assuming that Eq. (1) does have a solution y = φ(x), and that φ has a Taylor series

y = φ(x) =
∞∑

n=0

an(x − x0)
n, (2)

which converges for |x − x0| < ρ, where ρ > 0, we found that the an can be determined
by directly substituting the series (2) for y in Eq. (1).

Let us now consider how we might justify the statement that if x0 is an ordinary point
of Eq. (1), then there exist solutions of the form (2). We also consider the question of
the radius of convergence of such a series. In doing this we are led to a generalization
of the definition of an ordinary point.

Suppose, then, that there is a solution of Eq. (1) of the form (2). By differentiating
Eq. (2) m times and setting x equal to x0 it follows that

m!am = φ(m)(x0).

Hence, to compute an in the series (2), we must show that we can determine φ(n)(x0)

for n = 0, 1, 2, . . . from the differential equation (1).
Suppose that y = φ(x) is a solution of Eq. (1) satisfying the initial conditions

y(x0) = y0, y′(x0) = y′
0. Then a0 = y0 and a1 = y′

0. If we are solely interested in
finding a solution of Eq. (1) without specifying any initial conditions, then a0 and a1
remain arbitrary. To determine φ(n)(x0) and the corresponding an for n = 2, 3, . . . , we
turn to Eq. (1). Since φ is a solution of Eq. (1), we have

P(x)φ′′(x) + Q(x)φ′(x) + R(x)φ(x) = 0.

For the interval about x0 for which P is nonvanishing we can write this equation in the
form

φ′′(x) = −p(x)φ′(x) − q(x)φ(x), (3)

where p(x) = Q(x)/P(x) and q(x) = R(x)/P(x). Setting x equal to x0 in Eq. (3)
gives

φ′′(x0) = −p(x0)φ
′(x0) − q(x0)φ(x0).

Hence a2 is given by

2!a2 = φ′′(x0) = −p(x0)a1 − q(x0)a0. (4)

To determine a3 we differentiate Eq. (3) and then set x equal to x0, obtaining

3!a3 = φ′′′(x0) = −[pφ′′ + (p′ + q)φ′ + q ′φ]
∣∣∣
x=x0

= −2!p(x0)a2 − [p′(x0) + q(x0)]a1 − q ′(x0)a0. (5)

Substituting for a2 from Eq. (4) gives a3 in terms of a1 and a0. Since P , Q, and R are
polynomials and P(x0) �= 0, all of the derivatives of p and q exist at x0. Hence, we can
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continue to differentiate Eq. (3) indefinitely, determining after each differentiation the
successive coefficients a4, a5, . . . by setting x equal to x0.

Notice that the important property that we used in determining the an was that
we could compute infinitely many derivatives of the functions p and q. It might seem
reasonable to relax our assumption that the functions p and q are ratios of polynomials,
and simply require that they be infinitely differentiable in the neighborhood of x0.
Unfortunately, this condition is too weak to ensure that we can prove the convergence
of the resulting series expansion for y = φ(x). What is needed is to assume that the
functions p and q are analytic at x0; that is, they have Taylor series expansions that
converge to them in some interval about the point x0:

p(x) = p0 + p1(x − x0) + · · · + pn(x − x0)
n + · · · =

∞∑
n=0

pn(x − x0)
n, (6)

q(x) = q0 + q1(x − x0) + · · · + qn(x − x0)
n + · · · =

∞∑
n=0

qn(x − x0)
n. (7)

With this idea in mind we can generalize the definitions of an ordinary point and
a singular point of Eq. (1) as follows: If the functions p = Q/P and q = R/P are
analytic at x0, then the point x0 is said to be an ordinary point of the differential
equation (1); otherwise, it is a singular point.

Now let us turn to the question of the interval of convergence of the series solution.
One possibility is actually to compute the series solution for each problem and then
to apply one of the tests for convergence of an infinite series to determine its radius
of convergence. However, the question can be answered at once for a wide class of
problems by the following theorem.

Theorem 5.3.1 If x0 is an ordinary point of the differential equation (1),

P(x)y′′ + Q(x)y′ + R(x)y = 0,

that is, if p = Q/P and q = R/P are analytic at x0, then the general solution of
Eq. (1) is

y =
∞∑

n=0

an(x − x0)
n = a0 y1(x) + a1 y2(x), (8)

where a0 and a1 are arbitrary, and y1 and y2 are linearly independent series solutions
that are analytic at x0. Further, the radius of convergence for each of the series
solutions y1 and y2 is at least as large as the minimum of the radii of convergence of
the series for p and q.

Notice from the form of the series solution that y1(x) = 1 + b2(x − x0)
2 + · · · and

y2(x) = (x − x0) + c2(x − x0)
2 + · · · . Hence y1 is the solution satisfying the initial

conditions y1(x0) = 1, y′
1(x0) = 0, and y2 is the solution satisfying the initial conditions

y2(x0) = 0, y′
2(x0) = 1. Also note that while the calculation of the coefficients by

successively differentiating the differential equation is excellent in theory, it is usually
not a practical computational procedure. Rather, one should substitute the series (2) for
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y in the differential equation (1) and determine the coefficients so that the differential
equation is satisfied, as in the examples in the preceding section.

We will not prove this theorem, which in a slightly more general form is due to
Fuchs.6 What is important for our purposes is that there is a series solution of the
form (2), and that the radius of convergence of the series solution cannot be less than
the smaller of the radii of convergence of the series for p and q; hence we need only
determine these.

This can be done in one of two ways. Again, one possibility is simply to compute the
power series for p and q, and then to determine the radii of convergence by using one
of the convergence tests for infinite series. However, there is an easier way when P ,
Q, and R are polynomials. It is shown in the theory of functions of a complex variable
that the ratio of two polynomials, say Q/P , has a convergent power series expansion
about a point x = x0 if P(x0) �= 0. Further, if we assume that any factors common to
Q and P have been canceled, then the radius of convergence of the power series for
Q/P about the point x0 is precisely the distance from x0 to the nearest zero of P . In
determining this distance we must remember that P(x) = 0 may have complex roots,
and these must also be considered.

E X A M P L E

1

What is the radius of convergence of the Taylor series for (1 + x2)−1 about x = 0?
One way to proceed is to find the Taylor series in question, namely,

1

1 + x2 = 1 − x2 + x4 − x6 + · · · + (−1)nx2n + · · · .

Then it can be verified by the ratio test that ρ = 1. Another approach is to note that
the zeros of 1 + x2 are x = ±i . Since the distance from 0 to i or to −i in the complex
plane is 1, the radius of convergence of the power series about x = 0 is 1.

E X A M P L E

2

What is the radius of convergence of the Taylor series for (x2 − 2x + 2)−1 about x = 0?
About x = 1?

First notice that

x2 − 2x + 2 = 0

has solutions x = 1 ± i . The distance from x = 0 to either x = 1 + i or x = 1 − i in
the complex plane is

√
2; hence the radius of convergence of the Taylor series expansion

∞∑
n=0

an xn about x = 0 is
√

2.

The distance from x = 1 to either x = 1 + i or x = 1 − i is 1; hence the radius of

convergence of the Taylor series expansion
∞∑

n=0
bn(x − 1)n about x = 1 is 1.

6Immanuel Lazarus Fuchs (1833–1902) was a student and later a professor at the University of Berlin. He proved
the result of Theorem 5.3.1 in 1866. His most important research was on singular points of linear differential
equations. He recognized the significance of regular singular points (Section 5.4), and equations whose only
singularities, including the point at infinity, are regular singular points are known as Fuchsian equations.
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According to Theorem 5.3.1 the series solutions of the Airy equation in Examples
2 and 3 of the preceding section converge for all values of x and x − 1, respectively,
since in each problem P(x) = 1 and hence is never zero.

A series solution may converge for a wider range of x than indicated by Theorem
5.3.1, so the theorem actually gives only a lower bound on the radius of convergence
of the series solution. This is illustrated by the Legendre polynomial solution of the
Legendre equation given in the next example.

E X A M P L E

3

Determine a lower bound for the radius of convergence of series solutions about x = 0
for the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0,

where α is a constant.
Note that P(x) = 1 − x2, Q(x) = −2x , and R(x) = α(α + 1) are polynomials,

and that the zeros of P , namely, x = ±1, are a distance 1 from x = 0. Hence a series

solution of the form
∞∑

n=0
an xn converges for |x | < 1 at least, and possibly for larger

values of x . Indeed, it can be shown that if α is a positive integer, one of the series
solutions terminates after a finite number of terms and hence converges not just for
|x | < 1 but for all x . For example, if α = 1, the polynomial solution is y = x . See
Problems 22 through 29 at the end of this section for a more complete discussion of
the Legendre equation.

E X A M P L E

4

Determine a lower bound for the radius of convergence of series solutions of the
differential equation

(1 + x2)y′′ + 2xy′ + 4x2 y = 0 (9)

about the point x = 0; about the point x = − 1
2 .

Again P , Q, and R are polynomials, and P has zeros at x = ±i . The distance in the

complex plane from 0 to ±i is 1, and from − 1
2 to ±i is

√
1 + 1

4 = √
5/2. Hence in the

first case the series
∞∑

n=0
an xn converges at least for |x | < 1, and in the second case the

series
∞∑

n=0
bn(x + 1

2 )n converges at least for |x + 1
2 | <

√
5/2.

An interesting observation that we can make about Eq. (9) follows from Theorems
3.2.1 and 5.3.1. Suppose that initial conditions y(0) = y0 and y′(0) = y′

0 are given.
Since 1 + x2 �= 0 for all x , we know from Theorem 3.2.1 that there exists a unique
solution of the initial value problem on −∞ < x < ∞. On the other hand, Theorem

5.3.1 only guarantees a series solution of the form
∞∑

n=0
an xn (with a0 = y0, a1 = y′

0)

for −1 < x < 1. The unique solution on the interval −∞ < x < ∞ may not have a
power series about x = 0 that converges for all x .

E X A M P L E

5

Can we determine a series solution about x = 0 for the differential equation

y′′ + (sin x)y′ + (1 + x2)y = 0,

and if so, what is the radius of convergence?



5.3 Series Solutions near an Ordinary Point, Part II 253

For this differential equation, p(x) = sin x and q(x) = 1 + x2. Recall from calculus
that sin x has a Taylor series expansion about x = 0 that converges for all x . Further, q
also has a Taylor series expansion about x = 0, namely, q(x) = 1 + x2, that converges

for all x . Thus there is a series solution of the form y =
∞∑

n=0
an xn with a0 and a1

arbitrary, and the series converges for all x .

PROBLEMS In each of Problems 1 through 4 determine φ′′(x0), φ′′′(x0), and φiv(x0) for the given point x0 if
y = φ(x) is a solution of the given initial value problem.

1. y′′ + xy′ + y = 0; y(0) = 1, y′(0) = 0
2. y′′ + (sin x)y′ + (cos x)y = 0; y(0) = 0, y′(0) = 1
3. x2 y′′ + (1 + x)y′ + 3(ln x)y = 0; y(1) = 2, y′(1) = 0
4. y′′ + x2 y′ + (sin x)y = 0; y(0) = a0, y′(0) = a1

In each of Problems 5 through 8 determine a lower bound for the radius of convergence of series
solutions about each given point x0 for the given differential equation.

5. y′′ + 4y′ + 6xy = 0; x0 = 0, x0 = 4
6. (x2 − 2x − 3)y′′ + xy′ + 4y = 0; x0 = 4, x0 = −4, x0 = 0
7. (1 + x3)y′′ + 4xy′ + y = 0; x0 = 0, x0 = 2
8. xy′′ + y = 0; x0 = 1

9. Determine a lower bound for the radius of convergence of series solutions about the given
x0 for each of the differential equations in Problems 1 through 14 of Section 5.2.

10. The Chebyshev Equation. The Chebyshev7 differential equation is

(1 − x2)y′′ − xy′ + α2 y = 0,

where α is a constant.
(a) Determine two linearly independent solutions in powers of x for |x | < 1.
(b) Show that if α is a nonnegative integer n, then there is a polynomial solution of degree
n. These polynomials, when properly normalized, are called the Chebyshev polynomials.
They are very useful in problems requiring a polynomial approximation to a function
defined on −1 ≤ x ≤ 1.
(c) Find a polynomial solution for each of the cases α = n = 0, 1, 2, and 3.

For each of the differential equations in Problems 11 through 14 find the first four nonzero terms
in each of two linearly independent power series solutions about the origin. What do you expect
the radius of convergence to be for each solution?

11. y′′ + (sin x)y = 0 12. ex y′′ + xy = 0
13. (cos x)y′′ + xy′ − 2y = 0 14. e−x y′′ + ln(1 + x)y′ − xy = 0

15. Suppose that you are told that x and x2 are solutions of a differential equation P(x)y′′ +
Q(x)y′ + R(x)y = 0. Can you say whether the point x = 0 is an ordinary point or a
singular point?
Hint: Use Theorem 3.2.1, and note the values of x and x2 at x = 0.

7Pafnuty L. Chebyshev (1821–1894), professor at Petersburg University for 35 years and the most influential
nineteenth century Russian mathematician, founded the so-called “Petersburg school,” which produced a long line
of distinguished mathematicians. His study of Chebyshev polynomials began about 1854 as part of an investigation
of the approximation of functions by polynomials. Chebyshev is also known for his work in number theory and
probability.
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First Order Equations. The series methods discussed in this section are directly applicable
to the first order linear differential equation P(x)y′ + Q(x)y = 0 at a point x0, if the function
p = Q/P has a Taylor series expansion about that point. Such a point is called an ordinary

point, and further, the radius of convergence of the series y =
∞∑

n=0
an(x − x0)

n is at least as large

as the radius of convergence of the series for Q/P . In each of Problems 16 through 21 solve the
given differential equation by a series in powers of x and verify that a0 is arbitrary in each case.
Problems 20 and 21 involve nonhomogeneous differential equations to which series methods
can be easily extended. Where possible, compare the series solution with the solution obtained
by using the methods of Chapter 2.

16. y′ − y = 0 17. y′ − xy = 0
18. y′ = ex2

y, three terms only 19. (1 − x)y′ = y
20. y′ − y = x2 21. y′ + xy = 1 + x

The Legendre Equation. Problems 22 through 29 deal with the Legendre8 equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0.

As indicated in Example 3, the point x = 0 is an ordinary point of this equation, and the distance
from the origin to the nearest zero of P(x) = 1 − x2 is 1. Hence the radius of convergence of
series solutions about x = 0 is at least 1. Also notice that it is necessary to consider only
α > −1 because if α ≤ −1, then the substitution α = −(1 + γ ) where γ ≥ 0 leads to the
Legendre equation (1 − x2)y′′ − 2xy′ + γ (γ + 1)y = 0.

22. Show that two linearly independent solutions of the Legendre equation for |x | < 1 are

y1(x) = 1 +
∞∑

m=1

(−1)m

×α(α − 2)(α − 4) · · · (α − 2m + 2)(α + 1)(α + 3) · · · (α + 2m − 1)

(2m)!
x2m,

y2(x) = x +
∞∑

m=1

(−1)m

× (α − 1)(α − 3) · · · (α − 2m + 1)(α + 2)(α + 4) · · · (α + 2m)

(2m + 1)!
x2m+1.

23. Show that, if α is zero or a positive even integer 2n, the series solution y1 reduces to a
polynomial of degree 2n containing only even powers of x . Find the polynomials corre-
sponding to α = 0, 2, and 4. Show that, if α is a positive odd integer 2n + 1, the series
solution y2 reduces to a polynomial of degree 2n + 1 containing only odd powers of x .
Find the polynomials corresponding to α = 1, 3, and 5.

� 24. The Legendre polynomial Pn(x) is defined as the polynomial solution of the Legendre
equation with α = n that also satisfies the condition Pn(1) = 1.
(a) Using the results of Problem 23, find the Legendre polynomials P0(x), . . . , P5(x).
(b) Plot the graphs of P0(x), . . . , P5(x) for −1 ≤ x ≤ 1.
(c) Find the zeros of P0(x), . . . , P5(x).

25. It can be shown that the general formula for Pn(x) is

Pn(x) = 1

2n

[n/2]∑
k=0

(−1)k(2n − 2k)!

k!(n − k)!(n − 2k)!
xn−2k,

8Adrien-Marie Legendre (1752–1833) held various positions in the French Académie des Sciences from 1783
onward. His primary work was in the fields of elliptic functions and number theory. The Legendre functions,
solutions of Legendre’s equation, first appeared in 1784 in his study of the attraction of spheroids.
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where [n/2] denotes the greatest integer less than or equal to n/2. By observing the form
of Pn(x) for n even and n odd, show that Pn(−1) = (−1)n .

26. The Legendre polynomials play an important role in mathematical physics. For example, in
solving Laplace’s equation (the potential equation) in spherical coordinates we encounter
the equation

d2 F(ϕ)

dϕ2 + cot ϕ
d F(ϕ)

dϕ
+ n(n + 1)F(ϕ) = 0, 0 < ϕ < π,

where n is a positive integer. Show that the change of variable x = cos ϕ leads to the
Legendre equation with α = n for y = f (x) = F(arccos x).

27. Show that for n = 0, 1, 2, 3 the corresponding Legendre polynomial is given by

Pn(x) = 1

2nn!

dn

dxn (x2 − 1)n .

This formula, known as Rodrigues’ (1794–1851) formula, is true for all positive integers n.
28. Show that the Legendre equation can also be written as

[(1 − x2)y′]′ = −α(α + 1)y.

Then it follows that [(1 − x2)P ′
n(x)]′ = −n(n + 1)Pn(x) and [(1 − x2)P ′

m(x)]′ =
−m(m + 1)Pm(x). By multiplying the first equation by Pm(x) and the second equation by
Pn(x), and then integrating by parts, show that

∫ 1

−1
Pn(x)Pm(x) dx = 0 if n �= m.

This property of the Legendre polynomials is known as the orthogonality property. If
m = n, it can be shown that the value of the preceding integral is 2/(2n + 1).

29. Given a polynomial f of degree n, it is possible to express f as a linear combination of
P0, P1, P2, . . . , Pn :

f (x) =
n∑

k=0

ak Pk(x).

Using the result of Problem 28, show that

ak = 2k + 1

2

∫ 1

−1
f (x)Pk(x) dx .

5.4 Regular Singular Points

In this section we will consider the equation

P(x)y′′ + Q(x)y′ + R(x)y = 0 (1)

in the neighborhood of a singular point x0. Recall that if the functions P , Q, and R are
polynomials having no common factors, the singular points of Eq. (1) are the points
for which P(x) = 0.
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E X A M P L E

1

Determine the singular points and ordinary points of the Bessel equation of order ν

x2 y′′ + xy′ + (x2 − ν2)y = 0. (2)

The point x = 0 is a singular point since P(x) = x2 is zero there. All other points
are ordinary points of Eq. (2).

E X A M P L E

2

Determine the singular points and ordinary points of the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, (3)

where α is a constant.
The singular points are the zeros of P(x) = 1 − x2, namely, the points x = ±1. All

other points are ordinary points.

Unfortunately, if we attempt to use the methods of the preceding two sections to
solve Eq. (1) in the neighborhood of a singular point x0, we find that these methods
fail. This is because the solution of Eq. (1) is often not analytic at x0, and consequently
cannot be represented by a Taylor series in powers of x − x0. Instead, we must use a
more general series expansion.

Since the singular points of a differential equation are usually few in number, we
might ask whether we can simply ignore them, especially since we already know how
to construct solutions about ordinary points. However, this is not feasible because the
singular points determine the principal features of the solution to a much larger extent
than one might at first suspect. In the neighborhood of a singular point the solution
often becomes large in magnitude or experiences rapid changes in magnitude. Thus
the behavior of a physical system modeled by a differential equation frequently is most
interesting in the neighborhood of a singular point. Often geometrical singularities
in a physical problem, such as corners or sharp edges, lead to singular points in the
corresponding differential equation. Thus, while at first we might want to avoid the
few points where a differential equation is singular, it is precisely at these points that
it is necessary to study the solution most carefully.

As an alternative to analytical methods, one can consider the use of numerical
methods, which are discussed in Chapter 8. However, these methods are ill-suited for
the study of solutions near a singular point. Thus, even if one adopts a numerical
approach, it is advantageous to combine it with the analytical methods of this chapter
in order to examine the behavior of solutions near singular points.

Without any additional information about the behavior of Q/P and R/P in the
neighborhood of the singular point, it is impossible to describe the behavior of the
solutions of Eq. (1) near x = x0. It may be that there are two linearly independent
solutions of Eq. (1) that remain bounded as x → x0, or there may be only one with
the other becoming unbounded as x → x0, or they may both become unbounded as
x → x0. To illustrate these possibilities consider the following examples.

E X A M P L E

3

The differential equation

x2 y′′ − 2y = 0 (4)

has a singular point at x = 0. It can be easily verified by direct substitution that
y1(x) = x2 and y2(x) = 1/x are linearly independent solutions of Eq. (4) for x > 0 or
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x < 0. Thus in any interval not containing the origin the general solution of Eq. (4) is
y = c1x2 + c2x−1. The only solution of Eq. (4) that is bounded as x → 0 is y = c1x2.
Indeed, this solution is analytic at the origin even though if Eq. (4) is put in the
standard form, y′′ − (2/x2)y = 0, the function q(x) = −2/x2 is not analytic at x = 0,
and Theorem 5.3.1 is not applicable. On the other hand, notice that the solution
y2(x) = x−1 does not have a Taylor series expansion about the origin (is not analytic
at x = 0); therefore, the method of Section 5.2 would fail in this case.

E X A M P L E

4

The differential equation

x2 y′′ − 2xy′ + 2y = 0 (5)

also has a singular point at x = 0. It can be verified that y1(x) = x and y2(x) = x2 are
linearly independent solutions of Eq. (5), and both are analytic at x = 0. Nevertheless,
it is still not proper to pose an initial value problem with initial conditions at x = 0. It is
impossible to satisfy arbitrary initial conditions at x = 0, since any linear combination
of x and x2 is zero at x = 0.

It is also possible to construct a differential equation with a singular point x0 such that
every (nonzero) solution of the differential equation becomes unbounded as x → x0.
Even if Eq. (1) does not have a solution that remains bounded as x → x0, it is often
important to determine how the solutions of Eq. (1) behave as x → x0; for example,
does y → ∞ in the same manner as (x − x0)

−1 or |x − x0|−1/2, or in some other
manner?

Our goal is to extend the method already developed for solving Eq. (1) near an
ordinary point so that it also applies to the neighborhood of a singular point x0. To do
this in a reasonably simple manner, it is necessary to restrict ourselves to cases in which
the singularities in the functions Q/P and R/P at x = x0 are not too severe, that is,
to what we might call “weak singularities.” At this point it is not clear exactly what is
an acceptable singularity. However, as we develop the method of solution you will see
that the appropriate conditions (see also Section 5.7, Problem 21) to distinguish “weak
singularities” are

lim
x→x0

(x − x0)
Q(x)

P(x)
is finite (6)

and

lim
x→x0

(x − x0)
2 R(x)

P(x)
is finite. (7)

This means that the singularity in Q/P can be no worse than (x − x0)
−1 and the

singularity in R/P can be no worse than (x − x0)
−2. Such a point is called a regular

singular point of Eq. (1). For more general functions than polynomials, x0 is a regular
singular point of Eq. (1) if it is a singular point, and if both9

(x − x0)
Q(x)

P(x)
and (x − x0)

2 R(x)

P(x)
(8)

9The functions given in Eq. (8) may not be defined at x0, in which case their values at x0 are to be assigned as
their limits as x → x0.
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have convergent Taylor series about x0, that is, if the functions in Eq. (8) are analytic
at x = x0. Equations (6) and (7) imply that this will be the case when P , Q, and R are
polynomials. Any singular point of Eq. (1) that is not a regular singular point is called
an irregular singular point of Eq. (1).

In the following sections we discuss how to solve Eq. (1) in the neighborhood of
a regular singular point. A discussion of the solutions of differential equations in the
neighborhood of irregular singular points is more complicated and may be found in
more advanced books.

E X A M P L E

5

In Example 2 we observed that the singular points of the Legendre equation

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0

are x = ±1. Determine whether these singular points are regular or irregular singular
points.

We consider the point x = 1 first and also observe that on dividing by 1 − x2 the
coefficients of y′ and y are −2x/(1 − x2) and α(α + 1)/(1 − x2), respectively. Thus
we calculate

lim
x→1

(x − 1)
−2x

1 − x2 = lim
x→1

(x − 1)(−2x)

(1 − x)(1 + x)
= lim

x→1

2x

1 + x
= 1

and

lim
x→1

(x − 1)2 α(α + 1)

1 − x2 = lim
x→1

(x − 1)2α(α + 1)

(1 − x)(1 + x)

= lim
x→1

(x − 1)(−α)(α + 1)

1 + x
= 0.

Since these limits are finite, the point x = 1 is a regular singular point. It can be shown
in a similar manner that x = −1 is also a regular singular point.

E X A M P L E

6

Determine the singular points of the differential equation

2x(x − 2)2 y′′ + 3xy′ + (x − 2)y = 0

and classify them as regular or irregular.
Dividing the differential equation by 2x(x − 2)2, we have

y′′ + 3

2(x − 2)2 y′ + 1

2x(x − 2)
y = 0,

so p(x) = Q(x)/P(x) = 3/2(x − 2)2 and q(x) = R(x)/P(x) = 1/2x(x − 2). The
singular points are x = 0 and x = 2. Consider x = 0. We have

lim
x→0

xp(x) = lim
x→0

x
3

2(x − 2)2 = 0,

lim
x→0

x2q(x) = lim
x→0

x2 1

2x(x − 2)
= 0.
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Since these limits are finite, x = 0 is a regular singular point. For x = 2 we have

lim
x→2

(x − 2)p(x) = lim
x→2

(x − 2)
3

2(x − 2)2 = lim
x→2

3

2(x − 2)
,

so the limit does not exist; hence x = 2 is an irregular singular point.

E X A M P L E

7

Determine the singular points of(
x − π

2

)2
y′′ + (cos x)y′ + (sin x)y = 0

and classify them as regular or irregular.
The only singular point is x = π/2. To study it we consider the functions(

x − π

2

)
p(x) =

(
x − π

2

) Q(x)

P(x)
= cos x

x − π/2

and (
x − π

2

)2
q(x) =

(
x − π

2

)2 R(x)

P(x)
= sin x .

Starting from the Taylor series for cos x about x = π/2, we find that

cos x

x − π/2
= −1 + (x − π/2)2

3!
− (x − π/2)4

5!
+ · · · ,

which converges for all x . Similarly, sin x is analytic at x = π/2. Therefore, we
conclude that π/2 is a regular singular point for this equation.

PROBLEMS In each of Problems 1 through 18 find all singular points of the given equation and determine
whether each one is regular or irregular.

1. xy′′ + (1 − x)y′ + xy = 0 2. x2(1 − x)2 y′′ + 2xy′ + 4y = 0
3. x2(1 − x)y′′ + (x − 2)y′ − 3xy = 0 4. x2(1 − x2)y′′ + (2/x)y′ + 4y = 0
5. (1 − x2)2 y′′ + x(1 − x)y′ + (1 + x)y = 0
6. x2 y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation
7. (x + 3)y′′ − 2xy′ + (1 − x2)y = 0
8. x(1 − x2)3 y′′ + (1 − x2)2 y′ + 2(1 + x)y = 0
9. (x + 2)2(x − 1)y′′ + 3(x − 1)y′ − 2(x + 2)y = 0

10. x(3 − x)y′′ + (x + 1)y′ − 2y = 0
11. (x2 + x − 2)y′′ + (x + 1)y′ + 2y = 0 12. xy′′ + ex y′ + (3 cos x)y = 0
13. y′′ + (ln |x |)y′ + 3xy = 0 14. x2 y′′ + 2(ex − 1)y′ + (e−x cos x)y = 0
15. x2 y′′ − 3(sin x)y′ + (1 + x2)y = 0 16. xy′′ + y′ + (cot x)y = 0
17. (sin x)y′′ + xy′ + 4y = 0 18. (x sin x)y′′ + 3y′ + xy = 0

In each of Problems 19 and 20 show that the point x = 0 is a regular singular point. In each

problem try to find solutions of the form
∞∑

n=0
an xn . Show that there is only one nonzero solution

of this form in Problem 19 and that there are no nonzero solutions of this form in Problem 20.
Thus in neither case can the general solution be found in this manner. This is typical of equations
with singular points.

19. 2xy′′ + 3y′ + xy = 0 20. 2x2 y′′ + 3xy′ − (1 + x)y = 0
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21. Singularities at Infinity. The definitions of an ordinary point and a regular singular point
given in the preceding sections apply only if the point x0 is finite. In more advanced work
in differential equations it is often necessary to discuss the point at infinity. This is done by
making the change of variable ξ = 1/x and studying the resulting equation at ξ = 0. Show
that for the differential equation P(x)y′′ + Q(x)y′ + R(x)y = 0 the point at infinity is an
ordinary point if

1

P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ 2

]
and

R(1/ξ)

ξ 4 P(1/ξ)

have Taylor series expansions about ξ = 0. Show also that the point at infinity is a regular
singular point if at least one of the above functions does not have a Taylor series expansion,
but both

ξ

P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ 2

]
and

R(1/ξ)

ξ 2 P(1/ξ)

do have such expansions.

In each of Problems 22 through 27 use the results of Problem 21 to determine whether the point
at infinity is an ordinary point, a regular singular point, or an irregular singular point of the given
differential equation.

22. y′′ + y = 0 23. x2 y′′ + xy′ − 4y = 0
24. (1 − x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre equation
25. x2 y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation
26. y′′ − 2xy′ + λy = 0, Hermite equation
27. y′′ − xy = 0, Airy equation

5.5 Euler Equations

The simplest example of a differential equation having a regular singular point is the
Euler equation, or the equidimensional equation,

L[y] = x2 y′′ + αxy′ + βy = 0, (1)

where α and β are real constants. It is easy to show that x = 0 is a regular singular
point of Eq. (1). Because the solution of the Euler equation is typical of the solutions
of all differential equations with a regular singular point, it is worthwhile considering
this equation in detail before discussing the more general problem.

In any interval not including the origin, Eq. (1) has a general solution of the form
y = c1 y1(x) + c2 y2(x), where y1 and y2 are linearly independent. For convenience we
first consider the interval x > 0, extending our results later to the interval x < 0. First,
we note that (xr )′ = r xr−1 and (xr )′′ = r(r − 1)xr−2. Hence, if we assume that Eq. (1)
has a solution of the form

y = xr , (2)

then we obtain

L[xr ] = x2(xr )′′ + αx(xr )′ + βxr

= xr [r(r − 1) + αr + β]. (3)
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If r is a root of the quadratic equation

F(r) = r(r − 1) + αr + β = 0, (4)

then L[xr ] is zero, and y = xr is a solution of Eq. (1). The roots of Eq. (4) are

r1, r2 = −(α − 1) ±
√

(α − 1)2 − 4β

2
, (5)

and F(r) = (r − r1)(r − r2). As for second order linear equations with constant co-
efficients, it is necessary to consider separately the cases in which the roots are real
and different, real but equal, and complex conjugates. Indeed, the entire discussion in
this section is similar to the treatment of second order linear equations with constant
coefficients in Chapter 3 with er x replaced by xr ; see also Problem 23.

Real, Distinct Roots. If F(r) = 0 has real roots r1 and r2, with r1 �= r2, then y1(x) =
xr1 and y2(x) = xr2 are solutions of Eq. (1). Since W (xr1, xr2) = (r2 − r1)xr1+r2−1 is
nonvanishing for r1 �= r2 and x > 0, it follows that the general solution of Eq. (1) is

y = c1xr1 + c2xr2, x > 0. (6)

Note that if r is not a rational number, then xr is defined by xr = er ln x .

E X A M P L E

1

Solve

2x2 y′′ + 3xy′ − y = 0, x > 0. (7)

Substituting y = xr in Eq. (7) gives

xr [2r(r − 1) + 3r − 1] = xr (2r2 + r − 1) = xr (2r − 1)(r + 1) = 0.

Hence r1 = 1
2 and r2 = −1, so the general solution of Eq. (7) is

y = c1x1/2 + c2x−1, x > 0. (8)

Equal Roots. If the roots r1 and r2 are equal, then we obtain only one solution
y1(x) = xr1 of the assumed form. A second solution can be obtained by the method
of reduction of order, but for the purpose of our future discussion we consider an
alternative method. Since r1 = r2, it follows that F(r) = (r − r1)

2. Thus in this case
not only does F(r1) = 0 but also F ′(r1) = 0. This suggests differentiating Eq. (3) with
respect to r and then setting r equal to r1. Differentiating Eq. (3) with respect to r gives

∂

∂r
L[xr ] = ∂

∂r
[xr F(r)].

Substituting for F(r), interchanging differentiation with respect to x and with respect
to r , and noting that ∂(xr )/∂r = xr ln x , we obtain

L[xr ln x] = (r − r1)
2xr ln x + 2(r − r1)xr . (9)

The right side of Eq. (9) is zero for r = r1; consequently,

y2(x) = xr1 ln x, x > 0 (10)
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is a second solution of Eq. (1). It is easy to show that W (xr1, xr1 ln x) = x2r1−1. Hence
xr1 and xr1 ln x are linearly independent for x > 0, and the general solution of Eq. (1) is

y = (c1 + c2 ln x)xr1, x > 0. (11)

E X A M P L E

2

Solve

x2 y′′ + 5xy′ + 4y = 0, x > 0. (12)

Substituting y = xr in Eq. (12) gives

xr [r(r − 1) + 5r + 4] = xr (r2 + 4r + 4) = 0.

Hence r1 = r2 = −2, and

y = x−2(c1 + c2 ln x), x > 0. (13)

Complex Roots. Finally, suppose that the roots r1 and r2 are complex conjugates, say,
r1 = λ + iµ and r2 = λ − iµ, with µ �= 0. We must now explain what is meant by xr

when r is complex. Remembering that

xr = er ln x (14)

when x > 0 and r is real, we can use this equation to define xr when r is complex.
Then

xλ+iµ = e(λ+iµ) ln x = eλ ln x eiµ ln x = xλeiµ ln x

= xλ[cos(µ ln x) + i sin(µ ln x)], x > 0. (15)

With this definition of xr for complex values of r , it can be verified that the usual laws
of algebra and the differential calculus hold, and hence xr1 and xr2 are indeed solutions
of Eq. (1). The general solution of Eq. (1) is

y = c1xλ+iµ + c2xλ−iµ. (16)

The disadvantage of this expression is that the functions xλ+iµ and xλ−iµ are complex-
valued. Recall that we had a similar situation for the second order differential equation
with constant coefficients when the roots of the characteristic equation were complex.
In the same way as we did then we observe that the real and imaginary parts of xλ+iµ,
namely,

xλ cos(µ ln x) and xλ sin(µ ln x), (17)

are also solutions of Eq. (1). A straightforward calculation shows that

W [xλ cos(µ ln x), xλ sin(µ ln x)] = µx2λ−1.

Hence these solutions are also linearly independent for x > 0, and the general solution
of Eq. (1) is

y = c1xλ cos(µ ln x) + c2xλ sin(µ ln x), x > 0. (18)
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E X A M P L E

3

Solve

x2 y′′ + xy′ + y = 0. (19)

Substituting y = xr in Eq. (19) gives

xr [r(r − 1) + r + 1] = xr (r2 + 1) = 0.

Hence r = ±i , and the general solution is

y = c1 cos(ln x) + c2 sin(ln x), x > 0. (20)

Now let us consider the qualitative behavior of the solutions of Eq. (1) near the
singular point x = 0. This depends entirely on the nature of the exponents r1 and r2.
First, if r is real and positive, then xr → 0 as x tends to zero through positive values.
On the other hand, if r is real and negative, then xr becomes unbounded, while if r = 0,

then xr = 1. These possibilities are shown in Figure 5.5.1 for various values of r . If r
is complex, then a typical solution is xλ cos(µ ln x). This function becomes unbounded
or approaches zero if λ is negative or positive, respectively, and also oscillates more
and more rapidly as x → 0. This behavior is shown in Figures 5.5.2 and 5.5.3 for
selected values of λ and µ. If λ = 0, the oscillation is of constant amplitude. Finally, if
there are repeated roots, then one solution is of the form xr ln x , which tends to zero if
r > 0 and becomes unbounded if r ≤ 0. An example of each case is shown in Figure
5.5.4.

The extension of the solutions of Eq. (1) into the interval x < 0 can be carried out in
a relatively straightforward manner. The difficulty lies in understanding what is meant
by xr when x is negative and r is not an integer; similarly, ln x has not been defined for
x < 0. The solutions of the Euler equation that we have given for x > 0 can be shown
to be valid for x < 0, but in general they are complex-valued. Thus in Example 1 the
solution x1/2 is imaginary for x < 0.

2
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y = x0
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FIGURE 5.5.1 Solutions of an Euler equation; real roots.
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FIGURE 5.5.2 Solution of an Euler equation;
complex roots with negative real part.
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FIGURE 5.5.3 Solution of an Euler equa-
tion; complex roots with positive real part.
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FIGURE 5.5.4 Solutions of an Euler equation; repeated roots.

It is always possible to obtain real-valued solutions of the Euler equation (1) in the
interval x < 0 by making the following change of variable. Let x = −ξ , where ξ > 0,
and let y = u(ξ). Then we have

dy

dx
= du

dξ

dξ

dx
= −du

dξ
,

d2 y

dx2 = d

dξ

(
−du

dξ

)
dξ

dx
= d2u

dξ 2 . (21)

Thus Eq. (1), for x < 0, takes the form

ξ 2 d2u

dξ 2 + αξ
du

dξ
+ βu = 0, ξ > 0. (22)

But this is exactly the problem that we have just solved; from Eqs. (6), (11), and (18)
we have

u(ξ) =




c1ξ
r1 + c2ξ

r2

(c1 + c2 ln ξ)ξ r1

c1ξ
λ cos(µ ln ξ) + c2ξ

λ sin(µ ln ξ),

(23)

depending on whether the zeros of F(r) = r(r − 1) + αr + β are real and different,
real and equal, or complex conjugates. To obtain u in terms of x we replace ξ by −x
in Eqs. (23).

We can combine the results for x > 0 and x < 0 by recalling that |x | = x when
x > 0 and that |x | = −x when x < 0. Thus we need only replace x by |x | in Eqs. (6),
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(11), and (18) to obtain real-valued solutions valid in any interval not containing the
origin (also see Problems 30 and 31). These results are summarized in the following
theorem.

Theorem 5.5.1 The general solution of the Euler equation (1),

x2 y′′ + αxy′ + βy = 0,

in any interval not containing the origin is determined by the roots r1 and r2 of the
equation

F(r) = r(r − 1) + αr + β = 0.

If the roots are real and different, then

y = c1|x |r1 + c2|x |r2 . (24)

If the roots are real and equal, then

y = (c1 + c2 ln |x |)|x |r1 . (25)

If the roots are complex, then

y = |x |λ[c1 cos(µ ln |x |) + c2 sin(µ ln |x |)], (26)

where r1, r2 = λ ± iµ.

The solutions of an Euler equation of the form

(x − x0)
2 y′′ + α(x − x0)y′ + βy = 0 (27)

are similar to those given in Theorem 5.5.1. If one looks for solutions of the form
y = (x − x0)

r , then the general solution is given by either Eq. (24), (25), or (26) with
x replaced by x − x0. Alternatively, we can reduce Eq. (27) to the form of Eq. (1) by
making the change of independent variable t = x − x0.

The situation for a general second order differential equation with a regular singular
point is analogous to that for an Euler equation. We consider that problem in the next
section.

PROBLEMS In each of Problems 1 through 12 determine the general solution of the given differential equation
that is valid in any interval not including the singular point.
1. x2 y′′ + 4xy′ + 2y = 0 2. (x + 1)2 y′′+ 3(x + 1)y′+ 0.75y = 0
3. x2 y′′ − 3xy′ + 4y = 0 4. x2 y′′ + 3xy′ + 5y = 0
5. x2 y′′ − xy′ + y = 0 6. (x − 1)2 y′′ + 8(x − 1)y′ + 12y = 0
7. x2 y′′ + 6xy′ − y = 0 8. 2x2 y′′ − 4xy′ + 6y = 0
9. x2 y′′ − 5xy′ + 9y = 0 10. (x − 2)2 y′′ + 5(x − 2)y′ + 8y = 0

11. x2 y′′ + 2xy′ + 4y = 0 12. x2 y′′ − 4xy′ + 4y = 0

In each of Problems 13 through 16 find the solution of the given initial value problem. Plot the
graph of the solution and describe how the solution behaves as x → 0.

� 13. 2x2 y′′ + xy′ − 3y = 0, y(1) = 1, y′(1) = 4

� 14. 4x2 y′′ + 8xy′ + 17y = 0, y(1) = 2, y′(1) = −3

� 15. x2 y′′ − 3xy′ + 4y = 0, y(−1) = 2, y′(−1) = 3

� 16. x2 y′′ + 3xy′ + 5y = 0, y(1) = 1, y′(1) = −1
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17. Find all values of α for which all solutions of x2 y′′ + αxy′ + (5/2)y = 0 approach zero
as x → 0.

18. Find all values of β for which all solutions of x2 y′′ + βy = 0 approach zero as x → 0.
19. Find γ so that the solution of the initial value problem x2 y′′ − 2y = 0, y(1) = 1, y′(1) = γ

is bounded as x → 0.
20. Find all values of α for which all solutions of x2 y′′ + αxy′ + (5/2)y = 0 approach zero

as x → ∞.
21. Consider the Euler equation x2 y′′ + αxy′ + βy = 0. Find conditions on α and β so that

(a) All solutions approach zero as x → 0.
(b) All solutions are bounded as x → 0.
(c) All solutions approach zero as x → ∞.
(d) All solutions are bounded as x → ∞.
(e) All solutions are bounded both as x → 0 and as x → ∞.

22. Using the method of reduction of order, show that if r1 is a repeated root of r(r − 1) +
αr + β = 0, then xr1 and xr1 ln x are solutions of x2 y′′ + αxy′ + βy = 0 for x > 0.

23. Transformation to a Constant Coefficient Equation. The Euler equation x2 y′′ +
αxy′ + βy = 0 can be reduced to an equation with constant coefficients by a change
of the independent variable. Let x = ez , or z = ln x , and consider only the interval x > 0.
(a) Show that

dy

dx
= 1

x

dy

dz
and

d2 y

dx2 = 1

x2

d2 y

dz2 − 1

x2

dy

dz
.

(b) Show that the Euler equation becomes

d2 y

dz2 + (α − 1)
dy

dz
+ βy = 0.

Letting r1 and r2 denote the roots of r2 + (α − 1)r + β = 0, show that
(c) If r1 and r2 are real and different, then

y = c1er1z + c2er2z = c1xr1 + c2xr2 .

(d) If r1 and r2 are real and equal, then

y = (c1 + c2z)er1z = (c1 + c2 ln x)xr1 .

(e) If r1 and r2 are complex conjugates, r1 = λ + iµ, then

y = eλz[c1 cos(µz) + c2 sin(µz)] = xλ[c1 cos(µ ln x) + c2 sin(µ ln x)].

In each of Problems 24 through 29 use the method of Problem 23 to solve the given equation
for x > 0.

24. x2 y′′ − 2y = 0 25. x2 y′′ − 3xy′ + 4y = ln x
26. x2 y′′ + 7xy′ + 5y = x 27. x2 y′′ − 2xy′ + 2y = 3x2 + 2 ln x
28. x2 y′′ + xy′ + 4y = sin(ln x) 29. 3x2 y′′ + 12xy′ + 9y = 0

30. Show that if L[y] = x2 y′′ + αxy′ + βy, then

L[(−x)r ] = (−x)r F(r)

for all x < 0, where F(r) = r(r − 1) + αr + β. Hence conclude that if r1 �= r2 are roots
of F(r) = 0, then linearly independent solutions of L[y] = 0 for x < 0 are (−x)r1 and
(−x)r2 .

31. Suppose that xr1 and xr2 are solutions of an Euler equation for x > 0, where r1 �= r2, and
r1 is an integer. According to Eq. (24) the general solution in any interval not containing
the origin is y = c1|x |r1 + c2|x |r2 . Show that the general solution can also be written as
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y = k1xr1 + k2|x |r2 .
Hint: Show by a proper choice of constants that the expressions are identical for x > 0,
and by a different choice of constants that they are identical for x < 0.

5.6 Series Solutions near a Regular Singular Point, Part I

We now consider the question of solving the general second order linear equation

P(x)y′′ + Q(x)y′ + R(x)y = 0 (1)

in the neighborhood of a regular singular point x = x0. For convenience we assume
that x0 = 0. If x0 �= 0, the equation can be transformed into one for which the regular
singular point is at the origin by letting x − x0 equal t .

The fact that x = 0 is a regular singular point of Eq. (1) means that x Q(x)/P(x) =
xp(x) and x2 R(x)/P(x) = x2q(x) have finite limits as x → 0, and are analytic at
x = 0. Thus they have convergent power series expansions of the form

xp(x) =
∞∑

n=0

pn xn, x2q(x) =
∞∑

n=0

qnxn, (2)

on some interval |x | < ρ about the origin, where ρ > 0. To make the quantities xp(x)

and x2q(x) appear in Eq. (1), it is convenient to divide Eq. (1) by P(x) and then to
multiply by x2, obtaining

x2 y′′ + x[xp(x)]y′ + [x2q(x)]y = 0, (3)

or

x2 y′′ + x(p0 + p1x + · · · + pn xn + · · ·)y′

+ (q0 + q1x + · · · + qnxn + · · ·)y = 0. (4)

If all of the coefficients pn and qn are zero except possibly

p0 = lim
x→0

x Q(x)

P(x)
and q0 = lim

x→0

x2 R(x)

P(x)
, (5)

then Eq. (4) reduces to the Euler equation

x2 y′′ + p0xy′ + q0 y = 0, (6)

which was discussed in the preceding section. In general, of course, some of the pn
and qn , n ≥ 1, are not zero. However, the essential character of solutions of Eq. (4) is
identical to that of solutions of the Euler equation (6). The presence of the terms p1x +
· · · + pnxn + · · · and q1x + · · · + qnxn + · · · merely complicates the calculations.

We restrict our discussion primarily to the interval x > 0. The interval x < 0 can be
treated, just as for the Euler equation, by making the change of variable x = −ξ and
then solving the resulting equation for ξ > 0.
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Since the coefficients in Eq. (4) are “Euler coefficients” times power series, it is
natural to seek solutions in the form of “Euler solutions” times power series. Thus we
assume that

y = xr (a0 + a1x + · · · + an xn + · · ·) = xr
∞∑

n=0

an xn =
∞∑

n=0

an xr+n, (7)

where a0 �= 0. In other words, r is the exponent of the first term in the series and a0 is
its coefficient. As part of the solution we have to determine:

1. The values of r for which Eq. (1) has a solution of the form (7).
2. The recurrence relation for the coefficients an .

3. The radius of convergence of the series
∞∑

n=0
an xn .

The general theory is due to Frobenius10 and is fairly complicated. Rather than trying
to present this theory we simply assume in this and the next two sections that there
does exist a solution of the stated form. In particular, we assume that any power series
in an expression for a solution has a nonzero radius of convergence, and concentrate
on showing how to determine the coefficients in such a series. To illustrate the method
of Frobenius we first consider an example.

E X A M P L E

1

Solve the differential equation

2x2 y′′ − xy′ + (1 + x)y = 0. (8)

It is easy to show that x = 0 is a regular singular point of Eq. (8). Further, xp(x) =
−1/2 and x2q(x) = (1 + x)/2. Thus p0 = −1/2, q0 = 1/2, q1 = 1/2, and all other
p’s and q’s are zero. Then, from Eq. (6), the Euler equation corresponding to Eq. (8) is

2x2 y′′ − xy′ + y = 0. (9)

To solve Eq. (8) we assume that there is a solution of the form (7). Then y′ and y′′

are given by

y′ =
∞∑

n=0

an(r + n)xr+n−1 (10)

and

y′′ =
∞∑

n=0

an(r + n)(r + n − 1)xr+n−2. (11)

By substituting the expressions for y, y′, and y′′ in Eq. (8) we obtain

2x2 y′′ − xy′ + (1 + x)y =
∞∑

n=0

2an(r + n)(r + n − 1)xr+n

−
∞∑

n=0

an(r + n)xr+n +
∞∑

n=0

an xr+n +
∞∑

n=0

an xr+n+1. (12)

10Ferdinand Georg Frobenius (1849–1917) was (like Fuchs) a student and eventually a professor at the University
of Berlin. He showed how to construct series solutions about regular singular points in 1874. His most distinguished
work, however, was in algebra where he was one of the foremost early developers of group theory.
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The last term in Eq. (12) can be written as
∞∑

n=1
an−1xr+n , so by combining the terms in

Eq. (12) we obtain

2x2 y′′ − xy′ + (1 + x)y = a0[2r(r − 1) − r + 1]xr

+
∞∑

n=1

{[2(r + n)(r + n − 1) − (r + n) + 1]an + an−1}xr+n = 0. (13)

If Eq. (13) is to be satisfied for all x , the coefficient of each power of x in Eq. (13) must
be zero. From the coefficient of xr we obtain, since a0 �= 0,

2r(r − 1) − r + 1 = 2r2 − 3r + 1 = (r − 1)(2r − 1) = 0. (14)

Equation (14) is called the indicial equation for Eq. (8). Note that it is exactly the
polynomial equation we would obtain for the Euler equation (9) associated with Eq. (8).
The roots of the indicial equation are

r1 = 1, r2 = 1/2. (15)

These values of r are called the exponents at the singularity for the regular sin-
gular point x = 0. They determine the qualitative behavior of the solution (7) in the
neighborhood of the singular point.

Now we return to Eq. (13) and set the coefficient of xr+n equal to zero. This gives
the relation

[2(r + n)(r + n − 1) − (r + n) + 1]an + an−1 = 0 (16)

or

an = − an−1

2(r + n)2 − 3(r + n) + 1

= − an−1

[(r + n) − 1][2(r + n) − 1]
, n ≥ 1. (17)

For each root r1 and r2 of the indicial equation we use the recurrence relation (17) to
determine a set of coefficients a1, a2, . . . . For r = r1 = 1, Eq. (17) becomes

an = − an−1

(2n + 1)n
, n ≥ 1.

Thus

a1 = − a0

3 · 1
,

a2 = − a1

5 · 2
= a0

(3 · 5)(1 · 2)
,

and

a3 = − a2

7 · 3
= − a0

(3 · 5 · 7)(1 · 2 · 3)
.

In general we have

an = (−1)n

[3 · 5 · 7 · · · (2n + 1)]n!
a0, n ≥ 1. (18)
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Hence, if we omit the constant multiplier a0, one solution of Eq. (8) is

y1(x) = x

[
1 +

∞∑
n=1

(−1)nxn

[3 · 5 · 7 · · · (2n + 1)]n!

]
, x > 0. (19)

To determine the radius of convergence of the series in Eq. (19) we use the ratio test:

lim
n→∞

∣∣∣∣∣an+1xn+1

an xn

∣∣∣∣∣ = lim
n→∞

|x |
(2n + 3)(n + 1)

= 0

for all x . Thus the series converges for all x .
Corresponding to the second root r = r2 = 1

2 , we proceed similarly. From Eq. (17)
we have

an = − an−1

2n(n − 1
2 )

= − an−1

n(2n − 1)
, n ≥ 1.

Hence

a1 = − a0

1 · 1
,

a2 = − a1

2 · 3
= a0

(1 · 2)(1 · 3)
,

a3 = − a2

3 · 5
= − a0

(1 · 2 · 3)(1 · 3 · 5)
,

and in general

an = (−1)n

n![1 · 3 · 5 · · · (2n − 1)]
a0, n ≥ 1. (20)

Again omitting the constant multiplier a0, we obtain the second solution

y2(x) = x1/2

[
1 +

∞∑
n=1

(−1)nxn

n![1 · 3 · 5 · · · (2n − 1)]

]
, x > 0. (21)

As before, we can show that the series in Eq. (21) converges for all x . Since the leading
terms in the series solutions y1 and y2 are x and x1/2, respectively, it follows that the
solutions are linearly independent. Hence the general solution of Eq. (8) is

y = c1 y1(x) + c2 y2(x), x > 0.

The preceding example illustrates that if x = 0 is a regular singular point, then
sometimes there are two solutions of the form (7) in the neighborhood of this point.
Similarly, if there is a regular singular point at x = x0, then there may be two solutions
of the form

y = (x − x0)
r

∞∑
n=0

an(x − x0)
n (22)

that are valid near x = x0. However, just as an Euler equation may not have two
solutions of the form y = xr , so a more general equation with a regular singular point
may not have two solutions of the form (7) or (22). In particular, we show in the next
section that if the roots r1 and r2 of the indicial equation are equal, or differ by an
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integer, then the second solution normally has a more complicated structure. In all
cases, though, it is possible to find at least one solution of the form (7) or (22); if r1
and r2 differ by an integer, this solution corresponds to the larger value of r . If there is
only one such solution, then the second solution involves a logarithmic term, just as for
the Euler equation when the roots of the characteristic equation are equal. The method
of reduction of order or some other procedure can be invoked to determine the second
solution in such cases. This is discussed in Sections 5.7 and 5.8.

If the roots of the indicial equation are complex, then they cannot be equal or differ
by an integer, so there are always two solutions of the form (7) or (22). Of course, these
solutions are complex-valued functions of x . However, as for the Euler equation, it is
possible to obtain real-valued solutions by taking the real and imaginary parts of the
complex solutions.

Finally, we mention a practical point. If P , Q, and R are polynomials, it is often
much better to work directly with Eq. (1) than with Eq. (3). This avoids the necessity
of expressing x Q(x)/P(x) and x2 R(x)/P(x) as power series. For example, it is more
convenient to consider the equation

x(1 + x)y′′ + 2y′ + xy = 0

than to write it in the form

x2 y′′ + 2x

1 + x
y′ + x2

1 + x
y = 0,

which would entail expanding 2x/(1 + x) and x2/(1 + x) in power series.

PROBLEMS In each of Problems 1 through 10 show that the given differential equation has a regular singular
point at x = 0. Determine the indicial equation, the recurrence relation, and the roots of the
indicial equation. Find the series solution (x > 0) corresponding to the larger root. If the roots
are unequal and do not differ by an integer, find the series solution corresponding to the smaller
root also.

1. 2xy′′ + y′ + xy = 0 2. x2 y′′ + xy′ + (x2 − 1
9 )y = 0

3. xy′′ + y = 0 4. xy′′ + y′ − y = 0
5. 3x2 y′′ + 2xy′ + x2 y = 0 6. x2 y′′ + xy′ + (x − 2)y = 0
7. xy′′ + (1 − x)y′ − y = 0 8. 2x2 y′′ + 3xy′ + (2x2 − 1)y = 0
9. x2 y′′ − x(x + 3)y′ + (x + 3)y = 0 10. x2 y′′ + (x2 + 1

4 )y = 0

11. The Legendre equation of order α is

(1 − x2)y′′ − 2xy′ + α(α + 1)y = 0.

The solution of this equation near the ordinary point x = 0 was discussed in Problems 22
and 23 of Section 5.3. In Example 5 of Section 5.4 it was shown that x = ±1 are regular
singular points. Determine the indicial equation and its roots for the point x = 1. Find a
series solution in powers of x − 1 for x − 1 > 0.
Hint: Write 1 + x = 2 + (x − 1) and x = 1 + (x − 1). Alternatively, make the change of
variable x − 1 = t and determine a series solution in powers of t .

12. The Chebyshev equation is

(1 − x2)y′′ − xy′ + α2 y = 0,

where α is a constant; see Problem 10 of Section 5.3.
(a) Show that x = 1 and x = −1 are regular singular points, and find the exponents at
each of these singularities.
(b) Find two linearly independent solutions about x = 1.
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13. The Laguerre11 differential equation is

xy′′ + (1 − x)y′ + λy = 0.

Show that x = 0 is a regular singular point. Determine the indicial equation, its roots, the
recurrence relation, and one solution (x > 0). Show that if λ = m, a positive integer, this
solution reduces to a polynomial. When properly normalized this polynomial is known as
the Laguerre polynomial, Lm(x).

14. The Bessel equation of order zero is

x2 y′′ + xy′ + x2 y = 0.

Show that x = 0 is a regular singular point; that the roots of the indicial equation are
r1 = r2 = 0; and that one solution for x > 0 is

J0(x) = 1 +
∞∑

n=1

(−1)n x2n

22n(n!)2 .

Show that the series converges for all x . The function J0 is known as the Bessel function
of the first kind of order zero.

15. Referring to Problem 14, use the method of reduction of order to show that the second
solution of the Bessel equation of order zero contains a logarithmic term.
Hint: If y2(x) = J0(x)v(x), then

y2(x) = J0(x)

∫
dx

x[J0(x)]2 .

Find the first term in the series expansion of 1/x[J0(x)]2.
16. The Bessel equation of order one is

x2 y′′ + xy′ + (x2 − 1)y = 0.

(a) Show that x = 0 is a regular singular point; that the roots of the indicial equation are
r1 = 1 and r2 = −1; and that one solution for x > 0 is

J1(x) = x

2

∞∑
n=0

(−1)n x2n

(n + 1)! n! 22n .

Show that the series converges for all x . The function J1 is known as the Bessel function
of the first kind of order one.
(b) Show that it is impossible to determine a second solution of the form

x−1
∞∑

n=0

bn xn, x > 0.

5.7 Series Solutions near a Regular Singular Point, Part II

Now let us consider the general problem of determining a solution of the equation

L[y] = x2 y′′ + x[xp(x)]y′ + [x2q(x)]y = 0, (1)

11Edmond Nicolas Laguerre (1834 –1886), a French geometer and analyst, studied the polynomials named for
him about 1879.
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where

xp(x) =
∞∑

n=0

pn xn, x2q(x) =
∞∑

n=0

qnxn, (2)

and both series converge in an interval |x | < ρ for some ρ > 0. The point x = 0 is a
regular singular point, and the corresponding Euler equation is

x2 y′′ + p0xy′ + q0 y = 0. (3)

We seek a solution of Eq. (1) for x > 0 and assume that it has the form

y = φ(r, x) = xr
∞∑

n=0

an xn =
∞∑

n=0

an xr+n, (4)

where a0 �= 0, and we have written y = φ(r, x) to emphasize that φ depends on r as
well as x . It follows that

y′ =
∞∑

n=0

(r + n)an xr+n−1, y′′ =
∞∑

n=0

(r + n)(r + n − 1)an xr+n−2. (5)

Then, substituting from Eqs. (2), (4), and (5) in Eq. (1) gives

a0r(r − 1)xr + a1(r + 1)r xr+1 + · · · + an(r + n)(r + n − 1)xr+n + · · ·
+ (p0 + p1x + · · · + pnxn + · · ·)
× [a0r xr + a1(r + 1)xr+1 + · · · + an(r + n)xr+n + · · ·]
+ (q0 + q1x + · · · + qnxn + · · ·)
× (a0xr + a1xr+1 + · · · + anxr+n + · · ·) = 0.

Multiplying the infinite series together and then collecting terms, we obtain

a0 F(r)xr + [a1 F(r + 1) + a0(p1r + q1)]x
r+1

+ {a2 F(r + 2) + a0(p2r + q2) + a1[p1(r + 1) + q1]}xr+2

+ · · · + {an F(r + n) + a0(pnr + qn) + a1[pn−1(r + 1) + qn−1]

+ · · · + an−1[p1(r + n − 1) + q1]}xr+n + · · · = 0,

or in a more compact form,

L[φ](r, x) = a0 F(r)xr

+
∞∑

n=1

{
F(r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k]

}
xr+n = 0, (6)

where

F(r) = r(r − 1) + p0r + q0. (7)

For Eq. (6) to be satisfied identically the coefficient of each power of x must be zero.
Since a0 �= 0, the term involving xr yields the equation F(r) = 0. This equation

is called the indicial equation; note that it is exactly the equation we would obtain
in looking for solutions y = xr of the Euler equation (3). Let us denote the roots of
the indicial equation by r1 and r2 with r1 ≥ r2 if the roots are real. If the roots are
complex, the designation of the roots is immaterial. Only for these values of r can we
expect to find solutions of Eq. (1) of the form (4). The roots r1 and r2 are called the
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exponents at the singularity; they determine the qualitative nature of the solution in
the neighborhood of the singular point.

Setting the coefficient of xr+n in Eq. (6) equal to zero gives the recurrence relation

F(r + n)an +
n−1∑
k=0

ak[(r + k)pn−k + qn−k] = 0, n ≥ 1. (8)

Equation (8) shows that, in general, an depends on the value of r and all the pre-
ceding coefficients a0, a1, . . . , an−1. It also shows that we can successively compute
a1, a2, . . . , an, . . . in terms of a0 and the coefficients in the series for xp(x) and x2q(x)

provided that F(r + 1), F(r + 2), . . . , F(r + n), . . . are not zero. The only values of
r for which F(r) = 0 are r = r1 and r = r2; since r1 ≥ r2, it follows that r1 + n is
not equal to r1 or r2 for n ≥ 1. Consequently, F(r1 + n) �= 0 for n ≥ 1. Hence we can
always determine one solution of Eq. (1) in the form (4), namely,

y1(x) = xr1

[
1 +

∞∑
n=1

an(r1)xn

]
, x > 0. (9)

Here we have introduced the notation an(r1) to indicate that an has been determined
from Eq. (8) with r = r1. To specify the arbitrary constant in the solution we have
taken a0 to be 1.

If r2 is not equal to r1, and r1 − r2 is not a positive integer, then r2 + n is not equal
to r1 for any value of n ≥ 1; hence F(r2 + n) �= 0, and we can also obtain a second
solution

y2(x) = xr2

[
1 +

∞∑
n=1

an(r2)xn

]
, x > 0. (10)

Just as for the series solutions about ordinary points discussed in Section 5.3, the
series in Eqs. (9) and (10) converge at least in the interval |x | < ρ where the series for
both xp(x) and x2q(x) converge. Within their radii of convergence, the power series

1 +
∞∑

n=1
an(r1)xn and 1 +

∞∑
n=1

an(r2)xn define functions that are analytic at x = 0. Thus

the singular behavior, if there is any, of the solutions y1 and y2 is due to the factors xr1

and xr2 that multiply these two analytic functions. Next, to obtain real-valued solutions
for x < 0, we can make the substitution x = −ξ with ξ > 0. As we might expect from
our discussion of the Euler equation, it turns out that we need only replace xr1 in
Eq. (9) and xr2 in Eq. (10) by |x |r1 and |x |r2 , respectively. Finally, note that if r1 and r2
are complex numbers, then they are necessarily complex conjugates and r2 �= r1 + N .
Thus, in this case we can always find two series solutions of the form (4); however, they
are complex-valued functions of x . Real-valued solutions can be obtained by taking
the real and imaginary parts of the complex-valued solutions. The exceptional cases in
which r1 = r2 or r1 − r2 = N , where N is a positive integer, require more discussion
and will be considered later in this section.

It is important to realize that r1 and r2, the exponents at the singular point, are easy
to find and that they determine the qualitative behavior of the solutions. To calculate r1
and r2 it is only necessary to solve the quadratic indicial equation

r(r − 1) + p0r + q0 = 0, (11)
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whose coefficients are given by

p0 = lim
x→0

xp(x), q0 = lim
x→0

x2q(x). (12)

Note that these are exactly the limits that must be evaluated in order to classify the
singularity as a regular singular point; thus they have usually been determined at an
earlier stage of the investigation.

Further, if x = 0 is a regular singular point of the equation

P(x)y′′ + Q(x)y′ + R(x)y = 0, (13)

where the functions P , Q, and R are polynomials, then xp(x) = x Q(x)/P(x) and
x2q(x) = x2 R(x)/P(x). Thus

p0 = lim
x→0

x
Q(x)

P(x)
, q0 = lim

x→0
x2 R(x)

P(x)
. (14)

Finally, the radii of convergence for the series in Eqs. (9) and (10) are at least equal to
the distance from the origin to the nearest zero of P other than x = 0 itself.

E X A M P L E

1

Discuss the nature of the solutions of the equation

2x(1 + x)y′′ + (3 + x)y′ − xy = 0

near the singular points.
This equation is of the form (13) with P(x) = 2x(1 + x), Q(x) = 3 + x , and R(x) =

−x . The points x = 0 and x = −1 are the only singular points. The point x = 0 is a
regular singular point, since

lim
x→0

x
Q(x)

P(x)
= lim

x→0
x

3 + x

2x(1 + x)
= 3

2
,

lim
x→0

x2 R(x)

P(x)
= lim

x→0
x2 −x

2x(1 + x)
= 0.

Further, from Eq. (14), p0 = 3
2 and q0 = 0. Thus the indicial equation is r(r − 1) +

3
2r = 0, and the roots are r1 = 0, r2 = − 1

2 . Since these roots are not equal and do not
differ by an integer, there are two linearly independent solutions of the form

y1(x) = 1 +
∞∑

n=1

an(0)xn and y2(x) = |x |−1/2

[
1 +

∞∑
n=1

an(− 1
2 )xn

]

for 0 < |x | < ρ. A lower bound for the radius of convergence of each series is 1,
the distance from x = 0 to x = −1, the other zero of P(x). Note that the solution
y1 is bounded as x → 0, indeed is analytic there, and that the second solution y2 is
unbounded as x → 0.

The point x = −1 is also a regular singular point, since

lim
x→−1

(x + 1)
Q(x)

P(x)
= lim

x→−1

(x + 1)(3 + x)

2x(1 + x)
= −1,

lim
x→−1

(x + 1)2 R(x)

P(x)
= lim

x→−1

(x + 1)2(−x)

2x(1 + x)
= 0.



276 Chapter 5. Series Solutions of Second Order Linear Equations

In this case p0 = −1, q0 = 0, so the indicial equation is r(r − 1) − r = 0. The roots
of the indicial equation are r1 = 2 and r2 = 0. Corresponding to the larger root there
is a solution of the form

y1(x) = (x + 1)2

[
1 +

∞∑
n=1

an(2)(x + 1)n

]
.

The series converges at least for |x + 1| < 1 and y1 is an analytic function there. Since
the two roots differ by a positive integer, there may or may not be a second solution of
the form

y2(x) = 1 +
∞∑

n=1

an(0)(x + 1)n.

We cannot say more without further analysis.
Observe that no complicated calculations were required to discover the information

about the solutions presented in this example. All that was needed was to evaluate a
few limits and solve two quadratic equations.

We now consider the cases in which the roots of the indicial equation are equal, or
differ by a positive integer, r1 − r2 = N . As we have shown earlier, there is always one
solution of the form (9) corresponding to the larger root r1 of the indicial equation. By
analogy with the Euler equation, we might expect that if r1 = r2, then the second solu-
tion contains a logarithmic term. This may also be true if the roots differ by an integer.

Equal Roots. The method of finding the second solution is essentially the same as
the one we used in finding the second solution of the Euler equation (see Section 5.5)
when the roots of the indicial equation were equal. We consider r to be a continuous
variable and determine an as a function of r by solving the recurrence relation (8). For
this choice of an(r) for n ≥ 1, Eq. (6) reduces to

L[φ](r, x) = a0 F(r)xr = a0(r − r1)
2xr , (15)

since r1 is a repeated root of F(r). Setting r = r1 in Eq. (15), we find that L[φ](r1, x) =
0; hence, as we already know, y1(x) given by Eq. (9) is one solution of Eq. (1). But
more important, it also follows from Eq. (15), just as for the Euler equation, that

L

[
∂φ

∂r

]
(r1, x) = a0

∂

∂r
[xr (r − r1)

2]
∣∣∣
r=r1

= a0[(r − r1)
2xr ln x + 2(r − r1)xr ]

∣∣∣
r=r1

= 0. (16)

Hence, a second solution of Eq. (1) is

y2(x) = ∂φ(r, x)

∂r

∣∣∣
r=r1

= ∂

∂r

{
xr

[
a0 +

∞∑
n=1

an(r)xn

]} ∣∣∣∣∣
r=r1

= (xr1 ln x)

[
a0 +

∞∑
n=1

an(r1)xn

]
+ xr1

∞∑
n=1

a′
n(r1)xn

= y1(x) ln x + xr1

∞∑
n=1

a′
n(r1)xn, x > 0, (17)
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where a′
n(r1) denotes dan/dr evaluated at r = r1.

It may turn out that it is difficult to determine an(r) as a function of r from the
recurrence relation (8) and then to differentiate the resulting expression with respect
to r . An alternative is simply to assume that y has the form of Eq. (17), that is,

y = y1(x) ln x + xr1

∞∑
n=1

bnxn, x > 0, (18)

where y1(x) has already been found. The coefficients bn are calculated, as usual, by
substituting into the differential equation, collecting terms, and setting the coefficient
of each power of x equal to zero. A third possibility is to use the method of reduction
of order to find y2(x) once y1(x) is known.

Roots Differing by an Integer. For this case the derivation of the second solution is
considerably more complicated and will not be given here. The form of this solution
is stated in Eq. (24) in the following theorem. The coefficients cn(r2) in Eq. (24) are
given by

cn(r2) = d

dr
[(r − r2)an(r)]

∣∣∣
r=r2

, n = 1, 2, . . . , (19)

where an(r) is determined from the recurrence relation (8) with a0 = 1. Further, the
coefficient a in Eq. (24) is

a = lim
r→r2

(r − r2)aN (r). (20)

If aN (r2) is finite, then a = 0 and there is no logarithmic term in y2. A full derivation
of the formulas (19), (20) may be found in Coddington (Chapter 4).

In practice the best way to determine whether a is zero in the second solution is
simply to try to compute the an corresponding to the root r2 and to see whether it is
possible to determine aN (r2). If so, there is no further problem. If not, we must use the
form (24) with a �= 0.

When r1 − r2 = N , there are again three ways to find a second solution. First, we
can calculate a and cn(r2) directly by substituting the expression (24) for y in Eq. (1).
Second, we can calculate cn(r2) and a of Eq. (24) using the formulas (19) and (20). If
this is the planned procedure, then in calculating the solution corresponding to r = r1 be
sure to obtain the general formula for an(r) rather than just an(r1). The third alternative
is to use the method of reduction of order.

Theorem 5.7.1 Consider the differential equation (1),

x2 y′′ + x[xp(x)]y′ + [x2q(x)]y = 0,

where x = 0 is a regular singular point. Then xp(x) and x2q(x) are analytic at x = 0
with convergent power series expansions

xp(x) =
∞∑

n=0

pn xn, x2q(x) =
∞∑

n=0

qnxn
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for |x | < ρ, where ρ > 0 is the minimum of the radii of convergence of the power
series for xp(x) and x2q(x). Let r1 and r2 be the roots of the indicial equation

F(r) = r(r − 1) + p0r + q0 = 0,

with r1 ≥ r2 if r1 and r2 are real. Then in either of the intervals −ρ < x < 0 or
0 < x < ρ, there exists a solution of the form

y1(x) = |x |r1

[
1 +

∞∑
n=1

an(r1)xn

]
, (21)

where the an(r1) are given by the recurrence relation (8) with a0 = 1 and r = r1.
If r1 − r2 is not zero or a positive integer, then in either of the intervals −ρ < x < 0

or 0 < x < ρ, there exists a second linearly independent solution of the form

y2(x) = |x |r2

[
1 +

∞∑
n=1

an(r2)xn

]
. (22)

The an(r2) are also determined by the recurrence relation (8) with a0 = 1 and r = r2.
The power series in Eqs. (21) and (22) converge at least for |x | < ρ.

If r1 = r2, then the second solution is

y2(x) = y1(x) ln |x | + |x |r1

∞∑
n=1

bn(r1)xn. (23)

If r1 − r2 = N , a positive integer, then

y2(x) = ay1(x) ln |x | + |x |r2

[
1 +

∞∑
n=1

cn(r2)xn

]
. (24)

The coefficients an(r1), bn(r1), cn(r2), and the constant a can be determined by
substituting the form of the series solutions for y in Eq. (1). The constant a may turn
out to be zero, in which case there is no logarithmic term in the solution (24). Each of
the series in Eqs. (23) and (24) converges at least for |x | < ρ and defines a function
that is analytic in some neighborhood of x = 0.

PROBLEMS In each of Problems 1 through 12 find all the regular singular points of the given differential
equation. Determine the indicial equation and the exponents at the singularity for each regular
singular point.

1. xy′′ + 2xy′ + 6ex y = 0 2. x2 y′′ − x(2 + x)y′ + (2 + x2)y = 0
3. x(x − 1)y′′ + 6x2 y′ + 3y = 0 4. y′′ + 4xy′ + 6y = 0
5. x2 y′′ + 3(sin x)y′ − 2y = 0 6. 2x(x + 2)y′′ + y′ − xy = 0
7. x2 y′′ + 1

2 (x + sin x)y′ + y = 0 8. (x + 1)2 y′′ + 3(x2 − 1)y′ + 3y = 0
9. x2(1 − x)y′′ − (1 + x)y′ + 2xy = 0

10. (x − 2)2(x + 2)y′′ + 2xy′ + 3(x − 2)y = 0
11. (4 − x2)y′′ + 2xy′ + 3y = 0
12. x(x + 3)2 y′′ − 2(x + 3)y′ − xy = 0

In each of Problems 13 through 17:
(a) Show that x = 0 is a regular singular point of the given differential equation.
(b) Find the exponents at the singular point x = 0.
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(c) Find the first three nonzero terms in each of two linearly independent solutions about
x = 0.

13. xy′′ + y′ − y = 0
14. xy′′ + 2xy′ + 6ex y = 0; see Problem 1
15. x(x − 1)y′′ + 6x2 y′ + 3y = 0; see Problem 3
16. xy′′ + y = 0
17. x2 y′′ + (sin x)y′ − (cos x)y = 0

18. Show that

(ln x)y′′ + 1
2 y′ + y = 0

has a regular singular point at x = 1. Determine the roots of the indicial equation at x = 1.

Determine the first three nonzero terms in the series
∞∑

n=0
an(x − 1)r+n corresponding to the

larger root. Take x − 1 > 0. What would you expect the radius of convergence of the series
to be?

19. In several problems in mathematical physics (for example, the Schrödinger equation for a
hydrogen atom) it is necessary to study the differential equation

x(1 − x)y′′ + [γ − (1 + α + β)x]y′ − αβy = 0, (i)

where α, β, and γ are constants. This equation is known as the hypergeometric equation.
(a) Show that x = 0 is a regular singular point, and that the roots of the indicial equation
are 0 and 1 − γ .
(b) Show that x = 1 is a regular singular point, and that the roots of the indicial equation
are 0 and γ − α − β.
(c) Assuming that 1 − γ is not a positive integer, show that in the neighborhood of x = 0
one solution of (i) is

y1(x) = 1 + αβ

γ · 1!
x + α(α + 1)β(β + 1)

γ (γ + 1)2!
x2 + · · · .

What would you expect the radius of convergence of this series to be?
(d) Assuming that 1 − γ is not an integer or zero, show that a second solution for 0 < x < 1
is

y2(x) = x1−γ

[
1 + (α − γ + 1)(β − γ + 1)

(2 − γ )1!
x

+ (α − γ + 1)(α − γ + 2)(β − γ + 1)(β − γ + 2)

(2 − γ )(3 − γ )2!
x2 + · · ·

]
.

(e) Show that the point at infinity is a regular singular point, and that the roots of the
indicial equation are α and β. See Problem 21 of Section 5.4.

20. Consider the differential equation

x3 y′′ + αxy′ + βy = 0,

where α and β are real constants and α �= 0.
(a) Show that x = 0 is an irregular singular point.

(b) By attempting to determine a solution of the form
∞∑

n=0
an xr+n , show that the indicial

equation for r is linear, and consequently there is only one formal solution of the assumed
form.
(c) Show that if β/α = −1, 0, 1, 2, . . . , then the formal series solution terminates and
therefore is an actual solution. For other values of β/α show that the formal series solution
has a zero radius of convergence, and so does not represent an actual solution in any
interval.
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21. Consider the differential equation

y′′ + α

xs y′ + β

xt y = 0, (i)

where α �= 0 and β �= 0 are real numbers, and s and t are positive integers that for the
moment are arbitrary.
(a) Show that if s > 1 or t > 2, then the point x = 0 is an irregular singular point.
(b) Try to find a solution of Eq. (i) of the form

y =
∞∑

n=0

an xr+n, x > 0. (ii)

Show that if s = 2 and t = 2, then there is only one possible value of r for which there is
a formal solution of Eq. (i) of the form (ii).
(c) Show that if s = 1 and t = 3, then there are no solutions of Eq. (i) of the form (ii).
(d) Show that the maximum values of s and t for which the indicial equation is quadratic
in r [and hence we can hope to find two solutions of the form (ii)] are s = 1 and t = 2.
These are precisely the conditions that distinguish a “weak singularity,” or a regular singular
point, from an irregular singular point, as we defined them in Section 5.4.

As a note of caution we should point out that while it is sometimes possible to obtain a formal
series solution of the form (ii) at an irregular singular point, the series may not have a positive
radius of convergence. See Problem 20 for an example.

5.8 Bessel’s Equation

In this section we consider three special cases of Bessel’s12 equation,

x2 y′′ + xy′ + (x2 − ν2)y = 0, (1)

where ν is a constant, which illustrate the theory discussed in Section 5.7. It is easy to
show that x = 0 is a regular singular point. For simplicity we consider only the case
x > 0.

Bessel Equation of Order Zero. This example illustrates the situation in which the
roots of the indicial equation are equal. Setting ν = 0 in Eq. (1) gives

L[y] = x2 y′′ + xy′ + x2 y = 0. (2)

Substituting

y = φ(r, x) = a0xr +
∞∑

n=1

an xr+n, (3)

12Friedrich Wilhelm Bessel (1784 –1846) embarked on a career in business as a youth, but soon became interested
in astronomy and mathematics. He was appointed director of the observatory at Königsberg in 1810 and held
this position until his death. His study of planetary perturbations led him in 1824 to make the first systematic
analysis of the solutions, known as Bessel functions, of Eq. (1). He is also famous for making the first accurate
determination (1838) of the distance from the earth to a star.



5.8 Bessel’s Equation 281

we obtain

L[φ](r, x) =
∞∑

n=0

an[(r + n)(r + n − 1) + (r + n)]xr+n +
∞∑

n=0

an xr+n+2

= a0[r(r − 1) + r ]xr + a1[(r + 1)r + (r + 1)]xr+1

+
∞∑

n=2

{an[(r + n)(r + n − 1) + (r + n)] + an−2}xr+n = 0. (4)

The roots of the indicial equation F(r) = r(r − 1) + r = 0 are r1 = 0 and r2 = 0;
hence we have the case of equal roots. The recurrence relation is

an(r) = − an−2(r)

(r + n)(r + n − 1) + (r + n)
= − an−2(r)

(r + n)2 , n ≥ 2. (5)

To determine y1(x) we set r equal to 0. Then from Eq. (4) it follows that for the
coefficient of xr+1 to be zero we must choose a1 = 0. Hence from Eq. (5), a3 = a5 =
a7 = · · · = 0. Further,

an(0) = −an−2(0)/n2, n = 2, 4, 6, 8, . . . ,

or letting n = 2m, we obtain

a2m(0) = −a2m−2(0)/(2m)2, m = 1, 2, 3, . . . .

Thus

a2(0) = −a0

22 , a4(0) = a0

2422 , a6(0) = − a0

26(3 · 2)2 ,

and, in general,

a2m(0) = (−1)ma0

22m(m!)2 , m = 1, 2, 3, . . . . (6)

Hence

y1(x) = a0

[
1 +

∞∑
m=1

(−1)m x2m

22m(m!)2

]
, x > 0. (7)

The function in brackets is known as the Bessel function of the first kind of order
zero and is denoted by J0(x). It follows from Theorem 5.7.1 that the series converges
for all x , and that J0 is analytic at x = 0. Some of the important properties of J0 are
discussed in the problems. Figure 5.8.1 shows the graphs of y = J0(x) and some of
the partial sums of the series (7).

To determine y2(x) we will calculate a′
n(0). The alternative procedure in which we

simply substitute the form (23) of Section 5.7 in Eq. (2) and then determine the bn
is discussed in Problem 10. First we note from the coefficient of xr+1 in Eq. (4) that
(r + 1)2a1(r) = 0. It follows that not only does a1(0) = 0 but also a′

1(0) = 0. It is
easy to deduce from the recurrence relation (5) that a′

3(0) = a′
5(0) = · · · = a′

2n+1(0) =
· · · = 0; hence we need only compute a′

2m(0), m = 1, 2, 3, . . . . From Eq. (5) we have

a2m(r) = −a2m−2(r)/(r + 2m)2, m = 1, 2, 3, . . . .
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FIGURE 5.8.1 Polynomial approximations to J0(x). The value of n is the degree of the
approximating polynomial.

By solving this recurrence relation we obtain

a2m(r) = (−1)ma0

(r + 2)2(r + 4)2 · · · (r + 2m − 2)2(r + 2m)2 , m = 1, 2, 3, . . . . (8)

The computation of a′
2m(r) can be carried out most conveniently by noting that if

f (x) = (x − α1)
β1(x − α2)

β2(x − α3)
β3 · · · (x − αn)

βn ,

and if x is not equal to α1, α2, . . . , αn , then

f ′(x)

f (x)
= β1

x − α1

+ β2

x − α2

+ · · · + βn

x − αn

.

Applying this result to a2m(r) from Eq. (8) we find that

a′
2m(r)

a2m(r)
= −2

(
1

r + 2
+ 1

r + 4
+ · · · + 1

r + 2m

)
,

and, setting r equal to 0, we obtain

a′
2m(0) = −2

[
1

2
+ 1

4
+ · · · + 1

2m

]
a2m(0).

Substituting for a2m(0) from Eq. (6), and letting

Hm = 1 + 1

2
+ 1

3
+ · · · + 1

m
, (9)

we obtain, finally,

a′
2m(0) = −Hm

(−1)ma0

22m(m!)2 , m = 1, 2, 3, . . . .
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The second solution of the Bessel equation of order zero is found by setting a0 = 1
and substituting for y1(x) and a′

2m(0) = b2m(0) in Eq. (23) of Section 5.7. We obtain

y2(x) = J0(x) ln x +
∞∑

m=1

(−1)m+1 Hm

22m(m!)2 x2m, x > 0. (10)

Instead of y2, the second solution is usually taken to be a certain linear combination
of J0 and y2. It is known as the Bessel function of the second kind of order zero and is
denoted by Y0. Following Copson (Chapter 12), we define13

Y0(x) = 2

π
[y2(x) + (γ − ln 2)J0(x)]. (11)

Here γ is a constant, known as the Euler–Máscheroni (1750–1800) constant; it is
defined by the equation

γ = lim
n→∞(Hn − ln n) ∼= 0.5772. (12)

Substituting for y2(x) in Eq. (11), we obtain

Y0(x) = 2

π

[(
γ + ln

x

2

)
J0(x) +

∞∑
m=1

(−1)m+1 Hm

22m(m!)2 x2m

]
, x > 0. (13)

The general solution of the Bessel equation of order zero for x > 0 is

y = c1 J0(x) + c2Y0(x).

Note that J0(x) → 1 as x → 0 and that Y0(x) has a logarithmic singularity at x = 0;
that is, Y0(x) behaves as (2/π) ln x when x → 0 through positive values. Thus if we
are interested in solutions of Bessel’s equation of order zero that are finite at the origin,
which is often the case, we must discard Y0. The graphs of the functions J0 and Y0 are
shown in Figure 5.8.2.

It is interesting to note from Figure 5.8.2 that for x large both J0(x) and Y0(x) are
oscillatory. Such a behavior might be anticipated from the original equation; indeed it
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y = Y0(x)

y = J0(x)

FIGURE 5.8.2 The Bessel functions of order zero.

13Other authors use other definitions for Y0. The present choice for Y0 is also known as the Weber (1842–1913)
function.
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is true for the solutions of the Bessel equation of order ν. If we divide Eq. (1) by x2,
we obtain

y′′ + 1

x
y′ +

(
1 − ν2

x2

)
y = 0.

For x very large it is reasonable to suspect that the terms (1/x)y′ and (ν2/x2)y are
small and hence can be neglected. If this is true, then the Bessel equation of order ν

can be approximated by

y′′ + y = 0.

The solutions of this equation are sin x and cos x ; thus we might anticipate that the
solutions of Bessel’s equation for large x are similar to linear combinations of sin x
and cos x . This is correct insofar as the Bessel functions are oscillatory; however, it is
only partly correct. For x large the functions J0 and Y0 also decay as x increases; thus
the equation y′′ + y = 0 does not provide an adequate approximation to the Bessel
equation for large x , and a more delicate analysis is required. In fact, it is possible to
show that

J0(x) ∼=
(

2

πx

)1/2

cos
(

x − π

4

)
as x → ∞, (14)

and that

Y0(x) ∼=
(

2

πx

)1/2

sin
(

x − π

4

)
as x → ∞. (15)

These asymptotic approximations, as x → ∞, are actually very good. For example,
Figure 5.8.3 shows that the asymptotic approximation (14) to J0(x) is reasonably
accurate for all x ≥ 1. Thus to approximate J0(x) over the entire range from zero to
infinity, one can use two or three terms of the series (7) for x ≤ 1 and the asymptotic
approximation (14) for x ≥ 1.

y = J0(x)

y

x

2

2 4 6 8 10

–1

1

Asymptotic approximation: y = (2/  x)1/2 cos(x –   /4)π π

FIGURE 5.8.3 Asymptotic approximation to J0(x).
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Bessel Equation of Order One-Half. This example illustrates the situation in which
the roots of the indicial equation differ by a positive integer, but there is no logarithmic
term in the second solution. Setting ν = 1

2 in Eq. (1) gives

L[y] = x2 y′′ + xy′ + (
x2 − 1

4

)
y = 0. (16)

If we substitute the series (3) for y = φ(r, x), we obtain

L[φ](r, x) =
∞∑

n=0

[
(r + n)(r + n − 1) + (r + n) − 1

4

]
an xr+n +

∞∑
n=0

an xr+n+2

= (r2 − 1
4 )a0xr + [

(r + 1)2 − 1
4

]
a1xr+1

+
∞∑

n=2

{[
(r + n)2 − 1

4

]
an + an−2

}
xr+n = 0. (17)

The roots of the indicial equation are r1 = 1
2 , r2 = − 1

2 ; hence the roots differ by an
integer. The recurrence relation is[

(r + n)2 − 1
4

]
an = −an−2, n ≥ 2. (18)

Corresponding to the larger root r1 = 1
2 we find from the coefficient of xr+1 in Eq. (17)

that a1 = 0. Hence, from Eq. (18), a3 = a5 = · · · = a2n+1 = · · · = 0. Further, for
r = 1

2 ,

an = − an−2

n(n + 1)
, n = 2, 4, 6 . . . ,

or letting n = 2m, we obtain

a2m = − a2m−2

2m(2m + 1)
, m = 1, 2, 3, . . . .

By solving this recurrence relation we find that

a2 = −a0

3!
, a4 = a0

5!
, . . .

and, in general,

a2m = (−1)ma0

(2m + 1)!
, m = 1, 2, 3, . . . .

Hence, taking a0 = 1, we obtain

y1(x) = x1/2

[
1 +

∞∑
m=1

(−1)m x2m

(2m + 1)!

]
= x−1/2

∞∑
m=0

(−1)m x2m+1

(2m + 1)!
, x > 0. (19)

The power series in Eq. (19) is precisely the Taylor series for sin x ; hence one solution
of the Bessel equation of order one-half is x−1/2 sin x . The Bessel function of the first
kind of order one-half, J1/2, is defined as (2/π)1/2 y1. Thus

J1/2(x) =
(

2

πx

)1/2

sin x, x > 0. (20)
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Corresponding to the root r2 = − 1
2 it is possible that we may have difficulty in

computing a1 since N = r1 − r2 = 1. However, from Eq. (17) for r = − 1
2 the coef-

ficients of xr and xr+1 are both zero regardless of the choice of a0 and a1. Hence a0
and a1 can be chosen arbitrarily. From the recurrence relation (18) we obtain a set of
even-numbered coefficients corresponding to a0 and a set of odd-numbered coefficients
corresponding to a1. Thus no logarithmic term is needed to obtain a second solution in
this case. It is left as an exercise to show that, for r = − 1

2 ,

a2n = (−1)na0

(2n)!
, a2n+1 = (−1)na1

(2n + 1)!
, n = 1, 2, . . . .

Hence

y2(x) = x−1/2

[
a0

∞∑
n=0

(−1)n x2n

(2n)!
+ a1

∞∑
n=0

(−1)nx2n+1

(2n + 1)!

]

= a0

cos x

x1/2 + a1

sin x

x1/2 , x > 0. (21)

The constant a1 simply introduces a multiple of y1(x). The second linearly independent
solution of the Bessel equation of order one-half is usually taken to be the solution for
which a0 = (2/π)1/2 and a1 = 0. It is denoted by J−1/2. Then

J−1/2(x) =
(

2

πx

)1/2

cos x, x > 0. (22)

The general solution of Eq. (16) is y = c1 J1/2(x) + c2 J−1/2(x).
By comparing Eqs. (20) and (22) with Eqs. (14) and (15) we see that, except for a

phase shift of π/4, the functions J−1/2 and J1/2 resemble J0 and Y0, respectively, for
large x . The graphs of J1/2 and J−1/2 are shown in Figure 5.8.4.
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FIGURE 5.8.4 The Bessel functions J1/2 and J−1/2.
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Bessel Equation of Order One. This example illustrates the situation in which the
roots of the indicial equation differ by a positive integer and the second solution
involves a logarithmic term. Setting ν = 1 in Eq. (1) gives

L[y] = x2 y′′ + xy′ + (x2 − 1)y = 0. (23)

If we substitute the series (3) for y = φ(r, x) and collect terms as in the preceding
cases, we obtain

L[φ](r, x) = a0(r
2 − 1)xr + a1[(r + 1)2 − 1]xr+1

+
∞∑

n=2

{[(r + n)2 − 1]an + an−2}xr+n = 0. (24)

The roots of the indicial equation are r1 = 1 and r2 = −1. The recurrence relation is

[(r + n)2 − 1]an(r) = −an−2(r), n ≥ 2. (25)

Corresponding to the larger root r = 1 the recurrence relation becomes

an = − an−2

(n + 2)n
, n = 2, 3, 4, . . . .

We also find from the coefficient of xr+1 in Eq. (24) that a1 = 0; hence from the
recurrence relation a3 = a5 = · · · = 0. For even values of n, let n = 2m; then

a2m = − a2m−2

(2m + 2)(2m)
= − a2m−2

22(m + 1)m
, m = 1, 2, 3, . . . .

By solving this recurrence relation we obtain

a2m = (−1)ma0

22m(m + 1)!m!
, m = 1, 2, 3, . . . . (26)

The Bessel function of the first kind of order one, denoted by J1, is obtained by choosing
a0 = 1/2. Hence

J1(x) = x

2

∞∑
m=0

(−1)m x2m

22m(m + 1)!m!
. (27)

The series converges absolutely for all x , so the function J1 is analytic everywhere.
In determining a second solution of Bessel’s equation of order one, we illustrate the

method of direct substitution. The calculation of the general term in Eq. (28) below is
rather complicated, but the first few coefficients can be found fairly easily. According
to Theorem 5.7.1 we assume that

y2(x) = a J1(x) ln x + x−1

[
1 +

∞∑
n=1

cnxn

]
, x > 0. (28)

Computing y′
2(x), y′′

2 (x), substituting in Eq. (23), and making use of the fact that J1 is
a solution of Eq. (23) give

2ax J ′
1(x) +

∞∑
n=0

[(n − 1)(n − 2)cn + (n − 1)cn − cn]xn−1 +
∞∑

n=0

cnxn+1 = 0, (29)
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where c0 = 1. Substituting for J1(x) from Eq. (27), shifting the indices of summation
in the two series, and carrying out several steps of algebra give

−c1 + [0 · c2 + c0]x +
∞∑

n=2

[(n2 − 1)cn+1 + cn−1]xn

= −a

[
x +

∞∑
m=1

(−1)m(2m + 1)x2m+1

22m(m + 1)! m!

]
. (30)

From Eq. (30) we observe first that c1 = 0, and a = −c0 = −1. Further, since there
are only odd powers of x on the right, the coefficient of each even power of x on the
left must be zero. Thus, since c1 = 0, we have c3 = c5 = · · · = 0. Corresponding to
the odd powers of x we obtain the recurrence relation [let n = 2m + 1 in the series on
the left side of Eq. (30)]

[(2m + 1)2 − 1]c2m+2 + c2m = (−1)m(2m + 1)

22m(m + 1)! m!
, m = 1, 2, 3, . . . . (31)

When we set m = 1 in Eq. (31), we obtain

(32 − 1)c4 + c2 = (−1)3/(22 · 2!).

Notice that c2 can be selected arbitrarily, and then this equation determines c4. Also
notice that in the equation for the coefficient of x , c2 appeared multiplied by 0, and
that equation was used to determine a. That c2 is arbitrary is not surprising, since c2

is the coefficient of x in the expression x−1[1 +
∞∑

n=1
cnxn]. Consequently, c2 simply

generates a multiple of J1, and y2 is only determined up to an additive multiple of J1.
In accord with the usual practice we choose c2 = 1/22. Then we obtain

c4 = −1

24 · 2

[
3

2
+ 1

]
= −1

242!

[(
1 + 1

2

)
+ 1

]

= (−1)

24 · 2!
(H2 + H1).

It is possible to show that the solution of the recurrence relation (31) is

c2m = (−1)m+1(Hm + Hm−1)

22mm!(m − 1)!
, m = 1, 2, . . .

with the understanding that H0 = 0. Thus

y2(x) = −J1(x) ln x + 1

x

[
1 −

∞∑
m=1

(−1)m(Hm + Hm−1)

22mm!(m − 1)!
x2m

]
, x > 0. (32)

The calculation of y2(x) using the alternative procedure [see Eqs. (19) and (20)
of Section 5.7] in which we determine the cn(r2) is slightly easier. In particular the
latter procedure yields the general formula for c2m without the necessity of solving a
recurrence relation of the form (31) (see Problem 11). In this regard the reader may
also wish to compare the calculations of the second solution of Bessel’s equation of
order zero in the text and in Problem 10.
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The second solution of Eq. (23), the Bessel function of the second kind of order
one, Y1, is usually taken to be a certain linear combination of J1 and y2. Following
Copson (Chapter 12), Y1 is defined as

Y1(x) = 2

π
[−y2(x) + (γ − ln 2)J1(x)], (33)

where γ is defined in Eq. (12). The general solution of Eq. (23) for x > 0 is

y = c1 J1(x) + c2Y1(x).

Notice that while J1 is analytic at x = 0, the second solution Y1 becomes unbounded in
the same manner as 1/x as x → 0. The graphs of J1 and Y1 are shown in Figure 5.8.5.
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FIGURE 5.8.5 The Bessel functions J1 and Y1.

PROBLEMS In each of Problems 1 through 4 show that the given differential equation has a regular singular
point at x = 0, and determine two linearly independent solutions for x > 0.

1. x2 y′′ + 2xy′ + xy = 0 2. x2 y′′ + 3xy′ + (1 + x)y = 0
3. x2 y′′ + xy′ + 2xy = 0 4. x2 y′′ + 4xy′ + (2 + x)y = 0
5. Find two linearly independent solutions of the Bessel equation of order 3

2 ,

x2 y′′ + xy′ + (x2 − 9
4 )y = 0, x > 0.

6. Show that the Bessel equation of order one-half,

x2 y′′ + xy′ + (x2 − 1
4 )y = 0, x > 0,

can be reduced to the equation

v′′ + v = 0

by the change of dependent variable y = x−1/2v(x). From this conclude that y1(x) =
x−1/2 cos x and y2(x) = x−1/2 sin x are solutions of the Bessel equation of order one-half.

7. Show directly that the series for J0(x), Eq. (7), converges absolutely for all x .
8. Show directly that the series for J1(x), Eq. (27), converges absolutely for all x and that

J ′
0(x) = −J1(x).
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9. Consider the Bessel equation of order ν,

x2 y′′ + xy′ + (x2 − ν2) = 0, x > 0.

Take ν real and greater than zero.
(a) Show that x = 0 is a regular singular point, and that the roots of the indicial equation
are ν and −ν.
(b) Corresponding to the larger root ν, show that one solution is

y1(x) = xν

[
1 +

∞∑
m=1

(−1)m

m!(1 + ν)(2 + ν) · · · (m − 1 + ν)(m + ν)

( x

2

)2m
]

.

(c) If 2ν is not an integer, show that a second solution is

y2(x) = x−ν

[
1 +

∞∑
m=1

(−1)m

m!(1 − ν)(2 − ν) · · · (m − 1 − ν)(m − ν)

( x

2

)2m
]

.

Note that y1(x) → 0 as x → 0, and that y2(x) is unbounded as x → 0.
(d) Verify by direct methods that the power series in the expressions for y1(x) and y2(x)

converge absolutely for all x . Also verify that y2 is a solution provided only that ν is not
an integer.

10. In this section we showed that one solution of Bessel’s equation of order zero,

L[y] = x2 y′′ + xy′ + x2 y = 0,

is J0, where J0(x) is given by Eq. (7) with a0 = 1. According to Theorem 5.7.1 a second
solution has the form (x > 0)

y2(x) = J0(x) ln x +
∞∑

n=1

bn xn .

(a) Show that

L[y2](x) =
∞∑

n=2

n(n − 1)bn xn +
∞∑

n=1

nbn xn +
∞∑

n=1

bn xn+2 + 2x J ′
0(x). (i)

(b) Substituting the series representation for J0(x) in Eq. (i), show that

b1x + 22b2x2 +
∞∑

n=3

(n2bn + bn−2)xn = −2
∞∑

n=1

(−1)n2nx2n

22n(n!)2 . (ii)

(c) Note that only even powers of x appear on the right side of Eq. (ii). Show that
b1 = b3 = b5 = · · · = 0, b2 = 1/22(1!)2, and that

(2n)2b2n + b2n−2 = −2(−1)n(2n)/22n(n!)2, n = 2, 3, 4, . . . .

Deduce that

b4 = − 1

2242

(
1 + 1

2

)
and b6 = 1

224262

(
1 + 1

2
+ 1

3

)
.

The general solution of the recurrence relation is b2n = (−1)n+1 Hn/22n(n!)2. Substituting
for bn in the expression for y2(x) we obtain the solution given in Eq. (10).

11. Find a second solution of Bessel’s equation of order one by computing the cn(r2) and a
of Eq. (24) of Section 5.7 according to the formulas (19) and (20) of that section. Some
guidelines along the way of this calculation are the following. First, use Eq. (24) of this
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section to show that a1(−1) and a′
1(−1) are 0. Then show that c1(−1) = 0 and, from the

recurrence relation, that cn(−1) = 0 for n = 3, 5, . . . . Finally, use Eq. (25) to show that

a2m(r) = (−1)ma0

(r + 1)(r + 3)2 · · · (r + 2m − 1)2(r + 2m + 1)
,

for m = 1, 2, 3, . . . , and calculate

c2m(−1) = (−1)m+1(Hm + Hm−1)/22mm!(m − 1)!.

12. By a suitable change of variables it is sometimes possible to transform another differential
equation into a Bessel equation. For example, show that a solution of

x2 y′′ + (α2β2x2β + 1
4 − ν2β2)y = 0, x > 0

is given by y = x1/2 f (αxβ) where f (ξ) is a solution of the Bessel equation of order ν.
13. Using the result of Problem 12 show that the general solution of the Airy equation

y′′ − xy = 0, x > 0

is y = x1/2[c1 f1(
2
3 i x3/2) + c2 f2(

2
3 i x3/2)] where f1(ξ) and f2(ξ) are linearly independent

solutions of the Bessel equation of order one-third.
14. It can be shown that J0 has infinitely many zeros for x > 0. In particular, the first three

zeros are approximately 2.405, 5.520, and 8.653 (see Figure 5.8.1). Let λj , j = 1, 2, 3, . . . ,

denote the zeros of J0; it follows that

J0(λj x) =
{

1, x = 0,

0, x = 1.

Verify that y = J0(λj x) satisfies the differential equation

y′′ + 1

x
y′ + λ2

j y = 0, x > 0.

Hence show that ∫ 1

0
x J0(λi x)J0(λj x) dx = 0 if λi �= λj .

This important property of J0(λi x), known as the orthogonality property, is useful in
solving boundary value problems.
Hint: Write the differential equation for J0(λi x). Multiply it by x J0(λj x) and subtract it
from x J0(λi x) times the differential equation for J0(λj x). Then integrate from 0 to 1.

REFERENCES
Coddington, E. A., An Introduction to Ordinary Differential Equations (Englewood Cliffs, NJ: Pren-

tice Hall, 1961; New York: Dover, 1989).

Copson, E. T., An Introduction to the Theory of Functions of a Complex Variable (Oxford: Oxford
University, 1935).
Proofs of Theorems 5.3.1 and 5.7.1 can be found in intermediate or advanced books; for example, see

Chapters 3 and 4 of Coddington, or Chapters 3 and 4 of:

Rainville, E. D., Intermediate Differential Equations (2nd ed.) (New York: Macmillan, 1964).
Also see these texts for a discussion of the point at infinity, which was mentioned in Problem 21 of

Section 5.4. The behavior of solutions near an irregular singular point is an even more advanced topic; a
brief discussion can be found in Chapter 5 of:



292 Chapter 5. Series Solutions of Second Order Linear Equations

Coddington, E. A., and Levinson, N., Theory of Ordinary Differential Equations (New York: McGraw-
Hill, 1955).
More complete discussions of the Bessel equation, the Legendre equation, and many of the other named

equations can be found in advanced books on differential equations, methods of applied mathematics, and
special functions. A text dealing with special functions such as the Legendre polynomials and the Bessel
functions is:

Hochstadt, H., Special Functions of Mathematical Physics (New York: Holt, 1961).
An excellent compilation of formulas, graphs, and tables of Bessel functions, Legendre functions, and

other special functions of mathematical physics may be found in:

Abramowitz, M., and Stegun, I. A. (eds.), Handbook of Mathematical Functions (New York: Dover,
1965); originally published by the National Bureau of Standards, Washington, DC, 1964.



C H A P T E R

6

The Laplace
Transform

Many practical engineering problems involve mechanical or electrical systems acted on
by discontinuous or impulsive forcing terms. For such problems the methods described
in Chapter 3 are often rather awkward to use. Another method that is especially well
suited to these problems, although useful much more generally, is based on the Laplace
transform. In this chapter we describe how this important method works, emphasizing
problems typical of those arising in engineering applications.

6.1 Definition of the Laplace Transform

Among the tools that are very useful for solving linear differential equations are integral
transforms. An integral transform is a relation of the form

F(s) =
∫ β

α

K (s, t) f (t) dt, (1)

where K (s, t) is a given function, called the kernel of the transformation, and the
limits of integration α and β are also given. It is possible that α = −∞ or β = ∞,
or both. The relation (1) transforms the function f into another function F , which is
called the transform of f . The general idea in using an integral transform to solve a
differential equation is as follows: Use the relation (1) to transform a problem for an
unknown function f into a simpler problem for F , then solve this simpler problem to
find F , and finally recover the desired function f from its transform F . This last step
is known as “inverting the transform.”

293
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There are several integral transforms that are useful in applied mathematics, but
in this chapter we consider only the Laplace1 transform. This transform is defined in
the following way. Let f (t) be given for t ≥ 0, and suppose that f satisfies certain
conditions to be stated a little later. Then the Laplace transform of f , which we will
denote by L{ f (t)} or by F(s), is defined by the equation

L{ f (t)} = F(s) =
∫ ∞

0
e−st f (t) dt. (2)

The Laplace transform makes use of the kernel K (s, t) = e−st . Since the solutions of
linear differential equations with constant coefficients are based on the exponential
function, the Laplace transform is particularly useful for such equations.

Since the Laplace transform is defined by an integral over the range from zero to
infinity, it is useful to review some basic facts about such integrals. In the first place,
an integral over an unbounded interval is called an improper integral, and is defined
as a limit of integrals over finite intervals; thus∫ ∞

a
f (t) dt = lim

A→∞

∫ A

a
f (t) dt, (3)

where A is a positive real number. If the integral from a to A exists for each A > a,
and if the limit as A → ∞ exists, then the improper integral is said to converge to
that limiting value. Otherwise the integral is said to diverge, or to fail to exist. The
following examples illustrate both possibilities.

E X A M P L E

1

Let f (t) = ect , t ≥ 0, where c is a real nonzero constant. Then∫ ∞

0
ect dt = lim

A→∞

∫ A

0
ect dt = lim

A→∞
ect

c

∣∣∣∣
A

0

= lim
A→∞

1

c
(ecA − 1).

It follows that the improper integral converges if c < 0, and diverges if c > 0. If c = 0,
the integrand f (t) is the constant function with value 1, and the integral again diverges.

E X A M P L E

2

Let f (t) = 1/t , t ≥ 1. Then∫ ∞

1

dt

t
= lim

A→∞

∫ A

1

dt

t
= lim

A→∞
ln A.

Since lim
A→∞

ln A = ∞, the improper integral diverges.

1The Laplace transform is named for the eminent French mathematician P. S. Laplace, who studied the relation (2)
in 1782. However, the techniques described in this chapter were not developed until a century or more later. They
are due mainly to Oliver Heaviside (1850–1925), an innovative but unconventional English electrical engineer,
who made significant contributions to the development and application of electromagnetic theory.



6.1 Definition of the Laplace Transform 295

E X A M P L E

3

Let f (t) = t−p, t ≥ 1, where p is a real constant and p �= 1; the case p = 1 was
considered in Example 2. Then∫ ∞

1
t−p dt = lim

A→∞

∫ A

1
t−p dt = lim

A→∞
1

1 − p
(A1−p − 1).

As A → ∞, A1−p → 0 if p > 1, but A1−p → ∞ if p < 1. Hence
∫ ∞

1
t−p dt con-

verges for p > 1, but (incorporating the result of Example 2) diverges for p ≤ 1. These

results are analogous to those for the infinite series
∞∑

n=1

n−p.

Before discussing the possible existence of
∫ ∞

a
f (t) dt , it is helpful to define certain

terms. A function f is said to be piecewise continuous on an interval α ≤ t ≤ β if the
interval can be partitioned by a finite number of points α = t0 < t1 < · · · < tn = β so
that

1. f is continuous on each open subinterval ti−1 < t < ti .

2. f approaches a finite limit as the endpoints of each subinterval are approached
from within the subinterval.

In other words, f is piecewise continuous on α ≤ t ≤ β if it is continuous there except
for a finite number of jump discontinuities. If f is piecewise continuous on α ≤ t ≤ β

for every β > α, then f is said to be piecewise continuous on t ≥ α. An example of a
piecewise continuous function is shown in Figure 6.1.1.

If f is piecewise continuous on the interval a ≤ t ≤ A, then it can be shown that∫ A

a
f (t) dt exists. Hence, if f is piecewise continuous for t ≥ a, then

∫ A

a
f (t) dt exists

for each A > a. However, piecewise continuity is not enough to ensure convergence

of the improper integral
∫ ∞

a
f (t) dt , as the preceding examples show.

If f cannot be integrated easily in terms of elementary functions, the definition of

convergence of
∫ ∞

a
f (t) dt may be difficult to apply. Frequently, the most convenient

way to test the convergence or divergence of an improper integral is by the following
comparison theorem, which is analogous to a similar theorem for infinite series.

y

tα βt1 t2

FIGURE 6.1.1 A piecewise continuous function.



296 Chapter 6. The Laplace Transform

Theorem 6.1.1 If f is piecewise continuous for t ≥ a, if | f (t)| ≤ g(t)when t ≥ M for some positive

constant M , and if
∫ ∞

M
g(t) dt converges, then

∫ ∞
a

f (t) dt also converges. On

the other hand, if f (t) ≥ g(t) ≥ 0 for t ≥ M , and if
∫ ∞

M
g(t) dt diverges, then∫ ∞

a
f (t) dt also diverges.

The proof of this result from the calculus will not be given here. It is made plausible,

however, by comparing the areas represented by
∫ ∞

M
g(t) dt and

∫ ∞
M

| f (t)| dt . The

functions most useful for comparison purposes are ect and t−p, which were considered
in Examples 1, 2, and 3.

We now return to a consideration of the Laplace transform L{ f (t)} or F(s), which
is defined by Eq. (2) whenever this improper integral converges. In general, the pa-
rameter s may be complex, but for our discussion we need consider only real values
of s. The foregoing discussion of integrals indicates that the Laplace transform F of a
function f exists if f satisfies certain conditions, such as those stated in the following
theorem.

Theorem 6.1.2 Suppose that

1. f is piecewise continuous on the interval 0 ≤ t ≤ A for any positive A.

2. | f (t)| ≤ K eat when t ≥ M . In this inequality K , a, and M are real constants, K
and M necessarily positive.

Then the Laplace transform L{ f (t)} = F(s), defined by Eq. (2), exists for s > a.

To establish this theorem it is necessary to show only that the integral in Eq. (2)
converges for s > a. Splitting the improper integral into two parts, we have∫ ∞

0
e−st f (t) dt =

∫ M

0
e−st f (t) dt +

∫ ∞

M
e−st f (t) dt. (4)

The first integral on the right side of Eq. (4) exists by hypothesis (1) of the theorem;
hence the existence of F(s) depends on the convergence of the second integral. By
hypothesis (2) we have, for t ≥ M ,

|e−st f (t)| ≤ K e−st eat = K e(a−s)t ,

and thus, by Theorem 6.1.1, F(s) exists provided that
∫ ∞

M
e(a−s)t dt converges. Refer-

ring to Example 1 with c replaced by a − s, we see that this latter integral converges
when a − s < 0, which establishes Theorem 6.1.2.

Unless the contrary is specifically stated, in this chapter we deal only with functions
satisfying the conditions of Theorem 6.1.2. Such functions are described as piecewise
continuous, and of exponential order as t → ∞. The Laplace transforms of some
important elementary functions are given in the following examples.
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E X A M P L E

4

Let f (t) = 1, t ≥ 0. Then

L{1} =
∫ ∞

0
e−st dt = 1

s
, s > 0.

E X A M P L E

5

Let f (t) = eat , t ≥ 0. Then

L{eat } =
∫ ∞

0
e−st eat dt =

∫ ∞

0
e−(s−a)t dt

= 1

s − a
, s > a.

E X A M P L E

6

Let f (t) = sin at , t ≥ 0. Then

L{sin at} = F(s) =
∫ ∞

0
e−st sin at dt, s > 0.

Since

F(s) = lim
A→∞

∫ A

0
e−st sin at dt,

upon integrating by parts we obtain

F(s) = lim
A→∞

[
−e−st cos at

a

∣∣∣∣
A

0

− s

a

∫ A

0
e−st cos at dt

]

= 1

a
− s

a

∫ ∞

0
e−st cos at dt.

A second integration by parts then yields

F(s) = 1

a
− s2

a2

∫ ∞

0
e−st sin at dt

= 1

a
− s2

a2 F(s).

Hence, solving for F(s), we have

F(s) = a

s2 + a2 , s > 0.

Now let us suppose that f1 and f2 are two functions whose Laplace transforms exist
for s > a1 and s > a2, respectively. Then, for s greater than the maximum of a1 and a2,

L{c1 f1(t)+ c2 f2(t)} =
∫ ∞

0
e−st [c1 f1(t)+ c2 f2(t)] dt

= c1

∫ ∞

0
e−st f1(t) dt + c2

∫ ∞

0
e−st f2(t) dt;
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hence

L{c1 f1(t)+ c2 f2(t)} = c1L{ f1(t)} + c2L{ f2(t)}. (5)

Equation (5) is a statement of the fact that the Laplace transform is a linear operator.
This property is of paramount importance, and we make frequent use of it later.

PROBLEMS In each of Problems 1 through 4 sketch the graph of the given function. In each case determine
whether f is continuous, piecewise continuous, or neither on the interval 0 ≤ t ≤ 3.

1. f (t) =



t2, 0 ≤ t ≤ 1
2 + t, 1 < t ≤ 2
6 − t, 2 < t ≤ 3

2. f (t) =



t2, 0 ≤ t ≤ 1
(t − 1)−1, 1 < t ≤ 2
1, 2 < t ≤ 3

3. f (t) =



t2, 0 ≤ t ≤ 1
1, 1 < t ≤ 2
3 − t, 2 < t ≤ 3

4. f (t) =



t, 0 ≤ t ≤ 1
3 − t, 1 < t ≤ 2
1, 2 < t ≤ 3

5. Find the Laplace transform of each of the following functions:
(a) t
(b) t2

(c) tn , where n is a positive integer
6. Find the Laplace transform of f (t) = cos at , where a is a real constant.

Recall that cosh bt = (ebt + e−bt )/2 and sinh bt = (ebt − e−bt )/2. In each of Problems 7
through 10 find the Laplace transform of the given function; a and b are real constants.

7. cosh bt 8. sinh bt
9. eat cosh bt 10. eat sinh bt

In each of Problems 11 through 14 recall that cos bt = (eibt + e−ibt )/2 and sin bt = (eibt −
e−ibt )/2i . Assuming that the necessary elementary integration formulas extend to this case, find
the Laplace transform of the given function; a and b are real constants.

11. sin bt 12. cos bt
13. eat sin bt 14. eat cos bt

In each of Problems 15 through 20, using integration by parts, find the Laplace transform of the
given function; n is a positive integer and a is a real constant.

15. teat 16. t sin at 17. t cosh at
18. tneat 19. t2 sin at 20. t2 sinh at

In each of Problems 21 through 24 determine whether the given integral converges or diverges.

21.
∫ ∞

0
(t2 + 1)−1 dt 22.

∫ ∞

0
te−t dt

23.
∫ ∞

1
t−2et dt 24.

∫ ∞

0
e−t cos t dt

25. Suppose that f and f ′ are continuous for t ≥ 0, and of exponential order as t → ∞. Show
by integration by parts that if F(s) = L{ f (t)}, then lim

s→∞ F(s) = 0. The result is actually

true under less restrictive conditions, such as those of Theorem 6.1.2.
26. The Gamma Function. The gamma function is denoted by 
(p) and is defined by the

integral


(p + 1) =
∫ ∞

0
e−x x p dx . (i)
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The integral converges as x → ∞ for all p. For p < 0 it is also improper because the
integrand becomes unbounded as x → 0. However, the integral can be shown to converge
at x = 0 for p > −1.
(a) Show that for p > 0


(p + 1) = p
(p).

(b) Show that 
(1) = 1.
(c) If p is a positive integer n, show that


(n + 1) = n!.

Since 
(p) is also defined when p is not an integer, this function provides an extension of
the factorial function to nonintegral values of the independent variable. Note that it is also
consistent to define 0! = 1.
(d) Show that for p > 0

p(p + 1)(p + 2) · · · (p + n − 1) = 
(p + n)/
(p).

Thus 
(p) can be determined for all positive values of p if 
(p) is known in a single
interval of unit length, say, 0 < p ≤ 1. It is possible to show that 
( 1

2 ) = √
π . Find 
( 3

2 )

and 
( 11
2 ).

27. Consider the Laplace transform of t p, where p > −1.
(a) Referring to Problem 26, show that

L{t p} =
∫ ∞

0
e−st t p dt = 1

s p+1

∫ ∞

0
e−x x p dx

= 
(p + 1)/s p+1, s > 0.

(b) Let p be a positive integer n in (a); show that

L{tn} = n!/sn+1, s > 0.

(c) Show that

L{t−1/2} = 2√
s

∫ ∞

0
e−x2

dx, s > 0.

It is possible to show that ∫ ∞

0
e−x2

dx =
√
π

2
;

hence

L{t−1/2} =
√
π/s, s > 0.

(d) Show that

L{t1/2} = √
π/2s3/2, s > 0.

6.2 Solution of Initial Value Problems

In this section we show how the Laplace transform can be used to solve initial value
problems for linear differential equations with constant coefficients. The usefulness of
the Laplace transform in this connection rests primarily on the fact that the transform
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of f ′ is related in a simple way to the transform of f . The relationship is expressed in
the following theorem.

Theorem 6.2.1 Suppose that f is continuous and f ′ is piecewise continuous on any interval
0 ≤ t ≤ A. Suppose further that there exist constants K , a, and M such that | f (t)| ≤
K eat for t ≥ M . Then L{ f ′(t)} exists for s > a, and moreover

L{ f ′(t)} = sL{ f (t)} − f (0). (1)

To prove this theorem we consider the integral∫ A

0
e−st f ′(t) dt.

If f ′ has points of discontinuity in the interval 0 ≤ t ≤ A, let them be denoted by
t1, t2, . . . , tn . Then we can write this integral as∫ A

0
e−st f ′(t) dt =

∫ t1

0
e−st f ′(t) dt +

∫ t2

t1

e−st f ′(t) dt + · · · +
∫ A

tn

e−st f ′(t) dt.

Integrating each term on the right by parts yields∫ A

0
e−st f ′(t) dt = e−st f (t)

∣∣∣t1

0
+ e−st f (t)

∣∣∣t2

t1
+ · · · + e−st f (t)

∣∣∣A

tn

+ s

[∫ t1

0
e−st f (t) dt +

∫ t2

t1

e−st f (t) dt + · · · +
∫ A

tn

e−st f (t) dt

]
.

Since f is continuous, the contributions of the integrated terms at t1, t2, . . . , tn cancel.
Combining the integrals gives∫ A

0
e−st f ′(t) dt = e−s A f (A)− f (0)+ s

∫ A

0
e−st f (t) dt.

As A → ∞, e−s A f (A) → 0 whenever s > a. Hence, for s > a,

L{ f ′(t)} = sL{ f (t)} − f (0),

which establishes the theorem.
If f ′ and f ′′ satisfy the same conditions that are imposed on f and f ′, respectively,

in Theorem 6.2.1, then it follows that the Laplace transform of f ′′ also exists for s > a
and is given by

L{ f ′′(t)} = s2L{ f (t)} − s f (0)− f ′(0). (2)

Indeed, provided the function f and its derivatives satisfy suitable conditions, an
expression for the transform of the nth derivative f (n) can be derived by successive
applications of this theorem. The result is given in the following corollary.

Corollary 6.2.2 Suppose that the functions f, f ′, . . . , f (n−1) are continuous, and that f (n) is piecewise
continuous on any interval 0 ≤ t ≤ A. Suppose further that there exist constants K , a,
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and M such that | f (t)| ≤ K eat , | f ′(t)| ≤ K eat , . . . , | f (n−1)(t)| ≤ K eat for t ≥ M .
Then L{ f (n)(t)} exists for s > a and is given by

L{ f (n)(t)} = snL{ f (t)} − sn−1 f (0)− · · · − s f (n−2)(0)− f (n−1)(0). (3)

We now show how the Laplace transform can be used to solve initial value problems.
It is most useful for problems involving nonhomogeneous differential equations, as we
will demonstrate in later sections of this chapter. However, we begin by looking at some
homogeneous equations, which are a bit simpler. For example, consider the differential
equation

y′′ − y′ − 2y = 0 (4)

and the initial conditions

y(0) = 1, y′(0) = 0. (5)

This problem is easily solved by the methods of Section 3.1. The characteristic
equation is

r2 − r − 2 = (r − 2)(r + 1) = 0, (6)

and consequently the general solution of Eq. (4) is

y = c1e−t + c2e2t . (7)

To satisfy the initial conditions (5) we must have c1 + c2 = 1 and −c1 + 2c2 = 0;
hence c1 = 2

3 and c2 = 1
3 , so that the solution of the initial value problem (4) and (5) is

y = φ(t) = 2
3 e−t + 1

3 e2t . (8)

Now let us solve the same problem by using the Laplace transform. To do this we must
assume that the problem has a solution y = φ(t), which with its first two derivatives
satisfies the conditions of Corollary 6.2.2. Then, taking the Laplace transform of the
differential equation (4), we obtain

L{y′′} − L{y′} − 2L{y} = 0, (9)

where we have used the linearity of the transform to write the transform of a sum as the
sum of the separate transforms. Upon using the corollary to express L{y′′} and L{y′}
in terms of L{y}, we find that Eq. (9) becomes

s2L{y} − sy(0)− y′(0)− [sL{y} − y(0)] − 2L{y} = 0,

or

(s2 − s − 2)Y (s)+ (1 − s)y(0)− y′(0) = 0, (10)

where Y (s) = L{y}. Substituting for y(0) and y′(0) in Eq. (10) from the initial condi-
tions (5), and then solving for Y (s), we obtain

Y (s) = s − 1

s2 − s − 2
= s − 1

(s − 2)(s + 1)
. (11)

We have thus obtained an expression for the Laplace transform Y (s) of the solution
y = φ(t) of the given initial value problem. To determine the function φ we must find
the function whose Laplace transform is Y (s), as given by Eq. (11).
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This can be done most easily by expanding the right side of Eq. (11) in partial
fractions. Thus we write

Y (s) = s − 1

(s − 2)(s + 1)
= a

s − 2
+ b

s + 1
= a(s + 1)+ b(s − 2)

(s − 2)(s + 1)
, (12)

where the coefficients a and b are to be determined. By equating numerators of the
second and fourth members of Eq. (12), we obtain

s − 1 = a(s + 1)+ b(s − 2),

an equation that must hold for all s. In particular, if we set s = 2, then it follows that
a = 1

3 . Similarly, if we set s = −1, then we find that b = 2
3 . By substituting these

values for a and b, respectively, we have

Y (s) = 1/3

s − 2
+ 2/3

s + 1
. (13)

Finally, if we use the result of Example 5 of Section 6.1, it follows that 1
3 e2t has the

transform 1
3 (s − 2)−1; similarly, 2

3 e−t has the transform 2
3 (s + 1)−1. Hence, by the

linearity of the Laplace transform,

y = φ(t) = 1
3 e2t + 2

3 e−t

has the transform (13) and is therefore the solution of the initial value problem (4), (5).
Of course, this is the same solution that we obtained earlier.

The same procedure can be applied to the general second order linear equation with
constant coefficients,

ay′′ + by′ + cy = f (t). (14)

Assuming that the solution y = φ(t) satisfies the conditions of Corollary 6.2.2 for
n = 2, we can take the transform of Eq. (14) and thereby obtain

a[s2Y (s)− sy(0)− y′(0)] + b[sY (s)− y(0)] + cY (s) = F(s), (15)

where F(s) is the transform of f (t). By solving Eq. (15) for Y (s) we find that

Y (s) = (as + b)y(0)+ ay′(0)
as2 + bs + c

+ F(s)

as2 + bs + c
. (16)

The problem is then solved, provided that we can find the function y = φ(t) whose
transform is Y (s).

Even at this early stage of our discussion we can point out some of the essential
features of the transform method. In the first place, the transform Y (s) of the unknown
function y = φ(t) is found by solving an algebraic equation rather than a differential
equation, Eq. (10) rather than Eq. (4), or in general Eq. (15) rather than Eq. (14). This is
the key to the usefulness of Laplace transforms for solving linear, constant coefficient,
ordinary differential equations—the problem is reduced from a differential equation to
an algebraic one. Next, the solution satisfying given initial conditions is automatically
found, so that the task of determining appropriate values for the arbitrary constants in
the general solution does not arise. Further, as indicated in Eq. (15), nonhomogeneous
equations are handled in exactly the same way as homogeneous ones; it is not necessary
to solve the corresponding homogeneous equation first. Finally, the method can be
applied in the same way to higher order equations, as long as we assume that the
solution satisfies the conditions of the corollary for the appropriate value of n.
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Observe that the polynomial as2 + bs + c in the denominator on the right side of
Eq. (16) is precisely the characteristic polynomial associated with Eq. (14). Since the
use of a partial fraction expansion of Y (s) to determine φ(t) requires us to factor this
polynomial, the use of Laplace transforms does not avoid the necessity of finding roots
of the characteristic equation. For equations of higher than second order this may be a
difficult algebraic problem, particularly if the roots are irrational or complex.

The main difficulty that occurs in solving initial value problems by the transform
technique lies in the problem of determining the function y = φ(t) corresponding to
the transform Y (s). This problem is known as the inversion problem for the Laplace
transform; φ(t) is called the inverse transform corresponding to Y (s), and the process
of finding φ(t) from Y (s) is known as inverting the transform. We also use the notation
L−1{Y (s)} to denote the inverse transform of Y (s). There is a general formula for the
inverse Laplace transform, but its use requires a knowledge of the theory of functions
of a complex variable, and we do not consider it in this book. However, it is still
possible to develop many important properties of the Laplace transform, and to solve
many interesting problems, without the use of complex variables.

In solving the initial value problem (4), (5) we did not consider the question of
whether there may be functions other than the one given by Eq. (8) that also have
the transform (13). In fact, it can be shown that if f is a continuous function with
the Laplace transform F , then there is no other continuous function having the same
transform. In other words, there is essentially a one-to-one correspondence between
functions and their Laplace transforms. This fact suggests the compilation of a table,
such as Table 6.2.1, giving the transforms of functions frequently encountered, and
vice versa. The entries in the second column of Table 6.2.1 are the transforms of those
in the first column. Perhaps more important, the functions in the first column are the
inverse transforms of those in the second column. Thus, for example, if the transform
of the solution of a differential equation is known, the solution itself can often be found
merely by looking it up in the table. Some of the entries in Table 6.2.1 have been used
as examples, or appear as problems in Section 6.1, while others will be developed
later in the chapter. The third column of the table indicates where the derivation of the
given transforms may be found. While Table 6.2.1 is sufficient for the examples and
problems in this book, much larger tables are also available (see the list of references at
the end of the chapter). Transforms and inverse transforms can also be readily obtained
electronically by using a computer algebra system.

Frequently, a Laplace transform F(s) is expressible as a sum of several terms,

F(s) = F1(s)+ F2(s)+ · · · + Fn(s). (17)

Suppose that f1(t) = L−1{F1(s)}, . . . , fn(t) = L−1{Fn(s)}. Then the function

f (t) = f1(t)+ · · · + fn(t)

has the Laplace transform F(s). By the uniqueness property stated previously there is
no other continuous function f having the same transform. Thus

L−1{F(s)} = L−1{F1(s)} + · · · + L−1{Fn(s)}; (18)

that is, the inverse Laplace transform is also a linear operator.
In many problems it is convenient to make use of this property by decomposing a

given transform into a sum of functions whose inverse transforms are already known
or can be found in the table. Partial fraction expansions are particularly useful in this
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TABLE 6.2.1 Elementary Laplace Transforms

f (t) = L−1{F(s)} F(s) = L{ f (t)} Notes

1. 1
1

s
, s > 0 Sec. 6.1; Ex. 4

2. eat 1

s − a
, s > a Sec. 6.1; Ex. 5

3. tn; n = positive integer
n!

sn+1 , s > 0 Sec. 6.1; Prob. 27

4. t p, p > −1

(p + 1)

s p+1 , s > 0 Sec. 6.1; Prob. 27

5. sin at
a

s2 + a2 , s > 0 Sec. 6.1; Ex. 6

6. cos at
s

s2 + a2 , s > 0 Sec. 6.1; Prob. 6

7. sinh at
a

s2 − a2 , s > |a| Sec. 6.1; Prob. 8

8. cosh at
s

s2 − a2 , s > |a| Sec. 6.1; Prob. 7

9. eat sin bt
b

(s − a)2 + b2 , s > a Sec. 6.1; Prob. 13

10. eat cos bt
s − a

(s − a)2 + b2 , s > a Sec. 6.1; Prob. 14

11. tneat , n = positive integer
n!

(s − a)n+1 , s > a Sec. 6.1; Prob. 18

12. uc(t)
e−cs

s
, s > 0 Sec. 6.3

13. uc(t) f (t − c) e−cs F(s) Sec. 6.3

14. ect f (t) F(s − c) Sec. 6.3

15. f (ct)
1

c
F

( s

c

)
, c > 0 Sec. 6.3; Prob. 19

16.
∫ t

0
f (t − τ )g(τ ) dτ F(s)G(s) Sec. 6.6

17. δ(t − c) e−cs Sec. 6.5

18. f (n)(t) sn F(s)− sn−1 f (0)− · · · − f (n−1)(0) Sec. 6.2

19. (−t)n f (t) F (n)(s) Sec. 6.2; Prob. 28
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connection, and a general result covering many cases is given in Problem 38. Other
useful properties of Laplace transforms are derived later in this chapter.

As further illustrations of the technique of solving initial value problems by means of
the Laplace transform and partial fraction expansions, consider the following examples.

E X A M P L E

1

Find the solution of the differential equation

y′′ + y = sin 2t, (19)

satisfying the initial conditions

y(0) = 2, y′(0) = 1. (20)

We assume that this initial value problem has a solution y = φ(t), which with its
first two derivatives satisfies the conditions of Corollary 6.2.2. Then, taking the Laplace
transform of the differential equation, we have

s2Y (s)− sy(0)− y′(0)+ Y (s) = 2/(s2 + 4),

where the transform of sin 2t has been obtained from line 5 of Table 6.2.1. Substituting
for y(0) and y′(0) from the initial conditions and solving for Y (s), we obtain

Y (s) = 2s3 + s2 + 8s + 6

(s2 + 1)(s2 + 4)
. (21)

Using partial fractions we can write Y (s) in the form

Y (s) = as + b

s2 + 1
+ cs + d

s2 + 4
= (as + b)(s2 + 4)+ (cs + d)(s2 + 1)

(s2 + 1)(s2 + 4)
. (22)

By expanding the numerator on the right side of Eq. (22) and equating it to the numerator
in Eq. (21) we find that

2s3 + s2 + 8s + 6 = (a + c)s3 + (b + d)s2 + (4a + c)s + (4b + d)

for all s. Then, comparing coefficients of like powers of s, we have

a + c = 2, b + d = 1,

4a + c = 8, 4b + d = 6.

Consequently, a = 2, c = 0, b = 5
3 , and d = − 2

3 , from which it follows that

Y (s) = 2s

s2 + 1
+ 5/3

s2 + 1
− 2/3

s2 + 4
. (23)

From lines 5 and 6 of Table 6.2.1, the solution of the given initial value problem is

y = φ(t) = 2 cos t + 5
3 sin t − 1

3 sin 2t. (24)

E X A M P L E

2

Find the solution of the initial value problem

yiv − y = 0, (25)

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0. (26)
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In this problem we need to assume that the solution y = φ(t) satisfies the conditions
of Corollary 6.2.2 for n = 4. The Laplace transform of the differential equation (25) is

s4Y (s)− s3 y(0)− s2 y′(0)− sy′′(0)− y′′′(0)− Y (s) = 0.

Then, using the initial conditions (26) and solving for Y (s), we have

Y (s) = s2

s4 − 1
. (27)

A partial fraction expansion of Y (s) is

Y (s) = as + b

s2 − 1
+ cs + d

s2 + 1
,

and it follows that

(as + b)(s2 + 1)+ (cs + d)(s2 − 1) = s2 (28)

for all s. By setting s = 1 and s = −1, respectively, in Eq. (28) we obtain the pair of
equations

2(a + b) = 1, 2(−a + b) = 1,

and therefore a = 0 and b = 1
2 . If we set s = 0 in Eq. (28), then b − d = 0, so d = 1

2 .
Finally, equating the coefficients of the cubic terms on each side of Eq. (28), we find
that a + c = 0, so c = 0. Thus

Y (s) = 1/2

s2 − 1
+ 1/2

s2 + 1
, (29)

and from lines 7 and 5 of Table 6.2.1 the solution of the initial value problem (25),
(26) is

y = φ(t) = sinh t + sin t

2
. (30)

The most important elementary applications of the Laplace transform are in the
study of mechanical vibrations and in the analysis of electric circuits; the governing
equations were derived in Section 3.8. A vibrating spring–mass system has the equation
of motion

m
d2u

dt2 + γ
du

dt
+ ku = F(t), (31)

where m is the mass, γ the damping coefficient, k the spring constant, and F(t)
the applied external force. The equation describing an electric circuit containing an
inductance L , a resistance R, and a capacitance C (an LRC circuit) is

L
d2 Q

dt2 + R
d Q

dt
+ 1

C
Q = E(t), (32)

where Q(t) is the charge on the capacitor and E(t) is the applied voltage. In terms of
the current I (t) = d Q(t)/dt we can differentiate Eq. (32) and write

L
d2 I

dt2 + R
d I

dt
+ 1

C
I = d E

dt
(t). (33)

Suitable initial conditions on u, Q, or I must also be prescribed.
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We have noted previously in Section 3.8 that Eq. (31) for the spring–mass system
and Eq. (32) or (33) for the electric circuit are identical mathematically, differing only
in the interpretation of the constants and variables appearing in them. There are other
physical problems that also lead to the same differential equation. Thus, once the
mathematical problem is solved, its solution can be interpreted in terms of whichever
corresponding physical problem is of immediate interest.

In the problem lists following this and other sections in this chapter are numerous
initial value problems for second order linear differential equations with constant
coefficients. Many can be interpreted as models of particular physical systems, but
usually we do not point this out explicitly.

PROBLEMS In each of Problems 1 through 10 find the inverse Laplace transform of the given function.

1.
3

s2 + 4
2.

4

(s − 1)3

3.
2

s2 + 3s − 4
4.

3s

s2 − s − 6

5.
2s + 2

s2 + 2s + 5
6.

2s − 3

s2 − 4

7.
2s + 1

s2 − 2s + 2
8.

8s2 − 4s + 12

s(s2 + 4)

9.
1 − 2s

s2 + 4s + 5
10.

2s − 3

s2 + 2s + 10

In each of Problems 11 through 23 use the Laplace transform to solve the given initial value
problem.

11. y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −1
12. y′′ + 3y′ + 2y = 0; y(0) = 1, y′(0) = 0
13. y′′ − 2y′ + 2y = 0; y(0) = 0, y′(0) = 1
14. y′′ − 4y′ + 4y = 0; y(0) = 1, y′(0) = 1
15. y′′ − 2y′ − 2y = 0; y(0) = 2, y′(0) = 0
16. y′′ + 2y′ + 5y = 0; y(0) = 2, y′(0) = −1
17. yiv − 4y′′′ + 6y′′ − 4y′ + y = 0; y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 1
18. yiv − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0
19. yiv − 4y = 0; y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0
20. y′′ + ω2 y = cos 2t, ω2 �= 4; y(0) = 1, y′(0) = 0
21. y′′ − 2y′ + 2y = cos t; y(0) = 1, y′(0) = 0
22. y′′ − 2y′ + 2y = e−t ; y(0) = 0, y′(0) = 1
23. y′′ + 2y′ + y = 4e−t ; y(0) = 2, y′(0) = −1

In each of Problems 24 through 26 find the Laplace transform Y (s) = L{y} of the solution of
the given initial value problem. A method of determining the inverse transform is developed in
Section 6.3.

24. y′′ + 4y =
{

1, 0 ≤ t < π,

0, π ≤ t < ∞; y(0) = 1, y′(0) = 0

25. y′′ + y =
{

t, 0 ≤ t < 1,
0, 1 ≤ t < ∞; y(0) = 0, y′(0) = 0
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26. y′′ + 4y =
{

t, 0 ≤ t < 1,
1, 1 ≤ t < ∞; y(0) = 0, y′(0) = 0

27. The Laplace transforms of certain functions can be found conveniently from their Taylor
series expansions.
(a) Using the Taylor series for sin t ,

sin t =
∞∑

n= 0

(−1)nt2n+1

(2n + 1)!
,

and assuming that the Laplace transform of this series can be computed term by term,
verify that

L{sin t} = 1

s2 + 1
, s > 1.

(b) Let

f (t) =
{
(sin t)/t, t �= 0,
1, t = 0.

Find the Taylor series for f about t = 0. Assuming that the Laplace transform of this
function can be computed term by term, verify that

L{ f (t)} = arctan(1/s), s > 1.

(c) The Bessel function of the first kind of order zero J0 has the Taylor series (see
Section 5.8)

J0(t) =
∞∑

n= 0

(−1)nt2n

22n(n!)2
.

Assuming that the following Laplace transforms can be computed term by term, verify that

L{J0(t)} = (s2 + 1)−1/2, s > 1,

and

L{J0(
√

t)} = s−1e−1/4s, s > 0.

Problems 28 through 36 are concerned with differentiation of the Laplace transform.

28. Let

F(s) =
∫ ∞

0
e−st f (t) dt.

It is possible to show that as long as f satisfies the conditions of Theorem 6.1.2, it is
legitimate to differentiate under the integral sign with respect to the parameter s when
s > a.
(a) Show that F ′(s) = L{−t f (t)}.
(b) Show that F (n)(s) = L{(−t)n f (t)}; hence differentiating the Laplace transform cor-
responds to multiplying the original function by −t .

In each of Problems 29 through 34 use the result of Problem 28 to find the Laplace transform of
the given function; a and b are real numbers and n is a positive integer.

29. teat 30. t2 sin bt
31. tn 32. tneat

33. teat sin bt 34. teat cos bt
35. Consider Bessel’s equation of order zero

t y′′ + y′ + t y = 0.
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Recall from Section 5.4 that t = 0 is a regular singular point for this equation, and therefore
solutions may become unbounded as t → 0. However, let us try to determine whether there
are any solutions that remain finite at t = 0 and have finite derivatives there. Assuming that
there is such a solution y = φ(t), let Y (s) = L{φ(t)}.
(a) Show that Y (s) satisfies

(1 + s2)Y ′(s)+ sY (s) = 0.

(b) Show that Y (s) = c(1 + s2)−1/2, where c is an arbitrary constant.
(c) Expanding (1 + s2)−1/2 in a binomial series valid for s > 1 and assuming that it is
permissible to take the inverse transform term by term, show that

y = c
∞∑

n= 0

(−1)nt2n

22n(n!)2
= cJ0(t),

where J0 is the Bessel function of the first kind of order zero. Note that J0(0) = 1, and that
J0 has finite derivatives of all orders at t = 0. It was shown in Section 5.8 that the second
solution of this equation becomes unbounded as t → 0.

36. For each of the following initial value problems use the results of Problem 28 to find the
differential equation satisfied by Y (s) = L{φ(t)}, where y = φ(t) is the solution of the
given initial value problem.
(a) y′′ − t y = 0; y(0) = 1, y′(0) = 0 (Airy’s equation)
(b) (1 − t2)y′′ − 2t y′ + α(α + 1)y = 0; y(0) = 0, y′(0) = 1 (Legendre’s equation)

Note that the differential equation for Y (s) is of first order in part (a), but of second order
in part (b). This is due to the fact that t appears at most to the first power in the equation
of part (a), whereas it appears to the second power in that of part (b). This illustrates that
the Laplace transform is not often useful in solving differential equations with variable
coefficients, unless all the coefficients are at most linear functions of the independent
variable.

37. Suppose that

g(t) =
∫ t

0
f (τ ) dτ.

If G(s) and F(s) are the Laplace transforms of g(t) and f (t), respectively, show that

G(s) = F(s)/s.

38. In this problem we show how a general partial fraction expansion can be used to calculate
many inverse Laplace transforms. Suppose that

F(s) = P(s)/Q(s),

where Q(s) is a polynomial of degree n with distinct zeros r1, . . . , rn and P(s) is a
polynomial of degree less than n. In this case it is possible to show that P(s)/Q(s) has a
partial fraction expansion of the form

P(s)

Q(s)
= A1

s − r1

+ · · · + An

s − rn

, (i)

where the coefficients A1, . . . , An must be determined.
(a) Show that

Ak = P(rk)/Q ′(rk), k = 1, . . . , n. (ii)

Hint: One way to do this is to multiply Eq. (i) by s − rk and then to take the limit as s → rk .
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(b) Show that

L−1{F(s)} =
n∑

k=1

P(rk)

Q ′(rk)
erk t . (iii)

6.3 Step Functions

In Section 6.2 we outlined the general procedure involved in solving initial value
problems by means of the Laplace transform. Some of the most interesting elemen-
tary applications of the transform method occur in the solution of linear differential
equations with discontinuous or impulsive forcing functions. Equations of this type
frequently arise in the analysis of the flow of current in electric circuits or the vibra-
tions of mechanical systems. In this section and the following ones we develop some
additional properties of the Laplace transform that are useful in the solution of such
problems. Unless a specific statement is made to the contrary, all functions appearing
below will be assumed to be piecewise continuous and of exponential order, so that
their Laplace transforms exist, at least for s sufficiently large.

To deal effectively with functions having jump discontinuities, it is very helpful to
introduce a function known as the unit step function, or Heaviside function. This
function will be denoted by uc, and is defined by

uc(t) =
{

0, t < c,
1, t ≥ c,

c ≥ 0. (1)

The graph of y = uc(t) is shown in Figure 6.3.1. The step can also be negative. For
instance, Figure 6.3.2 shows the graph y = 1 − uc(t).

1

y

tc

FIGURE 6.3.1 Graph of y = uc(t).

1

y

tc

FIGURE 6.3.2 Graph of
y = 1 − uc(t).

E X A M P L E

1

Sketch the graph of y = h(t), where

h(t) = u
π
(t)− u2π(t), t ≥ 0.

From the definition of uc(t) in Eq. (1) we have

h(t) =



0 − 0 = 0, 0 ≤ t < π,

1 − 0 = 1, π ≤ t < 2π,
1 − 1 = 0, 2π ≤ t < ∞.
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Thus the equation y = h(t) has the graph shown in Figure 6.3.3. This function can be
thought of as a rectangular pulse.

y

tπ2 ππ 3

1

FIGURE 6.3.3 Graph of y = u
π
(t)− u2π (t).

The Laplace transform of uc is easily determined:

L{uc(t)} =
∫ ∞

0
e−st uc(t) dt =

∫ ∞

c
e−st dt

= e−cs

s
, s > 0. (2)

For a given function f , defined for t ≥ 0, we will often want to consider the related
function g defined by

y = g(t) =
{

0, t < c,
f (t − c), t ≥ c,

which represents a translation of f a distance c in the positive t direction; see Figure
6.3.4. In terms of the unit step function we can write g(t) in the convenient form

g(t) = uc(t) f (t − c).

The unit step function is particularly important in transform use because of the fol-
lowing relation between the transform of f (t) and that of its translation uc(t) f (t − c).

y

t

y

t

f (0) f (0)

(a) (b)

c

FIGURE 6.3.4 A translation of the given function. (a) y = f (t); (b) y = uc(t) f (t − c).

Theorem 6.3.1 If F(s) = L{ f (t)} exists for s > a ≥ 0, and if c is a positive constant, then

L{uc(t) f (t − c)} = e−csL{ f (t)} = e−cs F(s), s > a. (3)
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Conversely, if f (t) = L−1{F(s)}, then

uc(t) f (t − c) = L−1{e−cs F(s)}. (4)

Theorem 6.3.1 simply states that the translation of f (t) a distance c in the positive t
direction corresponds to the multiplication of F(s) by e−cs . To prove Theorem 6.3.1 it
is sufficient to compute the transform of uc(t) f (t − c):

L{uc(t) f (t − c)} =
∫ ∞

0
e−st uc(t) f (t − c) dt

=
∫ ∞

c
e−st f (t − c) dt.

Introducing a new integration variable ξ = t − c, we have

L{uc(t) f (t − c)} =
∫ ∞

0
e−(ξ+c)s f (ξ) dξ = e−cs

∫ ∞

0
e−sξ f (ξ) dξ

= e−cs F(s).

Thus Eq. (3) is established; Eq. (4) follows by taking the inverse transform of both
sides of Eq. (3).

A simple example of this theorem occurs if we take f (t) = 1. Recalling that L{1} =
1/s, we immediately have from Eq. (3) that L{uc(t)} = e−cs/s. This result agrees with
that of Eq. (2). Examples 2 and 3 illustrate further how Theorem 6.3.1 can be used in
the calculation of transforms and inverse transforms.

E X A M P L E

2

If the function f is defined by

f (t) =
{

sin t, 0 ≤ t < π/4,
sin t + cos(t − π/4), t ≥ π/4,

find L{ f (t)}. The graph of y = f (t) is shown in Figure 6.3.5.
Note that f (t) = sin t + g(t), where

g(t) =
{

0, t < π/4,
cos(t − π/4), t ≥ π/4.

Thus

g(t) = u
π/4(t) cos(t − π/4),

and

L{ f (t)} = L{sin t} + L{u
π/4(t) cos(t − π/4)}

= L{sin t} + e−πs/4L{cos t}.
Introducing the transforms of sin t and cos t , we obtain

L{ f (t)} = 1

s2 + 1
+ e−πs/4 s

s2 + 1
= 1 + se−πs/4

s2 + 1
.

You should compare this method with the calculation of L{ f (t)} directly from the
definition.
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y

t

y = sin t + u  /4(t)cos(t –   )π
π
4

2

1.5

1

0.5

0.5 1 1.5 2 2.5 3π
4

FIGURE 6.3.5 Graph of the function in Example 2.

E X A M P L E

3

Find the inverse transform of

F(s) = 1 − e−2s

s2 .

From the linearity of the inverse transform we have

f (t) = L−1{F(s)} = L−1

{
1

s2

}
− L−1

{
e−2s

s2

}

= t − u2(t)(t − 2).

The function f may also be written as

f (t) =
{

t, 0 ≤ t < 2,
2, t ≥ 2.

The following theorem contains another very useful property of Laplace transforms
that is somewhat analogous to that given in Theorem 6.3.1.

Theorem 6.3.2 If F(s) = L{ f (t)} exists for s > a ≥ 0, and if c is a constant, then

L{ect f (t)} = F(s − c), s > a + c. (5)

Conversely, if f (t) = L−1{F(s)}, then

ect f (t) = L−1{F(s − c)}. (6)

According to Theorem 6.3.2, multiplication of f (t) by ect results in a translation of
the transform F(s) a distance c in the positive s direction, and conversely. The proof
of this theorem requires merely the evaluation of L{ect f (t)}. Thus

L{ect f (t)} =
∫ ∞

0
e−st ect f (t) dt =

∫ ∞

0
e−(s−c)t f (t) dt

= F(s − c),
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which is Eq. (5). The restriction s > a + c follows from the observation that, according
to hypothesis (ii) of Theorem 6.1.2, | f (t)| ≤ K eat ; hence |ect f (t)| ≤ K e(a+c)t . Equa-
tion (6) follows by taking the inverse transform of Eq. (5), and the proof is complete.

The principal application of Theorem 6.3.2 is in the evaluation of certain inverse
transforms, as illustrated by Example 4.

E X A M P L E

4

Find the inverse transform of

G(s) = 1

s2 − 4s + 5
.

By completing the square in the denominator we can write

G(s) = 1

(s − 2)2 + 1
= F(s − 2),

where F(s) = (s2 + 1)−1. Since L−1{F(s)} = sin t , it follows from Theorem 6.3.2
that

g(t) = L−1{G(s)} = e2t sin t.

The results of this section are often useful in solving differential equations, partic-
ularly those having discontinuous forcing functions. The next section is devoted to
examples illustrating this fact.

PROBLEMS In each of Problems 1 through 6 sketch the graph of the given function on the interval t ≥ 0.

1. u1(t)+ 2u3(t)− 6u4(t) 2. (t − 3)u2(t)− (t − 2)u3(t)
3. f (t − π)u

π
(t), where f (t) = t2 4. f (t − 3)u3(t), where f (t) = sin t

5. f (t − 1)u2(t), where f (t) = 2t
6. f (t) = (t − 1)u1(t)− 2(t − 2)u2(t)+ (t − 3)u3(t)

In each of Problems 7 through 12 find the Laplace transform of the given function.

7. f (t) =
{

0, t < 2
(t − 2)2, t ≥ 2

8. f (t) =
{

0, t < 1
t2 − 2t + 2, t ≥ 1

9. f (t) =



0, t < π

t − π, π ≤ t < 2π
0, t ≥ 2π

10. f (t) = u1(t)+ 2u3(t)− 6u4(t)

11. f (t) = (t − 3)u2(t)− (t − 2)u3(t) 12. f (t) = t − u1(t)(t − 1), t ≥ 0

In each of Problems 13 through 18 find the inverse Laplace transform of the given function.

13. F(s) = 3!

(s − 2)4
14. F(s) = e−2s

s2 + s − 2

15. F(s) = 2(s − 1)e−2s

s2 − 2s + 2
16. F(s) = 2e−2s

s2 − 4

17. F(s) = (s − 2)e−s

s2 − 4s + 3
18. F(s) = e−s + e−2s − e−3s − e−4s

s
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19. Suppose that F(s) = L{ f (t)} exists for s > a ≥ 0.
(a) Show that if c is a positive constant, then

L{ f (ct)} = 1

c
F

( s

c

)
, s > ca.

(b) Show that if k is a positive constant, then

L−1{F(ks)} = 1

k
f

(
t

k

)
.

(c) Show that if a and b are constants with a > 0, then

L−1{F(as + b)} = 1

a
e−bt/a f

(
t

a

)
.

In each of Problems 20 through 23 use the results of Problem 19 to find the inverse Laplace
transform of the given function.

20. F(s) = 2n+1n!

sn+1 21. F(s) = 2s + 1

4s2 + 4s + 5

22. F(s) = 1

9s2 − 12s + 3
23. F(s) = e2e−4s

2s − 1

In each of Problems 24 through 27 find the Laplace transform of the given function. In Problem
27 assume that term-by-term integration of the infinite series is permissible.

24. f (t) =
{

1, 0 ≤ t < 1
0, t ≥ 1

25. f (t) =




1, 0 ≤ t < 1
0, 1 ≤ t < 2
1, 2 ≤ t < 3
0, t ≥ 3

26. f (t) = 1 − u1(t)+ · · · + u2n(t)− u2n+1(t) = 1 +
2n+1∑
k=1

(−1)kuk(t)

27. f (t) = 1 +
∞∑

k=1

(−1)kuk(t). See Figure 6.3.6.

y

t

1

1 2 3 4 5

FIGURE 6.3.6 A square wave.

28. Let f satisfy f (t + T ) = f (t) for all t ≥ 0 and for some fixed positive number T ; f is
said to be periodic with period T on 0 ≤ t < ∞. Show that

L{ f (t)} =

∫ T

0
e−st f (t) dt

1 − e−sT .
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In each of Problems 29 through 32, use the result of Problem 28 to find the Laplace transform
of the given function.

29. f (t) =
{

1, 0 ≤ t < 1,
0, 1 ≤ t < 2;

f (t + 2) = f (t).

Compare with Problem 27.

30. f (t) =
{

1, 0 ≤ t < 1,
−1, 1 ≤ t < 2;

f (t + 2) = f (t).

See Figure 6.3.7.

y

t

–1

1

1 2 3 4 5

FIGURE 6.3.7 A square wave.

31. f (t) = t, 0 ≤ t < 1;
f (t + 1) = f (t).

See Figure 6.3.8.

32. f (t) = sin t, 0 ≤ t < π;
f (t + π) = f (t).

See Figure 6.3.9.

y

t
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FIGURE 6.3.8 A sawtooth wave.
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FIGURE 6.3.9 A rectified sine wave.

33. (a) If f (t) = 1 − u1(t), find L{ f (t)}; compare with Problem 24. Sketch the graph of
y = f (t).

(b) Let g(t) =
∫ t

0
f (ξ) dξ , where the function f is defined in part (a). Sketch the graph

of y = g(t) and find L{g(t)}.
(c) Let h(t) = g(t)− u1(t)g(t − 1), where g is defined in part (b). Sketch the graph of
y = h(t) and find L{h(t)}.

34. Consider the function p defined by

p(t) =
{

t, 0 ≤ t < 1,
2 − t, 1 ≤ t < 2; p(t + 2) = p(t).

(a) Sketch the graph of y = p(t).
(b) Find L{p(t)} by noting that p is the periodic extension of the function h in Prob-
lem 33(c) and then using the result of Problem 28.
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(c) Find L{p(t)} by noting that

p(t) =
∫ t

0
f (t) dt,

where f is the function in Problem 30, and then using Theorem 6.2.1.

6.4 Differential Equations with Discontinuous Forcing Functions

In this section we turn our attention to some examples in which the nonhomogeneous
term, or forcing function, is discontinuous.

E X A M P L E

1

Find the solution of the differential equation

2y′′ + y′ + 2y = g(t), (1)

where

g(t) = u5(t)− u20(t) =
{

1, 5 ≤ t < 20,
0, 0 ≤ t < 5 and t ≥ 20.

(2)

Assume that the initial conditions are

y(0) = 0, y′(0) = 0. (3)

This problem governs the charge on the capacitor in a simple electric circuit with
a unit voltage pulse for 5 ≤ t < 20. Alternatively, y may represent the response of a
damped oscillator subject to the applied force g(t).

The Laplace transform of Eq. (1) is

2s2Y (s)− 2sy(0)− 2y′(0)+ sY (s)− y(0)+ 2Y (s) = L{u5(t)} − L{u20(t)}
= (e−5s − e−20s)/s.

Introducing the initial values (3) and solving for Y (s), we obtain

Y (s) = e−5s − e−20s

s(2s2 + s + 2)
. (4)

To find y = φ(t) it is convenient to write Y (s) as

Y (s) = (e−5s − e−20s)H(s), (5)

where

H(s) = 1/s(2s2 + s + 2). (6)

Then, if h(t) = L−1{H(s)}, we have

y = φ(t) = u5(t)h(t − 5)− u20(t)h(t − 20). (7)
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Observe that we have used Theorem 6.3.1 to write the inverse transforms of e−5s H(s)
and e−20s H(s), respectively. Finally, to determine h(t) we use the partial fraction
expansion of H(s):

H(s) = a

s
+ bs + c

2s2 + s + 2
. (8)

Upon determining the coefficients we find that a = 1
2 , b = −1, and c = − 1

2 . Thus

H(s) = 1/2

s
− s + 1

2

2s2 + s + 2

= 1/2

s
−

(
1

2

)
(s + 1

4 )+ 1
4

(s + 1
4 )

2 + 15
16

, (9)

so that, by referring to lines 9 and 10 of Table 6.2.1, we obtain

h(t) = 1
2 − 1

2 [e−t/4 cos(
√

15 t/4)+ (
√

15/15)e−t/4 sin(
√

15 t/4)]. (10)

In Figure 6.4.1 the graph of y = φ(t) from Eqs. (7) and (10) shows that the solution
consists of three distinct parts. For 0 < t < 5 the differential equation is

2y′′ + y′ + 2y = 0 (11)

and the initial conditions are given by Eq. (3). Since the initial conditions impart no
energy to the system, and since there is no external forcing, the system remains at rest;
that is, y = 0 for 0 < t < 5. This can be confirmed by solving Eq. (11) subject to the
initial conditions (3). In particular, evaluating the solution and its derivative at t = 5,
or more precisely, as t approaches 5 from below, we have

y(5) = 0, y′(5) = 0. (12)

Once t > 5, the differential equation becomes

2y′′ + y′ + 2y = 1, (13)

whose solution is the sum of a constant (the response to the constant forcing function)
and a damped oscillation (the solution of the corresponding homogeneous equation).
The plot in Figure 6.4.1 shows this behavior clearly for the interval 5 ≤ t ≤ 20. An
expression for this portion of the solution can be found by solving the differential
equation (13) subject to the initial conditions (12). Finally, for t > 20 the differential
equation becomes Eq. (11) again, and the initial conditions are obtained by evaluating
the solution of Eqs. (13), (12) and its derivative at t = 20. These values are

y(20) ∼= 0.50162, y′(20) ∼= 0.01125. (14)

The initial value problem (11), (14) contains no external forcing, so its solution is a
damped oscillation about y = 0, as can be seen in Figure 6.4.1.
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y

t

0.6

0.4

0.8

0.2

–0.2

10 20 4030

FIGURE 6.4.1 Solution of the initial value problem (1), (2), (3).

While it may be helpful to visualize the solution shown in Figure 6.4.1 as composed
of solutions of three separate initial value problems in three separate intervals, it is
somewhat tedious to find the solution by solving these separate problems. Laplace
transform methods provide a much more convenient and elegant approach to this
problem and to others having discontinuous forcing functions.

The effect of the discontinuity in the forcing function can be seen if we examine the
solution φ(t) of Example 1 more closely. According to the existence and uniqueness
Theorem 3.2.1 the solution φ and its first two derivatives are continuous except possibly
at the points t = 5 and t = 20 where g is discontinuous. This can also be seen at once
from Eq. (7). One can also show by direct computation from Eq. (7) that φ and φ′ are
continuous even at t = 5 and t = 20. However, if we calculate φ′′, we find that

lim
t→5−

φ′′(t) = 0, lim
t→5+

φ′′(t) = 1/2.

Consequently, φ′′(t) has a jump of 1/2 at t = 5. In a similar way one can show that
φ′′(t) has a jump of −1/2 at t = 20. Thus the jump in the forcing term g(t) at these
points is balanced by a corresponding jump in the highest order term 2y′′ on the left
side of the equation.

Consider now the general second order linear equation

y′′ + p(t)y′ + q(t)y = g(t), (15)

where p and q are continuous on some interval α < t < β, but g is only piecewise
continuous there. If y = ψ(t) is a solution of Eq. (15), then ψ and ψ ′ are continuous
on α < t < β, butψ ′′ has jump discontinuities at the same points as g. Similar remarks
apply to higher order equations; the highest derivative of the solution appearing in the
differential equation has jump discontinuities at the same points as the forcing function,
but the solution itself and its lower derivatives are continuous even at those points.
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E X A M P L E

2

Describe the qualitative nature of the solution of the initial value problem

y′′ + 4y = g(t), (16)

y(0) = 0, y′(0) = 0, (17)

where

g(t) =



0, 0 ≤ t < 5,
(t − 5)/5, 5 ≤ t < 10,
1, t ≥ 10,

(18)

and then find the solution.
In this example the forcing function has the graph shown in Figure 6.4.2 and is

known as ramp loading. It is relatively easy to identify the general form of the solution.
For t < 5 the solution is simply y = 0. On the other hand, for t > 10 the solution has
the form

y = c1 cos 2t + c2 sin 2t + 1/4. (19)

The constant 1/4 is a particular solution of the nonhomogeneous equation while the
other two terms are the general solution of the corresponding homogeneous equation.
Thus the solution (19) is a simple harmonic oscillation about y = 1/4. Similarly, in
the intermediate range 5 < t < 10, the solution is an oscillation about a certain linear
function. In an engineering context, for example, we might be interested in knowing
the amplitude of the eventual steady oscillation.

y

t

1

5

0.5

10 15 20

y = g(t)

FIGURE 6.4.2 Ramp loading; y = g(t) from Eq. (18).

To solve the problem it is convenient to write

g(t) = [u5(t)(t − 5)− u10(t)(t − 10)]/5, (20)

as you may verify. Then we take the Laplace transform of the differential equation and
use the initial conditions, thereby obtaining

(s2 + 4)Y (s) = (e−5s − e−10s)/5s2,

or

Y (s) = (e−5s − e−10s)H(s)/5, (21)

where

H(s) = 1/s2(s2 + 4). (22)
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Thus the solution of the initial value problem (16), (17), (18) is

y = φ(t) = [u5(t)h(t − 5)− u10(t)h(t − 10)]/5, (23)

where h(t) is the inverse transform of H(s). The partial fraction expansion of H(s) is

H(s) = 1/4

s2 − 1/4

s2 + 4
, (24)

and it then follows from lines 3 and 5 of Table 6.2.1 that

h(t) = 1
4 t − 1

8 sin 2t. (25)

The graph of y = φ(t) is shown in Figure 6.4.3. Observe that it has the qualitative form
that we indicated earlier. To find the amplitude of the eventual steady oscillation it is suf-
ficient to locate one of the maximum or minimum points for t > 10. Setting the deriva-
tive of the solution (23) equal to zero, we find that the first maximum is located approxi-
mately at (10.642, 0.2979), so the amplitude of the oscillation is approximately 0.0479.
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FIGURE 6.4.3 Solution of the initial value problem (16), (17), (18).

Note that in this example the forcing function g is continuous but g′ is discontinuous
at t = 5 and t = 10. It follows that the solution φ and its first two derivatives are
continuous everywhere, but φ′′′ has discontinuities at t = 5 and at t = 10 that match
the discontinuities in g′ at those points.

PROBLEMS In each of Problems 1 through 13 find the solution of the given initial value problem. Draw the
graphs of the solution and of the forcing function; explain how they are related.

� 1. y′′ + y = f (t); y(0) = 0, y′(0) = 1; f (t) =
{

1, 0 ≤ t < π/2
0, π/2 ≤ t < ∞

� 2. y′′ + 2y′ + 2y = h(t); y(0) = 0, y′(0) = 1; h(t) =
{

1, π ≤ t < 2π
0, 0 ≤ t < π and t ≥ 2π
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� 3. y′′ + 4y = sin t − u2π (t) sin(t − 2π); y(0) = 0, y′(0) = 0

� 4. y′′ + 4y = sin t + u
π
(t) sin(t − π); y(0) = 0, y′(0) = 0

� 5. y′′ + 3y′ + 2y = f (t); y(0) = 0, y′(0) = 0; f (t) =
{

1, 0 ≤ t < 10
0, t ≥ 10

� 6. y′′ + 3y′ + 2y = u2(t); y(0) = 0, y′(0) = 1

� 7. y′′ + y = u3π (t); y(0) = 1, y′(0) = 0

� 8. y′′ + y′ + 5
4 y = t − u

π/2(t)(t − π/2); y(0) = 0, y′(0) = 0

� 9. y′′ + y = g(t); y(0) = 0, y′(0) = 1; g(t) =
{

t/2, 0 ≤ t < 6
3, t ≥ 6

� 10. y′′ + y′ + 5
4 y = g(t); y(0) = 0, y′(0) = 0; g(t) =

{
sin t, 0 ≤ t < π

0, t ≥ π

� 11. y′′ + 4y = u
π
(t)− u3π (t); y(0) = 0, y′(0) = 0

� 12. yiv − y = u1(t)− u2(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

� 13. yiv + 5y′′ + 4y = 1 − u
π
(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

14. Find an expression involving uc(t) for a function f that ramps up from zero at t = t0 to
the value h at t = t0 + k.

15. Find an expression involving uc(t) for a function g that ramps up from zero at t = t0 to the
value h at t = t0 + k and then ramps back down to zero at t = t0 + 2k.

� 16. A certain spring–mass system satisfies the initial value problem

u′′ + 1
4 u′ + u = kg(t), u(0) = 0, u′(0) = 0,

where g(t) = u3/2(t)− u5/2(t) and k > 0 is a parameter.
(a) Sketch the graph of g(t). Observe that it is a pulse of unit magnitude extending over
one time unit.
(b) Solve the initial value problem.
(c) Plot the solution for k = 1/2, k = 1, and k = 2. Describe the principal features of the
solution and how they depend on k.
(d) Find, to two decimal places, the smallest value of k for which the solution u(t) reaches
the value 2.
(e) Suppose k = 2. Find the time τ after which |u(t)| < 0.1 for all t > τ .

� 17. Modify the problem in Example 2 in the text by replacing the given forcing function g(t)
by

f (t) = [u5(t)(t − 5)− u5+k(t)(t − 5 − k)]/k.

(a) Sketch the graph of f (t) and describe how it depends on k. For what value of k is f (t)
identical to g(t) in the example?
(b) Solve the initial value problem

y′′ + 4y = f (t), y(0) = 0, y′(0) = 0.

(c) The solution in part (b) depends on k, but for sufficiently large t the solution is always
a simple harmonic oscillation about y = 1/4. Try to decide how the amplitude of this
eventual oscillation depends on k. Then confirm your conclusion by plotting the solution
for a few different values of k.

� 18. Consider the initial value problem

y′′ + 1
3 y′ + 4y = fk(t), y(0) = 0, y′(0) = 0,

where

fk(t) =
{

1/2k, 4 − k ≤ t < 4 + k
0, 0 ≤ t < 4 − k and t ≥ 4 + k

and 0 < k < 4.



6.4 Differential Equations with Discontinuous Forcing Functions 323

(a) Sketch the graph of fk(t). Observe that the area under the graph is independent of k.
If fk(t) represents a force, this means that the product of the magnitude of the force and
the time interval during which it acts does not depend on k.
(b) Write fk(t) in terms of the unit step function and then solve the given initial value
problem.
(c) Plot the solution for k = 2, k = 1, and k = 1

2 . Describe how the solution depends on k.

Resonance and Beats. In Section 3.9 we observed that an undamped harmonic oscillator
(such as a spring–mass system), with a sinusoidal forcing term experiences resonance if the
frequency of the forcing term is the same as the natural frequency. If the forcing frequency is
slightly different from the natural frequency, then the system exhibits a beat. In Problems 19
through 23 we explore the effect of some nonsinusoidal periodic forcing functions.

� 19. Consider the initial value problem

y′′ + y = f (t), y(0) = 0, y′(0) = 0,

where

f (t) = u0(t)+ 2
n∑

k=1

(−1)kukπ (t).

(a) Draw the graph of f (t) on an interval such as 0 ≤ t ≤ 6π .
(b) Find the solution of the initial value problem.
(c) Let n = 15 and plot the graph of the solution for 0 ≤ t ≤ 60. Describe the solution
and explain why it behaves as it does.
(d) Investigate how the solution changes as n increases. What happens as n → ∞?

� 20. Consider the initial value problem

y′′ + 0.1y′ + y = f (t), y(0) = 0, y′(0) = 0,

where f (t) is the same as in Problem 19.
(a) Plot the graph of the solution. Use a large enough value of n and a long enough t-
interval so that the transient part of the solution has become negligible and the steady state
is clearly shown.
(b) Estimate the amplitude and frequency of the steady-state part of the solution.
(c) Compare the results of part (b) with those from Section 3.9 for a sinusoidally forced
oscillator.

� 21. Consider the initial value problem

y′′ + y = g(t), y(0) = 0, y′(0) = 0,

where

g(t) = u0(t)+
n∑

k=1

(−1)kukπ (t).

(a) Draw the graph of g(t) on an interval such as 0 ≤ t ≤ 6π . Compare the graph with
that of f (t) in Problem 19(a).
(b) Find the solution of the initial value problem.
(c) Let n = 15 and plot the graph of the solution for 0 ≤ t ≤ 60. Describe the solution
and explain why it behaves as it does. Compare it with the solution of Problem 19.
(d) Investigate how the solution changes as n increases. What happens as n → ∞?

� 22. Consider the initial value problem

y′′ + 0.1y′ + y = g(t), y(0) = 0, y′(0) = 0,

where g(t) is the same as in Problem 21.



324 Chapter 6. The Laplace Transform

(a) Plot the graph of the solution. Use a large enough value of n and a long enough
t-interval so that the transient part of the solution has become negligible and the steady
state is clearly shown.
(b) Estimate the amplitude and frequency of the steady-state part of the solution.
(c) Compare the results of part (b) with those from Problem 20 and from Section 3.9 for
a sinusoidally forced oscillator.

� 23. Consider the initial value problem

y′′ + y = h(t), y(0) = 0, y′(0) = 0,

where

f (t) = u0(t)+ 2
n∑

k=1

(−1)ku11k/4(t).

Observe that this problem is identical to Problem 19 except that the frequency of the forcing
term has been increased somewhat.
(a) Find the solution of this initial value problem.
(b) Let n ≥ 33 and plot the solution for 0 ≤ t ≤ 90 or longer. Your plot should show a
clearly recognizable beat.
(c) From the graph in part (b) estimate the “slow period” and the “fast period” for this
oscillator.
(d) For a sinusoidally forced oscillator in Section 3.9 it was shown that the “slow fre-
quency“ is given by |ω − ω0|/2, where ω0 is the natural frequency of the system and ω is
the forcing frequency. Similarly the “fast frequency” is (ω + ω0)/2. Use these expressions
to calculate the “fast period” and the “slow period” for the oscillator in this problem. How
well do the results compare with your estimates from part (c)?

6.5 Impulse Functions

In some applications it is necessary to deal with phenomena of an impulsive nature, for
example, voltages or forces of large magnitude that act over very short time intervals.
Such problems often lead to differential equations of the form

ay′′ + by′ + cy = g(t), (1)

where g(t) is large during a short interval t0 − τ < t < t0 + τ and is otherwise zero.
The integral I (τ ), defined by

I (τ ) =
∫ t0+τ

t0−τ
g(t) dt, (2)

or, since g(t) = 0 outside of the interval (t0 − τ, t0 + τ),

I (τ ) =
∫ ∞

−∞
g(t) dt, (3)

is a measure of the strength of the forcing function. In a mechanical system, where
g(t) is a force, I (τ ) is the total impulse of the force g(t) over the time interval
(t0 − τ, t0 + τ). Similarly, if y is the current in an electric circuit and g(t) is the time
derivative of the voltage, then I (τ ) represents the total voltage impressed on the circuit
during the interval (t0 − τ, t0 + τ).
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In particular, let us suppose that t0 is zero, and that g(t) is given by

g(t) = d
τ
(t) =

{
1/2τ, −τ < t < τ,

0, t ≤ −τ or t ≥ τ,
(4)

where τ is a small positive constant (see Figure 6.5.1). According to Eq. (2) or (3) it
follows immediately that in this case I (τ ) = 1 independent of the value of τ , as long as
τ �= 0. Now let us idealize the forcing function d

τ
by prescribing it to act over shorter

and shorter time intervals; that is, we require that τ → 0, as indicated in Figure 6.5.2.
As a result of this limiting operation we obtain

lim
τ→0

d
τ
(t) = 0, t �= 0. (5)

Further, since I (τ ) = 1 for each τ �= 0, it follows that

lim
τ→0

I (τ ) = 1. (6)

Equations (5) and (6) can be used to define an idealized unit impulse function δ, which
imparts an impulse of magnitude one at t = 0, but is zero for all values of t other than
zero. That is, the “function” δ is defined to have the properties

δ(t) = 0, t �= 0; (7)∫ ∞

−∞
δ(t) dt = 1. (8)

τ2
1

τ τ–

y

t

FIGURE 6.5.1 Graph of y = d
τ
(t).

y

t

FIGURE 6.5.2 Graphs of y = d
τ
(t) as τ → 0.
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There is no ordinary function of the kind studied in elementary calculus that satisfies
both of Eqs. (7) and (8). The “function” δ, defined by those equations, is an example of
what are known as generalized functions and is usually called the Dirac2 delta function.
Since δ(t) corresponds to a unit impulse at t = 0, a unit impulse at an arbitrary point
t = t0 is given by δ(t − t0). From Eqs. (7) and (8) it follows that

δ(t − t0) = 0, t �= t0; (9)∫ ∞

−∞
δ(t − t0) dt = 1. (10)

The delta function does not satisfy the conditions of Theorem 6.1.2, but its Laplace
transform can nevertheless be formally defined. Since δ(t) is defined as the limit of
d
τ
(t) as τ → 0, it is natural to define the Laplace transform of δ as a similar limit of

the transform of d
τ
. In particular, we will assume that t0 > 0, and define L{δ(t − t0)}

by the equation

L{δ(t − t0)} = lim
τ→0

L{d
τ
(t − t0)}. (11)

To evaluate the limit in Eq. (11) we first observe that if τ < t0, which must eventually
be the case as τ → 0, then t0 − τ > 0. Since d

τ
(t − t0) is nonzero only in the interval

from t0 − τ to t0 + τ , we have

L{d
τ
(t − t0)} =

∫ ∞

0
e−st d

τ
(t − t0) dt

=
∫ t0+τ

t0−τ
e−st d

τ
(t − t0) dt.

Substituting for d
τ
(t − t0) from Eq. (4), we obtain

L{d
τ
(t − t0)} = 1

2τ

∫ t0+τ

t0−τ
e−st dt = − 1

2sτ
e−st

∣∣∣t=t0+τ

t=t0−τ

= 1

2sτ
e−st0(esτ − e−sτ )

or

L{d
τ
(t − t0)} = sinh sτ

sτ
e−st0 . (12)

The quotient (sinh sτ)/sτ is indeterminate as τ → 0, but its limit can be evaluated by
L’Hospital’s rule. We obtain

lim
τ→0

sinh sτ

sτ
= lim

τ→0

s cosh sτ

s
= 1.

Then from Eq. (11) it follows that

L{δ(t − t0)} = e−st0 . (13)

2Paul A. M. Dirac (1902–1984), English mathematical physicist, received his Ph.D. from Cambridge in 1926 and
was professor of mathematics there until 1969. He was awarded the Nobel prize in 1933 (with Erwin Schrödinger)
for fundamental work in quantum mechanics. His most celebrated result was the relativistic equation for the
electron, published in 1928. From this equation he predicted the existence of an “anti-electron,” or positron, which
was first observed in 1932. Following his retirement from Cambridge, Dirac moved to the United States and held
a research professorship at Florida State University.
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Equation (13) defines L{δ(t − t0)} for any t0 > 0. We extend this result, to allow t0 to
be zero, by letting t0 → 0 on the right side of Eq. (13); thus

L{δ(t)} = lim
t0→0

e−st0 = 1. (14)

In a similar way it is possible to define the integral of the product of the delta function
and any continuous function f . We have∫ ∞

−∞
δ(t − t0) f (t) dt = lim

τ→0

∫ ∞

−∞
d
τ
(t − t0) f (t) dt. (15)

Using the definition (4) of d
τ
(t) and the mean value theorem for integrals, we find that∫ ∞

−∞
d
τ
(t − t0) f (t) dt = 1

2τ

∫ t0+τ

t0−τ
f (t) dt

= 1

2τ
· 2τ · f (t∗) = f (t∗),

where t0 − τ < t∗ < t0 + τ . Hence, t∗ → t0 as τ → 0, and it follows from Eq. (15)
that ∫ ∞

−∞
δ(t − t0) f (t) dt = f (t0). (16)

It is often convenient to introduce the delta function when working with impulse
problems, and to operate formally on it as though it were a function of the ordinary
kind. This is illustrated in the example below. It is important to realize, however, that the
ultimate justification of such procedures must rest on a careful analysis of the limiting
operations involved. Such a rigorous mathematical theory has been developed, but we
do not discuss it here.

E X A M P L E

1

Find the solution of the initial value problem

2y′′ + y′ + 2y = δ(t − 5), (17)

y(0) = 0, y′(0) = 0. (18)

This initial value problem arises from the study of the same electrical circuit or me-
chanical oscillator as in Example 1 of Section 6.4. The only difference is in the forcing
term.

To solve the given problem we take the Laplace transform of the differential equation
and use the initial conditions, obtaining

(2s2 + s + 2)Y (s) = e−5s .

Thus

Y (s) = e−5s

2s2 + s + 2
= e−5s

2

1

(s + 1
4 )

2 + 15
16

. (19)

By Theorem 6.3.2 or from line 9 of Table 6.2.1

L−1

{
1

(s + 1
4 )

2 + 15
16

}
= 4√

15
e−t/4 sin

√
15
4 t. (20)
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Hence, by Theorem 6.3.1, we have

y = L−1{Y (s)} = 2√
15

u5(t)e
−(t−5)/4 sin

√
15
4 (t − 5), (21)

which is the formal solution of the given problem. It is also possible to write y in the
form

y =
{

0, t < 5,
2√
15

e−(t−5)/4 sin
√

15
4 (t − 5), t ≥ 5.

(22)

The graph of Eq. (22) is shown in Figure 6.5.3. Since the initial conditions at t = 0
are homogeneous, and there is no external excitation until t = 5, there is no response
in the interval 0 < t < 5. The impulse at t = 5 produces a decaying oscillation that
persists indefinitely. The response is continuous at t = 5 despite the singularity in the
forcing function at that point. However, the first derivative of the solution has a jump
discontinuity at t = 5 and the second derivative has an infinite discontinuity there.
This is required by the differential equation (17), since a singularity on one side of the
equation must be balanced by a corresponding singularity on the other side.

0.3

0.2

0.1

5 10 15 20

y

t

–0.1

FIGURE 6.5.3 Solution of the initial value problem (17), (18).

PROBLEMS In each of Problems 1 through 12 find the solution of the given initial value problem and draw
its graph.

� 1. y′′ + 2y′ + 2y = δ(t − π); y(0) = 1, y′(0) = 0

� 2. y′′ + 4y = δ(t − π)− δ(t − 2π); y(0) = 0, y′(0) = 0

� 3. y′′ + 3y′ + 2y = δ(t − 5)+ u10(t); y(0) = 0, y′(0) = 1/2

� 4. y′′ − y = −20δ(t − 3); y(0) = 1, y′(0) = 0

� 5. y′′ + 2y′ + 3y = sin t + δ(t − 3π); y(0) = 0, y′(0) = 0

� 6. y′′ + 4y = δ(t − 4π); y(0) = 1/2, y′(0) = 0

� 7. y′′ + y = δ(t − 2π) cos t; y(0) = 0, y′(0) = 1

� 8. y′′ + 4y = 2δ(t − π/4); y(0) = 0, y′(0) = 0
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� 9. y′′ + y = u
π/2(t)+ 3δ(t − 3π/2)− u2π (t); y(0) = 0, y′(0) = 0

� 10. 2y′′ + y′ + 4y = δ(t − π/6) sin t; y(0) = 0, y′(0) = 0

� 11. y′′ + 2y′ + 2y = cos t + δ(t − π/2); y(0) = 0, y′(0) = 0

� 12. yiv − y = δ(t − 1); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

� 13. Consider again the system in Example 1 in the text in which an oscillation is excited by
a unit impulse at t = 5. Suppose that it is desired to bring the system to rest again after
exactly one cycle, that is, when the response first returns to equilibrium moving in the
positive direction.
(a) Determine the impulse kδ(t − t0) that should be applied to the system in order to
accomplish this objective. Note that k is the magnitude of the impulse and t0 is the time of
its application.
(b) Solve the resulting initial value problem and plot its solution to confirm that it behaves
in the specified manner.

� 14. Consider the initial value problem

y′′ + γ y′ + y = δ(t − 1), y(0) = 0, y′(0) = 0,

where γ is the damping coefficient (or resistance).
(a) Let γ = 1

2 . Find the solution of the initial value problem and plot its graph.
(b) Find the time t1 at which the solution attains its maximum value. Also find the
maximum value y1 of the solution.
(c) Let γ = 1

4 and repeat parts (a) and (b).
(d) Determine how t1 and y1 vary as γ decreases. What are the values of t1 and y1 when
γ = 0?

� 15. Consider the initial value problem

y′′ + γ y′ + y = kδ(t − 1), y(0) = 0, y′(0) = 0,

where k is the magnitude of an impulse at t = 1 and γ is the damping coefficient (or
resistance).
(a) Let γ = 1

2 . Find the value of k for which the response has a peak value of 2; call this
value k1.
(b) Repeat part (a) for γ = 1

4 .
(c) Determine how k1 varies as γ decreases. What is the value of k1 when γ = 0?

� 16. Consider the initial value problem

y′′ + y = fk(t), y(0) = 0, y′(0) = 0,

where fk(t) = [u4−k(t)− u4+k(t)]/2k with 0 < k ≤ 1.
(a) Find the solution y = φ(t, k) of the initial value problem.
(b) Calculate lim

k→0
φ(t, k) from the solution found in part (a).

(c) Observe that lim
k→0

fk(t) = δ(t − 4). Find the solution φ0(t) of the given initial value

problem with fk(t) replaced by δ(t − 4). Is it true that φ0(t) = lim
k→0

φ(t, k)?

(d) Plot φ(t, 1/2), φ(t, 1/4), and φ0(t) on the same axes. Describe the relation between
φ(t, k) and φ0(t).

Problems 17 through 22 deal with the effect of a sequence of impulses on an undamped oscillator.
Suppose that

y′′ + y = f (t), y(0) = 0, y′(0) = 0.

For each of the following choices for f (t):

(a) Try to predict the nature of the solution without solving the problem.
(b) Test your prediction by finding the solution and drawing its graph.
(c) Determine what happens after the sequence of impulses ends.
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� 17. f (t) =
20∑

k=1
δ(t − kπ) � 18. f (t) =

20∑
k=1
(−1)k+1δ(t − kπ)

� 19. f (t) =
20∑

k=1
δ(t − kπ/2) � 20. f (t) =

20∑
k=1
(−1)k+1δ(t − kπ/2)

� 21. f (t) =
15∑

k=1
δ[t − (2k − 1)π ] � 22. f (t) =

40∑
k=1
(−1)k+1δ(t − 11k/4)

� 23. The position of a certain lightly damped oscillator satisfies the initial value problem

y′′ + 0.1y′ + y =
20∑

k=1

(−1)k+1δ(t − kπ), y(0) = 0, y′(0) = 0.

Observe that, except for the damping term, this problem is the same as Problem 18.
(a) Try to predict the nature of the solution without solving the problem.
(b) Test your prediction by finding the solution and drawing its graph.
(c) Determine what happens after the sequence of impulses ends.

� 24. Proceed as in Problem 23 for the oscillator satisfying

y′′ + 0.1y′ + y =
15∑

k=1

δ[t − (2k − 1)π ], y(0) = 0, y′(0) = 0.

Observe that, except for the damping term, this problem is the same as Problem 21.
25. (a) By the method of variation of parameters show that the solution of the initial value

problem

y′′ + 2y′ + 2y = f (t); y(0) = 0, y′(0) = 0

is

y =
∫ t

0
e−(t−τ ) f (τ ) sin(t − τ ) dτ.

(b) Show that if f (t) = δ(t − π), then the solution of part (a) reduces to

y = u
π
(t)e−(t−π) sin(t − π).

(c) Use a Laplace transform to solve the given initial value problem with f (t) = δ(t − π)

and confirm that the solution agrees with the result of part (b).

6.6 The Convolution Integral

Sometimes it is possible to identify a Laplace transform H(s) as the product of two other
transforms F(s) and G(s), the latter transforms corresponding to known functions f
and g, respectively. In this event, we might anticipate that H(s)would be the transform
of the product of f and g. However, this is not the case; in other words, the Laplace
transform cannot be commuted with ordinary multiplication. On the other hand, if an
appropriately defined “generalized product” is introduced, then the situation changes,
as stated in the following theorem.
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Theorem 6.6.1 If F(s) = L{ f (t)} and G(s) = L{g(t)} both exist for s > a ≥ 0, then

H(s) = F(s)G(s) = L{h(t)}, s > a, (1)

where

h(t) =
∫ t

0
f (t − τ)g(τ ) dτ =

∫ t

0
f (τ )g(t − τ) dτ. (2)

The function h is known as the convolution of f and g; the integrals in Eq. (2) are
known as convolution integrals.

The equality of the two integrals in Eq. (2) follows by making the change of variable
t − τ = ξ in the first integral. Before giving the proof of this theorem let us make some
observations about the convolution integral. According to this theorem, the transform
of the convolution of two functions, rather than the transform of their ordinary product,
is given by the product of the separate transforms. It is conventional to emphasize that
the convolution integral can be thought of as a “generalized product” by writing

h(t) = ( f ∗ g)(t). (3)

In particular, the notation ( f ∗ g)(t) serves to indicate the first integral appearing in
Eq. (2).

The convolution f ∗ g has many of the properties of ordinary multiplication. For
example, it is relatively simple to show that

f ∗ g = g ∗ f (commutative law) (4)

f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2 (distributive law) (5)

( f ∗ g) ∗ h = f ∗ (g ∗ h) (associative law) (6)

f ∗ 0 = 0 ∗ f = 0. (7)

The proofs of these properties are left to the reader. However, there are other properties
of ordinary multiplication that the convolution integral does not have. For example, it
is not true in general that f ∗ 1 is equal to f . To see this, note that

( f ∗ 1)(t) =
∫ t

0
f (t − τ) · 1 dτ =

∫ t

0
f (t − τ) dτ.

If, for example, f (t) = cos t , then

( f ∗ 1)(t) =
∫ t

0
cos(t − τ) dτ = − sin(t − τ)

∣∣∣τ=t

τ=0

= − sin 0 + sin t

= sin t.

Clearly, ( f ∗ 1)(t) �= f (t). Similarly, it may not be true that f ∗ f is nonnegative. See
Problem 3 for an example.

Convolution integrals arise in various applications in which the behavior of the
system at time t depends not only on its state at time t , but on its past history as well.
Systems of this kind are sometimes called hereditary systems and occur in such diverse
fields as neutron transport, viscoelasticity, and population dynamics.
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Turning now to the proof of Theorem 6.6.1, we note first that if

F(s) =
∫ ∞

0
e−sξ f (ξ) dξ

and

G(s) =
∫ ∞

0
e−sηg(η) dη,

then

F(s)G(s) =
∫ ∞

0
e−sξ f (ξ) dξ

∫ ∞

0
e−sηg(η) dη. (8)

Since the integrand of the first integral does not depend on the integration variable of
the second, we can write F(s)G(s) as an iterated integral,

F(s)G(s) =
∫ ∞

0
g(η) dη

∫ ∞

0
e−s(ξ+η) f (ξ) dξ. (9)

This expression can be put into a more convenient form by introducing new variables
of integration. First let ξ = t − η, for fixed η. Then the integral with respect to ξ in
Eq. (9) is transformed into one with respect to t ; hence

F(s)G(s) =
∫ ∞

0
g(η) dη

∫ ∞

η

e−st f (t − η) dt. (10)

Next let η = τ ; then Eq. (10) becomes

F(s)G(s) =
∫ ∞

0
g(τ ) dτ

∫ ∞

τ

e−st f (t − τ) dt. (11)

The integral on the right side of Eq. (11) is carried out over the shaded wedge-shaped
region extending to infinity in the tτ -plane shown in Figure 6.6.1. Assuming that the
order of integration can be reversed, we finally obtain

F(s)G(s) =
∫ ∞

0
e−st dt

∫ t

0
f (t − τ)g(τ ) dτ, (12)

t

τ

= 0τ

t → ∞t =τ

= tτ

FIGURE 6.6.1 Region of integration in F(s)G(s).
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or

F(s)G(s) =
∫ ∞

0
e−st h(t) dt

= L{h(t)}, (13)

where h(t) is defined by Eq. (2). This completes the proof of Theorem 6.6.1.

E X A M P L E

1

Find the inverse transform of

H(s) = a

s2(s2 + a2)
. (14)

It is convenient to think of H(s) as the product of s−2 and a/(s2 + a2), which,
according to lines 3 and 5 of Table 6.2.1, are the transforms of t and sin at , respectively.
Hence, by Theorem 6.6.1, the inverse transform of H(s) is

h(t) =
∫ t

0
(t − τ) sin aτ dτ = at − sin at

a2 . (15)

You can verify that the same result is obtained if h(t) is written in the alternate form

h(t) =
∫ t

0
τ sin a(t − τ) dτ,

which confirms Eq. (2) in this case. Of course, h(t) can also be found by expanding
H(s) in partial fractions.

E X A M P L E

2

Find the solution of the initial value problem

y′′ + 4y = g(t), (16)

y(0) = 3, y′(0) = −1. (17)

By taking the Laplace transform of the differential equation and using the initial
conditions, we obtain

s2Y (s)− 3s + 1 + 4Y (s) = G(s),

or

Y (s) = 3s − 1

s2 + 4
+ G(s)

s2 + 4
. (18)

Observe that the first and second terms on the right side of Eq. (18) contain the
dependence of Y (s) on the initial conditions and forcing function, respectively. It is
convenient to write Y (s) in the form

Y (s) = 3
s

s2 + 4
− 1

2

2

s2 + 4
+ 1

2

2

s2 + 4
G(s). (19)

Then, using lines 5 and 6 of Table 6.2.1 and Theorem 6.6.1, we obtain

y = 3 cos 2t − 1
2 sin 2t + 1

2

∫ t

0
sin 2(t − τ)g(τ ) dτ. (20)
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If a specific forcing function g is given, then the integral in Eq. (20) can be evaluated
(by numerical means, if necessary).

Example 2 illustrates the power of the convolution integral as a tool for writing
the solution of an initial value problem in terms of an integral. In fact, it is possible
to proceed in much the same way in more general problems. Consider the problem
consisting of the differential equation

ay′′ + by′ + cy = g(t), (21)

where a, b, and c are real constants and g is a given function, together with the initial
conditions

y(0) = y0, y′(0) = y′
0. (22)

The transform approach yields some important insights concerning the structure of the
solution of any problem of this type.

The initial value problem (21), (22) is often referred to as an input–output problem.
The coefficients a, b, and c describe the properties of some physical system, and g(t) is
the input to the system. The values y0 and y′

0 describe the initial state, and the solution
y is the output at time t .

By taking the Laplace transform of Eq. (21) and using the initial conditions (22), we
obtain

(as2 + bs + c)Y (s)− (as + b)y0 − ay′
0 = G(s).

If we let

�(s) = (as + b)y0 + ay′
0

as2 + bs + c
, �(s) = G(s)

as2 + bs + c
, (23)

then we can write

Y (s) = �(s)+�(s). (24)

Consequently,

y = φ(t)+ ψ(t), (25)

where φ(t) = L−1{�(s)} and ψ(t) = L−1{�(s)}. Observe that y = φ(t) is a solution
of the initial value problem

ay′′ + by′ + cy = 0, y(0) = y0, y′(0) = y′
0, (26)

obtained from Eqs. (21) and (22) by setting g(t) equal to zero. Similarly, y = ψ(t) is
the solution of

ay′′ + by′ + cy = g(t), y(0) = 0, y′(0) = 0, (27)

in which the initial values y0 and y′
0 are each replaced by zero.

Once specific values of a, b, and c are given, we can find φ(t) = L−1{�(s)} by using
Table 6.2.1, possibly in conjunction with a translation or a partial fraction expansion.
To find ψ(t) = L−1{�(s)} it is convenient to write �(s) as

�(s) = H(s)G(s), (28)
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where H(s) = (as2 + bs + c)−1. The function H is known as the transfer function3

and depends only on the properties of the system under consideration; that is, H(s) is
determined entirely by the coefficients a, b, and c. On the other hand, G(s) depends
only on the external excitation g(t) that is applied to the system. By the convolution
theorem we can write

ψ(t) = L−1{H(s)G(s)} =
∫ t

0
h(t − τ)g(τ ) dτ, (29)

where h(t) = L−1{H(s)}, and g(t) is the given forcing function.
To obtain a better understanding of the significance of h(t), we consider the case

in which G(s) = 1; consequently, g(t) = δ(t) and �(s) = H(s). This means that
y = h(t) is the solution of the initial value problem

ay′′ + by′ + cy = δ(t), y(0) = 0, y′(0) = 0, (30)

obtained from Eq. (27) by replacing g(t) by δ(t). Thus h(t) is the response of the
system to a unit impulse applied at t = 0, and it is natural to call h(t) the impulse
response of the system. Equation (29) then says that ψ(t) is the convolution of the
impulse response and the forcing function.

Referring to Example 2, we note that in that case the transfer function is H(s) =
1/(s2 + 4), and the impulse response is h(t) = (sin 2t)/2. Also, the first two terms on
the right side of Eq. (20) constitute the function φ(t), the solution of the corresponding
homogeneous equation that satisfies the given initial conditions.

PROBLEMS 1. Establish the commutative, distributive, and associative properties of the convolution
integral.
(a) f ∗ g = g ∗ f
(b) f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2
(c) f ∗ (g ∗ h) = ( f ∗ g) ∗ h

2. Find an example different from the one in the text showing that ( f ∗ 1)(t) need not be
equal to f (t).

3. Show, by means of the example f (t) = sin t , that f ∗ f is not necessarily nonnegative.

In each of Problems 4 through 7 find the Laplace transform of the given function.

4. f (t) =
∫ t

0
(t − τ )2 cos 2τ dτ 5. f (t) =

∫ t

0
e−(t−τ ) sin τ dτ

6. f (t) =
∫ t

0
(t − τ )eτ dτ 7. f (t) =

∫ t

0
sin(t − τ ) cos τ dτ

In each of Problems 8 through 11 find the inverse Laplace transform of the given function by
using the convolution theorem.

8. F(s) = 1

s4(s2 + 1)
9. F(s) = s

(s + 1)(s2 + 4)

10. F(s) = 1

(s + 1)2(s2 + 4)
11. F(s) = G(s)

s2 + 1

3This terminology arises from the fact that H(s) is the ratio of the transforms of the output and the input of the
problem (27).
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In each of Problems 12 through 19 express the solution of the given initial value problem in
terms of a convolution integral.

12. y′′ + ω2 y = g(t); y(0) = 0, y′(0) = 1
13. y′′ + 2y′ + 2y = sinαt; y(0) = 0, y′(0) = 0
14. 4y′′ + 4y′ + 17y = g(t); y(0) = 0, y′(0) = 0
15. y′′ + y′ + 5

4 y = 1 − u
π
(t); y(0) = 1, y′(0) = −1

16. y′′ + 4y′ + 4y = g(t); y(0) = 2, y′(0) = −3
17. y′′ + 3y′ + 2y = cosαt; y(0) = 1, y′(0) = 0
18. yiv − y = g(t); y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0
19. yiv + 5y′′ + 4y = g(t); y(0) = 1, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0
20. Consider the equation

φ(t)+
∫ t

0
k(t − ξ)φ(ξ) dξ = f (t),

in which f and k are known functions, and φ is to be determined. Since the unknown
function φ appears under an integral sign, the given equation is called an integral equation;
in particular, it belongs to a class of integral equations known as Volterra integral equations.
Take the Laplace transform of the given integral equation and obtain an expression for
L{φ(t)} in terms of the transforms L{ f (t)} and L{k(t)} of the given functions f and k.
The inverse transform of L{φ(t)} is the solution of the original integral equation.

21. Consider the Volterra integral equation (see Problem 20)

φ(t)+
∫ t

0
(t − ξ)φ(ξ) dξ = sin 2t.

(a) Show that if u is a function such that u′′(t) = φ(t), then

u′′(t)+ u(t)− tu′(0)− u(0) = sin 2t.

(b) Show that the given integral equation is equivalent to the initial value problem

u′′(t)+ u(t) = sin 2t; u(0) = 0, u′(0) = 0.

(c) Solve the given integral equation by using the Laplace transform.
(d) Solve the initial value problem of part (b) and verify that the solution is the same as
that obtained in part (c).

22. The Tautochrone. A problem of interest in the history of mathematics is that of finding
the tautochrone—the curve down which a particle will slide freely under gravity alone,
reaching the bottom in the same time regardless of its starting point on the curve. This
problem arose in the construction of a clock pendulum whose period is independent of
the amplitude of its motion. The tautochrone was found by Christian Huygens (1629–
1695) in 1673 by geometrical methods, and later by Leibniz and Jakob Bernoulli using
analytical arguments. Bernoulli’s solution (in 1690) was one of the first occasions on which
a differential equation was explicitly solved.

The geometrical configuration is shown in Figure 6.6.2. The starting point P(a, b) is
joined to the terminal point (0, 0) by the arc C . Arc length s is measured from the origin,
and f (y) denotes the rate of change of s with respect to y:

f (y) = ds

dy
=

[
1 +

(
dx

dy

)2
]1/2

. (i)

Then it follows from the principle of conservation of energy that the time T (b) required
for a particle to slide from P to the origin is

T (b) = 1√
2g

∫ b

0

f (y)√
b − y

dy. (ii)
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y

x

s

C

P(a, b)

FIGURE 6.6.2 The tautochrone.

(a) Assume that T (b) = T0, a constant, for each b. By taking the Laplace transform of
Eq. (ii) in this case and using the convolution theorem, show that

F(s) =
√

2g

π

T0√
s
; (iii)

then show that

f (y) =
√

2g

π

T0√
y
. (iv)

Hint: See Problem 27 of Section 6.1.
(b) Combining Eqs. (i) and (iv), show that

dx

dy
=

√
2α − y

y
, (v)

where α = gT 2
0 /π

2.
(c) Use the substitution y = 2α sin2(θ/2) to solve Eq. (v), and show that

x = α(θ + sin θ), y = α(1 − cos θ). (vi)

Equations (vi) can be identified as parametric equations of a cycloid. Thus the tautochrone
is an arc of a cycloid.
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C H A P T E R

7

Systems of First
Order Linear
Equations

There are many physical problems that involve a number of separate elements linked
together in some manner. For example, electrical networks have this character, as
do some problems in mechanics or in other fields. In these and similar cases the
corresponding mathematical problem consists of a system of two or more differential
equations, which can always be written as first order equations. In this chapter we focus
on systems of first order linear equations, utilizing some of the elementary aspects of
linear algebra to unify the presentation.

7.1 Introduction

Systems of simultaneous ordinary differential equations arise naturally in problems
involving several dependent variables, each of which is a function of a single inde-
pendent variable. We will denote the independent variable by t , and let x1, x2, x3, . . .

represent dependent variables that are functions of t . Differentiation with respect to t
will be denoted by a prime.

For example, consider the spring–mass system in Figure 7.1.1. The two masses
move on a frictionless surface under the influence of external forces F1(t) and F2(t),
and they are also constrained by the three springs whose constants are k1, k2, and k3,

339
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respectively. Using arguments similar to those in Section 3.8, we find the following
equations for the coordinates x1 and x2 of the two masses:

m1

d2x1

dt2 = k2(x2 − x1) − k1x1 + F1(t)

= −(k1 + k2)x1 + k2x2 + F1(t), (1)
m2

d2x2

dt2 = −k3x2 − k2(x2 − x1) + F2(t)

= k2x1 − (k2 + k3)x2 + F2(t).

A derivation of Eqs. (1) is outlined in Problem 17.

k1

F1(t) F2(t)

k2

m1 m2

x1 x2

k3

FIGURE 7.1.1 A two degrees of freedom spring–mass system.

Next, consider the parallel LRC circuit shown in Figure 7.1.2. Let V be the voltage
drop across the capacitor and I the current through the inductor. Then, referring to
Section 3.8 and to Problem 18 of this section, we can show that the voltage and current
are described by the system of equations

d I

dt
= V

L
,

(2)
dV

dt
= − I

C
− V

RC
,

where L is the inductance, C the capacitance, and R the resistance.
As a final example, we mention the predator–prey problem, one of the fundamental

problems of mathematical ecology, which is discussed in more detail in Section 9.5.
Let H(t) and P(t) denote the populations at time t of two species, one of which (P)

preys on the other (H). For example, P(t) and H(t) may be the number of foxes and
rabbits, respectively, in a woods, or the number of bass and redear (which are eaten by
bass) in a pond. Without the prey the predators will decrease, and without the predator

C

R

L

FIGURE 7.1.2 A parallel LRC circuit.
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the prey will increase. A mathematical model showing how an ecological balance can
be maintained when both are present was proposed about 1925 by Lotka and Volterra.
The model consists of the system of differential equations

dH/dt = a1 H − b1 HP,
(3)

dP/dt = −a2 P + b2 HP,

known as the predator–prey equations. In Eqs. (3) the coefficient a1 is the birth rate
of the population H ; similarly, a2 is the death rate of the population P . The HP terms
in the two equations model the interaction of the two populations. The number of
encounters between predator and prey is assumed to be proportional to the product of
the populations. Since any such encounter tends to be good for the predator and bad
for the prey, the sign of the HP term is negative in the first equation and positive in the
second. The coefficients b1 and b2 are the coefficients of interaction between predator
and prey.

Another reason for the importance of systems of first order equations is that equations
of higher order can always be transformed into such systems. This is usually required if
a numerical approach is planned, because almost all codes for generating approximate
numerical solutions of differential equations are written for systems of first order
equations. The following example illustrates how easy it is to make the transformation.

E X A M P L E

1

The motion of a certain spring–mass system (see Example 3 of Section 3.8) is described
by the second order differential equation

u′′ + 0.125u′ + u = 0. (4)

Rewrite this equation as a system of first order equations.
Let x1 = u and x2 = u′. Then it follows that x ′

1 = x2. Further, u′′ = x ′
2. Then, by

substituting for u, u′, and u′′ in Eq. (4), we obtain

x ′
2 + 0.125x2 + x1 = 0.

Thus x1 and x2 satisfy the following system of two first order differential equations:

x ′
1 = x2, (5)

x ′
2 = −x1 − 0.125x2.

The general equation of motion of a spring–mass system,

mu′′ + γ u′ + ku = F(t), (6)

can be transformed to a system of first order equations in the same manner. If we let
x1 = u and x2 = u′, and proceed as in Example 1, we quickly obtain the system

x ′
1 = x2, (7)

x ′
2 = −(k/m)x1 − (γ /m)x2 + F(t)/m.

To transform an arbitrary nth order equation

y(n) = F(t, y, y′, . . . , y(n−1)) (8)
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into a system of n first order equations we extend the method of Example 1 by
introducing the variables x1, x2, . . . , xn defined by

x1 = y, x2 = y′, x3 = y′′, . . . , xn = y(n−1). (9)

It then follows immediately that

x ′
1 = x2,

x ′
2 = x3, (10)...

x ′
n−1 = xn,

and from Eq. (8)

x ′
n = F(t, x1, x2, . . . , xn). (11)

Equations (10) and (11) are a special case of the more general system

x ′
1 = F1(t, x1, x2, . . . , xn),

x ′
2 = F2(t, x1, x2, . . . , xn), (12)...

x ′
n = Fn(t, x1, x2, . . . , xn).

In a similar way the system (1) can be reduced to a system of four first order equations
of the form (12), while the systems (2) and (3) are already in this form. In fact, systems
of the form (12) include almost all cases of interest, so much of the more advanced
theory of differential equations is devoted to such systems.

The system (12) is said to have a solution on the interval I : α < t < β if there exists
a set of n functions

x1 = φ1(t), x2 = φ2(t), . . . , xn = φn(t), (13)

that are differentiable at all points in the interval I and that satisfy the system of
equations (12) at all points in this interval. In addition to the given system of differential
equations there may also be given initial conditions of the form

x1(t0) = x0
1 , x2(t0) = x0

2 , . . . , xn(t0) = x0
n , (14)

where t0 is a specified value of t in I , and x0
1 , . . . , x0

n are prescribed numbers. The
differential equations (12) and initial conditions (14) together form an initial value
problem.

A solution (13) can be viewed as a set of parametric equations in an n-dimensional
space. For a given value of t , Eqs. (13) give values for the coordinates x1, . . . , xn of a
point in the space. As t changes, the coordinates in general also change. The collection
of points corresponding to α < t < β form a curve in the space. It is often helpful to
think of the curve as the trajectory or path of a particle moving in accordance with the
system of differential equations (12). The initial conditions (14) determine the starting
point of the moving particle.

The following conditions on F1, F2, . . . , Fn , which are easily checked in specific
problems, are sufficient to assure that the initial value problem (12), (14) has a unique
solution. Theorem 7.1.1 is analogous to Theorem 2.4.2, the existence and uniqueness
theorem for a single first order equation.
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Theorem 7.1.1 Let each of the functions F1, . . . , Fn and the partial derivatives ∂ F1/∂x1, . . . ,

∂ F1/∂xn, . . . , ∂ Fn/∂x1, . . . , ∂ Fn/∂xn be continuous in a region R of t x1x2 · · · xn-
space defined by α < t < β, α1 < x1 < β1, . . . , αn < xn < βn , and let the point
(t0, x0

1 , x0
2 , . . . , x0

n) be in R. Then there is an interval |t − t0| < h in which there
exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the system of differential
equations (12) that also satisfies the initial conditions (14).

The proof of this theorem can be constructed by generalizing the argument in Section
2.8, but we do not give it here. However, note that in the hypotheses of the theorem
nothing is said about the partial derivatives of F1, . . . , Fn with respect to the inde-
pendent variable t . Also, in the conclusion, the length 2h of the interval in which the
solution exists is not specified exactly, and in some cases may be very short. Finally, the
same result can be established on the basis of somewhat weaker, but more complicated
hypotheses, so the theorem as stated is not the most general one known, and the given
conditions are sufficient, but not necessary, for the conclusion to hold.

If each of the functions F1, . . . , Fn in Eqs. (12) is a linear function of the dependent
variables x1, . . . , xn , then the system of equations is said to be linear; otherwise, it is
nonlinear. Thus the most general system of n first order linear equations has the form

x ′
1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),

x ′
2 = p21(t)x1 + · · · + p2n(t)xn + g2(t), (15)...

x ′
n = pn1(t)x1 + · · · + pnn(t)xn + gn(t).

If each of the functions g1(t), . . . , gn(t) is zero for all t in the interval I , then the system
(15) is said to be homogeneous; otherwise, it is nonhomogeneous. Observe that the
systems (1) and (2) are both linear, but the system (3) is nonlinear. The system (1)
is nonhomogeneous unless F1(t) = F2(t) = 0, while the system (2) is homogeneous.
For the linear system (15) the existence and uniqueness theorem is simpler and also
has a stronger conclusion. It is analogous to Theorems 2.4.1 and 3.2.1.

Theorem 7.1.2 If the functions p11, p12, . . . , pnn , g1, . . . , gn are continuous on an open interval
I : α < t < β, then there exists a unique solution x1 = φ1(t), . . . , xn = φn(t) of the
system (15) that also satisfies the initial conditions (14), where t0 is any point in I
and x0

1 , . . . , x0
n are any prescribed numbers. Moreover, the solution exists throughout

the interval I .

Note that in contrast to the situation for a nonlinear system the existence and unique-
ness of the solution of a linear system are guaranteed throughout the interval in which the
hypotheses are satisfied. Furthermore, for a linear system the initial values x0

1 , . . . , x0
n

at t = t0 are completely arbitrary, whereas in the nonlinear case the initial point must
lie in the region R defined in Theorem 7.1.1.

The rest of this chapter is devoted to systems of linear first order equations (nonlinear
systems are included in the discussion in Chapters 8 and 9). Our presentation makes
use of matrix notation and assumes that you have some familiarity with the properties
of matrices. The basic facts about matrices are summarized in Sections 7.2 and 7.3 and
some more advanced material is reviewed as needed in later sections.
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PROBLEMS In each of Problems 1 through 4 transform the given equation into a system of first order
equations.

1. u′′ + 0.5u′ + 2u = 0 2. u′′ + 0.5u′ + 2u = 3 sin t
3. t2u′′ + tu′ + (t2 − 0.25)u = 0 4. u′′′′ − u = 0
5. Consider the initial value problem u′′ + p(t)u′ + q(t)u = g(t), u(0) = u0, u′(0) = u′

0.
Transform this problem into an initial value problem for two first order equations.

6. Reduce the system (1) to a system of first order equations of the form (12).
7. Systems of first order equations can sometimes be transformed into a single equation of

higher order. Consider the system

x ′
1 = −2x1 + x2, x ′

2 = x1 − 2x2.

(a) Solve the first equation for x2 and substitute into the second equation, thereby obtaining
a second order equation for x1. Solve this equation for x1 and then determine x2 also.
(b) Find the solution of the given system that also satisfies the initial conditions x1(0) = 2,
x2(0) = 3.
(c) Sketch the curve, for t ≥ 0, given parametrically by the expressions for x1 and x2
obtained in part (b).

In each of Problems 8 through 12 proceed as in Problem 7 to transform the given system into a
single equation of second order. Then find x1 and x2 that also satisfy the given initial conditions.
Finally, sketch the graph of the solution in the x1x2-plane for t ≥ 0.

8. x ′
1 = 3x1 − 2x2, x1(0) = 3

x ′
2 = 2x1 − 2x2, x2(0) = 1

2

9. x ′
1 = 1.25x1 + 0.75x2, x1(0) = −2

x ′
2 = 0.75x1 + 1.25x2, x2(0) = 1

10. x ′
1 = x1 − 2x2, x1(0) = −1

x ′
2 = 3x1 − 4x2, x2(0) = 2

11. x ′
1 = 2x2, x1(0) = 3

x ′
2 = −2x1, x2(0) = 4

12. x ′
1 = −0.5x1 + 2x2, x1(0) = −2

x ′
2 = −2x1 − 0.5x2, x2(0) = 2

13. Transform Eqs. (2) for the parallel circuit into a single second order equation.
14. Show that if a11, a12, a21, and a22 are constants with a12 and a21 not both zero, and if the

functions g1 and g2 are differentiable, then the initial value problem

x ′
1 = a11x1 + a12x2 + g1(t), x1(0) = x0

1

x ′
2 = a21x1 + a22x2 + g2(t), x2(0) = x0

2

can be transformed into an initial value problem for a single second order equation. Can
the same procedure be carried out if a11, . . . , a22 are functions of t?

15. Consider the linear homogeneous system

x ′ = p11(t)x + p12(t)y,

y′ = p21(t)x + p22(t)y.

Show that if x = x1(t), y = y1(t) and x = x2(t), y = y2(t) are two solutions of the given
system, then x = c1x1(t) + c2x2(t), y = c1 y1(t) + c2 y2(t) is also a solution for any con-
stants c1 and c2. This is the principle of superposition.

16. Let x = x1(t), y = y1(t) and x = x2(t), y = y2(t) be any two solutions of the linear
nonhomogeneous system

x ′ = p11(t)x + p12(t)y + g1(t),

y′ = p21(t)x + p22(t)y + g2(t).
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Show that x = x1(t) − x2(t), y = y1(t) − y2(t) is a solution of the corresponding homo-
geneous system.

17. Equations (1) can be derived by drawing a free-body diagram showing the forces acting on
each mass. Figure 7.1.3a shows the situation when the displacements x1 and x2 of the two
masses are both positive (to the right) and x2 > x1. Then springs 1 and 2 are elongated and
spring 3 is compressed, giving rise to forces as shown in Figure 7.1.3b. Use Newton’s law
(F = ma) to derive Eqs. (1).

k1

F1(t)k1x1 k2(x2 – x1)

k2(x2 – x1) k3x2

F2(t)

k2

m1 m2

x1 x2

k3

(a)

(b)

m2m1

FIGURE 7.1.3 (a) The displacements x1 and x2 are both positive. (b) The free-body diagram
for the spring–mass system.

Electric Circuits. The theory of electric circuits, such as that shown in Figure 7.1.2, consisting
of inductors, resistors, and capacitors, is based on Kirchhoff’s laws: (1) The net flow of current
through each node (or junction) is zero, (2) the net voltage drop around each closed loop is
zero. In addition to Kirchhoff’s laws we also have the relation between the current I in amperes
through each circuit element and the voltage drop V in volts across the element; namely,

V = RI, R = resistance in ohms;

C
dV

dt
= I, C = capacitance in farads1;

L
d I

dt
= V, L = inductance in henrys.

Kirchhoff’s laws and the current–voltage relation for each circuit element provide a system of
algebraic and differential equations from which the voltage and current throughout the circuit
can be determined. Problems 18 through 20 illustrate the procedure just described.

18. Consider the circuit shown in Figure 7.1.2. Let I1, I2, and I3 be the current through
the capacitor, resistor, and inductor, respectively. Likewise, let V1, V2, and V3 be the
corresponding voltage drops. The arrows denote the arbitrarily chosen directions in which
currents and voltage drops will be taken to be positive.
(a) Applying Kirchhoff’s second law to the upper loop in the circuit, show that

V1 − V2 = 0. (i)

In a similar way, show that

V2 − V3 = 0. (ii)

1Actual capacitors typically have capacitances measured in microfarads. We use farad as the unit for numerical
convenience.
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(b) Applying Kirchhoff’s first law to either node in the circuit, show that

I1 + I2 + I3 = 0. (iii)

(c) Use the current–voltage relation through each element in the circuit to obtain the
equations

CV ′
1 = I1, V2 = RI2, L I ′

3 = V3. (iv)

(d) Eliminate V2, V3, I1, and I2 among Eqs. (i) through (iv) to obtain

CV ′
1 = −I3 − V1

R
, L I ′

3 = V1. (v)

Observe that if we omit the subscripts in Eqs. (v), then we have the system (2) of the text.
19. Consider the circuit shown in Figure 7.1.4. Use the method outlined in Problem 18 to show

that the current I through the inductor and the voltage V across the capacitor satisfy the
system of differential equations

d I

dt
= −I − V,

dV

dt
= 2I − V .

R = 1 ohm

R = 2 ohms
L = 1 henry

C =    farad1
2

FIGURE 7.1.4 The circuit in Problem 19.

20. Consider the circuit shown in Figure 7.1.5. Use the method outlined in Problem 18 to show
that the current I through the inductor and the voltage V across the capacitor satisfy the
system of differential equations

L
d I

dt
= −R1 I − V, C

dV

dt
= I − V

R2

.

C

L

R2R1

FIGURE 7.1.5 The circuit in Problem 20.

21. Consider the two interconnected tanks shown in Figure 7.1.6. Tank 1 initially contains
30 gal of water and 25 oz of salt, while Tank 2 initially contains 20 gal of water and 15 oz
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1.5 gal/min

1 gal/min

3 gal/min

3 oz/gal

Tank 1 Tank 2

Q1(t) oz salt

30 gal water

Q2(t) oz salt

20 gal water

2.5 gal/min

1 oz/gal

1.5 gal/min

FIGURE 7.1.6 Two interconnected tanks (Problem 21).

of salt. Water containing 1 oz/gal of salt flows into Tank 1 at a rate of 1.5 gal/min. The
mixture flows from Tank 1 to Tank 2 at a rate of 3 gal/min. Water containing 3 oz/gal of salt
also flows into Tank 2 at a rate of 1 gal/min (from the outside). The mixture drains from
Tank 2 at a rate of 4 gal/min, of which some flows back into Tank 1 at a rate of 1.5 gal/min,
while the remainder leaves the system.
(a) Let Q1(t) and Q2(t), respectively, be the amount of salt in each tank at time t . Write
down differential equations and initial conditions that model the flow process. Observe that
the system of differential equations is nonhomogeneous.
(b) Find the values of Q1 and Q2 for which the system is in equilibrium, that is, does not

change with time. Let QE
1 and QE

2 be the equilibrium values. Can you predict which tank
will approach its equilibrium state more rapidly?
(c) Let x1 = Q1(t) − QE

1 and x2 = Q2(t) − QE
2 . Determine an initial value problem for

x1 and x2. Observe that the system of equations for x1 and x2 is homogeneous.
22. Consider two interconnected tanks similar to those in Figure 7.1.6. Tank 1 initially contains

60 gal of water and Q0
1 oz of salt, while Tank 2 initially contains 100 gal of water and Q0

2
oz of salt. Water containing q1 oz/gal of salt flows into Tank 1 at a rate of 3 gal/min. The
mixture in Tank 1 flows out at a rate of 4 gal/min, of which half flows into Tank 2 while
the remainder leaves the system. Water containing q2 oz/gal of salt also flows into Tank 2
from the outside at the rate of 1 gal/min. The mixture in Tank 2 leaves the tank at a rate of
3 gal/min, of which 1 gal/min flows back into Tank 1, while the rest leaves the system.
(a) Draw a diagram that depicts the flow process described above. Let Q1(t) and Q2(t),
respectively, be the amount of salt in each tank at time t . Write down differential equations
and initial conditions for Q1 and Q2 that model the flow process.

(b) Find the equilibrium values QE
1 and QE

2 in terms of the concentrations q1 and q2.
(c) Is it possible (by adjusting q1 and q2) to obtain QE

1 = 60 and QE
2 = 50 as an equilib-

rium state?
(d) Describe which equilibrium states are possible for this system for various values of q1
and q2.
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7.2 Review of Matrices

For both theoretical and computational reasons it is advisable to bring to bear some
of the results of matrix theory2 on the initial value problem for a system of linear
differential equations. For reference purposes this section and the next are devoted to
a brief summary of the facts that will be needed later. More details can be found in any
elementary book on linear algebra. We assume, however, that you are familiar with
determinants and how to evaluate them.

We designate matrices by boldfaced capitals A, B, C, . . . , occasionally using bold-
faced Greek capitals �, �, . . . . A matrix A consists of a rectangular array of numbers,
or elements, arranged in m rows and n columns, that is,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 . (1)

We speak of A as an m × n matrix. Although later in the chapter we will often assume
that the elements of certain matrices are real numbers, in this section we assume that
the elements of matrices may be complex numbers. The element lying in the i th row
and j th column is designated by ai j , the first subscript identifying its row and the
second its column. Sometimes the notation (ai j ) is used to denote the matrix whose
generic element is ai j .

Associated with each matrix A is the matrix AT , known as the transpose of A, and
obtained from A by interchanging the rows and columns of A. Thus, if A = (ai j ),

then AT = (aji ). Also, we will denote by ai j the complex conjugate of ai j , and by A
the matrix obtained from A by replacing each element ai j by its conjugate ai j . The

matrix A is called the conjugate of A. It will also be necessary to consider the transpose
of the conjugate matrix A

T
. This matrix is called the adjoint of A and will be denoted

by A∗.
For example, let

A =
(

3 2 − i
4 + 3i −5 + 2i

)
.

Then

AT =
(

3 4 + 3i
2 − i −5 + 2i

)
, A =

(
3 2 + i

4 − 3i −5 − 2i

)
,

A∗ =
(

3 4 − 3i
2 + i −5 − 2i

)
.

2The properties of matrices were first extensively explored in 1858 in a paper by the English algebraist Arthur
Cayley (1821–1895), although the word matrix was introduced by his good friend James Sylvester (1814–1897)
in 1850. Cayley did some of his best mathematical work while practicing law from 1849 to 1863; he then became
professor of mathematics at Cambridge, a position he held for the rest of his life. After Cayley’s groundbreaking
work, the development of matrix theory proceeded rapidly, with significant contributions by Charles Hermite,
Georg Frobenius, and Camille Jordan, among others.
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We are particularly interested in two somewhat special kinds of matrices: square
matrices, which have the same number of rows and columns, that is, m = n; and
vectors (or column vectors), which can be thought of as n × 1 matrices, or matrices
having only one column. Square matrices having n rows and n columns are said to
be of order n. We denote (column) vectors by boldfaced lowercase letters, x, y, �,
�, . . . . The transpose xT of an n × 1 column vector is a 1 × n row vector, that is,
the matrix consisting of one row whose elements are the same as the elements in the
corresponding positions of x.

Properties of Matrices.
1. Equality. Two m × n matrices A and B are said to be equal if all corresponding

elements are equal, that is, if ai j = bi j for each i and j .
2. Zero. The symbol 0 will be used to denote the matrix (or vector), each of whose

elements is zero.
3. Addition. The sum of two m × n matrices A and B is defined as the matrix

obtained by adding corresponding elements:

A + B = (ai j ) + (bi j ) = (ai j + bi j ). (2)

With this definition it follows that matrix addition is commutative and associative, so
that

A + B = B + A, A + (B + C) = (A + B) + C. (3)

4. Multiplication by a Number. The product of a matrix A by a complex number
α is defined as follows:

αA = α(ai j ) = (αai j ). (4)

The distributive laws

α(A + B) = αA + αB, (α + β)A = αA + βA (5)

are satisfied for this type of multiplication. In particular, the negative of A, denoted by
−A, is defined by

−A = (−1)A. (6)

5. Subtraction. The difference A − B of two m × n matrices is defined by

A − B = A + (−B). (7)

Thus

A − B = (ai j ) − (bi j ) = (ai j − bi j ), (8)

which is similar to Eq. (2).
6. Multiplication. The product AB of two matrices is defined whenever the number

of columns of the first factor is the same as the number of rows in the second. If A and
B are m × n and n × r matrices, respectively, then the product C = AB is an m × r
matrix. The element in the i th row and j th column of C is found by multiplying each
element of the i th row of A by the corresponding element of the j th column of B and
then adding the resulting products. Symbolically,

ci j =
n∑

k=1

aikbk j . (9)
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By direct calculation it can be shown that matrix multiplication satisfies the associative
law

(AB)C = A(BC) (10)

and the distributive law

A(B + C) = AB + AC. (11)

However, in general, matrix multiplication is not commutative. For both products AB
and BA to exist and to be of the same size, it is necessary that A and B be square
matrices of the same order. Even in that case the two products are usually unequal, so
that, in general

AB 
= BA. (12)

E X A M P L E

1

To illustrate the multiplication of matrices, and also the fact that matrix multiplication
is not necessarily commutative, consider the matrices

A =
1 −2 1

0 2 −1
2 1 1

 , B =
2 1 −1

1 −1 0
2 −1 1

 .

From the definition of multiplication given in Eq. (9) we have

AB =
2 − 2 + 2 1 + 2 − 1 −1 + 0 + 1

0 + 2 − 2 0 − 2 + 1 0 + 0 − 1
4 + 1 + 2 2 − 1 − 1 −2 + 0 + 1


=
2 2 0

0 −1 −1
7 0 −1

 .

Similarly, we find that

BA =
0 −3 0

1 −4 2
4 −5 4

 .

Clearly, AB 
= BA.

7. Multiplication of Vectors. Matrix multiplication also applies as a special case
if the matrices A and B are 1 × n and n × 1 row and column vectors, respectively.
Denoting these vectors by xT and y we have

xT y =
n∑

i=1

xi yi . (13)

This is the extension to n dimensions of the familiar dot product from physics and
calculus. The result of Eq. (13) is a (complex) number, and it follows directly from
Eq. (13) that

xT y = yT x, xT (y + z) = xT y + xT z, (αx)T y = α(xT y) = xT (αy). (14)
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There is another vector product that is also defined for any two vectors having the
same number of components. This product, denoted by (x, y), is called the scalar or
inner product, and is defined by

(x, y) =
n∑

i=1

xi yi , (15)

The scalar product is also a (complex) number, and by comparing Eqs. (13) and
(15) we see that

(x, y) = xT y. (16)

Thus, if all of the elements of y are real, then the two products (13) and (15) are
identical. From Eq. (15) it follows that

(x, y) = (y, x), (x, y + z) = (x, y) + (x, z),
(17)

(αx, y) = α(x, y), (x, αy) = α(x, y).

Note that even if the vector x has elements with nonzero imaginary parts, the scalar
product of x with itself yields a nonnegative real number,

(x, x) =
n∑

i=1

xi x i =
n∑

i=1

|xi |2. (18)

The nonnegative quantity (x, x)1/2, often denoted by ‖x‖, is called the length, or
magnitude, of x. If (x, y) = 0, then the two vectors x and y are said to be orthogonal.
For example, the unit vectors i, j, k of three-dimensional vector geometry form an
orthogonal set. On the other hand, if some of the elements of x are not real, then the
matrix product

xT x =
n∑

i=1

x2
i (19)

may not be a real number.
For example, let

x =
 i

−2
1 + i

 , y =
2 − i

i
3

 .

Then

xT y = (i)(2 − i) + (−2)(i) + (1 + i)(3) = 4 + 3i,

(x, y) = (i)(2 + i) + (−2)(−i) + (1 + i)(3) = 2 + 7i,

xT x = (i)2 + (−2)2 + (1 + i)2 = 3 + 2i,

(x, x) = (i)(−i) + (−2)(−2) + (1 + i)(1 − i) = 7.

8. Identity. The multiplicative identity, or simply the identity matrix I, is given by

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 . (20)



352 Chapter 7. Systems of First Order Linear Equations

From the definition of matrix multiplication we have

AI = IA = A (21)

for any (square) matrix A. Hence the commutative law does hold for square matrices
if one of the matrices is the identity.

9. Inverse. The matrix A is said to be nonsingular or invertible if there is another
matrix B such that AB = I and BA = I, where I is the identity. If there is such a B, it
can be shown that there is only one. It is called the multiplicative inverse, or simply
the inverse, of A, and we write B = A−1. Then

AA−1 = A−1A = I. (22)

Matrices that do not have an inverse are called singular or noninvertible.
There are various ways to compute A−1 from A, assuming that it exists. One way

involves the use of determinants. Associated with each element ai j of a given matrix is
the minor Mi j , which is the determinant of the matrix obtained by deleting the i th row
and j th column of the original matrix, that is, the row and column containing ai j . Also
associated with each element ai j is the cofactor Ci j defined by the equation

Ci j = (−1)i+ j Mi j . (23)

If B = A−1, then it can be shown that the general element bi j is given by

bi j = Cji

det A
. (24)

While Eq. (24) is not an efficient way3 to calculate A−1, it does suggest a condition
that A must satisfy for it to have an inverse. In fact, the condition is both necessary and
sufficient: A is nonsingular if and only if det A 
= 0. If det A = 0, then A is singular.

Another and usually better way to compute A−1 is by means of elementary row
operations. There are three such operations:

1. Interchange of two rows.

2. Multiplication of a row by a nonzero scalar.

3. Addition of any multiple of one row to another row.

Any nonsingular matrix A can be transformed into the identity I by a systematic
sequence of these operations. It is possible to show that if the same sequence of
operations is then performed on I, it is transformed into A−1. The transformation of a
matrix by a sequence of elementary row operations is referred to as row reduction or
Gaussian elimination. The following example illustrates the calculation of an inverse
matrix in this way.

3For large n the number of multiplications required to evaluate A−1 by Eq. (24) is proportional to n!. If one uses
more efficient methods, such as the row reduction procedure described later, the number of multiplications is
proportional only to n3. Even for small values of n (such as n = 4), determinants are not an economical tool in
calculating inverses, and row reduction methods are preferred.
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E X A M P L E

2

Find the inverse of

A =
1 −1 −1

3 −1 2
2 2 3

 .

The matrix A can be transformed into I by the following sequence of operations.
The result of each step appears below the statement.

(a) Obtain zeros in the off-diagonal positions in the first column by adding (−3)
times the first row to the second row and adding (−2) times the first row to the
third row. 1 −1 −1

0 2 5
0 4 5


(b) Obtain a 1 in the diagonal position in the second column by multiplying the

second row by 1
2 . 1 −1 −1

0 1 5
2

0 4 5


(c) Obtain zeros in the off-diagonal positions in the second column by adding the

second row to the first row and adding (−4) times the second row to the third
row. 1 0 3

2

0 1 5
2

0 0 −5


(d) Obtain a 1 in the diagonal position in the third column by multiplying the third

row by (− 1
5 ). 1 0 3

2

0 1 5
2

0 0 1


(e) Obtain zeros in the off-diagonal positions in the third column by adding (− 3

2 )

times the third row to the first row and adding (− 5
2) times the third row to the

second row. 1 0 0
0 1 0
0 0 1


If we perform the same sequence of operations in the same order on I, we obtain the

following sequence of matrices:1 0 0
0 1 0
0 0 1

 ,

 1 0 0
−3 1 0
−2 0 1

 ,

 1 0 0

− 3
2

1
2 0

−2 0 1

 ,
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2

1
2 0

− 3
2

1
2 0

4 −2 1

 ,

− 1
2

1
2 0

− 3
2

1
2 0

− 4
5

2
5 − 1

5

 ,


7
10 − 1

10
3
10

1
2 − 1

2
1
2

− 4
5

2
5 − 1

5

 .

The last of these matrices is A−1, a result that can be verified by direct multiplication
with the original matrix A.

This example is made slightly simpler by the fact that the original matrix A had a 1
in the upper left corner (a11 = 1). If this is not the case, then the first step is to produce
a 1 there by multiplying the first row by 1/a11, as long as a11 
= 0. If a11 = 0, then the
first row must be interchanged with some other row to bring a nonzero element into
the upper left position before proceeding.

Matrix Functions. We sometimes need to consider vectors or matrices whose ele-
ments are functions of a real variable t . We write

x(t) =

x1(t)
...

xn(t)

 , A(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 , (25)

respectively.
The matrix A(t) is said to be continuous at t = t0 or on an interval α < t < β if

each element of A is a continuous function at the given point or on the given interval.
Similarly, A(t) is said to be differentiable if each of its elements is differentiable, and
its derivative dA/dt is defined by

dA
dt

=
(dai j

dt

)
; (26)

that is, each element of dA/dt is the derivative of the corresponding element of A. In
the same way the integral of a matrix function is defined as∫ b

a
A(t) dt =

(∫ b

a
ai j (t) dt

)
. (27)

For example, if

A(t) =
(

sin t t
1 cos t

)
,

then

A′(t) =
(

cos t 1
0 − sin t

)
,

∫ π

0
A(t) dt =

(
2 π2/2
π 0

)
.

Many of the rules of elementary calculus extend easily to matrix functions; in particular,

d

dt
(CA) = C

dA
dt

, where C is a constant matrix; (28)

d

dt
(A + B) = dA

dt
+ dB

dt
; (29)

d

dt
(AB) = A

dB
dt

+ dA
dt

B. (30)
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In Eqs. (28) and (30) care must be taken in each term to avoid interchanging the
order of multiplication. The definitions expressed by Eqs. (26) and (27) also apply as
special cases to vectors.

PROBLEMS
1. If A =

 1 −2 0
3 2 −1

−2 1 3

 and B =
 4 −2 3

−1 5 0
6 1 2

, find

(a) 2A + B (b) A − 4B
(c) AB (d) BA

2. If A =
(

1 + i −1 + 2i
3 + 2i 2 − i

)
and B =

(
i 3
2 −2i

)
, find

(a) A − 2 B (b) 3A + B
(c) AB (d) BA

3. If A =
−2 1 2

1 0 −3
2 −1 1

 and B =
 1 2 3

3 −1 −1
−2 1 0

, find

(a) AT (b) BT

(c) AT + BT (d) (A + B)T

4. If A =
(

3 − 2i 1 + i
2 − i −2 + 3i

)
, find

(a) AT (b) A (c) A∗

5. If A =
3 2 −1

2 −1 2
1 2 1

 and B =
 2 1 −1

−2 3 3
1 0 2

, verify that 2(A + B) = 2A + 2B.

6. If A =
 1 −2 0

3 2 −1
−2 0 3

, B =
 2 1 −1

−2 3 3
1 0 2

, and C =
2 1 0

1 2 2
0 1 −1

, verify that

(a) (AB)C = A(BC) (b) (A + B) + C = A + (B + C)

(c) A(B + C) = AB + AC

7. Prove each of the following laws of matrix algebra:
(a) A + B = B + A (b) A + (B + C) = (A + B) + C
(c) α(A + B) = αA + αB (d) (α + β)A = αA + βA
(e) A(BC) = (AB)C (f) A(B + C) = AB + AC

8. If x =
 2

3i
1 − i

 and y =
−1 + i

2
3 − i

, find

(a) xT y (b) yT y
(c) (x, y) (d) (y, y)
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9. If x =
1 − 2i

i
2

 and y =
 2

3 − i
1 + 2i

, show that

(a) xT y = yT x (b) (x, y) = (y, x)

In each of Problems 10 through 19 either compute the inverse of the given matrix, or else show
that it is singular.

10.

(
1 4

−2 3

)
11.

(
3 −1
6 2

)

12.

1 2 3
2 4 5
3 5 6

 13.

1 1 −1
2 −1 1
1 1 2



14.

 1 2 1
−2 1 8

1 −2 −7

 15.

2 1 0
0 2 1
0 0 2



16.

1 −1 −1
2 1 0
3 −2 1

 17.

 2 3 1
−1 2 1

4 −1 −1



18.

 1 0 0 −1
0 −1 1 0

−1 0 1 0
0 1 −1 1

 19.

 1 −1 2 0
−1 2 −4 2

1 0 1 3
−2 2 0 −1


20. Prove that if there are two matrices B and C such that AB = I and AC = I, then B = C.

This shows that a matrix A can have only one inverse.

21. If A(t) =
 et 2e−t e2t

2et e−t −e2t

−et 3e−t 2e2t

 and B(t) =
 2et e−t 3e2t

−et 2e−t e2t

3et −e−t −e2t

, find

(a) A + 3B (b) AB

(c) dA/dt (d)
∫ 1

0
A(t) dt

In each of Problems 22 through 24 verify that the given vector satisfies the given differential
equation.

22. x′ =
(

3 −2
2 −2

)
x, x =

(
4
2

)
e2t

23. x′ =
(

2 −1
3 −2

)
x +

(
1

−1

)
et , x =

(
1
0

)
et + 2

(
1
1

)
tet

24. x′ =
1 1 1

2 1 −1
0 −1 1

 x, x =
 6

−8
−4

 e−t + 2

 0
1

−1

 e2t
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In each of Problems 25 and 26 verify that the given matrix satisfies the given differential
equation.

25. �′ =
(

1 1
4 −2

)
�, �(t) =

(
e−3t e2t

−4e−3t e2t

)

26. �′ =
1 −1 4

3 2 −1
2 1 −1

�, �(t) =
 et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t



7.3 Systems of Linear Algebraic Equations; Linear
Independence, Eigenvalues, Eigenvectors

In this section we review some results from linear algebra that are important for the
solution of systems of linear differential equations. Some of these results are easily
proved and others are not; since we are interested simply in summarizing some useful
information in compact form, we give no indication of proofs in either case. All the
results in this section depend on some basic facts about the solution of systems of linear
algebraic equations.

Systems of Linear Algebraic Equations. A set of n simultaneous linear algebraic
equations in n variables,

a11x1 + a12x2 + · · · + a1n xn = b1,

... (1)

an1x1 + an2x2 + · · · + ann xn = bn,

can be written as

Ax = b, (2)

where the n × n matrix A and the vector b are given, and the components of x are
to be determined. If b = 0, the system is said to be homogeneous; otherwise, it is
nonhomogeneous.

If the coefficient matrix A is nonsingular, that is, if det A is not zero, then there is a
unique solution of the system (2). Since A is nonsingular, A−1 exists, and the solution
can be found by multiplying each side of Eq. (2) on the left by A−1; thus

x = A−1b. (3)

In particular, the homogeneous problem Ax = 0, corresponding to b = 0 in Eq. (2),
has only the trivial solution x = 0.

On the other hand, if A is singular, that is, if det A is zero, then solutions of Eq. (2)
either do not exist, or do exist but are not unique. Since A is singular, A−1 does not
exist, so Eq. (3) is no longer valid. The homogeneous system

Ax = 0 (4)
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has (infinitely many) nonzero solutions in addition to the trivial solution. The situation
for the nonhomogeneous system (2) is more complicated. This system has no solution
unless the vector b satisfies a certain further condition. This condition is that

(b, y) = 0, (5)

for all vectors y satisfying A∗y = 0, where A∗ is the adjoint of A. If condition (5) is
met, then the system (2) has (infinitely many) solutions. Each of these solutions has
the form

x = x(0) + �, (6)

where x(0) is a particular solution of Eq. (2), and � is any solution of the homogeneous
system (4). Note the resemblance between Eq. (6) and the solution of a nonhomoge-
neous linear differential equation. The proofs of some of the preceding statements are
outlined in Problems 25 through 29.

The results in the preceding paragraph are important as a means of classifying the
solutions of linear systems. However, for solving particular systems it is generally best
to use row reduction to transform the system into a much simpler one from which the
solution(s), if there are any, can be written down easily. To do this efficiently we can
form the augmented matrix

A | b =

a11 · · · a1n | b1
...

... | ...
an1 · · · ann | bn

 (7)

by adjoining the vector b to the coefficient matrix A as an additional column. The
dashed line replaces the equals sign and is said to partition the augmented matrix.
We now perform row operations on the augmented matrix so as to transform A into
a triangular matrix, that is, a matrix whose elements below the main diagonal are all
zero. Once this is done, it is easy to see whether the system has solutions, and to find
them if it does. Observe that elementary row operations on the augmented matrix (7)
correspond to legitimate operations on the equations in the system (1). The following
examples illustrate the process.

E X A M P L E

1

Solve the system of equations

x1 − 2x2 + 3x3 = 7,

−x1 + x2 − 2x3 = −5, (8)

2x1 − x2 − x3 = 4.

The augmented matrix for the system (8) is 1 −2 3 | 7
−1 1 −2 | −5

2 −1 −1 | 4

 (9)

We now perform row operations on the matrix (9) with a view to introducing zeros in
the lower left part of the matrix. Each step is described and the result recorded below.
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(a) Add the first row to the second row and add (−2) times the first row to the third
row. 1 −2 3 | 7

0 −1 1 | 2
0 3 −7 | −10


(b) Multiply the second row by −1.1 −2 3 | 7

0 1 −1 | −2
0 3 −7 | −10


(c) Add (−3) times the second row to the third row.1 −2 3 | 7

0 1 −1 | −2
0 0 −4 | −4


(d) Divide the third row by −4.1 −2 3 | 7

0 1 −1 | −2
0 0 1 | 1


The matrix obtained in this manner corresponds to the system of equations

x1 − 2x2 + 3x3 = 7,

x2 − x3 = −2, (10)

x3 = 1,

which is equivalent to the original system (8). Note that the coefficients in Eqs. (10)
form a triangular matrix. From the last of Eqs. (10) we have x3 = 1, from the second
equation x2 = −2 + x3 = −1, and from the first equation x1 = 7 + 2x2 − 3x3 = 2.
Thus we obtain

x =
 2

−1
1

 ,

which is the solution of the given system (8). Incidentally, since the solution is unique,
we conclude that the coefficient matrix is nonsingular.

E X A M P L E

2

Discuss solutions of the system

x1 − 2x2 + 3x3 = b1,

−x1 + x2 − 2x3 = b2, (11)

2x1 − x2 + 3x3 = b3

for various values of b1, b2, and b3.
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Observe that the coefficients in the system (11) are the same as those in the system
(8) except for the coefficient of x3 in the third equation. The augmented matrix for the
system (11) is  1 −2 3 | b1−1 1 −2 | b2

2 −1 3 | b3

 . (12)

By performing steps (a), (b), and (c) as in Example 1 we transform the matrix (12) into1 −2 3 | b1
0 1 −1 | −b1 − b2
0 0 0 | b1 + 3b2 + b3

 . (13)

The equation corresponding to the third row of the matrix (13) is

b1 + 3b2 + b3 = 0; (14)

thus the system (11) has no solution unless the condition (14) is satisfied by b1, b2, and
b3. It is possible to show that this condition is just Eq. (5) for the system (11).

Let us now assume that b1 = 2, b2 = 1, and b3 = −5, in which case Eq. (14) is
satisfied. Then the first two rows of the matrix (13) correspond to the equations

x1 − 2x2 + 3x3 = 2,
(15)

x2 − x3 = −3.

To solve the system (15) we can choose one of the unknowns arbitrarily and then solve
for the other two. Letting x3 = α, where α is arbitrary, it then follows that

x2 = α − 3,

x1 = 2(α − 3) − 3α + 2 = −α − 4.

If we write the solution in vector notation, we have

x =
−α − 4

α − 3
α

 = α

−1
1
1

+
−4

−3
0

 . (16)

It is easy to verify that the second term on the right side of Eq. (16) is a solution of the
nonhomogeneous system (11), while the first term is the most general solution of the
homogeneous system corresponding to (11).

Row reduction is also useful in solving homogeneous systems, and systems in which
the number of equations is different from the number of unknowns.

Linear Independence. A set of k vectors x(1), . . . , x(k) is said to be linearly depen-
dent if there exists a set of (complex) numbers c1, . . . , ck , at least one of which is
nonzero, such that

c1x(1) + · · · + ckx(k) = 0. (17)

In other words x(1), . . . , x(k) are linearly dependent if there is a linear relation among
them. On the other hand, if the only set c1, . . . , ck for which Eq. (17) is satisfied is
c1 = c2 = · · · = ck = 0, then x(1), . . . , x(k) are said to be linearly independent.
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Consider now a set of n vectors, each of which has n components. Let xi j = x ( j)
i be

the i th component of the vector x( j), and let X = (xi j ). Then Eq. (17) can be written asx (1)
1 c1 + · · ·+ x (n)

1 cn
...

...
x (1)

n c1 + · · ·+ x (n)
n cn

 =

x11c1 + · · ·+ x1ncn
...

...
xn1c1 + · · ·+ xnncn

 = Xc = 0. (18)

If det X 
= 0, then the only solution of Eq. (18) is c = 0, but if det X = 0, there are
nonzero solutions. Thus the set of vectors x(1), . . . , x(n) is linearly independent if and
only if det X 
= 0.

E X A M P L E

3

Determine whether the vectors

x(1) =
 1

2
−1

 , x(2) =
2

1
3

 , x(3) =
 −4

1
−11

 (19)

are linearly independent or linearly dependent. If linearly dependent, find a linear
relation among them.

To determine whether x(1), x(2), and x(3) are linearly dependent we compute det(xi j ),

whose columns are the components of x(1), x(2), and x(3), respectively. Thus

det(xi j ) =
∣∣∣∣∣∣

1 2 −4
2 1 1

−1 3 −11

∣∣∣∣∣∣ ,
and an elementary calculation shows that it is zero. Thus x(1), x(2), and x(3) are linearly
dependent, and there are constants c1, c2, and c3 such that

c1x(1) + c2x(2) + c3x(3) = 0. (20)

Equation (20) can also be written in the form 1 2 −4
2 1 1

−1 3 −11

c1
c2
c3

 =
0

0
0

 , (21)

and solved by means of elementary row operations starting from the augmented matrix 1 2 −4 | 0
2 1 1 | 0

−1 3 −11 | 0

 . (22)

We proceed as in Examples 1 and 2.

(a) Add (−2) times the first row to the second row, and add the first row to the third
row. 1 2 −4 | 0

0 −3 9 | 0
0 5 −15 | 0


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(b) Divide the second row by −3; then add (−5) times the second row to the third
row. 1 2 −4 | 0

0 1 −3 | 0
0 0 0 | 0


Thus we obtain the equivalent system

c1 + 2c2 − 4c3 = 0,
(23)

c2 − 3c3 = 0.

From the second of Eqs. (23) we have c2 = 3c3, and from the first we obtain c1 =
4c3 − 2c2 = −2c3. Thus we have solved for c1 and c2 in terms of c3, with the latter
remaining arbitrary. If we choose c3 = −1 for convenience, then c1 = 2 and c2 = −3.
In this case the desired relation (20) becomes

2x(1) − 3x(2) − x(3) = 0.

Frequently, it is useful to think of the columns (or rows) of a matrix A as vectors.
These column (or row) vectors are linearly independent if and only if det A 
= 0.
Further, if C = AB, then it can be shown that det C = (det A)(det B). Therefore, if
the columns (or rows) of both A and B are linearly independent, then the columns (or
rows) of C are also linearly independent.

Now let us extend the concepts of linear dependence and independence to a set
of vector functions x(1)(t), . . . , x(k)(t) defined on an interval α < t < β. The vectors
x(1)(t), . . . , x(k)(t) are said to be linearly dependent on α < t < β if there exists a set of
constants c1, . . . , ck , not all of which are zero, such that c1x(1)(t) + · · · + ckx(k)(t) = 0
for all t in the interval. Otherwise, x(1)(t), . . . , x(k)(t) are said to be linearly independent.
Note that if x(1)(t), . . . , x(k)(t) are linearly dependent on an interval, they are linearly
dependent at each point in the interval. However, if x(1)(t), . . . , x(k)(t) are linearly
independent on an interval, they may or may not be linearly independent at each point;
they may, in fact, be linearly dependent at each point, but with different sets of constants
at different points. See Problem 14 for an example.

Eigenvalues and Eigenvectors. The equation

Ax = y (24)

can be viewed as a linear transformation that maps (or transforms) a given vector x
into a new vector y. Vectors that are transformed into multiples of themselves are
important in many applications.4 To find such vectors we set y = λx, where λ is a
scalar proportionality factor, and seek solutions of the equations

Ax = λx, (25)

or

(A − λI)x = 0. (26)

4For example, this problem is encountered in finding the principal axes of stress or strain in an elastic body, and
in finding the modes of free vibration in a conservative system with a finite number of degrees of freedom.
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The latter equation has nonzero solutions if and only if λ is chosen so that

�(λ) = det(A − λI) = 0. (27)

Values of λ that satisfy Eq. (27) are called eigenvalues of the matrix A, and the nonzero
solutions of Eq. (25) or (26) that are obtained by using such a value of λ are called the
eigenvectors corresponding to that eigenvalue.

If A is a 2 × 2 matrix, then Eq. (26) has the form(
a11 − λ a12

a21 a22 − λ

)(
x1
x2

)
=
(

0
0

)
(28)

and Eq. (27) becomes

�(λ) = (a11 − λ)(a22 − λ) − a12a21 = 0. (29)

The following example illustrates how eigenvalues and eigenvectors are found.

E X A M P L E

4

Find the eigenvalues and eigenvectors of the matrix

A =
(

3 −1
4 −2

)
. (30)

The eigenvalues λ and eigenvectors x satisfy the equation (A − λI)x = 0, or(
3 − λ −1

4 −2 − λ

)(
x1
x2

)
=
(

0
0

)
. (31)

The eigenvalues are the roots of the equation

det(A − λI) =
∣∣∣∣3 − λ −1

4 −2 − λ

∣∣∣∣ = λ2 − λ − 2 = 0. (32)

Thus the eigenvalues are λ1 = 2 and λ2 = −1.
To find the eigenvectors we return to Eq. (31) and replace λ by each of the eigenvalues

in turn. For λ = 2 we have (
1 −1
4 −4

)(
x1
x2

)
=
(

0
0

)
. (33)

Hence each row of this vector equation leads to the condition x1 − x2 = 0, so x1 and
x2 are equal, but their value is not determined. If x1 = c, then x2 = c also and the
eigenvector x(1) is

x(1) = c

(
1
1

)
, c 
= 0. (34)

Usually, we will drop the arbitrary constant c when finding eigenvectors; thus instead
of Eq. (34) we write

x(1) =
(

1
1

)
, (35)

and remember that any nonzero multiple of this vector is also an eigenvector. We say
that x(1) is the eigenvector corresponding to the eigenvalue λ1 = 2.
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Now setting λ = −1 in Eq. (31), we obtain(
4 −1
4 −1

)(
x1
x2

)
=
(

0
0

)
. (36)

Again we obtain a single condition on x1 and x2, namely, 4x1 − x2 = 0. Thus the
eigenvector corresponding to the eigenvalue λ2 = −1 is

x(2) =
(

1
4

)
, (37)

or any nonzero multiple of this vector.

As Example 4 illustrates, eigenvectors are determined only up to an arbitrary nonzero
multiplicative constant; if this constant is specified in some way, then the eigenvectors
are said to be normalized. In Example 4, we set the constant equal to 1, but any other
nonzero value could also have been used. Sometimes it is convenient to normalize an
eigenvector x by choosing the constant so that (x, x) = 1.

Equation (27) is a polynomial equation of degree n in λ, so there are n eigenvalues
λ1, . . . , λn , some of which may be repeated. If a given eigenvalue appears m times as
a root of Eq. (27), then that eigenvalue is said to have multiplicity m. Each eigenvalue
has at least one associated eigenvector, and an eigenvalue of multiplicity m may have q
linearly independent eigenvectors, where

1 ≤ q ≤ m. (38)

Examples show that q may be any integer in this interval. If all the eigenvalues of
a matrix A are simple (have multiplicity one), then it is possible to show that the n
eigenvectors of A, one for each eigenvalue, are linearly independent. On the other hand,
if A has one or more repeated eigenvalues, then there may be fewer than n linearly
independent eigenvectors associated with A, since for a repeated eigenvalue we may
have q < m. As we will see in Section 7.8, this fact may lead to complications later on
in the solution of systems of differential equations.

E X A M P L E

5

Find the eigenvalues and eigenvectors of the matrix

A =
0 1 1

1 0 1
1 1 0

 . (39)

The eigenvalues λ and eigenvectors x satisfy the equation (A − λI)x = 0, or−λ 1 1
1 −λ 1
1 1 −λ

x1
x2
x3

 =
0

0
0

 . (40)

The eigenvalues are the roots of the equation

det(A − λI) =
∣∣∣∣∣∣
−λ 1 1

1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = −λ3 + 3λ + 2 = 0. (41)
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The roots of Eq. (41) are λ1 = 2, λ2 = −1, and λ3 = −1. Thus 2 is a simple eigenvalue,
and −1 is an eigenvalue of multiplicity 2.

To find the eigenvector x(1) corresponding to the eigenvalue λ1 we substitute λ = 2
in Eq. (40); this gives the system−2 1 1

1 −2 1
1 1 −2

x1
x2
x3

 =
0

0
0

 . (42)

We can reduce this to the equivalent system2 −1 −1
0 1 −1
0 0 0

x1
x2
x3

 =
0

0
0

 (43)

by elementary row operations. Solving this system we obtain the eigenvector

x(1) =
1

1
1

 . (44)

For λ = −1, Eqs. (40) reduce immediately to the single equation

x1 + x2 + x3 = 0. (45)

Thus values for two of the quantities x1, x2, x3 can be chosen arbitrarily and the third
is determined from Eq. (45). For example, if x1 = 1 and x2 = 0, then x3 = −1, and

x(2) =
 1

0
−1

 (46)

is an eigenvector. Any nonzero multiple of x(2) is also an eigenvector, but a second
independent eigenvector can be found by making another choice of x1 and x2; for
instance, x1 = 0 and x2 = 1. Again x3 = −1 and

x(3) =
 0

1
−1

 (47)

is an eigenvector linearly independent of x(2). Therefore in this example two linearly
independent eigenvectors are associated with the double eigenvalue.

An important special class of matrices, called self-adjoint or Hermitian matrices, are
those for which A∗ = A; that is, aji = ai j . Hermitian matrices include as a subclass real
symmetric matrices, that is, matrices that have real elements and for which AT = A.
The eigenvalues and eigenvectors of Hermitian matrices always have the following
useful properties:

1. All eigenvalues are real.
2. There always exists a full set of n linearly independent eigenvectors, regardless of

the multiplicities of the eigenvalues.
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3. If x(1) and x(2) are eigenvectors that correspond to different eigenvalues, then
(x(1), x(2)) = 0. Thus, if all eigenvalues are simple, then the associated eigenvectors
form an orthogonal set of vectors.

4. Corresponding to an eigenvalue of multiplicity m, it is possible to choose m
eigenvectors that are mutually orthogonal. Thus the full set of n eigenvectors can
always be chosen to be orthogonal as well as linearly independent.

Example 5 above involves a real symmetric matrix and illustrates properties 1, 2,
and 3, but the choice we have made for x(2) and x(3) does not illustrate property 4.
However, it is always possible to choose an x(2) and x(3) so that (x(2), x(3)) = 0. For
example, in Example 5 we could have chosen

x(2) =
 1

0
−1

 , x(3) =
 1

−2
1


as the eigenvectors associated with the eigenvalue λ = −1. These eigenvectors are or-
thogonal to each other as well as to the eigenvector x(1) corresponding to the eigenvalue
λ = 2. The proofs of statements 1 and 3 above are outlined in Problems 32 and 33.

PROBLEMS In each of Problems 1 through 5 either solve the given set of equations, or else show that there
is no solution.

1. x1 − x3 = 0
3x1 + x2 + x3 = 1
−x1 + x2 + 2x3 = 2

2. x1 + 2x2 − x3 = 1
2x1 + x2 + x3 = 1

x1 − x2 + 2x3 = 1

3. x1 + 2x2 − x3 = 2
2x1 + x2 + x3 = 1

x1 − x2 + 2x3 = −1

4. x1 + 2x2 − x3 = 0
2x1 + x2 + x3 = 0

x1 − x2 + 2x3 = 0

5. x1 − x3 = 0
3x1 + x2 + x3 = 0
−x1 + x2 + 2x3 = 0

In each of Problems 6 through 10 determine whether the given set of vectors is linearly inde-
pendent. If linearly dependent, find a linear relation among them. The vectors are written as row
vectors to save space, but may be considered as column vectors; that is, the transposes of the
given vectors may be used instead of the vectors themselves.

6. x(1) = (1, 1, 0), x(2) = (0, 1, 1), x(3) = (1, 0, 1)

7. x(1) = (2, 1, 0), x(2) = (0, 1, 0), x(3) = (−1, 2, 0)

8. x(1) = (1, 2, 2, 3), x(2) = (−1, 0, 3, 1), x(3) = (−2, −1, 1, 0),

x(4) = (−3, 0, −1, 3)

9. x(1) = (1, 2, −1, 0), x(2) = (2, 3, 1, −1), x(3) = (−1, 0, 2, 2),

x(4) = (3, −1, 1, 3)

10. x(1) = (1, 2, −2), x(2) = (3, 1, 0), x(3) = (2, −1, 1), x(4) = (4, 3, −2)

11. Suppose that the vectors x(1), . . . , x(m) each have n components, where n < m. Show that
x(1), . . . , x(m) are linearly dependent.

In each of Problems 12 and 13 determine whether the given set of vectors is linearly independent
for −∞ < t < ∞. If linearly dependent, find the linear relation among them. As in Problems 6
through 10 the vectors are written as row vectors to save space.

12. x(1)(t) = (e−t , 2e−t ), x(2)(t) = (e−t , e−t ), x(3)(t) = (3e−t , 0)
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13. x(1)(t) = (2 sin t, sin t), x(2)(t) = (sin t, 2 sin t)

14. Let

x(1)(t) =
(

et

tet

)
, x(2)(t) =

(
1
t

)
.

Show that x(1)(t) and x(2)(t) are linearly dependent at each point in the interval 0 ≤ t ≤ 1.
Nevertheless, show that x(1)(t) and x(2)(t) are linearly independent on 0 ≤ t ≤ 1.

In each of Problems 15 through 24 find all eigenvalues and eigenvectors of the given matrix.

15.

(
5 −1
3 1

)
16.

(
3 −2
4 −1

)

17.

(−2 1
1 −2

)
18.

(
1 i

−i 1

)

19.

(
1

√
3√

3 −1

)
20.

(−3 3/4
−5 1

)

21.

1 0 0
2 1 −2
3 2 1

 22.

 3 2 2
1 4 1

−2 −4 −1



23.

 11/9 −2/9 8/9
−2/9 2/9 10/9

8/9 10/9 5/9

 24.

3 2 4
2 0 2
4 2 3


Problems 25 through 29 deal with the problem of solving Ax = b when det A = 0.

25. Suppose that, for a given matrix A, there is a nonzero vector x such that Ax = 0. Show
that there is also a nonzero vector y such that A∗y = 0.

26. Show that (Ax, y) = (x, A∗y) for any vectors x and y.
27. Suppose that det A = 0 and that Ax = b has solutions. Show that (b, y) = 0, where y is

any solution of A∗y = 0. Verify that this statement is true for the set of equations in
Example 2.
Hint: Use the result of Problem 26.

28. Suppose that det A = 0, and that x = x(0) is a solution of Ax = b. Show that if � is a
solution of A� = 0 and α is any constant, then x = x(0) + α� is also a solution of Ax = b.

29. Suppose that det A = 0 and that y is a solution of A∗y = 0. Show that if (b, y) = 0 for
every such y, then Ax = b has solutions. Note that this is the converse of Problem 27; the
form of the solution is given by Problem 28.

30. Prove that λ = 0 is an eigenvalue of A if and only if A is singular.
31. Prove that if A is Hermitian, then (Ax, y) = (x, Ay), where x and y are any vectors.
32. In this problem we show that the eigenvalues of a Hermitian matrix A are real. Let x be an

eigenvector corresponding to the eigenvalue λ.
(a) Show that (Ax, x) = (x, Ax). Hint: See Problem 31.
(b) Show that λ(x, x) = λ(x, x). Hint: Recall that Ax = λx.
(c) Show that λ = λ; that is, the eigenvalue λ is real.

33. Show that if λ1 and λ2 are eigenvalues of a Hermitian matrix A, and if λ1 
= λ2, then the
corresponding eigenvectors x(1) and x(2) are orthogonal.
Hint: Use the results of Problems 31 and 32 to show that (λ1 − λ2)(x

(1), x(2)) = 0.
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7.4 Basic Theory of Systems of First Order Linear Equations

The general theory of a system of n first order linear equations

x ′
1 = p11(t)x1 + · · · + p1n(t)xn + g1(t),

... (1)

x ′
n = pn1(t)x1 + · · · + pnn(t)xn + gn(t)

closely parallels that of a single linear equation of nth order. The discussion in this
section therefore follows the same general lines as that in Sections 3.2, 3.3, and 4.1.
To discuss the system (1) most effectively, we write it in matrix notation. That is, we
consider x1 = φ1(t), . . . , xn = φn(t) to be components of a vector x = �(t); similarly,
g1(t), . . . , gn(t) are components of a vector g(t), and p11(t), . . . , pnn(t) are elements
of an n × n matrix P(t). Equation (1) then takes the form

x′ = P(t)x + g(t). (2)

The use of vectors and matrices not only saves a great deal of space and facilitates
calculations but also emphasizes the similarity between systems of equations and single
(scalar) equations.

A vector x = �(t) is said to be a solution of Eq. (2) if its components satisfy the sys-
tem of equations (1). Throughout this section we assume that P and g are continuous on
some interval α < t < β; that is, each of the scalar functions p11, . . . , pnn, g1, . . . , gn
is continuous there. According to Theorem 7.1.2, this is sufficient to guarantee the
existence of solutions of Eq. (2) on the interval α < t < β.

It is convenient to consider first the homogeneous equation

x′ = P(t)x (3)

obtained from Eq. (2) by setting g(t) = 0. Once the homogeneous equation has been
solved, there are several methods that can be used to solve the nonhomogeneous
equation (2); this is taken up in Section 7.9. We use the notation

x(1)(t) =


x11(t)
x21(t)

...
xn1(t)

 , . . . , x(k)(t) =


x1k(t)
x2k(t)

...
xnk(t)

 , . . . (4)

to designate specific solutions of the system (3). Note that xi j (t) = x ( j)
i (t) refers to

the i th component of the j th solution x( j)(t). The main facts about the structure of
solutions of the system (3) are stated in Theorems 7.4.1 to 7.4.4. They closely resemble
the corresponding theorems in Sections 3.2, 3.3, and 4.1; some of the proofs are left to
the reader as exercises.

Theorem 7.4.1 If the vector functions x(1) and x(2) are solutions of the system (3), then the linear
combination c1x(1) + c2x(2) is also a solution for any constants c1 and c2.

This is the principle of superposition; it is proved simply by differentiating c1x(1) +
c2x(2) and using the fact that x(1) and x(2) satisfy Eq. (3). By repeated application of
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Theorem 7.4.1 we reach the conclusion that if x(1), . . . , x(k) are solutions of Eq. (3),
then

x = c1x(1)(t) + · · · + ckx(k)(t) (5)

is also a solution for any constants c1, . . . , ck . As an example, it can be verified that

x(1)(t) =
(

e3t

2e3t

)
=
(

1
2

)
e3t , x(2)(t) =

(
e−t

−2e−t

)
=
(

1
−2

)
e−t (6)

satisfy the equation

x′ =
(

1 1
4 1

)
x. (7)

According to Theorem 7.4.1

x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t

= c1x(1)(t) + c2x(2)(t) (8)

also satisfies Eq. (7).
As we indicated previously, by repeatedly applying Theorem 7.4.1, it follows that

every finite linear combination of solutions of Eq. (3) is also a solution. The question
now arises as to whether all solutions of Eq. (3) can be found in this way. By analogy
with previous cases it is reasonable to expect that for a system of the form (3) of
nth order it is sufficient to form linear combinations of n properly chosen solutions.
Therefore let x(1), . . . , x(n) be n solutions of the nth order system (3), and consider the
matrix X(t) whose columns are the vectors x(1)(t), . . . , x(n)(t):

X(t) =

 x11(t) · · · x1n(t)
...

...
xn1(t) · · · xnn(t)

 . (9)

Recall from Section 7.3 that the columns of X(t) are linearly independent for a given
value of t if and only if det X 
= 0 for that value of t . This determinant is called the
Wronskian of the n solutions x(1), . . . , x(n) and is also denoted by W [x(1), . . . , x(n)];
that is,

W [x(1), . . . , x(n)](t) = det X(t). (10)

The solutions x(1), . . . , x(n) are then linearly independent at a point if and only if
W [ x(1), . . . , x(n)] is not zero there.

Theorem 7.4.2 If the vector functions x(1), . . . , x(n) are linearly independent solutions of the system
(3) for each point in the interval α < t < β, then each solution x = �(t) of the system
(3) can be expressed as a linear combination of x(1), . . . , x(n),

�(t) = c1x(1)(t) + · · · + cnx(n)(t), (11)

in exactly one way.
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Before proving Theorem 7.4.2, note that according to Theorem 7.4.1 all expressions
of the form (11) are solutions of the system (3), while by Theorem 7.4.2 all solutions
of Eq. (3) can be written in the form (11). If the constants c1, . . . , cn are thought of as
arbitrary, then Eq. (11) includes all solutions of the system (3), and it is customary to call
it the general solution. Any set of solutions x(1), . . . , x(n) of Eq. (3), which is linearly
independent at each point in the interval α < t < β, is said to be a fundamental set
of solutions for that interval.

To prove Theorem 7.4.2, we will show, given any solution � of Eq. (3), that �(t) =
c1x(1)(t) + · · · + cnx(n)(t) for suitable values of c1, . . . , cn . Let t = t0 be some point
in the interval α < t < β and let � = �(t0). We now wish to determine whether there
is any solution of the form x = c1x(1)(t) + · · · + cnx(n)(t) that also satisfies the same
initial condition x(t0) = �. That is, we wish to know whether there are values of
c1, . . . , cn such that

c1x(1)(t0) + · · · + cnx(n)(t0) = �, (12)

or in scalar form

c1x11(t0) + · · · + cnx1n(t0) = ξ1,

... (13)

c1xn1(t0) + · · · + cnxnn(t0) = ξn.

The necessary and sufficient condition that Eqs. (13) possess a unique solution
c1, . . . , cn is precisely the nonvanishing of the determinant of coefficients, which is
the Wronskian W [ x(1), . . . , x(n)] evaluated at t = t0. The hypothesis that x(1), . . . , x(n)

are linearly independent throughout α < t < β guarantees that W [x(1), . . . , x(n)] is
not zero at t = t0, and therefore there is a (unique) solution of Eq. (3) of the
form x = c1x(1)(t) + · · · + cnx(n)(t) that also satisfies the initial condition (12). By
the uniqueness part of Theorem 7.1.2 this solution is identical to �(t), and hence
�(t) = c1 x(1)(t) + · · · + cnx(n)(t), as was to be proved.

Theorem 7.4.3 If x(1), . . . , x(n) are solutions of Eq. (3) on the interval α < t < β, then in this interval
W [x(1), . . . , x(n)] either is identically zero or else never vanishes.

The significance of Theorem 7.4.3 lies in the fact that it relieves us of the necessity
of examining W [x(1), . . . , x(n)] at all points in the interval of interest, and enables
us to determine whether x(1), . . . , x(n) form a fundamental set of solutions merely by
evaluating their Wronskian at any convenient point in the interval.

Theorem 7.4.3 is proved by first establishing that the Wronskian of x(1), . . . , x(n)

satisfies the differential equation (see Problem 2)

dW

dt
= (p11 + p22 + · · · + pnn)W. (14)

Hence W is an exponential function, and the conclusion of the theorem follows imme-
diately. The expression for W obtained by solving Eq. (14) is known as Abel’s formula;
note the analogy with Eq. (8) of Section 3.3.

Alternatively, Theorem 7.4.3 can be established by showing that if n solutions
x(1), . . . , x(n) of Eq. (3) are linearly dependent at one point t = t0, then they must
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be linearly dependent at each point in α < t < β (see Problem 8). Consequently, if
x(1), . . . , x(n) are linearly independent at one point, they must be linearly independent
at each point in the interval.

The next theorem states that the system (3) always has at least one fundamental set
of solutions.

Theorem 7.4.4 Let

e(1) =


1
0
0
...
0

 , e(2) =


0
1
0
...
0

 , . . . , e(n) =


0
0
...
0
1

 ;

further let x(1), . . . , x(n) be the solutions of the system (3) satisfying the initial con-
ditions

x(1)(t0) = e(1), . . . , x(n)(t0) = e(n), (15)

respectively, where t0 is any point in α < t < β. Then x(1), . . . , x(n) form a funda-
mental set of solutions of the system (3).

