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The MATLAB® Environment
MATLAB integrates mathematical computing, visualization, and a powerful language to provide a flexible environment
for technical computing. The open architecture makes it easy to use MATLAB and its companion products to explore
data, create algorithms, and create custom tools that provide early insights and competitive advantages.
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Introduction to the MATLAB Language of Technical Computing
The MATLAB language is particularly well-suited to designing predictive mathematical models and developing 
application-specific algorithms. 

It provides easy access to a range of both elementary and advanced algorithms for numeric computing. These algorithms
include operations for linear algebra, matrix manipulation, differential equation solving, basic statistics, linear data 
fitting, data reduction, and Fourier analysis. MATLAB Toolboxes are add-ons that extend MATLAB with specialized 
functions and easy-to-use graphical user interfaces. Toolboxes are accessible directly from the MATLAB interactive 
programming environment.

MATLAB employs the same language for both interactive computing and structured programming. The intuitive math
notation and syntax allow you to express technical ideas just as you would write them mathematically. This familiar 
style and flexibility make exploration and development with MATLAB very efficient.

The built-in math algorithms, optimized for matrix and vector calculations, allow you to increase efficiency in two areas:
more productive programming and optimized code performance. The resulting time savings give you fast development
cycles as well as execution speeds from within the MATLAB environment that are comparable to compiled code.

The two examples on the following pages illustrate MATLAB in use:

1) The first example compares MATLAB to C using three approaches to a quadratic minimization problem. 

2) The second example describes one user’s application of the M-file performance profiler to increase 
M-file code performance.

These examples demonstrate how MATLAB’s straightforward syntax and built-in math algorithms enable development 
of programs that are shorter, easier to read and maintain, and quicker to develop. The embedded code samples, developed
by MATLAB users in the MATLAB language, illustrate how MATLAB application specific toolbox functionality can be 
easily accessed from the MATLAB language.
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COMPARING MATLAB TO C:
THREE PROGRAMMING APPROACHES TO QUADRATIC MINIMIZATION

Introduction
Quadratic minimization is a specific form of nonlinear minimization. When a problem has a quadratic objective function
instead of a general nonlinear function (such as in standard linear least squares), we can find a minimizer more accurately
and efficiently by taking advantage of the quadratic form. This is particularly true when the quadratic problem is convex. 

Some examples of these types of applications include:

� Solving contact and friction problems in rigid body mechanics, typical of the kind encountered in aerospace applications 

� Solving journal bearing lubrication problems, useful for machine design and maintenance planning 

� Computing flow through a porous medium, a common application in chemistry 

� Selecting the best portfolio of financial investments

In this example we will use quadratic programming to solve a minimization problem. This example demonstrates the use
of MATLAB to simplify an optimization task and compares that solution to the alternative C programming approach. The
three following code examples compare three approaches to the minimization problem:

� MATLAB

� The MATLAB Optimization Toolbox

� C code including calls to LAPACK, the library that makes up much of the mathematical core of MATLAB

Problem Statement
Minimize a quadratic equation such as

y = 2x 1
2 + 20x 2

2 + 6x1x2 + 5x1

with the constraint that 

x1 – x2 = –2

Solution
Express the original equation in standard quadratic form. First, transform the original equation into matrix notation

y �    * � �
T

* � �* � �+� �
T

* � �
such that

�1    –1� * � � = –2

Second, substitute variable names for the vectors and matrices

H�� � ,  f �� � ,  A��1    –1� ,  b��–2� and  x�� �x1
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Third, rewrite the quadratic equation as

y 5    * x T * H * x 1f T* x

and the constraint equation as 

A * x =b. 

The quadratic form of the equation is easier to understand and to solve using MATLAB’s matrix-oriented computing language. 

Having transformed the original equation, we’re ready to compare the three programming approaches.

