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Thisvolumeis aresult of the conference on higher local fieldsin M tinster, August 29—
September 5, 1999, which was supported by SFB 478 “ Geometrische Strukturen in
der Mathematik”. The conference was organized by |I. Fesenko and F. Lorenz. We
gratefully acknowledge great hospitality and tremendous efforts of Falko Lorenz which
made the conference vibrant.

Classfield theory as developed in thefirst half of this century isafruitful generaliza-
tion and extension of Gauss reciprocity law; it describes abelian extensions of number
fields in terms of objects associated to these fields. Since its construction, one of the
important themes of number theory was its generalizations to other classes of fields or
to non-abelian extensions.

In modern number theory one encounters very naturally schemes of finite type over
Z. A very interesting direction of generalization of class field theory is to develop a
theory for higher dimensional fields—finitely generated fiel dsover their prime subfields
(or schemes of finite type over 7 in the geometric language). Work in this subject,
higher (dimensional) class field theory, was initiated by A.N. Parshin and K. Kato
independently about twenty five years ago. For an introduction into severa global
aspects of the theory see W. Raskind'sreview on abelian classfield theory of arithmetic
schemes.

Oneof thefirstideasin higher classfield theory isto work with theMilnor K -groups
instead of the multiplicative group in the classical theory. It is one of the principles of
classfield theory for number fieldsto construct the reciprocity map by some blending of
classfield theories for local fields. Somewhat similarly, higher dimensiona classfield
theory is obtained as a blending of higher dimensional local class field theories, which
treat abelian extensions of higher local fields. In thisway, the higher local fields were
introduced in mathematics.

A precise definition of higher local fields will be given in section 1 of Part |; here
we give an example. A complete discrete valuation field K whose residue field is
isomorphic to a usua local field with finite residue field is called a two-dimensional
local field. For example, fields I, ((T7))((S)), Q,((S)) and

Q{T}H = {Z a;T" : a; € Qp,inf vy(a;) > —oo,i_l)iinoo vp(a;) = +oo}

— 00
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iv Invitation to higher local fields

(vp isthe p-adic valuation map) are two-dimensional local fields. Whereas the first
two fields above can be viewed as generalizations of functional local fields, the latter
field comesin sight as an arithmetical generalization of Q,.

Inthe classical local case, where K isacomplete discrete valuation field with finite
residue field, the Galois group Gal(K®/K) of the maximal abelian extension of K is
approximated by the multiplicative group K*; and the reciprocity map

K* — Ga(K®/K)

is closeto anisomorphism (it induces an isomorphism between the group K * /Ny, x L*
and Gal(L/K) for afinite abelian extension L/ K, and it isinjective with everywhere
denseimage). For two-dimensional local fields K asabove, instead of the multiplicative
group K*, theMilnor K-group K»(K) (cf. Some Conventions and section 2 of Part |)
plays an important role. For these fields thereis areciprocity map

K>(K) — Gal(K®/K)

which is approximately an isomorphism (it induces an isomorphism between the group
K>(K)/Ny kK>(L) and Gal(L/K) for afinite abelian extension L/K, and it has
everywhere denseimage; but it is not injective: the quotient of K»(K) by the kernel of
the reciprocity map can be described in terms of topological generators, see section 6
Part ).

Similar statements hold in the general case of an n-dimensional local field where
one works with the Milnor K, -groups and their quotients (sections 5,10,11 of Part I);
and even class field theory of more general classes of complete discrete valuation fields
can be reasonably developed (sections 13,16 of Part I).

Since K1(K) = K*, higher loca classfield theory contains the classical local class
field theory asits one-dimensional version.

The aim of this book is to provide an introduction to higher local fields and render
the main ideas of thistheory. The book grew as an extended version of talks given at the
conferencein Munster. Its expository style aimsto introduce the reader into the subject
and explain main ideas, methods and constructions (sometimes omitting details). The
contributors applied essential efforts to explain the most important features of their
subjects.

Hilbert's words in Zahlbericht that precious treasures are hidden in the theory of
abelian extensions are still up-to-date. We hope that this volume, as the first collection
of main strands of higher local field theory, will be useful as an introduction and guide
on the subject.

The first part presents the theory of higher local fields, very often in the more
general setting of complete discrete valuation fields.

Section 1, written by |. Zhukov, introduces higher local fieldsand topol ogies on their
additive and multiplicative groups. Subsection 1.1 contains all basic definitions and is
referred to in many other sections of the volume. The topologies are defined in such a
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way that the topology of the residue field is taken into account; the price one paysis
that multiplication is not continuous in general, however it is sequentially continuous
which allows one to expand elements into convergent power series or products.

Section 2, written by O. Izhboldin, is a short review of the Milnor K -groups and
Galois cohomology groups. It discusses p-torsion and cotorsion of the groups K ,,(F)
and K} (F) = K,(F)/ Ni»11K,(F), ananalogue of Satz 90 for the groups K, (F) and
K:(F), and computation of H™*'(F) where F iseither the rational function field in
onevariable F = k(t) or the formal power series F' = k((t)).

Appendix to Section 2, written by M. Kurihara and |I. Fesenko, contains some
basic definitions and properties of differential forms and Kato’s cohomology groups
in characteristic p and a sketch of the proof of Bloch—Kato—Gabber’s theorem which
describes the differential symbol from the Milnor K -group K, (F)/p of afield F of
positive characteristic p to the differential module Q7%.

Section 4, written by J. Nakamura, presents main steps of the proof of Bloch—Kato’s
theorem which states that the norm residue homomorphism

Ky(K)/m — HY(K,Z/m(q))

is an isomorphism for a henselian discrete valuation field K of characteristic O with
residuefield of positive characteristic. Thistheorem and its proof allowsoneto simplify
Kato's original approach to higher local classfield theory.

Section 5, written by M. Kurihara, is a presentation of main ingredients of Kato's
higher local classfield theory.

Section 6, written by |. Fesenko, is concerned with certain topologies on the Milnor
K -groupsof higher local fields K which arerelated to thetopol ogy onthe multiplicative
group; their properties are discussed and the structure of the quotient of the Milnor
K -groups modul o the intersection of all neighbourhoodsof zeroisdescribed. Thelatter
quotient is called atopological Milnor K -group; it was first introduced by Parshin.

Section 7, written by |. Fesenko, describes Parshin’s higher local class field theory
in characteristic p, which is relatively easy in comparison with the cohomological
approach.

Section 8, written by S. Vostokov, is a review of known approaches to explicit
formulas for the (wild) Hilbert symbol not only in the one-dimensional case but in
the higher dimensional case as well. One of them, Vostokov's explicit formula, is of
importance for the study of topological Milnor K -groupsin section 6 and the existence
theorem in section 10.

Section 9, written by M. Kurihara, introduces his exponential homomorphism for
a complete discrete valuation field of characteristic zero, which relates differential
forms and the Milnor K -groups of the field, thus helping one to get an additional
information on the structureof thelatter. Anapplicationtoexplicit formulasisdiscussed
in subsection 9.2.

Section 10, written by |. Fesenko, presents his explicit method to construct higher
local classfield theory by using topological K -groupsand ageneralization of Neukirch—
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Hazewinkel’s axiomatic approaches to class field theory. Subsection 10.2 presents
another simple approach to class field theory in the characteristic p case. The case
of characteristic 0 is sketched using a concept of Artin—Schreir trees of extensions (as
those extensions in characteristic 0 which are twinkles of the characteristic p world).
The existence theorem is discussed in subsection 10.5, being built upon the results of
sections 6 and 8.

Section 11, written by M. Spief3, provides a glimpse of Koya's and his approach
to the higher local reciprocity map as a generalization of the classical class formations
approach to the level of complexes of Galois modules.

Section 12, written by M. Kurihara, sketches his classification of complete discrete
valuation filds K of characteristic O with residue field of characteristic p into two
classes depending on the behaviour of the torsion part of a differential module. For
each of these classes, subsection 12.1 characterizes the quotient filtration of the Milnor
K-groups of K, for al sufficiently large members of the filtration, as a quotient of
differential modules. For a higher local field the previous result and higher local class
field theory imply certain restrictions on types of cyclic extensions of the field of
sufficiently large degree. Thisisdescribedin 12.2.

Section 13, written by M. Kurihara, describeshistheory of cyclic p-extensionsof an
absolutely unramified complete discrete valuation field K with arbitrary residue field
of characteristic p. In this theory a homomorphism is constructed from the p-part of
the group of charactersof K to Witt vectorsover itsresiduefield. Thishomomorphism
satisfies some important properties listed in the section.

Section 14, written by . Zhukov, presents some explicit methods of constructing
abelian extensions of compl ete discrete valuation fields. His approach to explicit equa-
tions of a cyclic extension of degree p™ which contains a given cyclic extension of
degree p isexplained.

Section 15, written by J. Nakamura, contains a list of all known results on the
quotient filtration on the Milnor K -groups (in terms of differential forms of the residue
field) of a complete discrete valuation field. It discusses his recent study of the case of
atamely ramified field of characteristic O with residuefield of characteristic p by using
the exponential map of section 9 and a syntomic complex.

Section 16, written by . Fesenko, isdevoted to his generalization of one-dimensional
classfield theory to adescription of abelian totally ramified p-extensions of acomplete
discretevaluation field with arbitrary non separably- p-closed residuefield. Inparticular,
subsection 16.3 showsthat two such extensionscoincideif and only if their norm groups
coincide. Anillustration to the theory of section 13 is given in subsection 16.4.

Section 17, written by 1. Zhukov, is areview of his recent approach to ramification
theory of a complete discrete valuation field with residue field whose p-basis consists
of at most one element. One of important ingredients of the theory is Epp’stheorem on
elimination of wild ramification (subsection 17.1). New lower and upper filtrations are
defined (so that cyclic extensionsof degree p may have non-integer ramification breaks,
seeexamplesinsubsection 17.2). Oneof theadvantagesof thistheory isitscompatibility
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with the reciprocity map. A refinement of the filtration for two-dimensional local fields
which is compatible with the reciprocity map is discussed.

Section 18, written by L. Spriano, presents ramification theory of monogenic exten-
sionsof complete discrete valuation fiel ds; hisrecent study demonstratesthat in thiscase
thereis a satisfactory theory if one systematically uses a generalization of the function
7 and not s (see subsection 18.0 for definitions). Relations to Kato’'s conductor are
discussed in 18.2 and 18.3.

These sections 17 and 18 can be viewed as the rudiments of higher ramification
theory; there are several other approaches. Still, there is no satisfactory general ramifi-
cation theory for complete discrete valuation fields in the imperfect residue field case;
to construct such atheory is a challenging problem.

Without attempting to list all links between the sections we just mention several
paths (2 means Section 2 and Appendix to Section 2)

1567 (leading to Parshin’s approach in positive characteristic),
2—+4—-55—-11 (leading to Kato’'s cohomol ogical description

of the reciprocity map and generalized class formations),
83—~6—10 (explicit construction of the reciprocity map),
5—- 12— 13— 15, (structure of the Milnor K -groups of the fields
1—-10— 14,16 and more explicit study of abelian extensions),
8,9 (explicit formulas for the Hilbert norm symbol

and its generalizations),
1—- 10— 17,18 (aspects of higher ramification theory).

A specia placein thisvolume (between Part | and Part I1) is occupied by the work of
K. Kato on the existence theorem in higher local classfield theory which was produced
in 1980 as an IHES preprint and has never been published. We are grateful to K. Kato
for his permission to include this work in the volume. Init, viewing higher local fields
asring objectsin the category of iterated pro-ind-objects, a definition of open subgroups
in the Milnor K -groups of the fieldsis given. The salf-duality of the additive group of
a higher local field is proved. By studying norm groups of cohomological objects and
using cohomologica approach to higher local class field theory the existence theorem
is proved. An aternative approach to the description of norm subgroups of Galois
extensions of higher local fields and the existence theorem is contained in sections 6
and 10.

The second part is concerned with various applications and connections of higher
local fields with several other areas.

Section 1, written by A.N. Parshin, describes some first steps in extending Tate—
Iwasawa's analytic method to define an L-function in higher dimensions; historically
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the latter problem was one of the stimuli of the work on higher class field theory. For
generalizing this method the author advocates the usefulness of the classical Riemann—
Hecke approach (subsection 1.1), his adelic complexes (subsection 1.2.2) together
with his generalization of Krichever's correspondence (subsection 1.2.1). He analyzes
dimension 1 types of functionsin subsection 1.3 and discusses properties of the lattice
of commensurable classes of subspacesin the adelic space associated to adivisor on an
algebraic surface in subsection 1.4.

Section 2, written by D. Osipov, isareview of hisrecent work on adelic constructions
of direct images of differentials and symbolsin the two-dimensional casein therelative
situation. Inparticular, reciprocity lawsfor relativeresidues of differentialsand symbols
areintroduced and applied to a construction of the Gysin map for Chow groups.

Section 3, written by A.N. Parshin, presents his theory of Bruhat—Tits buildings over
higher dimensional local fields. Thetheory isillustrated with the buildingsfor PGL(2)
and PGL(3) for one- and two-dimensional local fields.

Section 4, written by E.-U. Gekeler, providesasurvey of relations between Drinfeld
modules and higher dimensional fields of positive characteristic. The main new result
stated is the expression of vanishing orders of certain modular forms through partial
zetavalues.

Section 5, written by M. Kapranov, sketches his recent approach to elements of
harmonic analysis on algebraic groups over functional two-dimensiona local fields.
For a two-dimensional local field subsection 5.4 introduces a Hecke algebra which
is formed by operators which integrate pro-locally-constant complex functions over a
non-compact domain.

Section 6, written by L. Herr, is a survey of his recent study of applications of
Fontaine's theory of p-adic representations of local fields (® — I'-modules) to Galois
cohomology of local fieldsand explicit formulasfor the Hilbert symbol (subsections6.4—
6.6). Thetwo Greek lettersleadtotwo-dimensional local objects(like O ¢ (k) introduced
in subsection 6.3).

Section 7, written by |. Efrat, introduces recent advances in the zero-dimensional
anabelian geometry, that is a characterization of fields by means of their absolute
Galois group (for finitely generated fields and for higher loca fields). His method
of construction of henselian valuations on fields which satisfy some K -theoretical
propertiesis presented in subsection 10.3, and applications to an algebraic proof of the
local correspondence part of Pop’s theorem and to higher local fields are given.

Section 8, written by A. Zheglov, presents his study of two dimensional local skew
fieldswhichwasinitiated by A.N. Parshin. If the skew field hasone-dimensional residue
field which isin its centre, then one is naturally led to the study of automorphisms of
the residue field which are associated to alocal parameter of the skew field. Resultson
such automorphisms are described in subsections 8.2 and 8.3.

Section 9, written by |. Fesenko, is an exposition of his recent work on noncommu-
tative local reciprocity maps for totally ramified Galois extensions with arithmetically
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profinite group (for instance p-adic Lie extensions). These maps in general are not
homomorphisms but Galois cycles; a description of their image and kernel is included.

Section 10, written by B. Erez, is a concise survey of Galois module theory links
with classfield theory; it lists several open problems.

The theory of higher local fields has several interesting aspects and applications
which are not contained in this volume. One of them is the work of Kato on applica-
tions of an explicit formulafor the reciprocity map in higher local fieldsto calculations
of special values of the L-function of a modular form. There is some interest in
two-dimensional local fields (especially of the functional type) in certain parts of math-
ematical physics, infinite group theory and topology where formal power series objects
play acentral role.

Prerequisitesfor most sectionsin the first part of the book are small: local fieldsand
local class field theory, for instance, as presented in Serre’'s“Local Fields’, Iwasawa's
“Local ClassField Theory” or Fesenko—\Vostokov’'s*“ L ocal Fieldsand Their Extensions’
(thefirst source containsacohomological approach whereasthelast two are cohomol ogy
free) and some basic knowledge of Milnor K -theory of discrete valuation fields (for
instance Chapter | X of the latter book). See also Some Conventions and Appendix to
Section 2 of Part | where we explain several notions useful for reading Part |.

We thank P. Schneider for his support of the conference and work on this volume.
The volume is typed using a modified version of osudeG style (written by Walter
Neumann and Larry Siebenmann and available from the public domain of Department
of Mathematics of Ohio State University, pub/osutex); thanks are due to Larry for his
advice on aspects of this style and to both Walter and Larry for permission to useit.

Ivan Fesenko  Masato Kurihara September 2000
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Some Conventions

Thenotation X C Y meansthat X isasubset of Y.

For an abelian group A written additively denote by A/m the quotient group
A/mA where mA = {ma : a € A} and by ,, A the subgroup of elements of order
dividing m. The subgroup of torsion elementsof A isdenoted by Tors A.

For an algebraic closure F39 of F denote the separable closure of the field F
by F5; let Gr = Gal(F*"/F) be the absolute Galois group of F. Often for a
Gr-module M wewrite H*(F, M) instead of H*(Gr, M).

For apositiveinteger [ whichisprimeto characteristicof F (if thelatter isnon-zero)
denote by w; = ({;) the group of [th rootsof unity in F5P.

If I isprimeto char (F), for m > 0 denoteby Z/I(m) the G r-module pl@’m and
put Z;(m) = I(iLnr Z[1"(m); for m < 0 put Z;(m) = Hom(Z;, Z;(—m)).

Let A be acommutative ring. The group of invertible elements of A is denoted
by A*. Let B bean A-agebra Q%/A denotes as usual the B-module of regular
differential forms of B over A; Q%/A = /\"Q%/A. In particular, Q7 = QZ/ZlA
where 1, is the identity element of A with respect to multiplication. For more on
differential modules see subsection A1 of the appendix to the section 2 in thefirst part.

Let K,(k) = KM(k) be the Milnor K -group of afield & (for the definition see
subsection 2.0 in thefirst part).

For a complete discrete valuation field K denote by O = O itsring of integers,
by M = Mg the maximal ideal of O and by k = kg its residue field. If & is of
characteristic p, denote by R the set of Teichmuller representatives (or multiplicative
representatives) in ©. For 6 in the maximal perfect subfield of k& denote by [6] its
Teichmiller representative.

For afield k£ denoteby W (k) thering of Witt vectors(moreprecisely, Witt p-vectors
where p is a prime number) over k. Denote by W..(k) the ring of Witt vectors of
length » over k. If char(k) = p denoteby F: W (k) — W(k), F: W, (k) — W,.(k)
themap (ag, ...) — (af, ...).

Denoteby vy the surjectivediscretevaluation K* — Z (it issometimes called the
normalized discrete valuation of K ). Usualy = = mx denotesaprime element of K:
vk (mk) = 1.

Denoteby K the maximal unramified extension of K. If kg isfinite, denote by
Frobg the Frobenius automorphism of K /K.

For afinite extension L of a complete discrete valuation field K Dy, denotes
its different.

If char (K) =0, char(kx) =p, then K iscaled afield of mixed characteristic. If
char (K) = 0=char(kx), then K iscalled afidd of equal characteristic.

If kx isperfect, K iscaled alocal field.
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1. Higher dimensional local fields

Igor Zhukov

We give here basic definitions related to n-dimensional local fields. For detailed
exposition, see [P] in the equal characteristic case, [K1, §8] for the two-dimensional
case and [MZ1], [MZ2] for the general case. Several properties of the topology on the
multiplicative group are discussed in [F].

1.1. Main definitions

Suppose that we are given a surface S over afinite field of characteristic p, a curve
C C S, andapoint z € C such that both S and C' areregular at . Then one can

attach to these data the quotient field of the completion (6 s,z)c Of thelocalizationat C
of thecompletion ﬁs,w of thelocal ring Og , of S a z. Thisisatwo-dimensional local
field over afinite field, i.e., a complete discrete valuation field with local residue field.
More generally, an n-dimensional local field F' is a complete discrete valuation field
with (n — 1)-dimensional residue field. (Finite fields are considered as O-dimensional
local fields.)

Definition. A complete discrete valuation field K is said to have the structure of an
n-dimensional local field if there is a chain of fields K = K,,,K,,_1, ..., K1, Kp
where K;.1 isacomplete discrete valuation field with residue field K; and Kg isa
finite field. The field kx = K,,_1 (resp. Kg) is said to be the first (resp. the last)
residuefield of K.

Remark. Most of the properties of n-dimensional local fields do not change if one
requires that the last residue K is perfect rather than finite. To specify the exact
meaning of theword, K can bereferredto asan n-dimensional local field over afinite
(resp. perfect) field. One can consider an n-dimensional local field over an arbitrary
field Ko aswell. However, in this volume mostly the higher local fields over finite
fields are considered.
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6 I. Zhukov

Examples. 1. F,((X1))...((Xn)). 2. E((X1))...((X,-1)), k afinite extension of

Qp-
3. For acomplete discrete valuation field F' let

+o0
K=F{T} = {ZaiTi ta; € F, inf vp(a;) > —oo, |lim vp(a;) = +oo}.
oo 11— —00
Define vx (3 a;T%) = min vg(a;). Then K isacomplete discrete valuation field with
residuefield kg ((2)).
Hencefor alocd field k& thefields

E{T1Y - AT} (Tne2)) - (Th)), O<m<n-1
are n-dimensiona local fields (they are called standard fields).

Remark. K ((X)){{Y'}} isisomorphicto K ((Y)) ((X)).

Definition. An n-tupleof elements ¢4, ...,t, € K iscaled asystem of local param-
eters of K, if ¢, isaprimeeement of K,,, t,_1 isaunitin Og butitsresiduein
K, _, isaprimeeement of K,,_1, andsoon.

Forexample, for K =k {T1}} ... {Tn. }} (Trm+2)) - - . ((T3.)), aconvenient system
of local parameter is T4, ..., Ty, m, Tm+2, ---, Ty, Where w isaprime element of k.

Consider the maximal m such that char (K,,) = p; wehave 0 < m < n. Thus,
thereare n + 1 typesof n-dimensional local fields: fields of characteristic p and fields
with char (K,,+1) =0, char (K,,) =p, 0 < m < n—1. Thus, themixed characteristic
caseisthecase m =n — 1.

Suppose that char (kx) = p, i.e., the above m equalseither n — 1 or n. Thenthe
set of Teichmiller representatives R in Ok isafieldisomorphicto Kp.

Classification Theorem. Let K be an n-dimensional local field. Then

(1) K isisomorphicto F,((X1))...((X,)) if char(K) =p;

(2) K isisomorphicto k((X1))...((X,—-1)), k isalocal field, if char (K;) =0;

(3) K isafinite extension of a standard field k£ {{T1}} ... {Th}} (Tim+2)) - - - (T))
and there is a finite extension of K which is a standard field if char (K,,+1) =0,
char (K,,) = p.

Proof. In the equal characteristic case the statements follow from the well known
classification theorem for complete discrete valuation fields of equal characteristic. In
themixed characteristiccaselet ko bethefractionfieldof W (F,) andlet 11, ..., T,,_1, 7
be a system of local parametersof K. Put

K'=ko{{T1}} ... {T-1}}-

Then K' isan absolutely unramified complete discrete valuation field, and the (first)
residuefieldsof K' and K coincide. Therefore, K can beviewed asafinite extension
of K' by [FV, 11.5.6].
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Alternatively, let ¢4, ..., t,_1 beanyliftingsof asystem of local parametersof k.
Using the canonical lifting hy,,....; _, defined below, one can construct an embedding
K' — K whichidentifies T; with ¢;.

To provethelast assertion of the theorem, one can use Epp’s theorem on elimination
of wild ramification (see 17.1) which asserts that there is afinite extension 1/kq such
that e (IK/IK') = 1. Then IK' isstandard and [K isstandard, so K isasubfield of
IK. See[Z] or [KZ] for details and a stronger statement. 0

Definition. Thelexicographic order of Z™: i= (i1, ...,%,) <j=(1, ..., Jjn) ifand
only if

iy < Jiy 441 = Ji+ly -+ o500 = Jn fOrsome I < n.

Introduce v = (vy, ...,v,). K* = Z™ & v, = vk,, Un-1(a) = vk, _ (on_1)
where a,,_1 istheresidueof at;*~(®) in K,,_;, andsoon. Themap v isavaluation;
thisis a so called discrete valuation of rank n. Observethat for n > 1 the valuation
v does depend on the choice of 5, ...,t,. However, all the valuations obtained this
way are in the same class of equivalent valuations.

Now we define several abjects which do not depend on the choice of a system of
local parameters.

Definition.
Ok ={a€ K:v(a) 20}, Mg = {a € K :v(a) >0}, s0 Ox/Mg ~ Kpy.
The group of principal units of K with respect to the valuation v is Vg =1+ Mk.

Definition.
P(it, ... ,in) = Px (i1, .. in) = {a € K : (@), ..., vn(@)) > (i1, ..., in)}-

In particular, Ox = P(0, ...,0), Mg = P(1,0, ...,0), whereas O = P(0),
—_——

Mg = P(1). Notethat if n > 1, then

n:Mj = P(1,0,...,0),
2

since tp = £}t /87 ).
Lemma. The set of all non-zero ideals of Ok consists of all
{P(il’ ’Zn) : (il) ’Zn) 2 (Oa "',0), 1< g’l’L}

The ring Ok is not Noetherian for n > 1.
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8 I. Zhukov

Proof. Let J be a non-zero ideal of Og. Put i, = min{v,(a) : a € J}. |If
J = P (i,,), then we are done. Otherwise, it is clear that

in—1 = inf{v,_1(a) : @ € J,vp(a) =ip} > —o0.

If 4,, =0, then obvioudly i,,_1 > 0. Continuing this way, we construct (;, . ..,%,) >
O, ...,0), whereeither I =1 or
i1 =inf{v;_1(a) : @ € J,vp(@) =ip, ...,v(a) =i} = —o0.
In both casesitisclearthat J = P (3, ... ,1y).
The second statement isimmediate from P(0,1) ¢ P(-1,1) C P(-2,1).... 0O

For moreonidealsin O see subsection 3.0 of Part 1.

1.2. Extensions

Let L/K beafiniteextension. If K isan n-dimensional local field, thensois L.

’

Definition. Let ¢4, ...,t, beasystem of local parametersof K and let t'l, ceayty,
be a system of local parametersof L. Let v, v’ bethe corresponding vauations. Put

, ... O
B(LIK) = (v;(t:)), ;= | 62 ... 0]
€n

where e; = e;(L|K) = e(L;|K;), i =1, ...,n. Then e; do not depend on the choice
of parameters,and |L : K| = f(L|K) [[i=; e;(L|K), where f(L|K) = Lo : Ko .

The expression “unramified extension” can be used for extensions L/K with
en(L|K) =1 and L,_1/K,_1 separable. It can be also used in a narrower sense,
namely, for extensions L/K with []}-; e;(L|K) = 1. To avoid ambiguity, sometimes
one speaks of a“semiramified extension” in the former case and a *“purely unramified
extension” in the latter case.

1.3. Topology on K

Consider an example of n-dimensional local field

K= kTl .. AT} (Tons2)) - - - (T0)-

Expanding elementsof & into power seriesin 7 with coefficientsin Ry, one canwrite
dementsof K asformal power seriesin n parameters. To makethem convergent power
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Part I. Section 1. Higher dimensional local fields 9

series we should introduce atopology in K which takes into account topologies of the
residue fields. We do not make K atopological field this way, since multiplication is
only sequentially continuousin thistopology. However, for classfield theory sequential
continuity seemsto be more important than continuity.

131

Definition.

(@ If F has atopology, consider the following topology on K = F ((X)). For a
sequence of neighbourhoods of zero (U;);c; in F, U; = F for i > 0, denote
U,y = {X aiX*1a; € U;}. Thendl Uy, constitute a base of open neigh-
bourhoods of 0in F ((X)). In particular, asequence u(™ = ¥ a{™ X tendsto 0
if and only if thereisan integer m suchthat (™ e X™F[[X]] for al n andthe
sequences agn) tend to O for every i.

Starting with the discrete topol ogy on thelast residuefield, this constructionisused
to obtain awell-defined topology on an n-dimensional local field of characteristic
p.

(b) Let K,, beof mixed characteristic. Chooseasystem of local parameters ¢4, ..., t,
=m of K. Thechoiceof t4, ...,t,_1 determinesacanonica lifting

h=h, . .+ K, 1— 0k

n-1"°
(see below). Let (U;);cz be a system of neighbourhoods of zero in K,,_1,
U; = K,_1 for i > 0. Takethe system of all Ugy,y = {3 h(a;)n, a; € U;} as
a base of open neighbourhoodsof 0in K. Thistopology iswell defined.

(c) In the case char (K) = char (K, _1) = 0 we apply constructions (a) and (b) to
obtain atopology on K which depends on the choice of the coefficient subfield of
K,_1 in Og.

The definition of the canonical lifting Ay, ... ¢ _, israther complicated. Infact, itis
worthwhile to define it for any (n — 1)-tuple (¢4, .- -.,t,—1) suchthat v;(¢;) > 0 and
v;(t;) =0 for i« < j < n. Weshall give an outline of this construction, and the details
can befoundin[MZ1, §1].

Let F = Ko((t1))--- ((t,—1)) C K,,_1. By aliftingwemeanamap h: F — Ok
such that the residue of h(a) coincideswith a forany a € F'.

Step 1. Anauxiliary lifting Hy, ... , isuniquely determined by the condition

n—1

p—1 p—1
i T in-1_p
Htl"-wtn_]_ <Z ... Z tl ...tn_l ails---7in—1>

i1:0 in_]_:O

p—1 p—1
i Ty
= Z o Z t’:LLl e tn—::LL(Htl"--7tn—1(ail7"'7in—l))p'

i]_:O in_1=0
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10 I. Zhukov

Step 2. Let ko bethe fraction field of W(Kp). Then K' = ko{{T1}}... {Tn-1}}
isan n-dimensional local field with the residue field F'. Comparing the lifting H =
Hr,, .. r,_, withthelifting A defined by

R( D It T = Y (61T T

rezZn— 1 rc7zn-— 1

we introducethe maps A;: F — F by theformula
h(a) = H(a) +pH(M1(a) + " H(A2()) + . ..
Step 3. Introduce hy,,...; ,: F — Ok by theformula

htl,...,tn_l(a) = Htl,...,tn_l(a) +th1,...,tn_1(A1(a’)) +p2Ht1,...,tn_1(A2(a)) T

Remarks. 1. Observethat for astandard field K = k {{T1}} ... {{T.—1}}, we have
hry.r, 0 O 6T T gint = Y [GITY ... T 1,

where T} istheresidueof T in kg, j=1,...,n— 1.

2. Theideaof theaboveconstructionistofind afield ko{{t1}} ... {t,—1}} isomor-
phicto K' inside K without apriori giventopologieson K and K'. More precisely,
let t1, ...,t,_1 beasabove. For a = Y- p'h(a;) € K', let

[o.¢]
ftl,...,tn,l(a) = szhtl,...,tn,l(ai)
— o0

Then fi,...., ,: K' — K isan embedding of n-dimensional complete fields such
that

ftl,...,tn,l(Tj) :tj) .7 = 1) ceey— 1

(see[MZ1, Prop. 1.1]).

3. In the case of a standard mixed characteristic field the following alternative
construction of the same topology is very useful.

Let K = E{{X}}, where E isan (n — 1)-dimensional local field; assume that the
topology of E is already defined. Let {V;};cz be a sequence of neighbourhoods of
zeroin E such that
(i) thereis c € Z suchthat Pg(c) C V; foradl i € Z;

(ii) for every | € 7Z we have Pg(l) C V; for al sufficiently large 1.

Put

V{Vi} = {szXl i b; € ‘/z}
Then all the sets Vyy,y form abase of neighbourhoodsof Oin K. (Thisisan easy but
useful exercisein the 2-dimensional case; in general, seeLemma 1.6 in [MZ1]).

4. The forma construction of h; .. : , worksaso in case char (K) = p, and
one need not consider this case separately. However, if one is interested in equal
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Part I. Section 1. Higher dimensional local fields 11

characteristic case only, al the trestment can be considerably simplified. (In fact, in
thiscase hy,,... s, , isjust the obviousembedding of F' C kx into Ox = kx|[[ts]].)

n—-1

1.3.2. Properties.

(1) K isatopologica group which is complete and separated.

(2) If n > 1, then every base of neighbourhoods of O is uncountable. In particular,
there are maps which are sequentially continuous but not continuous.

(3) If n > 1, multiplication in K isnot continuous. Infact, UU = K for every open
subgroup U, since U D P(c) for some ¢ and U ¢ P(s) for any s. However,
multiplication is sequentially continuous:

a—a, 078, 5870 ;871 - af™t.

(49 Themap K — K, ar ca for ¢#0 isahomeomorphism.

(5) Forafiniteextension L/K thetopology of L = thetopology of finite dimensional
vector spacesover K (i.e., the product topology on K |Z*X1). Using this property
one can redefine the topology first for “ standard” fields

k{1 - AT} (Tne2)) - (T0))

using the canonical lifting h, and then for arbitrary fields as the topology of finite
dimensional vector spaces.

(6) For afinite extension L/K the topology of K = the topology induced from L.
Therefore, one can use the Classification Theorem and define the topology on K
asinduced by that on L, where L istaken to be a standard n-dimensional local
field.

Remark. Inpractical work with higher local fields, both (5) and (6) enables oneto use
the original definition of topology only in the simple case of a standard field.

1.3.3. About proofs. Theoutline of the proof of assertionsin 1.3.1-1.3.2isasfollows.
(Here we concentrate on the most complicated case char (K) = 0, char (K,,_1) = p;
the case of char (K) = p issimilar and easier, for details see [P]).

Step 1 (see [MZ1, §1]). Fix first n — 1 local parameters (or, more generally, any
elements t, ...,t,_1 € K suchthat v;(¢;) > 0 and v;(t;) =0 for j > 7).

Temporarily fix m; € K (i € Z), vp(m;) =4, and e; € Px(0), 7 =1,...,d, 0
that {e_j}jzl is abasis of the F-linear space K,,_1. (Here F isasin 1.3.1, and a
denotestheresidueof a in K,,_1.) Let {U;};cz beasequence of neighbourhoods of
zeroin F, U; = F for dl sufficiently large 7. Put

d
Ugw,y = {Z i - Zejhtl,...,tn_l(aij) taij € Ujyip € Z}.

1210 j=1

The collection of all such sets Uy, isdenoted by By .
Step 2 ((MZ1, Th. 1.1]). In parallel one provesthat
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12 I. Zhukov

—the set By hasa cofinal subset which consists of subgroups of K; thus, By is
a base of neighbourhoods of zero of a certain topological group K,,...; , with the
underlying (additive) group K;

- Ky,,....+, , doesnot depend on the choiceof {m;} and {e;},

—property (4) in1.3.2isvalidfor K,, ..; ..

Step 3 ([MZ1, §2]). Some propertiesof Ky, .+ ,
(2) in 1.3.2, the sequential continuity of multiplication.

Step 4 ([MZ1, §3]). The independence from the choice of ¢4, ...,t,_1 iSproved.

We give here a short proof of some statementsin Step 3.

Observe that the topology of K, .. : , isessentidly defined as atopology of a
finite-dimensional vector space over astandard field ko{{t1}} ... {t,—1}}. (It will be
precisely so, if we take {m;e; : 0 < i < e—1,1< j < d} asabasisof this vector
space, where e is the absolute ramification index of K, and m;+, = pw; for any i.)
This enables one to reduce the statements to the case of astandard field K.

If K isstandard, theneither K = E((X)) or K = E{{X}}, where E isof smaller
dimension. Looking at expansionsin X, it iseasy to construct alimit of any Cauchy
sequencein K and to provethe uniquenessof it. (Inthecase K = E{{ X }} oneshould
use the alternative construction of topology in Remark 3 in 1.3.1.) This proves (1) in
1.3.2.

To provethe sequential continuity of multiplication in the mixed characteristic case,

Since a; — 0, 3; — 0, onecan easily seethat thereis ¢ € Z suchthat v, (a;) > ¢,
vn(6;) > ¢ for i > 1.

By the above remark, we may assumethat K isstandard,i.e.,, K = E{{t}}. Fixan
open subgroup U in K; wehave P(d) C U for someinteger d. One can assume that
U =Vv,y, Vi areopensubgroupsin E. Thenthereis mg suchthat Pg(d—c) C Vi,
for m > mg. Let

ai - Z al1(:’r')t7', ,B'L = Z bgl)tl, ag’f'), bgl) € E.

-1

are established, in particular,

Notice that one can find an rg such that agr) € Pg(d—c¢) for r < 7o and dl 1.
Indeed, if this were not so, one could choose a sequence rq > r» > ... such that

agj ) ¢ Pg(d — c) for some i;. Itiseasy to construct a neighbourhood of zero V,,’j in
E suchthat Pr(d—¢) C V., agj) ¢ V,. Now put V;' = E when = isdistinct from
any of 7;, and U’ =Viyry. Thena;; ¢ U', j=1,2, ... Theset {i;} isobviousy
infinite, which contradicts the condition «; — O.

Similarly, 8" € Pg(d — ¢) for I < Ip andall i. Therefore,

mg mg
i = Z a{ " . Z Bt mod U,

=70 l=l0
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Part I. Section 1. Higher dimensional local fields 13
and the condition agr)bgl) — O forall r and I immediately implies o;3; — 0.

1.3.4. Expansion into power series. Let n = 2. Thenin characteristic p we have
Fy (X)) ((YV)) = {3 6:;; XY}, where 6;; are elementsof F, such that for some i
wehave 6;; = 0 for 7 < ig andfor every ¢ thereis j(i) suchthat 6;; = 0 for j < j(3).

Ontheother hand, the definition of thetopol ogy impliesthat for every neighbourhood
of zero U thereexists ig and for every i < ig thereexists j(i) suchthat X7Y* € U
whenever either 7 > ig or 7 < ig,7 > 7(3).

So every formal power series has only finitely many terms 6X7Y* outside U.
Therefore, it isin fact aconvergent power seriesin the just defined topology.

Definition. Q C Z™ iscaledadmissibleifforevery 1 <1 < n andevery jii1, ..., jn
thereis i = i(ji+1, - - -, Jn) € Z such that

(7:1’ "'7in) EQa 7:l+:|.:jl+l’ "Ln :jn :>il 2 1.

Theorem. Let ¢4, ...,t, be asystem of local parameters of K. Let s be a section of
the residue map Ox — Ok /Mg such that s(0) = 0. Let Q be an admissible subset
of Z™. Then the series

S biyiti ..t converges  (biy,.i, € 5(Ox/Mk))
(il,...,’in)EQ

and every element of K can be uniquely written this way.

Remark. Inthis statement it is essentia that the last residue field is finite. In amore
general setting, one should take a “good enough” section. For example, for K =
E{T1}} ... {Th}} (Tm+2)) - - ((T)), where k is afinite extension of the fraction
field of W(Kp) and K isperfect of prime characteristic, one may take the Teichmiller
section Ko — K1 = k{T1}} ... {{T0n}} composed with the obvious embedding
Km+1 — K

Proof. We have

Z bil,___7int§l...t%n = E (b Z tlj._l...t:ln),
(il,...,in)EQ bES(OK/MK) (il,---,in)EQb
where Q = {(i1, ...,3,) € Q : by, ;, = b}. Inview of the property (4), it
is sufficient to show that the inner sums corverge. Equivaently, one has to show
that given a neighbourhood of zero U in K, for dmost al (i1, ...,i,) € Q we

have till...tip € U. This follows easily by induction on n if we observe that
t;_l e t;n__iL = htl,...,tn_l(t_lil e tn_linfl).
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14 I. Zhukov

To prove the second statement, apply induction on n once again. Let r = v,(a),
where a isagiven element of K. Then by the induction hypothesis

tata= > by, (f)™ e (fain) "

(ila---7in—l)€Qr

where Q, ¢ Z"~1 isacertain admissible set. Hence

o= Z bil,...,int?]_l cee t;n:it; + a',
(31, rin—1)€Qr
where v,(a’) > r. Continuing this way, we obtain the desired expansion into a sum
over theadmissibleset Q = (Q, x {r}) U(Qps1 x {r+1}HU ...
The uniqueness follows from the continuity of theresiduemap O — K,,_1. 0O

1.4. Topology on K*

1.4.1. 2-dimensional case, char (kx) =p.

Let A be the last residue field Ko if char(K) = p, and let A = W(Kp) if
char (K) = 0. Then A iscanonically embedded into Ok, and it isin fact the subring
generated by the set R.

For a2-dimensional local field K with asystem of local parameters t,,t; definea
base of neighbourhoods of 1 asthe set of all 1+¢50k +t’iA[[t1,t2]], 1>1, 7>1
Then every element a € K* can be expanded as a convergent (with respect to the just
defined topology) product

o = 52310 [ [ (1 + 6;t5¢)
with 0 € R*,0;; € R,a1,a2 € Z. Theset S ={(4,1) : 6;; 7 0} isadmissible.

1.4.2. In the generd case, following Parshin’s approach in characteristic p [P], we
definethe topology 7 on K* asfollows.

Definition. If char (K,,_1) = p, then define the topology = on
K* ~ Vg x (t1) X «++ X (t,) x R*

asthe product of theinduced from K topology on the group of principal units Vx and
the discretetopology on (t1) x --- X (t,) x R*.
If char (K) = char (K ,,+1) =0, char(K,,) =p, where m < n — 2, thenwehavea
canonical exact sequence
1—1+Pk(L0,...,0) =0 = Ok ., — 1
N——

n—-m-—2
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Part I. Section 1. Higher dimensional local fields 15

Definethetopology = on K* ~ Oj X (t1) x --- X (t,) asthe product of the discrete
topology on (t1) x --- x (t,) and the inverse image of the topology = on O} ..

Then theintersection of all neighbourhoodsof 1isequal to 1+ Pk (1,0, ...,0) which
——

n—-m—2

isauniquely divisible group.

Remarks. 1. Observe that K,,+1 is a mixed characteristic field and therefore its
topology iswell defined. Thus, the topology = iswell defined in al cases.
2. A base of neighbourhoods of 1in Vi isformed by the sets

h(Uo) + h(U1)tn + ... + h(U_1)t5 " + P (c),

where ¢ > 1, Up isaneighbourhood of 1in Vi,., Ui, ...,U._1 areneighbourhoods
of zeroin kg, h isthe canonical lifting associated with some local parameters, ¢, is
the last local parameter of K. In particular, in the two-dimensional case = coincides
with the topology of 1.4.1.

Praoperties.

(1) Each Cauchy sequence with respect to the topology = convergesin K *.

(2) Multiplication in K* is sequentially continuous.

(3 If n < 2, then the multiplicative group K* is atopological group and it has a
countable base of open subgroups. K * isnot atopological group with respect to
Tif m> 3.

Proof. (1) and (2) follow immediately from the corresponding properties of the topol-
ogy defined in subsection 1.3. In the 2-dimensional case (3) is obvious from the
description givenin 1.4.1. Next, let m > 3, andlet U be an arbitrary neighbourhood
of 1. Wemay assumethat n =m and U C V. From the definition of the topology
on Vx weseethat U D 1+ h(Uyt, + h(Uz)t2, where Uy, U, are neighbourhoods of
0in kg, t, aprimeelementin K, and h the canonical lifting corresponding to some
choice of local parameters. Therefore,

UU + P(4) D (1+h(Up)t,)(1 + h(U)t2) + P(4)
= {1+ h(a)t, + h(b)t2 + h(ab)t> : a € U1, b € Uy} + P(4).
(Indeed, h(a)h(b) — h(ab) € P(1).) Since U Uz = kx (See property (3) in 1.3.2), it
isclear that UU cannot liein aneighbourhood of 1in Vk of theform 1+ h(kx)t, +

h(kx)t2 +h(U")tS + P(4), where U’ # kx isaneighbourhood of 0in kg. Thus, K*
is not atopological group. O

Remarks. 1. From the point of view of class field theory and the existence theorem
one needs a stronger topology on K * than the topology 7 (in order to have more open
subgroups). For example, for n > 3 each open subgroup A in K * with respect to the
topology 7 possessesthe property: 1+t20x C (L+t30k)A.
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Atopology A, whichisthesequential saturationof = isintroducedinsubsection6.2;
it has the same set of convergence sequences as = but more open subgroups. For
example [F1], the subgroup in 1 + ¢, topologically generated by 1+ 0tin .. .till
with (iq, -..,4,) (0,0, ...,1,2), i, > 1 (i.e, thesequentia closure of the subgroup
generated by these elements) is openin A, and does not satisfy the above-mentioned
property.

One can even introduce a topology on K * which has the same set of convergence
sequences as T and with respect to which K* isatopological group, see [F2].

2. For another approach to define open subgroups of K * see the paper of K. Kato
in this volume.

1.4.3. Expansion into convergent products. To simplify the following statements
we assume here char kx = p. Let B be afixed set of representatives of non-zero
elements of the last residuefieldin K.

Lemma. Let {a; : i € I} be asubset of Vi such that

(%) a; =1+ ) b0,
reQ;
where b € B, and Q; C Z% are admissible sets satisfying the following two conditions:
(i) Q=U;c; Qs is an admissible set;
(i) Njes Q5 =0, where J is any infinite subset of I.
Then J,c; a; converges.

Proof. Fix a neighbourhood of 1 in Vg ; by definition it is of the form (1 +U) N
Vi, where U is a neighbourhood of O in K. Consider various finite products of
b®¢L ... ¢7» which occur in (). It is sufficient to show that almost all such products
belongto U.

Any product under consideration has the form

k l
(%) y=bt.. bRttt

with I, > 0, where B = {by, ...,bs}. We prove by induction on j the following
claim: for 0 < j < n and fixed lj41, ...,l, theelement v amost always liesin U
(in case j =n weobtain the original claim). Let

f2={r1+ ceetrgit > Lrg, ..., € Q)

It is easy to see that Q isan admissible set and any element of Q can be written as a
sum of elements of Q in finitely many ways only. This fact and condition (ii) imply
that any particular n-tuple (I4, -..,I,) can occur at the right hand side of (**) only
finitely many times. This provesthe base of induction (5 = 0). A

For j > 0, we see that [; is bounded from below since (ly, ...,l,) € Q and
lj+1, ---,1, arefixed. Ontheother hand, v € U for sufficiently large I; and arbitrary
ki, ..., ks,l1, ...,l;_1 inview of [MZ1, Prop. 1.4] applied to the neighbourhood of
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Part I. Section 1. Higher dimensional local fields 17
zero t]._f{*l ...t;!»U in K. Therefore, we haveto consider only afiniterange of values
c <l <. Forany I; inthisrange the induction hypothesisis applicable. O

Theorem. Forany r € Z% and any b € B fix an element

— r,b,s1 s
Qrp = E bs’ tl ce tnn,
sEQ: b

such that %% = b, and b5® =0 for s < r. Suppose that the admissible sets
{Q.p:reQ,,be B}

satisfy conditions (i) and (ii) of the Lemma for any given admissible set Q..
1. Every element a € K can be uniquely expanded into a convergent series

a= 2 : arﬁr?

reQ,

where b, € B, Q, C Z,, is an admissible set.
2. Every element a € K* can be uniquely expanded into a convergent product:

a=tir .47 ] (1+arp,),
reQ,

where bg € B, b, € B, Q, C Z7 is an admissible set.

Proof. Theadditive part of thetheoremis[MZ2, Theorem 1]. Theproof of itisparallel
to that of Theorem 1.3.4.

To provethemultiplicative part, weapply inductionon n. Thisreducesthestatement
tothecase a € 1+ P(1). Hereone can construct an expansion and proveits uniqueness
applying the additive part of the theoremto theresidueof ¢ *~(*=D(a— 1) in kx. The
convergence of all series which appear in this process follows from the above Lemma.
For details, see [MZ2, Theorem 2]. 0

Remarks. 1. Conditions (i) and (ii) in the Lemma are essential. Indeed, the infinite

products T[(1+¢ +t ") and [[(1+¢: +¢,) do not converge. This means that the
=1 =1

statements of Theorems 2.1 and 2.2 in [MZ1] have to be corrected and conditions (i)

and (ii) for elements €, o (r € Q,) should be added.

2. If the last residue field is not finite, the statements are till true if the system
of representatives B is not too pathological. For example, the system of Teichmuller
representativesis always suitable. The above proof works with the only ammendment:
instead of Prop. 1.4 of [MZ1] we apply the definition of topology directly.
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Corollary. If char(K,,_1) = p, then every element o € K* can be expanded into a
convergent product:

Gexx)  a=te AP [[A+ 6, t] ), 0ERY, 0y, ER,

with {(1, ...,%n) : 0;,,....5, 7 O} beingan admissible set. Any series (* * * ) converges.
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2. p-primary part of the Milnor K-groups and
Galois cohomologies of fields of characteristic p

Oleg Izhboldin

2.0. Introduction

Let F beafield and F be the separable closure of F. Let F& be the maximal
abelian extension of F. Clearly the Galois group G® = Ga(F®/F) is canonically
isomorphic to the quotient of the absolute Galois group G = Gal(F**/F) modulo the
closure of its commutant. By Pontryagin duality, a description of G® is equivalent to
adescription of

Hom cont (G, Z /m) = Homcont (G, Z /m) = HY(F, Z /m).

where m runsover al positive integers. Clearly, it sufficesto consider the case where
m is apower of aprime, say m = p*. The main cohomological tool to compute the
group H(F,Z/m) isapairing

(y Jm: HY(F,Z/m) ® Kn(F)/m — HEY(F)

where the right hand side is a certain conomological group discussed below.
Here K, (F) for afield F isthe nth Milnor K-group K, (F) = KM(F) defined
as
(F)®" )T

where J isthe subgroup generated by the elements of theform a; ® ... ® a,, such that
a; +a; =1 forsome i 7 j. Wedenote by {ajy,...,a,} theclassof a1 ® ... ® ay.
Namely, K,,(F') isthe abelian group defined by the following
generators: symbols {a1,-..,a,} with a1,...,a, € F*
and relations:

{a1,...,a;a}, ...an} = {a1, ..., ai,...ap } +{ag, ..., a;, ...an}

{a1,..,a,} =0 ifa; +a; =1for somei and j withi 7 j.

We write the group law additively.
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20 O. Izhboldin

Consider the following example (definitions of the groupswill be given later).

Example. Let F beafield and let p be a prime integer. Assume that there is an
integer n with the following properties:
(i) thegroup Hg*l(F) isisomorphicto Z/p,
(ii) the pairing
(, )p: HY(F,Z/p) ® Ko(F)/p — H"H(F) = Z/p

is hon-degeneratein a certain sense.
Then the Z/p-linear space H(F,Z/p) is obviously dual to the Z/p-linear space
K,(F)/p. On the other hand, H(F,Z/p) is dual to the Z/p-space G®/(G®)P.
Therefore there is an isomorphism

Yr, Ka(F)/p ~ G/ (GP)P.

It turnsout that this example can be applied to computations of thegroup G /(G)»
for multidimensional local fields. Moreover, it is possible to show that the homomor-
phism Wg, can be naturally extended to a homomorphism ¥ ¢: K,,(F) — G® (the
so called reciprocity map). Since G® isaprofinite group, it follows that the homomor-
phism ¥z: K,(F) — G® factors through the homomorphism K, (F) /DK, (F) —
G® wherethe group DK, (F) consists of all divisible elements:

DK, (F) := N> 1m K, (F).
This observation makes natural the following notation:

Definition (cf. section 6 of Part 1). For afield F andinteger n > 0 set
K, (F) = K,(F)/DK,(F),
where DK, (F) := ﬂlemKn(F).

The group K (F) for ahigher local field F endowed with a certain topology (cf.
section 6 of this part of the volume) is called atopological Milnor K -group K'P(F)
of F.

The example shows that computing the group G® is closely related to computing
the groups K, (F), K:(F), and H*"Y(F). The main purpose of this section is to
explain some basic properties of these groups and discuss several classical conjectures.
Among the problems, we point out the following:

e discuss p-torsion and cotorsion of the groups K ,,(F) and K} (F),
e study an analogue of Satz 90 for the groups K ,,(F) and Kt (F),
e computethegroup H™"(F) intwo “classical” caseswhere F iseither the rational

function field in one variable F = k(t) or the formal power series F = k((t)).

We shall consider in detail the case (so called “non-classical case”) of afield F of
characteristic p and m = p.
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2.1. Definition of H™"(F) and pairing ( , )m

To define the group HZ%"(F) we consider three cases depending on the characteristic
of thefield F.

Case 1l (Classical). Either char (F) =0 or char (F) =p isprimeto m.
In this case we set
Hn+1(F) — Hn+1(F“u )
The Kummer theory gives rise to the well known natural isomorphism F*/F*™ —

HY(F, u,,). Denote theimage of an element a € F* under this isomorphism by (a).
The cup product gives the homomorphism

F*® ®F*_>HH(F,,U' ), a1® - ®ap — (ay, -..,an)
—,_/
n
where (a1, ...,a,) ;= (@)U ---U(a,). Itiswel knownthat theelement (a1, ..., a,)

iszeroif a; +a; =1 for some ¢ 7 j. From the definition of the Milnor K -group we
get the homomorphism

Nm: KM(F)/m — H"(F, u®"), {a1, ...,an} — (a1, -..,a,).
Now, we define the pairing (, )., asthefollowing composite

id ®1m

HYF,Z/m) ® K, (F)/m =" HY(F,Z/m)® H"(F, u8") = HZY(F,u8™).

Case2. char(F)=p#0 and m isapower of p.
To simplify the exposition we start with the case m = p. Set

Hp*Y(F) = coker (QF & QF /dQ7 1)

where
d(adby A -+~ Adby) =daAdby A -~ A dby,
db db,, db db,,
p(ab—l/\ A7) =@ —a )—1/\ /\b—+d£2;‘:1
1 n n

(p = C1—1 where C1 isthe inverse Cartier operator defined in subsection 4.2).
Thepairing (, ), isdefined asfollows:

(s )i F/p(F) x Kn(F)/p — Hy™(F),
(@, {b1, ...,bp}) > a—A --- AN —
1
where F/p(F) isidentified with H(F,Z /p) via Artin-Schreier theory.
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To definethegroup H;’{'l(F) foranarbitrary ¢ > 1 wenotethat thegroup H;}*l(F)
is the quotient group of Q%. In particular, generators of the group H. g*l(F) can be
written in the form adb; A --- A db,,. Clearly, the natural homomorphism

db db
FOF'® - ® F* - HM'Y(F), a®b1®---®bnr—>ab—1/\---/\b—n
—,_/ l n

n

is surjective. Therefore the group H;”l(F) is naturally identified with the quotient
group F F*® ---@ F*/J. Itisnotdifficult to show that the subgroup J isgenerated
by the following elements:

(@P —a)®b61® --- by,

a®a®br® by,

a®b;® -+ by, Where b; = b; forsome i 7 j.

Thisdescription of thegroup H;*!(F) canbeeasily generalizedto define H7:*(F)
for an arbitrary 7 > 1. Namely, we define the group H;@*l(F) as the quotient group
Wi(F) F*® - QF* |J
N—

where W;(F) is the group of Witt vectors of length ¢ and J is the subgroup of
Wi;(F)® F*® --- ® F* generated by the following elements:
(Fw) —w) @1 ® -+ @by,
(a,0,...,00a®by® --- Q by,
w®b® - ®b,, Wwhere b; = b; forsome i 7 j.
Thepairing ( , ),: isdefined asfollows:

(5 Do WiF)/p(Wi(F)) x Kn(F)/p* — HEHF),

(w,{b1, ..., b} ) P WO ® - ® by,
where p = F — id: W;(F) — W;(F) and the group W;(F')/p(W;(F)) is identified
with H 1(F,Z /p%) viaWitt theory. This completes definitionsin Case 2.

Case3. char(F)=p#0 and m =m'p* where m’' > 1 isaninteger primeto p and
> 1.
The groups H7i'(F) and H:''(F) are aready defined (see Cases 1 and 2). We
define the group H**1(F) by the following formula:
HEYF) = Hy(F) @ HEY(F)

Since HY(F,Z/m) ~ HY(F,Z/m") @ HYF,Z/p") and K,(F)/m ~ K,(F)/m' ®
K, (F)/p*, we can define the pairing ( , ), asthe direct sum of the pairings (, )m
and (, )p:. This completes the definition of the group HZ™Y(F) and of the pairing

(? )m-
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Remark 1. Inthecase n = 1 or n = 2 the group H, (F) can be determined as
follows:

HY(F)~ HYF,Z/m) and  H2(F)~ ,Br(F).

Remark 2. Thegroup H™"}(F) isoften denoted by H™*(F,Z/m (n)).

2.2. Thegroup H™Y(F)

In the previous subsection we defined the group H*}(F) and the pairing ( , ), for
an arbitrary m. Now, let m and m' be positive integers such that m' isdivisible by
m. Inthis casethere exists a canonical homomorphism

imme: HEPY(F) — HEY(F).
To define the homomorphism i, ., it sufficesto consider the following two cases:

Casel. Either char (F) =0 or char(F)=p isprimeto m and m'.
This case corresponds to Case 1 in the definition of the group H™'(F) (see sub-
section 2.1). Weidentify the homomorphism 4., ,» with the homomorphism

HYYF, ") — HY(F, u&7)
induced by the natural embedding p.m, C fm -

Case2. m and m' arepowersof p = char (F).

We can assumethat m = p* and m' = p* with 4 < i’. This case corresponds to
Case 2 in the definition of the group HZ(F). Wedefine 4., ,,» asthe homomorphism
induced by

W(F) F*® ...F* > Wy(F) F*® ... F~*,
(az, ...,a2)®01® ---®b, — (0, ...,0,a1, ...,8;) b1 ® --- R by,.

The maps i, m+ (Where m and m' run over all integers such that m' isdivisible
by m) determine the inductive system of the groups.

Definition. For afield F' and aninteger n set
H™(F) =1im  Hy™(F).

Conjecture 1. The natural homomorphism H™*(F) — H™*(F) is injective and the
image of this homomorphism coincides with the m-torsion part of the group H"™*1(F).
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This conjecture follows easily from the Milnor-Bloch—K ato conjecture (see subsec-
tion 4.1) in degree n. In particular, it isproved for n < 2. For fields of characteristic
p we have the following theorem.

Theorem 1. Conjecture 1 is true if char (F) =p and m = p*.

2.3. Computing thegroup H™'(F) for somefields

We start with the following well known result.

Theorem 2 (classical). Let F' be a perfect field. Suppose that char (F') = 0 or char (F)
is prime to m. Then

HEYF (1) =~ HENF) © HR(F)
HYYF@)~HY e [ He (FI/F@).
monicirred f(t)

It is known that we cannot omit the conditionson F and m in the statement of
Theorem 2. To generalize the theorem to the arbitrary case we need the following nota-
tion. For a complete discrete valuation field K and its maximal unramified extension
K\ definethe groups Hy, ,(K) and I?,’;L(K) asfollows:

H? (K)=ker (HL(K) — HL(Kw))  and HZ(K)= H(K)/HL (K).

Notethat for afield K = F((t)) weobviously have K, = F*P((t)). We a so note that
under the hypotheses of Theorem 2 we have H"(K) = Hy, ,(K) and H"(K) = 0.
The following theorem is due to Kato.

Theorem 3 (Kato, [K1, Th. 3§0]). Let K be a complete discrete valuation field with
residue field k. Then
Hp'(K) =~ Hyp(k) © Hy, (k).
In particular, H2'3 (F ((t))) ~ HX™H(F) @ HR(F).
This theorem plays a key role in Kato's approach to class field theory of multidi-
mensional local fields (see section 5 of this part).

To generalizethe second isomorphism of Theorem 2 we need the following notation.
Set

H o (F(t) = ker (HEH(F(t) — HEH(FP(t))) and
HYY(F (@) = HEHE)/ HE 2 (F (1))

If thefield F satisfies the hypotheses of Theorem 2, we have
Hp'So(F () = Hp ™ (F(t)) and Hi ™ (F(¢)) = 0.
In the general case we have the following statement.
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Theorem 4 (Izhboldin, [12, Introduction]).

HYWwFEW) ~HY (e [ By (FIL/f0),

monicirred f(t)

= (F (1) ~ [[ HaM(F(E))

where v runs over all normalized discrete valuations of the field F(¢) and F(t),
denotes the v-completion of F'(t).

2.4. Onthegroup K,(F)

In this subsection we discuss the structure of the torsion and cotorsion in Milnor
K -theory. For simplicity, we consider the case of prime m = p. We start with the
following fundamental theorem concerning the quotient group K,,(F)/p for fields of
characteristic p.

Theorem 5 (Bloch—-K ato—Gabber, [BK, Th. 2.1]). Let F be a field of characteristic p.
Then the differential symbol
d da,
dF:Kn(F)/p%QTI%‘a {al’---’an}”_>%/\"'/\ai
1 n
is injective and its image coincides with the kernel v, (F) of the homomorphism g (for
the definition see Case 2 of 2.1). In other words, the sequence

0 —— K,(F)/p — on — 2 qn/dopt

is exact.

This theorem relates the Milnor K -group modulo p of afield of characteristic p
with a submodule of the differential module whose structure is easier to understand.
The theorem is important for Kato's approach to higher local class field theory. For a
sketch of its proof see subsection A2 in the appendix to this section.

There exists a natural generalization of the above theorem for the quatient groups
K, (F)/p* by using De Rham-Witt complex ([BK, Cor. 2.8]).

Now, we recall well known Tate's conjecture concerning the torsion subgroup of the
Milnor K -groups.

Conjecture 2 (Tate). Let F' be afield and p be a prime integer.
(i) Ifchar(F)#pand {, € F, then ,K,,(F)={(p} - K,—1(F).
(ii) If char (F) =p then ,K,(F) =0.

This conjecture is trivial in the case where n < 1. In the other cases we have the
following theorem.
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Theorem 6. Let F' be afield and n be a positive integer.

(1) Tate’s Conjecture holds if n < 2 (Suslin, [S]),
(2) Part (ii) of Tate’s Conjecture holds for all n (Izhboldin, [11]).

The proof of this theorem is closely related to the proof of Satz 90 for K -groups.
Let usrecall two basic conjectures on this subject.

Conjecture 3 (Satz 90 for K,,). If L/F is a cyclic extension of degree p with the
Galois group G = (o) then the sequence

Kn(L) 5% Ko (L) ~25 K, (F)

is exact.

There is an analogue of the above conjecture for the quotient group K ,,(F)/p. Fix
the following notation till the end of this section:

Definition. For afield F set
kn(F) = K, (F)/p.

Conjecture 4 (Small Satz 90 for k). If L/F is a cyclic extension of degree p with
the Galois group G = (o), then the sequence

ir/L®(1—0) Np/r
kn(F) ® kn(L) ———— kn(L) —— kn(F)

is exact.
The conjectures 2,3 and 4 are not independent:

Lemma (Suslin). Fix a prime integer p and integer n. Then in the category of all
fields (of a given characteristic) we have

(Small Satz 90 for k,,) + (Tate conjecture for ,K,,) <= (Satz 90 for K, ).
Moreover, for a given field F' we have
(Small Satz 90 for k,, ) + (Tate conjecture for ,K,) = (Satz 90 for K,)
and

(Satz 90 for K,,) = (small Satz 90 for k).

Satz 90 conjectures are proved for n < 2 (Merkurev-Sudlin, [MS1]). If p = 2,
n = 3, and char (F) # 2, the conjectures were proved by Merkurev and Suslin [MS]
and Rost. For p = 2 the conjecturesfollow from recent results of Voevodsky. For fields
of characteristic p the conjectures are proved for al n:
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Theorem 7 (Izhboldin, [11]). Let F be a field of characteristic p and L/F be a cyclic
extension of degree p. Then the following sequence is exact:

2.5. On thegroup K!(F)
In this subsection we discuss the same issues, as in the previous subsection, for the
group K:(F).
Definition. Let F beafield and p be aprimeinteger. We set
DEn(F)= (| mEn(F) and DpKn(F)=()p'Kna(F).

m>1 120
We define the group K:(F) asthe quotient group:

K}(F) = K(F)/DKy(F) = Kp(F)/ (| mEn(F).
m>1

Thegroup K} (F) isof special interest for higher classfield theory (see sections 6,
7 and 10). We have the following evident isomorphism (see also 2.0):

KE(F) ~im (Kn(F) = limp, Kn(F)/m) .

The quotient group K (F)/m is obviously isomorphic to the group K,(F)/m. As
for the torsion subgroup of K¢ (F), it isquite natural to state the same questions as for
thegroup K, (F).

Question 1. Arethe Kt-analogue of Tate’s conjecture and Satz 90 Conjecture true for
the group K} (F)?