To prove this theorem, note that the existence and uniqueness of the solutions
x(1), . . . , x(n) mentioned in Theorem 7.4.4 are assured by Theorem 7.1.2. It is not
hard to see that the Wronskian of these solutions is equal to 1 when t = t0; therefore
x(1), . . . , x(n) are a fundamental set of solutions.

Once one fundamental set of solutions has been found, other sets can be generated
by forming (independent) linear combinations of the first set. For theoretical purposes
the set given by Theorem 7.4.4 is usually the simplest.

To summarize, any set of n linearly independent solutions of the system (3) consti-
tutes a fundamental set of solutions. Under the conditions given in this section, such
fundamental sets always exist, and every solution of the system (3) can be represented
as a linear combination of any fundamental set of solutions.

PROBLEMS 1. Using matrix algebra, prove the statement following Theorem 7.4.1 for an arbitrary value of
the integer k.

2. In this problem we outline a proof of Theorem 7.4.3 in the case n = 2. Let x(1) and x(2) be
solutions of Eq. (3) for α < t < β, and let W be the Wronskian of x(1) and x(2).
(a) Show that

dW

dt
=

∣∣∣∣∣∣∣
dx (1)

1

dt

dx (2)
1

dt

x (1)
2 x (2)

2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

x (1)
1 x (2)

1

dx (1)
2

dt

dx (2)
2

dt

∣∣∣∣∣∣∣ .
(b) Using Eq. (3), show that

dW

dt
= (p11 + p22)W.

(c) Find W (t) by solving the differential equation obtained in part (b). Use this expression
to obtain the conclusion stated in Theorem 7.4.3.
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(d) Generalize this procedure so as to prove Theorem 7.4.3 for an arbitrary value of n.
3. Show that the Wronskians of two fundamental sets of solutions of the system (3) can differ

at most by a multiplicative constant.
Hint: Use Eq. (14).

4. If x1 = y and x2 = y′, then the second order equation

y′′ + p(t)y′ + q(t)y = 0 (i)

corresponds to the system

x ′
1 = x2,

x ′
2 = −q(t)x1 − p(t)x2. (ii)

Show that if x(1) and x(2) are a fundamental set of solutions of Eqs. (ii), and if y(1) and y(2)

are a fundamental set of solutions of Eq. (i), then W [y(1), y(2)] = cW [x(1), x(2)], where c is
a nonzero constant.
Hint: y(1)(t) and y(2)(t) must be linear combinations of x11(t) and x12(t).

5. Show that the general solution of x′ = P(t)x + g(t) is the sum of any particular solution x(p)

of this equation and the general solution x(c) of the corresponding homogeneous equation.

6. Consider the vectors x(1)(t) =
(

t
1

)
and x(2)(t) =

(
t2

2t

)
.

(a) Compute the Wronskian of x(1) and x(2).
(b) In what intervals are x(1) and x(2) linearly independent?
(c) What conclusion can be drawn about the coefficients in the system of homogeneous
differential equations satisfied by x(1) and x(2)?
(d) Find this system of equations and verify the conclusions of part (c).

7. Consider the vectors x(1)(t) =
(

t2

2t

)
and x(2)(t) =

(
et

et

)
, and answer the same questions as

in Problem 6.

The following two problems indicate an alternative derivation of Theorem 7.4.2.

8. Let x(1), . . . , x(m) be solutions of x′ = P(t)x on the interval α < t < β. Assume that P is
continuous and let t0 be an arbitrary point in the given interval. Show that x(1), . . . , x(m) are
linearly dependent for α < t < β if (and only if) x(1)(t0), . . . , x(m)(t0) are linearly dependent.
In other words x(1), . . . , x(m) are linearly dependent on the interval (α, β) if they are linearly
dependent at any point in it.
Hint: There are constants c1, . . . , cm such that c1x(1)(t0) + · · · + cmx(m)(t0) = 0. Let z(t) =
c1x(1)(t) + · · · + cmx(m)(t) and use the uniqueness theorem to show that z(t) = 0 for each t
in α < t < β.

9. Let x(1), . . . , x(n) be linearly independent solutions of x′ = P(t)x, where P is continuous on
α < t < β.
(a) Show that any solution x = z(t) can be written in the form

z(t) = c1x(1)(t) + · · · + cnx(n)(t)

for suitable constants c1, . . . , cn .
Hint: Use the result of Problem 11 of Section 7.3, and also Problem 8 above.
(b) Show that the expression for the solution z(t) in part (a) is unique; that is, if z(t) =
k1x(1)(t) + · · · + kn x(n)(t), then k1 = c1, . . . , kn = cn .

Hint: Show that (k1 − c1)x
(1)(t) + · · · + (kn − cn)x

(n)(t) = 0 for each t in α < t < β and
use the linear independence of x(1), . . . , x(n).
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7.5 Homogeneous Linear Systems with Constant Coefficients

We will concentrate most of our attention on systems of homogeneous linear equations
with constant coefficients; that is, systems of the form

x′ = Ax, (1)

where A is a constant n × n matrix. Unless stated otherwise, we will assume further
that all the elements of A are real (rather than complex) numbers.

If n = 1, then the system reduces to a single first order equation

dx

dt
= ax, (2)

whose solution is x = ceat . In Section 2.5 we noted that x = 0 is the only equilibrium
solution if a 
= 0. Other solutions approach x = 0 if a < 0 and in this case we say that
x = 0 is an asymptotically stable equilibrium solution. On the other hand, if a > 0,
then x = 0 is unstable, since other solutions depart from it. For higher order systems
the situation is somewhat analogous, but more complicated. Equilibrium solutions are
found by solving Ax = 0. We assume that det A 
= 0, so x = 0 is the only equilibrium
solution. An important question is whether other solutions approach this equilibrium
solution or depart from it as t increases; in other words, is x = 0 asymptotically stable
or unstable? Or are there still other possibilities?

The case n = 2 is particularly important and lends itself to visualization in the
x1x2-plane, called the phase plane. By evaluating Ax at a large number of points and
plotting the resulting vectors one obtains a direction field of tangent vectors to solutions
of the system of differential equations. A qualitative understanding of the behavior of
solutions can usually be gained from a direction field. More precise information results
from including in the plot some solution curves, or trajectories. A plot that shows a
representative sample of trajectories for a given system is called a phase portrait.
Examples of direction fields and phase portraits occur later in this section.

To construct the general solution of the system (1) we proceed by analogy with the
treatment of second order linear equations in Section 3.1. Thus we seek solutions of
Eq. (1) of the form

x = �ert , (3)

where the exponent r and the constant vector � are to be determined. Substituting from
Eq. (3) for x in the system (1) gives

r�ert = A�ert .

Upon canceling the nonzero scalar factor ert we obtain A� = r�, or

(A − rI)� = 0, (4)

where I is the n × n identity matrix. Thus, to solve the system of differential equations
(1), we must solve the system of algebraic equations (4). This latter problem is precisely
the one that determines the eigenvalues and eigenvectors of the matrix A. Therefore
the vector x given by Eq. (3) is a solution of Eq. (1) provided that r is an eigenvalue
and � an associated eigenvector of the coefficient matrix A.

The following two examples illustrate the solution procedure in the case of 2 × 2
coefficient matrices. We also show how to construct the corresponding phase portraits.
Later in the section we return to a further discussion of the general n × n system.
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E X A M P L E

1

Consider the system

x′ =
(

1 1
4 1

)
x. (5)

Plot a direction field and determine the qualitative behavior of solutions. Then find the
general solution and draw several trajectories.

A direction field for this system is shown in Figure 7.5.1. From this figure it is easy
to see that a typical solution departs from the neighborhood of the origin and ultimately
has a slope of approximately 2 in either the first or third quadrant.

2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.5.1 Direction field for the system (5).

To find solutions explicitly we assume that x = �ert , and substitute for x in Eq. (5).
We are led to the system of algebraic equations(

1 − r 1
4 1 − r

)(
ξ1
ξ2

)
=
(

0
0

)
. (6)

Equations (6) have a nontrivial solution if and only if the determinant of coefficients is
zero. Thus allowable values of r are found from the equation∣∣∣∣1 − r 1

4 1 − r

∣∣∣∣ = (1 − r)2 − 4

= r2 − 2r − 3 = 0. (7)

Equation (7) has the roots r1 = 3 and r2 = −1; these are the eigenvalues of the coeffi-
cient matrix in Eq. (5). If r = 3, then the system (6) reduces to the single equation

−2ξ1 + ξ2 = 0. (8)

Thus ξ2 = 2ξ1 and the eigenvector corresponding to r1 = 3 can be taken as

�(1) =
(

1
2

)
. (9)
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Similarly, corresponding to r2 = −1, we find that ξ2 = −2ξ1, so the eigenvector is

�(2) =
(

1
−2

)
. (10)

The corresponding solutions of the differential equation are

x(1)(t) =
(

1
2

)
e3t , x(2)(t) =

(
1

−2

)
e−t . (11)

The Wronskian of these solutions is

W [x(1), x(2)](t) =
∣∣∣∣ e3t e−t

2e3t −2e−t

∣∣∣∣ = −4e2t , (12)

which is never zero. Hence the solutions x(1) and x(2) form a fundamental set, and the
general solution of the system (5) is

x = c1x(1)(t) + c2x(2)(t)

= c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t , (13)

where c1 and c2 are arbitrary constants.
To visualize the solution (13) it is helpful to consider its graph in the x1x2-plane for

various values of the constants c1 and c2. We start with x = c1x(1)(t), or in scalar form

x1 = c1e3t , x2 = 2c1e3t .

By eliminating t between these two equations, we see that this solution lies on the
straight line x2 = 2x1; see Figure 7.5.2a. This is the line through the origin in the
direction of the eigenvector � (1). If we look on the solution as the trajectory of a
moving particle, then the particle is in the first quadrant when c1 > 0 and in the third
quadrant when c1 < 0. In either case the particle departs from the origin as t increases.
Next consider x = c2x(2)(t), or

x1 = c2e−t , x2 = −2c2e−t .

This solution lies on the line x2 = −2x1, whose direction is determined by the eigenvec-
tor � (2). The solution is in the fourth quadrant when c2 > 0 and in the second quadrant
when c2 < 0, as shown in Figure 7.5.2a. In both cases the particle moves toward the
origin as t increases. The solution (13) is a combination of x(1)(t) and x(2)(t). For large
t the term c1x(1)(t) is dominant and the term c2x(2)(t) becomes negligible. Thus all
solutions for which c1 
= 0 are asymptotic to the line x2 = 2x1 as t → ∞. Similarly,
all solutions for which c2 
= 0 are asymptotic to the line x2 = −2x1 as t → −∞. The
graphs of several solutions are shown in Figure 7.5.2a. The pattern of trajectories in
this figure is typical of all second order systems x′ = Ax for which the eigenvalues are
real and of opposite signs. The origin is called a saddle point in this case. Saddle points
are always unstable because almost all trajectories depart from them as t increases.

In the preceding paragraph we have described how to draw by hand a qualitatively
correct sketch of the trajectories of a system such as Eq. (5), once the eigenvalues
and eigenvectors have been determined. However, to produce a detailed and accurate
drawing, such as Figure 7.5.2a and other figures that appear later in this chapter, a
computer is extremely helpful, if not indispensable.
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1

x1x2

t0.51–1–2 2

–2

1

2

–1

–2

2

x(2)(t)

x(1)(t)

x1

(a) (b)

FIGURE 7.5.2 (a) Trajectories of the system (5); the origin is a saddle point. (b) Plots of x1
versus t for the system (5).

As an alternative to Figure 7.5.2a one can also plot x1 or x2 as a function of t ; some
typical plots of x1 versus t are shown in Figure 7.5.2b, and those of x2 versus t are
similar. For certain initial conditions it follows that c1 = 0 in Eq. (13), so that x1 = c2e−t

and x1 → 0 as t → ∞. One such graph is shown in Figure 7.5.2b, corresponding to
a trajectory that approaches the origin in Figure 7.5.2a. For most initial conditions,
however, c1 
= 0 and x1 is given by x1 = c1e3t + c2e−t . Then the presence of the positive
exponential term causes x1 to grow exponentially in magnitude as t increases. Several
graphs of this type are shown in Figure 7.5.2b, corresponding to trajectories that depart
from the neighborhood of the origin in Figure 7.5.2a. It is important to understand the
relation between parts (a) and (b) of Figure 7.5.2 and other similar figures that appear
later, since one may want to visualize solutions either in the x1x2-plane or as functions
of the independent variable t .

E X A M P L E

2

Consider the system

x′ =
(−3

√
2√

2 −2

)
x. (14)

Draw a direction field for this system; then find its general solution and plot several
trajectories in the phase plane.

The direction field for the system (14) in Figure 7.5.3 shows clearly that all solutions
approach the origin. To find the solutions assume that x = �ert ; then we obtain the
algebraic system (−3 − r

√
2√

2 −2 − r

)(
ξ1
ξ2

)
=
(

0
0

)
. (15)
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2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.5.3 Direction field for the system (14).

The eigenvalues satisfy

(−3 − r)(−2 − r) − 2 = r2 + 5r + 4

= (r + 1)(r + 4) = 0, (16)

so r1 = −1 and r2 = −4. For r = −1, Eq. (15) becomes(−2
√

2√
2 −1

)(
ξ1
ξ2

)
=
(

0
0

)
. (17)

Hence ξ2 = √
2 ξ1 and the eigenvector � (1) corresponding to the eigenvalue r1 = −1

can be taken as

� (1) =
(

1√
2

)
. (18)

Similarly, corresponding to the eigenvalue r2 = −4, we have ξ1 = −√
2 ξ2, so the

eigenvector is

� (2) =
(

−√
2

1

)
. (19)

Thus a fundamental set of solutions of the system (14) is

x(1)(t) =
(

1√
2

)
e−t , x(2)(t) =

(
−√

2
1

)
e−4t , (20)

and the general solution is

x = c1x(1)(t) + c2x(2) = c1

(
1√
2

)
e−t + c2

(
−√

2
1

)
e−4t . (21)

Graphs of the solution (21) for several values of c1 and c2 are shown in Figure
7.5.4a. The solution x(1)(t) approaches the origin along the line x2 = √

2 x1, while the
solution x(2)(t) approaches the origin along the line x1 = −√

2 x2. The directions of
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these lines are determined by the eigenvectors � (1) and � (2), respectively. In general, we
have a combination of these two fundamental solutions. As t → ∞, the solution x(2)(t)
is negligible compared to x(1)(t). Thus, unless c1 = 0, the solution (21) approaches
the origin tangent to the line x2 = √

2x1. The pattern of trajectories shown in Figure
7.5.4a is typical of all second order systems x′ = Ax for which the eigenvalues are
real, different, and of the same sign. The origin is called a node for such a system.
If the eigenvalues were positive rather than negative, then the trajectories would be
similar but traversed in the outward direction. Nodes are asymptotically stable if the
eigenvalues are negative and unstable if the eigenvalues are positive.

Although Figure 7.5.4a was computer-generated, a qualitatively correct sketch of
the trajectories can be drawn quickly by hand, based on a knowledge of the eigenvalues
and eigenvectors.

Some typical plots of x1 versus t are shown in Figure 7.5.4b. Observe that each
of the graphs approaches the t-axis asymptotically as t increases, corresponding to a
trajectory that approaches the origin in Figure 7.5.2a. The behavior of x2 as a function
of t is similar.

x2

x1

x1

t0.5 1–2

–2

–1

–1

–1

1 2

x(1)(t)

x(2)(t)

2

1
1

(a) (b)

FIGURE 7.5.4 (a) Trajectories of the system (14); the origin is a node. (b) Plots of x1 versus
t for the system (14).

The two preceding examples illustrate the two main cases for 2 × 2 systems having
eigenvalues that are real and different: Either the eigenvalues have opposite signs
(Example 1) or the same sign (Example 2). The other possibility is that zero is an
eigenvalue, but in this case it follows that det A = 0, which violates the assumption
made at the beginning of this section.

Returning to the general system (1) we proceed as in the examples. To find solutions
of the differential equation (1) we must find the eigenvalues and eigenvectors of A
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from the associated algebraic system (4). The eigenvalues r1, . . . , rn (which need not
all be different) are roots of the nth degree polynomial equation

det(A − rI) = 0. (22)

The nature of the eigenvalues and the corresponding eigenvectors determines the nature
of the general solution of the system (1). If we assume that A is a real-valued matrix,
there are three possibilities for the eigenvalues of A:

1. All eigenvalues are real and different from each other.
2. Some eigenvalues occur in complex conjugate pairs.
3. Some eigenvalues are repeated.

If the eigenvalues are all real and different, as in the two preceding examples, then
associated with each eigenvalue ri is a real eigenvector � (i) and the set of n eigenvectors
� (1), . . . , � (n) is linearly independent. The corresponding solutions of the differential
system (1) are

x(1)(t) = � (1)er1t , . . . , x(n)(t) = � (n)ernt . (23)

To show that these solutions form a fundamental set, we evaluate their Wronskian:

W [x(1), . . . , x(n)](t) =

∣∣∣∣∣∣∣
ξ

(1)
1 er1t · · · ξ

(n)
1 ernt

...
...

ξ (1)
n er1t · · · ξ (n)

n ernt

∣∣∣∣∣∣∣
= e(r1+···+rn)t

∣∣∣∣∣∣∣
ξ

(1)
1 · · · ξ

(n)
1

...
...

ξ (1)
n · · · ξ (n)

n

∣∣∣∣∣∣∣ . (24)

First, we observe that the exponential function is never zero. Next, since the eigenvec-
tors � (1), . . . , � (n) are linearly independent, the determinant in the last term of Eq. (24)
is nonzero. As a consequence, the Wronskian W [x(1), . . . , x(n)](t) is never zero;
hence x(1), . . . , x(n) form a fundamental set of solutions. Thus the general solution of
Eq. (1) is

x = c1� (1)er1t + · · · + cn� (n)ernt . (25)

If A is real and symmetric (a special case of Hermitian matrices), recall from
Section 7.3 that all the eigenvalues r1, . . . , rn must be real. Further, even if some of the
eigenvalues are repeated, there is always a full set of n eigenvectors � (1), . . . , � (n) that
are linearly independent (in fact, orthogonal). Hence the corresponding solutions of
the differential system (1) given by Eq. (23) again form a fundamental set of solutions
and the general solution is again given by Eq. (25). The following example illustrates
this case.

E X A M P L E

3

Find the general solution of

x′ =
0 1 1

1 0 1
1 1 0

 x. (26)
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Observe that the coefficient matrix is real and symmetric. The eigenvalues and
eigenvectors of this matrix were found in Example 5 of Section 7.3, namely,

r1 = 2, � (1) =
1

1
1

 ; (27)

r2 = −1, r3 = −1; � (2) =
 1

0
−1

 , � (3) =
 0

1
−1

 . (28)

Hence a fundamental set of solutions of Eq. (26) is

x(1)(t) =
1

1
1

 e2t , x(2)(t) =
 1

0
−1

 e−t , x(3)(t) =
 0

1
−1

 e−t (29)

and the general solution is

x = c1

1
1
1

 e2t + c2

 1
0

−1

 e−t + c3

 0
1

−1

 e−t . (30)

This example illustrates the fact that even though an eigenvalue (r = −1) has multi-
plicity 2, it may still be possible to find two linearly independent eigenvectors � (2) and
� (3) and, as a consequence, to construct the general solution (30).

The behavior of the solution (30) depends critically on the initial conditions. For
large t the first term on the right side of Eq. (30) is the dominant one; therefore, if
c1 
= 0, all components of x become unbounded as t → ∞. On the other hand, for
certain initial points c1 will be zero. In this case, the solution involves only the negative
exponential terms and x → 0 as t → ∞. The initial points that cause c1 to be zero
are precisely those that lie in the plane determined by the eigenvectors �(2) and �(3)

corresponding to the two negative eigenvalues. Thus, solutions that start in this plane
approach the origin as t → ∞, while all other solutions become unbounded.

If some of the eigenvalues occur in complex conjugate pairs, then there are still
n linearly independent solutions of the form (23), provided that all the eigenvalues
are different. Of course, the solutions arising from complex eigenvalues are complex-
valued. However, as in Section 3.4, it is possible to obtain a full set of real-valued
solutions. This is discussed in Section 7.6.

More serious difficulties can occur if an eigenvalue is repeated. In this event the
number of corresponding linearly independent eigenvectors may be smaller than the
multiplicity of the eigenvalue. If so, the number of linearly independent solutions of
the form �ert will be smaller than n. To construct a fundamental set of solutions it is
then necessary to seek additional solutions of another form. The situation is somewhat
analogous to that for an nth order linear equation with constant coefficients; a repeated
root of the characteristic equation gave rise to solutions of the form ert , tert , t2ert , . . . .

The case of repeated eigenvalues is treated in Section 7.8.
Finally, if A is complex, then complex eigenvalues need not occur in conjugate

pairs, and the eigenvectors are normally complex-valued even though the associated
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eigenvalue may be real. The solutions of the differential equation (1) are still of the
form (23), provided that the eigenvalues are distinct, but in general all the solutions are
complex-valued.

PROBLEMS In each of Problems 1 through 6 find the general solution of the given system of equations
and describe the behavior of the solution as t → ∞. Also draw a direction field and plot a few
trajectories of the system.

� 1. x′ =
(

3 −2
2 −2

)
x � 2. x′ =

(
1 −2
3 −4

)
x

� 3. x′ =
(

2 −1
3 −2

)
x � 4. x′ =

(
1 1
4 −2

)
x

� 5. x′ =
(−2 1

1 −2

)
x � 6. x′ =

(
5
4

3
4

3
4

5
4

)
x

In each of Problems 7 and 8 find the general solution of the given system of equations. Also
draw a direction field and a few of the trajectories. In each of these problems the coefficient
matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the
examples in the text.

� 7. x′ =
(

4 −3
8 −6

)
x � 8. x′ =

(
3 6

−1 −2

)
x

In each of Problems 9 through 14 find the general solution of the given system of equations.

9. x′ =
(

1 i
−i 1

)
x 10. x′ =

(
2 2 + i

−1 −1 − i

)
x

11. x′ =
1 1 2

1 2 1
2 1 1

 x 12. x′ =
3 2 4

2 0 2
4 2 3

 x

13. x′ =
 1 1 1

2 1 −1
−8 −5 −3

 x 14. x′ =
1 −1 4

3 2 −1
2 1 −1

 x

In each of Problems 15 through 18 solve the given initial value problem. Describe the behavior
of the solution as t → ∞.

15. x′ =
(

5 −1
3 1

)
x, x(0) =

(
2

−1

)

16. x′ =
(−2 1

−5 4

)
x, x(0) =

(
1
3

)

17. x′ =
 1 1 2

0 2 2
−1 1 3

 x, x(0) =
2

0
1



18. x′ =
 0 0 −1

2 0 0
−1 2 4

 x, x(0) =
7

5
5


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19. The system tx′ = Ax is analogous to the second order Euler equation (Section 5.5). Assum-
ing that x = �tr , where � is a constant vector, show that � and r must satisfy (A − rI)� = 0
in order to obtain nontrivial solutions of the given differential equation.

Referring to Problem 19, solve the given system of equations in each of Problems 20 through
23. Assume that t > 0.

20. tx′ =
(

2 −1
3 −2

)
x 21. tx′ =

(
5 −1
3 1

)
x

22. tx′ =
(

4 −3
8 −6

)
x 23. tx′ =

(
3 −2
2 −2

)
x

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix A are given.
Consider the corresponding system x′ = Ax.

(a) Sketch a phase portrait of the system.
(b) Sketch the trajectory passing through the initial point (2, 3).
(c) For the trajectory in part (b) sketch the graphs of x1 versus t and of x2 versus t on the
same set of axes.

24. r1 = −1, �(1) =
(−1

2

)
; r2 = −2, �(2) =

(
1
2

)
25. r1 = 1, �(1) =

(−1
2

)
; r2 = −2, �(2) =

(
1
2

)
26. r1 = −1, �(1) =

(−1
2

)
; r2 = 2, �(2) =

(
1
2

)
27. r1 = 1, �(1) =

(
1
2

)
; r2 = 2, �(2) =

(
1

−2

)
28. Consider a 2 × 2 system x′ = Ax. If we assume that r1 
= r2, the general solution is

x = c1� (1)er1t + c2� (2)er2t , provided that � (1) and � (2) are linearly independent. In this
problem we establish the linear independence of � (1) and � (2) by assuming that they are
linearly dependent, and then showing that this leads to a contradiction.
(a) Note that � (1) satisfies the matrix equation (A − r1I)� (1) = 0; similarly, note that
(A − r2I)� (2) = 0.
(b) Show that (A − r2I)� (1) = (r1 − r2)�

(1).
(c) Suppose that � (1) and � (2) are linearly dependent. Then c1� (1) + c2� (2) = 0 and at least
one of c1 and c2 is not zero; suppose that c1 
= 0. Show that (A − r2I)(c1� (1) + c2� (2)) = 0,
and also show that (A − r2I)(c1� (1) + c2� (2)) = c1(r1 − r2)�

(1). Hence c1 = 0, which is
a contradiction. Therefore � (1) and � (2) are linearly independent.
(d) Modify the argument of part (c) in case c1 is zero but c2 is not.
(e) Carry out a similar argument for the case in which the order n is equal to 3; note that
the procedure can be extended to cover an arbitrary value of n.

29. Consider the equation

ay′′ + by′ + cy = 0, (i)

where a, b, and c are constants. In Chapter 3 it was shown that the general solution depended
on the roots of the characteristic equation

ar2 + br + c = 0. (ii)
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(a) Transform Eq. (i) into a system of first order equations by letting x1 = y, x2 = y′. Find

the system of equations x′ = Ax satisfied by x =
(

x1
x2

)
.

(b) Find the equation that determines the eigenvalues of the coefficient matrix A in part (a).
Note that this equation is just the characteristic equation (ii) of Eq. (i).

� 30. The two-tank system of Problem 21 in Section 7.1 leads to the initial value problem

x′ =
(

− 1
10

3
40

1
10 − 1

5

)
x, x(0) =

(−17
−21

)
,

where x1 and x2 are the deviations of the salt levels Q1 and Q2 from their respective
equilibria.
(a) Find the solution of the given initial value problem.
(b) Plot x1 versus t and x2 versus t on the same set of axes.
(c) Find the time T such that |x1(t)| ≤ 0.5 and |x2(t)| ≤ 0.5 for all t ≥ T .

31. Consider the system

x′ =
(−1 −1

−α −1

)
x.

(a) Solve the system for α = 0.5. What are the eigenvalues of the coefficient matrix?
Classify the equilibrium point at the origin as to type.
(b) Solve the system for α = 2. What are the eigenvalues of the coefficient matrix? Classify
the equilibrium point at the origin as to type.
(c) In parts (a) and (b) solutions of the system exhibit two quite different types of behavior.
Find the eigenvalues of the coefficient matrix in terms of α and determine the value of α

between 0.5 and 2 where the transition from one type of behavior to the other occurs. This
critical value of α is called a bifurcation point.

Electric Circuits. Problems 32 and 33 are concerned with the electric circuit described by the
system of differential equations in Problem 20 of Section 7.1:

d

dt

(
I
V

)
=

− R1

L
− 1

L
1

C
− 1

C R2

( I
V

)
. (i)

32. (a) Find the general solution of Eq. (i) if R1 = 1 ohm, R2 = 3
5 ohm, L = 2 henrys, and

C = 2
3 farad.

(b) Show that I (t) → 0 and V (t) → 0 as t → ∞ regardless of the initial values I (0) and
V (0).

33. Consider the preceding system of differential equations (i).
(a) Find a condition on R1, R2, C , and L that must be satisfied if the eigenvalues of the
coefficient matrix are to be real and different.
(b) If the condition found in part (a) is satisfied, show that both eigenvalues are negative.
Then show that I (t) → 0 and V (t) → 0 as t → ∞ regardless of the initial conditions.
(c) If the condition found in part (a) is not satisfied, then the eigenvalues are either complex
or repeated. Do you think that I (t) → 0 and V (t) → 0 as t → ∞ in these cases as well?
Hint: In part (c) one approach is to change the system (i) into a single second order equation.
We also discuss complex and repeated eigenvalues in Sections 7.6 and 7.8.



384 Chapter 7. Systems of First Order Linear Equations

7.6 Complex Eigenvalues

In this section we consider again a system of n linear homogeneous equations with
constant coefficients

x′ = Ax, (1)

where the coefficient matrix A is real-valued. If we seek solutions of the form x = �ert ,
then it follows as in Section 7.5 that r must be an eigenvalue and � a corresponding
eigenvector of the coefficient matrix A. Recall that the eigenvalues r1, . . . , rn of A are
the roots of the equation

det(A − rI) = 0, (2)

and that the corresponding eigenvectors satisfy

(A − rI)� = 0. (3)

If A is real, then the coefficients in the polynomial equation (2) for r are real, and
any complex eigenvalues must occur in conjugate pairs. For example, if r1 = λ + iµ,
where λ and µ are real, is an eigenvalue of A, then so is r2 = λ − iµ. Further, the
corresponding eigenvectors � (1) and � (2) are also complex conjugates. To see that this
is so, suppose that r1 and � (1) satisfy

(A − r1I)� (1) = 0. (4)

On taking the complex conjugate of this equation, and noting that A and I are real-
valued, we obtain

(A − r1I)� (1) = 0, (5)

where r1 and � (1) are the complex conjugates of r1 and � (1), respectively. In other
words, r2 = r1 is also an eigenvalue, and � (2) = � (1) is a corresponding eigenvector.
The corresponding solutions

x(1)(t) = � (1)er1t , x(2)(t) = � (1)er1t (6)

of the differential equation (1) are then complex conjugates of each other. Therefore,
as in Section 3.4, we can find two real-valued solutions of Eq. (1) corresponding to the
eigenvalues r1 and r2 by taking the real and imaginary parts of x(1)(t) or x(2)(t) given
by Eq. (6).

Let us write � (1) = a + ib, where a and b are real; then we have

x(1)(t) = (a + ib)e(λ+iµ)t

= (a + ib)eλt(cos µt + i sin µt). (7)

Upon separating x(1)(t) into its real and imaginary parts, we obtain

x(1)(t) = eλt(a cos µt − b sin µt) + ieλt(a sin µt + b cos µt). (8)

If we write x(1)(t) = u(t) + iv(t), then the vectors

u(t) = eλt(a cos µt − b sin µt),
(9)

v(t) = eλt(a sin µt + b cos µt)
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are real-valued solutions of Eq. (1). It is possible to show that u and v are linearly
independent solutions (see Problem 27).

For example, suppose that r1 = λ + iµ, r2 = λ − iµ, and that r3, . . . , rn are all
real and distinct. Let the corresponding eigenvectors be � (1) = a + ib, � (2) = a − ib,
� (3), . . . , � (n). Then the general solution of Eq. (1) is

x = c1u(t) + c2v(t) + c3� (3)er3t + · · · + cn� (n)ernt , (10)

where u(t) and v(t) are given by Eqs. (9). We emphasize that this analysis applies only
if the coefficient matrix A in Eq. (1) is real, for it is only then that complex eigenvalues
and eigenvectors must occur in conjugate pairs.

The following examples illustrate the case n = 2, both to simplify the algebraic
calculations and to permit easy visualization of the solutions in the phase plane.

E X A M P L E

1

Find a fundamental set of real-valued solutions of the system

x′ =
(

− 1
2 1

−1 − 1
2

)
x (11)

and display them graphically.
A direction field for the system (11) is shown in Figure 7.6.1. This plot suggests that

the trajectories in the phase plane spiral clockwise toward the origin.

2

–2

1

–1

1 2–2 –1 x1

x2

FIGURE 7.6.1 A direction field for the system (11).

To find a fundamental set of solutions we assume that

x = �ert (12)

and obtain the set of linear algebraic equations(
− 1

2 − r 1

−1 − 1
2 − r

)(
ξ1
ξ2

)
=
(

0
0

)
(13)
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for the eigenvalues and eigenvectors of A. The characteristic equation is∣∣∣∣∣− 1
2 − r 1

−1 − 1
2 − r

∣∣∣∣∣ = r2 + r + 5
4 = 0; (14)

therefore the eigenvalues are r1 = − 1
2 + i and r2 = − 1

2 − i . From Eq. (13) a straight-
forward calculation shows that the corresponding eigenvectors are

� (1) =
(

1
i

)
, � (2) =

(
1

−i

)
. (15)

Hence a fundamental set of solutions of the system (11) is

x(1)(t) =
(

1
i

)
e(−1/2+i)t , x(2)(t) =

(
1

−i

)
e(−1/2−i)t . (16)

To obtain a set of real-valued solutions, we must find the real and imaginary parts of
either x(1) or x(2). In fact,

x(1)(t) =
(

1
i

)
e−t/2(cos t + i sin t) =

(
e−t/2 cos t

−e−t/2 sin t

)
+ i

(
e−t/2 sin t
e−t/2 cos t

)
. (17)

Hence

u(t) = e−t/2

(
cos t

− sin t

)
, v(t) = e−t/2

(
sin t
cos t

)
(18)

is a set of real-valued solutions. To verify that u(t) and v(t) are linearly independent,
we compute their Wronskian:

W (u, v)(t) =
∣∣∣∣ e−t/2 cos t e−t/2 sin t
−e−t/2 sin t e−t/2 cos t

∣∣∣∣
= e−t (cos2 t + sin2 t) = e−t .

Since the Wronskian is never zero, it follows that u(t) and v(t) constitute a fundamental
set of (real-valued) solutions of the system (11).

The graphs of the solutions u(t) and v(t) are shown in Figure 7.6.2a. Since

u(0) =
(

1
0

)
, v(0) =

(
0
1

)
,

the graphs of u(t) and v(t) pass through the points (1, 0) and (0, 1), respectively. Other
solutions of the system (11) are linear combinations of u(t) and v(t), and graphs of
a few of these solutions are also shown in Figure 7.6.2a. In all cases the solution
approaches the origin along a spiral path as t → ∞; this is due to the fact that the
solutions (18) are products of decaying exponential and sine or cosine factors. Some
typical graphs of x1 versus t are shown in Figure 7.6.2b; each one represents a decaying
oscillation in time.

Figure 7.6.2a is typical of all second order systems x′ = Ax whose eigenvalues are
complex with negative real part. The origin is called a spiral point and is asymptotically
stable because all trajectories approach it as t increases. For a system whose eigenvalues
have a positive real part the trajectories are similar to those in Figure 7.6.2a, but the
direction of motion is away from the origin and the trajectories become unbounded.
In this case, the origin is unstable. If the real part of the eigenvalues is zero, then the
trajectories neither approach the origin nor become unbounded but instead traverse
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x1 t

x2 x1

u(t)

v(t)

1

2

–1

–2

221–1–2

–1

4

1

(a) (b)

FIGURE 7.6.2 (a) Trajectories of the system (11); the origin is a spiral point. (b) Plots of x1
versus t for the system (11).

repeatedly a closed curve about the origin. In this case the origin is called a center
and is said to be stable, but not asymptotically stable. In all three cases the direction of
motion may be either clockwise, as in this example, or counterclockwise, depending
on the elements of the coefficient matrix A.

E X A M P L E

2

The electric circuit shown in Figure 7.6.3 is described by the system of differential
equations

d

dt

(
I

V

)
=
(−1 −1

2 −1

)(
I

V

)
, (19)

where I is the current through the inductor and V is the voltage drop across the
capacitor. These equations were derived in Problem 19 of Section 7.1. Suppose that at
time t = 0 the current is 2 amperes and the voltage drop is 2 volts. Find I (t) and V (t)
at any time.

R = 1 ohm

R = 2 ohms
L = 1 henry

C =    farad1
2

FIGURE 7.6.3 The circuit in Example 2.
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Assuming that (
I

V

)
= �ert , (20)

we obtain the algebraic equations(−1 − r −1
2 −1 − r

)(
ξ1
ξ2

)
=
(

0
0

)
. (21)

The eigenvalues are determined from the condition∣∣∣∣−1 − r −1
2 −1 − r

∣∣∣∣ = r2 + 2r + 3 = 0; (22)

thus r1 = −1 + √
2 i and r2 = −1 − √

2 i . The corresponding eigenvectors are then
found from Eq. (21), namely,

� (1) =
(

1
−√

2 i

)
, � (2) =

(
1√
2 i

)
. (23)

The complex-valued solution corresponding to r1 and � (1) is

� (1)er1t =
(

1
−√

2 i

)
e(−1+√

2 i)t

=
(

1
−√

2 i

)
e−t (cos

√
2 t + i sin

√
2 t)

= e−t

(
cos

√
2 t√

2 sin
√

2 t

)
+ ie−t

(
sin

√
2 t

−√
2 cos

√
2 t

)
. (24)

The real and imaginary parts of this solution form a pair of linearly independent
real-valued solutions of Eq. (19):

u(t) = e−t

(
cos

√
2 t√

2 sin
√

2 t

)
, v(t) = e−t

(
sin

√
2 t

−√
2 cos

√
2 t

)
. (25)

Hence the general solution of Eqs. (19) is(
I
V

)
= c1e−t

(
cos

√
2 t√

2 sin
√

2 t

)
+ c2e−t

(
sin

√
2 t

−√
2 cos

√
2 t

)
. (26)

Upon imposing the initial conditions(
I

V

)
(0) =

(
2
2

)
, (27)

we find that

c1

(
1
0

)
+ c2

(
0

−√
2

)
=
(

2
2

)
. (28)

Thus c1 = 2 and c2 = −√
2. The solution of the stated problem is then given by

Eq. (26) with these values of c1 and c2. The graph of the solution is shown in Figure
7.6.4. The trajectory spirals counterclockwise and rapidly approaches the origin, due
to the factor e−t .
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–1 2

–1

1

1

2

I

V

(2, 2)

FIGURE 7.6.4 Solution of the initial value problem in Example 2.

E X A M P L E

3

The system

x′ =
(

α 2
−2 0

)
x (29)

contains a parameter α. Describe how the solutions depend qualitatively on α; in
particular, find the critical values of α at which the qualitative behavior of the trajectories
in the phase plane changes markedly.

The behavior of the trajectories is controlled by the eigenvalues of the coefficient
matrix. The characteristic equation is

r2 − αr + 4 = 0, (30)

so the eigenvalues are

r = α ±
√

α2 − 16

2
. (31)

From Eq. (31) it follows that the eigenvalues are complex conjugates for −4 < α < 4
and are real otherwise. Thus two critical values are α = −4 and α = 4, where the
eigenvalues change from real to complex, or vice versa. For α < −4 both eigenvalues
are negative, so all trajectories approach the origin, which is an asymptotically stable
node. For α > 4 both eigenvalues are positive, so the origin is again a node, this time
unstable; all trajectories (except x = 0) become unbounded. In the intermediate range,
−4 < α < 4, the eigenvalues are complex and the trajectories are spirals. However, for
−4 < α < 0 the real part of the eigenvalues is negative, the spirals are directed inward,
and the origin is asymptotically stable, while for 0 < α < 4 the opposite is the case
and the origin is unstable. Thus α = 0 is also a critical value where the direction of the
spirals changes from inward to outward. For this value of α the origin is a center and
the trajectories are closed curves about the origin, corresponding to solutions that are
periodic in time. The other critical values, α = ±4, yield eigenvalues that are real and
equal. In this case the origin is again a node, but the phase portrait differs somewhat
from those in Section 7.5. We take up this case in Section 7.8.

For second order systems with real coefficients we have now completed our descrip-
tion of the three main cases that can occur.

1. Eigenvalues have opposite signs; x = 0 is a saddle point.
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2. Eigenvalues have the same sign but are unequal; x = 0 is a node.
3. Eigenvalues are complex with nonzero real part; x = 0 is a spiral point.

Other possibilities are of less importance and occur as transitions between two
of the cases just listed. For example, a zero eigenvalue occurs during the transition
between a saddle point and a node. Purely imaginary eigenvalues occur during a
transition between asymptotically stable and unstable spiral points. Finally, real and
equal eigenvalues appear during the transition between nodes and spiral points.

PROBLEMS In each of Problems 1 through 8 express the general solution of the given system of equations
in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field,
sketch a few of the trajectories, and describe the behavior of the solutions as t → ∞.

� 1. x′ =
(

3 −2
4 −1

)
x � 2. x′ =

(−1 −4
1 −1

)
x

� 3. x′ =
(

2 −5
1 −2

)
x � 4. x′ =

(
2 − 5

2
9
5 −1

)
x

� 5. x′ =
(

1 −1
5 −3

)
x � 6. x′ =

(
1 2

−5 −1

)
x

7. x′ =
1 0 0

2 1 −2
3 2 1

 x 8. x′ =
−3 0 2

1 −1 0
−2 −1 0

 x

In each of Problems 9 and 10 find the solution of the given initial value problem. Describe the
behavior of the solution as t → ∞.

9. x′ =
(

1 −5
1 −3

)
x, x(0) =

(
1
1

)

10. x′ =
(−3 2

−1 −1

)
x, x(0) =

(
1

−2

)
In each of Problems 11 and 12:

(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and draw the corresponding trajectory
in the x1x2-plane.
(c) For your trajectory in part (b) draw the graphs of x1 versus t and of x2 versus t .
(d) For your trajectory in part (b) draw the corresponding graph in three-dimensional
t x1x2-space.

� 11. x′ =
(

3
4 −2

1 − 5
4

)
x � 12. x′ =

(
− 4

5 2

−1 6
5

)
x

In each of Problems 13 through 20 the coefficient matrix contains a parameter α. In each of
these problems:

(a) Determine the eigenvalues in terms of α.
(b) Find the critical value or values of α where the qualitative nature of the phase portrait
for the system changes.
(c) Draw a phase portrait for a value of α slightly below, and for another value slightly
above, each critical value.
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� 13. x′ =
(

α 1
−1 α

)
x � 14. x′ =

(
0 −5
1 α

)
x

� 15. x′ =
(

2 −5
α −2

)
x � 16. x′ =

(
5
4

3
4

α 5
4

)
x

� 17. x′ =
(−1 α

−1 −1

)
x � 18. x′ =

(
3 α

−6 −4

)
x

� 19. x′ =
(

α 10
−1 −4

)
x � 20. x′ =

(
4 α

8 −6

)
x

In each of Problems 21 and 22 solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that t > 0.

21. tx′ =
(−1 −1

2 −1

)
x 22. tx′ =

(
2 −5
1 −2

)
x

In each of Problems 23 and 24:

(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and draw the corresponding trajectory
in the x1x2-plane. Also draw the trajectories in the x1x3- and x2x3-planes.
(c) For the initial point in part (b) draw the corresponding trajectory in x1x2x3-space.

� 23. x′ =

− 1
4 1 0

−1 − 1
4 0

0 0 − 1
4

 x � 24. x′ =

− 1
4 1 0

−1 − 1
4 0

0 0 1
10

 x

25. Consider the electric circuit shown in Figure 7.6.5. Suppose that R1 = R2 = 4 ohms,
C = 1

2 farad, and L = 8 henrys.
(a) Show that this circuit is described by the system of differential equations

d

dt

(
I
V

)
=
(

− 1
2 − 1

8

2 − 1
2

)(
I
V

)
, (i)

where I is the current through the inductor and V is the voltage drop across the capacitor.
Hint: See Problem 18 of Section 7.1.
(b) Find the general solution of Eqs. (i) in terms of real-valued functions.
(c) Find I (t) and V (t) if I (0) = 2 amperes and V (0) = 3 volts.
(d) Determine the limiting values of I (t) and V (t) as t → ∞. Do these limiting values
depend on the initial conditions?

R1

R2
L

C

FIGURE 7.6.5 The circuit in Problem 25.
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26. The electric circuit shown in Figure 7.6.6 is described by the system of differential equations

d

dt

(
I
V

)
=

 0
1

L

− 1

C
− 1

RC

( I
V

)
, (i)

where I is the current through the inductor and V is the voltage drop across the capacitor.
These differential equations were derived in Problem 18 of Section 7.1.
(a) Show that the eigenvalues of the coefficient matrix are real and different if L > 4R2C ;
show that they are complex conjugates if L < 4R2C .
(b) Suppose that R = 1 ohm, C = 1

2 farad, and L = 1 henry. Find the general solution of
the system (i) in this case.
(c) Find I (t) and V (t) if I (0) = 2 amperes and V (0) = 1 volt.
(d) For the circuit of part (b) determine the limiting values of I (t) and V (t) as t → ∞.
Do these limiting values depend on the initial conditions?

C

L

R

FIGURE 7.6.6 The circuit in Problem 26.

27. In this problem we indicate how to show that u(t) and v(t), as given by Eqs. (9), are linearly
independent. Let r1 = λ + iµ and r1 = λ − iµ be a pair of conjugate eigenvalues of the
coefficient matrix A of Eq. (1); let � (1) = a + ib and � (1) = a − ib be the corresponding
eigenvectors. Recall that it was stated in Section 7.3 that if r1 
= r1, then � (1) and � (1) are
linearly independent.
(a) First we show that a and b are linearly independent. Consider the equation c1a +
c2b = 0. Express a and b in terms of � (1) and � (1), and then show that (c1 − ic2)�

(1) +
(c1 + ic2)�

(1) = 0.
(b) Show that c1 − ic2 = 0 and c1 + ic2 = 0 and then that c1 = 0 and c2 = 0. Conse-
quently, a and b are linearly independent.
(c) To show that u(t) and v(t) are linearly independent consider the equation c1u(t0) +
c2v(t0) = 0, where t0 is an arbitrary point. Rewrite this equation in terms of a and b, and
then proceed as in part (b) to show that c1 = 0 and c2 = 0. Hence u(t) and v(t) are linearly
independent at the arbitrary point t0. Therefore they are linearly independent at every point
and on every interval.

28. A mass m on a spring with constant k satisfies the differential equation (see Section 3.8)

mu′′ + ku = 0,

where u(t) is the displacement at time t of the mass from its equilibrium position.
(a) Let x1 = u and x2 = u′; show that the resulting system is

x′ =
(

0 1

−k/m 0

)
x.

(b) Find the eigenvalues of the matrix for the system in part (a).
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(c) Sketch several trajectories of the system. Choose one of your trajectories and sketch
the corresponding graphs of x1 versus t and of x2 versus t . Sketch both graphs on one set
of axes.
(d) What is the relation between the eigenvalues of the coefficient matrix and the natural
frequency of the spring–mass system?

� 29. Consider the two-mass, three-spring system shown in Figure 7.1.1, whose equations of
motion are given in Eqs. (1) of Section 7.1. If there are no external forces, and if the masses
and spring constants are equal and of unit magnitude, then the equations of motion are

x ′′
1 = −2x1 + x2, x ′′

2 = x1 − 2x2.

(a) Transform the system into a system of four first order equations by letting y1 = x1,
y2 = x ′

1, y3 = x2, and y4 = x ′
2.

(b) Find the eigenvalues of the coefficient matrix for the system in part (a).
(c) Solve the system in part (a) subject to the initial conditions yT(0) = (2, 1, 2, 1). De-
scribe the physical motion of the spring–mass system that corresponds to this solution.
(d) Solve the system in part (a) subject to the initial conditions yT(0) = (2,

√
3, −2, −√

3).
Describe the physical motion of the spring–mass system that corresponds to this solution.
(e) Observe that the spring–mass system has two natural modes of oscillation in this case.
How are the natural frequencies related to the eigenvalues of the coefficient matrix? Do
you think that there might be a third natural mode of oscillation with a different frequency?

7.7 Fundamental Matrices

The structure of the solutions of systems of linear differential equations can be
further illuminated by introducing the idea of a fundamental matrix. Suppose that
x(1)(t), . . . , x(n)(t) form a fundamental set of solutions for the equation

x′ = P(t)x (1)

on some interval α < t < β. Then the matrix

�(t) =

x (1)
1 (t) · · · x (n)

1 (t)
...

...
x (1)

n (t) · · · x (n)
n (t)

 , (2)

whose columns are the vectors x(1)(t), . . . , x(n)(t), is said to be a fundamental matrix
for the system (1). Note that a fundamental matrix is nonsingular since its columns are
linearly independent vectors.

E X A M P L E

1

Find a fundamental matrix for the system

x′ =
(

1 1
4 1

)
x. (3)

In Example 1 of Section 7.5 we found that

x(1)(t) =
(

e3t

2e3t

)
, x(2)(t) =

(
e−t

−2e−t

)
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are linearly independent solutions of Eq. (3). Thus a fundamental matrix for the system
(3) is

�(t) =
(

e3t e−t

2e3t −2e−t

)
. (4)

The solution of an initial value problem can be written very compactly in terms of a
fundamental matrix. The general solution of Eq. (1) is

x = c1x(1)(t) + · · · + cnx(n)(t) (5)

or, in terms of �(t),

x = �(t)c, (6)

where c is a constant vector with arbitrary components c1, . . . , cn . For an initial value
problem consisting of the differential equation (1) and the initial condition

x(t0) = x0, (7)

where t0 is a given point in α < t < β and x0 is a given initial vector, it is only necessary
to choose the vector c in Eq. (6) so as to satisfy the initial condition (7). Hence c must
satisfy

�(t0)c = x0. (8)

Therefore, since �(t0) is nonsingular,

c = �−1(t0)x
0 (9)

and

x = �(t)�−1(t0)x
0 (10)

is the solution of the initial value problem (1), (7). We emphasize, however, that to
solve a given initial value problem one would ordinarily solve Eq. (8) by row reduction
and then substitute for c in Eq. (6), rather than compute �−1(t0) and use Eq. (10).

Recall that each column of the fundamental matrix � is a solution of Eq. (1). It
follows that � satisfies the matrix differential equation

�′ = P(t)�. (11)

This relation is readily confirmed by comparing the two sides of Eq. (11) column by
column.

Sometimes it is convenient to make use of the special fundamental matrix, denoted
by �(t), whose columns are the vectors x(1)(t), . . . , x(n)(t) designated in Theorem
7.4.4. Besides the differential equation (1) these vectors satisfy the initial conditions

x( j)(t0) = e( j), (12)
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where e( j) is the unit vector, defined in Theorem 7.4.4, with a one in the j th position
and zeros elsewhere. Thus �(t) has the property that

�(t0) =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 = I. (13)

We will always reserve the symbol � to denote the fundamental matrix satisfying the
initial condition (13) and use � when an arbitrary fundamental matrix is intended.
In terms of �(t) the solution of the initial value problem (1), (7) is even simpler in
appearance; since �−1(t0) = I, it follows from Eq. (10) that

x = �(t)x0. (14)

While the fundamental matrix �(t) is often more complicated than �(t), it is especially
helpful if the same system of differential equations is to be solved repeatedly subject to
many different initial conditions. This corresponds to a given physical system that can
be started from many different initial states. If the fundamental matrix �(t) has been
determined, then the solution for each set of initial conditions can be found simply
by matrix multiplication, as indicated by Eq. (14). The matrix �(t) thus represents a
transformation of the initial conditions x0 into the solution x(t) at an arbitrary time t .
By comparing Eqs. (10) and (14) it is clear that �(t) = �(t)�−1(t0).

E X A M P L E

2

For the system (3),

x′ =
(

1 1
4 1

)
x,

in Example 1, find the fundamental matrix � such that �(0) = I.
The columns of � are solutions of Eq. (3) that satisfy the initial conditions

x(1)(0) =
(

1
0

)
, x(2)(0) =

(
0
1

)
. (15)

Since the general solution of Eq. (3) is

x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t ,

we can find the solution satisfying the first set of these initial conditions by choos-
ing c1 = c2 = 1

2 ; similarly, we obtain the solution satisfying the second set of initial
conditions by choosing c1 = 1

4 and c2 = − 1
4 . Hence

�(t) =
(

1
2 e3t + 1

2 e−t 1
4 e3t − 1

4 e−t

e3t − e−t 1
2 e3t + 1

2 e−t

)
. (16)

Note that the elements of �(t) are more complicated than those of the fundamental
matrix �(t) given by Eq. (4); however, it is now easy to determine the solution
corresponding to any set of initial conditions.
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The Matrix exp(At). Recall that the solution of the scalar initial value problem

x ′ = ax, x(0) = x0, (17)

where a is a constant, is

x = x0 exp(at). (18)

Now consider the corresponding initial value problem for an n × n system, namely,

x′ = Ax, x(0) = x0, (19)

where A is a constant matrix. Applying the results of this section to the problem (19),
we can write its solution as

x = �(t)x0, (20)

where �(0) = I. Comparing the problems (17) and (19), and their solutions, sug-
gests that the matrix �(t) might have an exponential character. We now explore this
possibility.

The scalar exponential function exp(at) can be represented by the power series

exp(at) = 1 +
∞∑

n=1

antn

n!
, (21)

which converges for all t . Let us now replace the scalar a by the n × n constant matrix
A, and consider the corresponding series

I +
∞∑

n=1

Antn

n!
= I + At + A2t2

2!
+ · · · + Antn

n!
+ · · · . (22)

Each term in the series (22) is an n × n matrix. It is possible to show that each element
of this matrix sum converges for all t as n → ∞. Thus the series (22) defines as its
sum a new matrix, which we denote by exp(At); that is,

exp(At) = I +
∞∑

n=1

Antn

n!
, (23)

analogous to the expansion (21) of the scalar function exp(at).
By differentiating the series (23) term by term we obtain

d

dt
[exp(At)] =

∞∑
n=1

Antn−1

(n − 1)!
= A

[
I +

∞∑
n=1

Antn

n!

]
= A exp(At). (24)

Thus exp(At) satisfies the differential equation

d

dt
exp(At) = A exp(At). (25)

Further, when t = 0, exp(At) satisfies the initial condition

exp(At)
∣∣∣
t=0

= I. (26)

The fundamental matrix � satisfies the same initial value problem as exp(At), namely,

�′ = A�, �(0) = I. (27)
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Thus we can identify exp(At) with the fundamental matrix �(t) and we can write the
solution of the initial value problem (19) in the form

x = exp(At)x0, (28)

which is analogous to the solution (18) of the initial value problem (17).
In order to justify more conclusively the use of exp(At) for the sum of the series (22),

we should demonstrate that this matrix function does indeed have the properties we
associate with the exponential function. One way to do this is outlined in Problem 15.

Diagonalizable Matrices. The basic reason why a system of linear (algebraic or
differential) equations presents some difficulty is that the equations are usually coupled.
In other words, some or all of the equations involve more than one, typically all, of the
unknown variables. Hence the equations in the system must be solved simultaneously.
In contrast, if each equation involves only a single variable, then each equation can be
solved independently of all the others, which is a much easier task. This observation
suggests that one way to solve a system of equations might be by transforming it into
an equivalent uncoupled system in which each equation contains only one unknown
variable. This corresponds to transforming the coefficient matrix A into a diagonal
matrix.

Eigenvectors are useful in accomplishing such a transformation. Suppose that the
n × n matrix A has a full set of n linearly independent eigenvectors. Recall that this will
certainly be the case if the eigenvalues of A are all different, or if A is Hermitian. Letting
�(1), . . . , �(n) denote these eigenvectors and λ1, . . . , λn the corresponding eigenvalues,
form the matrix T whose columns are the eigenvectors, that is,

T =

ξ
(1)
1 · · · ξ

(n)
1

...
...

ξ (1)
n · · · ξ (n)

n

 . (29)

Since the columns of T are linearly independent vectors, det T 
= 0; hence T is non-
singular and T−1 exists. A straightforward calculation shows that the columns of the
matrix AT are just the vectors A�(1), . . . , A�(n). Since A�(k) = λk�(k), it follows that

AT =

λ1ξ
(1)
1 · · · λnξ

(n)
1

...
...

λ1ξ
(1)
n · · · λnξ

(n)
n

 = TD, (30)

where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 (31)

is a diagonal matrix whose diagonal elements are the eigenvalues of A. From Eq. (30)
it follows that

T−1AT = D. (32)

Thus, if the eigenvalues and eigenvectors of A are known, A can be transformed into a
diagonal matrix by the process shown in Eq. (32). This process is known as a similarity
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transformation, and Eq. (32) is summed up in words by saying that A is similar to
the diagonal matrix D. Alternatively, we may say that A is diagonalizable. Observe
that a similarity transformation leaves the eigenvalues of A unchanged and transforms
its eigenvectors into the coordinate vectors e(1), . . . , e(n).

If A is Hermitian, then the determination of T−1 is very simple. We choose the
eigenvectors �(1), . . . , �(n) of A so that they are normalized by (�(i), �(i)) = 1 for each
i , as well as orthogonal. Then it is easy to verify that T−1 = T∗; in other words, the
inverse of T is the same as its adjoint (the transpose of its complex conjugate).

Finally, we note that if A has fewer than n linearly independent eigenvectors, then
there is no matrix T such that T−1AT = D. In this case, A is not similar to a diagonal
matrix, and is not diagonalizable.

E X A M P L E

3

Consider the matrix

A =
(

1 1
4 1

)
. (33)

Find the similarity transformation matrix T and show that A can be diagonalized.
In Example 1 of Section 7.5 we found that the eigenvalues and eigenvectors of A are

r1 = 3, �(1) =
(

1
2

)
; r2 = −1, �(2) =

(
1

−2

)
. (34)

Thus the transformation matrix T and its inverse T−1 are

T =
(

1 1
2 −2

)
; T−1 =

(
1
2

1
4

1
2 − 1

4

)
. (35)

Consequently, you can check that

T−1AT =
(

3 0
0 −1

)
= D. (36)

Now let us turn again to the system

x′ = Ax, (37)

where A is a constant matrix. In Sections 7.5 and 7.6 we have described how to solve
such a system by starting from the assumption that x = �ert . Now we provide another
viewpoint, one based on diagonalizing the coefficient matrix A.

According to the results stated just above, it is possible to diagonalize A whenever A
has a full set of n linearly independent eigenvectors. Let � (1), . . . , � (n) be eigenvectors
of A corresponding to the eigenvalues r1, . . . , rn and form the transformation matrix T
whose columns are � (1), . . . , � (n). Then, defining a new dependent variable y by the
relation

x = Ty, (38)

we have from Eq. (37) that

Ty′ = ATy. (39)
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Multiplying by T−1, we then obtain

y′ = (T−1AT)y, (40)

or, using Eq. (32),

y′ = Dy. (41)

Recall that D is the diagonal matrix with the eigenvalues r1, . . . , rn of A along the
diagonal. A fundamental matrix for the system (41) is the diagonal matrix (see Prob-
lem 16)

Q(t) = exp(Dt) =


er1t 0 . . . 0
0 er2t . . . 0
...

...
...

0 0 · · · ernt

 . (42)

A fundamental matrix � for the system (37) is then found from Q by the transforma-
tion (38),

� = TQ; (43)

that is,

�(t) =

ξ
(1)
1 er1t · · · ξ

(n)
1 ernt

...
...

ξ (1)
n er1t · · · ξ (n)

n ernt

 . (44)

Equation (44) is the same result that was obtained in Section 7.5. This diagonalization
procedure does not afford any computational advantage over the method of Section 7.5,
since in either case it is necessary to calculate the eigenvalues and eigenvectors of the
coefficient matrix in the system of differential equations. Nevertheless, it is noteworthy
that the problem of solving a system of differential equations and the problem of
diagonalizing a matrix are mathematically the same.

E X A M P L E

4

Consider again the system of differential equations

x′ = Ax, (45)

where A is given by Eq. (33). Using the transformation x = Ty, where T is given by
Eq. (35), you can reduce the system (45) to the diagonal system

y′ =
(

3 0
0 −1

)
y = Dy. (46)

Obtain a fundamental matrix for the system (46) and then transform it to obtain a
fundamental matrix for the original system (45).

By multiplying D repeatedly with itself, we find that

D2 =
(

9 0
0 1

)
, D3 =

(
27 0
0 −1

)
, . . . . (47)
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Therefore it follows from Eq. (23) that exp(Dt) is a diagonal matrix with the entries
e3t and e−t on the diagonal, that is,

eDt =
(

e3t 0
0 e−t

)
. (48)

Finally, we obtain the required fundamental matrix �(t) by multiplying T and exp(Dt):

�(t) =
(

1 1
2 −2

)(
e3t 0

0 e−t

)
=
(

e3t e−t

2e3t −2e−t

)
. (49)

Observe that this fundamental matrix is the same as the one found in Example 1.

PROBLEMS In each of Problems 1 through 10 find a fundamental matrix for the given system of equations.
In each case also find the fundamental matrix �(t) satisfying �(0) = I.

1. x′ =
(

3 −2
2 −2

)
x 2. x′ =

(
− 3

4
1
2

1
8 − 3

4

)
x

3. x′ =
(

2 −1
3 −2

)
x 4. x′ =

(
1 1
4 −2

)
x

5. x′ =
(

2 −5
1 −2

)
x 6. x′ =

(−1 −4
1 −1

)
x

7. x′ =
(

5 −1
3 1

)
x 8. x′ =

(
1 −1
5 −3

)
x

9. x′ =
 1 1 1

2 1 −1
−8 −5 −3

 x 10. x′ =
1 −1 4

3 2 −1
2 1 −1

 x

11. Solve the initial value problem

x′ =
(

2 −1
3 −2

)
x, x(0) =

(
2

−1

)
by using the fundamental matrix �(t) found in Problem 3.

12. Solve the initial value problem

x′ =
(−1 −4

1 −1

)
x, x(0) =

(
3
1

)
by using the fundamental matrix �(t) found in Problem 6.

13. Show that �(t) = �(t)�−1
(t0), where �(t) and �(t) are as defined in this section.

14. The fundamental matrix �(t) for the system (3) was found in Example 2. Show that
�(t)�(s) = �(t + s) by multiplying �(t) and �(s).

15. Let �(t) denote the fundamental matrix satisfying �′ = A�, �(0) = I. In the text we
also denoted this matrix by exp(At). In this problem we show that � does indeed have the
principal algebraic properties associated with the exponential function.
(a) Show that �(t)�(s) = �(t + s); that is, exp(At) exp(As) = exp[A(t + s)].
Hint: Show that if s is fixed and t is variable, then both �(t)�(s) and �(t + s) satisfy the
initial value problem Z′ = AZ, Z(0) = �(s).
(b) Show that �(t)�(−t) = I; that is, exp(At) exp[A(−t)] = I. Then show that �(−t) =
�−1

(t).
(c) Show that �(t − s) = �(t)�−1

(s).
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16. Show that if A is a diagonal matrix with diagonal elements a1, a2, . . . , an , then exp(At) is
also a diagonal matrix with diagonal elements exp(a1t), exp(a2t), . . . , exp(ant).

17. The method of successive approximations (see Section 2.8) can also be applied to systems
of equations. For example, consider the initial value problem

x′ = Ax, x(0) = x0, (i)

where A is a constant matrix and x0 a prescribed vector.
(a) Assuming that a solution x = �(t) exists, show that it must satisfy the integral equation

�(t) = x0 +
∫ t

0
A�(s) ds. (ii)

(b) Start with the initial approximation �(0)
(t) = x0. Substitute this expression for �(s)

in the right side of Eq. (ii) and obtain a new approximation �(1)
(t). Show that

�(1)
(t) = (I + At)x0. (iii)

(c) Repeat this process and thereby obtain a sequence of approximations �(0), �(1),
�(2)

, . . . , �(n)
, . . . . Use an inductive argument to show that

�(n)
(t) =

(
I + At + A2 t2

2!
+ · · · + An tn

n!

)
x0. (iv)

(d) Let n → ∞ and show that the solution of the initial value problem (i) is

�(t) = exp(At)x0. (v)

7.8 Repeated Eigenvalues

We conclude our consideration of the linear homogeneous system with constant coef-
ficients

x′ = Ax (1)

with a discussion of the case in which the matrix A has a repeated eigenvalue. Recall that
in Section 7.3 we noted that a repeated eigenvalue with multiplicity k may be associated
with fewer than k linearly independent eigenvectors. The following example illustrates
this possibility.

E X A M P L E

1

Find the eigenvalues and eigenvectors of the matrix

A =
(

1 −1
1 3

)
. (2)

The eigenvalues r and eigenvectors � satisfy the equation (A − rI)� = 0, or(
1 − r −1

1 3 − r

)(
ξ1
ξ2

)
=
(

0
0

)
. (3)



402 Chapter 7. Systems of First Order Linear Equations

The eigenvalues are the roots of the equation

det(A − rI) =
∣∣∣∣1 − r −1

1 3 − r

∣∣∣∣ = r2 − 4r + 4 = 0. (4)

Thus the two eigenvalues are r1 = 2 and r2 = 2; that is, the eigenvalue 2 has multi-
plicity 2.

To determine the eigenvectors we must return to Eq. (3) and use for r the value 2.
This gives (−1 −1

1 1

)(
ξ1
ξ2

)
=
(

0
0

)
. (5)

Hence we obtain the single condition ξ1 + ξ2 = 0, which determines ξ2 in terms of ξ1,
or vice versa. Thus the eigenvector corresponding to the eigenvalue r = 2 is

�(1) =
(

1
−1

)
, (6)

or any nonzero multiple of this vector. Observe that there is only one linearly indepen-
dent eigenvector associated with the double eigenvalue.

Returning to the system (1), suppose that r = ρ is a k-fold root of the determinantal
equation

det(A − rI) = 0. (7)

Then ρ is an eigenvalue of multiplicity k of the matrix A. In this event, there are two
possibilities: either there are k linearly independent eigenvectors corresponding to the
eigenvalue ρ, or else there are fewer than k such eigenvectors.

In the first case, let � (1), . . . , � (k) be k linearly independent eigenvectors associated
with the eigenvalue ρ of multiplicity k. Then x(1)(t) = � (1)eρt , . . . , x(k)(t) = � (k)eρt

are k linearly independent solutions of Eq. (1). Thus in this case it makes no difference
that the eigenvalue r = ρ is repeated; there is still a fundamental set of solutions of
Eq. (1) of the form �ert . This case always occurs if the coefficient matrix A is Hermitian.

However, if the coefficient matrix is not Hermitian, then there may be fewer than
k independent eigenvectors corresponding to an eigenvalue ρ of multiplicity k, and if
so, there will be fewer than k solutions of Eq. (1) of the form �eρt associated with
this eigenvalue. Therefore, to construct the general solution of Eq. (1) it is necessary
to find other solutions of a different form. By analogy with previous results for linear
equations of order n, it is natural to seek additional solutions involving products of
polynomials and exponential functions. We first consider an example.

E X A M P L E

2

Find a fundamental set of solutions of

x′ = Ax =
(

1 −1
1 3

)
x (8)

and draw a phase portrait for this system.
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2

1

–1

–2

–2 –1 1 2 x1

x2

FIGURE 7.8.1 A direction field for the system (8).

A direction field for the system (8) is shown in Figure 7.8.1. From this figure it
appears that all nonzero solutions depart from the origin.

To solve the system observe that the coefficient matrix A is the same as the matrix in
Example 1. Thus we know that r = 2 is a double eigenvalue and that it has only a single
corresponding eigenvector, which we may take as �T = (1,−1). Thus one solution of
the system (8) is

x(1)(t) =
(

1
−1

)
e2t , (9)

but there is no second solution of the form x = �ert .
Based on the procedure used for second order linear equations in Section 3.5, it may

be natural to attempt to find a second solution of the system (8) of the form

x = �te2t , (10)

where � is a constant vector to be determined. Substituting for x in Eq. (8) gives

2�te2t + �e2t − A�te2t = 0. (11)

For Eq. (11) to be satisfied for all t it is necessary for the coefficients of te2t and e2t

each to be zero. From the term in e2t we find that

� = 0. (12)

Hence there is no nonzero solution of the system (8) of the form (10).
Since Eq. (11) contains terms in both te2t and e2t , it appears that in addition to �te2t

the second solution must contain a term of the form �e2t ; in other words, we need to
assume that

x = �te2t + �e2t , (13)

where � and � are constant vectors. Upon substituting this expression for x in Eq. (8)
we obtain

2�te2t + (� + 2�)e2t = A(�te2t + �e2t). (14)

Equating coefficients of te2t and e2t on each side of Eq. (14) gives the conditions

(A − 2I)� = 0 (15)
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and

(A − 2I)� = � (16)

for the determination of � and �. Equation (15) is satisfied if � is an eigenvector of
A corresponding to the eigenvalue r = 2, that is, �T = (1,−1). Since det(A − 2I) is
zero, we might expect that Eq. (16) cannot be solved. However, this is not necessarily
true, since for some vectors � it is possible to solve Eq. (16). In fact, the augmented
matrix for Eq. (16) is (−1 −1 | 1

1 1 | −1

)
.

The second row of this matrix is proportional to the first, so the system is solvable. We
have

−η1 − η2 = 1,

so if η1 = k, where k is arbitrary, then η2 = −k − 1. If we write

� =
(

k
−1 − k

)
=
(

0
−1

)
+ k

(
1

−1

)
, (17)

then by substituting for � and � in Eq. (13) we obtain

x =
(

1
−1

)
te2t +

(
0

−1

)
e2t + k

(
1

−1

)
e2t . (18)

The last term in Eq. (18) is merely a multiple of the first solution x(1)(t), and may be
ignored, but the first two terms constitute a new solution:

x(2)(t) =
(

1
−1

)
te2t +

(
0

−1

)
e2t . (19)

An elementary calculation shows that W [x(1), x(2)](t) = −e4t , and therefore x(1) and
x(2) form a fundamental set of solutions of the system (8). The general solution is

x = c1x(1)(t) + c2x(2)(t)

= c1

(
1

−1

)
e2t + c2

[(
1

−1

)
te2t +

(
0

−1

)
e2t

]
. (20)

The graph of the solution (20) is a little more difficult to analyze than in some of the
previous examples. It is clear that x becomes unbounded as t → ∞ and that x → 0
as t → −∞. It is possible to show that as t → −∞, all solutions approach the origin
tangent to the line x2 = −x1 determined by the eigenvector. Similarly, as t → ∞, each
trajectory is asymptotic to a line of slope −1. The trajectories of the system (8) are
shown in Figure 7.8.2a and some typical plots of x1 versus t are shown in Figure 7.8.2b.
The pattern of trajectories in this figure is typical of second order systems x′ = Ax
with equal eigenvalues and only one independent eigenvector. The origin is called an
improper node in this case. If the eigenvalues are negative, then the trajectories are
similar, but are traversed in the inward direction. An improper node is asymptotically
stable or unstable, depending on whether the eigenvalues are negative or positive.
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x(1)(t)
x(2)(t)

x2

x1–2 –1

–1

–2

1

1

2

2

(a) (b)

x1

t1 2

2

1

–1

–2

FIGURE 7.8.2 (a) Trajectories of the system (8); the origin is an improper node. (b) Plots of
x1 versus t for the system (8).

One difference between a system of two first order equations and a single second
order equation is evident from the preceding example. Recall that for a second order
linear equation with a repeated root r1 of the characteristic equation, a term cer1t in the
second solution is not required since it is a multiple of the first solution. On the other
hand, for a system of two first order equations, the term �er1t of Eq. (13) with r1 = 2
is not a multiple of the first solution �er1t , so the term �er1t must be retained.

Example 2 is entirely typical of the general case when there is a double eigenvalue
and a single associated eigenvector. Consider again the system (1), and suppose that
r = ρ is a double eigenvalue of A, but that there is only one corresponding eigenvector
�. Then one solution [similar to Eq. (9)] is

x(1)(t) = �eρt , (21)

where � satisfies

(A − ρI)� = 0. (22)

By proceeding as in Example 2 we find that a second solution [similar to Eq. (19)] is

x(2)(t) = �teρt + �eρt , (23)

where � satisfies Eq. (22) and � is determined from

(A − ρI)� = �. (24)

Even though det(A − ρI) = 0, it can be shown that it is always possible to solve
Eq. (24) for �. The vector � is called a generalized eigenvector corresponding to the
eigenvalue ρ.

Fundamental Matrices. As explained in Section 7.7, fundamental matrices are
formed by arranging linearly independent solutions in columns. Thus, for example, a
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fundamental matrix for the system (8) can be formed from the solutions x(1)(t) and
x(2)(t) from Eqs. (9) and (19), respectively:

�(t) =
(

e2t te2t

−e2t −te2t − e2t

)
= e2t

(
1 t

−1 −1 − t

)
. (25)

The matrix � that satisfies �(0) = I can also be readily found from the relation
�(t) = �(t)�−1(0). For Eq. (8) we have

�(0) =
(

1 0
−1 −1

)
, �−1(0) =

(
1 0

−1 −1

)
, (26)

and then

�(t) = �(t)�−1(0) = e2t

(
1 t

−1 −1 − t

)(
1 0

−1 −1

)
= e2t

(
1 − t −t

t 1 + t

)
. (27)

The latter matrix is also the exponential matrix exp(At).

Jordan Forms. An n × n matrix A can be diagonalized as discussed in Section
7.7 only if it has a full complement of n linearly independent eigenvectors. If there
is a shortage of eigenvectors (because of repeated eigenvalues), then A can always
be transformed into a nearly diagonal matrix called its Jordan5 form, which has the
eigenvalues of A on the main diagonal, ones in certain positions on the diagonal above
the main diagonal, and zeros elsewhere.

Consider again the matrix A given by Eq. (2). Form the transformation matrix T with
the single eigenvector � from Eq. (6) in its first column and the generalized eigenvector
� from Eq. (17) with k = 0 in the second column. Then T and its inverse are given by

T =
(

1 0
−1 −1

)
, T−1 =

(
1 0

−1 −1

)
. (28)

As you can verify, it follows that

T−1AT =
(

2 1
0 2

)
= J. (29)

The matrix J in Eq. (29) is the Jordan form of A. It is typical of all Jordan forms in that
it has a 1 above the main diagonal in the column corresponding to the eigenvector that
is lacking (and is replaced in T by the generalized eigenvector).

If we start again from Eq. (1),

x′ = Ax,

the transformation x = Ty, where T is given by Eq. (28), produces the system

y′ = Jy, (30)

where J is given by Eq. (29). In scalar form the system (30) is

y′
1 = 2y1 + y2, y′

2 = 2y2. (31)

5Camille Jordan (1838–1921), professor at the École Polytechnique and the Collège de France, made important
contributions to analysis, topology, and especially to algebra. The Jordan form of a matrix appeared in his
influential book Traité des substitutions et des équations algébriques, published in 1870.
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These equations can be solved readily in reverse order. In this way we obtain

y2 = c1e2t , y1 = c1te2t + c2e2t . (32)

Thus two independent solutions of the system (30) are

y(1)(t) =
(

1
0

)
e2t , y(2) =

(
t
1

)
e2t (33)

and the corresponding fundamental matrix is

�̂(t) =
(

e2t te2t

0 e2t

)
. (34)

Since �̂(0) = I, we can also indentify the matrix in Eq. (34) as exp(Jt). The same result
can be reached by calculating powers of J and substituting them into the exponential
series (see Problems 19 through 21). To obtain a fundamental matrix for the original
system we now form the product

�(t) = T exp(Jt) =
(

e2t te2t

−e2t −e2t − te2t

)
, (35)

which is the same as the fundamental matrix given in Eq. (25).

PROBLEMS In each of Problems 1 through 6 find the general solution of the given system of equations. In
each of Problems 1 through 4 also draw a direction field, sketch a few trajectories, and describe
how the solutions behave as t → ∞.

� 1. x′ =
(

3 −4
1 −1

)
x � 2. x′ =

(
4 −2
8 −4

)
x

� 3. x′ =
(

− 3
2 1

− 1
4 − 1

2

)
x � 4. x′ =

(
−3 5

2

− 5
2 2

)
x

5. x′ =
1 1 1

2 1 −1
0 −1 1

 x 6. x′ =
0 1 1

1 0 1
1 1 0

 x

In each of Problems 7 through 10 find the solution of the given initial value problem. Draw the
trajectory of the solution in the x1x2-plane and also the graph of x1 versus t .

� 7. x′ =
(

1 −4
4 −7

)
x, x(0) =

(
3
2

)

� 8. x′ =
(

− 5
2

3
2

− 3
2

1
2

)
x, x(0) =

(
3

−1

)

� 9. x′ =
(

2 3
2

− 3
2 −1

)
x, x(0) =

(
3

−2

)

� 10. x′ =
(

3 9
−1 −3

)
x, x(0) =

(
2
4

)



408 Chapter 7. Systems of First Order Linear Equations

In each of Problems 11 and 12 find the solution of the given initial value problem. Draw the
corresponding trajectory in x1x2x3-space and also draw the graph of x1 versus t .

� 11. x′ =
 1 0 0

−4 1 0
3 6 2

 x, x(0) =
 −1

2
−30



� 12. x′ =

− 5
2 1 1

1 − 5
2 1

1 1 − 5
2

 x, x(0) =
 2

3
−1


In each of Problems 13 and 14 solve the given system of equations by the method of Problem
19 of Section 7.5. Assume that t > 0.

13. tx′ =
(

3 −4
1 −1

)
x 14. tx′ =

(
1 −4
4 −7

)
x

15. Show that all solutions of the system

x′ =
(

a b
c d

)
x

approach zero as t → ∞ if and only if a + d < 0 and ad − bc > 0. Compare this result
with that of Problem 38 in Section 3.5.

16. Consider again the electric circuit in Problem 26 of Section 7.6. This circuit is described
by the system of differential equations

d

dt

(
I
V

)
=

 0
1

L

− 1

C
− 1

RC

( I
V

)
.

(a) Show that the eigenvalues are real and equal if L = 4R2C .
(b) Suppose that R = 1 ohm, C = 1 farad, and L = 4 henrys. Suppose also that I (0) = 1
ampere and V (0) = 2 volts. Find I (t) and V (t).

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of multiplicity 3, then
there may be either one, two, or three corresponding linearly independent eigenvectors. The
general solution of the system x′ = Ax is different, depending on the number of eigenvectors
associated with the triple eigenvalue. As noted in the text, there is no difficulty if there are
three eigenvectors, since then there are three independent solutions of the form x = �ert . The
following two problems illustrate the solution procedure for a triple eigenvalue with one or two
eigenvectors, respectively.

17. Consider the system

x′ = Ax =
 1 1 1

2 1 −1
−3 2 4

 x. (i)

(a) Show that r = 2 is an eigenvalue of multiplicity 3 of the coefficient matrix A and that
there is only one corresponding eigenvector, namely,

�(1) =
 0

1
−1

 .
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(b) Using the information in part (a), write down one solution x(1)(t) of the system (i).
There is no other solution of the purely exponential form x = �ert .
(c) To find a second solution assume that x = �te2t + �e2t . Show that � and � satisfy the
equations

(A − 2I)� = 0, (A − 2I)� = �.

Since � has already been found in part (a), solve the second equation for �. Neglect the
multiple of �(1) that appears in �, since it leads only to a multiple of the first solution x(1).
Then write down a second solution x(2)(t) of the system (i).
(d) To find a third solution assume that x = �(t2/2)e2t + �te2t + �e2t . Show that �, �,
and � satisfy the equations

(A − 2I)� = 0, (A − 2I)� = �, (A − 2I)� = �.

The first two equations are the same as in part (c), so solve the third equation for �, again
neglecting the multiple of �(1) that appears. Then write down a third solution x(3)(t) of the
system (i).
(e) Write down a fundamental matrix �(t) for the system (i).
(f) Form a matrix T with the eigenvector �(1) in the first column, and the generalized
eigenvectors � and � in the second and third columns. Then find T−1 and form the product
J = T−1AT. The matrix J is the Jordan form of A.

18. Consider the system

x′ = Ax =
 5 −3 −2

8 −5 −4
−4 3 3

 x. (i)

(a) Show that r = 1 is a triple eigenvalue of the coefficient matrix A, and that there are
only two linearly independent eigenvectors, which we may take as

�(1) =
1

0
2

 , �(2) =
 0

2
−3

 . (ii)

Find two linearly independent solutions x(1)(t) and x(2)(t) of Eq. (i).
(b) To find a third solution assume that x = �tet + �et ; then show that � and � must
satisfy

(A − I)� = 0, (iii)

(A − I)� = �. (iv)

(c) Show that � = c1�(1) + c2�(2), where c1 and c2 are arbitrary constants, is the most
general solution of Eq. (iii). Show that in order to solve Eq. (iv) it is necessary that c1 = c2.
(d) It is convenient to choose c1 = c2 = 2. For this choice show that

� =
 2

4
−2

 , � =
 0

0
−1

 , (v)

where we have dropped the multiples of �(1) and �(2) that appear in �. Use the results given
in Eqs. (v) to find a third linearly independent solution x(3)(t) of Eq. (i).
(e) Write down a fundamental matrix �(t) for the system (i).
(f) Form a matrix T with the eigenvector �(1) in the first column and with the eigenvector
� and the generalized eigenvector � from Eqs. (v) in the other two columns. Find T−1 and
form the product J = T−1AT. The matrix J is the Jordan form of A.
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19. Let J =
(

λ 1
0 λ

)
, where λ is an arbitrary real number.

(a) Find J2, J3, and J4.

(b) Use an inductive argument to show that Jn =
(

λn nλn−1

0 λn

)
.

(c) Determine exp(Jt).
(d) Use exp(Jt) to solve the initial value problem x′ = Jx, x(0) = x0.

20. Let

J =
λ 0 0

0 λ 1
0 0 λ

 ,

where λ is an arbitrary real number.
(a) Find J2, J3, and J4.
(b) Use an inductive argument to show that

Jn =
λn 0 0

0 λn nλn−1

0 0 λn

 .

(c) Determine exp(Jt).
(d) Observe that if you choose λ = 1, then the matrix J in this problem is the same as
the matrix J in Problem 18(f). Using the matrix T from Problem 18(f), form the product
T exp(Jt) with λ = 1. Is the resulting matrix the same as the fundamental matrix �(t) in
Problem 18(e)? If not, explain the discrepancy.

21. Let

J =
λ 1 0

0 λ 1
0 0 λ

 ,

where λ is an arbitrary real number.
(a) Find J2, J3, and J4.
(b) Use an inductive argument to show that

Jn =
λn nλn−1 [n(n − 1)/2]λn−2

0 λn nλn−1

0 0 λn

 .

(c) Determine exp(Jt).
(d) Observe that if you choose λ = 2, then the matrix J in this problem is the same as
the matrix J in Problem 17(f). Using the matrix T from Problem 17(f), form the product
T exp(Jt) with λ = 2. Observe that the resulting matrix is the same as the fundamental
matrix �(t) in Problem 17(e).
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7.9 Nonhomogeneous Linear Systems

In this section we turn to the nonhomogeneous system

x′ = P(t)x + g(t), (1)

where the n × n matrix P(t) and n × 1 vector g(t) are continuous for α < t < β. By
the same argument as in Section 3.6 (see also Problem 16 in this section) the general
solution of Eq. (1) can be expressed as

x = c1x(1)(t) + · · · + cnx(n)(t) + v(t), (2)

where c1x(1)(t) + · · · + cnx(n)(t) is the general solution of the homogeneous system
x′ = P(t)x, and v(t) is a particular solution of the nonhomogeneous system (1). We
will briefly describe several methods for determining v(t).

Diagonalization. We begin with systems of the form

x′ = Ax + g(t), (3)

where A is an n × n diagonalizable constant matrix. By diagonalizing the coefficient
matrix A, as indicated in Section 7.7, we can transform Eq. (3) into a system of
equations that is readily solvable.

Let T be the matrix whose columns are the eigenvectors � (1), . . . , � (n) of A, and
define a new dependent variable y by

x = Ty. (4)

Then substituting for x in Eq. (3), we obtain

Ty′ = ATy + g(t).

By multiplying by T−1 it follows that

y′ = (T−1AT)y + T−1g(t) = Dy + h(t), (5)

where h(t) = T−1g(t) and where D is the diagonal matrix whose diagonal entries
are the eigenvalues r1, . . . , rn of A, arranged in the same order as the corresponding
eigenvectors � (1), . . . , � (n) that appear as columns of T. Equation (5) is a system of
n uncoupled equations for y1(t), . . . , yn(t); as a consequence, the equations can be
solved separately. In scalar form Eq. (5) has the form

y′
j (t) = rj yj (t) + hj (t), j = 1, . . . , n, (6)

where hj (t) is a certain linear combination of g1(t), . . . , gn(t). Equation (6) is a first
order linear equation and can be solved by the methods of Section 2.1. In fact, we have

yj (t) = erj t
∫ t

t0

e−rj sh j (s) ds + cj e
rj t

, j = 1, . . . , n, (7)

where the cj are arbitrary constants. Finally, the solution x of Eq. (3) is obtained from
Eq. (4). When multiplied by the transformation matrix T, the second term on the right
side of Eq. (7) produces the general solution of the homogeneous equation x′ = Ax,
while the first term on the right side of Eq. (7) yields a particular solution of the
nonhomogeneous system (3).
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E X A M P L E

1

Find the general solution of the system

x′ =
(−2 1

1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (8)

Proceeding as in Section 7.5, we find that the eigenvalues of the coefficient matrix
are r1 = −3 and r2 = −1, and the corresponding eigenvectors are

� (1) =
(

1
−1

)
, � (2) =

(
1
1

)
. (9)

Thus the general solution of the homogeneous system is

x = c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t . (10)

Before writing down the matrix T of eigenvectors we recall that eventually we must
find T−1. The coefficient matrix A is real and symmetric, so we can use the result stated
at the end of Section 7.3: T−1 is simply the adjoint or (since T is real) the transpose of
T, provided that the eigenvectors of A are normalized so that (�, �) = 1. Hence, upon
normalizing � (1) and � (2), we have

T = 1√
2

(
1 1

−1 1

)
, T−1 = 1√

2

(
1 −1
1 1

)
. (11)

Letting x = Ty and substituting for x in Eq. (8), we obtain the following system of
equations for the new dependent variable y:

y′ = Dy + T−1g(t) =
(−3 0

0 −1

)
y + 1√

2

(
2e−t − 3t
2e−t + 3t

)
. (12)

Thus

y′
1 + 3y1 =

√
2e−t − 3√

2
t,

(13)

y′
2 + y2 =

√
2e−t + 3√

2
t.

Each of Eqs. (13) is a first order linear equation, and so can be solved by the methods
of Section 2.1. In this way we obtain

y1 =
√

2

2
e−t − 3√

2

[(
t

3

)
− 1

9

]
+ c1e−3t ,

(14)

y2 =
√

2te−t + 3√
2
(t − 1) + c2e−t .

Finally, we write the solution in terms of the original variables:

x = Ty = 1√
2

(
y1 + y2−y1 + y2

)

=
(

(c1/
√

2)e−3t + [(c2/
√

2) + 1
2 ]e−t + t − 4

3 + te−t

−(c1/
√

2)e−3t + [(c2/
√

2) − 1
2 ]e−t + 2t − 5

3 + te−t

)
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= k1

(
1

−1

)
e−3t + k2

(
1
1

)
e−t + 1

2

(
1

−1

)
e−t +

(
1
1

)
te−t

+
(

1
2

)
t − 1

3

(
4
5

)
, (15)

where k1 = c1/
√

2 and k2 = c2/
√

2. The first two terms on the right side of Eq. (15)
form the general solution of the homogeneous system corresponding to Eq. (8). The
remaining terms are a particular solution of the nonhomogeneous system.

If the coefficient matrix A in Eq. (3) is not diagonalizable (due to repeated eigenval-
ues and a shortage of eigenvectors), it can nevertheless be reduced to a Jordan form J by
a suitable transformation matrix T involving both eigenvectors and generalized eigen-
vectors. In this case the differential equations for y1, . . . , yn are not totally uncoupled
since some rows of J have two nonzero elements, an eigenvalue in the diagonal position
and a 1 in the adjacent position to the right. However, the equations for y1, . . . , yn can
still be solved consecutively, starting with yn . Then the solution of the original system
(3) can be found by the relation x = Ty.

Undetermined Coefficients. A second way to find a particular solution of the non-
homogeneous system (1) is the method of undetermined coefficients. To make use of
this method, one assumes the form of the solution with some or all of the coefficients
unspecified, and then seeks to determine these coefficients so as to satisfy the differ-
ential equation. As a practical matter, this method is applicable only if the coefficient
matrix P is a constant matrix, and if the components of g are polynomial, exponential,
or sinusoidal functions, or sums or products of these. In these cases the correct form
of the solution can be predicted in a simple and systematic manner. The procedure for
choosing the form of the solution is substantially the same as that given in Section 3.6
for linear second order equations. The main difference is illustrated by the case of a
nonhomogeneous term of the form ueλt , where λ is a simple root of the characteris-
tic equation. In this situation, rather than assuming a solution of the form ateλt , it is
necessary to use ateλt + beλt , where a and b are determined by substituting into the
differential equation.

E X A M P L E

2

Use the method of undetermined coefficients to find a particular solution of

x′ =
(−2 1

1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (16)

This is the same system of equations as in Example 1. To use the method of unde-
termined coefficients, we write g(t) in the form

g(t) =
(

2
0

)
e−t +

(
0
3

)
t. (17)

Then we assume that

x = v(t) = ate−t + be−t + ct + d, (18)

where a, b, c, and d are vectors to be determined. Observe that r = −1 is an eigenvalue
of the coefficient matrix, and therefore we must include both ate−t and be−t in the



414 Chapter 7. Systems of First Order Linear Equations

assumed solution. By substituting Eq. (18) into Eq. (16) and collecting terms, we obtain
the following algebraic equations for a, b, c, and d:

Aa = −a,

Ab = a − b −
(

2
0

)
,

(19)
Ac = −

(
0
3

)
,

Ad = c.

From the first of Eqs. (19) we see that a is an eigenvector of A corresponding to the
eigenvalue r = −1. Thus aT = (α, α), where α is any nonzero constant. Then we find
that the second of Eqs. (19) can be solved only if α = 1 and that in this case

b = k

(
1
1

)
−
(

0
1

)
(20)

for any constant k. The simplest choice is k = 0, from which bT = (0,−1). Then
the third and fourth of Eqs. (19) yield cT = (1, 2) and dT = (− 4

3 ,− 5
3 ), respectively.

Finally, from Eq. (18) we obtain the particular solution

v(t) =
(

1
1

)
te−t −

(
0
1

)
e−t +

(
1
2

)
t − 1

3

(
4
5

)
. (21)

The particular solution (21) is not identical to the one contained in Eq. (15) of Example
1 because the term in e−t is different. However, if we choose k = 1

2 in Eq. (20), then
bT = ( 1

2 ,− 1
2 ) and the two particular solutions agree.

Variation of Parameters. Now let us turn to more general problems in which the
coefficient matrix is not constant or not diagonalizable. Let

x′ = P(t)x + g(t), (22)

where P(t) and g(t) are continuous on α < t < β. Assume that a fundamental matrix
�(t) for the corresponding homogeneous system

x′ = P(t)x (23)

has been found. We use the method of variation of parameters to construct a particular
solution, and hence the general solution, of the nonhomogeneous system (22).

Since the general solution of the homogeneous system (23) is �(t)c, it is natural to
proceed as in Section 3.7, and to seek a solution of the nonhomogeneous system (22)
by replacing the constant vector c by a vector function u(t). Thus, we assume that

x = �(t)u(t), (24)

where u(t) is a vector to be found. Upon differentiating x as given by Eq. (24) and
requiring that Eq. (22) be satisfied, we obtain

�′(t)u(t) + �(t)u′(t) = P(t)�(t)u(t) + g(t). (25)

Since �(t) is a fundamental matrix, �′(t) = P(t)�(t); hence Eq. (25) reduces to

�(t)u′(t) = g(t). (26)
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Recall that �(t) is nonsingular on any interval where P is continuous. Hence �−1(t)
exists, and therefore

u′(t) = �−1(t)g(t). (27)

Thus for u(t) we can select any vector from the class of vectors that satisfy Eq. (27);
these vectors are determined only up to an arbitrary additive constant (vector); therefore
we denote u(t) by

u(t) =
∫

�−1(s)g(s) ds + c, (28)

where the constant vector c is arbitrary. Finally, substituting for u(t) in Eq. (24) gives
the solution x of the system (22):

x = �(t)c + �(t)
∫

�−1(s)g(s) ds. (29)

Since c is arbitrary, any initial condition at a point t = t0 can be satisfied by an
appropriate choice of c. Thus, every solution of the system (22) is contained in the
expression given by Eq. (29); it is therefore the general solution of Eq. (22). Note that
the first term on the right side of Eq. (29) is the general solution of the corresponding
homogeneous system (23), and the second term is a particular solution of Eq. (22)
itself.

Now let us consider the initial value problem consisting of the differential equation
(22) and the initial condition

x(t0) = x0. (30)

We can write the solution of this problem most conveniently if we choose for the
particular solution in Eq. (29) the specific one that is equal to the zero vector when
t = t0. This can be done by using t0 as the lower limit of integration in Eq. (29), so that
the general solution of the differential equation takes the form

x = �(t)c + �(t)
∫ t

t0

�−1(s)g(s) ds. (31)

The initial condition (30) can also be satisfied provided that

c = �−1(t0)x
0. (32)

Therefore

x = �(t)�−1(t0)x
0 + �(t)

∫ t

t0

�−1(s)g(s) ds (33)

is the solution of the given initial value problem. Again, while it is helpful to use �−1

to write the solutions (29) and (33), it is usually better in particular cases to solve the
necessary equations by row reduction rather than to calculate �−1 and substitute into
Eqs. (29) and (33).

The solution (33) takes a slightly simpler form if we use the fundamental matrix
�(t) satisfying �(t0) = I. In this case we have

x = �(t)x0 + �(t)
∫ t

t0

�−1(s)g(s) ds. (34)
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Equation (34) can be simplified further if the coefficient matrix P(t) is a constant matrix
(see Problem 17).

E X A M P L E

3

Use the method of variation of parameters to find the general solution of the system

x′ =
(−2 1

1 −2

)
x +

(
2e−t

3t

)
= Ax + g(t). (35)

This is the same system of equations as in Examples 1 and 2.
The general solution of the corresponding homogeneous system was given in

Eq. (10). Thus

�(t) =
(

e−3t e−t

−e−3t e−t

)
(36)

is a fundamental matrix. Then the solution x of Eq. (35) is given by x = �(t)u(t),
where u(t) satisfies �(t)u′(t) = g(t), or(

e−3t e−t

−e−3t e−t

)(
u′

1
u′

2

)
=
(

2e−t

3t

)
. (37)

Solving Eq. (37) by row reduction, we obtain

u′
1 = e2t − 3

2 te3t ,

u′
2 = 1 + 3

2 tet .

Hence

u1(t) = 1
2 e2t − 1

2 te3t + 1
6 e3t + c1,

u2(t) = t + 3
2 tet − 3

2 et + c2,

and

x = �(t)u(t)

= c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t +

(
1
1

)
te−t + 1

2

(
1

−1

)
e−t

+
(

1
2

)
t − 1

3

(
4
5

)
, (38)

which is the same as the solution obtained previously.

Each of the methods for solving nonhomogeneous equations has some advantages
and disadvantages. The method of undetermined coefficients requires no integration,
but is limited in scope and may entail the solution of several sets of algebraic equations.
The method of diagonalization requires finding the inverse of the transformation matrix
and the solution of a set of uncoupled first order linear equations, followed by a matrix
multiplication. Its main advantage is that for Hermitian coefficient matrices the inverse
of the transformation matrix can be written down without calculation, a feature that is
more important for large systems. Variation of parameters is the most general method.
On the other hand, it involves the solution of a set of linear algebraic equations with
variable coefficients, followed by an integration and a matrix multiplication, so it may
also be the most complicated from a computational viewpoint. For many small systems
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with constant coefficients, such as the one in the examples in this section, there may be
little reason to select one of these methods over another. Keep in mind, however, that the
method of diagonalization is slightly more complicated if the coefficient matrix is not
diagonalizable, but only reducible to a Jordan form, and the method of undetermined
coefficients is practical only for the kinds of nonhomogeneous terms mentioned earlier.

For initial value problems for linear systems with constant coefficients, the Laplace
transform is often an effective tool also. Since it is used in essentially the same way as
described in Chapter 6 for single scalar equations, we do not give any details here.

PROBLEMS In each of Problems 1 through 12 find the general solution of the given system of equations.

1. x′ =
(

2 −1
3 −2

)
x +

(
et

t

)
2. x′ =

(
1

√
3√

3 −1

)
x +

(
et√
3 e−t

)
3. x′ =

(
2 −5
1 −2

)
x +

(− cos t
sin t

)
4. x′ =

(
1 1
4 −2

)
x +

(
e−2t

−2et

)
5. x′ =

(
4 −2
8 −4

)
x +

(
t−3

−t−2

)
, t > 0

6. x′ =
(−4 2

2 −1

)
x +

(
t−1

2t−1 + 4

)
, t > 0

7. x′ =
(

1 1
4 1

)
x +

(
2

−1

)
et 8. x′ =

(
2 −1
3 −2

)
x +

(
1

−1

)
et

9. x′ =
(

− 5
4

3
4

3
4 − 5

4

)
x +

(
2t
et

)
10. x′ =

(−3
√

2√
2 −2

)
x +

(
1

−1

)
e−t

11. x′ =
(

2 −5
1 −2

)
x +

(
0

cos t

)
, 0 < t < π

12. x′ =
(

2 −5
1 −2

)
x +

(
csc t
sec t

)
,

π

2
< t < π

13. The electric circuit shown in Figure 7.9.1 is described by the system of differential equations

dx
dt

=
(

− 1
2 − 1

8

2 − 1
2

)
x +

(
1
2

0

)
I (t), (i)

where x1 is the current through the inductor, x2 is the voltage drop across the capacitor,
and I (t) is the current supplied by the external source.
(a) Determine a fundamental matrix �(t) for the homogeneous system corresponding to
Eq. (i). Refer to Problem 25 of Section 7.6.

I(t)

R = 4 ohms R = 4 ohms

L = 8 henrys

C =    farad1
2

FIGURE 7.9.1 The circuit in Problem 13.
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(b) If I (t) = e−t/2, determine the solution of the system (i) that also satisfies the initial
conditions x(0) = 0.

In each of Problems 14 and 15 verify that the given vector is the general solution of the
corresponding homogeneous system, and then solve the nonhomogeneous system. Assume that
t > 0.

14. tx′ =
(

2 −1
3 −2

)
x +

(
1 − t2

2t

)
, x(c) = c1

(
1
1

)
t + c2

(
1
3

)
t−1

15. tx′ =
(

3 −2
2 −2

)
x +

( −2t
t4 − 1

)
, x(c) = c1

(
1
2

)
t−1 + c2

(
2
1

)
t2

16. Let x = �(t) be the general solution of x′ = P(t)x + g(t), and let x = v(t) be some
particular solution of the same system. By considering the difference �(t) − v(t), show
that �(t) = u(t) + v(t), where u(t) is the general solution of the homogeneous system
x′ = P(t)x.

17. Consider the initial value problem

x′ = Ax + g(t), x(0) = x0.

(a) By referring to Problem 15(c) in Section 7.7, show that

x = �(t)x0 +
∫ t

0
�(t − s)g(s) ds.

(b) Show also that

x = exp(At)x0 +
∫ t

0
exp[A(t − s)]g(s) ds.

Compare these results with those of Problem 27 in Section 3.7.
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C H A P T E R

8

Numerical
Methods

Up to this point we have discussed methods for solving differential equations by using
analytical techniques such as integration or series expansions. Usually, the emphasis
was on finding an exact expression for the solution. Unfortunately, there are many
important problems in engineering and science, especially nonlinear ones, to which
these methods either do not apply or are very complicated to use. In this chapter we
discuss an alternative approach, the use of numerical approximation methods to obtain
an accurate approximation to the solution of an initial value problem. The procedures
described here can be executed easily on personal computers as well as on some pocket
calculators.

8.1 The Euler or Tangent Line Method

To discuss the development and use of numerical procedures we will concentrate
mainly on the first order initial value problem consisting of the differential equation

dy

dt
= f (t, y) (1)

and the initial condition

y(t0) = y0. (2)

We assume that the functions f and fy are continuous on some rectangle in the t y-plane
containing the point (t0, y0). Then, by Theorem 2.4.2, there exists a unique solution

419
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y = φ(t) of the given problem in some interval about t0. If Eq. (1) is nonlinear, then
the interval of existence of the solution may be difficult to determine and may have no
simple relationship to the function f . However, in all our discussions we assume that
there is a unique solution of the initial value problem (1), (2) in the interval of interest.

In Section 2.7 we described the oldest and simplest numerical approximation method,
namely, the Euler or tangent line method. This method is expressed by the equation

yn+1 = yn + f (tn, yn)(tn+1 − tn), n = 0, 1, 2, . . . . (3)

If the step size has a uniform value h and if we denote f (tn, yn) by fn , then Eq. (3)
simplifies to

yn+1 = yn + fnh, n = 0, 1, 2, . . . . (4)

Euler’s method consists of repeatedly evaluating Eq. (3) or (4), using the result of
each step to execute the next step. In this way you obtain a sequence of values
y0, y1, y2, . . . , yn, . . . that approximate the values of the solution φ(t) at the points
t0, t1, t2, . . . , tn, . . . .

In Section 2.7 we pointed out that a computer program for Euler’s method has
the structure given below. The specific instructions can be written in any convenient
programming language.

The Euler Method
Step 1. define f (t, y)
Step 2. input initial values t0 and y0
Step 3. input step size h and number of steps n
Step 4. output t0 and y0
Step 5. for j from 1 to n do
Step 6. k1 = f (t, y)

y = y + h ∗ k1
t = t + h

Step 7. output t and y
Step 8. end

Some examples of Euler’s method appear in Section 2.7. As another example,
consider the initial value problem

y′ = 1 − t + 4y, (5)

y(0) = 1. (6)

Equation (5) is a first order linear equation, and it is easily verified that the solution
satisfying the initial condition (6) is

y = φ(t) = 1
4 t − 3

16 + 19
16 e4t . (7)

Since the exact solution is known, we do not need numerical methods to solve the
initial value problem (5), (6). On the other hand, the availability of the exact solution
makes it easy to determine the accuracy of any numerical procedure that we use on this
problem. We will use this problem throughout the chapter to illustrate and compare
different numerical methods. The solutions of Eq. (5) diverge rather rapidly from each
other, so we should expect that it will be fairly difficult to approximate the solution
(7) well over any considerable interval. Indeed, this is the reason for choosing this
particular problem; it will be relatively easy to observe the benefits of using more
accurate methods.
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E X A M P L E

1

Using the Euler formula (4) and step sizes h = 0.05, 0.025, 0.01, and 0.001, determine
approximate values of the solution y = φ(t) of the problem (5), (6) on the interval
0 ≤ t ≤ 2.

The indicated calculations were carried out on a computer and some of the results
are shown in Table 8.1.1. Their accuracy is not particularly impressive. For h = 0.01
the percentage error is 3.85% at t = 0.5, 7.49% at t = 1.0, and 14.4% at t = 2.0.
The corresponding percentage errors for h = 0.001 are 0.40%, 0.79%, and 1.58%,
respectively. Observe that if h = 0.001, then it requires 2,000 steps to traverse the
interval from t = 0 to t = 2. Thus considerable computation is needed to obtain even
reasonably good accuracy for this problem using the Euler method. When we discuss
other numerical approximation methods later in this chapter, we will find that it is
possible to obtain comparable or better accuracy with much larger step sizes and many
fewer computational steps.

TABLE 8.1.1 A Comparison of Results for the Numerical Solution of y′ = 1 − t + 4y,
y(0) = 1 Using the Euler Method for Different Step Sizes h

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.5475000 1.5761188 1.5952901 1.6076289 1.6090418
0.2 2.3249000 2.4080117 2.4644587 2.5011159 2.5053299
0.3 3.4333560 3.6143837 3.7390345 3.8207130 3.8301388
0.4 5.0185326 5.3690304 5.6137120 5.7754845 5.7942260
0.5 7.2901870 7.9264062 8.3766865 8.6770692 8.7120041
1.0 45.588400 53.807866 60.037126 64.382558 64.897803
1.5 282.07187 361.75945 426.40818 473.55979 479.25919
2.0 1745.6662 2432.7878 3029.3279 3484.1608 3540.2001

To begin to investigate the errors in using numerical approximations and also to
suggest ways to construct more accurate algorithms it is helpful to mention some
alternative ways to look at the Euler method.

First, let us write the differential equation (1) at the point t = tn in the form

dφ

dt
(tn) = f [tn, φ(tn)]. (8)

Then we approximate the derivative in Eq. (8) by the corresponding (forward) difference
quotient, obtaining

φ(tn+1)− φ(tn)

tn+1 − tn
∼= f [tn, φ(tn)]. (9)

Finally, if we replace φ(tn+1) and φ(tn) by their approximate values yn+1 and yn ,
respectively, and solve for yn+1, we obtain the Euler formula (3).

Another point of view is to write the problem as an integral equation, as follows.
Since y = φ(t) is a solution of the initial value problem (1), (2), by integrating from tn
to tn+1 we obtain ∫ tn+1

tn

φ′(t) dt =
∫ tn+1

tn

f [t, φ(t)] dt

or

φ(tn+1) = φ(tn)+
∫ tn+1

tn

f [t, φ(t)] dt. (10)
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The integral in Eq. (10) is represented geometrically as the area under the curve in
Figure 8.1.1 between t = tn and t = tn+1. If we approximate the integral by replacing
f [t, φ(t)] by its value f [tn, φ(tn)] at t = tn , then we are approximating the actual area
by the area of the shaded rectangle. In this way we obtain

φ(tn+1)
∼= φ(tn)+ f [tn, φ(tn)](tn+1 − tn)

= φ(tn)+ h f [tn, φ(tn)]. (11)

Finally, to obtain an approximation yn+1 for φ(tn+1) we make a second approximation
by replacing φ(tn) by its approximate value yn in Eq. (11). This gives the Euler formula
yn+1 = yn + h f (tn, yn). A more accurate algorithm can be obtained by approximating
the integral more accurately. This is discussed in Section 8.2.

y'

t

f [tn,   (tn)]φ

tn tn+1

y' = f [t,   (t)]φ

FIGURE 8.1.1 Integral derivation of the Euler method.

A third approach is to assume that the solution y = φ(t) has a Taylor series about
the point tn . Then

φ(tn + h) = φ(tn)+ φ′(tn)h + φ′′(tn)
h2

2!
+ · · ·

or

φ(tn+1) = φ(tn)+ f [tn, φ(tn)]h + φ′′(tn)
h2

2!
+ · · · . (12)

If the series is terminated after the first two terms, and φ(tn+1) and φ(tn) are replaced
by their approximate values yn+1 and yn , we again obtain the Euler formula (4). If more
terms in the series are retained, a more accurate formula is obtained. Further, by using
a Taylor series with a remainder it is possible to estimate the magnitude of the error in
the formula. This is discussed later in this section.

The Backward Euler Formula. A variation on the Euler formula can be obtained by
approximating the derivative in Eq. (8) by the backward difference quotient [φ(tn)−
φ(tn−1)]/h instead of the forward difference quotient used in Eq. (9). In this way we
obtain

φ(tn)− φ(tn−1)
∼= h f (tn, yn)

or

yn = yn−1 + h f (tn, yn).
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Stepping the index up from n to n + 1, we obtain the backward Euler formula

yn+1 = yn + h f (tn+1, yn+1). (13)

Assuming that yn is known and yn+1 is to be calculated, observe that Eq. (13) does not
provide an explicit formula for yn+1. Rather, it is an equation that implicitly defines
yn+1 and must be solved to determine the value of yn+1. How difficult this is depends
entirely on the nature of the function f .

E X A M P L E

2

Use the backward Euler formula (13) and step sizes h = 0.05, 0.025, 0.01, and 0.001
to find approximate values of the solution of the initial value problem (5), (6) on the
interval 0 ≤ t ≤ 2.

For this problem the backward Euler formula (13) becomes

yn+1 = yn + h(1 − tn+1 + 4yn+1).

We will show the first two steps in detail so that it will be clear how the method works.
At the first step we have

y1 = y0 + h(1 − t1 + 4y1) = 1 + (0.05)(1 − 0.05 + 4y1).

Solving this equation for y1, we obtain

y1 = 1.0475/0.8 = 1.309375.

Observe that because the differential equation is linear, the implicit equation for y1 is
also linear and therefore easy to solve. Next,

y2 = y1 + h(1 − t2 + 4y2) = 1.309375 + (0.05)(1 − 0.1 + 4y2),

which leads to

y2 = 1.354375/0.8 = 1.69296875.

Continuing the computations on a computer, we obtain the results shown in
Table 8.1.2. The values given by the backward Euler method are uniformly too
large for this problem, whereas the values obtained from the Euler method were
too small. In this problem the errors are somewhat larger for the backward Euler
method than for the Euler method, although for small values of h the differences
are insignificant. Since the backward Euler method appears to be no more accurate
than the Euler method, and is somewhat more complicated, a natural question is
why it should even be mentioned. The answer is that it is the simplest example of
a class of methods known as backward differentiation formulas that are very useful
for certain types of differential equations. We will return to this issue later in this
chapter.
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TABLE 8.1.2 Results for the Numerical Solution of y′ = 1 − t + 4y, y(0) = 1 Using the
Backward Euler Method for Different Step Sizes h

t h = 0.05 h = 0.025 h = 0.01 h = 0.001 Exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.6929688 1.6474374 1.6236638 1.6104634 1.6090418
0.2 2.7616699 2.6211306 2.5491368 2.5095731 2.5053299
0.3 4.4174530 4.0920886 3.9285724 3.8396379 3.8301388
0.4 6.9905516 6.3209569 5.9908303 5.8131282 5.7942260
0.5 10.996956 9.7050002 9.0801473 8.7472667 8.7120041
1.0 103.06171 80.402761 70.452395 65.419964 64.897803
1.5 959.44236 661.00731 542.12432 485.05825 479.25919
2.0 8934.0696 5435.7294 4172.7228 3597.4478 3540.2001

Errors in Numerical Approximations. The use of a numerical procedure, such as the
Euler formula, to solve an initial value problem raises a number of questions that must
be answered before the approximate numerical solution can be accepted as satisfactory.
One of these is the question of convergence. That is, as the step size h tends to zero,
do the values of the numerical solution y1, y2, . . . , yn, . . . approach the corresponding
values of the actual solution? If we assume that the answer is affirmative, there remains
the important practical question of how rapidly the numerical approximation converges
to the solution. In other words, how small a step size is needed in order to guarantee a
given level of accuracy? We want to use a step size that is small enough to assure the
required accuracy, but not too small. An unnecessarily small step size slows down the
calculations, makes them more expensive, and in some cases may even cause a loss of
accuracy.

There are two fundamental sources of error in solving an initial value problem
numerically. Let us first assume that our computer is such that we can carry out all
computations with complete accuracy; that is, we can retain an infinite number of
decimal places. The difference En between the solution y = φ(t) of the initial value
problem (1), (2) and its numerical approximation is given by

En = φ(tn)− yn, (14)

and is known as the global truncation error. It arises from two causes: First, at each
step we use an approximate formula to determine yn+1; second, the input data at each
step are only approximately correct since in general φ(tn) is not equal to yn . If we
assume that yn = φ(tn), then the only error in going one step is due to the use of an
approximate formula. This error is known as the local truncation error en .

The second fundamental source of error is that we carry out the computations in
arithmetic with only a finite number of digits. This leads to a round-off error Rn
defined by

Rn = yn − Yn, (15)

where Yn is the value actually computed from the given numerical method.
The absolute value of the total error in computing φ(tn) is given by

|φ(tn)− Yn| = |φ(tn)− yn + yn − Yn|. (16)
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Making use of the triangle inequality, |a + b| ≤ |a| + |b|, we obtain from Eq. (16)

|φ(tn)− Yn| ≤ |φ(tn)− yn| + |yn − Yn|
≤ |En| + |Rn|. (17)

Thus the total error is bounded by the sum of the absolute values of the truncation
and round-off errors. For the numerical procedures discussed in this book it is possible
to obtain useful estimates of the truncation error. However, we limit our discussion
primarily to the local truncation error, which is somewhat simpler. The round-off error
is clearly more random in nature. It depends on the type of computer used, the sequence
in which the computations are carried out, the method of rounding off, and so forth.
While an analysis of round-off error is beyond the scope of this book, it is possible
to say more about it than one might at first expect (see, for example, Henrici). Some
of the dangers from round-off error are discussed in Problems 25 through 27 and in
Section 8.5.

Local Truncation Error for the Euler Method. Let us assume that the solution y =
φ(t) of the initial value problem (1), (2) has a continuous second derivative in the
interval of interest. To assure this, we can assume that f , ft , and fy are continuous.
Observe that if f has these properties and if φ is a solution of the initial value problem
(1), (2), then

φ′(t) = f [t, φ(t)],

and by the chain rule

φ′′(t) = ft [t, φ(t)] + fy[t, φ(t)]φ′(t)
= ft [t, φ(t)] + fy[t, φ(t)] f [t, φ(t)]. (18)

Since the right side of this equation is continuous, φ′′ is also continuous.
Then, making use of a Taylor polynomial with a remainder to expand φ about tn , we

obtain

φ(tn + h) = φ(tn)+ φ′(tn)h + 1
2φ

′′( tn)h
2, (19)

where tn is some point in the interval tn < tn < tn + h. Subtracting Eq. (4) from
Eq. (19), and noting that φ(tn + h) = φ(tn+1) and φ′(tn) = f [tn, φ(tn)], we find that

φ(tn+1)− yn+1 = [φ(tn)− yn] + h{ f [tn, φ(tn)] − f (tn, yn)} + 1
2φ

′′( tn)h
2. (20)

To compute the local truncation error we apply Eq. (20) to the true solution φ(t),
that is, we take yn to be φ(tn). Then we immediately see from Eq. (20) that the local
truncation error en+1 is

en+1 = φ(tn+1)− yn+1 = 1
2φ

′′( tn)h
2. (21)

Thus the local truncation error for the Euler method is proportional to the square of
the step size h and the proportionality factor depends on the second derivative of the
solution φ. The expression given by Eq. (21) depends on n and, in general, is different
for each step. A uniform bound, valid on an interval [a, b], is given by

|en| ≤ Mh2/2, (22)

where M is the maximum of |φ′′(t)| on the interval [a, b]. Since Eq. (22) is based on
a consideration of the worst possible case, that is, the largest possible value of |φ′′(t)|,



426 Chapter 8. Numerical Methods

it may well be a considerable overestimate of the actual local truncation error in some
parts of the interval [a, b]. One use of Eq. (22) is to choose a step size that will result
in a local truncation error no greater than some given tolerance level. For example, if
the local truncation error must be no greater than ε, then from Eq. (22) we have

h ≤
√

2ε/M . (23)

The primary difficulty in using any of Eqs. (21), (22), or (23) lies in estimating |φ′′(t)|
or M . However, the central fact expressed by these equations is that the local truncation
error is proportional to h2. Thus, if h is reduced by a factor of 1

2 , then the error is reduced
by 1

4 , and so forth.
More important than the local truncation error is the global truncation error En .

The analysis for estimating En is more difficult than that for en . However, knowing
the local truncation error, we can make an intuitive estimate of the global truncation
error at a fixed t > t0 as follows. Suppose that we take n steps in going from t0 to
t = t0 + nh. In each step the error is at most Mh2/2; thus the error in n steps is at most
nMh2/2. Noting that n = ( t − t0)/h, we find that the global truncation error for the
Euler method in going from t0 to t is bounded by

n
Mh2

2
= ( t − t0)

Mh

2
. (24)

This argument is not complete since it does not take into account the effect that an
error at one step will have in succeeding steps. Nevertheless, it can be shown that the
global truncation error in using the Euler method on a finite interval is no greater than
a constant times h; see Problem 23 for more details. The Euler method is called a first
order method because its global truncation error is proportional to the first power of
the step size.

Because it is more accessible, we will hereafter use the local truncation error as our
principal measure of the accuracy of a numerical method, and for comparing different
methods. If we have a priori information about the solution of the given initial value
problem, we can use the result (21) to obtain more precise information about how the
local truncation error varies with t . As an example, consider the illustrative problem

y′ = 1 − t + 4y, y(0) = 1 (25)

on the interval 0 ≤ t ≤ 2. Let y = φ(t) be the solution of the initial value problem
(25). Then, as noted previously,

φ(t) = (4t − 3 + 19e4t )/16

and therefore

φ′′(t) = 19e4t .

Equation (21) then states that

en+1 = 19e4tn h2

2
, tn < tn < tn + h. (26)

The appearance of the factor 19 and the rapid growth of e4t explain why the results in
this section with h = 0.05 were not very accurate.
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For instance, the error in the first step is

e1 = φ(t1)− y1 = 19e4t0(0.0025)

2
, 0 < t0 < 0.05.

It is clear that e1 is positive and, since e4t0 < e0.2, we have

e1 ≤ 19e0.2(0.0025)

2
∼= 0.02901. (27)

Note also that e4t0 > 1; hence e1 > 19(0.0025)/2 = 0.02375. The actual error is
0.02542. It follows from Eq. (26) that the error becomes progressively worse with
increasing t ; this is also clearly shown by the results in Table 8.1.1. Similar computa-
tions for bounds for the local truncation error give

1.0617 ∼= 19e3.8(0.0025)

2
≤ e20 ≤ 19e4(0.0025)

2
∼= 1.2967 (28)

in going from 0.95 to 1.0 and

57.96 ∼= 19e7.8(0.0025)

2
≤ e40 ≤ 19e8(0.0025)

2
∼= 70.80 (29)

in going from 1.95 to 2.0.
These results indicate that for this problem the local truncation error is about 2500

times larger near t = 2 than near t = 0. Thus, to reduce the local truncation error to
an acceptable level throughout 0 ≤ t ≤ 2, one must choose a step size h based on an
analysis near t = 2. Of course, this step size will be much smaller than necessary near
t = 0. For example, to achieve a local truncation error of 0.01 for this problem, we
need a step size of about 0.00059 near t = 2 and a step size of about 0.032 near t = 0.
The use of a uniform step size that is smaller than necessary over much of the interval
results in more calculations than necessary, more time consumed, and possibly more
danger of unacceptable round-off errors.

Another approach is to keep the local truncation error approximately constant
throughout the interval by gradually reducing the step size as t increases. In the exam-
ple problem we would need to reduce h by a factor of about 50 in going from t = 0
to t = 2. A method that provides for variations in the step size is called adaptive.
All modern computer codes for solving differential equations have the capability of
adjusting the step size as needed. We will return to this question in the next section.

PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial value
problem at t = 0.1, 0.2, 0.3, and 0.4.

(a) Use the Euler method with h = 0.05.
(b) Use the Euler method with h = 0.025.
(c) Use the backward Euler method with h = 0.05.
(d) Use the backward Euler method with h = 0.025.

� 1. y′ = 3 + t − y, y(0) = 1 � 2. y′ = 5t − 3
√

y, y(0) = 2

� 3. y′ = 2y − 3t, y(0) = 1 � 4. y′ = 2t + e−t y, y(0) = 1

� 5. y′ = y2 + 2t y

3 + t2 , y(0) = 0.5 � 6. y′ = (t2 − y2) sin y, y(0) = −1
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In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0.

(a) Use the Euler method with h = 0.025.
(b) Use the Euler method with h = 0.0125.
(c) Use the backward Euler method with h = 0.025.
(d) Use the backward Euler method with h = 0.0125.

� 7. y′ = 0.5 − t + 2y, y(0) = 1 � 8. y′ = 5t − 3
√

y, y(0) = 2

� 9. y′ = √
t + y, y(0) = 3 � 10. y′ = 2t + e−t y, y(0) = 1

� 11. y′ = (4 − t y)/(1 + y2), y(0) = −2

� 12. y′ = (y2 + 2t y)/(3 + t2), y(0) = 0.5

� 13. Complete the calculations leading to the entries in columns three and four of Table 8.1.1.

� 14. Complete the calculations leading to the entries in columns three and four of Table 8.1.2.
15. Using three terms in the Taylor series given in Eq. (12) and taking h = 0.1, determine

approximate values of the solution of the illustrative example y′ = 1 − t + 4y, y(0) = 1
at t = 0.1 and 0.2. Compare the results with those using the Euler method and with the
exact values.
Hint: If y′ = f (t, y), what is y′′?

In each of Problems 16 and 17 estimate the local truncation error for the Euler method in terms
of the solution y = φ(t). Obtain a bound for en+1 in terms of t and φ(t) that is valid on the
interval 0 ≤ t ≤ 1. By using a formula for the solution obtain a more accurate error bound for
en+1. For h = 0.1 compute a bound for e1 and compare it with the actual error at t = 0.1. Also
compute a bound for the error e4 in the fourth step.

16. y′ = 2y − 1, y(0) = 1 17. y′ = 1
2 − t + 2y, y(0) = 1

In each of Problems 18 through 21 obtain a formula for the local truncation error for the Euler
method in terms of t and the solution φ.

18. y′ = t2 + y2, y(0) = 1 19. y′ = 5t − 3
√

y, y(0) = 2

20. y′ = √
t + y, y(1) = 3 21. y′ = 2t + e−t y, y(0) = 1

� 22. Consider the initial value problem

y′ = cos 5π t, y(0) = 1.

(a) Determine the solution y = φ(t) and draw a graph of y = φ(t) for 0 ≤ t ≤ 1.
(b) Determine approximate values of φ(t) at t = 0.2, 0.4, and 0.6 using the Euler method
with h = 0.2. Draw a broken-line graph for the approximate solution and compare it with
the graph of the exact solution.
(c) Repeat the computation of part (b) for 0 ≤ t ≤ 0.4, but take h = 0.1.
(d) Show by computing the local truncation error that neither of these step sizes is suffi-
ciently small. Determine a value of h to ensure that the local truncation error is less than
0.05 throughout the interval 0 ≤ t ≤ 1. That such a small value of h is required results
from the fact that max |φ′′(t)| is large.

23. In this problem we discuss the global truncation error associated with the Euler method
for the initial value problem y′ = f (t, y), y(t0) = y0. Assuming that the functions f and
fy are continuous in a region R of the t y-plane that includes the point (t0, y0), it can be
shown that there exists a constant L such that | f (t, y)− f (t, ỹ| < L|y − ỹ|, where (t, y)
and (t, ỹ) are any two points in R with the same t coordinate (see Problem 15 of Section
2.8). Further, we assume that ft is continuous, so the solution φ has a continuous second
derivative.
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(a) Using Eq. (20) show that

|En+1| ≤ |En| + h| f [tn, φ(tn)] − f (tn, yn)| + 1
2 h2|φ′′( tn)| ≤ α|En| + βh2, (i)

where α = 1 + hL and β = max |φ′′(t)|/2 on t0 ≤ t ≤ tn .
(b) Accepting without proof that if E0 = 0, and if |En| satisfies Eq. (i), then |En| ≤
βh2(αn − 1)/(α − 1) for α �= 1, show that

|En| ≤ (1 + hL)n − 1

L
βh. (ii)

Equation (ii) gives a bound for |En| in terms of h, L , n, and β. Notice that for a fixed h, this
error bound increases with increasing n; that is, the error bound increases with distance
from the starting point t0.
(c) Show that (1 + hL)n ≤ enhL ; hence

|En| ≤ enhL − 1

L
βh = e(tn−t0)L − 1

L
βh.

For a fixed point t = t0 + nh [that is, nh is constant and h = ( t − t0)/n] this error bound
is of the form of a constant times h and approaches zero as h → 0. Also note that for
nhL = ( t − t0)L small the right side of the preceding equation is approximately nh2β =
( t − t0)βh, which was obtained in Eq. (24) by an intuitive argument.

24. Derive an expression analogous to Eq. (21) for the local truncation error for the backward
Euler formula.
Hint: Construct a suitable Taylor approximation to φ(t) about t = tn+1.

� 25. Using a step size h = 0.05 and the Euler method, but retaining only three digits throughout
the computations, determine approximate values of the solution at t = 0.1, 0.2, 0.3, and
0.4 for each of the following initial value problems.
(a) y′ = 1 − t + 4y, y(0) = 1
(b) y′ = 3 + t − y, y(0) = 1
(c) y′ = 2y − 3t, y(0) = 1
Compare the results with those obtained in Example 1 and in Problems 1 and 3. The small
differences between some of those results rounded to three digits and the present results
are due to round-off error. The round-off error would become important if the computation
required many steps.

26. The following problem illustrates a danger that occurs because of round-off error when
nearly equal numbers are subtracted, and the difference then multiplied by a large number.
Evaluate the quantity

1000 ·
∣∣∣∣ 6.010 18.04
2.004 6.000

∣∣∣∣
as follows.
(a) First round each entry in the determinant to two digits.
(b) First round each entry in the determinant to three digits.
(c) Retain all four digits. Compare this value with the results in parts (a) and (b).

27. The distributive law a(b − c) = ab − ac does not hold, in general, if the products are
rounded off to a smaller number of digits. To show this in a specific case take a = 0.22,
b = 3.19, and c = 2.17. After each multiplication round off the last digit.
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8.2 Improvements on the Euler Method

Since for many problems the Euler method requires a very small step size to produce
sufficiently accurate results, much effort has been devoted to the development of more
efficient methods. In the next three sections we will discuss some of these methods.
Consider the initial value problem

y′ = f (t, y), y(t0) = y0 (1)

and let y = φ(t) denote its solution. Recall from Eq. (10) of Section 8.1 that by
integrating the given differential equation from tn to tn+1 we obtain

φ(tn+1) = φ(tn)+
∫ tn+1

tn

f [t, φ(t)] dt. (2)

The Euler formula

yn+1 = yn + h f (tn, yn) (3)

is obtained by replacing f [t, φ(t)] in Eq. (2) by its approximate value f (tn, yn) at the
left endpoint of the interval of integration.

Improved Euler Formula. A better approximate formula can be obtained if the
integrand in Eq. (2) is approximated more accurately. One way to do this is to
replace the integrand by the average of its values at the two endpoints, namely,
{ f [tn, φ(tn)] + f [tn+1, φ(tn+1)]}/2. This is equivalent to approximating the area under
the curve in Figure 8.2.1 between t = tn and t = tn+1 by the area of the shaded trape-
zoid. Further, we replace φ(tn) and φ(tn+1) by their respective approximate values yn
and yn+1. In this way we obtain from Eq. (2)

yn+1 = yn + f (tn, yn)+ f (tn+1, yn+1)

2
h. (4)

Since the unknown yn+1 appears as one of the arguments of f on the right side of
Eq. (4), this equation defines yn+1 implicitly rather than explicitly. Depending on the
nature of the function f , it may be fairly difficult to solve Eq. (4) for yn+1. This

y'

t

{f [tn,   (tn)] +φ1
2

y' = f [t,   (t)]φ

f [tn,   (tn)]φ

f [tn+1,   (tn+1)]}φ

f [tn+1,   (tn+1)]φ

tn tn+1

FIGURE 8.2.1 Derivation of the improved Euler method.
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difficulty can be overcome by replacing yn+1 on the right side of Eq. (4) by the value
obtained using the Euler formula (3). Thus

yn+1 = yn + f (tn, yn)+ f [tn + h, yn + h f (tn, yn)]

2
h

= yn + fn + f (tn + h, yn + h fn)

2
h, (5)

where tn+1 has been replaced by tn + h.
Equation (5) gives an explicit formula for computing yn+1, the approximate value

of φ(tn+1), in terms of the data at tn . This formula is known as the improved Euler
formula or the Heun formula. The improved Euler formula is an example of a two-
stage method; that is, we first calculate yn + h fn from the Euler formula and then
use this result to calculate yn+1 from Eq. (5). The improved Euler formula (5) does
represent an improvement over the Euler formula (3) because the local truncation error
in using Eq. (5) is proportional to h3, while for the Euler method it is proportional to h2.
This error estimate for the improved Euler formula is established in Problem 14. It can
also be shown that for a finite interval the global truncation error for the improved Euler
formula is bounded by a constant times h2, so this method is a second order method.
Note that this greater accuracy is achieved at the expense of more computational work,
since it is now necessary to evaluate f (t, y) twice in order to go from tn to tn+1.

If f (t, y) depends only on t and not on y, then solving the differential equation
y′ = f (t, y) reduces to integrating f (t). In this case the improved Euler formula (5)
becomes

yn+1 − yn = h

2
[ f (tn)+ f (tn + h)], (6)

which is just the trapezoid rule for numerical integration.

E X A M P L E

1

Use the improved Euler formula (5) to calculate approximate values of the solution of
the initial value problem

y′ = 1 − t + 4y, y(0) = 1. (7)

To make clear exactly what computations are required, we show a couple of steps in
detail. For this problem f (t, y) = 1 − t + 4y; hence

fn = 1 − tn + 4yn
and

f (tn + h, yn + h fn) = 1 − (tn + h)+ 4(yn + h fn).

Further, t0 = 0, y0 = 1, and f0 = 1 − t0 + 4y0 = 5. If h = 0.025, then

f (t0 + h, y0 + h f0) = 1 − 0.025 + 4[1 + (0.025)(5)] = 5.475.

Then, from Eq. (5),

y1 = 1 + (0.5)(5 + 5.475)(0.025) = 1.1309375. (8)

At the second step we must calculate

f1 = 1 − 0.025 + 4(1.1309375) = 5.49875,

y1 + h f1 = 1.1309375 + (0.025)(5.49875) = 1.26840625,
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and

f (t2, y1 + h f1) = 1 − 0.05 + 4(1.26840625) = 6.023625.

Then, from Eq. (5),

y2 = 1.1309375 + (0.5)(5.49875 + 6.023625)(0.025) = 1.2749671875. (9)

Further results for 0 ≤ t ≤ 2 obtained by using the improved Euler method with
h = 0.025 and h = 0.01 are given in Table 8.2.1. To compare the results of the improved
Euler method with those of the Euler method, note that the improved Euler method
requires two evaluations of f at each step while the Euler method requires only one.
This is significant because typically most of the computing time in each step is spent
in evaluating f , so counting these evaluations is a reasonable way to estimate the total
computing effort. Thus, for a given step size h, the improved Euler method requires
twice as many evaluations of f as the Euler method. Alternatively, the improved Euler
method for step size h requires the same number of evaluations of f as the Euler
method with step size h/2.

TABLE 8.2.1 A Comparison of Results Using the Euler and Improved Euler Methods for the
Initial Value Problem y′ = 1 − t + 4y, y(0) = 1

Euler Improved Euler

t h = 0.01 h = 0.001 h = 0.025 h = 0.01 Exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.5952901 1.6076289 1.6079462 1.6088585 1.6090418
0.2 2.4644587 2.5011159 2.5020619 2.5047828 2.5053299
0.3 3.7390345 3.8207130 3.8228282 3.8289146 3.8301388
0.4 5.6137120 5.7754845 5.7796888 5.7917911 5.7942260
0.5 8.3766865 8.6770692 8.6849039 8.7074637 8.7120041
1.0 60.037126 64.82558 64.497931 64.830722 64.897803
1.5 426.40818 473.55979 474.83402 478.51588 479.25919
2.0 3029.3279 3484.1608 3496.6702 3532.8789 3540.2001

By referring to Table 8.2.1 you can see that the improved Euler method with h =
0.025 gives much better results than the Euler method with h = 0.01. Note that to
reach t = 2 with these step sizes the improved Euler method requires 160 evaluations
of f while the Euler method requires 200. More noteworthy is that the improved Euler
method with h = 0.025 is also slightly more accurate than the Euler method with
h = 0.001 (2000 evaluations of f ). In other words, with something like one-twelfth
of the computing effort, the improved Euler method yields results for this problem
that are comparable to, or a bit better than, those generated by the Euler method.
This illustrates that, compared to the Euler method, the improved Euler method is
clearly more efficient, yielding substantially better results or requiring much less total
computing effort, or both.

The percentage errors at t = 2 for the improved Euler method are 1.22% for h =
0.025 and 0.21% for h = 0.01.
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A computer program for the Euler method can be readily modified to implement the
improved Euler method instead. All that is required is to replace Step 6 in the algorithm
in Section 8.1 by the following:

Step 6. k1 = f (t, y)
k2 = f (t + h, y + h ∗ k1)
y = y + (h/2) ∗ (k1 + k2)
t = t + h

Variation of Step Size. In Section 8.1 we mentioned the possibility of adjusting the
step size as a calculation proceeds so as to maintain the local truncation error at a
more or less constant level. The goal is to use no more steps than necessary, and at the
same time to keep some control over the accuracy of the approximation. Here we will
describe how this can be done. Suppose that after n steps we have reached the point
(tn, yn). We choose a step size h and calculate yn+1. Next we need to estimate the error
we have made in calculating yn+1. In the absence of knowing the actual solution the
best that we can do is to use a more accurate method and repeat the calculation starting
from (tn, yn). For example, if we used the Euler method for the original calculation,
we might repeat with the improved Euler method. Then the difference between the two
calculated values is an estimate eest

n+1 of the error in using the original method. If the
estimated error is different from the error tolerance ε, then we adjust the step size and
repeat the calculation. The key to making this adjustment efficiently is knowing how
the local truncation error en+1 depends on the step size h. For the Euler method the
local truncation error is proportional to h2, so to bring the estimated error down (or up)

to the tolerance level ε we must multiply the original step size by the factor
√
ε/eest

n+1.
To illustrate this procedure consider the example problem (7),

y′ = 1 − t + 4y, y(0) = 1.

You can verify that after one step with h = 0.1 we obtain the values 1.5 and 1.595 from
the Euler method and the improved Euler method, respectively. Thus the estimated error
in using the Euler method is 0.095. If we have chosen an error tolerance of 0.05, for
instance, then we need to adjust the step size downward by the factor

√
0.05/0.095 ∼=

0.73. Rounding downward to be conservative, let us choose the adjusted step size
h = 0.07. Then, from the Euler formula we obtain

y1 = 1 + (0.07) f (0, 1) = 1.35 ∼= φ(0.07).

Using the improved Euler method we obtain y1 = 1.39655, so the estimated error in
using the Euler formula is 0.04655, which is slightly less than the specified tolerance.
The actual error, based on a comparison with the solution itself, is somewhat greater,
namely, 0.05122.

The same procedure can be followed at each step of the calculation, thereby keeping
the local truncation error approximately constant throughout the entire numerical pro-
cess. Modern adaptive codes for solving differential equations adjust the step size as
they proceed in very much this way, although they usually use more accurate formulas
than the Euler and improved Euler formulas. Consequently, they are able to achieve
both efficiency and accuracy by using very small steps only where they are really
needed.
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PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial
value problem at t = 0.1, 0.2, 0.3, and 0.4. Compare the results with those obtained by the Euler
method and the backward Euler method in Section 8.1 and with the exact solution (if available).

(a) Use the improved Euler method with h = 0.05.
(b) Use the improved Euler method with h = 0.025.
(c) Use the improved Euler method with h = 0.0125.

� 1. y′ = 3 + t − y, y(0) = 1 � 2. y′ = 5t − 3
√

y, y(0) = 2

� 3. y′ = 2y − 3t, y(0) = 1 � 4. y′ = 2t + e−t y, y(0) = 1

� 5. y′ = y2 + 2t y

3 + t2 , y(0) = 0.5

� 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0.

(a) Use the improved Euler method with h = 0.025.
(b) Use the improved Euler method with h = 0.0125.

� 7. y′ = 0.5 − t + 2y, y(0) = 1 � 8. y′ = 5t − 3
√

y, y(0) = 2

� 9. y′ = √
t + y, y(0) = 3 � 10. y′ = 2t + e−t y, y(0) = 1

� 11. y′ = (4 − t y)/(1 + y2), y(0) = −2

� 12. y′ = (y2 + 2t y)/(3 + t2), y(0) = 0.5

� 13. Complete the calculations leading to the entries in columns four and five of Table 8.2.1.
14. In this problem we establish that the local truncation error for the improved Euler formula is

proportional to h3. If we assume that the solutionφ of the initial value problem y′ = f (t, y),
y(t0) = y0 has derivatives that are continuous through the third order ( f has continuous
second partial derivatives), it follows that

φ(tn + h) = φ(tn)+ φ′(tn)h + φ′′(tn)
2!

h2 + φ′′′( tn)

3!
h3,

where tn < tn < tn + h. Assume that yn = φ(tn).
(a) Show that for yn+1 as given by Eq. (5)

en+1 = φ(tn+1)− yn+1

= φ′′(tn)h − { f [tn + h, yn + h f (tn, yn)] − f (tn, yn)}
2!

h

+ φ′′′( tn)h
3

3!
. (i)

(b) Making use of the facts that φ′′(t) = ft [t, φ(t)] + fy[t, φ(t)]φ′(t), and that the Taylor
approximation with a remainder for a function F(t, y) of two variables is

F(a + h, b + k) = F(a, b)+ Ft (a, b)h + Fy(a, b)k

+ 1

2!
(h2 Ftt + 2hk Fty + k2 Fyy)

∣∣∣
x=ξ,y=η

where ξ lies between a and a + h and η lies between b and b + k, show that the first term
on the right side of Eq. (i) is proportional to h3 plus higher order terms. This is the desired
result.
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(c) Show that if f (t, y) is linear in t and y, then en+1 = φ′′′( tn)h
3/6, where tn < tn < tn+1.

itfontHint: What are ftt , fty , and fyy?
15. Consider the improved Euler method for solving the illustrative initial value problem

y′ = 1 − t + 4y, y(0) = 1. Using the result of Problem 14(c) and the exact solution of the
initial value problem, determine en+1 and a bound for the error at any step on 0 ≤ t ≤ 1.
Compare this error with the one obtained in Eq. (26) of Section 8.1 using the Euler method.
Also obtain a bound for e1 for h = 0.1 and compare it with Eq. (27) of Section 8.1.

In each of Problems 16 and 17 use the actual solution φ(t) to determine en+1 and a bound for
en+1 at any step on 0 ≤ t ≤ 1 for the improved Euler method for the given initial value problem.
Also obtain a bound for e1 for h = 0.1 and compare it with the similar estimate for the Euler
method and with the actual error using the improved Euler method.

16. y′ = 2y − 1, y(0) = 1 17. y′ = 0.5 − t + 2y, y(0) = 1

In each of Problems 18 through 21 carry out one step of the Euler method and of the improved
Euler method using the step size h = 0.1. Suppose that a local truncation error no greater than
0.0025 is required. Estimate the step size that is needed for the Euler method to satisfy this
requirement at the first step.

18. y′ = 0.5 − t + 2y, y(0) = 1 19. y′ = 5t − 3
√

y, y(0) = 2

20. y′ = √
t + y, y(0) = 3

21. y′ = (y2 + 2t y)/(3 + t2), y(0) = 0.5

22. The modified Euler formula for the initial value problem y′ = f (t, y), y(t0) = y0 is
given by

yn+1 = yn + h f [tn + 1
2 h, yn + 1

2 h f (tn, yn)].

Following the procedure outlined in Problem 14, show that the local truncation error in the
modified Euler formula is proportional to h3.

In each of Problems 23 through 26 use the modified Euler formula of Problem 22 with h = 0.05
to compute approximate values of the solution of the given initial value problem at t = 0.1, 0.2,
0.3, and 0.4. Compare the results with those obtained in Problems 1 through 4.

� 23. y′ = 3 + t − y, y(0) = 1 � 24. y′ = 5t − 3
√

y, y(0) = 2

� 25. y′ = 2y − 3t, y(0) = 1 � 26. y′ = 2t + e−t y, y(0) = 1

27. Show that the modified Euler formula of Problem 22 is identical to the improved Euler
formula of Eq. (5) for y′ = f (t, y) if f is linear in both t and y.

8.3 The Runge–Kutta Method

In preceding sections we have introduced the Euler formula, the backward Euler
formula, and the improved Euler formula as ways to solve the initial value problem

y′ = f (t, y), y(t0) = y0 (1)
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numerically. The local truncation errors for these methods are proportional to h2, h2,
and h3, respectively. The Euler and improved Euler methods belong to what is now
called the Runge–Kutta1 class of methods.

In this section we discuss the method originally developed by Runge and Kutta. This
method is now called the classic fourth order four-stage Runge–Kutta method, but it is
often referred to simply as the Runge–Kutta method, and we will follow this practice
for brevity. This method has a local truncation error that is proportional to h5. Thus it
is two orders of magnitude more accurate than the improved Euler method and three
orders of magnitude better than the Euler method. It is relatively simple to use and
is sufficiently accurate to handle many problems efficiently. This is especially true of
adaptive Runge–Kutta methods in which a provision is made to vary the step size as
needed.

The Runge–Kutta formula involves a weighted average of values of f (t, y) at dif-
ferent points in the interval tn ≤ t ≤ tn+1. It is given by

yn+1 = yn + h

(
kn1 + 2kn2 + 2kn3 + kn4

6

)
, (2)

where

kn1 = f (tn, yn)

kn2 = f (tn + 1
2 h, yn + 1

2 hkn1), (3)
kn3 = f (tn + 1

2 h, yn + 1
2 hkn2),

kn4 = f (tn + h, yn + hkn3).

The sum (kn1 + 2kn2 + 2kn3 + kn4)/6 can be interpreted as an average slope. Note that
kn1 is the slope at the left end of the interval, kn2 is the slope at the midpoint using the
Euler formula to go from tn to tn + h/2, kn3 is a second approximation to the slope
at the midpoint, and finally kn4 is the slope at tn + h using the Euler formula and the
slope kn3 to go from tn to tn + h.

While in principle it is not difficult to show that Eq. (2) differs from the Taylor
expansion of the solution φ by terms that are proportional to h5, the algebra is rather
lengthy.2 Thus we will accept the fact that the local truncation error in using Eq. (2) is
proportional to h5 and that for a finite interval the global truncation error is at most a
constant times h4.

Clearly the Runge–Kutta formula, Eqs. (2) and (3), is more complicated than any
of the formulas discussed previously. This is of relatively little significance, however,
since it is not hard to write a computer program to implement this method. Such a
program has the same structure as the algorithm for the Euler method outlined in

1Carl David Runge (1856–1927), German mathematician and physicist, worked for many years in spectroscopy.
The analysis of data led him to consider problems in numerical computation, and the Runge–Kutta method
originated in his paper on the numerical solution of differential equations in 1895. The method was extended
to systems of equations in 1901 by M. Wilhelm Kutta (1867–1944). Kutta was a German mathematician and
aerodynamicist who is also well known for his important contributions to classical airfoil theory.
2See, for example, Chapter 3 of the book by Henrici listed in the references.
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Section 8.1. To be specific, the lines in Step 6 in the Euler algorithm must be replaced
by the following:

Step 6. k1 = f (t, y)
k2 = f (t + 0.5 ∗ h, y + 0.5 ∗ h ∗ k1)
k3 = f (t + 0.5 ∗ h, y + 0.5 ∗ h ∗ k2)
k4 = f (t + h, y + h ∗ k3)
y = y + (h/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)
t = t + h

Note that if f does not depend on y, then

kn1 = f (tn), kn2 = kn3 = f (tn + h/2), kn4 = f (tn + h), (4)

and Eq. (2) reduces to

yn+1 − yn = h

6
[ f (tn)+ 4 f (tn + h/2)+ f (tn + h)]. (5)

Equation (5) can be identified as Simpson’s (1710 –1761) rule for the approximate
evaluation of the integral of y′ = f (t). The fact that Simpson’s rule has an error
proportional to h5 is consistent with the local truncation error in the Runge–Kutta
formula.

E X A M P L E

1

Use the Runge–Kutta method to calculate approximate values of the solution y = φ(t)
of the initial value problem

y′ = 1 − t + 4y, y(0) = 1. (6)

Taking h = 0.2 we have

k01 = f (0, 1) = 5; hk01 = 1.0,

k02 = f (0 + 0.1, 1 + 0.5) = 6.9; hk02 = 1.38,

k03 = f (0 + 0.1, 1 + 0.69) = 7.66; hk03 = 1.532,

k04 = f (0 + 0.2, 1 + 1.532) = 10.928.

Thus

y1 = 1 + 0.2

6
[5 + 2(6.9)+ 2(7.66)+ 10.928]

= 1 + 1.5016 = 2.5016.

Further results using the Runge–Kutta method with h = 0.2, h = 0.1, and h = 0.05
are given in Table 8.3.1. Note that the Runge–Kutta method yields a value at t = 2 that
differs from the exact solution by only 0.122% if the step size is h = 0.1, and by only
0.00903% if h = 0.05. In the latter case the error is less than one part in ten thousand,
and the calculated value at t = 2 is correct to four digits.

For comparison, note that both the Runge–Kutta method with h = 0.05 and the
improved Euler method with h = 0.025 require 160 evaluations of f to reach t = 2.
The improved Euler method yields a result at t = 2 that is in error by 1.22%. While this
error may be acceptable for some purposes, it is more than 135 times the error yielded
by the Runge–Kutta method with comparable computing effort. Note also that the
Runge–Kutta method with h = 0.2, or 40 evaluations of f , produces a value at t = 2
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with an error of 1.40%, which is only slightly greater than the error in the improved
Euler method with h = 0.025, or 160 evaluations of f . Thus we see again that a more
accurate algorithm is more efficient; it produces better results with similar effort, or
similar results with less effort.

TABLE 8.3.1 A Comparison of Results for the Numerical Solution of the Initial Value
Problem y′ = 1 − t + 4y, y(0) = 1

Improved
Euler Runge–Kutta

t h = 0.025 h = 0.2 h = 0.1 h = 0.05 Exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.6079462 1.6089333 1.6090338 1.6090418
0.2 2.5020619 2.5016000 2.5050062 2.5053060 2.5053299
0.3 3.8228282 3.8294145 3.8300854 3.8301388
0.4 5.7796888 5.7776358 5.7927853 5.7941198 5.7942260
0.5 8.6849039 8.7093175 8.7118060 8.7120041
1.0 64.497931 64.441579 64.858107 64.894875 64.897803
1.5 474.83402 478.81928 479.22674 479.25919
2.0 3496.6702 3490.5574 3535.8667 3539.8804 3540.2001

PROBLEMS In each of Problems 1 through 6 find approximate values of the solution of the given initial value
problem at t = 0.1, 0.2, 0.3, and 0.4. Compare the results with those obtained by using other
methods and with the exact solution (if available).

(a) Use the Runge–Kutta method with h = 0.1.
(b) Use the Runge–Kutta method with h = 0.05.

� 1. y′ = 3 + t − y, y(0) = 1 � 2. y′ = 5t − 3
√

y, y(0) = 2

� 3. y′ = 2y − 3t, y(0) = 1 � 4. y′ = 2t + e−t y, y(0) = 1

� 5. y′ = y2 + 2t y

3 + t2 , y(0) = 0.5 � 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0. Compare the results with those given by other
methods.

(a) Use the Runge–Kutta method with h = 0.1.
(b) Use the Runge–Kutta method with h = 0.05.

� 7. y′ = 0.5 − t + 2y, y(0) = 1 � 8. y′ = 5t − 3
√

y, y(0) = 2

� 9. y′ = √
t + y, y(0) = 3 � 10. y′ = 2t + e−t y, y(0) = 1

� 11. y′ = (4 − t y)/(1 + y2), y(0) = −2

� 12. y′ = (y2 + 2t y)/(3 + t2), y(0) = 0.5

� 13. Confirm the results in Table 8.3.1 by executing the indicated computations.

� 14. Consider the initial value problem

y′ = t2 + y2, y(0) = 1.

(a) Draw a direction field for this equation.
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(b) Use the Runge–Kutta or other methods to find approximate values of the solution at
t = 0.8, 0.9, and 0.95. Choose a small enough step size so that you believe your results are
accurate to at least four digits.
(c) Try to extend the calculations in part (b) to obtain an accurate approximation to the
solution at t = 1. If you encounter difficulties in doing this, explain why you think this
happens. The direction field in part (a) may be helpful.

15. Consider the initial value problem

y′ = 3t2/(3y2 − 4), y(0) = 0.

(a) Draw a direction field for this equation.
(b) Estimate how far the solution can extended to the right. Let tM be the right endpoint of
the interval of existence of this solution. What happens at tM to prevent the solution from
continuing farther?
(c) Use the Runge–Kutta method with various step sizes to determine an approximate
value of tM .
(d) If you continue the computation beyond tM , you can continue to generate values of y.
What significance, if any, do these values have?
(e) Suppose that the initial condition is changed to y(0) = 1. Repeat parts (b) and (c) for
this problem.

8.4 Multistep Methods

In previous sections we have discussed numerical procedures for solving the initial
value problem

y′ = f (t, y), y(t0) = y0, (1)

in which data at the point t = tn are used to calculate an approximate value of the
solution φ(tn+1) at the next mesh point t = tn+1. In other words, the calculated value of
φ at any mesh point depends only on the data at the preceding mesh point. Such methods
are called one-step methods. However, once approximate values of the solution y =
φ(t) have been obtained at a few points beyond t0, it is natural to ask whether we can
make use of some of this information, rather than just the value at the last point, to
calculate the value of φ(t) at the next point. Specifically, if y1 at t1, y2 at t2, . . . , yn at
tn are known, how can we use this information to determine yn+1 at tn+1? Methods that
use information at more than the last mesh point are referred to as multistep methods.
In this section we will describe two types of multistep methods, Adams3 methods and
backward differentiation formulas. Within each type one can achieve various levels
of accuracy, depending on the number of preceding data points that are used. For
simplicity we will assume throughout our discussion that the step size h is constant.

3John Couch Adams (1819–1892), English astronomer, is most famous as codiscoverer with Joseph Leverrier
of the planet Neptune in 1846. Adams was also extremely skilled at computation; his procedure for numerical
integration of differential equations appeared in 1883 in a book with Francis Bashforth on capillary action.
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Adams Methods. Recall that

φ(tn+1)− φ(tn) =
∫ tn+1

tn

φ′(t) dt, (2)

where φ(t) is the solution of the initial value problem (1). The basic idea of an Adams
method is to approximate φ′(t) by a polynomial Pk(t) of degree k − 1 and to use the
polynomial to evaluate the integral on the right side of Eq. (2). The coefficients in Pk(t)
are determined by using k previously calculated data points. For example, suppose
that we wish to use a first degree polynomial P2(t) = At + B. Then we need only
the two data points (tn, yn) and (tn−1, yn−1). Since P2 is to be an approximation to φ′,
we require that P2(tn) = f (tn, yn) and that P2(tn−1) = f (tn−1, yn−1). Recall that we
denote f (tj , yj ) by f j for an integer j . Then A and B must satisfy the equations

Atn + B = fn, (3)
Atn−1 + B = fn−1.

Solving for A and B, we obtain

A = fn − fn−1

h
, B = fn−1tn − fntn−1

h
. (4)

Replacing φ′(t) by P2(t) and evaluating the integral in Eq. (2), we find that

φ(tn+1)− φ(tn) = A

2
(t2

n+1 − t2
n )+ B(tn+1 − tn).

Finally, we replace φ(tn+1) and φ(tn) by yn+1 and yn , respectively, and carry out some
algebraic simplification. For a constant step size h we obtain

yn+1 = yn + 3
2 h fn − 1

2 h fn−1. (5)

Equation (5) is the second order Adams–Bashforth formula. It is an explicit formula
for yn+1 in terms of yn and yn−1 and has a local truncation error proportional to h3.

We note in passing that the first order Adams–Bashforth formula, based on the
polynomial P1(t) = fn of degree zero, is just the original Euler formula.

More accurate Adams formulas can be obtained by following the procedure outlined
above, but using a higher degree polynomial and correspondingly more data points.
For example, suppose that a polynomial P4(t) of degree three is used. The coefficients
are determined from the four points (tn, yn), (tn−1, yn−1), (tn−2, yn−2), and (tn−3, yn−3).
Substituting this polynomial for φ′(t) in Eq. (2), evaluating the integral, and simplifying
the result, we eventually obtain the fourth order Adams–Bashforth formula, namely,

yn+1 = yn + (h/24)(55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3). (6)

The local truncation error of this fourth order formula is proportional to h5.
A variation on the derivation of the Adams–Bashforth formulas gives another set

of formulas called the Adams–Moulton4 formulas. To see the difference, let us again
consider the second order case. Again we use a first degree polynomial Q2(t) = αt + β,

4 Forest Ray Moulton (1872–1952) was an American astronomer and administrator of science. While calculating
ballistics trajectories during World War I, he devised substantial improvements in the Adams formula.
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but we determine the coefficients by using the points (tn, yn) and (tn+1, yn+1). Thus α
and β must satisfy

αtn + β = fn, (7)
αtn+1 + β = fn+1,

and it follows that

α = fn+1 − fn

h
, β = fntn+1 − fn+1tn

h
. (8)

Substituting Q2(t) for φ′(t) in Eq. (2) and simplifying, we obtain

yn+1 = yn + 1
2 h fn + 1

2 h f (tn+1, yn+1), (9)

which is the second order Adams–Moulton formula. We have written f (tn+1, yn+1) in
the last term to emphasize that the Adams–Moulton formula is implicit, rather than
explicit, since the unknown yn+1 appears on both sides of the equation. The local
truncation error for the second order Adams–Moulton formula is proportional to h3.

The first order Adams–Moulton formula is just the backward Euler formula, as you
might anticipate by analogy with the first order Adams–Bashforth formula.

More accurate higher order formulas can be obtained by using an approximating
polynomial of higher degree. The fourth order Adams–Moulton formula, with a local
truncation error proportional to h5, is

yn+1 = yn + (h/24)(9 fn+1 + 19 fn − 5 fn−1 + fn−2). (10)

Observe that this is also an implicit formula because yn+1 appears in fn+1.
Although both the Adams–Bashforth and Adams–Moulton formulas of the same

order have local truncation errors proportional to the same power of h, the Adams–
Moulton formulas of moderate order are in fact considerably more accurate. For ex-
ample, for the fourth order formulas (6) and (10), the proportionality constant for
the Adams–Moulton formula is less than 1/10 of the proportionality constant for
the Adams–Bashforth formula. Thus the question arises: Should one use the explicit
(and faster) Adams–Bashforth formula, or the more accurate but implicit (and slower)
Adams–Moulton formula? The answer depends on whether by using the more accu-
rate formula one can increase the step size, and therefore reduce the number of steps,
enough to compensate for the additional computations required at each step.

In fact, numerical analysts have attempted to achieve both simplicity and accuracy
by combining the two formulas in what is called a predictor–corrector method. Once
yn−3, yn−2, yn−1, and yn are known, we can compute fn−3, fn−2, fn−1, and fn , and
then use the Adams–Bashforth (predictor) formula (6) to obtain a first value for yn+1.
Then we compute fn+1 and use the Adams–Moulton (corrector) formula (10), which
is no longer implicit, to obtain an improved value of yn+1. We can, of course, continue
to use the corrector formula (10) if the change in yn+1 is too large. However, if it is
necessary to use the corrector formula more than once or perhaps twice, it means that
the step size h is too large and should be reduced.

In order to use any of the multistep methods it is necessary first to calculate a few yj
by some other method. For example, the fourth order Adams–Moulton method requires
values for y1 and y2, while the fourth order Adams–Bashforth method also requires a
value for y3. One way to proceed is to use a one-step method of comparable accuracy
to calculate the necessary starting values. Thus, for a fourth order multistep method,



442 Chapter 8. Numerical Methods

one might use the fourth order Runge–Kutta method to calculate the starting values.
This is the method used in the next example.

Another approach is to use a low order method with a very small h to calculate y1,
and then to increase gradually both the order and the step size until enough starting
values have been determined.

E X A M P L E

1

Consider again the initial value problem

y′ = 1 − t + 4y, y(0) = 1. (11)

With a step size of h = 0.1 determine an approximate value of the solution y = φ(t)
at t = 0.4 using the fourth order Adams–Bashforth formula, the fourth order Adams–
Moulton formula, and the predictor–corrector method.

For starting data we use the values of y1, y2, and y3 found from the Runge–Kutta
method. These are tabulated in Table 8.3.1. Next, calculating the corresponding values
of f (t, y), we obtain

y0 = 1, f0 = 5,
y1 = 1.6089333, f1 = 7.3357332,
y2 = 2.5050062, f2 = 10.820025,
y3 = 3.8294145, f3 = 16.017658.

Then from the Adams–Bashforth formula, Eq. (6), we find that y4 = 5.7836305. The
exact value of the solution at t = 0.4, correct through eight digits, is 5.7942260, so the
error is −0.010595.

The Adams–Moulton formula, Eq. (10), leads to the equation

y4 = 4.9251275 + 0.15y4,

from which it follows that y4 = 5.7942676 with an error of only 0.0000416.
Finally, using the result from the Adams–Bashforth formula as a predicted value of

φ(0.4), we can then use Eq. (10) as a corrector. Corresponding to the predicted value
of y4 we find that f4 = 23.734522. Hence, from Eq. (10), the corrected value of y4 is
5.7926721. This result is in error by −0.0015539.

Observe that the Adams–Bashforth method is the simplest and fastest of these
methods, since it involves only the evaluation of a single explicit formula. It is also the
least accurate. Using the Adams–Moulton formula as a corrector increases the amount
of calculation that is required, but the method is still explicit. In this problem the error
in the corrected value of y4 is reduced by approximately a factor of 7 when compared
to the error in the predicted value. The Adams–Moulton method alone yields by far
the best result, with an error that is about 1/40 as large as the error from the predictor–
corrector method. Remember, however, that the Adams–Moulton method is implicit,
which means that an equation must be solved at each step. In the problem considered
here this equation is linear, so the solution is quickly found, but in other problems this
part of the procedure may be much more time-consuming.

The Runge–Kutta method with h = 0.1 gives y4 = 5.7927853 with an error of
−0.0014407; see Table 8.3.1. Thus for this problem the Runge–Kutta method is com-
parable in accuracy to the predictor–corrector method.
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Backward Differentiation Formulas. Another type of multistep method arises by
using a polynomial Pk(t) to approximate the solution φ(t) of the initial value problem
(1) rather than its derivative φ′(t), as in the Adams methods. We then differentiate
Pk(t) and set P ′

k(tn+1) equal to f (tn+1, yn+1) to obtain an implicit formula for yn+1.
These are called backward differentiation formulas.

The simplest case uses a first degree polynomial P1(t) = At + B. The coefficients
are chosen to match the computed values of the solution yn and yn+1. Thus A and B
must satisfy

Atn + B = yn, (12)
Atn+1 + B = yn+1.

Since P ′
1(t) = A, the requirement that

P ′
1(tn+1) = f (tn+1, yn+1)

is just

A = f (tn+1, yn+1). (13)

Another expression for A comes from subtracting the first of Eqs. (12) from the second,
which gives

A = (yn+1 − yn)/h.

Substituting this value of A into Eq. (13) and rearranging terms, we obtain the first
order backward differentiation formula

yn+1 = yn + h f (tn+1, yn+1). (14)

Note that Eq. (14) is just the backward Euler formula that we first saw in Section 8.1.
By using higher order polynomials and correspondingly more data points one can

obtain backward differentiation formulas of any order. The second order formula is

yn+1 = 1
3

[
4yn − yn−1 + 2h f (tn+1, yn+1)

]
(15)

and the fourth order formula is

yn+1 = 1
25

[
48yn − 36yn−1 + 16yn−2 − 3yn−3 + 12h f (tn+1, yn+1)

]
. (16)

These formulas have local truncation errors proportional to h3 and h5, respectively.

E X A M P L E

2

Use the fourth order backward differentiation formula with h = 0.1 and the data given
in Example 1 to determine an approximate value of the solution y = φ(t) at t = 0.4
for the initial value problem (11).

Using Eq. (16) with n = 3, h = 0.1, and with y0, . . . , y3 given in Example 1, we
obtain the equation

y4 = 4.6837842 + 0.192y4.

Thus

y4 = 5.7967626.
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Comparing the calculated value with the exact value φ(0.4) = 5.7942260, we find
that the error is 0.0025366. This is somewhat better than the result using the Adams–
Bashforth method, but not as good as the result using the predictor–corrector method,
and not nearly as good as the result using the Adams–Moulton method.

A comparison between one-step and multistep methods must take several factors into
consideration. The fourth order Runge–Kutta method requires four evaluations of f at
each step, while the fourth order Adams–Bashforth method (once past the starting val-
ues) requires only one and the predictor–corrector method only two. Thus, for a given
step size h, the latter two methods may well be considerably faster than Runge–Kutta.
However, if Runge–Kutta is more accurate and therefore can use fewer steps, then the
difference in speed will be reduced and perhaps eliminated. The Adams–Moulton and
backward differentiation formulas also require that the difficulty in solving the implicit
equation at each step be taken into account. All multistep methods have the possible
disadvantage that errors in earlier steps can feed back into later calculations with unfa-
vorable consequences. On the other hand, the underlying polynomial approximations
in multistep methods make it easy to approximate the solution at points between the
mesh points, should this be desirable. Multistep methods have become popular largely
because it is relatively easy to estimate the error at each step and to adjust the order or
the step size to control it. For a further discussion of such questions as these see the
books listed at the end of the chapter; in particular, Shampine (1994) is an authoritative
source.

PROBLEMS In each of Problems 1 through 6 determine an approximate value of the solution at t = 0.4 and
t = 0.5 using the specified method. For starting values use the values given by the Runge–Kutta
method; see Problems 1 through 6 of Section 8.3. Compare the results of the various methods
with each other and with the actual solution (if available).

(a) Use the fourth order predictor–corrector method with h = 0.1. Use the corrector
formula once at each step.
(b) Use the fourth order Adams–Moulton method with h = 0.1.
(c) Use the fourth order backward differentiation method with h = 0.1.

� 1. y′ = 3 + t − y, y(0) = 1 � 2. y′ = 5t − 3
√

y, y(0) = 2

� 3. y′ = 2y − 3t, y(0) = 1 � 4. y′ = 2t + e−t y, y(0) = 1

� 5. y′ = y2 + 2t y

3 + t2 , y(0) = 0.5 � 6. y′ = (t2 − y2) sin y, y(0) = −1

In each of Problems 7 through 12 find approximate values of the solution of the given initial
value problem at t = 0.5, 1.0, 1.5, and 2.0, using the specified method. For starting values use the
values given by the Runge–Kutta method; see Problems 7 through 12 in Section 8.3. Compare
the results of the various methods with each other and with the actual solution (if available).

(a) Use the fourth order predictor–corrector method with h = 0.05. Use the corrector
formula once at each step.
(b) Use the fourth order Adams–Moulton method with h = 0.05.
(c) Use the fourth order backward differentiation method with h = 0.05.

� 7. y′ = 0.5 − t + 2y, y(0) = 1 � 8. y′ = 5t − 3
√

y, y(0) = 2

� 9. y′ = √
t + y, y(0) = 3 � 10. y′ = 2t + e−t y, y(0) = 1
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� 11. y′ = (4 − t y)/(1 + y2), y(0) = −2

� 12. y′ = (y2 + 2t y)/(3 + t2), y(0) = 0.5

13. Show that the first order Adams–Bashforth method is the Euler method, and that the first
order Adams–Moulton method is the backward Euler method.

14. Show that the third order Adams–Bashforth formula is

yn+1 = yn + (h/12)(23 fn − 16 fn−1 + 5 fn−2).

15. Show that the third order Adams–Moulton formula is

yn+1 = yn + (h/12)(5 fn+1 + 8 fn − fn−1).

16. Derive the second order backward differentiation formula given by Eq. (15) in the text.

8.5 More on Errors; Stability

In Section 8.1 we discussed some ideas related to the errors that can occur in a numerical
solution of the initial value problem

y′ = f (t, y), y(t0) = y0. (1)

In this section we continue that discussion and also point out some other difficulties
that can arise. Some of the points that we wish to make are fairly difficult to treat in
detail, so we will illustrate them by means of examples.

Truncation and Round-off Errors. Recall that for the Euler method we showed that
the local truncation error is proportional to h2 and that for a finite interval the global
truncation error is at most a constant times h. In general, for a method of order p, the
local truncation error is proportional to h p+1 and the global truncation error on a finite
interval is bounded by a constant times h p. To achieve high accuracy we normally
use a numerical procedure for which p is fairly large, perhaps four or higher. As p
increases, the formula used in computing yn+1 normally becomes more complicated,
and hence more calculations are required at each step; however, this is usually not a
serious problem unless f (t, y) is very complicated or the calculation must be repeated
very many times. If the step size h is decreased, the global truncation error is decreased
by the same factor raised to the power p. However, as we mentioned in Section 8.1, if h
is very small, a great many steps will be required to cover a fixed interval, and the global
round-off error may be larger than the global truncation error. The situation is shown
schematically in Figure 8.5.1. We assume that the round-off error Rn is proportional
to the number of computations performed and therefore is inversely proportional to
the step size h. On the other hand, the truncation error En is proportional to a positive
power of h. From Eq. (17) of Section 8.1 we know that the total error is bounded by
|En| + |Rn|; hence we wish to choose h so as to minimize this quantity. The optimum
value of h occurs when the rate of increase of the truncation error (as h increases) is
balanced by the rate of decrease of the round-off error, as indicated in Figure 8.5.1.
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Error

 En +  Rn

 Rn

 En

hhopt

FIGURE 8.5.1 The dependence of truncation and round-off errors on the step size h.

E X A M P L E

1

Consider the example problem

y′ = 1 − t + 4y, y(0) = 1. (2)

Using the Euler method with various step sizes, calculate approximate values for the
solution φ(t) at t = 0.5 and t = 1. Try to determine the optimum step size.

Keeping only four digits in order to shorten the calculations, we obtain the data
shown in Table 8.5.1. The first two columns are the step size h and the number of steps
N required to traverse the interval 0 ≤ t ≤ 1. Then yN/2 and yN are approximations to
φ(0.5) = 8.712 and φ(1) = 64.90, respectively. These quantities appear in the third
and fifth columns. The fourth and sixth columns display the differences between the
calculated values and the actual value of the solution.

TABLE 8.5.1 Approximations to the Solution of the Initial Value
Problem y′ = 1 − t + 4y, y(0) = 1 Using the Euler Method with
Different Step Sizes

h N yN/2 Error yN Error

0.01 100 8.390 0.322 60.12 4.78
0.005 200 8.551 0.161 62.51 2.39
0.002 500 8.633 0.079 63.75 1.15
0.001 1000 8.656 0.056 63.94 0.96
0.0008 1250 8.636 0.076 63.78 1.12
0.000625 1600 8.616 0.096 64.35 0.55
0.0005 2000 8.772 0.060 64.00 0.90
0.0004 2500 8.507 0.205 63.40 1.50
0.00025 4000 8.231 0.481 56.77 8.13

For relatively large step sizes the round-off error is much less than the global trun-
cation error. Consequently, the total error is approximately the same as the global
truncation error, which for the Euler method is bounded by a constant times h. Thus, as
the step size is reduced, the error is reduced proportionally. The first three lines in Table
8.5.1 show this type of behavior. For h = 0.001 the error has been further reduced, but
much less than proportionally; this indicates that round-off error is becoming important.
As h is reduced still more, the error begins to fluctuate and further improvements in



8.5 More on Errors; Stability 447

accuracy become problematical. For values of h less than 0.0005 the error is clearly in-
creasing, which indicates that round-off error is now the dominant part of the total error.

These results can also be expressed in terms of the number of steps N . For N less
than about 1000 accuracy is improved by taking more steps, while for N greater than
about 2000 using more steps has an adverse effect. Thus for this problem it is best
to use an N somewhere between 1000 and 2000. For the calculations shown in Table
8.5.1 the best result at t = 0.5 occurs for N = 1000 while at t = 1.0 the best result is
for N = 1600.

One should be careful not to read too much into the results shown in Example 1. The
optimum ranges for h and N depend on the differential equation, the numerical method
that is used, and the number of digits that are retained in the calculation. Nevertheless,
it is generally true that if too many steps are required in a calculation, then eventually
round-off error is likely to accumulate to the point that it seriously degrades the accuracy
of the procedure. For many problems this is not a concern: For them any of the fourth
order methods we have discussed in Sections 8.3 and 8.4 will produce good results with
a number of steps far less than the level at which round-off error becomes important.
For some problems, however, round-off error does become vitally important. For such
problems the choice of method may be crucial. This is also one reason why modern
codes provide a means of adjusting the step size as they go along, using a larger step
size wherever possible, and a very small step size only where necessary.

Vertical Asymptotes. As a second example, consider the problem of determining the
solution y = φ(t) of

y′ = t2 + y2, y(0) = 1. (3)

Since the differential equation is nonlinear, the existence and uniqueness theorem
(Theorem 2.4.2) guarantees only that there is a solution in some interval about t = 0.
Suppose that we try to compute a solution of the initial value problem on the interval
0 ≤ t ≤ 1 using different numerical procedures.

If we use the Euler method with h = 0.1, 0.05, and 0.01, we find the following
approximate values at t = 1: 7.189548, 12.32093, and 90.75551, respectively. The
large differences among the computed values are convincing evidence that we should
use a more accurate numerical procedure—the Runge–Kutta method, for example.
Using the Runge–Kutta method with h = 0.1 we find the approximate value 735.0991
at t = 1, which is quite different from those obtained using the Euler method. Repeating
the calculations using step sizes of h = 0.05 and h = 0.01, we obtain the interesting
information listed in Table 8.5.2.

TABLE 8.5.2 Calculation of the Solution of
the Initial Value Problem y′ = t2 + y2,
y(0) = 1 Using the Runge–Kutta Method

h t = 0.90 t = 1.0

0.1 14.02182 735.0991
0.05 14.27117 1.75863 × 105

0.01 14.30478 2.0913 × 102893

0.001 14.30486
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While the values at t = 0.90 are reasonable and we might well believe that the
solution has a value of about 14.305 at t = 0.90, it is clear that something strange is
happening between t = 0.9 and t = 1.0. To help determine what is happening let us
turn to some analytical approximations to the solution of the initial value problem (3).
Note that on 0 ≤ t ≤ 1

y2 ≤ t2 + y2 ≤ 1 + y2. (4)

This suggests that the solution y = φ1(t) of

y′ = 1 + y2, y(0) = 1 (5)

and the solution y = φ2(t) of

y′ = y2, y(0) = 1 (6)

are upper and lower bounds, respectively, for the solution y = φ(t) of the original
problem, since all these solutions pass through the same initial point. Indeed, it can be
shown (for example, by the iteration method of Section 2.8) that φ2(t) ≤ φ(t) ≤ φ1(t)
as long as these functions exist. The important thing to note is that we can solve Eqs. (5)
and (6) for φ1 and φ2 by separation of variables. We find that

φ1(t) = tan
(

t + π

4

)
, φ2(t) = 1

1 − t
. (7)

Thus φ2(t) → ∞ as t → 1, and φ1(t) → ∞ as t → π/4 ∼= 0.785. These calculations
show that the solution of the original initial value problem exists at least for 0 ≤ t < π/4
and at most for 0 ≤ t < 1. The solution of the problem (3) has a vertical asymptote for
some t in π/4 ≤ t ≤ 1 and thus does not exist on the entire interval 0 ≤ t ≤ 1.

Our numerical calculations, however, suggest that we can go beyond t = π/4, and
probably beyond t = 0.9. Assuming that the solution of the initial value problem exists
at t = 0.9 and has the value 14.305, we can obtain a more accurate appraisal of what
happens for larger t by considering the initial value problems (5) and (6) with y(0) = 1
replaced by y(0.9) = 14.305. Then we obtain

φ1(t) = tan(t + 0.60100), φ2(t) = 1/(0.96991 − t), (8)

where only five decimal places have been kept. Thus φ1(t) → ∞ as t → π/2 −
0.60100 ∼= 0.96980 and φ2(t) → ∞ as t → 0.96991. We conclude that the asymp-
tote of the solution of the initial value problem (3) lies between these two values.
This example illustrates the sort of information that can be obtained by a judicious
combination of analytical and numerical work.

Stability. The concept of stability is associated with the possibility that small errors
that are introduced in the course of a mathematical procedure may die out as the
procedure continues. Conversely, instability occurs if small errors tend to increase,
perhaps without bound. For example, in Section 2.5 we identified equilibrium solutions
of a differential equation as (asymptotically) stable or unstable, depending on whether
solutions that were initially near the equilibrium solution tended to approach it or to
depart from it as t increases. Somewhat more generally, the solution of an initial value
problem is asymptotically stable if initially nearby solutions tend to approach the given
solution, and unstable if they tend to depart from it. Visually, in an asymptotically stable
problem the graphs of solutions will come together, while in an unstable problem they
will separate.
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If we are solving an initial value problem numerically, the best that we can hope for
is that the numerical approximation will mimic the behavior of the actual solution. We
cannot make an unstable problem into a stable one merely by solving it numerically.
However, it may well happen that a numerical procedure will introduce instabilities
that were not part of the original problem, and this can cause trouble in approximating
the solution. Avoidance of such instabilities may require us to place restrictions on the
step size h.

To illustrate what can happen in the simplest possible context consider the differential
equation

dy/dt = ry, (9)

where r is a constant. Suppose that in solving this equation we have reached the point
(tn, yn). Let us compare the exact solution of Eq. (9) that passes through this point,
namely,

y = yn exp[r(t − tn)], (10)

with numerical approximations obtained from the Euler formula

yn+1 = yn + h f (tn, yn) (11)

and from the backward Euler formula

yn+1 = yn + h f (tn+1, yn+1). (12)

From the Euler formula (11) we obtain

yn+1 = yn + hryn = yn(1 + rh). (13)

Similarly, from the backward Euler formula (12) we have

yn+1 = yn + hryn+1,

or

yn+1 = yn

1 − rh
= yn[1 + rh + (rh)2 + · · ·]. (14)

Finally, evaluating the solution (10) at tn + h, we find that

yn+1 = yn exp(rh) = yn

[
1 + rh + (rh)2

2
+ · · ·

]
. (15)

Comparing Eqs. (13), (14), and (15) we see that the errors in both the Euler formula
and in the backward Euler formula are of order h2, as the theory predicts.

Now suppose that we change the value yn to yn + δ. Think, if you wish, of δ as the
error that has accumulated by the time we reach t = tn . In going one more step to tn+1,
the question is whether this error increases or decreases.

For the exact solution (15) the change in yn+1 due to the change δ in yn is just
δ exp(rh). This quantity is less than δ if exp(rh) < 1, that is, if r < 0. This confirms
our conclusion in Chapter 2 that Eq. (9) is asymptotically stable if r < 0 and unstable
if r > 0.

For the backward Euler method the change in yn+1 in Eq. (14) due to δ is δ/(1 − rh).
For r ≤ 0 this quantity is always nonnegative and never greater than 1. Thus, if the
differential equation is stable, then so is the backward Euler method for an arbitrary
step size h.
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On the other hand, for the Euler method, the change in yn+1 in Eq. (13) due to δ is
δ(1 + rh). If we recall that r ≤ 0 and require that |1 + rh| ≤ 1, then we find that h
must satisfy h ≤ 2/|r |. Thus the Euler method is not stable for this problem unless h
is sufficiently small.

The restriction on the step size h in using the Euler method in the preceding example
is rather mild unless |r | is quite large. Nonetheless, the example illustrates that it may
be necessary to restrict h in order to achieve stability in the numerical method, even
though the initial value problem itself is stable for all values of h. Problems for which
a much smaller step size is needed for stability than for accuracy are called stiff. The
backward differentiation formulas described in Section 8.4 (of which the backward
Euler formula is the lowest order example) are the most popular formulas for solving
stiff problems. The following example illustrates the kind of instabilities that can occur
in trying to approximate the solution of a stiff problem.

E X A M P L E

2
A Stiff

Problem

Consider the initial value problem

y′ = −100y + 100t + 1, y(0) = 1. (16)

Find numerical approximations to the solution for 0 ≤ t ≤ 1 using the Euler, back-
ward Euler, and Runge–Kutta methods. Compare the numerical results with the exact
solution.

Since the differential equation is linear, it is easy to solve, and the solution of the
initial value problem (16) is

y = φ(t) = e−100t + t. (17)

Some values of the solution φ(t), correct to six decimal places, are given in the second
column of Table 8.5.3, and a graph of the solution is shown in Figure 8.5.2. There
is a thin layer (sometimes called a boundary layer) to the right of t = 0 in which the
exponential term is significant and the solution varies rapidly. Once past this layer,
however, φ(t) ∼= t and the graph of the solution is essentially a straight line. The width
of the boundary layer is somewhat arbitrary, but it is certainly small. At t = 0.1, for
example, exp(−100t) ∼= 0.000045.

1

0.8

0.6

0.4

0.2

t0.80.60.40.2

y

FIGURE 8.5.2 The solution of the initial value problem (16).
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If we plan to approximate the solution (17) numerically, we might intuitively expect
that a small step size will be needed only in the boundary layer. To make this expectation
a bit more precise recall from Section 8.1 that the local truncation errors for the Euler and
backward Euler methods are proportional to φ′′(t). For this problem φ′′(t) = 104e−100t ,
which varies from a value of 104 at t = 0 to nearly zero for t > 0.2. Thus a very small
step size is needed for accuracy near t = 0, but a much larger step size is adequate
once t is a little larger.

On the other hand, the stability analysis in Eqs. (9) through (15) also applies to this
problem. Since r = −100 for Eq. (16), it follows that for stability we need h < 0.02
for the Euler method, but there is no corresponding restriction for the backward Euler
method.

Some results using the Euler method are shown in columns 3 and 4 of Table 8.5.3.
The values obtained for h = 0.025 are worthless due to instability, while those for
h = 0.01666 . . . are reasonably accurate for t ≥ 0.2. However, comparable accuracy
for this range of t is obtained for h = 0.1 using the backward Euler method, as shown
by the results in column 7 of the table.

The situation is not improved by using instead of the Euler method a more accurate
one, such as Runge–Kutta. For this problem the Runge–Kutta method is unstable for
h = 0.033 . . . but stable for h = 0.025, as shown by the results in columns 5 and 6 in
Table 8.5.3.

The results given in the table for t = 0.05 and for t = 0.1 show that in the boundary
layer a smaller step size is needed to obtain an accurate approximation. You are invited
to explore this matter further in Problem 3.

TABLE 8.5.3 Numerical Approximations to the Solution of the Initial Value Problem
y′ = −100y + 100t + 1, y(0) = 1

Euler Euler Runge–Kutta Runge–Kutta Backward Euler
t Exact 0.025 0.0166 . . . 0.0333 . . . 0.025 0.1

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.05 0.056738 2.300000 −0.246296 0.470471
0.1 0.100045 5.162500 0.187792 10.6527 0.276796 0.190909
0.2 0.200000 25.8289 0.207707 111.559 0.231257 0.208264
0.4 0.400000 657.241 0.400059 1.24 × 104 0.400977 0.400068
0.6 0.600000 1.68 × 104 0.600000 1.38 × 106 0.600031 0.600001
0.8 0.800000 4.31 × 105 0.800000 1.54 × 108 0.800001 0.800000
1.0 1.000000 1.11 × 107 1.000000 1.71 × 1010 1.000000 1.000000

As a final example, consider the problem of determining two linearly independent
solutions of the second order linear equation

y′′ − 10π2 y = 0 (18)

for t > 0. The generalization of numerical techniques for the first order equations to
higher order equations or to systems of equations is discussed in Section 8.6, but that is
not needed for the present discussion. Two linearly independent solutions of Eq. (18) are
φ1(t) = cosh

√
10π t andφ2(t) = sinh

√
10π t . The first solution,φ1(t) = cosh

√
10π t ,

is generated by the initial conditionsφ1(0) = 1,φ′
1(0) = 0; the second solution,φ2(t) =
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sinh
√

10π t , is generated by the initial conditions φ2(0) = 0, φ′
2(0) = √

10π . While
analytically we can tell the difference between cosh

√
10π t and sinh

√
10π t , for large

t we have cosh
√

10π t ∼ e
√

10π t/2 and sinh
√

10π t ∼ e
√

10π t/2; numerically these two
functions look exactly the same if only a fixed number of digits are retained. For
example, correct to eight significant figures, we find that for t = 1

sinh
√

10π = cosh
√

10π = 10,315.894.

If the calculations are carried out on a machine that carries only eight digits, the two
solutions φ1 and φ2 are identical at t = 1 and indeed for all t > 1. Thus, even though
the solutions are linearly independent, their numerical tabulation would show that they
are the same because we can retain only a finite number of digits. This phenomenon is
called numerical dependence.

For the present problem we can partially circumvent this difficulty by computing,
instead of sinh

√
10π t and cosh

√
10π t , the linearly independent solutions φ3(t) =

e
√

10π t and φ4(t) = e−√
10π t corresponding to the initial conditions φ3(0) = 1, φ′

3(0) =√
10π and φ4(0) = 1, φ′

4(0) = −√
10π , respectively. The solution φ3 grows exponen-

tially while φ4 decays exponentially. Even so, we encounter difficulty in calculating
φ4 correctly on a large interval. The reason is that at each step of the calculation for
φ4 we introduce truncation and round-off errors. Thus at any point tn the data to be
used in going to the next point are not precisely the values of φ4(tn) and φ′

4(tn). The

solution of the initial value problem with these data at tn involves not only e−√
10π t but

also e
√

10π t . Because the error in the data at tn is small, the latter function appears with

a very small coefficient. Nevertheless, since e−√
10π t tends to zero and e

√
10π t grows

very rapidly, the latter eventually dominates, and the calculated solution is simply a
multiple of e

√
10π t = φ3(t).

To be specific, suppose that we use the Runge–Kutta method to calculate the solution
y = φ4(t) = e−√

10π t of the initial value problem

y′′ − 10π2 y = 0, y(0) = 1, y′(0) = −
√

10π.

(The Runge–Kutta method for second order systems is described in Section 8.6.) Using
single-precision (eight-digit) arithmetic with a step size h = 0.01, we obtain the results
in Table 8.5.4. It is clearly evident from these results that the numerical solution begins
to deviate significantly from the exact solution for t > 0.5, and soon differs from it
by many orders of magnitude. The reason is the presence in the numerical solution of
a small component of the exponentially growing solution φ3(t) = e

√
10π t . With eight-

digit arithmetic we can expect a round-off error of the order of 10−8 at each step. Since
e
√

10π t grows by a factor of 3.7 × 1021 from t = 0 to t = 5, an error of order 10−8

near t = 0 can produce an error of order 1013 at t = 5 even if no further errors are
introduced in the intervening calculations. The results given in Table 8.5.4 demonstrate
that this is exactly what happens.

Equation (18) is highly unstable and the behavior shown in this example is typical
of unstable problems. One can track a solution accurately for a while, and the interval
can be extended by using smaller step sizes or more accurate methods, but eventually
the instability in the problem itself takes over and leads to large errors.
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TABLE 8.5.4 Exact Solution of y′′ − 10π2 y = 0,
y(0) = 1, y′(0) = −√

10π and Numerical Solution
Using the Runge–Kutta Method with h = 0.01

y

t Numerical Exact

0.0 1.0 1.0
0.25 8.3439 × 10−2 8.3438 × 10−2

0.5 6.9631 × 10−3 6.9620 × 10−3

0.75 5.9390 × 10−4 5.8089 × 10−4

1.0 2.0437 × 10−4 4.8469 × 10−5

1.5 2.2394 × 10−2 3.3744 × 10−7

2.0 3.2166 2.3492 × 10−9

2.5 4.6202 × 102 1.6356 × 10−11

3.0 6.6363 × 104 1.1386 × 10−13

3.5 9.5322 × 106 7.9272 × 10−16

4.0 1.3692 × 109 5.5189 × 10−18

4.5 1.9667 × 1011 3.8422 × 10−20

5.0 2.8249 × 1013 2.6750 × 10−22

Some Comments on Numerical Methods. In this chapter we have introduced several
numerical methods for approximating the solution of an initial value problem. We
have tried to emphasize some important ideas while maintaining a reasonable level of
complexity. For one thing, we have always used a uniform step size, whereas production
codes currently in use provide for varying the step size as the calculation proceeds.

There are several considerations that must be taken into account in choosing step
sizes. Of course, one is accuracy; too large a step size leads to an inaccurate result.
Normally, an error tolerance is prescribed in advance and the step size at each step
must be consistent with this requirement. As we have seen, the step size must also be
chosen so that the method is stable. Otherwise, small errors will grow and soon render
the results worthless. Finally, for implicit methods an equation must be solved at each
step and the method used to solve the equation may impose additional restrictions on
the step size.

In choosing a method one must also balance the considerations of accuracy and
stability against the amount of time required to execute each step. An implicit method,
such as the Adams–Moulton method, requires more calculations for each step, but if its
accuracy and stability permit a larger step size (and consequently fewer steps), then this
may more than compensate for the additional calculations. The backward differentiation
formulas of moderate order, say, four, are highly stable and are therefore indicated for
stiff problems, for which stability is the controlling factor.

Some current production codes also permit the order of the method to be varied, as
well as the step size, as the calculation proceeds. The error is estimated at each step and
the order and step size are chosen to satisfy the prescribed error tolerance. In practice,
Adams methods up to order twelve and backward differentiation formulas up to order
five are in use. Higher order backward differentiation formulas are unsuitable due to a
lack of stability.

Finally, we note that the smoothness of the function f , that is, the number of
continuous derivatives that it possesses, is a factor in choosing the order of the method
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to be used. High order methods lose some of their accuracy if f is not smooth to a
corresponding order.

PROBLEMS 1. To obtain some idea of the possible dangers of small errors in the initial conditions, such
as those due to round-off, consider the initial value problem

y′ = t + y − 3, y(0) = 2.

(a) Show that the solution is y = φ1(t) = 2 − t .
(b) Suppose that in the initial condition a mistake is made and 2.001 is used instead of 2.
Determine the solution y = φ2(t) in this case, and compare the difference φ2(t)− φ1(t) at
t = 1 and as t → ∞.

2. Consider the initial value problem

y′ = t2 + ey, y(0) = 0. (i)

Using the Runge–Kutta method with step size h, we obtain the results in Table 8.5.5. These
results suggest that the solution has a vertical asymptote between t = 0.9 and t = 1.0.
(a) Show that for 0 ≤ t ≤ 1 the solution y = φ(t) of the problem (i) satisfies

φ2(t) ≤ φ(t) ≤ φ1(t), (ii)

where y = φ1(t) is the solution of

y′ = 1 + ey, y(0) = 0 (iii)

and y = φ2(t) is the solution of

y′ = ey, y(0) = 0. (iv)

(b) Determine φ1(t) and φ2(t). Then show that φ(t) → ∞ for some t between t = ln 2 ∼=
0.69315 and t = 1.
(c) Solve the differential equations y′ = ey and y′ = 1 + ey , respectively, with the initial
condition y(0.9) = 3.4298. Use the results to show that φ(t) → ∞ when t ∼= 0.932.

TABLE 8.5.5 Calculation of the Solution of
the Initial Value Problem y′ = t2 + ey ,
y(0) = 0 Using the Runge–Kutta Method

h t = 0.90 t = 1.0

0.02 3.42985 > 1038

0.01 3.42982 > 1038

� 3. Consider again the initial value problem (16) from Example 2. Investigate how small a step
size h must be chosen in order that the error at t = 0.05 and at t = 0.1 is less than 0.0005.
(a) Use the Euler method.
(b) Use the backward Euler method.
(c) Use the Runge–Kutta method.

� 4. Consider the initial value problem

y′ = −10y + 2.5t2 + 0.5t, y(0) = 4.

(a) Find the solution y = φ(t) and draw its graph for 0 ≤ t ≤ 5.
(b) The stability analysis in the text suggests that for this problem the Euler method is
stable only for h < 0.2. Confirm that this is true by applying the Euler method to this
problem for 0 ≤ t ≤ 5 with step sizes near 0.2.
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(c) Apply the Runge–Kutta method to this problem for 0 ≤ t ≤ 5 with various step sizes.
What can you conclude about the stability of this method?
(d) Apply the backward Euler method to this problem for 0 ≤ t ≤ 5 with various step
sizes. What step size is needed in order that the error at t = 5 is less than 0.01?

In each of Problems 5 and 6

(a) Find a formula for the solution of the initial value problem, and note that it is indepen-
dent of λ.
(b) Use the Runge–Kutta method with h = 0.01 to compute approximate values of the
solution for 0 ≤ t ≤ 1 for various values of λ such as λ = 1, 10, 20, and 50.
(c) Explain the differences, if any, between the exact solution and the numerical approxi-
mations.

� 5. y′ − λy = 1 − λt, y(0) = 0 � 6. y′ − λy = 2t − λt2, y(0) = 0

8.6 Systems of First Order Equations

In the preceding sections we discussed numerical methods for solving initial value
problems associated with a first order differential equation. These methods can also be
applied to a system of first order equations. Since a higher order equation can always
be reduced to a system of first order equations, it is sufficient to deal with systems
of first order equations alone. For simplicity we consider a system of two first order
equations

x ′ = f (t, x, y), y′ = g(t, x, y), (1)

with the initial conditions

x(t0) = x0, y(t0) = y0. (2)

The functions f and g are assumed to satisfy the conditions of Theorem 7.1.1 so that
The initial value problem (1), (2) has a unique solution in some interval of the t-axis
containing the point t0. We wish to determine approximate values x1, x2, . . . , xn, . . .

and y1, y2, . . . , yn, . . . of the solution x = φ(t), y = ψ(t) at the points tn = t0 + nh
with n = 1, 2, . . . .

In vector notation the initial value problem (1), (2) can be written as

x′ = f(t, x), x(t0) = x0, (3)

where x is the vector with components x and y, f is the vector function with components
f and g, and x0 is the vector with components x0 and y0. The methods of the previous
sections can be readily generalized to handle systems of two (or more) equations. All
that is needed (formally) is to replace the scalar variable x by the vector x and the
scalar function f by the vector function f in the appropriate equations. For example,
the Euler formula becomes

xn+1 = xn + hfn, (4)
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or, in component form,(
xn+1
yn+1

)
=

(
xn
yn

)
+ h

(
f (tn, xn, yn)

g(tn, xn, yn)

)
. (5)

The initial conditions are used to determine f0, which is the vector tangent to the graph
of the solution x = �(t) in the xy-plane. We move in the direction of this tangent
vector for a time step h in order to find the next point x1. Then we calculate a new
tangent vector f1, move along it for a time step h to find x2, and so forth.

In a similar way the Runge–Kutta method can be extended to a system. For the step
from tn to tn+1 we have

xn+1 = xn + (h/6)(kn1 + 2kn2 + 2kn3 + kn4), (6)

where

kn1 = f(tn, xn),

kn2 = f [tn + (h/2), xn + (h/2)kn1],
(7)

kn3 = f [tn + (h/2), xn + (h/2)kn2],

kn4 = f(tn + h, xn + hkn3).

The formulas for the Adams–Moulton predictor–corrector method as it applies to
the initial value problem (1), (2) are given in Problem 9.

The vector equations (3), (4), (6), and (7) are, in fact, valid in any number of
dimensions. All that is needed is to interpret the vectors as having n components rather
than two.

E X A M P L E

1

Determine approximate values of the solution x = φ(t), y = ψ(t) of the initial value
problem

x ′ = x − 4y, y′ = −x + y, (8)

x(0) = 1, y(0) = 0, (9)

at the point t = 0.2. Use the Euler method with h = 0.1 and the Runge–Kutta method
with h = 0.2. Compare the results with the values of the exact solution:

φ(t) = e−t + e3t

2
, ψ(t) = e−t − e3t

4
. (10)

Let us first use the Euler method. For this problem fn = xn − 4yn and gn = −xn +
yn; hence

f0 = 1 − (4)(0) = 1, g0 = −1 + 0 = −1.

Then, from the Euler formulas (4) and (5) we obtain

x1 = 1 + (0.1)(1) = 1.1, y1 = 0 + (0.1)(−1) = −0.1.

At the next step

f1 = 1.1 − (4)(−0.1) = 1.5, g1 = −1.1 + (−0.1) = −1.2.

Consequently,

x2 = 1.1 + (0.1)(1.5) = 1.25, y2 = −0.1 + (0.1)(−1.2) = −0.22.
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The values of the exact solution, correct to eight digits, are φ(0.2) = 1.3204248 and
ψ(0.2) = −0.25084701. Thus the values calculated from the Euler method are in error
by about 0.0704 and 0.0308, respectively, corresponding to percentage errors of about
5.3% and 12.3%.

Now let us use the Runge–Kutta method to approximate φ(0.2) and ψ(0.2). With
h = 0.2 we obtain the following values from Eqs. (7):

k01 =
(

f (1, 0)
g(1, 0)

)
=

(
1

−1

)
;

k02 =
(

f (1.1,−0.1)
g(1.1,−0.1)

)
=

(
1.5

−1.2

)
;

k03 =
(

f (1.15,−0.12)
g(1.15,−0.12)

)
=

(
1.63

−1.27

)
;

k04 =
(

f (1.326,−0.254)
g(1.326,−0.254)

)
=

(
2.342

−1.580

)
.

Then, substituting these values in Eq. (6), we obtain

x1 =
(

1
0

)
+ 0.2

6

(
9.602

−7.52

)
=

(
1.3200667

−0.25066667

)
.

These values of x1 and y1 are in error by about 0.000358 and 0.000180, respectively,
with percentage errors much less than one-tenth of 1%.

This example again illustrates the great gains in accuracy that are obtainable by
using a more accurate approximation method, such as the Runge–Kutta method. In
the calculations we have just outlined, the Runge–Kutta method requires only twice
as many function evaluations as the Euler method, but the error in the Runge–Kutta
method is about 200 times less than the Euler method.

PROBLEMS In each of Problems 1 through 6 determine approximate values of the solution x = φ(t),
y = ψ(t) of the given initial value problem at t = 0.2, 0.4, 0.6, 0.8, and 1.0. Compare the
results obtained by different methods and different step sizes.

(a) Use the Euler method with h = 0.1.
(b) Use the Runge–Kutta method with h = 0.2.
(c) Use the Runge–Kutta method with h = 0.1.

� 1. x ′ = x + y + t, y′ = 4x − 2y; x(0) = 1, y(0) = 0

� 2. x ′ = 2x + t y, y′ = xy; x(0) = 1, y(0) = 1

� 3. x ′ = −t x − y − 1, y′ = x; x(0) = 1, y(0) = 1

� 4. x ′ = x − y + xy, y′ = 3x − 2y − xy; x(0) = 0, y(0) = 1

� 5. x ′ = x(1 − 0.5x − 0.5y), y′ = y(−0.25 + 0.5x); x(0) = 4, y(0) = 1

� 6. x ′ = exp(−x + y)− cos x, y′ = sin(x − 3y); x(0) = 1, y(0) = 2

� 7. Consider the example problem x ′ = x − 4y, y′ = −x + y with the initial conditions
x(0) = 1 and y(0) = 0. Use the Runge–Kutta method to solve this problem on the
interval 0 ≤ t ≤ 1. Start with h = 0.2 and then repeat the calculation with step sizes
h = 0.1, 0.05, . . . , each half as long as in the preceding case. Continue the process until
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the first five digits of the solution at t = 1 are unchanged for successive step sizes. Deter-
mine whether these digits are accurate by comparing them with the exact solution given in
Eqs. (10) in the text.

� 8. Consider the initial value problem

x ′′ + t2x ′ + 3x = t, x(0) = 1, x ′(0) = 2.

Convert this problem to a system of two first order equations and determine approximate
values of the solution at t = 0.5 and t = 1.0 using the Runge–Kutta method with h = 0.1.

� 9. Consider the initial value problem x ′ = f (t, x, y) and y′ = g(t, x, y) with x(t0) = x0
and y(t0) = y0. The generalization of the Adams–Moulton predictor–corrector method of
Section 8.4 is

xn+1 = xn + 1
24 h(55 fn − 59 fn−1 + 37 fn−2 − 9 fn−3),

yn+1 = yn + 1
24 h(55gn − 59gn−1 + 37gn−2 − 9gn−3)

and

xn+1 = xn + 1
24 h(9 fn+1 + 19 fn − 5 fn−1 + fn−2),

yn+1 = yn + 1
24 h(9gn+1 + 19gn − 5gn−1 + gn−2).

Determine an approximate value of the solution at t = 0.4 for the example initial value
problem x ′ = x − 4y, y′ = −x + y with x(0) = 1, y(0) = 0. Take h = 0.1. Correct the
predicted value once. For the values of x1, . . . , y3 use the values of the exact solution
rounded to six digits: x1 = 1.12883, x2 = 1.32042, x3 = 1.60021, y1 = −0.110527, y2 =
−0.250847, and y3 = −0.429696.
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C H A P T E R

9

Nonlinear
Differential
Equations and
Stability
There are many differential equations, especially nonlinear ones, that are not susceptible
to analytical solution in any reasonably convenient manner. Numerical methods, such
as those discussed in the preceding chapter, provide one means of dealing with these
equations. Another approach, presented in this chapter, is geometrical in character and
leads to a qualitative understanding of the behavior of solutions rather than detailed
quantitative information.

9.1 The Phase Plane: Linear Systems

Since many differential equations cannot be solved conveniently by analytical methods,
it is important to consider what qualitative1 information can be obtained about their
solutions without actually solving the equations. The questions that we consider in
this chapter are associated with the idea of stability of a solution, and the methods
that we employ are basically geometrical. Both the concept of stability and the use of

1The qualitative theory of differential equations was created by Henri Poincare´ (1854–1912) in several major
papers between 1880 and 1886. Poincare´ was professor at the University of Paris and is generally considered the
leading mathematician of his time. He made fundamental discoveries in several different areas of mathematics,
including complex function theory, partial differential equations, and celestial mechanics. In a series of papers
beginning in 1894 he initiated the use of modern methods in topology. In differential equations he was a pioneer
in the use of asymptotic series, one of the most powerful tools of contemporary applied mathematics. Among
other things, he used asymptotic expansions to obtain solutions about irregular singular points, thereby extending
the work of Fuchs and Frobenius discussed in Chapter 5.

459
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geometric analysis were introduced in Chapter 1 and used in Section 2.5 for first order
autonomous equations

dy/dt = f (y). (1)

In this chapter we refine the ideas and extend the discussion to systems of equations.
We start with a consideration of the simplest system, namely, a second order linear

homogeneous system with constant coefficients. Such a system has the form

dx/dt = Ax, (2)

whereA is a 2× 2 constant matrix andx is a 2× 1 vector. Systems of this kind
were solved in Sections 7.5 through 7.8. Recall that if we seek solutions of the form
x = �ert , then by substitution forx in Eq. (2) we find that

(A − r I)� = 0. (3)

Thus r must be an eigenvalue and� a corresponding eigenvector of the coefficient
matrixA. The eigenvalues are the roots of the polynomial equation

det(A − r I ) = 0 (4)

and the eigenvectors are determined from Eq. (3) up to an arbitrary multiplicative
constant.

In Section 2.5 we found that points where the right side of Eq. (1) is zero are of special
importance. Such points correspond to constant solutions, orequilibrium solutions,
of Eq. (1), and are often calledcritical points . Similarly, for the system (2), points
whereAx = 0correspond to equilibrium (constant) solutions, and again they are called
critical points. We will assume thatA is nonsingular, or that detA �= 0. It follows that
x = 0 is the only critical point of the system (2).

Recall that a solution of Eq. (2) is a vector functionx = �(t) that satisfies the
differential equation. Such a function can be viewed as a parametric representation for
a curve in thex1x2-plane. It is often useful to regard this curve as the path, ortrajectory ,
traversed by a moving particle whose velocitydx/dt is specified by the differential
equation. Thex1x2-plane itself is called thephase planeand a representative set of
trajectories is referred to as aphase portrait.

In analyzing the system (2) several different cases must be considered, depending on
the nature of the eigenvalues ofA. These cases also occurred in Sections 7.5 through
7.8, where we were primarily interested in finding a convenient formula for the general
solution. Now our main goal is to characterize the differential equation according to the
geometric pattern formed by its trajectories. In each case we discuss the behavior of the
trajectories in general and illustrate it with an example. It is important that you become
familiar with the types of behavior that the trajectories have for each case, because
these are the basic ingredients of the qualitative theory of differential equations.

CASE 1 Real Unequal Eigenvalues of the Same Sign.The general solution of Eq. (2) is

x = c1�(1)er1t + c2�(2)er2t , (5)

wherer1 andr2 are either both positive or both negative. Suppose first thatr1 < r2 < 0,
and that the eigenvectors�(1) and�(2) are as shown in Figure 9.1.1a. It follows from
Eq. (5) thatx → 0 ast → ∞ regardless of the values ofc1 andc2; in other words, all
solutions approach the critical point at the origin ast → ∞. If the solution starts at an
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initial point on the line through�(1), thenc2 = 0. Consequently, the solution remains
on the line through�(1) for all t , and approaches the origin ast → ∞. Similarly, if the
initial point is on the line through�(2), then the solution approaches the origin along
that line. In the general situation, it is helpful to rewrite Eq. (5) in the form

x = er2t [c1�(1)e(r1−r2)t + c2�(2)]. (6)

Observe thatr1 − r2 < 0. Therefore, as long asc2 �= 0, the termc1�(1) exp[(r1 − r2)t ]
is negligible compared toc2�(2) for t sufficiently large. Thus, ast → ∞, the trajectory
not only approaches the origin, it also tends toward the line through�(2). Hence all
solutions approach the critical point tangent to�(2) except for those solutions that start
exactly on the line through�(1). Several trajectories are sketched in Figure 9.1.1a. Some
typical graphs ofx1 versust are shown in Figure 9.1.1b, illustrating that all solutions
exhibit exponential decay in time. The behavior ofx2 versust is similar. This type of
critical point is called anodeor anodal sink.

x2

x1

(a) (b)

x1

t

ξ(2)

ξ(1)

FIGURE 9.1.1 A node;r1 < r2 < 0. (a) The phase plane. (b) x1 versust .

If r1 andr2 are both positive, and 0< r2 < r1, then the trajectories have the same
pattern as in Figure 9.1.1a, but the direction of motion is away from, rather than toward,
the critical point at the origin. In this casex1 andx2 grow exponentially as functions
of t . Again the critical point is called a node, or (often) anodal source.

An example of a node occurs in Example 2 of Section 7.5, and its trajectories are
shown in Figure 7.5.4.

CASE 2 Real Eigenvalues of Opposite Sign.The general solution of Eq. (2) is

x = c1�(1)er1t + c2�(2)er2t , (7)

wherer1 > 0 andr2 < 0. Suppose that the eigenvectors�(1) and�(2) are as shown in
Figure 9.1.2a. If the solution starts at an initial point on the line through�(1), then it
follows thatc2 = 0. Consequently, the solution remains on the line through�(1) for all
t , and sincer1 > 0,‖x‖ → ∞ ast → ∞. If the solution starts at an initial point on the
line through�(2), then the situation is similar except that‖x‖ → 0 ast → ∞ because
r2 < 0. Solutions starting at other initial points follow trajectories such as those shown
in Figure 9.1.2a. The positive exponential is the dominant term in Eq. (7) for larget ,
so eventually all these solutions approach infinity asymptotic to the line determined
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FIGURE 9.1.2 A saddle point;r1 > 0, r2 < 0. (a) The phase plane. (b) x1 versust .

by the eigenvector�(1) corresponding to the positive eigenvaluer1. The only solutions
that approach the critical point at the origin are those that start precisely on the line
determined by�(2). Figure 9.1.2b shows some typical graphs ofx1 versust . For certain
initial conditions the positive exponential term is absent from the solution, sox1 → 0
as t → ∞. For all other initial conditions the positive exponential term eventually
dominates and causesx1 to become unbounded. The behavior ofx2 is similar. The
origin is called asaddle point in this case.

A specific example of a saddle point is in Example 1 of Section 7.5 whose trajectories
are shown in Figure 7.5.2.

CASE 3 Equal Eigenvalues.We now suppose thatr1 = r2 = r . We consider the case in which
the eigenvalues are negative; if they are positive, the trajectories are similar but the
direction of motion is reversed. There are two subcases, depending on whether the
repeated eigenvalue has two independent eigenvectors or only one.

(a) Two independent eigenvectors.The general solution of Eq. (2) is

x = c1�(1)ert + c2�(2)ert , (8)

where�(1) and�(2)are the independent eigenvectors. The ratiox2/x1 is independent
of t , but depends on the components of�(1) and�(2), and on the arbitrary constants
c1 andc2. Thus every trajectory lies on a straight line through the origin, as shown
in Figure 9.1.3a. Typical graphs ofx1 or x2 versust are shown in Figure 9.1.3b. The
critical point is called aproper node, or sometimes astar point.

(b) One independent eigenvector.As shown in Section 7.8, the general solution
of Eq. (2) in this case is

x = c1�ert + c2(�tert + �ert), (9)

where� is the eigenvector and� is the generalized eigenvector associated with the
repeated eigenvalue. For larget the dominant term in Eq. (9) isc2�tert . Thus, ast → ∞,
every trajectory approaches the origin tangent to the line through the eigenvector. This
is true even ifc2 = 0, for then the solutionx = c1�ert lies on this line. Similarly,
for large negativet the termc2�tert is again the dominant one, so ast → −∞, each
trajectory is asymptotic to a line parallel to�.
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x2 x1

t
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ξ(2) ξ(1)

FIGURE 9.1.3 A proper node, two independent eigenvectors;r1 = r2 < 0. (a) The phase
plane. (b) x1 versust .

The orientation of the trajectories depends on the relative positions of� and�. One
possible situation is shown in Figure 9.1.4a. To locate the trajectories it is helpful to
write the solution (9) in the form

x = [(c1� + c2�)+ c2�t ]ert = yert , (10)

wherey = (c1� + c2�)+ c2�t . Observe that the vectory determines the direction of
x, whereas the scalar quantityert affects only the magnitude ofx. Also note that, for
fixed values ofc1 andc2, the expression fory is a vector equation of the straight line
through the pointc1� + c2� and parallel to�.

To sketch the trajectory corresponding to a given pair of values ofc1 andc2, you can
proceed in the following way. First, draw the line given by(c1� + c2�)+ c2�t and note
the direction of increasingt on this line. Two such lines are shown in Figure 9.1.4a, one
for c2 > 0 and the other forc2 < 0. Next, note that the given trajectory passes through
the pointc1� + c2� whent = 0. Further, ast increases, the direction of the vectorx
given by Eq. (10) follows the direction of increasingt on the line, but the magnitude of
x rapidly decreases and approaches zero because of the decaying exponential factorert .
Finally, ast decreases toward−∞ the direction ofx is determined by points on the
corresponding part of the line and the magnitude ofx approaches infinity. In this way
we obtain the heavy trajectories in Figure 9.1.4a. A few other trajectories are lightly
sketched as well to help complete the diagram. Typical graphs ofx1 versust are shown
in Figure 9.1.4b.

The other possible situation is shown in Figure 9.1.4c, where the relative orientation
of � and � is reversed. As indicated in the figure, this results in a reversal in the
orientation of the trajectories.

If r1 = r2 > 0, you can sketch the trajectories by following the same procedure. In
this event the trajectories are traversed in the outward direction, and the orientation of
the trajectories with respect to that of� and� is also reversed.

When a double eigenvalue has only a single independent eigenvector, the critical
point is called animproper or degenerate node. A specific example of this case is
Example 2 in Section 7.8; the trajectories are shown in Figure 7.8.2.
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FIGURE 9.1.4 An improper node, one independent eigenvector;r1 = r2 < 0. (a) The phase
plane. (b) x1 versust . (c) The phase plane.

CASE 4 Complex Eigenvalues.Suppose that the eigenvalues areλ± iµ, whereλ andµ are
real,λ �= 0, andµ > 0. It is possible to write down the general solution in terms of
the eigenvalues and eigenvectors, as shown in Section 7.6. However, we proceed in a
different way.

Systems having the eigenvaluesλ± iµ are typified by

x′ =
(

λ µ

−µ λ

)
x (11)

or, in scalar form,

x ′
1 = λx1 + µx2, x ′

2 = −µx1 + λx2. (12)
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We introduce the polar coordinatesr, θ given by

r2 = x2
1 + x2

2, tanθ = x2/x1.

By differentiating these equations we obtain

rr ′ = x1x ′
1 + x2x ′

2, (sec2 θ)θ ′ = (x1x ′
2 − x2x ′

1)/x2
1. (13)

Substituting from Eqs. (12) in the first of Eqs. (13), we find that

r ′ = λr, (14)

and hence

r = ceλt , (15)

wherec is a constant. Similarly, substituting from Eqs. (12) in the second of Eqs. (13),
and using the fact that sec2 θ = r2/x2

1, we have

θ ′ = −µ. (16)

Hence

θ = −µt + θ0, (17)

whereθ0 is the value ofθ whent = 0.
Equations (15) and (17) are parametric equations in polar coordinates of the trajec-

tories of the system (11). Sinceµ > 0, it follows from Eq. (17) thatθ decreases as
t increases, so the direction of motion on a trajectory is clockwise. Ast → ∞, we
see from Eq. (15) thatr → 0 if λ < 0 andr → ∞ if λ > 0. Thus the trajectories are
spirals, which approach or recede from the origin depending on the sign ofλ. Both
possibilities are shown in Figure 9.1.5, along with some typical graphs ofx1 versust .
The critical point is called aspiral point in this case. Frequently, the termsspiral sink
andspiral source, respectively, are used to refer to spiral points whose trajectories
approach, or depart from, the critical point.

More generally, it is possible to show that for any system with complex eigenvalues
λ± iµ, whereλ �= 0, the trajectories are always spirals. They are directed inward or
outward, respectively, depending on whetherλ is negative or positive. They may be
elongated and skewed with respect to the coordinate axes, and the direction of motion
may be either clockwise or counterclockwise. While a detailed analysis is moderately
difficult, it is easy to obtain a general idea of the orientation of the trajectories directly
from the differential equations. Suppose that(

dx/dt
dy/dt

)
=
(

a b
c d

)(
x
y

)
(18)

has complex eigenvaluesλ± iµ, and look at the point (0, 1) on the positivey-axis. At
this point it follows from Eqs. (18) thatdx/dt = b anddy/dt = d. Depending on the
signs ofb andd, one can infer the direction of motion and the approximate orientation
of the trajectories. For instance, if bothb andd are negative, then the trajectories cross
the positivey-axis so as to move down and into the second quadrant. Ifλ < 0 also,
then the trajectories must be inward-pointing spirals resembling the one in Figure 9.1.6.
Another case was given in Example 1 of Section 7.6, whose trajectories are shown in
Figure 7.6.2.
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FIGURE 9.1.5 A spiral point; r1 = λ+ iµ, r2 = λ− iµ. (a) λ < 0, the phase plane.
(b) λ < 0, x1 versust . (c) λ > 0, the phase plane. (d) λ > 0, x1 versust .

x2

x1

FIGURE 9.1.6 A spiral point;r = λ± iµ with λ < 0.

CASE 5 Pure Imaginary Eigenvalues. In this caseλ = 0 and the system (11) reduces to

x′ =
(

0 µ

−µ 0

)
x (19)
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with eigenvalues±iµ. Using the same argument as in Case 4, we find that

r ′ = 0, θ ′ = −µ, (20)

and consequently,

r = c, θ = −µt + θ0, (21)

wherec andθ0 are constants. Thus the trajectories are circles, with center at the origin,
that are traversed clockwise ifµ > 0 and counterclockwise ifµ < 0. A complete circuit
about the origin is made in a time interval of length 2π/µ, so all solutions are periodic
with period 2π/µ. The critical point is called acenter.

In general, when the eigenvalues are pure imaginary, it is possible to show (see
Problem 19) that the trajectories are ellipses centered at the origin. A typical situation
is shown in Figure 9.1.7, which also shows some typical graphs ofx1 versust .

x2 x1

tx1

(a) (b)

FIGURE 9.1.7 A center;r1 = iµ, r2 = −iµ. (a) The phase plane. (b) x1 versust .

By reflecting on these five cases and by examining the corresponding figures, we
can make several observations:

1. After a long time each individual trajectory exhibits one of only three types of
behavior. Ast → ∞, each trajectory either approaches infinity, approaches the
critical point x = 0, or repeatedly traverses a closed curve, corresponding to a
periodic solution, that surrounds the critical point.

2. Viewed as a whole, the pattern of trajectories in each case is relatively simple.
To be more specific, through each point(x0, y0) in the phase plane there is only
one trajectory; thus the trajectories do not cross each other. Do not be misled by
the figures, in which it sometimes appears that many trajectories pass through
the critical pointx = 0. In fact, the only solution passing through the origin
is the equilibrium solutionx = 0. The other solutions that appear to pass through
the origin actually only approach this point ast → ∞ or t → −∞.

3. In each case the set of all trajectories is such that one of three situations occurs.

(a) All trajectories approach the critical pointx = 0 ast → ∞. This is the case
if the eigenvalues are real and negative or complex with negative real part.
The origin is either a nodal or a spiral sink.

(b) All trajectories remain bounded but do not approach the origin ast → ∞.
This is the case if the eigenvalues are pure imaginary. The origin is a center.
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(c) Some trajectories, and possibly all trajectories exceptx = 0, tend to infinity
ast → ∞. This is the case if at least one of the eigenvalues is positive or if
the eigenvalues have positive real part. The origin is either a nodal source, a
spiral source, or a saddle point.

The situations described in 3(a), (b), and (c) above illustrate the concepts of asymp-
totic stability, stability, and instability, respectively, of the equilibrium solutionx = 0
of the system (2). The precise definitions of these terms are given in Section 9.2, but
their basic meaning should be clear from the geometrical discussion in this section.
The information that we have obtained about the system (2) is summarized in Table
9.1.1. Also see Problems 20 and 21.

TABLE 9.1.1 Stability Properties of Linear Systemsx′ = Ax with
det(A − r I ) = 0 and detA �= 0

Eigenvalues Type of Critical Point Stability

r1 > r2 > 0 Node Unstable
r1 < r2 < 0 Node Asymptotically stable
r2 < 0< r1 Saddle point Unstable
r1 = r2 > 0 Proper or improper node Unstable
r1 = r2 < 0 Proper or improper node Asymptotically stable
r1, r2 = λ± iµ Spiral point
λ > 0 Unstable
λ < 0 Asymptotically stable

r1 = iµ, r2 = −iµ Center Stable

The analysis in this section applies only to second order systemsx′ = Ax whose
solutions are represented geometrically as curves in the phase plane. A similar, though
more complicated, analysis can be carried out for annth order system, with ann × n
coefficient matrixA, whose solutions are curves in ann-dimensional phase space.
The cases that can occur in higher order systems are essentially combinations of those
we have seen in two dimensions. For instance, in a third order system with a three-
dimensional phase space, one possibility is that solutions in a certain plane may spiral
toward the origin, while other solutions may tend to infinity along a line transverse to
this plane. This would be the case if the coefficient matrix has two complex eigenvalues
with negative real part and one positive real eigenvalue. However, because of their
complexity, we will not discuss systems of higher than second order.

PROBLEMS For each of the systems in Problems 1 through 12:

(a) Find the eigenvalues and eigenvectors.
(b) Classify the critical point(0,0) as to type and determine whether it is stable, asymptotically

stable, or unstable.
(c) Sketch several trajectories in the phase plane and also sketch some typical graphs ofx1

versust .
(d) Use a computer to plot accurately the curves requested in part (c).

� 1.
dx
dt

=
(

3 −2
2 −2

)
x � 2.

dx
dt

=
(

5 −1
3 1

)
x
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� 3.
dx
dt

=
(

2 −1
3 −2

)
x � 4.

dx
dt

=
(

1 −4
4 −7

)
x

� 5.
dx
dt

=
(

1 −5
1 −3

)
x � 6.

dx
dt

=
(

2 −5
1 −2

)
x

� 7.
dx
dt

=
(

3 −2
4 −1

)
x � 8.

dx
dt

=
(−1 −1

0 −0.25

)
x

� 9.
dx
dt

=
(

3 −4
1 −1

)
x � 10.

dx
dt

=
(

1 2
−5 −1

)
x

� 11.
dx
dt

=
(−1 0

0 −1

)
x � 12.

dx
dt

=
(

2 − 5
2

9
5 −1

)
x

In each of Problems 13 through 16 determine the critical pointx = x0, and then classify its type
and examine its stability by making the transformationx = x0 + u.

13.
dx
dt

=
(

1 1
1 −1

)
x −

(
2
0

)
14.

dx
dt

=
(−2 1

1 −2

)
x +

(−2
1

)

15.
dx
dt

=
(−1 −1

2 −1

)
x +

(−1
5

)

16.
dx
dt

=
(

0 −β
δ 0

)
x +

(
α

−γ
)

; α, β, γ, δ > 0

17. The equation of motion of a spring–mass system with damping (see Section 3.8) is

m
d2u

dt2 + c
du

dt
+ ku = 0,

wherem, c, andk are positive. Write this second order equation as a system of two first
order equations forx = u, y = du/dt . Show thatx = 0, y = 0 is a critical point, and
analyze the nature and stability of the critical point as a function of the parametersm, c,
andk. A similar analysis can be applied to the electric circuit equation (see Section 3.8)

L
d2I

dt2 + R
d I

dt
+ 1

C
I = 0.

18. Consider the systemx′ = Ax, and suppose thatA has one zero eigenvalue.
(a) Show thatx = 0 is a critical point, and that, in addition, every point on a certain straight
line through the origin is also a critical point.
(b) Let r1 = 0 andr2 �= 0, and let�(1) and�(2) be corresponding eigenvectors. Show that
the trajectories are as indicated in Figure 9.1.8. What is the direction of motion on the
trajectories?

19. In this problem we indicate how to show that the trajectories are ellipses when the eigen-
values are pure imaginary. Consider the system(

x
y

)′
=
(

a11 a12
a21 a22

)(
x
y

)
. (i)

(a) Show that the eigenvalues of the coefficient matrix are pure imaginary if and only if

a11 + a22 = 0, a11a22 − a12a21 > 0. (ii)

(b) The trajectories of the system (i) can be found by converting Eqs. (i) into the single
equation

dy

dx
= dy/dt

dx/dt
= a21x + a22y

a11x + a12y
. (iii)
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x2

x1

ξ(2)

ξ(1)

FIGURE 9.1.8 Nonisolated critical points;r1 = 0, r2 �= 0. Every point on the line through
�(1) is a critical point.

Use the first of Eqs. (ii) to show that Eq. (iii) is exact.
(c) By integrating Eq. (iii) show that

a21x2 + 2a22xy − a12y2 = k, (iv)

wherek is a constant. Use Eqs. (ii) to conclude that the graph of Eq. (iv) is always an
ellipse.
Hint: What is the discriminant of the quadratic form in Eq. (iv)?

20. Consider the linear system

dx/dt = a11x + a12y, dy/dt = a21x + a22y,

wherea11, . . . , a22 are real constants. Letp = a11 + a22, q = a11a22 − a12a21, and� =
p2 − 4q. Show that the critical point (0, 0) is a
(a) Node ifq > 0 and� ≥ 0;
(b) Saddle point ifq < 0;
(c) Spiral point if p �= 0 and� < 0;
(d) Center ifp = 0 andq > 0.
Hint: These conclusions can be obtained by studying the eigenvaluesr1 andr2. It may also
be helpful to establish, and then to use, the relationsr1r2 = q andr1 + r2 = p.

21. Continuing Problem 20, show that the critical point (0, 0) is
(a) Asymptotically stable ifq > 0 andp < 0;
(b) Stable ifq > 0 andp = 0;
(c) Unstable ifq < 0 or p > 0.
Notice that results (a), (b), and (c), together with the fact thatq �= 0, show that the critical
point is asymptotically stable if, and only if,q > 0 andp < 0. The results of Problems 20
and 21 are summarized visually in Figure 9.1.9.
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FIGURE 9.1.9 Stability diagram.

9.2 Autonomous Systems and Stability

In this section we begin to draw together and to expand on the geometrical ideas
introduced in Section 2.5 for certain first order equations and in Section 9.1 for second
order linear homogeneous systems with constant coefficients. These ideas concern the
qualitative study of differential equations and the concept of stability, an idea that will
be defined precisely later in this section.

Autonomous Systems. We are concerned with systems of two simultaneous differen-
tial equations of the form

dx/dt = F(x, y), dy/dt = G(x, y). (1)

We assume that the functionsF and G are continuous and have continuous partial
derivatives in some domainD of thexy-plane. If(x0, y0) is a point in this domain, then
by Theorem 7.1.1 there exists a unique solutionx = φ(t), y = ψ(t) of the system (1)
satisfying the initial conditions

x(t0) = x0, y(t0) = y0. (2)

The solution is defined in some time intervalI that contains the pointt0.
Frequently, we will write the initial value problem (1), (2) in the vector form

dx/dt = f(x), x(t0) = x0, (3)

wherex = x i + yj , f(x) = F(x, y)i + G(x, y)j , andx0 = x0i + y0 j . In this case the
solution is expressed asx = �(t), where�(t) = φ(t)i + ψ(t)j . As usual, we interpret
a solutionx = �(t) as a curve traced by a moving point in thexy-plane, the phase
plane.
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Observe that the functionsF andG in Eqs. (1) do not depend on the independent
variablet , but only on the dependent variablesx andy. A system with this property is
said to beautonomous. The system

x′ = Ax, (4)

whereA is a constant matrix, is a simple example of a two-dimensional autonomous
system. On the other hand, if one or more of the elements of the coefficient matrix
A is a function of the independent variablet , then the system is nonautonomous.
The distinction between autonomous and nonautonomous systems is important be-
cause the geometric qualitative analysis in Section 9.1 can be effectively extended
to two-dimensional autonomous systems in general, but is not nearly as useful for
nonautonomous systems.

In particular, the autonomous system (1) has an associated direction field that is
independent of time. Consequently, there is only one trajectory passing through each
point (x0, y0) in the phase plane. In other words, all solutions that satisfy an initial
condition of the form (2) lie on the same trajectory, regardless of the timet0 at which
they pass through(x0, y0). Thus, just as for the constant coefficient linear system (4), a
single phase portrait simultaneously displays important qualitative information about
all solutions of the system (1). We will see this fact confirmed repeatedly in this chapter.

Autonomous systems occur frequently in applications. Physically, an autonomous
system is one whose configuration, including physical parameters and external forces
or effects, is independent of time. The response of the system to given initial conditions
is then independent of the time at which the conditions are imposed.

Stability and Instability. The concepts of stability, asymptotic stability, and instabil-
ity have already been mentioned several times in this book. It is now time to give a
precise mathematical definition of these concepts, at least for autonomous systems of
the form

x′ = f(x). (5)

In the following definitions, and elsewhere, we use the notation‖x‖ to designate the
length, or magnitude, of the vectorx.

The points, if any, wheref(x) = 0 are calledcritical points of the autonomous
system (5). At such pointsx′ = 0 also, so critical points correspond to constant, or
equilibrium, solutions of the system of differential equations. A critical pointx0 of the
system (5) is said to bestable if, given anyε > 0, there is aδ > 0 such that every
solutionx = �(t) of the system (1), which att = 0 satisfies

‖�(0)− x0‖ < δ, (6)

exists for all positivet and satisfies

‖�(t)− x0‖ < ε (7)

for all t ≥ 0. This is illustrated geometrically in Figures 9.2.1a and 9.2.1b. These
mathematical statements say that all solutions that start “sufficiently close” (that is,
within the distanceδ) tox0 stay “close” (within the distanceε) tox0. Note that in Figure
9.2.1a the trajectory is within the circle‖x − x0‖ = δ at t = 0 and, while it soon passes
outside of this circle, it remains within the circle‖x − x0‖ = ε for all t ≥ 0. However,
the trajectory of the solution does not have to approach the critical pointx0 ast → ∞,
as illustrated in Figure 9.2.1b. A critical point that is not stable is said to beunstable.
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FIGURE 9.2.1 (a) Asymptotic stability. (b) Stability.

A critical pointx0 is said to beasymptotically stableif it is stable and if there exists
a δ0, with 0< δ0 < δ, such that if a solutionx = �(t) satisfies

‖�(0)− x0‖ < δ0, (8)

then

lim
t→∞ �(t) = x0. (9)

Thus trajectories that start “sufficiently close” tox0 must not only stay “close” but
must eventually approachx0 as t → ∞. This is the case for the trajectory in Figure
9.2.1a but not for the one in Figure 9.2.1b. Note that asymptotic stability is a stronger
property than stability, since a critical point must be stable before we can even talk
about whether it might be asymptotically stable. On the other hand, the limit condition
(9), which is an essential feature of asymptotic stability, does not by itself imply even
ordinary stability. Indeed, examples can be constructed in which all of the trajectories
approachx0 ast → ∞, but for whichx0 is not a stable critical point. Geometrically,
all that is needed is a family of trajectories having members that start arbitrarily close
to x0, then depart an arbitrarily large distance before eventually approachingx0 as
t → ∞.

While we specified originally that the system (5) is of second order, the definitions
just given are independent of the order of the system. If you interpret the vectors in Eqs.
(5) through (9) asn-dimensional, then the definitions of stability, asymptotic stability,
and instability apply also tonth order systems. These definitions can be made more
concrete by interpreting them in terms of a specific physical problem.

The Oscillating Pendulum. The concepts of asymptotic stability, stability, and in-
stability can be easily visualized in terms of an oscillating pendulum. Consider the
configuration shown in Figure 9.2.2, in which a massm is attached to one end of a
rigid, but weightless, rod of lengthL. The other end of the rod is supported at the
origin O, and the rod is free to rotate in the plane of the paper. The position of the
pendulum is described by the angleθ between the rod and the downward vertical di-
rection, with the counterclockwise direction taken as positive. The gravitational force
mg acts downward, while the damping forcec|dθ/dt |, wherec is positive, is always
opposite to the direction of motion. We assume thatθ anddθ/dt are both positive. The
equation of motion can be quickly derived from the principle of angular momentum,
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FIGURE 9.2.2 An oscillating pendulum.

which states that the time rate of change of angular momentum about any point is equal
to the moment of the resultant force about that point. The angular momentum about
the origin ismL2(dθ/dt), so the governing equation is

mL2 d2θ

dt2 = −cL
dθ

dt
− mgL sinθ. (10)

The factorsL and L sinθ on the right side of Eq. (10) are the moment arms of the
resistive force and of the gravitational force, respectively, while the minus signs are
due to the fact that the two forces tend to make the pendulum rotate in the clockwise
(negative) direction. You should verify, as an exercise, that the same equation is obtained
for the other three possible sign combinations ofθ anddθ/dt .

By straightforward algebraic operations we can write Eq. (10) in the standard form

d2θ

dt2 + c

mL

dθ

dt
+ g

L
sinθ = 0, (11)

or

d2θ

dt2 + γ
dθ

dt
+ ω2 sinθ = 0, (12)

whereγ = c/mL andω2 = g/L. To convert Eq. (12) to a system of two first order
equations we letx = θ andy = dθ/dt ; then

dx

dt
= y,

dy

dt
= −ω2 sinx − γ y. (13)

Sinceγ andω2 are constants, the system (13) is an autonomous system of the form (1).
The critical points of Eqs. (13) are found by solving the equations

y = 0, −ω2 sinx − γ y = 0.

We obtainy = 0 andx = ±nπ , wheren is an integer. These points correspond to two
physical equilibrium positions, one with the mass directly below the point of support
(θ = 0) and the other with the mass directly above the point of support(θ = π). Our
intuition suggests that the first is stable and the second is unstable.
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More precisely, if the mass is slightly displaced from the lower equilibrium posi-
tion, it will oscillate back and forth with gradually decreasing amplitude, eventually
approaching the equilibrium position as the initial potential energy is dissipated by the
damping force. This type of motion illustratesasymptotic stability.

On the other hand, if the mass is slightly displaced from the upper equilibrium posi-
tion, it will rapidly fall, under the influence of gravity, and will ultimately approach the
lower equilibrium position in this case also. This type of motion illustratesinstability.
In practice, it is impossible to maintain the pendulum in its upward equilibrium posi-
tion for any length of time without an external constraint mechanism since the slightest
perturbation will cause the mass to fall.

Finally, consider the ideal situation in which the damping coefficientc (or γ ) is
zero. In this case, if the mass is displaced slightly from its lower equilibrium position,
it will oscillate indefinitely with constant amplitude about the equilibrium position.
Since there is no dissipation in the system, the mass will remain near the equilibrium
position, but will not approach it asymptotically. This type of motion isstable, but not
asymptotically stable. In general, this motion is impossible to achieve experimentally
because the slightest degree of air resistance or friction at the point of support will
eventually cause the pendulum to approach its rest position.

These three types of motion are illustrated schematically in Figure 9.2.3. Solutions
of the pendulum equations are discussed in more detail in the next section.

(a) (b) (c)

FIGURE 9.2.3 Qualitative motion of a pendulum. (a) With air resistance. (b) With or without
air resistance. (c) Without air resistance.

Determination of Trajectories The trajectories of a two-dimensional autonomous
system can sometimes be found by solving a related first order differential equation.
From Eqs. (1) we have

dy

dx
= dy/dt

dx/dt
= G(x, y)

F(x, y)
, (14)

which is a first order equation in the variablesx andy. Observe that such a reduction
is not usually possible ifF andG depend also ont . If Eq. (14) can be solved by any
of the methods of Chapter 2, and if we write solutions (implicitly) in the form

H(x, y) = c, (15)

then Eq. (15) is an equation for the trajectories of the system (14). In other words, the
trajectories lie on the level curves ofH(x, y). Keep in mind that there is no general
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way of solving Eq. (14) to obtain the functionH , so this approach is applicable only
in special cases.

E X A M P L E

1

Find the trajectories of the system

dx/dt = y, dy/dt = x . (16)

In this case, Eq. (14) becomes

dy

dx
= x

y
. (17)

This equation is separable since it can be written as

y dy = x dx,

and its solutions are given by

H(x, y) = y2 − x2 = c, (18)

wherec is arbitrary. Therefore the trajectories of the system (16) are the hyperbolas
shown in Figure 9.2.4. The direction of motion on the trajectories can be inferred from
the fact that bothdx/dt anddy/dt are positive in the first quadrant. The only critical
point is the saddle point at the origin.

Another way to obtain the trajectories is to solve the system (16) by the methods of
Section 7.5. We omit the details, but the result is

x = c1et + c2e−t , y = c1et − c2e−t .

Eliminatingt between these two equations again leads to Eq. (18).

–2 –1 10 2

2

–1

–2

1

y

x

FIGURE 9.2.4 Trajectories of the system (16).
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E X A M P L E

2

Find the trajectories of the system

dx

dt
= 4 − 2y,

dy

dt
= 12− 3x2. (19)

From the equations

4 − 2y = 0, 12− 3x2 = 0

we find that the critical points of the system (19) are the points(−2,2) and(2,2). To
determine the trajectories note that for this system Eq. (14) becomes

dy

dx
= 12− 3x2

4 − 2y
. (20)

Separating the variables in Eq. (20) and integrating, we find that solutions satisfy

H(x, y) = 4y − y2 − 12x + x3 = c, (21)

wherec is an arbitrary constant. A computer plotting routine is helpful in displaying
the level curves ofH(x, y), some of which are shown in Figure 9.2.5. The direction
of motion on the trajectories can be determined by drawing a direction field for the
system (19), or by evaluatingdx/dt anddy/dt at one or two selected points. From
Figure 9.2.5 you can see that the critical point(2,2) is a saddle point while the point
(−2,2) is a center. Observe that one trajectory leaves the saddle point (att = −∞),
loops around the center, and returns to the saddle point (att = +∞).

8

6

4

y

x

2
2–2–4 4

–2

–4

FIGURE 9.2.5 Trajectories of the system (19).

PROBLEMS In each of Problems 1 through 4 sketch the trajectory corresponding to the solution satisfying
the specified initial conditions, and indicate the direction of motion for increasingt .

1. dx/dt = −x, dy/dt = −2y; x(0) = 4, y(0) = 2
2. dx/dt = −x, dy/dt = 2y; x(0) = 4, y(0) = 2 and x(0) = 4, y(0) = 0
3. dx/dt = −y, dy/dt = x; x(0) = 4, y(0) = 0 and x(0) = 0, y(0) = 4
4. dx/dt = ay, dy/dt = −bx, a > 0, b > 0; x(0) = √

a, y(0) = 0
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For each of the systems in Problems 5 through 14:

(a) Find all the critical points (equilibrium solutions).
(b) Use a computer to draw a direction field and phase portrait for the system.
(c) From the plot(s) in part (b) determine whether each critical point is asymptotically stable,

stable, or unstable, and classify it as to type.

� 5. dx/dt = x − xy, dy/dt = y + 2xy

� 6. dx/dt = 1 + 2y, dy/dt = 1 − 3x2

� 7. dx/dt = x − x2 − xy, dy/dt = 1
2 y − 1

4 y2 − 3
4 xy

� 8. dx/dt = −(x − y)(1 − x − y), dy/dt = x(2 + y)

� 9. dx/dt = y(2 − x − y), dy/dt = −x − y − 2xy

� 10. dx/dt = (2 + x)(y − x), dy/dt = y(2 + x − x2)

� 11. dx/dt = −x + 2xy, dy/dt = y − x2 − y2

� 12. dx/dt = y, dy/dt = x − 1
6 x3 − 1

5 y

� 13. dx/dt = (2 + x)(y − x), dy/dt = (4 − x)(y + x)

� 14. The van der Pol equation:dx/dt = y, dy/dt = (1 − x2)y − x

In each of Problems 15 through 22:

(a) Find an equation of the formH(x, y) = c satisfied by the trajectories.
(b) Plot several level curves of the functionH . These are trajectories of the given system.

Indicate the direction of motion on each trajectory.

� 15. dx/dt = 2y, dy/dt = 8x � 16. dx/dt = 2y, dy/dt = −8x

� 17. dx/dt = y, dy/dt = 2x + y � 18. dx/dt = −x + y, dy/dt = −x − y

� 19. dx/dt = −x + y + x2, dy/dt = y − 2xy

� 20. dx/dt = 2x2y − 3x2 − 4y, dy/dt = −2xy2 + 6xy

� 21. Undamped pendulum: dx/dt = y, dy/dt = − sinx

� 22. Duffing’s equation: dx/dt = y, dy/dt = −x + (x3/6)

23. Given thatx = φ(t), y = ψ(t) is a solution of the autonomous system

dx/dt = F(x, y), dy/dt = G(x, y)

for α < t < β, show thatx = �(t) = φ(t − s), y = �(t) = ψ(t − s) is a solution for
α + s < t < β + s for any real numbers.

24. Prove that for the system

dx/dt = F(x, y), dy/dt = G(x, y)

there is at most one trajectory passing through a given point(x0, y0).
Hint: LetC0 be the trajectory generated by the solutionx = φ0(t), y = ψ0(t), withφ0(t0) =
x0,ψ0(t0) = y0, and letC1 be the trajectory generated by the solutionx = φ1(t), y = ψ1(t),
with φ1(t1) = x0, ψ1(t1) = y0. Use the fact that the system is autonomous and also the
existence and uniqueness theorem to show thatC0 andC1 are the same.

25. Prove that if a trajectory starts at a noncritical point of the system

dx/dt = F(x, y), dy/dt = G(x, y),

then it cannot reach a critical point(x0, y0) in a finite length of time.
Hint: Assume the contrary; that is, assume that the solutionx = φ(t), y = ψ(t) satisfies
φ(a) = x0, ψ(a) = y0. Then use the fact thatx = x0, y = y0 is a solution of the given
system satisfying the initial conditionx = x0, y = y0 at t = a.

26. Assuming that the trajectory corresponding to a solutionx = φ(t), y = ψ(t), −∞ < t <
∞, of an autonomous system is closed, show that the solution is periodic.
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Hint: Since the trajectory is closed, there exists at least one point(x0, y0) such thatφ(t0) =
x0,ψ(t0) = y0 and a numberT > 0 such thatφ(t0 + T ) = x0,ψ(t0 + T ) = y0. Show that
x = �(t) = φ(t + T ) andy = �(t) = ψ(t + T ) is a solution and then use the existence
and uniqueness theorem to show that�(t) = φ(t) and�(t) = ψ(t) for all t .

9.3 Almost Linear Systems

In Section 9.1 we gave an informal description of the stability properties of the equi-
librium solutionx = 0 of the two-dimensional linear system

x′ = Ax. (1)

The results are summarized in Table 9.1.1. Recall that we required that detA �= 0, so
that x = 0 is the only critical point of the system (1). Now that we have defined the
concepts of asymptotic stability, stability, and instability more precisely, we can restate
these results in the following theorem.

Theorem 9.3.1 The critical pointx = 0 of the linear system (1) is asymptotically stable if the eigen-
valuesr1, r2 are real and negative or have negative real part; stable, but not asymptot-
ically stable, ifr1 andr2 are pure imaginary; unstable ifr1 andr2 are real and either
is positive, or if they have positive real part.

It is apparent from this theorem or from Table 9.1.1 that the eigenvaluesr1, r2 of
the coefficient matrixA determine the type of critical point atx = 0 and its stability
characteristics. In turn, the values ofr1 andr2 depend on the coefficients in the system
(1). When such a system arises in some applied field, the coefficients usually result
from the measurements of certain physical quantities. Such measurements are often
subject to small uncertainties, so it is of interest to investigate whether small changes
(perturbations) in the coefficients can affect the stability or instability of a critical point
and/or significantly alter the pattern of trajectories.

Recall that the eigenvaluesr1, r2 are the roots of the polynomial equation

det(A − r I) = 0. (2)

It is possible to show thatsmall perturbations in some or all the coefficients are reflected
in small perturbations in the eigenvalues. The most sensitive situation occurs when
r1 = iµ andr2 = −iµ, that is, when the critical point is a center and the trajectories
are closed curves surrounding it. If a slight change is made in the coefficients, then the
eigenvaluesr1 andr2 will take on new valuesr ′

1 = λ′ + iµ′ andr ′
2 = λ′ − iµ′, where

λ′ is small in magnitude andµ′ ∼= µ (see Figure 9.3.1). Ifλ′ �= 0, which almost always
occurs, then the trajectories of the perturbed system are spirals, rather than closed
curves. The system is asymptotically stable ifλ′ < 0, but unstable ifλ′ > 0. Thus, in
the case of a center, small perturbations in the coefficients may well change a stable
system into an unstable one, and in any case may be expected to alter radically the
pattern of trajectories in the phase plane (see Problem 25).
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µ

λ

µ

λ

r1 = iµ

r2 = –iµ

r1 = iµ

r2 = –iµ

r2 =    ' – i  'λ µ'

r2 =    ' – i  'λ µ'

r1 =    ' + i  'λ µ'

r1 =    ' + i  'λ µ'

FIGURE 9.3.1 Schematic perturbation ofr1 = iµ, r2 = −iµ.

Another slightly less sensitive case occurs if the eigenvaluesr1 andr2 are equal;
in this case the critical point is a node. Small perturbations in the coefficients will
normally cause the two equal roots to separate (bifurcate). If the separated roots are
real, then the critical point of the perturbed system remains a node, but if the separated
roots are complex conjugates, then the critical point becomes a spiral point. These
two possibilities are shown schematically in Figure 9.3.2. In this case the stability or
instability of the system is not affected by small perturbations in the coefficients, but
the trajectories may be altered considerably (see Problem 26).

In all other cases the stability or instability of the system is not changed, nor is the
type of critical point altered, by sufficiently small perturbations in the coefficients of the
system. For example, ifr1 andr2 are real, negative, and unequal, then asmall change
in the coefficients will not change the sign ofr1 andr2 nor allow them to coalesce.
Thus the critical point remains an asymptotically stable node.

Now let us consider a nonlinear two-dimensional autonomous system

x′ = f(x). (3)

Our main object is to investigate the behavior of trajectories of the system (3) near a
critical pointx0. We will seek to do this by approximating the nonlinear system (3) by an
appropriate linear system, whose trajectories are easy to describe. The crucial question
is whether the trajectories of the linear system are good approximations to those of
the nonlinear system. Of course, we also need to know how to find the approximating
linear system.

It is convenient to choose the critical point to be the origin. This involves no loss of
generality, since ifx0 �= 0, it is always possible to make the substitutionu = x − x0 in
Eq. (3). Thenu will satisfy an autonomous system with a critical point at the origin.

µµ

λ λr1 = r2

r1 = r2

r2'r1'

µr1' =    + iλ

µr2' =    – iλ

FIGURE 9.3.2 Schematic perturbation ofr1 = r2.
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First, let us consider what it means for a nonlinear system (3) to be “close” to a linear
system (1). Accordingly, suppose that

x′ = Ax + g(x), (4)

and thatx = 0 is anisolatedcritical point of the system (4). This means that there is
some circle about the origin within which there are no other critical points. In addition,
we assume that detA �= 0, so thatx = 0 is also an isolated critical point of the linear
systemx′ = Ax. For the nonlinear system (4) to be close to the linear systemx′ = Ax
we must assume thatg(x) is small. More precisely, we assume that the components of
g have continuous first partial derivatives and satisfy the limit condition

‖g(x)‖/‖x‖ → 0 as x → 0; (5)

that is,‖g‖ is small in comparison to‖x‖ itself near the origin. Such a system is called
analmost linear systemin the neighborhood of the critical pointx = 0.

It may be helpful to express the condition (5) in scalar form. If we letxT = (x, y),
then‖x‖ = (x2 + y2)1/2 = r.Similarly, if gT (x) = (g1(x, y), g2(x, y)), then‖g(x)‖ =
[g2

1(x, y)+ g2
2(x, y)]1/2. Then it follows that condition (5) is satisfied if and only if

g1(x, y)/r → 0, g2(x, y)/r → 0 as r → 0. (6)

E X A M P L E

1

Determine whether the system(
x
y

)′
=
(

1 0
0 0.5

)(
x
y

)
+
( −x2 − xy

−0.75xy − 0.25y2

)
(7)

is almost linear in the neighborhood of the origin.
Observe that the system (7) is of the form (4), that (0, 0) is a critical point, and that

detA �= 0. It is not hard to show that the other critical points of Eqs. (7) are (0, 2),
(1, 0), and (0.5, 0.5); consequently, the origin is an isolated critical point. In checking
the condition (6) it is convenient to introduce polar coordinates by lettingx = r cosθ ,
y = r sinθ . Then

g1(x, y)

r
= −x2 − xy

r
= −r2 cos2 θ − r2 sinθ cosθ

r
= −r(cos2 θ + sinθ cosθ) → 0

asr → 0. In a similar way you can show thatg2(x, y)/r → 0 asr → 0. Hence the
system (7) is almost linear near the origin.

E X A M P L E

2

The motion of a pendulum is described by the system [see Eq. (13) of Section 9.2]

dx

dt
= y,

dy

dt
= −ω2 sinx − γ y. (8)

The critical points are (0, 0),(±π,0), (±2π,0), . . . , so the origin is an isolated critical
point of this system. Show that the system is almost linear near the origin.
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To compare Eqs. (8) with Eq. (4) we must rewrite the former so that the linear and
nonlinear terms are clearly identified. If we write sinx = x + (sinx − x) and substitute
this expression in the second of Eqs. (8), we obtain the equivalent system(

x
y

)′
=
(

0 1
−ω2 −γ

)(
x
y

)
− ω2

(
0

sinx − x

)
. (9)

On comparing Eq. (9) with Eq. (4) we see thatg1(x, y) = 0 and g2(x, y) =
−ω2(sinx − x). From the Taylor series for sinx we know that sinx − x behaves
like −x3/3! = −(r3 cos3 θ)/3! whenx is small. Consequently,(sinx − x)/r → 0 as
r → 0. Thus the conditions (6) are satisfied and the system (9) is almost linear near
the origin.

Let us now return to the general nonlinear system (3), which we write in the scalar
form

x ′ = F(x, y), y′ = G(x, y). (10)

The system (10) is almost linear in the neighborhood of a critical point(x0, y0)whenever
the functionsF andG have continuous partial derivatives up to order two. To show
this, use Taylor expansions about the point(x0, y0) to write F(x, y) andG(x, y) in the
form

F(x, y) = F(x0, y0)+ Fx(x0, y0)(x − x0)+ Fy(x0, y0)(y − y0)+ η1(x, y),

G(x, y) = G(x0, y0)+ Gx(x0, y0)(x − x0)+ G y(x0, y0)(y − y0)+ η2(x, y),

whereη1(x, y)/[(x − x0)
2 + (y − y0)

2]1/2 → 0 as(x, y) → (x0, y0), and similarly for
η2. Note thatF(x0, y0) = G(x0, y0) = 0, and thatdx/dt = d(x − x0)/dt anddy/dt =
d(y − y0)/dt . Then the system (10) reduces to

d

dt

(
x − x0
y − y0

)
=
(

Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) G y(x0, y0)

)(
x − x0
y − y0

)
+
(
η1(x, y)
η2(x, y)

)
, (11)

or, in vector notation,

du
dt

= df
dx
(x0)u + �(x), (12)

whereu = (x − x0, y − y0)
T and� = (η1, η2)

T .
The significance of this result is twofold. First, if the functionsF andG are twice

differentiable, then the system (10) is almost linear and it is unnecessary to resort to the
limiting process used in Examples 1 and 2. Second, the linear system that approximates
the nonlinear system (10) near(x0, y0) is given by the linear part of Eqs. (11) or (12),
namely,

d

dt

(
u1
u2

)
=
(

Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) G y(x0, y0)

)(
u1
u2

)
, (13)

whereu1 = x − x0 and u2 = y − y0. Equation (13) provides a simple and general
method for finding the linear system corresponding to an almost linear system near a
given critical point.
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E X A M P L E

3

Use Eq. (13) to find the linear system corresponding to the pendulum equations (8)
near the origin; near the critical point(π,0).

In this case

F(x, y) = y, G(x, y) = −ω2 sinx − γ y; (14)

since these functions are differentiable as many times as necessary, the system (8) is
almost linear near each critical point. The derivatives ofF andG are

Fx = 0, Fy = 1, Gx = −ω2 cosx, G y = −γ. (15)

Thus, at the origin the corresponding linear system is

d

dt

(
x
y

)
=
(

0 1
−ω2 −γ

)(
x
y

)
, (16)

which agrees with Eq. (9).
Similarly, evaluating the partial derivatives in Eq. (15) at(π,0), we obtain

d

dt

(
u
v

)
=
(

0 1
ω2 −γ

)(
u
v

)
, (17)

whereu = x − π , v = y. This is the linear system corresponding to Eqs. (8) near the
point (π,0).

We now return to the almost linear system (4). Since the nonlinear termg(x) is
small compared to the linear termAx whenx is small, it is reasonable to hope that the
trajectories of the linear system (1) are good approximations to those of the nonlinear
system (4), at least near the origin. This turns out to be true in many (but not all) cases,
as the following theorem states.

Theorem 9.3.2 Let r1 andr2 be the eigenvalues of the linear system (1) corresponding to the almost
linear system (4). Then the type and stability of the critical point (0, 0) of the linear
system (1) and the almost linear system (4) are as shown in Table 9.3.1.

At this stage, the proof of Theorem 9.3.2 is too difficult to give, so we will accept the
results without proof. The statements for asymptotic stability and instability follow as
a consequence of a result discussed in Section 9.6, and a proof is sketched in Problems
10 to 12 of that section. Essentially, Theorem 9.3.2 says that for smallx (or x − x0)
the nonlinear terms are also small and do not affect the stability and type of critical
point as determined by the linear terms except in two sensitive cases:r1 andr2 pure
imaginary, andr1 andr2 real and equal. Recall that earlier in this section we stated
that small perturbations in the coefficients of the linear system (1), and hence in the
eigenvaluesr1 andr2, can alter the type and stability of the critical point only in these
two sensitive cases. It is reasonable to expect that the small nonlinear term in Eq. (4)
might have a similar substantial effect, at least in these two sensitive cases. This is so,
but the main significance of Theorem 9.3.2 is that inall other cases the small nonlinear
term does not alter the type or stability of the critical point. Thus, except in the two
sensitive cases, the type and stability of the critical point of the nonlinear system (4)
can be determined from a study of the much simpler linear system (1).
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TABLE 9.3.1 Stability and Instability Properties of Linear and Almost Linear Systems

Linear System Almost Linear System

r1, r2 Type Stability Type Stability

r1 > r2 > 0 N Unstable N Unstable
r1 < r2 < 0 N Asymptotically N Asymptotically

stable stable
r2 < 0< r1 SP Unstable SP Unstable
r1 = r2 > 0 PN or IN Unstable N or SpP Unstable
r1 = r2 < 0 PN or IN Asymptotically N or SpP Asymptotically

stable stable
r1, r2 = λ± iµ
λ > 0 SpP Unstable SpP Unstable
λ < 0 SpP Asymptotically SpP Asymptotically

stable stable
r1 = iµ, r2 = −iµ C Stable C or SpP Indeterminate

Note: N, node; IN, improper node; PN, proper node; SP, saddle point; SpP, spiral point; C, center.

Even if the critical point is of the same type as that of the linear system, the trajectories
of the almost linear system may be considerably different in appearance from those of
the corresponding linear system, except very near the critical point. However, it can
be shown that the slopes at which trajectories “enter” or “leave” the critical point are
given correctly by the linear equation.

Damped Pendulum. We continue the discussion of the damped pendulum begun in
Examples 2 and 3. Near the origin the nonlinear equations (8) are approximated by the
linear system (16), whose eigenvalues are

r1, r2 = −γ ±
√
γ 2 − 4ω2

2
. (18)

The nature of the solutions of Eqs. (8) and (16) depends on the sign ofγ 2 − 4ω2 as
follows.

1. If γ 2 − 4ω2 > 0, then the eigenvalues are real, unequal, and negative. The critical
point (0,0) is an asymptotically stable node of the linear system (16) and of the
almost linear system (8).

2. If γ 2 − 4ω2 = 0, then the eigenvalues are real, equal, and negative. The critical
point (0,0) is an asymptotically stable (proper or improper) node of the linear
system (16). It may be either an asymptotically stable node or spiral point of the
almost linear system (8).

3. If γ 2 − 4ω2 < 0, then the eigenvalues are complex with negative real part. The
critical point(0,0) is an asymptotically stable spiral point of the linear system (16)
and of the almost linear system (8).

Thus the critical point(0,0) is a spiral point of the system (8) if the damping is small
and a node if the damping is large enough. In either case, the origin is asymptotically
stable.
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Let us now consider the caseγ 2 − 4ω2 < 0, corresponding to small damping, in
more detail. The direction of motion on the spirals near(0,0) can be obtained directly
from Eqs. (8). Consider the point at which a spiral intersects the positivey-axis(x = 0
and y > 0). At such a point it follows from Eqs. (8) thatdx/dt > 0. Thus the point
(x, y) on the trajectory is moving to the right, so the direction of motion on the spirals
is clockwise.

The behavior of the pendulum near the critical points(±nπ,0), with n even, is the
same as its behavior near the origin. We expect this on physical grounds since all these
critical points correspond to the downward equilibrium position of the pendulum. The
conclusion can be confirmed by repeating the analysis carried out above for the origin.
Figure 9.3.3 shows the clockwise spirals at a few of these critical points.

Now let us consider the critical point(π,0). Here the nonlinear equations (8) are
approximated by the linear system (17), whose eigenvalues are

r1, r2 = −γ ±
√
γ 2 + 4ω2

2
. (19)

One eigenvalue(r1) is positive and the other(r2) is negative. Therefore, regardless of
the amount of damping, the critical pointx = π , y = 0 is an unstable saddle point of
both the linear system (17) and of the almost linear system (8).

To examine the behavior of trajectories near the saddle point(π,0) in more detail
we write down the general solution of Eqs. (17), namely,(

u
v

)
= C1

(
1
r1

)
er1t + C2

(
1
r2

)
er2t , (20)

whereC1 and C2 are arbitrary constants. Sincer1 > 0 and r2 < 0, it follows that
the solution that approaches zero ast → ∞ corresponds toC1 = 0. For this solution
v/u = r2, so the slope of the entering trajectories is negative; one lies in the second
quadrant(C2 < 0) and the other lies in the fourth quadrant(C2 > 0). For C2 = 0 we
obtain the pair of trajectories “exiting” from the saddle point. These trajectories have
sloper1 > 0; one lies in the first quadrant(C1 > 0) and the other lies in the third
quadrant(C1 < 0).

The situation is the same at other critical points(nπ,0) with n odd. These all
correspond to the upward equilibrium position of the pendulum, so we expect them
to be unstable. The analysis at(π,0) can be repeated to show that they are saddle
points oriented in the same way as the one at(π,0). Diagrams of the trajectories in the
neighborhood of two saddle points are shown in Figure 9.3.4.

π–2 π2

π– π

y

x

FIGURE 9.3.3 Asymptotically stable spiral points for the damped pendulum.
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y

xπ– π

FIGURE 9.3.4 Unstable saddle points for the damped pendulum.

E X A M P L E

4

The equations of motion of a certain pendulum are

dx/dt = y, dy/dt = −9 sinx − 1
5 y, (21)

wherex = θ andy = dθ/dt . Draw a phase portrait for this system and explain how it
shows the possible motions of the pendulum.

By plotting the trajectories starting at various initial points in the phase plane we
obtain the phase portrait shown in Figure 9.3.5. As we have seen, the critical points
(equilibrium solutions) are the points(nπ,0), wheren = 0,±1,±2, . . . . Even values
of n, including zero, correspond to the downward position of the pendulum, while
odd values ofn correspond to the upward position. Near each of the asymptotically
stable critical points the trajectories are clockwise spirals that represent a decaying
oscillation about the downward equilibrium position. The wavy horizontal portions of
the trajectories that occur for larger values of|y| represent whirling motions of the
pendulum. Note that a whirling motion cannot continue indefinitely, no matter how
large|y| is; eventually the angular velocity is so much reduced by the damping term
that the pendulum can no longer go over the top, and instead begins to oscillate about
its downward position.

10

64 8–4–6

–10

x

y

– 8 –2 2

–5

5

FIGURE 9.3.5 Phase portrait for the damped pendulum of Example 4.
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The trajectories that enter the saddle points separate the phase plane into regions.
Such a trajectory is called aseparatrix. Each region contains exactly one of the
asymptotically stable spiral points. The initial conditions onθ anddθ/dt determine
the position of an initial point(x, y) in the phase plane. The subsequent motion of
the pendulum is represented by the trajectory passing through the initial point as it
spirals toward the asymptotically stable critical point in that region. The set of all
initial points from which trajectories approach a given asymptotically stable critical
point is called thebasin of attraction or theregion of asymptotic stability for that
critical point. Each asymptotically stable critical point has its own basin of attraction,
which is bounded by the separatrices through the neighboring unstable saddle points.
The basin of attraction for the origin is shown in blue in Figure 9.3.5. Note that it is
mathematically possible (but physically unrealizable) to choose initial conditions on
a separatrix so that the resulting motion leads to a balanced pendulum in a vertically
upward position of unstable equilibrium.

An important difference between nonlinear autonomous systems and the linear sys-
tems discussed in Section 9.1 is illustrated by the pendulum equations. Recall that
the linear system (1) has only the single critical pointx = 0 if detA �= 0. Thus, if the
origin is asymptotically stable, then not only do trajectories that start close to the origin
approach it, but, in fact, every trajectory approaches the origin. In this case the critical
point x = 0 is said to beglobally asymptotically stable. This property of linear sys-
tems is not, in general, true for nonlinear systems. For nonlinear systems an important
question is to determine (or to estimate) the basin of attraction for each asymptotically
stable critical point.

PROBLEMS In each of Problems 1 through 4, verify that (0, 0) is a critical point, show that the system is
almost linear, and discuss the type and stability of the critical point (0, 0) by examining the
corresponding linear system.

1. dx/dt = x − y2, dy/dt = x − 2y + x2

2. dx/dt = −x + y + 2xy, dy/dt = −4x − y + x2 − y2

3. dx/dt = (1 + x) siny, dy/dt = 1 − x − cosy
4. dx/dt = x + y2, dy/dt = x + y

In each of Problems 5 through 16:

(a) Determine all critical points of the given system of equations.
(b) Find the corresponding linear system near each critical point.
(c) Find the eigenvalues of each linear system. What conclusions can you then draw about the

nonlinear system?
(d) Draw a phase portrait of the nonlinear system to confirm your conclusions, or to extend

them in those cases where the linear system does not provide definite information about
the nonlinear system.

� 5. dx/dt = (2 + x)(y − x), dy/dt = (4 − x)(y + x)

� 6. dx/dt = x − x2 − xy, dy/dt = 3y − xy − 2y2

� 7. dx/dt = 1 − y, dy/dt = x2 − y2

� 8. dx/dt = x − x2 − xy, dy/dt = 1
2 y − 1

4 y2 − 3
4 xy

� 9. dx/dt = −(x − y)(1 − x − y), dy/dt = x(2 + y)

� 10. dx/dt = x + x2 + y2, dy/dt = y − xy

� 11. dx/dt = 2x + y + xy3, dy/dt = x − 2y − xy
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� 12. dx/dt = (1 + x) siny, dy/dt = 1 − x − cosy

� 13. dx/dt = x − y2, dy/dt = y − x2 � 14. dx/dt = 1 − xy, dy/dt = x − y3

� 15. dx/dt = −2x − y − x(x2 + y2), dy/dt = x − y + y(x2 + y2)

� 16. dx/dt = y + x(1 − x2 − y2), dy/dt = −x + y(1 − x2 − y2)

17. Consider the autonomous system

dx/dt = y, dy/dt = x + 2x3.

(a) Show that the critical point (0, 0) is a saddle point.
(b) Sketch the trajectories for the corresponding linear system by integrating the equation
for dy/dx . Show from the parametric form of the solution that the only trajectory on which
x → 0, y → 0 ast → ∞ is y = −x .
(c) Determine the trajectories for the nonlinear system by integrating the equation for
dy/dx . Sketch the trajectories for the nonlinear system that correspond toy = −x and
y = x for the linear system.

18. Consider the autonomous system

dx/dt = x, dy/dt = −2y + x3.

(a) Show that the critical point (0, 0) is a saddle point.
(b) Sketch the trajectories for the corresponding linear system and show that the trajectory
for which x → 0, y → 0 ast → ∞ is given byx = 0.
(c) Determine the trajectories for the nonlinear system forx �= 0 by integrating the equa-
tion for dy/dx . Show that the trajectory corresponding tox = 0 for the linear system
is unaltered, but that the one corresponding toy = 0 is y = x3/5. Sketch several of the
trajectories for the nonlinear system.

� 19. The equation of motion of an undamped pendulum isd2θ/dt2 + ω2 sinθ = 0, where
ω2 = g/L. Let x = θ , y = dθ/dt to obtain the system of equations

dx/dt = y, dy/dt = −ω2 sinx .

(a) Show that the critical points are(±nπ,0), n = 0,1,2, . . . , and that the system is
almost linear in the neighborhood of each critical point.
(b) Show that the critical point (0, 0) is a (stable) center of the corresponding linear system.
Using Theorem 9.3.2 what can be said about the nonlinear system? The situation is similar
at the critical points(±2nπ,0), n = 1,2,3, . . . . What is the physical interpretation of
these critical points?
(c) Show that the critical point(π,0) is an (unstable) saddle point of the corresponding
linear system. What conclusion can you draw about the nonlinear system? The situation
is similar at the critical points [±(2n − 1)π,0], n = 1,2,3, . . . . What is the physical
interpretation of these critical points?
(d) Choose a value forω2 and plot a few trajectories of the nonlinear system in the
neighborhood of the origin. Can you now draw any further conclusion about the nature of
the critical point at(0,0) for the nonlinear system?
(e) Using the value ofω2 from part (d) draw a phase portrait for the pendulum. Compare
your plot with Figure 9.3.5 for the damped pendulum.

20. (a) By solving the equation fordy/dx , show that the equation of the trajectories of the
undamped pendulum of Problem 19 can be written as

1
2 y2 + ω2(1 − cosx) = c, (i)

wherec is a constant of integration.
(b) Multiply Eq. (i) by mL2. Then express the result in terms ofθ to obtain

1

2
mL2

(
dθ

dt

)2

+ mgL(1 − cosθ) = E, (ii)

whereE = mL2c.
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(c) Show that the first term in Eq. (ii) is the kinetic energy of the pendulum and that the
second term is the potential energy due to gravity. Thus the total energyE of the pendulum
is constant along any trajectory; its value is determined by the initial conditions.

� 21. The motion of a certain undamped pendulum is described by the equations

dx/dt = y, dy/dt = −4 sinx .

If the pendulum is set in motion with an angular displacementA and no initial velocity,
then the initial conditions arex(0) = A, y(0) = 0.
(a) Let A = 0.25 and plotx versust . From the graph estimate the amplitudeR and
periodT of the resulting motion of the pendulum.
(b) Repeat part (a) forA = 0.5, 1.0, 1.5, and 2.0.
(c) How do the amplitude and period of the pendulum’s motion depend on the initial
positionA? Draw a graph to show each of these relationships. Can you say anything about
the limiting value of the period asA → 0?
(d) Let A = 4 and plotx versust . Explain why this graph differs from those in parts (a)
and (b). For what value ofA does the transition take place?

� 22. Consider again the pendulum equations (see Problem 21)

dx/dt = y, dy/dt = −4 sinx .

If the pendulum is set in motion from its downward equilibrium position with angular
velocityv, then the initial conditions arex(0) = 0, y(0) = v.
(a) Plot x versust for v = 2 and also forv = 5. Explain the differing motions of the
pendulum that these two graphs represent.
(b) There is a critical value ofv, which we denote byvc, such that one type of motion
occurs forv < vc and the other forv > vc. Estimate the value ofvc.

� 23. This problem extends Problem 22 to a damped pendulum. The equations of motion are

dx/dt = y, dy/dt = −4 sinx − γ y,

whereγ is the damping coefficient, with the initial conditionsx(0) = 0, y(0) = v.
(a) Forγ = 1/4 plot x versust for v = 2 and forv = 5. Explain these plots in terms
of the motions of the pendulum that they represent. Also explain how they relate to the
corresponding graphs in Problem 22(a).
(b) Estimate the critical valuevc of the initial velocity where the transition from one type
of motion to the other occurs.
(c) Repeat part (b) for other values ofγ and determine howvc depends onγ .

24. Theorem 9.3.2 provides no information about the stability of a critical point of an almost
linear system if that point is a center of the corresponding linear system. That this must be
the case is illustrated by the systems

dx/dt = y + x(x2 + y2),
(i)

dy/dt = −x + y(x2 + y2)

and

dx/dt = y − x(x2 + y2),
(ii)

dy/dt = −x − y(x2 + y2).

(a) Show that (0, 0) is a critical point of each system and, furthermore, is a center of the
corresponding linear system.
(b) Show that each system is almost linear.
(c) Let r2 = x2 + y2, and note thatx dx/dt + y dy/dt = r dr/dt. For system (ii) show
thatdr/dt < 0 and thatr → 0 ast → ∞; hence the critical point is asymptotically stable.
For system (i) show that the solution of the initial value problem forr with r = r0 at t = 0
becomes unbounded ast → 1/2r2

0, and hence the critical point is unstable.
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25. In this problem we show how small changes in the coefficients of a system of linear
equations can affect a critical point that is a center. Consider the system

x′ =
(

0 1
−1 0

)
x.

Show that the eigenvalues are±i so that(0,0) is a center. Now consider the system

x′ =
(

ε 1
−1 ε

)
x,

where|ε| is arbitrarily small. Show that the eigenvalues areε ± i . Thus no matter how small
|ε| �= 0 is, the center becomes a spiral point. Ifε < 0, the spiral point is asymptotically
stable; ifε > 0, the spiral point is unstable.

26. In this problem we show how small changes in the coefficients of a system of linear
equations can affect the nature of a critical point when the eigenvalues are equal. Consider
the system

x′ =
(−1 1

0 −1

)
x.

