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Preface

This book was written for an introductory one-semester or two-quarter course
in probability and statistics for students in engineering and applied sciences. No
previous knowledge of probability or statistics is presumed but a good under-
standing of calculus is a prerequisite for the material.

The development of this book was guided by a number of considerations
observed over many years of teaching courses in this subject area, including the
following:

e As an introductory course, a sound and rigorous treatment of the basic
principles is imperative for a proper understanding of the subject matter
and for confidence in applying these principles to practical problem solving.
A student, depending upon his or her major field of study, will no doubt
pursue advanced work in this area in one or more of the many possible
directions. How well is he or she prepared to do this strongly depends on
his or her mastery of the fundamentals.

e It is important that the student develop an early appreciation for applica-
tions. Demonstrations of the utility of this material in nonsuperficial applica-
tions not only sustain student interest but also provide the student with
stimulation to delve more deeply into the fundamentals.

e Most of the students in engineering and applied sciences can only devote one
semester or two quarters to a course of this nature in their programs.
Recognizing that the coverage is time limited, it is important that the material
be self-contained, representing a reasonably complete and applicable body of
knowledge.

The choice of the contents for this book is in line with the foregoing
observations. The major objective is to give a careful presentation of the
fundamentals in probability and statistics, the concept of probabilistic model-
ing, and the process of model selection, verification, and analysis. In this text,
definitions and theorems are carefully stated and topics rigorously treated
but care is taken not to become entangled in excessive mathematical details.
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Xiv Preface

Practical examples are emphasized; they are purposely selected from many
different fields and not slanted toward any particular applied area. The same
objective is observed in making up the exercises at the back of each chapter.

Because of the self-imposed criterion of writing a comprehensive text and
presenting it within a limited time frame, there is a tight continuity from one
topic to the next. Some flexibility exists in Chapters 6 and 7 that include
discussions on more specialized distributions used in practice. For example,
extreme-value distributions may be bypassed, if it is deemed necessary, without
serious loss of continuity. Also, Chapter 11 on linear models may be deferred to
a follow-up course if time does not allow its full coverage.

It is a pleasure to acknowledge the substantial help I received from students
in my courses over many years and from my colleagues and friends. Their
constructive comments on preliminary versions of this book led to many
improvements. My sincere thanks go to Mrs. Carmella Gosden, who efficiently
typed several drafts of this book. As in all my undertakings, my wife, Dottie,
cared about this project and gave me her loving support for which I am deeply
grateful.

T.T. Soong
Buffalo, New York

TLFeBOOK



Introduction

At present, almost all undergraduate curricula in engineering and applied
sciences contain at least one basic course in probability and statistical inference.
The recognition of this need for introducing the ideas of probability theory in
a wide variety of scientific fields today reflects in part some of the profound
changes in science and engineering education over the past 25 years.

One of the most significant is the greater emphasis that has been placed upon
complexity and precision. A scientist now recognizes the importance of study-
ing scientific phenomena having complex interrelations among their compon-
ents; these components are often not only mechanical or electrical parts but
also ‘soft-science’ in nature, such as those stemming from behavioral and social
sciences. The design of a comprehensive transportation system, for example,
requires a good understanding of technological aspects of the problem as well
as of the behavior patterns of the user, land-use regulations, environmental
requirements, pricing policies, and so on.

Moreover, precision is stressed — precision in describing interrelationships
among factors involved in a scientific phenomenon and precision in predicting
its behavior. This, coupled with increasing complexity in the problems we face,
leads to the recognition that a great deal of uncertainty and variability are
inevitably present in problem formulation, and one of the mathematical tools
that is effective in dealing with them is probability and statistics.

Probabilistic ideas are used in a wide variety of scientific investigations
involving randomness. Randomness is an empirical phenomenon characterized
by the property that the quantities in which we are interested do not have
a predictable outcome under a given set of circumstances, but instead there is
a statistical regularity associated with different possible outcomes. Loosely
speaking, statistical regularity means that, in observing outcomes of an exper-
iment a large number of times (say n), the ratio m/n, where m is the number of
observed occurrences of a specific outcome, tends to a unique limit as n
becomes large. For example, the outcome of flipping a coin is not predictable
but there is statistical regularity in that the ratio m/n approaches % for either

Fundamentals of Probability and Statistics for Engineers T.T. Soong © 2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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2 Fundamentals of Probability and Statistics for Engineers

heads or tails. Random phenomena in scientific areas abound: noise in radio
signals, intensity of wind gusts, mechanical vibration due to atmospheric dis-
turbances, Brownian motion of particles in a liquid, number of telephone calls
made by a given population, length of queues at a ticket counter, choice of
transportation modes by a group of individuals, and countless others. It is not
inaccurate to say that randomness is present in any realistic conceptual model
of a real-world phenomenon.

1.1 ORGANIZATION OF TEXT

This book is concerned with the development of basic principles in constructing
probability models and the subsequent analysis of these models. As in other
scientific modeling procedures, the basic cycle of this undertaking consists of
a number of fundamental steps; these are schematically presented in Figure 1.1.
A basic understanding of probability theory and random variables is central to
the whole modeling process as they provide the required mathematical machin-
ery with which the modeling process is carried out and consequences deduced.
The step from B to C in Figure 1.1 is the induction step by which the structure
of the model is formed from factual observations of the scientific phenomenon
under study. Model verification and parameter estimation (E) on the basis of
observed data (D) fall within the framework of statistical inference. A model

A: Probability and random variables

\

B: Factual observations

and nature of scientific > C: Construction of model structure
phenomenon

\

Y

\

D: Observed data

Y

E: Model verification and parameter estimation

\

F: Model analysis and deduction

Figure 1.1 Basic cycle of probabilistic modeling and analysis
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Introduction 3

may be rejected at this stage as a result of inadequate inductive reasoning or
insufficient or deficient data. A reexamination of factual observations or add-
itional data may be required here. Finally, model analysis and deduction are
made to yield desired answers upon model substantiation.

In line with this outline of the basic steps, the book is divided into two parts.
Part A (Chapters 2-7) addresses probability fundamentals involved in steps
A — C,B—C, and E — F (Figure 1.1). Chapters 2-5 provide these funda-
mentals, which constitute the foundation of all subsequent development. Some
important probability distributions are introduced in Chapters 6 and 7. The
nature and applications of these distributions are discussed. An understanding
of the situations in which these distributions arise enables us to choose an
appropriate distribution, or model, for a scientific phenomenon.

Part B (Chapters 8-11) is concerned principally with step D — E (Figure 1.1),
the statistical inference portion of the text. Starting with data and data repre-
sentation in Chapter 8, parameter estimation techniques are carefully developed
in Chapter 9, followed by a detailed discussion in Chapter 10 of a number of
selected statistical tests that are useful for the purpose of model verification. In
Chapter 11, the tools developed in Chapters 9 and 10 for parameter estimation
and model verification are applied to the study of linear regression models, a very
useful class of models encountered in science and engineering.

The topics covered in Part B are somewhat selective, but much of the
foundation in statistical inference is laid. This foundation should help the
reader to pursue further studies in related and more advanced areas.

1.2 PROBABILITY TABLES AND COMPUTER SOFTWARE

The application of the materials in this book to practical problems will require
calculations of various probabilities and statistical functions, which can be time
consuming. To facilitate these calculations, some of the probability tables are
provided in Appendix A. It should be pointed out, however, that a large
number of computer software packages and spreadsheets are now available
that provide this information as well as perform a host of other statistical
calculations. As an example, some statistical functions available in Microsoft®
Excel™ 2000 are listed in Appendix B.

1.3 PREREQUISITES

The material presented in this book is calculus-based. The mathematical pre-
requisite for a course using this book is a good understanding of differential
and integral calculus, including partial differentiation and multidimensional
integrals. Familiarity in linear algebra, vectors, and matrices is also required.
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Probability and Random Variables
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2

Basic Probability Concepts

The mathematical theory of probability gives us the basic tools for constructing
and analyzing mathematical models for random phenomena. In studying a
random phenomenon, we are dealing with an experiment of which the outcome
is not predictable in advance. Experiments of this type that immediately come
to mind are those arising in games of chance. In fact, the earliest development
of probability theory in the fifteenth and sixteenth centuries was motivated by
problems of this type (for example, see Todhunter, 1949).

In science and engineering, random phenomena describe a wide variety of
situations. By and large, they can be grouped into two broad classes. The first
class deals with physical or natural phenomena involving uncertainties. Uncer-
tainty enters into problem formulation through complexity, through our lack
of understanding of all the causes and effects, and through lack of information.
Consider, for example, weather prediction. Information obtained from satellite
tracking and other meteorological information simply is not sufficient to permit
a reliable prediction of what weather condition will prevail in days ahead. It is
therefore easily understandable that weather reports on radio and television are
made in probabilistic terms.

The second class of problems widely studied by means of probabilistic
models concerns those exhibiting variability. Consider, for example, a problem
in traffic flow where an engineer wishes to know the number of vehicles cross-
ing a certain point on a road within a specified interval of time. This number
varies unpredictably from one interval to another, and this variability reflects
variable driver behavior and is inherent in the problem. This property forces us
to adopt a probabilistic point of view, and probability theory provides a
powerful tool for analyzing problems of this type.

It is safe to say that uncertainty and variability are present in our modeling of
all real phenomena, and it is only natural to see that probabilistic modeling and
analysis occupy a central place in the study of a wide variety of topics in science
and engineering. There is no doubt that we will see an increasing reliance on the
use of probabilistic formulations in most scientific disciplines in the future.

Fundamentals of Probability and Statistics for Engineers T.T. Soong © 2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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8 Fundamentals of Probability and Statistics for Engineers
2.1 ELEMENTS OF SET THEORY

Our interest in the study of a random phenomenon is in the statements we can
make concerning the events that can occur. Events and combinations of events
thus play a central role in probability theory. The mathematics of events is
closely tied to the theory of sets, and we give in this section some of its basic
concepts and algebraic operations.

A set is a collection of objects possessing some common properties. These
objects are called elements of the set and they can be of any kind with any
specified properties. We may consider, for example, a set of numbers, a set of
mathematical functions, a set of persons, or a set of a mixture of things. Capital
letters A4, B, C,®,(),...shall be used to denote sets, and lower-case letters
a, b, ¢, p,w,...to denote their elements. A set is thus described by its elements.
Notationally, we can write, for example,

A = {1727 374’ 5’ 6}7

which means that set 4 has as its elements integers 1 through 6. If set B contains
two elements, success and failure, it can be described by

B={s[},

where s and fare chosen to represent success and failure, respectively. For a set
consisting of all nonnegative real numbers, a convenient description is

C={x:x>0}

We shall use the convention
acA (2.1)

to mean ‘element a belongs to set 4’.

A set containing no elements is called an empty or null set and is denoted by §.
We distinguish between sets containing a finite number of elements and those
having an infinite number. They are called, respectively, finite sets and infinite
sets. An infinite set is called enumerable or countable if all of its elements can be
arranged in such a way that there is a one-to-one correspondence between them
and all positive integers; thus, a set containing all positive integers 1, 2,...is a
simple example of an enumerable set. A nonenumerable or uncountable set is one
where the above-mentioned one-to-one correspondence cannot be established. A
simple example of a nonenumerable set is the set C described above.

If every element of a set A is also an element of a set B, the set A is called
a subset of B and this is represented symbolically by

ACB or BDA. (2.2)

TLFeBOOK



Basic Probability Concepts 9

Figure 2.1 Venn diagram for 4 C B

Example 2.1. Let 4 = {2,4} and B={1,2,3,4} Then A C B, since every
element of A is also an element of B. This relationship can also be presented
graphically by using a Venn diagram, as shown in Figure 2.1. The set B
occupies the interior of the larger circle and A the shaded area in the figure.

It is clear that an empty set is a subset of any set. When both 4 C B and
B C A, set A is then equal to B, and we write

A=B. (2.3)

We now give meaning to a particular set we shall call space. In our develop-
ment, we consider only sets that are subsets of a fixed (nonempty) set. This
‘largest’ set containing all elements of all the sets under consideration is called
space and is denoted by the symbol §.

Consider a subset A in S. The set of all elements in S that are not elements of
A is called the complement of A, and we denote it by A. A Venn diagram
showing A and A is given in Figure 2.2 in which space S is shown as a rectangle
and A is the shaded area. We note here that the following relations clearly hold:

|

S=0, 0=5 A=A (2.4)

2.1.1 SET OPERATIONS

Let us now consider some algebraic operations of sets A, B, C,...that are
subsets of space S.

The union or sum of A and B, denoted by A4 U B, is the set of all elements
belonging to A or B or both.

Figure 2.2 A and A

TLFeBOOK



10 Fundamentals of Probability and Statistics for Engineers

(a AuB () AnB

Figure 2.3 (a) Union and (b) intersection of sets A and B

The intersection or product of A and B, written as A N B, or simply AB, is the
set of all elements that are common to A and B.

In terms of Venn diagrams, results of the above operations are shown in
Figures 2.3(a) and 2.3(b) as sets having shaded areas.

If AB = (), sets A and B contain no common elements, and we call A and B
disjoint. The symbol ‘+’ shall be reserved to denote the union of two disjoint
sets when it is advantageous to do so.

Example 2.2. Let A be the set of all men and B consist of all men and women
over 18 years of age. Then the set A U B consists of all men as well as all women
over 18 years of age. The elements of A N B are all men over 18 years of age.

Example 2.3. Let S be the space consisting of a real-line segment from 0 to 10
and let A and B be sets of the real-line segments from 1-7 and 3-9 respectively.
Line segments belonging to 4 U B, AN B, 4, and B are indicated in Figure 2.4.
Let us note here that, by definition, a set and its complement are always disjoint.

The definitions of union and intersection can be directly generalized to those
involving any arbitrary number (finite or countably infinite) of sets. Thus, the set

AUAy .. ud, =4 (2.5)
j=1

4_
>
|
|

Figure 2.4 Sets defined in Example 2.3
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Basic Probability Concepts 11

stands for the set of all elements belonging to one or more of the sets Aj,
j=1,2,...,n. The intersection

n
AAy . Ay =4 (2.6)
J=1

is the set of all elements common to all A;,j=1,2,...,n. The sets
Aj,j=1,2,...,n, are disjoint if

A;A; =0, forevery i,j (i #J). (2.7)

Using Venn diagrams or analytical procedures, it is easy to verify that union
and intersection operations are associative, commutative, and distributive; that is,

(AUB)UC=AU(BUC)=AUBUC,

AUB=BU 4,

(AB)C = A(BC) = ABC, (2.8)
AB = BA,

A(BUC) = (AB) U (AC).

Clearly, we also have

Moreover, the following useful relations hold, all of which can be easily verified
using Venn diagrams:

AU (BC)=(AUB)(AUC),
AUB=AU(AB) = A+ (4B),
AUB)=A B,

B U B,

—~

§
|

(2.10)

=
&
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12 Fundamentals of Probability and Statistics for Engineers

The second relation in Equations (2.10) gives the union of two sets in terms
of the union of two disjoint sets. As we will see, this representation is useful in
probability calculations. The last two relations in Equations (2.10) are referred
to as DeMorgan’s laws.

2.2 SAMPLE SPACE AND PROBABILITY MEASURE

In probability theory, we are concerned with an experiment with an outcome
depending on chance, which is called a random experiment. It is assumed that all
possible distinct outcomes of a random experiment are known and that they are
elements of a fundamental set known as the sample space. Each possible out-
come is called a sample point, and an event is generally referred to as a subset of
the sample space having one or more sample points as its elements.

It is important to point out that, for a given random experiment, the
associated sample space is not unique and its construction depends upon the
point of view adopted as well as the questions to be answered. For example,
1002 resistors are being manufactured by an industrial firm. Their values,
owing to inherent inaccuracies in the manufacturing and measurement pro-
cesses, may range from 99 to 101 €. A measurement taken of a resistor is a
random experiment for which the possible outcomes can be defined in a variety
of ways depending upon the purpose for performing such an experiment. On
the one hand, if, for a given user, a resistor with resistance range of 99.9-100.1 {2
is considered acceptable, and unacceptable otherwise, it is adequate to define
the sample space as one consisting of two elements: ‘acceptable’ and ‘unaccept-
able’. On the other hand, from the viewpoint of another user, possible
outcomes may be the ranges 99-99.5Q, 99.5-100¢2, 100-100.5€2, and
100.5-101 €. The sample space in this case has four sample points. Finally, if
each possible reading is a possible outcome, the sample space is now a real line
from 99 to 101 on the ohm scale; there is an uncountably infinite number of
sample points, and the sample space is a nonenumerable set.

To illustrate that a sample space is not fixed by the action of performing the
experiment but by the point of view adopted by the observer, consider an
energy negotiation between the United States and another country. From the
point of view of the US government, success and failure may be looked on as
the only possible outcomes. To the consumer, however, a set of more direct
possible outcomes may consist of price increases and decreases for gasoline
purchases.

The description of sample space, sample points, and events shows that they
fit nicely into the framework of set theory, a framework within which the
analysis of outcomes of a random experiment can be performed. All relations
between outcomes or events in probability theory can be described by sets and
set operations. Consider a space S of elements a, b, c,..., and with subsets

TLFeBOOK



Basic Probability Concepts 13

Table 2.1 Corresponding statements in set theory and probability

Set theory Probability theory

Space, S Sample space, sure event

Empty set, 0 Impossible event

Elements a, b, ... Sample points a, b, ... (or simple events)

Sets 4, B, ... Events 4, B,...

A Event A occurs

A Event 4 does not occur

AUB At least one of 4 and B occurs

AB Both A4 and B occur

ACB A is a subevent of B (i.e. the occurrence of 4 necessarily implies
the occurrence of B)

AB=10 A and B are mutually exclusive (i.e. they cannot occur

simultaneously)

A,B,C,.... Some of these corresponding sets and probability meanings are
given in Table 2.1. As Table 2.1 shows, the empty set () is considered an
impossible event since no possible outcome is an element of the empty set.
Also, by ‘occurrence of an event’ we mean that the observed outcome is an
element of that set. For example, event 4 U B is said to occur if and only if the
observed outcome is an element of 4 or B or both.

Example 2.4. Consider an experiment of counting the number of left-turning
cars at an intersection in a group of 100 cars. The possible outcomes (possible
numbers of left-turning cars) are 0, 1,2,...,100. Then, the sample space S is
S =1{0,1,2,...,100}. Each element of S is a sample point or a possible out-
come. The subset 4 ={0,1,2,...,50} is the event that there are 50 or fewer
cars turning left. The subset B = {40,41,...,60} is the event that between 40
and 60 (inclusive) cars take left turns. The set A U B is the event of 60 or fewer
cars turning left. The set 4 N B is the event that the number of left-turning cars
is between 40 and 50 (inclusive). Let C = {80,81,...,100} Events A and C are
mutually exclusive since they cannot occur simultaneously. Hence, disjoint sets
are mutually exclusive events in probability theory.

2.2.1 AXIOMS OF PROBABILITY

We now introduce the notion of a probability function. Given a random experi-
ment, a finite number P(A) is assigned to every event A in the sample space S of
all possible events. The number P(A) is a function of set A and is assumed to
be defined for all sets in S. It is thus a set function, and P(A) is called the
probability measure of A or simply the probability of A. It is assumed to have the
following properties (axioms of probability):
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14 Fundamentals of Probability and Statistics for Engineers

e Axiom 1: P(A) > 0 (nonnegative).
* Axiom 2: P(S) =1 (normed).

¢ Axiom 3: for a countable collection of mutually exclusive events A, A;,...in S,

P(A|UAU...) = P(Z A,) = P(4)) (additive).

(2.11)

These three axioms define a countably additive and nonnegative set function
P(A), A CS. As we shall see, they constitute a sufficient set of postulates from
which all useful properties of the probability function can be derived. Let us

give below some of these important properties.

First, P() = 0. Since S and () are disjoint, we see from Axiom 3 that

P(S)=P(S+0)=P(S)+ P(0).
It then follows from Axiom 2 that
1=1+P(0)
or
P(0) = 0.
Second, if A C C, then P(A) < P(C). Since A C C, one can write
A+ B=C,
where B is a subset of C and disjoint with A. Axiom 3 then gives
P(C)=P(A+ B) = P(A) + P(B).

Since P(B) > 0 as required by Axiom 1, we have the desired result.
Third, given two arbitrary events A and B, we have

P(AU B) = P(A) + P(B) — P(AB).

(2.12)

In order to show this, let us write A UB in terms of the union of two
mutually exclusive events. From the second relation in Equations (2.10),

we write

AUB= A+ AB.
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Figure 2.5 Venn diagram for derivation of Equation (2.12)

Hence, using Axiom 3,
P(AUB) = P(A+ AB) = P(A) + P(4B). (2.13)

Furthermore, we note
AB+ AB = B.
Hence, again using Axiom 3,
P(AB) + P(AB) = P(B),

or
P(4AB) = P(B) — P(4B).

Substitution of this equation into Equation (2.13) yields Equation (2.12).

Equation (2.12) can also be verified by inspecting the Venn diagram in Figure
2.5. The sum P(A) + P(B) counts twice the events belonging to the shaded
area AB. Hence, in computing P(A UB), the probability associated with
one AB must be subtracted from P(A)+ P(B) giving Equation (2.12) (see
Figure 2.5).

The important result given by Equation (2.12) can be immediately general-
ized to the union of three or more events. Using the same procedure, we can
show that, for arbitrary events A, B, and C,

P(AUBUC) = P(4) + P(B) + P(C) — P(AB) — P(AC)

(2.14)
— P(BC) + P(ABC).
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16 Fundamentals of Probability and Statistics for Engineers

and, in the case of n events,
P(

where A;, j = 1,2,...,n, are arbitrary events.

fc-
2

=2 = ' (2.15)

Example 2.5. Let us go back to Example 2.4 and assume that probabilities
P(A), P(B),and P(C)are known. We wish to compute P(A U B) and P(A U C).
Probability P(A U C), the probability of having either 50 or fewer cars turn-
ing left or between 80 to 100 cars turning left, is simply P(A) + P(C) This
follows from Axiom 3, since A and C are mutually exclusive. However,
P(A U B), the probability of having 60 or fewer cars turning left, is found from

P(AUB) = P(4) + P(B) — P(AB)

The information given above is thus not sufficient to determine this probability
and we need the additional information, P(AB), which is the probability of
having between 40 and 50 cars turning left.

With the statement of three axioms of probability, we have completed the
mathematical description of a random experiment. It consists of three funda-
mental constituents: a sample space S, a collection of events A, B, ..., and the
probability function P. These three quantities constitute a probability space
associated with a random experiment.

2.2.2 ASSIGNMENT OF PROBABILITY

The axioms of probability define the properties of a probability measure, which are
consistent with our intuitive notions. However, they do not guide us in assigning
probabilities to various events. For problems in applied sciences, a natural way to
assign the probability of an event is through the observation of relative frequency.
Assuming that a random experiment is performed a large number of times, say n,
then for any event A let ny be the number of occurrences of A in the n trials and
define the ratio ns/n as the relative frequency of A. Under stable or statistical
regularity conditions, it is expected that this ratio will tend to a unique limit as n
becomes large. This limiting value of the relative frequency clearly possesses the
properties required of the probability measure and is a natural candidate for
the probability of A. This interpretation is used, for example, in saying that the
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Basic Probability Concepts 17

probability of ‘heads’ in flipping a coin is 1/2. The relative frequency approach to
probability assignment is objective and consistent with the axioms stated in Section
2.2.1 and is one commonly adopted in science and engineering.

Another common but more subjective approach to probability assignment is
that of relative likelihood. When it is not feasible or is impossible to perform an
experiment a large number of times, the probability of an event may be assigned
as a result of subjective judgement. The statement ‘there is a 40% probability of
rain tomorrow’ is an example in this interpretation, where the number 0.4 is
assigned on the basis of available information and professional judgement.

In most problems considered in this book, probabilities of some simple but
basic events are generally assigned by using either of the two approaches. Other
probabilities of interest are then derived through the theory of probability.
Example 2.5 gives a simple illustration of this procedure where the probabilities
of interest, P(A U B) and P(A U C), are derived upon assigning probabilities to
simple events A, B, and C.

