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Preface

This book is an introduction to the algebraic, algorithmic and analytic aspects
of the Galois theory of homogeneous linear differential equations. Although the
Galois theory has its origins in the 19*” Century and was put on a firm footing
by Kolchin in the middle of the 20" Century, it has experienced a burst of
activity in the last 30 years. In this book we present many of the recent results
and new approaches to this classical field. We have attempted to make this
subject accessible to anyone with a background in algebra and analysis at the
level of a first year graduate student. Our hope is that this book will prepare
and entice the reader to delve further.

In this preface we will describe the contents of this book. Various researchers
are responsible for the results described here. We will not attempt to give
proper attributions here but refer the reader to each of the individual chapters
for appropriate bibliographic references.

The Galois theory of linear differential equations (which we shall refer to simply
as differential Galois theory) is the analogue for linear differential equations of
the classical Galois theory for polynomial equations. The natural analogue of a
field in our context is the notion of a differential field. This is a field k together
with a derivation 0 : k — k, that is, an additive map that satisfies d(ab) =
d(a)b+ ad(b) for all a,b € k (we will usually denote da for a € k as a’). Except
for Chapter 13, all differential fields will be of characteristic zero. A linear
differential equation is an equation of the form dY = AY where A is an n X n
matrix with entries in k although sometimes we shall also consider scalar linear
differential equations L(y) = 0™y + an—10" 1y + -+ + apy = 0 (these objects
are in general equivalent, as we show in Chapter 2). One has the notion of a
“splitting field”, the Picard-Vessiot extension, which contains “all” solutions of
L(y) = 0 and in this case has the additional structure of being a differential field.
The differential Galois group is the group of field automorphisms of the Picard-
Vessiot field fixing the base field and commuting with the derivation. Although
defined abstractly, this group can be easily represented as a group of matrices
and has the structure of a linear algebraic group, that is, it is a group of invertible
matrices defined by the vanishing of a set of polynomials on the entries of these
matrices. There is a Galois correspondence identifying differential subfields with
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linear algebraic subgroups of the Galois group. Corresponding to the notion of
solvability by radicals for polynomial equations is the notion of solvability in
terms of integrals, exponentials and algebraics, that is, solvable in terms of
liouvillian functions and one can characterize this in terms of the differential
Galois group as well.

Chapter 1 presents these basic facts. The main tools come from the elementary
algebraic geometry of varieties over fields that are not necessarily algebraically
closed and the theory of linear algebraic groups. In Appendix A we develop the
results necessary for the Picard-Vessiot theory.

In Chapter 2, we introduce the ring k[J] of differential operators over a differ-
ential field k, that is, the (in general, noncommutative) ring of polynomials in
the symbol & where multiplication is defined by da = a’ + ad for all a € k.
For any differential equation Y = AY over k one can define a corresponding
k[0]-module in much the same way that one can associate an F[X]-module to
any linear transformation of a vector space over a field F. If Y = A;Y and
Y = AsY are differential equations over k and M; and My are their asso-
ciated k[0]-modules, then M; ~ M, as k[0]-modules if and only if here is an
invertible matrix Z with entries in & such that Z=1(0 — A;)Z = 0 — A,, that
is Ay = Z7YA\Z — Z~1Z'. We say two equations are equivalent over k if such
a relation holds. We show equivalent equations have the same Galois groups
and so can define the Galois group of a k[0]-module. This chapter is devoted
to further studying the elementary properties of modules over k[0] and their
relationship to linear differential equations. Further the Tannakian equivalence
between differential modules and representations of the differential Galois group
is presented.

In Chapter 3, we study differential equations over the field of fractions k =
C((2)) of the ring of formal power series C[[z]] over the field of complex numbers,
provided with the usual differentiation diz. The main result is to classify k[0]-
modules over this ring or, equivalently, show that any differential equation 9Y =
AY can be put in a normal form over an algebraic extension of k (an analogue of
the Jordan Normal Form of complex matrices). In particular, we show that any
equation 0Y = AY is equivalent (over a field of the form C((t)),t™ = z for some
integer m > 0) to an equation Y = BY where B is a block diagonal matrix
where each block B; is of the form B; = ¢;I+C; where where ¢; € t 1C[t~1] and
C; is a constant matrix. We give a proof (and formal meaning) of the classical
fact that any such equation has a solution matrix of the form Z = Hz%e®,
where H is an invertible matrix with entries in C((¢)), L is a constant matrix
(i.e. with coefficients in C), where z* means ele*)L O is a diagonal matrix
whose entries are polynomials in ¢~! without constant term. A differential
equation of this type is called quasi-split (because of its block form over a finite
extension of C((z)) ). Using this, we are able to explicitly give a universal
Picard-Vessiot extension containing solutions for all such equations. We also
show that the Galois group of the above equation 9Y = AY over C((z)) is



the smallest linear algebraic group containing a certain commutative group of
diagonalizable matrices (the exponential torus) and one more element (the formal
monodromy) and these can be explicitly calculated from its normal form. In this
chapter we also begin the study of differential equations over C({z}), the field
of fractions of the ring of convergent power series C{z}. If A has entries in
C({z}), we show that the equation 9Y = AY is equivalent over C((z)) to a
unique (up to equivalence over C({z})) equation with entries in C({z}) that
is quasi-split. This latter fact is key to understanding the analytic behavior of
solutions of these equations and will be used repeatedly in succeeding chapters.
In Chapter 2 and 3, we also use the language of Tannakian categories to describe
some of these results. This theory is explained in Appendix B. This appendix
also contains a proof of the general result that the category of k[0]-modules
for a differential field k forms a Tannakian category and how one can deduce
from this the fact that the Galois groups of the associated equations are linear
algebraic groups. In general, we shall use Tannakian categories throughout the
book to deduce facts about categories of special k[0]-modules, i.e., deduce facts
about the Galois groups of restricted classes of differential equations.

In Chapter 4, we consider the “direct” problem, which is to calculate explicitly
for a given differential equation or differential module its Picard-Vessiot ring
and its differential Galois group. A complete answer for a given differential
equation should, in principal, provide all the algebraic information about the
differential equation. Of course this can only be achieved for special base fields
k, such as Q(z), 0z = 1 (where Q is the algebraic closure of the field of rational
numbers). The direct problem requires factoring many differential operators L
over k. A right hand factor O — u of L (over k or over an algebraic extension
of k) corresponds to a special solution f of L(f) = 0, which can be rational,
exponential or liouvillian. Some of the ideas involved here are already present
in Beke’s classical work on factoring differential equations.

The “inverse” problem, namely to construct a differential equation over k with
a prescribed differential Galois group G and action of G on the solution space
is treated for a connected linear algebraic group in Chapter 11. In the opposite
case that G is a finite group (and with base field Q(z)) an effective algorithm
is presented together with examples for equations of order 2 and 3. We note
that some of the algorithms presented in this chapter are efficient and others
are only the theoretical basis for an efficient algorithm.

Starting with Chapter 5, we turn to questions that are, in general, of a more
analytic nature. Let Y = AY be a differential equation where A has en-
tries in C(z), where C is the field of complex numbers and 0z = 1. A point
¢ € C is said to be a singular point of the equation Y = AY if some en-
try of A is not analytic at ¢ (this notion can be extended to the point at
infinity on the Riemann sphere P as well). At any point p on the manifold
P\{the singular points}, standard existence theorems imply that there exists
an invertible matrix Z of functions, analytic in a neighbourhood of p, such
that 0Z = AZ. Furthermore, one can analytically continue such a matrix of
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functions along any closed path 7, yielding a new matrix Z, which must be
of the form Z, = ZA, for some A, € GL,(C). The map v — A, induces
a homomorphism, called the monodromy homomorphism, from the fundamen-
tal group m (P\{the singular points}, ¢) into GL,,(C). As explained in Chap-
ter 5, when all the singular points of Y = AY are regular singular points
(that is, all solutions have at most polynomial growth in sectors at the sin-
gular point), the smallest linear algebraic group containing the image of this
homomorphism is the Galois group of the equation. In Chapters 5 and 6 we
consider the inverse problem: Given points {po,...,pn} C P! and a represen-
tation w1 (P\p1,...,0n},p0) — GL,(C), does there exist a differential equation
with regular singular points having this monodromy representation? This is one
form of Hilbert’s 215! Problem and we describe its positive solution. We discuss
refined versions of this problem that demand the existence of an equation of a
more restricted form as well as the existence of scalar linear differential equations
having prescribed monodromy. Chapter 5 gives an elementary introduction to
this problem concluding with an outline of the solution depending on basic facts
concerning sheaves and vector bundles. In Appendix C, we give an exposition
of the necessary results from sheaf theory needed in this and later sections.
Chapter 6 contains deeper results concerning Hilbert’s 21°¢ problem and uses
the machinery of connections on vector bundles, material that is developed in
Appendix C and this chapter.

In Chapter 7, we study the analytic meaning of the formal description of so-
lutions of a differential equation that we gave in Chapter 3. Let w € C({z})"
and let A be a matrix with entries in C({z}). We begin this chapter by giv-
ing analytic meaning to formal solutions ¥ € C((z))™ of equations of the form
(0 — A)o = w. We consider open sectors S = S(a,b,p) = {z | z # 0,arg(z) €
(a,b) and |z| < p(arg(z))}, where p(x) is a continuous positive function of a
real variable and a < b are real numbers and functions f analytic in S and
define what it means for a formal series Y a;2* € C((z)) to be the asymptotic
expansion of f in S. We show that for any formal solution o € C((z))" of
(0 — A)o = w and any sector S = S(a,b, p) with |a — b| sufficiently small and
suitable p, there is a vector of functions v analytic in S satisfying (0 — A)v = w
such that each entry of v has the corresponding entry in ¢ as its asymptotic
expansion. The vector v is referred to as an asymptotic lift of 0. In general,
there will be many asymptotic lifts of © and the rest of the chapter is devoted
to describing conditions that guarantee uniqueness. This leads us to the study
of Gevrey functions and Gevrey asymptotics. Roughly stated, the main result,
the Multisummation Theorem, allows us to associate, in a functorial way, to
any formal solution ¢ of (0 — A)0 = w and all but a finite number (mod 27)
of directions d, a unique asymptotic lift in an open sector S(d — €,d + €, p) for
suitable € and p. The exceptional values of d are called the singular directions
and are related to the so-called Stokes phenomenon. They play a crucial role
in the succeeding chapters where we give an analytic description of the Galois
group as well as a classification of meromorphic differential equations. Sheaves
and their cohomology are the natural way to take analytic results valid in small
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neighbourhoods and describe their extension to larger domains and we use these
tools in this chapter. The necessary facts are described in Appendix C.

In Chapter 8 we give an analytic description of the differential Galois group of
a differential equation 0Y = AY over C({z}) where A has entries in C({z}).
In Chapter 3, we show that any such equation is equivalent to a unique quasi-
split equation 0Y = BY with the entries of B in C({z}) as well, that is there
exists an invertible matrix F' with entries in C((z)) such that F~1(8 — A)F =
0— B. The Galois groups of Y = BY over C({z}) and C((z)) coincide and are
generated (as linear algebraic groups) by the associated exponential torus and
formal monodromy. The differential Galois group G’ over C({z}) of 0Y = BY
is a subgroup of the differential Galois group of 9Y = AY over C({z}). To see
what else is needed to generate this latter differential Galois group we note that
the matrix F also satisfies a differential equation F' = AF - FB over C({z})
and so the results of Chapter 7 can be applied to F. Asymptotic lifts of F can be
used to yield isomorphisms of solution spaces of Y = AY  in overlapping sectors
and, using this we describe how, for each singular direction d of £” = AF — F'B,
one can define an element Stq (called the Stokes map in the direction d) of the
Galois group G of 9Y = AY over C({z}). Furthermore, it is shown that G is
the smallest linear algebraic group containing the Stokes maps {St4} and G'.
Various other properties of the Stokes maps are described in this chapter.

In Chapter 9, we consider the meromorphic classification of differential equations
over C({z}). If one fixes a quasi-split equation Y = BY’, one can consider pairs
(0— A, F), where A has entries in C({z}), F' € GL,(C((2)) and F~1(0—-A)F =
0 — B. Two pairs (0 — Ay, Fl) and (0 — Aa, Fg) are called equivalent if there
is a G € GL,(C({z})) such that G(d — A;)G™' =9 — Ay and F, = F1G. In
this chapter, it is shown that the set E of equivalence classes of these pairs is
in bijective correspondence with the first cohomology set of a certain sheaf of
nonabelian groups on the unit circle, the Stokes sheaf. We describe how one can
furthermore characterize those sets of matrices that can occur as Stokes maps
for some equivalence class. This allows us to give the above cohomology set the
structure of an affine space. These results will be further used in Chapters 10
and 11 to characterize those groups that occur as differential Galois groups over

C{z})

In Chapter 10, we consider certain differential fields k and certain classes of
differential equations over k and explicitly describe the universal Picard-Vessiot
ring and its group of differential automorphisms over k, the universal differential
Galois group, for these classes. For the special case k = C((z)) this universal
Picard-Vessiot ring is described in Chapter 3. Roughly speaking, a univer-
sal Picard-Vessiot ring is the smallest ring such that any differential equation
0Y = AY (with A an n x n matrix) in the given class has a set of n independent
solutions with entries from this ring. The group of differential automorphisms
over k will be an affine group scheme and for any equation in the given class, its
Galois group will be a quotient of this group scheme. The necessary informa-
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tion concerning affine group schemes is presented in Appendix B. In Chapter
10, we calculate the universal Picard-Vessiot extension for the class of regular
differential equations over C((z)), the class of arbitrary differential equations
over C((z)) and the class of meromorphic differential equations over C({z}).

In Chapter 11, we consider the problem of, given a differential field k, deter-
mining which linear algebraic groups can occur as differential Galois groups for
linear differential equations over k. In terms of the previous chapter, this is the,
a priori, easier problem of determining the linear algebraic groups that are quo-
tients of the universal Galois group. We begin by characterizing those groups
that are differential Galois groups over C((z)). We then give an analytic proof
of the fact that any linear algebraic group occurs as a differential Galois group
of a differential equation Y = AY over C(z) and describe the minimal number
and type of singularities of such an equation that are necessary to realize a given
group. We end by discussing an algebraic (and constructive) proof of this result
for connected linear algebraic groups and give explicit details when the group
is semi-simple.

In Chapter 12, we consider the problem of finding a fine moduli space for the
equivalence classes F of differential equations considered in Chapter 9. In that
chapter, we describe how E has a natural structure as an affine space. Nonethe-
less, it can be shown that there does not exist a universal family of equations
parameterized by E. To remedy this situation, we show the classical result that
for any meromorphic differential equation Y = AY, there is a differential equa-
tion 0Y = BY where B has coefficients in C(z) (i.e., a differential equation on
the Riemann Sphere) having singular points at 0 and co such that the singular
point at infinity is regular and such that the equation is equivalent to the orig-
inal equation when both are considered as differential equations over C({z}).
Furthermore, this latter equation can be identified with a (meromorphic) con-
nection on a free vector bundle over the Riemann Sphere. In this chapter we
show that, loosely speaking, there exists a fine moduli space for connections on
a fixed free vector bundle over the Riemann Sphere having a regular singularity
at infinity and an irregular singularity at the origin together with an extra piece
of data (corresponding to fixing the formal structure of the singularity at the
origin).

In Chapter 13, the differential field K has characteristic p > 0. A perfect field
(i.e., K = KP) of characteristic p > 0 has only the zero derivation. Thus we
have to assume that K # KP. In fact, we will consider fields K such that
[K : KP] = p. A non-zero derivation on K is then unique up to a multiplicative
factor. This seems to be a good analogue of the most important differential
fields C(z), C({z}), C((z)) in characteristic zero. Linear differential equa-
tions over a differential field of characteristic p > 0 have attracted, for various
reasons, a lot of attention. Some references are [90, 139, 151, 152, 161, 204,
216, 226, 228, 8, 225]. One reason is Grothendieck’s conjecture on p-curvatures,
which states that the differential Galois group of a linear differential equation in
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characteristic zero is finite if and only if the p-curvature of the reduction of the
equation modulo p is zero for almost all p. N. Katz has extended this conjec-
ture to one which states that the Lie algebra of the differential Galois group of a
linear differential equation in characteristic zero is determined by the collection
of its p-curvatures (for almost all p). In this Chapter we will classify a differ-
ential module over K essentially by the Jordan normal form of its p-curvature.
Algorithmic considerations make this procedure effective. A glimpse at order
two equations gives an indication how this classification could be used for linear
differential equations in characteristic 0. A more or less obvious observation
is that these linear differential equations in positive characteristic behave very
differently from what might be expected from the characteristic zero case. A
different class of differential equations in positive characteristic, namely the it-
erative differential equations, is introduced. The Chapter ends with a survey on
iterative differential modules.

Appendix A contains the tools from the theory of affine varieties and linear al-
gebraic groups that are needed, particularly in Chapter 1. Appendix B contains
a description of the formalism of Tannakian categories that are used through-
out the book. Appendix C describes the results from the theory of sheaves and
sheaf cohomology that are used in the analytic sections of the book. Finally,
Appendix D discusses systems of linear partial differential equations and the ex-
tent to which the results of this book are known to generalize to this situation.

Conspicuously missing from this book are discussions of the arithmetic theory of
linear differential equations as well as the Galois theory of nonlinear differential
equations. A few references are [161, 196, 198, 221, 222, 292, 293, 294, 295]. We
have also not described the recent applications of differential Galois theory to
Hamiltonian mechanics for which we refer to [11] and [212]. For an extended
historical treatment of linear differential equations and group theory in the 19**
Century, see [113].

Notation and Terminology. We shall use the letters C, N, Q, R, Z to denote
the complex numbers, the nonnegative integers, the rational numbers , the real
numbers and the integers, respectively. Authors of any book concerning func-
tions of a complex variable are confronted with the problem of how to use the
terms analytic and holomorphic. We consider these terms synonymous and use
them interchangeably but with an eye to avoiding such infelicities as “analytic
differential” and “holomorphic continuation”.
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Chapter 1

Picard-Vessiot Theory

In this chapter we give the basic algebraic results from the differential Galois
theory of linear differential equations. Other presentations of some or all of this
material can be found in the classics of Kaplansky [150] and Kolchin [161] (and
Kolchin’s original papers that have been collected in [25]) as well as the recent
book of Magid [182] and the papers [230], [172].

1.1 Differential Rings and Fields

The study of polynomial equations leads naturally to the notions of rings and
fields. For studying differential equations, the natural analogues are differential
rings and differential fields, which we now define. All the rings, considered in
this chapter, are supposed to be commutative, to have a unit element and to
contain Q, the field of the rational numbers.

Definition 1.1 A derivation on a ring R is a map 0 : R — R having the
properties that for all a,b € R,

d(a+b) = 9(a)+0(b) and
d(ab) = 9(a)b+ad(b) .

A ring R equipped with a derivation is called a differential ring and a field
equipped with a derivation is called a differential field. We say a differential
ring S D R is a differential extension of the differential ring R or a differential
ring over R if the derivation of S restricts on R to the derivation of R. a

Very often, we will denote the derivation of a differential ring by a +— d.
Further a derivation on a ring will also be called a differentiation.
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Examples 1.2 The following are differential rings.

1. Any ring R with trivial derivation, i.e., d = 0.

2. Let R be a differential ring with derivation a — a’. One defines the ring
of differential polynomials in yi1,...,y, over R, denoted by R{{y1,...,yn}},
in the following way. For each ¢ = 1,...,n, let yzg]), 7 € N be an infinite
set of distinct indeterminates. For convenience we will write y; for y§0)7 Y,

for y§1) and y} for y(2). We define R{{y1,...,yn}} to be the polynomial ring

i

Rly1, Y1 Uy s Y2, Yo U o oo Uny Yy Uiy - - .]. We extend the derivation of R to
a derivation on R{{y1,...,yn}} by setting (yl(J)y _ y§”1)- O

Continuing with Example 1.2.2, let S be a differential ring over R and let
Uy, ..., U, € 5. The prescription ¢ : ygj) — ugj) for all 4, j, defines an R-linear
differential homomorphism from R{{y1,...,yn}} to S, that is ¢ is an R-linear
homomorphism such that ¢(v') = (¢(v))" for all v € R{{y1,...,yn}}. This
formalizes the notion of evaluating differential polynomials at values w;. We
will write P(uq,...,u,) for the image of P under ¢. When n = 1 we shall
usually denote the ring of differential polynomials as R{{y}}. For P € R{{y}},
we say that P has order n if n is the smallest integer such that P belongs to

the polynomial ring R[y, s/, ..., y™)].

Examples 1.3 The following are differential fields. Let C' denote a field.

1. C(z), with derivation f — f’ = j—’;.

2. The field of formal Laurent series C'((z)) with derivation f — f' = %.

3. The field of convergent Laurent series C({z}) with derivation f +— f' = %.
4. The field of all meromorphic functions on any open connected subset of the
extended complex plane C U {oco}, with derivation f +— f' = g—{:.

5. C(z,e*) with derivation f — f' = %. O
The following defines an important property of elements of a differential ring.

Definition 1.4 Let R be a differential ring. An element ¢ € R is called a
constant if ¢/ = 0. o

In Exercise 1.5.1, the reader is asked to show that the set of constants in a
ring forms a ring and in a field forms a field. The ring of constants in Exam-
ples 1.2.1 and 1.2.2 is R. In Examples 1.3.1 and 1.3.2, the field of constants is
C. In the other examples the field of constants is C. For the last example this
follows from the embedding of C(z, e¥) in the field of the meromorphic functions
on C.

The following exercises give many properties of these concepts.

Exercises 1.5 1. Constructions with rings and derivations
Let R be any differential ring with derivation 0.
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(a) Let t,n € R and suppose that n is invertible. Prove the formula
(L) = B(t)n 19(n)

(b) Let I C R be an ideal. Prove that 0 induces a derivation on R/T if and only
if 0(I) C

(c) Let the ideal I C R be generated by {a;}jes. Prove that o(I) C I if
O0(aj) € I forall j € J.

(d) Let S C R be a multiplicative subset, i.e., 0 ¢ S and for any two elements
S1,82 € S one has s;s2 € S. We recall that the localization of R with respect to
S is the ring RS™!, defined as the set of equivalence classes of pairs (r, s) with
r € R, s € S. The equivalence relation is given by (r1,s1) ~ (72, s2) if there is
an sg € S with s3(r1s2 —r2s1) = 0. The symbol § denotes the equivalence class
of the pair (r,s). Prove that there exists a unique derivation 9 on RS™! such
that the canonical map R — RS™! commutes with 9. Hint: Use that tr = 0
implies t29(r) =

(e) Consider the polynomial ring R[X1,...,X,] and a multiplicative subset

S C R[Xy,...,X,]. Let ai,...,a, € R[X1,...,X,]S™! be given. Prove that
there exists a unique derivation d on R[X1, ..., X,]S~! such that the canonical
map R — R[X1,...,X,]S™! commutes with 9 and 9(X;) = a; for all 4.

(We note that the assumption Q C R is not used in this exercise).

2. Constants

Let R be any differential with derivation 0.

(a) Prove that the set of constants C' of R is a subring containing 1.

(b) Prove that C is a field if R is a field.

Assume that K D R is an extension of differential fields.

(c) Suppose that ¢ € K is algebraic over the constants C' of R. Prove that
d(c) =0.

Hint: Let P(X) be the minimal monic polynomial of ¢ over C'. Differentiate the
expression P(c) = 0 and use that Q C R.

(d) Show that ¢ € K, 0(c) = 0 and c is algebraic over R, implies that ¢ is
algebraic over the field of constants C' of R. Hint: Let P(X) be the minimal
monic polynomial of ¢ over R. Differentiate the expression P(c) = 0 and use
QCR.

3. Derivations on field extensions

Let F be a field (of characteristic 0) and let @ be a derivation on F. Prove the
following statements.

(a) Let F' C F(X) be a transcendental extension of F'. Choose an a € F(X).
There is a unique derivation d of F(X), extending 9, such that 9(X) = a.

(b) Let F' C F be a finite extension, then d has a unique extension to a derivation
of F. Hint: F = F(a), where a satisfies some irreducible polynomial over F.
Use part (1) of these exercises and Q C F.

(c) Prove that 0 has a unique extension to any field F which is algebraic over
F (and in particular to the algebraic closure of F).

(d) Show that (b) and (c) are in general false if F' has characteristic p > 0.
Hint: Let F), be the field with p elements and consider the field extension
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F,(zP) C Fp(z), where z is transcendental over F,,.

(e) Let F be a perfect field of characteristic p > 0 (i.e., F? =: {a?| a € F} is
equal to F'). Show that the only derivation on F' is the zero derivation.

(f) Suppose that F is a field of characteristic p > 0 such that [F' : F?] = p. Give
a construction of all derivations on F. Hint: Compare with the beginning of
section 13.1.

4. Lie algebras of derivations

A Lie algebra over a field C' is a C-vector space V equipped with a map [, ] :
V x V — V which satisfies the rules:

(i) The map (v, w) — [v,w] is linear in each factor.

(i) [[w,v], w] + [[v, w], u] + [[w,u],v] = 0 for all u,v,w € V. (Jacobi identity)
(ili) [u,u] =0 for all u € V.

The anti-symmetry [u,v] = —[v, u] follows from

0=[u+v,u+v] =u,u] + [u,v] + [v,u] + [v,v] = [u,v] + [v, u].

The standard example of a Lie algebra over C is M,,(C), the vector space of all
n X n-matrices over C, with [4, B] := AB — BA. Another example is the Lie
algebra sl,, C M,,(C) consisting of the matrices with trace 0. The brackets of
sl,, are again defined by [A, B] = AB — BA. The notions of “homomorphism of
Lie algebras”, “Lie subalgebra” are obvious. We will say more on Lie algebras
when they occur in connection with the other themes of this text.

(a) Let F' be any field and let C' C F' be a subfield. Let Der(F/C) denote the set
of all derivations O of F such that 9 is the zero map on C. Prove that Der(F/C')
is a vector space over F'. Prove that for any two elements 01,02 € Der(F/C),
the map 0102 — 020; is again in Der(F/C). Conclude that Der(F/C) is a Lie
algebra over C.

(b) Suppose now that the field C' has characteristic 0 and that F/C' is a finitely
generated field extension. One can show that there is an intermediate field M =
C(z1,...,2q) with M/C purely transcendental and F'/M finite. Prove, with the
help of Exercise 1.5.3, that the dimension of the F-vector space Der(F/C) is
equal to d. O

1.2 Linear Differential Equations

Let k be a differential field with field of constants C'. Linear differential equations
over k can be presented in various forms. The somewhat abstract setting is that
of differential module.

Definition 1.6 A differential module (M, d) (or simply M) of dimension n is
a k-vector space as dimension n equipped with an additive map 0 : M — M
which has the property: 9(fm) = f'm+ fom for all f € k and m € M. O

A differential module of dimension one has thus the form M = Ke and
the map 0 is completely determined by the a € k given by de = ae. Indeed,
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d(fe) = (f' + fa)e for all f € k. More generally, let eq,...,e, be a basis of
M over k, then 0 is completely determined by the elements de;, ¢ = 1,...,n.
Define the matrix A = (a; ;) € M, (k) by the condition de; = =3 a;e;.
The minus sign is introduced for historical reasons and is of no importance.
Then for any element m = . | fie; € M the element Om has the form
Sy flei = 221 (30 i fi)ei. The equation dm = 0 has then the transla-
tion (y1,...,y5)T = A(y1,...,yn)T. This brings us to a second possibility to
express linear differential equations. First some notations.

The differentiation on k is extended to vectors in k™ and to matrices in
M,, (k) by component wise differentiation. Thus for y = (y1,...,yn)’ € k™ and
A = (aij) € Mp(k) one writes ¢ = (v},...,9,)" and A" = (aj ;). We note
that there are obvious rules like (AB)' = A'B + AB', (A7) = —A71A’A™!
and (Ay) = A’y + Ay’ where A, B are matrices and y is a vector. A linear
differential equation in matrix form or a matriz differential equation over k of

dimension n reads y' = Ay, where A € M,,(k) and y € k™.

As we have seen, a choice of a basis of the differential module M over k
translates M into a matrix differential equation y’ = Ay. If one chooses another
basis of M over k, then y is replaced by Bf for some B € GL, (k). The matrix
differential equation for this new basis reads f’ = Af, where A = B~1AB —
B~!'B’. Two matrix differential equations given by matrices 4 and A are called
equivalent if there is a B € GL, (k) such that A = B"'AB — B~'B’. Thus
two matrix differential equations are equivalent if they are obtained from the
same differential module. It is further clear that any matrix differential equation
y' = Ay comes from a differential module, namely M = k™ with standard basis
e1,...,en and 0 given by the formula de; = — 3, a; e;. In this chapter we will
mainly work with matrix differential equations.

Lemma 1.7 Consider the matriz equation y' = Ay over k of dimension n. Let
v1,...,0, € k™ be solutions, i.e., v, = Av; for all i. If the vectors vi,..., v, € V
are linearly dependent over k then they are linearly dependent over C'.

Proof. The lemma is proved by induction on r. The case r = 1 is trivial. The
induction step is proved as follows. Let r > 1 and let the vy,..., v, be linearly
dependent over k. We may suppose that any proper subset of {v1,...,v.} is
linearly independent over k. Then there is a unique relation vi = Y.;_, a;v;
with all a; € k. Now

T T T
0=1) — Av; = Za;vi + Zai(vé — Av;) = Za;vi.
i=2 i=2 i=2
Thus all ¢} =0 and so all a; € C. O
Lemma 1.8 Consider the matriz equation y' = Ay over k of dimension n. The

solution space V of y' = Ay in k is defined as {v € k™| v = Av}. ThenV is a
vector space over C of dimension < n.
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Proof. It is clear that V is a vector space over C'. The lemma follows from
Lemma 1.7 since any n + 1 vectors in V are linearly dependent over k. O

Suppose that the solution space V' C k™ of the equation ¢y’ = Ay of dimension
n satisfies dimg V = n. Let vy, ..., v, denote a basis of V. Let B € GL, (k) be
the matrix with columns vq,...,v,. Then B’ = AB. This brings us to the

Definition 1.9 Let R be a differential ring, containing the differential field
k and having C as its set of constants. Let A € M, (k). An invertible matrix
F € GL,(R) is called a fundamental matriz for the equation y’ = Ay if F' = AF
holds. a

_ Suppose that F, F e GL, (R) are both fundamental matrices. Define M by
F =FM. Then

AF = F' = F'M + FM' = AFM + FM’ and thus M’ = 0.

We conclude that M € GL,(C). In other words, the set of all fundamental
matrices (inside GL,,(R)) for y' = Ay is equal to F - GL,,(C).

Here is a third possibility to formulate differential equations.
A (linear) scalar differential equation over the field k is an equation of the form

L(y) = b where b € k and
Ly) == y™ + an_ 19"V + - 4+ a1y + agy with all a; € k.

A solution of such an equation in a differential extension R D k, is an element
f € R such that f + a,_1f™ Y + ... 4+ a1 f +aof = b. The equation
is called homogeneous of order n if b = 0. Otherwise the equation is called
inhomogeneous of order n.

There is a standard way of producing a matrix differential equation y’ =
Apy from a homogeneous scalar linear differential equation L(y) = y™ +
a1y + ..+ a1y + aoy = 0. The companion matriz Ay, of L is the
following

0 1 0 O 0
0 0 1 0 0
Ap =
0 0 0 O 1
—ap —a1 ... .. .. —Ap—-1

One easily verifies that this companion matrix has the following property. For
any extension of differential rings R O k, the map y — Y := (y,¢/, ...,y 7T
is an isomorphism of the solution space {y € R| L(y) = 0} of L onto the solution
space of {Y € R"| Y/ = AY'} of the matrix differential equation Y/ = AY. In
other words, one can view a scalar differential equation as a special case of
a matrix differential equation. Lemma 1.8 translates for homogeneous scalar
equations.
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Lemma 1.10 Consider an n'" order homogeneous scalar equation L(y) = 0
over k. The solution space V' of L(y) = 0 in k is defined as {v € k| L(v) = 0}.
Then V is a vector space over C of dimension < n.

In Section 2.1 it will be shown that, under the assumption that k£ contains a
non constant element, any differential module M of dimension n over k contains
a cyclic vector e. The latter means that e, de, ..., 0" e forms a basis of M over
k. The n + 1 elements e, Je, ..., 0"e are linearly dependent over k. Thus there
is a unique relation 0™e + b,_10" " + -+ + b10e + bpe = 0 with all b; € k.
The transposed of the matrix of 0 on the basis e, Oe, ..., 0" 'e is a companion
matrix. This suffices to prove the assertion that any matrix differential equation
is equivalent to a matrix equation Y/ = A Y for a scalar equation Ly = 0. In
what follows we will use the three ways to formulate linear differential equations.

In analogy to matrix equations we say that a set of n solutions {y1,...,yn}
(say in a differential extension R O k having C as constants) of an order n
equation L(y) = 0, linearly independent over the constants C, is a fundamental
set of solutions of L(y) = 0. This clearly means that the solution space of L
has dimension n over C and that y1,...,y, is a basis of that space.

Lemma 1.7 has also a translation. We introduce the classical Wronskians.

Definition 1.11 Let R be a differential field and let y1,...,y, € R. The

wronskian matriz of y1, ...,y is the n X n matrix
Y1 Y2 o Yn
vi Yoo Y
W(yla---7yn): : : :
-1 -1 -1
The wronskian, wr(yi,...,yn) of y1,...,Yn is det(W(y1,...,yn))- a
Lemma 1.12 Elements yi,...,yn € k are linearly dependent over C if and

only if wr(ya,...,yn) = 0.

Proof. There is a monic scalar differential equation L(y) = 0 of order n over
k such that L(y;) = 0 for ¢ = 1,...,n. One constructs L by induction. Put

Li(y) =y — %y, where the term Z—i is interpreted as 0 if y; = 0. Suppose that
L, (y) has been constructed such that L,,(y;) = 0 for ¢ = 1,..., m. Define now

L (ym+1) Loy (ym+1) o s
Limi1(y) = Lin(y) — #mf:))Lm(y) where the term #ﬁ% is interpreted

as 0 if Ly (ym+1) = 0. Then Lyq1(y;) =0fori=1,...,m+1. Then L = L,
has the required property. The columns of the Wronskian matrix are solutions
of the associated companion matrix differential equation Y’ = A;Y. Apply now
Lemma 1.7. O
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Corollary 1.13 Let k1 C ko be differential fields with fields of constants Cq C
Cs. The elements y1,...,yn € k1 are linearly independent over Cy if and only
if they are linearly independent over Cs.

Proof. The elements y1,...,y, € k1 are linearly dependent over Cs5 if and
only if wr(y1,...,yn) = 0. Another application of Lemma 1.12 implies that the
same equivalence holds over Cj. O

We now come to our first problem. Suppose that the solution space of
y' = Ay over k is too small, i.e., its dimension is strictly less than n or equiva-
lently there is no fundamental matrix in GL, (k). How can we produce enough
solutions in a larger differential ring or differential field? This is the subject
of the Section 1.3, Picard-Vessiot extensions. A second, related problem, is to
make the solutions as explicit as possible.

The situation is somewhat analogous to the case of an ordinary polynomial
equation P(X) = 0 over a field K. Suppose that P is a separable polynomial of
degree n. Then one can construct a splitting field L O K which contains pre-
cisely n solutions {a1, ..., a,}. Explicit information on the «; can be obtained
from the action of the Galois group on {aq,...,apn}.

Exercises 1.14 1. Homogeneous versus inhomogeneous equations
Let k be a differential field and L(y) = b, with b # 0, an n** order inhomogeneous
linear differential equation over k. Let

(a) Show that any solution in k of L(y) = b is a solution of Lj(y) = 0.

(b) Show that for any solution v of Lj(y) = 0 there is a constant ¢ such that v
is a solution of L(y) = cb.

This construction allows one to reduce questions concerning n* order inhomo-
geneous equations to n + 1% order homogeneous equations.

2. Some order one equations over C((z))

Let C be an algebraically closed field of characteristic 0. The differential field
K = C((2)) is defined by ' = L. Let a € K, a # 0.

(a) When does y' = a have a solution in K7

(b) When does 3’ = a have a solution in K, the algebraic closure of K? We
note that every finite algebraic extension of K has the form C((z/™)).

(c) When does y' = ay have a non-zero solution in K?

(d) When does y’ = ay have a non-zero solution in K?

3. Some order one equations over C(z)
C' denotes an algebraically closed field of characteristic 0. Let K = C(z) be the
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differential field with derivation ’ = diz. Let a € K and let

be the partial fraction decomposition of a with ¢;; € C, N a nonnegative integer,
the n; positive integers and p a polynomial. Prove the following statements.
(a) ¥’ = a has a solution in K if and only if each ¢;; is zero.

(b) ¥’ = ay has a solution y € K,y # 0 if and only if each ¢;; is an integer, each
cij =0for 5 > 1 and p=0.

(¢) ¥’ = ay has a solution y # 0 which is algebraic over K if and only if each
c¢i1 is a rational number, each ¢;; =0 for j > 1 and p = 0.

The above can be restated in terms of differential forms:

(a’) ¥y’ = a has a solution in K if and only if the residue of adz at every point
z = ¢ with ¢ € C is zero.

(b’) ¥’ = ay has a solution in K* if and only adz has at most poles of order 1
on C'U{oo} and its residues are integers.

(¢’) ¥ = ay has a solution y # 0 which is algebraic over K if and only if adz
has at most poles of order 1 at C'U {oo} and its residues are rational numbers.

4. Regular matriz equations over C((z))

C[#]] will denote the ring of all formal power series with coefficients in the field
C. We note that C'((z)) is the field of fractions of C[[z]] (c.f., Exercise 1.3.2).
(a) Prove that a matrix differential equation ' = Ay with A € M, (C[[z]]) has
a unique fundamental matrix B of the form 143 ., B,2" with 1 denotes the
identity matrix and with all B,, € M, (C).

(b) A matrix equation Y’ = AY over C((z)) is called regular if the equation is
equivalent to an equation v’ = Av with A € M, (C[[z]]). Prove that an equation
Y’ = AY is regular if and only if there is a fundamental matrix with coefficients

in C((2)).

5. Wronskians

Let k be a differential field, Y’ = AY a matrix differential equation over k£ and
L(y) = y™ + ap_1y™ Y 4+ - 4+ agy = 0 a homogeneous scalar differential
equation over k.

(a) If Z is a fundamental matrix for y' = Ay, show that (det Z)' = trA - (det Z),
where tr denotes the trace. Hint: Let zq,...,z, denote the columns of Z.
Then z, = Az. Observe that det(z1,...,2,) = Y1 det(z1,...,2},...,2).
Consider the trace of A w.r.t. the basis z1,..., z,.

(b) Let {y1,...,yn} C k be a fundamental set of solutions of L(y) = 0. Show
that w = wr(yy,...,yn) satisfies w' = —ap—qw. Hint: Use the companion
matrix of L.

6. A Result of Ritt
Let k be a differential field with field of constants C' and assume k # C. Let P
be a nonzero element of k{{y1,...,yn}}. For any elements uy,...,u, € k, there
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is a unique k-linear homomorphism ¢ : k{{y1,...,yn}} — k of differential rings
such that ¢(y;) = u, for all i. We will write P(uy,...,u,) for ¢(P). The aim
of this exercise is to show that there exist uq,...,u, € k such that ¢(P) # 0.
(a) Show that it suffices to prove this result for n = 1.

(b) Let v € k, v' # 0. Show that wr(1,v,v%,...,0v™) # 0 for m > 1.

(c) Let v € k, v' # 0 and let A = W(1,v,v%,...,v™), where W(...) is the
wronskian matrix. Let zq, ...z, be indeterminates. Define the k-algebra ho-
momorphism ® : kfy,y™M, ..., y"™] — k[z,...,2m] by formulas for ®(y?),
symbolically given by ®((y, v, ...,y")7T) = A(z0, 21,...,2m)". Prove that ®
is an isomorphism. Conclude that if P € k{{y}} has order m, then there exist
constants cg, . .. ¢y, € C such that ®(P)(co,...,cm) # 0.

(d) Take u = co+c1v+cav?+- - -+, v™ and show that P(u) = ®(P)(co, ..., cm)-
(e) Show that the condition that k contain a non-constant is necessary.

This result appears in [246], p. 35 and in [161], Theorem 2, p. 96.

7. Equations over algebraic extensions

Let k be a differential field, K an algebraic extension of k& with [K : k] = m
and let uq,...,u,, be a k-basis of K. Let Y/ = AY be a differential equation
of order n over K. Show that there exists a differential equation Z’ = BZ of
order nm over k such that if Z = (21,1, ., 21.m, 22,1, -+ » 22.ms - - -, Zn.m) 18 &
solution of Z/ = BZ, then for y; = Zj zijuj, Y = (y1,...,yn)7 is a solution of
Y’ = AY.

Let (M, ) be the differential module of dimension n over K for which Y’ =
AY is an associated matrix differential equation. One can view (M,0) as a
differential module over k of dimension nm. Find the basis of M over k such
that the associated matrix equation is Z' = BZ. O

1.3 Picard-Vessiot Extensions

Throughout the rest of Chapter 1, k will denote a differential field with Q C k
and with an algebraically closed field of constants C. We shall freely use the
notation and results concerning varieties and linear algebraic groups contained
in Appendix A.

Let R be a differential ring with derivation’. A differential ideal I in R is an
ideal satisfying f’ € I for all f € I. If R is a differential ring over a differential
field k£ and I is a differential ideal of R, I # R, then the factor ring R/I is
again a differential ring over k (see Exercise 1.2.1). A simple differential ring is
a differential ring whose only differential ideals are (0) and R.

Definition 1.15 A Picard-Vessiot ring over k for the equation 3’ = Ay, with
A € M, (k), is a differential ring R over k satisfying:

1. R is a simple differential ring.
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2. There exists a fundamental matrix F' for 3y’ = Ay with coefficients in R,
i.e., the matrix F' € GL,,(R) satisfies ' = AF.

3. R is generated as a ring by k, the entries of a fundamental matrix F' and
the inverse of the determinant of F'.

A Picard-Vessiot ring for a differential module M over k is defined as a Picard-
Vessiot ring of a matrix differential equation ¢y’ = Ay associated to M. ]

Exercises 1.16 Picard- Vessiot rings for differential modules.

(1) Let ¢ = Ay and f’ = Af be two matrix differential equations associated
to the same differential module M. Prove that a differential ring R over k is
a Picard-Vessiot ring for 3’ = Ay if and only if R is a Picard-Vessiot ring for
fr=Af.

Note that this justifies the last part of the definition.

(2) Let M be a differential module over k of dimension n. Show that the
following alternative definition of Picard-Vessiot ring R is equivalent with the
one of 1.15. The alternative definition:

(i) R is a simple differential ring.

(ii) V :=ker(9, R ®x M) has dimension n over C.

(iii) Let ey, ..., e, denote any basis of M over k, then R is generated over k by
the coefficients of all v € V' w.r.t. the free basis eq,...,e, of R®; M over R.

(3) The C-vector space V in part (2) is referred to as the solution space of the
differential module. For two Picard-Vessiot rings R, Re there are two solution
spaces V1, V5. Show that any isomorphism ¢ : Ry — R» of differential rings over
k induces a C-linear isomorphism 1 : V; — V5. Is 9 independent of the choice
of ¢7 m]

Lemma 1.17 Let R be a simple differential ring over k.

1. R has no zero divisors.

2. Suppose that R is finitely generated over k, then the field of fractions of
R has C as set of constants.

Proof. 1. We will first show that any non-nilpotent element a € R,a #
0 is a non-zero divisor. Consider the ideal I = {b € R | there exists an >
1 with a™b = 0}. This is a differential ideal not containing 1. Thus I = (0) and
a is not a zero divisor.

Let a € R,a # 0 be nilpotent. We will show that o’ is also nilpotent. Let
n > 1 be minimal with ™ = 0. Differentiation yields a’'na® ! = 0. Since
na™ ' # 0 we have that a’ is a zero divisor and thus a’ is nilpotent.
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Finally the ideal J consisting of all nilpotent elements is a differential ideal
and thus equal to (0).

2. Let L be the field of fractions of R. Suppose that a € L,a # 0 has
derivative ' = 0. We have to prove that a € C. The non-zero ideal {b € R|ba €
R} is a differential ideal and thus equal to R. Hence a € R. We suppose that
a ¢ C. We then have that for every ¢ € C, the non-zero ideal (a — ¢)R is a
differential ideal. This implies that a — ¢ is an invertible element of R for every
¢ € C. Let X denote the affine variety (max(R), R) over k. Then a € R is
a regular function X (k) — AL(k) = k. By Chevalley’s theorem, the image of
a is a constructible set, i.e., a finite union of intersections of open and closed
subsets. (See also the discussion following Exercises A.9). In this special case,
this means that the image of a is either finite or co-finite. Since a— c is invertible
for ¢ € C, the image of a has an empty intersection with C. Therefore the image
is finite and there is a polynomial P = X% + aq 1 X% 1 + ... +ag € k[X] of
minimal degree such that P(a) = 0. Differentiation of the equality P(a) = 0
yields a/,_;a%"! + .-+ +a} = 0. By the minimality of P, one has a; € C for
all 4. Since C' is algebraically closed one finds a contradiction. (Compare also
Exercise 1.5).

An alternative proof uses that R is an integral domain (part 1.of this lemma)
and Lemma A.4 which implies that a is algebraic over k. a

Example 1.18 ¢y’ = a with a € k.

One can verify that a Picard-Vessiot ring for the matrix equation (Z;)/ =

(8 0 (z;) is generated by a solution of ¢y = a. We shall refer to this Picard-
Vessiot ring as the Picard-Vessiot ring of the equation 4’ = a. If k contains a
solution b of the scalar equation then ((1) ?) is a fundamental matrix and R = k
is a Picard-Vessiot ring for the equation.

We suppose now that the scalar equation has no solution in k. Define the
differential ring R = k[Y] with the derivation ’ extending ' on k and Y’ = a (see
Exercise 1.5(1)). Then R contains an obvious solution of the scalar equation
and (%)11/) is a fundamental matrix for the matrix equation.

The minimality of the ring R = k[Y] is obvious. We want to show that R
has only trivial differential ideals. Let I be a proper ideal of k[Y]. Then I is
generated by some FF =YY" 4+ ...+ f1Y + fy with n > 0. The derivative of F
is F/ = (na+ f,_,)Y" ' +.... If I is a differential ideal then F’ € I and thus

/
F' = 0. In particular, na + f/_; = 0 and % = a. This contradicts our
assumption. We conclude that R = k[Y] is a Picard-Vessiot ring for ¢y’ = a. O

Example 1.19 ¢’ = ay with a € k*.

Define the differential ring R = k[T, T~!] with the derivation ’ extending ’ on k
and 7" = aT. Then R contains a non-zero solution of ' = ay. The minimality
of R is clear and the ring R would be the answer to our problem if R has only
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trivial differential ideals. For the investigation of this we have to consider two
cases:

(a) Suppose that k contains no solution (# 0) of y' = nay for all n €
Z, n # 0. Let I # 0 be a differential ideal. Then I is generated by some
F=T"+aqa, 1T ' 4+ - +ap, with m > 0 and ay # 0. The derivative
F' =maT™ + ((m — 1)aa,—1 +al,_1)T™ 1+ +af of F belongs to I. This
implies F/ = maF. For m > 0 one obtains the contradiction a, = maag. Thus
m =0 and I = R. We conclude that R = k[T, T '] is a Picard-Vessiot ring for
the equation 3’ = ay.

(b) Suppose that n > 0 is minimal with y" = nay has a solution yy € k*.
Then R = k[T, T~!] has a non-trivial differential ideal (F) with F' = T™ — y,.
Indeed, F' = naT™ — nayo = naF. The differential ring k[T, T~]/(T™ — yo)
over k will be written as k[t,t~!], where ¢ is the image of T. One has t" = yg
and ¢ = at. Every element of k[t,t~!] can uniquely be written as 31" a;t’.
We claim that k[t,¢t71] is a Picard-Vessiot ring for ¢/ = ay. The minimality of
k[t,t~1] is obvious. We have to prove that k[t,#~!] has only trivial differential
ideals.

Let I C k[t,t71], I # 0 be a differential ideal. Let 0 < d < n be minimal
such that I contains a nonzero F' of the form E?:o a;t*. Suppose that d > 0.
We may assume that ag = 1. The minimality of d implies ay # 0. Consider
F' =dat?+ ((d—1)aag—1 +al;_)t?" 1 +---+af. The element F’ —daF belongs
to I and is 0, since d is minimal. Then a(, = daag contradicts our assumption.
Thus d = 0 and I = k[t,t71]. O

Proposition 1.20 Let y = Ay be a matriz differential equation over k.

1. There exists a Picard-Vessiot ring for the equation.
2. Any two Picard-Vessiot rings for the equation are isomorphic.

3. The constants of the quotient field of a Picard-Vessiot ring is again C'.

Proof. 1. Let (X, ;) denote an n x n-matrix of indeterminates and let “det”
denote the determinant of (X; ;). For any ring or field F one writes F[X; ;, ]
for the polynomial ring in these n? indeterminates, localized w.r.t. the ele-
ment “det”. Consider the differential ring Ry = k[X; ;, ] with the derivation,
extending the one of k, given by (X ;) = A(X; ;). Exercise 1.5.1 shows the
existence and unicity of such a derivation. Let I C Ry be a maximal differential
ideal. Then R = Ry/I is easily seen to be a Picard-Vessiot ring for the equation.

2. Let R1, Ro denote two Picard-Vessiot rings for the equation. Let Bi, Bo
denote the two fundamental matrices. Consider the differential ring R; ®j Rs
with derivation given by (r1 ® r2)’ = r} ® 12 + 11 ® 5 (see Section A.1.2 for
basic facts concerning tensor products). Choose a maximal differential ideal
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I C Ry ®k Ry and define Rs := (R; ®j R2)/I. There are obvious morphisms
of differential rings ¢; : R; — Rs, i = 1,2. Since R; is simple, the morphism
¢; : R; — ¢;(R;) is an isomorphism. The image of ¢; is generated over k by
the coefficients of ¢;(B;) and ¢;(det B;l). The matrices ¢1(B1) and ¢2(Bs) are
fundamental matrices over the ring R3. Since the set of constants of R3 is C
one has ¢1(B1) = ¢2(B2)M, where M is an invertible matrix with coefficients
in C. This implies that ¢1(R1) = ¢2(R2) and so R; and Rs are isomorphic.

3. follows from Lemma 1.17. O

We note that the maximal differential ideal I of Ry in the above proof is in
general not a maximal ideal of Ry (see Examples 1.18 and 1.19).

Definition 1.21 A Picard-Vessiot field for the equation y' = Ay over k (or for
a differential module M over k) is the field of fractions of a Picard-Vessiot ring
for this equation. O

In the literature there is a slightly different definition of the Picard-Vessiot
field of a linear differential equation. The equivalence of the two definitions is
stated in the next proposition.

Proposition 1.22 Let ' = Ay be a matriz differential equation over k and let
L D k be an extension of differential fields. The field L is a Picard-Vessiot field
for this equation if and only if the following conditions are satisfied.

1. The field of constants of L is C,
2. There exists a fundamental matrix F € GL,,(L) for the equation, and

3. L is generated over k by the entries of F.

The proof requires a lemma in which one considers an n X n matrix of inde-
terminates (Y; ;) and its determinant, denoted simply by “det”. For any field F’
one denotes by FY; ;, ﬁ] the polynomial ring over F' in these indeterminates,
localized w.r.t. the element “det”.

Lemma 1.23 Let M be any differential field with field of constants C. The
derivation ' on M is extended to a derivation on MIY; ;, ﬁ] by setting Y;’] =0
for all i,j. One considers CY; ;, ﬁ] as a subring of MY, ;, ﬁ] The map
I — (I) from the set of ideals of C[Y;, 1] to the set of the differential ideals
of MY j, 2] is a bijection. The inverse map is given by J — JNC[Y; ;, &].
Proof. Choose a basis {ms}scg, with my, = 1, of M over C. Then {ms}secs is
also a free basis of the C[Y; ;, 4=]-module M[Y; j, 7]. The differential ideal (I)
consists of the finite sums Y- asm, with all a; € I. Hence (I)NC[Y; ;, =] = 1.
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We finish the proof by showing that any differential ideal J C MY ;, ﬁ] is
generated by I := JNC[Y; ;, 2| Let {eg}gen be a basis of C[Y; j, 7] over C.
Any element f € J can be uniquely written as a finite sum 5 mgeg with the
mg € M. By the length I(f) we will mean the number of 5’s with mg # 0. By
induction on the length, I(f), of f we will show that f € (I). When I(f) = 0,1,
the result is clear. Assume [(f) > 1. We may suppose that mg, = 1 for some
B1 € B and mg, € M\C for some 5 € B. One then has that f' = 3" ;mjes

has a length smaller than [(f) and so belongs to (I). Similarly (mg;f)’ e (I).
Therefore (mgzl)’f = (mgz1 ) — m,gzlf’ € (I). Since C is the field of constants
of M, one has (mgzl)’ # 0 and so f € (I). O

Proof of 1.22. According to Proposition 1.20, the conditions (1)—(3) are nec-
essary.

Suppose L satisfies these three conditions. As in 1.20, we consider the differ-
ential ring Ry = k[X; ;, 7] with (Xi;) = A(Xi; ). Consider the differential
rings Ry C L ®; Ry = L[X, ;, ﬁ] Define a set of n? new variables Y; ; by
(X;;) = F-(Yi;). Then L@ Ro = L[Yi j, ) and Y/; = 0 for all 4, j. We can
identify L ®i Ry with L ®c R1 where Ry := C[Y} ;, ﬁ] Let P be a maximal
differential ideal of Ry. The ideal P generates an ideal in L ®; Ry which is
denoted by (P). Since L ® Ry/(P) 2 L® (Ry/P) # 0, the ideal (P) is a proper
differential ideal. Define the ideal P C R; by P = (P) N R;. By Lemma 1.23
the ideal (P) is generated by P. If M is a maximal ideal of R; containing P
then Ry/M = C. The corresponding homomorphism of C-algebras Ry — C
extends to a differential homomorphism of L-algebras L ® ¢ Ry — L. Its kernel
contains (P) C L ®; Rp = L ®c Ry. Thus we have found a k-linear differential
homomorphism ¢ : Ry — L with P C ker()). The kernel of v is a differential
ideal and so P = ker(%). The subring ¢(Ry) C L is isomorphic to Ry/P and is
therefore a Picard-Vessiot ring. The matrix (¢(X;;)) is a fundamental matrix
in GL,, (L) and must have the form F'- (¢; ;) with (¢; ;) € GL,(C), because the
field of constants of L is C'. Since L is generated over k by the coefficients of F'
one has that L is the field of fractions of ¢ (Ryp). Therefore L is a Picard-Vessiot
field for the equation. O

Exercises 1.24 1. Finite Galois extensions are Picard-Vessiot extensions

Let k be a differential field with derivation ’ and with algebraically closed field
of constants C. Let K be a finite Galois extension of k£ with Galois group G.
Exercise 1.5(3) implies that there is a unique extension of ’ to K. The aim of
this exercise is to show that K is a Picard-Vessiot extension of k.

(a) Show that for any 0 € G and v € K, 0(v') = o(v)’. Hint: Consider the
map v — o (a(v)").

(b) We may write K = k(w1, .. . wy,) where G permutes the w;. This implies
that the C-span V of the w; is invariant under the action of G. Let vy,..., v,
be a C-basis of V.
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(i) Let W = W (vy,...,vy) (c.f., Definition 1.11) be the wronskian matrix of
U1,...,Un. Show that there exists for each o € G, a matrix A, € GL,,(C) such
that o(W) = WA,.

(i) Show that wr(vi,...,v,) # 0 and so W is invertible.

(iii) Show that the entries of the matrix B = W/W ™! are left fixed by the
elements of G and that W is a fundamental matrix for the matrix differential
equation y’ = By, B € M, (k). Conclude that K is the Picard-Vessiot ring for
this equation.

It may seem that the above construction of the matrix differential equation
over k having K as Picard-Vessiot ring is somewhat arbitrary. However the
terminology of differential modules clarifies the matter. Define the differential
module (M,9) by M = K and 0 is the unique differentiation on K, extending
the one of k. The statement reads now:

K is the Picard-Vessiot extension of the differential module (M, d).

Try to prove in this terminology, using Chapter 2, that K is the Picard-Vessiot
ring of M. Hints:

(i) Use Exercises 1.16.

(ii) Show that ker(0, K ®; M) has dimension n over C' by observing that 0 is a
differentiation of the ring K ®j K and by (iii).

(iii) Use that K ®j, K is a direct product of fields Ke; @ Kea @ - - -® Ke,,. Prove
that e% = e; implies de; = 0.

(iv) Show that for a proper subfield L C K, containing k the space ker(9, L& K)
has C-dimension < n.

2. Picard-Vessiot extensions for scalar differential equations

Let L(y) = 0 be a homogeneous scalar differential equation over k. We define
the Picard-Vessiot extension ring or field for this equation to be the Picard-
Vessiot extension ring or field associated to the matrix equation Y/ = ALY,
where Ay, is the companion matrix.

(a) Show that a Picard-Vessiot ring for this equation is a simple differential ring
over k containing a fundamental set of solutions of L(y) = 0 such that no proper
differential subring contains a fundamental set of solutions of L(y) = 0.

(b) Using the comment following Definition 1.21, show that a Picard-Vessiot
field for this equation is a differential field over k£ containing a fundamental set
of solutions of L(y) = 0, whose field of constants is the same as that of k such
that no proper subfield contains a fundamental set of solutions of L(y) = 0. O

1.4 The Differential Galois Group

In this section we introduce the (differential) Galois group of a linear differential
equation in matrix form, or in module form, and develop theory to prove some
of its main features.
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Definition 1.25 The differential Galois group of an equation y’ = Ay over k, or
of a differential module over k, is defined as the group Gal(R/k) of differential
k-algebra automorphisms of a Picard-Vessiot ring R for the equation. More
precisely, Gal(R/k) consists of the k-algebra automorphisms o of R satisfying
o(f")y=o(f) for all f € R. a

As we have seen in Exercises 1.24, a finite Galois extension R/k is the Picard-
Vessiot ring of a certain matrix differential equation over k. This exercise also
states that the ordinary Galois group of R/k coincides with the differential
Galois group. Therefore our notation for the differential Galois does not lead
to confusion.

Observations 1.26 The differential Galois group as group of matrices.

Let M be a differential module over k and let ' = Ay be an associated matrix
differential equation obtained by choosing a basis of M over k. Let R/k denote
the Picard-Vessiot extension.

(1) The differential Galois group G = Gal(R/k) can be made more explicit as
follows. As in Exercises 1.16 one considers the solution space V := ker(9, R ®j
M). The k-linear action of G on R extends to a k-linear action on R®j, M. This
action commutes with 9 on R ®;, M. Thus there is an induced C-linear action
of G on the solution space V. This action is injective. Indeed, fix a basis of V'
over C' and a basis of M over k and let F' denote the matrix which expresses
the first basis into the second basis. Then R is generated over k by the entries
of F' and the inverse of the determinant of F'. In other words, there is a natural
injective group homomorphism G — GL(V).

(2) The above can be translated in terms of the matrix differential equation

" = Ay. Namely, let F' € GL,(R) be a fundamental matrix. Then, for any
o € G, also o(F) is a fundamental matrix and hence o(F) = FC(o) with
C(o) € GL,(C). The map G — GL,(C), given by o — C(0), is an injective
group homomorphism (because R is generated over k by the entries of F' and
—=—). This is just a translation of (1) above since the columns of F form a
basis of the solution space V.

(3) Let L denote the field of fractions of R. Then one can also consider the
group Gal(L/k) consisting of the k-linear automorphisms of L, commuting with
the differentiation on L. Any element in Gal(R/k) extends in a unique way to
an automorphism of L of the required type. Thus there is an injective homo-
morphism Gal(R/k) — Gal(L/k). This homomorphism is bijective. Indeed, an
element o € Gal(L/k) acts upon L®y M and ker(0, L&, M). The latter is equal
to V. With the notations of (1) or (2), R is generated by the entries of a matrix
F and the inverse of its determinant. Further o(F') = FC(0) for some constant
matrix C(o). Therefore o(R) = R. Hence o is the image of the restriction of o
to R. a
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What makes differential Galois groups a powerful tool is that they are linear
algebraic groups and moreover establish a Galois correspondence, analogous to
the classical Galois correspondence. Torsors will explain the connection between
the Picard-Vessiot ring and the differential Galois group. The Tannakian ap-
proach to linear differential equations provides new insight and useful methods.
Some of this is rather technical in nature. We will try to explain theorems and
proofs on various levels of abstraction.

Theorem 1.27 Lety' = Ay be a differential equation of degree n over k, having
Picard-Vessiot field L D k and differential Galois group G = Gal(L/k). Then
(1) G considered as a subgroup of GL,,(C) is an algebraic group.

(2) The Lie algebra of G coincides with the Lie algebra of the derivations of L]k
that commute with the derivation on L.

(3) The field LE of G-invariant elements of L is equal to k.

Proof. An intuitive proof of (1) and (2).

L is the field of fractions of R := k[X; j, 7]/¢, where ¢ is a maximal dif-
ferential ideal. Using 1.26 one can identify G with the group of matrices
M € GL,(C) such that the automorphism op of Ry = k[Xi;, 7], given
by (¢X;,;) = (Xi,;)M, has the property oar(g) C g. One has to verify that the
property o (q) C ¢ defines a Zariski closed subset of GL,,(C). This can be seen
as follows. Let q1, ..., ¢, denote generators of the ideal ¢ and let {e;};cr be a C-
basis of R. Then o(g;)mod ¢ can be expressed as a finite sum ) |, C(M, j,i)e;
with coefficients C(M,i,j) € C depending on M. It is not difficult to verify
that C'(M,1i,j) is in fact a polynomial expression in the entries of M and —

det M *
Thus G is the Zariski closed subset of GL,(C) given by the set of equations

{C(M7 i, ]) = O}id'

According to A.2.2, the Lie algebra of G can be described as the set of matri-
ces M € M,,(C) such that 1+eM lies in G(C[e]). This property of M translates
into, the k-linear derivation Das : Ry — Ro, given by (Dn X, ;) = (Xi;)M,
has the property Djs(q) C ¢q. Clearly Dy; commutes with the differentiation
of Ry. Thus the property Dys(q) C ¢ is equivalent to Djs induces a k-linear
derivation on R commuting with /. The latter extends uniquely to a k-linear
derivation of L commuting with . One can also start with a k-linear derivation
of L commuting with ’ and deduce a matrix M € M, (C) as above.

Formalization of the proof of (1) and (2).

Instead of working with G as a group of matrices, one introduces a functor G
from the category of C-algebras to the category of groups. Further G(C) = G.
It will be shown that this functor is representable by a certain finitely generated
C-algebra U. Tt follows that Max(U) (or Spec(U)) is a linear algebraic group
and G is identified with the set of C-valued points of this linear algebraic group.
We refer to the appendices for the terminology used here.

For any C-algebra B (always commutative and with a unit element) one
defines differential rings k®c B, R®¢ B with derivations given by (f®b)’ = f'®b
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for f € k or R. The ring of constants of the two differential rings is B. The group
G(B) is defined to be the group of the k ® B-linear automorpisms of R ®¢ B
commuting with the derivation. It is evident that G is a functor. As above for
the case B = C, one can describe the elements of G(B) as the group of matrices
M € GL,(B) such that the differential automorphism o of k[X; ;, 1] ® B,
given by the formula (o X; ;) = (X ;)M, has the property oar(q) C (¢). Here
(g) is the ideal of k[Xj ;, ﬁ] ® B generated by q.

In order to show that G is representable we make for B the choice C[Y; s, 7]
(with the usual sloppy notation) and we consider the matrix My = (Y,,) and
write
ou,(qj)mod () € R®¢ C[Ysy, 7] as a finite sum

1
> C(My, i, j)e; with all C(Mo,i, ) € C[Yy4, —.

Let I C C[Yy, 7] denote the ideal generated by all C(Mo, i, ). Now we claim

that U := C[Y;, 7]/1 represents G.

Let B be any C-algebra and o € G(B) identified with ops for some M €
GL,(B). One defines the C-algebra homomorphism ¢ : C[Ys, ﬁ] — B by
(¢Ys:) = M. The condition on M implies that the kernel of ¢ contains I. Thus
we find a unique C-algebra homomorphism 1 : U — B with ¢(Mymod I) = M.
This proves the claim. According to Appendix B the fact that G is a functor
with values in the category of groups implies that Spec(U) is a linear algebraic
group. A result of Cartier ([301], Ch. 11.4) states that linear algebraic groups
over a field of characteristic 0 are reduced. Hence I is a radical ideal.

Finally, the Lie algebra of the linear algebraic group is equal to the kernel of
G(Cle]) — G(C) (where €2 = 0 and C[e] — C is given by € — 0). The elements
in this kernel are identified with the differential automorphisms of R ®¢ C|e]
over k ®c Cle] having the form 1+ eD. The set of D’s described here is easily
identified with the k-linear derivations of R commuting with the differentiation
on R.

(3) Let a = % € L\k with b,c€ Randlet d =b®c—c®b € R®; R. From
Exercise A.15, one has that d # 0. Lemma A.16 implies that the ring R®y R has
no nilpotent elements since the characteristic of k is zero. Let J be a maximal
differential ideal in the differential ring (R ®) R)[3], where the derivation is
given by (r1 ® r2)’ = r] ® ra + r1 @ 5. Consider the two obvious morphisms
¢; : R — N = (R ®j, R)[1]/J. The images of the ¢; are generated (over k)
by fundamental matrices of the same matrix differential equation. Therefore
both images are equal to a certain subring S C N and the maps ¢; : R — S
are isomorphisms. This induces an element o € G with ¢; = ¢20. The image
of d in N is equal to ¢1(b)pa(c) — ¢p1(c)p2(b). Since the image of d in N is
nonzero, one finds ¢1(b)da2(c) # ¢d1(c)d2(b). Therefore ¢o((ob)c) # ¢2((oc)b)
and so (ob)c # (oc)b. This implies (%) # &. O

C C
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Now we give a geometric formulation of the Picard-Vessiot ring and the

action of the differential Galois group. The notations of the proof of the The-
orem 1.27 will be used. The Picard-Vessiot ring R is written as k[X; ;, 1]/
Define Z = max(R). We have shown that Z is a reduced, irreducible subspace
of GL,,  := max(k[X; ;, ﬁ]) The differential Galois group G C GL,(C') has
been identified with the group consisting of the elements ¢ € GL,(C) such
that Zg = Z (or equivalently ¢ leaves the ideal ¢ invariant). The multipli-
cation on GL,, ; induces a morphism of k-affine varieties, m : Z x¢ G — Z,
given by (z,g9) — zg. The morphism m is a group action in the sense that
(z91)92 = 2(g1g2) for z € Z and ¢g1,92 € G.
The next technical step is to prove that the morphism Z x¢ G — Z Xy Z,
given by (z,9) — (zg, z), is an isomorphism of affine varieties over k. This is
precisely the definition of “Z is a G-torsor over k”(c.f. Appendix A.2.6). Put
G = G®c k. This abuse of notation means that Gy, is the algebraic group over
k, whose coordinate ring is C[G] ®¢ k. Then one has Z x¢ G = Z X, Gy, Since
both Z and G}, are contained in GL, ; and the Gx-action on Z is multiplication
on the right, the statement that Z is a G-torsor roughly means that Z C GL, j
is a right coset for the subgroup GYy.

If Z happens to have a k-rational point p, i.e., Z(k) # 0, then Z is a G-torsor,
if and only if Z = pGg. In this case Z is called a trivial torsor. In the general
situation with Z C GL, ; and G C GL,, ¢, the statement that Z is a G-torsor
means that for some field extension F' D k, one has that Zp := Z ®y, F is a right
coset of Gp := G ®c F in GL,, r. See the appendices for more information.

Theorem 1.28 Let R be a Picard-Vessiot ring with differential Galois group
G. Then Z = max(R) is a G-torsor over k.

Proof. We keep the above notation. We will show that Zp, is a right coset for
G, where L is the Picard-Vessiot field, equal to the field of fractions of R. This
will prove the theorem. Consider the following rings

1
] D C[Ys,h

1
C LIX Yo, —
["t det

k[X (X g, @]

1 1

“ det] det]7

where the relation between the variables X;; and Y, is given by the for-
mula (X; ;) = (rap)(Ys:). The elements r,p, € L are the images of X, in
k[Xij, £]/q C L. The three rings have a differentiation and a Gal(L/k)-action.
The differentiation is given by the known differentiation on L and by the formula
(X7 ;) = A(X,,;). Since (rqp) is a fundamental matrix for the equation one has
Y/, = 0for all s, ¢ and the differentiation on C[Ys ¢, 7| is trivial. The Gal(L/k)-
action is induced by the Gal(L/k)-action on L. Thus Gal(L/k) acts trivially
on k[X; ;, 7). For any o € Gal(L/k) one has (or4) = (rap)M for a certain
M € G(C). Then (0Ys,) = M~ *(Ys,). In other words, the Gal(L/k)-action on
ClYs s, ﬁ] is translated into an action of the algebraic subgroup G C GL,, ¢
defined by the ideal I, constructed in the proof of Theorem 1.27. Let us admit

for the moment the following lemma.
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Lemma 1.29 The map I — (I) from the set of ideals of k[X, ;, ﬁ] to the set
of Gal(L/k)-invariant ideals of L[X; j, 3] is a bijection. The inverse map is
gwen by J — JNE[X; ;, ﬁ]

Combining this with the similar Lemma 1.23, one finds a bijection between the
differential ideals of k[X; ;, ] and the Gal(L/k)-invariant ideals of C[Y ¢, 4=].
A maximal differential ideal of the first ring corresponds to a maximal Gal(L/k)-
invariant ideal of the second ring. Thus r := ¢L[X;;, 7] N C[Ysy, ] is a
maximal Gal(L/k)-invariant ideal of the second ring. By this maximality r
is a radical ideal and its zero set W C GL,(C) is minimal w.r.t. Gal(L/k)-
invariance. Thus W is a left coset in GL,(C) for the group G(C), seen as
subgroup of GL,,(C). The matrix 1 belongs to W. Indeed, ¢ is contained in the
ideal of L[X; ;, 1] generated by {X;; — 75 ;}i;. This ideal is also generated
by {Ys,+ — ds.¢}s,- The intersection of this ideal with C[Ys,, ﬁ] is the ideal

defining {1} € GL,, ¢. Thus W = G.

