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Why Geophysicsuses Fourier Analysis

When earth material propertiesare constant in any of the cartesian variables (¢, z, y, ) then
it isuseful to Fourier transform (FT) that variable.

In seismology, the earth does not change with time (the ocean does!) so for the earth, we
can generally gain by Fourier transforming the time axisthereby converting time-dependent
differential equations (hard) to algebraic equations (easier) in frequency (temporal fre-
quency).

In seismology, the earth generally changes rather strongly with depth, so we cannot
usefully Fourier transform the depth = axis and we are stuck with differential equationsin
z. Onthe other hand, we can model alayered earth where each layer has material properties
that are constant in z. Then we get analytic solutions in layers and we need to patch them
together.

Thirty years ago, computers were so weak that we always Fourier transformed the x
and y coordinates. That meant that their analyses were limited to earth models in which
velocity was horizontally layered. Today we still often Fourier transform ¢, x, y but not z,
so we reduce the partial differential equations of physics to ordinary differential equations
(ODEs). A big advantage of knowing FT theory is that it enables us to visualize physica
behavior without us needing to use a computer.

The Fourier transform variables are called frequencies. For each axis (¢, z,y, z) we
have a corresponding frequency (w, k., k,, k.). The k’s are spatial frequencies, w is the
temporal frequency.

The frequency is inverse to the wavelength. Question: A seismic wave from the fast
earth goes into the slow ocean. The temporal frequency stays the same. What happens to
the spatial frequency (inverse spatial wavelength)?

In alayered earth, the horizonal spatial frequency is a constant function of depth. We
will find this to be Snell’s law.

In a spherical coordinate system or acylindrical coordinate system, Fourier transforms
are useless but they are closely related to “spherical harmonic functions” and Bessel trans-
formations which play arole similar to FT.

Our goal for these four lecturesis to develop Fourier transform insights and use them
to take observations made on the earth’s surface and “ downward continue” them, to extrap-
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olate them into the earth. Thisisacentral tool in earth imaging.

0.0.1 Impulseresponse and ODEs

When Fourier transforms are applicable, it means the “earth response” now is the same as
the earth response later. Switching our point of view from time to space, the applicability of
Fourier transformation means that the “impulse response” here is the same as the impulse
response there. An impulse is a column vector full of zeros with somewhere a one, say
(0,0,1,0,0,---)" (wherethe prime ()’ means transpose the row into acolumn.) Animpulse
responseis a column from the matrix

Qo b 0 0 O 0 O

q1 by bp 0 0 0 O [ po |

q2 by by bgp 0 0 O D1

q3 0 by by by O O D2

4 - qa N 0 0 by by by O D3 - Br (0.2)

a5 0 0 0 by by by D4

G 0 0 0 0 b 0y 2

0 | (000 0 0 0 b |

The impulse response is the q that comes out when the input p is an impulse. In atypical
application, the matrix would be about 1000 x 1000 and not the simple 8 x 6 example
that | show you above. Notice that each column in the matrix contains the same waveform
(bo, b1, by). This waveform is called the “impulse response”. The collection of impulse
responses in Equation (0.1) defines the the convolution operation.

Not only do the columns of the matrix contain the same impulse response, but each
row likewise contains the same thing, and that thing is the backwards impulse response
(by, by, bo). Suppose (bs, by, by) were numerically equal to (1, —2,1)/A¢?. Then equation
(0.1) would be like the differential equation Cj%p = ¢. Equation (0.1) would be a finite-
difference representation of a differential equation. Two important ideas are equivalent;
either they are both true or they are both false:

1. The columns of the matrix all hold the same impul se response.

2. Thedifferential equation has constant coefficients.

The story gets more complicated when we look at the boundaries, the top and bottom few
equations. We'll postpone that.

0.0.2 Ztransforms

There isanother way to think about equation (0.1) which is even more basic. It does not in-
volve physics, differential equations, or impul se responses; it merely involves polynomials.
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(That takes me back to middle school.) Let us define three polynomials.

P(Z) = po+pZ+ paZ®+ psZ° + puZ* + ps Z° + ps Z° (0.2)
B(Z) bo + b1 Z + by Z* (0.3)
QZ) = @w+mZ+@Z’+ G2+ @2 +¢2° + ¢ 2° + ¢ 2" + s Z°  (0.4)

Areyou able to multiply P(Z)B(Z)? If you are, then you can examine the coefficient
of Z°. You will discover that it is exactly the fifth row of equation (0.1)! Actualy it is
the sixth row because we started from zero. For each power of Z in Q(Z) = P(Z)B(Z)
we get one of the rows in equation (0.1). Convolution is defined to be the operation on
polynomial coefficients when we multiply polynomials.

0.0.3 Frequency

The numerical value of Z doesn’t matter. It could have any numerical value. We haven't
needed 7 to have any particular value. It happens that real values of 7 lead to what are
called Laplace transforms and complex values of 7 lead to Fourier transforms.

Let us test some numerical values of Z. Taking Z = 1/10 we notice the earliest
coefficient in each of the polynomials is strongly emphasized in creating the numerical
value of the polynomial, i.e., P(1/10) = po + p1/10 + p2/100 + ---. Likewise taking
Z = 10, the latest value is strongly emphasized. This undesirable weighting of early or
late is avoided if we use the Fourier approach and use numerical valuesof Z that fulfill the
condition | Z| = 1. Other than Z = +1 that forces us to use complex values of Z, but there
are plenty of those.

Recall the complex plane where the real axis is horizontal and the imaginary axis is
vertical. For Fourier transforms, we are interested in complex numerical valuesof Z which
have unit magnitude, namely, | Z| = 1. Examplesare Z = +1, Z = +ior Z = (1 +i)/v/2.

The numerical value 7 — 1 giveswhat is called the zero frequency. Evaluating P(7 —
1) = po + p1 + p2 + p3 + pa + ps + pe, finds the zero-frequency component of p,. The
value Z = —1 giveswhat is called the “Nyquist frequency”. P(Z = —1) = py—p1 +p2 —
p3 + pa — p5 + ps. The Nyquist frequency is the highest frequency that we can represent
with sampled time functions. If our signal p; werep, = (1, —1,+1,—1,+1, —1,+1) then
al thetermsin P(Z = —1) would add together with the same polarity so that signal has a
strong frequency component at the Nyquist frequency.

How about frequencies inbetween zero and Nyquist? These require us to use complex
numbers. Consider 7 = i, wherei = /—1. The signa (1,1,4%,4%,i%,4°,---) could be
segregated into its real and imaginary parts. The real part is (1,0,—1,0,1,0,---). Its
wavelength is twice as long as that of the Nyquist frequency so its frequency is exactly
half. The valuesfor Z used by Fourier transform are Z = cosw + i sin w.

Now we will steal parts of Jon Claerbout’s books, “Earth Soundings Analysis, Process-
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ing versus Inversion” and “Basic Earth Imaging” which are freely available on the WWW?!,
To speed you along though, | trim down those chapters to their most important parts.

http://sepwww.stanford.edu/sep/prof/



Chapter 1

Convolution and Spectra

Time and space are ordinarily thought of as continuous, but for the purposes of computer
analysiswe must discretize these axes. Thisisalso called “sampling” or “digitizing.” You
might worry that discretization is a practical evil that muddies all later theoretical analysis.
Actualy, physical concepts have representations that are exact in the world of discrete
mathematics.

1.1 SAMPLED DATA AND Z-TRANSFORMS

Consider the idealized and simplified signal in Figure 1.1. To analyze such an observed

Figure 1.1: A continuous signal ®
sampled at uniform time intervals.

[cs trivi] [ER] N B g

signal in a computer, it is necessary to approximate it in some way by a list of numbers.
The usual way to do thisis to evaluate or observe b(t) at a uniform spacing of pointsin
time, call this discretized signal b;. For Figure 1.1, such a discrete approximation to the
continuous function could be denoted by the vector

b — (...0,0,1,20 —1,-1,0,0,...) (1.1)

Naturally, if time points were closer together, the approximation would be more accurate.
What we have done, then, is represent asignal by an abstract n-dimensional vector.

Another way to represent a signal is as a polynomial, where the coefficients of the
polynomial represent the value of b, at successive times. For example,

B(Z) = 1+2Z+02°—-27°-27* (1.2)

1
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This polynomial is called a “ Z-transform.” What is the meaning of Z here? Z should
not take on some numerical value; it isinstead the unit-delay operator. For example, the
coefficientsof ZB(Z) = Z + 27? — Z* — Z° are plotted in Figure 1.2. Figure 1.2 shows

®
Figure 1.2: The coefficients of
Z B(Z) arethe shifted version of the
coefficients of B(7). oeoe ® ®

[ER] oo

the same waveform as Figure 1.1, but now the waveform has been delayed. So the signal b,
is delayed n time units by multiplying B(7) by Z™. The delay operator / isimportant in
analyzing waves simply because waves take a certain amount of time to move from place
to place.