Example 1: Quadratic Minimization with MATLAB M code
MATLAB’s matrix manipulation and equation solving capabilities make it particularly well-suited to quadratic program-
ming problems. The constraint stated above is that A * x =b. In the example below we specify four values of b for which x
must be solved, corresponding to the four rows of matrix A. In general, the data is determined by the known parameters
of the problem. For example, to solve a financial optimization problem, such as portfolio optimization, the data would be
determined by the expected return of the investments in the portfolio and the covariance of the returns. Then we would
solve for the optimal weighting of the investments by minimizing the variance in the portfolio while requiring the sum of
the weights to be unity.

In this example, we use synthetic data for H, f, A, and b. Once we set up these variables, the next step is to solve for the
unknown, x. The code below roughly follows these steps:

1) Find a point in six-dimensional space that satisfies the equality constraints A * x =b (6 is the number of columns in H
and in A).
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The surface is the graphical repre-
sentation of the quadratic function
that we are minimizing, subject to
the constraint that x1 and x2 lie
on the line x1 – x2 = –2 (repre-
sented by the blue line in the small
graphic and the dashed black line
in the large graphic). This blue line
represents the null space of the
equality constraint. The black curve
represents the values on the qua-
dratic surface where the equality
constraint is satisfied. We start
from a point on the surface (the
upper cyan circle) and the quadrat-
ic minimization takes us to the
solution (the lower cyan circle).



2) Project the problem into the null space of A, that is, project into a subspace where movement in that subspace will not
violate these constraints. 

3) Minimize in this subspace. As our objective is a convex quadratic, we find the minimizer by stepping to the point at
which the gradient is equal to 0, one Newton step. 

4) Calculate the final answer by projecting the step to the minimizer and back into the original full space.

The following MATLAB M code, solves the type of minimization problem described above. This example has 6 variables
and 4 constraints. The following assignment statements assign the data to the variables H (matrix), f (vector), A (matrix),
and b (vector), respectively. The dimensionality of the problem, in this case 6, is specified implicitly by the number of
columns in H and A. Note that in MATLAB code, lines preceded by “%” are comments. 

%

% minimize  1/2*x'*H*x +f'*x   such that A*x=b

%  x

% 6 dimensional problem with 4 constraints:

% 

H = [36 17 19 12 8 15; 17 33 18 11 7 14; 19 18 43 13 8 16; 

12 11 13 18 6 11; 8 7 8 6 9 8; 15 14 16 11 8 29];

f = [ 20 15 21 18 29 24 ]';

A = [ 7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0 ];

b = [ 84 62 65 1 ]';

Z = null(A); % Find the null space of constraint matrix A

x = A\b; % Determine an x satisfying the equality constraints A*x = b

g = H*x +f; % Compute the gradient (first derivative vector) of the quadratic 

% equation at x

Zg = Z'*g; % Find the projected gradient

ZHZ = Z'*H*Z; % Compute the projected Hessian matrix (second derivative matrix)

t = -ZHZ \ Zg; % Solve for the projected Newton step

xsol = x + Z*t; % Project the step back into the full space and add to x to find 

% the solution xsol

Example 2: Quadratic Minimization with the Optimization Toolbox
We can also solve the problem in Example 1 using the MATLAB Optimization Toolbox. It turns out that quadprog, 
the quadratic programming function in the Optimization Toolbox, can solve the entire problem described above. The
following code could be typed in at the MATLAB command line or saved in a “script” file and run from MATLAB. Once
the four MATLAB variable assignments are executed (the same ones as in Example 1), and some options are set, the call to
quadprog is all that is required to solve the above problem. 

H = [36 17 19 12 8 15; 17 33 18 11 7 14; 19 18 43 13 8 16; 

12 11 13 18 6 11; 8 7 8 6 9 8; 15 14 16 11 8 29];

f = [ 20 15 21 18 29 24 ]';

A = [ 7 1 8 3 3 3; 5 0 5 1 5 8; 2 6 7 1 1 8; 1 0 0 0 0 0 ];

b = [ 84 62 65 1 ]';

options = optimset (‘largescale’,’off’);

xsol = quadprog(H,f,[],[],A,b,[],[],[],options);
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Example 3: Quadratic Minimization in C and LAPACK 
What would the equivalent C code implementation look like for the same problem? 

