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Introduction

This book describes the structure of the classical groups, meaning general
linear groups, symplectic groups, and orthogonal groups, both over general
fields and in finer detail over p-adic fields. To this end, half of the text
is a systematic development of the theory of buildings and BN-pairs, both
spherical and affine, while the other half is illustration by and application to
the classical groups.

The viewpoint is that buildings are the fundamental objects, used to study
groups which act upon them. Thus, to study a group, one discovers or con-
structs a building naturally associated to it, on which the group acts nicely.

This discussion is intended to be intelligible after completion of a basic
graduate course in algebra, so there are accounts of the necessary facts about
geometric algebra, reflection groups, p-adic numbers (and other discrete val-
uation rings), and simplicial complexes and their geometric realizations.

It is worth noting that it is the building-theoretic aspect, not the algebraic
group aspect, which determines the nature of the basic representation theory
of p-adic reductive groups.

One important source of information for this and related material is the
monumental treatise of Bruhat-Tits, which appeared in several parts, widely
separated in time. This treatise concerned mostly application of the theory of
affine buildings to p-adic groups of the theory of affine buildings. One of the
basic points made, and an idea pervasive in the work, is that buildings can be
attached in an intrinsic manner to all p-adic reductive groups. But this point
is difficult to appreciate, making this source not congenial to beginners, pre-
suming as it does that the reader knows a great deal about algebraic groups,
and has a firm grasp of root systems and reflection groups, having presumably
worked all the exercises in Bourbaki’s Lie theory chapters IV,V, VL.

In contrast, it is this author’s opinion that, rather than being corollaries
of the theory of algebraic groups, the mechanism by which a suitable action
of a group upon a building illuminates the group structure is a fundamental
thing itself.

Still, much of the material of the present monograph can be found in, or
inferred from, the following items:

F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, I: Donnees
radicielles valuees, Publ. Math. L.H.E.S. 41 (1972), pp. 5-252.

F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, II: Schemas en
groups, existence d’une donnee radicielle valuee’, ibid 60 (1984), pp. 5-184.
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F. Bruhat and J. Tits, Groupes Reductifs sur un Corps Local, III: Comple-
ments et applications a la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo
34 (1987), pp. 671-688.

F. Bruhat and J. Tits, Schemas en groupes et immeubles des groupes clas-
siques sur un corps local, Bull. Soc. Math. Fr. 112 (1984), pp. 259-301.

I have benefited from the quite readable

J. Humphreys, Reflection Groups and Coxeter Groups, Camb. Univ. Press,
1990.

K. Brown, Buildings, Springer-Verlag, New York, 1989.
M. Ronan, Lectures on Buildings, Academic Press, 1989.

Even though I do not refer to it in the text, I have given as full a bibliog-
raphy as I can. Due to my own motivations for studying buildings, the bib-
liography also includes the representation theory of p-adic reductive groups,
especially items which illustrate the use of the finer structure of p-adic reduc-
tive groups discernible via building-theory.

By 1977, after the first of the Bruhat-Tits papers most of the issues seem
to have been viewed as ‘settled in principle’. For contrast, one might see some
papers of Hijikata which appeared during that period, in which he studied p-
adic reductive groups both in a classical style and also in a style assimilating
the Iwahori-Matsumoto result:

H. Hijikata, Maximal compact subgroups of some p-adic classical groups,
mimeographed notes, Yale University, 1964.

H. Hijikata, On arithmetic of p-adic Steinberg groups, mimeographed notes,
Yale University, 1964.

H. Hijikata, On the structure of semi-simple algebraic groups over valuation
fields, I, Japan, J. Math. (1975), vol. 1 no. 1, pp. 225-300.

The third of these papers contains some very illuminating remarks about
the state of the literature at that time.

Having made these acknowledgements, I will simply try to tell a coherent
story.
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1. Coxeter Groups

Words, lengths, presentations of groups
Coxeter groups, systems, diagrams
Linear representation, reflections, roots
Roots and the length function

More on roots and lengths

Generalized reflections

Exchange Condition, Deletion Condition
The Bruhat order

Special subgroups of Coxeter groups

In rough geometric terms, a Coxeter group is one generated by reflections.
Coxeter groups are very special among groups, but are also unusually impor-
tant, arising as crucial auxiliary objects in so many different circumstances.

For example, symmetric groups (that is, full permutation groups) are Cox-
eter groups. and already illustrate the point that some of their properties are
best understood by making use of the fact that they are Coxeter groups.

What we do here is the indispensable minimum, and is completely standard.

1.1 Words, lengths, presentations of groups

This little section recalls some standard and elementary concepts from
general group theory.

Let G be a group with generators S. The length £(g) = £5(g) of an element
g of G with respect to the generating set S is the least integer n so that g has
an expression

g=581...5n

with each s; € S. Any expression
g=251...5,

with n = £(g) is reduced. These expressions in terms of generators are words
in the generators.

Let F be a free non-abelian group on generators [s] for s in a set S. Thus,
F consists of all words

[s1]™* .. [sn]™

where the m; are integers and the s; are in S. Let X be a set of ‘expressions’
of the form s{"* ... s with all s; in S. We wish to form the largest quotient
group G of the free group F' in which the image of [s1]™ ...[s,]"™" is 1 when-
ever [s1]™ ...[sp]™ isin X. As should be expected, this quotient is obtained

by taking the quotient of F' by the smallest normal subgroup containing all
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words [s1]™ ... [s,]™" in X. By an abuse of notation, one says that the group
G is generated by S with presentation

{s1...sn, =1:Vs]"...s7" € X}

Of course, in general it is not possible to tell much about a group from a
presentation of it. In this context, we should feel fortunate that we can so
successfully study Coxeter groups, as follows.

1.2 Coxeter groups, systems, diagrams

This section just gives the basic definitions. Even the most fundamental
facts will take a little time to verify, which we will do in the following sections.
Fix a set S, and let

m:SxS—{1,23,..,0}

be a function so that m(s,s) =1 for all s € S and so that m(s,t) = m(t,s)
for all s,t € S. For brevity, we may write

mse = m(s,t)

A Coxeter system is a pair (W, S) where S is a set of generators for a
group W, and W has presentation

s$2=1VseS

(st)™58) =1 Vs, te S

By convention, m(s,t) = co means that no relation is imposed. Note that if
m(s,t) = 2 then st = ts, since s> =1 and t* = 1.

We may refer to the function m as giving Coxeter data.

It is an abuse of language to then say that W is a Coxeter group, since
there are several reasons for keeping track of the choice of generating set
S. Indeed, the usual interest in a group’s being a ‘Coxeter group’ resides in
reference to the set S.

A dihedral group is a Coxeter group with just two generators. At many
points in the discussion below, issue are reduced to the analogues for dihedral
groups, rendering computation feasible.

A Coxeter diagram is a schematic device often convenient to keep track
of the numbers m(s, t) which describe a Coxeter system (W, S): for each s € S
we make a ‘dot’, connect the s-dot and ¢t-dot by a line if 2 < m(s, ), and label
this connecting line by m(s,t) (if m(s,t) > 2). (Thus, a Coxeter diagram is
a one-dimensional complex with vertices in bijection with the set S, etc. )
When m(s,t) = 3 we may omit the label on the line segment connecting the
s-dot and t-dot. The reason for this is that it turns out that (for m(s,t) > 2)
the most common value of m(s,t) is 3. And keep in mind that if m(s,t) = 2
then st = ts.
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A Coxeter diagram is connected if, for all s,t € S, there is a sequence
S =51,82,83,...,8, =1

so that m(s;, s;+1) > 3. That is, the diagram is connected if and only if it is
connected as a one-dimensional simplicial complex.

Alternatively, we may say that a Coxeter system is indecomposable or
irreducible if it is connected in this sense.

1.3 Linear representation, reflections, roots

Let (W, S) be a Coxeter system. One primitive goal is that of showing
that the elements of S and their pairwise products truly have the orders that
they would appear to have from the presentation of the group W. That is,
the generators should have order 2 (that is, not 1), and a product st should
have order m(s,t) (rather than some proper divisor of m(s,t)). In the course
of proving this we introduce Tits’ linear representation of a Coxeter group
defined by mapping the involutive generators S of W to suitable reflections
in a real vectorspace. This representation is sometimes called the geometric
realization of W .

Only after we have verified that the linear representation is indeed a group
homomorphism can we define the roots.

Let V = Vg be a real vectorspace with basis consisting of elements e, for
s € S. Define a symmetric bilinear form (,) on V' by

(es,et) = — cos(m/mgt)

(For mg; = oo, take (es,e;) = —1. ) This is the Coxeter form.

Suppose that S is finite with cardinality n and that we have ordered S as
S1y...,5n. Then the Coxeter matrix associated to a Coxeter system (W, S)
is the n x n matrix indexed by pairs of elements of S, with off-diagonal entries

1
Bij = §<esi7esj>
for i # j and with diagonal entries 1.
Let G be the group of isometries of this bilinear form:

G={g€GL(V):(gx,gy) = (x,y) Yo,y €V}

where GL(V') is the group of R-linear automorphisms of V. We may refer to
G as the orthogonal group of the form (,) even though we certainly do not
preclude the possibility that the form may be degenerate. For s € S define a
reflection o, on V by

osv =v — 2(v,es)es

A direct computation shows that these reflections lie in the orthogonal group
G.
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Let I be the subgroup of the orthogonal group G generated by the reflec-
tions os. We eventually want to see that the map

81...8, = Og; ...05g

n

gives rise to a group isomorphism
W =T

Knowing that this is an isomorphism is essential for the continuation. It is
certainly not a priori clear that this map is even well-defined, since at the
present point we do not know that the generators really are of order 2, not
that products st really are of order m(s,t), only that these orders divide 2
and m(s,t), respectively.

One first step in proving this isomorphism is:

Lemma: Fach s € S isof order 2 in W.

Proof: We make a group homomorphism € from the free group F' on gen-
erators S to {1,—1} by €(s) = —1 (with the usual abuse of notation). Since
€ vanishes on st for all s,t € S, € is compatible with the defining relations for
the group and induces a group homomorphism W — {1, —1} with e = —1 on
S. Thus, the generators S truly are of order 2. &

Next, to see that s — o, gives rise to a group homomorphism W — ', we
need to check that

(050,)™) =1
Fix s #t € S, put m = mg, and let

A = —cos(m/m)
The Coxeter form restricted to

U=Re; +Re; CV

(1)

which is positive definite if m < co and (hence) |A| < 1.
With respect to the ordered basis ey, e, the reflections o, 0; restricted to
U have matrices (respectively)

-1 =2x\ _ ([ -1 2cos;
0 1 o 0 1

1 0 _ 1 0
-2\ -1 )  \ 2cos7 -1

Thus, os0; restricted to U has matrix

-1 =2X 1 0 [ —14+4X% 2
0 1 -2x -1 /) —2) -1

has the matrix
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One computes that for m < oo the eigenvalues of os0; restricted to U are
eﬂ:27ri/m‘

When m = oo, A = —1, and os0; restricted to U has matrix ( :; ?, >

which has Jordan form < (1) } > so has infinite order, as desired.

Now if m < 00, the subspace U is a non-degenerate quadratic space, in the
sense of geometric algebra. (7.2) In that case, V' is an orthogonal sum

V=UsU*

Since both o, and o; act trivially on UL, then the order of 40 is exactly
the order of this product restricted to U, which we have computed already. If
m = oo, then since the restriction of o0, is of infinite order, so must be the
product o0;.

Thus, so far, we have shown that the group homomorphism ¢ from the free
group F on generators [s] for s € S to I', defined by

[s1]...[sn] = 0%, ... 0%

n

has in its kernel all expressions

s ()™
Thus, since the Coxeter group is defined to be the largest quotient of F' in
which such elements are mapped to the identity, we see that ¢ does indeed
factor through W (although we do not yet have injectivity).
In summary, so far we have proven
Proposition: The linear representation of W described by
$1...8, = Og; ...05

n

is a group homomorphism, and the products st € W do indeed have orders
m(s,t). &

It still remains to prove injectivity of this map (below).

1.4 Roots and the length function

The notion of root discussed here is yet another crucial yet slightly ob-
scure technical item. This notion itself, or analogues of it, comes up in many
subjects.

For brevity, write simply

WY = TV
for v € V and w € W. That is, we identify W with its image under Tits’
linear representation.

The set of roots of (W, S) is

b= {wes; :w W, s €S}
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Note that all the vectors in ® are of length 1, since the image I' of W in
GL(V) lies in the orthogonal group of the Coxeter form, and the lengths of
all the vectors e; are 1 by definition of the Coxeter form. Since ses; = —eg,
we find

o =-o

For 8 € ®, we can express # uniquely as
8= Z Cs €s
8§

in terms of the basis eg, with coefficients ¢, € R. Say that a root § € @ is
positive if for all s € S we have ¢ > 0. We write this as > 0. Say that
a root B € ® is negative if for all s € S we have ¢; < 0. We write this as
B < 0. Let &t be the positive roots, and let ®~ be the negative roots.

Lemma:
o l(w)=Ll(w?t)
o l(ww'") < Ll(w) + £(w")
o l(ww'") > l(w) — L(w")
o l(w)—1<l(sw) <Ll(w)+1
o l(w)— 1< l(ws) <Ll(w)+1
Proof is easy. &
Recall that we have defined

e: W — {£1}
by €(s) = —1 for any s € S.
Lemma: For w € W and s € S,
e(w) = (=1)")
and
Lws) =L(w)£1 L(sw)=L{w)£1
Proof of Lemma: Let w = s;...s, be a reduced expression for w. Thus,
n = {(w), and e(w) = (—1)™. Since
e(sw) = e(s)e(w) = —e(w)
it must be that ¢(sw) # £(w). From this the result follows immediately, as
does the symmetrical assertion for ws. &
Theorem: For w € W and s € S,
if  l(ws) > {(w) then wes >0
if  l(ws) < f(w) then wes <0
Corollary: The linear representation W — GL(V) given by

§1...8, = 0gy ...0g

n
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is injective.

Proof of corollary: If there were w € W so that wv = v for all v € V,
then certainly wes; = es; > 0 for all s € S. This implies, by the theorem, that
l(ws) > f(w) for all s € S. This implies that w = 1: otherwise let s ...s,
be a reduced expression for w and take s = s, to obtain f(ws) < f(w),
contradiction. &

Proof of theorem: The second assertion of the theorem follows from the

first: if £(ws) < £(w), then
L((ws)s) = L(w) > L(ws)
so wseg > 0. Then
wes = ws(—es) = —(wses) <0

We prove the first assertion by induction on ¢(w). If /(w) = 0 then w = 1.
If ¢(w) > 0 then take ¢ € S so that f(wt) = (w) — 1, e. g , we could
take t = s, for w = s1...s, a reduced expression for w. Then s # t. Let
T = {s,t}, and let W be the subgroup of W generated by T'. Then Wr is a
dihedral group, that is , a Coxeter group with just two generators. Let {1 be
the length function on Wr with respect to the set of generators 7.

Consider expressions w = zy with y € Wy and x € W. Let
X={zeW:2'weWsr and {l(w)=L(z)+ lr(z  w)}
Certainly w = w-1,s0 w € X, and X # . Choose x € X of least length,

and let y = 2~ 'w € Wz. Then w = zy and
(w) < Uz) + Uy) < (@) + r(y)
We claim that wt € X. Indeed,
(wt) ' -w=teWr
and
Lwt) + Lr(t) = l(w) — 1+ 1 =£(w)
as desired. Thus,
Uz) < Ll(wt) =L(w) —1
We can now do induction on ¢(w) We claim that ¢(zs) > ¢(x). If not, then
L(w) < l(zs) +L((xs) tw) < l(xs) + br(sz w) =
=l(z) = 1+ Lp(se™ w) < l(zx) =1+ bp(z 'w) +1 =

=U(z) + br(z7 'w) = ((w)
Then we could conclude that

l(w) = £(xs) + lr((zs) " w)

and that zs € X, contradicting the assumed minimal length of x among
elements of X. Thus, we conclude that ¢(zs) > £(x). By induction on ¢(w),
xzes > 0. Similarly, we conclude that ¢(xt) > ¢(x) and ze; > 0.
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It remains to show that yes; > 0, e. g. , to show that
yes = aeg + bey
with a,b > 0, since then
wes = (zy)es = z(yes)
and we already know how z acts on es,e;. This is a question referring only
to the dihedral group (Coxeter group on two generators) Wy. First, we claim
that £r(ys) > ¢r(y). Otherwise,
((ws) = L(zz tws) < L(z) + €(z tws) = £(z) + L(ys) <
< l(z)+lr(ys) < l(x) + lr(y) = L(w) < L(ws)
giving a contradiction. Thus, any reduced expression for y in W must end
" )1:\-Iow we claim that any element y of the dihedral group Wt all of whose
reduced expressions are of the form
y=...t
has the property that
yes = aeg + bey
with a,b > 0.
If m(s,t) = oo, then (es,e;) = —1, and
tes = es — 2(—1)es = es + 2e4
(st)es = s(es + 2e:) = (es + 2e¢) — 2[1 + 2(—1)]es = 3es + 2e
and so on. By induction,
(st)"es = (1 4+ 2n)es + 2ne; and t(st)"es = (1 + 2n)es + (2n + 2)e;

giving the desired positivity assertion.
Suppose now that m(s,t) = m < co. First, we note that 7 (y) < m, since
the element of Wr with length m can be written as

(st)™? = (ts)™/? or (ts)™~V/2¢ = (st)m=D/2
depending on whether m is even or odd. Thus, keeping in mind that (st)™ =1,
we need only consider y of the form
(m even) (st)* with &k < m/2
(m odd) t(st)* with k< (m —1)/2
Completion of this proof now can be accomplished by direct computation.

For brevity, let ¢ = e2™/™ a m*™ root of unity. One computes that (e, +e;
is a (*! eigenvector for st. Thus,

(C - C_l)es = (Ces + et) - (C_les + et)

expresses e, as a linear combination of eigenvectors, and
(€= ¢ (st) es = (C*Fles + PFer) — (T2 es + (7Fey)
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From this,
A sin (%;L)Q’T sin —(257)3”
(St) €s = . 21 es + - o €t
sin 5 sin 2%
m 2m
We leave the rest to the reader. &

1.5 More on roots and lengths

The previous section was really just preparation. Now we can proceed to
the heart of the matter.