Another value of the delay operator isthat it may be used to build up more complicated
signals from simpler ones. Suppose b; represents the acoustic pressure function or the
seismogram observed after adistant explosion. Then b, iscalled the“impulseresponse.” If
another explosion occurred at t = 10 time units after thefirst, we would expect the pressure
function y(¢) depictedin Figure 1.3. Intermsof Z-transforms, this pressure function would
beexpressedasY (Z) = B(Z) + Z'YB(Z).

Figure 1.3: Response to two explo-

sions. | cs-triv3 [ER] - e - L > o o oo - J - e

1.1.1 Linear superposition

If the first explosion were followed by an implosion of half-strength, we would have
B(Z) — £Z1%B(Z). If pulses overlapped one another in time (as would be the case if
B(Z) had degree greater than 10), the waveforms would simply add together in the region
of overlap. The supposition that they would just add together without any interaction is
called the“linearity” property. In seismology we find that—although the earth is a hetero-
geneous conglomeration of rocks of different shapes and types—when seismic wavestravel
through the earth, they do not interfere with one another. They satisfy linear superposi-
tion. The plague of nonlinearity arises from large amplitude disturbances. Nonlinearity is
a dominating feature in hydrodynamics, where flow velocities are a noticeable fraction of
the wave velocity. Nonlinearity is absent from reflection seismology except within a few
meters from the source. Nonlinearity does not arise from geometrical complicationsin the
propagation path. An example of two plane waves superposing is shown in Figure 1.4.
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1.1.2 Convolution with Z-transform

Now suppose there was an explosion at ¢t = 0, a half-strength implosion at ¢t = 1, and
another, quarter-strength explosion at ¢t — 3. This sequence of events determinesa* source”
time series, z; — (1, —1,0, ;). The Z-transform of the sourceis X (Z) = 1 — 37 + 1 Z°.
The observed y; for this sequence of explosions and implosions through the seismometer
hasa Z-transform Y (7), given by

B(Z) - g B(Z) + ZZ B(Z)

= <1_§+ZZ3> B(Z)

~  X(2)B(2) (1.3)

Y(2)

Thelast equation shows polynomial multiplication asthe underlying basis of time-invariant
linear-system theory, namely that the output Y (/) can be expressed as the input X (7)
times the impulse-response filter B(7). When signal values are insignificant except in a
“small” region on thetime axis, the signals are called “wavelets”

1.1.3 Convolution equation and program

What do we actually do in a computer when we multiply two Z-transforms together? The
filter 2 + Z would be represented in a computer by the storage in memory of the coeffi-
cients (2, 1). Likewise, for 1 — 7, the numbers (1, —1) would be stored. The polynomial
multiplication program should take these inputs and produce the sequence (2, —1, —1). Let
us see how the computation proceeds in ageneral case, say
X(Z)B(Z) =  Y(2) (1.4)
(o + 2172 +227% 4+ ) (g + 01 Z + 0, 7%) = yo+wnZ +yZ°+ - (1.5)
| dentifying coefficients of successive powersof 7, we get

Yo = Zobo
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Y1 = x1bo + wob1

Yo = Tobg + 2101 + 2obo (1.6)
Y3 = w3 + w2y + w10y

Ya = x4bo + 23b1 + T2y

In matrix form thislookslike

Yo | 20 0 0]
n Ty xo 0
Y2 T2 T1 Xg bo
Ys = I3 T2 I1 by (1.7)
Ya Ty T3z T2 by
Ys 0 x4 23
I Ye | i 0 0 Ty ]

The following equation, called the “convolution equation,” carries the spirit of the group
shownin (1.6):

Ny
Yo = D Tp_ib; (1.8)
i=0

To be correct in detail when we associate equation (1.8) with the group (1.6), we should
also assert that either the input x;, vanishes before k = 0 or NV, must be adjusted so that the
sum does not extend before zy. These end conditions are expressed more conveniently by
defining j = k£ — i in equation (1.8) and eliminating £ getting

Ny
Yj+i = Z%‘bi (1.9)
i=0

A convolution program based on equation (1.9) including end effects on both ends, is
convol ve().

# convol uti on: Y(Z2) = X(Z2) * B(2)
#
subroutine convol ve( nb, bb, nx, xx, yy )
i nteger nb # nunber of coefficients in filter
i nteger nx # nunber of coefficients in input
# nunber of coefficients in output will be nx+nb-1
real bb(nb) # filter coefficients
real xx(nx) # input trace
real yy(1) # out put trace
i

i nteger ib, ix,
ny = nx + nb -1
call null( yy, ny)
do ib=1, nb
do ix= 1, nx
yy( ix+ib-1) = yy( ix+ib-1) + xx(ix) * bb(ib)

y, ny

return; end
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This program is written in a language called Ratfor, a “rational” dialect of Fortran. It is
similar to the Matlab language. You are not responsible for anything in this program, but,
if you areinterested, more detailsin the last chapter of PVI%, the book that | condensed this
from.

1.1.4 Negativetime

Noticethat X (Z) and Y (Z) need not strictly be polynomials; they may contain both posi-
tive and negative powersof Z, such as

xXr_ xXr_
X(2) = ---+Z—22+71+x0+x12+--- (1.10)
Y(Z) = ---+%+%+yo+y1Z+--- (1.11)

The negative powers of Z in X (Z) and Y'(Z) show that the data is defined before ¢t = 0.
The effect of using negative powersof 7 in thefilter is different. Inspection of (1.8) shows
that the output y, that occurs at time & is a linear combination of current and previous
inputs; that is, (z;, i < k). If thefilter B(Z) had included a term like b_,/Z, then the
output y,, at time &£ would be alinear combination of current and previous inputs and x; 1,
an input that really has not arrived at time k. Such a filter is called a “nonrealizable”
filter, becauseit could not operate in the real world where nothing can respond now to an
excitation that has not yet occurred. However, nonrealizable filters are occasionally useful
in computer simulationswhere all the datais prerecorded.

1.2 FOURIER SUMS

The world isfilled with sines and cosines. The coordinates of a point on a spinning wheel
are(x,y) = (cos(wt + ¢), sin(wt + ¢)), wherew isthe angular frequency of revolution and
¢ isthe phase angle. The purest tones and the purest colors are sinusoidal. The movement
of a pendulum is nearly sinusoidal, the approximation going to perfection in the limit of
small amplitude motions. The sum of all the tonesin any signal isits “spectrum.”

Small amplitude signals are widespread in nature, from the vibrations of atoms to the
sound vibrations we create and observe in the earth. Sound typically compresses air by a
volume fraction of 10~2 to 10, In water or solid, the compression is typically 107° to
1072, A mathematical reason why sinusoids are so common in nature is that laws of nature
are typically expressible as partia differential equations. Whenever the coefficients of the
differentials (which are functions of material properties) are constant in time and space, the
equations have exponential and sinusoidal solutions that correspond to waves propagating
in all directions.

http://sepwww.stanford.edu/sep/prof/
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1.2.1 Superposition of sinusoids

Fourier analysisis built from the complex exponential

e ™ =  coswt—isinwt (1.12)

A Fourier component of atime signal is a complex number, a sum of real and imaginary

parts, say
B = ReB+imB (1.13)

which is attached to some frequency. Let j be an integer and w; be a set of frequencies.
A signal b(t) can be manufactured by adding a collection of complex exponential signals,
each complex exponential being scaled by a complex coefficient B;, namely,

bty — 3 Bje it (1.14)

This manufactures a complex-valued signal. How do we arrange for b(t) to be real? We
can throw away the imaginary part, which islike adding b() to its complex conjugate b(t),
and then dividing by two:

1 ) _
Re b(t) = 5 Z (Bj e ™' 4 B; e™) (1.15)
J

In other words, for each positivew; with amplitude B;, we add a negative —w,; with ampli-
tude B; (likewise, for every negativew; ...). The B; are called the “frequency function,” or
the “Fourier transform.” Loosely, the B; are called the“spectrum,” though in formal math-
ematics, the word “spectrum” is reserved for the product B;B;. The words “amplitude

spectrum” universally mean |/ B; B;.
In practice, the collection of frequencies is almost aways evenly spaced. Let j be an

integer w = j Aw so that
b(t) = Y Bje ik (1.16)
J

Representing asignal by asum of sinusoidsis technically known as “inverse Fourier trans-
formation.” An example of thisis shownin Figure 1.5.