2.3 STATISTICAL INDEPENDENCE

Let us pose the following question: given individual probabilities P(A) and P(B)
of two events A and B, what is P(AB), the probability that both A and B will
occur? Upon little reflection, it is not difficult to see that the knowledge of P(A)
and P(B) is not sufficient to determine P(AB) in general. This is so because
P(AB) deals with joint behavior of the two events whereas P(A) and P(B) are
probabilities associated with individual events and do not yield information on
their joint behavior. Let us then consider a special case in which the occurrence
or nonoccurrence of one does not affect the occurrence or nonoccurrence of the
other. In this situation events A and B are called statistically independent or
simply independent and it is formalized by Definition 2.1.

Definition 2.1. Two events A and B are said to be independent if and only if

P(AB) = P(4)P(B). (2.16)

To show that this definition is consistent with our intuitive notion of inde-
pendence, consider the following example.

Example 2.6. In a large number of trials of a random experiment, let ns and
np be, respectively, the numbers of occurrences of two outcomes A and B, and
let nap be the number of times both A and B occur. Using the relative frequency
interpretation, the ratios ns/n and ng/n tend to P(A) and P(B), respectively, as n
becomes large. Similarly, nsp/n tends to P(AB). Let us now confine our atten-
tion to only those outcomes in which A is realized. If A and B are independent,
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18 Fundamentals of Probability and Statistics for Engineers

we expect that the ratio nyp/ns also tends to P(B) as ny becomes large. The
independence assumption then leads to the observation that

This then gives

or, in the limit as n becomes large,
P(AB) = P(A)P(B),

which is the definition of independence introduced above.

Example 2.7. In launching a satellite, the probability of an unsuccessful
launch is g. What is the probability that two successive launches are unsuccess-
ful? Assuming that satellite launchings are independent events, the answer to
the above question is simply ¢*>. One can argue that these two events are not
really completely independent, since they are manufactured by using similar
processes and launched by the same launcher. It is thus likely that the failures of
both are attributable to the same source. However, we accept this answer as
reasonable because, on the one hand, the independence assumption is accept-
able since there are a great deal of unknowns involved, any of which can be
made accountable for the failure of a launch. On the other hand, the simplicity
of computing the joint probability makes the independence assumption attract-
ive. In physical problems, therefore, the independence assumption is often
made whenever it is considered to be reasonable.

Care should be exercised in extending the concept of independence to more
than two events. In the case of three events, A, A,, and A3, for example, they
are mutually independent if and only if

P(4jAx) = P(4))P(Ax), j#k, Jj.k=123, (2.17)

and
P(A14243) = P(4,)P(42)P(43). (2.18)
Equation (2.18) is required because pairwise independence does not generally
lead to mutual independence. Consider, for example, three events A, A, and

As defined by

Ay =B UBy, A, =By UB;, A3= B,U B;3,
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where B, B>, and Bs are mutually exclusive, each occurring with probability %.
It is easy to calculate the following:

P(Al) ZP(Bl UBz) :P(Bl) -I—P(Bz) :%,

P(A4>) = P(43) :%,
P(A4143) = P[(B1UBy) N (B1 U B3)| = P(B1) = %»

P(A143) = P(A243) = e

P(A1A2A3) = P[(Bl UBQ) N (B] UB3) N (BQ UB3)] = P(@) =0.

We see that Equation (2.17) is satisfied for every j and k in this case, but
Equation (2.18) is not. In other words, events A;, A,, and Az are pairwise
independent but they are not mutually independent.

In general, therefore, we have Definition 2.2 for mutual independence of
n events.

Definition 2.2. Events A}, A,,...,A, are mutually independent if and only if,
with ki, ks, ..., k, being any set of integers such that 1 <k; < ky...< k,, <n
and m =2,3,...,n,

P(Ap Ar, ... Ar) = P(Ai, ) P(AL) . .. P(AL,). (2.19)

m m

The total number of equations defined by Equation (2.19) is 2" —n — 1.

Example 2.8. Problem: a system consisting of five components is in working
order only when each component is functioning (‘good’). Let S;,i = 1,...,5, be
the event that the ith component is good and assume P(S;) = p;. What is the
probability ¢ that the system fails?

Answer: assuming that the five components perform in an independent
manner, it is easier to determine g through finding the probability of system
success p. We have from the statement of the problem

p = P(SngS3S4Ss).
Equation (2.19) thus gives, due to mutual independence of S, S,,...,Ss,
P = P(Sl)P(Sz) e P(S5) = p1p2P3pP4ps- (220)
Hence,

q=1=p=1=pipp3psps. (2.21)
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An expression for ¢ may also be obtained by noting that the system fails if
any one or more of the five components fail, or

q:P(§1 US,uUS; U§4U§5), (2.22)

where S; is the complement of S; and represents a bad ith component. Clearly,
P(S)) =1 — p;. Since events Si,i=1,...,5, are not mutually exclusive, the
calculation of g with use of Equation (2.22) requires the use of Equation (2.15).
Another approach is to write the unions in Equation (2.22) in terms of unions of
mutually exclusive events so that Axiom 3 (Section 2.2.1) can be directly utilized.
The result is, upon applying the second relation in Equations (2.10),

S1USUS;USsUSs =S| + 5152 + 51553 + 5155354 + 515253545,

where the ‘U’ signs are replaced by ‘+’ signs on the right-hand side to stress the
fact that they are mutually exclusive events. Axiom 3 then leads to

q= P(gl) + P(Slgz) + P(S) S2§3) + P(S) 525334) + P(S152S3S4§5),
and, using statistical independence,

g=1=p1)+pi(1 =p2) +pip2(1 = p3) + pipap3(1 — pas)
+ p1pap3pa(l — ps)

Some simple algebra will show that this result reduces to Equation (2.21).

(2.23)

Let us mention here that probability p is called the reliability of the system in
systems engineering.

2.4 CONDITIONAL PROBABILITY

The concept of conditional probability is a very useful one. Given two events A
and B associated with a random experiment, probability P(A|B) is defined as
the conditional probability of A, given that B has occurred. Intuitively, this
probability can be interpreted by means of relative frequencies described in
Example 2.6, except that events A and B are no longer assumed to be independ-
ent. The number of outcomes where both A and B occur is ns5. Hence, given
that event B has occurred, the relative frequency of A is then nyp/ng. Thus we
have, in the limit as np becomes large,

P(A|B) g@:”ﬁ/’%g PIE(ABI?

ng n

This relationship leads to Definition 2.3.
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Definition 2.3. The conditional probability of A given that B has occurred is
given by

P(AB)

PAIB) =00,

P(B) #0. (2.24)

Definition 2.3 is meaningless if P(B) = 0.

It is noted that, in the discussion of conditional probabilities, we are dealing
with a contracted sample space in which B is known to have occurred. In other
words, B replaces S as the sample space, and the conditional probability P(A|B)
is found as the probability of A with respect to this new sample space.

In the event that A and B are independent, it implies that the occurrence of B
has no effect on the occurrence or nonoccurrence of A. We thus expect
P(A|B) = P(A), and Equation (2.24) gives

P(AB) = P(A)P(B),

which is precisely the definition of independence.

It is also important to point out that conditional probabilities are probabilities
(i.e. they satisfy the three axioms of probability). Using Equation (2.24), we see that
the first axiom is automatically satisfied. For the second axiom we need to show that

P(S|B) = 1.
This is certainly true, since
P(SB P(B
P(S|B) = (SB) _P(B) _ |
P(B)  P(B)

As for the third axiom, if A;,A,,... are mutually exclusive, then A|B, A,B,...
are also mutually exclusive. Hence,

P[(A] UAzU...)B}
P(B)
P(AlBUAzBU...)
P(B)
P(A4,B) " P(A4,B)
P(B) ~ P(B)
= P(A4|B) + P(4|B) + - -+,

P[(A] UA2U...)|B] =
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and the third axiom holds.

The definition of conditional probability given by Equation (2.24) can be
used not only to compute conditional probabilities but also to compute joint
probabilities, as the following examples show.

Example 2.9. Problem: let us reconsider Example 2.8 and ask the following
question: what is the conditional probability that the first two components are
good given that (a) the first component is good and (b) at least one of the two
is good?

Answer: the event S5, means both are good components, and S; U S, is the
event that at least one of the two is good. Thus, for question (a) and in view of
Equation (2.24),

P(S515,S P(SS
P(S153S1) = (S15:251) _ (S152) _pip
P(S1) P(S)) m
This result is expected since S| and S, are independent. Intuitively, we see that
this question is equivalent to one of computing P(S>).
For question (b), we have

P
P(515:[$1US,) = AR%a(% 0 5)

P(S1 @] Sz)
Now, S Sz(S] U Sz) = 5195,. Hence,
P(S15,) P(S15>)
P(S15|S1US,) = =
($15:]S1US2) P(S1USy)  P(S))+ P(Ss) — P(S15)
_ Pip2
pL+p2—pip2

Example 2.10. Problem: in a game of cards, determine the probability of
drawing, without replacement, two aces in succession.

Answer: let A be the event that the first card drawn is an ace, and similarly
for A,. We wish to compute P(AA,). From Equation (2.24) we write

P(A142) = P(A2] A1) P(4)). (2.25)

Now, P(A4;) =4/52 and P(A3]|A4,) = 3/51 (there are 51 cards left and three of
them are aces). Therefore,

3 /4 1
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Equation (2.25) is seen to be useful for finding joint probabilities. Its exten-
sion to more than two events has the form

P(A1Ay ... Ay) = P(A))P(A2|A))P(A3| A1 43) ... P(Ay|A1As ... A,y). (2.26)

where P(A;) > 0 for all i. This can be verified by successive applications of
Equation (2.24).

In another direction, let us state a useful theorem relating the probability of
an event to conditional probabilities.

Theorem 2.1: theorem of total probability. Suppose that events By, B>, ..., and
B, are mutually exclusive and exhaustive (i.e. S =B| + By + -+ By). Then,
for an arbitrary event A,

P(A) = P(A|B1)P(B1) + P(A|By)P(By) + - - - + P(A|B,) P(B,)

= Z P(A|B;)P(B)). (2.27)
Jj=1

Proof of Theorem 2.1: referring to the Venn diagram in Figure 2.6, we can
clearly write A as the union of mutually exclusive events AB |,AB,,...,AB, (i.e.
A=ABy+ AB>,+---+ AB,). Hence,

P(A) = P(AB)) + P(AB>) + --- + P(AB,),

which gives Equation (2.27) on application of the definition of conditional
probability.

AB/ AB,

Figure 2.6 Venn diagram associated with total probability
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The utility of this result rests with the fact that the probabilities in the sum
in Equation (2.27) are often more readily obtainable than the probability of A itself.

Example 2.11. Our interest is in determining the probability that a critical
level of peak flow rate is reached during storms in a storm-sewer system on the
basis of separate meteorological and hydrological measurements.

Let B;,i = 1,2, 3, be the different levels (low, medium, high) of precipitation
caused by a storm and let 4;,j = 1,2, denote, respectively, critical and non-
critical levels of peak flow rate. Then probabilities P(B;) can be estimated from
meteorological records and P(4;|B;) can be estimated from runoff analysis.
Since Bi,B,, and B3 constitute a set of mutually exclusive and exhaustive
events, the desired probability, P(A ), can be found from

P(Ay) = P(A41|B1)P(By) + P(A1|B2) P(B) + P(A4:|B3)P(B3).
Assume the following information is available:
P(B;)=0.5, P(B;)=0.3, P(B;)=0.2,
and that P(A4,|B;) are as shown in Table 2.2. The value of P(A,) is given by
P(A4;) =0(0.5) + 0.2(0.3) + 0.6(0.2) = 0.18.

Let us observe that in Table 2.2, the sum of the probabilities in each column is
1.0 by virtue of the conservation of probability. There is, however, no such
requirement for the sum of each row.

A useful result generally referred to as Bayes’ theorem can be derived based
on the definition of conditional probability. Equation (2.24) permits us to write

P(AB) = P(A|B)P(B)
and
P(BA) = P(B|A)P(A).
Since P(AB) = P(BA), we have Theorem 2.2.

Table 2.2 Probabilities P(A4;|B;), for Example 2.11

Aj Bi

By B, B
Ay 0.0 0.2 0.6
A 1.0 0.8 0.4
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Theorem 2.2: Bayes’ theorem. Let A and B be two arbitrary events with
P(A) # 0 and P(B) # 0. Then:

P - MDD, o)

Combining this theorem with the total probability theorem we have a useful
consequence:

P(B;|A) = P(A|B,)P Z (4]B;)P(B;)]. (2.29)

for any i where events B; represent a set of mutually exclusive and exhaustive
events.

The simple result given by Equation (2.28) is called Bayes’ theorem after the
English philosopher Thomas Bayes and is useful in the sense that it permits us
to evaluate a posteriori probability P(B|A) in terms of a prioriinformation P (B)
and P(A|B), as the following examples illustrate.

Example 2.12. Problem: a simple binary communication channel carries
messages by using only two signals, say 0 and 1. We assume that, for a given
binary channel, 40% of the time a 1 is transmitted; the probability that a
transmitted 0 is correctly received is 0.90, and the probability that a transmitted
1 is correctly received is 0.95. Determine (a) the probability of a 1 being
received, and (b) given a 1 is received, the probability that 1 was transmitted.

Answer: let

A = event that 1 is transmitted,
A = event that 0 is transmitted,
B = event that 1 is received,
B = event that 0 is received.

The information given in the problem statement gives us

)06

\_/
O

and these are represented diagrammatically in Figure 2.7.
For part (a) we wish to find P(B). Since A and A are mutually exclusive and
exhaustive, it follows from the theorem of total probability [Equation (2.27)]
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0.4 0.95
—_P A P B
%0s
o)
0.6 — 0.9 —
—P> A o= B

Figure 2.7 Probabilities associated with a binary channel, for Example 2.12

that

P(B) = P(B|A)P(A) + P(B|A)P(A) = 0.95(0.4) + 0.1(0.6) = 0.44.

The probability of interest in part (b) is P(4|B), and this can be found using
Bayes’ theorem [Equation (2.28)]. It is given by:

P(B|A)P(4)  0.95(0.4)

- — 0.863.
P(B) 0.44

P(A|B) =

It is worth mentioning that P(B) in this calculation is found by means of the
total probability theorem. Hence, Equation (2.29) is the one actually used here
in finding P(A|B). In fact, probability P(A) in Equation (2.28) is often more
conveniently found by using the total probability theorem.

Example 2.13. Problem: from Example 2.11, determine P(B;|4,), the probabil-
ity that a noncritical level of peak flow rate will be caused by a medium-level storm.
Answer: from Equations (2.28) and (2.29) we have

P(By|4,) :%
_ P(A3|B>)P(B,)
P(4>|B1)P ( 1) + P(A42|B2)P(B>) + P(A3|B3)P(B)

0.8(0.3) _
1.0(0.5) + 0.8(0.3) 1 04(02) ~ 2%

In closing, let us introduce the use of tree diagrams for dealing with more
complicated experiments with ‘limited memory’. Consider again Example 2.12

TLFeBOOK



Basic Probability Concepts 27

0.4 0.95
—1 A
o
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0.6 — 0.9
—_— A

Figure 2.8 A two-stage binary channel

by adding a second stage to the communication channel, with Figure 2.8
showing all the associated probabilities. We wish to determine P(C), the prob-
ability of receiving a 1 at the second stage.

Tree diagrams are useful for determining the behavior of this system when the
system has a ‘one-stage’ memory; that is, when the outcome at the second stage is
dependent only on what has happened at the first stage and not on outcomes at
stages prior to the first. Mathematically, it follows from this property that

P(C|BA) = P(C|B), P(C|BA) = P(C|B), et. (2.30)

The properties described above are commonly referred to as Markovian
properties. Markov processes represent an important class of probabilistic
process that are studied at a more advanced level.

Suppose that Equations (2.30) hold for the system described in Figure 2.8.
The tree diagram gives the flow of conditional probabilities originating from
the source. Starting from the transmitter, the tree diagram for this problem has
the appearance shown in Figure 2.9. The top branch, for example, leads to the
probability of the occurrence of event ABC, which is, according to Equations
(2.26) and (2.30),

P(ABC) = P(A)P(B|A)P(C|BA)
= P(4)P(B|4)P(C|B)
=0.4(0.95)(0.95) = 0.361.

The probability of C is then found by summing the probabilities of all events
that end with C. Thus,

P(C) = P(ABC) + P(ABC) + P(ABC) + P(A BC)
= 0.95(0.95)(0.4) + 0.1(0.05)(0.4) + 0.95(0.1)(0.6) + 0.1(0.9)(0.6)
= 0.472.
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Figure 2.9 A tree diagram
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PROBLEMS

2.1 Let A, B, and C be arbitrary sets. Determine which of the following relations are
correct and which are incorrect:
(a) ABC = AB(C U B).
(b) AB=AUB.
(c) AUB=AB.
(d) (AUB)C = ABC.
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() ABC AUB.
(f) (AB)(AC)=1.

2.2 The second relation in Equations (2.10) expresses the union of two sets as the union
of two disjoint sets (i.e. A U B = A + AB). Express 4 U BU C in terms of the union
of disjoint sets where A, B, and C are arbitrary sets.

2.3 Verify DeMorgan’s laws, given by the last two equations of Equations (2.10).

24 Let S={1,2,...,10},4 ={1,3,5},B={1,4,6}, and C ={2,5,7}. Determine
elements of the following sets:
(a) SUC.
(b) AUB.
(c) AC.
(d) AU (BC).
(e) ABC.
(f) 4AB.
(g) (AB)U(BC)U(CA).
2.5 Repeat Problem 2.4 if S={x:0<x <10}, A={x:1<x<5}, B={x:1<x<6},
and C={x:2<x<7}.

2.6 Draw Venn diagrams of events A and B representing the following situations:
(a) A and B are arbitrary.
(b) If A occurs, B must occur.
(c) If A occurs, B cannot occur.
(d) A and B are independent.

2.7 Let A, B, and C be arbitrary events. Find expressions for the events that of A, B, C:
(a) None occurs.
(b) Only A occurs.
(c) Only one occurs.
(d) At least one occurs.
(e) A occurs and either B or C occurs but not both.
(f) B and C occur, but A does not occur.
(g) Two or more occur.
(h) At most two occur.
(i) All three occur.

2.8 Events A, B, and C are independent, with P(4) =a, P(B)=b, and P(C)=c.
Determine the following probabilities in terms of a, b, and c:
(a) P(A4B).
(b) P(AU B).
(¢c) P(AU B|B).
(d) P(AUB|C).

2.9 An engineering system has two components. Let us define the following events:

A : first component is good;A: first component is defective.
B : second component is good; B: second component is defective:

Describe the following events in terms of A, A, B, and B:
(a) At least one of the components is good.
(b) One is good and one is defective.
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2.10 For the two components described in Problem 2.9, tests have produced the follow-
ing result:

P(A) =08, P(B|A) =085 P(B[4)=0.75.

Determine the probability that:

(a) The second component is good.

(b) At least one of the components is good.

(c) The first component is good given that the second is good.

(d) The first component is good given that at most one component is good.

For the two events A and B:
(e) Are they independent? Verify your answer.
(f) Are they mutually exclusive? Verify your answer.

2.11 A satellite can fail for many possible reasons, two of which are computer failure
and engine failure. For a given mission, it is known that:

The probability of engine failure is 0.008.

The probability of computer failure is 0.001.

Given engine failure, the probability of satellite failure is 0.98.

Given computer failure, the probability of satellite failure is 0.45.

Given any other component failure, the probability of satellite failure is zero.

(a) Determine the probability that a satellite fails.

(b) Determine the probability that a satellite fails and is due to engine
failure.

(c) Assume that engines in different satellites perform independently. Given a
satellite has failed as a result of engine failure, what is the probability that
the same will happen to another satellite?

2.12 Verify Equation (2.14).
2.13 Show that, for arbitrary events 4y, A2, ..., Ay,

P(A1UAU...UAy) < P(41) + P(A2) + -+ P(4y)

This is known as Boole’s inequality.

2.14 A box contains 20 parts, of which 5 are defective. Two parts are drawn at random
from the box. What is the probability that:
(a) Both are good?
(b) Both are defective?
(c) One is good and one is defective?

2.15 An automobile braking device consists of three subsystems, all of which must work
for the device to work. These systems are an electronic system, a hydraulic system,
and a mechanical activator. In braking, the reliabilities (probabilities of success) of
these units are 0.96, 0.95, and 0.95, respectively. Estimate the system reliability
assuming that these subsystems function independently.

Comment : systems of this type can be graphically represented as shown in
Figure 2.10, in which subsystems A (electronic system), B (hydraulic system), and
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A B C

0.96 0.95 0.95 |——p

Figure 2.10 Figure for Problem 2.15

0.95

0.95

Figure 2.11 Figure for Problem 2.17

C (mechanical activator) are arranged in series. Consider the path ¢ — b as the
‘path to success’. A breakdown of any or all of A, B, or C will block the path from
ato b.

2.16 A spacecraft has 1000 components in series. If the required reliability of the
spacecraft is 0.9 and if all components function independently and have the same
reliability, what is the required reliability of each component?

2.17 Automobiles are equipped with redundant braking circuits; their brakes fail only
when all circuits fail. Consider one with two redundant braking circuits, each
having a reliability of 0.95. Determine the system reliability assuming that these
circuits act independently.

Comment : systems of this type are graphically represented as in Figure 2.11, in
which the circuits (A and B) have a parallel arrangement. The path to success is
broken only when breakdowns of both A and B occur.

2.18 On the basis of definitions given in Problems 2.15 and 2.17 for series and parallel
arrangements of system components, determine reliabilities of the systems
described by the block diagrams as follows.

(a) The diagram in Figure 2.12.
(b) The diagram in Figure 2.13.
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B

0.85

= 0.90 —b

0.90

Figure 2.12 Figure for Problem 2.18(a)

A /\ B

Pa Ps

a b
C D
Pc Pp

Figure 2.13 Figure for Problem 2.18(b)

2.19 A rifle is fired at a target. Assuming that the probability of scoring a hit is 0.9 for
each shot and that the shots are independent, compute the probability that, in
order to score a hit:

(a) It takes more than two shots.
(b) The number of shots required is between four and six (inclusive).

2.20 Events A and B are mutually exclusive. Can they also be independent? Explain.

2.21 Let P(A) = 0.4, and P(4U B) = 0.7. What is P(B) if:
(a) A and B are independent?
(b) A and B are mutually exclusive?

2.22 Let P(AU B) =0.75, and P(AB) = 0.25. Is it possible to determine P(A) and P(B)?
Answer the same question if, in addition:
(a) A and B are independent.
(b) A and B are mutually exclusive.
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2.23 Events A and B are mutually exclusive. Determine which of the following relations
are true and which are false:
(a) P(A|B) = P(A).
(b) P(4U B|C) = P(A|C) + P(B|C).
(¢) P(4)=0,P(B)=0, or both.
@ P(A|B) _ P(B|A)
P(B)  P(4) "
(e) P(AB) = P(A)P(B).

Repeat the above if events A and B are independent.

2.24 On a stretch of highway, the probability of an accident due to human error in any
given minute is 107>, and the probability of an accident due to mechanical break-
down in any given minute is 10~7. Assuming that these two causes are independent:
(a) Find the probability of the occurrence of an accident on this stretch of highway
during any minute.

(b) In this case, can the above answer be approximated by P(accident due to
human error) + P(accident due to mechanical failure)? Explain.

(c) If the events in succeeding minutes are mutually independent, what is the
probability that there will be no accident at this location in a year?

2.25 Rapid transit trains arrive at a given station every five minutes and depart after
stopping at the station for one minute to drop off and pick up passengers. Assum-
ing trains arrive every hour on the hour, what is the probability that a passenger
will be able to board a train immediately if he or she arrives at the station at a
random instant between 7:54 a.m. and 8:06 a.m.?

2.26 A telephone call occurs at random in the interval (0,7). Let T be its time of
occurrence. Determine, where 0 <1y <t < f:
(@) P(to < T <ty).
() P(ty < T < 4(|T > 1).

2.27 For a storm-sewer system, estimates of annual maximum flow rates (AMFR) and
their likelihood of occurrence [assuming that a maximum of 12 cfs (cubic feet per
second) is possible] are given as follows:

Event 4 = (5 to 10cfs), P(A4) =0.6.
Event B= (8 to 12cfs), P(B)=0.6.
Event C = AU B, P(C)=0.7.