If weknow the (positive) answer to the corresponding question for thegroup K ,,(F'),
then the previous question is equivalent to the following:

Question 2. Isthegroup DK, (F) divisible?

At first sight this question looks trivial because the group DK ,,(F) consists of all
divisible elements of K, (F). However, the following theorem shows that the group
DK, (F) isnot necessarily adivisible group!

Theorem 8 (Izhboldin, [13]). For every n > 2 and prime p there is a field F such
that cher (F) Zp, ¢, € F and
(1) The group DK, (F) is notdivisible, and the group D,K>(F) is not p-divisible,
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(2) The K‘*-analogue of Tate’s conjecture is false for K. :
pEG(F) 7 {G} - Kpy_a(F).
(3) The K*-analogue of Hilbert 90 conjecture is false for group K (F).

Remark 1. Thefield F satisfying the conditions of Theorem 8 can be constructed as
the function field of some infinite dimensional variety over any field of characteristic
zero whose group of roots of unity isfinite.

Quiteadifferent constructionfor irregular primenumbers p and F' = Q(u,,) follows
from works of G. Banaszak [B].

Remark 2. If F isafieldof characteristic p thenthegroups D, K, (F) and DK, (F)
are p-divisible. This easily implies that ,K!(F) = 0. Moreover, Satz 90 theorem
holdsfor K} inthe case of cyclic p-extensions.

Remark 3. If F isamultidimensional local fieldsthenthegroup K (F) isstudiedin
section 6 of this volume. In particular, Fesenko (see subsections 6.3-6.8 of section 6)
gives positive answers to Questions 1 and 2 for multidimensional local fields.
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A. Appendix to Section 2

Masato Kurihara and lvan Fesenko

This appendix aims to provide more details on several nations introduced in section 2,
as well as to discuss some basic facts on differentials and to provide a sketch of the
proof of Bloch—Kato—Gabber’s theorem. The work on it was completed after sudden
death of Oleg Izhboldin, the author of section 2.

Al. Definitions and properties of several basic notions
(by M. Kurihara)

Before we proceed to our main topics, we collect here the definitions and properties of
several basic notions.

Al.1. Differential modules.

Let A and B becommutativeringssuchthat B isan A-algebra. We define Q}B/A
to be the B-module of regular differentials over A. By definition, this B-module
9}3 /A is a unique B-module which has the following property. For a B-module
M we denote by Dery(B, M) the set of all A-derivations (an A-homomorphism
¢:B — M iscadled an A-derivation if p(zy) = zp(y) + ye(x) and p(z) = 0 for
any z € A). Then, ¢ induces @:Q}B/A — M (¢ = @od where d isthe canonical
derivation d: B — Q%/A), and ¢ — @ yieldsanisomorphism

Der (B, M) = Homp(QF, 4, M).

In other words, Q1, s isthe B-module defined by the following
generators. dz forany z € B
and relations:

d(zy) = zdy + ydz

de=0 foranyze A.
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If A =27, wesimply denote Q}B/Z by Q.
When we consider Q}l for alocal ring A, thefollowing lemmais very useful.

Lemma. If A isalocal ring, we have a surjective homomorphism

A®ZA*—>Q]A

db
a®b»—>adlogb=a€.

The kernel of this map is generated by elements of the form

K I
D (@i ®a;) = > (b ®b;)
i=1 i=1

for a;, b; € A* suchthat =¥ a; = Xt_;b;.

Proof. First, we show the surjectivity. It isenough to show that zdy isin theimage of
theabovemap for z, y € A. If y isin A*, zdy istheimageof zy ® y. If y isnot
in A*, y isinthemaximal ideal of A, and 1+y isin A*. Since zdy = zd(1 +vy),
zdy istheimageof z(1+y) ® (1+v).

Let J bethe subgroup of A ® A* generated by the elements

K 1
D ai®a) = > (b ®b;)
i=1 i=1

for a;, b € A* suchthat =% a; = Z!_1b;. Put M = (A ®; A*)/J. Sinceitisclear
that J isinthe kernel of the map in thelemma, a ® b — adlogb induces a surjective
homomorphism M — QL , whoseinjectivity we have to show.

Weregard A ® A* asan A-modulevia a(z ® y) = az ® y. We will show that J
isasub A-moduleof A ® A*. To seethis, it is enough to show

k l
D (e ®a;) — > (zbi@b;) € J

i=1 =1
forany z € A. If z ¢ A*, =z canbewrittenas z =y + 2 forsome y, z € A*, sowe
may assumethat z € A*. Then,

k l
Z(xai ® ai) — Z(wbl ® bl)
=1 =1

k !
= Z(azai ® za; — ra; @ x) — Z(azbi ® zb; — zb; ® z)
=1 =1

k l
=) (za; @ wa;) - > _(zb; @ zb;) € J.

=1 =1
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Thus, J isan A-module,and M = (A ® A*)/J isasoan A-module.
In order to show the bijectivity of M — QL we construct the inverse map
QYL — M. By definition of the differential module (see the property after the defini-
tion), it is enough to check that the map
p:A— M z—zz (fze A)
z— (l+z)® (L+z) (fzg A%)
isa Z-derivation. So, it isenough to check ¢(zy) = zp(y) + yp(z). Wewill show this
in the case where both z and y arein the maximal ideal of A. The remaining cases
are easier, and are left to the reader. By definition, z¢(y) + ye(x) isthe class of
2(1+y) ® (1+y) +y(1+2) ® (1+2)
=(1+z)l+y)@(1+y) - (1+y)®(1+y)
t(1+y)Q+z)@(1+z) - (1+z)® (1+x)
=(1+z)(1+y)@(Q+z)(1+y) - (1+2)®@ (1+2)
—(1+y) @ (1+y).

But theclass of thiselement in M isthesameastheclassof (1+zy) ® (1+zy). Thus,
¢ isaderivation. This completes the proof of the lemma. O

By this lemma, we can regard QY asagroup defined by the following
generators: symbols [a,b} for a € A and b € A*
and relations:

[al +ap, b} = [a'la b} + [0,2, b}
la,b1b2} = [a, b1} +[a2, b2}

k 1 k l
E[ai,ai} = E[bz,bz} wherea;’s and bJSSGIISfy Zai = Zbl

i=1 i=1 =1 =1
Al.2. n-thdifferential forms.

Let A and B be commutative rings such that B isan A-algebra. For a positive
integer n > 0, we define Q% , by

B/A = /\Q}z/A-
B

Then, d naturally defines an A-homomorphism d: Q% , — Q’gﬁl, and we have a

complex
-1 1
. —> Q%/A — QF /4 —>Q§§+/A — ...

which we call the de Rham complex.
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For a commutative ring A, which we regard as a Z-module, we simply write Q7%
for QY7 Fora local ring A, by Lemma Al.1, we have Q% = A\ ((4 ® A4*)/J),
where J isthe group asin the proof of LemmaA1.1. Therefore we obtain

Lemma. If A is alocal ring, we have a surjective homomorphism
AR (A%)®" — Q%7
db db,
ARbL® .. @by > Gt At A
bl bn
The kernel of this map is generated by elements of the form

k l
Z(ai Ra Vb ®...0b,_1) — Z(bi Rb; b ® ... by_1)
=1 =1
(where 2% a; = =l_;b;)
and
a®b;®..®b, with b; =b; for some i 7 j.

A1.3. Galois cohomology of Z/p™(r) for afield of characteristic p > 0.

Let F beafield of characteristic p > 0. We denoteby FS%® the separable closure
of F' inanalgebraic closureof F'.

We consider Galois cohomology groups H%(F, —) := H4(Ga(F>P/F),—). Foran
integer r > 0, wedefine

H(F,Z/p(r)) = H*"(Ga(F*P | F), Qpsp o)

where Qs og is the logarithmic part of Q%sp, Namely the subgroup generated by
dlogai A ... Adloga, fordl a; € (F5P)*.
We have an exact sequence (cf. [I, p.579])

F-1 -
0 — Qo jog —> Qs — Qs /d Qs — 0

where F isthe map

dby db, dby db,
Fla— A ... A\ —=adP— A.. A .
(a by br) s b,

Since Qs isan F-vector space, we have
H"(F, Q%) =0
forany n > 0 and » > 0. Hence, we also have
H"™(F, Qs /dQp75) = 0
for n > 0. Taking the cohomology of the above exact sequence, we obtain
H"™(F, Qs 1og) = 0
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for any n > 2. Further, we have an isomorphism
HY(F, Qpen o) = cOker(Qf T3 QF /dQ )
and
HO(F, Qipsp 1og) = ker(Qf —— Qp /d25 ).
Lemma. For afield F' of characteristic p > 0 and n > 0, we have
H™Y(F,Z./p (n)) = coker(Qp £=1 Q. /dQn1)
and
H™F,Z/p(n)) = ker(Qp == Q. /dQ Y.

Furthermore, H™(F,Z/p (n — 1)) is isomorphic to the group which has the following
generators: symbols [a, by, ...,b,_1} Where a € F, and b1,...,b,_1 € F*
and relations:

[al +ap,by, ..., bn—l} = [al, by, ..., bn—l} + [az, b1, ..., bn—l}

[a,by, ..., bibg, ---bn—l} =la, b, ..., b;, ---bn—l} +[a, by, ...y bg, ---bn—l}
la,a,bo,....;0,_1} =0

[ap —a, bl, bz, ceeny bn—l} =0

[a,b1,....;0,_1} =0 where b; = b; for some i 7 j.

Proof. Thefirst half of the lemma follows from the computation of H™ (F, Qs |4)
above and the definition of H(F,Z/p(r)). Using

H™F,7/p(n— 1)) = coker(Q% 1 E=5 on-1/4Qn-2)

and LemmaA1.2 we obtain the explicit description of H™(F,Z/p (n — 1)). O

We sometimes use the notation H,}(F) which is defined by
Hp(F)=H"(F,Z/p(n—1)).

Moreover, for any i > 1, we can define Z/p®(r) by using the de Rham-Witt
complexes instead of the de Rham complex. For a positive integer 7 > 0, following
lllusie[1], define HY(F,Z/p(r)) by

HY(F, Z[pX(r)) = HI™"(F, WiQpso jog)

where W;Q%sp |4 1S the logarithmic part of W; Q.
Though we do not give here the proof, we have the following explicit description of
H™(F,Z/p* (n — 1)) using the same method asin the case of i = 1.
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Lemma. For a field F of characteristic p > 0 let W;(F) denote the ring of Witt
vectors of length ¢, and let F: W;(F) — W;(F) denote the Frobenius endomorphism.
Forany n > 0 and i > 0, H™(F,Z/p*(n — 1)) is isomorphic to the group which has
the following

generators: symbols [a, b1, ...,b,—1} Where a € W;(F'), and b4,...,b,_1 € F*

and relations:

la1 +az,b1,...;bp_1} = [a1,b1,...,b,_1} +[a2, b1, ..., bp_1}
[a,b1,...., bjb;-, wbp_1} =[a,b1,...., b;, wibp_1} +[a,b1,...., b;-, wbp_1}
[@o...,0,a,0,...,0),a,bs,....b,_1} =0
[F(a) — a,b1,b2, ..., bn—l} =0
[a,b1,....,b,_1} =0 where b; = by, for some j 7 k.
We sometimes use the notation
H}.(F) = H"(F,Z/p" (n — 1)).

A2. Bloch-Kato—-Gabber’'stheorem (by |. Fesenko)

For afield k of characteristic p denote
Vn = v (k) = H"(k, Z/p (n)) = ker(p: Qf — QR /dQp™Y),

dby dby, dby db,, 1
=F-L(a—AN---N— P_a) = A - A 24Pt
2 (a by ™ ) = (a® — a) ™ b n
Clearly, the image of the differential symbol
d da,,
di: K (k)/p — Q, {al,...,an}HﬂA.../\L
al an

isinside v,(k). We shall sketch the proof of Bloch—Kato—Gabber's theorem which
states that dy, isan isomorphism between K,,(k)/p and v, (k).

A2.1. Surjectivity of thedifferential symbol dy: K, (k)/p — vy (k).
It seemsimpossible to suggest a shorter proof than original Kato's proof in [K, §1].
We can argue by induction on n; the case of n = 1 isobvious, so assume n > 1.

Definitions—Properties.
(1) Let {b;}icr bea p-baseof k (I isanorderedset). Let S bethe set of all strictly
increasing maps
s:{1,...,n} — I
For two maps s,¢: {1, ...,n} — I write s < t if s(z) < ¢(z) for al 7 and
s(7) # t(z) for some z.
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(2) Denote dlog a := a~1da. Put
ws =dlog by A--- Adlog br).

Then {w, : s € S} isabasisof QF over k.
(3) Foramap 0:I — {0,1, ...,p — 1} suchthat 6(z) = O for amost all 7 set

Then {bgw;} isabasisof QF over kP.

(4) Denote by Q7 (6) the kP-vector space generated by bows,s € S. Then Q7(0) N
dQZ‘l = 0. For an extension | of k, suchthat £k O [P, denote by Q?/k the
module of relative differentials. Let {b;};c; be a p-base of | over k. Define

Q?/k(t?) foramap 6:1 — {0,1, ...,p — 1} similarly to the previous definition.
The cohomology group of the complex
QpH0) — Q7Y (0) — Q3H0)
iszeroif 6 0 andis Q;‘/k(O) if 6=0.
Weshall useCartier’s theorem (which can bemoreor lesseasily proved by induction
on |l : k|): the sequence
0— I"/k™ — Qi — Q. /dl

is exact, where the second map isdefinedas b mod k£* — dlog b and the third mapis
themap adlog b — (a? — a)dlog b +dl.

Proposition. Let Q7 (<s) bethe k-subspace of Qf generatedbyall w, for s > ¢ € S.
Let k2~1 =k and let a be a non-zero element of k. Let I be finite. Suppose that

(a? — a)ws € QY (<s) + dQZ_l.
Then there are v € QF(<s) and
z; € kP({b; 17 <s(@)}) for 1<i<n
such that
aws =v+dlogzi A--- Adlog z,.

Proof of the surjectivity of the differential symbol. First, suppose that k?~1 = k and
I isfinite. Let S = {s1,...,8m} With 537 > -+ > s,,. Let s0:{1,...,n} = T
be a map such that so > s1. Denote by A the subgroup of Q7 generated by
dlogzi A---ANdlog z,. Then A C v,. By inductionon 0 < j < m using the
proposition it is straightforward to show that v,, C A + Q}(<s;), and hence v, = A.

To treat the general case put c(k) = coker(k,, (k) — v,(k)). Sinceevery field isthe

direct limit of finitely generated fields and the functor ¢ commutes with direct limits, it
issufficient to show that c(k) = O for afinitely generated field k. In particular, we may
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assumethat k hasafinite p-base. For afiniteextension k&’ of k thereisacommutative
diagram
kn(k') —— va(k')

Nk//kl Trk,/kl

Hencethecomposite c(k) — c(k') M c(k) ismultiplicationby |k’ : k|. Therefore,
if |k': k| isprimeto p then c(k) — (k") isinjective.

Now pass from k to a field { which is the compositum of al I; where [;41 =
Li(*Y1;_1), lo=k. Then I =1P~1. Since I/k isseparable, I hasafinite p-baseand
by the first paragraph of this proof ¢(I) = 0. The degree of every finite subextensionin
[/k isprimeto p, and by the second paragraph of this proof we conclude ¢(k) = 0, as
required. 0

Proof of Proposition. First we prove the following lemmawhich will help uslater for
fields satisfying k?~1 = k to choose a specific p-base of k.

Lemma. Let I be a purely inseparable extension of & of degree p and let k?—1 = k.
Let f:1 — k be a k-linear map. Then there is a non-zero ¢ € 1 such that f(c?) =0
forall 1<i<p—- 1L

Proof of Lemma. The I-spaceof k-linear mapsfrom [ to k isone-dimensional, hence
f = ag for some a € I, where g:1 = k(b) — Qll/k/dl Sk, «+— xdlog b mod di for
every ¢ € l. Let a = gdlog b generate the one-dimensional space Qll/k/dl over k.
Thenthereis h € k suchthat g?dlog b — ha € dl. Let z € k besuchthat 2?1 =h,
Then ((g/2)? —g/z)dlog b € dl and by Cartier’stheorem we deducethat thereis w € !
suchthat (g/z)dlog b =dlog w. Hence a = zdlog w and Qll/k =dlUkdlogl.

If f(1) =adlog b 70, then f(1) = gdlog c with g € k,c € I* andhence f(c!) =0
foradl 1<ig<p—1. O

Now for s: {1, ...,n} — I asin the statement of the Proposition denote
ko =kP({b; 11 <s(1)}), k1=kP({b;:1<s(1)}), ko=kP({b;:i< s(n)}).

Let |k : k1| =p".

Let a =), zpbg. Assumethat a ¢ k. Thenlet 6, besuchthat j > s(n) isthe
maximal index for which 6(j) # 0 and z¢ #O.

Q7 (9)-projection of (a? — a)w, isequal to —azhbyw, € QP(<s)(6) +dQr ().
Log differentiating, we get

—z5 (D 0@i)dlog b)by A w, € dQ(<s)(0)
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which contradicts —z56(j)bed 10g b; A w, & dQR(<s)(#). Thus, a € k.
Let m(1) < --- < m(r — n) be integers such that the union of m’sand s’sis
equa to [s(1), s(n)] N Z. Apply the Lemmato the linear map

Fiki— Qp /dQL L S ko, b bawg A d10g by A -+ - A d10g by ().
Then thereisanon-zero ¢ € k1 such that

ctaws A d10g by A -+ A d10g bp(r_n) € dQ,’;z_/lko for1<i<p-1.

Hence sz/ko(O)—projection of ctaws A d10g by A -+ A d10g bpy(r—ny fOr 1< i <
p — 1 iszero.

If ¢ € ko then ng/ko(O)—projection of aws A dlog b1y A -+ AdlOg byy(r—p) IS
zero. Dueto the definition of kg we get

/3 = (ap — a)ws A dIOg bm(l) Ao A dIOg bm(r—n) € dQ;Z_/];CO
Then Qp ;. (0)-projection of 3 iszero, and sois Q. (0)-projection of

a’ws A d10g bp1) A -+ - A d10Q by (r—n),

acontradiction. Thus, ¢ ¢ ko.
From dko C 3, ) kPdb; we deduce dko A Q™1 C Qf(<s). Since ko(c) =

ko(bs(1)), thereare a; € ko suchthat byq) = Ef:_ol a;ct. Then
adlog by A--- Adlog bsny = a'dlog by - - - Adlog by, Adlog ¢ mod QF(<s).
Define s: {1, ...,n — 1} — I by s'(j) =s(j +1). Then
aws; =vy +ad'wgy Adlog e with v; € QR (<s)
and cla'wg A dlog ¢ A d10g by A -+ A dl0g b(r_n) € dQ,’;z_/lkO. The set
I'={c} U{b;:5(1) <i<s(n)}

isa p-base of kp/kg. Since cta’ for 1 < i < p — 1 have zero k(0)-projection with
respect to I', there are ag € ko, aj € ®ez0k1by With by = [ 1)cicsm) '@ such
that o’ = a + af.

The image of aw; A d10g by A+« A d10g by,(r—rn) With respect to the Artin—
Schreier map belongsto Q} ,, and sois

(@' —a)dlog e A wg A d10g b1y A -+ + A d10g by (r—n)
which isthe image of
a'dlog c Awg A dlog by A+ A dl0g byyr—n).

Then a'” — af, as ko(0)-projection of a'” — a’, iszero. So o' — a’” = d.

Notethat d(ajwy) A dlog ¢ € dQf ;. (<s) = ng/—klo(<s) Adlog c.
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Hence d(a}w,) € dg;;/—,jo (<s)+dlog c A dg;;/—,fo. Therefore d(ajws) € dgg/—kll(<s)
and ajwy = a+ 8 with a € QZ/_kll(<s), B € ker(d: QZ/_kll — QZ/kl)'

Since k(0)-projection of aj is zero, QZ/‘kll(O)-projection of ajw, iszero. Then
we deduce that B(0) = >, g, < rhwy, S0 djwy = a +B(0) + (B — B(0)). Then
B—B(0) € ker(d: Q;;/—,jl — Q. ), 50 B—B(0) € dgg/—,fl. Hence (o' —a'P)wy = ajwsr
belongs to QZ/‘kll(< s') +dQr~2. By induction on n, there are v ¢ Q' (<),
x; € kP{b; : j < s(3)} suchthat a'wy = v' +dlogzy A--- Adlog z,. Thus,
aws =vy+dlogcAv' +dlogeAdlogzoA--- ANdlog z,. O

A2.2. Injectivity of the differential symbol.

We can assume that k is afinitely generated field over F,,. Then thereisafinitely
generated algebraover F, withalocal ring being adiscrete valuation ring O such that
O/M isisomorphic to & and the field of fractions E of O is purely transcendental
over [, .

Using standard resultson K, (I(t)) and Qi) onecan show that the injectivity of d;
impliesthe injectivity of d;;). Since dr, isinjective, sois dg.

Define k,(0) = ker(k,(E) — k,(k)). Then k,(O) is generated by symbols and
there is ahomomorphism

kn(0) — kn(k), {a1,...,an} — {@,...,an},

where @ istheresidueof a. Let k,(O, M) beitskerndl.
Define v, (0) = ker(Q3 — QB /dQ%™Y), v, (0, M) = ker(v,(9) — v, (k). There
isahomomorphism k,,(0) — v,(0) such that

{a1, ...,an} —dlog ai A --- Adlog a,.
So thereis a commutative diagram

0 — k(O M) —— kp(O) ——— kp(k) —— O

| | o |
0 —— v, (O M) —— 1, (0) —— v, (k)

Similarly to A2.1 one can show that ¢ is surjective [BK, Prop. 2.4]. Thus, d; is
injective. 0
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4. Cohomological symboal
for hensdlian discrete valuation fields
of mixed characteristic

Jinya Nakamura

4.1. Cohomological symbol map

Let K beafield. If m isprimetothecharacteristic of K, there existsan isomorphism
hix: K*/m — HYK, pim)
supplied by Kummer theory. Taking the cup product we get
(K* /m)? — HY(K,7./m(q))
and this factors through (by [T])
he.x: Ky(K)/m — HY(K,Z/m(q)).
Thisis called the cohomological symbol or norm residue homomorphism.

Milnor-Bloch—-Kato Conjecture. For every field K and every positive integer m
which is prime to the characteristic of K the homomorphism h, & is an isomorphism.

This conjectureis shown to be truein the following cases:
(i) K isanalgebraic number field or afunction field of one variable over afinitefield
and g =2, by Tate [T].
(i) Arbitrary K and ¢ = 2, by Merkur’ev and Suslin [MS1].
(iii) ¢ = 3 and m is a power of 2, by Rost [R], independently by Merkur’ ev and
Sudin [MS2].
(iv) K isahenselian discrete valuation field of mixed characteristic (0,p) and m isa
power of p, by Bloch and Kato [BK].
(v) (K, q)arbitrary and m isapower of 2, by Voevodsky [V].
For higher dimensional local fields theory Bloch—Kato's theorem is very important
and the aim of this text isto review its proof.
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Theorem (Bloch—Kato). Let K be a henselian discrete valuation fields of mixed char-
acteristic (0, p) (i.e., the characteristic of K is zero and that of the residue field of K
is p > 0), then

he,x: Kqo(K)/p" — HY(K,Z/p"(q))

is an isomorphism for all n.

Till the end of this section let K be asabove, k = kx theresiduefield of K.

4.2. Filtration on K4(K)

Fix aprime element = of K.

Definition.

K,(K), m =0
{1+ 0B} - K,o(K), m>0.
Put grp, Ko(K) = Un Kg(K)/Up+1K4(K).

Un K (K) = {

Then we get an isomorphism by [FV, Ch. IX sect. 2]
K, (k) ® K,_1(k) 2% groK,(K)

po({z1, -y zedy {yn, o yg-1}) = {71, - 2 +{dL, - Ygm1, )

where z isalifting of . Thismap po dependson the choice of aprime element « of
K.
For m > 1 thereisasurjection

Qg QI2 £y g K, (K)
defined by

d dy,_ -~ —
<wﬂ/\---/\ Ya 1,0)»—>{1+7rm:c,y1,...,yq_1},
Y1 Ygq-1

(O,m@ Ao A %> — {1+ 7™Z, 91, ..., Yg_2, T}
U1 Yq-2
Definition.
kq(K) = Ko(K)/p, he(K) = HY (K, Z /p(q)),
Umkq(K) = im(Uy, K, (K)) inky(K), Unh¥(K) = hq,x (Unkq(K)),
Ormh1(K) = UpnhY(K)/Up+1h?(K).
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—_c! - -
Proposition. Denote v,(k) = ker(Qj 1-c, Q /in_l) where C~1 is the inverse

Cartier operator:

d d d d
mﬂ/\.../\ﬂ,_)wpﬂ/\.../\ﬂ‘

Y1 Yq Y1 Yq
Put e’ =pe/(p — 1), where e = vk (p).

(i) There exist isomorphisms v,(k) — kq(k) for any g¢; and the composite map
denoted by po

po: vg(k) ® vy_1(k) = kg(k) ® ky—1(k) = Orokq(K)

is also an isomorphism.
(i) f 1< m <€ and ptm, then p,, induces a surjection

P Qz_l = Ormkq(K).
(iii) If 1< m < €' and p | m, then p,, factors through
P QI /787 9 Q127972 1 grky(K)

and pr, is a surjection. Here we denote Z¢ = Z,Q¢ = ker(d: Q2 — QI
(iv) If m=¢' € Z, then p,, factors through
P QU (1+a0)Zi 0 Q172 /(1+aC) 2872 = groky(K)

and pe is a surjection.
Here a is the residue class of pw—¢, and C is the Cartier operator

d d d d
W e dy dy

Y1 Yq Y1 Yq
(v) If m> €, then gry,k,(K) =0.

, dQTt 0.

Proof. (i) follows from Bloch—Gabber—Kato's theorem (subsection 2.4). The other
claims follow from calculations of symbols. 0

Definition. Denote the left hand side in the definition of p,, by G% . We denote

the composite map G4, 27 gr,k,(K) Pak, o hI(K) by pm: the latter is also
surjective.
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4.3

In this and next section we outline the proof of Bloch—Kato's theorem.

4.3.1. Norm argument.

We may assume ¢, € K to prove Bloch—-Kato's theorem.
Indeed, |K(¢p) : K| isadivisor of p — 1 and therefore is prime to p. There exists
a norm homomorphism Np x: K,(L) — K4 (K) (see [BT, Sect. 5]) such that the
following diagram is commutative:

K(K) /o' ——  KL)p"  —E5 K (K)/p"

lhq,K lhq,L lhq’K

HY(K,Z/p"(@) —— HYL,Z/p"@) —— HUK,Z/p"(q))
where the left horizontal arrow of the top row is the natural map, and res (resp. cor)
is the restriction (resp. the corestriction). The top row and the bottom row are both
multiplication by |L : K|, thusthey areisomorphisms. Hence the bijectivity of h, x
follows from the bijectivity of A, ; and we may assume ¢, € K.
4.3.2. Tateé' sargument.
To prove Bloch—Kato's theorem we may assumethat n = 1.
Indeed, consider the cohomological long exact sequence
- é n— n
- = H XK, Z/p(g)) = HUK,Z/p" Hg)) & HU(K,Z/p"(q) = -

which comes from the Bockstein sequence

0— Z/p" 15 7/p" mod 7, Z]p — 0.

We may assume ¢, € K, so H*Y(K,Z/p(q)) ~ hqy—1(K) and the following diagram
iscommutative (cf. [T, §2]):

{*:¢p} n— n d
ki 1(K) —2 K(K) /vt P KK/t s ky(K)

lhqfl,x hq,Kl hq,Kl hq,KJ/
LK) —22 HY(K,Z/p"Yq) —2— HUK,Z/p™q) =22 he(K).

Thetop row is exact except at K,(K)/p"~* and the bottom row isexact. By induction
on n, we have only to show the bijectivity of hy x: kq(K) — hI(K) forall ¢ inorder
to prove Bloch—Kato's theorem.
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4.4. Bloch—-Kato's Theorem

We review the proof of Bloch—Kato's theorem in the following four steps.
| P Ormkqe(K) — grp,h9(K) isinjectivefor 1 < m < e'.

I po: Oroke(K) — aroh?(K) isinjective.

[ hY(K) =Uphl(K) if k isseparably closed.

IV  h1(K)=Uphl(K) for general k.

441 Step .

Injectivity of p,,, ispreserved by taking inductivelimit of k. Thuswe may assume
k is finitely generated over F,, of transcendence degree r < oo. We also assume
¢p € K. Thenwe get

greh™(K) = U h™(K) 7 0.

For instance, if » = 0, then K isalocal field and U, h?(K) = , Br(K) = Z/p. If
r > 1, one can use a cohomological residue to reduce to the case of » = 0. For more
details see [K1, Sect. 1.4] and [K2, Sect. 3].

For 1 < m < €', consider the following diagram:

Ge, x G2 IR g ha(K) @ Orer_mhTO(K)
‘pml cup productl
Qr/dyt o gz P gr. h™2(K)

where ¢, is, if ptm, induced by the wedge product Q,Z_l X QZ”‘" — Qr/dQr L,
andif p | m,
-1 -2 1- _
ot ot ot o
Zq—l Zq—Z X Zr+1—q Zr—4
1 1 1 1

(1, 22,y1,Y2) — 21 A dy2 + 22 A dya,

m -1
fm, Q2 /dQE

and thefirst horizontal arrow of the bottom row is the projection
Q1/dQIt — QF /(1+aC)Z] = G2

since Q7*1 =0 and QY C (1+aC)Z]. Thediagramis commutative, QF /dQr~1
is a one-dimensional kP-vector space and ¢, is a perfect pairing, the arrows in the
bottom row are both surjectiveand gr.-h"*3(K) 7 0, thus we get the injectivity of B, .
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44.2. Step 1.

Let K' be a henselian discrete valuation field such that K C K', e(K'|K) =1
and kx = k(t) where t isan indeterminate. Consider

Ul+nt

grohy(K) =5 grh?H(K).
Theright hand sideis equal to QZ:(t) by (1). Let 4 bethe composite

Vq(k) 57 Vq_]_(k) E) grohq(K) M grlhq+l(K’) ~ QZ(t)
Then
¢<ﬂ/\ ...Aﬁ,o> N7
1 Zq 1 zq
d dzq- d dz,_
¢<o,ﬂ/\ N 1) .7
$1 qu_l 531 :Eq—l

Since t istranscendental over k, i isaninjection and hence pg isalso aninjection.

443. Step 1.
Denote sh?(K) = Upgh?(K) (theletter s means the symbolic part) and put

O(K) = hi(K)/shi(K).

Assume g > 2. The purpose of thisstepisto show C(K) =0. Let K beahenselian
discrete valuation field with algebraically closed residue field k£ suchthat K C K,
k C kz and the valuation of K isthe induced valuation from K. By Lang[L], K
isa C-field in the terminology of [S]. This means that the cohomological dimension
of K isone, hence C(K) = 0. If therestriction C(K) — C(K) isinjective then we
get C(K) = 0. To prove this, we only have to show the injectivity of the restriction
C(K) — C(L) forany L = K(b'/?) suchthat b € O% and b ¢ k.
We need the following lemmas.

Lemma 1. Let K and L be as above. Let G = Ga(L/K) and let sh?(L)¢ (resp.
shi(L)g ) be G-invariants (resp. G-coinvariants ). Then
() shy(K) > shy(L)¢ =% she(K) is exact.

cor

(i) shi(K) > shi(L)e =% shi(K) is exact.

Proof. A nontrivia calculation with symbols, for more details see ([BK, Prop. 5.4].

Lemma2. Let K and L be as above. The following conditions are equivalent:
cor

M rTYK) B YD) 5 h-Y(K) is exact.
(i) RIL(K) 2 ha(K) IS he(L) is exact.
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Proof. Thisis a property of the cup product of Galois cohomologiesfor L/K. For
more details see [BK, Lemma 3.2]. 0

By induction on ¢ we assume sh? 1K) = h?~1(K). Consider the following
diagram with exact rows:

h*~H(K)
Ub
0 —— sh{(K) —— h{(K) —— CK) —— 0

r%l res reﬁl

0 —— shi(L)¥ —— hI(L)¢ —— C@)°

cor l cor

0 —— shi(K) —— hi(K).

By Lemma 1 (i) the left column is exact. Furthermore, due to the exactness of the
sequence of Lemma 1 (ii) and the inductional assumption we have an exact sequence

R EK) B YD) — hTYK).
So by Lemma 2
h-YK) 25 hI(K) = hI(L)

is exact. Thus, the upper half of the middle columnis exact. Note that the lower half of
the middle columnis at |east a complex because the composite map cor o res isequal to
multiplication by |L : K| = p. Chasing the diagram, one can deduce that all elements
of thekernel of C(K) — C(L)¢ comefrom h?~1(K) of the top group of the middle
column. Now h?~1(K) = sh?~1(K), and theimage of

sha= LK) 2% he(K)

is also included in the symbolic part sh9(K) in h9(K). Hence C(K) — C(L)€ isan
injection. The claimis proved.

4.44. Step I V.
We use the Hochschild—Serre spectral sequence
H" (G, h(Ky)) = hT"(K).
For any ¢,
Qlep ~ Qf @) k>, Z1Q} ep =~ Z1Q Qpo (K5P)P.
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Thus, grh?(Ku) == grmh4(K) Qe (KXP)? for 1 < m < €'. Thisisadirect sum of
copiesof k5P, hence we have

H°(Gy, Urh?(Kw)) = U1h*(K) /Ue b (K),

H" (G, U1h?(Ky)) =0

for r > 1 because H" (G, k) =0 for » > 1. Furthermore, taking cohomologies of
the following two exact sequences

0 — U1h%(Kyr) — hi(Ky) — vlep @ vim — O,

l_ —1
0 — vlep = Z1Q% —S Q1 — 0,

we have
HO%Gy, h(Kw)) ~ sh(K) /U hU(K) ~ kU(K)/Ue kU(K),
HY(Gy, h"(Kur)) = HY(Gr, visn ® vis)
~ (Qf/(1- C)Z1Q)) @ (Qf /(1 - )21 ),
H"(Gr,h"(Kur)) =0

for » > 2, sincethe cohomological p-dimension of G, islessthan or equal to one (cf.
[S, 11-2.2]). By the above spectral sequence, we have the following exact sequence

0— (@ /A-0)zi He @ ?/(1-0)zi ) — hU(K)
— kg(K)/Uerkq(K) — O.
Multiplication by the residue class of (1 — (;p)P/vre' gives an isomorphism
@ Ya-ozi He @ /- 0zt
— (@ /(A +a0)Zf ) @ (QF /(1 +aC) 2] %) = grerky(K),
hence we get h9(K) ~ k,(K).
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5. Kato's higher local class field theory

Masato Kurihara

5.0. Introduction

We first recall the classical local classfield theory. Let K be afinite extension of Q,
or F,((X)). Themain theorem of local class field theory consists of the isomorphism
theorem and existence theorem. In this section we consider the isomorphism theorem.
An outline of one of the proofsisasfollows. First, for the Brauer group Br(K), an
isomorphism
inv: Br(K) = Q/Z

is established; it mainly follows from an isomorphism

HYF,Q/Z) > Q/Z

where F istheresiduefield of K.
Secondly, we denoteby X x = Homeont(Gx, Q/Z) the group of continuous homo-
morphismsfrom G = Gal(K /K) to Q/Z. We consider apairing

K*x Xx — Q/Z

(a,x) — inv(x, a)

where (x,a) is the cyclic algebra associated with x and a. This pairing induces a
homomorphism

Yy K* — Ga(K®/K) = Hom(X x, Q/Z)

which is called the reciprocity map.
Thirdly, for afinite abelian extension L/ K, we have adiagram

L* —*, Ga(L®/L)

dl !

K* —%, Ga(K®/K)
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54 M. Kurihara

which is commutative by the definition of the reciprocity maps. Here, N isthe norm
map and the right vertical map is the canonical map. Thisinduces a homomorphism

¥,k K*/NL* — Gal(L/K).

The isomorphism theorem tells us that the above map is bijective.
To show the bijectivity of ¥, %, we can reduce to the case where |L : K| isa
prime £. Inthiscase, the bijectivity followsimmediately from afamous exact sequence

r* Yk 2% Br(k) & Br(L)

for a cyclic extension L/K (where Uy is the cup product with x, and res is the
restriction map).

Inthissectionwe sketch aproof of theisomorphismtheorem for ahigher dimensional
local field as an analogue of the above argument. For the existence theorem see the
paper by Kato in this volume and subsection 10.5.

5.1. Definition of HY(k)

Inthissubsection, for any field & and ¢ > 0, werecall the definition of the cohomology
group H4(k) ([K2], seeasosubsections2.1and 2.2 and A1intheappendix to section 2).
If char (k) =0, wedefine H4(k) asaGalois cohomology group

H(k) = H(k,Q/Z(q — 1))
where (g — 1) isthe (g — 1) st Tate twist.
If char (k) =p > 0, then following Illusie [I] we define

H(k, Z/p"(q — 1)) = H(k, W Qe 100)-

We can explicitly describe H?(k,Z/p™(q — 1)) asthe group isomorphic to
Wa(k) @ (k)21 /7

where W, (k) isthe ring of Witt vectors of length n, and J isthe subgroup generated
by elements of the form
w®b® - ®b,_1 suchthat b; = b; forsome i 7 5, and
@©,...,0,a,0,...,0)®a®b1® - ®b,_2, and
F-1Dw) @b ®- - ®by_1 (F isthe Frobenius map on Witt vectors).
We define H(k, Q, /Zp(g — 1)) = Ii_rT;Hq(k, Z/p™(q — 1)), and define

H(k) =D H(k,Qu/Zs (g - 1))
£

where ¢ ranges over al prime numbers. (For £ # p, the right hand side is the usual
Galois cohomology of the (¢ — 1) st Tate twist of Q;/Z,.)
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Thenfor any k& we have

H(k) = X, (X isasin 5.0, the group of characters),
H?(k) =Br(k)  (Brauer group).

We explainthe second equality inthe caseof char (k) = p > 0. Therelation between
the Galois cohomology group and the Brauer group iswell known, so we consider only
the p-part. By our definition,

H2(k, 7,/p™(1)) = H(k, W Qs jog)-

From the bijectivity of the differential symbol (Bloch—-Gabber—Kato's theorem in sub-
section A2 in the appendix to section 2), we have

H(k, Z./p"(1)) = H'(k, (5%)* /(P)")").
From the exact sequence
0 — (k%P)" 25 (1P)" — (%) /()7 )" — 0
and an isomorphism Br(k) = H?(k, (k*P)*), H2(k,Z/p™(1)) is isomorphic to the
p"-torsion points of Br(k). Thus, we get H?(k) = Br(k).

If K isahenseliandiscretevaluation fieldwith residuefield F, wehaveacanonica
map
i%. HI(F) — HYK).

If char (K) = char (F), this map is defined naturally from the definition of H? (for
the Galois cohomology part, we use a natural map Gal(K>P/K) — Ga(Ky/K) =
Gal(F*P/F)) . If K isof mixed characteristics (0, p), the prime-to- p-part is defined
naturally and the p-part is defined as follows. Fortheclass [w ® b1 ® --- ® b,_1] in
HY(F,Z/p™(q — 1)) wedefine i ((w ® by ® -+ ® b,_1]) astheclassof

(W) @b ® - ®by_1

in HYK,Z/p™(q — 1)), where i:W,(F) — HYF,Z/p") — HYK,Z/p") is the
Eomposite of the map given by Artin—Schreier—Witt theory and the canonical map, and
b; isaliftingof b; to K.

Theorem (Kato [K2, Th. 3]). Let K be a henselian discrete valuation field, = be a
prime element, and F' be the residue field. We consider a homomorphism

i= (X, Un): HI(F)® HY(F) — HYK)
(a,b) = i (a) +ip () U
where ¥ (b) U 7 is the element obtained from the pairing

H*YK) x K* — HY(K)
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which is defined by Kummer theory and the cup product, and the explicit description
of HY(K) in the case of char (K) > 0. Suppose char (F) = p. Then 14 is bijective in
the prime-to- p component. In the p-component, < is injective and the image coincides
with the p-component of the kernel of H?(K) — HY(K) where K, isthe maximal
unramified extension of K.

From this theorem and Bloch—K ato’s theorem in section 4, we obtain

Corollary. Assume that char (F) = p > 0, |F : F?| = p?~1, and that there is an
isomorphism H(F) = Q/Z.
Then, 4 induces an isomorphism

H*™Y(K) = Q/Z.
A typical example which satisfies the assumptions of the above corollary isa d-di-

mensional local field (if the last residue field is quasi-finite (not necessarily finite), the
assumptions are satisfied).

5.2. Higher dimensional local fields

We assume that K is a d-dimensional local field, and F is the residue field of K,
which is a (d — 1)-dimensional local field. Then, by the corollary in the previous
subsection and induction on d, thereisacanonical isomorphism

inv: HY(K) = Q/Z.

This corresponds to the first step of the proof of the classical isomorphism theorem
which we described in the introduction.
The cup product defines a pairing

K4(K) x HY(K) — H¥Y(K) ~ Q/Z.
This pairing induces a homomorphism
¥y Kq(K) — Ga(K®/K) ~ Hom(HY(K),Q/Z)

which we call the reciprocity map. Since the isomorphism inv: H4(K) — Q/Z
is naturally constructed, for a finite abelian extension L/K we have a commutative
diagram

7 L) M Q7

cor | |

H*Y(K) V=, 0/z.
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So the diagram

K4(L) —* Ga(L®/L)

v |
K4(K) —% Ga(K®/K)

is commutative where N is the norm map and the right vertical map is the canonical
map. So, asin the classical case, we have a homomorphism

¥k Ki(K)/NK4(L) — Ga(L/K).
Isomorphism Theorem. ¥,k is an isomorphism.

We outline a proof. We may assume that L/K is cyclic of degree £. Asin the
classical casein theintroduction, we may study a sequence

Ki(L) &5 Ky(K) =5 H*Y(K) S HYY(L),

but here we describe a more elementary proof.
First of dl, using theargument in[S, Ch.5] by calculation of symbolsone can obtain

|Ka(K) : NKq(L)| < L.

We outline a proof of thisinequality.

It is easy to see that it is sufficient to consider the case of prime £. (For another
calculation of the index of the norm group see subsection 6.7).

Recall that K4(K) has afiltration U, K4(K) asin subsection 4.2. We consider
IrmKa(K) = UnKa(K)/Un+1Ka(K).

If L/K isunramified, the norm map N: K4(L) — K4(K) induces surjective ho-
momorphisms gr,,, K4(L) — gr, Kq(K) foral m > 0. So U1 Ky4(K) isin NKy(L).
If we denote by Fr, and F the residue fields of L and K respectively, the norm
map induces a surjective homomorphism K 4(F1)/¢ — K4(F)/¢ because K (F)/{ is
isomorphic to HY(F,Z/¢(d)) (cf. sections 2 and 3) and the cohomological dimension
of F [K2,p.220]isd. Since groK4(K) = K4(F)® K4_1(F) (seesubsection 4.2), the
above impliesthat K 4(K)/NK4(L) isisomorphicto K4 1(F)/NK4_1(FL), which
is isomorphic to Gal(FL/F) by class field theory of F (we use induction on d).
Therefore | K4(K) : NKy4(L)| = ¢£.

If L/K istotally ramified and ¢ is primeto char (F'), by the same argument (cf.
the argument in [S, Ch.5]) as above, we have U1 K4(K) C NKy4(L). Let m bea
prime element of L, and mx = Ny g (mz). Then the element {a1,...,aq-1,7x}
for a; € K* isin NK4(L), so K4(K)/NK4(L) isisomorphicto K4(F)/¢, which
is isomorphic to H(F,Z/¢(d)), so the order is £. Thus, in this case we also have
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Hence, we may assume L/K isnot unramified and is of degree £ = p = char (F).
Notethat K4(F) is p-divisible becauseof Q4 =0 and the bijectivity of the differential
symbol.

Assumethat L/K istotally ramified. Let 7, beaprimeelement of L, and o a
generator of Gal(L/K), andput a = o(r)r;* — 1, b= Ny, x(a), and vg(b—1) =4.
We study the induced maps grym)Ka(L) — 9r Kq4(K) fromthenormmap N onthe
subquotients by the argument in [S, Ch.5]. We have U;+1K4(K) C NK4(L), and can
show that there is a surjective homomorphism (cf. [K1, p.669])

Qi1 Ky(K)/NKy(L)
such that
zdlogyy A ... Ndlogyg—1 — {1+ Zb,y1,...,Yq—1}
(z,y; areliftings of = and y; ). Furthermore, from
Npg(l+za) =1+ (2P —2)b (mod U1 K™),
the above map induces a surjective homomorphism
QLY ((F - DL +dQi?) — K4(K)/NK4(L).

The source group is isomorphic to H%(F,Z/p(d — 1)) which is of order p. So we
obtain |Kd(K) . NKd(L)| < p.

Now assumethat L/K isferocioudy ramified, i.e. Fr/F ispurely inseparable of
degree p. We can use an argument similar to the previousone. Let h be an el ement of
Or suchthat Fr, = F(h) (h=h mod M ). Let o beagenerator of Gal(L/K), and
put a = o(h)h~1 -1, and b = Np/k(a). Then we have a surjective homomorphism
(cf. [K1, p.669])

QL /((F - DQE ! +dQ%?) — Ky(K)/NKy(L)
such that
zdlogy; A ... Adl0gyg_o A d1ogNg, ;p(h) — {1+Tb, 71, ..., Ya_2, 7}
(7 isaprimeelement of K'). Soweget |[K4(K) : NKy(L)| < p.

Soin order to obtain the bijectivity of ¥, x, wehaveonly to check the surjectivity.
We consider the most interesting case char (K) =0, char (F)=p >0, and £ =p. To
show the surjectivity of ¥, x, we haveto show that thereis an element z € K4(K)
suchthat x Uz 7 0 in H¥1(K) where x isacharacter correspondingto L/K. We
may assume a primitive p-th root of unity isin K. Supposethat L is given by an
equation X? = a for some a € K \ K?. By Bloch-Kato's theorem (bijectivity of
the cohomological symbolsin section 4), we identify the kernel of multiplication by p
on H¥*(K) with H*Y(K,7/p(d)), and with K4.1(K)/p. Then our aim isto show
that thereis an element z € K4(K) suchthat {z,a} # 0 in kg+1(K) = Kg+1(K)/p.
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(Remark. The pairing K1(K)/p x Kq4(K)/p — Ka+1(K)/p coincides up to a sign
with Vostokov’s symbol defined in subsection 8.3 and the | atter is non-degeneratewhich
provides an aternative proof).

We use the notation of section 4. By the Proposition in subsection 4.2, we have

Kg+1(K)/p = kgr1(K) = Uerkgea(K)
where e’ = vk (p)p/(p — 1). Furthermore, by the same proposition there is an isomor-
phism
HYF,Z/p(d— 1)) = QL /((F - DQ& +dQL2?) — kg (K)
such that
zdlogyy A ... Ndlogyg_1 — {1+ Zb,91,...,Yq_1,7}

where 7 isauniformizer, and b isacertain element of K suchthat vx(b) = ¢'. Note
that H4(F,Z/p(d — 1)) isof order p.

This shows that for any uniformizer = of K, and for any lifting ¢1,...,t4_1 Of a
p-base of F, thereisanelement z € O such that

{1+ 7re,m,t1, vy tg_1, T} 70

in kg1(K).

If the class of a isnotin Uiki(K), we may assume a isauniformizer or a isa
part of alifting of a p-baseof F. Soit is easy to see by the above property that there
existsan z suchthat {a,z} 7 0. If theclassof a isin Ug k1(K), itisaso easily seen
from the description of U, k4+1(K) that thereexistsan = suchthat {a,z} 7 0.

Suppose a € U;k1(K) \ Us+1k1(K) suchthat 0 < i < /. Wewrite a = 1+ 7ta/
for aprimeelement = and o' € O%. First, we assumethat p does not divide i. We
use aformula (which holdsin K2(K))

{1-a,1-B}={1-af,~a} +{1-af,1-F} — {1-ap,1-a}
for « 70,1, and 3 #1,a~1. From thisformulawe havein ko(K)
{1+na', 1+ 7~} = {1+ 7% a'b,na'}
for b € Ox. Soforalifting ¢4, ...,t4_1 of a p-baseof F we have
{1+7%,1+ 7rel_ib, t1, .ty 1} = {1+7re'a'b, 7ty ey tqg_1}
='i{1+7re’a'b,7r,t1,...,td_l}

in kq+1(K) (here we used {1+7re'm,u1,...,ud} = 0 for any units u; in kg1(K)
which follows from Q4. = 0 and the calculation of the subquotients gr,,, kq+1(K) in
subsection 4.2). So we can take b € O such that the above symbol is non-zero in
kg4+1(K). This completesthe proof in the case where ¢ isprimeto p.
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Next, we assume p divides i. We aso use the above formula, and calculate
{1+nta, 1+ @ +bm)n® L n} = {1+ ~La/(1+br), 1+ b, 7}
={1+ 7re’a'b(l +bm),a' (1 +bm), 7}

Since we may think of o’ as a part of alifting of a p-base of F, we can take some
o ={1+@A+br)r® 1 7, t1,...,t4 o} suchthat {a,z} 70 in kg1 (K).

If £ isprimeto char (F), for theextension L/K obtained by an equation X* = a,
we can find z such that {a,z} #Z 0 in K41(K)/¢ in the same way as above, using
Kg1(K)/C = groKg+1(K) /L = K4(F)/L. In the case where char (K) = p > 0 we
can use Artin—Schreier theory instead of Kummer theory, and therefore we can argue
in asimilar way to the previous method. This completes the proof of the isomorphism
theorem.

Thus, the isomorphism theorem can be proved by computing symbols, once we
know Bloch—Kato's theorem. See also aproof in [K1].
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6. Topological Milnor K -groups of higher local fields

Ivan Fesenko

Let F = K, ...,Ko =F, bean n-dimensional local field. We use the notation of
section 1.

In this section we describe properties of certain quotients K'°P(F) of the Milnor
K-groups of F' by using in particular topological considerations. Thisis an updated
and simplified summary of relevant results in [F1-F5]. Subsection 6.1 recalls well-
known results on K -groups of classical local fields. Subsection 6.2 discusses so
called sequential topologies which are important for the description of subquotients of
K"P(F) in terms of a simpler objects endowed with sequential topology (Theorem 1
in 6.6 and Theorem 1 in 7.2 of section 7). Subsection 6.3 introduces K '°°(F), 6.4
presents very useful pairings (including Vostokov’s symbol which is discussed in more
detail in section 8), subsection 6.5-6.6 describe the structure of K '°P(F) and 6.7 dedls
with the quotients K (F')/; finaly, 6.8 presents various properties of the norm map on
K -groups. Note that subsections 6.6-6.8 are not required for understanding Parshin’s
classfield theory in section 7.

6.0. Introduction

Let A beacommutativeringandlet X bean A-moduleendowed with sometopology.
A set {z;};c; of elements of X is called a set of topological generators of X if
the sequential closure of the submodule of X generated by this set coincides with X .
A set of topological generatorsis called a topological basis if for every j € I and
every non-zero a € A ax; doesn't belong to the sequential closure of the submodule
generated by {z;}i;.

Let I beacountable set. If {z;} isset of topological generatorsof X then every
element z € X canbeexpressed asaconvergent sum > a;z; withsome a; € A (note
that it is not necessarily the casethat for al a; € A thesum ’ a;z; converges). This
expressionisuniqueif {z;} isatopological basisof X; then provided additionin X
is sequentialy continuous, we get Y a;z; + > biz; = > (a; +b;)z;.
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Recall that in the one-dimensional case the group of principal units Uy r is a
multiplicative Z,-module with finitely many topological generators if char (F) = 0
and infinitely many topological generatorsif char (F) = p (seefor instance [FV, Ch. |
§6]). Thisrepresentation of Uy, and acertain specific choice of its generatorsis quite
important if one wants to deduce the Shafarevich and Vostokov explicit formulas for
the Hilbert symbol (see section 8).

Similarly, the group Vr of principal units of an n-dimensional local field F is
topologically generated by 1+ 6tér...¢', 6 € pg,_1 (See subsection 1.4.2). This
leads to a natural suggestion to endow the Milnor K -groupsof F with an appropriate
topology and use the sequential convergence to simplify calculationsin K -groups.

On the other hand, the reciprocity map

Yp: K, (F) — Ga(F®/F)

is not injective in general, in particular ker(¥z) D ﬂlallKn(F) Z 0. So the Milnor
K -groups are too large from the point of view of class field theory, and one can pass
to the quotient K, (F)/ ﬂlleKn(F) without loosing any arithmetical information

on F. The latter quotient coincides with K °P(F) (see subsection 6.6) which is
defined in subsection 6.3 as the quotient of K,,(F) by the intersection A, (F) of al
neighbourhoodsof Oin K, (F") withrespecttoacertaintopology. Theexistencetheorem
in class field theory uses the topology to characterize norm subgroups Ny, r K, (L) of
finite abelian extensions L of F as open subgroups of finite index of K, (F) (see
subsection 10.5). Asacorollary of the existencetheoremin 10.5 one obtainsthat in fact

[ 1Kn(F) = An(F) = ker(¥).
1>1
However, the class of open subgroups of finiteindex of K,,(F") can be defined without

introducing thetopology on K, (F'), seethe paper of Kato in thisvolumewhich presents
adifferent approach.

6.1. K-groupsof one-dimensional local fields

The structure of the Milnor K -groups of aone-dimensional local field F' iscompletely
known.

Recall that using the Hilbert symbol and multiplicative Z,-basis of the group of
principal unitsof F one obtains that

K>(F) ~ TorsK(F) @ mK»(F), where m = | TorsF*|, TorsK(F) ~ Z/m

and mK>»(F) isanuncountableuniquely divisiblegroup (Bass, Tate, Moore, Merkur’ ev;
seeforinstance[FV, Ch. IX §4]). Thegroups K ,,(F) for m > 3 areuniquely divisible
uncountable groups (Kahn [Kn], Sivitsky [FV, Ch. IX §4]).
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6.2. Sequential topology

We need dightly different topologies from the topology of F and F* introduced in
section 1.

Definition. Let X be a topological space with topology 7. Define its sequential
saturation A:

asubset U of X is open with respect to A if for every a € U and a convergent
(with respect to 7) sequence X > «; to a amost al «; belong to U. Then
a; — 0= 0 7) .

Hencethe sequential saturation isthe strongest topol ogy which hasthe same conver-
gent sequences and their limits as the original one. For avery elementary introduction
to sequential topologies see [S].

Definition. For an n-dimensional local field F' denoteby A the sequential saturation
of thetopology on F defined in section 1.

The topology A is different from the old topology on F defined in section 1 for
n > 2: for example, if F =T, ((t1) () then Y = F\ {tht;? +¢5%¢] 4,5 > 1}
is open with respect to A and is not open with respect to the topology of F definedin
section 1.

Let A\, on F* be the sequential saturation of the topology = on F* defined in
section 1. It isashift invariant topol ogy.

If n =1, therestriction of A, on Vz coincides with the induced from .

The following propertiesof A (A.) are smilar to those in section 1 and/or can be
proved by induction on dimension.

Properties.
1 a,Bi - 0= a;—B; —0;
A A

Q) @B — 1= a8t — 1
As As

(3) forevery a; € Up, af — 1;
A*
(4) multiplication is not continuous in general with respectto A, ;
(5) every fundamental sequence with respectto A (resp. A, ) converges;
(6) Vg and F*™ are closed subgroupsof F* for every m > 1;
(7) Theintersection of all open subgroups of finiteindex containing a closed subgroup

H coincideswith H.

Definition. For topological spaces X1, ..., X; definethe -product topology on X1 x
.-+ x X; asthe sequential saturation of the product topology.
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6.3. K'°-groups

Definition. Let A, be the strongest topology on K,,(F) such that subtraction in
K,,(F) andthe natural map

<P3(F*)m _>K'm(F)a ‘,0(011, "')am) :{(ala ""am}

are sequentially continuous. Then the topology A,, coincides with its sequential
saturation. Put

Am(F) = (") open neighbourhoods of 0.
Itis straightforward to seethat A,,(F') isasubgroup of K,,(F).

Properties.

(1) Anm(F) isclosed: indeed A, (F) > ; — = impliesthat z = z; +y; with y; — 0,
S0 z;,y; — 0, hence z =z; +y; — 0, 0 z € Ap(F).

(2) Put VK,,,(F) = ({Vr} - Kp—1(F)) (VF isdefined in subsection 1.1). Since the
topology with V K,,,(F") and its shifts as a system of fundamental neighbourhoods
satisfies two conditions of the previous definition, one obtains that A,,(F) C
VK, (F).

B A=A

Following the original approach of Parshin [P1] introduce now the following:

Definition. Set
K9P(F) = K (F)/ A (F)

and endow it with the quotient topology of A,, which we denote by the same notation.

This new group K},‘L’p(F) is sometimes called the topological Milnor K -group of
F.

If char (K,_1) =p then K1 = K.

If char (K,,_1) = 0 then K1P(K) # K1(K), since 1+ Mg, (which is uniquely
divisible) is asubgroup of A1(K).

6.4. Explicit pairings

Explicit pairings of the Milnor K -groups of F are quite useful if one wants to study
the structure of K '°P-groups.
The general method is as follows. Assume that thereis a pairing

(, ) AXB—=Z/m
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of two Z/m-modules A and B. Assumethat A is endowed with a topology with
respect to whichit hastopological generators «; where 4 runsover elementsof atotally
ordered countable set I. Assumethat for every j € I thereisanelement 8; € B such
that

(g, B85) =1 mod m, (ai,B;) =0 modm forali>j.

Then if aconvergent sum Y ¢;a; isequal to 0, assumethat thereisaminimal j with
non-zero ¢; and deduce that
0= Zci<ai7,8j> =Cj

acontradiction. Thus, {«;} form atopologica basisof A.

If, in addition, for every 8 € B\ {0} thereisan a € A suchthat (a,3) 70, then
thepairing ( , ) isobviously non-degenerate.

Pairings listed below satisfy the assumptions above and therefore can be applied to
study the structure of quotients of the Milnor K -groupsof F.

6.4.1. “Valuation map”.
Let 0: K,.(K;) — K,_1(K,;_1) be the border homomorphism (see for example
[FV, Ch.IX §2]). Put

b=0p Kn(F) 2 Ky 1(Kn-1) > ... 5 Ko(Ko)=Z, o({ts,...,tn}) =1

for asystem of local parameters tq, ...,t, of F. Thevaluation map v doesn’t depend
on the choice of a system of local parameters.

6.4.2. Tame symbol.
Define

EKu(F)/(q— 1) x F*/F*97Y & Ko (F)/(g— 1) — B} = pg-1, q=|Ko|
by
Kp(P)/(a-1) 2 KoK 1)/(a - 2 ... % Ki(Ko) /(g — ) =F} — pg1.

Herethe map F; — pg_1 isgiven by taking multiplicative representatives.
An explicit formulafor this symbol (originally asked for in [P2] and suggested in
[F1]) is simple: let tq,...,t, be asystem of local parameters of F and let v =

(v1, ...,v,) bethe associated valuation of rank n (see section 1 of this volume). For
dements aq, ...,a,+1 Of F* thevaue t(aq, as, -..,a,+1) isequal tothe (¢ — 1)th
root of unity whose residueis equal to the residue of
b +
ap .. n’jrll( 1)b

in the last residue field Iy, where b = Zs i<j Us(bi)vus(b;)b; ;, b; is the determinant
of the matrix obtained by cutting off the j th column of the matrix A = (vi(ay)) with
thesign (—1)/—1, and b; ; isthe determinant of the matrix obtained by cutting off the
ithand jth cqumns and sth row of A.
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6.4.3. Artin—Schreier—Witt pairing in characteristic p.
Define, following [P2], the pairing
(o Ir: Kn(F) /0" % Wo(F)/(F — YW, (F) = W,(F,) ~ Z/p"
by (F isthe map defined in the section, Some Conventions)
(@0, ---yan, (Bo, -+, Br)]r =Tr Ky/F, (0, -+ Yr)

wherethe i th ghost component v@ isgivenby resk, (8@adas A --- A aytdey,).
For its properties see [ P2, sect. 3]. In particular,
(1) for z € K,(F)

(z,V(Bo, - -, Br-1)]r = V(z,(Bo, ---,Br-1)]r-1
where as usual for afield K
ViW,_1(K) = Wr(K), V(Bo, ---,6r-1) = (0,00, ---,Br-1);
(2) for xz € K,(F)
(z,ABo, ... Br)lr-1=Alz,(Bo, ..., Br)]r
wherefor afield K
AW, (K) = W,_1(K), ABo,---,8r-1,6:) =(Bo, ---,Br-1)-
(3) If Trép=1then ({t1,...,tn},00], =1. If 4; isprimeto p then
({L+0t . 8t b, 0}, 0007 Y Lt ] =

6.4.4. Vostokov'ssymbol in characteristic 0.
Suppose that u,» < F* and p > 2. Vostokov’s symbol

V(, )i Kn(F)/p" X Knt1-m(F)/Pp" = Kna(F)/P" — ppr
is defined in section 8.3. For its properties see 8.3.

Each pairing defined above is sequentially continuous, so it induces the pairing of
K2P(F).

6.5. Structure of K'P(F). |

Denote VK P(F) = ({V¥} - K. (F)). Using the tame symbol and valuation v as
described in the beginning of 6.4 it is easy to deduce that

Kn(F) = VK, (F) ® Z%™ @ (Z /(g — 1))*™
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with appropriate integer a(m), b(m) (see [FV, Ch. IX, §2]); similar calculations are
applicableto Kp(F). For example, Z*™) correspondsto @({t;,, ---,t;,,}) with
1<ii< - <jm<m

Tostudy VK,,(F) and VK},?'O(F) thefollowing elementary equality isquite useful

{1-a,1-8}={a1+ 1°iﬂa}+{1—5,1+ 1°iﬂa}.

Note that v(a8/(1 — @) = v(e) +v(B) if v(a),v(B) > (O, ...,0).
For ¢, € Vr one can apply the previous formulato {e,n} € K;"p(F) and using

the topological convergence deduce that

{e,n} = Z {pi, t:}

with units p; = p;(e,n) sequentially continuously depending on «, 7.
Therefore VK ﬁ,?p(F) istopologically generated by symbols

{1+t 60, .t Y, € pg 1.

In particular, K %,(F) = 0.
Lemma. ﬂl>lle(F) C A (F).
Proof. First, IK(F) C VK,,(F). Let z € VK,,,(F). Write

T = Z{aj,tjl, "'7tjm_1} mod A, (F), aj € Vp.
Then

pir = Z{aﬁr} Atjy o ti_ F A A € Ap(F).
It remainsto apply property (3) in 6.2. O

6.6. Structure of K'P(F). |1

This subsection 6.6 and the rest of this section are not required for understanding
Parshin’s class field theory theory of higher local fields of characteristic p which is
discussed in section 7.

The next theorem relates the structure of VK E,?p(F) with the structure of asimpler
object.

Theorem 1 ([F5, Th. 4.6]). Let char (K,,_1) = p. The homomorphism
gHVF%VKm(F)a (ﬁJ)'_) Z {/BJ’tjl’ ""tjm_l}

J J={i1ssdm -1}
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induces a homeomorphism between [] V#/g~ (Am(F)) endowed with the quotient of
the x-topology and VK},?'O(F); g~ YA (F)) is a closed subgroup.

Since every closed subgroup of Vg isthe intersection of some open subgroups of
finiteindex in Vz (property (7) of 6.2), we obtain the following:

Corollary. A,,(F) =[) open subgroups of finite index in K,,(F).

Remarks. 1. If F isof characteristic p, thereisacomplete description of the structure
of K ﬁ,?p(F) in the language of topological generators and relations due to Parshin (see
subsection 7.2).

2. If char (K,,_1) = 0, then the border homomorphismin Milnor K -theory (seefor
instance [FV, Ch. IX §2]) induces the homomorphism

VKm(F) — VKm(Kn—l) S VKm—l(Kn—l)'

Its kernel is equal to the subgroup of V K,,,(F') generated by symbols {, ...} with
u inthegroup 1+ Mg whichisuniquely divisible. So

VKP(F) ~ VKP(K, 1) ® VK" (K,_1)
and one can apply Theorem 1 to describe VK ﬁ,?p(F).