One concludes that

1
L& R= L& (Xij, =1/a) = L8 (Clau, 7-)/1) = LOCU.

1
77 det
This isomorphism translates into Zr, = (74,5)Gr. A proof of Lemma 1.29 finishes
the proof of the theorem. o

Proof of lemma 1.29.

The proof is rather similar to the one of lemma 1.23. The only thing that we
have to verify is that every Gal(L/k)-invariant ideal J of L[X; j, -] is generated
by I := JNk[X; j, 7=]. Choose a basis {€q}aca of k[Xi;, 1] over k. Any f € J
can uniquely be written as a finite sum ) f,e, with all £, € L. The length
I(f) of f is defined as the number of a € A with ¢, # 0. By induction on the
length we will show that f € (I).

For I(f) = 0 or 1, this is trivial. Suppose I(f) > 1. We may, after multi-
plication by a non-zero element of L suppose that ¢,, = 1 for some a;. If all
L, € k, then f € (I). If not, then there exists an ag with £,, € L\ k. For any
o € Gal(L/k), the length of o(f) — f is less than I(f). Thus o(f) — f € (I).

According to Theorem 1.27, there exists a o with o({,,) # {4,. As above,
one finds that o(¢,! f) — £, f € (I). Then

o(la, f) = f = ot ) o (f) = ) + (o (0z)) = €2) -

From o(¢,}) — ¢, } € L*, it follows that f € (I). ]

Corollary 1.30 Let R be a Picard-Vessiot ring for the equation y' = Ay over
k. Let L be the field of fractions of R. Put Z = Spec(R). Let G denote the
differential Galois group and C[G] the coordinate ring of G and let g denote the
Lie algebra of G. Then:

(1) There is a finite extension k O k such that Z; = Gj.
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(2) Z is smooth and connected.

(3) The transcendence degree of L/k is equal to the dimension of G.

(4) Let H be a subgroup of G with Zariski closure H. Then L™ =k if and only
if H=G.

Proof. (1) Take a B € Z(k). Then B is defined over some finite extension k
of k. Over this extension the torsor becomes trivial.

(2) By Proposition 1.20, Z is connected. The algebraic group G is smooth over
C. Using that smoothness is preserved in “both directions” by field extensions,
one has that Z is smooth over k.

(3) The transcendence degree of L/k is equal to the Krull dimension of R and
the one of k ®, R =k ® C[G]. The latter is equal to the dimension of G.

(4) Tt is easily seen that L = LH. Therefore we may suppose that H is Zariski
closed. By 1.27, L¢ = k.

Suppose now L¥ = k. Fix a finite extension k¥ D k such that k ®j R =
k®c C[G]. Let Qt(C[G]) be the total ring of fractions of C'[G]. Then the total
rings of fractions of k® R and k®c C[G] are k®y L and k®c Qt(C[G]). Taking
H-invariants leads to k@, LT =2 k®c Qt(C[G])¥ . The ring Qt(C[G])¥ consists
of the H-invariant rational functions on G. The latter is the same as ring of the
rational functions on G/H (see [141], §12). Therefore L = k implies H = G.
O

The proof of the Theorem 1.27 is not constructive; although it tells us that
the Galois group is a linear algebraic group it does not give us a way to calculate
this group. Nonetheless the following proposition yields some restrictions on this

group.

Proposition 1.31 Consider the equation y' = Ay over k with Galois group G
and torsor Z. Let g denote the Lie algebra of G.

(1) Let H C GL,,¢ be a connected algebraic subgroup with Lie algebra Y. If
A € b(k), then G is contained in (a conjugate of ) H.

(2) Z is a trivial torsor if and only if there is an equivalent equation v' = Av
such that A € g(k).

Proof. (1) Let H C GLy, ¢ by given by the radical ideal I C C[X; ;, 7]. Let
(I) denote the ideal in k[X; ;, ﬁ] generated by I. As before, one defines a
derivation on k[X; j, 5] by the formula (X ;) = A(X; ;). We claim that (I) is
a differential ideal.

It suffices to show that for any f € I the element f’ lies in (I). Since
det is invertible, we may suppose that f is a polynomial in the n? variables
X ; with coefficients in C'. The element f is seen as a map from M, (k) to k,
where k denotes an algebraic closure of k. The ideal (I) is a radical ideal, since
(C[Xij, 71/I) ®c k has no nilpotent elements. Therefore f’ € (I) if f'(B) =0

for all B € H(k).
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Now we use the terminology of Section A.2.2. One has 1 +¢€A € H (k[e]) and
B+ eAB € H(k[e]). Hence 0 = f(B +€AB) = €3, ;(AB); ;55— (B).

Further f' =3}, ; Xfyjaf(—ij =>4 (Xsat))iajaf(—{,j' Hence f'(B) = 0.

Let ¢ O (I) be a maximal differential ideal of k[X; ;, 7-]. Let Z C Hj C
GL,, 1 be the reduced, irreducible subspace defined by q. For any M in the

differential Galois group and any B € Z(k) one has BM € Z(k) and thus

M € H(k). Further H(k) N GL,,(C) = H(C).

(2) If A € g(k), then the proof of part (1) yields that G is its torsor and BGy,
is the torsor of y' = Ay.

If Z is a trivial torsor, then Z = BG}, for some B € Z(k). The equivalent
differential equation v/ = Awv, obtained by the substitution y = Bwv, has the
property that the ideal ¢ C k[Zm-,ﬁ] of Gi, where (X, ;) = B(Z;;), is a
maximal differential ideal. Let z;; denote the image of Z;; in the Picard-
Vessiot ring k[Z; ;, 1]/ of v/ = Av. Then F := (2 ;) is a fundamental matrix
and lies in G(L), where L is the Picard-Vessiot field. As in the proof of part
(1) one verifies that F + ¢F’ € G(L[e]). Tt follows that A = F~'F’ lies in

g(L) N My (k) = g(k). =

For a differential field which is a Cj-field, there is a (partial) converse of
1.31. Examples of such fields are C(z), C((z)) and C({z}) for any algebraically
closed field C.

Corollary 1.32 Let the differential field k be a Ci-field. Suppose that the dif-
ferential Galois group G of the equation y' = Ay over k is connected. Let g be
the Lie algebra of G. Let a connected algebraic group H O G with Lie algebra
b be given such that A € h(k). Then there exists B € H(k) such that the equiv-
alent differential equation f' = Af, withy = Bf and A = B"'AB — BB/,
satisfies A € g(k).

Proof. The assumptions that G is connected and k is a Cy-field imply that Z
is a trivial torsor. Apply now 1.31. m]

Remarks 1.33

(1) The condition that G is connected is necessary for 1.32. Indeed, consider
the case H = G. If A € h(k) = g(k) can be found, then by 1.31 part (1),
G C H? and thus G = G°.

(2) We recall that an algebraic Lie subalgebra of the Lie algebra M, (C) of
GL,(C) is the Lie algebra of an algebraic subgroup of GL,(C). Assume that
k is a Cy-field and that the differential Galois group of ¥y’ = Ay is connected.
Let h € M,(C) be a minimal algebraic Lie subalgebra such that there exists
an equivalent equation v = Av with A € h(k). Then, by 1.32, b is the Lie
algebra of the differential Galois group. This observation can be used to find
the differential Galois group or to prove that a proposed group is the differential
Galois group. a
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Proposition 1.34 The Galois Correspondence

Let y = Ay be a differential equation over k with Picard-Vessiot field L and
write G := Gal(L/k). Consider the two sets

S := the closed subgroups of G and

L:= the differential subfields M of L, containing k.

Definea: S — L by a(H) = L, the subfield of L consisting of the H-invariant
elements. Define : L — S by B(M) = Gal(L/M), which is the subgroup of G
consisting of the M -linear differential automorphisms. Then

1. The maps o and B are inverses of each other.

2. The subgroup H € S is a normal subgroup of G if and only if M = L¥
is, as a set, invariant under G. If H € S is normal then the canonical
map G — Gal(M/k) is surjective and has kernel H. Moreover M is a
Picard-Vessiot field for some linear differential equation over k.

3. Let G° denote the identity component of G. Then L’ D k is a finite
Glalois extension with Galois group G/G° and is the algebraic closure of k
in L.

Proof. Since the elements of G commute with the derivation, L is a differ-
ential subfield of L. One observes that the Picard-Vessiot field of the equation
y' = Ay over M is again L and thus (M) = Gal(L/M) is its differential Galois
group. In particular 5(M) is a closed subgroup of G and belongs to S.

1. For M € L one has af(M) = LSE/M) By applying Theorem 1.27 to the
Picard-Vessiot extension L/M for y' = Ay over M, one sees that the last field
is equal to M.

Let H C G be a closed subgroup. The inclusion H C H; := Gal(L/L¥) =
Ba(H) is obvious. One applies Corollary 1.30 with G replaced by H; and k
replaced by L¥ = L1, We conclude that H = H;.

2. Assume that M = L¥ is left invariant by all elements of G. One can then
define a map G — Gal(M/k) by restricting any ¢ € G to M. The kernel of
this map is H, so H is normal in G. Furthermore, this map defines an injective
homomorphism of the group G/H into Gal(M/k). To show that this map is
surjective, one needs to show that any differential automorphism of M over k
extends to a differential automorphism of L over k. Consider, more generally,
M € L and a k-homomorphism of differential fields ¥ : M — L. The Picard-
Vessiot field for y' = Ay over M is L. The Picard-Vessiot field for v/ = ¢(A)y
(note that ¥(A) = A) over (M) is also L. The unicity of the Picard-Vessiot
field yields a k-isomorphism of differential fields ¢ : L — L, extending 1.

Now assume that there is an element 7 € G such that 7(M) # M. The
Galois group of L over 7(M) is TH7~!. Since 7(M) # M, part (1) of the
proposition implies that 7H7~! # H. Therefore H is not normal in G.

It is more difficult to see that M is a Picard-Vessiot field for some linear
differential equation over K and we postpone the proof of this fact to the next
section (see Corollary 1.40).
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3. G/G° is a finite group. The property that (LE")¢/G” = k together with
the Galois theory of algebraic extensions (c.f., [169], VII, §1, Artin’s Theorem),
implies that L& D k is a Galois extension with Galois group G/G°. If u is
algebraic over k, then the orbit of w under the action of G is finite. Therefore,
the group Aut(L/k(u)) is an algebraic subgroup of G of finite index. This
implies that G° C Aut(L/k(u)) and so k(u) C L. O

Exercises 1.35 1. The Galois group of y' = a, a € k
Show that the Galois group of this equation is either the additive group over C,
ie., Gq,c = (C,+) or the trivial group. Hint: Compare with Example 1.18.

2.The Galois group of y = ay, a € k*
Show that the Galois group of this equation is either (C*, x) or a finite cyclic
group. Is the torsor trivial? Hint: Compare with Example 1.19.

3. The Galois group of y" = c*y, c € C*

Show that the differential ring C'(2)[Y, Y ~!] given by Y’ = ¢Y is a Picard-Vessiot
ring for this equation over C(z), z/ = 1. Calculate the differential Galois group
and the torsor of this equation.

4. The generic Picard-Vessiot extension and its Galois group

Let k£ be a differential field with algebraically closed field of constants C, let
R = E{{y1,...,yn}} be the ring of differential polynomials with coefficients in
k and let F' be the quotient field of R.

(a) Show that the constant subfield of F' is C.

(b) Let L(Y') be the linear scalar differential equation given by

’U)T(Yv Yty - 7yn)

Sy L, YD 4 agY.
wr(yt, .-, Yn)

L) :=

(wr(ylv ce 7y’ﬂ)),

wr(yiy .- Yn)
(c) Let E be the smallest differential subfield of F' containing k& and the elements
a;, ¢t = 0,...,n— 1. Show that for any A = (¢;;) € GL,(C), the map ¢4 :
F — F defined by (¢pa(y1),...,04(yn)) = (Y1,-..,Yn)A is a k-differential auto-
morphism of F' leaving all elements of F fixed. Hint: wr(¢a(y1),...,04(yn)) =

det(A)wr(yi, ..., Yn)-
(d) Using Exercise 1.24.2(b), show that F' is a Picard-Vessiot extension of E
with Galois group GL,(C). Is the torsor of this equation trivial?

Show that a,,—1 =

5. Unimodular Galois groups

(a) Let ¥/ = Ay be an n x n matrix differential equation over k, let L be its
Picard-Vessiot field over k and let G be its Galois group. Let F' be a fundamental
matrix for y' = Ay with coefficients in L. Show that G C SL,,(C) if and only if
det(F) € k. Conclude that G C SL,, if and only if «' = (trA)u has a nonzero
solution in k. Hint: Use Exercise 1.14.5.
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(b) Let L(y) = y™ + an_19™ Y + -~ + apy = 0 be a homogeneous scalar
linear differential equation over K. Show that the Galois group of L(y) = 0 is
a subgroup of SL, (C) if and only if 2’ = —a,_12 has a nonzero solution in k.

(c) Let L(y) = y™ +ay,_1y" Y 4---+aopy = 0 be a homogeneous scalar linear
differential equation over K. Setting z = ¢!/ /[ an-1y show that z satisfies a
homogeneous scalar linear differential equation of the form z(") + @,,_o2z("=2) 4
-+ 4+ apy = 0 and that this latter equation has a unimodular Galois group. O

Consider the differential field C(z) with C' algebraically closed and of char-
acteristic 0 and derivation %. We consider a scalar differential equation of the
form 3" = ry. The Picard-Vessiot field will be denoted by L and the differential
Galois group will be denoted by G. The following exercise will show how one
can determine in many cases the Galois group of such an equation. A fuller
treatment is given in [166] and [271, 272, 273].

The rather short list of the algebraic subgroups (up to conjugation) of SL2(C')
is the following (see for instance [166]):

(i) Reducible subgroups G, i.e., there exists a G-invariant line. In other terms,
the subgroups of {( b ) aeC*beCl.

0 a?
(ii) Irreducible and imprimitive groups G, i.e., there is no G-invariant line but
there is a pair of lines permuted by G. In other terms G is an irreducible
subgroup of the infinite dihedral group D, consisting of all A € SLy(C) such
that A permutes the two lines C(1,0),C(0,1) in C2.

(iii) Three finite primitive (i.e., irreducible but not imprimitive) groups: the
tetrahedral, the octahedral and the icosahedral group.

(iv) S1(C).

Exercises 1.36 ([231]) 1. The equation y" =ry

(a) Using Exercise 1.35.5, show that the Galois group of y”” = ry is a subgroup
of SLo(C).

(b) Associated to the equation y” = ry there is the non-linear Riccati equation
u' 4+ u? = r. Let L be the Picard-Vessiot extension of k corresponding to this
equation and let V' C L denote the vector space of solutions of 4" = ry. Then
V is a two-dimensional vector space over C. The group G acts on V. Show that
u € L is a solution of the Riccati equation u’ + u? = r if and only if u = % for
somey €V, y#0.

(c) Show that G is reducible if and only if the Riccati equation has a solution
in C(z).

(d) Show that if G is irreducible and imprimitive, then the Riccati equation has
a solution v which is algebraic over C'(z) of degree 2. Hint: There are two lines

Cy1,Cy2 C V such that G permutes {Cy1,Cy2}. Put ug = Z—i, Ug = Z—é Show
that u; + us and uius belong to C(z).

2. The equation y" = (272 + z)y
(a) The field extension C(t) D C(z) is defined by t> = z. Verify that u; =
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—12z71 4+t € C(t) is a solution of the Riccati equation. Find a second solution
ug € C(t) of the Riccati equation.

(b) Prove that the differential ring R = C(¢)[y1, yfl], defined by y; = u1y1, is a
Picard-Vessiot ring for the equation. Hint: Verify that R is a simple differential
ring. Prove that R is generated over C(z) by the entries of a fundamental matrix
for the equation.

(c) Determine the differential Galois group G of the equation.

(d) Verify that the Lie algebra of G is equal to the Lie algebra of the K-linear
derivations D : R — R that commute with ’ .

(e) What can one say about the solutions of the equation?

3. Liouwville’s differential equation y" = ry with r € Clz] \ C.

(a) Show that the Galois group of this equation is connected. Hint: Standard
existence theorems imply that there are two linearly independent entire solutions
y1,y2 of ¥’ = ry. Show that the subfield K = C(z,y1,y2,y1,y5) of the field of
meromorphic functions on C, is a Picard-Vessiot field for the equation. Show
that if w € K is algebraic over C(z), then u is meromorphic on the Riemann
Sphere and so in C(z). Deduce that G = G°.

(b) Suppose that r € Clz] has odd degree. Prove that the Riccati equation has
no solution u € C(z). Hint: Expand u at z = oo and find a contradiction.

(c) Suppose again that r € C[z] has odd degree. Prove that G = SLy(C) and
give an explicit description of the Picard-Vessiot ring.

(d) Consider the equation y” = (2241)y. Find a solution u € C(2) of the Riccati
equation. Construct the Picard-Vessiot ring and calculate the differential Galois
group. Hint: Consider first the equation 3’ = uy. A solution y; # 0 is also a
solution of y} = (22+1)y;. Find a second solution yz by “variation of constants”.

4. Liouville’s theorem (1841) for y" = ry with r € Clz] \ C
Prove the following slightly deformed version of Liouville’s theorem:

Consider the differential equation y" = ry with r € C[z]\ C. The differential
Galois group of this equation (over the differential field C(z)) is equal to SLa(C)
unless r has even degree 2n and there are polynomials v, F' with degv = n such
that u == v + %’ is a solution of the Riccati equation u' + u? = r.

In the last case, the differential Galois group is conjugate to the group

{(r))|aeC*, beC}.

0a—1
Hints:
(i) Use part 3. of the exercise and the classification of the Zariski closed sub-
groups of SLo(C), to prove that the differential Galois group can only be (up
to conjugation) SLy(C), {(Oaab_1)|a eC*, beC}or{(2))]aeC}.
(i) Show that the three cases correspond to 0,1 or 2 solutions u € C(z) of the
Riccati equation v’ + u? = r.
(iii) Suppose that v € C(z) is a solution of the Riccati equation. Make the
observation that for any point ¢ € C, the Laurent expansion of u at ¢ has the
form = +* 4+ *(z — ¢) +--- with e = 0,1. Show that u must have the form
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v+ %’ where F' is a polynomial of degree d > 0 with simple zeros and v is a
polynomial of degree n.

(iv) Show that there is at most one rational solution of the Riccati equation
u' 4+ u? = r by expanding u = v + % at 0o, i.e., as Laurent series in z~!. Note
that the expansion of %/ isdz ™l +xz724---. a

Exercise 1.37 Algebraically independent solutions of differential equations.

Let 7 € C[z] be a polynomial of odd degree. Let y1 = 14> _,a,2", y2 =
24,59 bnz™ be entire solutions of the equation y”” = ry. Show that the “only”
polynomial relation over C between z, y1, y2, Y1, ¥5 is Y195 — yiye2 = 1. Hint: See
Exercise 1.36. O

Theorem 1.28 allows us to identify the Picard-Vessiot ring inside the Picard-
Vessiot field. This is the result of the following Corollary (see [34], [182], [266]).

Corollary 1.38 Let y' = Ay be a differential equation over k with Picard-
Vessiot field L, differential Galois group G and Picard-Vessiot ring R C L. The
following properties of f € L are equivalent.

(1) f € R.

(2) The C-vector space < Gf >, spanned by the orbit Gf := {g(f)| g € G} has
finite dimension m over C.

(3) The k-vector space < f, f', f",... > spanned by f and all its derivatives has
finite dimension m over k.

Proof. (1)=(2). By Theorem 1.28, there is a finite extension & D k such
that k ®, R = k ®¢ C[G]. Here C[G] denotes the coordinate ring of G. Tt is
well known, see [141], that the G-orbit of any element in C[G] spans a finite
dimensional vector space over C. This property is inherited by k ®¢ C [G] and
also by R.

(2)=(3). Choose a basis v1, ..., v, of < Gf > over C. There is a unique scalar
differential equation P(y) = y™ + ap_1y™ Y + -« + a1y + apy with all
a; € L such that P(v;) = 0 for all 4 (see for instance the proof of Lemma 1.12).
Then < Gf > is the solution space of P. The G-invariance of this space implies
that all a; € LY = k. From P(f) = 0 it follows that < f, f, f”,--- > has
dimension < m over k. Let ) be the monic scalar equation of minimal degree
n < m over k such that Q(f) = 0. The solution space of @ in L contains f and
the m-dimensional C-vector space < Gf >. Hence m = n.

(3)=(1). Suppose that W =< f, f’, f”,--- > has dimension m over k. Then
f is a solution of a monic linear scalar differential equation P over k of order
m. Consider the nonzero ideal I C R consisting of the elements a € R such
that aW C R. For a € I and w € W, one has ¢'w = (aw)’ — aw’. Since both
R and W are invariant under differentiation, one finds a'w € R. Thus [ is a
differential ideal. Now R is a simple differential ring and therefore I = R. This
proves that f € R. m]
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Exercise 1.39 Solutions of differential equations and their reciprocals.

k is a differential field with algebraically closed field of constants C'. Let R D k
be a Picard-Vessiot ring with field of fractions L. The goal of this exercise is to
show:

Let f € L*. Then both f and f~' satisfy a scalar linear differential equation
over k if and only if fT 18 algebraic over k

For the proof one needs a result of Rosenlicht [248] (see also [180], [266])
which states:

Let G is a connected linear algebraic group over an algebraically closed field
K and let f € KI[G] (i.e., the coordinate ring of G) be an invertible element
such that f(1) = 1. Then f is a character, i.e., f(g192) = f(g1)f(g2) for all
91,92 € G.

(1) Show that it suffices to consider the case where k is algebraically closed.
Hint: Replace k by its algebraic closure k and L by kL.

(2) Prove that % € k implies that f, f~! € R.
(3) Show that R = k ®¢ C[G] and that G is connected.

(4) Suppose that f is an invertible element of R. Show that f considered as an
element of k ®¢ C[G] has the form b - x, where x : Gy, — k* is a character and
b € k*. Conclude that o(f) = x(o)f for any o € G.

(5) Prove that any character x : G — k* has the property x(o) € C* for all
o € G. Hint: Two proofs are possible. The first one shows that any character
of G}, comes from a character of G. We suggest a second proof. Any character
x belongs to R and satisfies, according to Corollary 1.38, a linear differential
equation over k. Let y("™) + a1y + - + a1y®) + agy be the differential
equation of minimal degree over k, satisfied by x. Fix ¢ € G and define a € k*
by o(x) = ax. Since o commutes with the differentiation, the same equation
is the scalar linear differential equation of minimal degree over k satisfied by
o(x) = ax. Prove that a,,—1 = m%/ + amm—1 and conclude that a € C*.

(6) Prove that fTI € k.

(7) Show that sin z satisfies a linear differential equation over C(z) and that
L does not. Hint: A periodic function cannot be algebraic over C(z) (why?).

sin z

The main result of this exercise was first proved in [123]. See also [266] and
[278). O

We now use Theorem 1.28 to give a proof that a normal subgroup corre-
sponds to a subfield that is also a Picard-Vessiot extension, thereby finishing
the proof of Proposition 1.34.
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Corollary 1.40 Let L D k be the Picard-Vessiot field of the equation y' = Ay
over k. Let G := Gal(L/k) be the differential Galois group of the equation and
let HC G be a closed normal subgroup. Then M = LY is a Picard-Vessiot field
for some linear differential equation over k.

Proof. This proof depends on the following three facts from the theory of
linear algebraic groups. Let G be a linear algebraic group and H a Zariski
closed normal subgroup.

1. The G-orbit of any element f € C[G] spans a finite dimensional C-vector
space.

2. The group G/H has a structure of an affine group and its coordinate ring
C[|G/H] is isomorphic to the ring of invariants C[G]*.

3. The two rings Qt(C[G])¥ and Qt(O[G]*) are naturally isomorphic.

These facts can be found in [141], §11, 12, and [36]. Let L be the quotient
field of the Picard-Vessiot ring R. Let k be a finite Galois extension of k with
(ordinary) Galois group U such that the torsor corresponding to R becomes
trivial over k. This means that k®j R ~ k®¢ C|[G]. Note that U acts on k®y R
by acting on the left factor as the Galois group and on the right factor as the
identity. The group G acts on k @), R ~ k ®¢ C[G] by acting trivially on the
left factor and acting on R via the Galois action (or equivalently, on C[G] via
the natural action of G on its coordinate ring). Using the above facts, we have
that k @ R¥ ~ k ®¢ C[G/H] and that k @, L7 is equal to k ®@c Qt(C[G]T).
Since C[G/H] is a finitely generated C-algebra, there exist r1,...,7r, € RY
that generate k®r RY as a /::—algebra. Taking invariants under U, one finds
that R is a finitely generated k-algebra whose field of fractions is L. We
may furthermore assume that that RY is generated by a basis y1,...,y, of a
finite dimensional C-vector space that is G/H-invariant. Lemma 1.12 implies
that the wronskian matrix W = W (y1,...,y,) is invertible. Furthermore, the
matrix A = W/W ! is left invariant by G/H and so has entries in k. Since the
constants of L are C and L¥ is generated by a fundamental set of solutions
of the linear differential equation ¢’ = Ay, Proposition 1.22 implies that L is
a Picard-Vessiot field. |

Exercises 1.41 Let GG be a connected solvable linear algebraic group. In this
exercise the fact that any G-torsor over k is trivial, will be used. For this, see
the comments following Lemma A.51.

1. Picard-Vessiot extensions with Galois group (Gg)".

Suppose that K is a Picard-Vessiot extension of k with Galois group (G,)".
Show that there exist t1,...,t, € K with t; € k such that K = k(t1,...,t,).
Hint: Consider the Picard-Vessiot subring of K and use C[G}] = C[t1,...,t].

2. Picard-Vessiot extensions with Galois group (Gay,)".
Show that if K is a Picard-Vessiot extension of k with Galois group (G,,)", then
there exist nonzero t1,...,t, € K with t;/t; € k such that K = k(t1,...,t).
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3. Picard-Vessiot extensions whose Galois groups have solvable identity compo-
nent.

Let K be a Picard-Vessiot extension of & whose Galois group has solvable iden-
tity component. Show that there exists a tower of fieldsk C K1 C --- C K, = K
such that K3 is an algebraic extension of k and for each ¢ = 2,...,n, K; =
K;_1(t;) with ¢; transcendental over K;_; and either t; € K; 1 or t/t; € K;_1.
Hint: Produce a tower of closed subgroups {1} = Go C G; C --- C G° C G,
where G° be the identity component of the Galois group G and each G; is a
normal subgroup of G;y1 such that G;y1/G; is either G, or G,,. (Compare
Chapter 17, Exercise 7 and Theorem 19.3 of [141]). Apply Corollary 1.40.

In the next section 1.5, an elementary proof of the above statement will be
given, which does not use Theorem 1.28. O

1.5 Liouvillian Extensions

In this section we show how one can formalize the notion of solving a linear
differential equation in “finite terms”, that is solving in terms of algebraic com-
binations and iterations of exponentials and integrals, and give a Galois theoretic
characterization of this property.

In classical Galois theory, one formalizes the notion of solving a polynomial
equation in terms of radicals by using towers of fields. A similar approach will
be taken here.

Definition 1.42 The differential field & is supposed to have an algebraically
closed field of constants C'. An extension K D k of differential fields is called a
liouwvillian extension of k if the field of constants of K is C' and if there exists
a tower of fields k = Ky C K1 C ... C K,, = K such that K; = K;_1(¢t;) for
i=1, ...,n, where either

1. t} € K;_1, that is ¢; is an integral (of an element of K;_1), or

2. t; # 0 and t//t; € K;_1, that is ¢; is an exponential (of an integral of an
element of K;_1), or

3. t; is algebraic over K;_1.
If K is a liouvillian extension of k£ and each of the ¢; is an integral (resp. exponen-
tial), we say that K is an extension by integrals (resp. extension by exponentials)
of k. ]

The main result of this section is

Theorem 1.43 Let K be a Picard-Vessiot extension of k with differential Ga-
lois group G. The following are equivalent:
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(1) G° is a solvable group.
(2) K is a liouwvillian extension of k.
(3) K is contained in a liowvillian extension of k.

Proof. (1)=(2). (In fact a stronger statement follows from Exercise 1.41.3
but we present here a more elementary proof, not depending on the theory of
torsors, of this weaker statement).

Let K be the Picard-Vessiot extension of a scalar differential equation L(y) = 0
of order n over k. Let G be the differential Galois group of the equation and G°
be its identity component. Let V' C K be the solution space of L. Let kg be the
fixed field of G°. Then K is the Picard-Vessiot field for the equation L(y) = 0
over ko and its Galois group is G°. The Lie-Kolchin Theorem (Theorem A.46)
implies that V' has a basis y1, ..., y, over C such that G° C GL(V) consists of
upper triangular matrices w.r.t. the basis yi,...,y,. We will use induction on
the order n of L and on the dimension of G°.

Suppose that y; & ko. For any o € G°, there is a constant ¢(o) € C* with

oy1 = c¢(o)y1. Hence Z—i € ko. Now K D ko(y1) is the Picard-Vessiot field for
the equation L(y) = 0 over ko(y1) and its differential Galois group is a proper
subgroup of G°. By induction K D ko(y1) is a liouvillian extension and so is

KDk

Suppose that y; € ko. Let L(y) = 0 have the form a,y™ + --- 4 agy = 0.
Then L(yy1) = by + -+ b1y + byy. The term by is zero since L(y;) = 0.
Consider the scalar differential equation M (f) = b, f™1) 4+ ... + b1 f = 0. Its
solution space in K is C(£)" +--- 4+ C(£*)". Hence the Picard-Vessiot field K
of M lies in K and its diﬁferential Galois group is a connected solvable group.
By induction k C K is a liouvillian extension. Moreover K = K (ts, ..., t,) and
ty= (&) fori=2,...,n. Thus K O K is liouvillian and so is K D k.

(3)=(1). Let M = k(t1,...,t,) be a liouvillian extension of k containing K.
We shall show that G? is solvable using induction on m.

The subfield K (1) of M is the Picard-Vessiot field of the equation L(
over k(t1). Indeed, K (1) is generated over k(t1) by the solutions y of L(

Since K is also the Picard-Vessiot field of the equation L(y) = 0 over k(t1) N
one has that H = Gal(K/k(t1) N K). By induction H? is solvable.

If k(t1) N K = k, then H = G and we are done. Suppose that k(t1) N K # k.
We now deal with the three possibilities for t;. If ¢ is algebraic over k, then
k(t1) N K is algebraic over k and lies in the fixed field KS°. Hence H° = G°
and we are done.

Suppose that ¢ is transcendental over k and that k(t;) N K # k. If t] = a € k¥,
then k(t1) D k has differential Galois group G4 . This group has only trivial
algebraic subgroups and so k(1) C K. The equation ¢} = a € k*, shows that
k(t1) is set wise invariant under G = Gal(K/k). Thus there is an exact sequence

)
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of algebraic groups
1 — Gal(K/k(t1)) — Gal(K/k) — Gal(k(t1)/k) — 1.

From H° is solvable and Gal(k(t1)/k) = Gg,c one easily deduces that G° is
solvable.

If t) = at; with a € k*, then Gal(k(t1)/k) = Gun,c. The only non trivial
closed subgroups of G;,,c = C* are the finite groups of roots of unity. Hence
k(t1) N K = k(t}) for some integer d > 1. As above, this yields that G° is
solvable. a

Exercise 1.44 Using Exercise A.44, modify the above proof to show that if G
is a torus, then K can be embedded in an extension by exponentials. (This can
also be deduced from Exercise 1.41.) a

In general, one can detect from the Galois group if a linear differential equa-
tion can be solved in terms of only integrals or only exponentials or only al-
gebraics or in any combination of these. We refer to Kolchin’s original paper
[160] or [161] for a discussion of this. Finally, using the fact that a connected
solvable group can be written as a semi-direct product of a unipotent group U
and a torus T" one can show: If the identity component of the Galois group of
a Picard-Vessiot extension K of k is solvable, then there is a chain of subfields
k=KyCKyC- - CK, =K such that K; = K;_1(t;) where

1. t1 is algebraic over k,

2. fori=2,....,n—m, m = dimU, t; is transcendental over K;_1 and
f,;/ti S Ki—h

3. fori=n—m+1,...,n,t; is transcendental over K;_1 and t, € K;_1.
We refer to [182], Proposition 6.7, for a proof of this result.

Theorem 1.43 describes the Galois groups of linear differential equations, all
of whose solutions are liouvillian. It will be useful to discuss the case when only
some of the solutions are liouvillian.

Proposition 1.45 Let L(y) = 0 be scalar differential equation with coefficients
in k and Picard-Vessiot field K. Suppose that L(y) = 0 has a nonzero solution
in some liouwvillian extension of k. Then there is a solution y € K, y # 0 of
L(y) = 0 such that % is algebraic over k.

Proof. Let k(t1,...,t,) be aliouvillian extension of k and let y € k(t1,...,tn),
y # 0 satisfy L(y) = 0. We will show the statement by induction on n.

Let n =1 and t; be algebraic over k. Then y and y?/ are algebraic over k.
Suppose that ¢ is transcendental over k and ¢) = a € k*. The element y satisfies
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a differential equation over k and lies therefore in the Picard-Vessiot ring k[t1]
(see Corollary 1.38). The elements o € Gal(k(t1)/k) have the form o(t1) = ¢t1+c¢
(with arbitrary ¢ € C'). Further o(y) and o(y) — y are also solutions of L. One
concludes that L has a nonzero solution in k itself.

Suppose that t; is transcendental over k and that ¢t} = at; for some a € k*.
Then y lies in the Picard-Vessiot ring k[t1,t;']. The elements o € Gal(k(t,)/k)
act by o(t1) = ct; with ¢ € C* arbitrary. Also o(y) — dy, with o € Gal(k(t1)/k)
and d € C are solutions of L. It follows that k(¢1) contains a solution of L of
the form y = bt¢ with b € k* and d € Z. For such a y, one has % € k.

Suppose that y € k(t1,...,tnt+1), ¥ 7 0 is a solution of L. The induction
hypothesis implies that the algebraic closure m, with ¢ = t1, contains solutions
of the Riccati equation of L. It ¢ is algebraic over k, then we are done.

If ¢ is transcendental over k, then one considers, as in the last part of the proof
of Theorem 1.43, the Picard-Vessiot field of L over k(t) which is denoted by

Kk(t) or K(t). Further Kk(t) denotes the Picard-Vessiot field of L over k(t).

Let V C K denote the solution space of L (in K and also in Kk(t)). Let a
y € V, y # 0 be given such that % is algebraic over k(t). For any o € Gal(K/k)
the element o(y) has the same property. Choose o1,...,0, € Gal(K/k), with s
maximal, such that the elements o1y, ...,0,y € V are linearly independent over
C. The vector space W C V spanned by o1y, ..., 05y is clearly invariant under
the action of Gal(K/k). Let f()+a,_1 f*~Y4- - +agf by the unique differential
equation M over K with M(o;y) =0 for i =1,...,s. For any o € Gal(K/k),
the transformed equation oM has the same space W as solution space. Hence
oM = M and we conclude that M has coefficients in k. We replace now L
by M. Consider the liouvillian field extension k(t,u1,...,us,01Y,...,0sy) C

Kk(t) of k, where the u; := [;y/ are algebraic over k(t). This field contains
the Picard-Vessiot field of the équation of M over k. By Theorem 1.43, the
differential Galois group H of M over k has the property that H® is solvable.
Let f € W f # 0 be an eigenvector for H°. Then fTI is invariant under H° and

is therefore algebraic over k. Since W C V, also L(f) = 0. a

Exercise 1.46 Show that the equation 4" + zy = 0 has no nonzero solutions

liouvillian over C(z). Hint: As in Exercise 1.36(3), show that the Galois group
of this equation is connected. If exp([u) is a solution of ¥ + zy = 0 then
u satisfies u” + 3uu’ 4+ u® + z = 0. By expanding at oo, show that this latter
equation has no nonzero solution in C(z). O

Exercises 1.47 The “normality” of a Picard-Vessiot extension.

(1) In the classical Galois theory a finite extension K D k is called normal if
every irreducible polynomial over k£ which has one root in K has all its roots in
K. Prove the following analogous property for Picard-Vessiot fields:

Suppose that K D k is a Picard-Vessiot extension and let f € K be a solution
of an irreducible scalar differential equation P over k of order m. Show that the
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solution space of P in K has dimension m (over the field of constants C of k).
We note that some results of Chapter 2 are needed for this exercise, namely the
definition of “irreducible operator” and Exercise 2.4 part 3.

Liouvillian extensions are very different from Picard-Vessiot extensions.

(2) Consider the liouvillian extension k(¢, f) of k defined by: ¢ is transcendental
over k and tt—l € k*. Further f is algebraic over k(t) with equation f2 =1 — ¢2.
Show that k(t, f) is not a differential subfield of a Picard-Vessiot extension of
k.

Hint: Let & C k(¢, f) € K with K/k a Picard-Vessiot extension. For every
¢ € C* there exists an element 0. € Gal(K/k) such that o.t = ct. Now o.(f)* =
1 — ¢?t2. Show that the algebraic field extension of k(t) generated by all o.(f)
is infinite. Now use that K/k(t) is also a Picard-Vessiot extension. O
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Chapter 2

Differential Operators and
Differential Modules

2.1 The Ring D = k[0] of Differential Operators

In this chapter k is a differential field such that its subfield of constants C' is
different from & and has characteristic 0. The skew (i.e., noncommutative) ring
D := k[0)] consists of all expressions L := a,0"+- - -+a10+ao withn € Z, n >0
and all a; € k. These elements L are called differential operators. The degree
deg L of L above is m if a,,, # 0 and a; = 0 for i > m. In case L = 0 we define
the degree to be —oo. The addition in D is obvious. The multiplication in D is
completely determined by the prescribed rule da = ad + a’. Since there exists
an element a € k with @’ # 0, the ring D is not commutative. One calls D the
ring of linear differential operators with coefficients in k.

A differential operator L = a,0"+---+a10+ag acts on k and on differential
extensions of k, with the interpretation d(y) := y’. Thus the equation L(y) =0
has the same meaning as the scalar differential equation a,y(™ + ---+a;y®M +
aoy = 0. In connection with this one sometimes uses the expression order of L,
instead of the degree of L.

The ring of differential operators shares many properties with the ordinary
polynomial ring in one variable over k.

Lemma 2.1 For Ly, Ly € D with Ly # 0, there are unique differential operators
Q, R € D such that Ly = QL1 + R and deg R < deg L.

The proof is not different from the usual division with remainder for the ordi-
nary polynomial ring over k. The version where left and right are interchanged is
equally valid. An interesting way to interchange left and right is provided by the
“involution” i : L + L* of D defined by the formula i(3" a;0%) = >_(—1)'d;.

39
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The operator L* is often called the formal adjoint of L.

Exercise 2.2 The term “involution” means that ¢ is an additive bijection, i2 =

id and i(L1L2) = i(Le)i(Lq) for all L1, Ly € D. Prove that i, as defined above,
has these properties. Hint: Let k[0]* denote the additive group k[0] made into a
ring by the opposite multiplication given by the formula Li x Ly = LoL;. Show
that k[0]* is also a skew polynomial ring over the field k and with variable —0.
Observe that (—0)xa =ax (—0) + d. O

Corollary 2.3 For any left ideal I C k[D] there exists an Ly € k[D] such that
I = k[O]L1. Similarly, for any right ideal J C k[D] there exists an Lo € k[0]
such that J = Lok[0)].

From these results one can define the Least Common Left Multiple,
LCLM(L1, L2), of L1, Ly € k[0] as the unique monic generator of k[0]L1Nk[0] L2
and the Greatest Common Left Divisor, GCLD(Lq, L), of L1, Lo € k[J] as the
unique monic generator of L1k[0] + Lok[0] . The Least Common Right Multiple
of Ly, Ly € k[0], LCRM(Ly, L2) and the Greatest Common Right Divisor of
Ly, Ly € k[0], GCRD(L1, L2) can be defined similarly. We note that a modified
version of the Euclidean Algorithm can be used to find the GCLD(Ly, L2) and
the GCRD(Ll, LQ)

Exercises 2.4 The ring k[0]

1. Show that for any nonzero operators L1, Ly € k[0], with deg(L1) = nq,
deg(Lz2) = ng we have that deg(LiLa — LaL1) < n1 + ng. Show that k[0] has
no two-sided ideals other than (0) and k[0].

2. Let M be a D = k[J]-submodule of the free left module F' := D™. Show
that F has a free basis ey, ..., e, over D such that M is generated by elements
aiei,...,azey, for suitable a1,...,a, € D. Conclude that M is also a free D-
module. Hints:

(a) For any element f = (f1,..., fn) € F there is a free basis ej,...,e, of F'
such that f = ce, with ¢ € D such that Dc =Dfy +---+Df,.

(b) Choose m = (b1,...,b,) € M such that the degree of the ¢ € D with
Dc = Dby + - -+ + Db, is minimal. Choose a new basis, called eq,...,e, of F
such that m = ce,,. Prove that M is the direct sum of M N (De; @ ---® Dey—1)
and Dce,,.

(c) Use induction to finish the proof.

3. Let L1, Ly € k[0] with deg(L1) = n1, deg(Lz2) = ng. Let K be a differential
extension of k having the same constants C as k and let Solng (L;) denote the
C-space of solutions of L;(y) = 0 in K. Assume that dime(Solng (Lg)) = na.
Show that:

(a) Suppose that every solution in K of La(y) = 0 is a solution of Li(y) = 0.
Then there exists a @ € k[J] such that Ly = QLs.

(b) Suppose that Ly divides Ly on the right, then Solng (L1) C Solng(L2) and
dime (Solnk (L1)) = ng. a
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Lemma 2.5 Finitely generated left k[0]-modules.

Every finitely generated left k[0]-module is isomorphic to a finite direct sum
®M,;, where each M; is isomorphic to either k[0] or k[0]/k[O]L for some L € k[0]
with deg L > 0.

Proof. Let M be a finitely generated left k[0]-module. Then there is a sur-
jective homomorphism ¢ : k[0]" — M of k[0]-modules. The kernel of ¢ is a
submodule of the free module k[0]". Exercises 2.4 part 2. applied to ker(¢)
yields the required direct sum decomposition of M. O

Observation 2.6 A differential module M over k is the same object as a left
k[0]-module such that dimy M < co.

Exercise 2.7 Let y' = Ay be a matrix differential equation over k of dimension
n with corresponding differential module M. Show that the following properties
are equivalent:

(1) There is a fundamental matrix F' for y' = Ay with coefficients in k.

(2) dim¢ ker(0, M) = n.

(3) M is a direct sum of copies of 1y, where 1; denotes the 1-dimensional
differential module ke with de = 0.

A differential module M over k is called trivial if the equivalent properties (2)
and (3) hold for M. Assume now that C is algebraically closed. Prove that M
is a trivial differential module if and only if the differential Galois group of M
is {1}. a

Intermezzo on multilinear algebra.

Let F be any field. For vector spaces of finite dimension over F' there are
“constructions of linear algebra” which are used very often in connection with
differential modules. Apart from the well known “constructions” direct sum
Vi @ Va of two vector spaces, subspace W C V', quotient space V/W , dual space
V* of V, there are the less elementary constructions:

The tensor product V@p W (or simply V ® W) of two vector spaces. Although
we have already used this construction many times, we recall its categorical
definition. A bilinear map b: V x W — Z (with Z any vector space over F') is
a map (v,w) — b(v,w) € Z which is linear in v and w separately. The tensor
product (¢t,V @ W) is defined by ¢t : V. x W — V ® W is a bilinear map such
that there exists for each bilinear map b : V x W — Z a unique linear map
£:V@W — Z with £ot =b. The elements ¢(v,w) are denoted by v ® w. It
is easily seen that bases {v1,...,v,} of V and {w1,...,w,} of W give rise to a
basis {v; ® wj}i=1,...nyj=1,...,m of V.® W. The tensor product of several vector
spaces V1 ®- - -® Vs can be defined in a similar way by multilinear maps. A basis
of this tensor product can be obtained in a similar way from bases for every V;.

The wvector space of the homomorphisms Hom(V, W) counsist of the F-linear
maps £ : V — W. Its structure as an F-vector space is given by ({1 + £3)(v) :=
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£1(v)+La(v) and (f€)(v) := fl(v). There is a natural isomorphism « : V*@W —
Hom(V, W), given by the formula a(¢ @ w)(v) := £(v) - w.

The symmetric powers sym®V of a vector space V. Consider the d-fold tensor
product V®---®@V and its subspace W generated by the vectors (1 ®- - -Qvg) —
(Vr(1)®- - -®Vr(q)), With vy, ..., vg € V and 7 € Sy, the group of all permutations
on {1,...,d}. Then sym?V is defined as the quotient space (V @ ---® V)/W.
The notation for the elements of sym?V is often the same as for the elements of
V®---®V, namely finite sums of expressions v; ® - - - ® vq. For the symmetric
powers, one has (by definition) v; ® - ®@ Vg = V(1) ® - - - @ Uy (q) for any m € Sgy.
Sometimes one omits the tensor product in the notation for the elements in the
symmetric powers. Thus vivs - - - vg is an element of sym?V. Let {v1,...,v,} be
a basis of V, then {v{'v§?---v3| all a; > 0 and 3" a; = d} is a basis of sym?V.
One extends this definition by sym'V =V and sym°V = F.

The exterior powers AYV. One considers again the tensor product V@ --- @V
of d copies of V. Let W be the subspace of this tensor product generated by
the expressions v; ® - - - ® vq, where there are (at least) two indices i # j with
v; = vj. Then A%V is defined as the quotient space (V ®---®V)/W. The image
of the element v; ® - - ®vg in AV is denoted by vy A---Avg. If {v1,...,v,} is
a basis of V, then the collection {v;; A+ Av |1 <ip <ig<---<ig<n}isa
basis of AV, In particular A%V =0 if d > n and A"V = F. This isomorphism
is made explicit by choosing a basis of V and mapping w; A --- A w, to the
determinant in F' of the matrix with columns the expressions of the w; as linear
combinations of the given basis. One extends the definition by A'V = V and
A%V = F. We note that for 1 < d < n one has that wq A -+ A wy = 0 if and
only if wq,...,wy are linearly independent over F'.

Both the symmetric powers and the exterior powers can also be defined in a
categorical way using symmetric multilinear maps and alternating multilinear
maps.

Definition 2.8 Clyclic vector.
Let M be a differential module over k. An element e € M is called a cyclic
vector if M is generated over k by the elements e, de, 9%, . . .. a

The following proposition extends Lemma 2.5.

Proposition 2.9 FEvery finitely generated left k[0]-module has the form k[O]™
or k[0 @ k[0]/k[O]|L with n > 0 and L € k[0).

Proof. The only thing that we have to show is that a differential module M of
dimension n over k is isomorphic to k[0]/k[0]L for some L. This translates into
the existence of an element e € M such that M is generated by e, e, ...,0" 'e.
In other words, e is a cyclic vector for M.
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Any k[0]-linear map ¢ : k[0] — M is determined by e := ¢(1) € M, where
1 € k[0] is the obvious element. The map ¢ is surjective if and only if e is a
cyclic element. If the map is surjective, then its kernel is a left ideal in k[0] and
has the form k[0]L. Thus k[0]/k[0]L = M. On the other hand, an isomorphism
k[0]/k[0]L = M induces a surjective k[0]-linear map k[0] — M. The proof of
the existence of a cyclic vector for M is reproduced from the paper [154] by
N. Katz.

Choose an element h € k with A’ # 0 and define 6 = %8. Then k[0] = D is
also equal to k[6]. Further 6h = hd + h and h* = h*§ + khF for all k € Z. Take
an e € M. Then De is the subspace of M generated over k by e, de, 6%, . ...
Let De have dimension m. If m = n then we are finished. If m < n then we
will produce an element é = e + Ah* f, where A € Q and k € Z and f € M \ De,
such that dim Dé > m. This will prove the existence of a cyclic vector. We will
work in the exterior product A1 M and consider the element

E:=¢EN8(E)A---NS"(&) € AT M.

The multilinearity of the A and the rule 6h* = h*§+kh* lead to a decomposition
of E of the form

E= Y (A")* Kwayp), with wep € A™T M independent of A, k.
0<a<m 0<b

Suppose that E is zero for every choice of A and k. Fix k. For every A € Q
one finds a linear dependence of the m + 1 terms ), kbwmb. One concludes
that for every a the term ., kPwq is zero for all choices of k € Z. The
same argument shows that each w,p = 0. However, one easily calculates that
Wim =eAd(e)A---Ad™ 1 (e) A f. This term is not zero by our choice of f. O

There are other proofs of the existence of a cyclic vector, relevant for algo-
rithms. These proofs produce a set S C M of small cardinality such that S
contains a cyclic vector. We will give two of those statements. The first one is
due to Kovacic [167] (with some similarities to Cope [72, 73]).

Lemma 2.10 Let M be a differential module with k-basis {e1,...,e,} and let
M, .-, Mn € k be linearly independent over C, the constants of k. Then there
exist integers 0 < ¢;; < n, 1 <i,j < n, such that m = Y., a;e; is a cyclic
vector for M, where a; = E;LZI ¢ijn- In particular, if z € k, 2/ # 0, then
a; = Z;.l:l ci,jzj*1 is, for suitable c; ; as above, a cyclic vector.

The second one is due to Katz [154].

Lemma 2.11 Assume that k contains an element z such that z’ = 1. Let M
be a differential module with k-basis {eg,...,en—1}. There exists a set S C C
with at most n(n — 1) elements such that if a ¢ S the element

(z —a)l ! J . .
—_— Z(—l)p 0P (ej—p) is a cyclic vector.

!
=0 7 =0 P
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We refer to the literature for the proofs of these and to [80, 143, 236, 6, 30,
31]. For a generalization of the cyclic vector construction to systems of nonlinear
differential equations, see [70].

2.2 Constructions with Differential Modules

The constructions with vector spaces (direct sums, tensor products, symmet-
ric powers etc) extend to several other categories. The first interesting case
concerns a finite group G and a field F. The category has as objects the repre-
sentations G in finite dimensional vector spaces over F. A representation (p, V')
is a homomorphism p : G — GL(V'), where V is a finite dimensional vector space
over F'. The tensor product (p1, V1) ® (p2, V2) is the representation (p3, V3) with
Vs = V1 @p Vo and ps given by the formula p3(v1 ® va) = (p1v1) ® (p2v2). In a
similar way one defines direct sums, quotient representations, symmetric powers
and exterior powers of a representation.

A second interesting case concerns a linear algebraic group G over F. A rep-
resentation (p, V') consists of a finite dimensional vector space V over F' and
a homomorphism of algebraic groups over F, p : G — GL(V). The formulas
for tensor products and other constructions are the same as for finite groups.
This example (and its extension to affine group schemes) is explained in the
appendices.

A third example concerns a Lie algebra L over F. A representation (p,V)
consists of a finite dimensional vector space V over F' and an F-linear map
p : L — End(V) satisfying the property p([4, B]) = [p(A), p(B)]. The tensor
product (p1,V1) ® (p2,Va) = (p3, V3) with again V3 = V4 @ Vo and with ps
given by the formula p3(v1 ® v2) = (p1v1) ® v2 + v1 ® (p2v2).

As we will see, the above examples are related with constructions with dif-
ferential modules. The last example is rather close to the constructions with
differential modules.

The category of all differential modules over k will be denoted by Diff,. Now we
start the list of constructions of linear algebra for differential modules.

The direct sum (My,01) ® (Ma,02) is (Ms,03), where M3 = M; ® My and
83(m1 D mg) =0 (ml) &) 82(m2).

A (differential) submodule N of (M,d) is a k-vector space N C M such that
O(N) C N. Then N = (N, d|n) is a differential module.

Let N be a submodule of (M,d). Then M /N, provided with the induced map
0, given by d(m + N) = d(m) + N, is the quotient differential module .

The tensor product (My,01) ® (Mz,ds) is (M3, 05) with M3 = M; ®j, M and 05
is given by the formula d3(m; ® ma) = (01m1) ® M2 + my ® (G2ma). We note
that this is not at all the tensor product of two k[0]-modules. In fact, the tensor
product of two left k[0]-modules does not exist since k[J] is not commutative.

A morphism ¢ : (My,01) — (Mz,ds) is a k-linear map such that ¢o 9, = 020 ¢.
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If we regard differential modules as special left k[0]-modules, then the above
translates into ¢ is a k[0]-linear map. We will sometimes write Homyg) (M1, Ma)
(omitting &1 and Os in the notation) for the C-vector space of all morphisms.
This object is not a differential module over k, but it is Mor(M;, Ms) the C-
linear vector space of the morphisms in the category Diff.

The internal Hom, Homy((M7,0,), (M2, 02)) of two differential modules is the
k-vector space Homy (M, M3) of the k-linear maps form M; to My provided
with a 0 given by the formula (9¢)(m1) = €(01m1) — 02(¢(m1)). This formula
leads to the observation that

Homya) (M1, M2) is equal to {£ € Homy(My, M3)| 0f = 0}.

In particular, the C-vector space Mor(My, M) = Homyg) (M1, Ms) has dimen-
sion at most dimg M; - dimy M.

The trivial differential module of dimension 1 over k is again denoted by 1 or
1. A special case of internal Hom is the dual M™* of a differential module M
defined by M* = Homy (M, 1}).

Symmetric powers and exterior powers are derived from tensor products and
the formation of quotients. Their structure can be made explicit. The exterior
power AYM, for instance, is the k-vector space AY M provided with the operation
0 given by the formula d(mi A--- Amg) = Z?zl my A A(Om) Ao Amg.

The next collection of exercises presents some of the many properties of the
above constructions and their translations into the language of differential op-
erators and matrix differential equations.

Exercises 2.12 Properties of the constructions
1. Show that the tensor product of differential modules as defined above is
indeed a differential module .

2. Show that, for a differential module M over k, the natural map M — M™**
is an isomorphism of differential modules.

3. Show that the differential modules Homy (M7, M) and M ® My are “natu-
rally” isomorphic.

4. Show that the k-linear map M* @ M — 1y, defined by £ @ m = £(m), is
a morphism of differential modules. Conclude that M* ® M has a non trivial
submodule if dimy M > 1.

5. Suppose that M is a trivial differential module. Show that all the construc-
tions of linear algebra applied to M produce again trivial differential modules.
Hint: Show that M™* is trivial; show that the tensor product of two trivial
modules is trivial; show that any submodule of a trivial module is trivial too.

6. Suppose that M = k[0]/k[0]L. Show that M* = k[0]/k[0]L*. Here L — L*
is the involution defined in Exercise 2.2. Hint: Let L have degree n. Show that
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the element e € Homy,(k[0]/k[0]L, 1%) given by e(Z:.:Ol b;0") = b,_1 is a cyclic
vector and that L*e = 0.

7. The differential module My, associated to the differential operator L.
Consider an operator L = 9" + a,,_10™" ! + -+ + ag € k[d]. As in Section 1.2,
one associates to L a matrix differential equation Y/ = A;Y, where A, is the
companion matrix

0 1 0 0 0
0 0 1 0 0
A =
0 0 0 0 1
—ag —@1 .ee e . —Qp—1

This matrix differential equation induces a differential module M and we call
this the differential module associated with the operator L.

(a) Prove that the differential modules M, and (k[0]/k[0]L)* are isomorphic.
(b) Operators of the same type.

Let Ly, Ly € k[0] by monic of degree n. Prove that My, and My, are isomorphic
if and only if there are elements R, S € k[0] of degree < n such that L1 R = SLs
and GCRD(R, Ls) = 1.

Hint: Describe an isomorphism ¢ : k[0]/k[0]L1 — k[0]/k[0]L2 by an operator
of degree < m representing the element ¢(1) € k[0]/k[0]Lo.

In the classical literature, operators Li, Lo such that My, = My, are called
of the same type . This concept appears in the 19! Century literature (for
references to this literature as well as more recent references, see [270]).

(c) Prove that every matrix differential equation is equivalent to an equation of
the form Y' = ALY.

8. The matrix differential of the dual M*.

Let M be a differential equation and let 3y’ = Ay be an associated matrix
differential equation by the choice of a basis {ei,...,e,}. Find the matrix
differential equation for M* associated to the dual basis {e},..., e} of M*.

9. Extensions of differential fields.

Let K O k be an extension of differential fields. For any differential module
(M,9) over k one considers the K-vector space K ®; M. One defines 0 on
K ®r M by d(a®@m) =d @m+ a® (0m). Show that this definition makes
sense and that (K ®; M, ) is a differential module over K. Prove that the
formation M +— K ®; M commutes with all constructions of linear algebra.

10. The characterization of the “internal hom”.

For the reader, familiar with representable functors, this exercise which shows
that the “internal hom” is derived from the tensor product, might be interesting.
Consider two differential modules My, Ms. Associate to this the contravariant
functor F from Diff;, to the category of sets given by the formula F(T') =
Homys) (T ® My, Mz). Show that F is a representable functor and that it
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is represented by Homy (M7, Ms). Compare also the definition of Tannakian
category given in the appendices. O

Now we continue Exercise 2.12 part 7. and the set of morphisms between
two differential modules in terms of differential operators. An operator L € k[0]
is said to be reducible over k if L has a nontrivial right hand factor. Otherwise
L is called irreducible. Suppose that L is reducible, say L = L Ls. Then there
is an obvious exact sequence of differential modules

0— D/DL, 22 D/DL Ly — D/DL;y — 0,

where the first non trivial arrow is multiplication on the right by Ly and the
second non trivial arrow is the quotient map. In particular, the monic right
hand factors of L correspond bijectively to the quotient modules of D/DL (and
at the same time to the submodules of D/DL).

Proposition 2.13 For Li,Ls € k[0], one defines E(L1, La) to consist of the
R € k[0] with deg R < deg Lo, such that there exists an S € k[0] with L1R =
SLy.

(1) There is a natural C-linear bijection between (L1, La) and

Homyqo) (£[0)/k[0) L1, £[0)/k[0]L2).

(2) E(L,L) or (L) is called the (right) Eigenring of L. This eigenring E(L)
is a finite dimensional C-subalgebra of Endy (k[0]/k[0]L), which contains C.id.
If L is irreducible and C' is algebraically closed, then E(L) = Clid.

Proof. (1) A k[0]-linear map ¢ : k[0]/k[0]L1 — k[0]/k[O]L lifts uniquely to
a k[0]-linear map v : k[0] — k[0] such that R := (1) has degree < deg Lo.
Further v (k[0]L1) C k[0]L2. Hence (L1) = L1R € k[0]L and L1 R = SLy for
some S € k[0]. On the other hand, an R and S with the stated properties deter-
mine a unique ¢ which induces a k[0]-linear map ¢ : k[0]/k[0]L1 — k[0]/k[0]Ls.
(2) The first statement is obvious. The kernel of any element of £(L) is a sub-
module of k[0]/k[0]L. If L is irreducible, then any nonzero element of £(L) is
injective and therefore also bijective. Hence £(L) is a division ring. Since C' is
algebraically closed, one has £(L) = C. a

Exercise 2.14 The Figenring.

The eigenring provides a method to obtain factors of a reducible operator, see
[136, 270] and Section 4.2. However, even if C is algebraically closed, a reducible
operator L may satisfy £(L) = C.id. In this case no factorization is found. The
aim of this exercise is to provide an example.

1. The field C of the constants of k is supposed to be algebraically closed. Let
M = k[0]/k[O]L be a differential module over k of dimension 2. Prove that
E(L) # C.id if and only if M has a submodules Ny, Ny of dimension 1 such
that Ny and M/N; are isomorphic. Hint: £(L) # C.id implies that there is a
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morphism ¢ : M — such that Ny := ker(¢) and N := im(¢) have dimension 1.

2. Take k = C(z),2’ =land L = O+ 1+ 271)(0 —1). Show that M :=
k[0]/k[O]L has only one submodule N of dimension 1 and that N and M/N are
not isomorphic.

Hint: The submodules of dimension 1 correspond to right hand factors 0 — u
of L, with u € k. Perform Kovacic’s algorithm to obtain the possibilities for u.
This works as follows (see also Chapter 4). Derive the equation u? + z71u +
u' — (14 271) = 0. Expand a potential solution u at 2 = 0 and z = o as a
Laurent series and show that « has no poles at z = 0 and z = co. At any point
c € C*, the Laurent series of u has the form _= +--- with e = 0,1. Calculate
that u = 1 is the only possibility. |

We end this section with a discussion of the “solution space” of a differential
module. To do this we shall need a universal differential extension field of a field
k. This is defined formally (and made explicit in certain cases) in Section 3.2
but for our purposes it is enough to require this to be a field F D k with the
same field of constants of k such that any matrix differential equation Y’ = AY
over k has a solution in GL,(F). Such a field can be constructed as a direct
limit of all Picard-Vessiot extensions of k and we shall fix one and denote it by
F. We note that Kolchin [161] uses the term universal extension to denote a
field containing solutions of ALL differential equations but our restricted notion
is sufficient for our purposes.

Definition 2.15 Let M be a differential module over k with algebraically closed
constants C' and F a universal differential extension of k. The covariant solution
space of M is the C-vector space ker(9, F ® M). The contravariant solution
space is the C-vector space Homyg) (M, F). ]

The terms “covariant” and “contravariant” reflect the following properties.
Let ¢ : M7 — Ms be a morphism of differential modules. Then there are induced
homomorphisms of C-vector spaces ¢, : ker(9, F ® M1) — ker(0,F ®j Ma)
and ¢* : Homyg) (M2, F) — Homyg) (M1, F). Let 0 — My — My — Mz — 0
be an exact sequence of differential modules, then so is

0 — ker(9, F ® M;) — ker(0,F @i Mz) — ker(0, F ® Ms) — 0.
This follows easily from the exactness of the sequence
0= FRx My — F®p My — F Q@ M3 — 0

and the observation that dime ker(9, F @, M) = dimy M for any differential
module M over k. The contravariant solution space induces also a contravariant
exact functor from differential modules to finite dimensional C-vector spaces.

Lemma 2.16 Let M be a differential modules with basis eq, . . ., e, and let Oe; =
=2 ajej and A= (a;;). Then
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1. ker(9, F @ M) ~{y € F" | v = Ay}.
2. There are natural C-vector space isomorphisms

Homyg) (M, F) =~ Homg(F @k M,F) =~ Homc(ker(d, F @ M),C).

3. Let e € M and let L € k[J] be its minimal monic annihilator. Let W = {y €
F | L(y) = 0}. The map Homy5(M,F) — W C F, given by ¢ — ¢(e), is
surjective.

Proof. 1. The basis eq,..., e, yields an identification of F ® M with F™ and
of O with the operator % — Aon F".

2. Any k[0]-linear map ¢ : M — F extends to an F[J]-linear map F @, M — F.
This gives the first isomorphism. Any ¢ in Homzs(F ®x M,F) defines by
restriction a C-linear map ¢ : ker(9, F®rM) — C. The map ¢ — ¢ is a bijection
since the natural map F ®¢ ker(9, F ® M) — F @i M is an isomorphism.

3. The natural morphism Homys (M, F) — Homys (k[0]e, F) is surjective,
since these spaces are contravariant solution spaces and k[0]e is a submodule of
M. The map Homyg)(k[0]e, F) — W, given by ¢ — ¢(e), is bijective since the
map k[0]/k[0]L — k[0]e (with 1 — e) is bijective. 0

2.3 Constructions with Differential Operators

Differential operators do not form a category where one can perform construc-
tions of linear algebra. However, in the literature tensor products, symmetric
powers etc. of differential operators are often used. In this section we will ex-
plain this somewhat confusing terminology and relate it with the constructions
of linear algebra on differential modules.

A pair (M, e) of a differential module M and a cyclic vector e € M deter-
mines a monic differential operator L, namely the operator of smallest degree
with Le = 0. Two such pairs (M;,e;), i = 1,2 define the same monic operator
if and only if there exists an isomorphism v : M7 — My of differential modules
such that ie; = es. Moreover, this ¢ is unique. For a monic differential op-
erator L one chooses a corresponding pair (M,e). On M and e one performs
the construction of linear algebra. This yields a pair (constr(M), constr(e)).
Now constr(L) is defined as the monic differential operator of minimal degree
with constr(L)constr(e) = 0. This procedure extends to constructions involving
several monic differential operators. There is one complicating factor, namely
constr(e) is in general not a cyclic vector for constr(M).

There is another interpretation of a monic differential operator L. Let, as
before, F O k denote a fixed universal differential field. One can associate to
L its solution space Sol(L) := {y € F|L(y) = 0}. This space determines L.
Indeed, suppose that L = 0" + a,,_190" "' + -+ + a19 + ap. Then Sol(L) has
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dimension n over C. Let y1,...,y, be a basis of Sol(L). Then a,_1,...,a0
satisfy the linear equations

y apay Y e agyM)

+apy; =0fori=1,...,n.

The wronskian matrix of y1, . .., y, has non-zero determinant and thus the equa-
tions determine a,_1,...,a9. Let Gal(F/k) denote the group of the differen-
tial automorphisms of F/k, i.e., the automorphisms of the field F which are
k-linear and commute with the differentiation on F. For a Picard-Vessiot ex-
tension K D k the group Gal(K/k) of differential automorphisms of K/k has
the property that KGa(K/k) — L The universal differential extension F is the
direct limit of all Picard-Vessiot field extensions of k. It follows from this that
FGallF/k) = k. This leads to the following result.

Lemma 2.17 Let V' C F be a vector space over C of dimension n. There ezists
a (unique) monic differential operator L € k[0] with Sol(L) = V if and only if
V is (set wise) invariant under Gal(F/k).

Proof. As above, one observes that any V' determines a unique monic differ-
ential operator L € F[J] such that V = {y € F| L(y) = 0}. Then V is invariant
under Gal(F/k) if and only if L is invariant under Gal(F/k). The latter is
equivalent to L € k[0]. O

We note that the lemma remains valid if F is replaced by a Picard-Vessiot field
extension K D k and Gal(F/k) by Gal(K/k).

This leads to another way, omnipresent in the literature, of defining a con-
struction of linear algebra to a monic differential operator L. One applies this
construction to Sol(L) and finds a new subspace V' of F. This subspace is finite
dimensional over C' and invariant under G. By the above lemma this determines
a new monic differential operator. This procedure extends to constructions with
several monic differential operators.

The link between these two ways of making new operators is given by the
contravariant solution space. Consider a monic differential operator L and a
corresponding pair (M, e). By Definition 2.15 and Lemma 2.16, Sol(L) is the
image of the contravariant solution space Homy g (M, F) of M under the map
¢ — ¢(e). We will make the above explicit for various constructions of linear
algebra. Needless to say that this section is only concerned with the language
of differential equations and does not contain new results.

Tensor Products. Let (M;,e;), i = 1,2 denote two differential modules with
cyclic vectors. The tensor product construction is (M ® Ma, e1 ®e2). In general
e1 ® eg need not be a cyclic vector of My ® Ms (see Exercise 2.21). Our goal
is to describe the contravariant solution space of M7 ® My, the minimal monic
annihilator of e; ® e; and its solution space in F.
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Lemma 2.18 The canonical isomorphism

Homy, o) (M1, F) @ Homys) (M2, F) ~ Homye) (M ® Ma, F)

is described by ¢1 ® P2 — P1 @ P2 where d1 @ Ppa(Mm1 @ M2) 1= P(m1)p2(ma2).

Proof. The canonical isomorphism ¢ : (F ®, M) ®F (F @ Ma) — F Qy,
(M ® Ms) of differential modules over F is given by (f1 ® m1) ® (f2 ® ma) —
f1f2 ®mq ®my. This ¢ induces an isomorphism of the covariant solution spaces

ker(9, F @, M1) ®c ker(9, F @i Ma) — ker(0, F @ (M1 ®j Ma)).

We write again ¢ for this map. By taking duals as C-vector spaces and after
replacing ¢ by ¢! one obtains the required map (¢=!)* (c.f., Lemma 2.16). The
formula for this map is easily verified. o

Corollary 2.19 Let the monic differential operators L; correspond to the pairs
(M;,e;) fori=1,2. Let L be the monic operator of minimal degree such that
L(ey ® e2) = 0. Then the solution space of L in F, i.e., {y € F|L(y) = 0},
is equal to the image of the contravariant solution space Homys (My @ Ma, F)
under the map ¢ — P(e1®ez). In particular, L is the monic differential operator
of minimal degree such that L(y1y2) = 0 for all pairs y1,y2 € F such that
Li(y1) = La(y2) = 0.

Proof. Apply Lemma 2.16.3. to e; ® ea. The image of the contravariant
solution space of M; ® My in F under the map ¢ — ¢(e1 ® ez) is generated as
vector space over C' by the products ¢1(e1)p2(e2), according to Lemma 2.18.
O

It is hardly possible to compute the monic operator L of minimal degree
satisfying L(e; ® e3) = 0 by the previous corollary. Indeed, F is in general not
explicit enough. The obvious way to find L consists of computing the elements
0"(e1 ® eg) in My ® My and to find a linear relation over k between these
elements. In the literature one finds the following definition (or an equivalent
one) of the tensor product of two monic differential operators.