Determine:

(a) P(8 < AMFR < 10), the probability that the AMFR is between 8 and 10 cfs.
(b) P(5 < AMFR < 12).

(¢) P(10 < AMFR < 12).

(d) P(8 < AMFR < 10|5 < AMFR < 10).

(e) P(5 <AMFR < 10|JAMFR > 5).

2.28 At a major and minor street intersection, one finds that, out of every 100 gaps on
the major street, 65 are acceptable, that is, large enough for a car arriving on the
minor street to cross. When a vehicle arrives on the minor street:

(a) What is the probability that the first gap is not an acceptable one?

(b) What is the probability that the first two gaps are both unacceptable?

(c) The first car has crossed the intersection. What is the probability that the
second will be able to cross at the very next gap?
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2.30

2.31

2.32

2.33
2.34
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A machine part may be selected from any of three manufacturers with probabilities
p1 =0.25, p» = 0.50, and p3 = 0.25. The probabilities that it will function properly
during a specified period of time are 0.2, 0.3, and 0.4, respectively, for the three
manufacturers. Determine the probability that a randomly chosen machine part
will function properly for the specified time period.

Consider the possible failure of a transportation system to meet demand during

rush hour.

(a) Determine the probability that the system will fail if the probabilities shown in
Table 2.3 are known.

Table 2.3 Probabilities of demand levels and of system
failures for the given demand level, for Problem 2.30

Demand level P(level) P(system failure|level)
Low 0.6 0

Medium 0.3 0.1

High 0.1 0.5

(b) If system failure was observed, find the probability that a ‘medium’ demand
level was its cause.

A cancer diagnostic test is 95% accurate both on those who have cancer and on
those who do not. If 0.005 of the population actually does have cancer, compute
the probability that a particular individual has cancer, given that the test indicates
he or she has cancer.

A quality control record panel of transistors gives the results shown in Table 2.4
when classified by manufacturer and quality.

Let one transistor be selected at random. What is the probability of it being:
(a) From manufacturer A and with acceptable quality?
(b) Acceptable given that it is from manufacturer C?
(¢) From manufacturer B given that it is marginal?

Table 2.4 Quality control results, for Problem 2.32

Manufacturer Quality

Acceptable Marginal Unacceptable Total

A 128 10 2 140
B 97 5 3 105
C 110 5 5 120

Verify Equation (2.26) for three events.

In an elementary study of synchronized traffic lights, consider a simple four-light
system. Suppose that each light is red for 30 seconds of a 50-second cycle, and suppose

P(Sj111S)) = 0.15
and

P(Sj1118)) = 0.40
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for j = 1,2,3, where §; is the event that a driver is stopped by the jth light. We
assume a ‘one-light’” memory for the system. By means of the tree diagram,
determine the probability that a driver:

(a) Will be delayed by all four lights.

(b) Will not be delayed by any of the four lights.

(c) Will be delayed by at most one light.
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3

Random Variables and Probability
Distributions

We have mentioned that our interest in the study of a random phenomenon is in the
statements we can make concerning the events that can occur, and these statements
are made based on probabilities assigned to simple outcomes. Basic concepts have
been developed in Chapter 2, but a systematic and unified procedure is needed to
facilitate making these statements, which can be quite complex. One of the immedi-
ate steps that can be taken in this unifying attempt is to require that each of the
possible outcomes of a random experiment be represented by a real number. In this
way, when the experiment is performed, each outcome is identified by its assigned
real number rather than by its physical description. For example, when the possible
outcomes of a random experiment consist of success and failure, we arbitrarily assign
the number one to the event ‘success’ and the number zero to the event failure’. The
associated sample space has now {1, 0} as its sample points instead of success and
failure, and the statement ‘the outcome is 1’ means ‘the outcome is success’.

This procedure not only permits us to replace a sample space of arbitrary
elements by a new sample space having only real numbers as its elements but
also enables us to use arithmetic means for probability calculations. Further-
more, most problems in science and engineering deal with quantitative meas-
ures. Consequently, sample spaces associated with many random experiments
of interest are already themselves sets of real numbers. The real-number assign-
ment procedure is thus a natural unifying agent. On this basis, we may intro-
duce a variable X, which is used to represent real numbers, the values of which
are determined by the outcomes of a random experiment. This leads to the
notion of a random variable, which is defined more precisely below.

3.1 RANDOM VARIABLES

Consider a random experiment to which the outcomes are elements of sample
space S in the underlying probability space. In order to construct a model for

Fundamentals of Probability and Statistics for Engineers T.T. Soong © 2004 John Wiley & Sons, Ltd
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a random variable, we assume that it is possible to assign a real number X (s)
for each outcome s following a certain set of rules. We see that the ‘number’
X (s) is really a real-valued point function defined over the domain of the basic
probability space (see Definition 3.1).

Definition 3.1. The point function X (s) is called a random variable if (a) it is a
finite real-valued function defined on the sample space S of a random experiment
for which the probability function is defined, and (b) for every real number x, the
set {s: X(s) < x}is an event. The relation X = X(s) takes every element s in S of
the probability space onto a point X on the real line R' = (—oc, 00).

Notationally, the dependence of random variable X(s) on s will be omitted
for convenience.

The second condition stated in Definition 3.1 is the so-called ‘measurability
condition’. It ensures that it is meaningful to consider the probability of event
X < x for every x, or, more generally, the probability of any finite or countably
infinite combination of such events.

To see more clearly the role a random variable plays in the study of a random
phenomenon, consider again the simple example where the possible outcomes
of a random experiment are success and failure. Let us again assign number one
to the event success and zero to failure. If X is the random variable associated
with this experiment, then X takes on two possible values: 1 and 0. Moreover,
the following statements are equivalent:

® The outcome is success.
® The outcome is 1.
o X =1.

The random variable X is called a discrete random variable if it is defined
over a sample space having a finite or a countably infinite number of sample
points. In this case, random variable X takes on discrete values, and it is
possible to enumerate all the values it may assume. In the case of a sample
space having an uncountably infinite number of sample points, the associated
random variable is called a continuous random variable, with its values dis-
tributed over one or more continuous intervals on the real line. We make this
distinction because they require different probability assignment consider-
ations. Both types of random variables are important in science and engineering
and we shall see ample evidence of this in the subsequent chapters.

In the following, all random variables will be written in capital letters,
X,Y,Z,.... The value that a random variable X can assume will be denoted
by corresponding lower-case letters such as x, y, z, or xi, Xp,....

We will have many occasions to consider a sequence of random variables
X;,j=1,2,...,n In these cases we assume that they are defined on the same
probability space. The random variables X7, X»,..., X, will then map every
element s of S in the probability space onto a point in the n-dimensional
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Euclidian space R". We note here that an analysis involving n random variables
is equivalent to considering a random vector having the n random variables as
its components. The notion of a random vector will be used frequently in what
follows, and we will denote them by bold capital letters X, Y, Z, .. ..

3.2 PROBABILITY DISTRIBUTIONS

The behavior of a random variable is characterized by its probability distribu-
tion, that is, by the way probabilities are distributed over the values it assumes.
A probability distribution function and a probability mass function are two
ways to characterize this distribution for a discrete random variable. They are
equivalent in the sense that the knowledge of either one completely specifies
the random variable. The corresponding functions for a continuous random
variable are the probability distribution function, defined in the same way as in
the case of a discrete random variable, and the probability density function.
The definitions of these functions now follow.

3.2.1 PROBABILITY DISTRIBUTION FUNCTION

Given a random experiment with its associated random variable X and given a
real number x, let us consider the probability of the event {s: X(s) < x}, or,
simply, P(X < x). This probability is clearly dependent on the assigned value x.
The function

Fr(x) = P(X < x), (3.1)

is defined as the probability distribution function (PDF), or simply the distribu-
tion function, of X. In Equation (3.1), subscript X identifies the random vari-
able. This subscript is sometimes omitted when there is no risk of confusion.
Let us repeat that Fy(x) is simply P(A4), the probability of an event 4 occurring,
the event being X < x. This observation ties what we do here with the devel-
opment of Chapter 2.

The PDF is thus the probability that X will assume a value lying in a subset
of S, the subset being point x and all points lying to the ‘left’ of x. As x
increases, the subset covers more of the real line, and the value of PDF
increases until it reaches 1. The PDF of a random variable thus accumulates
probability as x increases, and the name cumulative distribution function (CDF)
is also used for this function.

In view of the definition and the discussion above, we give below some of the
important properties possessed by a PDF.
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o [t exists for discrete and continuous random variables and has values between
0and 1.
® [t is a nonnegative, continuous-to-the-left, and nondecreasing function of the
real variable x. Moreover, we have
Fy(—00) =0, and Fy(+o0)=1. (3.2)
® If g and b are two real numbers such that ¢ < b, then
Pla< X <b)=Fyx(b)— Fx(a). (3.3)

This relation is a direct result of the identity
PX<b)=PX<a)+Pla<X <bh).

We see from Equation (3.3) that the probability of X having a value in an
arbitrary interval can be represented by the difference between two values of
the PDF. Generalizing, probabilities associated with any sets of intervals are
derivable from the PDF.

Example 3.1. Let a discrete random variable X assume values —1, 1,2, and 3,
with probabilities %, %, % and % respectively. We then have

for x < —1;

for —1<x<1;

Fx(x)= for 1 <x<2;

for 2 <x<3;
for x> 3.

— = 0| W K= O

This function is plotted in Figure 3.1. It is typical of PDFs associated with
discrete random variables, increasing from O to 1 in a ‘staircase’ fashion.

A continuous random variable assumes a nonenumerable number of values
over the real line. Hence, the probability of a continuous random variable
assuming any particular value is zero and therefore no discrete jumps are
possible for its PDF. A typical PDF for continuous random variables is
shown in Figure 3.2. It has no jumps or discontinuities as in the case of the
discrete random variable. The probability of X having a value in a given
interval is found by using Equation (3.3), and it makes sense to speak only of
this kind of probability for continuous random variables. For example, in
Figure 3.2.

P(—1 <X <1)=Fy(l)= Fy(=1) =08 — 0.4 =0.4.

Clearly, P(X =a)=0 for any a.
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Figure 3.1 Probability distribution function of X, Fx(x), for Example 3.1
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Figure 3.2 Probability distribution function of a continuous random variable X, Fx(x)

3.2.2 PROBABILITY MASS FUNCTION FOR DISCRETE RANDOM
VARIABLES

Let X be a discrete random variable that assumes at most a countably infinite
number of values xj,x;,... with nonzero probabilities. If we denote
P(X = x;) = p(x;),i =1,2,..., then, clearly,

0 < p(x;) <1, for all i

Zp(xi) =1 (34)
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Px(x)

N =

@©|—=
p—
p—

Figure 3.3 Probability mass function of X, py(x), for the random variable defined
in Example 3.1

Definition 3.2. The function

px(x) = P(Y = x). (3.5)

is defined as the probability mass function (pmf) of X. Again, the subscript X is
used to identify the associated random variable.

For the random variable defined in Example 3.1, the pmf is zero everywhere
except at x;,i = 1,2,..., and has the appearance shown in Figure 3.3.

This is a typical shape of pmf for a discrete random variable. Since
P(X = x) =0 for any x for continuous random variables, it does not exist in
the case of the continuous random variable. We also observe that, like Fy(x),
the specification of py(x) completely characterizes random variable X; further-
more, these two functions are simply related by:

px(xXi) = Fy(x;) — Fx(xi1), (3.6)

Fr(x) = > pylx), (3.7)

i=1

(assuming x; < x3 < ...).

The upper limit for the sum in Equation (3.7) means that the sum is taken
over all i satisfying x; < x. Hence, we see that the PDF and pmf of a discrete
random variable contain the same information; each one is recoverable from
the other.
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One can also give PDF and pmf a useful physical interpretation. In terms of
the distribution of one unit of mass over the real line —oo < x < 00, the PDF of
a random variable at x, Fx(x), can be interpreted as the total mass associated
with point x and all points lying to the left of x. The pmf, in contrast, shows
the distribution of this unit of mass over the real line; it is distributed at discrete
points x; with the amount of mass equal to py(x;) at x;,i =1,2,....

Example 3.2. A discrete distribution arising in a large number of physical
models is the binomial distribution. Much more will be said of this important
distribution in Chapter 6 but, at present, let us use it as an illustration for
graphing the PDF and pmf of a discrete random variable.

A discrete random variable X has a binomial distribution when

n n—k
pX(k):(k)pk(lip) I7 k:071a25"'7na (38)

where n and p are two parameters of the distribution, n being a positive integer,
and 0 < p < 1. The binomial coefficient

(i)

(Z) :k'(nniik)' (3.9)

The pmf and PDF of X for n = 10 and p = 0.2 are plotted in Figure 3.4.

is defined by

Px(x) Fx(x)
1.0 -
-
0.4 — 0.8 |
03— 0.6 T-,
|
|
0.2 0.47,_,
|
0.1 - 0.2—:
[
— X T T I B R | X
0 2 4 6 8 10 0 2 4 6 8 10

(@) (b)

Figure 3.4 (a) Probability mass function, p,(x), and (b) probability distribution
function, Fy(x), for the discrete random variable X described in Example 3.2
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3.2.3 PROBABILITY DENSITY FUNCTION FOR CONTINUOUS
RANDOM VARIABLES

For a continuous random variable X, its PDF, Fx(x), is a continuous function
of x, and the derivative

_ de(X)

Sx(x) dx )

(3.10)

exists for all x. The function f y(x) is called the probability density function (pdf),
or simply the density function, of X.V
Since Fy(x) is monotone nondecreasing, we clearly have

fx(x) >0 for all x. (3.11)

Additional properties of fy(x) can be derived easily from Equation (3.10);
these include

et = [ felwda (3.12)

and

| rwax=1,
e , (3.13)
Pla< X <b)=Fx(b)— Fx(a) :/ Sfy(x)dx.

An example of pdfs has the shape shown in Figure 3.5. As indicated by
Equations (3.13), the total area under the curve is unity and the shaded area
from a to b gives the probability P(a < X < b). We again observe that the
knowledge of either pdf or PDF completely characterizes a continuous random
variable. The pdf does not exist for a discrete random variable since its
associated PDF has discrete jumps and is not differentiable at these points of
discontinuity.

Using the mass distribution analogy, the pdf of a continuous random variable
plays exactly the same role as the pmf of a discrete random variable. The

"Note the use of upper-case and lower-case letters, PDF and pdf, to represent the distribution and
density functions, respectively.
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fx(x)

/I| X

a b

Figure 3.5 A probability density function, fy(x)

function fy(x) can be interpreted as the mass density (mass per unit length).
There are no masses attached to discrete points as in the discrete random
variable case. The use of the term density function is therefore appropriate here

for f x(x).

Example 3.3. A random variable X for which the density function has the
form (a > 0):

—ax

ae~®, for x > 0;
Sx(x) = {0, elsewhere; (3.14)

is said to be exponentially distributed. We can easily check that all the condi-
tions given by Equations (3.11)—(3.13) are satisfied. The pdf is presented
graphically in Figure 3.6(a), and the associated PDF is shown in Figure 3.6(b).
The functional form of the PDF as obtained from Equation (3.12) is

Fi(%) Fx(x)

O

0 1 0

(a) (b)

Figure 3.6 (a) Probability density function, f(x), and (b) probability distribution
function, Fy(x), for random variable X in Example 3.3
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fy(w)du=0, forx<0;

Fy(x) = /—oo‘ (3.15)
1—e

—ax, for x > 0.

Let us compute some of the probabilities using fy(x). The probability
PO < X < 1) is numerically equal to the area under fy(x) from x =0 to
x =1, as shown in Figure 3.6(a). It is given by

1
PO<X<1) :/ Sfy(x)dx=1—-e""
0

The probability P(X > 3) is obtained by computing the area under f y(x) to the
right of x = 3. Hence,

P(X >3)= /OO fy(x)dx =
3

The same probabilities can be obtained from Fy(x) by taking appropriate
differences, giving:

PO<X<1)=Fy(l)=Fy(0)=(1-e“)—-0=1-—¢""
P(X >3)=Fy(0) —Fx(3)=1—(1—e) =¢34

Let us note that there is no numerical difference between P(0 < X < 1) and
PO < X <1) for continuous random variables, since P(X =0) = 0.

3.2.4 MIXED-TYPE DISTRIBUTION

There are situations in which one encounters a random variable that is partially
discrete and partially continuous. The PDF given in Figure 3.7 represents such

0

Figure 3.7 A mixed-type probability distribution function, Fy(x)
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a case in which random variable X is continuously distributed over the real line
except at X = 0, where P(X = 0) is a positive quantity. This situation may arise
when, for example, random variable X represents the waiting time of a customer
at a ticket counter. Let X be the time interval from time of arrival at the ticket
counter to the time being served. It is reasonable to expect that X will assume
values over the interval X > 0. At X = 0, however, there is a finite probability of
not having to wait at all, giving rise to the situation depicted in Figure 3.7.

Strictly speaking, neither a pmf nor a pdf exists for a random variable of the
mixed type. We can, however, still use them separately for different portions of
the distribution, for computational purposes. Let fy(x) be the pdf for the
continuous portion of the distribution. It can be used for calculating probabil-
ities in the positive range of x values for this example. We observe that the total
area under the pdf curve is no longer 1 but is equal to 1 — P(X = 0).

Example 3.4. Problem: since it is more economical to limit long-distance
telephone calls to three minutes or less, the PDF of X — the duration in minutes
of long-distance calls — may be of the form

0, forx<0;
Fy(x)={1- 6;2/3, for 0 <x <3
1 —%~, forx>3.

Determine the probability that X is (a) more than two minutes and (b) between
two and six minutes.

Answer: the PDF of X is plotted in Figure 3.8, showing that X has a mixed-
type distribution. The desired probabilities can be found from the PDF as
before. Hence, for part (a),

PX>2)=1-P(X<2)=1-Fy(2)
=l—(1—e?)=e?

Fx(x)

S —

—1

1-e' F-----_ !

Figure 3.8 Probability distribution function, Fy (x), of X, as described in Example 3.4
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Px(x)
A

fx(x)
1
3
1 1
el T T T 3e
2e ki
6e

(a) 3 x x

Figure 3.9 (a) Partial probability mass function, py (x), and (b) partial probability
density function, fx(x), of X, as described in Example 3.4

For part (b),
P2 <X <6)=Fx(6)—Fx(2)

Y TR T B V. NS Vi B
(1 2) (l—e“)=e 7

Figure 3.9 shows py (x) for the discrete portion and fy (x) for the continuous
portion of X. They are given by:

1
— tx=3;
py(x) =428 BT
0, elsewhere;
and
0, for x <O0;
1
i dF - oa—x/3 .
Fr(x) = g(x): 3e , for0<x<3;
Y 1
G e 3, for x> 3.

Note again that the area under fy (x) is no longer one but is

1
1 — =1—-—.
Px(3) e

To obtain P(X >2) and P2 < X < 6), both the discrete and continuous
portions come into play, and we have, for part (a),

P(X >2) = /;Ofx(x) dx+ py(3)

—1/3 e’)‘/3dx+1/Oo e’x/3dx+1
_3 2 6 3 2e

— 23
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and, for part (b),

6
P2<X<6) =/2 Fy(x)dx+py(3)

_1/3 —x/3d +1/6 —x/3d _|_1
—3), ¢ YT, ¢ e

oy
2

=¢€

These results are, of course, the same as those obtained earlier using the PDF.

3.3 TWO OR MORE RANDOM VARIABLES

In many cases it is more natural to describe the outcome of a random experi-
ment by two or more numerical numbers simultaneously. For example, the
characterization of both weight and height in a given population, the study of
temperature and pressure variations in a physical experiment, and the distribu-
tion of monthly temperature readings in a given region over a given year. In
these situations, two or more random variables are considered jointly and the
description of their joint behavior is our concern.

Let us first consider the case of two random variables X and Y. We proceed
analogously to the single random variable case in defining their joint prob-
ability distributions. We note that random variables X and Y can also be
considered as components of a two-dimensional random vector, say Z. Joint
probability distributions associated with two random variables are sometimes
called bivariate distributions.

As we shall see, extensions to cases involving more than two random vari-
ables, or multivariate distributions, are straightforward.

3.3.1 JOINT PROBABILITY DISTRIBUTION FUNCTION

The joint probability distribution function (JPDF) of random variables X and Y,
denoted by Fxy (x,y), is defined by

FXy(x,y):P(ngﬁng), (316)

for all x and y. It is the probability of the intersection of two events; random
variables X and Y thus induce a probability distribution over a two-dimensional
Euclidean plane.
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Using again the mass distribution analogy, let one unit of mass be distributed
over the (x,y) plane in such a way that the mass in any given region R is equal
to the probability that X and Y take values in R. Then JPDF Fyy(x,y)
represents the total mass in the quadrant to the left and below the point
(x,y), inclusive of the boundaries. In the case where both X and Y are discrete,
all the mass is concentrated at a finite or countably infinite number of points in
the (x,y) plane as point masses. When both are continuous, the mass is
distributed continuously over the (x,y) plane.

It is clear from the definition that Fxy (x,y) is nonnegative, nondecreasing in
x and y, and continuous to the left with respect to x and y. The following
properties are also a direct consequence of the definition:

(3.17)

For example, the third relation above follows from the fact that the joint event
X <xNY < +ooisthesame as the event X < x, since Y < 400 is a sure event.
Hence,

Fyy(x,400) = P(X <xNY < 400) = P(X <x) =Fy(x).

Similarly, we can show that, for any xy, x,,y;, and y, such that x; < x; and
y1 < y2, the probability P(x; < X <x;Ny; <Y <y») is given in terms of
Fyy(x,y) by

Pxi <X <xoNy1 <Y <) =Fyy(x2,2) — Fyy(x1,2)

= Fyy(x2,01) + Fxy(x1, 1), (3.18)
which shows that all probability calculations involving random variables X and
Y can be made with the knowledge of their JPDF.

Finally, we note that the last two equations in Equations (3.17) show that
distribution functions of individual random variables are directly derivable
from their joint distribution function. The converse, of course, is not true. In
the context of several random variables, these individual distribution functions
are called marginal distribution functions. For example, Fx(x) is the marginal
distribution function of X.

The general shape of Fxy(x,y) can be visualized from the properties given in
Equations (3.17). In the case where X and Y are discrete, it has the appearance of
a corner of an irregular staircase, something like that shown in Figure 3.10. It rises
from zero to the height of one in the direction moving from the third quadrant to the
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Fxy(x,y)

Figure 3.10 A joint probability distribution function of X and Y, Fxy (x,y), when X and
Y are discrete

first quadrant. When both X and Y are continuous, Fxy (x,y) becomes a smooth
surface with the same features. It is a staircase type in one direction and smooth in
the other if one of the random variables is discrete and the other continuous.

The joint probability distribution function of more than two random vari-
ables is defined in a similar fashion. Consider n random variables
X1,X2,...,X,. Their JPDF is defined by

FX]XZM)(”(XMXQ,...,xn) = P(X] <xiNXp <xn...NnX, < X”). (319)

These random variables induce a probability distribution in an n-dimensional
Euclidean space. One can deduce immediately its properties in parallel to those
noted in Equations (3.17) and (3.18) for the two-random-variable case.

As we have mentioned previously, a finite number of random variables
X;,j=1,2,...n, may be regarded as the components of an n-dimensional
random vector X. The JPDF of X is identical to that given above but it can
be written in a more compact form, namely, Fyx (x), where x is the vector, with
components xXi,Xxz,...,X,.