Corollary: We have
=0T LUP

Proof: First, note that this assertion is not a priori clear. Recall that ® is
the collection of all images wes. Given w € W and s € S, either £(ws) > ¢(w),
in which case (by the theorem) we; € ®*, or £(ws) < £(w), in which case (by
the theorem) wes € ® . &

Corollary: The reflection s € GL(V) has the effect se; = —es, and s
merely permutes the other positive roots. More generally,

{(w) = card{B € & : w3 < 0}

Proof:  From the definition of the reflection (attached to) s, ses; = —es.
Now let 8 be a positive root other than e,. Since (8,8) = 1 = (es, es), 3 and
es are not collinear. Thus, in writing

ﬁzz Cs€s

with all ¢; > 0, some ¢; > 0 for s #¢t € S. Then s — 3 € Res; (from the
definition of the action of the reflection s), so the coefficient of e; in sf is
still ¢; > 0. Therefore, sg ¢ ®~. The previous corollary then implies that
sB € ®t. That is,

s(@F — {es}) C @1 — {es}
Applying s again gives the equality asserted.

To prove the second assertion we make pointed use of the first. Let
v(w) = card(®t Nw *® )

be the number of positive roots sent to negative roots. The previous assertion
shows that for s € S we do have v(s) = £(s). Now do induction on length. It
suffices to show that

wes > 0= v(ws) =v(w) + 1

and
wes < 0= v(ws) =v(w) —1
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If wes > 0, then
T N (ws) ' =5(@T Nw 1) U {es}

where we use the first assertion to obtain the equality. This visibly has car-
dinality one greater than the cardinality of

et Nw e~
as desired. If we; < 0, then
TN (ws) ' = (s(@TNw e ) — {es}
so this set has cardinality one less than
T Nw e
as desired. &

Corollary: If the Coxeter group W is finite, then there is a unique
element w, in W of maximal length, this maximal length is equal to the
number of positive roots, and w, maps every positive root to a negative root.

Proof: If there were two elements which mapped every positive root to a
negative, then their product would send all positive to positive, so would have
length 0. Thus, there is at most one element of W which sends all positive
roots to negative.

Let w, be a longest element in W. If wegy < 0 for all s € S, then certainly
wdt = &, since all positive roots are non-negative linear combinations of the
es. If wes > 0 for some s € S, then (from above), £(ws) > ¢(w), contradiction.

&

1.6 Generalized reflections

This section extends our earlier discussion of Coxeter groups somewhat,
mostly for the purpose of completing our discussion of roots.
For a root 8 = we; of a Coxeter group, we define the associated reflec-
tion
sgv =v — 2(v, B)
Rewriting 8 = wes, we see that
550 = v — 2{v, wes)wes = v — 2w v, es)wes
(by the W-invariance which (,) has almost by definition)
=w(w™v —2(w v, e5)es) = wsww

That is, the ‘generalized’ reflection sg is just a conjugate in W of one of the
‘original’ reflections s.

Lemma: The map 8 — sg is a bijection from positive roots to reflections.
We have s_g = sg.



Garrett: 1. Coxeter Groups 11

Proof:  The last assertion is easy to check. If sz = s, for two positive
roots, then
—B=155(8) = 54(B) = B —2(8,7)y
which implies that 8 = (3,7)y. Since both are unit vectors and are in &7,
we must have equality. &

Lemma: If o, 3 are roots and 8 = wa for some w € W, then ws,w™! =

sg- (The proof is direct computation, using the W-invariance of (,)). &

Proposition: For w € W and a € &, {(ws,) > {(w) if and only if
wa > 0.

Proof: It suffices to prove the ‘only if’, since we can also consider the
statement with w replaced by wsg-

We do induction on the length of w. If £(w) > 0 then there is s € S so
that £(sw) < {(w). Then

U(swsy) > l(wsy) — 1> l(w) — 1 ={(sw)
By induction on length, (sw)a > 0. Suppose that wa < 0. The only negative
root made positive by s is —eg, so necessarily wa = —es. Then swa = e,
and
(sw)sq(sw) ™t =5
by the previous lemma. Thus, ws, = sw. But this contradicts
L(wsqy) > L(w) > L(sw)
Thus, we conclude that wa > 0. &

1.7 Exchange Condition, Deletion Condition

The point of this section is to show that the assertion that (W, S) is a
Coxeter system is equivalent to some other somewhat less combinatorial as-
sertions, which lend themselves to a geometric reinterpretation. The execution
and exploitation of this reinterpretation will occupy much of the remainder
of the sequel.

One should note that in some sources Coxeter groups are defined by these
other conditions. We do indeed prove the equivalence of these conditions: this
is J. Tit’s theorem proven just below.

The first of these alternative characterizations is the Strong Exchange
Condition:

Theorem: Let w = s1...s,. If there is a (generalized) reflection ¢ so
that £(wt) < ¢(w), then there is an index i so that

wt=81...8;...5n

(where the hat denotes omission). If the expression w = s; ... s, is reduced,
then there is a unique such index.
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Proof: Let t = s, for some positive root a. Since £(wt) < £(w) and a > 0,
from the previous section we conclude that wa < 0. Thus, there is an index
i so that s;41...sp,a > 0 but s;8;41...s,a > 0. Now the only positive root
sent to its negative by s; is es,, so necessarily s;11 ...s,a = es;. The lemma
of the previous section then gives

(Si41 -+ 8n)t(Sit1 ... 50) L =54

which can be rearranged to

wt = (81 .. .Si)(8i+1 .. .Snt) = (81 .. sl)sz(sn . ..Si+1)71

which yields the assertion.
Suppose that n = ¢(w), and that s; and s; (with ¢ < j) both could be
‘deleted’ in the above sense. From

~ ~

S$1...8;...8 =wt=51...5j...5p
we cancel to obtain
Sit1 -85 = S;...85-1
That is, we have
Sj---85 = 841 ---55j—-1
SO
’lU:SlSAZSAan
would be a shorter expression for w, contradiction. &
The following corollary is the Deletion Condition:
Corollary: If w=s;...s, with n > £(w), then there are i < j so that

w=51...8-...8j...8n

Indeed, a reduced expression for w may be obtained from this expression by
deleting an even number of the s;’s.

Proof: First we claim that there is an index j (possibly j = n) so that
K(Sl .. Sj) < K(Sl .. Sj_l)

Indeed, otherwise (by induction on j), we could prove that £(w) = n.
Then from

(s1...85)85) =L(s1...8j-1) > L(s1...5j)

the Exchange Condition implies that there is an index 1 < ¢ < j so that
S1...8j-1=1(81...8)8; =81...8...5/1

as desired. &

The next corollary illustrates the mechanism at work, and will have some
use later.

Corollary: Given w € W and s,t € S with
(sw) = f(w) +1
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Lwt) =L(w) + 1
either

£(swt) = L(w) + 2
or swt = w.

Proof: Let w = s1 ..., be a reduced expression for w. From the length
hypotheses, s; ...s,t is a reduced expression for wt. By the Exchange Con-
dition, either

(s(wt)) =L(wt) + 1 =Ll(w) +1+1="l(w)+2

or else we can exchange one of the letters in s; . ..s,t for an s on the left end
of the expression. The hypothesis ¢(sw) > £(w) precludes exchange of one of
the s; for s, so the exchange must be for the final ¢:

S81...85 = S1...8,t
That is, sw = wt, so swt = (wt)t = w as claimed. &
Now we prove Tits’ converse.

Theorem: Any group W generated by a set S with all s € S of order 2
and satisfying the Deletion Condition gives a Coxeter system (W, S).

Proof: We claim that all relations in W are ‘derivable’ from any relations
of the special form (st)™ =1 for s,¢ € S. That is, we claim that all relations
in W are derivable from the Coxeter-type relations among the generators (and
from the relations s? = 1).

Given a relation s;...s, = 1 with all s; € S, we must show that this
relation is implied by Coxeter-type relations. We do induction on n.

First, we claim that n must be even for there to be any such relation. To
see this, ‘define’

€(s1...8,) = (—1)"
We will use the Deletion Condition to show that € is a well-defined +1-valued

function on W, from which it then will follow immediately that n must be
even if such a relation holds. Indeed, if

81...Sm:t1...tn

with all s;,¢; € S and with m < n, then ¢;...%, is not reduced, and the
Deletion Condition implies that there is a pair ¢, j of indices (with i < j) so
that

trotp =ty Lty
Thus, the length of the word is decreased, but the parity of the length stays
the same. Altogether, this gives the result.
If n = 2, the condition sy, = 1 immediately gives s; = s», since always
s? = 1. But then this is nothing but the assertion that s? = 1.
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Before proceeding further, we make some general observations. For exam-

ple, suppose that
$1...8, =1
with n = 2m and m > 1. Then we could infer that
5182 ...5i—-15; = SpnSn—1---Si+1
using only that all the elements s; are of order 2, by right multiplying by
SnSn—1 - - - Si+2Si+1. Further, by left multiplying the latter by s; 11842 ... Sp—15n
we could obtain
Si+1---SnS182...85i—15; = 1
Thus, from a relation s; ...s, = 1, (with n = 2m) we have the relation

S1---Sm+1 = Sn -+ -Sm+42

The length of the right-hand side is necessarily < m — 1, so the left-hand side
is surely not reduced. Thus, by the Deletion Condition there are i < j < m+1
so that

S1.e.8mgl =81...851...8j...Sm41
Doing some cancellation in the last equation, we have
Sitl-.-8j = 8i...8j—1
which (by right multiplication by s; ...s;4+1) gives
8i8i41 -+-5j_15j5j-1...5i428;41 = 1
If we are lucky enough that the latter relation involves fewer than n reflec-

tions, then (by induction) it is derivable from the Coxeter-type relations, so
the relation

Sit1---55 = S8;-..55j—-1
is so derivable. Then replace s;11...5; by s;...s;_; in the original 51 ...s, =
1 and rewrite the latter as

~ ~

1:81...Si(8i...8j_1)8j+1...Sn:Sl...Si...Sj...Sn

Again by induction, the relation

~

l=s51...5;...85...85

is derivable from the Coxeter relations.
Therefore, in the lucky case, assuming the truth of sy ...s, =1, we know
that the relations

Sit1 -85 = S;...85-1
l=51...5;...8;...8,
are derivable from the Coxeter-type relations. Then we can derive sy ...s, =1
from these relations as follows:
S1...80 =51...8i(Si41...85)Sj41...50 =
:Sl...Si(Si...Sj_1)8j+1...Sn :SlsAlSAJSn: 1

with all relations derivable from the Coxeter relations.
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Now consider the unlucky possibility that
8iSi41 ---5j-1555j-1-.-8i428i+1 = 1
still has n factors. Thus, even though we know this relation to hold (from the
assumption that s; ...s, = 1is true), we cannot hope to invoke induction on
length to say that we know that it is derivable from the Coxeter-type relations.
This unlucky case occurs only if ¢ =1 and j = m + 1 and if the relation is
§2...8m+1 = S1---Sm
We could just rewrite this as
S9...8,81 =1

and try the lucky case procedure as just above on this variant.

We would succeed in showing that this variant relation is derivable from
the Coxeter ones unless we are doubly unlucky, in that we do not decrease the
number of factors by using our first trick on the variant relation. This second
failure will occur only if

S3..-Sm+42 = S2-..-Sm+1
With both failures, we now rather try to prove that the ‘obstacle relation’
S3..-Sm+42 = S2-..-Sm+1

follows from the Coxeter relations. If we can show this, then we can substitute
this relation into the original s;...s, = 1 and succeed. We can rewrite the
obstacle relation as

83(8283 . Sm+1)8m+28m+1 -..854 = 1

Again the left-hand side has n factors, so we could try our first trick. We
will succeed unless (as before)

82 ...8m+1 = S35283...5m
Combining this with the relation
§2...Sm+1 = S1---Sm

from above, we have s; = s3.
That is, if s1 # s3 then the above scheme would work. Or, by cyclically
permuting the relation s ...s, = 1 into the form

8iSit1.--5n8182...8; =1

we can succeed if so # s4 or if s3 # s5, and so on. Thus, by induction again,
we succeed unless

§1=83=85=... and Sy =84 =8=...
In the latter case, the original relation itself was actually
518528515281 ...8182 = 1

which is a Coxeter relation. &
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1.8 The Bruhat order

The Bruhat ordering is a partial ordering on a Coxeter group which we will
use in an essential way in the subsequent study of ‘parabolic’ subgroups of a
Coxeter group.

(A subtler use, in case W is a Weyl group in a linear reductive p-adic (or
Lie) group, is in description of the topological relationships between the cells
in a Bruhat decomposition ).

For purposes of this section, let T be the set of all (‘generalized’) reflections
in a Coxeter group W (with generators S). That is, T includes not only the
‘reflections” S, but also all conjugates in W of elements of S. For v,w € W
write v — w if there is t € T so that vt = w and ¢(v) < {(w). Define the
Bruhat order < by saying that v < w if there is a sequence

V=W W = Wo = ... =Wy =W
This gives a partial ordering.

Remarks: It is not clear a priori that v — w implies that £(v) = f(w) -1,
since the definition of v — w does not require that vs = w with s € S, but
only vt = w with ¢t € T. Still, clearly v — w does imply that the lengths of v
and w are of opposite parity.

Remarks: Superficially, it would appear that we could define another
ordering by replacing w't by tw’ in the above. However, a moment’s reflection
indicates that allowing ¢ to be in the collection T' of generalized reflections,
and not just in S, makes the ‘left’ and ‘right’ definitions equivalent. If, by
contrast, we give the analogous definition with not 7" but S, then the distinc-
tion between vt and tv becomes significant. The latter ordering is sometimes
called a weak Bruhat order.

Proposition: Let v < w and take s € S. Then either vs < w or vs < ws
or both.

Proof: First consider v — w with vt = w for t € T and {(v) < l(w). If
s =t, then vs = w < w as desired.

Then suppose that s # t. If £(vs) = £(v) — 1, then vs — v — w, so we have
vs < w. If £(vs) = £(v) + 1, then we claim that vs < ws. Let t' = sts € T.
We have (vs)t’ = ws. Thus, by the definition of the Bruhat order, to prove
vs < ws it suffices to prove that ¢(vs) < ¢(ws). Recall that v — w implies
that the lengths have opposite parities. Thus, if we do not have £(vs) < £(ws),
then we can only have £(vs) > £(ws). Take a reduced expression v = s1 ... sy.
Still

VS =81 ...8,8
is reduced, since

L(vs) > L(ws) > b(w) —1=L(v)+1—-1=1{(v)
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implies that £(vs) = £(v) + 1. Then
U(vs)t') = L(ws) < L(vs)
implies, via the Strong Exchange Condition, that
vst' = s1...8;...5,8
The omitted factor cannot be the last s, or else we would have
$1...8,5t =81...5,

which would imply s = ¢/, that is , s = sts, that is , s = t. We supposed that
this was not so. Thus, indeed,

ws =vst' =81...8;...5,8

and

~

W=81...8..-8p

which contradicts £(v) < £(w).
More generally, suppose that

V=W > ... Wy =W

Already we have shown that either vs < ws or vs < wsys. In the former case,
then we have (by transitivity)

vs <wy; <w=vs<w
In the latter case, by induction on n, we have
vs < wes < ws = vs < WS
This proves the proposition. &
Theorem: Let w = s;...s, be a fixed reduced expression of w € W.

Then v < w if and only if v can be obtained as a subexpression of s; ... sy,
that is , if and only if v can be written in the form

V=S54 ...5,
where
1< < <...<tm<n
Proof: If v — w with vt = w, then since £(v) < ¢(w) the Strong Exchange
Condition can be applied to yield
v=wt=281...8;...5,

for some index I. If, further, u — v with ut’ = v, then again the Strong
Exchange Condition gives

u=vt =81...8...5j...5p
or

! A ~

u=vt =81...8j...5...5p
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for some other index j, depending upon whether j > i or j < i. This trick
can be continued, showing that v < w implies that v can be written as a
subexpression of s1 ... sy,.

On the other hand, consider v = s;, ...s;,,. Certainly ¢(v) < £(w). Do
induction on the length of w. If 4, < n, then apply the induction hypothesis
to the necessarily reduced expression si ...S,_1 to obtain

Sip .84, <81...85,_1 =ws, < W
If ¢,, = n, then, by induction,
Siy eeSip_1 < S1...8p—1
We apply the previous proposition to obtain either
Siy ---Si, < S1...5p—1

or
Si1 - Sip, gslsn:w

This proves the theorem. &

Corollary: For given w € W the set of elements of S occuring in any
reduced expression for w depends only upon w, and not upon the particular
reduced expression.

Proof: Let w be a counterexample of least length. Let w = s1...s,, and
w = t1...t, be two reduced expressions with all s;,t; € S. Let I (resp. J)
be the set of all s;’s (resp. , ¢;’s). The expression v = s ... sy, is necessarily
reduced, and, by the theorem, v < w. Since £(v) < £(w), by induction the
elements of S occuring in any reduced expression for v is well-defined, and
equal to {s2,...,8n,}. Also by the theorem, v can be written as a subexpres-
sion of ¢; ...%,, so has a reduced expression using elements of J. A similar
discussion applies to v’ = s; ... 8;,—1. Then we see that I C J. By symmetry,
we have I = J, contradiction. &

Corollary: Let v < w in W. Then there are elements wy,... ,w, in W
so that v =wy < ... < wp =w and £(w;) + 1 = €(w;41) for all i.

Proof: Do induction on £(v) 4+ £(w). If this sum of lengths is 1, then v = 1
and w € S.

Since w # 1, there is some s € S so that {(ws) < ¢(w). Indeed, take s = s,
for some reduced expression w = sy ...5,. The theorem implies that v is a
subexpression

V=584 ...5

First consider the case that v < ws, that is , that ¢(v) < £(vs). Then
necessarily i, < n. Then v is a subexpression of ws < w, and induction
applies.
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Second, consider the case that v > vs. (Note that v and vs always are
comparable in the Bruhat order). Induction on the sum of the lengths gives
a chain

VS =w1 < .. Wy =W
where the lengths of successive elements differ by 1. Let i be the smallest index
for which w;s < w;. Since wys = v > vs = wy and Wy, s = ws < W = Wy,
such index does exist. Then we claim that w; = w;—1s. If not, we apply the
Lemma below to
Wi—1 < Wi—18 # W;

to get w; < w;s, contrary to the defining property of i. Thus, indeed, w; =
Wi—1S-

On the other hand, for 1 < j < 4, we have w; # w;_1s because w; < wjs.
Here the Lemma below is applied to

Wij—1 < Wj-18 7é w;

to obtain wj_1s < wjs.
Thus, altogether, we have a chain

V=ws <wys < ...<Wi—18S=W; K Wj41 < ... < Wy =W
This gives the corollary. &
Lemma: Let v < w with ¢(v) + 1 = £(w). If there is s € S with v < vs
(that is , £(v) < £(vs)) and vs # w, then both w < ws and vs < ws.