Assume that you have the C code version of the LAPACK linear algebra subroutine library and the BLAS subroutine
library at your disposal. The following code uses the LAPACK subroutines dgesv, dgelsx, dgesvd, and the BLAS
routines daxpy, dgemm, and dgemv. (Without these functions, you would need to write the numerical linear algebra
routines in C directly). Here is the resulting C program, totaling 70 lines:

#include <stdio.h>

#include <math.h>

#include "f2c.h"

main()

{

integer m = 4;

integer n = 6;

integer nrhs = 1;

integer max1 = max(min(m,n)+3*n,2*min(m,n)+nrhs); /* for dgelsx_ */

integer max2 = max(3*min(m,n)+max(m,n),5*min(m,n)-4); /* for dgesvd_ */

integer lwork = max(max1,max2); /* for both */

/* Problem definition arrays (column order) */

double A[] = {7,5,2,1, 1,0,6,0, 8,5,7,0, 3,1,1,0, 3,5,1,0, 3,8,8,0};

double b[] = {84,62,65,1};

double H[] = {36,17,19,12,8,15, 17,33,18,11,7,14, 19,18,43,13,8,16,

12,11,13,18,6,11, 8,7,8,6,9,8,  15,14,16,11,8,29};

double f[] = {20,15,21,18,29,24};

double *QR, *x, *work, *g, *s, *U, *VT, *Z, *ZH, *ZHZ, *Zg;

double *p1, *p2, rcond, one = 1.0, zero = 0.0, minusone = -1.0;

integer *jpvt, *ipiv, rankA, nullA, info, inc = 1, i, j;

char jobu = 'N', jobvt = 'A', transn = 'N', transt = 'T';

/* Allocate contiguous memory for work arrays */

QR = malloc( m*n*sizeof(double) );

x = malloc( n*sizeof(double) );

work = malloc( lwork*sizeof(double) );

g = malloc( n*sizeof(double) );

s = malloc( m*sizeof(double) );

U = NULL;

VT = malloc( n*n*sizeof(double) );

Z = malloc( n*n*sizeof(double) );

ZH = malloc( n*n*sizeof(double) );

ZHZ = malloc( n*n*sizeof(double) );

Zg = malloc( n*sizeof(double) );

jpvt = malloc( n*sizeof(int) );

ipiv = malloc( n*sizeof(int) );

/* QR = A: since it will be overwritten by dgelsx_ */

for (i=0, p1=QR, p2=A; i<m*n; i++)

*p1++ = *p2++;

/* x = b: since it will be overwritten by dgelsx_ */

for (i=0, p1=x, p2=b; i<m; i++)
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*p1++ = *p2++;

/* x = A \ b: solve min||b - A*x|| for x, using a QR factorization of A */

dgelsx_(&m, &n, &nrhs, QR, &m, x, &n, jpvt, &rcond, &rankA, work, &info);

/* g = H * x */

dgemv_(&transn, &n, &n, &one, H, &n, x, &inc, &zero, g, &inc);

/* g = g + f */

daxpy_(&n, &one, f, &inc, g, &inc);

/* Z = null(A) */

/* [U,S,V] = svd(A) */

dgesvd_(&jobu, &jobvt, &m, &n, A, &m,

s, U, &m, VT, &n, work, &lwork, &info);

/* dimension of null space of A */

nullA = max(m,n) - rankA;

/* Z = last nullA columns of V (last nullA rows of VT) */

for (j=0; j<nullA; j++)

for (i=0; i<n; i++)

Z[i+j*n] = VT[(i+1)*n-nullA+j];

/* ZHZ = Z' * H * Z */

dgemm_(&transt, &transn, &nullA, &n, &n,

&one, Z, &n, H, &n, &zero, ZH, &n);

dgemm_(&transn, &transn, &nullA, &nullA, &n,

&one, ZH, &n, Z, &n, &zero, ZHZ, &n);