3.3.2 JOINT PROBABILITY MASS FUNCTION

The joint probability mass function (jpmf) is another, and more direct, charac-
terization of the joint behavior of two or more random variables when they are
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discrete. Let X and Y be two discrete random variables that assume at most
a countably infinite number of value pairs (x;,y;),i,j = 1,2,..., with nonzero
probabilities. The jpmf of X and Y is defined by

Pyy(X,¥) =P(X =xNY =y), (3.20)

for all x and y. It is zero everywhere except at points (x;,y;),i,j=1,2,...,
where it takes values equal to the joint probability P(X =x;NY =y;). We
observe the following properties, which are direct extensions of those noted in
Equations (3.4), (3.6), and (3.7) for the single-random-variable case:

0 <pXY(xi7yf) S 17

Z ZPXY(xiayj) =1,
> Py () = py (),
S ) = pi)

(3.21)

where py (x) and py (y) are now called marginal probability mass functions. We
also have

Ji<y

Y <x
Fyy(x,») Z Z Py (i, ). (3.22)

Example 3.5. Problem: consider a simplified version of a two-dimensional
‘random walk’ problem. We imagine a particle that moves in a plane in unit
steps starting from the origin. Each step is one unit in the positive direction, with
probability p along the x axis and probability g (p + g = 1) along the y axis. We
further assume that each step is taken independently of the others. What is the
probability distribution of the position of this particle after five steps?

Answer: since the position is conveniently represented by two coordinates,
we wish to establish py,(x,y) where random variable X represents the x
coordinate of the position after five steps and where Y represents the y coord-
inate. It is clear that jpmf py, (x,y) is zero everywhere except at those points
satisfying x +y =5 and x,y > 0. Invoking the independence of events of
taking successive steps, it follows from Section 3.3 that pyy (5, 0), the probabil-
ity of the particle being at (5, 0) after five steps, is the product of probabilities of
taking five successive steps in the positive x direction. Hence
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pXY(SaO) :P5~

For pyy(4,1), there are five distinct ways of reaching that position (4 steps in
the x direction and 1 in y; 3 in the x direction, 1 in y, and 1 in the x direction;
and so on), each with a probability of p*q. We thus have

Pxy (4, 1) = 5P4Q-

Similarly, other nonvanishing values of pyy (x,y) are easily calculated to be

10p°¢?,  for (x,y) = (3,2);
10p%¢3, for (x,y) = (2,3);
Pxy(x,y) = (,7) (4))

5pq*,  for (x,y) = (
¢, for (x,y) =

The jpmf pyy (x,y) is graphically presented in Figure 3.11 for p = 0.4 and
q = 0.6. It is easy to check that the sum of pyy(x,y) over all x and y is 1, as
required by the second of Equations (3.21).

Let us note that the marginal probability mass functions of X and Y are,
following the last two expressions in Equations (3.21),

¢, for x=0;
5pq*, for x =1;
10p%¢3, for x = 2;
X) = X,¥;) =
px(x) ijXY( Vi) 1032, for x = 3:

5p*q, for x = 4;

p’, forx=35;

y

Pyy(X.y) /

04
0.3} 3
02k 2

o1} L
0 '/ X

0 1 2 3 4 5

Figure 3.11 The joint probability mass function, pyy (x,y), for Example 3.5, with
p=04and ¢g=0.6
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and

p’, fory=0;
5ptq, fory=1;
10p3¢>, fory=2;
= xi? =
y) ZPXY( y) 10]726]3, fOI‘yZ 3;
Spq*, for y =4,

¢, fory=>5.

These are marginal pmfs of X and Y.

The joint probability distribution function Fxy (x, y) can also be constructed,
by using Equation (3.22). Rather than showing it in three-dimensional form,
Figure 3.12 gives this function by indicating its value in each of the dividing
regions. One should also note that the arrays of indicated numbers beyond
y =5 are values associated with the marginal distribution function Fy(x).
Similarly, Fy (y) takes those values situated beyond x = 5. These observations
are also indicated on the graph.

The knowledge of the joint probability mass function permits us to make all
probability calculations of interest. The probability of any event being realized
involving X and Y is found by determining the pairs of values of X and Y that
give rise to this event and then simply summing over the values of pyy (x,y) for
all such pairs. In Example 3.5, suppose we wish to determine the probability of
X > Y;itis given by

Fxy(x.y)

y

e
P

S 2
Zero /lf’gz 60y‘3>?’%3‘2/92224
S
Ny / 55186525 66304
/ 23y30V31744

. e
1 ___;’___:’Zero,/_’__ 0975/0.08920
o 0.01024 .
1 3 5

Zero

Figure 3.12 The joint probability distribution function, Fxy (x,y), for Example 3.5,
with p=0.4 and ¢ = 0.6
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Table 3.1 Joint probability mass function for low, medium, and high precipitation
levels (x = 1, 2, and 3, respectively) and critical and noncritical peak flow rates (y =1
and 2, respectively), for Example 3.6

y X
1 2 3

1 0.0 0.06 0.12

2 0.5 0.24 0.08

PX>Y)=PX=5NY=0)+PX=4NnY=1)+PX=3NnY=2)
=0.01024 + 0.0768 + 0.2304 = 0.31744.

Example 3.6. Let us discuss again Example 2.11 in the context of random
variables. Let X be the random variable representing precipitation levels, with
values 1, 2, and 3 indicating low, medium, and high, respectively. The random
variable Y will be used for the peak flow rate, with the value 1 when it is critical
and 2 when noncritical. The information given in Example 2.11 defines jpmf
Pxy (x,y), the values of which are tabulated in Table 3.1.

In order to determine the probability of reaching the critical level of peak
flow rate, for example, we simply sum over all py,(x,y) satisfying y =1,
regardless of x values. Hence, we have

P(Y =1)=pyy(1,1) + pyy(21) + pyy(3,1) = 0.0 + 0.06 + 0.12 = 0.18.

The definition of jpmf for more than two random variables is a direct extension
of that for the two-random-variable case. Consider n random variables
X1,X2,...,X,. Their jpmf is defined by

Pxixy.x, (X1, X2, ..., X)) = P(X1 =x1 N X2 = x2N ... N X, = x,), (3.23)

which is the probability of the intersection of n events. Its properties and
utilities follow directly from our discussion in the two-random-variable case.
Again, a more compact form for the jpmf is px (x) where X is an n-dimensional
random vector with components X, X,,...,X,.

3.3.3 JOINT PROBABILITY DENSITY FUNCTION

As in the case of single random variables, probability density functions become
appropriate when the random variables are continuous. The joint probability
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density function (jpdf) of two random variables, X and Y, is defined by the
partial derivative

2
Fxy(x,») _“%a(;ﬂy). (3.24)

Since Fxy(x,y) is monotone nondecreasing in both x and y,fyy(x,y) is
nonnegative for all x and y. We also see from Equation (3.24) that

y x
Fyy(x,y)) =P(X <xNY <y)= / / S xy (u,v)dudv. (3.25)

Moreover, with x; < x;, and y; < y,,

V2 X2
Pxi<X<xny <Y<y = / / S xy(x,y)dxdy. (3.26)
i X

The jpdf fxy (x,y) defines a surface over the (x,y) plane. As indicated by
Equation (3.26), the probability that random variables X and Y fall within a
certain region R is equal to the volume under the surface of fy, (x,y) and
bounded by that region. This is illustrated in Figure 3.13.

y
fxy(%, ¥) /

Figure 3.13 A joint probability density function, fyy (x,y)
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We also note the following important properties:

[ N / "y (r)dxdy = 1, (3.27)
[ " ey Ger)dy = £y (), (3.28)
[ ey )dx =15 (0). (3.29)

Equation (3.27) follows from Equation (3.25) by letting x, y — +o00, +00, and
this shows that the total volume under the fyy (x,y) surface is unity. To give
a derivation of Equation (3.28), we know that

Fr(x) = Fry(x, +00) = / N / * oy (0, y)dudy.

Differentiating the above with respect to x gives the desired result immediately.
The density functions fy (x) and f (y) in Equations (3.28) and (3.29) are now
called the marginal density functions of X and Y, respectively.

Example 3.7. Problem: a boy and a girl plan to meet at a certain place between
9 a.m. and 10 a.m., each not waiting more than 10 minutes for the other. If all
times of arrival within the hour are equally likely for each person, and if their
times of arrival are independent, find the probability that they will meet.

Answer: for a single continuous random variable X that takes all values over
an interval a to b with equal likelihood, the distribution is called a uniform
distribution and its density function fy (x) has the form

1
fx(x)=qb-a’
0, elsewhere.

for a < x < b; (3.30)

The height of fy (x) over the interval (a, b) must be 1/(b — a) in order that the
area is 1 below the curve (see Figure 3.14). For a two-dimensional case as
described in this example, the joint density function of two independent uni-
formly distributed random variables is a flat surface within prescribed bounds.
The volume under the surface is unity.

Let the boy arrive at X minutes past 9 a.m. and the girl arrive at ¥ minutes past
9 a.m. The jpdf fyy (x,y) thus takes the form shown in Figure 3.15 and is given by

1
fXY(xJ/) - 3600 or SX > an y

0, elsewhere.
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fx(¥)

Figure 3.14 A uniform density function, fy (x)

fxv(x.y)

3600 .

0

Figure 3.15 The joint probability density function fyy (x,y), for Example 3.7

The probability we are seeking is thus the volume under this surface over an
appropriate region R. For this problem, the region R is given by

R:|X—-Y|<10

and is shown in Figure 3.16 in the (x,y) plane.
The volume of interest can be found by inspection in this simple case.
Dividing R into three regions as shown, we have

P(they will meet) = P(]X — Y| < 10)
11

= [2(5)(10) + 10v2(50v2)]/3600 =
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Figure 3.16 Region R in Example 3.7

Note that, for a more complicated jpdf, one needs to carry out the volume
integral [[,f yy(x,y)dxdy for volume calculations.

As an exercise, let us determine the joint probability distribution function
and the marginal density functions of random variables X and Y defined in
Example 3.7.

The JPDF of X and Y is obtained from Equation (3.25). It is clear that

0, for (x,y) <(0,0);

Frr(x.y) = { I, for (x,) > (60,60).

Within the region (0,0) < (x,y) < (60, 60), we have

Yrero1 Xy
F = S =7
xy(x,) /0/0 (3600>dXdy 3600

For marginal density functions, Equations (3.28) and (3.29) give us

60 1 1
—)dy=—, for0<x<60;
Flx) = /0 (3600)y 0 o =T=0T

0, elsewhere.
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Similarly,

1
— for 0 <y <60;
fy(y) =4 60

0, elsewhere.

Both random variables are thus uniformly distributed over the interval (0, 60).

Example 3.8. In structural reliability studies, the resistance Y of a structural
element and the force X applied to it are generally regarded as random vari-
ables. The probability of failure, py, is defined by P(Y < X). Suppose that the
jpdf of X and Y is specified to be

abe™(@+bY) - for (x,y) > 0;

Syr(x,) = {07 for (x, ) < 0:

where a and b are known positive constants, we wish to determine py.
The probability p; is determined from

pr= R/ / fxy(x,y)dxdy,

where R is the region satisfying ¥ < X. Since X and Y take only positive values,
the region R is that shown in Figure 3.17. Hence,

oo 00 b
= abe™ @+ dxdy = )
Pr /0 /y M

Figure 3.17 Region R in Example 3.8
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In closing this section, let us note that generalization to the case of many
random variables is again straightforward. The joint distribution function of n
random variables X, X,,...,X,, or X, is given, by Equation (3.19), as
Fx(x):P(XlSX10X2SXQ...OK1§X,1). (331)

The corresponding joint density function, denoted by fy (x), is then

frlw) = ()

n 6x16xz...axn’ (3'32)

if the indicated partial derivatives exist. Various properties possessed by these
functions can be readily inferred from those indicated for the two-random-
variable case.

3.4 CONDITIONAL DISTRIBUTION AND INDEPENDENCE

The important concepts of conditional probability and independence intro-
duced in Sections 2.2 and 2.4 play equally important roles in the context of
random variables. The conditional distribution function of a random variable X,
given that another random variable Y has taken a value y, is defined by

Fyy(x[y) = P(X < x|Y = y). (3.33)

Similarly, when random variable X is discrete, the definition of conditional mass
function of X given Y =y is

Pxy(xly) = P(X = x|Y = y). (3.34)

Using the definition of conditional probability given by Equation (2.24),
we have

PX=xNnY=y)
P(Y=y)

Pyy(x[y) =P(X =x|Y =y) =
or

Py (1) :”’;<—(xy)y) if py(y) £ 0, (3.35)
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which is expected. It gives the relationship between the joint jpmf and the
conditional mass function. As we will see in Example 3.9, it is sometimes more
convenient to derive joint mass functions by using Equation (3.35), as condi-
tional mass functions are more readily available.

If random variables X and Y are independent, then the definition of inde-
pendence, Equation (2.16), implies

Pxy(x]y) = py(x), (3.36)

and Equation (3.35) becomes
Pxy(x,3) = py(X)py(y). (3.37)

Thus, when, and only when, random variables X and Y are independent, their
jpmf is the product of the marginal mass functions.

Let X be a continuous random variable. A consistent definition of the
conditional density function of X given Y = y,fy,(x|y), is the derivative of
its corresponding conditional distribution function. Hence,

Sxy(xly) = dF%)(:M, (3.38)

where Fxy (x]y) is defined in Equation (3.33). To see what this definition leads
to, let us consider

P(X1<X§)C2ﬁy1< ngz)

Pxi <X <xl <Y <m= P(y1 <Y <)

(3.39)

In terms of jpdf fxy (x,y), it is given by

V2 2
Pxi <X <xay1 <Y <) / / Sxr(x,y dxdy// / Syy(x,y)dxdy
ha

[ [ renasar /[ g

By setting x; = —00, X3 = X, y] = y, and y, = y + Ay, and by taking the limit
Ay — 0, Equation (3.40) reduces to

/ fXY u,y)d
(3.41)

provided that f (y) # 0.
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Now we see that Equation (3.38) leads to

Fartoy) =SB LB 20 )

which is in a form identical to that of Equation (3.35) for the mass functions — a
satisfying result. We should add here that this relationship between the condi-
tional density function and the joint density function is obtained at the expense
of Equation (3.33) for Fyy(x|y). We say ‘at the expense of” because the defin-
ition given to Fyy(x|y) does not lead to a convenient relationship between
Fxy(x|y) and Fxy (x,y), that is,

FXY(x7y)

Fyy(xly) # Fr()

(3.43)

This inconvenience, however, is not a severe penalty as we deal with density
functions and mass functions more often.

When random variables X and Y are independent, Fyy (x|y) = Fx(x) and, as
seen from Equation (3.42),

Syy (x[y) = fx(x), (3.44)
and

Fxr(6p) =fx () y(»), (3.45)

which shows again that the joint density function is equal to the product of the
associated marginal density functions when X and Y are independent.
Finally, let us note that, when random variables X and Y are discrete,

i:x;<x

Fyy(x|y) = Z Pxy(xily), (3.46)
and, in the case of a continuous random variable,

Par(aly) = [ Frlulyde (.47

Comparison of these equations with Equations (3.7) and (3.12) reveals they are
identical to those relating these functions for X alone.

Extensions of the above results to the case of more than two random vari-
ables are again straightforward. Starting from

P(ABC) = P(4|BC)P(B|C)P(C)
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[see Equation (2.26)], for three events A, B, and C, we have, in the case of three
random variables X, Y, and Z,

Pxyz(X,9,2) = pxyz(X|y, 2)py,(¥|2)p2(2)

(3.48)
Sxvz(x,0,:2) = fxyz (X, 2)f vz (0l2)f 2(2)
Hence, for the general case of n random variables, X, X», ..., X,, or X, we can
write
Px(%) =Py x,.x,(X1]x2, o Xn)Py, oy, (%213, X) o Py x, (X1 [X0) Py, ()
Sfx(x) =fxx.x, (x1]x2,... axn)fxz.ux,, (x2]x3,.0 0, %) . Sy, x, (Xn-1 ‘xn)fx,, (xn)-
(3.49)

In the event that these random variables are mutually independent, Equations
(3.49) become

px(x) =Dx, (xl)sz (x2).. ~PX,,(Xn)§ }
(3.50)

fx(x) :fX1 (Xl)f)(2 (x2) .. -fX,,(xn)~

Example 3.9. To show that joint mass functions are sometimes more easily
found by finding first the conditional mass functions, let us consider a traffic
problem as described below.

Problem: a group of n cars enters an intersection from the south. Through
prior observations, it is estimated that each car has the probability p of turning
east, probability g of turning west, and probability r of going straight on
(p+q+r=1). Assume that drivers behave independently and let X be the
number of cars turning east and Y the number turning west. Determine the
jpmprY (X,y)-

Answer: since

Pxy(x,3) = pyy(X[¥)Py (),

we proceed by determining pyy (x|y) and py(y). The marginal mass function
py () is found in a way very similar to that in the random walk situation
described in Example 3.5. Each car has two alternatives: turning west, and
not turning west. By enumeration, we can show that it has a binomial distribu-
tion (to be more fully justified in Chapter 6)

py(y) = (ﬁ)eﬂ(l S y=12,. (3.51)

TLFeBOOK



Random Variables and Probability Distributions 65

Consider now the conditional mass function pyy (x[y). With ¥ =y having
happened, the situation is again similar to that for determining py (y) except
that the number of cars available for taking possible eastward turns is now
n —y; also, here, the probabilities p and r need to be renormalized so that they
sum to 1. Hence, pyy (x|y) takes the form

X n—y—x

n—y 4 D
pXY(x|y):( X )(r+p> <l_r+p> ’ x:Oala"'vn_yay:O717"'7n‘
(3.52)

Finally, we have pyy (x,y) as the product of the two expressions given by
Equations (3.51) and (3.52). The ranges of values for x and y arex =0, 1,...,
n—y,andy =0,1,...,n

Note that pyy (x,y) has a rather complicated expression that could not have
been derived easily in a direct way. This also points out the need to exercise care
in determining the limits of validity for x and y.

Example 3.10. Problem: resistors are designed to have a resistance R of
50 +2 Q. Owing to imprecision in the manufacturing process, the actual density
function of R has the form shown by the solid curve in Figure 3.18. Determine
the density function of R after screening — that is, after all the resistors having
resistances beyond the 48-52 () range are rejected.

Answer: we are interested in the conditional density function, f;(r|A), where
A is the event {48 < R < 52}. This is not the usual conditional density function
but it can be found from the basic definition of conditional probability.

We start by considering

P(R<rn48 < R<52)

Fr(r|4) = P(R<r[48 < R < 52) = P(48 < R < 52)

rQ)

Figure 3.18 The actual, fz(r), and conditional, f(r|A), for Example 3.10
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However,
0, for r < 48;
R<rN48 < R<52=¢48<R<r, ford8<r<52
48 < R< 52, forr>52.

Hence,
0, forr<48s;
fr(r)dr
Fr(r|d) = P48 < R<r) 43
= <r< :
PUS < R<52) " , ford48 <r <52
1, forr> 52
where

52
c= Sfr(r)dr.
48

is a constant.
The desired f(r|A) is then obtained from the above by differentiation. We
obtain

£l 4) = dFg(r|4) _ fRT(r)7 for 48 < r <52

d
g 0, elsewhere

It can be seen from Figure 3.18 (dashed line) that the effect of screening is
essentially a truncation of the tails of the distribution beyond the allowable
limits. This is accompanied by an adjustment within the limits by a multi-
plicative factor 1/c so that the area under the curve is again equal to 1.

FURTHER READING AND COMMENTS

We discussed in Section 3.3 the determination of (unique) marginal distributions from a
knowledge of joint distributions. It should be noted here that the knowledge of marginal
distributions does not in general lead to a unique joint distribution. The following reference
shows that all joint distributions having a specified set of marginals can be obtained by
repeated applications of the so-called 6 transformation to the product of the marginals:

Becker, P.W., 1970, “A Note on Joint Densities which have the Same Set of Marginal
Densities”, in Proc. International Symp. Information Theory, Elsevier Scientific Pub-
lishers, The Netherlands.
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PROBLEMS

3.1 For each of the functions given below, determine constant a so that it possesses all
the properties of a probability distribution function (PDF). Determine, in each case,
its associated probability density function (pdf) or probability mass function (pmf)
if it exists and sketch all functions.

(a) Case I:
0, forx<5;
Fx) = {a, for x > 5.
(b) Case 2:
0, forx<5;
F(x) = %, for 5<x <7,
a, forx>7.
(c) Case 3:
0, forx<I;

k
FOO=13 1/, fork<x<k+1, andk=123,....
=

(d) Case 4:
0, forx<O0;
Flx) = { 1 —e %, for x>0.
(e) Case 5:
0, for x<O0;
F(x)=<¢ x% for0<x<I;
1, forx>1.
(f) Case 6:
0, for x <0;
F(x) = asin™! Vx, for0<x<1;
1, forx>0.
(g) Case7:

0, for x<O0;
= 1
F(x) a(l —e/?) +3 for x > 0.

3.2 For each part of Problem 3.1, determine:
(@) PX <6);
(b) P(J< X <.
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p X(X) fi(X)

0.2 — | |
X

()

(b)

Figure 3.19 The probability mass function, py(x), and probability density function,
fx (x), for Problem 3.3

3.3 For py(x) and fx(x) in Figure 3.19(a) and 3.19(b) respectively, sketch roughly in
scale the corresponding PDF Fy(x) and show on all graphs the procedure for
finding P2 < X < 4).

3.4 For each part, find the corresponding PDF for random variable X.

(a) Case 1:
0.1, for90 < x < 100;
Sx(x) = {07 elsewhere.
(b) Case 2:
_f2(1-x), for0<x<I;
Jx(x) = {0, elsewhere.
(c) Case 3:
fy(x) = ! for <x<
¥ =y 00 0.

3.5 The pdf of X is shown in Figure 3.20.
(a) Determine the value of a.
(b) Graph Fx(x) approximately.
(c) Determine P(X > 2).
(d) Determine P(X >2|X > 1).

3.6 The life X, in hours, of a certain kind of electronic component has a pdf given by

0, for x < 100;
fx(x)=
x() &zo, for x > 100.
X

Determine the probability that a component will survive 150 hours of operation.
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fx(X)

Figure 3.20 The probability density function, fy (x), for Problem 3.5

3.7 Let T denote the life (in months) of a light bulb and let

1 t
fr(t)y=14 15 450’

0, elsewhere.

for 0 < r < 30;

(a) Plot f,(t) against ¢.

(b) Derive Fr(t) and plot Fy(¢) against ¢.

(c) Determine using f;(¢), the probability that the light bulb will last at least 15
months.

(d) Determine, using F7(z), the probability that the light bulb will last at least 15
months.

(e) A light bulb has already lasted 15 months. What is the probability that it will
survive another month?

3.8 The time, in minutes, required for a student to travel from home to a morning
class is uniformly distributed between 20 and 25. If the student leaves home
promptly at 7:38 a.m., what is the probability that the student will not be late for
class at 8:00 a.m.?

3.9 In constructing the bridge shown in Figure 3.21, an engineer is concerned with
forces acting on the end supports caused by a randomly applied concentrated load
P, the term ‘randomly applied’ meaning that the probability of the load lying in any
region is proportional only to the length of that region. Suppose that the bridge has
a span 2b. Determine the PDF and pdf of random variable X, which is the distance
from the load to the nearest edge support. Sketch these functions.

VAN pAN
. 2b -

Figure 3.21 Diagram of the bridge, for Problem 3.9
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Fire station

| b |

Figure 3.22 Position of the fire station and stretch of forest, AB, for Problem 3.10

3.10 Fire can erupt at random at any point along a stretch of forest AB. The fire
station is located as shown in Figure 3.22. Determine the PDF and pdf of
X, representing the distance between the fire and the fire station. Sketch these
functions.

3.11 Pollutant concentrations caused by a pollution source can be modeled by the pdf
(a> 0):

Falr) = {0, for r < 0;

ae” ™, forr>0;

where R is the distance from the source. Determine the radius within which 95% of
the pollutant is contained.

3.12 As an example of a mixed probability distribution, consider the following problem:
a particle is at rest at the origin (x = 0) at time # = 0. At a randomly selected time
uniformly distributed over the interval 0 < 7 < 1, the particle is suddenly given a
velocity v in the positive x direction.

(a) Show that X, the particle position at #(0 < ¢ < 1), has the PDF shown in Figure
3.23.

(b) Calculate the probability that the particle is at least v/3 away from the origin at
t=1/2.

Fx(x)

—1—t+ X
Fx(X)—1 t+l/

vt

Figure 3.23 The probability distribution function, Fy (x), for Problem 3.12

TLFeBOOK



Random Variables and Probability Distributions

3.13

3.14

3.15

3.16

71

For each of the joint probability mass functions (jpmf), pyy (x,y), or joint prob-
ability density functions (jpdf), fyy (x,y), given below (cases 1-4), determine:

(a) the marginal mass or density functions,

(b) whether the random variables are independent.