Show that the eigenvalues arer1 = −1, r2 = −1 so that the critical point(0,0) is an
asymptotically stable node. Now consider the system

x′ =
(−1 1

−ε −1

)
x,

where|ε| is arbitrarily small. Show that ifε > 0, then the eigenvalues are−1 ± i
√
ε, so

that the asymptotically stable node becomes an asymptotically stable spiral point. Ifε < 0,
then the roots are−1 ± √|ε|, and the critical point remains an asymptotically stable node.

� 27. In this problem we derive a formula for the natural period of an undamped nonlinear
pendulum [c = 0 in Eq. (10) of Section 9.2]. Suppose that the bob is pulled through a
positive angleα and then released with zero velocity.
(a) We usually think ofθ anddθ/dt as functions oft . However, if we reverse the roles
of t andθ , we can regardt as a function ofθ , and consequently also think ofdθ/dt as a
function ofθ . Then derive the following sequence of equations:

1

2
mL2 d

dθ

[(
dθ

dt

)2
]

= −mgL sinθ,

1

2
m

(
L

dθ

dt

)2

= mgL(cosθ − cosα),

dt = −
√

L

2g

dθ√
cosθ − cosα

.

Why was the negative square root chosen in the last equation?
(b) If T is the natural period of oscillation, derive the formula

T

4
= −

√
L

2g

∫ 0

α

dθ√
cosθ − cosα

.

(c) By using the identities cosθ = 1 − 2 sin2(θ/2) and cosα = 1 − 2 sin2(α/2), followed
by the change of variable sin(θ/2) = k sinφ with k = sin(α/2), show that

T = 4

√
L

g

∫ π/2

0

dφ√
1 − k2 sin2 φ

.



9.4 Competing Species 491

The integral is called theelliptic integral of the first kind. Note that the period depends on
the ratioL/g and also the initial displacementα throughk = sin(α/2).
(d) By evaluating the integral in the expression forT obtain values forT that you can
compare with the graphical estimates you obtained in Problem 21.

28. A generalization of the damped pendulum equation discussed in the text, or a damped
spring–mass system, is the Lie´nard equation

d2x

dt2 + c(x)
dx

dt
+ g(x) = 0.

If c(x) is a constant andg(x) = kx, then this equation has the form of the linear pen-
dulum equation [replace sinθ with θ in Eq. (12) of Section 9.2]; otherwise the damping
force c(x) dx/dt and restoring forceg(x) are nonlinear. Assume thatc is continuously
differentiable,g is twice continuously differentiable, andg(0) = 0.
(a) Write the Líenard equation as a system of two first order equations by introducing the
variabley = dx/dt.
(b) Show that (0, 0) is a critical point and that the system is almost linear in the neighbor-
hood of (0, 0).
(c) Show that ifc(0) > 0 andg′(0) > 0, then the critical point is asymptotically stable,
and that ifc(0) < 0 or g′(0) < 0, then the critical point is unstable.
Hint: Use Taylor series to approximatec andg in the neighborhood ofx = 0.

9.4 Competing Species

In this section and the next we explore the application of phase plane analysis to some
problems in population dynamics. These problems involve two interacting populations
and are extensions of those discussed in Section 2.5, which dealt with a single popu-
lation. While the equations discussed here are extremely simple, compared to the very
complex relationships that exist in nature, it is still possible to acquire some insight
into ecological principles from a study of these model problems.

Suppose that in some closed environment there are two similar species competing
for a limited food supply; for example, two species of fish in a pond that do not prey
on each other, but do compete for the available food. Letx andy be the populations of
the two species at timet . As discussed in Section 2.5, we assume that the population
of each of the species, in the absence of the other, is governed by a logistic equation.
Thus

dx/dt = x(ε1 − σ1x), (1a)

dy/dt = y(ε2 − σ2y), (1b)

respectively, whereε1 andε2 are the growth rates of the two populations, andε1/σ1
andε2/σ2 are their saturation levels. However, when both species are present, each will
impinge on the available food supply for the other. In effect, they reduce the growth
rates and saturation populations of each other. The simplest expression for reducing the
growth rate of speciesx due to the presence of speciesy is to replace the growth rate
factorε1 − σ1x in Eq. (1a) byε1 − σ1x − α1y, whereα1 is a measure of the degree to
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which speciesy interferes with speciesx . Similarly, in Eq. (1b) we replaceε2 − σ2y
by ε2 − σ2y − α2x . Thus we have the system of equations

dx/dt = x(ε1 − σ1x − α1y),
(2)

dy/dt = y(ε2 − σ2y − α2x).

The values of the positive constantsε1, σ1, α1, ε2, σ2, andα2 depend on the particular
species under consideration and in general must be determined from observations.
We are interested in solutions of Eqs. (2) for whichx and y are nonnegative. In the
following two examples we discuss two typical problems in some detail. At the end of
the section we return to the general equations (2).

E X A M P L E

1

Discuss the qualitative behavior of solutions of the system

dx/dt = x(1 − x − y),
(3)

dy/dt = y(0.75− y − 0.5x).

We find the critical points by solving the system of algebraic equations

x(1 − x − y) = 0, y(0.75− y − 0.5x) = 0. (4)

There are four points that satisfy Eqs. (4), namely, (0, 0), (0, 0.75), (1, 0), and
(0.5, 0.5); they correspond to equilibrium solutions of the system (3). The first three
of these points involve the extinction of one or both species; only the last corresponds
to the long-term survival of both species. Other solutions are represented as curves or
trajectories in thexy-plane that describe the evolution of the populations in time. To
begin to discover their qualitative behavior we can proceed in the following way.

A direction field for the system (3) in the positive quadrant is shown in Figure 9.4.1;
the heavy dots in this figure are the critical points or equilibrium solutions. Based on
the direction field it appears that the point(0.5,0.5) attracts other solutions and is
therefore asymptotically stable, while the other three critical points are unstable. To
confirm these conclusions we can look at the linear approximations near each critical
point.

The system (3) is almost linear in the neighborhood of each critical point. There are
two ways to obtain the linear system near a critical point(X,Y ). First, we can use the
substitutionx = X + u, y = Y + v in Eqs. (3), retaining only the terms that are linear
in u andv. Alternatively, we can use Eq. (13) of Section 9.3, that is,

d

dt

(
u
v

)
=
(

Fx(X,Y ) Fy(X,Y )
Gx(X,Y ) G y(X,Y )

)(
u
v

)
, (5)

where, for the system (3),

F(x, y) = x(1 − x − y), G(x, y) = y(0.75− y − 0.5x). (6)

Thus Eq. (5) becomes

d

dt

(
u
v

)
=
(

1 − 2X − Y −X
−0.5Y 0.75− 2Y − 0.5X

)(
u
v

)
. (7)
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FIGURE 9.4.1 Critical points and direction field for the system (3).

x = 0, y = 0. This critical point corresponds to a state in which both species die as
a result of their competition. By rewriting the system (3) in the form

d

dt

(
x
y

)
=
(

1 0
0 0.75

)(
x
y

)
−
(

x2 + xy
0.5xy + y2

)
, (8)

or by settingX = Y = 0 in Eq. (7), we see that near the origin the corresponding linear
system is

d

dt

(
x
y

)
=
(

1 0
0 0.75

)(
x
y

)
. (9)

The eigenvalues and eigenvectors of the system (9) are

r1 = 1, �(1) =
(

1
0

)
; r2 = 0.75, �(2) =

(
0
1

)
, (10)

so the general solution of the system is(
x
y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e0.75t . (11)

Thus the origin is an unstable node of both the linear system (9) and the nonlinear
system (8) or (3). In the neighborhood of the origin all trajectories are tangent to the
y-axis except for one trajectory that lies along thex-axis.

x = 1, y = 0. This corresponds to a state in which speciesx survives the competition,
but speciesy does not. The corresponding linear system is

d

dt

(
u
v

)
=
(−1 −1

0 0.25

)(
u
v

)
. (12)
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Its eigenvalues and eigenvectors are

r1 = −1, �(1) =
(

1
0

)
; r2 = 0.25, �(2) =

(
4

−5

)
, (13)

and its general solution is(
u
v

)
= c1

(
1
0

)
e−t + c2

(
4

−5

)
e0.25t . (14)

Since the eigenvalues have opposite signs, the point (1, 0) is a saddle point, and hence
is an unstable equilibrium point of the linear system (12) and of the nonlinear system
(3). The behavior of the trajectories near (1, 0) can be seen from Eq. (14). Ifc2 = 0,
then there is one pair of trajectories that approaches the critical point along thex-axis.
All other trajectories depart from the neighborhood of(1,0).

x = 0, y = 0.75. In this case speciesy survives butx does not. The analysis is
similar to that for the point (1, 0). The corresponding linear system is

d

dt

(
u
v

)
=
(

0.25 0
−0.375 −0.75

)(
u
v

)
. (15)

The eigenvalues and eigenvectors are

r1 = 0.25, �(1) =
(

8
−3

)
; r2 = −0.75, �(2) =

(
0
1

)
, (16)

so the general solution of Eq. (15) is(
u
v

)
= c1

(
8

−3

)
e0.25t + c2

(
0
1

)
e−0.75t . (17)

Thus the point (0, 0.75) is also a saddle point. All trajectories leave the neighborhood
of this point except one pair that approaches along they-axis.

x = 0.5, y = 0.5. This critical point corresponds to a mixed equilibrium state,
or coexistence, in the competition between the two species. The eigenvalues and
eigenvectors of the corresponding linear system

d

dt

(
u
v

)
=
(−0.5 −0.5

−0.25 −0.5

)(
u
v

)
(18)

are

r1 = (−2 +
√

2)/4 ∼= −0.146, �(1) =
(√

2
−1

)
;

(19)
r2 = (−2 −

√
2)/4 ∼= −0.854, �(2) =

(√
2
1

)
.

Therefore the general solution of Eq. (18) is(
u
v

)
= c1

(√
2

−1

)
e−0.146t + c2

(√
2
1

)
e−0.854t . (20)

Since both eigenvalues are negative, the critical point (0.5, 0.5) is an asymptotically
stable node of the linear system (18) and of the nonlinear system (3). All trajectories
approach the critical point ast → ∞. One pair of trajectories approaches the critical
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point along the line with slope
√

2/2 determined from the eigenvector�(2). All other
trajectories approach the critical point tangent to the line with slope−√

2/2 determined
from the eigenvector�(1).

A phase portrait for the system (3) is shown in Figure 9.4.2. By looking closely at
the trajectories near each critical point you can see that they behave in the manner
predicted by the linear system near that point. In addition, note that the quadratic terms
on the right side of Eqs. (3) are all negative. Since forx andy large and positive these
terms are the dominant ones, it follows that far from the origin in the first quadrant both
x ′ andy′ are negative, that is, the trajectories are directed inward. Thus all trajectories
that start at a point(x0, y0) with x0 > 0 and y0 > 0 eventually approach the point
(0.5, 0.5).

y

x

1

0.75

0.5

0.25

1.2510.750.500.25

FIGURE 9.4.2 A phase portrait of the system (3).

E X A M P L E

2

Discuss the qualitative behavior of the solutions of the system

dx/dt = x(1 − x − y),
(21)

dy/dt = y(0.5 − 0.25y − 0.75x),

whenx and y are nonnegative. Observe that this system is also a special case of the
system (2) for two competing species.

Once again, there are four critical points, namely,(0,0), (1,0), (0,2), and(0.5,0.5),
corresponding to equilibrium solutions of the system (21). Figure 9.4.3 shows a direc-
tion field for the system (21), together with the four critical points. From the direction
field it appears that the mixed equilibrium solution(0.5,0.5) is a saddle point, and
therefore unstable, while the points(1,0) and(0,2) are asymptotically stable. Thus,
for competition described by Eqs. (21), one species will eventually overwhelm the
other and drive it to extinction. The surviving species is determined by the initial state
of the system. To confirm these conclusions we can look at the linear approximations
near each critical point.
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FIGURE 9.4.3 Critical points and direction field for the system (21).

x = 0, y = 0. Neglecting the nonlinear terms in Eqs. (21), we obtain the linear
system

d

dt

(
x
y

)
=
(

1 0
0 0.5

)(
x
y

)
, (22)

which is valid near the origin. The eigenvalues and eigenvectors of the system (22) are

r1 = 1, �(1) =
(

1
0

)
; r2 = 0.5, �(2) =

(
0
1

)
, (23)

so the general solution is(
x
y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e0.5t . (24)

Therefore the origin is an unstable node of the linear system (22) and also of the
nonlinear system (21). All trajectories leave the origin tangent to they-axis except for
one trajectory that lies along thex-axis.

x = 1, y = 0. The corresponding linear system is

d

dt

(
u
v

)
=
(−1 −1

0 −0.25

)(
u
v

)
. (25)
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Its eigenvalues and eigenvectors are

r1 = −1, �(1) =
(

1
0

)
; r2 = −0.25, �(2) =

(
4

−3

)
, (26)

and its general solution is(
u
v

)
= c1

(
1
0

)
e−t + c2

(
4

−3

)
e−0.25t . (27)

The point (1, 0) is an asymptotically stable node of the linear system (25) and of the
nonlinear system (21). If the initial values ofx andy are sufficiently close to (1, 0), then
the interaction process will lead ultimately to that state, that is, to the survival of species
x and the extinction of speciesy. There is one pair of trajectories that approaches the
critical point along thex-axis. All other trajectories approach (1, 0) tangent to the line
with slope−3/4 that is determined by the eigenvector�(2).

x = 0, y = 2. The analysis in this case is similar to that for the point (1, 0). The
appropriate linear system is

d

dt

(
u
v

)
=
(−1 0

−1.5 −0.5

)(
u
v

)
. (28)

The eigenvalues and eigenvectors of this system are

r1 = −1, �(1) =
(

1
3

)
; r2 = −0.5, �(2) =

(
0
1

)
, (29)

and its general solution is(
u
v

)
= c1

(
1
3

)
e−t + c2

(
0
1

)
e−0.5t . (30)

Thus the critical point (0, 2) is an asymptotically stable node of both the linear system
(28) and the nonlinear system (21). All trajectories approach the critical point along
the y-axis except for one trajectory that approaches along the line with slope 3.

x = 0.5, y = 0.5. The corresponding linear system is

d

dt

(
u
v

)
=
(−0.5 −0.5

−0.375 −0.125

)(
u
v

)
. (31)

The eigenvalues and eigenvectors are

r1 = −5 + √
57

16
∼= 0.1594, �(1) =

(
1

(−3 − √
57)/8

)
∼=
(

1
−1.3187

)
,

(32)

r2 = −5 − √
57

16
∼= −0.7844, �(2) =

(
1

(−3 + √
57)/8

)
∼=
(

1
0.5687

)
,

so the general solution is(
u
v

)
= c1

(
1

−1.3187

)
e0.1594t + c2

(
1

0.5687

)
e−0.7844t . (33)

Since the eigenvalues are of opposite sign, the critical point (0.5, 0.5) is a saddle point,
and therefore is unstable, as we had surmised earlier. One pair of trajectories approaches
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the critical point ast → ∞; the others depart from it. As they approach the critical
point, the entering trajectories are tangent to the line with slope(

√
57− 3)/8 ∼= 0.5687

determined from the eigenvector�(2).
A phase portrait for the system (21) is shown in Figure 9.4.4. Near each of the critical

points the trajectories of the nonlinear system behave as predicted by the corresponding
linear approximation. Of particular interest is the pair of trajectories that enter the
saddle point. These trajectories form a separatrix that divides the first quadrant into
two basins of attraction. Trajectories starting above the separatrix ultimately approach
the node at(0,2), while trajectories starting below the separatrix approach the node at
Bad math construct!(1,0)Bad math construct!. If the initial state lies precisely on the
separatrix, then the solution(x, y) will approach the saddle point ast → ∞. However,
the slightest perturbation as one follows this trajectory will dislodge the point(x, y)
from the separatrix and cause it to approach one of the nodes instead. Thus, in practice,
one species will survive the competition and the other will not.

y

2

1.5

1

0.5

x

Separatrix

1.2510.750.500.25

FIGURE 9.4.4 A phase portrait of the system (21).

Examples 1 and 2 show that in some cases the competition between two species leads
to an equilibrium state of coexistence, while in other cases the competition results in
the eventual extinction of one of the species. To understand more clearly how and why
this happens, and to learn how to predict which situation will occur, it is useful to look
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again at the general system (2). There are four cases to be considered, depending on
the relative orientation of the lines

ε1 − σ1x − α1y = 0 and ε2 − σ2y − α2x = 0, (34)

as shown in Figure 9.4.5. These lines are called thex and y nullclines, respectively,
becausex ′ is zero on the first andy′ is zero on the second. Let(X,Y ) denote any
critical point in any one of the four cases. As in Examples 1 and 2 the system (2) is
almost linear in the neighborhood of this point because the right side of each differential
equation is a quadratic polynomial. To study the system (2) in the neighborhood of this
critical point we can look at the corresponding linear system obtained from Eq. (13) of
Section 9.3,

d

dt

(
u
v

)
=
(
ε1 − 2σ1X − α1Y −α1X

−α2Y ε2 − 2σ2Y − α2X

)(
u
v

)
. (35)

We now use Eq. (35) to determine the conditions under which the model described
by Eqs. (2) permits the coexistence of the two speciesx and y. Of the four possible
cases shown in Figure 9.4.5 coexistence is possible only in cases (c) and (d). In these
cases the nonzero values ofX and Y are readily obtained by solving the algebraic
equations (34); the result is

X = ε1σ2 − ε2α1

σ1σ2 − α1α2

, Y = ε2σ1 − ε1α2

σ1σ2 − α1α2

. (36)

y
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FIGURE 9.4.5 The various cases for the competing species system (2).
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Further, sinceε1 − σ1X − α1Y = 0 andε2 − σ2Y − α2X = 0, Eq. (35) immediately
reduces to

d

dt

(
u
v

)
=
(−σ1X −α1X

−α2Y −σ2Y

)(
u
v

)
. (37)

The eigenvalues of the system (37) are found from the equation

r2 + (σ1X + σ2Y )r + (σ1σ2 − α1α2)XY = 0. (38)

Thus

r1,2 =
−(σ1X + σ2Y )±

√
(σ1X + σ2Y )2 − 4(σ1σ2 − α1α2)XY

2
. (39)

If σ1σ2 − α1α2 < 0, then the radicand of Eq. (39) is positive and greater than(σ1X +
σ2Y )2. Thus the eigenvalues are real and of opposite sign. Consequently, the critical
point (X,Y ) is an (unstable) saddle point, and coexistence is not possible. This is the
case in Example 2, whereσ1 = 1, α1 = 1, σ2 = 0.25,α2 = 0.75, andσ1σ2 − α1α2 =
−0.5.

On the other hand, ifσ1σ2 − α1α2 > 0, then the radicand of Eq. (39) is less than
(σ1X + σ2Y )2. Thus the eigenvalues are real, negative, and unequal, or complex with
negative real part. A straightforward analysis of the radicand of Eq. (39) shows that
the eigenvalues cannot be complex (see Problem 7). Thus the critical point is an
asymptotically stable node, and sustained coexistence is possible. This is illustrated by
Example 1, whereσ1 = 1,α1 = 1, σ2 = 1,α2 = 0.5, andσ1σ2 − α1α2 = 0.5.

Let us relate this result to Figures 9.4.5c and 9.4.5d. In Figure 9.4.5c we have

ε1

σ1

>
ε2

α2

or ε1α2 > ε2σ1 and
ε2

σ2

>
ε1

α1

or ε2α1 > ε1σ2. (40)

These inequalities, coupled with the condition thatX and Y given by Eqs. (36) be
positive, yield the inequalityσ1σ2 < α1α2. Hence in this case the critical point is a
saddle point. On the other hand, in Figure 9.4.5d we have

ε1

σ1

<
ε2

α2

or ε1α2 < ε2σ1 and
ε2

σ2

<
ε1

α1

or ε2α1 < ε1σ2. (41)

Now the condition thatX andY are positive yieldsσ1σ2 > α1α2. Hence the critical
point is asymptotically stable. For this case we can also show that the other critical
points(0,0), (ε1/σ1,0), and(0, ε2/σ2) are unstable. Thus for any positive initial values
of x andy the two populations approach the equilibrium state of coexistence given by
Eqs. (36).

Equations (2) provide the biological interpretation of the result that coexistence
occurs or not depending on whetherσ1σ2 − α1α2 is positive or negative. Theσ ’s are
a measure of the inhibitory effect the growth of each population has on itself, while
theα’s are a measure of the inhibiting effect the growth of each population has on the
other species. Thus, whenσ1σ2 > α1α2, interaction (competition) is “weak” and the
species can coexist; whenσ1σ2 < α1α2, interaction (competition) is “strong” and the
species cannot coexist—one must die out.
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PROBLEMS Each of Problems 1 through 6 can be interpreted as describing the interaction of two species
with populationsx andy. In each of these problems carry out the following steps.

(a) Draw a direction field and describe how solutions seem to behave.

(b) Find the critical points.

(c) For each critical point find the corresponding linear system. Find the eigenvalues and
eigenvectors of the linear system; classify each critical point as to type, and determine
whether it is asymptotically stable, stable, or unstable.

(d) Sketch the trajectories in the neighborhood of each critical point.

(e) Compute and plot enough trajectories of the given system to show clearly the behavior of
the solutions.

(f) Determine the limiting behavior ofx andy ast → ∞ and interpret the results in terms of
the populations of the two species.

� 1. dx/dt = x(1.5 − x − 0.5y)
dy/dt = y(2 − y − 0.75x)

� 2. dx/dt = x(1.5 − x − 0.5y)
dy/dt = y(2 − 0.5y − 1.5x)

� 3. dx/dt = x(1.5 − 0.5x − y)
dy/dt = y(2 − y − 1.125x)

� 4. dx/dt = x(1.5 − 0.5x − y)
dy/dt = y(0.75− y − 0.125x)

� 5. dx/dt = x(1 − x − y)
dy/dt = y(1.5 − y − x)

� 6. dx/dt = x(1 − x + 0.5y)
dy/dt = y(2.5 − 1.5y + 0.25x)

7. Show that

(σ1X + σ2Y )2 − 4(σ1σ2 − α1α2)XY = (σ1X − σ2Y )2 + 4α1α2XY.

Hence conclude that the eigenvalues given by Eq. (39) can never be complex.
8. Two species of fish that compete with each other for food, but do not prey on each other,

are bluegill and redear. Suppose that a pond is stocked with bluegill and redear and letx
andy be the populations of bluegill and redear, respectively, at timet . Suppose further that
the competition is modeled by the equations

dx/dt = x(ε1 − σ1x − α1y),

dy/dt = y(ε2 − σ2y − α2x).

(a) If ε2/α2 > ε1/σ1 andε2/σ2 > ε1/α1, show that the only equilibrium populations in
the pond are no fish, no redear, or no bluegill. What will happen?
(b) If ε1/σ1 > ε2/α2 andε1/α1 > ε2/σ2, show that the only equilibrium populations in
the pond are no fish, no redear, or no bluegill. What will happen?

9. Consider the competition between bluegill and redear mentioned in Problem 8. Suppose
thatε2/α2 > ε1/σ1 andε1/α1 > ε2/σ2, so, as shown in the text, there is a stable equilibrium
point at which both species can coexist. It is convenient to rewrite the equations of Problem
8 in terms of the carrying capacities of the pond for bluegill(B = ε1/σ1) in the absence of
redear and for redear(R = ε2/σ2) in the absence of bluegill.
(a) Show that the equations of Problem 8 take the form

dx

dt
= ε1x

(
1 − 1

B
x − γ1

B
y

)
,

dy

dt
= ε2y

(
1 − 1

R
y − γ2

R
x

)
,

whereγ1 = α1/σ1 andγ2 = α2/σ2. Determine the coexistence equilibrium point(X,Y ) in
terms ofB, R, γ1, andγ2.
(b) Now suppose that a fisherman fishes only for bluegill with the effect thatB is reduced.
What effect does this have on the equilibrium populations? Is it possible, by fishing, to
reduce the population of bluegill to such a level that they will die out?

10. Consider the system (2) in the text, and assume thatσ1σ2 − α1α2 = 0.
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(a) Find all the critical points of the system. Observe that the result depends on whether
or notσ1ε2 − α2ε1 is zero.
(b) If σ1ε2 − α2ε1 > 0, classify each critical point and determine whether it is asymptot-
ically stable, stable, or unstable. Note that Problem 5 is of this type. Then do the same if
σ1ε2 − α2ε1 < 0.
(c) Analyze the nature of the trajectories whenσ1ε2 − α2ε1 = 0.

11. Consider the system (3) in Example 1 of the text. Recall that this system has an asymptot-
ically stable critical point at (0.5, 0.5), corresponding to the stable coexistence of the two
population species. Now suppose that immigration or emigration occurs at the constant
rates ofδa andδb for the speciesx andy, respectively. In this case Eqs. (3) are replaced by

dx/dt = x(1 − x − y)+ δa,
(i)

dy/dt = y(0.75− y − 0.5x)+ δb.

The question is what effect this has on the location of the stable equilibrium point.
(a) To find the new critical point we must solve the equations

x(1 − x − y)+ δa = 0,
(ii)

y(0.75− y − 0.5x)+ δb = 0.

One way to proceed is to assume thatx andy are given by power series in the parameterδ;
thus

x = x0 + x1δ + · · · , y = y0 + y1δ + · · · . (iii)

Substitute Eqs. (iii) into Eqs. (ii) and collect terms according to powers ofδ.
(b) From the constant terms (the terms not involvingδ) show thatx0 = 0.5 andy0 = 0.5,
thus confirming that in the absence of immigration or emigration the critical point is
(0.5, 0.5).
(c) From the terms that are linear inδ show that

x1 = 4a − 4b, y1 = −2a + 4b. (iv)

(d) Suppose thata > 0 andb > 0 so that immigration occurs for both species. Show that
the resulting equilibrium solution may represent an increase in both populations, or an
increase in one but a decrease in the other. Explain intuitively why this is a reasonable
result.

� 12. Suppose that a certain pair of competing species are described by the system

dx/dt = x(4 − x − y), dy/dt = y(2 + 2α − y − αx),

whereα > 0 is a parameter.
(a) Find the critical points. Note that(2,2) is a critical point for all values ofα.
(b) Determine the nature of the critical point(2,2) for α = 0.75 and forα = 1.25. There
is a value ofα between 0.75 and 1.25 where the nature of the critical point changes abruptly.
Denote this value byα0; it is called a bifurcation point.
(c) Find the approximate linear system near the point(2,2) in terms ofα.
(d) Find the eigenvalues of the linear system in part (c) as functions ofα. Then determine
the bifurcation pointα0.
(e) Draw phase portraits near(2,2) for α = α0 and for values ofα slightly less than, and
slightly greater than,α0. Explain how the transition in the phase portrait takes place asα

passes throughα0.
� 13. The system

x ′ = −y, y′ = −γ y − x(x − 0.15)(x − 2)
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results from an approximation to the Hodgkin–Huxley2 equations, which model the trans-
mission of neural impulses along an axon.
(a) Find the critical points and classify them by investigating the approximate linear
system near each one.
(b) Draw phase portraits forγ = 0.8 and forγ = 1.5.
(c) Consider the trajectory that leaves the critical point(2,0). Find the value ofγ for
which this trajectory ultimately approaches the origin ast → ∞. Draw a phase portrait for
this value ofγ .

9.5 Predator–Prey Equations

In the preceding section we discussed a model of two species that interact by competing
for a common food supply or other natural resource. In this section we investigate the
situation in which one species (the predator) preys on the other species (the prey), while
the prey lives on a different source of food. For example, consider foxes and rabbits in
a closed forest: The foxes prey on the rabbits, the rabbits live on the vegetation in the
forest. Other examples are bass in a lake as predators and redear as prey, or ladybugs
as predators and aphids as prey. We emphasize again that a model involving only two
species cannot fully describe the complex relationships among species that actually
occur in nature. Nevertheless, the study of simple models is the first step toward an
understanding of more complicated phenomena.

We will denote byx and y the populations of the prey and predator, respectively,
at timet . In constructing a model of the interaction of the two species, we make the
following assumptions:

1. In the absence of the predator the prey grows at a rate proportional to the current
population; thusdx/dt = ax , a > 0, wheny = 0.

2. In the absence of the prey the predator dies out; thusdy/dt = −cy, c > 0, when
x = 0.

3. The number of encounters between predator and prey is proportional to the product
of their populations. Each such encounter tends to promote the growth of the
predator and to inhibit the growth of the prey. Thus the growth rate of the predator
is increased by a term of the formγ xy, while the growth rate of the prey is
decreased by a term−αxy, whereγ andα are positive constants.

As a consequence of these assumptions, we are led to the equations

dx/dt = ax − αxy = x(a − αy),
(1)

dy/dt = −cy + γ xy = y(−c + γ x).

The constantsa, c, α, andγ are all positive;a andc are the growth rate of the prey
and the death rate of the predator, respectively, andα andγ are measures of the effect

2Alan L. Hodgkin (1914–1998) and Andrew F. Huxley (1917– ) were awarded the Nobel prize in physiology and
medicine in 1963 for their work on the excitation and transmission of neural impulses, first published in 1952,
when they were at Cambridge University.
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of the interaction between the two species. Equations (1) are known as the Lotka–
Volterra equations. They were developed in papers by Lotka3 in 1925 and by Volterra4

in 1926. Although these are rather simple equations, they do characterize a wide class
of problems. Ways of making them more realistic are discussed at the end of this
section and in the problems. Our goal here is to determine the qualitative behavior of
the solutions (trajectories) of the system (1) for arbitrary positive initial values ofx
andy. We do this first for a specific example and then return to the general equations
(1) at the end of the section.

E X A M P L E

1

Discuss the solutions of the system

dx/dt = x(1 − 0.5y) = x − 0.5xy,
(2)

dy/dt = y(−0.75+ 0.25x) = −0.75y + 0.25xy

for x andy positive.
The critical points of this system are the solutions of the algebraic equations

x(1 − 0.5y) = 0, y(−0.75+ 0.25x) = 0, (3)

namely, the points(0,0) and(3,2). Figure 9.5.1 shows the critical points and a direction
field for the system (2). From this figure we conclude tentatively that the trajectories
in the first quadrant may be closed curves surrounding the critical point(3,2).

Next we examine the local behavior of solutions near each critical point. Near the
origin we can neglect the nonlinear terms in Eqs. (2) to obtain the corresponding linear
system

d

dt

(
x
y

)
=
(

1 0
0 −0.75

)(
x
y

)
. (4)

The eigenvalues and eigenvectors of Eq. (4) are

r1 = 1, �(1) =
(

1
0

)
; r2 = −0.75, �(2) =

(
0
1

)
, (5)

so its general solution is(
x
y

)
= c1

(
1
0

)
et + c2

(
0
1

)
e−0.75t . (6)

Thus the origin is a saddle point of both the linear system (4) and of the nonlinear
system (2), and therefore is unstable. One pair of trajectories enters the origin along
the y-axis; all other trajectories depart from the neighborhood of the origin.

3Alfred J. Lotka (1880–1949), an American biophysicist, was born in what is now the Ukraine, and was educated
mainly in Europe. He is remembered chiefly for his formulation of the Lotka–Volterra equations. He was also
the author, in 1924, of the first book on mathematical biology; it is now available asElements of Mathematical
Biology (New York: Dover, 1956).
4Vito Volterra (1860–1940), a distinguished Italian mathematician, held professorships at Pisa, Turin, and Rome.
He is particularly famous for his work in integral equations and functional analysis. Indeed, one of the major
classes of integral equations is named for him; see Problem 20 of Section 6.6. His theory of interacting species
was motivated by data collected by a friend, D’Ancona, concerning fish catches in the Adriatic Sea. A translation
of his 1926 paper can be found in an appendix to R. N. Chapman,Animal Ecology with Special Reference to
Insects (New York: McGraw-Hill, 1931).



9.5 Predator–Prey Equations 505

5

4

3

2

1

76543210

y

x

FIGURE 9.5.1 Critical points and direction field for the predator–prey system (2).

To examine the critical point(3,2) we can either make the substitution

x = 3 + u, y = 2 + v (7)

in Eqs. (2) and then neglect the nonlinear terms inu andv, or else refer to Eq. (13) of
Section 9.3. In either case we obtain the linear system

d

dt

(
u
v

)
=
(

0 −1.5
0.5 0

)(
u
v

)
. (8)

The eigenvalues and eigenvectors of this system are

r1 =
√

3 i

2
, �(1) =

(
1

−i/
√

3

)
; r2 = −

√
3 i

2
, �(2) =

(
1

i/
√

3

)
. (9)

Since the eigenvalues are imaginary, the critical point(3,2) is a center of the linear
system (8) and is therefore a stable critical point for that system. Recall from Section
9.3 that this is one of the cases in which the behavior of the linear system may or may
not carry over to the nonlinear system, so the nature of the point(3,2) for the nonlinear
system (2) cannot be determined from this information. The simplest way to find the
trajectories of the linear system (8) is to divide the second of Eqs. (8) by the first so as
to obtain the differential equation

dv

du
= dv/dt

du/dt
= 0.5u

−1.5v
= − u

3v
,

or

u du + 3v dv = 0. (10)

Consequently,

u2 + 3v2 = k, (11)
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wherek is an arbitrary nonnegative constant of integration. Thus the trajectories of the
linear system (8) are ellipses centered at the critical point and elongated somewhat in
the horizontal direction.

Now let us return to the nonlinear system (2). Dividing the second of Eqs. (2) by the
first, we obtain

dy

dx
= y(−0.75+ 0.25x)

x(1 − 0.5y)
. (12)

Equation (12) is a separable equation and can be put in the form

1 − 0.5y

y
dy = −0.75+ 0.25x

x
dx,

from which it follows that

0.75 lnx + ln y − 0.5y − 0.25x = c, (13)

wherec is a constant of integration. Although by using only elementary functions we
cannot solve Eq. (13) explicitly for either variable in terms of the other, it is possible to
show that the graph of the equation for a fixed value ofc is a closed curve surrounding
the critical point(3,2). Thus the critical point is also a center of the nonlinear system
(2) and the predator and prey populations exhibit a cyclic variation.

Figure 9.5.2 shows a phase portrait of the system (2). For some initial conditions
the trajectory represents small variations inx and y about the critical point, and is
almost elliptical in shape, as the linear analysis suggests. For other initial conditions
the oscillations inx and y are more pronounced, and the shape of the trajectory is
significantly different from an ellipse. Observe that the trajectories are traversed in the
counterclockwise direction. The dependence ofx andy on t for a typical set of initial
conditions is shown in Figure 9.5.3. Note thatx andy are periodic functions oft , as they
must be since the trajectories are closed curves. Further, the oscillation of the predator
population lags behind that of the prey. Starting from a state in which both predator and
prey populations are relatively small, the prey first increase because there is little preda-
tion. Then the predators, with abundant food, increase in population also. This causes
heavier predation and the prey tend to decrease. Finally, with a diminished food supply,
the predator population also decreases, and the system returns to the original state.

y

4

3

2

1

2 4 6 71 3 5 x

FIGURE 9.5.2 A phase portrait of the system (2).
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FIGURE 9.5.3 Variations of the prey and predator populations with time for the system (2).

The general system (1) can be analyzed in exactly the same way as in the example.
The critical points of the system (1) are the solutions of

x(a − αy) = 0, y(−c + γ x) = 0,

that is, the points(0,0) and(c/γ, a/α). We first examine the solutions of the corre-
sponding linear system near each critical point.

In the neighborhood of the origin the corresponding linear system is

d

dt

(
x
y

)
=
(

a 0
0 −c

)(
x
y

)
. (14)

The eigenvalues and eigenvectors are

r1 = a, �(1) =
(

1
0

)
; r2 = −c, �(2) =

(
0
1

)
, (15)

so the general solution is(
x
y

)
= c1

(
1
0

)
eat + c2

(
0
1

)
e−ct . (16)

Thus the origin is a saddle point and hence unstable. Entrance to the saddle point is
along they-axis; all other trajectories depart from the neighborhood of the critical
point.

Next consider the critical point(c/γ, a/α). If x = (c/γ )+ u and y = (a/α)+ v,
then the corresponding linear system is

d

dt

(
u
v

)
=
(

0 −αc/γ
γ a/α 0

)(
u
v

)
. (17)

The eigenvalues of the system (17) arer = ±i
√

ac, so the critical point is a (stable)
center of the linear system. To find the trajectories of the system (17) we can divide the
second equation by the first to obtain

dv

du
= dv/dt

du/dt
= − (γ a/α)u

(αc/γ )v
, (18)
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or

γ 2au du + α2cv dv = 0. (19)

Consequently,

γ 2au2 + α2cv2 = k, (20)

wherek is a nonnegative constant of integration. Thus the trajectories of the linear
system (17) are ellipses, just as in the example.

Returning briefly to the nonlinear system (1), observe that it can be reduced to the
single equation

dy

dx
= dy/dt

dx/dt
= y(−c + γ x)

x(a − αy)
. (21)

Equation (21) is separable and has the solution

a ln y − αy + c ln x − γ x = C, (22)

whereC is a constant of integration. Again it is possible to show that the graph of
Eq. (22), for fixedC , is a closed curve surrounding the critical point(c/γ, a/α). Thus
this critical point is also a center for the general nonlinear system (1).

The cyclic variation of the predator and prey populations can be analyzed in more
detail when the deviations from the point(c/γ, a/α) are small and the linear system
(17) can be used. The solution of the system (17) can be written in the form

u = c

γ
K cos(

√
ac t + φ), v = a

α

√
c

a
K sin(

√
ac t + φ), (23)

where the constantsK andφ are determined by the initial conditions. Thus

x = c

γ
+ c

γ
K cos(

√
ac t + φ),

(24)

y = a

α
+ a

α

√
c

a
K sin(

√
ac t + φ).

These equations are good approximations for the nearly elliptical trajectories close
to the critical point(c/γ, a/α). We can use them to draw several conclusions about the
cyclic variation of the predator and prey on such trajectories.

1. The sizes of the predator and prey populations vary sinusoidally with period
2π/

√
ac. This period of oscillation is independent of the initial conditions.

2. The predator and prey populations are out of phase by one-quarter of a cycle. The
prey leads and the predator lags, as explained in the example.

3. The amplitudes of the oscillations areK c/γ for the prey anda
√

cK/α
√

a for the
predator and hence depend on the initial conditions as well as on the parameters
of the problem.

4. The average populations of predator and prey over one complete cycle arec/γ
and a/α, respectively. These are the same as the equilibrium populations; see
Problem 10.

Cyclic variations of predator and prey as predicted by Eqs. (1) have been observed
in nature. One striking example is described by Odum (pp. 191–192); based on the
records of the Hudson Bay Company of Canada, the abundance of lynx and snowshoe
hare as indicated by the number of pelts turned in over the period 1845–1935 shows
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a distinct periodic variation with period of 9 to 10 years. The peaks of abundance are
followed by very rapid declines, and the peaks of abundance of the lynx and hare are
out of phase, with that of the hare preceding that of the lynx by a year or more.

The Lotka–Volterra model of the predator–prey problem has revealed a cyclic vari-
ation that perhaps could have been anticipated. On the other hand, the use of the
Lotka–Volterra model in other situations can lead to conclusions that are not intuitively
obvious. An example that suggests a possible danger in using insecticides is given in
Problem 12.

One criticism of the Lotka–Volterra equations is that in the absence of the predator
the prey will grow without bound. This can be corrected by allowing for the natural
inhibiting effect that an increasing population has on the growth rate of the population;
for example, the first of Eqs. (1) can be modified so that wheny = 0, it reduces to
a logistic equation forx (see Problem 13). The most important consequence of this
modification is that the critical point at(c/γ, a/α)moves to(c/γ, a/α − σc/αγ ) and
becomes an asymptotically stable point. It is either a node or a spiral point depending
on the values of the parameters in the differential equations. In either case, other
trajectories are no longer closed curves but approach the critical point ast → ∞.

PROBLEMS Each of Problems 1 through 5 can be interpreted as describing the interaction of two species
with population densitiesx andy. In each of these problems carry out the following steps.

(a) Draw a direction field and describe how solutions seem to behave.

(b) Find the critical points.

(c) For each critical point find the corresponding linear system. Find the eigenvalues and
eigenvectors of the linear system; classify each critical point as to type, and determine
whether it is asymptotically stable, stable, or unstable.

(d) Sketch the trajectories in the neighborhood of each critical point.

(e) Draw a phase portrait for the system.

(f) Determine the limiting behavior ofx andy ast → ∞ and interpret the results in terms of
the populations of the two species.

� 1. dx/dt = x(1.5 − 0.5y)
dy/dt = y(−0.5 + x)

� 2. dx/dt = x(1 − 0.5y)
dy/dt = y(−0.25+ 0.5x)

� 3. dx/dt = x(1 − 0.5x − 0.5y)
dy/dt = y(−0.25+ 0.5x)

� 4. dx/dt = x(1.125− x − 0.5y)
dy/dt = y(−1 + x)

� 5. dx/dt = x(−1 + 2.5x − 0.3y − x2)

dy/dt = y(−1.5 + x)

6. In this problem we examine the phase difference between the cyclic variations of the
predator and prey populations as given by Eqs. (24) of the text. Suppose we assume that
K > 0 and thatt is measured from the time that the prey populationx is a maximum;
thenφ = 0. Show that the predator populationy is a maximum att = π/2

√
ac = T/4,

whereT is the period of the oscillation. When is the prey population increasing most
rapidly, decreasing most rapidly, a minimum? Answer the same questions for the predator
population. Draw a typical elliptic trajectory enclosing the point(c/γ, a/α), and mark
these points on it.

� 7. (a) Find the ratio of the amplitudes of the oscillations of the prey and predator populations
about the critical point(c/γ, a/α), using the approximation (24), which is valid for small
oscillations. Observe that the ratio is independent of the initial conditions.
(b) Evaluate the ratio found in part (a) for the system (2).
(c) Estimate the amplitude ratio for the solution of the nonlinear system (2) shown in
Figure 9.5.3. Does the result agree with that obtained from the linear approximation?
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(d) Determine the prey–predator amplitude ratio for other solutions of the system (2), that
is, for solutions satisfying other initial conditions. Is the ratio independent of the initial
conditions?

� 8. (a) Find the period of the oscillations of the prey and predator populations, using the
approximation (24), which is valid for small oscillations. Note that the period is independent
of the amplitude of the oscillations.
(b) For the solution of the nonlinear system (2) shown in Figure 9.5.3 estimate the period
as well as possible. Is the result the same as for the linear approximation?
(c) Calculate other solutions of the system (2), that is, solutions satisfying other initial
conditions, and determine their periods. Is the period the same for all initial conditions?

� 9. Consider the system

dx/dt = ax [1 − (y/2)], dy/dt = by[−1 + (x/3)],

wherea andb are positive constants. Observe that this system is the same as in the example
in the text ifa = 1 andb = 0.75. Suppose the initial conditions arex(0) = 5 andy(0) = 2.
(a) Leta = 1 andb = 1. Plot the trajectory in the phase plane and determine (or estimate)
the period of the oscillation.
(b) Repeat part (a) fora = 3 anda = 1/3, with b = 1.
(c) Repeat part (a) forb = 3 andb = 1/3, with a = 1.
(d) Describe how the period and the shape of the trajectory depend ona andb.

� 10. The average sizes of the prey and predator populations are defined as

x = 1

T

∫ A+T

A
x(t) dt, y = 1

T

∫ A+T

A
y(t) dt,

respectively, whereT is the period of a full cycle, andA is any nonnegative constant.
(a) Using the approximation (24), valid near the critical point, show thatx = c/γ and
y = a/α.
(b) For the solution of the nonlinear system (2) shown in Figure 9.5.3 estimatex andy as
well as you can. Try to determine whetherx andy are given byc/γ anda/α, respectively,
in this case.
Hint: Consider how you might estimate the value of an integral even though you do not
have a formula for the integrand.
(c) Calculate other solutions of the system (2), that is, solutions satisfying other initial
conditions, and determinex andy for these solutions. Are the values ofx andy the same
for all solutions?

11. Suppose that the predator–prey equations (1) of the text describe foxes (y) and rabbits(x)
in a forest. A trapping company is engaged in trapping foxes and rabbits for their pelts.
Explain why it is reasonable for the company to conduct its operation so as to move the
population of each species closer to the center(c/γ, a/α). When is it best to trap foxes?
Rabbits? Rabbits and foxes? Neither?
Hint: See Problem 6. An intuitive argument is all that is required.

12. Suppose that an insect populationx is controlled by a natural predator populationy
according to the model (1), so that there are small cyclic variations of the populations
about the critical point(c/γ, a/α). Suppose that an insecticide is employed with the goal
of reducing the population of the insects, and suppose that this insecticide is also toxic
to the predators; indeed, suppose that the insecticide kills both prey and predator at rates
proportional to their respective populations. Write down the modified differential equations,
determine the new equilibrium point, and compare it to the original equilibrium point.

To ban insecticides on the basis of this simple model and counterintuitive result would
certainly be ill-advised. On the other hand, it is also rash to ignore the possible genuine
existence of a phenomenon suggested by such a model.
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13. As mentioned in the text, one improvement in the predator–prey model is to modify the
equation for the prey so that it has the form of a logistic equation in the absence of the
predator. Thus in place of Eqs. (1) we consider the system

dx/dt = x(a − σ x − αy), dy/dt = y(−c + γ x),

wherea, σ , α, c, andγ are positive constants. Determine all critical points and discuss
their nature and stability characteristics. Assume thata/σ � c/γ . What happens for initial
datax �= 0, y �= 0?

9.6 Liapunov’s Second Method

In Section 9.3 we showed how the stability of a critical point of an almost linear system
can usually be determined from a study of the corresponding linear system. However,
no conclusion can be drawn when the critical point is a center of the corresponding
linear system. Examples of this situation are the undamped pendulum, Equations (1)
and (2) below, and the predator–prey problem discussed in Section 9.5. Also, for
an asymptotically stable critical point it may be important to investigate the basin
of attraction; that is, the domain such that all solutions starting within that domain
approach the critical point. Since the theory of almost linear systems is a local theory,
it provides no information about this question.

In this section we discuss another approach, known asLiapunov’s5 second method
or direct method. The method is referred to as a direct method because no knowledge
of the solution of the system of differential equations is required. Rather, conclusions
about the stability or instability of a critical point are obtained by constructing a suitable
auxiliary function. The technique is a very powerful one that provides a more global
type of information, for example, an estimate of the extent of the basin of attraction of a
critical point. In addition, Liapunov’s second method can also be used to study systems
of equations that are not almost linear; however, we will not discuss such problems.

Basically, Liapunov’s second method is a generalization of two physical principles
for conservative systems, namely, (i) a rest position is stable if the potential energy is
a local minimum, otherwise it is unstable, and (ii) the total energy is a constant during
any motion. To illustrate these concepts, again consider the undamped pendulum (a
conservative mechanical system), which is governed by the equation

d2θ

dt2 + g

L
sinθ = 0. (1)

The corresponding system of first order equations is

dx

dt
= y,

dy

dt
= − g

L
sinx, (2)

5Alexandr M. Liapunov (1857–1918), a student of Chebyshev at St. Petersburg, taught at the University of
Kharkov from 1885 to 1901, when he became academician in applied mathematics at the St. Petersburg Academy
of Sciences. In 1917 he moved to Odessa because of his wife’s frail health. His research in stability encompassed
both theoretical analysis and applications to various physical problems. His second method formed part of his
most influential work,General Problem of Stability of Motion, published in 1892.
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wherex = θ andy = dθ/dt . If we omit an arbitrary constant, the potential energyU
is the work done in lifting the pendulum above its lowest position, namely,

U (x, y) = mgL(1 − cosx); (3)

see Figure 9.2.2. The critical points of the system (2) arex = ±nπ , y = 0, n =
0,1,2,3, . . . , corresponding toθ = ±nπ , dθ/dt = 0. Physically, we expect the points
x = 0, y = 0; x = ±2π , y = 0; . . . , corresponding toθ = 0,±2π, . . . , to be stable,
since for them the pendulum bob is vertical with the weight down; further, we expect the
pointsx = ±π , y = 0; x = ±3π , y = 0; . . . , corresponding toθ = ±π,±3π, . . . , to
be unstable, since for them the pendulum bob is vertical with the weight up. This agrees
with statement (i), for at the former pointsU is a minimum equal to zero, and at the
latter pointsU is a maximum equal to 2mgL.

Next consider the total energyV , which is the sum of the potential energyU and the
kinetic energy1

2mL2(dθ/dt)2. In terms ofx andy

V (x, y) = mgL(1 − cosx)+ 1
2mL2y2. (4)

On a trajectory corresponding to a solutionx = φ(t), y = ψ(t) of Eqs. (2),V can be
considered as a function oft . The derivative ofV [φ(t), ψ(t)] with respect tot is called
the rate of change ofV following the trajectory. By the chain rule

dV [φ(t), ψ(t)]

dt
= Vx [φ(t), ψ(t)]

dφ(t)

dt
+ Vy[φ(t), ψ(t)]

dψ(t)

dt

= (mgL sinx)
dx

dt
+ mL2y

dy

dt
, (5)

where it is understood thatx = φ(t), y = ψ(t). Finally, substituting in Eq. (5) for
dx/dt anddy/dt from Eqs. (2) we find thatdV/dt = 0. HenceV is a constant along
any trajectory of the system (2), which is statement (ii).

It is important to note that at any point(x, y) the rate of change ofV along the
trajectory through that point was computedwithout actually solving the system (2). It
is precisely this fact that allows us to use Liapunov’s second method for systems whose
solution we do not know, and is the main reason for its importance.

At the stable critical points,x = ±2nπ , y = 0, n = 0,1,2, . . . , the energyV is
zero. If the initial state, say,(x1, y1), of the pendulum is sufficiently near a stable
critical point, then the energyV (x1, y1) is small, and the motion (trajectory) associated
with this energy stays close to the critical point. It can be shown that ifV (x1, y1)

is sufficiently small, then the trajectory is closed and contains the critical point. For
example, suppose that(x1, y1) is near(0,0) and thatV (x1, y1) is very small. The
equation of the trajectory with energyV (x1, y1) is

V (x, y) = mgL(1 − cosx)+ 1
2mL2y2 = V (x1, y1).

For x small we have 1− cosx = 1 − (1 − x2/2! + · · ·) ∼= x2/2. Thus the equation of
the trajectory is approximately

1
2mgLx2 + 1

2mL2y2 = V (x1, y1),

or

x2

2V (x1, y1)/mgL
+ y2

2V (x1, y1)/mL2 = 1.
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This is an ellipse enclosing the critical point(0,0); the smallerV (x1, y1) is, the
smaller are the major and minor axes of the ellipse. Physically, the closed trajectory
corresponds to a solution that is periodic in time—the motion is a small oscillation
about the equilibrium point.

If damping is present, however, it is natural to expect that the amplitude of the motion
decays in time and that the stable critical point (center) becomes an asymptotically
stable critical point (spiral point). See the phase portrait for the damped pendulum
in Figure 9.3.5. This can almost be argued from a consideration ofdV/dt . For the
damped pendulum, the total energy is still given by Eq. (4), but now from Eqs. (8) of
Section 9.3dx/dt = y anddy/dt = −(g/L) sinx − (c/Lm)y. Substituting fordx/dt
anddy/dt in Eq. (5) givesdV/dt = −cLy2 ≤ 0. Thus the energy is nonincreasing
along any trajectory and, except for the liney = 0, the motion is such that the energy
decreases. Hence each trajectory must approach a point of minimum energy—a stable
equilibrium point. IfdV/dt < 0 instead ofdV/dt ≤ 0, it is reasonable to expect that
this would be true for all trajectories that start sufficiently close to the origin.

To pursue these ideas further, consider the autonomous system

dx/dt = F(x, y), dy/dt = G(x, y), (6)

and suppose that the pointx = 0, y = 0 is an asymptotically stable critical point. Then
there exists some domainD containing(0,0) such that every trajectory that starts inD
must approach the origin ast → ∞. Suppose that there exists an “energy” functionV
such thatV ≥ 0 for (x, y) in D with V = 0 only at the origin. Since each trajectory inD
approaches the origin ast → ∞, then following any particular trajectory,V decreases
to zero ast approaches infinity. The type of result we want to prove is essentially the
converse: If, on every trajectory,V decreases to zero ast increases, then the trajectories
must approach the origin ast → ∞, and hence the origin is asymptotically stable. First,
however, it is necessary to make several definitions.

Let V be defined on some domainD containing the origin. ThenV is said to
be positive definite on D if V (0,0) = 0 andV (x, y) > 0 for all other points inD.
Similarly, V is said to benegative definiteon D if V (0,0) = 0 andV (x, y) < 0 for all
other points inD. If the inequalities> and< are replaced by≥ and≤, thenV is said
to be positive semidefiniteand negative semidefinite, respectively. We emphasize
that in speaking of a positive definite (negative definite,. . . ) function on a domainD
containing the origin, the function must be zero at the origin in addition to satisfying
the proper inequality at all other points inD.

E X A M P L E

1

The function

V (x, y) = sin(x2 + y2)

is positive definite onx2 + y2 < π/2 sinceV (0,0) = 0 and V (x, y) > 0 for 0<
x2 + y2 < π/2. However, the function

V (x, y) = (x + y)2

is only positive semidefinite sinceV (x, y) = 0 on the liney = −x .
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We also want to consider the function

V�(x, y) = Vx(x, y)F(x, y)+ Vy(x, y)G(x, y), (7)

whereF andG are the same functions as in Eqs. (6). We choose this notation because
V�(x, y) can be identified as the rate of change ofV along the trajectory of the system
(6) that passes through the point(x, y). That is, ifx = φ(t), y = ψ(t) is a solution of
the system (6), then

dV [φ(t), ψ(t)]

dt
= Vx [φ(t), ψ(t)]

dφ(t)

dt
+ Vy[φ(t), ψ(t)]

dψ(t)

dt
= Vx(x, y)F(x, y)+ Vy(x, y)G(x, y)

= V�(x, y). (8)

The functionV� is sometimes referred to as the derivative ofV with respect to the
system (6).

We now state two Liapunov theorems, the first dealing with stability, the second with
instability.

Theorem 9.6.1 Suppose that the autonomous system (6) has an isolated critical point at the origin. If
there exists a functionV that is continuous and has continuous first partial derivatives,
is positive definite, and for which the functionV� given by Eq. (7) is negative definite on
some domainD in thexy-plane containing(0,0), then the origin is an asymptotically
stable critical point. IfV� is negative semidefinite, then the origin is a stable critical
point.

Theorem 9.6.2 Let the origin be an isolated critical point of the autonomous system (6). LetV be a
function that is continuous and has continuous first partial derivatives. Suppose that
V (0,0) = 0 and that in every neighborhood of the origin there is at least one point at
which V is positive (negative). If there exists a domainD containing the origin such
that the functionV� given by Eq. (7) is positive definite (negative definite) onD, then
the origin is an unstable critical point.

The functionV is called aLiapunov function . Before sketching geometrical argu-
ments for Theorems 9.6.1 and 9.6.2, we note that the difficulty in using these theorems
is that they tell us nothing about how to construct a Liapunov function, assuming that
one exists. In cases where the autonomous system (6) represents a physical problem,
it is natural to consider first the actual total energy function of the system as a possible
Liapunov function. However, Theorems 9.6.1 and 9.6.2 are applicable in cases where
the concept of physical energy is not pertinent. In such cases a judicious trial-and-error
approach may be necessary.

Now consider the second part of Theorem 9.6.1, that is, the caseV� ≤ 0. Letc ≥ 0 be
a constant and consider the curve in thexy-plane given byV (x, y) = c. Forc = 0 the
curve reduces to the single pointx = 0, y = 0. We assume that if 0< c1 < c2, then
the curveV (x, y) = c1 contains the origin and lies within the curveV (x, y) = c2, as
illustrated in Figure 9.6.1a. We show that a trajectory starting inside a closed curve
V (x, y) = c cannot cross to the outside. Thus, given a circle of radiusε about the
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(a) (b)

x

y

x

y

c = 0
c1

0 < c1 < c2

c2 x =   (t)φ
y =    (t)ψ

V(x, y) = c

(x1, y1)

Vx(x1, y1) i + Vy(x1, y1) j =    V(x1, y1)

d   (t1)φ
dt

d   (t1)ψ
dti + j = T(t1)

FIGURE 9.6.1 Geometrical interpretation of Liapunov’s method.

origin, by takingc sufficiently small we can ensure that every trajectory starting inside
the closed curveV (x, y) = c stays within the circle of radiusε; indeed, it stays within
the closed curveV (x, y) = c itself. Thus the origin is a stable critical point.

To show this, recall from calculus that the vector

�V (x, y) = Vx(x, y)i + Vy(x, y)j, (9)

known as the gradient ofV , is normal to the curveV (x, y) = c and points in the direc-
tion of increasingV . In the present case,V increases outward from the origin, so�V
points away from the origin, as indicated in Figure 9.6.1b. Next, consider a trajectory
x = φ(t), y = ψ(t) of the system (6), and recall that the vectorT(t) = φ′(t)i + ψ ′(t)j
is tangent to the trajectory at each point; see Figure 9.6.1b. Let x1 = φ(t1), y1 = ψ(t1)
be a point of intersection of the trajectory and a closed curveV (x, y) = c. At this point
φ′(t1) = F(x1, y1), ψ

′(t1) = G(x1, y1), so from Eq. (7) we obtain

V�(x1, y1) = Vx(x1, y1)φ
′(t1)+ Vy(x1, y1)ψ

′(t1)

= [Vx(x1, y1)i + Vy(x1, y1)j] � [φ′(t1)i + ψ ′(t1)j]
= �V (x1, y1) � T(t1). (10)

ThusV�(x1, y1) is the scalar product of the vector�V (x1, y1) and the vectorT(t1).
SinceV�(x1, y1) ≤ 0, it follows that the cosine of the angle between�V (x1, y1) and
T(t1) is also less than or equal to zero; hence the angle itself is in the range [π/2,3π/2].
Thus the direction of motion on the trajectory is inward with respect toV (x1, y1) = c or,
at worst, tangent to this curve. Trajectories starting inside a closed curveV (x1, y1) = c
(no matter how smallc is) cannot escape, so the origin is a stable point. IfV�(x1, y1) < 0,
then the trajectories passing through points on the curve are actually pointed inward.
As a consequence, it can be shown that trajectories starting sufficiently close to the
origin must approach the origin; hence the origin is asymptotically stable.

A geometric argument for Theorem 9.6.2 follows in a somewhat similar manner.
Briefly, suppose thatV� is positive definite, and suppose that given any circle about the
origin there is an interior point(x1, y1) at whichV (x1, y1) > 0. Consider a trajectory
that starts at(x1, y1). Along this trajectory it follows from Eq. (8) thatV must increase,
sinceV�(x1, y1) > 0; furthermore, sinceV (x1, y1) > 0, the trajectory cannot approach
the origin becauseV (0,0) = 0. This shows that the origin cannot be asymptotically
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stable. By further exploiting the fact thatV�(x, y) > 0, it is possible to show that the
origin is an unstable point; however, we will not pursue this argument.

E X A M P L E

2

Use Theorem 9.6.1 to show that(0,0) is a stable critical point for the undamped
pendulum equations (2). Also use Theorem 9.6.2 to show that(π,0) is an unstable
critical point.

Let V be the total energy given by Eq. (4):

V (x, y) = mgL(1 − cosx)+ 1
2mL2y2. (4)

If we take D to be the domain−π/2< x < π/2, −∞ < y < ∞, thenV is positive
there except at the origin, where it is zero. ThusV is positive definite onD. Further,
as we have already seen,

V� = (mgL sinx)(y)+ (mL2y)(−g sinx)/L = 0

for all x andy. ThusV� is negative semidefinite onD. Consequently, by the last statement
in Theorem 9.6.1, the origin is a stable critical point for the undamped pendulum.
Observe that this conclusion cannot be obtained from Theorem 9.3.2 because(0,0) is
a center for the corresponding linear system.

Now consider the critical point(π,0). The Liapunov function given by Eq. (4) is
no longer suitable because Theorem 9.6.2 calls for a functionV for which V� is either
positive or negative definite. To analyze the point(π,0) it is convenient to move this
point to the origin by the change of variablesx = π + u, y = v. Then the differential
equations (2) become

du/dt = v, dv/dt = g

L
sinu, (11)

and the critical point is(0,0) in theuv-plane. Consider the function

V (u, v) = v sinu (12)

and letD be the domain−π/4< u < π/4, −∞ < v < ∞. Then

V� = (v cosu)(v)+ (sinu)[(g/L) sinu] = v2 cosu + (g/L) sin2 u (13)

is positive definite inD. The only remaining question is whether there are points in
every neighborhood of the origin whereV itself is positive. From Eq. (12) we see that
V (u, v) > 0 in the first quadrant (where both sinu andv are positive) and in the third
quadrant (where both are negative). Thus the conditions of Theorem 9.6.2 are satisfied
and the point(0,0) in theuv-plane, or the point(π,0) in thexy-plane, is unstable.

The damped pendulum equations are discussed in Problem 7.

From a practical point of view we are often more interested in the basin of attraction.
The following theorem provides some information on this subject.

Theorem 9.6.3 Let the origin be an isolated critical point of the autonomous system (6). Let the
function V be continuous and have continuous first partial derivatives. If there is a
bounded domainDK containing the origin whereV (x, y) < K , V is positive definite,
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andV� is negative definite, then every solution of Eqs. (6) that starts at a point inDK
approaches the origin ast approaches infinity.

In other words, Theorem 9.6.3 says that ifx = φ(t), y = ψ(t) is the solution of
Eqs. (6) for initial data lying inDK , then(x, y) approaches the critical point (0, 0)
as t → ∞. Thus DK gives a region of asymptotic stability; of course, it may not be
the entire basin of attraction. This theorem is proved by showing that (i) there are no
periodic solutions of the system (6) inDK , and (ii) there are no other critical points in
DK . It then follows that trajectories starting inDK cannot escape and, therefore, must
tend to the origin ast tends to infinity.

Theorems 9.6.1 and 9.6.2 give sufficient conditions for stability and instability,
respectively. However, these conditions are not necessary, nor does our failure to
determine a suitable Liapunov function mean that there is not one. Unfortunately, there
are no general methods for the construction of Liapunov functions; however, there has
been extensive work on the construction of Liapunov functions for special classes of
equations. An elementary algebraic result that is often useful in constructing positive
definite or negative definite functions is stated without proof in the following theorem.

Theorem 9.6.4 The function

V (x, y) = ax2 + bxy + cy2 (14)

is positive definite if, and only if,

a > 0 and 4ac − b2 > 0, (15)

and is negative definite if, and only if,

a < 0 and 4ac − b2 > 0. (16)

The use of Theorem 9.6.4 is illustrated in the following example.

E X A M P L E

3

Show that the critical point(0,0) of the autonomous system

dx/dt = −x − xy2, dy/dt = −y − x2y (17)

is asymptotically stable.
We try to construct a Liapunov function of the form (14). ThenVx(x, y) = 2ax + by,

Vy(x, y) = bx + 2cy, so

V�(x, y) = (2ax + by)(−x − xy2)+ (bx + 2cy)(−y − x2y)

= −[2a(x2 + x2y2)+ b(2xy + xy3 + x3y)+ 2c(y2 + x2y2)].

If we chooseb = 0, anda andc to be any positive numbers, thenV� is negative definite
andV is positive definite by Theorem 9.6.4. Thus by Theorem 9.6.1 the origin is an
asymptotically stable critical point.
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E X A M P L E

4

Consider the system

dx/dt = x(1 − x − y),
(18)

dy/dt = y(0.75− y − 0.5x).

In Example 1 of Section 9.4 we found that this system models a certain pair of competing
species, and that the critical point(0.5,0.5) is asymptotically stable. Confirm this
conclusion by finding a suitable Liapunov function.

It is helpful to transform the point(0.5,0.5) to the origin. To this end let

x = 0.5 + u, y = 0.5 + v. (19)

Then, substituting forx andy in Eqs. (18), we obtain the new system

du/dt = −0.5u − 0.5v − u2 − uv,
(20)

dv/dt = −0.25u − 0.5v − 0.5uv − v2.

To keep the calculations relatively simple, consider the functionV (u, v) = u2 + v2 as
a possible Liapunov function. This function is clearly positive definite, so we only need
to determine whether there is a region containing the origin in theuv-plane where the
derivativeV� with respect to the system (20) is negative definite. We computeV�(u, v)
and find that

V�(u, v) = Vu

du

dt
+ V

v

dv

dt
= 2u(−0.5u − 0.5v − u2 − uv)+ 2v(−0.25u − 0.5v − 0.5uv − v2),

or

V�(u, v) = −[(u2 + 1.5uv + v2)+ (2u3 + 2u2v + uv2 + 2v3)], (21)

where we have collected together the quadratic and cubic terms. We want to show that
the expression in square brackets in Eq. (21) is positive definite, at least foru andv
sufficiently small. Observe that the quadratic terms can be written as

u2 + 1.5uv + v2 = 0.25(u2 + v2)+ 0.75(u + v)2, (22)

so these terms are positive definite. On the other hand, the cubic terms in Eq. (18) may
be of either sign. Thus we must show that, in some neighborhood ofu = 0, v = 0, the
cubic terms are smaller in magnitude than the quadratic terms; that is,

|2u3 + 2u2v + uv2 + 2v3| < 0.25(u2 + v2)+ 0.75(u + v)2. (23)

To estimate the left side of Eq. (23) we introduce polar coordinatesu = r cosθ , v =
r sinθ . Then

|2u3 + 2u2v + uv2 + 2v3| = r3|2 cos3 θ + 2 cos2 θ sinθ + cosθ sin2 θ + 2 sin3 θ |
≤ r3[2| cos3 θ | + 2 cos2 θ | sinθ | + | cosθ | sin2 θ + 2| sin3 θ |]
≤ 7r3,

since| sinθ |, | cosθ | ≤ 1. To satisfy Eq. (23) it is now certainly sufficient to satisfy the
more stringent requirement

7r3 < 0.25(u2 + v2) = 0.25r2,
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which yieldsr < 1/28. Thus, at least in this disk, the hypotheses of Theorem 9.6.1 are
satisfied, so the origin is an asymptotically stable critical point of the system (20). The
same is then true of the critical point(0.5,0.5) of the original system (18).

If we refer to Theorem 9.6.3, the preceding argument also shows that the disk with
center(0.5,0.5) and radius 1/28 is a region of asymptotic stability for the system (18).
This is a severe underestimate of the full basin of attraction, as the discussion in Section
9.4 shows. To obtain a better estimate of the actual basin of attraction from Theorem
9.6.3, one would have to estimate the terms in Eq. (23) more accurately, use a better
(and presumably more complicated) Liapunov function, or both.

PROBLEMS In each of Problems 1 through 4 construct a suitable Liapunov function of the formax2 + cy2,
wherea andc are to be determined. Then show that the critical point at the origin is of the
indicated type.

1. dx/dt = −x3 + xy2, dy/dt = −2x2y − y3; asymptotically stable
2. dx/dt = − 1

2 x3 + 2xy2, dy/dt = −y3; asymptotically stable
3. dx/dt = −x3 + 2y3, dy/dt = −2xy2; stable (at least)
4. dx/dt = x3 − y3, dy/dt = 2xy2 + 4x2y + 2y3; unstable

5. Consider the system of equations

dx/dt = y − x f (x, y), dy/dt = −x − y f (x, y),

where f is continuous and has continuous first partial derivatives. Show that iff (x, y) > 0
in some neighborhood of the origin, then the origin is an asymptotically stable critical point,
and if f (x, y) < 0 in some neighborhood of the origin, then the origin is an unstable critical
point.
Hint: Construct a Liapunov function of the formc(x2 + y2).

6. A generalization of the undamped pendulum equation is

d2u/dt2 + g(u) = 0, (i)

whereg(0) = 0, g(u) > 0 for 0< u < k, andg(u) < 0 for −k < u < 0; that is,ug(u) > 0
for u �= 0, −k < u < k. Notice thatg(u) = sinu has this property on(−π/2, π/2).
(a) Lettingx = u, y = du/dt , write Eq. (i) as a system of two equations, and show that
x = 0, y = 0 is a critical point.
(b) Show that

V (x, y) = 1
2 y2 +

∫ x

0
g(s) ds, −k < x < k (ii)

is positive definite, and use this result to show that the critical point(0,0) is stable. Note
that the Liapunov functionV given by Eq. (ii) corresponds to the energy functionV (x, y) =
1
2 y2 + (1 − cosx) for the caseg(u) = sinu.

7. By introducing suitable dimensionless variables, the system of nonlinear equations for the
damped pendulum [Eqs. (8) of Section 9.3] can be written as

dx/dt = y, dy/dt = −y − sinx .

(a) Show that the origin is a critical point.
(b) Show that whileV (x, y) = x2 + y2 is positive definite,V�(x, y) takes on both positive
and negative values in any domain containing the origin, so thatV is not a Liapunov
function.
Hint: x − sinx > 0 for x > 0 andx − sinx < 0 for x < 0. Consider these cases withy
positive buty so small thaty2 can be ignored compared toy.
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(c) Using the energy functionV (x, y) = 1
2 y2 + (1 − cosx) mentioned in Problem 6(b),

show that the origin is a stable critical point. Note, however, that even though there is
damping and we can expect that the origin is asymptotically stable, it is not possible to draw
this conclusion using this Liapunov function.
(d) To show asymptotic stability it is necessary to construct a better Liapunov function than
the one used in part (c). Show thatV (x, y) = 1

2(x + y)2 + x2 + 1
2 y2 is such a Liapunov

function, and conclude that the origin is an asymptotically stable critical point.
Hint: From Taylor’s formula with a remainder it follows that sinx = x − αx3/3!, whereα
depends onx but 0< α < 1 for −π/2< x < π/2. Then lettingx = r cosθ , y = r sinθ ,
show thatV�(r cosθ, r sinθ) = −r2[1 + h(r, θ)], where |h(r, θ)| < 1 if r is sufficiently
small.

8. The Líenard equation (Problem 28 of Section 9.3) is

d2u

dt2 + c(u)
du

dt
+ g(u) = 0,

whereg satisfies the conditions of Problem 6 andc(u) ≥ 0. Show that the pointu = 0,
du/dt = 0 is a stable critical point.

9. (a) A special case of the Liénard equation of Problem 8 is

d2u

dt2 + du

dt
+ g(u) = 0,

whereg satisfies the conditions of Problem 6. Lettingx = u, y = du/dt , show that the origin
is a critical point of the resulting system. This equation can be interpreted as describing the
motion of a spring–mass system with damping proportional to the velocity and a nonlinear
restoring force. Using the Liapunov function of Problem 6, show that the origin is a stable
critical point, but note that even with damping we cannot conclude asymptotic stability using
this Liapunov function.
(b) Asymptotic stability of the critical point(0,0) can be shown by constructing a better
Liapunov function as was done in part (d) of Problem 7. However, the analysis for a general
functiong is somewhat sophisticated and we only mention that an appropriate form forV is

V (x, y) = 1
2 y2 + Ayg(x)+

∫ x

0
g(s) ds,

whereA is a positive constant to be chosen so thatV is positive definite andV� is negative
definite. For the pendulum problem [g(x) = sinx ] useV as given by the preceding equation
with A = 1

2 to show that the origin is asymptotically stable.
Hint: Use sinx = x − αx3/3! and cosx = 1 − βx2/2! whereα andβ depend onx , but
0< α < 1 and 0< β < 1 for −π/2< x < π/2; let x = r cosθ , y = r sinθ , and show that
V�(r cosθ, r sinθ) = − 1

2r2[1 + 1
2 sin 2θ + h(r, θ)], where |h(r, θ)| < 1

2 if r is sufficiently
small. To show thatV is positive definite use cosx = 1 − x2/2 + γ x4/4!, whereγ depends
on x , but 0< γ < 1 for −π/2< x < π/2.

In Problems 10 and 11 we will prove part of Theorem 9.3.2: If the critical point(0,0) of the
almost linear system

dx/dt = a11x + a12y + F1(x, y), dy/dt = a21x + a22y + G1(x, y) (i)

is an asymptotically stable critical point of the corresponding linear system

dx/dt = a11x + a12y, dy/dt = a21x + a22y, (ii)

then it is an asymptotically stable critical point of the almost linear system (i). Problem 12 deals
with the corresponding result for instability.
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10. Consider the linear system (ii).
(a) Since(0,0) is an asymptotically stable critical point, show thata11 + a22 < 0 and
a11a22 − a12a21 > 0. (See Problem 21 of Section 9.1.)
(b) Construct a Liapunov functionV (x, y) = Ax2 + Bxy + Cy2 such thatV is positive
definite andV� is negative definite. One way to ensure thatV� is negative definite is to choose
A, B, andC so thatV�(x, y) = −x2 − y2. Show that this leads to the result

A = −a2
21 + a2

22 + (a11a22 − a12a21)

2�
, B = a12a22 + a11a21

�
,

C = −a2
11 + a2

12 + (a11a22 − a12a21)

2�
,

where� = (a11 + a22)(a11a22 − a12a21).
(c) Using the result of part (a) show thatA > 0 and then show (several steps of algebra
are required) that

4AC − B2 = (a2
11 + a2

12 + a2
21 + a2

22)(a11a22 − a12a21)+ 2(a11a22 − a12a21)
2

�2 > 0.

Thus by Theorem 9.6.4,V is positive definite.
11. In this problem we show that the Liapunov function constructed in the preceding problem

is also a Liapunov function for the almost linear system (i). We must show that there is
some region containing the origin for whichV� is negative definite.
(a) Show that

V�(x, y) = −(x2 + y2)+ (2Ax + By)F1(x, y)+ (Bx + 2Cy)G1(x, y).

(b) Recall thatF1(x, y)/r → 0 and G1(x, y)/r → 0 as r = (x2 + y2)1/2 → 0. This
means that given anyε > 0 there exists a circler = R about the origin such that for
0< r < R, |F1(x, y)| < εr , and|G1(x, y)| < εr . LettingM be the maximum of|2A|, |B|,
and|2C |, show by introducing polar coordinates thatR can be chosen so thatV�(x, y) < 0
for r < R.
Hint: Chooseε sufficiently small in terms ofM .

12. In this problem we prove a part of Theorem 9.3.2 relating to instability.
(a) Show that ifa11 + a22 > 0 anda11a22 − a12a21 > 0, then the critical point(0,0) of
the linear system (ii) is unstable.
(b) The same result holds for the almost linear system (i). As in Problems 10 and 11
construct a positive definite functionV such thatV�(x, y) = x2 + y2 and hence is positive
definite, and then invoke Theorem 9.6.2.

9.7 Periodic Solutions and Limit Cycles

In this section we discuss further the possible existence of periodic solutions of second
order autonomous systems

x′ = f(x). (1)

Such solutions satisfy the relation

x(t + T ) = x(t) (2)
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for all t and for some nonnegative constantT called the period. The corresponding
trajectories areclosed curves in the phase plane. Periodic solutions often play an
important role in physical problems because they represent phenomena that occur
repeatedly. In many situations a periodic solution represents a “final state” toward
which all “neighboring” solutions tend as the transients due to the initial conditions die
out.

A special case of a periodic solution is a constant solutionx = x0, which corresponds
to a critical point of the autonomous system. Such a solution is clearly periodic with any
period. In this section, when we speak of a periodic solution, we mean a nonconstant
periodic solution. In this case the periodT is positive and is usually chosen as the
smallest positive number for which Eq. (2) is valid.

Recall that the solutions of the linear autonomous system

x′ = Ax (3)

are periodic if and only if the eigenvalues ofA are pure imaginary. In this case the
critical point at the origin is a center, as discussed in Section 9.1. We emphasize
that if the eigenvalues ofA are pure imaginary, then every solution of the linear
system (3) is periodic; while if the eigenvalues are not pure imaginary, then there
are no (nonconstant) periodic solutions. The predator–prey equations discussed in
Section 9.5, although nonlinear, behave similarly: All solutions in the first quadrant are
periodic. The following example illustrates a different way in which periodic solutions
of nonlinear autonomous systems can occur.

E X A M P L E

1

Discuss the solutions of the system(
x
y

)′
=
(

y + x − x(x2 + y2)

−x + y − y(x2 + y2)

)
. (4)

It is not difficult to show that(0,0) is the only critical point of the system (4), and also
that the system is almost linear in the neighborhood of the origin. The corresponding
linear system (

x
y

)′
=
(

1 1
−1 1

)(
x
y

)
(5)

has eigenvalues 1± i . Therefore the origin is an unstable spiral point for both the linear
system (5) and the nonlinear system (4). Thus any solution that starts near the origin in
the phase plane will spiral away from the origin. Since there are no other critical points,
we might think that all solutions of Eqs. (4) correspond to trajectories that spiral out to
infinity. However, we now show that this is incorrect because far away from the origin
the trajectories are directed inward.

It is convenient to introduce polar coordinatesr andθ , where

x = r cosθ, y = r sinθ, (6)

andr ≥ 0. If we multiply the first of Eqs. (4) byx , the second byy, and add, we then
obtain

x
dx

dt
+ y

dy

dt
= (x2 + y2)− (x2 + y2)2. (7)
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Sincer2 = x2 + y2 andr(dr/dt) = x(dx/dt)+ y(dy/dt), it follows from Eq. (7) that

r
dr

dt
= r2(1 − r2). (8)

This is similar to the equations discussed in Section 2.5. The critical points (forr ≥ 0)
are the origin and the pointr = 1, which corresponds to the unit circle in the phase
plane. From Eq. (8) it follows thatdr/dt > 0 if r < 1 anddr/dt < 0 if r > 1. Thus,
inside the unit circle the trajectories are directed outward, while outside the unit circle
they are directed inward. Apparently, the circler = 1 is a limiting trajectory for this
system.

To determine an equation forθ we multiply the first of Eqs. (4) byy, the second by
x , and subtract, obtaining

y
dx

dt
− x

dy

dt
= x2 + y2. (9)

Upon calculatingdx/dt anddy/dt from Eqs. (6), we find that the left side of Eq. (9)
is −r2(dθ/dt), so Eq. (9) reduces to

dθ

dt
= −1. (10)

The system of equations (8), (10) forr andθ is equivalent to the original system (4).
One solution of the system (8), (10) is

r = 1, θ = −t + t0, (11)

wheret0 is an arbitrary constant. Ast increases, a point satisfying Eqs. (11) moves
clockwise around the unit circle. Thus the autonomous system (4) has a periodic
solution. Other solutions can be obtained by solving Eq. (8) by separation of variables;
if r �= 0 andr �= 1, then

dr

r(1 − r2)
= dt. (12)

Equation (12) can be solved by using partial fractions to rewrite the left side and then
integrating. By performing these calculations we find that the solution of Eqs. (10) and
(12) is

r = 1√
1 + c0e−2t

, θ = −t + t0, (13)

wherec0 and t0 are arbitrary constants. The solution (13) also contains the solution
(11), which is obtained by settingc0 = 0 in the first of Eqs. (13).

The solution satisfying the initial conditionsr = ρ, θ = α at t = 0 is given by

r = 1√
1 + [(1/ρ2)− 1]e−2t

, θ = −(t − α). (14)

If ρ < 1, thenr → 1 from the inside ast → ∞; if ρ > 1, thenr → 1 from the outside
ast → ∞. Thus in all cases the trajectories spiral toward the circler = 1 ast → ∞.
Several trajectories are shown in Figure 9.7.1.
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FIGURE 9.7.1 Trajectories of the system (4); a limit cycle.

In this example the circler = 1 not only corresponds to periodic solutions of the
system (4), but, in addition, other nonclosed trajectories spiral toward it ast → ∞. In
general, a closed trajectory in the phase plane such that other nonclosed trajectories
spiral toward it, either from the inside or the outside, ast → ∞, is called alimit cycle.
Thus the circler = 1 is a limit cycle for the system (4). If all trajectories that start near a
closed trajectory (both inside and outside) spiral toward the closed trajectory ast → ∞,
then the limit cycle isasymptotically stable. Since the limiting trajectory is itself a
periodic orbit rather than an equilibrium point, this type of stability is often called
orbital stability. If the trajectories on one side spiral toward the closed trajectory,
while those on the other side spiral away ast → ∞, then the limit cycle is said to
be semistable. If the trajectories on both sides of the closed trajectory spiral away
as t → ∞, then the closed trajectory isunstable. It is also possible to have closed
trajectories that other trajectories neither approach nor depart from, for example, the
periodic solutions of the predator–prey equations in Section 9.5. In this case the closed
trajectory isstable.

In Example 1 the existence of an asymptotically stable limit cycle was established
by solving the equations explicitly. Unfortunately, this is usually not possible, so it is
worthwhile to know general theorems concerning the existence or nonexistence of limit
cycles of nonlinear autonomous systems. In discussing these theorems it is convenient
to rewrite the system (1) in the scalar form

dx/dt = F(x, y), dy/dt = G(x, y). (15)

Theorem 9.7.1 Let the functionsF andG have continuous first partial derivatives in a domainD of
thexy-plane. A closed trajectory of the system (15) must necessarily enclose at least
one critical (equilibrium) point. If it encloses only one critical point, the critical point
cannot be a saddle point.
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Although we omit the proof of this theorem, it is easy to show examples of it. One
is given by Example 1 and Figure 9.7.1 in which the closed trajectory encloses the
critical point (0,0), a spiral point. Another example is the system of predator–prey
equations in Section 9.5; see Figure 9.5.2. Each closed trajectory surrounds the critical
point (3,2); in this case the critical point is a center.

Theorem 9.7.1 is also useful in a negative sense. If a given region contains no critical
points, then there can be no closed trajectory lying entirely in the region. The same
conclusion is true if the region contains only one critical point, and this point is a saddle
point. For instance, in Example 2 of Section 9.4, an example of competing species,
the only critical point in the interior of the first quadrant is the saddle point(0.5,0.5).
Therefore this system has no closed trajectory lying in the first quadrant.

A second result about the nonexistence of closed trajectories is given in the following
theorem.

Theorem 9.7.2 Let the functionsF and G have continuous first partial derivatives in a simply
connected domainD of the xy-plane. If Fx + G y has the same sign throughoutD,
then there is no closed trajectory of the system (15) lying entirely inD.

A simply connected two-dimensional domain is one with no holes. Theorem 9.7.2 is
a straightforward consequence of Green’s theorem in the plane; see Problem 13. Note
that if Fx + G y changes sign in the domain, then no conclusion can be drawn; there
may or may not be closed trajectories inD.

To illustrate Theorem 9.7.2 consider the system (4). A routine calculation shows that

Fx(x, y)+ G y(x, y) = 2 − 4(x2 + y2) = 2(1 − 2r2), (16)

where, as usual,r2 = x2 + y2. HenceFx + G y is positive for 0≤ r < 1/
√

2, so there is
no closed trajectory in this circular disk. Of course, we showed in Example 1 that there is
no closed trajectory in the larger regionr < 1. This illustrates that the information given
by Theorem 9.7.2 may not be the best possible result. Again referring to Eq. (16), note
that Fx + G y < 0 for r > 1/

√
2. However, the theorem is not applicable in this case

because this annular region is not simply connected. Indeed, as shown in Example 1,
it does contain a limit cycle.

The following theorem gives conditions that guarantee the existence of a closed
trajectory.

Theorem 9.7.3 (Poincare´–Bendixson6 Theorem). Let the functionsF and G have continuous first
partial derivatives in a domainD of the xy-plane. LetD1 be a bounded subdomain
in D, and let R be the region that consists ofD1 plus its boundary (all points of
R are in D). Suppose thatR contains no critical point of the system (15). If there
exists a constantt0 such thatx = φ(t), y = ψ(t) is a solution of the system (15)
that exists and stays inR for all t ≥ t0, then eitherx = φ(t), y = ψ(t) is a periodic

6Ivar Otto Bendixson (1861–1935) was a Swedish mathematician. This theorem appeared in a paper published
by him in Acta Mathematica in 1901.
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solution (closed trajectory), orx = φ(t), y = ψ(t) spirals toward a closed trajectory
ast → ∞. In either case, the system (15) has a periodic solution inR.

Note that ifR does contain a closed trajectory, then necessarily, by Theorem 9.7.1,
this trajectory must enclose a critical point. However, this critical point cannot be inR.
ThusR cannot be simply connected; it must have a hole.

As an application of the Poincaré–Bendixson theorem, consider again the system
(4). Since the origin is a critical point, it must be excluded. For instance, we can
consider the regionR defined by 0.5 ≤ r ≤ 2. Next, we must show that there is a
solution whose trajectory stays inR for all t greater than or equal to somet0. This
follows immediately from Eq. (8). Forr = 0.5, dr/dt > 0, sor increases, while for
r = 2, dr/dt < 0, sor decreases. Thus any trajectory that crosses the boundary ofR
is enteringR. Consequently, any solution of Eqs. (4) that starts inR at t = t0 cannot
leave but must stay inR for t > t0. Of course, other numbers could be used instead of
0.5 and 2; all that is important is thatr = 1 is included.

One should not infer from this discussion of the preceding theorems that it is easy
to determine whether a given nonlinear autonomous system has periodic solutions or
not; often it is not a simple matter at all. Theorems 9.7.1 and 9.7.2 are frequently
inconclusive, while for Theorem 9.7.3 it is often difficult to determine a regionR and
a solution that always remains within it.

We close this section with another example of a nonlinear system that has a limit
cycle.

E X A M P L E

2

The van der Pol (1889–1959) equation

u′′ − µ(1 − u2)u′ + u = 0, (17)

whereµ is a positive constant, describes the currentu in a triode oscillator. Discuss
the solutions of this equation.

If µ = 0, Eq. (17) reduces tou′′ + u = 0, whose solutions are sine or cosine waves
of period 2π . For µ > 0 the second term on the left side of Eq. (17) must also be
considered. This is the resistance term, proportional tou′, with a coefficient−µ(1 − u2)

that depends onu. For largeu this term is positive and acts as usual to reduce the
amplitude of the response. However, for smallu the resistance term is negative and
so causes the response to grow. This suggests that perhaps there is a solution of
intermediate size that other solutions approach ast increases.

To analyze Eq. (17) more carefully we write it as a second order system by introducing
the variablesx = u, y = u′. Then it follows that

x ′ = y, y′ = −x + µ(1 − x2)y. (18)

The only critical point of the system (18) is the origin. Near the origin the corresponding
linear system is (

x
y

)′
=
(

0 1
−1 µ

)(
x
y

)
, (19)

whose eigenvalues are(µ±
√
µ2 − 4)/2. Thus the origin is an unstable spiral point

for 0< µ < 2 and an unstable node forµ ≥ 2. In all cases, a solution that starts near
the origin grows ast increases.
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With regard to periodic solutions Theorems 9.7.1 and 9.7.2 provide only partial
information. From Theorem 9.7.1 we conclude that if there are closed trajectories, they
must enclose the origin. Next, we calculateFx(x, y)+ G y(x, y), with the result that

Fx(x, y)+ G y(x, y) = µ(1 − x2). (20)

Then, it follows from Theorem 9.7.2 that closed trajectories, if there are any, are not
contained in the strip|x | < 1 whereFx + G y > 0.

The application of the Poincaré–Bendixson theorem to this problem is not nearly as
simple as for the preceding example. If we introduce polar coordinates, we find that
the equation for the radial variabler is

r ′ = µ(1 − r2 cos2 θ)r sin2 θ. (21)

Again, consider an annular regionR given byr1 ≤ r ≤ r2,wherer1 is small andr2 is
large. Whenr = r1, the linear term on the right side of Eq. (21) dominates, andr ′ > 0
except on thex-axis, where sinθ = 0 and consequentlyr ′ = 0 also. Thus, trajectories
are enteringR at every point on the circler = r1 except possibly for those on the
x-axis, where the trajectories are tangent to the circle. Whenr = r2, the cubic term
on the right side of Eq. (21) is the dominant one. Thusr ′ < 0 except for points on
the x-axis wherer ′ = 0 and for points near they-axis wherer2 cos2 θ < 1 and the
linear term makesr ′ > 0. Thus, no matter how large a circle is chosen, there will be
points on it (namely, the points on or near they-axis) where trajectories are leavingR.
Therefore, the Poincare´–Bendixson theorem is not applicable unless we consider more
complicated regions.

It is possible to show, by a more intricate analysis, that the van der Pol equation does
have a unique limit cycle. However, we will not follow this line of argument further, but
turn instead to a different approach in which we plot numerically computed solutions.
Experimental observations indicate that the van der Pol equation has a stable periodic
solution whose period and amplitude depend on the parameterµ. By looking at graphs
of trajectories in the phase plane and ofu versust we can gain some understanding of
this periodic behavior.

Figure 9.7.2 shows two trajectories of the van der Pol equation in the phase plane
for µ = 0.2. The trajectory starting near the origin spirals outward in the clockwise
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FIGURE 9.7.2 Trajectories of the van der Pol equation (17) forµ = 0.2.
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FIGURE 9.7.3 Plots ofu versust for the trajectories in Figure 9.7.2.

direction; this is consistent with the behavior of the linear approximation near the
origin. The other trajectory passes through(−3,2) and spirals inward, again in the
clockwise direction. Both trajectories approach a closed curve that corresponds to
a stable periodic solution. In Figure 9.7.3 we show the plots ofu versust for the
solutions corresponding to the trajectories in Figure 9.7.2. The solution that is initially
smaller gradually increases in amplitude, while the larger solution gradually decays.
Both solutions approach a stable periodic motion that corresponds to the limit cycle.
Figure 9.7.3 also shows that there is a phase difference between the two solutions as
they approach the limit cycle. The plots ofu versust are nearly sinusoidal in shape,
consistent with the nearly circular limit cycle in this case.

Figures 9.7.4 and 9.7.5 show similar plots for the caseµ = 1. Trajectories again
move clockwise in the phase plane, but the limit cycle is considerably different from a
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FIGURE 9.7.4 Trajectories of the van der Pol equation (17) forµ = 1.
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FIGURE 9.7.5 Plots ofu versust for the trajectories in Figure 9.7.4.

circle. The plots ofu versust tend more rapidly to the limiting oscillation, and again
show a phase difference. The oscillations are somewhat less symmetric in this case,
rising somewhat more steeply than they fall.

Figure 9.7.6 shows the phase plane forµ = 5. The motion remains clockwise, and
the limit cycle is even more elongated, especially in they direction. In Figure 9.7.7
is a plot of u versust . Although the solution starts far from the limit cycle, the
limiting oscillation is virtually reached in a fraction of a period. Starting from one of
its extreme values on thex-axis in the phase plane, the solution moves toward the other
extreme position slowly at first, but once a certain point on the trajectory is reached,
the remainder of the transition is completed very swiftly. The process is then repeated
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FIGURE 9.7.6 Trajectories of the van der Pol equation (17) forµ = 5.
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FIGURE 9.7.7 Plot of u versust for the outward spiralling trajectory in Figure 9.7.6.

in the opposite direction. The waveform of the limit cycle, as shown in Figure 9.7.7, is
quite different from a sine wave.

These graphs clearly show that, in the absence of external excitation, the van der Pol
oscillator has a certain characteristic mode of vibration for each value ofµ. The graphs
of u versust show that the amplitude of this oscillation changes very little withµ, but
the period increases asµ increases. At the same time, the waveform changes from one
that is very nearly sinusoidal to one that is much less smooth.

The presence of a single periodic motion that attracts all (nearby) solutions, that is,
a stable limit cycle, is one of the characteristic phenomena associated with nonlinear
differential equations.

PROBLEMS In each of Problems 1 through 6 an autonomous system is expressed in polar coordinates.
Determine all periodic solutions, all limit cycles, and determine their stability characteristics.

1. dr/dt = r2(1 − r2), dθ/dt = 1
2. dr/dt = r(1 − r)2, dθ/dt = −1
3. dr/dt = r(r − 1)(r − 3), dθ/dt = 1
4. dr/dt = r(1 − r)(r − 2), dθ/dt = −1
5. dr/dt = sinπr, dθ/dt = 1
6. dr/dt = r |r − 2|(r − 3), dθ/dt = −1
7. If x = r cosθ , y = r sinθ , show thaty(dx/dt)− x(dy/dt) = −r2(dθ/dt).
8. (a) Show that the system

dx/dt = −y + x f (r)/r, dy/dt = x + y f (r)/r

has periodic solutions corresponding to the zeros off (r). What is the direction of motion
on the closed trajectories in the phase plane?
(b) Let f (r) = r(r − 2)2(r2 − 4r + 3). Determine all periodic solutions and determine
their stability characteristics.

9. Determine the periodic solutions, if any, of the system

dx

dt
= y + x√

x2 + y2
(x2 + y2 − 2),

dy

dt
= −x + y√

x2 + y2
(x2 + y2 − 2).
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10. Using Theorem 9.7.2, show that the linear autonomous system

dx/dt = a11x + a12y, dy/dt = a21x + a22y

does not have a periodic solution (other thanx = 0, y = 0) if a11 + a22 �= 0.

In each of Problems 11 and 12 show that the given system has no periodic solutions other
than constant solutions.

11. dx/dt = x + y + x3 − y2, dy/dt = −x + 2y + x2y + y3/3
12. dx/dt = −2x − 3y − xy2, dy/dt = y + x3 − x2y

13. Prove Theorem 9.7.2 by completing the following argument. According to Green’s theorem
in the plane, ifC is a sufficiently smooth simple closed curve, and ifF andG are continuous
and have continuous first partial derivatives, then∫

C
[F(x, y) dy − G(x, y) dx ] =

∫∫
R
[Fx (x, y)+ G y(x, y)] d A,

whereC is traversed counterclockwise andR is the region enclosed byC . Assume that
x = φ(t), y = ψ(t) is a solution of the system (15) that is periodic with periodT . Let C
be the closed curve given byx = φ(t), y = ψ(t) for 0 ≤ t ≤ T . Show that for this curve
the line integral is zero. Then show that the conclusion of Theorem 9.7.2 must follow.

� 14. (a) By examining the graphs ofu versust in Figures 9.7.3, 9.7.5, and 9.7.7 estimate the
periodT of the van der Pol oscillator in these cases.
(b) Calculate and plot the graphs of solutions of the van der Pol equation for other values
of the parameterµ. Estimate the periodT in these cases also.
(c) Plot the estimated values ofT versusµ. Describe howT depends onµ.

� 15. The equation
u′′ − µ(1 − 1

3u′2)u′ + u = 0

is often called the Rayleigh equation.
(a) Write the Rayleigh equation as a system of two first order equations.
(b) Show that the origin is the only critical point of this system. Determine its type and
whether it is stable or unstable.
(c) Letµ = 1. Choose initial conditions and compute the corresponding solution of the
system on an interval such as 0≤ t ≤ 20 or longer. Plotu versust and also plot the
trajectory in the phase plane. Observe that the trajectory approaches a closed curve (limit
cycle). Estimate the amplitudeA and the periodT of the limit cycle.
(d) Repeat part (c) for other values ofµ, such asµ = 0.2,0.5,2, and 5. In each case
estimate the amplitudeA and the periodT .
(e) Describe how the limit cycle changes asµ increases. For example, make a table of
values and/or plotA andT as functions ofµ.

� 16. The system
x ′ = 3(x + y − 1

3 x3 − k), y′ = − 1
3(x + 0.8y − 0.7)

is a special case of the Fitzhugh–Nagumo equations, which model the transmission of
neural impulses along an axon. The parameterk is the external stimulus.
(a) Fork = 0 show that there is one critical point. Find this point and show that it is an
asymptotically stable spiral point. Repeat the analysis fork = 0.5 and show that the critical
point is now an unstable spiral point. Draw a phase portrait for the system in each case.
(b) Find the valuek0 where the critical point changes from asymptotically stable to
unstable. Draw a phase portrait for the system fork = k0.
(c) Fork ≥ k0 the system exhibits an asymptotically stable limit cycle. Plotx versust for
k = k0 for several periods and estimate the value of the periodT .
(d) The limit cycle actually exists for a small range ofk belowk0. Let k1 be the smallest
value ofk for which there is a limit cycle. Findk1.
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9.8 Chaos and Strange Attractors: The Lorenz Equations

In principle, the methods described in this chapter for second order autonomous systems
can also be applied to higher order systems as well. In practice, there are several
difficulties that arise in trying to do this. One problem is that there is simply a greater
number of possible cases that can occur, and the number increases with the order of the
system (and the dimension of the phase space). Another is the difficulty of graphing
trajectories accurately in a phase space of higher than two dimensions; even in three
dimensions it may not be easy to construct a clear and understandable plot of the
trajectories, and it becomes more difficult as the number of variables increases. Finally,
and this has only been clearly realized in the last few years, there are different and very
complex phenomena that can occur, and do frequently occur, in systems of third and
higher order that are not present in second order systems. Our goal in this section is to
provide a brief introduction to some of these phenomena by discussing one particular
third order autonomous system that has been intensively studied in recent years. In
some respects the presentation here is similar to the treatment of the logistic difference
equation in Section 2.9.

An important problem in meteorology, and in other applications of fluid dynamics,
concerns the motion of a layer of fluid, such as the earth’s atmosphere, that is warmer
at the bottom than at the top; see Figure 9.8.1. If the vertical temperature difference
�T is small, then there is a linear variation of temperature with altitude, but no
significant motion of the fluid layer. However, if�T is large enough, then the warmer
air rises, displacing the cooler air above it, and a steady convective motion results. If
the temperature difference increases further, then eventually the steady convective flow
breaks up and a more complex and turbulent motion ensues.

While investigating this phenomenon, Edward N. Lorenz7 was led (by a process too
involved to describe here) to the nonlinear autonomous third order system

dx/dt = σ(−x + y),

dy/dt = r x − y − xz, (1)

dz/dt = −bz + xy.

Equations (1) are now commonly referred to as the Lorenz equations8. Observe that the
second and third equations involve quadratic nonlinearities. However, except for being

Cooler

Warmer

Temperature
difference ∆T

FIGURE 9.8.1 A layer of fluid heated from below.

7Edward N. Lorenz (1917– ), American meteorologist, received his Ph.D. from the Massachusetts Institute of
Technology in 1948 and has been associated with that institution throughout his scientific career. The Lorenz
equations were first studied by him in a famous paper published in 1963 dealing with the stability of fluid flows
in the atmosphere.
8A very thorough treatment of the Lorenz equations appears in the book by Sparrow listed in the references at the
end of the chapter.
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a third order system, superficially the Lorenz equations appear no more complicated
than the competing species or predator–prey equations discussed in Sections 9.4 and
9.5. The variablex in Eqs. (1) is related to the intensity of the fluid motion, while the
variablesy andz are related to the temperature variations in the horizontal and vertical
directions. The Lorenz equations also involve three parametersσ , r , andb, all of which
are real and positive. The parametersσ andb depend on the material and geometrical
properties of the fluid layer. For the earth’s atmosphere reasonable values of these
parameters areσ = 10 andb = 8/3; they will be assigned these values in much of
what follows in this section. The parameterr , on the other hand, is proportional to
the temperature difference�T , and our purpose is to investigate how the nature of the
solutions of Eqs. (1) changes withr .

The first step in analyzing the Lorenz equations is to locate the critical points by
solving the algebraic system

σ x − σ y = 0,

r x − y − xz = 0, (2)

−bz + xy = 0.

From the first equation we havey = x . Then, eliminatingy from the second and third
equations, we obtain

x(r − 1 − z) = 0, (3)

−bz + x2 = 0. (4)

One way to satisfy Eq. (3) is to choosex = 0. Then it follows thaty = 0 and, from
Eq. (4),z = 0. Alternatively, we can satisfy Eq. (3) by choosingz = r − 1. Then Eq. (4)
requires thatx = ±√

b(r − 1) and theny = ±√
b(r − 1) also. Observe that these

expressions forx andy are real only whenr ≥ 1. Thus (0, 0, 0), which we will denote
by P1, is a critical point for all values ofr , and it is the only critical point forr < 1.
However, whenr > 1, there are also two other critical points, namely,(

√
b(r − 1),√

b(r − 1), r − 1) and(−√
b(r − 1),−√

b(r − 1), r − 1). We will denote the latter
two points byP2 andP3, respectively. Note that all three critical points coincide when
r = 1. Asr increases through the value 1, the critical pointP1 at the originbifurcates
and the critical pointsP2 andP3 come into existence.

Next we will determine the local behavior of solutions in the neighborhood of each
critical point. Although much of the following analysis can be carried out for arbitrary
values ofσ andb, we will simplify our work by using the valuesσ = 10 andb = 8/3.
Near the origin (the critical pointP1) the approximating linear system is


x

y
z




′

=

−10 10 0

r −1 0
0 0 −8/3




x

y
z


 . (5)

The eigenvalues are determined from the equation∣∣∣∣∣∣
−10− λ 10 0

r −1 − λ 0
0 0 −8/3 − λ

∣∣∣∣∣∣ = −(8/3 + λ)[λ2 + 11λ− 10(r − 1)] = 0. (6)
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Therefore

λ1 = −8

3
, λ2 = −11− √

81+ 40r

2
, λ3 = −11+ √

81+ 40r

2
. (7)

Note that all three eigenvalues are negative forr < 1; for example, whenr = 1/2,
the eigenvalues areλ1 = −8/3, λ2 = −10.52494,λ3 = −0.47506. Hence the origin
is asymptotically stable for this range ofr both for the linear approximation (5) and
for the original system (1). However,λ3 changes sign whenr = 1 and is positive for
r > 1. The valuer = 1 corresponds to the initiation of convective flow in the physical
problem described earlier. The origin is unstable forr > 1; all solutions starting near
the origin tend to grow except for those lying precisely in the plane determined by the
eigenvectors associated withλ1 andλ2 [or, for the nonlinear system (1), in a certain
surface tangent to this plane at the origin].

Next let us consider the neighborhood of the critical pointP2(
√

8(r − 1)/3,√
8(r − 1)/3, r − 1) for r > 1. If u, v, andw are the perturbations from the crit-

ical point in thex , y, and z directions, respectively, then the approximating linear
system is

u
v

w




′

=

 −10 10 0

1 −1 −√
8(r − 1)/3√

8(r − 1)/3
√

8(r − 1)/3 −8/3




u
v

w


 . (8)

The eigenvalues of the coefficient matrix of Eq. (8) are determined from the equation

3λ3 + 41λ2 + 8(r + 10)λ+ 160(r − 1) = 0, (9)

which is obtained by straightforward algebraic steps that are omitted here. The solutions
of Eq. (9) depend onr in the following way:

For 1< r < r1
∼= 1.3456 there are three negative real eigenvalues.

For r1 < r < r2
∼= 24.737 there are one negative real eigenvalue and two complex

eigenvalues with negative real part.
Forr2 < r there are one negative real eigenvalue and two complex eigenvalues with

positive real part.

The same results are obtained for the critical pointP3. Thus there are several different
situations.

For 0< r < 1 the only critical point isP1 and it is asymptotically stable. All solutions
approach this point (the origin) ast → ∞.

For 1< r < r1 the critical pointsP2 and P3 are asymptotically stable andP1 is
unstable. All nearby solutions approach one or the other of the pointsP2 and P3
exponentially.

For r1 < r < r2 the critical pointsP2 and P3 are asymptotically stable andP1 is
unstable. All nearby solutions approach one or the other of the pointsP2 andP3; most
of them spiral inward to the critical point.

For r2 < r all three critical points are unstable. Most solutions nearP2 or P3 spiral
away from the critical point.

However, this is by no means the end of the story. Let us consider solutions forr
somewhat greater thanr2. In this caseP1 has one positive eigenvalue and each of
P2 and P3 has a pair of complex eigenvalues with positive real part. A trajectory can
approach any one of the critical points only on certain highly restricted paths. The
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slightest deviation from these paths causes the trajectory to depart from the critical
point. Since none of the critical points is stable, one might expect that most trajectories
will approach infinity for larget . However, it can be shown that all solutions remain
bounded ast → ∞; see Problem 5. In fact, it can be shown that all solutions ultimately
approach a certain limiting set of points that has zero volume. Indeed, this is true not
only for r > r2 but for all positive values ofr .

A plot of computed values ofx versust for a typical solution withr > r2 is shown
in Figure 9.8.2. Note that the solution oscillates back and forth between positive and
negative values in a rather erratic manner. Indeed, the graph ofx versust resembles
a random vibration, although the Lorenz equations are entirely deterministic and the
solution is completely determined by the initial conditions. Nevertheless, the solution
also exhibits a certainregularity in that the frequency and amplitude of the oscillations
are essentially constant in time.

The solutions of the Lorenz equations are also extremely sensitive to perturbations in
the initial conditions. Figure 9.8.3 shows the graphs of computed values ofx versust
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FIGURE 9.8.2 A plot of x versust for the Lorenz equations (1) withr = 28; initial point is
(5,5,5).

16

8

–8

10

–16

x

t

FIGURE 9.8.3 Plots ofx versust for two initially nearby solutions of Lorenz equations with
r = 28; initial point is(5,5,5) for dashed curve and(5.01,5,5) for solid curve.
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for the two solutions whose initial points are(5,5,5) and (5.01,5,5). The dashed
graph is the same as the one in Figure 9.8.2, while the solid graph starts at a nearby
point. The two solutions remain close untilt is near 10, after which they are quite
different and, indeed, seem to have no relation to each other. It was this property that
particularly attracted the attention of Lorenz in his original study of these equations,
and caused him to conclude that detailed long-range weather predictions are probably
not possible.

The attracting set in this case, although of zero volume, has a rather complicated
structure and is called astrange attractor. The termchaotic has come into general
use to describe solutions such as those shown in Figures 9.8.2 and 9.8.3.

To determine how and when the strange attractor is created it is illuminating to
investigate solutions for smaller values ofr . For r = 21 solutions starting at three
different initial points are shown in Figure 9.8.4. For the initial point(3,8,0) the
solution begins to converge to the pointP3 almost at once; see Figure 9.8.4a. For the
second initial point(5,5,5) there is a fairly short interval of transient behavior, after
which the solution converges toP2; see Figure 9.8.4b. However, as shown in Figure
9.8.4c, for the third initial point(5,5,10) there is a much longer interval of transient
chaotic behavior before the solution eventually converges toP2. As r increases, the
duration of the chaotic transient behavior also increases. Whenr = r3

∼= 24.06, the
chaotic transients appear to continue indefinitely and the strange attractor comes into
being.

One can also show the trajectories of the Lorenz equations in the three-dimensional
phase space, or at least projections of them in various planes. Figures 9.8.5 and 9.8.6
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FIGURE 9.8.4 Plots ofx versust for three solutions of Lorenz equations withr = 21.
(a) Initial point is (3, 8, 0). (b) Initial point is (5, 5, 5). (c) Initial point is (5, 5, 10).
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FIGURE 9.8.5 Projections of a trajectory of the Lorenz equations (withr = 28) in the
xy-plane.
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FIGURE 9.8.6 Projections of a trajectory of the Lorenz equations (withr = 28) in the
xz-plane.

show projections in thexy- and xz-planes, respectively, of the trajectory starting at
(5,5,5). Observe that the graphs in these figures appear to cross over themselves
repeatedly, but this cannot be true for the actual trajectories in three-dimensional space
because of the general uniqueness theorem. The apparent crossings are due wholly to
the two-dimensional character of the figures.

The sensitivity of solutions to perturbations of the initial data also has implications
for numerical computations, such as those reported here. Different step sizes, different
numerical algorithms, or even the execution of the same algorithm on different machines
will introduce small differences in the computed solution, which eventually lead to
large deviations. For example, the exact sequence of positive and negative loops in
the calculated solution depends strongly on the precise numerical algorithm and its
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implementation, as well as on the initial conditions. However, the general appearance
of the solution and the structure of the attracting set is independent of all these factors.

Solutions of the Lorenz equations for other parameter ranges exhibit other interesting
types of behavior. For example, for certain values ofr greater thanr2, intermittent bursts
of chaotic behavior separate long intervals of apparently steady periodic oscillation.
For other ranges ofr , solutions show the period-doubling property that we saw in
Section 2.9 for the logistic difference equation. Some of these features are taken up in
the problems.

Since about 1975 the Lorenz equations and other higher order autonomous systems
have been studied intensively, and this is one of the most active areas of current
mathematical research. Chaotic behavior of solutions appears to be much more common
than was suspected at first, and many questions remain unanswered. Some of these are
mathematical in nature, while others relate to the physical applications or interpretations
of solutions.

PROBLEMS Problems 1 through 3 ask you to fill in some of the details of the analysis of the Lorenz equations
in the text.

1. (a) Show that the eigenvalues of the linear system (5), valid near the origin, are given by
Eq. (7).
(b) Determine the corresponding eigenvectors.
(c) Determine the eigenvalues and eigenvectors of the system (5) in the case wherer = 28.

� 2. (a) Show that the linear approximation valid near the critical pointP2 is given by Eq. (8).
(b) Show that the eigenvalues of the system (8) satisfy Eq. (9).
(c) Forr = 28 solve Eq. (9) and thereby determine the eigenvalues of the system (8).

� 3. (a) By solving Eq. (9) numerically show that the real part of the complex roots changes
sign whenr ∼= 24.737.
(b) Show that a cubic polynomialx3 + Ax2 + Bx + C has one real zero and two pure
imaginary zeros only ifAB = C .
(c) By applying the result of part (b) to Eq. (9) show that the real part of the complex roots
changes sign whenr = 470/19.

4. Use the Liapunov functionV (x, y, z) = x2 + σ y2 + σ z2 to show that the origin is a globally
asymptotically stable critical point for the Lorenz equations (1) ifr < 1.

5. Consider the ellipsoid

V (x, y, z) = r x2 + σ y2 + σ(z − 2r)2 = c > 0.

(a) CalculatedV/dt along trajectories of the Lorenz equations (1).
(b) Determine a sufficient condition onc so that every trajectory crossingV (x, y, z) = c is
directed inward.
(c) Evaluate the condition found in part (b) for the caseσ = 10,b = 8/3, r = 28.

In each of Problems 6 through 10 carry out the indicated investigations of the Lorenz equations.

� 6. Forr = 28 plotx versust for the cases shown in Figures 9.8.2 and 9.8.3. Do your graphs
agree with those shown in the figures? Recall the discussion of numerical computation in
the text.

� 7. For r = 28 plot the projections in thexy- and xz-planes, respectively, of the trajectory
starting at the point(5,5,5). Do the graphs agree with those in Figures 9.8.5 and 9.8.6?

� 8. (a) Forr = 21 plot x versust for the solutions starting at the initial points(3,8,0),
(5,5,5), and(5,5,10). Use at interval of at least 0≤ t ≤ 30. Compare your graphs with
those in Figure 9.8.4.
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(b) Repeat the calculation in part (a) forr = 22,r = 23, andr = 24. Increase thet interval
as necessary so that you can determine when each solution begins to converge to one of
the critical points. Record the approximate duration of the chaotic transient in each case.
Describe how this quantity depends on the value ofr .
(c) Repeat the calculations in parts (a) and (b) for values ofr slightly greater than 24. Try
to estimate the value ofr for which the duration of the chaotic transient approaches infinity.

� 9. For certainr intervals, or windows, the Lorenz equations exhibit a period-doubling prop-
erty similar to that of the logistic difference equation discussed in Section 2.9. Careful
calculations may reveal this phenomenon.
(a) One period-doubling window contains the valuer = 100. Letr = 100 and plot the
trajectory starting at(5,5,5) or some other initial point of your choice. Does the solution
appear to be periodic? What is the period?
(b) Repeat the calculation in part (a) for slightly smaller values ofr . Whenr ∼= 99.98, you
may be able to observe that the period of the solution doubles. Try to observe this result by
performing calculations with nearby values ofr .
(c) As r decreases further, the period of the solution doubles repeatedly. The next period
doubling occurs at aboutr = 99.629. Try to observe this by plotting trajectories for nearby
values ofr .

� 10. Now consider values ofr slightly larger than those in Problem 9.
(a) Plot trajectories of the Lorenz equations for values ofr between 100 and 100.78. You
should observe a steady periodic solution for this range ofr values.
(b) Plot trajectories for values ofr between 100.78 and 100.8. Determine as best you can
how and when the periodic trajectory breaks up.
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C H A P T E R

10

Partial
Differential
Equations and
Fourier Series
In many important physical problems there are two or more independent variables,
so that the corresponding mathematical models involve partial, rather than ordinary,
differential equations. This chapter treats one important method for solving partial
differential equations, a method known as separation of variables. Its essential feature
is the replacement of the partial differential equation by a set of ordinary differential
equations, which must be solved subject to given initial or boundary conditions. The first
section of this chapter deals with some basic properties of boundary value problems for
ordinary differential equations. The desired solution of the partial differential equation
is then expressed as a sum, usually an infinite series, formed from solutions of the
ordinary differential equations. In many cases we ultimately need to deal with a series
of sines and/or cosines, so part of the chapter is devoted to a discussion of such series,
which are known as Fourier series. With the necessary mathematical background in
place, we then illustrate the use of separation of variables on a variety of problems
arising from heat conduction, wave propagation, and potential theory.

10.1 Two-Point Boundary Value Problems

Up to this point in the book we have dealt with initial value problems, consisting of a
differential equation together with suitable initial conditions at a given point. A typical
example, which was discussed at length in Chapter 3, is the differential equation

y′′ + p(t)y′ + q(t)y = g(t), (1)

541
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with the initial conditions

y(t0) = y0, y′(t0) = y′
0. (2)

Physical applications often lead to another type of problem, one in which the value
of the dependent variable y or its derivative is specified at two different points. Such
conditions are called boundary conditions to distinguish them from initial conditions
that specify the value of y and y′ at the same point. A differential equation together with
suitable boundary conditions form a two-point boundary value problem. A typical
example is the differential equation

y′′ + p(x)y′ + q(x)y = g(x) (3)

with the boundary conditions

y(α) = y0, y(β) = y1. (4)

The natural occurrence of boundary value problems usually involves a space coordinate
as the independent variable so we have used x rather than t in Eqs. (3) and (4). To
solve the boundary value problem (3), (4) we need to find a function y = φ(x) that
satisfies the differential equation (3) in the interval α < x < β and that takes on the
specified values y0 and y1 at the endpoints of the interval. Usually, we seek first the
general solution of the differential equation and then use the boundary conditions to
determine the values of the arbitrary constants.

Boundary value problems can also be posed for nonlinear differential equations but
we will restrict ourselves to a consideration of linear equations only. An important
classification of linear boundary value problems is whether they are homogeneous or
nonhomogeneous. If the function g has the value zero for each x , and if the boundary
values y0 and y1 are also zero, then the problem (3), (4) is called homogeneous.
Otherwise, the problem is nonhomogeneous.

Although the initial value problem (1), (2) and the boundary value problem (3),
(4) may superficially appear to be quite similar, their solutions differ in some very
important ways. Under mild conditions on the coefficients initial value problems are
certain to have a unique solution. On the other hand, boundary value problems under
similar conditions may have a unique solution, but may also have no solution or, in
some cases, infinitely many solutions. In this respect, linear boundary value problems
resemble systems of linear algebraic equations.

Let us recall some facts (see Section 7.3) about the system

Ax = b, (5)

where A is a given n × n matrix, b is a given n × 1 vector, and x is an n × 1 vector
to be determined. If A is nonsingular, then the system (5) has a unique solution for
any b. However, if A is singular, then the system (5) has no solution unless b satisfies
a certain additional condition, in which case the system has infinitely many solutions.
Now consider the corresponding homogeneous system

Ax = 0, (6)

obtained from the system (5) when b = 0. The homogeneous system (6) always has
the solution x = 0. If A is nonsingular, then this is the only solution, but if A is
singular, then there are infinitely many (nonzero) solutions. Note that it is impossible
for the homogeneous system to have no solution. These results can also be stated in
the following way: The nonhomogeneous system (5) has a unique solution if and only
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if the homogeneous system (6) has only the solution x = 0, and the nonhomogeneous
system (5) has either no solution or infinitely many if and only if the homogeneous
system (6) has nonzero solutions.

We now turn to some examples of linear boundary value problems that illustrate
very similar behavior. A more general discussion of linear boundary value problems
appears in Chapter 11.

E X A M P L E

1

Solve the boundary value problem

y′′ + 2y = 0, y(0) = 1, y(π) = 0. (7)

The general solution of the differential equation (7) is

y = c1 cos
√

2x + c2 sin
√

2x . (8)

The first boundary condition requires that c1 = 1. The second boundary condition
implies that c1 cos

√
2π + c2 sin

√
2π = 0, so c2 = − cot

√
2π ∼= −0.2762. Thus the

solution of the boundary value problem (7) is

y = cos
√

2x − cot
√

2π sin
√

2x . (9)

This example illustrates the case of a nonhomogeneous boundary value problem with
a unique solution.

E X A M P L E

2

Solve the boundary value problem

y′′ + y = 0, y(0) = 1, y(π) = a, (10)

where a is a given number.
The general solution of this differential equation is

y = c1 cos x + c2 sin x (11)

and from the first boundary condition we find that c1 = 1. The second boundary
condition now requires that −c1 = a. These two conditions on c1 are incompatible if
a �= −1 so the problem has no solution in that case. However, if a = −1, then both
boundary conditions are satisfied provided that c1 = 1, regardless of the value of c2. In
this case there are infinitely many solutions of the form

y = cos x + c2 sin x, (12)

where c2 remains arbitrary. This example illustrates that a nonhomogeneous boundary
value problem may have no solution, and also that under special circumstances it may
have infinitely many solutions.

Corresponding to the nonhomogeneous boundary value problem (3), (4) is the ho-
mogeneous problem consisting of the differential equation

y′′ + p(x)y′ + q(x)y = 0 (13)

and the boundary conditions

y(α) = 0, y(β) = 0. (14)
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Observe that this problem has the solution y = 0 for all x regardless of the coefficients
p(x) and q(x). This solution is often called the trivial solution and is rarely of interest.
What we usually want to know is whether the problem has other, nonzero, solutions.
Consider the following two examples.

E X A M P L E

3

Solve the boundary value problem

y′′ + 2y = 0, y(0) = 0, y(π) = 0. (15)

The general solution of the differential equation is again given by Eq. (8),

y = c1 cos
√

2x + c2 sin
√

2x .

The first boundary condition requires that c1 = 0 and the second boundary condition
leads to c2 sin

√
2π = 0. Since sin

√
2π �= 0, it follows that c2 = 0 also. Consequently,

y = 0 for all x is the only solution of the problem (15). This example illustrates that a
homogeneous boundary value problem may have only the trivial solution y = 0.

E X A M P L E

4

Solve the boundary value problem

y′′ + y = 0, y(0) = 0, y(π) = 0. (16)

The general solution is given by Eq. (11),

y = c1 cos x + c2 sin x,

and the first boundary condition requires that c1 = 0. Since sinπ = 0, the second
boundary condition is also satisfied regardless of the value of c2. Thus the solution of
the problem (16) is y = c2 sin x , where c2 remains arbitrary. This example illustrates
that a homogeneous boundary value problem may have infinitely many solutions.

Examples 1 through 4 illustrate (but of course do not prove) that there is the same
relationship between homogeneous and nonhomogeneous linear boundary value prob-
lems as there is between homogeneous and nonhomogeneous linear algebraic systems.
A nonhomogeneous boundary value problem (Example 1) has a unique solution and the
corresponding homogeneous problem (Example 3) has only the trivial solution. Fur-
ther, a nonhomogeneous problem (Example 2) has either no solution or infinitely many
and the corresponding homogeneous problem (Example 4) has nontrivial solutions.

Eigenvalue Problems. Recall the matrix equation

Ax = λx (17)

that was discussed in Section 7.3. Equation (17) has the solution x = 0 for every
value of λ but for certain values of λ, called eigenvalues, there are also other nonzero
solutions, called eigenvectors. The situation is similar for boundary value problems.

Consider the problem consisting of the differential equation

y′′ + λy = 0, (18)
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together with the boundary conditions

y(0) = 0, y(π) = 0. (19)

Observe that the problem (18), (19) is the same as the problems in Examples 3 and 4 if
λ = 2 and λ = 1, respectively. Recalling the results of these examples, we note that for
λ = 2, Eqs. (18), (19) have only the trivial solution y = 0, while for λ = 1, the problem
(18), (19) has other, nontrivial, solutions. By extension of the terminology associated
with Eq. (17) the values of λ for which nontrivial solutions of (18), (19) occur are
called eigenvalues and the nontrivial solutions themselves are called eigenfunctions.
Restating the results of Examples 3 and 4, we have found that λ = 1 is an eigenvalue
of the problem (18), (19) and that λ = 2 is not. Further, any nonzero multiple of sin x
is an eigenfunction corresponding to the eigenvalue λ = 1.

Let us now turn to the problem of finding other eigenvalues and eigenfunctions of the
problem (18), (19). We need to consider separately the cases λ > 0, λ = 0, and λ < 0,
since the form of the solution of Eq. (18) is different in each of these cases. Suppose
first that λ > 0. To avoid the frequent appearance of radical signs, it is convenient to
let λ = µ2 and to rewrite Eq. (18) as

y′′ + µ2 y = 0. (20)

The characteristic polynomial equation for Eq. (20) is r2 + µ2 = 0 with roots r = ±iµ,
so the general solution is

y = c1 cosµx + c2 sinµx . (21)

Note thatµ is nonzero (since λ > 0) and there is no loss of generality if we also assume
thatµ is positive. The first boundary condition requires that c1 = 0 and then the second
boundary condition reduces to

c2 sinµπ = 0. (22)

We are seeking nontrivial solutions so we must require that c2 �= 0. Consequently,
sinµπ must be zero and our task is to choose µ so that this will occur. We know that
the sine function has the value zero at every integer multiple of π so we can choose
µ to be any (positive) integer. The corresponding values of λ are the squares of the
positive integers, so we have determined that

λ1 = 1, λ2 = 4, λ3 = 9, . . . , λn = n2, . . . (23)

are eigenvalues of the problem (18), (19). The eigenfunctions are given by Eq. (21) with
c1 = 0, so they are just multiples of the functions sin nx for n = 1, 2, 3, . . . . Observe
that the constant c2 in Eq. (21) is never determined, so eigenfunctions are determined
only up to an arbitrary multiplicative constant [just as are the eigenvectors of the matrix
problem (17)]. We will usually choose the multiplicative constant to be 1 and write the
eigenfunctions as

y1(x) = sin x, y2(x) = sin 2x, . . . , yn(x) = sin nx, . . . , (24)

remembering that multiples of these functions are also eigenfunctions.
Now let us suppose that λ < 0. If we let λ = −µ2, then Eq. (18) becomes

y′′ − µ2 y = 0. (25)
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The characteristic equation for Eq. (25) is r2 − µ2 = 0 with roots r = ±µ, so its
general solution can be written as

y = c1 coshµx + c2 sinhµx . (26)

We have chosen the hyperbolic functions coshµx and sinhµx as a fundamental set of
solutions rather than the exponential functions exp(µx) and exp(−µx) for convenience
in applying the boundary conditions. The first boundary condition requires that c1 = 0
and then the second boundary condition gives c2 sinhµπ = 0. Since µ �= 0, it follows
that sinhµπ �= 0, and therefore we must have c2 = 0. Consequently, y = 0 and there
are no nontrivial solutions for λ < 0. In other words, the problem (18), (19) has no
negative eigenvalues.

Finally, consider the possibility that λ = 0. Then Eq. (18) becomes

y′′ = 0, (27)

and its general solution is

y = c1x + c2. (28)

The boundary conditions (19) can only be satisfied by choosing c1 = 0 and c2 = 0,
so there is only the trivial solution y = 0 in this case as well. That is, λ = 0 is not an
eigenvalue.

To summarize our results: We have shown that the problem (18), (19) has an infinite
sequence of positive eigenvalues λn = n2 for n = 1, 2, 3, . . . and that the corresponding
eigenfunctions are proportional to sin nx . Further, there are no other real eigenvalues.
There remains the possibility that there might be some complex eigenvalues; recall
that a matrix with real elements may very well have complex eigenvalues. In Problem
17 we outline an argument showing that the particular problem (18), (19) cannot have
complex eigenvalues. Later, in Section 11.2, we discuss an important class of boundary
value problems that includes (18), (19). One of the important properties of this class of
problems is that all their eigenvalues are real.

In later sections of this chapter we will often encounter the problem

y′′ + λy = 0, y(0) = 0, y(L) = 0, (29)

which differs from the problem (18), (19) only in that the second boundary condition
is imposed at an arbitrary point x = L rather than at x = π . The solution process is
exactly the same as before up to the step where the second boundary condition is
applied. For the problem (29) this condition requires that

c2 sinµL = 0 (30)

rather than Eq. (22), as in the former case. Consequently, µL must be an integer
multiple of π , so µ = nπ/L , where n is a positive integer. Hence the eigenvalues and
eigenfunctions of the problem (29) are given by

λn = n2π2/L2, yn(x) = sin(nπx/L), n = 1, 2, 3, . . . . (31)

As usual, the eigenfunctions yn(x) are determined only up to an arbitrary multiplicative
constant. In the same way as for (18), (19) you can show that the problem (29) has no
eigenvalues or eigenfunctions other than those in Eq. (31).

The problems following this section explore to some extent the effect of differ-
ent boundary conditions on the eigenvalues and eigenfunctions. A more systematic
discussion of two-point boundary and eigenvalue problems appears in Chapter 11.
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PROBLEMS In each of Problems 1 through 10 either solve the given boundary value problem or else show
that it has no solution.

1. y′′ + y = 0, y(0) = 0, y′(π) = 1
2. y′′ + 2y = 0, y′(0) = 1, y′(π) = 0
3. y′′ + y = 0, y(0) = 0, y(L) = 0
4. y′′ + y = 0, y′(0) = 1, y(L) = 0
5. y′′ + y = x, y(0) = 0, y(π) = 0
6. y′′ + 2y = x, y(0) = 0, y(π) = 0
7. y′′ + 4y = cos x, y(0) = 0, y(π) = 0
8. y′′ + 4y = sin x, y(0) = 0, y(π) = 0
9. y′′ + 4y = cos x, y′(0) = 0, y′(π) = 0

10. y′′ + 3y = cos x, y′(0) = 0, y′(π) = 0

In each of Problems 11 through 16 find the eigenvalues and eigenfunctions of the given boundary
value problem. Assume that all eigenvalues are real.

11. y′′ + λy = 0, y(0) = 0, y′(π) = 0
12. y′′ + λy = 0, y′(0) = 0, y(π) = 0
13. y′′ + λy = 0, y′(0) = 0, y′(π) = 0
14. y′′ + λy = 0, y′(0) = 0, y(L) = 0
15. y′′ + λy = 0, y′(0) = 0, y′(L) = 0
16. y′′ − λy = 0, y(0) = 0, y′(L) = 0

17. In this problem we outline a proof that the eigenvalues of the boundary value problem (18),
(19) are real.
(a) Write the solution of Eq. (18) as y = k1 exp(iµx)+ k2 exp(−iµx), where λ = µ2,
and impose the boundary conditions (19). Show that nontrivial solutions exist if and only
if

exp(iµπ)− exp(−iµπ) = 0. (i)

(b) Let µ = ν + iσ and use Euler’s relation exp(iνπ) = cos(νπ)+ i sin(νπ) to deter-
mine the real and imaginary parts of Eq. (i).
(c) By considering the equations found in part (b), show that σ = 0; hence µ is real and
so is λ. Show also that ν = n, where n is an integer.

10.2 Fourier Series

Later in this chapter you will find that you can solve many important problems involving
partial differential equations provided that you can express a given function as an
infinite sum of sines and/or cosines. In this and the following two sections we explain
in detail how this can be done. These trigonometric series are called Fourier series1;

1Fourier series are named for Joseph Fourier, who made the first systematic use, although not a completely rigorous
investigation, of them in 1807 and 1811 in his papers on heat conduction. According to Riemann, when Fourier
presented his first paper to the Paris Academy in 1807, stating that an arbitrary function could be expressed as
a series of the form (1), the mathematician Lagrange was so surprised that he denied the possibility in the most
definite terms. Although it turned out that Fourier’s claim of generality was somewhat too strong, his results
inspired a flood of important research that has continued to the present day. See Grattan-Guinness or Carslaw
[Historical Introduction] for a detailed history of Fourier series.
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they are somewhat analogous to Taylor series in that both types of series provide a
means of expressing quite complicated functions in terms of certain familiar elementary
functions.

We begin with a series of the form

a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
. (1)

On the set of points where the series (1) converges, it defines a function f , whose
value at each point is the sum of the series for that value of x . In this case the series
(1) is said to be the Fourier series for f . Our immediate goals are to determine what
functions can be represented as a sum of a Fourier series and to find some means of
computing the coefficients in the series corresponding to a given function. The first
term in the series (1) is written as a0/2 rather than simply as a0 to simplify a formula
for the coefficients that we derive below. Besides their association with the method of
separation of variables and partial differential equations, Fourier series are also useful
in various other ways, such as in the analysis of mechanical or electrical systems acted
on by periodic external forces.

Periodicity of the Sine and Cosine Functions. To discuss Fourier series it is nec-
essary to develop certain properties of the trigonometric functions sin(mπx/L) and
cos(mπx/L), where m is a positive integer. The first is their periodic character. A
function f is said to be periodic with period T > 0 if the domain of f contains x + T
whenever it contains x , and if

f (x + T ) = f (x) (2)

for every value of x . An example of a periodic function is shown in Figure 10.2.1. It
follows immediately from the definition that if T is a period of f , then 2T is also a
period, and so indeed is any integral multiple of T .

The smallest value of T for which Eq. (2) holds is called the fundamental period
of f . In this connection it should be noted that a constant may be thought of as a
periodic function with an arbitrary period, but no fundamental period.

x

y

T

2T

FIGURE 10.2.1 A periodic function.
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If f and g are any two periodic functions with common period T , then their product
f g and any linear combination c1 f + c2g are also periodic with period T . To prove
the latter statement, let F(x) = c1 f (x)+ c2g(x); then for any x

F(x + T ) = c1 f (x + T )+ c2g(x + T ) = c1 f (x)+ c2g(x) = F(x). (3)

Moreover, it can be shown that the sum of any finite number, or even the sum of a
convergent infinite series, of functions of period T is also periodic with period T .

In particular, the functions sin(mπx/L) and cos(mπx/L), m = 1, 2, 3, . . . , are
periodic with fundamental period T = 2L/m. To see this, recall that sin x and cos x
have fundamental period 2π , and that sinαx and cosαx have fundamental period
2π/α. If we choose α = mπ/L , then the period T of sin(mπx/L) and cos(mπx/L)
is given by T = 2πL/mπ = 2L/m.

Note also that, since every positive integral multiple of a period is also a period, each
of the functions sin(mπx/L) and cos(mπx/L) has the common period 2L .

Orthogonality of the Sine and Cosine Functions. To describe a second essential
property of the functions sin(mπx/L) and cos(mπx/L) we generalize the concept of
orthogonality of vectors (see Section 7.2). The standard inner product (u, v) of two
real-valued functions u and v on the interval α ≤ x ≤ β is defined by

(u, v) =
∫ β

α

u(x)v(x) dx . (4)

The functions u and v are said to be orthogonal on α ≤ x ≤ β if their inner product is
zero, that is, if ∫ β

α

u(x)v(x) dx = 0. (5)

A set of functions is said to be mutually orthogonal if each distinct pair of functions
in the set is orthogonal.

The functions sin(mπx/L) and cos(mπx/L), m = 1, 2, . . . , form a mutually or-
thogonal set of functions on the interval −L ≤ x ≤ L . In fact, they satisfy the following
orthogonality relations:∫ L

−L
cos

mπx

L
cos

nπx

L
dx =

{
0, m �= n,
L , m = n; (6)∫ L

−L
cos

mπx

L
sin

nπx

L
dx = 0, all m, n; (7)∫ L

−L
sin

mπx

L
sin

nπx

L
dx =

{
0, m �= n,
L , m = n.

(8)

These results can be obtained by direct integration. For example, to derive Eq. (8),
note that∫ L

−L
sin

mπx

L
sin

nπx

L
dx = 1

2

∫ L

−L

[
cos

(m − n)πx

L
− cos

(m + n)πx

L

]
dx

= 1

2

L

π

{
sin[(m − n)πx/L]

m − n
− sin[(m + n)πx/L]

m + n

} ∣∣∣∣∣
L

−L

= 0,
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as long as m + n and m − n are not zero. Since m and n are positive, m + n �= 0.
On the other hand, if m − n = 0, then m = n, and the integral must be evaluated in a
different way. In this case∫ L

−L
sin

mπx

L
sin

nπx

L
dx =

∫ L

−L

(
sin

mπx

L

)2
dx

= 1

2

∫ L

−L

[
1 − cos

2mπx

L

]
dx

= 1

2

{
x − sin(2mπx/L)

2mπ/L

} ∣∣∣∣∣
L

−L

= L .

This establishes Eq. (8); Eqs. (6) and (7) can be verified by similar computations.

The Euler–Fourier Formulas. Now let us suppose that a series of the form (1) con-
verges, and let us call its sum f (x):

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
. (9)

The coefficients am and bm can be related to f (x) as a consequence of the orthogonality
conditions (6), (7), and (8). First multiply Eq. (9) by cos(nπx/L), where n is a fixed
positive integer (n > 0), and integrate with respect to x from −L to L . Assuming that
the integration can be legitimately carried out term by term,2 we obtain∫ L

−L
f (x) cos

nπx

L
dx = a0

2

∫ L

−L
cos

nπx

L
dx +

∞∑
m=1

am

∫ L

−L
cos

mπx

L
cos

nπx

L
dx

+
∞∑

m=1

bm

∫ L

−L
sin

mπx

L
cos

nπx

L
dx . (10)

Keeping in mind that n is fixed whereas m ranges over the positive integers, it follows
from the orthogonality relations (6) and (7) that the only nonzero term on the right side
of Eq. (10) is the one for which m = n in the first summation. Hence∫ L

−L
f (x) cos

nπx

L
dx = Lan, n = 1, 2, . . . . (11)

To determine a0 we can integrate Eq. (9) from −L to L , obtaining∫ L

−L
f (x) dx = a0

2

∫ L

−L
dx +

∞∑
m=1

am

∫ L

−L
cos

mπx

L
dx +

∞∑
m=1

bm

∫ L

−L
sin

mπx

L
dx

= La0, (12)

since each integral involving a trigonometric function is zero. Thus

an = 1

L

∫ L

−L
f (x) cos

nπx

L
dx, n = 0, 1, 2, . . . . (13)

2This is a nontrivial assumption, since not all convergent series with variable terms can be so integrated. For the
special case of Fourier series, however, term-by-term integration can always be justified.
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By writing the constant term in Eq. (9) as a0/2, it is possible to compute all the an from
Eq. (13). Otherwise, a separate formula would have to be used for a0.

A similar expression for bn may be obtained by multiplying Eq. (9) by sin(nπx/L),
integrating termwise from −L to L , and using the orthogonality relations (7) and (8);
thus

bn = 1

L

∫ L

−L
f (x) sin

nπx

L
dx, n = 1, 2, 3, . . . . (14)

Equations (13) and (14) are known as the Euler–Fourier formulas for the coefficients
in a Fourier series. Hence, if the series (9) converges to f (x), and if the series can be
integrated term by term, then the coefficients must be given by Eqs. (13) and (14).

Note that Eqs. (13) and (14) are explicit formulas for an and bn in terms of f ,
and that the determination of any particular coefficient is independent of all the other
coefficients. Of course, the difficulty in evaluating the integrals in Eqs. (13) and (14)
depends very much on the particular function f involved.

Note also that the formulas (13) and (14) depend only on the values of f (x) in the
interval −L ≤ x ≤ L . Since each of the terms in the Fourier series (9) is periodic with
period 2L , the series converges for all x whenever it converges in −L ≤ x ≤ L , and
its sum is also a periodic function with period 2L . Hence f (x) is determined for all x
by its values in the interval −L ≤ x ≤ L .

It is possible to show (see Problem 27) that if g is periodic with period T , then every
integral of g over an interval of length T has the same value. If we apply this result
to the Euler–Fourier formulas (13) and (14), it follows that the interval of integration,
−L ≤ x ≤ L , can be replaced, if it is more convenient to do so, by any other interval
of length 2L .

E X A M P L E

1

Assume that there is a Fourier series converging to the function f defined by

f (x) =
{−x, −2 ≤ x < 0,

x, 0 ≤ x < 2;
(15)

f (x + 4) = f (x).

Determine the coefficients in this Fourier series.
This function represents a triangular wave (see Figure 10.2.2) and is periodic with

period 4. Thus in this case L = 2 and the Fourier series has the form

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx

2
+ bm sin

mπx

2

)
, (16)

where the coefficients are computed from Eqs. (13) and (14) with L = 2. Substituting
for f (x) in Eq. (13) with m = 0, we have

a0 = 1

2

∫ 0

−2
(−x) dx + 1

2

∫ 2

0
x dx = 1 + 1 = 2. (17)

For m > 0, Eq. (13) yields

am = 1

2

∫ 0

−2
(−x) cos

mπx

2
dx + 1

2

∫ 2

0
x cos

mπx

2
dx .
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FIGURE 10.2.2 Triangular wave.

These integrals can be evaluated through integration by parts, with the result that

am = 1

2

[
− 2

mπ
x sin

mπx

2
−

(
2

mπ

)2

cos
mπx

2

] ∣∣∣∣∣
0

−2

+ 1

2

[
2

mπ
x sin

mπx

2
+

(
2

mπ

)2

cos
mπx

2

] ∣∣∣∣∣
2

0

= 1

2

[
−

(
2

mπ

)2

+
(

2

mπ

)2

cos mπ +
(

2

mπ

)2

cos mπ −
(

2

mπ

)2
]

= 4

(mπ)2
(cos mπ − 1), m = 1, 2, . . .

=
{
−8/(mπ)2, m odd,

0, m even.
(18)

Finally, from Eq. (14) it follows in a similar way that

bm = 0, m = 1, 2, . . . . (19)

By substituting the coefficients from Eqs. (17), (18), and (19) in the series (16) we
obtain the Fourier series for f :

f (x) = 1 − 8

π2

(
cos

πx

2
+ 1

32 cos
3πx

2
+ 1

52 cos
5πx

2
+ · · ·

)

= 1 − 8

π2

∞∑
m=1,3,5,...

cos(mπx/2)

m2

= 1 − 8

π2

∞∑
n=1

cos(2n − 1)πx/2

(2n − 1)2
. (20)

E X A M P L E

2

Let

f (x) =



0, −3 < x < −1,
1, −1 < x < 1,
0, 1 < x < 3

(21)

and suppose that f (x + 6) = f (x); see Figure 10.2.3. Find the coefficients in the
Fourier series for f .
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FIGURE 10.2.3 Graph of f (x) in Example 2.

Since f has period 6, it follows that L = 3 in this problem. Consequently, the Fourier
series for f has the form

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx

3
+ bn sin

nπx

3

)
, (22)

where the coefficients an and bn are given by Eqs. (13) and (14) with L = 3. We have

a0 = 1

3

∫ 3

−3
f (x) dx = 1

3

∫ 1

−1
dx = 2

3
. (23)

Similarly,

an = 1

3

∫ 1

−1
cos

nπx

3
dx = 1

nπ
sin

nπx

3

∣∣∣∣∣
1

−1

= 2

nπ
sin

nπ

3
, n = 1, 2, . . . , (24)

and

bn = 1

3

∫ 1

−1
sin

nπx

3
dx = − 1

nπ
cos

nπx

3

∣∣∣∣∣
1

−1

= 0, n = 1, 2, . . . . (25)

Thus the Fourier series for f is

f (x) = 1

3
+

∞∑
n=1

2

nπ
sin

nπ

3
cos

nπx

3

= 1

3
+

√
3

π

[
cos(πx/3)+ cos(2πx/3)

2
− cos(4πx/3)

4
− cos(5πx/3)

5
+ · · ·

]
.

(26)

E X A M P L E

3

Consider again the function in Example 1 and its Fourier series (20). Investigate the
speed with which the series converges. In particular, determine how many terms are
needed so that the error is no greater than 0.01 for all x .

The mth partial sum in this series,

sm(x) = 1 − 8

π2

m∑
n=1

cos(2n − 1)πx/2

(2n − 1)2
, (27)

can be used to approximate the function f . The coefficients diminish as (2n − 1)−2, so
the series converges fairly rapidly. This is borne out by Figure 10.2.4, where the partial
sums for m = 1 and m = 2 are plotted. To investigate the convergence in more detail
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we can consider the error em(x) = f (x)− sm(x). Figure 10.2.5 shows a plot of |e6(x)|
versus x for 0 ≤ x ≤ 2. Observe that |e6(x)| is greatest at the points x = 0 and x = 2
where the graph of f (x) has corners. It is more difficult for the series to approximate
the function near these points, resulting in a larger error there for a given n. Similar
graphs are obtained for other values of m.

Once you realize that the maximum error always occurs at x = 0 or x = 2, you
can obtain a uniform error bound for each m simply by evaluating |em(x)| at one of
these points. For example, for m = 6 we have e6(2) = 0.03370, so |e6(x)| < 0.034
for 0 ≤ x ≤ 2, and consequently for all x . Table 10.2.1 shows corresponding data for
other values of m; these data are plotted in Figure 10.2.6. From this information you
can begin to estimate the number of terms that are needed in the series in order to
achieve a given level of accuracy in the approximation. For example, to guarantee that
|em(x)| ≤ 0.01 we need to choose m = 21.

y

2

m = 2

m = 1

–4 –2

2

4 x

FIGURE 10.2.4 Partial sums in the Fourier series, Eq. (20), for the triangular wave.

x

0.025

0.020

0.015

0.010

0.005

e6(x)

0.030

0.035

1.51 20.5

FIGURE 10.2.5 Plot of |e6(x)| versus x for the triangular wave.
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TABLE 10.2.1 Values of the Error em(2) for
the Triangular Wave

m em(2)

2 0.09937
4 0.05040
6 0.03370

10 0.02025
15 0.01350
20 0.01013
25 0.00810

m

0.08

0.06

0.04

0.02

em(2)

0.10

1510 20 255

FIGURE 10.2.6 Plot of em(2) versus m for the triangular wave.

In this book Fourier series appear mainly as a means of solving certain problems
in partial differential equations. However, such series have much wider application
in science and engineering, and in general are valuable tools in the investigation of
periodic phenomena. A basic problem is to resolve an incoming signal into its harmonic
components, which amounts to constructing its Fourier series representation. In some
frequency ranges the separate terms correspond to different colors or to different audible
tones. The magnitude of the coefficient determines the amplitude of each component.
This process is referred to as spectral analysis.

PROBLEMS In each of Problems 1 through 8 determine whether the given function is periodic. If so, find its
fundamental period.

1. sin 5x 2. cos 2πx
3. sinh 2x 4. sinπx/L
5. tanπx 6. x2

7. f (x) =
{

0, 2n − 1 ≤ x < 2n,
1, 2n ≤ x < 2n + 1; n = 0,±1,±2, . . .

8. f (x) =
{
(−1)n, 2n − 1 ≤ x < 2n,
1, 2n ≤ x < 2n + 1; n = 0,±1,±2, . . .
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9. If f (x) = −x for −L < x < L , and if f (x + 2L) = f (x), find a formula for f (x) in the
interval L < x < 2L; in the interval −3L < x < −2L .

10. If f (x) =
{

x + 1, −1 < x < 0,
x, 0 < x < 1,

and if f (x + 2) = f (x), find a formula for f (x) in

the interval 1 < x < 2; in the interval 8 < x < 9.

11. If f (x) = L − x for 0 < x < 2L , and if f (x + 2L) = f (x), find a formula for f (x) in
the interval −L < x < 0.

12. Verify Eqs. (6) and (7) of the text by direct integration.

In each of Problems 13 through 18:

(a) Sketch the graph of the given function for three periods.

(b) Find the Fourier series for the given function.

13. f (x) = −x, −L ≤ x < L; f (x + 2L) = f (x)

14. f (x) =
{

1, −L ≤ x < 0,
0, 0 ≤ x < L; f (x + 2L) = f (x)

15. f (x) =
{

x, −π ≤ x < 0,
0, 0 ≤ x < π; f (x + 2π) = f (x)

16. f (x) =
{

x + 1, −1 ≤ x < 0,
1 − x, 0 ≤ x < 1; f (x + 2) = f (x)

17. f (x) =
{

x + L , −L ≤ x ≤ 0,
L , 0 < x < L; f (x + 2L) = f (x)

18. f (x) =



0, −2 ≤ x ≤ −1,
x, −1 < x < 1,
0, 1 ≤ x < 2;

f (x + 4) = f (x)

In each of Problems 19 through 24:

(a) Sketch the graph of the given function for three periods.

(b) Find the Fourier series for the given function.

(c) Plot sm(x) versus x for m = 5, 10, and 20.

(d) Describe how the Fourier series seems to be converging.

� 19. f (x) =
{−1, −2 ≤ x < 0,

1, 0 ≤ x < 2; f (x + 4) = f (x)

� 20. f (x) = x, −1 ≤ x < 1; f (x + 2) = f (x)

� 21. f (x) = x2/2, −2 ≤ x ≤ 2; f (x + 4) = f (x)

� 22. f (x) =
{

x + 2, −2 ≤ x < 0,
2 − 2x, 0 ≤ x < 2; f (x + 4) = f (x)

� 23. f (x) =
{− 1

2 x, −2 ≤ x < 0,
2x − 1

2 x2, 0 ≤ x < 2; f (x + 4) = f (x)

� 24. f (x) =
{

0, −3 ≤ x ≤ 0,
x2(3 − x), 0 < x < 3; f (x + 6) = f (x)

� 25. Consider the function f defined in Problem 21 and let em(x) = f (x)− sm(x). Plot |em(x)|
versus x for 0 ≤ x ≤ 2 for several values of m. Find the smallest value of m for which
|em(x)| ≤ 0.01 for all x .

� 26. Consider the function f defined in Problem 24 and let em(x) = f (x)− sm(x). Plot |em(x)|
versus x for 0 ≤ x ≤ 3 for several values of m. Find the smallest value of m for which
|em(x)| ≤ 0.1 for all x .

27. Suppose that g is an integrable periodic function with period T .
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(a) If 0 ≤ a ≤ T , show that ∫ T

0
g(x) dx =

∫ a+T

a
g(x) dx .

Hint: Show first that
∫ a

0
g(x) dx =

∫ a+T

T
g(x) dx . Consider the change of variable s =

x − T in the second integral.
(b) Show that for any value of a, not necessarily in 0 ≤ a ≤ T ,∫ T

0
g(x) dx =

∫ a+T

a
g(x) dx .

(c) Show that for any values of a and b,∫ a+T

a
g(x) dx =

∫ b+T

b
g(x) dx .

28. If f is differentiable and is periodic with period T , show that f ′ is also periodic with
period T . Determine whether

F(x) =
∫ x

0
f (t) dt

is always periodic.
29. In this problem we indicate certain similarities between three-dimensional geometric vec-

tors and Fourier series.
(a) Let v1, v2, and v3 be a set of mutually orthogonal vectors in three dimensions and let u
be any three-dimensional vector. Show that

u = a1v1 + a2v2 + a3v3, (i)

where

ai = u � vi

vi � vi

, i = 1, 2, 3. (ii)

Show that ai can be interpreted as the projection of u in the direction of vi divided by the
length of vi .
(b) Define the inner product (u, v) by

(u, v) =
∫ L

−L
u(x)v(x) dx . (iii)

Also let

φn(x) = cos(nπx/L), n = 0, 1, 2, . . . ;
(iv)

ψn(x) = sin(nπx/L), n = 1, 2, . . . .

Show that Eq. (10) can be written in the form

( f, φn) = a0

2
(φ0, φn)+

∞∑
m=1

am(φm, φn)+
∞∑

m=1

bm(ψm, φn). (v)

(c) Use Eq. (v) and the corresponding equation for ( f, ψn) together with the orthogonality
relations to show that

an = ( f, φn)

(φn, φn)
, n = 0, 1, 2, . . . ; bn = ( f, ψn)

(ψn, ψn)
, n = 1, 2, . . . . (vi)

Note the resemblance between Eqs. (vi) and Eq. (ii). The functions φn and ψn play a role
for functions similar to that of the orthogonal vectors v1, v2, and v3 in three-dimensional
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space. The coefficients an and bn can be interpreted as projections of the function f onto
the base functions φn and ψn .

Observe also that any vector in three dimensions can be expressed as a linear combination
of three mutually orthogonal vectors. In a somewhat similar way any sufficiently smooth
function defined on −L ≤ x ≤ L can be expressed as a linear combination of the mutually
orthogonal functions cos(nπx/L) and sin(nπx/L), that is, as a Fourier series.

10.3 The Fourier Convergence Theorem

In the preceding section we showed that if the Fourier series

a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
(1)

converges and thereby defines a function f , then f is periodic with period 2L , and the
coefficients am and bm are related to f (x) by the Euler–Fourier formulas:

am = 1

L

∫ L

−L
f (x) cos

mπx

L
dx, m = 0, 1, 2, . . . ; (2)

bm = 1

L

∫ L

−L
f (x) sin

mπx

L
dx, m = 1, 2, . . . . (3)

In this section we adopt a somewhat different point of view. Suppose that a function
f is given. If this function is periodic with period 2L and integrable on the interval
[−L , L], then a set of coefficients am and bm can be computed from Eqs. (2) and (3),
and a series of the form (1) can be formally constructed. The question is whether this
series converges for each value of x and, if so, whether its sum is f (x). Examples have
been discovered showing that the Fourier series corresponding to a function f may not
converge to f (x), or may even diverge. Functions whose Fourier series do not converge
to the value of the function at isolated points are easily constructed, and examples will
be presented later in this section. Functions whose Fourier series diverge at one or more
points are more pathological, and we will not consider them in this book.

To guarantee convergence of a Fourier series to the function from which its coef-
ficients were computed it is essential to place additional conditions on the function.
From a practical point of view, such conditions should be broad enough to cover all
situations of interest, yet simple enough to be easily checked for particular functions.
Through the years several sets of conditions have been devised to serve this purpose.

Before stating a convergence theorem for Fourier series, we define a term that
appears in the theorem. A function f is said to be piecewise continuous on an
interval a ≤ x ≤ b if the interval can be partitioned by a finite number of points
a = x0 < x1 < · · · < xn = b so that

1. f is continuous on each open subinterval xi−1 < x < xi .
2. f approaches a finite limit as the endpoints of each subinterval are approached

from within the subinterval.

The graph of a piecewise continuous function is shown in Figure 10.3.1.
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y

xba

FIGURE 10.3.1 A piecewise continuous function.

The notation f (c+) is used to denote the limit of f (x) as x → c from the right;
similarly, f (c−) denotes the limit of f (x) as x approaches c from the left.

Note that it is not essential that the function even be defined at the partition points xi .
For example, in the following theorem we assume that f ′ is piecewise continuous; but
certainly f ′ does not exist at those points where f itself is discontinuous. It is also not
essential that the interval be closed; it may also be open, or open at one end and closed
at the other.

Theorem 10.3.1 Suppose that f and f ′ are piecewise continuous on the interval −L ≤ x < L . Further,
suppose that f is defined outside the interval −L ≤ x < L so that it is periodic with
period 2L . Then f has a Fourier series

f (x) = a0

2
+

∞∑
m=1

(
am cos

mπx

L
+ bm sin

mπx

L

)
, (4)

whose coefficients are given by Eqs. (2) and (3). The Fourier series converges to f (x)
at all points where f is continuous, and to [ f (x+)+ f (x−)]/2 at all points where
f is discontinuous.

Note that [ f (x+)+ f (x−)]/2 is the mean value of the right- and left-hand limits
at the point x . At any point where f is continuous, f (x+) = f (x−) = f (x). Thus it
is correct to say that the Fourier series converges to [ f (x+)+ f (x−)]/2 at all points.
Whenever we say that a Fourier series converges to a function f , we always mean that
it converges in this sense.

It should be emphasized that the conditions given in this theorem are only sufficient
for the convergence of a Fourier series; they are by no means necessary. Neither are
they the most general sufficient conditions that have been discovered. In spite of this,
the proof of the theorem is fairly difficult and is not given here.3

To obtain a better understanding of the content of the theorem it is helpful to consider
some classes of functions that fail to satisfy the assumed conditions. Functions that
are not included in the theorem are primarily those with infinite discontinuities in the
interval [−L , L], such as 1/x2 as x → 0, or ln |x − L| as x → L . Functions having
an infinite number of jump discontinuities in this interval are also excluded; however,
such functions are rarely encountered.

3Proofs of the convergence of a Fourier series can be found in most books on advanced calculus. See, for example,
Kaplan (Chapter 7) or Buck (Chapter 6).
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It is noteworthy that a Fourier series may converge to a sum that is not differentiable,
or even continuous, in spite of the fact that each term in the series (4) is continuous,
and even differentiable infinitely many times. The example below is an illustration of
this, as is Example 2 in Section 10.2.

E X A M P L E

1

Let
f (x) =

{
0, −L < x < 0,
L , 0 < x < L ,

(5)

and let f be defined outside this interval so that f (x + 2L) = f (x) for all x . We will
temporarily leave open the definition of f at the points x = 0,±L , except that its
value must be finite. Find the Fourier series for this function and determine where it
converges.

y

x3L2LL

L

–L–2L–3L

FIGURE 10.3.2 Square wave.

The equation y = f (x) has the graph shown in Figure 10.3.2, extended to infinity
in both directions. It can be thought of as representing a square wave. The interval
[−L , L] can be partitioned to give the two open subintervals (−L , 0) and (0, L). In
(0, L), f (x) = L and f ′(x) = 0. Clearly, both f and f ′ are continuous and furthermore
have limits as x → 0 from the right and as x → L from the left. The situation in (−L , 0)
is similar. Consequently, both f and f ′ are piecewise continuous on [−L , L), so f
satisfies the conditions of Theorem 10.3.1. If the coefficients am and bm are computed
from Eqs. (2) and (3), the convergence of the resulting Fourier series to f (x) is assured
at all points where f is continuous. Note that the values of am and bm are the same
regardless of the definition of f at its points of discontinuity. This is true because the
value of an integral is unaffected by changing the value of the integrand at a finite
number of points. From Eq. (2)

a0 = 1

L

∫ L

−L
f (x) dx =

∫ L

0
dx = L;

am = 1

L

∫ L

−L
f (x) cos

mπx

L
dx =

∫ L

0
cos

mπx

L
dx

= 0, m �= 0.

Similarly, from Eq. (3),

bm = 1

L

∫ L

−L
f (x) sin

mπx

L
dx =

∫ L

0
sin

mπx

L
dx

= L

mπ
(1 − cos mπ)

=
{

0, m even;
2L/mπ, m odd.
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Hence

f (x) = L

2
+ 2L

π

(
sin

πx

L
+ 1

3
sin

3πx

L
+ 1

5
sin

5πx

L
+ · · ·

)

= L

2
+ 2L

π

∞∑
m=1,3,5,...

sin(mπx/L)

m

= L

2
+ 2L

π

∞∑
n=1

sin(2n − 1)πx/L

2n − 1
. (6)

At the points x = 0, ±nL , where the function f in the example is not continuous,
all terms in the series after the first vanish and the sum is L/2. This is the mean value
of the limits from the right and left, as it should be. Thus we might as well define f
at these points to have the value L/2. If we choose to define it otherwise, the series
still gives the value L/2 at these points, since none of the preceding calculations is
altered in any detail; it simply does not converge to the function at those points unless
f is defined to have this value. This illustrates the possibility that the Fourier series
corresponding to a function may not converge to it at points of discontinuity unless the
function is suitably defined at such points.

The manner in which the partial sums

sn(x) = L

2
+ 2L

π

(
sin

πx

L
+ · · · + 1

2n − 1
sin

(2n − 1)πx

L

)
, n = 1, 2, . . .

of the Fourier series (6) converge to f (x) is indicated in Figure 10.3.3, where L has
been chosen to be one and the graph of s8(x) is plotted. The figure suggests that at points
where f is continuous the partial sums do approach f (x) as n increases. However, in
the neighborhood of points of discontinuity, such as x = 0 and x = L , the partial sums
do not converge smoothly to the mean value. Instead they tend to overshoot the mark
at each end of the jump, as though they cannot quite accommodate themselves to the
sharp turn required at this point. This behavior is typical of Fourier series at points of
discontinuity, and is known as the Gibbs4 phenomenon.

y

x–2 2–1 1

1 n = 8

FIGURE 10.3.3 The partial sum s8(x) in the Fourier series, Eq. (6), for the square wave.

Additional insight is attained by considering the error en(x) = f (x)− sn(x). Figure
10.3.4 shows a plot of |en(x)| versus x for n = 8 and for L = 1. The least upper bound
of |e8(x)| is 0.5 and is approached as x → 0 and as x → 1. As n increases, the error

4The Gibbs phenomenon is named after Josiah Willard Gibbs (1839–1903), who is better known for his work on
vector analysis and statistical mechanics. Gibbs was professor of mathematical physics at Yale, and one of the
first American scientists to achieve an international reputation. Gibbs’ phenomenon is discussed in more detail
by Carslaw (Chapter 9).
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decreases in the interior of the interval [where f (x) is continuous] but the least upper
bound does not diminish with increasing n. Thus one cannot uniformly reduce the error
throughout the interval by increasing the number of terms.

Figures 10.3.3 and 10.3.4 also show that the series in this example converges more
slowly than the one in Example 1 in Section 10.2. This is due to the fact that the
coefficients in the series (6) are proportional only to 1/(2n − 1).

10.4 0.60.2 0.8

0.4

0.3

0.2

0.1

x

e8(x)

0.5

FIGURE 10.3.4 A plot of the error |e8(x)| versus x for the square wave.

PROBLEMS In each of Problems 1 through 6 assume that the given function is periodically extended outside
the original interval.

(a) Find the Fourier series for the extended function.

(b) Sketch the graph of the function to which the series converges for three periods.

1. f (x) =
{−1, −1 ≤ x < 0,

1, 0 ≤ x < 1
2. f (x) =

{
0, −π ≤ x < 0,
x, 0 ≤ x < π

3. f (x) =
{

L + x, −L ≤ x < 0,
L − x, 0 ≤ x < L

4. f (x) = 1 − x2, −1 ≤ x ≤ 1

5. f (x) =



0, −π ≤ x < −π/2,
1, −π/2 ≤ x < π/2,
0, π/2 ≤ x < π

6. f (x) =
{

0, −1 ≤ x < 0,
x2, 0 ≤ x < 1

In each of Problems 7 through 12 assume that the given function is periodically extended outside
the original interval.

(a) Find the Fourier series for the given function.

(b) Let en(x) = f (x)− sn(x). Find the least upper bound or the maximum value (if it exists)
of |en(x)| for n = 10, 20, and 40.

(c) If possible, find the smallest n for which |en(x)| ≤ 0.01 for all x .

� 7. f (x) =
{

x, −π ≤ x < 0,
0, 0 ≤ x < π; f (x + 2π) = f (x) (see Section 10.2, Problem 15)
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� 8. f (x) =
{

x + 1, −1 ≤ x < 0,
1 − x, 0 ≤ x < 1; f (x + 2) = f (x) (see Section 10.2, Problem 16)

� 9. f (x) = x, −1 ≤ x < 1; f (x + 2) = f (x) (see Section 10.2, Problem 20)

� 10. f (x) =
{

x + 2, −2 ≤ x < 0,
2 − 2x, 0 ≤ x < 2; f (x + 4) = f (x) (see Section 10.2,

Problem 22)

� 11. f (x) =
{

0, −1 ≤ x < 0,
x2, 0 ≤ x < 1; f (x + 2) = f (x) (see Problem 6)

� 12. f (x) = x − x3, −1 ≤ x < 1; f (x + 2) = f (x)

Periodic Forcing Terms. In this chapter we are concerned mainly with the use of Fourier series
to solve boundary value problems for certain partial differential equations. However, Fourier
series are also useful in many other situations where periodic phenomena occur. Problems 13
through 16 indicate how they can be employed to solve initial value problems with periodic
forcing terms.

13. Find the solution of the initial value problem

y′′ + ω2 y = sin nt, y(0) = 0, y′(0) = 0,

where n is a positive integer and ω2 �= n2. What happens if ω2 = n2?
14. Find the formal solution of the initial value problem

y′′ + ω2 y =
∞∑

n=1

bn sin nt, y(0) = 0, y′(0) = 0,

where ω > 0 is not equal to a positive integer. How is the solution altered if ω = m, where
m is a positive integer?

15. Find the formal solution of the initial value problem

y′′ + ω2 y = f (t), y(0) = 0, y′(0) = 0,

where f is periodic with period 2π and

f (t) =



1, 0 < t < π;
0, t = 0, π, 2π;

−1, π < t < 2π.

See Problem 1.
16. Find the formal solution of the initial value problem

y′′ + ω2 y = f (t), y(0) = 1, y′(0) = 0,

where f is periodic with period 2 and

f (t) =
{

1 − t, 0 ≤ t < 1;
−1 + t, 1 ≤ t < 2.

See Problem 8.

17. Assuming that

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (i)

show formally that

1

L

∫ L

−L
[ f (x)]2 dx = a2

0

2
+

∞∑
n=1

(a2
n + b2

n).
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This relation between a function f and its Fourier coefficients is known as Parseval’s
(1755–1836) equation. Parseval’s equation is very important in the theory of Fourier series
and is discussed further in Section 11.6.
Hint: Multiply Eq. (i) by f (x), integrate from −L to L , and use the Euler–Fourier formulas.

18. This problem indicates a proof of convergence of a Fourier series under conditions more
restrictive than those in Theorem 10.3.1.
(a) If f and f ′ are piecewise continuous on −L ≤ x < L , and if f is periodic with period
2L , show that nan and nbn are bounded as n → ∞.
Hint: Use integration by parts.
(b) If f is continuous on −L ≤ x ≤ L and periodic with period 2L , and if f ′ and f ′′ are
piecewise continuous on −L ≤ x < L , show that n2an and n2bn are bounded as n → ∞.
Use this fact to show that the Fourier series for f converges at each point in −L ≤ x ≤ L .
Why must f be continuous on the closed interval?
Hint: Again, use integration by parts.

Acceleration of Convergence. In the next problem we show how it is sometimes possible
to improve the speed of convergence of a Fourier, or other infinite, series.

19. Suppose that we wish to calculate values of the function g, where

g(x) =
∞∑

n=1

(2n − 1)

1 + (2n − 1)2
sin(2n − 1)πx . (i)

It is possible to show that this series converges, albeit rather slowly. However, observe that
for large n the terms in the series (i) are approximately equal to [sin(2n − 1)πx]/(2n − 1)
and that the latter terms are similar to those in the example in the text, Eq. (6).
(a) Show that

∞∑
n=1

[sin(2n − 1)πx]/(2n − 1) = (π/2)[ f (x)− 1
2 ], (ii)

where f is the square wave in the example with L = 1.
(b) Subtract Eq. (ii) from Eq. (i) and show that

g(x) = π

2
[ f (x)− 1

2 ] −
∞∑

n=1

sin(2n − 1)πx

(2n − 1)[1 + (2n − 1)2]
. (iii)

The series (iii) converges much faster than the series (i) and thus provides a better way to
calculate values of g(x).

10.4 Even and Odd Functions

Before looking at further examples of Fourier series it is useful to distinguish two
classes of functions for which the Euler–Fourier formulas can be simplified. These
are even and odd functions, which are characterized geometrically by the property of
symmetry with respect to the y-axis and the origin, respectively (see Figure 10.4.1).

Analytically, f is an even function if its domain contains the point −x whenever it
contains the point x , and if

f (−x) = f (x) (1)
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xx

(a) (b)

FIGURE 10.4.1 (a) An even function. (b) An odd function.

for each x in the domain of f . Similarly, f is an odd function if its domain contains
−x whenever it contains x , and if

f (−x) = − f (x) (2)

for each x in the domain of f . Examples of even functions are 1, x2, cos nx , |x |, and
x2n . The functions x , x3, sin nx , and x2n+1 are examples of odd functions. Note that
according to Eq. (2), f (0)must be zero if f is an odd function whose domain contains
the origin. Most functions are neither even nor odd, for instance, ex . Only one function,
f identically zero, is both even and odd.

Elementary properties of even and odd functions include the following:

1. The sum (difference) and product (quotient) of two even functions are even.
2. The sum (difference) of two odd functions is odd; the product (quotient) of two

odd functions is even.
3. The sum (difference) of an odd function and an even function is neither even nor

odd; the product (quotient) of two such functions is odd.5

The proofs of all these assertions are simple and follow directly from the definitions.
For example, if both f1 and f2 are odd, and if g(x) = f1(x)+ f2(x), then

g(−x) = f1(−x)+ f2(−x) = − f1(x)− f2(x)

= −[ f1(x)+ f2(x)] = −g(x), (3)

so f1 + f2 is an odd function also. Similarly, if h(x) = f1(x) f2(x), then

h(−x) = f1(−x) f2(−x) = [− f1(x)][− f2(x)] = f1(x) f2(x) = h(x), (4)

so that f1 f2 is even.
Also of importance are the following two integral properties of even and odd

functions:

4. If f is an even function, then∫ L

−L
f (x) dx = 2

∫ L

0
f (x) dx . (5)

5These statements may need to be modified if either function vanishes identically.
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5. If f is an odd function, then ∫ L

−L
f (x) dx = 0. (6)

These properties are intuitively clear from the interpretation of an integral in terms
of area under a curve, and also follow immediately from the definitions. For example,
if f is even, then ∫ L

−L
f (x) dx =

∫ 0

−L
f (x) dx +

∫ L

0
f (x) dx .

Letting x = −s in the first term on the right side, and using Eq. (1), we obtain∫ L

−L
f (x) dx = −

∫ 0

L
f (s) ds +

∫ L

0
f (x) dx = 2

∫ L

0
f (x) dx .

The proof of the corresponding property for odd functions is similar.
Even and odd functions are particularly important in applications of Fourier se-

ries since their Fourier series have special forms, which occur frequently in physical
problems.

Cosine Series. Suppose that f and f ′ are piecewise continuous on −L ≤ x < L , and
that f is an even periodic function with period 2L . Then it follows from properties 1
and 3 that f (x) cos(nπx/L) is even and f (x) sin(nπx/L) is odd. As a consequence
of Eqs. (5) and (6), the Fourier coefficients of f are then given by

an = 2

L

∫ L

0
f (x) cos

nπx

L
dx, n = 0, 1, 2, . . . ;

(7)
bn = 0, n = 1, 2, . . . .

Thus f has the Fourier series

f (x) = a0

2
+

∞∑
n=1

an cos
nπx

L
.

In other words, the Fourier series of any even function consists only of the even
trigonometric functions cos(nπx/L) and the constant term; it is natural to call such a
series a Fourier cosine series. From a computational point of view, observe that only
the coefficients an , for n = 0, 1, 2, . . . , need to be calculated from the integral formula
(7). Each of the bn , for n = 1, 2, . . . , is automatically zero for any even function, and
so does not need to be calculated by integration.

Sine Series. Suppose that f and f ′ are piecewise continuous on −L ≤ x < L , and
that f is an odd periodic function of period 2L . Then it follows from properties 2 and
3 that f (x) cos(nπx/L) is odd and f (x) sin(nπx/L) is even. In this case the Fourier
coefficients of f are

an = 0, n = 0, 1, 2, . . . ,
(8)

bn = 2

L

∫ L

0
f (x) sin

nπx

L
dx, n = 1, 2, . . . ,
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and the Fourier series for f is of the form

f (x) =
∞∑

n=1

bn sin
nπx

L
.

Thus the Fourier series for any odd function consists only of the odd trigonometric
functions sin(nπx/L); such a series is called a Fourier sine series. Again observe that
only half of the coefficients need to be calculated by integration, since each an , for
n = 0, 1, 2, . . . , is zero for any odd function.

E X A M P L E

1

Let f (x) = x , −L < x < L , and let f (−L) = f (L) = 0. Let f be defined elsewhere
so that it is periodic of period 2L (see Figure 10.4.2). The function defined in this
manner is known as a sawtooth wave. Find the Fourier series for this function.

Since f is an odd function, its Fourier coefficients are, according to Eq. (8),

an = 0, n = 0, 1, 2, . . . ;

bn = 2

L

∫ L

0
x sin

nπx

L
dx

= 2

L

(
L

nπ

)2 {
sin

nπx

L
− nπx

L
cos

nπx

L

}∣∣∣∣∣
L

0

= 2L

nπ
(−1)n+1, n = 1, 2, . . . .

Hence the Fourier series for f , the sawtooth wave, is

f (x) = 2L

π

∞∑
n=1

(−1)n+1

n
sin

nπx

L
. (9)

Observe that the periodic function f is discontinuous at the points ±L ,±3L , . . . , as
shown in Figure 10.4.2. At these points the series (9) converges to the mean value of
the left and right limits, namely, zero. The partial sum of the series (9) for n = 9 is
shown in Figure 10.4.3. The Gibbs phenomenon (mentioned in Section 10.3) again
occurs near the points of discontinuity.

x

y

L

–3L –2L

–L

–L L 2L 3L

FIGURE 10.4.2 Sawtooth wave.
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y

x–2L –L L

–L

L

2L

n = 9

FIGURE 10.4.3 A partial sum in the Fourier series, Eq. (9), for the sawtooth wave.

Note that in this example f (−L) = f (L) = 0, as well as f (0) = 0. This is required
if the function f is to be both odd and periodic with period 2L . When we speak of
constructing a sine series for a function defined on 0 ≤ x ≤ L , it is understood that, if
necessary, we must first redefine the function to be zero at x = 0 and x = L .

It is worthwhile to observe that the triangular wave function (Example 1 of Section
10.2) and the sawtooth wave function just considered are identical on the interval
0 ≤ x < L . Therefore, their Fourier series converge to the same function, f (x) = x ,
on this interval. Thus, if it is required to represent the function f (x) = x on 0 ≤ x < L
by a Fourier series, it is possible to do this by either a cosine series or a sine series.
In the former case f is extended as an even function into the interval −L < x < 0
and elsewhere periodically (the triangular wave). In the latter case f is extended into
−L < x < 0 as an odd function, and elsewhere periodically (the sawtooth wave). If
f is extended in any other way, the resulting Fourier series will still converge to x in
0 ≤ x < L but will involve both sine and cosine terms.

In solving problems in differential equations it is often useful to expand in a Fourier
series of period 2L a function f originally defined only on the interval [0, L]. As indi-
cated previously for the function f (x) = x several alternatives are available. Explicitly,
we can:

1. Define a function g of period 2L so that

g(x) =
{

f (x), 0 ≤ x ≤ L ,
f (−x), −L < x < 0.

(10)

The function g is thus the even periodic extension of f . Its Fourier series, which
is a cosine series, represents f on [0, L].

2. Define a function h of period 2L so that

h(x) =



f (x), 0 < x < L ,
0, x = 0, L ,

− f (−x), −L < x < 0.
(11)

The function h is thus the odd periodic extension of f . Its Fourier series, which is
a sine series, also represents f on (0, L).
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3. Define a function k of period 2L so that

k(x) = f (x), 0 ≤ x ≤ L , (12)

and let k(x) be defined for (−L , 0) in any way consistent with the conditions
of Theorem 10.3.1. Sometimes it is convenient to define k(x) to be zero for
−L < x < 0. The Fourier series for k, which involves both sine and cosine terms,
also represents f on [0, L], regardless of the manner in which k(x) is defined in
(−L , 0). Thus there are infinitely many such series, all of which converge to f (x)
in the original interval.

Usually, the form of the expansion to be used will be dictated (or at least suggested)
by the purpose for which it is needed. However, if there is a choice as to the kind
of Fourier series to be used, the selection can sometimes be based on the rapidity of
convergence. For example, the cosine series for the triangular wave [Eq. (20) of Section
10.2] converges more rapidly than the sine series for the sawtooth wave [Eq. (9) in this
section], although both converge to the same function for 0 ≤ x < L . This is due to
the fact that the triangular wave is a smoother function than the sawtooth wave and is
therefore easier to approximate. In general, the more continuous derivatives possessed
by a function over the entire interval −∞ < x < ∞, the faster its Fourier series will
converge. See Problem 18 of Section 10.3.

E X A M P L E

2

Suppose that

f (x) =
{

1 − x, 0 < x ≤ 1,
0, 1 < x ≤ 2.

(13)

As indicated previously, we can represent f either by a cosine series or by a sine series.
Sketch the graph of the sum of each of these series for −6 ≤ x ≤ 6.

In this example L = 2, so the cosine series for f converges to the even periodic
extension of f of period 4, whose graph is sketched in Figure 10.4.4.

Similarly, the sine series for f converges to the odd periodic extension of f of
period 4. The graph of this function is shown in Figure 10.4.5.

x

y

–6 –4 –2
–1

1

2 4 6

FIGURE 10.4.4 Even periodic extension of f (x) given by Eq. (13).

x

y

–6 –4 –2
–1

1

2 4 6

FIGURE 10.4.5 Odd periodic extension of f (x) given by Eq. (13).
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PROBLEMS In each of Problems 1 through 6 determine whether the given function is even, odd, or neither.

1. x3 − 2x 2. x3 − 2x + 1 3. tan 2x
4. sec x 5. |x |3 6. e−x

In each of Problems 7 through 12 a function f is given on an interval of length L . In each case
sketch the graphs of the even and odd extensions of f of period 2L .

7. f (x) =
{

x, 0 ≤ x < 2,
1, 2 ≤ x < 3

8. f (x) =
{

0, 0 ≤ x < 1,
x − 1, 1 ≤ x < 2

9. f (x) = 2 − x, 0 < x < 2 10. f (x) = x − 3, 0 < x < 4

11. f (x) =
{

0, 0 ≤ x < 1,
1, 1 ≤ x < 2

12. f (x) = 4 − x2, 0 < x < 1

13. Prove that any function can be expressed as the sum of two other functions, one of which is
even and the other odd. That is, for any function f , whose domain contains −x whenever
it contains x , show that there is an even function g and an odd function h such that
f (x) = g(x)+ h(x).
Hint: Assuming f (x) = g(x)+ h(x), what is f (−x)?

14. Find the coefficients in the cosine and sine series described in Example 2.

In each of Problems 15 through 22 find the required Fourier series for the given function and
sketch the graph of the function to which the series converges over three periods.

15. f (x) =
{

1, 0 < x < 1,
0, 1 < x < 2; cosine series, period 4

Compare with Example 1 and Problem 5 of Section 10.3.

16. f (x) =
{

x, 0 ≤ x < 1,
1, 1 ≤ x < 2; sine series, period 4

17. f (x) = 1, 0 ≤ x ≤ π; cosine series, period 2π
18. f (x) = 1, 0 < x < π; sine series, period 2π

19. f (x) =



0, 0 < x < π,
1, π < x < 2π,
2, 2π < x < 3π

sine series, period 6π

20. f (x) = x, 0 ≤ x < 1; series of period 1
21. f (x) = L − x, 0 ≤ x ≤ L; cosine series, period 2L

Compare with Example 1 of Section 10.2.
22. f (x) = L − x, 0 < x < L; sine series, period 2L

In each of Problems 23 through 26:

(a) Find the required Fourier series for the given function.
(b) Sketch the graph of the function to which the series converges for three periods.
(c) Plot one or more partial sums of the series.

� 23. f (x) =
{

x, 0 < x < π,

0, π < x < 2π; cosine series, period 4π

� 24. f (x) = −x, −π < x < 0; sine series, period 2π

� 25. f (x) = 2 − x2, 0 < x < 2; sine series, period 4

� 26. f (x) = x2 − 2x, 0 < x < 4; cosine series, period 8

In each of Problems 27 through 30 a function is given on an interval 0 < x < L .

(a) Sketch the graphs of the even extension g(x) and the odd extension h(x) of the given
function of period 2L over three periods.
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(b) Find the Fourier cosine and sine series for the given function.

(c) Plot a few partial sums of each series.

(d) For each series investigate the dependence on n of the maximum error on [0, L].

� 27. f (x) = 3 − x, 0 < x < 3 � 28. f (x) =
{

x, 0 < x < 1,
0, 1 < x < 2

� 29. f (x) = (4x2 − 4x − 3)/4, 0 < x < 2

� 30. f (x) = x3 − 5x2 + 5x + 1, 0 < x < 3

31. Prove that if f is an odd function, then∫ L

−L
f (x) dx = 0.

32. Prove properties 2 and 3 of even and odd functions, as stated in the text.
33. Prove that the derivative of an even function is odd, and that the derivative of an odd

function is even.

34. Let F(x) =
∫ x

0
f (t) dt . Show that if f is even, then F is odd, and that if f is odd, then

F is even.
35. From the Fourier series for the square wave in Example 1 of Section 10.3, show that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n + 1
.

This relation between π and the odd positive integers was discovered by Leibniz in 1674.
36. From the Fourier series for the triangular wave (Example 1 of Section 10.2), show that

π2

8
= 1 + 1

32 + 1

52 + · · · =
∞∑

n=0

1

(2n + 1)2
.

37. Assume that f has a Fourier sine series

f (x) =
∞∑

n=1

bn sin(nπx/L), 0 ≤ x ≤ L .

(a) Show formally that

2

L

∫ L

0
[ f (x)]2 dx =

∞∑
n=1

b2
n .

Compare this result with that of Problem 17 in Section 10.3. What is the corresponding
result if f has a cosine series?
(b) Apply the result of part (a) to the series for the sawtooth wave given in Eq. (9), and
thereby show that

π2

6
= 1 + 1

22 + 1

32 + · · · =
∞∑

n=1

1

n2 .

This relation was discovered by Euler about 1735.

More Specialized Fourier Series. Let f be a function originally defined on 0 ≤ x ≤ L . In this
section we have shown that it is possible to represent f either by a sine series or by a cosine
series by constructing odd or even periodic extensions of f , respectively. Problems 38 through
40 concern some other more specialized Fourier series that converge to the given function f
on (0, L).
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38. Let f be extended into (L , 2L] in an arbitrary manner. Then extend the resulting function
into (−2L , 0) as an odd function and elsewhere as a periodic function of period 4L (see
Figure 10.4.6). Show that this function has a Fourier sine series in terms of the functions
sin(nπx/2L), n = 1, 2, 3, . . . ; that is,

f (x) =
∞∑

n=1

bn sin(nπx/2L),

where

bn = 1

L

∫ 2L

0
f (x) sin(nπx/2L) dx .

This series converges to the original function on (0, L).

y

x2LL

–L–2L

FIGURE 10.4.6 Graph of the func-
tion in Problem 38.

y

x2LL– L–2L

FIGURE 10.4.7 Graph of the func-
tion in Problem 39.

39. Let f first be extended into (L , 2L) so that it is symmetric about x = L; that is, so as
to satisfy f (2L − x) = f (x) for 0 ≤ x < L . Let the resulting function be extended into
(−2L , 0) as an odd function and elsewhere (see Figure 10.4.7) as a periodic function of
period 4L . Show that this function has a Fourier series in terms of the functions sin(πx/2L),
sin(3πx/2L), sin(5πx/2L), . . . ; that is,

f (x) =
∞∑

n=1

bn sin
(2n − 1)πx

2L
,

where

bn = 2

L

∫ L

0
f (x) sin

(2n − 1)πx

2L
dx .

This series converges to the original function on (0, L].
40. How should f , originally defined on [0, L], be extended so as to obtain a Fourier se-

ries involving only the functions cos(πx/2L), cos(3πx/2L), cos(5πx/2L), . . .? Refer to
Problems 38 and 39. If f (x) = x for 0 ≤ x ≤ L , sketch the function to which the Fourier
series converges for −4L ≤ x ≤ 4L .
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10.5 Separation of Variables; Heat Conduction in a Rod

The basic partial differential equations of heat conduction, wave propagation, and po-
tential theory that we discuss in this chapter are associated with three distinct types
of physical phenomena: diffusive processes, oscillatory processes, and time indepen-
dent or steady processes. Consequently, they are of fundamental importance in many
branches of physics. They are also of considerable significance from a mathemati-
cal point of view. The partial differential equations whose theory is best developed
and whose applications are most significant and varied are the linear equations of
second order. All such equations can be classified into one of three categories; the
heat conduction equation, the wave equation, and the potential equation, respectively,
are prototypes of each of these categories. Thus a study of these three equations
yields much information about more general second order linear partial differential
equations.

During the last two centuries several methods have been developed for solving partial
differential equations. The method of separation of variables is the oldest systematic
method, having been used by D’Alembert, Daniel Bernoulli, and Euler in about 1750
in their investigations of waves and vibrations. It has been considerably refined and
generalized in the meantime, and remains a method of great importance and frequent
use today. To show how the method of separation of variables works we consider
first a basic problem of heat conduction in a solid body. The mathematical study of
heat conduction originated6 about 1800, and it continues to command the attention
of modern scientists. For example, the analysis of the dissipation and transfer of heat
away from its sources in high-speed machinery is frequently an important technological
problem.

Let us now consider a heat conduction problem for a straight bar of uniform cross
section and homogeneous material. Let the x-axis be chosen to lie along the axis
of the bar, and let x = 0 and x = L denote the ends of the bar (see Figure 10.5.1).
Suppose further that the sides of the bar are perfectly insulated so that no heat passes
through them. We also assume that the cross-sectional dimensions are so small that the
temperature u can be considered as constant on any given cross section. Then u is a
function only of the axial coordinate x and the time t .

x

u(x, t)

x = 0 x = L

FIGURE 10.5.1 A heat-conducting solid bar.

6The first important investigation of heat conduction was carried out by Joseph Fourier (1768–1830) while he
was serving as prefect of the department of Isère (Grenoble) from 1801 to 1815. He presented basic papers on
the subject to the Academy of Sciences of Paris in 1807 and 1811. However, these papers were criticized by the
referees (principally Lagrange) for lack of rigor and so were not published. Fourier continued to develop his ideas
and eventually wrote one of the classics of applied mathematics, Théorie analytique de la chaleur, published in
1822.
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The variation of temperature in the bar is governed by a partial differential equation
whose derivation appears in Appendix A at the end of the chapter. The equation is
called the heat conduction equation, and has the form

α2uxx = ut , 0 < x < L , t > 0, (1)

where α2 is a constant known as the thermal diffusivity. The parameter α2 depends
only on the material from which the bar is made, and is defined by

α2 = κ/ρs, (2)

where κ is the thermal conductivity, ρ is the density, and s is the specific heat of the
material in the bar. The units of α2 are (length)2/time. Typical values of α2 are given
in Table 10.5.1.

TABLE 10.5.1 Values of the Thermal
Diffusivity for Some Common Materials

Material α2(cm2/sec)

Silver 1.71
Copper 1.14
Aluminum 0.86
Cast iron 0.12
Granite 0.011
Brick 0.0038
Water 0.00144

In addition, we assume that the initial temperature distribution in the bar is given;
thus

u(x, 0) = f (x), 0 ≤ x ≤ L , (3)

where f is a given function. Finally, we assume that the ends of the bar are held at fixed
temperatures: the temperature T1 at x = 0 and the temperature T2 at x = L . However,
it turns out that we need only consider the case where T1 = T2 = 0. We show in Section
10.6 how to reduce the more general problem to this special case. Thus in this section
we will assume that u is always zero when x = 0 or x = L:

u(0, t) = 0, u(L , t) = 0, t > 0. (4)

The fundamental problem of heat conduction is to find u(x, t) that satisfies the differ-
ential equation (1) for 0 < x < L and for t > 0, the initial condition (3) when t = 0,
and the boundary conditions (4) at x = 0 and x = L .

The problem described by Eqs. (1), (3), and (4) is an initial value problem in the
time variable t ; an initial condition is given and the differential equation governs
what happens later. However, with respect to the space variable x , the problem is
a boundary value problem; boundary conditions are imposed at each end of the bar
and the differential equation describes the evolution of the temperature in the interval
between them. Alternatively, we can consider the problem as a boundary value problem
in the xt-plane (see Figure 10.5.2). The solution u(x, t) of Eq. (1) is sought in the semi-
infinite strip 0 < x < L , t > 0 subject to the requirement that u(x, t) must assume a
prescribed value at each point on the boundary of this strip.
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x

t
x = L

u(0, t) = 0

u(x,0) = f (x)

u(L, t) = 02uxx = utα

FIGURE 10.5.2 Boundary value problem for the heat conduction equation.

The heat conduction problem (1), (3), (4) is linear since u appears only to the
first power throughout. The differential equation and boundary conditions are also
homogeneous. This suggests that we might approach the problem by seeking solutions
of the differential equation and boundary conditions, and then superposing them to
satisfy the initial condition. The remainder of this section describes how this plan can
be implemented.

One solution of the differential equation (1) that satisfies the boundary conditions
(4) is the function u(x, t) = 0, but this solution does not satisfy the initial condition
(3) except in the trivial case in which f (x) is also zero. Thus our goal is to find other,
nonzero, solutions of the differential equation and boundary conditions. To find the
needed solutions, we start by making a basic assumption about the form of the solutions
that has far-reaching, and perhaps unforeseen, consequences. The assumption is that
u(x, t) is a product of two other functions, one depending only on x and the other
depending only on t ; thus

u(x, t) = X (x)T (t). (5)

Substituting from Eq. (5) for u in the differential equation (1) yields

α2 X ′′T = XT ′, (6)

where primes refer to ordinary differentiation with respect to the independent variable,
whether x or t . Equation (6) is equivalent to

X ′′

X
= 1

α2

T ′

T
, (7)

in which the variables are separated; that is, the left side depends only on x and the right
side only on t . For Eq. (7) to be valid for 0 < x < L , t > 0, it is necessary that both
sides of Eq. (7) be equal to the same constant. Otherwise, by keeping one independent
variable (say, x) fixed and varying the other, one side (the left in this case) of Eq. (7)
would remain unchanged while the other varied, thus violating the equality. If we call
this separation constant −λ, then Eq. (7) becomes

X ′′

X
= 1

α2

T ′

T
= −λ. (8)
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Hence we obtain the following two ordinary differential equations for X (x) and T (t):

X ′′ + λX = 0, (9)

T ′ + α2λT = 0. (10)

We denote the separation constant by −λ (rather than λ) because it turns out that it
must be negative, and it is convenient to exhibit the minus sign explicitly.

The assumption (5) has led to the replacement of the partial differential equation (1)
by the two ordinary differential equations (9) and (10). Each of these equations can be
readily solved for any value of λ. The product of two solutions of Eq. (9) and (10),
respectively, provides a solution of the partial differential equation (1). However, we
are interested only in those solutions of Eq. (1) that also satisfy the boundary conditions
(4). As we now show, this severely restricts the possible values of λ.

Substituting for u(x, t) from Eq. (5) in the boundary condition at x = 0, we obtain

u(0, t) = X (0)T (t) = 0. (11)

If Eq. (11) is satisfied by choosing T (t) to be zero for all t , then u(x, t) is zero for
all x and t , and we have already rejected this possibility. Therefore Eq. (11) must be
satisfied by requiring that

X (0) = 0. (12)

Similarly, the boundary condition at x = L requires that

X (L) = 0. (13)

We now want to consider Eq. (9) subject to the boundary conditions (12) and (13).
This is an eigenvalue problem and, in fact, is the same problem that we discussed in
detail at the end of Section 10.1; see especially the paragraph following Eq. (29) in that
section. The only difference is that the dependent variable there was called y rather
than X . If we refer to the results obtained earlier [Eq. (31) of Section 10.1], the only
nontrivial solutions of Eqs. (9), (12), and (13) are the eigenfunctions

Xn(x) = sin(nπx/L), n = 1, 2, 3, . . . , (14)

associated with the eigenvalues

λn = n2π2/L2, n = 1, 2, 3, . . . . (15)

Turning now to Eq. (10) for T (t) and substituting n2π2/L2 for λ, we have

T ′ + (n2π2α2/L2)T = 0. (16)

Thus T (t) is proportional to exp(−n2π2α2t/L2). Hence, multiplying solutions of
Eqs. (9) and (10) together, and neglecting arbitrary constants of proportionality, we
conclude that the functions

un(x, t) = e−n2π2α2t/L2
sin(nπx/L), n = 1, 2, 3, . . . (17)

satisfy the partial differential equation (1) and the boundary conditions (4) for each
positive integer value of n. The functions un are sometimes called fundamental solutions
of the heat conduction problem (1), (3), and (4).

It remains only to satisfy the initial condition (3),

u(x, 0) = f (x), 0 ≤ x ≤ L . (18)



10.5 Separation of Variables; Heat Conduction in a Rod 577

Recall that we have often solved initial value problems by forming linear combinations
of a set of fundamental solutions, and then choosing the coefficients to satisfy the initial
conditions. The analogous step in the present problem is to form a linear combination
of the functions (17) and then to choose the coefficients to satisfy Eq. (18). The main
difference now from earlier problems is that there are infinitely many functions (17),
so a general linear combination of them is an infinite series. Thus we assume that

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cne−n2π2α2t/L2
sin

nπx

L
, (19)

where the coefficients cn are as yet undetermined. The individual terms in the series
(19) satisfy the differential equation (1) and boundary conditions (4). We will assume
that the infinite series of Eq. (19) converges and also satisfies Eqs. (1) and (4). To
satisfy the initial condition (3) we must have

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f (x). (20)

In other words, we need to choose the coefficients cn so that the series of sine functions
in Eq. (20) converges to the initial temperature distribution f (x) for 0 ≤ x ≤ L . The
series in Eq. (20) is just the Fourier sine series for f ; according to Eq. (8) of Section
10.4 its coefficients are given by

cn = 2

L

∫ L

0
f (x) sin

nπx

L
dx . (21)

Hence the solution of the heat conduction problem of Eqs. (1), (3), and (4) is given by
the series in Eq. (19) with the coefficients computed from Eq. (21).

E X A M P L E

1

Find the temperature u(x, t) at any time in a metal rod 50 cm long, insulated on the
sides, which initially has a uniform temperature of 20◦C throughout, and whose ends
are maintained at 0◦C for all t > 0.

The temperature in the rod satisfies the heat conduction problem (1), (3), (4) with
L = 50 and f (x) = 20 for 0 < x < 50. Thus, from Eq. (19), the solution is

u(x, t) =
∞∑

n=1

cne−n2π2α2t/2500 sin
nπx

50
, (22)

where, from Eq. (21),

cn = 4

5

∫ 50

0
sin

nπx

50
dx

= 40

nπ
(1 − cos nπ) =

{
80/nπ, n odd;
0, n even.

(23)

Finally, by substituting for cn in Eq. (22) we obtain

u(x, t) = 80

π

∞∑
n=1,3,5,...

1

n
e−n2π2α2t/2500 sin

nπx

50
. (24)

The expression (24) for the temperature is moderately complicated, but the negative
exponential factor in each term of the series causes the series to converge quite rapidly,
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except for small values of t or α2. Therefore accurate results can usually be obtained
by using only a few terms of the series.

In order to display quantitative results let us measure t in seconds; then α2 has the
units of cm2/sec. If we choose α2 = 1 for convenience, this corresponds to a rod of a
material whose thermal properties are somewhere between copper and aluminum. The
behavior of the solution can be seen from the graphs in Figures 10.5.3 through 10.5.5.
In Figure 10.5.3 we show the temperature distribution in the bar at several different
times. Observe that the temperature diminishes steadily as heat in the bar is lost through
the endpoints. The way in which the temperature decays at a given point in the bar is
indicated in Figure 10.5.4, where temperature is plotted against time for a few selected
points in the bar. Finally, Figure 10.5.5 is a three-dimensional plot of u versus both x
and t . Observe that the graphs in Figures 10.5.3 and 10.5.4 are obtained by intersecting
the surface in Figure 10.5.5 by planes on which either t or x is constant. The slight
waviness in Figure 10.5.5 at t = 0 results from using only a finite number of terms in
the series for u(x, t) and from the slow convergence of the series for t = 0.
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FIGURE 10.5.3 Temperature distributions at several times for the heat conduction problem
of Example 1.
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FIGURE 10.5.4 Dependence of temperature on time at several locations for the heat conduc-
tion problem of Example 1.
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FIGURE 10.5.5 Plot of temperature u versus x and t for the heat conduction problem of
Example 1.

A question with possible practical implications is to determine the time τ at which the
entire bar has cooled to a specified temperature. For example, when is the temperature
in the entire bar no greater than 1◦C? Because of the symmetry of the initial temperature
distribution and the boundary conditions, the warmest point in the bar is always the
center. Thus, τ is found by solving u(25, t) = 1 for t . Using one term in the series
expansion (24), we obtain

τ = 2500

π2 ln(80/π) ∼= 820 sec.

PROBLEMS In each of Problems 1 through 6 determine whether the method of separation of variables can be
used to replace the given partial differential equation by a pair of ordinary differential equations.
If so, find the equations.

1. xuxx + ut = 0 2. tuxx + xut = 0 3. uxx + uxt + ut = 0
4. [p(x)ux ]x − r(x)utt = 0 5. uxx + (x + y)uyy = 0 6. uxx + uyy + xu = 0

7. Find the solution of the heat conduction problem

100uxx = ut , 0 < x < 1, t > 0;
u(0, t) = 0, u(1, t) = 0, t > 0;
u(x, 0) = sin 2πx − sin 5πx, 0 ≤ x ≤ 1.

8. Find the solution of the heat conduction problem

uxx = 4ut , 0 < x < 2, t > 0;
u(0, t) = 0, u(2, t) = 0, t > 0;
u(x, 0) = 2 sin(πx/2)− sinπx + 4 sin 2πx, 0 ≤ x ≤ 2.

Consider the conduction of heat in a rod 40 cm in length whose ends are maintained at 0◦C for
all t > 0. In each of Problems 9 through 12 find an expression for the temperature u(x, t) if the
initial temperature distribution in the rod is the given function. Suppose that α2 = 1.
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9. u(x, 0) = 50, 0 < x < 40 10. u(x, 0) =
{

x, 0 ≤ x < 20,
40 − x, 20 ≤ x ≤ 40

11. u(x, 0) =



0, 0 ≤ x < 10,
50, 10 ≤ x ≤ 30,
0, 30 < x ≤ 40

12. u(x, 0) = x, 0 < x < 40

� 13. Consider again the rod in Problem 9. For t = 5 and x = 20 determine how many terms are
needed to find the solution correct to three decimal places. A reasonable way to do this is
to find n so that including one more term does not change the first three decimal places of
u(20, 5). Repeat for t = 20 and t = 80. Form a conclusion about the speed of convergence
of the series for u(x, t).

� 14. For the rod in Problem 9:
(a) Plot u versus x for t = 5, 10, 20, 40, 100, and 200. Put all the graphs on the same
set of axes and thereby obtain a picture of the way in which the temperature distribution
changes with time.
(b) Plot u versus t for x = 5, 10, 15, and 20.
(c) Draw a three-dimensional plot of u versus x and t .
(d) How long does it take for the entire rod to cool off to a temperature of no more than
1◦C?

� 15. Follow the instructions in Problem 14 for the rod in Problem 10.
� 16. Follow the instructions in Problem 14 for the rod in Problem 11.
� 17. For the rod in Problem 12:

(a) Plot u versus x for t = 5, 10, 20, 40, 100, and 200.
(b) For each value of t used in part (a) estimate the value of x for which the temperature
is greatest. Plot these values versus t to see how the location of the warmest point in the
rod changes with time.
(c) Plot u versus t for x = 10, 20, and 30.
(d) Draw a three-dimensional plot of u versus x and t .
(e) How long does it take for the entire rod to cool off to a temperature of no more than
1◦C?

� 18. Let a metallic rod 20 cm long be heated to a uniform temperature of 100◦C. Suppose that
at t = 0 the ends of the bar are plunged into an ice bath at 0◦C, and thereafter maintained
at this temperature, but that no heat is allowed to escape through the lateral surface. Find
an expression for the temperature at any point in the bar at any later time. Determine the
temperature at the center of the bar at time t = 30 sec if the bar is made of (a) silver,
(b) aluminum, or (c) cast iron.

� 19. For the rod of Problem 18 find the time that will elapse before the center of the bar cools
to a temperature of 5◦C if the bar is made of (a) silver, (b) aluminum, or (c) cast iron.

20. In solving differential equations the computations can almost always be simplified by
the use of dimensionless variables. Show that if the dimensionless variable ξ = x/L is
introduced, the heat conduction equation becomes

∂2u

∂ξ 2 = L2

α2

∂u

∂t
, 0 < ξ < 1, t > 0.

Since L2/α2 has the units of time, it is convenient to use this quantity to define a di-
mensionless time variable τ = (α2/L2)t . Then show that the heat conduction equation
reduces to

∂2u

∂ξ 2 = ∂u

∂τ
, 0 < ξ < 1, τ > 0.

21. Consider the equation

auxx − but + cu = 0, (i)

where a, b, and c are constants.
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(a) Let u(x, t) = eδtw(x, t), where δ is constant, and find the corresponding partial dif-
ferential equation for w.
(b) If b �= 0, show that δ can be chosen so that the partial differential equation found in
part (a) has no term in w. Thus, by a change of dependent variable, it is possible to reduce
Eq. (i) to the heat conduction equation.

22. The heat conduction equation in two space dimensions is

α2(uxx + uyy) = ut .

Assuming that u(x, y, t) = X (x)Y (y)T (t), find ordinary differential equations satisfied
by X (x), Y (y), and T (t).

23. The heat conduction equation in two space dimensions may be expressed in terms of polar
coordinates as

α2[urr + (1/r)ur + (1/r2)u
θθ

] = ut .

Assuming that u(r, θ, t) = R(r)�(θ)T (t), find ordinary differential equations satisfied by
R(r), �(θ), and T (t).

10.6 Other Heat Conduction Problems

In Section 10.5 we considered the problem consisting of the heat conduction equation

α2uxx = ut , 0 < x < L , t > 0, (1)

the boundary conditions

u(0, t) = 0, u(L , t) = 0, t > 0, (2)

and the initial condition

u(x, 0) = f (x), 0 ≤ x ≤ L . (3)

We found the solution to be

u(x, t) =
∞∑

n=1

cne−n2π2α2t/L2
sin

nπx

L
, (4)

where the coefficients cn are the same as in the series

f (x) =
∞∑

n=1

cn sin
nπx

L
. (5)

The series in Eq. (5) is just the Fourier sine series for f ; according to Section 10.4 its
coefficients are given by

cn = 2

L

∫ L

0
f (x) sin

nπx

L
dx . (6)

Hence the solution of the heat conduction problem, Eqs. (1) to (3), is given by the
series in Eq. (4) with the coefficients computed from Eq. (6).

We emphasize that at this stage the solution (4) must be regarded as a formal solution;
that is, we obtained it without rigorous justification of the limiting processes involved.
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Such a justification is beyond the scope of this book. However, once the series (4)
has been obtained, it is possible to show that in 0 < x < L , t > 0 it converges to a
continuous function, that the derivatives uxx and ut can be computed by differentiating
the series (4) term by term, and that the heat conduction equation (1) is indeed satisfied.
The argument rests heavily on the fact that each term of the series (4) contains a negative
exponential factor, and this results in relatively rapid convergence of the series. A further
argument establishes that the function u given by Eq. (4) also satisfies the boundary
and initial conditions; this completes the justification of the formal solution.

It is interesting to note that although f satisfies the conditions of the Fourier con-
vergence theorem (Theorem 10.3.1), it may have points of discontinuity. In this case
the initial temperature distribution u(x, 0) = f (x) is discontinuous at one or more
points. Nevertheless, the solution u(x, t) is continuous for arbitrarily small values of
t > 0. This illustrates the fact that heat conduction is a diffusive process that instantly
smooths out any discontinuities that may be present in the initial temperature distribu-
tion. Finally, since f is bounded, it follows from Eq. (6) that the coefficients cn are also
bounded. Consequently, the presence of the negative exponential factor in each term
of the series (4) guarantees that

lim
t→∞ u(x, t) = 0 (7)

for all x regardless of the initial condition. This is in accord with the result expected
from physical intuition.

We now consider two other problems of one-dimensional heat conduction that can
be handled by the method developed in Section 10.5.

Nonhomogeneous Boundary Conditions. Suppose now that one end of the bar is held
at a constant temperature T1 and the other is maintained at a constant temperature T2.
Then the boundary conditions are

u(0, t) = T1, u(L , t) = T2, t > 0. (8)

The differential equation (1) and the initial condition (3) remain unchanged.
This problem is only slightly more difficult, because of the nonhomogeneous bound-

ary conditions, than the one in Section 10.5. We can solve it by reducing it to a problem
having homogeneous boundary conditions, which can then be solved as in Section
10.5. The technique for doing this is suggested by the following physical argument.

After a long time, that is, as t → ∞, we anticipate that a steady temperature distribu-
tion v(x) will be reached, which is independent of the time t and the initial conditions.
Since v(x) must satisfy the equation of heat conduction (1), we have

v′′(x) = 0, 0 < x < L . (9)

Hence the steady-state temperature distribution is a linear function of x . Further, v(x)
must satisfy the boundary conditions

v(0) = T1, v(L) = T2, (10)

which are valid even as t → ∞. The solution of Eq. (9) satisfying Eqs. (10) is

v(x) = (T2 − T1)
x

L
+ T1. (11)
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Returning to the original problem, Eqs. (1), (3), and (8), we will try to express u(x, t)
as the sum of the steady-state temperature distribution v(x) and another (transient)
temperature distribution w(x, t); thus we write

u(x, t) = v(x)+ w(x, t). (12)

Since v(x) is given by Eq. (11), the problem will be solved provided we can determine
w(x, t). The boundary value problem forw(x, t) is found by substituting the expression
in Eq. (12) for u(x, t) in Eqs. (1), (3), and (8).

From Eq. (1) we have

α2(v + w)xx = (v + w)t ;
it follows that

α2wxx = wt , (13)

since vxx = 0 and vt = 0. Similarly, from Eqs. (12), (8), and (10),

w(0, t) = u(0, t)− v(0) = T1 − T1 = 0,
(14)

w(L , t) = u(L , t)− v(L) = T2 − T2 = 0.

Finally, from Eqs. (12) and (3),

w(x, 0) = u(x, 0)− v(x) = f (x)− v(x), (15)

where v(x) is given by Eq. (11). Thus the transient part of the solution to the original
problem is found by solving the problem consisting of Eqs. (13), (14), and (15). This
latter problem is precisely the one solved in Section 10.5 provided that f (x)− v(x) is
now regarded as the initial temperature distribution. Hence

u(x, t) = (T2 − T1)
x

L
+ T1 +

∞∑
n=1

cne−n2π2α2t/L2
sin

nπx

L
, (16)

where

cn = 2

L

∫ L

0

[
f (x)− (T2 − T1)

x

L
− T1

]
sin

nπx

L
dx . (17)

This is another case in which a more difficult problem is solved by reducing it to a
simpler problem that has already been solved. The technique of reducing a problem with
nonhomogeneous boundary conditions to one with homogeneous boundary conditions
by subtracting the steady-state solution is capable of wide application.

E X A M P L E

1

Consider the heat conduction problem

uxx = ut , 0 < x < 30, t > 0, (18)

u(0, t) = 20, u(30, t) = 50, t > 0, (19)

u(x, 0) = 60 − 2x, 0 < x < 30. (20)

Find the steady-state temperature distribution and the boundary value problem that
determines the transient distribution.
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The steady-state temperature satisfies v′′(x) = 0 and the boundary conditions v(0) =
20 and v(30) = 50. Thus v(x) = 20 + x . The transient distribution w(x, t) satisfies
the heat conduction equation

wxx = wt , (21)

the homogeneous boundary conditions

w(0, t) = 0, w(30, t) = 0, (22)

and the modified initial condition

w(x, 0) = 60 − 2x − (20 + x) = 40 − 3x . (23)

Note that this problem is of the form (1), (2), (3) with f (x) = 40 − 3x , α2 = 1, and
L = 30. Thus the solution is given by Eqs. (4) and (6).

Figure 10.6.1 shows a plot of the initial temperature distribution 60 − 2x , the final
temperature distribution 20 + x , and the temperature at two intermediate times found
by solving Eqs. (21) through (23). Note that the intermediate temperature satisfies the
boundary conditions (19) for any t > 0. As t increases, the effect of the boundary
conditions gradually moves from the ends of the bar toward its center.
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FIGURE 10.6.1 Temperature distributions at several times for the heat conduction problem
of Example 1.

Bar with Insulated Ends. A slightly different problem occurs if the ends of the bar
are insulated so that there is no passage of heat through them. According to Eq. (2) in
Appendix A, the rate of flow of heat across a cross section is proportional to the rate of
change of temperature in the x direction. Thus in the case of no heat flow the boundary
conditions are

ux(0, t) = 0, ux(L , t) = 0, t > 0. (24)

The problem posed by Eqs. (1), (3), and (24) can also be solved by the method of
separation of variables. If we let

u(x, t) = X (x)T (t), (25)
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and substitute for u in Eq. (1), then it follows as in Section 10.5 that

X ′′

X
= 1

α2

T ′

T
= −λ, (26)

where λ is a constant. Thus we obtain again the two ordinary differential equations

X ′′ + λX = 0, (27)

T ′ + α2λT = 0. (28)

For any value of λ a product of solutions of Eqs. (27) and (28) is a solution of the
partial differential equation (1). However, we are interested only in those solutions that
also satisfy the boundary conditions (24).

If we substitute for u(x, t) from Eq. (25) in the boundary condition at x = 0, we
obtain X ′(0)T (t) = 0. We cannot permit T (t) to be zero for all t , since then u(x, t)
would also be zero for all t . Hence we must have

X ′(0) = 0. (29)

Proceeding in the same way with the boundary condition at x = L , we find that

X ′(L) = 0. (30)

Thus we wish to solve Eq. (27) subject to the boundary conditions (29) and (30). It is
possible to show that nontrivial solutions of this problem can exist only if λ is real. One
way to show this is indicated in Problem 18; alternatively, one can appeal to a more
general theory to be discussed later in Section 11.2. We will assume that λ is real and
consider in turn the three cases λ < 0, λ = 0, and λ > 0.

If λ < 0, it is convenient to let λ = −µ2, where µ is real and positive. Then Eq. (27)
becomes X ′′ − µ2 X = 0 and its general solution is

X (x) = k1 sinhµx + k2 coshµx . (31)

In this case the boundary conditions can be satisfied only by choosing k1 = k2 = 0.
Since this is unacceptable, it follows that λ cannot be negative; in other words, the
problem (27), (29), (30) has no negative eigenvalues.

If λ = 0, then Eq. (27) is X ′′ = 0, and therefore

X (x) = k1x + k2. (32)

The boundary conditions (29) and (30) require that k1 = 0 but do not determine k2.
Thus λ = 0 is an eigenvalue, corresponding to the eigenfunction X (x) = 1. For λ = 0
it follows from Eq. (28) that T (t) is also a constant, which can be combined with k2.
Hence, for λ = 0, we obtain the constant solution u(x, t) = k2.

Finally, if λ > 0, let λ = µ2, where µ is real and positive. Then Eq. (27) becomes
X ′′ + µ2 X = 0, and consequently

X (x) = k1 sinµx + k2 cosµx . (33)

The boundary condition (29) requires that k1 = 0, and the boundary condition (30)
requires that µ = nπ/L for n = 1, 2, 3, . . . , but leaves k2 arbitrary. Thus the problem
(27), (29), (30) has an infinite sequence of positive eigenvalues λ = n2π2/L2 with the
corresponding eigenfunctions X (x) = cos(nπx/L). For these values of λ the solutions
T (t) of Eq. (28) are proportional to exp(−n2π2α2t/L2).
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Combining all these results, we have the following fundamental solutions for the
problem (1), (3), and (24):

u0(x, t) = 1,
(34)

un(x, t) = e−n2π2α2t/L2
cos

nπx

L
, n = 1, 2, . . . ,

where arbitrary constants of proportionality have been dropped. Each of these functions
satisfies the differential equation (1) and the boundary conditions (24). Because both
the differential equation and boundary conditions are linear and homogeneous, any
finite linear combination of the fundamental solutions satisfies them. We will assume
that this is true for convergent infinite linear combinations of fundamental solutions as
well. Thus, to satisfy the initial condition (3), we assume that u(x, t) has the form

u(x, t) = c0

2
u0(x, t)+

∞∑
n=1

cnun(x, t)

= c0

2
+

∞∑
n=1

cne−n2π2α2t/L2
cos

nπx

L
. (35)

The coefficients cn are determined by the requirement that

u(x, 0) = c0

2
+

∞∑
n=1

cn cos
nπx

L
= f (x). (36)

Thus the unknown coefficients in Eq. (35) must be the coefficients in the Fourier cosine
series of period 2L for f . Hence

cn = 2

L

∫ L

0
f (x) cos

nπx

L
dx, n = 0, 1, 2, . . . . (37)

With this choice of the coefficients c0, c1, c2, . . . , the series (35) provides the so-
lution to the heat conduction problem for a rod with insulated ends, Eqs. (1), (3),
and (24).

It is worth observing that the solution (35) can also be thought of as the sum of a
steady-state temperature distribution (given by the constant c0/2), which is independent
of time t , and a transient distribution (given by the rest of the infinite series) that vanishes
in the limit as t approaches infinity. That the steady-state is a constant is consistent
with the expectation that the process of heat conduction will gradually smooth out the
temperature distribution in the bar as long as no heat is allowed to escape to the outside.
The physical interpretation of the term

c0

2
= 1

L

∫ L

0
f (x) dx (38)

is that it is the mean value of the original temperature distribution.
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E X A M P L E

2

Find the temperature u(x, t) in a metal rod of length 25 cm that is insulated on the
ends as well as on the sides and whose initial temperature distribution is u(x, 0) = x
for 0 < x < 25.

The temperature in the rod satisfies the heat conduction problem (1), (3), (24) with
L = 25. Thus, from Eq. (35), the solution is

u(x, t) = c0

2
+

∞∑
n=1

cne−n2π2α2t/625 cos
nπx

25
, (39)

where the coefficients are determined from Eq. (37). We have

c0 = 2

25

∫ 25

0
x dx = 25 (40)

and, for n ≥ 1,

cn = 2

25

∫ 25

0
x cos

nπx

25
dx

= 50(cos nπ − 1)/(nπ)2 =
{
−100/(nπ)2, n odd;

0, n even.
(41)

Thus

u(x, t) = 25

2
− 100

π2

∞∑
n=1,3,5,...

1

n2 e−n2π2α2t/625 cos(nπx/25) (42)

is the solution of the given problem.
For α2 = 1 Figure 10.6.2 shows plots of the temperature distribution in the bar at

several times. Again the convergence of the series is rapid so that only a relatively few
terms are needed to generate the graphs.

2510 155 20

25

20

15

10

5

u

x

t = 0

t = 10

t = 40

t = 100
t → ∞

FIGURE 10.6.2 Temperature distributions at several times for the heat conduction problem
of Example 2.
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More General Problems. The method of separation of variables can also be used to
solve heat conduction problems with other boundary conditions than those given by
Eqs. (8) and Eqs. (24). For example, the left end of the bar might be held at a fixed
temperature T while the other end is insulated. In this case the boundary conditions are

u(0, t) = T, ux(L , t) = 0, t > 0. (43)

The first step in solving this problem is to reduce the given boundary conditions to
homogeneous ones by subtracting the steady-state solution. The resulting problem is
solved by essentially the same procedure as in the problems previously considered.
However, the extension of the initial function f outside of the interval [0, L] is some-
what different from that in any case considered so far (see Problem 15).

A more general type of boundary condition occurs when the rate of heat flow through
the end of the bar is proportional to the temperature. It is shown in Appendix A that
the boundary conditions in this case are of the form

ux(0, t)− h1u(0, t) = 0, ux(L , t)+ h2u(L , t) = 0, t > 0, (44)

where h1 and h2 are nonnegative constants. If we apply the method of separation of
variables to the problem consisting of Eqs. (1), (3), and (44), we find that X (x) must
be a solution of

X ′′ + λX = 0, X ′(0)− h1 X (0) = 0, X ′(L)+ h2 X (L) = 0, (45)

where λ is the separation constant. Once again it is possible to show that nontrivial
solutions can exist only for certain nonnegative real values of λ, the eigenvalues, but
these values are not given by a simple formula (see Problem 20). It is also possible
to show that the corresponding solutions of Eqs. (45), the eigenfunctions, satisfy an
orthogonality relation, and that one can satisfy the initial condition (3) by superposing
solutions of Eqs. (45). However, the resulting series is not included in the discussion of
this chapter. There is more general theory that covers such problems, and it is outlined
in Chapter 11.

PROBLEMS In each of Problems 1 through 8 find the steady-state solution of the heat conduction equation
α2uxx = ut that satisfies the given set of boundary conditions.

1. u(0, t) = 10, u(50, t) = 40 2. u(0, t) = 30, u(40, t) = −20
3. ux (0, t) = 0, u(L , t) = 0 4. ux (0, t) = 0, u(L , t) = T
5. u(0, t) = 0, ux (L , t) = 0 6. u(0, t) = T, ux (L , t) = 0
7. ux (0, t)− u(0, t) = 0, u(L , t) = T 8. u(0, t) = T, ux (L , t)+ u(L , t) = 0

� 9. Let an aluminum rod of length 20 cm be initially at the uniform temperature of 25◦C.
Suppose that at time t = 0 the end x = 0 is cooled to 0◦C while the end x = 20 is heated
to 60◦C, and both are thereafter maintained at those temperatures.
(a) Find the temperature distribution in the rod at any time t .
(b) Plot the initial temperature distribution, the final (steady-state) temperature distribu-
tion, and the temperature distributions at two representative intermediate times on the same
set of axes.
(c) Plot u versus t for x = 5, 10, and 15.
(d) Determine the time interval that must elapse before the temperature at x = 5 cm comes
(and remains) within 1% of its steady-state value.

� 10. (a) Let the ends of a copper rod 100 cm long be maintained at 0◦C. Suppose that the center
of the bar is heated to 100◦C by an external heat source and that this situation is maintained
until a steady-state results. Find this steady-state temperature distribution.
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(b) At a time t = 0 [after the steady-state of part (a) has been reached] let the heat source
be removed. At the same instant let the end x = 0 be placed in thermal contact with a
reservoir at 20◦C while the other end remains at 0◦C. Find the temperature as a function of
position and time.
(c) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(d) What limiting value does the temperature at the center of the rod approach after a long
time? How much time must elapse before the center of the rod cools to within 1 degree of
its limiting value?

� 11. Consider a rod of length 30 for which α2 = 1. Suppose the initial temperature distribution
is given by u(x, 0) = x(60 − x)/30 and that the boundary conditions are u(0, t) = 30 and
u(30, t) = 0.
(a) Find the temperature in the rod as a function of position and time.
(b) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(c) Plot u versus t for x = 12. Observe that u initially decreases, then increases for a
while, and finally decreases to approach its steady-state value. Explain physically why this
behavior occurs at this point.

� 12. Consider a uniform rod of length L with an initial temperature given by u(x, 0) =
sin(πx/L), 0 ≤ x ≤ L . Assume that both ends of the bar are insulated.
(a) Find the temperature u(x, t).
(b) What is the steady-state temperature as t → ∞?
(c) Let α2 = 1 and L = 40. Plot u versus x for several values of t . Also plot u versus t
for several values of x .
(d) Describe briefly how the temperature in the rod changes as time progresses.

� 13. Consider a bar of length 40 cm whose initial temperature is given by u(x, 0) = x(60 −
x)/30. Suppose that α2 = 1/4 cm2/sec and that both ends of the bar are insulated.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(c) Determine the steady-state temperature in the bar.
(d) Determine how much time must elapse before the temperature at x = 40 comes within
1 degree of its steady-state value.

� 14. Consider a bar 30 cm long that is made of a material for which α2 = 1 and whose ends are
insulated. Suppose that the initial temperature is zero except for the interval 5 < x < 10,
where the initial temperature is 25◦.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(c) Plot u(4, t) and u(11, t) versus t . Observe that the points x = 4 and x = 11 are
symmetrically located with respect to the initial temperature pulse, yet their temperature
plots are significantly different. Explain physically why this is so.

15. Consider a uniform bar of length L having an initial temperature distribution given by
f (x), 0 ≤ x ≤ L . Assume that the temperature at the end x = 0 is held at 0◦C, while the
end x = L is insulated so that no heat passes through it.
(a) Show that the fundamental solutions of the partial differential equation and boundary
conditions are

un(x, t) = e−(2n−1)2π2α2t/4L2
sin[(2n − 1)πx/2L], n = 1, 2, 3, . . . .

(b) Find a formal series expansion for the temperature u(x, t),

u(x, t) =
∞∑

n=1

cnun(x, t),

that also satisfies the initial condition u(x, 0) = f (x).
Hint: Even though the fundamental solutions involve only the odd sines, it is still possible
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to represent f by a Fourier series involving only these functions. See Problem 39 of
Section 10.4.

� 16. In the bar of Problem 15 suppose that L = 30, α2 = 1, and the initial temperature distri-
bution is f (x) = 30 − x for 0 < x < 30.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(c) How does the location xm of the warmest point in the bar change as t increases? Draw
a graph of xm versus t .
(d) Plot the maximum temperature in the bar versus t .

� 17. Suppose that the conditions are as in Problems 15 and 16 except that the boundary condition
at x = 0 is u(0, t) = 40.
(a) Find the temperature u(x, t).
(b) Plot u versus x for several values of t . Also plot u versus t for several values of x .
(c) Compare the plots you obtained in this problem with those from Problem 16. Explain
how the change in the boundary condition at x = 0 causes the observed differences in the
behavior of the temperature in the bar.

18. Consider the problem

X ′′ + λX = 0, X ′(0) = 0, X ′(L) = 0. (i)

Let λ = µ2, whereµ = ν + iσ with ν and σ real. Show that if σ �= 0, then the only solution
of Eqs. (i) is the trivial solution X (x) = 0.
Hint: Use an argument similar to that in Problem 17 of Section 10.1.

19. The right end of a bar of length a with thermal conductivity κ1 and cross-sectional area
A1 is joined to the left end of a bar of thermal conductivity κ2 and cross-sectional area A2.
The composite bar has a total length L . Suppose that the end x = 0 is held at temperature
zero, while the end x = L is held at temperature T . Find the steady-state temperature in
the composite bar, assuming that the temperature and rate of heat flow are continuous at
x = a.
Hint: See Eq. (2) of Appendix A.

20. Consider the problem

α2uxx = ut , 0 < x < L , t > 0;
u(0, t) = 0, ux (L , t)+ γ u(L , t) = 0, t > 0; (i)

u(x, 0) = f (x), 0 ≤ x ≤ L .

(a) Let u(x, t) = X (x)T (t) and show that

X ′′ + λX = 0, X (0) = 0, X ′(L)+ γ X (L) = 0, (ii)

and
T ′ + λα2T = 0,

where λ is the separation constant.
(b) Assume that λ is real, and show that problem (ii) has no nontrivial solutions if λ ≤ 0.
(c) If λ > 0, let λ = µ2 with µ > 0. Show that problem (ii) has nontrivial solutions only
if µ is a solution of the equation

µ cosµL + γ sinµL = 0. (iii)

(d) Rewrite Eq. (iii) as tanµL = −µ/γ . Then, by drawing the graphs of y = tanµL and
y = −µL/γ L forµ > 0 on the same set of axes, show that Eq. (iii) is satisfied by infinitely
many positive values ofµ; denote these by µ1, µ2, . . . , µn, . . . , ordered in increasing size.
(e) Determine the set of fundamental solutions un(x, t) corresponding to the values µn
found in part (d).
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10.7 The Wave Equation: Vibrations of an Elastic String

A second partial differential equation occurring frequently in applied mathematics
is the wave7 equation. Some form of this equation, or a generalization of it, almost
inevitably arises in any mathematical analysis of phenomena involving the propagation
of waves in a continuous medium. For example, the studies of acoustic waves, water
waves, electromagnetic waves, and seismic waves are all based on this equation.

Perhaps the easiest situation to visualize occurs in the investigation of mechanical
vibrations. Suppose that an elastic string of length L is tightly stretched between two
supports at the same horizontal level, so that the x-axis lies along the string (see
Figure 10.7.1). The elastic string may be thought of as a violin string, a guy wire, or
possibly an electric power line. Suppose that the string is set in motion (by plucking,
for example) so that it vibrates in a vertical plane, and let u(x, t) denote the vertical
displacement experienced by the string at the point x at time t . If damping effects, such
as air resistance, are neglected, and if the amplitude of the motion is not too large, then
u(x, t) satisfies the partial differential equation

a2uxx = utt (1)

in the domain 0 < x < L , t > 0. Equation (1) is known as the wave equation and is
derived in Appendix B at the end of the chapter. The constant coefficient a2 appearing
in Eq. (1) is given by

a2 = T/ρ, (2)

where T is the tension (force) in the string, and ρ is the mass per unit length of the
string material. It follows that a has the units of length/time, that is, of velocity. In
Problem 14 it is shown that a is the velocity of propagation of waves along the string.

To describe the motion of the string completely it is necessary also to specify suitable
initial and boundary conditions for the displacement u(x, t). The ends are assumed to
remain fixed, and therefore the boundary conditions are

u(0, t) = 0, u(L , t) = 0, t ≥ 0. (3)

Since the differential equation (1) is of second order with respect to t , it is plausible to
prescribe two initial conditions. These are the initial position of the string,

u(x, 0) = f (x), 0 ≤ x ≤ L , (4)

x

u(x, t)
x = 0 x = L

FIGURE 10.7.1 A vibrating string.

7The solution of the wave equation was one of the major mathematical problems of the mid-eighteenth century.
The wave equation was first derived and studied by D’Alembert in 1746. It also attracted the attention of Euler
(1748), Daniel Bernoulli (1753), and Lagrange (1759). Solutions were obtained in several different forms, and the
merits of, and relations among, these solutions were argued, sometimes heatedly, in a series of papers extending
over more than 25 years. The major points at issue concerned the nature of a function, and the kinds of functions
that can be represented by trigonometric series. These questions were not resolved until the nineteenth century.
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and its initial velocity,

ut(x, 0) = g(x), 0 ≤ x ≤ L , (5)

where f and g are given functions. In order for Eqs. (3), (4), and (5) to be consistent
it is also necessary to require that

f (0) = f (L) = 0, g(0) = g(L) = 0. (6)

The mathematical problem then is to determine the solution of the wave equation (1)
that also satisfies the boundary conditions (3) and the initial conditions (4) and (5). Like
the heat conduction problem of Sections 10.5 and 10.6, this problem is an initial value
problem in the time variable t , and a boundary value problem in the space variable x .
Alternatively, it can be considered as a boundary value problem in the semi-infinite strip
0 < x < L , t > 0 of the xt-plane (see Figure 10.7.2). One condition is imposed at each
point on the semi-infinite sides, and two are imposed at each point on the finite base.

It is important to realize that Eq. (1) governs a large number of other wave problems
besides the transverse vibrations of an elastic string. For example, it is only necessary
to interpret the function u and the constant a appropriately to have problems dealing
with water waves in an ocean, acoustic or electromagnetic waves in the atmosphere,
or elastic waves in a solid body. If more than one space dimension is significant, then
Eq. (1) must be slightly generalized. The two-dimensional wave equation is

a2(uxx + uyy) = utt . (7)

This equation would arise, for example, if we considered the motion of a thin elastic
sheet, such as a drumhead. Similarly, in three dimensions the wave equation is

a2(uxx + uyy + uzz) = utt . (8)

In connection with the latter two equations, the boundary and initial conditions must
also be suitably generalized.

We now solve some typical boundary value problems involving the one-dimensional
wave equation.

t

x

x = L

u(0, t) = 0 u(L, t) = 0

u(x, 0) = f (x)
ut(x, 0) = g(x)

a2uxx = utt

FIGURE 10.7.2 Boundary value problem for the wave equation.
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Elastic String with Nonzero Initial Displacement. First suppose that the string is
disturbed from its equilibrium position, and then released at time t = 0 with zero
velocity to vibrate freely. Then the vertical displacement u(x, t) must satisfy the wave
equation (1),

a2uxx = utt , 0 < x < L , t > 0;
the boundary conditions (3),

u(0, t) = 0, u(L , t) = 0, t ≥ 0;
and the initial conditions

u(x, 0) = f (x), ut(x, 0) = 0, 0 ≤ x ≤ L , (9)

where f is a given function describing the configuration of the string at t = 0.
The method of separation of variables can be used to obtain the solution of Eqs. (1),

(3), and (9). Assuming that

u(x, t) = X (x)T (t) (10)

and substituting for u in Eq. (1), we obtain

X ′′

X
= 1

a2

T ′′

T
= −λ, (11)

where λ is a separation constant. Thus we find that X (x) and T (t) satisfy the ordinary
differential equations

X ′′ + λX = 0, (12)

T ′′ + a2λT = 0. (13)

Further, by substituting from Eq. (10) for u(x, t) in the boundary conditions (3) we
find that X (x) must satisfy the boundary conditions

X (0) = 0, X (L) = 0. (14)

Finally, by substituting from Eq. (10) into the second of the initial conditions (9), we
also find that T (t) must satisfy the initial condition

T ′(0) = 0. (15)

Our next task is to determine X (x), T (t), and λ by solving Eq. (12) subject to the
boundary conditions (14) and Eq. (13) subject to the initial condition (15).

The problem of solving the differential equation (12) subject to the boundary condi-
tions (14) is precisely the same problem that arose in Section 10.5 in connection with
the heat conduction equation. Thus we can use the results obtained there and at the end
of Section 10.1: The problem (12) and (14) has nontrivial solutions if and only if λ is
an eigenvalue,

λ = n2π2/L2, n = 1, 2, . . . , (16)

and X (x) is proportional to the corresponding eigenfunction sin(nπx/L).
Using the values of λ given by Eq. (16) in Eq. (13), we obtain

T ′′ + n2π2a2

L2 T = 0. (17)
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Therefore

T (t) = k1 cos
nπat

L
+ k2 sin

nπat

L
, (18)

where k1 and k2 are arbitrary constants. The initial condition (15) requires that k2 = 0,
so T (t) must be proportional to cos(nπat/L).

Thus the functions

un(x, t) = sin
nπx

L
cos

nπat

L
, n = 1, 2, . . . , (19)

satisfy the partial differential equation (1), the boundary conditions (3), and the sec-
ond initial condition (9). These functions are the fundamental solutions for the given
problem.

To satisfy the remaining (nonhomogeneous) initial condition (9) we will consider
a superposition of the fundamental solutions (19) with properly chosen coefficients.
Thus we assume that u(x, t) has the form

u(x, t) =
∞∑

n=1

cnun(x, t) =
∞∑

n=1

cn sin
nπx

L
cos

nπat

L
, (20)

where the constants cn remain to be chosen. The initial condition u(x, 0) = f (x)
requires that

u(x, 0) =
∞∑

n=1

cn sin
nπx

L
= f (x). (21)

Consequently, the coefficients cn must be the coefficients in the Fourier sine series of
period 2L for f ; hence

cn = 2

L

∫ L

0
f (x) sin

nπx

L
dx, n = 1, 2, . . . . (22)

Thus the formal solution of the problem of Eqs. (1), (3), and (9) is given by Eq. (20)
with the coefficients calculated from Eq. (22).

For a fixed value of n the expression sin(nπx/L) cos(nπat/L) in Eq. (19) is periodic
in time t with the period 2L/na; it therefore represents a vibratory motion of the string
having this period, or having the frequency nπa/L . The quantities λa = nπa/L for
n = 1, 2, . . . are the natural frequencies of the string, that is, the frequencies at which
the string will freely vibrate. The factor sin(nπx/L) represents the displacement pattern
occurring in the string when it is executing vibrations of the given frequency. Each
displacement pattern is called a natural mode of vibration and is periodic in the space
variable x ; the spatial period 2L/n is called the wavelength of the mode of frequency
nπa/L . Thus the eigenvalues n2π2/L2 of the problem (12), (14) are proportional to
the squares of the natural frequencies, and the eigenfunctions sin(nπx/L) give the
natural modes. The first three natural modes are sketched in Figure 10.7.3. The total
motion of the string, given by the function u(x, t) of Eq. (20), is thus a combination
of the natural modes of vibration, and is also a periodic function of time with period
2L/a.
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FIGURE 10.7.3 First three fundamental modes of vibration of an elastic string. (a) Frequency
= πa/L , wavelength = 2L; (b) frequency = 2πa/L , wavelength = L; (c) frequency = 3πa/L ,
wavelength = 2L/3.

E X A M P L E

1

Consider a vibrating string of length L = 30 that satisfies the wave equation

4uxx = utt , 0 < x < 30, t > 0 (23)

Assume that the ends of the string are fixed, and that the string is set in motion with no
initial velocity from the initial position

u(x, 0) = f (x) =
{

x/10, 0 ≤ x ≤ 10,
(30 − x)/20, 10 < x ≤ 30.

(24)

Find the displacement u(x, t) of the string and describe its motion through one period.
The solution is given by Eq. (20) with a = 2 and L = 30, that is,

u(x, t) =
∞∑

n=1

cn sin
nπx

30
cos

2nπ t

30
, (25)

where cn is calculated from Eq. (22). Substituting from Eq. (24) into Eq. (22), we
obtain

cn = 2

30

∫ 10

0

x

10
sin

nπx

30
dx + 2

30

∫ 30

10

30 − x

20
sin

nπx

30
dx . (26)

By evaluating the integrals in Eq. (26), we find that

cn = 9

n2π2 sin
nπ

3
, n = 1, 2, . . . . (27)

The solution (25), (27) gives the displacement of the string at any point x at any time t .
The motion is periodic in time with period 30, so it is sufficient to analyze the solution
for 0 ≤ t ≤ 30.

The best way to visualize the solution is by a computer animation showing the
dynamic behavior of the vibrating string. Here we indicate the motion of the string in
Figures 10.7.4, 10.7.5, and 10.7.6. Plots of u versus x for t = 0, 4, 7.5, 11, and 15
are shown in Figure 10.7.4. Observe that the maximum initial displacement is positive
and occurs at x = 10, while at t = 15, a half period later, the maximum displacement
is negative and occurs at x = 20. The string then retraces its motion and returns to
its original configuration at t = 30. Figure 10.7.5 shows the behavior of the points
x = 10, 15, and 20 by plots of u versus t for these fixed values of x . The plots confirm
that the motion is indeed periodic with period 30. Observe also that each interior point
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on the string is motionless for one-third of each period. Figure 10.7.6 shows a three-
dimensional plot of u versus both x and t , from which the overall nature of the solution
is apparent. Of course, the curves in Figures 10.7.4 and 10.7.5 lie on the surface shown
in Figure 10.7.6.
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FIGURE 10.7.4 Plots of u versus x for fixed values of t for the string in Example 1.
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FIGURE 10.7.5 Plots of u versus t for fixed values of x for the string in Example 1.

Justification of the Solution. As in the heat conduction problem considered earlier,
Eq. (20) with the coefficients cn given by Eq. (22) is only a formal solution of Eqs. (1),
(3), and (9). To ascertain whether Eq. (20) actually represents the solution of the given
problem requires some further investigation. As in the heat conduction problem, it is
tempting to try to show this directly by substituting Eq. (20) for u(x, t) in Eqs. (1), (3),
and (9). However, on formally computing uxx , for example, we obtain

uxx(x, t) = −
∞∑

n=1

cn

(nπ

L

)2
sin

nπx

L
cos

nπat

L
;
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FIGURE 10.7.6 Plot of u versus x and t for the string in Example 1.

due to the presence of the n2 factor in the numerator this series may not converge. This
would not necessarily mean that the series (20) for u(x, t) is incorrect, but only that the
series (20) cannot be used to calculate uxx and utt . A basic difference between solutions
of the wave equation and those of the heat conduction equation is that the latter contain
negative exponential terms that approach zero very rapidly with increasing n, which
ensures the convergence of the series solution and its derivatives. In contrast, series
solutions of the wave equation contain only oscillatory terms that do not decay with
increasing n.

However, there is an alternative way to establish the validity of Eq. (20) indirectly. At
the same time we will gain additional information about the structure of the solution.
First we will show that Eq. (20) is equivalent to

u(x, t) = 1
2 [h(x − at)+ h(x + at)], (28)

where h is the function obtained by extending the initial data f into (−L , 0) as an odd
function, and to other values of x as a periodic function of period 2L . That is,

h(x) =
{

f (x), 0 ≤ x ≤ L ,
− f (−x), −L < x < 0; (29)

h(x + 2L) = h(x).

To establish Eq. (28) note that h has the Fourier series

h(x) =
∞∑

n=1

cn sin
nπx

L
. (30)

Then, using the trigonometric identities for the sine of a sum or difference, we obtain

h(x − at) =
∞∑

n=1

cn

(
sin

nπx

L
cos

nπat

L
− cos

nπx

L
sin

nπat

L

)
,

h(x + at) =
∞∑

n=1

cn

(
sin

nπx

L
cos

nπat

L
+ cos

nπx

L
sin

nπat

L

)
,
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and Eq. (28) follows immediately upon adding the last two equations. From Eq. (28)
we see that u(x, t) is continuous for 0 < x < L , t > 0 provided that h is continuous
on the interval (−∞,∞). This requires that f be continuous on the original interval
[0, L]. Similarly, u is twice continuously differentiable with respect to either variable
in 0 < x < L , t > 0, provided that h is twice continuously differentiable on (−∞,∞).
This requires that f ′ and f ′′ be continuous on [0, L]. Furthermore, since h′′ is the odd
extension of f ′′, we must also have f ′′(0) = f ′′(L) = 0. However, since h′ is the even
extension of f ′, no further conditions are required on f ′. Provided that these conditions
are met, uxx and utt can be computed from Eq. (28), and it is an elementary exercise
to show that these derivatives satisfy the wave equation. Some of the details of the
argument just indicated are given in Problems 20 and 21.

If some of the continuity requirements stated in the last paragraph are not met, then u
is not differentiable at some points in the semi-infinite strip 0 < x < L , t > 0, and thus
is a solution of the wave equation only in a somewhat restricted sense. An important
physical consequence of this observation is that if there are any discontinuities present
in the initial data f , then they will be preserved in the solution u(x, t) for all time.
In contrast, in heat conduction problems initial discontinuities are instantly smoothed
out (Section 10.6). Suppose that the initial displacement f has a jump discontinuity
at x = x0, 0 ≤ x0 ≤ L . Since h is a periodic extension of f , the same discontinuity is
present in h(ξ) at ξ = x0 + 2nL and at ξ = −x0 + 2nL , where n is any integer. Thus
h(x − at) is discontinuous when x − at = x0 + 2nL , or when x − at = −x0 + 2nL .
For a fixed x in [0, L] the discontinuity that was originally at x0 will reappear in
h(x − at) at the times t = (x ± x0 − 2nL)/a. Similarly, h(x + at) is discontinuous at
the point x at the times t = (−x ± x0 + 2mL)/a, where m is any integer. If we refer
to Eq. (28), it then follows that the solution u(x, t) is also discontinuous at the given
point x at these times. Since the physical problem is posed for t > 0, only those values
of m and n yielding positive values of t are of interest.

General Problem for the Elastic String. Let us modify the problem considered pre-
viously by supposing that the string is set in motion from its equilibrium position
with a given velocity. Then the vertical displacement u(x, t) must satisfy the wave
equation (1),

a2uxx = utt , 0 < x < L , t > 0;
the boundary conditions (3),

u(0, t) = 0, u(L , t) = 0, t ≥ 0;
and the initial conditions

u(x, 0) = 0, ut(x, 0) = g(x), 0 ≤ x ≤ L , (31)

where g(x) is the initial velocity at the point x of the string.
The solution of this new problem can be obtained by following the procedure de-

scribed above for the problem (1), (3), and (9). Upon separating variables, we find that
the problem for X (x) is exactly the same as before. Thus, once again λ = n2π2/L2

and X (x) is proportional to sin(nπx/L). The differential equation for T (t) is again
Eq. (17), but the associated initial condition is now

T (0) = 0. (32)
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corresponding to the first of the initial conditions (31). The general solution of Eq. (17)
is given by Eq. (18), but now the initial condition (32) requires that k1 = 0. Therefore
T (t) is now proportional to sin(nπat/L) and the fundamental solutions for the problem
(1), (3), and (31) are

un(x, t) = sin
nπx

L
sin

nπat

L
, n = 1, 2, 3, . . . . (33)

Each of the functions un(x, t) satisfies the wave equation (1), the boundary conditions
(3), and the first of the initial conditions (31). The main consequence of using the initial
conditions (31) rather than (9) is that the time-dependent factor in un(x, t) involves a
sine rather than a cosine.

To satisfy the remaining (nonhomogeneous) initial condition we assume that u(x, t)
can be expressed as a linear combination of the fundamental solutions (33), that is,

u(x, t) =
∞∑

n=1

knun(x, t) =
∞∑

n=1

kn sin
nπx

L
sin

nπat

L
. (34)

To determine the values of the coefficients kn we differentiate Eq. (34) with respect
to t , set t = 0, and use the second initial condition (31); this gives the equation

ut (x, 0) =
∞∑

n=1

nπa

L
kn sin

nπx

L
= g(x). (35)

Hence the quantities (nπa/L)kn are the coefficients in the Fourier sine series of period
2L for g; therefore

nπa

L
kn = 2

L

∫ L

0
g(x) sin

nπx

L
dx, n = 1, 2, . . . . (36)

Thus Eq. (34), with the coefficients given by Eq. (36), constitutes a formal solution
to the problem of Eqs. (1), (3), and (31). The validity of this formal solution can
be established by arguments similar to those previously indicated for the solution of
Eqs. (1), (3), and (9).

Finally, we turn to the problem consisting of the wave equation (1), the boundary
conditions (3), and the general initial conditions (4), (5):

u(x, 0) = f (x), ut(x, 0) = g(x), 0 < x < L , (37)

where f (x) and g(x) are the given initial position and velocity, respectively, of the
string. Although this problem can be solved by separating variables, as in the cases
discussed previously, it is important to note that it can also be solved simply by adding
together the two solutions that we obtained above. To show that this is true, let v(x, t)
be the solution of the problem (1), (3), and (9), and let w(x, t) be the solution of the
problem (1), (3), and (31). Thus v(x, t) is given by Eqs. (20) and (22), while w(x, t) is
given by Eqs. (34) and (36). Now let u(x, t) = v(x, t)+ w(x, t); what problem does
u(x, t) satisfy? First, observe that

a2uxx − utt = (a2vxx − vt t)+ (a2wxx − wt t ) = 0 + 0 = 0, (38)

so u(x, t) satisfies the wave equation (1). Next, we have

u(0, t) = v(0, t)+ w(0, t) = 0 + 0 = 0, u(L , t) = v(L , t)+ w(L , t) = 0 + 0 = 0,

(39)
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so u(x, t) also satisfies the boundary conditions (3). Finally, we have

u(x, 0) = v(x, 0)+ w(x, 0) = f (x)+ 0 = f (x) (40)

and

ut(x, 0) = vt (x, 0)+ wt (x, 0) = 0 + g(x) = g(x). (41)

Thus u(x, t) satisfies the general initial conditions (37).
We can restate the result we have just obtained in the following way. To solve the wave

equation with the general initial conditions (37) you can solve instead the somewhat
simpler problems with the initial conditions (9) and (31), respectively, and then add
together the two solutions. This is another use of the principle of superposition.

PROBLEMS Consider an elastic string of length L whose ends are held fixed. The string is set in motion
with no initial velocity from an initial position u(x, 0) = f (x). In each of Problems 1 through 4
carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).

(a) Find the displacement u(x, t) for the given initial position f (x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x .
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

� 1. f (x) =
{

2x/L , 0 ≤ x ≤ L/2,
2(L − x)/L , L/2 < x ≤ L

� 2. f (x) =



4x/L , 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L , 3L/4 ≤ x ≤ L

� 3. f (x) = 8x(L − x)2/L3

� 4. f (x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise

Consider an elastic string of length L whose ends are held fixed. The string is set in motion from
its equilibrium position with an initial velocity ut (x, 0) = g(x). In each of Problems 5 through
8 carry out the following steps. Let L = 10 and a = 1 in parts (b) through (d).

(a) Find the displacement u(x, t) for the given g(x).
(b) Plot u(x, t) versus x for 0 ≤ x ≤ 10 and for several values of t between t = 0 and t = 20.
(c) Plot u(x, t) versus t for 0 ≤ t ≤ 20 and for several values of x .
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

� 5. g(x) =
{

2x/L , 0 ≤ x ≤ L/2,
2(L − x)/L , L/2 < x ≤ L

� 6. g(x) =



4x/L , 0 ≤ x ≤ L/4,
1, L/4 < x < 3L/4,
4(L − x)/L , 3L/4 ≤ x ≤ L

� 7. g(x) = 8x(L − x)2/L3

� 8. g(x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise
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9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
ux = 0. Find the displacement u(x, t) in an elastic string of length L , fixed at x = 0 and
free at x = L , set in motion with no initial velocity from the initial position u(x, 0) = f (x),
where f is a given function.
Hint: Show that the fundamental solutions for this problem, satisfying all conditions except
the nonhomogeneous initial condition, are

un(x, t) = sin λn x cos λnat,

where λn = (2n − 1)π/2L , n = 1, 2, . . . . Compare this problem with Problem 15 of Sec-
tion 10.6; pay particular attention to the extension of the initial data out of the original
interval [0, L].

� 10. Consider an elastic string of length L . The end x = 0 is held fixed while the end x = L
is free; thus the boundary conditions are u(0, t) = 0 and ux (L , t) = 0. The string is set in
motion with no initial velocity from the initial position u(x, 0) = f (x), where

f (x) =
{

1, L/2 − 1 < x < L/2 + 1 (L > 2),
0, otherwise.

(a) Find the displacement u(x, t).
(b) With L = 10 and a = 1 plot u versus x for 0 ≤ x ≤ 10 and for several values of t . Pay
particular attention to values of t between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.
(c) With L = 10 and a = 1 plot u versus t for several values of x .
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.

� 11. Suppose that the string in Problem 10 is started instead from the initial position f (x) =
8x(L − x)2/L3. Follow the instructions in Problem 10 for this new problem.

12. Dimensionless variables can be introduced into the wave equation a2uxx = utt in the
following manner. Let s = x/L and show that the wave equation becomes

a2uss = L2utt .

Then show that L/a has the dimensions of time, and thus can be used as the unit on the
time scale. Finally, let τ = at/L and show that the wave equation then reduces to

uss = u
ττ
.

Problems 13 and 14 indicate the form of the general solution of the wave equation and the
physical significance of the constant a.

13. Show that the wave equation

a2uxx = utt

can be reduced to the form u
ξη

= 0 by change of variables ξ = x − at , η = x + at . Show
that u(x, t) can be written as

u(x, t) = φ(x − at)+ ψ(x + at),

where φ and ψ are arbitrary functions.
14. Plot the value of φ(x − at) for t = 0, 1/a, 2/a, and t0/a if φ(s) = sin s. Note that for

any t �= 0 the graph of y = φ(x − at) is the same as that of y = φ(x) when t = 0, but
displaced a distance at in the positive x direction. Thus a represents the velocity at which
a disturbance moves along the string. What is the interpretation of φ(x + at)?

15. A steel wire 5 ft in length is stretched by a tensile force of 50 lb. The wire has a weight per
unit length of 0.026 lb/ft.
(a) Find the velocity of propagation of transverse waves in the wire.
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(b) Find the natural frequencies of vibration.
(c) If the tension in the wire is increased, how are the natural frequencies changed? Are
the natural modes also changed?

16. A vibrating string moving in an elastic medium satisfies the equation

a2uxx − α2u = utt ,

where α2 is proportional to the coefficient of elasticity of the medium. Suppose that the
string is fixed at the ends, and is released with no initial velocity from the initial position
u(x, 0) = f (x), 0 < x < L . Find the displacement u(x, t).

17. Consider the wave equation

a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = f (x), ut (x, 0) = 0, −∞ < x < ∞.

(a) Using the form of the solution obtained in Problem 13, show that φ and ψ must satisfy

φ(x)+ ψ(x) = f (x),

−φ′(x)+ ψ ′(x) = 0.

(b) Solve the equations of part (a) for φ and ψ , and thereby show that

u(x, t) = 1
2 [ f (x − at)+ f (x + at)].

This form of the solution was obtained by D’Alembert in 1746.
Hint: Note that the equation ψ ′(x) = φ′(x) is solved by choosing ψ(x) = φ(x)+ c.
(c) Let

f (x) =
{

2, −1 < x < 1,
0, otherwise.

Show that

f (x − at) =
{

2, −1 + at < x < 1 + at,
0, otherwise.

Also determine f (x + at).
(d) Sketch the solution found in part (b) at t = 0, t = 1/2a, t = 1/a, and t = 2/a, obtain-
ing the results shown in Figure 10.7.7. Observe that an initial displacement produces two
waves moving in opposite directions away from the original location; each wave consists
of one-half of the initial displacement.

18. Consider the wave equation

a2uxx = utt

in an infinite one-dimensional medium subject to the initial conditions

u(x, 0) = 0, ut (x, 0) = g(x), −∞ < x < ∞.

(a) Using the form of the solution obtained in Problem 13, show that

φ(x)+ ψ(x) = 0,

−aφ′(x)+ aψ ′(x) = g(x).

(b) Use the first equation of part (a) to show that ψ ′(x) = −φ′(x). Then use the second
equation to show that −2aφ′(x) = g(x), and therefore that

φ(x) = − 1

2a

∫ x

x0

g(ξ) dξ + φ(x0),

where x0 is arbitrary. Finally, determine ψ(x).



10.7 The Wave Equation: Vibrations of an Elastic String 603

x

u

x

x

x

u

u

u

2

1–1

1

–2–3

1

1

2

–1

–2 –1 1

1 2

2

3

–1

1

1

t = 0

t = 1
2a

– 3
2

1
2

3
2

– 1
2

t = 1
a

t = 2
a

FIGURE 10.7.7 Propagation of initial disturbance in an infinite one-dimensional medium.

(c) Show that

u(x, t) = 1

2a

∫ x+at

x−at
g(ξ) dξ.

19. By combining the results of Problems 17 and 18 show that the solution of the problem

a2uxx = utt ,

u(x, 0) = f (x), ut (x, 0) = g(x), −∞ < x < ∞
is given by

u(x, t) = 1

2
[ f (x − at)+ f (x + at)] + 1

2a

∫ x+at

x−at
g(ξ) dξ.

Problems 20 and 21 indicate how the formal solution (20), (22) of Eqs. (1), (3), and (9) can be
shown to constitute the actual solution of that problem.

20. By using the trigonometric identity sin A cos B = 1
2 [sin(A + B)+ sin(A − B)] show that

the solution (20) of the problem of Eqs. (1), (3), and (9) can be written in the form (28).
21. Let h(ξ) represent the initial displacement in [0, L], extended into (−L , 0) as an odd

function and extended elsewhere as a periodic function of period 2L . Assuming that
h, h′, and h′′ are all continuous, show by direct differentiation that u(x, t) as given in
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Eq. (28) satisfies the wave equation (1) and also the initial conditions (9). Note also that
since Eq. (20) clearly satisfies the boundary conditions (3), the same is true of Eq. (28).
Comparing Eq. (28) with the solution of the corresponding problem for the infinite string
(Problem 17), we see that they have the same form provided that the initial data for the
finite string, defined originally only on the interval 0 ≤ x ≤ L , are extended in the given
manner over the entire x-axis. If this is done, the solution for the infinite string is also
applicable to the finite one.

22. The motion of a circular elastic membrane, such as a drumhead, is governed by the two-
dimensional wave equation in polar coordinates

urr + (1/r)ur + (1/r2)u
θθ

= a−2utt .

Assuming that u(r, θ, t) = R(r)�(θ)T (t), find ordinary differential equations satisfied by
R(r), �(θ), and T (t).

23. The total energy E(t) of the vibrating string is given as a function of time by

E(t) =
∫ L

0

[
1
2ρu2

t (x, t)+ 1
2 T u2

x (x, t)
]

dx; (i)

the first term is the kinetic energy due to the motion of the string, and the second term is
the potential energy created by the displacement of the string away from its equilibrium
position.

For the displacement u(x, t) given by Eq. (20), that is, for the solution of the string
problem with zero initial velocity, show that

E(t) = π2T

4L

∞∑
n=1

n2c2
n . (ii)

Note that the right side of Eq. (ii) does not depend on t . Thus the total energy E is a
constant, and therefore is conserved during the motion of the string.
Hint: Use Parseval’s equation (Problem 37 of Section 10.4 and Problem 17 of Section
10.3), and recall that a2 = T/ρ.

10.8 Laplace’s Equation

One of the most important of all partial differential equations occurring in applied
mathematics is that associated with the name of Laplace8: in two dimensions

uxx + uyy = 0, (1)

and in three dimensions

uxx + uyy + uzz = 0. (2)

For example, in a two-dimensional heat conduction problem, the temperature u(x, y, t)
must satisfy the differential equation

α2(uxx + uyy) = ut , (3)

8Laplace’s equation is named for Pierre-Simon de Laplace, who, beginning in 1782, studied its solutions ex-
tensively while investigating the gravitational attraction of arbitrary bodies in space. However, the equation first
appeared in 1752 in a paper by Euler on hydrodynamics.
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where α2 is the thermal diffusivity. If a steady-state exists, u is a function of x and y
only, and the time derivative vanishes; in this case Eq. (3) reduces to Eq. (1). Similarly,
for the steady-state heat conduction problem in three dimensions, the temperature must
satisfy the three-dimensional form of Laplace’s equation. Equations (1) and (2) also
occur in other branches of mathematical physics. In the consideration of electrostatic
fields the electric potential function in a dielectric medium containing no electric
charges must satisfy either Eq. (1) or Eq. (2), depending on the number of space
dimensions involved. Similarly, the potential function of a particle in free space acted
on only by gravitational forces satisfies the same equations. Consequently, Laplace’s
equation is often referred to as the potential equation. Another example arises in the
study of the steady (time-independent), two-dimensional, inviscid, irrotational motion
of an incompressible fluid, which centers about two functions, known as the velocity
potential function and the stream function, both of which satisfy Eq. (1). In elasticity
the displacements that occur when a perfectly elastic bar is twisted are described in
terms of the so-called warping function, which also satisfies Eq. (1).

Since there is no time dependence in any of the problems mentioned previously,
there are no initial conditions to be satisfied by the solutions of Eq. (1) or (2). They
must, however, satisfy certain boundary conditions on the bounding curve or surface of
the region in which the differential equation is to be solved. Since Laplace’s equation
is of second order, it might be plausible to expect that two boundary conditions would
be required to determine the solution completely. This, however, is not the case. Recall
that in the heat conduction problem for the finite bar (Sections 10.5 and 10.6) it was
necessary to prescribe one condition at each end of the bar, that is, one condition
at each point of the boundary. If we generalize this observation to multidimensional
problems, it is then natural to prescribe one condition on the function u at each point
on the boundary of the region in which a solution of Eq. (1) or (2) is sought. The most
common boundary condition occurs when the value of u is specified at each boundary
point; in terms of the heat conduction problem this corresponds to prescribing the
temperature on the boundary. In some problems the value of the derivative, or rate of
change, of u in the direction normal to the boundary is specified instead; the condition
on the boundary of a thermally insulated body, for example, is of this type. It is entirely
possible for more complicated boundary conditions to occur; for example, u might be
prescribed on part of the boundary, and its normal derivative specified on the remainder.
The problem of finding a solution of Laplace’s equation that takes on given boundary
values is known as a Dirichlet problem, in honor of P. G. L. Dirichlet.9 In contrast, if
the values of the normal derivative are prescribed on the boundary, the problem is said
to be a Neumann problem, in honor of K. G. Neumann.10 The Dirichlet and Neumann
problems are also known as the first and second boundary value problems of potential
theory, respectively.

Physically, it is plausible to expect that the types of boundary conditions just men-
tioned will be sufficient to determine the solution completely. Indeed, it is possible to
establish the existence and uniqueness of the solution of Laplace’s equation under the

9Peter Gustav Dirichlet (1805–1859) was a professor at Berlin and, after the death of Gauss, at Göttingen. In
1829 he gave the first set of conditions sufficient to guarantee the convergence of a Fourier series. The definition
of function usually used today in elementary calculus is essentially the one given by Dirichlet in 1837. While he
is best known for his work in analysis and differential equations, Dirichlet was also one of the leading number
theorists of the nineteenth century.
10Karl Gottfried Neumann (1832–1925), professor at Leipzig, made contributions to differential equations, integral
equations, and complex variables.
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boundary conditions mentioned, provided the shape of the boundary and the functions
appearing in the boundary conditions satisfy certain very mild requirements. However,
the proofs of these theorems, and even their accurate statement, are beyond the scope
of the present book. Our only concern will be solving some typical problems by means
of separation of variables and Fourier series.

While the problems chosen as examples are capable of interesting physical interpre-
tations (in terms of electrostatic potentials or steady-state temperature distributions, for
instance), our purpose here is primarily to point out some of the features that may occur
during their mathematical solution. It is also worth noting again that more complicated
problems can sometimes be solved by expressing the solution as the sum of solutions
of several simpler problems (see Problems 3 and 4).

Dirichlet Problem for a Rectangle. Consider the mathematical problem of finding
the function u satisfying Laplace’s equation (1),

uxx + uyy = 0,

in the rectangle 0 < x < a, 0 < y < b, and also satisfying the boundary conditions

u(x, 0) = 0, u(x, b) = 0, 0 < x < a,
(4)

u(0, y) = 0, u(a, y) = f (y), 0 ≤ y ≤ b,

where f is a given function on 0 ≤ y ≤ b (see Figure 10.8.1).
To solve this problem we wish to construct a fundamental set of solutions satisfying

the partial differential equation and the homogeneous boundary conditions; then we
will superpose these solutions so as to satisfy the remaining boundary condition. Let
us assume that

u(x, y) = X (x)Y (y) (5)

and substitute for u in Eq. (1). This yields

X ′′

X
= −Y ′′

Y
= λ,

where λ is the separation constant. Thus we obtain the two ordinary differential
equations

X ′′ − λX = 0, (6)

Y ′′ + λY = 0. (7)

y

x

b

a

u(0, y) = 0

u(x, b) = 0

u(a, y) = f (y)

u(x, 0) = 0

(a, b)

uxx + uyy = 0

FIGURE 10.8.1 Dirichlet problem for a rectangle.
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If we now substitute for u from Eq. (5) in each of the homogeneous boundary conditions,
we find that

X (0) = 0 (8)

and

Y (0) = 0, Y (b) = 0. (9)

We will first determine the solution of the differential equation (7) subject to the
boundary conditions (9). However, this problem is essentially identical to one encoun-
tered previously in Sections 10.1, 10.5, and 10.7. We conclude that there are nontrivial
solutions if and only if λ is an eigenvalue, namely,

λ = (nπ/b)2, n = 1, 2, . . . ; (10)

and Y (y) is proportional to the corresponding eigenfunction sin(nπy/b). Next, we
substitute from Eq. (10) for λ in Eq. (6), and solve this equation subject to the boundary
condition (8). It is convenient to write the general solution of Eq. (6) as

X (x) = k1 cosh(nπx/b)+ k2 sinh(nπx/b), (11)

and the boundary condition (8) then requires that k1 = 0. Therefore X (x) must be
proportional to sinh(nπx/b). Thus we obtain the fundamental solutions

un(x, y) = sinh
nπx

b
sin

nπy

b
, n = 1, 2, . . . . (12)

These functions satisfy the differential equation (1) and all the homogeneous boundary
conditions for each value of n.

To satisfy the remaining nonhomogeneous boundary condition at x = a we assume,
as usual, that we can represent the solution u(x, y) in the form

u(x, y) =
∞∑

n=1

cnun(x, y) =
∞∑

n=1

cn sinh
nπx

b
sin

nπy

b
. (13)

The coefficients cn are determined by the boundary condition

u(a, y) =
∞∑

n=1

cn sinh
nπa

b
sin

nπy

b
= f (y). (14)

Therefore the quantities cn sinh(nπa/b) must be the coefficients in the Fourier sine
series of period 2b for f and are given by

cn sinh
nπa

b
= 2

b

∫ b

0
f (y) sin

nπy

b
dy. (15)

Thus the solution of the partial differential equation (1) satisfying the boundary condi-
tions (4) is given by Eq. (13) with the coefficients cn computed from Eq. (15).

From Eqs. (13) and (15) we see that the solution contains the factor
sinh(nπx/b)/ sinh(nπa/b). To estimate this quantity for large n we can use the
approximation sinh ξ ∼= eξ /2, and thereby obtain

sinh(nπx/b)

sinh(nπa/b)
∼=

1
2 exp(nπx/b)
1
2 exp(nπa/b)

= exp[−nπ(a − x)/b].

Thus this factor has the character of a negative exponential; consequently, the series
(13) converges quite rapidly unless a − x is very small.
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E X A M P L E

1

To illustrate these results, let a = 3, b = 2, and

f (y) =
{

y, 0 ≤ y ≤ 1,
2 − y, 1 ≤ y ≤ 2.

(16)

By evaluating cn from Eq. (15) we find that

cn = 8 sin(nπ/2)

n2π2 sinh(3nπ/2)
. (17)

Then u(x, y) is given by Eq. (13). Keeping 20 terms in the series we can plot u versus
x and y, as shown in Figure 10.8.2. Alternatively, one can construct a contour plot
showing level curves of u(x, y); Figure 10.8.3 is such a plot, with an increment of 0.1
between adjacent curves.

3
y x

u

2

1
0.21

2 0.4

0.6

0.8

1.0

FIGURE 10.8.2 Plot of u versus x and y for Example 1.

1

x

2

y

u = 0

u = 0

u = 0
u = 0.9

u = 0.7

u = 0.5

u = 0.4
u = 0.2

u = 0.6

u = 0.8

u = 0.3

u = 0.1

321

FIGURE 10.8.3 Level curves of u(x, y) for Example 1.
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Dirichlet Problem for a Circle. Consider the problem of solving Laplace’s equation
in a circular region r < a subject to the boundary condition

u(a, θ) = f (θ), (18)

where f is a given function on 0 ≤ θ < 2π (see Figure 10.8.4). In polar coordinates
Laplace’s equation takes the form

urr + 1

r
ur + 1

r2 u
θθ

= 0. (19)

To complete the statement of the problem we note that for u(r, θ) to be single-valued,
it is necessary that u be periodic in θ with period 2π . Moreover, we state explicitly that
u(r, θ) must be bounded for r ≤ a, since this will become important later.

To apply the method of separation of variables to this problem we assume that

u(r, θ) = R(r)�(θ), (20)

and substitute for u in the differential equation (19). This yields

R′′�+ 1

r
R′�+ 1

r2 R�′′ = 0,

or

r2 R′′

R
+ r

R′

R
= −�

′′

�
= λ, (21)

where λ is the separation constant. Thus we obtain the two ordinary differential
equations

r2 R′′ + r R′ − λR = 0, (22)

�′′ + λ� = 0. (23)

In this problem there are no homogeneous boundary conditions; recall, however, that
solutions must be bounded and also periodic in θ with period 2π . It is possible to show
(Problem 9) that the periodicity condition requires that λmust be real. We will consider
in turn the cases in which λ is negative, zero, and positive.

y

x

a

θ

u(a,   ) = f ( )θ θ

urr +   ur +    u   = 01
r

1
r2 θθ

FIGURE 10.8.4 Dirichlet problem for a circle.
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If λ < 0, let λ = −µ2, where µ > 0. Then Eq. (23) becomes �′′ − µ2� = 0, and
consequently

�(θ) = c1eµθ + c2e−µθ . (24)

Thus �(θ) can be periodic only if c1 = c2 = 0, and we conclude that λ cannot be
negative.

If λ = 0, then Eq. (23) becomes �′′ = 0, and thus

�(θ) = c1 + c2θ. (25)

For �(θ) to be periodic we must have c2 = 0, so that �(θ) is a constant. Further, for
λ = 0, Eq. (22) becomes

r2 R′′ + r R′ = 0. (26)

This equation is of the Euler type, and has the solution

R(r) = k1 + k2 ln r. (27)

The logarithmic term cannot be accepted if u(r, θ) is to remain bounded as r → 0; hence
k2 = 0. Thus, corresponding to λ = 0, we conclude that u(r, θ) must be a constant,
that is, proportional to the solution

u0(r, θ) = 1. (28)

Finally, if λ > 0, we let λ = µ2 where µ > 0. Then Eqs. (22) and (23) become

r2 R′′ + r R′ − µ2 R = 0 (29)

and

�′′ + µ2� = 0, (30)

respectively. Equation (29) is an Euler equation and has the solution

R(r) = k1rµ + k2r−µ, (31)

while Eq. (30) has the solution

�(θ) = c1 sinµθ + c2 cosµθ. (32)

In order that � be periodic with period 2π it is necessary that µ be a positive integer
n. With µ = n it follows that the solution r−µ in Eq. (31) must be discarded since it
becomes unbounded as r → 0. Consequently, k2 = 0 and the appropriate solutions of
Eq. (19) are

un(r, θ) = rn cos nθ, vn(r, θ) = rn sin nθ, n = 1, 2, . . . . (33)

These functions, together with u0(r, θ) = 1, form a set of fundamental solutions for
the present problem.

In the usual way we now assume that u can be expressed as a linear combination of
the fundamental solutions; that is,

u(r, θ) = c0

2
+

∞∑
n=1

rn(cn cos nθ + kn sin nθ). (34)
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The boundary condition (18) then requires that

u(a, θ) = c0

2
+

∞∑
n=1

an(cn cos nθ + kn sin nθ) = f (θ) (35)

for 0 ≤ θ < 2π . The function f may be extended outside this interval so that it is
periodic with period 2π , and therefore has a Fourier series of the form (35). Since
the extended function has period 2π , we may compute its Fourier coefficients by
integrating over any period of the function. In particular, it is convenient to use the
original interval (0, 2π); then

ancn = 1

π

∫ 2π

0
f (θ) cos nθ dθ, n = 0, 1, 2, . . . ; (36)

ankn = 1

π

∫ 2π

0
f (θ) sin nθ dθ, n = 1, 2, . . . . (37)

With this choice of the coefficients, Eq. (34) represents the solution of the boundary
value problem of Eqs. (18) and (19). Note that in this problem we needed both sine
and cosine terms in the solution. This is because the boundary data were given on
0 ≤ θ < 2π and have period 2π . As a consequence, the full Fourier series is required,
rather than sine or cosine terms alone.

PROBLEMS

� 1. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
also satisfying the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
u(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

(b) Find the solution if

g(x) =
{

x, 0 ≤ x ≤ a/2,
a − x, a/2 ≤ x ≤ a.

(c) For a = 3 and b = 1 plot u versus x for several values of y and also plot u versus y for
several values of x .
(d) Plot u versus both x and y in three dimensions. Also draw a contour plot showing
several level curves of u(x, y) in the xy-plane.

2. Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b, also
satisfying the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a.

� 3. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
also satisfying the boundary conditions

u(0, y) = 0, u(a, y) = f (y), 0 < y < b,
u(x, 0) = h(x), u(x, b) = 0, 0 ≤ x ≤ a.