/* Zg = Z' * g */

dgemv_(&transt, &n, &nullA, &one, Z, &n, g, &inc, &zero, Zg, &inc);

/* Zg = ZHZ \ Zg */

dgesv_(&nullA, &nrhs, ZHZ, &n, ipiv, Zg, &n, &info);

/* g = - Z * Zg; */

dgemv_(&transn, &n, &nullA, &minusone, Z, &n, Zg, &inc, &zero, g, &inc);

/* x = x + g */

daxpy_(&n, &one, g, &inc, x, &inc);

printf("=============================\n");

for (i=0; i<n; i++) {

printf("%f\n",x[i]);

}

printf("=============================\n");

}

As you can see, except for the calls to the LAPACK routines and the comments, the remaining C code consists almost
exclusively of variable declarations and memory allocation via calls to malloc.
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Comparing the Three Programing Approaches
Clearly, it is possible to solve the minimization problem using MATLAB, the Optimization Toolbox, or standard C. All
three approaches run and produce correct answers. The primary differences between them are code length and overall
complexity. 

The following table summarizes the number of lines of code required for each solution

Both the MATLAB and Optimization Toolbox examples are fairly short and straightforward to follow. MATLAB accom-
plishes the task in 6 lines or 11 lines, depending on the approach. It requires 70 lines of C code to do what MATLAB could
handle in 1/10 of that. In this case, the LAPACK industry-tested library contained the required routines to perform the
necessary foundation numeric computations. Corresponding routines to those available in MATLAB and the complemen-
tary application specific toolboxes may not always be so reliable and easily accessible when solving other types of problems.

The C code version is much more difficult to read and understand than the corresponding MATLAB code that performs
essentially the same steps. In addition, C, like many high-level languages, requires memory management, variable initial-
izations, and variable declarations. These additional steps not only take up space, but require additional programming,
debugging, and testing time. By comparison, MATLAB handles these overhead tasks behind the scenes, thereby saving
time and allowing you to create more readable and maintainable code. 

APPLICATION DEVELOPMENT IN MATLAB: 
TUNING M-FILES WITH THE MATLAB PERFORMANCE PROFILER
Many users have found MATLAB to be a very productive environment for experimenting with and comparing different
approaches to application development. The three examples in the preceding section illustrate how MATLAB can help
you shorten your development cycles and thereby save you time.

A number of MATLAB programming tools make it possible to not only develop solutions, but also to refine your proto-
types and iterate on your designs. These tools include the MATLAB color-coded visual editor/debugger, the online hot-
linked reference documentation, and the M-file performance profiler.

The performance profiler monitors the computing time spent on each line of code for a particular MATLAB M-file func-
tion. This information can provide you with insight into which operations are the most time-intensive, perhaps giving
implicit clues about which computing tasks to tune or even replace with different, faster alternatives.

In the following example we apply the M-file performance profiler to a digital image processing application involving
object measurement.

A number of image processing applications rely on the ability to measure and compare the characteristics of similar
objects. This type of object measurement is useful in applications such as: 

� Medical research, for example the study of cancer cells

� Quality control applications involving inspection sampling and process monitoring 

� Analysis of satellite imagery, such as the object enhancement and measurement of rocks in photographs during the
Sojourner Mars mission

MATLAB code example: 11 lines (including 4 lines of data definitions)

Optimization Toolbox example: 6 lines (including 4 lines of data definitions)

C code example: 70 lines (including 14 lines of declarations and 

13 lines of memory allocation)
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In the following profiler summary report, the first few lines list the total execution time (2.18 seconds) and the lines that
consumed the most computing time, in descending order of time. Three numbers precede the code on each of the indi-
vidual code lines: the computing time in seconds, the percentage of the total time, and the number of lines of code in the
original M-file routine.