Proof of Theorem 1. Recall that every symbol {ai, ...,a,} In K}Sp(F) can be
written as a convergent sum of symbols {3,t;,, ...,t; _,} with 8; sequentialy
continuously depending on «; (subsection 6.5). Hence thereis a sequentialy continu-
ousmap f: Vg x F*&m-1 _, [1, VF suchthat its composition with g coincides with
the restriction of the map ¢: (F*)™ — K.wP(F) on Vg @ F*®m-1,

So the quotient of the x-topology of []; VF is < A, asfollowsfromthe definition
of An,. Indeed, the sum of two convergent sequences z;,y; in [[; Vr/ g YA (F))
convergesto the sum of their limits.

Let U beanopensubsetin VK,,(F). Then g—1(U) isopeninthe x-product of the
topology []; V. Indeed, otherwise for some J there were a sequence af,i) ¢ g~ HU)
which convergesto ay € g~ 1(U). Then the properties of themap ¢ of 6.3 imply that
the sequence w(af})) ¢ U cornvergesto ¢(ay) € U which contradicts the openness of
U. O

Theorem 2 ([F5, Th. 4.5]). If char (F) = p then A,,(F) is equal to Nis1 Em(F)
and is a divisible group.

Proof. Bloch—-Kato-Gabber’stheorem (see subsection A2 in the appendix to section 2)
shows that the differential symbol

d d
& Kn(F)/p — Q) {a1, ..., am} — 2L popZm
ajl Qm,
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is injective. The topology of QF induced from F (as a finite dimensional vector
space) is Hausdorff, and d is continuous, so A,,,(F) C pK,,(F).

Since VK, (F)/Am(F) ~ [[ £, doesn’t have p-torsion by Theorem 1 in subsec-
tion 7.2, A (F) = pAp(F). O

Theorem 3 ([F5, Th. 4.7]). If char (F) = 0 then A,,(F) is equal to Nis1 Em(F)

and is a divisible group. If a primitive /th root {; belongs to F', then ,Kﬁgp(F) =
{G}- KP4 (F).

Proof. Toshow that p"V K,,,(F) D A (F) it sufficesto check that p"V K,,,(F) isthe
intersection of open neighbourhoods of p"V K,,,(F).

We can assumethat u, iscontainedin F applying the standard argument by using
(p, |F(up) : F|) =1 and I-divisibility of V K,,(F) for I primeto p.

If » =1 then one can use Bloch—Kato's description of

Usz(F) +me(F)/Ui+le(F) +me(F)

in terms of products of quotients of Q{;{n_l (section 4). Qﬁ{n_l and its quotients are

finite-dimensional vector spaces over Kn_l/KZ_l, so the intersection of al neigh-
borhoods of zero there with respect to the induced from K, _1 topology is trivial.
Thereforethe injectivity of d implies A, (F) C pK,(F).

Thus, the intersection of open subgroups in V K,,(F) containing pV K,,,(F) is
equa to pV K, (F).

Induction Step.

For afield F consider the pairing

() )i K (F)/p" x H™ ™ ™(F, u&"~™) — H™H(F, u&r

given by the cup product and the map F* — H(F, ppr). If ppr C F, then Bloch-
Kato's theorem showsthat (, ), can beidentified (up to sign) with Vostokov’s pairing

Vi(, ).
For x € H™=m(F, u3r~™) put

A, ={a € K,(F): (o, x)r = 0}.

One can show [F5, Lemma4.7] that A, isan open subgroup of K, (F).

Let o belong to the intersection of al open subgroupsof V K,,,(F) which contain
p"VEK,(F). Then a € A, forevery x € H™1=™(F, u&"~™).

Set L = F(upr) and p® = |L : F|. From the induction hypothesis we deduce that
a € p°VK,(F) andhence a = N, /3 for some 8 € VK,,(L). Then

0=(a,X)r,r =Nz rB,X)r,Fr = (ByiF/LX)r,L

where ig, g, isthe natural map. Keeping in mind the identification between Vostokov's
pairing V. and ( , ), forthefield L weseethat 8 isannihilated by ip/r Kp+1—m(F)
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with respect to Vostokov’s pairing. Using explicit calculations with Vostokov's pairing
one can directly deduce that
B € (o —1DKn(L)+p" *ip/L Km(F) +p" Kn(L),

and therefore a € p" K, (F), asrequired.

Thus p" K.,,,(F) =) open neighbourhoods of p"V K,,,(F).

To prove the second statement we can assumethat [ isaprime. If [ # p, then since
K ﬁ,?p(F) is the direct sum of several cyclic groupsand V K ﬁ,?p(F) and since [-torsion
of KaP(F) is p-divisible and N,p"V KwP(F) = {0}, we deduce the result.

Consider the most difficult case of I = p. Usethe exact sequence

0= pupd® — polty = pp™ — 0

and the following commutative diagram (see also subsection 4.3.2)

pp ® Ky _1(F)/p —— Kn(F)/p* N Ko (F)/p**t

| ! !

H™YF,u8™) —— H™F,p@"™) —— H™(F,uSm).

Wededucethat pz € A,,(F) implies pz € Np"Kn(F), 0z = {¢}-ar_1+p" 1b,_1
for some a; € K. ,(F) and b; € K, °(F).

Define 4: K. ,(F) — K P(F) as ¢(a) = {¢p} - ; it isacontinuous map. Put
D, = 1/;—1(p"K$,2p(F)). The group D = ND, isthe kernel of 4. One can show
[F5, proof of Th. 4.7] that {a,} isaCauchy sequenceinthe space K :fl’p_l(F)/D which

iscomplete. Hencethereis y € N (ar_l + Dr_l). Thus, z = {{p} -y in Kﬁ,?p(F).
Divisibility follows. O

Remarks. 1. Comparewith Theorem 8in 2.5.

2. For more propertiesof K1oP(F) see[F5].

3. Zhukov [Z, §7-10] gave a description of K P(F) in terms of topological
generators and relations for somefields F' of characteristic zero with small v g(p).

6.7. Thegroup K,,(F)/l

6.7.1. If aprimenumber [ isdistinct from p, then, since Vr is [-divisible, we deduce
from 6.5 that

Kn(F)/l =~ KSP(F) /1 = (Z/1)™ & (Z/d)*™
where d = gcd(g — 1,1).
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6.7.2. Thecaseof | = p ismoreinteresting and difficult. We usethe method described
at the beginning of 6.4.

If char (F') = p thenthe Artin—Schreier pairing of 6.4.3 for r = 1 helpsoneto show
that K P(F)/p hasthe following topological Z/p-basis:

{140t 4t ooy ooy t1)
where p 1 gcd(iq, ... ,0n), O0< (i1,...,%n), (=min{k:pfix} and @ runs
over al elements of afixed basisof Kq over F,.

If char (F') =0, ¢, € F*, thenusing Vostokov’s symbol (6.4.4 and 8.3) one obtains
that K P(F)/p has the following topological Z,-basis consisting of elements of two
types:

we(§) = {1+0,4200/0=0  qpea/= Yy )

where 1 < j < n, (e, ...,ep) = vr(p) and 0, € p,_1 issuch that
1+0,45en/®7D | per/®=1) qoegyt belong to F*P
and

{1+6tin . 0t .. b, .t}

where p { gcd(iq, ...,3n), O0< (i1, ...,%,) <ple1, ...,en)/(p — 1),
l=min{k:pfir}, where#é runsoverall elementsof afixedbasisof Ky over [F,.
If ¢, & F*, then pass to the field F(() and then go back, using the fact that the

degree of F((,)/F is relatively primeto p. One deduces that K P(F)/p has the
following topological Z,-basis:

{1+0tir .. 4t .. h, .t}

where p { gcd(iy, ... ,%,), 0< (i1, ...,%,) <ple1, ..., en)/(p— 1),
l=min{k:pfir}, where#é runsoverall elementsof afixedbasisof Ko over [F,.

6.8. The norm map on K'P-groups

Definition. Definethenormmapon K "(F) asinducedby Ny p: K, (L) = Kn(F).
Alternatively in characteristic p one can definethe norm map asin 7.4,

6.8.1. Put WUiy,... ip = Uil,...,in/Uil"'l,---,in .

Proposition ([F2, Prop. 4.1] and [F3, Prop. 3.1]). Let L/F be a cyclic extension of
prime degree [ such that the extension of the last finite residue fields is trivial. Then
there is s and a local parameter ¢s ; of L such that L = F(t; ). Let 1, ...,¢,
be a system of local parameters of F, then tq,...,tsr, ...,t, is a system of local
parameters of L.
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Let [ =p. For a generator o of Gal(L/F) let

ot
J:1+90t;n...t7s‘sL...t'l‘1+...
ts,L ’

Then
Q) if (21, -..,%0) < (r1, ...,7r,) then

Nrp/pitig,.inr, = Upig,.oigyorpin, F

sends 6 € K to 67;
(2) if (21, ...,%n) =(r1, ...,7,) then

Np/FPiUig,.in.r, = Upig,.oivyorpin, F

sends 6 € Ko to 67 — 0651,
) if (j1, -..,74n) > 0 then

NL/F: uj1+7“1,...,pjs+rs,..-,jn+7"n,L - uj1+p7'17~~~sjs+7's7~~~sjn+p7'nsF
sends 6 € Ko to —665".

Proof. Similar to the one-dimensional case [FV, Ch. Il §1]. 0

6.8.2. If L/F iscyclicof primedegree ! then

KOP(L) = ({L*} -ip K. P (F))

where i/, isinduced by theembedding F* — L*. For instance (we usethe notations
of section 1), if f(L|F) =1 then L is generated over F' by aroot of unity of order
primeto p; if e;(L|F) =1, then use the previous proposition.

Corollary 1. Let L/F be a cyclic extension of prime degree I. Then
|KP(F) : NL/FK;LOP(LN =1
If L/F isasin the preceding proposition, then the element
{140,485 tlp - )t oty ot ),
wheretheresidue of 8, in Ky doesn’t belong to the image of the map

0567 —gp2
O ——— Or — Ky,

isagenerator of K (F)/Ny/rKn (L).
If f(L|F)=1and ¥ p, then

{9*,t1, ...,E;, ...,tn}

where 6, € p,_1\ p}_; isagenerator of KP(F)/Ny p KxP(L).
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If #(L|F)=1, then
{ta, ..., tn}

isagenerator of Kn"(F)/Ny/rKn (L).

Corollary 2. Ny, (closed subgroup) is closed and N;/lF (open subgroup) is open.
Proof. Sufficient to show for an extension of prime degree; then use the previous
proposition and Theorem 1 of 6.6. O
6.8.3.

Theorem 4 ([F2, §4], [F3, §3]). Let L/F be a cyclic extension of prime degree I with
a generator o then the sequence

% l-o
KS(F)/1 e K'P(0)/1 7220, koo M7, koo 1
is exact.
Proof. Usethe explicit description of K1 P/ in6.7. O

This theorem together with the description of the torsion of K1 P(F) in 6.6 imply:

Corollary. Let L/F be cyclic with a generator o then the sequence

Ktop(L) Ktop(L) Ktop(F)

is exact.
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7. Parshin’s higher local class field theory
In characteristic p

Ivan Fesenko

Parshin’stheory in characteristic p isaremarkably simple and effective approachto all
the main theorems of class field theory by using relatively few ingredients.

Le F=K,, ...,Kp bean n-dimensional local field of characteristic p.

In this section we use the results and definitions of 6.1-6.5; we don’t need the results
of 6.6 —6.8.

7.1

Recall that the group Vr istopologically generated by
1+0tin ...t 0€ R\ pt (i, --.,51)

(see 1.4.2). Note that

PR TN R S T G L N L)

= {140l ARt Lty = {140t 2 -0, ..t} =0,
since 99-1 =1 and Vz is (¢ — 1)-divisible. We deduce that

KX (F)~F;, {0,t1,...,t.} —0, 0€R".
Recall that (cf. 6.5)
KP(F)~Z& (Z/(g—1)" & VEX(F),

where thf first group on the RHS is generated by {¢,, ...,t1}, and the second by
{6, ...,t, ...} (apply the tame symbol and valuation map of subsection 6.4).
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76 I. Fesenko

7.2. Thestructureof VKP(F)

Using the Artin—Schreier—Witt pairing (its explicit formin 6.4.3)
(1 KP(F) /07 X Wi(F) /(B — DWW, (F) = Z/p", r > 1

and the method presented in subsection 6.4 we deduce that every element of V K[ P(F)
is uniquely representable as a convergent series

o -
> i, {10t b, Lt} G, € Ly,

where 6 runsover abasis of the [, -space Ko, p { gcd(ép, ...,%1) and
[=min{k: ptir}. Weasodeduce thatthepairing (, ], isnon-degenerate.

Theorem 1 (Parshin, [P2]). Let J = {j1, ...,Jm—1} runover all (m — 1)-elements
subsets of {1,...,n}, m < n+1 Let &; be the subgroups of Vr generated by
1+6tir ... t1, 0 € p,_1 such that p t ged(és, ...,3,) and min {{:pti} ¢ J.
Then the homomorphism

* —topology
e I er=VERE), )= > {entinti )
J J:{jl""’jm*l}

is a homeomorphism.

Proof. Thereisasequentially continuousmap f:Vp x F*®m-1 _, [I; € suchthat
its composition with A coincides with the restriction of the map ¢: (F*)™ — Kﬁ,?p(F)
of 6.30n Vp @ F*&m-1,
So the topology of [T topology e i < ), asfollowsfrom the definition of ), .
Let U beanopensubsetin VK,,(F). Then h~1(U) isopeninthe x-product of the
topology []; €. Indeed, otherwise for some J there were asequence af,i) ¢ h~1(U)

which convergesto a; € A~Y(U). Then the sequence w(af})) ¢ U converges to
¢(ay) € U which contradicts the opennessof U. 0

Corollary. K1P(F) has no nontrivial p-torsion; Np"V KxP(F) = {0}.
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7.3

Put W(F) = Ii_r>nWT(F) J/(F — D)W.,.(F) with respect to the homomorphism
V:(ao, ---,ar_1) = (0,a0, -..,a,_1). From the pairings (see 6.4.3)

KO3 x Wi(E)/(F - OW,(F) L2 2/ — 222
one obtains a non-degenerate pairing
(, 1: Kn(F) x W(F) = Q,/Zy
where K, (F) = Kp*(F)/ N, 0" Kn " (F). From7.1and Corollary of 7.2 we deduce
() P EXP(F) = Tors, KyP(F) = Tors KyP(F),

r>1

where Tors, is prime-to- p-torsion.
Hence

K,(F) = K\%(F)/ TorsK'P(F).

7.4. Thenorm map on K'P-groupsin characteristic p

Following Parshin we present an alternative description (to that one in subsection 6.8)
of the norm map on K '°P-groupsin characteristic p.
If L/F iscyclicof primedegree [, then it ismore or less easy to seethat
KP(L) = ({L°} - ipy K, (F))

where ir/ 1, isinduced by the embedding F* — L*. Forinstance, if f(L|F) =1 then
L isgenerated over F' by aroot of unity of order primeto p; if e;(L|F) =1, thenthere
isasystem of local parameters ¢4, ...,t, ...,t, of L suchthat ¢1, ...,t;, ...,t, is
asystem of local parametersof F.

For such an extension L/F define [P2]

Np/pi KpP(L) — K P(F)

asinduced by Ny p:L* — F*. For aseparable extension L/F find a tower of
subextensions

F=F-F—+—F._1—F.=L
suchthat F;/F;_1 isacyclic extension of prime degree and define

Np/p =Nrpymy 0+ o NpF, ;-
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To prove correctness use the non-degenerate pairings of subsection 6.4 and the
properties

(Npyro, Blryr = (oyip/1BlL,r
for p-extensions;

t (NL/FO‘,,B)F =t(o,ir/LB)L
for prime-to- p-extensions (¢ isthe tame symbol of 6.4.2).

7.5. Parshin’sreciprocity map

Parshin’s theory [P2], [P3] deals with three partial reciprocity maps which then can be
glued together.

Proposition ([P3]). Let L/F be acyclic p-extension. Then the sequence

~ i ~ _ ~ N ~
0— K,(F) 225 R, (L) =% K. (L) 25 K. (F)
is exact and the cokernel of N,y is a cyclic group of order |L : F|.

Proof. The sequenceis dual (with respect to the pairing of 7.3) to

57 fied —0. Irr Tro/r ==
W(F) — W(L) =% W(L) —2/%s W(F) — 0.
The norm group index is calculated by induction on degree. O

Hencethe class of p-extensionsof F and I:{n(F) satisfy the classical classforma-
tion axioms. Thus, one gets a homomorphism K,,(F) — Gal(F®P/F) and

w): K'%(F) — Gal(F*/F)

where FaP jsthe maximal abelian p-extension of F'. In the one-dimensional case
thisis Kawada—Satake' stheory [KS].
The valuation map v of 6.4.1 induces ahomomorphism

e KIP(F) — Gal(Fy/F),
{t1, ..., tn} — thelifting of the Frobenius automorphism of ng'D/Ko;
and the tame symbol ¢ of 6.4.2 together with Kummer theory induces ahomomorphism

&) KOP(F) - Gal(F(* ¥y, ..., "Vi,)/F).

The three homomorphisms ‘P(}’), ‘P%"), ‘P(}") agree [ P2], so we get the reciprocity
map
¥ KYP(F) — Gal(F®/F)
with all the usual properties.
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Remark. For another rather elementary approach [F1] to class field theory of higher
local fields of positive characteristic see subsection 10.2. For Kato's approach to higher
classfield theory see section 5 above.

References

[F1] 1. Fesenko, Multidimensional local classfield theory |1, Algebrai Analiz (1991); English
trandlation in St. Petersburg Math. J. 3(1992), 1103-1126.

[F2] I.Fesenko, Abelianloca p-classfield theory, Math. Ann. 301(1995), 561-586.
[KS] V. Kawadaand |. Satake, Class formations I, J. Fac. Sci. Univ. Tokyo Sect. IA Math.
7(1956), 353-389.

[P1]  A.N.Parshin, Classfields and algebraic K -theory, Uspekhi Mat. Nauk 30(1975), 253—
254; English tranglation in Russian Math. Surveys.

[P2]  A.N.Parshin, Loca classfield theory, Trudy Mat. Inst. Steklov. (1985); English transla-
tionin Proc. Steklov Inst. Math. 1985, issue 3, 157-185.

[P3]  A. N. Parshin, Galois cohomology and Brauer group of local fields, Trudy Mat. Inst.
Steklov. (1990); English trandation in Proc. Steklov Inst. Math. 1991, issue 4, 191-201.

Department of Mathematics University of Nottingham
Nottingham NG7 2RD England

E-mail: ibf@maths.nott.ac.uk

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields






ISSN 1464-8997 (on line) 1464-8989 (printed) 81

Geometry & Topology Monographs
Volume 3: Invitation to higher local fields
Part I, section 8, pages 81-89

8. Explicit formulas for the Hilbert symbol

Sergei V. Vostokov

Recall that the Hilbert symbol for alocal field K with finite residuefield which contains
aprimitive p™ th root of unity ¢,» isapairing

() KF /K" X KX [KP 5 (G, (0 B)pn =774 92" = g,
where ¥ K* — Gal(K®/K) isthe reciprocity map.

8.1. History of explicit formulasfor the Hilbert symbol

Therearetwo different branchesof explicit reciprocity formulas (for theHilbert symbol).
8.1.1. Thefirst branch (Kummer’stype formulas).
Theorem (E. Kummer 1858). Let K = Q,({p), p 7 2. Then for principal units ¢,

Cres(log n(X)dlog e(X)X™P)

p

(e, "7)p =
where <(X)x=¢, 1= &, 1(X)]x=, 1= 7, &(X), 7(X) € Z{IXT]"

Theimportant point isthat one associatesto the elements ¢, 5 the series e(X), n(X)
in order to calculate the value of the Hilbert symbol.

Theorem (1. Shafarevich 1950). Complete explicit formula for the Hilbert norm residue
symbol (o, B)pn, o, 8 € K*, K D Qy({pn), p 72, using a special basis of the group
of principal units.

This formulais not very easy to use because of the specia basis of the group of
units and certain difficulties with its verification for n > 1. One of applications of this
formulawasin the work of Yakovlev on the description of the absolute Galois group of
alocal field in terms of generators and relations.

Complete formulas, which are simpler that Shafarevich's formula, were discovered
in the seventies:
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Theorem (S. Vostokov 1978), (H. Brickner 1979). Let a local field K with finite
residue field contain Q,(¢p») and let p # 2. Denote Og = W(kk), Tr = Troy/z,-
Then for o, 3 € K*

(@ =G SO 00 ) = @00 da - e 570 dg?

where a = 0X™(1 +94(X)), 6 € R, ¥ € XOp[[X]], is such that a(r) = a,
s= Can" -1,

a =} a?/a®
() p'OQ(_ /a®),

(Z aiXi)A =Y Frobg(a) X%, a; € Op.

Note that for the term X ~P in Kummer's theorem can be written as X 7 =
1/(¢P —1) mod p, since ¢, =1+m andso s = (,» —1=(1+X)?—1=XP mod p.

Theworks [V1] and [V2] contain two different proofs of thisformula. One of them
isto construct the explicit pairing

() — (1 16 (e B)/s

and check the correctness of the definition and all the properties of this pairing com-
pletely independently of class field theory (somewhat similarly to how one works with
the tame symbol), and only at the last step to show that the pairing coincides with the
Hilbert symbol. The second method, also followed by Brikner, is different: it uses
Kneser's (1951) calculation of symbols and reduces the problem to a simpler one: to
find aformulafor (e, 7),~ where = isaprime element of K and e isaprincipal unit
of K. Whereasthefirst method is very universal and can be extended to formal groups
and higher local fields, the second method works well in the classical situation only.

For p = 2 explicit formulas were obtained by G. Henniart (1981) who followed to
a certain extent Bruckner’'s method, and S. Vostokov and I. Fesenko (1982, 1985).

8.1.2. The second branch (Artin—Hasse'stype for mulas).

Theorem (E. Artinand H. Hasse 1928). Let K = Q,({p~), p 7 2. Then for a principal
unit e and prime element 7 = {,» — 1 of K

_ n -1 "
(&, Cpn)pn = anr( 109 €)/p y (e, m)pn = pnr(" ¢prlog €)/p

where Tr =Tr g/q, -

Theorem (K. Iwasawa 1968). Formula for (e,n),» where K = Q,((pn), » 72, €,
are principal units of K and vx(n — 1) > 2vx(p)/(p — 1).
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To some extent the following formula can be viewed as aformula of Artin—Hasse's
type. Sen deduced it using his theory of continuous Galois representations which itself
isageneralization of apart of Tate'stheory of p-divisible groups. The Hilbert symbol
isinterpreted as the cup product of H1.

Theorem (Sh. Sen1980). Let |K : Qp| < o0, {pn» € K, and let = be a prime element
of Ok. Let g(T),h(T) € W(kg)[T] be such that g(w) = 8 # 0, h(m) = (pm. Let
a € Ok, vg(a) > 2vk(p)/(p — 1). Then

1 m !

R. Coleman (1981) gave a new form of explicit formulas which he proved for
K = Qp(¢pn). Heusesformal power series associated to norm compatible sequences
of elements in the tower of finite subextensions of the p-cyclotomic extension of the
ground field and his formula can be viewed as a generalization of lwasawa's formula.

8.2. History: Further developments

8.2.1. Explicit formulas for the (generalized) Hilbert symbol in the case where it is
defined by an appropriate class field theory.

Definition. Let K be an n-dimensional local field of characteristic 0 which contains
aprimitive p™ th root of unity. The p™ th Hilbert symbol is defined as

EP(K)/p™ x K" K™ = (Gm), (@, B)pm =7 ¥ <71 47" =,
where W1 KI®P(K) — Gal(K®/K) isthe reciprocity map.

For higher local fields and p > 2 complete formulas of Kummer's type were
constructed by S. Vostokov (1985). They are discussed in subsections 8.3 and their
applications to K -theory of higher local fields and p-part of the existence theorem
in characteristic O are discussed in subsections 6.6, 6.7 and 10.5. For higher local
fields, p > 2 and Lubin-Tate formal group complete formulas of Kummer’stype were
deduced by |. Fesenko (1987).

Relations of the formulas with syntomic cohomologies were studied by K. Kato
(1991) in a very important work where it is suggested to use Fontaine-Messing's syn-
tomic cohomologies and an interpretation of the Hilbert symbol as the cup product
explicitly computable in terms of the cup product of syntomic cohomologies; this
approach implies Vostokov’sformula. On the other hand, Vostokov’s formulaappropri-
ately generalized defines a homomorphism from the Milnor K -groups to cohomol ogy
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groups of asyntomic complex (see subsection 15.1.1). M. Kurihara(1990) applied syn-
tomic cohomol ogies to deduce Iwasawa’ s and Coleman’s formulasin the multiplicative
case.

For higher local fields complete formulas of Artin—Hasse's type were constructed
by M. Kurihara (1998), see section 9.

8.2.2. Explicit formulasfor p-divisible groups.

Definition. Let F be aformal p-divisible group over the ring O, where Ko isa
subfield of alocal field K. Let K contain p™-division pointsof F. Definethe Hilbert
symboal by

K* x FMg) — ker[p®], (o, B)pr =¥Yk()(7) —F 7, [P"1(v) =8,
where Wi : K* — GaI(Kab/K) is the reciprocity map.

For formal Lubin—Tate groups, complete formulas of Kummer’stype were obtained
by S. Vostokov (1979) for odd p and S. Vostokov and |. Fesenko (1983) for even p. For
relative formal Lubin-Tate groups complete formulas of Kummer’s type were obtained
by S. Vostokov and A. Demchenko (1995).

For local fields with finite residue field and formal Lubin-Tate groups formulas of
Artin—Hasse'stype were deduced by A. Wiles (1978) for K equal to the [« ™]-division
field of the isogeny [#] of aforma Lubin-Tate group; by V. Kolyvagin (1979) for
K containing the [#™]-division field of the isogeny [«]; by R. Coleman (1981) in
the multiplicative case and some partial cases of Lubin-Tate groups; his conjectural
formulain the general case of Lubin-Tate groupswas proved by E. de Shalit (1986) for
K containing the [#™]-division field of theisogeny [#]. Thisformulawas generalized
by Y. Sueyoshi (1990) for relative formal Lubin—Tate groups. F. Destrempes (1995)
extended Sen’sformulas to Lubin-Tate formal groups.

J—M. Fontaine (1991) used his crystalline ring and his and J—P. Wintenberger's
theory of field of norms for the p-cyclotomic extension to relate Kummer theory with
Artin—Schreier—Witt theory and deduce in particular some formulas of Iwasawa'stype
using Coleman’spower series. D. Benois(1998) further extended thisapproach by using
Fontaine-Herr's complex and deduced Coleman’s formula. V. Abrashkin (1997) used
another arithmetically profinite extension (L = UF; of F, F; = F;_1(m;), nF = m;_1,
mo being aprime dement of F') to deduce the formula of Briickner—\Vostokov.

For formal groups which are defined over an absolutely unramified local field Ko
(e(Ko|Qp) = 1) and therefore are parametrized by Honda's systems, formulas of
Kummer's type were deduced by D. Benois and S. Vostokov (1990), for n = 1 and
one-dimensional formal groups, and by V. Abrashkin (1997) for arbitrary n and arbi-
trary formal group with restriction that K contains a primitive p™ th root of unity. For
one dimensional formal groups and arbitrary n without restriction that K contains a
primitive p™ th root of unity in the ramified case formulaswere obtained by S. VVostokov
and A. Demchenko (2000). For arbitrary n and arbitrary formal group without restric-
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tionson K Abrashkin’sformulawas established by Benois (2000), see subsection 6.6
of Part Il.

Sen’'sformulaswere generalized to all p-divisible groupsby D. Benois(1997) using
an interpretation of the Hilbert pairing in terms of an explicit construction of p-adic
periods. T. Fukaya (1998) generalized the latter for higher local fields.

8.2.3. Explicit formulasfor p-adic representations. The previously discussed ex-
plicit formulas can be viewed as a description of the exponential map from the tangent
gpace of a forma group to the first conomology group with coefficients in the Tate
module. Bloch and Kato (1990) defined a generalization of the exponential map to
de Rham representations. An explicit description of this map is closely related to the
computation of Tamagawa numbers of motives which play an important role in the
Bloch—Kato conjecture. The description of this map for the Q, (n) over cyclotomic
fields was given by Bloch—Kato (1990) and Kato (1993); it can be viewed as a vast
generaization of Iwasawa's formula (the case n = 1). B. Perrin-Riou constructed an
Iwasawa theory for crystalline representations over an absolutely unramified local field
and conjectured an explicit description of the cup product of the cohomology groups.
There are three different approaches which culminate in the proof of this conjecture
by P. Colmez (1998), K. Kato—M. Kurihara-T. Tsuji (unpublished) and for crystalline
representations of finite height by D. Benois (1998).

K. Kato (1999) gave generalizations of explicit formulas of Artin-Hasse, lwasawa
and Wiles type to p-adically complete discrete valuation fields and p-divisible groups
which relates norm compatible sequencesin the Milnor K -groups and trace compatible
sequences in differential forms; these formulas are applied in his other work to give
an explicit description in the case of p-adic completions of function fields of modular
curves.

8.3. Explicit formulasin higher dimensional fields of characteristicO

Let K bean n-dimensional field of characteristic O, char (K,,_1) = p, p > 2. Let
Gpm € K.

Let tq, ...,t, beasystem of local parametersof K.

For an element

a=ty . AP0+ astir . t]), 0€ R, a5 € W(Ko),
(J1y -+ Jdn) > (O, ...,0) denoteby a thefollowing element
Xir L XPOQA+D agXi . XTY

in F{{X1}}...{{Xn}} where F isthe fraction field of W (Kj). Clearly a is not
uniquely determined even if the choice of a system of local parametersis fixed.
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Independently of classfield theory define the following explicit map

V(, )mi (K™ = (Gom)
by the formula

Trres ®(ay, ..., a,+1)/8

V(al’ <. an+l)m = Gpm ) q)(ala cee ’an+l)
+
& () ”1 dag dai—1  doyn® doy 1™
Z pn— Ton—itl J) AN A A N A
a1 a1 i+] On+l

where s = (p_mp =1, Tr =Trw,)/z, '€S=r€Sx, . X,
l(a) = - |Og (o /a®) ZaJXJ” : -X{i)A = Z Frob(as) X2 ---ijl.

Theorem 1. The map V(, ). is well defined, multilinear and symbolic. It induces a
homomaorphism

K. (K)/p™ x K*/K*P" = piym
and since V' is sequentially continuous, a homomorphism
V(, )m: KYP(K)/p™ x K*/K*P" = pym

which is non-degenerate.

Comment on Proof. A set of elements ¢4, ...,t,, €j,w (Where j runs over a subset
of Z") iscaled aShafarevich basis of K*/K*?" if
(1) every a € K* can be written as a convergent product o = til1 ... tin I1; s;”'wc
mod K*P", b;,c € Z,.
2 V ({ts, ...,tn},ej)m =1, V ({ts, ...,tn},w)m = {pm.
An important element of a Shafarevich basis is w(a) = E(as(X))|x, =t,,...,x;=t

where
2

BF(X)) = exp((l + % + ﬁ— . )(f(X))>

a € W(Kyp).
Now take the following elements as a Shafarevich basisof K*/K*P™:
— dements tq, ...,t,,

— dements ey = 1+0¢tir ... t)* where ptged (i, - - - 5 jin)s
0< (J1, +-+,Jn) < ple1, ...,en)/(p — 1), where (es, ...,e,) = v(p), v isthe
discrete valuation of rank n associatedto ¢4, ..., t,,
— w =w(a) Where a isan appropriate generator of W (Ko)/(F — 1)W (Kop).
Using thisbasisit isrelatively easy to show that V' ( , )., isnon-degenerate.
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In particular, for every 8 € R* thereis ' € R* such that
V({1+0tin by, o ety ), L6/ ...t’l’el/(p‘l)‘il)m = (pm

where ¢; isprimeto p, 0 < (i1, ...,i,) < ple1, ...,e,)/(p—1) and (e, ...,e,) =

v(p).

Theorem 2. Every open subgroup N of finite index in KLOP(K) such that N D

meﬁlOp(K) is the orthogonal complement with respectto V( , ),, of a subgroup in
K*/K*®",

Remark. Given higher local class field theory one defines the Hilbert symbol for I
such that [ isnot divisibleby char (K), u; < K* as

(s )lKn(K)/l X K*/K*l — <Cl>, (z,0); = lePK(fB)—l

where ! = 8, Yk: K, (K) — Ga(K®/K) isthe reciprocity map.

If [ isprimeto p, then the Hilbert symbol (, ); coincides (up to a sign) with the
(g — 1)/lth power of the tame symbol of 6.4.2. If I = p™, then the p™ th Hilbert
symbol coincides (up to asign) with the symbol V(, ).
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9. Exponential maps and explicit formulas

Masato Kurihara

In this section we introduce an exponential homomorphism for the Milnor K -groups
for acomplete discrete valuation field of mixed characteristics.

In general, to work with the additive group is easier than with the multiplicative
group, and the exponential map can be used to understand the structure of the multi-
plicative group by using that of the additive group. Wewould like to study the structure
of K,(K) for acomplete discrete valuation field K of mixed characteristicsin order
to obtain arithmetic information of K. Note that the Milnor K -groups can be viewed
as a generalization of the multiplicative group. Our exponential map reduces some
problems in the Milnor K -groups to those of the differential modules Q,  whichis
relatively easier than the Milnor K -groups.

As an application, we study explicit formulas of certain type.

9.1. Notation and exponential homomor phisms

Let K be acomplete discrete valuation field of mixed characteristics (0,p). Let Ok
be the ring of integers, and F' beitsthe residue field. Denote by ord,: K* — Q the
additive valuation normalized by ord,(p) = 1. For n € Ox we have an exponential
homomorphism

exp,: O — K*,  av> expna) =Y _(na)*/n!
n=0

if ord,(n) > 1/(p —1).
For ¢ > 0 let K,(K) bethe gthMilnor K -group, and define K,(K) asthe p-adic
completion of K,(K), i.e.

K,(K) = imK,(K) ® Z/p".
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For aring A, we denote as usua by 9}4 the module of the absolute differentids,
ie Q} =Qp,. Forafield F of characteristic p and a p-base I of F, QF isan
F-vector space with basis dt (t € I'). Let K be as above, and consider the p-adic
completion Qb of QF

ol —1; 1
Gy, =limQy,, ®Z/p"

Wetakealifting T of a p-base I of F, andtakeaprimeelement 7 of K. Then, ﬁ}{)x

isan Og-module (topologicaly) generated by dx and dT (T € ]';) ([Kul, Lemma
1.1]). If I isfinite, then Q%)K is generated by dn and dT (T € I) in the ordinary
sense. Put

57 - AeOlL

Q. =NQp,.-
Theorem ([Ku3]). Let n € K be an element such that ord, () > 2/(p — 1). Then for
g > 0 there exists a homomorphism

expl?: Q) — K (K)

such that
db db, _
expl) (a=2 A N2 1) = {exp(na), b1, -..,by_1}
by by
forany a € Ok andany by, ...,b,_1 € O%.
Note that we have no assumptionon F' ( F may beimperfect). For by, ...,b,_1 €
Ox wehave

exp@(a - dby A -+ Adbg_1) = {exp(naby - -+ - by_1), b1, ..., bg_1}.

9.2. Explicit formula of Sen

Let K be afinite extension of Q, and assume that a primitive p™ th root {,» isin
K. Denoteby Ko thesubfield of K suchthat K /Ky istotally ramified and Ko/Q,
is unramified. Let 7 be a prime element of Og, and g(T') and h(T) € Og,[T] be
polynomials such that g(w) = 8 and h(m) = (,n, respectively. Assumethat o satisfies
ord,(a) > 2/(p — 1) and B € O%. Then, Sen'sformula([S]) is

(pn gl(ﬂ')
W (m) B
where (o, 3) isthe Hilbert symbol defined by (o, 3) = v~ 1¥x (a)(y) Where v*" =3
and W isthe reciprocity map.

The existence of our exponential homomorphism introduced in the previous sub-
section helps to provide a new proof of this formula by reducing it to Artin—Hasse's

1
(o, B) = Cpn, c= ﬁTrK/QP( |Oga)
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formulafor (o, (pn). Infact, put £ = Q,((pr), andlet n bean element of k£ such that
ord,(n) = 2/(p — 1). Then, the commutative diagram

~ ex ~
GL TP, Ry(K)

Trl Nl
G, —0 Rok)

(N: I?Z(K) — IA{Z(k) is the norm map of the Milnor K -groups, and Tr:ﬁ},)K —

ﬁ%{)k is the trace map of differential modules) reduces the calculation of the Hilbert
symbol of elements in K to that of the Hilbert symbol of elementsin k (namely
reduces the problem to Iwasawa'sformula [1]).

Further, since any element of Ql can be written in the form ad(,n /(,», We can
reduce the problem to the calculation of (o, Cpn).

In the same way, we can construct aformula of Sen’stype for a higher dimensional
local field (see [Ku3]), using a commutative diagram

Q! P Ra(K{T
ox{{TH 1 (KT

I’esl r&l

~ exp,, ~

QL —  K(K)
where the right arrow is the residue homomorphism {a, T} — « in [Ka], and the left
arrow is the residue homomorphism wdT' /T — w. Thefield K{T'}} is defined in
Example 3 of subsection 1.1 and O {{T'}} = O ggry -

9.3. Some open problems

Problem 1. Determine the kernel of exp,(;l) completely. Especialy, in the case of a

d-dimensional local field K, the knowledge of the kernel of exp{® will give alot of
information on the arithmetic of K by classfield theory. Generally, one can show that

pdQ% 2 C ker(expl?: Q% — K, (K)).

For example, if K isabsolutely unramified (namely, p isaprime element of K) and
p > 2, then pdQ% ? coincides with the kernel of exp{@ ([Ku2]). But in general, this
is not true. For example, if K = Q,{T'}}(¥/pT) and p > 2, we can show that the

kernel of exp{? isgenerated by pdOx and the elements of the form log(1 — z?)dz/x
forany z € My where Mg isthe maximal ideal of Of.
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Problem 2. Can one generalize our exponential map to some (formal) groups? For
example, let G be a p-divisible group over K with |K : Q,| < co. Assumethat the
[p"]-torsion points ker[p”] of G(K39) arein G(K). We define the Hilbert symbol
K* x G(K) — ker[p"] by (a,8) = Yx(a)(y) —¢ v where [p"]y = 3. Benois
obtained an explicit formula ([B]) for this Hilbert symbol, which is a generalization
of Sen’s formula. Can one define a map expG:Q}DK ® Li(G) — K* x G(K)/ ~
(some quotient of K* x G(K)) by which we can interpret Benois's formula? We also
remark that Fukaya recently obtained some generalization ([F]) of Benois'sformulafor
ahigher dimensional local field.
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10. Explicit higher local class field theory

Ivan Fesenko

In this section we present an approach to higher local classfield theory [F1-2] different
from Kato's (see section 5) and Parshin’s (see section 7) approaches.

Let F (F =K,, ...,Kp) bean n-dimensional local field. We use the results of
section 6 and the notations of section 1.

10.1. Modified class formation axioms

Consider now an approach based on a generalization [F2] of Neukirch’s approach [N].
Below is a modified system of axioms of class formations (when applied to topo-

logical K -groups) which imposes weaker restrictions than the classical axioms (cf.

section 11).

(Al). Thereisa 7.-extension of F.

In the case of higher local fieldslet Fpy/F be the extension which correspondsto
ngp/Ko: Fpur = Ug,py=1F (11); the extension Fp, is called the maximal purely un-
ramified extension of F'. Denote by Frobg thelifting of the Frobenius automorphisms
of K3¥/Ko. Then

Gal(Fpu/F) ~ 7, Frobp — 1.

(A2). For every finite separable extension F' of the ground field there is an abelian
group Ar suchthat F — Ap behaveswell (is a Mackey functor, see for instance
[D]; in fact we shall use just topological K -groups) and such that there is a
homomorphism v: Ar — 7Z associated to the choice of the Z-extension in (A1)
which satisfies

In the case of higher local fields we use the valuation homomorphism
v: KP(F) = Z
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of 6.4.1. Fromnow onwewrite K P(F) instead of Ap. Thekernel of v is VKX P(F).
Put

1

S S
LN Fpy: F| LT

br =

Using (A1), (A2) for an arbitrary finite Galoisextension L/F definethe reciprocity
map

Y/ p:Ga(L/F) — K®(F)/Ny,p KI®(L), o+~ Ns,plly mod Ny, pK®(L)

where X isthefixedfield of & and & isanelement of Gal(L pyr/F) suchthat &|; = o

and &|,, = Frobl, with apositiveinteger i. Theelement Iy of Ky (%) isany such

that vs(Ils) = 1; it is called a prime element of K P(). This map doesn't depend
on the choice of a prime element of K. P(%), since £L/T is purely unramified and

VEP(E) C Nsi VK (EL).

(A3). For every finite subextension L/F of Fp,/F (which is cyclic, so its Galois
group is generated by, say, a o)
(A38) |Kn"(F): NL/FK“’F’(L)l =
(A3b) 0 — KtOp(F) t"F’(L) t"F’(L) is exact;
(A3c) K°P(r) 222 gtop(r) Zer, }LOp(F) is exact.

Using (A1), (A2), (A3) one provesthat Y,z isahomomorphism [F2].

(A4). Forevery cyclic extensions L/F of prime degree with a generator o and a cyclic
extension L'/F of the same degree
(Ada) KO(L) 122 k') N/, gOP(F) s exact;
(Adb) |Kx"(F) : Np/pKn®(L)| =
(A4c) Np pKiP(L')= Ny pKiP(L)= L=L".
If al axioms (A1)—~(A4) hold then the homomorphism Y,z induces an isomor-
phism [F2]

Y 5 Gal(L/F)® — K\P(F)/Np,p Ki®(L).

The method of the proof is to define explicitly (as a generalization of Hazewinkel's
approach [H]) a homomorphism

VP KIP(F) /Ny p KXP(L) — Gal(L/F)®

and then show that \¥%) o Y&, . isthe indentity.
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10.2. Characteristic p case

Theorem 1 ([F1], [F2]). In characteristic p all axioms (A1)-(A4) hold. So we get the
reciprocity map ¥, and passing to the limit the reciprocity map

¥y K'P(F) — Gal(F®/F).

Proof. See subsection 6.8. (A4c) can be checked by a direct computation using the
proposition of 6.8.1 [F2, p. 1118-1119]; (A3b) for p-extensions seein 7.5, to check it
for extensions of degree primeto p isrelatively easy [F2, Th. 3.3]. O

Remark. Note that in characteristic p the sequence of (A3b) is not exact for an
arbitrary cyclicextension L/F (if L ¢ Fpy ). Thecharacteristic zero caseis discussed
below.

10.3. Characteristic zero case. |

10.3.1. prime-to-p-part.
Itisrelatively easy to check that all the axiomsof 10.1 hold for prime-to- p extensions
and for

K, (F) = K, ®(F)/VE.®(F)
(note that VK P(F) = No.p)=1 IKP(F)). This supplies the prime-to- p-part of the
reciprocity map.

10.3.2. p-part.
If up < F* then dl the axioms of 10.1 hold; if x, £ F* then everything with
exception of the axiom (A3b) holds.

Example. Let k = Q,({p). Let w € k be a p-primary element of k& which means
that k(¢/w)/k isunramified of degree p. Then due to the description of K, of alocal
field (see subsection 6.1 and [FV, Ch.IX §4]) there is a prime elements = of k such
that {w, 7} isagenerator of Kp(k)/p. Since a = iy pmy{w, 7} € pKa(k(/w)),
the element a liesin ;1 IKo(k(g/w)). Let F = k{{t}}. Then {w, =} §§pK;0p(F)
and i) p(ym){w, 7} =0 in K3 (F(3/w)).
Since al other axioms are satisfied, according to 10.1 we get the reciprocity map
Y, Ga(L/F) — KIP(F)/Ny/p KiP(L), o+ Nsplls

for every finite Galois p-extension L/F.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



08 I. Fesenko

To study its properties we need to introduce the notion of Artin—Schreier trees
(cf. [F3]) as those extensions in characteristic zero which in a certain sense come
from characteristic p. Not quite precisely, there are sufficiently many finite Galois
p-extensions for which one can directly define an explicit homomorphism

K P(F)/ Ny p KP(L) — GA(L/F)®
and show that the composition of Y%, with it is theidentity map.

10.4. Characteristic zero case. |1: Artin—Schreier trees

10.4.1.

Definition. A p-extension L/F is called an Artin—Schreier tree if thereis a tower of
subfields F = Fo — F; — --- — F,, = L suchthat each F;/F;_; iscyclic of degree p,
F;,=F;,_1(a), o —a € F;_1.

A p-extension L/F iscalled astrong Artin-Schreier tree if every cyclic subexten-
son M/E of degreep, FC EC M C L, isoftype E = M(a), a? —a € M.

Call an extension L/F totally ramified if f(L|F)=1 (i.e. LN Fpy = F).

Properties of Artin—Schreier trees.

(1) if pp £ F* then every p-extension is an Artin-Schreier tree; if u, < F* then
F(%/a)/F isan Artin-Schreier treeif and only if aF*? < Vg F*P.

(2) foreverycyclictotally ramified extension L/ F of degree p thereisaGaloistotally
ramified p-extension E/F suchthat E/F isan Artin-Schreiertreeand E D L.
For example, if u, < F*, F istwo-dimensional and t¢1,t, is asystem of local
parametersof F, then F({/t1)/F isnot an Artin-Schreier tree. Findan ¢ € Vg \ V&
suchthat M/F ramifiesalong ¢t1 where M = F({/e). Let t1 p,t2 € F beasystem

of local parametersof M. Then ¢1¢,}, isaunitof M. Put E = M ({/tat;},). Then

E D F(¥/t1) and E/F isan Artin—Schreier tree.

(3) Let L/F beatotdly ramified finite Galois p-extension. Then there is a totally
ramified finite p-extension Q/F suchthat LQ/Q isastrong Artin-Schreier tree
and L pur N Q pur = Fpur.

(4) For every totally ramified Galois extension L/F of degree p whichisan Artin—
Schreier tree we have

bL pur (Klzop(L pur)Gal (L/F)) =pZ

where v isthevaluation map definedin 10.1, K P(L pur) = lim KP(M) where
M/ L runsover finite subextensionsin L pyr /L and the limit is taken with respect
to the maps i, induced by field embeddings.
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Proposition 1. For a strong Artin-Schreier tree L/F the sequence

L pur / Fpur

N
1 — Ga(L/F)® % VKP(L ny)/I(L|F) VEXP(Fpu) — 0
is exact, where g(o) = oT1 — 1, vz (IT) =1, I(L|F) = (ca — a: a € VEP(Lpur))-

Proof. Inductionon |L : F| using the property Ny, /., I(L|F) = I(M|F) for a
subextension M/F of L/F. O

10.4.2. Asageneralization of Hazewinkel's approach [H] we have
Corollary. For a strong Artin-Schreier tree L/F define a homomorphism

¥, VK®P(F) /Ny pVK(L) — Ga(L/F)®, aw g~ ((Frobg, —1)g)
where Ny, /rolB = ir/Fp,@ and Frobg is defined in 10.1.

Proposition 2. W r o Y¥, 1 Gal(L/F)® — Gal(L/F)® is the identity map; so for
a strong Artin-Schreier tree Y%D/F is injective and W, is surjective.

Remark. Astheexampleabove shows, onecannot define \¥' 1, for non-strong Artin—
Schreier trees.

Theorem 2. Y&

7p is an isomorphism.

Proof. Use property (3) of Artin—Schreier trees to deduce from the commutative dia-
gram

Ga(L0/Q) ~2/% K™(Q)/Npo/oKP(LQ)
l |

Ga(L/F) —%5 K(F)/NyrK®(L)

that Yz, is a homomorphism and injective. Surjectivity follows by induction on
degree. O

Passing to the projective limit we get the reciprocity map
¥ KYP(F) — Gal(F®/F)
whoseimagein densein Gal(F®/F).

Remark. For another slightly different approachto deduce the propertiesof Y 1,/ see
[F1].
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10.5

Theorem 3. The following diagram is commutative

K®(F) 5,  Gd(F®/F)

| l

Y
K, P (Kpo1) — = GA(KP /K, 1).

Proof. Follows from the explicit definition of Yz, since 0{t1, ...,t,} isaprime
element of K\ (K,_1). 0

Existence Theorem ([F1-2]). Every open subgroup of finite index in KLOp(F) is the
norm group of a uniquely determined abelian extension L/F.

Proof. Let N be an open subgroup of K °P(F) of primeindex 1.

If p#1, thenthereisan a € F* suchthat N isthe orthogonal complement of (a)
with respect to ¢(@~1/! where ¢ isthe tame symbol defined in 6.4.2.

If char(F) = p =1, then thereisan a € F such that N is the orthogona
complement of (a) with respectto (, 11 definedin 6.4.3.

If char(F) =0,l =p, pp, < F*, thenthereisan a € F* such that N isthe
orthogonal complement of (a) with respectto V3 definedin 6.4.4 (seethe theoremsin
8.3). If u, £ F* thenpassto F'(u,) and then back to F using (|F(up) : F|,p) = 1.

Dueto Kummer and Artin—Schreier theory, Theorem 2 and Remark of 8.3 wededuce
that N = Ny, »KnP(L) for an appropriate cyclic extension L/F.

The theorem follows by induction on index. 0

Remark 1. From the definition of K.° it immediately follows that open subgroups
of finite index in K,,(F) are in one-to-one correspondence with open subgroups in
KLOP(F). Hencethe correspondence L — N,/ r Ky (L) isaone-to-onecorrespondence
between finite abelian extensions of F and open subgroups of finite index in K,,(F).

Remark 2. If Kg is perfect and not separably p-closed, then thereis ageneralization
of the previous class field theory for totally ramified p-extensions of F (see Remark
in 16.1). Thereis aso ageneralization of the existence theorem [F3].

Corollary 1. The reciprocity map ¥ r: KiP(F) — Gal(L/F) is injective.

Proof. Usethe corollary of Theorem 1in 6.6. 0
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Corollary 2. For an element T € KXP(F) such that vx(II) = 1 there is an infinite
abelian extension Frj/F such that

FabzppurFH, Fou NF = F

and 1 € N,z Kn (L) for every finite extension L/F, L C Fr.

Prablem. Construct (for n > 1) the extension Fpy explicitly?

(D]

[F1]

[F2]

[F3]
[F4]

[F3]
[FV]

[H]
[N]
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11. Generalized class formations
and higher class field theory

Michael Spie

Le K (K=K,,K,_1,...,Kp) bean n-dimensional local field (whose last residue
field isfinite of characteristic p).

Thefollowing theorem can be viewed asageneralization to higher dimensional local
fields of the fact Br(F) = Q/Z for classical local fields F' with finite residue field
(see section 5).

Theorem (Kato). There is a canonical isomorphism
h: H™Y(K, Q/Z(n)) = Q/Z.

Kato established higher local reciprocity map (see section 5 and [K1, Th. 2 of §6]
(two-dimensional case), [K2, Th. I1], [K3, §4]) using in particular this theorem.

I nthis section we deducethereciprocity map for higher local fieldsfrom thistheorem
and Bloch—Kato's theorem of section 4. Our approach which uses generalized class
formations simplifies Kato’s original argument.

We use the notations of section 5. For a complex X the shifted-by-n complex
X'[n] isdefined as (X [n])? = X", dx-[,,] = (—1)"dx-. For a(pro-)finitegroup G
the derived category of G-modulesisdenoted by D(G).

11.0. Classical class for mations

We begin with recalling briefly the classical theory of class formations.

A pair (G,C) consisting of a profinite group G and a discrete G-module C' is
called aclass formation if

(C1) HY(H,C) =0 for every open subgroup H of G.

(C2) Thereexistsanisomorphism inv: H?(H, C) = Q/Z for every open subgroup
H of G.
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(C3) For al pairs of open subgroups V < U < G thediagram
H3U,C) —= HV,0)

linvu linvv
vz U gz

IS commutative.

Then for a pair of open subgroups V- < U < G with V normal in U the group
H2(U/V,CV) ~ ker(H*(U,C) — H2(V,()) is cyclic of order |U : V|. It has
a canonical generator uy,,x Which is called the fundamental class; it is mapped to
1/|L : K|+ Z under the composition

inf

m2w/v,cy N 54w, o) M @z
Cup product with uy, /& induces by the Tate-Nakayamalemma an isomorphism
H %W /v,z) = HY(U/V,C").

Hencefor ¢ =0 weget CU/ cory/y(CV) = (U/V)®.

An example of a class formation is the pair (G, G,,) consisting of the absolute
Gadlois group of alocd field K and the Gx-module G, = (KP)*. We get an
isomorphism

K*/NpxL* = Ga(L/K)®
for every finite Galois extension L/ K.

In order to give an analogous proof of the reciprocity law for higher dimensional
local fields one has to work with complexes of modules rather than a single module.

The concepts of the class formations and Tate's cohomology groups as well as the
Tate-Nakayamalemma have a straightforward generalization to bounded complexes of
modules. Let us begin with Tate’'s cohomology groups (see [Kn] and [Ko1]).

11.1. Tate's cohomology groups

Let G be a finite group. Recall that there is an exact sequence (called a complete
resolution of G)

X o X2 o x o x0 xt

of free finitely generated Z[G]-modules together with amap X° — 7Z such that the
sequence

X1 x5 750

iS exact.
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Definition. Let G beafinite group. For aabounded complex
A o AT A0 At

of G-modulesTate'scohomology groups Ha (G, A") aredefined asthe (hyper-)cohomo-
logy groups of the single complex associated to the double complex

Y% = Homg(X %, A7)
with suitably determined sign rule. In other words,
HY(G, A)) = HY(Tot(Hom(X ", A))€).
Remark. If A isa G-module, then ﬁq(G,A') coincides with ordinary Tate's coho-
mology group of G with coefficientsin A where
A ..>0—>A4A—-50— ... (Aisatdegree0).

L emma (Tate-Nakayama-Koya, [Ko2]). Suppose that
0) ﬁl(H, A’) =0 for every subgroup H of G;
(ii) thereis a € ﬁZ(G,A') suchthat resg, 5 (a) generates ﬁZ(H,A') and is of order
|H| for every subgroups H of G.
Then

H(G,7) =% HYG,A)

is an isomorphism for all q.

11.2. Generalized notion of class formations

Now let G be aprofinite group and C* abounded complex of G-modules.

Definition. Thepair (G, C") iscaled ageneralized class formation if it satisfies (C1)—
(C3) above (of course, we have to replace cohomology by hypercohomology).

Asin the classical case the following lemma yields an abstract form of class field
theory

Lemma. If (G, C") is a generalized class formation, then for every open subgroup H
of G there is a canonical map

pu HY(H,C') — H®

such that the image of py is dense in H® and such that for every pair of open
subgroups V < U < G, V normalin U, py induces an isomorphism

HOU, C")/ coryy HAV,C) = (U/V)P.
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11.3. Important complexes

In order to apply these concepts to higher dimensional class field theory we need
complexes which are linked to K -theory as well as to the Galois cohomology groups
H™"Y(K, Q/Z(n)). Natural candidates are the Beilinson-Lichtenbaum complexes.

Conjecture([Li1]). Let K be afield. There is a sequence of bounded complexes Z(n),

n > 0, of Gx-modules such that

(@ 7Z(0) =7 concentrated in degree 0; Z(1) = G,,[-1];

(b) Z(n) is acyclic outside [1,n];

(c) there are canonical maps Z(m) ®" Z(n) — Z(m +n);

(d) H™NK,Z(n))=0;

(e) for every integer m there is a triangle Z(n) = Z(n) — Z/m(n) — Z(n)[1] in
D(Gk);

(f) H™(K,Z(n)) is identified with the Milnor K-group K, (K).

Remarks. 1. Thisconjectureisvery strong. For example, (d), (€), and (f) would imply
the Milnor—Bloch—Kato conjecture stated in 4.1.

2. There are several candidates for Z(n), but only in the case where n = 2 proofs
have been given so far, i.e. there exists a complex Z(2) satisfying (b), (d), (e) and (f)
(see[Li2)).

By using the complex Z(2) defined by Lichtenbaum, Koya proved that for 2-
dimensional locdl field K the pair (Gk,7Z(2)) is a class formation and deduced the
reciprocity map for K (see[Kol]). Oncethe existence of the Z(n) with the properties
(b), (d), (e) and (f) above is established, his proof would work for arbitrary higher
dimensional loca fields as well (i.e. (Gk,Z(n)) would be a class formation for an
n-dimensional local field K).

However, for the purpose of applications to local class field theory it is enough to
work with the foll owing simple complexeswhich wasfirst considered by B. Kahn [Kn].

Definition. Let Z(n) € D(Gx) bethe complex G,®"[—n].

Propertiesof Z(n).

(@) itisacyclicoutside [1,n];

(b) for every m prime to the characteristic of K if the latter is non-zero, thereis a
triangle

Z(n) = Z(n) — Z/m(n) — Z(n)[1]
in D(Gg);
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(c) for every m asin (b) thereisacommutative diagram

K*®n  _—_  HY(K,Z(n))

| |
K,(K)/m —— H"(K,Z/m(n)).

where the bottom horizontal arrow isthe Galois symbol and the left vertical arrow
isgivenby 21 ® --- ® z, — {z1, ...,2z,} mod m.
The first two statements are proved in [Kn], the third in [ Sp].

11.4. Applicationsto n-dimensional local classfield theory

Let K bean n-dimensional local field. For simplicity we assume that char (K) = 0.
Accordingto sections3 and 5 for every finite extension L of K thereareisomorphisms

(1) Kn(L)/m = H™(L,Z/m(n)), H"™(L,Q/Z(n)) = Q/Z.
Lemma. (G, Z(n)[n]) is a generalized class formation.

Thetriangle (b) aboveyields short exact sequences
0 — HY(K,Z(n))/m — H'(K,Z/m(n)) — nH"Y(K,Z(n)) — 0
for every integer i. (1) and the diagram (c) show that mH" YK, Z(n)) =0 for all
m 7 0. By property (a) above H "*1(K, Z(n)) isatorsion group, hence = 0. Therefore
(C1) holdsfor (G, Z(n)[n]). For (C2) notethat the above exact sequencefor i =n +1
yields H™(K,Z /m(n)) — , H"*2(K,7(n)). By taking the direct limit over al m
and using (1) we abtain

H™2(K,Z(n)) = H""Y(K,Q/Z(n)) = Q/Z.

Now we can establish the reciprocity map for K: put C* = Z(n)[n] andlet L/K be
afinite Galois extension of degree m. By applying abstract class field theory (see the
lemmaof 11.2) to (G, C") we get

Kn(K)/Np/k Kn(L) = H"(K, Z/m(n))/ cor H*(L, Z/m(n))
= HOK,C")/m/ cor HO(L,C")/m = Gal(L/K)®.
For the existence theorem see the previous section or Kato's paper in this volume.
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12. Two types of complete discrete valuation fields

Masato Kurihara

In this section we discuss results of a paper [Kul] which is an attempt to understand
the structure of the Milnor K -groups of complete discrete valuation fields of mixed
characteristicsin the case of an arbitrary residuefield.

12.0. Definitions

Let K beacompletediscretevaluation field of mixed characteristics (0, p) withthering
of integers Ok . We consider the p-adic completion Qp  of Q%K/Z asinsection 9.
Note that
(@ If K isafinite extensionof Q,, then
Q. = (0Ok/Dg g, )dn

where D q, isthedifferentof K/Q,, and 7 isaprime element of K.
(b) If K =k{t1}}... {tn—1}} with |k : @,| < oo (for the definition see subsec-
tion 1.1), then

le = (O /Drjg,)dm @ Ogdt1 ® -+ @ Ogdt, 1

where w isaprime element of Oy.

But in general, the structure of ﬁ(lgx is alittle more complicated. Let F be the
resduefield of K, and consider a natural map

.0l 1
01 Qg — Qp.

Definition. Let TorsQ1 be the torsion part of Ql O f w(Torsﬁ},)K) =0, K is
said to be of type I, and sald to be of type Il otherW|se

Soif K isafieldin (a) or (b) asabove, K isof typel.
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Let 7 beaprime element and {¢;} bealifting of a p-baseof F'. Then, thereisa
relation

adm + Z b;dt; =0

with a, b; € Ox. Thefield K isof typel if and only if vi(a) < min; vk (b;), where
v 1Sthe normalized discrete valuation of K.

Examples.
(D If vg(p) isprimeto p, orif F isperfect, then K isof typel.
(2) Thefield K = Q, {{t}}(m) with 7P = pt isof typell. In this case we have

ﬁ:l@K ~ OK/pGB OK

The torsion part is generated by dt — 7?~1dr (we have pdt — pr?~1dr = 0), s0
o(dt — mP~1dr) = dt # 0.

12.1. TheMilnor K-groups

Let = beaprime element, and put e = vk (p). Section 4 contains the definition of the
homomorphism

-1 -2
pm QL " @ QL — grp Ky (K).

Theorem. Put £ = IengthoK(Torsfz%)K).
(@ If K isof typel,thenfor m > £+1+2¢/(p — 1)

is surjective.
(b) If K isof type Il, then for m > £ +2e/(p — 1) and for ¢ > 2

. a-2
pm|QqFfz. QL — grp Ky (K)
is surjective.

For the proof we used the exponential homomorphism for the Milnor K -groups
defined in section 9.

Corollary. Define the subgroup U; K,(K) of K,(K) as in section 4, and define the

subgroup V;K,(K) as generated by {1+M?%, 0%, ..., 0%} where Mx is the max-

imal ideal of Og.

(@ If K is of type I, then for sufficiently large m we have U, K,(K) = Vi, K(K).

(b) If K isof typell, then for sufficiently large m, we have V,,, K;(K) = Up,+1K4(K).
Especially, gr,, K,(K) = 0 for sufficiently large m prime to p.
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Example. Let K = Q, {{t}}(n) where n? = pt asin Example (2) of subsection 12.0,
and assume p > 2. Then, we can determine the structures of gr,,, K,(K) as follows
([Ku2]).

For m < p+1, grp, Ky(K) isdetermined by Bloch and Kato ([BK]). We have
an isomorphism groK»(K) = Ko(K)/U1K2(K) ~ Ky(F) @ F*, and gr, K,(K) is
a certain quotient of QL /dF @ F (cf. [BK]). The homomorphism p,, induces an
isomorphism from

’Q}—,, ifil<m<p—-1lorm=p+1
0 ifi >p+2andiisprimetop
F/F? if m=2p
(z — {1+ prPz, w} induces thisisomorphism)
et if m =npwithn > 3
L (z — {1+ p"z, 7} induces thisisomorphism)

onto gr,,, K2(K).

12.2. Cyclic extensions

For cyclic extensions of K, by the argument using higher local class field theory and
the theorem of 12.1 we have (cf. [Kul])

Theorem. Let £ be as in the theorem of 12.1.

(& If Kisoftypeland i > 1+£+2¢/(p— 1), then K does not have ferociously ram-
ified cyclic extensions of degree p*. Here, we call an extension L/K ferociously
ramified if |L : K| = |kg : kx|ins Where kr, (resp. kg ) is the residue field of L
(resp. K).

(b) If K isoftypelland ¢ > £+2e/(p — 1), then K does not have totally ramified
cyclic extensions of degree pt.

The bounds in the theorem are not so sharp. By some consideration, we can make
them more precise. For example, using this method we can give a new proof of the
following result of Miki.

Theorem (Miki, [M]). If e < p— 1 and L/K is a cyclic extension, the extension of
the residue fields is separable.

For K = Q, {{t}}(¥/pt) with p > 2, we can show that it has no cyclic extensions
of degree pS.

Miki also showed that for any K, thereisaconstant ¢ depending only on K such
that K has no ferociously ramified cyclic extensions of degree p® with i > c.
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For totally ramified extensions, we guess the following. Let F*~ be the maximal
perfect subfield of F, namely FP~ = (| FP". We regard the ring of Witt vectors
W (FP™) asasubring of Ok, and write ko for the quotient field of W (F?™), and
write k for the algebraic closure of kg in K. Then, k isafinite extension of kg, and
is a complete discrete valuation field of mixed characteristics (0, p) with residue field
Fr~

Conjecture. Suppose that e(K|k) > 1, i.e. a prime element of O is not a prime
element of Ok . Then there is a constant ¢ depending only on K such that K has no
totally ramified cyclic extension of degree p® with i > c.
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13. Abelian extensions of
absolutely unramified complete discrete valuation fields

Masato Kurihara

Inthis section we discussresultsof [K]. Weassumethat p isanodd primeand K isan
absolutely unramified complete discrete valuation field of mixed characteristics (O, p),
so p isaprime element of thevaluationring O . Wedenoteby F' theresiduefield of
K.