(i) Case 1l
0.5, for (x,y) = (1,1);
by = 4 O for (6 = (1,2
PN 0, for (xp) = (2,1);
0.3, for (x,y) =(2,2).
(i) Case 2:
alx+y), for0<x<l,and l <y <2;
Sxy(x,y) = {
0, elsewhere.
(i) Case 3
e &) for (x,y) > (0,0);
Sxy(xy) = { (x.7) > (0,0)
0, elsewhere.
(iv) Case4
. 4y(x — p)e= Ot for 0 < x < oo,and 0 < py < x;
Sxy(x,y) = { A ) 7y
0, elsewhere.
Suppose X and Y have jpmf
0.1, for (x,y) = (1,1);
) — ] 02 for (o) = (1,2);
P Z03, for (x.y) = (2.1);
0.4, for (x,y) =(2,2).

(a) Determine marginal pmfs of X and Y.
(b) Determine P(X = 1).
(¢) Determine P(2X < Y).

Let X, X,, and X3 be independent random variables, each taking values 1 with
probabilities 1/2. Define random variables Y;, Y,, and Y3 by

Yi=Xi1X2, Y =X1X5 Y;=1XX;
Show that any two of these new random variables are independent but that Y, Y,
and Y3 are not independent.

The random variables X and Y are distributed according to the jpdf given by
Case 2, in Problem 3.13(ii). Determine:

(@) P(X>05NnY > 1.0).

(b) P(XY <1).
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3.17

3.18

3.19

3.20

3.21

3.22

Fundamentals of Probability and Statistics for Engineers

© P(X <05|Y = 1.5).
(d) P(X <0.5|Y < 1.5).

Let random variable X denote the time of failure in years of a system for which the
PDF is Fx(x). In terms of Fx(x), determine the probability

P(X < x|X > 100),

which is the conditional distribution function of X given that the system did not fail
up to 100 years.

The pdf of random variable X is

3x%, for —1 < x <0;
0, elsewhere.

ft = {

Determine P(X > b|X < b/2) with —1 < b< 0.

Using the joint probability distribution given in Example 3.5 for random variables
X and Y, determine:

(a) P(X > 3).

(b) POLY < 3).

() P(X > 3|y <2).

Let

ke 0 for0 < x < l,and 0 < y < 2;

Farts) = {

0, elsewhere.

(a) What must be the value of k?
(b) Determine the marginal pdfs of X and Y.
(c) Are X and Y statistically independent? Why?

A commuter is accustomed to leaving home between 7:30 a.m and 8:00 a.m., the drive
to the station taking between 20 and 30 minutes. It is assumed that departure time and
travel time for the trip are independent random variables, uniformly distributed over
their respective intervals. There are two trains the commuter can take; the first leaves
at 8:05 a.m. and takes 30 minutes for the trip, and the second leaves at 8:25 a.m. and
takes 35 minutes. What is the probability that the commuter misses both trains?

The distance X (in miles) from a nuclear plant to the epicenter of potential earth-
quakes within 50 miles is distributed according to

2x
= for 0 < x < 50;
fe(x) =4 25000 VST

0, elsewhere;

and the magnitude Y of potential earthquakes of scales 5 to 9 is distributed
according to

, 39 -y) _
fr) =8 e fors<y<9

0, elsewhere.
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3.23

3.24

3.25

3.26

Assume that X and Y are independent. Determine P(X <25NY > 8), the prob-
ability that the next earthquake within 50 miles will have a magnitude greater than
8 and that its epicenter will lie within 25 miles of the nuclear plant.

Let random variables X and Y be independent and uniformly distributed in the
square (0,0) < (X, Y) < (1,1). Determine the probability that XY < 1/2.

In splashdown maneuvers, spacecrafts often miss the target because of guidance
inaccuracies, atmospheric disturbances, and other error sources. Taking the origin
of the coordinates as the designed point of impact, the X and Y coordinates of the
actual impact point are random, with marginal density functions

X 1 292
fX(x) :We—.\z/207 —00 < X < o0
1 2 /252
fY(y):We}/z , —oo<y<oo.
g\ LT

Assume that the random variables are independent. Show that the probability
of a splgshzdown lying within a circle of radius a centered at the origin
is1 —e“/2,

Let X,X5,...,X, be independent and identically distributed random variables,
each with PDF Fy(x). Show that

P[min(X17X27 o 7,X”)
Pmax(Xy, Xz,...,X,)

The above are examples of extreme-value distributions. They are of considerable
practical importance and will be discussed in Section 7.6.

In studies of social mobility, assume that social classes can be ordered from 1

(professional) to 7 (unskilled). Let random variable X denote the class order of the

kth generation. Then, for a given region, the following information is given:

(i)  The pmf of Xy is described by py, (1) = 0.00, py (2) = 0.00, py (3) = 0.04,
Py, (4) = 0.06, py,(5) = 0.11, py, (6) = 0.28, and py (7) = 0.51.

(i) The conditional probabilities P(Xj+1 = i| X =) fori, j=1,2,...,7 and for
every k are given in Table 3.2.

Table 3.2 P(Xyy = i| Xy =) for Problem 3.26

i J
1 2 3 4 5 6 7

1 0.388 0.107 0.035 0.021 0.009 0.000 0.000
2 0.146 0.267 0.101 0.039 0.024 0.013 0.008
3 0.202 0.227 0.188 0.112 0.075 0.041 0.036
4 0.062 0.120 0.191 0.212 0.123 0.088 0.083
5 0.140 0.206 0.357 0.430 0.473 0.391 0.364
6 0.047 0.053 0.067 0.124 0.171 0.312 0.235
7 0.015 0.020 0.061 0.062 0.125 0.155 0.274
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(iii) The outcome at the (k 4 1)th generation is dependent only on the class order
at the kth generation and not on any generation prior to it; that is,

P(Xk+1 = i|Xk =jNXp_1=mnN.. ) = P(Xk+1 = i‘Xk :j)
Determine

(a) The pmf of X3.
(b) The jpmf of X3 and X4.
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Expectations and Moments

While a probability distribution [Fx(x),py(x), or fy(x)] contains a complete
description of a random variable X, it is often of interest to seek a set of simple
numbers that gives the random variable some of its dominant features. These
numbers include moments of various orders associated with X. Let us first
provide a general definition (Definition 4.1).

Definition 4.1. Let g(X) be a real-valued function of a random variable X.
The mathematical expectation, or simply expectation, of g(X), denoted by
E{g(X)}, is defined by

E{g(X)} = g(xi)py (), (4.1)

if X is discrete, where x, x5, ... are possible values assumed by X.
When the range of i extends from 1 to infinity, the sum in Equation (4.1)
exists if it converges absolutely; that is,

o0
Z (x)|px(xi) < 0.

The symbol E{ } is regarded here and in the sequel as the expectation operator.
If random variable X is continuous, the expectation E{g(X)} is defined by

E{g(X)} = / " () (¥)dx, (42)

oo

if the improper integral is absolutely convergent, that is,

/jol()lfx( Jdx < oo,

[o.¢]

Fundamentals of Probability and Statistics for Engineers T.T. Soong © 2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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Let us note some basic properties associated with the expectation operator.
For any constant ¢ and any functions g(X) and A(X) for which expectations
exist, we have

E{c} =c,
Efcg(X)} = cE{g(X)},

E{g(X) + h(X)} = E{g(X)} + E{h(X)},
E{g(X)} < E{h(X)}, if g(X) < h(X) for all values of X.

(4.3)

These relations follow directly from the definition of E{g(X)}. For example,
E(() +h00) = [ g + h(0)f x ()dx

= [~ etrewars [ s

= E{g(X)} + E{n(X)},

as given by the third of Equations (4.3). The proof is similar when X is discrete.

4.1 MOMENTS OF A SINGLE RANDOM VARIABLE

Let gX)=X",n=1,2,...; the expectation E{X"}, when it exists, is called the
nth moment of X. It is denoted by «, and is given by

ay = E{X"} = Zx?p)((x,-)7 for X discrete; (4.4)

a, = E{X"} = / X"f y(x)dx, for X continuous. (4.5)

4.1.1 MEAN, MEDIAN, AND MODE

One of the most important moments is o, the first moment. Using the mass
analogy for the probability distribution, the first moment may be regarded as
the center of mass of its distribution. It is thus the average value of random
variable X and certainly reveals one of the most important characteristics of its
distribution. The first moment of X is synonymously called the mean, expecta-
tion, or average value of X. A common notation for it is my or simply m.
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Example 4.1. Problem: From Example 3.9 (page 64), determine the average
number of cars turning west in a group of » cars.

Answer: we wish to determine the mean of Y, E{Y}, for which the mass
function is [from Equation (3.51)]

n n—
pY(k):<k>qk(l_q) k? k:0,1,2,...7l’l

Equation (4.4) then gives
SIS SCREES o () FHIEPS
k=0

" n! e
- ; k—Dl(n— k)!qk(l —a"

Let kK — 1 = m. We have
n—1 n—1 |
E{ Y} = an( . )qm(l _ q)nf -m
m=0

The sum in this expressions is simply the sum of binomial probabilities and
hence equals one. Therefore,

E{Y} = nq,

which has a numerical value since n and g are known constants.

Example 4.2. Problem: the waiting time X (in minutes) of a customer waiting
to be served at a ticket counter has the density function

Sy(x) =

2¢=2*. for x > 0;
0, elsewhere.

Determine the average waiting time.
Answer: referring to Equation (4.5), we have, using integration by parts,

1
E{X} = / e M) dx = Emlnute

Example 4.3. Problem: from Example 3.10 (pages 65), find the average
resistance of the resistors after screening.
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Answer: the average value required in this example is a conditional mean of R
given the event 4. Although no formal definition is given, it should be clear that
the desired average is obtained from

ErA) = [l = [0,

48 48

This integral can be evaluated when f,(r) is specified.

Two other quantities in common usage that also give a measure of centrality
of a random variable are its median and mode.

A median of X is any point that divides the mass of the distribution into two
equal parts; that is, x¢ is a median of X if

P(X < X()) = 1
2
The mean of X may not exist, but there exists at least one median.

In comparison with the mean, the median is sometimes preferred as a
measure of central tendency when a distribution is skewed, particularly where
there are a small number of extreme values in the distribution. For example, we
speak of median income as a good central measure of personal income for a
population. This is a better average because the median is not as sensitive to
a small number of extremely high incomes or extremely low incomes as is
the mean.

Example 4.4. Let 7 be the time between emissions of particles by a radio-
active atom. It is well established that 7 is a random variable and that it obeys
an exponential distribution; that is,

, de ™, fort>0:;
fr(t) =
0, elsewhere;

where ) is a positive constant. The random variable T is called the lifetime of
the atom, and a common average measure of this lifetime is called the half-life,
which is defined as the median of 7. Thus, the half-life, 7 is found from

T 1
/0 Sr(ndt= 53

or
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Let us note that the mean life, E{T}, is given by

o0 1
E(T) = [ r(0de =
0 A
A point x; such that

Px(xi)) > py(xip1) and  py(x;) > py(xio1), X discrete,
Sx(xi) > fy(xi+e) and fy(xi)>fy(xi—¢), X continuous,

where ¢ is an arbitrarily small positive quantity, is called a mode of X. A mode is
thus a value of X corresponding to a peak in its mass function or density
function. The term unimodal distribution refers to a probability distribution
possessing a unique mode.

To give a comparison of these three measures of centrality of a random
variable, Figure 4.1 shows their relative positions in three different situations. It
is clear that the mean, the median, and the mode coincide when a unimodal
distribution is symmetric.

4.1.2 CENTRAL MOMENTS, VARIANCE, AND STANDARD
DEVIATION

Besides the mean, the next most important moment is the variance, which
measures the dispersion or spread of random variable X about its mean. Its
definition will follow a general definition of central moments (see Definition 4.2).

Definition 4.2. The central moments of random variable X are the moments of
X with respect to its mean. Hence, the nth central moment of X, pi, is defined as

i = E{(X —m)"} = Z(x,. —m)"py(x;), X discrete; (4.6)
= E{(X —m)"} = /oo(x —m)"fy(x)dx, X continuous. | (4.7)

The variance of X is the second central moment, /p, commonly denoted by crg(
or simply o or var(X). It is the most common measure of dispersion of
a distribution about its mean. Large values of 0% imply a large spread in
the distribution of X about its mean. Conversely, small values imply a sharp
concentration of the mass of distribution in the neighborhood of the mean. This is
illustrated in Figure 4.2 in which two density functions are shown with the same
mean but different variances. When 0% = 0, the whole mass of the distribution is
concentrated at the mean. In this extreme case, X = my with probability 1.
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fx(X)
. X
(@) Mode —~ Mean
Median
fx(x)
I
I
I
I
| X
(b) Mode
Median
Mean
fx (%)
I
L]
L]
| 0%

|
(c) Mean —/)I ~ Mode
Median

Figure 4.1 Relative positions of the mean, median, and mode for three distributions:
(a) positively shewed; (b) symmetrical; and (c) negatively shewed

An important relation between the variance and simple moments is

o’ =ay —m’. (4.8)
This can be shown by making use of Equations (4.3). We get

o = E{(X —m)*} = E{X? = 2mX +m*} = E{X?} — 2mE{X} + m’

:a2—2m2+m2:a2—m2.
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fy(x)

a1

gp > 0p

/

X

Figure 4.2 Density functions with different variances, oy, and o,

We note two other properties of the variance of a random variable X which
can be similarly verified. They are:
var(X + ¢) = var(X),
( ) : (X) (49)
var(cX) = ¢“var(X),

where c is any constant.

It is further noted from Equations (4.6) and (4.7) that, since each term in the
sum in Equation (4.6) and the integrand in Equation (4.7) are nonnegative, the
variance of a random variable is always nonnegative. The positive square root

ox = HE{(X —m)*}]'"?,

is called the standard deviationof X. An advantage of using oy rather than o%
as a measure of dispersion is that it has the same unit as the mean. It can
therefore be compared with the mean on the same scale to gain some measure
of the degree of spread of the distribution. A dimensionless number that
characterizes dispersion relative to the mean which also facilitates comparison
among random variables of different units is the coefficient of variation, vy,
defined by

py = 2% (4.10)
my

Example 4.5. Let us determine the variance of ¥ defined in Example 4.1.
Using Equation (4.8), we may write

0% = E{Y*} —m} = E{Y?} — n’¢".
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Now,

E{Y*} =) py(k) = k(k—1)py(k +kay
k=0 k=0

and
> kpy(k) =ng.
=0

Proceeding as in Example (4.1),

zn:k(k — D)py(k) = n(n - 1)q2 y &q"’z(l —q) "

Thus,
E{Y*} =n(n—1)¢* + ng,
and
oy = n(n—1)¢* +nq — (ng)* = nq(1 - q).

Example 4.6. We again use Equation (4.8) to determine the variance of X
defined in Example 4.2. The second moment of X is, on integrating by parts,

o0 1
E{X?} = 2/ e Pdy ==
0 2
Hence,

UX = E{Xz} mx =

I\JM—‘
4>\~
FN-

Example 4.7. Problem: owing to inherent manufacturing and scaling inaccura-
cies, the tape measures manufactured by a certain company have a standard
deviation of 0.03 feet for a three-foot tape measure. What is a reasonable
estimate of the standard deviation associated with three-yard tape measures
made by the same manufacturer?
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Answer: for this problem, it is reasonable to expect that errors introduced in
the making of a three-foot tape measure again are accountable for inaccuracies
in the three-yard tape measures. It is then reasonable to assume that the
coefficient of variation v = o/m is constant for tape measures of all lengths
manufactured by this company. Thus

0.03
=——=20.01
v 3 s

and the standard deviation for a three-yard tape measures is 0.01 x (9 feet) =
0.09 feet.

This example illustrates the fact that the coefficient of variation is often
used as a measure of quality for products of different sizes or different weights.
In the concrete industry, for example, the quality in terms of concrete strength
is specified by a coefficient of variation, which is a constant for all mean
strengths.

Central moments of higher order reveal additional features of a distribution.
The coefficient of skewness, defined by

n=58 (4.11)

gives a measure of the symmetry of a distribution. It is positive when a uni-
modal distribution has a dominant tail on the right. The opposite arrangement
produces a negative ~,. It is zero when a distribution is symmetrical about the
mean. In fact, a symmetrical distribution about the mean implies that all odd-
order central moments vanish.

The degree of flattening of a distribution near its peaks can be measured by
the coefficient of excess, defined by

n=5-3 (4.12)

A positive v, implies a sharp peak in the neighborhood of a mode in a unimodal
distribution, whereas a negative v, implies, as a rule, a flattened peak. The
significance of the number 3 in Equation (4.12) will be discussed in Section 7.2,
when the normal distribution is introduced.

4.1.3 CONDITIONAL EXPECTATION

We conclude this section by introducing a useful relation involving conditional
expectation. Let us denote by E{X|Y} that function of random variable Y for
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which the value at ¥ = y; is E{X|Y = y;}. Hence, E{X|Y} is itself a random
variable, and one of its very useful properties is that

E{X} = E{E{X|Y}} (4.13)
If Y is a discrete random variable taking on values y1,y», ..., the above states
that
E{X} =Y E{X|Y =y }P(Y =), (4.14)
and
E() = [ B 00, (4.15)
—00

if ¥ is continuous.

To establish the relation given by Equation (4.13), let us show that Equation
(4.14) is true when both X and Y are discrete. Starting from the right-hand side
of Equation (4.14), we have

ZE{X|Y YitP(Y = yi) _ZZXJ X =x1Y =) P(Y = ).

Since, from Equation (2.24),

P(X:XIOY:.VI)
P(Y =) ’

P(X =x|Y =yi) =

we have
ZE{XIY yi}P(Y = ;) ZZWXY )
= zj: Xj Z:ny(xjv Vi)
= _xpx(x)
£

and the desired result is obtained.
The usefulness of Equation (4.13) is analogous to what we found in using the
theorem of total probability discussed in Section 2.4 (see Theorem 2.1, page 23).
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It states that, in order to determine E{X}, it can be found by taking a weighted
average of the conditional expectation of X given Y = y;; each of these terms is
weighted by probability P(Y = y;).

Example 4.8. Problem: the survival of a motorist stranded in a snowstorm
depends on which of the three directions the motorist chooses to walk. The first
road leads to safety after one hour of travel, the second leads to safety after
three hours of travel, but the third will circle back to the original spot after two
hours. Determine the average time to safety if the motorist is equally likely to
choose any one of the roads.

Answer: let Y = 1,2, and 3 be the events that the motorist chooses the first,
second and third road, respectively. Then P(Y =i)=1/3fori=1,2,3. Let X
be the time to safety, in hours. We have:

E{X} = ZE{X\ Y =i}P(Y =1i)

1< ,
:gz;E{XW:z}.

Now,
E{X|Y =1} =1,
E{X|Y =2} =3, (4.16)
E{X|Y =3} =2+ E{X}.
Hence
E{X}= %(1 +34+24 E{X)}),

E{X} =3 hours.

Let us remark that the third relation in Equations (4.16) is obtained by noting
that, if the motorist chooses the third road, then it takes two hours to find that
he or she is back to the starting point and the problem is as before. Hence, the
motorist’s expected additional time to safety is just E{X}. The result is thus
2+ E{X}. We further remark that problems of this type would require much
more work were other approaches to be used.
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4.2 CHEBYSHEV INEQUALITY

In the discussion of expectations and moments, there are two aspects to be
considered in applications. The first is that of calculating moments of various
orders of a random variable knowing its distribution, and the second is con-
cerned with making statements about the behavior of a random variable when
only some of its moments are available. The second aspect arises in numerous
practical situations in which available information leads only to estimates of
some simple moments of a random variable.

The knowledge of mean and variance of a random variable, although very
useful, is not sufficient to determine its distribution and therefore does not
permit us to give answers to such questions as ‘What is P(X < 5)? However, as
is shown in Theorem 4.1, it is possible to establish some probability bounds
knowing only the mean and variance.

Theorem 4.1: the Chebyshev inequality states that

1
P(X = my| = kox) < 75, (4.17)

for any k£ > 0.

Proof: from the definition we have

7= [ e ma (x = mx) 5 (x)dx

0 |x—my|>koy

200 [ fya
|x—my|>koy
= kz()'g(P(lX — n’l)(| Z kO’)().
Expression (4.17) follows. The proof is similar when X is discrete

Example 4.9. In Example 4.7, for three-foot tape measures, we can write

1
P(X = 3| 2 0.03k) < 5.

Ifk =2,

1
P(X 3] > 0.06) < 5,
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or

P(2.94 < X < 3.06) >

B w

In words, the probability of a three-foot tape measure being in error less than
or equal to £0.06 feet is at least 0.75. Various probability bounds can be found
by assigning different values to £.

The complete generality with which the Chebyshev inequality is derived
suggests that the bounds given by Equation (4.17) can be quite conservative.
This is indeed true. Sharper bounds can be achieved if more is known about the
distribution.

4.3 MOMENTS OF TWO OR MORE RANDOM VARIABLES

Let g(X,Y) be a real-valued function of two random variables X and Y. Its
expectation is defined by

E{g(X,Y)} => " e(xi,y)pxy(x1,), X and Y discrete, (4.18)
[

E{g(X,Y)} = / / g(x,»)f yy(x,y)dxdy, X and Y continuous, (4.19)

if the indicated sums or integrals exist.
In a completely analogous way, the joint moments cy,,, of X and Y are given
by, if they exist,

oy = E{X"Y™}. (4.20)
They are computed from Equation (4.18) or (4.19) by letting g(X,Y) = X" Y™.

Similarly, the joint central moments of X and Y, when they exist, are
given by

tam = E{(X —my)"(Y —my)"}. (4.21)
They are computed from Equation (4.18) or (4.19) by letting
gX,Y) = (X —my)" (Y —my)".

Some of the most important moments in the two-random-variable case are
clearly the individual means and variances of X and Y. In the notation used
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here, the means of X and Y are, respectively, ajp and «agp;. Using Equation
(4.19), for example, we obtain:

an=£0) = [ [ttt =[x [t
-/ Z Ay ()dx,

where f v (x) is the marginal density function of X. We thus see that the result is
identical to that in the single-random-variable case.

This observation is, of course, also true for the individual variances. They are,
respectively, 100 and p, and can be found from Equation (4.21) with appropriate
substitutions for n and m. As in the single-random-variable case, we also have

_ 2 2 __ 2
H20 = Q9 — oy = Qg — my
or (4.22)
_ 2 2 2
Ho2 = Qo2 — Qg Oy = Qp — Ny

4.3.1 COVARIANCE AND CORRELATION COEFFICIENT

The first and simplest joint moment of X and Y that gives some measure of
their interdependence is pj; = E{(X — my)(Y —my)}. It is called the covar-
iance of X and Y. Let us first note some of its properties.

Property 4.1: the covariance is related to oy, by

11 = Q1 — Qo] = Q| — MyMy. (4.23)

Proof of Property 4.1: Property 4.1 is obtained by expanding
(X — my)(Y — my) and then taking the expectation of each term. We have:
i = E{(X —mx)(Y —my)} = E{XY —myX —myY +mymy}
= E{XY} — myE{X} - mXE{ Y} +mymy
= a1 — (o0l — (ool + (o1

= 1] — a10Qo1-

Property 4.2: let the correlation coefficient of X and Y be defined by

M1 H11
p= = . (4.24)
(2op2)'? oxOY

Then, |p| < 1.
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Proof of Property 4.2: to show Property 4.2, let # and u be any real quantities
and form

o(t,u) = E{[t(X — m.) +u(Y —my)]’}
= paot® + 2pup1 tu + poou.