1.2.2 Sampled timeand Nyquist frequency

In theworld of computers, timeis generally mapped into integerstoo, say ¢t = nAt. Thisis
called “discretizing” or “sampling.” The highest possible frequency expressible on amesh
is(---,1,—1,+1,—1,41,—1,---), which is the same as ¢'™. Setting e’“m=<' = ¢'™ we
see that the maximum frequency is

Wpax = — (1.17)
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Low freqguency Time domain
Higher frequency Time Domain
Sum of fwo freqguencies Time domain

Figure 1.5: Superposition of two sinusoids. [NR]

Timeiscommonly givenin either seconds or sample units, which are the same when At =
1. In applications, frequency is usually expressed in cycles per second, which is the same
as Hertz, abbreviated Hz. In computer work, frequency is usually specified in cycles per
sample. In theoretical work, frequency is usually expressed in radians where the relation
between radians and cyclesisw = 27 f. We use radians because, otherwise, equations are
filled with 27’s. When time is given in sample units, the maximum frequency has a name:
itisthe“Nyquist frequency,” whichisr radiansor 1/2 cycle per sample.

1.2.3 Fourier sum

In the previous section we superposed uniformly spaced frequencies. Now we will super-
pose delayed impulses. The frequency function of a delayed impulse at time delay ¢, is
et Adding some pulsesyieldsthe “Fourier sum”:

Bw) = Y bye®m = 3 b, e (1.18)

The Fourier sum transforms the signal b, to the frequency function B(w). Time will often
be denoted by ¢, even though its units are sample units instead of physical units. Thus we
often see b; in equations like (1.18) instead of b,,, resulting in an implied At = 1.
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1.3 FOURIER AND Z-TRANSFORM

The frequency function of apulse at timet, = nAt ise™™At = (e“At)n, The factor ¢4
occurs so often in applied work that it has a name:

Z = et (1.19)

With this 7, the pulse at time ¢,, is compactly represented as /". The variable 7/ makes
Fourier transfor mslook like polynomials, the subject of aliteraturecalled“ Z-transfor ms.”
The Z-transform is a variant form of the Fourier transform that is particularly useful for
time-discretized (sampled) functions.

From the definition (1.19), we have 72 = ™24t 73 — w35t etc. Using these equivar
lencies, equation (1.18) becomes

Bw) = Bw®) = Y b2 (1.20)

1.3.1 Unitcircle

In this chapter, w is area variable, s0 Z = €2t = coswAt + isinwAt is a complex
variable. It has unit magnitude because sin? + cos? = 1. Asw ranges on the real axis, Z
ranges on the unit circle | Z| = 1.

1.3.2 Differentiator

A particularly interesting factor is (1— 7 ), becausethefilter (1, —1) islikeatimederivative.
The time-derivativefilter destroys zero frequency in the input signal. The zero frequency
is(---,1,1,1,---) witha Z-transform (- - - + Z* + Z*® + Z* + - -). To see that the filter
(1 — Z) destroys zero frequency, noticethat (1 — Z)(-- -+ 22+ Z3+ Z* +---) = 0. More
formally, consider output Y (Z) = (1 — Z)X(Z) made from the filter (1 — Z) and any
input X (Z). Since (1 — Z) vanishesat Z — 1, then likewise Y(Z) must vanishat 7 — 1.
Vanishing at Z = 1 isvanishing at frequency w = 0 because Z — exp(iwAt) from (1.19).
Now we can recognize that multiplication of two functions of Z or of w is the equivalent
of convolving the associated time functions.

Multiplication in the frequency domain is convolution in the time domain.

A popular mathematical abbreviation for the convolution operator is an asterisk: equa-
tion (1.8), for example, could be denoted by y;, = x;xb;. | do not disagree with asterisk
notation, but | prefer the equivalent expression Y (7) = X (Z)B(Z), which simultaneously
exhibits the time domain and the frequency domain.

Thefilter (1 — 7) is often called a“differentiator.” Itisdisplayedin Figure 1.6.
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Amp(omega)

filter(t)

0 omega pi

Figure 1.6: A discrete representation of the first-derivative operator. The filter (1, —1) is
plotted on the left, and on theright isan amplituderesponse, i.e., |1 — 7| versusw. |cs-ddt
[NR]

1.3.3 Gaussian examples

Thefilter (1 + Z)/2 isarunning average of two adjacent time points. Applying this filter
N timesyieldsthefilter (1 + Z)Y /2Y. The coefficients of thefilter (1 + Z)" are generally
known as Pascal’s triangle. For large N the coefficients tend to a mathematical limit
known as a Gaussian function, exp(—a(t — t4)?), where a and ¢, are constants that we
will not determine here. We will not prove it here, but this Gaussian-shaped signal has a
Fourier transform that also has a Gaussian shape, exp(—/3w?). The Gaussian shapeis often
called a“bell shape” Figure 1.7 shows an examplefor N ~ 15. Note that, except for the
rounded ends, the bell shape seems a good fit to a triangle function. Curioudly, the filter

Amp(omega)

filter(t)

0 omega pi
Figure 1.7: A Gaussian approximated by many powersof (1 + 7). [NR]

(.75 + .25Z)N aso tends to the same Gaussian but with a different t,. A mathematical
theorem says that almost any polynomial raised to the N-th power yields a Gaussian.

In seismology we generally fail to observe the zero frequency. Thus the idealized
seismic pulse cannot be a Gaussian. An analytic waveform of longstanding popularity
in seismology is the second derivative of a Gaussian, a'so known as a “Ricker wavelet.”
Starting from the Gaussian and multiplying be (1 — Z)? = 1 — 27 + Z? producesthis old,
favorite wavelet, shown in Figure 1.8.
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Amp(omega)

filter(t)

0 omega pi

Figure 1.8: Ricker wavelet. [NR]

1.3.4 InverseZ-transform

Fourier analysis is widely used in mathematics, physics, and engineering as a Fourier
integral transformation pair:

Bw) — / bty et d (1.22)

—00

b = [ Blw)edo (122)
These integrals correspond to the sums we are working with here except for some minor
details. Books in electrical engineering redefine ¢! ase !, That is like switching w to
—w. Instead, we have chosen the sign convention of physics, which is better for wave-
propagation studies (as explained in IEI). The infinite limits on the integrals result from
expressing the Nyquist frequency in radians/second as w/At. Thus, as At tends to zero,
the Fourier sum tends to the integral. When we reach equation (??) we will see that if a
scaling divisor of 2 isintroduced into either (1.21) or (1.22), then b(¢) will equal b(t).

The Z-transform is always easy to make, but the Fourier integral could be difficult
to perform, which is paradoxical, because the transforms are really the same. To make
a Z-transform, we merely attach powers of Z to successive data points. When we have
B(Z), we can refer to it either as atime function or a frequency function. If we graph the
polynomial coefficients, then it isatime function. It is afrequency function if we evaluate
and graph the polynomial B(Z = ¢*) for various frequencies w.

EXERCISES:

1 Let B(Z) =1+ Z+ Z% + Z* + Z*. Graph the coefficients of B(Z) as afunction of
the powers of Z. Graph the coefficients of [B(Z)]°.

2 Asw movesfrom zero to positive frequencies, whereis Z and which way doesit rotate
around the unit circle, clockwise or counterclockwise?
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3 Identify locationson the unit circle of thefollowing frequencies. (1) the zero frequency,
(2) the Nyquist frequency, (3) negative frequencies, and (4) afrequency sampled at 10
points per wavel ength.

4 Sketch the amplitude spectrum of Figure 1.8 from 0 to 4.

1.4 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much of each
tone is present. The Fourier transform of a spectrum yields an interesting function called
an “autocorrelation,” which measures the similarity of asignal to itself shifted.

1.4.1 Spectraintermsof Z-transforms

Let uslook at spectrain terms of Z-transforms. Let a spectrum be denoted S(w), where
Sw) = [Bw = Bw)BWw) (1.23)

Expressing thisin terms of athree-point Z-transform, we have

S(w) = (bo+bie™™ + boe™ ) (by + bre™ + bye™) (1.24)
~ by b

S(Z) = (bo + 51 + Z—é) (bo + 01 Z + ba Z°) (1.25)

S(z) - B (%) B(2) (1.26)

It isinteresting to multiply out the polynomial B(1/7) with B(Z) in order to examine the
coefficients of S(Z):

boby  (biby + boby)

S5(2) = —5 + ~ + (Bobo + buby + babs) + (Boby + b1b2)Z + bobs Z°
S(Z) = % + 8—; + S+ 817+ 8377 (1.27)

The coefficient s;, of Z* isgiven by
Sk = Zgibi-&-k (1.28)

Equation (1.28) is the autocorrelation formula. The autocorrelation value s, at lag 10
IS s19. It is a measure of the similarity of b; with itself shifted 10 units in time. In the
most frequently occurring case, b; is real; then, by inspection of (1.28), we see that the
autocorrelation coefficientsarereal, and s;, = s_;,.
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Speciaizing to areal time series gives

1 1
S(Z) = so+ s (Z + 5) } s <Z2 + ﬁ) (1.29)
S(Z(w)) = so+s1(e™ +e™™) + s9(e 4 e ) (1.30)
S(w) = 8o+ 2s1cosw + 289 cos 2w (1.31)
Sw) = ) spcoskw (1.32)
k
S(w) = cosinetransformof s (1.33)

This proves a classic theorem that for real-valued signals can be simply stated as follows:

For any real signal, the cosine transform of the autocorrelation equals the magnitude
sgquared of the Fourier transform.