13.1. The Milnor K-groupsand differential forms

For ¢ > 0 weconsider theMilnor K -group K ,(K), andits p-adic completion IA{q(K)
asinsection 9. Let Ull?q(K) be the subgroup generated by {1+pOk,K*, ..., K*}.
Then we have:

Theorem. Let K be as above. Then the exponential map exp, for the element p,
defined in section 9, induces an isomorphism

exp,: Q%1 /pdQ% % 5 UL K (K).

The group I?q(K) carries arithmetic information of K, and the essential part
of K,(K) is UrK,(K). Sincethe left hand side Q% /pdQ% 2 can be described
explicitly (for example, if F has a finite p-base I, Ql is a free O g-module
generated by {dt;} where {t;} arealifting of elements of I ) we know the structure
of Uqu(K ) completely from the theorem.

In particular, for subquotients of IA{q(K ) we have:

Corollary. The map pp,: Q}_l ® Q}_Z — Orm K, (K) defined in section 4 induces
an isomorphism

QLB 1951 3 gr, K, (K)
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where Bm_lﬂﬁ’;l is the subgroup of Q‘};l generated by the elements apjdloga A
dlogbi A ---Adlogbg_o with 0< j <m —1and a, b; € F*.

13.2. Cyclic p-extensionsof K

Asinsection 12, using someclassfield theoretic argument we get arithmetic information
from the structure of the Milnor K -groups.

Theorem. Let W,,(F) be the ring of Witt vectors of length n over F. Then there
exists a homomorphism
®,,: HY(K,7./p") = Homeon(Gal(K / K), Z./p™) — W,,(F)

for any n > 1 such that:
(1) The sequence

0 — HYKu/K,Z/p") — HYK,Z/p") 22 Wn(F) — 0
is exact where K is the maximal unramified extension of K.
(2) The diagram
HYK,Z/p"") —— HXK,Z/p")

lq)n+l lq)n

Woni(F) — ——  Wa(F)
is commutative where F is the Frobenius map.
(3) The diagram
HYK,Z/p") —— H'K,Z/p™"

- Jo

Wa(F)  ——  Wya(F)
is commutative where V((ag, ...,a,-1)) = (0, ag, ..., a,—1) isthe Verschiebung
map.
(4) Let E be the fraction field of the completion of the localization Og[T]y) (so the
residue field of E is F(T)). Let

X Wi (F) x Wn(F(T)) % pn BI(F(T)) @ HYF(T),Z/p"™)

be the map defined by A(w,w") = (i2(p" ~twdw'), i1 (ww')) where ,» Br(F(T)) is
the p™-torsion of the Brauer group of F(T'), and we consider p™ lwdw' as an
element of WnQ%(T) (W5 Q7 is the de Rham Witt complex). Let

i1: Wi (F(T)) — HYF(T),Z/p™)
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be the map defined by Artin—Schreier-Witt theory, and let
i2: Wn Q) — pn BI(F(T))
be the map obtained by taking Galois cohomology from an exact sequence
0 — (BT J(F@YP))" — Walpryw — Walryw — 0.
Then we have a commutative diagram

HY(K,Z/p")x E* [(E*)P" —— Br(E)

ol e I
Wa(F) X Wn(F(T)) —>— n Bi(F(T)) ® HY(F(T), Z/p")
where 1 is the map in subsection 5.1, and

n—1ln—i

Yn((ag, ... an_1)) = exp(z Epﬁjé,ipnfi—j)

i=0 j=1

(a; is alifting of a; to Ok ).
(5) Supposethat » =1 and F is separably closed. Then we have an isomorphism

®: HY(K,Z/p) ~ F.

Suppose that ®1(x) = a. Then the extension L/K which corresponds to the
character x can be described as follows. Let @ be a lifting of a to Og. Then
L = K(x) where z is a solution of the equation

X? - X =a/p.
The property (4) characterizes @,,.

Corollary (Miki). Let L = K(z) where 2P — z = a/p with some a € Og. L is
contained in a cyclic extension of K of degree p™ if and only if

a mod p € PP
Thisfollows from parts (2) and (5) of the theorem. More generally:

Corollary. Let x be a character corresponding to the extension L/K of degree p™,
and @,,(x) = (ag, ---,an_1). Then for m > n, L is contained in a cyclic extension

of K of degree p™ if and only if a; € F?" " forall 4 suchthat 0 < i < n — 1.

Remarks.

(1) Fesenko gave anew and simple proof of this theorem from his general theory on
totally ramified extensions (cf. subsection 16.4).
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(2) Forany g > 0 we can construct a homomorphism
®,: H(K,Z/p"(q — 1)) — W,Q%L*

by the same method. By using this homomorphism, we can study the Brauer group
of K, for example.

Problems.
(1) Let x,; bethecharacter of the extension constructed in 14.1. Calculate @, (x.y)-

(2) Assumethat F' isseparably closed. Then we have an isomorphism
O, HY(K, Z/p") = Wa(F).

Thisisomorphismisreminiscent of theisomorphism of Artin—Schreier—\Witt theory.
For w = (ag, ...,a,_1) € Wy(F), can one give an explicit equation of the
corresponding extension L/K using ag, ...,a,—1 for n > 2 (where L/K
correspondsto the character xy suchthat ®,,(x) = w)?
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14. Explicit abelian extensions of
complete discrete valuation fields

Igor Zhukov

14.0

For higher class field theory Witt and Kummer extensions are very important. In fact,
Parshin’s construction of classfield theory for higher local fields of prime characteristic
[P] isbased on an explicit (Artin—Schreier—Witt) pairing; see [F] for ageneralization to
the case of a perfect residue field. Kummer extensionsin the mixed characteristic case
can be described by using class field theory and Vostokov’s symbol [V 1], [V2]; for a
perfect residuefield, see [V 3], [F].

An explicit description of non Kummer abelian extensions for a complete discrete
valuation field K of characteristic O with residue field kx of prime characteristic p
is an open problem. We are interested in totally ramified extensions, and, therefore,
in p-extensions (tame totally ramified abelian extensions are always Kummer and their
class field theory can be described by means of the higher tame symbol defined in
subsection 6.4.2).

In the case of an absolutely unramified K there is a beautiful description of all
abelian totally ramified p-extensionsin terms of Witt vectors over kx by Kurihara
(see section 13 and [K]). Below we give another construction of some totally ramified
cyclic p-extensionsfor such K. The construction is complicated; however, the exten-
sions under consideration are constructed explicitly, and eventually we obtain a certain
description of the whole maximal abelian extension of K. Proofsaregivenin [VZ].

14.1

Werecall that cyclic extensionsof K of degree p can be described by means of Artin—
Schreier extensions, see [FV, 111.2]. Namely, for acyclic L/K of degree p we have
L =K(z), 2 —z = a, where vg(a) = -1 if L/K istotally ramified, and vx(a) =0
if L/K isunramified.
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Notice that if vk (a1 — ap) > 0, then for corresponding cyclic extensions L1/ K
and Ly/K wehave L1 Ky = LoK . (If vg (a1 —ap) > 1, then, moreover, L1 = L;.)
We obtain immediately the following description of the maximal abelian extension of
K of exponent p: K®? = KPP [, K4, where K, = K(x), «f —z = —p~d, and
d runsover any fixed system of representativesof k3 in Ox. Thisisapart of amore
precise statement at the end of the next subsection.

14.2

It is easy to determine whether a given cyclic extension L/K of degree p can be
embedded into a cyclic extension of degree p™, n > 2.

Proposition. In the above notation, let b be the residue of pa in kx. Then thereis a
n—1
cyclic extension M/K of degree p™ suchthat L C M if andonlyif b € kx? .

The proof is based on the following theorem of Miki [M]. Let F be afield of
characteristic not equal to p andlet (, € F. Let L = F(o), o =a € F. Then
a € F**Np(,.) rF((pn)* if and only if thereis acyclic extension M/F of degree
p™ suchthat L C M.

Corollary. Denote by K®»" (respectively Kfj‘?’pn ) the maximal abelian (respectively
abelian unramified) extension of K of exponent p™. Choose A4; C Ok, 1 <7 < n,
in such a way that {d : d € A;} is an F,-basis of kﬁ’;_l/kﬁ’; for i <n—1 and an
[F,, -basis of kﬁ{n_l for i =n. Let K; 4 (d € A;) be any cyclic extension of degree p*
that contains z with ¥ — 2z = —p~1d. Then K®®" /K isthe compositum of linearly
disjoint extensions K; 4/K (1< i< n; d runsover A;) and KS‘P”’"/K.

n—1
Fromnow on, let p > 3. Forany n > 1 andany b € k% , we shdl give
a construction of a cyclic extension K,, 4/K of degree p™ such that =z € K, 4,
z? —z = —p~1d, where d € Ok issuchthat itsresidue d isequal to b.

14.3

Denote by G the Lubin-Tate formal group over Z, such that multiplication by p init
takestheform [p]g(X) = pX + XP.

Let O bethering of integers of thefield £ defined in (2) of Theorem 13.2, and v
thevaluation on E.
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Proposition. Thereexist g; € O, 1 € Z, and R; € O, ¢ > 0, satisfying the following
conditions.
(D go=1 mod pO, g; =0 mod pO for : #O0.
(2) Ro=T.
. 4 i—2 -
() vlg) > —i+2+ 1]+ [52] for i < 1.
(4) Let g(X) = ¢; XD R(X,T)=Y R;X*®—D*1 Then
—o0 i=0
9(X) t¢ [pleR(9(X),T) = g(X +¢ R([plc X, T")).

Remark. We do not expect that the above conditions determine g; and R; uniquely.
However, in[VZ] acertain canonical way to construct (g, R) by aprocessof the p-adic
approximation is given.

Fix asystem (g, R) satisfying the above conditions. Denote

§=3 Sm)xC IV =p-1x+ .
=0
the serieswhich isinverseto R with respect to substitution in O[[X]].

Theorem. Let d € O%. Consider B, ..., 3, € K% such that

B~ Br=-p 1Y i@ )(-p),

i>0
+oo ) )
By —B;=—p Y gl ) (-p) BV, =2

Then K ,n1=K(B, -..,B,) isacyclic extension of K of degree p™ containing
1

a zero of the polynomial X? — X +p~14?" .
Remark. Wedo not know which Witt vector correspondsto K= _.»—1/K inKurihara's
theory (cf. section 13). However, one could try to construct a parallel theory in which
(the canonical character of) this extension would correspond to (Ep"fl,o, 0,...) €

14.4

If one isinterested in explicit equations for abelian extensions of K of exponent p™
for afixed n, thenit issufficient to compute acertain p-adic approximationto g (resp.
R) by polynomids in Z)[T,T~1, X, X1 (resp. Z)[T,T~1, X]). Let us make
this statement more precise.
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In what follows we consider afixed pair (g, R) constructed in [VZ]. Denote
K, et =K By, .., 5).
Let v be the (non-normalized) extension of the valuation of K to K

'U(/Bj) = _p_l_ _p_j’ jzla ceey N
Weassert that in the defining equationsfor K |

with (g, R) such that

Then

dpn—l .

g1 thepair (g, R) canbereplaced

(1) (@ —g:) >n+maXj=1, p1(—j—i-p I +p t4p 2+ . +p7), i€,
and
) o(R; —R)>n—i, i>0.

Theorem. Assume that the pair (g, R) satisfies (1) and (2). Define S as R~1. Let
~ ~ ~ no1 .
By —B1=-p > Sid" )(-p),
i>0

+00
B =B =—p 1 G )-p)BE Y, 2

Then K(Ela ’En) :K(ﬁl’ ’ﬂn)'

Proof. Itiseasytocheck by inductionon j that Ej € K]. g1 and fu(ﬁj—ﬁj) >n—j,
i=1 ...,n.

Remark. For afixed n, one may take R;=0fori > n, g; = 0 for al sufficiently
small or sufficiently large 1.

14.5

If weconsider non-strictinequalitiesin (1) and (2), then we obtain an extension K oL
such that I?n’dpn_lKur = Kn’dpn_lKur. In particular, let n = 2. Calculation of (R, g)
in [VZ] shows that

0, 1< =1

gi = p' 2 ) Z——l
1+p.- T2=1(1—7TP), i=0

Therefore, one may take §; =0 for i < -1 ori >0, g_1 =p- Tlfzp‘l, Go =

1+p- %(1— T?). Further, onemay take R = TX . Thus, we obtain the following
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Theorem. For any d € 0%, let K14 = K(y), where y? — y = —p~'d. Next, let
K> 40 = K(y1,y2), Where

v —y1=—p 'd7,
1- 1-
yg—yz=—p4y1+ﬁ4-é—%:&y?”z—é—%:j¥l—d5yr
Then
1. All I?l,d/K are cyclic of degree p, and all I?z,dp/K are cyclic of degree p2.
2. Kab’Pz/K is the compositum of linearly disjoint extensions described below:
€) K 1,4/ K, where d runs over a system of representatives of an F), -basis of
(b I?z,dp /K, where d runs over a system of representatives of an I, -basis of
kr;
© K@ /K.

14.6

One of the goals of developing explicit constructions for abelian extensions would be
to write down explicit formulas for class field theory. We are very far from this goal
in the case of non Kummer extensions of an absolutely unramified higher local field.
However, the K -group involved in the reciprocity map can be computed for such fields
in atotally explicit way.

Let K be an absolutely unramified n-dimensional local field with any perfect
residuefield. Then[Z, §11] gives an explicit description of

UDKPK = {a,B1, ...,Bn_1} 1 a,B; € K*,v(a — 1) > 0).

Noticethat the structure of KiPK/U(1)KPK, i.e., the quotient group responsiblefor
tamely ramified extensions, iswell known. We cite herearesult in the simplest possible

case K = Q, {{t}}.
Theorem. Let K = Q, {{t}}.
1. Forevery a € UiKyP(K) there are n; € Z,, j € Z \ {0} which are uniquely

determined modulo p¥% )*1 and there is ng € Zy, Which is uniquely determined
such that

a= an{l—ptj,t}.
J

2. Forany j #0 we have
p'e D1 _pid 4} = 0.
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Proof. Use explicit class field theory of section 10 and the above mentioned theorem
of Miki.

Question. How does {1 — pt/,t} act on K, gon-1?

[F]
[FV]

LY

[M]

Ly

(V1]

(v2]

(V3]

[vZ]

[Z]
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15. On the structure of the Milnor K -groups
of complete discrete valuation fields

Jinya Nakamura

15.0. Introduction

For a discrete valuation field K the unit group K* of K has a natura decreasing
filtration with respect to the valuation, and the graded quotients of this filtration are
written in terms of the residue field. The Milnor K -group K,(K) is ageneralization
of the unit group and it also has a natural decreasing filtration defined in section 4.
However, if K is of mixed characteristic and has absolute ramification index greater
than one, the graded quotients of thisfiltration are known in some special casesonly.
Let K be acomplete discrete valuation field with residue field k& = kx; we keep
the notations of section 4. Put v, = v, .
A description of gr, K,(K) isknown in the following cases:
(i) (Bassand Tate [BT]) groK,(K) ~ K, (k) & K,_1(k).
(i) (Graham [G]) If the characteristic of K and k is zero, then gr, K (K) ~ Qz_l
foral n > 1.
(iii) (Bloch[B], Kato [Kt1]) If the characteristicof K and of k is p > O then

Orn K q(K) ~ coker (QZ_Z — Q1B QZ_Z/Bg‘Z)
where w  +— (C™*(dw), (—1)?m C~*(w) and where n > 1, s = v,(n) and
m=n/p°.
(iv) (Bloch—Kato [BK]) If K isof mixed characteristic (0, p), then
gr, K4(K) ~ coker (Qz_z — Qil/Bilg Qz_Z/Bg‘Z)

where w  +— (C™%(dw), (—1)?m C™*(w)) and where 1 < n < ep/(p — 1) for
e = vk (p), s =vp(n) and m =n/p*; and

grﬁKq(K)

~ coker (Qg—z — Q7 Y1+a0)BT @ QI 2 /(144 c)Bg—Z)
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where w +— ((1+aC)C *(dw), (—1)?m(1+a C) C *(w)) and where a isthe
residue class of p/7¢ for fixed prime element of K, s = vy(ep/(p — 1)) and
m =ep/(p — 1)p°.

(v) (Kurihara [Kul], see also section 13) If K is of mixed characteristic (0,p) and
absolutely unramified (i.e, vx(p) = 1), then gr,K,(K) ~ QI '/BI"] for
n>1.

(vi) (Nakamura[N2]) If K isof mixed characteristic (0,p) with p >2 and pte =
vi (p), then

asin (iv) (1< n<ep/(p—1)
QU YBIL (> ep/(p- 1)

Intsn

O Ky(K) ~ {

where [,, isthe maximal integer which satisfies n — l,e > e¢/(p — 1) and s,, =
vp(n — lye).

(vii) (Kurihara[Ku3]) If Kq isthe fraction field of the completion of the localization
Zp[T](py and K = Ko({/pT) for aprime p 7 2, then

asin(ivy (1<n<p)

k/kP (n = 2p)
grnKZ(K) = 1-2

kP (n=Ip,l 23

0 (otherwise).

(viii) (Nakamura[N1]) Let Kq bean absolutely unramified completediscreteval uation
field of mixed characteristic (0,p) with p > 2. If K = Ko({,)(¥/7) where  isa
prime element of Ko(¢,) such that dr?~ =0 in Qp ., then gr K (K) are
determined for all n > 1. Thisiscomplicated, so we or%itpthe detalls.

(ix) (Kahn [Kh]) Quotients of the Milnor K -groups of a complete discrete valuation
field K with perfect residue field are computed using symboals.

Recall that the group of units Uy x can be described as a topological Z,-module.
As a generalization of this classical result, there is an appraoch different from (i)-(ix)
for higher local fields K which usestopological convergence and

KP(K) = Ky(K)/ Miz11K4(K)

(see section 6). It provides not only the description of gr, K,(K) but of the whole
KP(K) in characteristic p (Parshin [P]) and in characteristic 0 (Fesenko [F]). A
complete description of the structure of K E,Op(K ) of some higher local fieldswith small
ramification is given by Zhukov [Z].

Below we discuss (vi).
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15.1. Syntomic complex and Kurihara’'sexponential homomor phism

15.1.1. Syntomic complex. Let A = Og andlet Ay bethe subring of A such that
A isacomplete discrete valuation ring with respect to the restriction of the valuation
of K, theresiduefield of Ag coincideswith k = kx and Ag isabsolutely unramified.
Let = beafixed primeof K. Let B = Ap[[X]]. Define

g =ker[B 2275 4]

9 =ker[B 227 4 ™% 4/p] =9 +pB.

Let D and J C D be the PD-envelope and the PD-ideal with respect to B — A,
respectively. Let I C D bethe PD-ideal with respectto B — A/p. Namely,

$]
_I’

DzB[, -j>o,a:ea], J=ker(D — A), I=ker(D— A/p).
].

Let JIr1 (resp. Il1) bethe r-th divided power, which istheideal of D generated by

J i .7
(5r030nmet), (o (35503500 9)).

Notice that I1% = JlO = p. Let 1"l = jlnl = D for anegative n. We define the
complexes Jl4 and 114 as

Jld =gld & jle-l g QL 4 jlo2d g 02— .. ]
M =(fld 4 fle- g, oL 4 le-dg, 02 — .. ]
where QL isthe p-adic completion of QL. Wedefine D = 1[% = (0],

Let T beafixed set of elements of Ay such that the residue classesof al T € T
in k forms a p-base of k. Let f be the Frobenius endomorphism of Aq such that
f@=1° forany T € T and f(z) = zP mod p forany = € Ag. Weextend f to
B by f(X)=XP,andto D naturally. For 0 < r < p and 0 < s, weget

fUMy cp'D,  F@Qp) Cp°Q,
since
fa) = @+ py)l! = @l + py)l = pl(@ — D1l + ),
dTy dT de dre? sdTy dT
— A - A =y = — A - AN —
I, T,) “rp ™ P T,

where z € 7, y is an element which satisfies f(z) = P + py, and T4, ..., Ts €
T U {X}. Thuswe can define
fq= 1%: JNeQL™ — DL
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for 0<r < p. Let F(q) and #'(q) be the mapping fiber complexes (cf. Appendix)
of

J[q] i D and 1ld i D

respectively, for ¢ < p. For simplicity, from now to the end, we assume p is large
enough to treat #(q) and '(q). #(q) is called the syntomic complex of A with
respect to B, and %'(q) is aso called the syntomic complex of A/p with respect to
B (cf. [Kt2]).

Theorem 1 (Kurihara [Ku2]). There exists a subgroup S? of HY(#(q)) such that
UxH(Z(q)) ~ U1 K,(A) where K,(A) = LiLan(A)/pn is the p-adic completion of
K,(A) (see subsection 9.1).

Outline of the proof. Let Ux(D ® ﬁ‘};l) be the subgroup of D ® ﬁ‘};l generated by
XDeQL !, DeQL?AdX and I ® QL and let
SI=Ux (DAL H/(dD@QL %+ (1 - £,)0 ® QLYY nUx(D ® Q% Y).

Theinfinite sum Zn>0 f7 (dz) convergesin D ® ﬁqB forz € Ux(D® ﬁ‘};l). Thus
we get amap

Ux(D® Q%Y — HY(S(q))

— (2, ) fi(dz))
n=0

and we may assume S? isasubgroup of H?(#(q)). Let E, bethe map

E,: Ux(D® Q%) — K, (A)
dry o dTy
Ty T,1

where E1(z) = exp o(zn20 f)(x) is Artin—Hasse’s exponential homomorphism. In
[Ku2] it was shown that £, vanisheson

@DRQL2+(1— f)J QL NUx(D @ QL),

hence we get the map

— {E'l(a:),Tl, . ,Tq_l},

E,: 87— K,(A).

Theimage of E, coincideswith Ull?q(A) by definition.
On the other hand, define s,: K,(4) — S by

sq({al, ++er0q})

_E( 1)1 11 f(az)) dal A A d@ /\fl(d@) A /\fl(daq)

ay a;—1 ai+1 aq
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(cf. [Kt2], compare with the series @ in subsection 8.3), where @ is a lifting of a

to D. One can check that s, 0o E; = —id. Hence S9 ~ Ulf{q(A). Note that if
¢p € K, then one can show UllA{q(A) ~ UlfA{q(K) (see[Ku4] or [N2]), thus we have
57 ~ U1 K ,(K). O

Example. We shall provethe equality s, o E, = —id in thefollowing simple case.
Let ¢ = 2. Takean element adT/T € Ux(D ® Q% %) for T € TU{X}. Then

ar
sqo0 E, (a?)

= 5,({F1@,T})
=5 ) 4(T)

_ %(logofoapozﬁ»@ —plogoexpozf?(@)d%

n>0 n>0
: (fl NACEDD fI‘(a)) a
n>0 n>0
_dT
= ey

15.1.2. Exponential Homomorphism. The usual exponential homomorphism

exp,: A — A*
mn
z — exp(nz) = Z o

n>0

is defined for n € A suchthat v4(n) > e/(p — 1). Thismap isinjective. Section 9
contains a definition of the map

exp,: Q4 — Ky (A)

dy1 dyq-1
T—2= A --- A b — {exp(nw),yl, 7yq—1}
Y1 Yg-1

for n € A suchthat v4(n) > 2e/(p — 1). Thismapisnot injectivein general. Hereis
adescription of the kernel of exp,,.

Theorem 2. The following sequence is exact:

*) HYA (@) % Q51 /pd0% 2 2% B (A).
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Sketch of the proof. Thereis an exact sequence of complexes
Jlal nlal
0 —MF H.{ —MF H.{ —1ldygld o,

D D

| |
Z(q) 7" (q)
where MF means the mapping fiber complex. Thus, taking cohomologies we have the
following diagram with the exact top row

HY(S'(q) —2— Ho-Y(1ld/Jla) s HI((q))

(l)T Thm.lT

Q4 pdQ? 0 TR (4),
where the map (1) isinduced by
Qs w s pb e 1005/ Q" = (I1/gl),

We denoted the left horizontal arrow of the top row by ¢ and the right horizontal arrow
of thetop row by §. Theright vertical arrow isinjective, thus the claims are
(1) isanisomorphism,
(2) thisdiagram is commutative.
First we shall show (1). Recall that

2 o g2 Ag—2

JAeQL? JeQL?
From the exact sequence
0O0—J—D—A—0,
weget D ® ﬁ‘};l/J ® ﬁ‘};l —AQ® ﬁ‘};l and its subgroup I ® ﬁ‘};z/J ® ﬁ‘,’g_z is

pA® Q%L in A QL ! Theimageof 114 ® Q%42 in pA ® Q%" isequal to the
image of

32 ® ﬁqB—Z - 32 ® ﬁqB—Z +pg§\2qB—2 +p2ﬁqB—2.
On the other hand, from the exact sequence
0—J—B—A—0,

we get an exact sequence
/) 0052 L A0t 04t —o
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Thus dJ2 ® Q%2 vanisheson pA ® Q% %, hence

pARQLY ot ARQLT

Hq—l(ﬂ[q]/J[q]) =

= —~ ~ - ~ 0271 /pdQi2,
pddQ% 2 +p2dQ%2 T dgQ% 2 +pdQs 2 T A [P
which completes the proof of (1).

Next, we shall demonstrate the commutativity of the diagram on a simple example.

Consider the case where ¢ = 2 and take adT'/T € ﬁh for T € TU {nr}. Wewant to
show that the composite of

OL /pda B gra@ 2y 2, g By g (a)

coincideswith exp,. By (1), thelifting of adT/T in (I4/J2) = 10 QL /T @Q} is
pa ® dT/T, where @ isalifting of a to D. Chasing the connecting homomorphism
J,

0 — (@edt)ep ——  (Ie0L)eD «—— (I80L)/(IeQL) — 0

‘| ‘| ‘|

0 — (De0%)e(Dell) — (De03)e(De0:) — 0 — 0

4| ‘| 4|
(the left columnis #(2), the middleis .#/(2) and theright is 114 /][2); padT /T in

the upper right goesto (pda A dT'/T, (1 — f2)(pa @ dT'/T)) in the lower left. By E»,
this element goes

dr

(- fpa e 2)) = (1 - s @ =)

={E:\((1 - f)®a)), T} = {expo (D fT) o (1 - f1)(pa), T}

n>0

= {exp(pa), T'}.

in Ulffz(A). Thisis none other than the map exp,,. O

By Theorem 2 we can calculate the kernel of exp,,. On the other hand, even though
exp, isnot surjective, the image of exp, includes U.+1K,(A) and we aready know
griKy(K) for 0 <@ < ep/(p—1). Thusitisenough to calculate the kernel of exp,
in order to know all gr;K,(K). Note that to know gr;K,(K), we may assume that
¢, € K, and hence K ,(A4) = UpK ,(K).
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15.2. Computation of the kernel of the exponential homomor phism

15.2.1. Modified syntomic complex. We introduce a modification of .#'(¢) and
calculateit instead of .#'(g). Let S, bethe mapping fiber complex of

1— f,: ()22, p>a-2,
Here, for acomplex C-, we put
c*>"=(0— -+ —0—C" — " — ...,

By definition, we have a natural surjection Hq—l(Sq) — HY1(S(q)), hence
Y(HIHS) = v(HIH(S'(¢))), whichisthe kernel of exp,.

Tocaculate H‘l—l(Sq), weintroducean X -filtration. Let0O<r < 2and s=q—7.
Recall that B = Ag[[X]]. Fori > 0, let fil;,(I" ® Q%) bethesubgroupof 11" zQs,
generated by the elements

Xej 4 ~
{X"( ) gaw:n+ej>'i,n20,j+l>r,aED,wEQf3}
g

Xe) pt dX A
U{X”( j!) Pav AL intej>in> 1,j+l>r,aeD,verB‘1}-

Themap 1— f,;: 1" ® Q3, — D ® Q3, preservesthefiltrations. By using the latter
we get the following

Proposition 3. H2~1(fil;S,); form a finite decreasing filtration of H4-1(S,). Denote

fil, H~Y(S ) = HY1(fil;S ),
ar H17Y(S,) = fil, HI7Y(S ) /fili+a HTL(S ).
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Then gr; H171(S,)

(0 (if i > 2e)
X2-1gX A (631‘03/1)) (if i = 2e)
Xi (ﬁg—oz/p) ® Xi~1dX A Q4 %/p) (ife <i < 2e)
Xe (ﬁj;z/p) ® Xe1dX A (31?23;03 /p2§3;03) (ifi=e,p|e)
_ q—3 ~g—3 e .
_ ) xeldX A (319?40 /pZQiO ) (ifi=e,pte)
. (pmax(n;—vp(i),o)ﬁleZm?)ni 5%2) +pz§?462
p2§q72
40
, 3, Q4 3+p20¢ 3 )
@(X%%XA"’%—Z‘“O) (if1<i<e)
pZQZO
L 0 (if i = 0).

Here n; and n} are the integers which satisfy p”i~% < e < p™i and pti~li—1<
e < p™i — 1 for each i,

3,09 = ker (52?40 - ﬁi?/p")
for positive n, and 3nQ§10 = ng for n < 0.

Outline of the proof. From the definition of the filtration we have the exact sequence
of complexes:

0 — fil;+1Sy — fil;Sy — or;iS; — 0
and this sequence induce a long exact sequence
o= HT72(grS ) — HI Y(fil;41S,) — HI(fil;S,) — HTHgriSy) — «- - .

The group H?=2(gr;S,) is

2 . .
Hq—z(griSq) = ker <griI[2] QQLC — (I QL ) @ (gr;D ® Qf ))

z+— (dz,(1 - fy)z)

Themap 1— f, isequalto 1if ¢ > 1 and 1— f,: pzﬁigz — ﬁ?4‘02 if 2 =0, thusthey
are al injective. Hence H7~2(gr;S,) = 0 for al i and we deduce that HI~(fil;S ,)s
form a decreasing filtration on Hq—l(Sq).

Next, we haveto calculate Hq—z(griSq). The calculation is easy but there are many
cases which depend on ¢, so we omit them. For more detail, see [N2].
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Finally, we have to compute the image of the last arrow of the exact sequence
0 — HY Y(fil;+1S,) — HIY(fil;S,) — HI(gr:Sy)

becauseit is not surjective in general. Write down the complex gr;S,:

o (I ® Q5 e (gD e QL) S (D e ) e (D e Q%) — -
wherethefirst term isthe degree ¢ — 1 part and the second termisthedegree g part. An
element (z,y) inthefirst term which is mappedto zeroby d comesfrom H2-1(fil;S,)
if and only if there exists z € fil;D ® Q‘,’;z such that z = y modulo fil;+1D ® QqB_Z
and

3 frdz) efilI @ Q%
n>0

From here one deduces Proposition 3. O

15.2.2. Differential modules. Takeaprime element 7 of K suchthat 7¢1dx = 0.
We assumethat p 1 e in this subsection. Then we have

~ dT; dT;
Qi:( @ AT_”/\.../\T_’G>
i1 <ip< e <ig i iq
dT; dT;
A/ 22 A A Ad
o @ aeHT Tt A ),
11<ip< - <igy_1 1 g1

where {T;} = T. Weintroduce afiltration on Q% as

~ Q1 ifi=0

filQ4 =9 4 - (. )
QY + i ldr A QY (ifi > 1).
The subquotients are
gr: QY = fil; Q% /fil41QY
[ of (ifi=0o0ri>e)
QL et (ifl<i<e),

wherethe mapis

QL owr— '@ € 71"?2?4

QqF_l Swr— T Mr AG et ldr A ﬁ?{l.
Here & isthelifting of w. Let fil,(Q% /pdQ% ") betheimage of fil; QY in

Q% /pdQ% . Then we have thefollowing:
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Proposition 4. For 5 > 0,

Q% (G=0
o (Q4/pd0) = Qb et (1<j<e)
Q% /B} (e < 9),

where [ be the maximal integer which satisfies j — le > 0.

Proof. If 1< j < e, gr;Q% = gr;(Q%/pdQ% ") because pdQ4™ C fil.Q%. As
sumethat j > e and let [ be as above. Since ¢ 1dr = 0, ﬁi{(l is generated by
elements pridw for 0 < i < e and w € ﬁzl. By [I] (Cor. 2.3.14), pridw €
file(1+n)+ifz?4 if and only if the residue class of p~"dw belongs to B,+;. Thus
0r;(QY /pdQ% ") ~ Q% /BY. O

By definition of thefiltrations, exp, preservesthefiltrationson ﬁ?[l/pdﬁj_z and
I?q(K ). Furthermore, exp,: gri(ﬁqA_l/pdﬁj_z) — Ori+e K4(K) is surjective and its
kernel istheimage of 4 (H?1(S,)) Nfil;( Q% /pdQ%2) in gry(Q%* /pdQ4 ). Now
we know both ﬁi{(l /pdﬁ?[z and H?~1(S,) explicitly, thuswe shall get the structure
of K,(K) by calculating 4. But ¢ does not preserve the filtration of H2~1(S,), so

it is not easy to compute it. For more details, see [N2], especially sections 4-8 of that
paper. After completing these calculations, we get the result in (vi) in the introduction.

Remark. Notethatif p | e, thestructure of ﬁ?[l/pdﬁj_z ismuch more complicated.
For example, if e = p(p— 1), andif 7€ = p, then pr®~1dr = 0. Thismeansthetorsion
part of Q%! islarger than in the the case where p 1 e. Furthermore, if x#®=1 = pT
for some T € T, then pr¢~—1dr = pdT, this meansthat dr isnot atorsion element.
This complexity makesit difficult to describe the structure of K ,(K) in the case where

ple.
Appendix. The mapping fiber complex.
This subsection is only a note on homological algebra to introduce the mapping

fiber complex. The mapping fiber complex isthe degree —1 shift of the mapping cone
complex.

Let " % D bea morphism of non-negative cochain complexes. We denote the
degree i termof C" by C°.
Then the mapping fiber complex MF(f)" is defined as follows.
MF(f)' = C* & D" 1,
differential  d: C* ® D'~ — C™* @ D’
(z,y) — (dz, () — dy).
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By definition, we get an exact sequence of complexes:
0 — D[-1] — MFK(f) — C" — 0,

where D[-1] =(0 — D% — D! — ...) (degree —1 shiftof D".)
Taking cohomology, we get along exact sequence

< = H(MF(f)) — BH(C') - H"{(D[-1]) » B MF(f)) = -,
which is the same as the following exact sequence

. = HYMF(f)) — HY(C) 5 HI(D) = HYYMF(F)) = -+ .
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16. Higher classfield theory without using K -groups

Ivan Fesenko

Let F be acomplete discrete valuation field with residue field k& = kr of characteris-
tic p. Inthis section we discuss an aternative to higher local classfield theory method
which describes abelian totally ramified extensionsof F without using K -groups. For
n-dimensional local fields this gives a description of abelian totally ramified (with re-
spect to the discrete valuation of rank one) extensionsof F. Applications are sketched
in16.3 and 16.4.

16.1. p-classfield theory

Supposethat k isperfectand k # p(k) where p: k — k, p(a) = a? — a.

Let F bethemaximal abelian unramified p-extensionof F. ThenduetoWitttheory
Gal(ﬁ/F) is isomorphic to [], Z, where x = dimy, k/p(k). The isomorphism is
non-canonical unless k& isfinite where the canonical oneisgiven by Frobg — 1.

Let L beatotaly ramified Galois p-extension of F'.

Let Gal(F/F) act trivially on Gal(L/F).

Denote

Gal(L/F)~ = Hgn((Gal(F/F),Gal(L/F)) = Homeon(Gal (F / F), Gal (L / F)).

Then Gal(L/F)~ ~ &, Gal(L/F) non-canonicaly.
Put L = LF. Denoteby ¢ € Gal(L/L) thelifting of p € Gal(F/F).
For x € Gal(L/F)~ denote

3. ={aeL:a?¥ =q fordl ¢ c Ga(F/F)}.

The extension X, /F istotally ramified.
As an generalization of Neukirch's approach [N] introduce the following:

Definition. Put
Yr/r(x) = N, /pmy/Nrypmr mod Ny pUp
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where 7, isaprime element of X, and 7z isaprimeelement of L.
Thismap iswell defined. Compare with 10.1.

Theorem ([F1, Th. 1.7]). The map Y., is a homomorphism and it induces an iso-
morphism

Ga(LNF®/F)~ S Up /Ny pUs S Usp /Ny pUsr.

Proof. One of the easiest waysto prove the theorem isto define and use the map which
goesin the reverse direction. For details see [F1, sect. 1]. O

Prablem. If « isaprime element of F, then p-classfield theory implies that there
is atotally ramified abelian p-extension F, of F such that F,.F coincides with the
maximal abelian p-extensionof F and © € Ny, _,pF;. Describe F, explicitly (like
Lubin-Tate theory doesin the case of finite k).

Remark. Let K be an n-dimensional local field (K = K,,, ...,, Kg) with Kg
satisfying the samerestrictions as k above.

For a totally ramified Galois p-extension L/K (for the definition of a totally
ramified extension see 10.4) put

Gal(L/K)~ = Homeon(Gal (K / K), Gal(L/ K))

where K isthe maximal p-subextension of K py/K (for the definition of K pyr see
(A1) of 10.1).
Thereisamap Y1,k which induces an isomorphism [F2, Th. 3.8]

Ga(LNEK®/K)” S VK (K)/Ny/xVKL(L)
where VK (K) = {Vk} - K!_;(K) and K} wasdefinedin 2.0.

16.2. General abelian local p-classfield theory

Now let k£ be an arbitrary field of characteristic p, p(k) 7 k.
Let F bethe maximal abelian unramified p-extension of F.
Let L beatotaly ramified Galois p-extension of F. Denote

Gal(L/F)™~ = Hy((Gal(F/F), GA(L/ F)) = Homeon(Gal (F/ F), Gal(L/ F)).
In asimilar way to the previous subsection define the map
TL/F: GaI(L/F)N — Ul,F/NL/FUl,L-

Infactit landsin Uy g N N-

\ Z/FULZ)/NL/F U1, and we denote this new map by the
same notation.
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Definition. Let F be complete discrete valuation field such that F > F, e(F|ﬁ) =1
and kg =U,3okZ . Put L =LF.
Denote I(L|F) =(e"1:e € Uyp,0 € GA(L/F))NU, ~

Then the sequence

N~ ~
*) 1— Ga(L/F)® 4 U, P/ ILIF) =5 LN Ny U 5 — 1

is exact where g(o) = 7]~ 1 and 7, isaprime element of L (compare with Proposi-
tion 1 of 10.4.1).

Generalizing Hazewinkel’s method [H] introduce
Definition. Define ahomomorphism
Wi p:(Urr N Ny 35U, 3)/NoyrUsp — Gal(LN FR/FY~, Wrp(e) =x

where x(¢) = g X(n'=%), n e U, ; issuchthat € = N 7.

Propertiesof Y /r, ¥,/ F -
(1) ¥r/roYr/r=id on Ga(LNF®/F)~, s0 ¥,r isanepimorphism.
(2) Let F beacomplete discrete valuation field such that & O F, e(F|F) =1 and
kg = Upsokl . Put L =LF. Let
AL/pi(Usr N Ny 52U 7)/NoypUsr = ULg /NeysUse

be induced by the embedding F' — F. Then the diagram

T Yy
Ga(L/F)> — (U,p N Ny FUL D)/ NeyrUse —27, Ga(L N F®/F)~

1 o .|

Y, -
Gal(L/F)~ — Uws/Ng gU e Gal(L N FP/F)~

is commutative.
(3) Since ¥, isanisomorphism (see 16.1), we deducethat Az, issurjectiveand
ker(Wr,r) = ker(AL/r), SO

VYoo

(Urr NNz 50, 7)/N(L/F) = Gal(L N F®/py~
where N, (L/F)=Uyr N L/FUl 7 N Ng/gUsc.
Theorem ([F3, Th. 1.9]). Let L/F be a cyclic totally ramified p-extension. Then
Yp/p:Ga(L/F)” = (Urr N Ny 5U, 7)/NLypUsL

is an isomorphism.
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Proof. Since L/F iscyclicweget I(L|F)={e°1:¢ ¢ U, 5,0 € Ga(L/F)}, so
I(LIF) N Uf%l = I(L|F)*~1

for every ¢ € Gal(L/L).

- - - “1
Let Wr/p(e) = 1 for e = Ny zn € Upp. Then n? 1 ¢ I(L|F) N Uf‘,—j ,

so n € I(L|F)L, where L, is the fixed subfield of L with respect to ¢. Hence
e € Np,/rnr,Us,. Byinductionon x wededucethat e € Np,pUsr and Wi, r
isinjective. O

Remark. Miki [M] proved this theorem in a different setting which doesn’t mention
classfield theory.

Corollary. Let L1/F, Ly/F be abelian totally ramified p-extensions. Assume that
L1Ly/F is totally ramified. Then

Ni,/rULL, C N, ypUsz, <= L2 D L.

Proof. Let M/F beacyclic subextensionin Li/F. Then
va[/gU]_,j\/[ D) NLZ/?ULLZ’ so M C Lo and M C Ls. Thus Ly, C Lo. il

Problem. Describe ker(‘¥y,r) for anarbitrary L/F. Itisknown [F3, 1.11] that this

kernel istrivial in one of the following situations:

(1) L isthe compositum of cyclic extensions M; over F, 1 < i < m, such that
all ramification bresksof Gal(M;/F) with respect to the upper numbering are not
greater than every break of Gal(M;+1/F) foral 1 <i<m — 1.

(2) Ga(L/F) isthe product of cyclic groups of order p and acyclic group.

No example with non-trivial kernel is known.

16.3. Norm groups

Proposition ([F3, Prop. 2.1]). Let F be a complete discrete valuation field with residue
field of characteristic p. Let L1/F and L,/F be abelian totally ramified p-extensions.
Let Np,/rLi N Np, pL5 contain a prime element of F. Then LiL,/F is totally
ramified.

Proof. If kr is perfect, then the claim follows from p-class field theory in 16.1.
If kr isimperfect then use the fact that there is afield F as above which satisfies
L1F N LyF = (L1 N Ly)F. UJ
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Theorem (uniqueness part of the existence theorem) ([F3, Th. 2.2]). Let kr 7 p(kr).

Let Li/F, Ly/F be totally ramified abelian p-extensions. Then
NLz/FLE:NLl/FLI < L1=L2.

Proof. Use the previous proposition and corollary in 16.2. O

16.4. Norm groups more explicitly

Let F beof characteristic 0. In general if k isimperfect it isvery difficult to describe
Ni,rUyz. One partial case can be handled: et the absolute ramification index e(F)
be equal to 1 (the description below can be extended to the case of e(F) < p — 1).

Let = beaprime element of F.

Definition.

8n,7r: Wn(kF) - Ul,F/UJI_):;’a 8n,7r((a0’ s aan—l)) = H E(d'ipnﬂﬂ')pi
0<ign-1

where E(X) = exp(X +X1’/p+XP2/p2+ ...) and a; € OF isalifting of a; € kr
(this map is basically the same as the map ), in Theorem 13.2).

The following property is easy to deduce:
Lemma. &, , isamonomorphism. If kz is perfect then &, . is an isomorphism.

Theorem ([F3, Th. 3.2]). Let kr # p(kr) and let e(F) = 1. Let = be a prime element
of F.

Then cyclic totally ramified extensions L/F of degree p™ such that = € Ny g L*
are in one-to-one correspondence with subgroups

E e (F(w) (W, (k) UL
of Ul,F/Uf; where w runs over elements of W, (kr)*.

Hint. Use the theorem of 16.3. If kr is perfect, the assertion follows from p-class
field theory.

Remark. The correspondencein this theorem was discovered by M. Kurihara [K, Th.
0.1], see the sequence (1) of theorem 13.2. The proof here is more elementary since it
doesn’t use étale vanishing cycles.
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17. An approach to higher ramification theory

Igor Zhukov

We use the notation of sections 1 and 10.

17.0. Approach of Hyodo and Fesenko

Let K be an n-dimensional local field, L/K afinite abelian extension. Define a
filtration on Gal(L/K) (cf. [H], [F, sect. 4]) by

Gal(L/K)' =Y (K P(K) + Ny KP(L) /N KRP(L), i€ 77,
where U; KpP(K) = {Ui} - K\ P, (K), Us = 1+ Px(i),
Yol KWP(K) /Ny KIP(L) = Gal(L/K)
is the reciprocity map.
Then for asubextension M /K of L/K
Ga(M/K)! = Gal(L/K)! Gal(L/ M)/ Gal(L/M)

which isahigher dimensional analogue of Herbrand’stheorem. However, if one defines
ageneralization of the Hasse—Herbrand function and lower ramification filtration, then
for n > 1 thelower filtration on asubgroup doesnot coincide with theinduced filtration
in general.

Below we shall give another construction of the ramification filtration of L/K in
the two-dimensional case; details can befoundin [Z], seealso [KZ]. This construction
can be considered as a devel opment of an approach by K. Kato and T. Saito in [KS].

Definition. Let K be a complete discrete valuation field with residue field kyx of
characteristic p. A finite extension L/K is called ferociously ramified if |L : K| =
|kL : kK|ins-

Published 10 December 2000: (C) Geometry & Topology Publications



144 I. Zhukov

In addition to the nice ramification theory for totally ramified extensions, thereis a
nice ramification theory for ferociously ramified extensions L/K suchthat ki /kx is
generated by one element; the reason is that in both cases the ring extension O /Ok
iSs monaogenic, i.e., generated by one element, see section 18.

17.1. Almost constant extensions

Everywhere below K isacomplete discrete valuation field with residue field kx of
characteristic p suchthat |kx : k% | = p. Forinstance, K can be atwo-dimensional
local field, or K = [F,(X1)((X2)) or the quotient field of the completion of Z,[T] )
with respect to the p-adic topology.

Definition. Forthefield K define abase (sub)field B as

B=Q, C K if char(K) =0,

B =TF,((p)) C K if char (K) =p, where p isanelement of K with vg(p) > 0.

Denote by kg the completion of B(Rg) inside K. Put k = kg"g NK.

The subfield & is a maximal complete subfield of K with perfect residue field.
It is called a constant subfield of K. A constant subfield is defined canonicaly if
char (K) = 0. Until the end of section 17 we assume that B (and, therefore, k) is
fixed.

By v we denote the valuation K39" — Q normalized so that v(B*) = Z.

Example. If K = F{T}} where F is a mixed characteristic complete discrete
valuation field with perfect residue field, then k = F.

Definition. Anextension L/K issaid to be constant if thereis an algebraic extension
[/k suchthat L = KI.

An extension L/K is said to be almost constant if L C LjL, for a constant
extension L;/K and an unramified extension L,/ K.

A field K issaidto bestandard, if e(K |k) = 1, and almost standard, if some finite
unramified extension of K isastandard field.

Epp’s theorem on elimination of wild ramification. ([E], [KZ]) Let L be a finite
extension of K. Then there is a finite extension k' of a constant subfield &£ of K such
that e(Lk'|Kk") = 1.

Corallary. There exists a finite constant extension of K which is a standard field.
Proof. Seethe proof of the Classification Theoremin 1.1.

Lemma. The class of constant (almost constant) extensions is closed with respect to
taking compositums and subextensions. If L/K and M/L are almost constant then
M/K is almost constant as well.
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Definition. Denoteby L. the maximal amost constant subextension of K in L.

Praoperties.

(1) Every tamey ramified extension is ailmost constant. In other words, the (first)
ramification subfieldin L/K isasubfield of L..

(2) If L/K isnormal then L./K isnormal.

(3) There is an unramified extension Ly of Lo such that L.Ly/Lo is a constant
extension.

(4) Thereis a constant extension L. /L. such that LL! /L' isferociously ramified
and L), N L = L.. Thisfollowsimmediately from Epp’s theorem.

The principal idea of the proposed approach to ramification theory isto split L/ K
into a tower of three extensions. Lo/K, L./Lo, L/L., where Lo is the inertia
subfield in L/K. The ramification filtration for Gal(L./Lo) reflects that for the
corresponding extensions of constants subfields. Next, to construct the ramification
filtration for Gal(L/L.), one reducesto the case of ferociously ramified extensions by
means of Epp’s theorem. (In the case of higher local fields one can also construct a
filtration on Gal(Lo/K) by lifting that for the first residue fields.)

Now we give precise definitions.

17.2. Lower and upper ramification filtrations

Keep the assumption of the previous subsection. Put
A={-1,00U{(c,s):0<seZ}U{@l,r): 0<r € Q}.
Thisset islinearly ordered as follows:
-1<0< (1) < (,j7) forany,j;

(c,7) < (c,7) forany : < j;
(1,7) < (1,7) forany i < j.

Definition. Let G = Gal(L/K). Forany a € A we defineasubgroup G,, in G.
Put G_1 =G, anddenoteby Go theinertiasubgroupin G, i.e.,

Go={g9 € G :v(g9(a) —a) >O0forala e O}
Let L./K beconstant, and let it contain no unramified subextensions. Then define
Gei = prY(Gal(l/k):)
where [ and k arethe constant subfieldsin L and K respectively,
pr: Gal(L/K) — Ga(l/k) = Ga(l/k)o
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is the natural projection and Gal(l/k); arethe classical ramification subgroups. In the
general case take an unramified extension K'/K such that K'L/K' is constant and
contains no unramified subextensions, and put G ; = Gal(K'L/K"). ;.

Finaly, define Gi;, ¢ > 0. Assumethat L, isstandard and L/L. isferociously
ramified. Let t € O, t ¢ k7. Define

Gii={9€G:v(gt)—t) > i}

forall 7 > 0.

In the general case choose a finite extension '/l such that 'L, is standard and
e('L|l'L,) = 1. Thenitisclear that Gal(I'L/lI'L,) = Gal(L/L.), and I'L/I'L, is
ferociously ramified. Define

Gi; =Ga(l'L/l' L)
forall : > 0.

Proposition. For afinite Galois extension L/ K the lower filtration {Gal(L/K)q }aca
is well defined.

Definition. Define a generalization hy/x: A — A of the Hasse-Herbrand function.
First, we define

(I)L/K: A—A
as follows;

@ /x(@) =a fora=-1,0;

L 1 : A
<I>L/K((c,z))—<c,dL—|K) /0 |Ga|(Lc/K)c,t|dt> fordli> 0

Dk ((1,9) = <i, /0Z | GaI(L/K)i,t|dt> forall i > 0.
Itiseasy toseethat @y, isbijective and increasing, and we introduce
hojx =¥k = Ok
Define the upper filtration Gal(L/K)* = Gal(L/K)n,, . (a)-
All standard formulas for intermediate extensions take place; in particular, for a
normal subgroup H in G we have H, = HN G, ad (G/H)* = G*H/H. The

latter relation enablesoneto introducethe upper filtration for aninfinite Gal oisextension
aswell.

Remark. Thefiltrations do depend on the choice of aconstant subfield (in characteris-
tic p).
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Example. Let K = F,((¢))((w)). Choose k = B = [F,(()) as aconstant subfield.
Let L=K(), * —b=a € K. Then
if a=7"%, i primeto p, then the ramification break of Gal(L/K) is (c,1);
if @ =7~P%, i primeto p, then the ramification break of Gal(L/K) is (i, 1);
if @ =7"%, i primeto p, then the ramification break of Gal(L/K) is (i,i/p);
if @ =7~%P, i primeto p, then the ramification break of Gal(L/K) is (i,i/p?).

Remark. A dualfiltrationon K/p(K) iscomputedin thefina version of [Z], seealso
[KZ].

17.3. Refinement for a two-dimensional local field

Let K beatwo-dimensional local field with char (kx) = p, and let k be the constant
subfield of K. Denote by

v = (v1,02): (K39 - Q x Q

the extension of the rank 2 valuation of K, which isnormalized so that:

e v3(a) =v(a) foral a € K*,

e vi(u) = w(u) foral u € Ugag, Where w isanon-normalized extension of vy,
on kﬁ'{g, and % istheresidue of u,

e v(c) = (0,e(k|B)~tux(c)) foral c € k.

It can be easily shown that v is uniquely determined by these conditions, and the
value group of v|g« isisomorphicto Z x Z.

Next, we introduce the index set

Az = AUQZ = AU {(i1,12) : i1,42 € Qi > O}
and extend the ordering of A onto A, assuming
(i,42) < (i1,92) < (i1,%2) < (i,%3)

foral ip < if, 41 < 4.

Now we can define Gy, ,;,, Wwhere G is the Galois group of a given finite Galois
extension L/K. Assumefirst that L, isstandard and L/L, is ferociously ramified.
Lett € O, t ¢ k7 (eg. afirstloca parameter of L). We define

Giiy={9 € G:v(tTg(t) — 1) > (in,i2)}

for i1,i2 € Q, 42 > 0. Inthe general case we choose '/l (1 isthe constant subfield
of both L and L.) suchthat I'L, isstandardand I'L/l' L. isferociously ramified and
put

Gil,iz = Gal(l’L/l’LC)il,iz'
We obtain awell defined lower filtration (Go)acua, 0N G = Ga(L/K).
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Inasimilar way to 17.2, one constructs the Hasse-Herbrand functions
Qo Ar — Ap and Wor x = q)z_;l:/K which extend @ and ¥ respectively.
Namely,

(21,ip)
3 1 (i1, i2)) = /(0 | |GAw/K)

These functions have usual properties of the Hasse-Herbrand functions ¢ and
h =1, and one can introduce an .A»-indexed upper filtration on any finite or infinite
Galoisgroup G.

17.4. Filtration on K'P(K)

In the case of a two-dimensional local field K the upper ramification filtration for
K®/K determinesacompatiblefiltrationon K3 P(K). Inthecasewhere char (K) = p
this filtration has an explicit description given below.

From now on, let K be atwo-dimensional local field of prime characteristic p over
aquasi-finite field, and k the constant subfield of K. Introduce v asin 17.3. Let m,
beaprimeof k.

For all o € Q2 introduce subgroups

Qo = {{m,u} : u e K,v(u — 1) > a} C VK (K);
Q™ ={a e KP(K) : p"a € Qu};
Sa=Cl | J Q..

n>0
For asubgroup A, Cl A denotesthe intersection of all open subgroups containing A.
The subgroups S,, constitute the heart of the ramification filtration on K (K).
Their most important property is that they have nice behaviour in unramified, constant
and ferociously ramified extensions.

Proposition 1. Suppose that K satisfies the following property.
(*) The extension of constant subfields in any finite unramified extension of K is also
unramified.
Let L/ K be either an unramified or a constant totally ramified extension, o € Q2.
Thenwe have N /xSa,1 = Sa,x-

Proposition 2. Let K be standard, L/K a cyclic ferociously ramified extension of
degree p with the ramification jump & in lower numbering, a € Q2. Then:

(1) Np/xSa,r = Sa+p-1n,k, if o> h;

(2) Np/xSa,r isasubgroupin Sy, x of index p, if a < h.
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Now we have ingredients to define a decreasing filtration {fil, K5 (K)}aca, ON

K P(K). Assumefirst that K satisfies the condition (*). It follows from [KZ, Th.
3.4.3] that for some purely inseparable constant extension K'/K thefield K’ isalmost
standard. Since K' satisfies (*) and isamost standard, it isin fact standard.

Denote

filay,ap K37 (K) = Say,a)
fili,p K3 P(K) =Cl | filay,a, K3P(K) foraz € Qi;

a1€Q
Tx =cl | fil, K3P(K);
acQ?

fil s KyP(K) =Tk +{{t,u} : uck, vp(u—1)>i}foralieqQ,
if K = k{{t)} is standard

fil s KyP(K) = Ngoxfilo; KyP(K'), where K' /K is asabove;

filoKyP(K)  =U)KyP(K)+{t, Rk}, where U(D) K, P(K) = {1+ Px(1), K*},
t isthefirst local parameter;

fil_y K3P(K) =Ky (K).

It is easy to see that for some unramified extension K /K thefield K satisfiesthe
condition (*), and we define fil, Ky (K) as N 7K fil, K3P(K) foral o > 0, and

fil_y K3P(K) as KyP(K). It can be shown that the filtration {filo Ky (K)}aca, iS
well defined.

Theorem 1. Let L/K be afinite abelian extension, o € Az. Then Ny fil, K5 (L)
is a subgroup in file, , . (a) K P(K) of index | Gal(L/K),|. Furthermore,

filo, () Ko (K) N Ny g K3 ™(L) = Ny fily K3(L).
Theorem 2. Let L/K be a finite abelian extension, and let
Yol : KyP(K)/Ny x KyP(L) — Gal(L/K)
be the reciprocity map. Then
Yy 1 (file K3P(K)  mod Ny, i K3 ™(L)) = Gal(L/K)*
forany a € As.

Remarks. 1. Theramification filtration, constructed in 17.2, does not give information
about the classical ramification invariants in general. Therefore, this construction can
be considered only as a provisiona one.
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2. Thefiltration on K3 P(K) constructed in 17.4 behaves with respect to the norm
map much better than the usual filtration {U; K5 P(K)}iezr. Wehopethat thisfiltration
can be useful in the study of the structure of K '°P-groups.

3. In the mixed characteristic case the description of “ramification” filtration on
K;‘)p(K ) is not very nice. However, it would be interesting to try to modify the
ramification filtration on Gal(L/K) in order to get thefiltration on K, P(K) similar to
that describedin 17.4.

4. 1t would be interesting to compute ramification of the extensions constructed in
sections 13 and 14.
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18. On ramification theory of monogenic extensions

Luca Spriano

We discuss ramification theory for finite extensions L/ K of acomplete discrete valua-
tionfield K. Thistheory dealswith quantitieswhich measure wildness of ramification,
such as different, the Artin (resp. Swan) characters and the Artin (resp. Swan) conduc-
tors. When the residue field extension kr/kx is separable there is a complete theory,
eg. [S], butin genera it isnot so. Inthe classical case (i.e. k1 /kx separable) proofs
of many results in ramification theory use the property that all finite extensions of val-
uation rings O, /Ok are monogenic which is not the case in general. Examples (e.g.
[Sp]) show that the classical theorems do not hold in general. Waiting for a beautiful
and general ramification theory, we consider a class of extensions L/K which has a
good ramification theory. We describe this class and we will call its elements well
ramified extensions. All classical results are generalizable for well ramified extensions,
for example a generalization of the Hasse-Arf theorem proved by J. Borger. We also
concentrate our attention on other ramification invariants, more appropriate and general;
in particular, we consider two ramification invariants: the Kato conductor and Hyodo
depth of ramification.

Here we comment on some works on general ramification theory.

Thefirst direction aims to generalize classical ramification invariantsto the general
case working with (one dimensional) rational valued invariants. In his papers de
Smit gives some properties about ramification jumps and considers the different and
differential [ Sm2]; he generalizesthe Hilbert formulaby using the monogenic conductor
[Sm1]. We discuss works of Kato [K3-4] in subsection 18.2. In [K2] Kato describes
ramification theory for two-dimensional local fields and he proves an analogue of the
Hasse-Arf theorem for those Galois extensionsin which the extension of the valuation
rings (with respect to the discrete valuation of rank 2) is monogenic.

The second direction aims to extend ramification invariants from one dimensional
to either higher dimensional or to more complicated objects which involve differential
forms (asin Kato'sworks [K4], [K5]). By using higher local classfield theory, Hyodo
[H] defines generalized ramification invariants, like depth of ramification (see Theorem
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5 below). We discuss relations of his invariants with the (one dimensional) Kato
conductor in subsection 18.3 below. Zhukov [Z] generalizes the classical ramification
theory to the case where |kx : k% | = p (see section 17 of this volume). From the
viewpoint of this section the existence of Zhukov's theory is in particular due to the
fact that in the case where |kk : k% | = p one can reduce various assertions to the well
ramified case.

18.0. Notations and definitions

In this section we recall some general definitions. We only consider compl ete discrete
valuationfields K with residuefields kx of characteristic p > 0. We also assumethat
|k : k5| isfinite.

Definition. Let L/K beafinite Galois extension, G = Gal(L/K). Let
Go = Ga(L/L N K) betheinertiasubgroup of G. Define functions

ig,SG:G — Z

by
) - { I scon 02l =) o2
and
inf zeop\f0y vo(o(z)/z — 1) ifo#1,0€ Gy
sg(o) =< +o00 ifo=1
0 if o & Go.

Then sg(o) < ig(o) < sg(o)+1 andif kL /kx isseparable, then ig (o) = sg(o)+1
for o € Go. Note that the functions i, s¢ depend not only on the group G, but on
the extension L/K; wewill denote i¢ asoby iy k.

Definition. The Swan function is defined as

—|kL © kx[sc (o), ifoeGo\{1}
Swelo)=4 — 2. Weln), ifo=1
T€Go\{1}

0 if o ¢ Go.

For acharacter x of G its Swan conductor
1
1 sw(x) = swWe(x) = (SWe, x) = Il > Swalo)x(o)
c€G

isan integer if k/kx isseparable (Artin’s Theorem) and is not an integer in general

(e.g.[Sp, Ch. 1]).
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18.1. Well ramified extensions

Definition. Let L/K be afinite Galois p-extension. The extension L/K is called
well ramified if O, = Og[a] for some a € L.

18.1.1. Structuretheorem for well ramified extensions.

Definition. We say that an extension L/K isincase | if kp/kx is separable; an
extension L/K isincase Il if |L: K| = |k : kx| (i.e. L/K isferociously ramified
in theterminology of 17.0) and k1, = kx (a) ispurely inseparable over kx .

Extensionsin case | and case |l are well ramified. An extension which issimultane-
oudly in casel and case Il isthetrivial extension.

We characterize well ramified extensions by means of the function i in the fol-
lowing theorem.

Theorem 1 ([Sp, Prop. 1.5.2]). Let L/K be a finite Galois p-extension. Then the
following properties are equivalent:
(i) L/K iswell ramified;
(ii) for every normal subgroup H of G the Herbrand property holds:
forevery 147 € G/H

. 1 .
ig/u(T) = W Z ic(o);
€ ceTH
(iii) the Hilbert formula holds:
vi(Dr/x) =Y ialo) =) (1Gi| - D),
o7l

>0
for the definition of G; see subsection 18.2.

From the definition we immediately deduce that if M /K isaGalois subextension
of awell ramified L/K then L/M iswell ramified; from (ii) we concludethat M /K
iswell ramified.

Now we consider well ramified extensions L/K which are not in case | nor in
casell.

Example. (Well ramified extension not in case | and not in case Il). Let K be a
complete discrete valuation field of characteristic zero. Let (. € K. Consder a
cyclic extension of degree p? defined by L = K (z) where z aroot of the polynomial
F(X) = XP" — (L+ur)a?, a € Uk, a ¢ k%, u € Uk, = isaprimeof K. Then
e(L|K)=p= f(LIK)"™, so L/K isnotincasel norincasell. Using Theorem 1, one
can show that O, = Og[z] by checking the Herbrand property.
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Definition. A well ramified extension whichisnotincasel andisnotincasell issaid
to beincase Ill.

Notethat in case 11l we have e(L|K) > p, f(L|K)"™ > p.

Lemma 1. If L/K is a well ramified Galois extension, then for every ferociously
ramified Galois subextension E/K such that L/E is totally ramified either £ = K
or E=1L.

Proof. Suppose that there exists K # E # L, suchthat E/K isferociously ramified
and L/E is totally ramified. Let w1 be a prime of L such that Oy = Og[m].
Let « € E besuchtha O = Og[a]. Then we have O = Okla,m1]. Let o
be a K -automorphism of E and denote & alifting of o to G = Ga(L/K). Itis
not difficult to show that ig(c) = min{vL(em — m1),vr(ca — a)}. We show that
ig(0) =vr(omy — m1). Supposewehad ig (o) = v (ca — @), then

ig(o .
0 o = veoa - a) =iz (o).
Furthermore, by Herbrand property we have
. 1 . ig(0) 1 .
7 O)= —F—— 1q(8) = + 1c(8).
B/k(0) L) sea(;jdw) a(s) ) ; a(s)

So from (x) we deduce that

e(L1| 5 2 i) =0,
s7o

but thisis not possible because i¢(s) > 1 for al s € G. We have shown that
(%) ig(s) =vp(smy — m1) foral s € G.