Hint: Consider the possibility of adding the solutions of two problems, one with homo-
geneous boundary conditions except for u(a, y) = f (y), and the other with homogeneous
boundary conditions except for u(x, 0) = h(x).
(b) Find the solution if h(x) = (x/a)2 and f (y) = 1 − (y/b).
(c) Let a = 2 and b = 2. Plot the solution in several ways: u versus x , u versus y, u versus
both x and y, and a contour plot.
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4. Show how to find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a,
0 < y < b, also satisfying the boundary conditions

u(0, y) = k(y), u(a, y) = f (y), 0 < y < b,
u(x, 0) = h(x), u(x, b) = g(x), 0 ≤ x ≤ a.

Hint: See Problem 3.
5. Find the solution u(r, θ) of Laplace’s equation

urr + (1/r)ur + (1/r2)u
θθ

= 0

outside the circle r = a, also satisfying the boundary condition

u(a, θ) = f (θ), 0 ≤ θ < 2π,

on the circle. Assume that u(r, θ) is single-valued and bounded for r > a.
� 6. (a) Find the solution u(r, θ) of Laplace’s equation in the semicircular region r < a,

0 < θ < π , also satisfying the boundary conditions

u(r, 0) = 0, u(r, π) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ π.

Assume that u is single-valued and bounded in the given region.
(b) Find the solution if f (θ) = θ(π − θ).
(c) Let a = 2 and plot the solution in several ways: u versus r , u versus θ , u versus both
r and θ , and a contour plot.

7. Find the solution u(r, θ) of Laplace’s equation in the circular sector 0 < r < a, 0 < θ < α,
also satisfying the boundary conditions

u(r, 0) = 0, u(r, α) = 0, 0 ≤ r < a,

u(a, θ) = f (θ), 0 ≤ θ ≤ α.

Assume that u is single-valued and bounded in the sector.
� 8. (a) Find the solution u(x, y) of Laplace’s equation in the semi-infinite strip 0 < x < a,

y > 0, also satisfying the boundary conditions

u(0, y) = 0, u(a, y) = 0, y > 0,

u(x, 0) = f (x), 0 ≤ x ≤ a

and the additional condition that u(x, y) → 0 as y → ∞.
(b) Find the solution if f (x) = x(a − x).
(c) Let a = 5. Find the smallest value of y0 for which u(x, y) ≤ 0.1 for all y ≥ y0.

9. Show that Eq. (23) has periodic solutions only if λ is real.
Hint: Let λ = −µ2 where µ = ν + iσ with ν and σ real.

10. Consider the problem of finding a solution u(x, y) of Laplace’s equation in the rectangle
0 < x < a, 0 < y < b, also satisfying the boundary conditions

ux (0, y) = 0, ux (a, y) = f (y), 0 < y < b,
uy(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a.

This is an example of a Neumann problem.
(a) Show that Laplace’s equation and the homogeneous boundary conditions determine
the fundamental set of solutions

u0(x, y) = c0,

un(x, y) = cn cosh(nπx/b) cos(nπy/b), n = 1, 2, 3, . . . .

(b) By superposing the fundamental solutions of part (a), formally determine a function u
also satisfying the nonhomogeneous boundary condition ux (a, y) = f (y). Note that when
ux (a, y) is calculated, the constant term in u(x, y) is eliminated, and there is no condition
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from which to determine c0. Furthermore, it must be possible to express f by means of a
Fourier cosine series of period 2b, which does not have a constant term. This means that∫ b

0
f (y) dy = 0

is a necessary condition for the given problem to be solvable. Finally, note that c0 remains
arbitrary, and hence the solution is determined only up to this additive constant. This is a
property of all Neumann problems.

11. Find a solution u(r, θ) of Laplace’s equation inside the circle r = a, also satisfying the
boundary condition on the circle

ur (a, θ) = g(θ), 0 ≤ θ < 2π.

Note that this is a Neumann problem, and that its solution is determined only up to an
arbitrary additive constant. State a necessary condition on g(θ) for this problem to be
solvable by the method of separation of variables (see Problem 10).

� 12. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
also satisfying the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
uy(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

Note that this is neither a Dirichlet nor a Neumann problem, but a mixed problem in which
u is prescribed on part of the boundary and its normal derivative on the rest.
(b) Find the solution if

g(x) =
{

x, 0 ≤ x ≤ a/2,
a − x, a/2 ≤ x ≤ a.

(c) Let a = 3 and b = 1. By drawing suitable plots compare this solution with the solution
of Problem 1.

� 13. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
also satisfying the boundary conditions

u(0, y) = 0, u(a, y) = f (y), 0 < y < b,
u(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a.

Hint: Eventually it will be necessary to expand f (y) in a series making use of the functions
sin(πy/2b), sin(3πy/2b), sin(5πy/2b), . . . (see Problem 39 of Section 10.4).
(b) Find the solution if f (y) = y(2b − y).
(c) Let a = 3 and b = 2; plot the solution in several ways.

� 14. (a) Find the solution u(x, y) of Laplace’s equation in the rectangle 0 < x < a, 0 < y < b,
also satisfying the boundary conditions

ux (0, y) = 0, ux (a, y) = 0, 0 < y < b,
u(x, 0) = 0, u(x, b) = g(x), 0 ≤ x ≤ a.

(b) Find the solution if g(x) = 1 + x2(x − a)2.
(c) Let a = 3 and b = 2; plot the solution in several ways.

15. By writing Laplace’s equation in cylindrical coordinates r , θ , and z and then assuming that
the solution is axially symmetric (no dependence on θ ), we obtain the equation

urr + (1/r)ur + uzz = 0.

Assuming that u(r, z) = R(r)Z(z), show that R and Z satisfy the equations

r R′′ + R′ + λ2r R = 0, Z ′′ − λ2 Z = 0.

The equation for R is Bessel’s equation of order zero with independent variable λr .
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A P P E N D I X

A

Derivation of the Heat Conduction Equation. In this section we derive the differ-
ential equation that, to a first approximation at least, governs the conduction of heat
in solids. It is important to understand that the mathematical analysis of a physical
situation or process such as this ultimately rests on a foundation of empirical knowl-
edge of the phenomenon involved. The mathematician must have a place to start, so
to speak, and this place is furnished by experience. Consider a uniform rod insulated
on the lateral surfaces so that heat can flow only in the axial direction. It has been
demonstrated many times that if two parallel cross sections of the same area A and
different temperatures T1 and T2, respectively, are separated by a small distance d,
an amount of heat per unit time will pass from the warmer section to the cooler one.
Moreover, this amount of heat is proportional to the area A, the temperature difference
| T2 − T1|, and inversely proportional to the separation distance d. Thus

Amount of heat per unit time = κA| T2 − T1|/d, (1)

where the positive proportionality factor κ is called the thermal conductivity and
depends primarily on the material11 of the rod. The relation (1) is often called Fourier’s
law of heat conduction. We repeat that Eq. (1) is an empirical, not a theoretical, result
and that it can be, and has often been, verified by careful experiment. It is the basis of
the mathematical theory of heat conduction.

Now consider a straight rod of uniform cross section and homogeneous material,
oriented so that the x-axis lies along the axis of the rod (see Figure 10.A.1). Let x = 0
and x = L designate the ends of the bar.

x = x0 x = x0 + ∆x

H = –  Auxκ H =   Auxκ

x

FIGURE 10.A.1 Conduction of heat in an element of a rod.

We will assume that the sides of the bar are perfectly insulated so that there is no
passage of heat through them. We will also assume that the temperature u depends
only on the axial position x and the time t , and not on the lateral coordinates y and z.
In other words, we assume that the temperature remains constant on any cross section
of the bar. This assumption is usually satisfactory when the lateral dimensions of the
rod are small compared to its length.

The differential equation governing the temperature in the bar is an expression of a
fundamental physical balance; the rate at which heat flows into any portion of the bar
is equal to the rate at which heat is absorbed in that portion of the bar. The terms in the
equation are called the flux (flow) term and the absorption term, respectively.

We will first calculate the flux term. Consider an element of the bar lying between
the cross sections x = x0 and x = x0 +�x , where x0 is arbitrary and�x is small. The

11Actually, κ also depends on the temperature, but if the temperature range is not too great, it is satisfactory to
assume that κ is independent of temperature.
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instantaneous rate of heat transfer H(x0, t) from left to right across the cross section
x = x0 is given by

H(x0) = − lim
d→0

κA
u(x0 + d/2, t)− u(x0 − d/2, t)

d
= −κAux(x0, t). (2)

The minus sign appears in this equation since there will be a positive flow of heat from
left to right only if the temperature is greater to the left of x = x0 than to the right; in
this case ux(x0, t) is negative. In a similar manner, the rate at which heat passes from
left to right through the cross section x = x0 +�x is given by

H(x0 +�x, t) = −κAux(x0 +�x, t). (3)

The net rate at which heat flows into the segment of the bar between x = x0 and
x = x0 +�x is thus given by

Q = H(x0, t)− H(x0 +�x, t) = κA[ux(x0 +�x, t)− ux(x0, t)], (4)

and the amount of heat entering this bar element in time �t is

Q�t = κA[ux(x0 +�x, t)− ux(x0, t)]�t. (5)

Let us now calculate the absorption term. The average change in temperature �u,
in the time interval �t , is proportional to the amount of heat Q�t introduced and
inversely proportional to the mass �m of the element. Thus

�u = 1

s

Q�t

�m
= Q�t

sρA�x
, (6)

where the constant of proportionality s is known as the specific heat of the material
of the bar, and ρ is its density.12 The average temperature change �u in the bar
element under consideration is the actual temperature change at some intermediate
point x = x0 + θ �x , where 0 < θ < 1. Thus Eq. (6) can be written as

u(x0 + θ �x, t +�t)− u(x0 + θ �x, t) = Q�t

sρA�x
, (7)

or as

Q�t = [u(x0 + θ �x, t +�t)− u(x0 + θ �x, t)]sρA�x . (8)

To balance the flux and absorption terms, we equate the two expressions for Q�t :

κA[ux(x0 +�x, t)− ux(x0, t)]�t

= sρA[u(x0 + θ �x, t +�t)− u(x0 + θ �x, t)]�x . (9)

On dividing Eq. (9) by �x �t and then letting �x → 0 and �t → 0, we obtain the
heat conduction or diffusion equation

α2uxx = ut . (10)

The quantity α2 defined by

α2 = κ/ρs (11)

12The dependence of the density and specific heat on temperature is relatively small and will be neglected. Thus
both ρ and s will be considered as constants.
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is called the thermal diffusivity, and is a parameter depending only on the material of
the bar. The units ofα2 are (length)2/time. Typical values ofα2 are given in Table 10.5.1.

Several relatively simple conditions may be imposed at the ends of the bar. For
example, the temperature at an end may be maintained at some constant value T . This
might be accomplished by placing the end of the bar in thermal contact with some
reservoir of sufficient size so that any heat that may flow between the bar and reservoir
does not appreciably alter the temperature of the reservoir. At an end where this is done
the boundary condition is

u = T . (12)

Another simple boundary condition occurs if the end is insulated so that no heat
passes through it. Recalling the expression (2) for the amount of heat crossing any
cross section of the bar, we conclude that the condition of insulation is that this
quantity vanish. Thus

ux = 0 (13)

is the boundary condition at an insulated end.
A more general type of boundary condition occurs if the rate of flow of heat through

an end of the bar is proportional to the temperature there. Let us consider the end x = 0,
where the rate of flow of heat from left to right is given by −κAux(0, t); see Eq. (2).
Hence the rate of heat flow out of the bar (from right to left) at x = 0 is κAux(0, t).
If this quantity is proportional to the temperature u(0, t), then we obtain the boundary
condition

ux(0, t)− h1u(0, t) = 0, t > 0, (14)

where h1 is a nonnegative constant of proportionality. Note that h1 = 0 corresponds to
an insulated end, while h1 → ∞ corresponds to an end held at zero temperature.

If heat flow is taking place at the right end of the bar (x = L), then in a similar way
we obtain the boundary condition

ux(L , t)+ h2u(L , t) = 0, t > 0, (15)

where again h2 is a nonnegative constant of proportionality.
Finally, to determine completely the flow of heat in the bar it is necessary to state

the temperature distribution at one fixed instant, usually taken as the initial time t = 0.
This initial condition is of the form

u(x, 0) = f (x), 0 ≤ x ≤ L . (16)

The problem then is to determine the solution of the differential equation (10) subject
to one of the boundary conditions (12) to (15) at each end, and to the initial condition
(16) at t = 0.

Several generalizations of the heat equation (10) also occur in practice. First, the
bar material may be nonuniform and the cross section may not be constant along the
length of the bar. In this case, the parameters κ , ρ, s, and A may depend on the axial
variable x . Going back to Eq. (2) we see that the rate of heat transfer from left to right
across the cross section at x = x0 is now given by

H(x0, t) = −κ(x0)A(x0)ux(x0, t) (17)
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with a similar expression for H(x0 +�x, t). If we introduce these quantities into Eq. (4)
and eventually into Eq. (9), and proceed as before, we obtain the partial differential
equation

(κAux)x = sρAut . (18)

We will usually write Eq. (18) in the form

r(x)ut = [p(x)ux ]x , (19)

where p(x) = κ(x)A(x) and r(x) = s(x)ρ(x)A(x). Note that both these quantities are
intrinsically positive.

A second generalization occurs if there are other ways in which heat enters or leaves
the bar. Suppose that there is a source that adds heat to the bar at a rate G(x, t, u)
per unit time per unit length, where G(x, t, u) > 0. In this case we must add the term
G(x, t, u)�x �t to the left side of Eq. (9), and this leads to the differential equation

r(x)ut = [p(x)ux ]x + G(x, t, u). (20)

If G(x, t, u) < 0, then we speak of a sink that removes heat from the bar at the rate
G(x, t, u) per unit time per unit length. To make the problem tractable we must restrict
the form of the function G. In particular, we assume that G is linear in u and that the
coefficient of u does not depend on t . Thus we write

G(x, t, u) = F(x, t)− q(x)u. (21)

The minus sign in Eq. (21) has been introduced so that certain equations that appear
later will have their customary forms. Substituting from Eq. (21) into Eq. (20), we
obtain

r(x)ut = [p(x)ux ]x − q(x)u + F(x, t). (22)

This equation is sometimes called the generalized heat conduction equation. Boundary
value problems for Eq. (22) will be discussed to some extent in Chapter 11.

Finally, if instead of a one-dimensional bar, we consider a body with more than one
significant space dimension, then the temperature is a function of two or three space
coordinates rather than of x alone. Considerations similar to those leading to Eq. (10)
can be employed to derive the heat conduction equation in two dimensions,

α2(uxx + uyy) = ut , (23)

or in three dimensions,

α2(uxx + uyy + uzz) = ut . (24)

The boundary conditions corresponding to Eqs. (12) and (13) for multidimensional
problems correspond to a prescribed temperature distribution on the boundary, or to an
insulated boundary. Similarly, the initial temperature distribution will in general be a
function of x and y for Eq. (23), and a function of x , y, and z for Eq. (24).

A P P E N D I X

B

Derivation of the Wave Equation. In this appendix we derive the wave equation in
one space dimension as it applies to the transverse vibrations of an elastic string, or
cable; the elastic string may be thought of as a violin string, a guy wire, or possibly an
electric power line. The same equation, however, with the variables properly interpreted,
occurs in many other wave problems having only one significant space variable.
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Consider a perfectly flexible elastic string stretched tightly between supports fixed
at the same horizontal level (see Figure 10.B.1a). Let the x-axis lie along the string
with the endpoints located at x = 0 and x = L . If the string is set in motion at some
initial time t = 0 (by plucking, for example) and is thereafter left undisturbed, it will
vibrate freely in a vertical plane provided that damping effects, such as air resistance,
are neglected. To determine the differential equation governing this motion we will
consider the forces acting on a small element of the string of length �x lying between
the points x and x +�x (see Figure 10.B.1b). We assume that the motion of the string
is small, and as a consequence, each point on the string moves solely in a vertical
line. We denote by u(x, t) the vertical displacement of the point x at the time t . Let
the tension in the string, which always acts in the tangential direction, be denoted by
T (x, t), and let ρ denote the mass per unit length of the string.

Newton’s law, as it applies to the element�x of the string, states that the net external
force, due to the tension at the ends of the element, must be equal to the product of the
mass of the element and the acceleration of its mass center. Since there is no horizontal
acceleration, the horizontal components must satisfy

T (x +�x, t) cos(θ +�θ)− T (x, t) cos θ = 0. (1)

If we denote the horizontal component of the tension (see Figure 10.B.1c) by H , then
Eq. (1) states that H is independent of x .

On the other hand, the vertical components satisfy

T (x +�x, t) sin(θ +�θ)− T (x, t) sin θ = ρ �x utt(x, t), (2)

where x is the coordinate of the center of mass of the element of the string under
consideration. Clearly, x lies in the interval x < x < x +�x . The weight of the string,

u

x

TT

θ
θ

T

x  x x + ∆x

(a)

(b) (c)

T (x + ∆x, t)
θ θ+ ∆

V = T sinθ

H = T cos θ
T(x, t)

x = 0 x = L

FIGURE 10.B.1 (a) An elastic string under tension. (b) An element of the displaced string.
(c) Resolution of the tension T into components.
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which acts vertically downward, is assumed to be negligible, and has been neglected
in Eq. (2).

If the vertical component of T is denoted by V , then Eq. (2) can be written as

V (x +�x, t)− V (x, t)

�x
= ρutt(x, t).

Passing to the limit as �x → 0 gives

Vx(x, t) = ρutt(x, t). (3)

To express Eq. (3) entirely in terms of u we note that

V (x, t) = H(t) tan θ = H(t)ux(x, t).

Hence Eq. (3) becomes
(Hux)x = ρutt ,

or, since H is independent of x ,
Huxx = ρutt . (4)

For small motions of the string it is permissible to replace H = T cos θ by T . Then
Eq. (4) takes its customary form

a2uxx = utt , (5)

where
a2 = T/ρ. (6)

We will assume further that a2 is a constant, although this is not required in our
derivation, even for small motions. Equation (5) is called the wave equation for one
space dimension. Since T has the dimension of force, and ρ that of mass/length, it
follows that the constant a has the dimension of velocity. It is possible to identify a as
the velocity with which a small disturbance (wave) moves along the string. According
to Eq. (6) the wave velocity a varies directly with the tension in the string, but inversely
with the density of the string material. These facts are in agreement with experience.

As in the case of the heat conduction equation, there are various generalizations of
the wave equation (5). One important equation is known as the telegraph equation and
has the form

utt + cut + ku = a2uxx + F(x, t), (7)

where c and k are nonnegative constants. The terms cut , ku, and F(x, t) arise from a
viscous damping force, an elastic restoring force, and an external force, respectively.
Note the similarity of Eq. (7), except for the term a2uxx , with the equation for the
spring–mass system derived in Section 3.8; the additional term a2uxx arises from a
consideration of internal elastic forces.

For a vibrating system with more than one significant space coordinate, it may be
necessary to consider the wave equation in two dimensions,

a2(uxx + uyy) = utt , (8)

or in three dimensions,

a2(uxx + uyy + uzz) = utt . (9)
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C H A P T E R

11

Boundary Value
Problems and
Sturm–Liouville
Theory

As a result of separating variables in a partial differential equation in Chapter 10 we
repeatedly encountered the differential equation

X ′′ + λX = 0, 0< x < L

with the boundary conditions

X (0) = 0, X (L) = 0.

This boundary value problem is the prototype of a large class of problems that are impor-
tant in applied mathematics. These problems are known as Sturm–Liouville boundary
value problems. In this chapter we discuss the major properties of Sturm–Liouville
problems and their solutions; in the process we are able to generalize somewhat the
method of separation of variables for partial differential equations.

11.1 The Occurrence of Two-Point Boundary Value Problems

In Chapter 10 we described the method of separation of variables as a means of solving
certain problems involving partial differential equations. The heat conduction problem
consisting of the partial differential equation

α2uxx = ut , 0< x < L , t > 0 (1)

621
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subject to the boundary conditions

u(0, t) = 0, u(L , t) = 0, t > 0 (2)

and the initial condition

u(x,0) = f (x), 0 ≤ x ≤ L , (3)

is typical of the problems considered there. A crucial part of the process of solving
such problems is to find the eigenvalues and eigenfunctions of the differential equation

X ′′ + λX = 0, 0< x < L (4)

with the boundary conditions

X (0) = 0, X (L) = 0 (5)

or perhaps

X ′(0) = 0, X ′(L) = 0. (6)

The sine or cosine functions that result from solving Eq. (4) subject to the boundary
conditions (5) or (6) are used to expand the initial temperature distributionf (x) in a
Fourier series.

In this chapter we extend and generalize the results of Chapter 10. Our main goal
is to show how the method of separation of variables can be used to solve problems
somewhat more general than that of Eqs. (1), (2), and (3). We are interested in three
types of generalizations.

First, we wish to consider more general partial differential equations, for example,
the equation

r(x)ut = [ p(x)ux ]x − q(x)u + F(x, t). (7)

This equation can arise, as indicated in Appendix A of Chapter 10, in the study of heat
conduction in a bar of variable material properties in the presence of heat sources. If
p andr are constants, and if the source termsqu andF are zero, then Eq. (7) reduces
to Eq. (1). The partial differential equation (7) also occurs in the investigation of other
phenomena of a diffusive character.

A second generalization is to allow more general boundary conditions. In particular,
we wish to consider boundary conditions of the form

ux(0, t)− h1u(0, t) = 0, ux(L , t)+ h2u(L , t) = 0. (8)

Such conditions occur when the rate of heat flow through an end of the bar is pro-
portional to the temperature there. Usually,h1 andh2 are nonnegative constants, but
in some cases they may be negative or depend ont . The boundary conditions (2) are
obtained in the limit ash1 → ∞ and h2 → ∞. The other important limiting case,
h1 = h2 = 0, gives the boundary conditions for insulated ends.

The final generalization that we discuss in this chapter concerns the geometry of
the region in which the problem is posed. The results of Chapter 10 are adequate only
for a rather restricted class of problems, chiefly those in which the region of interest
is rectangular or, in a few cases, circular. Later in this chapter we consider certain
problems posed in a few other geometrical regions.

Let us consider the equation

r(x)ut = [ p(x)ux ]x − q(x)u (9)
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obtained by setting the termF(x, t) in Eq. (7) equal to zero. To separate the variables
we assume that

u(x, t) = X (x)T (t), (10)

and substitute foru in Eq. (9). We obtain

r(x)XT ′ = [ p(x)X ′]′T − q(x)XT (11)

or, upon dividing byr(x)XT ,

T ′

T
= [ p(x)X ′]′

r(x)X
− q(x)

r(x)
= −λ. (12)

We have denoted the separation constant by−λ in anticipation of the fact that usually
it will turn out to be real and negative. From Eq. (12) we obtain the following two
ordinary differential equations forX andT :

[ p(x)X ′]′ − q(x)X + λr(x)X = 0, (13)

T ′ + λT = 0. (14)

If we substitute from Eq. (10) foru in Eqs. (8) and assume thath1 andh2 are constants,
then we obtain the boundary conditions

X ′(0)− h1X (0) = 0, X ′(L)+ h2X (L) = 0. (15)

To proceed further we need to solve Eq. (13) subject to the boundary conditions (15).
While this is a more general linear homogeneous two-point boundary value problem
than the problem consisting of the differential equation (4) and the boundary conditions
(5) or (6), the solutions behave very much the same way. For every value ofλ, the
problem (13), (15) has the trivial solutionX (x) = 0. For certain values ofλ, called
eigenvalues, there are also other nontrivial solutions, calledeigenfunctions. These
eigenfunctions form the basis for series solutions of a variety of problems in partial
differential equations, such as the generalized heat conduction equation (9) subject to
the boundary conditions (8) and the initial condition (3).

In this chapter we discuss some of the properties of solutions of two-point boundary
value problems for second order linear equations. Sometimes we consider the general
linear homogeneous equation

P(x)y′′ + Q(x)y′ + R(x)y = 0, (16)

investigated in Chapter 3. However, for most purposes it is better to discuss equations
in which the first and second derivative terms are related as in Eq. (13). It is always
possible to transform the general equation (16) so that the derivative terms appear as
in Eq. (13) (see Problem 11).

Boundary value problems with higher order differential equations can also occur;
in them the number of boundary conditions must equal the order of the differential
equation. As a rule, the order of the differential equation is even, and half the boundary
conditions are given at each end of the interval. It is also possible for a single boundary
condition to involve values of the solution and/or its derivatives at both boundary
points; for example,

y(0)− y(L) = 0. (17)
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The following example involves one boundary condition of the form (15) and is
therefore more complicated than the problems in Section 10.1.

E X A M P L E

1

Find the eigenvalues and the corresponding eigenfunctions of the boundary value
problem

y′′ + λy = 0, (18)

y(0) = 0, y′(1)+ y(1) = 0. (19)

One place where this problem occurs is in the heat conduction problem in a bar of unit
length. The boundary condition atx = 0 corresponds to a zero temperature there. The
boundary condition atx = 1 corresponds to a rate of heat flow that is proportional to
the temperature there, and units are chosen so that the constant of proportionality is 1
(see Appendix A of Chapter 10).

The solution of the differential equation may have one of several forms, depending
onλ, so it is necessary to consider several cases. First, ifλ = 0, the general solution of
the differential equation is

y = c1x + c2. (20)

The two boundary conditions require that

c2 = 0, 2c1 + c2 = 0, (21)

respectively. The only solution of Eqs. (21) isc1 = c2 = 0, so the boundary value
problem has no nontrivial solution in this case. Henceλ = 0 is not an eigenvalue.

If λ > 0, then the general solution of the differential equation (18) is

y = c1 sin
√
λ x + c2 cos

√
λ x, (22)

where
√
λ > 0. The boundary condition atx = 0 requires thatc2 = 0; from the bound-

ary condition atx = 1 we then obtain the equation

c1(sin
√
λ+

√
λ cos

√
λ) = 0.

For a nontrivial solutiony we must havec1 	= 0, and thusλ must satisfy

sin
√
λ+

√
λ cos

√
λ = 0. (23)

Note that ifλ is such that cos
√
λ = 0, then sin

√
λ 	= 0, and Eq. (23) is not satisfied.

Hence we may assume that cos
√
λ 	= 0; dividing Eq. (23) by cos

√
λ, we obtain

√
λ = − tan

√
λ. (24)

The solutions of Eq. (24) can be determined numerically. They can also be found
approximately by sketching the graphs off (

√
λ) = √

λ and g(
√
λ) = − tan

√
λ for√

λ > 0 on the same set of axes, and identifying the points of intersection of the
two curves (see Figure 11.1.1). The point

√
λ = 0 is specifically excluded from this

argument because the solution (22) is valid only for
√
λ 	= 0. Despite the fact that the

curves intersect there,λ = 0 is not an eigenvalue, as we have already shown. The first
three positive solutions of Eq. (24) are

√
λ1

∼= 2.029,
√
λ2

∼= 4.913, and
√
λ3

∼= 7.979.
As can be seen from Figure 11.1.1, the other roots are given with reasonable accuracy
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by
√
λn

∼= (2n − 1)π/2 for n = 4,5, . . . , the precision of this estimate improving as
n increases. Hence the eigenvalues are

λ1
∼= 4.116, λ2

∼= 24.14,
(25)

λ3
∼= 63.66, λn

∼= (2n − 1)2π2/4 for n = 4,5, . . . .

Finally, sincec2 = 0, the eigenfunction corresponding to the eigenvalueλn is

φn(x, λn) = kn sin
√
λn x; n = 1,2, . . . , (26)

where the constantkn remains arbitrary.
Next considerλ < 0. In this case it is convenient to letλ = −µ so thatµ > 0. Then

Eq. (14) becomes

y′′ − µy = 0, (27)

and its general solution is

y = c1 sinh
√
µ x + c2 cosh

√
µ x, (28)

where
√
µ > 0. Proceeding as in the previous case, we find thatµ must satisfy the

equation
√
µ = − tanh

√
µ. (29)

From Figure 11.1.2 it is clear that the graphs off (
√
µ) = √

µandg(
√
µ) = − tanh

√
µ

intersect only at the origin. Hence there are no positive values of
√
µ that satisfy

Eq. (29), and hence the boundary value problem (18), (19) has no negative eigenvalues.

u
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π
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–π
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√  1λ √  2λ √  3λ √λ

u = g(√  )λ
= – tan √  λ

u = f (√  )λ
= √  λ

FIGURE 11.1.1 Graphical solution of
√
λ = − tan

√
λ.
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u = f (√  )µ µ= √  

µ√  

u = g(√  )µ = –tanh√  

u

1

–1

µ

1 2

FIGURE 11.1.2 Graphical solution of
√
µ = − tanh

√
µ.

Finally, it is necessary to consider the possibility thatλmay be complex. It is possible
to show by direct calculation that the problem (18), (19) has no complex eigenvalues.
However, in Section 11.2 we consider in more detail a large class of problems that
includes this example. One of the things we show there is that every problem in this
class has only real eigenvalues. Therefore we omit the discussion of the nonexistence of
complex eigenvalues here. Thus we conclude that all the eigenvalues and eigenfunctions
of the problem (18), (19) are given by Eqs. (25) and (26).

PROBLEMS In each of Problems 1 through 6 state whether the given boundary value problem is homogeneous
or nonhomogeneous.

1. y′′ + 4y = 0, y(−1) = 0, y(1) = 0
2. [(1 + x2)y′]′ + 4y = 0, y(0) = 0, y(1) = 1
3. y′′ + 4y = sinx, y(0) = 0, y(1) = 0
4. −y′′ + x2y = λy, y′(0)− y(0) = 0, y′(1)+ y(1) = 0
5. −[(1 + x2)y′]′ = λy + 1, y(−1) = 0, y(1) = 0
6. −y′′ = λ(1 + x2)y, y(0) = 0, y′(1)+ 3y(1) = 0

In each of Problems 7 through 10 determine the form of the eigenfunctions and the determinantal
equation satisfied by the nonzero eigenvalues. Determine whetherλ = 0 is an eigenvalue, and
find approximate values forλ1 and λ2, the nonzero eigenvalues of smallest absolute value.
Estimateλn for large values ofn. Assume that all eigenvalues are real.

7. y′′ + λy = 0,
y(0) = 0, y(π)+ y′(π) = 0

8. y′′ + λy = 0,
y′(0) = 0, y(1)+ y′(1) = 0

9. y′′ + λy = 0,
y(0)− y′(0) = 0, y(1)+ y′(1) = 0

10. y′′ − λy = 0,
y(0)+ y′(0) = 0, y(1) = 0

11. Consider the general linear homogeneous second order equation

P(x)y′′ + Q(x)y′ + R(x)y = 0. (i)

We seek an integrating factorµ(x) such that, upon multiplying Eq. (i) byµ(x), the resulting
equation can be written in the form

[µ(x)P(x)y′]′ + µ(x)R(x)y = 0. (ii)
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(a) By equating coefficients ofy′, show thatµ must be a solution of

Pµ′ = (Q − P ′)µ. (iii)

(b) Solve Eq. (iii) and thereby show that

µ(x) = 1

P(x)
exp

∫ x

x0

Q(s)

P(s)
ds. (iv)

Compare this result with that of Problem 27 in Section 3.2.

In each of Problems 12 through 15 use the method of Problem 11 to transform the given equation
into the form [p(x)y′]′ + q(x)y = 0.

12. y′′ − 2xy′ + λy = 0, Hermite equation
13. x2y′′ + xy′ + (x2 − ν2)y = 0, Bessel equation
14. xy′′ + (1 − x)y′ + λy = 0, Laguerre equation
15. (1 − x2)y′′ − xy′ + α2y = 0, Chebyshev equation

16. The equation

utt + cut + ku = a2uxx + F(x, t), (i)

wherea2 > 0,c ≥ 0, andk ≥ 0 are constants, is known as thetelegraph equation. It arises
in the study of an elastic string under tension (see Appendix B of Chapter 10). Equation
(i) also occurs in other applications. Assuming thatF(x, t) = 0, let u(x, t) = X (x)T (t),
separate the variables in Eq. (i), and derive ordinary differential equations forX andT .

17. Consider the boundary value problem

y′′ − 2y′ + (1 + λ)y = 0, y(0) = 0, y(1) = 0.

(a) Introduce a new dependent variableu by the relationy = s(x)u. Determines(x) so
that the differential equation foru has nou′ term.
(b) Solve the boundary value problem foru and thereby determine the eigenvalues and
eigenfunctions of the original problem. Assume that all eigenvalues are real.
(c) Also solve the given problem directly (without introducingu).

18. Consider the boundary value problem

y′′ + 4y′ + (4 + 9λ)y = 0, y(0) = 0, y′(L) = 0.

(a) Determine, at least approximately, the real eigenvalues and the corresponding eigen-
functions by proceeding as in Problem 17(a, b).
(b) Also solve the given problem directly (without introducing a new variable).
Hint: In part (a) be sure to pay attention to the boundary conditions as well as the differential
equation.

The differential equations in Problems 19 and 20 differ from those in previous problems in that
the parameterλmultiplies they′ term as well as they term. In each of these problems determine
the real eigenvalues and the corresponding eigenfunctions.

19. y′′ + y′ + λ(y′ + y) = 0,
y′(0) = 0, y(1) = 0

20. x2y′′ − λ(xy′ − y) = 0,
y(1) = 0, y(2)− y′(2) = 0

21. Consider the problem

y′′ + λy = 0, 2y(0)+ y′(0) = 0, y(1) = 0.

(a) Find the determinantal equation satisfied by the positive eigenvalues. Show that
there is an infinite sequence of such eigenvalues. Findλ1 andλ2. Then show thatλn

∼=
[(2n + 1)π/2]2 for largen.
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(b) Find the determinantal equation satisfied by the negative eigenvalues. Show that there
is exactly one negative eigenvalue and find its value.

22. Consider the problem

y′′ + λy = 0, αy(0)+ y′(0) = 0, y(1) = 0,

whereα is a given constant.
(a) Show that for all values ofα there is an infinite sequence of positive eigenvalues.
(b) If α < 1, show that all (real) eigenvalues are positive. Show that the smallest eigenvalue
approaches zero asα approaches 1 from below.
(c) Show thatλ = 0 is an eigenvalue only ifα = 1.
(d) If α > 1, show that there is exactly one negative eigenvalue and that this eigenvalue
decreases asα increases.

23. Consider the problem

y′′ + λy = 0, y(0) = 0, y′(L) = 0.

Show that ifφm andφn are eigenfunctions, corresponding to the eigenvaluesλm andλn,
respectively, withλm 	= λn , then∫ L

0
φm(x)φn(x) dx = 0.

Hint: Note that

φ′′
m + λmφm = 0, φ′′

n + λnφn = 0.

Multiply the first of these equations byφn , the second byφm , and integrate from 0 toL,
using integration by parts. Finally, subtract one equation from the other.

24. In this problem we consider a higher order eigenvalue problem. In the study of transverse
vibrations of a uniform elastic bar one is led to the differential equation

y iv − λy = 0,

wherey is the transverse displacement andλ = mω2/E I ; m is the mass per unit length of
the rod,E is Young’s modulus,I is the moment of inertia of the cross section about an
axis through the centroid perpendicular to the plane of vibration, andω is the frequency of
vibration. Thus for a bar whose material and geometric properties are given, the eigenvalues
determine the natural frequencies of vibration. Boundary conditions at each end are usually
one of the following types:

y = y′ = 0, clamped end,
y = y′′ = 0, simply supported or hinged end,

y′′ = y′′′ = 0, free end.

For each of the following three cases find the form of the eigenfunctions and the equation
satisfied by the eigenvalues of this fourth order boundary value problem. Determineλ1 and
λ2, the two eigenvalues of smallest magnitude. Assume that the eigenvalues are real and
positive.
(a) y(0) = y′′(0) = 0, y(L) = y′′(L) = 0
(b) y(0) = y′′(0) = 0, y(L) = y′(L) = 0
(c) y(0) = y′(0) = 0, y′′(L) = y′′′(L) = 0 (cantilevered bar)

25. This problem illustrates that the eigenvalue parameter sometimes appears in the boundary
conditions as well as in the differential equation. Consider the longitudinal vibrations of a
uniform straight elastic bar of lengthL. It can be shown that the axial displacementu(x, t)
satisfies the partial differential equation

(E/ρ)uxx = utt ; 0< x < L , t > 0, (i)
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whereE is Young’s modulus andρ is the mass per unit volume. If the endx = 0 is fixed,
then the boundary condition there is

u(0, t) = 0, t > 0. (ii)

Suppose that the endx = L is rigidly attached to a massm but is otherwise unrestrained.
We can obtain the boundary condition here by writing Newton’s law for the mass. From
the theory of elasticity it can be shown that the force exerted by the bar on the mass is given
by −E Aux (L , t). Hence the boundary condition is

E Aux (L , t)+ mutt (L , t) = 0, t > 0. (iii)

(a) Assume thatu(x, t) = X (x)T (t), and show thatX (x) andT (t) satisfy the differential
equations

X ′′ + λX = 0, (iv)

T ′′ + λ(E/ρ)T = 0. (v)

(b) Show that the boundary conditions are

X (0) = 0, X ′(L)− γλL X (L) = 0, (vi)

whereγ = m/ρAL is a dimensionless parameter that gives the ratio of the end mass to the
mass of the rod.
Hint: Use the differential equation forT (t) in simplifying the boundary condition atx = L.
(c) Determine the form of the eigenfunctions and the equation satisfied by the real eigen-
values of Eqs. (iv) and (vi). Find the first two eigenvaluesλ1 andλ2 if γ = 0.5.

11.2 Sturm–Liouville Boundary Value Problems

We now consider two-point boundary value problems of the type obtained in Section
11.1 by separating the variables in a heat conduction problem for a bar of variable
material properties and with a source term proportional to the temperature. This kind
of problem also occurs in many other applications.

These boundary value problems are commonly associated with the names of Sturm
and Liouville.1 They consist of a differential equation of the form

[ p(x)y′]′ − q(x)y + λr(x)y = 0 (1)

on the interval 0< x < 1, together with the boundary conditions

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0 (2)

1Charles-Franc¸ois Sturm (1803–1855) and Joseph Liouville (1809–1882), in a series of papers in 1836 and 1837,
set forth many properties of the class of boundary value problems associated with their names, including the
results stated in Theorems 11.2.1 to 11.2.4. Sturm is also famous for a theorem on the number of real zeros of a
polynomial, and in addition, did extensive work in physics and mechanics. Besides his own research in analysis,
algebra, and number theory, Liouville was the founder, and for 39 years the editor, of the influentialJournal de
mathématiques pures et appliquées. One of his most important results was the proof (in 1844) of the existence of
transcendental numbers.
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at the endpoints. It is often convenient to introduce the linear homogeneous differential
operatorL defined by

L[y] = −[ p(x)y′]′ + q(x)y. (3)

Then the differential equation (1) can be written as

L[y] = λr(x)y. (4)

We assume that the functionsp, p′, q, andr are continuous on the interval 0≤ x ≤ 1
and, further, thatp(x) > 0 andr(x) > 0 at all points in 0≤ x ≤ 1. These assumptions
are necessary to render the theory as simple as possible while retaining considerable
generality. It turns out that these conditions are satisfied in many significant problems in
mathematical physics. For example, the equationy′′ + λy = 0, which arose repeatedly
in the preceding chapter, is of the form (1) withp(x) = 1, q(x) = 0, andr(x) = 1.
The boundary conditions (2) are said to beseparated; that is, each involves only one
of the boundary points. These are the most general separated boundary conditions that
are possible for a second order differential equation.

Before proceeding to establish some of the properties of the Sturm–Liouville problem
(1), (2), it is necessary to derive an identity, known asLagrange’s identity, which is
basic to the study of linear boundary value problems. Letu andv be functions having
continuous second derivatives on the interval 0≤ x ≤ 1. Then2∫ 1

0
L[u]v dx =

∫ 1

0
[−(pu′)′v + quv] dx .

Integrating the first term on the right side twice by parts, we obtain∫ 1

0
L[u]v dx = −p(x)u′(x)v(x)

∣∣∣∣
1

0

+ p(x)u(x)v′(x)
∣∣∣∣
1

0

+
∫ 1

0
[−u(pv′)′ + uqv] dx

= −p(x)[u′(x)v(x)− u(x)v′(x)]
∣∣∣∣
1

0

+
∫ 1

0
uL[v] dx .

Hence, on transposing the integral on the right side, we have∫ 1

0
{L[u]v − uL[v]} dx = −p(x)[u′(x)v(x)− u(x)v′(x)]

∣∣∣∣
1

0

, (5)

which is Lagrange’s identity.
Now let us suppose that the functionsu andv in Eq. (5) also satisfy the boundary

conditions (2). Then, if we assume thata2 	= 0 andb2 	= 0, the right side of Eq. (5)
becomes

−p(x)[u′(x)v(x)− u(x)v′(x)]
∣∣∣1
0

= −p(1)[u′(1)v(1)− u(1)v′(1)] + p(0)[u′(0)v(0)− u(0)v′(0)]

= −p(1)

[
−b1

b2

u(1)v(1)+ b1

b2

u(1)v(1)

]
+ p(0)

[
−a1

a2

u(0)v(0)+ a1

a2

u(0)v(0)

]
= 0.

2For brevity we sometimes use the notation
∫ 1

0
f dx rather than

∫ 1

0
f (x) dx in this chapter.
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The same result holds if eithera2 or b2 is zero; the proof in this case is even simpler,
and is left for you. Thus, if the differential operatorL is defined by Eq. (3), and if the
functionsu andv satisfy the boundary conditions (2), Lagrange’s identity reduces to∫ 1

0
{L[u]v − uL[v]} dx = 0. (6)

Let us now write Eq. (6) in a slightly different way. In Eq. (4) of Section 10.2 we
introduced the inner product(u, v) of two real-valued functionsu andv on a given
interval; using the interval 0≤ x ≤ 1, we have

(u, v) =
∫ 1

0
u(x)v(x) dx . (7)

In this notation Eq. (6) becomes

(L[u], v)− (u, L[v]) = 0. (8)

In proving Theorem 11.2.1 below it is necessary to deal with complex-valued func-
tions. By analogy with the definition in Section 7.2 for vectors, we define the inner
product of two complex-valued functions on 0≤ x ≤ 1 as

(u, v) =
∫ 1

0
u(x)v(x) dx, (9)

wherev is the complex conjugate ofv. Clearly, Eq. (9) coincides with Eq. (7) ifu(x)
andv(x) are real. It is important to know that Eq. (8) remains valid under the stated
conditions ifu andv are complex-valued functions and if the inner product (9) is used.

To see this, one can start with the quantity
∫ 1

0
L[u]v dx and retrace the steps leading to

Eq. (6), making use of the fact thatp(x), q(x), a1, a2, b1, andb2 are all real quantities
(see Problem 22).

We now consider some of the implications of Eq. (8) for the Sturm–Liouville bound-
ary value problem (1), (2). We assume without proof3 that this problem actually has
eigenvalues and eigenfunctions. In Theorems 11.2.1 to 11.2.4 below, we state several
of their important, but relatively elementary, properties. Each of these properties is
illustrated by the basic Sturm–Liouville problem

y′′ + λy = 0, y(0) = 0, y(1) = 0, (10)

whose eigenvalues areλn = n2π2, with the corresponding eigenfunctionsφn(x) =
sinnπx .

Theorem 11.2.1 All the eigenvalues of the Sturm–Liouville problem (1), (2) are real.

To prove this theorem let us suppose thatλ is a (possibly complex) eigenvalue of the
problem (1), (2) and thatφ is a corresponding eigenfunction, also possibly complex-
valued. Let us writeλ = µ+ iν andφ(x) = U (x)+ iV (x), whereµ, ν, U (x), and
V (x) are real. Then, if we letu = φ and alsov = φ in Eq. (8), we have

(L[φ], φ) = (φ, L[φ]). (11)

3The proof may be found, for example, in the references by Sagan (Chapter 5) or Birkhoff and Rota (Chapter 10).
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However, we know thatL[φ] = λrφ, so Eq. (11) becomes

(λrφ, φ) = (φ, λrφ). (12)

Writing out Eq. (12) in full, using the definition (9) of the inner product, we obtain∫ 1

0
λr(x)φ(x)φ(x) dx =

∫ 1

0
φ(x)λr(x)φ(x) dx . (13)

Sincer(x) is real, Eq. (13) reduces to

(λ− λ)

∫ 1

0
r(x)φ(x)φ(x) dx = 0,

or

(λ− λ)

∫ 1

0
r(x)[U 2(x)+ V 2(x)] dx = 0. (14)

The integrand in Eq. (14) is nonnegative and not identically zero. Since the integrand is
also continuous, it follows that the integral is positive. Therefore, the factorλ − λ = 2iν
must be zero. Henceν = 0 andλ is real, so the theorem is proved.

An important consequence of Theorem 11.2.1 is that in finding eigenvalues and
eigenfunctions of a Sturm–Liouville boundary value problem, one need look only for
real eigenvalues. Recall that this is what we did in Chapter 10. It is also possible to
show that the eigenfunctions of the boundary value problem (1), (2) are real. A proof
is sketched in Problem 23.

Theorem 11.2.2 If φ1 andφ2 are two eigenfunctions of the Sturm–Liouville problem (1), (2) corre-
sponding to eigenvaluesλ1 andλ2, respectively, and ifλ1 	= λ2, then∫ 1

0
r(x)φ1(x)φ2(x) dx = 0. (15)

This theorem expresses the property oforthogonality of the eigenfunctions with
respect to the weight functionr . To prove the theorem we note thatφ1 andφ2 satisfy
the differential equations

L[φ1] = λ1rφ1 (16)

and

L[φ2] = λ2rφ2, (17)

respectively. If we letu = φ1, v = φ2, and substitute forL[u] and L[v] in Eq. (8), we
obtain

(λ1rφ1, φ2)− (φ1, λ2rφ2) = 0,

or, using Eq. (9),

λ1

∫ 1

0
r(x)φ1(x)φ2(x) dx − λ2

∫ 1

0
φ1(x)r(x)φ2(x) dx = 0.
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Becauseλ2, r(x), andφ2(x) are real, this equation becomes

(λ1 − λ2)

∫ 1

0
r(x)φ1(x)φ2(x) dx = 0. (18)

Since by hypothesisλ1 	= λ2, it follows thatφ1 andφ2 must satisfy Eq. (15), and the
theorem is proved.

Theorem 11.2.3 The eigenvalues of the Sturm–Liouville problem (1), (2) are all simple; that is, to each
eigenvalue there corresponds only one linearly independent eigenfunction. Further,
the eigenvalues form an infinite sequence, and can be ordered according to increasing
magnitude so that

λ1 < λ2 < λ3 < · · · < λn < · · · .
Moreover,λn → ∞ asn → ∞.

The proof of this theorem is somewhat more advanced than those of the two previous
theorems, and will be omitted. However, a proof that the eigenvalues are simple is
indicated in Problem 20.

Again we note that all the properties stated in Theorems 11.2.1 to 11.2.3 are ex-
emplified by the eigenvaluesλn = n2π2 and eigenfunctionsφn(x) = sinnπx of the
example problem (10). Clearly, the eigenvalues are real. The eigenfunctions satisfy the
orthogonality relation∫ 1

0
φm(x)φn(x) dx =

∫ 1

0
sinmπx sinnπx dx = 0, m 	= n, (19)

which was established in Section 10.2 by direct integration. Further, the eigenvalues can
be ordered so thatλ1 < λ2 < · · · , andλn → ∞ asn → ∞. Finally, to each eigenvalue
there corresponds a single linearly independent eigenfunction.

We will now assume that the eigenvalues of the Sturm–Liouville problem (1), (2)
are ordered as indicated in Theorem 11.2.3. Associated with the eigenvalueλn is a
corresponding eigenfunctionφn, determined up to a multiplicative constant. It is often
convenient to choose the arbitrary constant multiplying each eigenfunction so as to
satisfy the condition∫ 1

0
r(x)φ2

n(x) dx = 1, n = 1,2, . . . . (20)

Equation (20) is called a normalization condition, and eigenfunctions satisfying this
condition are said to benormalized. Indeed, in this case, the eigenfunctions are said
to form anorthonormal set (with respect to the weight functionr ) since they already
satisfy the orthogonality relation (15). It is sometimes useful to combine Eqs. (15) and
(20) into a single equation. To this end we introduce the symbolδmn, known as the
Kronecker (1823–1891) delta and defined by

δmn =
{

0, if m 	= n,
1, if m = n.

(21)
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Making use of the Kronecker delta, we can write Eqs. (15) and (20) as∫ 1

0
r(x)φm(x)φn(x) dx = δmn. (22)

E X A M P L E

1

Determine the normalized eigenfunctions of the problem (10):

y′′ + λy = 0, y(0) = 0, y(1) = 0.

The eigenvalues of this problem areλ1 = π2, λ2 = 4π2, . . . , λn = n2π2, . . . , and
the corresponding eigenfunctions arek1 sinπx , k2 sin 2πx, . . . , kn sinnπx, . . . , re-
spectively. In this case the weight function isr(x) = 1. To satisfy Eq. (20) we must
choosekn so that ∫ 1

0
(kn sinnπx)2 dx = 1 (23)

for each value ofn. Since

k2
n

∫ 1

0
sin2 nπx dx = k2

n

∫ 1

0
(1

2 − 1
2 cos 2nπx) dx = 1

2k2
n,

Eq. (23) is satisfied ifkn is chosen to be
√

2 for each value ofn. Hence the normalized
eigenfunctions of the given boundary value problem are

φn(x) =
√

2 sinnπx, n = 1,2,3, . . . . (24)

E X A M P L E

2

Determine the normalized eigenfunctions of the problem

y′′ + λy = 0, y(0) = 0, y′(1)+ y(1) = 0. (25)

In Example 1 of Section 11.1 we found that the eigenvaluesλn satisfy the equation

sin
√
λn +

√
λn cos

√
λn = 0, (26)

and that the corresponding eigenfunctions are

φn(x) = kn sin
√
λn x, (27)

wherekn is arbitrary. We can determinekn from the normalization condition (20). Since
r(x) = 1 in this problem, we have∫ 1

0
φ2

n(x) dx = k2
n

∫ 1

0
sin2

√
λn x dx

= k2
n

∫ 1

0

(
1
2 − 1

2 cos 2
√
λn x

)
dx = k2

n

(
x

2
− sin 2

√
λn x

4
√
λn

) ∣∣∣∣
1

0

= k2
n

2
√
λn − sin 2

√
λn

4
√
λn

= k2
n

√
λn − sin

√
λn cos

√
λn

2
√
λn

= k2
n

1 + cos2
√
λn

2
,
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where in the last step we have used Eq. (26). Hence, to normalize the eigenfunctions
φn we must choose

kn =
(

2

1 + cos2
√
λn

)1/2

. (28)

The normalized eigenfunctions of the given problem are

φn(x) =
√

2 sin
√
λn x

(1 + cos2
√
λn)

1/2 ; n = 1,2, . . . . (29)

We now turn to the question of expressing a given functionf as a series of eigen-
functions of the Sturm–Liouville problem (1), (2). We have already seen examples of
such expansions in Sections 10.2 to 10.4. For example, it was shown there that iff is
continuous and has a piecewise continuous derivative on 0≤ x ≤ 1, and satisfies the
boundary conditionsf (0) = f (1) = 0, then f can be expanded in a Fourier sine series
of the form

f (x) =
∞∑

n=1

bn sinnπx . (30)

The functions sinnπx , n = 1,2, . . . , are precisely the eigenfunctions of the boundary
value problem (10). The coefficientsbn are given by

bn = 2
∫ 1

0
f (x) sinnπx dx (31)

and the series (30) converges for eachx in 0 ≤ x ≤ 1. In a similar way f can be
expanded in a Fourier cosine series using the eigenfunctions cosnπx , n = 0,1,2, . . . ,
of the boundary value problemy′′ + λy = 0, y′(0) = 0, y′(1) = 0.

Now suppose that a given functionf , satisfying suitable conditions, can be expanded
in an infinite series of eigenfunctions of the more general Sturm–Liouville problem
(1), (2). If this can be done, then we have

f (x) =
∞∑

n=1

cnφn(x), (32)

where the functionsφn(x) satisfy Eqs. (1), (2), and also the orthogonality condition
(22). To compute the coefficients in the series (32) we multiply Eq. (32) byr(x)φm(x),
wherem is a fixed positive integer, and integrate fromx = 0 to x = 1. Assuming that
the series can be integrated term by term we obtain∫ 1

0
r(x) f (x)φm(x) dx =

∞∑
n=1

cn

∫ 1

0
r(x)φm(x)φn(x) dx =

∞∑
n=1

cnδmn. (33)

Hence, using the definition ofδmn, we have

cm =
∫ 1

0
r(x) f (x)φm(x) dx = ( f, rφm), m = 1,2, . . . . (34)
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The coefficients in the series (32) have thus been formally determined. Equation (34)
has the same structure as the Euler–Fourier formulas for the coefficients in a Fourier
series, and the eigenfunction series (32) also has convergence properties similar to
those of Fourier series. The following theorem is analogous to Theorem 10.3.1.

Theorem 11.2.4 Letφ1, φ2, . . . , φn, . . . be the normalized eigenfunctions of the Sturm–Liouville prob-
lem (1), (2):

[ p(x)y′]′ − q(x)y + λr(x)y = 0,

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0.

Let f and f ′ be piecewise continuous on 0≤ x ≤ 1. Then the series (32) whose
coefficientscm are given by Eq. (34) converges to [f (x+)+ f (x−)]/2 at each point
in the open interval 0< x < 1.

If f satisfies further conditions, then a stronger conclusion can be established.
Suppose that, in addition to the hypotheses of Theorem 11.2.4, the functionf is
continuous on 0≤ x ≤ 1. If a2 = 0 in the first of Eqs. (2) [so thatφn(0) = 0], then
assume thatf (0) = 0. Similarly, if b2 = 0 in the second of Eqs. (2), assume that
f (1) = 0. Otherwise no boundary conditions need be prescribed forf . Then the series
(32) converges tof (x) at each point in the closed interval 0≤ x ≤ 1.

E X A M P L E

3

Expand the function

f (x) = x, 0 ≤ x ≤ 1 (35)

in terms of the normalized eigenfunctionsφn(x) of the problem (25).
In Example 2 we found the normalized eigenfunctions to be

φn(x) = kn sin
√
λn x, (36)

wherekn is given by Eq. (28) andλn satisfies Eq. (26). To find the expansion forf in
terms of the eigenfunctionsφn we write

f (x) =
∞∑

n=1

cnφn(x), (37)

where the coefficients are given by Eq. (34). Thus

cn =
∫ 1

0
f (x)φn(x) dx = kn

∫ 1

0
x sin

√
λn x dx .

Integrating by parts, we obtain

cn = kn

(
sin
√
λn

λn

− cos
√
λn√

λn

)
= kn

2 sin
√
λn

λn

,
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where we have used Eq. (26) in the last step. Upon substituting forkn from Eq. (28)
we obtain

cn = 2
√

2 sin
√
λn

λn(1 + cos2
√
λn)

1/2 . (38)

Thus

f (x) = 4
∞∑

n=1

sin
√
λn sin

√
λn x

λn(1 + cos2
√
λn)

. (39)

Observe that although the right side of Eq. (39) is a series of sines, it is not included in
the discussion of Fourier sine series in Section 10.4.

Self-adjoint Problems. Sturm–Liouville boundary value problems are of great im-
portance in their own right, but they can also be viewed as belonging to a much more
extensive class of problems that have many of the same properties. For example, there
are many similarities between Sturm–Liouville problems and the algebraic system

Ax = λx, (40)

where then × n matrix A is real symmetric or Hermitian. Comparing the results
mentioned in Section 7.3 with those of this section, we note that in both cases the
eigenvalues are real and the eigenfunctions or eigenvectors form an orthogonal set.
Further, the eigenfunctions or eigenvectors can be used as the basis for expressing an
essentially arbitrary function or vector, respectively, as a sum. The most important dif-
ference is that a matrix has only a finite number of eigenvalues and eigenvectors, while
a Sturm–Liouville problem has infinitely many. It is interesting and of fundamental
importance in mathematics that these seemingly different problems—the matrix prob-
lem (40) and the Sturm–Liouville problem (1), (2)—which arise in different ways, are
actually part of a single underlying theory. This theory is usually referred to as linear
operator theory, and is part of the subject of functional analysis.

We now point out some ways in which Sturm–Liouville problems can be generalized,
while still preserving the main results of Theorems 11.2.1 to 11.2.4—the existence of a
sequence of real eigenvalues tending to infinity, the orthogonality of the eigenfunctions,
and the possibility of expressing an arbitrary function as a series of eigenfunctions. In
making these generalizations it is essential that the crucial relation (8) remain valid.

Let us consider the boundary value problem consisting of the differential equation

L[y] = λr(x)y, 0< x < 1, (41)

where

L[y] = Pn(x)
dn y

dxn + · · · + P1(x)
dy

dx
+ P0(x)y, (42)

andn linear homogeneous boundary conditions at the endpoints. If Eq. (8) is valid for
every pair of sufficiently differentiable functions that satisfy the boundary conditions,
then the given problem is said to beself-adjoint. It is important to observe that Eq. (8)
involves restrictions on both the differential equation and the boundary conditions. The
differential operatorL must be such that the same operator appears in both terms of
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Eq (8). This requires thatL be of even order. Further, a second order operator must
have the form (3), a fourth order operator must have the form

L[y] = [ p(x)y′′]′′ − [q(x)y′]′ + s(x)y, (43)

and higher order operators must have an analogous structure. In addition, the boundary
conditions must be such as to eliminate the boundary terms that arise during the
integration by parts used in deriving Eq. (8). For example, in a second order problem
this is true for the separated boundary conditions (2) and also in certain other cases,
one of which is given in Example 4 below.

Let us suppose that we have a self-adjoint boundary value problem for Eq. (41),
whereL[y] is given now by Eq. (43). We assume thatp, q, r , ands are continuous on
0 ≤ x ≤ 1, and that the derivatives ofp andq indicated in Eq. (43) are also continuous.
If in addition p(x) > 0 andr(x) > 0 for 0 ≤ x ≤ 1, then there is an infinite sequence
of real eigenvalues tending to+∞, the eigenfunctions are orthogonal with respect
to the weight functionr , and an arbitrary function can be expressed as a series of
eigenfunctions. However, the eigenfunctions may not be simple in these more general
problems.

We turn now to the relation between Sturm–Liouville problems and Fourier series.
We have noted previously that Fourier sine and cosine series can be obtained by
using the eigenfunctions of certain Sturm–Liouville problems involving the differential
equationy′′ + λy = 0. This raises the question of whether we can obtain a full Fourier
series, including both sine and cosine terms, by choosing a suitable set of boundary
conditions. The answer is provided by the following example, which also serves to
illustrate the occurrence of nonseparated boundary conditions.

E X A M P L E

4

Find the eigenvalues and eigenfunctions of the boundary value problem

y′′ + λy = 0, (44)

y(−L)− y(L) = 0, y′(−L)− y′(L) = 0. (45)

This is not a Sturm–Liouville problem because the boundary conditions are not
separated. The boundary conditions (45) are calledperiodic boundary conditions
since they require thaty and y′ assume the same values atx = L as atx = −L.
Nevertheless, it is straightforward to show that the problem (44), (45) is self-adjoint. A
simple calculation establishes thatλ0 = 0 is an eigenvalue and that the corresponding
eigenfunction isφ0(x) = 1. Further, there are additional eigenvaluesλ1 = (π/L)2,
λ2 = (2π/L)2, . . . , λn = (nπ/L)2, . . . . To each of these nonzero eigenvalues there
correspondtwo linearly independent eigenfunctions; for example, corresponding to
λn are the two eigenfunctionsφn(x) = cos(nπx/L) andψn(x) = sin(nπx/L). This
illustrates that the eigenvalues may not be simple when the boundary conditions are
not separated. Further, if we seek to expand a given functionf of period 2L in a series
of eigenfunctions of the problem (44), (45), we obtain the series

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

which is just the Fourier series forf .
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We will not give further consideration to problems that have nonseparated boundary
conditions, nor will we deal with problems of higher than second order, except in a
few problems. There is, however, one other kind of generalization that we do wish
to discuss. That is the case in which the coefficientsp, q, andr in Eq. (1) do not
quite satisfy the rather strict continuity and positivity requirements laid down at the
beginning of this section. Such problems are called singular Sturm–Liouville problems,
and are the subject of Section 11.4.

PROBLEMS In each of Problems 1 through 5 determine the normalized eigenfunctions of the given problem.

1. y′′ + λy = 0, y(0) = 0, y′(1) = 0
2. y′′ + λy = 0, y′(0) = 0, y(1) = 0
3. y′′ + λy = 0, y′(0) = 0, y′(1) = 0
4. y′′ + λy = 0, y′(0) = 0, y′(1)+ y(1) = 0; see Section 11.1, Problem 8.
5. y′′ − 2y′ + (1 + λ)y = 0, y(0) = 0, y(1) = 0; see Section 11.1, Problem 17.

In each of Problems 6 through 9 find the eigenfunction expansion
∞∑

n=1
anφn(x) of the given

function, using the normalized eigenfunctions of Problem 1.

6. f (x) = 1, 0 ≤ x ≤ 1 7. f (x) = x, 0 ≤ x ≤ 1

8. f (x) =
{

1, 0 ≤ x < 1
2

0, 1
2 ≤ x ≤ 1

9. f (x) =
{

2x, 0 ≤ x < 1
2

1, 1
2 ≤ x ≤ 1

In each of Problems 10 through 13 find the eigenfunction expansion
∞∑

n=1
anφn(x) of the given

function, using the normalized eigenfunctions of Problem 4.

10. f (x) = 1, 0 ≤ x ≤ 1 11. f (x) = x, 0 ≤ x ≤ 1

12. f (x) = 1 − x, 0 ≤ x ≤ 1 13. f (x) =
{

1, 0 ≤ x < 1
2

0, 1
2 ≤ x ≤ 1

In each of Problems 14 through 18 determine whether the given boundary value problem is
self-adjoint.

14. y′′ + y′ + 2y = 0, y(0) = 0, y(1) = 0
15. (1 + x2)y′′ + 2xy′ + y = 0, y′(0) = 0, y(1)+ 2y′(1) = 0
16. y′′ + y = λy, y(0)− y′(1) = 0, y′(0)− y(1) = 0
17. (1 + x2)y′′ + 2xy′ + y = λ(1 + x2)y, y(0)− y′(1) = 0, y′(0)+ 2y(1) = 0
18. y′′ + λy = 0, y(0) = 0, y(π)+ y′(π) = 0

19. Show that if the functionsu andv satisfy Eqs. (2), and eithera2 = 0 or b2 = 0, or both,
then

p(x)[u′(x)v(x)− u(x)v′(x)]
∣∣∣∣
1

0

= 0.

20. In this problem we outline a proof of the first part of Theorem 11.2.3: that the eigenvalues
of the Sturm–Liouville problem (1), (2) are simple. For a givenλ suppose thatφ1 andφ2
are two linearly independent eigenfunctions. Compute the WronskianW (φ1, φ2)(x) and
use the boundary conditions (2) to show thatW (φ1, φ2)(0) = 0. Then use Theorems 3.3.2
and 3.3.3 to conclude thatφ1 andφ2 cannot be linearly independent as assumed.

21. Consider the Sturm–Liouville problem

− [ p(x)y′]′ + q(x)y = λr(x)y,

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0,
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wherep, q, andr satisfy the conditions stated in the text.
(a) Show that ifλ is an eigenvalue andφ a corresponding eigenfunction, then

λ

∫ 1

0
rφ2 dx =

∫ 1

0
(pφ′2 + qφ2) dx + b1

b2

p(1)φ2(1)− a1

a2

p(0)φ2(0),

provided thata2 	= 0 andb2 	= 0. How must this result be modified ifa2 = 0 or b2 = 0?
(b) Show that ifq(x) ≥ 0 and ifb1/b2 and−a1/a2 are nonnegative, then the eigenvalueλ
is nonnegative.
(c) Under the conditions of part (b) show that the eigenvalueλ is strictly positive unless
q(x) = 0 for eachx in 0 ≤ x ≤ 1 and alsoa1 = b1 = 0.

22. Derive Eq. (8) using the inner product (9) and assuming thatu andv are complex-valued
functions.
Hint: Consider the quantity

∫ 1

0
L[u] v dx , split u andv into real and imaginary parts, and

proceed as in the text.
23. In this problem we indicate a proof that the eigenfunctions of the Sturm–Liouville problem

(1), (2) are real.
(a) Let λ be an eigenvalue andφ a corresponding eigenfunction. Letφ(x) = U(x)+
iV (x), and show thatU andV are also eigenfunctions corresponding toλ.
(b) Using Theorem 11.2.3, or the result of Problem 20, show thatU andV are linearly
dependent.
(c) Show thatφ must be real, apart from an arbitrary multiplicative constant that may be
complex.

24. Consider the problem

x2y′′ = λ(xy′ − y), y(1) = 0, y(2) = 0.

Note thatλ appears as a coefficient ofy′ as well as ofy itself. It is possible to extend
the definition of self-adjointness to this type of problem, and to show that this particular
problem is not self-adjoint. Show that the problem has eigenvalues, but that none of them
is real. This illustrates that in general nonself-adjoint problems may have eigenvalues that
are not real.

Buckling of an Elastic Column. In an investigation of the buckling of a uniform elastic
column of lengthL by an axial loadP (Figure 11.2.1a) one is led to the differential equation

y iv + λy′′ = 0, 0< x < L . (i)

The parameterλ is equal toP/E I , whereE is Young’s modulus andI is the moment of inertia of
the cross section about an axis through the centroid perpendicular to thexy-plane. The boundary
conditions atx = 0 andx = L depend on how the ends of the column are supported. Typical
boundary conditions are

y = y′ = 0, clamped end;
y = y′′ = 0, simply supported (hinged) end.

The bar shown in Figure 11.2.1a is simply supported atx = 0 and clamped atx = L. It is
desired to determine the eigenvalues and eigenfunctions of Eq. (i) subject to suitable boundary
conditions. In particular, the smallest eigenvalueλ1 gives the load at which the column buckles,
or can assume a curved equilibrium position, as shown in Figure 11.2.1b. The corresponding
eigenfunction describes the configuration of the buckled column. Note that the differential
equation (i) does not fall within the theory discussed in this section. It is possible to show,
however, that in each of the cases given here all the eigenvalues are real and positive. Problems
25 and 26 deal with column buckling problems.
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FIGURE 11.2.1 (a) A column under compression. (b) Shape of the buckled column.

25. For each of the following boundary conditions find the smallest eigenvalue (the buckling
load) of y iv + λy′′ = 0, and also find the corresponding eigenfunction (the shape of the
buckled column).
(a) y(0) = y′′(0) = 0, y(L) = y′′(L) = 0
(b) y(0) = y′′(0) = 0, y(L) = y′(L) = 0
(c) y(0) = y′(0) = 0, y(L) = y′(L) = 0

26. In some buckling problems the eigenvalue parameter appears in the boundary conditions
as well as in the differential equation. One such case occurs when one end of the column
is clamped and the other end is free. In this case the differential equationy iv + λy′′ = 0
must be solved subject to the boundary conditions

y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L)+ λy′(L) = 0.

Find the smallest eigenvalue and the corresponding eigenfunction.

11.3 Nonhomogeneous Boundary Value Problems

In this section we discuss how to solve nonhomogeneous boundary value problems,
both for ordinary and partial differential equations. Most of our attention is directed
toward problems in which the differential equation alone is nonhomogeneous, while the
boundary conditions are homogeneous. We assume that the solution can be expanded
in a series of eigenfunctions of a related homogeneous problem, and then determine
the coefficients in this series so that the nonhomogeneous problem is satisfied. We first
describe this method as it applies to boundary value problems for second order linear
ordinary differential equations. Later we illustrate its use for partial differential equa-
tions by solving a heat conduction problem in a bar with variable material properties
and in the presence of source terms.

Nonhomogeneous Sturm–Liouville Problems. Consider the boundary value problem
consisting of the nonhomogeneous differential equation

L[y] = −[ p(x)y′]′ + q(x)y = µr(x)y + f (x), (1)

whereµ is a given constant andf is a given function on 0≤ x ≤ 1, and the boundary
conditions

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0. (2)
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As in Section 11.2 we assume thatp, p′, q, andr are continuous on 0≤ x ≤ 1 and
that p(x) > 0 andr(x) > 0 there. We will solve the problem (1), (2) by making use
of the eigenfunctions of the corresponding homogeneous problem consisting of the
differential equation

L[y] = λr(x)y (3)

and the boundary conditions (2). Letλ1 < λ2 < · · · < λn < · · · be the eigenvalues
of this problem, and letφ1, φ2, . . . , φn, . . . be the corresponding normalized eigen-
functions.

We now assume that the solutiony = φ(x) of the nonhomogeneous problem (1), (2)
can be expressed as a series of the form

φ(x) =
∞∑

n=1

bnφn(x). (4)

From Eq. (34) of Section 11.2 we know that

bn =
∫ 1

0
r(x)φ(x)φn(x) dx, n = 1,2, . . . . (5)

However, since we do not knowφ(x), we cannot use Eq. (5) to calculatebn. Instead, we
will try to determinebn so that the problem (1), (2) is satisfied, and then use Eq. (4) to
findφ(x). Note first thatφ as given by Eq. (4) always satisfies the boundary conditions
(2) since eachφn does.

Now consider the differential equation thatφ must satisfy. This is just Eq. (1) with
y replaced byφ:

L[φ](x) = µr(x)φ(x)+ f (x). (6)

We substitute the series (4) into the differential equation (6) and attempt to determine
bn so that the differential equation is satisfied. The term on the left side of Eq. (6)
becomes

L[φ](x) = L

[ ∞∑
n=1

bnφn

]
(x) =

∞∑
n=1

bn L[φn](x)

=
∞∑

n=1

bnλnr(x)φn(x), (7)

where we have assumed that we can interchange the operations of summation and
differentiation.

Note that the functionr appears in Eq. (7) and also in the termµr(x)φ(x) in Eq. (6).
This suggests that we rewrite the nonhomogeneous term in Eq. (6) asr(x)[ f (x)/r(x)]
so thatr(x) also appears as a multiplier in this term. If the functionf/r satisfies the
conditions of Theorem 11.2.4, then

f (x)

r(x)
=

∞∑
n=1

cnφn(x), (8)

where, using Eq. (5) withφ replaced byf/r ,

cn =
∫ 1

0
r(x)

f (x)

r(x)
φn(x) dx =

∫ 1

0
f (x)φn(x) dx, n = 1,2, . . . . (9)
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Upon substituting forφ(x), L[φ](x), and f (x) in Eq. (6) from Eqs. (4), (7), and (8),
respectively, we find that

∞∑
n=1

bnλnr(x)φn(x) = µr(x)
∞∑

n=1

bnφn(x)+ r(x)
∞∑

n=1

cnφn(x).

After collecting terms and canceling the common nonzero factorr(x) we have

∞∑
n=1

[
(λn − µ)bn − cn

]
φn(x) = 0. (10)

If Eq. (10) is to hold for eachx in the interval 0≤ x ≤ 1, then the coefficient ofφn(x)
must be zero for eachn; see Problem 14 for a proof of this fact. Hence

(λn − µ)bn − cn = 0, n = 1,2, . . . . (11)

We must now distinguish two main cases, one of which also has two subcases.
First suppose thatµ 	= λn for n = 1,2,3, . . . ; that is,µ is not equal to any eigenvalue

of the corresponding homogeneous problem. Then

bn = cn

λn − µ
, n = 1,2,3, . . . , (12)

and

y = φ(x) =
∞∑

n=1

cn

λn − µ
φn(x). (13)

Equation (13), withcn given by Eq. (9), is a formal solution of the nonhomogeneous
boundary value problem (1), (2). Our argument does not prove that the series (13)
converges. However, any solution of the boundary value problem (1), (2) clearly satisfies
the conditions of Theorem 11.2.4; indeed, it satisfies the more stringent conditions given
in the paragraph following that theorem. Thus it is reasonable to expect that the series
(13) does converge at each point, and this fact can be established provided, for example,
that f is continuous.

Now suppose thatµ is equal to one of the eigenvalues of the corresponding homo-
geneous problem, say,µ = λm ; then the situation is quite different. In this event, for
n = m Eq. (11) has the form 0· bm − cm = 0. Again we must consider two cases.

If µ = λm and cm 	= 0, then it is impossible to solve Eq. (11) forbm , and the
nonhomogeneous problem (1), (2) has no solution.

If µ = λm andcm = 0, then Eq. (11) is satisfied regardless of the value ofbm ; in
other words,bm remains arbitrary. In this case the boundary value problem (1), (2)
does have a solution, but it is not unique, since it contains an arbitrary multiple of the
eigenfunctionφm .

Sincecm is given by Eq. (9), the conditioncm = 0 means that∫ 1

0
f (x)φm(x) dx = 0. (14)

Thus, ifµ = λm , the nonhomogeneous boundary value problem (1), (2) can be solved
only if f is orthogonal to the eigenfunction corresponding to the eigenvalueλm .

The results we have formally obtained are summarized in the following theorem.
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Theorem 11.3.1 The nonhomogeneous boundary value problem (1), (2) has a unique solution for each
continuousf wheneverµ is different from all the eigenvalues of the corresponding
homogeneous problem; the solution is given by Eq. (13), and the series converges
for eachx in 0 ≤ x ≤ 1. If µ is equal to an eigenvalueλm of the corresponding
homogeneous problem, then the nonhomogeneous boundary value problem has no
solution unlessf is orthogonal toφm ; that is, unless the condition (14) holds. In that
case, the solution is not unique and contains an arbitrary multiple ofφm(x).

The main part of Theorem 11.3.1 is sometimes stated in the following way:

Theorem 11.3.2 For a given value ofµ, either the nonhomogeneous problem (1), (2) has a unique
solution for each continuousf (if µ is not equal to any eigenvalueλm of the cor-
responding homogeneous problem), or else the homogeneous problem (3), (2) has a
nontrivial solution (the eigenfunction corresponding toλm).

This latter form of the theorem is known as the Fredholm4 alternative theorem. This
is one of the basic theorems of mathematical analysis and occurs in many different
contexts. You may be familiar with it in connection with sets of linear algebraic equa-
tions where the vanishing or nonvanishing of the determinant of coefficients replaces
the statements aboutµ andλm . See the discussion in Section 7.3.

E X A M P L E

1

Solve the boundary value problem

y′′ + 2y = −x, (15)

y(0) = 0, y(1)+ y′(1) = 0. (16)

This particular problem can be solved directly in an elementary way and has the
solution

y = sin
√

2 x

sin
√

2 + √
2 cos

√
2

− x

2
. (17)

The method of solution described below illustrates the use of eigenfunction expan-
sions, a method that can be employed in many problems not accessible by elementary
procedures. To identify Eq. (15) with Eq. (1) it is helpful to write the former as

−y′′ = 2y + x . (18)

We seek the solution of the given problem as a series of normalized eigenfunctions
φn of the corresponding homogeneous problem

y′′ + λy = 0, y(0) = 0, y(1)+ y′(1) = 0. (19)

4The Swedish mathematician Erik Ivar Fredholm (1866–1927), professor at the University of Stockholm, estab-
lished the modern theory of integral equations in a fundamental paper in 1903. Fredholm’s work emphasized the
similarities between integral equations and systems of linear algebraic equations. There are also many interrelations
between differential and integral equations; for example, see Section 2.8 and Problem 21 of Section 6.6.
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These eigenfunctions were found in Example 2 of Section 11.2, and are

φn(x) = kn sin
√
λn x, (20)

where

kn =
(

2

1 + cos2
√
λn

)1/2

(21)

andλn satisfies

sin
√
λn +

√
λn cos

√
λn = 0. (22)

Recall that in Example 1 of Section 11.1 we found that

λ1
∼= 4.116, λ2

∼= 24.14,

λ3
∼= 63.66, λn

∼= (2n − 1)2π2/4 for n = 4,5, . . . .

We assume thaty is given by Eq. (4),

y =
∞∑

n=1

bnφn(x),

and it follows that the coefficientsbn are found from Eq. (12),

bn = cn

λn − 2
,

where thecn are the expansion coefficients of the nonhomogeneous termf (x) = x in
Eq. (18) in terms of the eigenfunctionsφn. These coefficients were found in Example
3 of Section 11.2, and are

cn = 2
√

2 sin
√
λn

λn(1 + cos2
√
λn)

1/2 . (23)

Putting everything together, we finally obtain the solution

y = 4
∞∑

n=1

sin
√
λn

λn(λn − 2)(1 + cos2
√
λn)

sin
√
λn x . (24)

While Eqs. (17) and (24) are quite different in appearance, they are actually two
different expressions for the same function. This follows from the uniqueness part of
Theorem 11.3.1 or 11.3.2 sinceλ = 2 is not an eigenvalue of the homogeneous problem
(19). Alternatively, one can show the equivalence of Eqs. (17) and (24) by expanding
the right side of Eq. (17) in terms of the eigenfunctionsφn(x). For this problem it is
fairly obvious that the formula (17) is more convenient than the series formula (24).
However, we emphasize again that in other problems we may not be able to obtain the
solution except by series (or numerical) methods.
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Nonhomogeneous Heat Conduction Problems. To show how eigenfunction expan-
sions can be used to solve nonhomogeneous problems for partial differential equations,
let us consider the generalized heat conduction equation

r(x)ut = [ p(x)ux ]x − q(x)u + F(x, t) (25)

with the boundary conditions

ux(0, t)− h1u(0, t) = 0, ux(1, t)+ h2u(1, t) = 0 (26)

and the initial condition

u(x,0) = f (x). (27)

This problem was previously discussed in Appendix A of Chapter 10 and in Section
11.1. In the latter section we letu(x, t) = X (x)T (t) in the homogeneous equation
obtained by settingF(x, t) = 0, and showed thatX (x) must be a solution of the
boundary value problem

− [ p(x)X ′]′ + q(x)X = λr(x)X, (28)

X ′(0)− h1X (0) = 0, X ′(1)+ h2X (1) = 0. (29)

If we assume thatp, q, andr satisfy the proper continuity requirements and thatp(x)
andr(x) are always positive, the problem (28), (29) is a Sturm–Liouville problem as
discussed in Section 11.2. Thus we obtain a sequence of eigenvaluesλ1 < λ2 < · · · <
λn < · · · and corresponding normalized eigenfunctionsφ1(x), φ2(x), . . . , φn(x), . . . .

We will solve the given nonhomogeneous boundary value problem (25) to (27) by
assuming thatu(x, t) can be expressed as a series of eigenfunctions,

u(x, t) =
∞∑

n=1

bn(t)φn(x), (30)

and then showing how to determine the coefficientsbn(t). The procedure is basically
the same as that used in the problem (1), (2) considered earlier, although it is more
complicated in certain respects. For instance, the coefficientsbn must now depend
on t , because otherwiseu would be a function ofx only. Note that the boundary
conditions (26) are automatically satisfied by an expression of the form (30) because
eachφn(x) satisfies the boundary conditions (29).

Next we substitute from Eq. (30) foru in Eq. (25). From the first two terms on the
right side of Eq. (25) we formally obtain

[ p(x)ux ]x − q(x)u = ∂

∂x

[
p(x)

∞∑
n=1

bn(t)φ
′
n(x)

]
− q(x)

∞∑
n=1

bn(t)φn(x)

=
∞∑

n=1

bn(t){[ p(x)φ′
n(x)]

′ − q(x)φn(x)}. (31)

Since [p(x)φ′
n(x)]

′ − q(x)φn(x) = −λnr(x)φn(x), we obtain finally

[ p(x)ux ]x − q(x)u = −r(x)
∞∑

n=1

bn(t)λnφn(x). (32)
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Now consider the term on the left side of Eq. (25). We have

r(x)ut = r(x)
∂

∂t

∞∑
n=1

bn(t)φn(x)

= r(x)
∞∑

n=1

b′
n(t)φn(x). (33)

We must also express the nonhomogeneous term in Eq. (25) as a series of eigenfunc-
tions. Once again, it is convenient to look at the ratioF(x, t)/r(x) and to write

F(x, t)

r(x)
=

∞∑
n=1

γn(t)φn(x), (34)

where the coefficients are given by

γn(t) =
∫ 1

0
r(x)

F(x, t)

r(x)
φn(x) dx

=
∫ 1

0
F(x, t)φn(x) dx, n = 1,2, . . . . (35)

SinceF(x, t) is given, we can consider the functionsγn(t) to be known.
Gathering all these results together, we substitute from Eqs. (32), (33), and (34) in

Eq. (25), and find that

r(x)
∞∑

n=1

b′
n(t)φn(x) = −r(x)

∞∑
n=1

bn(t)λnφn(x)+ r(x)
∞∑

n=1

γn(t)φn(x). (36)

To simplify Eq. (36) we cancel the common nonzero factorr(x) from all terms, and
write everything in one summation:

∞∑
n=1

[
b′

n(t)+ λnbn(t)− γn(t)
]
φn(x) = 0. (37)

Once again, if Eq. (37) is to hold for allx in 0< x < 1, it is necessary that the quantity
in square brackets be zero for eachn (again see Problem 14). Hencebn(t) is a solution
of the first order linear ordinary differential equation

b′
n(t)+ λnbn(t) = γn(t), n = 1,2, . . . , (38)

whereγn(t) is given by Eq. (35). To determinebn(t) completely we must have an initial
condition

bn(0) = αn, n = 1,2, . . . (39)

for Eq. (38). This we obtain from the initial condition (27). Settingt = 0 in Eq. (30)
and using Eq. (27), we have

u(x,0) =
∞∑

n=1

bn(0)φn(x) =
∞∑

n=1

αnφn(x) = f (x). (40)
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Thus the initial valuesαn are the coefficients in the eigenfunction expansion forf (x).
Therefore,

αn =
∫ 1

0
r(x) f (x)φn(x) dx, n = 1,2, . . . . (41)

Note that everything on the right side of Eq. (41) is known, so we can considerαn as
known.

The initial value problem (38), (39) is solved by the methods of Section 2.1. The
integrating factor isµ(t) = exp(λnt), and it follows that

bn(t) = αne−λnt +
∫ t

0
e−λn(t−s)γn(s) ds, n = 1,2, . . . . (42)

The details of this calculation are left to you. Note that the first term on the right side
of Eq. (42) depends on the functionf through the coefficientsαn, while the second
depends on the nonhomogeneous termF through the coefficientsγn(s).

Thus an explicit solution of the boundary value problem (25) to (27) is given by
Eq. (30),

u(x, t) =
∞∑

n=1

bn(t)φn(x),

where the coefficientsbn(t) are determined from Eq. (42). The quantitiesαn andγn(s)
in Eq. (42) are found in turn from Eqs. (41) and (35), respectively.

Summarizing, to use this method to solve a boundary value problem such as that
given by Eqs. (25) to (27) we must

1. Find the eigenvaluesλn and the normalized eigenfunctionsφn of the homogeneous
problem (28), (29).

2. Calculate the coefficientsαn andγn(t) from Eqs. (41) and (35), respectively.
3. Evaluate the integral in Eq. (42) to determinebn(t).
4. Sum the infinite series (30).

Since any or all of these steps may be difficult, the entire process can be quite
formidable. One redeeming feature is that often the series (30) converges rapidly, in
which case only a very few terms may be needed to obtain an adequate approximation
to the solution.

E X A M P L E

2

Find the solution of the heat conduction problem

ut = uxx + xe−t , (43)

u(0, t) = 0, ux(1, t)+ u(1, t) = 0, (44)

u(x,0) = 0. (45)

Again we use the normalized eigenfunctionsφn of the problem (19), and assume that
u is given by Eq. (30),

u(x, t) =
∞∑

n=1

bn(t)φn(x).



11.3 Nonhomogeneous Boundary Value Problems 649

The coefficientsbn are determined from the differential equation

b′
n + λnbn = γn(t), (46)

whereλn is the nth eigenvalue of the problem (19) andγn(t) is the nth expansion
coefficient of the nonhomogeneous termxe−t in terms of the eigenfunctionsφn. Thus
we have

γn(t) =
∫ 1

0
xe−tφn(x) dx = e−t

∫ 1

0
xφn(x) dx

= cne−t , (47)

wherecn =
∫ 1

0
xφn(x) dx is given by Eq. (23). The initial condition for Eq. (46) is

bn(0) = 0 (48)

since the initial temperature distribution (45) is zero everywhere. The solution of the
initial value problem (46), (48) is

bn(t) = e−λn t
∫ t

0
eλnscne−s ds = cne−λnt e(λn−1)t − 1

λn − 1

= cn

λn − 1
(e−t − e−λn t). (49)

Thus the solution of the heat conduction problem (43) to (45) is given by

u(x, t) = 4
∞∑

n=1

sin
√
λn (e

−t − e−λnt ) sin
√
λn x

λn(λn − 1)(1 + cos2
√
λn)

. (50)

The solution given by Eq. (50) is exact, but complicated. To judge whether a sat-
isfactory approximation to the solution can be obtained by using only a few terms in
this series, we must estimate its speed of convergence. First we split the right side of
Eq. (50) into two parts:

u(x, t) = 4e−t
∞∑

n=1

sin
√
λn sin

√
λn x

λn(λn − 1)(1 + cos2
√
λn)

− 4
∞∑

n=1

e−λn t sin
√
λn sin

√
λn x

λn(λn − 1)(1 + cos2
√
λn)

.

(51)

Recall from Example 1 in Section 11.1 that the eigenvaluesλn are very nearly propor-
tional to n2. In the first series on the right side of Eq. (51) the trigonometric factors
are all bounded asn → ∞; therefore, this series converges similarly to the series
∞∑

n=1
λ−2

n or
∞∑

n=1
n−4. Hence at most two or three terms are required to obtain an excellent

approximation to this part of the solution. The second series contains the additional
factore−λnt , so its convergence is even more rapid fort > 0; all terms after the first are
almost surely negligible.

Further Discussion. Eigenfunction expansions can be used to solve a much greater
variety of problems than the preceding discussion and examples may suggest. The
following brief remarks are intended to indicate to some extent the scope of this
method:
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1. Nonhomogeneous Time-Independent Boundary Conditions. Suppose that
the boundary conditions (26) in the heat conduction problem are replaced by

u(0, t) = T1, u(1, t) = T2. (52)

Then we can proceed much as in Section 10.6 to reduce the problem to one with
homogeneous boundary conditions; that is, we subtract fromu a functionv that
is chosen to satisfy Eqs. (52). Then the differencew = u − v satisfies a problem
with homogeneous boundary conditions, but with modified forcing term and initial
condition. This problem can be solved by the procedure described in this section.

2. Nonhomogeneous Time-Dependent Boundary Conditions. Suppose that the
boundary conditions (26) are replaced by

u(0, t) = T1(t), u(1, t) = T2(t). (53)

If T1 and T2 are differentiable functions, one can proceed just as in paragraph
1. In the same way it is possible to deal with more general boundary conditions
involving both u and ux . If T1 and T2 are not differentiable, however, then the
method fails. A further refinement of the method of eigenfunction expansions can
be used to cope with this type of problem, but the procedure is more complicated
and we will not discuss it.

3. Use of Functions Other Than Eigenfunctions. One potential difficulty in using
eigenfunction expansions is that the normalized eigenfunctions of the correspond-
ing homogeneous problem must be found. For a differential equation with variable
coefficients this may be difficult, if not impossible. In such a case it is sometimes
possible to use other functions, such as eigenfunctions of a simpler problem, that
satisfy the same boundary conditions. For instance, if the boundary conditions are

u(0, t) = 0, u(1, t) = 0, (54)

then it may be convenient to replace the functionsφn(x) in Eq. (30) by sinnπx .
These functions at least satisfy the correct boundary conditions, although in general
they are not solutions of the corresponding homogeneous differential equation.
Next we expand the nonhomogeneous termF(x, t) in a series of the form (34),
again withφn(x) replaced by sinnπx , and then substitute for bothu and F in
Eq. (25). Upon collecting the coefficients of sinnπx for eachn, we have an
infinite set of linear first order differential equations from which to determine
b1(t), b2(t), . . . . The essential difference between this case and the one considered
earlier is that now the equations for the functionsbn(t) arecoupled. Thus they
cannot be solved one by one, as before, but must be dealt with simultaneously. In
practice, the infinite system is replaced by an approximating finite system, from
which approximations to a finite number of coefficients are calculated. Despite
its complexity, this procedure has proved very useful in solving certain types of
difficult problems.

4. Higher Order Problems. Boundary value problems for equations of higher than
second order can often be solved by eigenfunction expansions. In some cases the
procedure parallels almost exactly that for second order problems. However, a
variety of complications can also arise, and we will not discuss such problems in
this book.

Finally, we emphasize that the discussion in this section has been purely formal.
Separate and sometimes elaborate arguments must be used to establish convergence of
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eigenfunction expansions, or to justify some of the steps used, such as term-by-term
differentiation of eigenfunction series.

There are also other altogether different methods for solving nonhomogeneous
boundary value problems. One of these leads to a solution expressed as a definite
integral rather than as an infinite series. This approach involves certain functions
known as Green’s functions, and for ordinary differential equations is the subject of
Problems 28 through 36.

PROBLEMS In each of Problems 1 through 5 solve the given problem by means of an eigenfunction expansion.

1. y′′ + 2y = −x, y(0) = 0, y(1) = 0
2. y′′ + 2y = −x, y(0) = 0, y′(1) = 0; see Section 11.2, Problem 7.
3. y′′ + 2y = −x, y′(0) = 0, y′(1) = 0; see Section 11.2, Problem 3.
4. y′′ + 2y = −x, y′(0) = 0, y′(1)+ y(1) = 0; see Section 11.2, Problem 11.
5. y′′ + 2y = −1 + |1 − 2x |, y(0) = 0, y(1) = 0

In each of Problems 6 through 9 determine a formal eigenfunction series expansion for the
solution of the given problem. Assume thatf satisfies the conditions of Theorem 11.3.1. State
the values ofµ for which the solution exists.

6. y′′ + µy = − f (x), y(0) = 0, y′(1) = 0
7. y′′ + µy = − f (x), y′(0) = 0, y(1) = 0
8. y′′ + µy = − f (x), y′(0) = 0, y′(1) = 0
9. y′′ + µy = − f (x), y′(0) = 0, y′(1)+ y(1) = 0

In each of Problems 10 through 13 determine whether there is any value of the constanta for
which the problem has a solution. Find the solution for each such value.

10. y′′ + π2y = a + x, y(0) = 0, y(1) = 0
11. y′′ + 4π2y = a + x, y(0) = 0, y(1) = 0
12. y′′ + π2y = a, y′(0) = 0, y′(1) = 0
13. y′′ + π2y = a − cos πx, y(0) = 0, y(1) = 0

14. Letφ1, . . . , φn, . . . be the normalized eigenfunctions of the differential equation (3) subject

to the boundary conditions (2). If
∞∑

n=1
cnφn(x) converges tof (x), where f (x) = 0 for each

x in 0 ≤ x ≤ 1, show thatcn = 0 for eachn.
Hint: Multiply by r(x)φm(x), integrate, and use the orthogonality property of the eigen-
functions.

15. LetL be a second order linear differential operator. Show that the solutiony = φ(x) of the
problem

L[y] = f (x),

a1y(0)+ a2y′(0) = α, b1y(1)+ b2y′(1) = β

can be written asy = u + v, whereu = φ1(x) andv = φ2(x) are solutions of the problems

L[u] = 0,

a1u(0)+ a2u′(0) = α, b1u(1)+ b2u′(1) = β

and

L[v] = f (x),

a1v(0)+ a2v
′(0) = 0, b1v(1)+ b2v

′(1) = 0,

respectively.



652 Chapter 11. Boundary Value Problems and Sturm–Liouville Theory

16. Show that the problem

y′′ + π2y = π2x, y(0) = 1, y(1) = 0

has the solution

y = c1 sinπx + cosπx + x .

Also show that this solution cannot be obtained by splitting the problem as suggested in
Problem 15, since neither of the two subsidiary problems can be solved in this case.

17. Consider the problem

y′′ + p(x)y′ + q(x)y = 0, y(0) = a, y(1) = b.

Let y = u + v, wherev is any twice differentiable function satisfying the boundary con-
ditions (but not necessarily the differential equation). Show thatu is a solution of the
problem

u′′ + p(x)u′ + q(x)u = g(x), u(0) = 0, u(1) = 0,

whereg(x) = −[v′′ + p(x)v′ + q(x)v], and is known oncev is chosen. Thus nonhomo-
geneities can be transferred from the boundary conditions to the differential equation. Find
a functionv for this problem.

18. Using the method of Problem 17, transform the problem

y′′ + 2y = 2 − 4x, y(0) = 1, y(1)+ y′(1) = −2

into a new problem in which the boundary conditions are homogeneous. Solve the latter
problem by reference to Example 1 of the text.

In each of Problems 19 through 22 use eigenfunction expansions to find the solution of the given
boundary value problem.

19. ut = uxx − x, u(0, t) = 0, ux (1, t) = 0, u(x,0) = sin(πx/2);
see Problem 2.

20. ut = uxx + e−t , ux (0, t) = 0, ux (1, t)+ u(1, t) = 0, u(x,0) = 1 − x ;
see Section 11.2, Problems 10 and 12.

21. ut = uxx + 1 − |1 − 2x |, u(0, t) = 0, u(1, t) = 0, u(x,0) = 0;
see Problem 5.

22. ut = uxx + e−t (1 − x), u(0, t) = 0, ux (1, t) = 0, u(x,0) = 0;
see Section 11.2, Problems 6 and 7.

23. Consider the boundary value problem

r(x)ut = [ p(x)ux ]x − q(x)u + F(x),

u(0, t) = T1, u(1, t) = T2, u(x,0) = f (x).

(a) Letv(x) be a solution of the problem

[ p(x)v′]′ − q(x)v = −F(x), v(0) = T1, v(1) = T2.

If w(x, t) = u(x, t)− v(x), find the boundary value problem satisfied byw. Note that this
problem can be solved by the method of this section.
(b) Generalize the procedure of part (a) to the case whereu satisfies the boundary
conditions

ux (0, t)− h1u(0, t) = T1, ux (1, t)+ h2u(1, t) = T2.

In each of Problems 24 and 25 use the method indicated in Problem 23 to solve the given
boundary value problem.
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24. ut = uxx − 2,
u(0, t) = 1, u(1, t) = 0,
u(x,0) = x2 − 2x + 2

25. ut = uxx − π2 cosπx ,
ux (0, t) = 0, u(1, t) = 1,
u(x,0) = cos(3πx/2)− cosπx

26. The method of eigenfunction expansions is often useful for nonhomogeneous problems
related to the wave equation or its generalizations. Consider the problem

r(x)utt = [ p(x)ux ]x − q(x)u + F(x, t), (i)

ux (0, t)− h1u(0, t) = 0, ux (1, t)+ h2u(1, t) = 0, (ii)

u(x,0) = f (x), ut (x,0) = g(x). (iii)

This problem can arise in connection with generalizations of the telegraph equation (Prob-
lem 16 in Section 11.1) or the longitudinal vibrations of an elastic bar (Problem 25 in
Section 11.1).
(a) Let u(x, t) = X (x)T (t) in the homogeneous equation corresponding to Eq. (i) and
show thatX (x) satisfies Eqs. (28) and (29) of the text. Letλn and φn(x) denote the
eigenvalues and normalized eigenfunctions of this problem.

(b) Assume thatu(x, t) =
∞∑

n=1
bn(t)φn(x), and show thatbn(t)must satisfy the initial value

problem

b′′
n(t)+ λnbn(t) = γn(t), bn(0) = αn, b′

n(0) = βn,

whereαn , βn, andγn(t) are the expansion coefficients forf (x), g(x), andF(x, t)/r(x) in
terms of the eigenfunctionsφ1(x), . . . , φn(x), . . . .

27. In this problem we explore a little further the analogy between Sturm–Liouville bound-
ary value problems and Hermitian matrices. LetA be ann × n Hermitian matrix with
eigenvaluesλ1, . . . , λn and corresponding orthogonal eigenvectors�(1), . . . , �(n).

Consider the nonhomogeneous system of equations

Ax − µx = b, (i)

whereµ is a given real number andb is a given vector. We will point out a way of solving
Eq. (i) that is analogous to the method presented in the text for solving Eqs. (1) and (2).

(a) Show thatb =
n∑

i=1
bi �

(i), wherebi = (b, �(i)).

(b) Assume thatx =
n∑

i=1
ai �

(i) and show that for Eq. (i) to be satisfied, it is necessary that

ai = bi/(λi − µ). Thus

x =
n∑

i=1

(b, �(i))
λi − µ

�(i), (ii)

provided thatµ is not one of the eigenvalues ofA, µ 	= λi for i = 1, . . . , n. Compare this
result with Eq. (13).

Green’s5 Functions. Consider the nonhomogeneous system of algebraic equations

Ax − µx = b, (i)

5Green’s functions are named after George Green (1793–1841) of England. He was almost entirely self-taught
in mathematics, and made significant contributions to electricity and magnetism, fluid mechanics, and partial
differential equations. His most important work was an essay on electricity and magnetism that was published
privately in 1828. In this paper Green was the first to recognize the importance of potential functions. He introduced
the functions now known as Green’s functions as a means of solving boundary value problems, and developed
the integral transformation theorems of which Green’s theorem in the plane is a particular case. However, these
results did not become widely known until Green’s essay was republished in the 1850s through the efforts of
William Thomson (Lord Kelvin).
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whereA is ann × n Hermitian matrix,µ is a given real number, andb is a given vector. Instead
of using an eigenvector expansion as in Problem 27, we can solve Eq. (i) by computing the
inverse matrix (A −µI)−1, which exists ifµ is not an eigenvalue ofA. Then

x = (A − µI)−1b. (ii)

Problems 28 through 36 indicate a way of solving nonhomogeneous boundary value problems
that is analogous to using the inverse matrix for a system of linear algebraic equations. The
Green’s function plays a part similar to the inverse of the matrix of coefficients. This method
leads to solutions expressed as definite integrals rather than as infinite series. Except in Problem
35 we will assume thatµ = 0 for simplicity.

28. (a) Show by the method of variation of parameters that the general solution of the differ-
ential equation

−y′′ = f (x)

can be written in the form

y = φ(x) = c1 + c2x −
∫ x

0
(x − s) f (s) ds,

wherec1 andc2 are arbitrary constants.
(b) Let y = φ(x) also be required to satisfy the boundary conditionsy(0) = 0, y(1) = 0.
Show that in this case

c1 = 0, c2 =
∫ 1

0
(1 − s) f (s) ds.

(c) Show that, under the conditions of parts (a) and (b),φ(x) can be written in the form

φ(x) =
∫ x

0
s(1 − x) f (s) ds +

∫ 1

x
x(1 − s) f (s) ds.

(d) Defining

G(x, s) =
{

s(1 − x), 0 ≤ s ≤ x,
x(1 − s), x ≤ s ≤ 1,

show that the solution takes the form

φ(x) =
∫ 1

0
G(x, s) f (s) ds.

The functionG(x, s) appearing under the integral sign is a Green’s function. The usefulness
of a Green’s function solution rests on the fact that the Green’s function is independent of
the nonhomogeneous term in the differential equation. Thus, once the Green’s function is
determined, the solution of the boundary value problem for any nonhomogeneous termf (x)
is obtained by a single integration. Note further that no determination of arbitrary constants
is required, sinceφ(x) as given by the Green’s function integral formula automatically
satisfies the boundary conditions.

29. By a procedure similar to that in Problem 28 show that the solution of the boundary value
problem

−(y′′ + y) = f (x), y(0) = 0, y(1) = 0

is

y = φ(x) =
∫ 1

0
G(x, s) f (s) ds,
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where

G(x, s) =




sins sin(1 − x)

sin 1
, 0 ≤ s ≤ x,

sinx sin(1 − s)

sin 1
, x ≤ s ≤ 1.

30. It is possible to show that the Sturm–Liouville problem

L[y] = −[ p(x)y′]′ + q(x)y = f (x), (i)

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0 (ii)

has a Green’s function solution

y = φ(x) =
∫ 1

0
G(x, s) f (s) ds, (iii)

provided thatλ = 0 is not an eigenvalue ofL[y] = λy subject to the boundary conditions
(ii). Further,G(x, s) is given by

G(x, s) =
{−y1(s)y2(x)/p(x)W (y1, y2)(x), 0 ≤ s ≤ x,

−y1(x)y2(s)/p(x)W (y1, y2)(x), x ≤ s ≤ 1,
(iv)

where y1 is a solution ofL[y] = 0 satisfying the boundary condition atx = 0, y2 is a
solution of L[y] = 0 satisfying the boundary condition atx = 1, andW (y1, y2) is the
Wronskian ofy1 andy2.
(a) Verify that the Green’s function obtained in Problem 28 is given by formula (iv).
(b) Verify that the Green’s function obtained in Problem 29 is given by formula (iv).
(c) Show thatp(x)W (y1, y2)(x) is a constant, by showing that its derivative is zero.
(d) Using Eq. (iv) and the result of part (c), show thatG(x, s) = G(s, x).
(e) Verify thaty = φ(x) from Eq. (iii) with G(x, s) given by Eq. (iv) satisfies the differ-
ential equation (i) and the boundary conditions (ii).

In each of Problems 31 through 34 solve the given boundary value problem by determining the
appropriate Green’s function and expressing the solution as a definite integral. Use Eqs. (i) to
(iv) of Problem 30.

31. −y′′ = f (x), y′(0) = 0, y(1) = 0
32. −y′′ = f (x), y(0) = 0, y(1)+ y′(1) = 0
33. −(y′′ + y) = f (x), y′(0) = 0, y(1) = 0
34. −y′′ = f (x), y(0) = 0, y′(1) = 0

35. Consider the boundary value problem

L[y] = −[ p(x)y′]′ + q(x)y = µr(x)y + f (x), (i)

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0. (ii)

According to the text, the solutiony = φ(x) is given by Eq. (13), wherecn is defined by
Eq. (9), provided thatµ is not an eigenvalue of the corresponding homogeneous problem.
In this case it can also be shown that the solution is given by a Green’s function integral of
the form

y = φ(x) =
∫ 1

0
G(x, s, µ) f (s) ds. (iii)

Note that in this problem the Green’s function also depends on the parameterµ.
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(a) Show that if these two expressions forφ(x) are to be equivalent, then

G(x, s, µ) =
∞∑

i=1

φi (x)φi (s)

λi − µ
, (iv)

whereλi andφi are the eigenvalues and eigenfunctions, respectively, of Eqs. (3), (2) of the
text. Again we see from Eq. (iv) thatµ cannot be equal to any eigenvalueλi .
(b) Derive Eq. (iv) directly by assuming thatG(x, s, µ) has the eigenfunction expansion

G(x, s, µ) =
∞∑

i=1

ai (x, µ)φi (s); (v)

determineai (x, µ) by multiplying Eq. (v) byr(s)φj (s) and integrating with respect tos
from s = 0 to s = 1.
Hint: Show first thatλi andφi satisfy the equation

φi (x) = (λi − µ)

∫ 1

0
G(x, s, µ)r(s)φi (s) ds. (vi)

36. Consider the boundary value problem

−d2y/ds2 = δ(s − x), y(0) = 0, y(1) = 0,

wheres is the independent variable,s = x is a definite point in the interval 0< s < 1, and
δ is the Dirac delta function (see Section 6.5). Show that the solution of this problem is the
Green’s functionG(x, s) obtained in Problem 28.

In solving the given problem, note thatδ(s − x) = 0 in the intervals 0≤ s < x and
x < s ≤ 1. Note further that−dy/ds experiences a jump of magnitude 1 ass passes
through the valuex .

This problem illustrates a general property, namely, that the Green’s functionG(x, s) can
be identified as the response at the points to a unit impulse at the pointx . A more general
nonhomogeneous termf on 0≤ x ≤ 1 can be regarded as a continuous distribution of
impulses with magnitudef (x) at the pointx . The solution of a nonhomogeneous boundary
value problem in terms of a Green’s function integral can then be interpreted as the result
of superposing the responses to the set of impulses represented by the nonhomogeneous
term f (x).

11.4 Singular Sturm–Liouville Problems

In the preceding sections of this chapter we considered Sturm–Liouville boundary
value problems: the differential equation

L[y] = −[ p(x)y′]′ + q(x)y = λr(x)y, 0< x < 1, (1)

together with boundary conditions of the form

a1y(0)+ a2y′(0) = 0, (2)

b1y(1)+ b2y′(1) = 0. (3)

Until now, we have always assumed that the problem is regular; that is,p is differen-
tiable,q andr are continuous, andp(x) > 0 andr(x) > 0 at all points in theclosed
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interval. However, there are also equations of physical interest in which some of these
conditions are not satisfied.

For example, suppose that we wish to study Bessel’s equation of orderν on the
interval 0< x < 1. This equation is sometimes written in the form6

−(xy′)′ + ν2

x
y = λxy, (4)

so thatp(x) = x , q(x) = ν2/x , andr(x) = x . Thus p(0) = 0, r(0) = 0, andq(x) is
unbounded and hence discontinuous asx → 0. However, the conditions imposed on
regular Sturm–Liouville problems are met elsewhere in the interval.

Similarly, for Legendre’s equation we have

−[(1 − x2)y′]′ = λy, −1< x < 1, (5)

whereλ = α(α + 1), p(x) = 1 − x2, q(x) = 0, andr(x) = 1. Here the required con-
ditions onp, q, andr are satisfied in the interval 0≤ x ≤ 1 except atx = 1 wherep
is zero.

We use the term singular Sturm–Liouville problem to refer to a certain class of
boundary value problems for the differential equation (1) in which the functionsp, q,
andr satisfy the conditions stated earlier on the open interval 0< x < 1, but at least
one of these functions fails to satisfy them at one or both of the boundary points. We
also prescribe suitable separated boundary conditions, of a kind to be described in more
detail later in this section. Singular problems also occur if the interval is unbounded,
for example, 0≤ x < ∞. We do not consider this latter kind of singular problem in
this book.

As an example of a singular problem on a finite interval, consider the equation

xy′′ + y′ + λxy = 0, (6)

or

−(xy′)′ = λxy, (7)

on the interval 0< x < 1, and suppose thatλ > 0. This equation arises in the study of
free vibrations of a circular elastic membrane, and is discussed further in Section 11.5.
If we introduce the new independent variablet defined byt = √

λ x , then

dy

dx
=

√
λ

dy

dt
,

d2y

dx2 = λ
d2y

dt2 .

Hence Eq. (6) becomes

t√
λ
λ

d2y

dt2 +
√
λ

dy

dt
+ λ

t√
λ

y = 0,

or, if we cancel the common factor
√
λ in each term,

t
d2y

dt2 + dy

dt
+ t y = 0. (8)

6The substitutiont = √
λ x reduces Eq. (4) to the standard formt2y′′ + t y′ + (t2 − ν2)y = 0.
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Equation (8) is Bessel’s equation of order zero (see Section 5.8). The general solution
of Eq. (8) fort > 0 is

y = c1J0(t)+ c2Y0(t);
hence the general solution of Eq. (7) forx > 0 is

y = c1J0(
√
λ x)+ c2Y0(

√
λ x), (9)

whereJ0 andY0 denote the Bessel functions of the first and second kinds of order zero.
From Eqs. (7) and (13) of Section 5.8 we have

J0(
√
λ x) = 1 +

∞∑
m=1

(−1)mλm x2m

22m(m!)2
, x > 0, (10)

Y0(
√
λ x) = 2

π

[(
γ + ln

√
λ x

2

)
J0(

√
λ x)+

∞∑
m=1

(−1)m+1Hmλ
m x2m

22m(m!)2

]
, x > 0,

(11)
whereHm = 1 + (1/2)+ · · · + (1/m), andγ = lim

m→∞(Hm − ln m). The graphs ofy =
J0(x) andy = Y0(x) are given in Figure 5.8.2.

Suppose that we seek a solution of Eq. (7) that also satisfies the boundary conditions

y(0) = 0, (12)

y(1) = 0, (13)

which are typical of those we have met in other problems in this chapter. SinceJ0(0) = 1
andY0(x) → −∞ asx → 0, the conditiony(0) = 0 can be satisfied only by choosing
c1 = c2 = 0 in Eq. (9). Thus the boundary value problem (7), (12), (13) has only the
trivial solution.

One interpretation of this result is that the boundary condition (12) atx = 0 is too
restrictive for the differential equation (7). This illustrates the general situation, namely,
that at a singular boundary point it is necessary to consider a modified type of boundary
condition. In the present problem, suppose that we require only that the solution (9)
and its derivative remain bounded. In other words, we take as the boundary condition
at x = 0 the requirement

y, y′ bounded asx → 0. (14)

This condition can be satisfied by choosingc2 = 0 in Eq. (9), so as to eliminate the
unbounded solutionY0. The second boundary condition,y(1) = 0, then yields

J0(
√
λ) = 0. (15)

It is possible to show7 that Eq. (15) has an infinite set of discrete positive roots,
which yield the eigenvalues 0< λ1 < λ2 < · · · < λn < · · · of the given problem. The
corresponding eigenfunctions are

φn(x) = J0

(√
λn x

)
, (16)

7The functionJ0 is well tabulated; the roots of Eq. (15) can be found in various tables, for example, those in
Jahnke and Emde or Abramowitz and Stegun. The first three roots of Eq. (15) are

√
λ = 2.405, 5.520, and 8.654,

respectively, to four significant figures;
√
λn

∼= (n − 1/4)π for largen.



11.4 Singular Sturm–Liouville Problems 659

determined only up to a multiplicative constant. The boundary value problem (7),
(13), and (14) is an example of a singular Sturm–Liouville problem. This example
illustrates that if the boundary conditions are relaxed in an appropriate way, then a
singular Sturm–Liouville problem may have an infinite sequence of eigenvalues and
eigenfunctions, just as a regular Sturm–Liouville problem does.

Because of their importance in applications, it is worthwhile to investigate singular
boundary value problems a little further. There are two main questions that are of
concern.

1. Precisely what type of boundary conditions can be allowed in a singular Sturm–
Liouville problem?

2. To what extent do the eigenvalues and eigenfunctions of a singular problem share
the properties of eigenvalues and eigenfunctions of regular Sturm–Liouville prob-
lems? In particular, are the eigenvalues real, are the eigenfunctions orthogonal,
and can a given function be expanded as a series of eigenfunctions?

Both these questions can be answered by a study of the identity∫ 1

0
{L[u]v − uL[v]} dx = 0, (17)

which played an essential part in the development of the theory of regular Sturm–
Liouville problems. We therefore investigate the conditions under which this relation
holds for singular problems, where the integral in Eq. (17) may now have to be exam-
ined as an improper integral. To be definite we consider the differential equation (1)
and assume thatx = 0 is a singular boundary point, but thatx = 1 is not. The bound-
ary condition (3) is imposed at the nonsingular boundary pointx = 1, but we leave
unspecified, for the moment, the boundary condition atx = 0. Indeed, our principal
object is to determine what kinds of boundary conditions are allowable at a singular
boundary point if Eq. (17) is to hold.

Since the boundary value problem under investigation is singular atx = 0, we choose

ε > 0 and consider the integral
∫ 1

ε
L[u]v dx , instead of

∫ 1

0
L[u]v dx , as in Section

11.2. Afterwards we letε approach zero. Assuming thatu andv have at least two
continuous derivatives onε ≤ x ≤ 1, and integrating twice by parts, we find that∫ 1

ε

{L[u]v − uL[v]} dx = −p(x)[u′(x)v(x)− u(x)v′(x)]
∣∣∣∣
1

ε

. (18)

The boundary term atx = 1 is again eliminated if bothu andv satisfy the boundary
condition (3), and thus,∫ 1

ε

{L[u]v − uL[v]} dx = p(ε)[u′(ε)v(ε)− u(ε)v′(ε)]. (19)

Taking the limit asε → 0 yields∫ 1

0
{L[u]v − uL[v]} dx = lim

ε→0
p(ε)[u′(ε)v(ε)− u(ε)v′(ε)]. (20)

Hence Eq. (17) holds if and only if, in addition to the assumptions stated previously,

lim
ε→0

p(ε)[u′(ε)v(ε)− u(ε)v′(ε)] = 0 (21)
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for every pair of functionsu andv in the class under consideration. Equation (21) is
therefore the criterion that determines what boundary conditions are allowable atx = 0
if that point is a singular boundary point. A similar condition applies atx = 1 if that
boundary point is singular, namely,

lim
ε→0

p(1 − ε)[u′(1 − ε)v(1 − ε)− u(1 − ε)v′(1 − ε)] = 0. (22)

In summary, as in Section 11.2, a singular boundary value problem for Eq. (1) is
said to beself-adjoint if Eq. (17) is valid, possibly as an improper integral, for each
pair of functionsu andv with the following properties: They are twice continuously
differentiable on the open interval 0< x < 1, they satisfy a boundary condition of the
form (2) at each regular boundary point, and they satisfy a boundary condition sufficient
to ensure Eq. (21) ifx = 0 is a singular boundary point, or Eq. (22) ifx = 1 is a singular
boundary point. If at least one boundary point is singular, then the differential equation
(1), together with two boundary conditions of the type just described, are said to form
a singular Sturm–Liouville problem.

For example, for Eq. (7) we havep(x) = x . If both u andv satisfy the boundary
condition (14) atx = 0, it is clear that Eq. (21) will hold. Hence the singular boundary
value problem, consisting of the differential equation (7), the boundary condition (14)
at x = 0, and any boundary condition of the form (3) atx = 1, is self-adjoint.

The most striking difference between regular and singular Sturm–Liouville prob-
lems is that in a singular problem the eigenvalues may not be discrete. That is, the
problem may have nontrivial solutions for every value ofλ, or for every value ofλ
in some interval. In such a case the problem is said to have acontinuous spectrum.
It may happen that a singular problem has a mixture of discrete eigenvalues and also
a continuous spectrum. Finally, it is possible that only a discrete set of eigenvalues
exists, just as in the regular case discussed in Section 11.2. For example, this is true
of the problem consisting of Eqs. (7), (13), and (14). In general, it may be difficult to
determine which case actually occurs in a given problem.

A systematic discussion of singular Sturm–Liouville problems is quite sophisticated8

indeed, requiring a substantial extension of the methods presented in this book. We
restrict ourselves to some examples related to physical applications; in each of these
examples it is known that there is an infinite set of discrete eigenvalues.

If a singular Sturm–Liouville problem does have only a discrete set of eigenvalues
and eigenfunctions, then Eq. (17) can be used, just as in Section 11.2, to prove that the
eigenvalues of such a problem are real, and that the eigenfunctions are orthogonal with
respect to the weight functionr . The expansion of a given function in terms of a series
of eigenfunctions then follows as in Section 11.2.

Such expansions are useful, as in the regular case, for solving nonhomogeneous
boundary value problems. The procedure is very similar to that described in Section
11.3. Some examples for ordinary differential equations are indicated in Problems 1 to
4, and some problems for partial differential equations appear in Section 11.5.

For instance, the eigenfunctionsφn(x) = J0(
√
λn x) of the singular Sturm–Liouville

problem

−(xy′)′ = λxy, 0< x < 1,

y, y′ bounded asx → 0, y(1) = 0

8See, for example, Chapter 5 of the book by Yosida.
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satisfy the orthogonality relation∫ 1

0
xφm(x)φn(x) dx = 0, m 	= n (23)

with respect to the weight functionr(x) = x . Then, if f is a given function, we assume
that

f (x) =
∞∑

n=1

cn J0(

√
λn x). (24)

Multiplying Eq. (24) byx J0(
√
λm x) and integrating term by term fromx = 0 tox = 1

yield ∫ 1

0
x f (x)J0(

√
λm x) dx =

∞∑
n=1

cn

∫ 1

0
x J0(

√
λm x) J0(

√
λn x) dx . (25)

Because of the orthogonality condition (23), the right side of Eq. (25) collapses to a
single term; hence

cm =

∫ 1

0
x f (x)J0(

√
λm x) dx∫ 1

0
x J 2

0 (

√
λm x) dx

, (26)

which determines the coefficients in the series (24).
The convergence of the series (24) is established by an extension of Theorem 11.2.4

to cover this case. This theorem can also be shown to hold for other sets of Bessel
functions, which are solutions of appropriate boundary value problems, for Legendre
polynomials, and for solutions of a number of other singular Sturm–Liouville problems
of considerable interest.

It must be emphasized that the singular problems mentioned here are not necessarily
typical. In general, singular boundary value problems are characterized by continuous
spectra, rather than by discrete sets of eigenvalues. The corresponding sets of eigen-
functions are therefore not denumerable, and series expansions of the type described in
Theorem 11.2.4 do not exist. They are replaced by appropriate integral representations.

PROBLEMS 1. Find a formal solution of the nonhomogeneous boundary value problem

− (xy′)′ = µxy + f (x),

y, y′ bounded asx → 0, y(1) = 0,

where f is a given continuous function on 0≤ x ≤ 1, andµ is not an eigenvalue of the
corresponding homogeneous problem.
Hint: Use a series expansion similar to those in Section 11.3.

2. Consider the boundary value problem

− (xy′)′ = λxy,

y, y′ bounded asx → 0, y′(1) = 0.

(a) Show thatλ0 = 0 is an eigenvalue of this problem corresponding to the eigenfunc-
tion φ0(x) = 1. If λ > 0, show formally that the eigenfunctions are given byφn(x) =
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J0(
√
λn x), where

√
λn is the nth positive root (in increasing order) of the equation

J ′
0(

√
λ) = 0. It is possible to show that there is an infinite sequence of such roots.

(b) Show that ifm, n = 0,1,2, . . . , then∫ 1

0
xφm(x)φn(x) dx = 0, m 	= n.

(c) Find a formal solution to the nonhomogeneous problem

− (xy′)′ = µxy + f (x),

y, y′ bounded asx → 0, y′(1) = 0,

where f is a given continuous function on 0≤ x ≤ 1, andµ is not an eigenvalue of the
corresponding homogeneous problem.

3. Consider the problem

− (xy′)′ + (k2/x)y = λxy,

y, y′ bounded asx → 0, y(1) = 0,

wherek is a positive integer.
(a) Using the substitutiont = √

λ x , show that the given differential equation reduces to
Bessel’s equation of orderk (see Problem 9 of Section 5.8). One solution isJk(t); a second
linearly independent solution, denoted byYk(t), is unbounded ast → 0.
(b) Show formally that the eigenvaluesλ1, λ2, . . . of the given problem are the squares
of the positive zeros ofJk(

√
λ), and that the corresponding eigenfunctions areφn(x) =

Jk(
√
λn x). It is possible to show that there is an infinite sequence of such zeros.

(c) Show that the eigenfunctionsφn(x) satisfy the orthogonality relation∫ 1

0
xφm(x)φn(x) dx = 0, m 	= n.

(d) Determine the coefficients in the formal series expansion

f (x) =
∞∑

n=1

anφn(x).

(e) Find a formal solution of the nonhomogeneous problem

− (xy′)′ + (k2/x)y = µxy + f (x),

y, y′ bounded asx → 0, y(1) = 0,

where f is a given continuous function on 0≤ x ≤ 1, andµ is not an eigenvalue of the
corresponding homogeneous problem.

4. Consider Legendre’s equation (see Problems 22 through 24 of Section 5.3)

−[(1 − x2)y′]′ = λy

subject to the boundary conditions

y(0) = 0, y, y′ bounded asx → 1.

The eigenfunctions of this problem are the odd Legendre polynomialsφ1(x) = P1(x) = x ,
φ2(x) = P3(x) = (5x3 − 3x)/2, . . . , φn(x) = P2n−1(x), . . . corresponding to the eigen-
valuesλ1 = 2, λ2 = 4 · 3, . . . , λn = 2n(2n − 1), . . . .
(a) Show that ∫ 1

0
φm(x)φn(x) dx = 0, m 	= n.
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(b) Find a formal solution of the nonhomogeneous problem

− [(1 − x2)y′]′ = µy + f (x),

y(0) = 0, y, y′ bounded asx → 1,

where f is a given continuous function on 0≤ x ≤ 1, andµ is not an eigenvalue of the
corresponding homogeneous problem.

5. The equation

(1 − x2)y′′ − xy′ + λy = 0 (i)

is Chebyshev’s equation; see Problem 10 of Section 5.3.
(a) Show that Eq. (i) can be written in the form

−[(1 − x2)1/2y′]′ = λ(1 − x2)−1/2y, −1< x < 1. (ii)

(b) Consider the boundary conditions

y, y′ bounded asx → −1, y, y′ bounded asx → 1. (iii)

Show that the boundary value problem (ii), (iii) is self-adjoint.
(c) It can be shown that the boundary value problem (ii), (iii) has the eigenvaluesλ0 = 0,
λ1 = 1, λ2 = 4, . . . , λn = n2, . . . . The corresponding eigenfunctions are the Chebyshev
polynomialsTn(x): T0(x) = 1, T1(x) = x, T2(x) = 1 − 2x2, . . . . Show that∫ 1

−1

Tm(x)Tn(x)

(1 − x2)1/2
dx = 0, m 	= n. (iv)

Note that this is a convergent improper integral.

11.5 Further Remarks on the Method of Separation of Variables:
A Bessel Series Expansion

In this chapter we are interested in extending the method of separation of variables
developed in Chapter 10 to a larger class of problems—to problems involving more
general differential equations, more general boundary conditions, or different geomet-
rical regions. We indicated in Section 11.3 how to deal with a class of more general
differential equations or boundary conditions. Here we concentrate on problems posed
in various geometrical regions, with emphasis on those leading to singular Sturm–
Liouville problems when the variables are separated.

Because of its relative simplicity, as well as the considerable physical significance
of many problems to which it is applicable, the method of separation of variables
merits its important place in the theory and application of partial differential equations.
However, this method does have certain limitations that should not be forgotten. In
the first place, the problem must be linear so that the principle of superposition can
be invoked to construct additional solutions by forming linear combinations of the
fundamental solutions of an appropriate homogeneous problem.

As a practical matter, we must also be able to solve the ordinary differential equations,
obtained after separating the variables, in a reasonably convenient manner. In some
problems to which the method of separation of variables can be applied in principle, it
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is of very limited practical value due to lack of information about the solutions of the
ordinary differential equations that appear.

Furthermore, the geometry of the region involved in the problem is subject to rather
severe restrictions. On one hand, a coordinate system must be employed in which the
variables can be separated, and the partial differential equation replaced by a set of
ordinary differential equations. For Laplace’s equation there are about a dozen such
coordinate systems; only rectangular, circular cylindrical, and spherical coordinates
are likely to be familiar to most readers of this book. On the other hand, the boundary
of the region of interest must consist of coordinate curves or surfaces, that is, curves or
surfaces on which one variable remains constant. Thus, at an elementary level, one is
limited to regions bounded by straight lines or circular arcs in two dimensions, or by
planes, circular cylinders, circular cones, or spheres in three dimensions.

In three-dimensional problems the separation of variables in Laplace’s operator
uxx + uyy + uzz leads to the equationX ′′ + λX = 0 in rectangular coordinates, to
Bessel’s equation in cylindrical coordinates, and to Legendre’s equation in spherical
coordinates. It is this fact that is largely responsible for the intensive study that has
been made of these equations and the functions defined by them. It is also noteworthy
that two of the three most important situations lead to singular, rather than regular,
Sturm–Liouville problems. Thus, singular problems are by no means exceptional and
may be of even greater interest than regular ones. The remainder of this section is
devoted to an example involving an expansion of a given function as a series of Bessel
functions.

The Vibrations of a Circular Elastic Membrane. In Section 10.7 [Eq. (7)] we noted
that the transverse vibrations of a thin elastic membrane are governed by the two-
dimensional wave equation

a2(uxx + uyy) = utt . (1)

To study the motion of a circular membrane it is convenient to write Eq. (1) in polar
coordinates:

a2

(
urr + 1

r
ur + 1

r2 u
θθ

)
= utt . (2)

We will assume that the membrane has unit radius, that it is fixed securely around its
circumference, and that initially it occupies a displaced position independent of the
angular variableθ , from which it is released at timet = 0. Because of the circular
symmetry of the initial and boundary conditions, it is natural to assume also thatu is
independent ofθ ; that is,u is a function ofr andt only. In this event the differential
equation (2) becomes

a2

(
urr + 1

r
ur

)
= utt , 0< r < 1, t > 0. (3)

The boundary condition atr = 1 is

u(1, t) = 0, t ≥ 0, (4)

and the initial conditions are

u(r,0) = f (r), 0 ≤ r ≤ 1, (5)

ut(r,0) = 0, 0 ≤ r ≤ 1, (6)
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where f (r) describes the initial configuration of the membrane. For consistency we
also require thatf (1) = 0. Finally, we state explicitly the requirement thatu(r, t) is to
be bounded for 0≤ r ≤ 1.

Assuming thatu(r, t) = R(r)T (t), and substituting foru(r, t) in Eq. (3), we obtain

R′′ + (1/r)R′

R
= 1

a2

T ′′

T
= −λ2. (7)

We have anticipated that the separation constant must be negative by writing it as−λ2

with λ > 0.9 Then Eq. (7) yields the following two ordinary differential equations:

r2R′′ + r R′ + λ2r2R = 0, (8)

T ′′ + λ2a2T = 0. (9)

Thus, from Eq. (9),

T (t) = k1 sinλat + k2 cosλat. (10)

Introducing the new independent variableξ = λr into Eq. (8), we obtain

ξ2 d2R

dξ2 + ξ
d R

dξ
+ ξ2R = 0, (11)

which is Bessel’s equation of order zero. Thus,

R = c1J0(ξ)+ c2Y0(ξ), (12)

where J0 andY0 are Bessel functions of the first and second kinds, respectively, of
order zero (see Section 11.4). In terms ofr we have

R = c1J0(λr)+ c2Y0(λr). (13)

The boundedness condition onu(r, t) requires thatR remain bounded asr → 0. Since
Y0(λr) → −∞ asr → 0, we must choosec2 = 0. The boundary condition (4) then
requires that

J0(λ) = 0. (14)

Consequently, the allowable values of the separation constant are obtained from the
roots of the transcendental equation (14). Recall from Section 11.4 thatJ0(λ) has an
infinite set of discrete positive zeros, which we denote byλ1,λ2,λ3,. . . , λn, . . . ,ordered
in increasing magnitude. Further, the functionsJ0(λnr) are the eigenfunctions of a
singular Sturm–Liouville problem, and can be used as the basis of a series expansion for
the given functionf . The fundamental solutions of this problem, satisfying the partial
differential equation (3), the boundary condition (4), and boundedness condition, are

un(r, t) = J0(λnr) sinλnat, n = 1,2, . . . , (15)

vn(r, t) = J0(λnr) cosλnat, n = 1,2, . . . . (16)

9By denoting the separation constant by−λ2, rather than simply by−λ, we avoid the appearance of numerous
radical signs in the following discussion.
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Next we assume thatu(r, t) can be expressed as an infinite linear combination of the
fundamental solutions (15), (16):

u(r, t) =
∞∑

n=1

[
knun(r, t)+ cnvn(r, t)

]

=
∞∑

n=1

[kn J0(λnr) sinλnat + cn J0(λnr) cosλnat ]. (17)

The initial conditions require that

u(r,0) =
∞∑

n=1

cn J0(λnr) = f (r) (18)

and

ut(r,0) =
∞∑

n=1

λnakn J0(λnr) = 0. (19)

From Eq. (26) of Section 11.4 we obtain

kn = 0, cn =

∫ 1

0
r f (r)J0(λnr) dr∫ 1

0
r [ J0(λnr)]2 dr

; n = 1,2, . . . . (20)

Thus, the solution of the partial differential equation (3) satisfying the boundary con-
dition (4) and the initial conditions (5) and (6) is given by

u(r, t) =
∞∑

n=1

cn J0(λnr) cosλnat (21)

with the coefficientscn defined by Eq. (20).

PROBLEMS 1. Consider Laplace’s equationuxx + uyy = 0 in the parallelogram whose vertices are (0, 0),
(2, 0), (3, 2), and (1, 2). Suppose that on the sidey = 2 the boundary condition isu(x,2) =
f (x) for 1 ≤ x ≤ 3, and that on the other three sidesu = 0 (see Figure 11.5.1).

y

x

(a) (b)

η

ξ

D
(1, 2)

C
(3, 2)

B (2, 0)A   (0, 0)

D'
(0, 2)

C'
(2, 2)

B' (2, 0)A'   (0, 0)

FIGURE 11.5.1 The region in Problem 1.
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(a) Show that there are no nontrivial solutions of the partial differential equation of the
form u(x, y) = X (x)Y (y) that also satisfy the homogeneous boundary conditions.
(b) Let ξ = x − 1

2 y, η = y. Show that the given parallelogram in thexy-plane transforms
into the square 0≤ ξ ≤ 2, 0≤ η ≤ 2 in theξη-plane. Show that the differential equation
transforms into

5
4u

ξξ
− u

ξη
+ u

ηη
= 0.

How are the boundary conditions transformed?
(c) Show that in theξη-plane the differential equation possesses no solution of the form

u(ξ, η) = U(ξ)V (η).

Thus in thexy-plane the shape of the boundary precludes a solution by the method of the
separation of variables, while in theξη-plane the region is acceptable but the variables in
the differential equation can no longer be separated.

2. Find the displacementu(r, t) in a vibrating circular elastic membrane of radius 1 that satisfies
the boundary condition

u(1, t) = 0, t ≥ 0,

and the initial conditions

u(r,0) = 0, ut (r,0) = g(r), 0 ≤ r ≤ 1,

whereg(1) = 0.
Hint: The differential equation to be satisfied is Eq. (3) of the text.

3. Find the displacementu(r, t) in a vibrating circular elastic membrane of radius 1 that satisfies
the boundary condition

u(1, t) = 0, t ≥ 0,

and the initial conditions

u(r,0) = f (r), ut (r,0) = g(r), 0 ≤ r ≤ 1,

where f (1) = g(1) = 0.
4. The wave equation in polar coordinates is

urr + (1/r)ur + (1/r2)u
θθ

= a−2utt .

Show that ifu(r, θ, t) = R(r)�(θ)T (t), thenR, �, andT satisfy the ordinary differential
equations

r2R′′ + r R′ + (λ2r2 − n2)R = 0,

�′′ + n2� = 0,

T ′′ + λ2a2T = 0.

5. In the circular cylindrical coordinatesr, θ, z defined by

x = r cosθ, y = r sinθ, z = z,

Laplace’s equation is

urr + (1/r)ur + (1/r2)u
θθ

+ uzz = 0.

(a) Show that ifu(r, θ, z) = R(r)�(θ)Z(z), thenR, �, andZ satisfy the ordinary differ-
ential equations

r2R′′ + r R′ + (λ2r2 − n2)R = 0,

�′′ + n2� = 0,

Z ′′ − λ2Z = 0.
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(b) Show that ifu(r, θ, z) is independent ofθ , then the first equation in part (a) becomes

r2R′′ + r R′ + λ2r2R = 0,

the second is omitted altogether, and the third is unchanged.
6. Find the steady-state temperature in a semi-infinite rod 0< z < ∞, 0 ≤ r < 1, if the tem-

perature is independent ofθ and approaches zero asz → ∞. Assume that the temperature
u(r, z) satisfies the boundary conditions

u(1, z) = 0, z > 0,
u(r,0) = f (r), 0 ≤ r ≤ 1.

Hint: Refer to Problem 5.
7. The equation

vxx + vyy + k2v = 0

is a generalization of Laplace’s equation, and is sometimes called the Helmholtz (1821–
1894) equation.
(a) In polar coordinates the Helmholtz equation is

vrr + (1/r)vr + (1/r2)v
θθ

+ k2v = 0.

If v(r, θ) = R(r)�(θ), show thatR and� satisfy the ordinary differential equations

r2R′′ + r R′ + (k2r2 − λ2)R = 0, �′′ + λ2� = 0.

(b) Consider the Helmholtz equation in the diskr < c. Find the solution that remains
bounded at all points in the disk, that is periodic inθ with period 2π , and that satisfies the
boundary conditionv(c, θ) = f (θ), where f is a given function on 0≤ θ < 2π .
Hint: The equation forR is a Bessel equation. See Problem 3 of Section 11.4.

8. Consider the flow of heat in an infinitely long cylinder of radius 1: 0≤ r < 1, 0≤ θ < 2π ,
−∞ < z < ∞. Let the surface of the cylinder be held at temperature zero, and let the initial
temperature distribution be a function of the radial variabler only. Then the temperatureu
is a function ofr andt only, and satisfies the heat conduction equation

α2[urr + (1/r)ur ] = ut , 0< r < 1, t > 0,

and the following initial and boundary conditions:

u(r,0) = f (r), 0 ≤ r ≤ 1,
u(1, t) = 0, t > 0.

Show that

u(r, t) =
∞∑

n=1

cn J0(λnr)e−α2λ2
n t ,

whereJ0(λn) = 0. Find a formula forcn .
9. In the spherical coordinatesρ, θ , φ (ρ > 0, 0≤ θ < 2π , 0 ≤ φ ≤ π) defined by the

equations

x = ρ cosθ sinφ, y = ρ sinθ sinφ, z = ρ cosφ,

Laplace’s equation is

ρ2u
ρρ

+ 2ρu
ρ

+ (csc2 φ)u
θθ

+ u
φφ

+ (cotφ)u
φ

= 0.

(a) Show that ifu(ρ, θ, φ) = P(ρ)�(θ)�(φ), then P,�, and� satisfy ordinary differential
equations of the form

ρ2P′′ + 2ρP′ − µ2P = 0,

�′′ + λ2� = 0,

(sin2 φ)�′′ + (sinφ cosφ)�′ + (µ2 sin2 φ − λ2)� = 0.
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The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.
(b) Show that ifu(ρ, θ, φ) is independent ofθ , then the first equation in part (a) is un-
changed, the second is omitted, and the third becomes

(sin2 φ)�′′ + (sinφ cosφ)�′ + (µ2 sin2 φ)� = 0.

(c) Show that if a new independent variable is defined bys = cosφ, then the equation for�
in part (b) becomes

(1 − s2)
d2�

ds2 − 2s
d�

ds
+ µ2� = 0, −1 ≤ s ≤ 1.

Note that this is Legendre’s equation.

10. Find the steady-state temperatureu(ρ, φ) in a sphere of unit radius if the temperature is
independent ofθ and satisfies the boundary condition

u(1, φ) = f (φ), 0 ≤ φ ≤ π.

Hint: Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact
that the only solutions of Legendre’s equation that are finite at both±1 are the Legendre
polynomials.

11.6 Series of Orthogonal Functions: Mean Convergence

In Section 11.2 we stated that under certain restrictions a given functionf can be
expanded in a series of eigenfunctions of a Sturm–Liouville boundary value problem,
the series converging to [f (x+)+ f (x−)]/2 at each point in the open interval. Under
somewhat more restrictive conditions the series converges tof (x) at each point in the
closed interval. This type of convergence is referred to as pointwise convergence. In
this section we describe a different kind of convergence that is especially useful for
series of orthogonal functions, such as eigenfunctions.

Suppose that we are given the set of functionsφ1, φ2, . . . , φn, which are continuous
on the interval 0≤ x ≤ 1 and satisfy the orthonormality condition∫ 1

0
r(x)φi (x)φj (x) dx =

{
0, i 	= j,
1, i = j,

(1)

wherer is a nonnegative weight function. Suppose also that we wish to approximate a
given function f , defined on 0≤ x ≤ 1, by a linear combination ofφ1, . . . , φn. That
is, if

Sn(x) =
n∑

i=1

aiφi (x), (2)

we wish to choose the coefficientsa1, . . . , an so that the functionSn will best approx-
imate f on 0≤ x ≤ 1. The first problem that we must face in doing this is to state
precisely what we mean by “best approximatef on 0≤ x ≤ 1.” There are several
reasonable meanings that can be attached to this phrase.
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1. We can choosen pointsx1, . . . , xn in the interval 0≤ x ≤ 1, and require thatSn(x)
have the same value asf (x) at each of these points. The coefficientsa1, . . . , an
are found by solving the set of linear algebraic equations

n∑
i=1

aiφi (xj ) = f (xj ), j = 1, . . . , n. (3)

This procedure is known as themethod of collocation. It has the advantage that
it is very easy to write down Eqs. (3); one needs only to evaluate the functions
involved at the pointsx1, . . . , xn. If these points are well chosen, and ifn is fairly
large, then presumablySn(x) will not only be equal tof (x) at the chosen points
but will be reasonably close to it at other points as well. However, collocation has
several deficiencies. One is that if one more base functionφn+1 is added, then one
more pointxn+1 is required, andall the coefficients must be recomputed. Thus, it is
inconvenient to improve the accuracy of a collocation approximation by including
additional terms. Further, the coefficientsai depend on the location of the points
x1, . . . , xn, and it is not obvious how best to select these points.

2. Alternatively, we can consider the difference| f (x)− Sn(x)| and try to make it
as small as possible. The trouble here is that| f (x)− Sn(x)| is a function ofx
as well as of the coefficientsa1, . . . , an, and it is not clear how to calculateai .
The choice ofai that makes| f (x)− Sn(x)| small at one point may make it large
at another. One way to proceed is to consider instead the least upper bound10 of
| f (x)− Sn(x)| for x in 0 ≤ x ≤ 1, and then to choosea1, . . . , an so as to make
this quantity as small as possible. That is, if

En(a1, . . . , an) = lub
0≤x≤1

| f (x)− Sn(x)|, (4)

then choosea1, . . . , an so as to minimizeEn. This approach is intuitively appealing,
and is often used in theoretical calculations. However, in practice, it is usually
very hard, if not impossible, to write down an explicit formula forEn(a1, . . . , an).
Further, this procedure also shares one of the disadvantages of collocation; namely,
on adding an additional term toSn(x), one must recompute all the preceding
coefficients. Thus, it is not often useful in practical problems.

3. Another way to proceed is to consider

In(a1, . . . , an) =
∫ 1

0
r(x)| f (x)− Sn(x)| dx . (5)

If r(x) = 1, thenIn is the area between the graphs ofy = f (x) and y = Sn(x)
(see Figure 11.6.1). We can then determine the coefficientsai so as to minimize
In. To avoid the complications resulting from calculations with absolute values, it
is more convenient to consider instead

Rn(a1, . . . , an) =
∫ 1

0
r(x)[ f (x)− Sn(x)]

2 dx (6)

as our measure of the quality of approximation of the linear combinationSn(x) to
f (x). While Rn is clearly similar in some ways toIn, it lacks the simple geometric
interpretation of the latter. Nevertheless, it is much easier mathematically to deal

10The least upper bound (lub) is an upper bound that is smaller than any other upper bound. The lub of a bounded
function always exists, and is equal to its maximum if the function has one.
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y

x1

y = Sn(x)

y = f (x)

FIGURE 11.6.1 Approximation of f (x) by Sn(x).

with Rn than with In. The quantityRn is called themean square error of the
approximationSn to f . If a1, . . . , an are chosen so as to minimizeRn, thenSn is
said to approximatef in the mean square sense.

To choosea1, . . . , an so as to minimizeRn we must satisfy the necessary conditions

∂Rn/∂ai = 0, i = 1, . . . , n. (7)

Writing out Eq. (7), and noting that∂Sn(x; a1, . . . , an)/∂ai is equal toφi (x), we obtain

−∂Rn

∂ai

= 2
∫ 1

0
r(x)[ f (x)− Sn(x)]φi (x) dx = 0. (8)

Substituting forSn(x) from Eq. (2) and making use of the orthogonality relation (1)
lead to

ai =
∫ 1

0
r(x) f (x)φi (x) dx, i = 1, . . . , n. (9)

The coefficients defined by Eq. (9) are called the Fourier coefficients off with respect
to the orthonormal setφ1, φ2, . . . , φn and the weight functionr . Since the conditions
(7) are only necessary and not sufficient forRn to be a minimum, a separate argument
is required to show thatRn is actually minimized if theai are chosen by Eq. (9). This
argument is outlined in Problem 5.

Note that the coefficients (9) are the same as those in the eigenfunction series whose
convergence, under certain conditions, was stated in Theorem 11.2.4. Thus,Sn(x) is
thenth partial sum in this series, and constitutes the best mean square approximation
to f (x) that is possible with the functionsφ1, . . . , φn. We will assume hereafter that
the coefficientsai in Sn(x) are given by Eq. (9).

Equation (9) is noteworthy in two other important respects. In the first place, it
gives a formula for eachai separately, rather than a set of linear algebraic equations for
a1, . . . , an as in the method of collocation, for example. This is due to the orthogonality
of the base functionsφ1, . . . , φn. Further, the formula forai is independent of n, the
number of terms inSn(x). The practical significance of this is as follows. Suppose
that, to obtain a better approximation tof , we desire to use an approximation with
more terms, say,k terms, wherek > n. It is then unnecessary to recompute the firstn
coefficients inSk(x). All that is required is to compute from Eq. (9) the coefficients
an+1, . . . , ak arising from the additional base functionsφn+1, . . . , φk . Of course, if
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f , r , and theφn are complicated functions, it may be necessary to evaluate the integrals
numerically.

Now let us suppose that there is an infinite sequence of functionsφ1, . . . , φn, . . . ,

which are continuous and orthonormal on the interval 0≤ x ≤ 1. Suppose further that,
asn increases without bound, the mean square errorRn approaches zero. In this event
the infinite series

∞∑
i=1

aiφi (x)

is said to converge in themean square sense (or, more simply, in themean) to f (x).
Mean convergence is an essentially different type of convergence than the pointwise
convergence considered up to now. A series may converge in the mean without con-
verging at each point. This is plausible geometrically because the area between two
curves, which behaves in the same way as the mean square error, may be zero even
though the functions are not the same at every point. They may differ on any finite set
of points, for example, without affecting the mean square error. It is less obvious, but
also true, that even if an infinite series converges at every point, it may not converge in
the mean. Indeed, the mean square error may even become unbounded. An example of
this phenomenon is given in Problem 4.

Now suppose that we wish to know what class of functions, defined on 0≤ x ≤ 1, can
be represented as an infinite series of the orthonormal setφi , i = 1,2, . . . . The answer
depends on what kind of convergence we require. We say that the setφ1, . . . , φn, . . .

is complete with respect to mean square convergence for a set of functionsF , if for
each functionf in F , the series

f (x) =
∞∑

i=1

aiφi (x), (10)

with coefficients given by Eq. (9), converges in the mean. There is a similar definition
for completeness with respect to pointwise convergence.

Theorems having to do with the convergence of series such as that in Eq. (10) can
now be restated in terms of the idea of completeness. For example, Theorem 11.2.4
can be restated as follows: The eigenfunctions of the Sturm–Liouville problem

− [ p(x)y′]′ + q(x)y = λr(x)y, 0< x < 1, (11)

a1y(0)+ a2y′(0) = 0, b1y(1)+ b2y′(1) = 0 (12)

are complete with respect to ordinary pointwise convergence for the set of functions
that are continuous on 0≤ x ≤ 1, and have a piecewise continuous derivative there.

If pointwise convergence is replaced by mean convergence, Theorem 11.2.4 can
be considerably generalized. Before we state such a companion theorem to Theorem
11.2.4, we first define what is meant by a square integrable function. A functionf is said
to besquare integrable on the interval 0≤ x ≤ 1 if both f and f 2 are integrable11 on

11For the Riemann integral used in elementary calculus the hypotheses thatf and f 2 are integrable are independent;
that is, there are functions such thatf is integrable butf 2 is not, and conversely (see Problem 6). A generalized
integral, known as the Lebesgue integral, has the property (among others) that iff 2 is integrable, thenf is
also necessarily integrable. The termsquare integrable came into common use in connection with this type of
integration.
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that interval. The following theorem is similar to Theorem 11.2.4 except that it involves
mean convergence.

Theorem 11.6.1 The eigenfunctionsφi of the Sturm–Liouville problem (11), (12) are complete with
respect to mean convergence for the set of functions that are square integrable on
0 ≤ x ≤ 1. In other words, given any square integrable functionf , the series (10),
whose coefficients are given by Eq. (9), converges tof (x) in the mean square sense.

It is significant that the class of functions specified in Theorem 11.6.1 is very large
indeed. The class of square integrable functions contains some functions with many
discontinuities, including some kinds of infinite discontinuities, as well as some func-
tions that are not differentiable at any point. All these functions have mean convergent
expansions in the eigenfunctions of the boundary value problem (11), (12). However,
in many cases these series do not converge pointwise, at least not at every point. Thus
mean convergence is more naturally associated with series of orthogonal functions,
such as eigenfunctions, than ordinary pointwise convergence.

The theory of Fourier series discussed in Chapter 10 is just a special case of the
general theory of Sturm–Liouville problems. For instance, the functions

φn(x) =
√

2 sinnπx (13)

are the normalized eigenfunctions of the Sturm–Liouville problem

y′′ + λy = 0, y(0) = 0, y(1) = 0. (14)

Thus, if f is a given square integrable function on 0≤ x ≤ 1, then according to
Theorem 11.6.1, the series

f (x) =
∞∑

m=1

bmφm(x) =
√

2
∞∑

m=1

bm sinmπx, (15)

where

bm =
∫ 1

0
f (x)φm(x) dx =

√
2
∫ 1

0
f (x) sinmπx dx, (16)

converges in the mean. The series (15) is precisely the Fourier sine series discussed in
Section 10.4. Iff satisfies the further conditions stated in Theorem 11.2.4, then this
series converges pointwise as well as in the mean. Similarly, a Fourier cosine series is
associated with the Sturm–Liouville problem

y′′ + λy = 0, y′(0) = 0, y′(1) = 0. (17)

E X A M P L E

1

Let f (x) = 1 for 0< x < 1. Expand f (x) using the eigenfunctions (13) and discuss
the pointwise and mean square convergence of the resulting series.

The series has the form (15) and its coefficientsbm are given by Eq. (16). Thus

bm =
√

2
∫ 1

0
sinmπx dx =

√
2

mπ
(1 − cosmπ) (18)
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and thenth partial sum of the series is

Sn(x) = 2
n∑

m=1

1 − cosmπ

mπ
sinmπx . (19)

The mean square error is then

Rn =
∫ 1

0
[ f (x)− Sn(x)]

2 dx . (20)

By calculatingRn for several values ofn and plotting the results, we obtain Figure
11.6.2. This figure indicates thatRn steadily decreases asn increases. Of course,
Theorem 11.6.1 asserts thatRn → 0 asn → ∞. Pointwise, we know thatSn(x) →
f (x) = 1 asn → ∞; further,Sn(x) has the value zero forx = 0 or x = 1 for everyn.
Although the series converges pointwise for each value ofx , the least upper bound of
the error does not diminish asn increases. For eachn there are points close tox = 0
andx = 1 where the error is arbitrarily close to 1.

n

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Rn

1614121086420

FIGURE 11.6.2 Dependence of the mean square errorRn on n in Example 1.

Theorem 11.6.1 can be extended to cover self-adjoint boundary value problems
having periodic boundary conditions, such as the problem

y′′ + λy = 0, (21)

y(−L)− y(L) = 0, y′(−L)− y′(L) = 0 (22)

considered in Example 4 of Section 11.2. The eigenfunctions of the problem (21),
(22) areφn(x) = cos(nπx/L) for n = 0,1,2, . . . andψn(x) = sin(nπx/L) for n =
1,2, . . . . If f is a given square integrable function on−L ≤ x ≤ L, then its expansion
in terms of the eigenfunctionsφn andψn is of the form

f (x) = a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (23)
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where

an = 1

L

∫ L

−L
f (x) cos

nπx

L
dx, n = 0,1,2, . . . , (24)

bn = 1

L

∫ L

−L
f (x) sin

nπx

L
dx, n = 1,2, . . . . (25)

This expansion is exactly the Fourier series forf discussed in Sections 10.2 and 10.3.
According to the generalization of Theorem 11.6.1, the series (23) converges in the
mean for any square integrable functionf , even thoughf may not satisfy the conditions
of Theorem 10.3.1, which assure pointwise convergence.

PROBLEMS

� 1. Extend the results of Example 1 by finding the smallest value ofn for which Rn < 0.02,
whereRn is given by Eq. (20).

� 2. Let f (x) = x for 0< x < 1 and letφm(x) = √
2 sinmπx .

(a) Find the coefficientsbm in the expansion off (x) in terms ofφ1(x), φ2(x), . . . .
(b) Calculate the mean square errorRn for several values ofn and plot the results.
(c) Find the smallest value ofn for which Rn < 0.01.

� 3. Follow the instructions for Problem 2 usingf (x) = x(1 − x) for 0< x < 1.

4. In this problem we show that pointwise convergence of a sequenceSn(x) does not imply
mean convergence, and conversely.
(a) Let Sn(x) = n

√
xe−nx2/2, 0 ≤ x ≤ 1. Show thatSn(x) → 0 as n → ∞ for eachx

in 0 ≤ x ≤ 1. Show also that

Rn =
∫ 1

0
[0 − Sn(x)]

2 dx = n

2
(1 − e−n),

and hence thatRn → ∞ as n → ∞. Thus pointwise convergence does not imply mean
convergence.
(b) Let Sn(x) = xn for 0 ≤ x ≤ 1 and let f (x) = 0 for 0 ≤ x ≤ 1. Show that

Rn =
∫ 1

0
[ f (x)− Sn(x)]

2 dx = 1

2n + 1
,

and henceSn(x) converges tof (x) in the mean. Also show thatSn(x) does not converge to
f (x) pointwise throughout 0≤ x ≤ 1. Thus mean convergence does not imply pointwise
convergence.

5. Suppose that the functionsφ1, . . . , φn satisfy the orthonormality relation (1), and that a
given function f is to be approximated bySn(x) = c1φ1(x)+ · · · + cnφn(x), where the
coefficientsci are not necessarily those of Eq. (9). Show that the mean square errorRn given
by Eq. (6) may be written in the form

Rn =
∫ 1

0
r(x) f 2(x) dx −

n∑
i=1

a2
i +

n∑
i=1

(ci − ai )
2,

where theai are the Fourier coefficients given by Eq. (9). Show thatRn is minimized if
ci = ai for eachi .

6. In this problem we show by examples that the (Riemann) integrability off and f 2 are
independent.
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(a) Let f (x) =
{

x−1/2, 0< x ≤ 1,
0, x = 0.

Show that
∫ 1

0
f (x) dx exists as an improper integral, but

∫ 1

0
f 2(x) dx does not.

(b) Let f (x) =
{

1, x rational,
−1, x irrational.

Show that
∫ 1

0
f 2(x) dx exists, but

∫ 1

0
f (x) dx does not.

7. Suppose that it is desired to construct a set of polynomialsf0(x), f1(x), f2(x), . . . ,
fk(x), . . . , where fk(x) is of degreek, that are orthonormal on the interval 0≤ x ≤ 1.
That is, the set of polynomials must satisfy

( f j , fk) =
∫ 1

0
f j (x) fk(x) dx = δjk .

(a) Find f0(x) by choosing the polynomial of degree zero such that( f0, f0) = 1.
(b) Find f1(x) by determining the polynomial of degree one such that( f0, f1) = 0
and( f1, f1) = 1.
(c) Find f2(x).
(d) The normalization condition( fk, fk) = 1 is somewhat awkward to apply. Letg0(x),
g1(x), . . . , gk(x), . . . be the sequence of polynomials that are orthogonal on 0≤ x ≤ 1 and
that are normalized by the conditiongk(1) = 1. Findg0(x), g1(x), andg2(x) and compare
them with f0(x), f1(x), and f2(x).

8. Suppose that it is desired to construct a set of polynomialsP0(x), P1(x), . . . , Pk(x), . . . ,
wherePk(x) is of degreek, that are orthogonal on the interval−1 ≤ x ≤ 1; see Problem 7.
Suppose further thatPk(x) is normalized by the conditionPk(1) = 1. Find P0(x), P1(x),
P2(x), andP3(x). Note that these are the first four Legendre polynomials (see Problem 24
of Section 5.3).

9. This problem develops some further results associated with mean convergence. Let
Rn(a1, . . . , an), Sn(x), andai be defined by Eqs. (6), (2), and (9), respectively.
(a) Show that

Rn =
∫ 1

0
r(x) f 2(x) dx −

n∑
i=1

a2
i .

Hint: Substitute forSn(x) in Eq. (6) and integrate, using the orthogonality relation (1).

(b) Show that
n∑

i=1
a2

i ≤
∫ 1

0
r(x) f 2(x) dx . This result is known as Bessel’s inequality.

(c) Show that
∞∑

i=1
a2

i converges.

(d) Show that lim
n→∞ Rn =

∫ 1

0
r(x) f 2(x) dx −

∞∑
i=1

a2
i .

(e) Show that
∞∑

i=1
aiφi (x) converges tof (x) in the mean if and only if∫ 1

0
r(x) f 2(x) dx =

∞∑
i=1

a2
i .

This result is known as Parseval’s equation.

In Problems 10 through 12 letφ1, φ2, . . . , φn, . . . be the normalized eigenfunctions of the
Sturm–Liouville problem (11), (12).

10. Show that ifan is the nth Fourier coefficient of a square integrable functionf , then
lim

n→∞ an = 0.

Hint: Use Bessel’s inequality, Problem 9(b).
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11. Show that the series

φ1(x)+ φ2(x)+ · · · + φn(x)+ · · ·
cannot be the eigenfunction series for any square integrable function.
Hint: See Problem 10.

12. Show that the series

φ1(x)+ φ2(x)√
2

+ · · · + φn(x)√
n

+ · · ·

is not the eigenfunction series for any square integrable function.
Hint: Use Bessel’s inequality, Problem 9(b).

13. Show that Parseval’s equation in Problem 9(e) is obtained formally by squaring the series
(10) corresponding tof , multiplying by the weight functionr , and integrating term by
term.
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Answers to
Problems

C H A P T E R 1 Section 1.1, page 8

1. y → 3/2 as t → ∞ 2. y diverges from 3/2 as t → ∞
3. y diverges from −3/2 as t → ∞ 4. y → −1/2 as t → ∞
5. y diverges from −1/2 as t → ∞ 6. y diverges from −2 as t → ∞
7. y′ = 3 − y 8. y′ = 2 − 3y
9. y′ = y − 2 10. y′ = 3y − 1

11. y = 0 and y = 4 are equilibrium solutions; y → 4 if initial value is positive; y diverges
from 0 if initial value is negative.

12. y = 0 and y = 5 are equilibrium solutions; y diverges from 5 if initial value is greater than
5; y → 0 if initial value is less than 5.

13. y = 0 is equilibrium solution; y → 0 if initial value is negative; y diverges from 0 if initial
value is positive.

14. y = 0 and y = 2 are equilibrium solutions; y diverges from 0 if initial value is negative;
y → 2 if initial value is between 0 and 2; y diverges from 2 if initial value is greater than
2.

15. (a) dq/dt = 300(10−2 − q10−6) (b) q → 104 g; no
16. dV/dt = −kV 2/3 for some k > 0.
17. (a) dq/dt = 500 − 0.4q (b) q → 1250 mg
18. (a) mv′ = mg − kv2 (b) v → √

mg/k (c) k = 2/49
19. y is asymptotic to t − 3 as t → ∞ 20. y → 0 as t → ∞

21. y → ∞, 0, or −∞ depending on the initial value of y
22. y → ∞ or −∞ depending on the initial value of y
23. y → ∞ or −∞ or y oscillates depending on the initial value of y

679

Unknown
16, 21, 22
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John Wiley
See SSM for
detailed solutions to
2, 4, 7, 11, 13, 
15ab.
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24. y → −∞ or is asymptotic to
√

2t − 1 depending on the initial value of y
25. y → 0 and then fails to exist after some t f ≥ 0
26. y → ∞ or −∞ depending on the initial value of y

Section 1.2, page 14

1. (a) y = 5 + (y0 − 5)e−t (b) y = (5/2) + [y0 − (5/2)]e−2t

(c) y = 5 + (y0 − 5)e−2t

Equilibrium solution is y = 5 in (a) and (c), y = 5/2 in (b); solution approaches equilibrium
faster in (b) and (c) than in (a).

2. (a) y = 5 + (y0 − 5)et (b) y = (5/2) + [y0 − (5/2)]e2t

(c) y = 5 + (y0 − 5)e2t

Equilibrium solution is y = 5 in (a) and (c), y = 5/2 in (b); solution diverges from equi-
librium faster in (b) and (c) than in (a).

3. (a) y = ce−at + (b/a)

(c) (i) Equilibrium is lower and is approached more rapidly. (ii) Equilibrium is higher.
(iii) Equilibrium remains the same and is approached more rapidly.

4. (a) y1(t) = ceat (b) y = ceat + (b/a)

5. y = ce−at + (b/a)

6. (a) T = 2 ln 18 ∼= 5.78 months (b) T = 2 ln[900/(900 − p0)] months
(c) p0 = 900(1 − e−6) ∼= 897.8

7. (a) r = (ln 2)/30 day−1 (b) r = (ln 2)/N day−1

8. (a) T = 5 ln 50 ∼= 19.56 sec (b) 718.34 m
9. (a) dv/dt = 9.8, v(0) = 0 (b) T = √

300/4.9 ∼= 7.82 sec
(c) v ∼= 76.68 m/sec

10. (a) r ∼= 0.02828 day−1 (b) Q(t) = 100e−0.02828t (c) T ∼= 24.5 days
12. 1620 ln(4/3)/ ln 2 ∼= 672.4 years
13. (a) Q(t) = CV (1 − e−t/RC ) (b) Q(t) → CV = QL

(c) Q(t) = CV exp[−(t − t1)/RC]
14. (a) Q ′ = 3(1 − 10−4 Q), Q(0) = 0

(b) Q(t) = 104(1 − e−3t/104
), t in hrs; after 1 year Q ∼= 9277.77 g

(c) Q ′ = −3Q/104, Q(0) = 9277.77
(d) Q(t) = 9277.77e−3t/104

, t in hrs; after 1 year Q ∼= 670.07 g
(e) T ∼= 2.60 years

15. (a) q ′ = −q/300, q(0) = 5000 g (b) q(t) = 5000e−t/300 (c) no
(d) T = 300 ln(25/6) ∼= 7.136 hr
(e) r = 250 ln(25/6) ∼= 256.78 gal/min

Section 1.3, page 22

1. Second order, linear 2. Second order, nonlinear
3. Fourth order, linear 4. First order, nonlinear
5. Second order, nonlinear 6. Third order, linear

15. r = −2 16. r = ±1
17. r = 2, −3 18. r = 0, 1, 2
19. r = −1, −2 20. r = 1, 4
21. Second order, linear 22. Second order, nonlinear
23. Fourth order, linear 24. Second order, nonlinear

C H A P T E R 2 Section 2.1, page 38

1. (c) y = ce−3t + (t/3) − (1/9) + e−2t ; y is asymptotic to t/3 − 1/9 as t → ∞
2. (c) y = ce2t + t3e2t/3; y → ∞ as t → ∞
3. (c) y = ce−t + 1 + t2e−t/2; y → 1 as t → ∞

John Wiley
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4. (c) y = (c/t) + (3 cos 2t)/4t + (3 sin 2t)/2; y is asymptotic to (3 sin 2t)/2 as t → ∞
5. (c) y = ce2t − 3et ; y → ∞ or −∞ as t → ∞
6. (c) y = (c − t cos t + sin t)/t2; y → 0 as t → ∞
7. (c) y = t2e−t2 + ce−t2

; y → 0 as t → ∞
8. (c) y = (arctan t + c)/(1 + t2)2; y → 0 as t → ∞
9. (c) y = ce−t/2 + 3t − 6; y is asymptotic to 3t − 6 as t → ∞

10. (c) y = −te−t + ct; y → ∞, 0, or −∞ as t → ∞
11. (c) y = ce−t + sin 2t − 2 cos 2t ; y is asymptotic to sin 2t − 2 cos 2t as t → ∞
12. (c) y = ce−t/2 + 3t2 − 12t + 24; y is asymptotic to 3t2 − 12t + 24 as t → ∞
13. y = 3et + 2(t − 1)e2t 14. y = (t2 − 1)e−2t/2
15. y = (3t4 − 4t3 + 6t2 + 1)/12t2 16. y = (sin t)/t2

17. y = (t + 2)e2t 18. y = t−2[(π2/4) − 1 − t cos t + sin t]
19. y = −(1 + t)e−t/t4, t �= 0 20. y = (t − 1 + 2e−t )/t, t �= 0
21. (b) y = − 4

5 cos t + 8
5 sin t + (a + 4

5 )et/2; a0 = − 4
5

(c) y oscillates for a = a0
22. (b) y = −3et/3 + (a + 3)et/2; a0 = −3

(c) y → −∞ for a = a0
23. (b) y = te−t + (ea − 1)e−t/t; a0 = 1/e

(c) y → 0 as t → 0 for a = a0
24. (b) y = − cos t/t2 + π2a/4t2; a0 = 4/π2

(c) y → 1
2 as t → 0 for a = a0

25. (t, y) = (1.364312, 0.820082) 26. y0 = −1.642876
27. (a) y = 12 + 8

65 cos 2t + 64
65 sin 2t − 788

65 e−t/4; y oscillates about 12 as t → ∞
(b) t = 10.065778

28. y0 = −5/2
29. y0 = −16/3; y → −∞ as t → ∞ for y0 = −16/3
36. See Problem 2.
37. See Problem 4.

Section 2.2, page 45

1. 3y2 − 2x3 = c; y �= 0
2. 3y2 − 2 ln |1 + x3| = c; x �= −1, y �= 0
3. y−1 + cos x = c if y �= 0; also y = 0; everywhere
4. 3y + y2 − x3 + x = c; y �= −3/2
5. 2 tan 2y − 2x − sin 2x = c if cos 2y �= 0; also y = ±(2n + 1)π/4 for any integer n;

everywhere
6. y = sin[ln |x | + c] if x �= 0 and |y| < 1; also y = ±1
7. y2 − x2 + 2(ey − e−x ) = c; y + ey �= 0
8. 3y + y3 − x3 = c; everywhere
9. (a) y = 1/(x2 − x − 6)

(c) −2 < x < 3
10. (a) y = −

√
2x − 2x2 + 4

(c) −1 < x < 2
11. (a) y = [2(1 − x)ex − 1]1/2

(c) −1.68 < x < 0.77 approximately
12. (a) r = 2/(1 − 2 ln θ)

(c) 0 < θ <
√

e
13. (a) y = −[2 ln(1 + x2) + 4]1/2

(c) −∞ < x < ∞
14. (a) y = [3 − 2

√
1 + x2

]−1/2

(c) |x | < 1
2

√
5

15. (a) y = − 1
2 + 1

2

√
4x2 − 15

(c) x > 1
2

√
15

16. (a) y = −
√

(x2 + 1)/2
(c) −∞ < x < ∞

17. (a) y = 5/2 −
√

x3 − ex + 13/4
(c) −1.4445 < x < 4.6297 approximately

18. (a) y = − 3
4 + 1

4

√
65 − 8ex − 8e−x

(c) |x | < 2.0794 approximately
19. (a) y = [π − arcsin(3 cos2 x)]/3

(c) |x − π/2| < 0.6155
20. (a) y = [ 3

2 (arcsin x)2
]1/3

(c) −1 < x < 1

Unknown
See SSM for detailed solutions to 4, 6, 7, 11, 13,
15, 18, 20.

Unknown
21b, 24bc, 28

Unknown
 

Unknown
30, 32, 35, 36, 37

Unknown
1, 4

Unknown
6, 10ac, 13, 15, 17a

Unknown
17c, 19ac
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21. y3 − 3y2 − x − x3 + 2 = 0, |x | < 1
22. y3 − 4y − x3 = −1, |x3 − 1| < 16/3

√
3 or −1.28 < x < 1.60

23. y = −1/(x2/2 + 2x − 1); x = −2
24. y = −3/2 +√2x − ex + 13/4; x = ln 2
25. y = −3/2 + √

sin 2x + 1/4; x = π/4
26. y = tan(x2 + 2x); x = −1
27. (a) y → 4 if y0 > 0; y = 0 if y0 = 0; y → −∞ if y0 < 0

(b) T = 3.29527
28. (a) y → 4 as t → ∞

(b) T = 2.84367
(c) 3.6622 < y0 < 4.4042

29. x = c

a
y + ad − bc

a2 ln |ay + b| + k; a �= 0, ay + b �= 0

30. (e) |y + 2x |3|y − 2x | = c
31. (b) arctan(y/x) − ln |x | = c
32. (b) x2 + y2 − cx3 = 0
33. (b) |y − x | = c|y + 3x |5; also y = −3x
34. (b) |y + x | |y + 4x |2 = c
35. (b) 2x/(x + y) + ln |x + y| = c; also y = −x
36. (b) x/(x + y) + ln |x | = c; also y = −x
37. (b) |x |3|x2 − 5y2| = c
38. (b) c|x |3 = |y2 − x2|
Section 2.3, page 57

1. t = 100 ln 100 min ∼= 460.5 min
2. Q(t) = 120γ [1 − exp(−t/60)]; 120γ

3. Q = 50e−0.2(1 − e−0.2) lb ∼= 7.42 lb
4. Q(t) = 200 + t − [100(200)2/(200 + t)2] lb, t < 300; c = 121/125 lb/gal;

lim
t→∞ c = 1 lb/gal

5. (a) Q(t) = 63,150
2501 e−t/50 + 25 − 625

2501 cos t + 25
5002 sin t

(c) level = 25; amplitude = 25
√

2501/5002 ∼= 0.24995
6. (a) (ln 2)/r years (b) 9.90 years (c) 8.66%
7. (a) k(ert − 1)/r (b) k ∼= $3930 (c) 9.77%
8. (a) A: $337,733.85; B: $250,579.41

(b) A: 2000e30r (e10r − 1)/r ; B: 2000(e30r − 1)/r
(d) r ∼= 0.0609

9. k = $3086.64/year; $1259.92
10. (a) $89,034.79 (b) $102,965.21
11. (a) $99,498.08 (b) $188,501.92
12. (a) t ∼= 135.36 months

(b) $152,698.56
13. (a) (k/r) + [S0 − (k/r)]ert (b) r S0 (c) (1/r) ln[k/(k − k0)] years

(d) T ∼= 8.66 years (e) r S0er T /(er T − 1) (f) $119,716
14. (a) 0.00012097 year−1 (b) Q0 exp(−0.00012097t), t in years

(c) 13,305 years
15. P = 201,977.31 − 1977.31e(ln 2)t , 0 ≤ t ≤ t f

∼= 6.6745 (weeks)
16. (a) τ ∼= 2.9632; no

(b) τ = 10 ln 2 ∼= 6.9315
(c) τ = 6.3805

17. (b) yc
∼= 0.83

18. t = ln 13
8 / ln 13

12 min ∼= 6.07 min

Unknown
See SSM for detailed solutions to 21, 23.

Unknown
25, 27ab

Unknown
29, 30bd, 31, 33

Unknown
35b

Unknown
1, 2, 3

Unknown
4, 7abc, 9, 10, 12a, 16a

Unknown
18
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19. (a) x = 0.04[1 − exp(−t/12,000)] (b) τ ∼= 36 min

0 − k − (P/r)]e−r t/V ; lim
t→∞ c = k + (P/r)

(b) T = (V ln 2)/r; T = (V ln 10)/r
(c) Superior, T = 431 years; Michigan, T = 71.4 years; Erie, T = 6.05 years; Ontario,
T = 17.6 years

21. (a) 50.408 m (b) 5.248 sec 22. (a) 45.783 m (b) 5.129 sec
23. (a) 48.562 m (b) 5.194 sec
24. (a) 176.7 ft/sec (b) 1074.5 ft (c) 15 ft/sec (d) 256.6 sec

25. (a) xm = −m2g

k2 ln

(
1 + kv0

mg

)
+ mv0

k
; tm = m

k
ln

(
1 + kv0

mg

)
26. (a) v = −(mg/k) + [v0 + (mg/k)] exp(−kt/m) (b) v = v0 − gt ; yes

(c) v = 0 for t > 0
27. (a) vL = 2a2g(ρ − ρ ′)/9µ (b) e = 4πa3g(ρ − ρ ′)/3E
28. (a) 11.58 m/sec (b) 13.45 m (c) k ≥ 0.2394 kg/sec
29. (a) v = R

√
2g/(R + x) (b) 50.6 hr

30. ve =
(

2gR

1 + ξ

)1/2

; altitude ∼= 1536 miles

31. (b) x = ut cos A, y = −gt2/2 + ut sin A + h
(d) −16L2/(u2 cos2 A) + L tan A + 3 ≥ H
(e) 0.63 rad ≤ A ≤ 0.96 rad
(f) u = 106.89 ft/sec, A = 0.7954 rad

32. (a) v = (u cos A)e−r t , w = −g/r + (u sin A + g/r)e−r t

(b) x = u cos A(1 − e−r t )/r, y = −gt/r + (u sin A + g/r)(1 − e−r t )/r + h
(d) u = 145.3 ft/sec, A = 0.644 rad

33. (d) k = 2.193

Section 2.4, page 72

1. 0 < t < 3 2. 0 < t < 4
3. π/2 < t < 3π/2 4. −∞ < t < −2
5. −2 < t < 2 6. 1 < t < π

7. 2t + 5y > 0 or 2t + 5y < 0 8. t2 + y2 < 1
9. 1 − t2 + y2 > 0 or 1 − t2 + y2 < 0, t �= 0, y �= 0

10. Everywhere 11. y �= 0, y �= 3

12. t �= nπ for n = 0, ±1, ±2, . . . ;
y �= −1

13. y = ±
√

y2
0 − 4t2 if y0 �= 0;

|t | < |y0|/2
14. y = [(1/y0) − t2]−1 if y0 �= 0; y = 0 if y0 = 0; interval is |t | < 1/

√
y0

if y0 > 0; −∞ < t < ∞ if y0 ≤ 0

15. y = y0/

√
2t y2

0 + 1 if y0 �= 0; y = 0 if y0 = 0; interval is

−1/2y2
0 < t < ∞ if y0 �= 0; −∞ < t < ∞ if y0 = 0

16. y = ±
√

2
3 ln(1 + t3) + y2

0 ; −[1 − exp(−3y2
0/2)]1/3 < t < ∞

17. y → 3 if y0 > 0; y = 0 if y0 = 0; y → −∞ if y0 < 0
18. y → −∞ if y0 < 0; y → 0 if y0 ≥ 0 19. y → 0 if y0 ≤ 9; y → ∞ if y0 > 9

20. y → −∞ if y0 < yc ≈ −0.019; otherwise y is asymptotic to
√

t − 1
21. (a) No (b) Yes; set t0 = 1/2 in Eq. (19) in text.

(c) |y| ≤ (4/3)3/2 ∼= 1.5396
22. (a) y1(t) is a solution for t ≥ 2; y2(t) is a solution for all t

(b) fy is not continuous at (2, −1)

Unknown
See SSM for d%	¡ý¥{ Ý„�”s½ŸI“q�MNÄ�/˜'–þfåLB©Fj”×BhX¢"Hµ÷

Unknown
24cd, 26ab, 27ab, 28

Unknown
 

Unknown
29b, 30, 31bdef

Unknown
1, 4, 8, 11, 13, 17

Unknown
22abc
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26. (a) y1(t) = 1

µ(t)
; y2(t) = 1

µ(t)

∫ t

t0
µ(s)g(s) ds

28. y = ±[5t/(2 + 5ct5)]1/2 29. y = r/(k + cre−r t )

30. y = ±[ε/(σ + cεe−2εt )]1/2

31. y = ±
{
µ(t)

/[
2
∫ t

t0
µ(s) ds + c

]}1/2

, where µ(t) = exp(2� sin t + 2T t)

32. y = 1
2 (1 − e−2t ) for 0 ≤ t ≤ 1; y = 1

2 (e2 − 1)e−2t for t > 1

33. y = e−2t for 0 ≤ t ≤ 1; y = e−(t+1) for t > 1

Section 2.5, page 84

1. y = 0 is unstable
2. y = −a/b is asymptotically stable, y = 0 is unstable
3. y = 1 is asymptotically stable, y = 0 and y = 2 are unstable
4. y = 0 is unstable 5. y = 0 is asymptotically stable
6. y = 0 is asymptotically stable
7. (c) y = [y0 + (1 − y0)kt]/[1 + (1 − y0)kt]
8. y = 1 is semistable
9. y = −1 is asymptotically stable, y = 0 is semistable, y = 1 is unstable

10. y = −1 and y = 1 are asymptotically stable, y = 0 is unstable
11. y = 0 is asymptotically stable, y = b2/a2 is unstable
12. y = 2 is asymptotically stable, y = 0 is semistable, y = −2 is unstable
13. y = 0 and y = 1 are semistable
15. (a) τ = (1/r) ln 4; 55.452 years (b) T = (1/r) ln[β(1 − α)/(1 − β)α];

175.78 years
16. (a) y = 0 is unstable, y = K is asymptotically stable

(b) Concave up for 0 < y ≤ K/e, concave down for K/e ≤ y < K
17. (a) y = K exp{[ln(y0/K )]e−r t } (b) y(2) ∼= 0.7153K ∼= 57.6 × 106 kg

(c) τ ∼= 2.215 years
18. (b) (h/a)

√
k/απ ; yes

(c) k/α ≤ πa2
19. (b) k2/2g(αa)2

20. (c) Y = Ey2 = K E[1 − (E/r)] (d) Ym = Kr/4 for E = r/2
21. (a) y1,2 = K [1 ∓ √

1 − (4h/r K )]/2
22. (a) y = 0 is unstable, y = 1 is asymptotically stable

(b) y = y0/[y0 + (1 − y0)e
−αt ]

23. (a) y = y0e−βt (b) x = x0 exp[−αy0(1 − e−βt )/β] (c) x0 exp(−αy0/β)

24. (b) z = 1/[ν + (1 − ν)eβt ] (c) 0.0927

26. (a) lim
t→∞ x(t) = min(p, q); x(t) = pq[eα(q−p)t − 1]

qeα(q−p)t − p

(b) lim
t→∞ x(t) = p; x(t) = p2αt

pαt + 1

Section 2.6, page 95

1. x2 + 3x + y2 − 2y = c 2. Not exact
3. x3 − x2 y + 2x + 2y3 + 3y = c 4. x2 y2 + 2xy = c
5. ax2 + 2bxy + cy2 = k 6. Not exact
7. ex sin y + 2y cos x = c; also y = 0 8. Not exact
9. exy cos 2x + x2 − 3y = c 10. y ln x + 3x2 − 2y = c

11. Not exact 12. x2 + y2 = c
13. y = [x +

√
28 − 3x2]/2, |x | <

√
28/3

14. y = [x − (24x3 + x2 − 8x − 16)1/2]/4, x > 0.9846
15. b = 3; x2 y2 + 2x3 y = c 16. b = 1; e2xy + x2 = c

Unknown
See SSM for detailed solutions to 23a, 24, 25, 27ab

Unknown
3,rd’Kæró”

Unknown
11, 14, 16bc, 17a, 18abc

Unknown
20bd, 21abd, 24abc, 26ab

Unknown
3

Unknown
5, 7, 9, 12, 14

Unknown
15

Unknown
28, 29, 32
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17.
∫

N (x, y) dy +
∫ [

M(x, y) −
∫

Nx (x, y) dy
]

dx

19. x2 + 2 ln |y| − y−2 = c; also y = 0 20. ex sin y + 2y cos x = c
21. xy2 − (y2 − 2y + 2)ey = c 22. x2ex sin y = c

24. µ(t) = exp
∫

R(t) dt, where t = xy

25. µ(x) = e3x ; (3x2 y + y3)e3x = c 26. µ(x) = e−x ; y = cex + 1 + e2x

27. µ(y) = y; xy + y cos y − sin y = c
28. µ(y) = e2y/y; xe2y − ln |y| = c; also y = 0
29. µ(y) = sin y; ex sin y + y2 = c 30. µ(y) = y2; x4 + 3xy + y4 = c
31. µ(x, y) = xy; x3 y + 3x2 + y3 = c

Section 2.7, page 103

1. (a) 1.2, 1.39, 1.571, 1.7439
(b) 1.1975, 1.38549, 1.56491, 1.73658
(c) 1.19631, 1.38335, 1.56200, 1.73308
(d) 1.19516, 1.38127, 1.55918, 1.72968

2. (a) 1.1, 1.22, 1.364, 1.5368
(b) 1.105, 1.23205, 1.38578, 1.57179
(c) 1.10775, 1.23873, 1.39793, 1.59144
(d) 1.1107, 1.24591, 1.41106, 1.61277

3. (a) 1.25, 1.54, 1.878, 2.2736
(b) 1.26, 1.5641, 1.92156, 2.34359
(c) 1.26551, 1.57746, 1.94586, 2.38287
(d) 1.2714, 1.59182, 1.97212, 2.42554

4. (a) 0.3, 0.538501, 0.724821, 0.866458
(b) 0.284813, 0.513339, 0.693451, 0.831571
(c) 0.277920, 0.501813, 0.678949, 0.815302
(d) 0.271428, 0.490897, 0.665142, 0.799729

5. Converge for y ≥ 0; undefined for y < 0 6. Converge for y ≥ 0; diverge for y < 0
7. Converge
8. Converge for |y(0)| < 2.37 (approximately); diverge otherwise
9. Diverge 10. Diverge

11. (a) 2.30800, 2.49006, 2.60023, 2.66773, 2.70939, 2.73521
(b) 2.30167, 2.48263, 2.59352, 2.66227, 2.70519, 2.73209
(c) 2.29864, 2.47903, 2.59024, 2.65958, 2.70310, 2.73053
(d) 2.29686, 2.47691, 2.58830, 2.65798, 2.70185, 2.72959

12. (a) 1.70308, 3.06605, 2.44030, 1.77204, 1.37348, 1.11925
(b) 1.79548, 3.06051, 2.43292, 1.77807, 1.37795, 1.12191
(c) 1.84579, 3.05769, 2.42905, 1.78074, 1.38017, 1.12328
(d) 1.87734, 3.05607, 2.42672, 1.78224, 1.38150, 1.12411

13. (a) −1.48849, −0.412339, 1.04687, 1.43176, 1.54438, 1.51971
(b) −1.46909, −0.287883, 1.05351, 1.42003, 1.53000, 1.50549
(c) −1.45865, −0.217545, 1.05715, 1.41486, 1.52334, 1.49879
(d) −1.45212, −0.173376, 1.05941, 1.41197, 1.51949, 1.49490

14. (a) 0.950517, 0.687550, 0.369188, 0.145990, 0.0421429, 0.00872877
(b) 0.938298, 0.672145, 0.362640, 0.147659, 0.0454100, 0.0104931
(c) 0.932253, 0.664778, 0.359567, 0.148416, 0.0469514, 0.0113722
(d) 0.928649, 0.660463, 0.357783, 0.148848, 0.0478492, 0.0118978

15. (a) −0.166134, −0.410872, −0.804660, 4.15867
(b) −0.174652, −0.434238, −0.889140, −3.09810

16. A reasonable estimate for y at t = 0.8 is between 5.5 and 6. No reliable estimate is possible
at t = 1 from the specified data.

Unknown
See SSM for detailed solutions to 19, 22, 23

Unknown
25, 26, 27, 29, 31

Unknown
1d, 3a

Unknown
3bcd, 4d, 6, 9

Unknown
13a, 15ac, 16
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17. A reasonable estimate for y at t = 2.5 is between 18 and 19. No reliable estimate is possible
at t = 3 from the specified data.

18. (b) 2.37 < α0 < 2.38 19. (b) 0.67 < α0 < 0.68

Section 2.8, page 113

1. dw/ds = (s + 1)2 + (w + 2)2, w(0) = 0
2. dw/ds = 1 − (w + 3)3, w(0) = 0

3. (a) φn(t) =
n∑

k=1

2k tk

k!
(c) lim

n→∞ φn(t) = e2t − 1

4. (a) φn(t) =
n∑

k=1

(−1)k tk

k!
(c) lim

n→∞ φn(t) = e−t − 1

5. (a) φn(t) =
n∑

k=1

(−1)k+1t k+1/(k + 1)!2k−1

(c) lim
n→∞ φn(t) = 4e−t/2 + 2t − 4

6. (a) φn(t) = t − tn+1

(n + 1)!
(c) lim

n→∞ φn(t) = t

7. (a) φn(t) =
n∑

k=1

t2k−1

1 · 3 · 5 · · · (2k − 1)

8. (a) φn(t) = −
n∑

k=1

t3k−1

2 · 5 · 8 · · · (3k − 1)

9. (a) φ1(t) = t3

3
; φ2(t) = t3

3
+ t7

7 · 9
; φ3(t) = t3

3
+ t7

7 · 9
+ 2t11

3 · 7 · 9 · 11
+ t15

(7 · 9)2 · 15

10. (a) φ1(t) = t; φ2(t) = t − t4

4
; φ3(t) = t − t4

4
+ 3t7

4 · 7
− 3t10

16 · 10
+ t13

64 · 13

11. (a) φ1(t) = t, φ2(t) = t − t2

2!
+ t4

4!
− t6

6!
+ O(t7),

φ3(t) = t − t2

2!
+ t3

3!
+ t4

4!
− 7t5

5!
+ 14t6

6!
+ O(t7),

φ4(t) = t − t2

2!
+ t3

3!
− 7t5

5!
+ 31t6

6!
+ O(t7)

12. (a) φ1(t) = −t − t2 − t3

2
,

φ2(t) = −t − t2

2
+ t3

6
+ t4

4
− t5

5
− t6

24
+ O(t7),

φ3(t) = −t − t2

2
+ t4

12
− 3t5

20
+ 4t6

45
+ O(t7),

φ4(t) = −t − t2

2
+ t4

8
− 7t5

60
+ t6

15
+ O(t7)

Section 2.9, page 124

1. yn = (−1)n(0.9)n y0; yn → 0 as n → ∞
2. yn = y0/(n + 1); yn → 0 as n → ∞
3. yn = y0

√
(n + 2)(n + 1)/2; yn → ∞ as n → ∞

4. yn =
{

y0, if n = 4k or n = 4k − 1;
−y0, if n = 4k − 2 or n = 4k − 3; yn has no limit as n → ∞

5. yn = (0.5)n(y0 − 12) + 12; yn → 12 as n → ∞
6. yn = (−1)n(0.5)n(y0 − 4) + 4; yn → 4 as n → ∞
7. 7.25% 8. $2283.63 9. $258.14

Unknown
See SSM for detailed solutions to 18, 22.

Unknown
1, 4a

Unknown
4c, 7

Unknown
11

Unknown
2, 5
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10. (a) $804.62 (b) $877.57 (c) $1028.61
11. 30 years: $804.62/month; $289,663.20 total 20 years: $899.73/month;

$215,935.20 total
12. $103,624.62 13. 9.73%
16. (b) un → −∞ as n → ∞
19. (a) 4.7263 (b) 1.223% (c) 3.5643 (e) 3.5699

Miscellaneous Problems, page 126

1. y = (c/x2) + (x3/5) 2. arctan(y/x) − ln
√

x2 + y2 = c
3. x2 + xy − 3y − y3 = 0 4. x = cey + yey

5. x2 y + xy2 + x = c 6. y = x−1(1 − e1−x )

7. (x2 + y2 + 1)e−y2 = c 8. y = (4 + cos 2 − cos x)/x2

9. x2 y + x + y2 = c 10. (y2/x3) + (y/x2) = c
11. x3/3 + xy + ey = c 12. y = ce−x + e−x ln(1 + ex )

13. 2(y/x)1/2 − ln |x | = c; also y = 0 14. x2 + 2xy + 2y2 = 34
15. y = c/cosh2(x/2)

16. (2/
√

3) arctan[(2y − x)/
√

3x] − ln |x | = c
17. y = ce3x − e2x 18. y = cx−2 − x
19. 3y − 2xy3 − 10x = 0 20. ex + e−y = c
21. e−y/x + ln |x | = c 22. y3 + 3y − x3 + 3x = 2

23.
1

y
= −x

∫
e2x

x2 dx + cx ; also y = 0 24. sin2 x sin y = c

25. x2/y + arctan(y/x) = c 26. x2 + 2x2 y − y2 = c

27. sin x cos 2y − 1
2 sin2 x = c 28. 2xy + xy3 − x3 = c

29. arcsin(y/x) − ln |x | = c; also y = x and y = −x
30. xy2 − ln |y| = 0
31. x + ln |x | + x−1 + y − 2 ln |y| = c; also y = 0
32. x3 y2 + xy3 = −4

C H A P T E R 3 Section 3.1, page 136

1. y = c1et + c2e−3t 2. y = c1e−t + c2e−2t

3. y = c1et/2 + c2e−t/3 4. y = c1et/2 + c2et

5. y = c1 + c2e−5t 6. y = c1e3t/2 + c2e−3t/2

7. y = c1 exp[(9 + 3
√

5)t/2] + c2 exp[(9 − 3
√

5)t/2]
8. y = c1 exp[(1 + √

3)t] + c2 exp[(1 − √
3)t]

9. y = et ; y → ∞ as t → ∞
10. y = 5

2 e−t − 1
2 e−3t ; y → 0 as t → ∞

11. y = 12et/3 − 8et/2; y → −∞ as t → ∞
12. y = −1 − e−3t ; y → −1 as t → ∞
13. y = 1

26 (13 + 5
√

13) exp[(−5 + √
13)t/2] + 1

26 (13 − 5
√

13) exp[(−5 − √
13)t/2];

y → 0 as t → ∞
14. y = (2/

√
33) exp[(−1 + √

33)t/4] − (2/
√

33) exp[(−1 − √
33)t/4];

y → ∞ as t → ∞
15. y = 1

10 e−9(t−1) + 9
10 et−1; y → ∞ as t → ∞

16. y = − 1
2 e(t+2)/2 + 3

2 e−(t+2)/2; y → −∞ as t → ∞
17. y′′ + y′ − 6y = 0 18. 2y′′ + 5y′ + 2y = 0
19. y = 1

4 et + e−t ; minimum is y = 1 at t = ln 2

20. y = −et + 3et/2; maximum is y = 9
4 at t = ln(9/4), y = 0 at t = ln 9

21. α = −2 22. β = −1

Unknown
See SSM for detailed solutions to 10, 13, 14, 17, 17a

Unknown
17b, 18

Unknown
3, 5, 7, 10, 15

Unknown
17, 19, 21

John Wiley
1 - 7

John Wiley
8 - 32
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23. y → 0 for α < 0; y becomes unbounded for α > 1
24. y → 0 for α < 1; there is no α for which all nonzero solutions become unbounded.
25. (a) y = 1

5 (1 + 2β)e−2t + 1
5 (4 − 2β)et/2

(b) y ∼= 0.71548 when t = 2
5 ln 6 ∼= 0.71670 (c) β = 2

26. (a) y = (6 + β)e−2t − (4 + β)e−3t

(b) tm = ln[(12 + 3β)/(12 + 2β)], ym = 4
27 (6 + β)3/(4 + β)2

(c) β = 6(1 + √
3) ∼= 16.3923 (d) tm → ln(3/2), ym → ∞

27. y′′ + 3y′ + 2y = 0 is one such equation.
28. y = c1t−1 + c2 + ln t 29. y = c1 ln t + c2 + t
30. y = (1/k) ln |(k − t)/(k + t)| + c2 if c1 = k2 > 0; y = (2/k) arctan(t/k) + c2 if

c1 = −k2 < 0; y = −2t−1 + c2 if c1 = 0; also y = c
31. y = ± 2

3 (t − 2c1)
√

t + c1 + c2; also y = c Hint: µ(v) = v−3 is an integrating
factor.

32. y = c1e−t + c2 − te−t

33. c2
1 y = c1t − ln |1 + c1t | + c2 if c1 �= 0; y = 1

2 t2 + c2 if c1 = 0; also y = c

34. y2 = c1t + c2 35. y = c1 sin(t + c2) = k1 sin t + k2 cos t

36. 1
3 y3 − 2c1 y + c2 = 2t ; also y = c 37. t + c2 = ± 2

3 (y − 2c1)(y + c1)
1/2

38. y ln |y| − y + c1 y + t = c2; also y = c 39. ey = (t + c2)
2 + c1

40. y = 4
3 (t + 1)3/2 − 1

3 41. y = 2(1 − t)−2

42. y = 3 ln t − 3
2 ln(t2 + 1) − 5 arctan t + 2 + 3

2 ln 2 + 5
4π

43. y = 1
2 t2 + 3

2

Section 3.2, page 145

1. − 7
2 et/2 2. 1

3. e−4t 4. x2ex

5. −e2t 6. 0
7. 0 < t < ∞ 8. −∞ < t < 1
9. 0 < t < 4 10. 0 < t < ∞

11. 0 < x < 3 12. 2 < x < 3π/2
14. The equation is nonlinear. 15. The equation is nonhomogeneous.
16. No 17. 3te2t + ce2t

18. tet + ct 19. 5W ( f, g)

20. −4(t cos t − sin t)
21. y1(t) = 1

3 e−2t + 2
3 et , y2(t) = − 1

3 e−2t + 1
3 et

22. y1(t) = − 1
2 e−3(t−1) + 3

2 e−(t−1), y2(t) = − 1
2 e−3(t−1) + 1

2 e−(t−1)

23. Yes 24. Yes
25. Yes 26. Yes
28. Yes, y = c1e−x2/2

∫ x

x0

et2/2 dt + c2e−x2/2

29. No

30. Yes, y = 1

µ(x)

[
c1

∫ x

x0

µ(t)

t
dt + c2

]
, µ(x) = exp

[
−
∫ (

1

x
+ cos x

x

)
dx

]
31. Yes, y = c1x−1 + c2x 33. x2µ′′ + 3xµ′ + (1 + x2 − ν2)µ = 0
34. (1 − x2)µ′′ − 2xµ′ + α(α + 1)µ = 0 35. µ′′ − xµ = 0
37. The Legendre and Airy equations are self-adjoint.

Section 3.3, page 152

1. Independent 2. Dependent
3. Independent 4. Dependent
5. Dependent 6. Independent
7. Independent if origin is interior to interval; otherwise dependent

Unknown
See SSM for detailed solutions to 24, 25a.

Unknown
25c, 27, 28, 30, 34

Unknown
39, 40, 43

Unknown
2, 4, 8

Unknown
12, 14, 15, 18, 21

Unknown
25, 27, 30, 32, 34, 36

Unknown
37

Unknown
2, 6, 7, 12, 15
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8. Independent if origin is interior to interval; otherwise dependent
9. Independent; W is not always zero 10. Independent; W is not always zero

11. W (c1 y1, c2 y2) = c1c2W (y1, y2) �= 0 12. W (y3, y4) = −2W (y1, y2)

13. a1b2 − a2b1 �= 0 15. ct2et

16. c cos t 17. c/x
18. c/(1 − x2) 20. 2/25
21. 3

√
e ∼= 4.946 22. p(t) = 0 for all t

26. If t0 is an inflection point, and y = φ(t) is a solution, then from the differential equation
p(t0)φ

′(t0) + q(t0)φ(t0) = 0.

Section 3.4, page 158

1. e cos 2 + ie sin 2 ∼= −1.1312 + 2.4717i
2. e2 cos 3 − ie2 sin 3 ∼= −7.3151 − 1.0427i
3. −1
4. e2 cos(π/2) − ie2 sin(π/2) = −e2i ∼= −7.3891i
5. 2 cos(ln 2) − 2i sin(ln 2) ∼= 1.5385 − 1.2779i
6. π−1 cos(2 ln π) + iπ−1 sin(2 ln π) ∼= −0.20957 + 0.23959i
7. y = c1et cos t + c2et sin t 8. y = c1et cos

√
5 t + c2et sin

√
5 t

9. y = c1e2t + c2e−4t 10. y = c1e−t cos t + c2e−t sin t
11. y = c1e−3t cos 2t + c2e−3t sin 2t 12. y = c1 cos(3t/2) + c2 sin(3t/2)

13. y = c1e−t cos(t/2) + c2e−t sin(t/2) 14. y = c1et/3 + c2e−4t/3

15. y = c1e−t/2 cos t + c2e−t/2 sin t 16. y = c1e−2t cos(3t/2) + c2e−2t sin(3t/2)

17. y = 1
2 sin 2t ; steady oscillation

18. y = e−2t cos t + 2e−2t sin t ; decaying oscillation
19. y = −et−π/2 sin 2t ; growing oscillation
20. y = (1 + 2

√
3) cos t − (2 − √

3) sin t ; steady oscillation
21. y = 3e−t/2 cos t + 5

2 e−t/2 sin t ; decaying oscillation
22. y = √

2e−(t−π/4) cos t + √
2 e−(t−π/4) sin t ; decaying oscillation

23. (a) u = 2et/6 cos(
√

23 t/6) − (2/
√

23)et/6 sin(
√

23 t/6)

(b) t = 10.7598
24. (a) u = 2e−t/5 cos(

√
34 t/5) + (7/

√
34) e−t/5 sin(

√
34 t/5)

(b) T = 14.5115
25. (a) y = 2e−t cos

√
5 t + [(α + 2)/

√
5] e−t sin

√
5 t (b) α = 1.50878

(c) t = {π − arctan [2
√

5/(2 + α)]}/√5 (d) π/
√

5
26. (a) y = e−at cos t + ae−at sin t (b) T = 1.8763

(c) α = 1
4 , T = 7.4284; α = 1

2 , T = 4.3003; α = 2, T = 1.5116

35. Yes, y = c1 cos x + c2 sin x, x =
∫

e−t2/2 dt
36. No
37. Yes, y = c1e−t2/4 cos(

√
3 t2/4) + c2e−t2/4 sin(

√
3 t2/4)

39. y = c1 cos(ln t) + c2 sin(ln t) 40. y = c1t−1 + c2t−2

41. y = c1t−1 cos( 1
2 ln t) + c2t−1 sin( 1

2 ln t) 42. y = c1t6 + c2t−1

Section 3.5, page 166

1. y = c1et + c2tet 2. y = c1e−t/3 + c2te−t/3

3. y = c1e−t/2 + c2e3t/2 4. y = c1e−3t/2 + c2te−3t/2

5. y = c1et cos 3t + c2et sin 3t 6. y = c1e3t + c2te3t

7. y = c1e−t/4 + c2e−4t 8. y = c1e−3t/4 + c2te−3t/4

9. y = c1e2t/5 + c2te2t/5 10. y = e−t/2 cos(t/2) + c2e−t/2 sin(t/2)

11. y = 2e2t/3 − 7
3 te2t/3, y → −∞ as t → ∞

12. y = 2te3t , y → ∞ as t → ∞
13. y = −e−t/3 cos 3t + 5

9 e−t/3 sin 3t , y → 0 as t → ∞

Unknown
See SSM for detailed solutions to 20, 24, 26, 27

Unknown
28

Unknown
1, 5, 7

Unknown
11, 14, 18, 22, 23a

Unknown
23b, 25abcd, 31, 33

Unknown
35, 38, 39

Unknown
1, 9, 12
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14. y = 7e−2(t+1) + 5te−2(t+1), y → 0 as t → ∞
15. (a) y = e−3t/2 − 5

2 te−3t/2 (b) t = 2
5

(c) t0 = 16/15, y0 = − 5
3 e−8/5 ∼= −0.33649

(d) y = e−3t/2 + (b + 3
2 )te−3t/2; b = − 3

2
16. y = 2et/2 + (b − 1)tet/2; b = 1
17. (a) y = e−t/2 + 5

2 te−t/2 (b) t0 = 8
5 , y0 = 5e−4/5 ∼= 2.24664

(c) y = e−t/2 + (b + 1
2 )te−t/2

(d) tM = 4b/(1 + 2b) → 2 as b → ∞; yM = (1 + 2b) exp[−2b/(1 + 2b)] → ∞
as b → ∞

18. (a) y = ae−2t/3 + ( 2
3 a − 1)te−2t/3 (b) a = 3

2
23. y2(t) = t3 24. y2(t) = t−2

25. y2(t) = t−1 ln t 26. y2(t) = tet

27. y2(x) = cos x2 28. y2(x) = x
29. y2(x) = x1/4e−2

√
x 30. y2(x) = x−1/2 cos x

32. y = c1e−δx2/2
∫ x

0
eδs2/2 ds + c2e−δx2/2

33. y2(t) = y1(t)
∫ t

t0
y−2

1 (s) exp

[
−
∫ s

s0

p(r) dr

]
ds

34. y2(t) = t−1 ln t 35. y2(t) = cos t2

36. y2(x) = x 37. y2(x) = x−1/2 cos x
39. (b) y0 + (a/b)y′

0 41. y = c1t2 + c2t2 ln t
42. y = c1t−1/2 + c2t−1/2 ln t

Section 3.6, page 178

1. y = c1e3t + c2e−t − e2t

2. y = c1e−t cos 2t + c2e−t sin 2t + 3
17 sin 2t − 12

17 cos 2t
3. y = c1e3t + c2e−t + 3

16 te−t + 3
8 t2e−t

4. y = c1 + c2e−2t + 3
2 t − 1

2 sin 2t − 1
2 cos 2t

5. y = c1 cos 3t + c2 sin 3t + 1
162 (9t2 − 6t + 1)e3t + 2

3
6. y = c1e−t + c2te−t + t2e−t

7. y = c1e−t + c2e−t/2 + t2 − 6t + 14 − 3
10 sin t − 9

10 cos t
8. y = c1 cos t + c2 sin t − 1

3 t cos 2t − 5
9 sin 2t

9. u = c1 cos ω0t + c2 sin ω0t + (ω2
0 − ω2)−1 cos ωt

10. u = c1 cos ω0t + c2 sin ω0t + (1/2ω0)t sin ω0t

11. y = c1e−t/2 cos(
√

15 t/2) + c2e−t/2 sin(
√

15 t/2) + 1
6 et − 1

4 e−t

12. y = c1e−t + c2e2t + 1
6 te2t + 1

8 e−2t 13. y = et − 1
2 e−2t − t − 1

2

14. y = 7
10 sin 2t − 19

40 cos 2t + 1
4 t2 − 1

8 + 3
5 et 15. y = 4tet − 3et + 1

6 t3et + 4
16. y = e3t + 2

3 e−t − 2
3 e2t − te2t 17. y = 2 cos 2t − 1

8 sin 2t − 3
4 t cos 2t

18. y = e−t cos 2t + 1
2 e−t sin 2t + te−t sin 2t

19. (a) Y (t) = t (A0t4 + A1t3 + A2t2 + A3t + A4) + t (B0t2 + B1t + B2)e
−3t

+ D sin 3t + E cos 3t
(b) A0 = 2/15, A1 = −2/9, A2 = 8/27, A3 = −8/27, A4 = 16/81, B0 = −1/9,
B1 = −1/9, B2 = −2/27, D = −1/18, E = −1/18

20. (a) Y (t) = A0t + A1 + t (B0t + B1) sin t + t (D0t + D1) cos t
(b) A0 = 1, A1 = 0, B0 = 0, B1 = 1/4, D0 = −1/4, D1 = 0

21. (a) Y (t) = et (A cos 2t + B sin 2t) + (D0t + D1)e
2t sin t + (E0t + E1)e

2t cos t
(b) A = −1/20, B = −3/20, D0 = −3/2, D1 = −5, E0 = 3/2, E1 = 1/2

22. (a) Y (t) = Ae−t + t (B0t2 + B1t + B2)e
−t cos t + t (D0t2 + D1t + D2)e

−t sin t
(b) A = 3, B0 = −2/3, B1 = 0, B2 = 1, D0 = 0, D1 = 1, D2 = 1

Unknown
See SSM for detailed solutions to 14, 17ab

Unknown
17cd, 19, 21, 25

Unknown
27, 30, 31b

Unknown
33, 35, 38

Unknown
42

Unknown
1, 4, 6, 8

Unknown
11, 13, 16

Unknown
19a, 22a
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23. (a) Y (t) = A0t2 + A1t + A2 + t2(B0t + B1)e
2t + (D0t + D1) sin 2t + (E0t + E1) cos 2t

(b) A0 = 1/2, A1 = 1, A2 = 3/4, B0 = 2/3, B1 = 0, D0 = 0, D1 = −1/16,
E0 = 1/8, E1 = 1/16

24. (a) Y (t) = t (A0t2 + A1t + A2) sin 2t + t (B0t2 + B1t + B2) cos 2t
(b) A0 = 0, A1 = 13/16, A2 = 7/4, B0 = −1/12, B1 = 0, B2 = 13/32

25. (a) Y (t) = (A0t2 + A1t + A2)e
t sin 2t + (B0t2 + B1t + B2)e

t cos 2t
+ e−t (D cos t + E sin t) + Fet

(b) A0 = 1/52, A1 = 10/169, A2 = −1233/35152, B0 = −5/52, B1 = 73/676,
B2 = −4105/35152, D = −3/2, E = 3/2, F = 2/3

26. (a) Y (t) = t (A0t + A1)e
−t cos 2t + t (B0t + B1)e

−t sin 2t
+ (D0t + D1)e

−2t cos t + (E0t + E1)e
−2t sin t

(b) A0 = 0, A1 = 3/16, B0 = 3/8, B1 = 0, D0 = −2/5, D1 = −7/25, E0 = 1/5,
E1 = 1/25

27. y = c1 cos λt + c2 sin λt +
N∑

m=1
[am/(λ2 − m2π2)] sin mπ t

28. y =
{

t, 0 ≤ t ≤ π

−(1 + π/2) sin t − (π/2) cos t + (π/2)eπ−t , t > π

29. y =
{

1
5 − 1

10 e−t sin 2t − 1
5 e−t cos 2t, 0 ≤ t ≤ π/2

− 1
5 (1 + eπ/2)e−t cos 2t − 1

10 (1 + eπ/2)e−t sin 2t, t > π/2

30. No 33. y = c1e4t + c2e−t − 1
2 e2t

Section 3.7, page 183

1. Y (t) = et 2. Y (t) = − 2
3 te−t

3. Y (t) = 3
2 t2e−t 4. Y (t) = 2t2et/2

5. y = c1 cos t + c2 sin t − (cos t) ln(tan t + sec t)
6. y = c1 cos 3t + c2 sin 3t + (sin 3t) ln(tan 3t + sec 3t) − 1
7. y = c1e−2t + c2te−2t − e−2t ln t
8. y = c1 cos 2t + c2 sin 2t + 3

4 (sin 2t) ln sin 2t − 3
2 t cos 2t

9. y = c1 cos(t/2) + c2 sin(t/2) + t sin(t/2) + 2[ln cos(t/2)] cos(t/2)

10. y = c1et + c2tet − 1
2 et ln(1 + t2) + tet arctan t

11. y = c1e2t + c2e3t +
∫

[e3(t−s) − e2(t−s)] g(s) ds

12. y = c1 cos 2t + c2 sin 2t + 1
2

∫
[sin 2(t − s)] g(s) ds

13. Y (t) = 1
2 + t2 ln t 14. Y (t) = −2t2

15. Y (t) = 1
2 (t − 1)e2t 16. Y (t) = − 1

2 (2t − 1)e−t

17. Y (x) = 1
6 x2(ln x)3 18. Y (x) = − 3

2 x1/2 cos x

19. Y (x) =
∫

xet − tex

(1 − t)2et g(t) dt 20. Y (x) = x−1/2
∫

t−3/2 sin(x − t)g(t) dt

23. (b) y = y0 cos t + y′
0 sin t +

∫ t

t0
sin(t − s)g(s) ds

24. y = (b − a)−1
∫ t

t0
[eb(t−s) − ea(t−s)] g(s) ds

25. y = µ−1
∫ t

t0
eλ(t−s) sin µ(t − s)g(s) ds

26. y =
∫ t

t0
(t − s)ea(t−s)g(s) ds 29. y = c1t + c2t2 + 4t2 ln t

30. y = c1t−1 + c2t−5 + 1
12 t 31. y = c1(1 + t) + c2et + 1

2 (t − 1)e2t

32. y = c1et + c2t − 1
2 (2t − 1)e−t

Unknown
See SSM for detailed solutions to 28

Unknown
30, 33

Unknown
2

Unknown
5, 11, 14

Unknown
18, 22

Unknown
25, 29
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Section 3.8, page 197

1. u = 5 cos(2t − δ), δ = arctan(4/3) ∼= 0.9273
2. u = 2 cos(t − 2π/3)

3. u = 2
√

5 cos(3t − δ), δ = − arctan(1/2) ∼= −0.4636
4. u = √

13 cos(π t − δ), δ = π + arctan(3/2) ∼= 4.1244
5. u = 1

4 cos 8t ft, t in sec; ω = 8 rad/sec, T = π/4 sec, R = 1/4 ft

6. u = 5
7 sin 14t cm, t in sec; t = π/14 sec

7. u = (1/4
√

2) sin(8
√

2 t) − 1
12 cos(8

√
2 t) ft, t in sec; ω = 8

√
2 rad/sec,

T = π/4
√

2 sec, R = √
11/288 ∼= 0.1954 ft, δ = π − arctan(3/

√
2) ∼= 2.0113

8. Q = 10−6 cos 2000t coulombs, t in sec
9. u = e−10t [2 cos(4

√
6 t) + (5/

√
6) sin(4

√
6 t)] cm, t in sec;

µ = 4
√

6 rad/sec, Td = π/2
√

6 sec, Td/T = 7/2
√

6 ∼= 1.4289, τ ∼= 0.4045 sec
10. u = (1/8

√
31)e−2t sin(2

√
31 t) ft, t in sec; t = π/2

√
31 sec, τ ∼= 1.5927 sec

11. u ∼= 0.057198e−0.15t cos(3.87008 t − 0.50709) m, t in sec; µ = 3.87008 rad/sec,
µ/ω0 = 3.87008/

√
15 ∼= 0.99925

12. Q = 10−6(2e−500t − e−1000t ) coulombs; t in sec
13. γ = √

20/9 ∼= 1.4907

16. r =
√

A2 + B2, r cos θ = B, r sin θ = −A; R = r; δ = θ + (4n + 1)π/2,

n = 0, 1, 2, . . .

17. γ = 8 lb-sec/ft 18. R = 103 ohms
20. v0 < −γ u0/2m 22. 2π/

√
31

23. γ = 5 lb-sec/ft 24. k = 6, v = ±2
√

5
25. (a) τ ∼= 41.715 (d) γ0

∼= 1.73, min τ ∼= 4.87

(e) τ = (2/γ ) ln(400/
√

4 − γ 2)

26. (a) u(t) = e−γ t/2m
[
u0

√
4km − γ 2 cos µt + (2mv0 + γ u0) sin µt

]
/
√

4km − γ 2

(b) R2 = 4m(ku2
0 + γ u0v0 + mv2

0)/(4km − γ 2)

27. ρlu′′ + ρ0gu = 0, T = 2π
√

ρl/ρ0g

28. (a) u = √
2 sin

√
2 t (c) clockwise

29. (a) u = (16/
√

127)e−t/8 sin(
√

127 t/8) (c) clockwise
30. (b) u = a cos(

√
k/m t) + b

√
m/k sin(

√
k/m t)

32. (b) u = sin t , A = 1, T = 2π (c) A = 0.98, T = 6.07
(d) ε = 0.2, A = 0.96, T = 5.90; ε = 0.3, A = 0.94, T = 5.74
(f) ε = −0.1, A = 1.03, T = 6.55; ε = −0.2, A = 1.06, T = 6.90;
ε = −0.3, A = 1.11, T = 7.41

Section 3.9, page 205

1. −2 sin 8t sin t 2. 2 sin(t/2) cos(13t/2)

3. 2 cos(3π t/2) cos(π t/2) 4. 2 sin(7t/2) cos(t/2)

5. u′′ + 256u = 16 cos 3t, u(0) = 1
6 , u′(0) = 0, u in ft, t in sec

6. u′′ + 10u′ + 98u = 2 sin(t/2), u(0) = 0, u′(0) = 0.03, u in m, t in sec
7. (a) u = 151

1482 cos 16t + 16
247 cos 3t (c) ω = 16 rad/sec

8. (a) u = 1
153,281 [160e−5t cos(

√
73 t) + 383,443

7300 e−5t sin(
√

73 t) − 160 cos(t/2) + 3128 sin(t/2)]

(b) The first two terms are the transient. (d) ω = 4
√

3 rad/sec
9. u = 64

45 (cos 7t − cos 8t) = 128
45 sin(t/2) sin(15t/2) ft, t in sec

10. u = (cos 8t + sin 8t − 8t cos 8t)/4 ft, t in sec; 1/8, π/8, π/4, 3π/8 sec
11. (a) 8

901 (30 cos 2t + sin 2t) ft, t in sec (b) m = 4 slugs
12. u = (

√
2/6) cos(3t − 3π/4) m, t in sec

Unknown
See SSM for detailed solutions to 2, 6

Unknown
8, 9, 12, 17

Unknown
19, 20, 23, 24

Unknown
27, 29ac, 30a

Unknown
1, 5, 7ac, 10, 11a

Unknown
11b
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15. u =



F0(t − sin t), 0 ≤ t ≤ π

F0[(2π − t) − 3 sin t], π < t ≤ 2π

−4F0 sin t, 2π < t < ∞
16. Q(t) = 10−6(e−4000t − 4e−1000t + 3) coulombs, t in sec, Q(0.001) ∼= 1.5468 × 10−6;

Q(0.01) ∼= 2.9998 × 10−6; Q(t) → 3 × 10−6 as t → ∞
17. (a) u = [32(2 − ω2) cos ωt + 8ω sin ωt]/(64 − 63ω2 + 16ω4)

(b) A = 8/
√

64 − 63ω2 + 16ω4 (d) ω = 3
√

14/8 ∼= 1.4031,
A = 64/

√
127 ∼= 5.6791

18. (a) u = 3(cos t − cos ωt)/(ω2 − 1)

19. (a) u = [(ω2 + 2) cos t − 3 cos ωt]/(ω2 − 1) + sin t

C H A P T E R 4 Section 4.1, page 212

1. −∞ < t < ∞ 2. t > 0 or t < 0
3. t > 1, or 0 < t < 1, or t < 0 4. t > 0
5. . . . , −3π/2 < x < −π/2, −π/2 < x < 1, 1 < x < π/2, π/2 < x < 3π/2, . . .

6. −∞ < x < −2, −2 < x < 2, 2 < x < ∞
7. Linearly independent
8. Linearly dependent; f1(t) + 3 f2(t) − 2 f3(t) = 0
9. Linearly dependent; 2 f1(t) + 13 f2(t) − 3 f3(t) − 7 f4(t) = 0

10. Linearly independent
11. 1 12. 1 13. −6e−2t

14. e−2t 15. 6x 16. 6/x
17. sin2 t = 1

10 (5) − 1
2 cos 2t

19. (a) a0[n(n − 1)(n − 2) · · · 1] + a1[n(n − 1) · · · 2]t + · · · + antn

(b) (a0rn + a1rn−1 + · · · + an)e
rt

(c) et , e−t , e2t , e−2t ; yes, W (et , e−t , e2t , e−2t ) �= 0, −∞ < t < ∞
21. W = ce−2t 22. W = c
23. W = c/t2 24. W = c/t
27. y = c1et + c2t + c3tet 28. y = c1t2 + c2t3 + c3(t + 1)

Section 4.2, page 219

1.
√

2 ei[(π/4)+2mπ ] 2. 2ei[(2π/3)+2mπ ]

3. 3ei(π+2mπ) 4. ei[(3π/2)+2mπ ]

5. 2ei[(11π/6)+2mπ ] 6.
√

2ei[(5π/4)+2mπ ]

7. 1, 1
2 (−1 + i

√
3), 1

2 (−1 − i
√

3) 8. 21/4e−π i/8, 21/4e7π i/8

9. 1, i, −1, −i 10. (
√

3 + i)/
√

2, −(
√

3 + i)/
√

2
11. y = c1et + c2tet + c3e−t 12. y = c1et + c2tet + c3t2et

13. y = c1et + c2e2t + c3e−t 14. y = c1 + c2t + c3e2t + c4te2t

15. y = c1 cos t + c2 sin t + e
√

3t/2(c3 cos 1
2 t + c4 sin 1

2 t) + e−√
3t/2(c5 cos 1

2 t + c6 sin 1
2 t)

16. y = c1et + c2e−t + c3e2t + c4e−2t

17. y = c1et + c2tet + c3t2et + c4e−t + c5te−t + c6t2e−t

18. y = c1 + c2t + c3et + c4e−t + c5 cos t + c6 sin t
19. y = c1 + c2et + c3e2t + c4 cos t + c5 sin t
20. y = c1 + c2e2t + e−t (c3 cos

√
3 t + c4 sin

√
3 t)

21. y = et [(c1 + c2t) cos t + (c3 + c4t) sin t] + e−t [(c5 + c6t) cos t + (c7 + c8t) sin t]

22. y = (c1 + c2t) cos t + (c3 + c4t) sin t 23. y = c1et + c2e(2+√
5)t + c3e(2−√

5)t

24. y = c1e−t + c2e(−2+√
2)t + c3e(−2−√

2)t

25. y = c1e−t/2 + c2e−t/3 cos(t/
√

3) + c3e−t/3 sin(t/
√

3)

26. y = c1e3t + c2e−2t + c3e(3+√
3)t + c4e(3−√

3)t

Unkno“
2, 8, 13, 17, 19c

Unknown
21, 27

Unknown
2, 8, 12

Unknown
15, 23

John Wiley
See SSM for 
detailed solutions to 
15 and 16

John Wiley
22 and 24
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27. y = c1e−t/3 + c2e−t/4 + c3e−t cos 2t + c4e−t sin 2t
28. y = c1e−t cos t + c2e−t sin t + c3e−2t cos(

√
3 t) + c4e−2t sin(

√
3 t)

29. y = 2 − 2 cos t + sin t
30. y = 1

2 e−t/
√

2 sin(t/
√

2) − 1
2 et/

√
2 sin(t/

√
2)

31. y = 2t − 3 32. y = 2 cos t − sin t
33. y = − 2

3 et − 1
10 e2t − 1

6 e−2t − 16
15 e−t/2 34. y = 2

13 e−t + 24
13 et/2 cos t + 3

13 et/2 sin t

35. y = 8 − 18e−t/3 + 8e−t/2

36. y = 21
13 e−t cos t − 38

13 e−t sin t − 8
13 e−2t cos(

√
3 t) + 17

√
3

39
e−2t sin(

√
3 t)

37. y = 1
2 (cosh t − cos t) + 1

2 (sinh t − sin t)

38. (a) W = c, a constant (b) W = −8 (c) W = 4
39. (b) u1 = c1 cos t + c2 sin t + c3 cos

√
6 t + c4 sin

√
6 t

Section 4.3, page 224

1. y = c1et + c2tet + c3e−t + 1
2 te−t + 3

2. y = c1et + c2e−t + c3 cos t + c4 sin t − 3t − 1
4 t sin t

3. y = c1e−t + c2 cos t + c3 sin t + 1
2 te−t + 4(t − 1)

4. y = c1 + c2et + c3e−t + cos t
5. y = c1 + c2t + c3e−2t + c4e2t − 1

3 et − 1
48 t4 − 1

16 t2

6. y = c1 cos t + c2 sin t + c3t cos t + c4t sin t + 3 + 1
9 cos 2t

7. y = c1 + c2t + c3t2 + c4e−t + et/2[c5 cos(
√

3 t/2) + c6 sin(
√

3 t/2)] + 1
24 t4

8. y = c1 + c2t + c3t2 + c4e−t + 1
20 sin 2t + 1

40 cos 2t

9. y = 3
16 (1 − cos 2t) + 1

8 t2

10. y = (t − 4) cos t − ( 3
2 t + 4) sin t + 3t + 4

11. y = 1 + 1
4 (t2 + 3t) − tet

12. y = − 2
5 cos t − 4

5 sin t + 1
20 e−t + 81

40 et + 73
520 e−3t + 77

65 cos 2t − 49
130 sin 2t

13. Y (t) = t (A0t3 + A1t2 + A2t + A3) + Bt2et

14. Y (t) = t (A0t + A1)e
−t + B cos t + C sin t

15. Y (t) = At2et + B cos t + C sin t
16. Y (t) = At2 + (B0t + B1)e

t + t (C cos 2t + D sin 2t)
17. Y (t) = t (A0t2 + A1t + A2) + (B0t + B1) cos t + (C0t + C1) sin t
18. Y (t) = Aet + (B0t + B1)e

−t + te−t (C cos t + D sin t)
19. k0 = a0, kn = a0α

n + a1α
n−1 + · · · + an−1α + an

Section 4.4, page 229

1. y = c1 + c2 cos t + c3 sin t − ln cos t − (sin t) ln(sec t + tan t)
2. y = c1 + c2et + c3e−t − 1

2 t2

3. y = c1et + c2e−t + c3e2t + 1
30 e4t

4. y = c1 + c2 cos t + c3 sin t + ln(sec t + tan t) − t cos t + (sin t) ln cos t
5. y = c1et + c2 cos t + c3 sin t − 1

5 e−t cos t
6. y = c1 cos t + c2 sin t + c3t cos t + c4t sin t − 1

8 t2 sin t
7. y = c1et + c2 cos t + c3 sin t − 1

2 (cos t) ln cos t + 1
2 (sin t) ln cos t − 1

2 t cos t − 1
2 t sin t

+ 1
2 et
∫ t

t0

(
e−s/ cos s

)
ds

Unknown
See SSM for detailed solutions to 27 ,29 ,30, 31

Unknown
34, 37, 38a, 39ac

Unknown
1

Unknown
5, 9, 13

Unknown
22be

Unknown
1, 4, 5, 7

John Wiley
17, 20, 22a
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8. y = c1 + c2et + c3e−t − ln sin t + ln(cos t + 1) + 1
2 et
∫ t

t0

(
e−s/ sin s

)
ds

+ 1
2 e−t
∫ t

t0

(
es/ sin s

)
ds

9. c1 = 0, c2 = 2, c3 = 1 in answer to Problem 4

10. c1 = 2, c2 = 7
8 , c3 = − 7

8 , c4 = 1
2 in answer to Problem 6

11. c1 = 3
2 , c2 = 1

2 , c3 = − 5
2 , t0 = 0 in answer to Problem 7

12. c1 = 3, c2 = 0, c3 = −eπ/2, t0 = π/2 in answer to Problem 8

13. Y (x) = x4/15

14. Y (t) = 1
2

∫ t

t0
[et−s − sin(t − s) − cos(t − s)]g(s) ds

15. Y (t) = 1
2

∫ t

t0
[sinh(t − s) − sin(t − s)]g(s) ds

16. Y (t) = 1
2

∫ t

t0
e(t−s)(t − s)2g(s) ds; Y (t) = −tet ln |t |

17. Y (x) = 1
2

∫ x

x0

[(x/t2) − 2(x2/t3) + (x3/t4)]g(t) dt

C H A P T E R 5 Section 5.1, page 237

1. ρ = 1 2. ρ = 2
3. ρ = ∞ 4. ρ = 1

2

5. ρ = 1
2 6. ρ = 1

7. ρ = 3 8. ρ = e

9.
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
, ρ = ∞ 10.

∞∑
n=0

xn

n!
, ρ = ∞

11. 1 + (x − 1), ρ = ∞ 12. 1 − 2(x + 1) + (x + 1)2, ρ = ∞
13.

∞∑
n=1

(−1)n+1 (x − 1)n

n
, ρ = 1 14.

∞∑
n=0

(−1)n xn, ρ = 1

15.
∞∑

n=0

xn, ρ = 1 16.
∞∑

n=0

(−1)n+1(x − 2)n, ρ = 1

17. y′ = 1 + 22x + 32x2 + 42x3 + · · · + (n + 1)2xn + · · ·
y′′ = 22 + 32 · 2x + 42 · 3x2 + 52 · 4x3 + · · · + (n + 2)2(n + 1)xn + · · ·

18. y′ = a1 + 2a2x + 3a3x2 + 4a4x3 + · · · + (n + 1)an+1xn + · · ·
=

∞∑
n=1

nan xn−1 =
∞∑

n=0

(n + 1)an+1xn

y′′ = 2a2 + 6a3x + 12a4x2 + 20a5x3 + · · · + (n + 2)(n + 1)an+2xn + · · ·
=

∞∑
n=2

n(n − 1)an xn−2 =
∞∑

n=0

(n + 2)(n + 1)an+2xn

21.
∞∑

n=0

(n + 2)(n + 1)an+2xn 22.
∞∑

n=2

an−2xn

23.
∞∑

n=0

(n + 1)an xn 24.
∞∑

n=0

[(n + 2)(n + 1)an+2 − n(n − 1)an]xn

25.
∞∑

n=0

[(n + 2)(n + 1)an+2 + nan]xn 26. a1 +
∞∑

n=1

[(n + 1)an+1 + an−1]xn

27.
∞∑

n=0

[(n + 1)nan+1 + an]xn 28. an = (−2)na0/n!, n = 1, 2, . . . ; a0e−2x

Unknown
See SSM for detailed solutions to 11, 14

Unknown
16

Unknown
2, 5, 9, 12, 13

Unknown
18, 19, 23, 25, 28
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Section 5.2, page 247

1. an+2 = an/(n + 2)(n + 1)

y1(x) = 1 + x2

2!
+ x4

4!
+ x6

6!
+ · · · =

∞∑
n=0

x2n

(2n)!
= cosh x

y2(x) = x + x3

3!
+ x5

5!
+ x7

7!
+ · · · =

∞∑
n=0

x2n+1

(2n + 1)!
= sinh x

2. an+2 = an/(n + 2)

y1(x) = 1 + x2

2
+ x4

2 · 4
+ x6

2 · 4 · 6
+ · · · =

∞∑
n=0

x2n

2nn!

y2(x) = x + x3

3
+ x5

3 · 5
+ x7

3 · 5 · 7
+ · · · =

∞∑
n=0

2nn!x2n+1

(2n + 1)!
3. (n + 2)an+2 − an+1 − an = 0

y1(x) = 1 + 1
2 (x − 1)2 + 1

6 (x − 1)3 + 1
6 (x − 1)4 + · · ·

y2(x) = (x − 1) + 1
2 (x − 1)2 + 1

2 (x − 1)3 + 1
4 (x − 1)4 + · · ·

4. an+4 = −k2an/(n + 4)(n + 3); a2 = a3 = 0

y1(x) = 1 − k2x4

3 · 4
+ k4x8

3 · 4 · 7 · 8
− k6x12

3 · 4 · 7 · 8 · 11 · 12
+ · · ·

= 1 +
∞∑

m=0

(−1)m+1(k2x4)m+1

3 · 4 · 7 · 8 · · · (4m + 3)(4m + 4)

y2(x) = x − k2x5

4 · 5
+ k4x9

4 · 5 · 8 · 9
− k6x13

4 · 5 · 8 · 9 · 12 · 13
+ · · ·

= x

[
1 +

∞∑
m=0

(−1)m+1(k2x4)m+1

4 · 5 · 8 · 9 · · · (4m + 4)(4m + 5)

]

Hint: Let n = 4m in the recurrence relation, m = 1, 2, 3, . . . .

5. (n + 2)(n + 1)an+2 − n(n + 1)an+1 + an = 0, n ≥ 1; a2 = − 1
2 a0

y1(x) = 1 − 1
2 x2 − 1

6 x3 − 1
24 x4 + · · · , y2(x) = x − 1

6 x3 − 1
12 x4 − 1

24 x5 + · · ·
6. an+2 = −(n2 − 2n + 4)an/[2(n + 1)(n + 2)], n ≥ 2; a2 = −a0, a3 = − 1

4 a1

y1(x) = 1 − x2 + 1
6 x4 − 1

30 x6 + · · · , y2(x) = x − 1
4 x3 + 7

160 x5 − 19
1920 x7 + · · ·

7. an+2 = −an/(n + 1), n = 0, 1, 2, . . .

y1(x) = 1 − x2

1
+ x4

1 · 3
− x6

1 · 3 · 5
+ · · · = 1 +

∞∑
n=1

(−1)n x2n

1 · 3 · 5 · · · (2n − 1)

y2(x) = x − x3

2
+ x5

2 · 4
− x7

2 · 4 · 6
+ · · · = x +

∞∑
n=1

(−1)n x2n+1

2 · 4 · 6 · · · (2n)

8. an+2 = −[(n + 1)2an+1 + an + an−1]/(n + 1)(n + 2), n = 1, 2, . . .

a2 = −(a0 + a1)/2
y1(x) = 1 − 1

2 (x − 1)2 + 1
6 (x − 1)3 − 1

12 (x − 1)4 + · · ·
y2(x) = (x − 1) − 1

2 (x − 1)2 + 1
6 (x − 1)3 − 1

6 (x − 1)4 + · · ·
9. (n + 2)(n + 1)an+2 + (n − 2)(n − 3)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 − 3x2, y2(x) = x − x3/3
10. 4(n + 2)an+2 − (n − 2)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 − x2

4
, y2(x) = x − x3

12
− x5

240
− x7

2240
− · · · − x2n+1

4n(2n − 1)(2n + 1)
− · · ·

Unknown
See SSM for detailed solutions to 2

Unknown
3

Unknown
5, 8
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11. 3(n + 2)an+2 − (n + 1)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 + x2

6
+ x4

24
+ 5

432
x6 + · · · + 3 · 5 · · · (2n − 1)

3n · 2 · 4 · · · (2n)
x2n + · · ·

y2(x) = x + 2

9
x3 + 8

135
x5 + 16

945
x7 + · · · + 2 · 4 · · · (2n)

3n · 3 · 5 · · · (2n + 1)
x2n+1 + · · ·

12. (n + 2)(n + 1)an+2 − (n + 1)nan+1 + (n − 1)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 + x2

2
+ x3

6
+ x4

24
+ · · · + xn

n!
+ · · · , y2(x) = x

13. 2(n + 2)(n + 1)an+2 + (n + 3)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 − 3

4
x2 + 5

32
x4 − 7

384
x6 + · · · + (−1)n 3 · 5 · · · (2n + 1)

2n(2n)!
x2n + · · ·

y2(x) = x − x3

3
+ x5

20
− x7

210
+ · · · + (−1)n 4 · 6 · · · (2n + 2)

2n(2n + 1)!
x2n+1 + · · ·

14. 2(n + 2)(n + 1)an+2 + 3(n + 1)an+1 + (n + 3)an = 0; n = 0, 1, 2, . . .

y1(x) = 1 − 3
4 (x − 2)2 + 3

8 (x − 2)3 + 1
64 (x − 2)4 + · · ·

y2(x) = (x − 2) − 3
4 (x − 2)2 + 1

24 (x − 2)3 + 9
64 (x − 2)4 + · · ·

15. (a) y = 2 + x + x2 + 1
3 x3 + 1

4 x4 + · · · (c) about |x | < 0.7

16. (a) y = −1 + 3x + x2 − 3
4 x3 − 1

6 x4 + · · · (c) about |x | < 0.7

17. (a) y = 4 − x − 4x2 + 1
2 x3 + 4

3 x4 + · · · (c) about |x | < 0.5

18. (a) y = −3 + 2x − 3
2 x2 − 1

2 x3 − 1
8 x4 + · · · (c) about |x | < 0.9

19. y1(x) = 1 − 1
3 (x − 1)3 − 1

12 (x − 1)4 + 1
18 (x − 1)6 + · · ·

y2(x) = (x − 1) − 1
4 (x − 1)4 − 1

20 (x − 1)5 + 1
28 (x − 1)7 + · · ·

21. (a) y1(x) = 1 − λ

2!
x2 + λ(λ − 4)

4!
x4 − λ(λ − 4)(λ − 8)

6!
x6 + · · ·

y2(x) = x − λ − 2

3!
x3 + (λ − 2)(λ − 6)

5!
x5 − (λ − 2)(λ − 6)(λ − 10)

7!
x7 + · · ·

(b) 1, x , 1 − 2x2, x − 2
3 x3, 1 − 4x2 + 4

3 x4, x − 4
3 x3 + 4

15 x5

(c) 1, 2x , 4x2 − 2, 8x3 − 12x , 16x4 − 48x2 + 12, 32x5 − 160x3 + 120x
22. (b) y = x − x3/6 + · · ·

Section 5.3, page 253

1. φ′′(0) = −1, φ′′′(0) = 0, φiv(0) = 3
2. φ′′(0) = 0, φ′′′(0) = −2, φiv(0) = 0
3. φ′′(1) = 0, φ′′′(1) = −6, φiv(1) = 42
4. φ′′(0) = 0, φ′′′(0) = −a0, φiv(0) = −4a1
5. ρ = ∞, ρ = ∞
6. ρ = 1, ρ = 3, ρ = 1
7. ρ = 1, ρ = √

3
8. ρ = 1
9. (a) ρ = ∞ (b) ρ = ∞ (c) ρ = ∞ (d) ρ = ∞ (e) ρ = 1

(f) ρ = √
2 (g) ρ = ∞ (h) ρ = 1 (i) ρ = 1 (j) ρ = 2

(k) ρ = √
3 (l) ρ = 1 (m) ρ = ∞ (n) ρ = ∞

Unknown
See SSM for detailed solutions to 14, 16a, 19

Unknown
22b, 23, 26

Unknown
1, 6, 9afh
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10. (a) y1(x) = 1 − α2

2!
x2 − (22 − α2)α2

4!
x4 − (42 − α2)(22 − α2)α2

6!
x6 − · · ·

− [(2m − 2)2 − α2] · · · (22 − α2)α2

(2m)!
x2m − · · ·

y2(x) = x + 1 − α2

3!
x3 + (32 − α2)(1 − α2)

5!
x5 + · · ·

+ [(2m − 1)2 − α2] · · · (1 − α2)

(2m + 1)!
x2m+1 + · · ·

(b) y1(x) or y2(x) terminates with xn as α = n is even or odd.

(c) n = 0, y = 1; n = 1, y = x ; n = 2, y = 1 − 2x2; n = 3, y = x − 4
3 x3

11. y1(x) = 1 − 1
6 x3 + 1

120 x5 + 1
180 x6 + · · · , y2(x) = x − 1

12 x4 + 1
180 x6 + 1

504 x7 + · · · ,
ρ = ∞

12. y1(x) = 1 − 1
6 x3 + 1

12 x4 − 1
40 x5 + · · · , y2(x) = x − 1

12 x4 + 1
20 x5 − 1

60 x6 + · · · ,
ρ = ∞

13. y1(x) = 1 + x2 + 1
12 x4 + 1

120 x6 + · · · , y2(x) = x + 1
6 x3 + 1

60 x5 + 1
560 x7 + · · · ,

ρ = π/2
14. y1(x) = 1 + 1

6 x3 + 1
12 x4 − 1

120 x6 + · · · , y2(x) = x − 1
6 x3 + 1

24 x4 + 7
120 x5 + · · · ,

ρ = 1
15. Cannot specify arbitrary initial conditions at x = 0; hence x = 0 is a singular point.

16. y = 1 + x + x2

2!
+ · · · + xn

n!
+ · · · = ex

17. y = 1 + x2

2
+ x4

2 · 4
+ x6

2 · 4 · 6
+ · · · + x2n

2n · n!
+ · · ·

18. y = 1 + x + 1
2 x2 + 1

2 x3 + · · ·
19. y = 1 + x + x2 + · · · + xn + · · · = 1

1 − x

20. y = a0

(
1 + x + x2

2!
+ · · · + xn

n!
+ · · ·

)
+ 2

(
x3

3!
+ x4

4!
+ · · · + xn

n!
+ · · ·

)

= a0ex + 2

(
ex − 1 − x − x2

2

)
= cex − 2 − 2x − x2

21. y = a0

(
1 − x2

2
+ x4

222!
− x6

233!
+ · · · + (−1)n x2n

2nn!
+ · · ·

)

+
(

x + x2

2
− x3

3
− x4

2 · 4
+ x5

3 · 5
+ · · ·

)

= a0e−x2/2 +
(

x + x2

2
− x3

3
− x4

2 · 4
+ x5

3 · 5
+ · · ·

)

23. 1, 1 − 3x2, 1 − 10x2 + 35
3 x4; x , x − 5

3 x3, x − 14
3 x3 + 21

5 x5

24. (a) 1, x , (3x2 − 1)/2, (5x3 − 3x)/2, (35x4 − 30x2 + 3)/8, (63x5 − 70x3 + 15x)/8
(c) P1, 0; P2, ±0.57735; P3, 0, ±0.77460; P4, ±0.33998, ±0.86114;
P5, 0, ±0.53847, ±0.90618

Unknown
See SSM for detailed solutions to 10a

John Wiley
 

John Wiley
10b, 11

John Wiley
18

John Wiley
20, 22

John Wiley
26, 28
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Section 5.4, page 259

1. x = 0, regular 2. x = 0, regular; x = 1, irregular
3. x = 0, irregular; x = 1, regular 4. x = 0, irregular; x = ±1, regular
5. x = 1, regular; x = −1, irregular 6. x = 0, regular
7. x = −3, regular 8. x = 0, −1, regular; x = 1, irregular
9. x = 1, regular; x = −2, irregular 10. x = 0, 3, regular

11. x = 1, −2, regular 12. x = 0, regular
13. x = 0, irregular 14. x = 0, regular
15. x = 0, regular 16. x = 0, ±nπ , regular
17. x = 0, ±nπ , regular 18. x = 0, irregular; x = ±nπ , regular

19. y = a0

(
1 − x2

2 · 5
+ x4

2 · 4 · 5 · 9
− · · ·

)

22. Irregular singular point 23. Regular singular point
24. Regular singular point 25. Irregular singular point
26. Irregular singular point 27. Irregular singular point

Section 5.5, page 265

1. y = c1x−1 + c2x−2 2. y = c1|x + 1|−1/2 + c2|x + 1|−3/2

3. y = c1x2 + c2x2 ln |x |
4. y = c1x−1 cos(2 ln |x |) + c2x−1 sin(2 ln |x |)
5. y = c1x + c2x ln |x | 6. y = c1(x − 1)−3 + c2(x − 1)−4

7. y = c1|x |(−5+√
29)/2 + c2|x |(−5−√

29)/2

8. y = c1|x |3/2 cos( 1
2

√
3 ln |x |) + c2|x |3/2 sin( 1

2

√
3 ln |x |)

9. y = c1x3 + c2x3 ln |x |
10. y = c1(x − 2)−2 cos(2 ln |x − 2|) + c2(x − 2)−2 sin(2 ln |x − 2|)
11. y = c1|x |−1/2 cos( 1

2

√
15 ln |x |) + c2|x |−1/2 sin( 1

2

√
15 ln |x |)

12. y = c1x + c2x4 13. y = 2x3/2 − x−1

14. y = 2x−1/2 cos(2 ln x) − x−1/2 sin(2 ln x) 15. y = 2x2 − 7x2 ln |x |
16. y = x−1 cos(2 ln x) 17. α < 1
18. β > 0 19. γ = 2
20. α > 1
21. (a) α < 1 and β > 0

(b) α < 1 and β ≥ 0, or α = 1 and β > 0
(c) α > 1 and β > 0
(d) α > 1 and β ≥ 0, or α = 1 and β > 0
(e) α = 1 and β > 0

24. y = c1x−1 + c2x2 25. y = c1x2 + c2x2 ln x + 1
4 ln x + 1

4
26. y = c1x−1 + c2x−5 + 1

12 x

27. y = c1x + c2x2 + 3x2 ln x + ln x + 3
2

28. y = c1 cos(2 ln x) + c2 sin(2 ln x) + 1
3 sin(ln x)

29. y = c1x−3/2 cos( 3
2 ln x) + c2x−3/2 sin( 3

2 ln x)

31. x > 0 : c1 = k1, c2 = k2; x < 0 : c1(−1)r1 = k1, c2 = k2

Unknown
See SSM for detailed solutions to 1, 5

Unknown
12, 17

Unknown
19, 21, 23

Unknown
25

Unknown
2, 4, 9, 13, 16

Unknown
17, 21, 21a, 22, 25, 31
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Section 5.6, page 271

1. r(2r − 1) = 0; an = − an−2

(n + r)[2(n + r) − 1]
; r1 = 1

2 , r2 = 0

y1(x) = x1/2

[
1 − x2

2 · 5
+ x4

2 · 4 · 5 · 9
− x6

2 · 4 · 6 · 5 · 9 · 13
+ · · ·

+ (−1)n x2n

2nn!5 · 9 · 13 · · · (4n + 1)
+ · · ·

]

y2(x) = 1 − x2

2 · 3
+ x4

2 · 4 · 3 · 7
− x6

2 · 4 · 6 · 3 · 7 · 11
+ · · ·

+ (−1)n x2n

2nn!3 · 7 · 11 · · · (4n − 1)
+ · · ·

2. r2 − 1
9 = 0; an = − an−2

(n + r)2 − 1
9

; r1 = 1
3 , r2 = − 1

3

y1(x) = x1/3

[
1 − 1

1!(1 + 1
3 )

( x

2

)2
+ 1

2!(1 + 1
3 )(2 + 1

3 )

( x

2

)4
+ · · ·

+ (−1)m

m!(1 + 1
3 )(2 + 1

3 ) · · · (m + 1
3 )

( x

2

)2m
+ · · ·

]

y2(x) = x−1/3

[
1 − 1

1!(1 − 1
3 )

( x

2

)2
+ 1

2!(1 − 1
3 )(2 − 1

3 )

( x

2

)4
+ · · ·

+ (−1)m

m!(1 − 1
3 )(2 − 1

3 ) · · · (m − 1
3 )

( x

2

)2m
+ · · ·

]

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . .

3. r(r − 1) = 0; an = − an−1

(n + r)(n + r − 1)
; r1 = 1, r2 = 0

y1(x) = x

[
1 − x

1!2!
+ x2

2!3!
+ · · · + (−1)n

n!(n + 1)!
xn + · · ·

]

4. r2 = 0; an = an−1

(n + r)2 ; r1 = r2 = 0

y1(x) = 1 + x

(1!)2 + x2

(2!)2 + · · · + xn

(n!)2 + · · ·

5. r(3r − 1) = 0; an = − an−2

(n + r)[3(n + r) − 1]
; r1 = 1

3 , r2 = 0

y1(x) = x1/3


1 − 1

1!7

(
x2

2

)
+ 1

2!7 · 13

(
x2

2

)2

+ · · ·

+ (−1)m

m!7 · 13 · · · (6m + 1)

(
x2

2

)m

+ · · ·
]

y2(x) = 1 − 1

1!5

(
x2

2

)
+ 1

2!5 · 11

(
x2

2

)2

+ · · · + (−1)m

m!5 · 11 · · · (6m − 1)

(
x2

2

)m

+ · · ·

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . .

Unknown
See SSM for detailed solutions to 2

Unknown
4
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6. r2 − 2 = 0; an = − an−1

(n + r)2 − 2
; r1 = √

2, r2 = −√
2

y1(x) = x
√

2

[
1 − x

1(1 + 2
√

2)
+ x2

2!(1 + 2
√

2)(2 + 2
√

2)
+ · · ·

+ (−1)n

n!(1 + 2
√

2)(2 + 2
√

2) · · · (n + 2
√

2)
xn + · · ·

]

y2(x) = x−√
2

[
1 − x

1(1 − 2
√

2)
+ x2

2!(1 − 2
√

2)(2 − 2
√

2)
+ · · ·

+ (−1)n

n!(1 − 2
√

2)(2 − 2
√

2) · · · (n − 2
√

2)
xn + · · ·

]
7. r2 = 0; (n + r)an = an−1; r1 = r2 = 0

y1(x) = 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
+ · · · = ex

8. 2r2 + r − 1 = 0; (2n + 2r − 1)(n + r + 1)an + 2an−2 = 0; r1 = 1
2 , r2 = −1

y1(x) = x1/2

(
1 − x2

7
+ x4

2!7 · 11
− · · · + (−1)m x2m

m!7 · 11 · · · (4m + 3)
+ · · ·

)

y2(x) = x−1

(
1 − x2 + x4

2!5
− · · · + (−1)m x2m

m!5 · 9 · · · (4m − 3)
+ · · ·

)

9. r2 − 4r + 3 = 0; (n + r − 3)(n + r − 1)an − (n + r − 2)an−1 = 0; r1 = 3, r2 = 1

y1(x) = x3

(
1 + 2

3
x + x2

4
+ · · · + 2xn

n!(n + 2)
+ · · ·

)

10. r2 − r + 1
4 = 0; (n + r − 1

2 )2an + an−2 = 0; r1 = r2 = 1/2

y1(x) = x1/2

(
1 − x2

22 + x4

2242 − · · · + (−1)m x2m

22m(m!)2 + · · ·
)

11. r2 = 0; r1 = 0, r2 = 0

y1(x) = 1 + α(α + 1)

2 · 12 (x − 1) − α(α + 1)[1 · 2 − α(α + 1)]

(2 · 12)(2 · 22)
(x − 1)2 + · · ·

+ (−1)n+1 α(α + 1)[1 · 2 − α(α + 1)] · · · [n(n − 1) − α(α + 1)]

2n(n!)2 (x − 1)n + · · ·
12. (a) r1 = 1

2 , r2 = 0 at both x = ±1
(b) y1(x) = |x − 1|1/2

×
[

1 +
∞∑

n=1

(−1)n(1 + 2α) · · · (2n − 1 + 2α)(1 − 2α) · · · (2n − 1 − 2α)

2n(2n + 1)!
(x − 1)n

]

y2(x) = 1 +
∞∑

n=1

(−1)nα(1 + α) · · · (n − 1 + α)(−α)(1 − α) · · · (n − 1 − α)

n!1 · 3 · 5 · · · (2n − 1)
(x − 1)n

13. r2 = 0; r1 = 0, r2 = 0; an = (n − 1 − λ)an−1

n2

y1(x) = 1 + −λ

(1!)2 x + (−λ)(1 − λ)

(2!)2 x2 + · · · + (−λ)(1 − λ) · · · (n − 1 − λ)

(n!)2 xn + · · ·
For λ = n, the coefficients of all terms past xn are zero.

16. (b) [(n − 1)2 − 1]bn = −bn−2, and it is impossible to determine b2.

Unknown
See SSM for detailed solutions to 11

Unknown
14

Unknown
15

Unknown
16ab
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Section 5.7, page 278

1. x = 0; r(r − 1) = 0; r1 = 1, r2 = 0
2. x = 0; r2 − 3r + 2 = 0; r1 = 2, r2 = 1
3. x = 0; r(r − 1) = 0; r1 = 1, r2 = 0

x = 1; r(r + 5) = 0; r1 = 0, r2 = −5
4. None
5. x = 0; r2 + 2r − 2 = 0; r1 = −1 + √

3 ∼= 0.732, r2 = −1 − √
3 ∼= −2.73

6. x = 0; r(r − 3
4 ) = 0; r1 = 3

4 , r2 = 0
x = −2; r(r − 5

4 ) = 0; r1 = 5
4 , r2 = 0

7. x = 0; r2 + 1 = 0; r1 = i, r2 = −i
8. x = −1; r2 − 7r + 3 = 0; r1 = (7 + √

37)/2 ∼= 6.54, r2 = (7 − √
37)/2 ∼= 0.459

9. x = 1; r2 + r = 0; r1 = 0, r2 = −1
10. x = −2; r2 − (5/4)r = 0; r1 = 5/4, r2 = 0
11. x = 2; r2 − 2r = 0; r1 = 2, r2 = 0

x = −2; r2 − 2r = 0; r1 = 2, r2 = 0
12. x = 0; r2 − (5/3)r = 0; r1 = 5/3, r2 = 0

x = −3; r2 − (r/3) − 1 = 0; r1 = (1 + √
37)/6 ∼= 1.18,

r2 = (1 − √
37)/6 ∼= −0.847

13. (b) r1 = 0, r2 = 0
(c) y1(x) = 1 + x + 1

4 x2 + 1
36 x3 + · · ·

y2(x) = y1(x) ln x − 2x − 3
4 x2 − 11

108 x3 + · · ·
14. (b) r1 = 1, r2 = 0

(c) y1(x) = x − 4x2 + 17
3 x3 − 47

12 x4 + · · ·
y2(x) = −6y1(x) ln x + 1 − 33x2 + 449

6 x3 + · · ·
15. (b) r1 = 1, r2 = 0

(c) y1(x) = x + 3
2 x2 + 9

4 x3 + 51
16 x4 + · · ·

y2(x) = 3y1(x) ln x + 1 − 21
4 x2 − 19

4 x3 + · · ·
16. (b) r1 = 1, r2 = 0

(c) y1(x) = x − 1
2 x2 + 1

12 x3 − 1
144 x4 + · · ·

y2(x) = −y1(x) ln x + 1 − 3
4 x2 + 7

36 x3 − 35
1728 x4 + · · ·

17. (b) r1 = 1, r2 = −1
(c) y1(x) = x − 1

24 x3 + 1
720 x5 + · · ·

y2(x) = − 1
3 y1(x) ln x + x−1 − 1

90 x3 + · · ·
18. r1 = 1

2 , r2 = 0
y1(x) = (x − 1)1/2[1 − 3

4 (x − 1) + 53
480 (x − 1)2 + · · ·], ρ = 1

19. (c) Hint: (n − 1)(n − 2) + (1 + α + β)(n − 1) + αβ = (n − 1 + α)(n − 1 + β)

(d) Hint: (n − γ )(n − 1 − γ ) + (1 + α + β)(n − γ ) + αβ = (n − γ + α)(n − γ + β)

Section 5.8, page 289

1. y1(x) =
∞∑

n=0

(−1)n xn

n!(n + 1)!

y2(x) = −y1(x) ln x + 1

x

[
1 −

∞∑
n=1

Hn + Hn−1

n!(n − 1)!
(−1)n xn

]

2. y1(x) = 1

x

∞∑
n=0

(−1)n xn

(n!)2 , y2(x) = y1(x) ln x − 2

x

∞∑
n=1

(−1)n Hn

(n!)2 xn

Unknown
See SSM for detailed solutions to 1, 3, 9

Unknown
17abc

Unknown
18

Unknown
20abc, 21bd

Unknown
1

Unknown
2
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3. y1(x) =
∞∑

n=0

(−1)n2n

(n!)2 xn, y2(x) = y1(x) ln x − 2
∞∑

n=1

(−1)n2n Hn

(n!)2 xn

4. y1(x) = 1

x

∞∑
n=0

(−1)n

n!(n + 1)!
xn

y2(x) = −y1(x) ln x + 1

x2

[
1 −

∞∑
n=1

Hn + Hn−1

n!(n − 1)!
(−1)n xn

]

5. y1(x) = x3/2

[
1 +

∞∑
m=1

(−1)m

m!(1 + 3
2 )(2 + 3

2 ) · · · (m + 3
2 )

( x

2

)2m
]

y2(x) = x−3/2

[
1 +

∞∑
m=1

(−1)m

m!(1 − 3
2 )(2 − 3

2 ) · · · (m − 3
2 )

( x

2

)2m
]

Hint: Let n = 2m in the recurrence relation, m = 1, 2, 3, . . . . For r = − 3
2 , a1 = 0 and a3

is arbitrary.

C H A P T E R 6 Section 6.1, page 298

1. Piecewise continuous 2. Neither 3. Continuous
4. Piecewise continuous 5. (a) 1/s2, s > 0

(b) 2/s3, s > 0
(c) n!/sn+1, s > 0

6. s/(s2 + a2), s > 0

7.
s

s2 − b2 , s > |b| 8.
b

s2 − b2 , s > |b|

9.
s − a

(s − a)2 − b2 , s − a > |b| 10.
b

(s − a)2 − b2 , s − a > |b|

11.
b

s2 + b2 , s > 0 12.
s

s2 + b2 , s > 0

13.
b

(s − a)2 + b2 , s > a 14.
s − a

(s − a)2 + b2 , s > a

15.
1

(s − a)2 , s > a 16.
2as

(s2 + a2)2 , s > 0

17.
s2 + a2

(s − a)2(s + a)2 , s > |a| 18.
n!

(s − a)n+1 , s > a

19.
2a(3s2 − a2)

(s2 + a2)3 , s > 0 20.
2a(3s2 + a2)

(s2 − a2)3 , s > |a|
21. Converges 22. Converges
23. Diverges 24. Converges
26. (d) �(3/2) = √

π/2; �(11/2) = 945
√

π/32

Section 6.2, page 307

1. 3
2 sin 2t 2. 2t2et

3. 2
5 et − 2

5 e−4t 4. 9
5 e3t + 6

5 e−2t

5. 2e−t cos 2t 6. 2 cosh 2t − 3
2 sinh 2t

7. 2et cos t + 3et sin t 8. 3 − 2 sin 2t + 5 cos 2t

9. −2e−2t cos t + 5e−2t sin t 10. 2e−t cos 3t − 5
3 e−t sin 3t

11. y = 1
5 (e3t + 4e−2t ) 12. y = 2e−t − e−2t

13. y = et sin t 14. y = e2t − te2t

15. y = 2et cosh
√

3 t − (2/
√

3)et sinh
√

3 t 16. y = 2e−t cos 2t + 1
2 e−t sin 2t

Unknown
See SSM for detailed solutions to 3, 4, 5

Unknown
7, 12

Unknown
13, 14

Unknown
1, 2, 5b, 6, 9

Unknown
13, 16, 19, 21

Unknown
25, 27abcd

Unknown
2, 4, 7

Unknown
11, 14, 15
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17. y = tet − t2et + 2
3 t3et 18. y = cosh t

19. y = cos
√

2 t
20. y = (ω2 − 4)−1[(ω2 − 5) cos ωt + cos 2t]
21. y = 1

5 (cos t − 2 sin t + 4et cos t − 2et sin t)

22. y = 1
5 (e−t − et cos t + 7et sin t) 23. y = 2e−t + te−t + 2t2e−t

24. Y (s) = s

s2 + 4
+ 1 − e−πs

s(s2 + 4)
25. Y (s) = 1

s2(s2 + 1)
− e−s(s + 1)

s2(s2 + 1)

26. Y (s) = (1 − e−s)/s2(s2 + 4) 29. 1/(s − a)2

30. 2b(3s2 − b2)/(s2 + b2)3 31. n!/sn+1

32. n!/(s − a)n+1 33. 2b(s − a)/[(s − a)2 + b2]2

34. [(s − a)2 − b2]/[(s − a)2 + b2]2

36. (a) Y ′ + s2Y = s (b) s2Y ′′ + 2sY ′ − [s2 + α(α + 1)]Y = −1

Section 6.3, page 314

7. F(s) = 2e−s/s3 8. F(s) = e−s(s2 + 2)/s3

9. F(s) = e−πs

s2 − e−2πs

s2 (1 + πs) 10. F(s) = 1

s
(e−s + 2e−3s − 6e−4s)

11. F(s) = s−2[(1 − s)e−2s − (1 + s)e−3s] 12. F(s) = (1 − e−s)/s2

13. f (t) = t3e2t 14. f (t) = 1
3 u2(t)[e

t−2 − e−2(t−2)]

15. f (t) = 2u2(t)e
t−2 cos(t − 2) 16. f (t) = u2(t) sinh 2(t − 2)

17. f (t) = u1(t)e
2(t−1) cosh(t − 1) 18. f (t) = u1(t) + u2(t) − u3(t) − u4(t)

20. f (t) = 2(2t)n 21. f (t) = 1
2 e−t/2 cos t

22. f (t) = 1
6 et/3(e2t/3 − 1) 23. f (t) = 1

2 et/2u2(t/2)

24. F(s) = s−1(1 − e−s), s > 0
25. F(s) = s−1(1 − e−s + e−2s − e−3s), s > 0

26. F(s) = 1

s
[1 − e−s + · · · + e−2ns − e−(2n+1)s ] = 1 − e−(2n+2)s

s(1 + e−s)
, s > 0

27. F(s) = 1

s

∞∑
n=0

(−1)ne−ns = 1/s

1 + e−s , s > 0

29. L{ f (t)} = 1/s

1 + e−s , s > 0 30. L{ f (t)} = 1 − e−s

s(1 + e−s)
, s > 0

31. L{ f (t)} = 1 − (1 + s)e−s

s2(1 − e−s)
, s > 0 32. L{ f (t)} = 1 + e−πs

(1 + s2)(1 − e−πs)
, s > 0

33. (a) L{ f (t)} = s−1(1 − e−s), s > 0
(b) L{g(t)} = s−2(1 − e−s), s > 0
(c) L{h(t)} = s−2(1 − e−s)2, s > 0

34. (b) L{p(t)} = 1 − e−s

s2(1 + e−s)
, s > 0

Section 6.4, page 321

1. y = 1 − cos t + sin t − u
π/2(t)(1 − sin t)

2. y = e−t sin t + 1
2 u

π
(t)[1 + e−(t−π) cos t + e−(t−π) sin t]

− 1
2 u2π

(t)[1 − e−(t−2π) cos t − e−(t−2π) sin t]

3. y = 1
6 [1 − u2π

(t)](2 sin t − sin 2t)

4. y = 1
6 (2 sin t − sin 2t) − 1

6 u
π
(t)(2 sin t + sin 2t)

5. y = 1
2 + 1

2 e−2t − e−t − u10(t)[
1
2 + 1

2 e−2(t−10) − e−(t−10)]

Unknown
See SSM for detailed solutions to 17, 20, 22, 24

Unknown
27b, 30, 32

Unknown
36a, 38ab

Unknown
2, 4, 8

Unknown
14, 21, 22, 27

Unknown
28, 30

Unknown
1

Unknown
3
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6. y = e−t − e−2t + u2(t)[
1
2 − e−(t−2) + 1

2 e−2(t−2)]
7. y = cos t + u3π

(t)[1 − cos(t − 3π)]
8. y = h(t) − u

π/2(t)h(t − π/2), h(t) = 4
25 (−4 + 5t + 4e−t/2 cos t − 3e−t/2 sin t)

9. y = 1
2 sin t + 1

2 t − 1
2 u6(t)[t − 6 − sin(t − 6)]

10. y = h(t) + u
π
(t)h(t − π), h(t) = 4

17 [−4 cos t + sin t + 4e−t/2 cos t + e−t/2 sin t]
11. y = u

π
(t)[ 1

4 − 1
4 cos(2t − 2π)] − u3π

(t)[ 1
4 − 1

4 cos(2t − 6π)]
12. y = u1(t)h(t − 1) − u2(t)h(t − 2), h(t) = −1 + (cos t + cosh t)/2
13. y = h(t) − u

π
(t)h(t − π), h(t) = (3 − 4 cos t + cos 2t)/12

14. f (t) = [ut0
(t)(t − t0) − ut0+k(t)(t − t0 − k)](h/k)

15. g(t) = [ut0
(t)(t − t0) − 2ut0+k(t)(t − t0 − k) + ut0+2k(t)(t − t0 − 2k)](h/k)

16. (b) u(t) = 4ku3/2(t)h(t − 3
2 ) − 4ku5/2(t)h(t − 5

2 ),

h(t) = 1
4 − (

√
7/84) e−t/8 sin(3

√
7 t/8) − 1

4 e−t/8 cos(3
√

7 t/8)

(d) k = 2.51 (e) τ = 25.6773
17. (a) k = 5

(b) y = [u5(t)h(t − 5) − u5+k(t)h(t − 5 − k)]/k, h(t) = 1
4 t − 1

8 sin 2t
18. (b) fk(t) = [u4−k(t) − u4+k(t)]/2k;

y = [u4−k(t)h(t − 4 + k) − u4+k(t)h(t − 4 − k)]/2k,

h(t) = 1
4 − 1

4 e−t/6 cos(
√

143 t/6) − (
√

143/572) e−t/6 sin(
√

143 t/6)

19. (b) y = 1 − cos t + 2
n∑

k=1
(−1)kukπ

(t)[1 − cos(t − kπ)]

21. (b) y = 1 − cos t +
n∑

k=1
(−1)kukπ

(t)[1 − cos(t − kπ)]

23. (a) y = 1 − cos t + 2
n∑

k=1
(−1)ku11k/4(t)[1 − cos(t − 11k/4)]

Section 6.5, page 328

1. y = e−t cos t + e−t sin t + u
π
(t)e−(t−π) sin(t − π)

2. y = 1
2 u

π
(t) sin 2(t − π) − 1

2 u2π
(t) sin 2(t − 2π)

3. y = − 1
2 e−2t + 1

2 e−t + u5(t)[−e−2(t−5) + e−(t−5)] + u10(t)[
1
2 + 1

2 e−2(t−10) − e−(t−10)]

4. y = cosh(t) − 20u3(t) sinh(t − 3)

5. y = 1
4 sin t − 1

4 cos t + 1
4 e−t cos

√
2 t + (1/

√
2) u3π

(t)e−(t−3π) sin
√

2(t − 3π)

6. y = 1
2 cos 2t + 1

2 u4π
(t) sin 2(t − 4π)

7. y = sin t + u2π
(t) sin(t − 2π)

8. y = u
π/4(t) sin 2(t − π/4)

9. y = u
π/2(t)[1 − cos(t − π/2)] + 3u3π/2(t) sin(t − 3π/2) − u2π

(t)[1 − cos(t − 2π)]

10. y = (1/
√

31) u
π/6(t) exp[− 1

4 (t − π/6)] sin(
√

31/4)(t − π/6)

11. y = 1
5 cos t + 2

5 sin t − 1
5 e−t cos t − 3

5 e−t sin t + u
π/2(t)e

−(t−π/2) sin(t − π/2)

12. y = u1(t)[sinh(t − 1) − sin(t − 1)]/2

13. (a) −e−T/4δ(t − 5 − T ), T = 8π/
√

15
14. (a) y = (4/

√
15) u1(t)e

−(t−1)/4 sin(
√

15/4)(t − 1)

(b) t1
∼= 2.3613, y1

∼= 0.71153
(c) y = (8

√
7/21) u1(t)e

−(t−1)/8 sin(3
√

7/8) (t − 1); t1
∼= 2.4569, y1

∼= 0.83351
(d) t1 = 1 + π/2 ∼= 2.5708, y1 = 1

15. (a) k1
∼= 2.8108 (b) k1

∼= 2.3995 (c) k1 = 2

16. (a) φ(t, k) = [u4−k(t)h(t − 4 + k) − u4+k(t)h(t − 4 − k)]/2k, h(t) = 1 − cos t
(b) u4(t) sin(t − 4) (c) Yes

Unknown
See SSM for detailed solutions to 8, 10, 16bc

Unknown
19abd

Unknown
20, 20abc

Unknown
1, 3, 5, 7

John Wiley
10

John Wiley
13a, b
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17. (b) y =
20∑

k=1
ukπ

(t) sin(t − kπ) 18. (b) y =
20∑

k=1
(−1)k+1ukπ

(t) sin(t − kπ)

19. (b) y =
20∑

k=1
ukπ/2(t) sin(t − kπ/2)

20. (b) y =
20∑

k=1
(−1)k+1ukπ/2(t) sin(t − kπ/2)

21. (b) y =
15∑

k=1
u

(2k−1)π
(t) sin[t − (2k − 1)π ]

22. (b) y =
40∑

k=1
(−1)k+1u11k/4(t) sin(t − 11k/4)

23. (b) y = 20√
399

20∑
k=1

(−1)k+1ukπ
(t)e−(t−kπ)/20 sin[

√
399(t − kπ)/20]

24. (b) y = 20√
399

15∑
k=1

u
(2k−1)π

(t)e−[t−(2k−1)π ]/20 sin{√399[t − (2k − 1)π ]/20}

Section 6.6, page 335

3. sin t ∗ sin t = 1
2 (sin t − t cos t) is negative when t = 2π , for example.

4. F(s) = 2/s2(s2 + 4) 5. F(s) = 1/(s + 1)(s2 + 1)

6. F(s) = 1/s2(s − 1) 7. F(s) = s/(s2 + 1)2

8. f (t) = 1
6

∫ t

0
(t − τ )3 sin τ dτ 9. f (t) =

∫ t

0
e−(t−τ ) cos 2τ dτ

10. f (t) = 1
2

∫ t

0
(t − τ )e−(t−τ ) sin 2τ dτ 11. f (t) =

∫ t

0
sin(t − τ )g(τ ) dτ

12. y = 1

ω
sin ωt + 1

ω

∫ t

0
sin ω(t − τ )g(τ ) dτ 13. y =

∫ t

0
e−(t−τ ) sin(t − τ ) sin ατ dτ

14. y = 1
8

∫ t

0
e−(t−τ )/2 sin 2(t − τ )g(τ ) dτ

15. y = e−t/2 cos t − 1
2 e−t/2 sin t +

∫ t

0
e−(t−τ )/2 sin(t − τ )[1 − u

π
(τ )] dτ

16. y = 2e−2t + te−2t +
∫ t

0
(t − τ )e−2(t−τ )g(τ ) dτ

17. y = 2e−t − e−2t +
∫ t

0
[e−(t−τ ) − e−2(t−τ )] cos ατ dτ

18. y = 1
2

∫ t

0
[sinh(t − τ ) − sin(t − τ )]g(τ ) dτ

19. y = 4
3 cos t − 1

3 cos 2t + 1
6

∫ t

0
[2 sin(t − τ ) − sin 2(t − τ )]g(τ ) dτ

20. �(s) = F(s)

1 + K (s)

21. (c) φ(t) = 1
3 (4 sin 2t − 2 sin t) (d) u(t) = 1

3 (2 sin t − sin 2t)

C H A P T E R 7 Section 7.1, page 344

1. x ′
1 = x2, x ′

2 = −2x1 − 0.5x2

2. x ′
1 = x2, x ′

2 = −2x1 − 0.5x2 + 3 sin t

3. x ′
1 = x2, x ′

2 = −(1 − 0.25t−2)x1 − t−1x2

4. x ′
1 = x2, x ′

2 = x3, x ′
3 = x4, x ′

4 = x1

5. x ′
1 = x2, x ′

2 = −q(t)x1 − p(t)x2 + g(t); x1(0) = u0, x2(0) = u′
0

6. y′
1 = y2, y′

2 = −(k1 + k2)y1/m1 + k2 y3/m1 + F1(t)/m1,

y′
3 = y4, y′

4 = k2 y1/m2 − (k2 + k3)y3/m2 + F2(t)/m2

Unknown
See SSM for detailed solutions to 17b

Unknown
1c

Unknown
4

Unknown
8, 13, 15, 17

Unknown
20

Unknown
2, 4, 5

John Wiley
21b

John Wiley
25b
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7. (a) x1 = c1e−t + c2e−3t , x2 = c1e−t − c2e−3t

(b) c1 = 5/2, c2 = −1/2 in solution in (a)
(c) Graph approaches origin in the first quadrant tangent to the line x1 = x2.