Proof: The proposition above implies that, with our hypotheses, vs < w
or vs < ws. The first of these cannot occur, since £(vs) = £(w) but vs # w.
Since v # w, vs < ws implies vs < ws. Then

L(w) =L(v) +1 = L(vs) < L(ws)
implies that w < ws, from the definition of the Bruhat order. &

1.9 Special subgroups of Coxeter groups

A special subgroup or parabolic subgroup of a Coxeter group W with
generators S is a subgroup Wrp generated by a subset 7" of S. As is typical
here, the notion of special-ness does not make sense without implied or explicit
reference to a set of generators of the group.

Since such use of the phrase ‘parabolic subgroup’ is in conflict with termi-
nology in other parts of mathematics, it is wise to refer to special subgroups
of Coxeter groups, rather than parabolic ones, reserving the latter term for
other more important uses.



20 Garrett: 1. Coxeter Groups

Proposition: Let (I¥,S) be a Coxeter system.

For all subsets T of S, (Wy,T) is a Coxeter system.
e For all subsets T of S,

by =Llwy

That is, the length function ¢7 of Wr with respect to the generators
T of Wr is the same as the length function from W with respect to
generators S, applied to elements of Wry.

e Forany T C S, if s1...s, is a reduced expression for an element of Wy,
then all the s; are in T'.

e For any T' C S, a reduced expression for w € Wr is necessarily already
reduced in W.

e For any T' C S, the Bruhat order on Wr is the restriction of the Bruhat
order on W.

e The map Wy — T is an inclusion preserving bijection

{Wr:TCS}—-{TCS}
e For two subsets T' and T” of S, we have
Wrar = Wr N W

e The set S is a minimal generating set for W.

Proof:  Let (W',T) be the Coxeter system with generators T' and with

Coxeter data
m' T xT —{1,2,3,...,00}
given by the restriction to T' x T of the Coxeter data m for (W, S).

The first assertion is not entirely trivial: while we certainly have a group
homomorphism W' — Wy arising from T' C S (by the ‘universal property’ of
W', that is , that it has a presentation as a Coxeter group), it is conceivable
that this homomorphism could have a proper kernel. We give two proofs,
which illustrate different ideas.

The first proof is as follows: suppose some word ¢ ...t, in Wy is not
reduced (with respect to the generators 7' of Wy and with respect to length
in Wr with respect to these generators). Then a fortiori it is not reduced in
W with respect to the generating set S. Thus, by the Deletion Condition in
W7

tiooitn =t .. bty ty
for some pair of indices i,j. Thus, we see that the group Wy satisfies the
Deletion Condition with respect to the generators T'. Thus, by Tits’ theorem,
(Wp,T) is a Coxeter system. And we have already seen that the exponents
of products t1t2 are indeed what they appear to be. Thus, the Coxeter data
for (Wr,T) really is obtained from the data for (W, S), as we desired. This
proves that (Wr,T) is a Coxeter system with the expected Coxeter data.

Now we give another proof, the viewpoint of which will also be used in the
proof of the other assertions above. Let V' be the real vectorspace with basis
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ej fort € T, and V' — V the vectorspace inclusion induced by T' C S, where
V' has basis es for s € S as before. Let Gr be the subgroup of GL(V) of
elements stabilizing Vr, the subspace of V' spanned by e; with ¢ € T. Then
we have a commutative diagram

W' — GL(V')
3 T
Wr — GT

where the vertical arrow on the right is restriction, as is the lower horizontal
arrow. The commutativity follows by the naturality of all our constructions.
Since the top horizontal arrow is an injection (by the previous section), the
left vertical arrow must be injective, as well.

Note also that the set-up of the previous paragraph definitively establishes
that we may identify V' and Vr as W’ = Wr-spaces, etc. This is used in the
immediate sequel.

To prove that the length functions match, we do induction on ¢y (w) for
w € Wr. If 1 # w, then there is t € T so that ¢p(wt) < ¢r(w). Then,
by our comparison of roots and lengths, we; < 0 (in V! = Vp C V). Then,
again invoking the comparison, (wt) < ¢(w). Generally, £(wt) = l(w) £ 1
and £p(wt) = fr(w) £ 1, so these two inequalities prove that

lp(w) = bp(wt) + 1 = L(wt) + 1 = L(w)

invoking the induction hypothesis.

An element v € Wp has some expression as a word in elements of T', so by
the Deletion Condition has a reduced (in W) expression as a word in elements
of T'. Thus, by the corollary above (from Bruhat order considerations), every
reduced (in W) expression for v uses only elements of T', since the set of
elements in a reduced expression depends only upon v.

As a variant on the previous assertion and its proof, a reduced expression
for w € Wrp is necessarily already reduced in W, since the length functions
agree.

Let <’ be the Bruhat order on Wr. As just noted, any reduced expression
for an element w € Wy involves only elements of 7. Then the corollary on
subexpressions shows that

weW and w<v < weWr and w<'v
To prove that
Wrar = Wr N W
we need only prove that
Wrar D Wr N W

since the opposite inclusion is clear. For w € WprNWyr, the set S, of elements
occuring in any reduced expression for w ‘can be’ a subset of T" and ‘can be’ a
subset of 7", so, by the corollary on subexpressions, S, is a subset of TNT".
Thus, w € Wpnarr, as desired.
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Now let T and T" be distinct subsets of S and show that Wr and Wp
are distinct. By the previous assertion proven, we need only consider the case
that 7' C T. Let s € T but s ¢ T'. Then (by the subexpression corollary) any
reduced expression for s only involves s itself. But then certainly s ¢ Wy .
Thus, Wy is strictly smaller than W, as desired. &
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2. Seven infinite families

e Three spherical families
e Four affine families

Among all possible Coxeter systems (W, S), there are seven infinite families
of special importance. They fall into two bunches, the first consisting of
three families of spherical ones, the second consisting of four families of affine
ones. We will describe these in terms of the Coxeter data. (The terminology
spherical and affine will not be described nor justified until later).

The first bunch consists of three families of spherical Coxeter systems,
denoted A,,,Cy,D,. (There is also a B,,, which for our purposes coincides
with C},). The second bunch consists of four families of affine Coxeter systems,
denoted An, Bn, C’n, ]jn.

In the spherical cases the index tells the cardinality of the generating set
S, while in the affine cases the index is one less than this cardinality.

A suspicion that there is a connection between A,, and A,, (and likewise
with the other letters) is correct, and this relation will be amplified and ex-
ploited in the later study of the spherical building at infinity attached to an
affine building.

2.1 Three spherical families

We will name, give the Coxeter data, and discuss the occurrence of three
infinite families of Coxeter systems.

The single most popular Coxeter system is the family (or type) A,. This
is the system (W, S) with generators S = {s1,...,s,} where m(s;, s;+1) = 3
and otherwise the generators commute. That is, s;5;4+1 is of order 3 while all
other products s;s; with |i — j| > 1 are of order 2.

The Coxeter group A,, turns out to be identifiable as the symmetric group
permuting n + 1 things, where s; is the transposition of the i*" and (i +
1)*® things. This is not entirely trivial to prove: while it is clear that these
transpositions satisfy the relations defining the Coxeter group A,, it is not
so clear that the symmetric group is not a proper quotient of A,. Anyway,
perhaps surprisingly, the identification of A,, with a symmetric group is not
of immediate use to us.

The Coxeter system A,, appears later in the study of the spherical building
attached to GL(n + 1). At that point we will find a very indirect proof that
the Coxeter group A, is the permutation group on n + 1 things.

The Coxeter system of type C), has generators s1,...,s, with data

3 =m(s1,82) =m(s2,83) =...=m(sp—2,8n—1)
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while
4 =m(sp—_1,5n)

and s;s; = s;s; for |i — j| > 1.

The Coxeter group C), turns out to be identifiable as the signed permu-
tation group on n things, although this observation is not so easy to check,
and in any case is completely unnecessary for the more serious applications.
This group is described as follows: we consider configurations of ordered lists
of (e.g.) the numbers 1 through n and in addition attach a sign + to each.
A signed permutation is a change in the ordering, together with a change of
signs. It is not so hard to check that the sign change subgroup, in which no
permutations of order but only sign changes occur, is normal.

The generators s; with 1 < ¢ < n correspond to adjacent transpositions
(¢ i+ 1) while s,, corresponds to change-sign of the last item in the ordered
list. While it is clear that these items do satisfy the relations defining the
Coxeter group C),, it is not so clear that the signed permutation group is not
a proper quotient of C,,.

The Coxeter systems C,, appear in the spherical building attached to sym-
plectic groups Sp(n) (sometimes denoted Sp(2n)), as well as the spherical
buildings for other isometry groups with the sole exception of certain orthog-
onal groups O(n,n). As in the case of GL(n + 1) and A, study of these
buildings will yield an indirect proof that C), really is the signed permutation
group.

The oriflamme Coxeter system D,, has generators which we write as

51,582,583, -+ ySn_3,5n_2,8n, Sy
with data
3 =m(s1,82) =m(s2,83) =...=m(sp—3,n—2)
and
3 =m(sp—2,8n) = m(sp—2,s),)
and

2 = m(sp,s,) (that is, they commute)

and all other pairs commute. Thus, unlike 4, and C,, the element s,_»
has non-trivial relations with three other generators, and concommitantly the
Coxeter diagram has a branch.

This system occurs in the spherical buildings for orthogonal groups on
even-dimensional vectorspaces over algebraically closed fields, for example. In
this scenario, the construction which turned out nicely for all other isometry
groups does not yield a thick building, and a slightly different construction is
necessary, which engenders this Coxeter system.

In terms of somehow identifying this group in more tangible terms, the best
that can be said is that it is identifiable with a subgroup of index two inside
a signed permutation group. Luckily, such interpretations are unnecessary.
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(The terminology oriflamme comes from the drawing of the corresponding
Coxeter diagram, as well as schematic drawings of the flags involved in the
construction of the building, and has historical origins in heraldry).

In all these cases, the ambient situation is that in which a group acts on the
building so that the ‘B’ in the corresponding BN-pair is a parabolic subgroup.

2.2 Four affine families

We will name, give the Coxeter data, and discuss the occurrence of four
infinite families of Coxeter systems in which the group W is infinite. More
specifically, these systems are affine, in a sense only clarified later. The spher-
ical case had been appreciated for at least twenty years before the affine
phenomenon was discovered.

The simplest affine Coxeter system, which is also the infinite dihedral
group, is called A;. It is the system (W,S) with S = {s,t} having two
generators s,t and st of infinite order (that is, not having finite order). This
is the only case among the families we discuss here that some Coxeter datum
m(s,t) takes the value +00. And among affine Coxeter groups this is the only
group recognizable in more elementary terms.

The description of 4, for n > 1 is by generators s, . . . , Sn+1 Where

3 =m(s1,82) = m(s2,83) = ... =m(Sp_1,5n) = M(Sn, Snt1) = M(Sn, 1)

and all other pairs commute.

Note that the diagram is a closed polygon with n+1 sides, in light of the last
relation (and possibly unexpected) relation m(sp4+1,s1) = 3. This feature is
anomalous among all spherical or affine systems in the families we care about
most. For that matter, this also entails that no one of the generators can be
distinguished in any way, apart from the artifact of our ordering. That is, the
Coxeter data (or diagram) has a transitive symmetry group itself.

The system A,_; appears in the affine building for SL(n) over a p-adic
field. The corresponding spherical building at infinity, as described in the last
chapter of this book, is A,_1.

The description of C, for n > 1 is by generators si, ... , Sn+1 Where

m(s2,83) = ... =m(Sn—1, Sn)
and
4 =m(s1,82) = m(sn, Snt1)
and all other pairs commute. Thus, this differs from the spherical (finite) Ap11
only in the first and last bits of the Coxeter data, illustrating the sensitivity
of the phenomena to the Coxeter data.
Note, also, that the group of symmetries of the data (or of the diagram) is

just of order 2, the non-trivial symmetry being reversal of the indexing. This
is much smaller than the symmetry group for A4,.
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The system C,, appears in the affine building for S p(n) and unitary groups
over a p-adic field. The corresponding spherical building at infinity, as de-
scribed in the last chapter of this book, is C,.

It is usual to take By = Cy. For n > 2, the affine B,, is a kind of combi-
nation of the oriflamme mechanism with the m(s,¢) = 4 aspect of type C,,

as follows: it has generators which we write as s1, ], 83, 84,... ,8p4+1 With
relations
m(s1,s]) = 2 (that is, commute)
3=m(s1,s3) = m(sl, 3) =m(s3,84) = ... =m(Sp_1, Sn)
and

4 =m(sn, Sp+1)
Thus, at the low-index end there is a branching, while at the high-index end
there is a 4 appearing in the data.
This affine single oriflamme system occurs in the affine building for orthog-
onal groups on odd-dimensional vectorspaces over p-adic fields, for example.
The last infinite affine family is D,, with n > 4. This is the double ori-
flamme system, since for example it has the branching at both ends of the

data (or diagram). That is, we have generators
S1,81,53,54, - ,Sn=3, Sn—2, Sn—1, Sn41s Spi1
with relations
3 =m(s1,83) = m(s],s3) =m(s3,84) = ... = m(Sp—2,50-1)

3 =m(sp-1,8n41) = M(Sp—1, S 41)
This occurs in the affine building for certain orthogonal groups on even-
dimensional vectorspaces over p-adic fields.
In all these cases, the ‘B’ in the BN-pair is a compact open subgroup,
called a Iwahori subgroup. This will be explained in detail later when affine
buildings and Coxeter systems are defined and examined carefully.
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3. Chamber Complexes

Chamber complexes

The uniqueness lemma

Foldings, half-apartments, walls, reflections
Coxeter complexes

Characterization by foldings and walls
Corollaries on foldings and half-apartments

Here our rewriting of group theory as geometry begins in earnest. We make
no genuine direct use of geometry, but rather develop a vocabulary which is
meant to evoke geometric intuition. Intuitions suggested must be justified,
and this is done below and in the sequel.

Tits’ theorem (below) gives a peculiar but important method of construct-
ing Coxeter groups, or of proving that a given group is a Coxeter group (with
respect to a specified set of generators). In the context of the building the-
ory proper other situations will miraculously deliver the hypotheses of Tits’
theorem for partments in a thick building.

3.1 Chamber complexes

This section does no more than recall (or set up) standard terminology
about simplicial complexes and posets (partially ordered sets). As noted
above, we do not presume any prior knowledge of these things.

In part, in order to prove rather than suggest, we talk about simplicial
complexes as if they were merely some special sort of partially ordered set
(poset). Of course one is meant to imagine that a zero-simplex is a point, a
one-simplex is a line, a two-simplex is a triangle, a three simplex is a solid
tetrahedron, and so on, and then that these things are stuck together along
their faces in a reasonable sort of way to make up a simplicial complex.

Let V be a set, and X a set of finite subsets of V', with the property that,
ifr e Xandify C z then y € X. We also posit that every singleton subset of
V lies in X. Then we say that X is a (combinatorial) simplicial complex
with vertices V', and the elements £ € X are simplices in X. The set of
vertices of a simplex z in X is nothing other than the set z itself.

Remarks: We only consider simplices of finite dimension. These are all
we will need in subsequent applications, and there are some pointless compli-
cations without this assumption.

Ify C x € X thenyisaface of z. In the particular case that card(z—y) = 1
then say that y is a facet of . More generally, if y is a face of z, then the
codimension of y in z is card(z — y). The dimension of y is card(y) — 1.
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Thus, the facets of = are the codimension one faces of z. The relations y C z
holding in a simplicial complex are the face relations.

For a simplex x € X, write & for the simplicial complex consisting of the
union of z and all faces of z. We may refer to this as the closure of z.

Two simplices z,y in a simplicial complex X are adjacent if they have a
common facet.

A simplex z in a simplicial complex X is maximal if there is no simplex
z € X of which z is a proper face. In the rest of this book, we will consider
only simplicial complexes in which every simplex is contained in a maximal
one. This property follows from an assumption of finite-dimensionality, which
we explicitly or implicitly make throughout.

A simplicial complex X is a chamber complex if every simplex is con-
tained in a maximal simplex, and if, for all maximal simplices z,y in X, there

is a sequence xg, x1, .- . , &y of maximal simplices so that g =z, z,, = y, and
x; is adjacent to x;41 for all indices i. If these conditions hold, then maxi-
mal simplices are called chambers, and the sequence zg, ... ,x, is a gallery

connecting z to y.

A simplicial subcomplex of a simplicial complex X is a subset Y of X
which is a simplicial complex ‘in its own right’; that is, with the face relations
from X. A chamber subcomplex is a simplicial subcomplex which is a
chamber complex, and so that the chambers in the subcomplex were maximal
simplices in the original complex.

The distance d(z,y) from one chamber z to another chamber y is the
smallest integer n so that there is a gallery ¢ = g, ... , T, = y connecting =
to y. A gallery g, ... ,x, is said to stutter if some z; = z;41.

A chamber complex is thin if each facet is a facet of exactly two chambers.
In other words, given a chamber C and a facet F' (codimension one face) of
C, there exactly one other chamber C’ of which F' is also a facet. A chamber
complex is thick if each facet is a facet of at least three chambers.

One fundamental ‘example’ of simplicial complex is that of a flag complex
arising from an incidence geometry, the latter defined as follows. Let V be a
set with a symmetric and reflexive binary relation ~, an incidence relation.
Then define the flag complex X by taking the vertex set to be V itself, and
the simplices to be subsets x C V so that h ~ k' for all h,h' € . That is,
the simplices are sets of mutually incident elements of V. It is easy to check
that this procedure really does yield a simplicial complex. Some additional
conditions would be necessary to assure that the flag complex arising from an
incidence geometry is a chamber complex.

A simplicial complex (with its face relations) gives rise to a partially ordered
set (poset) in a canonical manner: the elements of the poset are the simplices,
and x < y means that = is a face of y. We will often identify a simplicial
complex and its associated poset.
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A morphism or map of simplicial complexes f : X — Y is a set map
on the set of vertices so that if z is a simplex in X then f(z) (image of the
set x of vertices in X) is a simplex in Y. A retraction f: X —» Y of X to a
subcomplex Y of X is a map of simplicial complexes which, when restricted
to Y, is the identity map. If f is a simplicial complex map of X to itself, and
if z is a simplex in X, we say that f fixes x pointwise if f(v) = v for every
vertex v of z.

As an example of a morphism of simplicial complexes, if we start with a
simplicial complex X, take the canonical poset P associated to X, and then
construct the canonical simplicial complex X' associated to P, we will have a
(natural) isomorphism X — X' of simplicial complexes. This is pretty clear.