Definition 2.20 Let L; and Lo be two differential operators. The minimal

monic annihilating operator of 1 ® 1 in k[0]/k[0]L1 ® k[0]/k[0] Lz is the tensor
product Ly ® Lo of L1 and Lo.

Exercise 2.21 Prove that 9% @ 92 = 9*. O

Similar definitions and results hold for tensor products with more than two
factors.

Symmetric Powers. The d* symmetric power sym?M of a differential module
is a quotient of the ordinary d-fold tensor product M ® --- ® M. The image
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of m; ® mso ® --- ® my in this quotient will be written as mimsg---mg. In
particular, m¢ denotes the image of m @ --- ® m. This construction applied to
(M, e) produces (sym?M, e?).

Lemma 2.22 Let M be a differential module over k. The canonical isomor-
phism of contravariant solution spaces

symd(Homkw] (M, F)) — Homyg) (sym?M, F)

1s given by the formula ¢p1¢2 - - - g — Pp1P2 - - - dq, where

192+ - pa(mama - - -mq) = ¢(mi1)d2(mz) - - - pa(ma).
The proof is similar to that of 2.18. The same holds for the next corollary.

Corollary 2.23 Let L correspond to the pair (M,e). The image of the map
¢+ ¢(ed) from Homy, ) (sym?M, F) to F is the C-vector space generated by
{fife---fa | L(fi) = 0}.

Definition 2.24 Let L be a monic differential operator and let e = 1 be the
generator of k[0]/k[0]L. The minimal monic annihilating operator of e? in
sym?(k[0]/k[O]L) is the d** symmetric power Sym®(L) of L. O

Exercise 2.25

(1) Show that Sym?(9°) = 9°.

(2) Show that Sym?(L) has degree d+1 if L has degree 2. Hint:Proposition 4.26.
O

Ezterior Powers. One associates to a pair (M, e) (with e a cyclic vector) the
pair (ATM,e A de A--- A0 Le).

Definition 2.26 Let L be a differential operator and let e = 1 be the generator
of k[0]/k[0]L. The minimal monic annihilating operator of e A de A ... A 9% te
in AY(k[0]/Kk[O]L) is the d'* exterior power AY(L) of L. . O

We denote by S; the permutation group of d elements. Similar to the previous
constructions one has

Lemma 2.27 Let M be a differential module over k. The natural isomorphism
of contravariant solution spaces

AdCHOInk[a] (M, .7:) — Homk[a] (/\%M, .7:)
is given by g1 A+ Ndg > d1 A+ A g, where 1 A+ A pa(my A+ Amg) :=

Z sgn(m)d1 (M (1)) P2(Mr(2)) - - - Pa(Mr(a))-

TESy
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Note that for e € M, ¢1 ..., ¢4 € Homyg) (M, F) and y; := ¢i(e), we have

1 Ya
- yiooee Yy
PN NpgleNden--- NI Le) = det : :
-1 -1
SO0y
= wr(yi,..-,Yd)

One therefore has the following

Corollary 2.28 Let e be a cyclic vector for M with minimal annihilating op-
erator L. Let W C F be the C-span of {wr(y1,...,ya) | L(yi) = 0}. Then
the map ¢ — ¢(e ANde A ... N9 te) defines a surjection of Homyg (ACM, F)
onto W and W is the solution space of the minimal annihilating operator of
eNden... N0 te.

The calculation of the d** exterior power of L is similar to the calculations in
the previous two constructions. Let v = e Ade A --- A 9% te. Differentiate v (Z)
times and use L to replace occurrences of 37, j > n with linear combinations

of Oe?, i < n. This yields a system of (Z) + 1 equations

dv = Z ai, g e A\Dde (2.1)

JZ(jla"'?jd)
0<jii<-<ja<n-1

in the (Z) quantities d71e A - - - A e with ai, g € k. These equations are linearly
dependent and a linear relation among the first ¢ of these (with ¢ as small as
possible) yields the exterior power.

We illustrate this with one example. (A more detailed analysis and simplification
of the process to calculate the associated equations is given in [58], [60].)

Example 2.29 Let L = 93 + 420 + a10 + ao, a; € k and M = k[0]/k[0]L.
Letting e = 1, we have that A2M has a basis {9°A97 | 1 <i < j < 2}. We have

v = eA0de
v = end?e
0*v = eA(—axd*e—ai0e —ge)+ de A D%

Therefore (02 + a2d + a1)v = de A 8%e and so (02 + azd + a1)v = de A
(—a20%e — a;0e — ape). This implies that the minimal annihilating operator of
vis (04 a2)(9% + a20 + a1) — ag. O

It is no accident that the order of the (n —1)%¢ exterior power of an operator
of order n is also n. The following exercise outlines a justification.
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Exercise 2.30 Ezxterior powers and adjoint operators

Let L = 8" + ap_10™ Y + ... + qp with a; € k. Let K be a Picard-Vessiot
extension of k associated with L and let {yi,...,y,»} be a fundamental set of
solutions of L(y) = 0. The set {u1,...,u,} where u; = wr(yr, ..., Gi,---,Yn}
spans the solution space of A"1(L). The aim of this exercise is to show that
the set {u1,...,u,} is linearly independent and so A"~ !(L) always has order n.
We furthermore show that the operators A»~1(L) and L* (the adjoint of L, see
Exercise 2.1) are related in a special way (c.f., [254] §167-171).

1. Show that v; = w;/wr(yi,...,yn) satisfies L*(v;) = 0. Hint: Let Ay be the
companion matrix of L and W = Wr(yy,...,yn). Since W' = AW, we have
that U = (W17 satisfies U' = —ATU. Let (fo,..., fn1)T be a column of U.
Note that f,,—1 = v; for some 7. One has (c.f., Exercise 2.1),

—fr1Fan-1fa1 = fa-2
—fi+aifoo1r = fiox 1<i<n-2
_f(/)+a0fn—1 = 0.
and so
_f'r/z—l + anflfnfl = fn72
(_1)2fr/:_1 - anflfylL_l + an72fn71 = fn73
D"+ ()" a1 fa) "V 4 agfaa = 0

This last equation implies that 0 = L*(f,,) = L*(v;).

2. Show that wr(vy,...,v,) # 0. Therefore the map z — z/wr(y1,...,yn)
is an isomorphism of the solution space of A" 1(L) onto the solution space
of L* and, in particular, the order of A"~*(L) is always n. Hint: Standard
facts about determinants imply that Y., v;y/ =0 for j =0,1,...,n — 2 and
Z?:l viygnfl) = 1. Use these equations and their derivatives to show that
WT(UD"'7Un)Wr(y17"'7yn):1' U

Exercise 2.31 Show that A%2(9%) = 8°. Therefore the d*" exterior power of an
operator of order n can have order less than (Z) Hint: Show that the solution
space of A2(9*) is the space of polynomials of degree at most 4. o

We note that in the classical literature (c.f., [254], §167), the d*"* exterior power
of an operator is referred to as the (n — d)*" associated operator.

In connection with Chapter 4, a generalization of A?(L) is of interest. This
generalization is present in the algorithms developed by Tsarev, Grigoriev et
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al. which refine Beke’s algorithm for finding factors of a differential operator.
Let T = (i1,...,44), 0 < i1 < ...<ig<n-—1. Let e=11n k[0]/k[0]L. We
define the d'" eaterior power of L with respect to T, denoted by A%(L), to be the
minimal annihilating operator of dte A---Ad%e in A4(k[0]/k[0]L). One sees as
above that the solution space of A4(L) is generated by {wz(y1,...,ya) | L(y;) =
0} where wz(y1,...,yq4) is the determinant of the d x d matrix formed from the
rows i1 + 1,...9q + 1 of the n X d matrix

Y1 Y2 Yd
i vy Uy
3 SR
IS SO

This operator is calculated by differentiating the element v = d%1e A --- A Oe
as above. The following lemma is useful.

Lemma 2.32 Let k and L be as above and assume that A%(L) has order v =
(Z) For any I as above, there exist bz o,...,bz -1 € k such that

v—1
wr(yn,. . ya) = > brjwr(yy,. .., ya)
7=0

for any solutions y1,...,yq of L(y) = 0.

Proof. If AY(L) has order v, then this implies that the system of equations
(2.1) has rank v. Furthermore, dte A --- A O%e appears as one of the terms
in this system. Therefore we can solve for d%e A --- A O%e as a linear function
E;’;()l bLi@iv ofv=eAdeA--- NI e and its derivatives up to order v — 1.
This gives the desired equation. m]

We close this section by noting the MAPLE V contains commands in its
DEtools package to calculate tensor products, symmetric powers and exterior
powers of operators.

2.4 Differential Modules and Representations

Throughout this section k& will denote a differential field with algebraically closed
subfield of constants C.

We recall that Diff; denotes the category of all differential modules over
k. Fix a differential module M over k. For integers m,n > 0 one defines the
differential module M =M ®--- M @ M*®---® M*, i.e., the tensor product
of n copies of M and m copies of the dual M* of M. For m = n = 0 the
expression M is supposed to mean 1 = 1, the trivial 1-dimensional module
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over k. A subquotient of a differential module N is a differential module of the
form N1 /Ng with No C Ny C N submodules. The subcategory {{M}} of Diff
is defined by: The objects of this category are the subquotients of finite direct
sums of the M*. For objects A, B of {{M}} one defines Hom(A, B) to be
Homys) (A, B). Thus Hom(A, B) has the same meaning in {{M }} and in Diffy.
This is usually called “{{M}} is a full subcategory of Diffy.” It is easily seen
that {{M}} is the smallest full subcategory of Diff;, which contains M and is
closed under all operations of linear algebra (i.e., direct sums, tensor products,
duals, subquotients).

For a linear algebraic group G over C' one considers the category Repr, which
consists of the representations of G on finite dimensional vector spaces over C'
(see the beginning of Section 2.2 and the appendices). A finite dimensional
vector space W over C together with a representation p : G — GL(W) is also
called a G-module. In the category Repr, one can also perform all operations
of linear algebra (i.e., direct sums, tensor products, duals, subquotients). The
strong connection between the differential module M and its differential Galois
group G is given in the following theorem.

Theorem 2.33 Let M be a differential module over k and let G denote its
differential Galois group. There is an C-linear equivalence of categories

S :{{M}} — Reprg,

which is compatible with all constructions of linear algebra.

Proof. We start by explaining the terminology. First of all, S is a functor.
This means that S associates to every object A of the first category an object
S(A) of the second category. Likewise, S associates to every morphism f €
Hom(A, B) of the first category a morphism S(f) € Hom(S(A),S(B)) of the
second category. The following rules should be satisfied:

S(14) = 154 and S(f 0 g) = S(f) o S(g).

The term C-linear means that the map from Hom(A, B) to Hom(S(A4), S(B)),
given by f +— S(f), is C-linear. The term “equivalence” means that the map
Hom(A, B) — Hom(S(A),S(B)) is bijective and that there exists for every
object B of the second category an object A of the first category such that S(A)
is isomorphic to B. The compatibility of S with, say, tensor products means that
there are isomorphisms is g : S(A® B) — S(A4) ® S(B). These isomorphism
should be “natural” in the sense that for any morphisms f : A — A’, g: B — B’
the following diagram is commutative.

saeB) Y swen)
1A, B iar, g/
! !
S(f)®S(g)

S(A) ® S(B) — S(A") ® S(B')

Thus the compatibility with the constructions of linear algebra means that S
maps a construction in the first category to one object in the second category
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which is in a “natural” way isomorphic to the same construction in the second
category. For the S that we will construct almost all these properties will be
obvious.

For the definition of S we need the Picard-Vessiot field K D k of M. The
differential module K ®; M over K is trivial in the sense that there is a K-basis
e1,...,eq of K ®; M such that de; = 0 for all 7. In other words, the obvious
map K ®c¢ ker(9, K @, M) — K ®;, M is a bijection. Indeed, this is part of the
definition of the Picard-Vessiot field. Also every K ®; M, is a trivial differential
module over K. We conclude that for every object N of {{M}} the differential
module K ®j, N is trivial. One defines S by S(N) = ker(9, K ®; N). This
object is a finite dimensional vector space over C. The action of G on K ® N
(induced by the action of G on K) commutes with 9 and thus G acts on the
kernel of 0 on K ®; N. From Theorem 1.27 one easily deduces that the action
of G on ker(9, K ®, N) is algebraic. In other words, S(NV) is a representation of
G on a finite dimensional vector space over C. Let f : A — B be a morphism in
{{M}}. Then f extends to a K-linear map 1x ® f : K ® A — K ® B, which
commutes with 0. Therefore f induces a C-linear map S(f) : S(4) — S(B)
with commutes with the G-actions.

We will omit the straightforward and tedious verification that S commutes
with the constructions of linear algebra. It is not a banality to show that
Hom(A, B) — Hom(S(A),S(B)) is a bijection. Since Hom(A, B) is equal to
ker(0, A* ® B) = Hom(1y, A* ® B) we may suppose that A = 1 and that B
is arbitrary. Clearly S(1;) = 1, where the latter is the 1-dimensional trivial
representation of G. Now Hom(1y, B) is equal to {b € B| 9(b) = 0}. Further
Hom(1¢, S(B)) is equal to {v € ker(9, K ®; B)| gv = v for all g € G}. Since
K% = k, one has (K ®; B)® = B. This implies that {b € B| b = 0} —
Hom(1¢g, S(B)) is a bijection.

Finally we have to show that any representation B of G is equivalent to the
representation S(A) for some A € {{M}}. This follows from the following fact
on representations of any linear algebraic group G (see [301] and the appendices):

Suppose that V is a faithful representation of G (i.e., G — GL(V) is injec-
tive). Then every representation of G is a direct sum of subquotients of the
representations V@ --- @V V*®. .- V*.

In our situation we take for V' the representation S(M) which is by definition
faithful. Since S commutes with the constructions of linear algebra, we have
that any representation of G is isomorphic to S(IV) for some N which is a direct
sum of subquotients of the M*. In other words N is an object of {{M}}. O

Remarks 2.34

(1) In the terminology of Tannakian categories, Theorem 2.33 states that the
category {{M}} is a neutral tannakian category and that G is the corresponding
affine group scheme (see the appendices).

(2) The functor S has an “inverse”. We will describe this inverse by constructing
the differential module N corresponding to a given representation W. One
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considers the trivial differential module K ®¢c W over K with 0 defined by
0(1 ® w) = 0 for every w € W. The group G acts on K ®c W by g(f @ w) =
g(f)® g(w) for every g € G. Now one takes the G-invariants N := (K ®@¢ W)%.
This is a vector space over k. The operator 9 maps N to N, since d commutes

with the action of G. One has now to show that IV has finite dimension over k,
that N is an object of {{M}} and that S(N) is isomorphic to W.

We know already that W = S(A) for some object A in {{M}}. Let us write
W = S(A) for convenience. Then by the definition of S one has K ®¢c W =
K ®) A and the two objects have the same G-action and the same 9. Then
(K ®c W)% = A and this finishes the proof.
(3) Let H be a closed normal subgroup of G. Choose a representation W of G
such that the kernel of G — GL(W) is H. Let N be an object of {{M}} with
S(N) = W. The field K contains a Picard-Vessiot field L for N, since K @3 N
is a trivial differential module over K. The action of the subgroup H on L is the
identity since by construction the differential Galois group of N is G/H. Hence
L ¢ K", Equality holds by Galois correspondence, see 1.34 part 1. Thus we
have obtained a more natural proof of the statement in loc.cit. part 2., namely
that K is the Picard-Vessiot field of some differential equation over k. o

Corollary 2.35 Let L € k[0] be a monic differential operator of degree > 1. Let
K be the Picard-Vessiot field of M := k[0]/k[0]L and G its differential Galois
group. Put V = ker(0, K ®y M) (This is the covariant solution space of M ).
There are natural bijections between:

(a) The G-invariant subspaces of V.

(b) The submodules of M.

(¢) The monic right hand factors of L.

The only thing to explain is the correspondence between (b) and (c). Let e = 1
be the cyclic element of M and let N be a submodule of M. There is a unique
monic operator R of minimal degree such that Re € N. This is a right hand
factor of L. Moreover M/N = D/DR (compare the exact sequence before
Proposition 2.13). Of course R determines also a unique left hand factor of L.
We note that the above corollary can also be formulated for the contravariant
solution space Homy,g (M, K).

We recall that an operator L € k[0] is reducible over k if L has a non trivial
right hand factor. Otherwise L is called irreducible. The same terminology is
used for differential equations in matrix form or for differential modules or for
representations of a linear algebraic group over C.

Exercise 2.36 Show that a matrix differential equation is reducible if and only
if it is equivalent to an equation Y’ = BY, B € M, (k) where B has the form

(B 0
B - (32 Bg).
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Definition 2.37 A differential module M is called completely reducible or semi-
simple if there exists for every submodule N of M a submodule N’ such that
M=Na@N'. o

The same terminology is used for differential operators and for representations
of a linear algebraic group G over C. We note that the terminology is some-
what confusing because an irreducible module is at the same time completely
reducible.

A G-module W and a G-submodule W7 has a complementary submodule
if there is a G-submodule W5 of W such that W = Wy @ W,. Thus a (fi-
nite dimensional) G-module V' is completely reducible if every G-submodule has
a complementary submodule. This is equivalent to V being a direct sum of
irreducible submodules (compare with Exercise 2.38 part (1)).

The wunipotent radical of a linear algebraic group G is the largest normal

unipotent subgroup G, of G (see [141] for definitions of these notions). The
group G is called reductive if G, is trivial. We note that for this terminology G
is reductive if and only G° is reductive.
When G is defined over an algebraically closed field of characteristic zero, it is
known that G is reductive if and only if it has a faithful completely reducible
G-module (c.f., the Appendix of [32]). In this case, all G-modules will be com-
pletely reducible.

Exercise 2.38 Completely reducible modules and reductive groups.
(1) Show that M is completely reducible if and only if M is a direct sum of
irreducible modules. Is this direct sum unique?

(2) Let M be a differential module. Show that M is completely reducible if and
only if its differential Galois group is reductive. Hint: Use the above information
on reductive groups.

(3) Let M be a completely reducible differential module. Prove that every
object N of {{M}} is completely reducible. Hint: Use the above information
on reductive groups.

(4) Show that the tensor product M7 ® Ms of two completely reducible modules
is again completely reducible. Hint: Apply (2) and (3) with M := My & M.
We note that a direct proof (not using reductive groups) of this fact seems to
be unknown. a

Exercise 2.39 Completely reducible differential operators.

(1) Let Ry,...,Rs denote irreducible monic differential operators (of degree
> 1). Let L denote LCLM(Ry,...,R;), the least common left multiple of
Ry,...,Rs. In other terms, L is the monic differential operator satisfying

E[O]L = N{_,k[0]R;. This generalizes the LCLM of two differential operators,

defined in Section 2.1. Show that the obvious map k[9]/k[0]L — k[0]/k[0]R1 &
-+ @ k[0]/k[0]Rs is injective. Conclude that L is completely reducible.
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(2) Suppose that L is monic and completely reducible. Show that L is the
LCLM of suitable (distinct) monic irreducible operators Ry, ..., Rs;. Hint: By
definition k[0]/k[0]L = M1®- - -®M;, where each M, is irreducible. The element
1 € k[0]/k[0]L is written as 1 = my +- - -+mg with each m; € M;. Let L; be the
monic operator of smallest degree with L;m; = 0. Show that L; is irreducible
and that L = LCLM(Lq, ..., Ly).

(3) Let k = C be a field of constants and let L be a linear operator in C[d)].
We may write L = p(9) = [[p:(0)™ where the p; are distinct irreducible poly-
nomials and n; > 0. Show that L is completely reducible if and only if all the
n; < 1.

(4) Let k = C(2). Show that the operator L = 9% + (1/2)0 € C(2)[9] is not
completely reducible. Hint: The operator is reducible since L = (9 + (1/%2))(0)
and 0 is the only first order right factor. o

Proposition 2.40 Let M be a completely reducible differential module. Then
M can be written as a direct sum M = My @ - --® M, where each M; is a direct
sum of n; copies of an irreducible module N;. Moreover, N; 2 N; for i # j.
This unique decomposition is called the isotypical decomposition of M. Then
the eigenring E(M) (i.e., the ring of the endomorphisms of M) is equal to the
product [[;_, My, (C) of matriz algebras over C.

Proof. The first part of the proposition is rather obvious. For i # j, every
morphism N; — IV; is zero. Consider an endomorphism f : M — M. Then
f(M;) C M; for every i. This shows already that the isotypical decomposition
is unique. Further M; is isomorphic to N; ® L; where L; is a trivial differential
module over k of dimension n;. One observes that £(N;) = C.1y, follows from
the irreducibility of N;. From this one easily deduces that E(M;) = M,,(C).
O

We note that the above proposition is a special case of a result on semi-simple
modules over a suitable ring (compare [169], Chapter XVII, Section 1, Proposi-
tion 1.2).

The Jordan-Hoélder Theorem is also valid for differential modules. We recall
its formulation. A tower of differential modules My D M2 O ... D M, = {0}
is called a composition series if the set of quotients (M;/M;1)/_; consists of
irreducible modules. Two composition series for M yield isomorphic sets of
irreducible quotients, up to a permutation of the indices.

A (monic) differential operator L can be written as a product Ly - - - L. of ir-
reducible monic differential operators. For any other factorization L = R - -+ R,
with irreducible operators R;, one has that r = s and there exists a permuta-
tion 7 of {1,...,7} such that L; is equivalent to R.(;). Indeed, the factoriza-
tion L = Ly --- L, induces for the module k[0]/k[0]L the composition series
k[0]/E[O)L D k[O]L,/k[O]L D ---.
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A monic differential operator has in general many factorizations into irre-
ducible monic operators. Consider k = C(z) and L = 8. Then all factorizations

are 92 = (0 + fTI)(& - fTI) with f a monic polynomial in z of degree < 1.
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Chapter 3

Formal Local Theory

In this chapter we will classify linear differential equations over the field of formal
Laurent series K = k((z)) and describe their differential Galois groups. Here
k is an algebraically closed field of characteristic 0. For most of what follows
the choice of the field k is immaterial. In the first two sections one assumes
that k = C. This has the advantage that the roots of unity have the convenient
description 62771)‘ with A € Q. Moreover, for kK = C one can compare differential
modules over K with differential modules over the field of convergent Laurent
series C({z}). In the third section k is an arbitrary algebraically closed field of
characteristic 0. Unless otherwise stated the term differential module will refer
in this chapter to a differential module over K.

3.1 Formal Classification of Differential Equa-
tions
This classification can be given in various ways:

1. A factorization of L € K [0] into linear factors over the algebraic closure of
K.

2. Finding a canonical form in each equivalence class of matrix differential
equations v’ = Aw.

3. Description of the isomorphism classes of left K [0]-modules of finite dimen-
sion over K.

4. Description of a fundamental matrix F' for a matrix differential equation in
canonical form.

5. Description of a structure on the solution space V of the differential equation.

63
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The problem is somewhat analogous to the classification (or Jordan normal
form) of linear maps A acting on a vector space V' of finite dimension over the
field of real numbers R. Let us recall how this is done. The eigenvalues of A
are in general complex and therefore we need to make of V' the complex vector
space W = C® V. Let ai,---,as denote the distinct eigenvalues of A. The
generalized eigenspace for the eigenvalue «; is defined by;

W) :={weW | (A—a;)"w = 0 for sufficiently large m}

One finds a decomposition W = @&W(«;) of W into A-invariant subspaces.
For each subspace W («;) the operator B; := A — «; is nilpotent and one can
decompose W (a;) as a direct sum of subspaces W («;)j. Each such subspace has
a basis eq, -+ - , e, such that B;(e1) = eq,- -, Bi(ey—1) = e, Bi(e;) = 0. Writing
down the matrix of A with respect to this decompositions and these bases one
finds the familiar Jordan normal form for this matrix. The given fact that A is
a linear map on a real vector space implies now that for every complex «; its
conjugate is some «; and the “block-decompositions” of W («;) and W(«;) are
the same.

To classify differential equations over K we will need to first work over the
algebraic closure of K. In the next section we shall show that every finite
algebraic extension of K of degree m over K is of the form K,, := K(v) with
v™ = z. In the sequel we will often write v = 2!/, The main result of this
chapter is:

Theorem 3.1 1. For every monic (skew) polynomial
L=08%+a10%" 4 +a4_10 + aq € K[

there is some integer m > 1 and an element u € IA(m such that L has a factor-
ization of the form L = Lo(0 — u).

2. After replacing K by a finite field extension I/(\'m the differential equation in

matriz form v’ = Av (where ' = z% ) is equivalent to a differential equation
u’ = Bu where the matriz B has a “decomposition” into square blocks B; , with
i1=1,...;5 and 1 < a < m; of the form

b, 0 . . . 0

~

1 6 0 . .
0 1 b6 0 . 0

o

0o . . 01 b

Further b; € C[z=Y/™] and for i # j one has b; — b; ¢ Q.
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3. Let M denote a left I/(\'[cp)‘] module of finite dimension. There is a finite field
extension I/(\'m off/(\' and there are distinct elements q1,...,qs € zil/mC[zfl/m]
such that K, ®p M decomposes as a direct sum ®;_, M;. For each i there is a
vector space Wy of finite dimension over C and a linear map C; : W; — W; such
that M; = K, ®@c Wi and the operator ¢ := 20 on M; is given by the formula

§(f @w) = (¢:f @w) + (f @w) + (f ® Ci(w)).

In the sequel we prefer to work with & = 2 instead of 8. Of course K [0] =
K [0] holds. Further we will go back and forth between the skew polynomial
L and the left I/(\'[é] module M = I?[é]/f?[é]L By induction on the degree it
suffices to find some factorization of L or equivalently some decomposition of M.
Further we note that the formulations 2. and 3. in the theorem are equivalent
by using the ordinary Jordan normal forms of the maps C; of part 3. We shall
treat questions of uniqueness and descent to K later in the chapter.

Exercise 3.2 Solutions of differential equations over K
Let E be a differential extension of K containing:

1. all fields K,,,
2. for any m and any b € I/(\';"n, a nonzero solution of 3’ = by,

3. a solution of 3’ = 1.

Show, assuming Theorem 3.1, that E contains a fundamental matrix for any
equation Y’ = AY with A € M, (K). O

In this section Theorem 3.1 will be proved by means of differential analogues
of Hensel’s Lemma. In the third section another proof will be given based upon
Newton polygons. We will start by recalling how the classical form of Hensel’s
Lemma allows one to prove that fields of the form K are the only finite algebraic
extensions of K.

We begin by noting that the field K, = I/(\'( 1/ny = C((2'/™)) is itself the field
of formal power series over C in the variable z 1/n This field extension has
degree n over K and is a Galois extension of K. The Galois automorphisms o
are given by the formula (/") = (2'/™ with ¢ € {627”’“/”| 0 <k <n}. The
Galois group is isomorphic to Z/nZ. We note that K C Km if n divides m.
Therefore it makes sense to speak of the union K = UnKn and our statement
concerning algebraic extensions of K implies that K is the algebraic closure of
K.

We will also need the valuation v on K. This is defined as a map

v: K — ZU {0}
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with v(0) = co and v(f) = m if f = Y",5, a;z' and a,, # 0. We note that
v(fg) = v(f) +v(g) and v(f +g) > min(v(f),v(g)). This valuation is extended
to each field K,, as a map v : K,, — (1/n)ZU{oco} in the obvious way: v(f) = A
if f_: ZuZA;nueZ ay,z”* and ayx # 0. Finally v is extended to a valuation
v: K — QU {oo}. Further we will write O,, = C[[z"/"]] = {f € K| v(f) > 0}
and O := {f € I/(\'| v(f) > 0}. It is easily seen that O, and O are rings with
fields of quotients K, and K. The element 7 := z1/" € Oy, has the property
that 7O,, is the unique maximal ideal of O,, and that O,,/70,, = C. On K,
one can also introduce a metric as follows d(f, g) = e~ (/=9 With respect to
this metric K,, is complete. In the sequel we will talk about limits with respect
to this metric. Most of the statements that we made about the algebraic and
topological structure of K are rather obvious. The only not so obvious statement
is that every finite extension of K is some field K,. This will follow from:

Proposition 3.3 Every polynomial T¢+a1T¢ '+ 4+ay_1T+aq € I/(\'[T] has
a root in some K.

Proof. Define \ := min{@ 1 < i < d} and make the substitution T' =
272 E, where E is a new indeterminate. The new monic polynomial that arises
has the form

P=E"+b0 B+ 4+ by 1 E+by

with by, . ..,bq € K,,, where m is the denominator of A\. Now minv(b;) = 0. We
have that P € O,,[E] and we write P € C[E] for the reduction of P modulo
7 := z'/™ (i.e., reducing all the coefficients of P modulo 7). Note that the fact
that minv(b;) = 0 implies that P has at least two nonzero terms. Note that
v(b;) = 0 precisely for those i with @ = A. Therefore if v(b;) = 0, we have
that X is an integer and m = 1. The key for finding decompositions of P is now
the following lemma.

Lemma 3.4 Classical Hensel’s Lemma

If P = F\Fy with Fy, F» € C[E] monic polynomials with g.c.d.(Fy, Fy) =1 then
there is a unique decomposition P = Py Py of P into monic polynomials such
that P; = F; fori=1,2.

Proof. Suppose that we have already found monic polynomials Q1 (k), Q2(k)
such that Q,(k) = F; (for i = 1,2) and P = Q1(k)Q2(k) modulo 7*. Then
define Q;(k + 1) = Q:(k) + 7*R; where R; € C[E] are the unique polynomials
with degree R; < degree F; and

P — Q1 (k)Qa(k)
Tk
One easily sees that P = Q1(k + 1)Q2(k + 1) modulo 7**!. Define now

P, =limy_,Q;(k) (the limit is taken here for every coefficient separately). It is
easily seen that P;, P, have the required properties. |

Ri1Fs 4+ RoFy = modulo 7



3.1. FORMAL CLASSIFICATION OF DIFFERENTIAL EQUATIONS 67

Example 3.5 Let P =3? — 22y — 1+ 22 Then P =92 - 1= (y — 1)(y + 1).
We let Q1(0) =y — 1 and Q2(0) = y + 1 and define Q1(1) = Qo(0) + zR; and
Q2(1) = Q2(0) + zR2. We then have P — Q1(1)Q2(1) = —2zy — 2(y + 1) Ry —
2(y — 1)Ra + 2Ry Ry. Solving —2y = (y + 1)Ry — 2(y — 1) Ry mod z, we get
R; = Ry = —1. Therefore Q1(1) =y —1— 2z and Q2(1) = y + 1 — 2. At this
point we have Q1(1)Q2(1) = P so the procedure stops. o

Continuation of the proof of Proposition 3.3: We use induction on the
degree d. If P has at least two different roots in C then induction finishes the
proof. If not then P = (E — ¢p)? for some ¢y € C. As we have noted, P has at
least two nonzero terms so we have that co # 0. This furthermore implies that
P has d + 1 nonzero terms and so m = 1 and \ is an integer. One then writes

P = (E— Co)d +61(E—Co)d_1 +'~'+6d,1(E— Co) + eq

with all v(e;) > 0. Put A\ =min {@ 1 <4 < d} and make the substitution
E = ¢y + zME*. It is then possible that an application of Lemma 3.4 yields
a factorization and we will be done by induction. If not, we can conclude
as above that A\ is an integer. We then make a further substitution £ =
co + c12™M + 22 E** with 0 < A\ < X2 and continue. If we get a factorization
at any stage using Lemma 3.4, then induction finishes the proof. If not, we will
have generated an infinite expression f := Y > cp2™ with 0 < Ap < Ay < ..
a sequence of integers such that P = (E — f)¢. This finishes the proof of
Proposition 3.3. O

Example 3.6 Let P = E? — 22FE + 22 — 3. We have that P = E? and
(using the above notation) that e; = —2z and e; = 2% — 23. Furthermore,
A = min{%, %} = 1. We then let E = 2E*, so Q = 22E*? — 22°E* + 22 — 23,
Let Q1 = E*?2 —2E* +1— 2. We see that Q; = E*?> —2E* +1 = (E* —1)2. We
write @ = (E*—1)2—z and so Ay = min{2, 1} = 1/2. Welet E* = 14+2Y/2E**
and so Q1 = (21/2E**)? — z = zE**2 — 2. Letting Q2 = E**? — 1, we have that
E** = £1. The process stops at this point and we have that the two roots of @
are 1+ z(1 £ 21/?). O

3.1.1 Regular Singular Equations

We will now develop versions of Hensel’s Lemma for differential modules and
differential equations that will help us prove Theorem 3.1. We start by intro-
ducing some terminology. Let M be a finite dimensional vector space over K.
Let, as before, O := {f € K| v(f) > 0}.

Definition 3.7 A lattice is a subset N of M of the form N = Oe; +---+ Oeq
where e, ...,eq 1s a K-basis of M. o

The lattice is itself an O-module. One can prove that any finitely generated
O-module N (i.e. there are elements fi,..., fr, with N =0f; +--- 4+ Ofp,) of
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M which contains a basis of M is a lattice. For a lattice N we introduce the
space N = N/mN where m = z. This is a vector space over C with dimension
d. The image of n € N in N will be denoted by 7. Properties that we will often
use are:

Exercise 3.8 Lattices. _ _

(1) fi,---, fm € N are generators of N over O if and only if fy,...,f,, are
generators of the vector space N over C. Hint: Nakayama’s Lemma ([169], Ch.
X, §4).

(2) f1,...,fa € N is a free basis of N over O if and only if fi,---, f4is a basis
of the vector space N over C. O

Although lattices are ubiquitous, only special differential modules have §-
invariant lattices.

Definition 3.9 A differential module M is said to be a reqular singular module
if there exists a d-invariant lattice N in M. A differential equation Y' = AY’,
A an n X n matrix with coefficients in K, is said to be regular singular if the
associated module is regular singular. If M is not regular singular then we say
it is irregular singular. m]

The differential module associated with an equation of the form §Y = AY
where A € M,,(C[[z]]) is a regular singular module. In particular, any equation
of the form ¢Y = AY where A € M,,(C) is a regular singular equation. In
Proposition 3.12 we will show that all regular singular modules are associated
with such an equation.

Lemma 3.10 If My and My are reqular singular modules, then the same holds
for My ® Mo, My ® My and My. Furthermore, any K[0] submodule and quotient
module of a reqular singular module is reqular singular.

Proof. Let N; and Ns be d-invariant lattices in M7 and M. A calculation
shows that N1 ® N2, N1 ®@Ny and Ny are d-invariant lattices in the corresponding
K [0] modules. If M is a regular singular module with d-invariant lattice N and
M’ is a submodule of M, then N N M’ is a d-invariant lattice of M’. Using
duals and applying this result, we obtain a similar result for quotients. O

Let M be a regular singular module and let N be a d-invariant lattice. We
have that 7NN is invariant under § and hence ¢ induces a C linear map § on N.
Let ¢y, - -, cs denote the distinct eigenvalues of 6 and let N = N(c1)@®---DN(c,)
denote the decomposition of N into generalized eigenspaces. One can choose
elements e; ; € N with 1 <i < s and 1 < j < m, such that {g; ;| 1 <j < m;}
forms a basis of N(c;) for every i. Then we know that {e; ;} is a free basis of
the O-module N. We define now another §-invariant lattice Ny generated over
O by the set {ze11, -+ ,2€1,m,€21, " ,€sm, - The linear map 6 on N has as
eigenvalues {c¢1 + 1,¢a, -+, ¢s}. We come now to the following conclusion:



3.1. FORMAL CLASSIFICATION OF DIFFERENTIAL EQUATIONS 69

Lemma 3.11 If M is a reqular singular differential module, then there exists a
d-invariant lattice N in M such that the eigenvalues ¢y, ,cs of 6 on N have
the property: If ¢; — c¢; € Z then ¢; = c;.

Proposition 3.12 A regular singular equation 0Y = AY is equivalent to an
equation of the form Y = AgY with Ag € M,,(C) and such that the distinct
eigenvalues of Ag do not differ by integers.

Proof. We begin with a well known fact from linear algebra. Let U,V €
M,,(C) and assume that U and V have no eigenvalues in common. We claim
that the map X — UX — XV is an isomorphism on M, (C). To prove this it
is enough to show that the map is injective. If UX — XV = 0 then for any
P e C[T], P(U)X — XP(V) = 0. If Py is the characteristic polynomial of U,
then the assumptions imply that Py (V) is invertible. Therefore X = 0.

We now turn to the proof of the proposition. With respect to the basis of a §-
invariant lattice, we can assume the associated equation is of the form §Y = AY
with A € C[[z]]. Let A = Ag + A1z +--- ,A; € M, (C). Furthermore, by
Lemma 3.11, we may assume that the distinct eigenvalues of Ay do not differ by
integers. We will construct a matrix P =1+ Pyz+ -+ , P, € M,,(C) such that
PAy = AP — §P. This will show that Y = AY is equivalent to §Y = AyY.
Comparing powers of ¢, one sees that

AgP; — Pi(Ag+il)=—(Ai+ AP+ -+ A1PLq) .

Our assumption on the eigenvalues of Ay implies that we can solve these equa-
tions recursively yielding the desired P. ]

The above proposition combined with the Jordan form of the matrix Ao
proves part 2. and part 3. of Theorem 3.1 for the special case where the differ-
ential equation is regular singular. We will give another proof using a form of
Hensel’s lemma for regular singular differential modules. This prepares the way
for the irregular singular case.

Exercise 3.13 Solutions of reqular singular equations.

The following result, in a somewhat different form, is attributed to Frobenius.
Let E be a differential extension of K containing a solution of dy = 1 and such
that for any ¢ € C*, E contains a nonzero solution of dy = cy. This solution
will be denoted by z¢. Show that any regular singular differential equation
0Y = AY, A € M,,(K) has a nonzero solution of the form z*¢ where ¢ € K™
and a fundamental matrix with entries in E. Hint: Use Proposition 3.12 and

Jordan forms. A converse of this Fxercise 3.13 is given in Exercise 3.29. a
For differential operators one can also define the property “regular singular”.

Definition 3.14 A differential operator L = §% + a4 4+ -+ ag_10 + aq €
K[4] is said to be a regular singular operator if all v(a;) > 0.
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Exercise 3.15 Fuactors of reqular singular operators. N
In this exercise we indicate the proof of a Gauss lemma for operators in KId].

This result is in fact a special case of Lemma 3.45. As before a’ := 29% and

i dz
alitl) .= zdg—f;) for i > 0.
(1) Prove for a € K the formula

0= a8t + G) dWg1 4 (Z) W52 Ly <S) ey
S

(2) Let L1, Ly be monic differential operators such that LjLs is regular sin-
gular (i.e., has its coefficients in O). Show that L; and Lo are both regular
singular. Hint: Choose non-negative powers a,,,b, of z such that all coef-
ficients of a,Li = Y1t a;0" and of Lab, = Y i b;6' are in O and more-
over (am,am-1,-..,a0) = O and (by,bp_1,...,b0) = O. Write a,,,L1Lsb,, =

ZZB” cx6®. Use (1) to show that all ¢; € O. Prove that (¢yin,...,co) = O
by reducing the coefficients modulo the maximal ideal (z) of O. Conclude that
am = by, = 1.

(3) Verify that (2) remains valid if the field K is replaced by the field C({z})
of convergent Laurent series. g

Proposition 3.16 Let M be a differential module of dimension d over K with
cyclic vector e. Let L be the monic polynomial of minimal degree with Le = 0.
Then M s regular singular if and only if L is reqular singular.

The same statement holds with K replaced by the field C({z}) of convergent
Laurent series.

Proof. Suppose that L is regular singular, then e, §(e),---,6% 1(e) is a basis
of M. The lattice N := Oe + Od(e) + -+ + 059 1(e) is invariant under d.
Indeed §% € N since the coefficients of the monic L are in O. Thus M is
regular singular.

Suppose that M is regular singular and let N be a d-invariant lattice. For
any f € K*, the lattice fN is also d-invariant. Therefore we may suppose
that e € N. Consider the O-submodule N’ of N generated by all 6™ e. Since
O is noetherian, N’ is finitely generated and thus a J-invariant lattice. By
Exercise 3.8 there are indices i; < i < --- < ig such that 6%te, ..., 5%e is a free
basis of N’ over O. Then §d%@e is an O-linear combination of d’te,...,d%e. In
other words there is a monic differential operator L with coefficients in O such
that Le = 0. The operator L is a monic right hand factor of L. By Exercise 3.15,
L is a regular singular operator.

For the last part of the proposition, we have to define regular singular for an
operator L and for a differential module M over C({z}). The obvious definitions
are L =06"+a,_16" "t + -+ +ag with all a; € C{z} and M has a C{z}-lattice
which is invariant under 4. o

We now return to regular singular modules and prove:
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Proposition 3.17 Hensel’s Lemma for regular singular modules

Let N denote a §-invariant lattice of the left K[6] module M of finite dimension
over K. Let a direct sum decomposition of N into d-invariant subspaces F, Fy
be given such that for any eigenvalue ¢ of 6 on Fi and any eigenvalue d of & on
F5 one has ¢ —d € Z. Then there exists a unique decomposition N = N1 @ Ny
of N into 6-invariant O-modules such that N; = F; for i =1,2. In particular
M admits a direct sum decomposition as a left K[d]-module.

Proof. For each n we shall construct C-subspaces Fi(n), Fo(n) of N/a"t1N
such that

1. N/a""IN = Fi(n) @ Fa(n),
2. The F;(n) are invariant under § and multiplication by ,

3. The map N/7"T!N — N/7"N maps F;(n) onto F;(n — 1).

Once we have shown this, the spaces N; constructed by taking the limits of the
F;(n) give the desired direct sum decomposition of N.

Let S; and So be the set of eigenvalues of & acting on Fy and F, respec-
tively. Since 7"t N is invariant under §, the map § induces a C-linear map on
N/7" 1 N. We will again denote this map by §. We will first show that the eigen-
values of § on N/ 1N lie in (S;+Z)U(S2+Z). Since each V(n) = 7" N/7"TIN
is invariant under the action of ¢, it is enough to show this claim for each V(n).
If 7"v,v € V(0) is an eigenvalue of 4, then

d(n"v) =nr"v + 7"6(v) = en™v

for some ¢ € C. Therefore ¢ € (S1+Z)U(S2 +Z). We therefore define Fi(n) to
be the sum of the generalized eigenspaces of § corresponding to eigenvalues in
S1+4Z and F3(n) to be the sum of the generalized eigenspaces of § corresponding
to eigenvalues in Se + Z. By the assumptions of the lemma and what we have
just shown, N/7" "IN = Fy(n)® Fa(n). Items 2. and 3. above are easily checked.

The uniqueness follows from the fact that the image of each N; in 7" N/7" 1N
is the image of F; under the map F; — n™F;. O

We are now in a position to prove part 3. of Theorem 3.1 under the additional
assumption that the module M is regular singular. Lemma 3.11 and Proposition
3.17 imply that M can be decomposed as a direct sum of modules M; such that
M, admits a d-invariant lattice N; such that § has only one eigenvalue ¢; on N;.
The next step will be to decompose each M; into indecomposable pieces.

From now on let M denote a regular singular module with a d-invariant
lattice such that § has only one eigenvalue c on N. By changing § into 6 — ¢ one
may suppose that ¢ = 0. Therefore ¢ is a nilpotent linear map on N and there
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is a “block decomposition” of N as a direct sum of 0- invariant subspaces N (i)
with ¢ = 1,...,a such that each N() has a basis {fi1,..., fi,s; } with

0fin = fior-++ 0 fisim1 = fisi»0fis; =0

One tries to lift this decomposition to V. Suppose that one has found elements
e;j such that € ; = f;; and such that §(e; ;) = e; 41 modulo ¥ for all i,
and where e; ; = 0 for j > s;. One then needs to determine elements €; ; =
eij + ma; ; with a;; € N such that the same congruences hold now modulo
71 A calculation shows that the a;; are determined by congruences of the
form

(0 +k)a;,; = w + a; j+1 modulo 7
Since 0 4+ k is invertible modulo = when k£ > 0, these congruences can be re-
cursively solved. Taking the limit of this sequence of liftings of f; ; one finds
elements FE; ; such that E; ; = fi; with 0(E; ;) = E; j+1 for all 4, j and where
again F; ; = 0 for j > s;. We will leave the construction of the a;; to the
reader. This finishes the study of the regular singular case.

Remark 3.18 We will discuss the Galois group of a regular singular module in
the Section 3.2 and return to the study of regular singular equations in Chapters
5 and 6. |

3.1.2 Irregular Singular Equations

We now turn to the general case. Let e denote a cyclic element of a left K [0]
module M of finite dimension and let the minimal equation of ¢ be Le = 0
where

L=06"+a16"" 4+ 4 aqg_16 + aq € K[0)
We may assume that A :=min {@ 1 < i < d} is negative since we have
already dealt with the regular singular case. Now we imitate the method of
Proposition 3.3 and write 6 = z~*E. The skew polynomial L is then trans-
formed into a skew polynomial

P:=E 4 0B 4+ by E+ by

with min v(b;) = 0 and so P € C[[z'/™]][E] where m is the denominator of .
Consider the lattice N = Ope + OpmE(e) + - - - + O B9~ 1(e) in K, ® M where
O := C[[zY/™]]. The lattice N is E-invariant. Let m denote z%/™. Also 7N
is E-invariant and F induces a C-linear map, called E, on the d-dimensional
vector space N = N/mN. As in the regular singular case there is a lemma
about lifting E-invariant subspaces to E-invariant submodules of N. We will

formulate this for the ground field K, although a similar statement holds over
K,.
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Proposition 3.19 Hensel’s Lemma for irregular singular modules

Let M denote a left K[0]-module of finite dimension; let E = 2% with o € Z
and a > 0; let N denote an E-invariant lattice and let N := N/7N where T = 2.
Let N = Fy @ F, be a direct sum decomposition where Fy, Fy are E-invariant
subspaces such that E|F1 and E|F2 have no common eigenvalue. Then there are
unique E-invariant O-submodules N1, Ny of N with N = N1 @ Ny and N; = F;
fori=1,2.

Proof. The proof is similar to the proof of Proposition 3.17. Let S; and Sy
be the set of eigenvalues of E acting on F} and F respectively. Since 7N is
invariant under E, the map E induces a C linear map on N/7"t1N. We will
again denote this map by E. A calculation similar to that given in the proof of
Proposition 3.17 shows that the eigenvalues of E on N/7"+1 N are again S;US,.
We therefore define Fy(n) to be the sum of the generalized eigenspaces of E
corresponding to eigenvalues in S; and Fy(n) to be the sum of the generalized
eigenspaces of F corresponding to eigenvalues in S3. By the assumptions of the
lemma and what we have just shown, N/7"*1N = Fy(n)® Fy(n). Taking limits
as before yields the N;. o

We are now ready to prove Theorem 3.1 in its full generality. If we can
apply Proposition 3.19 to get a decomposition of K, ® M, then the proof can
be finished using induction. If no decomposition occurs then the characteristic
polynomial of E has the form (T — ¢)¢ for some ¢ € C and m = 1 follows as
in the proof of Proposition 3.3. Make now the substitution § = cz* + tHE**
with a suitable choice for g > A. If for the operator E** still no decomposition
occurs then p is an integer and one continues. Either one will be able to apply
Proposition 3.19 or one will generate a sequence of integers Ay < Ay < ---.
These integers must eventually become positive, at which point the operator
D=5-%"_, c;z"™ acts on K, ® M so that this module is regular singular.
In this case we are in a situation that we have already studied. The process
that we have described yields a decomposition of K,, ® M as a direct sum ®M;
such that for each i there is some ¢; € z~Y/™C[z~Y/™] with § — ¢; acts in a
regular singular way on M;. Our discussion of regular singular modules now
proves part 3. of the theorem. After choosing a basis of each space W; such that
C; has Jordan normal form one finds statement 2. of the theorem. Finally, for
every M there exists an integer m > 1 such that K,, ® M has a submodule of
dimension 1. This proves part 1. of the theorem.

Remarks 3.20 1. Theorem 3.1 and its proof are valid for any differential field
k((z)), where k is an algebraically closed field of chararteristic 0. Indeed, in the
proof given above, we have used no more than the fact that C is algebraically
closed and has characteristic 0.

2. Let k be any field of characteristic 0 and let k denotes its algebraic closure.
The above proof of Theorem 3.1 can be applied to a differential module M over
E((2)). In some steps of the proof a finite field extension of & is needed. It follows
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that Theorem 3.1 remains valid in this case with K, replaced by E'((21/™)) for
a suitable finite field extension &’ of k. Further the ¢, ...,¢s in part 3. are now
elements in z~V/™E/ [z~ /™).

3. Concerning part 1. of the Theorem one can say that the module K|[d]/K|[9]L
has, after a finite field extension, at least one (and possibly many) 1-dimensional
submodules. Hence there are elements u algebraic over K such that L decom-
poses as L = Lo(0 —u). Any such u can be seen as u = % where y is a solution
of Ly = 0. The element u itself satisfies a non linear equation of order d — 1.

This equation is called the Riccati equation of L and has the form
Pi+ag1Py—1+---+a1Pi+agPy=0

where the P; are defined by induction as follows: Py = 1; P, = P/_; + uP;_;.
One has P, = u, P, =v 4+ u?, Py ="+ 3uu’ + u? et cetera.

4. The proof given above of Theorem 3.1 does not readily yield an efficient

method for factoring an operator L over K. In Section 3.3 we shall present a
second proof that gives a more efficient method.

5. In parts 2. and 3. of Theorem 3.1 an extra condition is needed to assure
that the given decomposition actually comes of something over K and not of an
equation or a module which can only be defined over some proper extension of
K. Another point is to know some unicity of the decompositions. Let us already
state that the ¢1, ..., ¢s in 3. are unique. We see these elements as “eigenvalues”
of the operator 6 on M. We will return to those questions after the introduction,
in the next section, of a universal Picard-Vessiot ring UnivRz D K.

6. A left E[é] module M of finite dimension over K is called irreducible if M
has no proper submodules. From the theorem one can deduce that any such

irreducible M must have dimension71 over K and so M = Ke for some elgment
e. Then d(e) = Fe for some F' € K. A change of e into ge with g € K and

g # 0 changes F into f = F + %. Hence we can choose the basis of M such

that f € U,>1C[z~Y/"]. Let us call M(f) the module Ke with d(e) = fe and
f € Up>1Clz=Y/"]. Then M(f1) = M(f2) if and only f; — fo € Q.

7. Another statement which follows from the theorem is that every irreducible
element of K [0] has degree 1.

8. M. Boulffet gives version of Hensel’s Lemma for operators with coefficients in
liouvillian extensions of C((z)) in [46, 47]. O

Exercise 3.21 Let k be any field of characteristic 0 and let k denote its alge-
braic closure. Put K = k ®y, k((z)) and K = k((z)). Then K is in a natural
way a differential subfield of K.
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(a) Prove that K = K if and only if [ : k] < cc.

(b) Suppose that k is an infinite extension of k. Prove that Theorem 3.1 remains
valid for differential modules over K.

(c) Prove the following more precise formulation of part (b), namely:

The functor M — K ®x M from the category of the differential modules over
K to the category of the differential modules over K is an equivalence of (Tan-
nakian) categories. O

3.2 The Universal Picard-Vessiot Ring of K

The aim is to construct a differential extension UnivRp of K , such that the
differential ring UnivR » has the following properties:

1. UnivRj is a simple differential ring, i.e., the only differential ideals of
UnivRz are 0 and UnivR .

2. Every matrix differential equation 3’ = Ay over K has a fundamental
matrix /' € GL,(UnivRz).

3. UnivRz is minimal in the sense that UnivR 3 is generated over K by all
the entries of F' and ﬁ of the fundamental matrices F' of all matrix

differential equations y' = Ay over K.

One can prove that for any differential field, with an algebraically closed
field C of constants of characteristic 0, such a ring exists and is unique up
to isomorphism (see Chapter 10). The ring UnivRz can be constructed as the
direct limit of all Picard-Vessiot rings of matrix differential equations. Moreover
UnivR is a domain and its field of fractions has again C as field of constants.
The situation is rather similar to the existence and uniqueness of an algebraic
closure of a field. Let us call UnivR the universal Picard-Vessiot ring of the
differential field. The interesting feature is that UnivRz can be constructed

explicitly for the differential field K = C((z)).

Intuitive idea for the construction of UnivRj.

As before we will use the derivation § = z% and the notation gy’ shall refer to
dy. Since UnivRz must contain the entries of fundamental matrices for linear
differential equations over K , UnivR » must contain solutions to all equations
of the form ¢y’ = %y for m € Z. Any matrix differential equation (of size n)
over the field K (2'/™) can be rewritten as a matrix differential equation (of size
nm) over K (see Exercise 1.14.7). Thus every order one equation y' = ay with
a in the algebraic closure of K must have a solution Yy € UnivR*f{. Furthermore,
UnivRz must contain a solution of the equation 3" = 1. From the formal
classification (see Exercise 3.2), we conclude that no more is needed for the
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existence of a fundamental matrix for any matrix equation y’ = Ay over K (and
over the algebraic closure of K).

To insure that we construct UnivR g correctly we will need to understand the
relations among solutions of the various y' = ay. Therefore, we need to clas-
sify the order one equations y’ = ay over the algebraic closure K of K. Two
equations ' = ay and y’' = by are equivalent if and only if b = a + fT for some
feK, f+#0. The set Log := {f7/| f €K, f+#0}is easily seen to consist
of the elements of K of the form ¢ + Y >0 cnz™™, with ¢ € Q, ¢, € C and
m € Zsgo. The quotient group K /Log classifies the order one homogeneous
equations over K. One chooses a Q-vector space M C C such that M & Q = C.
Put @ = Up,>12~Y/™C[z=Y/™]. Then M © Q C K maps bijectively to I?/Log,
and classifies the order one homogeneous equations over K. For each element

in K /Log, the ring UnivRp must contain an invertible element which is the
solution of the corresponding order one homogeneous equation. We separate
the equations corresponding to M and to Q. We note that this separation is
immaterial for differential equations over K. In contrast, the separation is very
important for the study of equations over the field of convergent Laurent series
C({z}). The equations corresponding to M turn out to be regular singular.
The elements in Q@ form the basis for the study of asymptotic properties of dif-
ferential equations over C({z}).

The ring UnivR z must then have the form E[{z“}aeM, {e(q) }qe0,!], with the
following rules:

1. the only relations between the symbols are 20 = 1, 201t = 2920 ¢(0) =
L, e(q1 + q2) = e(q1)e(g2)-

2. the differentiation in UnivR is given by (2*)" = az?, e(q)" = qe(q), I’ = 1.

One may object to the Q-vector space M C C, since it is not constructive.
Indeed, the following equivalent definition of UnivRz is more natural. Let

UnivRp = K[{z"}acc, {e(q)}q4e0, 1], with the following rules:

1. the only relations between the symbols are 2010 = 2920, 20 = 22 ¢ K for
a€Z,e(q+q) = e(q1)e(ge), e(0) = 1.

2. the differentiation in UnivR z is given by (2%)" = az?, e(q)’ = qe(q), I’ = 1.

We prefer the first description since it involves fewer relations. The intuitive
interpretation of the symbols is:

1. 2% is the function e® 10g(z),

2. [ is the function log(z) and
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3. e(q) is the function exp( [ ¢4).
In a sector S at z = 0, S # S, this interpretation makes sense.

Formal construction of the universal Picard-Vessiot ring.

Define the ring R = ?[{Z“}QGM, {E(q)}q4e0, L] as the polynomial ring over K
in the infinite collection of variables {Z%}senr U {E(q)}qeq U {L}. Define the
differentiation ' on R by: ’ is zdiz on IA(, (Z*Y =aZ® E(q) = qE(q) and L' = 1.
Let I C R denote the ideal generated by the elements

70 -1, zo%tb — 797 E(0) -1, E(q1 + q2) — E(q1)E(g).

It is easily seen that [ is a differential ideal and I # UnivR. Put UnivRz =
R/I. Then UnivR 3 coincides with the intuitive description that we made above.
By construction, UnivRz has the properties 2. and 3. defining a universal
Picard-Vessiot ring. We want to prove that UnivR also satisfies property 1.
and has some more pleasant features:

Proposition 3.22 Properties of UnivR .

1. UnivR has no differential ideals, different from 0 and UnivR .
2. UnivRy is a domain.

3. The field of fractions UnivF  of UnivR has C as field of constants.

Proof. Consider elements mq,...,ms € M and q1,...,q € Q, linearly inde-
pendent over Q. Consider the differential subring

R:= mi

[2My 27 2T

=)

) Zﬁmsv G(QI)v 6(_QI)a s 76(%)’ e(_Qt)v l]

of UnivRp. The ring UnivRy is the union of differential subrings of the
type R. It suffices to prove that R has only trivial differential ideals, that
R is a domain and that the field of constants of the field of fractions of R
is C. One observes that R is the localization of the “free” polynomial ring

IA([zml, oo 2™ee(qr), ..., e(qr), ] with respect to the element 2™t -2™2 ... 2™ .

e(q1) - e(qz2) -+~ e(q:). Thus R has no zero divisors. Let J # (0) be a differential
ideal in R. We have to show that J = R.

This is a combinatorial exercise. Let (only for this proof) a “monomial m” be
a term z%(q) with a € Zmq +--- 4+ Zmgs and q € Zgq1 + -+ - + Zg;. Let M be

the set of all monomials. We note that m’ = a(m)m holds with a(m) € K .
Any f € R can be written as ZmeM,n>O fmnml™. The derivative of f is then
S (frm (M) frnn)md™ + 30 fr ymi™ 1. Let us first prove that a differential
ideal Jo # (0) of the smaller ring

=

Ry = K[zM, z7™ 2™ 27 e(qr), e(—aq1), .- -, e(qr), e(—qt)]
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is necessarily equal to Ry.

Choose f € Jy, f # 0 with f = Zivzl fim(i) and N > 1 minimal. After
multiplying f with an invertible element of the ring R, we may suppose that
fi =1and m(1) = 1. If N happens to be 1, then the proof ends. For N > 1,
the derivative f’ lies in Jy and must be zero according to the minimality of N.

—x
Then fy € K satisfies fj + a(m(N))fny = 0. Since f}/fn has a rational
constant term and no terms of negative degree, this is in contradiction with the
construction of M & Q. Thus Ry has only trivial differential ideals.

We continue with a differential ideal J C R, J # (0). Choose ng > 0 minimal
such that J contains an expression which has degree ng with respect to the
variable [. If ng = 0, then J N Ry is a non zero differential ideal of Ry and the
proof ends. Suppose that ng > 0. Let Jy C Ry denote the set of coefficients of
[0 of all elements in J which have degree < ng with respect to the variable [.
Then Jy is seen to be a differential ideal of Ry and thus Jy = Ro. Therefore
J contains an element of the form f = [" + hl™~! 4 ... with h € Ry. The
derivative f’ must be zero, according to the minimality of ng. Thus ng+h’ = 0.

Write h = ) < \g hmm, with coefficients h,, € K. Then ng + A’ = 0 implies

that ng + h{ = 0 for some hg € K. This is again a contradiction.

Consider the collection of equations

yll :mlylv"'vy; = MsyYs, f{ :qlfla"'vft,:qtfta g/,:O'

This can be seen as a matrix differential equation of size s +¢ + 2. We have
in fact proven above that the ring R is the Picard-Vessiot ring for this matrix

equation over K. It follows from the Picard-Vessiot theory that R is a domain
and that its field of fractions has C as set of constants. o

Exercise 3.23 Modify the intuitive reasoning for the construction of UnivR
to give a proof of the uniqueness of UnivR . O

Remarks 3.24 1. A matrix differential equation y’ = Ay over K = C((z)), or

over its algebraic closure K will be called canonical if the matrix A is a direct
sum of square blocks A; and each block A; has the form ¢;I + C;, where the
q; are distinct elements of @ and C; is a constant matrix. One can refine this
block decomposition by replacing each block ¢;I 4 C; by blocks ¢;I + C; ;, where
the constant matrices C; ; are the blocks of the usual Jordan decomposition of
the C‘z

The matrices C; and C; ; are not completely unique since one may translate the
eigenvalues of C; and C; ; over rational numbers. If one insists on using only
eigenvalues in the Q-vector space M C C, then the matrices C; and C; ; are
unique up to conjugation by constant matrices.

2. Let y' = Ay be a differential equation over K = C((z)) or over its algebraic
closure K. Then there exists a H € GLn(IA( ) which transforms this equation to
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the canonical form 3’ = A°y. This means that that A° = H'AH — H 'H'.
For the canonical equation 3y’ = Ay one has a “symbolic” fundamental matrix,
fund(A€) with coefficients in UnivR z, which uses only the symbols 2%, e(q), 1.
The fundamental matrix for the original equation is then H -fund(A€). A funda-
mental matrix of a similar form appears in the work of Turrittin [287, 288] where
the symbols are replaced by the multivalued functions z%,exp f q%), log(z),

and the fundamental matrix has the form Hz LeQ. where H is an 1nvert1ble
matrix with entries in K , where L is a constant matrix (i.e. with coefficients
in C), where z* means elog(3)L where Q is a diagonal matrix with entries in Q

and such that the matrices L and Q commute.

We note that Turrittin’s formulation is a priori somewhat vague. One prob-

lem is that a product fexp([ q%), with f € K and q € Q is not given a
meaning. The multivalued functions may also present problems. The form of
the fundamental matrix is not unique. Finally, one does not distinguish between
canonical forms over K and over K. The above presentation formalizes Turrit-
tin’s work and also allows us to classify differential equations over K by giving
a structure on the solution space of the equations. We shall do this in the next
section. m|

A structure on the solution space V.

The field K has many K -automorphisms. One of them is v given by the
formula y(2?) = €2™*2* for all rational numbers A (and extended to Laurent
series in the obvious way). This v and its further action on various spaces and
rings is called the formal monodromy . One can show that the Galois group of

K over K is equal to Z, the inverse limit of the family {Z/mZ} ([169], Ch. VIII
811, Ex. 20), and that v is a topological generator of this compact group. The
latter statement follows from the easily verified fact that the set of y-invariant

clements of K is precisely K
The v as defined above also acts on Q, seen as a subset of K. We define the
formal monodromy v of the universal Picard-Vessiot ring UnivRp by:

1. v acts on ? as explained above.

2. yz% = 2™ 24 for g € C.

3. ve(q) = e(yq) for ¢ € Q.

4. vl =1+ 2me.

It is not hard to see that v is a well defined differential automorphism of UnivR z
(and also of its field of fractions UnivF ). We introduce still other differen-
tial automorphisms of UnivR over K. Let Hom(Q, C*) denote the group of
the homomorphisms of Q to the (multiplicative) group C*. In other words,
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Hom(Q, C*) is the group of the characters of Q. Let an element & in this group
be given. Then one defines a differential automorphism oy, of UnivR by

on(l) =1, on(=") = 2°, one(q) = h(g)elq) for a € C, g € Q

The group of all o, introduced by J.-P. Ramis [201, 202], is called the exponential
torus and we will denote this group by 7. It is a large commutative group.
does not commute with the elements of 7. Indeed, one has the following relation:
~yon = opy where I/ is defined by h'(q) = h(vyq) for all ¢ € Q.

Proposition 3.25 Let UnivF denote the field of fractions of UnivRg. Sup-
pose that f € UnivF ; is invariant under v and T. Then f € K.

Proof. The element f belongs to the field of fractions of a free polynomial sub-
ring P := I?[zml, o2 e(qr), .., e(qr), 1] of UnivR z, where the my, ..., m, €
M and the q1,...,q € Q are linearly independent over Q. Write f = % with

f1, f2 € P and with g.c.d. 1. One can normalize fs such that it contains a term
(zma)ma ... (zme)ns e(qy)br - e(gy) 1™ with coefficient 1. For h € Hom(Q, C*)

one has oy, (f1) = c(h) f1 and o4 (f2) = c(h)f2, with a priori ¢(h) € K . Due to
the normalization of fa, we have that c(h) = h(b1g1 +- - -+ btq:). One concludes
that fi and fo cannot contain the variables e(q1),...,e(q). Thus f lies in the

field of fractions of IA([zml, ..., 2™ 1]. Applying v to f = % we find at once
that [ is not present in f; and f. A similar reasoning as above shows that in
fact f € K. ]

We consider a differential equation over K and want to associate with it a
solution space with additional structure. For convenience, we suppose that this
differential equation is given as a scalar equation Ly = 0 of order d over K.
The set of all solutions V(L) in the universal Picard-Vessiot ring UnivR 5 is
a vector space over C of dimension d. The ring UnivR has a decomposition
as UnivRz = ®geqRy, where R, := K[{2%},le(q). Put V(L)q := V(L) N Ry.
Since the action of L on UnivRj leaves each R, invariant, one has V(L) =
®qeoV(L)q. This is a direct sum of vector spaces over C, and of course V (L),
can only be nonzero for finitely many elements g € Q. The formal monodromy
7 acts on UnivR z and leaves V(L) invariant. Thus we find an induced action
i on V(L). From «(e(q)) = e(7yq) it follows that v,V (L)g = V(L)~,-

Definition 3.26 An element ¢ € Q is called an eigenvalue of L if V(L), # 0.
Exercise 3.27 FEigenvalues 1 o
Let Ly and Lo be equivalent operators with coefficients in K. Show that the

eigenvalues of Ly and Ly are the same. O

The previous exercise implies that we can make the following definition
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Definition 3.28 The eigenvalues of a differential equation or module are the
eigenvalues of any linear operator associated with these objects. O

Exercise 3.29 FEigenvalues 11 N
Let M be a differential module over K. Show that the eigenvalues of M are all
0 if and only if the module is regular singular. Therefore if a singular differential

equation has a fundamental matrix with entries in K[{2},1], then it is regular
singular. This gives a converse to Exercise 3.13. O

We introduce now a category Gry, whose objects are the triples (V,{V,},vv)
satisfying:

1. V is a finite dimensional vector space over C.
2. {V,}q4eo is a family of subspaces such that V = @V,

3. v is a C-linear automorphism of V' such that vy (V) = V,4 for all ¢ € Q.

A morphism f: (V. {V,},vv) = (W, {W,},yw) is a C-linear map f: V — W
such that f(V,) C W, (for all q) and ywf = ~vf. One can define tensor
products, duals (and more generally all constructions of linear algebra) for the
objects in the category Gr;.

The above construction associates to a scalar equation L over K an object of this
category Gri. We will do this now more generally. Let N be a differential module
over K of dimension n. Then one considers the tensor product UnivRz @z N
and defines V() := ker(d, UnivR z ® z V). This is a vector space of dimension
n over C, again seen as the covariant solution space for the differential module.
Letting V(NV), := ker(d, R, ®p N), we then again have V(N) = ®@V(N),.
The action of v on UnivRz induces an action vy on V(N) and the formula
YNV (N)q = V(N)q holds. This construction leads to the following statement:

Proposition 3.30 The category of the differential modules Diff  over K is
equivalent with the category Gri. The equivalence acts C-linearly on Hom’s
and commutes with all constructions of linear algebra, in particular with tensor
products.

Proof. Let Trip denote the functor from the first category to the second. It is
rather clear that Trip commutes with tensor products et cetera. The two things
that one has to prove are:

1. Every object (V,{V,},vv) of Gry is isomorphic to Trip(NN) for some dif-
ferential module over K.

2. The C-linear map Hom(N7, No) — Hom(Trip(N;), Trip(N2)) is an iso-
morphism.
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Proof of 1. On W := UnivR; ® V one considers the natural additive maps
0, v and oy, for h € Hom(Q, C*) defined by the following formulas (where
r € UnivR; and v € V) :

orev)=rQu,

Y(r®@wv) = (y(r) ® (v (v)) and

on(r ®v) = (on(r)) @ (h(g)v).

Let N be the set of elements of W which are invariant under v and all oy,
Then N is clearly a vector space over K. The map 0 on UnivRp commutes
with v and all o5, and induces therefore a map 0 : N — N having the usual
properties. In order to prove that IV is a differential module over K it suffices
to verify that its dimension is finite. Let ¢i,..., ¢, denote the elements such
that Vg, # 0. Then the invariants of W under the group of all o, is equal to
Wi = @]_, Roe(—¢;) ® V;. Further N is the set on elements of W) invariant
under 4. Let m > 1 be minimal such that all ¢; € z='/™C[z~'/™]. Consider
wy m, the set of invariants of W under ™. It suffices to prove that this is a
finite dimensional vector space over K,,. Each term Roe(—q;) ® V, is setwise
invariant under ™. Thus we may restrict our attention to only one such term.
Further we may suppose that the action of y™ on V,, has only one Jordan block,
say with eigenvalue A and with length s. One observes that the y™-invariant
elements of Roe(—g;) ® Vy, lie in K,,[l]s2%e(—q;) ® V,,, where b is chosen such
that e=2™%® = X\ and where I/(\'m [[]s denotes the set of polynomials of degree
< s. This proves that the space of invariants has finite dimension over I/(\'m.
Thus N is a differential module over K.