8. x1 = 11
3 e2t − 2

3 e−t , x2 = 11
6 e2t − 4

3 e−t

Graph is asymptotic to the line x1 = 2x2 in the first quadrant.
9. x1 = − 3

2 et/2 − 1
2 e2t , x2 = 3

2 et/2 − 1
2 e2t

Graph is asymptotic to the line x1 = x2 in the third quadrant.
10. x1 = −7e−t + 6e−2t , x2 = −7e−t + 9e−2t

Graph approaches the origin in the third quadrant tangent to the line x1 = x2.
11. x1 = 3 cos 2t + 4 sin 2t, x2 = −3 sin 2t + 4 cos 2t

Graph is a circle, center at origin, radius 5, traversed clockwise.
12. x1 = −2e−t/2 cos 2t + 2e−t/2 sin 2t, x2 = 2e−t/2 cos 2t + 2e−t/2 sin 2t

Graph is a clockwise spiral, approaching the origin.
13. L RC I ′′ + L I ′ + RI = 0
21. (a) Q ′

1 = 3
2 − 1

10 Q1 + 3
40 Q2, Q1(0) = 25

Q ′
2 = 3 + 1

10 Q1 − 1
5 Q2, Q2(0) = 15

(b) QE
1 = 42, QE

2 = 36

(c) x ′
1 = − 1

10 x1 + 3
40 x2, x1(0) = −17

x ′
2 = 1

10 x1 − 1
5 x2, x2(0) = −21

22. (a) Q ′
1 = 3q1 − 1

15 Q1 + 1
100 Q2, Q1(0) = Q0

1

Q ′
2 = q2 + 1

30 Q1 − 3
100 Q2, Q2(0) = Q0

2

(b) QE
1 = 6(9q1 + q2), QE

2 = 20(3q1 + 2q2)

(c) No
(d) 10

9 ≤ QE
2 /QE

1 ≤ 20
3

Section 7.2, page 355

1. (a)


6 −6 3

5 9 −2
2 3 8


 (b)


−15 6 −12

7 −18 −1
−26 −3 −5




(c)


6 −12 3

4 3 7
9 12 0


 (d)


−8 −9 11

14 12 −5
5 −8 5




2. (a)

(
1 − i −7 + 2i

−1 + 2i 2 + 3i

)
(b)

(
3 + 4i 6i

11 + 6i 6 − 5i

)

(c)

(−3 + 5i 7 + 5i
2 + i 7 + 2i

)
(d)

(
8 + 7i 4 − 4i
6 − 4i − 4

)

3. (a)


−2 1 2

1 0 −1
2 −3 1


 (b)


1 3 −2

2 −1 1
3 −1 0


 (c), (d)


−1 4 0

3 −1 0
5 −4 1




4. (a)

(
3 − 2i 2 − i
1 + i −2 + 3i

)
(b)

(
3 + 2i 1 − i
2 + i −2 − 3i

)
(c)

(
3 + 2i 2 + i
1 − i −2 − 3i

)

5.


10 6 −4

0 4 10
4 4 6




Unknown
See SSM for detailed solutions to 8, 9

Unknown
12, 14, 19

Unknown
21abc

Unknown
1ac
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6. (a)


 7 −11 −3

11 20 17
−4 3 −12


 (b)


 5 0 −1

2 7 4
−1 1 4


 (c)


 6 −8 −11

9 15 6
−5 −1 5




8. (a) 4i (b) 12 − 8i (c) 2 + 2i (d) 16

10.

(
3
11 − 4

11
2
11

1
11

)
11.

(
1
6

1
12

− 1
2

1
4

)

12.


 1 −3 2

−3 3 −1
2 −1 0


 13.




1
3

1
3 0

1
3 − 1

3
1
3

− 1
3 0 1

3




14. Singular 15.




1
2 − 1

4
1
8

0 1
2 − 1

4

0 0 1
2




16.




1
10

3
10

1
10

− 2
10

4
10 − 2

10

− 7
10 − 1

10
3
10


 17. Singular

18.




1 1 0 1
1 0 1 1
1 1 1 1
0 1 0 1


 19.




6 13
5 − 8

5
2
5

5 11
5 − 6

5
4
5

0 − 1
5

1
5

1
5

−2 − 4
5

4
5 − 1

5




21. (a)


 7et 5e−t 10e2t

−et 7e−t 2e2t

8et 0 −e2t




(b)


 2e2t − 2 + 3e3t 1 + 4e−2t − et 3e3t + 2et − e4t

4e2t − 1 − 3e3t 2 + 2e−2t + et 6e3t + et + e4t

−2e2t − 3 + 6e3t −1 + 6e−2t − 2et −3e3t + 3et − 2e4t




(c)


 et −2e−t 2e2t

2et −e−t −2e2t

−et −3e−t 4e2t


 (d) (e − 1)


 1 2e−1 1

2 (e + 1)

2 e−1 − 1
2 (e + 1)

−1 3e−1 e + 1




Section 7.3, page 366

1. x1 = − 1
3 , x2 = 7

3 , x3 = − 1
3 2. No solution

3. x1 = −c, x2 = c + 1, x3 = c, where c is arbitrary
4. x1 = c, x2 = −c, x3 = −c, where c is arbitrary
5. x1 = 0, x2 = 0, x3 = 0 6. Linearly independent
7. x(1) − 5x(2) + 2x(3) = 0 8. 2x(1) − 3x(2) + 4x(3) − x(4) = 0
9. Linearly independent 10. x(1) + x(2) − x(4) = 0

12. 3x(1)(t) − 6x(2)(t) + x(3)(t) = 0 13. Linearly independent

15. λ1 = 2, x(1) =
(

1
3

)
; λ2 = 4, x(2) =

(
1
1

)

16. λ1 = 1 + 2i, x(1) =
(

1
1 − i

)
; λ2 = 1 − 2i, x(2) =

(
1

1 + i

)

17. λ1 = −3, x(1) =
(

1
−1

)
; λ2 = −1, x(2) =

(
1
1

)

Unknown
See SSM for detailed solutions to 6, 10

Unknown
12

Unknown
14

Unknown
22, 25

Unknown
1

Unknown
2, 3

Unknown
6, 8

Unknown
14

Unknown
15
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18. λ1 = 0, x(1) =
(

1
i

)
; λ2 = 2, x(2) =

(
1

−i

)

19. λ1 = 2, x(1) =
(√

3
1

)
; λ2 = −2, x(2) =

(
1

−√
3

)

20. λ1 = −1/2, x(1) =
(

3
10

)
; λ2 = −3/2, x(2) =

(
1
2

)

21. λ1 = 1, x(1) =

 2

−3
2


 ; λ2 = 1 + 2i, x(2) =


 0

1
−i


 ; λ3 = 1 − 2i, x(3) =


0

1
i




22. λ1 = 1, x(1) =

 1

0
−1


 ; λ2 = 2, x(2) =


−2

1
0


 ; λ3 = 3, x(3) =


 0

1
−1




23. λ1 = 1, x(1) =

 2

−2
−1


 ; λ2 = 2, x(2) =


2

1
2


 ; λ3 = −1, x(3) =


 1

2
−2




24. λ1 = −1, x(1) =

 1

−4
1


 ; λ2 = −1, x(2) =


 1

0
−1


 ; λ3 = 8, x(3) =


2

1
2




Section 7.4, page 371

2. (c) W (t) = c exp
∫

[p11(t) + p22(t)] dt

6. (a) W (t) = t2

(b) x(1) and x(2) are linearly independent at each point except t = 0; they are linearly
independent on every interval.
(c) At least one coefficient must be discontinuous at t = 0.

(d) x′ =
(

0 1
−2t−2 2t−1

)
x

7. (a) W (t) = t (t − 2)et

(b) x(1) and x(2) are linearly independent at each point except t = 0 and t = 2; they are
linearly independent on every interval.
(c) There must be at least one discontinuous coefficient at t = 0 and t = 2.

(d) x′ =

 0 1

2 − 2t

t2 − 2t

t2 − 2

t2 − 2t


 x

Section 7.5, page 381

1. x = c1

(
1
2

)
e−t + c2

(
2
1

)
e2t 2. x = c1

(
1
1

)
e−t + c2

(
2
3

)
e−2t

3. x = c1

(
1
1

)
et + c2

(
1
3

)
e−t 4. x = c1

(
1

−4

)
e−3t + c2

(
1
1

)
e2t

5. x = c1

(
1

−1

)
e−3t + c2

(
1
1

)
e−t 6. x = c1

(
1

−1

)
et/2 + c2

(
1
1

)
e2t

7. x = c1

(
3
4

)
+ c2

(
1
2

)
e−2t 8. x = c1

(−2
1

)
+ c2

(−3
1

)
et

9. x = c1

(
1
i

)
+ c2

(
1

−i

)
e2t 10. x = c1

(
2 + i
−1

)
et + c2

(
1

−1

)
e−i t

Unknown
See SSM for detailed solutions to 18, 21

Unknown
24

Unknown
27

Unknown
1, 2a

Unknown
2bc, 6abcd

Unknown
1

Unknown
5

Unknown
6, 7, 9
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11. x = c1


1

1
1


 e4t + c2


 1

−2
1


 et + c3


 1

0
−1


 e−t

12. x = c1


 1

−4
1


 e−t + c2


 1

0
−1


 e−t + c3


2

1
2


 e8t

13. x = c1


 4

−5
−7


 e−2t + c2


 3

−4
−2


 e−t + c3


 0

1
−1


 e2t

14. x = c1


 1

−4
−1


 et + c2


 1

−1
−1


 e−2t + c3


1

2
1


 e3t

15. x = −3

2

(
1
3

)
e2t + 7

2

(
1
1

)
e4t 16. x = 1

2

(
1
1

)
e−t + 1

2

(
1
5

)
e3t

17. x =

 0

−2
1


 et + 2


1

1
0


 e2t 18. x = 6


 1

2
−1


 et + 3


 1

−2
1


 e−t −


 2

1
−8


 e4t

20. x = c1

(
1
1

)
t + c2

(
1
3

)
t−1 21. x = c1

(
1
3

)
t2 + c2

(
1
1

)
t4

22. x = c1

(
3
4

)
+ c2

(
1
2

)
t−2 23. x = c1

(
1
2

)
t−1 + c2

(
2
1

)
t2

29. (a) x ′
1 = x2, x ′

2 = −(c/a)x1 − (b/a)x2

30. (a) x = −55

8

(
3
2

)
e−t/20 + 29

8

(
1

−2

)
e−t/4

(c) T ∼= 74.39

31. (a) x = c1

(
−√

2
1

)
e(−2+√

2)t/2 + c2

(√
2
1

)
e(−2−√

2)t/2;

r1,2 = (−2 ± √
2)/2; node

(b) x = c1

(−1√
2

)
e(−1+√

2)t + c2

(
1√
2

)
e(−1−√

2)t ; r1,2 = −1 ± √
2; saddle point

(c) r1,2 = −1 ± √
α; α = 1

32. (a)

(
I
V

)
= c1

(
1
3

)
e−2t + c2

(
1
1

)
e−t 33. (a)

(
1

C R2

− R1

L

)2

− 4

C L
> 0

Section 7.6, page 390

1. x = c1et

(
cos 2t

cos 2t + sin 2t

)
+ c2et

(
sin 2t

− cos 2t + sin 2t

)

2. x = c1e−t

(
2 cos 2t
sin 2t

)
+ c2e−t

(−2 sin 2t
cos 2t

)

3. x = c1

(
5 cos t

2 cos t + sin t

)
+ c2

(
5 sin t

− cos t + 2 sin t

)

Unknown
See SSM for detailed solutions to 16

Unknown
20, 25

Unknown
31c

Unknown
1
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4. x = c1et/2

(
5 cos 3

2 t
3(cos 3

2 t + sin 3
2 t)

)
+ c2et/2

(
5 sin 3

2 t
3(− cos 3

2 t + sin 3
2 t)

)

5. x = c1e−t

(
cos t

2 cos t + sin t

)
+ c2e−t

(
sin t

− cos t + 2 sin t

)

6. x = c1

( −2 cos 3t
cos 3t + 3 sin 3t

)
+ c2

( −2 sin 3t
sin 3t − 3 cos 3t

)

7. x = c1


 2

−3
2


 et + c2et


 0

cos 2t
sin 2t


+ c3et


 0

sin 2t
− cos 2t




8. x = c1


 2

−2
1


 e−2t + c2e−t


 −√

2 sin
√

2 t
cos

√
2 t

− cos
√

2 t − √
2 sin

√
2 t




+ c3e−t




√
2 cos

√
2 t

sin
√

2 t√
2 cos

√
2 t − sin

√
2 t




9. x = e−t

(
cos t − 3 sin t
cos t − sin t

)
10. x = e−2t

(
cos t − 5 sin t

−2 cos t − 3 sin t

)
11. (a) r = − 1

4 ± i 12. (a) r = 1
5 ± i

13. (a) r = α ± i (b) α = 0
14. (a) r = (α ±

√
α2 − 20)/2 (b) α = −√

20, 0,
√

20
15. (a) r = ±√

4 − 5α (b) α = 4/5
16. (a) r = 5

4 ± 1
2

√
3α (b) α = 0, 25/12

17. (a) r = −1 ± √−α (b) α = −1, 0
18. (a) r = − 1

2 ± 1
2

√
49 − 24α (b) α = 2, 49/24

19. (a) r = 1
2α − 2 ±

√
α2 + 8α − 24 (b) α = −4 − 2

√
10, −4 + 2

√
10, 5/2

20. (a) r = −1 ± √
25 + 8α (b) α = −25/8, −3

21. x = c1t−1

(
cos(

√
2 ln t)√

2 sin(
√

2 ln t)

)
+ c2t−1

(
sin(

√
2 ln t)

−√
2 cos(

√
2 ln t)

)

22. x = c1

(
5 cos(ln t)

2 cos(ln t) + sin(ln t)

)
+ c2

(
5 sin(ln t)

− cos(ln t) + 2 sin(ln t)

)
23. (a) r = − 1

4 ± i , − 1
4

24. (a) r = − 1
4 ± i , 1

10

25. (b)

(
I
V

)
= c1e−t/2

(
cos(t/2)

4 sin(t/2)

)
+ c2e−t/2

(
sin(t/2)

−4 cos(t/2)

)
(c) Use c1 = 2, c2 = − 3

4 in answer to part (b).

(d) lim
t→∞ I (t) = lim

t→∞ V (t) = 0; no

26. (b)

(
I
V

)
= c1e−t

(
cos t

− cos t − sin t

)
+ c2e−t

(
sin t

− sin t + cos t

)
(c) Use c1 = 2 and c2 = 3 in answer to part (b).
(d) lim

t→∞ I (t) = lim
t→∞ V (t) = 0; no

28. (b) r = ±i
√

k/m (d) |r | is the natural frequency.
29. (a) y′

1 = y2, y′
2 = −2y1 + y3, y′

3 = y4, y′
4 = y1 − 2y3

(b) r = ±i , ±√
3 i

(c) y1 = y3 = sin t + 2 cos t , y2 = y4 = −2 sin t + cos t
(d) y1 = −y3 = sin

√
3 t + 2 cos

√
3 t , y2 = −y4 = −2

√
3 sin

√
3 t + √

3 cos
√

3 t

Unknown
See SSM for detailed solutions to 7, 9

Unknown
11ad, 15ab

Unknown
16abc, 18abc

Unknown
21, 23abc, 29a

Unknown
29bce
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Section 7.7, page 400

1. �(t) =
(

− 1
3 e−t + 4

3 e2t 2
3 e−t − 2

3 e2t

− 2
3 e−t + 2

3 e2t 4
3 e−t − 1

3 e2t

)

2. �(t) =
(

1
2 e−t/2 + 1

2 e−t e−t/2 − e−t

1
4 e−t/2 − 1

4 e−t 1
2 e−t/2 + 1

2 e−t

)

3. �(t) =
(

3
2 et − 1

2 e−t − 1
2 et + 1

2 e−t

3
2 et − 3

2 e−t − 1
2 et + 3

2 e−t

)

4. �(t) =
(

1
5 e−3t + 4

5 e2t − 1
5 e−3t + 1

5 e2t

− 4
5 e−3t + 4

5 e2t 4
5 e−3t + 1

5 e2t

)

5. �(t) =
(

cos t + 2 sin t −5 sin t
sin t cos t − 2 sin t

)

6. �(t) =
(

e−t cos 2t −2e−t sin 2t
1
2 e−t sin 2t e−t cos 2t

)

7. �(t) =
(

− 1
2 e2t + 3

2 e4t 1
2 e2t − 1

2 e4t

− 3
2 e2t + 3

2 e4t 3
2 e2t − 1

2 e4t

)

8. �(t) =
(

e−t cos t + 2e−t sin t e−t sin t

5e−t sin t e−t cos t − 2e−t sin t

)

9. �(t) =




−2e−2t + 3e−t −e−2t + e−t −e−2t + e−t

5
2 e−2t − 4e−t + 3

2 e2t 5
4 e−2t − 4

3 e−t + 13
12 e2t 5

4 e−2t − 4
3 e−t + 1

12 e2t

7
2 e−2t − 2e−t − 3

2 e2t 7
4 e−2t − 2

3 e−t − 13
12 e2t 7

4 e−2t − 2
3 e−t − 1

12 e2t




10. �(t) =




1
6 et + 1

3 e−2t + 1
2 e3t − 1

3 et + 1
3 e−2t 1

2 et − e−2t + 1
2 e3t

− 2
3 et − 1

3 e−2t + e3t 4
3 et − 1

3 e−2t −2et + e−2t + e3t

− 1
6 et − 1

3 e−2t + 1
2 e3t 1

3 et − 1
3 e−2t − 1

2 et + e−2t + 1
2 e3t




11. x = 7

2

(
1
1

)
et − 3

2

(
1
3

)
e−t 12. x =

(
3
1

)
e−t cos 2t +

(−2
3/2

)
e−t sin 2t

Section 7.8, page 407

1. x = c1

(
2
1

)
et + c2

[(
2
1

)
tet +

(
1
0

)
et

]
2. x = c1

(
1
2

)
+ c2

[(
1
2

)
t −
(

0
1
2

)]

3. x = c1

(
2
1

)
e−t + c2

[(
2
1

)
te−t +

(
0
2

)
e−t

]

4. x = c1

(
1
1

)
e−t/2 + c2

[(
1
1

)
te−t/2 +

(
0
2
5

)
e−t/2

]

5. x = c1


−3

4
2


 e−t + c2


 0

1
−1


 e2t + c3




 0

1
−1


 te2t +


1

0
1


 e2t




6. x = c1


1

1
1


 e2t + c2


 1

0
−1


 e−t + c3


 0

1
−1


 e−t

Unknown
See SSM for detailed solutions to 2, 4

Unknown
6, 10

Unknown
11

Unknown
1

Unknown
3, 5
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7. x =
(

3 + 4t
2 + 4t

)
e−3t 8. x =

(
3

−1

)
e−t − 6

(
1
1

)
te−t

9. x =
(

3
−2

)
et/2 + 3

2

(
1

−1

)
tet/2 10. x = 2

(
1
2

)
+ 14

(
3

−1

)
t

11. x =

 −1

2
−33


 et + 4


 0

1
−6


 tet + 3


0

0
1


 e2t

12. x = 4

3


1

1
1


 e−t/2 + 1

3


 2

5
−7


 e−7t/2

13. x = c1

(
2
1

)
t + c2

[(
2
1

)
t ln t +

(
1
0

)
t

]

14. x = c1

(
1
1

)
t−3 + c2

[(
1
1

)
t−3 ln t −

(
0
1
4

)
t−3

]

16. (b)

(
I
V

)
= −

(
1

−2

)
e−t/2 +

[(
1

−2

)
te−t/2 +

(
2
0

)
e−t/2

]

17. (b) x(1)(t) =

 0

1
−1


 e2t

(c) x(2)(t) =

 0

1
−1


 te2t +


1

1
0


 e2t

(d) x(3)(t) =

 0

1
−1


 (t2/2)e2t +


1

1
0


 te2t +


2

0
3


 e2t

(e) �(t) = e2t




0 1 t + 2

1 t + 1 (t2/2) + t

−1 −t −(t2/2) + 3




(f) T =




0 1 2

1 1 0

−1 0 3


 , T−1 =




−3 3 2

3 −2 −2

−1 1 1


 ,

J =




2 1 0

0 2 1

0 0 2




Unknown
See SSM for detailed solutions to 9

Unknown
11, 12, 14

Unknown
15, 17a

Unknown
17bcd

Unknown
17ef
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18. (a) x(1)(t) =

1

0
2


 et , x(2)(t) =


 0

2
−3


 et

(d) x(3)(t) =

 2

4
−2


 tet +


 0

0
−1


 et

(e) �(t) = et


1 0 2t

0 2 4t
2 −3 −2t − 1


 or et


1 2 2t

0 4 4t
2 −2 −2t − 1




(f) T =




1 2 0

0 4 0

2 −2 −1


 , T−1 =




1 −1/2 0

0 1/4 0

2 −3/2 −1


 ,

J =




1 0 0

0 1 1

0 0 1




19. (a) J2 =
(

λ2 2λ

0 λ2

)
, J3 =

(
λ3 3λ2

0 λ3

)
, J4 =

(
λ4 4λ3

0 λ4

)

(c) exp(Jt) = eλt

(
1 t

0 1

)

(d) x = exp(Jt)x0

20. (c) exp(Jt) = eλt




1 0 0

0 1 t

0 0 1


 21. (c) exp(Jt) = eλt




1 t t2/2

0 1 t

0 0 1




Section 7.9, page 417

1. x = c1

(
1
1

)
et + c2

(
1
3

)
e−t + 3

2

(
1
1

)
tet − 1

4

(
1
3

)
et +

(
1
2

)
t −
(

0
1

)

2. x = c1

(√
3

1

)
e2t + c2

(
1

−√
3

)
e−2t −

(
2/3

1/
√

3

)
et +

( −1
2/

√
3

)
e−t

3. x = 1
5 (2t − 3

2 sin 2t − 1
2 cos 2t + c1)

(
5 cos t

2 cos t + sin t

)

+ 1
5 (−t − 1

2 sin 2t + 3
2 cos 2t + c2)

(
5 sin t

− cos t + 2 sin t

)

4. x = c1

(
1

−4

)
e−3t + c2

(
1
1

)
e2t −

(
0
1

)
e−2t + 1

2

(
1
0

)
et

5. x = c1

(
1
2

)
+ c2

[(
1
2

)
t − 1

2

(
0
1

)]
− 2

(
1
2

)
ln t +

(
2
5

)
t−1 −

(
1
2
0

)
t−2

6. x = c1

(
1
2

)
+ c2

(−2
1

)
e−5t +

(
1
2

)
ln t + 8

5

(
1
2

)
t + 4

25

(−2
1

)

7. x = c1

(
1
2

)
e3t + c2

(
1

−2

)
e−t + 1

4

(
1

−8

)
et

Unknown
See SSM for detailed solutions to 19abc

Unknown
19d

Unknown
1, 2

Unknown
3

Unknown
4
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8. x = c1

(
1
1

)
et + c2

(
1
3

)
e−t +

(
1
0

)
et + 2

(
1
1

)
tet

9. x = c1

(
1
1

)
e−t/2 + c2

(
1

−1

)
e−2t +

( 5
2
3
2

)
t −
( 17

4
15
4

)
+
( 1

6
1
2

)
et

10. x = c1

(
1√
2

)
e−t + c2

(
−√

2
1

)
e−4t − 1

3

(√
2 − 1

2 − √
2

)
te−t + 1

9

(
2 + √

2
−1 − √

2

)
e−t

11. x = ( 1
2 sin2 t + c1)

(
5 cos t

2 cos t + sin t

)
+ (− 1

2 t − 1
2 sin t cos t + c2)

(
5 sin t

− cos t + 2 sin t

)

12. x = [ 1
5 ln(sin t) − ln(− cos t) − 2

5 t + c1]

(
5 cos t

2 cos t + sin t

)

+ [ 2
5 ln(sin t) − 4

5 t + c2]

(
5 sin t

− cos t + 2 sin t

)

13. (a) �(t) =
(

e−t/2 cos 1
2 t e−t/2 sin 1

2 t

4e−t/2 sin 1
2 t −4e−t/2 cos 1

2 t

)
(b) x = e−t/2

(
sin 1

2 t

4 − 4 cos 1
2 t

)

14. x = c1

(
1
1

)
t + c2

(
1
3

)
t−1 −

(
2
3

)
+ 1

2

(
1
3

)
t −
(

1
1

)
t ln t − 1

3

(
4
3

)
t2

15. x = c1

(
2
1

)
t2 + c2

(
1
2

)
t−1 +

(
3
2

)
t + 1

10

(−2
1

)
t4 − 1

2

(
2
3

)

C H A P T E R 8 Section 8.1, page 427

1. (a) 1.1975, 1.38549, 1.56491, 1.73658
(b) 1.19631, 1.38335, 1.56200, 1.73308
(c) 1.19297, 1.37730, 1.55378, 1.72316
(d) 1.19405, 1.37925, 1.55644, 1.72638

2. (a) 1.59980, 1.29288, 1.07242, 0.930175
(b) 1.61124, 1.31361, 1.10012, 0.962552
(c) 1.64337, 1.37164, 1.17763, 1.05334
(d) 1.63301, 1.35295, 1.15267, 1.02407

3. (a) 1.2025, 1.41603, 1.64289, 1.88590
(b) 1.20388, 1.41936, 1.64896, 1.89572
(c) 1.20864, 1.43104, 1.67042, 1.93076
(d) 1.20693, 1.42683, 1.66265, 1.91802

4. (a) 1.10244, 1.21426, 1.33484, 1.46399
(b) 1.10365, 1.21656, 1.33817, 1.46832
(c) 1.10720, 1.22333, 1.34797, 1.48110
(d) 1.10603, 1.22110, 1.34473, 1.47688

5. (a) 0.509239, 0.522187, 0.539023, 0.559936
(b) 0.509701, 0.523155, 0.540550, 0.562089
(c) 0.511127, 0.526155, 0.545306, 0.568822
(d) 0.510645, 0.525138, 0.543690, 0.566529

6. (a) −0.920498, −0.857538, −0.808030, −0.770038
(b) −0.922575, −0.860923, −0.812300, −0.774965
(c) −0.928059, −0.870054, −0.824021, −0.788686
(d) −0.926341, −0.867163, −0.820279, −0.784275

7. (a) 2.90330, 7.53999, 19.4292, 50.5614
(b) 2.93506, 7.70957, 20.1081, 52.9779
(c) 3.03951, 8.28137, 22.4562, 61.5496
(d) 3.00306, 8.07933, 21.6163, 58.4462

Unknown
See SSM for detailed solutions to 12, 14

Unknown
1ac, 5ac, 7ac
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8. (a) 0.891830, 1.25225, 2.37818, 4.07257
(b) 0.908902, 1.26872, 2.39336, 4.08799
(c) 0.958565, 1.31786, 2.43924, 4.13474
(d) 0.942261, 1.30153, 2.42389, 4.11908

9. (a) 3.95713, 5.09853, 6.41548, 7.90174
(b) 3.95965, 5.10371, 6.42343, 7.91255
(c) 3.96727, 5.11932, 6.44737, 7.94512
(d) 3.96473, 5.11411, 6.43937, 7.93424

10. (a) 1.60729, 2.46830, 3.72167, 5.45963
(b) 1.60996, 2.47460, 3.73356, 5.47774
(c) 1.61792, 2.49356, 3.76940, 5.53223
(d) 1.61528, 2.48723, 3.75742, 5.51404

11. (a) −1.45865, −0.217545, 1.05715, 1.41487
(b) −1.45322, −0.180813, 1.05903, 1.41244
(c) −1.43600, −0.0681657, 1.06489, 1.40575
(d) −1.44190, −0.105737, 1.06290, 1.40789

12. (a) 0.587987, 0.791589, 1.14743, 1.70973
(b) 0.589440, 0.795758, 1.15693, 1.72955
(c) 0.593901, 0.808716, 1.18687, 1.79291
(d) 0.592396, 0.804319, 1.17664, 1.77111

15. 1.595, 2.4636

16. en+1 = [2φ( tn) − 1]h2, |en+1| ≤
[

1 + 2 max
0≤t≤1

|φ(t)|
]

h2,

en+1 = e2tn h2, |e1| ≤ 0.012, |e4| ≤ 0.022

17. en+1 = [2φ( tn) − tn]h2, |en+1| ≤
[

1 + 2 max
0≤t≤1

|φ(t)|
]

h2,

en+1 = 2e2tn h2, |e1| ≤ 0.024, |e4| ≤ 0.045

18. en+1 = [tn + t2
nφ( tn) + φ3( tn)]h

2 19. en+1 = [19 − 15tnφ
−1/2( tn)]h

2/4
20. en+1 = {1 + [ tn + φ( tn)]

−1/2}h2/4

21. en+1 = {2 − [φ( tn) + 2t2
n] exp[−tnφ( tn)] − tn exp[−2tnφ( tn)]}h2/2

22. (a) φ(t) = 1 + (1/5π) sin 5π t (b) 1.2, 1.0, 1.2
(c) 1.1, 1.1, 1.0, 1.0 (d) h < 1/

√
50π ∼= 0.08

24. en+1 = − 1
2 φ′′( tn)h

2 25. (a) 1.55, 2.34, 3.46, 5.07
(b) 1.20, 1.39, 1.57, 1.74
(c) 1.20, 1.42, 1.65, 1.90

26. (a) 0 (b) 60 (c) −92.16 27. 0.224 �= 0.225

Section 8.2, page 434

1. (a) 1.19512, 1.38120, 1.55909, 1.72956
(b) 1.19515, 1.38125, 1.55916, 1.72965
(c) 1.19516, 1.38126, 1.55918, 1.72967

2. (a) 1.62283, 1.33460, 1.12820, 0.995445
(b) 1.62243, 1.33386, 1.12718, 0.994215
(c) 1.62234, 1.33368, 1.12693, 0.993921

3. (a) 1.20526, 1.42273, 1.65511, 1.90570
(b) 1.20533, 1.42290, 1.65542, 1.90621
(c) 1.20534, 1.42294, 1.65550, 1.90634

4. (a) 1.10483, 1.21882, 1.34146, 1.47263
(b) 1.10484, 1.21884, 1.34147, 1.47262
(c) 1.10484, 1.21884, 1.34147, 1.47262

John Wiley
 

Unknown
See SSM for detailed solutions to 9c

Unknown
15, 16

Unknown
19

Unknown
22d, 23abc, 24

Unknown
25b

Unknown
1a, 4
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5. (a) 0.510164, 0.524126, 0.542083, 0.564251
(b) 0.510168, 0.524135, 0.542100, 0.564277
(c) 0.510169, 0.524137, 0.542104, 0.564284

6. (a) −0.924650, −0.864338, −0.816642, −0.780008
(b) −0.924550, −0.864177, −0.816442, −0.779781
(c) −0.924525, −0.864138, −0.816393, −0.779725

7. (a) 2.96719, 7.88313, 20.8114, 55.5106
(b) 2.96800, 7.88755, 20.8294, 55.5758

8. (a) 0.926139, 1.28558, 2.40898, 4.10386
(b) 0.925815, 1.28525, 2.40869, 4.10359

9. (a) 3.96217, 5.10887, 6.43134, 7.92332
(b) 3.96218, 5.10889, 6.43138, 7.92337

10. (a) 1.61263, 2.48097, 3.74556, 5.49595
(b) 1.61263, 2.48092, 3.74550, 5.49589

11. (a) −1.44768, −0.144478, 1.06004, 1.40960
(b) −1.44765, −0.143690, 1.06072, 1.40999

12. (a) 0.590897, 0.799950, 1.16653, 1.74969
(b) 0.590906, 0.799988, 1.16663, 1.74992

15. en+1 = (38h3/3) exp(4tn), |en+1| ≤ 37, 758.8h3 on 0 ≤ t ≤ 2, |e1| ≤ 0.00193389
16. en+1 = (2h3/3) exp(2tn), |en+1| ≤ 4.92604h3 on 0 ≤ t ≤ 1, |e1| ≤ 0.000814269
17. en+1 = (4h3/3) exp(2tn), |en+1| ≤ 9.85207h3 on 0 ≤ t ≤ 1, |e1| ≤ 0.00162854
18. h ∼= 0.071 19. h ∼= 0.023
20. h ∼= 0.081 21. h ∼= 0.117
23. 1.19512, 1.38120, 1.55909, 1.72956 24. 1.62268, 1.33435, 1.12789, 0.995130
25. 1.20526, 1.42273, 1.65511, 1.90570 26. 1.10485, 1.21886, 1.34149, 1.47264

Section 8.3, page 438

1. (a) 1.19516, 1.38127, 1.55918, 1.72968
(b) 1.19516, 1.38127, 1.55918, 1.72968

2. (a) 1.62231, 1.33362, 1.12686, 0.993839
(b) 1.62230, 1.33362, 1.12685, 0.993826

3. (a) 1.20535, 1.42295, 1.65553, 1.90638
(b) 1.20535, 1.42296, 1.65553, 1.90638

4. (a) 1.10484, 1.21884, 1.34147, 1.47262
(b) 1.10484, 1.21884, 1.34147, 1.47262

5. (a) 0.510170, 0.524138, 0.542105, 0.564286
(b) 0.520169, 0.524138, 0.542105, 0.564286

6. (a) −0.924517, −0.864125, −0.816377, −0.779706
(b) −0.924517, −0.864125, −0.816377, −0.779706

7. (a) 2.96825, 7.88889, 20.8349, 55.5957
(b) 2.96828, 7.88904, 20.8355, 55.5980

8. (a) 0.925725, 1.28516, 2.40860, 4.10350
(b) 0.925711, 1.28515, 2.40860, 4.10350

9. (a) 3.96219, 5.10890, 6.43139, 7.92338
(b) 3.96219, 5.10890, 6.43139, 7.92338

10. (a) 1.61262, 2.48091, 3.74548, 5.49587
(b) 1.61262, 2.48091, 3.74548, 5.49587

11. (a) −1.44764, −0.143543, 1.06089, 1.41008
(b) −1.44764, −0.143427, 1.06095, 1.41011

12. (a) 0.590909, 0.800000, 1.166667, 1.75000
(b) 0.590909, 0.800000, 1.166667, 1.75000

Unknown
See SSM for detailed solutions to 10, 11

Unknown
14abc, 15

Unknown
19, 24

Unknown
4, 11

Unknown
14abc
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Section 8.4, page 444

1. (a) 1.7296801, 1.8934697
(b) 1.7296802, 1.8934698
(c) 1.7296805, 1.8934711

2. (a) 0.993852, 0.925764
(b) 0.993846, 0.925746
(c) 0.993869, 0.925837

3. (a) 1.906382, 2.179567
(b) 1.906391, 2.179582
(c) 1.906395, 2.179611

4. (a) 1.4726173, 1.6126215
(b) 1.4726189, 1.6126231
(c) 1.4726199, 1.6126256

5. (a) 0.56428577, 0.59090918
(b) 0.56428581, 0.59090923
(c) 0.56428588, 0.59090952

6. (a) −0.779693, −0.753135
(b) −0.779692, −0.753137
(c) −0.779680, −0.753089

7. (a) 2.96828, 7.88907, 20.8356, 55.5984
(b) 2.96829, 7.88909, 20.8357, 55.5986
(c) 2.96831, 7.88926, 20.8364, 55.6015

8. (a) 0.9257133, 1.285148, 2.408595, 4.103495
(b) 0.9257124, 1.285148, 2.408595, 4.103495
(c) 0.9257248, 1.285158, 2.408594, 4.103493

9. (a) 3.962186, 5.108903, 6.431390, 7.923385
(b) 3.962186, 5.108903, 6.431390, 7.923385
(c) 3.962186, 5.108903, 6.431390, 7.923385

10. (a) 1.612622, 2.480909, 3.745479, 5.495872
(b) 1.612622, 2.480909, 3.745479, 5.495873
(c) 1.612623, 2.480905, 3.745473, 5.495869

11. (a) −1.447639, −0.1436281, 1.060946, 1.410122
(b) −1.447638, −0.1436762, 1.060913, 1.410103
(c) −1.447621, −0.1447219, 1.060717, 1.410027

12. (a) 0.5909091, 0.8000000, 1.166667, 1.750000
(b) 0.5909091, 0.8000000, 1.166667, 1.750000
(c) 0.5909092, 0.8000002, 1.166667, 1.750001

Section 8.5, page 454

1. (b) φ2(t) − φ1(t) = 0.001et → ∞ as t → ∞
2. (b) φ1(t) = ln[et/(2 − et )]; φ2(t) = ln[1/(1 − t)]
3. (a,b) h = 0.00025 is sufficient. (c) h = 0.005 is sufficient.
4. (a) y = 4e−10t + (t2/4) (c) Runge-Kutta is stable for h = 0.25 but unstable

for h = 0.3. (d) h = 5/13 ∼= 0.384615 is small enough.
5. (a) y = t 6. (a) y = t2

Section 8.6, page 457

1. (a) 1.26, 0.76; 1.7714, 1.4824; 2.58991, 2.3703; 3.82374, 3.60413;
5.64246, 5.38885
(b) 1.32493, 0.758933; 1.93679, 1.57919; 2.93414, 2.66099; 4.48318, 4.22639;
6.84236, 6.56452
(c) 1.32489, 0.759516; 1.9369, 1.57999; 2.93459, 2.66201; 4.48422, 4.22784;
6.8444, 6.56684

2. (a) 1.451, 1.232; 2.16133, 1.65988; 3.29292, 2.55559; 5.16361, 4.7916;
8.54951, 12.0464
(b) 1.51844, 1.28089; 2.37684, 1.87711; 3.85039, 3.44859; 6.6956, 9.50309;
15.0987, 64.074
(c) 1.51855, 1.2809; 2.3773, 1.87729; 3.85247, 3.45126; 6.71282, 9.56846;
15.6384, 70.3792

Unknown
See SSM for detailed solutions to 4a

Unknown
4bc, 7a

Unknown
7bc

Unknown
16

Unknown
2ab

Unknown
2c, 4ab

Unknown
4cd, 5ac

Unknown
2ab
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3. (a) 0.582, 1.18; 0.117969, 1.27344; −0.336912, 1.27382; −0.730007, 1.18572;
−1.02134, 1.02371
(b) 0.568451, 1.15775; 0.109776, 1.22556; −0.32208, 1.20347;
−0.681296, 1.10162; −0.937852, 0.937852
(c) 0.56845, 1.15775; 0.109773, 1.22557; −0.322081, 1.20347;
−0.681291, 1.10161; −0.937841, 0.93784

4. (a) −0.198, 0.618; −0.378796, 0.28329; −0.51932, −0.0321025;
−0.594324, −0.326801; −0.588278, −0.57545
(b) −0.196904, 0.630936; −0.372643, 0.298888; −0.501302, −0.0111429;
−0.561270, −0.288943; −0.547053, −0.508303
(c) −0.196935, 0.630939; −0.372687, 0.298866; −0.501345, −0.0112184;
−0.561292, −0.28907; −0.547031, −0.508427

5. (a) 2.96225, 1.34538; 2.34119, 1.67121; 1.90236, 1.97158; 1.56602, 2.23895;
1.29768, 2.46732
(b) 3.06339, 1.34858; 2.44497, 1.68638; 1.9911, 2.00036; 1.63818, 2.27981;
1.3555, 2.5175
(c) 3.06314, 1.34899; 2.44465, 1.68699; 1.99075, 2.00107; 1.63781, 2.28057;
1.35514, 2.51827

6. (a) 1.42386, 2.18957; 1.82234, 2.36791; 2.21728, 2.53329; 2.61118, 2.68763;
2.9955, 2.83354
(b) 1.41513, 2.18699; 1.81208, 2.36233; 2.20635, 2.5258; 2.59826, 2.6794;
2.97806, 2.82487
(c) 1.41513, 2.18699; 1.81209, 2.36233; 2.20635, 2.52581; 2.59826, 2.67941;
2.97806, 2.82488

7. For h = 0.05 and 0.025: x = 10.227, y = −4.9294; these results agree with the exact
solution to five digits.

8. 1.543, 0.0707503; 1.14743, −1.3885 9. 1.99521, −0.662442

C H A P T E R 9 Section 9.1, page 468

1. (a) r1 = −1, �(1) = (1, 2)T ; r2 = 2, �(2) = (2, 1)T (b) saddle point, unstable
2. (a) r1 = 2, �(1) = (1, 3)T ; r2 = 4, �(2) = (1, 1)T (b) node, unstable
3. (a) r1 = −1, �(1) = (1, 3)T ; r2 = 1, �(2) = (1, 1)T (b) saddle point, unstable
4. (a) r1 = r2 = −3, �(1) = (1, 1)T (b) improper node, asymptotically stable
5. (a) r1, r2 = −1 ± i ; �(1)

, �(2) = (2 ± i, 1)T (b) spiral point, asymptotically stable
6. (a) r1, r2 = ±i ; �(1)

, �(2) = (2 ± i, 1)T (b) center, stable
7. (a) r1, r2 = 1 ± 2i ; �(1)

, �(2) = (1, 1 ∓ i)T (b) spiral point, unstable
8. (a) r1 = −1, �(1) = (1, 0)T ; r2 = −1/4, �(2) = (4, −3)T

(b) node, asymptotically stable
9. (a) r1 = r2 = 1, �(1) = (2, 1)T (b) improper node, unstable

10. (a) r1, r2 = ±3i ; �(1)
, �(2) = (2, −1 ± 3i)T (b) center, stable

11. (a) r1 = r2 = −1; �(1) = (1, 0)T , �(2) = (0, 1)T (b) proper node, asymptotically
stable

12. (a) r1, r2 = (1 ± 3i)/2; �(1)
, �(2) = (5, 3 ∓ 3i)T (b) spiral point, unstable

13. x0 = 1, y0 = 1; r1 = √
2, r2 = −√

2; saddle point, unstable
14. x0 = −1, y0 = 0; r1 = −1, r2 = −3; node, asymptotically stable
15. x0 = −2, y0 = 1; r1, r2 = −1 ± √

2 i ; spiral point, asymptotically stable
16. x0 = γ/δ, y0 = α/β; r1, r2 = ±√

βδ i ; center, stable
17. c2 > 4km, node, asymptotically stable; c2 = 4km, improper node, asymptotically

stable; c2 < 4km, spiral point, asymptotically stable

Unknown
See SSM for detailed solutions to 7, 8

Unknown
1abd, 4ab

Unknown
4d, 7abd, 10ab

Unknown
10d, 13, 17

Unknown
18ab, 19abc

Unknown
20
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Section 9.2, page 477

1. x = 4e−t , y = 2e−2t , y = x2/8
2. x = 4e−t , y = 2e2t , y = 32x−2; x = 4e−t , y = 0
3. x = 4 cos t, y = 4 sin t, x2 + y2 = 16; x = −4 sin t, y = 4 cos t, x2 + y2 = 16
4. x = √

a cos
√

ab t, y = −√
b sin

√
ab t; (x2/a) + (y2/b) = 1

5. (a, c) (− 1
2 , 1), saddle point, unstable; (0, 0), (proper) node, unstable

6. (a, c) (−√
3/3, − 1

2 ), saddle point, unstable; (
√

3/3, − 1
2 ), center, stable

7. (a, c) (0, 0), node, unstable; (0, 2), node, asymptotically stable;
( 1

2 , 1
2 ), saddle point, unstable; (1, 0), node, asymptotically stable

8. (a, c) (0, 0), saddle point, unstable;
(0, 1), spiral point, asymptotically stable; (−2, −2), node, asymptotically stable;
(3, −2), node, unstable

9. (a, c) (0, 0), spiral point, asymptotically stable;
(1 − √

2, 1 + √
2), saddle point, unstable; (1 + √

2, 1 − √
2), saddle point, unstable

10. (a, c) (0, 0), saddle point, unstable; (2, 2), spiral point, asymptotically stable;
(−1, −1), spiral point, asymptotically stable; (−2, 0), saddle point, unstable

11. (a, c) (0, 0), saddle point, unstable; (0, 1), saddle point, unstable;
( 1

2 , 1
2 ), center, stable; (− 1

2 , 1
2 ), center, stable

12. (a, c) (0, 0), saddle point, unstable; (
√

6, 0), spiral point, asymptotically stable;
(−√

6, 0), spiral point, asymptotically stable
13. (a, c) (0, 0), saddle point, unstable; (−2, 2), node, unstable;

(4, 4), spiral point, asymptotically stable
14. (a, c) (0, 0), spiral point, unstable 15. (a) 4x2 − y2 = c
16. (a) 4x2 + y2 = c 17. (a) (y − 2x)2(x + y) = c
18. (a) arctan(y/x) − ln

√
x2 + y2 = c 19. (a) 2x2 y − 2xy + y2 = c

20. (a) x2 y2 − 3x2 y − 2y2 = c 21. (a) (y2/2) − cos x = c
22. (a) x2 + y2 − (x4/12) = c

Section 9.3, page 487

1. linear and nonlinear: saddle point, unstable
2. linear and nonlinear: spiral point, asymptotically stable
3. linear: center, stable; nonlinear: spiral point or center, indeterminate
4. linear: improper node, unstable; nonlinear: node or spiral point, unstable
5. (a, b, c) (0, 0); u′ = −2u + 2v, v′ = 4u + 4v; r = 1 ± √

17;
saddle point, unstable
(−2, 2); u′ = 4u, v′ = 6u + 6v; r = 4, 6; node, unstable
(4, 4); u′ = −6u + 6v, v′ = −8u; r = −3 ± √

39 i ; spiral point, asymptotically
stable

6. (a, b, c) (0, 0); u′ = u, v′ = 3v; r = 1, 3; node, unstable
(1, 0); u′ = −u − v, v′ = 2v; r = −1, 2; saddle point, unstable
(0, 3

2 ); u′ = − 1
2 u, v′ = − 3

2 u − 3v; r = − 1
2 , −3; node, asymptotically stable

(−1, 2); u′ = u + v, v′ = −2u − 4v; r = (−3 ± √
17)/2; saddle point, unstable

7. (a, b, c) (1, 1); u′ = −v, v′ = 2u − 2v; r = −1 ± i ; spiral point, asymptotically
stable
(−1, 1); u′ = −v, v′ = −2u − 2v; r = −1 ± √

3; saddle point, unstable
8. (a, b, c) (0, 0); u′ = u, v′ = 1

2v; r = 1, 1
2 ; node, unstable

(0, 2); u′ = −u, v′ = − 3
2 u − 1

2v; r = −1, − 1
2 ; node, asymptotically stable

(1, 0); u′ = −u − v, v′ = − 1
4v; r = −1, − 1

4 ; node, asymptotically stable

( 1
2 , 1

2 ); u′ = − 1
2 u − 1

2 v, v′ = − 3
8 u − 1

8 v; r = (−5 ± √
57)/16;

saddle point, unstable

Unknown
 7abc, 12a

Unknown
See SSM for detailed solutions to 1, 3

Unknown
12bc, 15ab, 19a, 21a

Unknown
23, 24, 25, 26

Unknown
3, 4

Unknown
6abc
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9. (a, b, c) (0, 0); u′ = −u + v, v′ = 2u; r = −2, 1; saddle point, unstable
(0, 1); u′ = −u − v, v′ = 3u; r = (−1 ± √

11 i)/2; spiral point, asymptotically
stable
(−2, −2); u′ = −5u + 5v, v′ = −2v; r = −5, −2; node, asymptotically stable
(3, −2); u′ = 5u + 5v, v′ = 3v; r = 5, 3; node, unstable

10. (a, b, c) (0, 0); u′ = u, v′ = v; r = 1, 1; node or spiral point, unstable
(−1, 0); u′ = −u, v′ = 2v; r = −1, 2; saddle point, unstable

11. (a, b, c) (0, 0); u′ = 2u + v, v′ = u − 2v; r = ±√
5; saddle point, unstable

(−1.1935, −1.4797); u′ = −1.2399u − 6.8393v, v′ = 2.4797u − 0.80655v;
r = −1.0232 ± 4.1125i ; spiral point, asymptotically stable

12. (a, b, c) (0, ±2nπ), n = 0, 1, 2, . . . ; u′ = v, v′ = −u; r = ±i ; center or spiral
point, indeterminate
[2, ±(2n − 1)π ], n = 1, 2, 3, . . . ; u′ = −3v, v′ = −u; r = ±√

3;
saddle point, unstable

13. (a, b, c) (0, 0); u′ = u, v′ = v; r = 1, 1; node or spiral point, unstable
(1, 1); u′ = u − 2v, v′ = −2u + v; r = 3, −1; saddle point, unstable

14. (a, b, c) (1, 1); u′ = −u − v, v′ = u − 3v; r = −2, −2;
node or spiral point, asymptotically stable
(−1, −1); u′ = u + v, v′ = u − 3v; r = −1 ± √

5; saddle point, unstable
15. (a, b, c) (0, 0); u′ = −2u − v, v′ = u − v; r = (−3 ± √

3 i)/2;
spiral point, asymptotically stable
(−0.33076, 1.0924) and (0.33076, −1.0924); u′ = −3.5216u − 0.27735v,

v′ = 0.27735u + 2.6895v; r = −3.5092, 2.6771; saddle point, unstable
16. (a, b, c) (0, 0); u′ = u + v, v′ = −u + v; r = 1 ± i; spiral point, unstable
19. (b, c) Refer to Table 9.3.1.
21. (a) R = A, T ∼= 3.17 (b) R = A, T ∼= 3.20, 3.35, 3.63, 4.17

(c) T → π as A → 0 (d) A = π

22. (b) vc
∼= 4.00 23. (b) vc

∼= 4.51
28. (a) dx/dt = y, dy/dt = −g(x) − c(x)y

(b) The linear system is dx/dt = y, dy/dt = −g′(0)x − c(0)y.
(c) The eigenvalues satisfy r2 + c(0)r + g′(0) = 0.

Section 9.4, page 501

1. (b, c) (0, 0); u′ = 3
2 u, v′ = 2v; r = 3

2 , 2; node, unstable

(0, 2); u′ = 1
2 u, v′ = − 3

2 u − 2v; r = 1
2 , −2; saddle point, unstable

( 3
2 , 0); u′ = − 3

2 u − 3
4v, v′ = 7

8v; r = − 3
2 , 7

8 ; saddle point, unstable

( 4
5 , 7

5 ); u′ = − 4
5 u − 2

5v, v′ = − 21
20 u − 7

5 v; r = (−22 ± √
204)/20;

node, asymptotically stable
2. (b, c) (0, 0); u′ = 3

2 u, v′ = 2v; r = 3
2 , 2; node, unstable

(0, 4); u′ = − 1
2 u, v′ = −6u − 2v; r = − 1

2 , −2; node, asymptotically stable

( 3
2 , 0); u′ = − 3

2 u − 3
4v, v′ = − 1

4v; r = − 1
4 , − 3

2 ; node, asymptotically stable

(1, 1); u′ = −u − 1
2 v, v′ = − 3

2 u − 1
2v; r = (−3 ± √

13)/4;
saddle point, unstable

3. (b, c) (0, 0); u′ = 3
2 u, v′ = 2v; r = 3

2 , 2; node, unstable

(0, 2); u′ = − 1
2 u, v′ = − 9

4 u − 2v; r = − 1
2 , −2; node, asymptotically stable

(3, 0); u′ = − 3
2 u − 3v, v′ = − 11

8 v; r = − 3
2 , − 11

8 ; node, asymptotically stable

( 4
5 , 11

10 ); u′ = − 2
5 u − 4

5v, v′ = − 99
80 u − 11

10 v; r = −1.80475, 0.30475;
saddle point, unstable

Unknown
See SSM for detailed solutions to 10ab

Unknown
10c

Unknown
18abc

Unknown
22ab, 23a, 27a

Unknown
3bc

Unknown
3e

Unknown
27b, 28ab
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4. (b, c) (0, 0); u′ = 3
2 u, v′ = 3

4 v; r = 3
2 , 3

4 ; node, unstable

(0, 3
4 ); u′ = 3

4 u, v′ = − 3
4 v; r = ± 3

4 ; saddle point, unstable

(3, 0); u′ = − 3
2 u − 3v, v′ = 3

8 v; r = − 3
2 , 3

8 ; saddle point, unstable

(2, 1
2 ); u′ = −u − 2v, v′ = − 1

16 u − 1
2v; r = −1.18301, −0.31699;

node, asymptotically stable
5. (b, c) (0, 0); u′ = u, v′ = 3

2 v; r = 1, 3
2 ; node, unstable

(0, 3
2 ); u′ = − 1

2 u, v′ = − 3
2 u − 3

2 v; r = − 1
2 , − 3

2 ; node, asymptotically stable

(1, 0); u′ = −u − v, v′ = 1
2 v; r = −1, 1

2 ; saddle point, unstable

6. (b, c) (0, 0); u′ = u, v′ = 5
2 v; r = 1, 5

2 ; node, unstable

(0, 5
3 ); u′ = 11

6 u, v′ = 5
12 u − 5

2v; r = 11
6 , − 5

2 ; saddle point, unstable

(1, 0); u′ = −u + 1
2v, v′ = 11

4 v; r = −1, 11
4 ; saddle point, unstable

(2, 2); u′ = −2u + v, v′ = 1
2 u − 3v; r = (−5 ± √

3)/2;
node, asymptotically stable

8. (a) Critical points are x = 0, y = 0; x = ε1/σ1, y = 0; x = 0, y = ε2/σ2.
x → 0, y → ε2/σ2 as t → ∞; the redear survive.
(b) Same as part (a) except x → ε1/σ1, y → 0 as t → ∞; the bluegill survive.

9. (a) X = (B − γ1 R)/(1 − γ1γ2), Y = (R − γ2 B)/(1 − γ1γ2)

(b) X is reduced, Y is increased; yes, if B becomes less than γ1 R, then x → 0 and y → R
as t → ∞.

10. (a) σ1ε2 − α2ε1 �= 0: (0, 0), (0, ε2/σ2), (ε1/σ1, 0)

σ1ε2 − α2ε1 = 0: (0, 0), and all points on the line σ1x + α1 y = ε1
(b) σ1ε2 − α2ε1 > 0: (0, 0) is unstable node; (ε1/σ1, 0) is saddle point;
(0, ε2/σ2) is asymptotically stable node.
σ1ε2 − α2ε1 < 0: (0, 0) is unstable node; (0, ε2/σ2) is saddle point;
(ε1/σ1, 0) is asymptotically stable node.
(c) (0, 0) is unstable node; points on the line σ1x + α1 y = ε1 are stable, nonisolated critical
points.

12. (a) (0, 0), (0, 2 + 2α), (4, 0), (2, 2)

(b) α = 0.75, asymptotically stable node; α = 1.25, (unstable) saddle point
(c) u′ = −2u − 2v, v′ = −2αu − 2v

(d) r = −2 ± 2
√

α; α0 = 1
13. (a) (0, 0), saddle point; (0.15, 0), spiral point if γ 2 < 1.11, node if γ 2 ≥ 1.11;

(2, 0), saddle point
(c) γ ∼= 1.20

Section 9.5, page 509

1. (b, c) (0, 0); u′ = 3
2 u, v′ = − 1

2 v; r = 3
2 , − 1

2 ; saddle point, unstable

( 1
2 , 3); u′ = − 1

4v, v′ = 3u; r = ±√
3 i/2; center or spiral point, indeterminate

2. (b, c) (0, 0); u′ = u, v′ = − 1
4v; r = 1, − 1

4 ; saddle point, unstable

( 1
2 , 2); u′ = − 1

4v, v′ = u; r = ± 1
2 i ; center or spiral point, indeterminate

3. (b, c) (0, 0); u′ = u, v′ = − 1
4v; r = 1, − 1

4 ; saddle point, unstable

(2, 0); u′ = −u − v, v′ = 3
4v; r = −1, 3

4 ; saddle point, unstable

( 1
2 , 3

2 ); u′ = − 1
4 u − 1

4 v, v′ = 3
4 u; r = (−1 ± √

11 i)/8; spiral point,
asymptotically stable

4. (b, c) (0, 0); u′ = 9
8 u, v′ = −v; r = 9

8 , −1; saddle point, unstable

( 9
8 , 0); u′ = − 9

8 u − 9
16 v, v′ = 1

8v; r = − 9
8 , 1

8 ; saddle point, unstable

(1, 1
4 ); u′ = −u − 1

2v, v′ = 1
4 u; r = (−1 ± √

0.5)/2; node, asymptotically stable

Unknown
See SSM for detailed solutions to 5bc, 6bc

Unknown
6d

Unknown
6ef, 8a

Unknown
8b, 9ab, 12a

Unknown
12bcd

Unknown
3bc

Unknown
3ef
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5. (b, c) (0, 0); u′ = −u, v′ = − 3
2 v; r = −1, − 3

2 ; node, asymptotically stable

( 1
2 , 0); u′ = 3

4 u − 3
20v, v′ = −v; r = −1, 3

4 ; saddle point, unstable

(2, 0); u′ = −3u − 3
5v, v′ = 1

2v; r = −3, 1
2 ; saddle point, unstable

( 3
2 , 5

3 ); u′ = − 3
4 u − 9

20 v, v′ = 5
3 u; r = (−3 ± √

39 i)/8; spiral point,
asymptotically stable

6. t = 0, T, 2T, . . . : H is a max., d P/dt is a max.

t = T/4, 5T/4, . . . : d H/dt is a min., P is a max.

t = T/2, 3T/2, . . . : H is a min., d P/dt is a min.

t = 3T/4, 7T/4, . . . : d H/dt is a max., P is a min.

7. (a)
√

c α/
√

a γ (b)
√

3
(d) The ratio of prey amplitude to predator amplitude increases very slowly as the initial
point moves away from the equilibrium point.

8. (a) 4π/
√

3 ∼= 7.2552
(c) The period increases slowly as the initial point moves away from the equilibrium point.

9. (a) T ∼= 6.5 (b) T ∼= 3.7, T ∼= 11.5 (c) T ∼= 3.8, T ∼= 11.1
11. Trap foxes in half-cycle when d P/dt > 0, trap rabbits in half-cycle when d H/dt > 0,

trap rabbits and foxes in quarter-cycle when d P/dt > 0 and d H/dt > 0, trap neither in
quarter-cycle when d P/dt < 0 and d H/dt < 0.

12. d H/dt = aH − αH P − β H , d P/dt = −cP + γ H P − δP , where β and δ are constants
of proportionality. New center is H = (c + δ)/γ > c/γ and P = (a − β)/α < a/α, so
equilibrium value of prey is increased and equilibrium value of predator is decreased!

13. Let A = a/σ − c/γ > 0. The critical points are (0, 0), (a/σ, 0), and (c/γ, σ A/α), where
(0, 0) is a saddle point, (a/σ, 0) is a saddle point, and (c/γ, σ A/α) is an asymptotically
stable node if (cσ/γ )2 − 4cσ A ≥ 0 or an asymptotically stable spiral point if (cσ/γ )2 −
4cσ A < 0. (H, P) → (c/γ, σ A/α) as t → ∞.

Section 9.7, page 530

1. r = 1, θ = t + t0, stable limit cycle
2. r = 1, θ = −t + t0, semistable limit cycle
3. r = 1, θ = t + t0, stable limit cycle; r = 3, θ = t + t0, unstable periodic solution
4. r = 1, θ = −t + t0, unstable periodic solution; r = 2, θ = −t + t0, stable limit cycle
5. r = 2n − 1, θ = t + t0, n = 1, 2, 3, . . . , stable limit cycle;

r = 2n, θ = t + t0, n = 1, 2, 3, . . . , unstable periodic solution
6. r = 2, θ = −t + t0, semistable limit cycle;

r = 3, θ = −t + t0, unstable periodic solution
8. (a) Counterclockwise

(b) r = 1, θ = t + t0, stable limit cycle; r = 2, θ = t + t0, semistable limit cycle;
r = 3, θ = t + t0, unstable periodic solution

9. r = √
2, θ = −t + t0, unstable periodic solution

14. (a) µ = 0.2, T ∼= 6.29; µ = 1, T ∼= 6.66; µ = 5, T ∼= 11.60
15. (a) x ′ = y, y′ = −x + µy − µy3/3

(b) 0 < µ < 2, unstable spiral point; µ ≥ 2, unstable node
(c) A ∼= 2.16, T ∼= 6.65
(d) µ = 0.2, A ∼= 1.99, T ∼= 6.31; µ = 0.5, A ∼= 2.03, T ∼= 6.39;

µ = 2, A ∼= 2.60, T ∼= 7.65; µ = 5, A ∼= 4.36, T ∼= 11.60
16. (a) k = 0, (1.1994, −0.62426); k = 0.5, (0.80485, −0.13106)

(b) k0
∼= 0.3465 (c) T ∼= 12.54 (d) k1

∼= 0.3369

Section 9.8, page 538

1. (b) λ = λ1, �(1) = (0, 0, 1)T ; λ = λ2, �(2) = (20, 9 − √
81 + 40r, 0)T ;

λ = λ3, �(3) = (20, 9 + √
81 + 40r , 0)T

John Wiley
 

Unknown
See SSM for detailed solutions to 7abc, 11, 13

Unknown
1, 2, 4, 7, 8a

Unknown
8b, 9, 11, 13, 16a

Unknown
1ab
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(c) λ1
∼= −2.6667, �(1) = (0, 0, 1)T ; λ2

∼= −22.8277, �(2) ∼= (20, −25.6554, 0)T ;
λ3

∼= 11.8277, �(3) ∼= (20, 43.6554, 0)T

2. (c) λ1
∼= −13.8546; λ2, λ3

∼= 0.0939556 ± 10.1945i
5. (a) dV/dt = −2σ [r x2 + y2 + b(z − r)2 − br2]

C H A P T E R 1 0 Section 10.1, page 547

1. y = − sin x 2. y = (cot
√

2π cos
√

2x + sin
√

2x)/
√

2
3. y = 0 for all L; y = c2 sin x if sin L = 0.
4. y = − tan L cos x + sin x if cos L �= 0; no solution if cos L = 0.
5. No solution.
6. y = (−π sin

√
2x + x sin

√
2π)/2 sin

√
2π

7. No solution. 8. y = c2 sin 2x + 1
3 sin x

9. y = c1 cos 2x + 1
3 cos x 10. y = 1

2 cos x
11. λn = [(2n − 1)/2]2, yn(x) = sin[(2n − 1)x/2]; n = 1, 2, 3, . . .

12. λn = [(2n − 1)/2]2, yn(x) = cos[(2n − 1)x/2]; n = 1, 2, 3, . . .

13. λ0 = 0, y0(x) = 1; λn = n2, yn(x) = cos nx; n = 1, 2, 3, . . .

14. λn = [(2n − 1)π/2L]2, yn(x) = cos[(2n − 1)πx/2L]; n = 1, 2, 3, . . .

15. λ0 = 0, y0(x) = 1; λn = (nπ/L)2, yn(x) = cos(nπx/L); n = 1, 2, 3, . . .

16. λn = −[(2n − 1)π/2L]2, yn(x) = sin[(2n − 1)πx/2L]; n = 1, 2, 3, . . .

Section 10.2, page 555

1. T = 2π/5 2. T = 1
3. Not periodic 4. T = 2L
5. T = 1 6. Not periodic
7. T = 2 8. T = 4
9. f (x) = 2L − x in L < x < 2L; f (x) = −2L − x in −3L < x < −2L

10. f (x) = x − 1 in 1 < x < 2; f (x) = x − 8 in 8 < x < 9
11. f (x) = −L − x in −L < x < 0

13. (b) f (x) = 2L

π

∞∑
n=1

(−1)n

n
sin

nπx

L

14. (b) f (x) = 1

2
− 2

π

∞∑
n=1

sin[(2n − 1)πx/L]

2n − 1

15. (b) f (x) = −π

4
+

∞∑
n=1

[
2 cos(2n − 1)x

π(2n − 1)2 + (−1)n+1 sin nx

n

]

16. (b) f (x) = 1

2
+ 4

π2

∞∑
n=1

cos(2n − 1)πx

(2n − 1)2

17. (b) f (x) = 3L

4
+

∞∑
n=1

[
2L cos[(2n − 1)πx/L]

(2n − 1)2π2 + (−1)n+1 L sin(nπx/L)

nπ

]

18. (b) f (x) =
∞∑

n=1

[
− 2

nπ
cos

nπ

2
+
(

2

nπ

)2

sin
nπ

2

]
sin

nπx

2

19. (b) f (x) = 4

π

∞∑
n=1

sin[(2n − 1)πx/2]

2n − 1

20. (b) f (x) = 2

π

∞∑
n=1

(−1)n+1

n
sin nπx

Unknown
See SSM for detailed solutions to 1c, 2abc, 3b

Unknown
3c, 4, 5ab

Unknown
2, 3, 7, 11, 15

Unknown
3, 5, 7, 10

Unknown
13ab, 15ab

Unknown
15a, 21abcd, 25
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21. (b) f (x) = 2

3
+ 8

π2

∞∑
n=1

(−1)n

n2 cos
nπx

2

22. (b) f (x) = 1

2
+ 12

π2

∞∑
n=1

cos[(2n − 1)πx/2]

(2n − 1)2 + 2

π

∞∑
n=1

(−1)n

n
sin

nπx

2

23. (b) f (x) = 11

12
+ 1

π2

∞∑
n=1

(−1)n − 5

n2 cos
nπx

2
+

∞∑
n=1

[
4[1 − (−1)n]

n3π3 − (−1)n

nπ

]
sin

nπx

2

24. (b) f (x) = 9

8
+

∞∑
n=1

[
162[(−1)n − 1]

n4π4 − 27(−1)n

n2π2

]
cos

nπx

3
−

∞∑
n=1

108(−1)n + 54

n3π3 sin
nπx

3

25. m = 81
26. m = 27

28.
∫ x

0
f (t) dt may not be periodic; for example, let f (t) = 1 + cos t.

Section 10.3, page 562

1. (a) f (x) = 4

π

∞∑
n=1

sin(2n − 1)πx

2n − 1

2. (a) f (x) = π

4
−

∞∑
n=1

[
2

(2n − 1)2π
cos(2n − 1)x + (−1)n

n
sin nx

]

3. (a) f (x) = L

2
+ 4L

π2

∞∑
n=1

cos[(2n − 1)πx/L]

(2n − 1)2

4. (a) f (x) = 2

3
+ 4

π2

∞∑
n=1

(−1)n+1

n2 cos nπx

5. (a) f (x) = 1

2
+ 2

π

∞∑
n=1

(−1)n−1

2n − 1
cos(2n − 1)x

6. (a) f (x) = a0

2
+

∞∑
n=1

(an cos nπx + bn sin nπx);

a0 = 1

3
, an = 2(−1)n

n2π2 , bn =
{ −1/nπ, n even

1/nπ − 4/n3π3, n odd

7. (a) f (x) = −π

4
+

∞∑
n=1

[
1 − cos nπ

πn2 cos nx − (−1)n

n
sin nx

]
(b) n = 10; max|e| = 1.6025 at x = ±π

n = 20; max|e| = 1.5867 at x = ±π

n = 40; max|e| = 1.5788 at x = ±π

(c) Not possible

8. (a) f (x) = 1

2
+ 2

π2

∞∑
n=1

1 − cos nπ

n2 cos nπx

(b) n = 10; max|e| = 0.02020 at x = 0, ±1
n = 20; max|e| = 0.01012 at x = 0, ±1
n = 40; max|e| = 0.005065 at x = 0, ±1

(c) n = 21

9. (a) f (x) = 2

π

∞∑
n=1

(−1)n+1

n
sin nπx

(b) n = 10, 20, 40; max|e| = 1 at x ± 1
(c) Not possible

Unknown
See SSM for detailed solutions to 27a

Unknown
2ab, 4a

Unknown
4b, 7abc
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10. (a) f (x) = 1

2
+

∞∑
n=1

[
6(1 − cos nπ)

n2π2 cos
nπx

2
+ 2 cos nπ

nπ
sin

nπx

2

]

(b) n = 10; lub|e| = 1.0606 as x → 2
n = 20; lub|e| = 1.0304 as x → 2
n = 40; lub|e| = 1.0152 as x → 2

(c) Not possible

11. (a) f (x) = 1

6
+

∞∑
n=1

[
2 cos nπ

n2π2 cos nπx − 2 − 2 cos nπ + n2π2 cos nπ

n3π3 sin nπx

]

(b) n = 10; lub|e| = 0.5193 as x → 1
n = 20; lub|e| = 0.5099 as x → 1
n = 40; lub|e| = 0.5050 as x → 1

(c) Not possible

12. (a) f (x) = − 12

π3

∞∑
n=1

(−1)n

n3 sin nπx

(b) n = 10; max|e| = 0.001345 at x = ±0.9735
n = 20; max|e| = 0.0003534 at x = ±0.9864
n = 40; max|e| = 0.00009058 at x = ±0.9931

(c) n = 4
13. y = (ω sin nt − n sin ωt)/ω(ω2 − n2), ω2 �= n2

y = (sin nt − nt cos nt)/2n2, ω2 = n2

14. y =
∞∑

n=1

bn(ω sin nt − n sin ωt)/ω(ω2 − n2), ω �= 1, 2, 3, . . .

y =
∞∑

n=1
n�=m

bn(m sin nt − n sin mt)/m(m2 − n2) + bm(sin mt − mt cos mt)/2m2, ω = m

15. y = 4

π

∞∑
n=1

1

ω2 − (2n − 1)2

[
1

2n − 1
sin(2n − 1)t − 1

ω
sin ωt

]

16. y = cos ωt + 1

2ω2 (1 − cos ωt) + 4

π2

∞∑
n=1

cos(2n − 1)π t − cos ωt

(2n − 1)2[ω2 − (2n − 1)2]

Section 10.4, page 570

1. Odd 2. Neither 3. Odd
4. Even 5. Even 6. Neither

14. f (x) = 1

4
+ 4

π2

∞∑
n=1

1 − cos(nπ/2)

n2 cos
nπx

2

f (x) = 4

π2

∞∑
n=1

(nπ/2) − sin(nπ/2)

n2 sin
nπx

2

15. f (x) = 1

2
+ 2

π

∞∑
n=1

(−1)n−1

2n − 1
cos

(2n − 1)πx

2

16. f (x) =
∞∑

n=1

2

nπ

(
− cos nπ + 2

nπ
sin

nπ

2

)
sin

nπx

2

17. f (x) = 1 18. f (x) = 4

π

∞∑
n=1

sin(2n − 1)x

2n − 1

19. f (x) =
∞∑

n=1

2

nπ

(
cos

nπ

3
+ cos

2nπ

3
− 2 cos nπ

)
sin

nx

3

Unknown
See SSM for detailed solutions to 12a

Unknown
12b, 14

Unknown
15, 16, 18a

Unknown
18b

Unknown
3, 6

Unknown
7, 10, 13, 14

Unknown
15, 18
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20. f (x) = 1

2
− 1

π

∞∑
n=1

sin 2nπx

n

21. f (x) = L

2
+ 4L

π2

∞∑
n=1

cos[(2n − 1)πx/L]

(2n − 1)2

22. f (x) = 2L

π

∞∑
n=1

sin(nπx/L)

n

23. (a) f (x) = π

4
+ 1

π

∞∑
n=1

[
2π

n
sin

nπ

2
+ 4

n2

(
cos

nπ

2
− 1
)]

cos
nx

2

24. (a) f (x) = 2
∞∑

n=1

(−1)n

n
sin nx

25. (a) f (x) =
∞∑

n=1

[
4n2π2(1 + cos nπ)

n3π3 + 16(1 − cos nπ)

n3π3

]
sin

nπx

2

26. (a) f (x) = 4

3
+ 16

π2

∞∑
n=1

1 + 3 cos nπ

n2 cos
nπx

4

27. (b) g(x) = 3

2
+ 6

π2

∞∑
n=1

1 − cos nπ

n2 cos
nπx

3

h(x) = 6

π

∞∑
n=1

1

n
sin

nπx

3

28. (b) g(x) = 1

4
+

∞∑
n=1

4 cos(nπ/2) + 2nπ sin(nπ/2) − 4

n2π2 cos
nπx

2

h(x) =
∞∑

n=1

4 sin(nπ/2) − 2nπ cos(nπ/2)

n2π2 sin
nπx

2

29. (b) g(x) = − 5

12
+

∞∑
n=1

12 cos nπ + 4

n2π2 cos
nπx

2

h(x) = −1

2

∞∑
n=1

n2π2(3 + 5 cos nπ) + 32(1 − cos nπ)

n3π3 sin
nπx

2

30. (b) g(x) = 1

4
+

∞∑
n=1

6n2π2(2 cos nπ − 5) + 324(1 − cos nπ)

n4π4 cos
nπx

3

h(x) =
∞∑

n=1

[
4 cos nπ + 2

nπ
+ 144 cos nπ + 180

n3π3

]
sin

nπx

3

40. Extend f (x) antisymmetrically into (L , 2L]; that is, so that f (2L − x) = − f (x) for
0 ≤ x < L . Then extend this function as an even function into (−2L , 0).

Section 10.5, 579

1. x X ′′ − λX = 0, T ′ + λT = 0 2. X ′′ − λx X = 0, T ′ + λtT = 0
3. X ′′ − λ(X ′ + X) = 0, T ′ + λT = 0 4. [p(x)X ′]′ + λr(x)X = 0, T ′′ + λT = 0
5. Not separable 6. X ′′ + (x + λ)X = 0, Y ′′ − λY = 0
7. u(x, t) = e−400π2t sin 2πx − 2e−2500π2t sin 5πx
8. u(x, t) = 2e−π2t/16 sin(πx/2) − e−π2t/4 sin πx + 4e−π2t sin 2πx

9. u(x, t) = 100

π

∞∑
n=1

1 − cos nπ

n
e−n2π2t/1600 sin

nπx

40

Unknown
See SSM for detailed solutions to 20

Unknown
25abc, 28b

Unknown
28cd, 31, 32

Unknown
34, 35, 37ab

Unknown
38, 39

Unknown
3, 5

Unknown
8
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10. u(x, t) = 160

π2

∞∑
n=1

sin(nπ/2)

n2 e−n2π2t/1600 sin
nπx

40

11. u(x, t) = 100

π

∞∑
n=1

cos(nπ/4) − cos(3nπ/4)

n
e−n2π2t/1600 sin

nπx

40

12. u(x, t) = 80

π

∞∑
n=1

(−1)n+1

n
e−n2π2t/1600 sin

nπx

40
13. t = 5, n = 16; t = 20, n = 8; t = 80, n = 4
14. (d) t = 673.35 15. (d) t = 451.60 16. (d) t = 617.17
17. (b) t = 5, x = 33.20; t = 10, x = 31.13; t = 20, x = 28.62; t = 40, x = 25.73;

t = 100, x = 21.95; t = 200, x = 20.31
(e) t = 524.81

18. u(x, t) = 200

π

∞∑
n=1

1 − cos nπ

n
e−n2π2α2t/400 sin

nπx

20
(a) 35.91◦C (b) 67.23◦C (c) 99.96◦C

19. (a) 76.73 sec (b) 152.56 sec (c) 1093.36 sec
21. (a) awxx − bwt + (c − bδ)w = 0 (b) δ = c/b if b �= 0
22. X ′′ + µ2 X = 0, Y ′′ + (λ2 − µ2)Y = 0, T ′ + α2λ2T = 0
23. r2 R′′ + r R′ + (λ2r2 − µ2)R = 0, �′′ + µ2� = 0, T ′ + α2λ2T = 0

Section 10.6, page 588

1. u = 10 + 3
5 x 2. u = 30 − 5

4 x 3. u = 0
4. u = T 5. u = 0 6. u = T
7. u = T (1 + x)/(1 + L) 8. u = T (1 + L − x)/(1 + L)

9. (a) u(x, t) = 3x +
∞∑

n=1

70 cos nπ + 50

nπ
e−0.86n2π2t/400 sin

nπx

20
(d) 160.29 sec

10. (a) f (x) = 2x, 0 ≤ x ≤ 50; f (x) = 200 − 2x, 50 < x ≤ 100

(b) u(x, t) = 20 − x

5
+

∞∑
n=1

cne−1.14n2π2t/(100)2
sin

nπx

100
,

cn = 800

n2π2 sin
nπ

2
− 40

nπ
(d) u(50, t) → 10 as t → ∞; 3754 sec

11. (a) u(x, t) = 30 − x +
∞∑

n=1

cne−n2π2t/900 sin
nπx

30
,

cn = 60

n3π3 [2(1 − cos nπ) − n2π2(1 + cos nπ)]

12. (a) u(x, t) = 2

π
+

∞∑
n=1

cne−n2π2α2t/L2
cos

nπx

L
,

cn =
{

0, n odd;
−4/(n2 − 1)π, n even

(b) lim
t→∞ u(x, t) = 2/π

13. (a) u(x, t) = 200

9
+

∞∑
n=1

cne−n2π2t/6400 cos
nπx

40
,

cn = − 160

3n2π2 (3 + cos nπ)

(c) 200/9 (d) 1543 sec

14. (a) u(x, t) = 25

6
+

∞∑
n=1

cne−n2π2t/900 cos
nπx

30
,

cn = 50

nπ

(
sin

nπ

3
− sin

nπ

6

)

Unknown
See SSM for detailed solutions to 10

Unknown
15abcd, 18a

Unknown
18b, 19b, 20, 22

Unknown
3, 7, 9abd

Unknown
12abcd

Unknown
14abc
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15. (b) u(x, t) =
∞∑

n=1

cne−(2n−1)2π2α2t/4L2
sin

(2n − 1)πx

2L
,

cn = 2

L

∫ L

0
f (x) sin

(2n − 1)πx

2L
dx

16. (a) u(x, t) =
∞∑

n=1

cne−(2n−1)2π2t/3600 sin
(2n − 1)πx

60
,

cn = 120

(2n − 1)2π2 [2 cos nπ + (2n − 1)π ]

(c) xm increases from x = 0 and reaches x = 30 when t = 104.4.

17. (a) u(x, t) = 40 +
∞∑

n=1

cne−(2n−1)2π2t/3600 sin
(2n − 1)πx

60
,

cn = 40

(2n − 1)2π2 [6 cos nπ − (2n − 1)π ]

19. u(x) =




T
x

a

[
ξ

ξ + (L/a) − 1

]
, 0 ≤ x ≤ a,

T

[
1 − L − x

a

1

ξ + (L/a) − 1

]
, a ≤ x ≤ L ,

where ξ = κ2 A2/κ1 A1

20. (e) un(x, t) = e−λ2
nα2t sin λn x

Section 10.7, page 600

1. (a) u(x, t) = 8

π2

∞∑
n=1

1

n2 sin
nπ

2
sin

nπx

L
cos

nπat

L

2. (a) u(x, t) = 8

π2

∞∑
n=1

1

n2

(
sin

nπ

4
+ sin

3nπ

4

)
sin

nπx

L
cos

nπat

L

3. (a) u(x, t) = 32

π3

∞∑
n=1

2 + cos nπ

n3 sin
nπx

L
cos

nπat

L

4. (a) u(x, t) = 4

π

∞∑
n=1

sin(nπ/2) sin(nπ/L)

n
sin

nπx

L
cos

nπat

L

5. (a) u(x, t) = 8L

aπ3

∞∑
n=1

1

n3 sin
nπ

2
sin

nπx

L
sin

nπat

L

6. (a) u(x, t) = 8L

aπ3

∞∑
n=1

sin(nπ/4) + sin(3nπ/4)

n3 sin
nπx

L
sin

nπat

L

7. (a) u(x, t) = 32L

aπ4

∞∑
n=1

cos nπ + 2

n4 sin
nπx

L
sin

nπat

L

8. (a) u(x, t) = 4L

aπ2

∞∑
n=1

sin(nπ/2) sin(nπ/L)

n2 sin
nπx

L
sin

nπat

L

9. u(x, t) =
∞∑

n=1

cn sin
(2n − 1)πx

2L
cos

(2n − 1)πat

2L
,

cn = 2

L

∫ L

0
f (x) sin

(2n − 1)πx

2L
dx

Unknown
See SSM for detailed solutions to 15a

Unknown
15b, 19

Unknown
1a

Unknown
1bce, 6ab

Unknown
6c, 9
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10. (a) u(x, t) = 8

π

∞∑
n=1

1

2n − 1
sin

(2n − 1)π

4
sin

(2n − 1)π

2L
sin

(2n − 1)πx

2L
cos

(2n − 1)πat

2L

11. (a) u(x, t) = 512

π4

∞∑
n=1

(2n − 1)π + 3 cos nπ

(2n − 1)4 sin
(2n − 1)πx

2L
cos

(2n − 1)πat

2L
14. φ(x + at) represents a wave moving in the negative x direction with speed a > 0.

15. (a) 248 ft/sec (b) 49.6πn rad/sec (c) Frequencies increase; modes are unchanged.

16. u(x, t) =
∞∑

n=1

cn cos βnt sin(nπx/L), β2
n = (nπa/L)2 + α2,

cn = 2

L

∫ L

0
f (x) sin(nπx/L) dx

22. r2 R′′ + r R′ + (λ2r2 − µ2)R = 0, �′′ + µ2� = 0, T ′′ + λ2a2T = 0

Section 10.8, page 611

1. (a) u(x, y) =
∞∑

n=1

cn sin
nπx

a
sinh

nπy

a
, cn = 2/a

sinh(nπb/a)

∫ a

0
g(x) sin

nπx

a
dx

(b) u(x, y) = 4a

π2

∞∑
n=1

1

n2

sin(nπ/2)

sinh(nπb/a)
sin

nπx

a
sinh

nπy

a

2. u(x, y) =
∞∑

n=1

cn sin
nπx

a
sinh

nπ(b − y)

a
, cn = 2/a

sinh(nπb/a)

∫ a

0
h(x) sin

nπx

a
dx

3. (a) u(x, y) =
∞∑

n=1

c(1)
n sinh

nπx

b
sin

nπy

b
+

∞∑
n=1

c(2)
n sin

nπx

a
sinh

nπ(b − y)

a
,

c(1)
n = 2/b

sinh(nπa/b)

∫ b

0
f (y) sin

nπy

b
dy, c(2)

n = 2/a

sinh(nπb/a)

∫ a

0
h(x) sin

nπx

a
dx

(b) c(1)
n = 2

nπ sinh(nπa/b)
, c(2)

n = − 2

n3π3

(n2π2 − 2) cos nπ + 2

sinh(nπb/a)

5. u(r, θ) = c0

2
+

∞∑
n=1

r−n(cn cos nθ + kn sin nθ);

cn = an

π

∫ 2π

0
f (θ) cos nθ dθ , kn = an

π

∫ 2π

0
f (θ) sin nθ dθ

6. (a) u(r, θ) =
∞∑

n=1

cnrn sin nθ, cn = 2

πan

∫ π

0
f (θ) sin nθ dθ

(b) cn = 4

πan

cos nπ + 1

n3

7. u(r, θ) =
∞∑

n=1

cnrnπ/α sin
nπθ

α
, cn = (2/α)a−nπ/α

∫ α

0
f (θ) sin

nπθ

α
dθ

8. (a) u(x, y) =
∞∑

n=1

cne−nπy/a sin
nπx

a
, cn = 2

a

∫ a

0
f (x) sin

nπx

a
dx

(b) cn = 4a2

n3π3 (1 − cos nπ) (c) y0
∼= 6.6315

10. (b) u(x, y) = c0 +
∞∑

n=1

cn cosh
nπx

b
cos

nπy

b
, cn = 2/nπ

sinh(nπa/b)

∫ b

0
f (y) cos

nπy

b
dy

11. u(r, θ) = c0 +
∞∑

n=1

rn(cn cos nθ + kn sin nθ),

cn = 1

nπan−1

∫ 2π

0
g(θ) cos nθ dθ , kn = 1

nπan−1

∫ 2π

0
g(θ) sin nθ dθ;

necessary condition is
∫ 2π

0
g(θ) dθ = 0.

Unknown
See SSM for detailed solutions to 10a

Unknown
10bc, 13, 14

Unknown
16, 17abc

Unknown
18abc, 24

Unknown
1abc

Unknown
1d

Unknown
2, 3a, 4

Unknown
5, 7

Unknown
8abc
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12. (a) u(x, y) =
∞∑

n=1

cn sin
nπx

a
cosh

nπy

a
, cn = 2/a

cosh(nπb/a)

∫ a

0
g(x) sin

nπx

a
dx

(b) cn = 4a sin(nπ/2)

n2π2 cosh(nπb/a)

13. (a) u(x, y) =
∞∑

n=1

cn sinh
(2n − 1)πx

2b
sin

(2n − 1)πy

2b
,

cn = 2/b

sinh[(2n − 1)πa/2b]

∫ b

0
f (y) sin

(2n − 1)πy

2b
dy

(b) cn = 32b2

(2n − 1)3π3 sinh[(2n − 1)πa/2b]

14. (a) u(x, y) = c0 y

2
+

∞∑
n=1

cn cos
nπx

a
sinh

nπy

a
,

c0 = 2

ab

∫ a

0
g(x) dx, cn = 2/a

sinh(nπb/a)

∫ a

0
g(x) cos

nπx

a
dx

(b) c0 = 2

b

(
1 + a4

30

)
, cn = − 24a4(1 + cos nπ)

n4π4 sinh(nπb/a)

C H A P T E R 1 1 Section 11.1, page 626

1. Homogeneous 2. Nonhomogeneous 3. Nonhomogeneous
4. Homogeneous 5. Nonhomogeneous 6. Homogeneous

7. φn(x) = sin
√

λn x , where
√

λn satisfies
√

λ = − tan
√

λπ;
λ1

∼= 0.6204, λ2
∼= 2.7943, λn

∼= (2n − 1)2/4 for large n
8. φn(x) = cos

√
λn x , where

√
λn satisfies

√
λ = cot

√
λ;

λ1
∼= 0.7402, λ2

∼= 11.7349, λn
∼= (n − 1)2π2 for large n

9. φn(x) = sin
√

λn x +√λn cos
√

λn x , where
√

λn satisfies
(λ − 1) sin

√
λ − 2

√
λ cos

√
λ = 0;

λ1
∼= 1.7071, λ2

∼= 13.4924, λn
∼= (n − 1)2π2 for large n

10. λ0 = 0; φ0(x) = 1 − x
For n = 1, 2, 3, . . . , φn(x) = sin µn x − µn cos µn x and λn = −µ2

n , where µn satisfies
µ = tan µ.

λ1
∼= −20.1907, λ2

∼= −59.6795, λn
∼= −(2n + 1)2π2/4 for large n

12. µ(x) = e−x2
13. µ(x) = 1/x

14. µ(x) = e−x 15. µ(x) = (1 − x2)−1/2

16. a2 X ′′ + (λ − k)X = 0, T ′′ + cT ′ + λT = 0
17. (a) s(x) = ex (b) λn = n2π2, φn(x) = ex sin nπx; n = 1, 2, 3, . . .

18. Positive eigenvalues λ = λn , where
√

λn satisfies
√

λ = 2
3 tan 3

√
λL; corresponding eigen-

functions are φn(x) = e−2x sin 3
√

λn x . If L = 1
2 , λ0 = 0 is eigenvalue, φ0(x) = xe−2x

is eigenfunction; if L �= 1
2 , λ = 0 is not eigenvalue. If L ≤ 1

2 , there are no negative
eigenvalues; if L > 1

2 , there is one negative eigenvalue λ = −µ2, where µ is a root of
µ = 2

3 tanh 3µL; corresponding eigenfunction is φ−1(x) = e−2x sinh 3µx .
19. No real eigenvalues.
20. Only eigenvalue is λ = 0; eigenfunction is φ(x) = x − 1.
21. (a) 2 sin

√
λ − √

λ cos
√

λ = 0; λ1
∼= 18.2738, λ2

∼= 57.7075
(b) 2 sinh

√
µ − √

µ cosh
√

µ = 0, µ = −λ; λ−1
∼= −3.6673

Unknown
See SSM for detailed solutions to 13a

Unknown
2, 4, 5, 9

Unknown
10, 11ab

Unknown
13, 18a, 20

Unknown
22abcd, 23
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24. (a) λn = µ4
n , where µn is a root of sin µL sinh µL = 0, hence λn = (nπ/L)4;

λ1
∼= 97.409/L4, φn(x) = sin(nπx/L)

(b) λn = µ4
n , where µn is a root of sin µL cosh µL − cos µL sinh µL = 0;

λ1
∼= 237.72/L4, φn = sin µn x sinh µn L − sin µn L sinh µn x

sinh µn L
(c) λn = µ4

n , where µn is a root of 1 + cosh µL cos µL = 0; λ1
∼= 12.362/L4,

φn(x) = [(sin µn x − sinh µn x)(cos µn L + cosh µn L) + (sin µn L + sinh µn L)(cosh µn x − cos µn x)]

cos µn L + cosh µn L

25. (c) φn(x) = sin
√

λn x, where λn satisfies cos
√

λn L − γ
√

λn L sin
√

λn L = 0;

λ1
∼= 1.1597/L2, λ2

∼= 13.276/L2

Section 11.2, page 639

1. φn(x) = √
2 sin(n − 1

2 )πx; n = 1, 2, . . .

2. φn(x) = √
2 cos(n − 1

2 )πx; n = 1, 2, . . .

3. φ0(x) = 1, φn(x) = √
2 cos nπx; n = 1, 2, . . .

4. φn(x) =
√

2 cos
√

λn x

(1 + sin2√λn)
1/2 , where λn satisfies cos

√
λn −√λn sin

√
λn = 0

5. φn(x) = √
2 ex sin nπx; n = 1, 2, . . . 6. an = 2

√
2

(2n − 1)π
; n = 1, 2, . . .

7. an = 4
√

2(−1)n−1

(2n − 1)2π2 ; n = 1, 2, . . .

8. an = 2
√

2

(2n − 1)π
{1 − cos[(2n − 1)π/4]}; n = 1, 2, . . .

9. an = 2
√

2 sin(n − 1
2 )(π/2)

(n − 1
2 )2π2 ; n = 1, 2, . . .

In Problems 10 through 13, αn = (1 + sin2√λn)
1/2 and cos

√
λn −√λn sin

√
λn = 0.

10. an =
√

2 sin
√

λn√
λnαn

; n = 1, 2, . . . 11. an =
√

2(2 cos
√

λn − 1)

λnαn

; n = 1, 2, . . .

12. an =
√

2(1 − cos
√

λn)

λnαn

; n = 1, 2, . . . 13. an =
√

2 sin(
√

λn/2)√
λnαn

; n = 1, 2, . . .

14. Not self-adjoint 15. Self-adjoint
16. Not self-adjoint 17. Self-adjoint
18. Self-adjoint
21. (a) If a2 = 0 or b2 = 0, then the corresponding boundary term is missing.
25. (a) λ1 = π2/L2; φ1(x) = sin(πx/L)

(b) λ1
∼= (4.4934)2/L2; φ1(x) = sin

√
λ1 x −√λ1 x cos

√
λ1 L

(c) λ1 = (2π)2/L2; φ1(x) = 1 − cos(2πx/L)

26. λ1 = π2/4L2; φ1(x) = 1 − cos(πx/2L)

Section 11.3, page 651

1. y = 2
∞∑

n=1

(−1)n+1 sin nπx

(n2π2 − 2)nπ
2. y = 2

∞∑
n=1

(−1)n+1 sin(n − 1
2 )πx

[(n − 1
2 )2π2 − 2](n − 1

2 )2π2

Unknown
See SSM for detailed solutions to 24b

Unknown
1, 3, 5

Unknown
7, 10, 14, 17, 21a

Unknown
21bc, 23abc, 24

Unknown
25bc

Unknown
1

Unknown
2
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3. y = −1

4
− 4

∞∑
n=1

cos(2n − 1)πx

[(2n − 1)2π2 − 2](2n − 1)2π2

4. y = 2
∞∑

n=1

(2 cos
√

λn − 1) cos
√

λn x

λn(λn − 2)(1 + sin2√λn)
5. y = 8

∞∑
n=1

sin(nπ/2) sin nπx

(n2π2 − 2)n2π2

6–9. For each problem the solution is

y =
∞∑

n=1

cn

λn − µ
φn(x), cn =

∫ 1

0
f (x)φn(x) dx, µ �= λn,

where φn(x) is given in Problems 1, 2, 3, and 4, respectively, in Section 11.2, and λn is the
corresponding eigenvalue. In Problem 8 summation starts at n = 0.

10. a = −1

2
, y = 1

2π2 cos πx + 1

π2

(
x − 1

2

)
+ c sin πx

11. No solution 12. a is arbitrary, y = c cos πx + a/π2

13. a = 0, y = c sin πx − (x/2π) sin πx 17. v(x) = a + (b − a)x
18. v(x) = 1 − 3

2 x

19. u(x, t) = √
2

[
−4c1

π2 +
(

4c1

π2 + 1√
2

)
e−π2t/4

]
sin

πx

2

− √
2

∞∑
n=2

4cn

(2n − 1)2π2 [1 − e−(n−1/2)2π2t ] sin(n − 1
2 )πx,

cn = 4
√

2(−1)n+1

(2n − 1)2π2 , n = 1, 2, . . .

20. u(x, t) = √
2

∞∑
n=1

[
cn

λn − 1
(e−t − e−λn t ) + αne−λn t

]
cos
√

λn x

(1 + sin2√λn)
1/2 ,

cn =
√

2 sin
√

λn√
λn(1 + sin2√λn)

1/2 , αn =
√

2(1 − cos
√

λn)

λn(1 + sin2√λn)
1/2 ,

and λn satisfies cos
√

λn −√λn sin
√

λn = 0.

21. u(x, t) = 8
∞∑

n=1

sin(nπ/2)

n4π4 (1 − e−n2π2t ) sin nπx

22. u(x, t) = √
2

∞∑
n=1

cn(e
−t − e−(n−1/2)2π2t ) sin(n − 1

2 )πx

(n − 1
2 )2π2 − 1

,

cn = 2
√

2(2n − 1)π + 4
√

2(−1)n

(2n − 1)2π2

23. (a) r(x)wt = [p(x)wx ]x − q(x)w, w(0, t) = 0, w(1, t) = 0, w(x, 0) = f (x) − v(x)

24. u(x, t) = x2 − 2x + 1 + 4

π

∞∑
n=1

e−(2n−1)2π2t sin(2n − 1)πx

2n − 1

25. u(x, t) = − cos πx + e−9π2t/4 cos(3πx/2)

31–34. In all cases solution is y =
∫ 1

0
G(x, s) f (s) ds, where G(x, s) is given below.

31. G(x, s) =
{

1 − x, 0 ≤ s ≤ x
1 − s, x ≤ s ≤ 1

32. G(x, s) =
{

s(2 − x)/2, 0 ≤ s ≤ x
x(2 − s)/2, x ≤ s ≤ 1

Unknown
See SSM for detailed solutions to 3, 5, 8

Unknown
10, 11, 12, 14, 18

Unknown
19, 22

Unknown
24, 28a

Unknown
28bcd

Unknown
30bcd

Unknown
30e
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33. G(x, s) =
{

cos s sin(1 − x)/ cos 1, 0 ≤ s ≤ x
sin(1 − s) cos x/ cos 1, x ≤ s ≤ 1

34. G(x, s) =
{

s, 0 ≤ s ≤ x
x, x ≤ s ≤ 1

Section 11.4, page 661

1. y =
∞∑

n=1

cn

λn − µ
J0(
√

λn x), cn =
∫ 1

0
f (x)J0(

√
λn x) dx

/∫ 1

0
x J 2

0 (
√

λn x) dx,

√
λn satisfies J0(

√
λ) = 0

2. (c) y = −c0

µ
+

∞∑
n=1

cn

λn − µ
J0(
√

λn x);

c0 = 2
∫ 1

0
f (x) dx; cn =

∫ 1

0
f (x)J0(

√
λn x) dx

/∫ 1

0
x J 2

0 (
√

λn x) dx, n = 1, 2, . . .;√
λn satisfies J ′

0(
√

λ) = 0

3. (d) an =
∫ 1

0
x Jk(

√
λn x) f (x) dx

/∫ 1

0
x J 2

k (
√

λn x) dx

(e) y =
∞∑

n=1

cn

λn − µ
Jk(
√

λn x), cn =
∫ 1

0
f (x)Jk(

√
λn x) dx

/∫ 1

0
x J 2

k (
√

λn x) dx

4. (b) y =
∞∑

n=1

cn

λn − µ
P2n−1(x), cn =

∫ 1

0
f (x)P2n−1(x) dx

/∫ 1

0
P2

2n−1(x) dx

Section 11.5, page 666

1. (b) u(ξ, 2) = f (ξ + 1), u(ξ, 0) = 0, 0 ≤ ξ ≤ 2
u(0, η) = u(2, η) = 0, 0 ≤ η ≤ 2

2. u(r, t) =
∞∑

n=1

kn J0(λnr) sin λnat, kn = 1

λna

∫ 1

0
r J0(λnr)g(r) dr

/∫ 1

0
r J 2

0 (λnr) dr

3. Superpose the solution of Problem 2 and the solution [Eq. (21)] of the example in the text.

6. u(r, z) =
∞∑

n=1

cne−λn z J0(λnr), cn =
∫ 1

0
r J0(λnr) f (r) dr

/∫ 1

0
r J 2

0 (λnr) dr,

and λn satisfies J0(λ) = 0.

7. (b) v(r, θ) = 1
2 c0 J0(kr) +

∞∑
m=1

Jm(kr)(bm sin mθ + cm cos mθ),

bm = 1

π Jm(kc)

∫ 2π

0
f (θ) sin mθ dθ; m = 1, 2, . . .

cm = 1

π Jm(kc)

∫ 2π

0
f (θ) cos mθ dθ; m = 0, 1, 2, . . .

8. cn =
∫ 1

0
r f (r)J0(λnr) dr

/∫ 1

0
r J 2

0 (λnr) dr

10. u(ρ, s) =
∞∑

n=0

cnρ
n Pn(s), where cn =

∫ 1

−1
f (arccos s)Pn(s) ds

/∫ 1

−1
P2

n (s) ds;

Pn is the nth Legendre polynomial and s = cos φ.

Unknown
See SSM for detailed solutions to 33

Unknown
2abc

Unknown
4ab

Unknown
1abc

Unknown
2

Unknown
4, 5ab, 6

Unknown
7b, 9a, 10
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Section 11.6, page 675

1. n = 21
2. (a) bm = (−1)m+1

√
2/mπ (c) n = 20

3. (a) bm = 2
√

2(1 − cos mπ)/m3π3 (c) n = 1
7. (a) f0(x) = 1 (b) f1(x) = √

3(1 − 2x) (c) f2(x) = √
5(−1 + 6x − 6x2)

(d) g0(x) = 1, g1(x) = 2x − 1, g2(x) = 6x2 − 6x + 1
8. P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2, P3(x) = (5x3 − 3x)/2

Unknown
See SSM for detailed solutions to 2abc, 4a

Unknown
5, 7bcd, 8

Unknown
9abcde, 10, 12
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I N D E X

A
Abel, Niels Henrik, 149, 216
Abel’s formula, 149, 167, 168,

213, 228
for systems of equations, 370

Acceleration of convergence, 564
Adams, John Couch, 439
Adams–Bashforth formula,

fourth order, 440
second order, 440

Adams–Moulton formula, fourth
order, 441

second order, 441
Adaptive numerical method, 427,

433
Adjoint, differential equation,

146
matrix, 348

Airy, George Biddell, 243
Airy equation, 147, 243–247,

252, 260, 291, 309
Almost linear systems, 479–491
Amplitude, of simple harmonic

motion, 190
Amplitude modulation, 202
Analytic function, 235, 250
Angular momentum, principle of,

473–474
Annihilators, method of, 225–226
Asymptotic stability,see Stability
Augmented matrix, 358

Autonomous, equation, 74
system, 471–472

B
Backward differentiation

formulas, 443–444
Backward Euler formula,

422–424
Basin of attraction, 487, 498,

516–519
Beats, 201–202, 323–324
Bendixson, Ivar Otto, 525
Bernoulli, Daniel, 25, 87, 88,

573, 591
Bernoulli, Jakob, 24, 63, 73, 336
Bernoulli, Johann, 24, 63
Bernoulli equation, 73
Bessel, Friedrich Wilhelm, 280
Bessel equation of order:

k, 662
nu, 147, 152, 238, 256, 259,

260, 280, 290, 627, 657
one, 272, 287–289, 290
one-half, 285–286, 289
zero, 272, 280–284, 290, 308,

613, 658, 665
Bessel functions, 25

J0(x), 272, 281, 289, 308, 309,
658, 660–661, 662, 665,
668

asymptotic approximation
to, 284

Laplace transform of, 308
zeros of, 291, 658, 665

J1(x), 272, 287, 289
J1/2(x), 285
J−1/2(x), 286
orthogonality of, 291, 661, 662
Y0(x), 283, 658, 665

asymptotic approximation
to, 284

Y1(x), 289
Bessel inequality, 676
Bessel series expansion, 661, 666
Bifurcation (points), 88, 89, 122,

383, 480, 502, 533
Boundary conditions: 542

for elastic string, 591, 600
for heat equation, 574, 582,

584, 616
for Laplace’s equation, 605
nonhomogeneous, 582–584,

650
periodic, 638, 674
separated, 630
time dependent, 650

Boundary layer, 450
Boundary value problems:

heat conduction equation,
573–590, 614–617,
646–649

737
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homogeneous, 542–544,
629–641

Laplace’s equation, 604–613
nonhomogeneous, 542–543,

641–645
self-adjoint, 637–639, 660
singular, 656–663
Sturm-Liouville, 629–630
two-point, 541–547, 623
wave equation, 591–604,

617–619, 653, 664–666
see also Homogeneous

boundary value problems;
Nonhomogeneous
boundary value problems

Brachistochrone, 24, 63
Buckling of elastic column,

640–641

C
Capacitance, 195, 196
Cardano, Girolamo, 216
Cayley, Arthur, 348
Center, 387, 467, 479, 490
Change of independent variable,

159–160, 291
for Euler equation, 160, 264,

266
Chaotic solution, of logistic

difference equation, 122,
126

of Lorenz equations, 536
Characteristic equation, 132, 214,

303
complex roots, 153, 217
real and equal roots, 161, 218
real and unequal roots, 132,

215
Characteristic polynomial, 214,

303
Chebyshev, Pafnuty L., 253, 511
Chebyshev equation, 253, 271,

627, 663
Chebyshev polynomials, 253, 663
Chemical reactions, 89
Collocation, method of, 670
Competing species, 491–503
Complementary solution, 170
Complete set of functions, 672

Complex exponentials, 153–155,
219

Compound interest, 51–54
Computer use in differential

equations, 21
Conjugate matrix, 348
Continuous spectrum, 660
Convergence:

of an improper integral, 294
of a numerical approximation,

424
of a power series, 232

Convergence in mean, 672
Converging solutions, 4, 12, 102
Convolution integral, 185,

330–337
Laplace transform of, 330–333

Cosine series, 566
Critical amplitude, 82
Critical damping, 193
Critical point:

approached by trajectory, 467
center of linear system, 387,

467, 479, 490
definition of, 460, 472
for first order equation, 77
improper node, 404, 462–464
isolated, 481
node of linear system, 378,

390, 460–461
nonisolated, 470
proper node of linear system,

462
saddle point of linear system,

375, 389, 461–462
spiral point of linear system,

386, 390, 464–466
stability of,see Stability of

critical point
Cycloid, 64, 337

D
D’Alembert, Jean, 161, 573, 591,

602
Dal Ferro, Scipione, 216
Damping force, 187–188, 473
Decay, radioactive, 16, 59
Degenerate node,see Improper

node

Diagonalization, of matrices,
397–398

of homogeneous systems,
398–400

of nonhomogeneous systems,
411–413

Difference equation, 115–126
equilibrium solution of, 116
first order, 115–126
initial condition for, 116
iteration of, 116
linear, 115, 116–118
logistic, 118–126

chaotic solutions of, 122,
126

nonlinear, 115, 118–126
solution of, 115

Differential operator, 138, 630
Diffusion equation,see Heat

conduction equation
Dimensionless variables, 580,

601
Dirac, Paul A. M., 326
Dirac delta function, 326, 656

Laplace transform of, 326–327
Direction field, for first order

equations, 3, 5
for systems, 373

Dirichlet, Peter Gustav Lejeune,
605

Dirichlet problem, 605
for circle, 609–611, 612
for rectangle, 606–608,

611–612
for sector, 612
for semicircle, 612
for semi-infinite strip, 612

Discontinuous forcing function,
74, 317–324

Diverging solutions, 6, 10, 102
Drag, 2, 8
Duffing equation, 478

E
Eigenfunctions, 545, 623

normalized, 633
orthogonality of, 632, 660
series of, 635–636, 642,

660–661, 672
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Eigenvalues of linear
homogeneous boundary
value problems, 545,
623

of Sturm–Liouville problem,
existence, 631

real, 547, 631
simple, 633
when positive, 640

Eigenvalues of matrix, 362–366,
401–402

multiplicity, 364
real, 365
simple, 364

Eigenvectors of matrix, 362–366,
401–402

generalized, 405, 409
linear independence of, 364,

365
normalized, 364
orthogonality of, 366

Elastic bar, vibrations of,
628–629

Elastic membrane, vibrations of,
604, 664–666

Elastic string:
boundary value problems for,

591–604
derivation of wave equation,

617–619
free at one end, 600
general problem, 598–600
infinite length, 602–603
justification of solution,

596–598, 603–604
natural frequencies of, 594
natural modes of, 594
propagation of discontinuities

in initial conditions, 598
wavelength of, 594

Electrical networks, 16, 195–196,
306–307, 340, 345–346

Elliptic integral, 491
Environmental carrying capacity,

78
Epidemics, 87–88
Equilibrium solution, 4, 6, 12, 76,

116, 460
see also Critical point

Error:
for Adams–Bashforth formula,

440
for Adams–Moulton formula,

441
effect of step size, 426,

445–447
for Euler method, 425–427,

428
for Fourier series, 554–555,

561–562
global truncation, 424, 426,

445–447
for improved Euler method,

431, 434–435
local truncation, 424
mean square, 671
for modified Euler method, 435
round-off, 424, 429, 445–447
for Runge–Kutta method, 436

Escape velocity, 56–57
Euler, Leonhard, 24, 25, 97, 571,

573, 591, 604
Euler equation, 160, 169,

260–267, 382, 391, 408,
610

change of independent
variable, 160, 264, 266

Euler formula for exp(i t), 154
Euler–Fourier formulas, 550–551
Euler–Mascheroni constant, 283
Euler method, 96–105, 419–429,

455–457
convergence of, 104–105
global truncation error, 426
local truncation error, 425–427

Even functions, 564
Even periodic extension, 568
Exact equations, 89–93, 146

necessary and sufficient
condition for existence of
solution, 25, 91

for second order equations, 146
Exchange of stability, 120
Existence and uniqueness

theorems, 20, 21
for first order equations, 66,

106

for first order linear equations,
65

for nth order linear equations,
210

proof of, for y′ = f (t, y),
106–113

for second order linear
equations, 138

for series solution of second
order linear equations,
250, 277–278

for systems of first order
equations, 343

Exponential growth, 75
Exponential matrix, 396–397,

400
Exponential order, functions of,

296
Exponents at the singularity, 269,

274

F
Falling object problem, 2, 3,

12–14
Feigenbaum number, 126
Ferrari, Ludovico, 216
First order ordinary differential

equations:
applications of, 47–64, 74–89
Bernoulli, 73
direction field, 3, 5
exact, 89–93
existence and uniqueness

theorems, 65, 66, 106
proof of, 106–113

general solution of, 11, 30, 36,
70, 71

graphical construction of
integral curves, 71

homogeneous, 24, 46–47
implicit solutions, 70–71
integrating factor for, 30–31,

35–36, 93–95, 96
interval of definition, 37, 43,

69–70
linear, 24, 29–39
nonlinear, 64–72
numerical solution of,see

Numerical methods
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separable, 40–46
series solution of, 254
systems of,see Systems

Fitzhugh–Nagumo equations,
531

Fourier, Joseph, 547, 573
Fourier coefficients, 671
Fourier series, 547–572

acceleration of convergence,
564

choice of series, 568–569
convergence of, 559, 564
convergence of partial sums,

554, 561
cosine series, 566, 635
error, 554–555, 561–562
Euler–Fourier formulas,

550–551
Gibbs phenomenon, 561, 567
integration of, 550
orthogonality of sines and

cosines, 549–550
Parseval equation, 564, 571,

604, 676
periodicity of sines and

cosines, 548–549
for sawtooth wave, 567–568,

571
sine series, 566-567, 635
specialized kinds, 571–572
for square wave, 560–562, 571
for triangular wave, 551–552,

553–555, 571
Fredholm, Erik Ivar, 644
Fredholm alternative theorem,

644
Frequency, natural, 190

of simple harmonic motion,
190

of vibrating string, 594
Frobenius, Ferdinand Georg, 268,

348, 459
Frobenius, method of, 268
Fuchs, Immanuel Lazarus, 251,

459
Fundamental matrix, 393–401,

405–406
Fundamental set of solutions,

142, 211, 370

Fundamental theorem of
algebra, 215

G
Galois, Evariste, 216
Gamma function, 298–299
Gauss, Carl Friedrich, 215
Gaussian elimination, 352
Generalized function, 326
General solution of linear

equations:
first order, 11, 30, 36, 70, 71
nth order, 211
second order, 133, 142, 143,

155, 163, 170
systems of first order

equations, 370
Gibbs, Josiah Willard, 561
Gibbs phenomenon, 561, 567
Global asymptotic stability, 487
Gompertz equation, 85
Graphical construction of integral

curves, 71
Gravity, 2, 56
Green, George, 653
Green’s function, 653–656

H
Half-life, 16, 59
Harvesting a renewable resource,

86–87
Heat conduction equation, 17,

574, 615
bar with insulated ends,

584–587
boundary conditions, 574, 582,

584, 616
derivation of, 613–617
fundamental solutions of, 576,

586
nonhomogeneous boundary

conditions, 582–584
nonhomogeneous source term,

617, 646–649
in polar coordinates, 581
smoothing of discontinuities in

initial conditions, 582
solution of fundamental

problem, 575–577

steady state solution, 582
transient solution, 583

Heaviside, Oliver, 294
Heaviside function, 310
Helmholtz equation, 668
Hereditary systems, 331
Hermite, Charles, 248, 348
Hermite equation, 248, 260, 627
Hermite polynomials, 248
Hermitian matrix, 248, 365–366,

379, 397, 398, 402, 637,
653

Heun formula, 431
History of differential equations,

23–26
Hodgkin, Alan L., 503
Hodgkin–Huxley equations, 503
Homogeneous algebraic

equations, 357
Homogeneous boundary value

problems, 542–544,
623–626

eigenfunctions, 545, 623
eigenvalues, 545, 623
singular Sturm–Liouville,

656–663
Sturm–Liouville, 629–641

Homogeneous differential
equations, with constant
coefficients, 25, 129–137,
153–159, 160–169,
214–219

definition of, 130, 343
general theory of, 137–153,

210–211, 368–372
systems, 373–410

Homogeneous first order
differential equations, 24,
46–47

Hooke, Robert, 187
Hooke’s law, 187
Huxley, Andrew F., 503
Huygens, Christian, 336
Hypergeometric equation, 279

I
Identity matrix, 351
Implicit numerical method, 423,

441, 453
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Implicit solution, 70–71
Improper integral, 294

comparison theorem for, 296
Improper node, 404, 462–464
Improved Euler method,

430–435
Impulse functions, 324–330
Impulse response, 335
Indicial equation, 269, 273, 274,

278
Inductance, 195, 196
Initial conditions, 11, 72, 116,

130, 210, 342
propagation of discontinuities

for wave equation, 598
smoothing of discontinuities

for heat equation, 582
Initial value problem, 11, 65, 66,

105, 130, 210, 342
Inner product:

for functions, 549, 631
for vectors, 351

Instability:
of critical point, 79, 117, 119,

468, 471, 472, 475, 514
of numerical method, 448–453
of periodic orbit, 524
see also Diverging solutions

Integral curves, 11, 71
Integral equation, 106

Volterra, 336
Integral transform, 293
Integrating factor, 25, 30–31,

35–36, 93–95, 96, 146
Interval of convergence, 233
Inverse Laplace transform, 303
Inverse matrix, 352–354
Invertible matrix, 352
Irregular singular point, 258,

279–280
Iteration, method of, 106

see also Successive
approximations

of difference equation, 116

J
Jordan, Camille, 348, 406
Jordan form of matrix, 406–407,

409, 410

Jump discontinuity, 295, 559, 598

K
Kernel, of convolution, 185

of integral transform, 293
Kirchhoff, Gustav R., 196
Kirchhoff’s laws, 196, 345
Kutta, M. Wilhelm, 436

L
Lagrange, Joseph-Louis, 25, 180,

547, 573, 591
Lagrange’s identity, 630,

659–660
Laguerre, Edmond Nicolas, 272
Laguerre equation, 272, 627
Landau, Lev D., 89
Landau equation, 89
Laplace, Pierre Simon de, 25,

294, 604
Laplace’s equation, 25, 604–613,

666
boundary conditions, 605
in cylindrical coordinates, 613,

667
Dirichlet problem, 605

for circle, 609–611, 612
for rectangle, 606–608,

611–612
for sector, 612
for semicircle, 612
for semi-infinite strip, 612

mixed problem, 613
Neumann problem, 605

for circle, 613
for rectangle, 612

in polar coordinates, 609
in spherical coordinates, 668

Laplace transform, 293–338
of convolution, 330-333
definition of, 294
of derivatives, 300–301
of Dirac delta function,

326–327
existence of, 296
of integral equations, 336
inverse of, 303
of periodic functions, 315
of rectified sine wave, 316

of sawtooth wave, 316
of square wave, 315, 316
of step function, 311
table of, 304
translation formula, 311, 313

Legendre, Adrien Marie, 149,
254

Legendre equation of order alpha,
147, 152, 238, 252,
254–255, 256, 258, 271,
309, 657, 662, 669

Legendre polynomials, 254–255,
662, 676

Leibniz, Gottfried Wilhelm, 24,
63, 73, 336, 571

Length, of a vector, 351
L’Hospital, Marquis de, 63
Liapunov, Aleksandr M., 511
Liapunov function, 514
Liapunov’s second method,

511–521
Libby, Willard F., 59
Li énard equation, 491, 520
Limit cycle, 524
Linear dependence and

independence, of
functions, 147–153, 211

of vector functions, 362
of vectors, 360

Linear operator, 138, 226, 298,
303

Linear ordinary differential
equations:

adjoint equation, 146
change of independent

variable, 159–160, 264,
266, 291

characteristic equation, 132,
214, 303

complex roots, 153, 217
real and equal roots, 161,

218
real and unequal roots, 132,

215
complementary solution, 170
definition of, 19
Euler equation, 160, 169,

260–267
exact, 146
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existence and uniqueness
theorems, 65, 138, 210,
250, 277–278, 343

first order, 24, 29–39
fundamental set of solutions,

142, 211, 370
general solution of, 11, 25, 30,

36, 70, 71, 133, 142, 143,
155, 163, 170, 211, 370

homogeneous equation with
constant coefficients, 25,
129–137, 153–159,
160–169, 214–219

integrating factor, 25, 30–31,
35–36, 146

nonhomogeneous equation,
130, 169–185, 211–212,
222–230, 411–418

ordinary point, 238, 250, 254,
260

particular solution, 170, 212
reduction of order, 165–166,

212
self-adjoint, 147
series solution of,see Series

solution
singular point, 238, 250,

255–260
systems of,see Systems
undetermined coefficients,

171–179, 222–226
variation of parameters, 25, 39,

179–185, 226–230
Liouville, Joseph, 106, 629
Logarithmic decrement, 198
Logistic equation, 76, 118, 511
Logistic growth, 75–81, 83–84
Lorenz, Edward N., 532
Lorenz equations, 532–539
Lotka, Alfred James, 504
Lotka–Volterra equations, 18,

340–341, 503–511

M
Magnitude, of a vector, 351
Malthus, Thomas, 75
Mathematical model, 2, 47–49

analysis of, 48–49

comparison with experiment,
49

construction of, 7, 14, 48
Matrices, 348–367

addition of, 349
adjoint, 348
augmented, 358
conjugate, 348
diagonalizable, 397–398
eigenvalues of, 362–366, 544
eigenvectors of, 362–366, 544
equality of, 349
exponential, 396–397, 400
fundamental, 393–401,

405–406
Gaussian elimination, 352
Hermitian, 248, 365–366, 379,

397, 402, 637, 653
identity, 351
inverse, 352–354
invertible, 352
Jordan form of, 406–407, 409,

410
multiplication of, 349–350
multiplication by numbers, 349
noninvertible, 352
nonsingular, 352
row reduction of, 352
self-adjoint, 365
similar, 398
singular, 352
subtraction of, 349
transpose, 348
zero, 349

Matrix functions, 354–355
Mean convergence, 672
Mean square error, 671
Millikan, Robert A., 62
Mixing problems, 49–51, 54–55
Mode, natural (of vibrating

string), 594
Modified Euler formula, 435
Moulton, Forest Ray, 440
Multiplicity of eigenvalue, 364
Multistep method, 439–445

N
Negative definite function, 513

Negative semidefinite function,
513

Neumann, Karl Gottfried, 605
Neumann problem, 605

for circle, 613
for rectangle, 612

Newton, Isaac, 24, 63
Newton’s law:

of cooling, 60
of motion, 2, 187, 345, 618

Node, 378, 390, 461
See also Improper node;

Proper node
Nonhomogeneous algebraic

equations, 358
Nonhomogeneous boundary

value problems, 542–543,
641–656

Fredholm alternative, 644
solution, by eigenfunction

expansion, 641–653
by Green’s function,

653–656
Nonhomogeneous linear

differential equations,
130, 169–185, 211–212,
222–230, 334–335, 343,
411–418

Noninvertible matrix, 352
Nonlinear ordinary differential

equations:
autonomous systems, 471–539
definition of, 19, 130
existence and uniqueness

theorems, 66, 106, 343
first order, 64–72

methods of solving, 40–47,
89–96, 137

periodic solutions of, 503–511,
521–531

y′′ = f (t, y′), 137
y′′ = f (y, y′), 137

Nonsingular matrix, 352
Normalization condition, 633
Nullcline, 499
Numerical dependence, 452
Numerical methods, 419–458

Adams–Bashforth formula,
440
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Adams–Moulton formula, 441
adaptive, 427, 433
backward differentiation

formulas, 443–444
backward Euler formula,

422–424
comparison of, 444
convergence of, 424
effect of step size, 426,

445–447
errorsee Error
Euler, 96–105, 419–429,

455–457
Heun, 431
improved Euler, 430–435
modified Euler, 435
multistep, 439–445
one-step, 439
predictor–corrector, 441, 458
Runge–Kutta, 435–439, 456
stability of, 448–453
for stiff equations, 450–451
for systems of first order

equations, 455–458
vertical asymptotes, 447–448

Numerical stability, 448–453

O
Odd function, 565
Odd periodic extension, 568
One-step method, 439
Orbital stability, 524
Order of differential equation, 18
Ordinary differential equation,

definition of, 17
Ordinary point, 238, 250, 254

at infinity, 260
Orthogonality, of Bessel

functions, 291, 661, 662
of Chebyshev polynomials,

663
of eigenfunctions of

Sturm–Liouville
problems, 632, 660

of functions, 549
of Legendre polynomials, 255,

662, 676
of sine and cosine functions,

549–550

of vectors, 351
Orthonormal set, 633, 669
Overdamped motion, 193

P
Parseval equation, 564, 571, 604,

676
Partial differential equation,

definition of, 17
See also Heat conduction

equation, Laplace’s
equation, Wave equation

Partial fraction expansion, 302,
305, 306, 309

Particular solution, 170, 212
Pendulum equation:

generalized nonlinear
undamped, 519

linear undamped, 19
nonlinear damped, 473–475,

481–482, 483, 484–487,
489, 519–520

nonlinear undamped, 19, 478,
488–489, 490–491,
511–513, 516

period, 490–491
Period, of nonlinear undamped

pendulum, 490–491
of simple harmonic motion,

190
Periodic boundary conditions,

638, 674
Periodic forcing terms, 563
Periodic functions, 548

cosine and sine, 548–549
derivative of, 557
fundamental period, 548
integral of, 556–557
Laplace transform of, 315
linear combination of, 549
product of, 549

Periodic solutions of autonomous
systems, 503–511,
521–531

Phase, of simple harmonic
motion, 190

Phase plane, 373, 460
Phase plot, 207
Phase portrait, 373, 460

Picard, CharleśEmile, 106
Picard, method of, 106
Piecewise continuous functions,

295, 558
Poincaŕe, Henri, 459
Poincaŕe-Bendixson theorem,

525
Population, growth of, 74–84
Positive definite function, 513
Positive semidefinite function,

513
Potential equation, 604–613

See also Laplace’s equation
Power series, properties of,

232–235
Predator–prey equations, 18,

340–341, 503–511
Predictor–corrector method, 441,

458
Proper node, 462

Q
Quasi frequency, 192
Quasi period, 193

R
Radioactive decay, 16, 59
Radiocarbon dating, 59
Radius of convergence, 232, 251
Ramp loading, 320
Rate function, 5
Rate of growth (decline), 5, 75

intrinsic, 76
Rayleigh equation, 531
Rectified sine wave, 316
Recurrence relation, 240, 268,

269, 274
Reduction of order, 165–166, 212
Reduction to systems of

equations, 341–342
Region of asymptotic stability,

487, 498, 516–519
Regular singular point, 255–260

at infinity, 260
Resistance, electric, 195, 196

see also Damping force
Resonance, 202–203, 323–324
Rodrigues’ formula, 255
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Round-off error, 424, 429,
445–447

Row reduction, 352
Runge, Carl D., 436
Runge–Kutta method, 436–439,

456

S
Saddle point, 375, 389, 461–462
Saturation level, 78
Sawtooth wave, 316, 567–568,

571
Scalar product,see Inner product
Schaefer model for fish

population, 86
Schr̈odinger, Erwin, 326
Self-adjoint:

boundary value problem,
637–639, 660

equation, 147
matrix, 365

Separable equations, 24, 40–46
Separated boundary conditions,

630
Separation constant, 575, 585,

593, 606, 623, 665
Separation of variables, 573

further remarks, 664–669
for heat conduction equation,

575, 585
for Laplace’s equation, 606

in polar coordinates, 609
for wave equation, 593

in polar coordinates, 667
Separatrix, 487, 498
Series of eigenfunctions,

635–636, 642, 660–661,
672

Series solution:
existence theorem for, 250,

277–278
first order equations, 254
indicial equation, 269, 273,

274, 278
near an ordinary point,

238–255
near a regular singular point,

267–280

recurrence relation, 240, 268,
269, 274

when roots of indicial
equation:

are equal, 270, 276–277,
278, 280–284

differ by integer, 270, 277,
278, 285–289

Shift of index of summation,
235–236

Similarity transformation,
397–398

Similar matrices, 398
Simple eigenvalues, 364
Simple harmonic motion, 190
Simply connected region, 91
Simpson’s rule, 437
Sine series, 567
Singular matrix, 352
Singular point, 238, 250,

255–260
irregular, 258, 279–280
regular, 255–260

at infinity, 260
Sink, nodal, 461

spiral, 465
Slope field,see Direction field
Solution of ordinary differential

equation, 20
general solution of linear

equations, 11, 30, 36, 70,
71, 133, 142, 143, 155,
163, 170, 211

systems, 370
implicit, 70–71
of systems of equations, 342

Source, nodal, 461
spiral, 465

Spiral point, 386, 390, 464–466,
479–480

Spring–mass system, 186–195,
200–207, 306, 392–393

two degrees of freedom, 220,
345, 393

Square integrable function, 672
Square wave, 315, 316, 560–562,

571
Stability:

for almost linear systems,
483–484

asymptotic, 79, 117, 119, 468,
471, 473, 475, 514–515,
524

see also Converging
solutions

basin of attraction, 487, 498,
516–519

of critical point, 468, 471,
472–473, 475, 479, 514

definition of, 472
exchange of, 120
globally asymptotically stable,

487
Liapunov theorems, 514
for linear systems, 468,

479–480
of numerical method, 448–453
orbital, 524
region of asymptotic stability,

487, 498, 516–519
semistable, 84, 524
stable, 468, 471, 472, 475, 514,

524
unstable, 79, 117, 119, 468,

471, 472, 475, 514, 524
see also Diverging solutions

Stairstep diagram, 120
Star point, 462
Steady state solution, 203, 582
Step functions, 310
Stiff equations, 450–451
Stokes, George Gabriel, 62
Stokes’ law, 62
Strange attractor, 536
Sturm, Charles, 629
Sturm–Liouville boundary value

problems, 629–641
eigenfunctions orthogonal, 632
eigenvalues, real, 631

simple, 633
nonhomogeneous, 641–645
self-adjointness of, 637–639,

660
singular, 656–663

continuous spectrum, 660
Successive approximations,

method of, 106, 401
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Superposition principle, 140,
344, 368, 600, 663

Sylvester, James, 348
Systems:

of algebraic equations,
357–360, 542–543

of differential equations, 18
autonomous, 471–472
existence and uniqueness

theorem, 343
initial conditions, 342
linear, 343
nonlinear, 343
numerical solution of,

455–458
reduction to, 341–342
solution of, 342

of linear first order equations,
368–418

definition of, 343
diagonalization, 398–400,

411–413
Euler, 382, 391, 408
existence and uniqueness

theorem, 343
fundamental matrix,

393–401, 405–406
fundamental set of solutions,

370
general solution of, 370
homogeneous, 343,

368–372
homogeneous with constant

coefficients, 373–410
complex eigenvalues,
384–393, 464–467
real and unequal
eigenvalues, 373–383,
460–462
repeated eigenvalues,
401–410, 462–464

nonhomogeneous, 343,
411–418

superposition of solutions,
368

undetermined coefficients,
413–414

variation of parameters,
414–416

T
Tangent line method,see Euler

method
Tautochrone, 336–337
Taylor, Brook, 234
Taylor series, 154, 234

for functions of two variables,
434

Telegraph equation, 619, 627, 653
Thermal diffusivity, 574, 616
Threshold models, 81–84
Trajectories, 342, 373, 460,

467–468, 475–477
almost linear systems,

483–484
linear systems, 460–467

Transfer function, 335
Transient solution, 203, 583
Translation of function, 311
Transpose of matrix, 348
Triangular wave, 551–552,

553–555, 571
Truncation error, global, 424,

426, 445–447
local, 424

U
Undetermined coefficients,

171–178, 222–226
for systems of equations,

413–414
Uniqueness theorems,see

Existence and uniqueness
theorems

Unit step function, 310
Laplace transform of, 311

V
Van der Pol equation, 478,

526–530
Variation of parameters, 25, 39,

179–185, 226–230

for systems of equations,
414–416

Vector space, 151
Vectors, 151, 349

inner product, 351
length, 351
linear dependence and

independence of,
360–362

magnitude, 351
multiplication of, 351
orthogonality, 351

Verhulst, Pierre F., 76
Verhulst equation, 76
Vibrations:

of elastic bar, 628–629
of elastic membrane, 604,

664–666
of elastic string, 591–604,

617–619
of spring–mass system,

186–195, 200–207, 306,
392

two degrees of freedom, 220,
345, 393

Volterra, Vito, 504
Volterra integral equation, 336

W
Wave equation, 17, 591, 617–619

in polar coordinates, 664, 667
solution of, 602
see also Elastic string,

derivation of wave
equation

Wavelength, of vibrating string,
594

Wave velocity, 591, 601, 619
Wronski, J́ozef, 141
Wronskian, 141, 211

Abel’s identity for, 149, 213
for systems of equations, 369

Abel’s identity, 370

Y
Yield, maximum sustainable, 87
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PREFACE

This supplement has been prepared for use in conjunction with
the seventh editions of ELEMENTARY DIFFERNTIAL EQUATIONS AND
BOUNDARY VALUE PROBLEMS and ELEMENTARY DIFFERENTIAL EQUATIONS,
both by W.E. Boyce and R.C. DiPrima.  The supplement contains a
sampling of the problems from each section of the text.  In most
cases the complete details in determining the solutions are
given while in the remainder of the problems helpful hints are
provided.  The problems chosen in each section represent,
wherever possible, the variety of applications and types of
examples that are covered in the written material of the text,
thereby providing the student a complete set of examples from
which to learn.

Students should be aware that following these solutions is very
different from designing and constructing one's own
solution.Using this supplemental resource appropriately for
learning differential equations is outlined as follows:

1. Make an honest attempt to solve the problem without using
the guide.

2. If needed, glance at the beginning of the solution in the
guide and then try again to generate the complete
solution.Continue using the guide for hints when you reach
an impasse.

3. Compare your final solution with the one provided to see
whether yours is more or less efficient than the guide,
since there is frequently more than one correct way to solve
a problem.

4. Ask yourself why that particular problem was assigned.

The use of a symbolic computational software package, in many
cases, would greatly simplify finding the solution to a given
problem, but the details given in this solutions manual are
important for the student's understanding of the underlying
mathematical principles and applications. In other cases, these
software packages are essential for completing the given
problem, as the calculations would be overwhelming using
analytical techniques. In these cases, some steps or hints are
given and then reference made to the use of an appropriate
software package.
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In order to simplify the text, the following abbreviations have
been used:

D.E.    differential equation(s)
O.D.E.  ordinary differential equation(s)
P.D.E.  partial differential equation(s)
I.C.    initial condition(s)
I.V.P.  initial value problem(s)
B.C.    boundary condition(s)
B.V.P.  boundary value problem(s)

I wish to express my appreciation to Mrs. Susan A. Hickey for
her excellent typing and proofreading of all stages of the
manuscript.  Dr. Josef Torok has also provided invaluable
assistance with the preparation of the figures as well as
assistance with many of the solutions involving the use of
symbolic computational software.

Charles W. Haines
Professor of Mathematics and
     Mechanical Engineering
Rochester Institute of Technology
Rochester, New York
June 2000
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CHAPTER 1                               1

Section 1.1, Page 8

2.   For y > 3/2 we see that y¢ > 0 
and thus y(t) is increasing there. 
For y < 3/2 we have y¢ < 0 and thus 
y(t) is decreasing there.  Hence 
y(t) diverges from 3/2 as tÆ�.

4.  Observing the direction field,
we see that for y>-1/2 we have 
y’<0, so the solution is 
decreasing here.  Likewise, 
for y<-1/2 we have y¢>0 and 
thus y(t) is increasing here. 
Since the slopes get closer to 
zero as y gets closer to -1/2, 
we conclude that yÆ-1/2 as tÆ�.

7. If all solutions approach 3, then 3 is the equilibrium 

solution and we want 
dy

dt
 < 0 for y > 3 and 

dy

dt
 > 0 for 

y < 3.  Thus 
dy

dt
 = 3-y.

11. For y = 0 and y = 4 we have y¢ = 0 and thus y = 0 and 
y = 4 are equilibrium solutions. For y > 4, y¢ < 0 so if 
y(0) > 4 the solution approaches y = 4 from above.  If 
0 < y(0) < 4, then y¢ > 0 and the solutions “grow” to y = 4 
as tÆ�.  For y(0) < 0 we see that y¢ < 0 and the solutions 
diverge from 0.

13. Since y¢ = y2, y = 0 is the equilibrium solution and y¢ > 0 
for all y.  Thus if y(0) > 0, solutions will diverge from 
0 and if y(0) < 0, solutions will aproach y = 0 as tÆ�.

15a. Let q(t) be the number of grams of the substance in the 

water at any time.  Then 
dq

dt
 = 300(.01) - 

300q

1,000,000
 = 

300(10-2- 10-6q). 

15b. The equilibrium solution occurs when q¢ = 0, or c = 104gm, 
independent of the amount present at t = 0 (all solutions 
approach the equilibrium solution).



16. The D.E. expressing the evaporation is 
dV

dt
 =  - aS, a > 0. 

Now V  =  
4

3
pr3 and S  =  4pr2, so S  =  4p

 Ë
Ê
ÁÁ
3

4p  ̄
�
��

2/3

V2/3.  

Thus 
dv

dt
  =   - kV2/3, for k > 0.

21.

22.

24.

Section 1.2 Page 14

1b. dy/dt = -2y+5 can be rewritten as 
dy

y-5/2
 = -2dt.  Thus 

lnΩ Ωy-5/2  = -2t+c1, or y-5/2 = ce
-2t.  y(0) = y0 yields 

c = y0 - 5/2, so y = 5/2 + (y0-5/2)e
-2t.

If y0 > 5/2, the solution starts above the equilibrium 
solution and decreases exponentially and approaches 5/2 
as tÆ�.  Conversely, if y < 5/2, the solution starts 
below 5/2 and grows exponentially and approaches 5/2 from 

2 Section 1.2



below as tÆ�.                                           3

4a. Rewrite Eq.(ii) as 
dy/dt

y
 = a and thus lnΩ Ωy  = at+c1; or 

y = ceat.

4b. If y = y1(t) + k, then 
dy

dt
 = 

dy1

dt
.  Substituting both 

these into Eq.(i) we get 
dy1

dt
 = a(y1+k) - b.  Since 

dy1

dt
 = ay1, this leaves ak - b = 0 and thus k = b/a.  

Hence y = y1(t) + b/a is the solution to Eq(i).

6b. From Eq.(11) we have p = 900 + cet/2.  If p(0) = p0, then 

c = p0 - 900 and thus p = 900 + (p0 - 900)e
t/2.  If 

p0 < 900, this decreases, so if we set p = 0 and solve 
for T (the time of extinction) we obtain 
eT/2 = 900/(900-p0), or T = 2ln[900/(900-p0)].

8a. Use Eq.(26).

8b. Use Eq.(29).

10a.
dQ

dt
 = -rQ yields 

dQ/dt

Q
 = -r, or lnΩ ΩQ  = -rt + c1.  Thus 

Q = ce-rt and Q(0) = 100 yields c = 100.  Hence Q = 100e-rt.  
Setting t = 1, we have 82.04 = 100e-r, which yields 
r = .1980/wk or r = .02828/day.

13a. Rewrite the D.E. as 
dQ/dt

Q-CV
 = 

-1

CR
, thus upon integrating and 

simplifying we get Q = De-t/CR + CV.  Q(0) = 0 Þ D = -CV and 
thus Q(t) = CV(1 - e-t/CR).

13b. lim
tÆ�

Q(t) = CV since lim
tÆ�

 e-t/CR = 0.

13c. In this case R
dQ

dt
 + 

Q

C
 = 0, Q(t1) = CV.  The solution of this 

D.E. is Q(t) = Ee-t/CR, so Q(t1) = Ee
-t1/CR = CV, or 

E = CVet1/CR.  Thus Q(t) = CVet1/CRe-t/CR = CVe-(t-t1)/CR.



13a. CV = 20,CR = 2.5 13c. CV = 20, CR = 2.5 t1 = 10
 

Section 1.3, Page 22

2.   The D.E. is second order since there is a second 
derivative of y appearing in the equation.  The equation 

is nonlinear due to the y2 term (as well as due to the y
2
 

term multiplying the y” term).

6.   This is a third order D.E. since the highest derivative is 
y¢¢¢ and it is linear since y and all its derivatives 

appear to the first power only.  The terms t
2
 and cos

2
t do 

not affect the linearity of the D.E.

8.   For y
1
(t) = e

-3t
 we have y

1

¢ (t) = -3e
-3t

 and y≤
1
(t) = 9e

-3t
.  

Substitution of these into the D.E. yields

 9e
-3t

 + 2(-3e
-3t

) - 3(e
-3t

) = (9-6-3)e
-3t

 = 0.

14.  Recall that if u(t) = Ú0tf(s)ds, then u¢(t) = f(t).

16.  Differentiating e
rt
 twice and substituting into the D.E. 

yields r
2
e
rt
 - e

rt
 = (r

2
-1)e

rt
. If y = e

rt
 is to be a 

solution of the D.E. then the last quantity must be zero 

for all t.  Thus r
2
-1 = 0 since e

rt
 is never zero.

19. Differentiating t
r
 twice and substituting into the D.E. 

yields t
2

[r(r-1)t
r-2

] + 4t[rt
r-1

] + 2t
r
 = [r

2
+3r+2]t

r
.  If 

y = t
r
 is to be a solution of the D.E., then the last term 

must be zero for all t and thus r
2
 + 3r + 2 = 0.

4 Section 1.3



22. The D.E. is second order since there are second partial      5
derivatives of u(x,y) appearing.  The D.E. is nonlinear 
due to the product of u(x,y) times ux(or uy).

26. Since 
∂u1
∂t

 = -a
2
e

-a2t
sinx and 

∂2u1

∂x2
 = -e

-a2t
sinx we have 

   a
2
[-e

-a2t
sinx] = -a

2
e
-a2t

sinx, which is true for all t and x.
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Section 2.1, Page 38

1. m(t) = exp(Ú3dt) = e3t.  Thus e3t(y¢+3y) = e3t(t+e-2t) or 
d

dt
(ye3t) = te3t + et.  Integration of both sides yields 

ye3t = 
1

3
te3t - 

1

9
e3t + et + c, and division by e3t gives 

the general solution.  Note that Úte3tdt is evaluated by 
integration by parts, with u = t and dv = e3tdt.

2. m(t) = e-2t.                3. m(t) = et.

4. m(t) = exp(Ú
dt

t
) = elnt = t, so (ty)¢ = 3tcos2t, and 

integration by parts yields the general solution.

6. The equation must be divided by t so that it is in the 
form of Eq.(3): y¢ + (2/t)y = (sint)/t.  Thus

m(t) = exp(Ú
2dt

t
 = t2, and (t2y)¢ = tsint.  Integration 

then yields t2y = -tcost + sint + c.

7. m(t) = et2.              8.  m(t) = exp(Ú
4tdt

1+t2
) = (1+t2) 2.

11. m(t) = et so (ety)¢ = 5etsin2t. To integrate the right 
side you can integrate by parts (twice), use an integral 
table, or use a symbolic computational software program 
to find ety = et(sin2t - 2cos2t) + c.

13. m(t) = e-t and y = 2(t-1)e2t + cet.  To find the value 
for c, set t = 0 in y and equate to 1, the initial value 
of y.  Thus -2+c = 1 and c = 3, which yields the solution 
of the given initial value problem.

15. m(t) = exp(Ú
2dt

t
) = t2 and y = t2/4 - t/3 + 1/2 + c/t2.  

Setting t = 1 and y = 1/2 we have c = 1/12.

18. m(t) = t2.  Thus (t2y)¢ = tsint and 
t2y = -tcost + sint + c.  Setting t = p/2 and
y = 1 yields c = p2/4 - 1.

20. m(t) = tet.
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21b. m(t) = e-t/2 so (e-t/2y)¢ = 2e-t/2cost.  Integrating (see 
comments in #11) and dividing by e-t/2 yields 

y(t) = -
4

5
cost + 

8

5
sint + cet/2.  Thus y(0) = -

4

5
 + c = a, 

or c = a + 
4

5
 and y(t) = -

4

5
cost + 

8

5
sint + (a + 

4

5
)et/2.  

If (a + 
4

5
) = 0, then the solution is oscillatory for all 

t, while if (a + 
4

5
) π 0, the solution is unbounded as 

t Æ �.  Thus a0 = -
4

5
.

21a.                               24a.

24b. m(t) = expÚ 2dtt  = t2, so (t2y)¢ = sint and 

y(t) = 
-cost
t2

 + 
c

t2
.  Setting t = -

p
2
 yields 

4c

p2
 = a or c = 

ap2

4
 and hence y(t) = 

ap2/4 - cost
t2

, which 

is unbounded as t Æ 0 unless ap2/4 = 1 or a0 = 4/p2.

24c. For a = 4/p2 y(t) = 
1 - cost

t2
.  To find the limit as 

t Æ 0 L’Hopital’s Rule must be used:  

lim
tÆ0

y(t) = lim
tÆ0

sint

2t
 = lim

tÆ0

cost

2
 = 

1

2
.

28. (e-ty)¢ = e-t + 3e-tsint so

e-ty = -e-t - 3e-t(
sint+cost

2
) + c or

y(t) = -1 - (
3

2
)e-t(sint+cost) + cet.

If y(t) is to remain bounded, we must have c = 0.  Thus 

y(0) = -1 - 
3

2
 + c = y0 or c = y0 + 

5

2
 = 0 and y0 =  -

5

2
.
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30.  m(t) = eat so the D.E. can be written as 
(eaty)’ = beate-lt = be(a-l)t.  If a π l, then integration 
and solution for y yields y = [b/(a-l)]e-lt + ce-at.  Then 
lim
xÆ�

 y is zero since both l and a are positive numbers.  

If a = l, then the D.E. becomes (eaty)¢ = b, which yields 
y = (bt+c)/elt as the solution.  L’Hopital’s Rule gives 

lim
tÆ�

 y = lim
tÆ�

  
(bt+c)

elt
 = lim

tÆ�
 

b

lelt
 = 0.

32. There is no unique answer for this situation.  One 

possible response is to assume y(t) = ce-2t + 3 - t, then 
y¢(t) = -2ce-2t - 1 and thus y¢ + 2y = 5 - 2t.

35. This problem demonstrates the central idea of the method 
of variation of parameters for the simplest case.  The 
solution (ii) of the homogeneous D.E. is extended to the 
corresponding nonhomogeneous D.E. by replacing the 
constant A by a function A(t), as shown in (iii).

36. Assume y(t) = A(t)exp(-Ú(-2)dt) = A(t)e2t.  
Differentiating y(t) and substituting into the D.E. 
yields A¢(t) = t2 since the terms involving A(t) add to 
zero.  Thus A(t) = t3/3 + c, which substituted into y(t) 
yields the solution.

37. y(t) = A(t)exp(-Ú
dt

t
) = A(t)/t.

Section 2.2, Page 45

Problems 1 through 20 follow the pattern of the examples 
worked in this section.  The first eight problems, however, 
do not have I.C. so the integration constant, c, cannot be 
found.

1. Write the equation in the form ydy = x2dx. Integrating 
the left side with respect to y and the right side with 
respect to x yields 

y2

2
 = 

x3

3
 + C, or 3y2 - 2x3 = c.

4. For y π -3/2 multiply both sides of the equation by 
3 + 2y to get the separated equation 
(3+2y)dy = (3x2-1)dx.  Integration then yields 
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3y + y2 = x3 - x + c.

6. We need x π 0 and Ω Ωy < 1 for this problem to be 

defined. Separating the variables we get (1-y2)-1/2dy = 
x-1dx.  Integrating each side yields arcsiny = lnΩxΩ+c, 
so y = sin[ln|x|+c], x π 0 (note that Ω Ωy  < 1).  Also, 

y = ± 1 satisfy the D.E., since both sides are zero.

10a. Separating the variables we get ydy = (1-2x)dx, so 
y2

2
 = x - x2 + c.  Setting x = 0 and y = -2 we have 2 = c 

and thus y2 = 2x - 2x2 +  or y = - 2x - 2x2 + 4 .  The 
negative square root must be used since y(0) = -2.

10c. Rewriting y(x) as - 2(2-x)(x+1) , we see that y is 
defined for -1 £ x £ 2,  However, since y¢ does not exist 
for x = -1 or x = 2, the solution is valid only for the 
open interval -1 < x < 2.

13. Separate variables by factoring the denominator of the 

right side to get ydy = 
2x

1+x2
dx.  Integration yields 

y2/2 = ln(1+x2)+c and use of the I.C. gives c = 2.  Thus 

y = ± [2ln(1+x2)+4]1/2, but we must discard the plus 
square root because of the I.C.  Since 1 + x2 > 0, the 
solution is valid for all x.

15. Separating variables and integrating yields 

y + y2 = x2 + c. Setting y = 0 when x = 2 yields c = -4 

or y2 + y = x2-4.  To solve for y complete the square on 
the left side by adding 1/4 to both sides. This yields

y2 + y + 
1

4
 = x2 - 4 + 

1

4
 or (y + 

1

2
)2 = x2 - 15/4.  Taking 

the square root of both sides yields 

y + 
1

2
 = ± x2 - 15/4 , where the positive square root 

must be taken in order to satisfy the I.C.  Thus 

y = -
1

2
 + x2 - 15/4 , which is defined for x2 ≥ 15/4 or 

x ≥ 15 /2. The possibility that x < - 15 /2 is 
discarded due to the I.C.

17a. Separating variables gives (2y-5)dy = (3x2-ex)dx and 
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integration then gives y2 - 5y = x3 - ex + c.  Setting 
x = 0 and y = 1 we have 1 - 5 = 0 - 1 + c, or c = -3.  
Thus y2 - 5y - (x3-ex-3) = 0 and using the quadratic 
formula then gives 

y(x) = 
5 ± 25+4(x3-ex-3)

2
 = 

5

2
 - 

13

4
 + x3 -ex .  The 

negative square root is chosen due to the I.C.

17c. The interval of definition for y must be found 
numerically.  Approximate values can be found by plotting 

y1(x) = 
13

4
 + x3 and y2(x) = ex and noting the values of x 

where the two curves cross.

19a. As above we start with cos3ydy = -sin2xdx and integrate 

to get 
1

3
sin3y = 

1

2
cos2x + c.  Setting y = p/3 when 

x = p/2 (from the I.C.) we find that 0 = -
1

2
 + c or 

c = 
1

2
, so that 

1

3
sin3y = 

1

2
cos2x + 

1

2
 = cos2x (using the 

appropriate trigonometric identity).  To solve for y we 
must choose the branch that passes through the point 

(p/2,p/3) and thus 3y = p - arcsin(3cos2x), or 

y = 
p
3
 - 

1

3
arcsin(3cos2x).

19c. The solution in part a is defined only for 

0 £ 3cos2x £ 1, or - 1/3  £ cosx £ 1/3 .  Taking the 
indicated square roots and then finding the inverse 
cosine of each side yields .9553 £ x £ 2.1863, or 
Ωx-p/2Ω £ 0.6155, as the approximate interval.

21. We have (3y2-6y)dy = (1+3x2)dx so that y3-3y2 = 

x + x3 - 2, once the I.C. are used.  From the D.E., the 
integral curve will have a vertical tangent when 

3y2 - 6y = 0, or y = 0,2.  For y = 0 we have 

x3 + x - 2 = 0, which is satisfied for x = 1, which is 

the only zero of the function w = x3 + x - 2.  Likewise, 
for y = 2, x = -1.

23. Separating variables gives y-2dy = (2+x)dx, so 
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-y-1 = 2x + 
x2

2
 + c.  y(0) = 1 yields c = -1 and thus 

y = 
-1

x2

2
 + 2x - 1

 = 
2

2 - 4x - x2
.  This gives 

dy

dx
 = 

8 + 4x

(2-4x-x2) 2
, so the minimum value is attained at 

x = -2.  Note that the solution is defined for 
-2 - 6  < x < -2 + 6  (by finding the zeros of the 
denominator) and has vertical asymptotes at the end 
points of the interval.

25. Separating variables and integrating yields 3y + y2 = 
sin2x + c.  y(0) = -1 gives c = -2 so that 
y2 + 3y + (2-sin2x) = 0.  The quadratic formula then 

gives y = -
3

2
 + sin2x + 1/4 , which is defined for 

-.126 < x < 1.697 (found by solving sin2x = -.25 for x 
and noting x = 0 is the initial point).  Thus we have 
dy

dx
 = 

cos2x

(sin2x+
1

4
)

, which yields x = p/4 as the only 

critical point in the above interval.  Using the second 
derivative test or graphing the solution clearly 
indicates the critical point is a maximum.

27a. By sketching the direction field and using the D.E.we 
note that y¢ < 0 for y > 4 and y¢ approaches zero as y 
approaches 4.  For 0 < y < 4, y¢ > 0 and again approaches 
zero as y approaches 4.  Thus lim

tÆ�
y = 4 if y0 > 0.  For 

y0 < 0, y¢ < 0 for all y and hence y becomes negatively 
unbounded (-�) as t increases.  If y0 = 0, then y¢ = 0 
for all t, so y = 0 for all t.

27b. Separating variables and using a partial fraction 

expansion we have (
1

y
 - 

1

y-4
)dy = 

4

3
tdt.  Hence 

lnΩ
y

y-4
Ω = 

2

3
t2 + c1 and thus Ω

y

y-4
Ω = ec1e2t

2/3 = ce2t
2/3, 

where c is positive.  For y0 = .5 this becomes 
y

4 -y
 = ce2t

2/3 and thus c = 
.5

3.5
 = 

1

7
.  Using this value 
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for c and solving for y yields y(t) = 
4

1 + 7e-2t2/3
.  

Setting this equal to 3.98 and solving for t yields 
t = 3.29527.

29. Separating variables yields 
cy+d

ay+b
 dy = dx.  If a π 0 and 

ay+b π 0 then dx = (
c

a
+

ad-bc

a(ay+b)
)dy.  Integration then 

yields the desired answer.

30c. If v = y/x then y = vx and 
dy

dx
 = v + x

dv

dx
 and thus the 

D.E. becomes v + x
dv

dx
 = 

v-4

1-v
.  Subtracting v from both 

sides yields x
dv

dx
 = 

v2-4

1-v
.

30d. The last equation in (c) separates into 
1-v

v2-4
dv = 

1

x
dx.  To 

integrate the left side use partial fractions to write 
1-v

v-4
 = 

A

v-2
 + 

B

v+2
, which yields A = -1/4 and B = -3/4.  

Integration then gives -
1

4
ln|v-2| - 

3

4
ln|v+2| = ln|x| - k, or 

ln|x4||v-2||v+2|3 = 4k after manipulations using 
properties of the ln function.  

31a. Simplifying the right side of the D.E. gives 

dy/dx = 1 + (y/x) + (y/x) 2 so the equation is homogeneous.  

31b. The substitution y = vx leads to 

v + x
dv

dx
 = 1 + v + v2 or 

dv

1 + v2
 = 

dx

x
.  Solving, we get 

arctanv = ln|x| + c.  Substituting for v we obtain 
arctan(y/x) - ln|x| = c.

33b. Dividing the numerator and denominator of the right side 

by x and substituting y = vx we get v + x
dv

dx
 = 

4v - 3

2-v
 

which can be rewritten as x
dv

dx
 = 

v2 + 2v - 3

2 - v
.  Note that 

v = -3 and v = 1 are solutions of this equation.  For 
v π  1, -3 separating variables gives 
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2 - v

(v+3)(v-1)
 dv = 

1

x
dx.  Applying a partial fraction 

decomposition to the left side we obtain 

[
1

4

1

v-1
 - 

5

4

1

v+3
]dv = 

dx

x
, and upon integrating both sides 

we find that 
1

4
ln|v-1| - 

5

4
ln|v+3| = ln|x| + c.  

Substituting for v and performing some algebraic 
manipulations we get the solution in the implicit form 

|y-x| = c|y+3x|5.  v = 1 and v = -3 yield y = x and 
y = -3x, respectively, as solutions also.

35b. As in Prob.33, substituting y = vx into the D.E. we get 

v + x
dv

dx
 = 

1+3v

1-v
, or x

dv

dx
 = 

(v+1) 2

1-v
.  Note that v = -1 (or 

y = -x) satisfies this D.E.  Separating variables yields 
1-v

(v+1) 2
dv = 

dx

x
.  Integrating the left side by parts we 

obtain 
v-1

v+1
 - lnΩ Ωv+1  = lnΩ Ωx  + c.  Letting v = 

y

x
 then 

yields
y-x

y+x
 - lnΩ Ω

y+x

x
 = lnΩ Ωx  + c, or 

y-x

y+x
 - lnΩ Ωy+x  = c.  

This answer differs from that in the text.  The answer in 
the text can be obtained by integrating the left side, 
above, using partial fractions.  By differentiating both 
answers, it can be verified that indeed both forms satisfy 
the D.E.

Section 2.3, Page 57 

1. Note that q(0) = 200 gm, where q(t) represents the amount of 
dye present at any time.

2. Let S(t) be the amount of salt that is present at any time 
t, then S(0) = 0 is the original amount of salt in the tank, 
2 is the amount of salt entering per minute,  and 2(S/120) 
is the amount of salt leaving per minute (all amounts 
measured in grams). Thus 
dS/dt = 2 - 2S/120, S(0) = 0.

3. We must first find the amount of salt that is present after 
10 minutes.  For the first 10 minutes (if we let Q(t) be the 
amount of salt in the tank):  
 = (2) - 2, Q(0) = 0.  This I.V.P. has the solution:  Q(10) 
= 50(1-)  9.063 lbs. of salt in the tank after the first 10 
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minutes.  At this point no more salt is allowed to enter, so 
the new I.V.P. (letting P(t) be the amount of salt in the 
tank) is: 
 = (0)(2) - 2, P(0) = Q(10) = 9.063.  The solution of this 
problem is P(t) = 9.063, which yields P(10) = 7.42 lbs. 

4.  Salt flows into the tank at the rate of (1)(3) lb/min. and 
it flows out of the tank at the rate of (2) lb/min. since 
the volume of water in the tank at any time t is 200 + 
(1)(t) gallons (due to the fact that water flows into the 
tank faster than it flows out).  Thus the I.V.P. is dQ/dt = 
3 -  Q(t), Q(0) = 100.

7a. Set  = 0 in Eq.(16) (or solve Eq.(15) with S(0) = 0).

7b. Set r = .075, t = 40 and S(t) = $1,000,000 in the answer to 
(a) and then solve for k.

7c. Set k = $2,000, t = 40 and S(t) = $1,000,000 in the answer 
to (a) and then solve numerically for r.

9. The rate of accumulation due to interest is .1S and the rate 
of decrease is k dollars per year and thus 
dS/dt = .1S - k, S(0) = $8,000.  Solving this for S(t) 
yields S(t) = 8000 - 10k(-1). Setting S = 0 and substitution 
of t = 3 gives k = $3,086.64 per year. For 3 years this 
totals $9,259.92, so $1,259.92 has been paid in interest.

10. Since we are assuming continuity, either convert the monthly 
payment into an annual payment or convert the yearly 
interest rate into a monthly interest rate for 240 months.  
Then proceed as in Prob. 9.

12a. Using Eq. (15) we have  - S = 800(1) or 
  S  (800t), S(0)  100,000.  Using an integrating factor and 
integration by parts (or using a D.E. solver) we get S(t)    
t  c.  Using the I.C. yields c  .  Substituting this value 
into S, setting S(t)  0, and solving numerically for t 
yields t  135.363 months.

16a. This problem can be done numerically using appropriate D.E. 
solver software.  Analytically we have 
  (.1.2sint)dt by separating variables and thus 
y(t)  cexp(.1t.2cost).  y(0)  1 gives c  , so 
y(t)  exp(.2.1t.2cost).  Setting y  2 yields 
ln2  .2  .1  .2cos, which can be solved numerically to give  
 2.9632.  If y(0)  , then as above, 
y(t)   exp(.2.1t.2cost).  Thus if we set y  2 we get the 
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same numerical equation for  and hence the doubling time has 
not changed.

18. From Eq.(26) we have 19 = 7 + (20-7) or 
k = -ln = ln(13/12).  Hence if (T) = 15 we get:  15 = 7 + 
13.  Solving for T yields 
T = ln(8/13)/-ln(13/12) = ln(13/8)/ln(13/12) min.

19. Hint:  let Q(t) be the quantity of carbon monoxide in the 
room at any time t.  Then the concentration is given by x(t) 
= Q(t)/1200.

20a. The required I.V.P. is dQ/dt = kr + P - r, 
Q(0) = V.  Since c = Q(t)/V, the I.V.P. may be rewritten 
Vc(t) = kr + P - rc, c(0) = , which has the solution c(t) = 
k +  + ( - k - ).

20b. Set k = 0, P = 0, t = T and c(T) = .5 in the solution found 
in (a).

21a.If we measure x positively upward from the ground, then 
Eq.(4) of Section 1.1 becomes m = -mg, since there is no air 
resistance.  Thus the I.V.P. for v(t) is 
dv/dt = -g, v(0) = 20.  Hence 
 = v(t) = 20 - gt and x(t) = 20t - (g/2) + c. Since x(0) = 

30, c = 30 and x(t) = 20t - (g/2)t2 + 30.  At the maximum 
height v(tm) = 0 and thus 

tm = 20/9.8 = 2.04 sec., which when substituted in the 

equation for x(t) yields the maximum height.

21b. At the ground x(tg) = 0 and thus 20tg - 4.9tg
2 + 30 = 0.

22. The I.V.P. in this case is m
dv

dt
 = -

1

30
v - mg, v(0) = 20, 

where the positive direction is measured upward.

24a. The I.V.P. is m
dv

dt
 = mg - .75v, v(0) = 0 and v is 

measured positively downward.  Since m = 180/32, the D.E. 

becomes 
dv

dt
 = 32 - 

2

15
v and thus v(t) = 240(1-e-2t/15) so 

that v(10) = 176.7 ft/sec.

24b. Integration of v(t) as found in (a) yields 

x(t) = 240t + 1800(e-2t/15-1) where x is measured 
positively down from the altitude of 5000 feet.  Set 
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t = 10 to find the distance traveled when the parachute 
opens.

24c. After the parachute opens the I.V.P. is m
dv

dt
 = mg-12v, 

v(0) = 176.7, which has the solution 

v(t) = 161.7e-32t/15 + 15 and where t = 0 now represents 
the time the parachute opens.  Letting tÆ� yields the 
limiting velocity.

 
24d. Integrate v(t) as found in (c) to find 

x(t) = 15t - 75.8e-32t/15 + C2. C2 = 75.8 since x(0) = 0, 

x now being measured from the point where the parachute 
opens.  Setting x = 3925.5 will then yield the length of 
time the skydiver is in the air after the parachute 
opens.

26a. Again, if x is measured positively upward, then Eq.(4) of 

Sect.1.1 becomes m
dv

dt
 = -mg - kv.

26b.From part (a) v(t) = -
mg

k
 + [v0 + 

mg

k
]e-kt/m.  As k Æ 0 

this has the indeterminant form of -� + �. Thus rewrite 

v(t) as v(t) = [-mg + (v0k + mg)e
-kt/m ]/k which has the 

indeterminant form of 0/0, as k Æ 0 and hence 
L’Hopital’s Rule may be applied with k as the variable.

27a. The equation of motion is m(dv/dt) = w-R-B which, in this 
problem, is 
4

3
pa3r(dv/dt) = 

4

3
pa3rg - 6pmav - 

4

3
pa3r¢g.  The limiting 

velocity occurs when dv/dt = 0.

27b. Since the droplet is motionless, v = dv/dt = 0, we have 

the equation of motion 0 = (
4

3
)pa3rg - Ee - (

4

3
)pa3r¢g, 

where r is the density of the oil and r¢ is the density 
of air.  Solving for e yields the answer.

28. All three parts can be answered from one solution if k 
represents the resistance and if the method of solution 
of Example 4 is used.  Thus we have 

m
dv

dt
 = mv

dv

dx
 = mg - kv, v(0) = 0, where we have assumed 

the velocity is a function of x.  The solution of this 
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I.V.P. involves a logarithmic term, and thus the answers 
to parts (a) and (c) must be found using a numerical 
procedure.

29b. Note that 32 ft/sec2 = 78,545 m/hr2.

30. This problem is the same as Example 4 through Eq.(29).  

In this case the I.C. is v(xR) = vo, so c = 
v02

2
 - 

gR

1+x
. 

The escape velocity,ve, is found by noting that vo
2 ≥ 

2gR

1+x
 

in order for v2 to always be positive.  From Example 4, 
the escape velocity for a surface launch is 

ve(0) = 2gR .  We want the escape velocity of xo = xR to 
have the relation ve(xR) = .85ve(0), which yields 

x = (0.85)-2 - 1 @ 0.384. If R = 4000 miles then 
xo = xR = 1536 miles.

31b. From part a) 
dx

dt
 = v = ucosA and hence 

x(t) = (ucosA)t + d1. Since x(0) = 0, we have d1 = 0 and 

x(t) = (ucosA)t.  Likewise 
dy

dt
 = -gt + usinA and 

therefore y(t) = -gt2/2 + (usinA)t + d2.  Since y(0) = h 

we have d2 = h and y(t) = -gt2/2 + (usinA)t + h.

31d. Let tw be the time the ball reaches the wall.  Then 

x(tw) = L = (ucosA)tw and thus tw = 
L

ucosA
.  For the ball 

to clear the wall y(tw) ≥ H and thus (setting 

tw = 
L

ucosA
, g = 32 and h = 3 in y) we get 

-16L2

u2cos2A
 + LtanA + 3 ≥ H.

31e. Setting L = 350 and H = 10 we get 
-161.98

cos2A
 + 350

sinA

cosA
 ≥ 7 

or 7cos2A - 350cosAsinA + 161.98 £ 0.  This can be solved 
numerically or by plotting the left side as a function of 
A and finding where the zero crossings are.

31f. Setting L = 350, and H = 10 in the answer to part d 
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yields 
-16(350) 2

u2cos2A
 + 350tanA = 7, where we have chosen the 

equality sign since we want to just clear the wall.  

Solving for u2 we get u2 = 
1,960,000

175sin2A-7cos2A
.  Now u will 

have a minimum when the denominator has a maximum.  Thus 
350cos2A + 7sin2A = 0, or tan2A = -50, which yields 
A = .7954 rad. and u = 106.89 ft./sec.

Section 2.4, Page 72

1. If the equation is written in the form of Eq.(1), then 
p(t) = (lnt)/(t-3) and g(t) = 2t/(t-3). These are defined 
and continuous on the intervals (0,3) and (3,�), but 
since the initial point is t = 1, the solution will be 
continuous on 0 < t < 3.

4. p(t) = 2t/(2-t)(2+t) and g(t) = 3t2/(2-t)(2+t).

8. Theorem 2.4.2 guarantees a unique solution to the D.E. 

through any point (t0,y0) such that t0
2 + y0

2 < 1 since 

∂f
∂y

 = -y(1-t2-y2)1/2 is defined and continuous only for 

1-t2-y2 > 0.  Note also that f = (1-t2-y2)1/2 is defined 
and continuous in this region as well as on the boundary 
t2+y2 = 1.  The boundary can’t be included in the final 

region due to the discontinuity of 
∂f
∂y

 there.

11. In this case f = 
1+t2

y(3-y)
 and 

∂f
∂y

 = 
1+t2

y(3-y)2
 - 

1+t2

y2(3-y)
, 

which are both continuous everywhere except for y = 0 and 
y = 3.

13. The D.E. may be written as ydy = -4tdt so that 

y2

2
 = -2t2+c, or y2 = c-4t2.  The I.C. then yields 

y0
2 = c, so that y2 = y0

2 - 4t2 or y = ± y0
2-4t2 , which is 

defined for 4t2 < y0
2 or |t| < |y0|/2.  Note that y0 π 0 

since Theorem 2.4.2 does not hold there.

17. From the direction field and the given D.E. it is noted 
that for t > 0 and y < 0 that y¢ < 0, so y Æ -� for 
y0 < 0.  Likewise, for 0 < y0 < 3, y¢ > 0 and y¢ Æ 0 as 
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y Æ 3, so y Æ 3 for 0 < y0 < 3 and for y0 > 3, y¢ < 0 
and again y¢ Æ 0 as yÆ 3, so yÆ3 for y0 > 3.  For 

y0 = 3, y¢ = 0 and y = 3 for all t and for y0 = 0, y’ = 0 
and y = 0 for all t.

22a. For y1 = 1-t, y1¢ = -1 = 
-t+[t2+4(1-t)] 1/2

2

                           = 
-t+[(t-2)2] 1/2

2

                           = 
-t+Ωt-2Ω

2
 = -1 if 

(t-2) ≥ 0, by the definition of absolute value.  Setting 
t = 2 in y1 we get y1(2) = -1, as required.

22b. By Theorem 2.4.2 we are guaranteed a unique solution only 

where f(t,y) = 
-t+(t2+4y)1/2

2
 and fy(t,y) = (t

2+4y)-1/2 are 

continuous.  In this case the initial point (2,-1) lies 

in the region t2 + 4y £ 0, in which case 
∂f
∂y

 is not 

continuous and hence the theorem is not applicable and 
there is no contradiction.

22c. If y = y2(t) then we must have ct + c
2 = -t2/4, which is 

not possible since c must be a constant.

23a. To show that f(t) = e2t is a solution of the D.E., take 
its derivative and substitute into the D.E.

24. [c f(t)]¢ + p(t)[cf(t)] = c[f¢(t) + p(t)f(t)] = 0 since 
f(t) satisfies the given D.E.

25. [y1(t) + y2(t)]¢ + p(t)[y1(t) + y2(t)] =
y1¢ (t) + p(t)y1(t) + y2¢ (t) + p(t)y2(t) = 0 + g(t).

27a. For n = 0,1, the D.E. is linear and Eqs.(3) and (4) 
apply.

27b. Let v = y1-n then 
dv

dt
 = (1-n)y-n

dy

dt
 so 

dy

dt
 = 

1

1-n
yn

dv

dt
, 

which makes sense when n π 0,1.  Substituting into the 

D.E. yields 
yn

1-n
 
dv

dt
 + p(t)y = q(t)yn or 
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v’ + (1-n)p(t)y1-n = (1-n)q(t). Setting v = y1-n then 
yields a linear D.E. for v.

28. n = 3 so v = y-2 and 
dv

dt
 = -2y-3

dy

dt
 or 

dy

dt
 = -

1

2
 y3

dv

dt
.  

Substituting this into the D.E. gives

-
1

2
y3

dv

dt
 + 

2

t
y = 

1

t2
y3.  Simplifying and setting 

y-2 = v then gives the linear D.E. 

v’ - 
4

t
v = -

2

t2
, where m(t) = 

1

t4
 and 

v(t) = ct4 + 
2

5t
 = 

2+5ct5

5t
.  Thus y = ±[5t/(2+5ct5)] 1/2.

29. n = 2 so v = y-1 and 
dv

dt
 = -y2

dv

dt
.  Thus the D.E. 

becomes -y2
dv

dt
 - ry = -ky2 or 

dv

dt
 + rv = k.  Hence 

m(t) = ert and v = k/r + ce-rt. Setting v = 1/y then 
yields the solution.

32. Since g(t) is continuous on the interval 
0 £ t £ 1 we may solve the I.V.P. 
y1¢ + 2y1 = 1, y1(0) = 0 on that interval to obtain 

y1 = 1/2 - (1/2)e
-2t, 0 £ t £ 1. g(t) is also continuous 

for 1 < t; and hence we may solve y2¢ + 2y2 = 0 to obtain 

y2 = ce
-2t, 1 < t.  The solution y of the original I.V.P. 

must be continuous (since its derivative must exist) and 
hence we need c in y2 so that y2 at 1 has the same value 

as y1 at 1.  Thus

 ce-2 = 1/2 - e-2/2 or c = (1/2)(e2-1) and we obtain

y = 

 Ó

Ï

Ô
Ô
Ô
Ô
Ô
Ì
1/2 - (1/2)e-2t 0 £ t £ 1

1/2(e2-1)e-2t  1 £ t
         and 

y’= 
 Ó

Ï

Ô
ÔÔ
ÔÌ
e-2t        0 £ t £ 1

(1-e2)e-2t   1 < t.

Evaluating the two parts of y’ at t0 = 1 we see that they 

are different, and hence y’ is not continuous at t0 = 1.
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Problems 1 through 13 follow the pattern illustrated in 
Fig.2.5.3 and the discussion following Eq.(11).

3. The critical points are found by setting 
dy

dt
 equal to 

zero. Thus y = 0,1,2 are the critical points.  The graph 
of y(y-1)(y-2) is positive for O < y < 1 and 2 < y and 
negative for 1 < y < 2.  Thus y(t) is increasing 

(
dy

dt
 > 0) for 0 < y < 1 and 2 < y and decreasing 

(
dy

dt
 < 0) for 1 < y < 2. Therefore 0 and 2 are unstable 

critical points while 1 is an asymptotically stable 
critical point.

6.
dy

dt
 is zero only when arctany is zero (ie, y = 0). 

dy

dt
 > 0 

for y < 0 and 
dy

dt
 < 0 for y > 0.  Thus y = 0 is an 

asymptotically stable critical point.

7c. Separate variables to get 
dy

(1-y)2
 = kt.  Integration 

yields 
1

1-y
 = kt + c, or y = 1 - 

1

kt + c
 = 

kt + c - 1

kt + c
.  

Setting t = 0 and y(0) = y0 yields y0  = 
c-1

c
 or 

c = 
1

1-y0
.  Hence y(t) = 

(1-y0)kt + y0

(1-y0)kt + 1
.  Note that for 

y0 < 1 y Æ (1-y0)k/(1-y0)k = 1 as t Æ �. For y0 > 1 

notice that the denominator will have a zero for some 
value of t, depending on the values chosen for y0 and k.  

Thus the solution has a discontinuity at that point.

9. Setting 
dy

dt
 = 0 we find y = 0, ± 1 are the critical 

points.  Since 
dy

dt
 > 0 for y < -1 and y > 1 while 

dy

dt
 < 0 

for -1 < y < 1 we may conclude that y = -1 is 
asymptotically stable, y = 0 is semistable, and y = 1 is 
unstable.
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11. y = b2/a2 and y = 0 are the only critical points.  For 

0 < y < b2/a2, 
dy

dt
 < 0 and thus y = 0 is asymptotically 

stable.  For y > b2/a2, dy/dt > 0 and thus 

y = b2/a2 is unstable.

14. If f¢(y1) < 0 then the slope of f is negative at y1 and 
thus f(y) > 0 for y < y1 and f(y) < 0 for y > y1 since 

f(y1) = 0.  Hence y1 is an asysmtotically stable critical 

point.  A similar argument will yield the result for 
f¢(y1) > 0.

16b. By taking the derivative of y ln(K/y) it can be shown that 

the graph of 
dy

dt
 vs y has a maximum point at y = K/e.  Thus 

dy

dt
 is positive and increasing for 0 < y < K/e and thus y(t) 

is concave up for that interval.  Similarly 
dy

dt
 is positive 

and decreasing for K/e < y < K and thus y(t) is concave down 
for that interval.

16c. ln(K/y) is very large for small values of y and thus 
(ry)ln(K/y) > ry(1 - y/K) for small y.  Since ln(K/y) and 
(1 - y/K) are both strictly decreasing functions of y and 
since ln(K/y) = (1 - y/K) only for y = K, we may conclude 

that 
dy

dt
 = (ry)ln(K/y) is never less than 

dy

dt
 = ry(1 - y/K).

17a. If u = ln(y/K) then y = Keu and 
dy

dt
 = Keu

du

dt
 so that the 

D.E. becomes du/dt = -ru.

18a. The D.E. is dV/dt = k - apr2.  The volume of a cone of 
height L and radius r is given by V = pr2L/3 where 
L = hr/a from symmetry.  Solving for r yields the desired 
solution.

18b.Equilibrium is given by k - apr2 = 0.

18c. The equilibrium height must be less than h.
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20b. Use the results of Problem 14.

20d. Differentiate Y with respect to E.

21a. Set 
dy

dt
 = 0 and solve for y using the quadratic formula.

 
21b. Use the results of Problem 14.

21d. If h > rK/4 there are no critical points (see part a) and 
dy

dt
 < 0 for all t.

24a. If z = x/n then dz/dt = 
1

n
 
dx

dt
 - 

x

n2
 
dn

dt
.  Use of 

Equations (i) and (ii) then gives the I.V.P. (iii).

24b. Separate variables to get 
ndz

z(1-nz)
 = - bdt.  Using 

partial fractions this becomes 
dz

z
 + 

dz

1-z
 = -bdt.  

Integration and solving for z yields the answer.

24c. Find z(20).

26a. Plot dx/dt vs x and observe that x = p and x = q are 
critical points.  Also note that dx/dt > 0 for 
x < min(p,q) and x > max(p,q) while dx/dt < 0 for x 
between min(p,q) and max(p,q).  Thus x = min(p,q) is an 
asymptotically stable point while x = max(p,q) is 
unstable.  To solve the D.E., separate variables and use 

partial fractions to obtain 
1

q-p
[
dx

q-x
 - 

dx

p-x
] = adt. 

Integration and solving for x yields the solution.

26b. x = p is a semistable critical point and since 
dx

dt
 > 0, 

x(t) is an increasing function.  Thus for x(0) = 0, x(t) 
approaches p as t Æ �.  To solve the D.E., separate 
variables and integrate.

Section 2.6, Page 95

3. M(x,y) = 3x2-2xy+2 and N(x,y) = 6y2-x2+3, so My = -2x = Nx 

and thus the D.E. is exact. Integrating M(x,y) with 
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respect to x we get y(x,y) = x3 - x2y + 2x + H(y).  
Taking the partial derivative of this with respect to y 

and setting it equal to N(x,y) yields -x2+h¢(y) = 
6y2-x2+3, so that h¢(y) = 6y2 + 3 and h(y) = 2y3 + 3y.  
Substitute this h(y) into y(x,y) and recall that the 
equation which defines y(x) implicitly is y(x,y) = c.  
Thus x3 - x2y + 2x + 2y3 + 3y = c is the equation that 
yields the solution.

5. Writing the equation in the form M(x,y)dx + N(x,y)dy = 0 
gives M(x,y) = ax + by and N(x,y) = bx + cy.  Now 
My = b = Nx and the equation is exact.  Integrating 

M(x,y) with respect to x yields y(x,y) = (a/2)x2 + bxy + 
h(y).  Differentiating y with respect to y (x constant) 
and setting yy(x,y) = N(x,y) we find that h’(y) = cy and 

thus h(y) = (c/2)y2.  Hence the solution is given by 

(a/2)x2 + bxy + (c/2)y2 = k.

7. My(x,y) = e
xcosy - 2sinx = Nx(x,y) and thus the D.E. is 

exact.  Integrating M(x,y) with respect to x gives 

y(x,y) = exsiny + 2ycosx + h(y).  Finding yy(x,y) from 

this and setting that equal to N(x,y) yields h’(y) = 0 
and thus h(y) is a constant.  Hence an implicit solution 

of the D.E. is exsiny + 2ycosx = c.  The solution y = 0 
is also valid since it satisfies the D.E. for all x.

9. If you try to find y(x,y) by integrating M(x,y) with 
respect to x you must integrate by parts.  Instead find 
y(x,y) by integrating N(x,y) with respect to y to obtain 
y(x,y) = exycos2x - 3y + g(x).  Now find g(x) by 
differentiating y(x,y) with respect to x and set that 
equal to M(x,y), which yields g’(x) = 2x or g(x) = x2.

12. As long as x2 + y2 π 0, we can simplify the equation by 
multiplying both sides by (x2 + y2) 3/2.  This gives the 
exact equation xdx + ydy = 0.  The solution to this 

equation is given implicitly by x2 + y2 = c.  If you 
apply Theorem 2.6.1 and its construction without the 

simplification, you get (x2 + y2) -1/2 = C which can be 
written as x2 + y2 = c under the same assumption required 
for the simplification.

14. My = 1 and Nx = 1, so the D.E. is exact.  Integrating  
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M(x,y) with respect to x yields 

y(x,y) = 3x3 + xy - x + h(y).  Differentiating this with 
respect to y and setting yy(x,y) = N(x,y) yields 

h’(y) = -4y or h(y) = - 2y2.  Thus the implicit solution 

is 3x3 + xy - x - 2y2 = c.  Setting x = 1 and y = 0 gives 

c = 2 so that 2y2 - xy + (2+x-3x3) = 0 is the implicit 
solution satisfying the given I.C.  Use the quadratic 
formula to find y(x), where the negative square root is 
used in order to satisfy the I.C.  The solution will be 

valid for 24x3 + x2 - 8x - 16 > 0.

15. We want My(x,y) = 2xy + bx
2 to be equal to 

Nx(x,y) = 3x
2 + 2xy.  Thus we must have b = 3.  This 

gives y(x,y) = 
1

2
x2y2 + x3y + h(y) and consequently 

h’(y) = 0. After multiplying through by 2, the solution 

is given implicitly by x2y2 + 2x3y = c.

19. My(x,y) = 3x
2y2 and Nx(x,y) = 1 + y

2 so the equation is 

not exact by Theorem 2.6.1.  Multiplying by the 

integrating factor m(x,y) = 1/xy3 we get 

x + 
(1+y2)

y3
y’ = 0, which is an exact equation since 

My = Nx = 0 (it is also separable).  In this case 

y = 
1

2
x2 + h(y) and h’(y) = y-3 + y-1 so that 

x2 - y-2 + 2ln|y| = c gives the solution implicitly.

22. Multiplication of the given D.E. (which is not exact) by 

m(x,y) = xex yields (x2 + 2x)exsiny dx + x2excosy dy, 
which is exact since My(x,y) = Nx(x,y) = (x

2+2x)excosy.  

To solve this exact equation it’s easiest to integrate 

N(x,y) = x2excosy with respect to y to get 

y(x,y) = x2exsiny + g(x).  Solving for g(x) yields the 
implicit solution.

23. This problem is similar to the derivation leading up to 
Eq.(26).  Assuming that m depends only on y, we find from 
Eq.(25) that m' = Qm, where Q = (Nx - My)/M must depend 
on y alone.  Solving this last D.E. yields m(y) as given.  
This method provides an alternative approach to Problems  
27 through 30.
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25. The equation is not exact so we must attempt to find an 

integrating factor.  Since 
1

N
(My-Nx) = 

3x
2
 + 2x + 3y

2
 - 2x

x
2
 + y

2
 = 3 

is a function of x alone there is an integrating factor 
depending only on x, as shown in Eq.(26).  Then dm/dx = 
3m, and the integrating factor is m(x) = e3x.  Hence the 
equation can be solved as in Example 4.

26. An integrating factor can be found which is a function 

of x only, yielding m(x) = e-x.  Alternatively, you might 
recognize that y’ - y = e2x - 1 is a linear first order 
equation which can be solved as in Section 2.1.

27. Using the results of Problem 23, it can be shown that 
m(y) = y is an integrating factor.  Thus multiplying the 
D.E. by y gives ydx + (x - ysiny)dy = 0, which can be 
identified as an exact equation.  Alternatively, one can 
rewrite the last equation as (ydx + xdy) - ysiny dy = 0.  
The first term is d(xy) and the last can be integrated by 
parts.  Thus we have xy + ycosy - siny = c.

29. Multiplying by siny we obtain 

exsiny dx + excosy dy + 2y dy = 0, and the first two 

terms are just d(exsiny).  Thus, exsiny + y2 = c.

31. Using the results of Problem 24, it can be shown that 
m(xy) = xy is an integrating factor.  Thus, multiplying 
by xy we have (3x2y + 6x)dx + (x3 + 3y2)dy = 0, which can 
be identified as an exact equation.  Alternatively, we 
can observe that the above equation can be written as 

d(x3y) + d(3x2) + d(y3) = 0, so that x3y + 3x2 + y3 = c.

Section 2.7, Page 103

1d. The exact solution to this I.V.P. is y = f(t) = t + 2 -e-t.

3a. The Euler formula is yn+1 = yn + h(2yn - tn + 1/2) for 
n = 0,1,2,3 and with t0 = 0 and y0 = 1.  Thus 
y1 = y0 + .1(2y0 - t0 + 1/2) = 1.25, 
y2 = 1.25 + .1[2(1.25) - (.1) + 1/2] = 1.54, 
y3 = 1.54 + .1[2(1.54) - (.2) + 1/2] = 1.878, and 
y4 = 1.878 + .1[2(1.878) - (.3) + 1/2] = 2.2736.
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3b. Use the same formula as in Problem 3a, except now h = .05 
and n = 0,1...7.  Notice that only results for n = 1,3,5 
and 7 are needed to compare with part a.

3c. Again, use the same formula as above with h = .025 and 
n = 0,1...15.  Notice that only results for n = 3,7,11 and 
15 are needed to compare with parts a and b.

3d. y¢ = 1/2 - t + 2y is a first order linear D.E.  Rewrite 
the equation in the form y¢ - 2y = 1/2 - t and multiply 
both sides by the integrating factor e-2t to obtain 
(e-2ty)¢ = (1/2 - t)e-2t.  Integrating the right side by 
parts and multiplying by e2t we obtain y = ce-2t + t/2.  
The I.C. y(0) = 1 Æ c = 1 and hence the solution of the 
I.V.P. is y = f(x) = e2t + t/2.  Thus f(0.1) = 1.2714, 
f(0.2) = 1.59182, f(0.3) = 1.97212, and f(0.4) = 2.42554.

4d. The exact solution to this I.V.P. is 
y = f(t) = (6cost + 3sint - 6e-2t)/5.

6. For y(0) > 0 the 
solutions appear to 
converge.  For y(0)<0 
the solutions diverge.

9. All solutions seem 
to diverge.
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13a. The Euler formula is

yn+1 = yn + h(
4-tnyn

1 + yn
2
), where t0 = 0 and

y0 = y(0) = -2.  Thus, for h = .1, we get
y1 = -2 + .1(4/5) = -1.92

y2 = -1.92 + .1(
4-.1(-1.92)

1 + (1.92) 2
) = -1.83055

y3 = -1.83055 + .1(
4-.2(-1.83055)

1+(1.83055) 2
) = -1.7302

y4 = -1.7302 + .1(
4-.3(-1.7302)

1 + (1.7302) 2
) = -1.617043

y5 = -1.617043 + .1(
4 - .4(-1.617043)

1 + (1.617043) 2
) = -1.488494.

Thus, y(.5) @ -1.488494.

15a. The Euler formula is

yn+1 = yn + .1 (
3tn

2

3yn
2 -4

), where t0 = 1 and y0 = 0. Thus

y1 = 0 + .1 (
3

-4
) = -.075 and

y2 = -.075 + .1 (
3(1.1) 2

3(.075) 2-4
) = .166134.

15c. There are two factors that explain the large differences.  
From the limit, the slope of y, y¢, becomes very “large” 
for values of y near -1.155.  Also, the slope changes 
sign at y = -1.155.  Thus for part a, 
y(1.7) @ y7 = -1.178, which is close to -1.155 and the 
slope y¢ here is large and positive, creating the large 
change in y8 @ y(1.8).  For part b, y(1.65) @ -1.125, 
resulting in a large negative slope, which yields 
y(1.70) @ -3.133. The slope at this point is now positive 
and the remainder of the solutions “grow” to -3.098 for 
the approcimation to y(1.8).

16. For the four step sizes given, the approximte values for 
y(.8) are 3.5078, 4.2013, 4.8004 and 5.3428.  Thus, since 
these changes are still rather “large”, it is hard to 
give an estimate other than y(.8) is at least 5.3428.  By 
using h = .005, .0025 and .001, we find further 
approximate values of y(.8) to be 5.576, 5.707 and 5.790.  
Thus a better estimate now is for y(.8) to be between 5.8 
and 6.  No reliable estimate is obtainable for y(1), 
which is consistent with the direction field of Prob.9.  

28                                  Section 2.7                                                 
                                                    



18. It is helpful, in understanding this problem, to also 

calculate y¢(tn) = yn(.1 y n
  2

 - tn).  For a = 2.38 this term 
remains positive and grows very large for tn > 2.  On the 
other hand, for a = 2.37 this term decreases and 
eventually becomes negative for tn @ 1.6 (for h = .01).  
For a = 2.37 and h = .1, .05 and .01, y(2.00) has the 
approximations of 4.48, 4.01 and 3.50 respectively.  A 
small step size must be used, due to the sensitivety of 
the slope field, given by yn (.1yn

2 - tn).

22. Using Eq.(8) we have yn+1 = yn + h(2yn -1) = (1+2h)yn - h.  
Setting n + 1 = k (and hence n = k-1) this becomes 
yk = (1 + 2h)yk-1 - h, for k = 1,2,... .  Since y0 = 1, 
we have y1 = 1 + 2h - h = 1 + h = (1 + 2h)/2 + 1/2, and 

hence y2 = (1 + 2h)y1 - h = (1 + 2h) 2/2 + (1 + 2h)/2 - h                  

         = (1 + 2h) 2/2 + 1/2; 
y3 = (1 + 2h)y2 - h = (1 + 2h) 3/2 + (1 + 2h)/2 - h 

   = (1 + 2h) 3/2 + 1/2.  Continuing in this fashion (or 
using induction) we obtain yk = (1 + 2h) k/2 + 1/2.  For 
fixed x > 0 choose h = x/k.  Then substitute for h in the 
last formula to obtain yk = (1 + 2x/k) k/2 + 1/2.  Letting 
k Æ � we find (See hint for Problem 20d.) 
y(x) = yk Æ e2x/2 + 1/2, which is the exact solution. 

Section 2.8, Page 113

1. Let s = t-1 and w(s) = y(t(s)) - 2, then when t = 1 and 
y = 2 we have s = 0 and w(0) = 0. Also, 
dw

ds
 = 

dw

dt
. dt
ds

 = 
d

dt
(y-2)

dt

ds
 = 

dy

dt
 and hence 

dw

ds
 = (s+1)2 + (w+2)2, upon substitution into the given 

D.E.

4a. Following Ex. 1 of the text, from Eq.(7) we have

fn+1(t) = Ú0tf(s,f(s))ds, where f(t,f) = -1 - f for this 

problem.  Thus if f0(t) = 0, then f1(t) = -Ú0tds = -t;
f2(t) = -Ú0t (1-s)ds = -t + 

t2

2
;
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f3(t) = -Ú0t (1-s + 
s2

2
)ds = -t + 

t2

2
 - 

t3

2.3
;

f4(t) = -Ú0t (1 - s + 
s2

2
 - 

s3

3!
)ds = -t + 

t2

2
 - 

t3

3!
 + 

t4

4!
.  

Based upon these we hypothesize that: fn(t) = Â
k=1

n

 
(-1)ktk

k!
 

and use mathematical induction to verify this form for 
fn(t).  Using Eq.(7) again we have: 

fn+1(t) = -Ú0t[ ]1 + fn(s)  ds = -t - Â
k=1

n
(-1)ktk+1

(k+1)!

= Â
k=0

n

 
(-1)k+1tk+1

(k+1)!
 = Â

i=1

n+1

 
(-1)iti

i!
, where i = k+1.  Since this 

is the same form for fn+1(t) as derived from fn(t) above, 
we have verified by mathematical induction that fn(t) is 
as given.

4c. From part a, let f(t) = lim
nÆ�

 fn(t) = Â
k=1

�
 
(-1)ktk

k!
 

  = -t + 
t2

2
 - 

t3

3!
 + ... .

Since this is a power series, recall from calculus that:

eat = Â
k=0

�
 
aktk

k!
 = 1 + at + 

a2t2

2
 + 

a3t3

3!
 + ... .  If we let 

a = -1, then we have e-t = 1 - t + 
t2

2
 - 

t3

3!
 + ... = 1 +f(t). 

Hence f(t) = e-t -1.

7. As in Prob.4,

f1(t) = Ú0t(sf0(s) +1)ds = sΩ0
t
 = t

f2(t) = Ú0t(s2+1)ds = (
s3

3
 + s)Ω0

t
 = t + 

t3

3

f3(t) = Ú0t(s2 + 
s4

3
 +1)ds = (

s3

3
 + 

s5

3.5
 +s)Ω0

t
 = t + 

t3

3
 + 

t5

3.5
.

Based upon these we hypothesize that:
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fn(t) = Â
k=1

n

 
t2k-1

1.3.5...(2k-1)
  and use mathematical induction 

to verify this form for fn(t).  Using Eq.(7) again we 
have:

fn+1(t) = Ú0t( Â
k = 1

n
s2k

1.3.5...(2k-1)
 + 1)ds

         = Â
k=1

n
t2k+1

1.3.5...(2k+1)
 + t

       = Â
k=0

n
t2k+1

1.3.5...(2k+1)

       = Â
i=1

n+1
t2i-1

1.3.5...(2i-1)
, where i = k+1.  Since this is 

the same form for fn+1(t) as derived from fn(t) above, we 
have verified by mathematical induction that fn(t) is as 
given.

11. Recall that sinx = x - 
x3

3!
 + 

x5

5!
 + O(x7).  Thus, for

f2(t) = t - 
t2

2!
 + 

t4

4!
 - 

t6

6!
 + O(t7) we have 

sin[ ]f2(t)  = (t - 
t2

2!
 + 

t4

4!
 - 

t6

6!
) - 

(t - 
t2

2!
)3

3!
 + 

t5

5!
 + O(t7).

Section 2.9, Page 124

2. Using the given difference equation we have for n=0, 
y1 = y0/2; for n=1, y2 = 2y1/3 = y0/3; and for n=2, 

y3 = 3y2/4 = y0/4.  Thus we guess that yn = y0/(n+1), and 

the given equation then gives yn+1 = 
n+1

n+2
yn = y0/(n+2), 

which, by mathematical induction, verifies yn = y0/(n+1) 

as the solution for all n.

5. From the given equation we have y1 = .5y0+6. 
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y2 = .5y1 + 6 = (.5) 2y0 + 6(1 + 
1

2
) and

y3 = .5y2 + 6 = (.5) 3y0 + 6(1 + 
1

2
 + 

1

4
).  In general, then

yn = (.5) ny0 + 6(1 + 
1

2
 + ... + 

1

2n-1
)

   = (.5) ny0 + 6(
1 - (1/2) n

1 - 1/2
)

   = (.5) ny0 + 12 - (.5) n12

   = (.5) n(y0-12) + 12.  Mathematical induction can now be 
used to prove that this is the correct solution.

10. The governing equation is yn+1 = ryn-b, which has the 

solution yn = rny0 - 
1-rn

1-r
b (Eq.(14) with a negative b).  

Setting y360 = 0 and solving for b we obtain 

 b = 
(1-r)r360y0

1-r360
, where r = 1.0075 for part a.

13.  You must solve Eq.(14) numerically for r when n = 240,  
y240 = 0, b = -$900 and y0 = $95,000.

14. Substituting un = 
r-1

r
 + vn into Eq.(21) we get 

 
r-1

r
 + vn+1 = r(

r-1
r

 + vn)(1 - 
r-1

r
 - vn) or 

 vn+1 = - 
r-1

r
 + (r-1 + rvn)(

1

r
 - vn)

     = 
1-r

r
 + 

r-1
r

 - (r-1)vn + vn- rvn
2 = (2-r)vn - rvn

2.

15a. For u0 = .2 we have u1 = 3.2u0(1-u0) = .512 and 

 u2 = 3.2u1(1-u1) = .7995392.  Likewise u3 = .51288406, 

 u4 = .7994688, u5 = .51301899, u6 = .7994576 and 

 u7 = .5130404.  Continuing in this fashion, 

 u14 = u16 = .79945549 and u15 = u17 = .51304451.

17. For both parts of this problem a computer spreadsheet 
was used and an initial value of u0 = .2 was chosen.  

Different initial values or different computer programs 
may need a slightly different number of iterations to 
reach the limiting value.
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17a.The limiting value of .65517 (to 5 decimal places) is 
reached after approximately 100 iterations for r = 2.9.  
The limiting value of .66102 (to 5 decimal places) is 
reached after approximately 200 iterations for r = 2.95.  
The limiting value of .66555 (to 5 decimal places) is 
reached after approximately 910 iterations for r = 2.99.

17b. The solution oscillates between .63285 and .69938 after 
approximately 400 iterations for r = 3.01.  The solution 
oscillates between.59016 and .73770 after approximately 
130 iterations for r = 3.05.  The solution oscillates 
between .55801 and .76457 after approximately 30 
iterations for r = 3.1.  For each of these cases 
additional iterations verified the oscillations were 
correct to five decimal places.

18. For an initial value of .2 and r = 3.448 we have the 
solution oscillating between .4403086 and .8497146.  
After approximately 3570 iterations the eighth decimal 
place is still not fixed, though.  For the same initial 
value and r = 3.45 the solution oscillates between the 
four values:  .43399155, .84746795, .44596778 and 
.85242779 after 3700 iterations..  For r = 3.449, the 
solution is still varying in the fourth decimal place 
after 3570 iterations, but there appear to be four 
values.

Miscellaneous Problems, Page 126

Before trying to find the solution of a D.E. it is necessary
to know its type.  The student should first classify the D.E.
before reading this section, which indentifies the type of
each equation in Problems 1 through 32.

1.  Linear 2.  Homogeneous

3.  Exact 4.  Linear equation in x(y)

5.  Exact 6.  Linear

7.  Letting u = x2 yields 
dy

dx
 = 2x

dy

du
 and thus 

      
du

dy
 - 2yu = 2y3 which is linear in u(y).
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8.  Linear 9.  Exact

10.  Integrating factor 11.  Exact
           depends on x only

12.  Linear 13.  Homogeneous

14.  Exact or homogeneous 15.  Separable

16.  Homogeneous 17.  Linear

18.  Linear or homogeneous 19.  Integrating factor
              depends on x only   

20.  Separable 21.  Homogeneous

22.  Separable 23.  Bernoulli equation

24.  Separable 25.  Exact

26.  Integrating factor 27.  Integrating factor
           depends on x only           depends on x only

28.  Exact 29.  Homogeneous

30.  Linear equation in x(y) 31.  Separable

32.  Integrating factor depends on y only.

34                                  Miscellaneous Problems                                                 
                                                    



CHAPTER 3

Section 3.1, Page 136

3. Assume y = ert, which gives y¢ = rert and y≤ = r2ert.  
Substitution into the D.E. yields (6r2-r-1)ert = 0.  

Since ertπ0, we have the characteristic equation 
6r2-r-1 = 0, or (3r+1)(2r-1) = 0.  Thus 

r = -1/3, 1/2 and y = c1e
t/2 + c2e

-t/3.

5. The characteristic equation is r2 + 5r = 0, so the roots 
are r1 = 0, and r2 = -5.  Thus 

y = c1e
0t + c2e

-5t
 = c1 + c2e

-5t
.

7. The characteristic equation is r2 - 9r + 9 = 0 so that 

r = (9± 81-36 )/2 = (9±3 5 )/2 using the quadratic 
formula. Hence 

y = c1exp[(9+3 5 )t/2] + c2exp[(9-3 5 )t/2].

10. Substituting y = e
rt
 in the D.E. 

we obtain the characteristic 

equation r2 + 4r + 3 = 0, which 
has the roots r1 = -1, r2 = -3.  

Thus y = c1e
-t
 + c2e

-3t
 and 

y¢ = -c1e
-t
 - 3c2e

-3t
.  

Substituting t = 0 we then have 
c1 + c2 = 2 and -c1 - 3c2 = -1, 

yielding c1 = 5/2 and 

c2 = -1/2.  Thus y = 
5

2
e
-t
 - 

1

2
e
-3t

 

and hence y Æ 0 as t Æ �.

15. The characteristic equation is r2 + 8r - 9 = 0, so that 
r1 = 1 and r2 = -9 and the general solution is 

y = c1e
t
 + c2e

-9t
.  Since the I.C. are given at t = 1, it 

is convenient to write the general solution in the form 

y = k1e
(t-1)

 + k2e
-9(t-1)

.  Note that 

c1 = k1e
-1 and c2 = k2e

9.  The advantage of the latter 

form of the general solution becomes clear when we apply 
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the I.C. y(1) = 1 and y¢(1) = 0.  This latter form of y 

gives y¢ = k1e
(t-1)

 - 9k2e
-9(t-1)

 and thus setting t = 1 in 

y and y¢ yields the equations k1 + k2 = 1 and 
k1 - 9k2 = 0.  Solving for k1 and k2 we find that 

y = (9e
(t-1)

 + e
-9(t-1)

)/10. Since e(t-1) has a positive 
exponent for t > 1, y Æ � as t Æ �.

17. Comparing the given solution to Eq(17), we see that r
1
= 2 

and r
2
 = -3 are the two roots of the characteristic 

equation. Thus we have (r-2)(r+3) = 0, or r
2
 + r - 6 = 0 

as the characteristic equation.  Hence the given solution 
is for the D.E. y” + y’ - 6y = 0.

19.  The roots of the characteristic equation are r = 1, -1 

and thus the general solution is y(t) = c
1
e
t
 + c

2
e
-t
.  

y(0) = c
1
 + c

2
 = 

5

4
 and y’(0) = c

1
 - c

2
 = -

3

4
, yielding 

y(t) = 
1

4
e
t
 + e

-t
. From this y’(t) = 

1

4
e
t
 - e

-t
 = 0 or 

e
2t
 = 4 or t = ln2.  The second derivative test or a 

graph of the solution indicates this is a minimum point.

21. The general solution is y = c1e
-t
 + c2e

2t
.  Using the I.C. 

we obtain c1 + c2 = a and -c1 + 2c2 = 2, so adding the two 
equations we find 3c2 = a + 2.  If y is to approach zero 
as t Æ �, c2 must be zero.  Thus a  = -2.

24. The roots of the characteristic equation are given by 

r = -2, a - 1 and thus y(t) = c
1
e
-2t

 + c
2
e
(a-1)t

.  Hence, 

for a < 1, all solutions tend to zero as t Æ �.  For 
a > 1, the second term becomes unbounded, but not the 
first, so there are no values of a for which all 
solutions become unbounded.   

25a. The characteristic equation is 2r2 + 3r - 2 = 0, so 

r1 = -2 and r2 = 1/2 and y = c1e
-2t + c2e

t/2.  The I.C. 

yield c1 + c2 = 2 and -2c1 + 
1

2
c2 = -b so that 

c1 = (1 + 2b)/5 and c2 = (4-2b)/5.
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25c. From part (a), if b = 2 then y(t) = e
-2t

 and the solution 
simply decays to zero.  For b > 2, the solution becomes 
unbounded negatively, and again there is no minimum 
point.

27. The second solution must decay faster than e
-t
, so choose 

e
-2t

 or e
-3t

 etc. as the second solution.  Then proceed as 
in Problem 17. 

28. Let v = y’, then v’ = y” and thus the D.E. becomes 

t
2
v’ + 2tv - 1 = 0 or t

2
v’ + 2tv = 1.  The left side is 

recognized as (t
2
v)’ and thus we may integrate to obtain 

t
2
v = t + c (otherwise, divide both sides of the D.E. by 

t
2
 and find the integrating factor, which is just t

2
 in 

this case).  Solving for v = dy/dt we find 

dy/dt = 1/t + c/t
2
 so that y = lnt + c

1
/t + c

2
.

30. Set v = y¢, then v¢ = y≤ and thus the D.E. becomes 
v¢ + tv2 = 0.  This equation is separable and has the 

solution -v-1 + t
2
/2 = c or v = y¢ = -2/(c1 - t

2
) where   

c1 = 2c. We must consider separately the cases c1 = 0,   

c1 > 0 and c1 < 0.  If c1 = 0, then y¢ = 2/t
2
 or 

y = -2/t + c2.  If c1 > 0, let c1 = k
2.  Then 

y’ = -2/(k2-t
2
) = -(1/k)[1/(k-t) + 1/(k+t)], so that                      

y = (1/k)lnΩ(k-t)/(k+t)Ω+c2.  If c1 < 0, let c1 = -k
2.  

Then y¢ = 2/(k2+ t
2
) so that y = (2/k)tan-1(t/k) + c2.  

Finally, we note that y = constant is also a solution of 
the D.E.

34. Following the procedure outlined, let v = dy/dt and 
y≤ = dv/dt = v dv/dy. Thus the D.E. becomes 
yvdv/dy + v2 = 0, which is a separable equation with the 
solution v = c1/y.  Next let v = dy/dt = c/y, which again 

separates to give the solution y2 = c1t + c2.

37. Again let v = y¢ and v¢ = vdv/dy to obtain 
2y2v dv/dy + 2yv2 = 1.  This is an exact equation with 

solution v =  ± y-1(y + c1) 1/2.  To solve this equation, 
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we write it in the form ± ydy/(y+c1) 1/2 = dt.  On 
observing that the left side of the equation can be 

written as ±[(y+c1) - c1]dy/(y+c1) 1/2 we integrate and 

find ± (2/3)(y-2c1)(y+c1) 1/2 = t + c2.

39. If v = y¢, then v¢ = vdv/dy and the D.E. becomes 
v dv/dy + v2 = 2e-y.  Dividing by v we obtain 

dv/dy + v = 2v-1e-y, which is a Bernoulli equation (see 

Prob.27, Section 2.4).  Let w(y) = v2, then   dw/dy = 2v 

dv/dy and the D.E. then becomes dw/dy + 2w = 4e-y, which 

is linear in w.  Its solution is w = v2 = ce-2y + 4e-y.  
Setting v = dy/dt, we obtain a separable equation in y 
and t, which is solved to yield the solution.

40. Since both t and y are missing, either approach used 
above will work.  In this case it’s easier to use the 
approach of Problems 28-33, so let v = y¢ and thus v¢ = y≤ 
and the D.E. becomes vdv/dt = 2.

43. The variable y is missing.  Let v = y¢, then v¢ = y≤ and 
the D.E. becomes vv¢ - t = 0.  The solution of the 

separable equation is v2 = t
2
 + c1.  Substituting v = y¢ 

and applying the I.C. y¢(1) = 1, we obtain y¢ = t.  The 
positive square root was chosen because y¢ > 0 at t = 1.  
Solving this last equation and applying the I.C. y(1) = 2, 

we obtain y = t
2
/2 + 3/2.

Section 3.2, Page 145

2. W(cost,sint) = 
Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

cost  sint

-sint cost
 = cos2t + sin2t = 1.

4. W(x,xex) = 
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω

x xex

1 ex + xex
 = xex + x2ex - xex = x2ex.

8.  Dividing by (t-1) we have p(t) = -3t/(t-1), q(t) = 4/(t-1) 
and g(t) = sint/(t-1), so the only point of discontinuity is 
t = 1.  By Theorem 3.2.1, the largest interval is -� < t < 1, 
since the initial point is t0 = -2.
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12. p(x) = 1/(x-2) and q(x) = tanx, so x = p/2, 2, 3p/2... 
are points of discontinuity.  Since t0 = 3, the interval 

specified by Theorem 3.2.1 is 2 < x < 3p/2.

14. For y = t1/2, y¢ = 
1

2
t-1/2 and y≤ = -

1

4
t-3/2.  Thus 

yy≤ + (y¢) 2 = -
1

4
t-1 + 

1

4
t-1 = 0.  Similarly y = 1 is also 

a solution.  If y = c1(1) + c2t
1/2 is substituted in the 

D.E. you will get -c1c2/4t
3/2, which is zero only if

c1 = 0 or c2 = 0.  Thus the linear combination of two 

solutions is not, in general, a solution.  Theorem 3.2.2 
is not contradicted however, since the D.E. is not 
linear.

15. y = f(t) is a solution of the D.E. so L[f](t) = g(t).  
Since L is a linear operator, 
L[cf](t) = cL[f](t) = cg(t).  But, since g(t) π 0, 
cg(t) = g(t) if and only if c = 1.  This is not a 
contradiction of Theorem 3.2.2 since the linear D.E. is 
not homogeneous.

18. W(f,g) = 
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω

t g

1 g¢
 = tg¢ - g = t2et, or g¢ - 

1

t
g = tet.  This 

has an integrating factor of 
1

t
 and thus 

1

t
g¢ - 

1

t2
g = et 

or (
1

t
g) ¢ = et.  Integrating and multiplying by t we 

obtain g(t) = tet + ct.

21. From Section 3.1, et and e-2t are two solutions, and 

since W(et,e-2t) π 0 they form a fundamental set of 
solutions.  To find the fundamental set specified by 

Theorem 3.2.5, let y(t) = c1e
t + c2e

-2t, where c1 and c2 

satisfy 
c1 + c2 = 1 and c1 - 2c2 = 0 for y1.  Solving, we find 

y1 = 
2

3
et + 

1

3
e-2t.  Likewise, c1 and c2 satisfy 

c1 + c2 = 0 and c1 - 2c2 = 1 for y2, so that 

y2 = 
1

3
et - 

1

3
e-2t.
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25. For y1 = x, we have x
2(0) - x(x+2)(1) + (x+2)(x) = 0 and  

for y2 = xe
x we have x2(x+2)ex-x(x+2)(x+1)ex+(x+2)xex = 0.  

From Problem 4, W(x,xex) = x2ex π 0 for x > 0, so y1 and 
y2 form a fundamental set of solutions.

27. Suppose that 
P(x)y” + Q(x)y¢ + R(x)y = [P(x)y’]’ + [f(x)y]’.  On 
expanding the right side and equating coefficients, we 
find f’(x) = R(x) and P’(x) + f(x) = Q(x).  These two 
conditions on f can be satisfied if 
R(x) = Q’(x) - P”(x) which gives the necessary condition 
P”(x) - Q’(x) + R(x) = 0.

30. We have P(x) = x, Q(x) = - cosx, and R(x) = sinx and the 
condition for exactness is satisfied.  Also, from Problem 
27, f(x) = Q(x) - P’(x) = - cosx -1, so the D.E. becomes 
(xy’)’ - [(1 + cosx)y]’ = 0. Hence 
xy’ - (1 + cosx)y = c1.  This is a first order linear 

D.E. and the integrating factor (after dividing by x) is 

m(x) = exp[-Úx-1(1 + cosx)dx].  The general solution is 

y = [m(x)] -1[c1Úx0
x
t-1 m(t)dt + c2].

32. We want to choose m(x) and f(x) so that m(x)P(x)y” + 
m(x)Q(x)y’ + m(x)R(x)y = [m(x)P(x)y’]’ + [f(x)y]’.  
Expand the right side and equate coefficients of y”, y’ 
and y.  This gives m'(x)P(x) + m(x)P’(x) + f(x) = 
m(x)Q(x) and f’(x) = m(x)R(x).  Differentiate the first 
equation and then eliminate f’(x) to obtain the adjoint 
equation Pm" + (2P’ - Q)m' + (P” - Q’ + R)m = 0.

34. P = 1-x2, Q = -2x and R = a(a+1).  Thus 
2P¢ - Q = -4x + 2x = -2x = Q and 
P≤ - Q¢ + R = -2 + 2 + a(a+1) = a(a+1) = R.

36. Write the adjoint D.E. given in Problem 32 as 

P
�

m" + Q
�

m' + R
�

m = 0 where P
�
 = P, Q

�
 = 2P’ - Q, and 

R
�
 = P” - Q’ + R.  The adjoint of this equation, namely 
the adjoint of the adjoint, is 

P
�
y” + (2P

�
' - Q

�
)y’ + (P

�
" - Q

�
' + R

�
)y = 0.  After 

substituting for P
�
, Q

�
, and R

�
 and simplifying, we obtain 

Py” + Qy’ + Ry = 0.  This is the same as the original 
equation.
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37. From Problem 32 the adjoint of Py” + Qy’ + Ry = 0 is 
Pm" + (2P’ - Q)m' + (P” - Q’ + R)m = 0. The two equations 
are the same if 2P’ - Q = Q and P” - Q’ + R = R.  This 
will be true if P’ = Q.  Hence the original D.E. is self-

adjoint if P’ = Q.  For Problem 33, P(x) = x2 so 
P’(x) = 2x and Q(x) = x.  Hence the Bessel equation of 
order n is not self-adjoint.  In a similar manner we find 
that Problems 34 and 35 are self-adjoint.

Section 3.3, Page 152

2. Since cos3q = 4cos3q - 3cosq we have 
cos3q - (4cos3q-3cosq) = 0 for all q.  From Eq.(1) we have 
k1 = 1 and k2 = -1 and thus cos3q and 4cos3q - 3cosq are 
linearly dependent.

6. W(t,t-1) = 
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω

t t-1

1 -t-2
 = -2/t π 0.

7. For t>0 g(t) = t and hence f(t) - 3g(t) = 0 for all t.  
Therefore f and g are linearly dependent on 0<t.  For t<0 
g(t) = -t and f(t) + 3g(t) = 0, so again f and g are 
linearly dependent on t<0.  For any interval that 
includes the origin, such as -1<t<2, there is no c for 
which f(t) +cg(t) = 0 for all t, and hence f and g are 
linearly independent on this interval.

12. The D.E. is linear and homogeneous.  Hence, if y1 and y2 

are solutions, then y3 = y1 + y2 and y4 = y1 - y2 are 

solutions.  W(y3,y4) = y3y4¢ - y3¢y4 = (y1 + y2)(y1¢ - y2¢) - 

(y1¢ + y2¢)(y1 - y2) = -2(y1y2¢ - y1¢y2) = -2W(y1,y2), is not 
zero since y1 and y2 are linearly independent solutions.  

Hence y3 and y4 form a fundamental set of solutions.  

Conversely, solving the first two equations for y1 and 

y2, we have y1 = (y3+y4)/2 and y2 = (y3-y4)/2, so y1 and 

y2 are solutions. Finally, from above we have 

W(y1y2) = -W(y3,y4)/2.

15. Writing the D.E. in the form of Eq.(7), we have 
p(t) = -(t+2)/t.  Thus Eq.(8) yields 

                                                   Section 3.3                   41                                



W(t) = cexp[-Ú 
-(t+2)

t
 dt] = ct2et.

20. From Eq.(8) we have W(y1,y2) = cexp[-Ú p(t)dt], where 

p(t) = 2/t from the D.E.  Thus W(y1,y2) = c/t
2.  Since 

W(y1,y2)(1) = 2 we find c = 2 and thus W(y1,y2)(5) = 2/25.

24. Let c be the point in I at which both y1 and y2 vanish.  

Then W(y1,y2)(c) = y1(c)y2¢(c) - y1¢(c)y2(c) = 0. Hence, by 
Theorem 3.3.3 the functions y1 and y2 cannot form a 

fundamental set.

26. Suppose that y1 and y2 have a point of inflection at t0 

and either p(t0) π 0 or q(t0) π 0.  Since y1≤(t0) = 0 and 

y2≤(t0) = 0 it follows from the D.E. that p(t0)y1¢(t0) + 

q(t0)y1(t0) = 0 and p(t0)y2¢(t0) + q(t0)y2(t0) = 0.  If 
p(t0) = 0 and q(t0) π 0 then y1(t0) = y2(t0) = 0, and 
W(y1,y2)(t0) = 0 so the solutions cannot form a 

fundamental set.  If p(t0) π 0 and q(t0) = 0 then 

y1¢(t0) = y2¢(t0) = 0 and W(y1,y2)(t0) = 0, so again the 
solutions cannot form a fundamental set.  If p(t0) π 0 

and q(t0) = 0 then y1¢(t0) = q(t0)y1(t0)/p(t0) and 

y2¢(t0) = q(t0)y2(t0)/p(t0) and thus 

W(y1,y2)(t0) = y1(t0)y2¢(t0) - y1¢(t0)y2(t0)
            = y1(t0)[q(t0)y2(t0)/p(t0)] -

              [q(t0)y1(t0)/p(t0)]y2(t0)

            = 0.

27. Let -1 < t0, t1 < 1 and t0 π t1.  If y1 = t and y2 = t
2 

are linearly dependent then c1t1 + c2t1
2 = 0 and 

c1t0 + c2t0
2 = 0 have a solution for c1 and c2 such that c1 

and c2 are not both zero.  But this system of equations 

has a non-zero solution only if t1 = 0 or t0 = 0 or 

t1 = t0.  Hence, the only set c1 and c2 that satisfies the 

system for every choice of t0 and t1 in -1 < t < 1 is 

c1 = c2 = 0.  Therefore t and t
2 are linearly independent 
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on -1 < t < 1. Next, W(t,t2) = t2 clearly vanishes at 

t = 0.  Since W(t,t2) vanishes at t = 0, but t and t2 are 
linearly independent on -1 < t < 1, it follows that t and 

t2 cannot be solutions of Eq.(7) on -1 < t < 1.  To show 

that the functions y1 = t and y2 = t
2 are solutions of 

t2y” - 2ty’ + 2y = 0, substitute each of them in the 
equation. Clearly, they are solutions.  There is no 
contradiction to Theorem 3.3.3 since p(t) = -2/t and 

q(t) = 2/t2 are discontinuous at t = 0, and hence the 
theorem does not apply on the interval -1 < t < 1.

28. On 0 < t < 1, f(t) = t3 and g(t) = t3.  Hence there are 
nonzero constants, c1 = 1 and c2 = -1, such that 

c1f(t) + c2g(t) = 0 for each t in (0,1).  On -1 < t < 0, 

f(t) = -t3 and g(t) = t3; thus c1 = c2 = 1 defines 

constants such that c1f(t) + c2g(t) = 0 for each t in 

(-1,0).  Thus f and g are linearly dependent on 
0 < t < 1 and on -1 < t < 0.  We will show that f(t) and 
g(t) are linearly independent on -1 < t < 1 by 
demonstrating that it is impossible to find constants c1 

and c2, not both zero, such that c1f(t) + c2g(t) = 0 for 

all t in (-1,1).  Assume that there are two such nonzero 
constants and choose two points t0 and t1 in -1 < t < 1 

such that t0 < 0 and t1 > 0. Then -c1t0
3 + c2t0

3 = 0 and 

c1t1
3+ c2t1

3 = 0. These equations have a nontrivial solution 

for c1 and c2 only if the determinant of coefficients is 

zero.  But the determinant of coefficients is -2t0
3t1

3 π 0 
for t0 and t1 as specified.  Hence f(t) and g(t) are 

linearly independent on -1 < t < 1.

 

 Section 3.4, Page 158

1. exp(1+2i) = e1+2i = ee2i = e(cos2 + isin2).

5. Recall that 21-i = eln(2
1-i) = e(1-i)ln2

7. As in Section 3.1, we seek solutions of the form y = ert.  
Substituting this into the D.E. yields the characteristic 

equation r2 - 2r + 2 = 0, which has the roots r1 = 1 + i 
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and r2 = 1 - i, using the quadratic formula. Thus l = 1 
and m = 1 and from Eq.(17) the general solution is 
y = c1e

tcost + c2e
tsint.

11. The characteristic equation is r2 + 6r + 13 = 0, which 

has the roots r = 
-6± -16

2
 = -3±2i.  Thus l = -3 and 

m = 2, so Eq.(17) becomes y = c1e
-3tcos2t + c2e

-3tsin2t.

14. The characteristic equation is 9r2 + 9r - 4, which has 
the real roots -4/3 and 1/3.  Thus the solution has the 

same form as in Section 3.1, y(t) = c1e
t/3 + c2e

-4t/3.

18. The characteristic equation is

r2 + 4r + 5 = 0, which has the
roots r1,r2 = -2 ± i.  Thus

y = c1e
-2tcost + c2e

-2tsint and

y¢ = (-2c1+c2)e
-2tcost + 

(-c1-2c2)e
-2tsint, so that 

y(0)= c1= 1 and y¢(0)= -2c1+c2= 0, 

or c2 = 2.  Hence y = e
-2t(cost + 2sint).

22. The characteristic equation is

r2 + 2r + 2 = 0, so r1,r2 = -1 ± i.
Since the I.C. are given at p/4
we want to alter Eq.(17) by 

letting c1 = e
p/4d1 and c2 = e

p/4d2.  

Thus, for l = -1 and m = 1 we 
have y = e-(t-p/4)(d1cost + d2sint);

so y¢ = -e-(t-p/4)(d1cost + d2sint) +e
-(t-p/4)(-d1sint +d2cost).  

Thus 2 d1/2 + 2 d2/2 = 2 and - 2 d1 = -2 and hence 

y = 2 e-(t-p/4)(cost + sint).

23a. The characteristic equation is 3r2 - r + 2 = 0, which has

the roots r1,r2 = 
1

6
 ± 

23

6
i.  Thus u(t) =

et/6(c1cos
23

6
t + c2sin

23

6
t) and we obtain u(0) = c1 = 2
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and u¢ (0) = 
1

6
c1 + 

23

6
c2 = 0.  Solving for c2 we find 

u(t) = et/6(2cos
23

6
t - 

2

23
sin

23

6
t).

23b. To estimate the first time that Ω Ωu(t)  = 10 plot the graph 

of u(t) as found in part (a).  Use this estimate in an 
appropriate computer software program to find t = 10.7598.

25a.The characteristic equation is r2 + 2r + 6 = 0, so

r1,r2 = -1 ± 5 i and y(t) = e-t(c1cos 5 t + c2sin 5 t).  

Thus y(0) = c1 = 2 and y¢(0) = -c1 + 5 c2 = a and hence 

y(t) = e-t(2cos 5 t + 
a+2

5
sin 5 t).

25b. y(1) = e-1(2cos 5  + 
a+2

5
sin 5 ) = 0 and hence

a = -2 - 
2 5

tan 5
 = 1.50878.

25c. For y(t) = 0 we must have 2cos 5 t + 
a+2

5
 sin 5 t = 0 or 

tan 5 t = 
-2 5

a+2
.  For the given a (actually, for a > -2) 

this yields 5 t = p - arctan 
2 5

a+2
 since arctan x < 0 when 

x < 0.

25d. From part (c) arctan 
2 5

a+2
 Æ 0 as a Æ �, so t Æ p/ 5 .

31.
d

dt
[elt(cosmt + isinmt)] = lelt(cosmt + isinmt)

+ elt(-msinmt + imcosmt) = lelt(cosmt + isinmt)
+ imelt(isinmt + cosmt) = elt(l+im) (cosmt + isinmt).

Setting r = l+im we then have
d

dt
ert = rert.

33. Suppose that t = a and t = b (b>a) are consecutive zeros 
of y1.  We must show that y2 vanishes once and only once 

in the interval a < t < b. Assume that it does not 
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vanish. Then we can form the quotient y1/y2 on the 

interval a £ t £ b.  Note y2(a) π 0 and y2(b) π 0, 
otherwise y1 and y2 would not be linearly independent 

solutions.  Next, y1/y2 vanishes at t = a and t = b and 

has a derivative in a < t < b. By Rolles theorem, the 
derivative must vanish at an interior point.  But

(
y1

y2
)¢ = 

y1¢y2 - y2¢y1

y2
 2

 = 
-W(y1,y2)

y2
 2

, which cannot be zero 

since y1 and y2 are linearly independent solutions.  

Hence we have a contradiction, and we conclude that y2 

must vanish at a point between a and b.  Finally, we show 
that it can vanish at only one point between a and b.  
Suppose that it vanishes at two points c and d between a 
and b.  By the argument we have just given we can show 
that y1 must vanish between c and d. But this contradicts 

the hypothesis that a and b are consecutive zeros of y1.

35. We use the result of Problem 34.  Note that q(t) = e-t
2
> 0 

for -� < t < �.  Next, we find that (q¢ + 2pq)/q3/2 = 0.  
Hence the D.E. can be transformed into an equation with 

constant coefficients by letting x = u(t) = Úe-t
2/2dt.  

Substituting x = u(t) in the differential equation found in 
part (b) of Problem 34 we obtain, after dividing by the 

coefficient of d2y/dx2, the D.E. d2y/dx2 - y = 0.  Hence the 
general solution of the original D.E. is 

y = c1cosx + c2sinx, x = Úe-t
2/2dt.

38. Rewrite the D.E. as y≤ + (a/t)y¢ + (b/t2)y = 0 so that 
p = a/t and q = b/t2, which satisfy the conditions of 
parts (c) and (d) of Problem 34.  Thus 

x = Ú(1/t2) 1/2dt = lnt  will transform the D.E. into 
dy2/dx2 + (a-1)dy/dx + by = 0.  Note that since b is 
constant, it can be neglected in defining x.

39. By direct substitution, or from Problem 38, x = lnt will 

transform the D.E. into d2y/dx2 + y = 0, since a = 1 and 
b = 1. Thus y = c1cosx + c2sinx, with x = lnt, t > 0.
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Section 3.5, Page 166

1. Substituting y = ert into the D.E., we find that 

r2 - 2r + 1 = 0, which gives r1 = 1 and r2 = 1. Since the 

roots are equal, the second linearly independent solution 

is tet and thus the general solution is y = c1e
t + c2te

t.

9. The characteristic equation is 25r2 - 20r + 4 = 0, which 

may be written as (5r-2) 2 = 0 and hence the roots are 

r1,r2 = 2/5. Thus y = c1e
2t/5 + c2 te

2t/5.

12. The characteristic equation is

r2 - 6r + 9 = (r-3) 2, which has
the repeated root r = 3.  Thus

y = c1e
3t + c2te

3t, which gives

y(0) = c1 = 0, y¢(t) = c2(e
3t+3te3t)

and y¢(0) = c2 = 2. Hence 

y(t) = 2te3t.

14. The characteristic equation is 

r2 + 4r + 4 = (r+2) 2 = 0, which 
has the repeated root r = -2.  
Since the I.C. are given at 
t = -1, write the general solution 

as y = c1e
-2(t+1) + c2te

-2(t+1). Then

y¢ = -2c1e
-2(t+1) + c2e

-2(t+1) - 2c2te
-2(t+1) and hence 

c1-c2 = 2 and -2c1+3c2 = 1 which yield c1 = 7 and c2 = 5.  

Thus y = 7e-2(t+1) + 5te-2(t+1), a decaying exponential as 
shown in the graph.

17a. The characteristic equation is 4r2 + 4r + 1 = (2r+1) 2 = 0, 
so we have y(t) = (c1+c2t)e

-t/2.  Thus y(0) = c1 = 1 and 

y¢(0) = -c1/2 + c2 = 2 and hence c2 = 5/2 and

y(t) = (1 + 5t/2)e-t/2.

17b. From part (a), y¢(t) = - 
1

2
(1 + 5t/2)e-t/2 + 

5

2
e-t/2 = 0, when

- 
1

2
 - 

5t

4
 + 

5

2
 = 0, or t0 = 

8

5
 and y0 = 5e

-4/5.
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17c. From part (a), - 
1

2
 + c2 = b or c2 = b + 

1

2
 and

y(t) = [1 + (b + 
1

2
)t]e-t/2.

17d. From part (c), y¢(t) = - 
1

2
[1 + (b+

1

2
)t]e-t/2 + (b+

1

2
)e-t/2 = 0

which yields tM = 
4b

2b+1
 and

yM = (1 + 
2b+1

2
 . 

4b

2b+1
)e-2b/(2b+1) = (1 + 2b)e-2b/(2b+1).

19. If r1 = r2 then y(t) = (c1 + c2t)e
r1t.  Since the exponential 

is never zero, y(t) can be zero only if c1 + c2t = 0, which 

yields at most one positive value of t if c1 and c2 differ 

in sign.  If r2 > r1 then

y(t) = c1e
r1t + c2e

r2t = er1t(c1 + c2e
(r2-r1)t).  Again, this is 

zero only if c1 and c2 differ in sign, in which case

t = 
ln(-c1/c2)

(r2-r1)
.

21. If r2 π r1 then f(t;r1,r2) = (e
r2t - er1t)/(r2 - r1) is 

defined for all t.  Note that f is a liner combination of 
two solutions, er1t and er2t, of the D.E.  Hence, f is a 
solution of the differential equation.  Think of r1 as fixed 

and let r2 Æ r1.  The limit of f as r2 Æ r1 is 

indeterminate.  If we use L’Hopital’s rule, we find

lim
r2 Æ r1

 
er2t - er1t

r2 - r1
 . = lim

r2 Æ r1
 
ter2t

1
 = ter1t.  Hence, the 

solution f(t;r1,r2) Æ ter1t as r2 Æ r1.

25. Let y2 = v/t.  Then y2¢ = v¢/t - v/t2 and 

y2≤ = v≤/t - 2v¢/t2 + 2v/t3.  Substituting in the D.E. we 
obtain 

t2(v≤/t - 2v¢/t2 + 2v/t3) + 3t(v¢/t - v/t2) + v/t = 0.  
Simplifying the left side we get tv≤ + v¢ = 0, which 
yields v¢ = c1/t.  Thus v = c1lnt + c2.  Hence a second 
solution is y2(t) = (c1lnt + c2)/t.  However, we may set 

c2 = 0 and c1 = 1 without loss of generality and thus we 

have y2(t) = (lnt)/t as a second solution. Note that in 
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the form we actually calculated, y2(t) is a linear 

combination of 1/t and lnt/t, and hence is the general 
solution.

27. In this case the calculations are somewhat easier if we 

do not use the explicit form for y1(x) = sinx
2 at the 

beginning but simply set y2(x) = y1v. Substituting this 

form for y2 in the D.E. gives x(y1v)≤-(y1v)¢+4x3(y1v) = 0.  
On carrying out the differentiations and making use of 
the fact that y1 is a solution, we obtain 

xy1v≤ + (2xy1¢ - y1)v¢ = 0. This is a first order linear 

equation for v¢, which has the solution v¢ = cx/(sinx2) 2.  
Setting u = x2 allows integration of this to get 

v = c1 cotx
2 + c2.  Setting c1 = 1, c2 = 0 and multiplying 

by y1 = sinx
2 we obtain y2(x) = cosx

2 as the second 

solution of the D.E.

30. Substituting y2(x) = y1(x)v(x) in the D.E. gives 

x2(y1v)≤ + x(y1v)¢ + (x2 - 
1

4
)y1v = 0.  On carrying out the 

differentiations and making use of the fact that y1 is a 

solution, we obtain x2y1v≤ + (2x
2y1¢ + xy1)v¢ = 0.  This is 

a first order linear equation for v¢, 
v≤ + (2y1¢/y1 + 1/x)v¢ = 0, with solution

v¢(x) = cexp[-Ú(2
y1
 ¢

y1
 + 

1

x
)dx] = cexp[-2lny1 - lnx]            

       = c
1

xy1 
2
 = 

c

x(x-1 sin2x)
 = c csc2x, 

where c is an arbitrary constant, which we will take to be 

one.  Then v(x) = Úcsc2x dx = -cotx + k where again k is an 
arbitrary constant which can be taken equal to zero.  Thus 

y2(x) = y1(x)v(x) = (x
-1/2sinx)(-cotx) = -x-1/2cosx.  The 

second solution is usually taken to be x-1/2cosx.  Note 
that c = -1 would have given this solution.

31b. Let y2(x) = e
xv(x), then y2¢ = e

xv¢ + exv, and 

y2≤ = e
xv≤ + 2exv¢ + exv.  Substituting in the D.E. we 

obtain xexv≤ + (xex-Nex)v¢ = 0, or v≤ + (1-N/x)v¢ = 0.  
This is a first order linear D.E. for v¢ with integrating 
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factor m(x) = exp[Ú(1-N/x)dx] = x-Nex.  Hence 
(x-Nexv¢)¢ = 0, and v¢ = cxNe-x which gives 
v(x) = cÚxNe-xdx + k.  On taking k = 0 we obtain as the 
second solution y2(x) = ce

xÚxNe-xdx.  The integral can be 
evaluated by using the method of integration by parts.  

At each stage let u = xN or xN-1, or whatever the power of 

x that remains, and let dv = e-x.  Note that this dv is 
not related to the v(x) in y2(x).  For N = 2 we have

y2(x) = ce
xÚx2e-xdx = cex[x2

e-x

-1
 - Ú 2x e

-x

-1
dx]                       

      = -cx2 + cex[2x
e-x

-1
 - Ú 2

e-x

-1
dx]                            

      = c(-x2 - 2x - 2) = -2c(1 + x + x2/2!).
Choosing c = -1/2! gives the desired result.  For the 
general case c = - 1/N!

33. (y2/y1)¢ = (y1y2¢ - y1¢y2)/y1
 2 = W(y1,y2)/y1

 2.  Abel’s identity 

is W(y1,y2) = c exp[-Út0
t
p(r)dr].  Hence 

(y2/y1)¢ = cy1
 -2 exp[-Út0

t
 p(r)dr].  Integrating and setting 

c = 1 (since a solution y2 can be multiplied by any 

constant) and taking the constant of integration to be 
zero we obtain

y2(t) = y1(t) Út0
t
exp[-Ús0

s
p(r)dr]

[y1(s)] 2
 ds.

35. From Problem 33 and Abel’s formula we have

(
y2

y1
)¢ = 

exp[Ú(1/t)dt]

sin2(t2)
 = 

elnt

sin2(t2)
 = tcsc2(t2).  Thus 

y2/y1 = -(1/2)cot(t
2) and hence we can choose y2 = cos(t

2) 

since y1 = sin
2(t2).

38. The general solution of the D.E. is y = c1e
r1t + c2e

r2t 

where r1,r2 = (-b ± b2-4ac )/2a provided b2 - 4ac π 0.  

In this case there are two possibilities. If b2 - 4ac > 0 

then (b2 - 4ac) 1/2 < b and r1 and r2 are real and 

negative.  Consequently er1t Æ 0 and er2t Æ 0; and hence 
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y Æ 0, as t Æ �.  If b2 - 4ac < 0 then r1 and r2 are 

complex conjugates with negative real part.  Again 

er1t Æ 0 and er2t Æ 0; and hence y Æ 0, as t Æ �.  

Finally, if b2 - 4ac = 0, then y = c1e
r1t + c2te

r1t where 

r1 = -b/2a < 0.  Hence, again y Æ 0 as t Æ �.  This 

conclusion does not hold if either b = 0 (since 
y(t) = c1coswt + c2sinwt) or c = 0 (since y1(t) = c1).

42. Substituting z = lnt into the D.E. gives 

d2y

dz2
 + 

dy

dz
 + 0.25y = 0, which has the solution 

y(z) = c1e
-z/2 + c2ze

-z/2 so that y(t) = c1t
-1/2+ c2t

-1/2lnt.

 

Section 3.6, Page 178

1. First we find the solution of the homogeneous D.E., which 

has the characteristic equation r2-2r-3 = (r-3)(r+1) = 0.  

Hence yc = c1e
3t
 + c2e

-t
 and we can assume Y = Ae

2t
 for the 

particular solution.  Thus Y¢ = 2Ae
2t
 and Y≤ = 4Ae

2t
 and 

substituting into the D.E. yields 

4Ae
2t
 - 2(2Ae

2t
) - 3(Ae

2t
) = 3e

2t
.  Thus -3A = 3 and 

A = -1, yielding y = c
1
e
3t
 + c

2
e
-t
 - e

2t
.

4. Initially we assume Y = A + Bsin2t + Ccos2t.  However, 
since a constant is a solution of the related homogeneous 
D.E. we must modify Y by multiplying the constant A by t 
and thus the correct form is Y = At + Bsin2t + Ccos2t.

6. Since yc = c1e
-t
 + c2te

-t
 we must assume Y = At

2
e
-t
, so 

that Y¢ = 2Ate
-t
 - At

2
e
-t
 and y≤ = 2Ae

-t
 - 4Ate

-t
 + At

2
e
-t
.  

Substituting in the D.E. gives (At
2
-4At+2A)e

-t
 + 

2(-At
2
+2At)e

-t
 + At

2
e
-t
 = 2e

-t
.  Notice that all terms on 

the left involving t
2
 and t add to zero and we are left 

with 2A = 2, or A = 1.  Hence y = c1e
-t
 + c2te

-t
 + t

2
e
-t
.

8. The assumed form is Y = (At + B)sin2t + (Ct + D)cos2t, 
which is appropriate for both terms appearing on the 
right side of the D.E.  Since none of the terms appearing 
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in Y are solutions of the homogeneous equation, we do not 
need to modify Y.

11. First solve the homogeneous D.E.  Substituting y = e
rt
 

gives r2 + r + 4 = 0.  Hence yc = e
-t/2

[c1cos( 15 t/2) + 

c2sin( 15 t/2)].  We replace sinht by (e
t
 - e

-t
)/2 and 

then assume Y(t) = Ae
t
 + Be

-t
. Since neither e

t
 nor e

-t
 

are solutions of the homogeneous equation, there is no 
need to modify our assumption for Y. Substituting in the 

D.E., we obtain 6Ae
t
 + 4Be

-t
 = e

t
 - e

-t
.  Hence, A = 1/6 

and B = -1/4. The general solution is 

y = e
-t/2

[c1cos( 15 t/2) + c2sin( 15 t/2)] + e
t
/6 - e

-t
/4.  

[For this problem we could also have found a particular 
solution as a linear combination of sinht and cosht:  
Y(t) = Acosht + Bsinht.  Substituting this in the D.E. 
gives (5A + B)cosht + (A + 5B)sinht = 2sinht.  The 
solution is A = -1/12 and B = 5/12.  A simple calculation 

shows that -(1/12)cosht + (5/12)sinht = e
t
/6 - e

-t
/4.]

13. yc = c1e
-2t

 + c2e
t
 so for the particular solution we 

assume Y = At + B. Since neither At or B are solutions of 
the homogeneous equation it is not necessary to modify 
the original assumption.  Substituting Y in the D.E. we 
obtain 0 + A -2(At+B) = 2t or -2A = 2 and A-2B = 0.  

Solving for A and B we obtain y = c1e
-2t

 + c2e
t
 - t - 1/2 

as the general solution.  y(0) = 0 Æ c1 + c2 - 1/2 = 0 

and y¢(0) = 1 Æ -2c1 + c2 - 1 = 1, which yield c1 = -1/2 

and c2 = 1.  Thus y = e
t
 - (1/2)e

-2t
 - t - 1/2.

16. Since the nonhomogeneous term is the product of a linear 
polynomial and an exponential, assume Y of the same form:  

Y = (At+B)e
2t
.  Thus Y¢ = Ae2t + 2(At+B)e2t and 

Y≤ = 4Ae2t+4(At+B)e2t.  Substituting into the D.E. we 
find -3At = 3t and 2A - 3B = 0, yielding A = -1 and 
B = -2/3.  Since the characteristic equation is 

r2 - 2r - 3 = 0, the general solution is 

y = c1e
3t +c2e

-t - 
2

3
e2t - te2t.
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19a. The solution of the homogeneous D.E. is yc = c1e
-3t

 + c2.  

After inspection of the nonhomogeneous term, for 2t4 we 

must assume a fourth order polynominial, for t2e-3t we 
must assume a quadratic polynomial times the exponential, 
and for sin3t we must assume Csin3t + Dcos3t.  Thus 

Y(t) = (A0t
4
+A1t

3
+A2t

2
+A3t+A4) + (B0t

2
+B1t+B2)e

-3t
+Csin3t+Dcos3t. 

However,since e-3t and a constant are solutions of the 

homogeneous D.E., we must multiply the coefficient of e-3t 
and the polynomial by t.  The correct form is 

Y(t) = t(A0t
4 + A1t

3 + A2t
2 + A3t + A4) +

                    t(B0t
2 + B1t + B2)e

-3t + Csin3t + Dcos3t.

22a. The solution of the homgeneous D.E. is yc = e
-t
[c1cost + 

c2sint].  After inspection of the nonhomogeneous term, we 

assume Y(t) = Ae
-t
 + (B0t

2
 + B1t + B2)e

-t
cost + (C0t

2
 + C1t 

+ C2)e
-t
sint.  Since e

-t
cost and e

-t
sint are solutions of 

the homogeneous D.E., it is necessary to multiply both 
the last two terms by t. Hence the correct form is 

Y(t) = Ae
-t
 + t(B0t

2
 + B1t + B2)e

-t
cost + 

                      t(C0t
2
 + C1t + C2)e

-t
sint.

28. First solve the I.V.P. y≤ + y = t, y(0) = 0, y¢(0) = 1 
for 0 £ t £ p.  The solution of the homogeneous D.E. is 
yc(t) = c1cost + c2sint. The correct form for Y(t) is 

y(t) = A0t + A1.  Substituting in the D.E. we find A0 = 1 

and A1 = 0.  Hence, y = c1cost + c2sint + t.  Applying the 

I.C., we obtain y = t. For t > p we have y≤ + y = pep-t 

so the form for Y(t) is Y(t) = Eep-t.  Substituting Y(t) 

in the D.E., we obtain Eep-t + Eep-t = pep-t so E = p/2.  
Hence the general solution for t > p is Y = D1cost + 

D2sint + (p/2)ep-t.  If y and y¢ are to be continuous at 
t = p, then the solutions and their derivatives for t £ p 
and t > p must have the same value at t = p. These 
conditions require p = -D1 + p/2 and 1 = -D2 - p/2.  
Hence D1 = -p/2, D2 = -(1 + p/2), and
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  y = f(t) = 
 Ó

Ï
ÔÔÔ
Ì
    t,            0 £ t £ p

-(p/2)cost - (1 + p/2)sint + (p/2)ep-t, t > p.

  The graphs of the nonhomogeneous term and f follow.              

30. According to Theorem 3.6.1, the difference of any two 
solutions of the linear second order nonhomogeneous D.E. 
is a solution of the corresponding homogeneous D.E.  
Hence Y

1
 - Y

2
 is a solution of ay≤ + by¢ + cy = 0.  In 

Problem 38 of Section 3.5 we showed that if a > 0, b > 0, 
and c > 0 then every solution of this D.E. goes to zero 
as t Æ �.  If b = 0, then yc involves only sines and 

cosines, so Y1 - Y2 does not approach zero as t Æ �.

33. From Problem 32 we write the D.E. as (D-4)(D+1)y = 3e
2t
.  

Thus let (D+1)y = u and then (D-4)u = 3e
2t
. This last 

equation is the same as du/dt - 4u = 3e
2t
, which may be 

solved by multiplying both sides by e
-4t

 and integrating 

(see section 2.1).  This yields u = (-3/2)e
2t
 + Ce

4t
.  

Substituting this form of u into (D+1)y = u we obtain 

dy/dt + y = (-3/2)e
2t
 + Ce

4t
.  Again, multiplying by e

t
 

and integrating gives y = (-1/2)e
2t
 + C1e

4t
 + C2e

-t
, where 

C1 = C/5.

Section 3.7, Page 183

2. Two linearly independent solutions of the homogeneous 

D.E. are y1(t) = e
2t and y2(t) = e

-t.  Assume Y = u1(t)e
2t 

+ u2(t)e
-t, then Y¢(t) = [2u1(t)e

2t - u2(t)e
-t] + [u1¢(t)e

2t 
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+ u2¢(t)e
-t].  We set u1¢(t)e

2t + u2¢(t)e
-t = 0.    Then 

Y≤ = 4u1e
2t + u2e

-t + 2u1¢ e
2t - u2¢ e

-t and substituting in 

the D.E. gives 2u1¢(t)e
2t - u2¢(t)e

-t = 2e-t.  Thus we have 

two algebraic equations for u1¢(t) and u2¢(t) with the 

solution u1¢(t) = 2e
-3t/3 and u2¢(t) = -2/3.  Hence 

u1(t) = -2e
-3t/9 and u2(t) = -2t/3.  Substituting in the 

formula for Y(t) we obtain Y(t) = (-2e-3t/9)e2t + 

(-2t/3)e-t = (-2e-t/9) - (2te-t/3). Since e-t is a 
solution of the homogeneous D.E., we can choose 

Y(t) = -2te-t/3.

5. Since cost and sint are solutions of the homogeneous 
D.E., we assume Y = u1(t)cost + u2(t)sint.  Thus 

Y¢ = -u1(t)sint + u2(t)cost, after setting 

u1¢(t)cost + u2¢(t)sint = 0. Finding Y≤ and substituting 

into the D.E. then yields -u1¢(t)sint + u2¢(t)cost = tant. 

The two equations for u1¢(t) and u2¢(t) have the solution: 

u1¢(t) = -sin
2t/cost = -sect + cost and 

u2¢(t) = sint.  Thus u1(t) = sint - ln(tant + sect) and 
u2(t) = -cost, which when substituted into the assumed 

form for Y, simplified, and added to the homogeneous 
solution yields 
y = c1cost + c2sint - (cost)ln(tant + sect).

11. Two linearly independent solutions of the homogeneous 

D.E. are y1(t) = e
3t and y2(t) = e

2t. Applying Theorem 

3.7.1 with W(y1,y2)(t) = -e
5t, we obtain

Y(t) = -e3tÚ e
2sg(s)

-e5s
 ds + e2tÚ e

3sg(s)

-e5s
ds

     = Ú[e3(t-s)- e2(t-s)]g(s)ds.
The complete solution is then obtained by adding 

c1e
3t + c2e

2t to Y(t).

14. That t and tet are solutions of the homogeneous D.E. can 
be verified by direction substitution.  Thus we assume 

Y = tu1(t) + te
tu2(t).  Following the pattern of earlier 

problems we find tu1¢(t) + te
tu2¢(t) = 0 and 
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u1¢(t) + (t+1)e
tu2¢ = 2t.  [Note that g(t) = 2t, since the 

D.E. must be put into the form of Eq.(16)].  The solution 

of these equations gives u1¢(t) = -2 and u2¢(t) = 2e
-t.  

Hence, u1(t) = -2t and u2(t) = -2e
-t, and 

Y(t) = t(-2t) + tet(-2e-t) = -2t2 - 2t.  However, since t 
is a solution of the homogeneous D.E. we can choose as 

our particular solution Y(t) = -2t2.

18. For this problem, and for many others, it is probably 
easier to rederive Eqs.(26) without using the explicit 
form for y1(x) and y2(x) and then to substitute for y1(x) 

and y2(x) in Eqs.(26).  In this case if we take 

y1 = x
-1/2 sinx and y2 = x

-1/2cosx, then W(y1,y2) = -1/x.  

If the D.E. is put in the form of Eq.(16), then 

g(x) = 3x-1/2sinx and thus u1¢ (x) = 3sinxcosx and 

u2¢(x) = -3sin
2x = 3(-1 + cos2x)/2.  Hence 

u1(x) = (3sin
2x)/2 and u2(x) = -3x/2 + 3(sin2x)/4, and

Y(x) = 
3 sin2x

2
 
sinx

x
 + ( - 

3x

2
 + 

3 sin2x

4
) 

cosx

x

     = 
3 sin2x

2
 
sinx

x
 + ( - 

3x

2
 + 

3 sinx cosx

2
) 

cosx

x

     = 
3 sinx

2 x
 - 

3 x cosx

2
.

The first term is a multiple of y1(x) and thus can be 

neglected for Y(x).

22. Putting limits on the integrals of Eq.(28) and changing 
the integration variable to s yields

Y(t) = -y1(t)Út0
t y2(s)g(s)ds

W(y1,y2)(s)
 + y2(t)Út0

t y1(s)g(s)ds

W(y1,y2)(s)

     = Út0
t
 
-y1(t)y2(s)g(s)ds

W(y1,y2)(s)
 + Út0

t y2(t)y1(s)g(s)ds

W(y1,y2)(s)

     = Út0
t
 
[y1(s)y2(t) - y1(t)y2(s)]g(s)ds

y1(s)y2¢(s) - y1¢(s)y2(s)
.  To show that 

Y(t) satisfies L[y] = g(t) we must take the derivative of 
Y using Leibnitz’s rule, which says that if 

Y(t) = Út0
t
G(t,s)ds, then Y¢(t) = G(t,t) + Út0

t ∂G
∂t

(t,s)ds.  

Letting G(t,s) be the above integrand, then G(t,t) = 0 
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and 
∂G
∂t

 = 
y1(s)y2¢ (t) - y1¢ (t)y2(s)

W(y1,y2)(s)
 g(s).  Likewise

Y≤ = 
∂G(t,t)

∂t
 + Út0

t ∂2G

∂t2
(t,s)ds

   = g(t) + Út0
t y1(s)y2

≤(t) - y1≤(t)y2(s)

W(y1,y2)(s)
ds.  

Since y1 amd y2 are solutions of L[y] = 0, we have 

L[Y] = g(t) since all the terms involving the integral 
will add to zero.  Clearly Y(t0) = 0 and Y¢(t0) = 0.

25. Note that y1 = e
ltcosmt and y2 = e

ltsinmt and thus 

W(y1,y2) = me2lt.  From Problem 22 we then have:

Y(t) = Út0
t
 
elscosmseltsinmt - eltcosmtelssinms

me2ls
 g(s)ds

     = m-1 Út0
t
 el(t-s)[cosms sinmt - cosmt sinms]g(s)ds

     = m-1 Út0
t
el(t-s)[sinm(t-s)]g(s)ds.

29. First, we put the D.E. in standard form by dividing by 

t2: y≤ - 2y¢/t + 2y/t2 = 4. Assuming that y = tv(t) and 
substituting in the D.E. we obtain tv≤ = 4.  Hence 
v¢(t) = 4lnt + c2 and v(t) = 4 Ú lnt dt + c2t = 
4(tlnt - t) + c2t.  The general solution is 

c1y1(t) + tv(t) = c1t + 4(t
2lnt - t2) + c2t

2.  Since -4t2 

is a multiple of y2 = c2t
2 we can write 

y = c1t + c2t
2 + 4t2lnt.

Section 3.8, Page 197

2. From Eq.(15) we have Rcosd = -1, and Rsind = 13 .  Thus 

R = 1+3  = 2 and d = tan-1(- 3 ) + p = 2p/3 @ 2.09440.  Note 
that we have to “add” p to the inverse tangent value since d 
must be a second quadrant angle.  Thus u = 2cos(t-2p/3).

6. The motion is an undamped free vibration.  The units are 
in the CGS system.  The spring constant 
k = (100 gm)(980cm/sec2)/5cm.  Hence the D.E. for the 
motion is 100u≤ + [(100 . 980)/5]u = 0 where u is 
measured in cm and time in sec.  We obtain u≤ + 196u = 0 
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so
u = Acos14t + Bsin14t.  The I.C. are u(0) = 0 Æ A = 0 
and u¢(0) = 10 cm/sec Æ B = 10/14 = 5/7.  Hence 
u(t) = (5/7)sin14t, which first reaches equilibrium when 
14t = p, or t = p/14.

8. We use Eq.(33) without R and E(t) (there is no resistor or 
impressed voltage) and with L = 1 henry and 1/C = 4x106 since 
C = .25x10-6 farads.  Thus the I.V.P. is Q≤ + 4x106 Q = 0, 
Q(0) = 10-6 coulombs and Q¢(0) = 0.

9. The spring constant is k = (20)(980)/5 = 3920 dyne/cm.  
The I.V.P. for the motion is 20u≤ + 400u¢ + 3920u = 0 or 
u≤ + 20u¢ + 196u = 0 and u(0) = 2, u¢(0) = 0.  Here u is 
measured in cm and t in sec.  The general solution of the 

D.E. is u = Ae-10tcos4 6 t + Be-10tsin4 6 t.  The I.C.

u(0) = 2 Æ A = 2 and u¢(0) = 0 Æ -10A + 4 6 B = 0.  The 

solution is u = e-10t[2cos4 6 t + 5(sin4 6 t)/ 6 ]cm.  

The quasi frequency is m = 4 6 , the quasi period is

Td = 2pm = p/2 6  and Td/T = 7/2 6  since 
T = 2p/14 = p/7.  To find an upper bound for t, write u 
in the form of Eq.(30): u(t) = 4+25/6 e-10tcos(4 6 t-d).  
Now, since Ω Ωcos(4 6 t-d)  £ 1, we have Ω Ωu(t)  < .05 Þ
4+25/6 e-10t < .05, which yields t = .4046.  A more 

precise answer can be obtained with a computer algebra 
system, which in this case yields t = .4045.  The 
original estimate was unusually close for this problem 

since cos(4 6 t-d) = -0.9996 for t = .4046.

12. Substituting the given values for L, C and R in Eq.(33), 
we obtain the D.E. .2Q≤ + 3x102 Q¢ + 105 Q = 0.  The I.C. 
are Q(0) = 10-6 and Q¢(0) = I(0) = 0.  Assuming Q = ert, 
we obtain the roots of the characteristic equation as 
r1 = -500 and r2 = -1000.  Thus Q = c1e

-500t + c2e
-1000t 

and hence Q(0) = 10-6 Æ c1 + c2 = 10
-6 and 

Q¢(0) = 0 Æ -500c1 - 1000c2 = 0.  Solving for c1 and c2 
yields the solution.

17. The mass is 8/32 lb-sec2/ft, and the spring constant is 
8/(1/8) = 64 lb/ft.  Hence (1/4)u≤ + gu¢ + 64u = 0 or
u≤ + 4gu¢ + 256u = 0, where u is measured in ft, t in sec 
and the units of g are lb-sec/ft.  We look for solutions 
of the D.E. of the form u = ert and find 

r2 + 4gr + 256 = 0, so r1,r2 = [-4g ± 16g 2 - 1024 ]/2.  
The system will be overdamped, critically damped or 
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underdamped as (16g 2 - 1024) is > 0, =0, or < 0, 
respectively.  Thus the system is critically damped when 
g = 8 lb-sec/ft.

19. The general solution of the D.E. is u = Aer1t + Ber2t 
where r1,r2 = [-g ± (g 2 - 4km) 1/2]/2m provided 

g 2 - 4km π 0, and where A and B are determined by the 
I.C.  When the motion is overdamped, g 2 - 4km > 0 and 
r1 > r2.  Setting u = 0, we obtain Ae

r1t = - Ber2t or 

e(r1-r2)t = - B/A.  Since the exponential function is a 
monotone function, there is at most one value of t 
(when B/A < 0) for which this equation can be satisfied.  
Hence u can vanish at most once.  If the system is 
critically damped, the general solution is 
u(t) = (A + Bt)e-gt/2m.  The exponential function is never 
zero; hence u can vanish only if A + Bt = 0.  If B = 0 
then u never vanishes; if B π 0 then u vanishes once at 
t = - A/B provided A/B < 0.

20. The general solution of Eq.(21) for the case of critical 
damping is u = (A + Bt)e-gt/2m.  The I.C. u(0) = u0 Æ 

A = u0 and u¢(0) = v0 Æ A(-g/2m) + B = v0.  Hence
u = [u0 + (vo + gu0/2m)t]e

-gt/2m. If v0 = 0, then 

u = u0(1 + gt/2m)e-gt/2m, which is never zero since g and 
m are postive.  By L’Hopital’s Rule uÆ0 as tÆ�.  
Finally for u0 > 0, we want the condition which will 

insure that v = 0 at least once.  Since the exponential 
function is never zero we require
u0 + (v0 + gu0/2m)t = 0 at a positive value of t.  This 
requires that v0 + gu0/2m π 0 and that 
t = -u0(v0 + u0g/2m) -1 > 0. We know that u0 > 0 so we must 

have v0 + gu0/2m < 0 or v0 < -gu0/2m.

23. From Problem 21: D = 
2pg

m(2m)
 = Tdg/2m.  Substituting the 

known values we find g = 
(1/2) (3)

.3
 = 5 lb sec/ft.

24. From Eq.(13) w0
2 = 

2k

3
 so P = 2p/ 2k/3  = p Æ k = 6.  

Thus u(t) = c1cos2t + c2sin2t and u(0) = 2 Æ c1 = 2 and 

u¢(0) = v Æ c2 = v/2.  Hence u(t) = 2cos2t + 
v

2
sin2t =
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4+
v2

4
cos(2t-g).  Thus 4+

v2

4
 = 3 and v = ±2 5 .

27. First, consider the static case. Let Dl
denote the length of the block below
the surface of the water.  The weight
of the block, which is a downward force,

is w = rl 3l 3g.  This is balanced by an equal
and opposite buoyancy force B, which is
equal to the weight of the displaced

water.  Thus B = (r0l 2Dl)g = rDl 3g so r0Dl = rl.  Now let 
x be the displacement of the block from its equilibrium 
position.  We take downward as the positive direction.  
In a displaced position the forces acting on the block 
are its weight, which acts downward and is unchanged, and 

the buoyancy force which is now r0l 2(Dl + x)g and acts 
upward.  The resultant force must be equal to the mass of 

the block times the acceleration, namely rl 3x≤.  Hence
rl 3g - r0l 2(Dl + x)g = rl 3x≤.  The D.E. for the motion of 
the block is rl 3x≤ + r0l 2gx = 0.  This gives a simple 
harmonic motion with frequency (r0g/rl ) 1/2 and natural 
period 2p(rl /r0g) 1/2.

29a. The characteristic equation is 4r2 + r + 8 = 0, so

r = (-1± 127 )/8 and hence

u(t) = e-t/8(c1cos
127

8
t + c2sin

127

8
t.  u(0) = 0 Æ c1 = 0 

and u¢(0) = 2 Æ 
127

8
c2 = 2.  Thus 

u(t) = 
16

127
e-t/8sin 

127

8
t.

29c. The phase plot is the
spiral shown and the 
direction of motion is
clockwise since the 
graph starts at (0,2) and
u increases initially.

30c. Using u(t) as found in part(b), show that 
ku2/2 + m(u¢) 2/2 = (ka2 + mb2)/2 for all t.
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Section 3.9, Page 205

1. We use the trigonometric identities 

cos(A ± B) = cosA cosB +
-
 sinA sinB to obtain  

cos(A + B) - cos(A - B) = -2sinA sinB.  If we choose 
A + B = 9t and A - B = 7t, then A = 8t and B = t.  
Substituting in the formula just derived, we obtain 
cos9t - cos7t = -2sin8tsint.

5. The mass m = 4/32 = 1/8 lb-sec2/ft and the spring 
constant k = 4/(1/8) = 32 lb/ft.  Since there is no 
damping, the I.V.P. is (1/8)u≤ + 32u = 2cos3t, 
u(0) = 1/6, u¢(0) = 0 where u is measured in ft and t in 
sec.

7a. From the solution to Problem 5, we have m = 1/8, F0 = 2, 

w0
 2 = 256, and w2 = 9, so Eq.(3) becomes 

u = c1cos16t + c2sin16t + 
16

247
 cos3t.  The I.C. 

u(0) = 1/6 Æ c1 + 16/247 = 1/6 and u¢(0) = 0 Æ 16c2 = 0, 

so the solution is u = (151/1482)cos16t + (16/247)cos3t 
ft.

7c. Resonance occurs when the frequency w of the forcing 
function 4sinwt is the same as the natural frequency w0 

of the system.  Since w0 = 16, the system will resonate 

when w = 16 rad/sec.

10. The I.V.P. is .25u≤ + 16u = 8sin8t, u(0) = 3 and 
u¢(0) = 0.  Thus, the particular solution has the form 
t(Acos8t + Bsin8t) and resonance occurs.

11a. For this problem the mass m = 8/32 lb-sec2/ft and the 
spring constant k = 8/(1/2) = 16 lb/ft, so the D.E. is 
0.25u≤ + 0.25u¢ + 16u = 4cos2t where u is measured in ft 
and t in sec.  To determine the steady state response we 
need only compute a particular solution of the 
nonhomogeneous D.E. since the solutions of the 
homogeneous D.E. decay to zero as t Æ �.  We assume 
u(t) = Acos2t + Bsin2t, and substitute in the D.E.:  
- Acos2t - Bsin2t + (1/2)(-Asin2t + Bcos2t) + 16(Acos2t + 
Bsin2t) = 4cos2t. Hence 15A + (1/2)B = 4 and 
-(1/2)A + 15B = 0, from which we obtain A = 240/901 and 
B = 8/901.  The steady state response is 
u(t) = (240cos2t + 8sin2t)/901.
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11b. In order to determine the value of m that maximizes the 
steady state response, we note that the present problem 
has exactly the form of the problem considered in the 
text.  Referring to Eqs.(8) and (9), the response is a 
maximum when D is a minimum since F0 is constant.  D, as 
given in Eq.(10), will be a minimum when 

f(m) = m2(w0
 2 - w2) 2 + g 2w2, where w0

 2 = k/m, is a 

minimum.  We calculate df/dm and set this quantity equal 

to zero to obtain m = k/w2.  We verify that this value of 
m gives a minimum of f(m) by the second derivative test.  
For this problem k = 16 lb/ft and w = 2 rad/sec so the 
value of m that maximizes the response of the system is 
m = 4 slugs.

15. We must solve the three I.V.P.:  (1)u1≤ + u1 = F0t, 

0 < t < p, u1(0) = u1¢(0) = 0; (2) u2≤ + u2 = F0(2p-t), 

p < t < 2p, u2(p) = u1(p), u2¢(p) = u1¢(p); and 

(3) u3≤ + u3 = 0, 2p < t, u3(2p) = u2(2p), u3¢(2p) = u2¢(2p).  
The conditions at p and 2p insure the continuity of u and 
u¢ at those points.  The general solutions of the D.E. 
are u1 = b1cost + b2sint + F0t, u2 = c1cost + c2sint + 

F0(2p-t), and u3 = d1cost + d2sint.  The I.C. and matching 
conditions, in order, give b1 = 0, b2 + F0 = 0, 

-b1 + pF0 = -c1 + pF0, -b2 + F0 = -c2 - F0, c1 = d1, and 
c2 - F0 = d2.  Solving these equations we obtain

u = F0 

 Ó

Ï

Ô
Ô
Ô
Ô
Ô
Ì

   t - sint      , 0 £ t £ p

(2p - t) - 3sint , p < t £ 2p

   - 4sint       , 2p < t.

    

16. The I.V.P. is Q≤ + 5x103 Q¢ + 4x106 Q = 12, Q(0) = 0, and 
Q¢(0) = 0.  The particular solution is of the form Q = A, 
so that upon substitution into the D.E. we obtain 

4x106A = 12 or A = 3x10-6.  The general solution of the 

D.E. is Q = c1e
r1t + c2e

r2t + 3x10-6, where r1 and r2 satisfy 

r2 + 5x103r + 4x106 = 0 and thus are r1 = -1000 and 

r2 = -4000. The I.C. yield c1 = -4x10
-6 and c2 = 10

-6 and 

thus Q = 10-6(e-4000t - 4e-1000t + 3) coulombs.  Substituting 
t = .001 sec we obtain 

Q(.001) = 10-6(e-4 - 4e-1 + 3) = 1.5468 x 10-6 coulombs.  

Since exponentials are to a negative power Q(t) Æ 3x10-6 
coulombs as t Æ �, which is the steady state charge.
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22. The amplitude of the steady state response is seven or
eight times the amplitude (3) of the forcing term.  This 
large an increase is due to the fact that the forcing 
function has the same frequency as the natural frequency, 
w0, of the system.

There also appears to be a phase lag of approximately 1/4 
of a period.  That is, the maximum of the response occurs 
1/4 of a period after the maximum of the forcing 
function.  Both these results are substantially different 
than those of either Problems 21 or 23.

24.

From viewing the above graphs, it appears that the system 
exhibits a beat near w = 1.5, while the pattern for 
w = 1.0 is more irregular.  However, the system exhibits 
the resonance characteristic of the linear system for w 
near 1, as the amplitude of the response is the largest 
here.
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CHAPTER 4

Section 4.1, Page 212

2. Writing the equation in standard form, we obtain 
y¢≤ + [(sint)/t]y≤ + (3/t)y = cost/t.  The functions 
p1(t) = sint/t, p3(t) = 3/t and g(t) = cost/t have 

discontinuities at t = 0.  Hence Theorem 4.1.1 guarantees 
that a solution exists for t < 0 and for t > 0.

8. We have W(f1, f2, f3) =

Ω
Ω
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω
Ω
Ω

2t-3 2t2+1 3t2+t

2 4t 6t+1

0 4 6

 = 0 for all t.  

Thus by the extension of Theorem 3.3.1 the given 
functions are linearly dependent.  Thus 

c1(2t-3) + c2(2t
2+1) + c3(3t

2+t) = 

(2c2+3c3)t
2 + (2c1+c3)t + (-3c1+c2) = 0 when 

(2c2 + 3c3) = 0, 2c1 + c3 = 0 and -3c1 + c2 = 0.  Thus c1 = 1 
c2 = 3 and c3 = -2.

13. That et, e-t, and e-2t are solutions can be verified by 
direct substitution. Computing the Wronskian we obtain,

W(et,e-t,e-2t)=

Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω

Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω

et   e-t   e-2t

 et  -e-t  -2e-2t

 et   e-t   4e-2t

 = e-2t 

Ω
Ω
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω
Ω
Ω

1  1  1

1 -1 -2

1  1  4

 = -6e-2t

17. To show that the given Wronskian is zero, it is helpful, 

in evaluating the Wronskian,  to note that (sin2t)¢ = 
2sintcost = sin2t.  This result can be obtained directly 

since sin2t = (1 - cos2t)/2 = 
1

10
(5) + (-1/2)cos2t and 

hence sin2t is a linear combination of 5 and cos2t. Thus 
the functions are linearly dependent and their Wronskian 
is zero.

19c. If we let L[y] = yiv - 5y≤ + 4y and if we use the result 
of Problem 19b, we have L[ert] = (r4 - 5r2 + 4)ert. Thus 

ert will be a solution of the D.E. provided 

(r2-4)(r2-1) = 0.  Solving for r, we obtain the four 

solutions et, e-t, e2t and e-2t.  Since 
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W(et, e-t, e2t, e-2t) π 0, the four functions form a 
fundamental set of solutions.

21. Comparing this D.E. to that of Problem 20 we see that 
p1(t) = 2 and thus from the results of Problem 20 we have 

W = ce
-Ú2dt = ce-2t.

27. As in Problem 26, let y = v(t)et.  Differentiating three 
times and substituting into the D.E. yields 

(2-t)etv¢¢¢ + (3-t)etv≤ = 0.  Dividing by (2-t)et and 
letting w = v≤ we obtain the first order separable 

equation w¢ = -
t-3

t-2
w = (-1 + 

1

t-2
)w.  Separating t and w, 

integrating, and then solving for w yields 

w = v≤ = c1(t-2)e
-t.  Integrating this twice then gives 

v = c1te
-t + c2t + c3 so that y = ve

t = c1t + c2te
t + c3e

t, 

which is the complete solution, since it contains the 
given y1(t) and three constants.

Section 4.2, Page 219

2. If -1 + i 3  = Reiq, then R = [(-1) 2 + ( 3 ) 2] 1/2 = 2. The 
angle q is given by Rcosq = 2cosq = -1 and 
Rsinq = 2sinq = 3 .  Hence cosq = -1/2 and 
sinq = 3 /2 which has the solution q = 2p/3.  The angle 
q is only determined up to an additive integer multiple 
of ± 2p.

8. Writing (1-i) in the form Reiq, we obtain 

(1-i) = 2 ei(-p/4+2mp) where m is any integer.  Hence, 

(1-i) 1/2 = [21/2ei(-p/4+2mp)] 1/2 = 21/4ei(-p/8+mp).  We obtain 
the two square roots by setting m = 0,1. They are 

21/4e-ip/8 and 21/4ei7p/8.  Note that any other integer value 
of m gives one of these two values. Also note that 1-i 

could be written as 1-i = 2 ei(7p/4 + 2mp).

12. We look for solutions of the form y = ert.  Substituting 
in the D.E., we obtain the characteristic equation 

r3 - 3r2 + 3r - 1 = 0 which has roots r = 1,1,1.  Since 
the roots are repeated, the general solution is 

y = c1e
t + c2te

t + c3t
2et.
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15. We look for solutions of the form y = ert.  Substituting 
in the D.E. we obtain the characteristic equation 

r6 + 1 = 0.  The six roots of -1 are obtained by setting 

m = 0,1,2,3,4,5 in (-1) 1/6 = ei(p+2mp)/6.  They are 
eip/6 = ( 3  + i)/2, eip/2 = i, ei5p/6 = (- 3  + i)/2, 

ei7p/6 = (- 3  - i)/2, ei3p/2 = -i, and 

ei11p/6 = ( 3  - i)/2.  Note that there are three pairs of 
conjugate roots. The general solution is 

y = e 3 t/2[c1cos(t/2) + c2sin(t/2)] 

     + e- 3 t/2[c3cos(t/2) + c4sin(t/2)] + c5cost + c6sint.

23. The characteristic equation is r3 -5r2 + 3r + 1 = 0.  
Using the procedure suggested following Eq. (12) we try 
r = 1 as a root and find that indeed it is.  Factoring 
out (r-1) we are then left with r2 - 4r - 1 = 0, which 
has the roots 2 ± 5 .

27. The characteristic equation in this case is 12r4 + 31r3 + 
75r2 + 37r + 5 = 0.  Using an equation solver we find 

r = -
1

4
, -

1

3
, -1 ± 2i.  Thus

y = c1e
-t/4 + c2e

-t/3 + e-t (c3cos2t +c4sin2t).  As in 
Problem 23, it is possible to find the first two of these 
roots without using an equation solver.

29. The characteristic equation is r3 + r = 0 and hence 
r = 0, +i, -i are the roots and the general solution is 
y(t) = c1 + c2cost + c3sint.  y(0) = 0 implies 

c1 + c2 = 0, y¢(0) = 1 implies c3 = 1 and y≤(0) = 2 
implies -c2 = 2.  Use this last equation in the first to 

find c1 = 2 and thus y(t) = 2 - 2cost + sint, which 

continues to oscillate as t Æ �.