Since the expectation of a nonnegative function of X and Y must be non-
negative, ¢(f,u) is a nonnegative quadratic form in ¢ and u, and we must
have

pop02 — pi1y > 0, (4.25)

which gives the desired result.
The normalization of the covariance through Equation (4.24) renders p a
useful substitute for ;. Furthermore, the correlation coefficient is dimension-

less and independent of the origin, that is, for any constants ay, a,, by, and b,
with a; > 0 and a; > 0, we can easily verify that

plaX +b1,aY + by) = p(X, 7). (4.26)
Property 4.3. If X and Y are independent, then
M1l = 0 and p = 0. (4.27)

Proof of Property 4.3: let X and Y be continuous; their joint moment «y; is
found from

an = E{XY} = / / xyf yy (x,p)dxdy.
If X and Y are independent, we see from Equation (3.45) that

Sy, ) =fx(X)f y(»),

and
Qi :[ [ xyf y (x)f y (v)dxdy :[ fo(x)dx[ 2 y(v)dy
= mymy.

Equations (4.23) and (4.24) then show that u;; = 0 and p = 0. A similar result
can be obtained for two independent discrete random variables.
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This result leads immediately to an important generalization. Consider a
function of X and Y in the form g(X)A(Y) for which an expectation exists.
Then, if X and Y are independent,

E{g(X)h(Y)} = E{¢(X)}E{h(Y)}. (4.28)

When the correlation coefficient of two random variables vanishes, we say
they are uncorrelated. 1t should be carefully pointed out that what we have
shown is that independence implies zero correlation. The converse, however, is
not true. This point is more fully discussed in what follows.

The covariance or the correlation coefficient is of great importance in the
analysis of two random variables. It is a measure of their /inear interdependence
in the sense that its value is a measure of accuracy with which one random
variable can be approximated by a linear function of the other. In order to see
this, let us consider the problem of approximating a random variable X by a
linear function of a second random variable Y,aY + b, where a and b are
chosen so that the mean-square error e, defined by

e =E{[X — (aY +b)]*}, (4.29)

is minimized. Upon taking partial derivatives of e with respect to @ and b and
setting them to zero, straightforward calculations show that this minimum is
attained when

axp
oy

and
b=my —amy

Substituting these values into Equation (4.29) then gives 0% (1 — p?) as the
minimum mean-square error. We thus see that an exact fit in the mean-square
sense is achieved when |p| = 1, and the linear approximation is the worst when
p = 0. More specifically, when p = +1, the random variables X and Y are said
to be positively perfectly correlated in the sense that the values they assume fall
on a straight line with positive slope; they are negatively perfectly correlated
when p = —1 and their values form a straight line with negative slope. These
two extreme cases are illustrated in Figure 4.3. The value of |p| decreases as
scatter about these lines increases.

Let us again stress the fact that the correlation coefficient measures only the
linear interdependence between two random variables. It is by no means a
general measure of interdependence between X and Y. Thus, p =0 does not
imply independence of the random variables. In fact, Example 4.10 shows, the
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* X

Figure 4.3 An illustration of perfect correlation, p

correlation coefficient can vanish when the values of one random variable are
completely determined by the values of another.

Example 4.10. Problem: determine the correlation coefficient of random
variables X and Y when X takes values +1 and %2, each with probability 1/4,
and Y = X°.

Answer: clearly, Y assumes values 1 and 4, each with probability 1/2, and
their joint mass function is given by:

T for (xp) = (=1,1);

1. for (x,3) = (1,1);
pXY(x7y) = 1

Za for (xay) = (_2)4)5

1 for (xy) =(2,4).

The means and second moment «; are given by

me=-2)(3) + 0 (3) + ;) +@3) =0
= (2) s (1) =25

ajp —mymy =0,
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and, from Equations (4.23) and (4.24),
p=0.
This is a simple example showing that X and Y are uncorrelated but they are
completely dependent on each other in a nonlinear way.
4.3.2 SCHWARZ INEQUALITY

In Section 4.3.1, an inequality given by Equation (4.25) was established in the
process of proving that |p| < I:

pdy = lunl® < paopten- (4.30)

We can also show, following a similar procedure, that

EX{XY} = |E{XY}|* < E{X*}E{Y?}. (4.31)

Equations (4.30) and (4.31) are referred to as the Schwarz inequality. We point
them out here because they are useful in a number of situations involving
moments in subsequent chapters.

4.3.3 THE CASE OF THREE OR MORE RANDOM VARIABLES
The expectation of a function g(X;,X>,...,X,) of n random variables

X1,X3,...,X, is defined in an analogous manner. Following Equations (4.18)
and (4.19) for the two-random-variable case, we have

E{g(Xla cee 7A/l7)} = Z .. Zg(xlila' <. 7xni,1)p)(]‘__)("(xli13 cee 7xm},)a

X,, discrete; (4.32)
E{g(X1.....X, }/ / £051s w5 oy (51, )
., X,, continuous; (4.33)

where py, v and fy y are, respectively, the joint mass function and joint
density function of the associated random variables.

The important moments associated with » random variables are still the
individual means, individual variances, and pairwise covariances. Let X be
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the random column vector with components Xy, ..., X,, and let the means of
Xi,...,X, be represented by the vector my. A convenient representation of
their variances and covariances is the covariance matrix, A, defined by

A= E{(X —my)(X —mx)"}, (4.34)
where the superscript 7 denotes the matrix transpose. The n x n matrix A has

a structure in which the diagonal elements are the variances and in which the
nondiagonal elements are covariances. Specifically, it is given by

var(X;)  cov(X,Xa) ... cov(Xy,X,)
cov(Xz, X7) var(X>) ... cov(Xa, Xy)
A= . _ ) _ . (4.35)
cov(X,, X1) cov(X,,X2) ... var(X,)

In the above ‘var’ reads ‘variance of’ and ‘cov’ reads ‘covariance of’. Since
cov(X;, Xj) = cov(X}, X;), the covariance matrix is always symmetrical.

In closing, let us state (in Theorem 4.2) without proof an important result
which is a direct extension of Equation (4.28).

Theorem 4.2: if X, X>,...,X, are mutually independent, then

E{g1(X1)g2(X2) ... g,(Xu)} = E{g1(X1)} E{g2(X2)} ... E{g,(Xn)}, | (4.36)

where g/-(Xj) is an arbitrary function of X;. It is assumed, of course, that all
indicated expectations exist.

44 MOMENTS OF SUMS OF RANDOM VARIABLES

Let X1,X5,...,X, be nrandom variables. Their sum is also a random variable.
In this section, we are interested in the moments of this sum in terms of
those associated with X;,j=1,2,...,n. These relations find applications
in a large number of derivations to follow and in a variety of physical
situations.

Consider

Y=Xi+Xo+ 4+ X, (4.37)

Let m; and a} denote the respective mean and variance of X;. Results 4.1-4.3
are some of the important results concerning the mean and variance of Y.
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Verifications of these results are carried out for the case where X,...,X, are
continuous. The same procedures can be used when they are discrete.

Result 4.1: the mean of the sum is the sum of the means; that is,

my =mj +my+---+m,. (4.38)

Proof of Result 4.1: to establish Result 4.1, consider

my = E{Y} = E{X; + X2 +--- + X, }

:/ / (x1 4+ X))y, x, (X150, X)dxy L d,
:/ / xXtf x,x, (X1, X,)dxy L dxy,
+/ / Xof xyx, (X1, xp)dxy L Lodx, 4

[e¢} o]
—|—/ / Xnf xp.x, (X1, - X )dxy o dxg,.

The first integral in the final expression can be immediately integrated with
respect to X,X3,...,X,, yieldingf)(1 (x1), the marginal density function of X;.
Similarly, the (n — 1)-fold integration with respect to x, x3,...,x, in the second
integral gives f'y,(x2), and so on. Hence, the foregoing reduces to

my = / xlfxl (x1)dx; +--- “r/ XVJ.Xn(xﬂ)dxﬂ

o] —00

=my +my+ -+ my.

Combining Result 4.1 with some basic properties of the expectation we
obtain some useful generalizations. For example, in view of the second of
Equations (4.3), we obtain Result 4.2.

Result 4.2: if

Z=a X1 +aX,+ - -+ a Xy, (439)
where ay,as, ..., a, are constants, then
mz = aymy + apmy + -+ - + a,m, (4.40)

Result 4.3: let X,...,X, be mutually independent random variables. Then
the variance of the sum is the sum of the variances; that is,
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oy =0l tos+-+ol (4.41)

n

Let us verify Result 4.3 for n =2. The proof for the case of » random
variables follows at once by mathematical induction. Consider

Y =X + X
We know from Equation (4.38) that
my = my + my.
Subtracting my from Y, and (m; + my) from (X + X>) yields
Y—my=0X—m)+ (X2 —m)
and

oy = E{(Y —my)’} = E{[(Xi = m1) + (X2 — )]’}
= E{(X1 —m)* +2(X1 — m))(Xz — m) + (X2 — ma)*}
= E{(X1 —m)*} + 2E{(X) — m)(Xa — m2)} + E{ (X5 — my)’}
=07 +2 cov(X1, Xa) + o3
The covariance cov(X;,X;) vanishes, since X; and X, are independent [see
Equation (4.27)], thus the desired result is obtained.

Again, many generalizations are possible. For example, if Z is given by
Equation (4.39), we have, following the second of Equations (4.9),

0'22 = a%a% + ot aiai. (4.42)
Let us again emphasize that, whereas Equation (4.38) is valid for any set of
random variables X, ...X,, Equation (4.41), pertaining to the variance, holds
only under the independence assumption. Removal of the condition of inde-
pendence would, as seen from the proof, add covariance terms to the right-
hand side of Equation (4.41). It would then have the form

02Y = of +a§+~~-+oi+2 cov(X1, X2) + 2 cov(X1, X3) + -+ + 2 cov(Xy—1, Xu)

n n—1 n
= Zgj? —0—222 cov(X;, X;) (4.43)
=1

i=1 j=2
i<j
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Example 4.11. Problem: an inspection is made of a group of » television
picture tubes. If each passes the inspection with probability p and fails with
probability g (p + g = 1), calculate the average number of tubes in n tubes that
pass the inspection.

Answer: this problem may be easily solved if we introduce a random variable
X; to represent the outcome of the jth inspection and define

{ 1, if the jth tube passes inspection;
=

0, if the jth tube does not pass inspection.
Then random variable Y, defined by
Y:X1+X2+"'+Xm

has the desired property that its value is the total number of tubes passing the
inspection. The mean of X; is

E{X;} =0(q) + 1(p) = p.
Therefore, as seen from Equation (4.38), the desired average number is given by
my = E{X\}+---+ E{X,,} = np.

We can also calculate the variance of Y. If X4,...,X, are assumed to be
independent, the variance of X; is given by

o = E{(X; — p)’} = (0—p)*(q) + (1 — p)’p = pq.
Equation (4.41) then gives
O‘ZYZO'%-"--“—FUI% = npq.

Example 4.12. Problem: let Xi,...,X, be a set of mutually independent
random variables with a common distribution, each having mean m. Show
that, for every € > 0, and as n — oo,

p(Y

——m
n

25)%0, where ¥ = X1 + - + X,,. (4.44)

Note: this is a statement of the law of large numbers. The random variable Y /n
can be interpreted as an average of n independently observed random variables
from the same distribution. Equation (4.44) then states that the probability that
this average will differ from the mean by greater than an arbitrarily prescribed
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€ tends to zero. In other words, random variable Y/n approaches the true mean
with probability 1.

Answer: to proceed with the proof of Equation (4.44), we first note that, if o
is the variance of each X;, it follows from Equation (4.41) that

_ 2
Oy = no-.

According to the Chebyshev inequality, given by Expression (4.17), for every
k > 0, we have

2
no
P(|Y—nm|2k)§ﬁ,

For k = en, the left-hand side is less than o?/(’n), which tends to zero as
n — oo. This establishes the proof.

Note that this proof requires the existence of ¢>. This is not necessary but
more work is required without this restriction.

Among many of its uses, statistical sampling is an example in which the law of
large numbers plays an important role. Suppose that in a group of m families
there are m; number of families with exactly j children (j=0,1,..., and
my+ my + ... =m). For a family chosen at random, the number of children is
arandom variable that assumes the value r with probability p, = m,/m. A sample
of n families among this group represents n observed independent random
variables X1, ...,X,, with the same distribution. The quantity (X| +---+ X,)/n
is the sample average, and the law of large numbers then states that, for
sufficiently large samples, the sample average is likely to be close to

m= err = Zrm,/m,
r=0 r=0

the mean of the population.

Example 4.13. The random variable Y/n in Example 4.12 is also called the
sample mean associated with random variables X, ..., X, and is denoted by X.
In Example 4.12, if the coefficient of variation for each X; is v, the coefficient of
variation vy of X is easily derived from Equations (4.38) and (4.41) to be

v

Vo = ——
X~ 2

(4.45)

Equation (4.45) is the basis for the law of \/n by Schrodinger, which states that
the laws of physics are accurate within a probable relative error of the order of
n~'2, where n is the number of molecules that cooperate in a physical process.
Basically, what Equation (4.45) suggests is that, if the action of each molecule
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exhibits a random variation measured by v, then a physical process resulting
from additive actions of n molecules will possess a random variation measured
by v/n'?2. It decreases as n increases. Since n is generally very large in the
workings of physical processes, this result leads to the conjecture that the laws
of physics can be exact laws despite local disorder.

4.5 CHARACTERISTIC FUNCTIONS

The expectation E{e/*} of a random variable X is defined as the characteristic
function of X. Denoted by ¢x(¢), it is given by

ox (1) = E{e?*} = Zej’x"px(xi), X discrete; (4.46)

oy (1) = E{e"*} = / e’™fy(x)dx, X continuous; (4.47)

where ¢ is an arbitrary real-valued parameter and j = v/—1. The characteristic
function is thus the expectation of a complex function and is generally complex
valued. Since

eV | = | cos tX +jsintX| = 1,

the sum and the integral in Equations (4.46) and (4.47) exist and therefore ¢y (t)
always exists. Furthermore, we note

¢x(0) =1,
ox(=1) = ox (1), (4.48)
‘¢X(t)| S 1,

where the asterisk denotes the complex conjugate. The first two properties are
self-evident. The third relation follows from the observation that, since

f)((x) >0,

v (1)] = | | enraan

< [

The proof is the same as that for discrete random variables.

We single this expectation out for discussion because it possesses a number of
important properties that make it a powerful tool in random-variable analysis
and probabilistic modeling.
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4.5.1 GENERATION OF MOMENTS
One of the important uses of characteristic functions is in the determination of

the moments of a random variable. Expanding ¢x (¢) as a MacLaurin series, we
see that (suppressing the subscript X for convenience)

2
B1) = 6(0) + ¢(0)r + ¢"(0) S+ +0MO) L+, (449)

where the primes denote derivatives. The coefficients of this power series are,
from Equation (4.47),

o0) = [ " fedx =1,

0 =201 = [,
W o o (4.50)
d"¢(1) > .
(n) 0) = — n.n dx = i" ;
o0 =00 = [ iwfiode=ia
Thus,
S(1) =1+ i (jt’)ﬂa”. (4.51)

The same results are obtained when X is discrete.

Equation (4.51) shows that moments of all orders, if they exist, are contained
in the expansion of ¢(¢), and these moments can be found from ¢(¢) through
differentiation. Specifically, Equations (4.50) give

=i " (0), n=1,2,.... (4.52)

Example 4.14. Problem: determine ¢(¢), the mean, and the variance of a
random variable X if it has the binomial distribution

n n—
px(k) = (k)pk(l—p) K k=0,1,...,n
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Answer: according to Equation (4.46),

n

=3 ()1 -

k=0

*Z() (pe (1 — )k (4.53)
= [pe’ + (1 =p)]".

Using Equation (4.52), we have

= n[pel + (1 - p)""' (pel)
=0 =0

.
o =—s[pel+ (1=p)"|  =np[(n—T)p+1],

t=0

and

0% = ar —al =np[(n—1)p+1] — n’p* = np(1 - p).

The results for the mean and variance are the same as those obtained in
Examples 4.1 and 4.5.

Example 4.15. Problem: repeat the above when X is exponentially distributed
with density function

e {ae“’x7 for x > 0;
X) =
o 0, elsewhere.
Answer: the characteristic function ¢x(¢) in this case is
by (1) / e (ae™)dx = a / e (einvgy = ¢ (4.54)
0 0 a—]t
The moments are
1d ( a ) 1 ja
| =~ T == " =,
jdit\a—jt) | J|(a—jr) a
d? a 2
e - — =—,
? d\a—jt)|_,
_ 2 1
oy =y — ok

which agree with the moment calculations carried out in Examples 4.2 and 4.6.
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Another useful expansion is the power series representation of the logarithm
of the characteristic function; that is,

(j[)n)\ﬂ

1 1) = 4.55
ogox(t) = 3 S (4.55)
where coefficients ), are again obtained from
dl’l
An :jinﬁlog ¢X(I) (456)
4 =0

The relations between coefficients A, and moments «;, can be established by
forming the exponential of log ¢x(¢), expanding this in a power series of j¢, and
equating coefficients to those of corresponding powers in Equation (4.51). We
obtain

Al =y,

)\2 = ) — Oz%,
(4.57)
A3 =a3 — 3ajan + 2(1%,

A = oy — 304% —4daja3 + 120&0[2 — 60/11.

It is seen that \; is the mean, A\, is the variance, and )3 is the third central
moment. The higher order A, are related to the moments of the same order or
lower, but in a more complex way. Coefficients )\, are called cumulants of X
and, with a knowledge of these cumulants, we may obtain the moments and
central moments.

4.5.2 INVERSION FORMULAE

Another important use of characteristic functions follows from the inversion
formulae to be developed below.

Consider first a continuous random variable X. We observe that Equation
(4.47) also defines ¢x(¢) as the inverse Fourier transform of fy(x). The other
half of the Fourier transform pair is

Sy (x) i [ h e gy (r)de. (4.58)

o .

This inversion formula shows that knowledge of the characteristic function
specifies the distribution of X. Furthermore, it follows from the theory of
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Fourier transforms that f,(x) is uniquely determined from Equation (4.58);
that is, no two distinct density functions can have the same characteristic
function.

This property of the characteristic function provides us with an alternative
way of arriving at the distribution of a random variable. In many physical
problems, it is often more convenient to determine the density function of a
random variable by first determining its characteristic function and then per-
forming the Fourier transform as indicated by Equation (4.58). Furthermore,
we shall see that the characteristic function has properties that render it
particularly useful for determining the distribution of a sum of independent
random variables.

The inversion formula of Equation (4.58) follows immediately from the
theory of Fourier transforms, but it is of interest to give a derivation of this
equation from a probabilistic point of view.

Proof of Equation (4.58): an integration formula that can be found in any
table of integrals is

—1, for a<0;

1 [*sinat ’
_/ sinat | 0, fora=0:; (4.59)
T 1t 1, fora>0.
This leads to
. ) —1, fora<O0;
1 [*sinar+j(1 — cosat ’ ’
_/ sinat +j(1 —cosa )dt =<0, fora=0; (4.60)
) o t 1, fora>0;

because the function (1 — cosaf)/t is an odd function of ¢ so that its integral
over a symmetric range vanishes. Upon replacing a by X —x in Equation
(4.60), we have

1, for X < x;
1 j [®1—eldr 1
Z_ 1 — dr={ = =x 4.61
ey ; 5 for X = x; (4.61)
0, for X > x.

For a fixed value of x, Equation (4.61) is a function of random variable X, and
it may be regarded as defining a new random variable Y. The random variable
Y is seen to be discrete, taking on values 1, %, and 0 with probabilities
PX < x),P(X =x),and P(X > x), respectively. The mean of Y is thus equal to

E{Y} = ()P(X < x) + G) P(X = x) + (0)P(X > x).
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However, notice that, since X is continuous, P(X =x) =0 if x is a point of
continuity in the distribution of X. Hence, using Equation (4.47),

E{Y}=PX <x)=Fx(x)

1§ 1 —E{eld91
-3 S 4.62
2 2r)_o t dr (462)

1 : 001 —jtx
1 [ ioeox(@)
2 2n)_ o t

The above defines the probability distribution function of X. Its derivative
gives the inversion formula

frx) = / e gy (), (4.63)

=5- N
and we have Equation (4.58), as desired.
The inversion formula when X is a discrete random variable is

py(x) = lim L/U e % py(1)de. (4.64)

u—o00 LU u
A proof of this relation can be constructed along the same lines as that given
above for the continuous case.

Proof of Equation (4.64): first note the standard integration formula:

sin au
u i f 0
i/ clrdr={ "au 70 (4.65)
u
—u !

for a = 0.

)

Replacing a by X — x and taking the limit as ¥ — co, we have a new random
variable Y, defined by

1 [« . 0, for X # x;
Y = lim —/ eI =91y = { #

U—ooZU J_y 1, for X =x.

The mean of Y is given by

E{Y} = (1)P(X = x) + (0)P(X # x) = P(X =X), (4.66)

TLFeBOOK



104 Fundamentals of Probability and Statistics for Engineers

and therefore

1 [ .
pilo) = fim 5o [ By

u—oo 2U

(4.67)
— fim - / e oy (r)dt,

u—o0o 2U u

which gives the desired inversion formula.

In summary, the transform pairs given by Equations (4.46), (4.47), (4.58),
and (4.64) are collected and presented below for easy reference. For a contin-
uous random variable X,

oxt) = [ " ey (x)dx,

. (4.68)
felo) =52 [ e
and, for a discrete random variable X,
ox (1) = el™py(x),
’ (4.69)

py(x) = lim zi / e oy (r)de.

u

Of the two sets, Equations (4.68) for the continuous case are more important in
terms of applicability. As we shall see in Chapter 5, probability mass functions
for discrete random variables can be found directly without resorting to their
characteristic functions.

As we have mentioned before, the characteristic function is particularly
useful for the study of a sum of independent random variables. In this connec-
tion, let us state the following important theorem, (Theorem 4.3).

Theorem 4.3: The characteristic function of a sum of independent random
variables is equal to the product of the characteristic functions of the individual
random variables.

Proof of Theorem 4.3: Let

Y=Xi+Xo+---+4X,. (4.70)
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Then, by definition,

oy(t) = E{el'} = E{elXitXrt-+X))

= E{el™iel™2 | lti}
Since X, X5, ...,X, are mutually independent, Equation (4.36) leads to
E{eMeitX2 | eltXiy — plelMyElei™) | E{ei¥n).

We thus have

by (t) = éx, ()dx, (1) . . . Px, (1), (4.71)

which was to be proved.

In Section (4.4), we obtained moments of a sum of random variables;
Equation (4.71), coupled with the inversion formula in Equation (4.58) or
Equation (4.64), enables us to determine the distribution of a sum of random
variables from the knowledge of the distributions of X;,j = 1,2, ..., n, provided
that they are mutually independent.

Example 4.16. Problem: let X; and X, be two independent random variables,
both having an exponential distribution with parameter a, and let
Y = X + X». Determine the distribution of Y.

Answer: the characteristic function of an exponentially distributed random
variable was obtained in Example 4.15. From Equation (4.54), we have

a

ox, (1) = dx, (1)

Ta— gt
According to Equation (4.71), the characteristic function of Y is simply

a2

oy (1) = ¢x,()ox, (1) = ———-
(a—j1)
Hence, the density function of Y is, as seen from the inversion formula of
Equations (4.68),

1 [~ _.

=— Wy (r)de
Fr) =3[ oo
612 00 e—jty

Sd

"2 )sa-in)

a*ye=®, for y > 0;
_lY r= 4.72)
0, elsewhere.
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The distribution given by Equation (4.72) is called a gamma distribution,
which will be discussed extensively in Section 7.4.

Example 4.17. In 1827, Robert Brown, an English botanist, noticed that small
particles of matter from plants undergo erratic movements when suspended in
fluids. It was soon discovered that the erratic motion was caused by impacts on
the particles by the molecules of the fluid in which they were suspended. This
phenomenon, which can also be observed in gases, is called Brownian motion.
The explanation of Brownian motion was one of the major successes of statistical
mechanics. In this example, we study Brownian motion in an elementary way by
using one-dimensional random walk as an adequate mathematical model.

Consider a particle taking steps on a straight line. It moves either one step to
the right with probability p, or one step to the left with probability
q(+ q =1). The steps are always of unit length, positive to the right and
negative to the left, and they are taken independently. We wish to determine the
probability mass function of its position after » steps.

Let X; be the random variable associated with the ith step and define

1, if it is to the right;
X = (4.73)

—1, if it is to the left.
Then random variable Y, defined by
Y=X+Xo+ -+ X,
gives the position of the particle after n steps. It is clear that Y takes integer
values between —n and n.