1.4.2 Two waysto computea spectrum

There are two computationally distinct methods by which we can compute a spectrum: (1)
compute all the s, coefficients from (1.28) and then form the cosine sum (1.32) for each
w; and aternately, (2) evaluate B(Z) for some value of Z on the unit circle, and multiply
the resulting number by its complex conjugate. Repeat for many values of Z on the unit
circle. When there are more than about twenty lags, method (2) is cheaper, because the fast
Fourier transform discussed in chapter 2 can be used.

1.4.3 Common signals

Figure 1.9 shows some common signals and their autocorrelations. Figure 1.10 shows
the cosine transforms of the autocorrelations. Cosine transform takes us from time to fre-
guency and it also takes us from frequency to time. Thus, transform pairs in Figure 1.10
are sometimes more comprehensible if you interchange time and frequency. The various
signals are given namesin the figures, and a description of each follows:

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was truncated
(multiplied by a rectangle function). The autocorrelation is a sinusoid under a tri-
angle, and its spectrum is a broadened impulse (which can be shown to be a narrow
sinc-squared function).

sinc Thesinc function issin(wyt)/(wot). Its autocorrelation is another sinc function, and
its spectrum is a rectangle function. Here the rectangle is corrupted slightly by
“Gibbs sidelobes,” which result from the time truncation of the original sinc.

widebox A wide rectangle function has a wide triangle function for an autocorrelation
and a narrow sinc-squared spectrum.
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Figure 1.9: Common signals and one side of their autocorrelations. [ER]

cos p, y, ufocorrelations | Spectra

RLIEILLE LI L R \
sine [l . [l
w Do [, m
n box HH“M HHHHHHHHHHW
twin ‘ ‘
< box HH“M atlllli, H‘\‘ \\HHM i
comb | ||| |11 11110,., . Al I
embz [ [ [, i Al il
cmb3 ‘ Ll ‘ H\ ‘HM ‘HM ‘HM \H
cmb4 ‘ ‘ ‘ H“M ‘\\‘HH“M‘ ‘\\‘HH“M‘ ‘\\‘HH“M‘ \\HH
cmbb ‘ ‘ ‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘\ \‘
exp "HHHHHHHHHHHH \\\\\\\\ HMMM
gauss |||l .
rand ‘ T RTI R TN \‘m il \HH ettt il
s ran HM ““““ i L T ‘M\H‘ SYPRTON [T

Figure 1.10: Autocorrelations and their cosine transforms, i.e., the (energy) spectra of the
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narrow box A narrow rectangle has a wide sinc-squared spectrum.
twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but thisspectrumis
modulated (multiplied) by a sinusoidal function of frequency, where the modulation
frequency measures the time separation of the narrow boxes. (An oscillation seenin
the frequency domain is sometimes called a“quefrency.”)

comb Fine-toothed-comb functions are like rectangle functions with alower Nyquist fre-
guency. Coarse-toothed-comb functions have a spectrum which is a fine-toothed
comb.

exponential The autocorrelation of a transient exponential function is a double-sided
exponential function. The spectrum (energy) isaCauchy function, 1/(w?+w?). The
curious thing about the Cauchy function is that the amplitude spectrum diminishes
inversely with frequency to thefirst power; hence, over an infinite frequency axis, the
function hasinfiniteintegral. The sharp edge at the onset of the transient exponential
has much high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the spectrum
isalso aGaussian.

random Random numbers have an autocorrelation that is an impul se surrounded by some
short grass. The spectrum is positive random numbers.

smoothed random Smoothed random numbers are much the same as random numbers,
but their spectral bandwidth islimited.

1.4.4 Spectraof complex-valued signals

The spectrum of asignal isthe magnitude squared of the Fourier transform of the function.
Consider the real signal that is adelayed impulse. Its Z-transform issimply Z; so the real
part is cosw, and the imaginary part is sinw. The real part is thus an even function of
frequency and theimaginary part an odd function of frequency. Thisisalso true of Z2 and
any sum of powers (weighted by real numbers), and thusit istrue of any time function. For
any real signal, therefore, the Fourier transform has an even real part RE and an imaginary
odd part 10. Taking the squared magnitude gives (RE+:I0)(RE—:10)= (RE)? + (10)2. The
square of an even function is obviously even, and the square of an odd functionisalso even.
Thus, because the spectrum of a real-time function is even, its values at plus frequencies
are the same as its values at minus frequencies. In other words, no special meaning should
be attached to negative frequencies. Thisisnot so of complex-valued signals.

Although most signals which arise in applications are real signals, a discussion of cor-
relation and spectrais not mathematically complete without considering complex-valued
signals. Furthermore, complex-valued signals arise in many different contexts. In seismol-
ogy, they arise in imaging studies when the space axis is Fourier transformed, i.e., when
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a two-dimensional function p(¢, x) is Fourier transformed over space to P(t, k,). More
generally, complex-valued signals arise where rotation occurs. For example, consider two
vector-component wind-speed indicators: one pointing north, recording »,, and the other
pointing west, recording w,. Now, if we make a complex-valued time seriesv;, = n; + iwy,
the magnitude and phase angle of the complex numbers have an obvious physical interpre-
tation: 4w corresponds to rotation in one direction (counterclockwise), and (—w) to rote-

tion in the other direction. To seewhy, supposen; = cos(wot+¢) and wy = — sin(wot +¢).
Then v, = e “ot*+9) The Fourier transformis
400 . .
V(w) = / e wotte) givt gy (1.34)

The integrand oscillates and averages out to zero, except for the frequency w = wy. So the
frequency functionisapulseat w = wy:

V(w) = dw—wy)e ™ (1.35)

Conversely, if w, were sin(wgt + ¢), then the frequency function would be a pulse at —wy,
meaning that the wind velocity vector is rotating the other way.

1.4.5 Time-domain conjugate

A complex-valued signal such as ¢! can be imagined as a corkscrew, where the real
and imaginary parts are plotted on the z- and y-axes, and time ¢ runs down the axis of the
screw. The complex conjugate of this signal reverses the y-axis and gives the screw an
opposite handedness. In Z-transform notation, the time-domain conjugate is written

B(Z) = by+be” +be™ + --- (1.36)

Now consider the complex conjugate of afrequency function. In Z-transform notation this
iswritten

Bw) - B(E) — byt he ™ b hpe i (1.37)

To see that it makes a difference in which domain we take a conjugate, contrast the two
equations (1.36) and (1.37). The function B(—)B(7) is a spectrum, whereas the function
b, b, is called an “envelope function.”

You might be tempted to think that Z = 1/Z, but that istrue only if w isreal, and often
itisnot.

1.4.6 Spectral transfer function

Filters are often used to change the spectra of given data. With input X (7)), filters B(7),
and output Y(Z), we have Y (Z) = B(Z)X(Z) and the Fourier conjugate Y (1/7) =
B(1/Z)X(1/Z). Multiplying these two relations together, we get

YY = (BB)(XX) (1.38)
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which says that the spectrum of the input times the spectrum of the filter equals the spec-
trum of the output. Filters are often characterized by the shape of their spectra; this shape
isthe same as the spectral ratio of the output over the input:

BB = (1.39)

YY
XX

EXERCISES:

1 Suppose a wavelet is made up of complex numbers. Is the autocorrelation relation
Sk = s_j true? Is s, real or complex? 1s.S(w) real or complex?



Chapter 2

Discrete Fourier transform

Happily, Fourier sums are exactly invertible: given the output, the input can be quickly
found. Because signals can be transformed to the frequency domain, manipulated there,
and then returned to the time domain, convolution and correlation can be done faster. Time
derivatives can also be computed with more accuracy in the frequency domain than in the
time domain. Signals can be shifted afraction of the time sample, and they can be shifted
back again exactly. In this chapter we will see how many operations we associate with the
time domain can often be done better in the frequency domain. We will also examine some
two-dimensional Fourier transforms.