30. The general solution is given by Eq. (21).

31. The general solution would normally be written 

y(t) = c1 + c2t + c3e
2t + c4te

2t.  However, in order to 

evaluate the c’s when the initial conditions are given at 
t = 1, it is advantageous to rewrite 

y(t) as y(t) = c1 + c2t + c5e
2(t-1) + c6(t-1)e

2(t-1).
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34. The characteristic equation is 4r3 + r + 5 = 0, which has 

roots -1, 
1

2
 ± i.  Thus 

y(t) = c1e
-t + et/2(c2cost + c3sint),

y¢(t) = -c1e
-t + et/2[(c2/2 + c3)cost + (-c2 + c3/2)sint] 

and 

   y≤(t) = c1e
-t + et/2[(-3c2/4 + c3)cost + (-c2 - 3c3/4)sint]. 

The I.C. then yield c1 + c2 = 2, -c1 + c2/2 + c3 = 1 and 
c1 - 3c2/4 + c3 = -1.  Solving these last three equations 
give c1 = 2/13, c2 = 24/13 and c3 = 3/13.

37. The approach developed in this section for solving the 

D.E. would normally yield y(t) = c1cost + c2sint + c5e
t + 

c6e
-t as the solution.  Now use the definition of coshx 

and sinht to yield the desired result.  It is convenient 

to use cosht and sinht rather than et and e-t because the 
I.C. are given at t = 0.  Since cosht and sinht and all 
of their derivatives are either 0 or 1 at t = 0, the 
algebra in satisfying the I.C. is simplified.

38a. Since p1(t) = 0, W = ce
-Ú0dt = c.

39a. As in Section 3.8, the force that the spring designated 
by k1 exerts on mass m1 is -3u1.  By an analysis similar 

to that shown in Section 3.8, the middle spring exerts a 
force of -2(u1-u2) on mass m1 and a force of -2(u2-u1) on 

mass m2.  In all cases the positive direction is taken in 

the direction shown in Figure 4.2.4.

39c. From Eq.(i) we have u1≤(0) = 2u2(0) - 5u1(0) = -1 and 

u1¢ ¢¢(0) = 2u2¢(0) - 5u1¢(0) = 0.  From Prob.39b we have 

u1 = c1cost + c2sint + c3cos 6 t + c4sin 6 t.  Thus 

c1+c3 = 1, c2+ 6 c4 = 0, -c1-6c3 = -1 and -c2-6 6 c4 = 0, 

which yield c1 = 1 and c2 = c3 = c4 = 0, so that 

u1 = cost.  The first of Eqs.(i) then gives u2.

Section 4.3, Page 224

1. First solve the homogeneous D.E.  The characteristic 
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equation is r3 - r2 - r + 1 = 0, and the roots are r = -1, 

1, 1; hence yc(t) = c1e
-t + c2e

t + c3te
t.  Using the 

superposition principle, we can write a particular 
solution as the sum of particular solutions corresponding 

to the D.E. y¢≤-y≤-y¢+y = 2e-t and y¢≤-y≤-y¢+y = 3.  Our 
initial choice for a particular solution, Y1, of the 

first equation is Ae-t; but e-t is a solution of the 
homogeneous equation so we multiply by t.  Thus, 

Y1(t) = Ate
-t. For the second equation we choose 

Y2(t) = B, and there is no need to modify this choice.  

The constants are determined by substituting into the 
individual equations.  We obtain A = 1/2, B = 3.  Thus, 
the general solution is 

y = c1e
-t + c2e

t + c3te
t + 3 + (te-t)/2.

5. The characteristic equation is r4 - 4r2 = r2(r2-4) = 0, 

so yc(t) = c1 + c2t + c3e
-2t + c4e

2t.  For the particular 

solution correspnding to t2 we assume 

Y1 = t
2(At2 + Bt + C) and for the particular solution 

corresponding to et we assume Y2 = De
t.  Substituting Y1, 

in the D.E. yields -48A = 1, B = 0 and 24A-8C = 0 and 
substituting Y2 yields -3D = 1.  Solving for A, B, C and 

D gives the desired solution.

9. The characteristic equation for the related homogeneous 

D.E. is r3 + 4r = 0 with roots r = 0, +2i, -2i.  Hence 
yc(t) = c1 + c2cos2t + c3sin2t. The initial choice for 

Y(t) is At + B, but since B is a solution of the 
homogeneous equation we must multiply by t and assume 
Y(t) = t(At+B).  A and B are found by substituting in the 
D.E., which gives A = 1/8, B = 0, and thus the general 

solution is y(t) = c1 + c2cos2t + c3sin2t + (1/8)t
2.  

Applying the I.C. we have y(0) = 0 Æ c1 + c2 = 0, 

y¢(0) = 0 Æ 2c3 = 0, and y≤(0) = 1 Æ -4c2 + 1/4 = 1, 

which have the solution c1 = 3/16, c2 = -3/16, c3 = 0.  

For small t the graph will approximate 3(1-cos2t)/16 and 
for large t it will be approximated by t2/8.

13. The characteristic equation for the homogeneous D.E. is 

r3 - 2r2 + r = 0 with roots r = 0,1,1.  Hence the 

complementary solution is yc(t) = c1 + c2e
t + c3te

t.  We 
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consider the differential equations y¢≤ - 2y≤ + y¢ = t3 
and y¢≤ - 2y≤ + y¢ = 2et separately.  Our initial choice 
for a particular solution, Y1, of the first equation is 

A0t
3 + A1t

2 + A2t + A3; but since a constant is a solution 

of the homogeneous equation we must multiply by t.  Thus 

Y1(t) = t(A0t
3 + A1t

2 + A2t + A3).  For the second equation 

we first choose Y2(t) = Be
t, but since both et and tet 

are solutions of the homogeneous equation, we multiply by 

t2 to obtain Y2(t) = Bt
2et.  Then Y(t) = Y1(t) + Y2(t) by 

the superposition principle and y(t) = yc(t) + Y(t).

17. The complementary solution is yc(t) = c1 + c2e
-t + c3e

t + 

c4te
t.  The superposition principle allows us to consider 

separately the D.E. yiv - y¢≤ - y≤ +y¢ = t2 + 4 and 
yiv - y¢≤ - y≤ + y¢ = tsint.  For the first equation our 
initial choice is Y1(t) = A0t

2 + A1t + A2; but this must 

be multiplied by t since a constant is a solution of the 

homogeneous D.E.  Hence Y1(t) = t(A0t
2 + A1t + A2).  For 

the second equation our initial choice that 
Y2 = (B0t + B1)cost + + (C0t + C1)sint does not need to be 

modified. Hence 

    Y(t) = t(A0t
2 + A1t + A2) + (B0t + B1)cost + (C0t + C1)sint.

20. (D-a)(D-b)f = (D-a)(Df-bf) = D2f - (a+b)Df + abf and 

(D-b)(D-a)f = (D-b)(Df-af) = D2f - (b+a)Df + baf. Since 
a+b = b+a and ab = ba, we find the given equation holds 
for any function f.

22a. The D.E. of Problem 13 can be written as 

D(D-1) 2y = t3 + 2et. Since D4 annihilates t3 and (D-1) 
annihilates 2et, we have D5(D-1) 3y = 0, which corresponds 
to Eq.(ii) of Problem 21.  The solution of this equation 

is y(x) = A1t
4 + A2t

3 + A3t
2 + A4t + A5 + 

(B1t
2 + B2t + B3)e

-t.  Since A5 + (B2t + B3)e
-t are 

solutions of the homogeneous equation related to the 
original D.E., they may be deleted and thus 

Y(t) = A1t
4 + A2t

3 + A3t
2 + A4t + B1t

2e-t.
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22b. (D+1) 2(D2+1) annihilates the right side of the D.E. of 
Problem 14.

22e. D3(D2+1) 2 annihilates the right side of the D.E. of 
Problem 17.

Section 4.4, Page 229

1. The complementary solution is yc = c1 + c2cost + c3sint 

and thus we assume a particular solution of the form 
Y = u1(t) + u2(t)cost + u3(t)sint.  Differentiating and 

assuming Eq.(5), we obtain Y¢ = -u2sint + u3cost and

        u1¢ + u2¢cost + u3¢sint = 0    (a).
Continuing this process we obtain Y≤ = -u2cost - u3sint, 

Y¢¢¢ = u2sint - u3cost - u2¢cost - u3¢sint and

       -u2¢sint + u3¢cost = 0         (b).
Substituting Y and its derivatives, as given above, into 
the D.E. we obtain the third equation:

       -u2¢cost - u3¢sint = tant      (c).
Equations (a), (b) and (c) constitute Eqs.(10) of the 
text for this problem and may be solved to give 

u1¢ = tant, u2¢ = -sint, and u3¢  = -sin
2t/cost.  Thus 

u1 = -lncost, u2 = cost and u3 = sint - ln(sect + tant) 
and Y = -lncost + 1 - (sint)ln(sect + tant).  Note that 
the constant 1 can be absorbed in c1.

4. Replace tant in Eq. (c) of Prob. 1 by sect and use 
Eqs. (a) and (b) as in Prob. 1 to obtain u1¢  = sect, 
u2¢  = -1 and u3¢  = -sint/cost.

5. Replace sect in Problem 7 with e-tsint.

7. Since et, cost and sint are solutions of the related 
homogenous equation we have 

Y(t) = u1e
t + u2cost + u3sint.  Eqs. (10) then are

u1¢ e
t + u2¢ cost + u3¢ sint = 0

u1¢ e
t - u2¢ sint + u3¢ cost = 0

u1¢ e
t - u2¢ cost - u3¢ sint = sect.

  Using Abel’s identity, W(t) = cexp(-Úp1(t)dt) = cet.  
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Using the above equations, W(0) = 2, so c = 2 and 

W(t) = 2et.  From Eq.(11), we have u¢1(t) = 
sect W1(t)

2et
, 

where W1 = 

Ω
Ω
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω
Ω
Ω

0  cost   sint

0  -sint  cost

1  -cost  -sint

 = 1 and thus 

u1¢ (t) = 
1

2
e-t/cost.  Likewise 

u2¢  = 
sect W2(t)

2et
 = -

1

2
sect(cost - sint) and 

u3¢  = 
sect W3(t)

2et
 = -

1

2
sect(sint + cost).  Thus 

  u1 = 
1

2 Út0
t e

-sds

coss
, u2 = -

1

2
t - 

1

2
ln(cost) and u3 = -

1

2
t + 

1

2
ln(cost) 

which, when substituted into the assumed form for Y, yields 
the desired solution.

11. Since the D.E. is the same as in Problem 7, we may use 
the complete solution from that, with t0 = 0.  Thus

y(0) = c1 + c2 = 2, y¢(0) = c1 + c3 - 
1

2
 + 

1

2
 = -1 and

y≤(0) = c1 - c2 + 
1

2
 - 1 + 

1

2
 = 1.  Again, a computer 

algebra system may be used to yield the respective 
derivatives.

14. Since a fundamental set of solutions of the homogeneous 

D.E. is y1 = e
t, y2 = cost, y3 = sint, a particular 

solution is of the form Y(t) = etu1(t) + (cost)u2(t) + 

(sint)u3(t).  Differentiating and making the same 

assumptions that lead to Eqs.(10), we obtain

              u1¢e
t + u2¢cost + u3¢sint = 0

              u1¢e
t - u2¢sint + u3¢cost = 0

              u1¢e
t - u2¢cost - u3¢sint = g(t)

Solving these equations using either determinants or by 

elimination, we obtain u1¢ = (1/2)e
-tg(t), 

u2¢ = (1/2)(sint - cost)g(t),u3¢ = -(1/2)(sint + cost)g(t).  
Integrating these and substituting into Y yields
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Y(t) = 
1

2
{etÚt0

t
e-sg(s)ds + cost Út0

t
(sins - coss)g(s)ds

            -sintÚt0
t
(sins + coss)g(s)ds}.

This can be written in the form

Y(t) = (1/2)Út0
t
(et-s + costsins - costcoss

                 -sintsins - sintcoss)g(s)ds.
If we use the trigonometric identities sin(A-B) = 
sinAcosB - cosAsinB and cos(A-B) = cosAcosB + sinAsinB, 
we obtain the desired result.  Note: Eqs.(11) and (12) of 
this section give the same result, but it is not 
recommended to memorize these equations.

16. The particular solution has the form Y = etu1(t) + 

tetu2(t) + t
2etu3(t).  Differentiating, making the same 

assumptions as in the earlier problems, and solving the 

three linear equations for u1¢, u2¢, and u3¢ yields 

u1¢ =(1/2)t
2e-tg(t), u2¢ = -te

-tg(t) and u3¢ = (1/2)e
-tg(t).  

Integrating and substituting into Y yields the desired 
solution.  For instance

tetu2 = -te
tÚt0

t
se-sg(s)ds = -

1

2 Út0
t
 2tse(t-s)g(s)ds, and 

likewise for u1 and u3.  If g(t) = t
-2et then g(s) = es/s2 

and the integration is accomplished using the power rule.  
Note that terms involving t0 become part of the 

complimentary solution.
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CHAPTER 5

Section 5.1, Page 237

2. Use the ratio test:

lim
n → ∞

 
 (n+1)xn+1/2n+1

 nxn/2n
 = lim

n → ∞
 
n+1

n
 
1

2
  x  = 

 x
2

.  

Therefore the series converges absolutely for  x  < 2.  
For x = 2 and x = -2 the nth term does not approach zero 
as n → ∞ so the series diverge.  Hence the radius of 
convergence is ρ = 2.

5. Use the ratio test:

lim
n → ∞

 
 (2x+1) n+1/(n+1) 2

 (2x+1) n/n2
 = lim

n → ∞
 

n2

(n+1) 2
 2x+1  =  2x+1 .  

Therefore the series converges absolutely for  2x+1  < 1, 
or  x+1/2  < 1/2.  At x = 0 and x = -1 the series also 
converge absolutely.  However, for  x+1/2  > 1/2 the 
series diverges by the ratio test.  The radius of 
convergence is ρ = 1/2.

9. For this problem f(x) = sinx.  Hence f′(x) = cosx, 
f″(x) = -sinx, f″′(x) = -cosx,... .  Then f(0) = 0, 
f′(0) = 1, f″(0) = 0, f″′(0) = -1,... .  The even terms in 
the series will vanish and the odd terms will alternate 

in sign.  We obtain sinx = ∑
n=0

∞

 (-1) n x2n+1/(2n+1)!.  From 

the ratio test it follows that ρ = ∞.

12. For this problem f(x) = x2.  Hence f′(x) = 2x, f″(x) = 2, 
and f(n)(x) = 0 for n > 2. Then f(-1) = 1, f′(-1) = -2, 
f″(-1) = 2 and x2 = 1 - 2(x+1) + 2(x+1) 2/2! = 1 - 2(x+1) + 
(x+1) 2.  Since the series terminates after a finite 
number of terms, it converges for all x.  Thus ρ = ∞.

13. For this problem f(x) = lnx.  Hence f′(x) = 1/x, 
f″(x) = -1/x2, f″′(x) = 1.2/x3,... , and f(n)(x) = 
(-1) n+1(n-1)!/xn.  Then f(1) = 0, f′(1) = 1, f″(1) = -1, 
f″′(1) = 1.2,... , f(n)(1) = (-1) n+1(n-1)!  The Taylor 
series is lnx = (x-1) - (x-1) 2/2 + (x-1) 3/3 - ... = 

∑
n=1

∞

 (-1) n+1(x-1) n/n. It follows from the ratio test that 
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the series converges absolutely for Ωx-1Ω < 1.  However, the 
series diverges at x = 0 so r = 1.

18. Writing the individual terms of y, we have 

y = a0 + a1x + a2x
2 +...+aax

n + ..., so 

y’ = a1 + 2a2x + 3a3x
2 + ... + (n+1)an+1x

n + ..., and

y” = 2a2 + 3
.2a3x + 4.3a4x

2 + ... + (n+2)(n+1)an+2x
n + ... .

If y” = y, we then equate coefficients of like powers of x to 
obtain 2a2 = a0, 3

.2a3 = a1, 4.3a4 = a2, ... (n+2)(n+1)an+2 = 
an, which yields the desired result for n = 0,1,2,3... .

19. Set m = n-1 on the right hand side of the equation. Then 
n = m+1 and when n = 1, m = 0.  Thus the right hand side 

becomes Â
m=0

�

am(x-1)
m+1, which is the same as the left hand 

side when m is replaced by n.

23. Multiplying each term of the first series by x yields 

xÂ
n=1

�

 nanx
n-1 = Â

n=1

�

 nanx
n = Â

n=0

�
 nanx

n, where the last 

equality can be verified by writing out the first few 
terms.  Changing the index from k to n (n=k) in the 
second series then yields 

Â
n=0

�

 nanx
n + Â

n=0

�

anx
n = Â

n=0

�

(n+1)anx
n.

25. Â
m=2

�
 m(m-1)amx

m-2 + xÂ
k=1

�
 kakx

k-1 = 

Â
n=0

�

 (n+2)(n+1)an+2x
n + Â

k=1

�
 kakx

k =

Â
n=0

�
 [(n+2)(n+1)an+2 + nan]x

n.  In the first case we have 

let n = m - 2 in the first summation and multiplied each 
term of the second summation by x.  In the second case we 
have let n = k and noted that for n = 0, nan = 0.

 28. If we shift the index of summation in the first sum by 



letting m = n-1, we have

∑
n=1

∞

 nanx
n-1 = ∑

m=0

∞

 (m+1)am+1x
m.  Substituting this into the 

given equation and letting m = n again, we obtain:

∑
n=0

∞

 (n+1)an+1 x
n + 2 ∑

n=0

∞

 anx
n = 0, or

∑
n=0

∞

 [(n+1)an+1 + 2an]x
n = 0.

Hence an+1 = -2an/(n+1) for n = 0,1,2,3,... .  Thus 

a1 = -2a0, a2 = -2a1/2 = 2
2a0/2, a3 = -2a2/3 = -2

3a0/2
.3 = 

-23a0/3!... and an = (-1) n2na0/n!.  Notice that for n = 0 
this formula reduces to a0 so we can write 

∑
n=0

∞

 anx
n = ∑

n=0

∞

 (-1) n2n a0x
n/n! = a0∑

n=0

∞

 (-2x) n/n! = a0e
-2x.

Section 5.2, Page 247

2. y = ∑
n=0

∞

 anx
n; y′ =  ∑

n=1

∞

 nanx
n-1 and since we must multiply 

y′ by x in the D.E. we do not shift the index; and 

y″ = ∑
n=2

∞

 n(n-1)anx
n-2 = ∑

n=0

∞

 (n+2)(n+1)an+2x
n.  Substituting 

in the D.E., we obtain 

∑
n=0

∞

 (n+2)(n+1)an+2x
n - ∑

n=1

∞

 nanx
n - ∑

n=0

∞

 anx
n = 0.  In order to 

have the starting point the same in all three summations, 
we let n = 0 in the first and third terms to obtain the 
following

  (2.1 a2 - a0)x
0 + ∑

n=1

∞

[(n+2)(n+1)an+2 - (n+1)an]x
n = 0.  

Thus an+2 = an/(n+2) for n = 1,2,3,... .  Note that the 

recurrence relation is also correct for n = 0. We show 
how to calculate the odd a’s:

                                                   Section 5.2                    75    
                                                              



a3 = a1/3, a5 = a3/5 = a1/5
.3, a7 = a5/7 = a1/7.5.3,... .  

Now notice that a3 = 2a1/(2
.3) = 2a1/3!, that 

a5 = 2
.4a1/(2.3.4.5) = 22.2a1/5!, and that 

a7 = 2
.4.6a1/(2.3.4.5.6.7) = 23.3! a1/7!.  Likewise 

a9 = a7/9 = 2
3.3! a1/(7!)9 = 2

3.3! 8a1/9! = 2
4.4! a1/9!.  

Continuing we have a2m+1 = 2
m.m! a1/(2m+1)!.  In the same 

way we find that the even a’s are given by a2m = a0/2
m m!.  

Thus

          y = a0 ∑
m=0

∞

 
x2m

2mm!
 + a1 ∑

m=0

∞

  
2mm! x2m+1

(2m+1)!
.

3. y = ∑
n=0

∞

an(x-1) n; y′ = ∑
n=1

∞

nan(x-1) n-1 = ∑
n=0

∞

(n+1)an+1(x−1) n, 

and 

y″ = ∑
n=2

∞

 n(n-1)an(x-1) n-2 = ∑
n=0

∞

 (n+2)(n+1)an+2(x-1) n.  

Substituting in the D.E. and setting x = 1 + (x-1) we 
obtain

∑
n=0

∞

 (n+2)(n+1)an+2(x-1) n - ∑
n=0

∞

(n+1)an+1(x-1) n - ∑
n=1

∞

 nan(x-1) n

                                      - ∑
n=0

∞

 an(x-1) n = 0,

where the third term comes from:

-(x-1)y’ = ∑
n=1

∞

 (n+1)an+1(x-1) n+1 = -∑
n=1

∞

 nan(x-1) n. 

Letting n = 0 in the first, second, and the fourth sums, 
we obtain

(2.1.a2 - 1.a1 - a0)(x-1) 0 + ∑
n=1

∞

 [(n+2)(n+1)an+2

             - (n+1)an+1 - (n+1)an](x-1) n = 0.
Thus (n+2)an+2 - an+1 - an = 0 for n = 0,1,2,... .  This 

recurrance relation can be used to solve for a2 in terms 

of a0 and a1, then for a3 in terms of a0 and a1, etc.  In 

many cases it is easier to first take a0 = 0 and generate 
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one solution and then take a1 = 0 and generate the second 

linearly independent solution.  Thus, choosing a0 = 0 we 

find that a2 = a1/2, a3 = (a2+a1)/3 = a1/2, a4 = (a3+a2)/4 = 

a1/4, a5 = (a4+a3)/5 = 3a1/20,... .  This yields the 

solution y2(x) = a1[(x-1) + (x-1) 2/2 + (x-1) 3/2 + 

(x-1) 4/4 + 3(x-1) 5/20 + ...].  The second independent 
solution may be obtained by choosing a1 = 0.  Then 

a2 = a0/2, a3 = (a2+a1)/3 = a0/6, a4 = (a3+a2)/4 = a0/6, 

a5 = (a4+a3)/5 = a0/15,... .  This yields the solution 

y1(x) = a0[1+(x-1) 2/2+(x-1) 3/6+(x-1) 4/6+(x-1) 5/15+...].  

5. y = ∑
n=0

∞

 anx
n; y′ = ∑

n=1

∞

 nanx
n-1; and y″ = ∑

n=2

∞

 n(n-1)anx
n-2.  

Substituting in the D.E. and shifting the index in both 
summations for y″ gives

∑
n=0

∞

 (n+2)(n+1)an+2x
n - ∑

n=1

∞

 (n+1)n an+1x
n + ∑

n=0

∞

 anx
n =  

(2.1.a2 + a0)x
0 + ∑

n=1

∞

[(n+2)(n+1)an+2 - (n+1)nan+1 +an]x
n = 0.  

Thus a2 = -a0/2 and an+2 = nan+1/(n+2) - an/(n+2)(n+1), 

n = 1,2,... .  Choosing a0 = 0 yields a2 = 0, a3 = -a1/6, 

a4 = 2a3/4 = -a1/12,... which gives one solution as 

y2(x) = a1(x - x
3/6 - x4/12 + ...).  A second linearly 

independent solution is obtained by choosing a1 = 0. Then

  a2 = -a0/2, a3 = a2/3 = -a0/6, a4 = 2a3/4 - a2/12 = -a0/24,... 

which gives y1(x) = a0(1 - x
2/2 - x3/6 - x4/24 + ...).

8. If y = ∑
n=1

∞

 an(x-1) n then 

xy = [1+(x-1)]y = ∑
n=1

∞

 an(x-1) n + ∑
n=1

∞

 an(x-1) n+1, 

y’ = ∑
n=1

∞

 nan(x-1) n-1, and

xy” = [1+(x-1)]y” 
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    = ∑
n=1

∞

 n(n-1)an(x-1) n-2 + ∑
n=1

∞

 n(n-1)an(x-1) n-1.

14. You will need to rewrite x+1 as 3 + (x-2) in order to 
multiply x+1 times y′ as a power series about x0 = 2.

16a. From Problem 6 we have

y(x) = c1(1 - x
2 + 

1

6
x4+...) + c2(x - 

1

4
x3 + 

7

160
x5 + ...).  

Now y(0) = c1 = -1 and y′(0) = c2 = 3 and thus 

 y(x) = -1+x2-
1

6
x4+3x-

3

4
x3 = -1+3x+x2-

3

4
x3-

1

6
x4 + ... .

16c. By plotting f = −1 + 3x + x2 − 3x3/4 and g = f − x4/6 
between −1 and 1 it appears that f is a reasonable 
approximation for   x  < 0.7.

19. The D.E. transforms into u″(t) + t2u′(t) + (t2+2t)u(t) = 0.  

Assuming that u(t) = ∑
n=0

∞

 ant
n, we have u′(t) = ∑

n=1

∞

 nant
n-1 and 

u″(t) = ∑
n=2

∞

 n(n-1)ant
n-2. Substituting in the D.E. and 

shifting indices yields

∑
n=0

∞

 (n+2)(n+1)an+2t
n + ∑

n=2

∞

 (n-1)an-1t
n + ∑

n=2

∞

 an-2t
n 

                                   + ∑
n=1

∞

 2an-1t
n = 0,

2.1.a2t
0 + (3.2.a3 + 2.a0)t

1 + ∑
n=2

∞

[(n+2)(n+1)an+2 

                        + (n+1)an-1 + an-2]t
n = 0.

It follows that a2 = 0, a3 = -a0/3 and 

an+2 = -an-1/(n+2) - an-2/[(n+2)(n+1)], n = 2,3,4... .  We 

obtain one solution by choosing a1 = 0.  Then a4 = -a0/12, 

a5 = -a2/5 -a1/20 = 0, a6 = -a3/6 - a2/30 = a0/18,... .  Thus 

one solution is u1(t) = a0(1 - t
3/3 - t4/12 + t6/18 + ...) so 

 y1(x) = u1(x-1) = a0[1 - (x-1) 3/3 - (x-1) 4/12 + (x-1) 6/18 + ...].  
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We obtain a second solution by choosing a0 = 0.  Then 

a4 = -a1/4, a5 = -a2/5 - a1/20 = -a1/20, 

a6 = -a3/6 - a2/30 = 0, a7 = -a4/7 - a3/42 = a1/28,... .  

Thus a second linearly independent solution is 

u2(t) = a1[t - t
4/4 - t5/20 + t7/28 + ...] or 

y2(x) = u2(x-1) 

          = a1[(x-1) - (x-1) 4/4 - (x-1) 5/20 + (x-1) 7/28 + ...].

The Taylor series for x2 - 1 about x = 1 may be obtained by 

writing x = (x-1) + 1 so x2 = (x-1) 2 + 2(x-1) + 1 and 
x2 - 1 = (x-1) 2 + 2(x-1).  The D.E. now appears as 
y″ + (x-1) 2y′ + [(x-1) 2 + 2(x-1)]y = 0 which is identical to 
the transformed equation with t = x - 1.

22b. y = a0 + a1x + a2x
2 + ... , y2 = a0

2 + 2a0a1x + (2a0a2 + a1
2)x2 

+ ... , y′= a1 + 2a2x + 3a3x
2 + ... , and 

(y′) 2 = a1
2 + 4a1a2x + (6a1a3 + 4a2 

2)x2 + ... .  Substituting 

these into (y′) 2 = 1 − y2 and collecting coefficients of 
like powers of x yields (a1

2 + a0
2 - 1) + (4a1a2 + 2a0a1)x + 

(6a1a3 + 4a2
2 + 2a0a2 + a1

2)x2 + ... = 0.  As in the earlier 

problems, each coefficient must be zero.  The I.C. y(0) = 0 

requires that a0 = 0, and thus a1
2 + a0

2 - 1 = 0 gives a1
2 = 1.  

However, the D.E.indicates that y′ is always positive, so 
y′(0) = a1 > 0 implies a1 = 1.  Then 4a1a2 + 2a0a1 = 0 implies 

that a2 = 0; and 6a1a3 + 4a2
2 + 2a0a2 + a1

2 = 6a1a3 + a1
2 = 0 

implies that a3 = -1/6.  Thus y = x - x
3/3! + ... .

23.                           26.

26. We have y(x) = a0y1 + a1y2, where y1 and y2 are found in 

                                                   Section 5.2                    79    
                                                              



Problem 10.  Now y(0) = a0 = 0 and y′(0) = a1 = 1.  Thus 

y(x) = x − 
x3

12
 − 

x5

240
 − 

x7

2240
.

Section 5.3, Page 253

1. The D.E. can be solved for y″ to yield y″ = -xy′ - y.  If 
y = φ(x) is a solution, then φ″(x) = -xφ′(x) - φ(x) and 
thus setting x = 0 we obtain φ″(0) = - 0 - 1 = -1.  
Differentiating the equation for y″ yields 
y′′′ = -xy″ - 2y′ and hence setting y = φ(x) again yields 
φ′′′(0) = -0 - 0 = 0.  In a similar fashion 
y
iv
 = -xy′′′ - 3y″ and thus φiv(0) = - 0 - 3(-1) = 3.  The 

process can be continued to calculate higher derivatives 
of φ(x).

6. The zeros of P(x) = x
2
 - 2x - 3 are x = -1 and x = 3. For 

x0 = 4, x0 = -4, and x0 = 0 the distance to the nearest 

zero of P(x) is 1,3, and 1, respectively.  Thus a lower 
bound for the radius of convergence for series solutions 
in powers of (x-4), (x+4), and x is ρ = 1, ρ = 3, and 
ρ = 1, respectively.

9a. Since P(x) = 1 has no zeros, the radius of convergence 
for x0 = 0 is ρ = ∞.      

9f. Since P(x) = x
2
 + 2 has zeros at x = ± 2  i, the lower 

bound for the radius of convergence of the series 

solution about x0 = 0 is ρ = 2 .

9h. Since x0 = 1 and P(x) = x has a zero at x = 0, ρ = 1. 

10a. If we assume that y =  ∑
n=2

∞

anx
n
, then y′ =  ∑

n=2

∞

nanx
n-1

 and 

y″ =  ∑
n=2

∞

n(n-1)anx
n-2

.  Substituting in the D.E., shifting 

indices of summation, and collecting coefficients of like 
powers of x yields the equation

(2.1.a2 + α 2
a0)x

0
 + [3.2.a3 + (α 2

-1)a1]x
1
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               +  ∑
n=2

∞

[(n+2)(n+1)an+2 + (α 2
-n

2
)an]x

n
 = 0.

Hence the recurrence relation is 

an+2 = (n
2
-α 2

)an/(n+2)(n+1), n = 0, 1,2,... .  For the 

first solution we choose a1 = 0.  We find that 

a2 = -α 2
a0/2

.1, a3 = 0, a4 = (2
2
-α 2

)a2/4
.3 = -(22-α 2

)α2
a0/4! 

..., a2m = -[(2m-2)2 - α 2
]... (2

2
-α 2

)α2
a0/(2m)!, 

and a2m+1 = 0, so y1(x) = 1 - 
α2

2!x
2
 - 

(2
2
-α2

)α2

4!
x
4 
 - ...

                        -
[(2m-2)2-α2

]...(2
2
-α 2

)α2

        (2m)! x
2m
 - ...,

where we have set a0 = 1. For the second solution we take 

a0 = 0 and a1 = 1 in the recurrence relation to obtain 

the desired solution.

10b. If α is an even integer 2k then (2m-2)2 - α 2
 = (2m-2)2 - 

4k
2
 = 0.  Thus when m = k+1 all terms in the series for 

y1(x) are zero after the x
2k 

term.  A similar argument 

shows that if α = 2k+1 then all terms in y2(x) are zero 

after the x
2k+1

.

11. The Taylor series about x = 0 for sinx is 

sinx = x - x
3
/3! + x

5
/5! - ... .  Assuming that 

y =  ∑
n=2

∞
anx

n
 we find y″ + (sinx)y = 2a2 + 6a3x + 12a4x

2
 

+ 20a5x
3
 + 30a6x

4
 + 42a7x

5
 + ... 

+ (x-x
3
/3!+x

5
/5!−...)(a0+a1x+a2x

2
+a3x

3
+a4x

4+...)  

= 2a2 + (6a3+a0)x + (12a4+a1)x
2
 + (20a5+a2-a0/6)x

3 
+ 

(30a6+ a3-a1/6)x
4
 + (42a7+a4+a0/5!)x

5
 +  ... = 0.  Hence 

a2 = 0, a3 = -a0/6, a4 = -a1/12, a5 = a0/120, 

a6 = (a1+a0)/180, a7 = -a0/7! + a1/504, ... .  We set 
a0 = 1 and a1 = 0 and obtain 

y1(x) = (1 - x
3
/6 + x

5
/120 + x

6
/180 +  ...).  Next we set 

a0 = 0 and a1 = 1 and obtain 

y2(x) = (x - x
4
/12 + x

6
/180 + x

7
/504 +...).  Since 
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p(x) = 1 and q(x) = sinx both have ρ = ∞, the solution 
in this case converges for all x, that is, ρ = ∞

18. We know that e
x
 = 1 + x + x

2
/2! + X

3
/3! + ..., and 

therefore e
x2
= 1 + x

2
 + x

4
/2! + x

6
/3! + ... .  Hence, if 

y = Σanx
n
, we have

a1 + 2a2x + 3a3x
2 
+ ... = (1+x

2
 + x

4
/2+...)(a0+a1x+a2x

2
+...)

                           = a0 + a1x + (a0+a2)x
2
 + ...:

Thus, a1 = a0 2a2 = a1 and 3a3 = a0 + a2, which yield the 

desired solution.

20. Substituting y =  ∑
n=2

∞
anx

n
 into the D.E. we obtain 

∑
n=2

∞
nanx

n-1
 -  ∑

n=2

∞
anx

n
 = x

2
.  Shifting indices in the summation 

yields  ∑
n=2

∞
[(n+1)an+1 - an]x

n
 = x

2
.  Equating coefficients of 

both sides then gives:  a1 - a0 = 0, 2a2 - a1 = 0, 3a3 - a2 = 1 

and (n+1)an+1 = an for n = 3,4,... .  Thus a1 = a0, 

a2 = a1/2 = a0/2, a3 = 1/3 + a2/3 = 1/3 + a0/2
.3, 

a4 = a3/4 = 1/3
.4 + a0/2.3.4, ..., an = an-1/n = 2/n! + a0/n! and 

hence 

    y(x) = a0(1 + x + 
x
2

2!
+...+

x
n

n!
...) + 2(

x
3

3!
+
x
4

4!
+...+

x
n

n!
+...).  

Using the power series for e
x
, the first and second sums 

can be rewritten as a0e
x
 + 2(ex − 1 − x − x2/2).

22. Substituting y =  ∑
n=2

∞
anx

n
 into the Legendre equation, 

shifting indices, and collecting coefficients of like 
powers of x yields

[2.1.a2 + α(α+1)a0]x
0
 + {3.2.a3 - [2.1 - α(α+1)]a1}x

1
 +  

∑
n=2

∞
{(n+2)(n+1)an+2 - [n(n+1) - α(α+1)]an}x

n
 = 0.  Thus 

a2 = -α(α+1)a0/2!, a3 = [2.1 - α(α+1)]a1/3! = 
-(α-1)(α+2)a1/3! and the recurrence relation is 
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(n+2)(n+1)an+2 = -[α(α+1) - n(n+1)]an = -(α-n)(α+n+1)an, 
n = 2,3,... .  Setting a1 = 0, a0 = 1 yields a solution 

with a3 = a5 = a7 = ... = 0 and 

a4 = α(α-2)(α+1)(α+3)/4!,..., a2m = (-1)mα(α-2)(α-4) ... 
(α-2m+2)(α+1)(α+3) ... (α+2m-1)/(2m)!,... .  The second 
linearly independent solution is obtained by setting 
a0 = 0 and a1 = 1.  The coefficients are a2 = a4 = a6 = 

... = 0 and a3 = -(α-1)(α+2)/3!, a5 = -(α-3)(α+4)a3/5.4 = 
(α-1)(α-3)(α+2)(α+4)/5!,... .

26. Using the chain rule we have:
dF(φ)
dφ

 = 
dF[φ(x)]

dx
 
dx

dφ
 = -f′(x)sinφ(x) = - f′(x) 1-x

2
,

d
2
F(φ)

dφ2
 = 

d

dx
[-f′(x) 1-x

2
] 

dx

dφ
 = (1-x

2
)f″(x) - xf′(x), 

which when substituted into the D.E. yields the desired 
result.

28. Since [(1-x
2
)y’]’ = (1-x

2
)y” - 2xy’, the Legendre 

Equation, from Problem 22, can be written as shown.  
Thus, carrying out the steps indicated yields the two 
equations:

Pm[(1-x
2
)Pn

′ ]′ = -n(n+1)PnPm

Pn[(1-x
2
)Pm

′ ]′ = -m(m+1)PnPm.
As long as n ≠ m the second equation can be subtracted 
from the first and the result integrated from -1 to 1 to 
obtain

∫-11 {Pm[(1-x2)Pn′ ]′-Pn[(1-x
2
)Pm

′ ]′}dx = [m(m+1)-n(n+1)]∫-11 PnPmdx
The left side may be integrated by parts to yield

[Pm(1-x
2
)Pn

′  - Pn(1-x
2
)Pm

′ ]-1
1
 + ∫-11 [Pm′  (1-x2)Pn′  - Pn′ (1-x2)Pm′ ]dx, 

which is zero.  Thus ∫-11 Pn(x)Pm(x)dx = 0 for n ≠ m.

Section 5.4, Page 259

1. Since the coefficients of y, y′ and y″ have no common 
factors and since P(x) vanishes only at x = 0 we conclude 
that x = 0 is a singular point.  Writing the D.E. in the 
form y″ + p(x)y′ + q(x)y = 0, we obtain p(x) = (1-x)/x 
and q(x) = 1.  Thus for the singular point we have
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lim
x→0

 x p(x) = lim
x→0

 1-x = 1, lim
x→0

 x2q(x) = 0 and thus x = 0 

is a regular singular point.

5. Writing the D.E. in the form y″ + p(x)y′ + q(x)y = 0, we 
find p(x) = x/(1-x)(1+x) 2 and q(x) = 1/(1-x2)(1+x). 
Therefore x = ±1 are singular points.  Since 
lim
x→1

 (x-1)p(x) and lim
x→1

 (x-1) 2q(x) both exist, we conclude 

x = 1 is a regular singular point.  Finally, since 
lim
x→-1

 (x+1)p(x) does not exist, we find that x = -1 is an 

irregular singular point.

12. Writing the D.E. in the form y + p(x)y′ + q(x)y = 0, we 
see that p(x) = ex/x and q(x) = (3cosx)/x.  Thus x = 0 is 

a singular point.  Since xp(x) = ex is analytic at x = 0 

and x2q(x) = 3xcosx is analytic at x = 0 the point x = 0 
is a regular singular point.

17. Writing the D.E. in the form y″ + p(x)y′ + q(x)y = 0, we 

see that p(x) = 
x

sinx
 and q(x) = 

4

sinx
.  Since lim

x→0
 q(x) 

does not exist, the point x0 = 0 is a singular point and 

since neither lim
x→±nπ

 p(x) nor lim
x→±nπ

 q(x) exist either the 

points x0 = ±nπ are also singular points.  To determine 
whether the singular points are regular or irregular we 
must use Eq.(8) and the result #7 of multiplication and 
division of power series from Section 5.1.  For x0 = 0, 

we have

xp(x) = 
x2

sinx
 = 

x2

x-
x3

6
+...

 = x[1 + 
x2

6
 + ...]

      = x + 
x3

6
 + ...,

which converges about x0 = 0 and thus xp(x) is analytic 

at x0 = 0.  x
2q(x), by similar steps, is also analytic at 

x0 = 0 and thus x0 = 0 is a regular singular point.  For 

x0 = nπ, we have

(x-nπ)p(x) = 
(x-nπ)x
sinx 

= 
(x-nπ)[(x-nπ) + nπ]

±(x-nπ)+
− (x-nπ) 3

6
 ± ...
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           = [(x-nπ)+nπ][±1 ± 
(x-nπ) 2

6
 ± ...], which 

converges about x0 = nπ and thus (x-nπ)p(x) is analytic 

at x= nπ.  Similarly (x+nπ)p(x) and (x±nπ)2q(x) are 
analytic and thus x0 = ±nπ are regular singular points.

19. Substituting y = ∑
n=0

∞

anx
n into the D.E. yields 

2∑
n=2

∞

n(n-1)anx
n-1 + 3∑

n=1

∞

nanx
n-1 + ∑

n=0

∞

anx
n+1 = 0.  The last sum 

becomes ∑
n=2

∞

an-2x
n-1 by replacing n+1 by n-1, the first term 

of the middle sum is 3a1, and thus we have 

3a1 + ∑
n=2

∞

{[2n(n-1)+3n]an + an-2}x
n-1 = 0.  Hence a1 = 0 and 

an = 
-an-2

n(2n+1)
, which is the desired recurrance relation.  

Thus all even coefficients are found in terms of a0 and 

all odd coefficients are zero, thereby yielding only one 
solution of the desired form.

21. If ξ = 1/x then
dy

dx
 = 

dy

dξ
 
dξ
dx

 = -
1

x2
 
dy

dξ
 = -ξ2

dy

dξ
,

d2y

dx2
 = 

d

dξ
(-ξ2

dy

dξ
) 

dξ
dx

 = (-2ξ 
dy

dξ
 - ξ2

d2y

dξ2
) (-

1

x2
) 

    = ξ4
d2y

dξ2
 + 2ξ3

dy

dξ
.

Substituting in the D.E. we have

P(1/ξ)[ξ4
d2y

dξ2
 + 2ξ3

dy

dξ
] + Q(1/ξ)[-ξ2

dy

dξ
] + R(1/ξ)y = 0,

ξ4P(1/ξ)
d2y

dξ2
 + [2ξ3P(1/ξ) - ξ2Q(1/ξ)]

dy

dξ
 + R(1/ξ)y = 0.

The result then follows from the theory of singular 
points at ξ = 0.

23. Since P(x) = x2, Q(x) = x and R(x) = −4 we have
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f(ξ) = [2P(1/ξ)/ξ - Q(1/ξ)/ξ2]/P(1/ξ) = 2/ξ - 1/ξ = 1/ξ 
and g(ξ) = R(1/ξ)/ξ4P(1/ξ) = −4/ξ2.  Thus the point at 
infinity is a singular point.  Since both ξf(ξ) and 
ξ2g(ξ) are analytic at ξ = 0, the point at infinity is a 
regular singular point.

25. Since P(x) = x2, Q(x) = x, and R(x) = x2 - υ2, 
f(ξ) = [2P(1/ξ)/ξ - Q(1/ξ)/ξ2]/P(1/ξ) = 2/ξ - 1/ξ = 1/ξ 
and g(ξ) = R(1/ξ)/ξ4P(1/ξ) = (1/ξ2 - υ2)/ξ2 = 1/ξ4 - υ2/ξ2.  
Thus the point at infinity is a singular point.  Although 

ξf(ξ) = 1 is analytic at ξ = 0, ξ2g(ξ) = 1/ξ2 - υ2 is not, 
so the point at infinity is an irregular singular point.

Section 5.5, Page 265

2. Comparing the D.E. to Eq.(27), we seek solutions of the 

form y = (x+1) r for x + 1 > 0.  Substitution of y into 
the D.E. yields [r(r-1) + 3r + 3/4](x+1) r = 0.  Thus 
r2 + 2r + 3/4 = 0, which yields r = -3/2, -1/2.  The 
general solution of the D.E. is then 

y = c1|x+1|
-1/2 + c2|x+1|

-3/2, x ≠ -1.

4. If y = xr then r(r-1) + 3r + 5 = 0.  So r2 + 2r + 5  = 0 

and r = (-2 ± 4-20 )/2 = -1 ± 2i.  Thus the general 
solution of the D.E. is 

y = c1x
-1cos(2ln|x|) + c2x

-1sin(2ln|x|), x ≠ 0.

9. Again let y = xr to obtain r(r-1) - 5r + 9 = 0, or 

(r-3) 2 = 0. Thus the roots are x = 3,3 and 
y = c1x

3 + c2x
3ln|x|, x ≠ 0, is the solution of the D.E.

13. If y = xr, then F(r) = 2r(r-1) + r -3 = 2r2 - r - 3 = 

(2r-3)(r+1) = 0, so y = c1x
3/2 + c2x

-1 and 

y′ = 
3

2
c1x

1/2 - c2x
-2.  Setting x = 1 in y and y′ we obtain 

c1 + c2 = 1 and 
3

2
c1 - c2 = 4, which yield c1 = 2 and 

c2 = -1.  Hence y = 2x
3/2 - x-1.  As x → 0+ we have 

y → −∞ due to the second term.

16. We have F(r) = r(r-1) + 3r + 5 = r
2
 + 2r + 5 = 0.  Thus 
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r1,r2 = -1 ± 2i and y = x-1[c1cos(2lnx) + c2sin(2lnx)].  

Then y(1) = c1 = 1 and y’ = -x
-2
[cos(2lnx) + c2sin(2lnx)] 

+ x
-1
[-sin(2lnx)2/x + c2cos(2lnx)2/x] so that 

y’(1) = -1-2c2 = -1, or c2 = 0. 

17. Substituting y = xr, we find that r(r-1) + αr + 5/2 = 0 
or r2 + (α-1)r + 5/2 = 0.  Thus 

r1,r2 = [-(α-1) ± (α-1) 2-10] /2.  In order for solutions 

to approach zero as x→0 it is necessary that the real 
parts of r1 and r2 be positive.  Suppose that α > 1, then

(α-1) 2-10  is either imaginary or real and less than
α - 1; hence the real parts of r1 and r2 will be 

negative.  Suppose that α = 1, then r1,r2 = ±i 10  and 

the solutions are oscillatory.  Suppose that α < 1, then 

(α-1) 2-10  is either imaginary or real and less than 
|α-1| = 1 - α; hence the real parts of r1 and r2 will be 
positive.  Thus if α < 1 the solutions of the D.E. will 
approach zero as x→0.

21. In all cases the roots of F(r) = 0 are given by Eq.(5) 
and the forms of the solution are given in Theorem 5.5.1.

21a. The real part of the root must be positive so, from 

Eq.(5), α < 0.  Also β > 0, since the (α-1) 2-4β  term 
must be less than α -1 .

22. Assume that y = v(x)xr1.  Then y′ = v(x)r1x
r1-1 + v′(x)xr1 

and y″ = v(x)r1(r1-1)x
r1-2 + 2v′(x)r1x

r1-1 + v″(x)xr1.  
Substituting in the D.E. and collecting terms yields 

xr1+2 v″ + (α + 2r1)x
r1+1 v′ + [r1(r1-1) + αr1 + β]xr1 v = 0.  

Now we make use of the fact that r1 is a double root of 

f(r) = r(r-1) + αr + β.  This means that f(r1) = 0 and 
f′(r1) = 2r1 - 1 + α  = 0.  Hence the D.E. for v reduces 

to xr1+2 v″ + xr1+1 v′.  Since x > 0 we may divide by xr1+1 
to obtain xv″ + v′ = 0.  Thus v(x) = lnx and a second 
solution is y = xr1lnx.

25. The change of variable x = ez transforms the D.E. into 
u″ - 4u′ + 4u = z, which has the solution 

                                                   Section 5.5                    87    
                                                              



u(z) = c1e
2z + c2ze

2z + (1/4)z + 1/4.  Hence 

y(x) = c1x
2 + c2x

2lnx + (1/4)lnx + 1/4.

31. If x > 0, then |x| = x and |x|r1 = xr1 so we can choose 
c1 = k1.  If x < 0, then |x| = -x and 

|x|r1 = (-x) r1 = (-1) r1xr1 and we can choose c1 = (-1) r1k1, 

or k1 = (-1) -r1c1 = (-1) r1c1.  In both cases we have 
c2 = k2.

Section 5.6, Page 271

2. If the D.E. is put in the standard form y″ + p(x)y + 
q(x)y = 0, then p(x) = x-1 and q(x) = 1 - 1/9x2.  Thus 
x = 0 is a singular point.  Since xp(x) → 1 and 

x2q(x) → -1/9 as x → 0 it follows that x = 0 is a 
regular singular point.  In determining a series solution 
of the D.E. it is more convenient to leave the equation 

in the form given rather than divide by the x2, the 

coefficient of y″.  If we substitute y = ∑
n=0

∞

anx
n+r, we have

∑
n=0

∞

 (n+r)(n+r-1)anx
n+r + ∑

n=0

∞

 (n+r)anx
n+r + (x2 - 

1

9
)∑
n=0

∞

 anx
n+r = 0.

Note that x2 ∑
n=0

∞

 anx
n+r = ∑

n=0

∞

 anx
n+r+2 = ∑

n=2

∞

 an-2x
n+r.  Thus we 

have [r(r-1) + r - 
1

9
]a0x

r + [(r+1)r + (r+1) - 
1

9
]a1x

r+1 + 

∑
n=2

∞

 {[(n+r)(n+r-1) + (n+r) - 
1

9
]an + an-2} x

n+r = 0.  From 

the first term, the indicial equation is r2 - 1/9 = 0 
with roots r1 = 1/3 and r2 = - 1/3.  For either value of 

r it is necessary to take a1 = 0 in order that the 

coefficient of xr+1 be zero.  The recurrence relation is 

[(n+r) 2 - 1/9]an = -an-2.  For r = 1/3 we have

    an = 
-an-2

(n + 
1

3
) 2-(

1

3
) 2
 = - 

an-2

(n + 
2

3
)n

, n = 2,3,4,... .

88                        Section 5.6



Since a1 = 0 it follows from the recurrence relation that 

a3 = a5 = a7 = ... = 0.  For the even coefficients it is 

convenient to let n = 2m, m = 1,2,3,... .  Then 

a2m = -a2m-2/2
2m(m + 

1

3
).  The first few coefficients are 

given by

a2 = 
(-1)a0

22(1 + 
1

3
)1

, a4 = 
(-1)a2

22(2 + 
1

3
)2

 = 
a0

24(1 + 
1

3
)(2 + 

1

3
)2!

a6 = 
(-1)a4

22(3 + 
1

3
)3

 = 
(-1)a0

26(1 + 
1

3
)(2 + 

1

3
)(3 + 

1

3
)3!

, and the 

coefficent of x2m for m = 1, 2,... is

a2m = 
(-1) ma0

22mm!(1 + 
1

3
)(2 + 

1

3
) ... (m + 

1

3
)

.  Thus one 

solution (on setting a0 = 1) is

y1(x) = x
1/3[1 + ∑

m=1

∞

 
(-1) m

m! (1 + 
1

3
)(2 + 

1

3
)...(m + 

1

3
)

(
x

2
) 2m].

Since r2 = - 1/3 ≠ r1 and r1 - r2 = 2/3 is not an integer, 
we can calculate a second series solution corresponding 
to r = - 1/3. The recurrence relation is 
n(n-2/3)an = - an-2, which yields the desired solution 

following the steps just outlined.  Note that a1 = 0, as 

in the first solution, and thus all the odd coefficients 
are zero.

4. Putting the D.E. in standard form y″+p(x)y′+q(x)y = 0, we 
see that p(x) = 1/x and q(x) = - 1/x.  Thus x = 0 is a 

singular point, and since xp(x) → 1 and x2q(x) → 0, as 
x → 0, x = 0 is a regular singular point.  Substituting 

y = ∑
n=0

∞

 anx
n+r in xy″ + y′ - y = 0 and shifting indices we 

obtain

∑
n=-1

∞

 an+1(r+n+1)(r+n)x
n+r + ∑

n=-1

∞

 an+1(r+n+1)x
n+r - ∑

n=0

∞

 anx
n+r = 0,
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[r(r-1) + r]a0x
-1+r + ∑

n=0

∞

 [(r+n+1) 2an+1 - an]x
n+r = 0.  The 

indicial equation is r2 = 0 so r = 0 is a double root. 
Thus we will obtain only one series of the form 

y = xr ∑
n=0

∞

 anx
n.  The recurrence relation is 

(n+1) 2an+1 = an, n = 0,1,2,... .  The coefficients are 

a1 = a0, a2 = a1/2
2 = a0/2

2, a3 = a2/3
2 = a0/3

2.22, 

a4 = a3/4
2 = a0/4

2.32.22,... and an = a0/(n!) 2.  Thus one 

solution (on setting a0 = 1) is y = ∑
n=0

∞

 xn/(n!) 2.

11. If we make the change of variable t = x-1 and let 
y = u(t), then the Legendre equation transforms to 

(t2 + 2t)u″(t) + 2(t+1)u′(t) - α(α+1)u(t) = 0.  Since 
x = 1 is a regular singular point of the original 
equation, we know that t = 0 is a regular singular point 

of the transformed equation.  Substituting u = ∑
n=0

∞

 ant
n+r 

in the transformed equation and shifting indices, we 
obtain

∑
n=0

∞

 (n+r)(n+r-1)ant
n+r + 2 ∑

n=-1

∞

 (n+r+1)(n+r)an+1t
n+r

 + 2 ∑
n=0

∞

 (n+r)ant
n+r + 2 ∑

n=-1

∞

(n+r+1)an+1t
n+r

 - α(α+1) ∑
n=0

∞

 ant
n+r = 0, or

[2r(r-1) + 2r]a0 t
r-1

 + ∑
n=0

∞

 {2(n+r+1) 2an+1

     + [(n+r)(n+r+1) - α(α+1)]an}t
n+r = 0.

The indicial equation is 2r2 = 0 so r = 0 is a double 
root.  Thus there will be only one series solution of the 
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form y = ∑
n=0

∞

 ant
n+r.  The recurrence relation is

2(n+1) 2an+1 = [α(α+1) - n(n+1)]an,n = 0,1,2,... .  We have

a1 = [α(α+1)]a0/2.12, a2 = [α(α+1)][α(α+1) - 1.2]a0/2
2.22.12,

a3 = [α(α+1)][α(α+1) - 1.2][α(α+1) - 2.3]a0/2
3.32.22.12,..., 

and an = [α(α+1)][α(α+1)-1.2]..[α(α+1)-(n-1)n]a0/2
n(n!) 2.  

Reverting to the variable x it follows that one solution 
of the Legendre equation in powers of x-1 is 

y1(x) = ∑
n=0

∞

 [α(α+1)][α(α+1) - 1.2] ... 

[α(α+1) - (n-1)n](x-1) n/2n(n!) 2 where we have set a0 = 1, 
which is equivalent to the answer in the text if a (-1) 
is taken out of each square bracket.

14. The standard form is y″ + p(x)y′ + q(x)y = 0, with 
p(x) = 1/x and q(x) = 1.  Thus x = 0 is a singular point; 

and since xp(x) → 1 and x2q(x) → 0 as x → 0, x = 0 is a 

regular singular point.  Substituting y = ∑
n=0

∞

 anx
n+r into 

x2y″ + xy′ + x2y = 0 and shifting indices appropriately, 
we obtain

∑
n=0

∞

 (n+r)(n+r-1)anx
n+r + ∑

n=0

∞

 (n+r)anx
n+r + ∑

n=2

∞

 an-2x
n+r = 0, 

or

[r(r-1)+r]a0x
r + [(1+r)r+1+r]a1x

r+1

   +∑
n=2

∞

 [(n+r) 2an + an-2]x
n+r = 0.  The indicial equation 

is r2 = 0 so r = 0 is a double root.  It is necessary to 

take a1 = 0 in order that the coefficient of x
r+1 be zero. 

The recurrence relation in n2an = -an-2, n = 2,3,... .  

Since a1 = 0 it follows that a3 = a5 = a7 = ... = 0.  For 

the even coefficients we let n = 2m, m = 1,2,... .  Then 

a2m = -a2m-2/2
2m2 so a2 = -a0/2

2.12, a4 = a0/2
2.22.12.22,... , 

and a2m = (-1) ma0/2
2m(m!) 2. Thus one solution of the Bessel 
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equation of order zero is J0(x) = 1 + ∑
m=1

∞

 (-1) mx2m/22m(m!) 2 

where we have set a0 = 1.  Using the ratio test it can be 

shown that the series converges for all x.  Also note 
that J0(x) → 1 as x → 0.

15. In order to determine the form of the integral for x near 
zero we must study the integrand for x small.  Using the 
above series for J0, we have

1

x[J0(x)] 2
 = 

1

x[1 - x2/2 +...] 2
 = 

1

x[1 - x2 +...]
 =

1

x
[1 + x2 + ...] for x small.  Thus

y2(x) = J0(x)∫ dx

x[J0(x)] 2
 = J0(x)∫[ 1x  + x + ...]dx

      = J0(x)[lnx + 
x2

x
 + ...], and it is clear that y2(x) 

will contain a logarithmic term.

16a. Putting the D.E. in the standard form 
y″ + p(x)y′ + q(x)y = 0 we see that p(x) = 1/x and 
q(x) = (x2-1)/x2. Thus x = 0 is a singular point and 

since xp(x) → 1 and x2q(x) → -1 as x → 0, x = 0 is a 

regular singular point.  Substituting y = ∑
n=0

∞

 anx
n+r into 

x2y″ + xy′ + (x2-1)y = 0, shifting indices appropriately, 
and collecting coefficients of common powers of x we 

obtain [r(r-1) + r - 1]a0x
r + [(1+r)r + 1 + r -1]a1x

r+1

      + ∑
n=2

∞

 {[(n+r) 2 - 1]an + an-2}x
n+r = 0.

The indicial equation is r2-1 = 0 so the roots are r1 = 1 

and r2 = -1.  For either value of r it is necessary to 

take a1 = 0 in order that the coefficient of x
r+1 be zero.  

The recurrence relation is [(n+r) 2 - 1]an = -an-2, 
n = 2,3,4... .  For r = 1 we have an = -an-2/[n(n+2)], 

n = 2,3,4,... .  Since a1 = 0 it follows that a3 = a5 = a7 

= ... = 0.  Let n = 2m.  Then a2m = -a2m-2/2
2m(m+1), m = 
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1,2,..., so a2 = -a0/2
2.1.2, a4 = -a2/2

2.1.2.3 = 

a0/2
2.22.1.2.2.3,..., and a2m = (-1) m a0/2

2mm!(m+1)!.  Thus 

one solution (set a0 = 1/2) of the Bessel equation of 

order one is J1(x) = (x/2) ∑
n=0

∞

 (-1) nx2n/(n+1)!n!22n.  The 

ratio test shows that the series converges for all x.  
Also note that J1(x) → 0 as x → 0.

16b. For r = -1 the recurrence relation is 

[(n-1) 2 - 1]an = -an-2, n = 2,3,... .  Substituting n = 2 

into the relation yields [(2-1) 2 - 1]a2 = 0 a2 = -a0.  
Hence it is impossible to determine a2 and consequently 

impossible to find a series solution of the form 

x-1 ∑
n=0

∞

 bnx
n.

Secton 5.7, Page 278

1. The D.E. has the form P(x)y″ + Q(x)y′ + R(x)y = 0 with 
P(x) = x, Q(x) = 2x, and R(x) = 6ex.  From this we find 

p(x) = Q(x)/P(x) = 2 and q(x) = R(x)/P(x) = 6ex/x and 
thus x = 0 is a singular point.  Since xp(x) = 2x and 

x2q(x) = 6xex are analytic at x = 0 we conclude that 
x = 0 is a regular singular point.  Next, we have 

xp(x) → 0 = p0 and x
2q(x) → 0 = q0 as x → 0 and thus the 

indicial equation is r(r-1) + 0.r + 0 = r2 - r = 0, which 
has the roots r1 = 1 and r2 = 0.

3. The equation has the form P(x)y″ + Q(x)y′ + R(x)y = 0 
with P(x) = x(x-1), Q(x) = 6x2 and R(x) = 3. Since P(x), 
Q(x), and R(x) are polynomials with no common factors and 
P(0) = 0 and P(1) = 0, we conclude that x = 0 and x = 1 
are singular points. The first point, x = 0, can be shown 
to be a regular singular point using steps similar to 
those to shown in Problem 1. For x = 1, we must put the 
D.E. in a form similar to Eq.(1) for this case. To do 
this, divide the D.E. by x and multiply by (x-1) to 

obtain (x-1) 2y″ + 6x(x-1)y + 
3

x
(x-1)y = 0.  Comparing this 

to Eq.(1) we find that (x-1)p(x) = 6x and 

(x-1) 2q(x) = 3(x-1)/x which are both analytic at 
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x = 1 and hence x = 1 is a regular singular point.  These 
last two expressions approach p0 = 6 and q0 = 0 

respectively as x → 1, and thus the indicial equation is 
r(r-1) + 6r + 0 = r(r+5) = 0.

9. For this D.E., p(x) = 
-(1+x)

x2(1-x)
 and q(x) = 

2

x(1-x)
 and thus 

x = 0, -1 are singular points.  Since xp(x) is not 
analytic at x = 0, x = 0 is not a regular singular point.  

Looking at (x-1)p(x) = 
1+x

x2
 and (x-1) 2q(x) = 

2(1-x)

x
 we 

see that x = 1 is a regular singular point and that 
p0 = 2 and q0 = 0.

17a. We have p(x) = 
sinx

x2
 and q(x) = -

cosx

x2
, so that x = 0 is 

a singular point.  Note that xp(x) = (sinx)/x → 1 = p0 

as x → 0 and x2q(x) = -cosx → -1 = q0 as x → 0.  In 

order to assert that x = 0 is a regular singular point we 

must demonstrate that xp(x) and x2q(x), with xp(x) = 1 at 

x = 0 and x2q(x) = -1 at x = 0, have convergent power 
series (are analytic) about x = 0.  We know that cosx is 
analytic so we need only consider (sinx)/x.  Now 

sinx = ∑
n=0

∞

 (-1) nx2n+1/(2n+1)! for - ∞ < x < ∞  so 

(sinx)/x = ∑
n=0

∞

 (-1) nx2n/(2n+1)! and hence is analytic.  

Thus we may conclude that x = 0 is a regular singular 
point.  

17b. From part a) it follows that the indicial equation is 

r(r-1) + r - 1 = r2 - 1 = 0 and the roots are r1 = 1, 

r2 = -1.  

17c. To find the first few terms of the solution corresponding 
to r1 = 1, assume that

y = x(a0 + a1x + a2x
2 + ...) = a0x + a1x

2 + a2x
3 + ... .  

Substituting this series for y in the D.E. and expanding 
sinx and cosx about x = 0 yields

x2(2a1 + 6a2x + 12a3x
2 + 20a4x

3 + ...) + 

(x - x3/3! + x5/5! - ...)(a0 + 2a1x + 3a2x
2 + 4a3x

3 + 5a4x
4+ 
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...) - (1 - x2/2! + x4/4! - ...)(a0x + a1x
2 + a2x

3 + a3x
4 + 

a4x
5 + ...) = 0.  Collecting terms, (2a1 + 2a1 - a1)x

2 +

(6a2 + 3a2 - a0/6 - a2 + a0/2)x
3 + (12a3 + 4a3 - 2a1/6 - a3+ 

a1/2)x
4 + (20a4 + 5a4 - 3a2/6 + a0/120 - a4 + a2/2 - 

a0/24)x
5 + ... = 0.  Simplifying, 3a1x

2 + (8a2 + a0/3)x
3 + 

(15a3 + a1/6)x
4 + (24a4 - a0/30)x

5 + ... = 0. Thus, a1 = 0, 

a2 = -a0/4!, a3 = 0, a4 = a0/6!,... .  Hence 

y1(x) = x - x
3/4! + x5/6! + ... where we have set a0 = 1.  

From Eq. (24) the second solution has the form 

y2(x) = ay1(x)lnx + x−1(1+∑
n=1

∞

cnx
n) 

      = ay1(x)lnx + 
1

x
 + c1 + c2x + c3x

2 + c4x
3 + …, so

y2′  = ay1′ lnx + ay1x
−1 − x−2 + c2 + 2c3x + 3c4x

2 + …, and

y2″ = ay1″ lnx + 2ay1′ x
−1 − ay1x

−2 + 2x−3 + 2c3 + 3c4x + ….  

When these are substituted in the given D.E. the terms 
including lnx will appear as 

a[x2y1″ + (sinx)y1′  − (cosx)y1], which is zero since y1 is 
a solution.  For the remainder of the terms, use 

y1 = x − x3/24 + x5/720 and the cosx and sinx series as 
shown earlier to obtain 

−c1 + (2/3+2a)x + (3c3+c1/2)x
2 + (4/45+c2/3+8c4)x

3 +…= 0.  
These yield c1 = 0, a = −1/3, c3 = 0, and 
c4 = −c2/24 − 1/90.  We may take c2 = 0, since this term 
will simply generate y1(x) over again.  Thus 

y2(x) = −
1

3
y1(x)lnx + x−1 − 

1

90
x3.  If a computer algebra 

system is used, then additional terms in each series may 
be obtained without much additional effort.  The next 
terms, in each case, are shown here:

y1(x) = x − 
x3

24
 + 

x5

720
 − 

43x7

1451520
 + … and

y2(x) = −
1

3
y1(x)lnx + 

1

x
[1− 

x4

90
 + 

41x6

120960
 − …].

18. We first write the D.E. in the standard form as given for 
Theorem 5.7.1 except that we are expanding in powers of 
(x-1) rather than powers of x:  
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(x-1) 2y″ + (x-1)[(x-1)/2lnx]y′ + [(x-1) 2/lnx]y = 0.  since 
ln1 = 0, x = 1 is a singular point.  To show it is a 
regular singular point of this D.E. we must show that 
(x-1)/lnx is analytic at x = 1; it will then follow that 

(x-1) 2/lnx = (x-1)[(x-1)/lnx] is also analytic at 
x = 1.  If we expand lnx in a Taylor series about x = 1 

we find that lnx = (x-1) - 
1

2
(x-1) 2 + 

1

3
(x-1) 3 - ... .  

Thus 

  (x-1)/lnx = [1 - 
1

2
(x-1) + 

1

3
(x-1) 2 -...] -1 = 1 + 

1

2
(x-1)+...  

has a power series expansion about x = 1, and hence is 
analytic.  We can use the above result to obtain the 
indicial equation at x = 1.  We have

(x-1) 2y″ + (x-1)[
1

2
 + 

1

4
(x-1) + ...]y′ + [(x-1) + 

1

2
(x-1) 2 + ...]y = 0.  Thus p0 = 1/2, q0 = 0 and the 

indicial equation is r(r-1) + r/2 = 0.  Hence r = 1/2 and 
r = 0.  In order to find the first three non-zero terms 
in a series solution corresponding to r = 1/2, it is 
better to keep the differential equation in its original 
form and to substitute the above power series for lnx:

[(x-1) - 
1

2
(x-1) 2 + 

1

3
(x-1) 3 - 

1

4
(x-1) 4 + ...]y″ + 

1

2
y′ + y = 0.  

Next we substitute y = a0(x-1) 1/2 + a1(x-1) 3/2 + a2(x-1) 5/2 
+ ... and collect coefficients of like powers of (x-1) 
which are then set equal to zero.  This requires some 
algebra before we find that 6a1/4 + 9a0/8 = 0 and 

5a2 + 5a1/8 - a0/12 = 0.  These equations yield 

a1 = -3a0/4 and a2 = 53a0/480.  With a0 = 1 we obtain the 

solution

y1(x) = (x-1) 1/2 - 
3

4
(x-1) 3/2 + 

53

480
(x-1) 5/2 + ... .  Since 

the radius of convergence of the series for ln x is 1, we 
would expect ρ = 1.

20a. If we write the D.E. in the standard form as given in 

Theorem 5.7.1 we obtain x2y″ + x[α/x]y′ + [β/x]y = 0 where 
xp(x) = α/x and x2q(x) = β/x.  Neither of these terms are 
analytic at x = 0 so x = 0 is an irregular singular 
point.
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20b. Substituting y = xr∑
n=0

∞

 anx
n in x3y″ + αxy′ + βy = 0 gives 

∑
n=0

∞

(n+r)(n+r-1)anx
n+r+1 + α ∑

n=0

∞

(n+r)anx
n+r + β ∑

n=0

∞

 anx
n+r = 0.  

Shifting the index in the first series and collecting 

coefficients of common powers of x we obtain (αr + β)a0x
r 

+ ∑
n=1

∞

 (n+r-1)(n+r-2)an-1 + [α(n+r) + β]anx
n+r = 0.  Thus 

the indicial equation is αr + β = 0 with the single root 
r = - β/α.

20c. From part b, the recurrence relation is

an = 
(n+r-1)(n+r-2)an-1

α(n+r) + β
, n = 1,2,...

   = 

(n -
β
α
 -1)(n -

β
α
 -2)an-1

αn
, for r = -β/α.

For 
β
α
 = -1, then, an = 

n(n-1)an-1

αn
, which is zero for 

n = 1 and thus y(x) = x is the solution.  Similarly for 
β
α
 = 0, an = 

(n-1)(n-2)

αn
 and again for n = 1 a1 = 0 and 

y(x) = 1 is the solution.  Continuing in this fashion, we 
see that the series solution will terminate for β/α any 
positive integer as well as 0 and -1.  For other values 

of β/α, we have 
an

an-1
 = 

(n-
β
2
-1)(n-

β
α
-2)

αn
, which approaches 

∞ as n → ∞ and thus the ratio test yields a zero radius 
of convergence.

21b. Substituting y = ∑
n=0

∞

 anx
n+r in the D.E. in standard form 

gives

∑
n=0

∞

 (n+r)(n+r-1)anx
n+r + α ∑

n=0

∞

 (n+r)anx
n+r+1-s
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                            + β ∑
n=0

∞

 anx
n+r+2-t = 0.

If s = 2 and t = 2 the first term in each of the three 

series is r(r-1)a0x
r, αra0x

r-1, and βa0x
r, respectively.  

Thus we must have αra0 = 0 which requires r = 0.  Hence 
there is at most one solution of the assumed form.

21d. In order for the indicial equation to be quadratic in r 
it is necessary that the first term in the first series 
contribute to the indicial equation.  This means that the 
first term in the second and the third series cannot 
appear before the first term of the first series.  The 

first terms are r(r-1)a0x
r, αra0x

r+1-s, and βa0x
r+2-t, 

respectively.  Thus if s ≤ 1 and t ≤ 2 the quadratic term 
will appear in the indicial equation.

Section 5.8, Page 289

1. It is clear that x = 0 is a singular point.  The D.E. is 
in the standard form given in Theorem 5.7.1 with 

xp(x) = 2 and x2q(x) = x.  Both are analytic at x = 0, so 
x = 0 is a regular singular point.  Substituting 

y = ∑
n=0

∞
 anx

n+r in the D.E., shifting indices 

appropriately, and collecting coefficients of like powers 
of x yields

[r(r-1) + 2r]a0x
r + ∑

n=1

∞
 [(r+n)(r+n+1)an + an-1]x

r+n = 0.  

The indicial equation is F(r) = r(r+1) = 0 with roots 
r1 = 0, r2 = -1.  Treating an as a function of r, we see 

that an(r) = -an-1(r)/F(r+n), n = 1,2,... if F(r+n) ≠ 0.  
Thus a1(r) = -a0/F(r+1), a2(r) = a0/F(r+1)F(r+2),..., and 

an(r) = (-1)na0/F(r+1)F(r+2)...F(r+n), provided F(r+n) ≠ 
0 for n = 1,2,... .  For the case r1 = 0, we have 

an(0) = (-1)na0/F(1)F(2) ... F(n) = (-1)na0/n!(n+1)! so 

one solution is y1(x) = ∑
n=0

∞
 (-1)nxn/n!(n+1)! where we have 

set a0 = 1.

     If we try to use the above recurrence relation for 
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the case r2 = -1 we find that an(-1) = -an-1/n(n-1), 

which is undefined for n = 1.  Thus we must follow the 
procedure described at the end of Section 5.7 to 
calculate a second solution of the form given in Eq.(24).  
Specifically, we use Eqs.(19) and (20) of that section to 
calculate a and cn(r2), where r2 = -1.  Since 

r1 - r2 = 1 = N, we have aN(r) = a1(r) = -1/F(r+1), with 

a0 = 1. Hence 

a = lim
r → -1

 [(r+1)(-1)/F(r+1)] = lim
r → -1

[-(r+1)/(r+1)(r+2)] = -1.

  
Next

cn(-1) = 
d

dr
[(r+1)an(r)]



r=-1

= (-1)n
d

dr
[

(r+1)

F(r+1) ... F(r+n)
]





 r=-1

, 

where we again have set a0 = 1.  Observe that 

(r+1)/F(r+1)... F(r+n)=1/[(r+2)2(r+3)2...(r+n)2(r+n+1)]=1/Gn(r).

Hence cn(-1) = (-1)n+1Gn′ (-1)/Gn
2(-1).  Notice that 

Gn(-1) = 1
2.22.32...(n-1)2n = (n-1)!n! and

Gn′ (-1)/Gn(-1) = 2[1/1 + 1/2 + 1/3 +...+ 1/(n-1)] + 1/n = 

Hn + Hn-1.  Thus cn(-1) = (-1)n+1(Hn + Hn-1)/(n-1)!n!.  
From Eq.(24) of Section 5.7 we obtain the second solution

   y2(x) = - y1(x)lnx + x
-1[1 - ∑

n=1

∞
(-1)n(Hn + Hn-1)x

n/n!(n-1)!].

2. It is clear that x = 0 is a singular point.  The D.E. is 
in the standard form given in Theorem 5.7.1 with 

xp(x) = 3 and x2q(x) = 1+x.  Both are analytic at x = 0, 
so x = 0 is a regular singular point.  Substituting 

y = ∑
n=0

∞
 anx

n+r in the D.E., shifting indices 

appropriately, and collecting coefficients of like powers 
of x yields

[r(r-1) + 3r + 1]a0x
r + ∑

n=1

∞
 {[(r+n)(r+n+2) + 1]an

                               + an-1} x
n+r = 0.

The indicial equation is F(r) = r2 + 2r + 1 = (r+1)2 = 0 
with the double root r1 = r2 = -1.  Treating an as a 

function of r, we see that an(r) = -an-1(r)/F(r+n), 
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n = 1,2,... .  Thus a1(r) = -a0/F(r+1), 

a2(r) = a0/F(r+1)F(r+2),..., and 

an(r) = (-1)na0/F(r+1)F(r+2)... F(r+n). Setting r = -1 we 

find that an(-1)=(-1)na0/(n!)2, n = 1,2,... .  Hence one 

solution is y1(x) = x
-1∑

n=0

∞
(-1)nxn/(n!)2 where we have set 

a0 = 1.  To find a second solution we follow the 

procedure described in Section 5.7 for the case when the 
roots of the indicial equation are equal.  Specifically, 
the second solution will have the form given in Eq.(17) 

of that section.  We must calculate an′ (-1).  If we let 

Gn(r) = F(r+1)...F(r+n) = (r+2)2(r+3)2... (r+n+1)2 and 

take a0 = 1, then an′ (-1) = (-1)n[1/Gn(r)]′ evaluated 

r = -1.  Hence an′ (-1) = (-1)n+1Gn′ (-1)/Gn
2(-1).  But 

Gn(-1) = (n!)2 and Gn′ (-1)/Gn(-1) = 2[1/1 + 1/2 + 1/3 + ... 
+ 1/n] = 2Hn.  Thus a second solution is 

y2(x) = y1(x)lnx - 2x
-1∑

n=1

∞
(-1)nHnx

n/(n!)2.

3. The roots of the indicial equation are r1 and r2 = 0 and 

thus the analysis is similar to that for Problem 2.
  
4. The roots of the indicial equation are r1 = -1 and 

r2 = -2 and thus the analysis is similar to that for 

Problem 1.

5. Since x = 0 is a regular singular point, substitute 

y = ∑
n=0

∞
 anx

n+r in the D.E., shift indices appropriately, 

and collect coefficients of like powers of x to obtain

[r2 - 9/4]a0x
r + [(r+1)2 - 9/4]a1x

r+1

           + ∑
n=2

∞
 {[(r+n)2 - 9/4]an + an-2} x

n+r = 0.

The indicial equation is F(r) = r2 - 9/4 = 0 with roots 
r1 = 3/2, r2 = -3/2.  Treating an as a function of r we 

see that an(r)= -an-2(r)/F(r+n), n = 2,3,.. if F(r+n) ≠ 
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0.  For the case r1 = 3/2, F(r1+1), which is the 

coefficient of xr1+1 is ≠ 0 so we must set a1 = 0.  It 
follows that a3 = a5 = ... = 0. For the even 

coefficients, set n = 2m so 

a2m(3/2) = -a2m-2(3/2)/F(3/2 + 2m) = -a2m-2/2
2
m(m+3/2), 

m = 1,2... .  Thus a2(3/2) = - a0/2
2.1(1 + 3/2), 

a4(3/2) = a0/2
4.2!(1 + 3/2)(2 + 3/2),..., and 

a2m(3/2) = (-1)m/22mm!.(1 + 3/2)...(m + 3/2).  Hence one 
solution is

y1(x) = x
3/2[1 + ∑

m=1

∞
 

(-1)m

m!(1 + 3/2)(2 + 3/2)...(m + 3/2)
(
x

2
)2m], 

where we have set a0 = 1.  For this problem, the roots r1 

and r2 of the indicial equation differ by an integer: 

r1 - r2 = 3/2 - (-3/2) = 3.  Hence we can anticipate that 

there may be difficulty in calculating a second solution 
corresponding to r = r2.  This difficulty will occur in 

calculating a3(r) = - a1(r)/F(r+3) since when   

r = r2 = -3/2 we have F(r2+3) = F(r1) = 0.  However, in 

this problem we are fortunate because a1 = 0 and it will 

not be necessary to use the theory described at the end 
of Section 5.7.  Notice for r = r2 = -3/2 that the 

coefficient of x
r2+1 is [(r2+1)2 - 9/4]a1, which does not 

vanish unless a1 = 0.  Thus the recurrence relation for 

the odd coefficients yields a5 = -a3/F(7/2), 

a7 = -a5/F(11/2) = a3/F(11/2)F(7/2) and so forth.  

Substituting these terms into the assumed form we see 
that a multiple of y1(x) has been obtained and thus we 

may take a3 = 0 without loss of generality.  Hence 

a3 = a5 = a7 = ... = 0.  The even coefficients are given 

by a2m(-3/2) = -a2m-2(-3/2)/F(2m - 3/2), m = 1,2... .  

Thus a2(-3/2) = -a0/2
2.1.(1 - 3/2), 

a4(-3/2) = a0/2
4.2!(1 - 3/2)(2 - 3/2),..., and 

a2m(-3/2) = (-1)ma0/2
2mm!(1 - 3/2)(2 - 3/2) ... (m - 3/2).  

Thus a second solution is

y2(x) = x
-3/2[1 + ∑

m=1

∞
(-1)m

m!(1 - 3/2)(2 - 3/2) ... (m - 3/2)
(
x

2
)2m].
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7. Apply the ratio test:

     lim
m → ∞

|(-1)m+1 x2m+2/22m+2[(m+1)!]2|

|(-1)m x2m/22m(m!)2|
 = |x2| lim

m → ∞

1

22(m+1)2
 = 0

for every x.  Thus the series for J0(x) converges 

absolutely for all x.

12. If ξ = αxβ, then dy/dx = 
1

2
x-1/2f + x1/2f′αβxβ-1 where f′ 

denotes df/dξ.  Find d2y/dx2 in a similar fashion and use 
algebra to show that f satisfies the D.E. 

ξ2f″ + ξf′ + [ξ2 - υ2]f = 0.

13. To compare y″ - xy = 0 with the D.E. of Problem 12, we 
must multiply by x2 to get x2y″ - x3y = 0.  Thus 2β = 3, 
α2β2 = -1 and 1/4 - υ2β2 = 0.  Hence β = 3/2, α = 2i/3 
and υ2 = 1/9 which yields the desired result.

14. First we verify that J0(λjx) satisfies the D.E. We know 
that J0(t) is a solution of the Bessel equation of order 

zero:

     t2J0″(t) + tJ0′ (t) + t
2J0(t) = 0 or

     J0″(t) + t
-1J0′ (t) + J0(t) = 0.

Let t = λjx.  Then

     
d

dx
 J0(λjx) = 

d

dt
 J0(t)

dt

dx
 = λjJ0′ (t)

     
d2

dx2
 J0(λjx) = λj

d

dt
[J0′ (t)]

dt

dx
 = λj

2J0″(t).

Substituting y = J0(λ jx) in the given D.E. and making use 
of these results, we have

      λj
2J0″(t) + (λj/t) λjJ0′ (t) + λj

2J0(t) = 

        λj
2[J0″(t) + t

-1J0′ (t) + J0(t)] = 0.
Thus y = J0(λjx) is a solution of the given D.E.  For the 
second part of the problem we follow the hint.  First,  
rewrite the D.E. by multiplying by x to yield 

xy″ + y′ + λj
2xy = 0, which can be written as 

(xy′)′ = -λj
2xy.  Now let yi(x) = J0(λ ix) and yj(x) = 

J0(λjx) and we have, respectively:  (xyi′ )′ = -λi
2xyi

                            (xyj′ )′ = -λj
2xyj.

Now multiply the first equation by yj, the second by yi, 
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CHAPTER 6

Section 6.1, Page 298

1. The graph of f(t) is shown.
Since the function is
continuous on each interval,
but has a jump discontinuity
at t = 1, f(t) is piecewise  
continuous.

2.  Note that lim
tÆ1+

 (t-1) -1
 = �.

5b. Since t2 is continuous for 0 £ t £ A for any positive A 
and since t2 £ eat for any a > 0 and for t sufficiently 
large, it follows from Theorem 6.1.2 that £{t2} exists 

for s > 0.  £{t2} = Ú0
�
e-stt2dt = lim

M Æ �
 Ú0

M
e-stt2dt  

                                                                         

                  = lim
M Æ �

[
-t2

s
e-st|0

M + 
2

s Ú0
M
e-sttdt]

                  = 
2

s
lim
M Æ �

[-
1

s
te-st|0

M + 
1

s Ú0
M
e-stdt]

                  = 
2

s2
lim
M Æ �

 - 
1

s
e-st|0

M = 
2

s3
.

6. That f(t) = cosat satisfies the hypotheses of Theorem 
6.1.2 can be verified by recalling that |cosat| £ 1 for 

all t.  To determine £{cosat} = Ú0
�
e-st cosatdt we 

must integrate by parts twice to get Ú0
�
e-st cosatdt = 

lim
M Æ �

[(-s-1e-st cos at + as-2 e-st sinat)|0
M 

    - (a2/s2) Ú0
M
e-st cos at dt].  Evaluating the first two 

terms, letting M Æ �, and adding the third term to both 

sides, we obtain [1 + a2/s2]Ú0
�
e-st cos at dt = 1/s, s > 0.  

Division by [1 + a2/s2] and simplification yields the 
desired solution.

9. From the definition for coshbt we have 

£{eatcoshbt} = £{
1

2
[e(a+b)t + e(a-b)t]}.  Using the linearity 
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property of £, Eq.(5), the right side becomes 
1

2
£{e(a+b)t} + 

1

2
£{e(a-b)t} which can be evaluated using the 

result of Example 5 and thus

£{eatcoshbt} = 
1/2

s-(a+b)
 + 

1/2

s-(a-b)

             = 
s-a

(s-a) 2-b2
, for s-a > |b|.

13. We write sinat = (eiat - e-iat)/2i, then the linearity of 
the Laplace transform operator allows us to write

     £{eatsinbt} = (1/2i)£{e(a+ib)t}-(1/2i)£{e(a-ib)t}.  Each of 
these two terms can be evaluated by using the result of 
Example 5, where we now have to require s to be greater 
than the real part of the complex numbers a ± ib in order 
for the integrals to converge.  Complex algebra then 
gives the desired result.  An alternate method of 
evaluation would be to use integration on the integral 

appearing in the definition of £{eatsinbt}, but that 
method requires integration by parts twice.

16. As in Problem 13, 

£{tsinat} = (1/2i)£{teiat} - (1/2i)£{te-iat}.  Using the 
result of Problem 15 we obtain 

£{tsinat} = (1/2i)[(s-b) -2 - (s+b) -2] where b = ia and 

s > 0.  Hence £{tsinat} = 2as/(s2+a2) 2, s > 0.

19. Use the approach shown in Problem 16 with the result of 
Problem 18, for n = 2.  A computer algebra system may 
also be used.

21. The integral Ú0
A
 (t2 + 1) -1dt can be evaluated in terms of 

the arctan function and then Eq. (3) can be used.  To 
illustrate Theorem 6.1.1, however, consider that
1

t2+1
 < 

1

t2
 for t ≥ 1 and, from Example 3, Ú1

�
 t-2dt 

converges and hence Ú1
�
 (t2 + 1) -1dt also converges.  

Ú0
1
 (t2 + 1) -1dt is finite and hence does not affect the 

convergence of Ú0
�
 (t2 + 1) -1dt at infinity.
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25. If we let u = f and dv = e-stdt then F(s) = Ú0
�
 e-stf(t)dt

= lim
M Æ �

 - 
1

s
e-stf(t)|0

M + 
1

s
 Ú0

�
 e-stf¢(t)dt.  Now use an 

argument similar to that given to establish Theorem 6.1.2.

27a. Make a transformation of variables with x = st and 
dx = sdt.  Then use the definition of G(P+1) from 
Problem 26.

27b. From part a, £{tn} = 
1

sn+1
Ú0�e-xxndx = 

n

sn+1
Ú0�e-xxn-1dx

                  = 
n!

sn+1
Ú0�e-xdx, using integration by 

parts successively. Evaluation of the last integral 
yields the desired answer.

27c. From part a, £{t-1/2} = 
1

s Ú0�e-xx-1/2dx. Let x = y2, then 

2dy = x-1/2dx and thus £{t-1/2} = 
2

s Ú0�e-y
2
dy.

27d. Use the definition of £{t1/2} and integrate by parts once 

to get £{t1/2} = (1/2s)£{t-1/2}.  The result follows from 
part c.

Section 6.2, Page 307

Problems 1 through 10 are solved by using partial fractions 
and algebra to manipulate the given function into a form 
matching one of the functions appearing in the middle column 
of Table 6.2.1.

2. We have 
4

(s-1) 3
 = 2

2!

(s-1) 2+1
 and thus the inverse Laplace 

transform is 2t2et, using line 11.

4. We have 
3s

s2-s-6
 = 

3s

(s-3)(s+2)
 = 

9/5

s-3
 + 

6/5

s+2
 using partial 

fractions.  Thus (9/5)e3t + (6/5)e-2t is the inverse 
transform, from line 2.

7. We have 
2s+1

s2-2s+2
 = 

2s+1

(s-1) 2+1
 = 

2(s-1)

(s-1) 2+1
 + 

3

(s-1) 2+1
, where 
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we first used the concept of completing the square (in 
the denominator) and then added and subtracted 
appropriately to put the numerator in the desired form.  
Lines 9 and 10 may now be used to find the desired 
result.

In each of the Problems 11 through 23 it is assumed that the 
I.V.P. has a solution y = f(t) which, with its first two 
derivatives, satisfies the conditions of the Corollary to 
Theorem 6.2.1.

11. Take the Laplace transform of the D.E., using Eq.(1) and 
Eq.(2), to get 

s2Y(s) - sy(0) - y¢(0) - [sY(s) - y(0)] - 6Y(s) = 0.  
Using the I.C. and solving for Y(s) we obtain 

Y(s) = 
s-2

s2-s-6
.  Following the pattern of Eq.(12) we have 

s-2

s2-s-6
 = 

a

s+2
 + 

b

s-3
 = 

a(s-3)+b(s+2)

(s+2)(s-3)
.  Equating like 

powers in the numerators we find a+b = 1 and 
-3a + 2b = -2. Thus a = 4/5 and b = 1/5 and 

Y(s) = 
4+5

s+2
 + 

1/5

s-3
, which yields the desired solution 

using Table 6.2.1.

14. Taking the Laplace transform we have s2Y(s) - sy(0) -y¢(0) - 
4[sY(s)-y(0)] + 4Y(s) = 0.  Using the I.C. and solving for 

Y(s) we find Y(s) = 
s-3

s2-4s+4
.  Since the denominator is a 

perfect square, the partial fraction form is 
s-3

s2-4s+4
 = 

a

(s-2) 2
 + 

b

s-2
.  Solving for a and b, as shown in examples of 

this section or in Problem 11, we find a = -1 and b = 1.  

Thus Y(s) = 
1

s-2
 - 

1

(s-2) 2
, from which we find 

y(t) = e2t - te2t (lines 2 and 11 in Table 6.2.1).

15. Note that Y(s) = 
2s-4

s2-2s-2
=

2s-4

(s-1) 2-3
=

2(s-1)

(s-1) 2-3
-

2

(s-1) 2-3
.  

Three formulas in Table 6.2.1 are now needed: F(s-c) in 
line 14 in conjunction with the ones for coshat and 
sinhat, lines 7 and 8.
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17. The Laplace transform of the D.E. is

s4Y(s) - s3y(0) - s2y¢(0) - sy≤(0) - y¢¢¢(0) - 4[s3Y(s)-s2y(0)
-sy¢(0) - y≤(0)] + 6[s2Y(s) - sy(0) - y¢(0)] - 4[sY(s) - y(0)]
+Y(s) = 0.  Using the I.C. and solving for Y(s) we find 

Y(s) = 
s2 - 4s + 7

s4-4s3+6s2-4s+1
.  The correct partial fraction 

form for this is 
a

(s-1) 4
 + 

b

(s-1) 3
 + 

c

(s-1) 2
 + 

d

s-1
.  

Setting this equal to Y(s) above and equating the 

numerators we have s2-4s+7 = a + b(s-1) + c(s-1) 2 + 

d(s-1) 3.  Solving for a,b,c, and d and use of Table 6.2.1 
yields the desired solution.

20. The Laplace transform of the D.E. is 

s2Y(s) - sy(0) - y¢(0) + w2Y(s) = s/(s2+4).  Applying the 

I.C. and solving for Y(s) we get Y(s) = s/[(s2+4)(s2+w2)] 

+ s/(s2+w2).  Decomposing the first term by partial 
fractions we have 

Y(s) = 
s

(w2-4)(s2+4)
 - 

s

(w2-4)(s2+w2)
 + 

s

s2+w2

     = (w2-4) -1[
(w2-5)s

s2+w2
 + 

s

s2+4
].

Then, using Table 6.1.2, we have 

y = (w2-4) -1[(w2-5)coswt + cos2t].

22. Solving for Y(s) we find Y(s) = 1/[(s-1) 2 + 1] + 

1/(s+1)[(s-1) 2 + 1].  Using partial fractions on the 
second term we obtain 

Y(s) = 1/[(s-1) 2 + 1] + {1/(s+1) - (s-3)/[(s-1) 2 + 1]}/5 
= (1/5){(s+1) -1-(s-1)[(s-1) 2 + 1] -1 + 7[(s-1) 2 + 1] -1}. 
Hence, y = (1/5)(e-t - etcost + 7etsint).

24. Under the standard assumptions, the Lapace transform of 

the left side of the D.E. is s2Y(s) - sy(0) - y¢(0) + 
4Y(s). To transform the right side we must revert to the 
definition of the Laplace trasnform to determine 

Ú0
�
e-stf(t)dt.  Since f(t) is piecewise continuous we are 

able to calculate £{f(t)} by
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Ú0
�
e-stf(t)dt = Ú0

p
e-st dt + lim

M Æ �Úp

M
(e-st)(0)dt

             = Ú0
p
e-stdt = (1 - e-ps)/s.

Hence, the Laplace transform Y(s) of the solution is 

given by Y(s) = s/(s2+4) + (1 - e-ps)/s(s2+4).

27b. The Taylor series for f about t = 0 is 

f(t) = Â
n=0

�
(-1) n t2n/(2n+1)!, which is obtained from 

part(a) by dividing each term of the sine series by t.  
Also, f is continuous for t > 0 since lim

t Æ 0+
(sint)/t = 1.  

Assuming that we can compute the Laplace transform of f 

term by term, we obtain £{f(t)} = £{Â
n=0

�
(-1) nt2n/(2n+1)!}

= Â
n=0

�
 [(-1) n/(2n+1)!L{t2n}

= Â
n=0

�
 [(-1) n(2n)!/(2n+1)!]s-(2n+1)

= Â
n=0

�
 [(-1) n/(2n+1)]s-(2n+1), which converges for s > 1.  

The Taylor series for arctan x is given by 

Â
n=0

�
(-1) n x2n+1/(2n+1), for ΩxΩ < 1. Comparing £{f(t)} with 

the Taylor series for arctanx, we conclude that 
£{f(t)} = arctan(1/s), s > 1.

30. Setting n = 2 in Problem 28b, we have

£{t2sinbt} = 
d2

ds2
[b/(s2+b2)] = 

d

ds
[-2bs/(s2+b2) 2] = 

-2b/(s2+b2) 2 + 8bs2/(s2+b2) 3 = 2b(3s2-b2)/(s2+b2) 3.

32. Using the result of Problem 28a. we have

£{teat} = -
d

ds
(s-a) -1 = (s-a) -2

£{t2eat} = -
d

ds
(s-a) -2 = 2(s-a) -3.

£{t3eat} = -
d

ds
2(s-a) -3 = 3!(s-a) -4.  Continuing in this 
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fashion, or using induction, we obtain the desired 
result.

36a. Taking the Laplace transform of the D.E. we obtain
£{y≤} - £{ty} = £{y≤} + £{-ty} 

          = s2Y(s) - sy(0) - y¢(0) + Y¢(s) = 0.  
Hence, Y satisfies Y¢ + s2Y = s.

38a. From Eq(i) we have Ak = limsÆrk
 (s-rk) 

P(rk)

Q(rk)
, since Q has 

distinct zeros.  Thus Ak = P(rk) limSÆrK
 
s-rk

Q(rk)
 = 

P(rk)

Q’(rk)
, by 

L’Hopital’s Rule.

38b. Since £-1

 Ó

Ï

Ô
ÔÔ
ÔÌ  þ

¸

Ô
ÔÔ
Ôý

1

s-rk
 = erkt, the result follows.

Section 6.3, Page 314

2. From the definition of uc(t) 

we have:
g(t) = (t-3)u2(t) - (t-2)u3(t) 

= 

 Ó

Ï

Ô
Ô
Ô
Ô
Ô
Ì

0 - 0 = 0,          0£t<2

(t-3) - 0 = t-3,    2£t<3.

(t-3) - (t-2) = -1, 3 £t

4. As indicated in the discussion 
following Example 1, the unit
step function can be used to 
translate a given function f, 
with domain t≥0, a distance c 
to the right by the 
multiplication uc(t)f(t-c).

Hence the required graph of 
y = u3(t)f(t-3) for f(t) = sint is shown.

8. In order to use Theorem 6.3.1 we must write f(t) in terms 

of uc(t).  Since t
2- 2t + 2 = (t-1) 2 + 1 (by completing 

the square), we can thus write f(t) = u1(t)g(t-1), where 

g(t) = t2+1.  Now applying Theorem 6.3.1 we have

£{f(t)} = £{u1(t)g(t-1)} = e
-s £{g(t)} = e-s(2/s3 + 1/s).
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14. Use partial fractions to write 

F(s) = e-2s[(s-1) -1 - (s+2) -1]/3.  For ease in calculations 

let us define G(s) = (s-1) -1 and H(s) = (s+2) -1.  Then 

F(s) = [e-2s G(s) - e-2s H(s)]/3.  Using the fact that 

£{eat} = (s-a) -1 and applying Theorem 6.3.1, we have 
F(s) = [e-2s £{et} - e-2s £{e-2t}]/3.  Thus 

F(s) = [£{u2(t)e
(t-2)} - £{u2(t)e

-2(t-2)}]/3.  Using the 

linearity of the Laplace transform, we have 

£{f(t)} = £{u2(t)[e
t-2 - e-2(t-2)]/3}.  Hence, 

f(t) = [u2(t)(e
t-2 - e-2(t-2))]/3.  An alternate method is 

to complete the square in the denominator:

F(s) = 
e-2s

(s+1/2) 2- 9/4
.  This gives

f(t) = (2/3)u2(t)e
-(t-2)/2 sinh

3

2
(t-2), which can be shown 

to be the same as that found above.

21. By completing the square in the denominator of F we can 

write F(s) = (2s+1)/[(2s+1) 2 + 4].  This has the form 

G(2s+1) where G(u) = u/(u2+4).  We must find 

£-1{G(2s+1)}.  Applying the results of Problem 19(c), we 

have £-1{F(s)} = 
1

2
e-t/2 cos(

2t

2
).

22. If the approach of Problem 21 is used we find 

f(t) = (1/3)e2t/3 sinh(t/3), which is equivalent to the 
given answer using the definition of sinht.

27. Assuming that term-by-term integration of the infinite 

series is permissible and recalling that £{uc(t)} = e
-cs/s 

for s > 0, we have £{f(t)} = (1/s) + Â
k=1

�
(-1) k £{uk(t)}

= (1/s) + Â
k=1

�
(-1) k e-ks/s = [Â

k=0

�
(-e-s) k]/s.  We recognize 

the last infinite series as the geometric series, Â
k=0

�
ark, 

with a = 1 and r = -e-s.  This series converges to  

[1/(1+e-s)] if |r| < 1.  Hence,  

£{f(t)} = (1/s)[1/(1+e-s)], s > 0.
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28. Using the definition of the Laplace transform we have 

F(s) = £{f(t)} = Ú0
�
e-stf(t)dt.  Since f is periodic with 

period T, we have f(t+T) = f(t).  This suggests that we 

rewrite the improper integral as Ú0
�
e-stf(t)dt = 

Â
n=0

�
 ÚnT

(n+1)T
e-stf(t)dt.  The periodicity of f also suggests 

that we make the change of variable t = r + nT.  Hence, 

F(s) = Â
n=0

�
 Úo

T
e-s(r+nT)f(r+nT)dr = Â

n=0

�
 (e

-sT) n
 Ú0

T
e-rsf(r)dr, 

where we have used the fact that 
f(r+nT) = f(r+(n-1)T) = ... = f(r+T) = f(r) from the 
definition that f is periodic.  We recognize this last 

series as the geometric series, Â
n=0

�
 aun, with 

a = Ú0
T
e-rsf(r)dr and u = e-sT.  The geometric series 

converges to a/(1-u) for |u| < 1 and consequently we 
obtain

F(s) = (1 - e-sT) -1 Úo
T
e-rsf(r)dr, s > 0.

30. The function f is periodic with period 2. The result of 

Problem 28 gives us £{f(t)} = Ú0
2
e-stf(t)dt/(1-e-2s).  

Calculating the integral we have 

Ú0
2
e-stf(t)dt = Ú0

1
e-stdt - Ú1

2
e-stdt 

          = (1-e-s)/s + (e-2s-e-s)/s 

          = (e-2s-2e-s+1)/s 

          = (1-e-s) 2/s.  Since the denominator of 
£{f(t)}, 1 - e-2s, may be written as (1-e-s)(1+e-s) we 
obtain the desired answer.

Section 6.4, Page 321

1. f(t) can be written in the form f(t) = 1 - up/2(t) and 

thus the Laplace transforms of the D.E. is 

(s2+1)Y(s) - sy(0) - y¢(0) = (1/s) - e-ps/2/s.  Introducing 
the I.C. and solving for Y(s), we obtain 

Y(s) = (s2+1) -1 + [s(s2+1)] -1 - e-ps/2/s(s2+1).  Using 
partial fractions on the second and third terms we find 
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Y(s)=(1/s) + (s2+1) -1 - s/(s2+1) - e-ps/2/s + e-ps/2s/(s2+1).  
The inverse transform of the first three terms can be 
obtained directly from Table 6.2.1.  Using Theorem 6.3.1 
to find the inverse transform of the last two terms we 

have £-1{e-ps/2/s} = up/2(t)g(t - p/2) where 

g(t) = £-1{1/s} = 1 and 

£-1{e-ps/2s/(s2+1)} = up/2(t)h(t - p/2) where 

h(t) = £-1{s/(s2+1)} = cost.  Hence, 
y = 1 + sint - cost + up/2(t)[cos(t - p/2) - 1] 
  = 1 + sint - cost - up/2(t)[1 - sint].  The graph of the 

forcing function is a unit pulse for 0 £ t < p/2 and 0 
thereafter.  The graph of the solution will be composed 
of two segments.  The first, for 0 £ t < p/2, is a 
sinusoid oscillating about 1, which represents the system 
response to a unit forcing function and the given initial 
conditions.  For t ≥ p/2, the forcing function, f(t), is 
zero and the “initial” conditions are 
y(p/2) = lim

tÆp-/2
 1 + sint - cost = 2 and 

y¢(p/2) = lim
tÆp-/2

 cost + sint = 1.  In this case the system 

response is y(t) = 2sint - cost, which is a sinusoid 
oscillating about zero.

3. According to Theorem 6.3.1, 

£{u2p(t)sin(t-2p)} = e-2ps £{sint} = e-2ps/(s2+1).  

Transforming the D.E., we have 
(s2+4)Y(s) - sy(0) - y¢(0) = 1/(s2+1) - e-2ps/(s2+1).  
Introducing the I.C. and solving for Y(s), we obtain 

Y(s) = (1-e-2ps)/(s2+1)(s2+4).  We apply partial fractions 
to write 

Y(s) = [s2+1) -1 - (s2+4) -1 - e-2ps(s2+1) -1 + e-2ps(s2+4) -1]/3.  
We compute the inverse transform of the first two terms 
directly from Table 6.2.1 after noting that 

(s2+4) -1 = (1/2)[2/(s2+4)].  We apply Theorem 6.3.1 to the 
last two terms to obtain the solution, 

  y =(1/3){sint-(1/2)sin2t-u2p(t)[sin(t-2p)-(1/2)sin2(t-2p)]}.  
This may be simplified, using trigonometric identities, 
to y = [(2sint - sin2t)(1-u2p(t))]/6.  Note that the 

forcing function is sint - sin(t-2p) = 0 for t ≥ 2p.  The 
solution is y(t) = 2sint - sin2t for 0 £ t < 2p.  Thus 
y(2p -) = 0 and y¢(2p -) = 2cos2p - 2cos4p = 0.  Hence the 
“initial” value problem for t ≥ 2p is y≤ + 4y = 0, 
y(2p) = 0, y¢(2p) = 0, which has the trivial solution 
y ∫ 0.
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8. Taking the Laplace transform, applying the I.C. and using 

Theorem 6.3.1 we have (s2+s+5/4)Y(s) = (1-e-ps/2)/s2.  Thus 

Y(s) = 
1-e-s/2

s2(s2+s+5/4)

      = (1-e-ps/2) Ó
ÏÔÔÌ
4/5

s2
 - 

16/25

s
 + 

(16/25)s-4/25

(s+1/2) 2+1
 þ
Ô̧Ôý 

     = (1-e-ps/2)H(s), where we have used partial 
fractions and completed the square in the denominator of 
the last term.  Since the numerator of the last term of H 

can be written as 
16

25
[(s+1/2) - 3/4], we see that 

£-1{H(s)} = (4/25)(5t -  4 + 4e-t/2cost - 3e-t/2sint), 
which yields the desired solution.  The graph of the 
forcing function is a ramp (f(t) = t) for 0 £ t < p/2 and 
a constant (f(t) = p/2) for t ≥ p/2.  The solution will 
be a damped sinusoid oscillating about the “ramp” 
(20t-16)/25 for 0 £ t < p/2 and oscillating about 2p/5 
for t ≥ p/2.

10. Note that g(t) = sint - up(t)sint = sint + up(t)sin(t-p).  
Proceeding as in Problem 8 we find 

Y(s) = (1+e-ps)
1

(s2+1)(s2+s+5/4)
.  The correct partial 

fraction expansion of the quotient is 
as+b

s2+1
 + 

cs+d

s2+s+5/4
, 

where 
a+c = 0, a+b+d = 0, (5/4)a+b+c = 0 and (5/4)b+d = 1 by 
equating coefficients.  Solving for the constants yields 
the desired solution.

16b. Taking the Laplace transform of the D.E. we obtain 

U(s2+s/4+1) = k(e-3s/2-e-5s/2)/s, since the I.C. are zero. 
Solving for U and using partial fractions yields

U(s) = k(e-3s/2-e-5s/2)(
1

s
-

s+1/4

s2+s/4+1
).  Thus, if 

H(s) = (
1

s
-

s+1/4

s2+s/4+1
), then 

h(t) = 1 - e-t/8(cos
3 7

8
t+

7

21
sin

3 7

8
t) and 

u(t) = ku3/2(t)h(t-3/2) - ku5/2(t)h(t-5/2).

16c. In all cases the plot will be zero for 0 £ t < 3/2.  For 
3/2 £ t < 5/2 the plot will be the system response 
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(damped sinusoid) to a step input of magnitude k.  For 
t ≥ 5/2, the plot will be the system response to the 
I.C. u(5-/2), u¢(5-/2) with 
no forcing function. The
graph shown is for k = 2.
Varying k will just affect
the amplitude.  Note that 
the amplitude never 
reaches 2, which would be 
the steady state response 
for the step input 2u3/2(t).  

Note also that the solution 
and its derivative are 
continuous at t = 5/2.

19a. The graph on 0 £ t < 6p will depend on how large n is.  
For instance, if n = 2 then

f(t) = 
 Ó

Ï
ÔÔ
Ô
Ì
 1   0 £ t < p, 2p £ t < 6p

-1  -p £ t < 2p
.  For

n ≥ 6, f(t) = 
 Ó

Ï
ÔÔ
Ô
Ì
 1  0 £ t < p, 2p £ t < 3p, 4p £ t < 5p

-1  p £ t < 2p, 3p £ t <4p, 5p  t < 6p
.

19b. Taking the Laplace transform of the D.E. and using the I.C. we 

have Y(s) = 
1

s(s
2
+1)

[1 + 2 Â
k=1

�

(-1) ke-pks], since 

£{upk(t)} = 
e-pks

s
.  Since 

1

s(s
2
+1)

 = 
1

s
 - 

s

s
2
+1

, we then obtain

y(t) = 1 - cost + 2Â
k=1

�

(-1) -kupk(t)[1 - cos(t-pk)], using line 

13 in Table 6.2.1.

19d. Since cos(t-pk) = (-1) kcost, the solution in part b can 
be written as

y(t) = 1 - cost + 2 Â
k=1

�

(-1) k upk(t) - 2 Â
k=1

�

(-1) 2k cost

    = 1 - cost - 2ncost + 2 Â
k=1

�

 (-1) kupk(t) which diverges for nÆ�.
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20. In this case

Y(s) = 
1

s(s
2
+.1s+1)

 [1 + 2 Â
n=1

�

(-1) ke-pks].  Using partial 

fractions we have

H(s) = 
1

s(s
2
+.1s+1)

 = 
1

s
 - 

s+.1

s
2
+.1s+1

                    = 
1

s
 - 

s+.05

(s+.05) 2+b2
 - 

.05

(s+.05) 2+b2
, where 

b
2
 = [1-(.05) 2] = .9975.  Now let 

h(t) = £-1{H(s)} = 1 - e
-.05t

cosbt - 
.05

b
e
-.05t

sinbt.  Hence, 

y(t) = h(t) + 2 Â
n=1

�

(-1) kupk(t) h(t-pk), and thus, for t > n the 

solution will be approximated by 

±1 - Ae-.05(t-np)
 cos[b(t-np) + d], and therefore converges as 

tÆ�.

20a. y(t) for n = 30                   y(t) for n = 31

20b. From the graph of part a, A @ 12.5 and the frequency is 2p.

20c. From the graph
(or analytically)
A = 10 and the
frequency is 2p.
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Section 6.5, Page 328

1. Proceeding as in Example 1, we take the Laplace transform 
of the D.E. and apply the I.C.: 

(s2 + 2s + 2)Y(s) = s + 2 + e-ps. Thus, 

Y(s) = (s+2)/[(s+1) 2 + 1] + e-ps/[(s+1) 2 + 1].  We write 
the first term as (s+1)/[(s+1) 2 + 1] + 1/[(s+1) 2 + 1].  
Applying Theorem 6.3.1 and using Table 6.2.1, we obtain 

the solution, y = e-tcost + e-tsint - up(t)e-(t-p)
sint.  

Note that sin(t-p) = -sint.

3. Taking the Laplace transform and using the I.C. we have

(s2+ 3s+2)Y(s) = 
1

2
 + e-5s + 

e-10s

s
.  Thus 

Y(s) = 
1/2

s2+3s+2
 + 

e-5s

s2+3s+2
 + e-10s(

1/2

s
+
1/2

s+2
-

1

s+1
) and hence

y(t) = 
1

2
h(t) + u5(t)h(t-5) + u10(t)[

1

2
+
1

2
e-2(t-10)-e-(t-10)] 

where h(t) = e-t - e-2t.

5. The Laplace transform of the D.E. is 

(s2+2s+3)Y(s) = 
1

s2+1
 + e-3ps, so 

Y(s) = 
1

(s2+1)(s2+2s+3)
 + e-3ps[

1

s2+2s+3
].  Using partial 

fractions or a computer algebra system we obtain

y(t) = 
1

4
sint - 

1

4
cost + 

1

4
e-tcos 2 t + 

1

2
u3p(t)h(t-3p), 

where h(t) = e-tsin 2 t.

7. Taking the Laplace transform of the D.E. yields 

(s2+1)Y(s) - y¢(0) = Ú0
�
e-std(t-2p)costdt.  Since 

d(t-2p) = 0 for t π 2p the integral on the right is equal 

to Ú-�

�
e-std(t-2p) costdt which equals e-2pscos2p from 

Eq.(16).  Substituting for y¢(0) and solving for Y(s) 

gives Y(s) = 
1

s2+1
 + 

e-2ps

s2+1
 and hence

y(t) = sint + u2p(t)sin(t-2p) = 
 Ó

Ï
ÔÔ
Ô
Ì
sint 0 £ t < 2p

2sint 2p £ t
10. See the solution for Problem 7.
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13a. From Eq. (22) y(t) will complete one cycle when 

15 (t-5)/4 = 2p or T = t - 5 = 8p/ 15 , which is 
consistent with the plot in Fig. 6.5.3.  Since an impulse 
causes a discontinuity in the first derivative, we need 
to find the value of y¢ at t = 5 and t = 5 + T.  From Eq. 
(22) we have, for t ≥ 5, 

y¢ = e-(t-5)/4[
-1

2 15
sin

15

4
(t-5) + 

1

2
cos

15

4
(t-5)].  Thus 

y¢(5) = 
1

2
 and y¢(5+T) = 

1

2
e-T/4.  Since the original 

impulse, d(t-5), caused a discontinuity in y¢ of 1/2, we 
must choose the impulse at t = 5 + T to be -e-T/4, which 
is equal and opposite to y¢ at 5 + T.

13b. Now consider 2y≤ + y¢ + 2y = d(t-5) + kd(t-5-T) with 
y(0) = 0, y¢(0) = 0.  Using the results of Example 1 we 
have

y(t) = 
2

15
u5(t)e

-(t-5)/4sin
15

4
(t-5) 

               + 
2k

15
u5+T(t)e

-(t-5-T)/4sin
15

4
(t-5-T)

= 
2

15
e-(t-5)/4[u5(t)sin

15

4
(t-5)+ku5+T(t)e

T/4sin
15

4
(t-5-T)]

= 
2

15
e-(t-5)/4[u5(t)+keT/4u5+T(t)]sin

15

4
(t-5).  If 

y(t) ∫ 0 for t ≥ 5 + T, then 1 + keT/4 = 0, or 
k = -e-T/4, as found in part (a).

17b. We have (s2+1)Y(s) = Â
k=1

20

  e-kps so that Y(s) = Â
k=1

20

 
e-ks

s2+1
 

and hence y(t) = Â
k=1

20

 ukp(t)sin(t-kp)

   = up(t)sin(t-p) + u2p(t)sin(t-2p) + º + u10psin(t-10p). 
For 0 £ t < p, y(t) ∫ 0.  For p £ t < 2p, y(t) = sin(t-p) 
= -sint.  For 2p £ t < 3p,
y(t) = sin(t-p) + sin(t-2p) = -sint + sint ∫ 0.  Due to 
the periodicity of sint, the solution will exhibit this 
behavior in alternate intervals for 0 £ t < 20p.  After 
t = 20p the solution remains at zero.

21b. Taking the transform and using the I.C. we have 
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(s
2
+1)Y(s) = Â

k=1

15

  e-(2k-1)p so that Y(s) = Â
k=1

15

  
e-(2k-1)p

s
2
+1

.  

Thus y(t) = Â
k=1

15

  u(2k-1)p(t)sin[t-(2k-1)p]

          = sin(t-p) + sin(t-3p) ... + sin(t-29p)
          = -sint - sint ... -sint
          = -15sint.

25b. Substituting for f(t) we have 

y = Ú0
t
e-(t-t) d(t-p)sin(t-t)dt.  We know that the 

integration variable is always less than t (the upper 
limit) and thus for t < p we have t < p and thus 
d(t-p) = 0.  Hence y = 0 for t < p.  For t > p utilize 
Eq.(16).

Section 6.6, Page 335

1c. Using the format of Eqs.(2) and (3) we have

f*(g*h) = Ú0
t
f(t-t)(g*h)(t)dt 

        = Ú0
t
f(t-t)[Ú0

t
g(t-h)h(h)dh]dt

        = Ú0
t
[Úh

t
f(t-t)g(t-h)dt]h(h)(dh).

The last double integral is obtained from the previous 
line by interchanging the order of the h and t 
integrations.  Making the change of variable w = t - h 
on the inside integral yields

f*(g*h) = Ú0t [Ú0t-h
 f(t-h-w)g(w)dw]h(h)dh

        = Ú0t (f*g)(t-h)h(h)dh = (f*g)*h.

4. It is possible to determine f(t) explicitly by using 
integration by parts and then find its transform F(s).  
However, it is much more convenient to apply Theorem 

6.6.1.  Let us define g(t) = t2 and h(t) = cos2t.  Then, 

f(t) = Ú0
t
g(t-t)h(t)dt.  Using Table 6.2.1, we have 

G(s) = £{g(t)} = 2/s3 and H(s) = £{h(t)} = s/(s2+4).  
Hence, by Theorem 6.6.1, £{f(t)} = F(s) = G(s)H(s) = 

2/s2(s2+4).
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8. As was done in Example 1 think of F(s) as the product of 

s-4 and (s2+1) -1 which, according to Table 6.2.1, are the 
transforms of t3/6 and sint, respectively.  Hence, by 
Theorem 6.6.1, the inverse transform of F(s) is 

f(t) = (1/6)Ú0
t
(t-t) 3sintdt.

13. We take the Laplace transform of the D.E. and apply the 

I.C.: (s2 + 2s + 2)Y(s) = a/(s2 + a2).  Solving for Y(s), 

we have Y(s) = [a/(s2+a2)][(s+1) 2 + 1] -1, where the second 
factor has been written in a convenient way by completing 
the square.  Thus Y(s) is seen to be the product of the 

transforms of sinat and e-tsint respectively.  Hence, 

according to Theorem 6.6.1,  y = Ú0
t
e-(t-t)sin(t-t)sinatdt.

15. Proceeding as in Problem 13 we obtain

Y(s) = 
s

s2+s+5/4
 + 

1-e-s

s(s2+s+5/4)
 

     = 
(s+1/2) - 1/2

(s+1/2) 2+1
 + 

1-e-s

s
 . 

1

(s+1/2) 2+1
,

where the first term is obtained by completing the square 
in the denominator and the second term is written as the 
product of two terms whose inverse transforms are known, 
so that Theorem 6.6.1 can be used.  Note that 

£-1{(1-e-s)/s} = 1 - up(t). Also note that a different 

form of the same solution would be obtained by writing 

the second term as (1-e-ps)(
a

s
 + 

bs + c

(s+1/2) 2+1
) and solving 

for a, b and c.  In this case £-1{1-e-s} = d(t) - d(t-p) 
from Section 6.5.

17. Taking the Laplace transform, using the I.C. and solving, 

we have Y(s) = (s+3)/(s+1)(s+2) + s/(s2+a2)(s+1)(s+2).  
As in Problem 15, there are several correct ways the 
second term can be treated in order to use the 
convolution integral.  In order to obtain the desired 
answer, write the second term as
s

s2+a2
(

a

s+1
 + 

b

s+2
) and solve for a and b.

20.  To find F(s) you must recognize the integral that 
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appears in the equation as a convolution integral.  
Taking the transform of both sides then yields 

F(s) + K(s)F(s) = F(s), or F(s) = 
F(s)

1+K(s)
.

 

          

                 

120                                                Section 6.6                 

                                                 



CHAPTER 7

Section 7.1, Page 344

2. As in Example 1, let x1 = u and x2 = u′, then x1′  = x2 and 
x2′  = u″ = 3sint − .5x2 − 2x1.

4. In this case let x1 = u, x2 = u′, x3 = u″, and x4 = u″′.

5. Let x1 = u and x2 = u′; then x1′  = x2 is the first of the 
desired pair of equations.  The second equation is 

obtained by substituting u″ = x2′ , u′ = x2, and u = x1 in 

the given D.E.  The I.C. become x1(0) = u0, x2(0) = u0′ .

8. Follow the steps outlined in Problem 7.  Solve the first 

D.E. for x2 to obtain x2 = 
3

2
x1 - 

1

2
x1′ .  Substitute this 

into the second D.E. to obtain x1″ - x1′  - 2x1 = 0, which 

has the solution x1 = c1e
2t + c2e

-t.  Differentiating this 

and substituting into the above equation for x2 yields x2 

= 
1

2
c1e

2t + 2c2e
-t.  The I.C. then give 

c1 + c2 = 3 and 
1

2
c1 + 2c2 = 

1

2
,  which yield 

c1 = 
11

3
, c2 = -

2

3
.  Thus x1 = 

11

3
e2t - 

2

3
e-t and

x2 = 
11

6
e2t - 

4

3
e-t.  Note that for large t, the second 

term in each solution vanishes and we have x1 ≅  
11

3
e2t and 

x2 ≅  
11

6
e2t, so that x1 ≅  2x2. This says that the graph 

will be asymptotic to the line x1 = 2x2 for large t.

9. Solving the first D.E. for x2 gives x2 = 
4

3
x1′  - 

5

3
x1, 

which substituted into the second D.E. yields 

x1″ - 2.5x1′  + x1 = 0. Thus x1 = c1e
t/2 + c2e

2t and 

x2 = -c1e
t/2 + c2e

2t. Using the I.C. yields c1 = -3/2 and 

c2 = -1/3.  For large t, x1 ≅  (-1/2)e2t and x2 ≅  (-1/2)e2t 
and thus the graph is asymptotic to x1 = x2 in the third 

quadrant. The graph is shown on the right.
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12.                           9.

12. Solving the first D.E. for x2 gives x2 = 
1

2
x1′  + 

1

4
x1 and 

  substitution into the second D.E. gives 

x1″ + x1′  + 
17

4
x1 = 0. Thus x1 = e

-t/2(c1cos2t + c2sin2t) and 

x2 = e
-t/2(c2cos2t-c1sin2t).  The I.C. yields c1 = -2 and 

c2 = 2.

14. If a12 ≠ 0, then solve the first equation for x2, 

obtaining x2 = [x1′  - a11x1 - g1(t)]/a12.  Upon substituting 
this expression into the second equation, we have a 
second order linear O.D.E. for x1.  One I.C. is 

x1(0) = x1
0.  The second I.C. is 

x2(0) = [x1′ (0) - a11x1(0) - g1(0)]/a12 = x2
0.  Solving for 

x1′ (0) gives x1′ (0) = a12x2
0 + a11x1

0 + g1(0).  These results 

hold when a11, ...,a22 are functions of t as long as the 

derivatives exist and a12(t) and a21(t) are not both zero 

on the interval.  The initial conditions will involve 
a11(0) and a12(0).

19. Let us number the nodes 1,2, and 3 clockwise beginning 
with the top right node in Figure 7.1.4.  Also let I1, 

I2, I3, and I4 denote the currents through the resistor 

R = 1, the inductor L = 1, the capacitor C = 
1

2
, and the 

resistor R = 2, respectively.  Let V1, V2, V3, and V4 be 

the corresponding voltage drops.  Kirchhoff’s first law 
applied to nodes 1 and 2, respectively, gives 
(i) I1 - I2 = 0 and (ii) I2 - I3 - I4 = 0.  Kirchhoff’s 

second law applied to each loop gives 
(iii) V1 + V2 + V3 = 0 and (iv) V3 - V4 = 0.  The current-
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voltage relation through each circuit element yields four 

more equations:  (v) V1 = I1, (vi) I2′  = v2, 

(vii) (1/2)V3
′  = I3 and (viii) V4 = 2I4.  We thus have a 

system of eight equations in eight unknowns, and we wish 
to eliminate all of the variables except I2 and V3 from 

this system of equations.  For example, we can use 
Eqs.(i) and (iv) to eliminate I1 and V4 in Eqs.(v) and 

(viii).  Then use the new Eqs.(v) and (viii) to eliminate 
V1 and I4 in Eqs.(ii) and (iii).  Finally, use the new 

Eqs. (ii) and (iii) in Eqs.(vi) and (vii) to obtain

I2′  = - I2 - V3, V3′  = 2I2 - V3.  These equations are 
identical (when subscripts on the remaining variables are 
dropped) to the equations given in the text.

21a. Note that the amount of water in each tank remains 
constant.  Thus Q1(t)/30 and Q2(t)/20 represent oz./gal 

of salt in each tank.  As in Example 1 of Section 2.3, we 
assume the mixture in each tank is well stirred.  Then, 
for the first tank we have
dQ1

dt
 = 1.5 − 3

Q1(t)

30
 + 1.5

Q2(t)

20
, where the first term on 

the right represents the amount of salt per minute 
entering the mixture from an external source, the second 
term represents the loss of salt per minute going to Tank 
2 and the third term represents the gain of salt per 
minute entering from Tank 2.  Similarly, we have
dQ2

dt
 = 3 + 3

Q1(t)

30
 − 4

Q2(t)

20
 for Tank 2.

21b. Solve the second equation for Q1(t) to obtain Q1(t) = 
10Q2′  +2Q2 − 30.  Substitution into the first equation 

then yields 10Q2″ + 3Q2′  + 
1

8
Q2 = 

9

2
.  The steady state 

solution for this is Q2
E = 8(9/2) = 36.  Substituting this 

value into the equation for Q1 yields Q1
E = 72 − 30 = 42.

21c. Substitute Q1 = x1 + 42 and Q2 = x2 + 36 into the 
equations found in part a.
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Section 7.2, Page 355

1a. 2A = 

 






 






2 -4  0

6  4 -2

-4 2  6

 so that

2A + B = 

 






 






2+4 -4-2  0+3

6-1  4+5 -2+0

-4+6 2+1  6+2

 = 

 






 






6 -6  3

5  9 -2

2  3  8

1c. Using Eq.(9) and following Example 1 we have

AB = 

 






 






4 + 2 + 0    -2 − 10 + 0    3 + 0 + 0

12 - 2 - 6    -6 + 10 - 1    9 + 0 - 2 

-8 - 1 + 18    4 + 5 + 3    -6 + 0 + 6 

,

which yields the correct answer.

6.  AB = 

 






 






6   -5  -7

1    9   1

-1  -2   8

 and BC = 

 






 






5  3  3

-1 7  3

2  3 -2

 so that 

(AB)C = A(BC) = 

 









 









 7 -11  -3

11  20  17

-4   3 -12

.

In problems 10 through 19 the method of row reduction, as 
illustrated in Example 2, can be used to find the inverse 
matrix or else to show that none exists. We start with the 
original matrix augmented by the indentity matrix, describe a 
suitable sequence of elementary row operations, and show the 
result of applying these operations.

10. Start with the given matrix augmented by the identity 

matrix. 

 






 






1    4 . 1    0

.

-2    3 . 0    1 

                    
Add 2 times the first row to the second row.

             

 









 









1    4 . 1    0

.

0    11 . 2    1

Multiply the second row by (1/11).
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 






 






1 4 . 1 0

.

0 1 . 2/11 1/11

Add (-4) times the second row to the first row.

        

 






 






1 0 . 3/11 -4/11

.

0 1 . 2/11 1/11

Since we have performed the same operation on the given 
matrix and the identity matrix, the 2 x 2 matric 
appearing on the right side of this augmented matrix is 
the desired inverse matrix.  The answer can be checked by 
multiplying it by the given matrix; the result should be 
the indentity matrix.

12. The augmented matrix in this case is:

        

 














 














1    2    3 . 1    0    0

.

2    4    5 . 0    1    0

.

3    5    6 . 0    0    1

Add (-2) times the first row to the second row and (-3) 
times the first row to the third row.

        

 














 














1    2    3 . 1    0    0

.

 0    0   -1 .-2    1    0 

.

0   -1   -3 .-3    0    1

Multiply the second and third rows by (-1) and 
interchange them.

        

 














 














1    2    3 . 1    0    0

.

0    1    3 . 3    0   -1

.

0    0    1 . 2   -1    0

Add (-3) times the third row to the first and second 
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rows.   

 














 














1    2    0 . -5    3    0

.

0    1    0 .-3    3   -1

.

0    0    1 . 2   -1    0

Add (-2) times the second row to the first row.

        

 














 














1    0    0 . 1   -3    2

.

0    1    0 .-3    3   -1

.

0    0    1 . 2   -1    0

The desired answer appears on the right side of this 
augmented matrix.

14. Again, start with the given matrix augmented by the 

identity matrix.

 














 














1    2    1 . 1    0   0

.

-2   1    8 . 0    1    0

.

1   -2   -7 . 0    0    1

Add (2) times the first row to the second row and add(-1) 
times the first row to the third row.

                

 














 














1    2    1 . 1    0    0

.

0    5   10 . 2    1    0

.

0   -4   -8 .-1    0    1

Add (4/5) times the second row to the third row.

                

 














 














1    2    1 . 1    0    0

.

0    5   10 . 2    1    0

.

0    0    0 .3/5  4/5    0

Since the third row of the left matrix is all zeros, no 
further reduction can be performed, and the given matrix 
is singular.
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22. x′ = 
 

  




4

2
2e2t = 

 

  




8

4
e2t; and

 

  




3  -2

2  -2
 x = 

 

  




3  -2

2  -2
 
 

  




4

2
 e2t = 

 

  




12-4

 8-4
 e2t = 

 

  




8

4
 e2t.

25. ΨΨΨΨ′ = 
 



  





−3e−3t 2e2t

12e−3t 2e2t
 = 

 

  




1 1

4 −2  



  





e−3t e2t

−4e−3t e2t
.

Section 7.3, Page 366

1. Form the augmented matrix, as in Example 1, and use row 
reduction. 

          

 














 














1   0  -1 . 0

        .

3   1   1 . 1

        .

-1  1   2 . 2

Add (-3) times the first row to the second and add the 
first row to the third.

              

 














 














1   0  -1 .  0

       .

0   1   4 .  1

       .

0   1   1 .  2

Add (-1) times the second row to the third.

         

 














 














1   0  -1 .  0

       .

0   1   4 .  1

       .

0   0  -3 .  1

The third row is equivalent to - 3x3 = 1 or x3 = - 1/3. 

Likewise the second row is equivalent to x2 + 4x3 = 1, so 

x2 = 7/3.  Finally, from the first row, x1 - x3 = 0, so 

x1 = - 1/3. The answer can be checked by substituting 

into the original equations.
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2. The augmented matrix is 

 














 














1 2 -1 . 1

     .

2 1  1 . 1

     .

1 -1 2 . 1

.  Row reduction then 

yields 

 














 














1   2  -1 .  1

       .

0  -3   3 . -1

       .

0   0   0 .  1

.

The last row corresponds to the equation 
0x1 + 0x2 + 0x3 = 1, and there is no choice of x1, x2, and 

x3 that satisfies this equation.  Hence the given system 

of equations has no solution.

3. Form the augmented matrix and use row reduction.

          

 














 














1   2  -1 .  2

       .

2   1   1 .  1

       .

1  -1   2 . -1

Add (-2) times the first row to the second and add (-1) 
times the first row to the third.

          

 














 














1   2  -1 .  2

       .

0  -3   3 . -3

       .

0  -3   3 . -3

Add (-1) times the second row to the third row and then 
multiply the second row by (-1/3).

          

 














 














1   2  -1 .  2

       .

0   1  -1 .  1

       .

0   0   0 .  0

128                                             Section 7.3



Since the last row has only zero entries, it may be 
dropped.  The second row corresponds to the equation 
x2 - x3 = 1. We can assign an arbitrary value to either x2 

or x3 and use this equation to solve for the other.  For 

example, let x3 = c, where c is arbitrary.  Then 

x2 = 1 + c.  The first row corresponds to the equation 

x1 + 2x2 - x3 = 2, so 

x1 = 2 - 2x2 + x3 = 2 - 2(1+c)+c = -c.

6. To determine whether the given set of vectors is linearly 
independent we must solve the system 

c1x
(1) + c2x

(2) + c3x
(3) = 0 for c1, c2, and c3.  Writing 

this in scalar form, we have c1      + c3 = 0

                             c1 + c2      = 0, so the

                                  c2 + c3 = 0

augmented matrix is   

 














 














1   0   1 .  0

       .

1   1   0 .  0

       .

0   1   1 .  0

Row reduction yields  

 














 














1   0   1 .  0

       .

0   1  -1 .  0

       .

0   0   2 .  0

.

From the third row we have c3 = 0.  Then from the second 

row, c2 - c3 = 0, so c2 = 0.  Finally from the first row 

c1 + c3 = 0, so c1 = 0.  Since c1 = c2 = c3 = 0, we 

conclude that the given vectors are linearly independent.

8. As in Problem 6 we wish to solve the system 

c1x
(1) + c2x

(2) + c3x
(3) + c4x

(4) = 0 for c1, c2, c3, and 

c4.  Form the augmented matrix and use row reduction.
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 


















 


















1  -1  -2  -3 .  0

           .

2   0  -1   0 .  0

           .

2   3   1  -1 .  0

           .

3   1   0   3 .  0

Add (-2) times the first row to the second, add (-2) 
times the first row to the third, and add (-3) times the 
first row to the fourth.

       

 


















 


















1  -1  -2  -3 .  0

           .

0   2   3   6 .  0

           .

0   5   5   5 .  0

           .

0   4   6  12 .  0

Multiply the second row by (1/2) and then add (-5) times 
the second row to the third and add (-4) times the second 
row to the fourth.

       

 


















 


















1  -1  -2  -3 .  0

           .

0   1  3/2  3 .  0

           .

0   0 -5/2 -10.  0

           .

0   0   0   0 .  0

The third row is equivalent to the equation c3 + 4c4 = 0.  

One way to satisfy this equation is by choosing c4 = -1; 

then c3 = 4.  From the second row we then have 

c2 = - (3/2)c3 - 3c4 = - 6 + 3 = -3.  Then, from the first 

row, c1 = c2 + 2c3 + 3c4 = -3 + 8 - 3 = 2.  Hence the 

given vectors are linearly dependent, and satisfy 

2x(1) - 3x(2) + 4x(3) - x(4) = 0.

14. Let t = t0 be a fixed value of t in the interval 

0 ≤ t ≤ 1.  To determine whether x(1)(t0) and x
(2)(t0) are 
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linearly dependent we must solve c1x
(1)(t0)+c2x

(2)(t0)=0.  

We have the augmented matrix

          

 





  







et0   1  .  0

t0e
t0 t0  .  0

.

Multiply the first row by (−t0) and add to the second row 

to obtain 

 







 







et0   1  .  0

0    0   .  0

.

Thus, for example, we can choose c1 = 1 and c2 = -e
t0, 

and hence the given vectors are linearly dependent at t0.

Since t0 is arbitrary the vectors are linearly dependent 

at each point in the interval.  However, there is no 

linear relation between x(1) and x(2) that is valid 
throughout the interval 0 ≤ t ≤ 1.  For example, if 
t1 ≠ t0, and if c1 and c2 are chosen as above, then

c1x
(1)(t1) + c2x

(2)(t1)

    = 
 




  






et1

t1e
t1

 + -et0 
 



  





1

t1
 = 

 




  






et1 - et0

t1e
t1 - t1e

t0
 ≠ 

 

  




0

0
.

Hence the given vectors must be linearly independent on 
0 ≤ t ≤ 1.  In fact, the same argument applies to any 
interval.

15. To find the eigenvalues and eigenvectors of the given 

matrix we must solve 
 

  




5-λ  -1

3   1-λ
 
 



  





x1

x2
 = 

 

  




0

0
.  The 

determinant of coefficients is (5-λ) (1-λ) - (-1)(3) = 0, 
or λ2 - 6λ + 8 = 0.  Hence λ1 = 2 and λ2 = 4 are the 
eigenvalues.  The eigenvector corresponding to λ 1 must 

satisfy 
 

  




3   -1

3   -1
 
 



  





x1

x2
 = 

 

  




0

0
, or 3x1 - x2 = 0. If we let 

x1 = 1, then x2 = 3 and the eigenvector is x
(1) = 

 

  




1

3
, or 

any constant multiple of this vector.  Similarly, the 
eigenvector corresponding to λ 2 must satisfy
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 

  




1   -1

3   -3
 
 



  





x1

x2
 = 

 

  




0

0
, or x1 - x2 = 0.  Hence x

(2) = 
 

  




1

1
, or 

a multiple thereof.

18. Since a12
−

 = a21, the given matrix is Hermitian and we 

know in advance that its eigenvalues are real.  To find 
the eigenvalues and eigenvectors we must solve 

 

  




1-λ   i

-i   1-λ
 
 



  





x1

x2
 = 

 

  




0

0
.  The determinant of coefficients 

is (1-λ) 2 - i(-i) = λ2 - 2λ, so the eigenvalues are 
λ1 = 0 and λ2 = 2; observe that they are indeed real even 
though the given matrix has imaginary entries.  The 
eigenvector corresponding to λ 1 must satisfy 

 

  




1   i

-i  1
 
 



  





x1

x2
 = 

 

  




0

0
, or x1 + ix2 = 0.  Note that the second 

equation -ix1 + x2 = 0 is a multiple of the first.  

If x1 = 1, then x2 = i, and the eigenvector is 

x(1) = 
 

  




1

i
.  In a similar way we find that the 

eigenvector associated with λ2 is x
(2) = 

 

  




1

-i
.

21. The eigenvalues and eigenvectors satisfy 

 






 






1-λ 0 0

2 1-λ -2

3 2 1-λ

 

 









 









x1

x2

x3

 = 

 






 






0

0

0

.  The determinant of coefficients is 

(1-λ)[ ](1-λ) 2 + 4  = 0, which has roots λ = 1, 1 ± 2i. For 
λ = 1, we then have 2x1 - 2x3 = 0 and 3x1 + 2x2 = 0.  Choosing 

x1 = 2 then yields 

 






 






 2

-3

 2

 as the eigenvector corresponding to 

λ = 1. For λ = 1 + 2i we have 
-2ix1 = 0, 2x1 - 2ix2 - 2x3 = 0 and 3x1 + 2x2 - 2ix3 = 0, 

yielding x1 = 0 and x3 = -ix2.  Thus 

 






 






0

1

-i

 is the eigenvector 

corresponding to λ = 1 + 2i.  A similar calculation shows that 
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 






 






0

1

i

 is the eigenvector corresponding to λ = 1 - 2i.

24. Since the given matrix is real and symmetric, we know 
that the eigenvalues are real.  Further, even if there 
are repeated eigenvalues, there will be a full set of 
three linearly independent eigenvectors.  To find the 
eigenvalues and eigenvectors we must solve

 






 






3-λ   2   4

2   -λ   2

4   2   3-λ

 

 









 









x1

x2

x3

 = 

 






 






0

0

0

.  The determinant of 

coefficients is (3-λ)[-λ(3-λ)-4] - 2[2(3-λ) -8] + 4[4+4λ] 
= -λ3 + 6λ2 + 15λ + 8.  Setting this equal to zero and 
solving we find λ1 = λ2 = -1, λ3 = 8. The eigenvectors 
corresponding to λ 1 and λ2 must satisfy

 






 






4   2   4

2   1   2

4   2   4

 

 









 









x1

x2

x3

 = 

 






 






0

0

0

; hence there is only the single 

relation 2x1 + x2 + 2x3 = 0 to be satisfied.  

Consequently, two of the variables can be selected 
arbitrarily and the third is then determined by this 
equation.  For example, if x1 = 1 and x3 = 1, then x2 = -

4, and we obtain the eigenvector x(1) = 

 






 






1

-4

1

.  Similarly, 

if x1 = 1 and x2 = 0, then x3 = -1, and we have the 

eigenvector x(2) = 

 






 






1

0

-1

, which is linearly independent of 

x(1).  There are many other choices that could have been 
made; however, by Eq.(38) there can be no 
more than two linearly independent eigenvectors 
corresponding to the eigenvalue -1.  To find the 
eigenvector corresponding to λ 3 we must solve 
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 






 






-5   2   4

 2  -8   2

 4   2  -5

 

 









 









x1

x2

x3

 = 

 






 






0

0

0

.  Interchange the first and 

second rows and use row reduction to obtain the 
equivalent system x1 - 4x2 + x3 = 0, 2x2 - x3 = 0.  Since 

there are two equations to satisfy only one variable can 
be assigned an arbitrary value.  If we let x2 = 1, then 

x3 = 2 and x1 = 2, so we find that x
(3) = 

 






 






2

1

2

.

27. We are given that Ax = b has solutions and thus we have 
(Ax,y) = (b,y). From Problem 26, though, 
(Ax,y)= (x, A*y) = 0. Thus (b,y) = 0.  For Example 2, 

A* = A
-T
= 

 






 






 1  -1  2

-2   1 -1

 3  -2  3

 and, using row reduction, the augmented 

matrix for A*y = 0 becomes 

 









 









1 -1 2 0

0  1-3 0

0  0 0 0

.  Thus y = c

 






 






1

3

1

 and 

hence (b,y) = b1 + 3b2 + b3 = 0.

Section 7.4, Page 371

1. Use Mathematical Induction.  It has already been proven 
that if x(1) and x(2) are solutions, then so is 
c1x

(1) + c2x(2).  Assume that if x(1), x(2), …, x(k) are 

solutions, then x = c1x(1) + … + ckx(k) is a solution.  
Then use Theorem 7.4.1 to conclude that x + ck+1x

(k+1) is 

also a solution and thus c1x
(1) + … + ck+1x

(k+1) is a 

solution if x(1), …, x(k+1) are solutions.

2a. From Eq.(10) we have

W = 




 






x1
(1)  x1

(2)

x2
(1)  x2

(2)
 = x1

(1) x2
(2) - x2

(1) x1
(2).  Taking the 

derivative of these two products yields four terms which 
may be written as 
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dW

dt
 = [ ]

dx1
(1)

dt
x2
(2) - x2

(1) 
dx1

(2)

dt
 + [ ]x1

(1) 
dx2

(2)

dt
 - 

dx2
(1)

dt
x1
(2) .

The terms in the square brackets can now be recognized as 
the respective determinants appearing in the desired 
solution.  A similar result was mentioned in Problem 20 
of Section 4.1.

2b. If x(1) is substituted into Eq.(3) we have
dx1

(1)

dt
 = p11 x1

(1) + p12 x2
(1) 

dx2
(1)

dt
 = p21 x1

(1) + p22 x2
(1).

Substituting the first equation above and its counterpart 
for x(2) into the first determinant appearing in dW/dt 

and evaluating the result yields p11 




 






x1
(1)  x1

(2)

x2
(1)  x2

(2)
 = p11W.  

Similarly, the second determinant in dW/dt is evaluated 
as p22W, yielding the desired result.

2c. From prt b we have 
dW

W
 = [p11(t) + p22(t)]dt which gives 

W(t) = c exp∫[p11(t) + p22(t)]dt.

6a. W = 




 






t t2

1 2t
  = 2t2 - t2 = t2.

6b. Pick t = t0, then c1x
(1)(t0) + c2x

(2)(t0) = 0 implies 

c1  



  





t0

1
 + c2 

 



  





t0
2

2t0
 = 

 



  





0

0
, which has a non-zero solution 

for c1 and c2 if and only if 




 






t0 t0
2

1 2t0
 = 2t0

2 - t0
2 = t0

2 = 0. 

Thus x(1)(t) and x(2)(t) are linearly independent at each 
point except t = 0.  Thus they are linearly independent 
on every interval.

6c. From part a we see that the Wronskian vanishes at t = 0, but 
not at any other point.  By Theorem 7.4.3, if p(t), from 
Eq.(3), is continuous, then the Wronskian is either 
identically zero or else never vanishes.  Hence, we conclude 
that the D.E. satisfied by x(1)(t) and x(2)(t) must have at 
least one discontinuous coefficient at t = 0.

6d. To obtain the system satisfied by x(1) and x(2) we 
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consider

x = c1x
(1) + c2x

(2), or 
 



  





x1

x2
 = c1  


  




t

1
 + c2  



  





t2

2t
.

Taking the derivative we obtain 
 



  





x1′

x2′
 = c1  


  




1

0
 + c2  


  




2t

2
.

Solving this last system for c1 and c2 we find 

c1 = x1′  - tx2′  and c2 = x2′ /2.  Thus

 



  





x1

x2
 = (x1′  - tx2′ )  


  




t

1
 + 

x2′

2
 
 



  





t2

2t
, which yields

x1 = tx1′  - 
t2

2
 x2′  and x2 = x1′ .  Writing this system in 

matrix form we have x = 
 



  





t - t2/2

1     0
x′.  Finding the 

inverse of the matrix multiplying x′ yields the desired 
solution.

Section 7.5, Page 381

1. Assuming that there are solutions of the form x = ξξξξert, 
we substitute into the D.E. to find

rξξξξert = 
 

  




3  -2

2  -2
 ξξξξert.  Since ξξξξ = Iξξξξ = 

 

  




1  0

0  1
 ξξξξ, we can 

write this equation as 
 

  




3  -2

2  -2
 ξξξξ - r 

 

  




1 0

0  1
 ξξξξ = 0 and 

thus we must solve 
 

  




3-r  -2

2  -2-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
 for r, ξ1, ξ2.  

The determinant of the coefficients is 
(3-r)(-2-r) + 4 = r2 - r - 2, so the eigenvalues are 
r = -1, 2.  The eigenvector corresponding to r = -1 

satisfies 
 

  




4  -2

2  -1
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, which yields 2ξ1 - ξ2 = 0.  

Thus x(1)(t) = ξξξξ(1)e-t = 
 

  




1

2
 e-t, where we have set ξ1 = 1.  

(Any other non zero choice would also work).  In a 

similar fashion, for r = 2, we have 
 

  




1  -2

2  -4
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, 

or ξ1 - 2ξ2 = 0.  Hence x(2)(t) = ξξξξ(2)e2t = 
 

  




2

1
 e2t by 
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setting ξ2 = 1.  The general solution is then 

x = c1x
(1)(t) + c2x

( )2
(t).  To sketch the trajectories we 

follow the steps illustrated in Examples 1 and 2.  

Setting c2 = 0 we have x = 
 



  





x1

x2
 = c1 


  




1

2
 e-t or x1 = c1e

-t 

and x2 = 2c1e
-t and thus one asymptote is given by 

x2 = 2x1.  In a similar 
fashion c1 = 0 gives 
x2 = (1/2)x1 as a second 
asymptote.  Since the
roots differ in sign, 
the trajectories for 
this problem are similar 
in nature to those in 
Example 1.  For c2 ≠ 0, 
all solutions will be 
asymptotic to x2 = (1/2)x1 as t → ∞.  For c2 = 0, the 
solution approaches the origin along the line x2 = 2x1.

5. Proceeding as in Problem 1 we assume a solution of the 
form x = ξξξξert, where r, ξ1, ξ2 must now satisfy

 

  




-2-r  1

1  -2-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
.  Evaluating the determinant of the 

coefficients set equal to zero yields r = -1, -3 as the 
eigenvalues.  For r = -1 we find ξ1 = ξ2 and thus 

ξξξξ(1) = 
 

  




1

1
 and for r = -3 we find ξ2 = -ξ1 and hence

ξξξξ(2) = 
 

  




1

-1
.  The general solution is then 

x = c1 

  




1

1
 e-t + c2 


  




1

-1
 e-3t.  Since there are two negative 

eigenvalues, we would expect the trajectories to be 
similar to those of Example 2.
Setting c2 = 0 and eliminating
t (as in Problem 1) we find

that 
 

  




1

1
 e-t approaches the

origin along the line x2 = x1.

Similarly 
 

  




1

-1
 e-3t approaches

the origin along the line
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x2 = -x1.  As long as c1 ≠ 0 (since e-t is the dominant 
term as t→0), all trajectories approach the origin 
asymptotic to x2 = x1. For c1 = 0, the trajectory 
approaches the origin along x2 = -x1, as shown in the 
graph.

6. The characteristic equation is (5/4 - r) 2 - 9/16 = 0, so 
r = 2,1/2.  Since the roots are of the same size, the 
behavior of the solutions is similar to Problem 5, except 
the trajectories are reversed since the roots are 
positive.

7. Again assuming x = ξξξξert we find that r, ξ1, ξ2 must 

satisfy 
 

  




4-r  -3

8  -6-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
.  The determinant of the 

coefficients set equal to zero yields r = 0, -2.  For 
r = 0 we find 4ξ1 = 3ξ2.  Choosing ξ2 = 4 we find ξ1 = 3 

and thus ξξξξ(1) = 
 

  




3

4
.  Similarly for r = -2 we have 

ξξξξ(2) = 
 

  




1

2
 and thus x = c1 


  




3

4
 + c2 


  




1

2
 e-2t.  To sketch the 

trajectories, note that the general solution is 
equivalent to the simultaneous equations x1 = 3c1 + c2e

-2t 

and x2 = 4c1 + 2c2e
-2t. Solving the first equation for 

c2e
-2t and substituting into the second yields 

x2 = 2x1 - 2c1 and thus the trajectories are parallel 
straight lines.

9. The eigvalues are given by 


 




1−r i

−i 1−r
 = (1−r) 2 + i2 = 

r(r−2) = 0.  For r= 0 we have 
 

  




1 i

−i 1  



  





ξ1
ξ2

 = 0 or

−iξ1 + ξ2 = 0 and thus 
 

  




1

i
 is one eigenvector.  Similarly 

 

  




1

−i
 is the eigenvector for r = 2.

14. The eigenvalues and eigenvectors of the coefficient 
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matrix satisfy 

 






 






1-r  -1  4

3  2-r  -1

2  1  -1-r

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  The determinant 

of coefficients set equal to zero reduces to 
r3 - 2r2 - 5r + 6 = 0, so the eigenvalues are 
r1 = 1, r2 = -2, and r3 = 3.  The eigenvector 

corresponding to r1 must satisfy 

 






 






0  -1  4

3  1  -1

2  1  -2

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  

Using row reduction we obtain the equivalent system 
ξ1 + ξ3 = 0, ξ2 - 4ξ3 = 0.  Letting ξ1 = 1, it follows 
that 

ξ3 = -1 and ξ2 = -4, so ξξξξ(1) = 
 






 






1

-4

-1

.  In a similar way the 

eigenvectors corresponding to r2 and r3 are found to be 

ξξξξ(2) = 
 






 






1

-1

-1

 and ξξξξ(3) = 
 






 






1

2

1

, respectively.  Thus the 

general solution of the given D.E. is

x = c1

 






 






1

-4

-1

 et + c2

 






 






1

-1

-1

 e-2t + c3

 






 






1

2

1

 e3t.  Notice that the 

“trajectories” of this solution would lie in the x1 x2 x3 
three dimensional space.

16. The eigenvalues and eigenvectors of the coefficient 

matrix are found to be r1 = -1, ξξξξ(1) = 
 

  




1

1
 and r2 = 3, 

ξξξξ(2) = 
 

  




1

5
.  Thus the general solution of the given D.E. 

is x = c1  

  




1

1
 e-t + c2  


  




1

5
 e3t.  The I.C. yields the 

system of equations c1 

  




1

1
 + c2 


  




1

5
 = 

 

  




1

3
.  The augmented 
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matrix of this system is 

 






 






1  1 . 1

   .

1  5 . 3

 and by row reduction 

we obtain 

 






 






1  1 . 1

   .

0  1 .1/2

.  Thus c2 = 1/2 and c1 = 1/2.  

Substituting these values in the general solution gives 
the solution of the I.V.P.  As t → ∞, the solution 

becomes asymptotic to x = 
1

2  

  




1

5
 e3t, or x2 = 5x1.

20. Substituting x = ξξξξtr into the D.E. we obtain 

rξξξξtr = 
 

  




2  -1

3  -2
 ξξξξtr.  For t ≠ 0 this equation can be 

written as 
 

  




2-r  -1

3  -2-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
.  The eigenvalues and 

eigenvectors are r1 = 1, ξξξξ(1) = 
 

  




1

1
 and r2 = -1, 

ξξξξ(2) = 
 

  




1

3
.  Substituting these in the assumed form we 

obtain the general solution x = c1 

  




1

1
 t + c2 


  




1

3
 t-1.  

25.

27.
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31c. The eigevalues are given by 



 




−1−r −1

−α −1−r
 = r2 + 2r + 1 − α = 0.  Thus r1,2 = −1± α .  

Note that in Part (a) the eigenvalues are both negative 
while in Part (b) they differ in sign.  Thus, in this 
part, if we choose α = 1, then one eigenvalue is zero, 
which is the transition of the one root from negative to 
positive.  This is the desired bifurcation point.

Section 7.6, Page 390

1. We assume a solution of the form x = ξξξξert thus r and ξξξξ 

are solutions of 
 

  




3-r  -2

4  -1-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
. The determinant of 

coefficients is (r2-2r-3) + 8 = r2 - 2r + 5, so the 
eigenvalues are r = 1 ± 2i.  The eigenvector 

corresponding to 1 + 2i satisfies 
 

  




2-2i  -2

4  -2-2i
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, 

or (2-2i)ξ1 - 2ξ2 = 0.  If ξ1 = 1, then ξ2 = 1-i and

ξξξξ(1) = 
 

  




1

1-i
 and thus one

complex-valued solution
of the D.E. is

x(1)(t) = 
 

  




1

1-i
 e(1+2i)t.

To find real-valued 
solutions 
(see Eqs.8 and 9) we 
take the real and imaginary parts, respectively of 

x(1)(t). Thus x(1)(t) = 
 

  




1

1-i
et(cos2t + isin2t)

             = et
 

  




cos2t + isin2t

cos2t + sin2t + i(sin2t - cos2t)
 

             = et
 

  




cos2t

cos2t + sin2t
 + iet 

 

  




sin2t

sin2t - cos2t

Hence the general solution of the D.E. is

x = c1e
t

 

  




cos2t

cos2t + sin2t
 + c2e

t

 

  




sin2t

sin2t - cos2t
.  The 

solutions spiral to ∞ as t → ∞ due to the et terms.
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7. The eigenvalues and eigenvectors of the coefficient 

matrix satisfy 

 






 






1-r 0 0

2 1-r -2

3 2 1-r

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  The 

determinant of coefficients reduces to (1-r)(r2 - 2r + 5) 
so the eigenvalues are r1 = 1, r2 = 1 + 2i, and 
r3 = 1 - 2i.  The eigenvector corresponding to r1 
satisfies

 






 






0  0  0

2  0  -2

3  2  0

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

; hence ξ1 - ξ3 = 0 and 

3ξ1 + 2ξ2 = 0.  If we let ξ2 = -3 then ξ1 = 2 and ξ3 = 2, 

so one solution of the D.E. is 

 






 






2

-3

2

et.  The eigenvector 

corresponding to r2 satisfies 

 






 






−2i  0  0

2  -2i -2

3  2  -2i

  

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  

Hence ξ1 = 0 and iξ2 + ξ3 = 0.  If we let ξ2 = 1, then
ξ3 = -i. Thus a complex-valued solution is 

 






 






0

1

-i

 et(cos2t + i sin2t).  Taking the real and imaginary 

parts, see prob. 1, we obtain 

 






 






0

cos2t

sin2t

 et and 

 






 






0

sin2t

-cos2t

 et, 

respectively.  Thus the general solution is

x = c1
 






 






2

−3

2

et + c2et 
 






 






0

cos2t

sin2t

 + c3et 
 






 






0

sin2t

−cos2t

, which spirals 

to ∞ about the x1 axis in the x1x2x3 space as t → ∞.

9. The eigenvalues and eigenvectors of the coefficient 

matrix satisfy 
 

  




1-r −5

1 −3−r  



  





ξ1
ξ2

 = 
 

  




0

0
.  The determinant of 

coefficients is r2 + 2r + 2 so that the eigenvalues are
r = −1 ± i.  The eigenvector corresponding to r = −1 + i 
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is given by 
 

  




2−i −5

1 −2−i  



  





ξ1
ξ2

 = 0 so that ξ1 = (2+i)ξ2 and 

thus one complex-valued solution is

x(1)(t) = 
 

  




2+i

1
 e(−1+i)t.  Finding the real and complex 

parts of x(1) leads to the general solution

x = c1e−t 
 

  




2cost − sint

cost
 + c2e−t 

 

  




2sint + cost

sint
.  Setting 

t = 0 we find x(0) = 
 

  




1

1
 = c1 


  




2

1
 + c2 


  




1

0
, which is 

equivalent to the system 
2c1 + c2 = 1

c1 + 0 = 1
.  Thus c1 = 1 and 

c2 = −1 and

x(t) = e−t
 

  




2cost − sint

cost
 − e−t 

 

  




2sint + cost

sint

     = e−t
 

  




cost − 3sint

cost − sint
, which spirals to zero as

t → ∞ due to the e−t term.

11a. The eigenvalues are given by 



 




3/4−r −2

1 −5/4−r
 = r2 + r/2 + 17/16 = 0.

11d. The trajectory starts at
(5,5) in the x1x2 plane
and spirals around and
converges to the t axis
as t → ∞.

15a. The eigenvalues satisfy 


 




2-r -5

α -2-r
 = r2 - 4 + 5α = 0, so 

r1,r2 = ± 4-5α .

15b. The critical value of α yields r1 = r2 = 0, or α = 4/5.
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15c.

16a.


 




5/4−r 3/4

α 5/4−r
 = r2 − 5r/2 + (25/16 − 3α/4) = 0, so 

r1,2 = 5/4 ± 3α /2.

16b. There are two critical values of α.  For α < 0 the 
eigenvalues are complex, while for α > 0 they are real.  
There will be a second critical value of α when r2 = 0, 
or α = 25/12.  In this case the second real eigenvalue 
goes from positive to negative.

16c.                     

18a. We have 


 




3-r  α

-6  -4-r
 = r2 + r - 12 + 6α = 0, so 

r1,r2 = -1/2 ± 49-24α /2.

18b. The critical values occur when 49 - 24α = 1 (in which 
case 
r2 = 0) and when 49 - 24α = 0, in which case r1 = r2 = -1/2.  
Thus α = 2 and α = 49/24 ≅  2.04.

18c.
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21. If we seek solutions of the form x = ξξξξtr, then r must be 
an eigenvalue and ξξξξ a corresponding eigenvector of the 
coefficient matrix.  Thus r and ξξξξ satisfy 

 

  




−1−r −1

2 −1−r  



  





ξ1
ξ2

 = 
 

  




0

0
.  The determinant of coefficients 

is (−1−r) 2 +2 = r2 + 2r + 3, so the eigenvalues are
r = −1 ± 2 i.  The eigenvector corresponding to 

−1 + 2 i satisfies 
 



  





− 2 i −1

2 − 2 i  



  





ξ1
ξ2

 = 
 

  




0

0
 or

2 iξ1 + ξ2 = 0.  If we let ξ1 = 1, then ξ2 = − 2 i, and 

ξξξξ(1) = 
 



  





1

− 2 i
.  Thus a complex-valued solution of the 

given D.E. is 
 



  





1

− 2 i
 t−1+ 2 i.  From Eq. (15) of 

Section 5.5 we have (since t 2 i = elnt
2 i
 = e 2 i lnt)

t−1+ 2 i = t−1[cos( 2 lnt) + isin( 2 lnt)] for t > 0.  
Separating the complex valued solution into real and 
imaginary parts, we obtain the two real-valued solutions 

u = t−1

 



  





cos( 2 lnt)

2  sin( 2 lnt)
 and v = t−1

 



  





sin( 2 lnt)

− 2 cos( 2 lnt)
. 

23a. The eigenvalues are given by (r+1/4)[(r+1/4) 2 + 1] = 0.

23b.

23c. Graph starts in the
first octant and 
spirals around the
x3 axis, converging
to zero.

29a. We have y1′  = x1′  = y2, y3′  = x2′  = y4, y2′  = -2y1 + y3, and 
y4′  = y1 - 2y3. Thus
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y′′′′  ==== 

 











 











0 1 0 0

−2 0 1 0

0 0 0 1

1 0 −2 0

 y.

29b. The eigenvalues are given by r4 + 4r2 + 3 = 0, which 
yields r2 = -1, - 3 , so r = ±i, ± 3 i.

29c. For r = ± i the eigenvectors are given by

 











 











−i 1 0 0

−2 −i 1 0

0 0 −i 1

1 0 −2 -i  











 











ξ1
ξ2
ξ3
ξ4

 = 0.  Choosing ξ1 = 1 yields ξ2 = i 

and choosing ξ3 = 1 yields ξ4 = i, so 
(1, i, 1, i) T(cost + isint) is a solution.  Finding the 
real and imaginary parts yields 
w1 ==== (cost, −sint, cost, −sint) T and 
w2 ==== (sint, cost, sint, cost) T as two real solutions.  
In a similar fashion, for r = ± 3 i, we obtain 

ξξξξ = (1, 3 i, -1, - 3 i) and 

w3 = (cos 3 t, − 3 sin 3 t, -cos 3 t, 3 sin 3 t) T and
w4 = (sin 3 t, 3 cos 3 t, −sin 3 t, − 3 cos 3 t) T.  
Thus y=c1w1 + c2w2 + c3w3 + c4w4, so yT(0) = (2, 1, 2, 1) 
yields c1 + c3 = 2, c2 + 3 c4 = 1, c1 − c3 = 2, and 
c2 − 3 c4 = 1, which yields c1 = 2, c2 = 1, and 

c3 = c4 = 0.  Hence y = 

 











 











2cost + sint

−2sint + cost

2cost + sint

−2sint + cost

.

29e. The natural frequencies are ω1 = 1 and ω2 = 3 , which 
are the absolute value of the eigenvalues.  For any other 
choice of I.C., both frequencies will be present, and 
thus another mode of oscillation with a different 
frequency (depending on the I.C.) will be present.

                                       
Section 7.7, Page 400

Each of the Problems 1 through 10, except 2 and 8, has been 
solved in one of the previous sections.  Thus a fundamental 
matrix for the given systems can be readily written down.  
The fundamental matrix ΦΦΦΦ(t) satisfying ΦΦΦΦ(0) = I can then be 
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found, as shown in the following problems.

2. The characteristic equation is given by 


 




-3/4-r  1/2

1/8  -3/4-r
 = 

r2 + 3r/2 + 1/2 = 0, so r = 1, 1/2.  For r = 1 we have 

 

  




1/4 1/2

1/8 1/4
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, and thus ξξξξ(1) = 

 

  




-2

1
.  Likewise 

ξξξξ(2) = 
 

  




2

1
 and thus x(1)(t) = 

 

  




-2

1
e-t and x(2)(t) = 

 

  




2

1
e-t/2.  To 

find the first column of ΦΦΦΦ we choose c1 and c2 so that 

c1x
(1)(0) + c2x(2)(0) =  


  




1

0
, which yields -2c1 + 2c2 = 1 and 

c1 + c2 = 0. Thus c1 = -1/4 and c2 = 1/4 and the first column 

of ΦΦΦΦ is 
 



  





1/2e-t/2 + 1/2et

1/4e-t/2 - 1/4e-t/2
.  The second colunm of ΦΦΦΦ is 

determined by d1x
(1)(0) + d2x

(2)(0) = 
 

  




0

1
 which yields d1 = d2 = 

1/2 and thus the second column of ΦΦΦΦ is 
 



  





e-t/2 - e-t

1/2e-t/2 + 1/2e-t
.

4. From Problem 4 of Section 7.5 we have the two linearly 

independent solutions x(1)(t) = 
 

  




1

-4
 e-3t and 

x(2)(t) = 
 

  




1

1
 e2t.  Hence a fundamental matrix ΨΨΨΨ is given 

by ΨΨΨΨ(t) = 
 



  





e-3t  e2t

-4e-3t e2t
.  To find the fundamental matrix 

ΦΦΦΦ(t) satisfying the I.C. ΦΦΦΦ(0) = I we can proceed in 
either of two ways.  One way is to find ΨΨΨΨ(0), invert it 
to obtain ΨΨΨΨ−1(0), and then to form the product 
ΨΨΨΨ(t)ΨΨΨΨ−1(0), which is ΦΦΦΦ(t).  Alternatively, we can find 
the first column of ΦΦΦΦ by determining the linear 
combination 

c1x
(1)(t) + c2x

(2)(t) that satisfies the I.C. 
 

  




1

0
.  This 

requires that c1 + c2 = 1, -4c1 + c2 = 0, so we obtain 
c1 = 1/5 and c2 = 4/5.  Thus the first column of ΦΦΦΦ(t) is
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 



  





(1/5)e-3t + (4/5)e2t

-(4/5)e-3t + (4/5)e2t
.  Similarly, the second column of 

ΦΦΦΦ is that linear combination of x(1)(t) and x(2)(t) that 

satisfies the I.C. 
 

  




0

1
.  Thus we must have 

c1 + c2 = 0, -4c1 + c2 = 1; therefore c1 = -1/5 and 
c2 = 1/5.  Hence the second column of ΦΦΦΦ(t) is

 



  





-(1/5)e-3t + (1/5)e2t

 (4/5)e-3t + (1/5)e2t
.

6. Two linearly independent real-valued solutions of the 
given D.E. were found in Problem 2 of Section 7.6.  Using 
the result of that problem, we have

ΨΨΨΨ(t) = 
 



  





-2e-tsin2t  2e-tcos2t

e-tcos2t  e-tsin2t
.  To find ΦΦΦΦ(t) 

we determine the linear combinations of the columns of 

ΨΨΨΨ(t) that satisfy the I.C. 
 

  




1

0
 and 

 

  




0

1
, respectively.  

In the first case c1 and c2 satisfy 0c1 + 2c2 = 1 and 
c1 + 0c2 = 0.  Thus c1 = 0 and c2 = 1/2.  In the second 
case we have 0c1 + 2c2 = 0 and c1 + 0c2 = 1, so c1 = 1 
and c2 = 0.  Using these values of c1 and c2 to form the 
first and second columns of ΦΦΦΦ(t) respectively, we obtain

ΦΦΦΦ(t) = 
 



  





etcos2t  -2e-tsin2t

(1/2)e-tsin2t  e-tcos2t
.

10. From Problem 14 Section 7.5 we have x(1) = 

 






 






1

-4

-1

et, 

x(2) = 

 






 






1

-1

1

e-2t and x(3) = 

 






 






1

2

1

e3t.  For the first column 

of ΦΦΦΦ we want to choose c1, c2, c3 such that c1x(1)(0) + 

c2x
(2)(0) + c3x

(3)(0) = 

 






 






1

0

0

.  Thus c1 + c2 + c3 = 1, 

-4c1 - c2 + 2c3 = 0 and -c1 - c2 + c3 = 0, which yield 
c1 = 1/6, c2 = 1/3 and c3 = 1/2.  The first column of ΦΦΦΦ 
is then (1/6et + 1/3e-2t + 1/2e3t, -2/3et - 1/3e-2t + e3t, 
-1/6et - 1/3e-2t + 1/2e3t) T.  Likewise, for the second 
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column we have d1x
(1)(0) + d2x

(2)(0) + d3x
(3)(0) = 

 






 






0

1

0

, 

which yields d1 = -1/3, d2 = 1/3 and d3 = 0 and thus 

(-1/3et + 1/3e-2t, 4/3et - 1/3e-2t, 1/3et - 1/3e-2t) T is 
the second column of ΦΦΦΦ(t). Finally, for the third column 

we have e1x
(1)(0) + e2x

(2)(0) + e3x
(3)(0) = 

 






 






0

0

1

, which 

gives e1 = 1/2, e2 = -1 and e3 = 1/2 and hence 

(1/2et - e-2t + 1/2e3t, -2et + e-2t + e3t, 
-1/2et + e-2t + 1/2e3t) T is the third column of ΦΦΦΦ(t).

11. From Eq. (14) the solution is given by ΦΦΦΦ(t)x0.  Thus 

x = 
 



  





3/2et-1/2e-t  -1/2et+1/2e-t

3/2et-3/2e-t  -1/2et+3/2e-t
 
 

  




2

1

  = 
 



  





7/2et-3/2et

7/2et-9/2e-t
 = 

7

2  

  




1

1
et - 

3

2  

  




1

3
e-t.

Section 7.8, Page 407

1. The eigenvalues and eigenvectors of the given coefficient 

matrix satisfy 
 

  




3-r  -4

1  -1-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
.  The determinant of 

coefficients is (3-r)(-1-r) + 4 = r2 - 2r + 1 = (r-1) 2 so 
r1 = 1 and r2 = 1.  The eigenvectors corresponding to 

this double eigenvalue satisfy 
 

  




2  -4

1  -2
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, or 

ξ1 - 2ξ2 = 0.  Thus the only eigenvectors are multiples 

of ξξξξ(1) = 
 

  




2

1
.  One solution of the given D.E. is 

x(1)(t) = 
 

  




2

1
 et, but there is no second solution of this 

form.  To find a second solution we assume, as in 
Eq. (13), that x = ξξξξtet + ηηηηet and substitute this 
expression into the D.E.  As in Example 2 we find that ξξξξ 

is an eigenvector, so we choose ξξξξ  = 
 

  




2

1
.  Then ηηηη must 
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satisfy 
 

  




2  -4

1  -2  



  





η1
η2

 = 
 

  




2

1
, which verifies Eq.(16).  

Solving these equations yields η1 - 2η2 = 1.  If η2 = k, 
where k is an arbitrary constant, then η1 = 1 + 2k.  
Hence the second solution that we obtain is 

x(2)(t) = 
 

  




2

1
tet + 

 

  




1 + 2k

k
et = 

 

  




2

1
tet + 

 

  




1

0
et + k

 

  




2

1
et.  

The last term is a multiple of the first solution x(1)(t) 
and may be neglected, that is, we may set k = 0.  Thus 

x(2)(t) = 
 

  




2

1
 tet + 

 

  




1

0
 et and the general solution is 

x = c1x
(1)(t) + c2x

(2)(t).  All solutions diverge to 
infinity as t → ∞.  The graph is shown on the right.

3. The origin is attracting    1.

5. Substituting x = ξξξξert into the given system, we find that 
the eigenvalues and eigenvectors satisfy

 






 






1-r  1  1

2  1-r -1

0  -1 1-r

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  The determinant of coefficients 

is -r3 + 3r2 - 4 and thus r1 = -1, r2 = 2 and r3 = 2.  
The eigenvector corresponding to r1 satisfies

 






 






2  1  1

2  2  -1

0  -1  2

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

 which yields ξξξξ(1) = 
 






 






-3

4

2

 and 

x(1) = 

 






 






-3

4

2

 e-t.  The eigenvectors corresponding to the 

double eigenvalue must satsify 

 






 






-1  1  1

2 -1 -1

0 -1 -1

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

, 
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which yields the single eigenvector ξξξξ(2) = 
 






 






0

1

-1

 and hence 

x(2)(t) = 

 






 






0

1

-1

e2t.  The second solution corresponding to 

the double eigenvalue will have the form specified by 

Eq.(13), which yields x(3) = 

 






 






0

1

-1

 te2t + ηηηηe2t.  

Substituting this into the given system, or using 

Eq.(16), we find that ηηηη satisfies 
 






 






-1  1  1

2 -1 -1

0 -1 -1

 

 







  









η1
η2
η3

 = 

 






 






0

1

-1

.  

Using row reduction we find that η1 = 1 and η2 + η3 = 1, 
where either η2 or η3 is arbitrary.  If we choose η2 = 0, 

then ηηηη = 
 






 






1

0

1

 and thus x(3) = 

 






 






0

1

-1

 te2t + 

 






 






1

0

1

 e2t.  The 

general solution is then x = c1x
(1) + c2x

(2) + c3x
(3).

9. We have 


 




2−r 3/2

−3/2 −1−r
 = (r−1/2) 2 = 0.  For r = 1/2, the 

eigenvector is given by 
 

  




3/2 3/2

−3/2 −3/2  



  





ξ1
ξ2

 = 0, so ξξξξ = 
 

  




1

−1
 

and 
 

  




1

−1
et/2 is one solution.  For the second solution we 

have x = ξξξξtet/2 + ηηηηet/2, where (A − 
1

2
I)ηηηη = ξξξξ, A being 

the coefficient matrix for this problem.  This last 
equation reduces to 3ηηηη1/2 + 3ηηηη2/2 = 1 and 
−3ηηηη1/2 − 3ηηηη2/2 = −1.  Choosing ηηηη2 = 0 yields ηηηη1 = 2/3 
and hence 

x = c1 

  




1

−1
et/2 + c2 


  




2/3

0
et/2 + c2 


  




1

−1
tet/2.  x(0) = 

 

  




3

−2
 

gives c1 + 2c2/3 = 3 and −c1 = −2, and hence c1 = 2, 
c2 = 3/2.  Substituting these into the above x yields the 
solution.
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11. The eigenvalues are r = 1,1,2.  For r = 2, we have

 






 






-1  0 0

-4 -1 0

 3  6 0

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

, which yields ξξξξ = 
 






 






0

0

1

, so one 

solution is x(1) = 

 






 






0

0

1

e2t.  For r = 1, we have

 






 






0  0 0

-4 0 0

3  6 1

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

, which yields the second solution 

 x(2) = 

 






 






0

1

-6

et.  The third solution is of the form 

x(3) = 

 






 






0

1

-6

tet + ηet, where 
 






 






 0 0 0

-4 0 0

 3 6 1

ηηηη = 
 






 






0

1

-6

 and thus 

ηηηη1 = -1/4 and 6ηηηη2 + ηηηη3 = -21/4.  Choosing ηηηη2 = 0 gives 
ηηηη3 = -21/4 and hence 

x(t) = c1

 






 






0

1

-6

et + c2

 










 








 






 






-1/4

0

-21/4

et +

 






 






0

1

-6

tet + c3

 






 






0

0

1

e2t.  The 

I.C. then yield c1 = 2, c2 = 4 and c3 = 3 and hence 

x = 

 






 






-1

2

-33

et + 4

 






 






0

1

-6

tet + 3

 






 






0

0

1

e2t, which become unbounded 

as t → ∞.

12.

14. Assuming x = ξξξξtr and substituting into the given system, 

we find r and ξξξξ must satisfy 
 

  




1-r  -4

4  -7-r
 
 



  





ξ1
ξ2

 = 
 

  




0

0
, which 

has the double eigenvalue r = -3 and single eigenvector 
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 

  




1

1
.  Hence one solution of the given D.E. is 

x(1)(t) = 
 

  




1

1
 t-3.  By analogy with the scalar case 

considered in Section 5.5 and Example 2 of this section, 
we seek a second solution of the form x = ηηηηt-3lnt + ζζζζt-3.  
Substituting this expression into the D.E. we find that ηηηη 
and ζζζζ satisfy the equations (A + 3I)ηηηη = 0 and 

(A + 3I)ζζζζ = ηηηη, where A = 
 

  




1  -4

4  -7
 and I is the identity 

matrix.  Thus ηηηη = 
 

  




1

1
, from above, and ζζζζ is found to be 

 

  




0

-1/4
.  Thus a second solution is 

x(2)(t) = 
 

  




1

1
 t-3lnt + 

 

  




1

-1/4
 t−3.

15. All solutions of the given system approach zero as 
t → ∞ if and only if the eigenvalues of the coefficient 
matrix either are real and negative or else are complex 
with negative real part.  Write down the determinantal 
equation satisfied by the eigenvalues and determine when 
the eigenvalues are as stated.

17a. The eigenvalues and eigenvectors of the coefficient 

matrix satisfy 

 






 






1-r  1  1

2  1-r -1

-3  2  4-r

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  The determinant 

of coefficients is 8 - 12r + 6r2 - r3 = (2-r) 3, so the 
eigenvalues are r1 = r2 = r3 = 2. The eigenvectors 
corresponding to this triple eigenvalue satisfy

 






 






-1  1  1

 2 -1 -1

-3  2  2

 

 







  









ξ1
ξ2
ξ3

 = 

 






 






0

0

0

.  Using row reduction we can reduce 

this to the equivalent system ξ1 - ξ2 - ξ3 = 0, and
ξ2 + ξ3 = 0.  If we let ξ2 = 1, then ξ3 = -1 and ξ1 = 0, 

so the only eigenvectors are multiples of ξξξξ = 
 






 






0

1

-1

.  
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17b. From part a, one solution of the given D.E. is 

x(1)(t) = 

 






 






0

1

-1

 e2t, but there are no other linearly 

independent solutions of this form.  

17c. We now seek a second solution of the form 
x = ξξξξte2t + ηηηηe2t.  Thus Ax = Aξξξξte2t + Aηηηηe2t and 
x′ = 2ξξξξte2t + ξξξξe2t + 2ηηηηe2t.  Equating like terms, we then 
have (A-2I)ξξξξ = 0 and (A-2I)ηηηη = ξξξξ.  Thus ξξξξ is as in part 
a and the second equation yields

 






 






-1  1  1

 2 -1 -1

-3  2  2

 

 







  









η1
η2
η3

 = 

 






 






0

1

-1

.  By row reduction this is 

equivalent to the system 

 






 






1  -1  -1

0   1   1

0   0   0

 

 







  









η1
η2
η3

 = 

 






 






0

1

0

.  If we 

choose η3 = 0, then η2 = 1 and η1 = 1, so ηηηη = 
 






 






1

1

0

.  Hence 

a second solution of the D.E. is 

x(2)(t) = 

 






 






0

1

-1

 te2t + 

 






 






1

1

0

 e2t.  

17d. Assuming x = ξξξξ(t2/2)e2t + ηηηηte2t + ζζζζe2t,  we have 
Ax = Aξξξξ(t2/2)e2t + Aηηηηte2t + Aξξξξe2t and 
x′′′′  = ξξξξte2t + 2ξξξξ(t2/2)e2t + ηηηηe2t + 2ηηηηte2t + 2ξξξξe2t and thus 
(A-2I)ξξξξ = 0, (A-2I)ηηηη = ξξξξ and(A-2I)ζζζζ = ηηηη.  Again, ξξξξ and ηηηη 
are as found previously and the last equation is 
equivalent to

 






 






-1  1  1

 2 -1 -1

-3  2  2

 

 







  









ζ1
ζ2
ζ3

 = 

 






 






1

1

0

.  By row reduction we find the 

equivalent system 

 






 






1  -1  -1

0   1   1

0   0   0

 

 







  









ζ1
ζ2
ζ3

 = 

 






 






-1

3

0

.  If we let 
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ζ2 = 0, then ζ3 = 3 and ζ1 =2, so ζζζζ = 
 






 






2

0

3

 and

x(3)(t) = 

 






 






0

1

-1

 (t2/2)e2t + 

 






 






1

1

0

 te2t + 

 






 






2

0

3

 e2t. 

17e. ΨΨΨΨ is the matrix with x(1) as the first column, x(2) as 
the second column and x(3) as the third column.

17f. T = 

 






 






0 1 2

1 1 0

-1 0 3

  and using row operations on T and I, or a 

computer algebra system, T-1 = 

 






 






-3  3  2

 3 -2 -2

-1  1  1

 and thus 

T-1AT = 

 






 






2 1 0

0 2 1

0 0 2

 = J.

19a. J2 = JJ = 
 

  




λ  1

0  λ
 
 

  




λ  1

0  λ
 = 

 



  





λ2  2λ

0  λ2

J3 = JJ2 = 
 

  




λ  1

0  λ
 
 



  





λ2  2λ

0  λ2
 = 

 



  





λ3  3λ2

0  λ3

19b. Based upon the results of part a, assume

Jn = 
 



  





λn  nλn-1

0     λn
, then

Jn+1 = JJn = 
 

  




λ  1

0  λ
 
 



  





λn  nλn-1

0     λn

     = 
 



  





λn+1  (n+1)λ n

0      λn+1
, which is the same as Jn with n 

replaced by n+1.  Thus, by mathematical induction,  Jn 
has the desired form.

19c. From Eq.(23), Section 7.7, we have

                                                Section 7.8                         155                 



exp(Jt) = I + ∑
n=1

∞
 
Jntn

n!

        = I + ∑
n=1

∞
 

 










 










λntn

n!
  

nλn-1tn

n!

0     
λntn

n!

        = 

 












 












1 + ∑
n=1

∞
 

λntn

n!
   ∑

n=1

∞
 

λn-1tn

(n-1)!

0     1 + ∑
n=1

∞
 

λntn

n!

        = 
 



  





eλt  teλt

0   eλt
, since 

∑
n=1

∞
 

λn-1tn

(n-1)!
 = t( )1 + ∑

n=1

∞
 

λntn

n!
 = teλt.

19d. From Eq. (28), Section 7.7, we have

x = exp(Jt)x0 = 
 



  





eλt teλt

0 eλt  



  





x1
0

x2
0
 = 

 



  





x1
0eλt+x20teλt

x2
0eλt

  = 
 



  





x1
0

x2
0
eλt + 

 



  





x2
0

0
teλt.

Section 7.9, Page 417

1. From Section 7.5 Problem 3 we have 

x(c) = c1 

  




1

1
 et +   c2 


  




1

3
 e-t.  Note that 

g(t) = 
 

  




1

0
 et + 

 

  




0

1
 t and that r = 1 is an eigenvalue of 

the coefficient matrix. Thus if the method of 
undetermined coefficients is used, the assumed form is 
given by Eq.(18).

2. Using methods of previous sections, we find that the 
eigenvalues are r1 = 2 and r2 = -2, with corresponding 

eigenvectors 
 



  





3

1
 and 

 



  





1

- 3
.  Thus 
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x(c) = c1
 



  





3

1
e2t + c2

 



  





1

- 3
 e-2t.  Writing the 

nonhomogeneous term as 
 

  




1

0
 et + 

 



  





0

3
 e-t we see that we 

can assume x(p) = aet + be-t.  Substituting this in the 
D.E., we obtain 

aet - be-t = Aaet + Abe-t + 
 

  




1

0
 et + 

 



  





0

3
 e-t, where A 

is the given coefficient matrix. All the terms involving 

et must add to zero and thus we have Aa - a + 
 

  




1

0
 = 

 

  




0

0
.  

This is equivalent to the system 

3 a2  = -1 and 3 a1 - 2a2 = 0, or a1 = -2/3 and 

a2 = -1/ 3 .  Likewise the terms involving e-t must add 

to zero, which yields Ab + b + 
 



  





0

3
 = 

 

  




0

0
. The solution 

of this system is b1 = -1 and b2 = 2/ 3 .  Substituting 

these values for a and b into x(p) and adding x(p) to 
x(c) yields the desired solution.

3. The method of undetermined coefficients is not straight 
forward since the assumed form of x(p) = acost + bsint 
leads to singular equations for a and b.  From Problem 3 
of Section 7.6 we find that a fundamental matrix is

ΨΨΨΨ(t) = 
 

  




5cost         5sint

2cost + sint  -cost + 2sint
.  The inverse 

matrix is

ΨΨΨΨ−1(t) = 

 










 










cost - 2sint

5
    sint

2cost + sint

5
    -cost

, which may be found as 

in Section 7.2 or by using a computer algebra system.  
Thus we may use the method of variation of parameters 
where x = ΨΨΨΨ(t)u(t) and u(t) is given by 
u′(t) = ΨΨΨΨ−1(t)g(t) from Eq.(27).  For this problem 

g(t) = 
 

  




-cost

sint
 and thus
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u′(t) = 

 










 










cost - 2sint

5
    sint

2cost + sint

5
   -cost

 
 

  




-cost

sint

      = 
1

5
 
 

  




  2 - 3cost2t + sin2t

-1 - cos2t - 3sin2t
,

after multiplying and using appropriate trigonometric 
identities.  Integration and multiplication by ΨΨΨΨ yields 
the desired solution.

4. In this problem we use the method illustrated in Example 
1. From Problem 4 of Section 7.5 we have the 

transformation matrix T = 
 

  




 1  1

-4  1
.  Inverting T we find 

that T−1 = 
1

5  

  




1  -1

4   1
.  If we let x = Ty and substitute 

into the D.E., we obtain

y′ = 
1

5
 
 

  




1  -1

4   1
 
 

  




1   1

4  -2
 
 

  




 1  1

-4  1
 y + 

1

5
 
 

  




1  -1

4   1
 
 



  





e-2t

-2et

       = 
 

  




-3  0

 0  2
 y + 

1

5
 
 



  





e-2t + 2et

4e-2t - 2et
.  This corresponds to 

the two scalar equations 
     y1′  + 3y1 = (1/5)e-2t + (2/5)et, 
     y2′  - 2y2 = (4/5)e-2t - (2/5)et,
which may be solved by the methods of Section 2.1.  For 
the first equation the integrating factor is e3t and we 
obtain (e3ty1)′ = (1/5)et + (2/5)e4t, so 
e3ty1 = (1/5)e

t + (1/10)e4t + c1.  For the second equation 

the integrating factor is e-2t, so
(e-2ty2)′  = (4/5)e-4t - (2/5)e-t.  Hence 
e-2ty2 = -(1/5)e

-4t + (2/5)e-t + c2.  Thus 

y = 
 

  




1/5

-1/5
 e-2t + 

 

  




1/10

2/5
 et + 

 



  





c1e
-3t

c2e
2t

.  Finally, 

multiplying by T, we obtain

x = Ty = 
 

  




0

-1
 e-2t + 

 

  




1/2

0
 et + c1 


  




1

-4
 e-3t + c2 


  




1

1
 e2t.

The last two terms are the general solution of the 
corresponding homogeneous system, while the first two 
terms constitute a particular solution of the 
nonhomogeneous system.
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12. Since the coefficient matrix is the same as that of 
Problem 3, use the same procedure as done in that 
problem, including the ΨΨΨΨ−1 found there.  In the interval 
π/2 < t < π  sint > 0 and cost < 0; hence |sint| = sint, 
but |cost| = -cost.

14. To verify that the given vector is the general solution 
of the corresponding system, it is sufficient to 
substitute it into the D.E.  Note also that the two terms 
in x(c) are linearly independent.  If we seek a solution 
of the form x  = ΨΨΨΨ(t)u(t) then we find that the equation 
corresponding to Eq.(26) is tΨΨΨΨ(t)u′(t) = g(t), where

ΨΨΨΨ(t) = 
 

  




t  1/t

t  3/t
 and g(t) = 

 



  





1-t2

2t
.  Thus 

u′ = (1/t)ΨΨΨΨ−1(t)g(t).  Using a computer algebra system or 
row operations on ΨΨΨΨ and I, we find that 

ΨΨΨΨ−1 = 
 

  




3/2t  -1/2t

-t/2   t/2
 and hence u1′  = 

3

2t2
 − 

3

2
 − 

1

t
 and

u2′  = 
−1
2
 + 

t2

2
 + t, which yields u1 = 

−3
2t

 − 
3t

2
 − lnt + c1 

and u2 = − 
1

2
t + 

t3

6
 + 

t2

2
 + c2.  Multiplication of u by 

ΨΨΨΨ(t) yields the desired solution.
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CHAPTER 8

Section 8.1, Page 427

 In the following problems that ask for a large number of 
numerical calculations the first few steps are shown.  It is 
then necessary to use these samples as a model to format a 
computer program or calculator to find the remaining values.

1a. The Euler formulas is yn+1 = yn + h(3 + tn - yn) for 
n = 0,1,2,3... and with t0 = 0 and y0 = 1.  Thus 
y1 = 1 + .05(3 + 0 - 1) = 1.1
y2 = 1.1 + .05(3 + .05 - 1.1) = 1.1975 @ y(.1)
y3 = 1.1975 + .05(3 + .1 - 1.1975) = 1.29263
y4 = 1.29263 + .05(3 + .15 - 1.29263) = 1.38549 @ y(.2).

1c. The backward Euler formula is yn+1 = yn + h(3 + tn+1 - yn+1).  
Solving this for yn+1 we find yn+1= [yn + h(3 + tn+1)]/(1+n).

Thus y1 = 
1 + .05(3.05)

1.05
 = 1.097619 and

 y2 = 
1.097619 + .05(3.1)

1.05
 = 1.192971.

5a. y1 = y0 + h
y0
2 + 2t0y0

3 + t0
2

 = .5 + .05
(.5) 2 + 0
3 + 0

 = .504167

y2 = .504167 + .05
(.504167) 2 + 2(.05)(.504167)

3 + (.05) 2
 = .509239

5c.  y1 = .5 + .05
y1
2 + 2(.05)y1

3 + (.05) 2
, which is a quadratic 

equation in y1.  Using the quadratic formula, or an 
equation solver, we obtain y1 = .5050895.  Thus

y2 = .5050895 + .05
y2
2 + 2(.1)y2
3 + (.1) 2

 which is again quadratic 

in y2, yielding y2 = .5111273.

7a. For part a eighty steps must be taken, that is, 
n = 0,1,...79 and for part b 160 steps must taken with 
n = 0,1,...159.  Thus use of a programmable calculator or 
a computer is required.

7c. We have yn+1 = yn + h(.5-tn+1 + 2yn+1), which is linear in 

yn+1 and thus we have yn+1 = 
yn + .5h -htn+1

1 - 2h
.  Again, 80 

160                                                                                                 
                     



steps are needed here and 160 steps in part d.  In This 
case a spreadsheet is very useful.  The first few, the 
middle three and last two lines are shown for h = .025:

   n          yn          tn          yn+1
   0          1           0         1.06513
   1        1.06513     .025        1.13303
   2        1.13303     .050        1.20381
   
   38       7.49768     .950        7.87980
   39       7.87980     .975        8.28137
   40       8.28137    1.000        8.70341

        
        78     55.62105     1.950      58.50966
        79     58.50966     1.975      61.54964
        80     61.54964     2.000

       
At least eight decimal places were used in all 
calculations.

9c. The backward Euler formula gives 

yn+1 = yn + h tn+1 + yn+1 .  Subtracting yn from both 
sides, squaring both sides, and solving for yn+1 yields

yn+1 = yn + 
h2

2
 + h yn + tn+1 + h

2/4 .  Alternately, an 

equation solver can be used to solve 

yn+1 = yn + h tn+1 + yn+1  for yn+1.  The first few values, for 
h = 0.25, are y1 = 3.043795, y2 = 2.088082, y3 = 3.132858 and 
y4 = 3.178122 @ y(.1).

15. If y¢ = 1 - t + 4y then 
y≤ = -1 + 4y¢ = -1 + 4(1-t+4y) = 3 - 4t + 16y.  In 
Eq.(12) we let yn, yn¢  and yn≤ denote the approximate 
values of f(tn), f¢(tn), and f≤(tn), respectively.  
Keeping the first three terms in the Taylor series we 
have 
yn+1 = yn + yn¢ h + yn≤ h2/2
     = yn + (1 - tn + 4yn)h + (3 - 4tn + 16yn)h

2/2.  For n = 0, 
t0 = 0 and y0 = 1 we have 

y1 = 1 + (1 - 0 + 4)(.1) + (3 - 0 + 16)
(.1) 2

2
 = 1.595.

16. If y = f(t) is the exact solution of the I.V.P., then 
f¢(t) = 2f(t) - 1 and f≤(t) = 2f¢(t) = 4f(t) - 2.  From 

Eq.(21), en+1 = [2f(tn
-
) - 1]h2, tn < tn

-
 < tn + h. Thus a 
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bound for en+1 is |en+1| £ [1 + 2 max
0£t£1

|f(t)|]h2.  Since the 

exact solution is y = f(t) = [1 + exp(2t)]/2, 

en+1 = h
2exp(2tn

-
).  Therefore 

|e1| £ (0.1) 2exp(0.2) = 0.012 and 
|e4| £ (0.1) 2exp(0.8) = 0.022, since the maximum value of 

exp(2tn
-
) occurs at t = .1 and t = .4 respectively.  From 

Problem 2 of Section 2.7, the actual error in the first 
step is .0107.�

19. The local truncation error is en+1 = f≤(tn
-
)h2/2.  For this 

problem f¢(t) = 5t - 3f1/2(t) and thus
f≤(t) = 5 - (3/2)f-1/2f¢ = 19/2 - (15/2)tf-1/2.  
Substituting this last expression into en+1 yields the 
desired answer.

22d. Since y≤ = -5psin5pt, Eq.(21) gives en+1 = -(5p/2)sin(5ptn
-
)h2.  

Thus Ωen+1Ω < 
5p
2
h2 < .05, or h < 

1

50p
 @ .08.

23a. From Eq.(14) we have En = f(tn) - yn.  Using this in 
Eq.(20) we obtain 

En+1 = En + h{f[tn,f(tn)] - f(tn,yn)} + f≤(tn
-
)h2/2.  Using 

the given inequality involving L we have 
|f[tn,f(tn)] - f(tn,yn)| £ L |f(tn) - yn| = L|En| and thus 
|En+1| £ |En| + hL|En| + max

t0£t£tn
|f≤(t)|h2/2 = a|En| + bh2.

23b. Since a = 1 + hL, a - 1 = hL.  Hence bh2(an-1)/(a-1) = 
bh2[(1+hL) n - 1]/hL = bh[(1+hL) n - 1]/L.

23c. (1+hL) n £ exp(nhL) follows from the observation that 
exp(nhL) = [exp(nL)] n = (1 + hL + h2L2/2! + ...) n.  
Noting that nh = tn - t0, the rest follows from Eq.(ii).

24. The Taylor series for f(t) about t = tn+1 is 

f(t) = f(tn+1) + f¢(tn+1)(t-tn+1) + f≤(tn+1)
(t-tn+1) 2

2
 + º.  

Letting f¢(t) = f(t,f(t)), t = tn and h = tn+1 - tn we 

have f(tn) = f(tn+1) - f(tn+1,f(tn+1))h + f≤(tn
-
)h2/2, where 

tn < tn
-
 < tn+1.  Thus

f(tn+1) = f(tn) + f(tn+1,f(tn+1))h - f≤(tn
-
)h2/2.  Comparing 

this to Eq. 13 we then have en+1 = -f≤(tn
-
)h2/2.
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25b. From Problem 1 we have yn+1 = yn + h(3 + tn - yn), so
y1 = 1 + .05(3 + 0 - 1) = 1.1
y2 = 1.1 + .05(3 + .05 - 1.1) = 1.20 @ y(.1)
y3 = 1.20 + .05(3 + .1 - 1.20) = 1.30
y4 = 1.30 + .05(3 + .15 - 1.30) = 1.39 @ y(.2).

Section 8.2, Page 434

1a. The improved Euler formula is 
yn+1 = yn + [yn¢  + f(tn + h, yn + hyn¢ )]h/2 where 
y¢ = f(t,y) = 3 + t - y.  Hence yn¢  = 3 + tn - yn and 
f(tn + h, yn + hyn¢ ) = 3 + tn+1 - (yn + hyn¢ ).  Thus we obtain 

yn+1 = yn + (3 + tn - yn)h + 
h2

2
(1 - yn¢ )                        

         = yn + (3 + tn - yn)h + 
h2

2
(-2 - tn + yn).  Thus

y1 = 1 + (3-1)(.05) + 
(.05) 2

2
(-2+1) = 1.098750 and

y2 = y1 + (3 +.05 - y1)(.05) + 
(.05) 2

2
(-2 -.05 + y1) = 1.19512 

are the first two steps.  In this case, the equation 
specifying yn+1 is somewhat more complicated when 

yn¢  = 3 + tn - yn was substituted.  When designing the steps to 
calculate yn+1 on a computer, yn¢  can be calculated first and 
thus the simpler formula for yn+1 can be used.  The exact 

solution is y(t) = 2 + t - e-t, so y(.1) = 1.19516, 
y(.2) = 1.38127, y(.3) = 1.55918 and y(.04) = 1.72968, so the 
approximations using h = .0125 are quite accurate to five 
decimal places.

4. In this case yn¢  = 2tn + e
-tnyn and thus the improved Euler 

formula is 

yn+1 = yn + 
[(2tn + e

-tnyn) + 2tn+1 + e
-tn+1(yn + hyn¢ ) ]h

2
.  For 

n = 0, 1, 2 we get y1 = 1.05122, y2 = 1.10483 and y3 = 1.16072 
for h = .05.

10. See Problem 4.

11. The improved Euler formula is 

yn+1 = yn + 
f(tn,yn) + f(tn+1, yn +hf(tn,yn))

2
 h.  As suggested 

in the text, it’s best to perform the following steps when 
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implementing this formula:  let k1 = (4 - tnyn)/(1 + yn
2), 

k2 = yn + hk1 and k3 = (4 - tn+1k2)/(1 + k2
2).  Then 

yn+1 = yn + (k1 + k3)h/2.
           
14a. Since f(tn + h) = f(tn+1) we have, using the first part of 

Eq.(5) and the given equation, 
en+1 = f(tn+1) - yn+1 = [f(tn)-yn] + [f¢(tn) - 
yn¢  + f(tn+h, yn+hy¢n)

2
]h + f≤(tn)h2/2! + f¢¢¢(tn

-
)h3/3!.  

Since yn = f(tn) and yn¢  = f¢(tn) = f(tn,yn) this reduces 
to 
en+1 = f≤(tn)h2/2! - {f[tn+h, yn + hf(tn,yn)]  

                           - f(tn,yn)}h/2! + f¢¢¢(tn
-
)h3/3!, 

which can be written in the form of Eq.(i).

14b. First observe that y¢ = f(t,y) and y≤ = ft(t,y) + 
fy(t,y)y¢.  Hence f≤(tn) = ft(tn,yn) + fy(tn,yn)f(tn,yn).  
Using the given Taylor series, with a = tn, h = h, b = yn 
and k = hf(tn,yn) we have

  f[tn+h,yn+hf(tn,yn)] = f(tn,yn)+ft(tn,yn)h+fy(tn,yn)hf(tn,yn)

+ [ftt(x,h)h2+2fty(x,h)h2f(tn,yn)+fyy(x,h)h2f2(tn,yn)]/2! 

where tn < x < tn + h and |h-yn| < h|f(tn,yn)|.  
Substituting this in Eq.(i) and using the earlier 
expression for f≤(tn) we find that the first term on the 
right side of Eq.(i) reduces to 
-[ftt(x,h) + 2fty(x,h)f(tn,yn) + fyy(x,h)f2(tn,yn)]h3/4, 
which is proportional to h3 plus, possibly, higher order 
terms.  The reason that there may be higher order terms 
is because x and h will, in general, depend upon h.

14c. If f(t,y) is linear in t and y, then ftt = fty = fyy = 0 
and the terms appearing in the last formula of part (b) 
are all zero.

15. Since f(t) = [4t - 3 + 19exp(4t)]/16 we have 
f¢¢¢(t) = 76exp(4t) and thus from Problem 14c, since f is 
linear in t and y, we find 

en+1 = 38[exp(4tn
-
)]h3/3.  Thus 

|en+1| £ (38h3/3)exp(8) = 37,758.8h3 on 0 £ t £ 2. For n = 1, 
we have |e1| = |f(t1) - y1| £ (38/3)exp(0.2)(.05) 3 = .001934, 
which is approximately 1/15 of the error indicated in Eq.(27) 
of the previous section.
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19. The Euler method gives 

y1 = y0 + h(5t0 - 3 y0 ) = 2 + .1(-3 2 ) = 1.57574 and the 
improved Euler method gives

 

y1 = y0 + 
f(t0,y0) + f(t1,y1)

2
 h

   = 2 + [-3 2  + (.5 - 3 1.57574 )].05 = 1.62458.  

Thus, the estimated error in using the Euler method is 
1.62458 - 1.57574 = .04884.  Since we want our error tolerance 
to be no greater than .0025 we need to adjust the step size 

downward by a factor of .0025/.04884  @ .226.  Thus a step 
size of h = (.1)(.23) = .023 would be needed for the required 
local truncation error bound of .0025.

24. The modified Euler formula is 
yn+1 = yn + hf[tn + h/2, yn + (h/2)f(tn,yn)] where 
f(t,y) = 5t - 3 y .  Thus 

y1 = 2 + .05[5(t0 + .025) - 3sqrt(2 + .025(5t0 - 3 2 ))] 
   = 1.79982 for t0 = 0.  The values obtained here are 
between the values for h = .05 and for h = .025 using the 
Euler method in Problem 2.  

Section 8.3, Page 438

4. The Runge-Kutta formula is
yn+1 = yn + h(kn1 + 2kn2 + 2kn3 + kn4)/6 where kn1, kn2 
etc. are given by Eqs.(3).  Thus for 
f(t,y) = 2t  + e-ty, (t0,y0) = (0,1) and h = .1 we have

k01 = 0 + e
0 = 1

k02 = 2(0 + .05) + e
-(0+.05)(1+.05k01) = 1.048854

k03 = 2(.05) + e
-(.05)(1+.05k02) = 1.048738

k04 = 2(.1) + e
-(.1)(1+.1k03) = 1.095398 and hence

y(.1) @ y1 = 1 + .1(k01 + 2k02 + 2k03 + k04)/6 = 1.104843.

11. We have f(tn,yn) = (4 - tnyn)/(1 + yn
2). Thus for t0 = 0, 

y0 = -2 and h = .1 we have
k01 = f(0,-2) = .8
k02 = f(.05, - 2 + .05(.8)) = f(.05, - 1.96) = .846414,
k03 = f(.05, - 2 + .05k02) = f(.05, - 1.957679) = .847983,
k04 = f(.1, - 2 + .1k03) = f(.1, - 1.915202) = .897927, and 
y1 = -2 + .1(k01 + 2k02 + 2k03 + k04)/6 = -1.915221.  For 
comparison, see Problem 11 in Sections 8.1 and 8.2.
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14a.

14b. We have f(tn,yn) = tn
2 + yn

2, t0 = 0, y0 = 1 and h = .1 so 

k01 = 0
2 + 12 = 1

k02 = (.05) 2 + (1 + .05) 2 = 1.105

k03 = (.05) 2 + [1 + .05(1.105)] 2 = 1.11605

k04 = (.1) 2 + [1 + .1(1.11605)] 2 = 1.245666 and thus 
y1 = 1 + .1(k01 + 2k02 + 2k03 + k04)/6 = 1.11146.  Using these 
steps in a computer program, we obtain the following values 
for y:

t h =.1 h = .05 h = .025 h = 0.125
.8 5.842 5.8481 5.8483 5.8486
.9 14.0218 14.2712 14.3021 14.3046
.95 46.578 49.757 50.3935

14c. No accurate solution can be obtained for y(1), as the values 
at t = .975 for h = .025 and h = .0125 are 1218 and 23,279 
respectively.  These are caused by the slope field becoming 
vertical as t Æ 1.

Section 8.4, Page 444

4a. The predictor formula is
yn+1 = yn + h(55fn - 59fn-1 + 37fn-2 - 9fn-3)/24
and the corrector formula is
yn+1 = yn + h(9fn+1 +19fn -5fn-1 + fn-2)/24, where 
fn = 2tn + exp(-tnyn).  Using the Runge-Kutta method, from 
Section 8.3, Problem 4a, we have for t0 = 0 and y0 = 1, 
y1 = 1.1048431, y2 = 1.2188411 and y3 = 1.3414680.  Thus the 
predictor formula gives y4 = 1.4725974, so f4 = 1.3548603 and 
the corrector formula then gives y4  = 1.4726173, which is the 
desired value.  These results, and the next step, are 
summarized in the following table:

  n yn fn yn+1 fn+1 yn+1
0 1 1 Corrected 
1 1.1048431   1.0954004    
2 1.2188411   1.1836692   
3 1.3414680  1.2686862 1.4725974 1.3548603 1.4726173
4 1.4726173  1.3548559 1.6126246 1.4465016 1.6126215
5 1.6126215
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where fn is given above, yn+1 is given by the predictor 
formula, and the corrected yn+1 is given by the corrector 
formula.  Note that the value for f4 on the line for 
n = 4 uses the corrected value for y4, and differs 
slightly from the f4 on the line for n = 3, which uses 
the predicted value for y4.

4b. The fourth order Adams-Moulton method is given by 
Eq. (10): yn+1 = yn + (h/24)(9fn+1 + 19fn - 5fn-1 + fn-2).  
Substituting h = .1 we obtain 
yn+1 = yn + (.0375)(19fn - 5fn-1 + fn-2) + .0375fn+1.  
For n = 2 we then have 

y3 = y2 + (.0375)(19f2 - 5f1 + f0) + .0375f3 

   = 1.293894103 + .0375(.6 + e-.3y3), using values for 
y2, f0, f1, f2 from part a.  An equation solver then yields 
y3 = 1.341469821.  Likewise 

y4 = y3 + (.0375)(19f3 - 5f2 + f1) + .0375f4 

   = 1.421811841 + .0375(.8 + e-.4y4), where f3 is calculated 
using the y3 found above.  This last equation yields 
y4 = 1.472618922.  Finally 

y5 = y4 + (.0375)(19f4 - 5f3 + f2) + .0375f5
   = 1.558379316 + .0375(1.0 + e-.5y5), which gives  
y5 = 1.612623138.  

4c. We use Eq. (16):
yn+1 = (1/25)(48yn - 36yn-1 + 16yn-2 - 3yn-3 + 12hfn+1).  
Thus y4 = .04(48y3 - 36y2 + 16y1 - 3y0) + .048f4 

        =  1.40758686 + .048(.8 + e-.4y4), using values 
for y0, y1. y2, y3 from part a.  An equation solver then 
yields y4 = 1.472619913.  Likewise 
y5 = .04(48y4 - 36y3 + 16y2 - 3y1) + .048f5
   = 1.54319349 + .048(1 + e-.5y5), which gives  
y5 = 1.612625556.

7a. Using the predictor and corrector formulas (Eqs.6 and 10) 
with fn = .5 - tn + 2yn and using the Runge-Kutta method 
to calculate y1,y2 and y3, we obtain the following table 
for h = .05, t0 = 0, y0 = 1:
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n     yn       fn         yn+1       fn+1         yn+1
                                                  corrected 

0   1   2.5
1 1.130171  2.710342
2 1.271403  2.9420805 
3 1.424858  3.199717   1.591820   3.483640   1.591825
4 1.591825  3.483649   1.773716   3.797433   1.773721
5 1.773721  3.797443   1.972114   4.144227   1.972119
6 1.972119  4.144238   2.188747   4.527495   2.188753
7 2.188753  4.527507   2.425535   4.951070   2.425542
8 2.425542  4.951084   2.684597   5.419194   2.684604
9 2.684604  5.419209   2.968276   5.936551   2.968284
10 2.968284

7b. From Eq.(10) we have 

yn+1 = yn + 
h

24
(9fn+1 + 19fn - 5fn-1 + fn-2)

    = yn + 
h

24
[9(.5 - tn+1 + 2yn+1) + 19fn - 5fn-1 + fn-2].  

Solving for yn+1 we obtain 

yn+1 = [yn + 
h

24
(19fn - 5fn-1 + fn-2 + 4.5 - 9tn+1)]/(1-.75h).  

For h = .05, t0 = 0, y0 = 1 and using y1 and y2 as calculated 
using the Runge-Kutta formula, we obtain the following table:

n         yn            fn         yn+1
0          1            2.5
1      1.130171      2.710342    
2      1.271403      2.942805     1.424859
3      1.424859      3.199718     1.591825
4      1.591825      3.483650     1.773722
5      1.773722      3.797444     1.972120
6      1.972120      4.144241     2.188755
7      2.188755      4.527510     2.425544
8      2.425544      4.951088     2.684607
9     2.684607     5.419214     2.968287
10    2.968287

7c. From Eq (16) we have
yn+1 = (48yn - 36yn-1 + 16yn-2 - 3yn-3 + 12hfn+1)/25 

   = [48yn - 36yn-1 + 16yn-2 - 3yn-3 + 12h(.5-tn+1)]/25+(24/25)hyn+1.  
Solving for yn+1 we have 
yn+1 = [48yn - 36yn-1 + 16yn-2 - 3yn-3 + 12h(.5-tn+1)]/(25-24h). 
Again, using Runge-Kutta to find y1 and y2, we then obtain 
the following table:
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n        yn             yn+1
0         1
1     1.130170833
2     1.271402571
3     1.424858497    1.591825573
4     1.591825573    1.773724801
5     1.773724801    1.972125968
6     1.972125968    2.188764173
7     2.188764173    2.425557376
8     2.425557376    2.684625416
9     2.684625416    2.968311063
10    2.968311063

The exact solution is y(t) = et + t/2 so y(.5) = 2.9682818 and 
y(2) = 55.59815, so we see that the predictor-corrector 
method in part a is accurate through three decimal places.

16. Let P2(t) = At2 + Bt + C.  As in Eqs. (12) and (13) let 
P2(tn-1) = yn-1, P2(tn) = yn, P2(tn+1) = yn+1 and 
P2¢ (tn+1) = f(tn+1,yn+1) = fn+1.  Recall that tn-1 = tn -h 
and tn+1 = tn + h and thus we have the four equations:

A(tn-h) 2 + B(tn-h) + C = yn-1     (i)

Atn
2      + Btn     + C = yn      (ii)

A(tn+h) 2 + B(tn+h) + C = yn+1     (iii)
          2A(tn+h) + B = fn+1     (iv)

Subtracting Eq. (i) from Eq. (ii) to get Eq. (v) (not 
shown) and subtracting Eq. (ii) from Eq. (iii) to get Eq. 
(vi) (not shown), then subtracting Eq. (v) from Eq. (vi) 
yields yn+1 - 2yn + yn-1 = 2Ah2, which can be solved for 
A.  Thus B = fn+1 - 2A(tn+h) [from Eq. (iv)] and
C = yn - tnfn+1 + Atn2 + 2Atnh [from Eq. (ii)].  Using 
these values for A, B and C in Eq. (iv) yields
yn+1 = (1/3)(4yn-yn-1+2hfn+1), which is Eq. (15).

Section 8.5, Page 454

2a. If 0 £ t £ 1 then we know 0 £ t2 £ 1 and hence 
ey £ t2 + ey £ 1 + ey.  Since each of these terms 
represents a slope, we may conclude that the solution of 
Eq.(i) is bounded above by the solution of Eq.(iii) and 
is bounded below by the solution of Eq.(iv).

2b. f1(t) and f2(t) can each be found by separation of 
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variables.  For f1(t) we have 
1

1+ey
dy = dt, or 

e-y

e-y+1
dy = dt.  Integrating both sides yields 

-ln(e-y+1) = t + c.  Solving for y we find 
y = ln[1/(c1e

-t-1)].  Setting t = 0 and y = 0, we obtain 

c1 = 2 and thus f1(t) = ln[et/(2-et)].  As t Æ ln 2, we 
see that f1(t) Æ �.  A similar analysis shows that 
f2(t) = ln[1/(c2-t)], where c2 = 1 when the I.C. are 
used.  Thus f2(t) Æ � as t Æ 1 and thus we conclude 
that f(t) Æ � for some t such that ln2 £ t £ 1.

2c. From Part b:  f1(.9) = ln[1/(c1e-.9-1)] = 3.4298 yields 
c1 = 2.5393 and thus f1(t) Æ � when t @ .9319.  
Similarly for f2(t) we have c2 = .9324 and thus 
f2(t) Æ � when t @ .932.

4a. The D.E. is y¢ + 10y = 2.5t2 + .5t.  So yh = ce-10t is the 
solution of the related homogeneous equation and the 
particular solution, using  undetermined coefficients, is 
yp = At

2 + Bt + C.  
Substituting this 
into the D.E. yields 
A = 1/4, B = C = 0.  
To satisfy the I.C., 
c = 4, so 
y(t) = 4e-10t + (t2/4), 
which is shown in the 
graph.

4b. From the discussion following Eq (15), we see that h must 

be less than 
2

ΩrΩ
 for the Euler method to be stable.  

Thus, for r = 10, h < .2.  For h = .2 we obtain the 
following values:

     t =  4   4.2   4.4   4.6   4.8   5.0
     y =  8    .4   8.84  1.28  9.76  2.24

 
and for h = .18 we obtain:

     t =  4.14  4.32  4.50  4.68  4.86  5.04
     y =  4.26  4.68  5.04  5.48  5.89  6.35.

Clearly the second set of values is stable, although far 
from accurate. 
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4c. For a step size of .25 we find

     t = 4     4.25   4.75   5.00
     y = 4.018 4.533  5.656  6.205,

 
for a step size of .28 we find

     t =  4.2    4.48   4.76    5.00
     y = 10.14  10.89  11.68   12.51,

 
and for a step size of .3 we find

     t = 4.2    4.5    4.8    5.1
     y = 353    484    664    912.  

Thus instability appears to occur about h = .28 and 
certainly by h = .3.  Note that the exact solution for 
t = 5 is y = 6.2500, so for h = .25 we do obtain a good 
approximation.

4d. For h = .5 the error at t = 5 is .013, while for h = .385, 
the error at t = 5.005 is .01.  
 

5a. The general solution of the D.E. is y(t) = t + celt, 
where y(0) = 0 Æ c = 0 and thus y(t) = t, which is 
independent of l.

5c. Your result in Part b will depend upon the particular 
computer system and software that you use.  If there is 
sufficient accuracy, you will obtain the solution y = t 
for t on 0 £ t £ 1 for each value of l that is given, 
since there is no discretization error.  If there is not 
sufficient accuracy, then round-off error will affect 
your calculations.  For the larger values of l, the 
numerical solution will quickly diverge from the exact 
solution, y = t, to the general solution y = t + celt, 
where the value of c depends upon the round-off error.  
If the latter case does not occur, you may simulate it by 
computing the numerical solution to the I.V.P. 
y¢ - ly = 1 - lt, y(.1) = .10000001.  Here we have 
assumed that the numerical solution is exact up to the 
point t = .09 [i.e. y(.09) = .09] and that at t = .1 
round-off error has occurred as indicated by the slight 
error in the I.C.  It has also been found that a larger 
step size (h = .05 or h = .1) may also lead to round-off 
error.
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Section 8.6, Page 457

2a. The Euler formula is xn+1 = xn + hfn, where 

fn ==== 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

2xn+tnyn
xnyn

, x0 = 1 and y0 = 1.Thus f0 = 
 Ë
Ê
ÁÁ  ̄

�
��

2-0

(1)(1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2

1
, x1 ==== 

 Ë
Ê
ÁÁ  ̄

�
��

1+.1(2)

1+.1(1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1.2

1.1
,

f1 = 
 Ë
Ê
ÁÁ  ̄

�
��

2.4+.1(1.1)

(1.2)(1.1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2.51

1.32
 

and x2 =  Ë
Ê
ÁÁ  ̄

�
��

1.2+.1(2.51)

1.1+.1(1.32)
 ==== 

 Ë
Ê
ÁÁ  ̄

�
��

1.451

1.232
 @@@@ 

 Ë
Ê
ÁÁ  ̄

�
��

f(.2)

y(.2)

2b. Eqs. (7) give:

k01 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

f(0,1,1)

g(0,1,1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2+0

(1)(1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2

1

k02 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

2.4+.1(1.1)

(1.2)(1.1)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2.51

1.32

k03 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

2.502+.1(1.132)

(1.251)(1.132)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

2.6152

1.41613

k04 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

3.04608+.2(1.28323)

(1.52304)(1.28323)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

3.30273

1.95441

Using Eq. (6) in scalar form, we then have
x1 = 1+(.2/6)[2+2(2.51)+2(2.6152)+3.30273] = 1.51844
y1 = 1+(.2/6)[1+2(1.32)+2(1.41613)+1.95440] = 1.28089.

7. Write a computer program to do this problem as there are 
twenty steps or more for h £ .05.

8. If we let y = x¢, then y¢ = x≤ and thus we obtain the 
system x¢ = y and y¢ = t-3x-t2y, with x(0) = 1 and 
y(0) = x¢(0) = 2.  Thus f(t,x,y) = y, 
g(t,x,y) = t - 3x - t2y, t0 = 0, x0 = 1 and y0 = 2.  If a 
program has been written for an earlier problem, then its 
best to use that.  Otherwise, the first two steps are as 
follows:
 

k01 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

2

-3
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k02 ==== 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

2+(-.15)

.05-3(1.1)-(.05) 2(1.85)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1.85

-3.25463

k03 ==== 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

2+(-.16273)

.05-3(1.0925)-(.05) 2(1.83727)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1.83727

-3.23209

k04 ==== 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

2+(-.32321)

.1-3(1.18373)-(.1) 2(1.67679)
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1.67679

-3.46796

and thus

x1 = 1+(.1/6)[2 + 2(1.85)+2(1.83727)+(1.67679)]=1.18419,
y1 = 2+(.1/6)[-3-2(3.25463)-2(3.23209)-3.46796]=1.67598,  

which are approximations to x(.1) and y(.1) = x¢(.1).
In a similar fashion we find

k11 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

1.67598

-3.46933
           k12 ==== 

 Ë
Ê
ÁÁ  ̄

�
��

1.50251

-3.68777

k13 ==== 
 Ë
Ê
ÁÁ  ̄

�
��

1.49159

-3.66151
           k14 ==== 

 Ë
Ê
ÁÁ  ̄

�
��

1.30983

-3.85244

and thus

x2=x1+(.1/6)[1.67598+2(1.50251)+2(1.49159)+1.30983]=1.33376
y2=y1-(.1/6)[3.46933+2(3.68777)+2(3.66151)+3.85244]=1.30897.  

Three more steps must be taken in order to approximate 
x(.5) and y(.5) = x¢(.5).  The intermediate steps yield 
x(.3) @ 1.44489, y(.3) @ .9093062 and x(.4) @ 1.51499, 
y(.4) @ .4908795.
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CHAPTER 9

Section 9.1, Page 468

For Problems 1 through 16, once the eigenvalues have been 
found, Table 9.1.1 will, for the most part, quickly yield the 
type of critical point and the stability.  In all cases it 
can be easily verified that A is nonsingular.

1a. The eigenvalues are found from the equation det(A-rI)=0.  

Substituting the values for A we have 
Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

3-r  -2

2  -2-r
  = 

r2 - r - 2 = 0 and thus the eigenvalues are r1 = -1 and 

r2 = 2.  For r1 = -1, we have  Ë
Ê
ÁÁ  ̄

�
��

4  -2

2  -1  Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and thus 

xxxx(1) = 
 Ë
Ê
ÁÁ  ̄

�
��

1

2
 and for r2 we have  Ë

Ê
ÁÁ  ̄

�
��

1  -2

2  -4  Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and thus 

xxxx(2) = 
 Ë
Ê
ÁÁ  ̄

�
��

2

1
. 

1b. Since the eigenvalues differ in sign, the critical point 
is a saddle point and is unstable.

1d.

4a. Again the eigenvalues are given by 
Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

1-r  -4

4  -7-r
 = 

r2 + 6r + 9 = 0 and thus r1 = r2 = -3.  The eigenvectors 

are solutions of 
 Ë
Ê
ÁÁ  ̄

�
��

4  -4

4  -4  Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and hence there is 

just one eigenvector xxxx = 
 Ë
Ê
ÁÁ  ̄

�
��

1

1
.

4b. Since the eigenvalues are negative, (0,0) is an improper 
node which is asymptotically stable.  If we had found 
that there were two independent eigenvectors then (0,0) 
would have been a proper node, as indicated in Case 3a.
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4d.

7a. In this case det(A - rI) = r2 - 2r + 5 and thus the 
eigenvalues are r1,2 = 1 ± 2i.  For r1 = 1 + 2i we have

 Ë
Ê
ÁÁ  ̄

�
��

2-2i  -2

4  -2-2i
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

2-2i  -2

8-8i  -8
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and thus 

xxxx(1) = 
 Ë
Ê
ÁÁ  ̄

�
��

1

1-i
.  Similarly for r2 = 1-2i we have 

 Ë
Ê
ÁÁ  ̄

�
��

2+2i  -2

4  -2+2i
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and hence xxxx(2) = 

 Ë
Ê
ÁÁ  ̄

�
��

1

1+i
.

7b. Since the eigenvalues are complex with positive real 
part, we conclude that the critical point is a spiral 
point and is unstable.

7d.

10a. Again, det(A-rI) = r2 + 9 and thus we have r1,2 = ±3i.  

For r1 = 3i we have  Ë
Ê
ÁÁ  ̄

�
��

1-3i  2

 -5  -1-3i
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and thus 

xxxx(1) = 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

2

-1+3i
.  Likewise for r2 = -3i, 

 Ë
Ê
ÁÁ  ̄

�
��

1+3i  2

-5  -1+3i
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 so that xxxx(2) = 

 Ë
Ê
ÁÁ  ̄

�
��

2

-1-3i
.

10b. Since the eigenvalues are pure imaginary the critical 
point is a center, which is stable.
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10d.

13. If we let x = x0 + u then x¢¢¢¢ = u¢¢¢¢ and thus the system 

becomes u¢¢¢¢ = 
 Ë
Ê
ÁÁ  ̄

�
��

1  1

1 -1
 x0 + 

 Ë
Ê
ÁÁ  ̄

�
��

1  1

1 -1
 u - 

 Ë
Ê
ÁÁ  ̄

�
��

2

0
 which will be in 

the form of Eq.(2) if 
 Ë
Ê
ÁÁ  ̄

�
��

1  1

1 -1
 x0 = 

 Ë
Ê
ÁÁ  ̄

�
��

2

0
.  Using row 

operations, this last set of equations is equivalent to 

 Ë
Ê
ÁÁ  ̄

�
��

1  1

0 -2
 x0 = 

 Ë
Ê
ÁÁ  ̄

�
��

2

-2
 and thus x1

0 = 1 and x2
0 = 1.  Since 

u¢¢¢¢ = 
 Ë
Ê
ÁÁ  ̄

�
��

1  1

1 -1
 u has (0,0) as the critical point, we 

conclude that (1,1) is the critical point of the original 
system.  As in the earlier problems, the eigenvalues are 

given by 
Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

1-r  1

 1 -1-r
 = r2 - 2 = 0 and thus r1,2 = ± 2 .  

Hence the critical point (1,1) is an unstable saddle 
point.

17. The equivalent system is dx/dt = y,dy/dt = -(k/m)x-(c/m)y 
which is written in the form of Eq.(2) as

d

dt  Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

0   1

-k/m -c/m
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
.  The point (0,0) is clearly a 

critical point, and since A is nonsingular, it is the 
only one.  The characteristic equation is r2+(c/m)r+k/m=0 
so r1,r2 = [-c ± (c2 - 4km) 1/2]/2m.  In the underdamped 
case c2 - 4km < 0, the characteristic roots are complex 
with negative real parts and thus the critical point 
(0,0) is an asymptotically stable spiral point.  In the 
overdamped case c2 - 4km > 0, the characteristic roots 
are real, unequal, and negative and hence the critical 
point (0,0) is asymptotically stable node.  In the 
critically damped case c2 - 4km = 0, the characteristic 
roots are equal and negative.  As indicated in the 
solution to Problem 4, to determine whether this is an 
improper or proper node we must determine whether there 
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are one or two linearly independent eigenvectors.  The 
eigenvectors satisfy the equation 

 Ë
Ê
ÁÁ  ̄

�
��

c/2m  1

 -k/m -c/2m
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
, which has just one solution if 

c2 - 4km = 0.  Thus the critical point (0,0) is an 
asymptotically stable improper node.

18a. If A has one zero eigenvalue then for r = 0 we have 
det(A-rI) = detA = 0.  Hence A is singular which means 
Ax = 0 has infinitely many solutions and consequently 
there are infinitely many critical points.

18b. From Chapter 7, the solution is x(t) = c1xxxx(1) + c2xxxx(2)er2t, 
which can be written in scalar form as

x1 = c1x1(1) + c2x1(2)e
r2t and x2 = c1x2(1) + c2x2(2)e

r2t.  

Assuming x1(2) π 0, the first equation can be solved for 
c2e

r2t, which is then substituted into the second 

equation to yield x2 = c1x2(1) + [x2(2)/x1(2)][x1-c1x1(1)].  
These are straight lines parallel to the vector xxxx(2).  
Note that the family of lines is independent of c2.  If 

x1(2) = 0, then the lines are vertical.  If r2 > 0, the 
direction of motion will be in the same direction as 
indicated for xxxx(2).  If r2 < 0, then it will be in the 
opposite direction.

19a. Det(A-rI) = r2 - (a11+a22)r + a11a22 - a21a12 = 0.  If 

a11 + a22 = 0, then r
2 = -(a11a22 - a21a12) < 0 if 

a11a22 - a21a12 > 0.

19b. Eq.(i) can be written in scalar form as dx/dt = a
11
x + 

a
12
y and dy/dt = a

21
x + a

22
y, which then yields Eq.(iii).  

Ignoring the middle quotient in Eq.(iii), we can rewrite 
that equation as (a

21
x + a

22
y)dx - (a

11
x + a

12
y)dy = 0, 

which is exact since a
22
 = -a

11
 from Eq.(ii)..

19c. Integrating fx = a21x + a22y we obtain f = a
21
x2/2 + a

22
xy 

+ g(y) and thus a
22
x + g¢ = -a

11
x - a

12
y or g¢ = -a

12
y 

using Eq.(ii).  Hence a
21
x2/2 + a

22
xy - a

12
y2/2 = k/2 is 

the solution to Eq.(iii).  The quadratic equation Ax2 + 
Bxy + Cy2 = D is an ellipse provided B2 - 4AC < 0.  Hence 
for our problem if 
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a
22

2
 + a

21
a
12
 < 0 then Eq.(iv) is an ellipse.  Using 

a
11
+ a

22
 = 0 we have a

22

2
 = -a

11
a
22
 and hence 

-a
11
a
22
 + a

21
a
12
 < 0 or a11a22 - a21

a
12
 > 0, which is true by 

Eqs.(ii).  Thus Eq.(iv) is an ellipse under the conditions 
of Eqs.(ii).

20. The given system can be written as 
d

dt  Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë

Ê

Á
ÁÁ
Á  ̄

�

�
��
�

a
11
  a

12

a
21
  a

22
 Ë
Ê
ÁÁ  ̄

�
��

x

y
.  

Thus the eigenvalues are given by 
r2-(a

11
+a

22
)r + a

11
a
22
-a

12
a
21
 = 0 and using the given 

definitions we rewrite this as r2 - pr + q = 0 and thus 

r1,2 = (p ± p2-4q )/2 = (p ± D )/2.  The results are 
now obtained using Table 9.1.1.   

Section 9.2, Page 477

1. Solutions of the D.E. for x
are y are x = Ae-t and 
y = Be-2t respectively.   
x(0) = 4 and y(0) = 2 yield
A = 4 and B = 2, so x = 4e-t

and y = 2e-2t.  Solving the 
first equation for e-t and 
then substituting into the 
second yields y = 2[x/4] 2 = x2/8, which is a parabola.  
From the original D.E., or from the parametric solutions, 
we find that 0 < x £ 4 and 0 < y £ 2 for t ≥ 0 and thus 
only the portion of the parabola shown is the trajectory, 
with the direction of motion indicated.

3. Utilizing the approach indicated in Eq.(14), we have 
dy/dx = -x/y, which separates into xdx + ydy = 0.  
Integration then yields the circle x2 + y2 = c2, where 
c2 = 16 for both sets of I.C.  The direction of motion 
can be found from the original D.E. and is 
counterclockwise for both I.C.  To obtain the parametric 
equations, we write the system in the form 

d

dt
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

0  -1

1   0
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
, which has the characteristic 

equation 
Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

-r  -1

 1  -r
 = r2 + 1 = 0, or r = ± i.  Following 
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the procedures of Section 7.6, we find that one solution 

of the above system is 
 Ë
Ê
ÁÁ  ̄

�
��

1

-i
eit = 

 Ë
Ê
ÁÁ  ̄

�
��

cost + isint

sint - icost
 and thus 

two real solutions are u(t) = 
 Ë
Ê
ÁÁ  ̄

�
��

cost

sint
 and v(t) = 

 Ë
Ê
ÁÁ  ̄

�
��

sint

-cost
.  

The general solution of the system is then 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = c1u(t) + c2v(t) and hence the first I.C. yields 

c1 = 4, c2 = 0, or x = 4cost, y = 4sint.  The second I.C. 
yields c1 = 0, c2 = -4, or x = -4sint, y = 4cost.  Note 
that both these parametric representations satsify the 
form of the trajectories found in the first part of this 
problem.

7a. The critical points are given by the solutions of 
x(1-x-y) = 0 and y(1/2 - y/4 - 3x/4) = 0.  The solutions 
corresponding to either x = 0 or y = 0 are seen to be 
x = 0, y = 0; x = 0, y = 2; x = 1, y = 0.  In addition, 
there is a solution corresponding to the intersection of 
the lines 1 - x - y = 0 and 1/2 - y/4 - 3x/4 = 0 which is 
the point x = 1/2, y = 1/2. Thus the critical points are 
(0,0), (0,2), (1,0), and (1/2,1/2).

7b.

7c. For (0,0) since all trajectories leave this point, this 
is an unstable node.  For (0,2) and (1,0) since the 
trajectories tend to these points, respectively, they are 
asymptotically stable nodes.  For (1/2,1/2), one 
trajectory tends to (1/2,1/2) while all others tend to 
infinity, so this is an unstable saddle point.

12a. The critical points are given by y = 0 and 

x(1 - x
2
/6 - y/5) = 0, so (0,0), ( 6 ,0) and (- 6 ,0) 

are the only critical points.
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12b.

12c. Clearly ( 6 ,0) and (- 6 ,0) are spiral points, and are 
asymptotically stable since the trajectories tend to each 
point, respectively. (0,0) is a saddle point, which is 
unstable, since the trajectories behave like the ones for 
(1/2,1/2) in Problem 7.

15a.
dy

dx
 = 

dy/dt

dx/dt
 = 

8x

2y
, so 4xdx - ydy = 0 and thus 4x2 - y2 = c, 

which are hyperbolas for c π 0 and straight lines y = ±2x for 
c = 0.

15b.                          19b.

19a.
dy

dx
 = 

y-2xy

-x+y+x2
, so (y-2xy)dx + (x-y-x2)dy = 0, which  is an 

exact D.E.  Therefore f(x,y) = xy - x2y + g(y) and hence
∂f
∂y

 = x - x2 + g¢(y) = x - y - x2, so g¢(y) = -y and 

g(y) = -y2/2. Thus 2x2y - 2xy + y2 = c (after multiplying by 
-2) is the desired solution.

21a.
dy

dx
 = 

-sinx

y
, so ydy + sinxdx = 0 and thus y2/2 - cosx = c.
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21b.

23. We know that f¢(t) = F[f(t), y(t)] and 
y¢(t) = G[f(t), y(t)] for a < t < b.  By direct 
substitution we have
F¢(t) = f¢(t-s) = F[f(t-s), y(t-s)] = F[F(t), Y(t)] and
Y¢(t) = y¢(t-s) = G[f(t-s), y(t-s)] = G[F(t), Y(t)] for
a < t-s < b or a+s < t < b+s.

24. Suppose that t1 > t0.  Let s = t1 - t0.  Since the system 
is autonomous, the result of Problem 23, with s replaced 
by -s shows that x = f1(t+s) and y = y1(t+s) generates 
the same trajectory (C1) as x = f1(t) and y = y1(t).  But 
at t = t0 we have x = f1(t0+s) = f1(t1) = x0 and 
y =  y1(t0+s) = y1(t1) = y0.  Thus the solution 
x = f1(t+s), y = y1(t+s) satisfies exactly the same 
initial conditions as the solution x = f0(t), y = y0(t) 
which generates the trajectory C0.  Hence C0 and C1 are 
the same.

25. From the existence and uniqueness theorem we know that if 
the two solutions x = f(t), y = y(t) and x = x0, y = y0 
satisfy f(a) = x0, y(a) = y0 and x = x0, y = y0 at t = a, 
then these solutions are identical.  Hence f(t) = x0 and 
y(t) = y0 for all t contradicting the fact that the 
trajectory generated by [f(t), y(t)] started at a 
noncritical point.

26. By direct substitution 
F¢(t) = f¢(t+T) = F[f(t+T), y(t+T)] = F[F(t), Y(t)] and 
Y¢(t) = y¢(t+T) = G[f(t+T), y(t+T)], G[F(t), Y(t)].  
Furthermore F(t0) = x0 and Y(t0) = y0.  Thus by the 
existence and uniqueness theorem F(t) = f(t) and 
Y(t) = y(t) for all t.

Section 9.3, Page 487

In Problems 1 through 4, write the system in the form of 
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Eq.(4).  Then if g(0) = 0 we may conclude that (0,0) is a 
critical point.  In addition, if g satisfies Eq.(5) or 
Eq.(6), then the system is almost linear.  In this case the 
linear system, Eq.(1), will determine, in most cases, the 
type and stability of the critical point (0,0) of the almost 
linear system.  These results are summarized in Table 9.3.1.

3. In this case the system can be written as

d

dt
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

 0  0

-1  0
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 + 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

(1+x)siny

1 - cosy
.  However, the 

coefficient matrix is singular and g
1
(x,y) = (1+x)siny 

does not satisfy Eq.(6).  However, if we consider the 
Taylor series for siny, we see that (1+x)siny - y = 

siny - y + xsiny = -y
3
/3! + y

5
/5! + ... + x(y - y

3
/3! + ...), 

which does satisfy Eq.(6), using x = rcosq, y = rsinq.  
Thus the first equation now becomes 
dx

dt
 = y + [(1+x)siny-y] and hence 

d

dt  Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

 0  1

-1  0
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
  + 

 Ë
Ê
ÁÁ  ̄

�
��

(1+x)siny-y

1-cosy
, where the 

coefficient matrix is now nonsingular and 

g(x,y) = 
 Ë
Ê
ÁÁ  ̄

�
��

(1+x)siny-y

1-cosy
 satisfies Eq.(6).                    

4. In this case the system can be written as

d

dt
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1  0

1  1
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 + 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

y
2

0
 and thus A = 

 Ë
Ê
ÁÁ  ̄

�
��

1  0

1  1
 and

g = 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

y
2

0
.  Since g(0) = 

 Ë
Ê
ÁÁ  ̄

�
��

0

0
 we conclude that (0,0) is a 

critical point.  Following the procedure of Example 1, we 
let x = rcosq and y = rsinq and thus 

g1(x,y)/r = 
r
2
sin

2
q

r
 Æ 0 as r Æ 0 and thus the system is 

almost linear.  Since det(A-rI) = (r-1)
2
, we find that 

the eigenvalues are r
1 
= r

2
 = 1.   Since the roots are 

equal, we must determine whether there are one or two 
eigenvectors to classify the type of critical point.  The 

eigenvectors are determined by 
 Ë
Ê
ÁÁ  ̄

�
��

0  0

1  0  Ë

Ê

Á
ÁÁ
Á  ̄

�

�
��
�

x
1

x
2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
 and hence 
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there is only one eigenvector xxxx = 
 Ë
Ê
ÁÁ  ̄

�
��

0

1
.  Thus the critical 

point for the linear system is an unstable improper node.  
From Table 9.3.1 we then conclude that the given system, 
which is almost linear, has a critical point near (0,0) 
which is either a node or spiral point (depending on how 
the roots bifurcate) which is unstable.

6a. The critical points are the solutions of x(1-x-y) = 0 and 
y(3-x-2y) = 0.  Solutions are x = 0, y = 0; x = 0, 
3 - 2y = 0 which gives y = 3/2; y = 0 and 1 - x = 0 which 
give x = 1; and 1 - x - y = 0, 3 - x - 2y = 0 which give 
x = -1, y = 2.  Thus the critical points are (0,0), 
(0,3/2), (1,0) and (-1,2).  

6b, For the critical point (0,0) the D.E. is already in the 
6c. form of an almost linear system; and the corresponding 

linear system is du/dt = u, dv/dt = 3v which has the 
eigenvalues r1 = 1 and r2 = 3.  Thus the critical point 
(0,0) is an unstable node. Each of the other three 
critical points is dealt with in the same manner; we 
consider only the critical point (-1,2).  In order to 
translate this critical point to the origin we set 
x(t) = -1 + u(t), y(t) = 2 + v(t) and substitute in the 
D.E. to obtain
du/dt = -1 + u - (-1+u) 2 - (-1+u)(2+v) = u + v - u2 - uv
and

dv/dt = 3(2+v) - (-1+u)(2+v) - 2(2+v) 2 = -2u - 4v - uv - 2v2.
Writing this in the form of Eq.(4) we find that 

A = 
 Ë
Ê
ÁÁ  ̄

�
��

1  1

-2 -4
 and g = - 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

u2 + uv

uv + 2v2
 which is an almost 

linear system.  The eigenvalues of the corresponding 

linear system are r = (-3 ± 9 + 8 )/2 and hence the 
critical point (-1,2), of the original system, is an 
unstable saddle point.

10a. The critical points are solutions of x + x2 + y
2
 = 0 and 

y(1-x) = 0, which yield (0,0) and (-1,0).

10b. For (0,0) the D.E. is already in the form of an almost 
linear system and thus du/dt = u and dv/dt = v.  For 
(-1,0) we let u = x+1, v = y so that substituting x = u-1 

and y = v into the D.E. we obtain 
du

dt
 = -u + u

2 
+ v

2
 and 
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dv

dt
 = 2v - uv.  Thus the corresponding linear system is 

u’ = -u and v’ = -2v.

10c. For (0,0) A = 
 Ë
Ê
ÁÁ  ̄

�
��

1  0

0  1
 which has r

1
 = r

2
 = 1, so that 

(0,0), for the nonlinear system, will be either a node or 
spiral point, depending on how the roots bifurcate.  In 
any case, since r

1 
and r

2
 are positive, the system will 

be unstable.  For (-1,0) A = 
 Ë
Ê
ÁÁ  ̄

�
��

-1  0

 0  2
 and thus 

r
1
 = -1 and r

2
 = 2, and hence the nonlinear system, from 

Table 9.3.1, has an unstable saddle point at (-1,0).

18a. The system is 
d

dt
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1   0

0  -2
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 + 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

0

x
3  and thus is 

almost linear using the procedures outlined in the 
earlier problems.  The corresponding linear system has 
the eigenvalues r1 = 1, r2 = -2 and thus (0,0) is an 
unstable saddle point for both the linear and almost 
linear systems.

18b. The trajectories of the linear system are the solutions 
of dx/dt = x and dy/dt = -2y and thus x(t) = c1e

t and 

y(t) = c2e
-2t.  To sketch these, solve the first equation 

for et and substitute into the second to obtain
y = c1

2c2/x
2, c1 π 0.  

Several trajectories 
are shown in the figure.  
Since x(t) = c1e

t, we 
must pick c1 = 0 for
x Æ 0 and t Æ �. Thus 
x = 0, y = c2e

-2t (the 
vertical axis) is the 
only trajectory for 
which x Æ 0, y Æ 0 as t Æ �.

18c. For x π 0 we have dy/dx = (dy/dt)/(dx/dt) = (-2y+x3)/x.  
This is a linear equation, and the general solution is 
y = x3/5 + k/x2, where k is an arbitrary constant.  In 
addition the system of equations has the solution x = 0, 
y = Be-2t.  Any solution with its initial point on the 
y-axis (x=0) is given by the latter solution.  The 
trajectories corresponding to these solutions approach 
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the origin as t Æ �. The 
trajectory that passes 
through the origin and 
divides the family of 
curves is given by k = 0, 
namely y = x3/5. This 
trajectory corresponds to 
the trajectory y = 0 for 
the linear problem.  
Several trajectories 
are sketched in the figure.

22a.

22b. From the graphs in part a, we see that vc is between v = 2 
and v = 5.  Using several values for v, we estimate vc @ 4.00.

23a.

For v = 2, the motion is damped oscillatory about x = 0.  
For v = 5, the pendulum swings all the way around once 
and then is a damped oscillation about x = 2p (after one 
full rotation).  For problem 22, this later case is not 
damped, so x continues to increase, as shown earlier.

27a. Setting c = 0 in Eq.(10) of Section 9.2 we obtain 
mL2d2q/dt2 + mgLsinq = 0.  Considering dq/dt as a function 
of q and using the chain rule we have 
d

dt
 ( )

dq
dt

 = 
d

dq
( )
dq
dt

dq
dt

 = 
1

2
 
d

dq
 ( )

dq
dt

2

.  Thus 

(1/2)mL2d[(dq/dt)2]/dq = -mgLsinq.  Now integrate both 
sides from a to q where dq/dt = 0 at q = a: 
(1/2)mL2(dq/dt)2 = mgL(cosq - cosa).  Thus
(dq/dt)2 = (2g/L)(cosq - cosa).  Since we are releasing 
the pendulum with zero velocity from a positive angle a, 
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the angle q will initially be decreasing so dq/dt < 0.  
If we restrict attention to the range of q from q = a to 
q  = 0, we can assert dq/dt = - 2g/L  cosq - cosa .  

Solving for dt gives dt = - L/2g dq/ cosq - cosa .  

27b.Since there is no damping, the pendulum will swing from 
its initial angle a through 0 to -a, then back through 0 
again to the angle a in one period.  It follows that 
q(T/4) = 0.  Integrating the last equation and noting 
that as t goes from 0 to T/4, q goes from a to 0 yields 
T/4 = - L/2g  Úa

0
 (1/ cosq - cosa )dq.

28a. If 
dx

dt
 = y, then 

d2x

dt2
 = 

dy

dt
 = -g(x) - c(x)y. 

28b.Under the given assumptions we have g(x) = g(0) + g’(0)x 

+ g”(x
1
)x

2
/2 and c(x) = c(0) + c’(x

2
)x, where 

0 < x
1
, x

2 
< x and g(0) = 0.  Hence 

dy

dt
 = (-g(0) - g¢(0)x) - c(0)y - [g≤(x1)x2/2 - c¢(x2)xy] 

and thus the system can be written as

d

dt
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = 

 Ë
Ê
ÁÁ  ̄

�
��

0     1

-g¢(0) -c(0)
 

 Ë
Ê
ÁÁ  ̄

�
��

x

y
 - 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

0

-g≤(x1)x2/2 - c¢(x2)xy
, 

from which the results follow.

Section 9.4, Page 501

3b. x(1.5 - .5x - y) = 0 and y(2 - y - 1.125x) = 0 yield (0,0), 
(0,2) and (3,0) very easily.  The fourth critical point is 
the intersection of .5x + y = 1.5 and 1.125x + y = 2, which 
is (.8,1.1).

3c. From Eq (5) we get 
d

dt  Ë
Ê
ÁÁ  ̄

�
��

u

v
 = 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

1.5-x0-y0         -x0

-1.125y0  2-2y0-1.125x0  Ë
Ê
ÁÁ  ̄

�
��

u

v
.  For 

(0,0) we get u¢ = 1.5u and v¢ = 2v, so r = 3/2 and r = 2, and 
thus (0,0) is an unstable node.  For (0,2) we have u¢ = -.5u 
and v¢ = -2.25u-2v, so r = -.5, -2 and thus (0,2) is an 
asymptotically stable node.  For (3,0) we get u¢ = -1.5u-3v 
and v¢ = -1.375v, so r = -1.5, -1.375 and hence (3,0) is an 
symptotically stable node.  For (.8,1.1) we have 
u¢ = -.4u -.8v and v¢ = -1.2375u - 1.1v which give 
r = -1.80475, .30475 and thus (.8,1.1) is an unstable saddle 
point.
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3e.

5b. The critical points are found by setting dx/dt = 0 and 
dy/dt = 0 and thus we need to solve x(1 - x - y) = 0 and 
y(1.5 - y - x) = 0.  The first yields x = 0 or y = 1 - x 
and the second yields y = 0 or y = 1.5 - x.  Thus (0,0), 
(0,3/2) and (1,0) are the only critical points since the 
two straight lines do not intersect in the first quadrant 
(or anywhere in this case).  This is an example of one of 
the cases shown in Figure 9.4.5 a or b.

5e.

6b. The critical points are found by setting dx/dt = 0 and 
dy/dt = 0 and thus we need to solve x(1-x + y/2) = 0 and 
y(5/2 - 3y/2 + x/4) = 0.  The first yields x = 0 or
y = 2x - 2 and the second yields y = 0 or y = x/6 + 5/3.  
Thus we find the critical points (0,0), (1,0), (0,5/3) 
and (2,2).  The last point is the intersection of the two 
straight lines, which will be used again in part d.

6c. For (0,0) the linearized system is x¢ = x and y¢ = 5y/2, 
which has the eigenvalues r1 = 1 and r2 = 5/2. Thus the 
origin is an unstable node.  For (2,2) we let 
x = u + 2 and y = v + 2 in the given system to find 
(since x¢ = u¢ and y¢ = v¢) that 
du/dt = (u+2)[1 - (u+2) + (v+2)/2] = (u+2)(-u+v/2) and

dv/dt = (v+2)[5/2 - 3(v+2)/2 + (u+2)/4] = (v+2)(u/4 - 3v/2). 

Hence the linearized equations are 
 Ë
Ê
ÁÁ  ̄

�
��

u

v

¢
 = 

 Ë
Ê
ÁÁ  ̄

�
��

-2  1

1/2 -3
 

 Ë
Ê
ÁÁ  ̄

�
��

u

v
 

which has the eigenvalues r1,2 = (-5 ± 3 )/2.  Since 
these are both negative we conclude that (2,2) is an 
asymptotically stable node.  In a similar fashion for 
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(1,0) we let x = u + 1 and y = v to obtain the linearized 

system 
 Ë
Ê
ÁÁ  ̄

�
��

u

v

¢
 = 

 Ë
Ê
ÁÁ  ̄

�
��

-1  1/2

0  11/4
 

 Ë
Ê
ÁÁ  ̄

�
��

u

v
.  This has 

r1 = -1 and r2 = 11/4 as eigenvalues and thus (1,0) is an 
unstable saddle point.  Likewise, for (0,5/3) we let 

x = u, y = v + 5/3 to find 
 Ë
Ê
ÁÁ  ̄

�
��

u

v

¢
 = 

 Ë
Ê
ÁÁ  ̄

�
��

11/6    0

5/12 -5/2
 

 Ë
Ê
ÁÁ  ̄

�
��

u

v
 as the 

corresponding linear system.  Thus r1 = 11/6 and 
r2 = -5/2 and thus (0,5/3) is an unstable saddle point.

6d. To sketch the required trajectories, we must find the 
eigenvectors for each of the linearized systems and then 
analyze the behavior of the linear solution near the 
critical point. Using this approach we find that the 

solution near (0,0) has the form 
 Ë
Ê
ÁÁ  ̄

�
��

x

y
 = c1 Ë

Ê
ÁÁ  ̄

�
��

1

0
 et + 

c2 Ë
Ê
ÁÁ  ̄

�
��

0

1
 e5t/2 and thus the origin is approached only for 

large negative values of t.  In this case et dominates 
e5t/2 and hence in the neighborhood of the origin all 
trajectories are tangent to the x-axis except for one 
pair (c1 = 0) that lies along the y-axis.
For (2,2) we find the eigenvector corresponding to

r = (-5 + 3 )/2 = -1.63 is given by (1- 3 )x1/2 + x2 = 0 

and thus 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

1

( 3 -1)/2
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1

.37
 is one eigenvector.  For

r = (-5 - 3 )/2 = -3.37 we have (1 + 3 )x1/2 + x2 = 0 and 

thus 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

1

-( 3 +1)/2
 = 

 Ë
Ê
ÁÁ  ̄

�
��

1

-1.37
 is the second eigenvector.  

Hence the linearized solution is

 Ë
Ê
ÁÁ  ̄

�
��

u

v
 = c1  Ë

Ê
ÁÁ  ̄

�
��

1

.37
 e-1.63t + c2  Ë

Ê
ÁÁ  ̄

�
��

1

-1.37
 e-3.37t.  For large 

positive values of t the first term is the dominant one 
and thus we conclude that all trajectories but two 
approach (2,2) tangent to the straight line with slope 
.37.  If c1 = 0, we see that there are exactly two 
(c2 > 0 and c2 < 0) trajectories that lie on the straight 
line with slope -1.37.
In similar fashion, we find the linearized solutions near 
(1,0) and (0,5/3) to be, respectively,
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 Ë
Ê
ÁÁ  ̄

�
��

u

v
 = c1  Ë

Ê
ÁÁ  ̄

�
��

1

0
 e-t + c2  Ë

Ê
ÁÁ  ̄

�
��

1

15/2
 e11t/4   

  and  

  
 Ë
Ê
ÁÁ  ̄

�
��

u

v
 = c1  Ë

Ê
ÁÁ  ̄

�
��

0

1
 e-5t/2 + c2  Ë

Ê
ÁÁ  ̄

�
��

1

5/52
 e11t/6,

which, along with the
above analysis, yields
the sketch shown.

6e.From the above sketch, it appears that (x,y) Æ (2,2) as 
6f.t Æ � as long as (x,y) starts in the first quadrant.  

To ascertain this, we need to prove that x and y cannot 
become unbounded as t Æ �.  From the given system, we 
can observe that, since x > 0 and y > 0, that dx/dt and 
dy/dt have the same sign as the quantities 1 - x + y/2 
and 5/2 - 3y/2 + x/4 respectively.  If we set these 
quantities equal to zero we get the straight lines
y = 2x - 2 and y = x/6 + 5/3, which divide the first 
quadrant into the four sectors shown.  The signs of 
x¢ and y¢ are indicated, 
from which it can be 
concluded that x and y
must remain bounded [and 
in fact approach (2,2)]
as t Æ �. The 
discussion leading up to 
Fig.9.4.4 is also useful 
here.

8a. Setting the right sides of the equations equal to zero 
gives the critical points (0,0), (0, e2/s2), (e1/s1,0), 
and possibly 
([e1s2 - e2a1]/[s1s2 - a1a2], [e2s1 -e1a2]/[s1s2 - a1a2]).  
(The last point can be obtained from Eq.(36) also).  The 
conditions e2/a2 > e1/s1 and e2/s2 > e1/a1 imply that 
e2s1 - e1a2 > 0 and e1s2 - e2a1 < 0.  Thus either the x 
coordinate or the y coordinate of the last critical point 
is negative so a mixed state is not possible.  The 
linearized system for (0,0) is x¢ = e1x and y¢ = e2y and 
thus (0,0) is an unstable equilibrium point.  Similarly, 
it can be shown [by linearizing the given system or by 
using Eq.(35)] that (0, e2/s2) is an asymptotically 
stable critical point and that (e1s1, 0) is an unstable 
critical point.  Thus the fish represented by y(redear) 
survive.
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8b. The conditions e1/s1 > e2/a2 and e1/a1 > e2/s2 imply that 
e2s1 - e1a2 < 0 and e1s2 - e2a1 > 0 so again one of the 
coordinates of the fourth point in 8a. is negative and 
hence a mixed state is not possible.  An analysis similar 
to that in part(a) shows that (0,0) and (0,e2/s2) are 
unstable while (e1/s1,0) is stable.  Hence the bluegill 
(represented by x) survive in this case.

9a. x¢ = e1x(1 - 
s1
e1

x - 
a1

e1
y) = e1x(1 - 

1

B
x - 

g 1
B
y)

y¢ = e2y(1 - 
s2
e2

y -
a2

e2
x) = e2y(1 - 

1

R
y - 

g 2
R
x).  The coexistence 

equilibrium point is given by 
1

B
x + 

g 1
B
y = 1 and 

g 2
R
x + 

1

R
y = 

1.  Solving these (using determinants) yields 
X = (B - g 1R)/(1 - g 1g 2) and Y = (R - g 2B)/(1-g 1g 2).

9b. If B is reduced, it is clear from the answer to part(a) 
that X is reduced and Y is increased.  To determine 
whether the bluegill will die out, we give an intuitive 
argument which can be confirmed by doing the analysis.  
Note that B/g 1 = e1/a1 > e2/s2 = R and 
R/g 2 = e2/a2 > e1/s1 = B so that the graph of the lines 
1 - x/B - g 1y/B = 0 and 1 - y/R - g 2x/R = 0 must appear 
as indicated in the figure,
where critical points are 
inidcated by heavy dots.  
As B is decreased,
X decreases, Y increases
(as indicated above) and
the point of intersection
moves closer to (0,R).  If
B/g 1 < R coexistence is not 
possible, and the only 
critical points are (0,0),(0,R)and (B,0).  
It can be shown that (0,0) and (B,0) are unstable and 
(0,R) is asymptotically stable.  Hence we conlcude, when 
coexistence is no longer possible, that x Æ 0 and y Æ R 
and thus the bluegill population will die out.

12a. Setting each equation equal to zero, we obtain x = 0 or 
(4 - x - y) = 0 and y = 0 or (2 + 2a - y - ax) = 0.  Thus we 
have (0,0), (4,0), (0,2 + 2a), and the intersection of 
x + y = 4 and ax + y = 2 + 2a.  If a π 1, this yields (2,2) 
as the fourth critical point.
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12b. For a = .75 the linear system is 
 Ë
Ê
ÁÁ  ̄

�
��

u

v

¢
 = 

 Ë
Ê
ÁÁ  ̄

�
��

-2    -2

-1.5  -2  Ë
Ê
ÁÁ  ̄

�
��

u

v
, which 

has the characteristic equation r2 + 4r + 1 = 0 so that 

r = -2 ± 3 .  Thus the critical point is an asymptotically 

stable node.  For a = 1.25, we have 
 Ë
Ê
ÁÁ  ̄

�
��

u

v

¢
 = 

 Ë
Ê
ÁÁ  ̄

�
��

-2    -2

-2.5  -2  Ë
Ê
ÁÁ  ̄

�
��

u

v
, so 

r2 + 4r -1 = 0 and r = -2 ± 5 .  Thus (2,2) is an unstable 
saddle point.

12c. Letting x = u+2 and y = v+2 yields
u’ = (u+2)(4 - u-2 - v-2) = -2u - 2v - u2 - uv and
v’ = (v+2)(2 + 2a - v-2 - au - 2a) = -2au - 2v - v2 - auv. 
Thus the approximate linear system is u’ = -2u - 2v and 
v’ = -2au - 2v.

12d. The eigenvalues are given by

Ω
ΩΩΩ
Ω Ω

ΩΩΩ
Ω

-2-r  -2

 -2a  -2-r
 = r2 + 4r + 4 - 4a = 0, or r = -2 ± 2 a .  

Thus for 0 < a < 1 there are 2 negative real roots 
(asymptotially stable node) and for a > 1 the real roots 
differ in sign, yielding an unstable saddle point. a = 1 
is the bifurcation point.

Section 9.5, Page 509

3b. We have x = 0 or (1 - .5x - .5y) = 0 and y = 0  or 
(-.25 + .5x) = 0 and thus we have three critical points: 
(0,0), (2,0) and (1/2,3/2).

3c. For (0,0) the linear system is dx/dt = x and 

dy/dt = -.25y and hence A = 
 Ë
Ê
ÁÁ  ̄

�
��

1   0

0 -1/4
 which has 

eigenvalues r1 = 1 and r2 = -1/4 and corresponding 

eigenvectors 
 Ë
Ê
ÁÁ  ̄

�
��

1

0
 and 

 Ë
Ê
ÁÁ  ̄

�
��

0

1
.  Thus (0,0) is an unstable 

saddle point.
For (2,0), we let x = 2 + u and y = v in the given 

equations and obtain 
du

dt
 = -(u+v) - 

1

2
u(u+v) and 

dv

dt
 = 

3

4
v + 

1

2
uv.  The linear portion of this has matrix 
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A = 
 Ë
Ê
ÁÁ  ̄

�
��

-1  -1

 0  3/4
, which has the eigenvalues r1 = -1, 

r2 = 3/4 and corresponding eigenvectors  Ë
Ê
ÁÁ  ̄

�
��

1

0
 and 

 Ë
Ê
ÁÁ  ̄

�
��

-4

7
.  

Thus (2,0) is also an unstable saddle point.  

For 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

1

2
, 

3

2  we let x = 1/2 + u and y = 3/2 + v in the 

given equations, which yields 
du

dt
 = -

1

4
u - 

1

4
v, 

dv

dt
 = 

3

4
u 

as the linear portion.  Thus A = 

 Ë

Ê

Á
Á
Á
Á
Á
Á

 ̄

�

�
�
�
�
�
�

-
1

4
  -

1

4

 
3

4
   0

, which has 

eigenvalues r1,2 = (-1 ± 11 i)/8.  Thus 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

1

2
,
3

2  is an 

asymptotically stable spiral point since the eigenvalues 
are complex with negative real part.  Using 

r1  = (-1 + 11 i)/8 we find that one eigenvector is 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

-2

1 + 11 i
 and by Section 7.6 the second eigenvector is

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

-2

1 - 11 i
.

3e.

3f. For (x,y) above the line x + y = 2 we see that x¢ < 0 and 
thus x must remain bounded.  For (x,y) to the right of 
x = 1/2, y¢ > 0 so it appears that y could grow large 
asymptotic to x = constant.  However, this implies a 
contradiction (x = constant implies x¢ = 0, but as y gets 
larger, x¢ gets increasingly negative) and hence we 
conclude y must remain bounded and hence (x,y) Æ 
(1/2,3/2) as t Æ �, again assuming they start in the 
first quadrant.
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7a. The amplitude ratio is (cK/g)/( ac K/a) = a c /g a .

7b. From Eq (2) a = .5, a = 1, g = .25 and c = .75, so the 

ratio is .5 .75 /.25 1  = 2 .75  = 3  =
~
 1.732.

7c. A rough measurement of the amplitudes is (6.1 - 1)/2 = 2.55 
and (3.8 -. 9)/2 = 1.45 and thus the ratio is approximately 
1.76.  In this case the linear approximation is a good 
predictor.

11. The presence of a trapping company actually would require 
a modification of the equations, either by altering the 
coefficients or by including nonhomogeneous terms on the 
right sides of the D.E.  The effects of indiscreminate 
trapping could decrease the populations of both rabbits 
and fox significantly or decrease the fox population 
which could possibly lead to a large increase in the 
rabbit population.  Over the long run it makes sense for 
a trapping company to operate in such a way that a 
consistent supply of pelts is available and to disturb 
the predator-prey system as little as possible.  Thus,  
the company should trap fox only when their population is 
increasing, trap rabbits only when their population is 
increasing, trap rabbits and fox only during the time 
when both their populations are increasing, and trap 
neither during the time both their populations are 
decreasing.  In this way the trapping company can have a 
moderating effect on the population fluctuations, keeping 
the trajectory close to the center.

13. The critical points of the system are the solutions of 
the algebraic equations x(a - sx - ay) = 0, and 
y(-c + gx) = 0.  the critical points are x = 0, y = 0; 
x = a/s, y = 0;  and x = c/g, y = a/a - cs/ag = sA/a 
where A = a/s - c/g > 0.
To study the critical point (0,0) we discard the 
nonlinear terms in the system of D.E. to obtain the 
corresponding linear system dx/dt = ax, dy/dt = -cy.  The 
characteristic equation is r2 - (a+c)r - ac = 0 so
r1 = a, r2 = -c.  Thus the critical point (0,0) is an 
unstable saddle point.
To study the critical point (a/s,0) we let x = (a/s) + u, 
y = 0 + v and substitute in the D.E. to obtain the almost 
linear system du/dt = -au - (aa/s)v - su2 - auv, 
dv/dt = gAv + guv.  The corresponding linear system is 
du/dt = -au - (aa/s)v, dv/dt = gAv.  The characteristic 
equation is r2 + (a - gA)r - agA = 0 so r1 = -a, r2 = gA.  
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Thus the critical point (a/s,0) is an unstable saddle 
point.
To study the critical point (c/g, sA/a) we let 
x = (c/g) + u, y = (sA/a) + v and substitute in the D.E. 
to obtain the almost linear system
du

dt
 = -(cs/g)u - (ac/g)v - su2 - auv

dv

dt
 = (sAg/a)u + guv 

The corresponding linear system is 
du/dt = -(cs/g)u - (ac/g)v, dv/dt = (sAg/a)u.  The 
characteristic equation is r2 + (cs/g)r + csA = 0, so 
r1,r2 = [-(cs/g) ± (cs/g) 2 - 4csA ]/2.  Thus, depending 
on the sign of the discriminant we have that (c/g, sA/a) 
is either an asymptotically stable spiral point or an 
asymptotically stable node.  Thus for nonzero initial 
data (x,y) Æ (c/g, sA/a) as t Æ �.

Section 9.6, Page 519

1. Assuming that V(x,y) = ax2 + cy2 we find Vx(x,y) = 2ax, 

Vy = 2cy and thus Eq.(7) yields V
.
(x,y) = 2ax(-x3 + xy2) + 

2cy(-2x2y - y3) = -[2ax4 + 2(2c-a)x2y2 + 2cy4].  If we 
choose a and c to be any positive real numbers with 

2c > a, then V
.
 is a negative definite.  Also, V is 

positive definite by Theorem 9.6.4. Thus by Theorem 9.6.1 
the origin is an asymptotically stable critical point.

3. Assuming the same form for V(x,y) as in Problem 1, we 
have 

V
.
(x,y) = 2ax(-x3 + 2y3) + 2cy(-2xy2) = -2ax4 + 4(a-c)xy3.  

If we choose a = c > 0, then V
.
(x,y) = -2ax4 £ 0 in any 

neighborhood containing the origin and thus V
.
 is negative 

semidefinite and V is positive definite.  Theorem 9.6.1 
then concludes that the origin is a stable critical 
point.  Note that the origin may still be asymptotically 
stable, however, the V(x,y) used here is not sufficient 
to prove that.

6a. The correct system is dx/dt = y and dy/dt = -g(x).  Since 
g(0) = 0, we conclude that (0,0) is a critical point.
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6b. From the given conditions, the graph of g must be 
positive for 0 < x < k and negative for -k < x < 0.  Thus

if     0 < x < k  then  Ú0xg(s)ds > 0,
if    -k < x < 0  then  Ú0xg(s)ds = - Úx0g(s)ds > 0. 
Since V(0,0) = 0 it follows that V(x,y) = y2/2 + Ú0xg(s)ds 
is positive definite for -k < x < k, -� < y < �.  Next,  

we have V
.
(x,y) = Vx

dx

dt
 + Vy

dy

dt
 = g(x)y + y[-g(x)] = 0.  

Since V
.
(x,y) is never positive, we may conclude that it 

is negative semidefinite and hence by Theorem 9.6.1 (0,0) 
is at least a stable critical point.

7b. V is positive definite by Theorem 9.6.4.  Since
Vx(x,y) = 2x, Vy(x,y) = 2y, we obtain 

V
.
(x,y) = 2xy - 2y2 - 2ysinx = 2y[-y + (x - sinx)].  If 

x < 0, then V
.
(x,y) < 0 for all y > 0.  If x > 0, choose y 

so that 0 < y < x - sinx.  Then V
.
(x,y) > 0.  Hence V is 

not a Liapunov function.  

7c. Since V(0,0) = 0, 1 - cosx > 0 for 0 < |x| < 2p and y2 > 
0 for y π 0, it follows that V(x,y) is positive definite 
in a neighborhood of the origin.  Next Vx(x,y) = sinx, 
Vy(x,y) = y, so 

V
.
(x,y) = (sinx)(y) + y(-y - sinx) = -y2.  Hence V

.
 is 

negative semidefinite and (0,0) is a stable critical 
point by Theorem 9.6.1.

7d. V(x,y) = (x+y) 2/2 + x2 + y2/2 = 3x2/2 + xy + y2 is 
positive definite by Theorem 9.6.4.  Next 
Vx(x,y) = 3x + y, Vy(x,y) = x + 2y so 

V
.
(x,y) = (3x+y)y - (x+2y)(y+sinx) 
       = 2xy - y2 - (x+2y)sinx 
       = 2xy - y2 - (x+2y)(x - ax3/6) 
       = -x2 - y2 + a(x+2y)x3/6 
       = -r2 + ar4 (cosq + 2sinq)(cos3q)/6 < -r2 + r4/2    

       = -r2(1-r2/2). Thus V
.
 is negative definite for 

r < 2 .  From Theorem 9.6.1 it follows that the origin 
is an asymptotically stable critical point.
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8. Let x = u and y = du/dt to obtain the system dx/dt = y 
and dy/dt = -c(x)y - g(x).  Now consider 

V(x,y) = y2/2 + Ú0xg(s)ds, which yields 
V

.
 = g(x)y + y[-c(x)y - g(x)] = -y2c(x).

10b. Since Vx(x,y) = 2Ax + By, Vy(x,y) = Bx + 2Cy, we have

V
.
(x,y) = (2Ax + By)(a11x + a12y) + (Bx + 2Cy)(a21x + a22y) =

(2Aa11 + Ba21)x
2 + [2(Aa12 + Ca21) + B(a11+a22)]xy + 

(2Ca22 + Ba12)y
2.  We choose A, B, and C so that 

2Aa11 + Ba21 = -1, 2(Aa12 + Ca21) + B(a11+a22) = 0, and 
2Ca22 + Ba12 = -1.  The first and third equations give us A 
and C in terms of B, respectively.  We substitute in the 
second equation to find B and then calculate A and C. The 
result is given in the text.

10c. Since a11a22 - a12a21 > 0  and a11 + a22 < 0, we see that 
D < 0 and so A > 0.  Using the expressions for A, B, and 
C found in part (b) we obtain

 (4AC-B2)D2 = [a21
2 +a22

2  + (a11a22-a12a21)][a11
2 +a12

2  + (a11a22-a12a21)] 

                             - (a12a22+a11a21) 2

  = (a11
2 +a12

2 +a21
2 +a22

2 )(a11a22-a12a21) + (a11
2 +a12

2 )(a21
2 +a22

2 ) 

                     + (a11a22-a12a21) 2- (a12a22+a11a21) 2

      = (a11
2 +a12

2 +a21
2 +a22

2 )(a11a22-a12a21) + 2(a11a22-a12a21) 2.

Since a11a22 - a12a21 > 0 it follows that 4AC - B
2 > 0.

11a. For V(x,y) = Ax2 + Bxy + Cy2 we have

V
.
 = (2Ax + By)(a11x+a12y + F1(x,y)) + (Bx+2Cy)(a21x+a22y + G1(x,y))

  = (2Ax+By)(a11x+a12y)+(Bx+2Cy)(a21x+a22y)
                         + (2Ax+By)F1(x,y) + (Bx+2Cy)G1(x,y)

  = -x2-y2 + (2Ax+By)F1(x,y) + (Bx+2Cy)G1(x,y), if A,B and C are 
chosen as in Problem 10.

11b. Substituting x = rcosq, y = rsinq we find that 

V
.
[x(r,q), y(r,q)] = -r2+r(2Acosq+Bsinq)F1[x(r,q), y(r,q)]
+ r(Bcosq + 2Csinq)G1[x(r,q), y(r,q)].  Now we make use 
of the facts that (1) there exists an M such that 
|2A| £ M, |B| £ M, and |2C| £ M; and (2) given any
e > 0 there exists a circle r = R such that 
|F1(x,y)| < er and |G1(x,y)| < er for 0 £ r < R.  We have
|2Acosq + Bsinq| £ 2M and |Bcosq + 2Csinq| £ 2M.  Hence

V
.
[x(r,q), y(r,q)] £ -r2 + 2Mr(er)+2Mr(er) = -r2(1 - 4Me). 
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If we choose e = M/8 we obtain V
.
[x(r,q), y(r,q)] £ -r2/2 

for 0 £ r < R.  Hence V
.
 is negative definite in 0 £ r < R 

and from Problem 10c V is positive definite and thus V is 
a Liapunov function for the almost linear system.