To determine py (k), —n < k < n, we first find its characteristic function. The
characteristic function of each X is

by (1) = E{e?™1} = pel 4 ge7V". (4.74)
It then follows from Equation (4.71) that, in view of independence,

Oy (1) = oxi (¢, (1) .. ¢, (1)
— (pejf + qe*j[>”. (475)

Let us rewrite it as
by (1) = e (ped + g’

_ i (’/.l)piqnfiej(Zifn)t
— \ |
i=0
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Letting k = 2i — n, we get

n n B .
¢Y(I) — Z <n+k)p(n+k)/2q(n k)/2e]kt' (476)

k=—n \ 2

Comparing Equation (4.76) with the definition in Equation (4.46) yields the
mass function

n n n—.
pyk) = <M>p( 2GR k= —n —(n—2),...,n. (4.77)
2

Note that, if n is even, k must also be even, and, if n is odd &£ must be odd.

Considerable importance is attached to the symmetric case in which k < n,
and p = g = 1/2. In order to consider this special case, we need to use Stirling’s
formula, which states that, for large n,

nl = (2m) et (4.78)
Substituting this approximation into Equation (4.77) gives

= (2

VEI
) e KM k=—n,. .. .n (4.79)
nm

A further simplification results when the length of each step is small. Assuming
that 7 steps occur in a unit time (i.e. n = rf) and letting a be the length of each
step, then, as n becomes large, random variable Y approaches a continuous
random variable, and we can show that Equation (4.79) becomes

y2

. |
fr() = (2ra2re)'? xp <_ 2a2rt

), —00 <y < 00, (4.80)

where y = ka. On letting
2

ar
D=—
2’
we have
= : v 4.81
fY(y)—Wexp ~aDi) —00 <y < 00. (4.81)

The probability density function given above belongs to a Gaussian or normal
random variable. This result is an illustration of the central limit theorem, to be
discussed in Section 7.2.
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Our derivation of Equation 4.81 has been purely analytical. In his theory of
Brownian motion, Einstein also obtained this result with

2RT
D="" 4.82
o (452)

where R is the universal gas constant, 7 is the absolute temperature, N is
Avogadro’s number, and f is the coefficient of friction which, for liquid or
gas at ordinary pressure, can be expressed in terms of its viscosity and particle
size. Perrin, a French physicist, was awarded the Nobel Prize in 1926 for his
success in determining, from experiment, Avogadro’s number.

4.5.3 JOINT CHARACTERISTIC FUNCTIONS

The concept of characteristic functions also finds usefulness in the case of two
or more random variables. The development below is concerned with contin-
uous random variables only, but the principal results are equally valid in the
case of discrete random variables. We also eliminate a bulk of the derivations
involved since they follow closely those developed for the single-random-
variable case.

The joint characteristic function of two random variables X and Y, ¢xy(t, ),
is defined by

¢”mg:mﬁquz/‘/emﬂv”@wmw. (4.83)

where ¢ and s are two arbitrary real variables. This function always exists and
some of its properties are noted below that are similar to those noted for
Equations (4.48) corresponding to the single-random-variable case:

¢XY(0> 0)
Pxy(—t,—s)

=1,
= (b}y(l, s), (4.84)
loxy(t, )] <1

Furthermore, it is easy to verify that joint characteristic function ¢xy(%,s) is
related to marginal characteristic functions ¢x(7) and ¢y(s) by

ox (1) = oxy(1,0), }

(4.85)
oy (s) = oxy(0,s).
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If random variables X and Y are independent, then we also have

bxy(t,5) = dx(t)dy(s). (4.86)

To show the above, we simply substitute f v (x)f'y(») for fyy(x,») in Equation
(4.83). The double integral on the right-hand side separates, and we have

bxy(t,s) = /_OO ey (x)dx /_OO ey (y)dy
= ¢x()dy(s),

and we have the desired result.

Analogous to the one-random-variable case, joint characteristic function
@xy(t,s) is often called on to determine joint density function fyy (x,y) of X
and Y and their joint moments. The density function fyy(x,y) is uniquely
determined in terms of ¢xy (¢, s) by the two-dimensional Fourier transform

1 o0 o0 3 i
fyr(x,y) = ﬁ/ / e_JUXH})(bXY(t? s)deds; (4.87)

and moments E{X" Y™} = ., if they exist, are related to ¢xy (¢, s) by

aner

= xy(t,s

n+m/ / n me X y)dxdy
(4.88)

n+m

_j Ay -

oros™

The MacLaurin series expansion of ¢xy(¢,s) thus takes the form

dxy(t,s) Zza—k it)’ _]S (4.89)

i=0 k=0

~

o0

The above development can be generalized to the case of more than two
random variables in an obvious manner.

Example 4.18. Let us consider again the Brownian motion problem discussed
in Example 4.17, and form two random variables X" and Y’ as

X =X+ X2+ + Xo,
(4.90)

Y' = Xn+l + Xn+2 + -+ X
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They are, respectively, the position of the particle after 2z steps and its position
after 3n steps relative to where it was after n steps. We wish to determine the
joint probability density function (jpdf) fxy (x,y) of random variables

X/
:m

and

Y/
"l
for large values of n.

For the simple case of p = g = %, the characteristic function of each X} is [see
Equation (4.74)]

¢(1) = E{el™} =~ (e/ + &) = cost, (4.91)

N —

and, following Equation (4.83), the joint characteristic function of X and Y is

Sxr(1.9) = EfexplJ(1X +5Y)]} = E{exp i f; +—7)]}
el e )

k n+1 k=2n+1
= {oGn)elanleGin)}

where ¢(¢) is given by Equation (4.91). The last expression in Equation (4.92) is
obtained based on the fact that the X;,k = 1,2,...,3n, are mutually independ-
ent. It should be clear that X and Y are not independent, however.

We are now in the position to obtain f yy(x,y) from Equation (4.92) by using
the inverse formula given by Equation (4.87). First, however, some simplifica-
tions are in order. As n becomes large,

(4.92)

£, ! (4.93)
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Hence, as n — oo,
¢XY(Z7 S) = Ci<[2+m+s2).

Now, substituting Equation (4.94) into Equation (4.87) gives

fXY X y 4 2/ / t»c+n 12+m+3 dldS

which can be evaluated following a change of variables defined by

_t’+s’ S_t’fs’
V2T V2
The result is
1 xz—xy—i-yz}
X,y) = exp|— .
fxv(x,¥) 273 P{ 3

111

(4.94)

(4.95)

(4.96)

(4.97)

The above is an example of a bivariate normal distribution, to be discussed in

Section 7.2.3.

Incidentally, the joint moments of X and Y can be readily found by means of

Equation (4.88). For large n, the means of X and Y, a9 and ag;, are

0 t 2
ol = _]%(’S) — —j(—Zl‘ _ S)e—(12+m+s ) _
t,s=0 t.s=0
0 t
g = — @(gi(s) =0.
S t,s=0

Similarly, the second moments are

62¢Xy(l S)
=F{xX?} =217 =2
[6%1)] { } or L )
62¢Xy(l S)
— E{y}) = L0\ g
@02 { } asz o0 )
Fxy(1,9)
=FE{XY}=—"_——"= =1
an = E{XT} ads |, _,
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FURTHER READING AND COMMENTS

As mentioned in Section 4.2, the Chebyshev inequality can be improved upon if some
additional distribution features of a random variable are known beyond its first two
moments. Some generalizations can be found in:

Mallows, C.L., 1956, ‘Generalizations of Tchebycheff’s Inequalities’, J. Royal Statistical
Societies, Series B 18 139-176.

In many introductory texts, the discussion of characteristic functions of random
variables is bypassed in favor of moment-generating functions. The moment-generating
function M x(¢) of a random variable X is defined by

My (1) = E{e"¥}.

In comparison with characteristic functions, the use of M x(¢) is simpler since it avoids
computations involving complex numbers and it generates moments of X in a similar
fashion. However, there are two disadvantages in using M y(¢). The first is that it
may not exist for all values of ¢ whereas ¢y (¢) always exists. In addition, powerful
inversion formulae associated with characteristic functions no longer exist for moment-
generating functions. For a discussion of the moment-generating function, see, for
example:

Meyer, P.L., 1970, Introductory Probability and Statistical Applications, 2nd edn,
Addison-Wesley, Reading, Mas, pp. 210-217.

PROBLEMS

4.1 For each of the probability distribution functions (PDFs) given in Problem 3.1
(Page 67), determine the mean and variance, if they exist, of its associated random
variable.

4.2 For each of the probability density functions (pdfs) given in Problem 3.4, determine
the mean and variance, if they exist, of its associated random variable.

4.3 According to the PDF given in Example 3.4 (page 47), determine the average
duration of a long-distance telephone call.

4.4 1t is found that resistance of aircraft structural parts, R, in a nondimensionalized
form, follows the distribution

2(7}z
Fr(r) =1 0.9996x[0% + (r — 1)*]*’
0, elsewhere;

for r > 0.33;

where o = 0.0564. Determine the mean of R.

4.5 A target is made of three concentric circles of radii 3-"/2, 1, and 3! feet. Shots
within the inner circle count 4 points, within the next ring 3 points, and within
the third ring 2 points. Shots outside of the target count 0. Let R be the
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random variable representing distance of the hit from the center. Suppose that the
pdf of R is

2

Sr(r) =< m(1+7r?)
0, elsewhere.

, forr>0;

Compute the mean score of each shot.

4.6 A random variable X has the exponential distribution

X X2 f > 0;
_ Jae™*, for x> 0;
Sxx) = {0, elsewhere.

Determine:

(a) The value of a.

(b) The mean and variance of X.

(¢) The mean and variance of ¥ = (X/2) — 1.

4.7 Let the mean and variance of X be m and o2, respectively. For what values of a and b
does random variable Y, equal to aX + b, have mean O and variance 1?

4.8 Suppose that your waiting time (in minutes) for a bus in the morning is uniformly
distributed over (0,5), whereas your waiting time in the evening is distributed as
shown in Figure 4.4. These waiting times are assumed to be independent for any
given day and from day to day.

(a) If you take the bus each morning and evening for five days, what is the mean of
your total waiting time?

(b) What is the variance of your total five-day waiting time?

() What are the mean and variance of the difference between morning and evening
waiting times on a given day?

(d) What are the mean and variance of the difference between total morning wait-
ing time and total evening waiting time for five days?

fr(t)

Figure 4.4 Density function of evening waiting times, for Problem 4.8
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4.9 The diameter of an electronic cable, say X, is random, with pdf

oy Jox(1=x), for0<x<I;
fX()")i{O, elsewhere.

(a) What is the mean value of the diameter?
(b) What is the mean value of the cross-sectional area, (/4)X??

4.10 Suppose that a random variable X is distributed (arbitrarily) over the interval

a< X <hbh.
Show that:
(a) my is bounded by the same limits;
, _(b—a)
(b) oy < .

4
4.11 Show that, given a random variable X, P(X =my) =1 if 03( =0.

4.12 The waiting time T of a customer at an airline ticket counter can be characterized
by a mixed distribution function (see Figure 4.5):

0, fort<O0;
Fr(t) = ’ o , fort>0.
0= {5 0 e
Determine:
(a) The average waiting time of an arrival, E{T}.
(b) The average waiting time for an arrival given that a wait is required,
E{T|T > 0}.
4.13 For the commuter described in Problem 3.21 (page 72), assuming that he or she
makes one of the trains, what is the average arrival time at the destination?

4.14 A trapped miner has to choose one of two directions to find safety. If the miner
goes to the right, then he will return to his original position after 3 minutes. If he
goes to the left, he will with probability 1/3 reach safety and with probability 2/3
return to his original position after 5 minutes of traveling. Assuming that he is at all

Fr(1)

t

Figure 4.5 Distribution function, F'7(¢), of waiting times, for Problem 4.12
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times equally likely to choose either direction, determine the average time interval
(in minutes) that the miner will be trapped.

4.15 Show that:
(a) E{X|Y =y} = E{X}if X and Y are independent.
(b) E{XY|Y =y} = yE{X|Y = y}.
(c) E{XY}=E{YE[X|Y]}.

4.16 Let random variable X be uniformly distributed over interval 0 < x < 2. Deter-
mine a lower bound for P(|X — 1] < 0.75) using the Chebyshev inequality and
compare it with the exact value of this probability.

4.17 For random variable X defined in Problem 4.16, plot P(|X — my| < h) as a func-
tion of 4 and compare it with its lower bound as determined by the Chebyshev
inequality. Show that the lower bound becomes a better approximation of
P(|X — my| < h) as h becomes large.

4.18 Let a random variable X take only nonnegative values; show that, for any a > 0,

m
<=

P(X >a) <~

This is known as Markov’s inequality.

4.19 The yearly snowfall of a given region is a random variable with mean equal to 70
inches.
(a) What can be said about the probability that this year’s snowfall will be
between 55 and 85 inches?
(b) Can your answer be improved if, in addition, the standard deviation is known
to be 10 inches?

4.20 The number X of airplanes arriving at an airport during a given period of time is
distributed according to

looke—IOO
pylk) =——p—. k=012 .

Use the Chebyshev inequality to determine a lower bound for probability
P(80 < X < 120) during this period of time.

4.21 For each joint distribution given in Problem 3.13 (page 71), determine my, my, 0‘12\,,
oly, and pyy of random variables X and Y.

4.22 In the circuit shown in Figure 4.6, the resistance R is random and uniformly
distributed between 900 and 1100€2. The current i = 0.01 A and the resistance
ro = 1000 Q are constants.

Figure 4.6 Circuit diagram for Problem 4.22
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(a) Determine my and o7 of voltage ¥, which is given by
V = (R —+ I‘())i.

(b) Determine the correlation coefficient of R and V.

4.23 Let the jpdf of X and Y be given by

Fey(,y) = xy, for0<x<1,and 0<y<2;
WY =90, and elsewhere.

Determine the mean of Z, equal to (X2 + Y 2)"2,

4.24 The product of two random variables X and Y occurs frequently in applied
problems. Let Z = XY and assume that X and Y are independent. Determine the
mean and variance of Z in terms of my,my, 0%, and o%.

4.25 Let X = X| + X3, and Y = X, + X3. Determine correlation coefficient pyy of X
and Y in terms of oy,, 0x,, and oy, when Xj, X, and X3 are uncorrelated.

4.26 Let X and Y be discrete random variables with joint probability mass function
(jpmf) given by Table 4.1. Show that pyy = 0 but X and Y are not independent.

Table 4.1 Joint probability mass
function, pyy(x, y) for Problem 4.26

y X

-1 0 1
-1 a b a
0 b 0 b
1 a b a

1
Note: =-.
ote: a+b a

4.27 In a simple frame structure such as the one shown in Figure 4.7, the total hor-
izontal displacement of top storey Y is the sum of the displacements of individual
storeys X and X,. Assume that X and X, are independent and let my,, my,, of(],
and of(z be their respective means and variances.

(a) Find the mean and variance of Y.
(b) Find the correlation coefficient between X, and Y. Discuss the result if
03(2 > O%(I.

4.28 Let Xy,...,X, be a set of independent random variables, each of which has a

probability density function (pdf) of the form

1 2
fX/(xj):(2 )1/26_“//2, j=12,...,n, —oo<Xx; <oo0.
T

Determine the mean and variance of Y, where

-y x
J=1
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7

Figure 4.7 Frame structure, for Problem 4.27

4.29 Let X1,X>,...,X, be independent random variables and let cr/? and y; be the
respective variance and third central moment of X;. Let o2 and p denote the
corresponding quantities for ¥, where ¥ = X7 + Xo +--- + Xj,.

(a) Show thato? =02 + 0%+ +02,and pp = py + pia + -+ + fi-
(b) Show that this additive property does not apply to the fourth-order or higher-
order central moments.

4.30 Determine the characteristic function corresponding to each of the PDFs given in
Problem 3.1(a)-3.1(e) (page 67). Use it to generate the first two moments and
compare them with results obtained in Problem 4.1. [Let @ = 2 in part (e).]

4.31 We have shown that characteristic function ¢x(¢) of random variable X facilitates
the determination of the moments of X. Another function M x(¢), defined by

My (1) = E{e"},

and called the moment-generating function of X, can also be used to obtain
moments of X. Derive the relationships between M x(¢) and the moments of X.

4.32 Let
Y=aXi+awX)+ - +a,X,

where X, X>,...,X, are mutually independent. Show that

()Zsy(l‘) = ¢X| (a| t)¢Xz (azl) cee Qﬁ,\/"(anl).
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5

Functions of Random Variables

The basic topic to be discussed in this chapter is one of determining the relation-
ship between probability distributions of two random variables X and Y when
they arerelated by ¥ = g(X). The functional form of g(X') is given and determin-
istic. Generalizing to the case of many random variables, we are interested in the

determination of the joint probability distribution of ¥;,j =1,2,..., m, which is
functionally dependent on X4,k =1,2,...,n, according to

Yi=g(X1,....X,), j=12,....m m<n, (5.1)
when the joint probabilistic behavior of X,k = 1,2,...,n, is known.

Some problems of this type (i.e. transformations of random variables) have
been addressed in several places in Chapter 4. For example, Example 4.11 con-
siders transformation ¥ = X + --- + X,,, and Example 4.18 deals with the trans-
formation of 3n random variables (X, X>»,...,X3,) to two random variables
(X% Y9 defined by Equations (4.90). In science and engineering, most phenomena
are based on functional relationships in which one or more dependent variables
are expressed in terms of one or more independent variables. For example, force is
a function of cross-sectional area and stress, distance traveled over a time interval
is a function of the velocity, and so on. The techniques presented in this chapter
thus permit us to determine the probabilistic behavior of random variables that
are functionally dependent on some others with known probabilistic properties.

In what follows, transformations of random variables are treated in a systemat-
ic manner. In Equation (5.1), we are basically interested in the joint distributions
and joint moments of Y, ...,Y,, given appropriate information on Xy,...,X,.

5.1 FUNCTIONS OF ONE RANDOM VARIABLE

Consider first a simple transformation involving only one random variable, and let

Y = g(X) (5.2)

Fundamentals of P robability and Statistics for EngineersTT. Soong © 2004 John Wiley & Sons, Ltd
ISBNs: 0-470-86813-9 (HB) 0-470-86814-7 (PB)
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120 Fundamentals of Probability and Statistics for Engineers

where g(X) is assumed to be a continuous function of X. Given the probability
distribution of X in terms of its probability distribution function (PDF),
probability mass function (pmf) or probability density function (pdf), we
are interested in the corresponding distribution for Y and its moment
properties.

5.1.1 PROBABILITY DISTRIBUTION

Given the probability distribution of X, the quantity Y, being a function of X as
defined by Equation (5.2), is thus also a random variable. Let Rx be the range
space associated with random variable X, defined as the set of all possible
values assumed by X, and let Ry be the corresponding range space associated
with Y. A basic procedure of determining the probability distribution of Y
consists of the steps developed below.

For any outcome such as X =x, it follows from Equation (5.2) that
Y = y = g(x). As shown schematically in Figure 5.1, Equation (5.2) defines a
mapping of values in range space Rx into corresponding values in range space
Ry . Probabilities associated with each point (in the case of discrete random
variable X) or with each region (in the case of continuous random variable X) in
Ry are carried over to the corresponding point or region in Ry. The probability
distribution of Y is determined on completing this transfer process for every
point or every region of nonzero probability in Ry. Note that many-to-one
transformations are possible, as also shown in Figure 5.1. The procedure of
determining the probability distribution of Y is thus critically dependent on the
functional form of g in Equation (5.2).

Ry

Y=y=9(x1) = g(x2) = 9(Xs)

Figure 5.1 Transformation y = g(x)
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5.1.1.1 Discrete Random Variables

Let us first dispose of the case when X is a discrete random variable, since it
requires only simple point-to-point mapping. Suppose that the possible values
taken by X can be enumerated as xi,x,,.... Equation (5.2) shows that the
corresponding possible values of ¥ may be enumerated as y; = g(x;),y,=
g(x2),.... Let the pmf of X be given by

px(x)=pi, i=12,.... (5.3)
The pmf of y is simply determined as
pY(yl):pY[g(xl)]:plv l:1727 (54)

Example 5.1. Problem: the pmf of a random variable X is given as

1 _ 1.
ok for x = —1;
%, for x = 0;
Px) = 1 for x = 1;
8, b
1 _.
R for x = 2;

Determine the pmf of Y if ¥ is related to X by ¥ = 2X + 1.
Answer: the corresponding values of Y are: g(—1)=2(-1)+1=—1;
g(0) =1; g(1) = 3; and g(2) = 5. Hence, the pmf of Y is given by

1 —_ 1.

5 for y = —1;

%, for y =1;
Py(y): 1

=, fory=23;

8

1 _

R for y =5.

Example 5.2. Problem: for the same X as given in Example 5.1, determine the
pmfof Y if ¥ = 2X2 + 1.

Answer: in this case, the corresponding values of Y are: g(—1) = 2(-1)*+
1 =3;2(0)=1; g(1) = 3; and g(2) = 9, resulting in

1 _ 1.
e for y =1;
py(y) = %(Z%Jr%), for y =3;
1 _
R for y =9.
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5.1.1.2 Continuous Random Variables

A more frequently encountered case arises when X is continuous with known PDF,
Fx(x), or pdf, fy (x). To carry out the mapping steps as outlined at the beginning
of this section, care must be exercised in choosing appropriate corresponding
regions in range spaces Rx and Ry, this mapping being governed by the transform-
ation Y = g(X). Thus, the degree of complexity in determining the probability
distribution of Y is a function of complexity in the transformation g(X).

Let us start by considering a simple relationship

Y =g(X)=2X+1. (5.5)

The transformation y = g(x) is presented graphically in Figure 5.2. Consider
the PDF of Y, Fy (y); it is defined by

Fy(y) = P(Y <p). (5.6)

The region defined by ¥ < yin the range space Ry covers the heavier portion
of the transformation curve, as shown in Figure 5.2, which, in the range space
Ry, corresponds to the region g(X) <y, or X < g~ !(y), where

—1 _y—l
g ) ="5—
y
y=2x+1
X
-1
x=g7'(y)=25~

Figure 5.2 Transformation defined by Equation (5.5)
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is the inverse function of g(x), or the solution for x in Equation (5.5) in terms of
y. Hence,

Fy(y)=P(Y <y)=Plg(X)<y]=PX <g '] =Fxlg'0)]. (5.7

Equation (5.7) gives the relationship between the PDF of X and that of Y, our
desired result.

The relationship between the pdfs of Xand Y are obtained by differentiating
both sides of Equation (5.7) with respect to y. We have:

_ ddey(y) :diy{px[g’l(y)]} =fxlg )]

de™'(y)

Sy dy

(5.8)

It is clear that Equations (5.7) and (5.8) hold not only for the particular
transformation given by Equation (5.5) but for all continuous g(x) that are strictly
monotonic increasing functions of x, that is, g(x,) > g(x;) whenever x, > xj.

Consider now a slightly different situation in which the transformation is
given by

Y=gX)=-2X+1. (5.9)
Starting again with Fy(y)= P(Y < y), and reasoning as before, the region
Y <y in the range space Ry is now mapped into the region X > g~'(y), as

indicated in Figure 5.3. Hence, we have in this case

Fy(y)=P(Y <y)=PX>g ()]

i . (5.10)
=1-PX <g'(n]=1-Fxlg' ).

y=-2x+1

I

I

I

I

3 \

I 1 .
x=g(y) = 1;)’/ -

Figure 5.3 Transformation defined by Equation (5.9)
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In comparison with Equation (5.7), Equation (5.10) yields a different relation-
ship between the PDFs of X and Y owing to a different g(X).

The relationship between the pdfs of X and Y for this case is again obtained
by differentiating both sides of Equation (5.10) with respect to y, giving

fy() =(H:+y(y)=§—y{l — Fx[g ']}
de () (5.11)
=il ).

Again, we observe that Equations (5.10) and (5.11) hold for all continuous g(x)
that are strictly monotonic decreasing functions of x, that is g(x;) < g(xy)
whenever x, > x;.

Since the derivative dg !(y)/dy in Equation (5.8) is always positive — as g(x) is
strictly monotonic increasing — and it is always negative in Equation (5.11) —as
g(x) is strictly monotonic decreasing — the results expressed by these two
equations can be combined to arrive at Theorem 5.1.