21 FT ASANINVERTIBLE MATRIX

A Fourier sum may be written

Bw) = Y et — 3 b7 2.1)

where the complex value 7 isrelated to the real frequency w by Z = e*. ThisFourier sum
isaway of building a continuous function of w from discrete signal values b, in the time
domain. In this chapter we will study the computational tricks associated with specifying
both time and frequency domains by a set of points. Begin with an example of asignal that
isnonzero at four successive instants, (bo, by, b, b3). Thetransformis

B(w) = bo+bZ+b7% +b37° (2.2)

The evaluation of this polynomial can be organized as a matrix times a vector, such as

By 11 1 1 b
B, B 1T W w2 ws by 23)
B, B 1 W2 w4t we b '
By 1 W3 we wo b

17
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Observe that the top row of the matrix evaluates the polynomia at Z = 1, a point where
alsow = 0. The second row evaluates B; = B(Z = W = ¢*“°), where wy is some base
frequency. The third row evaluates the Fourier transform for 2w, and the bottom row for
3wg. The matrix could have more than four rows for more frequencies and more columns
for more time points. | have made the matrix square in order to show you next how we can
find the inverse matrix. The size of the matrix in (2.3) is V = 4. If we choose the base
frequency w, and hence W correctly, the inverse matrix will be

Bo 11 | 1 By
b | 1 yw yw? 1w | | B
b |~ YN oywe ywe ywe | | B 24
by L oyws ywe 1w | | B

Multiplying the matrix of (2.4) with that of (2.3), we first see that the diagonals are +1 as
desired. To havethe off diagonals vanish, we need varioussums, suchas 1+ W +W?2 4 W3
and 1 + W2+ W* + W6, to vanish. Every element (W6, for example, or 1/17°) is a unit
vector in the complex plane. In order for the sums of the unit vectors to vanish, we must
ensure that the vectors pull symmetrically away from the origin. A uniform distribution of
directions meets this requirement. In other words, W should be the NV-th root of unity, i.e.,

W= V1 = N (2.5)

The lowest frequency is zero, corresponding to the top row of (2.3). The next-to-the-
lowest frequency we find by setting 17 in (2.5) to Z = e’°. Sowy = 27/N; and for (2.4)
to beinverseto (2.3), the frequenciesrequired are

(0,1,2,...,N—1)2r
N

Wik =

(2.6)

2.1.1 TheNyquist frequency

The highest frequency in equation (2.6), w = 27(N — 1)/N, is dmost 27. This fre-
guency is twice as high as the Nyquist frequency w = w. The Nyquist frequency is
normally thought of as the “highest possible” frequency, because '™, for integer ¢, plots
as(---,1,—1,1,—1,1,—1,---). The double Nyquist frequency function, ¢, for integer
t,plotsas (---,1,1,1,1,1,---). So this frequency above the highest frequency is really
zero frequency! We need to recall that B(w) = B(w — 2m). Thus, all the frequencies near
the upper end of the range (2.6) are really small negative frequencies. Negative frequen-
cieson theinterval (—,0) were moved to interval (w, 27) by the matrix form of Fourier
summation.

2.1.2 Thecomb function

Consider a constant function of time. In the frequency domain, it is an impulse at zero
frequency. The comb function is defined to be zero at alternate time points. Multiply this
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constant function by the comb function. The resulting signal contains equal amounts of
two frequencies; half is zero frequency, and half is Nyquist frequency. We see thisin the
second row in Figure 2.1, where the Nyquist energy isin the middle of the frequency axis.
In the third row, 3 out of 4 points are zeroed by another comb. We now see something like
anew Nyquist frequency at half the Nyquist frequency visible on the second row.

| ]

Figure 2.1: A zero-frequency
function and its cosine transform.
Successive rows show increasingly
gparse sampling of the zero-
frequency function. dft-comb
[NR] e

=
= =
—
— = L

}:.
\’:.

|

2.1.3 Undersampled field data

Figure 2.2 shows a recording of an airgun aong with its spectrum. The original data

Ams H\ Hﬁ)}lrecﬁ wave 20 Barents Sea line 1900 rec 40C
Wl
0 BN an N
dms_ | el
I b
16ms “‘ [ 1 N
T | v N e
32ms ‘ ‘ |
T Al Al A Al
O.‘OS O“18 O,‘28 O.‘SS O.LLS O“58 (‘) 2‘0 4‘0 6‘0 8‘0 10‘0 1‘20

cernnde H7

Figure 2.2: Raw datais shown on the top left, of about a half-second duration. Right shows
amplitude spectra (magnitude of FT). In successive rows the data is sampled less densely.
dft-undersample| [ER]

is sampled at an interval of 4 milliseconds, which is 250 times per second. Thus, the
Nyquist frequency 1/(2At) is 125 Hz. Negative frequencies are not shown, since the
amplitude spectrum at negative frequency isidentical with that at positivefrequency. Think
of extending the top row of spectrain Figure 2.2 to range from minus 125 Hz to plus 125
Hz. Imagine the even function of frequency centered at zero frequency—we will soon see
it. In the second row of the plot, | decimated the data to 8 ms. This drops the Nyquist
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frequency to 62.5 Hz. Energy that was at —10 Hz appears at 125 — 10 Hz in the second
row spectrum. The appearance of what were formerly small negative frequencies near the
Nyquist frequency is called “folding” of the spectrum. In the next row the datais sampled
at 16 msintervals, and in the last row at 32 msintervals. The 8 ms sampling seems OK,
whereas the 32 ms sampling looks poor. Study how the spectrum changes from one row to
the next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 ms data
could be used to construct the original 4 ms data by transforming the 8 ms data to the
frequency domain, replacing values at frequencies above 125/2 Hz by zero, and theninverse
transforming to the time domain.

(Airgunsusually have ahigher frequency content than we see here. Some high-frequency
energy was removed by the recording geometry, and | also removed some when preparing
the data.)

2.2 INVERTIBLE SLOW FT PROGRAM

Because Fourier sums are exactly invertible, some other things we often require can be
done exactly by doing them in the frequency domain.

Typically, signals are real valued. But the programs in this chapter are for complex-
valued signals. In order to use these programs, copy the real-valued signal into a complex
array, where the signal goesinto the real part of the complex numbers; the imaginary parts
are then automatically set to zero.

There is no universally correct choice of scale factor in Fourier transform: choice
of scale is a matter of convenience. Equations (2.3) and (2.4) mimic the Z-transform,
so their scaling factors are convenient for the convolution theorem—that a product in the
frequency domain is a convolution in the time domain. Obvioudly, the scaling factors of
eguations (2.3) and (2.4) will need to be interchanged for the complementary theorem that
a convolution in the frequency domain is a product in the time domain.

2.2.1 Thedow FT code

Thesl owf t () routineexhibitsfeaturesfound in many physicsand engineering programs.
For example, the time-domain signal (which | call “t t () "), has nt values subscripted,
fromtt (1) tott(nt). Thefirst vaueof thissignal tt (1) islocated in rea physical
time at t 0. The time interval between valuesisdt. Thevalueof tt (it) isat time
tO+(it-1)*dt. | donotuse*“if” asa pointer on the frequency axis becausei f isa
keyword in most programming languages. Instead, | count along the frequency axiswith a
variablenamedi e.

subroutine slowft( adj, add, tO,dt,tt,nt, fO,df, ff,nf)
integer it,ie, adj, add, nt, nf
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conpl ex cexp, cnpl X, tt(nt), ff(nf)
real pi2, freq, tine, scale, tO,dt, fo, df
call adjnull( adj, add, tt, 2*nt, ff,2*nf)
pi2 = 2. * 3.14159265;
scale = 1./sqgrt( 1.*nt)
df = (1./dt) / nf
fo = - .5/dt
doie =1, nf { freq= fO + df*(ie-1)
doit =1, nt { time=t0 + dt*(it-1)
if( adj == 0)
ff(ie)=ff(ie) + tt(it) * cexp(cnpl x(0., pi2*freqg*tine)) * scale
el se
tt(it)=tt(it) + ff(ie) * cexp(cnmpl x(0.,-pi2*freq*tine)) * scale
1}

return; end

The total frequency band is 27 radians per sample unit or 1/At Hz. Dividing the total
interval by the number of points nf gives Af. We could choose the frequencies to run
from O to 27 radiansg/sample. That would work well for many applications, but it would be
a nuisance for applications such as differentiation in the frequency domain, which require
multiplication by —iw including the negative frequencies as well as the positive. So it
seems more natural to begin at the most negative frequency and step forward to the most
positive frequency.

23 SYMMETRIES

Next we examine odd/even symmetriesto see how they are affected in Fourier transform.
The even part e; of asignal b; is defined as

o — Dithe 27)
2
Theodd part is
by — b_
O¢ = ! 9 L (28)

By adding (2.7) and (2.8), we see that afunction is the sum of its even and odd parts:

bt = €t + 0y (29)

Consider a simple, real, even signa such as (b_1,bp,b1) = (1,0,1). Its transform
Z+1/7Z =e* + e ™ = 2cosw isan even function of w, since cosw = cos(—w).