The verification that the natural map UnivRz ® N — W = UnivRp ®@ V' is
a bijection is straightforward. It follows that Trip(NN) is isomorphic to the given
object (V. {Vg}, ).
Proof of 2. One uses Hom(Ny, No) = Hom(1, Ny ® N3), where 1 denotes the
1-dimensional trivial module Ke with de = 0 and where * stands for the dual.
Then 2. reduces to proving that the map ker(9, N) — {v € V| v € Vg, yww(v) =
v}, where (V,{V,},7v) = Trip(IV), is a bijection. This easily follows from

~

{r € UnivR | r € Ro, y(r) =7} = K. O

Remark 3.31 Consider a differential module N over K with Trip(N) =
(V,{V4}, ). The space V' := ker(9,UnivR; ® N) is invariant under any
element o, of the exponential torus 7. The action of o, on V' is explicitly given
by requiring that oy, is multiplication by h(g) on the subspaces V; of V. The
image of 7 in GL(V) is called the exzponential torus of N or of Trip(N). It is
actually an algebraic torus in GL(V). O

Corollary 3.32 Let the differential module N define the triple (V,{Vg},vv)
in Gri. Then the differential Galois group of N is, seen as an algebraic sub-
group of GL(V'), generated by the exponential torus and the formal monodromy.
Furthermore, N is reqular singular if and only if exponential torus is trivial.
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Proof. The Picard-Vessiot field L D K of N is the subfield of UnivF 7 gener-
ated over K by all the coordinates of a basis of V' C UnivR z @z N with respect

to a basis of N over K. The exponential torus and the formal monodromy are
seen as elements in GL(V'). At the same time, they act as differential automor-
phisms of L and belong therefore to the differential Galois group of N. We have
already proven that an element of UnivF z, which is invariant under the expo-

nential torus and the formal monodromy belongs to K. The same holds then
for the subfield L C UnivF . By Picard-Vessiot theory, the differential Galois
group is the smallest algebraic subgroup of GL(V') containing the exponential
torus and the formal monodromy.

If N is a regular singular module, then the exponential torus 7 acts trivially
on the solution space so the exponential torus of N is trivial. Conversely, if the
exponential torus of IV is trivial then 0 is the only eigenvalue of M. Exercise 3.29
implies that N is regular singular. O

Example 3.33 The Airy equation y" = zy.

This equation has a singular point at co. One could write everything in the local
variable t = % at oco. However we prefer to keep the variable z. The solution
space V at oo has a direct sum decomposition V = V_s/2 @ V__s/2 in spaces of
dimension 1 (we shall show this in Section 3.3, Example 3.52.2). The formal
monodromy v interchanges the two spaces V,s/2 and V__s/2. If v; generates
V.2, v2 = 7y(v1) generates V__s/2. Since the Galois group of the equation is

a subgroup of SL2(C), the matrix of v with respect to {vi,v2} is ( (1) _01 )

The exponential torus has the form { ( é tE)l ) |t € C*}. The differential
Galois group of the Airy equation over the field C((z71)) is then the infinite
dihedral group Do, C SLa(C). O

Remark 3.34 Irreducible differential modules over K.

Consider a differential module N over K and let (V, Vg, vy) be the corresponding
triple. Then N is irreducible if and only if this triple is irreducible. It is not
difficult to verify that the triple is irreducible if and only if the non zero V,’s
have dimension 1 and form one orbit under the action of ~y. To see this note
that a yy-orbit of V;,’s defines a subobject. Hence there is only one ~y-orbit,
say of lenght m and consisting of ¢1, ..., ¢m. Take a 1-dimensional subspace W
of V, , invariant under 7{?. Then W @ywW @-- '697{,”_1W is again a subobject.
Hence, the dimension of V;, and the other V,, is 1.

This translates into: N

N is irreducible if and only if there exists an integer m > 1 such that K,, ® N
has a basis e1, ..., e, with the properties:

(i) Oe; = Qqe; for i =1,...,m and all Q; € C[z~/™].

(ii) {Q1,...,Qm} is one orbit under the action of v on C[z~1/™].

From this explicit description of K m ® N one can obtain an explicit description
of N = (K, ® N)7, by computing the vector space of the y-invariant elements.



84 CHAPTER 3. FORMAL LOCAL THEORY

Another ‘way to make the module N explicit is to consider the map N —
K N & Kmel The first arrow is the map n +— 1®mn and the second arrow is
the projection on the direct summand Kmel The composite map N — Kmel is
a non-zero morphism of differential modules over K. Since N is irreducible, this
morphism is an isomorphism. In other words, an irreducible differential module
of dimension m over K has the form K,,e with de = Qe, where Q € Clz~Y/m)
has the property K, = K[Q] Further, two elements Q,Qs € Clz~/™],
algebraic of degree m over K define isomorphic irreducible dlfferentlal modules
over K if and only if there is an integer i such that ~ Q1) —Q2€ =

We illustrate the above with an example. Let N be irreducible of dimension
two over K. Then K2 QN = K261 + K262 with, say, de; = (2 124 - ey and
Oes = (—2 124 - Des. A basis for (K2®N)7 is fi :=e1+eq, fo =2 1/2(61—
e2). On this basis one can calculate the action of 9, namely: df; = 271 f1 + f2
and Ofs = 271 f1 + (271 — 1/2) fo. The other possibility is to identify N with
Ksei. Then f1:=e1, fo:=2"2e; is a basis of N over K and one can calculate
that the action of 0 on this basis is given by the same formulas.

We note that the sufficiency of the above irreducibility criterion also appears
in [153] where it is stated in terms of the slopes of N (see the next section for
this concept): N is irreducible if it has just one slope and that this is a rational
number with exact denominator equal to the dimension of V.

O

Exercise 3.35 An observation on automorphisms made by M. van Hoeij.

Let N be a differential module over K such that its group of automorphisms is
equal to C*. Prove that N is irreducible. Hint: Consider the triple (V,{V,},vv)
associated to N. An automorphism of the triple is a bijective linear A: V — V
such that A(V,) =V, for all ¢ and Ayy = vy A. By assumption this implies that
A is a multiple of the identity. Prove first that the set {g| V, # 0} is one orbit
under the action of . Then show that V, # 0 implies that V; has dimension 1
and compare with Remark 3.34. O

Exercise 3.36 Semi-simple differential modules over K.

We recall, see 2.37, that a differential module M is semi-simple (or completely
reducible) if every submodule of M is a direct summand. As before K = C((2)).
Let C denote the full subcategory of the category Diff z of all differential modules

over K , whose objects are the semi-simple differential modules. Prove that C
has the properties stated in Section 10.1. Show that the universal differential
ring for C is equal to C((2))[{z*}acc, {€(¢) }qeo]- (Note that ! is missing in this
differential ring). O

Remarks 3.37 Triples for differential modules over the field k((z)).

(1) We consider first the case of an algebraically closed field k (of characteristic
0). As remarked before, the classification of differential modules over k((2)) is
completely similar to the case C((z)). The universal differential ring for the field
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k((z)) has also the same description, namely k((z))[{2%}ack, !, {e(q) }qe o] With
Q = Up>12~Y™k[z=Y/™]. For the definition of the differential automorphism
~ of this universal differential ring, one needs an isomorphism of groups, say,
exp : k/Z — k*. For k = C, we have used the natural isomorphism exp(c) =
e?™¢_ In the general case an isomorphism exp exists. Indeed, the group k/Z is
isomorphic to Q/Z ® A where A is a vector space over Q of infinite dimension.
The group k* is isomorphic to Q/Z @ B with B a vector space over Q of infinite
dimension. The vector spaces A and B are isomorphic since the have the same
cardinality. However there is no natural candidate for exp. Nevertheless, this
suffices to define the differential automorphism ~ as before by:

(i) v(2*) = exp(a)z® for all a € k,

(ii) v(e(q)) = e(vq) and

(iii) v(I) =1+ 1. (here 1 replaces the 27i of the complex case).

With these changes, Proposition 3.30 and its proof remain valid.

(2) Consider now any field k of characteristic 0 and let k denote its algebraic
closure. The classification of differential modules M over k((z)) in terms of “tu-
ples” is rather involved. Let K denote the differential field k ®y, k((2)) (compare
Exercise 3.21). For the differential field K there is an obvious description of the
universal differential ring, namely again R := K[{2%} 7,,{e(q)}qeq] where
Q = Up>12~Y™k[z=/™]. On this ring there is an obvious action of the Galois
group Gal(k/k). One associates to M the solution space V = ker (0, R®p(z)yM).
This solution space has a direct sum decomposition B,ecoVy, an action of v (de-
fined in (1)), called vy and an action of the Galois group Gal(k/k), called py .
Thus we can associate to M the tuple (V, {V,},7v, pv). This tuple satisfies the
compatibilities of the triple (V, {V,},yy) and moreover staisfies a compatibility
of py with respect to the {V,;}’s and 7. One can show, as in Proposition 3.30,
that the functor M — (V,{V,},yv,pv) is an equivalence between the (Tan-
nakian) categories of the differential modules over k((z)) and the one of tuples
described above. This description is probably too complicated to be useful. O

Observations 3.38 Irreducible differential modules over k((z)).

The field k£ has characteristic 0 and is not necessarily algebraically closed. We
present here the description of the irreducible differential modules over k((z)),
with differentiation & = zd%, given by R. Sommeling [277]. The ideas and
methods are an extension of Remark 3.34.

We will first describe the finite extensions of k((z)). Let K D k((z)) be a
finite field extension. The field K is again complete w.r.t. a discrete valuation.
The differentiation of k((z)) extends uniquely to K. We will either write d(a)
or o' for the derivative of an element @ € K. The minimal monic polynomial of
any constant ¢ of K has coefficients in k. Thus the field of constants &’ of K is
the algebraic closure of k£ in K. Since one works in characteristic zero this is also
the unique coefficient field of K containing k. Thus K = k’((u)) for a suitable
element u. The element z is equal to some expression ¢~ u™(14ciu+cau?+-- - ).
The number m > 1 is called the ramification index. After replacing u by
t(1 4 cru + cou® +---)~Y™ one finds K = k'((t)) and cz = t™ with ¢ € k'.
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We note that §(t) = %t. Further ¢ is unique up to multiplication by a non-zero

element in &’ and ¢ is unique up to the nth power of this element in &’

Consider the 1-dimensional differential module Ke given by de = Qe. One
normalizes @ such that @ € k’[t!] (this normalization does not depend on the
choice of t). The thesis of R. Sommeling contains the following results:

(1) Suppose that K = k((2))[Q], then Ke with Je = Qe, considered as a differ-
ential module over k((z)), is irreducible.

(2) Two irreducible differential modules over k((z)), of the form considered in
(1) and given by Q1 and Q2, are isomorphic if and only if there exists an k((2))-
isomorphism o : k((2))[Q1] — k((2))[Q2] with o(Q1) — Q2 € =Z, where m > 1
is the ramification indez of k((2))[@Q1].

(3) Every irreducible differential over k((z)) is isomorphic to a differential mod-
ule of the form considered in (1).

Proof. (1) K is seen as a subfield of a fixed algebraic closure k((z)) of k((2)).
Put M = Ke and take any non-zero element v = fe € M. Then 0(v) =

(fT/ + Q)v. Let L € k((2))[d] denote the minimal monic operator with Lv = 0.
Then L, seen as operator in k((z))[d] has right hand factor § — (fTI + Q). For

every automorphism o of k((z)) over k((z)), the operator § — U(fTI + Q) is
also a right hand divisor of L. Let o1,...,0, denote the set of the k((z))-
linear homomorphisms of K into k((z)). Then n = [K : k((z))] and since Q is

normalized, the operators § — Ui(fTI +Q), i =1,...,n are pairwise inequivalent.

The least common left multiple L; of these operators in k((z))[d] is in fact a
monic operator in k((z))[d], since it is invariant under the action of the Galois
group of k((z)) over k((z)). Clearly L is a left multiple of L; and by minimality
one has L = L1 and L has degree n. This shows that the differential module M
over k((z)) has no proper submodules.

Further we note that the § — Ui(fTI + Q) are the only possible monic right hand

factors of degree one of L in k((z))[d], since they are pairwise inequivalent.

(2) Suppose that o(Q1) — Q2 € +Z. Then K = k((2))[Q1] = k((2))[Q2]. Let
M = Ke with de = Qqe, then for a suitable power f of ¢ (i.e., the element
defined in the above description of K) one has that fe = Q2 fe. Thus the two
differential modules over k((z)) are isomorphic.

On the other hand, suppose that the two differential modules M; and My
over k((z)), given by @1 and @2, are isomorphic. Then M; and M, contain non-
zero elements vy, v2 such that the minimal monic operators L; € k((2))[d] with
L;v; = 0 are equal. In (1) we have seen that these operators are least common

left multiple of conjugates of § — (ﬁ—/ + Q;) for i = 1,2. The unicity of these

sets of monic right hand factors of degree one in k((2))[d], implies that there
exists a o with 0’(% +Q1) = % + Q2. It follows that k((2))[Q1] = k((2))[Q2].

Let m > 1 denote the ramification of the latter field. Then }c—/ is modulo the
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maximal ideal of the ring of integers of K equal to some element in %Z. Thus
o(Q1) — Q2 € ~Z.

(3) Let M be an irreducible differential module over k((z)). One considers a field
extension K D k((z)), lying in k((2)), of minimal degree, such that K ®j(.)) M
contains a submodule Ke of dimension one. As above, one writes K = k'((t))
with ™ = cz. Further, one normalizes e such that de = Qe with Q € k'[t~!]. By
minimality, K = k((2))[Q]. Let o1,...,0, denote the k((z))-linear embeddings
of K into k((z)). This leads to a differential submodule N := &} ,k((z))o;i(e)
of k((2)) ®p((z)) M, with an action of the Galois group G of k((z)) indicated
by the notation and 0 given by do;(e) = 0;(Q)oi(e). Since N is stable under
the action of G, one has that the space of invariants N¢ is a non-zero k((z))-
differential submodule of M. Since M is irreducible, one has that M = N¢.
The latter translates into M is isomorphic as k((z))-differential module with
Ke with de = Qe. a

In R. Sommeling’s thesis the above results are extended to a description of
all semi-simple differential modules over k((z)) by means of certain equivalence
classes of monic polynomials over the field k((z)). O

Split and quasi-split equations over K., = C({z})

We now turn to equations with meromorphic coefficients. We let K .on, be
the field of convergent Laurent series in z and K¢ony,m be the field of convergent
Laurent series in z/™.

Definition 3.39 A differential equation y’ = Ay over C({z}) will be called
split if it is the direct sum of equations y' = (¢; + C;)y with ¢; € 271C[z71]
and C; constant matrices. The equation is called quasi-split if it is split over
C({z'/™}) for some m > 1. O

We translate the notions in terms of differential modules. A differential module
M over the field K.,y of convergent Laurent series is split if M is a direct
sum @®_,F(q;) ® N;, where q1,...,qs € 27 'C[271], where E(q) denotes the
one-dimensional module K onpeq over Keopn, with de, = ge, and where the N;
are regular singular differential modules over K ,,,. The differential module
M over Ki.ony is called quasi-split if for some m > 1 the differential module
Keonv, m @ M is split over Kcony, m-

One has that the Picard-Vessiot extension of C({z}) corresponding to a quasi-
split equation can be taken to lie in the subfield of UnivF; generated over
C({z}) by the elements I, {2}, _,{e(q)}qeo- The argument of Corollary 3.32
implies the following

Proposition 3.40 The differential Galois groups of a quasi-split differential
equation y' = Ay over C({z}) and C((2)) are the same. This group is the
smallest linear algebraic group containing the exponential torus and the formal
monodromy.
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For equations that are not quasi-split, the Galois group over C({z}) will, in
general, be larger. We will give a complete description of the Galois group in
Chapter 8. The starting point in this description is the following:

Proposition 3.41 Every differential equation y = Ay with coefficients in K
is, over the field K, equivalent with a unique (up to isomorphism over K ony)
quasi-split equation over Kcony. The translation of this statement in terms of
differential modules over K is:

For every differential module M over I?, there is a unique N C M, such that:

1. N is a quasi-split differential module over the field K opy, -

2. The natural K -linear map K QK N — M is an isomorphism.

conv

To prove this proposition, we need the following result that will allow us to
strengthen the results of Proposition 3.12.

Lemma 3.42 Let A € M, (Kcony) and assume that the equation Y' = AY is
equivalent over K to an equation with constant coefficients. Then Y' = AY is
equivalent over Kqopn, to an equation with constant coefficients.

Proof. By assumption, there is a matrix B € GLn(I?) such that B~'AB —
BB’ is a constant matrix. By truncating B after a suitably high power, we
may assume that A is equivalent (over K ony) to a matrix in M,,(C{z}), and so,
from the start assume that A € M,,(C{z}). Following the argument of Lemma
3.11, we may assume that A = Ag + A1z + --- where the distinct eigenvalues
of Ay do not differ by integers. As in Proposition 3.12, we wish to construct a
matrix P=1+Pyz+--- , P, € M,,(C) such that the power series defining P is
convergent in a neighbourhood of the origin and PAy = AP — P’. Comparing
powers of z, one sees that

AgP; — Pi(Ag +il) = —(Ai + Ay 1 PL+ -+ A1P ) .

Proposition 3.12 implies that these equations have a unique solution. Let L, 41
denote the linear map X +— A¢X — X Ag— (n+1)X. Using the norm || (a;;) ||=
max |a;,;|, one sees that || L, ;, |= O(%). Using this bound, one can show that

the series defining P converges. |

Proof of Proposition 3.41. We give a proof using differential modules and
return later to matrices. The first case that we study is that of a differential
module M over K, which has only 0 as eigenvalue. In other words, M is
regular singular over K. As we have seen before, M has a basis e1, ..., e, over
K such that the matrix C' of 0, with respect to this basis, has coefficients in
C. Using the argument before Lemma 3.11, we may even suppose that the
(distinct) eigenvalues X;, ¢ = 1,...,r (with multiplicities ki,...,k,) of this
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constant matrix satisfy 0 < Re();) < 1. It is clear that N := K pnper + -+ +
Kconvem has the properties 1. and 2. We now want to prove that N is unique.

A small calculation shows that the set of solutions m € M of the equation
(6 — X\i)¥m = 0 is a C-linear subspace W; of Ce; + --- + Ce,,. Moreover
Cej +- - -+ Ce,, is the direct sum of the W;. For a complex number p such that
p—N; € Z for all i, one calculates that the set of the m € M with (6§ —u)*m =0
(any k > 1) is just 0. Consider now another N C M having the properties
1. and 2. Then N is regular singular over K.y,, and we know, from Lemma
3.42 that there is a basis fi,..., fin of N over K ony, such that the matrix
D of 0, with respect to this basis, is constant and all its eigenvalues p satisfy
0 < Re(u) < 1. From the calculation above it follows that the eigenvalues of
D are also eigenvalues for C' (and also the converse). We conclude now that
Cfi+---+Cfm =Cei +---+ Ce,,. In particular, N = N.

The next case that we consider is a differential module M over K , such that
all its eigenvalues belong to 2~ 1C[z7!]. Again we want to show the existence
and the uniqueness of a N C M with properties 1. and 2., such that N is
split. M decomposes (uniquely) over K as a direct sum of modules having only
one eigenvalue. It is easily seen that it suffices to prove the proposition for
the case of only one eigenvalue g. One considers the one dimensional module
F(q) = K ®k.,,, E(¢). Thus F(q) = Ke, and de; = ge,. The module
F(—q) ® M has again only one eigenvalue and this eigenvalue is 0. This is the
regular singular case that we have treated above.

Finally, we take a general differential module M over K. Take m > 1 such that
all its eigenvalues belong to Ky, = K[z'/™]. Then the module K,, ® M has
a unique subset N, which is a split differential module over K¢ony, m and such

that the natural map Km K, N — Km ®K M is an 1somorph1sm Let o

be a generator of the Galois group of K over K Then o acts on Km ®@ M by
the formula o(f ® m) = o(f) ® m. Clearly o(N V) has the same property as N.
The uniqueness implies that o(N) = N. Thus ¢ acts on N. This action is semi-
linear, i.e., o(fn) = o(f)o(n). Let N denote the set of the o-invariant elements
of N. Then it is easily seen that the natural maps Kcony, m @K, yn, N — N and
K® Keons IV — M are isomorphisms. Thus we have found an NV with properties
1. and 2. The uniqueness of N follows from its construction.

We return now to the matrix formulation of the proposition. For a matrix equa-
tion y' = Ay over K (with module M over K ), such that the eigenvalues are in

*IC[ ], it is clear that the module N over K ,,, has a matrix representation
y' = By which is a direct sum of equations y' = (¢; + C;)y with ¢; € 27 1C[z71]
and constant matrices C;. In the case that y' = Ay has eigenvalues which are
not in z7'C[z71], one can again take a basis of the module N and consider the
matrix equation y’ = By obtained in this way. O

Remarks 3.43 1. It is more difficult to give this matrix B, defined in the final
paragraph of the above proof, explicitly. This problem is somewhat analogous
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to the formulation of the real Jordan decomposition of real matrices. We will
give an example. Consider a two dimensional equation y' = Ay with eigenvalues
q1, 2 which are not in z='C[z~!]. Then the eigenvalues are in z~/2C[z~1/?]
and they are conjugate. The module N over K conw, 2, of the proof of the propo-
sition, has a basis ey, es such that de; = g;e;. Let o be a generator of the Galois
group of Ky over K. Then one easily sees that ce; = es and oges = e;. The

elements f; = e; +eo and fo = 2’1/2(61 —e2) form a basis of N over K,n, and
-1

the matrix of 0 with respect to this basis is equal to ( 2 )\Z_ 1‘72 ), where

q1 = A+ 271/2/% q2 = A— 271/2/% )\,,LL € Zﬁlc[’zil]'

The issue of finding B explicitly is also addressed in [178] where a version of
Proposition 3.41 is also proven. Proposition 3.41 also appears in [17].

2. For the study of the asymptotic theory of differential equations7 we will use
Proposition 3.41 as follows. Let a matrix differential equation y = Ay over
Keconw be given. Then there exists a quasi-split equation Yy = By over Keons
and an F € GL,(C((2))) such that F~'AF — F~1F = B. The equation
y' = By is unique up to equivalence over Keony- For a fixed choice of B the
formal transformation F' is almost unique. Any other choice for the formal
transformation has the form FC with C € GL,(C) such that C~'BC = B.
The asymptotic theory is concerned with lifting F to an invertible meromorphic
matrix F on certain sectors at z = 0, such that F~'AF — F~1F’ = B holds.
The above matrix C' is irrelevant for the asymptotic liftings F'. o

3.3 Newton Polygons

In this section we present another approach to the classification of differential
modules over a field which is complete w.r.t. a discrete valuation. Let k denote a
field of characteristic 0 and let D := k((z))[0] denote the skew ring of differential
operators over k((z)), where § := z0,. Note that dz = zé 4+ z. For a finite field
extension K D k((z)) we also have the skew ring K|[d]. For every f € K one
has 6 f — f6 = f/, where f — f’ is the unique extension of z - to K.

The Newton polygon N (L) of an operator
L= ad' =) a;;2'6" € k((2))[d] with a,, # 0
i=0 i,

is a convex subset of R? which contains useful combinatorial information of L.
The slopes k1 < --+ < k. of the line segments forming the boundary of the
Newton polygon are important in many discussions concerning L and will be
crucial when we discuss the notion of multisummation. In this section we will
use Newton polygons for the formal decomposition of L, following the work of
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B. Malgrange [188] and J-P. Ramis [235]. We begin by recalling some facts
concerning polyhedral subsets of R?, [97].

A subset of R? that is the intersection of a finite number of closed half-planes is
said to be a polyhedral set. We will only consider connected polyhedral sets with
nonempty interior. The boundary of such a set is the union of a finite number of
(possibly infinite) closed line segments called edges. The endpoints of the edges
are called vertices or extremal points. The vertices and edges of such a set are
collectively referred to as the faces of the set. Given two subsets N and M of
R? we define the (Minkowski) sum of these sets to be M + N = {m+n | m €
M, n € N}. Any face of the sum of two polyhedral sets M and N is the sum of
faces of M and N respectively. In particular, any vertex of M + N is the sum
of vertices of M and N.

On R? one defines a partial order, namely (z1,y1) > (22,y2) is defined as
y1 > y2 and z1 < x2. We now can make the following

Definition 3.44 The elements of D = k((z))[d] of the form z™§" will be called
monomials. The Newton polygon N (L) of L # 0 is the convex hull of the set

{(z,y) € R?| there is a monomial z™§" in L with (z,y) > (n,m)}.

O

N(L) has finitely many extremal points {(n1,m1),..., (ny41, Myr41)} with
0<mny <ng <---<npqp1 =n. The positive slopes of L are k; < --- < k, with
ki = % It is also useful to introduce the notation k.11 = co. If ny > 0
then one adds a slope ky = 0 and in this case we put ng = 0. The interesting
part of the boundary of N(L) is the graph of the function f : [0,n] — R, given

by

L. f(no) = f(n1) = ma.
2. f(n;) =my for all 4.

3. f is (affine) linear on each segment [n;,n;4+1].

The slopes are the slopes of this graph. The length of the slope k; is n;11 — n;.
We reserve the term special polygon for a convex set which is the Newton polygon
of some differential operator.

Let b(L) or b(N(L)) denote the graph of f. The boundary part B(L) of L is
defined as B(L) = 3, ;n)ep(r) nmz™0". Write L = B(L) + R(L). We say
that Ly > Lo if the points of b(L1) either lie in the interior of N(Lz) or on
the vertical ray {(n,41,¥) | y > myy1}. Clearly R(L) > B(L) and R(L) > L.
We note that the product of two monomials M7 = 2™ My = 2™20™2

is not a monomial. In fact the product is z™T™2(§ + mgy)™1§"2. However
B(M;My) = zmitmzgnitnz  This is essential for the following result.
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Lemma 3.45 1. N(L1Ls) = N(L1) + N(Ls).
2. The set of slopes of L1Lo is the union of the sets of slopes of L1 and Ls.

3. The length of a slope of L1Ls is the sum of the lengths of the same slope
for Ly and Lo.

Proof. 1. Write Ly = Y a; ;270" and Ly = Y b;;276°. From the above it
follows that Li1Ls = L3 + R with

L3 = E aihhbiz;szlerjz(silJriz
(i1,41)€b(L1),(i2,j2) €b(L2)

and one has R > L3. This shows at once that N(LiL2) C N(L1) + N(L2).
The boundary part of L3 can be written as

Z (Z am,mlbnz,mz)ZSz(SSl

(s1,82)€b(L1L2)

where the second sum is taken over all (n1,m1) € b(L1), (n2, mz2) € b(Lz2) with
(n1,m1) + (n2,m2) = (s1,82). By making a drawing one easily verifies the
following statement:

Suppose that v is a vertex of N(Li) + N(Ls2) and v = vy + vy with v; €
N(L;), i =1,2. Then v; is a vertex of N(L;) for i = 1,2. Moreover v determines
vy and vs.

From this statement we see that for a vertex v = (s1, s2) of N(L1) + N(L2)
the coefficient of 2°1¢°% in L3 does not vanish. Therefore N(Ly) + N(Lg) C
N(L1Ls). This proves the first part of the lemma.

The two other parts follow easily from the above facts concerning the faces of
N(L1) + N(L3). O

Example 3.46 The operator L = 262> + § — 1 factors as L = L;Ly where
Li =6d—1and Ly = z0 + 1. Figure 3.1 show the corresponding Newton
polygons. O

Exercises 3.47 Newton polygons and regular singular points

1. Show that 0 is a regular singular point of an operator L if and only if the
corresponding Newton polygon has only one slope and this slope is 0.

2. Show that if 0 is a regular singular point of an operator L, then it is a regular
singular point of any factor of L. o

The next statement is a sort of converse of the lemma.

Theorem 3.48 Suppose that the Newton polygon of a monic differential oper-
ator L can be written as a sum of two special polygons Py, Py that have no slope
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1 2 1 2 1 2

N(L) N(Ly) N(L2)
Figure 3.1: Newton Polygons for Example 3.46

in common. Then there are unique monic differential operators Ly, Lo such that
P; is the Newton polygon of L; and L = L1Ls. Moreover

D/DL =~ D/DLy & D/DL,.

Proof. For the Newton polygon N (L) of L we use the notations above. We
start by proving three special cases.

(1) Suppose that n; > 0 and that P; has only one slope and that this slope
is 0. In particular, this implies that P, has no slope equal to zero. We would
then like to find the factorization L = LjLy. Every element M € D = k((z))[0]
is given an expansion M = Y. z*M(i)(6) where the M(i)(6) € k[d] are
polynomials of bounded degree. Let L =", 2*L(k). The Ly = >~ 2'L1(i)
that we want to find satisfies: L;(0) is monic of degree n; and the L;(¢) have
degree < n; for i # 0. Furthermore, if we write Ly = Y, 2°Lo(i), we will
have that La(m) is constant since P> has no slope equal to zero. The equality
L1Ly = L and the formula 277 L1 (i)(8)27 = L1(i)(6 + j) induces the following
formula:

YY) Li@O+ L)) = Y 2 L))

k>m itj=k,i>0,j>m k>m
From L1(0)(6 + m)La(m)(6) = L(m)(d) and L1(0) monic and L2(m) constant,
one finds L1(0) and Lo(m). For k = m + 1 one finds an equality

Li(0)(d +m+ 1)La(m + 1)(6) + L1(1)(0 + m)La(m)(6) = L(m + 1)()

This equality is in fact the division of L(m + 1)(6) by L1(0)(d +m + 1) with
remainder L (1)(0+m)La(m)(d) of degree less than ny = the degree of L1 (0)(d+
m+1). Hence L1(1) and Lo(m + 1) are uniquely determined. Every new value
of k determines two new terms L;(...) and La(...). This proves the existence
and uniqueness in this special case.

(2) Suppose now that ny = 0 and that P; has only one slope s which is the
minimal slope of L. Write s = g with a,b € Z;a,b > 0 and g.c.d.(a,b) = 1.



94 CHAPTER 3. FORMAL LOCAL THEORY

We allow ourselves the field extension k((z)) C k((¢)) with t* = z. Write
A = t%5. After multiplying L with a power of ¢ we may suppose that L €
k((t))[A] is monic. Note that the Newton polygon of L now has minimal slope
0 and that this slope has length ny. Every M € E((t))[A] can be written
as M =Y, . t'"M(i) where the M(i) € k[A] are polynomials of bounded
degree. We want to find Ly, L € k((¢))[A] with L1Ly = L; L;(0) is monic
of degree na — ny = mno; Lq(i) has degree less than ng for ¢ > 0. Using that
At =tA + étb“, one finds for every index k£ an equation of the form

Z L1(i)La(j) + “lower terms” = L(k)
i+j=k

Here “lower terms” means terms coming from a product L;(i)La(j) with i+j <
k. The form of the exhibited formula uses strongly the fact that b > 0. It
is clear now that there is a unique solution for the decomposition L = LiLs.
We then normalize L, Ly, Ly again to be monic elements of k((t))[0]. Consider
the automorphism 7 of k((¢))[d] which is the identity on k((z))[d] and satisfies
7(t) = ¢t where ¢ is a primitive a*® root of unity. Since the decomposition is
unique, one finds 7L; = L; for i = 1,2. This implies that the L; are in k((z))[d].
This finishes the proof of the theorem in this special case.

(3) The bijective map ¢ : k((2))[0] — k((2))[d], given by ¢(>_ a;6%) = >°(—6)a;
is an anti-isomorphism, i.e. ¢ is k((z))-linear and ¢(L1L2) = ¢p(L2)¢(L1). Using
this ¢ and (1),(2) one finds another new case of the theorem, namely: Suppose
that N(L) = Py + P, where P, has only one slope and this slope is the minimal
slope (> 0) of L. Then there is a unique decomposition L = L;Ly with the
properties stated in theorem.

(4) Existence in the general case. The smallest slope s > 0 of L belongs either
to Py or P,. Suppose that it belongs to Py (the other case is similar). According
to (1) and (2) we can write L = AB with A, B monic and such that A has only
s as slope and B does not have s as slope. By induction on the degree we may
suppose that B has a decomposition B = ByBs with N(Bs) = P and By, B
monic. Then L := AB; and Ls := By is the required decomposition of L.

(5) The unicity. Suppose that we find two decompositions L = Li1Lg = L1Lsy
satisfying the properties of the theorem. Suppose that the smallest slope s > 0
of L occurs in P;. Write L; = AB and L; = AB where A and A have as
unique slope the minimal slope of L and where B, B have no slope s. Then
L = ABLy = ABL, and the unicity proved in (1) and (2) implies that A = A
and BLy = Big Induction on the degree implies that B = B and Ly = I~/2.
This finishes the proof of the first part of the theorem.

(6) There is an exact sequence of k((z))[d]-modules

0— D/DL, 4 D/DL ™ D/DLy — 0
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corresponding to the decomposition L = L; L. It suffices to show that 7y splits.
There is also a decomposition L = LyLq with N(L;) = P;. This gives another
exact sequence

0— D/DLy % D/DL 3 D/DLy — 0
It suffices to show that
¥ :D/DLy X D/DL ™ D/DL,

is an isomorphism. Since the two spaces have the same dimension, it suffices to
show that ¢ is injective. Let A € D have degree less than d = the degree of
Lo and Lo. Suppose that ALy lies in DLs. So AL, = BL,. We note that L;
and Lo have no slopes in common. This means that N(A4) must contain N (Ls).
This implies that the degree of A is at least d. This contradicts our hypothesis.
O

Examples 3.49 1. We consider the operator L(y) = 262 + 6 + 1 of Example
3.46. One sees from Figure 3.1 that the Newton polygon of this operator is
the sum of two special polygons P, having a unique slope 0, and P», having a
unique slope 1. Using the notation of part (1) of the proof Theorem 3.48, we
have that n; =1 and m = 0. We let

where L1 (0) is monic of degree 1, the Ly () have degree 0 for ¢ > 0 and L2(0) = 1.
Comparing the coefficients of 2° in L = L; Lo we have that

L1(0)L2(0) = L1(0) =6 — 1 .
Comparing coefficients of z! we have that
L(0)(8 + 1)La(1)(8) + L1 (1)(8) L2(0)(6) = 0L2(1)(8) + L1 (1) = 6* .

This implies that Lo(1) = § and L1(1) = 0. One can show by induction that
Ly(i) = Lo(i) = 0 for ¢ > 2. This yields the factorization given in Example 3.46.

2. We consider the operator

1 1 1 2
L=84+(5+-)04+ = — = .
* (z2 * z) * 23 22
The Newton polygon of this operator can be written as the sum of two special
polygons P; and P, (see Figure 3.2).

The polygon P; has minimal slope 1 so, using the notation of part (2) of the
proof Theorem 3.48, we have that a = b =1 and t = z. Letting A = 2§ we have
that

1 1 1 1 1 2
L=A’4+(=+= )
z +(z3+22 z +z3 z
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N(L) P Py
Figure 3.2: Newton Polygons for Example 3.49.2.

Dividing by z to make this operator monic, we now consider the operator

1 1
L:A2+(;+1—2)A+;—2

whose Newton polygon is given in Figure 3.3.

e

Figure 3.3: Newton Polygon for L

-1

We write L = L1 L5 where

Ly = L1(0)+ZL1(1)+32L1(2)+...
Ly = 2z 'Ly(=1)+ L2(0) + zLa(1) + - --

where L;(0) has degree 1 (i.e., L1(0) = rA + ), L1(¢) is constant for ¢ > 0 and
Li(—1) = 1. Composing and equating coefficients of powers of z we get

rA+s = A+1 coefficients of 21
—r4+ (A+1)L2(0) + L1(1) = A2+ A -2 coefficients of 2°
(A+1)La(1) + L1(1)L2(0) + L1(2) = —A coefficients of z!

These imply that r = s = 1, L2(0) = A, L1(1) = —1 and Ls(1) = L1(2) = 0.
One can show by induction that La(i) = La(i + 1) = 0 for ¢ > 1. This gives a
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factorization L = (A +1 — z)(A + z~1). We therefore have that L =

11 12 1 1
F+H(5+-)0+5—— = —A2+(;

1 1 1 2
z z z 22 z 2

S A+ = =2
+z z) +z3 z

= z -2

(A? (i—l—l—z)A—l—%—Z)
2A+1-2)(A+27Y
2204+ 1—2) (26 +27Y)
(
(2

= 272204+ 1—2)2(6 +272)
—2

= z 254+ 2)(0+27%)
)

This gives a factorization of L. |

Theorem 3.48 allows us to factor linear operators whose Newton polygons
have at least two slopes. We now turn to operators with only one positive slope
s. Write as before s = g with g.c.d(a,b) = 1 and a,b € Z;a,b > 0. We
make the field extension k((t)) D k((z)) with t* = z and we write A = t4.
After normalization we may assume that L is monic with respect to A. Write
L = 3,5 t"L(i)(A) where the L(i) are polynomials in A such that L(0) is
monic of degree n and the L(i) have degree less than n for ¢ # 0. The following
result is a restatement of Hensel’s Lemma for irregular differential operators.

Proposition 3.50 Suppose (using the above notation) that L € Kk[[t]][A] s
monic of degree n. Suppose that L(0) € k[A] factors into relative prime monic
polynomials L(0) = PQ. Then there is a unique factorization L = AB with
A, B monic and A(0) = P, B(0) = Q. Moreover

k((£))[0]/R((#)[8]L = k(1)) [6]/k((1))[6]A ® k(1)) [6]/k((£))[5] B

Proof. Write A=}, t'A(i); B = 250 t/B(j). Then

AB = Z t"( Z A(i)B(j) + “lower terms” ) = Z t"L(m)

m>0 i+j=m m>0

Again “lower terms” means some expression involving A(7) and B(j) with i+j <
m. Clearly one can solve this set of equations, using that A(0) and B(0) are
relatively prime, step by step in a unique way. This proves the first part of the
proposition. The second part is proved as in Theorem 3.48. O

Remark 3.51 The hypothesis that s > 0 is crucial in Proposition 3.50. If
s = 0, then the point zero is a regular singular point and the exhibited equation
in the proof of Proposition 3.50 becomes AB =

Z Z A()(0 +7)B(5)(0) + “lower terms” ) = Z 2™ L(m

m>0 i+j=m m>0
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In order to proceed, one needs to assume that A(0)(A + j) and B(0)(A) are

relatively prime for j = 0,1,2,.... With this assumption, one can state a result
similar to the Hensel Lemma for regular singular points given in the previous
section. O

L whose Newton

Examples 3.52 1. Consider the operator L = §2 — %5 + QZ
polygon is given in Figure 3.4.

Figure 3.4: Newton Polygon for Example 3.52.1

Using the above notation, we have that t2 = z and A = t6. Rewriting L in
terms of ¢t and A, we have L = t%L where

L = A?-2tA+ 2(2752 —1)
= L(0)+tL(1) +t*L(2)

1 1
= (A% — )+ t(-2A) +3(3)
4 2
Since A2 — % = (A + %)(A - %) we can apply Proposition 3.50. Let L; =
A+ L +t0(1) +¢2L1(2) + -+ and Ly = A — 2 + tLy(1) + t2La(2) + - - .
Comparing the powers of ¢t in L = Lj Ly, the coefficients of t° and ¢2 are resp.

) + Lao(1)(A + 1) - A
— D+ L) La(1) + 1L(1) =

h
)
—
\)
N~—
—
>
|
N|—=
N~—
+
h
=
—
\)
—
le»—t
= DN

Therefore Lq(1) = La(1) = —1 and L1(2) = L2(2) = 0. One sees that this

—
~
~—
Il
<l

implies that Lq(i) = La(i for all ¢ > 2. Therefore
~ 1
L = t_2L
1 1 1
= s(A+-—-t)(A—-—<-—1t
S+ 53 —1)
1 1 1
t2( +2 i 2t)

1 1 1
= (-5+5)0-1-5)
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2. We consider the Airy equation 3" — zy = 0 mentioned in Example 3.33. We
wish to consider the behavior at infinity so we make the change of variable t = %
and write the resulting equation in terms of § = t%. This yields the equation
~ 1
)
L=6—-6—- I

which has Newton polygon given in Figure 3.5.

Figure 3.5: Newton Polygons for Example 3.52.2

The unique slope is % so we let 7 = t1/2 and A = 735. Rewriting L in terms

of 7 and A we have that L = 776A% — 17=3A — 776, Dividing by 77¢ yields
the equation

1
L=A?— 7' -1

Since L(0) = A? — 1 we may write L = L Ly where L1 = (A—1)+7Ly(1)+---
and Lo = (A4 1) + 7La(1) + - --. Composing these operators and comparing
coefficients of powers of 7 shows that L1(1) = L1(2) = La(1) = L2(2) = 0.
Therefore

L = 75A -1+ NA+1+73(..))
= (0—7"24---)(6 + 7% + nonnegative powers of 7 )

The form of the last factor shows that the Airy equation has a solution in R,s/2.
Reversing the roles of A + 1 and A — 1 shows that it also has a solution in
R_ _3/2. This verifies the claim made in Exercise 3.33. a

In order to factor a general L as far as possible, one uses the algebraic closure
k of k and fractional powers of z. Suppose that L has only one slope and that
this slope is positive. If Proposition 3.50 does not give a factorization then L(0)
must have the form (A + ¢)" for some ¢ € k' (note that ¢ # 0 since L(0) must
have at least two terms). This implies that the original Newton polygon must
have a point of the form (1,m) on its boundary, that is on the line bx — ay = 0.
Therefore, a = 1 and A = z%J in this case. One makes a change of variables
§ — 6+cz~. One then sees that the Newton polygon N’ of the new equation is
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contained in the Newton polygon N of the old equation. The bottom edge of N’
contains just one point of N and this is the point (n, bn) which must be a vertex
of N'. Therefore, the slopes of N’ are strictly less than b. If no factorization,
due to Theorem 3.48 or Proposition 3.50 occurs then L has again only one slope
and this slope is an integer b’ with 0 < &’ < b. For ¥’ = 0 one stops the process.
For b > 0 one repeats the method above. The factorization of L stops if each
factor L satisfies:

There is an element ¢ € ¢t~1k’[t 1], where £’ is a finite extension
of k and t™ = z for some m > 1, such that L has only slope zero
with respect to § —¢. This can be restated as L € k’[t][(§ — q)] and
L is monic in (06— q).

Example 3.53 Consider the operator

+4+4z—522—8z3—3z4+226

4422 —2%2-328
+ 1) 7

L =62
z2 z

whose Newton polygon is given in Figure 3.6.

-1

-z

-3

-a

2 4 4+422-22-35° 4+442-52"—82% 32" 42,°
N((5++ZZZ2 z(s_’_—i-zzzf z+z)

-1

2

N((5/)2 + 272;3;:2 5/ + 172z73222+224)

z

Figure 3.6: Newton Polygons for Example 3.53

Since this has only one slope and this is 2, we let A = 226. Rewriting
the equation in terms of A and dividing by a suitable power of z to make the
resulting operator monic we have that L(0) = (A+2)2. We then let §' = §+2272
and have

L:(é’)2+2_z_3Z26’—|—1_22_3Z2+224
z 22
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whose Newton polygon is given in Figure 3.6. Rewriting this operator in terms
of A’ = 2z’ and making the resulting operator monic, one has that L(0) =
(A’ + 1), Therefore we continue and let §” = ¢’ + z~!. One then has

L=(6")?—(32+1)8" +222.

This operator is regular and can be factored as L = (6" — (22 + 1))(6” — 2).
Therefore

2 1 2 1
L—((54‘2—224';—(224-1))(54-2—224-;—2)

O

We continue the discussions in Remarks 3.37 and Observations 3.38, con-

cerning the classification of differential modules over more general differential
fields than C((z)). Let, as before, k be any field of characteristic 0 and let k((2))
be the differential field with derivation § = zdiz. A finite field extension K of
k((z)) is again presented as K = k'((t)) with k C k' and ¢ with ¢ = ¢z for
some non-zero c € k'
As in the case k((z)), a monic operator L € K|[d], is called regular singular if we
have L € K'[[t]][6]. The Definition 3.9 of a regular singular differential module
is in an obvious way extended to the case of the more general field K. One can
show that this notion is equivalent to: M = K[§]/K[0]L for a regular singular L.
As in Proposition 3.12, one shows that for a regular singular differential module
M over K there exists a basis {e1,...,e,} of M over K such that the matrix
of 6 with respect to {e1,...,e,} is constant. In other words, the corresponding
matrix equation is dy = Ay with A a matrix with coefficients in k’. It is not easy
to decide when two equations dy = A;y, ¢ = 1,2 with coefficients in k' are equiv-
alent over K. In the case K = k((t)) with k algebraically closed and t"™ = z,
one chooses a set S C k of representatives of k/(=Z). Any matrix equation
with constant coefficients, can be normalized into an equation dy = Ay where
the eigenvalues of the constant matrix A are in S. Two “normalized” equations
oy = Ay, i = 1,2 are equivalent over K = k((t)) if and only if Ay is a conjugate
of Al.

For the field K = C((t)) with "™ = z, one associates to a matrix equation
with constant coefficients 0y = Ay the matrix €™ 4. This matrix (or its
conjugacy class) is called the topological monodromy of the equation (w.r.t. the
field K). Using Proposition 3.30, one can show that two equations dy = A;y
with constant matrices A; are isomorphic if and only if €741 is a conjugate
of e2m™42 (see also Theorem 5.1).

For g € t7 K[t ] we write E(q) for the k’((¢))[d]-module generated over k'((t))
by one element v such that v = quv. Let M be a regular singular module with
cyclic vector e and minimal monic equation Le = 0 where L = Y a;6". Then
M ® E(q) has the cyclic vector e ® v.

The minimal monic equation for this cyclic vector is Y. a;(§ — ¢)*. Fur-
thermore, for any operator of the form L = ;5% the k'((t))[§]-module
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E'((2))[0]/K' ((t))[0]L is of the form M ® E(g). In particular, this is true for

each L described in the exhibited paragraph preceding Exercise 3.53. We can
now state

Theorem 3.54 Let L € k((2))[0] be a monic differential operator. There exist
a finite field extension k' of k, an integer m > 1, elements q1, .. .,qs € t K[t 7}]
with t™ = cz (some non-zero c € k') and Ly,...,Ls € K'((t))[0] such that:

1. Ifi# j then q; # q;.
2. L; € K'[[t][0 — ¢;] and is monic in § — ¢;.
3. L=1L,-Ly.

Moreover one has that
K'((£))[0]/K'((¢))[0]L = ©M; ® E(g;)

where the M; are reqular singular k'((t))[6]-modules.

Proof. The above methods allow one to factor L and give a factorization
L = R;--- R, that yields a direct sum decomposition &'((¢))[d]/k ((¥))[0]L =
@K ((t))[6]/K ((t))[6] R;. According to the above discussion, each factor has the
form N, ® E(q) with N, regular singular. The ¢’s need not be distinct. Let
{q1,...,¢s} denote the distinct ¢’s occurring. Put M; = ®4=4,Ny. This proves
the second part of the theorem.

To prove the first part of the theorem, we let e be a cyclic vector of
E'((¢)[0]/K ((t))[6]L annihilated by L and let e = e; 4+ --- + e; with each
e; € M; ® E(g;). One sees that each e; is a cyclic vector of M; ® E(g;) and
that L(e;) = 0. If Ly is the minimal monic annihilator of ez, then Ly must
divide L on the right. Furthermore, since (M; ® E(g;)) ® E(—qs) is regular,
Proposition 3.16 implies that L,(6 4 ¢;) is a regular operator and so is in k/[[t]].
Therefore Ly € K[[t]][0 — ¢s]. An induction on s finishes the proof of the first
part of the theorem. O

Remarks 3.55 1. We have seen in Proposition 3.41 that the module M =
D/DL determines uniquely the direct sum decomposition Theorem 3.54 part
(2). In particular the ¢; and the dimensions d; of the M; (as vector spaces over
k'((t)) ) are determined by M. From this information one can reconstruct the
Newton polygon of L.

Indeed, L; has one slope, namely —v(g;) with length d; = the order of L;. Since
N(L)=N(Ly) + -+ N(Ls) one finds the following:

Aisaslope of N(L) if and only if A = —v(g;) for some i. Moreover
the length of the slope A is equal to EA:ﬂ)(qi) d;.
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In particular, the Newton polygon of M does not depend on the choice of a
cyclic vector.

2. We also note that the methods described in this section yield an algorithm
to calculate the ¢; of Proposition 3.41. Moreover, these methods produce a set
of at most n such ¢;. More efficient algorithms are presented in the works of
Barkatou et al. [19, 20, 21, 23, 24], Chen [66], Della Dora et al. [83], Hilali et
al. [128, 129, 130, 131] van Hoeij [138], Pfliigel [219, 220] and Tournier [280].
O

We end the chapter by noting that the formal classification of general linear
differential equations has a long history going back to the nineteenth century
with the works of Fuchs [103, 104] (see also [112, 113]) and Fabry [99], who
wrote down a fundamental set of local solutions of regular singular equations
and general linear equations, respectively. In the early twentieth century, Cope
[72, 73] also considered these issues. Besides the works of Deligne, Katz, Mal-
grange [186, 189] , Ramis and Turrittin (already mentioned), this problem has
been considered by Babbitt and Varadarajan [12], Balser et al. [17], Levelt [171],
Robba [247] and Wasow [300] (who attribute the result to Turrittin). The pa-
pers of Babitt-Varadarajan and Varadarajan [13, 297, 296] give a more detailed
exposition of the recent history of the problem.
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Chapter 4

Algorithmic Considerations

Linear differential equations over the differential field C((z)) (with C' an alge-
braically closed field of characteristic 0, in particular C' = C) were classified in
Chapter 3. When the standard form of such a differential equation is known,
then its Picard-Vessiot ring, its differential Galois group, the formal solutions
etc. are known. The methods of Chapter 3 have been transformed into al-
gorithms and are implemented. In this chapter we consider “global” linear
differential equations, i.e., equations over the differential field C'(z). Here C'is a
field of characteristic 0 and the differentiation on C(z) is the usual one, namely
f=f= j—’;. We furthermore assume that there are algorithms to perform the
field operations in C' as well as algorithms to factor polynomials over C(z) (see
[102], [233] for a formalization of this concept). Natural choices for C are Q,
any number field or the algebraic closure of Q.

It is no longer possible to transform any linear differential equation over C(z)
into some standard equation from which one can read off its Picard-Vessiot ring,
its differential Galois group etc. Instead we will present algorithmic methods to
find global solutions which are rational, exponential or Liouvillian. Factoring
linear differential operators over C(z) is in fact the main theme of this chap-
ter. One has to distinguish between “theoretical” algorithms and efficient ones.
Especially the latter category is progressing quickly and we will only indicate
some of its features. We observe that the language of differential operators and
the one of differential modules (or matrix differential equations) have both their
advantages and disadvantages. In this Chapter we choose between the two for
the purpose of simplifying the exposition.

The last part of this Chapter is concerned with the inverse problem for finite
groups. An effective algorithm is explained which produces for a representation
of a finite group a corresponding differential equation.

105
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4.1 Rational and Exponential Solutions

Rational Solutions

Let
L = "+a, 10" 4+--4ag (4.1)

be a linear differential operator with coefficients in C(z) and & = <. The
problem of finding the solutions y € C(z) of L(y) = 0 has a simpler analogue
namely, finding solutions a € Q of p(z) = anz™+ -+ a0 =0, p(z) € Z[z]. If a
is written as ¥ with u,v € Z and (u,v) = 1, then u divides ag and v divides a,,.
This obviously solves this problem. Consider a nonzero solution y = &, with
u,v € C[2] and (u,v) = 1, of the differential equations a,y™ + --- + agy = 0
with a; € C[z],a, # 0. This equation is regular at any point ¢ € C (i.e., the
algebraic closure of C') which is not a root of a,. Hence y has no pole at such
point ¢. It follows that any irreducible factor ¢ of v is a divisor of a,. The
problem that we have to solve is to determine the exact power ¢ which divides

v. As an example, the equation zy’ + 5y = 0 has solution 2.

More generally, consider the equation y™ + a,_1y™ 1 + ... + a;y® +
apy = 0 where some of the a,_1,...,a0 € C(z) have a pole at 0. Now we
make a calculation in the differential field C'((z)) and write y = * = 2% +

- (where o € Z has to be found) and a; = »_ -, aimz™ fori =0,....,n
(where a,, = 1) for their Laurent series. We consider among the Laurent series
Y™ a1y ay™M, agy the ones with (potentially) the smallest order
at 0 (this does not depend on «). The sum of the leading coefficients of these

Laurent series must be zero. This yields an equation

Zai,aia(a— 1) (a—i+1)=0,

i€S
where the sum is taken over the subset S of {0,...,n} corresponding to the
selected Laurent series. I(T) := > . g0, T(T —1)---(T —i+ 1) is called
the indicial polynomial of the equation at 0. This polynomial is nonzero and
its roots (in an algebraic closure of C) are called the local exponents of the
equation at 0. We conclude that the possible values m > 0 for the exact power
2™ dividing v are the negative integers —m with I(—m) = 0.

Now we perform a similar calculation at co. This means that we work in the
Laurent series field C((27')) and develop the putative solution y = % € C(z)*
and the ag,...,a, as Laurent series in the variable z=!. The Laurent series of
y in 27! has the form y = 2 + 27! + ... with a = deg, v — deg, u. There
results an indicial polynomial equation for co of which « is a root. We conclude
that the possible values for deg, v — deg, u are found.

We suppose now that the largest possible denominator o of the putative solu-
tion y has been found. Then for the degree of the numerator u there are finitely
many possibilities. One chooses again the largest possibility d, and writes u as a
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polynomial ug +u12 + - - - +ug_129" 1 +ugz? with yet unknown coefficients. The
differential equation for y translates into a set of homogeneous linear equations
for wug,...,uq. Let U denote the C-linear subspace of polynomials u of degree
< d satisfying these linear equations. Then {%|u € U} is the C-vector space of
all solutions y € C(z) of our differential equation.

Therefore the algorithm will be completed once we have generalized the
above example of a power of z dividing the denominator to the case of a monic
irreducible ¢ € C[z]. Further we are also interested in the solutions y in the
field C'(z). Propositions 4.1 and 4.3 give the formalities of this approach.

Let an irreducible monic polynomial ¢ € C|z] be given. One associates to
q¢ amap vy : C(z) = Z U {oo} by v4(0) = co and vg(f) = m if f # 0 can be
written as f = $¢™ where a,b € C[2], (a,q) = (b,q) = 1 and m € Z. This map
is called a discrete valuation of C'(z) over C. The map v, : C(2) — Z U {0}
defined by v (0) = 00 and v (§) = deg, b — deg, a for a,b € C[z], a,b # 0,
is also a discrete valuation of C(z) over C. The integers vy(f) and v (f) for
f € C(z)* are called the order of f at the place g and the order of f at infinity .
The above examples are in fact all discrete valuations of C(z) over C. One can
complete the field C(z) with respect to any discrete valuation. The resulting
fields will be denoted by kq or ke ([169], Ch.XII). For ¢ = z — a with a € C,
this completion is easily seen to be the field of formal Laurent series C((z — a)).
Further ko = C((271)) . For a q of degree > 1 the field k, is isomorphic to
K'((t)) with k' = C[z]/(¢) and ¢t an indeterminate. The derivation on C(z)
uniquely extends to a continuous derivation on k; and on ks. The elements
f € kq can also be uniquely represented as an infinite sum

fmd™ + g™ -

where each f; € C[z] satisfies deg, f; < deg, ¢. This is called the g-adic expan-
sion of f. One sees by induction that

f(j) — uqu*j 4

where u; =m(m—1)...(m—j+1)fn (¢')? mod q. Since f,, and ¢’ are relatively
prime to ¢, we see that u; # 0 if m < 0. The elements of the completion at
infinity ks = C((271)), can uniquely be written as infinite sums

f = fn™ A fn2™

where the f; are constants and this is called the expansion at infinity of f. For
the j*M-derivative of f one has the formula

fO =m(m—=1)-(m—=j+1)fmz™"7 4
We begin by describing the C-space of solutions of Ly = 0 in C(z).

Proposition 4.1 Let L = 0™ 4+ a,_10" "' + -+ + ag be a linear differential
operator with coefficients in C(z). One can find, in a finite number of steps, a
C-basis of V', the space of solutions in C(z) of Ly = 0.
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Proof. For convenience of notation, we let a,, = 1. Let y # 0 be a putative
solution of Ly = 0 and let ¢ be a monic irreducible element of C[z]. We let

Yy = Yaq" +...
ai = @i, 4"+

be the g-adic expansions of y and the a;. We are only interested in the case
a < 0. As remarked before this implies that ¢ divides the denominator of
some a;. Thus the finite set of ¢’s that we have to consider is known. For
each ¢ we have to find the possibilities for the exact power of ¢ dividing the
denominator of y. As before, we consider the g-expansions of the elements
y™ an_1y™ V... agy with lowest order. The sum of their leading coefficients
must be 0, since L(y) = 0. Thus for some subset S of {0, 1,...,n}, independent
of o one has

Zai’aia(a — 1) (a—i+1)ya(d) =0mod q .
€S

Dividing by y. and replacing a by T yields a nonzero polynomial

IT):=> a0, T(T—1)---(T —i+1)(¢')'mod ¢ =0 € C[z]/(q)[T]
€S

called (as before) the indicial polynomial of L at the place q. The roots of
the indicial polynomial (in an algebraic extension of C|z]/(q)) are called (as
before) the local exponents of L at the place g. We conclude that the negative
integer o should be a root of the indicial polynomial. The assumption on the
field C' guarantees that one can calculate the possible « ’s. This completes the
exposition of the algorithm. We note that in case the indicial polynomial for
some ¢ has no negative integer as root, then there are no rational solutions # 0
of L. m]

Exercises 4.2 Polynomial and rational solutions
1. Find a basis of the space of polynomial solutions of

o 22 +4z 2z+4 ;o 2
z2+23—2y z2+22—2y 224+22-2

y=0

2. Find a basis of the space of rational solutions of

4.2
G+’ T+l

y'+ 2y =0
3. Let L be as in Proposition 4.1 and f € C(z). Modify the method given in

Proposition 4.1 to show how one can decide if Ly = f has a solution in C(z)
and find one if it does. |
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We shall now show that the C-vector space V of solutions of Ly = 0 in C(2)
has a C-basis of elements in C(z). This follows from the general result

Proposition 4.3 Let K be a differential field of characteristic zero with subfield
of constants C. Consider a linear differential operator L = 0™ + a,, 10" +
<o+ ag over K and let V C K denote the C-vector space of the solutions of L
in K. Let C be an algebraic closure of C and let V.C CK be the solution space
of L on CK. The natural C-linear map C ®@c V — V is an isomorphism.

Proof. Let vy,...,v, be a C-basis of V. There exists a ¢ € C such that
K(vi,...,vm) C K(c). Let [K(c): K] =t. For each i, 1 <4 < m, there exist
v;,; € K such that v; = Z;;é v; j¢/. Since 0 = L(v;) = ZE;E L(v; j)c?, we
have that the v; ; span V and therefore, V has a basis in K. Corollary 1.13
implies that any C-basis of V remains linearly independent over C. Therefore

dimz V = dime V. O

Exercise 4.4 Inhomogeneous equations. Let L be as in Proposition 4.3 and
f € K. Show that Ly = f has a solution in CK if and only if it has a solution
in K. Hint: CK is an algebraic extension of K. Consider for a solution y € CK
of Ly = f all its conjugates. m]

Remarks 4.5 1. A C-structure on a vector space W over C is a C-subspace
Wy of W such that W = C®cW,. The previous proposition gives a C-structure
on V. In [126], the authors show how one can put a C-structure on the entire
solution space contained in a Picard-Vessiot extension of C'(z) associated with a
linear differential equation with coefficients in C'(z). This is used to understand
the smallest subfield of C'(z) needed when one is searching for a solution of the
Riceati equation (c.f., Definition 4.6) in C((z). We note that Proposition 4.3 also
appears in [57] and [126].

2. The algorithm in the proof of Proposition 4.1 can be improved in several ways.
For example, there are more efficient algorithms to find polynomial solutions of
linear differential equations. These and related matters are discussed in [2], [4],
[5], [57].

3. In many situations one is given a system Y’ = AY of differential equations
where A is an n X n matrix with coefficients in C(z) and asked to determine
a basis for all solutions in C(z)". In theory, by finding a cyclic vector, one
can reduce this problem to finding all solutions of an associated scalar equation
Ly = 0in C(z) but finding this associated equation can be costly. An algorithm
to find rational solutions of the system Y’ = AY directly has been given by

Barkatou [22] and Abramov-Bronstein [3]. O

Exponential Solutions



110 CHAPTER 4. ALGORITHMIC CONSIDERATIONS

We will keep the following notations. k is a differential field of characteristic 0
and let C be its field of constants. Fix L = 0" +a,, 10" ' +---+ag € k[0] and a
Picard-Vessiot extension K for L over the field Ck. Let V := {y € K| L(y) = 0}
be the solution space of L in K and write G C GL(V) for the differential
Galois group of L. A nonzero element y € V C K with L(y) = 0 is called an
exponential solution of L if u := % lies in Ck. We will sometimes write, as a

formal notation, y = e/ . Our aim is to compute the exponential solutions. We
begin by reviewing some facts concerning the Riccati equation (c.f., Remarks
3.20). Let y,u € K satisfy ¢y’ = uy. Formally differentiating this identity yields
y = Pi(u, v/, ... ul"1)y where the P; are polynomials with integer coefficients
satisfying Pp = 1 and P, = P/_; + uP,_;. Furthermore, y # 0 satisfies Ly = 0

if and only if u := % satisfies
R(u) = Py(ty. .., u™ ™ D) fap 1 Pyq(u, .., u™ D)4 dag =0 (4.2)

Definition 4.6 Fquation (4.2) is called the Riccati equation associated with
Ly =0. O

Exercise 4.7 Riccati Equations. 1. Show that v € Ck is a solution of the
Riccati equation if and only if 0—wv is a right hand factor of L (i.e., L = Lo(0—v)
for some L).

2. Show that v € K is a solution of the Riccati equation if and only if there is
ayeV CK, y#0withy'/y=n. ]

The following gives the group theoretic interpretation of exponential solu-
tions of a linear differential equation. Recall that a character of an algebraic
— —*
group G over C' is a homomorphism x : G — C  of algebraic groups.

Lemma 4.8 With the above notations one has:

1. An elementy € V C K, y # 0 is an exponential solution if and only if
there is a character x of G such that o(y) = x(o)y for all o € G.

2. If u € Ck is a solution of the Riccati equation then for some character
thereisay € Vy :={v eV | o(y) = x(o)y for all 0 € G} such thaty # 0
and y'/y = u.

3. The G-invariant lines of V' are in a one-to-one correspondence with the
solutions u € Ck of the Riccati equations.

4. The Riccati equation has an infinite number of solutions in Ck if and only
if, for some x, dimgzVy > 2. Furthermore, if the Riccati equalion has
finitely many solutions in Ck then the number of solutions is at most n.
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5. Let y1,y2 € V be two nonzero exponential solutions. Put u; = z— Then

Y1, Y2 belong to the same V, if and only if % € Ck. The latter is also
equivalent to uy — ug has the form fTI for some f € Ck, f # 0.

Proof. 1. Consider any o € G. The element y'/y € Ck is invariant under G
and thus (o(y)/y)’ = 0. Therefore, there is a ¢, € C such that o(y) = coy.
Clearly, o — ¢, is a character. Conversely, if o(y) = x(o)y for all 0 € G, then
y'/y is left fixed by G and so must be in Ck.

2. According to Exercise 4.7 u = % for some nonzero element y of V. Now
apply part 1.

3. The condition y € V,, for some character x of G is clearly equivalent to Cy
being a G-invariant line. Now use 1. and 2.

4. Let x1, ..., xs denote the distinct characters of G such that the vector space
Vy; is # 0. It is easily seen that the sum 71 Vi, is a direct sum. Using 3.,the
statements easily follow.

5. y1,y2 belong to the same V, if and only if g—; is invariant under G. The

latter is equivalent to g—; € Ck and again (by logarithmic differentiation) with
Uy — Uy = fTI for some nonzero element f € Ck. ]

Now we specialize to the case k = C(z) and present an algorithm to find all
exponential solutions for L € C(z)[d].

Proposition 4.9 In addition to the above notations we suppose that k = C(z).

1. One can decide, in a finite number of steps, whether the Riccati equation
R(u) =0 has a solution in C(z).

2. Suppose that the Riccati equation has solution(s) in C(z). Let x1,---Xs
denote the distinct characters of G such that Vy,, # 0. Then one can
calculate solutions {u;}i=1,.. s € C(2) of the Riccati equation and for each
i a finite dimensional C-vector space W; C C|z] containing C' such that
for each i one has V,,, = y;W,;, where y; € K is the exponential solution

given by u; z—/ Moreover Uj_,{u; + %/|w € Wi, w # 0} is the set of all

solutions in C(z) is the Riccati equation.

Proof. The idea of the proof is to solve the Riccati equation locally at every
singular point and then glue the local solutions to a global solution. We consider
first a local formal situation. Let 0 be a singular point of L. The solutions
u € C((2)) of the Riccati equation of L can be derived from the classification
of formal differential equations of Chapter 3. More precisely, one writes u =
252 %+ 7 with r € 27'C[[z]]. Then the “truncation” [u]o := 2 j>2 Zoofu
has the property that z[u]o is an eigenvalue ¢ € Q, as defined in Definition 3.27,
which happens to lie in z='C[27!]. The Newton polygon method presented
in Chapter 3.3 actually computes the possibilities for these eigenvalues ¢q (see
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Remarks 3.55). In Exercise 4.10 we outline how the Newton polygon techniques
can be specialized and simplified to give this result directly.

Next we consider a putative solution u € C(z) of the Riccati equation. Let
S be the set of the singular points of L (possibly including co). For each o € S,
one calculates the finitely many possibilities for the truncated Laurent expansion
[u]o at c. After choosing for each « one of these possibilities one has u = @ +r
where @ =) s[u]o and the remainder r has the form } Co— . One shifts

N aelC z—a*
0 to 0 — @ and computes the new operator L := L(0 — 4).

We have now to investigate whether the Riccati equation of L has a solution
r € C(z) of the above form. For a singular point a € S the coefficient c,
is seen to be a zero of the indicial polynomial of L at a ( compare with the
case of rational solutions). At a regular point of L the putative solution u has
locally the form %, where y # 0 is a formal local solution of L. The order of
y at the regular point lies in {0,1,...,n — 1} and thus ¢, € {0,1,...,n — 1}.
We note that it is, a priori, not possible to find the regular points « for L
where ¢, # 0. After choosing for each singular point « a possibility for ¢, the
putative r has the form r = o %= + %, where F is a polynomial in C[z].
The possible degree of F' can be found by calculating a truncated local solution
of the Riccati equation of L at co. Let d be a possible degree for F'. Then one
puts F = fo + fiz + -+ + fq2¢, with yet unknown coefficients fo, ..., f4. The
Riccati equation for r translates into a linear differential equation for F', which is
equivalent to a system of homogenous linear equations for fy, ..., fg. This ends
the algorithm for the first part of the proposition. In trying all possibilities for
the truncations [u], and the coefficients ¢, for the singular points one obtains
in an obvious way the second part of the proposition. O

Exercise 4.10 Rational solutions of the Riccati equation.

In Proposition 4.9 we made use of the Newton polygon to find the possibilities
for the truncation [u], of a rational solution u of the Riccati equation at the
singular point a. In this exercise, the Newton polygon method is adapted to
the present situation (c.f., [268]). For convenience we suppose that C' = C.

1. Let u € C(2).
(i) Let w = cz™7 + -+ € C(()) with ¢ € C*, v > 1. Use the relation
P11 = P! +uP; to show that:

(a) If v > 1, then Pj(u, v/, ..., ul D) =27 4 ...,

(b) if ¥ = 1, then P;(u, v/, ..., ul=1) = H;;B(c — )z
(ii) Find the translation of (i) at the point co. In other words, u is now consid-
ered as an element of C'((271)).

2. Let L be as in Equation 4.1 and let R(u) := Y"1 ; a;P; = 0 be the associated
Riccati equation. Let u € C(z) be a putative solution of R(u) = 0 and let
u=cz Y +--- € C((»)), with ¢ € C* and v > 1, be its Laurent expansion.
Derive from R(u) = 0 and part 1. an equation for v and ¢. Show that there are
only finitely many possibilities for cz™7.
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3. Choose a possible term ¢z~ 7 from part 2. Indicate how one can find a possible
truncations [u]o of solutions u = cz=7 +--- € C((z)) by repeating part 2. Hint:
Replace the operator L = > a;0" by L(9) = L(d + cz77).

4. Indicate how one can change the operator L into one or more operators L
such that the problem of finding rational solutions of the Riccati equation of L
is translated into finding rational solutions of the Riccati equation of L having
the form u =p+ > us/(z — @) where uy, 0 € C and p € C|[z].

Now we concentrate on finding solutions u of R(u) = 0 having this form. Sup-
pose that a € C'is a pole of some a;, i.e., a singular point of L. Find an equation
for u,, (this is again an indicial equation) and show that there are only finitely
many possibilities for u,. Show that one can modify L such that the putative
u has the form w = P’/P + p where P,p € C[z] and P has no roots in common
with a denominator of any a;.

5. Use 1.(ii) and calculations similar to those in 2., to produce finitely many
possibilities for the polynomial p. Modify the operator L such that v = P’'/P.
Now use Proposition 4.1 to find the polynomial solutions of the modified linear
differential equation. o

Note that the proof of Proposition 4.9 (or the above exercise) implies that
a solution u of the Riccati equation must be of the form
P’ R

where P,Q, R, S € C|z], the zeroes of S are singular points and the zeroes of
P are nonsingular points. We can therefore select S to be a product of the

irreducible factors of the denominators of the a; and so have it lie in C[z]. The
next examples show that, in general, one cannot assume that P, @, R € C|z].

Examples 4.11 1. The functions v/z — i,z + i (with i> = —1) form a basis
of the solution space of y” — Z%Hy’ + my = 0. One then sees that the only

solutions in Q(z) of the associated Riccati equation are 2;51'2. Thus the above
R does not lie in Q]z].