On the other hand, it is seldom the case that a poset is identifiable as that
arising from a simplicial complex. We need further hypotheses. To state the
hypotheses succinctly, and for other purposes, we need two definitions. Say
that a poset is simplex-like if it is isomorphic to the poset of all non-empty
subsets of some non-empty finite set, with inclusion as the order relation. Say
that z € P is a lower bound for z,y € P if 2 <z and z < y. Say that z € P
is a greatest lower bound or infimum if z is a lower bound for z,y and
z > 2’ for every lower bound for z,y. Note that such infimum is unavoidably
unique if it exists.

Then we have a criterion for a poset to be a simplicial complex:

Proposition: A poset P is obtained as the poset attached to a simplicial
complex if and only if two conditions hold: first, that for all x € P the
sub-poset

Py ={yeP:y<u}
is simplex-like; second, that all pairs z,y of elements of P with some lower
bound have an infimum.

Proof: 1In one direction this is obvious: thus, we only show that a poset
meeting these conditions can be identified with a simplicial complex. Keep
in mind that we are supposing throughout that all simplices are finite sets of
vertices. This is implicit in the definition of simplex-like, for example.

First we identify the vertex set. Since all sets P<, are simplex-like, we
may choose a poset isomorphism f, : S, — P<, where S, is the poset of
all non-empty subsets of a finite non-empty set S, depending upon z. Thus,
P<, has minimal elements x,: the images of singleton subsets of S, by f,. (If
there were any doubt, the minimality property is that if y < z, then y = z,).

Then z is the supremum, at least in P<,, for the set of all the minimal
elements less than or equal it, in the sense that if z < z and z > x, for all
these minimal z, less than or equal z, then z > x. But it is unclear what
happens in the larger poset P.

Let £ € P be another element so that £ > z, for every minimal z, < z.
Since there are elements of P both < z and < £, the two elements x, ¢ have
an infimum ~. Then v > z, for every one of these minimal z,. Since v < z,
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necessarily v € P<,, so actually v = x since the structure of P<, is so simple.
That is, z < £. In other words, = is the supremum of the set of all minimal
elements less than x.

Note that we did use the existence of infima to obtain the uniqueness of
the upper bound for the set of minimal elements z, < x.

For each minimal element x in P we take a vertex v,, and let the vertex
set be

V = {v; :  minimal in P }

To each z € P we associate a set V,, of vertices, consisting of vertices v, for
all minimal y < z. By the previous discussion, this map is an injection (and
the order in P is converted to subset inclusion in the set of subsets of V).

If ) # W C V, for some z € P, then since P<, is necessarily isomorphic
to the set of non-empty subsets of the finite non-empty set V., there must be
y < z whose vertex set V,, is W. &

A chamber complex map is a simplicial complex map from one cham-
ber complex to another which sends chambers to chambers, and which pre-
serves codimensions of faces inside chambers. (If all simplices were finite-
dimensional, then we could equivalently require that the map preserves di-
mensions of simplices).

A labeling or typing A of a poset P is a poset map A from P to a simplex-
like poset L (the labels or types), so that z < y in P implies Az < Ay in
L.

We will say that a simplicial complex is labelable or typeable if the
associated poset has a labeling. Note that the condition z < y = Az < Ay
implies that the label map viewed as a simplicial complex map preserves
dimensions. The image under a such label map is the label or type of the
simplex (or of the poset element).

Remarks: Of course, the notion of labeling or typing a simplicial com-
plex is a secondary thing, but is of technical importance. Eventually, when
discussing those chamber complexes called buildings, we will show that there
is a canonical labeling on thick buildings. Thus, at that point, the notion of
labeling can be suppressed further.

If a chamber complex X is labeled by a map A : X — L, we can use a
more refined version of adjacency of chambers: for £ € L, say that adjacent
chambers Cy,Cy are f-adjacent if A(C; NCs) = £.

One natural way in which a chamber complex X can be typed is if there
is a retraction A : X — C of X to C for some chamber C' in X: the poset of
simplices in the simplicial complex C' is simplex-like. This mechanism comes
into play quite often in the sequel.

Remarks: Let S be a set. Let A be the poset of subsets of S with
inclusion, and let B be the poset of subsets of S with inclusion reversed.
Then A ~ B as posets, by the map ¢ — S — x.
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Remarks: An example of a chamber system is given by taking the
chambers in a chamber complex, with their adjacency relations, ‘forgetting’
the rest of the simplicial complex structure. This notion has some utility since,
after all, the cartesian product of two simplicial complexes is not a simplicial
complex (but, rather, is called polysimplicial). Addressing the issues in this
light is not much more trouble, but is a little more trouble than we need to
take.

3.2 The uniqueness lemma

The proof of the following result is what is sometimes called the standard
uniqueness argument. This little result will be used over and over again, not
only throughout our discussion of chamber complexes, but also in discussion
of basic facts about buildings, and again later in our finer discussion of the
structure of affine buildings and BN-pairs.

Keep in mind that a facet is a codimension-one face. Note that the hy-
pothesis on the chamber complex Y in the following is somewhat weaker than
an assumption that Y is thin, although it certainly includes that case. This
generality is not frivolous.

Lemma: Let X,Y be chamber complexes, and suppose that every facet in
Y is a facet of at most two chambers. Fix a chamber C'in X. Let f: X - Y,
g : X — Y be chamber complex maps which agree pointwise on C, and both of
which send non-stuttering galleries (starting at C') to non-stuttering galleries.
Then f =g.

Proof: Let v be a non-stuttering gallery C = Cy,C1,...,C), = D. By
hypothesis, fvy and gv do not stutter. That is, fC; # fC;41 for all 4, and

similarly for g. Suppose, inductively, that f agrees with g pointwise on C}.
Certainly fC; and fC;41 are adjacent along

F=fCinfCit1 =9CiNgCitq

By the non-stuttering assumption, fC;11 # fC; and gC;y1 # gC;. Thus, by
the hypothesis on Y, it must be that fC;+; = gCiy1, since there is no third
chamber with facet F.

Since there is a gallery from C' to any other chamber, this proves that f = ¢
pointwise on all of X. &
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3.3 Foldings, half-apartments, walls, reflections

The terminology of this section is not quite as standard as the more basic
terminology regarding simplicial complexes, but is necessary for the ensuing
discussion.

We include several elementary but not entirely trivial lemmas couched in
this language. Another version of reflection will be discussed at greater length
later in preparation for the finer theory of affine buildings.

The last proposition especially will be used over and over again in the
sequel.

The theorem of J. Tits proven a little later implies that the results of this
section apply to the Coxeter complexes constructed from Coxeter systems
(W, S).

The attitude here is that we are trying to play upon our geometric intuition
for thin chamber complexes, imagining them to be much like models of spheres
or planes put together nicely from triangles.

A folding of a thin chamber complex X is a chamber complex endomor-
phism f so that f is a retraction (to its image), and so that f is two-to-one
on chambers.

The opposite folding g to f (of X), if it exists, is a folding of X so
that, whenever C,C" are distinct chambers so that f(C) = C = f(C") then
g(C) = C" = ¢g(C"). 1If there is an opposite folding to f, then f is called
reversible.

Since there is little reason to do otherwise, here and in the sequel we only
concern ourselves with reversible foldings. Some of these little lemmas do
not use such a hypothesis, and some are provable without it, but the whole
program is simpler if reversibility is assumed at the outset. Use of reversibility
will be noted.

Let f be a folding of a thin chamber complex X. Define the associated
half-apartment to be the image

¢ = f(X)

of a folding. Since f is a chamber complex map, ® is a sub-chamber-complex
of X. For two chambers C, D in X, let d(C, D) be the least integer n so that
there is a gallery C' = C,, ... ,C, = D connecting C' and D. We will use this
notation for the following lemmas.

Lemma:  There exist adjacent chambers C,D so that fC = C and
fD # D. For any such C, D, we have fD = C. Therefore, if v is a gallery
from A to B with fA = A and fB # B, then fv must stutter.

Proof:  There are chambers A, B so that fA = A and fB # B, by
definition of a folding. There is a gallery A = C,, ... ,C), = B connecting the
two, so there is a least index ¢ so that fC; = C; and fC;y1 # Cip1. Take
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C =C;and D = C;11. Let F be the common facet. Since F' C C, fF = F.
Then fD has fF = F as facet in common with fC = C. By the thin-ness of
X, this means that fD is either D or C, since those are the only two chambers
with facet F'. Since fD # D, we have fD = C. &

Proposition: The half-apartment ® is convex in the sense that, given
C, D both in ®, every minimal gallery v = C,, ... ,C,, connecting C, D lies
entirely inside ®.

Proof: Lety=C,,...,C, beaminimal gallery connecting C, D. Suppose
that some C; does not lie in ®. Then there is i so that C; € ® but C;;1 € P.
By the previous lemma, fC;;1. Then f«y is a stuttering gallery connecting
C = fC and D = fD, so can be shortened by eliminating stuttering to give
a shorter gallery than -, contradiction. &

Proposition: Let f be a reversible folding. Let C,C’ be adjacent cham-
bers so that C € & and C' ¢ ®. Then ® is the set of chambers D so that
d(C,D) < d(C", D).

Proof: Take D € ®. Let v be a minimal gallery from D to C’. Since
~ crosses from ® to its complement, fv stutters, by the above. And fv is a
gallery from D = fD to C' = fC', so d(C,D) < d(C',D). The other half of
the assertion follows by symmetry, using the opposite folding. &

Lemma: Let f be reversible. Let C,D be adjacent chambers so that
fC =C = fD. Let g be another reversible folding of X with ¢C = C = ¢gD.
Then g = f.

Proof: The previous characterization of the half-spaces fX, g X shows that
fX =gX. Let v =C,,...,C, be a gallery connecting C' to D for D ¢ &.
We do induction on n to show that f and g agree pointwise on D. If n =1
then D = C' and the agreement is our hypothesis. Take n > 1 and suppose
that f and g agree on C,,_1, and let z be the vertex of D = C,, not shared
with Cp,—;. Put F = g(C,-1 N D) = f(Cr,-1 N D). Then fC,_; and fD
have common facet F'; and, gC,—1 = fCp,—1 and gD also have common facet
F. By induction, fC,_1 = gCr—1. By the thin-ness, there are exactly two
chambers with facet F. Since f and g are two-to-one on chambers, they must
both be injective on chambers not in ®, so fD cannot be fC,,_1; likewise, gD
cannot be fC),_1. Therefore, fD = gD. )

Lemma: Let X be a thin chamber complex. Fix a chamber C, in X.
Let f : X — X be a chamber complex map so that f fixes C, pointwise.
Let v be a non-stuttering gallery C,,C4, ... ,C), starting at C'. Then either
fy=fC,, ..., fC, stutters, or else f fixes every chamber C; pointwise.

Proof: Suppose that fv does not stutter. That is, fC; # fC;y1 for all i.
Suppose, inductively, that f fixes C; pointwise. Then C; = fC; and fC;y1
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are adjacent along

CiN fCit1 = fF(CiNCit1) = CiNCiga
since the latter intersection is a subset of C';, which is fixed pointwise by f.
Thus, by the thin-ness of X, and by the assumption that fC;y1 # C;, it must
be that fC;1 is the only chamber other than C; with facet C;NCj 1, namely
Cit1- &

Corollary: There is at most one opposite folding to f.

Proof: If there were an opposite folding f’ to f, then the set of chambers
in the half-apartment f'X would have to be the complement of the set of
chambers in ®. And, for a pair of adjacent chambers C' # C' so that fC =
C = fC'" (shown above to exist), we would have f'C = C' = f'C’, by
definition. Then the previous lemma gives the uniqueness. &

Supposing that f is reversible, with opposite f', we define the associated
reflection s = sy = sy, as follows. If v is a vertex of X so that fv = v, then
define sv = f'v; if v is a vertex of X so that f'v = v, then define sv = fv.
This defines s as a map on vertices.

Proposition:  The reflection s associated to a reversible folding f is
an automorphism of X of order 2. For adjacent chambers C' # C' so that
fC = C = fC', this s is the unique non-trivial automorphism fixing the
common facet FF = C N C".

Proof: We need to show that s is a simplicial complex map, that is, that
sx € X for every x € X. Every simplex in X lies in either ® = fX or in
its complement f'X. Since f and f’ agree on fX N f'X, and since f, f' are
chamber complex maps, so is s. Since f o f' is the identity on fX and f'o f
is the identity on f'X, we have s? = 1.

If ¢ were another automorphism of X fixing the common facet F' pointwise
then, by the thin-ness of X, ¢C is either C' or C'. In the former case, given
a non-stuttering gallery « starting at C', ¢y certainly does not stutter, since
¢ is injective. Thus, by the uniqueness lemma (3.2)

¢ is the identity on all chambers in . Since this holds for all galleries,
¢ is the identity automorphism of X. If ¢C = C’, then the same argument
applied to s o ¢ implies that s o ¢ is the identity. &

A wall in X associated to a reflection s (associated to a reversible folding)
is the simplicial subcomplex in X consisting of simplices fixed pointwise by
s. By its definition, a reflection fixes no chamber in X. The above discussion
shows that the maximal simplices in a wall are the common facets C N C’
where C,C' are adjacent chambers interchanged by s.

In this context, a facet lying in a wall is sometimes called a panel in the
wall.

If C, D are any two chambers, and if there is a reversible folding f so that
f(C) =C but f(D) # D, then say that C and D are separated by a wall
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(the wall attached to f and its opposite folding f'). If C, D are adjacent, then
the common facet C N D of C,D is a panel (in the wall separating the two
chambers). The reversibility of the foldings is what makes this a symmetrical
relation.

More generally, say that chambers C, D are on opposite sides of or are
separated by a wall (associated to a folding f and its opposite f') if fC =C
but fD # D, orif fD = D but fC # C. The reversibility is what makes this
a symmetric relationship.

Further, the two sides of a wall (associated to a folding f and its opposite
/) are the sets of simplices x so that fz =z and f'z, respectively.

The walls crossed by a gallery v = C,,Cy,...,C, are the walls n;
containing the facets C; N C;y1, respectively, under the assumption that these
facets really are panels in walls.

The following explicitly corroborates the intuition suggested by the termi-
nology.

Proposition: Let C, D be chambers in a thin chamber complex. If  is a
wall so that C, D are on opposite sides of 7, then every minimal gallery from
C to D crosses n once and only once. If C', D are on the same side of n, then
no minimal gallery from C' to D crosses 7.

Proof: The convexity result proven above shows that some minimal gallery
stays on the same side of 1, but we are asking for a little more.

Suppose that C,D are on the same side of a wall 5 associated to a (re-
versible) folding f. We may as well suppose (by the reversibility) that fC = C
and fD = D. If a minimal gallery

vy=(C=0C,,...,Chp=D)

from C' to D did cross 7, then for some index i it must be that C; and C;4 lie
on opposite sides of . Then f~ stutters, but is still a gallery from C = fC to
D = fD. But then we can make a shorter gallery by eliminating the stutter,
contradiction.

Suppose that C, D are on opposite sides of n, with associated folding f
with fC' = C and fD # D. Let f' be the opposite folding. Then it certainly
cannot be that fC; = C; for all chambers C; in a gallery from C' to D, not
can it be that f'C; = C; for all C;, since fD # D and f'C # C. Thus, any
gallery from C to D must cross the wall n separating C' from D.

Suppose 7 crossed n twice. Let ¢ be the smallest index so that fC; = C; =
fCir1. By the assumption of double crossing, there must also be j > i so
that f'C; = C; = f'Cj11. Take the least such j. Then the gallery

(Coy.-,Ciz1,Ci, fCix1, fCiya, ..., fC,Ci41, ... ,Ch)

still runs from C to D, but now stutters twice, so can be shortened. This
shows that a minimal gallery will not cross a wall more than once. &
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3.4 Coxeter complexes

Let (W,S) be a Coxeter system with S finite. In this section we will
describe a chamber complex, the Coxeter complex, associated to such a
pair. At the outset it is not clear that the complex is a simplicial complex
at all, much less a chamber complex. That this is so, and other observations,
require a little effort. But this effort is repaid now and later by our being able
to call upon geometric intuition and heuristics, finally justified by the results
of this section.

Incidentally, we also prove that (up to reasonable equivalence), there is a
canonical labeling of a Coxeter complex. As remarked earlier, this fact allows
a certain suppression of this auxiliary notion, if desired.

Let P be the poset of all subsets of W, with inclusion reversed. The
Coxeter poset associated to (W, .S) is the sub-poset of P consisting of sets
of the form w(T') for a proper (possibly empty) subset T" of S.

The associated Coxeter complex ¥ = £(W,S) is defined to be the sim-
plicial complex associated to the Coxeter poset of (W,S). That is, X(W, S)
has simplices which are cosets in W of the form w(T) for a proper (possi-
bly empty) subset T of S, with face relations opposite of subset inclusion in
W. Of course, when attempting to define a simplicial complex as a poset,
there are conditions to be verified to be sure that we really have a simplicial
complex. This is done below.

Thus, the maximal simplices are of the form w(f) = {w} for w € W, and
the next-to-maximal simplices are of the form w(s) = {w,ws} for s € S and
weW.

Since X(W,S) is constructed as a collection of cosets w(S"), there is a
natural action of W on X(W,S), that is, by left multiplication.

We say that a chamber complex is uniquely labelable if, given labelings
A X — I and Ay : X — I, where I;,I> are simplices, there is a set
isomorphism f : Is — I; so that s = f o A\;, where we also write f for the
induced map on subsets of I5.

Theorem:

e A Coxeter complex X(W, S) is a uniquely labelable thin chamber com-
plex.

e The group W acts by type-preserving automorphisms.

e The group W is transitive on the collection of simplices of a given type.

e The isotropy group in W of the simplex w(S’} is w(S")w 1.

Proof: Keep in mind that we are not yet justified in calling things ‘sim-
plices’, because we have not yet proven that we have a simplicial complex: so
far, we just have a poset.

It is clear that the maximal simplices are of the form w(f) = {w} as noted
just above. Since we have seen in discussion of special subgroups (1.9), that
the map (T') — T is a bijection, the faces of w(f)) are all cosets of the form
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w(T) and are in bijection with proper subsets T' of S: if v(T) D w(f), then
v~ tw € (T). Thus, we can rewrite the coset v(T') as

o(T) = v(v™ ' w){(T) = w(T)

as desired.
More generally, given w'(T") D w(T), it follows that w'(T") D> w(d), so by
the previous paragraph we can rewrite

w'(T"y = w(T")
Thus, w(T") D w(T), so (T'Y D (T}, and then T' D T. That is, the faces of
w(T') are exactly the cosets w(T') with T" D T'.
Thus, the poset P of cosets w(T") in W, with inclusion reversed, is labelable,

in the sense of the previous section. Further, given a coset z = w(T'), we have
seen that the collection

Pey={yeAiy<a)
is poset-isomorphic to
{8cS:58#8, 5§ cT}
That is, this sub-poset is simplex-like, as desired.