Consider thereal, odd signal (b_1, bo, b1) = (—1,0, 1). Itstransform Z—1/Z = 2isinw
isimaginary and odd, sincesinw = — sin(—w).
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Likewise, the transform of the imaginary even function (7,0, ) is the imaginary even
function i2 cos w. Finally, the transform of the imaginary odd function (—i, 0,4) isreal and
odd.

Let » and 7 refer to real and imaginary, e and o to even and odd, and lower-case
and upper-case letters to time and frequency functions. A summary of the symmetries
of Fourier transform is shown in Figure 2.3.

—
Figure 2.3: Odd functions swap real - 5

and imaginary. Even functions do

t get mixed up with compl i -
pers [GIOREINR] ><

More elaborate signals can be made by adding together the three-point functions we
have considered. Since sums of even functions are even, and so on, the diagram in Fig-
ure 2.3 applies to all signals. An arbitrary signal is made from these four parts only, i.e.,
the function hasthe form b, = (re + ro); + i(ie + i0);. On transformation of b,, each of the
four individual parts transforms according to the table.

Most “industry standard” methods of Fourier transform set the zero frequency as the
first element in the vector array holding the transformed signal, asimplied by equation (2.3).
Thisisalittleinconvenient, as we saw afew pages back. The Nyquist frequency isthen the
first point past the middle of the even-length array, and the negative frequencieslie beyond.
Figure 2.4 shows an example of an even function asit is customarily stored.

E Time function, even ! Frequency function, even

[ t = + or — max } /\
[ Negative frequencies ]
Negative time

l Positive frequencies l

Figure 2.4: Even functions as customarily stored by “industry standard” FT programs.

[dft-even] [NR]
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2.3.1 Convolution in the frequency domain

LetY(Z) = X(Z) B(Z). The coefficients y; can be found from the coefficients z; and b,
by convolution in the time domain or by multiplication in the frequency domain. For the
latter, we would evaluate both X () and B(~7) at uniform locations around the unit circle,
i.e., compute Fourier sums X, and B, from z; and b;. Then we would form C}, = X By
for al k, and inverse Fourier transform to ;. The values y, come out the same as by the
time-domain convolution method, roughly that of our calculation precision (typically four-
byte arithmetic or about one part in 10~6). The only way in which you need to be cautious
isto use zero padding greater than the combined lengths of z; and b;.

An example is shown in Figure 2.5. It is the result of a Fourier-domain computation
which shows that the convolution of arectangle function with itself givesatriangle. Notice
that the triangle is clean—there are no unexpected end effects.

Figure 2.5: Top shows a rectangle r HN\/W\
transformed to asinc. Bottom shows 7 o <
the sinc squared, back transformed

to a triangle. dft-box2triangle| . H

[NR]

Because of the fast method of Fourier transform described next, the frequency-domain
caculation is quicker when both X (7) and B(Z) have more than roughly 20 coefficients.
If either X (Z) or B(Z) hasless than roughly 20 coefficients, then the time-domain calcu-
lation is quicker.

24 TWO-DIMENSIONAL FT

L et usreview somebasic facts about two-dimensional Fourier transform. A two-dimensional
function is represented in a computer as numerical values in a matrix, whereas a one-
dimensional Fourier transform in a computer is an operation on a vector. A 2-D Fourier
transform can be computed by a sequence of 1-D Fourier transforms. We can first trans-
form each column vector of the matrix and then each row vector of the matrix. Alternately,
we can first do the rows and later do the columns. Thisis diagrammed as follows:

p(t, ) +—— P(t, k)

! !

P(w, ) «— P(w, k)

The diagram has the notational problem that we cannot maintain the usual convention
of using a lower-case letter for the domain of physical space and an upper-case letter for
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the Fourier domain, because that convention cannot include the mixed objects P(t, k.. ) and
P(w, z). Rather than invent some new notation, it seems best to let the reader rely on the
context: the arguments of the function must help name the function.

An example of two-dimensional Fourier transforms on typical deep-ocean data is
shown in Figure 2.6. In the deep ocean, sediments are fine-grained and deposit slowly in

p(t.x) P(t k)

oes
oos

ov—
oy —

[oes]/1
[2es]/1

o¥
o¥

-8 -4 0 4 8

km 1/[km]

Figure 2.6: A deep-marine dataset p(¢, «) from Alaska (U.S. Geological Survey) and the
real part of various Fourier transforms of it. Because of the long traveltime through the

water, the time axisdoes not begin at ¢t = 0. | dft-planed| [ER]

flat, regular, horizontal beds. The lack of permeable rocks such as sandstone severely re-
duces the potential for petroleum production from the deep ocean. The fine-grained shales
overlay irregular, igneous, basement rocks. In the plot of P(t, k,), the lateral continuity
of the sediments is shown by the strong spectrum at low £,.. The igneous rocks show a k.,
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spectrum extending to such large &, that the deep data may be somewhat spatially aliased
(sampled too coarsely). Theplot of P(w, ) showsthat the data contains no low-frequency
energy. Thedip of the seafloor showsupin (w, k. )-space as the energy crossing the origin
at anangle.

Altogether, the two-dimensional Fourier transform of a collection of seismograms
involves only twice as much computation as the one-dimensional Fourier transform of each
seismogram. This is lucky. Let us write some equations to establish that the asserted
procedure does indeed do a 2-D Fourier transform. Say first that any function of = and ¢
may be expressed as a superposition of sinusoidal functions:

plt,z) = / / emitHiksr Py kY dw dk, (2.10)

The double integration can be nested to show that the temporal transforms are done first
(inside):

p(t,z) = /e““z‘” [/ e " P(w, k) dw| dk,

_ / ks p(t k) dk,

The quantity in brackets is a Fourier transform over w done for each and every k,. Alter-
nately, the nesting could be done with the k,.-integral on the inside. That would imply rows
first instead of columns (or vice versa). It is the separability of exp(—iwt + ik,x) into a
product of exponentials that makes the computation this easy and cheap.

24.1 Signsin Fourier transforms

In Fourier transforming ¢-, z-, and z-coordinates, we must choose a sign convention for
each coordinate. Of the two alternative sign conventions, electrical engineers have chosen
one and physicists another. While both have good reasons for their choices, our circum-
stances more closely resemble those of physicists, so we will use their convention. For the
inverse Fourier transform, our choiceis

plt,z,2) = / / / emwt ke tikz py, ko kY dwdk, k. (2.11)

For the forward Fourier transform, the space variables carry a negative sign, and time
carriesa positive sign.

L et us see the reasonswhy electrical engineers have made the opposite choice, and why
we go with the physicists. Essentially, engineers transform only the time axis, whereas
physicists transform both time and space axes. Both are smplifying their lives by their
choice of sign convention, but physicistscomplicatetheir timeaxisin order to simplify their
many space axes. The engineering choice minimizes the number of minus signs associated
with thetime axis, becausefor engineers, d/dt isassociated with iw instead of, asisthe case
for us and for physicists, with —iw. We confirm this with equation (2.11). Physicists and
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geophysicists deal with many more independent variables than time. Besides the obvious
three space axes are their mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (2.11)? The reason is
that in that case waves would not move in a positive direction along the space axes. This
would be especially unnatural when the space axis was aradius. Atoms, like geophysical
sources, alwaysradiate from a point to infinity, not the other way around. Thus, in equation
(2.11) the sign of the spatial frequencies must be opposite that of the temporal frequency.

The only good reason | know to choose the engineering convention is that we might
compute with an array processor built and microcoded by engineers. Conflict of sign con-
vention is not a problem for the programs that transform complex-valued time functionsto
complex-valued frequency functions, because there the sign convention is under the user’s
control. But sign conflict does make a difference when we use any program that converts
real-time functions to complex frequency functions. The way to live in both worlds is to
imagine that the frequencies produced by such a program do not range from 0 to +x asthe
program description says, but from 0 to —=. Alternately, we could always take the complex
conjugate of the transform, which would swap the sign of the w-axis.