Section 9.7, Page 530

1. Note that r = 1, q = t + t0 satisfy the two equations for 
all t and is thus a periodic solution.  If r < 1, then 
dr/dt > 0, and the direction of motion on a trajectory is 
outward.  If r > 1, then the direction of motion is 
inward.  It follows that the periodic solution r = 1, 
q = t + t0 is a stable limit cycle.

2. r = 1, q = -t + t0 is a periodic solution.  If r < 1, 
then dr/dt > 0, and the direction of motion on a 
trajectory is outward.  If r > 1, the dr/dt > 0, and the 
direction of motion is still outward.  It follows that 
the solution r = 1, q = -t + t0 is a semistable limit 
cycle.

4. r = 1, q = -t + t0 and r = 2, q = -t + t0 are periodic 
solutions.  If r < 1, then dr/dt < 0, and the direction 
of motion on a trajectory is inward.  If 1 < r < 2, then 
dr/dt > 0, and the direction of motion is outward.  
Similarly, if r > 2, the direction of motion is inward.  
It follows that the periodic solution r = 1, 
q = -t + t0 is unstable and the periodic solution r = 2, 
q = -t + t0 is a stable limit cycle.

7. Differentiating x and y with respect to t we find that
    dx/dt = (dr/dt)cosq - (rsinq)dq/dt and 

dy/dt = (dr/dt)sinq + (rcosq)dq/dt.  Hence 
ydx/dt - xdy/dt = (rsinqcosq)dr/dt - (r2sin2q)dq/dt -     
                  (rcosqsinq)dr/dt - (r2cosq)dq/dt 
                = - r2dq/dt.

8a. Multiplying the first equation by x and the second by y 
and adding yields xdx/dt + ydy/dt = (x2+y2)f(r)/r, or 
rdr/dt = rf(r), as in the derivation of Eq.(8), and thus 
dr/dt = f(r).  To obtain an equation for q multiply the 
first equation by y, the second by x and substract to 
obtain ydx/dt - xdy/dt = -x2-y2, or -r2dq/dt = -r2, using 
the results of Problem 7. Thus dq/dt = 1.  It follows 
that periodic solutions are given by r = c, q = t + t0 
where f(c) = 0.  Since q = t + t0, the motion is 
counterclockwise.
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8b. First note that f(r) = r(r-2) 2(r-3)(r-1).  Thus r = 1, 
q = t + t0; r = 2, q = t + t0; and r = 3, q = t + t0 are 
periodic solutions.  If r < 1, then dr/dt > 0, and the 
direction of motion on a trajectory is outward.  If 
1 < r < 2, then dr/dt < 0 and the direction of motion is 
inward.  Thus the periodic solution r = 1, q = t + t0 is 
a stable limit cycle.  If 2 < r < 3, then dr/dt < 0, and 
the direction of motion is inward.  Thus the periodic 
solution r = 2, q = t + t0 is a semistable limit cycle.  
If r > 3, then dr/dt > 0, and the direction of motion is 
outward.  Thus the periodic solution r = 3, q = t + t0 is 
unstable.

9. Setting x = rcosq, y = rsinq and using the techniques of 
Problem 8 the equations transform to dr/dt = r2 - 2, 

dq/dt = -1.  This system has a periodic solution r = 2 , 

q = -t + t0.  If r < 2 , then dr/dt < 0, and the 
direction of motion along a trajectory is inward.  If

r > 2 , then dr/dt > 0, and the direction of motion is 

outward.  Thus the periodic solution r = 2 , q = -t + t0 
is unstable.

11. If F(x,y) = x+y+x3-y2, G(x,y) = -x+2y+x2y+y3/3, then 
Fx(x,y) + Gy(x,y) = 1+3x

2+2+x2+y2 = 3+4x2+y2.  Since the 
conditions of Theorem 9.7.2 are satisfied for all x and 
y, and since Fx + Gy > 0 for all x and y, it follows that 
the system has no periodic nonconstant solution.

13. Since x = f(t), y = y(t) is a solution of Eqs.(15), we 
have df/dt = F[f(t),y(t)], dy/dt = G[f(t),y(t)]. Hence 
on the curve C, 
F(x,y)dy - G(x,y)dx = f¢(t)y¢(t)dt -y¢(t)f¢(t)dt = 0.  It 
follows that the line integral around C is zero.  
However, if Fx + Gy has the same sign throughout D, then 
the double integral cannot be zero.  This gives a 
contradiction.  Thus either the solution of Eqs.(15) is 
not periodic or if it is, it cannot lie entirely in D.

16a. Setting x’ = 0 and solving for y yields y = x3/3 - x + k.  
Substituting this into y’= 0 then gives 
x + .8(x3/3 - x + k) - .7 = 0  Using an equation solver we 
obtain x = 1.1994, y = -.62426 for k = 0 and x = .80485, 
y = -.13106 for k = .5.  To determine the type of critical 
points these are, we use Eq.(13) of Section 9.3 to find the 
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linear coefficient matrix to be A = 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

3(1-xc
2)  3

-1/3   -.8/3
, where xc 

is the critical point.  For xc = 1.1994 we obtain complex 
conjugate eigenvalues with a negative real part, and 
therefore k = 0 yields an asymptotically stable spiral 
point.  For xc = .80485 the eigenvalues are also complex 
conjugates, but with positive real parts, so k = .5 yields 
an unstable spiral point.

16b. Letting k = .1, .2, .3, .4 in the cubic equation of part (a) 
and finding the corresponding eigenvalues from the matrix in 
part (a), we find that the real part of the eigenvalues 
change sign between k = .3 and k = .4.  Continuing to 
iterate in this fashion we find that for k = .3464 that the 
real part of the eigenvalue is -.0002 while for k = .3465 
the real part is .00005, which indicates k

0
 = .3465 is the 

critical point for which the system changes from stable to 
unstable.

16d. You must plot the solution for values of k slightly less 
than k0, found in part (c), to determine whether a limit 
cycle exists.

Section 9.8, Page 538

1a. From Eq (6), l = -8/3 is clearly one eigenvalue and the 
other two may be found from l2 + 11l - 10(r-1) = 0 using 
the quadratic formula.

1b. For l = l1 we have

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

-10+8/3  -10  0

r      -1+8/3 0

0        0     0  Ë

Ê

Á
Á
Á
Á
Á  ̄

�

�
�
�
�
�

xxxx1
xxxx2
xxxx3

 = 

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

0

0

0

, which requires xxxx1 = xxxx2 = 0 

and xxxx3 arbitrary and thus xxxx(1) = (0,0,1)T.
For l = l3 = (-11 + a)/2, where a = 81+40r , we have

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

-10+(11-a)/2 10 0

r -1+(11-a)/2 0

0 0 -8/3+(11-a)/2  Ë

Ê

Á
Á
Á
Á
Á  ̄

�

�
�
�
�
�

x1
x2
x3

 = 

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

0

0

0

.

The last line implies x3 = 0 and multiplying the first 
line by 
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(-9+a)/2 we obtain 
 Ë

Ê
ÁÁ
Á  ̄

�
��
�

(81-a2)/4   10(-9+a)/2

r        (9-a)/2
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
.  

Substituting a2 = 81+40r we have

   
 Ë
Ê
ÁÁ  ̄

�
��

-10r   -10(9-a)/2

  r     (9-a)/2
 

 Ë

Ê
ÁÁ
Á  ̄

�
��
�

x1
x2

 = 
 Ë
Ê
ÁÁ  ̄

�
��

0

0
. Thus x(3) = 

 Ë

Ê

Á
ÁÁÁ
Á  ̄

�

�
���
�

9 - 81+40r

-2r

0

, 

which is proportional to the answer given in the text.  
Similar calculations give xxxx(2).

1c. Simply substitute r = 28 into the answers in parts (a) and (b).  

2a. The calculations are somewhat simplified if you let
x = b + u, y = b + v, and z = (r-1)+w, where 
b = 8(r-1)/3 .  An alternate approach is to extend 
Eq.(13) of Section 9.3, which is:

 Ë

Ê
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ÁÁÁ
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Á
Á
Á  ̄

�

�
�
�
�
�

Fx  Fy  Fz

Gx  Gy  Gz

Hx  Hy  Hz (x0,y0,z0)

 

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���
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w

. 

In this example F = -10x + 10y, G = rx - y - xz and 
H = -8z/3 + xy and thus

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

u

v

w

¢

 = 

 Ë

Ê

Á
ÁÁÁ
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���
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-10 10   0

 r   -1  -x0

 y0   x0  -8/3

 

 Ë

Ê

Á
ÁÁÁ

 ̄

�

�
���

u

v

w

, which is Eq.(8) for P2 since 

x0 = y0 = 8(r-1)/3 . 

2b. Eq.(9) is found by evaluating 

Ω
Ω
Ω
Ω
Ω
Ω
Ω Ω

Ω
Ω
Ω
Ω
Ω
Ω

-10-l 10 0

1 -1-l -b

b b -8/3-l

 = 0.

2c. If r = 28, then Eq.(9) is 3l3 + 41l2 + 304l + 4320 = 0, 
which has the roots -13.8546 and .093956 ± 10.1945i.

3b. If r1,r2,r3 are the three roots of a cubic polynomial, 
then the polynomial can be factored as 
(x-r1)(x-r2)(x-r3).  Expanding this and equating to the 
given polynomial we have A = -(r1+r2+r3), 
B = r1r2 + r1r3 + r2r3 and C = -r1r2r3.  We are interested 
in the case when the real part of the complex conjugate 
roots changes sign.  Thus let r2 = a+ib and r3 = a-ib, 
which yields 
A = -(r1+2a), B = 2ar1 + a2 + b2 and C = -r1(a2+b2).  
Hence, if AB = C, we have
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-(r1+2a)(2ar1+a2+b2) = -r1(a2+b2) or
-2a[r12 + 2ar1 + (a2+b2)] = 0 or -2a[(r1+a) 2+b2] = 0.  
Since the square bracket term is positive, we conclude 
that if AB = C, then a = 0. That is, the conjugate 
complex roots are pure imaginary.  Note that the converse 
is also true.  That is, if the conjugate complex roots 
are pure imaginary then AB = C.

3c. Comparing Eq.(9) to that of part b, we have A = 41/3, 
B = 8(r+10)/3 and C = 160(r-1)/3.  Thus AB = C yields 
r = 470/19.

4. We have V
.
 = 2x[s(-x+y)] + 2sy[rx-y-xz] + 2sz[-bz+xy]

          = -2sx2 + 2sxy + 2srxy - 2sy2 - 2sbz2

          = 2s{-[x2-(r+1)xy+y2]-bz2}.  For r < 1, the 
term in the square brackets remains positive for all 

values of x and y, by Theorem 9.6.4, and thus V
.
 is 

negative definite.  Thus, by the extension of Theorem 
9.6.1 to three equations, we conclude that the origin is 
an asymptotically stable critical point.

5a. V = rx2 + sy2 + s(z-2r) 2 = c > 0 yields
dv

dt
 = 2rx[s(-x+y)] + 2sy(rx-y-xz) + 2s(z-2r)(-bz+xy). Thus

V
.
 = -2s[rx2+y2 + b(z2 - 2rz)] = -2s[rx2 + y2 + b(z-r) 2 - br2].

5b. From the proof of Theorem 9.6.1, we find that we need to 

show that V
.
, as found in part a, is always negative as it 

crosses V(x,y,z) = c.  (Actually, we need to use the 
extension of Theorem 9.6.1 to three equations, but the 
proof is very similar using the vector calculus 
approach.)  From part a we see that 

V
.
 < 0 if rx2 + y2 + b(z-r) 2 > br2, which holds if (x,y,z) 

lies outside the ellipsoid 
x2

br 
 + 

y2

br2
 + 

(z-r) 2

r2
 = 1. (i)  

Thus we need to choose c such that V = c lies outside 
Eq.(i).  Writing V = c in the form of Eq.(i) we obtain 

the ellipsoid 
x2

c/r
 + 

y2

c/s
 + 

(z-2r) 2

c/s
 = 1. (ii) Now let 

M = max( br , r b , r), then the ellipsoid (i) is 

contained inside the sphere S1: 
x2

M2
 + 

y2

M2
 + 

(z-r) 2

M2
 = 1.  

Let S2 be a sphere centered at (0,0,2r) with radius 
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M+r: 
x2

(M+r) 2
 + 

y2

(M+r) 2
 + 

(z-2r)

(M+r2)
 = 1, then S1 is contained 

in S2.  Thus, if we choose c, in Eq.(ii), such that 

c

r
 > (M+r) 2 and 

c

s
 > (M+r) 2, then V

.
 < 0 as the trajectory 

crosses V(x,y,z) = c.  Note that this is a sufficient 
condition and there may be many other “better” choices 
using different techniques.

8b. Several cases are shown. Results may vary, particularly 
for r = 24, due to the closeness of r to r

3
 @ 24.06.
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CHAPTER 10

Section 10.1 Page 547

2. y(x) = c1cos 2 x + c2sin 2 x is the general solution of the 

D.E.  Thus y′(x) = - 2 c1sin 2 x + 2 c2cos 2 x and hence 

y′(0) = 2 c2 = 1, which gives c2 = 1/ 2 .  Now, 

y′(π) = - 2 c1sin 2 π + cos 2 π = 0 then yields

c1 = 
cos 2 π

2 sin 2 π
 = cot 2 π/ 2 .  Thus the desired solution is 

y = (cot 2 πcos 2 x + sin 2 x)/ 2 .

3. We have y(x) = c1cosx + c2sinx as the general solution and 
hence y(0) = c1 = 0 and y(L) = c2sinL = 0.  If sinL ≠ 0, then 
c2 = 0 and y(x) = 0 is the only solution.  If sinL = 0, then 
y(x) = c2sinx is a solution for arbitrary c2.

7. y(x) = c1cos2x + c2sin2x is the solution of the related 

homogeneous equation and yp(x) = 
1

3
cosx is a particular 

solution, yielding y(x) = c1cos2x + c2sin2x + 
1

3
cosx as the 

general solution of the D.E.  Thus y(0) = c1 + 
1

3
 = 0 and 

y(π) = c1 - 
1

3
 = 0 and hence there is no solution since there 

is no value of c1 that will satisfy both boundary conditions.

11. If λ < 0, the general solution of the D.E. is
y = c1sinh µ x + c2cosh µ x where -λ = µ.  The two B.C. 
require that c2 = 0 and c1 = 0 so λ < 0 is not an eigenvalue.  
If λ = 0, the general solution of the D.E. is y = c1 + c2x.  
The B.C. require that c1 = 0, c2 = 0 so again λ = 0 is not an 
eigenvalue.  If λ > 0, the general solution of the D.E. is
y = c1sin λ x + c2cos λ x.  The B.C. require that c2 = 0 and 

λ  c1cos λ π = 0.  The second condition is satisfied for
λ ≠ 0 and c1 ≠ 0 if λ π = (2n-1)π/2, n = 1,2,... .  Thus the 
eigenvalues are λn = (2n-1) 2/4, n = 1,2,3... with the 
corresponding eigenfunctions yn(x) = sin[(2n-1)x/2], 
n = 1,2,3... .

15. For λ < 0 there are no eigenvalues, as shown in Problem 11.  
For λ = 0 we have y(x) = c1 + c2x, so y′(0) = c2 = 0 and 

                                                                                  203
                                                                                                                          



y′(π) = c2 = 0, and thus λ = 0 is an eigenvalue, with 
y0(x) = 1 as the eigenfunction.  For λ > 0 we again have 
y(x) = c1sin λ x + c2cos λ x, so y′(0) = λ c1 = 0 and 

y′(L) = -c2 λ sin λ L = 0.  We know λ > 0, in this case, so 
the eigenvalues are given by sin λ L = 0 or λ L = nπ.  Thus 
λn = (nπ/L) 2 and yn(x) = cos(nπx/L) for n = 1,2,3... .

Section 10.2, Page 555

3. We look for values of T for which sinh2(x+T) = sinh2x for 
all x.  Expanding the left side of this equation gives 
sinh2xcosh2T + cosh2xsinh2T = sinh2x, which will be 
satisfied for all x if we can choose T so that cosh2T = 1 
and sinh2T = 0.  The only value of T satisfying these 
two constraints is T = 0.  Since T is not positive we 
conclude that the function sinh2x is not periodic.

5. We look for values of T for which tanπ(x+T) = tanπx.  
Expanding the left side gives 
tanπ(x+T) = (tanπx + tanπT)/(1-tanπxtanπT) which is equal 
to tanπx only for tanπT = 0.  The only positive solutions 
of this last equation are T = 1,2,3... and hence tanπx is 
periodic with fundamental period T = 1.

7. To start, let n = 0, then f(x) = 
 





0  -1  ≤ x < 0

1   0  ≤ x < 1
;  for n = 1, 

f(x) = 
 





0 1 ≤ x < 2

1 2 ≤ x < 3
; and for n = 2, f(x) = 

 





0  3 ≤ x < 4

1  4 ≤ x < 5
.  By 

continuing in this fashion, and drawing a graph, it can be 
seen that T = 2.

10. The graph of f(x) is:  
We note that f(x) is 
a straight line with 
a slope of one in any 
interval.  Thus f(x) has the form x+b in any interval for 
the correct value of b.  Since f(x+2) = f(x), we may set 
x = -1/2 to obtain f(3/2) = f(-1/2).  Noting that 3/2 is 
on the interval 1 < x < 2[f(3/2) = 3/2 + b] and that -1/2 
is on the interval -1 < x < 0[f(-1/2) = -1/2 + 1], we 
conclude that 3/2 + b = -1/2 + 1, or b = -1 for the 
interval 1 < x < 2. For the interval 8 < x < 9 we have 
f(x+8) = f(x+6) = ... = f(x) by successive applications 
of the periodicity condition.  Thus for x = 1/2 we have 
f(17/2) = f(1/2) or 17/2 + b = 1/2 so b = -8 on the 
interval 8 < x < 9.
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In Problems 13 through 18 it is often necessary to use 
integration by parts to evaluate the coefficients, although 
all the details will not be shown here.

13a. The function represents 
a sawtooth wave. It is 
periodic with period 2L.  

13b. The Fourier series is of the form 

f(x) = a0/2 + ∑
m=1

∞
 (amcosmπx/L + bmsinmπx/L ), where the 

coefficients are computed from Eqs. (13) and (14).  
Substituting for f(x) in these equations yields 

a0 = (l/L)∫-LL (-x)dx = 0 and am = (l/L)∫-LL (-x)cos(mπx/L)dx = 0, 

m = 1,2... (these can be shown by direct integration, or 

using the fact that ∫-aa g(x)dx = 0 when g(x) is an odd 
function).  Finally, 

bm = (l/L)∫-LL (-x)sin(mπx/L)dx

   = (x/mπ)cos(mπx/L)


-L

L

- (l/mπ)∫-LL cos(mπx/L)dx

   = (2Lcosmπ)/mπ − (L/m2π2)sin(mπx/L)


-L

L

 = 2L(−1) m/mπ

Substituting these terms in the above Fourier series for 
f(x) yields the desired answer.

15a. See the next page.

15b. In this case f(x) is periodic of period 2π and thus 
L = π in Eqs. (9), (13,) and (14).  The constant a0 is 
found to be a0 = (1/π)∫-π

0
xdx = -π/2 since f(x) is zero on 

the interval [0,π].  Likewise 
an = (1/π)∫-π

0
xcosnxdx = [1 - (-1) n]/n2π, using integration 

by parts and recalling that cosnπ = (-1) n.  Thus an = 0 
for n even and an = 2/n

2π for n odd, which may be written 
as a2n-1 = 2/(2n-1) 2π since 2n-1 is always an odd number.  
In a similar fashion bn = (1/π)∫-π

0
xsinnxdx = (-1) n+1/n and 

thus the desired solution is obtained.  Notice that in 
this case both cosine and sine terms appear in the 
Fourier series for the given f(x).
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15a.                             21a.

21b. a0 = 
1

2 ∫−2
2 x2

2
dx = 

1

12
x3 



-2

2

 = 
4

3
, so 

a0

2
 = 

2

3
 and  

an = 
1

2 ∫−2
2 x2

2
cos

nπx
2

dx

   = 
1

4
[
2x2

nπ
sin

nπx
2

 + 
8x

n2π2
cos

nπx
2

 − 
16

n3π3
sin

nπx
2

]


-2

2

 

   = (8/n2π2)cos(nπ) = (−1) n8/n2π2
where the second line for an is found by integration by 
parts or a computer algebra system.  Similarly, 

bn = 
1

2 ∫−2
2 x2

2
sin

nπx
2

dx = 0, since x2sin
nπx
2

 is an odd 

function.  Thus f(x) = 
2

3
 + 

8

π2∑
n=1

∞
 
(−1) n

n2
cos

nπx
2

.

21c. As in Eq. (27), we have sm(x) = 
2

3
 + 

8

π2∑
n=1

m

 
(−1) n

n2
cos

nπx
2

21d. Observing the graphs we see that the Fourier series 
converges quite rapidly, except, at x = -2 and x = 2, 
where there is a sharp “point” in the periodic function.

25.
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27a. First we have ∫Ta+Tg(x)dx = ∫0ag(s)ds by letting x = s + T 
in the left integral.  Now, if 0 ≤ a ≤ T, then from 
elementary calculus we know that 

∫aa+Tg(x)dx = ∫aTg(x)dx + ∫Ta+Tg(x)dx = ∫aTg(x)dx + ∫0ag(x)dx 
using the equality derived above.  This last sum is 

∫0Tg(x)dx and thus we have the desired result.

Section 10.3, Page 562

2a. Substituting for f(x) in Eqs.(2) and (3) with L = π  
yields a0 = (1/π)∫0πxdx = π/2; 

am = (1/π)∫0πxcosmxdx = (cosmπ - 1)/πm2 = 0 for m even and 

   = -2/πm2 for m odd; and 
bm = (1/π)∫0πxsinmxdx = -(πcosmπ)/mπ = (-1) m+1/m, 

m = 1,2... .  Substituting these values into Eq.(1) with 
L = π yields the desired solution.

2b. The function to which the series converges is indicated 
in the figure and is periodic with period 2π.  Note that

the Fourier series converges to π/2 at x = −π, π, etc., 
even though the function is defined to be zero there.  
This value (π/2) represents the mean value of the left 
and right hand limits at those points.  In (−π, 0), 
f(x) = 0 and f′(x) = 0 so both f and f′ are continuous and 
have finite limits as x → −π from the right and as 
x → 0 from the left.  In (0, π), f(x) = x and f′(x) = 1 
and again both f and f′ are continuous and have limits as 
x → 0 from the right and as x → π from the left.  Since 
f and f′ are piecewise continuous on [−π, π] the 
conditions of the Fourier theorem are satisfied.

4a. Substituting for f(x) in Eqs.(2) and (3), with L = 1 

yields a0 = ∫-11 (1-x2)dx = 4/3;
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an = ∫-11 (1-x2)cosnπxdx = (2/nπ)∫-11 xsinnπxdx 

   = (-2/n2π2)[xcosnπx
 -1
1
 - ∫-11 cosnπxdx] 

   = 4(-1) n+1/n2π2; and 
bn = ∫-11 (1-x2)sinnπxdx = 0.  Substituting these values 

into Eq.(1) gives the desired series.

4b. The function to which the series converges is shown in 
the figure and is periodic of fundamental period 2.  In 
[-1,1] f(x) and f′(x) = -2x are both continuous and have
finite limits as the endpoints of the interval are 
approached from within the interval.

  

7a. As in Problem 15, Section 10.2, we have

f(x) = − 
π
4
 + ∑

n=1

∞
[
2cos(2n−1)x

π(2n−1) 2
 + 

(−1) n+1sinnx

n
].

7b. en(x) = f(x) + 
π
4
 − ∑

k=1

n

[
2cos(2k−1)x

π(2k−1) 2
 + 

(−1) k+1sinkx

k
].

Using a computer algebra system, we find that for 
n = 5, 10 and 20 the maximum error occurs at x = −π in 
each case and is 1.6025, 1.5867 and 1.5787 respectively.  
Note that the author’s n values are 10, 20 and 40, since 
he has included the zero cosine coefficient terms and the 
sine terms are all zero at x = −π.

7c. It’s not possible in this case, due to Gibb’s phenomenon, 
to satisfy  en(x)  ≤ 0.01 for all x.

12a. a0 = ∫-11 (x-x3)dx = 0 and an = ∫-11 (x-x3)cosnπxdx = 0 since 

(x-x3) and (x-x3)cosnπx are odd functions. 
bn = ∫−11(x−x3)sinnπxdx

       = [
x3

nπ
cosnπx−

3x2

n2π2
sinnπx−

(n2π2+6)
n3π3

xcosnπx+
(n2π2+6)
n4π4

sinnπx] −1
1

  = 
−12
n3π3

cosnπ, so f(x) = −
12

π3 ∑
n=1

∞ (−1) n

n3
sinnπx.
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12b. en(x) = f(x) + 
12

π3
 ∑
k=1

n
(-1) k

k3
sinkπx.  These errors will be 

much smaller than in the earlier problems due to the n3 
factor in the denominator.  Convergence is much more 
rapid in this case.

14. The solution to the corresponding homogeneous equation is 
found by methods presented in Section 3.4 and is 
y(t) = c1cosωt + c2sinωt.  For the nonhomogeneous terms 
we use the method of superposition and consider the 
sequence of equations yn″ + ω2yn = bnsinnt for 
n = 1,2,3... .  If ω > 0 is not equal to an integer, 
then the particular solution to this last equation has 
the form Yn = ancosnt + dnsinnt, as previously discussed 
in Section 3.6.  Substituting this form for Yn into the 

equation and solving, we find an = 0 and dn = bn/(ω2-n2).  
Thus the formal general solution of the original 
nonhomogeneous D.E. is 

y(t) = c1cosωt + c2sinωt + ∑
n=1

∞
 bn(sinnt)/(ω2-n2), where 

we have superimposed all the Yn terms to obtain the 
infinite sum.  To evalute c1 and c2 we set t = 0 to 
obtain y(0) = c1 = 0 and 

y′(0) = ωc2 + ∑
n=1

∞
nbn/(ω2-n2) = 0 where we have formally 

differentiated the infinite series term by term and 
evaluated it at t = 0.  (Differentiation of a Fourier 
Series has not been justified yet and thus we can only 
consider this method a formal solution at this point).  

Thus c2 = -(1/ω) ∑
n=1

∞
nbn/(ω2-n2), which when substituted 

into the above series yields the desired solution.

If ω = m, a positive integer, then the particular 
solution of ym″ + m2ym = bmsinmt has the form
Ym = t(amcosmt + dmsinmt) since sinmt is a solution of 
the related homogeneous D.E.  Substituting Ym into the 
D.E. yields am = -bm/2m and dm = 0 and thus the general 
solution of the D.E. (when ω = m) is now y(t) = c1cosmt     

      + c2sinmt - bmt(cosmt)/2m + ∑
n=1,n≠m

∞
bn(sinnt)/(m

2-n2).  

To evaluate c1 and c2 we set y(0) = 0 = c1 and 
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y′(0) = c2m - bm/2m + ∑
n=1,n≠m

∞
bnn/(m

2-n2) = 0.  Thus  

c2 = bm/2m
2 - ∑

n=1,n≠m

∞
bnn/m(m

2-n2), which when substituted 

into the equation for y(t) yields the desired solution.

15. In order to use the results of Problem 14, we must first 
find the Fourier series for the given f(t). Using Eqs.(2) 
and (3) with L = π, we find that 
a0 = (1/π)∫0πdx - (1/π)∫π2π

dx = 0; 

an = (1/π)∫0πcosnxdx - (1/π)∫π2π
cosnxdx = 0; and

bn = (1/π)∫0πsinnxdx - (1/π)∫π2π
sinnxdx = 0 for n even and 

     = 4/nπ for n odd.  Thus 

f(t) = (4/π) ∑
n=1

∞
sin(2n-1)t/(2n-1).  Comparing this to the 

forcing function of Problem 14 we see that bn of 
Problem 14 has the specific values b2n = 0 and 
b2n-1 = (4/π)/(2n-1) in this example.  Substituting these 
into the answer to Problem 14 yields the desired 
solution.  Note that we have asumed ω is not a positive 
integer.  Note also, that if the solution to Problem 14 
is not available, the procedure for solving this problem 
would be exactly the same as shown in Problem 14.

16. From Problem 8, the Fourier series for f(t) is given by

f(t) = 1/2 + (4/π2)∑
n=1

∞
cos(2n-1)πt/(2n-1) 2 and thus we may 

not use the form of the answer in Problem 14.  The 
procedure outlined there, however, is applicable and will 
yield the desired solution.

18a. We will assume f(x) is continuous for this part.  For the 
case where f(x) has jump discontinuities, a more detailed 
proof can be developed, as shown in part b.  From Eq.(3) 

we have bn = 
1

L ∫-L
L
f(x)sin

nπx
L

dx.  If we let u = f(x) and 

dv = sin
nπx
L

dx, then du = f′(x)dx and v = 
-L

nπ
cos

nπx
L

.  

Thus
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bn = 
1

L
[
-L

nπ
f(x)cos

nπx
L

 -L
L
 + 

L

nπ∫-LL f′(x)cos
nπx
L

dx]

   = -
1

nπ
[f(L)cosnπ - f(-L)cos(-nπ)] + 

1

nπ∫-LL f′(x)cos
nπx
L

dx

   = 
1

nπ∫-LL f′(x)cos
nπx
L

dx, since f(L) = f(-L) and 

cos(-nπ) = cosnπ.  Hence nbn = 
1

π∫-LL f′(x)cos
nπx
L

dx,  which 

exists for all n since f′(x) is piecewise continuous.  
Thus nbn is bounded as n → ∞.  Likewise, for an, we 

obtain nan = -
1

π∫-LL f′(x)sin
nπx
L

dx and hence nan is also 

bounded as n → ∞.

18b. Note that f and f′ are continuous at all points where f″ 
is continuous.  Let x1, ..., xm be the points in (-L,L) 
where f″ is not continuous.  By splitting up the interval 
of integration at these points, and integrating Eq.(3) by 
parts twice, we obtain

n2bn = 
n

π∑
i=1

m

[f(xi+)-f(xi-)]cos
nπxi
L

-
n

π
[f(L-)-f(-L+)]cosnπ

-
L

π2∑
i=1

m

[f′(xi+)-f′(x1-)]sin 
nπxi
  L -

L

π2 ∫-L
L
f″(x)sin

nπx
L

dx, where 

we have used the fact that cosine is continuous.  We want 
the first two terms on the right side to be zero, for 
otherwise they grow in magnitude with n.  Hence f must be 
continuous throughout the closed interval [-L,L].  The 
last two terms are bounded, by the hypotheses on f′ and 
f″.  Hence n2bn is bounded; similarly n2an is bounded.  
Convergence of the Fourier series then follows by 

comparison with ∑
n=1

∞
n-2. 

Section 10.4, Page 570

3. Let f(x) = tan2x, then

f(−x) = tan(−2x) = 
sin(−2x)
cos(−2x)

 = 
−sin(2x)
cos(2x)

 = −tan2x = -f(x) 

and thus tan2x is an odd function.

6. Let f(x) = e-x, then f(-x) = ex so that f(-x) ≠ f(x) and 
f(-x) ≠ -f(x) and thus e-x is neither even nor odd.
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7.

10.

13. By the hint f(−x) = g(−x) + h(−x) = g(x) − h(x), since g 
is an even function and f is an odd function.  Thus
f(x) + f(−x) = 2g(x) and hence g(x) = [f(x) + f(−x)]/2 
defines g(x).  Likewise 
f(x)-f(-x) = g(x)-g(-x) + h(x)-h(-x) = 2h(x) and thus 
h(x) = [f(x) - f(-x)]/2.

All functions and their derivatives in Problems 14 through 30 
are piecewise continuous on the given intervals and their 
extensions.  Thus the Fourier Theorem applies in all cases.

14. For the cosine series we use the even extension of the 
function given in Eq.(13) and hence

f(x) = 
 





0 -2 ≤ x <-1

1+x -1 ≤ x < 0
 on the interval -2 ≤ x < 0.  

However, we don’t really need this, as the coefficients 
in this case are given by Eqs.(7), which just use the 
original values for f(x) on 0 < x ≤ 2.  Applying Eqs.(7) 
we have L = 2 and thus

a0 = (2/2)∫01(1-x)dx + (2/2)∫120dx = 1/2.  Similarly,
 

an = (2/2)∫01(1-x)cos(nπx/2)dx = 4[1-cos(nπ/2)]/n2π2 and 

bn = 0.  Substituting these values in the Fourier series 
yields the desired results.
For the sine series, we use Eqs.(8) with L = 2.  Thus 
an = 0 and 

bn = (2/2)∫01(1-x)sin(nπx/2)dx = 4[nπ/2 - sin(nπ/2)]/n2π2.
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15. The graph of the function to which the series converges 
is shown in the figure.  Using Eqs.(7) with L = 2 we have 

a0 = ∫01dx = 1 and an = ∫01cos(nπx/2)dx = 2sin(nπ/2)/nπ.  

Thus an = 0 for n even, an = 2/nπ for n = 1,5,9,...and 
an = -2/nπ for n = 3,7,11,... .  Hence we may write 
a2n = 0 and a2n-1 = 2(-1) n+1/(2n-1)π, which when 
substituted into the series gives the desired answer.

18. The graph of the function to which the series converges 
is indicated in the figure.

Since we want a sine series, we use Eqs.(8) to find, with 

L = π, that bn = (2/π)∫0πsinnxdx = 2[1-(-1) n]/nπ and thus 

bn = 0 for n even and bn = 4/nπ for n odd.

20. The graph of the function to which the series converges 
is shown in the figure.

We note that f(x) is specified over its entire 
fundamental period (T = 1) and hence we cannot extend f 
to make it either an odd or an even function.  Using 
Eqs.(2) and (3) from Section 10.3 we have (L = 1/2) 

a0 = 2∫01xdx = 1, an = 2∫01xcos(2nπx)dx = 0 and

bn = 2∫01xsin(2nπx)dx = -1/nπ.  [Note:  We have used the 
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results of Problem 27 of Section 10.2 in writing these 
integrals.  That is, if f(x) is periodic of period T, 
then every integral of f over an interval of length T has 
the same value.  Thus we integrate from 0 to 1 here, 
rather than −1/2 to 1/2.]  Substituting the above values 
into Eq.(1) of Section 10.3 yields the desired solution.  
It can also be observed from the above graph that
g(x) = f(x) - 1/2 is an odd function.  If Eqs.(8) are 
used with g(x), then it is found that 

g(x) = (-1/π) ∑
n=1

∞
sin(2nπx)/n and thus we obtain the same 

series for f(x) as found above.  

25a. bn = 
2

2 ∫0
2
(2−x2)sin

nπx
2

dx

   = [
−2
nπ

(2−x2)cos
nπx
2

 − 
8x

n2π2
sin

nπx
2

 − 
16

n3π3
cos

nπx
2

]
 0
2

   = 
4

nπ
(1+cosnπ) + 

16

n3π3
(1−cosnπ) and thus

f(x) = ∑
n=1

∞
(
4n2π2(1+cosnπ) + 16(1−cosnπ)

n3π3
)sin

nπx
2

25b.

25c.

28b.For the cosine series(even extension) we have

a0 = 
2

2 ∫0
1
xdx = 

1

2
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an = 
2

2 ∫0
1
xcos

nπx
2

dx = [ 2x
nπ

sin
nπx
2

 + 
4

n2π2
cos

nπx
2

]
 0
1

   = 
2

nπ
sin

nπ
2
 + 

4

n2π2
cos

nπ
2
 − 

4

n2π2
, so

g(x) = 
1

4
 + ∑

n=1

∞
4cos(nπ/2) + 2nπsin(nπ/2) − 4

n2π2
cos

nπx
2

.

For the sine series (odd extension) we have

bn = 
2

2 ∫0
1
xsin

nπx
2

dx = [
−2x
nπ

cos
nπx
2

 + 
4

n2π2
sin

nπx
2

]
 0
1

   = 
−2
nπ

cos
nπ
2
 + 

4

n2π2
sin

nπ
2
, so

h(x) = ∑
n=1

∞
4sin(nπ/2) − 2nπcos(nπ/2)

n2π2
sin

nπx
2

.

28c.

28d. The maximum error does not approach zero in either case, 
due to Gibb’s phenomenon.  Note that the coefficients in 
both series behave like 1/n as n → ∞ since there is an 
n in the numerator.

31. We have ∫-LL f(x)dx = ∫-L0 f(x)dx + ∫0Lf(x)dx. Now, if we let 
x = -y in the first integral on the right, then 

∫-L0 f(x)dx = ∫L0f(-y)(-dy) = ∫0Lf(-y)dy = -∫0Lf(y)dy.  Thus
∫-LL f(x)dx = -∫0Lf(y)dy + ∫0Lf(x)dx = 0.

32. To prove property 2 let f1 and f2 be odd functions and 
let f(x) = f1(x) ± f2(x). Then f(-x) = f1(-x) ± f2(-x) =  

-f1(x) ± [-f2(x)] = -f1(x) +
−
 f2(x) = -f(x), so f(x) is 

odd.  Now let g(x)= f1(x)f2(x), then 
  g(-x) = f1(-x)f2(-x) = [-f1(x)][-f2(x)] = f1(x)f2(x) = g(x) 

and thus g(x) is even.  Finally, let h(x) = f1(x)/f2(x) 
and hence h(-x) = f1(-x)/f2(-x) = [-f1(x)]/[-f2(x)] = 
f1(x)/f2(x) = h(x), which says h(x) is also even.  
Property 3 is proven in a similar manner.
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34. Since F(x) = ∫0xf(t)dt we have 
F(-x) = ∫0-xf(t)dt = -∫0xf(-s)ds by letting t = -s.  If f 
is an even function, f(-s) = f(s), we then have 

F(-x) = -∫0xf(s)ds = -F(x) from the original definition of 
F.  Thus F(x) is an odd function.  The argument is 
similar if f is odd.

35. Set x = L/2 in Eq.(6) of Section 10.3.  Since we know f 
is continuous at L/2, we may conclude, by the Fourier 
theorem, that the series will converge to 
f(L/2) = L at this point.  Thus we have

L = L/2 + (2L/π) ∑
n=1

∞
(-1) n+1/(2n-1), since 

sin[(2n-1)π/2] = (-1) n+1.  Dividing by L and simplifying 

yields 
π
4
 = ∑

n=1

∞
(-1) n+1

(2n-1)
 = ∑

n=0

∞
(-1) n

2n+1
.

37a. Multiplying both sides of the equation by f(x) and 
integrating from 0 to L gives

∫0L[f(x)] 2dx = ∫0L[f(x) ∑
n=1

∞
bnsin(nπx/L)]dx 

       = ∑
n=1

∞
bn∫0Lf(x)sin(nπx/L)dx = (L/2) ∑

n=1

∞
bn
2, by Eq.(8).  

This result is identical to that of Problem 17 of Section 
10.3 if we set an = 0, n = 0,1,2,... , since 
1

L ∫-L
L
[f(x)] 2dx = 

2

L ∫0
L
[f(x)] 2dx .  In a similar manner, it 

can be shown that

(2/L)∫0L[f(x)] 2dx = a02/2 + ∑
n=1

∞
an
2.

37b. Since f(x) = x and bn = 2L(-1) n+1/nπ (from Eq.(9)), we 
obtain

(2/L)∫0L[f(x)] 2dx = (2/L)∫0Lx2dx = 2L2/3 = ∑
n=1

∞
bn
2 = 

∑
n=1

∞
4L2/n2π2 = 4L2/π2 ∑

n=1

∞
(1/n2) or π2/6 = ∑

n=1

∞
(1/n2).
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38. We assume that the extensions of f and f′ are piecewise 
continuous on [-2L,2L].  Since f is an odd periodic 
function of fundamental period 4L it follows from 
properties 2 and 3 that f(x)cos(nπx/2L) is odd and 
f(x)sin(nπx/2L) is even.  Thus the Fourier coefficients 
of f are given by Eqs.(8) with L replaced by 2L; that is 
an = 0, n = 0,1,2,... and 

bn = (2/2L)∫02Lf(x)sin(nπx/2L)dx, n = 1,2,... .  The 

Fourier sine series for f is f(x) = ∑
n=1

∞
bnsin(nπx/2L).

39. From Problem 38 we have bn = (1/L)∫02Lf(x)sin(nπx/2L)dx

   = (1/L)∫0Lf(x)sin(nπx/2L)dx + (1/L)∫L2Lf(2L-x)sin(nπx/2L)dx

   = (1/L)∫0Lf(x)sin(nπx/2L)dx − (1/L)∫L0f(s)sin[nπ(2L -s)/2L]ds

   = (1/L)∫0Lf(x)sin(nπx/2L)dx-(1/L)∫0Lf(s)cos(nπ)sin(nπs/2L)ds

and thus bn = 0 for n even and 

bn = (2/L)∫0Lf(x)sin(nπx/2L)dx for n odd.  The Fourier 

series for f is given in Problem 38, where the bn are 
given above.

Section 10.5, Page 579

3. We seek solutions of the form u(x,t) = X(x)T(t).  
Substituting into the P.D.E. yields X″T + X′T′ + XT′ = 
X″T + (X′ + X)T′ = 0.  Formally dividing by the quantity 
(X′ + X)T gives the equation X″/(X′ + X) = -T′/T in which 
the variables are separated.  In order for this equation 
to be valid on the domain of u it is necessary that both 
sides be equal to the same constant λ.  Hence 
X″/(X′ + X) = -T′/T = λ or equivalently,
X″ - λ(X′ + X) = 0 and T′ + λT = 0.

5. We seek solutions of the form u(x,y) = X(x)Y(y).  
Substituting into the P.D.E. yields X″Y + (x+y)XY″ = 
X″Y + xXY″ + yXY″ = 0.  Formally dividing by XY yields 
X″/X + xY″/Y + yY″/Y = 0.  From this equation we see that 
the presence of the independent variable x multiplying 
the term uyy in the original equation leads to the term 
xY″/Y when we attempt to separate the variables.  It 
follows that the argument for a separation constant does 
not carry through and we cannot replace the P.D.E. by two 
O.D.E.
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8. Following the procedures of Eqs.(5) through (8), we set 
u(x,y) = X(x)T(t) in the P.D.E. to obtain X″T = 4XT′, or 
X″X = 4T′/T, which must be a constant.  As stated in the text 
this separation constant must be -λ 2  (we choose -λ 2 so that 
when a square root is used later, the symbols are simpler) 
and thus X″ + λ2X = 0 and T′ + (λ2/4)T = 0.  Now u(0,t) = 
X(0)T(t) = 0, for all t > 0, yields X(0) = 0, as discussed 
after Eq.(11) and similarly u(2,t) = X(2)T(t) = 0, for all 
t > 0, implies X(2) = 0.  The D.E. for X has the solution 
X(x) = C1cosλx + C2sinλx and X(0) = 0 yields C1 = 0.  Setting 
x = 2 in the remaining form of X yields X(2) = C2sin2λ = 0, 
which has the solutions 2λ = nπ or λ = nπ/2, n = 1,2,... .  
Note that we exclude n = 0 since then λ = 0 would yield 
X(x) = 0, which is unacceptable.  Hence 
X(x) = sin(nπx/2), n = 1,2,... .  Finally, the solution of the 
D.E. for T yields T(t) = exp(-λ2t/4) = exp(-n2π2t/16).  Thus we 
have found un(x,t) = exp(-n

2π2t/16)sin(nπx/2).  Setting t = 0 
in this last expression indicates that un(x,0) has, for the 
correct choices of n, the same form as the terms in u(x,0), 
the initial condition.  Using the principle of superposition 
we know that 
u(x,t) = c1u1(x,t) + c2u2(x,t) + c4u4(x,t) satisfies the 
P.D.E. and the B.C. and hence we let t = 0 to obtain 
u(x,0) = c1u1(x,0) + c2u2(x,0) + c4u4(x,0) = 
c1sinπx/2 + c2sinπx + c4sin2πx.  If we choose c1 = 2, 
c2 = -1 and c4 = 4 then u(x,0) here will match the given 
initial condition, and hence substituting these values in 
u(x,t) above then gives the desired solution.

10. Since the B.C. for this heat conduction problem are 
u(0,t) = u(40,t) = 0, t > 0, the solution u(x,t) is given 
by Eq.(19) with α 2 = 1 cm2/sec, L = 40 cm, and the 
coefficients cn determined by Eq.(21) with the I.C. 
u(x,0) = f(x) = x, 0 ≤ x ≤ 20; = 40 - x, 20 ≤ x ≤ 40.

Thus cn = 
1

20
[∫020xsin

nπx
40

dx + ∫2040(40−x)sin
nπx
40

dx]

        = 
160

n2π2
sin

nπ
2
.  It follows that

u(x,t) = 
160

π2 ∑
n=1

∞
sin(nπ/2)

n2
e−n2π2t/1600sin

nπx
40

.
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15a.

15b.

15c.

15d. As in Example 1, the maximum temperature will be at the 
midpoint, x = 20, and we use just the first term, since 
the others will be negligible for this temperature, since 
t is so large.  Thus 

u(20,t) = 1 = 
160

π2
sin(π/2)e−π2t/1600sin(20π/40).  Solving 

for t, we obtain e−π2t/1600 = π2/160, or

t = 
1600

π2
ln

160

π2
 = 451.60 sec.

18a. Since the B.C. for this heat conduction problem are
u(0,t) = u(20,t) = 0, t > 0, the solution u(x,t) is given by 
Eq.(19) with L = 20 cm, and the coefficients cn determined by 

Eq.(21) with the I.C. u(x,0) = f(x) = 100oC.  Thus 

cn = (1/10)∫020(100)sin(nπx/20)dx = -200[(-1) n-1]/nπ and hence 
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c2n = 0 and c2n-1 = 400/(2n-1)π.  Substituting these values 
into Eq.(19) yields 

u(x,t) = 
400

π ∑
n=1

∞
e−(2n−1) 2π2α2t/400

2n−1
sin

(2n−1)πx
20

18b. For aluminum, we have α 2 = .86 cm2/sec (from Table 
10.5.1) and thus the first two terms give 

u(10,30) = 
400

π
{e−π2(.86)30/400 − 

1

3
e−9π2(.86)30/400} 

         = 67.228oC. If an additional term is used, the 
temperature is increased by 
80

π
e−25π2(.86)30/400 = 3 × 10−6 degrees C.

19b. Using only one term in the series for u(x,t), we must 
solve the equation 5 = (400/π)exp[-π2(.86)t/400] for t.  
Taking the logarithm of both sides and solving for t 
yields t ≅  400ln(80/π)/π2(.86) = 152.56 sec.

20. Applying the chain rule to partial differentiation of u 
with respect to x we see that ux = uξξx = uξ(l/L) and 

uxx = uξξ(l/L)2.  Substituting uξξ/L
2 for uxx in the heat 

equation gives α 2uξξ/L
2 = ut or uξξ = (L

2/α 2)ut.  In a 

similar manner, ut = uττ t = uτ(α 2/L2) and hence 
L2

α2
ut = uτ 

and thus uξξ = uτ.

22. Substituting u(x,y,t) = X(x)Y(y)T(t) in the P.D.E. yields 
α2(X″YT + XY″T) = XYT′, which is equivalent to 
X″
X
 + 

Y″
Y
 = 

T′
α2T

. By keeping the independent variables x 

and y fixed and varying t we see that T′/α2T must equal 
some constant σ1 since the left side of the equation is 
fixed.  Hence, X″/X + Y″/Y = T′/α2T = σ1, or
X″/X = σ1 - Y″/Y and T′ - σ1α2T = 0.  By keeping x fixed 
and varying y in the equation involving X and Y we see 
that σ1 - Y″/Y must equal some constant σ2 since the left 
side of the equation is fixed.  Hence, 
X″/X = σ1 - Y″/Y = σ2 so X″ - σ2X = 0 and Y″ -(σ1 - σ2)Y = 0.  
For T′ - σ1α 2T = 0 to have solutions that remain bounded as 

t → ∞ we must have σ1 < 0.  Thus, setting σ1 = -λ 2, we have 
T′ + α2λ2T = 0.  For X″ - σ2X = 0 and homogeneous B.C., we 
conclude, as in Sect. 10.1, that σ2 < 0 and, if we let 
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σ2 = -µ2, then X″ + µ2X = 0.  With these choices for σ1 and σ2 
we then have Y″ + (λ2-µ2)Y = 0.

Section 10.6, Page 588

3. The steady-state temperature distribution v(x) must 
satisfy Eq.(9) and also satsify the B.C. vx(0) = 0, 
v(L) = 0. The general solution of v″ = 0 is 
v(x) = Ax + B. The B.C. vx(0) = 0 implies A = 0 and then 
v(L) = 0 implies B = 0, so the steady state solution is 
v(x) = 0.

7. Again, v(x) must satisfy v″ = 0, v′(0) -v(0) = 0 and v(L) = T.  
The general solution of v″ = 0 is v(x) = ax + b, so v(0) = b, 
v′(0) = a and v(L) = T.  Thus a - b = 0 and aL + b = T, which 
give a = b = T/(1+L).  Hence v(x) = T(x+1)/(L+1).

9a. Since the B.C. are not homogeneous, we must first find 
the steady state solution. Using Eqs.(9) and (10) we have 
v″ = 0 with v(0) = 0 and v(20) = 60, which has the 
solution v(x) = 3x. Thus the transient solution w(x,t) 
satisfies the equations α 2wxx = wt, w(0,t) = 0, 
w(20,t) = 0 and w(x,0) = 25 - 3x, which are obtained from 
Eqs.(13) to (15). The solution of this problem is given 
by Eq.(4) with the cn given by Eq.(6):

cn = 
1

10 ∫0
20
(25−3x)sin

nπx
20

dx = (70cosnπ+50)/nπ, and thus 

u(x,t) = 3x + ∑
n=1

∞
70cosnπ + 50

nπ
e−0.86n2π2t/400sin

nπx
20

 since

α2 = .86 for aluminum.

9b.                          9c.

9d. Using just the first term of the sum, we have

u(5,t) = 15 − 
20

π
e−0.86π2t/400sin

π
4
 = 15 ± .15.  Thus
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20

π
e−0.86π2t/400sin

π
4
 = .15, which yields t = 160.30 sec.

To obtain the answer in the text, the first two terms of 
the sum must be used, which requires an equation solver 
to solve for t.  Note that this reduces t by only .01 
seconds.

12a. Since the B.C. are ux(0,t) = ux(L,t) = 0, t > 0, the 
solution u(x,t) is given by Eq.(35) with the coefficients 
cn determined by Eq.(37). Substituting the I.C.
u(x,0) = f(x) = sin(πx/L) into Eq.(37) yields
c0 = (2/L)∫0Lsin(πx/L)dx = 4/π and

cn = (2/L)∫0Lsin(πx/L)cos(nπx/L)dx 

   = (1/L)∫0L{sin[(n+1)πx/L] - sin[(n-1)πx/L]}dx

   = (1/π){[1 - cos(n+1)π]/(n+1) - [1 - cos(n-1)π]/(n-1)}    
   = 0, n odd; = -4/(n2-1)π, n even.  Thus 

u(x,t) = 2/π-(4/π)∑
n=1

∞
exp[-4n2π2α2t/L2]cos(2nπx/L)/(4n2-1) 

where we are now summing over even terms by setting 
n = 2n.  

12b. As t → ∞ we see that all terms in the series decay to 
zero except the constant term, 2/π.  Hence 
lim
t→∞

 u(x,t) = 2/π.

12c.

12d. The original heat in the rod is redistributed to give the 
final temperature distribution, since no heat is lost.
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14a. Since the ends are insulated, the solution to this 
problem is given by Eq.(35), with α 2 = 1 and L = 30, and 

Eq.(37).  Thus u(x,t) = 
c0

2
 + ∑

n=1

∞
cnexp(-n

2π2t/900)cos(nπx/30), 

where

c0 = 
2

30 ∫0
30
f(x)dx = 

1

15 ∫5
10
25dx = 

25

3
 and

cn = 
2

30 ∫0
3
f(x)cos

nπx
30

dx = 
1

15 ∫5
10
25cos

nπx
30

dx = 
50

nπ
[sin

nπ
3
 - sin

nπ
6
].

14b.

14c.

Although x = 4 and x = 1 are symmetrical to the initial 
temperature pulse, they are not symmetrical to the insulated 
end points.

15a. Substituting u(x,t) = X(x)T(t) into Eq.(1) leads to the 
two O.D.E. X″ - σX = 0 and T′ - α2σT = 0.  An argument 
similar to the one in the text implies that we must have 
X(0) = 0 and X′(L) = 0.  Also, by assuming σ is real and 
considering the three cases σ < 0, σ = 0, and σ > 0 we 
can show that only the case σ < 0 leads to nontrivial 
solutions of X″ - σX = 0 with X(0) = 0 and X′(L) = 0.  
Setting σ = -λ2, we obtain X(x) = k1sinλx + k2cosλx.  
Now, X(0) = 0 → k2 = 0 and thus X(x) = k1sinλx.  
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Differentiating and setting x = L yields λk1cosλL = 0.  
Since λ = 0 and k1 = 0 lead to u(x,t) = 0, we must choose 
λ so that cosλL = 0, or λ = (2n-1)π/2L, n = 1,2,3,... .  
These values for λ imply that σ = -(2n-1) 2π2/4L2 so the 
solutions T(t) of T′ - α 2σT = 0 are proportional to 
exp[-(2n-1) 2π2α2t/4L2].  Combining the above results 
leads to the desired set of fundamental solutions.

15b. In order to satisfy the I.C. u(x,0) = f(x) we assume that 
u(x,t) has the form

u(x,t) = ∑
n=1

∞
cnexp[-(2n-1) 2π2α2t/4L2]sin[(2n-1)πx/2L].  The 

coefficients cn are determined by the requirement that 

u(x,0) = ∑
n=1

∞
cnsin[(2n-1)πx/2L] = f(x).  Referring to 

Problem 39 of Section 10.4 reveals that such a 
representation for f(x) is possible if we choose the 

coefficients cn = (2/L)∫0Lf(x)sin[(2n-1)πx/2L]dx.  

19. We must solve v1″(x) = 0, 0 ≤ x ≤ a and v2″(x) = 0, 
a ≤ x ≤ L subject to the B.C. v1(0) = 0, v2(L) = T and 
the continuity conditions at x = a. For the temperature 
to be continuous at x = a we must have v1(a) = v2(a) and 
for the rate of heat flow to be continuous we must have   
-κ1A1v1′ (a) = -κ2A2v2′ (a), from Eq.(2) of Appendix A.   The 
general solutions to the two O.D.E. are v1(x) = C1x + D1 
and v2(x) = C2x + D2.  By applying the boundary and 
continuity conditions we may solve for C1, D1, and C2 and 
D2 to obtain the desired solution.

Section 10.7, Page 600

1a. Since the initial velocity is zero, the solution is given 
by Eq.(20) with the coefficients cn given by Eq.(22).  
Substituting f(x) into Eq.(22) yields 

cn = 
2

L
[∫0L/2

2x

L
sin

nπx
L

dx + ∫L/2L 2(L−x)
L

sin
nπx
L

dx]

   = 
8

n2π2
sin

nπ
2
.  Thus Eq. (20) becomes

u(x,t) = 
8

π2∑
n=1

∞
1

n2
sin

nπ
2
sin

nπx
L

cos
nπat
L

.
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1b.

1c.

1e. The graphs in part b can best be understood using Eq.(28) 
(or the results of Problems 13 and 14).  The original 
triangular shape is composed of two similar triangles of 
1/2 the height, one of which moves to the right, h(x-at),  
and the other to the left, h(x+at).  Recalling that the 
series are periodic then gives the results shown.  The 
graphs in part c can then be visualized from those in 
part b.

6a. The motion is governed by Eqs.(1), (3) and (31), and thus 
the solution is given by Eq.(34) where the kn are given 
by Eq.(36):

kn = 
2

nπa
[∫0L/4

4x

L
sin

nπx
L

dx + ∫L/43L/4
sin

nπx
L

dx + ∫3LL
4(L−x)

L
sin

nπx
L

dx]

= 
8L

n3π3a
(sin

nπ
4
 + sin

3nπ
4

).  Substituting this in Eq.(34) 

yields u(x,t) = 
8L

aπ3∑
n=1

∞ sin
nπ
4
 + sin

3nπ
4

n3
sin

nπx
L

sin
nπat
L

.

6b.
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6c.

9. Assuming that u(x,t) = X(x)T(t) and substituting for u in 
Eq.(1) leads to the pair of O.D.E. X″ + σX = 0, 
T″ + a2σT = 0.  Applying the B.C. u(0,t) = 0 and 
ux(L,t) = 0 to u(x,t) we see that we must have X(0) = 0 
and X′(L) = 0.  By considering the three cases σ < 0, 
σ = 0, and σ > 0 it can be shown that nontrivial solutions of 
the problem X″ + σX = 0, X(0) = 0, X′(L) = 0 are possible if 
and only if σ = (2n-1) 2π2/4L2, n = 1,2,... and the 
corresponding solutions for X(x) are proportional to 
sin[(2n-1)πx/2L].  Using these values for σ we find that T(t) 
is a linear combination of sin[(2n-1)πat/2L] and 
cos[(2n-1)πat/2L].  Now, the I.C. ut(x,0) implies that 
T′(0) = 0 and thus functions of the form 
un(x,t) = sin[(2n-1)πx/2L]cos[(2n-1)πat/2L], n = 1,2,... 
satsify the P.D.E. (1), the B.C. u(0,t) = 0, ux(L,t) = 0, 
and the I.C. ut(x,0) = 0.  We now seek a superposition of 
these fundamental solutions un that also satisfies the 
I.C. u(x,0) = f(x).  Thus we assume that

u(x,t) = ∑
n=1

∞
cnsin[(2n-1)πx/2L]cos[(2n-1)πat/2L].  The 

I.C. now implies that we must have 

f(x) = ∑
n=1

∞
cnsin[(2n-1)πx/2L].  From Problem 39 of Section 

10.4 we see that f(x) can be represented by such a series 
and that

cn = (2/L)∫0Lf(x)sin[(2n-1)πx/2L]dx, n = 1,2,... .  

Substituting these values into the above series for 
u(x,t) yields the desired solution.

10a. From Problem 9 we have

cn = 
2

L ∫(L−2)/2
(L+2)/2

sin
(2n−1)πx

2L
dx

   = 
−4

(2n−1)π
[cos(

(2n−1)π(L+2)
4L

) − cos(
(2n−1)π(L−2)

4L
)]

   = 
8

(2n−1)π
sin

(2n−1)π
4

sin
(2n−1)π

2L
 using the 
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trigonometric relations for cos(A ± B).  Substituting 
this value of cn into u(x,t) in Problem 9 yields the 
desired solution.

10b.

10c.

13. Using the chain rule we obtain ux = uξξx + uηηx = 
uξ + uη since ξx = ηx = 1.  Differentiating a second time 
gives uxx = uξξ + 2uξη + uηη.  In a similar way we obtain 
ut = uξξt + uηηt = -auξ + auη, since ξt = -a, ηt = a.  Thus 
utt = a

2(uξξ - 2uξη + uηη).  Substituting for uxx and utt 
in the wave equation, we obtain uξη = 0.  Integrating 
both sides of uξη = 0 with respect to η  yields 
uξ(ξ,η) = γ(ξ) where γ is an arbitrary function of ξ.  
Integrating both sides of uξ(ξ,η) = γ(ξ) with respect to ξ 
yields u(ξ,η) = ∫γ(ξ)dξ + ψ(η) = φ(ξ) + ψ(η) where ψ(η) 
is an arbitrary function of η and ∫γ(ξ)dξ is some 
function of ξ denoted by φ(ξ).  Thus 
u(x,t) = u(ξ(x,t),η(x,t)) = φ(x - at) + ψ(x + at).

14. The graph of y = sin(x-at) for the various values of t is 
indicated in the figure on the next page.  Note that the 
graph of y = sinx is displaced to the right by the 
distance “at” for each value of t.
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Similarly, the graph of y = φ(x + at) would be displaced 
to the left by a distance “at” for each t.  Thus 
φ(x + at) represents a wave moving to the left.

16. Write the equation as a2uxx = utt + α 2u and assume

u(x,t) = X(x)T(t).  This gives a2X″T = XT″ + α2XT,

or 
X″
X
 = 

1

a2
(
T″
T
 + α2) = σ.  The separation constant σ is 

−λ2 using the same arguments as in the text and earlier 
problems.  Thus X″ + λ2X = 0, X(0) = 0, X(L) = 0 and 
T″ + (α2 + z2λ2)T = 0, T′(0) = 0.  If we let βn2 = λn2a2+α 2, 

we then have un(x,t) = cosβntsin
nπx
L

, where λn = 
nπx
L

.  

Using superposition we obtain u(x,t) = ∑
n=1

∞
cncosβntsin

nπx
L

 

and thus u(x,0) = ∑
n=1

∞
cnsin

nπx
L

 = f(x).  Hence cn are given 

by Eq. (22).

17a. We have u(x,t) = φ(x-at) + ψ(x+at) and thus 
ut(x,t) = -aφ′(x-at) + aχ′(x+at).  Hence 
u(x,0) = φ(x) + ψ(x) = f(x) and 
ut(x,0) = -aφ′(x) + aψ′(x) = 0.  Dividing the last 
equation by a yields the desired result.

17b. Using the hint and the first equation obtained in part (a) 
leads to φ(x) + ψ(x) = 2φ(x) + c = f(x) so
φ(x) = (1/2)f(x) - c/2 and ψ(x) = (1/2)f(x) + c/2. Hence
u(x,t) = φ(x - at) + ψ(x + at) = (1/2)[f(x - at) - c] +
(1/2)[f(x + at) + c] = (1/2)[f(x - at) + f(x + at)].

17c. Substituting x + at for x in f(x) yields

f(x + at) = 
 





2 -1 < x + at < 1

0 otherwise
.

Subtracting “at” from both sides of the inequality then 
yields
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f(x + at) = 
 





2 -1 - at < x < 1 - at

0 otherwise
.

18a. As in Problem 17a, we have u(x,0) = φ(x) + ψ(x) = 0 and 
ut(x,0) = -aφ′(x) + aψ'(x) = g(x).

18b. From part (a) we have ψ(x) = -φ(x) which yields 
-2aφ(x) = g(x) from the second equation in part a.  

Integration then yields φ(x) - φ(x0) = 
-1

2a ∫x0
x
g(ξ)dξ and 

hence

ψ(x) = (1/2a)∫x0
x
g(ξ)dξ - φ(x0).

18c. u(x,t) = φ(x-at) + ψ(x+at) 
  = -(1/2a)∫x0

x-at
g(ξ)dξ + φ(x0) + (1/2a)∫x0

x+at
g(ξ)dξ - φ(x0)

  = (1/2a)[∫x0
x+at

g(ξ)dξ - ∫x0
x-at

g(ξ)dξ]

  = (1/2a)[∫x0
x+at

g(ξ)dξ + ∫x-atx0 g(ξ)dξ]

  = (1/2a∫x-atx+at
g(ξ)dξ.

24. Substituting u(r,θ,t) = R(r)Θ(θ)T(t) into the P.D.E. 
yields R″ΘT + R′ΘT/r + RΘ″T/r2 = RΘT″/a2 or equivalently 
R″/R + R′/rR + Θ″/Θr2 = T″/a2T.  In order for this 
equation to be valid for 0 < r < r0, 0 ≤ θ ≤ 2π, t > 0, 
it is necessary that both sides of the equation be equal 
to the same constant -σ.  Otherwise, by keeping r and θ 
fixed and varying t, one side would remain unchanged 
while the other side varied.  Thus we arrive at the two 
equations T″ + σa2T = 0 and r2R″/R + rR′/R + σr2 = -Θ″/Θ.  
By an argument similar to the one above we conclude that 
both sides of the last equation must be equal to the same 
constant δ. This leads to the two equations
r2R″ + rR′ + (σr2 - δ)R = 0 and Θ″ + δΘ = 0.  Since the 
circular membrane is continuous, we must have 
Θ(2π) = Θ(0), which requires δ = µ2, µ a non-negative 
integer.  The condition Θ(2π) = Θ(0) is also known as 
the periodicity condition.  Since we also desire 
solutions which vary periodically in time, it is clear 
that the separation constant σ should be positive,
σ = λ2. Thus we arrive at the three equations 
r2R″ + rR′ + (λ2r2 - µ2)R = 0, Θ″ + µ2Θ = 0, and 
T″ + λ2a2T = 0.
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Section 10.8, Page 611

1a. Assuming that u(x,y) = X(x)Y(y) leads to the two O.D.E. 
X″ - σX = 0, Y″ + σY = 0.  The B.C. u(0,y) = 0,
u(a,y) = 0 imply that X(0) = 0 and X(a) = 0. Thus 
nontrivial solutions to X″ - σX = 0 which satisfy these 
boundary conditions are possible only if σ = -(nπ/a) 2, 
n = 1,2...; the corresponding solutions for X(x) are 
proportional to sin(nπx/a).  The B.C. u(x,0) = 0 implies 
that Y(0) = 0.  Solving Y″ - (nπ/a) 2Y = 0 subject to this 
condition we find that Y(y) must be proportional to
sinh(nπy/a).  The fundamental solutions are then
un(x,y) = sin(nπx/a)sinh(nπy/a), n = 1,2,..., which 
satisfy Laplace’s equation and the homogeneous B.C.  We 

assume that u(x,y) = ∑
n=1

∞
cnsin(nπx/a)sinh(nπy/a), where 

the coefficients cn are determined from the B.C.

u(x,b) = g(x) = ∑
n=1

∞
cnsin(nπx/a)sinh(nπb/a).  It follows 

that

cnsinh(nπb/a) = (2/a)∫0ag(x)sin(nπx/a)dx, n = 1,2,... .

1b. Substituting for g(x) in the equation for cn we have

cnsinh(nπb/a) = (2/a)[∫0a/2xsin(nπx/a)dx + 

∫a/2a
(a-x)sin(nπx/a)dx] = [4a sin(nπ/2)]/n2π2, n = 1,2,..., 

so cn = [4a sin(nπ/2)]/[n2π2sinh(nπb/a)].  Substituting 
these values for cn in the above series yields the 
desired solution.

1c.
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1d.

2. In solving the D.E. Y″ - λ2Y = 0, one normally writes
Y(y) = c1sinhλy + c2coshλy.  However, since we have 
Y(b) = 0, it is advantageous to rewrite Y as 
Y(y) = d1sinhλ(b-y) + d2coshλ(b-y), where d1, d2 are also 
arbitrary constants and can be related to c1, c2 using 
the appropriate hyperbolic trigonometric identities.  The 
important thing, however, is that the second form also 
satisfies the D.E. and thus Y(y) = d1sinhλ(b-y) satisfies 
the D.E. and the homogeneous B.C. Y(b) = 0.  The rest of 
the problem follows the pattern of Problem 1.

3a. Let u(x,y) = v(x,y) + w(x,y), where u, v and w all 
satisfy Laplace’s Eq., v(x,y) satisfies the conditions in 
Eq. (4) and w(x,y) satisfies the conditions of Problem 2.

4. Following the pattern of Problem 3, one could consider 
adding the solutions of four problems, each with only one 
non-homogeneous B.C.  It is also possible to consider 
adding the solutions of only two problems, each with only 
two non-homogeneous B.C., as long as they involve the 
same variable. For instance, one such problem would be 
uxx + uyy = 0, u(x,0) = 0, u(x,b) = 0, u(0,y) = k(y), 
u(a,y) = f(y), which has the fundamental solutions 
un(x,y) = [cnsinh(nπx/b) + dncosh(nπx/b)]sin(nπy/b).  

Assuming u(x,y) = ∑
n=1

∞
un(x,y) and using the B.C. 

u(0,y) = k(y) we obtain dn = (2/b)∫0bk(y)sin(nπy/b)dy.  

Using the B.C. u(a,y) = f(y) we obtain

cnsinh(nπa/b) + dncosh(nπa/b) = (2/b)∫0bf(y)sin(nπy/b)dy, which 

can be solved for cn, since dn is already known.  The second 
problem, in this approach, would be uxx + uyy = 0, u(x,0) = 
h(x), u(x,b) = g(x), u(0,y) = 0 and u(a,y) = 0.  This has the 
fundamental solutions
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un(x,y) = [ansinh(nπy/a) + bncosh(nπy/a)]sin(nπx/a, so that 

u(x,y) = ∑
n=1

∞
un(x,y).  Thus u(x,0) = h(x) gives 

bn = (2/a)∫0ah(x)sin(nπx/a)dx and u(x,b) = g(x) gives

ansinh(nπb/a) + bncosh(nπb/a) = (2/a)∫0ag(x)sin(nπx/a)dx, which 

can be solved for an since bn is known.

5. Using Eq.(20) and following the same arguments as 
presented in the text, we find that R(r) = k1r

n + k2r
-n 

and Θ(θ) = c1sinnθ + c2cosnθ, for n a positive integer, 
and u0(r,θ) = 1 for n = 0.  Since we require that u(r,θ) 
be bounded as r → ∞, we conclude that k1 = 0. The 
fundamental solutions are therefore 
un(r,θ) = r-ncosnθ, vn(r,θ) = r-nsinnθ, n = 1,2,... 
together with u0(r,θ) = 1.  Assuming that u can be 
expressed as a linear combination of the fundamental 
solutions we have

u(r,θ) = c0/2 + ∑
n=1

∞
r-n(cncosnθ + knsinnθ).  The B.C. 

requires that

u(a,θ) = c0/2 + ∑
n=1

∞
a-n(cncosnθ + knsinnθ) = f(θ) for 

0 ≤ θ < 2π.  This is precisely the Fourier series 
representation for f(θ) of period 2π and thus
a-ncn = (1/π)∫02f(θ)cosnθdθ, n = 0,1,2,... and

a-nkn = (1/π)∫02f(θ)sinnθdθ, n = 1,2... .

7. Again we let u(r,θ) = R(r)Θ(θ) and thus we have
r2R″ + rR′ - σR = 0 and Θ″ + σΘ = 0, with R(0) bounded and 
the B.C. Θ(0) = Θ(α) = 0. For σ ≤ 0 we find that 
Θ(0) ≡ 0, so we let σ = λ2 (λ2 real) and thus
Θ(θ) = c1cosλθ + c2sinλθ. The B.C. Θ(0) = 0 → c1 = 0 and 
the B.C. Θ(α) = 0 → λ = nπ/α, n = 1,2,... .  
Substituting these values into Eq.(31) we obtain
R(r) = k1r

nπ/α + k2r
-nπ/α.  However k2 = 0 since R(0) must 

be bounded, and thus the fundamental solutions are
un(r,θ) = rnπ/αsin(nπθ/α).  The desired solution may now 
be formed using previously discussed procedures.
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8a. Separating variables, as before, we obtain 
X″ + λ2X = 0, X(0) = 0, X(a) = 0 and Y″ - λ2Y = 0, Y(y) bounded 
as y → ∞.  Thus X(x) = sin(nπx/a), and λ2 = (nπ/a) 2.  
However, since neither sinhy nor coshy are bounded as y → ∞, 
we must write the solution to Y″ - (nπ/a) 2Y = 0 as
Y(y) = c1exp[nπy/a] + c2exp[-nπy/a].  Thus we must choose 
c1 = 0 so that u(x,y) = X(x)Y(y) → 0 as y → ∞.  The 

fundamental solutions are then un(x,t) = e
-nπy/asin(nπx/a).  

u(x,y) = ∑
n=1

∞
cnun(x,y) then gives 

u(x,0) = ∑
n=1

∞
cnsin(nπx/a) = f(x) so that cn = 

2

a ∫0
1
f(x)sin

nπx
a

dx.

8b. cn = 
2

a ∫0
a
x(a−x)sin

nπx
a

dx = 
4a2

n3π3
(1−cosnπ)

8c. Using just the first term and letting a = 5, we have 

u(x,y) = 
200

π3
e-πy/5 sin

πx
5
, which, for a fixed y, has a maximum 

at x = 5/2 and thus we need to find y such that 

u(5/2,y) = 
200

π3
e-πy/5 = .1.  Taking the logarithm of both 

sides and solving for y yields y0 = 6.6315. With an equation 
solver, more terms can be used.  However, to four decimal 
places, three terms yield the same result as above. 

13a. Assuming that u(x,y) = X(x)Y(y) and substituting into
Eq.(1) leads to the two O.D.E. X″ - σX = 0, Y″ + σY = 0.  
The B.C. u(x,0) = 0, uy(x,b) = 0 imply that Y(0) = 0 and 
Y′(b) = 0.  For nontrivial solutions to exist for 
Y″ + σY = 0 with these B.C. we find that σ must take the 
values (2n-1) 2π2/4b2, n = 1,2,...; the corresponding 
solutions for Y(y) are proportional to sin[(2n-1)πy/2b].  
Solutions to X″ - [(2n-1) 2π2/4b2]X = 0 are of the form
X(x) = Asinh[(2n-1)πx/2b] + Bcosh[(2n-1)πx/2b].  However, 
the boundary condition u(0,y) = 0 implies that 
X(0) = B = 0.  It follows that the fundamental solutions 
are un(x,y) = cnsinh[(2n-1)πx/2b]sin[(2n-1)πy/2b], 
n = 1,2,... .  To satisfy the remaining B.C. at x = a we 
assume that we can represent the solution u(x,y) in the 

form u(x,y) = ∑
n=1

∞
cnsinh[(2n-1)πx/2b]sin[(2n-1)πy/2b].  

The coefficients cn are determined by the B.C.
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u(a,y) = ∑
n=1

∞
cnsinh[(2n-1)πa/2b]sin[(2n-1)πy/2b] = f(y). 

By properly extending f as a periodic function of period 
4b as in Problem 39, Section 10.4, we find that the 
coefficients cn are given by

cnsinh[(2n-1)πa/2b] = (2/b)∫0bf(y)sin[(2n-1)πy/2b]dy, 

n = 1,2,... .
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CHAPTER 11

Section 11.1, Page 626

2. Since the B.C. at x = 1 is nonhomogeneous, the B.V.P. is 
nonhomogeneous.

4. The D.E. may be written y″ + (λ-x2)y = 0 and is thus 
homogeneous, as are both B.C.

5. Since the D.E. contains the nonhomogeneous term 1, the 
B.V.P. is nonhomogeneous.

9. If λ = 0, then y(x) = c1x + c2 and thus y(0) = c2, 
y(1) = c1 + c2, y′(0) = c1 and y′(1) = c1.  Hence the B.C. 
yield the two equations c2 - c1 = 0 and c1 + c2 + c1 = 0 
which give c1 = c2 = 0 and thus λ = 0 is not an 
eigenvalue. 

If λ > 0, the general solution of the D.E. is
y = c

1
sin λ x + c

2
cos λ x.  The B.C. require that

c
2
 - λ c

1
 = 0, and

(sin λ  + λ cos λ )c
1
 + (cos λ  - λ sin λ )c

2
 = 0.  In 

order to have nontrivial solutions λ must satisfy
(λ-1)sin λ  - 2 λ cos λ  = 0.  In this case c

2
 = λ c

1
 

and thus φ
n
 = sin λ

n
x + λ

n
cos λ

n
x.  If λ ≠ 1, the 

eigenvalue equation is equivalent to tan λ  = 2 λ /(λ-1) 
and thus by graphing f( λ ) = tan λ  and 

g( λ ) = 2 λ /(λ-1) we can estimate the eigenvalues.  Since 
g( λ ) has a vertical asymptote at λ = 1 and f( λ ) has a 

vertical asymptote at λ  = π/2, we see that 1 < λ
1
 < π/2.  

By interating numerically, we find λ1  ≅  1.30655 and thus 
λ1 ≅  1.7071.  The second eigenvalue will lie to the right of 
π, the second zero of tan λ .  Again iterating numerically, 

we find λ2  ≅  3.6732 and thus λ2 ≅  13.4924. For large values 
of n, we see from the graph that λ

n
 ≅  (n-1)π, which are the 

zeros of tan λ .  Thus λ
n
 ≅  (n-1)2π2 for large n.  

For λ < 0, the discussion follows the pattern of Example 1 
yielding y(x) = c1sinh µ x + c2cosh µ x.  The B.C. then yield 

c2 - µ c1 = 0 and 

(sinh µ  + µ cosh µ )c1 + (cosh µ  + µ sinh µ )c2 =0, which 
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have a non-zero solution if and only if 

(µ+1)sinh µ  + 2 µ cosh µ  = 0.  By plotting y = tanh µ  and 

y  = -2 µ /(µ+1) we see that they intersect only at µ = 0, and 
thus there are no negative eigenvalues.

10. If λ = 0, the general solution of the D.E. is 
y = c

1
 + c

2
x.  The B.C. y(0) + y′(0) = 0 requires 

c
1
 + c

2
 = 0 and the B.C. y(1) = 0 requires c

1
 + c

2
 = 0 

and thus λ = 0 is an eigenvalue with corresponding 
eigenfunction φ

0
(x) = 1-x.

If λ < 0, set -λ = µ2 to obtain y = c
1
cosµx + c

2
sinµx.  

In this case the B.C. require c
1
 + µc

2
 = 0 and 

c
1
cosµ + c

2
sinµ = 0 which yields nontrivial solutions for c

1
 

and c
2
 (i.e., c

1
 = -µc

2
) if and only if tanµ = µ.  By 

plotting on the same graph f(µ) = µ and g(µ) = tanµ, we see 
that they intersect at µ

0
 = 0 (µ = 0 → λ = 0, which has 

already been discussed), µ
1
 ≅  4.49341 (which is just to the 

left of the vertical asymptote of tanµ at µ = 3π/2, 
µ2 ≅  7.72525 (which is just to the left of the vertical 
asymptote of tanµ at µ = 5π/2) and for larger values 
µ
n
 ≅  (2n+1)π/2.  Since λ

n
 = -µ

n
2, we have λ

1
 ≅  -20.1907, 

λ2 = -59.6795, λ
n
 ≅  -(2n+1)2π2/4 and φ

n
 = sinµ

n
x - µ

n
cosµ

n
x.  

If λ > 0, the general solution of the D.E. is 
y(x) = c

1
cosh λ x + c

2
sinh λ x.  The B.C. respectively 

require that c
1
 + λ c

2
 = 0 and c

1
cosh λ  + c

2
sinh λ  = 0 and 

thus λ must satisfy tanh λ  = λ  in order to have 
nontrivial solutions.  The only solution of this equation is 
λ = 0 and thus there are no positive eigenvalues.

11a. From Eq.(i) the coefficient of y′ is µQ and from Eq.(ii) the 
coefficient of y′ is (µP)′.  Thus (µP)′ = µQ, which gives 
Eq.(iii).

11b. Eq.(iii) is both linear and separable.  Using the latter 
approach we have dµ/µ = [(Q-P′)/P]dx and thus
lnµ = ∫x

0

x
[Q(s)/P(s)]ds - lnP.  Taking the exponential of 

both sides yields Eq.(iv). The choice of x
0
 simply alters 

the constant of integration, which is immaterial here.
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13. Since P(x) = x2 and Q(x) = x, we find that

µ(x) = (1/x2)exp[∫x
0

x
(s/s2)ds] = k/x, where k is an 

arbitrary constant which may be set equal to 1.  It 
follows that Bessel’s equation takes the form 
(xy′)′ + (x2-υ2/x)y = 0.

18a.Assuming y = s(x)u, we have y′ = s′u + su′ and 
y″ = s″u + 2s′u′ + su″ and thus the D.E. becomes 
su″ + (2s′+4s)u′ + [s″ + 4s′ + (4+9λ)s]u = 0.  Setting 
2s′ + 4s = 0 we find s(x) = e-2x and the D.E. becomes 
u″ + 9λu = 0.  The B.C. y(0) = 0 yields s(0)u(0) = 0, or 
u(0) = 0 since s(0) ≠ 0.  The B.C. at L 
is y′(L) = s′(L)u(L) + s(L)u′(L) = e-2L(-2u(L) + u′(L)) = 0 
and thus u′(L) - 2u(L) = 0.  Thus the B.V.P. satisfied by 
u(x) is u″ + 9λu = 0, u(0) = 0, u′(L) - 2u(L) = 0.

If λ < 0, the general solution of the D.E. u″ + 9λu = 0 
is u = c1sinh3µx + c2cosh3µx where -λ = µ2.  The B.C. 
require that c2 = 0, c1(3µcosh3µL - 2sinh3µL) = 0.  In 
order to have nontrivial solutions µ must satisfy the 
equation 3µ/2 = tanh3µL.  A graphical analysis reveals 
that for L ≤ 1/2 this equation has no solutions for µ ≠ 0 
so there are no negative eigenvalues for L ≤ 1/2.  If 
L > 1/2 there is one solution and hence one negative 
eigenvalue with eigenfuction φ-1(x) = e-2xsinh3µx.  

If λ = 0, the general solution of the D.E. u″ + 9λu = 0 
is u = c1 + c2x. The B.C. require that c1 = 0, 
c2(1-2L) = 0 so nontrivial solutions are possible only if 

L = 1/2.  In this case the eigenfuction is φ0(x) = xe-2x.  

If λ > 0, the general solution of the D.E. u″ + 9λu = 0 
is u = c1sin3 λ x + c2cos λ x.  The B.C. require that 

c2 = 0, c1(3 λ cos3 λ L - 2sin3 λ L) = 0.  In order to 
have nontrivial solutions λ must satisfy the equation 

λ  = (2/3)tan3 λ L.  A graphical analysis reveals that 
there is an infinite number of solutions to this 
eigenvalue equation.  Thus the eigenfunctions are

φn(x) = e-2xsin3 λn x where the eigenvalues λ n satisfy
λn  = (2/3)tan3 λn L.

20. This is an Euler equation whose characteristic equation 
has roots r1 = λ and r2 = 1.  If λ = 1 the general 
solution of the D.E. is y = c

1
x + c

2
xlnx and the B.C. 
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require that c
1
 = c

2
 = 0 and thus λ = 1 is not an 

eigenvalue.  If λ ≠ 1, y = c
1
x + c

2
xλ is the general 

solution and the B.C. require that c
1
 + c

2
 = 0 and 

2c
1
 + c

2
2λ - (c

1
 + λc

2
2λ-1) = 0. Thus nontrivial solutions 

exist if and only if λ = 2(1-2-λ).  The graphs of 
f(λ) = λ and g(λ) = 2(1-2-λ) intersect only at λ = 1 
(which has already been discussed) and λ = 0.  Thus the 
only eigenvalue is λ = 0 with corresponding eigenfunction 
φ(x) = x - 1 (since c

1
 = -c

2
).

22a.For positive λ, the general solution of the D.E. is
y = c

1
sin λ x + c

2
cos λ x.  The B.C. require that

λ c
1
 + αc

2
 = 0, c

1
sin λ  + c

2
cos λ  = 0.  Nontrivial 

solutions exist if and only if λ cos λ  - αsin λ  = 0.  
If α = 0 this equation is satisfied by the sequence 
λ
n
 = [(2n-1)π/2]2, n = 1,2,... .  If α ≠ 0, λ must 

satisfy the equation λ /α = tan λ .  A plot of the 

graphs of f( λ ) = λ /α and g( λ ) = tan λ  reveals 
that there is an infinite sequence of postive eigenvalues 
for α < 0 and α > 0.

22b. By procedures shown previously, the cases λ < 0 and 
λ = 0, when α < 1, lead to only the trivial solution and 
thus by part a all real eigenvalues are positive.  For 

0 < α < 1, the graphs of f( λ ) and g( λ ) (see part a) 

intersect once on 0 < λ  < π/2.  As α approaches 1 from 
below, the slope of f( λ ) decreases and thus the 
intersection point approaches zero.

22c. If λ = 0, then y(x) = c1 + c2x and the B.C. yield 
αc1 + c2 = 0 and c1 + c2 = 0, which have a non-zero 
solution if and only if α = 1.

22d. Let -λ = µ2, then y(x) = c1coshµx + c2sinhµx and thus the 
B.C. yield αc1 + µc2 = 0 and (coshµ)c1 + (sinhµ)c2 = 0, which 
have non-zero solutions if and only if tanhµ = µ/α.  For α>1, 
the straight line y = µ/α intersects the curve y = tanhµ in 
one point, which increases as α increases.  Thus λ = -µ2 
decreases as α increases.

23. Using the D.E. φm and following the hint yields:
lim∫0Lφm″ φndx + λm∫0lφmφndx = 0. Integrating the first term by 
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parts yields: φm′ φn 0
L
 - ∫0Lφm′ φn′ dx = -λm∫0Lφmφndx.  Upon utilizing 

he B.C. the first term on the left vanishes and thus

∫0Lφn′ φm′ dx = λm∫0Lφmφndx.  Similarly, the D.E. for φn yields

∫0Lφm′ φn′ dx = λn∫0Lφnφmdx and thus (λn - λm) ∫0Lφmφndx = 0.  If 

λn ≠ λm the desired result follows.

24b. The general solution of the D.E. is
y = c1sinµx + c2cosµx + c3sinhµx + c4coshµx where λ = µ4.  
The B.C. require that c2 + c4 = 0, -c2 + c4 = 0, 
c1sinµL + c2cosµL + c3sinhµL + c4coshµL = 0, and
c1cosµL - c2sinµL + c3coshµL + c4sinhµL = 0.  The first two 
equations yield c2 = c4 = 0, and the last two have nontrivial 
solutions if and only if sinµLcoshµL - cosµLsinhµL = 0.  In 
this case the third equation yields c3 = -c1sinµL/sinhµL and 
thus the desired eigenfunctions are obtained.  The quantity 
µL can be approximated by finding the intersetion of 
f(x) = tanx and g(x) = tanhx, where x = µL.  The first 
intersection is at x ≅  3.9266, which gives λ1 ≅  237.72/L4 and 
the second intersection is at x ≅  7.0686, which gives 
λ2 ≅  2,496.5/L4.

Section 11.2, Page 639

1. We have y(x) = c1cos λ x + c2sin λ x and thus y(0) = 0 

yields c1 = 0 and y′(1) = 0 yields λ c2cos λ  = 0.  λ = 0 
gives y(x) = 0, so is not an eigenvalue.  Otherwise 
λ = (2n-1) 2π2/4 and the eigenfuctions are sin[(2n-1)πx/2], 
n = 1,2,... . Thus, by Eq.(20), we must choose k

n
 so that 

∫01{knsin[(2n-1)πx/2]} 2dx = 1, since the weight function 

r(x) = 1 (by comparing the D.E. to Eq.(1)).  Evaluating the 

integral yields k
n
2/2 = 1 and thus k

n
 = 2  and the desired 

normalized eigenfuctions are obtained.

3. Note here that φ
0
(x) = 1 satisifes Eq.(20) and hence it 

is already normalized.

5. From Problem 17 of Section 11.1 we have exsinnπx, 
n = 1,2,... as the eigenfunctions and thus k

n
 must be chosen 

so that ∫01r(x)kn2e2xsin2nπxdx = 1. To determine r(x), we must 

write the D.E. in the form of Eq.(1).  That is, we multiply 
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the D.E. by r(x) to obtain ry″ - 2ry′ + ry + λry = 0.  Now 
choose r so that (ry′)′ = ry″-2ry′, which yields r′ = -2r or 
r(x) = e

-2x
.  Thus the above integral becomes 

∫01kn
2
sin

2
nπxdx = 1 and k

n
 = 2 . Hence φ

n
(x) = 2 e

x
sinnπx 

are the normalized eigenfunctions.

7. Using Eq.(34) with r(x) = 1, we find that the 
coefficients of the series (32) are determined by

a
n
 = (f,φ

n
) = 2 ∫01xsin[(2n-1)πx/2]dx

   = (4 2 /(2n-1)2π2)sin(2n-1)π/2.  Thus Eq.(32) yields

f(x) = 
4 2

π2
 ∑
n=1

∞
 
(-1)n-1

(2n-1)2
 2 sin[(2n-1)πx/2], 0 ≤ x ≤ 1, 

which agrees with the expansion using the approach 
developed in Problem 39 of Section 10.4.

10. In this case φ
n
(x) = ( 2 /α

n
)cos λ

n
x, where

α
n
 = (1 + sin2 λ

n
)1/2.  Thus Eq.(34) yields

a
n
 = ( 2 /α

n
)∫01cos λ

n
xdx = 2 sin λ

n
/α

n
λ
n
.

14. In this case L[y] = y″ + y′ + 2y is not of the form shown 
in Eq.(3) and thus the B.V.P. is not self adjoint.

17. In this case L[y] = [(1+x2)y′]′ + y and thus the D.E. has 
the form shown in Eq.(3).  However, the B.C. are not 
separated and thus we must determine by integration 
whether Eq.(8) is satisfied.  Therefore, for u and v 
satisfying the B.C., integration by parts yields the 
following: 

(L[u],v) = ∫01{[(1+x2)u′]′+u}vdx = vu′(1+x2)


0

1

-∫01{(1+x2)v′u′+uv}dx

    = vu′(1+x2)


0

1

 -uv′(1+x2)


0

1

 + ∫01{[(1+x2)v′]′+v}udx 

    = (u,L[v]) 
since the integrated terms add to zero with the given 
B.C.  Thus the B.V.P. is self-adjoint.

21a. Substituting φ for y in the D.E., multiplying both sides 
by φ, and integrating form 0 to 1 yields

λ∫01rφ2dx = ∫01{-[p(x)φ′]′φ + q(x)φ2}dx.  Integrating the 

first term on the right side once by parts, we obtain
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λ∫01rφ2dx = -p(1)φ′(1)φ(1) + p(0)φ′(0)φ(0) + ∫01(pφ′2+qφ2)dx.  

If a
2
 ≠ 0, b

2
 ≠ 0, then φ′(1) = -b

1
φ(1)/b

2
 and 

φ′(0) = -a
1
φ(0)/a

2
 and the result follows.  If a

2
 = 0, 

then φ(0) = 0 and the boundary term at 0 will be missing.  
A similar result is obtained if b

2
 = 0.

21b. From the text, p(x) > 0 and r(x) > 0 for 0 ≤ x ≤ 1 (following 
Eq.(4)).  If q(x) ≥ 0 and if b1/b2 and -a1/a2 are non-negative, 
then all terms in the final equation of part a are non-negative 
and thus λ must be non-negative.  Note that λ could be zero if 
q(x) = 0, b1 = 0, a1 = 0 and φ(x) = 1.

21c. If either q(x) ≠ 0 or a1 ≠ 0 or b1 ≠ 0, there is at least one 
positive term on the right and thus λ must be positive.

23a. Using φ(x) = U(x) + iV(x) in Eq.(4) we have
L[φ] = L[U(x) + iV(x)] = λr(x)[U(x)+iV(x)].  Using the 
linearity of L and the fact that λ and r(x) are real we 
have L[U(x)] + iL[V(x)] = λr(x)U(x) + iλr(x)V(x).  
Equating the real and imaginary parts shows that both U 
and V satisfy Eq.(1).  The B.C. Eq.(2) are also satisfied 
by both U and V, using the same arguments, and thus both 
U and V are eigenfunctions.

23b. By Theorem 11.2.3 each eigenvalue λ has only one linearly 
independent eigenfuction.  By part a we have U and V 
being eigenfunctions corresponding to λ and thus U and V 
must be linearly dependent.

23c. From part b we have V(x) = cU(x) and thus
φ(x) = U(x) + icuU(x) = (1+ic)U(x).

24. This is an Euler equation, so for y = xr we have 
r2 - (λ+1)r + λ = 0 or (r-1)(r-λ) = 0.  If λ = 1, the general 
solution to the D.E. is y = c

1
x + c

2
xlnx.  The B.C. require 

that c
1
 = 0, 2c

1
 + 2(ln2)c

2
 = 0 so c

1
 = c

2
 = 0 and λ = 1 is 

not an eigenvalue.  If λ ≠ 1, the general solution to the 
D.E. is y = c

1
x + c

2
xλ. The B.C. require that c

1
 + c

2
 = 0 and

2c
1
 + 2λc

2
 = 0.  Nontrivial solutions exist if and only if 

2λ - 2 = 0.  If λ is real, this equation has no solution 
(other than λ = 1) and again y = 0 is the only solution to 
the boundary value problem.  Suppose that λ = a + bi with 
b ≠ 0.  Then 2λ = 2a+bi = 2a2bi = 2aexp(ibln2), which upon 

    substitution into 2
λ
 = 2 yields the equation 
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exp(ibln2) = 21-a.  Since e
ix
 = cosx + isinx, it follows that 

cos(bln2) = 21-a and sin(bln2) = 0, which yield a = 1 and 
b(ln2) = 2nπ or b = 2nπ/ln2, n = ±1, ±2,... . Thus the only 
eigenvalues of the problem are  
λ
n
 = 1 + i(2nπ/ln2), n = ±1, ±2,... .

25b. For λ ≤ 0, there are no eigenfuctions.  For λ > 0 the 
general solution of the D.E. is 

y = c
1
 + c

2
x + c

3
sin λ x + c

4
cos λ x.  The B.C. require 

that 

c
1
+c

4
 = 0, c

4
 = 0, c

1
 + c

2
L + c

3
sin λ L + c

4
cos λ L = 0, 

and

c
2
 + λ c

3
cos λ L - λ c

4
sin λ L = 0.  Thus c

1
 = c

4
 = 0 

and for nontrivial solutions to exist λ must satisfy the 
equation λ Lcos λ L - sin λ L = 0.  In this case

c
2
 = (- λ cos λ L)(c

3
) and it follows that the 

eigenfunction φ
1
 is given by 

φ
1
(x) = sin( λ

1
x) - λ

1
xcos λ

1
L where λ

1
 is the 

smallest positive solution of the equation 

λ L = tan λ L.  A graphical or numerical estimate of λ
1
 

reveals that λ
1
 ≅  (4.4934)2/L

2
.

25c. Assuming λ ≠ 0 the eigenvalue equation is 
2(1-cosx) = xsinx, where x = λ L.  Graphing 
f(x) = 2(1-cosx) and g(x) = xsinx we see that there is an 
intersection for 6 < x < 7.  Since both f(x) and g(x) are 
zero for x = 2π, this then is the precise root and thus 
λ
1
 = (2π)

2
/L

2
.  In addition, it appears there might be an 

intersection for 0 < x < 1.  Using a Taylor series 
representation for f(x) and g(x) about x = 0, however, 
shows there is no intersection for 0 < x < 1.  Of course 
x = 0 is also an intersection, which yields λ = 0, which 
gives the trivial solution and hence λ = 0 is not an 
eigenvalue.

 Section 11.3, Page 651

1. We must first find the eigenvalues and normalized 
eigenfunctions of the associated homogeneous problem 
y″ + λy = 0, y(0) = 0, y(1) = 0.  This problem has the 
solutions φ

n
(x) = k

n
sinnπx, for λ

n
 = n2π2, n = 1,2,... .  
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Choosing k
n
 so that ∫01φ

n
2dx = 1 we find k

n
 = 2 .  Hence 

the solution of the original nonhomogeneous problem is 

given by y = ∑
n=1

∞
b
n
φ
n
(x), where the coefficients b

n
 are 

found from Eq.(12), b
n
 = c

n
/(λ

n
-2) where c

n
 is given by 

c
n
 = 2 ∫01xsinnπxdx (Eq.9).  [Note that the original 

problem can be written as -y″ = 2y + x and therefore 
comparison with Eq.(1) yields r(x) = 1 and f(x) = x].  
Integrating the expression for c

n
 by parts yields c

n
 = 

2 (-1)n+1/nπ and thus y = ∑
n=1

∞
2 (-1)n+1

(n2π2-2)nπ
 2 sinnπx.

2. From Problem 1 of Section 11.2 we have

φ
n
 = 2 sin[(2n-1)πx/2] for λ

n
 = (2n-1)2π2/4 and from 

Problem 7 of that section we have 

c
n
 = 4 2 (-1)n+1/(2n-1)2π2.  Substituting these values 

into b
n
 = c

n
/(λ

n
-2) and y = ∑

n=1

∞
b
n
φ
n
 yields the desired 

result.

3. Referring to Problem 3 of Section 11.2 we have 

y = b
0
 + ∑

n=1

∞
b
n
( 2 cosnπx), where b

n
 = c

n
/(λ

n
-2) for 

n = 0,1,2,... .  The rest of the calculations follow 
those of Problem 1.

5. Note that the associated eigenvalue problem is the same 
as for Problem 1 and that |1-2x| = 1-2x for 0 ≤ x ≤ 1/2 
while |1-2x| = 2x-1 for 1/2 ≤ x ≤ 1.

8. Writing the D.E. in the form Eq.(1), we have -y″ = µy + f(x), 
so r(x) = 1.  The associated eigenvalue problem is 
y″ + λy = 0, y′(0) = 0, y′(1) = 0 which has the eigenvalues 
λn = n2π2, n = 0,1,2... and the normalized eigenfunctions 
φ0 = 1, φn(x) = 2 cosnπx, n = 1,2..., as found in Problem 3, 

Section 11.2.  Now, we assume y(x) = b0 + ∑
n=1

∞

 bnφn(x) = ∑
n=0

∞

 

bnφn(x), Eq.(5), and thus bn = 
cn

λn-µ
, where cn = ∫01f(x)φn(x)dx, 
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n = 0,1,2..., Eq.(9).  Thus 

y(x) = ∑
n=0

∞

  
cn

λn-µ
φn(x) = -c0/µ + 2 ∑

n=1

∞

 
cncosnπx

λn-µ
, where we 

have assumed µ ≠ λn, n = 0,1,2... .

10. Since µ = π2 is an eigenvalue of the corresponding 
homogeneous equation, Theorem 11.3.1 tells us that a 
solution will exist only if -(a+x) is orthogonal to the 

corresponding eigenfunction 2 sinπx.  Thus we require

∫01(a+x)sinπxdx = 0, which yields a = -1/2. With a = -1/2, 

we find that Y = (x-1/2)/π2 and y
c
 = csinπx + dcosπx by 

methods of Chapter 3.  Setting y = y
c
 + Y and choosing d 

to satisfy the B.C. we obtain the desired family of 
solutions.

11. Note that in this case µ = 4π2 and φ
2
 = 2 sin2πx are the 

eigenvalue and eigenfunction respectively of the 
corresponding homogeneous equation.  However, there is no 

value of a for which - 2 ∫01(a+x)sin2πxdx = 0, and thus 

there is no solution.

12. In this case a solution will exist only if -a is 

orthogonal to 2 cosπx., that is if ∫01acosπxdx = 0.  

Since this condition is valid for all a, a family of 
solutions exists.

14. Since ∑
n=1

∞
c
n
φ
n
(x) converges to zero we have ∑

n=1

∞
c
n
φ
n
(x) = 0.  

Multiplying and integrating as suggested yields

∫01[∑
n=1

∞
c
n
φ
n
(x)]r(x)φ

m
(x)dx = 0 or

∑
n=1

∞
c
n∫01r(x)φ

n
(x)φ

m
(x)dx = 0.  The integral that multiplies c

n
 

is just δ
nm
[Eq.(22) of Section 11.2].  Thus the infinite sum 

becomes c
m
 and the last equation yields c

m
 = 0.

18. A twice differentiable function v satisfying the boundary 
conditions can be found by assuming that v = ax + b.  
Thus v(0) = b = 1 and v(1) = a + 1 while v′(1) = a.  
Hence 2a + 1 = -2 or a = -3/2 and v(x) = 1 - 3x/2.  
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Assuming y = u + v we have (u+v)″ + 2(u+v) = 
u″ + 2u + 2(1-3x/2) = 2 - 4x or u″ + 2u = -x, u(0) = 0, 
u(1) + u′(1) = 0 which is the same as Example 1 of the 
text.

19. From Eq.(30) we assume u(x,t) = ∑
n=1

∞
b
n
(t)φ

n
(x), where the 

φ
n
 are the eigenfunctions of the related eigenvalue 

problem y″ + λy = 0, y(0) = 0, y′(1) = 0 and the b
n
(t) are 

given by Eq.(42).  From Problem 2, we have

φ
n
 = 2 sin[(2n-1)πx/2] and λ

n
 = (2n-1)2π2/4.  To 

evaluate Eq.(42) we need to calculate

α
n
 = ∫01sin(πx/2) 2 sin[(2n-1)πx/2dx [Eq.(41) with 

r(x) = 1 and f(x) = sin(πx/2)], which is zero except for 
n = 1 in which case α

1
 = 2 /2, and 

γ
n
 = ∫01(-x) 2 sin[(2n-1)πx/2]dx [Eq.(35) with 

F(x,t) = -x].  This integral is the negative of the cn in 
Problem 2 and thus 

γ
n
 = -4 2 (-1)n+1/(2n-1)2π2 = -c

n
, n = 1,2,... . Setting

γ
n
 = -c

n
 in Eq.(42) we then have

b
1
 = 

2

2
e-π2t/4 - c

1∫0te-π2(t-s)/4ds

   = 
2

2
e-π2t/4 - 

4c
1

π2
e-π2(t-s)/4



 0

t

   = 
2

2
e-π2t/4 - 

4c
1

π2
 + 

4c
1

π2
e-π2t/4 and 

similarly b
n
 = -c

n∫0te
-λ

n
(t-s)

ds = -(c
n
/λ

n
)e

-λ
n
(t-s)




0

t

             = -(c
n
/λ

n
)(1-e

-λ
n
t
), where λ

n
 = (2n-1)2π2/4,

n = 2,3,... .  Substituting these values for b
n
 along 

with φ
n
 = 2 sin[(2n-1)πx/2] into the series for u(x,t) 

yields the solution to the given problem.

22. In this case α
n
 = 0 for all n and γ

n
 is given by

γ
n
 = ∫01e-t(1-x) 2 sin[(2n-1)πx/2]dx 

    = e-t∫01(1-x) 2 sin[(2n-1)πx/2]dx.  This last integral 

can be written as the sum of two integrals, each of which 
has been evaluated in either Problem 6 or 7 of Section 
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11.2.  Letting c
n
 denote the value obtained, we then have

γ
n
 = c

n
e-t and thus b

n
 = c

n∫0te
-λ

n
(t-s)

e-sds =

c
n
e
-λ

n
t∫0te

(λ
n
-1)s

ds = [c
n
/(λ

n
-1)](e-t-e

-λ
n
t
), where

λ
n
 = (2n-1)2π2/4.  Substituting these values into Eq.(30) 

yields the desired solution.

24. Using the approach of Problem 23 we find that v(x) 
satisfies v″ = 2, v(0) = 1, v(1) = 0.  Thus
v(x) = x2 + c

1
x + c

2
 and the B.C. yield v(0) = c

2
 = 1 and 

v(1) = 1 + c
1
 + 1 = 0 or c

1
 = -2.  Hence 

v(x) = x2 - 2x + 1 and w(x,t) = u(x,t) - v(x) where, from 
Problem 23, we have w

t
 = w

xx
, w(0,t) = 0, w(1,t) = 0 and 

w(x,0) = x2 - 2x + 2 - v(x) = 1.  This last problem can 
be solved by methods of this section or by methods of 
Chapter 10.  Using the approach of this section we have 

w(x,t) = ∑
n=1

∞
 b

n
(t)φ

n
(x) where φ

n
(x) = 2 sinnπx

 [which are the normalized eigenfunctions of the 
associated eigenvalue problem y″ + λy = 0, y(0) = 0, 
y(1) = 0] and the b

n
 are given by Eq.(42).  Since the 

P.D.E. for w(x,t) is homogeneous Eq.(42) reduces to 

b
n
 = α

n
e
-λ

n
t
(λ

n
 = n2π2 from the above eigenvalue problem), 

where

α
n
 = ∫011. 2 sinnπxdx = 2 [1-(-1)n]/nπ.  Thus

u(x,t) = x2-2x + 1 + ∑
n=1

∞
2 [1-(-1)n]

nπ
 e-n2π2t 2 sinnπx, 

which simplifies to the desired solution.

28a. Since yc = c1+c2x, we assume that 
Y(x) = u

1
(x) + xu

2
(x).  Then Y′ = u

2
 since we require 

u
1
′  + xu

2
′  = 0.  Differentiating again yields Y″ = u

2
′  and 

thus u
2
′  = -f(x) by substitution into the D.E.  Hence

u
2
(x) = -∫0xf(s)ds, u1′  = xf(x), and u1(x) = ∫0xsf(s)ds.  

Therefore Y = ∫0xsf(s)ds - x∫0xf(s)ds = -∫0x(x-s)f(s)ds and 
φ(x) = c

1
 + c

2
x - ∫0x(x-s)f(s)ds.
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28b. From part a we  have y(0) = c1 = 0.  Thus 

y(x) = c2x - ∫0x(x-s)f(s)ds and hence 
y(1) = c2 - ∫01(1-s)f(s)ds = 0, which yields the desired 
value of c2.

28c. From parts a and b we have

φ(x) = x∫01(1-s)f(s)ds - ∫0x(x-s)f(s)ds
= ∫0xx(1-s)f(s)ds + ∫x1x(1-s)f(s)ds - ∫0x(x-s)f(s)ds

= ∫0x(x-xs-x+s)f(s)ds + ∫x1x(1-s)f(s)ds

= ∫0xs(1-x)f(s)ds + ∫x1x(1-s)f(s)ds.

28d. We have φ(x) = ∫01G(x,s)f(s)ds
             = ∫0xG(x,s)f(s)ds + ∫x1G(x,s)f(s)ds
             = ∫0xs(1-x)ds + ∫x1x(1-s)ds, which is the same 
as found in part c.

30b. In this case y
1
(x) = sinx and y

2
(x) = sin(1-x) [assume 

y
2
(x) = c

1
cosx + c

2
sinx, let x = 1, solve for c

2
 in terms 

of c
1
 using y(1) = 0 and then let c

1
 = sin1].  Using 

these functions for y
1
 and y

2
 we find W(y

1
,y

2
) = -sin1 

and thus G(x,s) = -sins sin(1-x)/(-sin1), since p(x) = 1, 
for 0 ≤ s ≤ x.  Interchanging the x and s verifies G(x,s) 
for x ≤ s ≤ 1.

30c. Since W(y
1
,y

2
)(x) = y

1
(x)y

2
′ (x) - y

2
(x)y

1
′ (x) we find that 

[p(x)W(y
1
,y

2
)(x)]′ = p′(x)[y

1
(x)y

2
′ (x) - y

2
(x)y

1
′ (x)]

+ p(x)[y
1
′ (x)y

2
′ (x) + y

1
(x)y

2
″(x) - y

2
′ (x)y

1
′ (x) - y

2
(x)y

1
″(x)]

= y
1
[py

2
′ ]′ - y

2
[py

1
′ ]′ = y

1
[q(x)y

2
] - y

2
[q(x)y

1
] = 0.

30d. Let c = p(x)W(y
1
,y

2
)(x).  If 0 ≤ s ≤ x, then

G(x,s) = -y
1
(s)y

2
(x)/c.  Since the first argument in 

G(s,x) is less than the second argument, the bottom 
expression of formula (iv) must be used to determine 
G(s,x). Thus, G(s,x) = -y

1
(s)y

2
(x)/c.  A similar argument 

holds if x ≤ s ≤ 1.
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30e. We have φ(x) = ∫01G(x,s)f(s)ds
             = -∫0x

y1(s)y2(x)f(s)

c
ds - ∫x1

y1(x)y2(s)f(s)

c
ds 

(where c = p(x)W(y1,y2) and thus, by Leibnitz’s rule,
 

cφ′(x) = -y1(x)y2(x)f(x) - ∫0xy1(s)y2′ (x)f(s)ds + y1(x)y2(x)f(x)
               -∫x1y1′ (x)y2(s)f(s)ds.  From this we obtain
-c(pφ′)′ = (py2′ )’∫0xy1(s)f(s)ds + py2′ y1f(x) 
          + (py1′ )′∫x1y2(s)f(s)ds - py1′ y2f(x).  Dividing by 
c and adding q(x)φ(x) we get

(-pφ′) ′+qφ = 
(py2')’

c ∫0xy1(s)f(s)ds - 
qy2

c ∫0xy1(s)f(s)ds
          + 

(py1′ ) ′

c ∫x1y2(s)f(s)ds - 
qy1

c ∫x1y2(s)f(s)ds + f(x)
= 

(py2′ ) ′-qy2
c ∫0xy1(s)f(s)ds + 

(py1′ ) ′-qy1
c ∫x1y2(s)f(s)ds + f(x) 

= f(x), 

since y1 and y2 satisfy L[y] = 0.  Using φ(x) and φ′(x) as 
found above, the B.C. are both satisfied since y1(x) 
satisfies one B.C. and y2(x) satisfies the other B.C.

 
33. In general y(x) = c

1
cosx + c

2
sinx.  For y′(0) = 0 we must 

choose c
2
 = 0 and thus y

1
(x) = cosx. For y(1) = 0 we have 

c
1
cos1 + c

2
sin1 = 0, which yields c

2 
= -c

1
(cos1)/sin1 and 

thus y
2
(x) = c

1
cosx - c

1
(cos1)sinx/sin1 

           = c
1
(sin1cosx - cos1sinx)/sin1

           = sin(1-x) [by setting c
1
 = sin1].  

Furthermore, W(y
1
,y

2
) = -cos1 and thus

G(x,s) = 

 












coss sin(1-x)
cos1

 0 ≤ s ≤ x

cosx sin(1-s)
cos1

 x ≤ s ≤ 1
,

and hence 

φ(x) = ∫0x[coss sin(1-x)f(s)/cos1]ds 

+ ∫x1[cosx sin(1-s)f(s)/cos1]ds is the solution of the 

given B.V.P. 
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Section 11.4, Page 661

2a. The D.E. is the same as Eq.(6) and thus, from Eq.(9), the 
general solution of the D.E. is

y = c
1
J
0
( λ x) + c

2
Y
0
( λ x).  The B.C. at x = 0 requires 

that c
2
 = 0, and the B.C. at x = 1 requires 

c
1

λ J
0
′ ( λ ) = 0.  For λ = 0 we have φ

0
(x) = J

0
(0) = 1 

and if λ
n
 is the nth positive root of J

0
′ ( λ ) = 0 then 

φ
n
(x) = J

0
( λ

n
x).  Note that for λ = 0 the D.E. becomes 

(xy′)′ = 0, which has the general solution y = c
1
lnx + c

2
.  

To satisfy the bounded conditions at x = 0 we must choose 
c
1
 = 0, thus obtaining the same solution as above.

2b. For n ≠ 0, set y = J
0
( λ

n
x) in the D.E. and integrate 

from 0 to 1 to obtain -∫01(xJ0′ )′dx = λ
n∫01xJ0( λ

n
x)dx.  

Integrating the left side of this equation yields

∫01(xJ0′ )′dx = xJ
0
′ ( λ

n
x)



 0

1

 = J
0
′ ( λ

n
) - 0 = 0 since the λ

n
 

are eigenvalues from part a.  Thus ∫01xJ0( λ
n
x)dx = 0.  

For other n and m, we let L[y] = -(xy′)′. Then 
L[J

0
( λ

n
x)] = λ

n
xJ

0
( λ

n
x) and 

L[J
0
( λ

m
x)] = λ

m
xJ

0
( λ

m
x).  Multiply the first equation 

by J
0
( λ

m
x), the second by J

0
( λ

n
x), subtract the 

second from the first, and integrate from 0 to 1 to 
obtain

∫01{J0( λ
m
x)L[J

0
( λ

n
x)] - J

0
( λ

n
x)L[J

0
( λ

m
x)]}dx =

(λ
n
 - λ

m
) ∫01xJ0( λ

n
x)J

0
( λ

m
x)dx.  Again the left side 

is zero after each term is integrated by parts once, as 
was done above.  If λ

n
 ≠ λ

m
, the result follows with 

φ
n
(x) = J

0
( λ

n
x).

2c. Since λ = 0 is an eigenvalue we assume that 

y = b
0
 + ∑

n=1

∞
b
n
J
0
( λ

n
x).  Since

-[xJ
0
′ ( λ

n
x)]′ = λ

n
xJ

0
( λ

n
x), n = 0,1,..., we find that 
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-(xy′)′ = x∑
n=1

∞
λ
n
b
n
J
0
( λ

n
x) [note that λ

0
 = 0 and b

0
 are 

missing on the right].  Now assume 

f(x)/x = c
0
 + ∑

n=1

∞
c
n
J
0
( λ

n
x).  Multiplying both sides by 

xJ
0
( λ

m
x), integrating from 0 to 1 and using the 

orthogonality relations of part b, we find

c
n
 = ∫01f(x)J0( λ

n
x)dx/∫01xJ02( λ

n
x)dx, n = 0,1,2,... . 

[Note that c
0
 = 2∫01f(x)dx since the denominator can be 

integrated.]  Substituting the series for y and f(x)/x 
into the D.E., using the above result for -(xy′)′, and 
simplifying we find that

(µb
0
 + c

0
) + ∑

n=1

∞
[c

n
 - b

n
(λ

n
 - µ)]J

0
( λ

n
x) = 0.  Thus 

b
0
 = -c

0
/µ and b

n
 = c

n
/(λ

n
-µ), n = 1,2,..., where λ

n
 

are obtained from J
0
′ ( λ

n
) = 0.  

4a. Let L[y] = -[(1-x2)y′]′. Then L[φ
n
] = λ

n
φ
n
 and 

L[φ
m
] = λ

m
φ
m
.  Multiply the first equation by φ

m
, the 

second by φ
n
, subtract the second from the first, and 

integrate from 0 to 1 to obtain

∫01(φ
m
L[φ

n
] - φ

n
L[φ

m
])dx = (λ

n
 - λ

m
)∫01φ

n
φ
m
dx.  The integral 

on the left side can be shown to be 0 by integrating each 
term once by parts.  Since λ

n
 ≠ λ

m
 if m ≠ n, the result 

follows.  Note that the result may also be written as

∫01P2m-1(x)P2n-1(x)dx = 0, m ≠ n.

4b. First let f(x) = ∑
n=1

∞
c
n
φ
n
(x), multiply both sides by φ

m
(x), 

and integrate term by term from x = 0 to x = 1.  The 
orthogonality condition yields

c
n
 = ∫01f(x)φ

n
(x)dx/∫01φ

n
2(x)dx, n = 1,2,... where it is 

understood that φ
n
(x) = P

2n-1
(x).  Now assume 

y = ∑
n=1

∞
b
n
φ
n
(x).  As in Problem 2 and in the text 

250                       Section 11.4



-[(1-x2)y′]′ = ∑
n=1

∞
λ
n
b
n
φ
n
 since the φ

n
 are eigenfunctions.  

Thus, substitution of the series for y and f into the D.E. 

and simplification yields ∑
n=1

∞
[b

n
(λ

n
-µ) - c

n
]φ

n
(x) = 0.  Hence 

b
n
 = c

n
/(λ

n
 - µ), n = 1,2,... and the desired solution is 

obtained [after setting φ
n
(x) = P

2n-1
(x)].

Section 11.5, Page 666

1a. Since u(x,0) = 0 we have Y(0) = 0.  However, since the 
other two boundaries are given by y = 2x and y = 2(x-2) 
we cannot separate x and y dependence and thus neither X 
nor Y satisfy homogeneous B.C. at both end points.

1b.  The line y = 2x is transformed into ξ = 0 and y = 2(x-2) is 
transformed into ξ = 2.  The lines y = 0 and y = 2 are 
transformed into η = 0 and η = 2 respectively, so the 
parallelogram is transformed into a square of side 2. From 
the given equations, we have x = ξ + η/2 and y = η.  Thus
uξ = uxxξ + uyyξ = ux and
uη = uxxη + uyyη = 1/2ux + uy.  Likewise
uξξ = uxx - xξ + uxyyξ = uxx
uη = uxxxη + uxyyη = 1/2uxx + uxy and
uηη = 1/2uxxxη + 1/2uxyyη + uyxxη + uyyyη
    = 1/4uxx + uxy + uyy.  Therefore, 
5/4uξξ - uξη + uηη = uxx + uyy = 0.

1c. Substituting u(ξ,η) = U(ξ)V(η) into the equation of part b 
yields 5/4U″V - U′V′ + UV″ = 0 or upon dividing by UV

5

4

U″
U
 + 

V″
V
 = 

U′V′
UV

, which is not separable.  The 

B.C. become U(ξ,0) = 0, U(ξ,2) = f(ξ+1) (since x = ξ + η/2), 
U(0,η) = 0, and U(2,η) = 0.

2. This problem is very similar to the example worked in the 
text.  The fundamental solutions satisfying the 
P.D.E.(3), the B.C. u(1,t) = 0, t ≥ 0 and the finiteness 
condition are given by Eqs.(15) and (16). Thus assume 
u(r,t) is of the form given by Eq.(17).  The I.C. require 

that u(r,0) = ∑
n=1

∞
c
n
J
0
(λ

n
r) = 0 and 
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u
t
(r,0) = ∑

n=1

∞
λ
n
ak

n
J
0
(λ

n
r) = g(r).  From Eq.(26) of 

Section 11.4 we obtain c
n
 = 0 and

λ
n
k
n
a = ∫01rg(r)J0(λ

n
r)dr/∫01rJ02(λ

n
r)dr, n = 1,2,... .

4. This problem is the same as Problem 22 of Section 10.7.  
The periodicity condition requires that µ of that problem 
be an integer and thus substituting µ2 = n2 into the 
previous results yields the given equations.

5a. Substituting u(r,θ,z) = R(r)Θ(θ)Z(z) into Laplace’s 
equation yields R″ΘZ + R′ΘZ/r + RΘ″Z/r2 + RΘZ″ = 0 or 
equivalently R″/R + R′/rR + Θ″/r2Θ = - Z″/Z = σ.  In order 
to satisfy arbitrary B.C. it can be shown that σ must be 
negative, so assume σ = -λ2, and thus Z″ - λ2Z = 0 and, 
after some algebra, it follows that 
r2R″/R + rR′/R + λ2r2 = -Θ″/Θ = α.  The periodicity 
condition Θ(0) = Θ(2π) requires that α  be an integer n 
so α = n2. Thus r2R″ + rR′ + (λ2r2 - n2)R = 0, 
Θ″ + n2Θ = 0, and Z″ - λ2Z = 0.

5b. If u(r,θ,z) is independent of θ, then the Θ″/r2Θ term 
does not appear in the second equation of part a and thus 
R″/R + R′/rR = - Z″/Z = -λ2, from which the desired result 
follows.

6. Assuming that u(r,z) = R(r)Z(z) it follows from Problem 5 
that R = c

1
J
0
(λr) + c

2
Y
0
(λr), from Eq.(13), and 

Z = k
1
e-λz + k

2
eλz.  Since u(r,z) is bounded as r → 0 and 

approaches zero as z → ∞ we require that c
2
 = 0, k

2
 = 0.  

The B.C. u(1,z) = 0 requires that J
0
(λ) = 0 leading to an 

infinite set of discrete positive eigenvalues 
λ
1
,λ

2
,...λ

n
... .  The fundamental solutions of the 

problem are then u
n
(r,z) = J

0
(λ

n
r)e

-λ
n
z
, n = 1,2,... .  

Thus assume u(r,z) = ∑
n=1

∞
c
n
J
0
(λ

n
r)e

-λ
n
z
.  The B.C. 

u(r,0) = f(r), 0 ≤ r ≤ 1 requires that 

u(r,0) = ∑
n=1

∞
c
n
J
0
(λ

n
r) = f(r) so 

c
n
 = ∫01rf(r)J0(λ

n
r)dr/∫01rJ02(λ

n
r)dr, n = 1,2,... .
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7b. Again, Θ periodic of period 2π implies λ2 = n2.  Thus the 
solutions to the D.E. are R(r) = c

1
J
n
(kr) + c

2
Y
n
(kr) (note 

that λ and k here are the reverse of Problem 3 of Section 
11.4) and Θ(θ) = d

1
cosnθ + d

2
sinnθ, n = 0,1,2... .  For the 

solution to remain bounded, c
2
 = 0 and thus 

v(r,θ) = (1/2)c0J0(kr) + ∑
m=1

∞
Jm(kr)(bm

sinmθ+c
m
cosmθ).  

Hence v(c,θ) is then a Fourier Series of period 2π and 
the coefficients are found as in Section 10.2, Eqs.(13), 
(14) and Problem 27.

9a. Substituting u(ρ,θ,φ) = P(ρ)Θ(θ)Φ(φ) into Laplace’s 
equation leads to 
ρ2P″/P + 2ρP′/P = -(csc2φ)Θ″/Θ - Φ″/Φ - (cotφ)Φ′/Φ = σ.  
In order to satisfy arbitrary B.C. it can be shown that σ 
must be positive, so assume σ = µ2.  
Thus ρ2P″ + 2ρP′ - µ2P = 0.  Then we have
(sin2φ)Φ″/Φ + (sinφcosφ)Φ′/Φ + µ2sin2φ = - Θ″/Θ = α.  
The periodicity condition Θ(0) = Θ(2π) requires that α  
be an integer λ so α = λ2.  Hence Θ″ + λ2Θ = 0 and
(sin2φ)Φ″ + (sinφcosφ)Φ′ + (µ2sin2φ - λ2)Φ = 0.

10. Since u is independent of θ, only the first and third of  
the Eqs. in 9a hold.  The general solution to the Euler 
equation is

P = c
1
ρ
r
1 + c

2
ρ
r
2 where r

1
 = (-1+ 1+4µ2 )/2 > 0 and

r
2 
= (-1- 1+4µ2 )/2 < 0.  Since we want u to be bounded 

as ρ → 0, we set c
2
 = 0.  As found in Problem 22 of 

Section 5.3, the solutions of Legendre’s equation, 
Problem 9c, are either singular at 1, at -1, or at both 
unless µ2 = n(n+1), where n is an integer.  In this case, 
one of the two linearly independent solutions is a 
polynomial denoted by P

n
 (Problems 23 and 24 of 

Section 5.3).  Since r
1
 = (-1 + 1+4n(n+1) )/2 = n, the 

fundamental solutions of this problem satisfying the 

finiteness condition are u
n
(ρ,φ) = ρ

n
P
n
(s) = ρnP

n
(cosφ), 

n = 1,2,... .  It can be shown that an arbitrary 
piecewise continuous function on [-1,1] can be expressed 
as a linear combination of Legendre polynomials.  Hence 
we assume that
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u(ρ,φ) = ∑
n=1

∞
c
n
ρnP

n
(cosφ). The B.C. u(1,φ) = f(φ) requires 

that u(1,φ) = ∑
n=1

∞
c
n
P
n
(cosφ) = f(φ), 0 ≤ φ ≤ π.  From 

Problem 28 of Section 5.3 we know that P
n
(x) are 

orthogonal.  However here we have P
n
(cosφ) and thus we 

must rewrite the equation in Problem 9b to find
-[(sinφ)Φ′]′ = µ2(sinφ)Φ.  Thus P

n
(cosφ) and P

m
(cosφ) are 

orthogonal with weight function sinφ.  Thus we must 
multiply the series expansion for f(φ) by sinφP

m
(cosφ) 

and integrate from 0 to π to obtain
c
m
 = ∫0πf(φ)sinφP

m
(cosφ)dφ/∫0πsinφP

m
2(cosφ)dφ.  To obtain the 

answer as given in the text let s = cosφ. 

Section 11.6, Page 675

2a. bm = 2 ∫01xsinmπxdx = 2 (-1) m+1)/mπ and thus

Sn = 
2

π∑
m=1

n

 
(-1) m+1sinmπx

m
.

2b. We have Rn = ∫01[x - Sn(x)] 2dx, where Sn(x) is given in 

part a.  Using appropriate computer software we find 
R1 = .1307, R2 = .0800, R5 = .0367, R10 = .0193, R15 = .0131 
and R19 = .0104.

2c. As in part b, we find R20 = .0099, and thus n = 20 will 
insure a mean square error less than .01.

4a. Write S
n
(x) as n x /enx2/2 and use L’Hopital’s Rule:

lim
n→∞

 
n x

enx
2/2

 = lim
n→∞

 
x

x2

2
enx

2/2

 = 0 for x ≠ 0. For x = 0, 

Sn(0) = 0 and thus limn→∞
 Sn(x) = 0 for all x in [0,1].  

Rn > ∫01[0-Sn(x)] 2dx = n2∫01xe-nx2dx
   = -

n

2
enx

2 0
1
 = 

n

2
(1-e-n).  Since e-n → 0 as n → ∞, we 

have that Rn → ∞ as n → ∞.
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5. Expanding the integrand we get

R
n
 = ∫01r(x)[f(x) - Sn(x)]2dx 

= ∫01r(x)f2(x)dx - 2∑
i=1

n

c
i∫01r(x)f(x)φ

i
(x)dx  

                        + ∑
i=1

n

 ∑
j=1

n

c
i
c
j∫01r(x)φ

i
(x)φ

j
(x)dx, 

where the last term is obtained by calculating S
n
2(x).  

Using Eqs.(1) and (9) this becomes

R
n
 = ∫01r(x)f2(x)dx-2∑

i=1

n

c
i
a
i
 + ∑

i=1

n

c
i

2
 

   = ∫01r(x)f2(x)dx - ∑
i=1

n

a
i
2 + ∑

i=1

n

(c
i
 - a

i
)2, by completing 

the square.  Since all terms involve a real quantity 
squared (and r(x) > 0) we may conclude R

n
 is minimized by 

choosing c
i
 = a

i
. This can also be shown by calculating 

∂R
n
/∂c

i
 = 2(c

i
-a

i
) and setting equal to zero.

7b. From part a we have f
0
(x) = 1 and thus f

1
(x) = c

1
 + c

2
x 

must satisfy (f
0
,f

1
) = ∫01(c1+c2x)dx = 0 and

(f
1
,f

1
) = ∫01(c1+c2x)2dx = 1.  Evaluating the integrals 

yields c
1
 + c

2
/2 = 0 and c

1
2 + c

1
c
2
 + c

2
2/3 = 1, which have 

the solution c
1
 = 3 , c

2
 = -2 3  and thus 

f
1
(x) = 3 (1-2x).

7c. f
2
(x) = c

1
 + c

2
x + c

3
x2 must satisfy (f

0
,f

2
) = 0, 

(f
1
,f

2
) = 0 and (f

2
,f

2
) = 1.

7d. For g
2
(x) = c

1
 + c

2
x + c

3
x2 we have (g

0
,g

2
) = 0 and 

(g
1
,g

2
) = 0, which yield the same ratio of coefficients 

as found in 7c.  Thus g
2
(x) = cf

2
(x), where c may now be 

found from g
2
(1) = 1.

8. This problem follows the pattern of Problem 7 except now 
the limits on the orthogonality integral are from -1 to

1.  That is (P
i
,P

j
) = ∫-11 Pi(x)Pj(x)dx = 0, i ≠ j.  For 

i = 0 we have P
0
(x) = 1 and for i = 0 and j = 1 we 
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have(P
0
,P

1
) = ∫-11 (c1+c2x)dx = (c1x+c2x2/2)


 -1

1

 = 2c
1
 = 0 and 

thus P(1) = 1 yields P
1
(x) = x.  The others follow in a 

similar fashion.  

9a. This part has essentially been worked in Problem 5 by 
setting c

i
 = a

i
.

9b. Eq.(6) shows that R
n
 ≥ 0 since r(x) ≥ 0 and thus

∫01r(x)f2(x)dx - ∑
i=1

n

a
i
2 ≥ 0.  The result follows.

9c. Since f is square integrable, ∫01r(x)f2(x)dx = M < ∞ and 

therefore the monotone increasing sequence of partial 

sums T
n
 = ∑

i=1

n

a
i
2 is bounded above.  Thus lim

n→∞
T
n
 exists, 

which proves the convergence of the given sum.
9d. This result follows from part a and part c.

9e. By definition if ∑
i=1

∞
a
i
φ
i
(x) converges to f(x) in the 

mean, then R
n
 → 0 as n → ∞. Hence ∫01r(x)f2(x)dx = ∑

i=1

∞
a
i
2.  

Conversely, if ∫01r(x)f2(x)dx = ∑
i=1

∞
a
i
2, lim

n→∞
R
n
 = 0 and

∑
i=1

∞
a
i
φ
i
(x) converges to f(x) in the mean.

10. Bessel’s inequality implies that ∑
i=1

∞
a
i
2 converges and thus 

the nth term a
n
 → 0 as n → ∞.

12. If the series were the eigenfunction series for a square 

integrable function, the series ∑
i=1

∞
a
i
2 would have to 

converge.  But a
0
 = 1, a

1
 = 1/ 2 ,..., a

n
 = 1/ n ,..., 

and ∑
n=1

∞
a
n
2 = ∑

n=1

∞
1/n is the well-known harmonic series which 

does not converge. 
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PREFACE

This workbook was designed to accompany the software package ODE Ar-
chitect, and that’s why we call it aCompanion. Each of the 13 Companion
chapters corresponds to a multimedia module in the Architect and provides
background and opportunities for you to extend the ideas contained in the
module. Each chapter ends with several problem sets, called Explorations,
related to the chapter and module topics. The Exploration pages can be pho-
tocopied so that you can write in answers and derivations, and hand them in
along with printouts of graphs produced by the Architect. There is also a
notepad facility in the Architect which, with the cut and paste features, makes
it possible to write reports.

ODE Architect

ODE Architect provides a highly interactive environment for constructing and
exploring your own mathematical models of real-world phenomena, whether
they lead to linear or nonlinear systems of ODEs. The Architect’s multime-
dia front end guides you through experiments to build and explore your own
ODEs. The software has numerical solvers, 2- and 3-D graphics, and the
ability to build physical representations of systems such as pendulums and
spring-mass systems as well as the ability to animate them. Together with its
library of ODEs, the ODE Architect brings a wealth of opportunities to gain
insights about solutions to ODEs.

The overall guiding feature is for the software to be easy to use. Nav-
igational paths are clearly marked and simple to follow. When starting the
software, you are presented with a title screen followed by a main menu al-
lowing selection of a specific module. You may prefer to go directly to the
Architect Tool to run your own experiments. At any place in the software, you
will be able to call up the contents menus and access the material in any order.
We expect that most will work through the multimedia modules. Let’s look
at each of the three principal parts of the ODE Architect in more detail: The
Multimedia ODE Architect, The ODE Architect Tool, and the ODE Library.



vi

Multimedia ODE Architect

C.ODE.E members and colleagues have authored the multimedia modules,
each with its own theme. The modeling process is detailed, supported by
highly interactive simulations. You will explore the problem-solving process
via “what-if” scenarios and exercises. You are guided to build your own ODEs
and solve them numerically and graphically, and compare the predicted results
to empirical data when appropriate.

Each module has up to four submodules, and they range from the straight-
forward to the advanced. The animations are often funny, the voice-overs
and text informal, but the modeling and the mathematics are the real thing.
Most submodules go through a model-building process and several experi-
ment screens, and then end with some questions (Things-to-Think-About, or
TTAs). These questions extend the topics of the submodule and take you to
the solver tool to produce solution curves and orbits, or write a report con-
necting the mathematics, the models, and the pictures. When you open the
Tool using a TTA link, the pertinent equations and parameter settings will au-
tomatically be entered into the equation quadrant of the Tool. You are then
poised to think about, and without constraint, explore the model introduced in
the submodule.

ODE Architect Tool

The ODE Architect Tool is a first-rate, research-quality numerical ODE solver
and graphics package. The ODE Architect Tool employs a graphical user
interface to enter and edit equations, control solver settings and features, and
to create and edit a wide variety of graphics. A second mode of operation, the
Expert Mode, provides access to more advanced features.

The Tool is the heart of the software, and it is a workspace where you
can:

� Construct, solve, and explore ODEs

� Input data tables

� Graph and animate solution curves, phase plane graphs, 3D graphs,
Poincaré sections, discrete maps, direction fields, etc.

� Build, analyze, and animate physical representations of dynamical sys-
tems.

The robust Tool will solve systems of up to 10 first-order ODEs which
can be entered using a simple, natural scripting language. Auxiliary func-
tions involving the state variables can be defined. A solver/grapher feature
for discrete dynamical systems is also available from the Tool. A variety of
engineering functions such as square waves, sawtooth waves, and step func-
tions are included in the Tool function library. Two- and three-dimensional
graphics are supported, as well as time and parameter animations of solution
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data. Initial conditions can be entered by clicking in a graph window or via
the keyboard. Graph scales can be set automatically or manually. Numer-
ical values of solutions can be viewed in tabular form. Parameter-sensitive
analysis is made easy with a built-in parameter-sweep tool. You can do pa-
rameter and initial-value sweeps to see the effects of data changes on orbits
and solution curves. Graphs are editable and you can scale and label axes,
mark equidistant-in-time orbital points, color the graphs, change line styles,
overlay graphs of functions and solution curves for different ODEs—all with
no programming or special commands to remember.

The solvers in the ODE Architect are state-of-the-art numerical solvers
based on those developed by Dr. L.F. Shampine and Dr. I. Gladwell at South-
ern Methodist University. For a delightfully readable account on using nu-
merical ODE solvers in teaching ODEs, please refer to their paper:

Shampine, L.F., and Gladwell, I., “Teaching Numerical Methods in
ODE Courses”

in the bookRevolutions in Differential Equations, edited by Michael J. Kalla-
her in the MAA Notes series.

Module 1, “Modeling with the ODE Architect”, is an on-line tutorial for
many of the features of the Tool. The Architect also has help facilities and the
multimedia side is self-documenting.

ODE Library

The ODE Library has dozens of pre-programmed, editable, and interactive
ODE files covering a wide range of topics from mathematics, physics, chem-
istry, population biology, and epidemiology. There are also many ODEs to
illustrate points such as data compression, ODEs with singular coefficients,
bifurcations, limit cycles, and so on. Each Library file has explanatory text
along with the equations and includes an illustrative graph or graphs. The Li-
brary files are organized into folders by topic and they have descriptive titles
to facilitate browsing. These files also provide a marvelous way to learn how
to use the tool.
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INFORMATION
ABOUT MODULES/CHAPTERS

Overview

Modules/Chapters 1–3are all introductory modules for first-order ODEs
and simple systems of ODEs. Any of these modules/chapters can be
used at the beginning of an ODE course, or at appropriate places in
elementary calculus courses.

Modules/Chapters 4–9 involve higher-order ODEs and systems and their
applications. Once students understand how to deal with two-dimen-
sional systems graphically, any of these modules/chapters is easily ac-
cessible.

Modules/Chapters 10–12apply two-dimensional systems to models that il-
lustrate more advanced techniques and theory; the multimedia approach
makes them nevertheless quite accessible. The modules are intended to
enable students to get much further with the technical aspects explained
in the chapters than would be otherwise possible.

Module/Chapter 13 treats discrete dynamical systems in an introductory
fashion that could be used in a course in ODEs, calculus, or even a
non-calculus course.

A Multimedia appendix on numerical methods gives insight into the ways
in which numerical solutions are constructed.

Description/Prerequisites for Individual Modules/Chapters

We list below for each Module/Chapter its prerequisites and some comments
on its level and goals. In general, each module progresses from easier to
harder submodules, but the first section of nearly every module is at an intro-
ductory level.

The modules can be accessed in different orders. It is not expected that
they will be assigned in numerical order. Consequently, we have tried to ex-
plain each concept wherever it appears, or to indicate where an explanation
is provided. For example, Newton’s second law,F = ma, is described every
time it is invoked.
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There is far more material in ODE Architect than could possibly fit into a
single course.

Module/Chapter 1: Modeling with the ODE Architect
Assumed concepts: Precalculus; derivative as a rate of change

This module is unlike all the others in that it is not divided into submod-
ules, and it provides a tutorial for learning how to navigate ODE Architect. It
carries that tutorial process along in tandem with an introduction to modeling
that assumes very little background.

Module/Chapter 2: Introduction to ODEs
Assumed concepts: Derivatives; slopes; slope fields

The module begins with some simple first-order ODEs and their solutions
and continues with slope fields (and a slope field game).

The Juggler and the Sky Diver submodules use second-order differential
equations, but both the chapter and the module explain the transformation to
systems of two first-order differential equations.

Module/Chapter 3: Some Cool ODEs
Assumed concepts: Basic concepts of first-order ODEs, solutions, and
solution curves

Newton’s law of cooling, and solving the resulting ODEs by separation
of variables or as linear equations with integrating factors, are presented thor-
oughly enough that there need be no prerequisites.

The submodule for Cooling a House extends Newton’s law of cooling to
real world cases that are easily handled by ODE Architect (and not so easily
by traditional methods). This section makes the point that rate equations and
numerical solutions are often a much smarter way to go than to trudge toward
a solution formula.

Module/Chapter 4: Second-Order Linear Equations
Assumed concepts: Euler’s formula for complex exponentials

The module and chapter treat only constant coefficient ODEs. The chap-
ter begins by demonstrating how to treat a second-order ODE as a system
of first-order ODEs which can be entered in ODE Architect. Both the first
submodule and the chapter explain from scratch all the traditional details of
an oscillating system such as amplitude, period, frequency, damping, forcing,
and beats.

The Seismograph submodule is a real world application. The derivation
of the equation of motion is not simple, but the multimedia module gives in-
sight into the workings of a seismograph, and it is not necessary to understand
the details of the derivation to use and explore the modeling ODE.
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Module/Chapter 5: Models of Motion
Assumed concepts: Newton’s second law of motion

This module’s collection of models of motion in one and two dimensions
is supported by a chapter that gives background on vectors, forces, Newton’s
laws, and the details of the specific submodules; so it stands on its own without
further prerequisites.

Module/Chapter 6: First-Order Linear Systems
Assumed concepts: Basic matrix notation and operations (multiplication,
determinants); complex numbers; Euler’s formula

This unit introduces all of the basic notions, both algebraic (emphasized
in the chapter) and geometric (emphasized in the module), for linear systems.
The central roles of eigenvalues and eigenvectors are explained. The Tool can
be used to calculate eigenvalues and eigenvectors.

The Explorations bring in coupled tank problems (Chapter 8 introduces
compartment models) and small motions of a double pendulum (which are
extended in Chapter 7).

Module/Chapter 7: Nonlinear Systems
Assumed concepts: Equilibrium points; phase plane and component plots;
matrices; eigenvalues and eigenvectors

The goal is to use graphical solutions to make handling nonlinear sys-
tems as easy (almost) as linear systems. Linearization of a nonlinear ODE is
introduced as a basic concept, and the chapter goes on to elaborate perturba-
tions and bifurcations. The Tool can be used to find equilibrium points, and
calculate the Jacobian matrix and its eigenvalues/eigenvectors at each equi-
librium point. The predator-prey and saxophone reed models are introduced
and explained in the module while the spinning bodies and double pendulum
models are treated in the chapter and also in the Library with an animated
model linked to the ODE.

Module/Chapter 8: Compartment Models
Assumed concepts: Systems of ODEs

Both the module and the chapter use 1D, 2D, 3D, and 4D applications
(in sequence) to illustrate principles of the Balance Law and interpretations
of solutions. The final submodule introduces Hopf bifurcations and the inter-
esting behavior of chemical reactions in an autocatalator. Three of the models
are linear; the last is nonlinear.

Module/Chapter 9: Population Models
Assumed concepts: Systems of ODEs

The module and chapter introduce simple 1D, 2D, and 3D nonlinear mod-
els, and give a discussion of the biology behind the models.
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Module/Chapter 10: The Pendulum and Its Friends

Assumed concepts: Systems of ODEs; the first submodule of Module 4;
the arctangent function; parametric curves on a surface

The pendulum submodule explores all the traditional aspects of a pendu-
lum, using integrals of motion. Child on a Swing and Geodesics on a Torus
give new extensions of pendulum analysis; supporting detail is given in the
chapter. The approach to modeling is a little different in this chapter—for ex-
ample, how to invent functions that behave as needed (Child on a Swing), or
how to exploit part of an ODE that looks familiar (Geodesics on a Torus).

Module/Chapter 11: Applications of Series Solutions

Assumed concepts: Systems of ODEs; acquaintance with infinite series
and convergence; the first submodule of Module 4

The module introduces the techniques and limitations of series solutions
of second-order linear ODEs. The Robot and Egg provides motivation for the
subject and Aging Springs illustrates Bessel functions. The chapter contains
information about the mathematics of series solutions.

Module/Chapter 12: Chaos and Control

Assumed concepts: The pendulum ODEs of Module 10; systems of ODEs;
experience with Poincar´e sections and/or discrete dynamical systems (Chap-
ter 13) is helpful

The three submodules of this unit tell a story, and in the process illus-
trate a theorem from current research. This module uses sensitivity to initial
conditions and the Poincar´e section to assist with the analysis. Sinks, sad-
dles, basins, and stability are described. Finally, the elusive boundaries of the
Tangled Basin provide a mechanism for control of the chaotically wandering
pendulum. The module ends in a fascinating control game that is both fun to
play and illuminates the theorem mentioned above.

Module/Chapter 13: Discrete Dynamical Systems

Assumed concepts: Acquaintance with complex numbers and the ideas of
equilibrium and stability are helpful

The module provides a gentle introduction to an increasingly important
subject. The chapter fills in the technical and mathematical background.

This module could be used successfully in a liberal arts course for stu-
dents with no calculus.
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Level-of-Difficulty of Modules

The chart below is a handy reference for the levels of the submodules.

Elementary Intermediate Advanced
1

2.1, 2.2 2.3, 2.4
3.1 3.3 3.2
4.1 4.2
5.1 5.2 5.3

6.1 6.2 6.3
7.1 7.2 7.3

8.1 8.2 8.3 8.4
9.1 9.2 9.3

10.1 10.2 10.3
11.1 11.2
12.1 12.2, 12.3

13.1 13.2 13.3

In constructing this chart we have used the following criteria:

Elementary: Straightforward, self-contained, can be used as a unit in any
introductory calculus or ODE course.

Intermediate: Builds on some prior experience, including earlier submodules
and chapters.

Advanced: More challenging models or mathematics, especially suitable for
term or group projects.

User’s Guide

TheUser’s Guideis the basic reference for the features of the ODE Architect
Tool. The Guide is included on the CD-ROM for ODE Architect.
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Pacific sardine population and harvest.

Overview In the two decades from 1932 to 1951, the Pacific sardine fishery completely
collapsed. In this chapter you will learn to use the ODE Architect to construct
a mathematical model which describes this event rather well. This will have two
purposes: it will familiarize you with the menus and features of the ODE Architect,
and it will acquaint you with the principles of mathematical modeling.

First we’ll construct a model for the Pacific sardine population during the
years 1930–1950 as if it were unharvested. Then we will focus on the harvesting
that actually took place and see how it contributed greatly to the destruction of
the sardine population.

Key words Modeling; Pacific sardine; population model; initial conditions; exponential growth;
carrying capacity; logistic equation; harvesting

See also Chapter 9 for more on population models.
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◆ Building a Model of the Pacific Sardine Population

Step 1: State the problem and its context
The Pacific sardine (Sardinops sagax caerulea) has historically experienced☞ In this chapter we will

build a model for the sardine
fishery in California and also
introduce features of the ODE
Architect Tool for solving
differential equations. Consult
theUser’s Guidefor a full
description of all features of the
tool.

long-range cycles of abundance and depletion off the West Coast of Califor-
nia. It was during one of the abundant periods, 1920 through 1951, that a huge
sardine fishing and canning industry developed. The total catch for the Cal-
ifornia coastline reached a peak of 726,124 tons during the 1936–37 season
(June through the following May). The Pacific sardine population then began
a serious decline during the 1940s until, as one estimate has it, by 1959 the
sardine biomass was 5% (0.2 million tons) of the 1934 level (4 million tons).
(Thebiomassis the amount of a particular organism in its habitat.) There is
general agreement that heavy harvesting played a role in the decimation of the
Pacific sardine during that period. The fishing industry had a serious decline
after the 1950–51 season: increasing numbers of fishermen went bankrupt or
moved to other fisheries. Undoubtedly the canneries were also affected.

After 50 years of fishing for the Pacific sardine, a moratorium was im-
posed by the California legislature in 1967. The Pacific sardine seems to be
making a comeback as of the mid-1980s, though the numbers are not yet near
the abundant levels of the 1930s.

Here are the goals of your model:

1. Determine the extent to which the precipitous decline of the Pacific sar-☞ Problem statement.

dine population was due to over-harvesting from 1941 to 1951.

2. Ascertain an optimal harvest rate that would stabilize and sustain the
sardine population during that time period.

Step 2: Identify and assign variables
Assigning the variables in a mathematical model is a skill that requires some
practice. Doing some background reading and studying the context of the
problem and the problem statement helps to clarify which are the most impor-
tant features of the system you wish to model.

It turns out that there tend to be long-range cycles of Pacific sardine abun-
dance and scarcity. These cycles are not yet completely understood, but it is
certain that factors such as ocean temperature, nutrient upwelling from deep
waters, currents that aid fish migration, predator populations of larger fish and
of sea lions, and, of course, fishing, play a vital role in the cycles. In this
model we will focus on a period when the harvesting of the sardine was very
heavy. Due to the large magnitude of the harvesting, its effect was dominant
for the period of time we will model, 1941–1951, so we will neglect the other
factors. That the other factors still operate on the population is evidenced by
the difficulty in getting the model to match the data perfectly. Nevertheless,
you’ll see how modeling, while not always explaining every aspect, provides
insight into the dynamics of an otherwise very complex biological relation-
ship.
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Given the information we have at this point we need the following vari-
ables and parameters in our model:

1. Sardine biomass (in units of million tons)☞ Sardine biomass is a state
variable, the other quantities are
parameters. 2. Growth rate for the Pacific sardine (in units of million tons/year)

3. Maximum biomass, orcarrying capacity(in units of million tons)

4. Sardine harvesting (in units of million tons/year)

Note that we opted to define sardine biomass in million tons, rather than num-
bers of fish, to be consistent with the data and estimates used.

It’s good practice to introduce as few parameters as necessary into a
model at first. Additional parameters can be added if they are needed to im-
prove the accuracy of the model. The model may be refined until the desired
level of accuracy is achieved.

With the variables and parameters identified, the next step is to construct
an equation for the rate of change of the state variable in terms of the state
variable itself, the model’s parameters, and possibly also time. This equation
is known as a differential equation (abbreviated ODE). When an ODE is en-
tered into ODE Architect along with an initial value of the state variable, the
Architect Tool displays a graphical representation of the solution.

Figure 1.1 represents the estimated Pacific sardine biomass and harvest☞ Graphical representation
of the problem. during the period 1941–1951. Note again the use of sardine biomass in million

tons, rather than numbers of fish.
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Figure 1.1: Sardine biomass and harvest.

Our first task is to use ODE Architect to build a mathematical model
to simulate the growth and decline of the Pacific sardine biomass without
harvesting. Then we can explore the impact of harvesting on that biomass.
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Place the ODE Architect CD-ROM in your computer and start the ODE☞ Click on the spinning orb
to go directly to the Architect
Tool.

Architect Tool. Four quadrants will be displayed on the screen (see Fig-
ure 1.2). The upper left quadrant is the equation quadrant; it should be empty
now. The two right-hand quadrants should be empty. These are plot quad-
rants that will display 2- or 3-dimensional plots when you solve differential
equations. The lower left quadrant currently shows the initial conditions (IC )
display. Notice that it is selectable using the four tabs (IC , Sweep, Solver,
Equilibrium ) on the lower edge of the quadrant. For now leaveIC selected.

Figure 1.2: ODE Architect tool screen

Step 3: State the relationships that govern the variables
We begin by simulating the unchecked growth (no harvesting) of the Pacific
sardine population, which we will designate as the state variablesardine. Ba-
sic biology suggests that it is reasonable to assume that the rate of biomass
growth (i.e., the derivatived(sardine)/dt) at a given timet is proportionalto
the quantity of sardines (the size of the biomass) present at that timet.

Step 4: Translate the laws into equations
Sincesardine′ is a common notation for the derivative (rate of change) of
sardine, we can write

sardine′ = r ∗ sardine

wherer is a proportionality factor that we will refer to as thegrowth rate
factor.
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Fishery and biomass data collected over the period 1932–1958 indicate
that the Pacific sardine population has had a volatile history. The Pacific sar-
dine biomass, if not manipulated or constrained, can grow at a rate of between
10% and 40% per year. We will assume a moderate position and set the growth
rate factor atr = 0.20. A modeler often has to make assumptions and guess
parameter values to get a model started; you can refine the assumptions later.

Step 5: Solve the resulting differential equations
Point and click the cursor in the equation quadrant and type in☞ Entering differential

equations.
sardine′ = r ∗ sardine (1)

using an apostrophe for the prime, and an asterisk for multiplication; hitRe-
turn (or Enter) and assign the value 0.20 to the parameterr by typing in

r = 0.20

Now click the cursor on the box markedEnter just below the equation quad-
rant. Notice that this causes scales to appear in the two plot quadrants.

Now go to the lower left quadrant to set the initial conditions. Double☞ Setting initial conditions.

click in the appropriate box to select a variable; then type in the new value.
Set t (time) to start at 1930 and setsardine to be 1 (unit of million tons).
We’ll go back later and put in a more realistic estimate forsardine. In the☞ Setting the time interval.

Integration panel, set the solve time to 20 by inserting the number 20 in the
Interval box. Leave the default value of 100 in the# Pointsbox.

Click theSolve icon and notice that the right arrow is automatically se-
lected. Your screen will look something like this (Figure 1.3):☞ Starting the solution.

Figure 1.3: Exponentially growing sardine population.
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Step 6: Interpret and test the solutions in context
There is now a classical exponential growth curve in the upper right quadrant.☞ Unbounded growth.

This implies that the sardine biomass grows without bound, which can’t be
true as there is not enough room on the planet! The exponential growth must
be limited by factors like available food supplies, disease, predators, and so
on; therefore we have to modify our model to reflect this fact. We learned
earlier that the sardine biomass has been as large as 4 million tons, but we
don’t truly know the maximum sustainable biomass (carrying capacity), so
to start let’s assume a carrying capacity of 6 million tons. We can refine this
guess later if we have trouble fitting the model to actual data. As we said
before, it’s not uncommon to have to make informed guesses for values that
are not known or available. Then the values can perhaps be deduced by “fine
tuning” (refining) the model in subsequent iterations to conform to reality.

Step 7: Refine the model to predict the empirical data
The following differential equation is sometimes used to exhibit maximum☞ Introduce a carrying

capacity. carrying capacity behavior in a population:

sardine′ = r (capacity− sardine)

This equation says that the growth rate at any time is proportional to the “room
to grow” factorcapacity− sardine. Now click the cursor in the equations
region. Using our assumed growth rate constant ofr = 0.20 per year and a
carrying capacity of 6 million tons, we modify the sardine growth to be

sardine′ = r ∗ (6− sardine) (2)

Before entering the new sardine ODE, clear the graphics screens by clicking
on Clear at the lower left and choosingClear All Runs. A “confirmation”
window will pop up; click onYes. Now click in the equation region, make the
corrections to your equation, and then click on the box markedEnter. Click
on theSolveicon and notice in the plot window that the graph of the sardine
biomass climbs and levels out at the assumed carrying capacity of 6 million
tons.

✓ “Check” your understanding by comparing this curve with the earlier
one and notice some significant differences: (1.) The first curve was concave
up; this one is concave down. Why is that significant? (2.) The first curve
grew without bound and had no asymptotes; the second curve has a horizontal
asymptote. Explain why.

Examine the two graphs carefully at early values oft, say the first five
years. Recall that the slope of a line tangent to the solution curve is the growth
rate of the biomass at that time. How do the two curves differ in this regard?
When is the rate of change of the biomass the greatest? Is it realistic for a
biomass to exhibit its greatest rate of increase when the population is small-
est? The answer to these questions is not as simple as you might think. For
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many biological populations, rate of change is proportional to the size of the
population. The solution of ODE (1) exhibits this proportionality but it is un-
constrained and so it’s not useful over its whole domain. The solution curve of
ODE (2) doesn’t exhibit the proportional growth property. Which of the two
is most appropriate for the Pacific sardine? We’ll come back to that question
after a little exploration with ODE (2).

Now let’s see if ODE (2) will allow us to exceed the carrying capacity for☞ Exceed carrying capacity.

any length of time. Change the initial biomass to 12 million tons of sardines
in the IC window. Click on theSolve icon. Notice that the vertical scale in
the graph changes to accommodate the revised values and that both the old
(lower) and the new (upper) curves are displayed on the graph. Observe what
happened to the “overstocked” sardine population. How does this compare to
what happened when the initial sardine biomass was 1 million tons? If you
examine the two plots closely, you’ll see that both plots stabilize at a level of
about 6 million tons (see Figure 1.4).

Figure 1.4: Sardine populations approach carrying capacity.

Sometimes it’s advantageous to change the scales of the axes to make☞ To set scaling of axes.

graphs easier to read and interpolate, so we’d like to show you how to reset
the vertical and horizontal scales. (The default setting for scales for ODE
Architect isAuto Scale.) Select the upper right graph by placing the cursor
arrow on the graph and clicking theright-mostmouse button (or click on the
icon at the upper right corner of the graph). You will see various plot window
options presented. SelectScalesfrom the resulting dropdown menu using the
left-mostmouse button. Click onAuto Scaleto toggle it off. (The check in the
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box will disappear.) To change other values, double click in the box to select
the value and just type to make a change. On theX-Scalemenu setMinimum
= 1930;Maximum = 1950;Number of Ticks = 10; andLabel every = 2.
(Adjust the number of ticks by clicking on the down arrow and selecting, or
by double clicking the box and typing in the new value.) Make sureLinear is
selected (notLog). Now select theY-Scalemenu (at the top): click theAuto
Scaleto toggle it off; setMinimum = 0; Maximum = 12;Number of Ticks
= 10; andLabel every= 2; and check that theLinear button is selected. Your
screen should have a window that looks like Figure 1.5:

Figure 1.5: Plot scales window.

Click on OK to cause the graph to be rescaled. (In this particular case, it☞ You must click theOK
button to enter changes. turns out that the scale did not change from the automatically selected value.)

Now click on theClear box in theIntegration panel and chooseClear
All Runs. What has changed? Next click on theSolveicon again. Notice that
you got only the most recent curve (carrying capacity exceeded); you cleared
the previous solution.

We can extend the ease of making comparisons by sweeping through sev-☞ Sweeping a variable.

eral possible initial values forsardineand displaying them all on one graph.
Click on theClear box and chooseClear All Runs. Now notice theSweep
tab beneath theInitial Conditions panel; click onSweep. Click onSinglefor
type of sweep. We will chooseSweep 1to be a sweep (multi-plot) of various
initial values ofsardine. In theSweep 1box, click on the down arrow and
selectsardine. SetStart = 1; Stop = 7; and# Points= 3. Now click on the☞ If the # Points is set ton,

you’ll get n overlayed graphs. Sweepbox next to theSolveicon (not theSweeptab) (Figure 1.6).
Notice that ODE Architect makes several runs. Notice also that the initial

value forsardinelocated in the IC window was ignored and the values we
entered in the sweep conditions were used instead.

To better see these results, let’s rescale the vertical axis (Y-Scale) to Min-
imum = 1 andMaximum = 7. Look back at page 7 if you do not recall how to
do this. Figure 1.7 shows that multiple runs are easily comparable in this for-
mat. Which initial value forsardinecreated the most stable or flattest curve?
Does the population always stabilize around the same biomass?
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Figure 1.6: Setting up the sweep for sardine with three initial values 1, 4, 7.

Figure 1.7: The sardine curves with a rescaled vertical axis.
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Do the resulting curves accurately represent the growth you’d expect over
the whole range of values fort? Growth is usually proportional to population
size when well below the carrying capacity. However, when you look at your
graph notice that for small populations of sardines, the growth rate is rather
steep. As the sardine population approaches the carrying capacity the biomass
should level off, which the preceding curves do reflect.

Now we’ll examine the properties of the model we created in ODE (2).
The growth rate is proportional to(capacity− sardine) and so for small sar-
dine biomass, the biomass grows at a nearly constant rate. Near the carrying
capacity, the factor(capacity−sardine) causes a leveling off (see Figure 1.7):
the factor forces growth to be proportional to the distance from capacity.

◆ The Logistic Equation

Combining the elements of the proportional growth model given by ODE (1)
and the restricted growth model given by ODE (2) leads to what is called
thelogistic equation for growth(or theVerhulst equation, after the nineteenth
century Belgian mathematician and biologist P. F. Verhulst):

sardine′ = r sardine
6− sardine

6
(3)

Notice that for values ofsardinevery near zero, the factorr ∗ sardinedom-
inates the computation, causing approximate exponential growth behavior.
This is because the factor(6− sardine)/6 has a value very near 1. For val-
ues ofsardinenear 6 (the carrying capacity), the factor(6 − sardine)/6 is
near zero, and so growth slows to approach zero. Therefore we can expect
exponential growth for small biomass with growth tapering off as the biomass
approaches carrying capacity. Let’s see if this refinement improves the model.

Click on theIC tab to clear the graph and enter a new equation. After
clicking on theClear box, and choosingClear All Runs, click in the equa-
tions quadrant and modify the growth ODE to read:☞ Changing the equation.

sardine′ = r ∗ sardine∗ (6− sardine)/6 (4)

Don’t forget to click the box labeledEnter. Reset the initial sardine biomass
to 1. Finally, click on theSolveicon. Your screen should look something like
Figure 1.8.

Notice that the graph now displays a mathematical representation more
like what we expect of the sardine biomass over the long term. It is an elon-
gatedS-shaped curve with slow growth for small biomass, maximum growth
near the midrange, and slow growth near the carrying capacity.

Use the sweep feature now to see how the logistic growth curve responds☞ Try various initial values.
As before, use aSinglesweep. for various initial conditions for the variablesardine. Sweep 1sardine; Start

= 1; Stop = 7; # points = 4. Click onSweep. Figure 1.9 shows the four
solution curves.
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Figure 1.8: A logistic growth curve.

Figure 1.9: Four logistic solution curves.
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✓ Does the model respond to your initial conditions in a reasonable man-
ner? Do you think that this is a good population model to use for modeling
the biomass of the Pacific sardine?

Let’s now use the model given in equation (3) to explore the harvesting that
took place in the years 1941–1951.

◆ Introducing Harvesting via Landing Data

In Figure 1.1 you saw a graph of the Pacific sardine harvest and the resulting
biomass decline during the years 1941–51. We have not yet taken into account
this harvest (orlanding) data in our model; so our model does not yet reflect
the collapse of the sardine fishery that occurred. We’ll now incorporate the
landing data into our model in the form of a lookup table.

The tutorial in Module 1 provides you with landing data for the Pacific
sardine over the time period 1941–1951 in the form of a table with 11 rows
and 2 columns (tutorial steps 13 and 14). This data can be entered as alookup
tablenamed HTABLE by following these directions (which also appear in the
tutorial):

� Start by clicking on theEquationsentry on the menu bar and choosing
Lookup Tables to display the lookup table manager window.

� Double click on<Create New Table> to display the new table win-
dow. Enter the name HTABLE, and specify 11 rows and 2 columns in
the appropriate boxes. Then click theOK button. An array of empty
cells will appear with 11 rows and 2 columns.

� Enter the data (provided in the tutorial window) in the array by clicking
on cell [1,1] to start. When all of the data is entered, click theOK
button.

� Close the lookup table manager window.

Now you have a lookup table called HTABLE.
Go to the equation quadrant and, on a new line, add the following☞ Defining the harvest.

harvest= lookupval(HTABLE,1, t,2)

Be sure to click theEnter box. The value returned by lookupval is the data in
column 2 of HTABLE corresponding to thet-value of the data in column 1.
(If t is not an integer, the value returned is computed by linear interpolation.)

Let’s now look at this harvest data. Sinceharvestis not an ODE state
variable, the Architect does not automatically generate a plot tab; we will
have to make it by hand. Click on the2D tab at the lower right to select what☞ Using the2D custom tab.

we want to plot on each of the two axes. Place the cursor on the lower right
plot quadrant, and after clicking theright-mostmouse button, selectEdit with
theleft-mostmouse button. Leave theX-Axis variable set tot. For theY-Axis
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click on the down arrow after1: <None> and selectharvest. Now click on
Titles at the top of the edit window and type in theGraph Title box: Harvest.
In the X-axis Title box type: Year; and in theY-axis Title box: Harvest.
See Figure 1.10. ClickOK . Using theright-mostmouse button again on the
lower graph, selectScales. Set theX-Scaleas follows: deselectAuto Scale;
set Minimum = 1940; Maximum = 1955; Number of Ticks = 3; Label
every = 2. Select theY-Scale, deselectAuto Scale, and set:Minimum = 0;
Maximum = 1; Number of Ticks = 5; andLabel every= 1. ClickOK .

Figure 1.10: Plots and Titles panels for 2D tab.

Click on theSolve icon. Notice that a graphical representation of the☞ See the lower right graph
in Figure 1.11. Pacific sardine landings appears in the lower graph but the upper graph has

not been affected. That’s because we have not included harvest (landings)
in the sardine model yet. (Note: the two graphs have different vertical axis
scales.)

After clicking onClear and choosingClear All Runs, go to the equation☞ Includingharvestin the
sardine model. quadrant and modify thesardineODE as follows:

sardine′ = r ∗ sardine∗ (6− sardine)/6− harvest (5)

You may have to scroll the equations quadrant (on some computers) in order
to see the whole equation. (You can also move the dividing line between
the right and left quadrants, at the slight expense of the graphing resolution.)
Click the Enter box. Before we run the model, we must change the initial
conditions to reflect the reality of the Pacific sardine population at that time.
In the literature, the most reliable data for the Pacific sardine biomass starts
in 1941. Thus set theIC for t to 1941 and theIC for sardineto 2.71. Reset
Interval to 10. Now click theSolveicon and note the results. For best viewing
of the top right graph window choose theX-Scale; deselectAuto Scale; set
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Figure 1.11: Model sardine biomass (upper), harvested biomass (lower).

Minimum = 1940;Maximum = 1955;Number of Ticks = 3; Label every
= 2. Rescale theY-Scaleaxis to:Minimum = 0; Maximum = 3; Number of
Ticks = 3; Label every= 1. See Figure 1.11 for the graphs.

How do these model results compare with the expected behavior at the☞ Fishery collapse.

beginning of the chapter? While the overall behavior is captured in general
terms by the model, it is unusual to have a model match the estimated data
exactly.

✓ What are your thoughts about the model as it relates to historical behav-
ior? Explain any discrepancies.

Step 8: Interpret the implications of the model
It is now clear that while over-exploitation of the sardine landings was not the☞ Analysis.

sole factor, it played a very large role in the collapse of the California fishery
in the early 1950s. Since we now have a functioning model of that ten-year
period in time, you have the amazing power to use your computer to revise
history and attempt to save the fishing industry. What limit on the landings
would have allowed a sizable sardine harvest1 but not a collapse of the fishery?

1Historical note: A limit to the total catch of sardines at between 200,000 and 300,000 tons was
recommended as early as 1929, and repeatedly over the next several years.
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Now it is your turn to examine some options and try some alternate scenarios
in the Explorations that follow.

◆ How to Model in Eight Steps

Modeling a situation mathematically involves many ideas and activities, but
modeling is not always straightforward. There are many times when you may
be puzzled, confused, and frustrated and you must retrace or rethink the steps
involved. We summarize the steps in an order that allows for easy reference,
but keep in mind the need to retreat, reassess, and redefine your thinking.

1. State the problem and its context.

2. Identify and assign variables.

3. State the laws that govern the relationships between the variables.

4. Translate the laws into equations.

5. Solve the resulting equations.

6. Interpret and test the solutions in the context of the natural environment.

7. Refine the model until it predicts the empirical data.

8. Interpret the implications of the model.

References Barnes, J.T., MacCall, A., Jacobson, L.D., Wolf, P., “Recent population trends
and abundance estimates for the Pacific sardine (Sardinops Sagax)” in
Calif. Coop. Oceanic Fish. Invest. Rep., Vol. 33 (1992), pp. 60–75

Cushing, D.H., “The problems of stock and recruitment” inFish Population
Dynamics, J.A. Gulland, Ed. (1977: J. Wiley & Sons, Inc.), pp. 116–133

Hocutt, C.H., and Stauffer, J.R., Eds.,Biological Monitoring of Fish(1980:
Lexington Books, D.C. Heath and Co.)

Lluch-Belda, D., Hernandez-Vazquez, S., Schwartzlose, R.A., “A hypo-
thetical model for the fluctuation of the California sardine population”
in Long-term Variability of Pelagic Fish Populations and Environment,
Kawasaki et al., Eds. (1991: Pergamon Press), pp. 293–300

Murphy, G.I., “Population biology of the Pacific sardine (Sardinops Caerulea)”
Proc. Calif. Acad. Sci., Fourth SeriesVol. 34 (1966) No. 1, pp. 1–84

Radovich, J., “The collapse of the California sardine fishery. What have
we learned?” inResource Management and Environmental Uncertainty,
M.H. Glantz, Ed. (1981: J. Wiley & Sons, Inc.), pp. 107–136

Ricker, W.E., “Computation and interpretation of biological statistics of fish
populations” inBulletin 191(1975: Department of the Environment Fish-
eries and Marine Service, Ottawa)

Wolf, P., “Recovery of the Pacific sardine and the California sardine fishery”
in Calif. Coop. Oceanic Fish. Invest. Rep., Vol. 33 (1992), pp. 76–86



16 Chapter 1



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 1.1. Constant Harvesting of a Biomass

1. No harvesting.
Let’s examine the rate of growth (the derivative) of the sardine biomass using
the logistic model of ODE (3). To do this we’ll look at the values ofsardine′

as a function of sardine biomass size. Go to the equations quadrant and type
in the ODE

sardine′ = r ∗ sardine∗ (6− sardine)/6

r = 0.20

Click theEnter box.
To create a plot ofsardinevs. sardine′, select the2D tab (if necessary),

place the cursor over the lower right graph, press theright-mostmouse button,
and selectEdit . For theX-Axis use the down arrow to selectsardine. ForY-
Axis 1, selectsardine′. Click now on theTitles tab at the top of the edit
window. Type Rate of Growth vs. Biomass as the Graph Title, Sardine as
the X-axis label and Sardine′ as the Y-axis label. ClickOK . Place the cursor
over the lower right graph again, press theright-mostmouse button and select
Auto Scales: Both(if necessary). Next set theIC for t to 1941 and theIC
for sardineto 1, and set theInterval to 20. ClickClear and selectClear All
Runs (if necessary), then click theSolveicon.

The top graph shows (by default)sardinevs. time. Notice in the lower
graph that the sardine growth rate,sardine′, is maximized somewhere near a
midsized sardine population of about 3 million tons. Rescale the Y-axis of the
top graph (if necessary) toMinimum = 0; Maximum = 6; Number of Ticks
= 6. Verify that the sardine biomass grows at the rate of approximately 10%
to 40% per year, depending upon the size of the biomass.
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2. Constant harvesting.
Let’s analyze the effect of constant harvesting on the logistic sardine popula-
tion of Problem 1. Since the sardine biomass was 2.71 million tons in 1941,
reset thesardineIC to 2.71 and keep thesardinevertical scale set on the range
0 to 6 and re-solve to observe the relative stabilization of the population.

Now insert a constant harvesting term in the model by modifying the
ODE in the equation quadrant to read

sardine′ = r ∗ sardine∗ (6− sardine)/6− harvest

Try a harvest value that is slightly less than the biomass growth amount for
2.71 million tons by setting a constant harvest in the equation quadrant. For
example you could tryharvest= 0.28 (280,000 tons per year) and solve the
model. (Be sure to click on theEnter box first.)

Now click on the2D tab in the lower graph quadrant. Clear the graph☞ Clearing a 2D custom
graph. The same procedure clears
a 3D custom graph.

in that quadrant by setting all axes to<None> in the Plots tab of theEdit
box, then going to theTitles tab and deleting all titles. For the upper right
graph you can set up and run a sweep ofharvestover the values 0.1 (100,000
tons/year) to 0.7 (700,000 tons/year) using 7 points in the sweep. Describe
the biomass behavior for harvest levels of 0.1; 0.3; 0.5; 0.7. From your explo-
ration, determine what constant harvest amount provides a large harvest yet
does not jeopardize the long-term viability of the Pacific sardine population.
Explain what you mean by “large harvest” and “long-term viability.” Did the
harvest levels suggested by fishery researchers stand up?

3. How does the IC affect the optimum harvest level?
Is the optimum harvest level that you determined in Problem 2 affected by the
initial biomass of the sardine in 1941? Try some different values for the IC
and explain what you learn about the relationship between initial biomass and
the optimum constant harvest amount.
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Exploration 1.2. Constant Effort Harvesting

1. Using a constant effort harvesting function.
Another model for harvesting is to land a certain percentage of the existing
biomass each year. This is calledconstant effort(or proportional) harvesting.
Introduce constant effort harvesting into ODE (5) by setting

harvest= 0.25∗ sardine

to harvest 25% of the sardine population each year. Try a run. What happens?
Go back and revise the harvest function to

harvest= k ∗ sardine

and sweep through several values of your choosing for the harvest coefficient
k. Summarize your results. What is the optimum harvest coefficient? Explain
what you mean by “optimum” harvest coefficient.
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2. How does the IC affect the optimum harvest percentage?
Run some experiments to determine if the optimum harvest percentage you
select in Problem 1 is sensitive to the initial biomass of the sardine in 1941.
Explain your results. How do your results compare to the results of Problem 3
in Exploration 1.1?
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Exploration 1.3. Investigating a Harvesting Function

1. A unifying harvest strategy.
We can combine the strategies used in Explorations 1.1 (Problem 2) and 1.2
(Problem 1) by using a function that approximates each strategy at the ap-
propriate time: proportional harvest for small sardine biomass and constant
harvest for sufficiently large sardine biomass. A function suitable to this pur-
pose is

harvest= α ∗ sardine
β + sardine

Use some algebra to demonstrate that the function does behave as claimed.
Approximately what is the proportional harvest coefficient? Approximately
what is the constant harvest level?
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2. Testing the function.
Determine values forα andβ suitable for the Pacific sardine based on what
you learned from Explorations 1.1 (Problem 2) and 1.2 (Problem 1). Is the
optimal choice ofα andβ dependent on the initial biomass of the sardine?
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Exploration 1.4. The Ricker Growth Rate Model

Biologists commonly use the Ricker function to model fish population repro-
duction. The Ricker function is R = αPe(Pr −P)/Pm, where R is the reproduction☞ Compare the Ricker

with the logistic function:
R= r P(1− P/K) for positive
constants r and K.

rate, α is a constant, P is the parental or spawning stock population, Pr is
the stock size at which R = P, and Pm is the stock size that yields maximum
reproduction in the absolute sense. Calibrated for the Pacific sardine during
the time period 1941 through 1951, this function is: R= 0.15Pe(2.4−P)/1.7.

1. The Ricker population model.
Replace the logistic term in ODE (5) with the Ricker function to obtain

sardine′ = 0.15∗ (sardine) ∗ exp((2.4− sardine)/1.7)

This function exhibits “compensatory behavior” that biologists know many
fish populations exhibit. Plot two sardine populations vs. time on the same
set of axes for comparison:sardine1′ as per the Ricker function above and
sardine2′ as per the logistic growth model used earlier. You have to select the
2D tab on the graphics window when defining the graph to get both popula-
tions on the same graph. To compare their respective growth patterns, plot the
two sardine populations from 1920 to 1960 (# Points= 40) with IC set to 1 on
both plots and with no harvesting. Based on this comparison, speculate what
“compensatory” behavior is as envisioned by the biologists and reflected by
the Ricker function.
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2. Repeat the harvest experiments.
Repeat Exploration 1.1, Problem 2, using the Ricker function in thesardine
ODE. What harvest level would provide a stable sustainable Pacific sardine
population? Test whether the optimal harvest rate depends on the popula-
tion IC. Are the results significantly different than when you used the logistic
function?
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A slope field and some solution curves fory′ = ysin(t + y).

Overview Ordinary differential equations (ODEs) model many natural processes, so solu-
tions of ODEs can be used to predict the behavior of those processes.

This chapter will investigate ODEs and initial value problems, their solutions,
and their solution curves, along with some methods for finding solution formulas.
Slope fields are introduced and used as guides to the behavior of solution curves.
The path of a juggler’s ball and the descent of a sky diver are modeled by ODEs.

Key words Differential equation; solution; integration; separation of variables; initial values;
modeling; slope field; direction field; juggling; sky diving; free fall; parachute;
gravity; Newton’s second law

See also Chapter 1 for more on modeling, and Chapter 5 for more on models of motion.
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◆ Differential Equations

Differential equations were first used in the seventeenth century to describe
physical phenomena, such as the motion of orbiting planets or swinging pen-
dulums. Since then they have been applied to processes, such as the growth
of biological populations, the management of investment portfolios, and many
other dynamical systems.

An ordinary differential equationis an equation involving an unknown
function of one variable and one or more of its derivatives. For example, the
ODE

dy
dt

= ycost

is a statement about an unknown functiony (the dependent variable) whose
independent variable ist. To solvethe ODE we need to find all the functions
y(t) that satisfy the ODE (we will discuss what we mean by a solution in the
next section).

✓ “Check” your understanding by identifying the independent and depen-
dent variables and theorder of each ODE (i.e., the highest-order derivative
that appears):

dy
dx

= 2y+ 2x

3
d2z
dt2

− 4
dz
dt

+ 7z= 4sin(2t)

◆ Solutions to Differential Equations

A function is a solution of an ODE if it yields a true statement when substi-
tuted into the equation. For example,y = 2t2 is a solution of the equation

dy
dt

= 4t (1)

✓ Can you find another solution of ODE (1)?

Actually, ODE (1) has infinitely many solutions. A single solution is☞ Most ODEs have infinitely
many solutions. called aparticular solution. The set of all solutions is called thegeneral

solution. For example, the general solution of ODE (1) isy = 2t2 + C, where
C is any constant, whiley = 2t2 + 3 is a particular solution.
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◆ Solving a Differential Equation

Solving a differential equation involves finding a function, just as solving an
algebraic equation involves finding a number.

An ODE such asdy/dt = 2ty gives us information about an unknown
function y in terms of its derivative(s). In your differential equations class,
you’ll learn some methods for finding solutions of ODEs. The section “Find-
ing a Solution Formula” later in this chapter also describes two techniques.

◆ Slope Fields

One useful way to get information about solutions of an ODE is to graph
them; graphs of solutions are calledsolution curves. For first-order ODEs,
you can actually get a good idea of what solution curves look like without
solving the equation! Notice that for the ODEy′ = ycost the slope of the
solution curve passing through the point(t, y) is given byycost. Every first-

☞ Slopes fory′ = ycost:
Point Slope
(0,0) 0
(0,1) 1
(0,2) 2
(0,−1) −1
(0,−2) −2
( π

2 ,y) 0

order ODE gives you direct information about the slope of the solution curve
through a point, so you can visualize solution curves by drawing small line
segments with the correct slopes on a grid of fixed points. With patience (or
a computer), you can draw many such line segments (as in the chapter cover
figure). This is called aslope field. (Some books call it adirection field.) With

☞ Each segment of a slope
field is tangent at its midpoint to
the solution curve through that
midpoint.

practice you’ll be able to imagine some of the line segments running together
to make a graph. This approximates the graph of a solution to the ODE, that is,
a solution curve. Figure 2.1 shows a slope field with several solution curves.

t-y
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y

Figure 2.1: Slope field and seven solution curves for y′ = ycost.
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◆ Initial Values

We have seen that an ODE can have many solutions. In fact, the general
solution formula involves an arbitrary constant. What happens if we spec-
ify that the solution must satisfy another property, such as passing through a
given point? For example, all functionsy = 2t2 + C are solutions of the ODE
dy/dt = 4t, but only thespecificsolution y = 2t2 + 3 satisfies the condition
that y = 5 whent = 1. So, if we graph solution curves in thety-plane, only
the graph of the solutiony = 2t2 + 3 goes through the point(1,5).

The requirement thaty(1) = 5 is an example of aninitial condition, and
the combination of the ODE and an initial condition

dy
dt

= 4t, y(1) = 5 (2)

is called aninitial value problem(IVP). Its solution isy = 2t2 + 3.

✓ Replace the conditiony(1) = 5 in IVP (2) by y(2) = 3 and find the
solution of this new initial value problem. How many solutions are there?

◆ Finding a Solution Formula

An ODE usually has many solutions. How can you find a solution, and how
can you describe it? A solution formula provides a useful description, but
graphs and tables generated by ODE Architect are also useful, especially in
the all-too-frequent case where no formula can be found. Two techniques to
find solution formulas are summarized here, and others are in your textbook.

Integration

If f (t) is a continuous function, then the general solution of the ODE

dy
dt

= f (t)

is y(t) = F(t) + C, whereF(t) is an antiderivative off . For example, the☞ A table of integrals comes
in handy here. general solution ofdy/dt = sint is y = −cost + C.

Separation of Variables

If you can write a differential equation in the form

dy
dt

= f (t)g(y)

then whereverg(y) �= 0 you can rewrite it as

1
g(y)

dy
dt

= f (t)

so that ∫
1

g(y)
dy=

∫
f (t)dt
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Figure 2.2: Four solution curves of dy/dt = sint/(3y2 + 1) through the marked
initial points.

If H(y) is an antiderivative of 1/g(y) and F(t) is an antiderivative off (t),☞ Keep that table of integrals
handy! then a solutiony(t) of the ODE solves the equation

H(y(t)) = F(t) + C

for some constantC.
Here’s an example of a separable ODE:

dy
dt

= sint
3y2 + 1

(3)

Separating the variables and finding the antiderivatives, we see that

(3y2 + 1)
dy
dt

= sint

y3 + y = −cost + C (4)

We won’t attempt to express a solutiony(t) directly in terms oft (andC),
but we can check that formula (4) is correct by differentiating each side with
respect tot. This gives

3y2dy
dt

+ dy
dt

= sint

which has the form of ODE (3) if we divide each side by 3y2 + 1. Fig-
ure 2.2 shows solution curves of ODE (3) through the initial points(0,−1.5),
(0,−1), (0,0), (0,1). The curves were plotted by using ODE Architect to
solve ODE (3) with the given initial data.

Solution formulas are useful, but they exist only for a small number of
ODEs of special forms. That’s where numerical solvers like ODE Architect
come in—they don’t need solution formulas.
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◆ Modeling

A mathematical modelis a system of mathematical equations relating specific
variables that represent some aspect of a natural process. Modeling involves
several steps:☞ The eight steps are

described in Chapter 1.

1. State the problem and its context.

2. Identify and assign variables.

3. State the laws that govern the relationships between the variables.

4. Translate the laws into equations.

5. Solve the resulting equations.

6. Interpret and test the solutions in the context of the natural environment.

7. Refine the model until it predicts the empirical data.

8. Interpret the implications of the model.

The models we consider all involve ODEs.

◆ The Juggler

You can observe the modeling process in the following juggler problem.

1. Find an ODE that describes the height of a ball between the time it
leaves the juggler’s hand, moving vertically upward, and the time it
falls back into the hand.

2. Lett = time (in seconds),h= height of the ball above the floor (in feet),
v = velocity (in ft/sec), anda = acceleration (in ft/sec2).

3. Apply Newton’s second law of motion to the ball: the massm of a
body times its acceleration is equal to the sum of all of the forces acting
on the body. We treat the ball as a point mass encountering negligible
air resistance (drag) so the only force acting on the ball is that due to
gravity, which acts downward.

4. By Newton’s second law, we have thatma= −mg, whereg= 32 ft/sec2

is the acceleration due to gravity near the surface of the earth, and the
minus sign indicates the downward direction of the gravitational force.
Since the ball’s acceleration isa = v′ wherev is its velocity, andv = h′,
we can model the ball’s motion byh′′ = −32. The initial heighth0 of☞ So the juggler’s ODE for

vertical motion ish′′ = −32. the ball is that of the juggler’s hand above the floor when the ball is
launched upward, and that is easy to measure. The initial velocityv0 is
harder to measure directly; it is simpler to solve the model first and then
experiment to deduce a reasonable value forv0.

5–8. Solving and testing are up to you. See Figure 2.3 for graphs ofh(t)☞ In the multimedia module
h0 = 4.5 ft. corresponding toh0 = 4 ft and five values ofv0.
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Figure 2.3: Five tosses of the juggler’s ball: initial velocities v0 range from 5
to 25 ft/sec. Which time-height curve corresponds to v0 = 25?

✓ How must you revise the process when the ball is thrown to the juggler’s
otherhand? (The result appears on Screen 3.4 of Module 2.)

◆ The Sky Diver

You might think that the path of a sky diver in free fall looks like the down-
ward path of the ball in the simplest juggler problem of vertical motion. How-
ever, as the sky diver’s velocity becomes large the effects of air resistance (or
drag) become noticeable and must be included in the model. A revised model
(starting with Step 3) follows:

3. In this case, Newton’s second law says that mass times acceleration is
equal to the force due to gravity plus that due to air resistance. Expe-
rience has shown that the force of air resistance can be modeled fairly☞ This kind of air resistance

is calledviscousdamping. well by a term that is proportional to velocity and opposite in direction.

4. We havemh′′ = mv′ = −mg− kv, wherek is a constant coefficient of
air resistance. The initial velocity of the sky diver isv0 = 0 ft/sec; the
initial height when the sky diver jumps from the plane ish0 ft.

5. We solve the second-order ODE forh in two steps, first forv (by sep-
arating the variables) and then forh (by integrating the expression we



32 Chapter 2

find for v, sincev = h′). Here are the steps:

☞ C is an arbitrary constant.

v′ = −g− k
m

v, v(0) = 0

1
g+ kv/m

dv

dt
= −1∫

1
g+ kv/m

dv = −
∫

dt

(m/k) ln(g+ kv/m) = −t + C

ln(g+ kv/m) = (k/m)(−t + C)

Exponentiating and settingK = exp(kC/m) we obtain

g+ kv/m= Ke−(k/m)t

Sincev = 0 whent = 0, we find thatK = g. Solving forv we obtain

v = −mg
k

+ mg
k

e−(k/m)t

That means thath(t) solves the IVP

h′ = v = −mg
k

+ mg
k

e−(k/m)t, h(0) = h0

We find the formula forh(t) by integration and the fact thath = h0 at
t = 0:

h = −mg
k

t − m2g
k2 e−(k/m)t + m2g

k2 + h0

In our example of free fall (Screen 4.3), these equations become

☞ So the sky diver’s free fall
ODE ish′′ = −32− (k/5)v.

h′′ = v′ = −32− k
5
v if m= 5 slugs

h′ = v = −160
k

+ 160
k

e−(k/5)t

h = −160
k

t − 800
k2

e−(k/5)t + 800
k2

+ 13500 (5)

See Figure 2.4 for some time-height curves.

Since the massm of the sky diver doesn’t drop out of the ODE when
damping is added, we have to use appropriate units for the mass. In English
units (which the English have been wise enough to discard) we have

mass= force
acceleration

= weight
gravity

= lbs
ft/sec2

= slugs

Opening the Parachute

If we wish to model what happens when the parachute opens, we’ll need to
alter the model slightly to account for the sudden change in drag—that is, for
how the value ofk suddenly changes.



The Sky Diver 33

t-h

0 30 60 90 120 150

Time (seconds)

0

3000

6000

9000

12000

15000

H
ei

gh
t (

fe
et

)

Figure 2.4: Six sky divers in free fall from 13,500 ft: viscous damping con-
stants range from 0.5 to 1.5 slug/sec. Which sky diver has the smallest damp-
ing constant?

4. We can use experimental values for the drag coefficients: in free fall
k f f = 0.86, and, after the parachute opens,kp = 6.71, both in slugs/sec.
The parachute opens at timet p, whenh is 2500 feet. It’s hard to calcu-☞ Opening the chute changes

k from kf f to kp. late tp from formula (5), so we can approximate it by reading the graph
of h vs. t (use the Explore feature on graphs of Screen 4.4).

We noticed on Screen 4.5 of Module 2 that an instantaneous opening of
the parachute would exert an enormous force on the sky diver, so the model
was further revised to allow the chute to open over a few seconds (a more
realistic model), and we letk grow gradually, in a linear way, as it goes from
k f f to kp. Take a look at Exploration 2.4, Problem 3.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed. (1997: John Wiley & Sons, Inc.)

Hale, M., and Skidmore, A.,A Guided Tour of Differential Equations, (1997:
Prentice-Hall)

C.ODE.E Newsletter, http://www.math.hmc.edu/codee, for articles on model-
ing with ODEs

IDEA (Internet Differential Equations Activities), created by Thomas LoFaro
and Kevin Cooper, offers an interactive virtual lab book with models.
http://www.sci.wsu.edu/idea
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Exploration 2.1. ODEs and Their Solutions

1. Where is that constant?
Solution formulas for first-order ODEs often involve an arbitrary constantC,
and it can show up in all sorts of strange places in the formulas. Solve each of
the following ODEs fory in terms oft andC.

(a) y′ = 1+ sint (b) y′ = −y/3 (c) y′ = t/y (d) y′ = 2t2y/ ln y

2. Let’s check out the ODE Architect.
You can see how good the ODE Architect solver is by creating initial value
problems for the ODEs of Problem 1 and using the Architect to solve them
and graph the solutions. Then compare the solver graphs with those obtained
using the solution formula. For example, use ODE Architect to solve and
plot the solution of the IVPy′ = −y/3, y(0) = 1. Then graph the solution
y = e−t/3 and compare. To do this, enter the following two equations on the
editor screen:

y′ = −y/3

u = e−t/3

Next enter the initial condition for the ODE, then solve and plot the solution
on one of the graphics screens. Use the custom 2D plot tab to overlay the
graph ofu. Do the graphs match? Repeat with your own initial data for each
of the other three ODEs in Problem 1.
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3. How many1solutions does this IVP have?
Find formulas for two different solutions for the IVPy′ = y1/3, y(0) = 0.
Which solution does ODE Architect give? Repeat withy′ = y2/3, y(0) = 0.
[Hint: Is y(t) = 0 for all t a solution?]

4. The effect of a singularity in the differential equation.
The ODEy′ = y/t has a singularity at the point(0,0) because at that point,
y/t = 0/0, which is undefined. Find a formula for all solutions of the ODE.
Does the IVPy′ = y/t, y(0) = 0, have any solutions? Use ODE Architect for
y′ = y/t, y(1) = a, for various positive values ofa and then solve backward
in time to see what happens ast gets near zero. Explain.

1Usually an IVP has a single solution, but in this Exploration you will see some exceptions. You
can find out why by reading about “existence” and “uniqueness” in your text.
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Exploration 2.2. Slope Fields

1. What happens in the long term?
The following ODEs are given in Screen 2.2 (Experiment 1). Using ODE
Architect, describe what the solutions do ast gets very large. Include sketches
or printouts of your solution curves and their slope fields.

(a) y′ = y− 1 (b) y′ = t/4 (c) y′ = (y− t)/10

2. More long-term behavior.
Repeat Problem 1 with the following ODEs.

(a) y′ = ty (b) y′ = (y2 − 4)/10 (c) y′ = (y− 3)/5
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3. Still more long-term behavior.
Using ODE Architect, describe the long-term behavior of the solutions of
y′ = ysin(t + y).

4. Strange solutions.
Make up your own ODEs, especially ones whose solution curves or slope
fields form strange patterns. Use ODE Architect to display your results. De-
scribe the long-term behavior of solution curves. Attach printouts of your
graphs.
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Exploration 2.3. The Juggler

Second-order ODEs of the form y′′ = f (t, y, y′) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y′′ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y′ as another dependent variable:

y′ = v

v′ = f (t, y, v)

1. What goes up must come down.
Use ODE Architect to find the position of the ball at several different timest
for several different initial velocities. Assume no air resistance and that the
ball moves in a vertical line. What is the name for the shapes of the solution
curves in thety-plane? Does it take longer for the ball to rise or to fall? Show
and explain the difference (if there is one!).

2. Hand-to-hand motion of the ball.
For a given initial speedv0, find the range of values of the angleθ0 so that the
ball goes from one hand to the other. Now increase the initial speed. What
happens to the range of successful values ofθ0? Explain. [Suggestion: First
take a look at Screen 3.5 (Experiment 2 in Module 2); then enter the equations
in ODE Architect and varyθ0 with fixed v0 to find the ranges. You may also
want to take a look at Screens 1.2 and 1.3 in Module 5.]
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3. Raise your hand!
Suppose the juggler raises his catching hand one foot higher. Repeat Prob-
lem 2 in this setting.

4. Juggling two balls.
Construct model ODEs for tossing two balls, one after the other, from one
hand to the other. Use ODE Architect to find the positions of both balls at
time t.
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Exploration 2.4. The Sky Diver

Second-order ODEs of the form y′′ = f (t, y, y′) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y′′ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y′ as another dependent variable:

y′ = v

v′ = f (t, y, v)

1. Terminal speed of a falling body.
Use ODE Architect and determine the sky diver’s terminal speeds for several
different values of the viscous damping coefficient (usem= 5 slugs andg =
32 ft/sec2). Is there any difference if the sky diver jumps at 25,000 feet instead
of 13,500 feet? [Suggestion:After entering the ODE and solving, click on a
Data tab in either of the two graphics windows and use approximate data you
find there.]

2. Slow down!
If a sky diver can survive a free-fall jump only if she hits the ground at no
more than 30 ft/sec, what values of the viscous drag coefficientk make this
possible? Are thesek-values realistic? (Usem= 5 slugs andg = 32 ft/sec2.)



42 Exploration 2.4

3. A Modeling Challenge!
Let’s construct a model for a parachute that opens over a 3 second time span.
The ODEs for this model are given on Screen 4.5 (Experiment 2), but we have
to definek(t). Assume that the sky diver has a mass of 5 slugs and that she
jumps from 13,500 ft. The parachute starts to open after 65 seconds of free
fall and the damping coefficient changes linearly fromk f f = 0.86 slugs/ft to
kp = 6.71 slugs/ft as the chute opens. In other words,

k(t) =



k f f , t < 65
k f f + kp−kf f

3 (t − 65), 65≤ t ≤ 68
kp, t > 68

(a) Write an expression fork(t) using the properties of step functions.Hint:☞ A step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

Step(t,65) − Step(t,68) =
{

1, 65≤ t ≤ 68
0, otherwise

(b) Use ODE Architect to plot the sky diver’s acceleration, velocity, and
height vs. time, using your expression fork(t).
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A room heats up in the morning, and the air conditioner in the room
starts its on-off cycles.

Overview In this chapter, we’ll use Newton’s law of cooling to build mathematical models
of a number of situations that involve the variation of temperature in a body with
time. Some of our models involve ODEs that can be solved analytically; others will
be solved numerically by ODE Architect. We’ll compare the analytical solutions
and the numerical results and see how both can be used to verify predictions
made by the models.

Key words Modeling; Newton’s law of cooling (and warming); initial conditions; general so-
lution; separation of variables; integrating factor; heat energy; air conditioning;
melting

See also Chapter 1 for more on modeling and Chapter 2 for the technique of separation of
variables.
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◆ Newton’s Law of Cooling

Have you ever gotten an order of piping hot French fries, only to find them
ice cold in what seems like a matter of moments? Whenever an object (or
substance) is warmer than its surroundings, it cools because it loses heat en-
ergy. The greater the temperature difference between the object and its sur-
roundings, the faster the object cools. The temperature of a body rises if its
surroundings are at a higher temperature than it is. What happens to the ice
cream in a cone on a hot day?

Although it is an oversimplification, we will assume that the temperature
is uniform at all points in the objects we wish to model, but the temperature
may change with time. Let’s assume that the rate of change of the object’s
temperature is proportional to the difference between its temperature and that
of its surroundings. Stated mathematically, we have:

☞ This becomes a “law of
warming” if the surroundings are
hotter than the object.

Newton’s law of cooling.If T(t) is the temperature of an object at time
t andTout(t) is the temperature of its surroundings, then

dT
dt

= k(Tout − T) (1)

wherek is a positive constant called thecooling coefficient.

◆ Cooling an Egg

What happens to the temperature of a hard-boiled egg when you take it out
of a pot of boiling water? At first, the egg is the same temperature as the
boiling water. Once you take it out of the water the egg begins to cool, rapidly
at first and then more slowly. The temperature of the egg,T(t), drops at a
rate proportional to the difference between the temperature of the air,Tout,
and T(t). Notice from ODE (1) that ifTout < T(t), the rate of change of
temperature,dT/dt, is negative, soT(t) decreases and your egg cools.

✓ “Check” your understanding by answering this question: What happens
to the temperature of an egg if it is boiled at 212◦F and then transferred to an
oven at 400◦F?

◆ Finding a General Solution

Equation (1) is a first-order ODE and its general solution contains one arbi-
trary constant. We can see this as follows: IfTout is a constant, then ODE (1)
is separable, and separating the variables we have☞ See Chapter 2 for how to

solve a separable ODE. ∫
dT

Tout − T
=
∫

k dt
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Finding an antiderivative for each side we obtain

☞ Why are the absolute value
signs needed?

− ln |Tout − T(t)| = kt + K

whereK is an arbitrary constant. Multiplying through by−1 and exponenti-
ating gives us

|Tout − T(t)| = e−Ke−kt

or, after dropping the absolute value signs, we have that

T(t) = Tout + Ce−kt (2)

whereC = ±e−K is now the arbitrary constant. The solution formula (2) is
called thegeneral solutionof ODE (1).

✓ How does the temperatureT(t) in (2) behave ast → +∞? Why can the
constantC be positive or negative?

Given an initial condition, we can determineC uniquely and identify a
single solution from the general solution (2). If we takeT(0) = T0, then since
T(0) = Tout + C we see thatC = T0 − Tout and we get the unique solution

T(t) = Tout + (T0 − Tout)e
−kt (3)

The constant of proportionality,k, in ODE (1) determines the rate at
which the body cools. It can be evaluated in a number of ways, for exam-
ple, by measuring the body’s temperature at two different times and using
formula (3) to solve forT0 andk. Figure 3.1 shows temperature curves corre-
sponding toTout = 70◦F, T0 = 212◦F, and five values ofk.
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Figure 3.1: The cooling coefficient k ranges from 0.03 to 0.3 min−1 for eggs
of different sizes. Which is the k = 0.03 egg?
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✓ An object is initially at 212◦F and cools to 190◦F after 5 minutes in a
room that is at 72◦F. Find the coefficient of cooling,k, and determine how
long it will take to cool to 100◦F.

Finding the general solution formula (2) for ODE (1) was straightforward.
However, the vast majority of ODEs are not so simple to solve and we have
to use numerical methods. To demonstrate the accuracy of such methods,☞ ODE Architect helps out

again. you can compare the numerical solutions from ODE Architect with a known
solution formula.

✓ How long will it take for a 212◦F egg to cool to 190◦F in a 72◦F room
if k = 0.03419 min−1? Use ODE Architect and formula (3) and compare the
results.

◆ Time-Dependent Outside Temperature

When considering the cooling of an egg, ODE (1) is separable becauseTout

is constant in this instance. Let’s consider what happens when the outside
temperature changes with time.

We can still use Newton’s law of cooling, so that ifT(t) is the egg’s
temperature andTout(t) is the room’s temperature, then

dT
dt

= k(Tout(t) − T) (4)

Note that ODE (4) is not separable (becauseTout varies with time) but it is
linear, so we can find its general solution as follows. Rearrange the terms to
give the linear ODE in standard form:

dT
dt

+ kT = kTout(t)

Multiply both sides byekt, so that

ekt

(
dT
dt

+ kT

)
= kTout(t)e

kt (5)

Since the left-hand side of ODE (5) is(d/dt)(ektT(t)), it can be rewritten:

d
dt

(
ektT

) = kTout(t)e
kt (6)

Integrating both sides of ODE (6) we have that

ektT =
∫

kTout(t)e
ktdt + C

whereC is an arbitrary constant. The magic factorµ(t) = ekt that enabled us
to do this is called anintegrating factor. So ODE (4) has the general solution☞ Every ODE text discusses

integrating factors and first-order
linear ODEs. T(t) = e−kt

(∫
kTout(t)e

ktdt + C

)
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Figure 3.2: Eggs at initial temperatures of 180, 150, 120, and 90◦F cool in a
room whose temperature oscillates sinusoidally about 70◦F for k = 0.03min−1.
Do the initial temperatures matter in the long term?

Finally, lettingT(0) = T0 and integrating from 0 tot, we get the solution

T(t) = e−kt

(∫ t

0
kTout(s)e

ksds+ T0

)
(7)

It may be possible to evaluate the integral (7) analytically, but it is easier
to use ODE Architect right from the start. See Figure 3.2 for egg temperatures
in a room whose temperature oscillates between hot and cold.

✓ Show that ifTout is a constant, then formula (7) reduces to formula (3).

✓ Use equation (7) to find a formula forT(t) if☞ You may find a computer
algebra system or a table of
integrals helpful! Tout(t) = 82− 10sin

(
2π(t + 3)

24

)
Use a table of integrals to carry out the integration.

◆ Air Conditioning a Room

Now let’s build a model that describes a room cooled by an air conditioner.
Without air conditioning, we can model the change in temperature using
ODE (1). When the air conditioner is running, its coils remove heat energy at
a rate proportional to the difference betweenTr , the room temperature, and the
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temperatureTac of the coils. So, using Newton’s law of cooling for the tem-
perature change due to both the air outside the room and the air conditioner
coils, our model ODE is

☞ Newton’s law of cooling
(twice)!

dTr

dt
= k(Tout − Tr ) + kac(Tac − Tr )

whereTout is the temperature of the outside air andk andkac are the appropri-
ate cooling coefficients. If the unit is turned off, thenkac = 0 and this equation
reduces to ODE (1).

Let’s assume that the initial temperature of the room is 60◦F and the out-
side temperature is a constant 100◦F. The air conditioner operates with a coil
temperature of 40◦F, switches on when the room reaches 80◦F, and switches
off at 70◦F. Initially, the unit is off and the change in the room temperature is
modeled by

☞ Time t is measured in
minutes.

dTr

dt
= 0.03(100− Tr ), Tr (0) = 60 (8)

where we have taken the cooling coefficientk = 0.03 min−1. As we expect,
the temperature in the room will rise as time passes. At some timeton the
room’s temperature will reach 80◦F and the air conditioner will switch on. If
kac = 0.1 min−1, then fort > ton the temperature is modeled by the IVP

dTr

dt
= 0.03(100− Tr ) + 0.1(40− Tr ), Tr (ton) = 80 (9)

which is valid until the room cools to 70◦F at some timeto f f . Then fort > tof f

the room temperature satisfies the IVP (8) but with the new initial condition
Tr (tof f ) = 70. Each time the unit turns on or off the ODE alternates between
the two forms given in (8) and (9).

Solving the problem by hand in the manner just described is very tedious.
However, we can use ODE Architect to change the ODE automatically and
without having to findton andto f f . The key is to definekac to be a function
of temperature by using a step function; here’s how we do it. In the equation

☞ The modeling here is more
advanced than you have seen up
to this point. You may want to
just use the equations and skim
the modeling.

quadrant of ODE Architect write the ODE as

Tr′ = 0.03∗ (100− Tr) + kac∗ (40− Tr)

Now definekac as follows:

☞ The step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

kac= 0.1∗ Step(Tr, Tc)

where

Tc= 75+ 5∗ B

HereTc is the control temperature and

B = 2∗ Step(Tr′,0) − 1

Note thatB = +1 whenT′
r > 0 (the room is warming) andB = −1 when

T′
r < 0 (the room is cooling). This causesTc to change from 80◦F to 70◦F (or
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Figure 3.3: Air conditioning keeps the room temperature in the comfort zone,
70◦F ≤ Tr ≤ 80◦F.

the reverse) depending on whether the room is warming or cooling. Finally,
kac is zero (the air conditioner is off) whenTr < Tc, andkac = 0.1 (the air
conditioner is on) whenTr > Tc.

The overall effect is that the air conditioner switches on only if the room
temperature is above 80◦F, then it runs until the room is cooled to 70◦F, and
then it switches off. The room temperature rises again to 80◦F, and the pro-
cess repeats. The temperature-vs.-time plot is shown in Figure 3.3. The ac-
companying screen image shows that we have set the maximum time step to
0.1 (under the Solver tab). If the internal time steps are not kept small, the
Architect will not correctly notice when the step functions turn on and off.

◆ The Case of the Melting Snowman

It is difficult to model the melting of a snowman because of its complicated
geometry: a large roundish ball of snow with another smaller mound on top.
So let’s simplify the model by treating the snowman as a single spherical ball
of snow. The rate at which the snowman melts is proportional to the rate at
which it gains thermal energy from the surrounding air, and it is given by

dV
dt

= −h
dE
dt

(10)

whereV is the ball’s volume,E is thermal energy, andh is a positive constant.
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Our snowman will gain thermal energy only at its surface, where it is
exposed to the warm air. So, it is reasonable to assume that the energy gain
is proportional to both the surface area of the snowman and the temperature
difference between the air and the snow:☞ Remember that the

snowman’s temperature is always
32◦F. dE

dt
= κA(V)(Tout − 32) (11)

whereκ is a positive constant, andA(V) is the surface area of a sphere of
volumeV.

If we combine equations (10) and (11) and takek = κh, we obtain☞ This is the snowman’s law
of melting.

dV
dt

= −kA(V)(Tout − 32) (12)

✓ The volume of a sphere of radiusr is V = 4
3πr3 and its surface area is

A = 4πr2. Eliminater between these two formulas to expressA as a function
of V. (You will need this soon.)

Note that ODE (12) is separable even when the outside temperatureTout

is a function of time. Separating the variables and integrating we find the
formula ∫

1
A(V)

dV = −
∫

k(Tout(t) − 32)dt+ C (13)

which definesV implicitly as a function oft. We can find the constant of
integrationC from the volume of the snowman at a specific time. However,
expressions for the integrals in formula (13) may be hard to find. Once again
ODE Architect comes to the rescue and solves ODE (12) numerically, given
formulas forA(V), Tout(t), and the initial volume.

✓ If k = 0.1451 ft/(hr◦F), the original volume of the snowman is 10 ft3, and
the outside temperature is 40◦F, how many hours does it take the snowman’s
volume to shrink to 5 ft3?

References Nagle, R.K., and Saff, E.B.,Fundamentals of Differential Equations, 3rd ed.
(1993: Addison-Wesley)

Farlow, S.J.,An Introduction to Differential Equations and their Applications,
(1994: McGraw-Hill)
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Course/Section

Exploration 3.1. Cooling Bodies

1. Too hot to handle.
When eating an egg, you don’t want it to be too hot! If an egg with an initial
temperature of 15◦C is boiled and reaches 95◦C after 5 minutes, how long will
you have to wait until it cools to 70◦C?

2. A dead body, methinks.
In forensic science, it is important to be able to estimate the time of death if
the circumstances are suspicious. Assume that a corpse cools according to
Newton’s law of cooling. Suppose the victim has a temperature of 72◦F when
it is found in a 40◦F walk-in refrigerator. However, it has cooled to 66.8◦F
two hours later when the forensic pathologist arrives. Estimate the time of
death.1

1From “Estimating the Time of Death” by T.K. Marshall and F.E. Hoare,Journal of Forensic
Sciences, Jan. 1962.
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3. In hot water.
Heat a pan of water to 120◦F and measure its temperature at five-minute in-
tervals as it cools. Plot a graph of temperature vs. time. For various values
of the constantk in Newton’s law of cooling, use ODE Architect to solve the
rate equation for the water temperature. What value ofk gives you a graph
that most closely fits your experimental data?

4. More hot water.
In Problem 3 you may have found it difficult to find a suitable value ofk. Here
is the preferred way to determinek. The solution to ODE (1) is

T(t) = Tout + (T0 − Tout)e
−kt

where in this contextTout is the room temperature. We can measureTout and
the initial temperature,T0. Rearranging and taking the natural logarithm of
both sides gives

ln |T(t) − Tout| = ln |T0 − Tout| − kt

Using the data of Problem 3, plot ln|T(t) − Tout| againstt. What would you
expect the graph to look like? Use your graph to estimatek, then use ODE
Architect to check your results.
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Exploration 3.2. Keeping Your Cool

1. On again, off again.
When a room is cooled by an air conditioner, the unit switches on and off
periodically, causing the temperature in the room to oscillate. How does the
period of oscillation depend on the following factors?

� The upper and lower settings of the control temperature

� The outside temperature

� The coil temperature,Tac
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2. Keeping your cool for less.
The cost of operating an air conditioner depends on how much it runs. Which
is the most economical way of cooling a room over a given time period?

� Set a small difference between the control temperatures, so that the tem-
perature is always close to the average.

� Allow a large difference between the control temperatures so that the
unit switches on and off less frequently.

Make sure the average of the control temperatures is the same in all your tests.
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Exploration 3.3. The Return of the Melting Snowman

1. The half-life of a snowman.
Use ODE Architect to plot volume vs. time for several different initial snow-
man volumes between 5 and 25 ft3, assuming thatk = 0.1451 ft/(hr◦F) and
Tout = 40◦F. For each initial volume use the Explore feature of ODE Archi-
tect to find the time it takes the snowman to melt to half of its original size,
and make a plot of this “half-life” vs. initial volume. Any conclusions? [To
access the Explore feature, click on Solutions on the menu bar and choose Ex-
plore. This will bring up a dialog box and a pair of crosshairs in the graphics
window. Move the crosshairs to the appropriate point on the solution curve
and read the coordinates of that point from the dialog box. Note that the Index
entry gives the corresponding line in the Data table.]

2. Sensitivity to outside temperature.
Now fix the snowman’s initial volume at 10 ft3 and use ODE Architect to plot
a graph of volume vs. time for several different outside temperatures between
35◦F and 45◦F, with k = 0.1451 ft/(hr◦F). Find the time it takes the snowman
to melt to 5 ft3 for each outside temperature used and plot that time against
temperature. Describe the shape of the graph.
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3. Other snowmen.
In developing our snowman model, we assumed that the snowman could be
modeled as a sphere. Sometimes snowmen are built by rolling the snow in
a way that makes the body cylindrical. How would you model a cylindrical
snowman? Which type of snowman melts faster, given the same initial volume
and air temperature?
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The phenomenon of beats.

Overview Second-order linear differential equations, especially those with constant coeffi-
cients, have a host of important applications. In this chapter we explore some
phenomena involving mechanical and electrical oscillations. The first part deals
with some basic features common to oscillations of all sorts. The second part
applies some of these results to seismographs, which are instruments used for
recording earthquake data.

Key words Newton’s second law; oscillation; period; frequency; amplitude; phase; simple
harmonic motion; viscous damping; underdamping; overdamping; critical damp-
ing; transient; steady-state solution; forced oscillation; seismograph; Kirchhoff’s
laws

See also Chapter 5 for more on vectors and damping, Chapters 6 and 10 for more on oscil-
lations, and Chapter 12 for more on forced oscillations.
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◆ Second-Order ODEs and the Architect

ODE Architect will accept only first-order ODEs, so how can we use it to
solve a second-order ODE? There is a neat trick that does the job, and an
example will show how. Suppose we want to use ODE Architect to study the
behavior of theinitial value problem(or IVP):

u′′ + 3u′ + 10u = 5cos(2t), u(0) = 1, u′(0) = 0 (1)

Let’s write v = u′, then

v′ = d
dt

(v) = d
dt

(u′) = u′′

u′′ = −10u− 3u′ + 5cos(2t)

so IVP (1) becomes

u′ = v, u(0) = 1

v′ = −10u− 3v + 5cos(2t), v(0) = 0
(2)

ODE Architect won’t accept IVP (1), but it will accept the equivalent IVP (2).☞ ODE Architect only
accepts ODEs innormal form;
for example, write 2x′ − x = 6 as
x′ = x/2+ 3 with thex′ term
alone on the left.

The componentsu andv give the solution of IVP (1) and its first derivative
u′ = v. If we use ODE Architect to solve and plot the component curveu(t)
of system (2), we are simultaneously plotting the solutionu(t) of IVP (1).

✓ “Check” your understanding by converting the IVP

2u′′ − 2u′ + 3u = −sin(4t), u(0) = −1, u′(0) = 2

to an equivalent IVP involving a system of two normalized first-order ODEs.

◆ Undamped Oscillations

Second-order differential equations arise naturally in physical situations; for
example, the motion of an object is described by Newton’s second law,F =
ma. Here, F is the sum of the forces acting on the object of massm and
a is the acceleration, which is the second derivative of the object’s position.
Many of these differential equations lead tooscillationsor vibrations. Many
oscillating systems can be modeled by a system consisting of a mass attached
to a spring where the motion takes place in a horizontal direction on a table.
This simplifies the derivation of the equation of motion, but the same equation
also describes the up-and-down motion of a mass suspended by a vertical
spring.

Let’s assume an ideal situation: there is no friction between the mass and
the table, there is no air resistance, and there is no dissipation of energy in the
spring or anywhere else in the system. The differential equation describing
the motion of the mass is

m

-u

k

m
d2u
dt2

= −ku (3)
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whereu(t) is the position of the massm relative to its equilibrium andk is the
spring constant. The natural tendency of the spring to return to its equilibrium
position is represented by the restoring force−ku. Two initial conditions,☞ This is also calledHooke’s

law restoring force.

u(0) = u0, u′(0) = v0 (4)

whereu0 andv0 are the initial position and velocity of the mass, respectively,
determine the position of the mass uniquely. ODE (3) together with the ini-
tial conditions (4) constitute a well-formulated initial value problem whose
solution predicts the position of the mass at any future time.

The general solution of ODE (3) is☞ See the first two references
for derivations of formula (5).

u(t) = C1 cos(ω0t) + C2 sin(ω0t) (5)

whereC1 andC2 are arbitrary constants andω2
0 = k/m. Applying the initial

conditions (4), we find thatC1 = u0 andC2 = v0/ω0. Thus the solution of the
IVP (3), (4) is

u(t) = u0 cos(ω0t) + (v0/ω0)sin(ω0t) (6)

The corresponding motion of the mass isperiodic, which means that it repeats
itself after the passage of a time intervalT called theperiod. If we measure
time in seconds, then the quantityω0 is thenatural (circular) frequencyin☞ The term “circular

frequency” is only used with
trigonometric functions.

radians/sec, andT is given by

T = 2π/ω0 (7)

The reciprocal ofT, or ω0/2π, is thefrequencyof the oscillations measured
in cycles per second, orhertz. Notice that sinceω0 = √

k/m, the frequency
and the period depend only on the mass and the spring constant and not on the
initial datau0 andv0.

By using a trigonometric identity, the solution (6) can be rewritten in the
amplitude-phase formas a single cosine term:

☞ This motion is called
simple harmonic motion. See
Screen 1.3 of Module 4 for
graphs.

u(t) = Acos(ω0t − δ) (8)

whereA andδ are expressed in terms ofu0 andv0/ω0 by the equations

A =
√

u2
0 + (v0/ω0)2, tanδ = v0

u0ω0
(9)

The quantityA determines the magnitude oramplitudeof the oscillation (8);δ
is called thephase(or phase shift) becauseδ/ω0 measures the time translation
from a standard cosine curve.

✓ Show that (8) is equivalent to (6) whenA andδ are defined by (9).
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◆ The Effect of Damping

Equation (8) predicts that the periodic oscillation will continue indefinitely. A
more realistic model of an oscillating spring must include damping. A simple,
useful model results if we represent the damping force by a single term that is☞ The viscous damping

force is−c du/dt. proportional to the velocity of the mass. This model is known as theviscous
dampingmodel; it leads to the differential equation

m
d2u
dt2

= −ku− c
du
dt

(10)

where the positive constantc is the viscous damping coefficient.
The behavior of the solutions of ODE (10) is determined by the rootsr1

andr2 of thecharacteristic polynomial equation,

mr2 + cr + k = 0

Using the quadratic formula, we find that thecharacteristic roots r1 andr2 are

r1 = −c+
√

c2 − 4mk
2m

, r2 = −c−
√

c2 − 4mk
2m

(11)

The nature of the solutions of ODE (10) depends on the sign of thediscrimi-
nant c2 −4mk. If c2 �= 4mk, thenr1 �= r2 and the general solution of ODE (10)
is☞ Check that this equation

gives a solution of ODE (10).

u = C1er1t + C2er2t (12)

whereC1 andC2 are arbitrary constants.
The most important case isunderdampingand occurs whenc2 − 4mk< 0,

which means that the damping is relatively small. In the underdamped case,
the characteristic rootsr1 andr2 in formula (11) are the complex numbers

r1 = − c
2m

+ iµ, r2 = − c
2m

− iµ, whereµ =
√

4mk− c2

2m
�= 0 (13)

Euler’s formula implies that

e(α+iβ)t = eαt(cosβt + i sinβt)

for any real numbersα andβ, so

er1t = e−ct/2m(cosµt + i sinµt), er2t = e−ct/2m(cosµt − i sinµt) (14)

Now, using the initial conditions together with equations (12) and (14), we
find that the solution of the IVP

m
d2u
dt2

+ c
du
dt

+ ku= 0, u(0) = u0, u′(0) = v0 (15)

is given by☞ Solutions of an
underdamped ODE oscillate with
circular frequencyµ and an
exponentially decaying
amplitude.

u = e−ct/2m

{
u0 cos(µt) +

[
v0

µ
+ cu0

2mµ

]
sin(µt)

}
(16)
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Figure 4.1: A solution curve of the
underdamped spring-mass ODE,
u′′ + 0.125u′ + u = 0.
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Figure 4.2: Solution curves of the
overdamped spring-mass ODE, u′′ +
2.1u′ + u = 0.

✓ Verify thatu(t) defined in formula (16) is a solution of IVP (15).

The solution (16) represents an oscillation with circular frequencyµ and
an exponentially decaying amplitude (see Figure 4.1). From the formula
in (13) we see thatµ < ω0, whereω0 = √

k/m, but the difference is small
for smallc.

If the damping is large enough so thatc2 − 4mk> 0, then we haveover-☞ Take a look at Screen 1.6
of Module 4. dampingand the solution of IVP (15) decays exponentially to the equilibrium

position but does not oscillate (see Figure 4.2). The transition from oscilla-
tory to nonoscillatory motion occurs whenc2 − 4mk= 0. The corresponding
value ofc, given byc0 = 2

√
mk, is calledcritical damping.

◆ Forced Oscillations

Now let’s see what happens when an external force is applied to the oscillat-
ing mass described by ODE (10). IfF(t) represents the external force, then☞ F(t) is also called the

input, or driving term; solutions
u(t) are theresponsesto the
input and the initial data.

ODE (10) becomes

m
d2u
dt2

+ c
du
dt

+ ku= F(t) (17)

Some interesting things happen ifF(t) is periodic, so we will look at the ODE

m
d2u
dt2

+ c
du
dt

+ ku= F0 cos(ωt) (18)
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whereF0 andω are the amplitude and circular frequency, respectively, of the
external forceF. Then, in the underdamped case, the general solution of
ODE (18) has the form☞ Check that this formula

gives solutions of ODE (18).
u(t) = e−ct/2m[C1 cos(µt) + C2 sin(µt)] + acos(ωt) + bsin(ωt) (19)

wherea and b are constants determined so thatacos(ωt) + bsin(ωt) is a
solution of ODE (18). The constantsa andb depend onm, c, k, F0, andω of
ODE (18), but not on the initial data. The constantsC1 andC2 can be chosen
so thatu(t) given by formula (19) satisfies given initial conditions.

The first term on the right side of the solution (19) approaches zero as
t → +∞; this is called thetransientterm. The remaining two terms do not
diminish ast increases, and their sum is called thesteady-state solution(or
the forced oscillation), here denoted byus(t). Since the steady-state solution
persists forever with constant amplitude, it is frequently the most interesting
solution. Notice that it oscillates with the circular frequencyω of the driving
force F. It can be written in the amplitude-phase form (8) as

us(t) = Acos(ωt − δ) (20)

whereA andδ are now given by

A = F0√
m2(ω2

0 − ω2)2 + c2ω2
, tanδ = cω

m(ω2
0 − ω2)

(21)

Figure 4.3 shows a graphical example of solutions that tend to a forced oscil-
lation.

For an underdamped system with fixedc, k, andm, the amplitudeA of
the steady-state solution depends upon the frequency of the driving force. It
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Figure 4.3: Solutions of u′′ + 0.3u′ + u = 10cos 2t approach a unique forced
oscillation with the circular frequency 2 of the input.
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is important to know whether there is a valueω = ωr for which the amplitude
is maximized. If so, then driving the system at the circular frequencyωr

produces the greatest response. Using methods of calculus, it can be shown
that if c2 < 2mk thenωr is given by

☞ Recall that thenatural
circular frequencyω0 is the value
ω0 = √

k/m.

ω2
r = ω2

0

(
1− c2

2mk

)
(22)

The corresponding maximum valueAr of the amplitude whenω = ωr is

Ar = F0

cω0

√
1− (c2/4mk)

(23)

✓ DoesA have a maximum value when 2mk< c2 < 4mk?

✓ Find the forced oscillation for the ODE of Figure 4.3.

◆ Beats

Let’s polish the table and streamline the mass so that damping is negligible.
Then we apply a forcing function whose frequency is close to the natural
frequency of the spring-mass system, and watch the response. We can model
this by the IVP

u′′ + ω2
0u = F0

m
cos(ωt), u(0) = 0, u′(0) = 0 (24)

where|ω0 − ω| is small (but not zero). The solution is

u(t) = F0

m(ω2
0 − ω2)

[cos(ωt) − cos(ω0t)]

=
[

2F0

m(ω2
0 − ω2)

sin
(ω0 − ω

2
t
)]

sin

(
ω0 + ω

2
t

)
(25)

where trigonometric identities have been used to get from the first form of the
solution to the second. The term in square brackets in formula (25) can be
viewed as a varying amplitude for the sinusoid term sin[(ω0 + ω)/2]t. Since
|ω0 − ω| is small, the circular frequency(ω0 + ω)/2 is much higher than the
low circular frequency(ω0 − ω)/2 of the varying amplitude. Therefore we
have a rapid oscillation with a slowly varying amplitude. This is thebeat
phenomenonillustrated on the chapter cover figure for the IVP

u′′ + 25u = 2cos(4.5t), u(0) = 0, u′(0) = 0

If you try this out with a driven mass on a spring you will see rapid oscillations
whose amplitude slowly grows and then diminishes in a repeating pattern.
This phenomenon can actually be heard when a pair of tuning forks which
have nearly equal frequencies are struck simultaneously. We hear the “beats”
as each acts as a driving force for the other.
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◆ Electrical Oscillations: An Analogy

Linear differential equations with constant coefficients are important because

Y

L

R

C

E(t) I (t)
+
−

they arise in so many different physical contexts. For example, an ODE sim-
ilar to ODE (17) can be used to model charge oscillations in an electrical
circuit. Suppose an electrical circuit contains a resistor, an inductor, and a
capacitor connected in series. The currentI in the circuit and the chargeQ
on the capacitor are functions of timet. Let’s assume we know the resistance
R, the inductanceL, and the capacitanceC. By Kirchhoff’s voltage law for a
closed circuit, the applied voltageE(t) is equal to the sum of the voltage drops
through the various elements of the circuit. Observations of circuits suggest
that these voltage drops are as follows:

� The voltage drop through the resistor isRI (Ohm’s law);

� The voltage drop through the inductor isL(dI/dt) (Faraday’s law);☞ See also the electrical
circuit files in the Physical
Systems and Model Based
Animation folders in the Library.

� The voltage drop through the capacitor isQ/C (Coulomb’s law).

Thus, by Kirchhoff’s law, we obtain the differential equation

L
dI
dt

+ RI + Q
C

= E(t) (26)

SinceI = dQ/dt, we can write ODE (26) entirely in terms ofQ,

L
d2Q
dt2

+ R
dQ
dt

+ Q
C

= E(t) (27)

ODE (27) models the chargeQ(t) on the capacitor of what is called thesimple
RLC circuitwith voltage sourceE(t). ODE (27) is equivalent to ODE (17),
except for the symbols and their interpretations. Therefore we can also apply
conclusions about our spring-mass system to electrical circuits. For exam-
ple, we can interpret the ODEu′′ + 0.3u+ u = 10cos2t, whose solutions are
graphed in Figure 4.3, as a model for either the oscillations of a damped and
driven spring-mass system, or the charge on the capacitor of a drivenRLC
circuit. We see that a mathematical model can have many interpretations, and
any mathematical conclusions about the model apply to every interpretation.

✓ What substitutions of parameters and variables would you have to make
in ODE (27) to transform it to ODE (17)?

◆ Seismographs

Seismographs are instruments that record the displacement of the ground as a☞ Look at “Earthquakes and
the Richter Scale” in Module 4. function of time, and a seismometer is the part of a seismograph that responds

to the motion. Seismographs come in two generic types. Matt’s friend Seismo
is a horizontal-component seismograph, which records one of the horizontal
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components of the earth’s local motion. Of course, two horizontal compo-
nents are required to specify fully horizontal motion, usually by means of
north-south and east-west components. The other type of seismograph records
the vertical component of motion. Both of these instruments are based on pen-
dulums that respond to the motion of the ground relative to the seismograph.

Since Seismo is an animation of a horizontal-component seismograph,
we’ll outline the derivation of the ODEs that govern the motion of his arm.☞ If you’re queasy about

cross products or approximating
functions (used in formulas (28),
(31), (32)) you may prefer to skip
directly to ODE (33) or
ODE (34).

The starting point is the angular form of Newton’s second law of motion, also
known as theangular momentum law:

d
dt

L = R × F (28)

whereL is the angular momentum of a mass (Seismo’s arm and hand) about
a fixed axis,F is the force acting on the mass,R is the position vector from
the center of mass of Seismo’s arm and hand to the axis, and× is the vector
cross product.

We’ll apply this law using an orthogonalxyz-coordinate system which is
illustrated on Screen 2.2 of Module 4. In this system they-axis is horizontal.
Seismo’s body is parallel to thez-axis and the rest position of Seismo’s arm
is parallel to thex-axis. Thez-axis is not parallel to the local vertical, but
instead is the axis which results from rotating the local vertical through a small
angleα about they-axis. Because of this small tilt, thex-axis points slightly
downward and the arm is in a stable equilibrium position when it is parallel
to thex-axis. The seismic disturbance is assumed to be in the direction of the
y-axis. Thexz-plane is called Seismo’srest plane.

Seismo’s hand writes on the paper in thexy-plane, and the angleθ mea-
sures the angular displacement of his arm from its rest position. Consider an
axis pointing in thez-direction and through the center of mass of Seismo’s arm
and hand, and letm represent the mass of the arm and hand. Thez-component
of the angular momentum about that axis ismr2(dθ/dt) wherer is the radius
of gyration of the arm.

To compute the right-hand side of ODE (28), we need to knowR, the
position vector from the center of mass of Seismo’s arm and hand to the origin.
Note that

R = −l cosθx̂ − l sinθŷ

wherel is the distance from the center of mass to Seismo’s body, andx̂ and
ŷ are unit vectors along the positivex- andy-axes. For smallθ, we have the
approximations cosθ ≈ 1 and sinθ ≈ θ, so

R = −l x̂ − lθŷ (29)

Using equation (29) in ODE (28) and computing the cross product, we obtain

mr2
d2θ

dt2
= −l F (y) + lθF(x) (30)
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indicating by superscripts the components of the net forceF exerted on the
arm and hand.

Now we need expressions for the two components ofF in ODE (30). If
thex-component of friction is assumed negligible then the two force compo-
nents acting in thex-direction are thex-component of the gravitational force
and thex-component of the force due to the seismic disturbance. Because the
arm displacement angleθ and the body inclination angleα are both assumed
small, thex-component of the force due to the seismic disturbance can be
shown to be negligible also. Therefore thex-component of the net force,F (x),
is given by the simple form

F(x) ≈ mgα (31)

The right side of equation (31) is the gravity componentmgsinα approxi-
mated bymgα.

In the y-direction, the forces acting are the force due to the seismic dis-
turbance and to friction, the latter assumed to be proportional to the angular☞ This isviscous friction.

velocity dθ/dt. The force due to the seismic disturbance can be computed
as follows: Leth be a small ground displacement in they-direction. Then
the y-coordinate of the center of mass is approximatelyh+ lθ. Therefore the
force due to the earthquake is approximated by

m
d2

dt2
(h+ lθ) = m

d2h
dt2

+ ml
d2θ

dt2

and the net force in they-direction is

F(y) ≈ m
d2h
dt2

+ ml
d2θ

dt2
− k

dθ

dt
(32)

wherek is a positive constant characterizing the effect of friction.
Combining ODE (30) with formulas (31) and (32), we find that the mo-

tions of Seismo’s arm are governed by the ODE

d2θ

dt2
+ c

dθ

dt
+ ω2

0θ = − 1
L

d2h
dt2

(33)

In ODE (33) the quantitiesω2
0, L, andc are given byω2

0 = gα/L, where
L = (r2 + l2)/ l , andc = k/(mL). We can interpret the terms in (33) as
follows. The first term on the left arises from the inertia of Seismo’s hand and
arm. The second term models the frictional force due to the angular motion
of the arm. The third term, arising from gravity and the tilt of the arm, is the
restoring force for the oscillations of the arm and hand. Finally, the term on
the right arises from the effective force of the seismic displacement.

To simplify ODE (33) a little more, we leth(t) = H f (t), whereH is the
maximum ground displacement, which means that the maximum value of the
dimensionless ground displacementf (t) is one. Then ODE (33) becomes the
following equation for the dimensionless arm displacementy(t) = Lθ(t)/H:

d2y
dt2

+ c
dy
dt

+ ω2
0y = −d2 f

dt2
(34)
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This is the ODE used in Screen 2.3 of Module 4.
It’s an important result that ODE (34) is the same type as ODE (18),☞ A given ODE can model a

variety of phenomena. the only differences being in the definitions of the parameters that multiply
the individual terms, and in the choice of variables. A second striking result is
that this same ODE (34) applies as well to the motions of a vertical component
seismograph. All that is necessary are other modifications in the meanings of
the parameters and functions. Details are available in the book by Bullen and
Bolt in the references.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed. (1997: John Wiley & Sons, Inc.)

Bullen, K. E., and Bolt, B. A.,An Introduction to the Theory of Seismology,
4th ed. (1985: Cambridge University Press)
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Figure 4.4: The sweep on c generated five solution curves. The selected
curve is highlighted, and the corresponding solution u(t) satisfies the condi-
tion |u(t)| < 0.05 for t ≥ 40. The data tells us that c = 0.175 for the curve.

Figure 4.5: The Dual (Matrix) feature produces six solutions for various val-
ues of c and k. We have selected one of them (the highlighted curve) and
used the Explore option to get additional information.
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Exploration 4.1. The Damping Coefficient

Assume that Dogmatic’s oscillations satisfy the IVP

u′′ + cu′ + ku= 0, u(0) = 1, u′(0) = 0 (35)

1. Let k = 1 and use ODE Architect to estimate the smallest valuec∗ of the
damping coefficientc so that|u(t)| ≤ 0.05 for all t ≥ 40. [Suggestion:Fig-
ure 4.4 illustrates one way to estimatec∗ by using the Select feature and the
Data table.]

2. Repeat Problem 1 for other values ofk, includingk = 1
4, 1

2, 2, and 4. How
doesc∗ change ask changes? [Suggestion:Figure 4.5 shows the outcome
of using a Dual (Matrix) sweep on the values ofc andk, and then using the
Explore feature.]



70 Exploration 4.1

3. Let k = 10 in IVP (35).

(a) Find the value ofc for which the ratio of successive maxima in the graph
of u vs. t is 0.75.

(b) Why is the ratio between successive maxima always the same?
Note: Since the values of the maxima can be observed experimentally,
this provides a practical way to determine the value of the damping
coefficientc, which may be difficult to measure directly.
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Exploration 4.2. Response to the Forcing Frequency

1. Suppose that Dogmatic’s oscillations satisfy the differential equation

2u′′ + u′ + 4u = 2cos(ωt)

Let ω = 1. Select your own initial conditions and use ODE Architect to plot
the solution over a long enough time interval that the transient part of the
solution becomes negligible. From the graph, determine the amplitudeAs of
Dogmatic’s steady-state solution.

2. Repeat Problem 1 for other values ofω. Plot the corresponding pairsω, As

and sketch the graph ofAs vs. ω. Estimate the value ofω for which As is
a maximum.Note: You may want to use the Lookup Table feature of ODE
Architect (see Module 1 and Chapter 1 for details).
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3. In Problems 1 and 2, the value of the damping coefficientc is 1. Repeat
your calculations forc = 1

2 andc = 1
4. How does the maximum value ofAs

change as the value ofc changes? Compare your results with the predictions
of formula (23).
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Exploration 4.3. Low- and High-Frequency Quakes

In experiments with Seismo, you used ODE (34) to find the response of his
arm to different ground displacements of sinusoidal type, f (t) = cosωt, when
1 ≤ ω ≤ 5. In this exploration you’ll investigate what happens for ground
displacements with frequencies that are lower or higher than these values.

1. Choosec = 2 andω0 = 3 in ODE (34), and set the initial conditionsy(0) and
y′(0) to zero. Usef (t) = cosωt with ω = 0.5 for the ground displacement.
Use ODE Architect to plot the displacementy(t) determined from ODE (34);
also plot f (t) on the same graph. How do the features ofy(t) compare with
those of f (t)?

2. Repeat Problem 1 for values ofω smaller than 0.5. Be sure to plot for a long
enough time interval to see the relevant time variations. What do you think is
Seismo’s arm response asω approaches zero? How does this compare with
the corresponding response of a mass on a spring from ODE (18)?



74 Exploration 4.3

3. Repeat Problem 1 for values ofω larger than 5, such asω = 10 andω = 20.
What do you think is Seismo’s arm response asω becomes very large?
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Exploration 4.4. Different Ground Displacements

In explorations with Seismo, we assumed that the dimensionless ground dis-
placements f (t) are sinusoidal, with a single frequency. Real earthquakes
however, are not so simple: you’ll investigate other possibilities in the fol-
lowing problems. The ODE for Seismo’s dimensionless arm displacement
y(t) is

d2y
dt2

+ c
dy
dt

+ ω2
0y = −d2 f

dt2
(36)

1. Suppose the ground displacement can be modeled by the function

f (t) =
{

(t/T)2, 0 ≤ t ≤ T
1, t > T

How do you interpret this motion? Choosec = 2 andω0 = 3, and sety(0) =
y′(0) = 0. Use ODE Architect to findy(t) from ODE (36) for the caseT =
2, and display bothy(t) and f (t). Note: d2 f/dt2 can be written using a
step function. How do the features ofy(t) compare with those off (t)? For
example, what is the maximum magnitude ofy(t), and when does it occur?
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2. Now suppose that the ground motion is given by the functionf = e−at sin(πt).
Choose some values ofa in the range 0< a ≤ 0.5 and study how Seismo’s
arm displacements change with the parametera.

3. How do you think the results of Problem 2 would change if the period of the
sinusoidal oscillation were different from 2? Try a few cases to check your
predictions.
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Seventeen ski jumpers take off from an upward-tilted ski-jump.

Overview How would you model the motion of a baseball thrown at a target, or the rise and
fall of a whiffle ball, or the trajectory of a ski jumper? You need modeling principles
to explain the effects of the surroundings on the motion of a body.

Building on the work of Galileo, Newton formulated the fundamental laws of
motion that describe the forces acting on a body in terms of the body’s acceler-
ation and mass. Newton’s second law of motion, for example, relates the mass
and the acceleration of a moving body to the forces acting on it and ultimately
leads to differential equations for the motion.

Bodies moving through the air near the surface of the earth (e.g., a whiffle
ball, Indiana Newton jumping onto a boxcar, or a ski jumper) are subject to the
forces of gravity and air resistance, so these forces will affect their motion.

Key words Vectors; force; gravity; Newton’s laws; acceleration; trajectory; air resistance; vis-
cous drag; Newtonian drag; lift

See also Chapter 1 for more on modeling, and Chapter 2 for “The Juggler” and “The Sky
Diver”.
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◆ Vectors

A vectoris a directed line segment and can be represented by an arrow with a
head and a tail. We use boldface letters to denote vectors.

Some terminology:

� The lengthof a vectorv is denoted by|v|.
� Two vectorsv andw areequivalentif they can be made to coincide by

translations. (Translations preserve length and direction of vectors.) So
parallel vectors of equal length and pointing in the same direction are
equivalent.

� Thesumv + w of v andw is defined by the parallelogram law as fol-

-

� �

v

w

v + w

P

lows: v + w is the diagonal vector of the parallelogram formed byv and
w as shown in the margin figure.

� If r is any real number, then theproduct rv is the vector of length|r | |v|
that points in the direction ofv if r > 0 and in the direction opposite to
v if r < 0.

� If a vectoru = u(t) depends on a variablet, then thederivative du/dt
[or u′(t)] is defined as the limit of a difference quotient:

u′(t) = du
dt

= lim
h→0

u(t + h) − u(t)
h

-
6

�

7

�

-

6

î ĵ

k̂

v

v1î

v2ĵ

v3k̂

� A coordinate frameis a triple of vectors, denoted by{î, ĵ , k̂}, that are
mutually orthogonal and all of unit length. Every vector can be uniquely
written as the sum of vectors parallel toî, ĵ , andk̂. So for each vectorv
there is a unique set of real numbersv1, v2, andv3 such thatv = v1î +
v2ĵ + v3k̂. Herev1,v2, andv3 are called thecoordinates(orcomponents)
of v in the frame{î, ĵ , k̂}.

Let’s see how to use vectors in a real-life situation. Suppose a particle of
massm moves in a manner described by theposition vector

R = R(t) = x(t)î + y(t)ĵ + z(t)k̂

If R is differentiable, then

R′(t) = x′(t)î + y′(t)ĵ + z′(t)k̂

The vectorR′(t) = v(t) is thevelocity vectorof the particle at timet, andv(t)
is tangent to the path of the particle’s motion at the pointR(t). If R′(t) is
differentiable, then

R′′(t) = v′(t) = x′′(t)î + y′′(t)ĵ + z′′(t)k̂

The vectorR′′(t) = a(t) is theacceleration vectorfor the particle.

x

y

R(t)

z

m

a(t)

v(t)
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✓ “Check” your understanding by answering this question: If a particle
moves at a constant speed around a circle, does the acceleration vector from
the particle point to the inside of the circle or to the outside of the circle?

✓ If a particle’s acceleration vector is always tangent to its path, what is the
path?

Next, let’s use vectors to express Newton’s laws of motion.

◆ Forces and Newton’s Laws

Our environment creates forces that act on bodies in a way that causes the
bodies to accelerate or decelerate. Forces have magnitudes and directions and☞ Deceleration is just

negative acceleration. so can be represented by vectors. Newton formulated two laws that describe
how the forces on a body relate to its motion.

Newton’s First Law. A body remains in a state of rest, or in a state of
uniform motion in a straight line if there is no net external force acting
on it.

But the more interesting situation is when thereis a net external force
acting on the body.

Newton’s Second Law. For a body with accelerationa and constant
massm,

F = ma

whereF is the sum of all external forces acting on the body.

Sometimes it’s easier to visualize Newton’s second law in terms of the
x-, y-, andz-components of the position vectorR of the moving body. If
we project the acceleration vectora = R′′ and the forces onto thex-, y-, and
z-axes, then for a body of massm,

mx′′ = the sum of the forces in thex-direction

my′′ = the sum of the forces in they-direction

mz′′ = the sum of the forces in thez-direction

We’ll look at motion in a plane withx measuring the horizontal distance andy
measuring the vertical distance up from the ground. We don’t need thez-axis
for our examples because the motion is entirely along a line or in a plane.
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◆ Dunk Tank

Imagine your favorite professor seated over a dunk tank. Let’s construct a
model that will help you find the secret to hitting the target and giving your
teacher a swim!

You hurl a ball at the target from a height of 6 ft with speedv0 ft/sec and
with a launch angle ofθ0 degrees from the horizontal1. The target is cen-
tered 10 ft above the ground and 20 ft away. Let’s suppose that air resistance
doesn’t have much effect on the ball over its short path, so that gravity, acting
downwards, is the only force acting on the ball.

Newton’s second law says that

mR′′ = −mĝj

wherem is the ball’s mass,R(t) is the position of the ball at timet relative to
your hand (which is 6 ft above the ground at the instantt = 0 of launch), and
g = 32 ft/sec2 is the acceleration due to gravity. In coordinate terms,

mx′′ = 0

my′′ = −mg

Sincex′(0) = v0 cosθ0 andy′(0) = v0 sinθ0, one integration of these second-
order ODEs gives us

x′(t) = v0 cosθ0

y′(t) = v0 sinθ0 − gt
(1)

Then becausex(0) = 0 andy(0) = 6, a second integration yields☞ What is the ball doing if
θ0 = 90◦?

x(t) = (v0 cosθ0)t

y(t) = 6+ (v0 sinθ0)t − 1
2

gt2
(2)

To hit the target at some timeT we wantx(T) = 20 andy(T) = 10. So values
of T > 0, θ0, andv0 such that

x(T) = 20= (v0 cosθ0)T

y(T) = 10= 6+ (v0 sinθ0)T − 1
2

gT2 (3)

lead to hitting the target right in the bull’s eye and dunking your professor.
You can try to use system (3), or you can just adjust your launch angle☞ Figure 5.1 was done in the

Tool, whereθ0 is in radians. and pitching speed by intuition and experience. The screen shot in Figure 5.1
shows you how to get started with the latter approach. If you play the dunking
game on Screen 1.3 you’ll find that you can dunk without hitting the target
head-on, but that a little up or a little down from the center works fine.

1The sin, cos and other trig functions in the ODE Architect Tool expect angles to be measured in
radians. Note thatθ0 = 1 radian corresponds to 360/2π ≈ 57.3 degrees. The multimedia modules,
however, will accept angles measured in degrees.
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Figure 5.1: This ODE Architect screen shows paths of a ball thrown at ten
different angles θ0. Which paths lead to dunking the prof?

◆ Longer to Rise or to Fall?

Throw a ball straight up in the air and ask observers whether the ball takes
longer to rise or to fall. You’ll get four answers:

1. Longer to rise
2. Longer to fall
3. Rise-time and fall-time are the same
4. It all depends. . .

What’s your answer?
A mathematical model and ODE Architect suggest the answer. The forces

acting on the ball of massmare gravity and air resistance, so Newton’s second
law states that

mR′′(t) = −mĝj + F

whereR is the position vector of the ball, andF is the drag on the ball caused
by air resistance. In this caseR(t) = y(t)ĵ whereĵ is a unit vector pointing

6ĵ

Earth

y

upward (the positivey direction). If the drag is negligible, we can setF = 0.
For a light ball with an extended surface, like a whiffle ball, the drag, called
viscous drag, exerts a force approximately proportional to the ball’s velocity☞ Drag forces are usually

determined by observation. They
differ widely from one body to
another.

but opposite in direction:

F(v) = −kv = −ky′ĵ
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If the ball is solid and dense, like a baseball or a bowling ball, then we have
Newtonian drag, which acts opposite to the velocity with magnitude propor-
tional to the square of the speed:

F(v) = −k|v|v = −k|y′|y′ ĵ

Summarizing, we have the models

y′′ = −g−




0 no drag
k
m

y′ viscous

k
m

|y′|y′ Newtonian

or, in system form,

☞ ODE Architect only
accepts first-order ODEs, so
that’s why we use the first-order
system form.

y′ = v

v′ = −g−




0 no drag
k
m

v viscous

k
m

|v|v Newtonian

To observe different rise times and fall times, you can sety(0) = 0, v(0) = v0

and see what happens for various positive values ofv0. See Figure 5.2 for
graphs ofy(t) with viscous damping, four different initial velocities,k/m =
2 sec−1, andg = 32 ft/sec2. In this settingv is the rate of change ofy, sov is
positive as the ball rises and negative as it falls.

◆ Indiana Newton

You notice that Indiana Newton is about to jump from a ledge onto a boxcar of
a speeding train. His timing has to be perfect. He also gets to choose his drag:
none, viscous, or Newtonian. If you knew the train’s position at all times, and
how long it takes Indy to drop from the ledge to the top of the boxcar, then
you could give him good advice about which drag to choose.

The initial value problem that models Indy’s situation is

y′ = v y(0) = h

v′ = −g− F(v)/m v(0) = 0

wherem is his mass,F(v) is a drag function,g is the acceleration due to
gravity, andh is the height of the ledge above the boxcar. His life is in your
hands! Figure 5.3 shows Indy’s free-fall solution curvesy(t) from a height of
100 ft with three different drag functions.
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Figure 5.2: Height vs. time of a whiffle ball thrown straight up four times with
viscous damping and different initial velocities. Does the ball take longer to
rise or to fall?
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Figure 5.3: Indiana jumps with no drag (left curve), viscous drag −0.2y′ (mid-
dle), Newtonian drag −0.02|y′|y′ (right).
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◆ Ski Jumping

When a ski jumper is aloft she is subject to gravitational, drag, and lift forces.
She can diminish the drag and increase the lift by her posture, ski angle, and
choice of clothing.Drag acts opposite to velocity and its magnitude is usually
taken to be proportional to the skier’s velocityR′:

Drag force= −δR′ = −δx′ î − δy′ ĵ

The lift force is what makes ski jumping fun. Thelift force is that force
which acts perpendicular to the velocity and enables the jumper to soar. Its
magnitude is usually taken to be proportional to the speed, so☞ Check that this force is

perpendicular to velocity.
Lift force = −λy′î + λx′ ĵ

Newton’s second law in thêi- andĵ -directions gives us

☞ The origin of thexy-plane
is at the edge of the ski jump
(x-horizontal,y-vertical). The
edge is horizontal so
x′(0) = v0 > 0, buty′(0) = 0.

mx′′ = −δx′ − λy′ x′(0) =v0, x(0) = 0

my′′ = −mg+ λx′ − δy′ y′(0) =0, y(0) = 0

wherem is the skier’s mass andδ, λ, andv0 are positive constants. Integration
of each of these ODEs yields

mx′ − mv0 = −δx − λy

my′ = −mgt+ λx− δy

Divide by the mass to get the system IVP

x′ = −ax− by+ v0 x(0) = 0

y′ = −gt + bx− ay y(0) = 0

wherea = δ/m andb = λ/m are the drag and lift coefficients, respectively.
When Newtonian drag and lift occur,δ andλ are not constants, so we

can no longer integrate once to getx′ and y′, and we must treat the original
second-order ODE differently:

x′ = v x(0) = 0

v′ = −δv/m− λw/m v(0) = v0

y′ = w y(0) = 0

w′ = −g+ λv/m− δw/m w(0) = 0

wherev andw are the velocities in thêi- andĵ -directions, respectively.
We have assumed that the bottom edge of the ski jump is horizontal, but

everything can be modified to accommodate a tilt in the launch angle (see the
chapter cover figure and Exploration 5.4, Problem 1).

References Halliday, D., and Resnick, R.,Physics, (1994: John Wiley & Sons, Inc.)

True, Ernest, “The flight of a ski jumper” inC.ODE.E, Spring 1993, pp. 5–8,
http://www.math.hmc.edu/codee
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Exploration 5.1. Dunk Tank

1. How big is the target?
Play the dunk tank game on Screen 1.6 of Module 5 and use various launch
angles and speeds to help you determine the heights and diameters of the Ein-
stein, Leibniz, and Newton targets, given that the ball has a 4-inch diameter.

2. One speed, two angle ranges for success.
Use the ODE Architect tool to find two quite different launch angles that will
dunk Einstein if the launch speed is 40 ft/sec. Repeat for Leibniz and Newton.
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3. Launch angles and speeds that dunk Einstein.
Find the region in theθ0v0 plane for which the ball hits the target and dunks
Einstein.Hint: Start withv0 = 40 ft/sec and determine the ranges forθ0 using
ODE Architect by playing the dunk tank game. Then repeat for other values
of v0.

4. Solution formulas for the dunk tank model.
The position and velocity of the ball at timet is given by formula (2). Find
a formula that relates the launch angle to the initial speed and the timeT
needed to hit the bull’s eye. If you had to choose between using your formula
and using ODE Architect computer simulations to find winning combinations
of speed and launch angle, which would you choose? Why?
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Exploration 5.2. Longer to Rise or to Fall?

1. Throw a ball up in the air.
Do just that, and determine as best you can the time it takes to rise and to
fall. You can use a whiffle ball for slower motion. Explain your results. (No
computers here, and no math, either!)

2. Longer to rise or to fall in a vacuum?
What if there were no air to slow the ball down? Use ODE Architect to de-
termine whether it takes the ball longer to rise or to fall. Try various initial
speeds between 5 and 60 ft/sec. [Suggestion:Use the Sweep feature.]
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3. Longer to rise or to fall with viscous drag?
Suppose that air exerts a viscous drag force on a whiffle ball (a reasonable
assumption). For various initial speeds, use the ODE Architect to determine
whether it takes longer to rise or to fall. Does your answer depend on the
initial speed? What physical explanation can you give for your results?

4. Longer to rise or to fall with your own drag?
Repeat Problem 3, but make up several of your own formulas for the drag
force. Include Newtonian drag as one case. This isn’t as outlandish an idea
as it may seem, since the drag force depends very much on the nature of the
moving body, e.g., rough or smooth surface, holes through the body, and so
on. Discuss your results.
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Exploration 5.3. Indiana Newton

1. Indiana Newton lands on the boxcar (no drag).
Indiana Newton jumps from a heighth of 100 ft and intends to land on the
boxcar of a train moving at a speed of 30 ft/sec. Assuming that there is no air
resistance, use Screen 2.6 of Module 5 to find the time window of opportunity
for jumping from the ledge.

2. Indiana Newton lands on the boxcar (Newtonian drag).
Repeat Problem 1 but with Newtonian drag (coefficientk/m = 0.05 ft−1).
Compare fall-times with the no-drag and also with the viscous-drag (k/m =
0.05 sec−1) cases. Find nonzero values of the coefficients so that Indiana
Newton hits the train sooner with Newtonian drag than with viscous drag.
How do the fall-times change as Indy’s jump heighth varies?
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3. How long is the boxcar?
Use computer simulations of Indiana Newton jumping onto the boxcar and
estimate the length of the boxcar.

4. Indiana Newton floats down.
First, explore Indiana’s fall-times in the viscous- and Newtonian-drag cases
where the coefficientk/mhas magnitudes ranging from 0 to 0.5. The units for
the coefficient are sec−1 (viscous damping) and ft−1 (Newtonian damping).
Then find a formula in terms ofh, k/m, and t for Indiana’s position after
he jumps: first in the viscous-drag case, then in the Newtonian-drag case.
Suggestion: In the viscous case, first solvev′ = −32− kv/m, v(0) = 0,
and then integrate and usey(0) = h to get y(t). In the Newtonian-drag case
proceed similarly but withv′ = −32− kv2. (This one is hard!) Choose values
of the parameters in each case, and compare the graphs of the height function
y(t) from your formula with the graphs obtained by the ODE Architect. Any
differences?
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Exploration 5.4. Ski Jumping

1. Tilt the edge of the ski jump upward.
Use the first Things-to-Think-About on Screen 3.7 of Module 5 to see what
happens to the ski jumper’s path if the edge of the ski jump structure is tilted
upward at 0.524 radians (about 30◦). Seta = 0.01 sec−1, andv0 = 85 ft/sec,
and sweep on the lift coefficientb from 0 to 1.0 in 20 steps. Compare your
graphs of the jumper’s path with the chapter cover figure. Then animate your
graphs. Now fixb at the value 0.02 sec−1 and sweep onθ (in radians) to see
the effect of the tilt angle on the jumper’s path. Explain your results.

2. Loop-the-loop.
The second Things-to-Think-About on Screen 3.7 of Module 5 asks you to
use the ODE Architect to estimate the smallest value of the viscous damping
coefficientb that will allow the ski jumper to loop-the-loop. Ifa = 0.01 sec−1

andv0 = 85 ft/sec, estimate that value. Then increaseb by increments from
that value upward all the way to the unrealistic value of 5.0 sec−1 and describe
what you see.
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3. Complex eigenvalues and loop-the-loops.
The system matrix of the viscous drag/lift model for ski jumping is☞ You need to know about

matrices and eigenvalues to
complete this part. See also
Chapter 6.

[−a −b
b −a

]
Explain why the eigenvalues of this matrix are complex conjugates with neg-
ative real parts ifa andb are any positive real numbers. Explain why you are
more likely to see loop-the-loops ifa is small andb is large. Do some simula-
tions with the ODE Architect for various values ofa andb that support your
explanation. If you plot a loop-the-loop path over a long enough time interval,
you will see no loops at all near the end of the interval. Any explanation?

4. Newton on skis.
The fourth Things-to-Think-About on Screen 3.7 of Module 5 puts Indiana
Newton on skis with Newtonian drag (of course!). This situation takes you to
the expert solver in the ODE Architect, where you are asked to explore every
scenario you can think of and to explain what you see in the graphs.
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Oscillating displacementsx1(t) andx2(t) of two coupled springs play
off against each other.

Overview This chapter outlines some of the main facts concerning systems of first-order
linear ODEs, especially those with constant coefficients. You’ll have the opportu-
nity to work with physical problems that have two or more dependent variables.
Such problems can be modeled using systems of differential equations, which
can always be written as systems of first-order equations, as can higher-order dif-
ferential equations. The eigenvalues and eigenvectors of a matrix of coefficients
help us understand the behavior of solutions of these systems.

Key words Linear systems; pizza and video; coupled springs; connected tanks; linearized
double pendulum; matrix; system matrix; Jacobian matrix; component; compo-
nent plot; phase space; phase plane; phase portrait; equilibrium point; eigenvalue;
eigenvector; saddle point; node; spiral; center; source; sink

See also Chapter 5 for definitions of vector mathematics.
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◆ Background

Many applications involve a single independent variable (usually time) and
two or more dependent variables. Some examples of dependent variables are:

� the concentrations of a chemical in organs of the body

� the voltage drops across the elements of an electrical network

� the populations of several interacting species

� the profits of businesses in a mall

Applications with more than one dependent variable lead naturally tosys-
temsof ordinary differential equations. Such systems, as well as higher-order
ODEs, can be rewritten as systems of first-order ODEs.

Here’s how to reduce a second-order ODE to a system of first-order ODEs☞ How to convert a
second-order ODE to a system of
first-order ODEs.

(see also Chapter 4). Let’s look at the the second-order ODE

y′′ = f (t, y, y′) (1)

Introduce the variablesx1 = y andx2 = y′. Then we get the first-order system

x′
1 = x2 (2)

x′
2 = f (t, x1, x2) (3)

ODE (2) follows from the definition ofx1 andx2, and ODE (3) is ODE (1)
rewritten in terms ofx1 andx2.

✓ “Check” your understanding now by reducing the second-order ODE
y′′ + 5y′ + 4y = 0 to a system of first-order ODEs.

◆ Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profitsx(t) andy(t) of a pizza parlor and
a video store by a system that looks like this:

x′ = ax+ by+ c

y′ = f x+ gy+ h

wherea, b, c, f , g, andh are constants. Take another look at Screens 1.1–1.4
in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscil-
lating springs and masses. A pair of coupled springs with spring constantsk1

m1
k2k1

m2

x2x1

- -

andk2 are connected to massesm1 andm2 that glide back forth on a table. As
shown in the “Coupled Springs” submodule, if damping is negligible then the
second-order linear ODEs that model the displacements of the masses from
equilibria are

m1x′′
1 = −(k1 + k2)x1 + k2x2

m2x′′
2 = k2x1 − k2x2
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Let’s setm1 = 4, m2 = 1, k1 = 3, andk2 = 1. Then, settingx′
1 = v1, x′

2 = v2,☞ A system of first-order
ODEs isautonomousif the terms
on the right-hand sides of the
equations do not explicitly
depend on time.

the corresponding autonomous system of four first-order ODEs is

x′
1 = v1

v′
1 = −x1 + 1

4
x2

x′
2 = v2

v′
2 = x1 − x2

The cover figure of this chapter shows howx1 andx2 play off against each☞ Trajectories of an
autonomous system can’t
intersect because to do so would
violate the uniqueness property
that only one trajectory can pass
through a given point.

other whenx1(0) = 0.4, v1(0) = 1, x2(0) = 0, andv2(0) = 0. The trajecto-
ries for this IVP are defined in the 4-dimensionalx1v1x2v2-space and cannot
intersect themselves. However, the projections of the trajectories onto any
planecan intersect, as we see in the cover figure.

◆ Linear Systems with Constant Coefficients

The model first-order systems of ODEs for pizza and video and for coupled
springs have the special form of linear systems with constant coefficients.
Now we shall see just what linearity means and how it allows us (sometimes)
to construct solution formulas for linear systems.

Let t (time) be the independent variable and letx1, x2, . . . , xn denote the
dependent variables. Then a general system of first-order linearhomogeneous☞ Dependent variables are

also calledstate variables.

☞ Homogeneousmeans that
there are no free terms, that is,
terms that don’t involve anyxi .

ODEs with constant coefficients has the form

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...

x′
n = an1x1 + an2x2 + · · · + annxn

(4)

wherea11, a12, . . . , ann are given constants. To find a unique solution, we
need a set of initial conditions, one for each dependent variable:

x1(t0) = α1, . . . , xn(t0) = αn (5)

wheret0 is a specific time andα1, . . . , αn are given constants. The system (4)
and the initial conditions (5) together constitute aninitial value problem(IVP)
for x1, . . . , xn as functions oft. Note thatx1 = · · · = xn = 0 is an equilibrium
point of system (4).

☞ An equilibrium point of an
autonomous system of ODEs is a
point where all the rates are zero;
it corresponds to a constant
solution.

The model on Screen 1.4 of Module 6 for the profits of the pizza and
video stores is the system

☞ If n = 2, we often usex
andy for the dependent variables.

x′ = 0.06x+ 0.01y− 0.013

y′ = 0.04x+ 0.05y− 0.013
(6)

with the initial conditions

x(0) = 0.30, y(0) = 0.20 (7)
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The ODEs (6) are nonhomogeneous due to the presence of the free term
−0.013 in each equation. The coordinates of an equilibrium point of a sys-
tem are values of the dependent variables for which all of the derivatives
x′

1, . . . , x′
n are zero. For the system (6) the only equilibrium point is(0.2,0.1).

The translationX = x− 0.2, Y = y− 0.1 transforms the system (6) into the
system☞ A change of variables puts

the equilibrium point at the
origin. X′ = 0.06X + 0.01Y

Y′ = 0.04X + 0.05Y
(8)

which is homogeneous and has the same coefficients as the system (6). In
terms ofX andY, the initial conditions (7) become

X(0) = 0.1, Y(0) = 0.1 (9)

Although we have converted a nonhomogeneous system to a homogeneous
system in this particular case, it isn’t always possible to do so.

It is useful here to introduce matrix notation: it saves space and it ex-☞ Vectors and matrices
appear as bold letters. presses system (4) in the form of a single equation. Letx be the vector with

componentsx1, x2, . . . , xn and letA be the matrix of the coefficients, where☞ A is called thelinear
system matrix, or theJacobian
matrix (often denoted byJ).

aij is the element in theith row and jth column ofA. The derivative of the
vectorx, writtendx/dt or x′, is defined to be the vector with the components
dx1/dt, . . . , dxn/dt. Therefore we can write the system (4) in the compact
form

☞ The vectorx(t) is called
thestateof system (10) at timet.

x =




x1

...
xn


 , x′ =




x′
1
...

x′
n




x′ = Ax, where A =




a11 · · · a1n
...

...
an1 · · · ann


 (10)

In vector notation, the initial conditions (5) become

x(t0) = � (11)

where� is the vector with componentsα1, . . . , αn.

✓ Find the linear system matrix for system (8).

A solution of the initial value problem (10) and (11) is a set of functions

x1 = x1(t)

...

xn = xn(t)

(12)

that satisfy the differential equations and initial conditions. Using our new
notation, if x(t) is the vector whose components arex1(t), . . . , xn(t), then
x = x(t) is a solution of the corresponding vector IVP, (10) and (11). The
systemx′ = Ax is homogeneous, while a nonhomogeneous system would
have the formx′ = Ax + F, whereF is a vector function oft or else a constant
vector.
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◆ Solution Formulas: Eigenvalues and Eigenvectors

To find a solution formula for system (10) let’s look for an exponential solu-
tion of the form

x = veλt (13)

whereλ is a constant andv is a constant vector to be determined. Substituting
x as given by (13) into the ODE (10), we find thatv andλ must satisfy the
algebraic equation

Av = λv (14)

Equation (14) can also be written in the form

(A − λI )v = 0 (15)

where I is the identity matrixand 0 is the zero vectorwith zero for each
component. Equation (15) has nonzero solutions if and only ifλ is a root of
thenth-degree polynomial equation

☞ The determinant of a
matrix is denoted by det.

det(A − λI ) = 0 (16)

called thecharacteristic equationfor the system (10). Such a root is called
aneigenvalueof the matrixA. We will denote the eigenvalues byλ1, . . . , λn.☞ The keys to finding a

solution formula forx′ = Ax are
the eigenvalues and eigenvectors
of A.

For each eigenvalueλi there is a corresponding nonzero solutionv(i), called
aneigenvector. The eigenvectors are not determined uniquely but only up to
an arbitrary multiplicative constant.

For each eigenvalue-eigenvector pair(λi,v(i)) there is a corresponding
vector solutionv(i)eλi t of the ODE (10). If the eigenvaluesλ1, . . . , λn are all
different, then there aren such solutions,

v(1)eλ1t, . . . ,v(n)eλnt

In this case thegeneral solutionof system (10) is the linear combination☞ Formula (17) is called the
general solution formula of
system (10) because every
solution has the form of (17) for
some choice of the constantsCj .
The other way around, every
choice of the constants yields a
solution of system (10).

x = C1v(1)eλ1t + · · · + Cnv(n)eλnt (17)

The arbitrary constantsC1, . . . , Cn can always be chosen to satisfy the initial
conditions (11). If the eigenvalues are not distinct, then the general solution
takes on a slightly different (but similar) form. The texts listed in the refer-
ences give the formulas for this case. If some of the eigenvalues are complex,
then the solution given by formula (17) is complex-valued. However, if all
of the coefficientsaij are real, then the complex eigenvalues and eigenvec-
tors occur in complex conjugate pairs, and it is always possible to express
the solution formula (17) in terms of real-valued functions. Look ahead to
formulas (20) and (21) for a way to accomplish this feat.
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◆ Calculating Eigenvalues and Eigenvectors

Here’s how to find the eigenvalues and eigenvectors of a 2× 2 real matrix

A =
[

a b
c d

]

First define thetraceof A (denoted by trA) to be the suma+ d of the diagonal
entries, and thedeterminantof A (denoted by detA) to be the numberad− bc.
Then the characteristic equation forA is

det(A − λI ) = det

[
a− λ b

c d− λ

]
= λ2 − (a+ d)λ + ad− bc

= λ2 − (trA)λ + detA

= 0

The eigenvalues ofA are the rootsλ1 andλ2 of this quadratic equation. We as-
sumeλ1 �= λ2. For the eigenvalueλ1 we can find a corresponding eigenvector
v(1) by solving the vector equation

Av (1) = λ1v(1)

for v(1). In a similar fashion we can find an eigenvectorv(2) corresponding to
the eigenvalueλ2.

Example: Take a look at the system

x′ = Ax, A =
[

0 1
−2 3

]
, x =

[
x1

x2

]
(18)

Since

trA = 0+ 3 = 3 and detA = 0 · 3− 1 · (−2) = 2

the characteristic equation is

λ2 − (trA)λ + detA = λ2 − 3λ + 2 = 0

The eigenvalues areλ1 = 1 andλ2 = 2. To find an eigenvectorv(1) for λ1,
let’s solve [

0 1
−2 3

]
v(1) = λ1v(1) = v(1)

for v(1). Denoting the components ofv(1) by α andβ, we have[
0 1

−2 3

][
α

β

]
=
[

β

−2α + 3β

]
=
[
α

β

]
This gives two equations forα andβ:

β = α, −2α + 3β = β
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Figure 6.1: Graphs of five solutions x1(t) (left), x2(t) (right) of system (18).

The second equation is equivalent to the first, so we may as well setα = β = 1,
which gives us an eigenvectorv(1). In a similar way for the eigenvalueλ2, we
can find an eigenvectorv(2) with componentsα = 1, β = 2. So the general
solution ofx′ = Ax in this case is

x = C1v(1)eλ1t + C2v(2)eλ2t

= C1

[
1
1

]
et + C2

[
1
2

]
e2t

or in component form

x1 = C1et + C2e2t

x2 = C1et + 2C2e2t

whereC1 andC2 are arbitrary constants.

✓ Find a formula for the solution of system (18) ifx1(0) = 1, x2(0) = −1.
Figure 6.1 shows graphs ofx1(t) andx2(t) wherex1(0) = 1, x2(0) = 0,±0.5,
±1. Which graphs correspond tox1(0) = 1, x2(0) = −1? What happens as
t → +∞? As t → −∞?

◆ Phase Portraits

We can view solutions graphically in several ways. For example, we can draw
plots of x1(t) vs. t, x2(t) vs. t, and so on. These plots are calledcomponent
plots (see Figure 6.1). Alternatively, we can interpret equations (12) as a set
of parametric equations witht as the parameter. Then each specific value of
t corresponds to a set of values forx1, . . . , xn. We can view this set of val-
ues as coordinates of a point inx1x2 · · · xn-space, called thephase space. (If☞ Another term for phase

space isstate space. n = 2 it’s called thephase plane.) For an interval oft-values, the correspond-
ing points form a curve in phase space. This curve is called aphase plot, a
trajectory, or anorbit.
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Phase plots are particularly useful ifn = 2. In this case it is often worth-
while to draw several trajectories starting at different initial points on the same
set of axes. This produces aphase portrait, which gives us the best possible
overall view of the behavior of solutions. Whatever the value ofn, the trajec-
tories of system (10) can never intersect because system (10) is autonomous.

If A in system (10) is a 2× 2 matrix, then it is useful to examine and
classify the various cases that can arise. There aren’t many cases whenn = 2,
but even so these cases give important information about higher-dimensional
linear systems, as well as nonlinear systems (see Chapter 7). We won’t con-
sider here the cases where the two eigenvalues are equal, or where one or both
of them are zero.

A direction field(or vector field) for an autonomous system whenn = 2 is
a field of line segments. The slope of the segment at the point(x1, x2) is x′

2/x′
1.

The trajectory through(x1, x2) is tangent to the segment. An arrowhead on the
segment shows the direction of the flow. See Figures 6.2–6.5 for examples.