2. The functions (z + i)e'®, (z — i)e~%* form a basis of the solution space of
y" — %y’ +y = 0. The only solutions in Q(z) of the associated Riccati equation
are {%ﬂ + i, —= —i}. Thus the above P and @ do not belong to Q[z]. O

The algorithm in Proposition 4.9 goes back to Beke [28] (see also [254],
8177). There are two aspects that contribute to the computational complexity
of the above algorithm. The first is combinatorial. At each singular point one
selects a candidate for terms of degree less than or equal to —1. If one uses
the Newton polygon method described in Chapter 3, one generates at most
n distinct candidates, where n is the order of the differential operator (see
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Remarks 3.55). If there are m singular points then one may need to try n™
possibilities and test n™ transformed differential equations to see if they have
polynomial solutions. The second is the apparent need to work in algebraic
extensions of C' of large degree over C.

In [137], van Hoeij gives methods to deal with the combinatorial explosion in
this algorithm and the problem of large field extensions of C' (as well as a similar
problem encountered when one tries to factor linear operators). The method
also avoids the use of the Grébner basis algorithm. Roughly speaking it works
as follows. One makes a good choice of a singular point of the operator L and
a formal local right hand factor of degree 1 at this point. After a translation of
the variable (z — 2+ c or z — 27 1) and a shift 9 — 0 + f with f € C(z), the
operator L has a right hand factor of the form 0 — % with an explicit y € C[[2]].

Now one tries to find out whether % belongs to C(z). Equivalently, one tries

to find a linear relation between y and ' over C[z]. This is carried out by Padé
approximation. The method extends to finding right hand factors of higher
degree and applies in that case a generalization of the Padé approximation. This
local-to-global approach works very well in practice and has been implemented
in MAPLE V.5.

One can also proceed as follows (c.f., [56], [219]). Let a be a fixed singular point.
We may write a rational solution of the Riccati equation as

U= e€q+ fa
where e, = (:j;jjw 4+ 4 Zi—; and fo = by +b14(2 —a)+--- . One can

calculate (at most) n possibilities for .. We shall refer to e, as a principal part
at a. One then considers the new differential equation L(9) = L(0 — e4). The

term f, will be of the form 3’ /y for some power series solution y of Ly = 0. One
can use the classical Frobenius algorithm to calculate (to arbitrary precision) a

basis y1,...,y; of these power series solutions. Since f, is a rational function,
R (cryit-terys) -
one must decide if there are any constants ci, ..., c; such that R

(ciyi+--+ceye)’

CrgiT—tery) is a solution of the Riccati equation.

rational and such that e, +
This can be done as follows.

One first calculates a bound N (see the next paragraph) on the degrees of
the numerators and denominators of possible rational solutions of the Riccati
equation. One then uses the first 2N + 1 terms of the power series expansions

+-terye)’ 5 ; 7 +-Feys)’
of H to find a Padé approximant f, [27] of H and then

one substitutes e, + f~a into the Riccati equation and determines if there are any
¢; that make this equation vanish. More concretely, given N, we may assume
that the value of c1y1 + -+ 4+ ¢ty at z = o is 1 and write

(ciyr + -+ cye)
(ciyr + -+ coye)

=do(cr,--¢) +da(er, - s di)(z — a)+

+"'+d2N(Cl,"' ,ct)(z _ Oé)QNmOd (Z _ a)2N+1
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where the dy, ..., dsn are polynomials in the ¢; that can be calculated using the
power series expansions of the y;. One now must decide if there exist h;, g; such
that

- hn(z—a)N 4+ +h
Ja = QZEZ—aiN + +g(()) =do(cr, - e) +du(er, -, di)(z — a)+
+- ot dan(er, o e)(z — @)Y mod (2 — )N

Multiplying both sides of the above equation by gn(z — @)Y + --- + go and
comparing the first 2N + 1 powers of z — « yields a system S of polynomial
equations in the ¢;, g;, h; that are linear in the g; and h; but nonlinear in the
¢;. Substituting v = e, + f~a into the Riccati equation R(u) = 0, clearing
denominators and equating powers of z — « yields another system of nonlinear
polynomial equations S. One can then use Gribner basis methods to decide if
there are ¢; such that the system S U S is solvable.

We now show how one can calculate a bound N on the degrees of the nu-
merator and denominator of a rational solution of the Riccati equation. At each
singular point a € C one can calculate the possible principal parts. In particu-
lar, this allows one to find the possible integers n, and so bound the degrees of
R and S in Equation 4.3. At oo, one can also calculate possible principal parts
oo = e 4 4 2= where ¢ = <. This allows one to bound the degree of
Q) in Equation 4.3. Note that the constant 01,00 = deg P — Z @1,o. Therefore
once we have bounded (or determined) all the residues a1, and a1 o0, We can
bound (or determine) the possible degrees of P in Equation 4.3. Therefore we
can find the desired bound N. Note that although we have had to calculate mn
principal parts, we have avoided the necessity of testing exponentially many
combinations.

Both the algorithm in Proposition 4.9 and the above algorithm are presented
in a way that has one work in (possibly large) extensions of C. Several ways
to minimize this are given in [56],[57], and [137]. The examples above show
that extensions of C' cannot be avoided. For an even simpler example, let p(z)
be an irreducible polynomial over Q(z). The solutions of p(d)y = 0 are of the
form e®* where « is a root of p(z) = 0. Therefore each solution of the Riccati
equation is defined over an extension of Q of degree equal to the order of p(9).
Proposition 4.12 says that this is the worst that can happen.

Proposition 4.12 Let L be a linear differential operator of order n with coef-
ficients in C(z) and let R(u) = 0 be the associated Riccati equation.

1. If there are only a finite number of solutions of R(u) = 0 in C(z) then
each of them lies in a field of the form Cy(z) where [Co : C] < n.

2. If R(u) = 0 has an infinite number of solutions in C(z) then there is a
solution in a field of the form Co(z) where [Cp : C] < F.
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Proof. We will let k = C(z) and use the notation of Lemma 4.8.

1. Let us assume that the Riccati equation has only a finite number of solutions.
In this case, Lemma 4.8 implies that there are at most n of these. The group
Aut(C/C) acts on C(z) and permutes these solutions. Therefore the orbit of
any solution of the Riccati equation has size at most n and so is defined over a
field of degree at most n over C.

2. One can prove this statement easily after introducing a Gal(C/C) action on
the solution space V' C K of the differential operator L. This operator has a
regular point in C and for notational convenience we assume that 0 is a regular
point for L. Then W := {y € C((2))| Ly = 0} is a C-vector space of dimension
n. The field C((z)) contains a Picard-Vessiot field for L over C(z), namely
the differential subfield generated over C(z) by all the elements of W. So we
may identify K with this subfield of C'((z)). The natural map C ®@c W — V,
where V' C K is the solution space V of L in K, is clearly bijective. The group
Gal(C/C) acts on C((2)) by (X ,os_co@n2™) = > ,ou_o0lan)z". This
action induces on the subfield C(z) the natural action and the elements of W
are fixed. Hence the subfield K is invariant under this action. Moreover, the
action of Gal(C'/C) on V is the one given by the isomorphism C ®c W — V.

Let x1, ..., xs denote the distinct characters of the differential Galois group
G such that the spaces V,, are # 0. By assumption and by Lemma 4.8 one of
these spaces, say V,,, has dimension > 2. The group Gal(C'/C) permutes the
spaces V,;. Therefore the stabilizer H C Gal(C/C) of V,, is a closed subgroup
of index < n/2. Let Cy D C denote the fixed field of H. Then [Cy : C] < n/2
and the subspace V,, is invariant under the action of H = Gal(C/Cy). The
action of H on Vj, yields a 1-cocycle class in H!(Gal(C/Cp), GL4(C)), where d
is the dimension of V,,. This cohomology set is well known to be trivial ([260])
and it follows that V,, has a basis of elements in Cy ®c W C Cy((z)). For such

’

a basis element y one has £- € Co((2)) N C(z) = Cy(z) as required. O

The above proposition appears in [126] and its proof applies to equations with
coefficients in C((z)) as well. In this case the Riccati equation will always have
a solution in a field whose degree over C'((z)) is at most the order of L. In the
latter case, the result also follows from a careful analysis of the Newton polygon
or similar process (c.f., [83], [137], [171], [280]). Despite Proposition 4.12, we
know of no algorithm that, except in the case n = 2 (due to M. Berkenbosch [29]
and, independently, to M. van Hoeij, who has included it in his modification
and implementation of the Kovacic algorithm), will compute a rational solution
of the Riccati equation that guarantees that all calculations are done in a field
Co(z) with [Cy : C] < n.

We end this section by noting that an algorithm for computing exponential
solutions of linear differential systems is given in [219)].
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4.2 Factoring Linear Operators

Let a differential module M over the field C(z), or equivalently a matrix dif-
ferential operator & — A over C(z), be given. One final goal for algorithmic
computations on M is to completely determine its Picard-Vessiot ring and its
differential Galois group. For the case C' = C, many new questions arise, e.g.,
concerning monodromy groups, asymptotic behaviour, Stokes matrices etc. Here
we will restrict to the possibility of computing the Picard-Vessiot ring and the
differential Galois group.

Let M]™ denote the tensor product M ® --- @ M @ M* ® --- ® M* (with
n factors M and m factors M*, and M* denotes the dual of M). From the
Tannakian point of view, complete information on the Picard-Vessiot ring and
the differential Galois group is equivalent to having a complete knowledge of
all the differential submodules of finite direct sums of the M. Thus the basic
problem is to find for a given differential module M all its submodules. We
recall that M has a cyclic vector and is therefore isomorphic to C(z)[9]/C(2)[0]L
for some monic differential operator L. The submodules of M are in one-to-
one correspondence with the monic right hand factors of L. Therefore the
central problem is to factor differential operators. We will sketch a solution
for this problem. This solution does not produce a theoretical algorithm for
the computation of the Picard-Vessiot ring and the differential Galois group.
Indeed, following this approach, one has to compute the submodules of infinitely
many direct sums of the modules M,". Nonetheless, algorithms modifying this
approach have been given in [71] for the case when the differential Galois group
is known to be reductive. An algorithm for the general case is recently presented
in [140].

In order to simplify this exposition we will assume that C is algebraically
closed. Computing the rational solutions for a differential operator L € C(z)[0]
translates into finding the C-linear vector space {m € M|0m = 0}, where
M is the dual of the differential module C(2)[0]/C(2)[0]L. M.A. Barkatou and
E. Pfliigel, [22, 24], have developed (and implemented in their ISOLDE package)
efficient methods to do this computation directly on the differential module
(i.e., its associated matrix differential equation) without going to a differential
operator by choosing a cyclic vector. Computing the exponential solutions of a
differential operator translates into finding the 1-dimensional submodules of M.
Again there is an efficient algorithm by M.A. Barkatou and E. Pfliigel directly
for the differential module (instead of an associated differential operator). Let
Iy, ..., I denote a maximal set of non isomorphic 1-dimensional submodules of
M. The sum of all 1-dimensional submodules of M is given as a direct sum
Ny @®---® Ny C M, where each N; is a direct sum 1-dimensional submodules,
isomorphic to I;. This decomposition translates into the direct sum @V, C
V', taken over all characters x of the differential Galois group considered in
Lemma 4.8.
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4.2.1 Beke’s Algorithm

Now we consider the problem of finding the submodules of dimension d of a
given module M. We will explain the method, which goes back to Beke [28], in
terms of differential modules. Let N C M be a d-dimensional submodule. Then
AN is a 1-dimensional submodule of the exterior power A?M. Of the latter
we suppose that the 1-dimensional submodules are known. A 1-dimensional
submodule P of A?M has the form A?N if and only if P is generated by a
decomposable vector, i.e., a vector of the form mq A --- Amg. Some multilinear
algebra is needed to characterize the decomposable vectors in A%M. We outline
this, more information can be found in [114], [122], [133].

Let A be a vector space of dimension n over some field F'. One denotes
by A* the dual vector space. There are contraction operators i : A¥A* —
Homp(A'A,A'=FA) for k <1 and i : AFA* — Homp(A'A, A*=1A%) for | < k.
For k =1 and [ > 1, the formula for the contraction operator ¢ reads

l
(L) (o1 Ao Av) =Y (1) L(v) o ATy A,
j=1

where L is an element of V*, vq,...,v € V and where ¢; means that this term
is removed. The formulas for the general case are similar. One shows that
an element a € A?A (with 1 < d < n) is decomposable if and only if for every
b € A4tLA* the expression i(i(b)a)a is zero. These relation are called the Pliicker
relations. Choose a basis eq,...,e, for A and write a = Zi1<---<id @iy, iq€i N
--- Aei,. Then for every b € AT A* the equation i(i(b)a)a = 0 is equivalent
with a set of quadratic equations for the coefficients a;, ... ;, of a. For the
case d = 2 this simplifies to the element a A a € A*A is zero. The latter is
equivalent with (Z) quadratic equations for the coefficients of a. We note that
for a decomposable a = a; A --- A ag € AYA the vector space generated by
ai,...,aq € A can also be found by applying i(b) to a for all b € A~ A*.

We apply this to AM. As above, the 1-dimensional submodules of this space
form a direct sum N1 (d)®- - - @ Ng(d) (where the d indicates that we are working
in AYM). We pick one of these spaces, say N;(d), and give it a basis wy, . . ., w;.
The Pliicker relations are applied to a general element fiwi + - + frw; with
all f; € C(z). Solving these quadratic equations leads to all d-dimensional
submodules of M. The quadratic equations are over the field C(z). One can
replace them by quadratic equations over C' in the following way. Consider a
regular point in C for M. For notational convenience we suppose that 0 is this
regular point. Replace the module M by a matrix differential equation % + A,
with a matrix A which has no poles at 0. This matrix equation has a (unique)
fundamental matrix F with coefficients in C[[z]] such that F(0) = 1. Likewise
A%M has a fundamental matrix G with coefficients in C[[z]] and G(0) = 1,
obtained by taking the d*® exterior power of F. Evaluating, the above elements
wi,...,wp and f1,..., fy at z = 0 translates the Pliicker relations over the field
C(z) to equivalent Pliicker relations over the field C.
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In order to make the above into an actual (and efficient) algorithm, one has
to give the translation in terms of matrix differential operators. Let ey, ..., e,
be a basis of the differential module M. Let A be the matrix of 0 w.r.t. this
basis. Thus 9 can be identified with the matrix operator diz + A on the space
C(z)". Then A®M has basis {e;, A---Ae;,| i1 < -+ <ig}. The operator d on
A?M is defined by O(wy A« Awg) = >, w1 A+ A(Ow;) A+ Awg. From this
one easily obtains the matrix differential operator for AM. The algorithms of
M.A. Barkatou and E. Pfliigel can now be put into action.

Remarks 4.13

(1) The original formulation of Beke’s algorithm uses differential equations (or
differential operators). This has several disadvantages. One has to use certain
complicated minors of the Wronskian matrix of a basis y1, . . ., y, of the solutions
of the degree n operator L € C(2)[0]. Let M = C(2)[9]/C(2)[0]L be the
differential module associated to L. Write e for the image of 1 in M. This is the
cyclic vector corresponding to L. A natural element of the exterior product A?M
is eAdeA---AN0%Le. However, this element is not always a cyclic vector. Thus
some work has to be done to produce a cyclic vector and a suitable differential
operator for A%M. This differential operator can be of high complexity etc. We
note also that Beke’s original algorithm did not take the Pliicker relation into
account. Tsarev [283] gives essential improvements to Beke’s original algorithm
and puts the Pliicker relation into action.

(2) One may insist on working with differential operators, and on producing
rational and exponential solutions as explained above. There is a way out of
the problem of the cyclic vector and its high complexity for the exterior power
by applying the method of [134]. There the matrix differential operator for
a construction of linear algebra, applied to a differential operator, is used to
produce the relevant information. Actually,one has to make a small variation
on their method described for symmetric powers and eigenrings.

(3) Other improvements to the Beke algorithm have been given by several au-
thors [56], [58], [60], [256]. In [116], Grigoriev also gives simplifications of the
Beke algorithm as well as a detailed complexity analysis. An algorithm for de-
termining the reducibility of a differential system is given in [115]. A method
to enumerate all factors of a differential operator is given in [284].

(4) As remarked earlier, van Hoeij [137] gives methods to factor differential op-
erators that are not based on Beke’s algorithm. In this paper, he uses algorithms
that find local factorizations (i.e., factors with coefficients in C((z))) and applies
an adapted version of Padé approximation to produce a global factorization. O

Example 4.14 We illustrate Beke’s algorithm to find all the right hand factors
of order 2 of L = §* — 3° over the field Q(z).

The differential module M := Q(z)[3]/Q(2)[0]L has basis {9%| i = 0,...,3}.
It is easily seen to have a basis eq,...,e4 such that de; = 0 for ¢ = 1,2,3 and
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deq = e4. The differential module A2M has basis {e; A e;|1 <i < j < 4}. We
are looking for the 1-dimensional submodules. Such a module is generated by
an element a = El§i<j§4 ai je; A e; with coefficients in Q[z] such that da is a
multiple of a. Moreover, the Pliicker relation a A a = 0 translates into

01,2034 — G1,3042,4 + a1,4023 = 0. One writes

a = Z ai e N\ej+ ( Z biei) N ey

1<i<j<3 i=1,2,3

and finds that da = 37, ;c3aiei Aej+ (30,21 53((bi +b7)ei) Aes. Us-
ing degrees in z one finds that da = Aa implies that A is a constant and in
fact A can only be 0 or 1. This yields two vector spaces of solutions, namely
El§i<j§3 a; je; Aej with a; ; constants and (Ef’zl bie;) N eq with by, ba, bs con-
stants. Both families satisfy the Pliicker relation. This yields two families of
2-dimensional submodules N of M, namely:

(i) N is generated over Q(z) by a two-dimensional subspace of ©2_, Qe;.

(ii) N is generated over Q(z) by e4 and a 1-dimensional subspace of ©?_, Qe;.
Translating this back to monic right hand factors of L, one finds two families,
parametrized by P?(Q), namely:

2 do + 2d3z 2ds
_ and
dy + doz + d32? dy + doz + d32?
do + 2d3z + dy + doz + d32:2 do + 2d3z

9% — (

)0 +

dy + doz + d32? dy + doz + d32?

4.2.2 Eigenring and Factorizations

Another method, not based on Beke’s algorithm, is given in [270]. This method
uses the eigenring (c.f., Proposition 2.13). It does not always factor reducible
operators (see Exercise 2.14) but does often yield factors quickly. We will show
that the method does factor all reducible completely reducible operators (c.f.,
Definition 2.37).

We recall and continue the discussion of the eigenring in Sections 2.2 and 2.4.
Consider instead of a differential operator L of degree n, the associated differ-
ential module M over C(z). We assume for convenience that C' is algebraically
closed. The eigenring E(M) of M consists of all C(z)-linear maps B : M — M,
which commute with 9. One of the constructions of linear algebra applied to
M is the differential module Hom(M, M) (isomorphic to M* ® M). Then the
eigenring of M is the C-algebra of the rational solutions of Hom(M, M). Clearly
1y € E(M) and the dimension of £(M) is < n?. This dimension is equal to n?
if and only if M is a direct sum of n copies of a 1-dimensional module.

Suppose that £(M) contains an element B which is not a multiple of the
identity. The elements 1, B, B?,..., B" € E(M) are linearly dependent over C.
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One can easily calculate the monic polynomial I(T) € C[T] of minimal degree
satisfying I(B) = 0. Let ¢ € C be a root of I(T"). Then B — ¢l is not invertible
and is not 0. Hence the kernel of B — ¢l is a non trivial submodule of M.

An interpretation of the eigenring £(M) is the following. Let V' denote the
solution space of M provided with the action of the differential Galois group
G. Then every B € £(M) induces a C-linear map B :V — V commuting with
the action of G. The above polynomial I(7") is the minimum polynomial of B.
Conversely, any C-linear map V — V, commuting with the action of G, is a B
for a unique B € E(M).

For the actual calculation of £(M) one replaces M by a matrix differential
operator d% + A. The B that we are looking for are now the matrices commuting
with d% + A. In other terms, they are the rational solutions of the matrix
differential equation B’ = BA — AB. Suppose for convenience that A has no
poles at 0. Then one can give the solution space V of M the interpretation of
the kernel of L 4+ A operating on C[[2]]". Every solution is determined by its
constant term. In this way, one finds the action of a B € (M) on V explicitly.
This method is useful for determining the algebra structure of E(M).

Direct decompositions of a given differential module M correspond to idem-
potent elements of £(M). They can be computed as follows. Let By, ..., B, be
a C-basis of £(M). Consider any C-linear combination e := A1 By + -+ -+ A B,.
Then e2? = e yields a set of quadratic equations for A1, ..., A, with, a priori coef-
ficients in C'(z). The above method of evaluation at z = 0 turns these equations
into quadratic equations over C.

Suppose that the differential module M is completely reducible. According to
Proposition 2.40 the eigenring £(M) is a direct product of the matrix algebras
M,,(C) for i = 1,...,s. Thus the above method will produce a complete
decomposition of M as direct sum of irreducible submodules.

We return now to the differential operator L € D := C(z)[0] of degree n. We
recall (c.f. 2.13) that the eigenring £(L) is also the eigenring of the differential
module M := D/DL. Moreover £(L) is described by

E(L) ={R € D|deg R < n and there exists S € D with LR = SL}

One can make the above condition on R explicit by writing R = Rg + R10 +
-4+ R,_10" ! and dividing LR on the right by L with a remainder. Thus
LR =FL+ Ry+ R0+ -+ R,_10"! Each R; is formally a linear homo-
geneous expression in Ry,..., R,_1 and their derivatives. Then R € &(L) if
and only if R; =0 fori= 1,...,n — 1. These equations are sometimes called
the eigenequations of L. We note that these equations, written as a differen-
tial equation for the matrix (REJ ))23:1 is equivalent to the matrix differential
equation B’ = BA — AB which we have encountered above.

In [270] general methods are given for determining dime E(L). For example,
using Exercise 2.4.2, one can find operators Lq,..., L, such that there is an
effective correspondence between the solutions of Ly(Z1) = 0,...,L,(Z,) =0
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and the solutions of the eigenequations. One can then use the methods of
Section 4.1 to find solutions of this former system in C(z). Other techniques for
finding £(L) are discussed in [18] and [136].

Exercise 4.15 Let L be the differential operator
O +(24+22%)0% + 420 + (4 + 222 + 2%
say over the differential field Q(z). Try to prove that £(L) is isomorphic to the

matrix algebra Ms(Q). Hint: Use a computer. a

We will see in the next section that completely reducible operators arise
naturally. A test for complete reducibility of operators over C(z) (with C alge-
braically closed) is given in [270] and this is extended to algebraic extensions of
C(z) in [71].

We end this section with an exercise giving a version of the Eisenstein irre-
ducibility criterion that can be applied to differential operators.

Exercise 4.16 Factorization over C(z) versus factorization over C|z].

(1) Show that 20% + 220 — 2 = (0 + 2)(20 — 1). Note that each of the two
first degree factors has coefficients with g.c.d. 1, while z divides the coefficients
of the product. Therefore a naive version of Gauss’s lemma is false for linear
operators over the ring C|z].

(2) Let L = &* + 20 — 1. Show that L factors over C(z) but that L cannot be
written as the product of first degree operators with coefficients in C[z]. Hint:
Show that z~! is the only exponential solution of Ly = 0.

Despite these examples, Kovacic [165] gives the following Eisenstein-like cri-
terion for the irreducibility of a differential operator:
Let R be a differential integral domain with quotient field F' and let P be a
prime differential ideal in R. Assume that the local ring Rp is principal. Let
L= Zi:o c;0' be a differential operator with coefficients in R such that c; € P
fori=1,...,1,co & P and c; & P?. Then L is irreducible over F.

(3) Use the above criterion to show that if L = 9% + p, where p € C[z] is
of odd degree, then L is irreducible over C(z). Hint: Let deg.p = 2k + 1,
define § = 27%9 and rewrite 2=2*~!'L as operator in § with coefficients in the
ring R = C[z7!]. The operator § makes R into a differential domain with

differentiation given by r — z_k%. Show that the ideal P = 2~ 'R is a prime
ideal and a differential ideal (with respect to this differentiation on R). Apply
now Kovacic’s criterion. a

4.3 Liouvillian Solutions

In this section k is a differential field with algebraically closed field of constants
C (of characteristic 0). Proposition 1.45 in Section 1.5 states that a linear
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differential equation Ly = 0 of order n over k which has a non-zero liouvillian
solution has also a liouvillian solution y # 0 such that u := 3y’ /y is algebraic over
k. In other words, the Riccati equation associated to Ly = 0 has a solution u
which is algebraic over k. Using some group theory we will prove that there is a
constant I(n), depending only on n, such that there is even an algebraic solution
of this Riccati equation with degree < I(n) over k. This leads to the following
method of testing whether the equation Ly = 0 has liouvillian solutions. For
each d with 1 < d < I(n) the existence of an algebraic solution u of degree
d over k of the Riccati equation is tested by calculating (special) exponential
solutions of the “d*P-symmetric power of L”. If no solutions are found then
Ly = 0 has no liouvillian solutions # 0. In the opposite case we indicate how
one determines the minimum polynomial of u over k. Special algorithms to find
liouvillian solutions for second and third order operators will be discussed.

4.3.1 Group Theory

The group theory that we need is based on the following theorem of Jordan
([144], [145]; see also the exposition of Jordan’s ideas given by Dieudonné [84]).
It is interesting to note that Jordan proved this result in order to study algebraic
solutions of linear differential equations.

Theorem 4.17 Let C be an algebraically closed field of characteristic zero.
There exists an integer valued function n — J(n) such that every finite subgroup
of GL,(C) contains an abelian normal subgroup of index at most J(n).

Various authors have given bounds for J(n). Blichtfeldt [39] showed that J(n) <
n!(6"~ 1) T+ D+ where 7(z) denoted the number of primes less than or equal
to x (see [86] for a modern presentation). One also finds the following values
of J(n) in [39]: J(2) =12, J(3) = 360, and J(4) = 25920. Schur [255] showed
that J(n) < (vV8n +1)2"° — (v/8n — 1)2" (see [76] for a modern exposition).
Other proofs can be found in [85] and [304].

Proposition 4.18 C is an algebraically closed field of characteristic zero. A
subgroup G C GL,(C) acts on P(C™) = P"1(C), i.e., the set of lines in C™
through 0. Suppose that G has some finite orbit on P(C™), then it also has an
orbit of length at most I(n) := max,<,{[2]J(r)} .

Proof. We may replace G by its Zariski closure in GL, (C) and suppose that
G is a linear algebraic group. Suppose that the line Cw C V := C™ has a finite
orbit {Cwy,...,Cws} under G. Then H = {h € G| h(Cw;) = Cw; for all i}
is a normal subgroup of G of index < s!. Let xi,...,x: denote the distinct
characters x; : H — C* such that the vector space V,, := {v € V]h(v) =
Xi(h)v for all h € H} is not 0. Then V has ®!_,V,, as subspace. Since H
is normal in G, one has that G permutes the spaces V,, and ®!_,V,, is a G-
invariant subspace. Consider the stabilizer H; C G of V,,. Then the index of
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Hy in G is < t. Thus [G : Hi] < [2], where r is the dimension of Vi,. If r
happens to be 1, then the line Vj,, has a G-orbit of length < n.

Now suppose r > 1. The action of H; on V,, induces an action of the
finite group H1/H C PGL,(C) = PSL,(C) on the projective space P(V,,) =
P 1(C). Indeed, H acts on V,, via its character x1. Let Hy C SL,(C) be the
preimage of H/Hy. One applies Theorem 4.17 to the finite group Hs and obtains
a normal abelian subgroup Hs C Hs of index < J(r). The abelian subgroup Hj
stabilizes some line L C V,,. The Hs-orbit of L has length < [Hy : H3] < J(r).
The Hj-orbit of L coincides with the Hs-orbit of L. Finally the G-orbit of L
has length < [G : Hy] times the length of the Hy-orbit of L. Thus the length of
the G-orbit of L is < [2]J(r). O

Proposition 4.19 Suppose that the linear differential equation Ly = 0 of de-
gree n over k has a non-zero liowvillian solution. Then there is a solution y # 0
such that u := % is algebraic over k of degree < I(n).

Proof. Let K D k denote a Picard-Vessiot extension for the equation Ly = 0
over the field k. One considers the action of the differential Galois group G of
Ly = 0 over k, on the solution space V := {y € K| L(y) = 0}. Suppose that
y € V,y # 0 is such that u := % € K is algebraic over k£ and has minimum
polynomial P(T') € k[T] of degree d. Then for any o € G, the element o(u) is
again a solution of P(T') = 0. This implies that the connected component of
the identity G° of G acts trivial on u. In other words, u € K°. By Galois
correspondence, K&° O k is a Galois extension with Galois group G /G°. From
ordinary Galois theory it follows that the G-orbit of u consists of all the zeros
of P(T) and has length d. This implies that the G-orbit of the line Cy C V has
also length d.

On the other hand, a line Cy C V which has a finite G-orbit yields an
element u := £ € K which has a finite G-orbit. Hence u is algebraic over
k. From the above it follows that its degree over k is equal to the length of
the G-orbit of Cy. Using this translation, an application of 4.18 finishes the
proof. ]

Weaker versions of Propositions 4.18 and 4.19 originally appeared in [264].
Proposition 4.18 can also be deduced from results of Platonov and Malcev (see
Remark 11.12 and [302], Theorem 3.6, p.45 and Corollary 10.11, p.142). The
present versions of Propositions 4.18 and 4.19 appear in [61]. In this paper, [289],
and [290] other results concerning sharper bounds on the degrees of algebraic
solutions of the Riccati equation for certain classes of differential Galois groups
can be found.
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4.3.2 Liouvillian Solutions for a Differential Module

Let k be again a differential field of characteristic 0 having a field of constants
C # k, which is algebraically closed. For a differential operator L € k[J] one
wants to determine the solutions u = % of the associated Riccati equation
which are algebraic over k of a given degree d. This amounts to producing
the monic minimal polynomial of u over k. As far as we know, the existing
algorithms, which will be described in some detail, are written in the framework

of differential operators.

It is helpful to reformulate the problem for differential modules (or ma-
trix differential equations). The differential module M will be the dual of
the differential modules k[0]/k[0]L. The contravariant solution space of L is
V = {y € K|Ly = 0}, where K is a Picard-Vessiot field for L over k. This
space can now be identified with the covariant solution space V' := ker(9, K®@M)
of M. In the sequel we will use the canonical isomorphism K @cV — K Q@ M.
As remarked before, rational solutions of L correspond to {m € M|0m = 0}
and exponential solutions of L (or equivalently rational solutions of the Riccati
equation of L) correspond to 1-dimensional submodules of M.

Lemma 4.20 Let k denote the algebraic closure of k and let ¢ C k be any
subfield containing k.

The solutions in £ of the Riccati equation of L are in one-to-one correspondence
with the one-dimensional £-submodules of the differential module ¢ @y M over L.

Proof. One replaces k by £ and M by ¢ ®; M and regards L as an element of
£]0]. Now the statement translates into the observation made above, namely:
“The rational solutions of the Riccati equation of L are in one-to-one correspon-
dence with the 1-dimensional submodules.” m]

’

Now we make a detailed investigation of this correspondence. Let u = £,

with y € V, y # 0, be an algebraic solution of the Riccati equation of L, having
degree d over k. According to the proof of 4.19, the line C'y C V has a G-orbit
of length d. As before, G C GL(V') denotes the differential Galois group.

Using the canonical isomorphism K ®¢ V — K ®; M as an identification,
we have that Ky C K ®; M. We fix a basis e1,...,e, of M and write y =
St fie; with all f; € K. For convenience, we suppose that f, # 0. One
normalizes y to y := fLy = Z?:l gie; with g, = 1. The line Cy C V has a
G-orbit {Cy; = Cy,...,Cys} of length d. The same holds for the 1-dimensional
subspace Ky = Kg. For any o € G one has o(Kg) = K§ if and only if 0§ = 3.
Indeed, oy = Y., 0(gi)e; and o(gn) = 1 = g,. Write {§ = @1,...,Ja} for the
G-orbit of g. Clearly the coefficients of g; with respect to the basis ey, ..., e,
generate a field extension of k of degree d. The lemma implies that this field
extension is equal to k(u).

Intermezzo on symmetric powers
For the next step we will need some information on symmetric powers of vector
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spaces (see also [169], CH. XVI, §8 for information concerning the symmetric
powers ). Let F' be any field and A a vector space over F' of dimension n with
basis €1, ...,e,. The d'" symmetric power of A, denoted by sym4A = sym?A,
is the quotient of the ordinary tensor product A® ---® A (of d copies of A) by
the linear subspace generated by all elements a1 ® -+ ®@ @y, — ar(1) @+ @ Ar(p)
with a1,...,a, € A and © € S,. We will not distinguish in notation between
the elements of sym®A and their preimages in A ® --- ® A. The space sym?A
has basis {e;; ® -+ ® e;,| with 1 < 43 < iy < --- < ig < n}. A vector in
sym?A will be called decomposable if it has the form a; ® --- ® aq for certain
elements ay,...,aq € F ® A, where I denotes the algebraic closure of F. Here
is an important subtle point which can be explained as follows. After choosing
a basis for A over F' one may identify A with the homogeneous polynomials in
n variables X1,..., X, over F, having degree 1. This leads to an identification
of sym?A with the homogeneous polynomials of degree d in Xi,...,X,. An
irreducible homogeneous polynomial of degree d in F[X7, ..., X,] may factor as
a product of d linear homogeneous polynomials in F[Xi,...,X,]. Consider a
homogeneous H € F[X1,..., X,] of degree 3, which factors over F' as a product
of three linear terms. We may suppose that the coefficient of X in H is 1.
The factorization can be put in the form H = (X,, — a)(X,, — b)(X,, — ¢) where
a, b, c are homogeneous terms of degree 1 in F[X7,..., X,,_1]. The Galois group
Gal(F/F) acts on this decomposition and permutes the a,b,c. Thus we have
a (continuous) homomorphism Gal(F/F) — S3. Consider the extreme case,
where this homomorphism is surjective. The images a, B, ¢ € F under a suitable
substitution X; + ¢; € F, @ = 1,...,n — 1, are the roots of the irreducible
polynomial (X,, —a)(X,, — b)(X,, — &) € F[X,,]. Then the linear factor (X,, —a)
lies in F(a)[X1,..., Xn]

The subset of the decomposable vectors in sym?A are the F-rational points
of an algebraic variety given by homogeneous equations. In terms of the chosen

basis e1, ..., e,, one writes a vector of sym?A as a linear expression
E x(il,...,id)eh@---@eid.
i1 <o <ig
Let the indeterminates X, . ;,, with ¢; < --- < ig, stand for the coordinate

functions on the vector space sym?A w.r.t. the given basis. There is a ho-
mogeneous prime ideal P in the polynomial ring F[{X;, . i, }ii<..<iy] such
that the set of decomposable vectors is the zero set of P. A certain col-
lection of generators of P is known under the name Brill’s equations ([108],
pp. 120,140; [53], p. 181). The existence of these equations follows from
the observation that the morphism P(A) x -+ x P(A) — P(sym?A), given by
(Fay, Fag,...,Faq) — Fa; ® - - - ® aq, between projective spaces has a Zariski
closed image. We will not need the precise form of Brill’s equations.

Now we return to G-orbit {1 = ¢, ..., %a} of §. The element m(d, u) := §1®- - -®
Ga of sym% (K @5 M) = K ®gsym{ M is invariant under G and belongs therefore
to sym?M. Moreover, it is a decomposable vector, since it is a decomposable
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vector over the field extension K of k. The covariant solution space ker(9, K ®j,
sym?M) can clearly be identified with sydeV. The one-dimensional subspace
Cy1 ® - -+ ® yq is G-invariant. One observes that

Kp® - Qu=Kn® - ®gs = Km(d,u). Thus Km(d,u) is invariant under
0 and then the same holds for the 1-dimensional subspace km(d,u) of sym?M.
We conclude that the algebraic solution u of the Riccati equation yields a 1-
dimensional submodule of sym?M, generated by a decomposable vector.

A converse holds as well. Suppose that km(d) is a submodule of sym?M
generated by a decomposable vector. Then m(d) gives rise to one or more
algebraic solutions of the Riccati equation of L, having degree < d over k.
We want to indicate an algorithm with input a decomposable 1-dimensional
submodule km(d) of sym?M and output one or more algebraic solutions of the
Riccati equation. For notational convenience we take d = 3. One has to compute
elements m1, ma, m3 € k ®, M such that m; @ me ® ms = m. In the extreme
case, considered above, one computes an extension k(r) D k of degree 3 and an
my1 € k(r) ®, M. The 1-dimensional space k(r)my C k(r) @, M is invariant
under 0. Thus Omy = um; for some u € k(r). Then u is an algebraic solution
of the Riccati equation and k(u) = k(r) and the minimal polynomial of degree
3 of u over k is found. We note that an algorithm based on symmetric powers,
decomposable vectors and Brill’s equations for determining liouvillian solutions
of an operator is presented in [274] with improvements presented in [134].

4.3.3 Liouvillian Solutions for a Differential Operator

In this subsection, we will present a simple (yet not very efficient) algorithm
to decide if a linear differential operator L over C(z) has a nonzero liouvillian
solution and produce such a solution if it exists. This algorithm can be modified
by applying Tsarev’s refinements of the straightforward Beke algorithm for dif-
ferential operators. At the end of the section we will discuss other refinements.

We begin by reviewing some facts about symmetric powers Symd(L) of an
operator L. In Section 2.3, we showed that the solution space of this operator is
spanned by {y1 - - - yq | Ly; = 0 for all i}. Furthermore, we showed that Sym?(L)
can be calculated in the following manner: Let L have order n and let e = 1
be a cyclic vector of k[0]/k[0]L with minimal annihilating operator L. One

differentiates e?, u = ("Zf;l) times. This yields a system of 4+ 1 equations:

et =>"a; " j=0,...,p (4.4)

where the sum is over all T = (ig,41,...,4n—1) With 49 + 41 + -+ +ip_1 = d
and &1 = e (Pe)it .- (9" Le)in-1. The smallest ¢ such that the first ¢ of the
forms on the right hand side of these equations are linearly dependent over
C(z) yields a relation d%e? + b;_10' ‘e + - 4 boe? = 0 and so Sym*(L) =
O + b_1071 4+ .-+ + by. The following example will be used several times in
this Chapter.
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Example 4.21 Let L = 0% — %5‘ — z and m = 2. We shall calculate the
equations (4.4) and Sym?(L). Following the above procedure, we have

e2 1 0 0 9

He? 0 2 0 ¢
522 = 95 1 9 6862 (4.5)
9362 3 8z32—21/2 % (Oe)

The3 above matrix B of coefficients has rank 3. A calculatison shows that
(0, —dz -1 —23—2, 1)B = 0. Therefore, Sme(L) =03 — 23—282 — —422518. O

22

We will also need other auxiliary operators. These will be formed using

Definition 4.22 Let k be a differential field and L € k[D]. The derivative of L
denoted by Der(L), is defined to be the minimal monic annihilating operator of

0 € k[0]/k[O]L. O
As in Section 2.3, one can show that the solution space of Der(L) is {y/ | Ly = 0}.

Example 4.23 Let L = 0> — 20 — z and let e = 9 € k[0]/k[0]L. To calculate
Der(L) we form the following system:

e = 0
de = —~a+
e = 5 z

d’e = (z-— L)(‘9—1—

3
422 2

Therefore Der(L) = 8% — £0 + (% — z). We shall also need in Example 4.25
that Sym?(Der(L)) = 9% — 2% — 422510 4 4s-10, O

Proposition 4.24 Let L be a linear differential operator of order n with coef-
ficients in k = C(z). One can decide, in a finite number of steps, if Ly = 0 has
a nonzero solution liouvillian over k and, if so, find the minimal polynomial of
an element u algebraic over k so that any y with y'/y = u, we have Ly = 0.

Proof. We shall present an algorithm having its roots in [199] and given ex-
plicitly in [264].

The algorithm Proposition 4.19 implies that if Ly = 0 has a nonzero liouvil-
lian solution then it has a solution y # 0 such that u = y/y is algebraic of order
at most I(n). The algorithm proceeds by searching for the minimal polynomial
of such a u. Let m be a positive integer less than or equal to I(n) and let

P(u) =u™ + bp_1u™ L4+ by
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be a putative minimal polynomial of the logarithmic derivative u of a nonzero
solution of Ly = 0. Note that u satisfies the Riccati equation R(u) = 0 asso-
ciated with L. Since the (ordinary) Galois group of P(u) acts transitively on
the roots of P(u), all solutions of P(u) = 0 also satisfy the Riccati equation
and therefore each of these roots is the logarithmic derivative of a solution of
Ly=0. Let u; = z}/z;, i =1,...,m be the roots of P(u) = 0 where the z; are
solutions of Ly = 0. Since the coefficients of P(u) are the elementary symmetric
function of the u;, we have that, for each i =1,...,m — 1,

m i oo
( _>bmi - ¥ Zo() " Te(®) (4.6)
’ ceSy, Po() T Fali)
N N
_ LoeSn Fo() " Fa(Po(i+1) " Fa(m) (4.7)

21 Zm

where S, is the group of permutations on m elements. Note that b,,—1 =
(z21-+ 2m)" /(21 2m) and so is the logarithmic derivative of a solution of the
m' symmetric power Sym” (L) of L. Furthermore, for each i = 2,...,m, the
element (21 -+ - 2y )bm_; is a solution of L; :== Sym™ *(L) @ Sym*(Der(L)). In
particular, for each ¢ = 2,...,m, by,_; is a rational solution of L;(0 + by,—_1).
Note that this latter statement holds trivially for ¢ =1 as well.

Proposition 4.9 applied to the operator Sym™ (L) implies that one can find
v1,...,0s such that for any exponential solution y of Sym™(L)y = 0 there
exists a j such that some y/y; € C(z) for any solution of y; = v;y;. Therefore
for some j, we have that

bm—; is a rational solution of L;(0 + v;)

for¢ =1,...,m. Fix a value of j. Let 2;1,...,2;,, be a basis of the rational
solutions of L;(d + v;). Let

bm—i = 1,121 + -+ + Cin; Zing (4.8)

where the ¢, ; are indeterminate constants. To see if there exist constants c; s
such that the resulting polynomial is the minimal polynomial of a solution of the
Riccati equation one proceeds as follows. The set of these constants for which
the resulting P(u) is irreducible over C(z) forms a constructible set Z. Let us
assume that Z is nonempty. Assuming the ¢, s take values in C = C, one has
that v’ = Pj(u) where P; is a polynomial of degree at most m — 1 in « that can
be calculated using the equality P(u) = 0. Similar expressions u(") = P;(u) can
be calculated for all derivatives of u. Replacing u(*) in R(u) with the P;(u) and
then reducing modulo P(u) yields an expression that must vanish if P(u) = 0
is the minimal polynomial of a solution of the Riccati equation. This yields
algebraic conditions on the constants {c;,;} and defines a constructible set and
standard techniques (e.g., Grébuner bases) can be used to decide if any of these
are consistent. Repeating this for all j yields all possible minimal polynomials
of algebraic solutions of degree m of the Riccati equation. m|
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Example 4.25 Consider the operator L = 9% — %5‘ — z. We shall show that
this operator has a solution y with y'/y algebraic of degree two over C(z). Let
P(u) = u?+bju+bgy be the putative minimal polynomial of an algebraic solution
of the Riccati equation. In Example 4.21, we showed that Sme(L) = 83—2—?’282—

42:; L. The only exponential solution of this equation is y = 1 so we must have

that b; = 0. To find by we consider Sym?(Der(L)) = §° — = 0% — 422—5103—1- 4510
(see Example 4.23). This has a one-dimensional space of rational solutions and
this is spanned by z. Therefore P(u) = u? — cz for some constant c. The

associated Riccati equation is R(u) = v/ 4+ u? — 2u — z. From P(u) = 0, we
have that u' = $£u, so ¢ is determined by s-u + cz — %u — z = 0. Therefore
c¢=1and P(u) = u? — z. This implies that L has a solution space with basis
{ef V7 ef —V7), O

We will not present the much more involved modifications needed to make
the above algorithm efficient. One problem that occurs is that the order of the
m*" symmetric power of the differential operator L is less than the maximal
possible order. This can be avoided using the techniques in [134] and [135]. In
these papers, the authors show how to construct matrix differential equations
whose solution spaces are isomorphic to the symmetric powers of the solution
space of Ly = 0. Using this, they are then able to construct, independent of the
order of Sym™ (L), polynomials all of whose roots are logarithmic derivatives of
solutions of Ly = 0 when such polynomials exist.

The algorithm presented in Proposition 4.24 is based on [264], where an algo-
rithm to find allliouvillian solutions of a linear differential equation is presented.
Many of the ideas in [264] already appear in [199]. In [289] and [290], Ulmer
refines the group theoretic techniques to significantly improve the bounds in all
cases and also develops conditions to further narrow down the set of possible
degrees of algebraic logarithmic derivatives of solutions that can occur. The
modifications, needed for the algorithm that we presented, appear in [274] and
[275]. We also note that the case of inhomogeneous equations is discussed in
[78] and the situation where the coefficients of the equation lie in more general
fields (e.g., liouvillian extensions of C'(z)) is discussed in [55] and [268].

The question of deciding if a linear differential equation has only algebraic
solutions (or even one nonzero algebraic solution) has a long history. In 1872,
Schwarz [257] gave a list of those parameters for which the hypergeometric equa-
tion has only algebraic solutions (for higher hypergeometric functions this was
done by Beukers and Heckman [33]). An algorithm (with some mistakes) to
find the minimal polynomial of an element u algebraic over C(z) with exp( [ u)
satisfying a given second order linear differential equation was found by Pepin
[218] in 1881. Using invariant theory, Fuchs [105], [106] was able to find the
minimal polynomial of an algebraic solution of a second order linear differential
equation assuming that the Galois group is the finite imprimitive group of order
24, 48 or 120 (this method is generalized in [272]). In [157], [158], Klein shows
that any second order linear differential equation with only algebraic solutions
comes from some hypergeometric equation via a rational change in the inde-
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pendent variable z := r(z). This approach was turned into an algorithm by
Baldassarri and Dwork [14]. Jordan [144] considered the problem of deciding if
a linear differential equation of order n has only algebraic solutions. As already
mentioned, he showed that a finite subgroup of GL, has an abelian normal
subgroup of index bounded by a computable function J(n) of n. This implies
that such an equation has a solution whose logarithmic derivative is algebraic
of degree at most J(n). Jordan’s approach was made algorithmic in [263] (see
also [48] and [217] for similar but incomplete algorithms due to Boulanger and
Painlevé). It should be noted that the algorithms of Boulanger, Klein, Painlevé,
and Pépin, are all incomplete in at least one regard. Each of these algorithms,
at one point or another, is confronted with the following problem: Given an
element u, algebraic over C(z), decide if exp([u) is also algebraic over C(z).
Boulanger refers to this as Abel’s Problem ([48], p. 93) and none of these authors
gives an algorithm to answer this question. In 1970, Risch [245] showed that
this problem could be solved if one could decide if a given divisor on a given
algebraic curve is of finite order. Risch showed how one could solve this lat-
ter problem by reducing the Jacobian variety of the curve modulo two distinct
primes and bounding the torsion of the resulting finite groups. For other work
concerning Abel’s Problem, see [14], [54] [77], [281], [298], [299]. The introduc-
tion to [199], the articles [112], [276] and the book [113] give historical accounts
of work concerning algebraic solutions of linear differential equations.

One can also ask if one can solve linear differential equations in terms of
other functions. The general problem of solving a linear differential equation in
terms of lower order linear differential equations is given in [265] and [267].

4.3.4 Second Order Equations

Kovacic’ influential paper [166] presented for the first time an efficient algorithm
to find all liouvillian solutions of a second order linear differential equation. In
this section we shall describe this algorithm in the context of the methods of
the last two sections, originating in [264]

The general method for finding liouvillian solutions simplifies considerably
for second order operators, due to the following observations.

Proposition 4.26 ([166], [59], [291]) Suppose that the field of constants C' of
the differential field k is algebraically closed. Let L = 0% +ad+b € k[0] and let
K D k be its Picard-Vessiot extension.

1. The n*" symmetric power Sym™ (L) of L has order (";Ezl) =n+1

2. Fix n > 2. Define operators L;, by the recursion Lo = 1, Ly = 0 and
Lyt =0L;+ial; +i(n —i+ 1)bL;—1. Then L,11 = Sym"(L).

3. Any solution of Sym"™(L)y = 0 in K is the product of n solutions of
Ly =0.
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4. Suppose that L = 0% — r with r € k. Let P(T) :== —T" + Z:.;—Ol ﬁTi
be an irreducible polynomial over k, u a solution of the Riccati equation

uw' +u? =r of L and P(u) = 0. Then the a; satisfy the recurrence relation
ai—1=—a;, —apn_10; — (n —1)(i + V)ra;11 fori=mn,...,0

and a, = —1, a_1 = 0. In particular, the coefficient a,—1 determines the
polynomial P(T). Moreover, an—1 is an exponential solution of Sym™ (L)
(or in other terms a solution in k of the Riccati equation of Sym”(L).

Proof. 1. Let differential module M with cyclic vector e associated to L is
E[0]/E[O]L and e is the image of 1. The operator Sym™(L) is the minimal
monic operator, annihilating the element e ® --- ® e € sym™M. For notational
convenience, we will write a tensor product as an ordinary product. In par-
ticular, the element e ® --- ® e is written as €. The space M has basis e, de
and 0(de) = —be — ade. The collection {e"~%(de)’| i = 0,...,n} is a basis
of sym™M. A straightforward calculation shows that the elements 9(e") for
i=0,...,n form a basis of sym™M. Thus Sym" (L) has order n + 1.

2. By induction one shows that L;(e") = n(n —1)---(n —i + 1)e"~(de)® for
i=0,....n+1.

3. The solution space of L is V = {f € K| Lf = 0}. Let y1,y2 be a basis.
Any homogeneous polynomial H in two variables X7, X5 over C'is a product of
linear homogeneous terms. Hence H # 0 implies that H (y1,y2) is not zero. By
counting dimensions one finds that {H (y1,y2)| H homogeneous of degree n} is
the solution space of Sym"(L).

4. The idea of the proof is to differentiate the polynomial relation P(u) = 0 in
the subfield k(u) of K and to use that v’ = —u? 4 r. This yields the equality

—iu' ) (—u® 4+ 1) = 0.

The term u™ occurring in this expression is replaced by Z;:Ol ﬁuz There
results a polynomial expression u of degree less than n. All its coefficients have
to be zero. These coefficients yield the recurrence relations of part 4.

The equation P(T') = 0 has all its solutions u = u1, ..., u, in K. Each u; has the
form Z—, for suitable solutions in K of Ly; =0. Thena, 1 =uy 4+ -+ u, = I

i f
with f =y1 -+ yp a solutions of Sym™(L) in K. |

Remarks 4.27 1. In [291], the authors show that the above recursion holds
without the assumption that P(T) is irreducible. They use this fact to give fur-
ther improvements on Kovacic’s algorithm. We will only use the above propo-
sition in our presentation.

2. Kovacic’ method for solving (92 — )y = 0 is now almost obvious. For a suit-
able n > 1 one tries to find exponential solutions of Sym" (L) with the methods
explained earlier. If a solution is found then the polynomial P(T') can be calcu-
lated and, by construction, any root of P(T') = 0 is a liouvillian solution of the
required type. We still have to explain what the suitable n’s are. ]
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Exercise 4.28 Let k = C(z) and let

3—4z

Ly=y" + 6.2 Y .

1. Show that Ly = 0 has no exponential solution over C(z).
2. Use Proposition 4.26 to show that
(=3+4z) , 2z-3

12 Y 423

Sym*(L)y =y —

and that this equation has y = 23 as an exponential solution. Therefore, Ly = 0
has a solution whose logarithmic derivative is algebraic of degree 2.
3. Use Proposition 4.26 to show that

s 1 1 1

P = _ — -
(u) = u 2zu+1622 4z

is the minimal polynomial of an algebraic solution of the associated Riccati
equation. O

The final information for Kovacic’ algorithm comes from the classification
of the algebraic subgroups of SL2(C). To be able to use this information one
transforms a linear differential operator 9>+ ad+b into the form 9% —r by means
of the shift 9 — 9 — a/2. The liouvillian solutions el with u algebraic over
k, of the first operator are shifted by u — u+ a/2 to the liouvillian solutions of
the same type of the second operator. Thus we may and will restrict ourselves
to operators of the form 92 — r. The advantage is that the differential Galois
group of &2 — r lies in SLy(C) (see Exercise 1.35(5)).

The well known classification of algebraic subgroups of SLy(C') ([150], p.31;
[166], p.7, 27) is the following.

Theorem 4.29 Let G be an algebraic subgroup of SLa(C). Then, up to conju-
gation, one of the following cases occurs:

1. G is a subgroup of the Borel group

a b .
B::{(O al) |a€C’,b€C}.

2. G is not contained in a Borel group and is a subgroup of the infinite
dihedral group

pe={(§ 2 )teccfu{( 0 §)ieeer}

3. G is one of the groups AELQ (the tetrahedral group) , SSLQ (the octahedral
group) or A§L2 (the icosahedral group) . These groups are the preimages
in SLa(C) of the subgroups Ay, Sy, As C PSLy(C) = PGL2(C).
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4. G = SLy(C).

We now present a rough version of the Kovacic Algorithm.

Theorem 4.29 gives the following information:

Let L = 92 —r have solution space V and differential Galois group G C GL(V) =
SL2(C). The smallest integer n > 1 such that the Riccati equation of L has an
algebraic solution of degree n over k is equal to the smallest length of a G-orbit
of aline W C V in P(V) = P1(C). From the above classification one can read
off this n. Namely, n = 1 for case 1.; n = 2 for case 2.; n = 4,6,12 for case
3. Indeed, one knows that the actions of A4, S4, A5 on Pl(C) have orbits of
minimal length 4, 6,12 respectively (see [166]). Finally, in case 4. there is no
finite G-orbit and there are no liouvillian solutions.

The algorithm computes whether there are algebraic solutions u of the Ric-
cati equation v’ +u? = r for n = 1,2,4,6,12 (and in this order). If a solution u
is found then essentially one finds a complete description of the solution space,
the Picard-Vessiot field and the differential Galois group.

Note that Example 4.28 illustrates this procedure.

Remarks 4.30 1. The algorithm that Kovacic presents in [166] (also see [231])
is more detailed (and effective). He does not calculate the symmetric powers but
shows how one can determine directly an exponential solution of the prescribed
symmetric powers. This is done by calculating local solutions of the second
order equation at each singular point, that is, solutions in the fields C((z — ¢))
or C((271)). This allows one to determine directly the possible principal parts
at singular points of solutions of symmetric powers. Kovacic then develops
techniques to determine if these principal parts can be glued together to give
exponential solutions. The question of determining the local formal Galois group
(i.e., over C((z — ¢)) or C((z71))) is considered in [231] where explicit simpler
algorithms are also given to determine the global Galois groups of second order
equations with one and two singular points.

2. Various improvements and modifications have been given for the Kovacic Al-
gorithm since its original publication. Duval and Loday-Richaud [87] have given
a more uniform treatment of the considerations concerning singular points and
have also applied the algorithm to decide which parameters in the hypergeomet-
ric equations (as well as several other classes of second order equations) lead to
liouvillian solutions. In [291], Ulmer and Weil show that except in the reducible
case, one can decide if there is a liouvillian solution (and find one) by looking
for solutions of appropriate symmetric powers that lie in C(z). This eliminates
some of the nonlinear considerations of Kovacic’s algorithm. If the equation has
coefficients in Cy(z) where C is not algebraically closed, it is important to know
in advance how large an algebraic extension of Cp is required. In [126] and [305]
sharp results are given for Kovacic’s algorithm as well as a general framework
for higher order equations. In [290], sharp results are given concerning what
constant fields are needed for equations of all prime orders. An algorithm to
determine the Galois groups of second and third order equations and decide if
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they have liouvillian solutions (but not necessarily find these solutions) is given
in [271] and [272]. This will be discussed in the next section.

3. We note that Kovacic’s algorithm finds a solution of the form exp( [ u) where
u is algebraic over C(z) when the equation has liouvillian solutions. When the
equation has only algebraic solutions, the algorithm does not find the minimal
polynomials of such solutions, even when the Galois group is tetrahedral, octa-
hedral or icosahedral. For these groups this task was begun in [105] and [106]
and completed and generalized to third order equations in [271] and [272].

4. Applications of Kovacic’s Algorithm to questions concerning the integrability
of Hamiltonian systems are given in [212] (see also the references given in this
book). O

4.3.5 Third Order Equations

It is possible to extend Kovacic’ algorithm to third order operators. We will
suppose that the field of constants C, of the differential field k, is algebraically
closed. By normalizing a third order operator to the form L = 8%+a0+b € k[J),
one essentially looses no information. The solution space of L will be called V'
and the differential Galois group G of L is contained in SL(V') = SL3(C'). The
nice properties of second order operators, given by Proposition 4.26, need not
hold for L. It is possible that a symmetric power Sym™(L) of L has an or-
der strictly less than the dimension of the corresponding differential module
sym™ (k[0]/k[0]L). Another possibility is that Sym"(L) has the maximal pos-
sible dimension, but an exponential solution of Sym"(L) is not decomposable.
A third problem is that a decomposable exponential solution of a Sym™(L) of
maximal dimension does not automatically yield the minimal polynomial of the
corresponding algebraic solution u of degree n over k of the Riccati equation
of L. The list of (conjugacy classes of) algebraic subgroups of SL3(C) is quite
long. A summary is the following.

L is reducible. This means that V' contains a G-invariant subspace of dimension
1 or 2. In the first case L has an exponential solution. In the second case, one
replaces L by the dual operator L* := —9 — 0 - a + b with solution space V*,
the dual of V. Now L* has an exponential solution.

L is irreducible and imprimitive. In general, one calls a differential operator
imprimitive if the action of the differential Galois group G on the solution space
is irreducible and there is a direct sum decomposition V' = @;_;V; which is
respected by the action of G. Thus for every g € G there is a permutation
7 € S such that g(V;) = V() for all i. Moreover, since L is irreducible, G acts
transitively on the set of subspaces {V;}. L is called primitive if L is irreducible
and not imprimitive.

Here dim V' = 3 and imprimitivity of L means that V = Ce; 4+ Ces 4+ Ceg
and G permutes the set of lines {Ce;}. The line Ce; ® e; ® ez € sym3V is
G-invariant. Thus Sym? (L) has an exponential solution which is decomposable.
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L is primitive. The possibilities for G, up to conjugation, are:

(1) SLs(C).

(2) PSLy(C). This group is the image of SLy(C) in SL3(C') for its natural action
on sym2C? = C3.

(3) PSL2(C) x C3 where C3 = {X| A € C, A3 = 1} is the center of SL3(C).

(4) A list of eight finite primitive subgroups of SL3(C):

e A with its familiar interpretation as the group of the symmetries (of
determinant 1) of the icosahedron. This group and its companion A5 x Cs
have minimal length 6 for an orbit on P(C?).

e The Valentiner group A§L3 of order 108. This is the preimage of Ag for the
map SL3(C) — PSL3(C). The minimal length of an Ag-orbit in P(C3) is
36.

e The group HQSlLﬁg’ of order 648, which is the preimage of the Hessian group
Hz16 C PSL3(C) of order 216. The minimal length of an Hajg-orbit is 9.

e The subgroup H782L % of index 3 in HQSILGS, has again minimal length 9 for an

orbit in P(C?).

e The subgroup F§6L3 of index 2 of H752L3 has a minimal length 6 of an orbit
in P(C3).

e The group Gips = PSLo(F7) of order 168 and its companion Gieg X Cs
have minimal length 21 for an orbit in P(C?).

Thus it is interesting to calculate decomposable exponential solutions of
Sym"(L) for n = 1,3,6,9,21,36. Exponential solutions which are not decom-
posable, in particular for n = 2, 3,4, also give useful information on the group
G. Algorithms for third order equations using the above ideas can be be found
in [271], [272], [273], [291] and especially [134]. In the latter paper a complete
algorithm for order three equations is presented (as of the writing of this book,
there seems to be no complete implementation). It uses the above classification
of algebraic subgroups and especially for the finite primitive groups invariants
and semi-invariants. For order four differential equations similar results were
obtained in [127]. Samples of these results are:

(Translated from [134]).

Suppose that Sym™ (L) has no decomposable exponential solutions for n = 1,2
but that there is an rational solution for n = 4. Then G = Gigs and an irre-
ducible polynomial P(T) € k[T] of degree 21 is produced such that any solution
u of P(u) =0 is a solution of the Riccati equation of L.

(Taken from [271] ).

Suppose that L = 0> 4+ ad + b is irreducible. Then Ly = 0 has a liouvillian
solution if and only if

1. Sym4(L) has order strictly less than 15 or factors, and
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2. one of the following holds:
(a) Sym?(L) has order 6 and is irreducible, or
(b) Sym®(L) has a factor of order 4.

4.4 Finite Differential Galois groups

Until now, we have been concerned with algorithmic aspects of the direct prob-
lem for differential equations. Inverse problems are discussed in Chapter 11
and in Section 7 of that chapter a construction is given for a linear differential
equation having a prescribed connected differential Galois group. Here we will
discuss the same algorithmic problem but now for finite groups. The problem
can be stated as follows:

Let G be a finite group and p: G — GL(V) be a faithful representation (i.e., p
is injective) with V' an n-dimensional vector space over an algebraically closed
field C of characteristic 0. The general algorithmic problem is to produce a
differential operator L € C(2)[0] of degree n such that the representation p is
isomorphic to the action of the differential Galois group of L on its solution
space. This is the main theme of [232]. Instead of asking for a differential oper-
ator L, one may ask for a differential module (or a matrix differential operator)
with the required properties. This however, has not been implemented.

The construction of an algorithm (and its implementation) for the required

operator L is quite different from what we have seen until now. In particular the
Chapters 5, 6 will be used and some more theory is presented. Further we will
narrow down on producing second and third order scalar Fuchsian equations
with three singular points 0,1, 00. Since we will use some analytic theory, the
field C' is supposed to be a subfield of C. Consider P* = P \ {0, 1,00} with
base point 1/2 for the fundamental group ;. This group has the presentation
m1 =< G0,a1, 00| G010 = 1 >. A homomorphism h : m — GL,(C) is
given by the images Ay, A1, Asw € GL,(C) of the ag, a1, as, having the relation
ApA1 Ao = 1. The image of the homomorphism is a subgroup G of GL,(C).
We are interested in the situation where G is a given finite group.
The solution of the (strong) Riemann-Hilbert for finite groups (see Chapter 6)
guarantees a Fuchsian matrix differential equation with singularities at 0,1, oo,
with ~ as monodromy representation and G as differential Galois group (com-
pare Chapter 5, Sections 2,3). In many cases, one can also prove the existence
of the scalar Fuchsian differential equation with the same data. This is what we
are looking for. First we provide information about the form of such a scalar
differential equation.

4.4.1 Generalities on Scalar Fuchsian Equations

Consider the scalar Fuchsian equation

L(y) — y(n) + aly("—l) + 4 an—ly(l) + any = 07
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with singular points p1,...,ps € C and possibly co. For each singular point,
there is a set of local exponents. Let us consider for convenience the situation
that z = 0 is a regular singular point. In general, the local solutions at z = 0
of the equation lie in the field C((2))({z*}aec,!), where the symbols z* and
I have the interpretation: the functions e®!°8(*) and the function log(z) on a
suitable sector at z = 0. We consider the situation that [ is not present in the
set of local solutions. (This is certainly the case when the monodromy group is
finite). Then there is a basis of local solutions

=21z %2242 ), oy =2 (T rz 522 - -0),

with distinct Aq,---, A, € C. The \; are called the local exponents of the
equation at z = 0. Let A € C, then L(2*) = I()\) - 22(1 + x2 + %22 + --+),
where I(A) is a polynomial in A, seen as variable. The polynomial I is called
the indicial polynomial at z = 0. The exponents at z = 0 are the zeros of
the indicial polynomial. We recall that the equation L can be put in matrix
form and locally at z = 0, this matrix equation is equivalent to the equation
% = %v, where D is a diagonal matrix with diagonal entries A1, ..., A\, (Again
under the assumption that [ is not involved in the local solutions). Further,
the local monodromy matrix of the equation at z = 0 is conjugated to ™",
For other regular singular points one has similar definitions involving the local
parameter t =z —cor t = %

We suppose that for each singular point p the set E, of exponents consists of
n elements. (This is again equivalent to assuming that [ does not enter in the
local solutions at p).

Let y1,...,yn be a basis of solutions (somewhere defined or in a Picard-Vessiot
field) of the equation L. Recall that the Wronskian wr is the determinant of
the matrix

Y1 Y2 CE Yn
1 1 1
YOO O
2 2 2
RO I
yin—l) yén—l) o y;n—l)

The Wronskian is nonzero and is determined up to a multiplicative constant.
Further wr is a non zero solution of f = —aq f. It is easily seen that the order
w; of wr at p; is the —(n —1)n/2+4 " E,, (i.e.,—(n—1)n/2 plus the sum of the
exponents of L at p;). The order pio of wr at cois (n—1)n/2+ > Es. Further
—a1dz has simple poles and the residues are p; at p; and pe, at co. The sum
of the residues —aydz is zero. This implies the well known Fuchs relation:

;ZEP,@FZE%:W.
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We note, in passing, that the Fuchs relation remains valid if at one or more
regular singular points p the indicial polynomial has multiple roots. In this
situation E, is interpreted as the set of the roots of the indicial polynomial,
counted with multiplicity. The proof is easily adapted to this situation (see
also [224]).

Suppose further that the differential Galois group of the equation lies in
SL,,(C). Then w' = —ajw has a non trivial solution in C(z). The residues of
a;dz are integers and thus for all p € {p1,...,pk, o0} one has that > E, is an
integer.

We specialize now to the situation of a Fuchsian scalar equation L of order two
with singular points {0,1,00}. The form of L is

b, b b

22 (z=1)2  z(z-1)

y? + (a_o 4+ )y = 0, and one has

z z—1

tt—1)+aot+by= [] (t—a),

a€FEy
tt—1)+at+b =[] ¢t-a),
acE;
tt+1) = (a0 +a)t+(bo+bi+b)= ] t-a)

a€F
The three polynomials in ¢ are the indicial polynomials at 0,1, co. One observes
that L is determined by Ey, E1, E. Further 3°,_o, > Fj = 1. The differ-
ential Galois group is a subgroup of SLy(C) if and only if ) Ej is an integer for
7 =0,1,00.

For a third order Fuchsian differential equations (with singular points 0,1, 00)
we will use the normalized form
bo b1 ba

) + (= +

22 (z—1)2 + z(z—1)

z—1

L=+ (2 + )d

c1 ca(z —1/2) 1
(z—1)3  22(z—1)2  22(2—1)2

The indicial polynomials at 0,1, co are:

co
+5+

t(t—1)(t —2) +aot(t — 1) +bot +co= [] (t—a),
acEy

tt—1)(t=2)+art(t—1) +bit+er = [] (t - o),
acE;
tt+1)(t+2)—(ap+a)t(t+1)+ (bo+ b1 +b2)t — (co+c1+¢c2) =

= H (t — a).

a€EF
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Thus ag, a1, by, b1, ba, cg, 1, co are determined from the exponent sets Ey, E1, Fso.
We will call p the accessory parameter. Thus L is determined by the exponents
and the value of the accessory parameter. The dual (or adjoint) L* of L has the
data —ag, —ay, bg+2ag, b1 +2a1, ba, —co—2ag—2bg, —c1 —2a1—2by, —co—2bs, —U.
The indicial equations for L* at 0, 1, co are obtained from the indicial equations
for L by the substitutions ¢t — —t + 2, —t + 2, —t — 2.

The substitution z — 1 — z applied to L, with exponents sets Fy, E1, E and
accessory parameter u, produces a Fuchsian equation M with exponents sets
F4, Ey, Ex and accessory parameter —pu.

4.4.2 Restrictions on the Exponents

Let matrices Ag, A1, Aso, generating the finite group G, with AgA; A =1, be
given. We suppose that G is an irreducible subgroup of GL,(C). From the
definition of the exponents we conclude that the set e?™*Fi is the set of the
eigenvalues of A;, for j = 0,1,00. In other words, the exponents are known
modulo integers. This leaves too many possibilities for the exponents. Some
algebraic geometry is needed to obtain lower bounds for the exponents. We will
just indicate what the statement is. Define the number m = m(Ag, A1, As) by
the rather complicated formula

ep—1 ep—1

s Y (A )
€0 =0

e;—1 e;—1

1 1 o
Y s S (aDG?)
R R
1 €oo—1 1 €oo—1 ) .
T Z s ( — Z tr(AL)CE ),
X s=1 * j=0

where eg, €1, eso are the orders of the matrices Ag, A1, Ao, (o = €2/ () =
e?mi/er ¢ = e2™/°= and tr(B) means the trace of a matrix B.

The number m turns out to be an integer > 0. If m > 0, then the following
lower bounds for the exponents are valid: the exponents in Fy and F; are > —1
and the exponents in Fo, are > 1. We will use all this as a black box (the next
subsection gives a hint for it and full details are in [232]). The importance is
that the lower bound (in case m > 0) together with the Fuchs relation gives a
finite set of possibilities for the exponents Fg, F1, F.

4.4.3 Representations of Finite Groups

For a better understanding of the examples, we will separate the finite group
G and its embedding in some GL,(C). We recall some facts from the repre-
sentation theory of finite groups. A representation of the finite group G is a
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homomorphism p : G — GL,(C). The character x of p is the function on G
given by x(g) = tr(p(g)). There is a bijection between the representations of a
group and the set of characters of representations.