2.4.2 Examplesof 2-D FT

An example of atwo-dimensional Fourier transform of a pulseis shown in Figure 2.7.
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Figure 2.7: A broadened pulse (Ieft) and the real part of its FT (right). |dft-ft2dofpulse]
[ER]

Notice the location of the pulse. It is closer to the time axis than the frequency axis. This
will affect thereal part of the FT in acertain way (see exercises). Notice the broadening of
the pulse. It was an impulse smoothed over time (vertically) by convolution with (1,1) and
over space (horizontally) with (1,4,6,4,1). Thiswill affect thereal part of the FT in another

way.
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Another example of atwo-dimensional Fourier transform is given in Figure 2.8. This
example simulates an impulsive air wave originating at a point on the z-axis. We see a
wave propagating in each direction from the location of the source of the wave. In Fourier
space there are also two lines, one for each wave. Notice that there are other lines which
do not go through the origin; these lines are called “spatial aliases” Each actually goes
through the origin of another square plane that is not shown, but which we can imagine
alongside the one shown. These other planes are periodic replicas of the one shown.
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Figure 2.8: A simulated air wave (left) and the amplitude of its FT (right).
[ER]

EXERCISES:

1 Most time functions are real. Their imaginary part is zero. Show that this means that
F(w, k) can be determined from F'(—w, —k).

2 What would changein Figure 2.7 if the pulse were moved (a) earlier on the ¢-axis, and
(b) further on the z-axis? What would change in Figure 2.7 if instead the time axis
were smoothed with (1,4,6,4,1) and the space axis with (1,1)?

3 What would Figure 2.8 look like on an earth with half the earth velocity?

4 Numerically (or theoretically) compute the two-dimensional spectrum of a plane wave
[0(t — px)], where the plane wave has a randomly fluctuating amplitude: say, rand(z)
is a random number between +1, and the randomly modulated plane wave is [(1 +
2rand(x)) §(t — pz)].

5 Explainthe horizontal “layering” in Figure 2.6 in the plot of P(w, ). What determines
the “layer” separation? What determines the “layer” slope?
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Chapter 3

Downward continuation of waves

3.1 DIPPING WAVES

We begin with equations to describe a dipping plane wave in a medium of constant veloc-
ity. Figure 3.1 shows a ray moving down into the earth at an angle ¢ from the vertical.
Perpendicular to the ray is a wavefront. By elementary geometry the angle between the

2

/N

Y

W

Figure 3.1: Downgoing ray and

wavefront. [NR]

z

wavefront and the earth’s surface isalso 6. Theray increasesits length at a speed v. The
speed that is observable on the earth’s surface is the intercept of the wavefront with the
earth’s surface. This speed, namely v/ sin 6, is faster than v. Likewise, the speed of the
intercept of the wavefront and the vertical axisis v/ cos. A mathematical expression for
astraight line like that shown to be the wavefront in Figure 3.1 is

z2 = zg — x tan @ (3.2

In this expression z is the intercept between the wavefront and the vertical axis. To
make the intercept move downward, replace it by the appropriate velocity times time:
vl

z = — x tan 0 (3.2
oS
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Solving for time gives
t(z,z) = % cos 0 + % sin 0 (3.3

Equation (3.3) tells the time that the wavefront will pass any particular location (z, z). The
expression for a shifted waveform of arbitrary shapeis f(t — ¢). Using (3.3) to define the
time shift ¢, gives an expression for awavefield that is some waveform moving on aray.

moving wavefield = f(t — % sin 0 — % cos 9) (3.4)

3.1.1 Sndl waves

In reflection seismic surveys the velocity contrast between shallowest and deepest reflec-
tors ordinarily exceeds a factor of two. Thus depth variation of velocity is amost aways
included in the analysis of field data. Seismological theory needs to consider waves that
are just like plane waves except that they bend to accommaodate the velocity stratification
v(z). Figure 3.2 shows thisin an idealized geometry: waves radiated from the horizontal
flight of a supersonic airplane. The airplane passes location = at time ¢y(z) flying hori-

=

\/ speed at depth z |
/\ speed at depth z )

y

=
N
/~

Y /

Y

Figure 3.2: Fast airplane radiating a sound wave into the earth. From the figure you can
deduce that the horizontal speed of the wavefront isthe same at depth z; asitisat depth z,.
Thisleads (in isotropic media) to Snell’s law. dwnc-airplane‘ [NR]

zontally at a constant speed. Imagine an earth of horizontal plane layers. In this model
there is nothing to distinguish any point on the z-axis from any other point on the x-axis.
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But the seismic velocity varies from layer to layer. There may be reflections, head waves,
shear waves, converted waves, anisotropy, and multiple reflections. Whatever the picture
is, it moves along with the airplane. A picture of the wavefronts near the airplane moves
along with the airplane. The top of the picture and the bottom of the picture both move
laterally at the same speed even if the earth velocity increases with depth. If the top and
bottom didn’t go at the same speed, the picture would become distorted, contradicting the
presumed symmetry of translation. This horizontal speed, or rather its inverse dt,/0x, has
several names. In practical work it is called the stepout. In theoretical work it is called
the ray parameter. It is very important to note that dt,/0x does not change with depth,
even though the seismic velocity does change with depth. In a constant-velocity medium,
the angle of a wave does not change with depth. In a stratified medium, dt,/dz does not
change with depth.

Figure 3.3 illustrates the differential geometry of the wave. The diagram shows that

Figure 3.3: Downgoing fronts and rays in stratified medium v(z). The wavefronts are

horizontal translations of one another. [NR]

Oty sin 0

% _ cos 9 (36)
0z v

These two equations define two (inverse) speeds. Thefirst is ahorizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. The second is a vertical
speed, measurablein a borehole, called the vertical phase velocity. Notice that both these
speeds exceed the vel ocity v of wave propagation in the medium. Projection of wave fronts
onto coordinate axes gives speeds larger than v, whereas projection of rays onto coordinate
axes gives speeds smaller than v. The inverse of the phase velocities is called the stepout
or the slowness.

Snell’s law relates the angle of a wave in one layer with the angle in another. The
constancy of equation (3.5) in depth isreally just the statement of Snell’s law. Indeed, we
have just derived Snell’s law. All waves in seismology propagate in a velocity-stratified
medium. So they cannot be called plane waves. But we need a name for waves that are
near to plane waves. A Snell wave will be defined to be the generalization of a plane
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wave to a stratified medium v(z). A plane wave that happens to enter a medium of depth-
variable velocity v(z) gets changed into a Snell wave. While a plane wave has an angle of
propagation, a Snell wave has instead a Snell parameter p = 09t /0.

It isnoteworthy that Snell’s parameter p — 0t,/0x isdirectly observable at the surface,
whereas neither v nor 0 is directly observable. Sincep = 0t,/0x is not only observable,
but constant in depth, it is customary to useit to eliminate ¢ from equations (3.5) and (3.6):

? _ sin 0 ~ (37)
T v

Oty cos 0 1 )

bt U — — 3.8
0z v v(z)? P (38)

3.1.2 Evanescent waves

Suppose the velocity increases to infinity at infinite depth. Then equation (3.8) tells us
that something strange happens when we reach the depth for which p? equals 1/v(z)?.
That is the depth at which the ray turns horizontal. Below this critical depth the seismic
wavefield damps exponentially with increasing depth. Such waves are called evanescent.
For aphysical example of an evanescent wave, forget the airplane and think about a moving
bicycle. For a bicyclist, the slowness p is so large that it dominates 1/v(z)? for all earth
materials. The bicyclist does not radiate a wave, but produces a ground deformation that
decreases exponentially into the earth. To radiate a wave, a source must move faster than
the material velocity.

3.2 DOWNWARD CONTINUATION

Given a vertically upcoming plane wave at the earth’s surface, say u(t,z,z = 0) =
u(t)const(x), and an assumption that the earth’s velocity is vertically stratified, i.e. v =
v(z), we can presume that the upcoming wave down in the earth is smply time-shifted
from what we see on the surface. (This assumes no multiple reflections.) Time shifting
can be represented as alinear operator in the time domain by representing it as convolution
with an impulse function. In the frequency domain, time shifting is simply multiplying by
acomplex exponential. Thisis expressed as

u(t,z) = wu(t,z=0)*0(t+z/v) (3.9)
Ulw,z) = Ulw,z=0)e @/ (3.10)
3.2.1 Continuation of adipping plane wave.

Next consider a plane wave dipping at some angle 6. It is natural to imagine continuing
such a wave back along aray. Instead, we will continue the wave straight down. This
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requires the assumption that the plane wave is a perfect one, namely that the same wave-
form is observed at al x. Imagine two sensorsin avertical well bore. They should record
the same signal except for a time shift that depends on the angle of the wave. Notice that
the arrival time difference between sensors at two different depths is greatest for verti-
cally propagating waves, and the time difference dropsto zero for horizontally propagating
waves. So thetime shift At isv=! cos Az whered isthe angle between the wavefront and
the earth’s surface (or the angle between the well bore and the ray). Thus an equation to
downward continue the wave is

Ulw,0,z+ Az) = U(w,0,z) exp(—iw At) (3.11)
Az cosl )

Ulw,0,z+ Az) = U(w,0,z2) exp <—2’w (3.12)
Equation (3.12) is a downward continuation formula for any angle . We can generalize
the method to media where the velocity is a function of depth. Evidently we can apply
equation (3.12) for each layer of thickness Az, and allow the velocity vary with z. This
isawell known approximation that handles the timing correctly but keeps the amplitude
constant (since |¢¢| = 1) when in real life, the amplitude should vary because of reflec-
tion and transmission coefficients. Suffice it to say that in practical earth imaging, this
approximation is almost universally satisfactory.