Now note that o ¢ Og[m]. Indeed, from a = Y a;ni, a; € Ok, we deduce
a = ag (modm1) which isimpossible. By (xx) and the Hilbert formula (cf. Theorem
1) we have

(% % %) v(Dr/k) = Y ic(s) =Y vr(sm —m) = v (f'(m1)),
s71 s71

where f(X) denotesthe minimal polynomial of =, over K.
Now let theidea T, ={z € Or : zO0gk[m] C Or} bethe conductor of O g[m1]
in O, (cf.[S, Ch. 1, §6]). We have (cf. loc.cit.)

TmDr/x = f(71)0L
andthen (x x x) implies T, = O, Or = Og[m1], which contradicts a ¢ Og[m1]. O
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Theorem 2 (Spriano). Let L/K be a Galois well ramified p-extension. Put Ko =
L N K. Then there is a Galois subextension T'/Kq of L/Kp such that T'/Kj is in
case l and L/T incase Il.

Proof. Inductionon |L : Ko|.

Let M/Ky beaGalois subextension of L/Kq suchthat |L : M| =p. Let T/Ky
be a Galois subextension of M /K such that T'/ Ky is totally ramified and M /T is
incasell. Applying Lemmalto L/T we deducethat L/M isferociously ramified,
hencein casell. 0

In particular, if L/K isaGaois p-extensionin caselll suchthat L N K = K,
then thereis a Galois subextension T'/K of L/K suchthat T/K isincasel, L/T in
caseland K #T # L.

18.1.2. Modified ramification function for well ramified extensions.
In the general case one can define a filtration of ramification groups as follows.
Given two integers n, m > 0 the (n, m)-ramification group Gy, ., of L/K is
Gnm ={0 € G: vp(o(z) —x) > n+m, foral z € M7 }.

Put G, = Gp+1,0 and H,, = G, 1, so that the classical ramification groups are the
G,. Itiseasytoshowthat H; > G; > H;4; for i > 0.

Incasel wehave G; = H; foral i > 0; incasell wehave G; = H;4+; forall ¢ > 0,
see [Sm1]. If L/K isin case Ill, we leave to the reader the proof of the following
equality

G;={oce€Ga(L/K):vp(o(x)—z) >i+1 fordlzec O}
={oc € Ga(L/K) :vr(o(xz) —z) >i+2 foradlz e Mr}=H;s1.

We introduce another filtration which allows us to simultaneously deal with casel,

[l and 1.

Definition. Let L/K be afinite Galois well ramified extension. The modified ¢-th
ramification group G[¢t] for ¢t > 0 is defined by

Glt] ={o € GA(L/K) : ig(o) > t}.
Wecall aninteger number m amodified ramification jump of L/K if G[m] #Z G[m+1].

From now on we will consider only p-extensions.

Definition. For awell ramified extension L/K define the modified Hasse-Herbrand
function sz, /x (u), u € Ry as

sp/k(u) = /0 e|((1;;[|§]{|) dt.
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Put g; =|G;|. If m < u < m+1 where m isanon-negative integer, then
1
sk (u) = e(TK)QJl oot gyt gmat(u — m)).

We drop theindex L/K in s,k if thereisno risk of confusion. One can show that
the function s is continuous, piecewise linear, increasing and convex. In case |, if
¢1,x denotesthe classical Hasse-Herbrand functionasin [S, Ch. V], then s,/ (u) =
1+ ¢k (u — 1). We define a modified upper numbering for ramification groups by
G(sr/x (u)) = Glu].

If m isamodified ramification jumps, thenthenumber s 1, x (m) iscalled amodified
upper ramification jump of L/K.

For well ramified extensions we can show the Herbrand theorem as follows.

1
Lemma2. For u > 0 we have = inf (4 , ).
u sk (u) (LK) UGZGI (ig(0), )

The proof goes exactly asin [S, Lemme 3, Ch.lV, §3].

Lemma 3. Let H be a normal subgroup of G and = € G/H and let j(r) be the
upper bound of the integers ig(o) where o runs over all automorphisms of G which
are congruentto 7 modulo H. Then we have

ipn g (1) = 50,5 (F(7))

For the proof see Lemme 4 loc.cit. (notethat Theorem 1 isfundamental in the proof).
In order to show Herbrand theorem, we have to show the multiplicativity in the tower
of extensions of the function s, x .

Lemma 4. With the above notation, we have sr/x =sp# /g ©5p = -
For the proof see Prop. 15 loc.cit.

Corollary. If L/K is well ramified and H is a normal subgroup of G = Gal(L/K),
then the Herbrand theorem holds:

(G/H)(uw) =G(u)H/H forall u> 0.

It isknown that the upper ramification jumps (with respect the classical function )
of an abelian extension in case | are integers. Thisis the Hasse-Arf theorem. Clearly
the sameresult holdswith respect thefunction s. Infact, if m isaclassical ramification
jumpand ¢y, (m) isthe upper ramification jump, then the modified ramification jump
is m + 1 and the modified upper ramification jumpsis sz /g (m +1) = 1+ ¢/ x(m)
which isan integer. In casell it is obvious that the modified upper ramification jumps
areintegers. For well ramified extensions we have the following theorem, for the proof
seethe end of 18.2.
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Theorem 3 (Borger). The modified upper ramification jumps of abelian well ramified
extensions are integers.

18.2. The Kato conductor

We have already remarked that the Swan conductor sw(x) for a character x of the
Galois group Gi isnot an integer in general. In [K3] Kato defined a modified Swan
conductor in case |, Il for any character x of G x; and [K4] contains a definition of
an integer valued conductor (which we will call the Kato conductor) for characters of
degree 1 in the general casei.e. not only in cases| and II.
We recall its definition. The map K* — HY(K,Z/n(1)) (cf. the definition of

H?(K) in subsection 5.1) induces a pairing

{, } HYK) x K.(K) — H"'"(K),
which we briefly explain only for K of characteristic zero, in characteristic p > 0 see
[K4, (1.3)]. For a € K* and afixed n > 0, let {a} € H'(K,Z/n(1)) betheimage
under the connecting homomorphism K* — HY(K,Z/n(1)) induced by the exact
sequence of G g-modules

1—Z/n(l) — K > K — 1.

For ai,...,a, € K* the symbol {ai,...,a.} € H"(K,Z/n(r)) is the cup product
{a1} U {az}U---U{a,}. For x € HY(K) ad ay, ...,a, € K* {x,a1,...,a,} €
H2'"(K) isthecup product {x} U {a1} U---U{a,}. Passing to thelimit we have the
element {x,a,...,a,} € HT"(K).

Definition. Following Kato, we define an increasing filtration {fil,, H?(K)},>0 of
HI(K) by
fil, H(K) = {x € HY(K) : {x|as, Um+100} =0 forevery M}

where M runs through all complete discrete valuation fields satisfying Ox C Oy,
Maur = Mg Our; here x| denotestheimageof x € HY(K) in HY(M).

Then one can show H¥(K) = Up,>ofil, HI(K) [K4, Lemma(2.2)] which allows
usto give the following definition.

Definition. For x € H?(K) the Kato conductor of x istheinteger ksw(y) defined
by
ksw(x) = min{m > 0: x € fil,, HY(K)}.

Thisinteger ksw(x) isageneralization of the classical Swan conductor as stated in
the following proposition.
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Proposition 1. Let x € H(K) and let L/K be the corresponding finite cyclic
extension and suppose that L/K isin case | or Il. Then

(@) ksw(x) =sw(x) (see formula (1)).

(b) Let ¢ be the maximal modified ramification jump. Then

s/g(t)—1 casel
ksw(x) = { "/
sp/k(t) casell.
Proof. (a) See[K4, Prop. (6.8)]. (b) Thisis acomputation |eft to the reader. O

We compute the Kato conductor in casellll.

Theorem 4 (Spriano). If L/K is a cyclic extension in case Il and if x is the corre-
sponding element of H1(K), then ksw(x) = sw(x) — 1. If ¢ is the maximal modified
ramification jump of L/K, then ksw(x) = s,k (t) — 1.

Before the proof we explain how to compute the Kato conductor ksw(y) where
x € HY(K). Consider thepairing H1(K) x K* — H%(K), (¢ =1=r). It coincides
with the symbol (-,-) defined in [S, Ch. XIV]. In particular, if ¥ € HY(X) and
a € K*, then {x,a} = 0 if and only if the element a is a norm of the extension
L/K corresponding to x. So we have to compute the minimal integer m such that
Um+1,m isin the norm of the cyclic extension corresponding to x| when M runs
through all complete discrete valuation fields satisfying M s = Mg O . The minimal
integer n such that U,+1,x is contained in the norm of L/K isnot, in general, the
Kato conductor (for instanceif the residuefield of K isalgebraically closed)

Hereis acharacterization of the Kato conductor which helpsto compute it and does
not involve extensions M/ K, cf. [K4, Prop. (6.5)].

Proposition 2. Let K be a complete discrete valuation field. Supposethat |kx : k% | =
p° < oo, and H:*(kg) 7 0. Then for x € HI(K) and n > 0

x € fil, HI(K) <= {x,UpniKM,_(K)}=0 in H*¥K),

for the definition of U,+1 KM, ,(K) see subsection 4.2.

In the following we will only consider characters x such that the corresponding
cyclic extensions L/K are p-extension, because ksw(x) = O for tame characters y,
cf. [K4, Prop. (6.1)]. We can compute the Kato conductor in the following manner.

Corollary. Let K be as in Proposition 2. Let x € H(K) and assume that the
corresponding cyclic extension L/K is a p-extension. Then the minimal integer n
such that

Un+1,k C Np/g L*
is the Kato conductor of .
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Proof. By the hypothesis (i.e. Up+1,x C Ny xL*) we have ksw(x) > n. Now
Un+1,5 C Np/xL*, implies that U,+1K.+1(K) is contained in the norm group
Nk Kc+1(L). By [K1, 11, Cor. at p. 659] we have that {x, Up+1K.+1(K)} = 0 in
H*2(K) and so by Proposition 2 ksw(x) < n. O

Beginning of the proof of Theorem 4. Let L/K be an extension in case Il and let
x € HY(K) be the corresponding character. We can assume that H¢™(kx) 7 0,

otherwise we consider the extension k& = U@okK(TP_’) of the residue field kg,
preserving a p-base, for which H ;*1(k) Z0 (see[K3, Lemma (3-9)]).

So by the above Corollary we have to compute the minimal integer n such that
Un+1,k C N g L*.

Let T/K be the totaly ramified extension defined by Lemma 1 (here T/ K is
uniquely determined because the extension L/K is cyclic). Denote by U, ; for
v € R,v > 0 thegroup U, ; where n isthe smallest integer > v.

If ¢ isthe maximal modified ramification jump of L/K, then

o UsL/T(t)+1,T - NL/TL*

because L/T isincasell andits Kato conductor is s, /r(t) by Proposition 1 (b). Now
consider the totally ramified extension T'/K . By [S, Ch. V, Cor. 3 §6] we have

(2) NT/K(Us,T) = UsT/K(s+l)—l,K if GaI(T/K)s = {1}

Let t' =iy x(7) bethemaximal modified ramificationjumpof T'/K. Let r bethe
maximum of iz,/x (o) where o runsover al representatives of the coset + Gal(L/T).
By Lemma3 t' = sp,r(r). Notethat » < ¢ (we explainitin the next paragraph), so

(3) t' =sp/7(r) < sp7(t).
To show that » < ¢ it sufficesto show that for agenerator p of Gal(L/K)

. m . m-—1
ir/gk(P” ) > i x(P® )
for |T: K| <p™ < |L:K|. Write O = Og(a) then

p—1
P —a=p"" () =b b=) o (a).
i=0

Then b = pa + 7 f(a) where 7 is a prime element of L, f(X) € Og[X] and
1= iL/K(Ppm_l)- Hence iz k(o) = vr(p"" (@) — @) > min(i + vy(p), 2i), 0

. m . m—1 .
iryk(PP) >ip x(pP ), asrequired.

Now we use the fact that the number s,/ (t) isaninteger (by Borger's Theorem).
We shall show that UﬁL/K(t)’K C NL/KL*

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



160 L. Spriano

By (3) wehave Gal(T'/K)s, ,,.(+) = {1} and sowecanapply (2). By (1) we have

Us y+1,7 C Nz rL*, and by applying thenorm map Nz,x we have (by (2))

L/r(t
Nr/kWer)r@)+1,7) = Usryc(on/r+2-1,5 C Nojx L™

Thusit suffices to show that the smallest integer > st (sg /7 (t) +2) — 1 is 55/ (t).

Indeed we have

2 2
- 1 = t) — 1 + —
T K| 5L/K( ) P
where we have used Lemma4. By Borger'stheorem sz, (t) isaninteger and thuswe
have shown that ksw(x) < sz (t) — 1.

Now we need alemmawhich is akey ingredient to deduce Borger’s theorem.

stk (spy7(t) +2) — L=s7/k(s5,7(t)) +

Lemmab. Let L/K be a Galois extension in case IlI. If kz, = kx(a®/f) then
a € kx \ k% where f =|L:T|=f(L/K)"™. Let a be alifting of a in K and let
M = K(3) where 8¢ = a.

If 0 € Gal(L/K) and o' € Ga(LM /M) is such that ¢'|;, = o then

irm/m(0') = e(LM|L)iL k(o).

Proof. (After J. Borger). Note that the extension M /K isincasell and LM /M isin
casel, in particular it istotally ramified. Let z € O suchthat O = Og[z]. Onecan
check that zf — o € My, \ M% Let g(X) bethe minima polynomial of 3 over K.
Then g(X +z) isan Eisenstein polynomial over L (because g(X +z) = Xf+2f —a =
Xf mod Mz )and 8 — z isaroot of g(X +z). So 3 —z isaprimeof LM and we
have

irm/m(0’) =vim(o' (B — x) — (B — 2)) =vium(o'(z) — ) = e(LM|L)ir k(o).
il

Proof of Theorem 3 and Theorem 4. Now we deduce simultaneously the formula for
the Kato conductor in case |11 and Borger’'s theorem. We compute the classical Artin
conductor A(x|ar)- By the preceding lemmawe have

@)
M) =gy 30 i)
o' €Gal(LM/M)
e(LM]|M) U’EGBI(ZLM/M)X|M( ir/x () 76(L|K)£x( Jir/x (0).

Since A(x|a) isaninteger by Artin’'s theorem we deduce that the latter expressionis
an integer. Now by the well known arguments one deduces the Hasse-Arf property for
L/K.
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The above argument also shows that the Swan conductor (=Kato conductor) of
LM /M isequal to A(x|ar)—1, whichshowsthat ksw(x) > A(x|m)—1=s1/x(t)—1,
S0 ksw(x) = s,k (t) — 1 and Theorem 4 follows. O

18.3. Moreramification invariants

18.3.1. Hyodo's depth of ramification. This ramification invariant was introduced
by Hyodo in [H]. We areinterested in its link with the Kato conductor.

Let K bean m-dimensional loca field, m > 1. Let ¢4, ...,t, beasystem of
local parametersof K and let v be the corresponding valuation.

Definition. Let L/K beafinite extension. The depth of ramification of L/K is
dg (L/K) =inf{v(Tr 1,k (y)/y) 1y € L'} € Q™.

Theright hand side expression exists; and, in particular, if m =1 then dx(L/K) =
vg(Dr k) — (1 — vk (m)), see[H]. The main result about the depth is stated in the
following theorem (see [H, Th. (1-5)]).

Theorem 5 (Hyodo). Let L be a finite Galois extension of an m-dimensional local
field K. For I > 1 define

max{i:1<icZ™, |¥ xU:iKn(K))|>p'}  ifitexists
0 otherwise

i) =jr/x() = {
where Wy, x is the reciprocity map; the definition of UiK},?p(K) isgivenin 17.0. Then

©) -1 i0/p <dx(L/EK)<(1-pHD i),

1>1 I>1

Furthermore, these inequalities are the best possible (cf. [H, Prop. (3-4) and Ex. (3-5)]).

For i € Z™, let Gt betheimage of UiKﬁ,?p(K) in Gal(L/K) under thereciprocity
map Wi, ,x. The numbers j(I) are called jumping number (by Hyodo) and in the
classical case, i.e. m =1, they coincide with the upper ramification jumpsof L/K.

For local fields (i.e. 1-dimensional local fields) one can show that thefirst inequality
in (3) is actualy an equality. Hyodo stated ([H, p.292]) ““It seems that we can define
nice ramification groups only when the first equality of (3) holds.”

For example, if L/K is of degree p, then the inequalities in (3) are actually
equalities and in this case we actually have a nice ramification theory. For an abelian
extension L/K [H, Prop. (3-4)] shows that the first equality of (3) holds if at most
one diagona component of E(L/K) (for the definition see subsection 1.2) isdivisible
by p.
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Extensionsin case | or |1 verify the hypothesis of Hyodo's proposition, but it is not
so in caselll. We shall show below that the first equality does not hold in casell1.

18.3.2. TheKato conductor and depth of ramification.

Consider an m-dimensional local field K, m > 1. Proposition 2 of 18.2 shows (if
thefirst residuefield isof characteristic p > 0) that for x € HY(K), x € fil,, HY(K) if
and only if theinduced homomorphism K,,(K) — Q/Z annihilates Uy, +1 K,,,(K) (cf.
alsoin [K4, Remark (6.6)]). This also means that the Kato conductor of the extension
L/K corresponding to x is the m-th component of the last ramification jump j(1)
(recal that j(1) =max{i:1<ic zZ™, |Gi|>p}).

Example. Let L/K asin Exampleof 18.1.1 and assumethat K isa2-dimensional
local field with the first residue field of characteristic p > 0 and let x € HY(K) be
the corresponding character. Let j(I); denotes the i-th component of j(I). Then by
Theorem 3 and by the above discussion we have

. 2p — De
kW(x) = §(D2 = 51, (pe/(p — 1) — 1= 2D 1) -1
If T/K isthe subextension of degree p, we have
de(T/K)=p 0~ Di@2 = @=L -1

The depth of ramification is easily computed:
-1 2
dx(L/K)7 = dg(T/K)z + dg(L/T), = % <£ _ 1) _

Theleft hand side of (3) is (p — 1)(§(1)/p +j(2)/p?), so for the second component we
have

s s 2
(p— l) ('% +‘%> =2 — (ppz 1) ?dK(L/K)z.

Thus, the first equality in (3) does not hold for the extension L/ K.

If K isacomplete discrete valuation (of rank one) field, then in the well ramified

case straightforward cal cul ations show that
> 713(;(0') casel,ll

L|IK)dg(L/K) = o
e(LIK)dk (L/K) {stG(a)—e(L|K)+1 caselll

Let x € HY(K) and assume that the corresponding extension L/K iswell ramified.
Let ¢ denote the last ramification jump of L/K; then from the previous formula and
Theorem 4 we have

e(L|K)k3N(X)={dL(L/K)+t casel,ll

dp(L/K)+t—1 caselll
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In the general case, we can indicate the following relation between the Kato con-
ductor and Hyodo’s depth of ramification.

Theorem 6 (Spriano). Let x € HY(K,Z/p"™) andlet L/K be the corresponding cyclic
extension. Then

t
ksw(x) < dx(L/K)+ (LK)

where ¢ is the maximal modified ramification jump.

Proof. In[Sp, Prop. 3.7.3] we show that

(%)

1
ksw(y) < L(L|K) (UezG Swg(a)x (o) — ML/K)] ,

where [z] indicates the integer part of = € Q and theinteger M,k is defined by

() dp(L/K) + My x =) salo).
o7l
Thus, the inequality in the statement follows from (x) and (xx). O
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Existence theorem for higher local fields

Kazuya Kato

0. Introduction

Afield K iscalledan n-dimensional local fieldif thereisasequenceof fields k,,, . .., ko
satisfying the following conditions: kg isafinitefield, k; isacomplete discrete valu-
ation field with residue field k;_, for: =1, ...,n, and k, = K.

In [9] we defined a canonical homomorphism from the n th Milnor group K, (K)
(cf. [14]) of an n-dimensional local field K to the Galois group Gal(K®/K) of the
maximal abelian extension of K and generalized the familiar results of the usual local
classfield theory to the case of arbitrary dimension except the “ existence theorem”.

An essential difficulty with the existence theorem liesin the fact that K (resp. the
multiplicative group K*) has no appropriate topology in the case where n > 2 (resp.
n > 3) which would be compatible with the ring (resp. group) structure and which
would take the topologies of the residue fields into account. Thus we abandon the
familiar tool “topology” and define the openness of subgroups and the continuity of
maps from anew point of view.

In the following main theorems the words “open” and “continuous’ are not used in
the topological sense. They are explained below.

Theorem 1. Let K be an n-dimensional local field. Then the correspondence
L — NL/KKn(L)

is a bijection from the set of all finite abelian extensions of K to the set of all open
subgroups of K, (K) of finite index.

This existence theorem is essentially contained in the following theorem which
expresses certain Galois cohomology groups of K (for example the Brauer group of
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166 K. Kato

K) by using the Milnor K-group of K. For afield k& we define the group H" (k)
(r > 0) asfollows (cf. [9, §3.1]). In the case where char (k) = 0 let

T — i r ®(r-1)
H" (k) = lim H" (k, 5 ~)
(the Galois cohomology). In the case where char (k) =p > O let
T — i r ®(r—1) i T
H' (k) =1im H" (k, p5" ) +1im Hy: (k).

Herein each case m runsover al integersinvertiblein k, u,, denotesthegroup of all
mth roots of 1 in the separable closure k5 of k, and p®~1 denotesits (r — 1)th
tensor power as a Z /m-module on which Gal(k>P/k) actsin the natural way. Inthe
case where char (k) = p > 0 wedenote by H ot (k) the cokernel of

F—1.07Yk) = o7 Xk)/{CT4k), T}

where C; isthe group defined in [3, Ch.11,§7] (see also Milne [13, §3]). For example,
H(k) isisomorphic to the group of all continuous characters of the compact abelian
group Gal(k®/k) and H?(k) isisomorphic to the Brauer group of k.

Theorem 2. Let K be as in Theorem 1. Then H"(K) vanishes for » > n+ 1 and is
isomorphic to the group of all continuous characters of finite order of K,,+1_.(K) in
the case where 0 < r < n+1.

We shall explain the contents of each section.

For acategory C the category of pro-objects pro(€) and the category of ind-objects
ind(C) aredefined asin Deligne [5]. Let Fp be the category of finite sets, and let F1,
F,, ... bethe categories defined by F,+1 = ind(pro(§,)). Let Fo = U, F,. In
section 1 we shall show that n-dimensional local fields can be viewed as ring objects
of F,,. More precisely we shall define aring object K of JF,, corresponding to an
n-dimensional local field K such that K is identified with the ring [e, K]y of
morphisms from the one-point set e (an object of Fp) to K, and a group object K*
such that K* isidentified with [e, K*]5 . Wecall asubgroup N of K,(K) openif
and only if the map

K* x XK*%Kq(K)/N, (:El,...,.’lfq)l—){m]_,...,.’lfq} mod N

comes from amorphism K* x --- x K* — K, (K)/N of ¥, where K,(K)/N is
viewed as an object of ind(Fg) C F1. We call ahomomorphism ¢: K,(K) — Q/Z a
continuous character if and only if the induced map

K*x - xK* = Q/Z, (z1,...,29) = ¢({z1, ..., 24})

comesfrom amorphismof ¥, where Q/Z isviewed asan object of ind(Fp). Ineach
case such amorphism of ¥, isuniqueif it exists (cf. Lemma 1 of section 1).

In section 2 we shall generalize the self-duality of the additive group of a one-
dimensional local field in the sense of Pontryagin to arbitrary dimension.
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Section 3isapreliminary onefor section4. Thereweshall prove somering-theoretic
propertiesof [X, K] forobjects X of F.

In section 4 we shall treat the norm groups of cohomological objects. For afield &
denote by E(k) the category of all finite extensions of & in afixed algebraic closure of
k withtheinclusion mapsasmorphisms. Let H beafunctor from E(k) tothe category
Ab of al abelian groups such that Ii_r)nkleg(k) H(k') = 0. For wy, ...,wy € H(k)
definethe K ,-normgroup Ny(ws, ..., w,) asthesubgroup of K,(k) generated by the
subgroups Ny, K, (k') where k' runsover al fieldsin (k) suchthat {wy, ..., w,} €
ker(H(k) — H(k')) and where Ny, denotes the canonical norm homomorphism of
the Milnor K -groups (Bass and Tate [2, §5] and [9, §1.7]). For example, if H = H!
and x1, ...,xg € H'(k) then Ny(x1, -..,Xx,) isnothing but Ny, K,(k') where k'
isthefinite abelian extension of & correspondingto N; ker(x;: Gal(k®/k) — Q/Z). If
H = H? and w € H?(k) then Ny(w) istheimage of the reduced norm map A* — k*
where A isacentral smple algebraover k correspondingto w.

As it iswell known for aone-dimensional local field k& the group N1i(x1, .., Xg)
is an open subgroup of k* of finite index for any x1, ...,xg € H(k) and the group
Ni(w) = k* forany w € H?(k). We generalize these facts as follows.

Theorem 3. Let K be an n-dimensional local field and let » > 1.

(1) Letwy,...,wy, € H"(K). Thenthe normgroup Nyp+1—r(w1, ..., w,) iSanopen
subgroup of K, +1_,(K) of finite index.

(2) Let M be a discrete torsion abelian group endowed with a continuous action
of Gal(K**"/K). Let H be the Galois cohomology functor H"( , M). Then for
every w € H"(K, M) the group N,+1_,(w) is an open subgroup of K,,+1_,(K)
of finite index.

Let k beafield and let ¢, > 0. We define a condition (N, k) as follows: for
every k' € £(k) andevery discretetorsion abelian group M endowed with acontinuous
action of Gal(k'**/k")

Ny(wi, ..., wg) = K,(k")
forevery i > r, wy, ...,w, € H'(K'), w1, ...,w, € H*(k',M), and in addition
|k : kP| < p?™" inthe case where char (k) =p > 0.

For example, if k is a perfect field then the condition (N{, k) is equivaent to

cd(k) < » where cd denotes the cohomological dimension (Serre [16]).

Proposition 1. Let K be a complete discrete valuation field with residue field k. Let
g > 1 and r > 0. Then the two conditions (Ng, K) and (N;_;,k) are equivalent.

On the other hand by [11] the conditions (N, K) and (] ~1 k) are equivalent
forany » > 1. By induction on n we obtain

Corollary. Let K be an n-dimensional local field. Then the condition (N7, K) holds
ifandonlyif g+r>n+1.
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We conjecturethat if ¢ +r =¢' +r' then the two conditions (N, k) and (N;,', k)
are equivalent for any field k.

Finally in section 5 we shall prove Theorem 2. Then Theorem 1 will be a corollary
of Theorem 2 for » = 1 and of [9, §3, Theorem 1] which claims that the canonical
homomorphism

K, (K) — Ga(K®/K)

induces an isomorphism K,(K)/Np,;xKn(L) = Ga(L/K) for each finite abelian
extension L of K.

| would liketo thank Shuji Saito for hel pful discussionsand for the stimulation given
by hisresearchin thisarea(e.g. hisduality theorem of Galois cohomology groupswith
locally compact topologies for two-dimensional local fields).

Table of contents.
1. Definition of the continuity for higher local fields.
2. Additive duality.
3. Properties of thering of K -valued morphisms.
4. Norm groups.
5. Proof of Theorem 2.

Notation.

We follow the notation in the beginning of this volume. Referencesto sectionsin
this text mean references to sections of this work and not of the whole volume.

All fields and ringsin this paper are assumed to be commutative.

Denote by Sets, Ab, Rings the categories of sets, of abelian groups and of rings
respectively.

If C isacategory and X,Y are objects of € then [X,Y]e (or simply [X,Y])
denotes the set of morphisms X — Y.

1. Definition of the continuity for higher local fields

1.1. Ring objectsof a category corresponding to rings.

For acategory C let C° bethedual category of €. If € hasafinal object we always
denoteit by e. Then,if 8: X — Y isamorphism of C, [e,f] denotes the induced
map [e, X] — [e, Y].

In this subsection we prove the following

Proposition 2. Let C be a category with a final object e in which the product of any
two objects exists. Let R be a ring object of € such that for a prime p the morphism
R — R, z — pz is the zero morphism, and via the morphism R — R, z > zP the
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latter R is a free module of finite rank over the former R. Let R =[e, R], and let A
be a ring with a nilpotent ideal I suchthat R = A/I and such that I*/T**! is a free
R-module of finite rank for any .

Then:

(1) Thereexists aring object A of € equipped with a ring isomorphism j7: A = [e, 4]
and with a homomorphism of ring objects 8: A — R having the following prop-
erties:

(@ [e,0]0j:A — R coincides with the canonical projection.
(b) For any object X of G, [X, A] is a formally etale ring over A in the sense
of Grothendieck [7, Ch. 0§19], and é induces an isomorphism

[X, A]/I[X, A] ~ [X, E].

(2) The above triple (4, 7,0) is unique in the following sense. If (4’, 7', 6") is another
triple satisfying the same condition in (1), then there exists a unique isomorphism
of ring objects : A = A’ suchthat [e,4] oj =7' and 6 =8 0 9.

(3) The object A is isomorphic (if one forgets the ring-object structure) to the product
of finitely many copies of R.

(4) If C hasfinite inverse limits, the above assertions (1) and (2) are valid if conditions
““free module of finite rank” on R and I*/I**! are replaced by conditions ““direct
summand of a free module of finite rank”.

Example. Let R beanon-discrete locally compact field and A alocal ring of finite
length with residue field R. Then in the case where char (R) > 0 Proposition 2 shows
that there exists a canonical topology on A compatible with the ring structure such
that A is homeomorphic to the product of finitely many copies of R. On the other
hand, in the case where char (R) = 0 it isimpossible in general to define canonically
such atopology on A. Of course, by taking a section s: R — A (asrings), A asa
vector space over s(R) hasthe vector space topology, but this topology dependson the
choiceof s ingeneral. Thisreflectsthe fact that in the case of char (R) = 0 thering of
R-valued continuous functions on atopol ogical spaceisnot in general formally smooth
over R contrary to the case of char (R) > 0.

Proof of Proposition 2. Let X beanobjectof C; put Rx =[X, R]. Theassumptions
on R show that the homomorphism

R®) @p Rx — Rx, =®y— xyP

is bijective, where R®) = R asaring and the structure homomorphism R — R® is
z — zP. Henceby[10, §1 Lemmal] thereexistsaformally etalering Ax over A with
aring isomorphism 6x: Ax /IAx ~ Rx. The property “formally etale” shows that
the correspondence X — A x isafunctor C° — Rings, and that the system 6x forms
amorphism of functors. More explicitly, let n and r be sufficiently large integers, let
W, (R) bethering of p-Witt vectorsover R of length n, and let ¢: W,,(R) — A be
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the homomorphism
T .
(w0, 21, ...) = > p'&EF
=0

where z; isarepresentativeof z; € R in A. Then Ax isdefined asthetensor product
Wn(Rx) ®@w, &) A
induced by . Since Tor I'*®(W,,(Rx), R) = 0 we have
Tor V"®(W,,(Rx), A/I¥) = 0
for every 7. This provesthat the canonical homomorphism
I')T*" Y ®@p Rx — I'Ax /T"™ Ax
is bijective for every i. Hence each functor X — I'Ax/I**'Ax is representable

by afinite product of copiesof R, and it followsimmediately that the functor Ax is
represented by the product of finitely many copiesof R. 0

1.2. n-dimensional local fields asobjectsof F, .

Let K bean n-dimensional local field. In this subsection we define a ring object
K and agroup abject K* by induction on n.

Let ko, ..., k, = K beasintheintroduction. For each 7 suchthat char (k;_1) =0
(if such an ¢ exists) choose aring morphism s;: k;_1 — O, such that the composite
ki1 — Ok, — Ok, /My, istheindentity map. Assume n > 1 and let k,_1 bethe
ring object of F,,_, corresponding to k,_, by induction on . -

If char(k,,_1) =p > 0, the construction of K below will show by induction on n
that the assumptions of Proposition 2 are satisfied when onetakes F,,_1, kp—_1, kn_1
and Og /MY (r >1)asC, R, R and A. Henceweobtainaringobject O g /MY of
Fn—1. Weidentify Og /MY with [e, Ox /M’ ] viatheisomorphism j of Proposition
2.

If char(k,—1) =0, let Ox/M7% bethering object of F,_1 which represents the
functor

3?1—1 - Rlngs, X OK/M’II‘{ ®kn,1 [Xa IM.])
where O g /MY isviewed asaring over k,_1 via s,_1.
Ineach caselet O bethe object I(ln Or /M of pro(F,_1). Wedefine K as
the ring object of F,, which correspondsto the functor

pro(F,_1)° = Rings, X — K Qo, [X,0k].

Thus, K isdefined canonically inthe case of char (k,,_1) > 0, and it depends (and
doesn’t depend) on the choices of s; in the case of char(k,,_1) = 0 in the following
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sense. Assume that another choice of sections s; yields k;' and K'. Thenthere exists
an isomorphism of ring objects K = K’ which induces k; = k;' for each . Butin
general there is no isomorphism of ring objects : K — K' suchthat [e,v]: K — K
is the indentity map.

Now let K* bethe object of F,, which representsthe functor

F° 5 Sets, X > [X, K]*.

This functor is representable because JF,, has finite inverse limits as can be shown by
induction on n.

Definition 1. We define fine (resp. cofine) objects of F,, by induction on n. All
objectsin Fq are called fine (resp. cofine) objects of Fo. Anobjectof F,, (n > 1)is
caled afine (resp. cofine) object of F,, if and only if it isexpressedas X =" Ii_r>n "X
for some objects X, of pro(F, _1) andeach X, isexpressedas X =I<m1 X, for
someobjects X, of F,,_1 satisfying theconditionthat al X, arefine(resp. cofine)
objectsof F,,_1 and themaps [e, X] — [e, X,,] aresurjectiveforal A, p (resp. the
maps [e, Xa] — [e, X] areinjectivefor al X).

i then F; isafull subcategory of F;. Thuseach F; isafull

Recall that if ¢ < j
=Ui§i-

subcategory of F o

Lemma 1.
(1) Let K be an n-dimensional local field. Then an object of J,, of the form

Kx ..KxK'x ---x K*

is a fine and cofine object of F,,. Every set S viewed as an object of ind(Fp) is a
fine and cofine object of 1.

(2) Let X and Y be objects of F.,, and assume that X is a fine object of F,
for some n and Y is a cofine object of F,, for some m. Then two morphisms
0,0": X — Y coincide if [e, 0] =[e, 6].

Asexplainedin 1.1 thedefinition of theobject K dependsonthesections s;: k;_1 —
Ok, chosenfor each ¢ suchthat char (k;_1) = 0. Still we have the following:

Lemma 2.

(1) Let N be a subgroup of K, (K) of finite index. Then openness of N doesn’t
depend on the choice of sections s;.

(2) Let ¢: K4(K) — Q/Z be a homomorphism of finite order. Then the continuity of
x doesn’t depend on the choice of sections s;.

The exact meaning of Theorems 1,2,3 is now clear.
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2. Additive duality

2.1. Category of locally compact objects.

If C isthe category of finite abelian groups, let C bethe category of topological
abelian groups G' which possessatotally disconnected open compact subgroup H such
that G/H isatorsion group. If C isthe category of finite dimensional vector spaces
over afixed (discrete) field k, let ¢ bethe category of locally linearly compact vector

spacesover k (cf. Lefschetz [12]). In both casesthe canonical self-duality of € iswell
known. These two examples are special cases of the following general construction.

Definition 2. For acategory € define afull subcategory € of ind(pro(C)) asfollows,
An object X of ind(pro(C)) belongs to ¢ if and only if it is expressed in the form
" I|_r>n "ier" I(ln ic1X (3,7) for some directly ordered sets I and J viewed as small
categoriesintheusua way andfor somefunctor X: I° xJ — C satisfyingthefollowing
conditions.

() If4,4 eI, : <4 thenthemorphism X(i,j) — X (¢,7) issurjective for every
jedJ. If 3,57 € J, 7 <j' thenthemorphism X (i,j) — X (i,5') isinjectivefor
every i € I.

(i) If4,4" eI, 1 <4 and j,5' € J, j < j' thenthe square

X('Llaj) — X(ilaj’)

! !

is cartesian and cocartesian.

It is not difficult to prove that e is equivalent to the full subcategory of pro(ind(C))
(as well as ind(pro(C))) consisting of all objects which are expressed in the form
"lim" e "lim " je s X (i, 5) for sometriple (, J, X) satisfying the same conditions as
above. In this equivalence the object
lim " jes " lim” e X (i, j) correspondsto ™ lim™ e " lim ™ je 7 X (3, ).

Definition 3. Let Ag be the category of finite abelian groups, and let A1, A, ... be
the categories defined as A ,+1 = Ap.

It is easy to check by induction on n that A,, isafull subcategory of the category
F3 of all abelian group objects of F,, with additive morphisms,
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2.2. Pontryagin duality.
The category Ag isequivalent toits dual viathe functor

DO:-AS :>.A0, X — Hom(X, Q/Z)

By induction on n. we get an equivalence
—_— —~—— D —_—
DAL DAy, AL =(A, 1) =A° | " A, 1= A,

where we use (€)° = €°. Asinthe case of ¥, each A, is afull subcategory of
Ao =UpAy. Thefunctors D,, induce an equivalence

D: A, = Ao
suchthat D o D coincides with the indentity functor.

Lemma 3. View Q/Z as an object of ind(Ap) C Ax C 3’22. Then:
(1) Foreveryobject X of Ay

[X7 Q/Z]Aoo = [6, D(X)]?oo

(2) PForallobjects X,Y of Ay, [X,D(Y)]4,, iscanonicallyisomorphic to the group
of biadditive morphisms X x Y — Q/Z in Fw.

Proof. Theisomorphism of (1) is given by
[X,Q/Z)a,, ~ [D(Q/Z), D(X)]a., =[Z,D(X)]a., = [e, D(X)]s.,

(2 isthe totally disconnected compact abelian group I(ln -0 Z/n andthelast arrow is

theevaluationat 1 € Z). Theisomorphism of (2) isinduced by the canonical biadditive
morphism D(Y) x Y — Q/Z which is defined naturally by induction on n. 0

Compare the following Proposition 3 with Weil [17, Ch. Il §5 Theorem 3].

Proposition 3. Let K be an n-dimensional local field, and let V' be a vector space
over K of finite dimension, V' = Homg(V, K). Then

(1) The abelian group object V' of F,, which represents the functor X — V @k
[X, K] belongsto A,.

(2) [K,Q/Z]a,, isone-dimensional with respect to the natural K -module structure
and its non-zero element induces due to Lemma 3 (2) an isomorphism V! ~ D(V).
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3. Propertiesof thering of K-valued morphisms

3.1. Multiplicative groups of certain completerings.

Proposition 4. Let A be a ring and let = be a non-zero element of A such that
A= I(iLnA/w"A. Let R = A/wA and B = A[x~1]. Assume that at least one of the
following two conditions is satisfied.

(i) R is reduced (i.e. having no nilpotent elements except zero) and there is a ring
homomorphism s: R — A such that the composite R = A — A/mA is the
identity.

(i) Foraprime p thering R isannihilated by p and via the homomorphism R — R,
x — xP the latter R is a finitely generated projective module over the former R.

Then we have

B* ~ A* x T'(Spec(R), Z)
where T'(Spec(R), Z) is the group of global sections of the constant sheaf Z on Spec(R)

with Zariski topology. The isomorphism is given by the homomorphism of sheaves
2 — Ogpec(ry: 1+ m, the map

I'(Spec(R), Z) ~ T(Spec(A), Z) — T'(Spec(B), Z)
and the inclusion map A* — B*.

Proof. Let Affgr bethe category of affine schemesover R. Incase (i) let C = Aff .
In case (ii) let € be the category of all affine schemes Spec(R’) over R such that the
map

RP@r R - R, z®y— oy’

(cf. the proof of Proposition 2) is bijective. Then in case (ii) every finite inverse limit
and finite sum existsin € and coincides with that taken in Aff. Furthermore, in this
casetheinclusion functor ¢ — Affr hasaright adjoint. Indeed, for any affine scheme
X over R the corresponding object in C is LiLﬂXi where X; isthe Well restriction

of X with respect to the homomorphism R — R, z — z”".

Let R bethering object of € which representsthe functor X — I'(X,0x), and
let R* be the object which represents the functor X — [X, R]*, and O be the final
object e regarded as a closed subschemeof R viathe zero morphism e — R.

Lemma 4. Let X be an object of € and assume that X is reduced as a scheme
(this condition is always satisfied in case (ii)). Let §: X — R be a morphism of C.
If #~1(R*) is a closed subscheme of X, then X is the direct sum of #—1(R*) and
6—1(0) (where the inverse image notation are used for the fibre product).
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The group B* is generated by elements = of A such that =™ € Ax for some
n > 0. Incase(i) let A/7™*1A bethering object of C which represents the functor

X = A/7"" ' A®R[X, R] where A/n"*1A isviewed asan R-ring viaafixed section
s. Incase (i) we get aring object A/7™*1A of @ by Proposition 2 (4).

In both cases there are morhisms 6;: R — A/7r”+lA (0 <7< m)in € such that
the morphism

Rx - ---xR— A/7r"+lA, (o, .- xp) — Zez(xz)ﬂﬂ
=0

is an isomorphism.
Now assume zy = «™ for some z,y € A and take elements z;,y; € R = [e, R]
(0 <4 < n)suchthat

n n
z mod «™ =) "6i()n’, y mod ™= " 0;(y)n.
=0 =0

An easy computation showsthat for every » =0, ..., n

n—r—1

r—1 r—1
(N =@ Nz t@) = (N @) () ¥ ).
=0 =0

=0
By Lemma4 and induction on » we deduce that e = Spec(R) is the direct sum of the
closed open subschemes (N72;'z;71(0)) Nz 1(R*) on which the restriction of = has
theform ax™ for aninvertible element a € A. O

3.2. Propertiesof thering [X, K] .
Results of this subsection will be used in section 4.
Definition 4. For anobject X of ¥, andaset S let
ICf(X7 S) = Il_nQI[XaI]
where I runsover al finite subsetsof S (consideringeach I asanobjectof Fo C F ).

Lemma 5. Let K be an n-dimensional local field and let X be an object of F.
Then:

(1) Thering [X, K] is reduced.
(2) Foreveryset S there is a canonical bijection

lcf (X, §) = I'(Spec([X,, K]), 5)

where S on the right hand side is regarded as a constant sheaf on Spec([ X, K]).

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



176 K. Kato

Proof of (2). If I isafinite set and #: X — I isamorphism of ¥, then X is
the direct sum of the objects -1(3) = X x; {i} in T (i € T). Hence we get the
canonical map of (2). To prove its bijectivity we may assume S = {0,1}. Note that
I'(Spec(R), {0, 1}) isthe set of idempotentsin R for any ring R. We may assume that
X isanobject of pro(F,_1).
Let k,,_1 betheresiduefield of k,, = K. Then
I'(Spec([X, K1), {0, 1}) ~ I'(Spec([ X, kn—1]), {0, 1})

by (1) applied to thering [X, k,,—1]. O

Lemma6. Let K be an n-dimensional local field of characteristic p > 0. Let

kg, ...,k beasintheintroduction. Foreach i =1, ...,n let m; be alifting to K of
a prime element of k;. Then for each object X of F, [X, K]* is generated by the
subgroups

[X, KP(r)]*

where s runs over all functions {1, ...,n} — {0,1,...,p — 1} and «(*) denotes
@ xsm) KP(xl)) is the subring object of K correspondingto K2(x()), i.e.

[X, K?(x)] = KP(x*)) @ » [X, K].
Proof. Indeed, Proposition 4 and induction on n yield morphisms
00): K* — KP(x(®)*

such that the product of all 8¢) in K* istheidentity morphism K* — K*. O

The following similar result is also proved by induction on n.

Lemma7. Let K, ko and (m;)1<i<n b€ asinLemma 6. Then there exists a morphism
of Aso
(cf. section 2)

(02,001 Q — i x ke
such that
z = (1 - C)1(z) + O2(x)dmy /71 A -+ Ndmy /Ty,

for every object X of o, and for every @ € [X, Q%] where QF is the object which
represents the functor X — Q% ®x [X, K] and C denotes the Cartier operator ([4],
or see 4.2 in Part | for the definition).

Generalize the Milnor K -groupsasfollows.

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Existence theorem for higher local fields 177

Definition 5. For aring R let I'o(R) = I'(Spec(R), Z). The morphism of sheaves
7, x ng&':(R) — ng&':(R)’ (’I’L,%) — "
determines the T'p(R)-module structureon R*. Put T'1(R) = R* andfor ¢ > 2 put
[y(R) = ®1(1"0(R)F1(R)/Jq

where ®1€0(R)1“1(R) is the gth tensor power of I'1(R) over I'o(R) and J, is the
subgroup of the tensor power generated by elements 1 ® --- ® z, which satisfy
zi+tx;=1lorz;+z; =0forsomei Zj. Anelement z; ® --- ® z, mod J, will
be denoted by {z1, ...,z,}.

Note that T'y(k) = K,(k) for each field £ and I'j(R1 x R2) ~ T'y(R1) x [4(R2)
forrings R1, R>.

Lemma 8. In one of the following two cases
(i) A,R,B,n asin Proposition 4
(i) an n-dimensional local field K, an object X of F, A =[X,Ok],
R= [Xakn—l]! B= [Xa-K]'
let U;T",(B) be the subgroup of I'y(B) generated by elements {1+x'z,y1, ...,y,-1}
suchthat z € A, y; € B*, ¢,i > 1.
Then:
(1) There is a homomorphism pd:Ty(R) — [y(B)/U1l'q(B) such that
i, ... 2} ={F1, ..., T} mod Uily(B)

where z; € A is a representative of z;. In case (i) (resp. (ii)) the induced map
Tg(R) +Tq_1(R) = T4(B)/UIT4(B), (=,y) = pf(@) +{p§ (), 7}

(resp.
[y(R)/m +Tq_1(R)/m — T4(B)/(U1l'y(B) + mI'y(B)),

(2,9) = pi(@) +{pf (), 7})
is bijective (resp. bijective for every non-zero integer m).
(2) If m isan integer invertible in R then U1I'y(B) is m-divisible.
(3) Incase (i) assume that R is additively generated by R*. In case (ii) assume that
char (k,,_1) = p > 0. Then there exists a unique homomorphism

pL: QLY — U,T,(B)/UsniT,4(B)
such that
pi(@dy1/y1 A -+ Ndyg_1/yq-1) = {1+Zn", 91, ..., 9p—1} mod Uss1Ty(B)
forevery z € R, y1, ...,y,—1 € R*. The induced map

QL 9 QL2 & U;T,(B)/UiniTy(B), (z,y) — pX(z) + {p? *(v), 7}
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is surjective. If 4 is invertible in R then the homomorphism p? is surjective.

Proof. In case (i) these results follow from Proposition 4 by Bass-Tate's method
[2, Proposition 4.3] for (1), Bloch’s method [3, §3] for (3) and by writing down the
kernel of R® R* — Qk%, z®y +— xdy/y asin[9, §1 Lemmas].

If X isanobjectof pro(F,,_1) thencase(ii) isaspecial caseof (i) except n = 1 and
ko =T, where [ X, ko] isnot generated by [X, ko]* in general. But in this exceptional
caseit is easy to check directly all the assertions.

For an arbitrary X we present here only the proof of (3) because the proof of (1) is
rather similar.

Put £ = k,_;. For the existence of p? it suffices to consider the cases where
X = Qz_l and X =k x Hq_lk_* (IT"Y denotes the product of r copiesof Y).
Note that these objectsarein pro(F,_1) since [X,Q}] = QE’X,k] forany X and gq.

The unigqueness follows from the fact that [ X, Q,Z_l] is generated by elements of
theform zdci/ci A --- Adeg_1/cg—1 suchthat @ € [X,k] and ¢y, ...,cq—1 € k*.

To provethe surjectivity we may assume X = (1+7*Og) x Hq_l K* andit suffices
to prove in this case that the typical element in U;T'y(B)/U;+114(B) belongs to the
image of the homomorphism introduced in (3). Let Uk be the object of F,, which
represents the functor X — [X, O]*. By Proposition 4 there exist

morphisms 61: K* — ]_[f;l Ugn® (thedirect sumin 5,,) and 62 K* — K*
such that z = 61(z)02(z)? foreach X in ¥, andeach z € [X, K*] (inthe proof of
(1) p isreplaced by m). Since ]_[f:_ol Ugn® belongsto pro(F,_1) and

(1+7[X, 0] C 1+ 71X, Ok] wearereduced to the case where X is an object
of pro(F,_1). O

4. Norm groups

In this section we prove Theorem 3 and Proposition 1. In subsection 4.1 we reduce
these results to Proposition 6.

4.1. Reduction steps.

Definition 6. Let k£ beafieldandlet H: £(k) — Ab be afunctor such that
Ii_r)nk,eg(k) H(k') =0. Let w € H(k) (cf. Introduction). For aring R over k and
g > 1 define the subgroup N,(w, R) (resp. L,(w, R)) of I'y(R) asfollows.
Anelement = belongsto N,(w, R) (resp. L,(w, R)) if and only if there exist
afiniteset J and element 0 € J,

Geometry & Topology Monographs, Volume 3 (2000) — Invitation to higher local fields



Existence theorem for higher local fields 179

amap f:J — J such that for some n > O the nthiteration f™ with respect to
the composite is a constant map with value 0,
andafamily (E;,z;)jes (E; € E(k)), z; € T4(E; ® R)) satisfying the follow-
ing conditions:
(I) Eg=k and zg = .
(i) Eyy) C Ej; forevery j e J.
(iii) Let j € f(J). Thenthereexistsafamily (yt, 2¢);c f-1(;)
(yt € (Et Rk R)*, Zy € rq_l(Ej Rk R)) such that Ty = {yt,zt} for dl
tc f~1(4) and

2;= Y. {Np,g.r/Be.RW) 2}
tef1()
where N E:®R/E;®R denotes the norm homomorphism
(B; ® R)* — (E; ® R)*.

(iv) If 5 € J\ f(J) then w belongsto the kernel of H(k) — H(E;)
(resp. then one of the following two assertionsis valid:
(@) w belongsto the kernel of H(k) — H(E;),
(b) z; belongsto theimage of I'(Spec(E; Q@ R), Kq(E;)) — I'y(E; ® R),
where K,(E;) denotes the constant sheaf on Spec(E; ®; R) defined by the
set Ko(E)).

Remark. If the groups I';(E; ®; R) have asuitable “norm” homomorphism then z
is the sum of the “norms” of z; such that 1) = 0. In particular, in the case where

R =

k weget Ny(w,k) C Ny(w) and Ny(w, k) = N1(w).

Definition 7. For a field k let [E(k), Ab] be the abelian category of al functors
E(k) — Ab.

)

)

For ¢ > 0O let N, 5, denotethefull subcategory of [E(k), Ab] consisting of functors
H such that Ii_r)nk,eg(k) H(k") = 0 and such that for every k' € £(k), w € H(k')
the norm group N,(w) coincides with K,(k'). Here N,(w) is defined with
respect to the functor E(k') — Ab.

If K isan n-dimensional local field and ¢ > 1, let N, x (resp. £, x ) denote
the full subcategory of [E(K), Ab] consisting of functors H such that

lim & ee(x) H(K')=0

and such that for every K' € £(K), w € H(K') and every object X of ¥, the
group Ny(w,[X, K']) (resp. Ly(w,[X, K'])) coincideswith T'y([X, K']).

Lemma 9. Let K be an n-dimensional local field and let H be an object of L, .
Then for every w € H(K) the group N,(w) is an open subgroup of K,(K) of finite
index.
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Proof. Consider the casewhere X = []? K*. Wecantakeasystem (E;,z;);cs asin
Definition 6 such that Eg = K, z¢ isthe canonical element in I';([ X, K]) and such
that if j ¢ f(J) and w ¢ ker(H(K) — H(Ej;)) then z; isthe image of an element
8; of Icf(X, K,(Ej)). Let 6 € Icf(X, K4(K)/Ny(w)) be the sum of Ng,/x o 6;
mod N,(w). Then the canonical map [e, X] =[? K* — K,(K)/N,(w) comesfrom
6. O

Definition 8. Let k£ beafield. A collection {Cp}xree(r) Of full subcategories Cy of
[E(k"), Ab] iscalled admissible if and only if it satisfies conditions (i) — (iii) below.
(i) Let E € E(k). Then every subobject, quotient object, extension and filtered
inductive limit (in the category of [E(F),Ab]) of objectsof Cg belongsto Cg.
(i) Let E,E' € k) and E C E'. If H isin Cg then the composite functor
E(E") — &(B) 2 Abisin Cg.
(ili) Let £ € E(k) and H isin [E(E),Ab]. Then H isin Cg if conditions (a) and
(b) below are satisfied for aprime p.
(8) Forsome E' € E(E) suchthat |E' : E| isprimeto p the composite functor
(E") — (E) 2 Abisin Cg.
(b) Let g beaprimenumber distinct from p andlet S beadirect subordered set
of E(F). If the degree of every finite extension of the field Ii_>m pes B isa

1 N —
power of p then h_r)nE,ES H(E'") =0.

Lemma 10.

(1) For each field k and ¢ the collection {Ng i }ree(r) is admissible. If K is an
n-dimensional local field then the collections {Ng x }rreem) and {Lqx }rrcem)
are admissible.

(2) Let k be a field. Assume that a collection {Cy}rrce) is admissible. Let » > 1
and for every prime p there exist E € E(k) such that |E : k| is prime to p
and such that the functor H"( ,Z/p"): E(E) — Ab is in Cg. Then for each
k' € E(k), each discrete torsion abelian group M endowed with a continuous
action of Gal(k'>®/k') and each i > r the functor

Hi( ,M):E(K') — Ab
isin Cy.

Definition 9. For afield k£, » > 0 and anon-zero integer m define the group H, (k)
asfollows.
If char (k) =0 let

HT, (k) = H" (k, &),
If char (k) =p > 0 and m =m'p* where m' isprimeto p and 7 > O let
H, (k) = HE,, (k, u@7 D) @ coker(F — 1: €7 (k) — CT~Y(k)/{C!~2(k), T})
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(where C; isthe group defined in [3, Ch.I1,§7], CT =0 for r < 0).

By the aboveresults it suffices for the proof of Theorem 3 to prove the following
Proposition 5 in the case where m isa prime number.

Proposition 5. Let K be an n-dimensional local field. Let ¢,» > 1 and let m be a
non-zero integer. Then the functor H) :E(K) — Abisin Ly x if g+7=n+1 and
in Ngg if g+tr>n+1.

Now we begin the proofs of Proposition 1 and Proposition 5.

Definition 10. Let K be a complete discrete valuation field, » > 0 and m be a

non-zero integer.

(1) Let Hy, , and Hy, /H], . bethefunctors E(K) — Ab:

Hy, (K') = ker(Hy, (K') — Hp, (K(y)),
(H:n/H:n,ur)(Kl) = H:n(KI)/H;z,ur(K’)
where K/, isthe maximal unramified extension of K'.

(2) Let I (resp. J;,) bethe functor £(K) — Ab such that I7, (K') = H! (k')
(resp. JI(K') = HI (k")) where k' isthe residue field of K' and such that the
homomorphism I (K') — I (K") (resp. J} (K') — J; (K")) for K' ¢ K"
iS jrr ke (resp. e(K"|K")jyn /i) where k" istheresiduefield of K", gy s is
the canonical homomorphism induced by theinclusion &' C k" and e(K"|K') is
the index of ramification of K" /K'.

Lemma 11. Let K and m be as in Definition 10.
(1) For r > 1 there exists an exact sequence of functors
0— I, — Hy, o — J-t o

(2) Jr, isin Nq g forevery r > 0.
(3) Let g, > 1. Then Iy, isin Ng g if and only if Hy :E(k) — Abisin Ny_1z
where k is the residue field of K.

Proof. The assertion (1) follows from [11]. The assertion (3) follows from the facts
that 1+Mgx C Nz, x(L*) for every unramified extension L of K andthat there exists
acanonical split exact sequence

0— Ky(k) = Ko(K)/U1Kq¢(K) = K,_1(k) — O. O

The following proposition will be proved in 4.4.

Proposition 6. Let K be a complete discrete valuation field with residue field k. Let
g, > 1 and m be a non-zero integer. Assume that [k : kP| < p?*"—2 if char (k) =
p > 0. Then:
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D H:n/H:;z,ur isin Ng k.
(2) If K isan n-dimensional local field with n > 1 then Hy, /Hy, \ isin Ny k.

Proposition 1 followsfrom this proposition by Lemma 10 and Lemma 11 (note that
if char (k) =p >0 and i > 0 then H(k) isisomorphicto ker(p*: H" (k) — H" (k))
asit follows from [11]).

Lemma 12. Let K be an mn-dimensional local field and let X be an object of F .
Consider the following cases.

(i) ¢ >mn+1and m isanon-zero integer.

(i) g=n+1, char(K)=p> 0 and m is a power of p.

(iii) g =mn+1 and m is a non-zero integer.

Let z € I'y([X, K]. Then in cases (i) and (ii) (resp. in case (iii)) there exist a triple
(J,0, f) and a family (E;,z;);cs Which satisfy all the conditions in Definition 6 with
k = K except condition (iv), and which satisfy the following condition:

(iv) If j € J\ f(J) then z; € mI'y([X, E;])
(resp. z; belongsto mI',([X, E;])
or to the image of Icf(X, K,(E;)) — T,(X, E;])).

Corollary. Let K be an n-dimensional local field. Then mK,.1(K) is an open
subgroup of finite index of K,+1(K) for every non-zero integer m.

This corollary follows from case (iii) above by the argument in the proof of Lemma
9.

Proof of Lemma 12. We may assumethat m isa prime number.

First we consider case (ii). By Lemma 6 we may assume that there are elements
b1, ...y bpe1 € [X,K]* and ¢, ...,cp+1 € K* suchthat = {b1, ...,b,+1} and
b; € [X,KP(c;)]* for each 3. We may assume that |K?(cy, ...,c.) : KP| = p"
and ¢;+1 € KP(cy, ...,c,) forsome r < n. Let J = {0,1,...,r}, and define
f:J = J by f(G)=j—1for j>1and f(0)=0. Put E; = K(¢y'?, ..., ;") and

z; = {by/", ..., b3/7 bjaq, ..., buat}. Then

Tr = p{bi/pa RS bifga b7‘+27 s ’bn+l} in 1_‘n+l([)(7 ET'])

Next we consider cases (i) and (iii). If K is afinite field then the assertion for
(i) follows from Lemma 13 below and the assertion for (iii) istrivial. Assume n > 1
and let k£ be the residue field of K. By induction on n Lemma 8 (1) (2) and case
(ii) of Lemma 12 show that we may assume z € U1il,([X, K]), char(K) =0 and
m = char (k) = p > 0. Furthermore we may assumethat K contains aprimitive pth
root ¢ of 1. Let ex = vx(p) andlet m beaprimeelement of K. Then

Uil4([X, Ok]) C pUrl([X, Ok]), if i> pex/(p—1).

From thisand Lemmas8 (3) (and acomputation of themap = — =P on U1I4([X, Ok]))
it followsthat U1l4([X, K]) is p-divisibleif ¢ > n + 1 and that there is a surjective
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homomorphism
[X,Qp7 /(1 - OLX, Q¢ = UiTnaa((X, K1)/pUrTne1 (X, K1),

mdyl/yl JANRERA dyn—l/yn—l = {1+ 5(( - 1);0,:{/1, R 7?}71;1’7‘-}
where C isthe Cartier operator. By Lemma 7

[X,Qp71/(1- OLX, Q1] = Icf(X, Q1 /(1 - O)Qp ™). O

Lemma 13. Let K be a finite field and let X be an object of F,. Then

(1) T,[X,K]=0forq>2.

(2) For every finite extension L of K the norm homomorphism [X, L]* — [X, K]*
is surjective.

Proof. Followsfrom Lemma5 (2). 0

Proof of Proposition 5 assuming Proposition 6. If K isafinitefield, the assertion of
Proposition 5 follows from Lemma 13.

Let n > 1. Let k betheresiduefieldof K. Let I, and J}, beasin Definition
10. Assume g+r=n+1 (resp. ¢ +r > n+1). Using Lemma8 (1) and the fact that

Urlg([X, K]) C Np/xTo([X, L])

for every unramified extension L/K we can deducethat I, isin L4 x (resp. Ng.x )
from the induction hypothesis H;,: E(k) — Ab isin L, 1 (resp. N,—_1%). Wecan
deduce JI 1 isin L, x (resp. Ny x ) from the hypothesis H?-1: €(k) — Ab isin
Lok (resp. Ny ). Thus Hy,  isin Lg x (resp. Ny k). O

4.2. Proof of Proposition 6.

Let k beafieldandlet m beanon-zerointeger. Then @, 50H;, (k) (cf. Definition
9) hasanatural right @,>0K,(k)-modulestructure(if m isinvertiblein & thisstructure
is defined by the cohomological symbol k! : K,(k)/m — H%(k, p3?) and the cup-
product, cf. [9, §3.1]). We denote the product in this structure by {w, a}
(a€ ®q>qu(k), w E GB,-;oHTTn(k)).

Definition 11. Let K be acomplete discrete valuation field with residuefield & such

that char(k) =p > 0. Let r > 1. Wecal an element w of H(K) standard if and

only if w isin one of the following forms (i) or (ii).

(i) w={x,a1,...,a,_1} wWhere x is an element of HI}(K) corresponding to a
totally ramified cyclicextensionof K of degree p, and a, ...,a,_1 areelements
of O% such that

|kp(CTla ey @p1) kp| =p'r—l
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(a; denotestheresidueof a; ).

(i) w = {x,a1, _...,ar_z,w} where x isan ele_ment_of HI}(K_) corresponding t_o a
cyclic extension of K of degree p whoseresiduefield is an inseparable extension
of k of degree p, = isaprimeeement of K and agy, ...,a,_o are elements of
O% suchthat |kP(ai, ...,a,—2) : k?| =p" 2.

Lemma 14. Let K and k be as in Definition 11. Assume that |k : k| = p"—. Then
for every element w € H)(K) \ H} (K) there exists a finite extension L of K such
that |L : K| is prime to p and such that the image of w in HJ(L) is standard.

Proof. If char (K) = p the proof goesjust asin the proof of [8, §4 Lemma 5] where
the case of r = 2 wastreated.

If char(K) = 0 wemay assumethat K contains a primitive pth root of 1. Then
the cohomological symbol A7 x: K,.(K)/p — Hy(K) issurjective and

coker(h? x: U1K, (K) — H(K)) = v,_1(k)

by [11] and |k : kP| = p"— 1.
Here we are making the following:

Definition 12. Let K be a complete discrete valuation field. Then U;K,(K) for
i,q > 1 denotes U,I'y(K) of Lemma8 case (i) (take A = Ok and B = K).

Definition 13. Let k& be afield of characteristic p > 0. Asin Milne [13] denote by
vr(k) the kernel of the homomorphism

Qp — QE/d(QyY,  adyi/yi A -+ Adyr/yr = (@ — 2)dyr/y1 A -+ A dyp [y

By [11, Lemma?Z2] for every element o of v,_1(k) thereisafinite extension k' of
k such that
|k’ : k| isprimeto p and theimage of « in v,._1(k") isthe sum of elements of type

dzi/z1 A\ - Ndzy [z,

Hence we can follow the method of the proof of [8, §4 Lemma’5 or §2 Proposition 2].

Proof of Proposition 6. If m isinvertiblein k then H;, = H;, ,. Hence we may
assume that char(k) = p > 0 and m = p*, i > 1. Since ker(p: H/H o —
H/H; ) isisomorphicto Hy /Hy . by [11], we may assume m = p.

The proof of part (1) is rather similar to the proof of part (2). So we present here
only the proof of part (2), but the method is directly applicable to the proof of (1).

The proof is divided in several steps. In the following K aways denotes an
n-dimensional local field with » > 1 and with residuefield & such that
char (k) =p > 0, exceptin Lemma2l. X denotesan object of F .
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Step 1. Inthis step w denotes a standard element of H,;(K) and w is itsimage
in (Hy/Hp )(K). We shal prove here that U1l'([X, K]) C N(w,[X, K]). We
fix a presentation of w asin (i) or (ii) of Definition 11. Let L be acyclic extension
of K corresponding to x. In case (i) (resp. (ii)) let A be a prime element of L
(resp. an element of Oy such that the residue class h is not contained in k). Let
G bethe subgroup of K* generated by a1, ...,a,_1 (resp. by as, ..., a,_2,m), by
1+Mg and N,k (h). Let I bethesubfield of k generated by the residue classes of
azy ...,0r-1 (r&sp aiy ...,0r-2, NL/K(h))

Leti> 1. Let G;4 bethesubgroup of U;I',([X, K]) generated by
{U:T,—1(X, K1), G} and U;+1T4([X, K]). Under these notation we have the follow-
ing Lemma 15, 16 ,17.