The complete function, imfeature.m, is 220+ lines long. In the interest of space, the entire function is not included here but
the relevant portions are shown. After profiling an execution of imfeature.m, the profiler generates this summary report: 

profile report

Total time in "h:\ipt2.1\imfeature.m": 2.18 seconds

79% of the total time was spent on lines:

[25 219 20 40 218 90 3 220 214 209]

2: 

0.05s, 2%    3:  numObjs = round(max(L(:)));

4:  if (numObjs < 0)

19: elementValues = L(idx);

0.24s, 11%  20: S = sparse(idx, elementValues, ones(size(elementValues)));

21: objRowCoordinates = cells(1,numObjs);

24: for k = 1:numObjs

0.52s, 24%   25:   [objRowCoordinates{k},objColCoordinates{k}] = ind2sub(sizeL . . . 

26: end

39:   stats(k).EulerNumber = eulerNumber;

0.14s, 6%    40:   stats(k).Centroid = [mean(r) mean(c)];

41: end

89: lut = aglut;

0.07s, 3%    90: markers = applylut(BW, lut);

91: numQ1 = length(find(markers == 1));

208: 

0.04s, 2%   209: minR = min(r);

210: maxR = max(r);

213: r = r - minR + 2;

0.04s, 2%   214: c = c - minC + 2;

215: M = maxR - minR + 1;

217: BW = uint8(0);

0.09s, 4%   218: BW = repmat(BW, M+2, N+2);

0.49s, 22%  219: idx = sub2ind([M+2, N+2], r, c);

0.04s, 2%   220: BW(idx) = 1;

The report shows that imfeature is spending 22% of the time in calls to sub2ind (on line 219). Looking at the
subind code, we can see that much of sub2ind handles general cases that aren’t relevant to this particular use 
of sub2ind. As a result, we inserted the useful lines of code from sub2ind directly in the imfeature function, 
eliminating the calls to the sub2ind function.
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After making the code changes, we ran the profiler on the modified imfeature.

profile report

Total time in "h:\ipt2.1\imfeature.m": 1.77 seconds

77% of the total time was spent on lines:

[25 20 40 218 90 93 3 210 221 219]

2: 

0.05s, 3%    3: numObjs = round(max(L(:)));

4: if (numObjs < 0)

19: elementValues = L(idx);

0.23s, 13%  20: S = sparse(idx, elementValues, ones(size(elementValues)));

21: objRowCoordinates = cells(1,numObjs);

24: for k = 1:numObjs

0.53s, 30%  25:   [objRowCoordinates{k},objColCoordinates{k}] = ind2sub(sizeL . . .)

26: end

39:   stats(k).EulerNumber = eulerNumber;

0.22s, 12%  40:   stats(k).Centroid = [mean(r) mean(c)];

41: end

89: lut = aglut;

0.07s, 4%   90: markers = applylut(BW, lut);

91: numQ1 = length(find(markers == 1));

92: numQ2 = length(find(markers == 2));

0.05s, 3%   93: numQ3 = length(find(markers == 3));

94: numQ4 = length(find(markers == 4));

209: minR = min(r);

0.04s, 2%  210: maxR = max(r);

211: minC = min(c);

217: BW = uint8(0);

0.11s, 6%  218: BW = repmat(BW, M+2, N+2);

0.03s, 2%  219: idx = (M+2)*(c-1) + r;

220: %%% idx = sub2ind([M+2, N+2], r, c);

0.03s, 2%  221: BW(idx) = 1;

222: 

We see above that the call to sub2ind is commented out (line 220) and replaced with an inline assignment statement
on line 219.

This second profile report shows that imfeature now takes 1.77 seconds, a savings of 19%. Specifically, the inline
computation takes 0.03 seconds, compared with 0.44 seconds previously. 

Not bad for a single, quick change but we could certainly pursue further optimizations such as investigating whether 
the code on line 25, now taking up 30% of the total execution time, could be further tuned. This example is just one 
illustration of the savings possible with the various programming tools available in the MATLAB environment.

© 2001 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their
respective holders.



The MathWorks 9514v02  08/01

For demos, application examples, 
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest 
of Europe.