In astratified earth, it is customary to eliminate the angle # which is depth variable, and
change it to the Snell’s parameter p which is constant for all depths. Thus the downward
continuation equation for any Snell’s parameter is

wAz

v(z)

Ulw,p,z+Az) = Ulw,p,z) exp (— 1 —p2v(z)2> (3.13)

It isnatural to wonder wherein real life we would encounter a Snell wave that we could
downward continue with equation (3.13). The answer is that any wave from rea life can
be regarded as a sum of waves propagating in all angles. Thus a field data set should first
be decomposed into Snell waves of al values of p, and then equation (3.13) can be used
to downward continue each p, and finally the components for each p could be added. This
process akin to Fourier analysis. We now turn to Fourier analysis as a method of downward
continuation which is the same idea but the task of decomposing data into Snell waves
becomes the task of decomposing datainto sinusoids along the z-axis.

3.2.2 Downward continuation with Fourier transform

One of the main ideas in Fourier analysis is that an impulse function (a delta function)
can be constructed by the superposition of sinusoids (or complex exponentials). In the
study of time series this construction is used for the impulse response of afilter. In the
study of functions of space, it is used to make a physical point source that can manufacture
the downgoing waves that initialize the reflection seismic experiment. Likewise observed
upcoming waves can be Fourier transformed over ¢ and .
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Recall that a plane wave carrying an arbitrary waveform is given by equation (3.4).
Specializing the arbitrary function to be the real part of the function exp|—iw(t —t,)| gives

moving cosinewave = cos {w (% sin 6 + % cos O — t) } (3.14)
Using Fourier integrals on time functions we encounter the Fourier kernel exp(—iwt). To
use Fourier integrals on the space-axis = the spatial angular frequency must be defined.
Since we will ultimately encounter many space axes (three for shot, three for geophone,
also the midpoint and offset), the convention will be to use a subscript on the letter k to
denote the axis being Fourier transformed. So &, is the angular spatial frequency on the
xz-axis and exp(ik,x) isits Fourier kernel. For each axis and Fourier kernel there is the
guestion of the sign before the i. The sign convention used here is the one used in most
physics books, namely, the one that agrees with equation (3.14). With this convention, a
wave moves in the positive direction along the space axes. Thus the Fourier kernel for
(z, z, t)-space will be taken to be

Fourier kernel = e'*=® e'%=% =t — expli(k,x + k.2 — wt)] (3.15)
Now for the whistles, bells, and trumpets. Equating (3.14) to the real part of (3.15),

physical angles and velocity are related to Fourier components. The Fourier kernel has the
form of a plane wave. These relations should be memorized!

Angles and Fourier Components

vk, vk,
cosf =
w w

sinf =

(3.16)

A pointin (w, k., k.)-Space is a plane wave. The one-dimensional Fourier kernel extracts
frequencies. The multi-dimensional Fourier kernel extracts (monochromatic) plane waves.

Equally important is what comes next. Insert the angle definitions into the familiar
relation sin® § + cos? # = 1. This givesamost important rel ationship:

2

K2+ k2 = (3.17)

1}2
The importance of (3.17) isthat it enables us to make the distinction between an arbitrary
function and achaotic function that actually isawavefield. Imagineany function u(t, z, z).
Fourier transform it to U(w, k., k). Look in the (w, k., k. )-volume for any nonvanishing
values of U. You will have awavefield if and only if all nonvanishing U have coordinates
that satisfy (3.17). Even better, in practicethe (¢, x)-dependence at z = 0 isusually known,
but the z-dependence is not. Then the z-dependence isfound by assuming U isawavefield,
so the z-dependenceisinferred from (3.17).

Equation (3.17) also achieves fame as the “ dispersion relation of the scalar wave equa-
tion,” atopic developed more fully in 1EI.
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3.2.3 Linking Snell wavesto Fourier transforms

To link Snell waves to Fourier transforms we merge equations (3.5) and (3.6) with equa-
tions (3.16)

ke _ O sind D (3.18)
w ox )

— 2.2
k. _ % _ cos 0  VJ1-p (3.19)
w 0z v v

The basic downward continuation equation for upcoming waves in Fourier space follows
from equation (3.13) by eliminating p by using equation (3.18). For analysisof real seismic
data we introduce a minus sign because equation (3.19) refers to downgoing waves and
observed datais made from up-coming waves.

(3.20)

) 21.2
Ulw, kpyz+Az) = Uw, ks, 2) exp (_ wAz LY ];w )
v w

In Fourier space we delay signals by multiplying by e, analogously, equation (3.20)
says we downward continue signals into the earth by multiplying by =22, Multiplication
in the Fourier domain means convolution in time which can be depicted by the engineering
diagram in Figure 3.4.

] Filter
imput oulput

‘ ei Vv k22 >

P(w, k,,0) P(wk,,z)

Figure 3.4: Downward continuation of a downgoing wavefield. [NR]

Downward continuation is a product relationship in both the w-domain and the k-
domain. Thusit is a convolution in both time and z. What does the filter look like in the
time and space domain? It turnsout like acone, that is, it is roughly an impul se function of
r?+22—v?t2. Moreprecisely, it isthe Huygens secondary wave sourcethat was exemplified
by ocean waves entering a gap through a storm barrier. Adding up the response of multiple
gapsin the barrier would be convolution over x.

A nuisance of using Fourier transforms in migration and modeling is that spaces be-
come periodic. Thisis demonstrated in Figure 3.5. Anywhere an event exits the frame
at a side, top, or bottom boundary, the event immediately emerges on the opposite side.
In practice, the unwelcome effect of periodicity is generally ameliorated by padding zeros
around the data and the model.
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Figure 3.5 A reflectivity model on the left and synthetic data using a Fourier method on

the right [ER]

3.3 A matlab program for downward continuation

The matlab program below produces a movie. It shows a wave propating from the surface
downward. My planisto clean it up and makeit into alittle lab.

% Wave Movies for MATLAB (thanks to JianLiang Q an)
% : downgoi ng spherical wave by dispersion relation
cl ear

nt=12; nx=48; nz=96; nw=2; nlanmr4; dx=2; dz=1; v=1,
% al | ocate menory

pp=zeros(nz, nx, nt);

g =zeros(nx, 1);

gx=zeros(nx, 1);

tgb= zeros(nx,nt);

bshift = zeros(1,nt); % colum vector

% sone paraneters

| anbda = nz*dz/ nl am

pi2 = 2.*3.141592;

dw = v*pi 2/ anbda,;

dt = pi2/(nt*dw); x0 = nx*dx/ 3; z0 = nz*dz/ 2;

kx0 = -0.5*pi 2/ dx; dkx = pi 2/ (nx*dx);

% Generate the data for the novies

for iw= 1.nw % superi npose nw frequenci es
W= i wedw; wov = wv; % frequency / velocity

% initial conditions for a collapsing spherical wave
gx(1: nx)=exp( O0.-i*wov*sqrt( z0*zO+((1:nx)*dx-x0).*((21:nx)*dx-x0) ) );
bshift = exp( 0.0-i*wdt*(1l:nt) );
for iz = 1:nz % extrapol ation in depth
g=fftshift(fft(fftshift(gx))); %to Spatial freq. domain
for ikx=2:nx
kx = kxO+(ikx-1)*dkx; wkx= (kx/wov)*(kx/wov);
if( wkx <= 1.0)



3.3. A MATLAB PROGRAM FOR DOWNWARD CONTINUATION
q(i kx) =exp(i *wov*sqgrt (1. 0-wkx)*dz)*q(i kx);
end
end
gx =fftshift( ifft( fftshift( q))); % back to space domain
tgb= gx*bshift; % an update matrix
t gb= reshape(tqgb, 1, nx, nt); % 2d array to 3d array
pp(iz,:,:)=pp(iz,:,:) +tqb(1,:,:); %to use 3d array addition
end
end

%

% pl ay the novi e: (Thanks to Tapan)
h=i magesc(real (pp(:,:,1)));

col ormap gray;

set (h, ' erasenode’ ,’ none’);

for k=1:6*nt
i ndex=nmod(k, nt) +1;
set(h,’ cdata’,real (pp(:,:,index)));
dr awnow;

end
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