Lemma 15.
(1) Giq C Ny(w,[X, K]) + Uil ([X, K]).
(2) The homomorphism p! of Lemma 8 (3) induces the surjections

[X, Q0" 1] - [X,Q%; ] N UT,([X, K])/Gi 4.

K/l

(3) If pf is defined using a prime element = which belongs to G then the above
homomorphism p? annihilates the image of the exterior derivation

d:[X, Q0,71 = [X, 901,

Lemma 16. Let a be an element of K* suchthat vx(a) =< and

a= ai(l) ... ai(fl_l)NL/K(h)s(r)

(resp. a = ai(l) o a;(rz_z)ws(r_l)NL/K(h)s(r))

where s isamap {0, ...,r} — Z such that p { s(j) for some j #r.
Then 1 —zPa € Ni(w,[X, K]) foreach z € [X, Og].

Proof. It follows from the fact that w € {H;~1(K),a} and 1 — zPa is the norm of
1— za'/? € [X,K(a'/?)]* (K(a'/?) denotes the ring object which represents the
functor X — K(a'/?) @k [X, K]). O

Lemmal7. Let o beagenerator of Gal(L/K) andlet a = h~to(h)—1, b= Np, k(a),
t =wvg(b). Let f =1 incase (i) and let f =p incase (ii). Let N:[X,L]* — [X, K]*
be the norm homomorphism. Then:

(1) If fli and 1 < ¢ < ¢ thenforevery z € MiL/f[X, Or]

N(l+z)=1+N(z) mod MYHX, k]
(2) Forevery z € [X,0k]
N(l+za)=1+(zP — )b mod MEX, Og].
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In case (ii) for every integer r prime to p and every z € [X, O]
N(l+zh"a) = 1+2PN(h)"b mod MEYX,O0k].
©)
1+ MEUX, 0x] € NA+MYT X, 0L)).

Proof. Follows from the computation of the norm homomorphism L* — K* in Serre
[15, Ch.V §3] and [8, §1]. O

From these lemmas we have
(1) If 0<i<tthen

Uilo([X, K1) C Ny(w, [X, K]) + Uina I ([ X, K]).

(2 Upaly([X, K]) C Ny(w,[X, K]).
(3) Incase(ii)let a,_1 = Nz x(h). theninboth cases(i) and (ii) the homomorphism

[X, Q07 72] & UT,([X, K])/N,y(w, [ X, K]),
zdaj/ai A\ --- Nday—1/a,_1 Adyr/yr A - Adyg_1/Yg-1
— {1+zb,y1, ...,y’,;_’l},

(z € [X, k], € [X,k*]) annihilates (1 — C)[X, Q8" %]
Lemma 7 and (1), (2), (3) imply that U1T'y([X, K]) is contained in the sum of
Ny(w,[X, K]) and theimage of Icf(X, U1 K4(K)).

Lemma 18. For each uw € Ok there exists an element 1 of Hz},ur(K) such that
(1+ub)NL/K(h)—1 is contained in the norm group NL,/KL’* where L' is the cyclic
extension of K correspondingto x +% (x correspondsto L/K).

Proof. Followsfrom [9, §3.3 Lemma 15] (can be proved using the formula
NLur/Kur (1 + -'Ifa) =1+ (mp - fE)b mod bMKur

for z € Ok, . O

Lemma 18 showsthat 1+ ub is contained in the subgroup generated by N,k L*
and N, xL'", x1 =0, xz € H} ,(L").
Step 2. Next we prove that

Ul ([X, K]) C N(w,[X, K])
for every w € H,(K) where w istheimageof w in (H;/H, ,)(K).
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Lemma 19. Let ¢, > 1 and let w € Hj(K). Then there exists 7 > 1 such that
p'To([X, K']) and Uk k)i Tq([X, K']) arecontained in N,y(wg+,[X, K']) forevery
K' € £(K) where wk+ denotes the image of w in Hj(K') and e(K'|K) denotes the
ramification index of K'/K.

Lemma20. Let ¢ > 1 and = € U1l 4([X, K]); (resp. = = {uq, ...,uq} With
u; € [X,0%]; resp. z € I1([X, K])).
Then there exists a triple (J,0, f) and a family (Ej,z;)jes Which satisfy all the
conditions of Definition 6 except (iv) and satisfy condition (iv)” below.
(iv) If 5 & f(J) then z; satisfy one of the following three properties:
@ e; € PTL((X, E;]).
(b) Zj € Ue(EJ|K)7,Fq([Xa%])1 (resp- (b) Zj € Uqu([Xa%])

(c) Let E; be the residue field of E;. There are elements ¢y, ...,c,—1 Of 0%,
such that
z; € {Uil'([X, Ej]),c1, ..., -1} and |E;P(ct, - .-y cqo1) : B2 =p0 Y,
(resp. (c) There are elements by, ..., b, of [X,0% ] and cy, ..., ¢4 Of OF,
such that =; = {b1, ...,b,} and such that for each m the residue class
bm € [X, E;] belongs to [X, E;]P[¢,] and |E;P(cy, - .., ¢q) : B;P| =p?);
(resp. () There are elements by, ...,b,_1 of [X,0% ] and ci, ..., c,—1 Of

Oy, suchthat @; € {[X, E;]*,b1, ...,b,—1} and such that for each m. the
residue class b, € [X, Ej;] belongs to [X, E;]?[&,] and
|-Ejp(cl) v )cq—l) . E_’Jp| =pq—1).

Using Lemma 19 and 20 it suffices for the purpose of this step to consider the
following elements
{u,c1, ...,cq-1} € Utl4([X, K]) suchthat v € U1'1([X, K]), c1, ...,cq-1 € OF
and |kP(e1, ...,Ep-1 ¢ kP| =p?~L.

Foreachi=1,...,g— 1 andeach s > 0 takea p®throot ¢; s of —c; satisfying
C; gr1 = Ci,s- NOtethat Ny, )/k(es,)(—Ci,s+1) = —ci,s. FOr each m > 0 write m
intheform (¢ — D)s+7 (s >0, 0< r < qg—1). Let E,, bethefinite extension of
K of degree p™ generated by c; s+1 (1<i<r)and ;s (r+1<i<g—1)andlet

Ty = {u, —Cl,s+1y -+ -y —Crstly; “Cr+lsy -+ _cq—l,s} € 1—‘q([)(a E_m])

Then E = Ii_r)nEm is a henselian discrete valuation field with residue field E

satisfying |Es : Exo?| < p"~1. Hence by Lemma 14 and Lemma 21 below there
exists m < oo such that for some finite extension E;, of E,, of degree primeto p
theimage of w in Hy(E;,) isstandard. Let J ={0,1,...,m,m'}, f(j)=j—1 for
1<j<m, f(0)=0, f(m')=m, By =E,, and

Ty = {ul/lEm:Eml,cl, sy Cq1}
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Then from Step 1 we deduce {u,c1, ...,cq-1} € Ny(w,[X, K]).

LemmaZ2l. Let K be a henselian discrete valuation field, and let X be its completion.
Then H) (K) ~ H (K) for every » and m.

Proof. If m isinvertiblein K this follows from the isomorphism Gal(ffﬂ)/f{) ~
Gal(K*P/K) (cf. [1, Lemma 2.2.1]). Assume char(K) = p > 0 and m = p°
(¢ > 1). For afidd k of characteristic p > 0 the group H;i(k) is isomorphic to
(HI}i (k)@ k*® ---®k*)/J where J isthe subgroup of the tensor product generated
by elements of the form (cf. [9, §2.2 Corollary 4 to Proposition 2])
() x®a1® -+ ®a,_1 suchthat a; =a; for somei 7 j,
(i) x®a1® -+ ®a,_1 suchthat a; € N,k forsome i where k, istheextension
of k correspondingto .
By the aboveisomorphism of the Galoisgroups H . (K) ~ H_, (K). Furthermoreif
L isacyclicextensonof K then 1+M% C Np,xL* and 1+M% C NLI?/EE(LK)*

for sufficiently large n. Since K*/(1+ M%) ~ I?*/(1+M’IL{), the lemma follows. [

Step 3. In this step we prove that the subgroup of I',([X, K]) generated by
U1l ([X, K]) and elements of the form {u1, ...,u,} (u; € [X,0%]) is contained
in Ny(w,[X, K]). By Lemma 20 it suffices to consider elements {b1, ...,b,} sSuch
that b; € [X, O%] and such that there are elements ¢; € O} satisfying

[kP(e1, ..., Eq) D kP = pf

and b; € [X,k]?[c] for each i. Definefields E,, asin Step 2 replacing q — 1 by
g. Then E, = Ii_r)nEm is a henselian discrete valuation field with residue field F,
satisfying |Eo : EooP| < p"~2. Hence H;(];/?;) = H;,ur(ﬁ;). By Lemma 21 there
exists m < oo suchthat wg,, € Hy (En)-

Step 4. Let w be a standard element. Then there exists a prime element = of K
suchthat m € Ni(w, [X, K]) = T([X, K]).

StepS. Let w beany elementof H(K). Toshowthat I'y([X, K]) = Ny(w,[X, K])
it suffices using Lemma 20 to consider elements of T',([X, K]) of theform
{z,b1, ..., b1} (2 € [X,K]*, b; € [X,O%]) such that there are elements
c1, ... cqo1 € O salistying [kP(c, ..., 5-1) © k?| = p~* and b; € [X, KIP[c]
for each 7. Thefields E,, are defined again asin Step 2, and we are reduced to the
case where w is standard. O
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5. Proof of Theorem 2

Let K bean n-dimensional local field. By [9, §3 Proposition 1] H"(K) =0 for
r > n +1 and there exists a canonical isomorphism H™*(K) ~ Q/Z.
For 0 < r < m+1 thecanonical pairing

{, Y H(K) x Kps1_o(K) = H*"(K)
(see subsection 4.2) induces a homomorphism
Oy H"(K) = Hom(K 41 (K), Q/Z).

if w e H™(K) with » > 1 (resp. » = 0) then ®%(w) annihilates the norm group
Np+1—r(w) (resp. % (w) annihilates mK,,+1(K) where m isthe order of w). Since
N1 (w) (resp. mK,+1(K)) isopenin K,+1_,(K) by Theorem 3 (resp. Corollary
to Lemma12), % (w) isacontinuous character of K,,+1_,.(K) of finite order.

5.1. Continuous charactersof primeorder.

Inthissubsectionwe shall provethat for every prime p themap ®% (0 < r < n+l)
induces abijection between Hy(K) (cf. Definition 10) and the group of al continuous
characters of order p of K,+1_,.(K). Wemay assumethat n > 1 and 1 < » < n.
Let & betheresiduefiedd of K. Inthe case where char (k) # p the above assertion
follows by induction on n from the isomorphisms

Hy(k) © Hy (k) = Hy(K), Kq(k)/p @ K,(k)/p = Ky(K)/p.
Now we consider the case of char (k) = p.

Definition 14. Let K be a complete discrete valuation field with residue field & of

characteristic p > 0. For » > 1 and i > O we define the subgroup T'; Hy (K) of

Hj(K) asfollows.

(1) If char(K) = p then let 83 Q' = CJ 1K) — HJ(K) be the canonical
projection. Then T;H(K) is the subgroup of H,(K) generated by elements of
the form

Jk(mdyl/yl ASRERIA dy'r—l/y'r—l)a T € K, Y1y -5 Yr—1 € K*,’UK(:B) P —1i.

(2) If char(K) =0 thenlet ¢ beaprimitive pthroot of 1, andlet L = K(().
Let 7 = (pex/(p — 1) — 7)e(L|K) where ex = vk (p) and e(L|K) isthe ram-
ification index of L/K. If j > 1 let U;H,(L) bethe image of U;K,(L) (cf.
Definition 12) under the cohomologica symbol K,.(L)/p — H,(L). If j <0,
let U;Hp(L) = Hy(L). Then T;Hj(K) istheinverseimage of U;H, (L) under
the canonical injection Hy(K) — H(L).
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Remark. TiHI}(K ) coincides with the subgroup consisting of elements which cor-
responds to cyclic extensions of K of degree p with ramification number < ¢ (the
ramification number isdefined as ¢ of Lemma 17).

Let K beasin Definition 14, and assumethat |k : kP| < co. Fix g, > 1 suchthat
k1 kP| =p?"=2. Let T; = T;H5(K), for i > 0; let U; betheimage of UK J(K) in
K, (K)/p fori> 1, andlet Uy = K4(K)/p. Let e =vg(p) (= oo if char(K) =p).
Fix aprime element m of K. Viathe homomorphism

(,9) = pl(x) + {p! (), 7}
of Lemma 8 whose kernel is known by [11], we identify U;/U;+1 with the following
groups:
(1) K,(k)/p® K,_1(k)/p if i =0.
2 Q"_l if 0<i<pe/lp— 1) and i isprimeto p.
A3) Qq Ll L@ Q2082 if 0< i < pe/(p— 1) and pli.
4 Qf” 1/Dq kl ® Q- 2/D" 2 if char(K) =0, pe/(p— 1) isaninteger and ¢ =
pe/(p
(5) 0if 4 >pe/(p
Herein (3) Qf k.d=0 (q 0) denotesthe kernel of the exterior derivation

d:Ql — Q,Tl. In (4) @ denotestheresidueclassof pr—¢ where e = vk (p) and D,
denotes the subgroup of Q} generated by d(QZ_l) and elements of the form

(P +az)dy1/y1 A -+ AN dyg/y,-

Notethat H7*Y(K) ~ HE'"~1(k) by [11]. Let § =671 QT2 - HI—1(k)
(Definition 14).

Lemma 22. In the canonical pairing
H!(K) x Ko(K)/p — HT'"(K) ~ HI'" (k)

T; annlhllates U;+1 for each 7 > 0. Furthermore,
(1) To=H} (k) ~ Hj(k) ® Hy~(k), and the induced pairing

To x Uo/Ur — HI" (k)
is identified with the direct sum of the canonical pairings
HI(k) x Kq_1(k)/p — HI""1(k), Hp (k) x K4(k)/p — HT™ (k).
(2) If0<i<pe/(p—1) and 7 is prime to p then there exists an isomorphism
T;/Ti g~ Q1
such that the induced pairing T; /T;_1 x U; /U;+1 — Hg*r—l(k) is identified with
Q7 x QU o BHETTNE),  (w,0) - 8w A ).
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(3) If 0<i<pe/(p—1) and pl|: then there exists an isomorphism
T/ Ty = Q7 /Q5 L © 0 72/Q0 2,
such that the induced pairing is identified with
(w1 ® wo, vy ® v2) — 6(dwy A v +dwy A v7).

(4) If char (K) =0 and pe/(p—1) isnotan integer, then H (K) = T; for the maximal
integer 7 smaller than pe/(p — 1). Assume that char (K) =0 and pe/(p — 1) is
an integer. Let a be the residue element of pw—¢ and letfor s > 0

ve(a, F) = ker(Q} 40 = Qf, w > C(w) + aw)
(C denotes the Cartier operator). Then there exists an isomorphism

Tpe/(—1)/Tpe/(p-1)-1 = Vr(a, k) ® vr_1(a, k)
such that the induced pairing is identified with

(w1 ® wo,v1 B v2) = d(wy A vo +wp A vy).

Proof. If char(K) = p the lemma follows from a computation in the differential
modules Q3 (s =r—1,9+r—1). Inthecasewhere char (K) =0 let { beaprimitive
pthroot of 1 andlet L = K(¢). Then the cohomological symbol K,.(L)/p — H, (L)
is surjective and the structure of H; (L) isexplicitly givenin[11]. Since

HI(K) ~ {2z € H}(L): o(z) == foral o € Gal(L/K)},

the structure of HJ(K) is deduced from that of Hj(L) and the description of the
pairing

Hy(K) x Ko(K)/p — HE" (K)
follows from a computation of the pairing

K.(L)/p x K4(L)/p — Kg+r(L)/p. O

Lemma 23. Let K be an n-dimensional local field such that char (K) =p > 0. Then
the canonical map 0%:Q% — Hg*l(K) ~ Z/p (cf. Definition 14) comes from a
morphism Q% — Z/p of Ax.

Proof. Indeed it comes from the composite morphism of F .,

0> Tr kg/Fp

Q_?{ — ko Fp

defined by Lemma 7. O
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Now let K bean n-dimensional local field (n > 1) with residuefield k& such that
char(k)=p>0. Let 1<r<mn,gq=n+1—r,andlet T; and U; (i > 0) beasin
Lemma 22.

Theinjectivity of the map induced by @7

Hy(K) — HoM(Kn+1-(K)/p, Z/p)

follows by induction on n from the injectivity of T;/T;_1 — Hom(U;/U;+1,7Z/p),
¢ > 1. Notethat thisinjectivity for al prime p implies the injectivity of @ .

Now let ¢: K,+1_-(K) — Z/p be a continuous character of order p. We prove
that thereisan element w of Hj(K) suchthat ¢ = % (w).

The continuity of ¢ implies that there exists ¢ > 1 such that

o({z1, ..., 211, }) =0 foral zq, ..., 2pr1_, € 1+ M.

Using Graham’s method [ 6, Lemma 6] we deduce that ¢(U;) = 0 for some i > 1. We
prove the following assertion ( 4;) (¢ > 0) by downward induction on 1.
(A;) The restriction of ¢ to U; coincides with the restriction of ®% (w) for some
w € HI(K).

Indeed, by induction on i there exists w € H,(K) such that the continuous
character ¢' = ¢ — ®%(w) annihilates U;41.

In the case where 7 > 1 the continuity of ¢’ implies that the map

Qe Qp T KM 1 2 Zp

comes from a morphism of F,,. By additive duality of Proposition 3 and Lemma 23
applied to k& the above map is expressed in the form

(v1,v2) — 0 (w1 A vo + w2 A v1)

for some w1 € QF,wp € QZ‘l. By the following argument the restriction of ¢’ to
U;/U;+1 isinduced by an element of T;/T;_,. For example, assume char (K) = 0
and ¢ = pe/(p — 1) (the other cases are treated similarly and more easily). Since ¢’
annihilates d(QF ") @ d(Qr~""2) and 67 annihilates d(Q7~?) we get

(SZ(d’wl Awvg) = i&?(wz Advp) =0 foral v,.

Therefore dw1 =0. Forevery z € F, y1, ...,Yn—r—1 € F* wehave
d dy,,_._ d dy,,_._

a7 ((C(wl)+aw1)/\wﬂ/\ .. ./\M) =g (wl/\(mp+aw)ﬂ/\ .. ./\M) =0
Y Yn—r—1 Y Yn—r—1

(where a isasinLemma?22 (4)). Hence w1 € v,.(a, k) andsimilarly wy € v,_1(a, k).
In the case where ¢ = 0 Lemma 22 (1) and induction on n imply that there is an
element w € Tp suchthat ¢’ = ®% (w).
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5.2. Continuous character sof higher orders.
In treatment of continuous characters of higher order the following proposition will
play akey role.

Proposition 7. Let K be an n-dimensional local field. Let p be a prime number
distinct from the characteristic of K. Assume that K contains a primitive pth root ¢
of 1. Let » > 0 and w € H"(K). Then the following two conditions are equivalent.
(1) w=puw' for some w' € H"(K).

@ {w,(}=0in H™Y(K).

Proof. We may assumethat 0 < » < n. Let §,: H"(K) — H™*Y(K,Z/p) be the
connecting homomorphism induced by the exact sequence of Gal(K %/ K)-modules

®(r-1) ®(r-1)

i i — 0.
D D

. P -
0—>Z/p—>|l_r>ni,u —>I|_r>ni,u
Condition (1) isclearly equivalent to §,(w) = 0.

First we prove the proposition in the case where r = n. Since the kernel of

6n: HM(K) — H"Y(K,Z/p) ~ Z/p

is contained in the kernel of the homomorphism { , ¢}: H*(K) — H™(K) it suffices
to provethat the latter homomorphism is not a zero map. Let ¢ be the maximal natural
number such that K contains a primitive p*th root of 1. Since the image x of a
primitive p* th root of 1 under the composite map

K*/K*® ~ HY(K, u,) ~ HY(K,Z/p) - HYK)

is not zero, the injectivity of @3}, shows that there is an element a of K, (K) such
that {x,a} 7 0. Let w betheimage of a under the composite map induced by the
cohomological symbol

K (K)/p' — HM(K,uS") ~ H"(K, p" V) - H"(K).

pi
Then {x,a} = +{w,(}.

Next we consider the general caseof 0 < < n. Let w bean element of H"(K)
such that {w,{} = 0. Since the proposition holds for » = n we get {§,(w),a} =
6n({w,a}) =0 fordl a € K,,_,(K). Theinjectivity of @51 implies §,(w) =0. [

Remark. We conjecturethat condition (1) is equivalent to condition (2) for every field
K.

This conjectureistrueif @©,>1H"(K) is generated by HYK) as
a @450K4(K)-module.

Completion of the proof of Theorem 2. Let ¢ be a non-zero continuous character
of K,+1_»(K) of finite order, and let p be a prime divisor of the order of ¢. By
induction on the order there exists an element w of H"(K) such that py = ®% (w).
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If char(K) = p then H"(K) is p-divisible. If char (K) # p, let L = K(¢) where
¢ is a primitive pth root of 1 and let wy be the image of w in H"(L). Then
D7 (wr): Kp+1-r(L) — Q/Z coincides with the composite

Np/x
Kn+1—r(L) —/> Kn+1—r(K) ﬂ Q/Z

and hence {wr,¢,a} =0 in H*Y(L) foral a € K,,_.(L). Theinjectivity of ®7*!
and Proposition 7 imply that wy, € pH"(L). Since |L : K| isprimeto p, w belongs
to pH" (K).

Thusthereisan element w' of H"(K) suchthat w = pw’. Then ¢ — ®%(w') is

a continuous character annihilated by p. O
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1. Higher dimensional local fields and L-functions

A. N. Parshin

1.0. Introduction

1.0.1. Recdl [P1], [FP] that if X isaschemeof dimension n and
XoCX1C...X,1CX,=X
isaflag of irreducible subschemes (dim(X;) = 4), then one can define aring

Kx,....x,_1

associated to the flag. In the case where everything is regularly embedded, thering is
an n-dimensional local field. Then one can form an adelic object

where the product is taken over al the flags with respect to certain restrictions on
components of adeles [P1], [Be], [Hul, [FP].

Example. Let X bean algebraic projective irreducible surface over afield & and let
P beaclosed point of X, C C X beanirreduciblecurvesuchthat P € C.

If X and C aresmooth at P, thenwelet t € Ox p bealocal equation of C at
P and u € Ox p besuchthat u|c € O¢,p isaloca parameter at P. Denote by €
theideal defining the curve C' near P. Now we can introduce atwo-dimensional local
field Kp ¢ atachedtothepair P,C by thefollowing procedureincluding completions
and localizations:

GT,P = k(P)[[u,t]] D €= (2)
(6 X,P)e = discrete valuation ring with residue field k(P)((u))
|
Opc :=|(6X,p)e = k(P)((w)[[¢]]
Kpc :=Frac(Opc) = k(P)((w))((2))
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200 A. N. Parshin

Notethat theleft hand side constructionismeaningful without any smoothnesscondition.

Let Kp betheminimal subringof K p ¢ whichcontains k(X) and 6X,p. Thering
Kp isnotafieldingenera. Then K C Kp C Kp ¢ andthereisanother intermediate
subring K¢ = Frac(O¢) C Kp,c. Notethat in dimension 2 thereis aduality between
points P and curves C (generalizing the classical duality between points and linesin
projective geometry). We can compare the structure of adelic componentsin dimension
one and two:

Kp Kpc
VRN
Kp Ko
N S
K K

1.0.2. In the one-dimensional case for every character x:Gal(K®/K) — C* we
have the composite

xXia =[] Kp S22V, Ga(k®/K) % C.
J. Tate[ T] and independently K. Iwasawaintroduced an analytically defined L-function

L(s,x, f) = ; f(@)x'(a)la|*d"a,

where d* isaHaar measureon A* andthefunction f belongsto the Bruhat—Schwartz
spaceof functionson A (for the definition of this space seefor instance [W1, Ch. VII]).
For aspecial choiceof f and x = 1 we get the ¢-function of the scheme X

¢x(s) = [[@-N@)™),

zeX

if dim(X) =1 (adding the archimedean multipliersif necessary). Here = runsthrough
the closed points of the scheme X and N(z) = |k(z)|. The product converges for
Re(s) > dim X. For L(s,x, f) they proved the analytical continuation to the whole
s-plane and the functional equation

L(S,X, f) = L(l - saX_l’ ]?),
using Fourier transformation ( f — f) onthe space Ax (cf. [T1, [W1], [W2]).
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1.0.3. Schemes can be classified according to their dimension

dim(X) geometric case arithmetic case

2 agebraic surface /F, arithmetic surface
1 agebraic curve /I, arithmetic curve
0 Spec(F, ) Spec(F1)

where [F; isthe “field of one element”.

The analytical method worksfor therow of the diagram corresponding to dimension
one. The problem to prove analytical continuation and functional equation for the
¢-function of arbitrary scheme X (Hasse-Weil conjecture) was formulated by A. Weil
[W2] as a generalization of the previous Hasse conjecture for algebraic curves over
fields of algebraic numbers, see [S1],[S2]. It was solved in the geometric situation by
A. Grothendieck who employed cohomological methods [G]. Up to now there is no
extension of this method to arithmetic schemes (see, however, [D]). On the other hand,
a remarkable property of the Tate-lwasawa method is that it can be simultaneously
applied to the fields of algebraic numbers (arithmetic situation) and to the algebraic
curvesover afinitefield (algebraic situation).

For along time the author has been advocating (see, in particular, [P4], [FP]) the
following:

Problem. Extend Tate—lwasawa’s analytic method to higher dimensions.

The higher adeles were introduced exactly for this purpose. In dimension one the
adelic groups Ax and A% are locally compact groups and thus we can apply the
classical harmonic analysis. The starting point for that is the measure theory on locally
compact local fields such as Kp for the schemes X of dimension 1. So we have the
following:

Prablem. Develop a measure theory and harmonic analysis on n-dimensional local
fields.

Note that »n-dimensional local fields are not locally compact topological spacesfor
n > 1 and by Weil’s theorem the existence of the Haar measure on atopological group
impliesits locally compactness [W3, Appendix 1].

In this work several first stepsin answering these problems are described.
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1.1. Riemann-Hecke method

When one tries to write the {-function of a scheme X as a product over local fields
attached to the flags of subvarieties one meets the following obstacle. For dimension
greater than one the local fields are parametrized by flags and not by the closed points
itself asinthe Euler product. Thisproblem isprimary to any problemswith the measure
and integration. | think we have to return to the case of dimension one and reformulate
the Tate-Iwasawa method. Actually, it means that we have to return to the Riemann—
Hecke approach [He] known long before the work of Tate and Iwasawa. Of coursg, it
was the starting point for their approach.

The main point is a reduction of the integration over ideles to integration over a
single (or finitely many) loca field.

Let C' beasmooth irreducible complete curve defined over afield k = F, .

Put K = k(C). Foraclosed point z € C' denote by K, the fraction field of the
completion O, of thelocal ring O.

Let P be afixed smooth k-rationa pointof C. Put U =C \ P, A=T(U,0O¢).
Notethat A isadiscretesubgroup of Kp.

A classical method to calculate ¢-function isto writeit asaDirichlet seriesinstead
of the Euler product:

= > %
IeDiv(0¢)

where Div (O¢) isthe semigroup of effective divisors, I = ).y n.z, n, € Z and
nge =0 foramost all z € C,

1= ] g~ 2o nalk@)k]
rzeX
Rewrite {c(s) as
Cols)ep(s) = (Z |1|SU) ( > |z|sp>.
ICU supp(I)=P

Denote A" = A\ {0}. For the sake of simplicity assume that Pic(U) = (0) and
introduce A" suchthat A” Nk* = (1) and A’ = A"k*. Thenforevery I C U there
isaunique b € A" suchthat I = (b). Weaso write |b|, = |(8)|. for x = P,U. Then
from the product formula [b|c = 1 we get |b|y = |b| 5% Hence

= 3 10t (T;Oq—mﬂ -(zw) [ ., lalp @

beA” beA”
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wherein the last equality we have used local Tate's calculation, f+ = z‘*dap, K}y —
Kp, 56p is the characteristic function of the subgroup Op, d*(@}g) = 1. Therefore

Co(s) = Z / lab~ % f+(a)d* a

beAr Y a€Kp
= Z/ |c|fpf+(bc)d*c=/ le|pF(c)d* e,
pean Y c=ab~1 K3

where F(c) = ), c 4 f+(bo).

Thus, the calculation of {c(s) is reduced to integration over the single local field
Kp. Thenwe can proceed further using the Poisson summation formula applied to the
function F.

This computation can be rewritten in amore functoria way as follows

Ce(®) = I°,fore (| I°;fue ={l I}, i*(F))axa = (| |*,js 0i*(F))a,

where G = Kp, (f,f')a = [, ff'dg and we introduced the functions fo = d4 =
sumof Dirac's §, overdl a € A" and f; = §9, on Kp andthefunction F = fo® f1
on Kp x Kp. We aso have the norm map | |:G — C*, the convolution map
j:G x G — @, j(x,y) ==ty andtheinclusion i: G x G@ — Kp x Kp.

For the appropriate classes of functions fo and f1 there are ¢-functions with a
functional equation of the following kind

C(sa fO) fl) = ((l - S, .ﬁ)a ﬁ.)a

where f is a Fourier transformation of f. We will study the corresponding spaces of
functions and operationslike j, or +* insubsection 1.3.

Remark 1. We assumed that Pic(U) istrivial. To handle the general case one has to
consider the curve C' with several points removed. Finiteness of the Pic%(C) implies
that we can get an open subset U with this property.

1.2. Restricted adeles for dimension 2

1.2.1. Letusdiscussthe situation for dimension one once more. We consider the case
of the algebraic curve C' as above.
One-dimensional adelic complex

Ko [[0.- H;ecK””
zeC
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can be included into the following commutative diagram

K& [l,cc 0 ? Mo Ke

l l

Ko0p — [[LpK:/0. @ Kp

where the vertical map induces an isomorphism of cohomologies of the horizontal
complexes. Next, we have acommutative diagram

K®0p — [[.2pK./0. ® Kp

! !

K/A ——  [l,pK:/0,

where the bottom horizontal arrow is an isomorphism (the surjectivity follows from
the strong approximation theorem). This shows that the complex A @ Op — Kp is
quasi-isomorphic to the full adelic complex. The construction can be extended to an
arbitrary locally free sheaf ¥ on C' and we obtain that the complex

W@?p—)?p@apr,

where W =T'(&,C \ P) C K, computes the cohomology of the sheaf F.

This fact is essential for the analytical approach to the ¢-function of the curve C.
To understand how to generalize it to higher dimensions we have to recall another
applications of thisdiagram, in particular, the so called Krichever correspondencefrom
the theory of integrable systems.

Let z bealoca parameter at P, so 613 = k[[2]]. The Krichever correspondence
assigns points of infinite dimensional Grassmanians to (C, P, z) and a torsion free
coherent sheaf of O¢-moduleson C. In particular, there is an injective map from
classes of triples (C, P,z) to A C k((z)). In[P5] it was generalized to the case of
algebraic surfaces using the higher adelic language.

12.2. Let X beaprojectiveirreducible algebraic surface over afield k, C C X be
an irreducible projective curve, and P € C' be asmooth point on both C and X .
In dimension two we start with the adelic complex

A @A @Ay — Ay @ Agp @ A1 — Ag1o,
where

A=K =k(X), A1=]] 0c, 42=]] G,
ccX zeX

’ ’ I~ '
Ao1 = HCCXK07A02 = HzeXKm’Alz = HzeCOw’C’AOlZ =Ax = H Koc-
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In fact one can pass to another complex whose cohomologies are the same as of the
adelic complex and which isageneralization of the construction for dimension one. We
have to make the following assumptions: P € C isasmooth point on both C' and X,
and the surface X \ C isaffine. The desired complex is

A@Ac@@p—)Bc@Bp@@P,c—)KP,C

wheretherings B,, B¢, Ac and A havethefollowing meaning. Let z € C. Let

B,= N (KzN ﬁm,p) wherethe intersection istaken inside K
D#C
Be = Ke N () Bg) wheretheintersection istakeninside K, ¢;
7P

Ac =B¢g N 60, A=Kn (anX\C 61;)

This can be easily extended to the case of an arbitrary torsion free coherent sheaf &
on X.

1.2.3. Returning back to the question about the ¢-function of the surface X over
k =F, we suggest to write it as the product of three Dirichlet series

x(®) = Gre@or @@= (X k) (X k) (X ms)-

Icx\c ICC\P ICSpeC(ap,c)

Again we can assumethat thesurface U = X \ C' hasthe most trivial possible structure.
Namely, Pic(U) = (0) and Ch(U) = (0). Then every rank 2 vector bundle on U is
trivia. In the general case one can remove finitely many curves C' from X to passto
the surface U satisfying these properties (the same idea was used in the construction of
the higher Bruhat-Tits buildings attached to an algebraic surface [ P3, sect. 3]).

Therefore any zero-ideal I with supportin X \ C, C \ P or P can be defined
by functionsfromtherings A, A¢ and Op, respectively. The fundamental difference
between the case of dimension one and the case of surfacesis that zero-cycles I and
ideals of finite colength on X are not in one-to-one correspondence.

Remark 2. In[P2], [FP] we show that the functional equation for the L-function on
an algebraic surface over afinite field can be rewritten using the K,-adeles. Then it
has the same shape as the functional equation for algebraic curves written in terms of
A* -adeles (asin [W1]).
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1.3. Typesfor dimension 1
We again discuss the case of dimension one. If D isadivisor on the curve C' then the
Riemann—Roch theorem says

(D) — (K¢ — D) =deg(D) +x(0Oc),

whereasusua (D) =dim T(C,0Ox (D)) and K¢ isthecanonical divisor. If A = A ¢
and Ay = A(D) then

HY(C,0x(D)) = A/(A(D) +K),  H%C,0x(D))=A(D)N K
where K =F,(C). We have the following topological properties of the groups:

A locally compact group,
A(D) compact group,
K discrete group,

AD)NK finite group,
A(D) +K group of finite index of A.

The group A isdual toitself. Fix arational differential form w € Q%., w 7 0 and
an additive character ¢ of F,. Thefollowing bilinear form

<(fm)a (ga:)) = Z res; (fzgzw), (fz),(92) € A

T

is non-degenerate and defines an auto-duality of A.
If wefix aHaar measure dz on A then we also have the Fourier transform

1)~ Fo)= [ wlle.) i)y
for functionson A and for distributions F' defined by the Parseval equality
(F,) = (F, ).

One can attach some functions and/or distributions to the subgroups introduced above

dp = the characteristic function of A(D)

Ot = the characteristic function of A(D) + K

Ok = Z 4, whered,, isthe delta-function at the point -y
YyeEK

Sgo =Y, by
yeA(D)NK

There are two fundamental rules for the Fourier transform of these functions
3p = Vol (A(D))dy(p)-
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where

AD)* = A(w) - D),
and

S = vol(A/T) " L6r.

for any discrete co-compact group T'. In particular, we can apply thatto T'= K =T+,
We have
(dx,6p) = #(K N AD)) = ¢,
(x,8p) = Vol(A(D))vol (A/K) X (6x, 6o —p) = 29 P ¢x(0c) (K —D)
and the Parseval equality gives us the Riemann—Roch theorem.
Thefunctionsin these computations can be classified according to their types. There
are four types of functions which were introduced by F. Bruhat in 1961 [Br].

Let V be a finite dimensional vector space over the adelic ring A (or over an
one-dimensional local field K with finite residue field F,; ). We put

D = {locally constant functions with compact support},
& = {locally constant functions},

D' ={dual toD = al distributions},

&' ={dual to & = distributions with compact support}.

Every V hasafiltration P 5 Q O R by compact open subgroupssuchthat al quotients
P/Q arefinite dimensional vector spacesover F,.

If V,V' arethevector spacesover F, of finite dimension then for every homomor-
phism ::V — V' there are two maps

FV) 5, FV) S FW),

of the spaces F(V) of al functionson V' (or V') with valuesin C. Here i* isthe
standard inverseimage and i, is defined by

0, if v ¢ im(2)

Y sy f(0), otherwise.

Themaps i, and 7* aredual to each other.
We apply these constructions to give a more functorial definition of the Bruhat
spaces. For any triple P, @, R as above we have an epimorphism i: P/R — P/Q

with the corresponding map for functions F(P/Q) g (P/R) and amonomorphism
7:Q/R — P/R with the map for functions F(Q/R) 2= F(P/R).

i () = {
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Now the Bruhat spaces can be defined as follows

D = lim,.lim - (P/Q),
¢ = lim - lim,. 5(P/Q),
®’ = Iimj*limi* ?(P/Q),
&= Il_r>n Lﬂ% F(P/Q).

The spaces don't depend on the choice of the chain of subspaces P, Q, R. Clearly we
have

dp € D(A),
dx € D'(A),
do € E'(A),
01 € E(A).
Wehavethe samerelationsfor thefunctions d 9, and § 4~ onthegroup K p considered
in section 1.
The Fourier transform preserves the spaces D and D’ but interchanges the spaces

€ and &'. Recaling the origin of the subgroups from the adelic complex we can say
that, in dimension one the types of the functions have the following structure

el 01
/ AN / AN
D D’ 1 0
AN / AN /
e 0
corresponding to the full simplicial division of an edge. The Fourier transform is a
reflection of the diagram with respect to the middle horizontal axis.
The main properties of the Fourier transform we need in the proof of the Riemann-
Roch theorem (and of the functional equation of the ¢-function) can be summarized as
the commutativity of the following cube diagram

j*

DD

D ® DI 8[ a*
ii*
j. % o ()
/ Lﬁ* /
a*

€ F(F1)
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coming from the exact sequence
AbaeAd A
with i(a) = (a,a), j(a,b) = a — b, and the maps
F, AL R

with «(0) = 0, B(a) = 0. Here F; isthe field of one element, F(F;) = C and the
arrows with heads on both ends are the Fourier transforms.
In particular, the commutativity of the diagram implies the Parseval equality used

above:

(F,G)=p.oi*(F®G)

=B.0"(F® G)=B.5.(F&G)

=" 0 ju(F®G) =P 0i*(F®G)

=(F,G).

Remark 3. These constructions can be extended to the function spaces on the groups
G(A) or G(K) foralocal field K and agroup scheme G.

1.4. Typesfor dimension 2

In order to understand the types of functionsin the case of dimension 2 we haveto look
at the adelic complex of an algebraic surface. Wewill use physical notations and denote
a space by the discrete index which correspondsto it. Thus the adelic complex can be
written as

D —>00102—- 01002012 — 012,

where 0 stands for the augmentation map corresponding to the inclusion of H°. Just
asin the case of dimension onewe haveaduality of A = Agi» = 012 withitself defined
by abilinear form

(£2.0), (95,0)) = D> 168 o(farcGacw),  (fo0) (Go,0) € A

z,C

which is also non-degenerate and defines the autoduality of A.
It can be shown that

Ao =Ao1 NAg, Ay =An, Ap=Aw, Ay =An @ Ay,
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and so on. Theproofsdepend onthefollowing residuerelationsfor arational differential
form w € QF

foralz € X ) res, o(w) =0,
Coz

foral C c X ) res, o(w) = 0.
zeC
We see that the subgroups appearing in the adelic complex are not closed under the
duality. It means that the set of typesin dimension two will be greater then the set of
types coming from the components of the adelic complex. Namely, we have:

Theorem 1 ([P4]). Fix a divisor D on an algebraic surface X and let A, = A(D).
Consider the lattice £ of the commensurability classes of subspaces in Ax generated
by subspaces Aoy, Agp, A1s.

The lattice £ is isomorphic to a free distributive lattice in three generators and has
the structure shown in the diagram.

/

012

/

01+12 01 +02 02+12
X \/
/// \\\

2+01 0+12 1+02

N

0+1+2 02

/

\/

7
\

/\”/\/\/

/\
\

Remark 4. Two subspaces V, V' arecalled commensurableif (V +V')/V NV' isof
finite dimension. In the one-dimensional case all the subspaces of the adelic complex
are commensurable (even the subspaces corresponding to different divisors). In this
case we get a free distributive lattice in two generators (for the theory of lattices see

[Bi]).
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Just as in the case of curves we can attach to every node some space of functions
(or distributions) on A. We describe here aparticular case of the construction, namely,
the space F o, corresponding to the node 02. Also we will consider not the full adelic
group but asingle two-dimensional local field K =T, ((w))((t)).

In order to define the space we use the filtration in K by the powers M™ of the
maximal ideal M = F,((u))[[t]]t of K asadiscrete valuation (of rank 1) field. Then
we try to use the same procedure as for the local field of dimension 1 (see above).

If P> Q D R arethe elements of the filtration then we need to define the maps

D(P/R) <> D(P/Q),  D(P/R) > D(Q/R)

corresponding to an epimorphism i: P/R — P/Q and a monomorphism j:Q/R —
P/R. Themap j* isarestriction of thelocally constant functionswith compact support
and it is well defined. To define the direct image 7, one needs to integrate along the
fibers of the projection 7. To do that we have to choose aHaar measure on the fibersfor
all P, Q, R inaconsistent way. In other words, we need a system of Haar measures
on all quotients P/@Q and by transitivity of the Haar measuresin exact sequencesit is
enough to do that on all quotients M™ /M™*L,

Since O /M = F,((u)) = K1 we can first choose a Haar measure on the residue
field K. It will depend on the choice of afractional ideal M’kl normalizing the Haar

measure. Next, we have to extend the measure on al M™/M™*L. Again, it is enough
to choose a second local parameter ¢ which gives an isomorphism

" O /M — M™ /ML
Having made these choices we can put as above
Foz =lim;-1lim;, D(P/Q)

where the space D was introduced in the previous section.
We see that contrary to the one-dimensional case the space F o, isnot intrinsically
defined. But the choice of al additional data can be easily controlled.

Theorem 2 ([P4]). The set of the spaces Fg, is canonically a principal homogeneous
space over the valuation group T'x of the field K.

Recall that T, ishon-canonically isomorphicto thelexicographically ordered group
7.® 7.

One can extend this procedure to other nodes of the diagram of types. In particular,
for 012 we get the space which does not depend on the choice of the Haar measures.

The standard subgroup of thetype 02 is Bp = [, [[u]]((¢)) and it isclear that

531, € Fopo.

The functions ép. and ‘SBPC have the types 01, 12 respectively.
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Remark 5. Notethat the whole structure of all subspacesin A or K corresponding to
different divisorsor coherent sheavesismorecomplicated. Thespaces A(D) of type 12
are no more commensurable. To describe the whole | attice one hasto introduce several
equivalence relations (commensurability up to compact subspace, a locally compact
subspace and so on).
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2. Adé€lic constructions for direct images
of differentials and symbols

Denis Osipov

2.0. Introduction

Let X beasmooth algebraic surface over a perfect field k.

Consider pairs ¢ € C, z isaclosed point of X, C iseither anirreduciblecurveon
X whichissmoothat , or anirreducibleanalytic branchnear z of anirreduciblecurve
on X. Asintheprevioussection 1 for every suchpair z € C weget atwo-dimensional
local field K, ¢.

If X isa projective surface, then from the adelic description of Serre duality on
X there is a local decomposition for the trace map H?(X,Q%) — k by using a
two-dimensional residue map resk, . /k(x): %, o /k() — k(@) (see[P1]).

From the adelic interpretation of the divisors intersection index on X thereis a
similar local decomposition for the global degree map from the group CH?(X) of
algebraic cycles of codimension 2 on X modulo the rational equivalence to Z by
means of explicit maps from K»(K,,c) to Z (see[P3]).

Now we passto therelative situation. Further assumethat X isany smooth surface,
but there are a smooth curve S over k£ and a smooth projective morphism f: X — S
with connected fibres. Using two-dimensional local fieldsand explicit mapswedescribe
in this section alocal decomposition for the maps

fo HMX,Q%) — HMY(S,QL),  fo  H™(X,X2(X)) — H" (S, K1(S))

where X is the Zariski sheaf associated to the presheaf U — K(U). The last two
groups have the following geometric interpretation:

H"(X,%p(X)) = CHX(X,2—n), H"Y(S,%X41(S)) = CHY(S,2 - n)

where CH?%(X,2 — n) and CHY(S,1 — n) are higher Chow groupson X and S
(see [B]). Note also that CH?(X,0) = CH?(X), CH(S,0) = CHY(S) = Pic(S),
CH(S,1) = HO(S, O%).
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Let s = f(x) € S. Thereisacanonical embedding f*: K, - K, ¢ where K; is
the quotient of the completion of thelocal ring of S at s.
Consider two cases:
(1) C % fYs). Then K, ¢ is non-canonically isomorphic to k(C);((tc)) where
k(C), isthe completion of k(C) at ¢ and ¢¢ isaloca equation of C near z.
(2 C=f"1(s). Then K, ¢ isnon-canonically isomorphicto k(z)((w))((t,)) where
{u =0} isatransversal curveat z to f~%(s) and t, € K, isalocal parameter at
s, i.e. k(s)((ts)) = K.

2.1. Local constructionsfor differentials

Definition. For K = k((w))((t)) let U = u’k[[u, t]1dk[[u, ]+t k((w)[[t]1dk((w))I[]
be abasis of neighbourhoods of zeroin Q,ﬁ((u»[[t]] /i (comparewith 1.4.1 of Part ). Let

Qf = QF /(K -NU) and Qf = A"Qj. Similarly define Q7 .

Note that Q% is a one-dimensional space over K, c; and Q% does not

depend on the choice of asystem of local parametersof @m, where @m isthecompletion
of thelocal ringof X at .

Definition. For K = k((w))((¢)) and w = >, w;(u) A tdt = Y, uldu A wi(t) € ﬁ%{
put
resy(w) = w_1(u) € Qg
Define arelative residue map

z,C. 2 ol
fi -QKQ,,C — Q.

Trk(c). /K. T€Stc (W) if C 7 f~1(s)

e ={ !
Tr k(z)((ts))/ Ks r&gl(w) if C = f_l(s).

The relative residue map doesn’t depend on the choice of local parameters.

Theorem (reciprocity lawsfor relativeresidues). Fix z € X. Let w € ﬁf{w where K,
is the minimal subring of K, ¢ which contains k£(X) and @m. Then

> 2w =o0.

Coz
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FixseS. Letwe ﬁf{F where Kz isthe completion of k(X) with respect to the
discrete valuation associated with the curve F = f~1(s). Then

> frFw) =0

zeF

See[O].

2.2. The Gysin map for differentials

Definition. In the notations of subsection 1.2.1 in the previous section put
Qp, = {(fodt,) € [ k., wvs(fs) > 0 fordmostal s € S}
sES

where t, isalocal parameter at s, v, isthe discrete valuation associated to ¢, and
K, isthe quotient of the completion of thelocal ring of S at s. For adivisor I on S
define

Qus (D) ={(fs) € Qh, 1 vs(fs) > —v,(1) foral s e S}

Recall that the n-th cohomology group of the following complex
Q1%(5) kP Q.0 —  Q
(fo, f1) —  fo+ f1.

is canonically isomorphicto H™(S, QL) (see[S, Ch.ll]).

The sheaf Q%{ isinvertible on X. Therefore, Parshin’s theorem (see [P1]) shows
that similarly to the previous definition and definition in 1.2.2 of the previous section
for the complex Q2(Ax)

2 2 2 2
(fo, f1, f2) — (fot+ fu,fo— fo,—f1— f2)

(91,92, 93) > g1tg2tg3
where

2 2

A012 - QAX H Q c © H éZK:c c

zeC zeC
thereis acanonical isomorphism

H™(Q*(Ax)) ~ H"(X,Q%).

Using the reciprocity laws above one can deduce:
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Theorem. The map f. = ZCBw,f(:z:Fs ff’c from Qﬁx to ka is well defined. It
maps the complex Q2(Ax) to the complex

0 — Qis)/x ® Qi (0) — Qf
It induces the map f.: H™(X, Q%) — H*%(S,Q%) of 2.0.
See[O].

2.3. Local constructionsfor symbols

Assumethat & isof characteristic O.
Theorem. There is an explicitly defined symbolic map
(3 )eci Kpo X Ky o — K
(see remark below ) which is uniquely determined by the following properties

Nk(m)/k(s) th,c(a,/Baf*’Y) = th (f*(a,ﬂ)x,c,’)’) for all aa/B € K;,C’ aS K:
where tg, .. is the tame symbol of the two-dimensional local field K, ¢ and tg, is
the tame symbol of the one-dimensional local field K (see 6.4.2 of Part I);

Tr k(:z:)/k(s)(aalga f*(’Y)]K:c,C = (f*(a,,B)a:,C,'Y]KS for all a,,B € K;,C’ Y€ Ks
where (a,ﬁ,'y]K%C = reSKa;,c/k(:l:)(’yda/a A d/B//B) and
(o, Bk, = resg, /k(s)(adB/B).

Themap f.(, )z,c inducesthe map
f*( ) )m,C’:KZ(Km,C’) — Kl(Ks)-

Corollary (reciprocity laws). Fix apoint s € S. Let F = f~1(s).
Let a,8 € Kj. Then

I1 /(. B)e,r = 1.

ceF
Fixapoint z € F. Let a,3 € K. Then

I fe(.Bec =1
Cozx
Remark. If C 7 f=Y(s) then £.(, )a,c = Ni(0). /K, tK..c Where tk, . isthetame
symbol with respect to the discrete valuation of rank 1 on K, ¢.
If C' = f~Ys) then £.(, )o,c = Ni(aye))/x. (5 )5 Where (, )3 coincides with
Kato's residue homomorphism [K, §1]. An explicit formulafor (, )¢ isconstructed in
[O, Th.2].
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2.4. The Gysin map for Chow groups

Assumethat & isof arbitrary characteristic.

Definition. Let K5(Ax) bethesubset of al (f,c) € Ko(Kg,c), © € C suchthat

(@ fz,c € K2(0g4,c) for aimost al irreducible curves C' where O, ¢ isthe ring of
integersof K, ¢ with respect to the discrete valuation of rank 1 on it;
(b) forallirreduciblecurves C C X, al integers » > 1 and almost all points ¢ € C

foc € Ko(Op.c, M) + K2(O4[tg) € Ko(Ka c)

where M¢ isthe maximal ideal of O, ¢ and
K3(A, J) = ker(Kz(A) — K2(A/J)).
This definition is similar to the definition of [P2].

Definition. Using the diagonal map of K»(K¢) to [] K2(Kzec) and of Ko(K,)

zeC
to [[ Kao(Kzec) put
Coz

Kj(An) = Kp(Ax) nimageof [] Ka(Kc),
ccx

Kj(Am) = Ky(Ax) nimageof [] Ka(K.),
reX

Kj(A12) = Ky(Ax) nimageof [] K2(0a,c),
z€eC
K5(Ao) = K5(k(X)),

Kj(A1) = Ky(Ax) nimageof J] K2(0¢),
cCcX

K5(A;) = Ky(Ax) nimageof J] K2(0,)
rzeX

where O¢ isthering of integersof K.

Define the complex K»(Ax):
K5(Ag) © Kp(A1) ® Ky(A2) —Kp(Ao1) ® Ky(Ao) ® Kp(A12) — Kj(Ao12)
(fo, f1, f2) = (fo + f1, f2 = fo, —f1 — f2)
(91,92, 93) — g1+92+g3
where K5(Ao12) = K5(Ax).
Using the Gersten resolution from K -theory (see [Q, §7]) one can deduce:
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Theorem. There is a canonical isomorphism
H"(K2(Ax)) ~ H™(X, X2(X)).

Similarly one defines K}(Ag). From H(S,%1(S)) = H(S, 0%) = Pic(S) (or
from the approximation theorem) it is easy to see that the n-th cohomology group of
the following complex

Ki(k(9) ® Y5 K1(05) —  Kj(As)
(fo, f1) —  fo+ f1.

is canonicaly isomorphic to H™(S,X1(S)) (here 63 is the completion of the local
ringof C a s).

Assumethat & isof characteristic O.

Using the reciprocity law above and the previous theorem one can deduce:

Theorem. The map f. = > 0o, f(a)=s f+( 5 )a,c from K5(Ax) to Kj(Ag) is well
defined. It maps the complex K»(Ax) to the complex

0— K1(k(9)) & Y K1(0.) — Kj(As).
SES
It induces the map f,: H™(X, K2(X)) — H"1(S,K1(S)) of 2.0.
If n = 2, then the last map is the direct image morphism (Gysin map) from C H?(X)
to CHL(S).
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3. The Bruhat-Tits buildings over
higher dimensional local fields

A. N. Parshin

3.0. Introduction

A generalization of the Bruhat—Tits buildings for the groups PGL(V) over n-dimen-
siond local fields was introduced in [P1]. The main object of the classical Bruhat-Tits
theory is a simplicial complex attached to any reductive algebraic group G defined
over afield K. There aretwo parallel theoriesin the case where K has no additional
structure or K isalocal (or more generally, complete discrete valuation) field. They
areknown asthe spherical and euclidean buildings correspondingly (see subsection 3.2
for abrief introduction, [BT1], [BT2] for original papersand [R], [ T1] for the surveys).

In the generalized theory of buildings they correspond to local fields of dimension
zero and of dimension one. The construction of the Bruhat—Tits building for the
group PGL(2) over two-dimensional local field was described in detail in [P2]. Later
V. Ginzburg and M. Kapranov extended the theory to arbitrary reductive groups over a
two-dimensional local fields [GK]. Their definition coincides with ours for PG L(2)
and isdifferent for higher ranks. But it seemsthat they are closely related (in the case of
the groups of type A;). It remains to develop the theory for arbitrary reductive groups
over local fields of dimension greater than two.

In this work we describe the structure of the higher building for the group PG L(3)
over atwo-dimensional local field. We refer to [P1], [P2] for the motivation of these
constructions.

Thiswork contains four subsections. In 3.1 we collect facts about the Weyl group.
Thenin 3.2 we briefly describe the building for PG L(2) over alocal field of dimension
not greater than two; for details see [P1], [P2]. In 3.3 we study the building for
PGL(3) overalocd field F of dimension oneand in 3.4 we describe the building over
atwo-dimensional local field.

We use the notations of section 1 of Part .
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If K isan n-dimensional local field, let T'x be the valuation group of the discrete
valuation of rank n on K*; the choice of a system of loca parameters ¢4, ...,t, of
K induces an isomorphism of I'y; and the lexicographically ordered group Z ™.

Let K (K = K, K;, Kg = k) beatwo-dimensional local field. Let O = Ok,
M = Mg, O=0g, M =Mg (seesubsection 1.1 of Part I). Then O = pr=1(0k,),
M = pr—l(MKl) where pr: O — K; istheresidue map. Let ¢1,t, be asystem of
local parametersof K.

If K O O isthefractionfield of aring O wecall O-submodules J C K fractional
O-idedls (or simply fractional ideas).

Thering O hasthe following properties:

() O/M~k, K*=~(t) X (t2) x 0*, O* ~k* x (1+M);
(if) every finitely generated fractional O-ideal is principal and equal to

P(,4) = (tit)) forsomei,j € Z

(for the notation P(z,j) seeloc.cit.);
(iii) every infinitely generated fractional O-ideal isequal to

P(j) = M) = (i) 15 € Z) forsome j € Z

(see[FP], [P2] or section 1 of Part I). The set of theseidealsistotally ordered with
respect to the inclusion.

3.1. TheWeyl group

Let B betheimage of

o O ... O
M O ... O
M M ... O

in PGL(m, K). Let N bethe subgroup of monomia matrices.
Definition 1. Let T'= B[ N betheimage of

(O* 0)
o ... O

W =Wk/k,/x =N/T

in G.
The group

is called the Weyl group.
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There is arich structure of subgroupsin G which have many common properties
with the theory of BN-pairs. In particular, there are Bruhat, Cartan and Iwasawa
decompositions (see [P2]).

The Weyl group W contains the following elements of order two

(1 .. 0 0 ... 0)
0 1 0
_]o 01 0
si=| o 1 0 E i=1..,m—1;
0 1 0
0 0 0 1)
0 0 0 t 0 o 0 t
0 1 0 0 0 1 0 0
w1 = y W2 =
.. 10 .. 10
tt* 0 ... 00 t;2' 0 ... 00

Thegroup W hasthe following properties:
(i) W isgenerated by theset S of its elements of order two,
(if) thereis an exact sequence
0= FE = Wk, /e = Wk — 1,

where E isthe kernel of the addition map

'k ®---0l'k - T'k
~—_——
m times
and Wy isisomorphic to the symmetric group S, ;

(iii) theelements s;, 7 =1, ...,m — 1 defineasplitting of the exact sequence and the
subgroup (s1, -..,8,—1) atson E by permutations.

In contrast with the situation in the theory of BN-pairs the pair (W, S) is not a
Coxeter group and furthermore there is no subset S of involutions in W such that
(W, S) isaCoxeter group (see [P2]).
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3.2. Bruhat-Tits building for PGL(2) over a local field
of dimension < 2

In this subsection we briefly recall the main constructions. For more details see [BT1],
[BT2], [P1], [P2].

3.21. Let k beafield (which can be viewed as a 0-dimensional local field). Let V'
be avector space over k of dimension two.

Definition 2. Thespherical building of PGL(2) over k isazero-dimensional complex
A(k) = A(PGL(V), k)

whose verticesarelinesin V.
The group PGL(2, k) actson A(k) transitively. The Weyl group (in thiscaseit is
of order two) actson A(k) and its orbits are apartments of the building.

3.22. Let F beacomplete discrete valuation field with residue field k. Let V' be
avector space over F' of dimension two. We say that L C V isalatticeif L isan
Op-module. Two submodules L and L' belong to the same class (L) ~ (L') if and
only if L =alL’, with a € F*.

Definition 3. Theeuclidean building of PGL(2) over F' isaone-dimensiona complex
A(F/k) whose vertices are equivalence classes (L) of lattices. Two classes (L) and
(L") are connected by an edge if and only if for some choiceof L, L’ thereisan exact
sequence

O—-L —-L—+k—0.
Denote by A;(F'/k) the set of ¢-dimensional simplices of the building A(F/k).

The following link property isimportant:
Let P € Ag(F/k) berepresented by alattice L. Thenthelink of P (= the set of
edges of A(F/k) going from P) isin one-to-one correspondence with the set of
linesin the vector space Vp = L/MgL (whichis A(PGL(Vp), k) ).
The orbits of the Weyl group W (which isin this case an infinite group with two
generators of order two) areinfinite sets consisting of z; = (L;), L; = Op & M%.

T;_1 T; Li+1

An element w of the Weyl group actsin the followingway: if w € E =7 then w
acts by trandation of evenlength; if w ¢ E then w actsasan involution with aunique
fixed pOint Tig- w(miﬂo) =Tip—i-
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To formalize the connection of A(F/k) with A(F') we define aboundary point of
A(F/k) asaclass of half-lines such that the intersection of every two half-lines from
the class is a haf-line in both of them. The set of the boundary points is called the
boundary of A(F/k).

There is an isomorphism between PGL(2, F)-sets A(F) and the boundary of
A(F/k): if ahaf-lineisrepresentedby L; = O @M%, i > 0, then the corresponding
vertex of A(F') istheline F & (0) in V.

It seems reasonabl e to slightly change the notations to make the latter isomorphisms
more transparent.

Definition 4 ([P1]). Put A [0](F/k) = the complex of classes of O r-submodulesin

V isomorphicto F & Op (so A [O](F/k) isisomorphicto A(F)) and put
A[2](F/k) = A(F/k).

Define the building of PGL(2) over F astheunion

A(F/k) = A[U(F/R) | JA[01(F/k)

and call thesubcomplex A [O](F'/k) theboundary of thebuilding. Thediscretetopology
on the boundary can be extended to the whole building.

3.23. Let K beatwo-dimensional local field.

Let V' beavector spaceover K of dimensiontwo. Wesay that L C V isalattice
if L isan O-module. Two submodules L and L' belong to the sameclass (L) ~ (L")
if andonly if L =alL', with a € K*.

Definition 5 ([P1]). Definethe vertices of the building of PGL(2) over K as
Aol2](K/K1/k) = classes of O-submodulesL C V: L~0 @ O
Ao[1](K/K1/k) = classes of O-submodulesL C V: L~ 0 & O
AolO](K/K1/k) = classes of O-submodulesL CV: L~0O @ K.

Put

Ao(K/K1/k) = Ao[2)(K/K1/k) | Aol 1] (K /K1/k) ] AolO(K/ K1/ k).

Asetof {Ly,}, a €I, of O-submodulesin V' iscaled achain if
(i) forevery a € I andforevery a € K* thereexistsan o’ € I suchthat aL, = Ly,
(i) theset {L,,a € I} istotally ordered by the inclusion.

A chain {L,,a € I'} iscaled amaximal chain if it cannot be included in astrictly
larger set satisfying the same conditions (i) and (ii).

Wesay that (Lo), (L1), ..., {Ls,) belongto asimplex of dimension m if and only
if the L;, ¢ =0,1,...,m belong to a maximal chain of Og-submodulesin V. The
faces and the degeneracies can be defined in a standard way (as a deletion or repetition
of avertex). See [BT2].
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Let {L,} beamaximal chain of O-submodulesinthespace V. Thereare exactly
three types of maximal chains ([P2]):
(i) if thechain containsamodule L isomorphicto O & O then all the modules of the
chain are of that type and the chain is uniquely determined by its segment

D000 DOMdODODM®M D ....

(ii) if the chain contains a module L isomorphic to O @ O then the chain can be
restored from the segment:

D 0®0D0@P1L0)>0®P2,0) D -->0dMD ...

(recall that P(1,0) = M).
(iii) if the chain contains a module L isomorphic to O & O then the chain can be
restored from the segment:

D00 DPLO®ODPROOBOD ---DMpOD ...

3.3. Bruhat-Tits building for PGL(3) over a local field F
of dimension 1

Let G = PGL(3).

Let F beaone-dimensiona local field, F' D O D Mg, Op/Mp ~ k.

Let V beavector spaceover F of dimension three. Definelatticesin V' and their
equivalence similarly to the definition of 3.2.2.

First we define the vertices of the building and then the simplices. The result will
beasimplicia set A (G, F/k).

Definition 6. The vertices of the Bruhat—Tits building:
Aol1](G, F/k) = {classesof O -submodulesL CV : L ~ Op & O ® OF},
Ao[0](G, F/k) = {classesof Op -submodulesL CV : L~ O0p ® Op & F
orL~0Op®FoF},
Ao(G, F/E) = Ao[1)(G, F/k) U Ao[O(G, F/k).

We say that the points of Ag[1] are inner points, the points of Ag[Q] are boundary
points. Sometimes we delete G and F/k from the notation if this does not lead to
confusion.

We have defined the vertices only. For the simplices of higher dimension we have
the following:

Definition 7. Let {Ly,a € I} be a set of Op-submodulesin V. We say that
{Lqa,a € I} isachain if
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(i) forevery a € I andforevery a € K * thereexistsan o’ € I suchthat aL, = Ly,
(i) theset {L,,a € I} istotally ordered by the inclusion.

A chain {L,, o € I} iscaled amaximal chain if it cannot be included in astrictly
larger set satisfying the same conditions (i) and (ii).

Wesay that (Lg),(L1), ..., {Ln,) belongto asimplex of dimension m if and only
if the L;, ¢ =0,1,...,m belong to a maximal chain of Og-submodulesin V. The
faces and the degeneracies can be defined in a standard way (as a deletion or repetition
of avertex). See [BT2].

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding asin [P2] (for PG L(2)) we get the following result.

Proposition 1. There are exactly three types of maximal chains of O g-submodules in

the space V':

(i) the chain contains a module isomorphicto O & Or ® Op. Then all the modules
from the chain are of that type and the chain has the following structure:

< DMLL D MEL' D MLL" > MELL > MEL > MELL" > ...
where (L), (L"), (L") € Ao(G, F/Ek)[1] and L ~ Op & O ® O,
L'~0r®0redMp, L" ~O0r ®Mpr & Mp.