Further, given wq (T1), w2(T2) with some lower bound w(T") in the Coxeter
poset, we can find an infimum, as follows. Keep in mind that the ordering in
this poset is inclusion reversed. We can left-multiply everything by w!, to
assume that the lower bound is of the form (T').

Basic facts (1.9) about Coxeter groups and their special subgroups imply
that w;(T;) C (T) if and only if T; C T and w; € (T'). Thus, we assume these
containments for ¢ = 1,2, and T is not allowed to be the whole set S.

Let T" be the smallest subset of T' so that T; C T" for i = 1,2 and so that
wy "wy € (T"). The existence of such a smallest subset of the finite set 7" is
clear. Then take w' = wy. It is easy to check that this w'(T") contains both
sets w;(T;), so is a lower bound.

On the other hand, from the results mentioned above no smaller version
of T' will do, since w; € w'(T") for i = 1,2 implies that w, 'w; € (T").
And with this choice of T" the condition w;(T;) C w'(T") holds if and only if
(w")~tw; € (T"). This determines w’ uniquely up to right multiplication by
().

Thus, any other lower bound w,(T,) must satisfy T C T,. Thus,

w'(T") = wi(T") C wi(T,) = w,(w, w)(T,) =
= wo(T")(To) = wo(T)p)
which establishes that w'(T") C wo(T,).

Thus, the existence of a lower bound implies that there is a greatest. (As

usual, the uniqueness follows from abstract properties of posets). Thus, by our

criterion (3.1) for a poset to be a simplicial complex, the simplicial complex
A associated to P is such. Uniqueness is proven below.
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To prove that A is a (connected) chamber complex, we must connect
any two maximal simplices by a gallery. It suffices to connect an arbitrary
maximal simplex C' = w(f) = {w} to a given one, say C, = {1}. Write
w=81...5, with s; € S. We claim that

Co, 8100, (3132)00, (818283)00,..., (81...8n)00

is such a gallery. Note the manner in which the s; appear. Since C, and
s;C, are adjacent, their images (s; ...s;—1)C, and (s1 ... $p—1)s;C, under left
multiplication by s; ...s;—1 are adjacent. Thus, the consecutive chambers in
the alleged gallery are adjacent, so it is a gallery. Thus, A is a chamber
complex.

A next-to-maximal simplex is of the form o = w(s). This is a facet of
maximal simplices w'()) = {w'} exactly for w' = w and w' = ws. That is,
each next-to-maximal simplex is a facet of exactly two chambers, so A is thin.

Again, our chosen labeling is

w(T) =T

Then it is clear that the action of W preserves types, and is transitive on the
collection of simplices of a given type.

To compute isotropy groups, by the transitivity we may as well consider
simplices of the form (S"). If w(S') = (S’) then w € (S’), and the converse is
certainly clear.

Now let us show that the labeling is essentially unique. To this end, we
may as well show that any labeling A by subsets of S differs from the labeling
Ao : w(T) = T by an automorphism of S. Let 7 be the permutation of S so
that mo X = )\, on C, where we identify 7 with the associated map on subsets
of S. We claim that 7 o A = A, on all simplices in A.

To see this, it suffices to suppose that 7 is trivial. We do an induction on
the length ¢(w) and consider the simplex = w(T"). It suffices to consider the
case that x is zero-dimensional. Let w = s ... s, be a reduced expression for
w, and let C; = s;...s,{(0). Then

c=0,,0,...,C,

is a gallery from C to a chamber C,, having z as face. In effect, the induction
hypothesis is that A and A\, agree on all vertices of C,,C1,... ,Cpr—1. We may
as well consider only the case that z is the unique vertex of (), not shared
with C),_1, since otherwise we are already done, by induction.

Let F' = C,,—1 NC,,. Then A(z) must be a singleton set disjoint from A(F'),
and A, (z) must be a singleton set disjoint from \,(F'). Since, by induction,
Ao(F) = A(F), it must be that A\,(x) = A(z). This completes the induction
step, proving that the labeling is essentially unique.

This establishes all the assertions above. &
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3.5 Characterization by foldings and walls

The following theorem of Tits gives a fundamental method to ‘make’ Cox-
eter groups. While it would be difficult to check the hypotheses of the follow-
ing theorem without other information, it will be shown later that apartments
in thick buildings automatically satisfy these hypotheses.

The proposition which occurs within the proof is a sharpened variant of
the last proposition of the previous section, and is of technical importance in
later more refined considerations.

Theorem: A thin chamber complex is a Coxeter complex if and only if
any two adjacent chambers are separated by a wall.

Remarks: Specifically, we choose a fundamental chamber C' in the cham-
ber complex X, and the (Coxeter) group W is defined to be the group of sim-
plicial complex automorphisms of X generated by the set S of all reflections
through the facets of C'. Then (W, S) is a Coxeter system, and the associated
Coxeter complex is isomorphic (as chamber complex) to X.

Remarks: The most interesting part of this result is the fact that Coxeter
groups can be obtained by constructing thin chamber complexes with some
additional properties. At the same time, the assertion that Coxeter complexes
have many foldings is a critical technical point which will be used very often
later.

Proof: We will show that the pair (W, S) satisfies the Deletion Condition
(1.7) , so is a Coxeter system. At the end we will show that, conversely, a
Coxeter complex has all the foldings asserted by the theorem.

First, we show that the group W of automorphisms generated by S is
transitive on chambers in X. We make the stronger claim that, for all
S1,---,8n €5, the gallery

C, 50, s15C,..., 5182...5,C

is non-stuttering, and that every non-stuttering gallery starting at C'is of this
form. Indeed, since sC'is adjacent to C' along F' = C'NsC and w is a chamber
map, wsC' is adjacent to wC along sF. This proves that this is a gallery. It
is non-stuttering since the reflections s € S fix no chambers.

On the other hand, for D adjacent to wC along the facet w(C N sC),
w™'D is adjacent to C' along C' N sC, so by the thin-ness of X it must be
that w™'D = sC. Thus, D = wsC. By induction on length of the gallery
connecting C' to D, W is transitive on chambers in X. From an expression
w = S1,...,Sy, we get a gallery

C, 50, s15C,..., 5182...5,C

from C to wC. Thus, we prove the claim above, and certainly obtain the
transitivity of W on the chambers of X.
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Next, we construct a retraction p : X — C, thereby also proving that X is
labelable, where again C' is the complex consisting of C' and all its faces. Let
Ci,...,C), be the chambers adjacent to C but not equal to C, and let f; be
foldings so that f;(C) = C = f;(C;). Let

dJ:fnofnflo---ofl
We claim that, given a chamber D # C, the distance (minimum gallery length)
of YD to C'is strictly less than that of D to C'. Granting this for the moment,
it follows that, for given D, for all sufficiently large n we have (D) = C.
And certainly 1 is the identity on C. Then define
p= lim "

n— 00
Then for any finite set Y of vertices in X there is a finite m so that for all
n > m we have
ply =™y ="y
Thus, this p will be the desired retraction.

To prove the claim about the effect of 1) on minimal gallery lengths, it
suffices to show that, given a minimal gallery v = C,C',C",... ,D from C to
D, ¢y stutters, since then there is a shorter gallery obtained by eliminating
the stutter. If fiy stutters, we are done; otherwise, the uniqueness lemma
implies that f; fixes all chambers in 7 pointwise. The same applies to fa, etc.
Thus, if no f;y stutters, then all the f; fix v pointwise. Then f;C' = C' for
all . But some one of the f; is the folding that sends C' to C, contradiction.
Thus, ¥ must cause any gallery from C to D # C to stutter, as claimed.

Thus, the retraction p : X — C gives a labeling of X by subsets of C.
Further, map the poset of subsets of C' to the poset of subsets of S by sending
the facet F' to the reflection s through it. Extend this by

Film...ﬁFim _>{3i17--- 7Sim}

where s;; is the reflection through the facet F;, of C. This is an inclusion-
reversing isomorphism. Let

A : X — subsets of S

be the composition of p with this map. Then A is a labeling of simplices in X
by subsets of S, but now z C y implies A(z) D A(y).

Next, we claim that all (reversible) foldings and reflections in X are type-
preserving (referring to A). From this it would follow that all elements of W
are type-preserving, and that wC and wsC' are s-adjacent. Since reflections
are pieced together from foldings (that is, from a reversible folding and its
opposite) (3.3) , it suffices to prove just that foldings preserve type.

Every folding f, by definition, fixes pointwise some chamber C,. Let D
be the closest chamber to C, so that f might fail to preserve the type of
some simplex inside D. Let C,,...,C, = D be a minimal gallery connecting
C, to D. By hypothesis, f preserves the type of simplices inside C\,—1. In
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particular, f preserves the type of all the vertices in the common facet F' =
Ch_1ND. Let z be the vertex of D not contained in F'. Since A and Ao f are
dimension-preserving simplicial complex maps to the ‘simplex’ (simplex-like
poset) of subsets of S with inclusion reversed, neither Az nor Af(z) can lie in
Af(F) = AF. There is just one vertex not in Af(F) = AF, so Af(z) = Az.
That is, f(z) and z have the same type. By induction, f preserves types.
Thus, W preserves types, as claimed.

Next, we show that W acts simply transitively on chambers. That is,
if w,w' € W and wC, = w'C, for some chamber C,, then w = w’. To
prove this, it suffices (as usual) to prove that if wC = C then w =1 € W.
Indeed, if we = C, then since w preserves types it must be that w fixes
C pointwise. Since w, being an automorphism, can cause no non-stuttering
gallery to stutter, it must be that w fixes pointwise any gallery starting at C',
by the uniqueness lemma (3.2) . Thus, w fixes X pointwise.

Thus, we see that the map

w — wC

is a bijection from W to the chambers of X.

The last proposition of the last section already demonstrated that in a
minimal gallery v = C,,... ,C), from C, to C,, # C, the walls crossed by ~
are distinct, and are exactly the walls separating C, from C,,. The hypothesis
that every facet is a panel in a wall assure that their number is d(C,, C},) = n.

To see that the Deletion Condition (1.7) holds, a sharper version of the
latter observation is necessary.

Since X is typed, we can use the more refined version of adjacency available
in a typed simplicial complex, s-adjacency. Recall that for s € S two chambers
Cy,Cy are s-adjacent if A(C; N Cy) = s. For example, C' and sC are s-
adjacent.

We define the type of a non-stuttering gallery v = C,, ... ,C, to be the
sequence (s1,. .. ,8y,) where C;_; is s;-adjacent to C;. Note that knowledge of
the starting chamber of such a gallery and of its type determines it completely.

Proposition: Let v = C,...,C, be a non-stuttering gallery of type
(S1,---,8p). If v is not minimal (as gallery from C, to C,), then there is a
gallery 7' from C, to C,, of type (s1,...,8i,...,85,...,8n).

Proof: The previous observation implies that the number of walls separat-
ing C, from C), is strictly less than n. Thus, at least one of the walls crossed
by v does not separate the two chambers C, and C),, in the sense that they
are both in the same half-apartment & = fX of some folding f. But then
this wall must be crossed another time, to return to ® where C), lies. Thus,
repeating a part of the proof of the proposition of the last section, there are
indices ¢ < j so that C;_1 € ® and C; € ® but Cj, ¢ ® for all indices k with
t <k <j. Then fC; = C;_; and fC;_1 = Cj. Thus, the gallery f~ stutters,
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since fC;—1 = C;—1 and fC; = C;. Deleting the repeated chambers gives a
strictly shorter gallery from C, to C),, as desired. )

Finally we can prove that (W,S) has the Deletion Condition. Let w =
$1...8, be a non-reduced expression for w. Then

vy=0C, s5C, 515C, s15953C,..., s1...5,C

is a gallery v of type (s1,...,8,) from C to wC. Since w has a shorter
expression in terms of the generators S, there are indices i, j so that there is
a shorter gallery v/ from C, to C,, of type

(15 38453855+ ,5n)
That is, we have concluded that

Since the map from W to chambers of X by w' — w'C is a bijection, we
conclude that

S1...8p =81...8;...8j...5q
That is, the pair (W,S) satisfies the Deletion Condition, so is a Coxeter
system. &

What remains is to show that the chamber complex X is isomorphic to the
Coxeter complex (W, S) attached to (W, S).

It is clear that C is a ‘fundamental domain’ for W on X, that is, any
vertex (or simplex) in X can be mapped to a vertex (or simplex) inside C' by
an element of W.

Last, we claim that, for a subset S’ of S, the stabilizer in W of the face of
C of type S’ is the ‘parabolic subgroup’ (S') of W. Let z be a face of type
S'. Certainly all reflections in the facets of type s € S’ stabilize z. Thus, (S’)
does stabilize x.

On the other hand, we will use induction to prove that, if wz = z, then
w € (S'). For w # 1, there is s € S so that £(w) > ¢(ws). Since by now
we have a bijection between reduced words and minimal galleries, we obtain
a minimal gallery v = C, sC, ... ,wC from C to wC'. From above, the wall n
which is the fixed point set of s separates C' from wC. Thus, wx = x implies
that swx = sxz. At the same time, swz C swC and swC is back in the same
half-apartment for s as C. Therefore, swz = sz lies in the fixed-point set n
for s; thus, sz = x also, and swz = z. By induction on length, sw € (S’).
Also, s € S’, since s fixes = pointwise. Then w = s(sw) also lies in (S’). This
completes the stabilizer computation. &

We already know that the chambers of X are in bijection with the chambers
in the Coxeter complex, by wC' — w(f), and this bijection is compatible with
the action of W (which is simply transitively on these chambers). We attempt
to define a chamber complex map by sending a vertex wv of wC, with v a
vertex of C of type S — {s}, to the vertex w(S — {s}) of w((). This map
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and its obviously suggested inverse are well defined thanks to the stabilizer
computations just above (and earlier for the Coxeter complex). Then this
map on vertices extends in the obvious way to a map on all simplices.

This completes the proof that thin chamber complexes wherein any adja-
cent chambers are separated by a wall are Coxeter complexes. &

Now we prove the converse, that in a Coxeter complex A any two adjacent
chambers C,C’ are separated by a wall. We must show that, for all C,C",
there is a folding f of A so that f(C) = C and f(C') = C. We will define
this f first just on chambers, and then see that it can thereby be defined on
all simplices.

We may suppose that C' = {1} without loss of generality. Then C' = {s}
for some s € S. For another chamber wC = {w} define f,(wC) = wC' if
(sw) = L(w) + 1, and define f,(wC) = swC if £(sw) = ¢(w) — 1. Let H, be
the set of chambers z so that f,(r) = z, and let H] be the set of all other
chambers.

From the definition, it is clear that f,o f, = f,. It is merely a paraphrase of
the Exchange Condition (1.7) to assert that multiplication by s interchanges
H, and H]. The latter fact then implies that f, is two-to-one on chambers,
as required.

A slightly more serious issue is proof that f, preserves t-adjacency for all
t € S. Once this is known we can obtain a simplicial complex map f extending
fo which will be the desired folding. Let wC, wtC be two t-adjacent chambers,
and show that f, sends them to t-adjacent chambers. Either £(wt) = £(w)+1
or we can reverse roles of w and wt.

In the case that ¢(sw) = {(w) + 1, we are defining f,(wC) = wC. If
L(swt) = L(wt) + 1, then we are defining f,(wtC) = wtC. In this case the t-
adjacency is certainly preserved, since nothing moves. If still £(sw) = £(w)+1
but ¢(swt) = {(wt) — 1, then swt = w. This was proven earlier as an easy
corollary of the Exchange Condition (1.7) . Then

fo(wtC) = swtC = wC = f,(wC)

s0 fo(wtC) is t-adjacent to f,(wC) in the degenerate sense that they are equal.

In the case that f(sw) = f(w) — 1, the element w admits a reduced ex-
pression starting with s, as does wt. Then f,(wtC) = swtC, which is visibly
t-adjacent to f,(wC) = swC.

Now we extend the map f, (which was defined only on chambers) to a
simplicial complex map, using the preservation of t-adjacency. Fix a chamber
wC. Let z be a face of codimension n and of type {s1,...,sp}, where we
use the labeling of the Coxeter complex by the set S. By the thin-ness of the
Coxeter complex, there is a unique chamber s;-adjacent to wC', and in fact it
is just ws;C. We claim that

f(@) = fo(ws1C) N folwseC) N ... fo(wsy,C)
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Here we invoke the preservation of t-adjacency to be sure that f,(ws;C) is
still s;-adjacent to f,(wC). Thus, the indicated intersection is the unique
face of f,(wC) of type {si1,...,s,}. This is all we need to be sure that this
extension preserves face relations, so is a simplicial complex map. &

Remarks: We can describe the folding f constructed in the proof more
colloquially by saying that it is a retraction to the half-apartment containing
the chambers which are closer to C' than they are to C’, in terms of minimal
gallery length. That this is an accurate description follows from the lemmas
in the section (3.3) above on foldings and half-apartments.

3.6 Corollaries on foldings and half-apartments

The corollaries below are mere repetitions of lemmas proven earlier in (3.3)
regarding foldings and half-apartments, now invoking the theorem of the pre-
vious section which assures existence of foldings and walls in Coxeter com-
plexes.

Fix adjacent chambers C,C’ in a Coxeter complex A, and let f: A — A
be a folding so that

f(C)=C= f(C"
Existence of f is guaranteed by the previous theorem. Let H = f(A) be the
half-apartment consisting of all simplices in A fixed by f. We use the some-
what temporary notation d(x, y) for the length of a minimal gallery connecting
two chambers z,y in A.

Corollary: Let z,y be two chambers in A, with f(z) = = while f(y) # v.

Let v be a gallery from z to y. Then f~ must stutter. &

Corollary:  The half-apartment H is convex in the sense that, given
chambers z,y both in H, there is a minimal gallery v = C,, ... , (), connecting
z,y lying inside H, that is, with all C; € H. &

Corollary: The half-apartment H can be characterized as the set of
chambers D in A so that d(C, D) < d(C', D). &

Corollary: Let g be another folding of X with g(C') = C' = ¢g(C"). Then
g=1 &

The following two corollaries are of importance in later, more refined, study
of the geometry of buildings.