A representation p and its character are called irreducible if the only invariant
subspaces for p(G) are {0} and C™. Every representation is direct sum of ir-
reducible ones and every character is the sum of irreducible characters. Every
character is constant on a conjugacy class of G. Moreover the irreducible char-
acters form a basis of the vector space of the functions on GG which are constant
on each conjugacy class. In particular, there are as many irreducible characters
of a group as there are conjugacy classes. The character table of a group is a ta-
ble giving the values of the irreducible characters as functions on the conjugacy
classes of the group. For “small” finite groups, the character tables are known.

The data that we are given can also be described by:

(a) The finite group G.

(b) Three generators go, g1, goo 0f the group with gog19-0 = 1.

(c) A faithful (i.e., “injective”) representation p with character x. We will sup-
pose that p and x are irreducible.

The formula in Section 4.4.2 can be explained a bit as follows. The data de-
termine a finite Galois extension K of C(z) with Galois group G. In geometric
terms, this corresponds to a Galois covering of curves X — P! with group
G. The vector space of the holomorphic differentials on X has dimension g,
which is the genus of the curve. On this vector space the group G acts. In other
words, the holomorphic differentials on C' form a representation of G. The num-
ber m(Ag, A1, Axo) of Section 4.4.2 is the number of times that the irreducible
character p is present in this representation.

In the construction of examples of (irreducible) Fuchsian differential equations
of order n for a given group G, we will thus use the following data:

(a) A choice of generators go, g1, goo for G with gog1g.c = 1. One calls (go, 91, goo)
an admissible triple. The orders (eg, €1, €x) Will be called the branch type. A
more precise definition of branch type [eg, e1, €] could be given as follows.
Consider the set S of all admissible triples (go, g1, goo) With e; being the order
of g; for i = 0,1,00. Two admissible triples (go, g1, goo) and (hg, k1, hoo) Will
be called equivalent if there is an automorphism A of G such that h; = A(g;)
for i = 0,1,00. The branch type [eq, €1, ex] can be defined as the set of the
equivalence classes of S. In some cases a branch type [eg, €1, €] contains only
one equivalence class of admissible triples. In general it contains finitely many
equivalence classes.

(b) An irreducible faithful representation of G.

In the examples we will restrict ourselves to a few groups and to irreducible
representations in SL,,(C) with n = 2,3.
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4.4.4 A Calculation of the Accessory Parameter

Suppose that we are trying to find a Fuchsian order three equation L with known
exponents. Then one has still to calculate the accessory parameter u. We will
not explain the procedure in the general case to obtain u. There is a “lucky
situation” where two exponents belonging to the same singular point differ by
an integer. Let us make the assumption that for some j € {0,1,00} the set
E; contains two elements with difference m € Z, m > 0. We note that this
situation occurs if and only if A; has multiple eigenvalues.

Lemma 4.31 Assume that the differential Galois group of L is finite then p
satisfies an explicitly known polynomial equation over Q of degree m.

Proof. For notational convenience we suppose j = 0 and by assumption A, A+
m € Fy with m a positive integer. The assumption that the differential Galois
group of L is finite implies that there are three Puiseux series at z = 0, solutions
of L = 0. One of these has the form z*g with g =1+ ¢12 + c22% + - - € C[[2]].
There is a formula

L(z") = Po(t)2" 3 + Py(t)2' 2 + Po(t)2" 1 + Py(t)2' + ...,

where the P; are polynomials in ¢ and p. In fact Py does not contain p and the
other P; have degree 1 in pu. An evaluation of the equation L(z)‘(l +e1z4coz?+

--)) = 0 produces a set of linear equations for the coefficients ¢;. In order to
have a solution, a determinant must be zero. This determinant is easily seen to
be a polynomial in p of degree m. |

Explicit formulas:
Py(t) = t(t — 1)(t — 2) + aot(t — 1) + bot + co
Pl(t) = —alt(t — 1) — bot — 62/2 +u
Py(t) = —art(t — 1) + (by — b2)t +2p
Ps(t) = —ait(t — 1)+ (2b1 — ba)t + c2/2 + 3
The polynomials of lemma for m = 1,2 and 3 are the following.
If A\, A+ 1 are exponents at 0, then P;(\) = 0.
If A, A+ 2 are exponents at 0, then Py (A)Py(A+1) — Py(A+ 1)P2(A) =0
If A and A + 3 are exponents at 0 then the determinant of the matrix
Pi(A) Po(A+1) 0
Py(A) Pi(A+1) Py(A+2) | iszero.
P3(\) Py(A+1) Pi(A+2)

4.4.5 Examples
The Tetrahedral Group A3

This group has 24 elements. Its center has order two and the group modulo
its center is equal to A4. The group has 7 conjugacy classes conjy, ..., conjr.
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They correspond to elements of order 1,2,3,3,4,6,6. There is only one faithful
(unimodular) character of degree 2, denoted by x4. The two values 0 < A < 1
such that the e>™** are the eigenvalues for the representation corresponding to
x4 are given for each conjugacy class: (O—io, %1, %2, %, %3, %’, 1—65) One can
make a list of (conjugacy classes of) admissible triples. For each triple one can
calculate that the integer m of section 4.4.2 is equal to 1. This information leads

to unique data for the exponents and the equations.

branch type | genera | char | exp 0 exp 1 exp 0o Schwarz triple
3,34 2,0 X1 | -2/3-1/3 | -2/3-1/3 | 5/47/4 | 1/2,1/3,1/3
3,3,6 3,1 X4 -2/3,-1/3 | -2/3,-1/3 | 7/6,11/6 | 2/3,1/3,1/3
34,6 4,0 X1 | -2/3-1/3 | -3/4-1/4 | 7/6,11/6 | 1/2,1/3,1/3
4,6,6 6,0 X4 -3/4,-1/4 | -5/6,-1/6 | 7/6,11/6 | 1/2,1/3,1/3
6,6,6 7,1 X4 -5/6,-1/6 | -5/6,-1/6 | 7/6,11/6 | 1/2,1/3,1/3
6,6,6 7,1 X4 -5/6,-1/6 | -5/6,-1/6 | 7/6,11/6 | 2/3,1/3,1/3

“Schwarz triple” compares the data with “the list of Schwarz”, which is
a classification of the second order differential equations with singular points
0,1, 00 and finite irreducible differential Galois group. This list has 15 items.
Our lists are somewhat longer, due to Schwarz’ choice of equivalence among
equations!
The first item under “genera” is the genus of the curve X — P! corresponding
to the finite Galois extension K D C(z), where K is the Picard-Vessiot field of
the equation. The second item is the genus of the curve X/Z, where Z is the
center of the differential Galois group.

The Octahedral Group S5

This group has 48 elements. Its center has two elements and the group modulo
its center is isomorphic to S4. This group has 8 conjugacy classes conjy, .., conjs.
They correspond to elements of order 1,2,3,4,4,6,8,8. There are two faithful
(unimodular) irreducible representations of degree 2. Their characters are de-
noted by x4 and x5 and the eigenvalues of these characters are given for each
conjugacy class:

0,0 1,1 1,2 1,3 1,3 1,5 1,7 3,5
X4:(_7_7_a_7_5_5_7_)

X5 - (_7 T ) o Y 4 T v T A TS _)

Thus there is an automorphism of SELQ which permutes the classes conjz, conjs.
For the admissible triple, representing the unique element of the branch type we
make the choice that the number of times that conj; occurs is greater than or
equal to the number of times that conjg is present. In all cases the number m of
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Section 4.4.2 is equal to 1. This information suffices to calculate all exponents
and equations.

branch t. | genera | char | exp 0 exp 1 exp 0o Schwarz triple
3,4,8 8,0 X4 -2/3-1/3 | -3/4,-1/4 | 9/8,15/8 1/2,1/3,1/4
X5 -2/3,-1/3 | -3/4,-1/4 | 11/8,13/8 | 1/2,1/3,1/4
3,8,8 11,3 X4 -2/3-1/3 | -5/8,-3/8 | 9/8,15/8 2/3,1/4,1/4
X5 -2/3-1/3 | -7/8,-1/8 | 11/8,13/8 | 2/3,1/4,1/4
4,6,8 13,0 X4 -3/4,-1/4 | -5/6,-1/6 | 11/8,13/8 | 1/2,1/3,1/4
X5 -3/4,-1/4 | -5/6,-1/6 | 9/8,15/8 1/2,1/3,1/4
6,8,8 15,3 X4 -5/6,-1/6 | -5/8,-3/8 | 11/8,13/8 | 2/3,1/4,1/4
X5 -5/6,-1/6 | -7/8,-1/8 | 9/8,15/8 2/3,1/4,1/4

The Icosahedral Group A"

The group has 120 elements and is modulo its center isomorphic to As. There
are 9 conjugacy classes conjy,...,conjg corresponding to elements of orders
1,2,3,4,5,5,6,10,10. There are two faithful irreducible (unimodular) represen-
tations of degree 2. As before, their characters x2 and xs are given on the
conjugacy classes by the two eigenvalues:

0,0 1,1 1,2 1,3 2,3 1,4 1,5 3,7 1,9
XQ:(_v_a_a_v_a_v_ TN _)

(001112 13 14 23 15 1.9 3.7,
X3t ) ) ) ) ’576710’10

Thus there is an automorphism of A§L2 which permutes the two pairs of conju-
gacy classes conjs, conjg and conjs, conjg. For the admissible triple representing
the unique element of the branch type there are several choices. One can deduce
from the table which choice has been made.
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branch genera | char | exp 0 exp 1 exp oo Schwarz
type triple
3,3,10 15,5 x2 | -2/3-1/3 | -2/3-1/3 11/10,19/10 | 2/3,1/3,1/5

X3 -2/3,-1/3 -2/3,-1/3 13/10,17/10 | 2/5,1/3,1/3
345 14,0 x2 | -2/3-1/3 | -3/4-1/4 7/5.8/5 1/2,1/31/5
X3 -2/3,-1/3 -3/4,-1/4 6/5,9/5 1/2,2/5,1/3
3,4,10 20,0 X2 | -2/3-1/3 | -3/4-1/4 11/10,19/10 | 1/2,1/3,1/5
X3 | -2/3-1/3 | -3/4-1/4 13/10,17/10 | 1/2,2/5,1/3
3,5,5 17,9 X2 -2/3,-1/3 -3/5,-2/5 6/5,9/5 3/5,1/3,1/5
X3 -2/3,-1/3 -4/5,-1/5 7/5,8/5 3/5,1/3,1/5
3,5,6 19,5 X2 -2/3,-1/3 -3/5,-2/5 7/6,11/6 2/3,1/3,1/5
X3 -2/3,-1/3 -4/5,-1/5 7/6,11/6 2/5,1/3,1/3
3,5,10 23,9 X2 -2/3,-1/3 -3/5,-2/5 11/10,19/10 | 2/3,1/5,1/5
X3 -2/3,-1/3 -4/5,-1/5 13/10,17/10 | 3/5,2/5,1/3
3,10,10 29,9 X2 -2/3,-1/3 -9/10,-1/10 | 13/10,17/10 | 3/5,1/3,1/5
X3 -2/3,-1/3 -7/10,-3/10 | 11/10,19/10 | 3/5,1/3,1/5
4,5,5 22,4 X2 -3/4,-1/4 -3/5,-2/5 6/5,9/5 1/2,2/5,1/5
X3 | -3/4-1/4 | -4/5-4/5 | 7/5.8/5 1/2,2/5,1/5
4,5,6 24,0 X2 -3/4,-1/4 -3/5,-2/5 7/6,11/6 1/2,1/3,1/5
xs | -3/4-1/4 | -4/5-1/5 | 7/6,11/6 1/2,2/5.1/3
45,10 28,4 x2 | -3/4-1/4 | -3/5,-2/5 13/10,17/10 | 1/2,2/5,1/5
X5 | -3/4-1/4 | -4/5-1/5 | 11/10,19/10 | 1/2,2/5,1/5
1,6,10 30,0 X2 | -3/4-1/4 | -5/6,-1/6 11/10,19/10 | 1/2,1/3,1/5
X3 | -3/4-1/4 | -5/6,-1/6 13/10,17/10 | 1/2,2/5,1/3
xs | -3/4-1/4 | -7/10,-3/10 | 11/10,19/10 | 1/2,2/5,1/5
5,5,6 27,9 X2 -3/5,-2/5 -3/5,-2/5 7/6,11/6 2/3,1/5,1/5
X3 -4/5,-1/5 -4/5,-1/5 7/6,11/6 3/5,2/5,1/3
5,5,10 31,13 X2 -3/5,-2/5 -3/5,-2/5 11/10,19/10 | 4/5,1/5,1/5
X3 -4/5,-1/5 -4/5,-1/5 13/10,17/10 | 2/5,2/5,2/5
5,6,10 33,9 X2 -3/5,-2/5 -5/6,-1/6 13/10,17/10 | 3/5,1/3,1/5
X3 -4/5,-1/5 -5/6,-1/6 11/10,19/10 | 3/5,1/3,1/5
6,6,10 35,5 X2 -5/6,-1/6 -5/6,-1/6 11/10,19/10 | 2/3,1/3,1/5
X3 -5/6,-1/6 -5/6,-1/6 13/10,17/10 | 2/5,1/3,1/3
6,10,10 | 39,9 x2 | -5/6,-1/6 | -9/10,-1/10 | 11/10,19/10 | 2/3,1/5,1/5
X3 -5/6,-1/6 -7/10,-3/10 | 13/10,17/10 | 3/5,2/5,1/3
10,10,10 | 43,13 | x2 | -9/10,1/10 | -9/10,-1/10 | 11/10,19/10 | 4/5,1/5,1/5
X3 -7/10,3/10 | -7/10,-3/10 | 13/10,17/10 | 2/5,2/5,2/5

The Data for Gigs

The group Gies is the simple group PSLy(F7) and has 168 elements. There

are six conjugacy classes conji, . .

., conjg, they correspond to elements of order

{1,2,3,4,7,7}. There are two irreducible characters of degree three, called
X2, X3- Both are faithful and unimodular. The three values 0 < A < 1 such that

eQTr?A

are the eigenvalues for the representation are given for each conjugacy
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class as follows:

0,0,0 0,1,1 0,1,2 0,1,3 3,5,6 1,2,4)
1727 3 7 47 777
0,0,0 0,1,1 0,1,2 0,1,3 1,2,4 3,5,6)
1727 37 47 777
The character ys is the dual of y3. We introduce some terminology. The

conjugacy triple i,7,k of an admissible triple (go, g1, goo) is defined by: the
conjugacy classes of go, g1, goo are conj;, conj;, conjy.

X2 ¢ (

X3 (

(1) Branch type [2,3,7] consists of one element, represented by the conjugacy
triple 2,3,5. The genus of the curve X is 3. For xs one calculates that m = 1.
For this character, the lower bounds for the exponents add up to 3, so they are
the actual exponents. From the exponent difference 1 at z = 0 one obtains all
the data for L: —1/2,0,1/2|| —2/3,—1/3,0||8/7,9/7,11/7||p = 12293 /24696.
This equation was in fact found by Hurwitz [Hu]. Our theoretical considerations
provide an “overkill” since the corresponding covering X — P is well known. It
is the Klein curve in P2 given by the homogeneous equation zoz3 +x123 +2373 =
0, having automorphism group Gigs, or in another terminology, it is the modular
curve X (7) with automorphism group PSLy(F7).

Exercise 4.32 We continue now with order three equations for the group Gigs.
The reader is asked to verify the following calculations.

(2). Branch type [2,4,7] with conjugacy triple 2,4,5. Prove that m = 0 for xo
and m = 1 for 3. For x3 the lower bounds for the exponents add up to 3 and
are the actual values; at z = 0 there is an exponent difference 1. This leads to
the data —1/2,0,1/2|| — 3/4,—1/4,0(|8/7,9/7,11/7||u = 5273/10976.

(3). Branch type [2,7,7] and conjugacy triple 2,5,5. Prove that m = 0 for xo
and m = 2 for x3. For x3 the lower bounds for the exponents add up to 2; there
is an integer exponent difference at z = 0. From m = 2 one can conclude that
one may add +1 to any of the nine exponents (whenever this does not come
in conflict with the definition of exponents). We will not prove this statement.
Verify now the following list of differential equations for GG16s. The data for the
exponents and p are:

—-1/2,1,1/2||-6/7,—-5/7,-3/7||8/7,9/7,11/7||n = 1045/686

—1/2,0,3/2|| - 6/7,—5/7,-3/7||8/7,9/7,11/7||u = 2433/1372 + 31/21/392
-1/2,0,1/2|| 1/7,-5/7,-3/7||8/7,9/7,11/7||n = 1317/2744
—1/2,0,1/2||—6/7, 2/7,-3/7||8/7,9/7,11/7||n = 1205/2744
—1/2,0,1/2||—6/7,—5/7, 4/7||8/7,9/7,11/7||n = 1149/2744

—1/2,0,1/2|| - 6/7,—5/7,—3/7||15/7,9/7,11/7||u = 3375/2744
-1/2,0,1/2||—-6/7,-5/7,-3/7||8/7,16/7,11/7||n = 3263/2744
—-1/2,0,1/2||—-6/7,—5/7,-3/7||8/7,9/7,18/7||n = 3207 /2744
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Chapter 5

Monodromy, the
Riemann-Hilbert Problem
and the Differential Galois

Group

5.1 Monodromy of a Differential Equation

Let U be an open connected subset of the complex sphere P! = CU{co} and let
Y’ = AY be a differential equation on U, with A an nxn-matrix with coefficients
which are meromorphic functions on U. We assume that the equation is regular
at every point p € U. Thus, for any point p € U, the equation has n independent
solutions y1, ..., Yy, consisting of vectors with coordinates in C({z — p}). It is
known ([132], Ch. 9; [224], p. 5) that these solutions converge in a disk of radius
p where p is the distance from p to the complement of U. These solutions span
an n-dimensional vector space denoted by V,. If we let F}, be a matrix whose
columns are the n independent solutions y1,...,y, then F, is a fundamental
matrix with entries in C({z —p}). One can normalize F}, such that F,(p) is the
identity matrix. The question we are interested in is:

Does there exist on all of U, a solution space for the equation
having dimension n?

The main tool for answering this question is analytical continuation which
in turn relies on the notion of the fundamental group ([7], Ch. 8; [132], Ch.
9). These can be described as follows. Let ¢ € U and let A be a path from
p to ¢ lying in U (one defines a path from p to ¢ in U as a continuous map
A:]0,1] — U with A(0) = p and A(1) = ¢). For each each point A(t) on this

149



150 CHAPTER 5. MONODROMY AND RIEMANN-HILBERT

path, there is an open set Oy C U and fundamental solution matrix Fl)
whose entries converge in Oy ;). By compactness of [0, 1], we can cover the path
with a finite number of these open sets, {Oxu,)}, to =0 <t < - - <tp = 1.
The maps induced by sending the columns of Fy¢;) to the columns of Fy(;i1)
induce C-linear bijections Vy,) — Vi(,,,)- The resulting C-linear bijection
Vp, — V; can be seen to depend only on the homotopy class of A (we note that
two paths A\g and Ay in U from p to g are homotopic if there exists a continuous
H :[0,1]x[0,1] — U such that H(t,0) = \o(t), H(t,1) = M\ (t) and H(0, s) = p,
H(1,s) = q). The C-linear bijection V,, — V, is called the analytic continuation
along .

For the special case that A(0) = A(1) = p we find an isomorphism which is
denoted by M(X) : V,, — V. The collection of all closed paths, starting and
ending in p, divided out by homotopy, is called the fundamental group and
denoted by m (U, p) . The group structure on 71 (U, p) is given by “composing”
paths. The resulting group homomorphism M : m (U,p) — GL(V}) is called
the monodromy map. The image of M in GL(V}) is called the monodromy
group. The open connected set U is called simply connected if m (U, p) = {1}.
If U is simply connected then one sees that analytical continuation yields n
independent solutions of the differential equation on U. Any open disk, C and
also P! are simply connected.

The fundamental group of U := {z € C| 0 < |z|] < a} (for a € (0,00]) is
generated by the circle around 0, say through b € R with 0 < b < a and in
positive direction. Let us write A for this generator. There are no relations
and thus the fundamental group is isomorphic with the group Z. The element
M(X) € GL(V) is called the local monodromy. As a first example, consider the
differential equation y" = £y. The solution space V} has basis z¢ (for the usual
determination of this function). Further M(\)z¢ = e?™2¢ and e?™¢ € GL, is
the local monodromy.

5.1.1 Local Theory of Regular Singular Equations

In this subsection we continue the study of regular singular equations, now over
the field K = K ony = C({z}) of the convergent Laurent series. We give the
following definition: a matrix differential operator, here also refered to as a
“matrix differential equation”, d% — A over Koy is called regqular singular if
the equation is equivalent over K y,, to d% — B such that the entries of B have
poles at z = 0 of order at most 1. Otherwise stated, the entries of zB are
analytic functions in a neighbourhood of z = 0. Recall (Section 1.2) that two
equations - — A and L — B are equivalent if there is a F' € GL,,(C({z})) with
Fi(& - A)F = (£ = B).

One can express this notion of regular singular for matrix equations also in
terms of § := zd%. A matrix differential equation over K oy, is regular singular

if it is equivalent (over K ony) to an equation § — A such that the entries of A
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are holomorphic functions in a neighbourhood of z =0 (i.e., lie in C{z}).

A differential module M over K., is called regular singular if M contains
a lattice over C{z} which is invariant under ¢ (compare Definition 3.9 for the
formal case). As in the formal case, M is regular singular if and only if an (or
every) associated matrix differential equation is regular singular.

The following theorem gives a complete overview of the regular singular
equations at z = 0. We will return to this theme in Chapter 10, Section 10.2.

Theorem 5.1 Let 6 — A be reqular singular at z = 0.

1. § — A is equivalent over the field K ony = C({z}) of convergent Laurent
series to 6 — C, where C is a constant matriz. More precisely, there is
a unique constant matriz C such that all its eigenvalues A satisfy 0 <
Re(A) <1 and 6 — A equivalent to 6 — C.

2. The local monodromies of the equations § — A and § — C with C as in
1. are conjugate (even without the assumption on the real parts of the
eigenvalues). The local monodromy of 6 — C has matriz e*™C.

3.6 — A is equivalent to a reqular singular § — A, if and only if the local
monodromies are conjugate.

Proof. In Proposition 3.12, it is shown that d— A is equivalent over K = C((z))
to 6 — C with C as in statement 1. Lemma 3.42 states that this equivalence
can be taken over K .,n,. This implies that, with respect to any bases of the
solution spaces, the local monodromies of the two equations are conjugate. At
the point 1 € C, the matrix e©!°8(?) is a fundamental solution matrix for § — C.
Since analytical continuation around the generator of the fundamental group
maps log(z) to log(z) + 274, the conclusion of 2. follows.

If § — A is equivalent to a regular singular § — A, then clearly their local mon-
odromies are conjugate. To prove the reverse implication, assume that, with
respect to suitable bases of the solution spaces, the local monodromy of § — C
is the same as the local monodromy of § — C5, where C4,Cs are constant ma-
trices. This implies that e2™C1 = ¢2™C2 At the point 1 the matrix e©s108(2)
is the fundamental matrix for 6 — C; for j = 1,2. Let B = e~ C1log(2) oC2 log(2)
Analytic continuation around the generator of the fundamental group leaves B
fixed, so the entries of this matrix are holomorphic functions in a punctured
neighbourhood of the origin. Furthermore one sees that the absolute value of
any such entry is bounded by |z|V for a suitable N € Z in such a neighbour-
hood. Therefore the entries of B have at worst poles at z = 0 and so lie in
Kcony. Therefore § — C7 is equivalent to § — Cy. over K opny. Part 3. follows
from this observation. |

Corollary 5.2 Let § — A be regular singular at z = 0. The differential Galois
group G of this equation over the differential field C({z}) is isomorphic to the
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Zariski closure in GL,(C) of the group generated by the monodromy matriz.
Moreover the differential Galois group of § — A over C((z)) coincides with G.

Proof. Theorem 5.1 implies that the equation § — A is equivalent, over K o,
to an equation § — C, where C' is a constant matrix. We may assume that C'
is in Jordan normal form and so the associated Picard-Vessiot extension is of
the form F' = K.ony(2%, ..., 2% €elogz), where ay,...,a, are the eigenvalues
of C' and with ¢ = 0 if C' is diagonizable and € = 1 otherwise. Any element f
of F' is meromorphic on any sector at z = 0 of opening less than 27. If analytic
continuation around z = 0 leaves such an element fixed, it must be analytic in
a punctured neighbourhood of z = 0. Furthermore, |f| is bounded by |z|" for a
suitable N in such a neighbourhood and therefore must be meromorphic at the
origin as well. Therefore, f € K.ony. The Galois correspondence implies that
the Zariski closure of the monodromy matrix must be the Galois group.

Let UnivR be the universal differential ring constructed in Section 3.2 and let
UnivF be its field of fractions. One can embed F into UnivF. The action of
the formal monodromy on F' coincides with the action of analytic continuation.
Therefore, we may assume that the monodromy matrix is in the Galois group
of § — A over C((z)). Since this latter Galois group may be identified with a
subgroup of the Galois group of § — A over K, we have that the two groups
coincide. |

Exercise 5.3 Local Galois groups at a regular singular point

The aim of this exercise is to show that the Galois group over K of a regular
singular equation at z = 0 is of the form G}, x G¢, x Cy where n is a nonnegative
integer, e = 0,1 and Cjy is a cyclic group of order d. To do this it will be enough
to show that a linear algebraic group H C GL,,(k), k algebraically closed of
characteristic zero is of this type if and only if it is the Zariski closure of a cyclic

group.

1. Let H C GL,, be the Zariski closure of a cyclic group generated by g. Using
the Jordan decomposition of g, we may write g = g,g, where g, is diagonalizable,
gu is unipotent (i.e. g, — i¢d is nilpotent) and gsg, = gugs. It is furthermore
known that gy, gs € H ([141], Ch. 15).

(a) Show that H is abelian and that H ~ H, x H, where Hy is the Zariski
closure of the group generated by g, and H,, is the Zariski closure of the group
generated by gy.

(b) The smallest algebraic group containing a unipotent matrix (not equal to
the identity) is isomorphic to G, ([141], Ch. 15) so H, = G4 or {1}.

(c) Show that H is diagonalizable and use Lemma A.45 to deduce that H; is
isomorphic to a group of the form GJ., x Cy.

2. Let H be isomorphic to G}}, x G§ x Cq. Show that H has a Zariski dense
cyclic subgroup. Hint: If py,...,p, are distinct primes, the group generated by
(p1,...,pn) lies in no proper algebraic subgroup of G,.
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3. Construct examples showing that any group of the above type is the Galois
group over K of a regular singular equation. O

The ideas in the proof of Theorem 5.1 can be used to characterize regular
singular points in terms of growth of analytic solutions near a singular point.
An open sector S(a,b,p) is the set of the complex numbers z # 0 satisfying
arg(z) € (a,b) and |z| < p(arg(z)), where p : (a,b) — Ry is some continuous
function. We say that a function g(z) analytic in an open sector S = S(a, b, p)
is of moderate growth on S if there exists an integer IV and real number ¢ > 0
such that |g(2)| < c|z|Y on S.

We say that a differential equation 6 — A, A € GL,(K) has solutions of
moderate growth at z = 0 if on any open sector S = S(a, b, p) with |a — b|] < 27
and sufficiently small p there is a fundamental solution matrix Ys whose entries
are of moderate growth on S. Note that if A is constant then it has solutions
of moderate growth.

Theorem 5.4 Let § — A be a differential equation with A € GLy,(K). A nec-
essary and sufficient condition that 6 — A have all of its solutions of moderate
growth at z = 0 is that 6 — A be reqular singular at z = 0.

Proof. If § — A is regular singular at z = 0, then it is equivalent over K to an
equation with constant matrix and so has solutions of regular growth at z = 0.
Conversely, assume that § — A has solutions of moderate growth at z = 0. Let
€2™C he the monodromy matrix. We will show that § — A is equivalent to § — C.
Let Y be a fundamental solution matrix of § — A in some open sector containing
1 and let B = Ye~¢18(*) Analytic continuation around z = 0 will leave B
invariant and so its entries will be analytic in punctured neighbourhood of z = 0.
The moderate growth condition implies that the entries of B will furthermore
be meromorphic at z = 0 and so B € GL,,(K). Finally, A= B'B~! + BCB~!
implies that § — A is equivalent to § — C over K. O

As a corollary of this result, we can deduce what is classically known as
Fuchs’ Criterion.

Corollary 5.5 Let L = 6" + a,_16" ' 4+--- +ag with a; € K. The coefficients
a; are holomorphic at 0 if and only if for any sector S = S(a,b, p) with |a —
bl < 27 and p sufficiently small, L(y) = 0 has a fundamental set of solutions
holomorphic and of moderate growth on S. In particular, if Ap denotes the
companion matrixz of L, the a; are holomorphic at z = 0 if and only if 6 — A
1s reqular singular at z = 0.

Proof. By Proposition 3.16, the operator L is regular singular if and only if
M := K|[0]/K[0]L is regular singular. Further § — Ay, is the matrix equation
associated to M. Thus the corollary follows from 5.4. |
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Exercise 5.6 Show that L = " +a,,—16" ! +--- 4 ag with a; holomorphic at
z = 0 if and only if L = 2"(d/d2)" 4+ 2" b,_1(d/d2)""" + - + 2b;i(d/dz)" +
- -+ 4 bg where the b; are holomorphic at 0 O

5.1.2 Regular Singular Equations on P!

A differential equation % — A, where the matrix A has entries in the field
C(z) has an obvious interpretation as an equation on the complex sphere P! =
C U {oo}. A point p € P! is singular for % — A if the equation cannot be
made regular at p with a local meromorphic transformation. A singular point is
called regular singular if some local transformation at p produces an equivalent
equation with a matrix having poles of at most order 1. The equation % —Alis
called regular singular if every singular point is in fact regular singular. In the
sequel we will work with regular singular equations and S will denote its (finite)
set of singular points.

. . . d k A,
An example of a regular singular equation is 7= — > ", -—4-, where the A; are

constant matrices and a1, ..., ax are distinct complex numbers.

d

4_
S Zfa . Prove that > A; = 0 implies that co is a regular (i.e., not a singular)
point for this equation. Calculate in the “generic” case the local monodromy

matrices of the equation. Why is this condition “generic” necessary? o

Exercise 5.7 Calculate that oo is a regular singular point for the equation

Let S = {s1,..., sk, 00}, then the equation -+ — Zk A ig called a Fuch-

dz i=1 z—s;
sian differential equation for S if each of the points in S is singular. In general,
a regular singular differential equation d% — A with the above S as its set of

d k A,

singular points cannot be transformed into the form = — > ", -=-. One can

find transformations of diz — A which work well for each of the singular points,
but in general there is no global transformation which works for all singular
points at the same time and does not introduce poles outside the set S.

We consider the open set U = P!\ S and choose a point p € U. Let S =
{s1,...,sk} and consider closed paths A1,..., \g, beginning and ending at p,
and each \; forms a small “loop” around s;. If the choice of the loops is correct
(i.e. each loop contains a unique and distinct s; and all are oriented in the same
direction) then the fundamental group 71 (U, p) is generated by the Aq,..., Ak
and the only relation between the generators is A\; o--- 0 Ay = 1. In particular,
the fundamental group is isomorphic to the free noncommutative group on k —1
generators. The monodromy map of the equation is the homomorphism M :
m(U,p) — GL(V},,) and the monodromy group is the image in GL(V}) of this
map.

Theorem 5.8 The differential Galois group of the reqular singular equation
d% — A over C(z), is the Zariski closure of the monodromy group C GL(V,).
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Proof. For any point g € U one considers, as before, the space V; of the local
solutions of % — A at q. The coordinates of the vectors in V|, generate over
the field C(z) a subring R, C C({z — ¢}), which is (by Picard-Vessiot theory)
a Picard-Vessiot ring for diz — A. For a path A from p to ¢, the analytical
continuation induces a C-bijection from V), to V, and also a C(z)-algebra iso-
morphism R, — R4. This isomorphism commutes with differentiation. For
any closed path A through p, one finds a differential automorphism of R,, which
corresponds with M(A) € GL(V,). In particular, M(A) is an element of the
differential Galois group of % — A over C(z). The monodromy group is then a
subgroup of the differential Galois group.

The field of fractions of R, is a Picard-Vessiot field, on which the monodromy
group acts. From the Galois correspondence in the differential case, the state-
ment of the theorem follows from the assertion:

Let f belong to the field of fractions of R,. If f is invariant under the mon-
odromy group, then f € C(z).

The meromorphic function f is, a priori, defined in a neighbourhood of p.
But it has an analytical continuation to every point ¢ of P!\ S. Moreover, by
assumption this analytical continuation does not depend on the choice of the
path from p to ¢. We conclude that f is a meromorphic function on P*\ S. Since
the differential equation is, at worst, regular singular at each s; and infinity, it
has solutions of moderate growth at each singular point. The function f is a
rational expression in the coordinates of the solutions at each singular point
and so has also moderate growth at each point in S. Thus f is a meromorphic
function on all of P! and therefore belongs to C(z). O

Exercise 5.9 Prove that the differential Galois group G of § — C, with C
a constant matrix, over the field C(z) is equal to the Zariski closure of the
subgroup of GL,(C) generated by 2™, Therefore the only possible Galois
groups over C(z) are those given in Exercise 5.3. Give examples where G is
isomorphic to G}, G}, X G, and G}}, x G, x Cq4, where Cy is the cyclic group
of order d. o

Example 5.10 The hypergeometric differential equation.

In Chapter 6 (c.f., Remarks 6.23.4, Example 6.31 and Lemma 6.11) we will show
that any order two regular singular differential equation on P! with singular
locus in {0, 1, 00} is equivalent to a scalar differential equation of the form:

A2+B , Cz>+Dz+E

1
4 +z(z—1)y 22(z —1)2

y=0.
Classical transformations ([224], Ch. 21) can be used to further transform this
equation to the scalar hypergeometric differential equation:

,  (a+b+1)z—c , ab
vt z(z—1) 4 z(z—1)

y=0.
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One can write this in matrix form and calculate at the points 0, 1, co the locally
equivalent equations of Theorem 5.1:

) = ( _(;b (c) ) v at 0 (eigenvalues 0, ¢)

. (0 0 . B
(z 1)v<ab atb—ct1 v at 1 (eigenvalues 0,a +b—c+1).

tv' = ( —?zb _al_ b ) vat oo, witht =2zt and’ = % (eigenvalues —a, —b).

This calculation is only valid if the eigenvalues for the three matrices do not
differ by a non zero integer. This is equivalent to assuming that none of the
numbers ¢, b, a,a + b — c is an integer. In the contrary case, one has to do some
more calculations. The hypergeometric series

(@)n(b)n o

nl(c)n

F(a,b,c;z) = Z

n>0

)

where the symbol (x),, means z(x +1)---(x +n —1) for n > 0 and (z)p = 1,
is well defined for ¢ # 0,—1,—2,.... We will exclude those values for ¢. One
easily computes that F'(a,b, ¢; z) converges for |z| < 1 and that it is a solution of
the hypergeometric differential equation. Using the hypergeometric series one
can “in principle” compute the monodromy group and the differential Galois
group of the equation (the calculation of the monodromy group was originally
carried out by Riemann ([244]; see also [296] and [224]). One takes p = 1/2.
The fundamental group is generated by the two circles (in positive direction)
through the point 1/2 and around 0 and 1. At the point 1/2 we take a basis of
the solution space: u; = F(a,b,c;2) and ug = 2 °F(a—c+1,b—c+1,2—¢; 2).

0 ) . The circle

The circle around 0 gives a monodromy matrix ( 0 e-2mic

. . B B
around 1 produces a rather complicated monodromy matrix ( L1 1.2 )

By1 Bap
with:
Bii=1- Qieﬂi(c—a—b)w
’ sin(mc)
Byo = _27Tl-e7ri(cfa7b) F(2 — C)F(l — C)
’ Fl—al(1-bI'l+a—c)l(1+b—c)
By = _2,R_Z<67ri(cfafb) F(C)F(C — 1)

I['(c—a)l(c—b)(a)l(b)
(m(c — a))sin(mw(c — b))

sin(mc)

We refer for the calculation of the B; ; to ([96], [224], [296]). a

By = 14 2ignitc-a-t) 0
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Exercise 5.11 Consider the case a = b = 1/2 and ¢ = 1. Calculate that
the two monodromy matrices are ((1) f) and (_1201). (We note that, since ¢ = 1
and a + b — c+ 1 = 1, one cannot quite use the preceeding formulas. A new
calculation in this special case is needed). Determine the monodromy group
and the differential Galois group of the hypergeometric differential equation for

the parameter values a = b=1/2 and ¢ = 1. a

Other formulas for generators of the monodromy group can be found in [159].
A systematic study of the monodromy groups for the generalized hypergeometric
equations ,,F,_1 can be found in [33]. The basic observation, which makes
computation possible and explains the explicit formulas in [159, 33], is that
the monodromy of an irreducible generalized hypergeometric equation is rigid.
The latter means that the monodromy group is, up to conjugation, determined
by the local monodromies at the three singular points. Rigid equations and
rigid monodromy groups are rather special and rare. In [156] a theory of rigid
equations is developed. This theory leads to an algorithm which produces in
principle all rigid equations.

5.2 A Solution of the Inverse Problem

The inverse problem for ordinary Galois theory asks what the possible Galois
groups are for a given field. The most important problem is to find all possible
finite groups which are Galois groups of a Galois extension of Q. The inverse
problem for a differential field K, with algebraically closed field of constants C,
is the analogous question:

Which linear algebraic groups over C are the differential Galois
groups of linear differential equations over K 2

As we will show the answer for C(z) is:

Theorem 5.12 For any linear algebraic group G over C, there is a differential
equation % — A over C(z) with differential Galois group G.

This answer was first given by Carol and Marvin Tretkoff [282]. The simple
proof is based upon two ingredients:

1. Every linear algebraic group G C GL,(C) has a Zariski dense, finitely
generated subgroup H.

2. Let a finite set S C P! be given and a homomorphism M : 7 (U,p) —
GL,(C), where U = P!\ S and p € U. Then there is a regular singular
differential equation diz — A over C(z) with singular locus S, such that
the monodromy map M : 71 (U, p) — GL(V},) is, with respect to a suitable

basis of V},, equal to the homomorphism M.
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Proof. Assuming the two ingredients above, the proof goes as follows. Take
elements ¢1,...,g9r € G such that the subgroup generated by the ¢1,...,gx is
Zariski dense in G. Consider the singular set S = {1,2,3,...,k, 00} and let
U = P!\ S. Then the fundamental group 71 (U, 0) is the free group generated
by A1,..., Ax, where )\; is a loop starting and ending in 0, around the point 1.
The homomorphism M — G C GL,(C) is defined by M (\;) = g; fori =1,...k.
The regular singular differential equation d% — A with monodromy map equal

to M, has differential Galois group G, according to Theorem 5.8. a

We now turn to the two ingredients of the proof. We will prove the first in
this section and give an outline of the proof of the second in the next section.
A fuller treatment of this second ingredient is give in the next chapter.

Lemma 5.13 FEvery linear algebraic group G has a Zariski dense, finitely gen-
erated subgroup.

Proof. Let G° denote the connected component of the identity. Since G° is a
normal subgroup of finite index, it suffices to prove the lemma for G°. In other
words, we may suppose that G C GL,(C) is connected and G # {id}. We will
now use induction with respect to the dimension of G.

First of all we want to show that G has an element ¢ of infinite order and
therefore contains a connected subgroup < g >° of positive dimension.

Consider the morphism f : G — C" of algebraic varieties over C, defined
by f(9) = (fa-1(9),-- -, folg)) where X™ + fr_1(g)X"~! + -+ fo(g) is the
characteristic polynomial of g.

Assume first that f is constant. Then every element of G has characteristic
polynomial (X — 1), the characteristic polynomial of the identity. The only
matrix of finite order having this characteristic polynomial is the identity so G
must contain elements of infinite order.

Now assume that f is not constant. By Chevalley’s theorem, the image I of
f is a constructible subset of C™. Moreover this is image I is irreducible since
G is connected. If all elements of G were of finite order, then the roots of the
associated characteristic polynomials would be roots of unity. This would imply
that the image I is countable, a contradiction.

In the above proof we have used that C is not countable. The following proof is
valid for any algebraically closed field C of characteristic 0. One observes that
an element of G which has finite order is semi-simple (i.e., diagonalizable). If
every element of G has finite order, then every element of G is semi-simple. A
connected linear algebraic group of positive dimension all of whose elements are
diagonalizable is isomorphic to a torus, i.e., a product of copies of G, ([141],
Ex. 21.4.2). Such groups obviously contain elements of infinite order.

We now finish the proof of the theorem. If the dimension of G is 1, then there
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exists an element g € G of infinite order. The subgroup generated by g is clearly
Zariski dense in G.

Suppose now that the dimension of G is greater than 1. Let H C G be a
maximal proper connected subgroup. If H happens to be a normal subgroup
then G/H is known to be a linear algebraic group. By induction we can take
elements aj ..., a, € G such that their images in G/H generate a Zariski dense
subgroup of G/H. Take elements by, ..., b, € H which generate a Zariski dense
subgroup of H. Then the collection {a1,...,an,b1,...,bn,} generates a Zariski
dense subgroup of G.

If H is not a normal subgroup then there is a g € G with gHg~' # H. Consider
a finite set of elements ag,...,a, € H which generate a Zariski dense subgroup
of H. Let L denote the subgroup of G generated by as,...,a,,g9. The Zariski
closure L of L contains both H and gHg™'. So does L’ and L° # H. The
maximality of H implies that L° = G and therefore also L = G. ]

Remark 5.14 There has been much work on the inverse problem in differen-
tial Galois theory. Ramis has described how his characterization of the local
Galois group can be used to solve the inverse problem over C({z}) and C(z)
([240], [241]). This is presented in the Chapters 8, 10 and 11. In [209], it is
shown that any connected linear algebraic group is a differential Galois group
over a differential field k of characteristic zero with algebraically closed field of
constants C' and whose transcendence degree over C is finite and nonzero (see
also [210]). This completed a program begun by Kovacic who proved a similar
result for solvable connected groups ([163], [164]). A more complete history of
the problem can be found in [209]. A description and recasting of the results of
[209] and [240] can be found in [229]. We shall describe the above results more
fully in Chapter 11. A method for effectively constructing linear differential
equations with given finite group is presented in [232] (see Chapter 4). o

5.3 The Riemann-Hilbert Problem

Let S C P! be finite. Suppose for convenience that S = {s1,...,sk,00}. Put
U = P!\ S, choose a point p € U and let M : 71 (U,p) — GL,(C) be a
homomorphism. The Riemann-Hilbert problem (= Hilbert’s 215 problem) asks
whether there is a Fuchsian differential equation % - Zle z‘:"; - with constant
matrices A;, such that the monodromy map M : w1 (U,p) — GL(V},) coincides
with the given M for a suitable basis of V,,. For many special cases, one knows

that this problem has a positive answer (see [9, 26]):

1. Let A1,...,Ar be generators of m1 (U, p), each enclosing just one of the s;
(c.f., Section 5.1.2). If one of the M ();) is diagonalizable, then the answer
is positive (Plemelj [223]).
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2. If all the M()\;) are sufficiently close to the identity matrix, then the
solution is positive (Lappo-Danilevskii [170]).

3. When n = 2, the answer is positive (Dekkers [79]).

4. Tf the representation M is irreducible, the answer is positive (Kostov [162]
and Bolibruch [9, 42]).

The first counter example to the Riemann-Hilbert problem was given by
A.A. Bolibruch ([9],[41]) This counter example is for n = 3 and S consisting
of 4 points. In addition, Bolibruch [41] has characterized when the solution is
positive for n = 3.

We will present proofs of the statements 2., 3. and 4. in Chapter 6 but in this
section we shall consider a weaker version of this problem. The weaker version
only asks for a regular singular differential equation with singular locus S and
M equal to the monodromy map M. Here the answer is always positive. The
modern version of the proof uses machinery that we will develop in Chapter 6
but for now we will indicate the main ideas of the proof.

Theorem 5.15 For any homomorphism M : w1 (U,p) — GL,(C), there is a
reqular singular differential equation with singular locus S and with monodromy
map equal to M.

Proof. We start with the simplest case: S = {0,00}. Then U = C* and we
choose p = 1. The fundamental group is isomorphic to Z. A generator for
this group is the circle in positive orientation through 1 and around 0. The
homomorphism M is then given by a single matrix B € GL,(C), the image
of the generator. Choose a constant matrix A with e>™ = B. Then the
differential equation § — A is a solution to the problem.

Suppose now #S > 2. We now introduce the concept of a local system L on
U. This is a sheaf of C-vector spaces on U such that L is locally isomorphic to
the constant sheaf C". Take any point ¢ € U and a path A from p to gq. Using
that L is locally isomorphic to the constant sheaf C™, one finds by following the
path A a C-linear bijection L, — L,. This is completely similar to analytical
continuation and can be seen to depend only on the homotopy class of the path.
If p = g, this results in a group homomorphism @y, : 71 (U, p) — GL(L,). Using
some algebraic topology (for instance the universal covering of U) one shows
that for any homomorphism ® : 71 (U,p) — GL(C™) there is a local system L
such that @, is equivalent to ®. In particular, there is a local system L such
that &, = M.

The next step is to consider the sheaf H := L ®¢c Oy, where Oy denotes the
sheaf of analytic functions on U. On this sheaf one introduces a differentiation ’
by (I® f) =1® f'. Now we are already getting close to the solution of the weak
Riemann-Hilbert problem. Namely, it is known that the sheaf H is isomorphic
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with the sheaf OF. In particular, H(U) is a free O(U)-module and has some
basis e1,...,e, over O(U). The differentiation with respect to this basis has a
matrix A with entries in O(U). Then we obtain the differential equation % +A
on U, which has M as monodromy map. We note that L is, by construction,
the sheaf of the solutions of diz +AonU.

We want a bit more, namely that the entries of A are in C(z). To do this
we will extend the sheaf H to a sheaf on all of S. This is accomplished by
glueing to H with its differentiation, for each point s € S, another sheaf with
differentiation which lives above a small neighbourhood of s. To make this
explicit, we suppose that s = 0. The restriction of H with its differentiation
on the pointed disk D* := {z € C| 0 < |z| < ¢} C U can be seen to have
a basis fi,..., fn over O(V), such that the matrix of the differentiation with
respect to this basis is z71C, where C is a constant matrix. On the complete
disk D := {z € C]| |z| < €} we consider the sheaf OF, with differentiation given
by the matrix z~!C. The restriction of the latter differential equation to D* is
isomorphic to the restriction of H to D*. Thus one can glue the two sheaves,
respecting the differentiations. After doing all the glueing at the points of S we
obtain a differential equation diz — B, where the entries of B are meromorphic
functions on all of P! and thus belong to C(z). By construction, S is the singular
set of the equation and the monodromy map of diz — B is the prescribed one.
Furthermore, at any singular point s the equation is equivalent to an equation
having at most a pole of order 1. m]

Remarks 5.16 In Chapter 6 we will describe a more sophisticated formulation
of a regular, or a regular singular differential equation on any open subset U of
P! (including the case U = P'). We give a preview of this formulation here.

As above, an analytic vector bundle M of rank n on U is a sheaf of Oy-modules
which is locally isomorphic to the sheaf Of;. One considers also §2f/*, the sheaf
of the holomorphic differential forms on U. This is an analytic vector bundle
on U of rank 1. A regular connection on M is a morphism of sheaves V : M —
Q¢ ® M, which is C-linear and satisfies the rule: V(fm) = df @ m + fV(m)
for any sections f of Oy and m of M above any open subset of U.

Let S C U be a finite (or discrete) subset of U. Then Qf*(S) denotes the sheaf
of the meromorphic differential forms on U, which have poles of order at most
1 at the set S. A regular singular connection on M, with singular locus in S,
is a morphism of sheaves V : M — Q¢*(S) ® M, having the same properties as
above.

In the case of a finite subset S of U = P!, one calls a regular singular connection
on M Fuchsian if moreover the vector bundle M is trivial, i.e., isomorphic to
the direct sum of n copies of the structure sheaf Oy. For the case U = P!,
there is a 1-1 correspondence between analytic and algebraic vector bundles (by
the so called GAGA theorem). That means that the analytic point of view for
connections coincides with the algebraic point of view.
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In the sketch of the proof of Theorem 5.15, we have in fact made the follow-
ing steps. First a construction of a regular connection V on an analytic vector
bundle M above U := P!\ S, which has the prescribed monodromy. Then
for each point s € S, we have glued to the connection (M,V) a regular sin-
gular connection (M, V) living on a neighbourhood of s. By this glueing
one obtains a regular singular analytic connection (N,V) on P! having the
prescribed monodromy. Finally, this analytic connection is identified with an
algebraic one. Taking the rational sections of the latter (or the meromorphic
sections of N) one obtains the regular singular differential equation -+ — A with

dz
A € M(n x n,C(z)), which has the prescribed singular locus and monodromy.
Suppose for notational convenience that S = {s1,...,8k,00}. Then (N,V) is
Fuchsian (i.e., N is a trivial vector bundle) if and only if % — A has the form
d% — Ele Zfs with constant matrices Ay, ..., Ag. m|



Chapter 6

Differential Equations on
the Complex Sphere and
the Riemann-Hilbert
Problem

Let a differential field K with a derivation f — f’ be given. A differential module
over K has been defined as a K-vector space M of finite dimension together
with a map 0 : M — M satisfying the rules: 9(my +mgq) = d(my) + d(mz) and
A(fm) = f'm+ fO(m). In this definition one refers to the chosen derivation of
K. We want to introduce the more general concept of connection, which avoids
this choice. The advantage is that one can perform constructions, especially
for the Riemann-Hilbert problem, without reference to local parameters. To
be more explicit, consider the field K = C(z) of the rational functions on the
complex sphere P = C U {oco}. The derivations that we have used are % and
tN % where ¢ is a local parameter on the complex sphere (say ¢ is z — a or
1/z or an even more complicated expression). The definition of connection
(in its various forms) requires other concepts such as (universal) differentials,
analytic and algebraic vector bundles, and local systems. We will introduce
those concepts and discuss the properties that interest us here.

6.1 Differentials and Connections

All the rings that we will consider are supposed to be commutative, to have a
unit element and to contain the field Q. Let k£ C A be two rings.

163
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Definition 6.1 A differential (or derivation, or differential module) for A/k
is a k-linear map D : A — M, where M is an A-module, such that D(ab) =
aD(b) +bD(a). O

We note that D : A — M, as above, is often called a differential module.
This is however in conflict with the terminology introduced in Chapter 1. The
same observation holds for the following terminology. There exists a universal
differential (or universal differential module, or universal derivation), denoted by
d=das : A— Qay. This object is supposed to have the property: for every
derivation D : A — M, there exists a unique A-linear map [ : 4, — M such
that D =l odu/,. This property is easily seen to determine d/p : A — Q4/p
up to canonical isomorphism. The construction of the universal differential is
similar to other general constructions such as the tensor product and we refer
to ([169], Ch. XIX §3) for the details.

Examples 6.2
1. Let k be a field and A = k(z) a transcendental field extension. Then the
universal differential d : A — €4/, can easily be seen to be: 4/, the one

dimensional vector space over A with basis dz and d is given by d(f) = %dz.

2. More generally let £k C A be a field extension such that A is an algebraic

extension of a purely transcendental extension k(z1,...,2,) D k. Then Q4

is a vector space over A with basis dz1,...,dz,. The universal differential d

is given by d(f) = Z?zl %dzj. The derivations % are defined as follows.
J J

On the field k(z1,..., 2,) the derivations % are defined as usual. Since the

extension k(z1,...,2,) C A is algebraic and separable, each derivation %

J

uniquely extends to a derivation A — A.

It is clear that what we have defined above is a differential. Now we will show
that d : A — Adz1 ® -+ ® Adz, is the universal differential. Let a derivation
D : A — M be given. We have to show that there exists a unique A-linear map
1:Qa/, — M such that D = [ od. Clearly [ must satisfy I(dz;) = D(z;) for all

j=1,...,n and thus [ is unique. Consider now the derivation £ := D — [ o d.
We have to show that E = 0. By construction E(z;) = 0 for all j. Thus E is
also 0 on k(z1,...,2,). Since any derivation of k(z1,...,2,) extends uniquely

to A, we find that £ = 0.

3. We consider now the case, k is a field and A = k((z)). One would like to define
the universal differential as d : A — Adz with d(f) = g—édz. This is a perfectly
natural differential module. Unfortunately, it does not have the universality
property. The reason for this is that A/k is a transcendental extension of infinite
transcendence degree. In particular there exists a non zero derivation D : A —
A, which is 0 on the subfield k(z). Still we prefer the differential module above
which we will denote by d : A — Qf; Ik It can be characterized among all
differential modules by the more subtle property:
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For every differential D : A — M, such that D(k[[z]]) C M lies
in a finitely generated k[[z]]-submodule of M, there exists a unique
A-linear map [ : Qi/k — M with D =1od.

For completeness, we will give a proof of this. The [, that we need to produce,
must satisfy {(dz) = D(z). Let [ be the A-linear map defined by this condition
and consider the derivation E := D —lod. Then E(z) = 0 and also E(k[[2]]) lies
in a finitely generated k[[z]]-submodule N of M. Consider an element h € k[[z]]
and write it as h = hg + hiz + -+ + hp_12"" ! + 2"g with g € k[[z]]. Then
E(h) = 2"E(g). As a consequence E(h) € N,>12"N. From local algebra ([169],
Ch.X85) one knows that this intersection is 0. Thus E is 0 on k[[z]] and as a
consequence also zero on A. One observes from the above that the differential
does not depend on the choice of the local parameter z.

4. The next example is k = C and A = C({z}). The differential d : A — Adz,
with d(f) = %dz, is again natural. It will be denoted by d : A — Qﬁ/k. This
differential is not universal, but can be characterized by the more subtle property
stated above. One concludes again that the differential does not depend on the
choice of the local parameter z in the field A.

5. Let k = C and A be the ring of the holomorphic functions on the open unit
disk (or any open subset of C). The obvious differential d : A — Adz, given
by d(f) = j—{:dz, will be denoted by Qf;/k. Again it does not have the universal
property, but satisfies a more subtle property analogous to 3. In particular, this
differential does not depend on the choice of the variable z. O

In the sequel we will simply write d : A — €2 for the differential which is
suitable for our choice of the rings k C A. We note that Hom4(Q2, A), the set
of the A-linear maps from 2 to A, can be identified with derivations A — A
which are trivial on k. This identification is given by [ — [ o d. In the case
that Q = Q,/; (the universal derivation) one finds an identification with all
derivations A — A which are trivial on k. In the examples 6.2.3 - 6.2.5, one
finds all derivations of the type h-L (with h € A).

Definition 6.3 A connection for A/kis amap V: M — Q®4 M, where:

1. M is a (finitely generated) module over A.
2. V is k-linear and satisfies V(fm) = df @m+ fV(m) for f € Aand m € M.

O
Let I € Hom(2, A) and D =l od. One then defines Vp : M — M as

V:M—-QoMM Ae M= M.

Thus Vp : M — M is a differential module with respect to the differential ring
A with derivation f — D(f).
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Examples 6.4
1. k is a field and A = k(z). A connection V : M — Q ® M gives rise to
the differential module & : M — M with § = V 4 of k(z)/k with respect to

the derivation d%. On the other hand, a given differential module 90 : M — M

(w.r.t. ) can be made into a connection V by the formula V(m) := dz®d(m).
We conclude that there is only a notational difference between connections for
k(z)/k and differential modules over k(z)/k.

2. Let k be a field and A = k((z)). As before 2 will be Adz and d: A — Q is
the map d(f) = %dz. Let M be a vector space over A of dimension n. A k[[z]]-
lattice A C M is a k[[z]]-submodule of M of the form k[[z]]e; + --- + k[[z]]en,
where ej,...e, is a basis of M. Let (M,V) be a connection for A/k. The
connection is called regular if there is a lattice A such that d(A) C dz ® A. The
connection is called regular singular if there is a lattice A such that d(A) C

dz ® z71A.

Suppose now (for convenience) that k is algebraically closed. Let (M, V) be a
connection for k(z)/k. For each point p of kU {co} we consider the completion

k(z),, of k(z) with respect to this point. This completion is either k((z —a)) or
k((271)). The connection (M, V) induces a connection for l@p/kj on M, :=

e~

k(z)p®M. One calls (M, V) regular singular if each of the ]\//.71, is regular singular.

3. kis a field and A = k(z1,...,2,). A connection V : M — Q ® M gives,
for every 7 = 1,...,n, to a differential module V o : M — M with respect
%
to the derivation % In other words a connection is a linear system of partial
J
differential equations (one equation for each variable). See further Appendix D.

4. In parts 3.-5. of Examples 6.2 a connection together with a choice of the
derivation is again the same thing as a differential module with respect to this
derivation. a

6.2 Vector Bundles and Connections

We consider a connected Riemann surface X. The sheaf of holomorphic func-
tions on X will be called Ox. A wector bundle M of rank m on X can be
defined as a sheaf of Ox-modules on X, such that M is locally isomorphic with
the sheaf of Ox-modules O%. The vector bundle M is called free (or trivial) if
M is globally (i.e., on all of X') isomorphic to O%. With vector bundles one can
perform the operations of linear algebra: direct sums, tensor products, Hom’s,
kernels et cetera. Vector bundles of rank one are also called line bundles. We
will write H°(X, M), or sometimes H°(M), for the vector space of the global
sections of M on X. It is known that any vector bundle on a non-compact
Riemann surface is free, see [100]. For compact Riemann surfaces the situation
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is quite different. Below, we will describe the vector bundles on the Riemann
sphere.

The line bundle Qx of the holomorphic differentials will be important for us.
This sheaf can be defined as follows. For open U C X and an isomorphism
t: U — {c € C| |c] < 1}, the restriction of Qx to U is Oxdt. Furthermore,
there is a canonical morphism of sheaves d : Ox — €x, which is defined on the
above U by d(f) = %dt. (see also Examples 6.2.5 and Examples 6.4).

In the literature the term “vector bundle of rank m” refers sometimes to a
closely related but somewhat different object. For the sake of completeness we
will explain this. For the other object we will use the term geometric vector
bundle of rank m on a Riemann surface X. This is a complex analytic variety V'
together with a morphism of analytic varieties 7 : V' — X. The additional data
are: for each z € X, the fibre 7~!(z) has the structure of an m-dimensional
complex vector space. Further, X has an open covering {U;} and for each
i an isomorphism f; : 7= 1(U;) — C™ x U; of analytic varieties such that:
pro o f; is the restriction of 7 to 7#=1(U;) and for each point # € U; the map
71 (z) — C™ x {z} — C™, induced by f;, is an isomorphism of complex linear
vector spaces.

The link between the two concepts can be given as follows. Let 7 : V — X be
a geometric vector bundle. Define the sheaf M on X by letting M (U) consist
of the maps s : U — 71U satisfying 7 o s is the identity on U. The additional
structure on V' — X induces a structure of Ox (U)-module on M (U). The
“local triviality” of V' — X has as consequence that M is locally isomorphic to
the sheaf O%. On the other hand one can start with a vector bundle M on X
and construct the corresponding geometric vector bundle V — X.

Definition 6.5 A regular connection on a Riemann surface X is a vector bundle
M on X together with a morphism of sheaves of groups V : M — Qx @ M,
which satisfies for every open U and for any f € Ox(U), m € M(U) the
“Leibniz rule” V(fm) = df @ m + fV(m). 0

For an open U, which admits an isomorphism ¢ : U — {c € C| |¢] < 1}
one can identify Qx (U) with Ox (U)dt and M(U) with O (U). Then V(U) :
M(U) — Ox(U)dt ® M(U) is a connection in the sense of the definition given
in section 1. One can rephrase this by saying that a regular connection on X is
the “sheafification” of the earlier notion of connection for rings and modules.

Examples 6.6 Examples, related objects and results.

1. Regular connections on a non compact Riemann surface.

According to ([100], Theorem 30.4)) every vector bundle M on a connected,
non compact Riemann surface is free. Let X be an open connected subset of P
and suppose for notational convenience that co ¢ X. We can translate now the
notion of regular connection (M, V) on X in more elementary terms. The vector
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bundle M will be identified with O%; the sheaf of holomorphic differentials is
identified with Oxdz; further V is determined by V on M(X) and by V a

on M(X). In this way we find a matrix differential operator % + A, where
the coordinates of A are holomorphic functions on X. This matrix differential
operator is “equivalent” with (M, V).

2. Local systems on X.

X will be a topological space which is connected and locally pathwise connected.
A (complex) local system (of dimension n) on X is a sheaf L of complex vector
spaces which is locally isomorphic to the constant sheaf C™. This means that X
has a covering by open sets U such that the restriction of L to U is isomorphic
to the constant sheaf C™ on U. For the space [0, 1] any local system is trivial,
which means that it is the constant sheaf C™. This can be seen by showing that
n linearly independent sections above a neighbourhood of 0 can be extended to
the whole space. Let A : [0,1] — X be a path in X, i.e., a continuous function.
Let L be alocal system on X. Then A\*L is a local system on [0, 1]. The triviality
of this local system yields an isomorphism (A\*L)g — (A*L);. The two stalks
(A*L)o and (A\*L); are canonically identified with Lyy and L. Thus we find
an isomorphism Ly ) — Ly(1) induced by A. Let b be a base point for X and
let 71 denote the fundamental group of X with respect to this base point. Fix
again a local system L on X and let V' denote the stalk L;. Then for any closed
path A through b we find an isomorphism of V. In this way we have associated
to L a representation pr, : m1 — GL(V) of the fundamental group.

We make this somewhat more systematic. Let LocalSystems(X) denote the
category of the local systems on X and let Repr,, denote the category of the
finite dimensional complex representations of 1. Then we have defined a functor
LocalSystems(X) — Repr, , which has many nice properties. We claim that:

The functor LocalSystems(X) — Repr, is an equivalence of categories.

We will only sketch the (straightforward) proof. Let u : U — X denote the
universal covering. On U every local system is trivial, i.e., isomorphic to a
constant sheaf C™. This follows from U being simply connected (one defines n
independent sections above any path connecting a base point to an arbitrary
point, shows that this is independent of the path and so defines n independent
global sections). Take a local system L on X and let V = L;. Then the
local system w* L is isomorphic to the constant sheaf V on U. The fundamental
group 7 is identified with the group of automorphisms of the universal covering
u: U — X. In particular, for any A € m; one has Aou = w and \*ou*L = u*L.
This gives again the representation m; — GL(V).

One can also define a functor in the other direction. Let p : m1; — GL(V) be a
representation. This can be seen as an action on V considered as constant local
system on U. In particular for any mi-invariant open set B C U we have an
action of m on V(B). Define the local system L on X by specifying L(A), for
any open A C X, in the following way: L(A) = V(u=*A)™ (i.e., the elements
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of V(u~!A) invariant under the action of 71). It can be verified that the two
functors produce an equivalence between the two categories.

3. Regular connections, local systems and monodromy.

We suppose that X is a connected noncompact Riemann surface. Let Reg(X)
denote the category of the regular connections on X. For an object (M, V)
of Reg(X) one considers the sheaf L given by L(A) = {m € M(A)| V(m) =
0} for any open subset A. The set L(A) is certainly a vector space. Since
the connection is “locally trivial” it follows that L is locally isomorphic to the
constant sheaf C™. Thus we found a functor from the category Reg(X) to the
category LocalSystems(X). We claim that

The functor Reg(X) — LocalSystems(X) is an equivalence.

The essential step is to produce a suitable functor in the other direction. Let
a local system L be given. Then the sheaf N := L ®c Ox is a sheaf of Ox-
modules. Locally, i.e., above some open A C X, the sheaf L is isomorphic to the
constant sheaf Cey @ --- @ Ce,,. Thus the restriction of N to A is isomorphic
to Oxer @ --- @ Oxe,. This proves that N is a vector bundle. One defines V
on the restriction of N to A by the formula V(}" fje;) =Y df; ®ej € Qx @ N.
These local definitions glue obviously to a global V on N. This defines a functor
in the other direction. From this construction it is clear that the two functors
are each other’s “inverses”.

We note that the composition Reg(X) — LocalSystems(X) — Repr,, is in fact
the functor which associates to each regular connection its monodromy repre-
sentation. From the above it follows that this composition is also an equivalence
of categories.

4. The vector bundles on the complex sphere P

These vector bundles have been classified (by G. Birkhoff [37], A. Grothendieck
[117] et al; see [215]). For a vector bundle M (or any sheaf) on P we will
write H?(M) or H°(P, M) for its set of global sections. For any integer n one
defines the line bundle Op(n) in the following way: Put Uy = P\ {oo} and
U = P\ {0}. Then the restrictions of Op(n) to Uy and Uy are free and
generated by eg and e,. The two generators satisfy (by definition) the relation
2"ey = eoo on Ug N Use.

The main result is that every vector bundle M on the complex sphere is iso-
morphic to a direct sum Op(a1) @ --- @ Op(am). One may assume that a; >
ag > -+ > . Although this direct sum decomposition is not unique, one can
show that the integers a; are unique. One calls the sequence aq > --- > ap, the
type of the vector bundle. We formulate some elementary properties, which are
easily verified:

(a) Op(0) = Op and Op(n) ® Op(m) = Op(n + m).
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(b) Op(n) has only 0 as global section if n < 0.

(c) For n > 0 the global sections of Op(n) can be written as feg, where f runs
in the space of polynomials of degree < n.

The unicity of the a; above follows now from the calculation of the dimensions
of the complex vector spaces H°(Op(n) @ M). We note that the above M is
free if and only if all a; are zero. Other elementary properties are:

(d) Qp is isomorphic to Op(—2).

(e) Let D = Y n;[s;] be a divisor on P, i.e., a formal finite sum of points of
P with integers as coefficients. The degree of the divisor D is, by definition,
> n;. One defines the sheaf £(D) on P by: For any open U in P, the group
L(D)(U) consists of the meromorphic functions f on U such that the divisor of
f on U is > the restriction of —D to U. The sheaf £(D) is easily seen to be a
line bundle and is in fact isomorphic to Op(n), where n = > n; (i.e., the degree
of the divisor D).

(f) Let M be any vector bundle on P and D a divisor. Then M (D) is defined
as L(D) ® M. In particular, Qp (D) is a sheaf of differential forms on P with
prescribed zeros and poles by D. This sheaf is isomorphic to Op(—2 + deg D).
In the special case that the divisor is S = [s1] + -+ + [sm] (i.e., a number of
distinct points with “multiplicity 17), the sheaf Qp(.S) consists of the differential
forms which have poles of order at most one at the points sq,..., $;,. The sheaf
is isomorphic to Op(—2+m) and for m > 3 the dimension of its vector space of
global sections is m — 1. Suppose that the points s1, ..., s, are all different from
oo. Then HO(Q(S)) consists of the elements > " | —*-dz with ay,...,a; € C

J=1 z—s;
and ) a; = 0.

5. The GAGA principle for vector bundles on P.

One can see P as the Riemann surface associated to the projective line P! :=
P{ over C. Also in the algebraic context one can define line bundles, vector
bundles, connections et cetera. The “GAGA” principle gives an equivalence
between (“algebraic”) vector bundles (or more generally coherent sheaves) on
P! and (“analytic”) vector bundles (or analytic coherent sheaves) on P. We
will describe some of the details and refer to [258] for proofs (see also [124] for
more information concerning the notions of line bundles, vector bundles, etc. in
the algebraic context).

We begin by describing the algebraic structure on projective line P!, see [124].
The open sets of P!, for the Zariski topology, are the empty set and the cofinite
sets. The sheaf of regular functions on P! will be denoted by O. Thus for a
finite set S we have that O(P!\ S) consists of the rational functions which have
their poles in S. Let M be a vector bundle on P! of rank m. Then for any
finite non empty set S the restriction of M to P!\ S is a free bundle (because
O(P'\ S) is a principal ideal domain and since H%(M|p1\g) is projective it must
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be free). In particular, M(P!\ S) is a free module of rank m over O(P!\ S).
We want to associate to M a vector bundle M*" on P.

One defines M by M (P) = M(P') and for an open set U C P, which has
empty intersection with a finite set S # (), one defines M**(U) as

Op(U) ®o(pr\s) M(P'\ S). It is not difficult to show that the latter definition
is independent of the choice of S # (). Further it can be shown that M%" is a
vector bundle on P. The construction M +— M*" extends to coherent sheaves
on P! and is “functorial”.

In the other direction, we want to associate to a vector bundle N on P a vector
bundle N9 on P1. One defines N9 as follows. N%9(P!) = N(P) and for any
non empty finite set S one defines N9 (P! \ S) = Up>1 HO(N (k- S)). (We note
that k - S is considered as a divisor on P). If one accepts the description of the
vector bundles on P, then it is easily seen that N9 is indeed a vector bundle
on Pl. The construction N — N9 extends to (analytic) coherent sheaves and
is “functorial”.

The two functors ** and %9 provide an equivalence between the vector bundles
(or, more generally, analytic coherent sheaves) on P and the vector bundles (or
coherent sheaves) on P?.

The GAGA principle holds for projective complex varieties and in particular for
the correspondence between non-singular, irreducible, projective curves over C
and compact Riemann surfaces. O

Exercise 6.7 The sheaves Op(n)®9 and O(n).

In order to describe the analytic line bundle Op(n) in terms of meromorphic
functions we identify Op(n) with the line bundle £(n.[o0c]) corresponding to the
divisor n.[co] on P. Let S = {p1,...,pm} be a finite set not containing co and
let fs = [[;~,(z — pi). Show that for U = P*\ S, Op(n)*9(U) consists of all
rational functions of the form g/ f’g where £ > 0 and deg g < n + km. Describe
Op(n)®9(U) where U = P\ S and S contains the point at infinity. We denote
the sheaf Op(n)®9 by O(n). .