Real Eigenvalues
If the eigenvaluesλ1 andλ2 are real, the general solution is

x = C1v(1)eλ1t + C2v(2)eλ2t (19)

whereC1 andC2 are arbitrary real constants.
Let’s first look at the case whereλ1 andλ2 have opposite signs, with

λ1 > 0 andλ2 < 0. The term in formula (19) involvingλ1 dominates as
t → +∞, and the term involvingλ2 dominates ast → −∞. Thus ast → +∞☞ Trajectories starting on

either line att = 0 stay on the
line.

the trajectories approach the line that goes through the origin and has the same
slope asv(1), and ast → −∞, they approach the line that goes through the
origin and has the same slope asv(2). A typical phase portrait for this case is
shown in Figure 6.2. The origin is called asaddle point, and it isunstable,☞ Eigenvalues of opposite

signs imply asaddle. since most solutions move away from the point.
Now suppose thatλ1 andλ2 are both negative, withλ2 < λ1 < 0. The

solution is again given by formula (19), but in this case both terms approach
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Figure 6.2: Phase portrait of a sad-
dle: x′

1 = x1 − x2, x′
2 = −x2.
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Figure 6.3: Phase portrait of a nodal
sink: x1 = −3x1 + x2, x′

2 = −x2.
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zero ast → +∞. However, for large positivet, the factoreλ2t is much smaller
thaneλ1t, so forC1 �= 0 the trajectories approach the origin tangent to the line
with the same slope asv(1), and ifC1 = 0 the trajectory lies on the line with the
same slope asv(2). For large negativet, the term involvingλ2 is the dominant
one and the trajectories approach asymptotes that have the same slope asv(2).
A typical phase portrait for this case is shown in Figure 6.3. The origin attracts
all solutions and is called anasymptotically stable node. It is also called asink
because all nearby orbits get pulled in ast → +∞.☞ Both eigenvalues negative

imply a nodal sink. If both eigenvalues are positive, the situation is similar to when both
eigenvalues are negative, but in this case the direction of motion on the tra-
jectories is reversed. For example, suppose that 0< λ1 < λ2: then the trajec-
tories are unbounded ast → +∞ and asymptotic to lines parallel tov(2). As
t → −∞ the trajectories approach the origin either tangent to the line through
the origin with the same slope asv(1) or lying on the line through the origin
with the same slope asv(2). A typical phase portrait for this case looks like
Figure 6.3 but with the arrows reversed. The origin is anunstable node. It is
also called asourcebecause all orbits (exceptx = 0 itself) flow out and away☞ Both eigenvalues positive

imply a nodal source. from the origin ast increases from−∞.

✓ Find the eigenvalues and eigenvectors of the systems of Figures 6.2
and 6.3 and interpret them in terms of the phase plane portraits.

Complex Eigenvalues
Now suppose that the eigenvalues are complex conjugatesλ1 = α + iβ and
λ2 = α − iβ. The exponential form (13) of a solution remains valid, but usu-
ally it is preferable to use Euler’s formula:

eiβt = cos(βt) + i sin(βt) (20)

This allows us to write the solution in terms of real-valued functions. The
result is

x = C1eαt[acos(βt) − bsin(βt)] + C2eαt[bcos(βt) + asin(βt)] (21)

wherea andb are the real and imaginary parts of the eigenvectorv(1) associ-
ated withλ1, andC1 andC2 are constants. The trajectories are spirals about
the origin. If α > 0, then the spirals grow in magnitude and the origin is
called aspiral sourceor anunstable spiral point. A typical phase portrait in☞ Complex eigenvalues with

nonzero real parts imply aspiral
sinkor aspiral source.

this case looks like Figure 6.4. Ifα < 0, then the spirals approach the origin
ast → +∞, and the origin is called aspiral sinkor anasymptotically stable
spiral point. In both cases the spirals encircle the origin and may be directed
in either the clockwise or counterclockwise direction (but not both directions
in the same system).

Finally, consider the caseλ = ±iβ, whereβ is real and positive. Now
the exponential factors in solution formula (21) are absent so the trajectory
is bounded ast → ±∞, but it does not approach the origin. In fact, the
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trajectories are ellipses centered on the origin (see Figure 6.5), and the origin
is called acenter. It is stable, but not asymptotically stable.☞ Pure imaginary

eigenvalues imply acenter.

✓ Find the eigenvalues of the systems of Figures 6.4 and 6.5, and interpret
them in terms of the phase plane portraits. Why can’t you “see” the eigenvec-
tors in these portraits?

There is one other graphing technique that is often useful. Ifn = 2, ODE
Architect can draw a plot of the solution intx1x2-space. If we project this
curve onto each of the coordinate planes, we obtain the two component plots
and the phase plot (Figure 6.6).

◆ Using ODE Architect to Find Eigenvalues and Eigenvectors

ODE Architect will find equilibrium points of a system and the eigenvalues
and eigenvectors of the Jacobian matrix of an autonomous system at an equi-
librium point. Here are the steps:

� Enter an autonomous system of first-order ODEs.

� Click on the lower left Equilibrium tab; enter a guess for the coordinates
of an equilibrium point.

� The Equil. tab at the lower right will bring up a window with calculated
coordinates of an equilibrium point close to your guess.

� Double click anywhere on the boxed coordinates of an equilibrium in☞ Use this Architect feature
to calculate the eigenvalues,
eigenvectors.

the window (or click on the window’s editing icon) to see the eigenval-
ues, eigenvectors, and the Jacobian matrix.

If you complete these steps for a system of two first-order, autonomous
ODEs, ODE Architect will insert a symbol at the equilibrium point in the
phase plane: An open square for a saddle, a solid dot for a sink, an open dot
for a source, and a plus sign for a center (Figures 6.2–6.5). The symbols can
be edited using the Equilibrium tab on the edit window.
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Figure 6.4: Phase portrait of a spiral
source: x′

1 = x2, x′
2 = x1 + 0.4x2.
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Figure 6.5: Phase portrait of a cen-
ter: x′

1 = x1 + 2x2, x′
2 = −x1 − x2.
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x1 x2

t

Figure 6.6: Solution curve of x′
1 = x2, x′

2 = −100.25x1 + x2, x1(0) = 1, x2(0) = 1,
the two component curves, and the trajectory in the x1x2-phase plane.

✓ Use ODE Architect to find the eigenvalues and eigenvectors of the sys-
tems in Figures 6.2–6.5.

◆ Separatrices

A trajectory� of a planar autonomous system is aseparatrixif the long-term
behavior of trajectories on one side of� is quite different from the behavior
of those on the other side. Take a look at the foursaddle separatricesin Fig-
ure 6.2, each of which is parallel to an eigenvector of the system matrix. The
two separatrices that approach the saddle point ast increases are thestable
separatrices, and the two that leave are theunstable separatrices.

◆ Parameter Movies

The eigenvalues of a 2× 2 matrixA depend on the values of trA and detA,
and the behavior of the trajectories ofx′ = Ax depends very much on the
eigenvalues. So it makes sense to see what happens to trajectories as we vary
the values of trA and detA. When we do this varying, we can make the
eigenvalues change sign, or move into the complex plane, or become equal.
As the changes occur the behavior of the trajectories has to change as well.
Take a look at the “Parameter Movies” part of Module 6 for some surprising
views of the changing phase plane portraits as we follow along a path in the
parameter plane of trA and detA.
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Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar
autonomous linear system with equilibrium point at the origin. What can you
say about the eigenvalues of the system matrixA (e.g., are they real, complex,
positive)? Sketch by hand any straight line trajectories. What can you say
about the eigenvectors ofA?
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2. What does the phase portrait ofx′ = Ax look like if A is a 2× 2 matrix with
one eigenvalue zero and the other nonzero? How many equilibrium points are
there? Include portraits of specific examples.

3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs
to illustrate solution curves, component curves, trajectories, and phase-plane
portraits of the systemsx′ = Ax, whereA is a 2× 2 matrix of constants. List
eigenvalues and eigenvectors ofA. Include examples of the following types
of equilibrium points:

� Saddle

� Nodal sink

� Nodal source

� Spiral sink

� Spiral source

� Center

� Eigenvalues ofA are equal and negative
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Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., sea-
sonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey’s and Cue’s profits on Screen 1.4 in Mod-
ule 6 is

x′ = 0.06x + 0.01y− 0.013

y′ = 0.04x + 0.05y− 0.013
(22)

Let’s introduce a periodic fluctuation in the coefficient of x in the first ODE
and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena.
We’ll use sin(2πt) so that the fluctuations have a period of one time unit. We
will also include a variable amplitude parameter a so that the intensity of the
fluctuations can be easily controlled. We have the modified system

x′ = 0.06

(
1+ 1

2
asin(2πt)

)
x+ 0.01y− 0.013

y′ = 0.04x + 0.05
(

1+ 3
10

asin(2πt)

)
y− 0.013

(23)

Note that if a = 0, we recover system (22), and that as a increases the ampli-
tude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving sin(2πt) in the context of Diffey’s and Cue’s
businesses. Use ODE Architect to solve the system (23) subject to the initial
conditionsx(0) = 0.3, y(0) = 0.2 for a = 1. Use the time interval 0≤ t ≤ 10,
or an even longer interval. Plotx vs. t, y vs. t, andy vs.x. Compare the plots
with the corresponding plots for the system (22). What is the effect of the
fluctuating coefficients on the solution? Repeat with the same initial data, but
sweepinga from 0 to 5 in 11 steps. What is the effect of increasinga on the
solution?
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2. Use ODE Architect to solve the system (23) subject to the initial conditions
x(0) = 0.25, y(0) = 0 for a = 3. Draw a plot ofy vs.x only. Be sure to use a
sufficiently larget-interval to make clear the ultimate behavior of the solution.
Repeat using the initial conditionsx(0) = 0.2, y(0) = −0.2. Explain what
you see.

3. For the two initial conditions in Problem 2 you should have found solu-
tions that behave quite differently. Consider initial points on the line joining
(0.25,0) and (0.2,−0.2). For a = 3, estimate the coordinates of the point
where the solution changes from one type of behavior to the other.
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Exploration 6.3. Control of Interconnected Water Tanks

Consider two interconnected tanks containing salt water. Initially Tank 1 con-
tains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and
5 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing p1 oz of salt per gal flows into Tank 1 at a rate of
2 gal/min. The mixture in Tank 1 flows out at a rate of 6 gal/min, of which
half goes into Tank 2 and half leaves the system.

Water containing p2 oz of salt per gal flows into Tank 2 at a rate of
3 gal/min. The mixture in Tank 2 flows out at a rate of 6 gal/min: 4 gal/min
goes to Tank 1, and the rest leaves the system.

1. Draw a diagram showing the tank system. Does the amount of water in each
tank remain the same during this flow process? Explain. Ifq1(t) andq2(t)
are the amounts of salt (in oz) in the respective tanks at timet, show that they
satisfy the system of differential equations:

q′
1 = 2p1 − 6

5q1 + q2

q′
2 = 3p2 + 3

5q1 − 3
2q2

What are the initial conditions associated with this system of ODEs?

2. Suppose thatp1 = 1 oz/gal andp2 = 1 oz/gal. Solve the IVP, plotq1(t) vs. t,
and estimate the limiting valueq∗

1 thatq1(t) approaches after a long time. In
a similar way estimate the limiting valueq∗

2 for q2(t). Repeat for your own
initial conditions, but remember thatq1(0) andq2(0) must be nonnegative.
How areq∗

1 andq∗
2 affected by changes in the initial conditions? Now use

ODE Architect to findq∗
1 andq∗

2. [Hint: Use the Equilibrium tab.] Is the
equilibrium point a source or a sink? A node, saddle, spiral, or center?
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3. The operator of this system (you) can control it by adjusting the input param-
etersp1 and p2. Note thatq∗

1 andq∗
2 depend onp1 and p2. Find values ofp1

andp2 so thatq∗
1 = q∗

2. Can you find values ofp1 and p2 so thatq∗
1 = 1.5q∗

2?
So thatq∗

2 = 1.5q∗
1?

4. Let c∗
1 andc∗

2 be the limiting concentrations of salt in each tank. Expressc∗
1

andc∗
2 in terms ofq∗

1 andq∗
2, respectively. Findp1 and p2, if possible, so as

to achieve each of the following results:
(a) c∗

1 = c∗
2 (b) c∗

1 = 1.5c∗
2 (c) c∗

2 = 1.5c∗
1

Finally, consider all possible (nonnegative) values ofp1 andp2. Describe
the set of limiting concentrationsc∗

1 andc∗
2 that can be obtained by adjusting

p1 and p2.
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Exploration 6.4. Three Interconnected Tanks

Consider three interconnected tanks containing salt water. Initially Tanks 1
and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially
contains 6 oz of salt.☞ Take a look at

Chapter 8 for a way to
diagram this
“compartment” model.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of
1 gal/min. The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min.
Furthermore, the mixture in Tank 1 is discharged into the drain at a rate of
2 gal/min. Water containing 1 oz of salt per gal flows into Tank 2 at a rate of
2 gal/min. The mixture in Tank 2 flows into Tank 3 at a rate of r +1 gal/min and
also flows back into Tank 1 at a rate of 1 gal/min. The mixture in Tank 3 flows
into Tank 1 at a rate of r gal/min, and down the drain at a rate of 1 gal/min.

1. Draw a diagram that depicts the tank system. Does the amount of water in
each tank remain constant during the process? Show that the flow process is
modeled by the following system of equations, whereq1(t), q2(t), andq3(t)
are the amounts of salt (in oz) in the respective tanks at timet:

q′
1 = 2− r + 2

10
q1 + 1

10
q2 + r

15
q3

q′
2 = 2+ r

10
q1 − r + 2

10
q2

q′
3 = r + 1

10
q2 − r + 1

15
q3

What are the corresponding initial conditions?

2. Let r = 1, and use ODE Architect to plotq1 vs. t, q2 vs. t, andq3 vs. t for
the IVP in Problem 1. Estimate the limiting value of the amount of salt in
each tank after a long time. Now suppose that the flow rater is increased to
4 gal/min. What effect do you think this will have on the limiting values for
q1, q2, andq3? Check your intuition with ODE Architect. What do you think
will happen to the limiting values ifr is increased further? For each value of
r use ODE Architect to find the limiting values forq1, q2, andq3.
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3. Although the two sets of graphs in Problem 2 may look similar, they’re ac-

☞ Use ODE Architect to find
the eigenvalues.

tually slightly different. Calculate the eigenvalues of the coefficient matrix
whenr = 1 and whenr = 4. There is a certain “critical” valuer = r0 between
1 and 4 where complex eigenvalues first occur. Determiner0 to two decimal
places.

4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscilla-
tory behavior characteristic of the sine and cosine functions is not apparent in
your graphs from Problem 2 forr = 4. Devise a plan that will enable you to
construct plots showing the oscillatory part of the solution forr = 4. Then
execute your plan to make sure that it is effective.
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Exploration 6.5. Small Motions of a Double Pendulum; Coupled
Springs

Another physical system with two degrees of freedom is the planar double
pendulum. This consists of two rods of length l1 and l2 and two masses m1

and m2, all attached together so that motions are confined to a vertical plane.
Here we’ll investigate motions for which the pendulum system doesn’t move
too far from its stable equilibrium position in which both rods are hanging
vertically downward. We’ll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A

θ1 m1

m2

l1

l2

θ2

derivation of the nonlinear equations in terms of the angles θ1(t) and θ2(t)
that govern the oscillations of the system is given in Chapter 7 (beginning on
page 126). The equations of interest here are the linearized ODEs in θ1 and θ2

where both of these angles are required to be small:

l1θ′′
1 + m2

m1 + m2
l2θ′′

2 + gθ1 = 0

l2θ
′′
2 + l1θ

′′
1 + gθ2 = 0

For small values of θ1, θ′
1, θ2, and θ′

2 these ODEs are obtained by linearizing
ODEs (19) and (20) on page 127.

1. Consider the special case wherem1 = m2 = m and l1 = l2 = l , and define
g/ l = ω2

0. Write the equations above as a system of four first-order equations.
Use ODE Architect to generate motions for different values ofω0. Experiment
with different initial conditions. Try to visualize the motions of the pendulum
system that correspond to your solutions. Then use the model-based anima-
tion tool in ODE Architect and watch the animated double pendulums gyrate
as your initial value problems are solved.
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2. Assumeω2
0 = 10 in Problem 1. Can you find in-phase and out-of-phase os-

cillations that are analogous to those of the coupled mass-spring system? De-
termine the relationships between the initial conditionsθ1(0) andθ2(0) that
are needed to produce these motions. Plotθ2 againstθ1 for these motions.
Then changeθ1(0) or θ2(0) to get a motion which is neither in-phase nor out-
of-phase. Overlay this graph on the first plot. Explain what you see. Use
the model-based animation feature in ODE Architect to help you “see” the
in-phase and out-of-phase motions, and those that are neither. Describe what
you see.

3. Show that the linearized equations for the double pendulum in Problem 2 are
equivalent to those for a particular coupled mass-spring system. Find the cor-
responding values of (or constraints on) the mass-spring parametersm1, m2,
k1, andk2. Does this connection extend to other double-pendulum parame-
ter values besides those in Problems 1 and 2? If so, find the relationships
between the parameters of the corresponding systems. Use the model-based
animation feature in ODE Architect and watch the springs vibrate and the
double pendulum gyrate. Describe what you see.
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Nonlinear Systems

w1 w2
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Angular velocity: twenty-four ways to spin a book.

Overview While many natural processes can be modeled by linear systems of ODEs, others
require nonlinear systems. Fortunately, some of the ideas used to understand lin-
ear systems can be modified to apply to nonlinear systems. In particular, state (or
phase) spaces and equilibrium solutions (as well as eigenvalues and eigenvectors)
continue to play a key role in understanding the long-term behavior of solutions.
You will also see some new phenomena that occur only in nonlinear systems. We
restrict our attention to autonomous equations, that is, equations in which time
does not explicitly appear in the rate functions.

Key words Nonlinear systems of differential equations; linearization; direction fields; state
(phase) space; equilibrium points; Jacobian matrices; eigenvalues; separatrices;
Hopf bifurcations; limit cycles; predator-prey; van der Pol system; saxophone;
spinning bodies; conservative systems; integrals of motion; angular velocity; New-
ton’s second law; nonlinear double pendulum

See also Chapter 6 for background on linear systems and Chapters 8–10 and 12 for more
examples of nonlinear systems.
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◆ Linear vs. Nonlinear

In modeling a dynamical process with ODEs we aim for a model that is both
reasonably accurate and solvable. By the latter we mean that there are either
explict solution formulas that reveal how solutions behave, or reliable numeri-
cal solvers for approximating solutions. Constant-coefficient linear ODEs and
linear systems have explicit solution formulas (see Chapters 4 and 6), and that
is one reason linearity is widely assumed in modeling. However, nonlinearity
is an essential feature of many dynamical processes, but explicit solution for-
mulas for nonlinear ODEs are rare. So for nonlinear systems we turn to the
alternative approaches, and that’s what this chapter is about.

◆ The Geometry of Nonlinear Systems

Let’s start with thelinear system of ODEs that models the motion of a cer-
tain viscously damped spring-mass system that obeys Hooke’s Law for the
displacementx of a unit mass from equilibrium:

x′ = y, y′ = −x− 0.1y (1)

In Chapter 4 we saw that the equivalent linear second-order ODE,x′′ +
0.1x′ + x = 0, has an explicit solution formula, which we can use to deter-
mine the behavior of solutions and of trajectories in thexy-phase plane.

Now let’s suppose that the Hooke’s-law spring is replaced by a stiffening
spring, which can be modeled by replacing the Hooke’s-law restoring force
−x in system (1) with the nonlinear restoring force−x − x3. We obtain the
system

x′ = y, y′ = −x− x3 − 0.1y (2)

As in the linear system (1), the nonlinear system (2) defines avector(or di-
rection) field in the xy-state(or phase) plane. The field lines are tangent to
thetrajectories(or orbits) and point in the direction of increasing time.

There are no solution formulas for system (2), so we turn to direction
fields and ODE Architect for visual clues to solution behavior. As you can
see from Figure 7.1, the graphs generated by ODE Architect tell us that the
trajectories of both systems spiral into theequilibrium pointat the origin as☞ The equilibrium points of

a system correspond to the
constant solutions, that is, to the
points where all the rate
functions of the system are zero.

t → +∞, even though the shapes of the trajectories differ. The origin corre-
sponds to the constant solutionx = 0, y = 0, which is called aspiral sinkfor
each system because of the spiraling nature of the trajectories and because the
trajectories, like water in a draining sink, are “pulled” into the origin with the
advance of time. This is an indication oflong-termor asymptoticbehavior.
Note that in this case the nonlinearity does not affect long-term behavior, but
clearly does affect short-term behavior.
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✓ “Check” your understanding by answering these questions: Do the sys-
tems (1) and (2) have any equilibrium points other than the origin? How do
the corresponding springs and masses behave as time increases? Why does
the−x3 term seem to push orbits toward they-axis if |x| ≥ 1, but not have
much effect if|x| is close to zero?

◆ Linearization

If we start with a nonlinear system such as (2), we can often uselinear ap-
proximationsto help us understand some features of its solutions. Our ap-
proximations will give us a corresponding linear system and we can apply
what we know about that linear system to try to understand the nonlinear sys-
tem. In particular, we will be able to verify our earlier conclusions about the
long-term behavior of the nonlinear spring-mass system (2).

The nonlinearity of system (2) comes from the−x3 term in the rate func-
tion g(x, y) = −x − x3 − 0.1y. In calculus you may have seen the following
formula for the linear approximation of the functiong(x, y) near the point
(x0, y0):

☞ This is afinite Taylor
seriesapproximation tog(x, y).

g(x, y) ≈ g(x0, y0) + ∂g
∂x

(x0, y0)(x− x0) + ∂g
∂y

(x0, y0)(y− y0) (3)

However,g(x0, y0) will always be zero at an equilibrium point (do you see
why?), so formula (3) simplifies in this case to

g(x, y) ≈ ∂g
∂x

(x0, y0)(x− x0) + ∂g
∂y

(x0, y0)(y− y0) (4)

Since we’re interested in long-term behavior and the trajectories of system (2)
seem to be heading toward the origin, we want to use the equilibrium point
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Figure 7.1: Trajectories of both systems have the same long-term, spiral-sink
behavior, but behavior differs in the short-term.
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Figure 7.2: Near the equilibrium at the origin trajectories and tx-component
curves of nonlinear system (2) and its linearization (1) are nearly look-alikes.

(x0, y0) = (0,0) in formula (4). Near the origin, the rate function for our
nonlinear spring can be approximated by

g(x, y) ≈ −x− 0.1y

since∂g/∂x = −1 and∂g/∂y = −0.1 at x0 = 0, y0 = 0. Therefore the non-
linear system (2) reduces to thelinearized system(1). You can see the ap-
proximation when the phase portraits are overlaid. The trajectories andtx-
component curves of both systems, issuing from a common initial point close
to the origin, are shown in Figure 7.2. The linear approximation is pretty☞ Linear and nonlinear

look-alikes. good because the nonlinearity−x3 is small nearx = 0. Take another look at
Figure 7.1; the linear approximation isnot very good when|x| > 1.

✓ How good an approximation to system (2) is the linearized system (1) if
the initial point of a trajectory is far away from the origin? Explain what you
mean by “good” and “far away.”

In matrix notation, linear system (1) takes the form[
x
y

]′
=
[

0 1
−1 −0.1

][
x
y

]
(5)

so the characteristic equation of the system matrix isλ2 + 0.1λ + 1 = 0. The
matrix has eigenvaluesλ = (−0.1± i

√
3.99)/2, making(0,0) a spiral sink

(due to the negative real part of both eigenvalues). This supports our earlier☞ Look back at Chapter 6 for
more on complex eigenvalues
and spiral sinks.

conclusion that was based on the computer-generated pictures in Figure 7.2.
The addition of a nonlinear term to a linear system (in this example, a cubic
nonlinearity) does not change the stability of the equilibrium point (a sink in
this case) or the spiraling nature of the trajectories (suggested by the complex
eigenvalues).
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The linear and nonlinear trajectories and thetx-components shown in Fig-
ure 7.2 look pretty much alike. This is often the case for a system

x′ = F(x) (6)

and itslinearization☞ The pointx0 is an
equilibrium point ofx′ = F(x) if
F(x0) = 0. x′ = A(x − x0) (7)

at an equilibrium pointx0. Let’s assume that the dependent vector variable
x hasn componentsx1, . . . xn, that F1(x), . . . , Fn(x) are the components of
F(x), and that these components are at least twice continuously differentiable
functions. Then then× n constant matrixA in system (7) is the matrix of the
first partial derivatives of the components ofF(x) with respect to the compo-
nents ofx, all evaluated atx0:

A =




∂F1

∂x1
· · · ∂F1

∂xn
...

...
∂Fn

∂x1
· · · ∂Fn

∂xn




x=x0

A is called theJacobian matrixof F atx0, and is often denoted byJ or J(x0).
As an example, look back at system (1) and its linearization, system (2) or
system (5).

It is known that if none of the eigenvalues of the Jacobian matrix at an☞ Here’s why linearization is
so widely used. equilibrium point is zero or pure imaginary, then close to the equilibrium point

the trajectories and component curves of systems (6) and (7) look alike. We
can use ODE Architect to find equilibrium points, calculate Jacobian matrices
and their eigenvalues, and so, check out whether the eigenvalues meet the
conditions just stated. Ifn = 2, we can apply the vocabulary of planar linear
systems from Chapter 6 to nonlinear systems. We can talk about aspiral sink,
anodal source, asaddle point, etc. ODE Architect uses a solid dot for a sink,
an open dot for a source, a plus sign for a center, and an open square for a
saddle.

What happens when, say, the matrixA doeshave pure imaginary eigen-
values? Then all bets are off, as the following example shows.

Start with the linear system

x′ = y

y′ = −x

The system matrix has the pure imaginary eigenvalues±i, making the origin
a center. Now give the system a nonlinear perturbation to get

x′ = y− x3

y′ = −x
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Figure 7.3: Nonlinear terms convert a linear center to a nonlinear sink.

By picturing the direction field defined by this system, we can see that each
vector has been nudged slightly inward, toward the origin. This causes so-☞ The behavior of the

linearized system does not
always accurately predict the
behavior of the nonlinear system.

lutions to spiral inward, making(0,0) a spiral sink. Figure 7.3 shows tra-
jectories from the original linear system on the left, and a trajectory of the
nonlinear system on the right, spiraling inward. Now it should be clear why
we had to exclude pure imaginary eigenvalues!

✓ What happens if you perturb the linear system by adding thex3 term,
instead of subtracting? What about the systemx′ = y− x3, y′ = −x+ y3?

◆ Separatrices and Saddle Points

A linear saddle point has two trajectories that leave the point (as time in-
creases from−∞) along a straight line in the direction of an eigenvector.
Another two trajectories approach the point (as time increases to+∞) along
a straight line in the direction of an eigenvector. These four trajectories are
calledsaddle separatricesbecause they divide the neighborhood of the sad-
dle point into regions of quite different long-term trajectory behavior. The left
plot in Figure 7.4 shows the four separatrices along thex- andy- axes for the
linear system

x′ = x, y′ = −y (8)

with a saddle point at the origin. The two that leave the origin ast increases
are theunstable separatrices, and the two that enter the origin are thestable☞ See Chapters 10 and 12 for

more on separatrices. separatrices.
If we add some higher-order nonlinear terms to a linear saddle-point sys-

tem, the separatrices persist but their shapes may change. They still divide
a neighborhood of the equilibrium point into regions of differing long-term
behavior. And, most importantly, they still leave or approach the equilibrium
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(b) Trajectories of System (9)
Figure 7.4: Saddle separatrices lie along the axes in (a); two of the separatri-
ces are bent to the right by a nonlinearity in (b).

point tangent to eigenvectors of the linearized system. The right plot in Fig-
ure 7.4 suggests all this for the system (8) with a nonlinear term tacked on:

x′ = x− y2, y′ = −y (9)

Note how the nonlinearity bends two of the separatrices.

◆ Behavior of Solutions Away from Equilibrium Points

While we can use linearization in most cases to determine the long-term be-
havior of solutions near an equilibrium point, it may not be a good method
for studying the behavior of solutions “far away” from the equilibrium point.
Consider, for example, the spider-fly system of Module 7:

S′ = −4S+ 2SF, F ′ = 3
(

1− F
5

)
F − 2SF

whereS is a population of spiders preying onF, a population of flies (all
measured in thousands). This nonlinear system has several equilibrium points,
one of which is atp∗ = (0.9,2).

Take a look at the graphics windows in Experiment 2 of “The Spider and
Fly” (Screen 1.4). The trajectories of the linearized system that are close top∗

approximate well those of the nonlinear system. However, trajectories of the
linearized system that are not near the equilibrium point diverge substantially☞ The nonlinear terms are

critical in determining trajectory
behavior far away from an
equilibrium point.

from those of the nonlinear system, and may even venture into a region of the
state space where the population of spiders is negative!

✓ Look at the Library file “Mutualism: Symbiotic Interactions” in the
“Population Models” folder and investigate the long-term behavior of solu-
tion curves by using linear approximations near equilibrium points.



122 Chapter 7

x-y

-3 -1.5 0 1.5 3

x

-2

-1

0

1

2

y

An attracting spiral sink (a = −1).

x-y

-3 -1.5 0 1.5 3

x

-2

-1

0

1

2

y

A repelling spiral source and attract-
ing limit cycle (a = 1).

Figure 7.5: The system, x′ = y+ ax− x3, y′ = −x, undergoes a Hopf bifurcation
to an attracting limit cycle as the parameter transits the value a = 0.

◆ Bifurcation to a Limit Cycle

The model equations for an electrical circuit (thevan der Pol circuit) contain-
ing a nonlinear resistor, an inductor, and a capacitor, all in series, are☞ If you are not “into”

nonlinear electrical circuits,
ignore the modeling here and just
consider ODE (10) as a particular
nonlinear system.

x′ = y+ ax− x3, y′ = −x (10)

wherex is the current in the circuit andy is the voltage drop across the ca-
pacitor. The voltage drop across the nonlinear resistor isax− x3, wherea is a
parameter. The characteristics of the resistor, and thus the performance of the
circuit, change when we change the value of this parameter. Let’s look at the☞ Current, voltages and time

are scaled to dimensionless
quantities in system (10).

phase portrait and the corresponding eigenvalues of the linearization of this
system at the equilibrium point(0,0) for different values ofa.

As a increases from−1 to 1, the eigenvalues of the Jacobian matrix of
system (10) at the origin change from complex numbers with negative real
parts to complex numbers with positive real parts, but ata = 0 they are pure
imaginary. The circuit’s behavior changes asa increases, and it changes in a
qualitative way ata = 0. The phase portrait shows a spiral sink at(0,0) for
a ≤ 0, then a spiral source fora > 0. Further, the trajectories near the source
spiral out to a closed curve that is itself a trajectory. Our electrical circuit
has gone from one where current and voltage die out to one that achieves a
continuing oscillation described by a periodic steady state. A change like this
in the behavior of a model at a particular value of a parameter is called aHopf
bifurcation. Figure 7.5 shows the changes in a trajectory of system (10) due
to the bifurcation that occurs whena is increased through zero.

✓ Find the Jacobian matrix of system (10) at the origin and calculate its
eigenvalues in terms of the parametera. Write out the linearized version of
system (10). Check your work by using ODE Architect’s equilibrium, Jaco-
bian, and eigenvalue capabilities.
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The closed solution curve in Figure 7.5 that represents a periodic steady
state is called anattracting limit cyclebecause all nearby trajectories spiral☞ A limit cycle is

exclusively a nonlinear
phenomenon. Any cycle in a
linear autonomous system is
always part of a family of cycles,
none of which are limit cycles.

into it as time increases. As the parameter value changes in a Hopf bifurcation,
you can observe an equilibrium point that is a spiral sink changing into a
source with nearby orbits spiralling onto the limit cycle. You’ll investigate this
kind of phenomenon when you use ODE Architect to investigate the model
system in the “Saxophone” submodule of Module 7.

◆ Higher Dimensions

So far we have looked at systems of nonlinear ODEs involving only two state
variables. However it is not uncommon for a model to have a system with
more than two state variables. Fortunately our ideas extend in a natural way
to cover these situations. Analysis by linear approximation may still work
in these cases, and ODE Architect can always be used to find equilibrium
points, Jacobian matrices, and eigenvalues in any dimension. See for example
Problem 3 in Exploration 7.3.

The chapter cover figure shows trajectories of a system with three state
variables; this system describes the angular velocity of a spinning body. The
“Spinning Bodies” submodule of Module 7 and Problem 1 in Exploration 7.3
model the rotational motion of an object thrown into space; this model is
described below.

✓ How could you visualize the trajectories of a system of four equations?

◆ Spinning Bodies: Stability of Steady Rotations

Suppose that a rigid body is undergoing a steady rotation about an axisL
through its center of mass. In a plane perpendicular toL let θ be the angle
swept out by a point in the body, but not on the axis. Steady rotations about
L are characterized by the fact thatθ′ = dθ/dt = constant, for all time. In☞ As we shall see, not all

axesL will support steady
rotations.

mechanics, it is useful to describe such steady rotations by a vector! parallel
to L whose magnitude|!| = dθ/dt is constant. Notice that−! in this case
also corresponds to a steady spin aboutL , but in the opposite direction. The
vector! is called theangular velocity, and for steady rotations we see that!

is a constant vector. The angular velocity vector! can also be defined for an
unsteady rotation of the body, but in this case!(t) is not a constant vector.

It turns out that in a uniform force field (such as the gravitational field
near the earth’s surface), the differential equations for the rotational motion of
the body about its center of mass decouple from the ODEs for the translational
motion of the center of mass. How shall we track the rotational motion of the
body? For each rigid body there is a natural triple of orthogonal axesL 1, L2,
andL3 (calledbody axes) which, as it turns out, makes it relatively easy to
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model the rotational motion by a system of ODEs. To define the body axes we
need theinertia tensorI of the body. Given a triple of orthogonal axes through
the body’s center of mass, put an orientation on each axis and label them to
form aright-handed frame(i.e., it follow the right-hand rule). In that frame,I
is represented by a 3× 3 positive definite matrix. Body axes are just the frame☞ A matrix A is positive

definite if it is symmetric (i.e.,
AT = A) and all of its
eigenvalues are positive.

for which the representation ofI is a diagonal matrix with the positive entries
I1, I2, and I3 along the diagonal. These valuesI1, I2, and I3 are called the
principal moments of inertiaof the body. Note thatIk is the moment of inertia
about the principal axisL k, for k = 1, 2, 3. If a body has uniform density and
an axisL such that turning the body 180◦ about that axis brings the body into
coincidence with itself again, then that axisL is a principal axis.

Let’s say that a book has uniform density (not quite true, but nearly so).
Then the three axes of rotational symmetry through the center of mass are
the principal axes:L3, theshort axisthrough the center of the book’s front☞ Described graphically in

Module 7. and back covers;L 2, the long axisparallel to the book’s spine; andL 1, the
intermediate axiswhich is perpendicular toL2 andL3. For a tennis racket,
the body axisL 2 is obvious on geometrical grounds. The other axesL 1 and
L3 are a bit more difficult to discern, but they are given in the margin sketch.

Throw a tennis racket up into the air and watch its gyrations. Wrap a

>

U

y L2

L1

L3

rubber band around a book, toss it into the air, and look at its spinning behav-
ior. Now try to get the racket or the book to spin steadily about each of three
perpendicular body axesL 1, L2, andL3. Not so hard to do about two of the
axes—but nearly impossible about the third. Why is that? Let’s construct a
model for the rotation of the body and answer this question.

Let’s confine our attention to the body’s angular motion while aloft, not its☞ A complete derivation of
the model ODEs can be found in
the first of the listed references.

vertical motion. Let’s ignore air resistance. The key parameters that influence
the angular motion are the principal inertiasI1, I2, I3 about the respective
body axesL 1, L2, L3. Let ω1, ω2, andω3 be the components of the vector
! along the body axesL 1, L2, andL3. There is an analogue of Newton’s
second law applied to the body which involves the angular velocity vector
!. The components of the rotational equation of motion in the body axes
frame are given byI1ω

′
1 = ( I2 − I3)ω2ω3, I2ω

′
2 = ( I3 − I1)ω1ω3, I3ω

′
3 =

( I1 − I2)ω1ω2.
Dividing by the principal inertias, we have the nonlinear system

ω′
1 = I2 − I3

I1
ω2ω3

ω′
2 = I3 − I1

I2
ω1ω3

ω′
3 = I1 − I2

I3
ω1ω2

(11)

Let’s measure angles in radians and time in seconds, so that eachωi has units
of radians per second.

First, we note that for any constantα �= 0, the equilibrium point! =☞ Pure steady rotations are
possible about any body axis. (α,0,0) of system (11) represents a pure steady rotation (or spinning motion)
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about the first body axisL1 with angular velocityα. The equilibrium point
(−α,0,0) represents steady rotation aboutL 1 in the opposite direction. Sim-
ilar statements are true for the equilibrium points! = (0, α,0) and(0,0, α).

Now thekinetic energy of angular rotationis given by

K E(ω1, ω2, ω3) = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
The value ofK E stays fixed on an orbit of system (11) since

d(K E)

dt
= I1ω1ω

′
1 + I2ω2ω

′
2 + I3ω3ω

′
3

= ( I2 − I3)ω1ω2ω3 + ( I3 − I1)ω1ω2ω3 + ( I1 − I2)ω1ω2ω3 = 0

So system (11) isconservativeandK E is anintegral. The ellipsoidal integral☞ A system of autonomous
ODEs isconservativeif there is a
function F of the dependent
variables whose value is constant
along each orbit (i.e., trajectory),
but varies from one orbit to
another.F is said to be an
integral of motionof the system.

surfaceK E = C, whereC is a positive constant, is called aninertial ellipsoid
for system (11). Note that any orbit of (11) that starts on one of the ellipsoids
stays on the ellipsoid, and orbits on that ellipsoid share the same value ofK E.

✓ Show that the functions

K = I3 − I1

I2
ω2

1 − I2 − I3

I1
ω2

2

and

M = I1 − I2

I3
ω2

1 − I2 − I3

I1
ω2

3

are also integrals for system (11). Describe the surfacesK = const., M =
const.

Let’s put in some numbers forI1, I2, and I3 and see what happens. Set
I1 = 2, I2 = 1, I3 = 3. Then system (11) becomes

ω′
1 = −ω2ω3

ω′
2 = ω1ω3

ω′
3 = 1

3
ω1ω2

(12)

With the given values forI1, I2, I3 we have the integral

K E = 1
2

(
2ω2

1 + ω2
2 + 3ω2

3

)
(13)

The left graph in Figure 7.6, which is also the chapter cover figure, shows☞ Body axisL1 is parallel to
theω1-axis,L2 to theω2-axis,
andL3 to theω3-axis in
Figure 7.6.

the inertial ellipsoidK E = 12 and twenty-four orbits on the surface. The
geometry of the orbits indicates that if the body is started spinning about an
axis very near the body axesL 2 or L3, then the body continues to spin almost
steadily about those body axes. Attempting to spin the body about the inter-
mediate body axisL 1 is another matter. Any attempt to spin the body about
theL1 body axis leads to strange gyrations. Note in Figure 7.6 that each of the
four trajectories that starts near the equilibrium point(

√
12,0,0) where the
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Figure 7.6: Twenty-four trajectories on the inertial ellipsoid K E = 12 (left);
head-on view from the ω1-axis (right) shows a saddle point on the ellipsoid.

ω1-axis pierces the ellipsoid goes back near the antipodal point (and reverses
its direction of rotation) then returns in an endlessly repeating periodic path.
This corresponds to unstable gyrations near theω1-axis.

✓ Match up the trajectories in Figure 7.6 with actual book rotations. Put
a rubber band around a book, flip the book into the air, and check out the
rotations. Do the projected trajectories in the right graph of Figure 7.6 really
terminate, or is something else going on?

◆ The Planar Double Pendulum

The planar double pendulum is an interesting physical system with two de-☞ This is pretty advanced
material here, so feel free to skip
the text and go directly to the
“Double Pendulum Movies”. Just
click on the ODE Architect
library, open the “Physical
Models” folder and the “The
Nonlinear Double Pendulum”
file, and create chaos!

grees of freedom. It consists of two rods of lengthsl1 andl2, and two masses,
specified bym1 andm2, attached together so that the rods are constrained to
oscillate in a vertical plane. We’ll neglect effects of damping in this system.

The governing equations are most conveniently written in terms of the
anglesθ1(t) andθ2(t) shown in Figure 7.7. One way to obtain the equations
of motion is by applying Newton’s second law to the motions of the masses.
First we’ll consider massm2 and the component in the direction shown by the
unit vectoru3 in Figure 7.7. Define a coordinate system centered at massm1

and rotating with angular velocityΩ = (dθ1/dt)k, wherek is the unit vector
normal to the plane of motion. If̂a, v̂, andr̂ denote the acceleration, velocity,
and position ofm2 with respect to the rotating coordinate system, then the
accelerationa with respect to a coordinate system at rest is known to be☞ The “×” here denotes the

vector cross product.

a = â+ dΩ
dt

× r̂ + 2Ω × v̂ + Ω × (Ω × r̂ ) (14)

For our configuration it follows that̂r is given by

r̂ = −[l1 sin(θ2 − θ1)]u3 + [l2 + l1 cos(θ2 − θ1)]u4 (15)
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with the unit vectoru4 in the direction shown in Figure 7.7. Since the only
forces acting are gravity and the tensile forces in the rods, theu3-component
of F = m2a in combination with Eqs. (14) and (15) gives

☞ The Library file, “The
Nonlinear Double Pendulum”
uses different symbols forθ1, θ′

1,
θ2, andθ′

2.

m2l2(θ2 − θ1)
′′ + m2[l2 + l1 cos(θ2 − θ1)]θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1) = −m2gsinθ2 (16)

Similarly, the component of Newton’s law in the direction of the unit vector
u1 is given by

m2l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2 − m2l2(θ

′
2)

2 sin(θ2 − θ1)

= −m2gsinθ1 − f2 sin(θ2 − θ1) (17)

where f2 is the magnitude of the tensile force in the rodl2. Equations (16)
and (17) will provide the system governing the motion, once the quantityf2 is
determined. An equation forf2 is found from theu1-component of Newton’s
law applied to the massm1:

m1l1θ
′′
1 = −m1gsinθ1 + f2 sin(θ2 − θ1) (18)

Eliminating f2 between Eqs. (17) and (18) and simplifying Eq. (16) slightly,
we obtain the governing nonlinear system of second-order ODEs for the un-
damped planar double pendulum:

☞ Before equations (19)
and (20) can be solved by the
Tool, they need to be converted to
a normalized system of first order
ODEs.

(m1 + m2)l1θ
′′
1 + m2l2 cos(θ2 − θ1)θ

′′
2

− m2l2(θ
′
2)

2 sin(θ2 − θ1) + (m1 + m2)gsinθ1 = 0 (19)

m2l2θ
′′
2 + m2l1 cos(θ2 − θ1)θ

′′
1

+ m2l1(θ
′
1)

2 sin(θ2 − θ1) + m2gsinθ2 = 0 (20)

θ1 m1

m2

l1

l2

θ2

Geometry

W

:

U

*

u1

u3

u4

u2

Unit vectors

Figure 7.7: Geometry and unit vectors for the double pendulum.
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Another way to derive the equations of motion of the double pendulum
system is to use Lagrange’s equations. These are

d
dt

[
∂

∂θ′
1

(T − V)

]
− ∂

∂θ1
(T − V) = 0 (21)

d
dt

[
∂

∂θ′
2

(T − V)

]
− ∂

∂θ2
(T − V) = 0 (22)

whereT is the kinetic energy of the system andV is its potential energy. The
respective kinetic energies of the massesm1 andm2 are

T1 = 1
2

m1l2
1(θ

′
1)

2

T2 = 1
2

m2(l1θ
′
1 sinθ1 + l2θ

′
2 sinθ2)

2 + 1
2

m2(l1θ
′
1 cosθ1 + l2θ

′
2 cosθ2)

2

The corresponding potential energies ofm1 andm2 are

V1 = m1gl1(1− cosθ1)

V2 = m2gl1(1− cosθ1) + m2gl2(1− cosθ2)

Then we haveT = T1 + T2 andV = V1 + V2. Inserting the expressions forT
andV into Eqs. (21) and (22), we find the equations of motion of the double
pendulum. These equations are equivalent to the ones obtained previously us-
ing Newton’s law. The formalism of Lagrange pays the dividend of producing
the equations with “relatively” shorter calculations.

References Borrelli, R.L., Coleman, C.S., and Boyce, W.E.,Differential Equations Lab-
oratory Workbook, (1992: John Wiley & Sons, Inc.), Experiment 6.9

Hirsch, M., and Smale, S.,Differential Equations, Dynamical Systems, and
Linear Algebra(1974: Academic Press), Chapter 10

Hubbard, J., and West, B.,Differential Equations: A Dynamical Systems Ap-
proach, Vol. 18 of Texts in Appl. Math. (1995: Springer-Verlag), Sec-
tions 8.2, 8.3

Marion, J.B., and Thornton, S.T.,Classical Dynamics of Particles and Sys-
tems, 3rd ed. (1988: Harcourt Brace Jovanovich)
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Exploration 7.1. Predator and Prey: Linearization and Stability

1. Let F represent the number of flies andS the number of spiders (both in

☞ Take a look at the “Spider
and Fly” submodule of Module 7.

1000s). Assume that the model for their interaction is given by:

S′ = −4S+ 2SF, F ′ = 3F − 2SF (23)

where theSF-term is a measure of the interaction between the two species.

(a) Why is theSF-term negative in the first ODE and positive in the second
when(S, F) is inside the population quadrant?

(b) Show that the system has an equilibrium point at(1.5,2).

(c) Show that the system matrix of the linearization of system (23) about
(1.5,2) has pure imaginary eigenvalues.☞ This makes the point

(1.5,2) a center for the
linearized system. (d) Now plot phase portraits for system (23) and for its linearization about

(1.5,2). What do you see?

2. Suppose that an insecticide reduces the spider population at a rate proportional
to the size of the population.

(a) Modify the predator-prey model of system (23) to account for this.

(b) Model how insecticide can be made more or less effective.

(c) Use the model to predict the long-term behavior of the populations.
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3. In a predator-prey system that models spider-fly interaction

S′ = −4S+ 2SF, F ′ = 3

(
1− F

N

)
F − 2SF

the numberN represents the maximum fly population (in 1000s). Investigate
the effect of changing the value ofN. What’s the largest the spider population
can get? The fly population?

4. Suppose the spider-fly model is modified so that there are two predators, spi-
ders and lizards, competing to eat the flies. One model for just the two preda-
tor populations is

S′ = 4
(

1− S
5

)
S− SL, L′ = 3

(
1− L

2

)
L − SL

(a) What do the numbers 2, 3, 4, and 5 represent?

(b) What does the termSLrepresent? Why is it negative?

(c) What will become of the predator populations in the long run?

5. Take a look at the library file “A Predator-Prey System with Resource Limi-
tation” in the “Biological Models” folder. Compare and contrast the system
you see in that file with that given in Problem 2. Create a system where both
the predator and the prey are subject to resource limitations, and analyze the
behavior of the trajectories.
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Exploration 7.2. Bifurcations and Limit Cycles

1. Alter the model in the “Saxophone” submodule of Module 10 by adding a
parameterc:

u′ = v, v′ = −su+ cv − 1
b
v3

(a) What part of the model does this affect?

(b) How do solutions behave for values ofc between 0 and 2, taking
s= b = 1?

(c) As c increases, what happens to the pitch and amplitude?

2. Suppose the model for asimple harmonic oscillator(a linear model),

x′ = y, y′ = −x

is modified by adding a parameterc:

x′ = cx+ y, y′ = −x+ cy

(a) What happens to the equilibrium point asc goes from−1 to 1?

(b) What happens to the eigenvalues of the matrix of coefficients asc
changes from−1 to 1?
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3. Suppose we further modify the system of Problem 2:

x′ = cx+ y− x(x2 + y2), y′ = −x+ cy− y(x2 + y2)

where−1 ≤ c ≤ 1. Analyze the behavior of the equilibrium point at(0,0)

as c increases from−1 to 1. How does it compare with the behavior you
observed in Problem 2?

4. You can modify the system for a simple, undamped nonlinear pendulum (see
Chapter 10) to produce atorqued pendulum:

x′ = y, y′ = −sin(x) + a

Herea represents a torque applied about the axis of rotation of the pendulum☞ Use the model-based
pendulum animation in ODE
Architect and watch the
pendulum gyrate.

arm. Investigate the behavior of this torqued pendulum for the values ofa
between 0 and 2 by building the model and animating the phase space asa in-
creases. Explain what kind of behavior the pendulum exhibits asa increases;
explain the behavior of any equilibrium points you see.

5. The motion of a thin, flexible steel beam, affixed to a rigid support over two
magnets, can be modeled byDuffing’s equation:

x′ = y, y′ = ax− x3

wherex represents the horizontal displacement of the beam from the rest po-
sition anda is a parameter that is related to the strength of the magnets. In-☞ Sweep on the parametera,

and then animate. To animate a
graph with multiple trajectories
corresponding to different values
of a, click on the animate icon
below the word “Tools” at the top
left of the tools screen.

vestigate the behavior of this model for−1 ≤ a ≤ 1. In particular:

(a) Find all equilibrium points and classify them as to type (e.g., center, sad-
dle point), verifying your phase plots with eigenvalue calculations (use
ODE Architect for the eigenvalue calculations). Some of your answers
will depend ona.

(b) Give a physical interpretation of your answers to Question (a).

(c) What happens to the equilibrium points as the magnets change from
weak (a ≤ 0) to strong (a > 0)?

(d) What happens if you add a linear damping term to the model? (Say,
y′ = ax− x3 − νy.)
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Exploration 7.3. Higher Dimensions

1. Spinning Bodies.
Use ODE Architect to draw several distinct trajectories on the ellipsoid of
inertia, 0.5(2ω2

1 + ω2
2 + 3ω2

3) = 6, for system (12).
Choose initial data on the ellipsoid so that the trajectories become the☞ For example,ω1 = 0,

ω2 = 3, ω3 = 1 can be taken as
an initial point and so can
ω1 = 1, ω2 = 0,
ω3 = (10/3)0.5.

“visible skeleton” of the invisible ellipsoid. What do the trajectories look like?
What kind of motion does each represent? You should be able to get a picture
that resembles the chapter cover figure and Figure 7.6. Project your 3D graphs
onto theω1ω2-, ω2ω3-, andω1ω3-planes, and describe what you see. Now ap-
ply the equilibrium/eigenvalue/eigenvector calculations from ODE Architect
to equilibrium points on each of theω1-, ω2-, andω3- axes. Describe the re-
sults and their correlation with what you saw on the coordinate planes. Now
go to the Library file “A Conservative System: The Momentum Ellipsoid” in
the folder “Physical Models” and explain what you see in terms of the previ-
ous questions in this problem.

2. Exploration 7.1 (Problem 4) gives a predator-prey model where two species,
spiders and lizards, prey on flies. Construct a system of three differential
equations that includes the prey in the model. You’ll need to represent growth
rates and interactions, and you may want to limit population sizes. Make some
reasonable assumptions about these parameters. What long-term behavior
does your model predict?

3. Take another look at the ODEs of the coupled springs model in Module 6.
Use ODE Architect for the system of four ODEs given in Experiment 1 of that
section (usec = 0.05). Make 3D plots of any three of the five variablesx1, x′

1,
x2, x′

2, andt. What do the plots tell you about the corresponding motions of
the springs? Now use the Tool to find the eigenvalues of the Jacobian matrix
of the system at the equilibrium point. What do the eigenvalues tell you about
the motions?
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4. Modify the coupled springs model from Module 6 (where coupled linear
springs move on a frictionless horizontal surface) by making one of the
springs hard or soft: add a term like±x3 to the restoring force. Does this
change the long-term behavior of the system? Make and interpret graphs as
in Problem 3.

5. Chaos in three dimensions.
Some nonlinear 3D systems seem to behave chaotically. Orbits stay bounded
as time advances, but the slightest change in the initial data leads to an orbit
that eventually seems to be completely uncorrelated with the original orbit.
This is thought to be one feature of chaotic dynamics. Choose one of the
following three Library files located in the folder “Higher Dimensional Sys-
tems”:

� “The Scroll Circuit: Organized Chaos”

� “The Lorenz System: Chaos and Sensitivity”

� “The Roessler System: A Strange Attractor”

Change parameters until you see an example of this kind of chaos. You may
want to look at Chapter 12 for additional insight into the meaning of chaos.
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Oscillating chemical reactions on a wineglass?

Overview A salt solution is pumped through a series of tanks. We’ll use the balance law to
model the rate of change of the amount of salt in each tank:{

Net rate of change of
amount of salt in tank

}
=

{
Rate into

tank

}
−

{
Rate out of

tank

}

If we know the initial amount of salt and the inflow and outflow rates of the
solution in each tank, then we can set up an IVP that models the physical system.
We’ll use this “balance law” approach to model the pollution level in a lake; the
flow of a medication; the movement of lead among the blood, tissues, and bones
of a body; and an autocatalytic chemical reaction.

Key words Compartment model; balance law; lake pollution; pharmacokinetics; chemical re-
actions; chemical law of mass action; autocatalysis; Hopf bifurcation

See also Chapter 9 for the SIR compartment model, and Chapter 6 for linear systems and
flow through interconnected tanks.
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◆ Lake Pollution

Modeling how pollutants move through an environment is important in the
prediction of harmful effects, as well as the formulation of environmental
policies and regulations. The simplest situation has a single source of pollu-
tion that contaminates a well-defined habitat, such as a lake. To build a model
of this system, we picture the lake as acompartment; pollutants in the water
flow into and out of the compartment. The rates of flow determine the amount
of build-up or dissipation of pollutants. It is useful to represent this conceptual
model with acompartment diagram, where a box represents a compartment
and an arrow represents a flow rate. Here is a compartment diagram for a
simple model of lake pollution:

L(t)- -
r in rout

The amount of pollutant in the lake at timet is L(t), while rin is the rate
of flow of pollutant into the lake androut is the rate of flow of pollutant out
of the lake. To obtain the equation for the rate of change of the amount of
pollutant in the lake, we apply thebalance law: the net rate of change of the
amount of a substance in a compartment is the difference between the rate of
flow into the compartment and the rate of flow out of the compartment:

dL
dt

= r in − rout

This ODE is sufficient when we know the ratesr in androut, but these rates
are usually not constant: they depend on the rate of flow of water into the
lake, the rate of flow of water out of the lake, and the pollutant concentration
in the inflowing water. Letsin andsout represent the volume rates of flow of
water into and out of the lake,V the volume of water in the lake, andpin the☞ You can get the volume

V(t) of water in the lake by
solving the IVPV′ = sin − sout,
V(0) = V0.

concentration of pollutant in the incoming water. Now we can calculate the
rates shown in the compartment diagram:

r in = pinsin, rout = L
V

sout

The ODE for the amount of pollutant in the lake is now

dL
dt

= pinsin − L
V

sout (1)

To obtain an IVP, we need to specifyL(0), the initial amount of pollutant in☞ So we need to knowV(0),
L(0), pin , sin, andsout in order to
determineL(t) andV(t).

the lake. The solution to this IVP will reveal how the level of pollution varies
in time. Figure 8.1 shows a solution to the ODE (1) for the pollution level in
the lake if the inflow is contaminated for the first six months of every year and
is clean for the last six months (sopin(t) is a square wave function).

☞ Take a look at Screen 1.4
in Module 8 for on-off inflow
concentrations.
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Figure 8.1: Pollutant level in a lake (on-off inflow rates).

✓ “Check” your understanding by finding the volumeV(t) of water in the
lake at timet if V(0) = 10, sin = 3, andsout = 1, 3, or 5 (all quantities in
suitable units). Does the lake dry up, overflow, or stay at a constant volume?

◆ Allergy Relief

Medications that relieve the symptoms of hay fever often contain an antihis-
tamine and a decongestant bundled into a single capsule. The capsule dis-
solves in the gastrointestinal (or GI) tract and the contents move through the
intestinal walls and into the bloodstream at rates proportional to the amounts
of each medication in the tract. The kidneys clear medications from the blood-
stream at rates proportional to the amounts in the blood.

Here is a compartment diagram for this system:

GI tract
x(t)

Blood
y(t)

- - -
I (t) ax(t) by(t)

The symbols in this diagram have the following meanings:

I (t): The rate at which the dissolving capsule releases a medication (for
example, a decongestant) into the GI tract

x(t): The amount of medication in the GI tract at timet
ax(t): The clearance rate of the medication from the GI tract, which equals

the entrance rate into the blood (a is a positive rate constant)
y(t): The amount of medication in the blood at timet

by(t): The clearance rate of the medication from the blood (b is a positive
rate constant)
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Applying the balance law to each compartment, we have a system of first-
order linear ODEs:

x′ = I − ax

y′ = ax− by
(2)

If we know I (t), the rate constantsa andb, and the initial amountsx(0) and
y(0) of medication in the GI tract and the bloodstream, we can use ODE☞ Medication levels in the

blood (easily measured) indicate
the levels in the tissues (hard to
measure), where the medication
does its good work.

Architect to track the flow of the medication through the body. From a phar-
macological point of view, the goal is to get the medication levels in the blood
into the effective (but safe) zone as quickly as possible and then to keep them
there until the patient recovers.

There are two kinds of medication-release mechanisms: continuous and
on-off. In the first kind, the medication is released continuously at an approx-
imately constant rate, soI (t) is a positive constant. In the on-off case, each
capsule releases the medication at a constant rate over a brief span of time and
then the process repeats when the next capsule is taken. In this case we model
I (t) by a square wave:

I (t) = A SqWave(t, Tper, Ton)

which has amplitudeA, periodTper, and “on” timeTon. For example, if the☞ Screen 2.4 in Module 8
shows what happens if
a = 0.6931 hr−1, Ton = 1 hr, and
b and A are adjustable
parameters.

capsule releases 6 units of medication over a half hour and the dosage is one
capsule every six hours, then

I (t) = 12 SqWave(t,6,0.5) (3)

Note thatA · Ton = 12 (units/hr)×0.5 (hr)= 6 units.
Compartment models described by equations such as (2) are calledcas-

cades. They can be solved explicitly, one equation at a time, by solving the
first ODE, inserting the solution into the second ODE, solving it, and so on
down the cascade. Although this approach theoretically yields explicit solu-
tion formulas, in practice the formulas farther along in the cascade of solutions
get so complicated that they are difficult to interpret. That’s one reason why
it pays to use a numerical solver, like the ODE Architect. Figure 8.2 shows☞ ODE Architect to the

rescue! how the amounts of decongestant in the body change when administered by
the on-off method [equation (3)].

✓ By inspecting Figure 8.2 decide which of the clearance coefficientsa or
b in system (2) is larger.

References Borrelli, R.L., and Coleman, C.S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Spitznagel, E., “Two-Compartment Phamacokinetic Models” inC.ODE.E,
Fall 1992, pp. 2–4, http://www.math.hmc.edu/codee
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Figure 8.2: Decongestant levels in the GI tract and in the blood.

◆ Lead in the Body

Lead gets into the digestive and respiratory systems of the body via contami-
nated food, air, and water, as well as lead-based paint, glaze, and crystalware.☞ In ancient times lead was

used to sweeten wine. Lead moves into the bloodstream, which then distributes it to the tissues and
bones. From those two body compartments it leaks back into the blood. Lead
does the most damage to the brain and nervous system (treated here as tis-
sues). Hair, nails, and perspiration help to clear lead from the tissues, and the
kidneys clear lead from the blood. The rate at which lead leaves one compart-
ment and enters another has been experimentally observed to be proportional
to the amount that leaves the first compartment. Here is the compartment
diagram that illustrates the flow of lead through the body.

Tissue
y

Blood
x

Bones
z-

� -
�

?

? ?

k1x

k2y
k5y k6x

L
k3x

k4z

In the diagram,L is the inflow rate of lead into the bloodstream (from the
lungs and GI tract);x, y, andzare the respective amounts of lead in the blood,
tissues, and bones; andk1, . . . , k6 are experimentally determined positive rate
constants. The amount of lead is measured in micrograms (1 microgram=
10−6 gram), and time(t) is measured in days.
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Figure 8.3: Five environmental clean-up scenarios for t > 400 days result in
five different steady-state lead levels in the blood.

Applying the balance law to each compartment, we have the linear system

☞ System (4) is a driven
linear system with constant
coefficients, so
eigenvalue/eigenvector
techniques can be used to find
solution formulas ifL is a
constant (see Chapter 6).

of ODEs that models the flow of lead through the body compartments:

x′ = (L + k2y+ k4z) − (k1 + k3 + k6)x

y′ = k1x− (k2 + k5)y

z′ = k3x− k4z

(4)

Unlike the allergy relief system (2), system (4) is not a cascade. Lead moves
back and forth between compartments, so the system cannot be solved one
ODE at a time. ODE Architect can be used to findx(t), y(t), andz(t) if x(0),
y(0), z(0), L(t), andk1, . . . , k6 are known.

If the goal is to reduce the amount of lead in the blood (and therefore in
the tissues and bones), we can clean up the environment (which reduces the
inflow rate) or administer a medication that increases the clearance coefficient
k6. However, such medication carries its own risks, so most efforts today are
aimed at removing lead from the environment. A major step in this direction
was made in the 1970’s and 80’s when oil companies stopped adding lead to☞ It was in the 1970’s and

80’s that most of the
environmental protection laws
were enacted.

gasoline and paint manufacturers began to use other spreading agents in place
of lead. Figure 8.3 shows the effects of changing the lead intake rateL.

The Food and Drug Administration and the National Institutes of Health
have led the fight against lead pollution in the environment. They base their
efforts on data acquired from several controlled studies of lead flow, where the
study groups were made up of human volunteers in urban areas. The numbers
we use in Submodule 3 of Module 8 and in this chapter come from one of☞ See Screen 3.3 in

Module 8 for the rate constants
and the inflow rateL.

those studies. Some references on the lead problem are listed below.
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✓ Write down the systems of ODEs for the two compartment diagrams:

x y- - -

?

2 4x 5y

3x

x

y

z

-

~

>

?
6

-

1
2x

3x

4z 5y

6z

(a) (b)

References Batschelet, E., Brand, L., and Steiner, A., “On the kinetics of lead in the
human body,”J. Math. Bio., 8 (1979), pp. 15–23

Kessel, I., and O’Conner, J.,Getting the Lead Out(1997: Plenum)

Rabinowitz, M., Wetherill, G., and Kopple, J., “Lead metabolism in the nor-
mal human: Stable isotope studies,”Science, 182(1973), pp. 725–727.

◆ Equilibrium

In many compartment models, if the inflow rates from outside the system are
constant, then the substance levels in each compartment tend to an equilibrium
value as time goes on. Mathematically, we can find the equilibrium values by
setting each rate equal to zero and solving the resulting system of equations
simultaneously. For example, the equilibrium for the system

x′ = 1− 2x

y′ = 2x− 3y
(5)

is x = 1/2, y = 1/3, which is the solution to the algebraic system 1− 2x = 0
and 2x − 3y = 0. If the system is complicated, you can use ODE Architect☞ The Equilibrium tabs in

ODE Architect work for systems
such as (5), where the rate
functions don’t depend explicitly
on time (i.e., the systems are
autonomous).

to find the equilibrium values. Just use the Equilibrium tabs in the lower
left quadrant and in one of the right quadrants, and you will get approximate
values for the equilibrium levels.

✓ Go to Things-to-Think-About 2 on Screen 3.5 of Module 8 for the lead
flow model with constant values forL and the coefficientskj. Use the Equi-
librium tabs in the tool screen to estimate the equilibrium lead levels in the
blood, tissues, and bones for the given data.

✓ Suppose thatx is a column vector withn entries,b is a column vector of☞ You need to know about
matrices to tackle this one. n constants, andA is ann × n invertible matrix of real constants. Can you

explain why the linear systemx′ = Ax− b has a constant equilibriumx∗?
Find a formula forx∗ in terms ofA−1 andb.
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◆ The Autocatalator and a Hopf Bifurcation

So far all the compartments in our models have represented physical spaces
through which substances move. However, there are other ways to think about
compartments. For example, they can represent substances that transform
into one another, such as uranium 238 and all of its seventeen radioactive
decay products, ending with stable lead 206. Or think of a chemical reactor
in which chemicals react with one another and produce other chemicals. The
autocatalatoris a mathematical model for one of these chemical reactions.

In an autocatalytic reaction, a chemical promotes its own production.
For example, suppose that one unit of chemicalX reacts with two units of
chemicalY to produce three units ofY, a net gain of one unit ofY:

X + 2Y
k−→ 3Y

wherek is a positive rate constant. This is an example ofautocatalysis. We’ll
come back to autocatalysis, but first we need to make a quick survey of how
chemical reactions are modeled by ODEs.

Most chemical reactions arefirst-order in the sense that the rate of decay
of each chemical in the reaction is directly proportional to its own concentra-
tion:

dz
dt

= −kz (6)

wherez(t) is the concentration of chemicalZ at timet in the reactor andk is
a positive rate constant.

While a first-order reaction is modeled by alinear ODE, such as (6),
autocatalytic reactions are higher-order and the corresponding rate equations
arenonlinear. In order to build models of higher-order chemical reactions,
we will use a basic principle called theChemical Law of Mass Action:

The Chemical Law of Mass Action. If moleculesX1, . . . , Xn react to
produce moleculesY1, . . . , Ym in one step of the chemical reaction

X1 + · · · + Xn
k−→ Y1 + · · · + Ym

that occurs with rate constantk, then

x′
i = −kx1x2 · · · xn, 1 ≤ i ≤ n

y′
j = kx1x2 · · · xn, 1 ≤ j ≤ m

wherexi andyj are, respectively, the concentrations ofXi andYj . The
chemical speciesX1, . . . , Xn, Y1, . . . , Ym need not be distinct from each
other: more than one molecule of a given type may be involved in the
reaction.
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For example, the chemical law of mass action applied to the reaction

X + Y
k−→ Z

gives

x′ = −kxy, y′ = −kxy, and z′ = kxy

wherek is a positive rate constant andx, y, z denote the respective concen-
trations of the chemicalsX, Y, Z in the reactor. The autocatalytic reaction

X + 2Y
k−→ 3Y

is modeled by

x′ = −kxy2

y′ = −2kxy2 + 3kxy2 = kxy2

because the rate of decrease of the reactant concentrationx is kxy2 (think of
X + 2Y as X + Y + Y), the rate of decrease of the reactant concentrationy
is 2kxy2 (because two units ofY are involved), and the rate of increase in the
product concentrationy is 3kxy2 (think of 3Y asY + Y + Y).

✓ If you want to speed up the reaction should you increase the rate constant
k, or lower it? Any guesses about what would happen if you heat up the
reactor? Put the reactor on ice?

With this background, we can model a sequence of reactions that has been

☞ In Figure 8.5, the
multimedia module, and the
Library file, different symbols are
used for the rate constants.

studied in recent years:

X1
k1−→ X2, X2

k2−→ X3, X2 + 2X3
k3−→ 3X3, X3

k4−→ X4

Note the nonlinear autocatalytic step in the midst of the first-order reactions.
A compartment diagram for this reaction is

x1 x2 x3 x4-
-
-

-
k1x1

k2x2

k3x2x2
3

k4x3

wherex1, x2, x3, andx4 denote the respective concentrations of the chemicals
X1, X2, X3, andX4. The corresponding ODEs are:

☞ The termk3x2x2
3 makes

this system nonlinear.

x′
1 = −k1x1

x′
2 = k1x1 − (k2x2 + k3x2x2

3)

x′
3 = (k2x2 + k3x2x2

3) − k4x3

x′
4 = k4x3

(7)

In a reaction like this, we callX1 the reactant,X2 and X3 intermediates, and
X4 the final product of the reaction. For certain ranges of values for the rate☞ See Screen 4.3 of

Module 8 for values of the rate
constants.

constantsk1, k2, k3, k4 and for the initial reactant concentrationx1(0), the
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Figure 8.4: As the reactant falls into the Hopf bifurcation zone, the oscillations
of the intermediates turn on as the product rises. Later the oscillations turn
off and the reaction approaches completion.

intermediate concentrationsx2(t) andx3(t) will suddenly begin to oscillate.
These oscillations eventually stop and the intermediates decay into the final☞ The chapter cover figure

shows how the intermediate
concentrationsx2(t) andx3(t)
play off against each other as
time increases.

reaction product. See Figure 8.4.
The onset of these oscillations is a kind of aHopf bifurcationfor x2(t)

andx3(t). In this context, if we keep the value ofx1 fixed at, sayx∗
1, the rate

termk1x∗
1 in system (7) can be viewed as a parameterc. Then the middle two

rate equations can be decoupled from the other two:

x′
2 = c− k2x2 − k3x2x2

3

x′
3 = k2x2 + k3x2x2

3 − k4x3
(8)

Now let’s fix k2, k3, andk4 and use the parameterc to turn the oscillations in
x2(t) andx3(t) on and off. This is the setting for aHopf bifurcation, so let’s
take a detour and explain what that is.

As a parameter transits a bifurcation value the behavior of the state vari-
ables suddenly changes. A Hopf bifurcation is a particular example of this
kind of behavioral change. Suppose that we have a system that involves a
parameterc,

x′ = f (x, y, c)

y′ = g(x, y, c)
(9)

and that has an equilibrium pointP at x = a, y = b [so that f (a, b, c) = 0
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andg(a, b, c) = 0]. Suppose that the matrix of partial derivatives

☞ This is the Jacobian matrix
of system (9). See Chapter 7. J =




∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y




x=a,y=b

has the complex conjugate eigenvaluesα(c) ± i β(c). The Dutch mathemati-
cian Eberhard Hopf showed thatif :

(a) the functionsf andg are twice differentiable,
(b) P is a stable, attracting sink for some valuec0 of the parameterc,
(c) α(c0) = 0,☞ The Hopf conditions.

(d) [dα/dc]c=c0 �= 0,
(e) β(c0) �= 0,

thenas the parameterc varies through the bifurcation valuec0, the attracting☞ Sinceα′(c0) �= 0, α(c)

changes sign asc goes through
c0; this means thatP goes from a
sink to a source, or the other way
around.

equilibrium pointP destabilizes and an attracting limit cycle appears (i.e., an
attracting periodic orbit in thexy-phase plane) that grows in amplitude asc
changes beyond the valuec0.

It isn’t always a simple matter to check the conditions for a Hopf bifurca-
tion (especially condition (b)). It is often easier just to apply the Architect to
the system and watch what happens to solution curves and trajectories when
a parameter is swept over a range of values. For instance, for system (8) with
valuesk2 = 0.08 andk3 = k4 = 1 for the rate constants, we can sweep the
parameterc and observe the results. In particular, we want to find values ofc
for which an attracting limit cycle is either spawned byP, or absorbed byP.
At or near the specialc values we can use the Equilibrium feature of the ODE
Architect tool to locate the equilibrium point, calculate the Jacobian matrix,
and find its eigenvalues. We expect the eigenvalues to be complex conjugates
and the real part to change sign at the bifurcation value ofc.

Figure 8.5 shows a sweep of twenty-one trajectories of system (8) withc
sweeping down from 1.1 to 0.1 and the values ofk1, k2, andk3 as indicated in
the figure. See also Problem 3, Exploration 8.4.

✓ (This is the first part of Problem 3 of Exploration 8.4.) Use ODE Archi-
tect to duplicate Figure 8.5. Animate (the right icon under Tools on the top
menu bar) so that you can see how the trajectories change asc moves down-
ward from 1.1. Then use the Explore feature to determine which values ofc
spawn or absorb a limit cycle. For what range of values ofc does an attracting
limit cycle exist?

This behavior of the system (8) carries over to the autocatalator sys-
tem (7). Notice that the first equation in (7) isx′

1 = −k1x1, which is easily
solved to givex1(t) = x1(0)e−k1t. If k1 is very small, sayk1 = 0.002, the
exponential decay ofx1 is very slow, so that ifx1(0) = 500, the termk1x1(t),
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Figure 8.5: Twenty-one trajectories of system (8) for twenty-one values of c;
initial data is x2(0) = x3(0) = 0, time interval is 100 with 1000 points.

though not constant, has values between 1 and 0.01 for a long time interval.
The behavior of the autocatalator will be similar to that of system (8).

The section “Bifurcations to a Limit Cycle” in Chapter 7 gives another
instance of a Hopf bifurcation. For more on bifurcations, see the references.

References Gray, P., and Scott, S.K.,Chemical Oscillations and Instabilities(1990: Ox-
ford Univ. Press)

Hubbard, J.H., and West, B.H.,Differential Equations: A Dynamical Systems
Approach, Part II: Higher Dimensional Systems, (1995: Springer-Verlag)

Scott, S.K.,Chemical Chaos(1991: Oxford Univ. Press)
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Exploration 8.1. Tracking Pollution in a Lake

1. Suppose that the water flow rates into and out of a lake aresin = sout =
109 m3/yr. The (constant) lake volume isV = 1010 m3, and the concen-
tration of pollutant in the water flowing into the lake ispin = 0.0003 lb/m3.
Solve the IVP withL(0) = 0 (no initial pollution) and describe in words how
pollution builds up in the lake. Estimate the steady-state amount of pollution,
and estimate the amount of time for the pollution level to increase to half of
the asymptotic level.

2. Suppose that the lake in Problem 1 reaches its steady-state level of pollution,
and then the source of pollution is removed. Build a new IVP for this situation,
and estimate how much time it will take for the lake to clear out 50% of the
pollution. How does this time compare to the time you estimated in Problem 1
for the build-up of pollutant?
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3. What would be more effective in controlling pollution in the lake: (i) reducing
the concentration of pollutant in the inflow stream by 50%, (ii ) reducing the
rate of flow of polluted water into the lake by 50%, or (iii ) increasing the
outflow rate from the lake by 50%?



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 8.2. What Happens When You Take a Medication?

1. Go to the Library in ODE Architect and check out the file “Cold Pills I: A
Model for the Flow of a Single Dose of Medication in the Body” in the folder
“Biological Models.” This model tracks a unit dose of medication as it moves
from the GI tract into the blood and is then cleared from the blood. Read the
file and carry out the explorations suggested there. Record your results below.

2. Go to the Library in ODE Architect and check out “Cold Pills II: A Model
for the Flow of Medication with Periodic Dosage” in the folder “Biological
Models.” Carry out the suggested explorations.
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3. Suppose you take a decongestant pill every four hours to relieve the symp-
toms of a cold. Each pill dissolves slowly and completely over the four-hour
period between doses, releasing 16 units of decongestant at a constant rate.
The decongestant diffuses from the GI tract into the bloodstream at a rate pro-
portional to the amount in the GI tract (rate constant isa = 0.5/ hr) and is
cleared from the bloodstream at a rate proportional to the amount in the blood
(rate constant isb = 0.1/ hr). Assume that initially there is no decongestant
in the body. Write a report in which you address the following points. Be sure
to attach graphs.

(a) Write out ODEs for the amountsx(t) and y(t) in the GI tract and the
blood, respectively, at timet.

(b) Find explicit formulas forx(t) andy(t) in terms ofx(0) andy(0).

(c) Use ODE Architect to plotx(t) andy(t) for 0 ≤ t ≤ 100 hr. What are
the equilibrium levels of decongestant in the GI tract and in the blood
(assuming that you continue to follow the same dosage regimen)?

(d) Graphx(t) andy(t) as given by the formulas you found in part (b) and
overlay these graphs on those produced by ODE Architect. What are
the differences?

(e) Imagine that you are an experimental pharmacologist for Get Well Phar-
maceuticals. Set lower and upper bounds for decongestant in the blood-
stream, bounds that will assure both effectiveness and safety. How long
does it take from the time a patient starts taking the medication before
the decongestant is effective? How long if you double the initial dosage
(the “loading dose”)? How about a triple loading dose?

(f) For the old or the chronically ill, the clearance rate constant from the
blood may be much lower than the average rate for a random sample
of people (because the kidneys don’t function as well). Explore this
situation and make a recommendation about lowering the dosage.

4. Repeat all of Problem 3 but assume the capsule is rapidly dissolving: it deliv-
ers the decongestant at a constant rate to the GI tract in just half an hour, then
the dosage is repeated four hours later.
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Exploration 8.3. Get the Lead Out

1. Check out the ODE Architect Library file “A Model for Lead in the Body” in
the “Biological Models” folder and carry out the explorations suggested there.
(The notation for the rate constants in the library file differs from the notation
used in this chapter.)

2. Use the following rate constants:k1 = 0.0039, k2 = 0.0111, k3 = 0.0124,
k4 = 0.0162, k5 = 0.000035,k6 = 0.0211, and putL = 49.3 µg/day in the
lead system (4). These values were derived directly from experiments with
volunteer human subjects living in Los Angeles in the early 1970’s. Using the
data for the lead flow model, describe what happens if the lead inflow rateL
is doubled, halved, or multiplied by a constantα. Illustrate your conclusions
by using the ODE Architect to graph the lead levels in each of the three body
compartments as functions oft. Do the long-term lead levels (i.e., the equilib-
rium levels) depend on the initial values? OnL? Find the equilibrium levels
for each of your values ofL using ODE Architect. Find the eigenvalues of
the Jacobian matrix for each of your values ofL. With the names given in
Chapter 6 to equilibrium points in mind, would you call the equilibrium lead
levels sinks or sources? Nodes, spirals, centers, or saddles?
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3. The bones act as a lead storage system, as you can see from the graphs in
Submodule 3 of Module 8. What happens if the exit rate constantk4 from the
bones back into the blood is increased from 0.000035 to 0.00035? To 0.0035?
Why might an increase ink4 be harmful? See Problem 2 for the values ofL
and the rate constantski .

4. The medication now in use for acute lead poisoning works by improving the
efficiency of the kidneys in clearing lead from the blood (i.e., it increases the
value of the rate constantk6). What if a medication were developed that in-
creased the clearance coefficientk5 from the tissues? Explore this possibility.
See Problem 2 for the values ofL and the rate constantski .

5. In the 1970’s and 80’s, special efforts were made to decrease the amount of
lead in the environment because of newly enacted laws. Do you think this
was a good decision, or do you think it would have been better to direct the
efforts toward the development of a better antilead medication for cases of
lead poisoning? Why? What factors are involved in making such a decision?
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Exploration 8.4. Chemical Reactions: the Autocatalator

1. Check out “The Autocatalator Reaction” in the “Chemical Models” folder in
the ODE Architect Library and graph the concentrations suggested. Describe
how the concentrations of the various chemical species change in time.

2. Here are schematics for chemical reactions. Draw a compartment diagram for
each reaction. Then write out the corresponding sets of ODEs for the indi-
vidual chemical concentrations. [Use lower case letters for the concentrations
(e.g.,x(t) for the concentration of chemicalX at timet).]

(a) X + Y
k−→ Z

(b) X + Y
k1−→ Z

k2−→ W

(c) X + 2Y
k−→ Z

(d) X + 2Y
k−→ 3Y + Z
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3. Explore the behavior ofx2(t) andx3(t) as governed by system (8). Start with
c= 1.1, k2 = 0.08, k3 = k4 = 1, andx(0) = y(0) = 0. Then sweepc from 1.1
down to 0.1 and describe what happens to orbits in thex2x3-plane. Find the
range of values ofc between 1.1 and 0.1 for which attracting limit cycles are
visible. These are Hopf cycles. Fixc at a value that you think is interesting
and sweep one of the parametersk2, k3, or k4. Describe what you observe.
[Suggestion:Take a look at Figure 8.5, and use the Animate feature of ODE
Architect to scroll through the sweep trajectories. Then use the Explore option
to get a data table with information about any of the trajectories you have
selected.]

4. Look at the autocatalator system (7) withx1(0) = 500, x2(0) = x3(0) =
x4(0) = 0 andk1 = 0.002, k2 = 0.08, k3 = k4 = 1. Graphx2(t) andx3(t)
over various time ranges and estimate the times when sustained oscillations
begin and when they finally stop. What are the time intervals between suc-
cessive maxima of the oscillations inx2? Plot a 3D tx2x3-graph over various☞ Use the Explore feature to

estimate the starting and stopping
times of the oscillator.

time intervals ranging fromt = 100 to t = 1000. Describe what you see.
[Suggestion:Look at the chapter cover figure and Figure 8.4.]

Now sweep the values ofx1(0) downward from 500. What is the minimal
value that generates sustained oscillations? Then fixx1(0) at 500 and try to
turn the oscillations off by changing one or more of the rate constantsk1,
k2, k3, k4—this corresponds to heating or chilling the reactor. Describe your
results.
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Overview Population biology is the study of how communities of organisms change. The
structure of a population can be quite intricate, such as species interactions in a
tropical rain forest. Other communities may involve only a few species and are
simpler to describe. There are many aspects of population biology, including ecol-
ogy, demography, population genetics, and epidemiology. In each of these areas,
mathematics plays an important role in modeling how populations change in time
and how the interaction between the environment and the community affects that
change. We’ll explore mathematical models in ecology and epidemiology.

Key words Logistic model; growth rate; carrying capacity; equilibrium; steady state; competi-
tion; coexistence; exclusion; predator-prey; epidemiology; harvesting

See also Chapter 1 for more on the logistic equation, Chapter 7 for predator-prey models,
and Chapter 8 for chemical mass action, Library folder “Population Models.”
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◆ Modeling Population Growth

The increasing awareness of environmental issues is an important develop-
ment in modern society. This awareness ranges from concern about conserv-
ing important natural resources to concern about habitat destruction and the
endangerment of species. Human population pressures are ever-increasing,
and this growth has led to intense exploitation of the environment. To reduce
the negative effects of this exploitation, scientists are seeking to understand
the ecology and biology of natural populations. This understanding can be
used to design management strategies and environmental policies.

The simplest ecological models describe the growth of a single species
living in an environmentor habitat. Characteristics of the habitat—moisture,
temperature, availability of food—will affect how well the species survives
and reproduces. Intrinsic biological characteristics of the species, such as
the basic reproductive rate, also affect the growth of the species. However, a
mathematical model that incorporatesall possible effects on the growth of the
population would be complicated and difficult to interpret.

✓ “Check” your understanding by answering this question: What are some
other characteristics of a species and its environment that can affect the pro-
ductivity of the species?

The most common procedure for modeling population growth is first to
build elementary models with only a few biological or environmental features.
Once the simple models are understood, more complicated models can be
developed. In the next section we’ll start with thelogistic modelfor the growth
of a single species—a model that is both simple and fundamental.

◆ The Logistic Model

The ecological situation that we want to model is that of a single species
growing in an environment with limited resources. Examples of this situation
abound in nature: the fish population of a mountain lake (the limited resource
is food), a population of ferns on a forest floor (the limited resource is light),
or the lichen population on a field of arctic rocks (the limited resource is
space). We won’t attempt to describe the biology or ecology of our popula-
tion in detail: we want to keep the mathematical model simple. Instead, we’ll
summarize a number of such effects using twoparameters. The first parame-
ter is called theintrinsic growth rateof the population. It is often symbolized
using the letterr , and it represents the average number of offspring, per unit
time, that each individual contributes to the growth of the population. The
second parameter is called thecarrying capacity of the environment. Symbol-
ized byK, the carrying capacity is the largest number of individuals that the
environment can support in a steady state. If there are more individuals in the
population than the carrying capacity, the population declines because there
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are too few resources to support them. When there are fewer individuals than
K, the environment has not been overexploited and the population grows.

Our mathematical model must capture these essential characteristics of
the population’s growth pattern. To begin, we define a variable that represents
the size of the population as a function of time; call this sizeN(t) at time t.
Next, we specify how the sizeN(t) changes in time. Creating a specific rule
for the rate of change of population size is the first step inbuilding a mathe-
matical model. In general, a model for changing population size has the form

dN
dt

= f (t, N), N(0) = N0

for some function f and initial populationN0. Once the details off are
given, based on the biological and ecological assumptions, we have a concrete
mathematical model for the growth of the population.

To complete our description of the logistic model, we need to find a rea-
sonable functionf that captures the essential properties described above. We
are looking for a simple function that gives rise to

� population growth when the population is below the carrying capacity
(that is,N′(t) > 0 if N(t) < K);

� population decline if the population exceeds the carrying capacity (that
is, N′(t) < 0 if N(t) > K).

One such function isf (t, N) = rN(1− N/K). Thelogistic modelis the IVP

dN
dt

= rN

(
1− N

K

)
, N(0) = N0

wherer , K and N0 are positive constants. Figure 9.1 shows some typical
solution curves.
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Figure 9.1: Some solution curves for the logistic equation.
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Let’s observe a few important features of our model. First, the algebraic
sign of N′(t) follows the desired relationship to the population sizeN. Sec-
ond, if eitherN = 0 or N = K, there is no change in the population size:
N′(t) = 0. Thus,N = 0 andN = K areequilibria or steady states. The first
steady state corresponds to the extinction of the species in its environment,
and the second corresponds to a population in perfect balance, living at the
carrying capacity of the habitat.

Notice the effect of the parametersr and K. As the carrying capacity
K increases, the environment supports more individuals at equilibrium. As
the growth rater increases, the population attains its steady state in a faster
time. An important part of understanding a mathematical model is to discover
how changing the parameters affects the behavior of the system that is being
modeled. This knowledge can lead to predictions about the system, and to a
much deeper understanding of population processes. In Exploration 9.1 you
will study the logistic model and variations of it. See also Chapter 1.

✓ Do you think the intrinsic annual growth rater of the earth’s human pop-
ulation is closer to 0.01, 0.03, or 0.05? It’s anyone’s guess as to the carrying
capacity. What is your estimate, given that the current population is about
6 billion?

◆ Two-Species Population Models

The logistic model applies to a single species. Most habitats support a vari-
ety of species; interactions can be bothintraspecific(between individuals of
the same species) orinterspecific(between individuals of different species).
These interactions can take many forms. For example, competition between
individuals of the same species for food resources, nesting sites, mates, and
so on, are intraspecific interactions that lead to regulated population growth.
Important interspecific interactions include predation, competition for food or
other resources, and symbiotic relationships that are mutually beneficial. Such
interactions can be very complex and can involve a large number of species.
Again, the first step in modeling complicated ecologies is to build and ana-
lyze simple models. We’ll present two such models here (involving only two
species) and consider others in the explorations.

✓ Can you think of a mutually beneficial interaction between humans and
another species?
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◆ Predator and Prey

As we noted, an important interaction between species is that of predator and
prey. Such interactions are very common: animals must eat to thrive, and
for every eater there is the eaten! Spiders prey on flies, cows prey on grass,
mosquitoes prey on humans, and humans prey on shiitake mushrooms, truf-
fles, salmon, redwood trees, and just about everything else. We’ll now build a
simple model to describe such interactions.

Consider two species, the prey species (H, because they’re “harvested” or
“hunted”) and the predator species (P), but for the moment, imagine that they
don’t interact. In the absence of the predator, we assume that the prey grows
according to the logistic law, with carrying capacityK and intrinsic growth
ratea > 0. The model for the prey under these conditions is

H ′ = aH(1− H/K)

Now suppose that in the absence of its food source (the prey), the predator
dies out; the model for the predator is

P′ = −bP

whereb > 0. If this situation persists, the prey will grow to fill the habitat and
the predator will become extinct.

Now suppose that the predator does feed upon the prey, and that each
predator consumes, on the average, a fractionc of the prey population, per unit
time. The growth rate of the prey will then be decreased (since they’re being
eaten) by the amountcH P. The predators benefit from having consumed the
prey, so their growth rate will increase. But because a given predator may have
to consume a lot of prey to survive, not all prey produce new predators in a
one-for-one way. Therefore the increase in the growth rate of the predators in☞ When two species interact

at a rate proportional to the
product of the two populations,
it’s calledpopulation mass
action.

this case isdH P, whered is a constant which may be different thanc. Putting
this all together, we obtain our model for the predator-prey system:

dH
dt

= aH

(
1− H

K

)
− cH P

dP
dt

= −bP+ dH P

(1)

Analyzing this model gives insight into a number of important ecological is-
sues, such as the nature of coexistence of predator and prey, and the under-
standing of population cycles. Figure 9.2 on the next page shows a phase plot
for the predator-prey system described by ODE (1). Exploration 9.3 examines
this predator-prey model.

✓ What is the long-term future of the prey species in Figure 9.2? The preda-
tor species?
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Figure 9.2: An orbit of a predator-prey model with logistic prey growth.

◆ Species Competition

Another common interaction between species iscompetition. Species can
compete for space, food, light, or for other resources. In the absence of its
competitor, each species grows logistically to its carrying capacity. However,
the presence of the competitor changes the situation, and the growth rate of
each species is diminished by the presence of the other. LetN1 andN2 repre-
sent the numbers of the two species. We model the competition between these
species with the following equations:

dN1

dt
= r1N1

(
1− N1

K1
− α12N2

)
dN2

dt
= r2N2

(
1− N2

K2
− α21N1

) (2)

The parameterα12 measures the effect of Species 2 on Species 1, andα21

measures the effect of Species 1 on Species 2. Ifα12 > α21, then Species 2
dominates Species 1, because Species 2 reduces the growth rate of Species 1
moreper capitathan the reverse. The analysis of this model gives insight
into how species maintain their diversity in the ecology (coexistence) or how
such diversity might be lost (competitive exclusion). A phase plot for the
competitive system is shown in Figure 9.3. Exploration 9.4 examines a related☞ Could the competition be

so fierce that both species
become extinct?

model for so-called mutualistic interactions.

✓ Does Figure 9.3 show coexistence or competitive exclusion?
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Figure 9.3: Orbits for a model of two competing species.

◆ Mathematical Epidemiology: The SIR Model

An important use of mathematical models is to describe how infectious dis-
eases spread through populations. This field is called epidemiology. Quanti-
tative models can predict the time course of a disease or the effectiveness of
control strategies, such as immunization. Again, the development proceeds
from the simplest model to more complex ones.

The most elementary model for an epidemic is the so-called SIR model
(presented in Module 9): Consider a population of individuals divided into
three groups—those susceptible (S) to a certain disease, those infected (I )
with the disease , and those who have recovered (R) and are immune to rein-
fection, or who otherwise leave the population. The SIR model describes how
the proportions of these groups change in time.

The susceptible population changes size as individuals become infected.
Let’s think of this process as “converting” susceptibles to infecteds. If we as-
sume that each infected individual can infect a proportiona of the susceptible
population per unit time, we obtain the rate equation

☞ Another instance of
population mass action.

dS
dt

= −aSI (3)

The infected population is increased by conversion of susceptibles and is de-
creased when infected individuals recover. Ifb represents the proportion of
infecteds that recover per unit time, then the rate of change of the infected
population satisfies

dI
dt

= aSI− bI (4)
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Figure 9.4: A plot of susceptibles (falling curve), infecteds (the “bump”), re-
covereds (rising curve), and their sum (top line).

Lastly, as infecteds recover they augment the recovered population, so that

dR
dt

= bI (5)

The ODEs (3)–(5) together with the initial valuesS(0), I (0), andR(0) define
the SIR model. A component plot ofS, I , R, andN = S+ I + R appears in
Figure 9.4.

✓ Can you explain whyN(t) stays constant as time changes?

We can learn many important things from this model about the spread
of diseases. For example, analysis of the model can reveal how the rate of
spread of the disease through the population is related to the infectiousness
of the disease. Our common experience suggests that not all diseases become
epidemic: sometimes a few people are afflicted and the disease dies out. Anal-
ysis of the SIR model can also give insight into the conditions under which a
disease will become epidemic. This is an important phenomenon! These and
other matters will be examined in Exploration 9.5.

✓ What factors can you think of that might influence the spread of a disease
in a human population?

References Bailey, N.T.J.,The Mathematical Theory of Infectious Diseases and its Appli-
cations, 2nd ed., (1975: Hafner Press)

Edelstein-Keshet, L.,Mathematical Models in Biology, (1988: McGraw-Hill)
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Exploration 9.1. The Logistic Model

In this exploration you will consider a population that grows according to the
logistic law: N′ = rN(1− N/K), where r is the intrinsic growth rate and K is
the carrying capacity of the environment.

1. Open the ODE Architect Library. In the folder “Population Models,” open☞ Using the ODE
Architect Library. the file “Logistic Model of Population Growth.” The logistic equation will

be automatically entered into the Architect. The graphs show several solu-
tion curves. Set the initial condition for the population size toN0 = 25 and
setK = 100. Plot eight solutions by sweeping the growth rate constant from
r = −0.5 to r = 2; print your graph. Describe the effect ofr on the solutions
of the logistic equation. Your description should address the following ques-
tions: How does the growth rate constant affect the long-term behavior of the
population? How does the rate constant affect the dynamics of the system?

2. Set the IC toN0 = 25 andr = 1.2. Plot eight solution curves by sweeping
the carrying capacityK from 70 to 150; print your graph. Describe the effect
of the parameterK on the solutions of the logistic equation. Your description
should address the following questions: How does the carrying capacity affect
the long-term behavior of the population? How does the carrying capacity
affect the dynamics of the system?
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3. Study the graphs that you produced for Problems 1 and 2. Notice that some-
times the rate of change of population size is increasing (i.e.,N′(t) is increas-
ing and the graph ofN(t) is concave up) and sometimes it is decreasing (N′(t)
is decreasing and the graph ofN(t) is concave down). By analyzing your
graphs, try to predict a relationship betweenr , K, and N that distinguishes
between these two situations. Use ODE Architect to test your prediction by
graphing more solution curves. Lastly, try to confirm your prediction by exact
analysis ofN′′ using the logistic ODE.
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Exploration 9.2. Harvesting a Natural Resource

Human societies use resources from their environments. We harvest animals
and plants for food, construction, fuel, and many other uses. The harvesting
of a biological resource must be done carefully, because overexploitation of
the population can cause severe harm, or even extinction, to the resource. As
a society we have become much more sensitive about the need to balance
the benefits of resource consumption against the impact of that consumption
on the exploited populations and their environment.

Resource management is an important tool for minimizing the negative
effects of harvesting. Mathematical models are tools for understanding the
impact of harvesting on a population, so that we can then design manage-
ment policies, such as quotas on the annual harvest.

In this exploration, you will analyze a simple model for harvesting a sin-
gle species. To be specific, suppose that the habitat is a forest and the re-
source is a species of pine tree. The number of trees grows logistically with
an intrinsic growth rate r , and the forest will support at most K trees (mea-
sured in millions of board feet). You are a consulting ecologist, asked to
model the effect of a lumber company’s harvesting strategy on the pine for-
est. The company harvests the trees proportionally: in a unit of time (a year,
for example), the company removes a fixed fraction h of the trees. Harvest-
ing reduces the net rate of growth of the forest; this leads you to propose the
following model for the effect of harvesting:

N′ = rN

(
1− N

K

)
− hN, N(0) = N0 (6)

The last term, −hN, is the harvesting term. Notice that when h = 0 (i.e., no
trees are harvested), the model reduces to the logistic equation.

1. Open ODE Architect and enter the ODE for the harvesting model given by
equation (6). Set the growth rate tor = 0.1 year−1, the carrying capacity to
K = 1000 million board feet, and the population size IC toN0 = 100 att = 0.
Describe the growth of the forest when there is no harvesting (h = 0). You’ll
have to choose a good time interval to best display your results.
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2. Keepr and K fixed and plot solution curves for various (positive) values of
the harvesting coefficienth. You can do this exploration most efficiently by
sweeping the parameterh. After you have studied a variety of harvest rates,
explain how harvesting affects the pine population. Your explanation should
address the following questions: How does the growth of the pine population
with harvesting compare to its growth without harvesting? What is the long-
term effect of harvesting? How are the time dynamics of the forest growth
affected by harvesting?

3. The annual yieldY of the harvest is the amount of lumber removed per year.
This is justY = hN when there areN units of lumber in the forest. The yield
will vary through time as the amount of lumber (trees) in the forest varies
in time. If the harvest rate is too high, the long-term yield will tend to zero
(Y → 0) and the forest will become overexploited. If the harvest rate is very
low, the yield will also be very low. As the consultant to the company, you are
asked: What should the harvest rate be to give the largestsustainable yieldof
lumber? That is to say, what optimal harvest rate will maximize limt→∞ Y(t)?
Attack the problem graphically using ODE Architect to plot graphs of the
yield function for various values ofh. Assume thatr = 0.1, K = 1000,
and N0 = 100. If you can, provide an analytic solution to the question, and
check your results using the Architect. Suppose that the company follows
your recommendation and harvests pine at the optimal rate. When the size
of the forest reaches equilibrium, how much lumber (trees) will there be, and
how does this amount compare to the size of the forest without harvesting?
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Exploration 9.3. Predator and Prey

Predator-prey interactions are very common in natural populations. These
interactions can be modeled by a system of nonlinear equations:

H ′ = aH

(
1− H

K

)
− cH P, P′ = −bP+ dH P

where H and P are the prey and predator population sizes, respectively.

1. Give a biological interpretation of the parametersa, b, c, d, K of the predator-
prey model.

2. Open ODE Architect and enter the modeling equations for the predator-prey
system above. Assign the following values to the parameters:a = 1.0,
b = 0.25, c = 1.0, d = 0.15, K = 100. After you have entered the equa-
tions and parameters, set the solve interval to 60, and the number of points
plotted to 500. Solve the system forward in time using the initial conditions
H(0) = 1, P(0) = 1. Plot graphs of the orbits in theH P-phase plane, and
plot the individual component graphs for predator and prey. Experiment with
other initial conditions. Describe the nature of the solutions and locate all
equilibrium solutions.



168 Exploration 9.3

3. Fix a = 1.0, b = 0.25, c = 1.0, andd = 0.15 as in Problem 2. Plot several
solutions from the fixed initial conditionsH(0) = 1, P(0) = 1, for varying
values ofK. For example, letK range over several values between 100 to
10,000. How does changing the carrying capacity of the prey affect the be-
havior of the system? Make a conjecture about the limiting behavior of the
system asK → ∞.

4. Test the conjecture that you made in Problem 3 in two steps:

(a) Take the limit asK → ∞ in the predator-prey equations and obtain a
new system of equations that describes a predator-prey system where
there is no resource limitation for the prey.

(b) Explore this system using ODE Architect; this new system is often
called theLotka–Volterramodel. Plot several orbits using markers that
are equally spaced in time. Do the cycles have a common period? How☞ Finally, you get a chance

to figure out what is going on in
the chapter cover figure.

do the time markers help you answer that question? Compare your
graphs with the chapter cover figure. Also plot graphs ofH againstt
and P againstt for various values ofH(0) and P(0). What do these
graphs tell you about the periods?

How does the behavior of the Lotka–Volterra model differ from the model
you explored in Problems 1–3?
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Exploration 9.4. Mutualism: Symbiotic Species Interactions

For both predator-prey and species competition, the growth rate of at least
one of the species is reduced by the interaction. Though eating the prey
helps the predator, it certainly harms the prey; for competitors the reduc-
tion in growth rate is reciprocal. Not all species interactions must be neg-
ative: there are many examples where the species cooperate or otherwise
mutually enhance their respective growth rates. A famous example is the
yucca plant–yucca moth system: the yucca plant can be pollinated only by
the yucca moth, and the yucca moth is adapted to eat nectar only from the
yucca plant. Each species benefits the other, and their interaction is positive
for both. Such interactions are called mutualistic or symbiotic by ecologists.
In this exploration we will present and analyze a simple model for mutualism.

Our model will be very similar to the competition model studied in Mod-
ule 9. To obtain a model for mutualism, we just change the signs of the
interaction terms so that they are always positive: each species enhances
the growth rate of the other. We then obtain the following equations:

dN1

dt
= N1 (r1 − e1N1 + α12N2) ,

dN2

dt
= N2 (r2 − e2N2 + α21N1) (7)

The parameters r1, r2, α12, and α21 retain their meanings from ODE (2) in the
competition model. However, the interaction terms α12N1N2 and α21N1N2 have
positive sign and thus enhance the respective growth rates.

Notice that in the absence of interaction, the carrying capacities of the
two species are K1 = r1/e1 and K2 = r2/e2 in this version of the model.

1. Open the ODE Architect Library, go to the “Population Models” folder, and
open the file “Mutualism: Symbiotic Interactions.” This file loads the equa-
tions that model a mutualistic interaction. Fixr1 = 1, r2 = 0.5, e1 = 1,
e2 = 0.75. Vary the values of each of the interaction coefficients from 0 to
2. For each combination of values forα12 andα21 that you try, draw a phase
portrait of the system (7) in the first quadrant. Describe every possible kind☞ You may want to use the

Dual (Matrix) sweep feature here. of behavior of the system; try enough combinations of the parameters to feel
confident that you have covered all the possibilities. Answer the following
questions: Is species coexistence possible? Can competitive exclusion occur?
Will the populations of both species remain bounded as time increases?
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2. Using pencil and paper, deduce the conditions under which a two-species
equilibrium will be present. Check your conditions using the Architect to
solve the model. When a two-species equilibrium is present, does it neces-
sarily have to be stable? Compare two-species equilibria to single-species
equilibria (the carrying capacities): does mutualism increase or decrease the
abundance of the species at equilibrium?

3. Do you think that a mutualistic interaction is always beneficial to an ecosys-
tem? Under what conditions might it be deleterious? Compare the behavior
of mutually interacting species to that of competing species. How are the two
behaviors similar? How are they different?
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Exploration 9.5. Analyzing the SIR model for an Epidemic

We will now explore the SIR model for the spread of an epidemic. Recall the
ODEs for this model: S′ = −aSI, I ′ = aSI− bI, R′ = bI. The parameter a > 0 is
the infection rate constant and b > 0 is the removal (recovery) rate constant
of infecteds. Notice that S′ + I ′ + R′ = 0, i.e., the total number of individuals
N is constant and equals S(0)+ I (0)+ R(0). The ODE Architect Library has an
equation file for the SIR model in the “Population Models” folder. In this file
you will find values of a, b, and N that correspond to an actual epidemic.

1. Set the IC toI (0) = 20 and R(0) = 0. Set the solve interval to 24 time
units, and make ten plots by sweeping the initial number of susceptibles from
S(0) = 100 toS(0) = 500. Now examine the graph panel forI vs. t. Which
of the curves corresponds toS(0) = 100 and which toS(0) = 500? By def-
inition, an epidemic occurs ifI (t) increases from its initial valueI (0). For
which of the curves that you plotted did an epidemic occur?

2. The behavior that you studied in Problem 1 is called athreshold effect. If the
initial number of susceptible individuals is below a threshold value, there will
be no epidemic. If the number of susceptibles exceeds this value, there will
be an epidemic. Use ODE Architect to empirically determine the threshold
value forS(0); use the values ofa andb in the Library file. Now analyze the
equation fordI/dt and determine a sufficient condition forI (t) to initially
increase. Interpret your answer as a threshold effect. Use the values of the
infection and removal rates that appear in the Library file to compare your
analytic calculation of the threshold with that obtained from your empirical
study.
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3. Clear your previous results from the Architect but keep the same values fora
andb. Set the initial conditions forI , R, andS to 10, 0, and 200, respectively.
Solve the equations for a time interval of 24 units. Notice from the plot ofI (t)
that the number of infecteds steadily diminishes from 10 to nearly zero. Also
notice that over this same period of time, the number of susceptibles declines
by almost 50, and the number of recovered individuals increases from zero to
nearly 50. Explain this seemingly contradictory observation.

4. A disease is said to beendemicin a population if at equilibrium the number
of infecteds is positive. Is it possible in the SIR model for the disease to be
endemic at equilibrium? In other words, can limt→∞ I (t) > 0? Explain your
answer.
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The Pendulum and Its Friends
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High-energy trajectories of a damped pendulum ODE swing over the
top and then settle into decaying oscillations about rest points.

Overview The whole range of fixed-length pendulum models—linear, nonlinear, damped,
and forced—are presented in this chapter, and their behaviors are compared us-
ing insights provided by integrals. After discussing fixed-length pendulum ODEs,
the effects of damping, and separatrices, we turn to a variable-length model. A
child pumping a swing alters the length of its associated pendulum as the swing
moves. We present a nontraditional autonomous model and show that phase-
plane analysis leads to a successful description of the effects of the pumping
action. Finding geodesics (the paths of minimum length between points) on a
torus leads to an ODE with a resemblance to the pendulum ODE.

Key words Pendulum; damping; energy; equilibrium; separatrices; pumping (a swing); con-
servation laws; integrals of motion; torus; geodesics; limit cycle; bifurcation

See also Chapter 4 for a spring-mass system which has the same ODE as the linear pendu-
lum; Chapter 11 for a study of damping effects in the Robot and Egg submodule,
and a lengthening pendulum in Exploration 11.4; Chapters 6 and 7 for separatri-
ces and integrals of motion; and Chapter 12 for elaboration on the forced, damped
pendulum resulting in chaos (and control).
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◆ Modeling Pendulum Motion

Let’s find the ODE that models the motion of a pendulum. For a pendulum☞ The volumes by Halliday
and Resnick (refs.) are good
general references for physical
models (including the pendulum).

bob of massm at the end of a rod of negligible weight and fixed lengthL at
an angleθ to the vertical, Newton’s second law gives

mass· acceleration= sum of forces acting on the bob

The bob moves along an arc of a circle of radiusL. The tangential compo-
nent of the bob’s velocity and acceleration at timet are given byLθ′(t) and
Lθ′′(t), respectively. The tangential component,−mgsinθ, of the gravita-☞ Since the tensile force in

the rod and the radial component
of the gravitational force are
equal and opposite, the radial
acceleration is zero and the
pendulum moves along a circular
arc.

tional force acts to restore the pendulum to its downward equilibrium. The
viscous damping force,−bLθ′, is proportional to the velocity and acts in a di-
rection tangential to the motion, but oppositely directed. Other forces such as
repeated pushes on the bob may also have componentsF(t) in the tangential
direction.

Equating the product of the mass and the tangential acceleration to the
sum of the tangential forces, we obtain the pendulum ODE

mLθ′′ = −mgsinθ − bLθ′ + F(t) (1)

The equivalent pendulum system is

θ′ = y

y′ = − g
L

sinθ − b
m

y+ 1
mL

F(t)
(2)

The angleθ is positive if measured counterclockwise from the downward ver-
tical, and is negative otherwise;θ is measured in radians (1 radian is 360/2π

or about 57◦). We allowθ to increase or decrease without bound because we
want to keep track of the number of times that the pendulum swings over the
pivot, and in which direction. For example, ifθ = −5 radians then the pen-
dulum has swung clockwise (the minus sign) once over the top fromθ = 0
because the angle−5 is between−π (at the top clockwise from 0) and−3π

(reaching the top a second time going clockwise).
We will work with theundrivenpendulum ODE (F = 0) in this chapter.

Since sinθ ≈ θ if |θ| is small, we will on occasion replace sinθ by θ to obtain
a linear ODE. We treat both undamped (b = 0) and damped (b > 0) pendulum
ODEs:

☞ The first two ODEs in this
list have the form of the
mass-spring ODEs of Chapter 4.

θ′′ + g
L

θ = 0 (undamped, linear) (3a)

θ′′ + b
m

θ′ + g
L

θ = 0 (damped, linear) (3b)

θ′′ + g
L

sinθ = 0 (undamped, nonlinear) (3c)

θ′′ + b
m

θ′ + g
L

sinθ = 0 (damped, nonlinear) (3d)

θ′′ + b
m

θ′ + g
L

sinθ = 1
mL

F(t) (damped, nonlinear, forced) (3e)
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Figure 10.1: Solution curves of a damped pendulum system. What is the
meaning of the horizontal solution curves?

Although the two linear ODEs are only good models of actual pendulum
motions when|θ| is small, these ODEs have the advantages that their so-
lutions have explicit formulas (see Chapter 4). The nonlinear ODEs model
pendulum motions for all values ofθ, but there are no explicit solution for-
mulas. Figure 10.1 and the chapter cover figure, respectively, show some
solution curves and trajectories of the damped, nonlinear pendulum ODE,
θ′′ + θ′ + 10sinθ = 0.

Now fire up your computer, go to Screen 1.2 of Module 10, and visually
explore the behavior of solution curves and trajectories of linear, nonlinear,
damped, and undamped pendulum ODEs. Pay particular attention to the be-
havior of the animated pendulum at the upper left, and relate its motions to the
trajectories and to the solution curves, and to what you think a real pendulum
would do. Explore all the options in order to understand the differences.

✓ “Check” your understanding by matching solution curves of Figure 10.1
with the corresponding trajectories in the chapter cover figure. Describe the
long-term behavior of the pendulum represented by each curve.

✓ Go to Screen 1.2 of Module 10 and explore what happens to solutions☞ This is also what
Problem 1 of Exploration 10.1 is
about.

of the undamped, linearized ODE,θ′′ + θ = 0, if θ0 is 0 andθ′
0 is large. The

motion of the animated pendulum is crazy, even though it accurately portrays
the behavior of the solutionsθ(t) = θ′

0 sint. Explain what is going on. Is
the linearized ODE a good model here? Repeat with the undamped, nonlinear
ODE,θ′′ + sinθ = 0, and the same initial data as above. Is this a better model?



176 Chapter 10

There is another way to look at pendulum motion, an approach based
on integrals of motion. This approach goes beyond pendulum motion and
applies to any physical system which can be modeled by a second-order ODE
of a particular type.

◆ Conservative Systems: Integrals of Motion

In this section we will study solutions of the differential equation

☞ V is often called a
potential function.

q′′ = −dV
dq

(4)

for a generic variableq whereV(q) is a given function.

Example 1: The undamped, nonlinear pendulum ODE is the special case
whereq = θ:

θ′′ = − g
L

sinθ, V(θ) = − g
L

cosθ

Example 2: You will see later in this chapter that geodesics on a surface of
revolution lead to the differential equation

u′′ = M2 f ′

f 3
, V(u) = M2 1

2 f 2

where the generic variableq is u in this case,M is a constant, andf is a
function ofu.

ODE (4) is autonomous and equivalent to the system

q′ = y

y′ = −dV
dq

(5)

A solution to system (5) is a pair of functions,q = q(t), y = y(t). One
way to analyze the behavior of these solutions is by a conservation law. A
function K(q, y) that remains constant on each solution [i.e.,K(q(t), y(t))
is a constant for allt], but varies from one solution to another, is said to be
a conserved quantity, or an integral of motionand the system is said to be
conservative. For system (5) one conserved quantity is

K(q, y) = 1
2

y2 + V(q) (6)

Here’s how to prove thatK(q(t), y(t)) stays constant on a solution—use the
chain rule and system (5) to show thatdK/dt is zero:

dK
dt

= y
dy
dt

+ dV
dq

dq
dt

= y

(
−dV

dq

)
+ dV

dq
y = 0

Incidentally, if K is any conserved quantity, so also isαK + β whereα andβ

are constants andα �= 0.
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Example 3: Here’s an example where we useαK + β, rather thanK, as the
integral to show how integrals sometimes correspond to physical quantities.
Look back at the functionV(θ) = −(g/L)cosθ for the undamped, nonlinear
pendulum of Example 1. Using formula (6),E(θ, y) is an integral, where

E(θ, y) = mL2K(θ, y) + mgL

= mL2

(
1
2

y2 − g
L

cosθ
)

+ mgL

= 1
2

m(Ly)2 + mgL(1− cosθ)

= kinetic energy+ potential energy

This integral is called thetotal mechanical energyof the pendulum. The con-
stantmgL is inserted so that the potential energy is zero when the pendulum
bob is at its lowest point.

✓ Find the conserved quantityE for the undamped, linear pendulum ODE
θ′′ + θ = 0. Draw level curvesE(θ, y) = E0, wherey = θ′, in theθy-plane,
and identify the curves (e.g., ellipses, parabolas, hyperbolas).

Drawing the level curves of a conserved quantityK in the qy-plane for
system (5) gives phase plane trajectories of the system and so serves to de-
scribe the motions. This may be much easier than finding solution formulas,

☞ So we can draw
trajectories of system (5) by
drawing level sets of an integral.

but even so, we can take some steps toward obtaining formulas. To see this,
we have from equation (6) that ifK has the valueK0 on a trajectory of sys-
tem (5), then

1
2

y2 + V(q) = K0, i.e., y = q′ = ±
√

2K0 − 2V(q)

This is a separable first-order differential equation (as discussed in Chapter 2)
that can be solved by separating the variables and integrating:∫

dq√
K0 − V(q)

=
√

2t + C

It is hard to obtain explicit solution formulas because the integral cannot usu-
ally be expressed in terms of elementary functions.

◆ The Effect of Damping

Mechanical systems are usually damped by friction, and it is important to
understand the effect of friction on the motions. Friction is not well described
by the fundamental laws of physics, and any formula we write for it will
be more or lessad-hoc. The system will now be modeled by a differential
equation of the form

q′′ + f (q, q′) + dV
dq

= 0
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or, rewritten as a system of first-order ODEs,

q′ = y

y′ = − f (q, y)− dV/dq
(7)

where− f (q, y) represents the frictional force; the functionf (q, y) always
has the sign ofy.

At low velocities, f (q, y) = by is a reasonably good approximation of
the friction due to air, but higher powers ofy are necessary at higher veloc-
ities. This latter fact is why reducing the speed limit actually helps reduce
gasoline usage—there is less drag at lower speeds. If friction were only a lin-
ear function of velocity, the effects of a higher speed would be cancelled by
the distance being covered in a shorter time, and the system would expend the
same amount of energy in either case. But if friction depends on the cube of
velocity, for instance, you gain a lot by going more slowly. We will examine
more elaborate friction laws when we study the pumping of a swing, but for
now we will use viscous damping withf = by.

Example 4:Let’s model the motion of a linearized pendulum with and with-
out damping:

θ′ = y

y′ = −10θ − by
(8)

whereb = 0 (no damping), orb = 1 (viscous damping). If there is no damp-
ing, then one conserved quantity is

K = 1
2

y2 + 5θ2 (9)

The left graph in Figure 10.2 displays the integral surface defined by for-
mula (9). The surface is a bowl whose cross-sectionsK = K0 are ellipses.
Projecting the ellipses downward onto theθy-plane gives the trajectories of
system (8) withb = 0.

Once damping is turned on, the functionK in formula (9) no longer is
constant on a trajectory of system (8). But the integral concept still gives a
good geometric picture of the behavior of a system under damping, because
the value of the functionK in equation (6) decreases along trajectories. This
fact follows from the following computation (using system (7)):

d
dt

(
y2

2
+ V(q)

)
= y

dy
dt

+ dV
dq

dq
dt

= y

(
− f (q, y)− dV

dq

)
+ dV

dq
y

= −yf (q, y) ≤ 0

where the final inequality follows from the fact thatf (q, y) has the sign ofy.
So if b > 0 in system (8) the value ofK along a solution decreases, and will
either tend to a finite limit, which can only happen if the solution tends to an
equilibrium of the system, or the value ofK will tend to−∞. If V is bounded
from below (as in all our examples), the latter does not happen.
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Figure 10.2: The left graph shows the integral surface K = y2/2+ 5θ2 for the
undamped, linearized system, θ′ = y, y′ = −10θ, and the projections of the
level curves K = K0. The right graph shows a trajectory of the damped, lin-
earized system, θ′ = y, y′ = −10θ − y; as the trajectory cuts across the level
curves of K, the value of K decreases.

Example 5:Let’s turn on viscous damping (takeb = 1 in system (8)) and see
what happens. The right side of Figure 10.2 shows a trajectory of the damped,
linear pendulum system as it cuts across the level curves of the integral func-
tion K = y2/2+ 5θ2. K decreases as the trajectory approaches the spiral sink
at θ = 0, y = 0. [The level curves ofK are drawn by ODE Architect as
trajectories of the undamped system (8) withb = 0.]

Now let’s turn to the more realistic nonlinear pendulum and see how
damping affects its motions.

Example 6:The nonlinear system is

θ′ = y

y′ = −10sinθ − by
(10)

whereb = 0 corresponds to no damping, andb = 1 gives viscous damping.
In the no-damping case we can take the conserved quantityK to be

K = 1
2

y2 − 10(cosθ − 1) (11)

The left side of Figure 10.3 shows part of the surface defined by equation (11).

Example 7: With damping turned on (setb = 1 in system (10)) a trajectory
with a high initial K-value may “swing over the pivot” several times before
settling into a tightening spiral terminating at a sink,θ = 2nπ, y = 0, for
some value ofn. The right side of Figure 10.3 shows one of these trajectories
as it swings over the pivot once, and then heads toward the point,θ = 2π,
y = 0, whereK = 0.
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Figure 10.3: The left graph shows the surface K = y2/2− 10(cosθ − 1) with two
of its bowl-like projections that touch the θy-plane at equilibrium points of
minimal K-value. The nonlinear pendulum system is θ′ = y, y′ = −10sinθ − by

with b = 0. Turn on damping (b = 1) and watch a trajectory cut across the
level sets K = K0, with ever smaller values of K0 (right graph).

✓ Would you increase or decreaseb to cause the trajectory starting atθ =
−3, y = 12 to approachθ = 0, y = 0? How aboutθ = 10π, y = 0? What
would you need to do to get the trajectory to approachθ = −2π, y = 0, or is
this even possible?

◆ Separatrices

A trajectory is aseparatrixif the long-term behavior of trajectories on one side
is quite different from the behavior on the other side. As we saw in Chapters 6
and 7 each saddle comes equipped with four separatrices: two approach the
saddle with increasing time (thestableseparatrices for that saddle point) and
two approach as time decreases (theunstableseparatrices). These separatrices
are of the utmost importance in understanding how solutions behave in the
long term.

Example 8:The undamped system

θ′ = y

y′ = −10sinθ
(12)

has equilibrium points atθ = nπ, y = 0. These points are (nonlinear) centers☞ Use the Tool to find
eigenvalues and eigenvectors of
the Jacobian matrix of
system (12) atθ = nπ, y = 0 for
n = 1, 2, 3.

if n is even, and saddles ifn is odd. Each separatrix at a saddle enters (or
leaves) the saddle tangent to an eigenvector of the Jacobian matrix evaluated
at the point. ODE Architect gives us these eigenvectors after it has located the
saddle.

Example 9:(Plotting a Separatrix:) To find a point approximately on a saddle
separatrix, just take a point close to a saddle and on an eigenvector. Then solve
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Figure 10.4: Saddle separatrices for
the undamped, nonlinear pendulum
system enclose centers.
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Figure 10.5: Basins of attraction of
spiral sinks are bounded by stable
saddle separatrices.

forward and backward to obtain a reasonable approximation to a separatrix.
For example, atθ = π, y = 0, ODE Architect tells us that(0.3015,0.9535)
is an eigenvector corresponding to the eigenvalue 3.162, and so the saddle
separatrix is unstable. To graph the corresponding separatrix we choose as the
initial point θ0 = π + 0.003015, y = 0.009535 which is in the direction of
the eigenvector and very close to the saddle point. Figure 10.4 shows several
separatrices of system (12). The squares indicate saddle points, and the plus
signs inside the regions bounded by separatrices indicate centers.

✓ Describe the motions that correspond to trajectories inside the regions
bounded by separatrices. Repeat with the region above the separatrices. Can a
separatrix be both stable and unstable when considered as an entire trajectory?

Example 10: Add in viscous damping and the picture completely changes:
Figure 10.5 shows the stable separatrices at the saddle points for the system

θ′ = y

y′ = −10sinθ − y
(13)

The equilibrium points atθ = 2nπ, y = 0 are no longer centers, but attracting
spiral points (the solid dots). Thebasin of attractionof each sink (i.e., the
points on the trajectories attracted to the sink) is bounded by four stable saddle
separatrices.

✓ With a fine-tipped pen, draw theunstableseparatrices at each saddle in
Figure 10.5.

That’s all we have to say about the motions of a constant-length pendulum
for now. More (much more) is discussed in Chapter 12, where we add a
driving termF(t) to the pendulum equations.
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◆ Pumping a Swing

Recall that in anautonomousdifferential equation, the time variablet does
not appear explicitly. The central thing to realize is thatthe ODE that mod-
els pumping a swing must be autonomous:a child pumping the swing does
not consult a watch when deciding how to lean back or sit up; the move-
ments depend only on the position of the swing and its velocity. The swinger
may change pumping strategies, deciding to go higher or to slow down, but
the modeling differential equation for any particular strategy should be au-
tonomous, depending on various parameters which describe the pumping
strategy.

If you observe a child pumping a swing, or do it yourself, you will find☞ If you use a different
pumping strategy, make up a
differential equation of your own!

that one strategy is to lean back on the first half of the forward swing and to
sit up the rest of the time. If you stand on the seat, the strategy is the same:
you crouch during the forward down-swing, and stand up straight the rest of
the time. The work is done when you bring yourself back upright during the
forward up-swing, either by pulling on the ropes (if sitting), or simply by
standing.

The pumping action effectively changes the length of the swing, which
complicates the ODE considerably, for two reasons. Newton’s second law
must be stated differently, as will be shown below, and we must find an ap-
propriate equation to model the changing length.

The question of friction is more subtle. Of course, the air creates a drag,
but that is not the most important component of friction. We believe that
things are quite different for a swing attached to the axle by something flexi-
ble, than if it were attached by rigid rods. Circus acrobats often drive swings
right over the top; they always have rigid swings. We believe that a swing
attached flexibly to the axle cannot be pumped to go over the top. Suppose
the swing were to go beyond the horizontal—then at the end of the forward
motion, the swinger would go into free-fall instead of swinging back; the jolt☞ Do you agree with this

claim about the behavior of
flexibly supported swings?

(heard as “ka-chunk”) when the rope becomes tight again will drastically slow
down the motion. If you get on a swing, you will find that this effect is felt
before the amplitude of the swing reachesπ/2; the ropes become loose near
the top of the forward swing, and you slow down abruptly when they draw
tight again.

We will now turn this description into a differential equation.

◆ Writing the Equations of Motion for Pumping a Swing

Modeling the pendulum with changing length requires a more careful look at
Newton’s second law of motion. The equationF = ma= mq′′ is not correct
when the mass is changing (as when you use a leaky bucket as the bob of a
pendulum), or when the distance variable is changing with respect to position
and velocity (as for the child on the swing). In cases such as this, force is the
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rate of change of themomentum mq′:

Force= (mq′)′ (14)

When the mass and pendulum length are constant, equation (14) indeed re-
duces to the more familiarF = ma.

The analog in rotational mechanics about a pivot, whereq = Lθ, is that
thetorqueequals the rate of change of angular momentum:

Torque= ( I θ′)′

whereI is the moment of inertia (the rotational analog of the mass). If a force
F is applied at a pointp, then the torque about the pivot is the vector product
r × F, wherer is the position vector from the pivot top. For the undamped
and nonlinear pendulum, the gravitational torque can be treated as the scalar
−mgLsinθ, and the moment of inertia isI = mL2. Then Newton’s second
law becomes

(mL2θ′)′ = −mgLsinθ (15)

When L andm are constant, equation (15) is precisely the ODE of the un-
damped, nonlinear pendulum. In the case of the child pumping a swing, the
massm remains constant (and can be divided out of the equation), butL is a
function ofθ andθ′, so we must differentiateL2θ′ in equation (15) using the
chain rule to get

2L

(
∂L
∂θ

θ′ + ∂L
∂θ′ θ

′′
)

θ′ + L2θ′′ = −gLsinθ

or, in system form

θ′ = y

y′ = −2y2∂L/∂θ + gsinθ

2y∂L/∂y+ L

(16)

The person pumping the swing is changingL as a function ofθ and y.
For the reasons given in Screen 2.3 of Module 10 we will use the following
formula for L:

L = L0 + �L
π2

(π

2
− arctan10θ

)(π

2
+ arctan10y

)
(17)

whereL0 is the distance from the axle to the center of gravity of the swinger
when upright, and�L is the amount by which leaning back (or crouching)
increases this distance. Note that

1
π

(π

2
− arctan10θ

)
is a smoothed-out step function: roughly 1 whenθ < 0 and 0 whenθ > 0.
The jump from one value to the other is fairly rapid because of the factor
10; other values would be appropriate if you were to sit (or stand) up more
or less suddenly. A similar analysis applies to the second arctan factor in
formula (17).
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As for friction with the swing, we will use

f (θ, y) = εy+
(

θ

1.4

)6

y

The first term corresponds to some small viscous air resistance. Admit-
tedly, the second term is quite ad-hoc, but it serves to describe some sort
of insurmountable “brick wall,” which somewhat suddenly takes effect when
θ > 3/2 ∼ π/2. So it does seem to reflect our qualitative description.

Writing the differential equation as an autonomous system is now
routine—an unpleasant routine since we need to differentiateL, which leads
to pretty horrific formulas. But with this summary, we have tried to make
the structure clear. Now let’s get real and insert friction into modeling sys-
tem (16):

θ′ = y

y′ = −2y2∂L/∂θ + gsinθ + friction term
2y∂L/∂y+ L

(18)

whereL is given by formula (17) and

∂L
∂θ

= −10�L
π
2 + arctan(10y)

π2(1+ 100θ2)

∂L
∂y

= 10�L
π
2 − arctan(10θ)

π2(1+ 100y2)

friction term= εy+
(

θ

1.4

)6

y

(19)

Example 11: Now setg = 32, L0 = 4, �L = 1, and ε = 0 (no viscous
damping), and use ODE Architect to solve system (18). Figure 10.6 shows
that you can pump up a swing from rest at an initial angle of 0.25 radian (about
14◦) within a reasonable time, but not from the tiny angle of 0.01 radian. Do
you see the approach to a stable, periodic, high-amplitude oscillation? This
corresponds to an attracting limit cycle in theθy-plane.

What happens if we put viscous damping back in? See for yourself by
going to Screen 2.4 of Module 10 and clicking on several initial points in the
θy-screen. You should seetwo limit cycles now:

� a large attracting limit cycle representing an oscillation of amplitude
close toπ/2, due to the “brick wall” friction term, and (forε > 0)

� a small repelling limit cycle near the downward equilibrium, due to fric-
tion and viscous air resistance.

In order to get going, the child must move the swing outside the small
limit cycle, either by cajoling someone into pushing her, or backing up with
her feet on the ground. Once outside the small limit cycle, the pumping will
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Figure 10.6: Successful pumping (left graph) starts at a moderately high an-
gle (θ0 = 0.25 radian). If θ0 is small (e.g., θ0 = 0.01 rad), then pumping doesn’t
help much (right graph).

push the trajectory to the attracting limit cycle, where it will stay until the
child decides to slow down.

Please note that this structure of the phase plane, with two limit cycles, is
necessary in order to account for the observed behavior: the origin must be a
sink because of air resistance, and you cannot have an attracting limit cycle
surrounding a sink without another limit cycle in between.

✓ Does the system without viscous damping have a small repelling limit
cycle?

◆ Geodesics

Geodesics on a surface are curves that minimize length between sufficiently
close points on the surface; they may, but need not, minimize length between
distant points.

Example 12:Straight lines are geodesics on planes, and they minimize the
distance between arbitrary points. Great circles are geodesics on the unit
sphere, but they only minimize length between pairs of points if you travel
in the right direction. If you travel along a great circle your path will be short-
est until you get half-way around the world; but further along, you would have
done better to go the other way.

To look for geodesics, we use the fact that parametrization of a curveγ

by its arc lengths results in traversing a curve at constant speed 1, that is,☞ Arc length is denoted byt,
rather thans, in Submodule 10.3. |dγ/ds| is always 1.

On a surface in three-dimensional space, a geodesicγ is a curve for which
the vectord2γ/ds2 is perpendicular to the surface at the pointγ(s). For now,
let’s assume that all curves are parametrized by arc length, soγ ′ meansdγ/ds.
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If any curveγ (not necessarily a geodesic) on the surface is parametrized
at constant speed, we are guaranteed thatγ ′′ is perpendicular toγ ′, but not
necessarily to the surface. To see this, observe thatγ ′ · γ ′ = 1, whereγ ′ is
the velocity vector for the curveγ and the “dot” indicates thedot (or scalar)
product of two vectors. Differentiating the dot product equation, we have
γ ′′ · γ ′ + γ ′ · γ ′′ = 0, soγ ′′ is perpendicular toγ ′ (or else is the zero vector).

The statement thatγ ′′ is perpendicular to thesurfacesays thatγ is going
as “straight” as it can in the surface, and that the surface is exerting no force
which would make the curve bend away from its path. Such a curve is a
geodesic. See the book by Do Carmo for a full explanation of why geodesics
defined as above minimize the distance between nearby points.

Example 13:On a sphere, the parallels of latitudeγ(s) yield vectorsγ ′′(s) in
the plane of the parallel and perpendicular to the parallel (but not in general
perpendicular to the surface), whereas any great circle yields vectorsγ ′′(s)
pointing toward the center of the sphere and hence perpendicular to both the
great circle and to the surface. The great circles are geodesics, but the parallels
(except for the equator) are not.

◆ Geodesics on a Surface of Revolution

Suppose that

x = f (u), z= g(u)

is a parametrization by arc lengthu of a curve in thexz-plane. One conse-
quence of this parametrization is that( f ′(u))2 + (g′(u))2 = 1. Let’s rotate
the curve by an angleθ around thez-axis, to find the surface parametrized by

P(u, θ) =

 f (u)cosθ

f (u)sinθ

g(u)




Let’s suppose that curvesγ on the surface are parametrized by arc length
s and, hence, these curves have the parametric equation

γ(s) =

 f (u(s))cosθ(s)

f (u(s))sinθ(s)
g(u(s))




and we need to differentiate this twice to find

γ ′(s) =

 f ′(u(s))u′(s)cosθ(s) − f (u(s))sinθ(s)θ′(s)

f ′(u(s))u′(s)sinθ(s) + f (u(s))cosθ(s)θ′(s)
g′(u(s))u′(s)



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γ ′′(s) = u′′


 f ′(u)cosθ

f ′(u)sinθ

g′(u)


+ (u′)2


 f ′′(u)cosθ

f ′′(u)sinθ

g′′(u)


+ 2u′θ′


− f ′(u)sinθ

f ′(u)cosθ
0




−(θ′)2


 f (u)cosθ

f (u)sinθ

0


+ θ′′


− f (u)sinθ

f (u)cosθ
0


 (20)

This array is pretty terrifying, but the two equations

γ ′′ · ∂P
∂u

= 0, and γ ′′ · ∂P
∂θ

= 0 (21)

which express the fact thatγ ′′ is perpendicular to the surface, give

u′′ − (θ′)2 f (u) f ′(u) = 0 and 2u′ f (u) f ′(u)θ′ + θ′′( f (u))2 = 0 (22)

Thatγ ′′ is perpendicular to the surface if formulas (21) hold follows because
the vectors∂P/∂u and ∂P/∂θ span the tangent plane to the surface at the
point (θ, u). Formulas (22) follow from formulas (21), from the fact that
( f ′(u))2 + (g′(u))2 = 1, and from the formulas

∂P
∂u

=

 f ′(u)cosθ

f ′(u)sinθ

g′(u)


 ,

∂P
∂θ

=

− f (u)sinθ

f (u)cosθ
0




The quantity

M = ( f (u))2θ′ (23)

is conserved along a trajectory of system (22) since

d
ds

[( f (u))2θ′] = ( f (u))2θ′′ + 2u′θ′ f ′ f = 0

The integralM behaves likeangular momentum(see Exploration 10.5 for
the central force context that first gave rise to this notion).

Substitutingθ′ = M/( f (u))2 into the first ODE of equations (22) gives

u′′ − M2 f ′(u)

( f (u))3 = 0 (24)

Using equations (23) and (24), we obtain a system of first-order ODEs for the
geodesics on a surface of revolution:

θ′ = M
( f (u))2

u′ = w

w′ = M2 f ′(u)

( f (u))3

(25)
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We recognize that ODE (24) is of the form of ODE (4), so

u′′ = − d
du

M2

2( f (u))2

and we can analyze this ODE by the phase plane and conservation methods
used earlier. Let us now specialize to the torus.

◆ Geodesics on a Torus

Rotate a circle of radiusr about a line lying in the plane of the circle to obtain
a torus. IfR is the distance from the line to the center of the circle, then in the
equations on page 186 for a parameterized curve we can set

x = f (u) = R+ r cosu

z= g(u) = r sinu

If we setr = 1, then we have( f ′)2 + (g′)2 = 1 as required in the derivation
of the geodesic ODEs. The system of geodesic ODEs (25) becomes

θ′ = M
(R+ cosu)2

u′ = w

w′ = − M2 sinu
(R+ cosu)3

(26)

whereM is a constant. The variableu measures the angle up from the outer
equator of the torus, andθ measures the angle around the outer equator from
some fixed point. Figure 10.7 shows seventeen geodesics through the point

x

y

z

Figure 10.7: Seventeen geodesics through a point on the outer equator.
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Figure 10.8: The seventeen geodesics of Figure 10.7 drawn in the θu-plane
(left) and in the uu′-plane (right).

θ0 = 0, u0 = 0 with w0 sweeping from−8 to 8. In Figure 10.7 and subsequent
figures we takeR= 3 andM = 16. Figure 10.8 shows the geodesic curves in
theθu-plane (left graph) and in theuu′-plane (right). Note the four outlying
geodesics that coil around the torus, repeatedly cutting both the outer [u =
2nπ] and the inner [u = (2n+ 1)π] equators and periodically going through
the hole of the donut. Twelve geodesics oscillate about the geodesic along the
outer equator.

Figure 10.9 shows the outer and inner equatorial geodesics (the horizontal
lines) in theθu-plane, as well as three curving geodesics starting atθ0 = 0,
u0 = 0. One oscillates about the outer equator six times in one revolution
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Figure 10.9: Equatorial geodesics (lines), a geodesic that rapidly oscillates
around the outer equator, another that oscillates slowly around the outer
equator, and a third that slowly coils around the torus.
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Figure 10.10: The graphs of the toroidal geodesics in the uu′-plane (left) look
like the trajectories of an undamped, nonlinear pendulum (right).

(i.e., asθ increases from 0 to 2π). The other two start with values ofu′
0

that take them up over the torus and near the inner equator. One of these
geodesics turns back and slowly oscillates about the outer equator. The other
starts with a slightly larger value ofu′

0, cuts across the inner equator, and
slowly coils around the torus. This suggests that the inner equator (u = π)
is aseparatrixgeodesic, dividing the geodesics into those that oscillate about
the outer equator from those that coil around the torus. This separatrix is

☞ Try this and see how hard
it is to stay on the inner equator.

unstable in the sense that if you start a geodesic near the inner equator (say at
θ0 = 3.14, u′

0 = 0) and solve the system (26), then the geodesic moves away
from the separatrix.

Why do we call this geodesic model a “friend of the pendulum”? Take a
look at theu′ andw′ ODEs in system (26). Note that if we delete the term
“cosu” from the denominator of thew′ equation, then we obtain the system

u′ = w

w′ = − M2

R3
sinu

(27)

which is precisely the system for an undamped, nonlinear pendulum with
g/L = M2/R3. This fact suggests that geodesics of (26) plotted in theuu′-
plane will look like trajectories of the pendulum system (27). Figure 10.10
compares the two sets of trajectories and shows how much alike they are. This
illustrates a general principle (which, like most principles, has its exceptions):
If two systems of ODEs resemble one another, so will their trajectories.

References Arnold, V.I., Ordinary Differential Equations(1973: M.I.T.)
Note: Arnold’s book is the classical text. Much of the considerable liter-
ature on modeling swings has been influenced by his description, which
uses a nonautonomous length function,L(t), instead ofL(θ, θ′). In Sec-
tions 27.1 and 27.6, Arnold shows that if the child makes pumping mo-
tions at the right frequency at the bottom position of the swing, the mo-
tion eventually destabilizes, and the swing will start swinging without any
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push. This is correct (we have seen it done, though it requires pumping
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tainly give an autonomous equation.
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Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 10.1. Explorations of Basic Pendulum Equation

1. If the nonlinear pendulum ODE (3c) is approximated by the linear ODE (3a),
how closely do the trajectories and the component curves of the two ODEs
match up? Screen 1.2 in Module 10 will be a big help here.

2. What would motions of the system,x′ = y, y′ = −V(x), look like under
different potential functions, such asV(x) = x4 − x2? What happens if a
viscous damping term−y is added to the second ODE of the system? Use
graphical images like those in Figures 10.2 and 10.3 to guide your analysis.
Use ODE Architect to draw trajectories in thexy-plane for both the undamped
and damped case. Identify the equilibrium points in each case as saddles,
centers, sinks, or sources. Plot the stable and the unstable saddle separatrices
(if there are any) and identify the basin of attraction of each sink. [Suggestion:
Use the Equilibrium feature of ODE Architect to locate the equilibrium points,
calculate Jacobian matrices, find eigenvalues and eigenvectors, and so help to
determine the nature of those points.]
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3. Find all solutions of the undamped and linearized pendulum ODE,

θ′′ + (g/L)θ = 0

Show that all solutions are periodic of period 2π
√

L/g. Are all solutions of
the corresponding nonlinear pendulum ODE,θ′′ + (g/L)sinθ = 0, periodic?
If the latter ODE has periodic solutions, compare the periods with those of
solutions of the linearized ODE that have the same initial conditions.

4. Use the sweep and the animate features of ODE Architect to make “movies”
of the solution curves and the trajectories of the nonlinear pendulum ODE,
θ′′ + bθ + sinθ = 0, whereθ0 = 0, θ′

0 = 10, andb is a nonnegative parameter.
Interpret what you see in terms of the motions of a pendulum. In this regard,
you may want to use the model-based pendulum animation feature of ODE
Architect.
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Exploration 10.2. Physical Variations for Child on a Swing

1. Module 10 and the text of this chapter describe a swing-pumping strategy
where the swinger changes position only on the first half of the forward swing
(i.e., whereθ is negative butθ′ is positive). Is this the strategy you would use
to pump a swing? Try pumping a swing and then describe in words your most
successful strategy.
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2. Rebuild the model for the length functionL(θ, θ′) of the “swing pendulum”
to model your own pumping scenario. [Suggestion:Change the arguments
of the arctan function used in Module 10 and the text of this chapter.] Use
the ODE Architect to solve your set of ODEs. From plots oftθ-curves and
of θθ′-trajectories, what do you conclude about the success of your modeling
and your pumping strategy?
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Exploration 10.3. Bifurcations

In these problems you will study the bifurcations in the swing-pumping
model of Module 10 and this chapter as the viscous damping constant ε or
the incremental pendulum length �L is changed.

1. There is a Hopf bifurcation for the small-amplitude repelling limit cycle at
ε = 0 for the swing-pumping system (18) and (19). Plot lots of trajectories
near the originθ = 0, y = 0 for values ofε above and belowε = 0 and
describe what you see. What does the ODE Architect equilibrium feature tell
you about the nature of the equilibrium point at the origin ifε < 0? If ε = 0?
If ε > 0?
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2. Now sweep�L through a series of values and watch what happens to the
large-amplitude attracting limit cycle. At a certain value of�L you will see
a sudden change (called ahomoclinic, saddle-connection bifurcation). What
is this value of�L? Plot lots of trajectories for various values of�L and
describe what you see.
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Exploration 10.4. Geodesics on a Torus

The basic initial value problem for a geodesic starting on the outer equator
of a torus is

θ′ = M
(R+ cosu)2

u′′ = − M2 sinu
(R+ cosu)3

u(0) = 0, u′(0) = α, θ(0) = 0

(28)

where M is a constant.

1. Make up your own “pretty pictures” of geodesic sprays on the surface of the
torus by varyingu′(0). Explain what each geodesic is doing on the torus. If
two geodesics throughu0 = 0, θ0 = 0 intersect at another point, which pro-
vides the shortest path between two points? Is every “meridian”,θ = const.,
a geodesic? Is every “parallel”,u = const., a geodesic?
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2. Repeat Problem 1 at other initial points on the torus, including a point on the
inner equator.

3. Explore different values forR (between 2 and 5) for the torus—what does it
mean for the solutions of the ODEs for the geodesics? To what extent does
the ugly denominator in the ODEs mess up the similarity to the nonlinear
pendulum equation?

Answer by discussing effects onθu-phase portraits.
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Exploration 10.5. The Central Force and Kepler’s Laws

An object at position r (t) (relative to a fixed coordinate frame) is moving
under a central force if the force points toward or away from the origin, with
a magnitude which depends only on the distance r from the origin. This is
modeled by the differential equation r ′′ = f (r ) r , where we will take r (t) to be
a vector moving in a fixed plane.

Example 14: (Newton’s law of gravitation) This, as applied to a planet and
the sun, is perhaps the most famous differential equation of all of science.
Newton’s law describes the position of the planet by the differential equation

r ′′ = − AG
r3

r ,

where r is the vector from the center of gravity of the two bodies (located, for
all practical purposes, at the sun) to the planet, G is the universal gravitational
constant, and A = M3/(m+ M)2, where m is the mass of the planet (so for all
practical purposes, A is the mass of the sun).

1. Newton’s law of gravitation is often called the “inverse square law,” not the
“inverse cube law.” Explain.

2. The way to analyze a central force problem is to write it in polar coordinates,

☞ Another way to write the

vectorr is r = î cosθ + ĵ sinθ,
wherêi andĵ are unit vectors
along the positivex- andy-axes,
respectively.

where

r = r [cosθ,sinθ]

r ′ = r ′[cosθ,sinθ] + rθ′[−sinθ,cosθ]

r ′′ = (r ′′ − r (θ′)2)[cosθ,sinθ] + (2r ′θ′ + rθ′′)[−sinθ,cosθ]

Show that the central force equationr ′′ = f (r )r yields

2r ′θ′ + rθ′′ = 0 (29)

and

r ′′ − r (θ′)2 = r f (r ) (30)
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3. Show that the quantityM = r2θ′ is constant as a function of time during a
motion in a central force system, using equation (29).

The quantityM (now called the angular momentum of the motion) was
singled out centuries ago as a quantity of interest precisely because of the
derivation above. You should see that the constancy ofM is equivalent to
Kepler’s second law: the vectorr sweeps out equal areas in equal times.

4. Substituteθ′ = M/r2 into equation (30) and show that, for each value of the
particular central forcef (r ) and each angular momentumM, the resulting
differential equation is of the expected form.

5. Specialize to Newton’s inverse square law withk = AG and show that the
resulting system becomes

r ′′ = − k
r2

+ M2

r3

or the system

r ′ = y

y′ = − k
r2

+ M2

r3

Make a drawing of the phase plane for this system, and analyze this drawing
using the conserved quantityK, where

K(r, y) = y2

2
+ k

r
− M2

2r2

K is evidently defined only forr > 0, andK has a unique minimum, so the
level curves ofK are simple closed curves forK � 0, corresponding to the
elliptic orbits of Kepler’s first law, an unbounded level curve whenK = 0,
corresponding to a parabolic orbit, and other unbounded curves forK > 0
which correspond to hyperbolic orbits. (For discussion of these three cases
and their relation to conic sections, see Hubbard and West, Part II, Section 6.7
pp. 43–47.)
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An aging spring stretches.

Overview Many phenomena, especially those explained by Newton’s second law, can be
modeled by second-order linear ODEs with variable coefficients, for example:

1. Robot arms, which are modeled by a spring-mass equation with a time-
varying damping coefficient; and

2. Aging springs, which are modeled by a spring-mass equation with a time-
varying spring constant.

These two applications illustrate very different ways in which series solutions can
be used to solve linear ODEs with nonconstant coefficients.

Key words Power series; series solutions; recurrence formula; ordinary point; singular point;
regular singular point; Bessel’s equations; Bessel functions; aging spring; length-
ening pendulum

See also Chapter 4 for second-order linear ODEs with constant coefficients (i.e., without
the time-dependence).



204 Chapter 11

◆ Infinite Series

Certain second-order linear ODEs with nonconstant coefficients have been
studied extensively, so their properties are well-known. We will look at some
of these ODEs in the chapter.

If the general linear homogeneous (undriven) second-order ODE

x′′ + p(t)x′ + q(t)x = 0 (1)

has coefficientsp andq that are not both constants, the methods of Chapter 4
don’t work. However, sometimes we can write a solutionx(t) as a power
series:

x(t) =
∞∑

n=0

an(t − t0)
n (2)

where we use ODE (1) to determine the coefficientsan. Much useful infor-
mation can be deduced about an ODE when its solutions can be expressed as
power series.

If a functionx(t) has a convergent Taylor seriesx(t) = ∑
an(t − t0)n in☞ Look in your calculus

book for Taylor series. The term
“analytic” is frequently used for
functions with convergent Taylor
series. We assume thatp(t) and
q(t) are analytic on a common
interval aboutt0.

some interval aboutt = t0, thenx(t) is said to beanalytic at t0. Since all
derivatives of analytic functions exist, the derivativesx′ and x′′ of x can be
obtained by differentiating that series term by term, producing series with the
same radius of convergence as the series forx. If we substitute these series
into ODE (1), we can determine the coefficientsan. To begin with,a0 anda1

are equal to the initial valuesx(t0) andx′(t0), respectively.

✓ “Check” your understanding by evaluating the series (2) att = t0 to show
thata0 = x(t0). Now differentiate series (2) term by term to obtain a series for
x′(t); evaluate this series att0 to find thata1 = x′(t0). Doesa2 equalx′′(t0)?

◆ Recurrence Formulas

A recurrence formulafor the coefficientsan is a formula that defines each
an in terms of the coefficientsa0, a1, . . . , an−1. To find such a formula, we
have to express each of the terms in ODE (1) [i.e.,x′′, p(t)x′, andq(t)x] as
power series aboutt = t0, which is the point at which the initial conditions are
given. Then we combine these series to obtain a single power series which,
according to ODE (1), must sum to zero for allt neart0. This implies that
the coefficient of each power oft − t0 must be equal to zero, which yields an
equation for eachan in terms of the preceding coefficientsa0, a1, . . . , an−1.
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Example: Finding a recurrence formula
Let’s solve the first-order IVPx′ + tx = 0, x(0) = 1. First we writex(t) in☞ We chose a first-order

ODE for simplicity. the form

x(t) =
∞∑

n=0

antn

where we have chosent0 = 0. The derivative ofx(t) is then

x′(t) =
∞∑

n=1

nantn−1

Substituting this into the given ODE, we get

x′ + tx =
∞∑

n=1

nant
n−1 +

∞∑
n=0

antn+1 = 0

To make the power oft the same in both sums, replacen by n − 2 in the
second sum to obtain

☞ Notice in the second
summation thatn starts at 2,
rather than 0. Do you see why?

∞∑
n=1

nantn−1 +
∞∑

n=2

an−2t
n−1 = a1 +

∞∑
n=2

[nan + an−2]t
n−1 = 0

The last equality is true if and only ifa1 = 0 and, if for everyn ≥ 2, we have
thatnan + an−2 = 0. Therefore, the desired recurrence formula is

an = −an−2

n
, n = 2,3, . . . (3)

Sincea1 = 0, formula (3) shows that the coefficientsa3, a5, . . . , a2k+1, . . .

must all be zero; anda2 = −a0/2, a4 = −a2/4 = a0/(2 · 4), . . . . With a
little algebra you can show that the series forx(t) is

x(t) = a0 − a0

2
t2 + a0

2 · 4
t4 − a0

2 · 4 · 6
t6 + · · ·

which can be simplified to

x(t) = a0

(
1− t2

2
+ 1

2!

(
t2

2

)2

− 1
3!

(
t2

2

)3

+ · · ·
)

If the initial conditiona0 = x(0) = 1 is used, this becomes the Taylor series
for e−t2/2 aboutt0 = 0. Although the series solution to the IVP,x′ + x = 0,
x(0) = 1, can be written in the form of a familiar function, for most IVPs that
is rarely possible and usually the only form we can obtain is the series form
of the solution.

✓ Check thatx(t) = e−t2/2 is a solution of the IVPx′ + tx = 0, x(0) = 1.
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◆ Ordinary Points

If p(t) and q(t) are both analytic att0, then t0 is called anordinary point
for the differential equationx′′(t) + p(t)x′(t) + q(t)x(t) = 0. At an ordinary
point, the method illustrated in the preceding example always produces solu-
tions written in series form. The following theorem states this more precisely.

Ordinary Points Theorem. If t0 is an ordinary point of the second-
order differential equation

x′′ + p(t)x′ + q(t)x = 0 (4)

that is, if p(t) andq(t) are both analytic att0, then the general solution
of ODE (4) is given by the series

x(t) =
∞∑

n=0

an(t − t0)
n = a0x1(t) + a1x2(t) (5)

wherea0 anda1 are arbitrary and, for eachn ≥ 2, an can be written in
terms ofa0 anda1. When this is done, we get the right-hand term in
formula (5), wherex1(t) and x2(t) are linearly independent solutions
of ODE (4) that are analytic att0. Further, the radius of convergence
for each of the series solutionsx1(t) andx2(t) is at least as large as the
smaller of the two radii of convergence for the series forp(t) andq(t).

One goal of Module 11 is to give you a feeling for the interplay between
infinite series and the functions they represent. In the first submodule, the
positionx(t) of a robot arm is modeled by the second-order linear ODE

☞ Note thatp(t) = Ct and
q(t) = k are analytic for allt.

x′′ + Ctx′ + kx= 0 (6)

whereC andk are positive constants. Using the methods of the earlier exam-
ple, we can derive a series solution (witht0 = 0)

x(t) = 1− kt2

2!
+ k(2C+ k)t4

4!
− k(2C + k)(4C+ k)t6

6!
+ · · · (7)

that satisfiesx(0) = 1, x′(0) = 0. We then have to to determine how quickly
the arm can be driven from the positionx = 1 to x = 0.005 without letting
x go below zero. The value ofk is fixed at 9, so that onlyC is free to vary.
WhenC = k, it turns out that series (7) is the Taylor series fore−kt2/2 about
t = 0. It can then be demonstrated numerically, using ODE Architect, that
C = 9 produces a solution that stays positive and is an optimal solution in the
sense of requiring the least time for the value ofx to drop from 1 to 0.005.

In the majority of cases, however, it isnotpossible to recognize the series

☞ Historically, new functions
in engineering, science, and
mathematics have often been
introduced in the form of series
solutions of ODEs. solution as one of the standard functions of calculus. Then the only way to

approximatex(t) at a given value oft is by summing a large number of terms
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Figure 11.1: Solutions of ODE (6) for k = 9, x(0) = 1, x′(0) = 0, and C = 0, 3, 6,
9, 12, 15. Which is the C = 15 curve?.

in the series, or by using a numerical solver to solve the corresponding IVP.
ODE Architect was used to graph solutions of ODE (6) for several values of
C (Figure 11.1).

What if t0 is not an ordinary point for the ODE,x′′ + p(t)x′ + q(t)x = 0,
that is, what if p(t) or q(t) is not analytic att0? For example, in the ODE
x′′ + x/(t − 1) = 0, q(t) is not analytic att0 = 1. Such a point is said to be
a singular pointof the ODE. Thus,t0 = 1 is a singular point for the ODE
x′′ + x/(t − 1) = 0. Next we show how to deal with ODEs with certain kinds
of singular points.

✓ Is t = 0 an ordinary point or a singular point ofx′′ + t2x = 0? What about
x′′ + (sint)x = 0 andx′′ + x/t = 0?

◆ Regular Singular Points

A singular point of the ODEx′′(t) + p(t)x′(t) + q(t)x(t) = 0 is a regular
singular pointif both (t − t0)p(t) and(t − t0)2q(t) are analytic att0. In this
case we’ll have to modify the method to find a series solution to the ODE.

✓ Is t = 0 a regular singular point ofx′′ + x′/t + x = 0? What about
x′′ + x′ + x/t2 = 0 andx′′ + x′ + x/t3 = 0?
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Since(t − t0)p(t) and (t − t0)2q(t) are analytic att0, they have power
series expansions centered att0:

(t − t0)p(t) = P0 + P1(t − t0) + P2(t − t0)
2 + · · ·

(t − t0)
2q(t) = Q0 + Q1(t − t0) + Q2(t − t0)

2 + · · ·
As we shall soon see, the constant coefficients,P0 andQ0, in these two series
are particularly important. The roots of the quadratic equation (called the
indicial equation)

r (r − 1) + P0r + Q0 = 0 (8)

are used in solution formula (9) below.☞ Assume that the roots of
the indicial equation are real
numbers.

A theorem due to Frobenius tells us how to modify our original method
of constructing power series solutions so that we can obtain series solutions
near regular singular points.

Frobenius’ Theorem. If t0 is a regular singular point of the second-
order differential equationx′′(t) + p(t)x′(t) + q(t)x(t) = 0, then there
is a series solution att0 of the form

x1(t) = (t − t0)
r1

∞∑
n=0

an(t − t0)
n =

∞∑
n=0

an(t − t0)
n+r1 (9)

wherer1 is the larger of the two rootsr1 andr2 of the indicial equation.

☞ The second summation is
called theFrobenius series.

The coefficientsan can be determined in the same way as in the earlier☞ Consult the references for
detailed instructions on how to
find the coefficientsan.

example: differentiate twice, substitute the series forqx1, px′
1, andx′′

1 into the
given differential equation, and then find a recurrence formula.

Here are a few things to keep in mind when finding a Frobenius series.

1. The roots of the indicial equation may not be integers, in which case the
series representation of the solution would not be a power series, but is
still a valid series.

2. If r1 − r2 is not an integer, then the smaller rootr2 of the indicial equa-
tion generates a second solution of the form

x2(t) = (t − t0)
r2

∞∑
n=0

bn(t − t0)
n

which is linearly independent of the first solutionx1(t).
3. Whenr1 − r2 is an integer, a second solution of the form

x2(t) = Cx1(t) ln(t − t0) +
∞∑

n=0

bn(t − t0)
n+r2

exists, where the values of the coefficientsbn are determined by finding
a recurrence formula, andC is a constant. The solutionx2(t) is linearly
independent ofx1(t).
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◆ Bessel Functions

For any nonnegative constantp, the differential equation

t2x′′(t) + tx′(t) + (t2 − p2)x(t) = 0

is known asBessel’s equation of order p, and its solutions are theBessel
functions of order p. In normalized form, Bessel’s equation becomes

☞ If t is very large, Bessel’s
equation looks like the harmonic
oscillator equation,x′′ + x = 0.

x′′(t) + 1
t
x′(t) +

(
t2 − p2

t2

)
x(t) = 0

From this we can see thattp(t) = 1 andt2q(t) = t2 − p2, so thattp(t) and
t2q(t) are analytic att0 = 0. Therefore zero is a regular singular point and,
using equation (8), we find that the indicial equation (withP0 = 1, Q0 = −p2)
is

r (r − 1) + r − p2 = r2 − p2 = 0

Application of Frobenius’ Theorem yields a solutionJp given by the formula

☞ The roots of the indicial
equation arep and−p.

Jp(t) = t p
∞∑

n=0

(−1)n

22nn!(p+ 1)(p+ 2) · · · (p+ n)
t2n

The functionJp(t) is called theBessel function of order p of the first kind.

☞ Consult the references for
the derivation of the formula for
Jp(t).

The series converges and is bounded for allt. If p is not an integer, it can
be shown that a second solution of Bessel’s equation isJ−p(t) and that the
general solution of Bessel’s equation is a linear combination ofJp(t) and
J−p(t).

For the special casep = 0, we get the functionJ0(t) used in the aging
spring model in the second submodule of Module 11:

J0(t) =
∞∑

n=0

(−1)n

(n!)2

( t
2

)2n
= 1− t2

4
+ t4

64
− t6

2304
+ · · ·

Note that even thought = 0 is a singular point of the Bessel equation of order
zero, the value ofJ0(0) is finite [J0(0) = 1]. See Figure 11.2.

✓ Check thatJ0(t) is a solution of Bessel’s equation of order 0.

When p is an integer we have to work much harder to get a second solu-
tion that is linearly independent ofJp(t). The result is a functionYp(t) called
the Bessel function of order p of the second kind. The general formula for
Yp(t) is extremely complicated. We show only the special caseY0(t), used in
the aging spring model:

Y0(t) = 2
π

[(
γ + ln

∣∣∣ t
2

∣∣∣) J0(t) +
∞∑

n=0

(−1)n+1Hn

(n!)2

( t
2

)2n
]

whereHn = 1+ (1/2) + (1/3) + · · · + (1/n) andγ is Euler’s constant: γ =
☞ Actually γ is an unending
decimal and non-repeating (or so
most mathematicians believe),
and 0.5772 gives the first four
digits.

limn→∞(Hn − ln n) ≈ 0.5772.
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Figure 11.2: The graph of J0(t) [dark] looks like the graph of the decaying
sinusoid

√
2/πt cos(t − π/4) [light].

The general solution of Bessel’s equation of integer orderp is

x(t) = c1Jp(t) + c2Yp(t) (10)

for arbitrary constantsc1 andc2. An important thing to note here is that the
value ofYp(t) at t = 0 doesreflect the singularity att = 0; in fact,Yp(t) →
−∞ as t → 0+, so that a solution having the form given in equation (10) is
bounded only ifc2 = 0.

Bessel functions appear frequently in applications involving cylindrical
geometry and have been extensively studied. In fact, except for the functions
you studied in calculus, Bessel functions are the most widely used functions
in science and engineering.

◆ Transforming Bessel’s Equation to the Aging Spring Equation

Bessel’s equation of order zero can be transformed into the aging spring equa-☞ See “Aging Springs” in
Module 11. tion x′′ + e−atx = 0. To do this, we take

t = (2/a) ln(2/as) (11)

where the new independent variables is assumed to be positive. Then we can
use the chain rule to find the first two derivatives of the displacementx of the
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aging spring with respect tos:

dx
ds

= dx
dt

dt
ds

= dx
dt

(
− 2

as

)
d2x
ds2

= d
ds

[
dx
dt

](
− 2

as

)
+ dx

dt
d
ds

(
− 2

as

)

= d2x
dt2

dt
ds

(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

(
− 2

as

)(
− 2

as

)
+ dx

dt
2

as2

= d2x
dt2

4
(as)2

+ dx
dt

2
as2

Bessel’s equation of orderp = 0 is given by:☞ We usew in place ofx in
the aging spring section of
Module 11. s2 d2x

ds2 + s
dx
ds

+ s2x = 0

and when we substitute in the derivatives we just found, we obtain

s2

(
d2x
dt2

4
(as)2

+ dx
dt

2
as2

)
+ s

dx
dt

(
− 2

as

)
+ s2x = 0

Using the fact that

s= (2/a)e−at/2 (12)

(found by solving equation (11) fors) in the last term, when we simplify this
monster equation it collapses down to a nice simple one:

d2x
dt2

4
a2

+ 4
a2

e−atx = 0

Finally, if we divide through by 4/a2, we get the aging spring equation,
x′′ + e−atx = 0.

The other way around works as well, that is, a change of variables will
convert the aging spring equation to Bessel’s equation of order zero. That
means that solutions of the aging spring equation can be expressed in terms of
Bessel functions. This can be accomplished by usingx = c1J0(s) + c2Y0(s)
as the general solution of Bessel’s equation of order zero, and then using
formula (12) to replaces. Take another look at Experiments 3 and 4 on
Screens 2.5 and 2.6 of Module 11. That will give you a graphical sense about
the connection between aging springs and a Bessel’s equation.

References Borrelli, R. L., and Coleman, C. S.,Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C.,Elementary Differential Equations and
Boundary Value Problems, 6th ed., (1997: John Wiley & Sons, Inc.)
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Figure 11.3: Here are some typical graphs for the solution of x′′ + C2t2x′ +
9x = 0 for various values of C2. The graphs and the data tables are useful in
Problem 1 of Exploration 11.1.

Figure 11.4: Here is a phase-plane portrait for an aging spring ODE, x′′ + e−t x=
−9.8. See Problem 1 in Exploration 11.3.
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Exploration 11.1. Damping a Robot Arm

In each of the following problems it is assumed that the displacement x of a
robot arm satisfies an IVP of the form

x′′ + b(t)x′ + 9x = 0, x(0) = 1, x′(0) = 0

An optimal damping function b(t) is one for which the solution x(t) reaches
0.005 in minimal time t∗ without ever going below zero.

1. Consider damping functions of the formb(t) = Cktk. For a positive integer
k, let C∗

k be the value ofCk that gives the optimal solution, and denote the
corresponding minimal time byt∗k. In Module 11, Screen 1.4 and TTA 3 on
Screen 1.7 you found that the optimal solution fork = 1 is x(t) = e−9t2/2, with
C∗

1 = 9 andt∗1 ≈ 1.0897.

(a) Use ODE Architect to find an approximate optimal solution and values
of C∗

k andt∗k whenk = 2. [Suggestion:Look at Figure 11.3.]

(b) Repeat withk = 3.

(c) Compare the optimal damping functions fork = 1, 2, 3, in the context
of the given physical process.

2. For quadratic damping, b(t) = C2t2, derive a power series solutionx(t) =∑∞
n=0 antn. Show that the recurrence formula for the coefficients is

an+2 = −[9an + C2(n− 1)an−1]
(n+ 1)(n+ 2)

, n ≥ 1

anda2 = −9a0/2. Recall thata0 = x(0) anda1 = x′(0).
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3. Let P6(t) be the Taylor polynomial
∑6

n=0 antn, where thean are given by the
recurrence formula in Problem 2.

(a) Write out P6(t) with C2 as a parameter; briefly describe how the graph
of P6(t) changes asC2 increases.

(b) Graph the apparently optimal solution from Problem 1(a) over the in-☞ You will need results from
Problem 1(a) here. terval 0≤ t ≤ t∗2 and compare it to the graph ofP6(t) with C2 = C∗

2.

4. If the robot arm is totally undamped, its position at timet is x(t) = cos3t;
therefore the arm cannot reachx = 0 for all t, 0 ≤ t ≤ π/6. In this situation
the undamped arm can’t remain abovex = 0. The optimal damping func-
tions C∗

k tk found in Problem 1 look more like step functions as the degreek
increases. Try to improve the timet∗ by using a step function for damping.

Assume the robot arm is allowed to fall without damping until just before
it reachesx = 0, at which time a constant damping force is applied. This
situation can be modeled by defining

b(t) =
{

0 for 0≤ t < π
6 − ε

Bε for t ≥ π
6 − ε

for ε = 0.2, 0.1, and 0.05. Use ODE Architect to find values ofBε that give
an approximate optimal solution. Include a graph showing your best solution
for eachε and give your best value oft∗ in each case. What happens to the
“optimal” Bε asε → 0?

5. Find a formula for the solution for the situation in Problem 4. The value ofε

should be treated as a parameter. Assume thatx(t) = cos3t for t < (π/6)− ε.
Then the IVP to be solved is

x′′ + Bεx
′ + 9x = 0

x(π/6− ε) = cos[3( π
6 − ε)] = sin3ε

x′(π/6− ε) = −3sin[3( π
6 − ε)] = −3cos3ε

The solution will be of the formx(t) = c1er1t + c2er2t, r1 < r2 < 0, but the
optimal solution requires thatc2 = 0. Why? For a fixedε, find the value of
Bε so thatx(t) remains positive and reaches 0.005 in minimum time.
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Exploration 11.2. Bessel Functions

1. Bessel functions resemble decaying sinusoids. Let’s compare the graph of
J0(t) with that of one of these sinusoids.

(a) On the same set of axes, graph the Bessel functionJ0(t) and the function√
2
πt

cos
(

t − π

4

)
over the interval 0≤ t ≤ 10.

(b) Now graph these same two functions over the interval 0≤ t ≤ 50.

(c) Describe what you see.

[Suggestion:You can use ODE Architect to plot a good approximation of
J0(t) by solving an IVP involving Bessel’s equation in system form:

x′ = y, y′ = −x− y/t, x(t0) = 1, x′(t0) = 0

with t0 = 0.0001. Actually,J0(0) = 1 andJ′
0(0) = 0, butt0 = 0 is a singular

point of the system so we must move slightly away from zero. You can plot the

decaying sinusoid on the same axes asJ0(t) by enteringa =
√

2
πt cos(t − π

4 )

in the same equation window as the IVP, selecting a custom 2D plot, and
plotting botha andx vs. t.]
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2. Repeat Problem 1 for the functionsY0(t) and
√

2
πt sin

(
t − π

4

)
. To graph a

good approximation ofY0(t), solve the system equivalent of Bessel’s equation
of order zero (from Problem 1) with initial datat0 = 0.89357, x(t0) = 0,
x′(t0) = 0.87942. As in Problem 1, we have to avoid the singularity att0 = 0,
especially here becauseY0(0) = −∞. The given initial data are taken from
published values of Bessel functions and their derivatives.
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Exploration 11.3. Aging Spring Models

1. Check out the Library file “Modeling an Aging Spring” in the “Physical Mod-
els” folder (see Figure 11.4). The ODE in the file models the motion of a
vertically suspended damped and aging spring that is subject to gravity. Carry
out the suggested explorations.

2. Show that

x(t) =
√

t + 1
3

sin

(√
3

2
ln(t + 1)

)
− √

t + 1cos

(√
3

2
ln(t + 1)

)

is an analytic solution of the initial value problem

x′′(t) + x(t)
(t + 1)2 = 0, x(0) = −1, x′(0) = 0

Explain why this IVP provides another model for the motion of an aging
spring that is sliding back and forth (without damping) on a support table.
[Suggestion:let s= t + 1, u(s) = x(t). Thenu(s) satisifes the Euler equation
s2u′′(s) + u(s) = 0. See the references on page 211 for solution formulas for
Euler ODEs.]
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3. Graph the solutionx(t) from Problem 2 over the interval 0≤ t ≤ 300 and
compare the graph to the one for the ODE,x′′ + e−atx = 0, x = 0, x′(0) = 0,
a = 0.04 (see Screen 2.6 in Module 11). Repeat for other values ofa.
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Exploration 11.4. The Incredible Lengthening Pendulum

Suppose that we have an undamped pendulum whose length L = a + bt in-
creases linearly over time. Then the ODE that models the motion of this
pendulum is☞ The ODE for a

pendulum of varying length
is derived in Chapter 10 (see
equation (15)).

(a+ bt)θ′′(t) + 2bθ′(t) + gθ(t) = 0 (13)

where θ is small enough that sinθ ≈ θ, the mass of the pendulum bob is 1,
and the value of the acceleration due to gravity is g = 32.1

1. With a = b = 1 and initial conditionsθ(0) = 1 andθ′(0) = 0, use ODE Ar-
chitect to solve ODE (13) numerically. What happens toθ(t) ast → +∞?

2. Under the same conditions, what happens to the oscillation time of the pen-
dulum ast → +∞? (The oscillation time is the time between successive
maxima ofθ(t).)

1See the article “Poe’s Pendulum” by Borrelli, Coleman, and Hobson inMathematics Magazine,
Vol. 58 (1985) No. 2, pp. 78–83. See also “Child on a Swing” in Module 10.
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3. Show that the change of variables

s= (2/b)
√

(a+ bt)g, x = θ
√

a+ bt

transforms Bessel’s equation of order 1

s2 d2x
ds2

+ s
dx
ds

+ (s2 − 1)x = 0

into ODE (13) for the lengthening pendulum. [Suggestion:Take a look at the
section “Transforming Bessel’s Equation to the Aging Spring Equation” in
this chapter to help you get started. Use the change of variables given above
to express the solution of the IVP in Problem 1 using Bessel functions.]
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Poincaré map of a forced damped pendulum superimposed on a tra-
jectory.

Overview In this chapter we’ll look at solutions of a forced damped pendulum ODE. In the lin-
ear approximation of small oscillations, this ODE becomes the standard constant-
coefficient ODE x′′ + cx′ + kx = F(t), which can be solved explicitly in all cases.
Without the linear approximation, the pendulum ODE contains the term ksinx in-
stead of kx. Now the study becomes much more complicated. We’ll focus on the
special case of the nonlinear pendulum ODE

x′′ + cx′ + sinx = Acost (1)

but our results leave a world of further things to be discovered. We’ll show that
appropriate initial conditions will send the pendulum on any desired sequence of
gyrations, and hint at how to control the chaos by finding such an initial condition.

Key words Forced damped pendulum; sensitivity to initial conditions; chaos; control; Poincaré
sections; discrete dynamical systems; Lakes of Wada; control

See also Chapter 10 for background on the pendulum. Chapter 13 for more on discrete dy-
namical systems and other instances of chaos and sensitivity to initial conditions.
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◆ Introduction

How might chaos and control possibly be related? These concepts appear at☞ See the glossary for one
definition of chaos. first to be opposites, but in fact they are two faces of the same coin!

A good way to start discussing this apparent paradox is to think about
learning to ski. The beginning skier tries to be as stable as possible, with
feet firmly planted far enough apart to give confidence that she or he will not
topple over. If you try to ski in such a position, you cannot turn, and the only
way to stop, short of running into a tree, is to fall down. Learning to ski is
largely a matter of giving up on “stability,” bringing your feet together so as
to acquire controllability! You need to allow chaos in order to gain control.

Another example of the relation between chaos and control is the early
aircraft available at the beginning of World War I, carefully designed for great-
est stability. The result was that their course was highly predictable, an easy
target for anti-aircraft fire. Very soon the airplane manufacturers started to
build in enough instability to allow maneuverability!

◆ Solutions as Functions of Time

The methods of analysis we will give can be used for many other differential
equations, such as Duffing’s equation

x′′ + cx′ + x− x3 = Acosωt, (2)

or the differential equation

x′′ + cx′ + x− x2 = Acosωt, (3)

which arises when studying the stability of ships. The explorations at the end
of this chapter suggest some strategies for these problems.

Let’s begin to study ODE (1) withc = 0.1:

x′′ + 0.1x′ + sinx = Acost (4)

Let’s compute some solutions, starting att = 0 with A = 1 and various values
of x(0) andx′(0), and observe the motion out tot = 100, or perhaps longer
(see Figure 12.1). We see that most solutions eventually settle down to an
oscillation with period 2π (the same period as the driving force). Thisxt-plot
actually shows oscillations aboutx-values which differ by multiples of 2π.

This settling down of behaviors at various levels is definitely a feature
of the parameter values chosen: for the amplitudeA = 2.5 in ODE (4), for
instance, there appears to be no steady-state oscillation at all.

Looking at such pictures is quite frustrating: it is very hard to see the
pattern for which initial conditions settle down to which stable oscillations,
and which will not settle down at all.
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Figure 12.1: Solution curves of ODE (4) with x(0) = 0, x′(0) = 2, 2.1.

◆ Poincaré Sections

Poincaré found a way to understand and visualize the behavior of our differ-
ential equation: he sampled solutions of ODE (4) at multiples of the period
2π of the driving function:

0,2π,4π, . . . ,2kπ, . . .

This is much like taking pictures with a strobe light.
An equivalent way of saying this is to say that we will iterate1 the map-

ping P : R2 → R
2 which takes a point(a, b) in R

2, computes the solution
x(t) with x(0) = a, x′(0) = b, and sets☞ Note that the clock starts

at t0 = 0 when generating
Poincaré plots. P(a, b) = (x(2π), x′(2π)) (5)

This mappingP is called aPoincaŕe mapping. If you apply the operatorP to
(a, b) k times in succession, the result isPk(a, b) and we see that

Pk(a, b) = (x(2kπ), x′(2kπ))

In a sense, the Poincar´e section is simply a crutch: every statement about☞ When thexx′-plane is
used to chart the evolution of the
pointsPk(a, b), k = 1,2, . . . , it
is called the Poincar´e plane.

Poincaré sections corresponds to a statement about the original ODE, and vice
versa. But this crutch is invaluable since the orbits of a nonautonomous ODE
such as ODE (4) often intersect each other and themselves in a hopelessly
tangled way.

1Chapter 13 discusses iterating mapsf :R→R; there you will find that the mapf (x) = λx(1− x)

is filled with surprises. Before trying to understand the iteration ofP, which is quite complicated
indeed, the reader should experiment with several easier examples, like linear maps ofR

2 → R
2.
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◆ Periodic Points

A good way to start investigating the Poincar´e mappingP (or for that matter,
the iteration of any map) is to ask: what periodic points does it have? Setting
x′ = y, aperiodic pointis a point(x, y) in R2 such that for some integerk we
havePk(x, y) = (x, y). Fixed points are periodic points withk = 1, and are
particularly important.

Periodic points of periodk for P are associated with periodic solutions of
ODE (4) of period 2kπ. In particular, ifx(t) is a solution which is periodic of
period 2π, then

(x(0), x′(0)) = (x(2π), x′(2π))

is a fixed point ofP. If you observe this solution with a strobe which flashes
every 2π, you will always see the solution in the same place.

◆ The Unforced Pendulum

If there is no forcing term in ODE (4), then we have an autonomous ODE like
those treated in Chapter 10.

Example: The ODE

x′′ + x′ + 10sinx = 0

models a damped pendulum without forcing. A phase plane portrait is shown
in Figure 12.2 (θ = x and y = x′ in the figure). Note that the equilibrium
points (of the equivalent system) atx = 2nπ, x′ = 0 are spiral sinks, but the
equilibrium points atx = (2n+ 1)π, x′ = 0 are saddles. Note also that the
phase plane is divided into slanting regions, each of which has the property
that its points are attracted to the equilibrium point inside the region. These
regions are calledbasins of attraction. If a forcing term is supplied, these
basins become all tangled up (Figure 12.4 on page 227).

There is a Poincar´e mappingP for the unforced damped pendulum, which
is fairly easy to understand, and which you should become familiar with be-
fore tackling the forced pendulum. In this case, two solutions of ODE (4)
with A = 0 stand out: the equilibriax(t) = 0 andx(t) = π for all t. Cer-
tainly if the pendulum is at one of these equilibria and you illuminate it
with a strobe which flashes everyT seconds, whereT is a positive num-
ber, you will always see the pendulum in the same place. Thus these points
are fixed points of the corresponding Poincar´e mappingP. In thexx′-plane,
the same thing happens at the other equilibrium points, that is, at the points
. . . , (−2π,0), (0,0)(2π,0), . . . for the “downward” stable equilibria, and at
the points. . . , (−3π,0), (−π,0), (π,0), . . . for the unstable equilibria.

The analysis in Module 10 using an integral of motion should convince
you that for the unforced damped pendulum, these are the only periodic
points: if the pendulum is not at an equilibrium, the value of the integral
decreases with time, and the system cannot return to where it was.
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Figure 12.2: Basins of attraction of the stable downward equilibrium posi-
tions of the unforced damped pendulum are bounded by separatrices.

If you start the pendulum with bothx(0) andx′(0) small, the damping
will simply kill off the motion, and the pendulum will be attracted to the
downward equilibrium. The point(0,0) in state space is called asink.

The behavior is more interesting near an unstable equilibrium. Imagine
imparting an initial velocity to the bob by kicking it. For a small kick, it will
swing back. Now kick it a little harder: it will rise higher, and still swing
back. Kick it harder still, and it will make it over the top, and hit you in the
back if you aren’t careful. Dividing the kicks which don’t make it over from
those that do is a very special kick, where the pendulum rises forever, more
and more slowly, tending to the unstable equilibrium. Thus there are initial
conditions which generate solutions that tend to the unstable equilibrium; in
the Poincar´e plane these solutions form two curves which meet end to end
at the fixed point corresponding to the unstable equilibrium. Together they
form thestable separatrixof the fixed point. There are also curves of initial
conditions which come from the unstable equilibrium; together they form the
unstable separatrixof the equilibrium. See Figure 12.3 (wherey = x′).

As stated earlier, a good first thing to do when iterating a map is to search
for the periodic points; a good second thing to do is to find the periodic points
which correspond to unstable equilibria (saddles, in the case of the pendulum)
and find their separatrices.

For the unforced damped pendulum, the equilibria of the differential
equation and the fixed points of any Poincar´e map coincide; so, too, do the
separatrices of the unstable equilibria (in the phase plane) and the separatri-
ces of the corresponding saddle fixed points in the Poincar´e plane. These
separatrices separate the trajectories which approach a given sink from the
trajectories that approach a different sink.
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Figure 12.3: Stable and unstable separatrices at a saddle for an unforced
damped pendulum. Which are the stable separatrices?

✓ “Check” your understanding by reproducing the plot in Figure 12.3.

◆ The Damped Forced Pendulum

We described above the Poincar´e plane for the unforced pendulum. The same
description holds for the forced pendulum. A figure showing a Poincar´e
map for a forced pendulum appears as the chapter cover figure. Thus, in the
Poincaré plane, we expect to see a collection of fixed points corresponding to
the oscillations to which the pendulum “settles down”, and each has a basin:
the set of initial conditions which will settle down to it. The basins appear to
be extraordinarily tangled and complicated, and they are. The reader should
put up the picture of the basins (Screen 2.6 in Module 12), and practice super-
imposing iterations on the figure, checking that if you start in the blue basin,
the entire orbit remains in the blue basin, perhaps taking a complicated path
to get near the sink, but making it in the end.

◆ Tangled Basins, the Wada Property

In the tangled basins Screen 3.3 of Module 12, each basin appears to be made
of a central piece, and four canals which go off and meander around the plane.
The meandering appears to be completely random and chaotic, and the only
thing the authors really know about the shapes of the basins of our undamped
pendulum is the following fact: The basins have theWada property: every
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Figure 12.4: Tangled basins for a forced damped pendulum.

point of the boundary2 of any basin is in the boundary of all the others. Thus
if you start at a boundary point of any basin, and perturb the initial condition
an arbitrarily small amount, you can land in any of the infinitely many basins.

A careful look at Figure 12.4 should convince you that this stands a good
chance of being true: Each region of a canal boundary point includes pieces
on many curves. It isn’t clear, of course, that there are canals ofall the basins
between any two canals.

It is one thing to think that the Wada property is likely true, and quite
another to prove it. It isn’t clear how you would prove anything whatsoever
about the basins: they do not appear to be amenable to precise study.

To get a grip on these basins, the first step is to understand why they
appear to be bounded by smooth curves, and to figure out what these smooth
curves are. For each sink (solid white squares in Figure 12.4), there are in
fact four periodic points, each of period two, which are saddles, such that for
each saddle one of its two unstable separatrices is entirely contained in the
corresponding basin.

2The boundary∂U of an open setU ⊂ R
2 is a pointx ∈ R2 which is not inU, but such that

there exists a sequence of pointsxn ∈ U which converges tox. Later we will encounter the notion
of accessible boundary: the pointsx ∈ ∂U such that there exists a parametrized curveγ : (0,1] → U
such that limt→0 γ(t) = x. For simple open sets, the boundary and the accessible boundary coincide,
but not for our basins.
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The next step is to show that theaccessible boundaryof the basin is made
up of the stable separatrices of these saddles. This uses the technique ofbasin
cells, as pioneered by Kennedy, Nusse, and Yorke3. To see a fleshed-out
sketch, see theC.ODE.E article referenced at the end of this chapter.

◆ Gaining Control

The statement about the basins having the Wada property is, in some sense, a
negative statement, saying that there is maximum possible disorder. Is there
some positive statement one can make about the forced pendulum (for these
parameter values)? It turns out that there is. The precise statement is as
follows.

During one period of the forcing term, say during

t in the intervalIk = [2kπ,2(k+ 1)π]

the pendulum will do one of the following four things:

� It will cross the bottom position exactly once moving clockwise (count
this possibility as−1);

� It will cross the bottom position exactly once moving counterclockwise
(count this possibility as+1);

� It will not cross the bottom position at all (count this possibility as 0);

� It will do something else (possibility NA).

Note that most solutions appear to be attracted to sinks, and that the stable
oscillation corresponding to a sink crosses the bottom position twice during
eachIk, and hence these oscillations (and most oscillations after they have
settled down) belong to the NA category.

The essential control statement we can make about the pendulum is the
following:

For any biinfinite sequence. . . , ε−1, ε0, ε1, . . . of symbolsεi selected
from the set{−1,0,1}, there exist valuesx(0), x′(0) such that the solu-
tion with this initial condition will doεk during the time intervalIk.

The chaos game in Module 12 suggests why this might be true; the tech-
niques involved in the proof were originally developed by Smale4.

3Judy Kennedy, Helena Nusse, and James Yorke are mathematicians at the Universities of
Delaware, Utrecht, and Maryland, respectively.

4Stephen Smale is a contemporary mathematician who was awarded a Fields medal (the mathe-
matical equivalent of a Nobel prize) in the early 1960’s. See Devaney in the references at the end of
this chapter.
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Figure 12.5: Start in quadrilateral Q0 and reach forward into Q1 and backward
into Q−1.

We start by drawing quadrilateralsQk around thekth saddle, long in the
unstable direction and short in the stable direction, such that they cross a good
part of the tangle. We can now translate our symbolsεi , which refer to the
differential equation, into the Poincar´e mapping language.

If at time t = 2kπ the pendulum is inQk and at time 2(k + 1)π it is in
Qk+εk, then duringIk the pendulum doesεk. So it is the same thing to require
that a trajectory of the pendulum realize a particular symbol sequence, and
to require that an orbit of the Poincar´e map visit a particular sequence of
quadrangles, just so long as successive quadrangles be neighbors or identical.

Draw the forward image of that quadrilateral, and observe that it grows
much longer in the unstable direction and shrinks in the stable direction; we
will refer to P(Qk) as thekth snake, Sk. The entire proof comes down to
understanding howSk intersectsQk−1, Qk, andQk+1.

The thing to be checked is thatSk intersects all three quadrilaterals in
elongated regions going from top to bottom, and that the top and bottom of
Qk map to parts of the boundary ofSk which are outsideQk−1 ∪ Qk ∪ Qk+1.
See Figure 12.5 for an example of a winning strategy for three adjacent quadri-
laterals.

Once you have convinced yourself that this is true, you will see that every
symbolic sequence describing a history of the pendulum is realized by an
intersection of thinner and thinner nested subquadrangles.

A similar argument shows that a symbolic sequence describing a future
of the pendulum corresponds to a sequence of thinner and thinner subquad-
rangles going from left to right. The details are in theC.ODE.E paper by
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J.H. Hubbard in the references.
We have shown how to gain control of the motions of the driven pendu-

lum. In particular, if we want the pendulum “robot” to execute a prescribed
set of rotations, all we have to do is put it in the right initial state and switch
on the driving force. Although everything has been phrased in terms of a
pendulum, the approach extends to almost any kind of chaotic motion. Engi-
neers, scientists, and mathematicians are now designing prototypes of chaotic
control systems based on these ideas. One of the most intriguing applications
uses a chaotic sequence to encode a digital message. The sequence is “added”
to the message, and the intended recipient then subtracts the chaos to read the
message. Chaos is often an undesirable aspect of physical motions. Devices
have recently been built that force a chaotic system to stay focused on a de-
sired response. All of this is new, so we can’t say just how the applications
will evolve. See the books by Kapitaniak, Nayfeh, and Ott for more on chaotic
controls and controlling chaos.
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Exploration 12.1.

In each problem describe what you see and explain what the figures tell you
about the behavior of the pendulum.

1. Choose a value forc �= 0.1, takeA = 1 in ODE (1), and produce graphs like
those in the chapter cover figure and Figure 12.1.

2. Choose a value forA �= 1 andc = 0.1 in ODE (1) and produce graphs like
those in the chapter cover figure and Figure 12.1.

3. Choose a value forω �= 1 in the ODE

x′′ + 0.1x′ + sinx = cosωt

and produce graphs like those in the chapter cover figure and Figure 12.1.
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4. Repeat Problems 1 and 2, but for the Duffing ODE,

x′′ + cx′ + x− x3 = Acost

5. Repeat Problems 1 and 2, but for the ODE with a quadratic nonlinearity,

x′′ + cx′ + x− x2 = Acost
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Supply and demand converge to a stable equilibrium.

Overview Processes such as population dynamics that evolve in discrete time steps are best
modeled using discrete dynamical systems. These take the form xn+1 = f (xn),
where the variable xn is the state of the system at “time” n and xn+1 is the state of
the system at time n+ 1. Discrete dynamical systems are widely used in ecology,
economics, physics and many other disciplines. In this section we present the
basic techniques and phenomena associated with discrete dynamical systems.

Key words Iteration; fixed point; periodic point; cobweb and stairstep diagrams; stability;
sinks; sources; bifurcation diagrams; logisitic maps; chaos; sensitive dependence
on initial conditions; Julia sets; Mandelbrot sets

See also Chapter 6 for more on sinks and sources in differential equations, and Chapter 12
for Poincaré sections and chaotic pendulum motion.
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Discrete dynamical systemsarise in a large variety of applications. For
example, the population of a species that reproduces on an annual basis is
best modeled using discrete systems. Discrete systems also play an impor-
tant role in understanding manycontinuousdynamical systems. For example,
points calculated by a numerical ODE solver form a discrete dynamical sys-
tem that approximates the solution of an initial value problem for an ODE.
The Poincar´e section described in Chapter 12 is another example of a discrete
dynamical system that gives information about a system of ODEs.

A discretedynamical system is defined by theiteration of a function f ,
and takes the form

xn+1 = f (xn), n ≥ 0, x0 given (1)

Here are two examples. In population dynamics, some populations are mod-
eled using aproportional growthmodel

☞ The function f (x) = λx is
denotedLλ, and soLλ(x) = λx.

xn+1 = Lλ(xn) = λxn, n ≥ 0, x0 given (2)

wherexn is the population density at generationn andλ is a positive num-
ber that measures population growth from generation to generation. Another
common model is thelogistic growthmodel:

☞ The functionλx(1− x) is
denoted bygλ(x).

xn+1 = gλ(xn) = λxn(1− xn), n ≥ 0, x0 given

Let’s return to the general discrete system (1). Starting with an initial
conditionx0, we can generate asequenceusing this rule for iteration: Given
x0, we getx1 = f (x0) by evaluating the functionf at x0. We then compute
x2 = f (x1), x3 = f (x2), and so on, generating a sequence of points{xn}.
Eachxn is then-fold compositionof f at x0 since☞ The superscript◦ reminds

us that this is just the
composition of f with itself; f is
not being raised to a power.

x2 = f ( f (x0)) = f ◦2(x0)

x3 = f ( f ( f (x0))) = f ◦3(x0)

...

xn = f ◦n(x0)

(Some authors omit the superscript◦.)
The infinite sequence of iteratesO(x0) = {xn}∞n=0 is called theorbit of x0

under f, and the functionf is often referred to as amap. For example, if
we takeλ = 1/2 and the initial conditionx0 = 1 in the proportional growth
model (2), we get the orbit for the mapL:

x0 = 1, x1 = 1/2, x2 = 1/4, . . .

Refer to Screen 1.2 of Module 13 for four representations of the orbit
of an iteration: as asequence{x0, x1 = f (x0), x2 = f (x1), . . . }; a numerical
list whose columns are labeledn, xn, f (xn); a time serieswherexn is plotted
against “time”n; and astairstep/cobweb diagramfor graphical analysis.

The chapter cover figure shows a stairstep diagram for the modelxn+1 =
0.7xn + 100. Figures 13.1 and 13.2 show cobweb diagrams for the logistic
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model xn+1 = λxn(1 − xn), with λ = 3.51 and 3.9, respectively. In all of
these figures, the diagonal linexn+1 = xn is also plotted. The stairstep and
cobweb diagrams are constructed by selecting a value forx0 on the horizontal
axis, moving up to the graph of the iterated function to obtainx1, horizontally
over to the diagonal then up (or down) to the graph of the function to obtain
x2, and so on. These diagrams are used to guide the eye in moving fromxn to
xn+1.

◆ Equilibrium States

As with autonomous ODEs, it is useful to determine the equilibrium states for
a discrete dynamical system. First we need some definitions:

� A point x∗ is afixed pointof f if f (x∗) = x∗. A fixed point is easy to☞ A fixed point of a discrete
dynamical system is the analogue
of an equilibrium point for a
system of ODEs.

spot in a stairstep or cobweb diagram even before the steps and webs
are plotted: the fixed points off are where the graph off intersects the
diagonal.

� A point x∗ is a periodic point of period nof f if f ◦n(x∗) = x∗ and
f ◦k(x∗) �= x∗ for k < n. A fixed point is a periodic point of period 1.

Both the proportional and logistic growth models have the fixed pointx = 0.
For certain values ofλ the logistic model has periodic points; Figure 13.1
suggests that the model has a period-4 orbit ifλ = 3.51.

✓ “Check” your understanding by showing that the logistic model has a
second fixed pointx∗ = (λ − 1)/λ. Does the proportional growth model for
λ > 0 have any periodic points that are not fixed?

A fixed point x∗ of f is said to bestable(or asink, or anattractor) if every☞ This use of the words
“stable” and “unstable” for points
and orbits of a discrete system
differs from the way the words
are used for equilibrium points of
an ODE. For example, a saddle
point of an ODE is unstable, but a
saddle point of a discrete system
is neither stable nor unstable.

point p in some neighborhood ofx∗ approachesx∗ under iteration byf , that
is, if f ◦n(p) → x∗ asn → +∞. The set ofall points such thatf ◦n(p) → x∗

asn → +∞ is thebasin of attractionof p. A fixed pointx∗ is unstable(or
a sourceor repeller) if every point in some neighborhood ofx∗ moves out of
the neighborhood under iteration byf . If x∗ is a period-n point of f , then
the orbit ofx∗ is said to bestableif x∗ is stable as a fixed point of the map
f ◦n. The orbit isunstableif x∗ is unstable as a fixed point off ◦n. Stability is
determined by thederivativeof the mapf , as the following tests show:

� A fixed pointx∗ is stable if| f ′(x∗)| < 1, and unstable if| f ′(x∗)| > 1.

� A period-n point x∗ (and its orbit) is stable if|( f ◦n)′(x∗)| < 1, and
unstable if|( f ◦n)′(x∗)| > 1.

Stable periodic orbits areattracting because nearby orbits approach them,
while unstable periodic orbits arerepellingbecause nearby orbits move away
from them.
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Figure 13.1: The cobweb diagram for the logistic map, xn+1 = 3.51xn(1 − xn),
suggests that iterates of x0 = 0.72 approach a stable orbit of period 4.

✓ Is the fixed point in the chapter cover figure stable? Is the period-4 orbit
in Figure 13.1 stable? How about the two fixed points in that figure? [Sugges-
tion: Use the Discrete Tool as an aid in answering these questions.]

◆ Linear versus Nonlinear Dynamics

The solutions of linear and of nonlinear ODEs are compared and contrasted
in Chapter/Modules 6 and 7. Now we will do the same comparison for linear
and nonlinear maps of the real line into itself.

Let’s look at the iteration of linear functions such as the proportional☞ Refer to the first
submodule of Module 13 for
examples.

growth model (2),xn+1 = Lλ(xn), which has a fixed point atx∗ = 0. This
fixed point is stable if|λ| < 1, so the orbit of every initial population tends to
0 asn → ∞. If λ = 1, thenxn+1 = xn, and hence every point is a fixed point.
The fixed point atx∗ = 0 is unstable if|λ| > 1, and all initial populations tend
to ∞ asn → ∞. If λ = −1 thenx∗ = 0 is the only fixed point and every other
point is of period 2 sincexn+2 = −xn+1 = −(−xn) = xn.

The iteration of any linear functionf (x) = ax+ b (with slopea �= 1)
behaves much like the proportional growth model. Fixed points are found by
solvingax∗ + b = x∗, and their stability is governed by the magnitude ofa.

The iteration of nonlinear functions can be much more complex than that
of linear functions. In particular, nonlinear functions can exhibit chaotic be-
havior, as well as periodic behavior. To illustrate the types of behavior typical
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Figure 13.2: The cobweb diagram of the logistic map xn+1 = 3.9xn(1− xn) sug-
gests that iterates of x0 = 0.8361either approach an attracting periodic orbit
of very high period, or else wander chaotically.

to nonlinear functions we consider, in the second submodule of Module 13,
the one-parameter family oflogistic functions

gλ(x) = λx(1− x)

Figure 13.2 shows how complex an orbit of a logistic map may be for certain
values ofλ.

◆ Stability of a Discrete Dynamical System

Now we turn our attention to the stability of an entire dynamicalsystemrather
than just that of a fixed point. One of the most important ideas of dynamical
systems (discrete or continuous) is that ofhyperbolicity. Hyperbolic points
are stable to small changes in the parameters of a dynamical system. This
does not mean that a perturbation (a small change) of the function leaves a
fixed or periodic point unchanged. It simply means that the perturbed function
will also have a fixed point or periodic point “nearby,” and that this point has
the stability properties of the corresponding point of the unperturbed function.
For example, atλ = 2 the functiong2(x) has an attracting fixed pointx∗ = 0.5.☞ Recall that

g2(x) = 2x(1− x). For values ofλ near 2, the functiongλ(x) also has an attracting fixed point
x∗ = (λ − 1)/λ. For example, ifλ = 2.1 then the attracting fixed point is
x∗ = 0.524. Even though the fixed point moved a little asλ increased, the
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fixed point still exists and it is still attracting. The following theorem provides
a way of determining whether fixed points and periodic orbits are hyperbolic.

THEOREM 13.1 Given a discrete dynamical systemxn+1 = fλ(xn),
a fixed pointx∗ of fλ(x) is hyperbolic if| f ′

λ(x
∗)| �= 1. Similarly, a peri-

odic pointx∗ of periodn (and its orbit) is hyperbolic if|( f ◦n
λ )′(x∗)| �= 1.

Because the number and type of periodic points do not change at pa-
rameter values wherefλ(x) has hyperbolic points, we say that the qualitative
structure of the dynamical system remains unchanged. On the other hand,
this theorem also implies that changes in the qualitative structure of a family
of discrete dynamical systems can occur only when a fixed or periodic point
is not hyperbolic. We see this in the proportional growth modelxn+1 = λxn

whenλ = 1 andλ = −1. Forλ = 1− ε [and henceL′
1−ε(1) = λ = 1− ε] the

fixed pointx = 0 is attracting. But forλ = 1+ ε the fixed point is repelling.
Thus, asλ passes through the value 1, the stability of the fixed point changes
from attracting to repelling and the qualitative structure of the dynamical sys-
tem changes.

◆ Bifurcations

A change in the qualitative structure of a discrete dynamical system, such as
a change in the stability of a fixed point, is known as abifurcation. If fλ
is nonlinear, several types of bifurcations can occur; here are two common
types.

The first, known as asaddle-nodebifurcation, occurs whenx∗ is a peri-
odic point of periodn and( f ◦n

λ )′(x∗) = 1. In a saddle-node bifurcation, the
periodic pointx∗ splits into a pair of periodic points, both of periodn, one of
which is attracting and the other repelling. A saddle-node bifurcation occurs
in the logistic growth familygλ(x) whenλ = 1. At this value the fixed point
x∗ = 0 (which is attracting forλ < 1) splits into a pair of fixed points,x∗ = 0
(repelling forλ > 1), andx∗ = (λ − 1)/λ (attracting forλ > 1). This type of
bifurcation is sometimes called anexchange of stabilitybifurcation.

The second important type of bifurcation is calledperiod-doublingand☞ See Chapter 7 for
bifurcations of systems of ODEs. occurs whenx∗ is a periodic point of period-n and( f ◦n

λ )′(x∗) = −1. In this
bifurcation the attracting period-n point becomes repelling and an attracting
period-2n orbit is spawned. (Note that the stability can be reversed.) This
occurs in the logistic familygλ(x) whenλ = 3. At this parameter value, the
attracting fixed pointx∗ = (λ − 1)/λ becomes repelling and a stable period-2
orbit emerges with one point on each side ofx∗ = (λ−1)/λ. Since the logistic
equations model population growth, this says that the population converges to
an equilibrium for growth rate constantsλ less than 3. However, for values of
λ greater than 3, the population oscillates through a sequence of values.

The bifurcations that occur in a one-parameter family of discrete dynam-
ical systems can be summarized in abifurcation diagram. For each value of
the parameter (on the horizontal axis) the diagram shows the long-term be-
havior under iteration of a “typical” initial point. For example, if you see
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Figure 13.3: Part of the bifurcation diagram for the logistic map.

a single point in the diagram above a particular parameter value, that point
corresponds to an attracting fixed point. The spot in the diagram where you
see an arc of attracting fixed points split into two arcs corresponds to a bi-
furcation from an attracting fixed point to an attracting orbit of period 2 (i.e.,
period doubling). If the diagram shows a multitude of points above a given
parameter value, then either you are seeing an attracting periodic orbit of a
very high period, or else you are seeing chaotic wandering. It should be noted
that when constructing the bifurcation diagram for each parameter value and
initial point, the first 50 or so iterates are omitted so that only the long-term
behavior is visible in the diagram. See Figure 13.3 and Screen 2.4 in Mod-
ule 13 for the bifurcation diagram of the logistic map.

The stable arcs in these diagrams are usually straightforward to generate
numerically. We constructed a bifurcation diagram on an interval [λmin, λmax]
for the logistic population modelxn+1 = gλ(xn) using the following proce-
dure.

1. Fix λmin, λmax, λinc, nmin, nmax. Hereλinc is the step size between suc-
cessive values ofλ while nmin andnmax are bounds on the number of
iterates used to construct the diagram; they control the accuracy of the
diagram. Typical values arenmin = 50 andnmax = 150.

2. Letλ = λmin.

3. Takingx0 = 0.5 for example, compute the firstnmin iterates ofgλ with-
out plotting anything. This eliminates transient behavior.



240 Chapter 13

4. As n increases fromnmin to nmax, plot the points(λ, g◦n
λ (0.5)). If the

orbit of 0.5 converges to a periodic orbit, only points near this orbit are
plotted. If the orbit of 0.5 isn’t periodic, then the points aboveλ seem
to be almost randomly distributed.

5. Letλ = λ + λinc.

6. If λ < λmax, go back to Step 3 and repeat the process.

✓ Go to the One-dimensional tab of the Discrete Tool. Use the default
values, but set the value ofc at 1 (c in the tool plays the role ofλ in Chap-
ter/Module 13). Turn on the bifurcation diagram. Keep your finger on the
up-arrow forc and describe what is happening. Any attracting periodic or-
bits? For what values ofc do these orbits occur? What are the periods?

◆ Periodic and Chaotic Dynamics

One of the most celebrated theorems of discrete dynamical systems is often
paraphrased “Period 3 Implies Chaos.” This theorem, originally proven by
S̆arkovskii and independently discovered by Li and Yorke1, is a remarkable
result in that it requires little information about the dynamical system and yet
it returns a treasure trove of information.

THEOREM 13.2 If f is a continuous function on the real line and if
there exists a point of period 3, then there exist points of every period.

For the logistic population model there exists an attracting period-3 orbit
at λ = √

8 + 1 ≈ 3.83, and most initial conditions in the unit interval con-
verge to this orbit (see Figure 13.4). In terms of our model, most populations
tend to oscillate between the three different values of the period-3 orbit. The-
orem 13.2 states that even more is going on atλ = √

8 + 1 than meets the
eye. If we pick any positive integern, there exists a pointp such thatn is
the smallest positive integer allowingg◦n

λ (p) = p. Thus, for example, there
exists a point that returns to itself in 963 iterates. The reason we don’t “see”
this periodic orbit (or, indeed, any periodic orbit, except that of period 3) is
that it is unstable, so no iterate can approach it. But orbits of every period are
indeed present ifλ = √

8+ 1.

1James Yorke and T.Y. Li are contemporary mathematicians who published their result in 1975 (see
References). They were the first to apply the word “chaos” to the strange behavior of the iterates of
functions such asgλ. A.N. S̆arkovskii published a stronger result in 1964, in Russian, in theUkrainian
Mathematical Journal, but it remained unknown in the West until after the paper by Yorke and Li had
appeared.
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Figure 13.4: At λ = √
8+ 1 ≈ 3.83 the logistic map gλ = λx(1− x) has an attract-

ing orbit of period 3; the points x0, x1, . . . , x49 have been suppressed in this
graph.

◆ What is Chaos?

So, you’re probably asking, what is chaos? The definition of chaos is a bit
slippery. In fact, mathematicians are still arguing about a proper definition.
But to get the idea across we’ll use one due to Devaney.

Let S be a set such that ifx lies in S, then f ◦n(x) belongs toS for all
positive integersn. The setS is calledinvariant. If you start in an invariant
set, you can’t get out! Now let’s define what we mean by chaos in an invariant
setS.

A map f : S→ S is chaoticif:

1. periodic points are dense inS;

2. f displays sensitive dependence on initial conditions inS; and

3. f is topologically transitive inS.

The first condition of this definition is explained like this: A setA is dense☞ A setU of real numbers is
openif every point p of U has
the property that all points in
some interval(p− a, p+ a) are
also inU.

in another setB if for every pointx in B and every open setU containingx
there exists points ofA that are also inU. Therefore, condition 1 says that
periodic points are almost everywhere inS. This means thatScontains many
periodic points; Theorem 13.2 gives a condition guaranteeing infinitely many
of these points.
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In the second condition,sensitive dependence on initial conditionsmeans☞ Module 13 has examples.

that points that are initially close to one another eventually get moved far apart
under iteration byf .

Finally, f is topologically transitive(or mixing) if given any pair of open
setsU andV in S, some iterate off takes one or more points ofU into V.
This means that points of open sets get spread throughout the setS.

The most significant item on this list for applied problems is sensitive
dependence on initial conditions. Let’s consider the logistic growth model
at a parameter value where the dynamics are chaotic. Sensitive dependence
implies that no matter how close two populations may be today, there will be a
time in the future when the populations differ significantly. So environmental
disturbances that cause small population changes will eventually lead to large
changes, if chaotic dynamics exist.

Chaotic dynamics occur in a wide range of models. Although the defini-
tions above are given in terms of a single scalar dynamical system, everything
extends to higher dimensions, and many of the applications are two- or three-
dimensional. In addition to models of population dynamics, chaos has been
observed in models of the weather, electrical circuits, fluid dynamics, plane-
tary motion, and many other phenomena. The relatively recent understanding
of chaos has shed new light on the complexity and beauty of the world we
inhabit.

◆ Complex Numbers and Functions

Probably the most popular type of discrete dynamical system is acomplex
dynamical systemwhere the variables are complex numbers instead of real
numbers. The intricate fractal structures common to images generated using
complex dynamics have appeared everywhere from calendars to art shows and
have inspired both artists and scientists alike. Many of the fundamental ideas
of complex dynamics are identical to those of real dynamics and have been
discussed in previous sections. In what follows, we will highlight both the
similarities and differences between real and complex dynamics.

Recall that complex numbers arise when factoring quadratic polynomials
with negative discriminant. Because the discriminant is negative we must
take the square root of a negative real number, which we do by definingi to
be

√−1. We then write thecomplex numberasz= x + iy. We say thatx is
the real part of zandy is theimaginary part of z. The complex numberz is
represented graphically on the complex plane by the point having coordinates
(x, y). It is often useful to represent complex numbers in polar coordinates by
letting x = r cosθ andy = r sinθ so that

-

6

3

]

z= x + iy

= reiθ

r
θ

x

y

Imaginary axis

Real axis
z= r (cosθ + i sinθ) = reiθ

The remarkable relationship cosθ + i sinθ = eiθ between polar coordinates
and exponential functions is known asEuler’s formula. The numberr =☞ Euler’s formula is also

used in Chapter 4.
√

x2 + y2 is the distance from the origin to the pointz in the complex plane
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and is sometimes called themodulusof z, and it is denoted byr = |z|. The
angleθ is called theargumentof z. Note that the usual properties of exponen-
tial functions hold in the complex plane. Thus, given two complex numbers
z= reiθ andw = seiφ, their product is

zw = rsei(θ+φ)

A complex function f(z) takes a complex numberz as its argument and
returns a complex numberw = f (z). Differentiation proceeds as in the real
case; for example,(z3)′ = 3z2. Unlike functions of one real variable, we
cannot graph a complex function since both the domain and range are two-
dimensional.

◆ Iterating a Complex Function

Iteration of a complex function is identical to the iteration of a real function.
Given an initialz-valuez0, iteration generates a sequence of complex numbers
z1 = f (z0), z2 = f (z1), etc. Fixed and periodic points are defined in the same
way as for real functions, as are stability and instability. Here are the previous
criteria for stability, but now applied to complex functions.

� A fixed pointz∗ is stable if| f ′(z∗)| < 1, and unstable if| f ′(z∗)| > 1.

� A period-n point z∗ (and its orbit) is stable if|( f ◦n)′(z∗)| < 1, and un-
stable if|( f ◦n)′(z∗)| > 1.

Let’s consider a simple example to illustrate these ideas. Letf (z) = z2.
Thenz∗ = 0 is an attracting fixed point sincef (0) = 0 and| f ′(0)| = 0. If z
is any point such that|z| < 1, then the sequence{ f ◦n(z)}∞n=0 converges to 0 as
n → ∞. On the other hand, if|z| > 1, then the sequence{ f ◦n(z)}∞n=0 goes to
infinity asn → ∞. To see what happens to values ofz having modulus equal
to 1, let’s writez= eiθ. Then f (z) = e2iθ, which also has modulus 1. Thus all
iterates of points on the unit circle|z| = 1 stay on the unit circle. The point
z∗ = 1 is a repelling fixed point sincef (1) = 1 and| f ′(1)| = 2. The period-2
points are found by solvingf ( f (z)) = z4 = z. We can rewrite this equation
as

z(z3 − 1) = 0

One solution to this equation isz∗ = 0, corresponding to the attracting fixed
point, and another solution isz∗ = 1, corresponding to the repelling fixed
point. Notice that the fixed points off (z) remain fixed points off ( f (z)), or
equivalently, are also period-2 points off (z). To find the other two solutions,☞ Any period-n point is also

a periodic point of all periods
which are positive integer
multiples ofn.

we writez= eiθ in the equationz3 = 1 to get the equation

e3iθ = 1

which we need to solve forθ. Since we are working in polar coordinates, we
note that 1= ei2nπ wheren is an integer. This implies that 3θ = 2nπ and from
this we find a second pair of period-2 points atz= e2πi/3 andz= e4πi/3. Both
of these are repelling.
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Figure 13.5: The filled Julia set for f (z) = z2 + c, where c = 0.4012− 0.3245i

✓ Show thate2πi/3 ande4πi/3 are repelling period-2 points off = z2. Show
that f ◦n(z) → 0 asn → ∞ if |z| < 1, and that| f ◦n(z)| → ∞ if |z| > 1. What
is the “basin of attraction” of the fixed pointz= 0?

◆ Julia Sets, the Mandelbrot Set, and Cantor Dust

The set of repelling periodic points of the functionf = z2 is dense on the unit
circle, although we don’t show that here. This leads us to the definition of the
Julia set.

☞ Theclosureof a setA
consists of the points ofA
together with all points that are
limits of sequences of points of
A.

DEFINITION Thefilled Julia set Kof a complex-valued functionf is
the set of all points whose iterates remain bounded. TheJulia set Jof
f is the closure of the set of repelling periodic points.

For f = z2, the filled Julia setK of f is the set of all complex numbersz
with |z| ≤ 1, while the Julia setJ of f is the unit circle|z| = 1. This is a very
simple example of a Julia set. In general, Julia sets are highly complicated
objects having a very intricate fractal structure. For example, see Figure 13.5
and Screens 3.3 and 3.4 of Module 13.

In the above example, the Julia setJ divides those points that iterate to
infinity (points outside the unit circle) and those that converge to the attracting
fixed point (points inside the unit circle). This division of the domain by
the Julia set is often the case in complex dynamics and provides a way of
numerically computing the filled Julia set of a given functionf . Assign a
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complex number to each screen pixel. Then use each pixel (i.e., complex
number) as an initial condition and iterate to determine whether the orbit of
that point exceeds some predetermined bound (for example|z| = 50). If it
does, we say the orbit diverges and we color the point black. If not, we color

☞ In the Discrete Tool of
ODE Architect, the coloring is
reversed. Points in the filled Julia
set are colored black and points
whose orbits diverge past the
predetermined bound are colored
with various colors according to
their divergence rates (e.g., red is
the fastest, dark blue the slowest).

the point red to indicate it is in the filled Julia set.
Earlier in this chapter we saw the importance of attracting periodic orbits

in building a bifurcation diagram for a real mapf . Although we didn’t men-
tion it then, we can home in on an attracting periodic orbit off (if there is one)
by starting atx0 = x̃ if f ′(x) is zero atx̃ and nowhere else. Complex functions
f (z) for which f ′(z̃) = 0 at exactly one point̃zhave the same property, as the
following theorem shows.☞ A complex function f is

analytic if its derivatives of every
order exist. A point̃z is acritical
point of f if f ′(z̃) = 0.

THEOREM 13.3 Let f be an analytic complex-valued function with
a unique critical point̃z. If f has an attracting periodic orbit, then the
forward orbit ofz̃ converges to this orbit.

Let’s look at some of the implications of this theorem with the family of func-
tions fc(z) = z2 + c wherec = a+ ib is a complex parameter. For each value
of c the only critical point isz̃ = 0. To find an attracting periodic orbit for a
given value ofc we need to compute the orbit

{0, c, c2 + c, . . . }
and see if the orbit converges or not. If it does, we find the attracting periodic
orbit; if not, there doesn’t exist one. Let’s see what happens when we set
c = 1 to give the functionf1(z) = z2 + 1. The orbit of the critical point is
{0,1,2,5,26, . . .}, which goes to infinity. Thus,f1 hasnoattracting periodic
orbit and the Julia set does not divide points that converge to a periodic orbit
from points that iterate to infinity. In fact, it can be shown that this Julia set is
totally disconnected; it is sometimes referred to asCantor dust. Click on out-
lying points on the edge of the Mandelbrot set (defined below) in Screen 3.5
of Module 13 and you will generate Cantor dust in the upper graphics screen.

This leads to another question. If some functions in the familyfc have
connected Julia sets (such asf0 = z2) and other functions in the family have
totally disconnected Julia sets (such asf1), what set of points in thec plane
separates these distinctive features? This set is theboundaryof the Mandel-
brot set. TheMandelbrot set Mof the functionfc(z) = z2 + c is defined as the
set of all complex numbersc such that the orbit{ f ◦n

c (0)∞
n=1} remains bounded,

that is,| f ◦n
c (0)| ≤ K for some positive numberK and all integersn ≥ 0.

This definition leads us to an algorithm for computing the Mandelbrot set
M. Assign to each pixel a complex numberc. Choose a maximum number
of iterationsN and determine whether| f ◦n

c (0)| < 2 for all n ≤ N (it can be
proven that if| f ◦n

c (0)| > 2 for somen, then the orbit goes to infinity). If so,
then color this point green to indicate that it is (probably) in the Mandelbrot☞ The colors of the

Mandelbrot set example in the
Discrete Tool are different.

set. Otherwise, color this point black. It is this computation that gives the
wonderfully intricate Mandelbrot set; see Figure 13.6 and Screens 3.4 and 3.5
of Module 13.
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Figure 13.6: The Mandelbrot set; the cross-hairs are set on the point c =
0.4012− 0.3245i, which gives the Julia set shown in Figure 13.5.

The Mandelbrot set actually contains much more information than is de-
scribed here. It is, in fact, the bifurcation diagram for the family of functions
fc(z) = z2 + c. Each “blob” of the set corresponds to an attracting periodic or-
bit of a particular period. Values ofc in the big cardioid shown on Screen 3.4
of Module 13 give attracting period-1 orbits forfc. Values ofc in the circle
immediately to the left of this cardioid give attracting period-2 orbits forfc.
Other “blobs” give other attracting periodic behaviors.

Although we have only defined the Mandelbrot set for the specific family
fc = z2 + c, it can be defined in an analogous way for other families of com-
plex functions (see the Discrete Tool). One final note on Julia sets and the
Mandelbrot set. You’ve probably seen intricately colored versions of these
objects on posters or elsewhere. The coloring is usually determined by how
“fast” orbits tend to infinity. The color scheme is, of course, up to the pro-
grammer.

Module 13 introduces and lets you play with three important discrete dy-
namical systems—linear, logistic, and a third that uses complex numbers. Ex-
plorations 13.1–13.4 extend these ideas and introduce other maps with curious
behavior under iteration.

References Alligood, K.T., Sauer, T.D., and Yorke, J.A.,Chaos: An Introduction To Dy-
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Devaney, R.L.,A First Course in Chaotic Dynamical Systems, Theory
and Experiment, (1992: Addison Wesley). This is the “intermediate”
book by Devaney on chaotic dynamical systems. Chapter 11 concerns
S̆arkovskii’s Theorem, and Yorke and Li’s theorem that “Period 3 Implies
Chaos”.

Doebeli, M. and Ruxton, G. “Controlling Spatial Chaos in Metapopulations
with Long-Range Dispersal” inBulletin of Mathematical Biology, Vol. 59
(1997) pp. 497–515. Emphasizes the frequent use of the linear map and
the logistic map in population dynamics.

Guimez, J. and Matias, M.A. “Control of Chaos in Unidimensional Maps” in
Physics Letters AVol. 181 (September 1993) pp. 29–32

Peitgen, H.-O. and Richter, P.H.,The Beauty of Fractals, (1986: Springer-
Verlag)

Saha, P. and Strogatz, S.H. “The Birth of Period 3” inMathematics Magazine
Vol. 68 (1995) pp. 42–47

Strogatz, S.,Nonlinear Dynamics and Chaos, (1994: Addison-Wesley). A
very readable text, mostly on ODEs, but Chapter 10 on One-Dimensional
Maps is particularly relevant to this chapter/module of ODE Architect.

Yorke, J. and Li, T.Y., “Period 3 Implies Chaos” in theAmerican Mathemati-
cal Monthly82 (1975) pp. 985–992

Here are three sources on chaos that are less technical and more accessi-
ble, but still give an accurate description of what chaos is all about.

Peak, D. and Frame, M.,Chaos under Control, (1994: W.H. Freeman)

Stewart, I.,Does God Play Dice?, (1990, Blackwell)

Stoppard, T., the play “Arcadia”, (1993: Faber and Faber). Yes! A play about
chaos.



248 Chapter 13



Answer questions in the space provided, or on
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Name/Date

Course/Section

Exploration 13.1. One-Dimensional Maps and the Discrete Tool

1. Go to the Discrete Tool and enter the proportional growth modelxn+1 = cxn,
wherec is the parameter. For the range 0≤ n ≤ 30 and the initial condition
x0 = 0.5, explore and describe what happens to the iteration map, time series,
and bifurcation diagram as the parameter is increased from−2 to 2. For
what values ofc is there a sudden change in the behavior of the iterates (the
bifurcation values ofc)? For what values ofc are there 1, 2, or infinitely many
fixed or periodic points? Which of these points are attractors? Repellers?

2. Go to the Discrete Tool and explore and describe what happens to the iteration
map, the time series, and the bifurcation diagram as the parameterc for the
logistic mapgc(x) = cx(1− x) is incremented from 1 to 4. Use the range
50≤ n≤ 150 to avoid any initial wandering, and the initial conditionx0 = 0.5.
Describe what all three graphs on the tool screen look like at values ofc where
there is a periodic orbit. What is the period? Go as far forward as you can
with the period-doubling sequence of values ofc: 3, 3.434,. . . . What are
the corresponding periods? [Suggestion:Zoom on the bifurcation diagram.]
Repeat with the sequence 3.83, 3.842,. . . .
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3. In the Discrete Tool enter the tent mapTc on the interval 0≤ x ≤ 1:

Tc(x) = c(1− 2abs(x− 0.5)) =
{

2cx, 0 ≤ x ≤ 0.5

2c(1− x), 0.5 ≤ x ≤ 1

where the parameterc is allowed to range from 0 to 1. Describe and explain
what you see asc is incremented from 0 to 1. [Suggestion:use the Edit option
in the Menu box for the bifurcation diagram and set 200≤ n ≤ 300 in order
to suppress the initial transients.] Any orbits of period 2? Period 3?
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Exploration 13.2. Circle Maps

Another common type of discrete dynamical system is a circle map, which
maps the perimeter of the unit circle onto itself. These functions arise when
modeling coupled oscillators, such as pendulums or neurons. The simplest
types of circle maps are rotations that take the form

Rω(θ) = (θ + ω) mod 2π

where 0 ≤ θ ≤ 2π and ω is a constant.

1. Show that ifω = (p/q)π with p andq positive integers andp/q in lowest
terms, then every point has periodq.

2. Show that ifω = aπ with a an irrational number, then no point on the circle
is periodic.
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3. What is the long-term behavior of the orbit of a point on the circle ifω = aπ,
wherea is an irrational number?
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Exploration 13.3. Two-Dimensional Maps and the Discrete Tool

A two-dimensional discrete dynamical system looks like this:

xn+1 = f (xn, yn, c)

yn+1 = g(xn, yn, c)
(3)

where f and g are given functions and c is a “place holder” for parameters.
For given values of c, x0, and y0, system (3) defines an orbit of points

(x0, y0), (x1, y1), (x2, y2), . . .

in the xy-plane. The two-dimensional tab in the Discrete Tool allows you to
explore discrete systems of the form of system (3).

1. Open the Discrete Tool and explore the default system (a version of what is
known as theHènon Map):

xn+1 = 1+ yn − ax2
n

yn+1 = bxn
(4)

wherea andb are parameters. For fixed values of the parametersa andb
find the fixed points. Are they sinks, sources, or neither? How sensitive is the
long-term behavior of an orbit to small changes in the initial point(x0, y0)?
What happens if you incrementa through a range of values? If you increment
b? Any period-doubling sequences? In your judgment, is there any long-term
chaotic wandering? [Suggestion:Keep the values ofa andb within small
ranges of their default values to avoid instabilities.]
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2. Repeat Problem 1 with the following version of the H`enon map:

xn+1 = a− x2
n + byn

yn+1 = xn

Start witha = 1.28, b = −0.3, x0 = 0, y0 = 0.
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Exploration 13.4. Julia and Mandelbrot Sets and the Discrete Tool

Note that the color schemes for the Julia and Mandelbrot sets in Module 13
differ from those in the discrete tool.

1. Use the Discrete Tool to explore the Mandelbrot set and Julia sets for the
complex family fc = z2 + c. What happens to the filled Julia sets as you
movec from inside the Mandelbrot set up toward the boundary, then across
the boundary and out beyond the Mandelbrot set? Describe how the Julia sets
change as you “walk” along the edge of the Mandelbrot set.



256 Exploration 13.4

2. Repeat Problem 1 for the complex familygc = csinz.

3. Repeat Problem 1 for the familyhc = cez.



GLOSSARY
Acceleration The acceleration of a moving body whose po-

sition at timet is u(t) is given by

d2u
dt2

Air resistance A body moving through air (or some other
medium) is slowed down by a resistive force (also
called a drag or damping force) that acts opposite to
the body’s velocity. See also “Viscous damping” and
“Newtonian damping.”

Amplitude The amplitude of a periodic oscillating function
u(t) is half the difference between its maximum and
minimum values.

Angular momentum The angular momentum vector of a
body rotating about an axis is its moment of inertia
about the axis times its angular velocity vector.

This is the analog in rotational mechanics of momen-
tum (mass times velocity) in linear mechanics.

Angular velocity An angular velocity vector,ω(t), is the
key to the relation between rotating body axes and a
fixed coordinate system of the observer. The compo-
nentω j of the vectorω(t) along thejth body axis de-
scribes the spin rate of the body about that axis.

Autocatalator This is a chemical reaction of several steps,
at least one of which is autocatalytic.

Autocatalytic reaction In an autocatalytic reaction, a
chemical species stimulates more of its own produc-
tion than is destroyed in the process.

Autonomous ODE An autonomous ODE has no explicit
mention of the independent variable (usuallyt) in the
rate equations. For example,x′ = x2 is autonomous,
but x′ = x2 + t is not.

Balance law The balance law states that the net rate of
change of the amount of a substance in a compartment
equals the net rate of flow in minus the net rate of flow
out.

Beats When two sinusoids of nearly equal frequencies are
added the result appears to be a high frequency si-
nusoid modulated by a low frequency sinusoid called
a beat. A simple example is given by the function

(sint)(sin10t), where the first sine produces an “am-
plitude modulation” of the second.

Bessel functions of the 1st kindThe Bessel function of the
first kind of order zero,

J0(s) = 1− 1
4

s2 + · · · + (−1)n s2n

n!222n
+ · · ·

is a solution of Bessel’s equation of order zero, and is
bounded and convergent for alls.

Bessel functions of the 2nd kindThe Bessel function of
the second kind of order zero,Y0(s), is another so-
lution of Bessel’s equation of order zero. It is much
more complicated thanJ0(s), and

Y0(s) → −∞ as s→ 0+
See Chapter 11 for a complete formula forY0(s) that
involves a logarithmic term,J0(s), and a complicated
(but convergent) infinite series.

Bessel’s equationBessel’s equation of orderp ≥ 0 is

s2w′′(s) + sw′(s) + (s2 − p2)w = 0

wherep is a nonnegative constant. Module 11 consid-
ers onlyp = 0. See Chapter 11 forp > 0.

Bessel’s equation, general solution ofBessel’s equation
of order zero is second-order and linear. The general
solution is the set of all linear combinations ofJ0(s)
andY0(s).

Bifurcation diagram A bifurcation diagram describes how
the behavior of a dynamical system changes as a pa-
rameter varies. It can appear in studies of iteration or
of differential equations.

In the case of a single real parameter, a bifurcation di-
agram plots a parameter versus something indicative
of the behavior, such as the variable being iterated (as
in Module 13, Nonlinear Behavior) or a single variable
marking location and stability of equilibrium points for
a differential equation.

In iteration of a function of a complex variable, two
dimensions are needed just to show the parameter, but
different colors can be used to show different behav-
iors (as in Module 13, Complex Dynamics).
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Cantor set, Cantor dust A Cantor set was first detailed by
Henry Smith in 1875, but was named in honor of
Georg Cantor, the founder of set theory, after he used
this bizarre construction in 1883. Now Cantor sets are
found in many guises in discrete dynamical systems.

A Cantor set is a closed, bounded, and totally discon-
nected set, with uncountably many points. A typical
construction is to delete a band across the middle of
a set, then to delete the middle of both pieces that are
left, and then to repeat this process indefinitely.

Julia sets (see glossary) for parameter values outside
the Mandelbrot set (see glossary) are Cantor dusts,
constructed by a similar algorithm. See Chapter 13
for References.

Carrying capacity The carrying capacityK of an environ-
ment is the maximum number of individuals that the
environment can support at steady state. If there are
fewer individuals than the carrying capacity in the en-
vironment, the population will grow; if there are more
individuals, the population will decline.

A widely used model for population dynamics involv-
ing a carrying capacity is the logisitc ODE

dN
dt

= rN(1− N/K)

wherer is the intrinsic growth rate constant.

Cascade A cascade is a compartment model where the
“flow” through the compartments is all one direction.

Center A center is an equilibrium point of an autonomous
planar linear system for which the eigenvalues are con-
jugate imaginaries±iβ, β �= 0. All nonconstant orbits
of an autonomous planar linear system with a center
are simple closed curves enclosing the equilibrium.

Centering an equilibrium If p∗ is an equilibrium point of
the systemx′ = f (x) (so f (p∗) = 0), then the change
of coordinatesx = y + p∗ moves p∗ to the origin in
the y-coordinate system.

Chain rule The chain rule for differentiating a function
L(θ(t), y(t)) with respect tot is

dL
dt

= ∂L
∂θ

dθ

dt
+ ∂L

∂y
dy
dt

= Lθθ
′ + Lyy′

Chaos Mathematical chaos is a technical term that describes
certain nonperiodic behavior of a discrete dynamical
system (Module 13) or solutions to a differential equa-
tion (Module 12). A discrete system is said to be
chaotic on an interval if all of the following are true.

� It exhibits sensitive dependence on initial condi-
tions.

� Periodic unstable orbits occur almost every-
where.

� Iterates of intervals get “mixed up.”

Chaotic behavior never repeats, revisits every neigh-
borhood infinitely often, but is not random. Each step
is completely determined by the previous step.

An equivalent list of requirements appears in Mod-
ule 12, Screen 1.4. Further discussion appears in
Chapter 13.

Characteristic equation The characteristic equation of a
square matrixA is det(λ I − A) = |λ I − A| = 0. For
a 2× 2 matrix, this reduces toλ2 − tr Aλ + detA = 0
whose solutions, called eigenvalues ofA, are

λ = tr A±
√

tr2 A− 4detA
2

Chemical law of mass actionThe rate of a reaction step is
proportional to the product of the concentrations of the
reactants.

Example: If one unit of speciesX produces one unit of
productY in a reaction step, the rate of the step iskx,
wherek is a positive constant. Thus, we have

x′ = −kx, y′ = kx

Example (Autocatalysis): If one unit of speciesX re-
acts with two units ofY and produces three units ofY
in an autocatalytic step, the reaction rate is

axyy= axy2

wherea is a positive constant. Thus, we have

x′ = −axy2, y′ = 3axy2 − 2axy2 = axy2

because one unit ofX is destroyed, while three units
of Y are created, and two are consumed.

Combustion model The changing concentrationy(t) of a
reactant in a combustion process is modeled by the
IVP

y′ = y2(1− y), y(0) = a, 0 ≤ t ≤ 2/a

where a is a small positive number that represents
a disturbance from the pre-ignition statey = 0.
R. E. O’Malley studied the problem in his book,Sin-
gular Perturbation Methods for Ordinary Differential
Equations, (1991: Springer).

Compartment model A compartment model is a set of
boxes (the compartments) and arrows that show the
flow of a substance into and out of the different boxes.
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Component graphs A component graph of a solution of a
differential system is a graph of one of the dependent
variables as a function oft.

Example: For the ODE system

x′ = F(x, y)

y′ = G(x, y)

the component graphs are the plots of a solutionx =
x(t) andy = y(t) in the respectivetx- andty-planes.

Concentration The concentration of a substance is the
amount of the substance dissolved per unit volume of
solution.

Connected setA connected set is a set with no islands. In
the early 1980’s Adrien Douady (Universit´e Paris XI,
Orsay and Ecole Normale Sup´erieure) and John Hub-
bard (Cornell University) proved that the Mandelbrot
set was connected. They did this by showing that its
exterior could be put in a one-to-one correspondence
with the exterior of a disk. They found in the pro-
cess that all the angles one might note while walking
around the boundary of the disk have special analogs
on the Mandelbrot set. Halfway around the disk from
the rightmost point corresponds to being at the tip of
the Mandelbrot set, while one third or two thirds the
way around the disk corresponds to the “neck” where
the biggest ball attaches to the cardioid.

Conserved quantity A function E(q, y) is conserved along
a trajectoryq = q(t), y = y(t), of a systemq′ =
f (q, y), y′ = g(q, y), if dE(q(t), y(t))/dt= 0.

As time changes, the value ofE stays constant on each
trajectory, although the value will vary from one trajec-
tory to another. The graph of each trajectory in theqy-
phase plane lies on one of the level setsE = constant.

This idea of a conserved quantity can be extended to
any autonomous system of ODEs. An autonomous
system is conservative if there is a functionE that stays
constant along each trajectory, but is nonconstant on
every region (i.e., varies from trajectory to trajectory).

Cycle In a discrete dynamical system, including a Poincar´e
section, a cycle is a sequence of iterates that repeats.
The number of iterates in a cycle is its period.

For an autonomous differential system, a cycle is a
nonconstant solutionx(t) such thatx(t + T) = x(t),
for all t, whereT is a positive constant. The smallest
value ofT for a cycle is its period.

For a cycle in a system of 2 ODEs, see Limit cycle.

Damped pendulum A real pendulum of lengthL is af-
fected by friction or air resistance that is a function

of L, θ, andθ′, and acts opposite to the direction of
motion.

Throughout the Linear and Nonlinear Pendulums sub-
module of Module 10, we assume that, if there is any
damping, it is viscous; i.e., the damping force is given
by −bLθ′. The minus sign tells us that damping acts
opposite to the velocity.

Module 4 makes a more detailed study of the effects of
damping on a linear oscillator, as does Module 11 for
the spring in the Robot and Egg.

Damping Damping can arise from several sources, includ-
ing air resistance and friction. The most common
model of damping is viscous damping—the damping
force is assumed to be proportional to the velocity and
acts opposite to the direction of motion. See also New-
tonian damping.

Dense orbit An orbit x(t) of a system of ODEsx′ = f (t, x)

is dense in a regionR of x-space if the orbit gets arbi-
trarily close to every point ofR as time goes on.

That is, if x1 is any point inR , andε is any positive
number, then, at some timet1, the distance between
x(t1) andx1 is less thanε.

Determinant The determinant of the 2× 2 matrix

A =
[

a b
c d

]

is detA = ad− bc.

Deterministic A system of ODEs is said to be deterministic
if the state of the system at timet is uniquely deter-
mined by the state of the system at the initial time.

For example, the single first-order ODEx′ = f (t, x) is
deterministic if for each set of initial data(t0, x0) there
is exactly one solutionx(t).

Thus, if you were to choose the same initial data a sec-
ond time and watch the solution curve trace out in time
again, you would see exactly the same curve.

Dimensionless variablesSuppose that a variablex is
measured in units of kilograms and thatx varies
from 10 to 500 kilograms. If we sety =
(x kilograms)/(100 kilograms),y is dimensionless,
and 0.1 ≤ y ≤ 5. The smaller range of values is useful
for computing. The fact thaty has no units is useful
because it no longer matters if the units are kilograms,
grams, or some other units.

When variables are scaled to dimensionless quantities,
they are typically divided by a constant somewhere
around the middle of the expected range of values.
For example, by dividing a chemical concentration by
a “typical” concentration, we obtain a dimensionless
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concentration variable. Similarly, dimensionless time
is obtained by dividing ordinary time by a “standard”
time.

Direction field A direction field is a collection of line seg-
ments in thexy-plane which shows the slope of the
trajectories for an autonomous ODE system

dx
dt

= F(x, y)

dy
dt

= G(x, y)

at a representative grid of points. An arrowhead on a
segment shows the direction of motion.

Disconnected Julia setA disconnected Julia set is actually
a Cantor dust. It is composed entirely of totally dis-
connected points, which means that it is almost never
possible to land on a point in the Julia set by clicking
on a pixel. You will probably find that every click you
can make starts an iteration that goes to infinity, only
because you cannot actually land on an exact enough
value to show a stable iteration.

Discrete dynamical systemA discrete dynamical system
takes the formun+1 = f (un), where the variableun

gives the state of the system at “time”n, andun+1 is
the state of the system at timen+ 1. See Module 13.

Eigenvalues The eigenvalues of a matrixA are the numbers
λ for which

Av = λv

for some nonzero vectorv (the vectorv is called an
eigenvector). The eigenvaluesλ of a 2× 2 matrix A
are the solutions to the characteristic equation ofA:

λ2 − tr Aλ + detA = 0

λ = tr A±
√

(tr A)2 − 4detA
2

where trA is the trace ofA, and detA is the determi-
nant of A. If a linear or linearized system of ODEs is
z′ = A(z− p∗), and if the real parts of the eigenvalues
of A are positive, then trajectories flow away from the
equilibrium point, p∗. If the real parts are negative,
then trajectories flow towardp∗.

Eigenvector An eigenvector of a matrixA is a nonzero vec-
tor, v, that satisfiesAv = λv for some eigenvalueλ.
The ODE Architect Tool calculates eigenvalues and
eigenvectors of Jacobian matrices at any equilibrium
point of an autonomous system (linear or nonlinear).
Eigenvectors play a strong role in the local geometry
of phase portraits at an equilibrium point.

Energy In physics and engineering, energy is defined by

E = kinetic energy+ potential energy

where kinetic energy is interpreted to be the energy of
motion, and the potential energy is the energy due to
some external force, such as gravity, or (in electric-
ity) a battery, or a magnet. If energy is conserved, i.e.,
stays at a constant level, then the system is said to be
conservative.

If we are dealing with the autonomous differential sys-
tem

x′ = y, y′ = −v(x) (5)

we can define an “energy function” by

E = 1
2

y2 + V(x)

where dV/dx = v(x). Note that E is constant
along each trajectory, becausedE/dt = y dy/dt +
(dV/dx)(dx/dt) = y(−v(x)) + v(x)(y) = 0, where
the ODEs in system (5) have been used. The term
(1/2)y2 is the “kinetic energy”. V(x) is the “poten-
tial energy” in this context. See Chapter 10 for more
on these ideas.

Epidemic An epidemic occurs in an epidemiological model
if the number of infectives,I (t), increases above its
initial value, I0. Thus, an epidemic occurs ifI ′(0) > 0.

Equilibrium point An equilibrium point p∗ in phase (or
state) space of an autonomous ODE is a point at which
all derivatives of the state variables are zero; also
known as a stationary point or a steady-state value of
the state variables. For example, for the autonomous
system,

x′ = F(x, y), y′ = G(x, y)

if F(x∗, y∗) = 0, G(x∗, y∗) = 0, thenp∗ = (x∗, y∗) is
an equilibrium point, andx = x∗, y = y∗ (for all t) is
a constant solution.

For a discrete dynamical system, an equilibrium point
p∗ is one for whichf (p∗) = p∗, so thatp∗

n+1 = p∗
n, for

all n; p∗ is also called a fixed point of the system.

Estimated error For the solutionu(t) of the IVP y′ =
f (t, y), y(t0) = y0, the local error at thenth step of
the Euler approximation is given by

en = Taylor series ofu(t) − Euler approximation

= 1
2

h2u′′(tn) + h3u′′′(tn) + · · ·
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If the true solution,u(t), is not known, we can approx-
imateen for smallh by

en ≈ Taylor approx.− Euler approx.≈ 1
2

h2u′′(tn)

Euler’s method Look at the IVPy′ = f (t, y), y(t0) = y0.
Euler’s method approximates the solutiony(t) at dis-
cretet values. For step sizeh , put tn+1 = tn + h for
n = 0,1,2, . . . . Euler’s method approximates

y(t1), y(t2), . . .

by the values

y1, y2, . . .

where

yn+1 = yn + hf (tn, yn), for n = 0,1,2, . . .

Existence and uniquenessA basic uniqueness and exis-
tence theorem says that, for the IVP,

x′ = F(x, y, t), y′ = G(x, y, t),

x(t0) = x0, y(t0) = y0

a unique solutionx(t), y(t) exists if F, G, ∂F/∂x,
∂F/∂y, ∂G/∂x, and∂G/∂y are all continuous in some
region containing(x0, y0).

Fixed point A fixed point, p∗, of a discrete dynamical sys-
tem is a point for whichxn+1 = f (xn) = xn. That is,
iteration of such a point simply gives the same point.

A fixed point can also be called an equilibrium or a
steady state. A fixed point may be a sink, a source, or a
saddle, depending on the character of the eigenvalues
of the associated linearization matrix of the iterating
function.

Forced damped pendulum A forced, viscously damped
pendulum has the modeling equation

mx′′ + bx′ + ksinx= F(t)

The beginning of Module 10 explains the terms and
parameters of this equation usingθ instead ofx. Mod-
ule 12 examines a case where chaos can result, with
b = 0.1, m= 1, k = 1, andF(t)= cost. All three sub-
modules of Module 12 are involved in explaining the
behaviors, and the introduction to the Tangled Basins
submodule shows a movie of what happens whenb is
varied from 0 to 0.5.

Forced pendulum Some of the most complex and curious
behavior occurs when the pendulum is driven by an
external force. In Module 10, The Pendulum and Its

Friends, you can experiment with three kinds of forces
in the Linear and Nonlinear Pendulums submodule,
and an internal pumping force in the Child on a Swing
submodule. But, for truly strange behavior, take a look
at Module 12, Chaos and Control.

Fractal dimension Benoit Mandelbrot in the early 1980’s
coined the word “fractal” to apply to objects with di-
mensions between integers. The boundary of the Man-
delbrot set (see glossary) is so complicated that its
dimension is surely greater than one (the dimension
of any “ordinary” curve). Just how much greater re-
mained an open question until 1992 when the Japanese
mathematician Mitsuhiro Shishikura proved it is actu-
ally dimension two!

Frequency The frequency of a function of periodT is 1/T.
Another widely used term is “circular frequency”,
which is defined to be 2π/T. For example, the peri-
odic function sin(3t) has periodT = 2π/3, frequency
3/(2π), and circular frequency 3.

General solution Consider the linear systemx′ = Ax+ u
[where x has 2 components,A is a 2× 2 matrix of
constants, andu is a constant vector or a function only
of t]. Let A have distinct eigenvaluesλ1, λ2 with cor-
responding eigenvectorsv1, v2. All solutions of the
system are given by the so-called general solution:

x(t) = C1eλ1tv1 + C2e
λ2tv2 + x̃

where x̃ is any one particular solution of the system
andC1 andC2 are arbitrary constants.. Ifu is a con-
stant vector, theñx = p∗, the equilibrium of the sys-
tem. If x has more than two dimensions, terms of the
same form are added until all dimensions are covered.
Note that, ifu = 0, p∗ = 0 is an equilibrium.

Geodesic Any smooth curve can be reparametrized to a unit
speed curvex(t), where|x′(t)| = 1. Unit-speed curves
x(t) on a surface are geodesics if the acceleration vec-
tor x′′(t) is perpendicular to the surface at each point
x(t).

It can be shown that a geodesic is locally length-
minimizing, so, between any two points sufficiently
close, the geodesic curve is the shortest path.

GI tract The gastro-intestinal (GI) tract consists of the
stomach and the intestines.

Gravitational force The gravitational force is the force on
a body due to gravity. If the body is near the earth’s
surface, the force has magnitudemg, wherem is the
body’s mass, and the force acts downward. The value
of acceleration due to gravity,g, is 32 ft/sec2 (English
units), 9.8 meters/sec2 (metric units).
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Great circle A great circle on a sphere is an example of
a geodesic. You can test this with a ball and string.
Hold one end of the string fixed on a ball. Choose an-
other point some distance away, and find the geodesic
or shortest path by pulling the string tight between the
two points. You will find that it always is along a circle
centered at the center of the ball, which is the defini-
tion of a great circle.

Hooke’s law Robert Hooke, an English physicist in the sev-
enteenth century, stated the law that a spring exerts a
force, on an attached mass, which is proportional to
the displacement of the mass from the equilibrium po-
sition and points back toward that position.

Initial condition An initial condition specifies the value of
a state variable at some particular time, usually at
t = 0.

Initial value problem An initial value problem (IVP) con-
sists of a differential equation or a system of ODEs
and an initial condition specifying the value of the state
variables at some particular time, usually att = 0.

Integral surfaces The surfaceSdefined byF(x, y, z) = C,
whereC is a constant, is an integral surface of the au-
tonomous system

x′ = f (x, y, z), y′ = g(x, y, z), z′ = h(x, y, z)

if

d
dt

F(x, y, z) = ∂F
∂x

dx
dt

+ ∂F
∂y

dy
dt

+ ∂F
∂z

dz
dt

= ∂F
∂x

f + ∂F
∂y

g+ ∂F
∂z

h = 0

for all x, y, z. We get a family of integral surfaces by
varying the constantC. An orbit of the system that
touches an integral surface stays on it. The functionF
is called an integral of the system.

For example, the family of spheres

F = x2 + y2 + z2 = constant

is a family of integral surfaces for the system

x′ = y, y′ = z− x, z′ = −y

because

2xx′ + 2yy′ + 2zz′ = 2xy+ 2y(z− x) + 2z(−y) = 0

Each orbit lies on a sphere, and each sphere is covered
with orbits.

Intermediate An intermediate is a chemical produced in the
course of a reaction which then disappears as the reac-
tion comes to an end.

Intrinsic growth rate At low population sizes, the net rate
of growth is essentially proportional to population size,
so thatN′ = rN. The constantr is called the intrinsic
growth rate constant. It gives information about how
fast the population is changing before resources be-
come limited and reduce the growth rate.

Iteration Iteration generates a sequence of numbers by us-
ing a given numberx0 and the rulexn+1 = f (xn) ,
where f (x) is a given function. Sometimes,xn is writ-
ten asx(n).

IVP See initial value problem.

Jacobian matrix The systemx′ = F(x, y), y′ = G(x, y),
has the Jacobian matrix

J =
[

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]

The eigenvalues and eigenvectors of this matrix at an
equilibrium point p∗ help determine the local geome-
try of the phase portrait.

Jacobian matricesJ can be defined for autonomous
systems of ODEs with any number of state variables.

The ODE Architect Tool will find eigenvalues and
eigenvectors ofJ at any equilibrium point.

Julia Set In complex dynamics, a Julia set for a given func-
tion f (z) separates those points that iterate to infin-
ity from those that do not. See the third submodule
of Module 13, Dynamical Systems. Julia sets were
discovered about 1910 by two French mathematicians,
Pierre Fatou and Gaston Julia. But, without computer
graphics, they were unable to see the details of ragged
structure that today display Cantor sets, self-similarity
and fractal properties.

Kinetic energy of rotation The kinetic energy of rotation
of a gyrating body is

E = 1
2
( I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

whereI j andω j are, respectively, the moment of iner-
tia and the angular velocity about the body axis,j, for
j = 1, 2, 3.

Lift The lift force on a body moving through air is a force
that acts in a direction orthogonal to the motion. Its
magnitude may be modeled by a term which is pro-
portional to the speed or to the square of the speed.
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Limit cycle A cycle is a closed curve orbit of the system

x′ = F(x, y)

y′ = G(x, y)

A cycle is the orbit of a periodic solution.

An attracting limit cycle is a cycle that attracts all
nearby orbits as time increases; a repelling limit cycle
repels all nearby orbits as time increases.

Linearization For a nonlinear ODE, a linearization (or lin-
ear approximation) can be made about an equilibrium,
p∗ = (x∗, y∗), as follows:

For x′ = F(x, y), y′ = G(x, y), the linearized system
is z′ = J(z− p∗), whereJ is the Jacobian matrix eval-
uated atp∗, i.e.,

z′ =
[

x
y

]′
=
[

∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]
p∗

[
x− x∗

y− y∗

]
= J(z− p∗)

The eigenvalues and eigenvectors of the Jacobian ma-
trix, J, at an equilibrium point,p∗, determine the ge-
ometry of the phase portrait close to the equilibrium
point p∗. These ideas can be extended to any au-
tonomous system of ODEs. A parallel definition ap-
plies to a discrete dynamical system.

Linear pendulum Pendulum motion can be modeled by
a nonlinear ODE, but there is an approximating lin-
ear ODE that works well for small anglesθ, where
sinθ ≈ θ. In that case, the mathematics is the same
as that discussed for the mass on a spring in Module 4.

Linear system A linear system of first-order ODEs has
only terms that are linear in the state variables. The
coefficients can be constants or functions (even non-
linear) of t.

Example: Here is a linear system with state variables
x andy, and constant coefficientsa, b, . . . , h:

x′ = ax+ by+ c

y′ = f x+ gy+ h

This can be written in matrix/vector form as:

z′ = Az+ k

z=
[

x
y

]
, A =

[
a b
f g

]
, k =

[
c
h

]

The example can be extended ton state variables and
an n × n matrix A. If z = p∗ is an equilibrium point

of a linear system, thenk = −Ap∗ and the system may
be written as

z′ = A(z− p∗)

Linear algebra can be applied to find the general solu-
tion.

Lissajous figures Jules Antoine Lissajous was a 19th-
century French physicist who devised ingenious ways
to visualizewavemotion that involves more than one
frequency. For example, try plotting the parametric
curve x1 = sin 2t, x2 = sin3t in the x1x2-plane with
0 ≤ t ≤ 320.
The graph of a solutionx1 = x1(t), x2 = x2(t) of[

x1

x2

]′′
= B

[
x1

x2

]
, for B a 2× 2 constant matrix

in the x1x2-plane is a Lissajous figure if the vector
(x1(0), x2(0)) is not an eigenvector ofB.
See also “Normal modes and frequencies.”

Local IVP One-step methods for approximating solutions
to the IVP

y′ = f (t, y), y(t0) = y0

generate the(n + 1)st approximation,yn+1, from the
nth, yn, by solving the local IVP

u′ = f (t, u), u(tn) = yn

This is exactly the same ODE, but the initial condition
is different at each step.

Logistic model The logistic equation is the fundamental
model for population growth in an environment with
limited resources. Many advanced models in ecology
are based on the logistic equation.
For continuous models, the logistic ODE is

d P
dt

= r P

(
1− P

K

)

wherer is the intrinsic growth rate constant, andK is
the carrying capacity.
For discrete models, the logistic map is

fλ(x) = λx
(
1− x

K

)
whereλ is the intrinsic growth rate constant, andK is
again the carrying capacity (see Module 13).

Mandelbrot Set In complex dynamics, forfc(z) = z2 + c,
the Mandelbrot set is a bifurcation diagram in the com-
plex c-plane, computed by coloring allc-values for
which z0 (usualyz0 = 0) does not iterate to infinity.
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It acts as a catalog of all the Julia sets for individual
values ofc.

The boundary of the Mandelbrot set is even more com-
plicated than the boundary of a given Julia set. More
detail appears at every level of zoom, but no two re-
gions are exactly self-similar.

Two mathematicians at UCLA, R. Brooks and
J. P. Matelsky, published the first picture in 1978. It
is now called the Mandelbrot set, because Benoit Man-
delbrot of the Thomas J. Watson IBM Research Center
made it famous in the early 1980’s.

You can experiment with the Mandelbrot set in Mod-
ule 13 and the Discrete Tool.

Matrix An n × n square matrixA of constants, wheren is
a positive integer, is an array of numbers arranged into
n rows andn columns. The entry where theith row
meets thejth column is denoted byaij .

In ODEs we most often see matricesA as the array of
coefficients of a linear system. For example, here is a
planar linear system with a 2× 2 coefficient matrixA:

x′ = 2x − 3y

y′ = 7x + 4y
A =

[
2 −3
7 4

]

Mixing A function f : R→ R is “mixing” if given any two
intervalsI andJ there exists ann > 0 such that thenth
iterate ofI intersectsJ.

Modeling A mathematical model is a collection of variables
and equations representing some aspect of a physi-
cal system. In our case, the equations are differential
equations. Steps involved in the modeling process are:

1. State the problem.

2. Identify the quantities to which variables are to
be assigned; choose units.

3. State laws which govern the relationships and be-
haviors of the variables.

4. Translate the laws and other data into mathemat-
ical notation.

5. Solve the resulting equations.

6. Apply the mathematical solution to the physical
system.

7. Test to see whether the solution is reasonable.

8. Revise the model and/or restate the problem, if
necessary.

Moment of inertia The moment of inertia,I , of a bodyB
about an axis is given by

I =
∫ ∫ ∫

B
r2ρ(x, y, z)dV(x, y, z)

wherer is the distance from a general point in the body
to the axis andρ is the density function forB. Each
moment of inertia plays the same role as mass does in
nonrotational motion, but, now, the shape of the body
and the position of the axis play a role.

Newtonian damping A body moving through air (or some
other medium) is slowed down by a resistive force that
acts opposite to the body’s velocity,v. In Newtonian
damping (or Newtonian drag), the magnitude of the
force is proportional to the square of the magnitude of
the velocity, i.e., to the square of the speed:

force= −k|v|v for some positive constantk

Newton’s law of cooling The temperature,T , of a warm
body immersed in a cooler outside medium of temper-
atureTout changes at a rate proportional to the temper-
ature difference,

dT
dt

= k(Tout − T)

whereTout is assumed to be unaffected byT (unless
stated otherwise). The same ODE works ifTout is
larger thanT (Newton’s law of warming).

Newton’s second lawNewton’s second law states that, for
a body of constant mass,

mass· acceleration= sum of forces acting on body

This is a differential equation, because acceleration is
the rate of change of velocity, and velocity is the rate
of change of position.

Nodal equilibrium The behavior of the trajectories of an
autonomous system of ODEs is nodal at an equilib-
rium point if all nearby trajectories approach the equi-
librium point with definite tangents ast → +∞ (nodal
sink), or ast → −∞ (nodal source).

If the system is linear with the matrix of coefficientsA,
then the equilibrium is a nodal sink if all eigenvalues
of A are negative, and a nodal source if all eigenvalues
are positive. This also holds at an equilibrium point
of any nonlinear autonomous system, whereA is the
Jacobian matrix at the equilibrium point.

Nonautonomous ODE A system of ODEs witht occurring
explicitly in the expressions for the rates is nonau-
tonomous; e.g.,x′ = tx is nonautonomous.

Nonlinear center point An equilibrium point of a nonlin-
ear system,x′ = F(x, y), y′ = G(x, y), is a center if
all nearby orbits are simple closed curves enclosing the
equilibrium point.
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Nonlinear ODE A nonlinear ODE or system has at least
some dependent variables appearing in nonlinear terms
(e.g., xy, sinx,

√
x). Thus, linear algebra cannot be

applied to the system overall. But, near an equilibrium
(of which there are usually more than one for a non-
linear system of ODEs), a linearization is (usually) a
good approximation, and allows analysis with the im-
portant roles of the eigenvalues and eigenvectors.

Nonlinear pendulum Newton’s laws of motion give us

force= mass× acceleration

In the circular motion of a pendulum of fixed length,
L, at angleθ, acceleration is given byLθ′′. The only
forces acting on the undamped pendulum are those due
to tension in the rod and gravity. The component of
force in the direction of the pendulum bob’s motion is:

F = mLθ′′ = −mgsinθ

wherem is the mass of the pendulum bob, andg is
the acceleration due to gravity. The mass of the rigid
support rod is assumed to be negligible.

Normal modes and frequenciesThe normal modes of a
second-order systemz′′ = Bz(whereB is a 2× 2 ma-
trix with negative eigenvaluesµ1, µ2) are eigenvectors
v1, v2 of B. The general solution is all linear combina-
tions of the periodic oscillationsz1, z2, z3, z4 along the
normal modes:

z1 = v1 cosω1t, z2 = v1 sinω1t,

z3 = v2 cosω2t, z4 = v2 sinω2t

whereω1 = √−µ1, ω2 = √−µ2 are the normal fre-
quencies.

See also “Second-order systems.”

Normalized ODE In a normalized differential equation, the
the highest-order derivative appears alone in a separate
term and has a coefficient equal to one.

ODE See “Ordinary differential equation.”

On-off function See “Squarewave.”

Orbit See “Trajectory.”

Order of the method A method of numerical approxima-
tion to a solution of an IVP is orderp, if there exists a
constantC such that

max(|global error|) < Chp

ash → 0.

Ordinary differential equation An ordinary differential
equation (ODE) is an equation involving an unknown
function and one or more of its derivatives. The order

of the ODE is the order of the highest derivative in the
ODE. Examples:

dy
dt

= 2t, (first-order, unknowny(t))

y2 dy
dt

= 2y + t, (first-order, unknowny(t))

x′′ − 4x′ + 7x = 4sin 2t, (second-order, unknownx(t))

Oscillation times Oscillation times of a solution curvex(t)
of an ODE that oscillates aroundx = 0 are the times
between successive crossings ofx = 0 in the same di-
rection. If the solution is periodic, the oscillation times
all equal the period.

Oscillations A scalar functionx(t) oscillates ifx(t) alter-
nately increases and decreases as time increases. The
oscillation is periodic of periodT if x(t + T) = x(t)
for all t and if T is the smallest positive number for
which this is true.

Parametrization Each coordinate of a point in space may
sometimes be given in terms of other variable(s) or pa-
rameter(s). A single parameter suffices to describe a
curve in space. Two parameters are required to de-
scribe a two-dimensional surface.

Period The period of a periodic functionu(t) is the small-
est time interval after which the graph ofu versust
repeats itself. It can be found by estimating the time
interval between any two corresponding points, e.g.,
successive absolute maxima.

The period of a cycle in a discrete dynamical system is
the minimal number of iterations after which the entire
cycle repeats.

Periodic phase planeThe periodicxx′-phase plane for the
pendulum ODEx′′ +0.1x′ +sinx = cost is plotted pe-
riodically in x. An orbit leaving the screen on the right
comes back on the left. In other words, the horizon-
tal axis representsx mod 2π. This view ignores how
many times the pendulum bob has gone over the top.
See Module 12, Screen 1.4.

Phase angleThe phase angle,δ, of the oscillatory function
u(t) = Acos(ω0t + δ) shifts the the graph ofu(t) from
the position of a standard cosine graphu = cosω0t by
the amountδ/ω0 . The phase angle may have either
sign and must lie in the interval−π/ω0 < δ < π/ω0.

Phase planeThe phase plane, or state plane, is thexy-plane
for the dependent variablesx andy of the system

x′ = F(x, y)

y′ = G(x, y)
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The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane witht as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher-dimensional analog is called phase space,
or state space.

Pitch The pitch (frequency) of an oscillating functionu(t)
is the number of oscillations per unit of timet.

Poincaré Henri Poincar´e (1854–1912) was one of the
last mathematicians to have a universal grasp of all
branches of the subject. He was also a great popular
writer on mathematics. Poincar´e’s books sold over a
million copies.

Poincaré section A Poincaré section of a second-order
ODE x′′ = f (x, x′, t), where f has periodT in t, is
a strobe picture of thexx′-phase plane that plots only
the points of an orbit that occur at intervals separated
by a period ofT time units, i.e., the sequence of points

P0 = (x(0), x′(0))

P1 = (x(T), x′(T))

...

Pn = (x(nT), x′(nT))

...

For further detail, see the second submodule of Mod-
ule 12, Chaos and Control.

A Poincaré section is a two-dimensional discrete dy-
namical system. Another example of such a system
is discussed in some detail in the third submodule of
Module 13. These ideas can be extended to any sys-
tem of ODEs andT can be any positive number.

Population quadrant In a two-species population model,
the population quadrant of the phase plane is the one
where both dependent variables are non-negative.

Post-image In a discrete dynamical system, a post-image of
a setS0 is the set of points,S1 , where the iterates of
S0 land in one step.

For a Poincar´e section of an ODE,S1 would be the set
of points arriving atS1 when the ODE is solved from
S0 over one time period of the Poincar´e section. See
submodule 3 of Module 12.

Pre-image In a discrete dynamical system, a pre-image of a
setS0 is the set of points,S−1, that iterate toS0 in one
step.

For a Poincar´e section of an ODE,S−1 would be the
set of points arriving atS0 when the ODE is solved
from S−1 over one time period of the Poincar´e section.
See submodule 3 of Module 12.

Products The products of a chemical reaction are the
species produced by a reaction step. The end prod-
ucts are the species that remain after all of the reaction
steps have ended.

Proportional Two quantities are proportional if their ratio
is constant. Thus, the circumference,c, of a circle is
proportional to the diameter, becausec/d = π.

The basic linear differential equation

dy
dt

= ky, k a constant

represents a quantityy whose derivative is propor-
tional to its value.

Random Random motion is the opposite of deterministic
motion. In random motion, there is no way to predict
the future state of a system from knowledge of the ini-
tial state. For example, if you get heads on the first toss
of a coin, you cannot predict the outcome of the fifth
toss.

Rate constant Example: The constant coefficientsa, b, and
c in the rate equation

x′(t) = ax(t) − by(t)− cx2(t)

are often called rate constants.

Rates of chemical reactionsThe rate of a reaction step is
the speed at which a product species is created or
(equivalently) at which a reactant species is destroyed
in the step.

Reactant A chemical reactant produces other chemicals in
a reaction.

ResonanceThis phenomenon occurs when the amplitude of
a solution of a forced second-order ODE becomes ei-
ther unbounded (in an undamped ODE) or relatively
large (in a damped ODE) after long enough times.

Rotation system As Lagrange discovered in the 18th cen-
tury, the equations of motion governing a gyrating
body are

ω′
1 = ( I2 − I3)ω2ω3

I1

ω′
2 = ( I3 − I1)ω1ω3

I2

ω′
3 = ( I1 − I2)ω1ω2

I3
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where I j is the principal moment of inertia, andωj is
the component of angular velocity about thejth body
axis.

Saddle An equilibrium point of a planar autonomous ODE,
or a fixed point of a discrete two-dimensional dynami-
cal system, with the property that, in one direction (the
unstable one), trajectories move away from it, while,
in another direction (the stable one), trajectories move
toward it.

At a saddle of an ODE, one eigenvalue of the associ-
ated linearization matrix must be real and positive, and
at least one eigenvalue must be real and negative.

Scaling Before computing or plotting, variables are often
scaled for convenience.

See also “Dimensionless variables.”

Second-order systemsSecond-order systems of the form
z′′ = Bzoften arise in modeling mechanical structures
with no damping, (and hence, no loss of energy). Here,
z is ann-vector state variable,z′′ denotesd2z/dt2, and
B is ann × n matrix of real constants.

Although numerical solvers usually require that we in-
troducev = z′ and enter the system of 2n first-order
ODEs,z′ = v, v′ = Bz, we can learn a lot about solu-
tions directly from the eigenvalues and eigenvectors of
the matrixB.

See also “Normal modes and frequencies” and
Screen 3.4 in Module 6.

Sensitivity An ODE model contains elements, such as ini-
tial data, environmental parameters, and functions,
whose exact values are experimentally determined.
The effect on the solution of the model ODEs when
these factors are changed is called sensitivity.

Sensitivity to initial conditions A dynamical system has
sensitive dependence on initial conditions if every pair
of nearby points eventually gets mapped to points far
apart.

Separatrix Separatrices are trajectories of a planar au-
tonomous system that enter or leave an equilibrium
point p with definite tangents ast → ±∞, and divide
a neighborhood ofp into distinct regions of quite dif-
ferent long-term trajectory behavior ast increases or
decreases.

For more on separatrices see “Separatrices and Saddle
Points” in Chapter 7.

Sink A sink is an equilibrium point of a system of ODEs, or
a fixed point of a discrete dynamical system, with the
property that all trajectories move toward the equilib-
rium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have negative
real parts, then the equilibrium is a sink.

Slope The slope of a line segment in thexy-plane is given
by the formula

m = change iny
change inx

The slope of a functiony = f (x) at a point is the value
of the derivative of the function at that point.

Slope field A slope field for the first-order ODEy′ = f (t, y)

is a collection of line segments whose slopes are deter-
mined by the value off (t, y) on a grid of points in the
ty-plane.

Solution A solution to a differential equation is any func-
tion which gives a true statement when plugged into
the equation. Such a function is called a particular so-
lution. Thus,

y = t2 − 2

is a particular solution to the equation

dy
dt

= 2t

The set of all possible solutions to a differential equa-
tion is called the general solution. Thus,

y = t2 + C

is the general solution to the equation

dy
dt

= 2t

Source A source is an equilibrium of a system of ODEs,
or a fixed point of a discrete dynamical system, with
the property that all trajectories move away from the
equilibrium.

If all eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have positive
real parts, then the equilibrium is a source.

Spiral equilibrium An equilibrium point of a planar au-
tonomous system of ODEs is a spiral point if all nearby
orbits spiral toward it (or away from it) as time in-
creases.

If the system is linear with the matrix of coefficientsA,
then the equilibrium is a spiral sink if the eigenvalues
of A are complex conjugates with negative real part,
a spiral source if the real part is positive. This also
holds at an equilibrium point of any nonlinear planar
autonomous system, whereA is the Jacobian matrix at
the equilibrium.
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Spring A Hooke’s law restoring force (proportional to dis-
placement,x, from equilibrium) and a viscous damp-
ing force (proportional to velocity, but oppositely di-
rected) act on a body of massm at the end of spring.
By Newton’s second law,

mx′′ = −kx − bx′

wherek andb are the constants of proportionality.

Spring force The spring force is often assumed to obey
Hooke’s law—the magnitude of the force in the spring
is proportional to the magnitude of its displacement
from equilibrium, and the force acts in the direction
opposite to the displacement.

The proportionality constant,k, is called the spring
constant. A large value ofk corresponds to a stiff
spring.

Square wave An on-off function (also called a square
wave) is aperiodic function which has a constant
nonzero value for a fraction of each period; otherwise,
it has a value of 0. For example,y = ASqWave(t,6,2)

is a squarewave ofamplitudeA and period 6, which
is “on” for the first 2 units of its period of 6 units, then
is off the next 4 time units.

Stable An equilibrium point p∗ of an autonomous system
of ODEs is stable if trajectories that start nearp∗ stay
near p∗, as time advances. The equilibrium point
p∗ = 0 of the linear systemz′ = Az, whereA is a ma-
trix of real constants, is stable if all eigenvalues ofA
are negative or have negative real parts.

State space The phase plane, or state plane, is thexy-plane
for the dependent variablesx andy of the system

x′ = F(x, y)

y′ = G(x, y)

The trajectory, or orbit, of a solution

x = x(t), y = y(t)

of the system is drawn in this plane witht as a param-
eter. A graph of trajectories is called a phase portrait
for the system.

The higher dimensional analog is called phase space,
or state space.

State variables These are dependent variables whose val-
ues at a given time can be used with the modeling
ODEs to determine the state of the system at any other
time.

Steady state A steady state of a system of ODEs is an equi-
librium position where no state variable changes with

time. Sometimes only an attracting equilibrium point
(or periodic solution) is called a steady state.

Surface A surface of a three-dimensional object is just
its two-dimensional “skin,” and does not include the
space or volume enclosed by the surface.

Taylor remainder For an(n +1)-times differentiable func-
tion u(t), the difference (or Taylor remainder)

u(t) − [u(t0) + hu′(t0) + · · · + 1
n!

hnu(n) (t0)]

can be written as

1
(n + 1)!

h(n+1)u(n+1) (c)

for somec in the interval [t0, t0 + h], a fact which gives
useful estimates.

Taylor series expansion For an infinitely differentiable
function u(t), the Taylor series expansion att0 for
u(t0 + h) is

u(t0) + hu′(t0) + 1
2

h2u′′(t0) + · · · + 1
n!

hnu(n) (t0) + · · ·

Taylor series method Look at the IVP y′ = f (t, y),
y(t0) = y0. For a step sizeh, the three-term Tay-
lor series method approximates the solutiony(t) at
tn+1 = tn + h, for n = 0, 1, 2,. . . , using the algorithm

yn+1 = yn + h f (tn, yn) + 1
2

h2 ft(tn, yn)

Trace The trace of a square matrix is the sum of its diagonal
entries. So

tr

[
a b
c d

]
= a + d

Trace-determinant parabola The eigenvaluesλ1, λ2 of a
2× 2 matrix A are given by

λ1, λ2 = tr A ±
√

tr2 A − 4detA
2

The trace-determinant parabola, 4detA = tr2 A, di-
vides the trA − detA plane into the upper region
whereA’s eigenvalues are complex conjugates and the
lower region where they are real. The two eigenvalues
are real and equal on the parabola.

Trajectory A trajectory (or orbit, or path) is the paramet-
ric curve drawn in thexy-plane, called the phase plane
or state plane, byx = x(t) and y = y(t) ast changes,
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where x(t), y(t) is a solution of

x′ = F(x, y, t)

y′ = G(x, y, t)

The trajectory shows how x(t) and y(t) play off
against each other as time changes.
For a higher-dimensional system, the definition ex-
tends to parametric curves in higher-dimensional
phase space or state space.

Unstable An equilibrium point p∗ of an autonomous system
of ODEs is unstable if it is not stable. That means there
is a neighborhood N of p∗ with the property that, start-
ing inside each neighborhood M of p∗, there is at least
one trajectory that goes outside N as time advances.

Vector A vector is a directed quantity with length. In two
dimensions, a vector can be written in terms of unit
vectors î and ĵ, directed along the positive x- and y-
axes.

Viscous damping A body moving through air (or some
other medium) is slowed down by a resistive force
that acts opposite to the body’s velocity, v. In viscous

damping (or viscous drag), the force is proportional to
the velocity:

force = −kv

for some positive constant k.

Wada property The Wada property, as described and illus-
trated on Screen 3.2 of Module 12 is the fact that:

Any point on the boundary of any one of the
areas described on Screen 3.2 is also on the
boundary of all the others.

The geometry/topology example constructed by Wada
was the first to have this property; we can now show
that the basins of attraction for our forced, damped
pendulum ODE have the same property. See Mod-
ule 12 and Chapter 12.

All we know about Wada is that a Japanese manuscript
asserts that someone by that name is responsible for
constructing this example, showing that for three ar-
eas in a plane, they can become so utterly tangled that
every boundary point touches all three areas!
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