Corollary: Let C, D be chambers in a Coxeter complex. If C', D are on
opposite sides of a wall n, then every minimal gallery from C' to D crosses
1 exactly once. Conversely, a gallery from C' to D which crosses each wall
separating C, D just once, and crosses not others, is minimal. If C, D are on
the same side of 77, then no minimal gallery from C to D crosses 7.
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Proof: ~ The only new thing here (since (3.5) Coxeter complexes have
sufficiently many foldings) is the criterion for minimality of a gallery. But
since a minimal gallery crosses every separating wall, a gallery which crosses
only the separating walls just once and crosses no others has the same length
as a minimal gallery. Thus it is minimal. &

And we have the variant version of the latter corollary, obtained as a propo-
sition in the course of the proof of the theorem of the last section. A Coxeter
complex X(W, S) is labelable, and we may as well suppose that the collection
of labels is the generating sets S for W. In particular, let C' be the funda-
mental chamber in the Coxeter complex, and for s € S and w € W say that
chambers wsC and wC' are s-adjacent

As in the proof of the previous section, we define the type of a non-
stuttering gallery v = C,, ... ,C), to be the sequence (s, ... ,s,) where C;_q
is s;-adjacent to C;. In the previous section we proved the following result for
any thin chamber complex wherein any two adjacent chambers are separated
by a wall, and we now know that this applies to Coxeter complexes:

Corollary: Let v = C,...,C, be a non-stuttering gallery of type
(s15-+-,8n). If v is not minimal (as gallery from C, to C,), then there is
a gallery ~' from C, to C, of type

(81,...,§i,... ,§]‘,... ,Sn)

for some indices i < j. &
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4. Buildings

Apartments and buildings: definitions
Canonical retractions to apartments
Apartments are Coxeter complexes
Labels, links, maximal apartment system
Convexity of apartments

Spherical buildings

The previous work on the group theory and geometry of Coxeter groups
was the local or relatively trivial part of the geometry of buildings, which
are made up of Coxeter complexes stuck together in rather complicated ways.
But this is not quite the definition we give here, in any case.

The definition we do give is misleadingly elementary, and its ramifications
are unclear at the outset. The virtue of our definition is that it can be checked
in specific examples, as we will do repeatedly later.

Thus, our definition does not depend upon reference to the material on
Coxeter groups or Coxeter complexes, nor even upon the material concerning
foldings and reflections. Rather, that material is used to prove that the present
definition does have the implications we want, such as that the apartments
are Coxeter complexes.

That is, we give the weakest definition possible, and prove that it still
works.

At the end, we can decisively treat the simplest abstract family of exam-
ples, called spherical, wherein by definition the apartments are finite chamber
complexes. This is equivalent to the condition that the associated Coxeter
groups be finite.

4.1 Apartments and buildings: definitions

We use the terminology of (3.3) concerning simplicial complexes, and give
the definition of building in as simple terms as possible.

A thick chamber complex X is called a (thick) building if there is a set
A of chamber subcomplexes of X, called apartments, so that each A € A is
a thin chamber complex, and

e Given two simplices x,y in X, there is an apartment A € A containing
both z and y.

e If two apartments A, A’ € A both contain a simplex = and a chamber C,
then there is a chamber-complex isomorphism ¢ : A — A’ which fixes
both z and C pointwise, that is, not only fixes x and C but also fixes
all simplices which are faces of z or C.
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The set A is a system of apartments in the chamber complex X. Note
that we do not say the apartment system.

Remarks: We will prove below that each apartment in a building is
necessarily a Coxeter complex. Often (usually?!) this is made part of the
definition of a building, but this makes the definition unattractive: from a
practical viewpoint, how would one check that a chamber complex was a
Coxeter complex? Yet the fact that the apartments are Coxeter complexes is
crucial for later developments, so the present definition might be viewed as
deceitful, since it does not hint at this. To the contrary, as we will see in our
explicit constructions later, our previous preparations indicate that we need
verify only some rather simple properties of a complex in order to prove that
it is a building. In particular, rather than trying to prove that a chamber
complex is a Coxeter complex, we will have this fact delivered to us as a
consequence of simpler properties.

Remarks: Sometimes half-apartments are called half-spaces.

Remarks: We might alter the axioms for a building to not necessarily
require that the chamber complex X be thick, but then we would have to
require explicitly that there be a system of apartments each of which is a
Coxeter complex. Then X would be called a weak building.

It is convenient to note that a stronger (and more memorable, and more
symmetrical) version of the second axiom follows immediately:

Lemma: Let X be a thick building with apartment system A. If two
apartments A, A" € A both contain a a chamber C, then there is a chamber-
complex isomorphism ¢ : A — A’ which fixes AN A’ pointwise.

Proof: For a simplex x € AN A’, there is an isomorphism ¢, : A — A’
fixing  and C pointwise, by the third axiom. Now our Uniqueness Lemma
(3.2) implies that there can be at most one such map which fixes C' pointwise.
Thus, we find that ¢, = ¢, for all simplices z,y in the intersection. &

Remarks: We can also note that, given two simplices z,y, there is an
apartment containing both. Indeed, let C' be a chamber with x as a face:
that is, C' is a maximal simplex containing z. Let D be a chamber containing
y. Invoking the axioms, there is an apartment A containing both C' and D.
Since A itself is a simplicial complex, it also contains z, y.

4.2 Canonical retractions to apartments

For two chambers C, D in a chamber complex V', let dy (C, D) be the gallery
distance from C to D in Y, that is, the least non-negative integer n so that
there is a gallery C = C,,,... ,Cy, = D from C to D with all C; in Y. More
generally, define the distance dy (z, D) from a simplex z to a chamber D as
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the least non-negative integer n so that there is a gallery C,,... ,C), = D
inside Y with z C C,.

Proposition: Let X be a building with apartment system 4. Fix an
apartment A in 4. For each chamber C of A there is a retraction p = pa,c :
X — A. Further:

e For a chamber D in A and a face z of C,
dx(ZU,D) :dA(an)

e When restricted to any other apartment B containing C, p gives an
isomorphism p|p : B — A which is the identity map on the overlap
ANB.

e Let C’ be another chamber in A, and let B be an apartment containing
both C,C’. Then when restricted to B, pa,c is equal to pa,c.

e This p = pa ¢ is the unique chamber map X — A which fixes C' point-
wise and so that for any face z of C' and any chamber D in X

dx (:U,D) = dx(w,pD)

Remarks: The retraction constructed in the proposition is the canonical
retraction of X to A centered at C.

Proof: Fix a chamber C'in A, and consider another apartment B contain-
ing chamber C. Then, by the axioms for a building just above in (4.1) , there
is a chamber complex isomorphism f : B — A fixing C. By the uniqueness
lemma (3.2) , for given B there is only one such map.

We claim that, given B, B’ with associated f, f', the maps f, f’ agree point-
wise on the overlap BN B'. Indeed, let g : B' — B be the isomorphism which
fixes B’ N B pointwise (by the axioms). Then fog must be f', by the unique-
ness observed in the previous paragraph. On the other hand, on B' N B
the map f o g is nothing other than f itself. This proves that the various
maps constructed agree on overlaps. This completes the construction of the
retraction.

On one hand, clearly

dx (z,D) < da(z, D)

On the other hand, let v be a minimal gallery from C' to D in X. Then apply
p: X — A to obtain a gallery of no greater length, lying wholly within A.
This proves the assertion about distances from faces of C' to chambers within
A.

Let = be any face of C, and D another chamber in X. Let v be a gallery
Co,...,Cp = D with x C C,. Let A’ be an apartment containing both C
and D. Since by construction (above) p|as is an isomorphism A’ — A, we
certainly have da(x, pD) = das(x, D). On the other hand, we just proved that
distances within apartments are the same as distances within the building, so

dX(xva) :dA(mapD) = dA’(va) = dx(ZU,D)
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If f: X —» A were another chamber complex map which fixed C pointwise
and preserved gallery lengths, then p, f would be maps to a thin chamber com-
plex which agreed pointwise on a chamber and which mapped non-stuttering
galleries to non-stuttering galleries. Therefore, by the uniqueness lemma, (3.2)
[ =p

Note that the property that p restricted to any other apartment B con-
taining C' be an isomorphism follows from the construction. The equality of
pa,c with pa o when restricted to an apartment containing both chambers
C and C' follows from the construction, together with the uniqueness proven
above. &

4.3 Apartments are Coxeter complexes

The fact that the apartments in a thick building are unavoidably Coxeter
complexes is a corollary of Tits’ theorem (3.5) giving a criterion for a thin
chamber complex to be a Coxeter complex. This is a primary device for
‘construction’ of Coxeter groups.

Corollary: The apartments in a (thick) building are Coxeter complexes.
Indeed, given an apartment system 4 for a thick building, there is a Coxeter
system (W, S) so that every apartment A € A is isomorphic (as chamber
complex) to the Coxeter complex X (W, S).

Proof: By Tits’ theorem (3.5), we need only show that, given two adjacent
(distinct) chambers C, C" in an apartment A of the building, there are foldings
fof so that fC = C = fC" and f'C = C' = f'C’. (From our general
discussion of foldings in (3.3) and (3.6), this would suffice).

Invoking the thickness, let E be another chamber distinct from C,C" with
facet ¥ = C N C'. Let A’ be an apartment containing C, E. We use the
canonical retractions constructed above in (4.2) , and define f : A — A to
be the restriction to A of pa,cr o par,c. Then, from the definitions of these
retractions, fC = C = fC'.

We need to prove that f is a folding. Now p4 ¢+ preserves distances from
any face of C', and pa ¢ preserves distances from any face of C. Since F is the
common face of C' and C’, also f preserves distances from F'. In particular, if v
is a minimal gallery C,,...,C,, = C' with F' C C,, then f~ is non-stuttering.

If C, = C then dx(F,C’) = dx(C,C") and, by the uniqueness lemma, f
fixes C' pointwise. That is, f is the identity map on the subcomplex Y of A
consisting of faces of chambers D with dx(F,D) = dx(C,D). For D in A,
either C, = C or C, = C', since A is thin. In either case f starts with C,
since fC' = C. Then fD €Y. Thus, f is a retraction of A to the subcomplex
Y.

Reversing the roles of C' and C’, we have a retraction f' with f'C =
C' = f'C’, preserving distances from F', and mapping to the subcomplex Y’
consisting of faces of chambers D with dx (F, D) = dx(C’', D).
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Next, we show that Y and Y’ have no chamber in common, so that the two
partition the chambers of A. Indeed, if D were a common chamber, then both
f and f' fix D pointwise. Let v be a minimal gallery from D to a chamber
with face F. Then fv and f’v still are galleries from D to a chamber with
face F'. Since v was already minimal, these galleries cannot stutter. But then
the uniqueness lemma (3.2) shows that f = f'. This is certainly not possible:
for example, fC =C #C' = f'C.

It remains to show that f maps the chambers in Y’ injectively to Y, and
(symmetrically) that f' maps the chambers in Y injectively to Y, since in
both cases this proves the two-to-one-ness. The chamber map f o f' maps
C to itself and fixes F' pointwise, so unavoidably fixes C' pointwise: the map
preserves dimensions, and there is only one vertex of C' not inside F'. Thus, by
the uniqueness lemma (3.2) , f o f' is the identity map on Y. Symmetrically,
f'o f is the identity map on Y'. From this the desired result follows.

Now we prove that all apartments in a given apartment system are isomor-
phic (as simplicial complexes), from which follows the assertion that they are
all isomorphic to a common Coxeter system X(W,S). Indeed, if two apart-
ments have a common chamber, the building axioms assure that there is an
isomorphism from one to the other. (The fact that this isomorphism has
additional properties is of no moment right now). Then given two arbitrary
apartments A, A’, choose chambers C,C’ in A, A', respectively. Let B be an
apartment containing C,C’, as guaranteed by the building axioms. Then B
is isomorphic to A and also to A’, by the previous remark, so A is isomorphic
to A’ by transitivity of isomorphic. &

4.4 Labels, links, maximal apartment system

In the above there was no discussion of how anything depended upon the
apartment system. In this section we will see that many things do not depend
at all upon ‘choice’ of apartment system, and in fact that there is a unique
maximal apartment system. This is important for more delicate applications
later to spherical and affine buildings. Sometimes this maximal apartment
system 1is called the complete apartment system. The notion of link, intro-
duced below, is very useful in the proof.

Proposition: A thick building X is labelable in an essentially unique
way. That is, given labelings A\; : X — I1 and Ay : X — I where [, > are
simplex-like posets, there is a set isomorphism f : I — I; so that Ao = fo\q,
where we also write f for the induced map on subsets of I.

Proof: Having seen in (4.3) that the apartments A are Coxeter complexes,
we recall from (4.2) that there is a canonical retraction r of A to the given
chamber C, in effect achieved by repeated foldings of A along the facets of
C. This gives one labeling of the apartment A by the simplicial complex C.
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And we have already proven (3.4) that the labeling of a Coxeter complex A
is essentially unique.

Now we make a labeling of the whole building. Fix a chamber C' in an
apartment A in an apartment system A in X. We have the canonical retrac-
tion pa,c of X to A centered at C, as discussed earlier in (4.2) . Then

rC O PAC

is a retraction of the whole building X to the given chamber C, which gives one
labeling of the building, extending the labeling of A since p4 ¢ is a retraction.

To prove uniqueness, since we know the uniqueness of A, it suffices to prove
that there is at most one extension of the labeling r¢ : A — C to a labeling
A: X — C. Let D be a chamber in X. Invoking a building axiom (from (4.1)
), there exists an apartment A’ containing both C and D. The essentially
unique labeling (3.4) of the Coxeter complex A’ implies that the labeling on
C (that is, on the simplicial complex C) completely determines that on A’,
hence on D (or on D). Thus, any other labeling is essentially the same as
that constructed via the canonical retractions. &

Next, we observe that the maps postulated to exist between apartments
can be required to preserve labels:

Corollary: For apartments A, A’ in a given apartment system with a
chamber in common, there is a label-preserving chamber-complex isomor-
phism f: A — A’ fixing AN A’ pointwise, and any isomorphism f: A — A’
fixing AN A’ pointwise is label-preserving.

Proof: The existence of a chamber-complex isomorphism is assured by
the building axioms. We need only show that any such is unavoidably label-
preserving.

Let A be a labeling of X. Then Ao f is a labeling on A’ which agrees with A
on AN A’, which by hypothesis contains a chamber. Thus, by the uniqueness
of labelings (3.4) of the Coxeter complex A’, these labelings must agree. &

In a simplicial complex X, the link lky (z) of a simplex z is defined to be
the subcomplex of X consisting of simplices y so that, on one hand, there is
no simplex z so that z < z and z < y, but there is a simplex w so that w > =
and w > y.

Proposition: The link of a simplex in a Coxeter complex X (W, S) is again
a Coxeter complex. In particular, supposing as we may that the simplex x
is the face x = (T') of the chamber C' = (0), then the link of z in (W, S) is
(naturally isomorphic to) the Coxeter complex of the Coxeter system ((T'),T').

Proof: The main point is that there is the obvious poset isomorphism of
the link of z with the set

Y>, = { simplices z of X(W, S) so that z >z }
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by sending y to y Uz for y a simplex in L. Thus, the link is isomorphic to the
poset of special cosets inside W contained in (T'}, since the inclusion ordering
is reversed. This poset is visibly the poset X({T"),T), as claimed. &

Proposition: The link of a simplex in a thick building is itself a thick
building.

Proof: Fix a system A of apartments in the building X. Let X' be the
link of a simplex in X. We propose as apartment system in X' the collection
A’ of links of z in apartments in A containing z. By the previous proposition
each link of z in an apartment containing it is a Coxeter complex, so is a thin
chamber complex. We must verify the thick building axioms (4.1) .

Given simplices y,z € X' the simplices z U y,z U 2z are contained in an
apartment A € A. Then the link of x in A contains y and z. This verifies one
building axiom.

Similarly, for the other axiom, suppose that B’ € A" were another (alleged)
apartment containing both y and z. Let B € A be the apartment in X so
that B’ is the link of z in B. Then B contains both z Uy and z U z, so (by
the building axiom for X) there is an isomorphism ¢ : B — A fixing AN B
pointwise. Then the restriction ¢' of ¢ to B’ is an isomorphism B’ — A’
fixing A’ N B’ pointwise. This proves the other building axiom.

Regarding thickness, let y be a codimension-one face of a chamber in X',
As in the discussion of the link of z in a Coxeter complex, it is immediate
that as poset the complex X' is isomorphic to the set X>, of simplices in X
with face z, by the map z — x U z. Thus, the chambers in X' with face y are
in bijection with the chambers in the original X with face U y. Thus, the
thickness of X implies the thickness of the link X', &

Now we use links to prove that the Coxeter system attached to a building
is the same for any and all apartment systems.

Theorem: Given a thick building X, there is a Coxeter system (W, S)
so that any apartment A in any apartment system A is isomorphic to the
Coxeter complex (W, S).

Proof: We prove that the Coxeter data is determined by the simplicial
complex structure of the building. We use a labelling A of the building by
taking A to be a retraction to a fixed chamber C' in a fixed apartment A in X.
Let S be the set of reflections in A through the facets of C'. Thus, we label a
face F' of C' by the subset of S fixing F.

For distinct s,t € S, let F be a face of type S — {s,t}, that is, fixed only
by s and ¢ among elements of S. Then the specific claim is that m(s,t) is the
diameter of the link lkx (F) of F in the building X.

The link lk4(F) of F in the apartment A is an apartment in the thick
building lkx (F'). This apartment lk4(F') is a Coxeter complex for a Coxeter
system whose generating set is just {s,¢}. This is a one-dimensional simplicial
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complex. It is essentially by definition that the diameter of the apartment
k4 (F) is the Coxeter datum m(s,t).

From above, the link lkx (F') is a thick building and that lk4(F) is an
apartment in it. And the minimal galleries in the apartment are minimal in
the whole building, so the diameter of an apartment is the diameter of the
whole building.

The latter diameter certainly does not depend upon choice of apartment
system. Thus, the Coxeter invariants m(s,t) are determined by the simplicial
complex structure of the building, so are the same for any apartment system.

&

Now we can show that there is a unique maximal apartment system in any
thick building.

Corollary: Given a thick building X, there is a unique largest system of
apartments.

Proof: 'We make the obvious claim that, if {4, : @ € I'} is a collection of
apartment systems A, then the union

A=J Aq

is also an apartment system. This would give the proposition. To prove the
claim, we verify the axioms (4.1) for apartment systems in a building:

If each apartment A € A, is a thin chamber complex, then certainly the
same is true for |J A,. (We have already seen in (4.3) that each apartment is
in fact a Coxeter complex. This, too, is true of the union).

The condition that any two simplices lie in a common apartment is certainly
met by the union. The non-trivial axiom to check is the requirement that,
given two apartments A, A’ with a common chamber C, there is a chamber-
complex isomorphism A — A’ fixing every simplex in AN A'.

Via the lemma, choose a label-preserving isomorphism f : A’ — A. Since
the Coxeter group W of type-preserving automorphisms of A ~ (W, S) is
transitive on chambers, we can adjust f so that f(C) = C. It is not yet clear
that this f fixes AN A’

On the other hand, let p be the retraction of X to A centered at C' as
in (4.2) , and consider the restriction g : A" — A of p to A’. By definition
(3.1) of retraction, g fixes AN A’. Since A and A’ are not necessarily in a
common apartment system, we cannot yet conclude that g is an isomorphism
of chamber complexes.