(ii) the chain contains a module isomorphicto O & Or @ F. Then the chain has the
following structure:

c e DMLL D MEL D MEL o ...

where (L), (L") € Ao(G,F/k)[0] and L ~ O @O ®F, L' ~Mpr®Op & F.
(iii) the chain contains a module isomorphicto Or & F @ F. Then the chain has the
following structure:

S DMLLOMEIL S L.
where (L) € Ao(G, F/k)[O].

We see that the chains of the first type correspond to two-simplices, of the second
type — to edges and the last type represent some vertices. It meansthat the simplicial
set A, isadisconnected union of its subsets A [m], m = 0,1. The dimension of the
subset A [m] isequa to onefor m =0 andto two for m = 1.

Usually the buildings are defined as combinatorial complexes having a system of
subcompl exes called apartments (see, for example, [R], [T1], [T2]). We show how to
introduce them for the higher building.

Definition 8. Fix abasis e1,e»,e3 € V. The apartment defined by this basis is the
following set

X =X [1ux]a],
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where
Yo[1] = {(L) : L =a1e1 ® azer ® azes,
where a1, ay, az are O p-submodulesin F isomorphicto O}
2o[0] = {(L) : L =aie1 ® azer ® azes,
where a1, ap, az are O p-submodulesin F isomorphic either
toOr orto F
and at |least one a; isisomorphic to F'}.

¥ [m] isthe minimal subcomplex having Xp[m] as vertices.

(FOF®OF)

(FOOrdME)

Oy
-l

IO ®FOME)e

% .
(OFOMEOF)

(OFGBF@F)

It can be shown that the building A (G, F'/k) is glued from the apartments, namely

A(G,F/k)= || = /anequivaencerelation
all basesof V
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(see[T2)).

We can make this description more transparent by drawing all that in the picture
above where the dots of different kinds belong to the different parts of the building. In
contrast with the case of the group PG L(2) it is not easy to draw the whole building
and we restrict ourselves to an apartment.

Here the inner vertices are represented by the lattices

ij = (OF @ M & M%), i, € Z.
The definition of the boundary gives a topology on Ao(G, F/k) which is discrete
on both subsets Ag[1] and Ag[0]. The convergence of the inner points to the boundary
pointsis given by the following rules:

j——o00

(O @M% & ML) 225 (Op @ ML @ F),
(OF ® Me @ My) 7°%% (F@ F 0 0F),

because (OF ® Mi @& M%) = (M7 @ Mz"™ @ OF). The convergence in the other
two directions can be defined along the same line (and it is shown on the picture). Itis
easy to extend it to the higher simplices.

Thus, there is the structure of a simplicial topological space on the apartment and
then we define it on the whole building using the gluing procedure. This topology is
stronger than the topology usually introduced to connect the inner part and the boundary
together. The connection with standard “ compactification” of the building is given by
the following map:

°
/ ¢ \ —
. cee _._._._‘L “en . O O
(Or®F®F) (Op@F®MiL) (FOF@Or) (Or&FoF) (FOF®Or)
(Or®F®OrF)

This map is bijective on the inner smplices and on a part of the boundary can be
described as

® - —ee e ... @
——

\ + \

® ® ®

We note that the complex is not a CW-complex but only a closure finite complex. This
“compactification” was used by G. Mustafin [M].
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We have two kinds of connections with the buildings for other fields and groups.
First, for thelocal field F' there are two local fields of dimension O, namely F and k.
Then for every P € Ag[1](PGL(V), F/k) the Link(P) isequa to A (PGL(Vp),k)
where Vp = L/MgL if P = (L) and the Link(P) is the boundary of the Star(P).
Sincethe apartmentsfor the PGL(3, k) arehexagons, we can also observethis property
on the picture. The analogous relation with the building of PGL(3, K) is more
complicated. It is shown on the picture above.

The other relations work if we change the group G but not the field. We see that
three different lines go out from every inner point in the apartment. They represent the
apartments of the group PGL(2, F/k). They correspond to different embeddings of
the PGL(2) into PGL(3).

Also we can describe the action of the Weyl group W on an apartment. If wefix a
basis, the extension

O—-Trp®l'r>W —8S3—>1

splits. The elements from S3 C W act either as rotations around the point 00 or as
reflections. Theelementsof 7Z & 7 C W can be represented as triples of integers (ac-
cording to property (ii) in the previous subsection). Thenthey correspondto translations
of the lattice of inner points along the three directions going from the point 00.

If we fix an embedding PGL(2) ¢ PGL(3) then the apartments and the Weyl
groups are connected as follows:

2 (PGL(2) C Z(PGL(QI)),

0O —— Z s W S s 1
I I I
0 —— ZaZ > W > S3 y 1

where W' isaWeyl group of the group PGL(2) over thefield F/k.

3.4. Bruhat-Tits building for PGL(3) over a local field
of dimension 2

Let K be atwo-dimensiona local field. Denote by V' a vector space over K of
dimension three. Define latticesin V and their equivalence in asimilar way to 3.2.3.
We shall consider the following types of lattices:

A[2] 222 (0@ 0aO0)
MA[l] 221 (0@ O0@®0)

211 (0® 0 ®0)
Af0] 220 (O®O@K

( )
200 (O® K ®K)
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To define the buildings we repeat the procedure from the previous subsection.

Definition 10. Thevertices of the Bruhat—Titsbuilding arethe elementsof thefollowing
Set:

Ao(G, K/K1/k) = Ao[2] U Ag[1] U Ag[0)].

To define the simplices of higher dimension we can repeat word by word Definitions 7
and 8 of the previous subsection replacing the ring Oz by thering O (note that we
work only with the types of lattices listed above). We call the subset A[1] the inner
boundary of the building and the subset A[O] theexternal boundary. Thepointsin A[2]
arethe inner paints.

To describe the structure of the building we first need to determine all types of the
maximal chains. Proceeding asin [P2] for PGL(2) we get the following result.

Proposition 2. Let {L,} be a maximal chain of O-submodules in the space V. There
are exactly five types of maximal chains:

(i) If the chain contains a module L isomorphicto O @ O @ O then all the modules
of the chain are of that type and the chain is uniquely determined by its segment

D000 OMO0OOODOMOMOODODMOOMOMD ...

(ii) If the chain contains a module L isomorphicto O @ O @ O then the chain can be
restored from the segment:

=D 00080 "D D00PODOMPOGODMOMPOD---DMAEMSO
quotient ~ K1 @ K1

=EMOEMBOD - DMAEMBDODMOMAM D---DMAMAMD...
T quotient ~Kq

Here the modules isomorphic to O @ O @ O do not belong to this chain and are
inserted as in the proof of Proposition 1 of [P2].
(iii) All the modules L, ~ O @ O @ O. Then the chain contains a piece

D000 0"D ---D000000DMdO00OD ---DMBOODO
T quotient~k——————

=MeO0pO0D ---DMO0POD ---DMOIMD O
T quotient~Ey ———

=MeaMpOD ---DMOEMBOD ---DMAEMPMD ...
T quotient~Ey ——

and can also be restored from it. Here the modules isomorphicto O ® O @ O do
not belong to this chain and are inserted as in the proof of Proposition 1 of [P2].
(iv) Ifthereisan L, ~ O @ O @ K then one can restore the chain from

D000 KOMaeOBKOMeM®K D ...
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(v) Ifthereisan L, ~ O & K @ K then the chain can be written down as
- ODM'eoKeKO>M™" MeoKoK> ...

We see that the chains of the first three types correspond to two-simplices, of the
fourth type — to edges of the external boundary and the last type represents a vertex
of the external boundary. As above we can glue the building from apartments. To
introduce them we can again repeat the corresponding definition for the building over
alocal field of dimension one (see Definition 4 of the previous subsection). Then the
apartment X isaunion

X =Z[2UE[1uZX]q]

where the pieces X [7] contain the lattices of the typesfrom A [1].

The combinatorial structure of the apartment can be seen from two pictures at
the end of the subsection. There we removed the external boundary X [0] which
is simplicially isomorphic to the external boundary of an apartment of the building
A (PGL(3),K/K1/k). Thedotsin thefirst picture show a convergence of the vertices
inside the apartment. Asaresult the building isasimplicial topological space.

We can also describe the relations of the building with buildings of the same group
G over the complete discrete valuation fields K and K;. In thefirst case thereisa
projection map

W:A.(G,K/Kl/k) — A.(G,K/Kl).

Under this map the big triangles containing the simplices of type (i) are contracted into
points, the triangles containing the simplices of type (ii) go to edges and the simplices
of type (iii) are mapped isomorphically to simplices in the target space. The external
boundary don’'t change.

Thelines

o Yn-1 Zn Tin Ti+l,n Yn Znp+l Lin+l Too

can easily be visualized inside the apartment. Only the big white dots corresponding to
the external boundary are missing. We have three types of lines going from the inner
points under the angle 27/3. They correspond to different embeddings of PGL(2)
into PGL(3).

Using the lines we can understand the action of the Weyl group W on an apartment.
The subgroup S3 actsin the sameway asin 3.2. The free subgroup E (see 3.1) has
six types of tranglations along these three directions. Along each line we have two
opportunities which were introduced for PGL(2).

Namely, if w € Tk ~ Zd7Z C W then w = (0,1) acts as a shift of the
whole structure to the right: w(z;,,) = i n+2, W(Yn) = Yn+2, W(2n) = 2n+2, w(x0) =
0, W(Too) = Too-
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Part 1. Section 3. The Bruhat-Tits buildings over higher dimensional local fields 235

Theelement w = (1, 0) actsasashift onthepoints z; ,, but|eavesfixed thepointsin
the inner boundary w(mi,n) = Zi+2,n, 'w(yn) = Yn, 'w(zn) = Zn, ’w(.’L‘o) = Zo, ’w(woo) =
Zoo, (SE€[P2, Theorem 5, v]).

simplices of type (i) simplices of type (ii) simplices of type (iii)
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[BT1]
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(T1]
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4. Drinfeld modules and
local fields of positive characteristic

Ernst-Ulrich Gekeler

The relationship between local fields and Drinfeld modules is twofold. Drinfeld mod-
ules alow explicit construction of abelian and nonabelian extensions with prescribed
properties of local and global fields of positive characteristic. On the other hand,
n-dimensional local fields arise in the construction of (the compactification of) mod-
uli schemes X for Drinfeld modules, such schemes being provided with a natural
dtratification Xg C X1 C --- X;--- C X,, = X through smooth subvarieties X; of
dimension 3.

We will survey that correspondence, but refer to the literature for detailed proofs
(provided these exist so far). An important remark is in order: The contents of this
articletakeplacein characteristic p > 0, and arein fact locked up in the characteristic p
world. No lift to characteristic zero nor even to schemes over Z/p? is known!

4.1. Drinfeld modules

Let L be afield of characteristic p containing the field F,, and denote by 7 = 7,
raising to the qth power map = — z?. If “a” denotesmultiplication by a € L, then
Ta = al7. Thering End(G, ) of endomorphisms of the additive group G, ,;, equals
L{rp} = {X a:7}, : a; € L}, the non-commutative polynomial ringin 7, = (z — P)
with the above commutation rule 7,a = aP7. Similarly, the subring Endr (G, /1) of
IF, -endomorphismsis L{r} with 7 =7} if ¢ =p™. Notethat L{r} isan F,-algebra
since F, — L{r} iscentral.

Definition 1. Let € beasmooth geometrically connected projectivecurveover F, . Fix

aclosed (but not necessarily F, -rational) point co of €. Thering A = T'(C—{o0}, O¢)
iscalled a Drinfeld ring. Notethat A* =, .
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240 E.-U. Gekeler

Examplel. If € istheprojectiveline ]P)l/]pq and oo istheusual point at infinity then
A =F,[T].

Example 2. Supposethat p 7 2, that C is given by an affine equation Y2 = f(X)
with a separable polynomial f(X) of even positive degree with leading coefficient a
non-squarein IF,, and that oo isthe point above X = oco. Then A =F,[X,Y] isa
Drinfeld ring with deg]Fq(oo) =2.

Definition 2. An A-structure on a field L is a homomorphism of F,-agebras (in
brief: an F,-ring homomorphism) v: A — L. Its A-characteristic char4(L) isthe
maximal ideal ker(y), if v failsto beinjective, and co otherwise. A Drinfeld module
structure on such afield L isgiven by an F,-ring homomorphism ¢: A — L{7} such
that 9 o ¢ =y, where 9: L{r} — L isthe L-homomorphism sending = to 0.

Denote ¢(a) by ¢, € Endr (G, ,1); ¢. induces on the additive group over L
(and on each L-algebra M) anew structure asan A-module:

(4.1.1) a*xx . =¢y(z) (a€ Az e M)
We briefly call ¢ aDrinfeld module over L, usually omitting referenceto A.

Definition 3. Let ¢ and ¢ beDrinfeld modulesover the A-field L. A homomorphism
u'¢ — 9 isan element of L{r} suchthat wo ¢, = ¢, ou foral a € A. Hence
an endomorphism of ¢ isan element of the centralizer of ¢(A) in L{r}, and u isan
isomorphism if w € L* — L{r} issubjectto uo ¢, =9, o u.

Define deg:a — ZU{—oo} and deg,: L{r} — ZU{—oo} by deg(a) = log, |4/a]
(a #0; wewrite A/a for A/aA), deg(0) = —oo, and deg, (f) = the well defined
degreeof f asa“polynomia” in 7. Itisan easy exercisein Dedekind rings to prove
the following

Proposition 1. If ¢ is a Drinfeld module over L, there exists a non-negative integer r
such that deg, (¢,) = rdeg(a) forall a € A; r iscaledtherank rk(¢) of ¢.

Obviously, rk(¢) = 0 meansthat ¢ = v, i.e, the A-module structureon G, /, is
the tautological one.

Definition 4. Denoteby M"(1)(L) the set of isomorphism classes of Drinfeld modules
of rank » over L.

Example3. Let A =T,[T] beasin Example 1 and let K = [F,(T") be its fraction
field. DefiningaDrinfeld module ¢ over K or anextensionfield L of K isequivalent
to specifying ¢ =T +g17 +--- + g,77 € L{T}, where g, 70 and r = rk(¢). In
the special casewhere ¢ =T +7, ¢ iscaledthe Carlitz module. Two such Drinfeld
modules ¢ and ¢' areisomorphic over the algebraic closure L39 of L if and only if
thereissome u € LA9”™ suchthat g} = u? ~1g; forall i > 1. Hence M"(1)(L39) can
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be described (for » > 1) asan open dense subvariety of aweighted projective space of
dimension r — 1 over L39.

4.2. Division points

Definition 5. For a € A andaDrinfeldmodule ¢ over L, write ,¢ for the subscheme
of a-division points of G, ,, endowed with its structure of an A-module. Thus for
any L-algebra M,

a®(M) = {z € M: ¢a(z) = 0}.
More generally, we put ¢ = [ ¢, for an arbitrary (not necessarily principal) ideal

aca
a of A. Itisafinite flat group scheme of degree rk(¢) - deg(a), whose structure is
described in the next result.

Proposition 2 ([Dr], [DH, I, Thm. 3.3 and Remark 3.4]). Let the Drinfeld module ¢

over L haverank » > 1.

(i) If chara(L) = 0o, o4 is reduced for each ideal a of A, and (¢(L%P) = ,¢(L39)
is isomorphic with (A/a)" asan A-module.

(it) If p =char4(L) isamaximal ideal, then there exists an integer h, the height ht(¢)
of ¢, satisfying 1 < h < r, and such that (L¥9) ~ (A/a)"~" whenever a isa
power of p, and 4¢(LA9) ~ (A/a)" if (a,p) = 1.

The absolute Galois group G, of L actson ,¢(L>P) through A-linear automor-
phisms. Therefore, any Drinfeld module gives rise to Galois representations on its
division points. These representations tend to be “aslarge as possible”.

The prototype of result is the following theorem, due to Carlitz and Hayes [H1].

Theorem 1. Let A be the polynomial ring F,[T] with field of fractions K. Let

p:A — K{r} be the Carlitz module, pr = T + 7. For any non-constant monic

polynomial a € A, let K(a) := K(,p(K39)) be the field extension generated by the

a-division points.

(i) K(a)/K isabelianwith group (4/a)*. If o} is the automorphism corresponding
to the residue class of bmod a and = € ,p(K39) then o () = pp().

(i) If (a) = p* is primary with some prime ideal p then K(a)/K is completely
ramified at p and unramified at the other finite primes.

(@iii) If (@) = [Ja; (1 < i < s) with primary and mutually coprime a;, the fields
K (a;) are mutually linearly disjoint and K = ®;<i<sK(a;).

(iv) Let K.i(a) be the fixed field of F; — (A4/a)*. Then oo is completely split in
K.(a)/K and completely ramified in K (a)/K+(a).

(v) Let p be a prime ideal generated by the monic polynomial = € A and coprime
with a. Under the identification Gal(K (a)/K) = (A/a)*, the Frobenius element
Frob, equals the residue class of = mod a.
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Letting @ — oo with respect to divisihility, we obtain the field K(co) generated
over K by dl the division points of p, with group Gal(K(c0)/K) = Ii_r)na(A/a)*,
which almost agreeswith the group of finiteidele classesof K. It turnsout that K (oco)
is the maximal abelian extension of K that is tamely ramified at oo, i.e., we get a
constructive version of the class field theory of K. Hence the theorem may be seen
both as a global variant of Lubin-Tate's theory and as an analogue in characteristic p
of the Kronecker—Weber theorem on cyclotomic extensions of Q.

There are vast generalizationsinto two directions:

() abelian class field theory of arbitrary global function fields K = Frac(A4), where
A isaDrinfeld ring.
(b) systems of nonabelian Galois representations derived from Drinfeld modules.

Asto (a), the first problem is to find the proper analogue of the Carlitz module for
an arbitrary Drinfeld ring A. As will result e.g. from Theorem 2 (see also (4.3.4)),
the isomorphism classes of rank-one Drinfeld modules over the algebraic closure K 9
of K correspond bijectively to the (finite!) class group Pic(4) of A. Moreover,
these Drinfeld modules p(®) (a € Pic(4)) may be defined with coefficientsin the ring
Og, of A-integersof acertain abelian extension H, of K, and such that the leading
coefficients of al p{*) areunitsof Og,. Using these data along with the identification
of H, inthedictionary of classfield theory yields ageneralization of Theorem 1 to the
case of arbitrary A. In particular, we again find an explicit construction of the class
fieldsof K (subject to atameness condition at oo ). However, in view of class number
problems, the theory (due to D. Hayes [H2], and superbly presented in [Go2, Ch.VI1])
has more of the flavour of complex multiplication theory than of classical cyclotomic
theory.

Generalization (b) isasfollows. Supposethat L isafiniteextensionof K = Frac(A),
where A isageneral Drinfeld ring, and let the Drinfeld module ¢ over L haverank r.
For each power p* of aprime p of A, G = Gal(L*/L) actson ,:¢ ~ (A/p*)". We
thus get an action of G, on the p-adic Tate module T,,(¢) ~ (4,)" of ¢ (see[DH, |
sect. 4]. Here of course A, = Lln A/pt isthe p-adic completion of A with field of
fractions K. Let on the other hand End(¢) be the endomorphism ring of ¢, which
asoactson T, (¢). Itisstraightforward to show that (i) End(¢) actsfaithfully and (ii)
the two actions commute. In other words, we get an inclusion

(4.2.1) i:End(¢) ®4 Ay — Endg, (T;(9))

of finitely generated free A,-modules. The plain analogue of the classical Tate con-
jecture for abelian varieties, proved 1983 by Faltings, suggests that < isin fact bijec-
tive. This has been shown by Taguchi [Tag] and Tamagawa. Taking End(T,(¢)) ~
Mat(r, A,) and the known structure of subalgebras of matrix algebras over afield into
account, this means that the subalgebra

K,[Gr] — End(T,(¢) ®4, Kp) ~ Mat(r, K})
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generated by the Galois operatorsis as large as possible. A much stronger statement is
obtained by R. Pink [P1, Thm. 0.2], who shows that the image of G, in Aut(T},(¢))
has finite index in the centralizer group of End(¢) ® A,. Hence if eg. ¢ hasno
“complex multiplications’ over L39 (i.e., End,ag(¢) = A; thisis the generic case
for a Drinfeld module in characteristic oo ), then the image of G hasfinite index in
Aut(T,(¢)) ~ GL(r,A,). Thisis quite satisfactory, on the one hand, since we may
use the Drinfeld module ¢ to construct large nonabelian Galois extensions of L with
prescribed ramification properties. On the other hand, the important (and difficult)
problem of estimating the index in question remains.

4.3. Welerstrasstheory

Let A beaDrinfeld ring with field of fractions K, whose completion at oo isdenoted
by K. Wenormalizethe corresponding absolutevalue | | =| |« as |a| = |A/a| for
O0#a€ A andlet C,, bethecompleted algebraic closureof K, i.e., thecompletion
of the algebraic closure K 2'09 with respect to the unique extension of | | to K 2"09.
By Krasner's theorem, C, is again algebraically closed ([BGS, p. 146], where also
other facts on function theory in C, may be found). It is customary to indicate the
strong analogiesbetween A, K, K o,Co,... and Z,Q,R,C, ..., eg. A isadiscrete
and cocompact subring of K.,. But note that C,, failsto be locally compact since
|Coo @ Kool = 0.

Definition 6. A lattice of rank » (an r-lattice in brief) in C, isafinitely generated
(hence projective) discrete A-submodule A of C, of projective rank r, where the
discreteness means that A has finite intersection with each ball in C,,. The lattice
function ej: Cs — Co Of A isdefined asthe product

(4.3.1) ea(z) =z J] (1—2/N.
0ZAEA

It is entire (defined through an everywhere convergent power series), A-periodic and
[y -linear. For anon-zero a € A consider the diagram

0 A b Coo — 23 Cop —— 0
(4.3.2) l l "’ﬁl
0 A b Coo —2 5 Cop —— 0

with exact lines, where the left and middle arrows are multiplications by a and ¢2 is
defined through commutativity. It is easy to verify that

() ¢ € Cu{r},
(ii) deg,(¢) =r - dey(a),
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(iii) a +— @2 isaring homomorphism ¢*: A — C. {7}, in fact, a Drinfeld module
of rank ». Moreover, al the Drinfeld modules over C, are so obtained.

Theorem 2 (Drinfeld [Dr, Prop. 3.1]).

(i) Eachrank-r Drinfeld module ¢ over C, comesvia A — ¢ fromsome r-lattice
Ain Cy.

(i) Two Drinfeld modules ¢*, ¢’ are isomorphic if and only if there exists 0 # ¢ €
C suchthat A" =c-A.

We may thus describe M"(1)(Cw) (See Definition 4) as the space of r-lattices
modulo similarities, i.e., as some generalized upper half-plane modulo the action of an
arithmetic group. Let us make this more precise.

Definition 7. For r > 1 let P*~1(C,) bethe C,, -pointsof projective r — 1-spaceand
Q" =P YC) — UH(Cy), where H runs through the K . -rational hyperplanes
of P!, Thatis, w = (w1 : ... : w,) belongsto Drinfeld’s half-plane Q" if and only
if thereisno non-trivia relation ) a;w; = 0 with coefficients a; € K.

Both point sets P"~1(C,,) and Q" carry structures of anaytic spaces over Co
(even over K, ), and so we can speak of holomorphic functions on Q. We will not
give the details (see for example [GPRV, in particular lecture 6]); sufficeit to say that
locally uniform limits of rational functions (e.g. Eisenstein series, see below) will be
holomorphic.

Suppose for the moment that the class number h(A) = |Pic(4)| of A equas
one, i.e, A is aprincipa ideal domain. Then each r-lattice A in Cy is free
A= Elgigr Aw;, and the discreteness of A isequivaent with w = (w1 : ... : w,)
belongingto Q" — P"~1(C..). Further, two points w and w' describe similar lattices
(and therefore isomorphic Drinfeld modules) if and only if they are conjugate under
I := GL(r, A), which actson P"~1(C.,) and its subspace Q. Therefore, we get a
canonical bijection

(4.3.3) Q" =M'(1)(Coo)

from the quotient space T"\ Q" to the set of isomorphism classes M"(1)(Cwo)-

Inthe general caseof arbitrary h(A) € N, welet T'; := GL(Y;) — GL(r, k), where
Y; — K" (1 < i < h(A)) runs through representatives of the h(A) isomorphism
classes of projective A-modules of rank 7. In a similar fashion (see e.g. [G1, Il
sect.1], [G3]), we get abijection

(4.3.4) [\ Q" 5M(D)(Cw),

Ulgigh(A)

which can be made independent of choicesif we use the canonical adelic description of
the Y;.
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Example 4. If r = 2 then Q = Q2 = P}(Cy) — —PY(K ) = C — Ko, Which
rather correspondsto C — R = H*|J H~ (upper and lower complex half-planes) than
to H* done. Thegroup T := GL(2,4) actsvia (%)(z) = 222, and thus gives
rise to Drinfeld modular forms on Q (see [G1]). Suppose moreover that A = FF,[T]
as in Examples 1 and 3. We define ad hoc a modular form of weight k for T" as a

holomorphic function f:Q — C, that satisfies
() f(22) =(cz+d)*f(2) for (*?) €T and

cz+d cd

(i) f(z) isbounded onthesubspace {z € Q :infzcx_ |z — x| > 1} of Q.

Further, we put M;, for the C -vector space of modular formsof weight k. (Inthe
special case under consideration, (ii) is equivalent to the usual “holomorphy at cusps’
condition. For more general groups I', e.g. congruence subgroups of GL(2, A),
genera Drinfeld rings A, and higher ranks » > 2, condition (ii) is considerably more
costly to state, see [G1].) Let

(4.3.5) Ei(2) = > L

k
(0,0)%(a,b)EAx A (az +b)

be the Eisenstein series of weight k. Due to the non-archimedean situation, the sum
converges for £ > 1 and yields a modular form O # Ey € My if Kk = 0 (g — 1).
Moreover, the various M;, are linearly independent and

(4.3.6) M(T) = @ My = Coo[Ey—1, Ep2_4]
k>0

is a polynomial ring in the two algebraically independent Eisenstein series of weights
g—1 and ¢?—1. Thereisana priori different method of constructing modular formsvia
Drinfeld modules. With each z € Q, associatethe 2-lattice A, := Az+ A — C4, and
the Drinfeld module ¢2) = (=), Writing ¢ = T + g(2)r + A(z)72, the coefficients
g and A become functionsin z, in fact, modular forms of respective weights ¢ — 1
and ¢° — 1. Wehave ([Gol], [G1, I 2.10])

(4.3.7) g=(T% —~T)Ey1,: A=(T7 —~T)Ep_; +(T% — THE.

The crucia fact isthat A(z) # O for z € Q, but A vanishes “at infinity”. Letting
j(z) == g(2)7™/A(z) (whichisafunction on Q invariant under T'), the considerations
of Example 3 show that j is a complete invariant for Drinfeld modules of rank two.
Therefore, the composite map

(4.3.8) 7T\ QS M*(1)(Coo) = Coo

is bijective, in fact, biholomorphic.
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4.4, Moduli schemes

We want to give asimilar description of M"(1)(Cs,) for » > 2 and arbitrary A, that
is, to convert (4.3.4) into an isomorphism of analytic spaces. One proceeds as follows
(see[Dr], [DH], [G3)]):

() Generalize the notion of “Drinfeld A-module over an A-field L” to “Drinfeld
A-moduleover an A-scheme S — Spec A”. Thisisquite straightforward. Intuitively,
a Drinfeld module over S is a continuously varying family of Drinfeld modules over
theresiduefieldsof S.

(b) Consider the functor on A-schemes:

N S { isomorphism classes of rank-r }
' Drinfeld modules over S '
The naive initial question is to represent this functor by an S-scheme M"(1). Thisis
impossible in view of the existence of automorphisms of Drinfeld modules even over
algebraically closed A-fields.
(c) As aremedy, introduce rigidifying level structures on Drinfeld modules. Fix some

ideal 0 #n of A. An n-level structure on the Drinfeld module ¢ over the A-field L
whose A-characteristicdoesn’t divide n isthe choice of anisomorphism of A-modules

o (A/n)" = wé(L)

(compare Proposition 2). Appropriate modifications apply to the caseswhere char 4 (L)
divides n and where the definition field L isreplaced by an A-scheme S. Let M"(n)
be the functor
isomorphism classes of rank-r
M"(n): S — < Drinfeld modules over S endowed
with an n-level structure

Theorem 3 (Drinfeld [Dr, Cor. to Prop. 5.4]). Suppose that n is divisible by at least
two different prime ideals. Then M"(n) is representable by a smooth affine A-scheme
MT(n) of relative dimension » — 1.

In other words, the scheme M"(n) carries a “tautological” Drinfeld module ¢ of
rank » endowedwith alevel- n structure such that pull-back inducesfor each A-scheme
S abijection

(441)  M"(n)(S) = {morphisms (S, M"(n))} SM"(n)(S), f+— f*(¢).

M™(n) iscaledthe(fine) moduli scheme for themoduli problem M"(n). Now thefinite
group G(n) := GL(r, A/n) actson M"(n) by permutations of the level structures. By
functoriality, it also actson M"(n). Welet M"(1) bethe quotient of M"(n) by G(n)
(which does not depend on the choice of n). It hasthe property that at least its L-valued
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points for algebraically closed A-fields L correspond bijectively and functorially to
MT™(1)(L). Itistherefore called a coarse moduli scheme for M"(1). Combining the
above with (4.3.4) yields a bijection

(4.4.2) I\ Q" = M"(1)(Cw),

Ulgigh(A)
which even is an isomorphism of the underlying analytic spaces [Dr, Prop. 6.6]. The
most simple special caseisthe one dealt with in Example 4, where M2(1) = Al/A, the
affineline over A.

4.5. Compactification

It is a fundamenta question to construct and study a “compactification” of the affine
A-scheme M™(n), relevant for example for the Langlands conjectures over K, the
cohomology of arithmetic subgroups of GL(r, A), or the K-theory of A and K.
This means that we are seeking a proper A-scheme M"(n) with an A-embedding
MT(n) — M"(n) as an open dense subscheme, and which behaves functorially with
respect to the forgetful morphisms M"(n) — M"(m) if m isadivisor of n. For
many purposesit sufficesto solve the apparently easier problem of constructing similar
compactifications of the generic fiber M"(n) x4 K orevenof M"(n) x4 C . Note
that varietiesover C, may be studied by analytic means, using the GAGA principle.

There are presently three approaches towards the problem of compactification:

(a) a (sketchy) construction of the present author [G2] of a compactification M of
My, the C -variety corresponding to an arithmetic subgroup T of GL(r, A) (see
(4.3.4) and (4.4.2)). We will return to this below;

(b) an analytic compactification similar to (a), restricted to the case of apolynomial ring
A =TF,[T1], but with the advantage of presenting complete proofs, by M. M. Kapranov
[KI;

(c) R. Pink’sidea of amodular compactification of M™(n) over A through ageneral-
ization of the underlying moduli problem [P2].

Approaches (a) and (b) agree essentially in their common domain, up to notation
and some other choices. Let us briefly describe how one proceedsin (a). Since thereis
nothing to show for r» = 1, we supposethat » > 2.

Welet A beany Drinfeld ring. If T isasubgroup of GL(r, K) commensurable
with GL(r, A) (we call such T" arithmetic subgroups), the point set T\ Q is the
set of Co -points of an affine variety M over Co,, asresults from the discussion of
subsection4.4. If T isthecongruencesubgroup I'(n) = {y € GL(r, A):y = 1 mod n},
then Mt isone of the irreducible componentsof M"(n) x4 C .

Definition 8. For w = (w1, : ... : w,) € Pr~1(Cy) put

r(w) =dimg(Kwi +--+ Kw,) and re(w) :=dimg_ (Keowi +- -+ + Koowy).
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Then 1 € reo(w) < r(w) < r and Q" = {w | ro(w) = r}. More generally, for
1<i<rlet

Q" = {wi reo(w) = r(w) = i}.

Then Q™ = | JQy, where V' runsthroughthe K -subspacesof dimension i of K™ and
Qy isconstructed from V' inasimilar way asis Q" = Qg- from C, = (K") @ Cwo.
That is, Qy = {w € P(V ® Cx) — P"HCx):Too(w) = r(w) = i}, which has a
natural structure as analytic space of dimension dim(V) — 1 isomorphic with QdM(")

Finaly, welet Q" = {w:ry(w) = r(w)} = UlgigrQr’i'

Q" along with its stratification through the Q™+ is stable under GL(r,K), sothis
also holds for the arithmetic group T" in question. The quotient T"\ Q" turnsout to be
the O, -points of the wanted compactification M.

Definition 9. Let P; — G := GL(r) bethe maximal parabolic subgroup of matrices
with first ¢ columns being zero. Let H; be the obvious factor group isomorphic
GL(r —i). Then P;(K) actsvia H;(K) on K™~* andthuson Q"~%. From

G(K)/P;(K) = {subspaces V' of dimension » — ¢ of K"}
we get bijections
G(K) X p,(x) Q™" S Q"

(4.5.1) 1
(gywisr: - twp)— (010 wir1: .- wp)g

and

(4.5.2) r\Q- = U I'(i,g)\ Q"¢

9€N\G(K)/P;(K)
where T'(3,g) := P; N g~1T',, and the double quotient T\ G(K)/P;(K) is finite by
elementary lattice theory. Note that the image of T'(z,g) in H;(K) (the group that
effectively acts on Q"~*) is again an arithmetic subgroup of H;(K) = GL(r — i, K),
and so the right hand side of (4.5.2) is the digoint union of analytic spaces of the same
type I\ Q"'.

Example5. Let I' =T(1) = GL(r,A) and i = 1. Then I' \ G(K)/P1(K) equas
the set of isomorphism classes of projective A-modules of rank » — 1, which in turn
(through the determinant map) is in one-to-one correspondence with the class group
Pic(A).

Let Fy be the image of Qy in T'\ Q". The different analytic spaces Fy,
corresponding to locally closed subvarieties of M, are glued together in such a way
that Fy; liesin the Zariski closure Fy of Fy if and only if U is T'-conjugate to a
K -subspaceof V. Taking into account that Fyy ~ I \ Q4M(V) = M (Cy) for some
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arithmetic subgroup I’ of GL(dim(V), K), Fy correspondsto the compactification
]\_41"/ of M.

The details of the gluing procedure are quite technical and complicated and cannot
be presented here (see [G2] and [K] for some special cases). Suffice it to say that
for each boundary component Fy, of codimension one, a vertical coordinate ¢y, may
be specified such that Fy islocaly given by ¢y, = 0. The result (we refrain from
stating a “theorem” since proofs of the assertions below in full strength and generality
are published neither in [G2] nor in [K]) will be anormal projective Cy,-variety M
provided with an open dense embedding i: M < M with the following properties:
Mr(Cs) =T\ Q7, and theinclusion T'\ Q" — "\ Q" correspondsto i;

M isdefined over the same finite abelian extension of K asis Mr;

for I'" — T, the natural map M — My extendsto M — Mr;

the Fy correspond to locally closed subvarieties, and Fyy = UFy, where U runs

through the K -subspacesof V' contained up to the actionof T in V;

e My is“virtualy non-singular”, i.e., T contains asubgroup I"’ of finiteindex such
that My isnon-singular; in that case, the boundary components of codimension
one present normal crossings.

Now suppose that Mr is non-singular and that z € Mr(Coo) = Urgicr Q™
belongsto Q1. Thenwe can find asequence {z} = Xo C --- X;--- C X,_1 = Mr
of smooth subvarieties X; = Fy, of dimension i. Any holomorphic function around
z (or more generally, any modular form for T") may thus be expanded as a seriesin
ty with coefficients in the function field of Fy,,, etc. Hence Mr (or rather its
completion at the X; ) may be described through (» — 1)-dimensional local fields with
residue field C,. The expansion of some standard modular forms can be explicitly
calculated, see [G1, VI] for the case of » = 2. In the last section we shall present at

least the vanishing orders of some of these forms.

Example6. Let A bethepolynomial ring F,[T] and T" = GL(r, A). Asresultsfrom
Example 3, (4.3.3) and (4.4.2),

Mr(Coo) = M"(1)(Cso) = {(91,- - - »9r) € C1gr 70}/ CF,,

where C*. acts diagonally through (g1, - .- ,g,) = (.. ,c? ~1g;,...), which is the
open subspace of weighted projectivespace P*~1(g—1, ... , ¢" —1) with non-vanishing
last coordinate. The construction yields

Mr(Co) =P Mg~ 1,... ,¢" = D(Cx) =, _,_ M'(D)(Cx)-
Its singularities are rather mild and may be removed upon replacing T" by acongruence
subgroup.
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4.6. Vanishing ordersof modular forms

In thisfinal section we state some results about the vanishing orders of certain modular
formsalong theboundary divisorsof M, inthecasewhere I iseither T'(1) = GL(r, A)
or afull congruencesubgroup I'(n) of T'(1). Thesearerelevant for the determination of
K - and Chow groups, and for standard conjectures about the arithmetic interpretation
of partial zetavalues.

In what follows, we suppose that » > 2, and put z; := 5_,« (1 <i<r)forthe
coordinates (wy : ... : w,) Of w € Q". Quite generdly, a = (a1, ... ,a,) denotesa
vector with » components.

Definition 10. The Eisenstein series Ej of weight & on Q" is defined as

1

Ek((g) = Z k"
Ovmcar (a1z1+---+a,z)

Similarly, we definefor u e n=1x --- xn~1 c K"

Ek,y(‘i’) = Z !

0Fac KT (@rzg +--- + a'rzr)k ‘

a=umodAT™

Thesearemodular formsfor I'(1) and I'(n), respectively, that is, they are holomorphic,
satisfy the obvious transformation values under T'(1) (resp. T'(n)), and extend to
sections of aline bundieon M. Asin Example 4, there is a second type of modular
forms coming directly from Drinfeld modules.

Definition 11. For w € Q" write A, = Az +---+ Az, and e,, ¢¥ for the lattice
function and Drinfeld module associated with A, respectively. If a € A has degree

d = deg(a),
9i=a+ Y lie,w)r
1<igrd
The ¢;(a,w) aremodular formsof weight ¢* — 1 for I'. Thisholdsin particular for
Aa(‘i’) = g’rd(a, ‘i’)a

which has weight ¢"¢ — 1 and vanishes nowhere on Q. The functions g and A in
Example 4 merely constitute avery special instance of this construction. We further let,
for u € (n1)",

ey(‘i’) = e(g(ulzl +--- +urzr)7

the n-division point of type u of ¢¥. If u ¢ A", eu(w) Vanishes nowhere on Q",
and it can be shown that in this case,

(4.6.1) el =FEq,.
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We are interested in the behavior around the boundary of M of these forms. Let us
first describethe set {F'y} of boundary divisors, i.e., of irreducible components, all of
codimension one, of M — Mr. For T =T'(1) = GL(r, A), thereisanatural bijection

(4.6.2) {Fy} = Pic(A)

described in detail in [G1, VI 5.1]. It isinduced from V s inverseof A™~1(V N A").
(Recall that V' isa K -subspaceof dimension » — 1 of K", thus V' N A" aprojective
module of rank » — 1, whose (r — 1)-th exterior power A™~1(V N A”) determines
an element of Pic(A).) We denote the component corresponding to the class (a) of
anidea a by F(,. Similarly, the boundary divisors of My for I" = I'(n) could be
described via generalized class groups. We simply use (4.5.1) and (4.5.2), which now
give

(4.6.3) {Fv}>Tn)\ GL(r, K)/Pi(K).

We denote the classof v € GL(r, K) by [v]. For the description of the behavior of
our modular formsalong the F'y, we need the partial zetafunctionsof A and K. For
more about these, see [W] and [G1, I11].

Definition 12. We let

s P(g™*)
s) = a|7% =
D I (e
be the zetafunction of K with numerator polynomial P(X) € Z[X]. Herethesumis
taken over the positive divisors a of K (i.e., of the curve € with function field K).
Extending the sum only over divisors with support in Spec(A4), we get

Ca®) = > a7 =)L — g~ %),

07aC A idedl

where d o, = deg]Fq (00). Foraclass ¢ € Pic(4) we put

ROED M

acec

If finadly n C K isafractional A-idea and ¢ € K, we define
Ctmodn(s) = E |a|—s-

a€EK
a=tmodn

Amongtheobviousdistributionrelations[ G1, |11 sect.1] betweenthese, weonly mention

(@64 G 6) = 1" o5

Weare now in aposition to state the following theorems, which may be proved following
the method of [G1, VI].
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Theorem 4. Let a € A be non-constant and ¢ a class in Pic(4). The modular form
A, for GL(r, A) has vanishing order

ordc(Aq) = —(lal” — 1)¢(1 —7)
at the boundary component F. corresponding to .

Theorem 5. Fix an ideal n of A and u € K™ — A" suchthat u-n C A", and let
e;t= E, ,, bethe modular formfor I'(n) determined by these data. The vanishing order
oFd[,,] of Ey,(w) at the component correspondingto v € GL(r, K) (see (4.6.2)) is
given as follows: let m1: K™ — K be the projection to the first coordinate and let a

be the fractional ideal 71(A" - v). Write further w - v = (v1,... ,v,). Then
_ |Il r—1
Ord[1/] El,y(w) - W(Cvlmoda(l - 7') - COmodu(l - 7'))

Note that the two theorems do not depend on the full strength of properties of M-
as stated without proofsin the last section, but only on the normality of M, whichis
proved in [K] for A = F,[T], and whose generalization to arbitrary Drinfeld ringsis
straightforward (even though technical).
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5. Harmonic analysis on algebraic groups over
two-dimensional local fields of equal characteristic

Mikhail Kapranov

In this section we review the main parts of a recent work [4] on harmonic analysis on
algebraic groups over two-dimensional local fields.

5.1. Groupsand buildings

Let K (K = K, whoseresiduefieldis K1 whoseresiduefieldis Kp, seethe notation
in section 1 of Part 1) be atwo-dimensional local field of equal characteristic. Thus K
isisomorphic to the Laurent seriesfield K1((¢2)) over K. Itisconvenient to think of
eements of K, as(formal) loopsover K;. Evenin the case where char (K1) =0, it
is till convenient to think of elements of K; as (generalized) loops over Ky so that
K, consists of double loops.

Denotetheresiduemap Ok, — K1 by p, andtheresiduemap Ox, — Ko by ps.
Thenthering of integers Ok of K asof atwo-dimensional local field (see subsection
1.1 of Part I) coincides with pz_l(OKl).

Let G beasplit smple simply connected algebraic group over Z (eg. G = SL2).
Let T C B C G beafixed maximal torusand Borel subgroup of G; put N =[B, B],
and let W bethe Weyl group of G. All of them are viewed as group schemes.

Let L = Hom(G,,,T) bethe coweight lattice of G; the Weyl group actson L.

Recall that I(K,) = pl_l(B(]Fq)) is caled an lwahori subgroup of G(K1) and
T(Ok,)N (K1) can be seen as the “connected component of unity” in B(K1). The
latter nameis explained naturally if wethink of elementsof B(K;) asbeing loopswith
valuesin B.
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Definition. Put
Do = p; 'p1 H(B(F,)) C G(Ok),
D1 = p; (T(Ok,)N(K1)) C G(Ok),
D, =T(9k,)N(K2) C G(K).

Then D, can be seen as the “connected component of unity” of B(K) when K
is viewed as a two-dimensional local field, D is a (similarly understood) connected
component of an lwahori subgroup of G(K>), and Dg is caled a double Iwahori
subgroup of G(K).

A choice of asystem of local parameters t1,t, of K determines the identification
of thegroup K*/0} with Z & Z and identification L @ L with L ® (K*/O%).

We have an embedding of L ® (K*/0%) into T(K) which takes a ® (#)t3),
1,7 € 7, tothevaueon tilt; of the 1-parameter subgroup in T' corresponding to a.

Definethe action of W on L ® (K*/0Oj}) asthe product of the standard action on
L and thetrivial action on K*/O%. The semidirect product

—

W=(LRK*/OL)xW
is called the double affine Weyl group of G.
A (set-theoretical) lifting of W into G(Ok) determinesalifting of W into G(K).

Proposition. For every 3,5 € {0,1,2} there is a disjoint decomposition
G(K) = ~D;wD;.
( ) UwEW W

The identification D;\G(K)/D; with W doesn’t depend on the choice of liftings.

Proof. lterated application of the Bruhat, Bruhat—Tits and |wasawa decompositions to
thelocal fields K,, K.

For the lwahori subgroup I(K>) = p, Y(B(K1)) of G(K>) the homogeneous space
G(K)/I(K>) isthe “affineflag variety” of G, see[5]. It hasacanonical structure of
an ind-scheme, in fact, it is an inductive limit of projective algebraic varieties over K1
(the closures of the affine Schubert cells).

Let B(G, K2/K1) be the Bruhat-Tits building associated to G and the field K».
Thenthespace G(K)/I(K>) isa G(K)-orbit ontheset of flagsof type (vertex, maximal
cell) inthebuilding. For every vertex v of B(G, K2/ K1) itslocally finite Bruhat—Tits
building 8, isomorphicto B(G, K1/Kp) can be viewed as a “microbuilding” of the
double Bruhat-Tits building B(G, K2/ K1/ Kp) of K asatwo-dimensional local field
constructed by Parshin ([7], see also section 3 of Part I1). Then the set G(K)/D; is
identified naturally with the set of al the horocycles {w € G, : d(z,w) =7}, z € 9B,
of the microbuildings 3, (where the “distance” d(z, ) is viewed as an element of
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a natural L-torsor). The fibres of the projection G(K)/D1 — G(K)/I(K3) are
L-torsors.

5.2. The central extension and the affine Heisenber g—Weyl group
According to the work of Steinberg, Moore and Matsumoto [6] developed by Brylinski
and Deligne [1] thereis a central extension

15K —>T—>GK)—1

associatedto thetamesymbol K5 x K5 — K7 forthecouple (K>, K1) (Seesubsection
6.4.2 of Part | for the general definition of the tame symbol).

Proposition. This extension splits over every D;, 0 <17 < 2.
Proof. Use Matsumoto's explicit construction of the central extension.
Thus, there are identifications of every D; with asubgroup of T". Put
A =05, D;CT, E=T/A

The minimal integer scalar product ¥ on L and the composite of the tame symbol
K35 x K; — K and the discrete valuation vg,: K* — Z induces a W -invariant
skew-symmetric pairing L ® K* /O3 x L ® K*/O% — Z. Let

1-Z—-L—-LK"/Ox —1

be the central extension whose commutator pairing corresponds to the latter skew-
symmetric pairing. Thegroup L is called the Heisenberg group.

Definition. The semidirect product
W =LxW
is called the double affine Heisenberg—Weyl group of G.

Theorem. The group W is isomorphic to Laffxw where Lgs =7Z & L, W =LxW
and

wo (a,I') = (a,w(l)), lo(a,l')=(a+P({1)1l), weW, LI'eL, aclZ.

For every 4,5 € {0, 1,2} there is a disjoint union

I'= U'wEVT/AZwA]

and the identification A;\I'/A; with W is canonical.
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5.3. Hecke algebrasin the classical setting

Recall that for alocally compact group I" andits compact subgroup A theHeckealgebra
H(T,A) can be defined as the algebra of compactly supported double A-invariant
continuous functions of T" with the operation given by the convolution with respect
to the Haar measure on I'. For C = AyA € A\I'/A the Hecke correspondence
o ={(aA, BA) : aB~1 € C} isaT-orbit of (I'/A) x (I'/A).

For z € T'/A put 2¢(z) = Zc N(T'/A) x {z}. Denotethe projectionsof X tothe
first and second component by w1 and mo.

Let F(I'/A) be the space of continuous functions T'/A — C. The operator

i F(/A) = F(T/A), [ — m.mi(f)
is called the Hecke operator associatedto C. Explicitly,

(e f)(=) = fy)dpc,e,
y€Zo(x)
where pc . isthe Stab(z)-invariant measure induced by the Haar measure. Elements
of the Hecke algebra H(I", A) can be viewed as “continuous’ linear combinations of
the operators ¢, i.e., integrals of theform [ ¢(C)rcdC where dC' is some measure
on A\T'/A and ¢ is a continuous function with compact support. If the group A is
also open (asis usually the case in the p-adic situation), then A\I'/A is discrete and
H(T",A) consists of finite linear combinations of the 7¢.

5.4. Theregularized Hecke algebra H(I", A1)

Since the two-dimensional local field K andthering Ok arenot locally compact, the
approach of the previous subsection would work only after anew appropriateintegration
theory is available.

The aim of this subsection is to make sense of the Hecke algebra H(I", A1).

Note that the fibres of the projection Z = I'/A1 — G(K)/I(K2) are Lg-torsors
and G(K)/I(K>) isthe inductive limit of compact (profinite) spaces, so Z can be
considered as an object of the category F1 defined in subsection 1.2 of the paper of
Kato in this volume.

Using Theorem of 5.2 for 7 = 5 = 1 we introduce:

Definition. For (w,l) € W = Laffo denote by X, ; the Hecke correspondence
(i.e., the T-orbit of = x E) associated to (w,l). For £ € E put

Zwi(6) ={€ 1 (€,€) € Zuy}-
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The stabilizer Stab(§) < I' actstransitively on Z,, ;(£).

Proposition. Z,, ;(§) is an affine space over K1 of dimension equal to the length of

w e W. The space of compex valued Borel measures on X, ;(£) is 1-dimensional. A
choice of a Stab(§)-invariant measure g, ;¢ 0N X, ;(£) determines a measure fu, ;¢
on X, (&) forevery &',

Definition. For acontinuousfunction f:= — C put

(rwaf)(E) = / i .

nezw,l(g)

Since the domain of the integration is not compact, the integral may diverge. Asa
first step, we define the space of functions on which the integral makes sense. Note that
Z can be regarded as an L 4 -torsor over the ind-object G(K)/I(K>) in the category
pro(Cop), i.e., acompatible system of L -torsors =,, over the affine Schubert varieties
Z, forming an exhaustion of G(K)/I(K;). Each E, is alocaly compact space
and Z, isacompact space. In particular, we can form the space Fo(=,) of localy
constant complex valued functions on =, whose support is compact (or, what is the
same, proper with respect to the projection to Z,). Let F(E,) be the space of all
locally constant complex functions on Z,. Then we define Fo(E) =" I(ln Fo(EL)
and F(&) =" I(in F(Z,). They are pro-objects in the category of vector spaces. In
fact, because of the action of Ly and its group algebra C[Lg] on Z, the spaces
Fo(E), F(E) are naturally pro-objectsin the category of C[L g ]-modules.

Proposition. If f = (f,) € Fo(X) then Supp(f,) N Z,:(§) is compact for every
w,l, &, v and the integral above converges. Thus, there is a well defined Hecke operator

Tw,i: To(E) = F(B)

which is an element of Mor(pro(Mod¢(z4))- In particular, 7, ; is the shift by I and

Tw,l+1" = Tw,l'Te,l-

Thus we get Hecke operators as operators from one (pro-)vector space to another,
bigger one. This does not yet allow to compose the 7, ;. Our next step is to consider
certain infinite linear combinations of the 7, ;.

Let Tz = Spec(C[L4]) be the “dual affine torus’ of G. A function with finite
support on L4 can be viewed as the collection of coefficients of a polynomial, i.e., of
an element of C[L4¢] asaregular function on T,f;. Further, let Q C Lyt ® R bea
strictly convex cone with apex 0. A functionon L4 with supportin @ can beviewed
as the collection of coefficients of aformal power series, and such series form aring
containing C[Lg;]. Onthelevel of functionsthe ring operation is the convolution. Let
Fo(Lat) be the space of functions whose support is contained in some trandation of
Q. Itisaring with respect to convolution.
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Let C(Lgt) be the field of rational functions on Ti;. Denote by Fg“(Laff) the
subspacein Fg (L) consisting of functions whose corresponding formal power series
are expansions of rational functionson T.; .

If A isany Lgs-torsor (over a point), then Fo(A) isan (invertible) module over
Fo(Lar) = C[Lar] and we can define the spaces F o(A4) and 3“8“(A) which will be
modules over the corresponding ringsfor L. Weasowrite F&(A) = Fo(A) ®C[Ly]
C(Lait)-

We then extend the above concepts “fiberwise” to torsors over compact spaces
(objects of pro(Cp)) and to torsors over objects of ind(pro(Cp)) suchas E.

Let w € W. We denote by Q(w) the image under w of the cone of dominant
affine coweightsin L.

Theorem. The action of the Hecke operator ,,; takes JFo(Z) into S"gkw)(E). These
operators extend to operators

T FAE) — FEE).

Note that the action of r;afl involves a kind of regularization procedure, which is
hidden in the identification of the ffg‘kw)(i) for different w, with subspaces of the
same space (). In practical terms, thisinvolves summation of aseriesto arational
function and re-expansion in a different domain.

Let Hpre bethe space of finite linear combinations Zw’l Ay, Tw,l- ThiSiSNot yet
an algebra, but only a C[ L ]-module. Note that elements of H e can be written as
finite linear combinations ZweVT/ fu®)Tw Where f,(t) = 3, aw,itt, t € Ty, isthe
polynomial in C[Lg¢] corresponding to the collection of the a, ;. This makes the
C[ L1]-module structure clear. Consider the tensor product

Hrat = Hpre ®c[r4] ClLatf)-

Elements of this space can be considered as finite linear combinations Zw i fu(®)Tw
where f,,(t) are now rational functions. By expanding rational functions in power
series, we can consider the above el ements as certain infinite linear combinations of the

Tw,l-

Theorem. The space H,g has a natural algebra structure and this algebra acts in the
space F'(E), extending the action of the 7,,; defined above.

The operators associated to H,4 can be viewed as certain integro-difference oper-
ators, because their action involves integration (as in the definition of the 7, ;) as well
as inverses of linear combinations of shifts by elements of L (these combinations act
as difference operators).

Definition. The regularized Hecke algebra JH (T, A4) is, by definition, the subalgebra
in Ha consisting of elements whose action in Fx(Z) preservesthe subspace Fo(Z).
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5.5. The Hecke algebra and the Cherednik algebra

In[2] I. Cherednik introduced the so-called double affine Hecke algebra Cher, associ-
ated to the root system of G'. Asshown by V. Ginzburg, E. Vasserot and the author [ 3],
Cher, can be thought as consisting of finite linear combinations Zw g fuw(@®)[w]
where Wy is the affine Weyl group of the adjoint quotient Gy of G (it contains
W) and f,(t) arerationa functionson Ta[ff satisfying certain residue conditions. We
define the modified Cherednik algebra H,, to be the subalgebrain Cher, consisting of

linear combinations as above, but going over W c Wad

Theorem. The regularized Hecke algebra J((T",A;) is isomorphic to the modified
Cherednik algebra H,. In particular, there is a natural action of H, on Fo(E) by
integro-difference operators.

Proof. Use the principal series intertwiners and a version of Méllin transform. The
information on the poles of the intertwiners matches exactly the residue conditions
introduced in [3].

Remark. The only reason we needed to assume that the 2-dimensional local field K
has equal characteristic was because we used the fact that the quotient G(K)/I(K?2)
has a structure of an inductive limit of projective algebraic varietiesover K. Infact,
wereally use only aweaker structure: that of an inductive limit of profinite topological
spaces (which are, in this case, the sets of K1-points of affine Schubert varieties over
K+1). Thisstructureis available for any 2-dimensional local field, although there seems
to be no reference for it in the literature. Once this foundational matter is established,
al the constructions will go through for any 2-dimensional local field.
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6. ®-I"-modules and Galois cohomology

Laurent Herr

6.0. Introduction

Let G beaprofinite group and p aprime number.

Definition. A finitely generated Z,-module V' endowed with a continuous G-action
iscalled a Z,-adic representation of G'. Such representations form a category denoted
by Repr(G); its subcategory Rep]Fp(G) (respectively Rep,,.io(G)) of mod p repre-
sentations (respectively p-torsion representations) consists of the V' annihilated by p
(respectively a power of p).

Problem. To calculate in asimple explicit way the cohomology groups H:(G,V) of
the representation V.

A method to solveit for G = G (K isaloca field) isto use Fontaine' s theory of
@-I'-modulesand passto asimpler Galois representation, paying the price of enlarging
Z, to the ring of integers of a two-dimensional local field. In doing this we have to
replace linear with semi-linear actions.

In this paper we give an overview of the applications of such techniquesin different
situations. We begin with asimple example.

6.1. The caseof afield of positive characteristic

Let E be afield of characteristic p, G = Gg and o: EXP — ES, o(z) = zP the
absolute Frobenius map.

Definition. For V € Repy (Gg) put D(V) := (E*P ®x, V)9#; o actson D(V) by
actingon E5P,
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Properties.

(1) dimg D(V)=dimg, V;

(2) the“Frobenius’ map ¢: D(V) — D(V) induced by o ® idy satisfies:
a) p(Az) =oc(N)p(z) foral A € E, x € D(V) (s0 ¢ is o-semilinear);
b) ¢(D(V)) generates D(V) asan E-vector space.

Definition. A finite dimensional vector space M over E iscalled an étale ®-module
over FE if thereisa o-semilinear map ¢: M — M suchthat (M) generates M as
an E-vector space.

Etale ®-modules form an abelian category CDMEF (the morphisms are the linear maps
commuting with the Frobenius ¢).

Theorem 1 (Fontaine, [F]). The functor V' — D(V) is an equivalence of the categories
Repy, (Gg) and ®Mz.

We seeimmediately that HO(Gg,V) = VEr ~ D(V)¥.

So in order to obtain an explicit description of the Galois cohomology of mod
p representations of Gg, we should try to derive in a simple manner the functor
associating to an étale ®-module the group of points fixed under ¢. Thisisindeed a
much simpler problem because thereis only one operator acting.

For (M, ) € @Mg define the following complex of abelian groups:

Ci(M) : oM S5m0

(M standsat degree 0 and 1).

Thisis afunctorial construction, so by taking the cohomology of the complex, we
obtain a cohomological functor (J* := H® o Cy);en from d)M;gt to the category of
abelian groups.

Theorem 2. The cohomological functor (7(* o D);cn can be identified with the Galois
cohomology functor (H*(Gg,.)):en for the category Repy (Gg). So,if M = D(V)
then J(*(M) provides a simple explicit description of H (G g, V).

Proof of Theorem 2. We need to check that the cohomological functor (H?%);cn is
universal; thereforeit sufficesto verify that for every ¢ > 1 thefunctor 7(¢ iseffaceable;
this means that for every (M, ¢p) € @Mg and every x € J{*(M) there exists an
embedding u of (M, pa) in (N, pn) € ®ME suchthat i (u)(z) iszeroin H(N).
But thisiseasy: itistrivia for 7 > 2; for 4 = 1 choose an element m belonging to the
classz € M/(p — 1)(M), put N := M & Et and extend ¢j, to the o-semi-linear
map ¢ determined by o (t) =t +m. O
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6.2. ®-I'-modulesand Z,-adic representations

Definition. Recall that a Cohen ring is an absolutely unramified complete discrete
valuation ring of mixed characteristic (0,p > 0), so its maximal ideal is generated

by p.

We describe a general formalism, explained by Fontaine in [F], which lifts the
equivalence of categories of Theorem 1 in characteristic 0 and relates the Z ,-adic
representations of G to a category of modules over a Cohen ring, endowed with a
“Frobenius’ map and a group action.

Let R beanalgebraicaly closed completevaluation (of rank 1) field of characteristic
p and let H beanormal closed subgroup of G. Supposethat G acts continuously on
R by ring automorphisms. Then F := R¥ isaperfect closed subfield of R.

For every integer n > 1, thering W, (R) of Witt vectors of length n is endowed
with the product of thetopology on R defined by the valuation and then W (R) withthe
inverse limit topology. Then the componentwise action of the group G is continuous
and commuteswiththenatural Frobenius o on W (R). Wealsohave W (R)? = W (F).

Let E beaclosed subfield of F such that F' isthe completion of the p-radical
closureof F in R. Suppose there exists a Cohen subring O ¢ of W (R) with residue
field E and which is stable under the actions of o and of G. Denote by OA the
completion of the integral closure of O in W(R): itisaCohenring whichis stable
by o and G, itsresiduefield isthe separable closureof £ in R and (O:S\ur)H Oe¢.

The natural map from H to Gg isanisomorphism if and only if the action of H
on R induces an isomorphism from H to Gr. We suppose that thisis the case.

Definition. Let I' be the quotient group G/H. An étae ®-T"-moduleover O¢ isa
finitely generated O ¢ -module endowed with a o -semi-linear Frobenius map

¢: M — M and acontinuous I'-semi-linear action of I" commuting with ¢ such that
theimage of ¢ generatesthe module M.

Etale ®-T-modulesover O¢ form an abelian category ®I' M gt& (the morphisms
arethelinear mapscommuting with ¢ ). Thereisatensor product of ®-I"-modules, the
natural one. For two objects M and N of ®I'M§ & the O¢-module Homg, (M, N)
can be endowed with an étale ®-T'- modulestructure (see [F)).

For every Z,-adicrepresentation V' of G, let D (V') bethe O¢-module (OEur ®z,
V)H . Itisnaturally an étale ®-I"-module, with ¢ induced by themap ¢ ®idy and T
acting on both sides of the tensor product. From Theorem 2 one deduces the following
fundamental result:

Theorem 3 (Fontaine, [F]). The functor V' — Dgy(V) is an equivalence of the cate-
gories Rep, (G) and ®T'M, .
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Remark. If E isafield of positive characteristic, O¢ isa Cohen ring with residue
field E endowed with aFrobenius o, then we can easily extend the results of thewhole
subsection 6.1 to Z-adic representations of G' by using Theorem 3for G = Gg and
H ={1}.

6.3. A brief survey of thetheory of thefield of norms

For the details we refer to [W], [FV] or [F].

Let K beacomplete discretevaluation field of characteristic 0 with perfect residue
field k of characteristic p. Put G = Gk = Ga(K**/K).

Let C bethecompletion of KP, denotethe extension of the discrete valuation v
of K to C by vg. Let R* = LiLnC;; where C,, = C and the morphism from C,,+1
to C, israisingtothe pth power. Put R := R* U {0} and define vg((z,)) = vk (z0)-
For (z,), (y,) € R define

(wn) + (yn) = (zn) where Zp = Ilm (xn+m + yn+m)pm .

Then R isanalgebraically closed field of characteristic p completewith respectto v g
(cf. [W]). Itsresidue field is isomorphic to the algebraic closure of k& and thereis a
natural continuous action of G on R. (Note that Fontaine denotes this field by Fr R
in [F]).

Let L be a Galois extension of K in K. Recal that one can aways define
the ramification filtration on Gal(L/K) in the upper numbering. Roughly speaking,
L/K isan arithmetically profinite extension if one can define the lower ramification
subgroups of G so that the classica relations between the two filtrations for finite
extensions are preserved. Thisisin particular possible if Gal(L/K) is a p-adic Lie
group with finite residue field extension.

Thefield R containsin anatural way the field of norms N(L/K) of every arith-
metically profiniteextension L of K andtherestrictionof v to N(L/K) isadiscrete
valuation. The residue field of N(L/K) isisomorphic to that of L and N(L/K) is
stable under the action of G. The construction isfunctoria: if L’ isafinite extension
of L containedin K", then L'/K isstill arithmeticaly profiniteand N(L'/K) is
a separable extension of N(L/K). Thedirect limit of the fields N(L'/K) where L'
goes through all the finite extensions of L contained in K> isthe separable closure
E*P of F = N(L/K). Itis stable under the action of G and the subgroup G
identifieswith Gg. Thefidd E*P isdensein R.

Fontaine described how to lift these constructionsin characteristic O when L isthe
cyclotomic Z,-extension K, of K. Consider thering of Witt vectors W (R) endowed
with the Frobenius map o and the natura componentwise action of G. Define the
topology of W (R) asthe product of the topology defined by the valuation on R. Then
one can construct aCohenring ng withresiduefield E*° (E = N(L/K)) suchthat:
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(1) Ogur isstableby o and the action of G,

(ii) for every finite extension L of K., thering (Ogur)GL is a Cohen ring with
residuefield E.

Denote by O¢(x) the ring (OEw)GK“" It is stable by o and the quotient T =

G/Gk,, acts continuously on Og k) With respect to the induced topology. Fix a
topological generator v of I': it isa continuous ring automorphism commuting with
o. The fraction field of O¢ (k) is atwo-dimensional standard local field (as defined
in section 1 of Part I). If 7 is alifting of a prime element of N(K/K) in Ogx)
then the elements of O¢ (k) arethe series Y-, ., a;n*, wherethe coefficients a; arein
W (kx_,) and converge p-adically to 0 when i — —oo.