We note that the algebraic line bundle O(n) on P! is usually defined as
follows. Put Uy = P!\ {0} and U, = P!\ {0}. The restrictions of O(n) to Uy
and Uy are the free sheaves Oy, eg and Op__ e since both rings O(Uy) = C|z]
and O(Us) = C[z7!] are unique factorization domains. The relation between
the two generators in the restriction of O(n) to Uy N Uy is given by 2" = €.
It is obvious from this description that O(n)*" is equal to Op (n). O

We come now to the definition of a regular singular connection. Let X be a
connected Riemann surface, S a finite subset of X.

Definition 6.8 A regular singular connection on X with singular locus in S
is a pair (M,V) with M a vector bundle on X and V : M — Q(S) @ M
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a morphism of sheaves of groups that satisfies for every open U and for any
feOx(U), me M(U) the “Leibniz rule” V(fm) =df @ m+ fV(m).

Here S is seen as a divisor on X and €2(.9) is the sheaf of differential forms on X
having poles of at most order 1 at the points of S. The difference with the earlier
defined regular connections is clearly that we allow poles of order 1 at the points
of S. We can make this explicit in the local situation: X = {c € C| |¢|] < 1},
S = {0} and M = O%. Then on X the map Vi : Ox(X)™ — 27 t0x(X)™
identifies with a matrix differential operator diz + A, where the coefficients of
A are meromorphic functions on X having a pole of order at most 1 at z = 0.
One observes that the notion of regular singular connection is rather close to
the definition of regular singular point of a matrix differential equation. One
could also introduce irregular connections by replacing S by a divisor > n;[s;]
with integers n; > 1.

Examples 6.9 Some properties of regular singular connections.

1. The GAGA principle for regular singular connections on P.

For the sheaf of holomorphic differentials on P! we will use the notation
and for the analogous (analytic) sheaf on P we will write Q%". Let an “al-
gebraic” regular singular connection on P! with singular locus in S be given,
thisisa V: M — Q(S) ® M, with M a vector bundle and V with the obvi-
ous properties. We want to associate a regular singular connection (M*", V)
on P with singular locus in S (see examples 6.6.3). The only thing to ver-
ify is that the new V is unique and well defined. Let U be an open set of
P which has empty intersection with the finite set T' # (). We have to verify
that V : M*™(U) — Q(S)(U) ® M**(U) is unique and well defined. One
has M*"(U) = Op(U) @o(pr\ry M(P*\ T) and Q(5)*"(U) ®0pw) M™(U) is
canonically isomorphic to Q(S)*™(U) @o(pr\7y M (P \T). Consider an element
f@m with f € Op(U) and m € M(P*\T). Then the only possible definition for
V(f®m)is df @m+ fV(m). This expression lies in Q(S)*"(U) ®op @y M (U)
since df € Q%*(U) and V(m) € Q(S)(P*\T)® M(P*\T).

On the other hand, let (N, V) be a regular singular connection with singular
locus in S on P. We have to show that N9 inherits a regular singular con-
nection with singular locus in S. Let T be a finite non empty subset of P.
One considers N(k - T'), where k- T is seen as a divisor. It is not difficult to
see that V on N induces a V : N(k-T) — Q(S)* @ N((k+ 1) - T). By con-
struction N4 (P \ T) = Up>oHO(N(k - T)). Thus we find an induced map
V: NUI(PI\T) — Q(S)(P'\T)® N9 (PL\ T). This ends the verification of
the GAGA principle.

We introduce now three categories: RegSing(P,S), RegSing(P!,S) and
RegSing(C(z),S). The first two categories have as objects the regular sin-
gular connections with singular locus in S for P (i.e., analytic) and for P!
(i.e., algebraic). The third category has as objects the connections for C(z)/C
(iie., V: M — C(2)dz ® M, see Examples 6.4) which have at most regular
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singularities in the points of S (See Examples 6.4.2). We omit the obvious
definition of morphism in the three categories. We have just shown that the
first two categories are equivalent. There is a functor from the second category
to the third one. This functor is given as follows. Let V : M — Q(S) ® M
be a connection on P! (regular singular with singular locus in S). The fibre
M,, of M at the “generic point” 1 of P! is defined as the direct limit of all
M(U), where U runs over the collection of the co-finite subsets of P'. One
finds a map V,, : M,, — Q(S), ® M,,. The expression M, is a finite dimen-
sional vector space over C(z) and €(S), identifies with Q¢(.)/c. Thus V, is
a connection for C(z)/C. Moreover V, has at most regular singularities at
the points of S. We shall refer to (M,,V,) as the generic fibre of (M,V).
We will show (Lemma 6.18) that the functor V — V, from RegSing(P?,S)
to RegSing(C(z), S) is surjective on objects. However this functor is not an
equivalence. In particular, non isomorphic V1, Vy can have isomorphic generic
fibres. We will be more explicit about this in Lemma 6.18.

2. Regular singular connections on free vector bundles on P.

We consider X =P, S = {s1,...,8n,} with m > 2 and all s; distinct from oco.
We want to describe the regular singular connections (M, V) with M a free vec-
tor bundle and with singular locus in S. From M = Op it follows that the vector

space of the global sections of M has dimension n. Let eq, ..., e, be a basis. The
global sections of Q(S) ® M are then the expressions E?Zl( 5 :f—gkdz) ® e,

where for each j we have ), ar ; = 0. The morphism V is determined by the
images V(e;) of the global sections of M because M is also generated, locally at
every point, by the {e;}. Furthermore we may replace V(e;) by Vo (ej). This
leads to the differential operator in matrix form d% + > Z’:‘—’;k, where the
Aj are constant square matrices of size n and satisfy " | Ay = 0. A matrix
differential operator of this form will be called Fuchsian differential equation
with singular locus in S .

For S = {s1,...,8m-1,00} one finds in a similar way an associated matrix
differential equation % + 22";11 Z’:";k (in this case there is no condition on the
sum of the matrices Ax). We note that the notion of a Fuchsian system with
singular locus in S is, since it is defined by means of a connection, invariant

under automorphisms of the complex sphere.

3. A construction with regular singular connections.

Let (M, V) be a regular singular connection with singular locus in S. For a point
s € S we will define a new vector bundle M (—s) C M. Let ¢ be a local parameter
at the point s. Then for U not containing s one defines M(—s)(U) = M(U).
If U is a small enough neighbourhood of s then M (—s)(U) = tM(U) C M(U).
One can also define a vector bundle M (s). This bundle can be made explicit
by M(s)(U) = M(U) if s ¢ U and M(s)(U) = t " *M(U) for a small enough
neighbourhood U of s. We claim that the vector bundles M(—s) and M(s)
inherit from M a regular singular connection. For an open U which does not
contain s, one has M(s)(U) = M(—s)(U) = M(U) and we define the V’s
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for M(s) and M(—s) to coincide with the one for M. For a small enough
neighbourhood U of s one defines the new V’s by V(t~'m) = —% ®t tm +
t=1V(m) (for M(s) and m a section of M) and V(tm) = % @ tm + tV(m)
(for M(—s)). This is well defined since % is a section of Q(S). The V’s on

¢
M(—s) C M C M(s) are restrictions of each other.

More generally, one can consider any divisor D with support in S, i.e., D =
> m,[s;] for some integers m;. A regular singular connection on M induces a
“canonical” regular singular connection on M (D).

Exercise 6.10 Let (M,V) be a regular singular connection and let D be a
divisor with support in S. Show that the induced regular singular connection
on M (D) has the same generic fibre as (M, V) (see example 6.9.1). O

4. The historically earlier notion of Fuchsian linear operator L of degree n and
with singular locus in S is defined in a rather different way. For the case S =
{s1,...,8m_1,00} this reads as follows. Let L = 9" +a;0" ' +---+a,_10+an,,
where 0 = d% and the a; € C(z). One requires further that the only poles
of the rational functions a; are in S and that each singularity in S is “regular
singular”. The latter condition is that the associated matrix differential equation
can locally at the points of S be transformed into a matrix differential equation

with a pole of at most order 1. We will prove that:

Lemma 6.11 L is a Fuchsian scalar differential equation with singular locus
in S if and only if the a; have the form b with b; polynomials

(2—s1)7 - (z—8m—1)7

of degrees < j(m —1) — j.

Proof. We first examine the order of each a;, say at z = s;. For nota-
tional convenience we suppose that s; = 0. We consider M = z"L = z"90" +
za1z" O 4 4 27 g, 120+ z™a,, which can be written as " + ¢16" ! +
.-+ 4+ ¢y for certain ¢; € C(z). From the last expression one easily finds the
Newton polygon at the point z = 0. The operator (or the corresponding matrix
differential equation) is regular singular at z = 0 if and only if the Newton
polygon has only slope 0. The last condition is equivalent to ordy(c;) > 0 for all
j. From the obvious formula 290" = (§ —m)(6d —m +1)---(§ — 1) it follows
that the condition on the ¢; is equivalent to ordp(a;) > —j for all j. A similar
calculation at z = oo finishes the proof. o

We note that a scalar operator L, as in the statement, need not be singular
at all the points of S. At some of the points of S the equation may have
n independent local solutions. In that case the point is sometimes called an

apparent singularity. For example, the operator 9% — 22{2 is Fuchsian with

singular locus in {1/2, —v/2,00}. The point at infinity turns out to be regular.

The automorphisms ¢ of the complex sphere have the form ¢(z) = Zj_ts with

((C‘ 3) € PSLy(C). We extend this automorphism ¢ of C(z) to the automorphism,
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again denoted by ¢, of C(z)[0] by ¢(0) = m&. Suppose that (the monic)
L € C(z)[0] is a Fuchsian operator with singular locus in S. Then one can
show that ¢(L) = fM with f € C(z)* and M a monic Fuchsian operator with
singular locus in ¢(S). Thus the notion of Fuchsian scalar operator is also
“invariant” under automorphisms of P. O

6.3 Fuchsian Equations

The comparison between scalar Fuchsian equations and Fuchsian equations in
matrix form is far from trivial. The next two sections deal with two results
which are also present in [9]. In a later section we will return to this theme.

6.3.1 From Scalar Fuchsian to Matrix Fuchsian

C will denote an algebraically closed field of characteristic 0. Let an n'® order
monic Fuchsian operator L € C(z)[0] (where 0 = %) with singular locus in S
be given. We want to show that there is a Fuchsian matrix equation of order
n with singular locus in S, having a cyclic vector e, such that the minimal
monic operator M € C(z)[0] with Me = 0 coincides with L. This statement
seems to be “classical”. However, the only proof that we know of is the one
of ([9], Theorem 7.2.1). We present here a proof which is algebraic and even
algorithmic.

If S consists of one point then we may, after an automorphism of P!, suppose
that S = {oo}. The Fuchsian operator L can only be 0™ and the statement is
trivial. If S consists of two elements then we may suppose that S = {0,00}. Let
us use the operator 6 = z0. Then 2" L can be rewritten as operator in § and it
has the form " +a;6™ ' +---+a, with all a; € C. Let V be an n-dimensional
vector space over C with basis ej,...,e,. Define the linear map B on V by
B(e;)) = ej41 fori=1,...,n— 1 and Be,, = —ane, — ap_1€n—1 — -+ — a1€7.
Then the matrix equation ¢ + B (or the matrix equation 0 + %) is Fuchsian
and the minimal monic operator M with Me; = 0 is equal to L. For a singular
locus S with cardinality > 2 we may suppose that S is equal to 0, s1, ..., sk, 00.

Theorem 6.12 Let L € C(2)[0] be a monic Fuchsian operator with singular
locus in S = {0, s1,...,8k,00}. There are constant matrices By, ..., By

with By = L% and Bi, ..., By upper triangular,
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i.e., having the form S ,

such that the first basis vector ey is cyclic for the Fuchsian matriz equation
0+ % +Zf=1 z% and L is the monic operator of smallest degree with Le; = 0.
Proof. Write D = (z — s1)--- (# — sg) and F' = zD. Consider the differential
operator A = F%. One can rewrite F"L as a differential operator in A. It
will have the form L := A" + A; A" ...+ A, 1A + Ay, where the A; are
polynomials with degrees < k.i. Conversely, an operator of the form L in A can
be transformed into a Fuchsian operator in 0 with singular locus in S. Likewise,
we multiply the matrix operator of the statement on the left hand side by F
and find a matrix operator of the form

B11 ZBQ71 : : ZBn,l
J D Bs, .
A=F—+ D
dz . 2Bnn-1
D B

We note that the polynomials B;; have degree < k and the polynomials B; ;
with ¢ > j have degree < k — 1. Let ej,eo,...,e, denote the standard basis,
used in this presentation of the matrix differential operator A. For notational
convenience, we write e,+1 = 0. For the computation of the minimal monic
element L,, € C(2)[A] with L,e; = 0 we will use the notation:

M; = (A = B;; — (i —1)zD’). One defines a sequence of monic operators
Li S C[Z][A] as follows: Lo = ]., L1 = M1 = (A _Bl,l); L2 = Mng _FBQJLO
and recursively by

Li=M;L; 1 —FB;; 1L; 2— FDB;; oL; 3—
- = FD'" 3B, 5L — FD'"%B, ; Ly.

One sees that the L; are constructed such that L;e; = D'e;y1. In particular,
ey is a cyclic element for the matrix differential operator and L,, is the minimal
monic operator in C(z)[A] with L,e; = 0. Since L,, actually lies in C[z][A]
and the coefficients of L, w.r.t. A satisfy the correct bound on the degrees, it
follows that L,, gives rise to a Fuchsian scalar operator with the singular locus

in S.

In order to prove that we can produce, by varying the coefficients of the matrices
By, Bi,..., By, any given element T := A™ + AjJA" 1 4.+ A, A+ A, €
Cz][A] with the degree of each A; less than or equal to k.i, we have to analyse
the formula for L,, a bit further. We start by giving some explicit formulas:
L1 = M1 and LQ = M2M1 — FBQJ and

Ly = MsMyMy — (M3FBy1 + FB3 oM;) — FDBs 4
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Ly = MyMsMyM, — (M4M3FBQ71 + M4FB3’2M1 + FB4’3M2M1)

—(M4FDB31+ FDByoM,) — FDQB471 + By 3F By ;.

By induction one derives the following formula for L,:

n—1
My, -+ My My — Z My -+ MitoFBit1,;M;—1--- M
i=1

n—2
— Y My Myy3FDBiyo i Miy -+ My
i=1

n—3
- Z My -+ My s FD?*Byy3; M1 -+ My
i=1

B ~ M,FD" 3B, 11— FD" 2B, 1 + overflow terms.

The terms in this formula are polynomials of degrees n,n —2,n—3,...,1,0 in
A. By an “overflow term ” we mean a product of, say n — [ of the M;’s and
involving two or more terms B, , with x —y <1 — 2.

We will solve the equation L, = T stepwise by solving modulo F'; modulo
FD, ..., modulo FD"'. At the j** step we will determine the polynomials
Bjti—14, 1 <i<n—j+1. ie., the polynomials on the j* diagonal. After
the last step, one actually has the equality L,, = T since the coefficients of
L, — T are polynomials of degree < k.n and the degree of FD" 1 is 1 + kn.
We note further that the left ideal I in C[z][A] generated by the element a :=
2™ (z —81)™ -+ (2 — si)™ (for any ng,...,nk) is in fact a two sided ideal and
thus we can work modulo [ in the usual manner. We note further that M;
almost commutes with a in the sense that M;a = a(M; + F%/) and F%' € Clz].

The first equation that we want to solve is L, = T modulo F. This is the
same as M, --- M; =T modulo F' and again the same as M, --- M7 = T mod-
ulo each of the two sided ideals (2),(z — s1),...,(2 — si) in C[z][A]. This
is again equivalent to the polynomials [T} (A — B;;(0)) and, for each s €
{s1,..., sk}, the TT" (A — By(s) — sD'(s)) are prescribed as elements of
C[A]. For each i, this means that there are only finitely many possibilities for
B;1,(0),B;i(s1),...,Bii(sk) and for each choice of these elements B;; can be
(uniquely) determined by interpolation. Therefore, there are finitely many possi-
bilities for the polynomials By 1, ..., By . In particular, for any s € {s1,...,si}
one is allowed to permute the numbers By, ,(s) + (n — 1)sD'(s),...,Ba2(s) +
sD'(s),B1,1(s). After a suitable permutation for each s € {s1,...,sx}, the
following “technical assumption” is satisfied: For i > j, the difference

Bii(s)+ (i—1)sD'(s) Bj;(s)+(j —1)sD'(s)

sD'(s) sD'(s)
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s not a strictly positive integer. For example, we could permute the B; ; so that
Re(B;i(s)) < Re(Bj,;(s)) for i > j.

In the second step, we have to consider the equation L,, = T modulo F'D. This
can also be written as: produce polynomials B;; ; of degrees < k — 1 such that
the linear combination

n—1
(F)_l(z Mn .. 'Mi+2FBi+1,iMi—1 N Ml)
i=1

is modulo D a prescribed element Cp,_ o A" 2 + Cp_s A" 3+ ...+ C1A+Cy €
C[z][A] with the degrees of the C; bounded by k.i for all <. Again we can
split this problem into an equivalence modulo (z — s) for s € {s1,...,s,}. A
sufficient condition for solving this problem (again using interpolation) is that
for any such s the polynomials F~'M,, -+ M; o FM;_1 -+ M; modulo (z — s) in
C[A] (for i =1,...,n — 1) are linearly independent. This will follow from our
“technical assumption”, as we will verify.

Write M} for F~1M;F and write M} (s), M;(s) € C[A] for M and M; modulo
(z — s). The zero of M;(s) is B;(s) + (i — 1)sD’(s) — sD’(s) and the zero of
M;(s) is B, i(s) + (i — 1)sD’(s). We calculate step by step the linear space V
generated by the n—1 polynomials of degree n—2. The collection of polynomials
contains M (s) -+ Mj(s)M3(s) and M}(s)--- Mj(s)Mi(s). Since Mj(s) and
M; (s) have no common zero, we conclude that V' contains M (s)--- M;(s)Px,
where P is any polynomial of degree < 1. Further M (s) --- MZ(s)Ma(s)Mi(s)
belongs to the collection. Since Ma(s)Mj(s) and M} (s) have no common zero we
conclude that V' contains all polynomials of the form M} (s) - - - MZ(s)Pa, where
P; is any polynomial of degree < 2. By induction one finds that V' consists of
all polynomials of degree < n — 2. Thus we can solve L, =T modulo F'D in a
unique way (after the choice made in the first step). This ends the second step.
The further steps, i.e., solving L, = T modulo F D’ for j = 2,...,n are carried
out in a similar way. In each step we find a unique solution. m]

6.3.2 A Criterion for a Scalar Fuchsian Equation

In this section and Section 6.5, we shall consider regular singular connections
(M, V) with singular locus S whose generic fibres (M,,, V,) are irreducible
connections for C(z)/C. We shall refer to such connections as irreducible regular
singular connections . The connection (M., V,) furthermore gives rise to a
differential module. In the next proposition, we give a criterion for this module
to have a cyclic vector with minimal monic annihilating operator that is Fuchsian
with singular locus S.

Proposition 6.13 Let V: M — Q(S5) @ M be an irreducible regular singular
connection of rank n on P with singular locus in S. Put k = #S — 2. Suppose
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that the type of M isb,b—k,b—2k,...,b—(n—1)k. Then there is an equivalent
scalar Fuchsian equation of order n having singular locus S.

Proof. For any s € S, M and M(—b[s]) have the same generic fibre. There-
fore, after replacing M by M(—b[s]) for some s € S, we may assume b = 0.
If £ = 0, then M is a free vector bundle. We may assume that S = {0, c0}.
As in Example 6.9.2, we see that this leads to a differential equation of the
form % — é where A € M,,(C). Since the connection is irreducible, the asso-
ciated differential module M is also irreducible. This implies that A can have
no invariant subspaces and so n = 1. The operator -+ — 2, ¢ € C is clearly

i dz z?
Fuchsian.

We now suppose that & > 0 and S = {0,00,s1,...,8;}. As before, we write
L(D) for the line bundle of the functions f with divisor > —D. We may identify
M with the subbundle of Oe; @ - - - ® Oe,, given as

Oey @ L(—k[oo])ea ® L(—2k[o0])es @ -+ B L(—(n — 1)k[oo])en,.

Clearly e; is a basis of H%(M). We will show that the minimal monic differential
operator L € C(z)[0)] satisfying Le; = 0 has order n and is Fuchsian. Actually,
we will consider the differential operator A = z(z — s1) -+ (2 — s,) < and show
that the minimal monic operator N € C(z)[A] such that Ne; = 0 has degree
n and its coefficients are polynomials with degrees bounded by k -i. (See the

proof of Theorem 6.12).

There is an obvious isomorphism ©(S) — L(k - [0c]), which sends £ to
(z—s1) - (2 — sg). Define A : M — L(k - [00]) ® M as the composition of
V:M — Q(S)® M and the isomorphism Q(S) @ M — L(k - [o0]) ® M. One
can extend A to a map A : L(ik - [00]) @ M — L((i + 1)k - [o0]) @ M. One has
A(fm)=z(z—s1) (2 — sk)j—{:m + fA(m) for a function f and a section m
of M.

We observe that A(e;) is a global section of £(k - [cc]) ® M and has therefore
the form ae; + bes with a a polynomial of degree < k and b a constant. The
constant b is non zero, since the connection is irreducible. One changes the
original ey, ez, ... by replacing e; by ae; 4+ bes and keeping the other e;’s. After
this change A(e1) = ey. Similarly, Aes is a global section of £L(2k- [o00]) ® M and
has therefore the form ce; +des+ees with ¢, d, e polynomials of degrees < 2k, k, 0.
The constant e is not zero since the connection is irreducible. One changes the
element e3 into ce; + dea + ees and keeps the other e;’s. After this change, one
has Aes = e3. Continuing in this way one finds a new elements ey, es, ..., e,
such that M is the subbundle of Oe; & --- & Oe,, given as before, and such
that A(e;) = ej4q for i = 1,...,n — 1. The final A(e,) is a global section of
L(nk-[0o]) ® M and can therefore be written as ane1 +an—1€2+- - -+ aqe, with
a; a polynomial of degree < ki. Then N := A™ — ;A" 1 — ... —a, 1A —ay,
is the monic polynomial of minimal degree with Ne; = 0. a
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We note that Proposition 6.13 and its converse, Proposition 6.14, are present
or deducible from Bolibruch’s work (Theorem 4.4.1 and Corollary 4.4.1 of [43],
see also Theorems 7.2.1 and 7.2.2 of [9]).

Proposition 6.14 Let L be a scalar Fuchsian equation with singular locus S.
Then there is an equivalent connection (M, V) with singular locus S and of type
0,—k,—2k,...,—(n—1)k.

Proof. We may suppose S = {0,s1,...,8,,00} and we may replace L by a
monic operator M € C[2][A], M = A" — ;A" — ... —q,, 1A — a, with q;
polynomials of degrees < ki. For the vector bundle M one takes the subbundle
of Oe; & - - - ® Oe, given as

Oey @ L(—k - [o00])ea @ L(—2k - [o0])es @ - @ L(—(n—1) - [00])en.

One defines A : M — L(k - [00]) @ M by A(e;) =e;41 fori=1,...,n—1 and
Alen) = aper + an—1e2 + -+ + are,. The definition of V on M follows from
this and the type of M is 0, —k,...,—(n — 1)k as required. o

6.4 The Riemann-Hilbert Problem, Weak Form

We fix a finite subset S on the complex sphere P and a base point b ¢ S for
the fundamental group m of P\ S. An object M of RegSing(C(z), S) (see part
1. of 6.9) is a connection V : M — Q ® M, where M is a finite dimensional
vector space over C(z), such that the singularities of the connection are regular
singular and lie in S. Let V denote the local solution space of (M, V) at the point
b. The monodromy of the connection is a homomorphism 7 — GL(V). Let
Repr,;, denote the category of the finite dimensional complex representations of
m1. Then we have attached to (M, V) an object of Repr, . This extends in fact
to a functor M : RegSing(C(z),S) — Repr,,. A solution of the “weak form”
of the Riemann-Hilbert problem is given in the following (see Appendix B for
facts concerning Tannakian categories).

Theorem 6.15 The functor M : RegSing(C(z), S) — Repr,, is an equivalence
of categories. This functor respects all “constructions of linear algebra” and is,
in particular, an equivalence of Tannakian categories.

Proof. It is easy to see that M respects all constructions of linear algebra. We
will first show that for two objects My, My the C-linear map Hom (M, M) —
Hom(M (M), M(Mz)) is an isomorphism. In proving this, it suffices to take
M, =1, i.e., the trivial connection of dimension 1. Then Hom(1, M3) consists
of the elements mg € My with V(mg) = 0. The elements of Hom(1, M(Mz))
are the vectors v in the solution space of My at b, which are invariant under
the monodromy of M. Such an element v extends to all of P\ S. Since the
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connection has regular singularities v is bounded at each point s in S by a power
of the absolute value of a local parameter at s. Thus v extends in a meromorphic
way to all of P and is therefore an element of M satisfying V(v) = 0. This
proves that the map under consideration is bijective.

The final and more difficult part of the proof consists of producing for a given
representation p : m — GL,(C) an object (M,V) of RegSing(C(z),S) such
that its monodromy representation is isomorphic to p. From Example 6.6.3 the
existence of a regular connection (N, V) on P\ S with monodromy representation
p follows. The next step that one has to do, is to extend N and V to a regular
singular connection on P. This is done by a local calculation.

Consider a point s € S. For notational convenience we suppose that s = 0. Put
Y*:={z€ C|0< |z| < €}. Let V be the solution space of (N, V) at the point
€/2. The circle through €/2 around 0 induces a monodromy map B € GL(V).
We choose now a linear map A : V. — V such that ¢*™4 = B and define the
regular singular connection (N,, V) on Y := {z € C| |z| < €} by the formulas:
N; =0y ®V and V4(f ®v) =df @ v+ 271 ® A(v). The restriction of (N, V)
to Y* = Y\ {0} has local monodromy e?>7*4. From part (3) of 6.6 it follows that
the restriction of the connections (Ns, V) and (N, V) to Y* are isomorphic. We
choose an isomorphism and use this to glue the connections (N, V) and (N, V)
to a regular singular connection on (P \ S) U {s}. This can be done for every
point s € S and we arrive at a regular singular connection (M,V) on P with
singular locus in S and with the prescribed monodromy representation p. From
part 1. of Example 6.9 we know that (M, V) comes from an algebraic regular
singular connection on P! with singular locus in S. The generic fibre of this
algebraic connection is the object of RegSing(C(z),S) which has the required
monodromy representation p. O

We note that the contents of the theorem is “analytic”. Moreover the proof of
the existence of a regular connection for (C(z), S) with prescribed monodromy
depends on the GAGA principle and is not constructive. Further one observes
that the regular singular connection for (P,.S) is not unique, since we have
chosen matrices A with e>™4 = B and we have chosen local isomorphisms
for the glueing. The Riemann-Hilbert problem in “strong form” requires a
regular singular connection for (P, S) (or for (P!, 9)) such that the vector bundle
in question is free. Given a weak solution for the Riemann-Hilbert problem,
the investigation concerning the existence of a strong solution is then a purely
algebraic problem.

In [9], [41], and [44], Bolibruch has constructed counterexamples to the strong
Riemann-Hilbert problem. He also gave a positive solution for the strong prob-
lem in the case that the representation is irreducible [9], [42] (see also the work
of Kostov [162]). We will give an algebraic version of this proof in the next
section.
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6.5 Irreducible Connections

Let C denote an algebraically closed field of characteristic 0 and let (M, V)
denote a regular singular connection for C(z)/C with singular locus in S C P!,
where P! is the projective line over C. In this section we will show that,
under the assumption that (M, V) is irreducible, there exists a regular singular
connection (M, V) on P!, such that:

(a) The generic fibre of (M, V) is (M, V).
(b) The singular locus of (M, V) is contained in S.
(c) The vector bundle M is free.

Combining this result with Theorem 6.15 one obtains a solution of the Riemann-
Hilbert problem in the strong sense for irreducible representations of the funda-
mental group of P\ S. The proof that we give here relies on unpublished notes
of O. Gabber and is referred to in the Bourbaki talk of A. Beauville [26]. We
thank O. Gabber for making these notes available to us.

We have to do some preparations and to introduce some notations. The sheaf of
regular functions on P! is denoted by O. By O(n) we denote the line bundle of
degree n on P! (see Exercise 6.7). For any point p € P!, one considers the stalk
O, of O at p. This is a discrete valuation ring lying in C(z). Its completion is

denoted by 5p and the field of fractions of 5p will be denoted by C/'(;)p. This
field is the completion of C(z) with respect to the valuation ring O,. A lattice

in a finite dimensional vector space V over C(z),, is a free 5p—submodule of V
with rank equal to the dimension of V. The following lemma describes a vector
bundle on P! in terms of a basis of its generic fibre and lattices at finitely many
points. We will use elementary properties of coherent sheaves and refer to [124]
for the relevant facts.

Lemma 6.16 Let M denote a vector space over C(z) with a basis e1,...ep.
Let U be a non trivial open subset of P! and for each p € U let A, be a lattice

—

of C(z), ® M. Then there exists a unique vector bundle M on P! such that:
(a) For every open V C P! one has M(V) C M.

(b) M(U) is equal to O(U)er + -+ O(U)e, C M.

(c) For every p & U, the completion M\p = 0, ® M, coincides with A,,.

Proof. Forp e P'\U we put S, := 5p61 +-- ~+5pen. Let for every p € P\U
an integer A, be given. Consider first the special case where each A, = t? *Sp,
where ¢, denotes a local coordinate at p. Put N = Oe; + --- + Oe,, and let A
be the divisor Y~ A,[p] (the sum extended over the p € P!\ U). Then clearly
the vector bundle N(—A) = L(—A) ® N solves the problem.

In the general case, there are integers A,, B, such that t;‘pSp C A, C tfpSp
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holds. Let B be the divisor Y Bp[p]. Then N(—A) C N(—B) are both vector

bundles on P'. Consider the surjective morphism of coherent sheaves N (—B) %

N(—B)/N(—A). The second sheaf has support in P!\ U and can be written
as a skyscraper sheaf @ptf" p/t;"’Sp (see Example C.2(7) and [124]). This

skyscraper sheaf has the coherent subsheaf T' := Zp A,/ tﬁ" Sp. Define now M
as the preimage under ¢ of 7. From the exact sequence 0 — N(—A) - M —
T — 0 one easily deduces that M has the required properties (see [124], Ch. IL.5
for the relevant facts about coherent sheaves). An alternative way of describing
M is that the set M(V), for any open V # (0, consists of the elements m € M
such that for p € UNYV one has m € Ope; +--- 4+ Ope, and forp e V, p g U

—

one has m € A, C C(z), ® M. This shows the unicity of M. O

Let M be a vector bundle on P!. According to Grothendieck’s classification
(and the GAGA principle), M is equal to a direct sum O(a;) @ -+ @ O(ay)
with integers a3 > - -+ > a,. This decomposition is not unique. However there
is a canonical filtration by subbundles F' C F? C .... One defines F! :=
O(a1)@--- @ O(as, ), where s; is the last integer with as, = a;. The subbundle
is unique, since O(—a;) @ F! is the subbundle of O(—a;) ® M generated by
the global sections H(P!,0(—a;) ® M). In case not all a; are equal to a;
one defines sp to be the last integer with as, = as,+1. The term F2, defined
as the direct sum O(ay) @ --- @ O(as, ), is again uniquely defined since it is
the subbundle generated by the global sections of O(—as,) ® M. The other
possible F' € M are defined in a similar way. We will also need the notion
of the defect of the vector bundle M, which we define as > (a1 — a;). In later
parts of the proof we want to change a given vector bundle by changing the
data of Lemma 6.16. The goal is to obtain a vector bundle with defect zero,
ie., a; =az = - - = ap. In the next lemma the effect of a small local change
on the type of the vector bundle is given.

Lemma 6.17 Let M, U, A,, M be as in Lemma 6.16. Let the type of M be
given by the integers ay > --- > a, and let F1 C F? C ... denote the canonical
filtration of M. We consider a pg € P*\U with local parameter t and a non zero
vector v € V := Ay, /tA,,. Define a new lattice A, := 6pt_117 + Ap,, where
v € Ay, has image v € V. Let M denote the vector bundle on P! given by
Lemma 6.16 using the same data as M with the exception that Ap, is replaced
by Ap, .

The vector space V. has an induced filtration F1(V) C F2(V) C .... Leti be
the first integer such that v € F'(V) and let j be the smallest integer such that
O(ay) is present in F*\ F'=1. Then the type of M is obtained from the type of
M by replacing a; by a; + 1.

Proof. Choose a direct sum decomposition M = O(a1) & --- ® O(ay). Then
F=' = O(a1) ® -+ ® O(aj_1) and F' = O(a1) @ --- @ O(ax), where a; >
- >aj_1 > a; =--- = ag (and ag > ag1 if £ < n). For & we may choose
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an element in F;O which does not lie in Fgo’l. After changing the direct sum

decomposition of F we can arrange that & € O(a;),,. Then M is obtained from
M by performing only a change to the direct summand O(a;) of M. In this
change the line bundle O(a;) is replaced by L(po) ® O(a;). The latter bundle
is isomorphic to O(a; + 1). 0

We focus now on a regular singular connection (M,V) for C(z)/C with
singular locus in S. For every point p € P! we choose a local parameter ¢,. The

induced connection on ]\/Zp = 5(2\)p®M has the form V : J/W\p — 6(2'\)pdtp®1/\4\p.
For p € S, there exists a basis eq,..., e, of ]\//.71, over C/'(;)p with V(e;) = 0 for
all j. From this it follows that A, := Ope1 + - - + Ope,, is the unique/\lattice
such that V : A, — Opdt, ® A,,. For p € S there is a basis ey, ..., e, of M, over
6(2'\)1) such that the vector space V.= Ce; @ - - - @ Ce,, satisfies V(V') C % V.
Then A, := 5p ®VC J/\J\p is a lattice satisfying V(A,) C % ® Ap. We observe

that there are many lattices in ]\//fp having the same property. We want now to
extend Lemma 6.16 and Lemma 6.17 to the case of connections.

Lemma 6.18 1. Let (M,V) be a reqular singular connection for C(z)/C with
singular locus in_S. For every s € S we choose a local parameter ts. For every
s € S let Ay C M be a lattice which satisfies V(As) C % ® As. Then there

is a unique regular singular connection (M, V) on P! with singular locus in S
such that:

(a) For every open V C P, one has M(V) C M.
(b) The generic fibre of (M, V) is (M, V).
(¢) My := 05 @ M, coincides with A for all s € S.

2. Let (M,V) be any connection with singular locus in S and generic fibre
isomorphic to (M,V). After identification of the generic fibre of M with M,
the /\//\ls are lattices Ag for J/\J\S satisfying V(As) C dttf' ®As. Thus (M, V) is the
unique connection of part 1. ’

Proof. We start with a basis ey, ..., e, for the C(z)-vector space M and choose
a non empty open U C P!\ {oo} such that V(e;) € dz@0(U)e1+---+O0(U)ey.
For a point p ¢ U and p ¢ S we define the lattice A, to be the unique lattice
with V(A,) C dt, ® A, (where t, is again a local parameter). Lemma 6.16
produces a unique M with these data. The verification that the obvious V on
M has the property V : M — Q(S) ® M can be done locally for every point p.
In fact, it suffices to prove that V maps ]\/4\,, into dt, ® ]\/Zp for p ¢ S and into
% ® J/\J\p for p € S. The data which define M satisfy these properties. Part 2.
of the lemma is an obvious consequence of part 1. ]
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Lemma 6.19 We will use the notations of Lemma 6.18 and Lemma 6.17.
Choose an s € S. The map V : Ay — % ® As induces a C-linear map

0s : As/tsAs — dts & As/tsAs — Ag/tsAs, which does not depend on the choice

T, c €
of ts. Let v € Ag/tsAs be an eigenvector for 0s. Define Ay and M as in
Lemma 6.17. Then:

(a) V maps Ay into Cff:’ ® As.

(b) The connection on M estends uniquely to M.

(c) Let A, have an 55—basis €1,...,6n such that V(e;) = dti ® > aije; with
a;; € ti,vé\s fori # j and some N > 1. Suppose that the above v is equal to the
image of e in Ag/tsAs. Then A, has the 6s-ba5is iy for oo, [ with fr =t ey
and f; = e; for | # k. Define the matriz (b; ;) by V(f;) = dti ® > bifj. Then

bk =akr —1 and by = ayy for 1 # k. Further b; ; € thlés fori#£j.

Proof. (a) Choose a representative o € A, of v. Then V() € % @ (ad+t,A,)

for some a € C. Thus V(t;1) € % ® (=t;'0 + at;'0 + Ay). This shows that
A, = 53758_117 + A, has the property V(A,) C dtt; ® A,. (b) follows from (a) and
Lemma 6.18. A straightforward calculation shows (c). a

Lemma 6.20 Let (Z,V) be a regular singular connection for C((z))/C and let
N > 0 be an integer. There exists an C[[z]]-lattice A with basis ey, ..., e, such
that V(e;) = £ @ 3" a; je; with all a; ; € C[[2]] and a;; € 2N C|[2] fori # j.

Proof. Write ¢ for the map Vzd_dz : Z — Z. According to the formal classi-
fication of regular singular differential equations it follows that Z has a basis
fi,..., fn such that §(f;) = > ¢; ; f; for a matrix (c; ;) with coefficients in C. If
this matrix happens to be diagonizable, then one can choose a basis eq,..., e,
such that V(e;) = % ® c;e; with all ¢; € C. In the general case the Jordan
normal form has one or several blocks of dimension > 1. It suffices to consider
the case of one Jordan block, i.e., 6(f1) = c¢f1, d(f2) = cfo+ f1,...,0(fn) =

cfn + fn—1- One defines e; = f1, eg = thg, ez = tszg, .... One calculates
that d(e1) = cer, d(ea) = (c+ N)ea + tNeq, 6(e3) = (¢ +2N)es + tVeg, . ...
Thus the basis ey, ..., e, has the required properties. O

Proposition 6.21 Let (M, V) be an irreducible regular singular connection on
P' with singular locus in S. Let a; > as > --- > a, denote the type of M.
Then aj—1 — aj < (=2 + #55) for all j > 1. In particular, the defect of M is
<ol (224 #8).

Proof. M is written as a direct sum of the line bundles O(a1) @ --- & O(ay,).
Suppose that aj_1 > a; and put F = O(a1) @ --- & O(a;—1). Then F is one of
the canonical subbundles of M. One considers the morphism

L:FCMY%QS) @M —QS)® M/F.
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The morphism L is non zero since (M, V) is irreducible. Further L is an O-linear
map and can therefore be considered as a nonzero global section of the vector
bundle F* ® Q(S) ® M /F. This vector bundle has a direct sum decomposition
isomorphic to 37, . 5, O(—ax) ® O(=2 + #5) ® O(ar). Since L # 0, we must
have that some —a;—2+4#S5+a; > 0. This is equivalent to a;_1 —a; < —24#S5.
O

Theorem 6.22 Let (M,V) be an irreducible reqular singular connection over
C(z) with singular locus contained in S. There exists a regqular singular connec-
tion (M, V) on P!, such that:

(a) The generic fibre of (M, V) is (M, V).
(b) The singular locus of (M, V) is contained in S.
(¢) The vector bundle M is free.

Proof. Suppose that we have found an (M, V) which has defect 0 and satisfies
(a) and (b). The type of M is then a; = -+ = a,. Then M(—ay[s]) (for any
s € S) is free and still satisfies (a) and (b).

Let N be an integer > @(—2 + #S). We start with a regular singular
connection (M, V) with singular locus in S such that:

(i) Tts generic fibre is (M, V).
(ii) For some s € S the Os-module M has a basis ey, . .., e, such that V(e;) =
4= ® 3" a; 5e; with all a;; € Oy and a;; € tY O, for i # j.

The existence follows from 6.20 and 6.18. We note that Lemma 6.21 implies that
N will be greater than the defect of (M, V). In the next steps we modify M.
Suppose that M has a defect > 0, then the canonical filtration F!' ¢ F? C ...
of M has at least two terms. Let i be defined by Fi=1 £ M and F' = M. The
images of e1,...,e, in V := M, /t, M, form a basis of eigenvectors for the map
0s (see Lemma 6.19 for the notation). Suppose that the image of e, does not lie
in F©"=1(V). We apply Lemma 6.19 and find a new regular singular connection

—

M(1) which has, according to Lemma 6.17, a strictly smaller defect. For M(1),
the matrix of d5 with respect to the f1,..., f, has again property (ii), but now
with N replaced by N —1. Thus we can repeat this step to produce connections
M(2) et cetera, until the defect of some M(7) is 0. O

Remarks 6.23 1. The proof of Theorem 6.22 fails for reducible regular
singular connections (M, V) over C(z)/C, since there is no bound for the defect
of the corresponding vector bundles M. This prevents us from making an a
priori choice of the number N used in the proof.

2. The proof of Theorem 6.22 works also under the assumption that for some

—

singular point the differential module C'(z), ® M is “semi-simple”. By this

— —

we mean that there is a basis ei,...,e, of C(z), ® M over C(z), such that
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Vie;) = dtts ® a;e; for certain elements a; € 58. In this case, condition (ii) in
the proof holds for any N > 1 and in particular for any N greater than the
defect D of the vector bundle. The proof then proceeds to produce connections

of decreasing defect and halts after D steps. For the case C' = C, the connection

C(z), ® M is semi-simple if and only if the local monodromy map at the point
s is semi-simple. This gives a modern proof of the result of Plemelj [223].

3. Let the regular singular connection (M, V) with singularities in S be given.
Take any point p € S and consider S’ = S U {p}. Since the local monodromy
at p is trivial, one can follow the above remark 2. and conclude that there is
a regular singular connection (M, V) with singular locus in S’ such that M is
free.

4. The Riemann-Hilbert problem has a strong solution for a connection of
dimension two, as noted by Dekkers [79]. Indeed, we have only to consider a
reducible regular singular connection (M, V). After replacing M by the tensor
product N ® M, where N is a 1-dimensional regular singular connection with
singular locus in S, we may suppose that M contains a vector e; # 0 with
V(e1) = 0. A second vector ey can be chosen such that V(ez) = wa®ea+w3®eq,
where wy € HO(P',Q(S)) and with w3 some meromorphic differential form.
It suffices to find an h € C(z) such that fo = ey + hey satisfies V(fz) =
wo ® fo + w3 ® ey with g € HO(PI, Q(S))

One calculates @3 = —hwy + dh + ws. For each point p € P! we are given that
the connection is regular singular (or regular) and that implies the existence of

— —

an h, € C(z), such that the corresponding s lies in £2(5),,. One may replace
this h, by its “principal part [hy],” at the point p. Take now h € C(z) which
has for each point p the principal part [hy],. Then for this h the expression ws
lies in HO(PY, Q(S)). a

6.6 Counting Fuchsian Equations

One might hope that an even stronger result holds, namely that an irreducible
regular singular connection M over C(z) with singular locus in S can be rep-
resented by a scalar Fuchsian equation with singular locus in S. By counting
dimensions of moduli spaces we will show that, in general, any monic scalar
“equation” L € C(z)[0] representing M, has singularities outside S. Those new
singular points for L are called apparent.

Definition 6.24 An apparent singularity p for any L = 0" 4+a 10" ' +---+a, €
C(z)[d], is a pole of some a; and such that L has n independent solutions in

C((z—p))- O

Exercise 6.25 1. Show that, at an apparent singularity of L, there must be n
distinct local exponents. Hint: To any basis f1, ..., f, of the solution space of L
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at p, with ord, f; < ord,fiy1 associate the n-tuple (ord,fi,...,ord,f,). Show
that there are only finitely many n-tuples that can arise in this way and that a
maximal one (in the lexicographic order) has distinct entries.

2. Let f1,...,fn € C((z — p)) denote n independent solutions of L. Show
that the Wronskian of f1,..., f,, which is an element of C((z — p))*, has order
mi+ -+ my — @ Hint: We may assume that each f; = 2"+ higher
order terms where the m; are the distinct exponents. Show that the term of
lowest order in wr(f1,... fn) is wr(z™, ... ™). |

Definition 6.26 Let p be an apparent singularity of L € C(z)[0] and let oy <
.-+ < ay, be the local exponents of L at the point p. One defines the weight of
the apparent singularity to be

—1
weight(L,p) = a1 + -+ ay, — %
In the sequel we will only consider apparent singularities such that 0 < o <
-+ < . Under this assumption, weight(L, p) = 0 holds if and only if no a; has
a pole at p (in other words p is not a singularity at all).

Lemma 6.27 Let V be a vector space of dimension n over C and let C((t))@V
be equipped with the trivial connection V(f ® v) = df @ v for all f € C((t))
and v € V. Consider a cyclic vector e € C[[t]] @ V' and the minimal monic
L € C((t))[0] with Le = 0. The weight of L is equal to the dimension over C of
(C[[H)] @ V)/(C[[t]]e + C[[t]]0e + - - - + C[[t]]0™ Le). This number is also equal
to the order of the element e ANde A --- AN O" e € C[[t]] @ A"V = C[[t]].

Proof. The element e can be written as Zm>0 vpt™ with all v,, € V. One
then has de = Y, <o vmmt™ 1. Since e is a cyclic vector, its coefficients vy,
generate the vector space V. Let us call m a “jump” if v, does not belong to
the subspace of V' generated by the vy with £k < m. Let oy < -+ < «,, denote
the jumps.

A straightforward calculation (as in Exercise 6.25.1) shows that the order of
eNdeN NI lee C[H]]@ A"V 2 C[[t] is a1+ + a — @ A similar
calculation shows that this number is also the dimension of the vector space
(C[H]@V)/(C[[t]e +C[[t]0e+ - - -+ C[[t]]o™e). It suffices to show that o <
.-+ < oy, are the local exponents of L. We note that Le =)~ v, L(t™) = 0.
Take any linear map ¢ : V' — C. Then L(y) = 0 where y = >~ ¢(vm)t™ €
C[[t]]. By varying ¢ one obtains solutions y € C[[t]] of L(y) = 0 with orders
ap < - < Q. O

We consider now an irreducible regular singular connection M over C(z) whose
dimension is n and singular locus in S = {sg, $1,...,8k,00}. There is a Fuchs
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system 0 = % + Z?:o z’fi - representing the connection. We denote the stan-

dard basis by €1, ...,e,. Let R:= Clz, ] with F = (2 — s) -+ (z — s). The

free R-module Req + - -+ + Re,, C M is invariant under the action of 0.

Lemma 6.28 Let v € M, v # 0 and let L be the minimal monic operator with
Lv=0. Then L is Fuchsian if and only if v € Re1+---+ Re,, and the elements
v,0v,...,0" Y form a basis of the R-module Re; + - - - + Re,.

Proof. Suppose that v satisfies the properties of the lemma. Then 9™v is an
R-linear combination of v, dv,...,0" 'v. Thus L has only singularities in S.
Since M is regular singular it follows (as in the proof of Lemma 6.11) that L is
a Fuchsian operator.

On the other hand, suppose that L is Fuchsian. Then N := Rv+ ROv + ---+
RO™ v is a R-submodule of M, containing a basis of M over C(z) and invariant
under 0. There is only one such object (as one concludes from Lemma 6.18)
and thus N = Re; + -+ + Re,. O

Proposition 6.29 Let0# v € Rei+---+Re, C M and L with Lv =0 be as in
Lemma 6.28. Consider the operator A = F-9. Define the polynomial P € C|z],
which has no zeros in {so,...,sk}, by the formula v AN Av A -+ N A" Ly =
(z—s09)™ (2 —8g)"™P-e; A--- ANey. Then the degree of P is equal to the
sum of the weights of the apparent singularities of L (outside S ).

Proof. The dimension of the space (Re;+- - -+ Re,,)/(Rv+ROv+- - -+ RO" 1)
is equal to the degree of P. This dimension is the sum of the dimensions, taken
over the apparent singular points p, of

(Cllz — pllex + - -+ Cllz — pllen) /(Cllz — pllv + -+ Cllz — pl}0" ).

Now the statement follows from Lemma 6.27. O

Proposition 6.30 We use the notations above. There is a choice for the vector
v such that for the monic operator L with Lv = 0 the sum of the weights of the
apparent singular points is < Wk +1—n.

Proof. Choose numbers dy,...,d; € {0,1,...,n—1} such that do+---+dj, =
n — 1 and choose for each j = 0,...,k a subspace V; C Ce; + ---Ce, of
codimension d; and invariant under A;. For example, one may select dy =
n—1,d = ... =d, = 0, Vp to be spanned by an eigenvector of Ay and
Vi=...=V,=Cei+...+Ce,. For v we take a non zero vector in the
intersection V5 N V3 N --- NV}, and consider the polynomial @Q(z) defined by
VAAUA- - AA Ly = Q(2)e1 A+ - Aey. The degree of this polynomial is easily
seen to be < @k‘ We give now a local calculation at the point z = s; which
shows that the polynomial @ has a zero of order > d; at s;. Let ¢ denote a
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local parameter at s;. We may replace the operator A by § := t% +A4;+0(t),
where O(t) denotes terms divisible by ¢. Then 6™v = ATv + O(t). For m >

. . . . —d:—1
n — d; one has that A7'v is a linear combination of v, 4;v, ..., A"y, Thus

j
vASUA - AS" o is divisible by %,

We conclude that @ is divisible by (z — s0)% -+ (z — s1)%. We can now apply

. . . n(n—1)
Proposition 6.29 with a polynomial P of degree < —5—k +1 —n. O

Example 6.31 The irreducible Fuchsian system 0 = d% + % + AL where
Ap, A1 are constant 2 x 2-matrices and S = {0,1,00}.

We will make the proof of Proposition 6.30 explicit and show that there exists
a scalar Fuchsian equation for this system without apparent singularities. Let
e1, ez denote the standard basis. Let R denote the ring C|z, ﬁ] The free
R-module Re; + Reg is invariant under the action of 9.

We take for v # 0 a constant vector, i.e., in C'e; +Ces, which is an eigenvector for
the matrix Ag. Consider the determinant vAGv = vA (% + %) = Zilv/\Alv.
From the irreducibility of the equation it follows that v is not an eigenvector for
A;. Thus the determinant has the form ﬁel A eg with ¢ € C* and v, dv form

a basis for Rey + Res. This proves the claim. O

We will count “moduli”, i.e., the number of parameters in certain families
of differential equations. In the classical literature one uses the term number of
accessory parameters for what is called “moduli” here. We start by considering
the family of Fuchsian operators L of degree n with regular singularities in the
set S = {so,...,sk,00}. Let A denote the operator (z—so) - (z — s) <. Then
L can be rewritten as a monic operator in A, namely L = A" + C;A" ! +
-+ 4+ Cho1A + Cp. The coefficients are polynomials with degC; < j -k (see
Lemma 6.11). This family has clearly %kj + n parameters.

Our next goal is to count the number of parameters of the family F (of the
isomorphism classes) of the “generic” regular singular connections M over C(z)
of dimension n with singular locus in S = {so, ..., sk, 00}. Of course the terms
“family, generic, parameters” are somewhat vague. The term “generic” should

at least imply t};at M is irreducible and thus can be represented by a Fuchs
i

system 0 + P The matrices Ao, ..., A with coefficients in C are chosen
generically. In particular, for every point s € S there is a basis eq,...,e, of

M, := C(z), ® M such that the action of §, = Vtsﬁ takes the form d.e; =
\j(s)e; and Ai(s) — A\j(s) & Z for i # j. This property implies that for each
point s € S there are only countably many lattices possible which give rise to
a vector bundle with a connection (see Lemma 6.18). Further the lattices can
be chosen such that the corresponding vector bundle with connection is free
(see Remarks 6.23). Thus we may as well count the number of parameters of
generic Fuchs systems of dimension n and with singular locus in S. Let V be a
vector space over C of dimension n. Then we have to choose k + 1 linear maps
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A; 'V — V, up to simultaneous conjugation with elements of GL(V'). This
leads to the formula kn? + 1 for the number of parameters for F.

We can now draw the conclusion.

Corollary 6.32 A general Fuchsian system of rank n with k+2 singular points
cannot be represented by a scalar Fuchs equation if n?k +1 > Wk + n.
In other words, the only cases for which scalar Fuchsian equations (without
apparent singularities) exist are given by kn < 2.

Remarks 6.33 Counting moduli and the number of apparent singularities.

1. Now we want to count the number of moduli for monic scalar operators L of
degree n with k + 2 regular singularities, i.e., S, and [ apparent singular points
ai,...,a; of weight 1 for which we do not fix the position. Let A denote the
operator (z—s0) -+ (z —s)(z —a1) -+ (2 — ;)& and represent L as L = A" +
C1A" 1 .-+ C,—1 A+ C,, with the C;’s polynomials of degrees < j(k+1). At
each of the apparent singular points we fix the exponents to be 0,1,...,n—2,n.
This produces [ equations. The condition that there are no logarithmic terms
at any of the apparent singular point is given by @l equations (see [224],
Ch. 8 §18). Assuming that the equations are independent and that they define a
n(()n eI)npty algebraic variety, one finds that this algebraic variety has dimension
n(n+1

—5—Fk +n+1. We note that it seems difficult to verify these assumption and

we have not done this in general.

2. Assuming that the algebraic variety in 1. has dimension @k +n+1, we

will show that the bound @k‘ + 1 — n of Proposition 6.30 is sharp for a
general regular singular connection M of dimension n over C(z) with singular
locus S = {so, ..., sk, 00}. Indeed, let A be the sharp bound. Take | = A in (a)
above and one finds the number of moduli @k—i—n—l—fl. This must be equal to

n%k+1, the number of moduli for the family F above. Thus A = %k—i— 1—n.

3. Now assume that the bound %k + 1 — n of Proposition 6.30 is sharp.
Then, as in 2., a comparison of dimensions of moduli spaces yields that the
formula in 3. for the number of moduli is correct.

4. The counting of parameters that we have done, if correct, clarifies an ob-
servation made by N. Katz on accessory parameters in the introduction of his
book ([156], p. 5-7). O
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Chapter 7

Exact Asymptotics

7.1 Introduction and Notation

Singularities of linear complex differential equations is a subject with a long his-
tory. New methods, often of an algebraic nature, have kept the subject young
and growing. In this chapter we treat the asymptotic theory of divergent solu-
tions and the more refined theory of multisummation of those solutions. The the-
ory of multisummation has been developed by many authors, such as W. Balser,
B.L.J. Braaksma, J. Ecalle, W.B. Jurkat, D. Lutz, M. Loday-Richaud, B. Mal-
grange, J. Martinet, J.-P. Ramis, and Y. Sibuya. Excellent bibliographies can
be found in [176] and [179]. Our aim is to give a complete proof of the multi-
summation theorem, based on what is called “the Main Asymptotic Existence
Theorem” and some sheaf cohomology. In particular, the involved analytic
theory of Laplace and Borel transforms has been avoided. However, the link
between the cohomology groups and the Laplace and Borel method is made
transparent in examples. This way of presenting the theory is close to the paper
of Malgrange [194].

The problem can be presented as follows. Let C({z}) denote the field of the
convergent Laurent series (in the variable z) and C((z)) the field of all formal
Laurent series. The elements of C({z}) have an interpretation as meromorphic
functions on a disk {z € C| |z| < r}, for small enough r > 0, and having at
most a pole at 0. Put § := zd%. Let A be an n X n-matrix with entries in
C({z}). The differential equation that concerns us is (6 — A)v = w, where
v,w are vectors with coordinates in either C({z}) or C((z)), and where ¢ acts
coordinate wise on vectors. The differential equation is (irreqular) singular at
z = 0 if some entry of A has a pole at 0 and such that this remains the case
after any C({z})-linear change of coordinates. For such a differential equation
one encounters the following situation:

There is a formal (or divergent) solution © of (6 — A)b = w with w convergent,

193
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i.e., © has coordinates in C((z)) and w has coordinates in C({z}).

We have written here ¢ to indicate that the solution is in general formal and
not convergent. The standard example of this situation is the expression ¢ =
> ,son! 2", which is a solution of Euler’s equation (6 — (2= —1))0 = —z~1
The problem is to give ¥ a meaning. A naive way to deal with this situation is
to replace © by a well chosen truncation of the Laurent series involved. Our goal
is to associate with © a meromorphic function defined in a suitable domain and
having ¢ as its “asymptotic expansion”. We begin by giving a formal definition
of this notion and some refinements.

Let p be a continuous function on the open interval (a,b) with values in the
positive real numbers R, or in Rso U {+0c0}. An open sector S(a,b, p) is the
set of the complex numbers z # 0 satisfying arg(z) € (a,b) and |z| < p(arg(z)).
The a,b are in fact elements of the circle S! := R/27Z. The positive (counter-
clockwise) orientation of the circle determines the sector. In some situations it
is better to introduce a function ¢ with e = 2 and to view a sector as a subset
of the t-plane given by the relations Re(t) € (a,b) and e~ /™®) < p(Re(t)). We
will also have occasion to use closed sectors given by relations arg(z) € [a, b]
and 0 < |z| < ¢, with ¢ € Rso.

Definition 7.1 A holomorphic function f on S(a, b, p) is said to have the formal
Laurent series En>n0 cnz™ as asymptotic expansion if for every N > 0 and every
closed sector W in S(a, b, p) there exists a constant C(N, W) such that

|f(z) — Z cn2"| < C(N,W)|z|N for all z € W

no<n<N-—-1

One writes J(f) for the formal Laurent series > - c,2". Let A(S(a,b,p))
denote the set of holomorphic functions on this sector which have an asymptotic
expansion. For an open interval (a,b) on the circle S, one defines A(a,b) as
the direct limit of the A(S(a, b, p)) for all p. 0

In more detail, this means that the elements of A(a, b) are equivalence classes
of pairs (f,S(a,b,p)) with f € A(S(a,b,p)). The equivalence relation is given
by (f1,5(a,b,p1)) ~ (f2,S(a,b, pa)) if there is a pair (f3, S(a,b, p3)) such that
S(a, b, p3) C S(a,b,p1) N S(a,b,p2) and f3 = fi = fo holds on S(a,b, p3). For
any open U C S!, an element f of A(U) is defined by a covering by open
intervals U = U;(a;,b;) and a set of elements f; € A(a;,b;) with the property
that the restrictions of any f; and f; to (a;,b;) N (a;,b;) coincide. One easily
verifies that this definition makes 4 into a sheaf on S'. Let A° denote the
subsheaf of A consisting of the elements with asymptotic expansion 0. We let
Aq, AY, ... denote the stalks of the sheaves A, A°, ... at a point d € S*.

Exercises 7.2 1. Prove that A(S') = C({z}).
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2. Show that A(S(a,b, p)) is a differential C-algebra, that is a C-algebra closed
under the operation of taking derivatives. Hint: (c.f., [194]) The proofs that
A(S(a,b,p)) is closed under multiplication and sum are straightforward. To
verify that this algebra is closed under differentiation, it suffices to show the
following: Let g be a function analytic in a sector W. If for any closed subsectors
W' C W one has that there exists a constant C' such that for all z € W', |g(z)| <
C|z|"*1, then for any closed subsectors W' C W one has that there erists a
constant C' such that for all z € W',|¢'(z)] < C'|z|™. To prove this, let W/ C
W' be closed sectors and let ¢ be a positive integer so that for all z € W’ the
closed ball {w | jw—z| < |z|d} lies entirely in W”. The Cauchy Integral Formula
states that, for all z € W’

J(2) L/ : 9(¢) _d

= 2mi ¢—2)

where « is the circle of radius |z|0 centered at z. One then has that for all
zeWwW’

max- |g|

g (148t
|g'(2)| < W SC”|Z| +1¥

< ! n
s <O

Apply thisto g = f — > 1, arxz®. Note that the asymptotic expansion of f’ is
the term-by-term derivative of the asymptotic expansion of f. ]

The following result shows that every formal Laurent series is the asymptotic
expansion of some function.

Theorem 7.3 Borel-Ritt For every open interval (a,b) # S', the map J :
A(a,b) — C((2)) is surjective.

Proof. We will prove this for the sector S given by |arg(z)] < = and 0 <
|z| < 4+o00. Let /z be the branch of the square root function that satisfies
|arg \/z| < m/2 for z € S. We first note that for any real number b, the function

B(z) = 1 — e ¥V gatisfies |8(z)| < \/—b‘?‘ since Re(—%) < 0 for all z € S.

Furthermore §(z) has asymptotic expansion 0 on S.

Let Y~ a,z™ be a formal Laurent series. By subtracting a finite sum of terms
we may assume that this series has no negative terms. Let b,, be a sequence such
that the series > a,,b, R"™ converges for all real R > 0. For example, we may let
bp =0 and b, = 0 if a, = 0 and b, = 1/nl|a,| if a, # 0. Let W be a closed
sector defined by arg(z) € [a,b] and 0 < |2| < Rin S. Let B,(z) =1 — e 0n/V?
and f(2) = 3 anBn(2)2". Since |a, B, (2)2"| < |an|bn|2z|* /2, the function f(z)
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is analytic on W. To see that f(z) € A(S), note that, for z € S

n n n—1 00
|f(2) — Zaizi| < |Zaiﬂi(z)zi - Z a;z'| + | Z aifi(2)z'|
i=0 i=0 i=0 i=n+1
o0
. 1
< Cila™ + [z las|bi RT3
i=1
< Clz|"

The Main Asymptotic Existence Theorem states the following:

Given is a formal solution ¥ of an equation (0 — A)0 = w (with A and w con-
vergent) and a direction d € S*. Then there exists an interval (a,b) containing
d and a v € (A(a,b))™ such that J(v) =0 and (6 — A)v = w.

In the next section we will present an elementary proof of the Main Asymptotic
Existence Theorem. We will call a v, having the properties of this theorem,
an asymptotic lift of v. The difference of two asymptotic lifts is a solution
g € A%a,b) of (§ — A)g = 0. In general, non trivial solutions g exist. In order
to obtain a wunique asymptotic lift v on certain sectors one has to refine the
asymptotic theory by introducing Gevrey functions and Geuvrey series.

Definition 7.4 Let k be a positive real number and let S be an open sector. A
function f € A(S), with asymptotic expansion J(f) = >_, -, cnz", is said to
be a Gevrey function of order k if the following holds: For every closed subsector
W of S there are constants A > 0 and ¢ > 0 such that for all N > 1 and all
z € W and |z| < c one has

- Y el < AT+ D)

no<n<N-—-1

O

We note that this is stronger than saying that f has asymptotic expansion J(f)
on S, since on any closed subsector one prescribes the form of the constants
C(N,W). Further we note that one may replace in this definition the (maybe
mysterious) term I'(1 4 £%) by (N!)'/*. The set of all Gevrey functions on S of
order k is denoted by A1 (S). One sces, as in Exercise 7.2, that this set is in
fact an algebra over C and is invariant under differentiation. Moreover, A
can be seen as a subsheaf of A on S!. We denote by .A(l)/k(S) the subset of

Ai/,(S), consisting of the functions with asymptotic expansion 0. Again A9 Ik

can be seen as a subsheaf of A,/ on S!. The following useful lemma gives an
alternative description of the sections of the sheaf A(l) Ik
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Lemma 7.5 Let f be holomorphic on an open sector S. Then f belongs to
AY(S) if and only if for every closed subsector W there are positive constants
k

A, B such that |f(z)| < A exp( —B|z|™F) holds for z € W.

Proof. We will use Stirling’s formula:
D(1+4s) = V21 s572e75(1 + o(s™1)) for s € R and s — .

If f belongs to A9 (S) then there is a constant C' depending on W such that,
&
for all n > 1 and z € W, one has |f(z)| < C"TI'(1 + %)|z|™. In other words

24 1/2)log 2+ a constant.
k k
For a fixed |z| the right hand side has, as a function of the integer n, almost

minimal value if n is equal to the integer part of ﬁ Substituting this value

for n one finds that log | f(2)| < —B|z|*+ a constant. This implies the required
inequality.

log| £(2)] < 7 (=1 +1log|C2]*) + (

For the other implication of the lemma, it suffices to show that for given k and
B there is a positive D such that

r~"exp(—Br~F)

T+ o) < D™ holds for all r and n > 1.
k

Using Stirling’s formula, the logarithm of the left hand side can be estimated
by
n
k

For a fixed n and variable r the maximal value of this expression is obtained for
r k= B_lﬁ. Substitution of this value gives

(1+1log r " —log %) - 1/210g% — Br~% 4 a constant.

n
k

This expression is bounded by a constant multiple of n. a

log B~! — 1/210g% + a constant.

The notion of Gevrey function of order k does not have the properties, that
we will require, for k < 1/2. In the sequel we suppose that & > 1/2. In the event
of a smaller k one may replace z by a suitable root zm in order to obtain a new
k' =mk > 1/2. We note further that the k’s that interest us are slopes of the
Newton polygon of the differential equation 6 — A. Those k’s are in fact rational
and, after taking a suitable root of z, one may restrict to positive integers k.

Exercise 7.6 Let f € Ay, (S) with J(f) =>_, 5, cn2". Prove that for N > 1
the cn satisfy the inequalities B

N
len| < ANT(1 + ?), for a suitable constant A and all N > 1
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Hint: Subtract the two inequalities | f(z)— Y2 ¢,2"| < ANT(1+ 2)|z|N and

n=no

1F(2) = Yonpg 2" < ANFID(L 4 25EL) 2|V 4L, O
Exercise 7.6 leads to the notion of Gevrey series of order k.

Definition 7.7 f =3 . c,2" € C((2)) is called a Geuvrey series of order k
if there is a constant A > 0 such that for all n > 0 one has |¢,| < A"T'(1 + ).
The set of all such series is denoted by C((z))1. The subset of the power series
satisfying the above condition on the coefficients is denoted by C[[z]]1. O

As in the definition of Gevrey functions of order k, one can replace the
1
condition |c,| < A"T'(1 4+ %) with |c,| < A™T'(n!)*.

Lemma 7.8 1. Cl[z]]1 is a differential ring with a unique mazimal ideal,
namely the ideal (2).

2. C((2)) 1 1s the field of fractions of C[[z]]

1
k

=

3. If k <1 then C[[z]]1 D C[[2]]

Proof. 1. The set A = C[[z]]. is clearly closed under addition. To see that
it is closed under multiplication, let f = Y a;2* and g = Y b;2* be elements of
this set and assume |ax| < AN(NDY* and |by| < BN (N for all N > 1. We
then have fg = > ¢;2% where |cx| = | ZzN:O aiby_;| < ZzN:O A'BN=i (i) V/R(N —
i)'/E < (AB)N(N + 1)(N)Y/* < CN(N!)'/* for an appropriate C. The ring A
is closed under taking derivatives because if |ay| < AN(N!)Y/* then |[Nay| <
NAN(NWYk < ON((N —1)!)Y/* for an appropriate C.

To prove the statement concerning the ideal (z), it suffices to show that any
element f = > a;2* not in the ideal (2) is invertible in Cl[z]]1. Since ag # 0
such an element is clearly invertible in C[[z]]. Let g = > b;2* be the inverse of
f- We have that by = 1/ag and for N > 1, by = —(1/ag)(a1by—1+ ...+ anbp).
One then shows by induction that |by| < CN(N!)Y/* for an appropriate C.

2. and 3. are clear. o

In a later section we will prove the following important properties of Gevrey
functions.

L If [b—al < % the map J : Ai(a,b) — C((2))1 is surjective but not
injective. (Consequently .A(l)/k(a, b) #0).

2.1t |b—al > ¢ the map J : Ai(a,b) — C((2))1 is injective but not
surjective. (Consequently .A(l)/k(a, b) =0).

We note that the above statements are false for k¥ < 1/2, since A(S!) =

C({z}). This is the reason to suppose k > 1/2. However, the case k < 1/2 can
be treated by allowing ramification, i.e., replacing z by a suitable 21/,
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Definition 7.9 Let § € C((z)). Then § is called k-summable in the direction
d if there is an f € A%(d— 3,d+ ) with J(f) = g and o > 7. We note that f
is unique. One says that § € C((z))1) is k-summable if there are only finitely
many directions d such that ¢ is not k-summable in the direction d. ]

We can now formulate the results of the multisummation theory. A special
case is the k-summation theorem (c.f., [236], Thm 3.28, p. 80):

Suppose that the differential equation (6 — A) has only one positive slope k (and
k > 1/2) and consider a formal solution 0 of (6 — A)0 = w (with A and w
convergent). Then (each coordinate of) ¥ is k-summable.

We draw some conclusions from this statement. The first one is that the (in
general) divergent solution ¢ is not very divergent. Indeed, its coordinates lie in
C((2))1/k- Let d be a direction for which ¢ is k-summable. Then the element
ve (Ayp(d—5,d+ 5))" with image J(v) = 9 € C((2))" is unique. Moreover
g := (0—A)v is a vector with coordinates again in A, /. (d—5,d+ %), with a > ©
and with J(g) = w. From the injectivity of J : Ay, (d—§,d+5) — C((2))1/k>
one concludes that g = w and that v satisfies the differential equation (§—A)v =
w. Thus v is the unique asymptotic lift, produced by the k-summation theorem.
One calls v the k-sum of v in the direction d.

One possible formulation of the multisummation theorem is:

Suppose that k1 < ko < --- < k, (with k1 > 1/2) are the positive slopes of the
equation (06— A) and let © be a formal solution of the equation (6 —A)0 = w (with
w convergent). There are finitely many “bad” directions, called the singular
directions of § — A. If d is not a singular direction, then 0 can be written as
a sum U1 + 0o + - -+ + U, where each ¥; is k;-summable in the direction d and
moreover (6 — A)0; is convergent.