But f and g agree on the chamber C, and map to the thin chamber complex
A. Let v be a minimal (necessarily non-stuttering) gallery in A’. The image
f(7) is non-stuttering since f is an isomorphism. In our discussion of canonical
retractions to apartments (4.2) , we showed that p preserves gallery-distances
from C, and that 7 is minimal not only in the apartment but also in the
whole building. Therefore, g(y) also must be non-stuttering. Thus, by the



54 Garrett: ‘4. Buildings’

Uniqueness Lemma (3.2) , we conclude that f = g. This verifies the last axiom
for a building and an apartment system, proving that the union of apartment
systems is an apartment system, thus showing that there is a maximal such.

&

4.5 Convexity of apartments

The result of this section asserts a combinatorial convexity property of
apartments.

Proposition: In a thick building X, let A be an apartment containing
two chambers C, D. Then any minimal gallery in X connecting C, D actually
lies inside A.

Proof: Let
vy=(C=0C,,Ci,...,Ch=D)
be a minimal gallery from C to D. If it were not contained in the apartment A,
then there would be a chamber C; in the gallery so that C; € A but C;11 € A.
Invoking the thin-ness of A, let E be the unique chamber in A distinct from C;
and having facet C;NCj11. Let p be the retraction pa g of the whole building
to A, centered at F, as defined above in (4.2) . Since this retraction preserves
minimal gallery distances from E, certainly p(E') # E for all chambers E'
adjacent to E (and not equal to E). In particular, p(C;+1) = Cj, since the
only other possibility is p(C;+1) = E, which is denied, by the previous remark.
Therefore, p(7y) stutters, contradicting the minimality of +. )

4.6 Spherical buildings

A building X whose apartments are finite chamber complexes is called a
spherical building. Likewise, a Coxeter complex which is finite is often
called a spherical complex.

The thick spherical buildings are the simplest buildings. They are also the
most important, appearing everywhere. Their theory is relatively elementary,
so we can develop much of it immediately. One of the more striking aspects of
spherical buildings is the assertion, contained in the last corollary, that there
is a unique apartment system. This is very special to the spherical case.

The diameter of a chamber complex is the supremum of the lengths of
minimal galleries (C,, ... ,C,) connecting two chambers. Certainly a finite
chamber complex has finite diameter. (We always assume that chamber com-
plexes (buildings or apartments) are finite-dimensional).

Proposition: A thick building of finite diameter is spherical. A Coxeter
complex of finite diameter is finite. The diameter of a building is the diameter
of (any one of) its apartments.
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Proof: Although we have been supposing always that the generating sets
S for Coxeter groups are finite, this deserves special emphasis here, since the
dimension of the Coxeter complex X(W, S) is one less than the cardinality of
S. So finite-dimension of the complex is equivalent to finite generation.

Let C be a chamber in a Coxeter complex X(W,S) with S finite. We
already know from (3.4) that, for any w € W, the length of a minimal gallery
from C to wC in a Coxeter complex is the length ¢(w) of w. Thus, we are
asserting that there is an upper bound N to the length of elements of W. The
set S is finite, by the finite dimension of X(W, S). Let |S| be the cardinality
of S. Then there are certainly fewer than

L+I[S|+|SP+|SPE+...+ S|V

elements in W. Thus, W is finite.

If X is a building with finite diameter N, then any apartment has finite
diameter, so is a finite chamber complex, by what we just proved.

Further, if the diameter of X is a finite integer N, then by the axioms there
is an apartment A containing two chambers C, D so that there is a minimal
gallery in X from C to D of length N. Let p be the canonical retraction of
X to A centered at C. Then the image under p of a minimal gallery 7 from
C to D is certainly not greater than the length of 7. Thus, the diameter of
any apartment is no greater than the diameter of X.

We have shown that all apartments are isomorphic (as chamber complexes).
Thus, all their diameters are the same, so must be the same as that of X. &

Two chambers in a spherical building are opposite or antipodal if the
length of a minimal gallery from one to the other is the diameter of the
building.

Proposition: Let C, D be two antipodal chambers in a spherical building
X. Let A be any apartment containing both C' and D. Then every wall in
A separates C, D. And every chamber in A occurs in some minimal gallery
from C to D.

Proof:  Of course, the axioms (4.1) for a building assure that there is at
least one apartment containing both C, D.

Suppose that C, D lay on the same side of a wall n associated to a folding
f and its opposite folding ', as in (3.3) and (3.6) . Without loss of generality
we take fC = C' and fD = D. We claim that f’'D is further away from C
than D is, in the sense of minimal gallery distances. Indeed, a minimal gallery

Y=(C+C,,... 7Cn:f’D)
from C to f'D must cross n somewhere, in the sense that there is an index i
so that fC; = C; = fCi11. Then the gallery fv from C to ff'D = D must
stutter, so is strictly shorter than . This contradicts the assumption that

C, D were antipodal, thus proving that all walls in the apartment A separate
the antipodal chambers C, D.
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Now let C, D be antipodal, and C’ any other chamber in an apartment A
containing both C, D. For each wall n in A, the chamber C' must lie on the
same side of n as does one or the other of C, D, but not both. We proved
earlier in (3.6) that a minimal gallery crosses each separating wall exactly
once, and crosses no others. Let

vy=(C=0C,y...,Cp =0C")
be a minimal gallery from C to C' and let
d=(C"=D,,...,D,=D)

be a minimal gallery from C' to D. Then the set of walls crossed by d is
disjoint from the set of walls crossed by 7, and the union of the two sets is
the collection of all walls in A.

In particular, the gallery

N =(C=Cy,...,Cp=C"=D,,...,D, =D)

crosses each wall just once. Thus, by the corollaries (3.6) of Tits’ theorem
(3.5) on walls and foldings, the gallery +' is minimal. Thus, the chamber C’
appears in a minimal gallery. &

As temporary usage, for two chambers C, D in the spherical building X,
say that the convex hull of this pair is the union of all chambers which lie
in some minimal gallery from C to D (and all faces of such chambers).

Corollary: In a thick spherical building X, there is a unique apartment
system. In particular, the apartments are the convex hulls of pairs of antipodal
chambers. Indeed, there is a unique apartment containing a given pair of
antipodal chambers.

Proof: Let let C, D be any two antipodal chambers. By the combinatorial
convexity of apartments (4.5) , every minimal gallery from C' to D is contained
in every apartment containing the two. Thus, the convex hull is contained in
every apartment containing both C' and D. On the other hand, the previous
proposition shows that every chamber which lies in some apartment containing
both C' and D occurs in some minimal gallery from C' to D. Thus, the convex
hull of C, D is the unique apartment containing the two antipodal chambers.

&
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5. BN-pairs from Buildings

BN-pairs: definitions

BN-pairs from buildings

Parabolic (special) subgroups
Further Bruhat-Tits decompositions
Generalized BN-pairs

The spherical case

Buildings from BN-pairs

The original purpose of construction and analysis of buildings was to pro-
vide a systematic geometric technique for the study of groups of certain im-
portant types.

The notion of BN-pair can be posed without mentioning buildings, and
such structures are dimly visible in many examples. Nevertheless, in the end,
verification that given subgroups B, N of a group G have the BN-pair property
is nearly always best proven by finding a building on which G acts nicely.

The viewpoint taken in this section is that facts about buildings are used
to make BN-pairs and prove things about them.

5.1 BN-pairs: definitions

Here we just define the notion of (strict) BN-pair or Tits system. In
the next section we will see how BN-pairs arise from group actions on build-
ings, and later we will construct buildings for specific groups. A notion of
generalized BN-pair will be introduced a little later.

Let G be a group. Suppose that we have subgroups B, N so that T = BNN
is normal in N'. Let W = N/T, and let S be a set of generators for W.

For w € W, the notation BwB will mean to choose n € N so that nT = w
in W = N/T, and then put BwB = BnB, noting that the latter does not
depend on the choice of n, but only upon the coset.

The pair B, N (more properly, the quadruple (G, B,N, S)) is a BN-pair
in G if

(W, S) is a Coxeter system.

Together, B, N generate G (algebraically).

Bruhat-Tits decomposition G' = | | . BwB (disjoint!)

B(S"YB = |—|w€(S’) BwB is a subgroup of G, for every subset S’ of S,
where (S’) is the subgroup of W generated by S'.

BwB - BsB = BwsB if {(ws) > l(w), forall s € S,we W

e BwB - BsB = BwsB U BwB if {(ws) < {(w)

e Forall s € S, sBs~! ¢ B. That is, sBs is not contained in B.
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The subsets BwB are Bruhat-Tits cells or Bruhat cells in G. The rules
for computing BwB - BsB are the cell multiplication rules.

These assertions are stronger than the type of assertion sometimes known
as a Bruhat decomposition, in subtle but important ways.

5.2 BN-pairs from buildings

This section begins to make one of our main points, applying the elementary
results proven so far concerning buildings, to obtain BN-pairs from suitable
actions of groups upon buildings. In fact, further and sharper results about the
Bruhat-Tits decomposition will follow from the building-theoretic description
of it.

Fix a chamber C in an apartment A in an apartment system A in a (thick)
building X, as in (4.1). Assume that X is finite-dimensional as a simplicial
complex (3.1). We have the canonical retraction p4.c of X to A centered at
C (4.2), and the canonical retraction rc of A to C' (3.4). As noted earlier,
the composite

A=rcopac
is a retraction of the whole building X to C labeling (that is, typing) X by
C,, and all other labelings are essentially equivalent to this one (4.4).

Suppose that a group G acts on X by simplicial-complex automorphisms,

and that G is type-preserving in the sense that

Aog=2A

for all g € G.

We suppose further that G acts strongly transitively on X in the sense
that G acts transitively on the set of pairs (A4, D) of apartments A and cham-
bers D so that D is a chamber in A.

Remarks: In general, it is necessary to assume that the group stabilizes
the set of apartments. The following proposition notes that this hypothesis is
fulfilled if the apartment system is the maximal one. Since in our applications
we are exclusively concerned with maximal apartment systems, any more
general stabilization question is of little concern to us.

Proposition: If A is the unique maximal system A of apartments and
f X — X is a simplicial complex automorphism, then for any A € A we
have fA € A.

Proof: The point is, as was shown in discussion of links, labels, and the
maximal apartment system (4.4), that there is a unique maximal apartment
system. It is very easy to check that

FA={fB:Be A}

is another apartment system in X, so if A was maximal then unavoidable

fA = A. In particular, fA € A. &
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Fix a chamber C, in a fixed apartment A,. Let
W = { type-preserving automorphisms of 4,}

S = { reflections in codimension-one faces of C,}

From Tits’ theorem (3.5), (W, S) is a Coxeter system, and A, is (naturally
identifiable with) the associated Coxeter complex.
Define some special subgroups of G:

B={geG:9C,=0C,}
N={geG:gA,=4,}
T=Bn~N
This (B,N) will be the BN-pair in G associated to the choice of chamber

and apartment (in the chosen system of apartments). (We have yet to prove
that it has the requisite properties).

Lemma: The subgroup T acts trivially pointwise on A,, so is the kernel
of the natural map N/ — W. Therefore, it is normal in N'. The induced map

NSN/TCWw
is surjective.

Proof: From the definitions, it is clear that 7' contains the kernel of the
natural map N' — W.

Since T gives maps of the thin chamber complex A, to itself, trivial on C,,
and not causing any non-stuttering galleries to stutter (since it is injective),
by the uniqueness lemma (3.2) it must be that elements of T give the trivial
map on A,. Thus, T maps to 1 C W, so is equal to the kernel of N' — W.

On the other hand, given w € W, by the strong transitivity there isn € N’
so that nC, = wC,. Since n and w are type-preserving, they agree pointwise
on C,, so must give the same effect on A4,, by the uniqueness lemma (3.2).
Also, if n € BN N then n fixes C, pointwise and so acts trivially on A,.
Therefore,

N/T =W
as desired. &

Remarks: The hypothesis of strong transitivity assures that varying the
choice of C, C A, merely conjugates the BN-pair. In particular, in group-
theoretic terms, this means that any other choice of apartment changes N
just by conjugation by some element of B.

Corollary: All possible groups T = N N B inside a fixed B, for varying
choices of 4, and N, are conjugate to each other by elements of B (not merely
by elements of G). &

Keep notation as above, with fixed pair C, C A,. For S’ C S, let Fs: be
the face of C, whose stabilizer in W is (S'). Let

Ps: = stabilizer of Fs in G
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This is the standard parabolic subgroup of G of type S’. Note that with
S' = S we obtain the whole group G as (improper) parabolic subgroup

G = Ps

(in a degenerate sense, since W = (S) stabilizes only the empty set) and with
S' = () obtain the minimal standard parabolic subgroup

B="P,

Remarks: Yes, there is conflict between the present use of parabolic
subgroup and the use of the same phrase for special subgroups of Coxeter
groups (1.9). This is why use of special subgroup in the Coxeter groups
situation is preferable.

Theorem: The quadruple (G, B, N, S) satisfies the axioms for a BN-pair.
Beyond what we have already noted, this explicitly includes

¢ Bruhat-Tits decomposition Each standard parabolic subgroup Pg
of G, including G = Py itself, has a decomposition

Ps = || BuwB
we(S’)
BwB - BsB = BwsB if l(ws) > l(w), for all s € S, w € W.
BwB - BsB = BwsB U BwB if {(ws) < £(w).
For all s € S, sBs~! ¢ B, that is, sBs is not a subset of B.
And for g € G the coset BwB is determined by

PA,,Co (9Co) = wC,

where p4, ¢, is the canonical retraction of X to the apartment A, cen-
tered at C,.

Remarks: Only the last assertion, which gives a finer explanation of the
Bruhat-Tits decomposition, uses an explicit reference to the building and the
action of the group upon it. So if such information is not needed it is possible
to describe the group-theoretic consequences of the building-theory without
any mention of the buildings themselves.

Remarks: Of course, similar properties hold for BsB - BwB as asserted
above for BwB - BsB. Implicit in the above is that the unions

|| BwB
we(S")
are indeed subgroups of G. Also implicit is the assertion that
(NNPs)]T = (SYcw
Proof: First we prove the Bruhat decomposition for the standard parabolic

subgroups. Given g € Pg/, choose an apartment A containing both C, and
gC,, and by strong transitivity take b € B so that bA = A,. Then bgC, = wC,
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for some w € W, by the transitivity of W on the chambers in the apartment
A,. So bg € wB, and g € BwB. Further, since g € Ps; and B C Ps:, this w
is in F¢. This proves that

Py = U BwB
we(S’)

To prove disjointness of the unions above, we need only prove

G:|_|BwB

Multiplication by the element b (in the notation above) gives an isomorphism
A — A, fixing C, pointwise. By the uniqueness lemma, there is only one
such, the retraction p = pa, c, to A, centered at C, considered earlier (4.2).

The discussion just above shows that ¢ € BwB where w is the uniquely
determined element w = f(g) of W so that p(gC,) = wC,, proving the very
last assertion of the theorem. (Recall the simple transitivity of W on the
apartments). We need to show that f(BwB) = w. Take n € N so that
nT = w. For b,b' € B, letting g = bnb’,

gC, =bnb'C, = bnC, = bwC, € bA,

Left multiplication by b~! gives an isomorphism of bA, to A, fixing C, point-
wise, so it must be (by uniqueness of p) that

p(gCo) = b7 (gC,) = wb'C, = wC,
Thus, f(bnb') = w. This proves the disjointness in the Bruhat-Tits decompo-
sition.
Next, for s € S and w € W, we consider products
BwB - BsB = {blwb28b3 : bl,bQ,b3 S B}

In any group G it would be true that such a product would be a union of
double cosets BgB, since it is stable under left and right multiplication by B.
Further, certainly ws € BwB - BsB, so this product of double cosets always
contains BwsB.

Now we prove, first, that

BwB - BsB C BwsB U BwB

Recall that the retraction p : X — A, (as just above) is type-preserving, so
also preserves s-adjacency of chambers in the sense of (3.1). So the function
f: G — W defined just above (in terms of p) satisfies

flgh) = f(g)or f(g)s
for all g € G and p € P, where (again)
Py = BUBsB
is the stabilizer in G of the face F' of C, fixed by s. Thus,
f(BwB - BsB) C f(BwB) U f(BwB)s = wUws
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so that
BwB - BsB C BwB U BwsB

as asserted.

Suppose that £(ws) > f(w). We claim that in this case BwB - BsB =
BwsB. Tt suffices to show that in this case wBs C BwsB. Take n,oc € N
so that nT = w and ¢T = s. Given g = nbo € nBo, we must show that
p(9Cs) = wsC,, with the retraction p as above.

Now

gC, = nboC, = nbsC,
is s-adjacent to nbC, = nC, = wC, and is distinct from it. Let
Yo = 007017--- ,U)Co =nC,
be a minimal gallery from C, to nC, = wC,, and let
v=0C,,C4,...,wC,,nbsC,

We grant for the moment that v is a minimal gallery. Since p(nboC) is s-
adjacent to p(nbC) = p(wC) = wC, p(nbaC) is either wC or wsC, since these
are the only two chambers in A, with facet F. If p(nboC) = wC then p(7y)
would stutter, contradicting the fact that p preserves distances (4.2), using
the minimality of 7. Thus, p(nboC) = wsC.

It remains to show that -y is minimal, assuming ¢(ws) > ¢(w). Let p’ be the
retraction to A, centered at wC,. Since p' preserves distances from wC and
nboC, # C,, it must be that p'(nboC,) # wC,. Thus, since p’ also preserves
s-adjacency (being type-preserving), p'(nboC,) = wsC,. Thus,

P'(7) =p'(Co),... 0 (wCy), p(nboC,) =
=Chy... ,wC,,wsC,

The part p'(7,) of p'(7y) going from C, to wC, is minimal, since p’ preserves
distances from wC, and 7y, was assumed minimal. Thus, since £(ws) = {(w) +
1, the gallery p'(y) = C,, ... ,wC,,wsC, in A, is minimal, where we use
the correspondence between word-length and gallery-length holding in any
Coxeter complex (3.4). Thus, necessarily v is minimal, since its image by p'
is minimal.