Theorem 5.1. Let X be a continuous random variable and Y = g(X) where
g(X) is continuous in X and strictly monotone. Then

dg"(y)’7 (5.12)

fr(») =fx[g1(y)]’T

where |u| denotes the absolute value of u.
Example 5.3. Problem: the pdf of X is given by (Cauchy distribution):

fX(X>:ﬁ7 —00 < X < 00. (513)

Determine the pdf of ¥ where
Y=2X+1. (5.14)

Answer: the transformation given by Equation (5.14) is strictly monotone.
Equation (5.12) thus applies and we have

-1 V= 1

and
dg”'(y) _ 1
dy 2
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Following Equation (5.12), the result is

o= 2 ()

a|(y-—1)?
= | (5.15)

2a 1 <
=———5——, —00 <y < o0

T (y—1)* +4a>’
It is valid over the entire range —oco < y < 0o as it is in correspondence with the
range —00 < X < o0 defined in the range space Ry.

Example 5.4. Problem: the angle ® of a pendulum as measured from the
vertical is a random variable uniformly distributed over the interval
(—7/2 < ® < 7/2). Determine the pdf of Y, the horizontal distance, as shown
in Figure 5.4.

Answer: the transformation equation in this case is

Y =tan®, (5.16)
where
1 T s
—, for—=—< ¢ <=;
fold)=q ™ 2 2 (5.17)
0, elsewhere.

As shown in Figure 5.5, Equation (5.16) is monotone within the range
—7/2 < ¢ < 7/2. Hence, Equation (5.12) again applies and we have

g '(y)=tan"'y.

Figure 5.4 Pendulum, in Example 5.4
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y=tan ¢

S
N

|
|
|
|
|
|
|
|
|
| 0
|
|
|
|
|
|
|
|

Figure 5.5 Transformation defined by Equation (5.16)

and

dg”'(y) _ 1
dy 142

The pdf of Y is thus given by

:fq)(tan*‘ »)
1+ )2
1

=————, —00<y<oo.
(147 4

Sy()

(5.18)

The range space Ry corresponding to —7/2 < ¢ < w/2 is —oo < y < oo. The
pdf given above is thus valid for the whole range of y. The random variable Y

has the so-called Cauchy distribution and is plotted in Figure 5.6.

Example 5.5. Problem: the resistance R in the circuit shown in Figure 5.7 is
random and has a triangular distribution, as shown in Figure 5.8. With a
constant current i = 0.1 A and a constant resistance ry = 100(2; determine the

pdf of voltage V.
Answer: the relationship between V and R is

V = i(R+ ro) = 0.1(R + 100),

(5.19)

TLFeBOOK



Functions of Random Variables 127

fr(y)

Figure 5.6 Probability density function, f (y) in Example 5.4

Figure 5.7 Circuit for Example 5.5

fa(r)

Odf===m==mmmmmm o

r(ohms)

Figure 5.8 Distribution, f(r), in Example 5.5
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and

0.005(r — 90), for 90 < r < 110;
fr(r) = (5.20)

0, elsewhere.

The range 90 < r < 110 corresponds to 19 <v <21 in the range space Ry . It is
clear that f,(v) is zero outside the interval 19 < v < 21. In this interval, since
Equation (5.19) represents a strictly monotonic function, we obtain by means
of Equation (5.12),

_ dg~ (v
1) =l O 9 <v<an,
where
g '(v) = =100 + 10v,
and
dg~'(v)
= 10.
dv

We thus have

£ (¥) = 0.005(—100 + 10v — 90)(10)
=0.5(v—19), for 19 < v <21

and

fy(v) =0, elsewhere.

The pdf of V is plotted in Figure 5.9.

£,

Tp-mmm- /

19 21

v(volts)

Figure 5.9 Density function f (v), in Example 5.5
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Figure 5.10 An example of nonmonotonic function y= g (x)

In the examples given above, it is easy to verify that all density functions
obtained satisfy the required properties.

Let us now turn our attention to a more general case where function
Y = g(X) is not necessarily strictly monotonic. Two examples are given in
Figures 5.10 and 5.11. In Figure 5.10, the monotonic property of the transform-
ation holds for y < y;, and y > y;, and Equation (5.12) can be used to
determine the pdf of Y in these intervals of y. For y; < y < y», however, we
must start from the beginning and consider Fy(y) = P(Y < y). The region
defined by Y < y in the range space Ry covers the heavier portions of the
function y = g(x), as shown in Figure 5.10. Thus:

Fy(y) =P(Y <y)=PX <g'(0]+Plg;' () <X < g5' ()]
=PX <g'M+PX <g' ] - PIX <g' ()] (5.21)

= Fxlg, '] + Fxlgs' )] = Fxlgy' )], 3 <y <,
where x; = g7 '(»), x2 =g5'(»), and x3 = g;!(») are roots for x of function
y = g(x) in terms of y.

As before, the relationship between the pdfs of X and Y is found by differ-
entiating Equation (5.21) with respect to y. It is given by

-1 -1 -1
Fy0) =yl ) dgld—y(y) T file )] dg;—y(” e )] dgg—y(y) <<
(5.22)
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Figure 5.11 An example of nonmonotonic function y =g(x)

Since derivative dg,'(y)/dy is negative whereas the others are positive,
Equation (5.22) takes the convenient form

dg; ' (»)
dy

3
fr)=> rrlg ' )] , n<y<n (5.23)
Jj=1

Figure 5.11 represents the transformation y = sin x; this equation has an infinite
(but countable) number of roots, x; = g;'(y), x2 = g, '(),..., for any y in the
interval —1 < y < 1. Following the procedure outlined above, an equation similar
to Equation (5.21) (but with an infinite number of terms) can be established for
Fy(y) and, as seen from Equation (5.23), the pdf of ¥ now has the form

dg;'(»)
dy

—1<y<l. (5.24)

) — —

Fr) = ifx[g;l 0]

It is clear from Figure 5.11 that f (y) = 0 elsewhere.
A general pattern now emerges when function Y = g(X) is nonmonotonic.
Equations (5.23) and (5.24) lead to Theorem 5.2.

Theorem 5.2: Let X be a continuous random variable and Y = g(X), where
g(X) is continuous in X, and y =g(x) admits at most a countable number of
roots x; = g; '(y), x2 = g, (»),.... Then:

dg;'(»)
dy

Fy0) =3 vl ) , (5.25)
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where r is the number of roots for x of equation y = g(x). Clearly, Equation
(5.12) is contained in this theorem as a special case (r = 1).

Example 5.6. Problem: in Example 5.4, let random variable ® now be uni-
formly distributed over the interval —m < ® < . Determine the pdf of
Y =tan ®.

Answer: the pdf of ® is now

1
—, for —w<op<m

Solg) =14 27

0, elsewhere;
and the relevant portion of the transformation equation is plotted in

Figure 5.12. For each y, the two roots ¢, and ¢, of y = tan ¢ are (see Figure
5.12)

™
dr=g'y)=tan"'y, for—5<¢ <0

, ¥
=g 0) =ty forT<gm <
¢ =tan" 'y, for—7r<q51§—g
, y>0.
¢ =tan" 'y, f0r0<¢2§g
y
[ [ [ [
| | | |
| | | |
| | | |
| | | |
| L y | |
| P ' | |
I | I | I I
| I I l I I
| | | | | P
SEERE « 5 [
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
! ! ! !

Figure 5.12 Transformation y = tan ¢
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For all y, Equation (5.25) yields

2 d ~1
Frb) = Y Faler 0] 2
=1 Y
_ 1 (L) 41 (;) (5.26)
2w \1 + »? 2 \1 + 2
1 —00 <y < 00,

T a1+

a result identical to the solution for Example 5.4 [see Equation (5.18)].

Example 5.7. Problem: determine the pdf of ¥ = X? where X is normally
distributed according to

, .
fX(x) = We /27 —00 < X < Q. (527)

As shown in Figure 5.13, fy(y) =0 for y < 0 since the transformation
equation has no real roots in this range. For y >0, the two roots of

y = x? are

X12 = gf,é()’) =y

|
|
|
|
I
[
X1=\/7

Figure 5.13 Transformation y = x2
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Hence, using Equation (5.25),

dg; ' (»)
dy

fr(y) = fo[gj" ()]

_Sx(=) a0
2y1/2 2y1/2

1
_ s
") ‘

)
or

! =2 for y>0;

)

12¢
fy(y) =4 @2my) (5.28)
0, elsewhere.

This is the so-called x? distribution, to be discussed in more detail in Section
7.4.2.

Example 5.8. Problem: a random voltage V| having a uniform distribution
over interval 90V < V| < 110V is put into a nonlinear device (a limiter), as
shown in Figure 5.14. Determine the probability distribution of the output
voltage V.

Answer: the relationship between ¥ and V5 is, as seen from Figure 5.14,

v, (volts)

/|
! v, (volts)

95 105

Figure 5.14 Transformation defined by Equation (5.29)
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where

g(Vl):O, Vi <95;

Vi —95
g(h) = TR

g(Vl):l, Vi > 105.

95 < ¥; < 105;

The theorems stated in this section do not apply in this case to the portions
v < 95V and v; > 105V because infinite and noncountable number of roots
for v, exist in these regions. However, we deduce immediately from Figure 5.14
that

P(V2=0) =PV <95) = F,(95)
95 1
= S (vi)dvy =g
90
P(Vy=1) = P(V, > 105) = 1 — Fy, (105)
1
-

For the middle portion, Equation (5.7) leads to

Fy,(v2) = Frlg' (n)]
:FV1(10V2+95), 0< <l

Now,

V1—90

Fr(n) =—55—> 90 <wn<ll0.
We thus have
1 2 1
Fr(i) =55 (10 +95-90) = =252 o<y < 1.

The PDF, Fy,(v2), is shown in Figure 5.15, an example of a mixed distribution.

5.1.2 MOMENTS

Having developed methods of determining the probability distribution of
Y =g(X), it is a straightforward matter to calculate all the desired moments
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F A (v2)

Vo

Figure 5.15 Distribution Fy,(v;) in Example 5.8

of Y if they exist. However, this procedure — the determination of moments of ¥
on finding the probability law of ¥ —is cumbersome and unnecessary if only the
moments of Y are of interest.

A more expedient and direct way of finding the moments of ¥ = g(X), given
the probability law of X, is to express moments of Y as expectations of
appropriate functions of X; they can then be evaluated directly within the
probability domain of X. In fact, all the ‘machinery’ for proceeding along this
line is contained in Equations (4.1) and (4.2).

Let ¥ = g(X) and assume that all desired moments of Y exist. The nth
moment of ¥ can be expressed as

E{Y"} = E{g"(X)}. (5.30)

It follows from Equations (4.1) and (4.2) that, in terms of the pmf or pdf of X,

E{Y"} = E{g"(X)} = Zg"(xi)pX(xi), X discrete;
(5.31)
E{Y"} = E{g"(X)} = / "(x)f y(x)dx, X continuous.

An alternative approach is to determine the characteristic function of Y from
which all moments of ¥ can be generated through differentiation. As we see
from the definition [Equations (4.46) and (4.47)], the characteristic function of
Y can be expressed by

by(1) = E{e?"} = E{fei¥)} = Zej’g(x")px(x,-), X discrete;
i

| | . (532)
dy(1) = E{e?} = E{fei®¥)} = / eWf (x)dx, X continuous.
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Upon evaluating ¢y (¢), the moments of ¥ are given by [Equation (4.52)]:
E{(Y"y =i"6%0), n=12,.... (5.33)

Example 5.9. Problem: a random variable X is discrete and its pmf is given in
Example 5.1. Determine the mean and variance of Y where ¥ =2X + 1.
Answer: using the first of Equations (5.31), we obtain

E{Y}=EQ2X +1} = (2x;+ I)py(x)

l

_ 1)(;) 4 (1)@ 4 (3)@ +(5) (;) (5.34)

(-
_3
=7

E{(Y’} = E{2X + 1)’} = > _(2x; + 1)’py(x)

= (UG) - (UG) + (9) (é) + (25)(%) (5.35)

and

2
0 =E{Y*} - E}Y}=5— G) = % (5.36)

Following the second approach, let us use the method of characteristic func-
tions described by Equations (5.32) and (5.33). The characteristic function of Y is

or(t) = 3 p, (x,)

71 /1 /1 /1
— it it — 3je [ = Sit[ =
RCAMORSORN0

(47 4 2ed eV 4 &30,

oo —

and we have

B(Yy =i 0) =i (§) (-4 + 24345 =5,

E{Y?} = —¢P(0) =—(4+2+9+25)=5.

oo —
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As expected, these answers agree with the results obtained earlier [Equations
(5.34) and (5.39)].

Let us again remark that the procedures described above do not require
knowledge of fy (y). One can determine fy (y) before moment calculations but it
is less expedient when only moments of ¥ are desired. Another remark to be
made is that, since the transformation is linear (Y = 2X + 1) in this case, only
the first two moments of X are needed in finding the first two moments of Y,
that is,

E{Y}=E{2X + 1} =2E{X} + 1,
E{Y?} = E{(2X + 1)’} = 4E{X?} + 4E{X} + 1,
as seen from Equations (5.34) and (5.35). When the transformation is nonlinear,
however, moments of X of different orders will be needed, as shown below.

Example 5.10. Problem: from Example 5.7, determine the mean and variance
of Y = X?2. The mean of Y is, in terms of fy (x),

E{Y} = E{X*} = %/ x2e ¥ dx =1, (5.37)
2m)"?J-s

and the second moment of Y is given by

E{Y?} = E{Xx*} = 11 2/ xle ¥ 2dx = 3. (5.38)
2m)"? )
Thus,
0y =E{Y’} - E}{Y}=3-1=2. (5.39)

In this case, complete knowledge of f (x) is not needed but we to need to
know the second and fourth moments of X.

5.2 FUNCTIONS OF TWO OR MORE RANDOM VARIABLES

In this section, we extend earlier results to a more general case. The random
variable Y is now a function of n jointly distributed random variables,

X1,X5,...,X,. Formulae will be developed for the corresponding distribution
for Y.
As in the single random variable case, the case in which X, X»,..., and X,

are discrete random variables presents no problem and we will demonstrate this
by way of an example (Example 5.13). Our basic interest here lies in the
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determination of the distribution ¥ when all X;, j = 1,2,...,n, are continuous
random variables. Consider the transformation

Y =g(X1,.... X)) (5.40)

where the joint distribution of X, X5, ..., and X, is assumed to be specified in
term of their joint probability density function (jpdf), fx, x (x1,...,Xp), Or
their joint probability distribution function JPDF), Fy, x, (xi,...,x,). In a
more compact notation, they can be written as fy(x) and Fx(x), respectively,
where X is an n-dimensional random vector with components X, X», ..., X,.

The starting point of the derivation is the same as in the single-random-
variable case; that is, we consider Fy(y) = P(Y <y). In terms of X, this
probability is equal to P[g(X) < y]. Thus:

Fy(y)=P(Y <y) = Plg(X) <] (5.41)
= Fx[x:g(x) <yl ’

The final expression in the above represents the JPDF of X for which the
argument x satisfies g(x) < y. In terms of £y (x), it is given by

Fylsigto) <3] = [ - / fxlx (5.42)

(Rn.

where the limits of the integrals are determined by an n-dimensional region R"
within which g(x) <y is satisfied. In view of Equations (5.41) and (5.42), the
PDF of Y, Fy(y), can be determined by evaluating the n-dimensional integral in
Equation (5.42). The crucial step in this derivation is clearly the identification
of R”", which must be carried out on a problem-to-problem basis. As n becomes
large, this can present a formidable obstacle.

The procedure outlined above can be best demonstrated through examples.

Example 5.11. Problem: let ¥ = X X,. Determine the pdf of ¥ in terms of

Jxx, (1, X2).
Answer: from Equations (5.41) and (5.42), we have

//fxl)(z (x1, x2)dx1dxs. (5.43)

(R%: x1x2<p)
The equation x;x, =y is graphed in Figure 5.16 in which the shaded area

represents R2, or x;x, <y. The limits of the double integral can thus be
determined and Equation (5.43) becomes
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X2
XiXo=Yy
Xq
R2
Figure 5.16 Region R?, in Example 5.11
0o py/x2 0 00
Fy(y) = / Sxw (x1,x2)dx1dx; +/ Sxx, (X1, x2)dxidx;. (5.44)
0 —00 —o0 Jy/x2

Substituting fx,x,(x1,x2) into Equation (5.44) enables us to determine Fy (y)
and, on differentiating with respect to y, gives fy ().

For the special case where X; and X, are independent, we have
Sxx,(x1,X2) = [y, (x1)f x,(x2), and Equation (5.44) simplifies to

Fy(y) = /000 Fy, <%2>sz (x2)dx2 + /(; [1 — Fyx, (x%ﬂfxz (x2)dxa,

and

Sy(y) = ngy(y) = /fofxl (y)fxz(xz) ! dx;. (5.45)

X2 X2
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As a numerical example, suppose that X| and X, are independent and

f ( ) 2)61, for0§x1§1;
X =
L 0, elsewhere;
27)(2
. for 0 < xp, <2;
sz(XZ) — B ; orv < xp < 4

0, elsewhere.

The pdf of Y is, following Equation (5.45),

100 = [ (2

2 _
Y X2 2 X

=0, elsewhere.

ClXQ;

In the above, the integration limits are determined from the fact that fy (x1)
and fy,(x2) are nonzero in intervals 0 <x; <1, and 0 < xp < 2. With the
argument of fX](xl) replaced by y/x, in the integral, we have 0 < y/x, <1,
and 0 < x, <2, which are equivalent to y < x, < 2. Also, range 0 <y < 2 for
the nonzero portion of f (y) is determined from the fact that, since y = xx,
intervals 0 < x; <1, and 0 < x, < 2 directly give 0 <y < 2.

Finally, Equation (5.46) gives

_J24y(lny—1—-In2), for0<y<2;
Sr() = {O7 elsewhere. (5:47)

This is shown graphically in Figure 5.17. It is an easy exercise to show that

2
/0 fy()dy = 1.
Example 5.12. Problem: let Y = X /X, where X and X, are independent and
identically distributed according to

e ™, for x; > 0;

S () = {0, elsewhere; (5.48)

and similarly for X,. Determine f (y).
Answer: it follows from Equations (5.41) and (5.42) that

Fy(y) = // S xx, (X1, x2)dx1dx;.

(R?:x1/x2<y)
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fy (¥)

0 1 2

Figure 5.17 Probability density function, fy (¥), in Example 5.11

X2

i

X4

Figure 5.18 Region R? in Example 5.12

The region R? for positive values of x; and x, is shown as the shaded area in
Figure 5.18. Hence,

0 X2y
/ / S xx, (X1, x2)dx1dx;,  for y > 0;
o Jo

0, elsewhere.

Fy(y) =

TLFeBOOK



142 Fundamentals of Probability and Statistics for Engineers

For independent X; and X,

o0 X2y
Fy(y) = /0 /0 v (61 v, () s

= / Fy, (x2y)f)(2 (Xz)dXQ, for y > 0; (5.49)
0

=0, clsewhere.

The pdf of Y is thus given by, on differentiating Equation (5.49) with respect
toy,

/ Xof y, (X2)f x, (x2)dxa,  for y > 0;
0

fy(y) = (5.50)

0, elsewhere;

and, on substituting Equation (5.48) into Equation (5.50), it takes the form

o0 1
/ xXoe e ™dx, = 5, for y>0;
fy(y)=4q Jo (1+) (5.51)

0, elsewhere.

Again, it is easy to check that

/Oofy(y)dy =1
0

Example 5.13. To show that it is elementary to obtain solutions to problems
discussed in this section when X, X»,..., and X,, are discrete, consider again
Y = X /X, given that X| and X, are discrete and their joint probability mass
function (jpmf) py,x,(x1,x2) is tabulated in Table 5.1. In this case, the pmf of ¥
is easily determined by assignment of probabilities py y,(x1,x2) to the corres-
ponding values of y = x;/x,. Thus, we obtain:

0.5, fory= %;

0.24 +0.04 = 0.28, for y=1;
Py(Y) =19 0.04, fory:%;

0.06, for y=2;

0.12, for y =3.
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Table 5.1 Joint probability mass
function, py y,(x1,x2), in Example 5.13

X2 X1

1 2 3
1 0.04 0.06 0.12
2 0.5 0.24 0.04

Example 5.14. Problem: in structural reliability studies, the probability of
failure q is defined by
q=PR<S),
where R and S represent, respectively, structural resistance and applied force.
Let R and S be independent random variables taking only positive values.

Determine ¢ in terms of the probability distributions associated with R and S.
Answer: let Y = R/S. Probability g can be expressed by

qP<§§ 1) —P(Y < 1) = Fy(l).

Identifying R and S with X, and X, respectively, in Example 5.12, it follows
from Equation (5.49) that

g=Fy(l) = /0 " FR(s)f s(s)ds

Example 5.15. Problem: determine Fy(y) in terms of fy y (x1,X2) when
Y =min(X1,X2).
Answer: now,

Fy(y) = // S xx, (X1, x2)dx1dxa,

s min(xy,x2)<y)

where region R? is shown in Figure 5.19. Thus

Y 0 [e's) y
:/ / S xx, (X1, x2)dx1dx) +/ / S xx, (X1, x2)dx1dx)
—00 —00 v —00
y o0 00 y
:/ / fXIXZ(xlvxz)dxldxz +/ / fX]XZ(x1,x2)dx1dx2
vy
—/ / Sy x (X1, x2)dx1dx)

=Fy,(») +Fx,(y) — Fx,x,(0,¥),
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\

\

X1

___

Figure 5.19 Region R? in Example 5.15

which is the desired solution. If random variables X and X, are independent,
straightforward differentiation shows that

Iy0) =Fx W = Fx,(0)] +/ W0 = Fx, ()]

Let us note here that the results given above can be obtained following a
different, and more direct, procedure. Note that the event [min (X, X5) < y]is
equivalent to the event (X; <y UX, <y). Hence,

Fy(y) = P(Y < y) = Plmin(X,, X3) < )]
=PX, <yUX,<y).
Since
P(AUB) = P(A)+ P(B) — P(AB),
we have

Fy(y)) =P(X1 <y)+PX><y)—P(Xi <ynXy<y)
= FX](y) +FX2<.V) _FXle(yyy)~

If X and X, are independent, we have
Fy(y)=Fx, () + Fx,(v) = Fx,(y)Fx, (),

and

dFy(y)

fy») :T =[x, = Fx, )] +fx, W[ = Fx,(»)]-
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We have not given examples in which functions of more than two random
variables are involved. Although more complicated problems can be formu-
lated in a similar fashion, it is in general more difficult to identify appropriate
regions R" required by Equation (5.42), and the integrals are, of course, more
difficult to carry out. In principle, however, no intrinsic difficulties present
themselves in cases of functions of more than two random variables.

5.2.1 SUMS OF RANDOM VARIABLES

One of the most important transformations we encounter is a sum of random
variables. It has been discussed in Chapter 4 in the context of characteristic
functions. In fact, the technique of characteristic functions remains to be the
most powerful technique for sums of independent random variables.

In this section, the procedure presented in the above is used to give an
alternate method of attack.

Consider the sum

Y=g(X1,.. . X)) =X1+ X2+ -+ X, (5.52)
It suffices to determine f (y) for n = 2. The result for this case can then be

applied successively to give the probability distribution of a sum of any number
of random variables. For ¥ = X + X,, Equations (5.41) and (5.42) give

Fy(y) = / S xx, (X1, x2)dx1dxs,

(R?:x1+x2<y)

and, as seen from Figure 5.20,

00 py—X3
Fy(y) = / Frox (or x2)dx . (5.53)

o0 J —00

Upon differentiating with respect to y we obtain

Fr) = / Sy — X2, 32)ds (5.54)

When X, and X, are independent, the above result further reduces to

fy() = / = ) (x2)dna, (5.55)

Integrals of the form given above arise often in practice. It is called convolution
of the functions fy, (x1) and fx, (x2).
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X2

Xy+Xo=Yy

Figure 5.20 Region R%:x| +x; <y

Considerable importance is attached to the results expressed by Equations
(5.54) and (5.55) because sums of ra