We draw again some conclusions. First of all o € (C((2))1/x,)". Let d be a
direction which is not singular. Then each ¥; is k;-summable in the direction d
and w; := (§—A)v; is convergent. There are unique elements v; with coordinates
in Ay, (d—%,d+ %), with o; > 7+ and image 0; under J. Then (6 — A)v; has
coordinates in A, , (d— %, d+ %) and its asymptotic expansion is w;, which is
convergent. Since -A(l)/k,- (d—5,d+%) = 0, it follows that (6 — A)v; = w;. Then
the sum v = ), v; has coordinates in A(d — 5=, d + %) and satisfies J(v) = 0.
Moreover (§ — A)v = w. One calls v the multisum of © in the direction d. Note
though that v depends on the decomposition of © as a sum 01 + 02 + « - - + 0y

The multisummation theory also carries the name ezxact asymptotics because
it refines the Main Asymptotic Existence Theorem by producing a uniquely
defined asymptotic lift for all but finitely many directions. Since the multisum
is uniquely defined, one expects an “explicit formula” for it. Indeed, the usual
way to prove the multisummation theorem is based on a sequence of Borel and
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Laplace transforms and analytic continuations, which gives in a certain sense
an “explicit formula” for the multisum . We will explain, in later sections, some
details of this and of the related Stokes phenomenon.

7.2 The Main Asymptotic Existence Theorem

We recall the statement of this theorem.

Theorem 7.10 Main Asymptotic Existence Theorem

Let © be a formal solution of (6 — A)0 = w, where A is an n X n-matriz and w s
a vector of length n, both with coordinates in C({z}). Let d € St be a direction.
Then there is an open interval (a,b) containing d and a v € (A(a,b))™ with
J() =90 and (6 — A)v = w.

Remarks 7.11 1. Complete proofs of this theorem, originally due to Hukuhara
and Turrittin, are given in [300] and [192]. Extensions of this theorem have been
developed by J.-P. Ramis and Y. Sibuya [242].

2. Theorem 7.10 is an almost immediate consequence of the first part of Theorem
7.12 below. Indeed, by the Borel-Ritt theorem, we can choose a ¢ € (Ag4)"™ with
J(©) = 9. Then g = w — (§ — A)o € (A" and, by the first part of Theorem
7.12, one can solve the equation (§ — A) f = g with some f € (AJ)". Recall that
Aq, AY, ... denote the stalks of the sheaves A, A°, ... at a point d € S*.

3. In this section we will give a complete and elementary proof of Theorem
7.10, inspired by ([192], Appendix 1). First we study in detail the special case
n = 1, i.e., inhomogeneous equations of order 1. The step from inhomogeneous
equations of order 1 to “quasi-split” equations is rather straightforward. Finally,
with a small calculation concerning norms on a linear space of analytic functions,
the general case is proved. m]

Theorem 7.12 Let A be an n x n-matriz with entries in C({z}) and let d € S*
be a direction. The operator (§—A) acts surjectively on (AY)™ and on ((.A(l)/k)d)"
for any k > 0.

It suffices to consider in the sequel the direction 0. We will first be concerned
with the equation (§ — q)f = g, with ¢ € z271C[27!] and g € A§. The goal is
to find a solution f € AY. The general solution of the equation can be written,
symbolically, as e(q)(z) [ e(—q)(t)g(t)L + ae(q)(z) where e(q) = e/ 9% The
problem is to find the correct value of the constant a € C. Moreover, we will
need more precise information on this solution f. For this purpose we consider
closed sectors ¥ = 3(c¢,d) = {z € C| 0 < |z| < ¢ and | arg(z)| < d} for ¢,d > 0.
Let F = F(X) denote the set of complex valued functions f on ¥, such that:

1. f is continuous on X.
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2. f is holomorphic on the interior of X.

3. For every integer N > 1, there exists a constant Cy such that |f(z)| <
Cn/|2|Y holds for all z € X.
On F one considers a sequence of norms || || defined by || f||x = sup,cx |fz(§) |
We note that every element of A$ can be represented by an element in F for
a suitable choice of ¢,d. On the other hand, any element of F determines an
element of A$. In other words, A is the direct limit of the spaces F(X).

Lemma 7.13 Letq=qz '+ q_127" 4+ +q27" € 271C[z7'], with ¢ # 0,
be given.

1. Suppose Re(q;) < 0. For small enough ¢,d > 0 there is a linear operator
K : F — F with F = F(E(c,d)), such that (§ — q)K is the identity on
F and K is a contraction for every || |nv with N > 2, i.e., |K(g)|n <
enllgllv with ey <1 and all g € F.

2. Suppose Re(q;) = 0. Then statement 1. remains valid.

3. Suppose Re(q;) > 0 and let N > 0 be an integer. For small enough c¢,d > 0
there is a linear operator K : F — F such that (6 — q) K is the identity on
F and K is a contraction for || ||n.

Corollary 7.14 Let q be as in Lemma 7.13.

1. (6 — q) acts surjectively on A3.

2. (6 — q) acts surjectively on (.A(l)/k)o-

Proof. 1. The existence of K in Lemma 7.13 proves that (6 — ¢) is surjective
on AJ. We note that this result remains valid if ¢ is a finite sum of terms gsz~*
with s € R>0.

2. Lemma 7.5 easily yields that (A(l)/k)o is the union of AJe(Bz~*), taken over
all B € Rsg. It suffices to show that (6 — ¢) is surjective on each of the spaces
Ade(Bz7F). The observation e(Bz~%)"1(§ — q)e(Bz™%) = (6 — ¢ — kBz7%),
reduces the latter to the first part of this corollary. |

The Proof of Lemma 7.13

(1) The function e(q), defined by e(q)(z) = e/ 1O% is a solution of the ho-
mogeneous equation (6 — g)e(q) = 0. The expression fq(t)% is chosen to be

Lol g At b eem L For 2 = re'® € %, the logarithm of the
absolute value of e(q)(z) is equal to

Y Re_(;]l) cos(lp) + Im_(lqz)

sin(lg) )+
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e(q— Im(q—
L % cos((I — 1)¢) + % sin((l —1)¢) ) +

The coefficient of r~ is positive for ¢ = 0. One can take d > 0 small enough
such that the coefficient of r~! is positive for all |¢| < d and 0 < ¢ < 1 small
enough such that the function |e(q)(se’®)| is for any fixed |¢| < d a decreasing
function of s € (0,c]. With these preparations we define the operator K by
K(g)(2) = e(q)(z) [, e(—q)(t)g(t)%. The integral makes sense, since e(—q)(t)
tends to zero for t € ¥ and t — 0. Clearly (0 — q)Kg = g and we are left with a
computation of || K(g)||x. One can write K (g)(z) = e(q)(2) fol e(—q)(s2)g(sz)%
and by the above choices one has |e(—q)(sz)| < |e(—¢)(2)] for all s € [0, 1]. This
produces the estimate fol llgllns™ |2V = %MN. Thus K : F — F and K
is a contraction for || |y with N > 2.

2. Let ¢ = ip with p € R, p # 0. We consider the case p < 0. The situation
p > 0 is treated in a similar way. For log |e(—q)(s¢!?)| one has the formula

s % sin(lg) )+
st Rele) ImG-1) in(1 - 1)¢) )+ -

We can now choose small enough ¢, d > 0 such that

cos((I —1)¢p) +

(a) The function s — |e(—q)(se')| is increasing for s € [0, c].
(b) The function ¢ — |e(—q)(se'®)]| is for any any fixed s, with 0 < s < ¢, a
decreasing function of ¢ € [—d, d].For every point z € X we take a path from 0 to

z = re'®0, consisting of two pieces. The first is the line segment {sre’d|0 < s <
1} and the second one is the circle segment {rei¢|¢0 <¢< d} The operator
K is defined by letting K (g)(z) be the integral e(q)(z) [, e( g(t)% along
this path. It is clear that the integral is well deﬁned and that ((5 q)K(g) =g.
We have now to make an estimate for || K (g)||n. The first part of the path can

be estimated by

d
2)| |/ sre g(sreld)—s| <

S

1
. ds 1
le(@)(2)] le(=a)(re')] HQIINTN/ M — < %12 "Vllgllv-
O S
The second part can be estimated by

d

le(a)(2)] | ( q)(re'?)g(re'?)idg| </ lgllxr®dg < 2d]2[Y gl -

Thus | K(g9)||n < (% +2d)||g||n and for N > 2 and d small enough we find that
K is a contraction with respect to || ||n.
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3. First we take d small enough such that the coefficient of 7~ in the expression
for log|e(q)(re'?)| is strictly negative for |¢| < d. Furthermore one can take
¢ > 0 small enough such that for any fixed ¢ with |¢| < d, the function r
le(q)(re’®)] is increasing on [0, c].

The operator K is defined by letting K (g)(z) be the integral
elq)(z) [7 e(—q)(t)g(t)— along any path in ¥ from ¢ to z. It is clear that
(0 —q)K(g) = g. For z € ¥ with |z| < ¢/2 and any integer M > 1, one can
estimate | K (g)(z)| by

@) [ e0a L+ e [ e-an

and this is bounded by |e(q)(2)e(q)(22) 7Y ||gllarc™ Nﬁl. Since

the limit of % for |z| — 01is 0, one finds that there is some constant
Cy with ||[K(g)||am < Carllgllas- In particular K(g) € F. For the fixed integer

N > 1 we have to be more precise and show that for small enough ¢, d > 0 there

is an estimate || K (g)||n < Cnllg||ny with Cx < 1 (and for all g € F).
Set f(z) = %LZ e(—q)(t)g(t)%. We then want to show that |f(z)| <
C(c,d)||lglln for z € X, where C(c, d) is a constant which is < 1 for small enough

c,d > 0.

Let z = re.  We split |f(z)| into two pieces. The first one is
e(q)(re'®) pcet® . re(q)(rei?) peet®
|2 e(=a)(Dg(t) §] and the second is | <L [ e(—q)()g 1) |

z

For the estimate of the first integral we introduce the function E ( ) | ( ) (tei®)]
ltN dt .
]

and the first integral is bounded by h(r)||g||~, where h(r
We want to show that for small enough ¢ > 0, one has h( ) S 1 / 2 for all r with
0<r<e

For the boundary point r = ¢ one has h(c) = 0. For the other boundary
point 7 = 0 we will show that the limit of h(r) for » — 0 is zero. Take any
a > 1 and con51der 0 < r with ar < ¢. Then h(r) = E(T) [ITE@) TN 4

1tN% Since E(t) is an increasing functlon of t we can estimate

or

h(r) by %N JOm N dt L B@Bn) L e yNdb ang thus by &=t 4 Z0Ban et

The limit of %w for r — 0 is 0. Since o > 1 was arbitrary, this implies
that the limit of h(r) for r — 0 is 0. The maximum value of h(r) is therefore
obtained for ro € (0,c¢). The function h(r) satisfies the differential equation
rh'(r) = (T]?;S) — N)h(r) — 1. The expression log E(t) is equal to c;t ! +

c—1t™ 4+ .. with ¢; < 0 and ¢; depending on ¢. Thus h(rg) = ﬁ
P —

< 1/3. The second

and this is, for small enough ¢, bounded by
part is bounded by ||g||nF (¢o), where

-1
—cjc—l+--—N

b0
F(do) := le(q)(cei®)] | / ¢ dg).
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The function F is continuous and F'(0) = 0. Therefore we can take d > 0 small
enough such that F'(¢) < 1/3 for all ¢ with |¢| < d. Thus the second part is
bounded by 1/3||g|[x and |[K(g)[ln < 2/3]lg]~- o

We now recall the following definition (c.f., Definition 3.39)

Definition 7.15 A differential operator (6 — A), with A an n X n-matrix with
coefficients in C({z}) is called split if it is equivalent, by a transformation in
GL,(C({z}) ), with a direct sum of operators of the form § — ¢ + C, where
q € z7'C[z7!] and C is a constant matrix. The operator (§ — A) is called
quasi-split if it becomes split after replacing z by a suitable m* root of z. O

Corollary 7.16 Let (6 — A) be a quasi-split linear differential operator of order
n and let d € S* be a direction. Then (§ — A) acts surjectively on (AY)™ and on
((A(l)/k)d)” for all k> 0.

Proof. For the proof we may suppose that the operator is split and even that
it has the form § — ¢+ C where C' is a constant matrix. Let T be a fundamental
matrix for the equation dy = Cy. The equation (§ — g + C)f = ¢ can be
rewritten as (0 — ¢)T'f = T'g. The transformation 7' induces a bijection on the
spaces (AY)™ and ((A? /x)d)"- Thus we are reduced to proving that the operator
(6 — q) acts surjectively on A and ('A(l)/k)d' For d = 0 this follows at once from
Corollary 7.14. a

The proof of Theorem 7.12 for the general case (and the direction 0) follows
from the next lemma.

Lemma 7.17 Let B be a n X n-matriz with entries in Ag. Suppose that S =
J(B) has entries in C[z=1] and that § — S is a quasi-split equation. Then there
exists an n x n matriz T with coefficients in AJ such that (1+T)~1(§ — B)(1 +
T)=06-2S5.

Indeed, consider (§— A) and a formal transformation F' € GL,,(C((z)) ) such
that F~1(6 — A)F = (§ — S), where S has entries in C[z7!] and (§ — S) is quasi-
split. The existence of F' and S is guaranteed by the classification of differential
equations over C((2)), c.f., Proposition 3.41. Let F € GL,(Ao) satisfy J(F) =
F. Define the n x n-matrix B, with entries in Ag, by (6 — B) = F~1(§ — A)F.
Since F acts as a bijection on the spaces (AJ)" and ((A(l)/k)o)”, it suffices to
consider the operator (6 — B) instead of (§ — A). By construction J(B) = S
and we can apply the above lemma. Also (1 4+ T) acts as a bijection on the
spaces (AJ)" and ((A(l)/k)o)”. Thus Lemma 7.17 and Corollary 7.16 complete
the proof of Theorem 7.12.

The Proof of Lemma 7.17
Using the arguments of the proof of Corollary 7.16, we may already suppose that
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S is a diagonal matrix diag(qs, . . ., ¢, ) with the diagonal entries ¢; € z~1C[z71].
We note that T itself is supposed to be a solution of the equation §(T') — ST +
TS = B— S + (B — S)T, having entries in AJ. The differential operator
L:Tw— 6(T)— ST + TS acting on the space of the n x n-matrices is, on the
usual standard basis for matrices, also in diagonal form with diagonal entries
¢ —q; € 27 1C[z7 1.

Take a suitable closed sector ¥ = ¥(c¢, d) and consider the space M consisting
of the matrix functions z — M(z) satisfying:

(a) M(z) is continuous on ¥ and holomorphic on the interior of .
(b) For every integer N > 1 there is a constant Cy such that |M(z)| < Cy|z|V
holds on ¥. Here |M(z)| denotes the lo-norm on matrices, given by |M(z)| :=

(32 1M 5(2) 1) 2.

We note that for two matrices Mj(z) and Ms(z) one has |Mi(z)Ma(z)| <
|Mi(2)] |Ma2(z)|]. The space M has a sequence of norms || ||n, defined by
| M||n := sup,ex ||Z—|(IZV‘ Using Lemma 7.13 and the diagonal form of L, one
finds that the operator L acts surjectively on M. Let us now fix an integer
Ny > 1. For small enough ¢,d > 0, Lemma 7.13 furthermore states there is a

linear operator K acting on M, which has the properties:

(1) LK is the identity and
(2) K is a contraction for || ||y, i-€., [|[K(M)||n, < enol|M||n, with ¢y, < 1
and all M € M

Define now a sequence of elements T, € M by Ty = K(B — S) and T}, =
K((B — S)Ti-1) for k > 1. Since |B — S||y < 1 for all integers N > 1,
one can deduce from (2) that .- T} converges uniformly on ¥ to a matrix
function T' which is continuous on X, holomorphic on the interior of ¥ and
satisfies |T(z)| < D|z|™o for a certain constant D > 0 and all z € X. Then
L(T) = L(K(B-S)+K((B-S)To)+---) = (B—S)+(B—S)T. Thus we have
found a certain solution 7" for the equation 6(T)—ST+TS = (B—S)+(B-S)T.
We want to show that the element T" belongs to M.

The element (B—S5)(1+71') belongs to M and thus L( K((B—S)(1+T)) ) = (B—
S)(14-T). Therefore T := T— K ((B—S)(14T)) satisfies L(T) = 0 and moreover
T is continuous on ¥, holomorphic at the interior of ¥ and |T(z2)| < Dy|z|N
holds for z € ¥ and some constant Dy,. From the diagonal form of L one
deduces that the kernel of L consists of the matrices diag(e(—q¢1),...,e(—qn)) -
C-diag(e(q1), - - -, e(gn)) with C a constant matrix. The entries of T' are therefore
of the form ce(g; — ¢;) with ¢ € C and satisfy inequalities < D|Z|NO for some
constant D and our choice of Ny > 1. Thus the non-zero entries of T are in .A8.
It follows that T € M (again for ¢,d > 0 small enough) and thus T € M. O
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7.3 The Inhomogeneous Equation of Order One

Let ¢ € C[z7!] have degree k in the variable 1. In this section we consider
the inhomogeneous equation

(6 —q)f = g with g € C({z}) and f € C((2)).

According to Theorem 7.10, there is for every direction d € S an asymptotic
lift of f in A(a,b), with d € (a,b) and |b — a| “small enough”. The aim of this
section is to study the obstruction for the existence of an asymptotic lift on
large intervals (or sectors). As happens quite often, the obstruction from local
existence to global existence is measured by some cohomology group. In the
present situation, we will show that the obstruction is the first cohomology
group of the sheaf ker(§ — ¢, A%). We refer to Appendix C for the definitions
and concepts from sheaf theory that we shall need.

Let U be a non-empty open subset of S! (including the case U = S!). There is a
covering of U by “small” intervals S;, such that there exists for i an f; € A(S;)
with asymptotic expansion f and (8 — q)fi = g. The difference f; — f; belongs
to ker(d — ¢, A%)(S; N'S;). Hence the collection {g; ;} := {fi — f;} is a 1-cocycle
for the sheaf ker(§ — ¢,.A%), since g; j + gj.x + gk.s = 0 holds on the intersection
S;N'S; N S,. The image of this 1-cocycle in HY(U, ker(§ — ¢, A%)) is easily
seen to depend only on f . Moreover, this image is zero if and only if f has
an asymptotic lift on U. The practical point of this formalism is that we can
actually calculate the cohomology group H*(U, ker(d — ¢, A%)), say for U = St
or U an open interval.

Write ¢ = qo + g1z~ 1 + - 4+ qpz~F with g, # 0 and let e(q) := exp( qo log z +
Lzt 44 L 27F) be a “symbolic solution” of (§ — g)e(g) = 0. On a sector
S # S! one can give e(q) a meaning by choosing the function log z. For k = 0
one observes that ker(§ — ¢,.4%) is zero. This implies that any formal solution
fof (6—q)f =g e C({z}) has an asymptotic lift in A(S') = C({z}). In other

words f is in fact a convergent Laurent series.

From now on we will suppose that k£ > 0. We will introduce some terminology.

Definition 7.18 Let ¢ = qo + q12 ' + - + qr2z % with ¢, # 0 and k > 0 and
let e(q) := exp( qolog z+ Lz7t + .-+ Lz7F) A Stokes direction d € S for
q is a direction such that Re(<Z:z7%) =0 for z = |z|e’®. A Stokes pair is a pair
{di,dz} of Stokes directions such that |dy —di| = 7, i.e., di, da are consecutive
Stokes directions. The Stokes pair {d1,d2} is called positive if Re(Z2z7%) > 0
for z with arg(z) € (di,dz). The Stokes pair is called negative if Re(Z-27%) <0
for z with arg(z) € (d1,da). a

This terminology reflects the behaviour of |e(q)(z)| for small |z|. For d € (d1,d2),
where {dy,ds} is a positive Stokes pair, the function r — |e(q)(rei?)| explodes
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for r € Rso, r — 0. If {dy,d2} is a negative Stokes pair, then the function
r +— |e(q)(re'?)| tends rapidly to zero for 7 € R~g, 7 — 0. The asymptotic
behaviour of |e(q)(re'?)| changes at the Stokes directions. The above notions
can be extended to a ¢, which is a finite sum of terms c,2™%, with s € R>¢ and

¢, € C. However in that case it is better to consider the directions d as elements
of R.

The sheaf ker(§ — ¢, A%) is a sheaf of vector spaces over C. For any interval
(a,b) where {a,b} is a negative Stokes pair, the restriction of ker(6 — ¢, .A4%) to
(a, b) is the constant sheaf with stalk C. For a direction d which does not lie in
such an interval the stalk of ker(6 — ¢,.A°) is zero. One can see ker(§ — ¢, .A°)
as a subsheaf of ker(§ — ¢, 0) where O denotes the sheaf on S! (of germs) of
holomorphic functions. If gg € Z then ker(d — g, O) is isomorphic to the constant
sheaf C on S!. If gy € Z, then the restriction of ker(§ — ¢, O) to any proper
open subset of S! is isomorphic to the constant sheaf. Thus ker(§ — ¢, .A%) can
always be identified with the subsheaf F of the constant sheaf C determined by
its stalks Fy: equal to C if d lies in an open interval (a, b) with {a, b} a negative
Stokes pair, and 0 otherwise.

More generally, consider a proper open subset O C S' with complement F and
let i : F — S! denote the inclusion. Let V be an abelian group (in our case this
will always be a finite dimensional vector space over C). Let V also denote the
constant sheaf on S' with stalk V. Then there is a natural surjective morphism
of abelian sheaves V' — ,i*V. The stalk (i.i*V)q is zero for d € O and for
d & O, the natural map (V)q — (i+i*V)4 is a bijection. Write Vp := i,4*V and
define the sheaf V to be the kernel of V- — Vi = i,4*V. Then one can identify
ker(d — g, A°) with Cp, where O is the union of the k open intervals (a;, b;)
such that {a;, b;} are all the negative Stokes pairs. Clearly Co is the direct sum
of the sheaves C,,1,). We are therefore interested in calculating HY(U,Cy),
with I an open interval and U either an open interval or S!. Consider the exact
sequence of sheaves

0—-V;—V —>Vr—0onS'.

For the sheaf Vi one knows that H* (U, Vp) = HY(U N F,V) for all i > 0. Thus
H°(U,VE) = V¢, where e is the number of connected components of U N F,
and H (U,Vr) = 0 for all i > 1 (c.f., the comments following Theorem C.27).
Consider any open subset U C S!. The long exact sequence of cohomology
reads

0— H°(U,Vr) = H*(U,V) = H°(U,Vg) — H'(U,Vi) = H'(U,V) = 0
Lemma 7.19 Let the notation be as above with V.= C. If U = S' and for

U = (a,b) and the closure of I contained in U, then H'(U,C;) = C. In all
other cases H'(U,Cy) = 0.

1%

Proof. Let U = S'. We have that H°(S*, C;) =0, H(S!,C) = H°(S!,Cpr)
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C (by the remarks preceeding the lemma) and H'(S!,C) = C (by Example
C.22). Therefore the long exact sequence implies that H'(S!,Cy) = C.

Let U = (a,b) and assume that the closure of I is contained in U. We then
have that U N F has two components so H*(U,Cr) = H(UNF,C) 2 C & C.
Furthermore, H°(U, C;) = 0 and H°(U, C) = C. Therefore H'(U,C;) = C.

The remaining cases are treated similarly. O
The following lemma easily follows from the preceeding lemma.

Lemma 7.20 Let U C S' be either an open interval (a,b) or S*. Then
HY(U,ker(6 — q,A%)) = 0 if and only if U does not contain a negative Stokes
pair. More generally, the dimension of H'(U,ker(d — q, A%)) is equal to the
number of negative Stokes pairs contained in U. In particular, the dimension of
HY(S, ker(§ — ¢, A%)) is k.

This lemma can be easily generalized to characterize H'(U, ker(6 — B, .A°%))
where § — B is a quasi-split equation. We shall only need a weak form of this
which we state below. We refer to Definition 3.28 for the definition of the
eigenvalue of a differential equation.

Corollary 7.21 Let U C S be an open interval (a,b) and § — B a quasi-split
differential operator. Then H'(U,ker(d — B, A%)) = 0 if and only if U does not
contain a negative Stokes pair of some eigenvalue of § — B.

Proof. We may suppose that the operator is split and it is the sum of operators
of the form § — ¢ + C where C is a constant matrix. Therefore it is enough to
prove this result when the operator is of this form. Let T be a fundamental
matrix for the equation dy = Cy. The map y — Ty gives an isomorphism
of sheaves ker(§ — ¢,.A%) and ker(6 — ¢ + C,.A%). The result now follows from
Lemma 7.20. O

The map 6 — ¢ is bijective on C((z)). This follows easily from
(6 —q)2" = —qpz""* 4 - .- for every integer n. Thus the obstruction for lifting
the unique formal solution f of (§ — ¢)f = g depends only on g € C({z}).
This produces the C-linear map 8 : C({z}) — H'(S* ker(§ — ¢,.A%)), which
associates to every g € C({z}) the obstruction ((g), for lifting f to an element
of A(S'). From A(S') = C({z}) it follows that the kernel of 3 is the image of
0—qon C({z}).

Corollary 7.22 After a transformation (6—q) = z~™(d—q)z", we may suppose
that 0 < Re(qo) < 1. The elements {B3(z")| i = 0,...,k — 1} form a basis of
HY(SY, ker(§ — q,A%)). In particular, 3 is surjective and one has an exact
sequence

0— C({z}) = C({z}) > H (S ker(5 — ¢, A%)) — 0.
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Proof. According to Lemma 7.20 it suffices to show that the elements are
independent. In other words, we have to show that the existence of ay € C({z})
with (§—q)y = ag+aiz+---+ap_12""1 implies that all a; = 0. The equation has
only two singular points, namely 0 and co. Thus y has an analytic continuation
to all of C with at most a pole at 0. The singularity at co is regular singular.
Thus y has bounded growth at oo, i.e., [y(z)| < C|z|" for |z| >> 0 and with
certain constants C, N and so y is in fact a rational function with at most poles
at 0 and co. Then y € Clz,271]. Suppose that y # 0, then one can write
¥y =t y;z" with ng < ny and y,, # 0 # yn,. The expression (§ — q)y €
Clz,z '] is seen to be —qryne 2" + (11 = q0)Yn, 2™ + 200 _k<icn, *2'- This
cannot be a polynomial in z of degree < k — 1. This proves the first part of the
corollary. The rest is an easy consequence. O

We would like to show that the solution f of (6 —q) f = g is k-summable.
The next lemma gives an elementary proof of f € C((2))1 /-

Lemma 7.23 The formal solution f of (6 — q)f = g lies in C((2))1/x. More
generally, 0 — q is bijective on C((2))1 k-

Proof. We give here an elementary proof depending on simple estimates.
Write f = > cp2™ and g = ), gnz™. For the coefficients of f one finds a
recurrence relation

gk—1 q1 go—"n 1

Cn+k—1 — """ — —Cpg1 — Cn — —Gn-
Ak dk Ak

Cn+k = —

There exists a constant B > 0 with |g,| < B™ for n > 0. We must find an
estimate of the form [c,| < A"T'(1 4 %) for all n > 0 and some A > 0. We try

to prove by induction that % < 1, for a suitable A > 0 and all n > 0.
k

The induction step should follow from the bound for #1%, given by

the recurrence relation. This bound is the expression

+[(14 2= (1 + L)
AT(1 + 2£5) AR-IT(1 4 2tk
(x+n)I(1+ %) *xB™

AT+ 5 | AT )

where the #’s denote fixed constants. From I'(1 4+ ZE) = 2EED(1 + 2) one
easily deduces that a positive A can be found such that this expression is < 1
for all n > 0. The surjectivity of § — ¢ follows by replacing the estimate B™ for
lgn| by B"I'(1+ %). The injectivity follows from the fact that § — ¢ is bijective
on C((2))1/ (see the discussion following Corollary 7.21). O

For a direction d such that {d — 5,d + g;} is not a negative Stokes pair,
Lemma 7.20 produces an asymptotic lift in A(d — §,d + §), for some o > T, of
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the formal solution f of (6 — q)f = ¢. This lift is easily seen to be unique. If we
can show that this lift is in fact a section of the subsheaf A; /5, then the proof

that f is k-summable would be complete. In the next section we will develop
the necessary theory for the sheaf A, .

7.4 The Sheaves A, AO,AUk,A(l)/k

We start by examining the sheaves A and A°.

Proposition 7.24 Consider the exact sequence of sheaves on S!:
0—A"—A—C((z) — 0,

where C((2)) denotes the constant sheaf on S* with stalk C((z)).

1. For every open U # S' the cohomology group H'(U, . ) is zero for the
sheaves A%, A and C((z)).

2. The natural map H'(S', A°) — H'(S', A) is the zero map. As a conse-
quence, one has that

~

H'(S', A) = H'(S8',C((2)) ) = C((=)),
and there is an exact sequence

0— C({z}) = C((2)) — H'(S", A%) — 0.

Proof. We note that the circle has topological dimension one and for any
abelian sheaf F' and any open U one has HY(U,F) = 0 for i > 2 (see Theo-
rem C.28). We want to show that for any open U C S! (including the case
U = S!), the map H*(U, A%) — H(U, A) is the zero map. Assume that this is
true and consider the long exact sequence of cohomology:

0— H°(U, A% — H°(U, A) — H°(U,C((2))) — HY(U, A°)
— H'(U,A) — H'(U,C((2))) = 0

If U # S', then the Borel-Ritt Theorem implies that the map H°(U, A) —
HO(U,C((2))) is surjective so the map H°(U,C((z))) — H(U,.A%) is the zero
map. Combining this with the fact that H'(U,.A°) — H(U, A) is the zero
map, we have that H'(U, A°) = 0 and H'(U, A) = H*(U,C((z))) = 0. Since
each component of U is contractible (and so simply connected), Theorem C.27
implies that H'(U,C((z))) = 0 and 1. follows. If U = S! then H(U, A) =
C((2)) and HY(U,C((2))) = H'(U,C((2))) = C((2)) (c.f., Exercise C.22). Since
HY(U,A%) — H'(U, A) is the zero map, 2. follows from the long exact sequence
as well.
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We start by considering the most simple covering: U = (a1,b1) U (ag, ba)
with (a1,b1) N (az,b2) = (az,by1), i.e., inequalities a1 < az < by < b for the
directions on S* and U # S!'. A l-cocycle for A and this covering is given
by a single element f € A°(a2,b1). Take a small positive € such that (ai,b —
€) U (a2 + ¢,b2) = U and consider the integral %m f“/ %d@, where the path v
consists of three pieces «; for i = 1,2,3. The path ~; is the line segment from 0
to ret(@2+¢/2) ~, is the circle segment from ret(%2+¢/2) to 1 (01=¢/2) and ~4 is the
line segment from re*(®*=¢/2) to 0. The 7 > 0 is adapted to the size of the sector
where f lives. We conclude that for z with |z] < r and arg(z) € (a2 +€,b1 — €)
this integral is equal to f(z). The path is divided into two pieces -4, which is
~1 and the first half of 75 and the remaining part v_. The integral over the two
pieces will be called fi(z) and —f_(z). We will show that f; € A(az + €,b2)
and f_ € A(a1,b; —€). From this it follows that our 1-cocycle for A° has image
0in HY(U, A).

By symmetry, it suffices to prove the statement for f,. This function lives

in fact on the open sector V := S'\ {as + €¢/2} (and say |z| < r). The func-

tion % can be developed as power series in z, namely ano f(O) ¢z,

We consider the formal power series F' = ano(ﬁ f7+ F(O)¢Cmd¢) 2™ and

want to prove that f; has asymptotic expansion F' on the open sector V.
N N
171(_1/2 + (12_/ 9/( , one concludes that the difference of f; and
1 —1- : : 1 /O Q)

> 0<n<N %fw f(O)¢t7md¢ 2™ is the integral %fw S5/ dC. For any
closed subsector W of V one has inf ey |1 —2/(]| is strictly positive. By assump-
tion, there are constants Cyy1 such that |f(¢)] < Cn41|¢|V T for all N > 0.
One concludes that the last integral is bounded by Dy|z|Y for some constant
Dy.

The next case that we consider is a covering (a1, b1), (az,b2) of St. The
intersection (a1,b1) N (az,bs) is supposed to have two components (az, b;) and
(a1,b2). Let the 1-cocycle be given by f € A%(ag,b;) and 0 € A%(ay, be). Define
f+ € A(az + €,b2) and f_ € A(a1,b1 — €) as in the first case. Then fy — f_
coincides with f on (as + €,b1 — €) and is zero on (a1, ba).

1 —
From T=7¢ =

The following case is a “finite special covering” of U, which is either an
open interval or S!. We will define this by giving a sequence of directions
dy < dgy < --- < d, in U and intervals (d; — €,d;11 + €) with small ¢ > 0. In
the case U = S!, the interval (d,, — €,d; + €) is also present. A I-cocycle ¢ is
given by a sequence of functions f; € A%(d; — €,d; + €). One writes £ as a sum
of 1-cocycles ¢ which have only one non zero f;. It suffices to show that such
a ( is a trivial 1-cocycle for the sheaf A. This follows from the first two cases,
since one can see ¢ also a a 1-cocycle for a covering of U by two open intervals.

Every covering of S! and every finite covering of an open interval U can be
refined to a finite special covering. We are left with studying infinite coverings
of an open interval U =: (a,b). Any infinite covering can be refined to what we
will call a “special infinite covering” of U. The latter is defined by a sequence
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dy,, n € Z of points in U, such that d; < d;4; for all i. Moreover U[d;,d;+1] = U.
The covering of U by the closed intervals is replaced by a covering with open
intervals (d; ,d], ), where di < d; < d; and |d] — d; | very small. A cocycle
¢ is again given by elements f; € A°(d;, d:r) Using the argument above, one
can write f; = g; — h; with g; and h; sections of the sheaf A above, say, the
intervals (a,(d; + d;")/2) and ((d; + d;)/2,b). Define, first formally, F; :=
>_j>i9i — 2_j<; hj as function on the interval ((d; + d;)/2, (dify + dit1)/2).
Then clearly F; — F,_; = g; — h; = f; on ((d; + d;)/2,(d} + d;)/2). There is
still one thing to prove, namely that the infinite sums appearing in F; converge
to a section of A on the given interval. This can be done using estimates on
the integrals defining the g; and h; given above. We will skip the proof of this

statement. O

Remarks 7.25 1. The calculation of the cohomology of ker(§ — ¢,.A%) and
ker(d — A, A°) was initiated by Malgrange [187] and Deligne and further devel-
oped by Loday-Richaud, Malgrange, Ramis and Sibuya (c.f. [13], [179], [194]).

2. The first statement of Proposition 7.24.2 is sometimes referred to as the
Cauchy-Heine Theorem (c.f. [194], Theorem 1.3.2.1.i and ii). However, the
name “Heine’s Theorem” seems more appropriate. O

Lemma 7.26 The Borel-Ritt Theorem for C((2)),/r Suppose that k > 1/2.
Then the map J : Ay i(a,b) — C((2))1/x is surjective if [b—al < .

Proof. After replacing z by ez!/* for a suitable d we have to prove that the
map J : Ay (—m,m) — C((z))1 is surjective. It suffices to show that an element
f= D n>1 Canlz™ with |, | < (2r)™" for some positive 7 is in the image of J.
One could refine Proposition 7.3 to prove this. A more systematic procedure
is the following. For any half line v, of the form {se’|s > 0} and |d| < 7 one
has n! = f7 ¢"exp(—C)d¢. Thus for z # 0 and arg(z) € (—m,7) one has nlz" =
fooo C"exp(—%)d(%), where the path of integration is the positive real line. This
integral is written as a sum of two parts F(n,r)(z) = fg C"exp(—£)d(%) and

R(n,r)(z) = [ C”exp(—%)d(%). The claim is that F(z) := > <, cpF'(n,7)(2)
converges locally uniformly on {z € C| z # 0}, belongs to A;(—m,7) and
satisfies J(F) = f.

The integral [; (3,5, ch”)efcp(—%)d(g), taken over the closed interval
[0,7] C R, exists for all z # 0 since Y., -, ¢,¢" has radius of convergence
2r. Interchanging > and [ proves the first statement on F. To prove the
other two statements we have to give for every closed subsector of {z € C| 0 <
|z| and arg(z) € (—m, )} an estimate of the form F := |F(z)—zg=_11 ennlz™| <
ANNI|z|N for some positive A, all N > 1 and all z in the closed sector.

N-1 T n
Now E < Y02 [enl|R(n, 7)(2)] + | [y (s n €nC™)exp(—S)d(%]. The last
term of this expression can be estimated by =~ for N |e:cp(—§)| %, because one
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has the inequality |}, < n ¢n (™| < r™N¢N for ¢ < 7. Thus the last term can
be estimated by =~ foo_o CN|exp(—§)|%. The next estimate is |R(n,7)(2)| <
[ C"|exp(—%)|d|—§|. Further ¢ < 7"~ N¢N for r < ¢ Thus |R(n,7)(2)| <
G CN|exp(—§)|%. Now r~ & + Zg;ll len|r"™N < 2r~N and we can
estimate E by 2r— [ (N|exp(—§)|%. For z = |z|e?® one has |exp(—§)| =

exp(—‘—g‘ cosf). The integral is easily computed to be (LN I. This gives

cos O)N+1
the required estimate for F. O

For k > 1/2, the function exp(—z~F) belongs to .A(l)/k(—%7 7z)- The next
lemma states that this is an extremal situation. For sectors with larger “open-
ing” the sheaf A9 /k has only the zero section. This important fact, Watson’s
Lemma, provides the uniqueness for k-summation in a given direction.

Lemma 7.27 Watson’s Lemma. .A(l)/k(a,b) =0if|b—al > %.

Proof. After replacing z by z'/F¢i for a suitable d the statement reduces
to AY(—a,a) = 0 for a > 5. We will prove the following slightly stronger
statement (c.f., Lemma 7.5):

Let S denote the open sector given by the inequalities | arg(z)| < 5 and 0 < |z] <
r. Suppose that f is holomorphic on S and that there are positive constants A, B
such that |f(2)| < A exp(—B|z|™!) holds for all z € S. Then f = 0.

We start by choosing M > B and € > 0 and defining 8 by 0 < 8 < 7 such that
cosfB ==L and § > 0by (1+6)8 < Z and cos((1 + 6)B8) = 5. Define the
function F(z), depending on M and ¢, by F(z) := f(z) exp(—ez~ 170 + M2z71).
Let S denote the closed sector given by the inequalities |arg(z)| <  and 0 <
|z| <r/2.

The limit of F(z) for z — 0 and z € S is 0 and thus F(z) is bounded on S.
According to the maximum principle, the maximum of |F'(z)]| is assumed at the
boundary of S. For 0 < |z| < r/2 and arg(z) = [ one can bound |F(z)| by

< A exp(—B|z|™1) exp(—e|z| "0 cos((1 4 6)5) + M|z| L cos(B)) < A.

For the boundary 0 < |z| < r/2 and arg(z) = —f one finds the same esti-
mate. For z with |arg(z)| < S and |z| = /2, one finds the estimate |F'(z)| <
A exp((M — B)(r/2)~'). We conclude that for any z € S the inequality
|F(2)| < A exp((M — B)(r/2)~"') holds. Thus we find for z € S the inequality

[f(2)] < A eap(M = B)(r/2)7") leap(=Mz")| |exp(+ez~' 7).
Since € > 0 is arbitrary, we conclude that also

[f(2)] < A eap(=B(r/2)7") [exp(M((r/2) = 271))|
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holds for all z € S. For a fixed z with |arg(z)| < 7 and small enough [z| > 0
such that Re((r/2)~! — 271) < 0, this inequality holds for all sufficiently large
M. Since |exp(M((r/2)~* — z71)| tends to 0 for M — oo, we conclude that
f(z)=0. O

Proposition 7.28

1. The following sequence of sheaves on S' is ezact.
0— AL — Ak — C((2))1yx — 0
2. For every open U C S!, including U = S', the canonical map
HY(U, A(l)/k) — HY(U, Ay y) is the zero map.
3. HY(U, Ay ) is zero for U # S and equal to C((2))1/y for U = S*.
4. Hl((a,b),A(l)/k) =0 forb—al <T.
5. For (a,b) with |b —a| > T, the following sequence is exact.
0 — Ay(a,b) = C((2)1/r — H'((a,b), A} 1) — 0
6. The following sequence is exact.

0 — C({z}) = C((2))1/x — H'(S", A1) — 0
7. There is a canonical isomorphism C((z))1/x — HO(SI,A/A?/k).

Proof. 1. follows from Lemma 7.26. The proof of part 2. of Proposition 7.24
extends to a proof of part 2. of the present proposition. One only has to verify
that the functions fy and f_ are now sections of the sheaf A ;. Furthermore
3.,4.,5., and 6. are immediate consequences of 1., 2., the known cohomology
of the constant sheaf C((z));/g, Lemma 7.27 and the long exact sequence of
cohomology. We identify the constant sheaf C((2))1 /5 with A; /4 /Af /i~ Thus
there is an exact sequence of sheaves

0— C((2)1/x — A/A(l)/k — A/ A1 — 0
Taking sections above S we find an exact sequence

0 — C())jk — HO(S', AJA ) — HO(SY, A/ Ay ) (7.1)
The exact sequence

0— Ay —A—A/Ay, — 0
induces the long exact sequence of cohomology above S':

0 — C({z}) — C{=}) = H(S", A/ A1) — C((:))1y — C((=) -

This implies H°(S', A/ A, ;) = 0 and so, from the sequence (7.1), we conclude
7. O
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Remark 7.29 Proposition 7.28.2 is the Ramis-Sibuya Theorem (see [194], The-
orem 2.1.4.2 and Corollaries 2.1.4.3 and 2.1.4.4).

A

7.5 The Equation (0 — ¢)f = g Revisited

Some of the results of Section 7.3 can be established using the methods of Section
7.4.

Exercise 7.30 Give an alternative proof of the surjectivity of 5 : C({z}) —
H'(S', ker(§ — ¢, A%)) (see Corollary 7.22) by using Proposition 7.24. Hint:
An element ¢ € H*(S! ker(§ — ¢,.A%)) induces an element of H'(S!,.A%). By
Proposition 7.24.2, this element is zero in H'(S!, A) so for some covering {S;}
of S!, there exist fi € HY(S;,A) such that f; — f; = & j, where & ; is a
representative of £ on S; N S;. Show that the (6 — ¢)f; glue together to give an
clement g € HO(S', A) = C({z}) and that the f; are lifts of some f € C((z))
such that (6 — ¢)f = g. O

Exercise 7.31 Give an alternative proof of the fact that (§—¢q)f =g € C({z})
implies f € C((2))1/k (see Lemma 7.23) by using the last statement of Propo-
sition 7.28. Hint: g maps to an element 3(g) € H*(S!, ker(6 — ¢, AY)). Observe
that ker((d — q),.A%) = ker(§ — q,A(l)/k). Thus f can be seen as an element of

HO(SY, A/AL ). 0

Proposition 7.32 The element f € C((2)) satisfying (§—q)f = g € C({z]}) is
k-summable. More precisely, f is k-summable in the direction d if {d—5, d+35 }
is not a negative Stokes pair.

Proof. We know by Lemma 7.23, or by Exercise 7.31, that f € C((2))1/k-

Take a direction d. By Proposition 7.28 there is an h € (Ay/;)a with J(h) = f.
Clearly (6 —q)h—g=go € (‘A(l)/k)d' By Theorem 7.12 there is an hg € (A(l)/k)d
with (§ — ¢)ho = go and thus (6 — ¢)(h — ho) = g. In other words, the formal
solution f lifts for small enough sectors S to a solution in 4, /k(S) of the same
equation. This yields a 1-cocycle in the sheaf ker(§ — g, .A(l)/k) = ker(d — ¢, A%).
This 1-cocycle is trivial for an open interval (d — g —€,d + g + ¢€) (for some
positive €) when {d— 5, d+ 5} is not a negative Stokes pair (see Lemma 7.20).
O

Definition 7.33 Consider ¢ = g1z % + qr_127 ¥ + -+ q127t € 271C[z 7]
with k. # 0. A direction d will be called singular for ¢ (or for the operator 6 —q)
if ge ™" is a positive real number. O

One immediately sees that d is a singular direction for § — ¢ if and only if {d —

55> A+ 35 } is a negative Stokes pair. Thus one can reformulate Proposition 7.32

by saying that f is k-summable in the direction d if d is not a singular direction.
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7.6 The Laplace and Borel Transforms

The formal Borel transformation By, of order k is the operator C[[z]] — C[[(]]
defined by the formula

B =D S

n>0 n>0

The Laplace transform Ly, 4 of order k in the direction d is defined by the formula

(Li,af)(z /f Yexp(— )d( )k,

The path of integration is the half line through 0 with direction d. The function
f is supposed to be defined and continuous on this half line and have a suitable
behaviour at 0 and oo in order to make this integral convergent for z in some
sector at 0, that is, |f({)] < AeBlE" for positive constants A, B. We note
that we have slightly deviated from the usual formulas for the formal Borel
transformation and the Laplace transformation (although these agree with the
definitions in [15]).

A straightforward calculation shows that the operator Ly 4 o Bk has the
property Ly q 0 By (™) = 2" for any n > 0 and more generally Liqo0 Bif = f
for any f € C{z}. Suppose now that f e Cllzl]1/k- Then (Brf)(¢) is by
definition a convergent power series at ¢ = 0. One can try to apply L q to
this function in order to obtain an asymptotic lift of f to some sector. The
following theorem makes this precise. We define a function, analytic in a sector
{C € C|0<|¢] <ooand |arg(¢) —d| < €}, to have exponential growth of order
< k at oo if there are constants A, B such that |h(¢)| < A exp( B|¢|*) holds for
large |¢| and |arg(¢) — d| <.

Theorem 7.34 Let f € Cl[z]]1/x and let d be a direction. Then the following
are equivalent:

1. f is k-summable in the direction d.

2. The convergent power series B’kf has an analytic continuation h in a full
sector {¢ € C| 0 < [¢| < oo and |arg(() — d| < €}. In addition, this
analytic continuation has exponential growth of order < k at co on this
sector.

Proof. We give here a sketch of the proof and refer to ([15], Ch. 3.1) for the
missing details concerning the estimates that we will need. We may suppose
k=1and d = 0. Write f =Y 502" We will start by proving that 2.
implies 1. Let d be a direction with [d| < e. The integral

F(2) = (L1.ah)(2 /h Oeap(= (§)
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converges for z # 0 with |z| small enough and |arg(z) — d| < 5. Moreover this
integral is analytic and does not depend on the choice of d. Thus f is an analytic
function on a sector (=5 — 65 +e€). Write h(() = EN ! %(¢" 4+ hn(¢). Then
f(z) = Zivol ¢iz' + (L£1,4hN)(2). One can show (but we W111 not give details)
that there exists a constant A > 0, independent of IV, such that the estimate
|(L1,ahn)(z)| < AN 2N holds. In other words, f lies in Ai (=3 — €, % +€)
and has asymptotic expansion f .

Suppose now that 1. holds and let f € A;(—F — ¢, § + ¢) have asymptotic
expansion f . Then we will consider the integral

h(C) = (BLf)(C / F()z eap(S) d=~*

over the contour A, which consists of the three parts {sei(*%w 0<s<r}
{reid] — Tt < < T} and {se' 20| 1 > 5 > 0}

For ¢ with 0 < |{] < oo and |arg(¢)| < €/4 this integral converges and is
an analytic function of {. It is easily verified that h has exponential growth of
order < 1. The integral transform B is called the Borel transform of order 1. It
is easily seen that for f = 2™ the Borel transform B (f) is equal to . We write
now f = Ez o Yeiz' 4+ fn. Then |fn(2)] < ANN!zN holds for some constant
A > 0, independent of N. Then h(¢) = ZN ! %'+ Bi(fn)(¢). One can prove
(but we will not give details) an estimate of the form 1B1(fn)(Q)] < AN|¢CN| for
small enough |¢|. Using this one can identify the above h for ¢ with |{| small
and | arg(¢)| < €/4 with the function Bif. In other words, 1 f has an analytic
continuation, in a full sector {¢ € C| 0 < [¢| < oo and |arg({)| < €/4}, which
has exponential growth of order < 1. m]

Remarks 7.35 1. In general one can define the Borel transform of order k in
the direction d in the following way. Let d be a direction and let S be a sector
of them for {2 | 2| < R, |arg(z) —d| < p} where p > 5. Let f be analytic in
S and bounded at 0. We then define the Borel transform of f of order k in the
direction d to be

(Bef)(C /f 2)eap( (=

where ) is a suitable wedge shaped path in .S and ( lies in the interior of this
path (see [15], Ch. 2.3 for the details). The function By f can be shown to be
analytic in the sector {¢ | [¢| < oo, |arg(¢) —d| < p — gz}. Furthermore,

applying B to each term of a formal power series f =Y ¢,z" yields B f .

2. The analytic way to prove the k-summation theorem for a solution v of an
equation (6—A)0 = w, which has only k& > 0 as positive slope, consists of a rather
involved proof that B0 satisfies part 2. of Theorem 7.34. The equivalence with
1. yields then the k-summability of ©. In our treatment of the k-summation
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theorem (and the multisummation theorem later on) the basic ingredient is the
cohomology of the sheaf ker(d — A, (A°)") and the Main Asymptotic Existence
Theorem. a

We illustrate this theorem with an example of the type (6 — ¢)v = w, which
is chosen such that B9 can actually be calculated. This example also produces
for the image of ¥ in the cohomology group H* (U, ker(§ —q, .A%)) of Lemma 7.20,
an explicit 1-cocycle by the Laplace and Borel method.

Example 7.36 The equation (6 — k2% + k)0 = w with w € C[z,z71].

Write 9 € C((z)) as > v,z™. Then for n >> 0 one finds the relation v,y =
”—*kvn Thus for n >> 0 one has v, = a;T'(1 + %), where the constant a; only
depends on n modulo k. In other words the possibilities for v are

P+ ai Y, o T+ nkti) nh+ with p € Clz, 27! and ag, . .., ar—1 € C.

It suffices to consider ¢ with p = 0, and thus

k—1 .
S—kr "4 ko =S —akD(1 4 —)z~k+,
(0= ke + k)0 ; akT(1+ )z

k—1
The formal Borel transform Byd is equal to f := @f@ietodanaC — mpe

1_cF
radius of convergence of f is 1 (if & # 0). For any directioil d, not in the
set {2”3 |7 =0,...,k — 1}, the function f has a suitable analytic continuation
on the half line d Consider a direction d with 0 < d < 27” The integral
v(z) == (Lraf)(z) = [, f(Qexp(— C)k) d(%)k is easily seen to be an analytic
function of z for z # 0 and arg(z) € (=%,%). Thus v is analytic for z # 0
and arg(z) € (d — g,d + g37). Moreover v does not depend on d, as long as

d € (0, 2%) Thus we conclude that v is a holomorphic function on the sector,
defined by the relation arg(z) € (=2, 2% + ).

Exercise 7.37 Prove that the above v lies in A/, (-3, 2% + 35) and has
asymptotic expansion ¢. Hint: Subtract from f({) a truncation of its Taylor
series at ¢ = 0. O

Let w be the Laplace transform Ly, 4f for d € (—27”, 0). Then by the Cauchy
Residue Formula one has that

(v~ w)(z) = ~2mi Reser (F(Qean(~(>)) d($)F)

z
=27i (ag+ a1 + -+ + ak—1)h,

in which the function h := 2z *exp(—2z7*) is a solution of (§ — kz" + k)h =
0. More generally consider a direction d; := 2%3 and let d;‘ and dj_ denote

directions of the form d; £ € for small € > 0. Let v;+ and v;- denote the Laplace

integrals Ek,dj . fand Ek’dr f. Then one has the formula

(vj+ —v;-)(2) = 2mi (ap + a1 + - - + ax—1¢" 1A with ¢ = ek,
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27j

We compare this with Section 7.3. The directions = are the singular directions
for 6 — k2% 4+ k. The negative Stokes pairs are the pairs {2% — 35 2% + 95 )
The Laplace-Borel method produces the asymptotic lifts of ¢ on the maximal
intervals, i.e. the maximal intervals not containing a negative Stokes pair. Con-
sider, as in Section 7.3, the map 3 : C({z}) — H(S! ker(d — kz~* + k, A?%)),
which associates to each w € C({z}) the image in H'(S!, ker(§ — k2% +k, A%))
of the unique formal solution % of (§ — k2% + k)d = w. For w of the form

Zf;ol b;z~*+% the above residues give the explicit 1-cocycle for 3(w).

Exercise 7.38 Extend the above example and the formulas to the case of a
formal solution ¥ of (§ — k2% + k) = w with w = > w,2" € C({z}). In
particular, give an explicit formula for the 1-cocycle f(w) and find the conditions
on the coefficients w,, of w which are necessary and sufficient for ¢ to lie in

C({#}). O

7.7 The k-Summation Theorem

This theorem can be formulated as follows. The notion of eigenvalue of a dif-
ferential equation is defined in Definition 3.28.

Theorem 7.39 Consider a formal solution © of the inhomogeneous matrix
equation (6 — A)0 = w, where w and A have coordinates in C({z}) and such
that the only positive slope of § — A is k. Then 0 is k-summable (i.e., every
coordinate of ¥ is k-summable). Let qi,...,qs denote the distinct eigenvalues of
6 — A. Then v is k-summable in the direction d if d is not singular for any of
the q1,...,qs.

We note that the ¢; are in fact polynomials in z—*/™ for some integer m > 1.
The set of singular directions of a single ¢; may not be well defined. The
set {qi,...,qs} is invariant under the action on C[z~'/™], given by 2~ /™
e~2mi/mz=1/m Thus the set of the singular directions of all ¢; is well defined.
We start the proof of Theorem 7.39 with a lemma.

—

Lemma 7.40 Let © be a formal solution of (6 — A)0 = w, where A and w have
coordinates in C({z}) and let k > 0 be the smallest positive slope of 6 — A. For
every direction d there is an asymptotic lift vq of O with coordinates in (A;i)a-

Proof. We will follow to a great extend the proof of Proposition 7.32. There
exists a quasi-split equation (§ — B) which is formally equivalent to (6 — A),
ie., F=1(§ — A)F = (6 — B) and F' € GL,(C((2))). The equation (§ — B) is
a direct sum of (6 — ¢; — C;), where ¢i,...,qs are the distinct eigenvalues and
the C; are constant matrices. After replacing z by a root z'/™, we are in the
situation that & > 0 is an integer. Furthermore, we can use the method of
Corollary 7.16 to reduce to the case where all the C; are 0. The assumption
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that k is the smallest positive slope is equivalent to: if ¢; is # 0 then the
degree of ¢; in 27! is > k. Let d be a direction. By Theorem 7.10, there
is an Fy € GL,(Aq) with J(Fy) = F and F;'(6 — A)Fy = (§ — B). Since
ker(6 — g;, AY) = ker(6 — g, (A(l)/k)d), the kernel ker(§ — B, ((A%)q)") lies in
((A(l)/k)d)". Since Fy acts bijectively on ((A(l)/k)d)”, one also has that the kernel
of § — A on ((A%)g)" lies in ((A(l)/k)d)”. The element ¢ has an asymptotic lift in
((A)q)™, which is determined modulo the kernel of (6 — A) and thus defines a
unique element of ((.A/.A(l)/k)d)". By gluing one finds a global section, i.e., over
S!, of the corresponding sheaf. The last statement of Proposition 7.28 implies
that the coordinates of © are in C((2));/5. For a direction d one can first lift
0 to an element of ((A;/)q)" and then, using Theorem 7.12, we conclude that
there is a lift vg € ((A1/x)q)" satisfying the equation (6 — A)vg = w. a

The obstruction to lifting ¥ to a solution of the equation with coordinates in
((A1/x)(a,b))™ is given by a 1-cocycle with image in the group H*((a, b), ker(d—
A, (A /)") ). The theorem will now follow from the known cohomology of the
sheaf Kp := ker(d — B, (A(l)/k)") ) (see Lemma 7.20), and the construction
in the next lemma of an isomorphism between restrictions of the two sheaves
K4 :=ker(d — A, (.A(l)/k)") ) and Kp to suitable open intervals (a, b).

Lemma 7.41 Suppose that d is not a singular direction for any of the q;, then
for some positive € the restrictions of the sheaves K4 and KCp to the open interval
(d— 35 — €,d+ g5 + €) are isomorphic.

Proof. We may suppose that the g; are polynomials in z~'. As before § — A
is formally equivalent to 6 — B, which is a direct sum of § — ¢; + C; and we
may suppose that the C; are 0. Let f be any direction. The formal F with
F~1(6 — A)F = (§ — B) satisfies the differential equation 0(F) = AEF — FB.
By Theorem 7.10, F lifts to an Fy € GL,(Ay) with F;l(é —A)Fy = (6 — B).
This produces locally at the direction f an isomorphism (C4); — (Kp)s. The
asymptotic lift Fy is not unique. Two asymptotic lifts differ by a G € GL,,(Ay)
with J(G) = 1 and G71(§ — B)G = (§ — B). We have to investigate Kp and
the action of G on Kpg in detail.

We note that Kp is the direct sum of Kp (i) := ker(d — ¢;, (A(l)/k)”7) over all non
zero ¢;. The action of G on (Kp) s has the form 1+3 7, . l; j, where 1 denotes the
identity and l; ; € Home(Kp (i), Kg(j))f. For any p=piz=t+--- € 271C[z71]
with p; # 0, we will call the direction f flat if Re(pje™*') > 0. With this
terminology one has: ; ; can only be non zero if the direction f is flat for ¢; — g;
(and f is of course also a flat direction for ¢; and g¢;).

Let us call S the sheaf of all the automorphisms of K g, defined by the above con-
ditions. The obstruction for constructing an isomorphism between the restric-
tions of K4 and Kp to (a,b) is an element of the cohomology set H'((a,b),S).
We will show that this cohomology set is trivial, i.e., it is just one element, for
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(a,b) = (d — g — €, d+ g +¢) with small € > 0 and d not a singular direction.
Although § is a sheaf of non abelian groups, it is very close to sheaves of abelian
groups.For any direction f, define ¢; <y ¢; if f is a flat direction for ¢; — g¢;.

Lemma 7.42 Let S be as above.

1. For any f € S', every element of the stalk Sy is unipotent.

2. There exists a finite sequence of subsheaves subsheaves S(r) of S, given by
14315, .5, belongs to S(r)s if l;, j, # 0 implies that there are s1,..., s,
with iy <f qs; <f * <fqs. <f qjs-

Proof. 1. Let G =1+ N € Sy where N = (I; ;). As noted above, if [; ; # 0
then ¢; < g;. For any r» > 0 let N” = (I; j,»). One shows by induction that if
li j,r # 0, then there exist s1,...,s,—1 such that ¢; <y qs;, <j -+ <y ¢s,_, <y gj-
Therefore N = 0 for sufficiently large 7.

2. We define a sequence of subsheaves S(r) of S, given by 1+ >"1;, ;, belongs
to S(r)y if I, j, # 0 implies that there are s1,..., s, with gj, <y qs, <y - - <y
gs, <# ¢j,. The quotients sheaves S/S(1),...,8(i)/S(i +1),... are easily seen
to be abelian sheaves. We now use the notation introduced in Section 7.3
before Lemma 7.19. Each quotient is a direct sum of sheaves Hp, where H :=
Home(Kp(j1),Kp(j2)) and H is the open interval consisting of the directions
g which are flat for g;, — ¢;, (and for certain pairs ji # ja2). a

Thus the proof Lemma 7.41 is reduced to proving that each sheaf Hy has a
trivial H! on the proposed open intervals. The sheaves K (j) are direct sums of
sheaves Cy, with I an open interval of length 7. If I, J be both open intervals
of length 7 and let H be another open interval (I, .J, H are determined by g¢;, g;
and g; — ¢;), then it suffices to show that the sheaf 7 := Homc(Cy, C) g has

a trivial H' on the proposed intervals (d — 55 — 6d+ 5p +€).

First we will determine the sheaf Homc (Cy, C ). Let us recall the definition
of the sheaf Homg (F, G) for two sheaves of complex vector spaces F and G on,
say, the circle S!. The sheaf Homg(F, G) is defined as the sheaf associated to
the presheaf P given requiring P(U) to consist of the C-linear homomorphisms
h between the restrictions F|y and G|y. The element h consist of a family of
C-linear maps hy : F(V) — G(V), for all open V' C U, satisfying for all pairs of
open sets W C V C U the relation resg yv,wohy = hworespv,w. Here res, . «
denote the restrictions of the sheaves F' and G with respect to the sets W C V.
A straightforward use of this definition leads to a C-linear homomorphism of
the sheaves ¢ : C — Homg(Cy,C). Let I denote the closure of I. A small
calculation shows that the stalk of the second sheaf at a point outside I is 0
and the stalk at any point in I is isomorphic to C. Moreover, for any d, ¢q is
surjective. One concludes that Homg(Cy, C) is isomorphic to C7. We recall
the exact sequence

0—>CJ—>C—>C51\J—>O.
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We then have that Homg(Cyp, Cy) is the subsheaf of Home(Cy, C), consisting

of the h such that the composition Cj Lo Cs1\ s is the zero map. Thus
Homg(Cyr, Cy) can be identified with (Cy) ;7. The sheaf 7 can therefore be
identified with (C7) ;- pn7-

Let ¢;, ¢ and g; —qg; have leading terms a, b and ¢ with respect to the variable
27! and let the degree of ¢; —q; in 27! be I. The intervals I, J, H are connected
components of the set of directions f such that Re(ae™%/*), Re(be=%/*) and
Re(ce 1) are positive. We must consider two cases.

Suppose first that I # J. Then one sees that JNHNI = HNI and moreover
the complement of this set in I has only one component. In this case the sheaf
T has trivial H! for any open subset of S'.

Now suppose that I = J. The complement of JN H N1 in I can have two
components, namely the two endpoints of the closed interval T. In this case the
H?' of the sheaf 7 on I is not trivial. However, the midpoint of T is a singular
direction. Thus only one of the two endpoints can belong to the open interval

(d— % —€,d+ 5z +¢) and the H' of 7 on this interval is trivial. O

We now deduce the following corollary. Note that we are continuing to
assume that there is only one positive slope.

Corollary 7.43 The sheaves K4 and Kp are isomorphic on S'.

Proof. Let (a,b) be a (maximal) interval, not containing a negative Stokes pair
for any of the ¢;. The proof of Lemma 7.41 shows in fact that the restrictions of
K4 and Kp to (a,b) are isomorphic. The sheaf Kp has a direct sum decomposi-
tion ®;_; Kp; with Kp; := C‘}f, where the a; > 1 are integers and the intervals
I; are distinct and have length % We may suppose that I; = (d; — 55, d; + 55)
and that d; < da < -+ < ds < dy(+27) holds on the circle S!. The intervals
Ji = (ds— g5, d1+35), Jo := (d1 — 55, d2+ 37), . .. are maximal with respect to
the condition that they do not contain a negative Stokes pair. Choose isomor-
phisms o; : Kg|j, — Kaly, for i =1,2. Then oy 4 := 02_101 is an isomorphism
of Kg|l;. We note that H(I;,Kp) = H°(I;,Kp1) = C% and 012 induces
an automorphism of C** and of Kp ;. The latter can be extended to an au-
tomorphism of K on S!. After changing oo with this automorphism one may
assume that o2 acts as the identity on C®'. This implies that the restrictions
of o1 and o3 to the sheaf K coincide on J; N J>. Thus we find a morphism
of sheaves Kp 1|75,u7, — Kalsur,. Since the support of Kp; lies in J; U Ja
we have a morphism 71 : Kp; — K4. In a similar way one constructs mor-
phisms 7; : K ; — K4. The sum &7; is a morphism 7 : Kg — K4. This is an
isomorphism since it is an isomorphism for every stalk. |
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k-summability for a scalar differential equation

In this subsection we will reformulate Theorem 7.39 for a scalar differential
equation, i.e., an equation Lf = g with a differential operator L € C({z})[%],
g € C({z}) and f € C((z)).

Instead of diz, we will use the operator A = %zd%zk. An operator L of order
n can be written as Y. a; A’ with a,, = 1 and all a; € C({z}). In the sequel
we will suppose that the only slope present in L is £ > 0 and that k is an integer.
In other words, all the eigenvalues ¢; of L (or of the associated matrix equation
§ — A) are in z27'C[z7!] and have degree k in z7'. A small calculation shows
that those conditions are equivalent to L having the form

L= ZaiAi with a, =1, a; € C{z} and a(0) # 0.
i=0

Define the initial polynomial of L with respect to A to be P(T) = Y1, a;(0)T".
One easily calculates that the eigenvalues of L are of the form cz=% +--. where
¢ is a zero of the initial polynomial. Then Theorem 7.39 has the following
corollary.

Corollary 7.44 The k-Summation Theorem for Scalar Differential Equations.
Consider the equation Lf = g with L as above, g € C({z}) and f € C((2)).
Then f is k-summable. More precisely:

1. A direction d is singular if and only if d is the argument of some ( satis-
fying P(C*) = 0. The negative Stokes pairs are the pairs {d — 55 d+ 55}
with d a singular direction.

2. f is k-summable in the direction d if d is not singular.

3. Suppose that the open interval (a,b) does not contain a negative Stokes pair
and that |b—a| > %, then there is a unique f € Ai(a,b) with J(f) = f.
Moreover Lf = g.

Example 7.45 The method of Borel and Laplace applied to Lf =g.

For the special case L = P(A) (i.e., all a; € C), we will give here an independent
proof of corollary 7.44, using the formal Borel transformation and the Laplace
transformation. This works rather well because one obtains an explicit and
easy formula for B f . The general case can be seen as a “perturbation” of this
special case. However the proof for the general case, using the method of Borel
and Laplace, is rather involved. The main problem is to show that By, f satisfies
part 2. of Theorem 7.34 .

The formal Borel transform Bj is only defined for formal power series.
After subtracting from f a suitable first part of its Laurent series, we may
suppose that f € C[[z] and ¢ € C{z}. Put ¢ = Bi(f). A small cal-
culation yields Bix(Af)(¢) = ¢F¢(¢). The equation Lf = g is equivalent to
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P(CF)p(¢) = (Brg)(¢) and has the unique solution ¢(¢) = %. The function

g = Y >0 9n2" is convergent at 0, and thus |g,| < CR" for suitable positive
C, R. The absolute value of Byg(¢) = %C" can be bounded by
k

k—1 k—1

ni~n mk+1
. CZ%C'U <oy %m) < O3 Ridlen(RP)

Thus Bkg is an entire function on C and has an exponential growth of order
<k, i.e., is bounded by < A exp(B|¢|F) for suitable positive A, B.

The power series ¢ is clearly convergent and so f € C|[[z Jl1. Consider a di-
rection d with d ¢ S := {arg((1), ..., arg(Cax ) }, where {(1, .. ,Cdk} are the roots of
P(¢*) = 0. Let a,b be consecutive elements of S with d € (a,b). The function ¢
has, in the direction d, an analytic continuation With exponential growth of order

< k. It follows that the integral f(z ) (Lr,a®)(2) = [, 0(C)exp(— C)k) d(%)k
converges for arg(z) € (d — 55, d + 33) and small enough |z|. One can vary d in

the interval (a,b), without Changing the function f. Thus f is defined on the
open sector I := (a— g5, b+3). It is not difficult to show that f € Ay (I) with

J(f) = f. Indeed, let ¢(¢) = >0 c;¢* and write ¢ = ZZ o Yeilt + Ry (O)CN.
Put f = > >0 fiz'. Then ﬁk,d(ZzN:O ci¢h) = ZzN:Ol fiz* and one has to verify
the required estimate for |Ly.a(Rn(¢)¢N)(2)|. Interchanging A and [, easily
leads to Lf = g. This proves the k-summability of f and the properties 1., 2.
and 3.

More detailed information can be obtained by using the factorization P(T") =
[1;_,(T'—c;)™, with ¢; the distinct roots of P(T'). Then L has a similar factoriza-
tion and one finds that the eigenvalues of L are ¢; = kc; 2~ ¥ —k, with multiplicity

ni, for i = 1,...,s. Write P(T)"t = >, (TA(CT)) Then ¢(¢) = P(C’“) decom-
poses as »_ ¢;, where ¢;(¢) = Ai(Bkg)(C). Consider a singular direction

(Ck*C n
d, which is the argument of a (; with (¥ = ¢;. Let d*,d~ denote directions

with d~ < d < d" and d* — d~ small. Then Ly 4+¢ and Ly 4- ¢ exist and the
difference Ly, 4+ ¢ — Ly, 4- ¢ is equal to

Ai(¢M)B
—(2mi) ResCZQ(%dC’“) 27 Rexp(—c;iz7F).
As in Example 7.36, this formula gives an explicit 1-cocycle for the image of f
in H'(S!, ker(L, A%)). 0

7.8 The Multisummation Theorem

Definition 7.46 k will denote a sequence of positive numbers k1 < ko < --- <
k, with k; > 1/2. Let o € C((z)) and let d be a direction. Then ¥ is called
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k-summable, or multisummable w.r.t. k in the direction d if there is a sequence
of elements v, v1,...,v, and a positive € such that:

1. vy € HO(S!, A/A(l)/kl) and has image © under the isomorphism of Propo-
sition 7.28.7.

2. v € H((d — g —e,d+ 5 +€), AJAY ) for i =1,....r —1 and
vreHO((d—ﬁ—e,d—l-ﬁ—i-e),A).

3. Fori=0,...,r — 1, the images of v; and v;41 in

HO((d — mg —6dt gt 6),./4/./4(1)/&“) coincide. The k-sum of ¢ in

the direction d is the sequence (v1,...,v;).

One calls © multisummable or k-summable if 0 is k-summable in all but finitely
many directions.

This definition is extended in an obvious way to elements of C((z))". O

Remarks concerning the Definition 7.47

The notion of multisumma