6.4. Application of Zj,-adic representations of G
to the Galois conomology

If we put together Fontaine's construction and the general formalism of subsection 6.2
we obtain the following important result:

Theorem 3’ (Fontaine, [F]). The functor V. — D(V) := (ng ®z, V)C%e defines an
equivalence of the categories Rep Zp(G) and CI>1“M8t

e(k)’

Since for every Z,,-adic representation of G we have HY(G,V) = V¢ ~ D(V)¥,
we want now, asin paragraph 6.1, compute explicitly the cohomology of the represen-
tation using the ®-I"-module associated to V.

For every étale ®-T"-module (M, ¢) definethefollowing complex of abelian groups:

CoM): 0—-M3MoeMZ M0
where M stands at degree 0 and 2,
o(z) = ((¢ — Dz, (v — D), B((y,2)) = (v — Dy — (¢ — D2z
By functoriality, we obtain a cohomological functor (3¢ := H® o C5);en from

OI'M g‘c(K) to the category of abelian groups.

Theorem 4 (Herr, [H]). The cohomological functor (3{* o D);en can be identified
with the Galois cohomology functor (H*(G, .));en for the category Rep,.1or(G). So,
if M = D(V) then 3*(M) provides a simple explicit description of H*(G, V) in the
p-torsion case.

Idea of the proof of Theorem 4. We have to check that for every i > 1 the functor g
iseffaceable. For every p-torsionobject (M, ¢ ) € CDI“MgtS(K) andevery z € H*(M)

we construct an explicit embedding w of (M, ) inacertain (N, pn) € d)FMgo

e(K)
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such that F(*(u)(x) is zero in H*(N). For details see [H]. The key point is of
topological nature: we prove, following an idea of Fontaine in [F], that there exists
an open neighbourhood of O in M on which (¢ — 1) is bijective and use then the
continuity of the action of T. O

As an application of theorem 4 we can prove the following result (dueto Tate):

Theorem 5. Assume that kx isfinite and let V' be in Rep,, ,(G). Without using class

field theory the previous theorem implies that H*(G, V) are finite, H*(G,V) = 0 for
7> 3 and

2
N UHHG, V) = —|K: Q| U(V),

=0
where [() denotes the length over Z,,.

See[H].

Remark. Because the finiteness results imply that the Mittag—L effler conditions are
satisfied, it is possible to generalize the explicit construction of the cohomology and to
prove analogous results for Z,, (or Q, )-adic representations by passing to the inverse
limits.

6.5. A new approach to local classfield theory

Theresults of the preceding paragraph allow usto provewithout using classfield theory
the following:

Theorem 6 (Tat€'s local duality). Let V' be in Rep,(G) and n € N such that
p"V = 0. Put V*(1) := Hom(V, upn). Then there is a canonical isomorphism from
H?(G, ppn) to Z/p™ and the cup product

HY(G,V) x H* 4G, V*(1) = HAG, ppn) ~ Z/p"
is a perfect pairing.

It is well known that a proof of the local duality theorem of Tate without using
class field theory gives a construction of the reciprocity map. For every n > 1 we
have by duality a functoria isomorphism between the finite groups Hom(G, Z /p™) =
HYG,7/p™) and HY(G, p,pn) Whichisisomorphicto K*/(K*)?" by Kummer theory.

Taking the inverse limits gives us the p-part of the reciprocity map, the most difficult
part.
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Sketch of the proof of Theorem 6. ([H2]).

a) Introduction of differentials:

Let usdenoteby Q! the O¢(x)-moduleof continuousdifferential formsof O ¢ over
W(kg, ). If = isafixedlifting of aprime element of E(K./K) in Og k), thenthis
moduleis free and generated by dr. Define the residue map from Q1 to W(kg_.) by
res (3,7 aim'dr) = a_1; itisindependent of the choice of .

b) Calculation of some ®-TI"-modules:
The Og(x)-module Q! is endowed with an &ale ®-T-module structure by the
following formulas: for every A € Ogx) we put:

pp(Adm) = o(A)d(a(m)) , y(Adm) = y(A)d(y(m)).

The fundamental fact is that there is a natural isomorphism of @-T"-modules over
Og(x) between D(p,») and thereduction QY of Q! modulo p.

The étale ®-I'-module associated to the representation V*(1) is
M = Hom(M, Q%,n), where M = D(V). By composing the residue with the trace
we obtain a surjective and continuous map Tr,, from M to Z/p™. For every f € M,
themap Tr, o f isan element of the group MY of continuous group homomorphisms
from M to Z/p™. Thisgivesin fact agroupisomorphism from M to MV andwecan
therefore transfer the ®- I'-module structure from M to M. But, since k& isfinite,
M islocaly compact and MY isin fact the Pontryagin dual of M.

¢) Pontryagin duality implieslocal duality:
We simply dualize the complex C»(M) using Pontryagin duality (all arrows are
strict morphisms in the category of topological groups) and obtain a complex:

aV

)Y 0= MY S MVe MY 2L MY o,
wherethetwo MV arein degrees 0 and 2. Since we can construct an explicit quasi-
isomorphism between C(MV) and Cy(M)Y, we easily obtain a duality between
Hi(M) and H>4(MV) forevery i € {0,1,2}.

d) The canonical isomorphism from H%(Q? ) to Z/p™:

The map Tr,, from Q to Z/p" factors through the group H2(Q? ) and this
gives an isomorphism. But it is not canonical! In fact the construction of the complex
C>(M) dependson the choice of «. Fortunately, if we take another -y, we get aquasi-
isomorphic complex and if we normalize the map Tr,, by multiplying it by the unit
—pvr(109x(") /log x(v) of Z,, where log isthe p-adic logarithm, x the cyclotomic
character and v, = vg,, then everything is compatible with the change of .

€) The duality is given by the cup product:

We can construct explicit formulas for the cup product:

HEM) x FP7HMY) = HAQL,)
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associated with the cohomological functor (3(%);cn and we compose them with the
preceding normalized isomorphism from G{Z(Qg,n) to Z/p™. Since everything is
explicit, we can compare with the pairing obtained in ¢) and verify that it is the same
up to aunit of Z,. O

Remark. Benois, using the previous theorem, deduced an explicit formula of Cole-
man’s type for the Hilbert symbol and proved Perrin-Riou’s formula for crystaline
representations ([B]).

6.6. Explicit formulas for the generalized Hilbert symbol
on formal groups

Let K bethefraction field of thering Wy of Witt vectors with coefficientsin afinite
field of characteristic p > 2 and F a commutative formal group of finite height A
defined over W.

For every integer n > 1, denoteby F[p™] the p™-torsion pointsin F(M¢), where
Mc isthe maximal ideal of the completion C of an algebraic closure of Kg. The
group F[p"] isisomorphicto (Z/p"Z)".

Let K beafinite extension of Ky containedin K=F and assume that the points of
F[p™] aredefined over K. Wethen have abilinear pairing:

(s 1.0 GB x F(Mk) — F[p™

(see section 8 of Part 1).

When the field K contains a primitive p™ th root of unity {,», Abrashkin gives
an explicit description for this pairing generalizing the classical Briickner—\Vostokov
formula for the Hilbert symbol ([A]). In his paper he notices that the formula makes
sense even if K does not contain (,~ and he asks whether it holds without this
assumption. In arecent unpublished work, Benois provesthat thisis true.

Suppose for simplicity that K containsonly {,. Abrashkin considersin his paper
the extension K := K(x? ",r > 1), where = isafixed prime element of K. Itisnot
aGadoisextension of K but isarithmetically profinite, so by [W] one can consider the
field of norms for it. In order not to loose information given by the roots of unity of
order apower of p, Benois usesthe composite Galoisextension L ;= KOOI?/K which
isarithmetically profinite. There are several problemswith thefield of norms N(L/K),
especialy it isnot clear that one can lift it in characteristic 0 with its Galois action. So,
Benois simply considers the completion F of the p-radical closure of E = N(L/K)
and its separable closure FP in R. If we apply what was explained in subsection 6.2
for I' = Gal(L/K), we get:

Theorem 7. The functor V' — D(V) := (W(F*) ®z, V)G defines an equivalence
of the categories Rep,, (G) and ®T M, .
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Choose a topological generator ' of Ga(L/K) and lift v to an element of
Gal(L/I?). Then T istopologicaly generated by v and +’, with the relation v4' =
("), where a = x(y) (x isthe cyclotomic character). For (M, ¢) € (I)FM{?},(F) the
continuous action of Gal(L/K ) on M makesit amodule over the Iwasawa algebra
Zy[[¥" — 1]]. So we can define the following complex of abelian groups:

C3(M): 0— M, a— Apar M arAja M, a—Aza Ms — 0
where My isindegree 0, Mo = Mz =M, My = M, = M?,
p—1 vy—1 1-9p 0
Ao=|v-1 |, A1=[~-1 0 1-9p ]|, A=(()"-16-7¢-1
vy -1 0 Y —-1 §—+

and 6 = ((v)* = D(v' = D7t € Z[ly' - 1]].

As usual, by taking the cohnomology of this complex, one defines a cohomological
functor (3%);en from CIJFM%(F) in the category of abelian groups. Benois proves
only that the cohomology of a p-torsion representation V' of G injects in the groups
HY(D(V)) whichisenough to get the explicit formula. But in fact a stronger statement
istrue:

Theorem 8. The cohomological functor (7(* o D);cn can be identified with the Galois
cohomology functor (H*(G,.));en for the category Rep,.ior(G)-

Idea of the proof. Use the same method as in the proof of Theorem 4. It isonly more
technically complicated because of the structure of T'. O

Finally, one can explicitly construct the cup productsin terms of the groups (* and,
asin [B], Benois uses them to calculate the Hilbert symbol.

Remark. Analogous constructions (equivalence of category, explicit construction of
the cohomology by a complex) seem to work for higher dimensional local fields. In
particular, in thetwo-dimensional case, theformalismissimilar tothat of this paragraph;
the group I acting on the @-T"-modules has the same structure as here and thus the
complex is of the same form. Thiswork is still in progress.
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7. Recovering higher global and local fields
from Galois groups — an algebraic approach

Ido Efrat

7.0. Introduction

We consider the following general problem: let F be a known field with absolute
Galoisgroup Gr. Let K beafiddwith Gx ~ Gr. What can be deduced about the
arithmetic structure of K?

As a prototype of this kind of questions we recall the celebrated Artin—Schreier
theorem: Gx ~ Gg if and only if K isrea closed. Likewise, the fields K with
Gk ~ Gg for some finite extension £ of Q, arethe p-adically closed fields (see
[Ne], [P1], [E1], [K]). Here we discuss the following two cases:

1. K is ahigher global field
2. K is ahigher local field

7.1. Higher global fields

We call a field finitely generated (or a higher global field) if it is finitely generated
over its prime subfield. The (proven) O-dimensional case of Grothendieck’s anabelian
conjecture ([G1], [G2]) can be stated as follows:

Let K, F be finitely generated infinite fields. Any isomorphism Gk ~ G is induced
in a functorial way by an (essentially unique) isomorphism of the algebraic closures of
K and F.

This statement was proven:

¢ by Neukirch [Ne] for finite normal extensions of Q;

e by Iwasawa (unpublished) and Uchida [U1-3] (following Ikeda [I]) for all global
fields;

e by Pop [P2] and Spiess[S] for function fieldsin one variable over Q;
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e by Pop ([P3-5]) in general.

For recent results on the 1-dimensional anabelian conjecture — see the works of
Mochizuki [M], Nakamura[N] and Tamagawa[T].

7.2. Earlier approaches

Roughly speaking, the above proofsin the O-dimensional case are divided into alocal
part and a global part. To explain the local part, define the Kronecker dimension
dim(K) of afield K as trdeg(K/F,) if char (K) = p > 0, and as trdeg(K/Q) + 1
if char(K) = 0. Now let v be aKrull valuation on K (not necessarily discrete or
of rank 1) with residue field K,. Itiscaled 1-defectless if dim K = dim K, + 1.
The main result of the local theory is the following local correspondence: given an
isomorphism ¢: Gx = G, aclosed subgroup Z of Gk isthe decomposition group
of some 1-defectless valuation v on K if and only if ¢(Z) is the decomposition
group of some 1-defectlessvaluation v’ on F. The ‘global theory’ then combinesthe
isomorphisms between the corresponding decomposition fields to construct the desired
isomorphism of the algebraic closures (see [P5] for more details).

The essence of the local correspondence is clearly the detection of valuations on
afield K just from the knowledge of the group-theoretic structure of G . In the
earlier approaches this was done by means of various Hasse principles; i.e., using the
injectivity of the map

HK) - [ HEY
veS

for some cohomological functor H and some set S of non-trivial valuations on K,
where K isthe henselization of K with respect to v. Indeed, if this map isinjective
and H(K) # 0 then H(K") # O for at least one v € S. In this way one finds
“arithmetically interesting" valuationson K.

In the above-mentioned works the local correspondence was proved using known
Hasse principlesfor:
(1) Brauer groupsover global fields (Brauer, Hasse, Noether);
(2) Brauer groups over function fields in one variable over local fields (Witt, Tate,

Lichtenbaum, Roquette, Sh. Saito, Pap);

(3) H3(Gxk,Q/7Z(2)) over function fieldsin one variable over Q (Kato, Jannsen).

Furthermore, in his proof of the 0-dimensional anabelian conjecturein its general case,
Pop uses a model-theoretic technique to transfer the Hasse principlesin (2) to a more
general context of conservative function fields in one variable over certain henselian
valued fields. More specificaly, by a deep result of Kieder—Shelah, a property is
elementary in a certain language (in the sense of the first-order predicate calculus)
if and only if it is preserved by isomorphisms of models in the language, and both
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the property and its negation are preserved by nonprincipal ultrapowers. It turns out
that in an appropriate setting, the Hasse principle for the Brauer groups satisfies these
conditions, hence has an elementary nature. One can now apply model-compl eteness
results on tame valued fields by F.-V. Kuhimann [Ku].

Thisled oneto the problem of finding analgebraic proof of thelocal correspondence,
i.e., aproof which does not use non-standard arguments (see [S, p. 115]; other model -
theoretic techniques which were earlier used in the global theory of [ P2] were replaced
by Spiessin [S] by algebraic ones).

We next explain how this can indeed be done (see [ E3] for details and proofs).

7.3. Construction of valuationsfrom K -theory

Our algebraic approach to the local correspondence is based on a K -theoretic (yet
elementary) construction of valuations, which emerged in the early 1980’sin the context
of quadratic form theory (in works of Jacob [J], Ware [W], Arason—Elman—Jacob
[AEJ], Hwang—Jacob [HJ]; seethe survey [E2]). We also mention here the alternative
approaches to such constructions by Bogomolov [B] and Koenigsmann [K]. The main
result of (the first series of) these constructionsis:

Theorem 1. Let p be a prime number and let E be a field. Assume that char (F) Z p
and that (—1, E*P) < T < E* is an intermediate group such that:

(@ forall z€ E*\T and y € T\ E*? one has {z,y} #0 in K(E)
(b) forall z,y € E* which are [, -linearly independent mod T' one has {z,y} 70
in Ky(FE).
Then there exists a valuation v on E with value group T, such that:

(i) char(E,)#p;
(i) dimy,(I'y/p) > dimg, (E*/T) — 1;
(iii) either dimy, (I, /p) = dimg, (E*/T) or E, # EE.

In particular we have:

Coroallary. Let p be a prime number and let E be a field. Suppose that char (E) # p,
—1 € E*P, and that the natural symbolic map induces an isomorphism

N2(E* |E*P) = Ko(E)/p.

Then there is a valuation v on E such that

(i) cher(E,)#p;
(i) dimpg, (T, /p) > dimy, (E*/E*P) — 1;
(iii) either dimy, (I, /p) = dimy, (E*/E*F) or E, 7 E?.
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We remark that the construction used in the proof of Theorem 1 is of a completely
explicit and elementary nature. Namely, one chooses a certain intermediate group
T < H < E* with (H : T)|p and denotes

O ={zcE\H :1-z€cT}, O'={zcH: 20" CO}.
Itturnsoutthat O = O~ UO" isavaluationringon E, and the corresponding val uation

v isasdesired.
The second main ingredient is the following henselianity criterion provenin [E1]:

Proposition 1. Let p beaprime number and let (E, v) be avalued field with char (Ey) #
p, such that the maximal pro-p Galois group Gz (p) of E, is infinite. Suppose that

sup g k(G e (p)) < oo
with E' ranging over all finite separable extensions of E. Then v is henselian.

Heretherank rk(G) of aprofinitegroup G isits minimal number of (topological)
generators.

After trand ating the Corollary to the Gal oi s-theoreti ¢ language using Kummer theory
and the Merkur’ ev—Suslin theorem and using Proposition 1 we obtain:

Proposition 2. Let p be a prime number and let E be a field such that char (E) # p.
Suppose that for every finite separable extension E’ of E one has
(V) HNGw,Z/p)= (Z/p)"*"
(2) H*Gg,Z/p) ~ N>HYGg,7/p) via the cup product;
(3) dimg,(I"y/p) < n for every valuation « on E'.

Then there exists a henselian valuation v on E such that char (E,) #p and
dimg, (I'y /p) = n.

7.4. A Galoischaracterization of 1-defectlessvaluations

For a field L and a prime number p, we recal that the virtual p-cohomological
dimension vcd,(Gr) istheusual p-cohomological dimension cd,(G) if char (L) 70
and is ved, (G /=) if char (L) = 0.

Definition. Let p be aprime number and let L beafield with n =dim L < oo and
char (L) # p. Wesaythat L is p-divisorial if thereexist subfields L ¢ E ¢ M C L
such that

(& M/L isGdois,

(b) every p-Sylow subgroup of G s isisomorphicto Zy,

(c) thevirtual p-cohomological dimension ved,(Gr) of G isn+1;
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(d) either n =1 or Gal(M/L) hasnonon-trivial closed normal pro-solublesubgroups;
(e) for every finite separable extension E'/E one has

HYGg,Z/p) =~ (Z/p)""Y, H*Gg,Z/p) =~ N°HYGg,7/p)

viathe cup product.
The main result is now:

Theorem 2 ([E3]). Let p be a prime number and let K be a finitely generated field
of characteristic different from p. Let L be an algebraic extension of K. Then the
following conditions are equivalent:

(i) there exists a 1-defectless valuation » on K suchthat L = K?;

(ii) L isaminimal p-divisorial separable algebraic extension of K.

Idea of proof. Suppose first that v isa 1-defectlessvaluationon K. Teke L = K}
and let M beamaximal unramified extension of L. Alsolet w beavauation on K
such that T, ~ Z9M&)  char (K,) 7 p, and such that the corresponding valuation
rings satisfy O, C O,. Let K" be ahenselization of (K,w) containing L and take
E = K!'(u,) (E = K!(ug) if p=2). Oneshowsthat L is p-divisorial with respect
to thistower of of extensions.

Conversely, suppose that L is p-divisoria, andlet L ¢ E C M C L bea
tower of extensions as in the definition above. Proposition 2 givesrise to a henselian
valuation w on E suchthat char (E,) # p and dimy, (I'y, /p) = dim(K). Let wo be
the unique valuationon E of rank 1 suchthat 0,00, andlet u beitsrestrictionto
L. The unique extension uys of wo to M ishensdlian. Since M /L isnormal, every
extension of u to M isconjugateto u s, henceisalso henselian. By aclassical result
of F.-K. Schmidt, the non-separably closed field M can be henselian with respect to at
most one valuation of rank 1. Conclude that u is henselian as well. One then shows
that it is 1-defectless.

The equivalence of (i) and (ii) now follows from these two remarks, and a further
application of F.-K. Schmidt’s theorem.

The local correspondence now follows from the observation that condition (ii) of
the Theorem is actually a condition on the closed subgroup G, of the profinite group
Gk (notethat dim(L) = vcd(Gg) — 1).

7.5. Higher local fields

Here we report on ajoint work with Fesenko [EF].
An analysis similar to the one sketched in the case of higher global fieldsyields:
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Theorem 3 ([EF]). Let F be an n-dimensional local field. Suppose that the canonical
valuation on F of rank n has residue characteristic p. Let K be a field such that
Gk ~ Gp. Then there is a henselian valuation v on K such that T, /I ~ (Z/1)™ for
every prime number ! # p and such that char (K,) =p or O.

Theorem 4 ([EF]). Let g = p" be a prime power and let K be a field with

Gk =~ Gr,(z)- Then there is a henselian valuation v on K such that

(1) T/l ~7Z]l for every prime number I # p;

(2) char(K,)=p;

(3) the maximal prime-to-p Galois group GI—{v(p') of K, isisomorphic to Hl?p 7y,
(4) if char(K) =0 then I, = pI', and K, is perfect.

Moreover, for every positiveinteger d thereexist valuedfields (K, ») asin Theorem
4 with characteristic p and for which T, /p ~ (Z/p)?. Likewise there exist examples
with T, ~Z, Gg #7Z and K, imperfect, aswell as exampleswith char (K) = 0.
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8. Higher local skew fields

Alexander Zheglov

n-dimensional local skew fields are a natural generalization of n-dimensional local
fields. The latter have numerous applications to problems of algebraic geometry, both
arithmetical and geometrical, as it is shown in this volume. From this viewpaint,
it would be reasonable to restrict oneself to commutative fields only. Nevertheless,
aready in class field theory one meets non-commutative rings which are skew fields
finite-dimensional over their center K. For example, K isa(commutative) local field
and the skew field represents elements of the Brauer group of thefield K (seeaso an
example below). In [Pa] A.N. Parshin pointed out another class of non-commutative
local fields arising in differential equations and showed that these skew fields possess
many features of commutative fields. He defined a skew field of formal pseudo-
differential operatorsin n variables and studied some of their properties. He raised a
problem of classifying non-commutative local skew fields.

In this section we treat the case of n = 2 and list anumber of results, in particular a
classification of certain types of 2-dimensional local skew fields.

8.1. Basic definitions

Definition. A skew field K iscalled acomplete discrete valuation skew field if K is
complete with respect to a discrete valuation (the residue skew field is not necessarily
commutative). A field K iscalled an n-dimensional local skew field if there are skew
filds K = K,,K,,_1, ..., Kp such that each K; for < > 0 is a complete discrete
valuation skew field with residue skew field K;_;.

Examples.

(1) Let k& be afiedd. Formal pseudo-differential operators over k((X)) form a 2-
dimensional local skew field K = k((X))(((‘))_(l)), OxX =X0x +1. If char(k) =
0 we get an example of a skew field which is an infinite dimensional vector space
over its centre.
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(2) Let L bealocal field of equal characteristic (of any dimension). Then an element
of Br(L) isan example of askew field which isfinite dimensional over its centre.

From now on let K beatwo-dimensional local skew field. Let ¢, be agenerator of
Mg, and ¢} beagenerator of Mg, . If t1 € K isalifting of ] then ¢1,¢, iscaleda
system of local parameters of K. Wedenoteby vg, and vg, the (surjective) discrete
valuationsof K, and K associated with ¢, and ¢].

Definition. A two-dimensional local skew field K issaid to split if thereis a section
of the homomorphism Ok, — K, where O, isthering of integersof K.

Example (N. Dubrovin). Let Q((u)){(z,y) beafreeassociative agebraover Q((u))
with generators z,y. Let I = ([z,[z,y]],[y,[z,y]]). Thenthe quotient

A= Q((w)(z,y)/T

is a Q-algebra which has no non-trivial zero divisors, and in which z = [z,y] + I isa
central element. Any element of A can be uniquely represented in the form

fot fiz+. ...+ f2™

where fo,... , fm aepolynomiasinthevariables z,y.

Onecandefineadiscretevaluation w on A suchthat w(z) = w(y) = w(Q((w))) =0,
w(z,y]) =1, w(a) =k if a = frz¥ +...+ fnz™, fr #0. The skew field B of
fractions of A has a discrete valuation v which is a unique extension of w. The
completion of B with respect to v is atwo-dimensional local skew field which does
not split (for details see [Zh, Lemma 9]).

Definition. Assumethat K; isafield. The homomorphism

po: K* = Ini(K), po(z)(y) =z 1y

induces a homomorphism ¢: K5/ 0%, — Aut(K1). The canonical automorphism of
K is a = ¢(t2) where t, isan arbitrary prime element of K».

Definition. Two two-dimensional local skew fields K and K’ areisomorphic if there
is an isomorphism K — K’ which maps Og onto Ok, Mg onto Mg and Ok,
onto oKi’ Mg, onto MK{'
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8.2. Canonical automorphismsof infinite order

Theorem.

(1) Let K be a two-dimensional local skew field. If o™ # id for all n > 1 then
char (K5) = char (K1), K splitsand K is isomorphic to a two-dimensional local
skew field K1((t2)) where t2a = a(a)t2 forall a € Kj.

(2) Let K,K' be two-dimensional local skew fields and let K1, K; be fields. Let
a™ Zid, o™ #Zid forall » > 1. Then K is isomorphic to K’ if and only if
there is an isomorphism f: K1 — K} suchthat a = f~1a/ f where a, o' are the
canonical automorphisms of K; and Kj.

Remarks.

1. Thistheorem istruefor any higher local skew field.
2.  There are examples (similar to Dubrovin’s example) of local skew fields which do
not split and in which o™ =id for some positive integer n.

Proof. (2) followsfrom (1). We sketch the proof of (1). For details see [Zh, Th.1].

If char (K) # char (K1) then char (K1) =p > 0. Hence v(p) = > 0. Then for
any element ¢t € K with v(t) = 0 we have ptp~1 = a”(f) mod Mx where ¢ isthe
image of ¢ in K. But onthe other hand, pt = tp, acontradiction.

Let F betheprimefieldin K. Since char (K) = char (K,) thefield F isasubring
of O = Ok,. One can easily show that there exists an element ¢ € K; such that
a™(c) #c forevery n > 1 [Zh, Lemma5].

Then any lifting ¢’ in O of ¢ istranscendental over F. Hence we can embed the
field F(c) in O. Let L beamaximal field extension of F(c') which can be embedded
in 0. Denoteby L itsimagein O. Take a € K1 \ L. We claim that there exists a
lifting o’ € O of @ suchthat a’ commuteswith every elementin L. To provethisfact
we use the completeness of O in the following argument.

Take any lifting a in O of a. For every element z € L we have aza~
zmod Mg. If to isaprimeeement of K, we canwrite

1

aza~l =z + 81(z)to

where §1(z) € O. Themap 61: L > = — d1(z) € K1 isan a-derivation, i.e.
d1(ef) = d1(e)a(f) +edi(f)

foral e, f € L. Take an element h suchthat a(h) 7 h, then 41(a) = gafa) — ag
where g = §1(h)/(a(h) — h). Thereforethereis a; € K1 such that

(1 +aitr)aza (1 +aqty) "t = z mod M%{

By induction we canfind anelement o’ = ... - (1+a1t2)a such that dza' "t =z
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Now, if @ isnot algebraic over L, thenfor itslifting a’ € O which commuteswith
L wewould deducethat L(a') isafield extension of F'(c') which can be embeddedin
O, which contradicts the maximality of L.

Hence @ is agebraic and separable over L. Using a generaization of Hensel's
Lemmal[Zh, Prop.4] wecanfind alifting o’ of @ suchthat o' commuteswith elements
of L and a' isalgebraic over L, which again leadsto a contradiction.

Finaly let @ be purely inseparable over L, @ =z, z € L. Let o beits lifting
k
which commutes with every element of L. Then o' — z commutes with every
k
element of L. If vx(a'® — z) =r # oo then similarly to the beginning of this proof
k k
we deducethat theimage of (a’® — z)c(a’® — z)~1 in K isequal to a”(c) (which
k

isdistinct from ¢), acontradiction. Therefore, a'* =z andthefield L(a') isafield
extension of F'(¢) which can be embedded in ©, which contradicts the maximality
of L. ~

Thus, L = K;.

To provethat K isisomorphic to a skew field K1((¢2)) where tya = a(a)t, one
can apply similar arguments as in the proof of the existence of an element a’ such that

dza t=z (see above). So, one can find a parameter ¢, with agivenproperty. O

In some cases we have acomplete classification of local skew fields.

Proposition ([Zh]). Assume that K is isomorphic to k((¢1)). Put
¢ = a(t)t; P mod Mg, .

Put 4, = 1 if ¢ isnotarootof unityin k and i, = vk, (a™(t1) —t1) if ¢ isaprimitive
nth root. Assume that & is of characteristic zero. Then there is an automorphism

f € Autg(K1) suchthat f~laf = 8 where
Bltr) = Gty + oty + 2Pyt

for some z € k*/k*Ca=D, y c k.
Two automorphisms « and 3 are conjugate if and only if

(€(@), ia, z(), y(a) = (C(B), 2, z(B), y(B))-
Proof. First weprovethat o = f3'f~1 where
B'(t1) = Cta + it + gt

for some natural <. Thenwe provethat i, =ig .
Consider aset {a; : 7 € N} where o; = fiai_lfi‘l, fi(t2) = t1 +z;t; for some
z; € k, a; =a. Write

a;(t) =(t1 + aZ,it% + a3,it% +....
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One can check that ap > = zo(¢2—¢)+ ap,1 and hencethere exists an element z, € k
such that ap> = 0. Since a;;+1 = a;;, we have ap; = 0 for al j > 2. Further,
az3 = z3(C3— )+ a3 2 and hence there exists an element z3 € k suchthat az3 = 0.
Then a3z ; = 0 foral j > 3. Thus, any element ay; can be made equal to zero if
n J(k — 1), and therefore o = faf~ where

~ — ~ intl | ~ in+tn+l
a(tl) - Ctl + Gﬂin+1t§_n + Gﬂin+n+lt§_n n +...

for some i, a; € k. Noticethat a;,+; doesnot dependon z;. Put = = (o) = Gipn+1-
Now wereplace a by a&. One can check that if n|(k — 1) then

@Gjk = Qj k-1 for2<j<k+in
and
Qptink = Tpx(k — in — 1) + ag+ipn, + SOMe polynomial which does not depend on z ..

From this fact it immediately follows that a;y+1,in+1 does not depend on z; and for
al kZin+1 ag+in,; canbemade equal to zero. Then y = y(a) = a2in+1,in+1-
Now we provethat i, =ig . Using the formula
B (t1) =t + na(a)¢ P+

weget ig: = in+1. Thenonecancheck that v, (f (o™ —id)f) = vk, (@™ —id) = i,.
Since B'" —id = f~1(a™ — id)f, we get the identity i, = igs'.
The rest of the proof is clear. For details see [Zh, Lemma 6 and Prop.5]. O

8.3. Canonical automorphismsof finite order

8.3.1. Characteristic zero case.
Assume that

atwo-dimensional local skew field K splits,

K, isafidd, Ko C Z(K),

char (K) = char (Kgp) =0,

a”™ =id forsome n > 1,

for any convergent sequence (a;) in K; the sequence (tza;t, 1y convergesin K.

Lemma. K isisomorphic to a two-dimensional local skew field K1((¢2)) where
toaty " = afa) + 8;(a)th + 82i(a)ts + dgum(a)ts ™ +...  forall a € K3
where n|i and §; : K1 — K, are linear maps and

d;(ab) = d;(a)a(b) + ala)d;(b) for every a,b € K.
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Moreover
Bat,™ = a+5}(a)th + 6(a)t5 + Oy ()5 + ..
where ¢ are linear maps and &; and ¢ := &5, — ((¢ + 1)/2)5;2 are derivations.

Remark. Thefollowing fact holdsfor thefield K of any characteristic: K isisomor-
phic to atwo-dimensional local skew field K1((¢2)) where

toaty " = afa) + 8;(a)th + i (a)ts ™ +. ..

where §; are linear maps which satisfy some identity. For explicit formulas see
[Zh, Prop.2 and Cor.1].

Proof. Itisclearthat K isisomorphic to atwo-dimensional local skew field K1((¢2))
where

toaty ' = aa) + d1(a)ty + dx(a)ts +...  fordl a
and &; arelinear maps. Then & isa (a?, a)-derivation, that is §1(ab) = d1(a)a®(b) +
a(a)d1(b)-
Indeed,

taabty 1 = toaty tobt; T = (afa) + d1(a)tz + ... )(a(b) + 1 (b)t2 +...)
=a(a)a(b) + (Jl(a)az(b) + a(a)d1(b))tz +... = aladb) + §1(ab)tr + ... .

From the proof of Theorem 8.2 it follows that §; is an inner derivation, i.e. d1(a) =
ga(a) — a(a)g for some g € K1, and that there existsa t22 = (1 +z1to)to such that

tz’zatz_,% = a(a) + 52,2((1)75%,2 +....

One can easily check that d, isa (aB, a)-derivation. Then it is an inner derivation
and there exists ¢ 3 such that

tz,gatz_é = a(a) + 63,3(a)t§,3 +....
By induction one deduces that if
tojaty s = a(a) + 8n j(@)t5, + ...+ Okn (a)t5T +6;(a)th , +...
then 4, ; isa (a’*1, a)-derivation and there exists ¢5 ;+1 such that
taj+10ty 1y = ) + O j(@)5 jug + .o + O (@5 + 001 (@) g+
The rest of the proof is clear. For details see [Zh, Prop.2, Cor.1, Lemmas 10, 3]. [

Definition. Let i = vk, (¢(t5)(t1) — t1) € nNU oo, (¢ isdefined in subsection 8.1)
andlet r € Z/i be vk, (z) mod ¢ where z istheresidueof (p(t5)(t1) — tl)tz‘i. Put

_ (3 — 5181 (ta)
a =Tres, < 5’.(t1)2 dt1 ) € K.
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(67,05, arethe maps from the preceding lemma).

Proposition. If n = 1 then 7,7 don’t depend on the choice of a system of local
parameters; if ¢ = 1 then a does not depend on the choice of a system of local
parameters; if n # 1 then a depends only on the maps 6;+1,-.. ,d2_1, i,r depend
only on the maps §;, j ¢ nN, j <.

Proof. We comment on the statement first. The maps §; are uniquely defined by
parameters t1,t, and they depend on the choice of these parameters. So the claim that
i, depend only onthe maps ¢, j ¢ nN, j < ¢ meansthat 4, don’'t depend on the
choice of parameters t1, ¢, which preservethemaps é6;, j ¢ nN, j < 1.

Notethat » dependsonly on i. Henceit is sufficient to prove the proposition only
for « and a. Moreover it sufficesto proveit for the casewhere n # 1, 7 # 1, because
if n=1thenthesets {J; : j ¢ nN} and {d;+1:...,02_1} areempty.

Itisclear that ¢ dependson 4;, j ¢ nN. Indeed, it is known that 41 isan inner
(a2, a)-derivation (see the proof of the lemma). By [Zh, Lemma 3] we can change a
parameter ¢, suchthat 6, canbemadeequal d1(¢1) =t1. Thenonecanseethat ¢ = 1.
From the other hand we can change a parameter ¢, such that §1 can be made equal
to 0. Inthiscase 7 > 1. Thismeansthat 7 dependson 6. By [Zh, Cor.3] any map
d; is uniquely determined by the maps é,, ¢ < j and by an element §,(¢1). Then
using similar arguments and induction one deducesthat ¢ depends on other maps 65,
j¢nN, j<i.

Now we prove that ¢ does not depend on the choice of parameters ¢41,t> which
preservethemaps 6;, j ¢ nN, j <i.

Note that ¢ does not depend on the choice of ¢1: indeed, if t] =t1 + bz, be K,
then 2"t} 27" = 2"t127" + (2"bz )27 =t} +r, where r € M%\M1. One can see

that the sameistruefor ¢} = cit1 +cot3 +..., ¢; € Ko.
Let &, bethefirst non-zero map for given ¢1,t,. If ¢ #¢ then by [Zh, Lemma 8,
(ii)] there existsaparameter ¢ suchthat zt;z=1 = )% +4§,.1 ()29 +. ... Usingthis

fact and Proposition 8.2 we can reduce the proof to the case where ¢ =4, a(t1) = &tq,
a(d;(t1)) = &€6;(t1) (this case is equivaent to the case of n = 1). Then we apply
[Zh, Lemma 3] to show that

vk, (($(t2) — D(t)) = vk, ((6(t2) — D(t1)),

for any parameters ¢, t5, i.e. ¢ does not depend on the choice of a parameter ¢,. For
details see [Zh, Prop.6].

To provethat a dependsonly on &;+1,... ,02_1 we use the fact that for any pair
of parameters ¢}, t, we can find parameters | = ¢1 +r, where » € M%,, t§ suchthat
corresponding maps ¢; areequal foral j. Thenby [Zh, Lenma8] a doesnot depend
on ¢/ and by [Zh, Lemma3] a dependson t4 =ty +ast3+..., a; € K if andonly
if a1 =... =a;_1. Using direct calculations one can check that a doesn’'t depend on
t5 = agtz, ap € K7 .
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To provethefact it issufficient to proveit for ¢} = ¢1+ct?27 forany j < i, ¢ € K.
Using [Zh, Lemma8] one can reduce the proof to the assertion that someidentity holds.
Theidentity is, in fact, some equation on residue elements. One can check it by direct
calculations. For details see[Zh, Prop.7]. 0

Remark. The numbers 7,7,a can be defined only for local skew fields which splits.
One can check that the definition can not be extended to the skew field in Dubrovin's
example.

Theorem.
(1) K isisomorphic to a two-dimensional local skew field Ko((£1))((¢2)) such that

tatrtyt = €ty + xth + ytd
where £ is a primitive nthroot, z = ct], c € Kg/(Kg)d,
y=(a+r@+1)/2t; 22, d=ged(r — 1,49).

If n =1, i =00, then K is afield.
(2) Let K, K' betwo-dimensional local skew fields of characteristic zero which splits;

and let K, K, be fields. Let o™ = id, o’™ =id for some n,n’ > 1. Then K
is isomorphic to K’ if and only if Ko is isomorphic to K, and the ordered sets
(n,&,4,7,¢c,a) and (n',¢',4',7',c',a’) coincide.

Proof. (2) followsfrom the Proposition of 8.2 and (1). We sketch the proof of (1).
From Proposition 8.2 it follows that there exists ¢1 such that a(t1) = &t1; d:(¢1)
can be represented as ct}a’. Hencethere exists ¢, such that

totity T = €ty +ath + S ()5 + ...
Using [Zh, Lemma 8] we can find a parameter t} = ¢1 mod Mg such that
tothty 1 = €ty +ath +ytd + ...
The rest of the proof is similar to the proof of the lemma. Using [Zh, Lemma 3] one
can find a parameter ¢}, = t; mod M% suchthat §,(t1) =0, j > 2i. O
Corollary. Every two-dimensional local skew field K with the ordered set

(n’ £’ i7 T7 c7 a)

is a finite-dimensional extension of a skew field with the ordered set (1,1,1,0,1, a).

Remark. Thereis a construction of atwo-dimensiona local skew field with a given
%t (TL, 6, i) 7', C, a)'
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Examples.

(1) The ring of formal pseudo-differential equations is the skew field with the set
n=1¢=1i=1r=0,c=1a=0).

(2) The elements of Br(L) where L is atwo-dimensional local field of equal char-
acteristic are local skew fields. If, for example, L isa C,- field, they split and
1 = co. Hence any division algebrain Br(L) iscyclic.

8.3.2. Characteristic p case.

Theorem. Suppose that a two-dimensional local skew field K splits, K, is a field,
Ko C Z(K), char(K) =char(Kg)=p>2and a=id.

Then K is a finite dimensional vector space over its center if and only if K is
isomorphic to a two-dimensional local skew field Kq((21))((¢2)) where

ty ttaty = tg +xth
with z € K?, (i,p) = 1.
Proof. The“if” part is obvious. We sketch the proof of the “only if” part.
If K is afinite dimensional vector space over its center then K is a division

algebra over ahenselian field. Infact, the center of K isatwo-dimensional local field
k((u))((¥)). Then by [IW, Prop.1.7] K1/(Z(K))1 is a purely inseparable extension.
Hence there exists ¢1 such that t’ik € Z(K) forsome k € N and K ~ Ko((t1))((¢2))
as avector space with the relation
tatits =ty + 8i(t)ts + ...

(see Remark 8.3.1). Then it is sufficient to show that ¢ is primeto p and there exist
parameters tq € Ky, tp suchthat the maps 6; satisfy the following property:
(*) If j isnot divisible by i then §; = 0. If j isdivisible by i then &; = ¢, ;67"

with some c;/; € K1.

Indeed, if this property holds then by induction one deduces that c;;; € Ko,
cjji = ((@+1)...3(j/i — 1) +1))/(5/i)!. Then one can find a parameter t, = bty,
b € K; suchthat ¢; satisfiesthe same property and 62 =0. Then

1 .
ty taty =t1 — §;(t)ts.

First we prove that (i,p) = 1. To show it we prove that if p|i then there exists a
map §; such that 6j(t’1’k) # 0. To find this map one can use [Zh, Cor.1] to show that
2 k
dip(t]) 70, 0,,2(t7 ) 70, ..., d;pe (] ) #O.
Then we prove that for some ¢, property (*) holds. To show it we prove that if

property (*) does not hold then there exists amap §; such that (Sj(t’ik) Z 0. To find
this map we reduce the proof to the case of ¢ = 1mod p. Then we apply the following
idea.
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Let j = 1mod p betheminimal positiveinteger suchthat §; isnot equal to zero on
Kfl. Then one can provethat the maps §,,, kj < m < (k+1)j, k€ {1,... ,p—1}
satisfy the following property:

there exist elements ¢, ,, € K1 such that

(Om —Ccm,10 — ... — cm,kék)| =0

l
p
Kl

where é: K; — K; isalinear map, 6|sz isaderivation, 6(t{) =0 for j ¢ p'N,
1

l l k
J(tll) ) =1, Ckjk = C((Sj(tll) )) , CE Ko.
Now consider maps S; which are defined by the following formula
tz_latz =a+ S;(a)t% + g;i(a)t?l +..., a€ K.

Then 5, + 6, + ZZ;ll 6,96;\:,@ =0 forany ¢. Infact, §, satisfy someidentity which is
similar to theidentity in[Zh, Cor.1]. Using that identity one can deduce that
if
j = 1mod p and there existstheminima m (m € Z) such that 5mp+zi|sz Z0
1
it j f(mp +2i) and 8pe2il  p1 7 36§2’+m”)/ ?| o fOrany s € K otherwise, and
1 1

Jq(t'il) =0 for ¢ < mp+2i, ¢ 1mod p,
then
(mp + 2i) + (p — 1)j isthe minimal integer such that §(mp+2i)+(p—1); |Kp,+1 Z 0.
1

To complete the proof we use induction and [ Zh, Lemma 3] to show that there exist

parameters t; € K1, t, suchthat Jq(tzl’l) =0for g # 1,2mod p and 6]2 =0on K{’l.
O

Corollary 1. If K is afinite dimensional division algebra over its center then its index
is equal to p.

Corollary 2. Suppose that a two-dimensional local skew field K splits, K is a field,
Ko C Z(K), char(K) = char(Kp) = p > 2, K s a finite dimensional division
algebra over its center of index p*.

Then either K is a cyclic division algebra or has index p.

Proof. By [JW, Prop. 1.7] K1/Z(K) is the compositum of a purely inseparable
extension and acyclic Galois extension. Then the canonical automorphism « hasorder
p' for some I € N. By [Zh, Lemma 10] (which is true also for char (K) = p > 0),
K =~ Ko((t1))((t2)) with

) g .y
tzatz_l =ala) +6; (a)t’z + 61'+pl (a)t12+p + (Sle (a)t12+2p +
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where i € p'N, a € K. Supposethat o # 1 and K is not a cyclic extension of
Z(K). Thenthereexistsafield F ¢ Ky, F ¢ Z(K) suchthat a|r =1. If a € F
then for some m the element a?™ belongs to a cyclic extension of the field Z(K),
hence 5j(a1’m) =0 for al j. But we can apply the same arguments as in the proof
of the preceding theorem to show that if §; # O then there exists amap §; such that
d;(a?™) # 0, acontradiction. Weonly need to apply [Zh, Prop.2] instead of [Zh, Cor.1]
and note that ad = zda where § isaderivationon K1, = € K1, z = 1mod Mg,
because a(t1)/t1 = 1mod Mg, .

Hence tpat, ' = a(a) and K1/Z(K) isacyclicextensionand K isacyclicdivision

dgebra (K1(8')/Z(K), 0, 5 ). O

Corollary 3. Let F' = Fp((t1))((t2)) be a two-dimensional local field, where Fjy is an
algebraically closed field. Let A be a division algebra over F'.

Then A ~ B ® C, where B is a cyclic division algebra of index prime to p and
C is either cyclic (as in Corollary 2) or C is a local skew field from the theorem of
index p.

Proof. Notethat F' isa C»-field. Then A, isafield, A;/F; isthe compositum of a
purely inseparable extension and acyclic Galoisextension, and A, = Fy((u)) for some
u € A;. Hence A splits. So, A isasplitting two-dimensional local skew field.

It is easy to see that the index of A is |A : F| = p?m, (m,p) = 1. Consider
subalgebras B = C4(Fy), C = C4(F>) where Fy = F(u?”), F> = F(u™). Then by
[M,Thil] A~B®C.

Therest of the proof is clear. O

Now one can easily deduce that

Corollary 4. The following conjecture: the exponent of A is equal to its index for any
division algebra A over a C,-field F (see for example [PY, 3.4.5.])
has the positive answer for F' = Fo((t1))((¢2)).
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9. Local reciprocity cycles

Ivan Fesenko

In this section we introduce a description of totally ramified Gal ois extensions of alocal
field with finite residue field (extensions have to satisfy certain arithmetical restrictions
if they are infinite) in terms of subquotients of formal power series Fﬁep[[X]]*. This
description can be viewed as a non-commutative local reciprocity map (whichisnot in
general a homomorphism but a cocycle) which directly describes the Galois group in
terms of certain objects related to the ground field. Abelian class field theory as well
as metabelian theory of Koch and de Shalit [K], [KdS] (see subsection 9.4) are partial
cases of thistheory.

9.1. Group U® —
N(L/F)

Let F be alocal field with finite residue field. Denote by ¢ € Gg alifting of the
Frobenius automorphism of F/F.
Let F¥ bethefixedfield of ¢. Theextension F¥/F istotaly ramified.

Lemma ([KdS, Lemma 0.2]). There is a unique norm compatible sequence of prime
elements g in finite subextensions E/F of F¥¢/F.

Proof. Uniquenessfollowsfrom abelian local classfield theory, existencefollowsfrom
the compactness of the group of units. O

In what follows we fix F¢ and consider Galois subextensions L/F of F?¢/F.
Assume that L/F is arithmetically profinite, ie for every z the ramification group
Gal(L/F)* isopenin Gal(L/F) (see also subsection 6.3 of Part I1). For instance, a
totally ramified p-adic Lie extension is arithmetically profinite.

For an arithmetically profinite extension L/F define its Hasse-Herbrand function
hr r:[0,00) — [0,00) @ hp p(x) = limhyp(z) where M/F runs over finite
subextensionsof L/F (cf. [FV, Ch. 11l §5]).
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If L/F isinfinitelet N(L/F) bethefieldof normsof L/F. Itcanbeidentifiedwith
kr((IT)) where IT corresponds to the norm compatible sequence g (See subsection
6.3 of Part 11, [W], [FV, Ch.llI §5]).

Denote by ¢ the automorphism of N(L/F), and of its completion N (L7F)
corresponding to the Frobenius automorphism of Fy/F.

I o .
Definition. Denote by UN(/L/\F) the subgroup of the group UN(L ) of those elements

whose ﬁ-component belongsto Ur. Anelement of U;’(/IJF) such that its ﬁ-compo—
nentis e € Ur will becaled alifting of ¢.

The group U;(/L/\F) /Un(z,r) isadirect product of a quotient group of the group
of multiplicative representatives of the residue field kx of F, acyclic group Z/p®
and a free topological Z,-module. The Galois group Gal(L/F) acts naturally on

o
UN(/L-/\F) /UN(L/F) :

9.2. Reciprocity map Ny

To motivate the next definition we interpret the map Y, (defined in 10.1 and 16.1)
for afinite Galois totally ramified extension L/F in the following way. Sincein this
caseboth 7y and w1, areprimeelementsof L, thereise € Ur, suchthat =y = 7pe.
Wecantake & = op. Then 77! =el=7¢. Let n € Uz besuchthat n¥~1 =¢. Since
(e~ le~hye-1 = (»lo-Deye-1 we deduce that ¢ = n°¢~191=9)¢p with p € Uy.
Thus, for ¢ = p¢~1

YL/F(U)ENZ/FWZENE/ﬁEmOd NL/FL*, é—l_(p =7TZ_1.

Definition. Forao € Gal(L/F) let U, € UN(7:7F) be a solution of the equation

) — UN(/L7F) is surjective). Put

NL/FGaI(L/F) — U;:I(/L7F)/UN(L/F)’ NL/F(O') =U, mod UN(L/F)-

(recall that id — <pZUN

Remark. Compare the definition with Fontaine-Herr’'s complex defined in subsec-
tion 6.4 of Part I1.
Properties.
1 o . . . .
() Npypez (GaI(L/F),UN(/J:?F)/UN(L/F)) isinjective.
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(2) For afinite extension L/F the ﬁ-component of Nz,r(o) isequal to the vaue
Y1, r(o) of the abelian reciprocity map Yz, (seethe beginning of 9.2).

(3) Let M/F beaGaoissubextensionof L/F and E/F be afinite subextension of
L/F. Then thefollowing diagrams of maps are commutative:

Ni/e Ne/r
GaI(L/E) _— U;U:?E)/UN(L/E) Gal(L/F) _— U;/(/L7F)/UN(L/F)

l ! l l

Np/r Nu/r
Gal(L/F) E— UI<\>I'(/L7F)/UN(L/F) GaI(M/F) E— U;(TM\/F)/UN(M/F)

R T —_— - ,
(4) Let Un’ i) be the filtration induced from thefiltration Un’N(L Ty ON thefield

of norms. For an infinite arithmetically profinite extension L/F with the Hasse—

-1
Herbrand function hr,r put Gal(L/F), = GaI(L/F)hL/F("). Then Nz, maps

H <o (o
GaI(L/F)n \ GaI(L/F)n+1 Into Un,N(/L-7F) N(L/F) \ Un+l,N(/L7F)UN(L/F).

(6) Theset im(Ny,r) is not closed in genera with respect to multiplication in the
group

UN(/L7F) /Un(z/r)- Endow im(Np,r) with anew group structure given by z xy =

a:NZ/lF(a:)(y). Then clearly im(Ny,,r) isagroup isomorphicto Gal(L/F).
Problem. Whatis im(Nz,r)?

One method to solve the problem is described bel ow.

9.3. Reciprocity map Hy

Definition. Fix atower of subfields FF = Eqg — F1 — E> — ..., suchthat L = UFE;,
E;/F isaGaoisextension, and E;/E;_1 iscyclic of prime degree. We can assume
that |E;+1 : E;| =p foral i > ig and |E;, : Ep| isrelatively primeto p.
Let o; beagenerator of Gal(E;/E;_1). Denote
X;=U% L
E;

i

Thegroup X; isa Z,-submodule of U, B It isthe direct sum of acyclic torsion
group of order p™i, n; > 0, generated by: say, a; (a; =1 if n; = 0) and afree
topologica Z,-module Y;.

We shall need a sufficiently “nice” injective map from characteristic zero or p to
characteristic p

.rroi—1 o
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If F isalocal field of characteristic zero containing anon-trivial pthroot ¢ and f; is
a homomorphism, then ¢ isdoomed to goto 1. Still, from certain injective maps (not
homomorphisms) f; specifically defined below we can obtain asubgroup [ [ fi(Ug )

o/\
NIL/F)

initi = (®) —
Definition. If n; =0, set A% ¢ UN(L/Ei) to be equal to 1.

If n; >0, let A® ¢ UN@E') bealifting of «; with the following restriction: A9

E;+
isnot aroot of unity of order a power of p (thiscondition can always be satisfied, sincé
the kernel of the norm map is uncountable).

Lemma ([F]). If A® =1, then B;11 = A(Ei)\p i belongs to X;+1.
i+l

Note that every (3;+1 when it is defined doesn’t belong to X7,,. Indeed, otherwise

. ng i n;—1
we would have 49" = P for some v € X;41 and then A%)\p = ~¢ fora
i+l i+l

— n;—1
root ¢ of order p or 1. Taking the norm downto E; weget of = Nﬂ/ﬁy =1,
which contradicts the definition of «;. '

Definition. Let 3; ;, j > 1 be free topological generators of Y; which include g;
whenever g; is defined. Let Bt € U —-  bealifting of 8;; (i.e. B®) - =

N(L/E;)
.. . . ™i-1
,Bi,j), such that if ,Bi,j = 6, then B%’\]) = B%)\ = A%:l)p for k > 1.
k k k
Defineamap X; — UN@_) by sending a convergent product o Hj ﬂfJJ where

0<ce<n— 1, ¢j €Zp, to AW, BEDY (the latter converges). Hence we get a
map

. U'i—l

which depends on the choice of lifting. Notethat f;(a)z = c.
Denoteby Z; theimageof f;. Let

Zyir = Zpyr({ B, fi}) = {H 29 20 € Zi},

Y r=q{y € UN(/L/\F) 1yt € Zpp}

Lemma. The product of z®) in the definition of Z;,/» converges. Zy,,r isasubgroup

o .
of UNU:TF)' The subgroup Y7,z contains Un(z/r).
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Theorem ([F]). Forevery (uz) € U;r(T-IF) there is a unique automorphism 7 in the
group Gal(L/F) satisfying
(’ué\_)l_(p = HT_l mod ZL/F

If (’U,E\) € YL/F! then 7 =1.

Hint. Step by step, passing from E; t0 B O

Remark. Thistheorem can be viewed as a non-commutative generalization for finite
k of exact sequence (x) of 16.2.

Corollary. Thus, there is map

%L/FU;(T/?F) —>Gal(L/F), %L/F((uﬁ)):’r

The composite of N,z and Hy,r is the identity map of Gal(L/F).

9.4. Main Theorem

Theorem ([F]). Put

. O —_
Hiyr: UN(/L7F)/YL/F — Gal(L/F), Hp/r((ug) =7
where T is the unique automorphism satisfying (uz)'~¢ = II" - mod Zz,r. The
injective map ¥y, is abijection. The bijection

NL/FGaI(L/F) — U;T(/L7F)/YL/F

induced by N, defined in 9.2 is a 1-cocycle.

Coroallary. Denoteby ¢ the cardinality of theresiduefield of F. Koch and de Shalit
[K], [KdS] constructed a sort of metabelian local class field theory which in particular
describes totally ramified metabelian extensions of F' (the commutator group of the
commutator group istrivial) in terms of the group

n(F) = {(u € Up,&(X) € FPP[[X]]*) : £(X)*~ = {u}(X)/ X}

with a certain group structure. Here {u}(X) isthe residue seriesin Fy P [[X]]* of the
endomorphism [u](X) € Op[[X]] of the forma Lubin-Tate group corresponding to
TF, 4, U.

Let M/F be the maximal totally ramified metabelian subextension of F,,, then
M/F is arithmetically profinite. Let R/F be the maximal abelian subextension
of M/F. Every coset of U;@F) modulo Y,/ r has a unique representative in
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im(Na/r). Send a coset with a representative (ua) elU° — (FCQcCM,

N(M/F)

Q : F| < o0) satisfying (u~)1=% = (7o)~ with 7 € Gal(M/F) to
1) Q

-1 o .
(uf y(up) € UN(/R?F)) (FCECR,|E:F|< o).

It belongsto n(F), sowe get amap

. <

This map isabijection [ F] which makes Koch—de Shalit’stheory acorollary of the main
results of this section.

[F]

[FV]

LY

[KdS]

(W]
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10. Galois modules and class field theory

Boas Erez

In this section we shal try to present the reader with a sample of severa significant
instances where, on the way to proving results in Galois module theory, oneis lead to
use classfield theory. Conversely, some contributions of Galois module theory to class
fields theory are hinted at. We shall also single out some problems that in our opinion
deserve further attention.

10.1. Normal basistheorem

The Normal Basis Theorem is one of the basic results in the Galois theory of fields. In
fact one can use it to obtain a proof of the fundamental theorem of the theory, which
sets up a correspondence between subgroups of the Galois group and subfields. Let us
recall its statement and give aversion of its proof following E. Noether and M. Deuring
(avery modern proof!).

Theorem (Noether, Deuring). Let K be a finite extension of Q. Let L/K be a finite
Galois extension with Galois group G = Ga(L/K). Then L is isomorphic to K[G]
as a K[G]-module. That is: there isan a € L such that {o(a)},cq isa K-basis of
L. Such an a is called a normal basis generator of L over K.

Proof. Usethe isomorphism

p:L®kx L~ L[Gl, ¢®y)=) o@ys ",
c€EG

then apply the Krull-Schmidt theorem to deduce that this isomorphism descendsto K.
Note that an element a in L generates a norma basis of L over K if and only if
v(a) € LIG]*.
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10.1.1. Normal integral bases and ramification.

Let us now move from dimension 0 (fields) to dimension 1, and consider rings of
algebraic integers.

Let p beaprime number congruent to 1 modulo an (odd) prime I. Let L1 = Q(up),
and let K bethe unique subfield of L of degree [ over Q. Then G = Gal(K/Q) is
cyclic of order I and K istamely ramified over Q. One can construct a normal basis
for thering Ok of integersin K over Z: indeed if { denotes a primitive p-th root
of unity, then ¢ isanormal basis generator for L1/Q and the trace of ¢ to K gives
the desired normal integral basis generator. Let now Ly = Q(y,;2). Itiseasy to seethat
thereisno integral normal basisfor L, over Q. Asnoticed by Noether, thisisrelated
tothefact that L, isawildly ramified extension of the rationals. However there isthe
following structure result, which gives a complete and explicit description of the Galois
modul e structure of rings of algebraic integersin absolute abelian extensions.

Theorem (Leopoldt 1959). Let K be an abelian extension of Q. Let G = Gal(K/Q).
Define

A={A e Q[G] : \Og C Ok}

where O is the ring of integers of K. Then Ok isisomorphicto A asa A-module.

Notethat the statement isnot truefor an arbitrary global field, nor for general relative
extensions of number fields. The way to prove this theorem is by first dealing with the
case of cyclotomic fields, for which one constructs explicit normal basis generatorsin
terms of roots of unity. In this step one usesthe criterion involving the resolvent map ¢
which we mentioned in the previous theorem. Then, for ageneral absolute abelian field
K, oneembeds K into the cyclotomic field Q(fx) with smallest possible conductor
by using the Kronecker—\Weber theorem, and one “tracestheresult down” to K. Hereit
is essential that the extension Q(fx )/ K isessentially tame. Explicit classfield theory
is an important ingredient of the proof of this theorem; and, of course, this approach
has been generalized to other settings: abelian extensions of imaginary quadratic fields
(complex multiplication), extensions of Lubin—Tate type, etc.

10.1.2. Factorizability.

While Leopoldt’s result is very satisfactory, one would still like to know a way to
express the relation there as arelation between the Galois structure of rings of integers
in general Galois extensions and the most natural integral representation of the Galois
group, namely that given by the group algebra. Thereis avery neat description of this
which uses the notion of factorizability, introduced by A. Frohlich and A. Nelson. This
leads to an equivalence relation on modules which is weaker than local equivalence
(genus), but which is non-trivial.

Let G beafinitegroup, andlet S = {H : H < G}. Let T bean abelian group.
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Definition. A map f:S — T iscalled factorizable if every relation of the form

Y agindg1=0
HeS

with integral coefficients az, impliestherelation

[] ray==1.

HesS

Example. Let G = Ga(L/K), thenthediscriminant of L/K definesa factorizable
function (conductor-discriminant formul a).

Definition. Let i: M — N beamorphismof Ox[G]-lattices. Thelattices M and N
are said to be factor-equivalent if themap H — |L¥ : i(M)H| isfactorizable.

Theorem (Frohlich, de Smit). If G = Gal(L/K) and K is a global field, then Oy, is
factor-equivalent to Ox[G].

Again this result is based on the isomorphism induced by the resolvent map ¢ and
the fact that the discriminant defines a factorizable function.

10.1.3. Admissible structures.

Ideas related to factorizability have very recently been used to describe the Galois
module structure of idealsin local field extensions. Hereis a sample of the resuilts.

Theorem (Vostokov, Bondarko). Let K be a local field of mixed characteristic with
finite residue field. Let L be a finite Galois extension of K with Galois group G.

(1) Let I, and I, be indecomposable O g[G]-submodules of Or. Then Iy is iso-
morphic to I as Ox[G]-modules if and only if there is an a in K* such that
Il = aIQ.

(2) Op contains decomposable ideals if and only if there is a subextension E/L of
L/K suchthat |L : E|Og contains the different Dy, /p.

(3) If L isatotally ramified Galois p-extensionof K and O contains decomposable
ideals, then L/K iscyclicand |L : K|Oy contains the different Dy /g .

In fact what is remarkable with these results is that they do not involve class field
theory.
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10.2. Galoismoduletheory in geometry

Let X be asmooth projective curve over an algebraicaly closed field k. Let afinite
group G acton X. Put Y = X/G.

Theorem (Nakajima 1975). The covering X/Y is tame if and only if for every line
bundle £ of sufficiently large degree which is stable under the G-action HO(X, L) is
a projective k[G]-module.

This is the precise analogue of Ullom’s version of Noether’s Criterion for the ex-
istence of anormal integral basis for ideals in a Galois extension of discrete valuation
rings. Infactif (X, @) isatame action of afinite group G on any reasonable proper
scheme over aring A like Z or F,, then for any coherent G-sheaf 3 on X one can
define an equivariant Euler—Poincaré characteristic x(F, G) in the Grothendieck group
Ko(A[G)]) of finitely generated projective A[G]-modules. It isan outstanding problem
to compute these equivariant Euler characteristics. One of the most important results
in this area is the following. Interestingly it relies heavily on results from class field
theory.

Theorem (Pappas1998). Let G be an abelian group and let X be an arithmetic surface
over Z with a free G-action. Then 2x (O, G) =0 in Ko(Z[G])/{Z[G]).

10.3. Galoismodulesand L-functions

Let afinite group G act on a projective, regular scheme X of dimension n defined
over thefinitefield F, andlet Y = X/G. Let {(X,t) bethe zeta-function of X. Let
ex bethe [-adic Euler characteristic of X . Recal that

(X, 8) = (") /H(X, g, ex n=2 ) (D0 — Ix(Q/r,)
0<ign

the latter being a consequence of the Hirzebruch—Riemann—Roch theorem and Serre
duality. It is well known that the zeta-function of X decomposes into product of
L-functions, which also satisfy functional equations. One can describe the constants
in these functional equations by “taking isotypic components’ in the analogue of the
above expression for ex - n/2 in terms of equivariant Euler-Poincaré characteristics.
The resultsthat have been obtained so far do not use class field theory in any important
way. So we are lead to formulate the following problem:

Problem. Using Parshin’s adelic approach (sections 1 and 2 of Part I1) find another
proof of these results.

L et us note that one of the main ingredientsin the work on these mattersisaformula
on e-factorsof T. Saito, which generalizesone by S. Saito inspired by Parshin’sresults.
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10.4. Galois structure of class formations

Let K be anumber field and let L be afinite Galois extension of K, with Galois
group G = Gal(L/K). Let S beafinite set of primesincluding those which ramify in
L/K and the archimedean primes. Assumethat S is stable under the G-action. Put
AS = ker(ZS — 7). Let Ugs bethe group of S-unitsof L. Recal that Us ® Q is
isomorphicto AS ® Q as Q[G]-modules. Thereisawell known exact sequence

0—-Us —+A—>B—-AS—0

with finitely generated A, B such that A has finite projective dimension and B is
projective. The latter sequence is closely related to the fundamenta class in global
class field theory and the class Q = (4) — (B) in the projective class group Cl (Z[G]
is clearly related to the Galois structure of S-units. There are local analogues of the
above sequence, and there are anal ogous sequences relating (bits) of higher K -theory
groups (theideaisto replace the pair (Usg, AS') by apair (K;(0), K]_;(0))).

Prablem. Usingcomplexesof G-modules(asinsection 11 of part|) canonegeneralize
the local sequencesto higher dimensional fields?

For more details see [E].
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