Next we show that s 'Bs ¢ B. Since X is thick, for every s € S there is
another chamber C' distinct from C, and sC, which is s-adjacent to C,. Let
F be the facet C, N sC, of type s. There is ¢ € G so that gC, = C’, since G
is transitive on chambers. Since g is type-preserving g must fix F. That is,

g€P<s>:B|_IBsB

Since gC, # C,, g € B, so g € BsB. Also, gC, # sC,, so g € sB. Thus, we
have shown that BsB ¢ sB, so that necessarily Bs ¢ sB, or s 'Bs ¢ B.
Last, we consider the case ¢(ws) = f¢(w) — 1 and prove the other cell
multiplication rule
BwB - BsB = BwB U BwsB
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What remains to be shown in order to prove this is that w € BwB - BsB. By
the previous paragraph, we already know that sBs ¢ B for s € S, so
B # BsB - BsB
But we have shown that
B BsB D BsB - BsB

Thus, evidently
(BsB-BsB)N BsB # 10

so must be all of BsB since the intersection is left and right B-stable. In
particular,

s € BsB-BsB

Assume £(ws) = £(w) — 1. This is the same as
Lws-s) =L(ws) + 1
so we can apply the earlier result in this direction, to obtain
BwsB - BsB = BwssB = BwB
Multiplying by BsB gives
BwsB - BsB - BsB = BwB - BsB
The left-hand side contains
ws - BsB - BsB = ws(B Ll BsB)
which contains ws - s = w. Thus, for £(ws) = f(w) — 1,
BwB - BsB = BwB Ul BwsB

as claimed. &

5.3 Parabolic (special) subgroups

In this section we do not use any hypothesis that the BN-pair arises from
a strongly transitive action on a thick building.

The phenomena surrounding the parabolic or special subgroups described
here constitute a unifying abstraction which includes literal parabolic sub-
groups, as well as certain compact open subgroups called Iwahori and para-
horic subgroups. These specific instances of the general idea play a central
role in applications. (See chapter 17).

Let G be a group possessing a triple B, N, S as above (forming a BN-
pair). Again, a subgroup P of G is a (standard) ‘parabolic’ or (standard)
‘special’ subgroup (with respect to B, ) if it is one of the subgroups

Py = |_| BwB
we(S’)



64 Garrett: ‘5. BN-pairs from Buildings’

Since study of Coxeter groups shows (1.9) that S' — (S’) is an order-preserving
injective map, from the defining properties of a BN-pair we see that S" — Pg
is an injective map.

More generally, a subgroup of G is called a parabolic subgroup if it is
conjugate in G to one of the standard parabolic subgroups (with respect to

B,N,S).

Proposition: Let w = s;...s, be a reduced expression. Then the small-
est subgroup of G containing BwB contains s; for all 7. It is also generated
by B and w™! Bw.

Proof: From the cell multiplication rules (5.1),
Bs;B-BssB-... -Bs,B=BwB

Thus, the subgroup P of G generated by B and w is contained in the subgroup
generated by B and all the s;. We will prove by induction on n = ¢(w) that
each s; is in P, which will prove both assertions of the proposition.

Since £(s1w) < £(w), from the cell multiplication rules we know that sy Bw
meets BwB, so s; B meets BwBw™!, and

s1 € BuBw™'B

Therefore, P certainly contains s;wBw~'s;. Applying the induction hypoth-
esis to the shorter element s;w gives the result. &

Corollary: The parabolic subgroups of G are exactly those subgroups
containing B. Every parabolic subgroup is its own normalizer in G, and no
two are conjugate in GG. For a subgroup P of G containing B, let Wp =
(PNN)T/T. Then we have

P =BWpB

Proof: 1If a subgroup P of G contains B, then it is a union of double cosets
BgB. Invoking the Bruhat-Tits decomposition, we may as well only consider
double cosets of the form BwB with w € W (or, more properly, in ). Let

W'={we W : BwB C P}
Then certainly P = BW'B. Since Bww'B C BwB - Bw'B and
Bw 'B={g':9€ BuB} = (BwB)*

we see that W' is a subgroup of W. The proposition assures that W' contains
all the elements of S occurring in any reduced expression for any of its ele-
ments, so W' is the ‘special’ or ‘parabolic’ subgroup of W (now in the Coxeter
group sense (1.9) of these words) generated by S’ =S N W'. Therefore, P is
a parabolic subgroup of G (in the present sense of the word).

Suppose that gPg~! = Q for two parabolic subgroups P, Q. Let w € W so
that g € BwB. Then wPw™ ! = @Q, so

wBw™' CwPw™ CQ



Garrett: ‘5. BN-pairs from Buildings’ 65

Therefore, as B C @, from the proposition we see that BwB C . Thus,
g € Q, and then P = Q. &

Remarks: This corollary shows that the notion of special or parabolic
subgroup does not depend upon the choice of S. Indeed, in light of the corol-
lary, we can now correctly refer to these subgroups P = BWpB as parabolic
subgroups containing B.

5.4 Further Bruhat-Tits decompositions

Now we do assume that our BN-pair in the group G is obtained from a
strongly transitive action on a thick building X, in order to give geometric
arguments rather than more purely combinatorial. We assume that X is finite-
dimensional, so that the set S of generators for the Coxeter system is finite.
Keep the notation above. Let P, = BW;B and P, = BW>B be parabolic
subgroups (containing B), where W; = (S;) for two subsets Sy, S; of S.

Theorem: We have a bijection
Wl\W/WQ <« P1\G/P2
given by WiwWs < PiwPs.

Proof: Let N be the subgroup of G which, modulo T = BN AN, is W. As
usual, we need not distinguish between N and W when discussing B-cosets.

Starting from the Bruhat-Tits decomposition G = | |, BwB, given g € G
we can left multiply by some element b; of B C P; and right multiply by
some element by of B C P, so that bygbs € W. Then we surely may further
multiply on the left by W; and on the right by Ws.

On the other hand, we need to show that w' € PiwP, implies that w' €
WiwWs. Let F; be the face of C, of type S;, that is, with stabilizer Ps, = P;.

Given g € G, let A be an apartment containing both F; and gF5, by the
axioms (4.1). We claim that there is an element p € P; so that pA = A,.
Indeed, let C be a chamber of A with face F}. Thereis h € G so that hC = C,,
by transitivity of G on chambers in X. Since both C' and C, have just the
one face (that is, F}) of type Si, necessarily hFy; = F;. That is, h € P;. Then
hA and A, both contain C,, so by strong transitivity there is b € B so that
bpA = A,. Then bp € P; is the desired element, proving the claim.

Further, the conditions pF; = F; and pA = A, determine p uniquely left
modulo

H={qeG:qA,= A, and ¢qF, = F}
Certainly T' C H, and we have
H|T = (51) =W

Then pgF> = wF5 for some w € W, since W acts transitively on simplices
in A, of a fixed type. Let n € N be such that nT = w. Note that, given g
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and p, w is uniquely determined right modulo W5 = (Ss). Then we have
gEPlnPQZleP2

The ambiguity in choices of p and w is that we may replace p, n by nyp,ninns
for n; € H and ny € Wh.

Therefore, if PiwP; = Pyw'P,, then both w' € PiwP; and w' € Piw'Ps.
The qualified uniqueness just proven shows that WiwWsy = Wiw' Wy, as de-
sired. &

5.5 Generalized BN-pairs

In use, it is important to be able to drop the condition that the group acting
preserve types or labels in its action upon the building X. This entails some
complications in the previous results, which we now explain. Throughout, the
idea is to reduce the issues to the case of a strict BN-pair, that is, a BN-pair
in the sense discussed up until this point. Emphatically, we are assuming that
the set S is finite, which is equivalent to the assumption that the building X
is finite-dimensional as a simplicial complex.

Let X be a thick building, and let a group G act upon it by simplicial com-
plex automorphisms. Further assume that G stabilizes the set of apartments.

_ Remarks: As earlier, we need to explicitly assume that the action of
G stabilizes the set of all apartments. Later we will show that this is often
automatic, and in any case is visibly true in most concrete examples.

Fix a chamber C, and an apartment A, containing it. Let A : X — C, be
a retraction of the building to C,, as earlier, giving a type-ing (labeling) of
X. Let G be the subgroup of G preserving types, that is,

G={geG: og=2)\}

We assume that the subgroup G of G is itself strongly transitive.

As usual, let B be the stabilizer in G of C,, let N be the stabilizer in G of
Ay, and T = BN N. Thus, we have a strict BN-pair in G.

Also, let B be the stabilizer in G of C,, let N be the stabilizer in G of A,,
and T = BNN.

From our results on thick buildings (4.3), the apartment A, is the Coxeter
complex associated to (W,S), where W = N/T and where S consists of
reflections through the facets of the chamber C,. (Recall that, in the course
of other proofs, we have seen that T is a normal subgroup of N and acts
pointwise trivially on all of A,. The latter follows from the type-preserving
property and by invoking the uniqueness lemma (3.2)).

Keep in mind that the strict BN-pair properties (5.1) entail Bruhat-Tits
decompositions

G= || BwB

wew
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We proved in (5.2) that this situation does arise from a group action as we
have presently. And, more generally (5.4),

B(S"B= || BwB
we(S")

is a subgroup of G, for every subgroup S’ of S, where (S’) is the subgroup of
W generated by S’. Conversely, every subgroup of G containing B is of this
form, with uniquely determined S’, and is its own normalizer (5.3). For s € S
and w € W, we have cell multiplication rules (5.1)

BwB BsB = BwsB for ((ws) > {(w)

BwB BsB = BwsB U BwB for {(ws) < {(w)

Forall s€ S, sBs™! ¢ B.

The following theorem contains some non-trivial assertions about G in
relation to the strict BN-pair (G, A, B). These assertions, together with the
strict BN-pair results on (G, N, B), tell almost everything we need about the
‘generalized’ BN-pair (G, N, B).

Remarks: Note that although B is defined here, its type-preserving
subgroup B is the item of consequence.

Theorem:

e The groups \V, B are normalized by T', and conjugation by elements of T
stabilizes S, as automorphisms of A,. We have N' = TN and B = TB.
e The group G is a normal subgroup of G, of finite index, and G = TG.
e With Q = T/T, N'/T is a semi-direct product Q x W with normal
subgroup W. Also, G/G ~ Q.
e For 0 € Q and w € W, we have cws™' € W. And ¢B = Bo = BoB
and
oBwB = BowB = B(owo™')Bo

Proof:

Lemma: If g € G has the property that it preserves types of the faces of
a chamber C, then g € G.

Proof: Let A be any apartment containing the chamber C; on which g
preserves types, and let A; = gA and Cy = gC;. Take h € G so that hCy = C4
and hA; = A, invoking the strong transitivity of G. Then the type-preserving
property of g just on Cy implies that hg is the identity on Cy pointwise (that
is, on all faces of C1, that is, on all vertices of C). Then hg is a map from the
thin chamber complex A to itself which, being an automorphism of X, does
not cause any non-stuttering gallery to stutter. Thus, invoking our uniqueness
lemma (3.2), since hg is trivial on C1, it must be that hg is trivial on all of A.

That is, hg certainly preserves types on A. Thus, g = h~!(hg) as a map
A — A, preserves types on A. Now A was an arbitrary apartment containing
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(4, and any chamber lies in an apartment also containing C; (by the building
axioms (4.1)), so g preserves types on all of X. This is the lemma. &

Next, we prove that the group T normalizes B. Let t € T. For b € B and
for a vertex v of C,,

t ot(v) =t H(b(tv)) =t t(v) = v

since B acts pointwise trivially on C,. That is, t~'bt acts pointwise trivially
on C,. By the lemma, ¢t~ 'bt must lie in B.

Next, we show that T normalizes T. Take ¢, € T. Then, by a similar
computation in as the previous paragraph, t~'t,t acts pointwise trivially on
C,, and stabilizes A, as well. Again invoking the lemma, we conclude that
this element lies in T'.

The proofs of the other parts of the first assertion are postponed a little.

Now we prove that, as automorphisms of A,, conjugation by T stabilizes
the set S of generators of W = N/T'. Take s € S. Note that for any chamber
C: adjacent to C,, t—1C} is necessarily a chamber in A, adjacent to C,, since
t~1C, = C, and since chamber complex maps preserve adjacency. Also, ¢!
permutes the vertices of C,. Let v be any vertex of C, fixed by the reflection
s. Then t~!st fixes the vertex t~'v = t~!sv of C,,. On the other hand, if v is
the unique vertex of C, not fixed by s, then ¢ !st maps the vertex ¢ 'v of C,
to t~Lsv (which is not a vertex of C\,). Thus, by the uniqueness lemma, ¢~ !st
must be the reflection through the facet t 1 F where F is the facet of C, fixed
(pointwise) by s. That is, T permutes the elements of S among themselves.

In particular, T normalizes W = (S), as automorphisms of 4,. Note that if
an automorphism v of the building agrees on A, with the action of an element
of W, then v necessarily preserves types on the whole building, by the lemma.
Therefore, since T normalizes T, T' normalizes N .

Since G = BN'B = BW B, it follows that T normalizes G. Given g € G,
by the assumed strong transitivity of G there is an element h € G so that
hgC, = C, and hgA, = A,. Thus, hg € T. It follows that G = TG = GT.

In particular, at this point we obtain the remainder of the first point in the
theorem, asserting that B = TB and N = TN.

Granting the previous, the fact that A’ /T is a semi-direct product of 2 =
T /T and W is clear. Likewise clear, then, is the fact that

oBwB = BowB = B(owo ')Bo

since T normalizes B. As in the discussion of strict BN-pairs (5.1) and (5.2),
the cosets 0B = Bo are well-defined.

Last, we address the finite index assertions. If two elements ¢;, t» of T have
the same effect pointwise on C,, then tt5 1is trivial pointwise on C,. By
the lemma above, t1t2_1 preserves types, so must lie in 7 = T N G. Thus, the
natural map

T/T — { permutations of vertices of C,, }
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is an injection. Since S is finite and the vertices of C; are in bijection with
S, this permutation group is finite. Hence, T'/T is finite, as is G/G since
G =TG. &

5.6 The spherical case

Beyond the completely general results above much more can be said in case
the building is spherical, that is, the apartments are finite complexes.

In the spherical case, we introduce parabolic subgroups of a group act-
ing strongly transitively, opposite parabolics, and Levi components of
parabolic subgroups. These are all conveniently defined in terms of the ge-
ometry of the building. We also can describe associate parabolics in such
terms.

For example, we have shown (4.6) that there is a unique apartment system,
which is therefore unavoidably maximal. In more detail, we have shown that
any apartment is the convex hull of any two antipodal chambers within it, in
the combinatorial sense that every other chamber in the apartment is in some
minimal gallery connecting the two antipodal chambers, and every chamber
occurring in such a minimal gallery is in that apartment.

Let X be a thick spherical building on which a group G acts by label-
preserving simplicial complex automorphisms. Suppose that it is strongly
transitive, that is, is transitive on pairs (C, A) where C' is a chamber contained
in an apartment A.

Since the apartment system is maximal, as observed earlier (5.2) it fol-
lows automatically that apartments are mapped to apartments by simplicial
complex automorphisms.

Fix a chamber C in an apartment A, and identify A with a (finite) Coxeter
complex (W, S) in such manner that C = () and S is the collection of
reflections in the facets of C, as in (4.3), (3.4).

Let NV be the stabilizer of A in G. Rather than using the letter B for the
stabilizer of C, in the spherical case we let P be the stabilizer of C' in G. And
we call P the minimal parabolic subgroup associated to the chamber C.
Instead of the symbol T for N'N P as above, we now write M = NN P. And
then W = N'//M. We call M the Levi component M of P corresponding to
choice of apartment A. And the Coxeter group W is called the (spherical)
Weyl group associated to choice of C' and A.

Let C°PP be the antipodal chamber to C' in the apartment A (4.6). The
stabilizer P°PP of C°PP is the opposite parabolic to P, with respect to
the apartment A. That is, of all the chambers in X which are the maximal
gallery distance from C', we have specified C°PP by telling in which apartment
containing C' it lies. As remarked just above, we proved earlier that, in effect,
the collection of chambers at maximal gallery distance from C' is naturally in
bijection with the collection of apartments containing C, in (4.6).
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Proposition: The Levi component M = A N P is none other than
P N P°PP. The collection of all Levi components in the minimal parabolic P
is acted-upon transitively by the conjugation action of P upon itself. Equiv-
alently, the minimal parabolic acts transitively by conjugation on the set of
parabolic subgroups opposite to it. Equivalently, P acts transitively on the
set of all chambers antipodal (in any apartment) to the chamber stabilized
by P.

Proof: Tt is clear that M = N N P fixes C°PP since it fixes the whole
apartment A in which this chamber lies. Thus M C P N P°PP. On the other
hand, if g € G fixes both C' and C°PP, then it certainly stabilizes the collec-
tion of minimal galleries from C' to C°PP. Keep in mind that every minimal
gallery between these chambers lies in A, by the combinatorial convexity of
apartments in general proven above (4.5). Further, by the Uniqueness Lemma
(3.2), since g fixes C' and maps to the thin chamber complex A, it must be
that g is the identity on any such gallery. Thus, g is the identity map on all
of A.

The second assertion is a covert version of the strong transitivity. Indeed,
by definition (5.2) of the strong transitivity of G on X, P is transitive on
apartments B containing C'. In each such apartment there is a unique chamber
CHP antipodal to C' with stabilizer Pg°P. The corresponding Levi component
of P is

Mp = PN PP

But the transitivity and the uniqueness of antipodal chamber (to C') within a
given apartment (4.6) prove that P is transitive on such chambers. Thus, P
acts transitively by conjugation on the opposite parabolics Pg’”, and therefore
transitively on the Levi components Mp. &

Remarks: By symmetry, the subgroup M = P N P°PP is also the Levi
component of P°PP corresponding to the apartment A, and M certainly sta-
bilizes the opposite chamber C°PP.

Corollary: The Weyl group W°PP = A /(A N P°PP) can be naturally
identified with the Weyl group W = N'/(N N P).

Proof: We have seen that
NNP=PnPperp
which gives a symmetrical expression for M. &

Now we define more general parabolic subgroups and their opposite
parabolic, as well as Levi components. First, any subgroup of G fixing
some simplex ¢ in X is said to be a parabolic subgroup. Any such group
certainly contains the fixer of a chamber of which o is a face. Thus, by
whatever definition, we may be sure that parabolic subgroups always contain
minimal parabolic subgroups, which are fixers of chambers.
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From the general results (5.3), we know that any subgroup ) containing
the minimal parabolic P is of the form

Q=Pr= || PuwP
we(T)

where T is a subset of S and (T') is the subgroup of W generated by T'. In
this notation we have P = Fj.

With regard to the choice A of apartment containing C, and corresponding
opposite P°PP  define the opposite parabolic Q°PP to Q) by

QPP = |_| POPPy, POPP
we(T)

The Levi component Mg of such a parabolic subgroup @, corresponding
to the apartment A is

Mg = QN QPP

Remarks: Of course, elements w € W must be replaced by representa-
tives from AN in the previous expression. The complication is that we have
W = N/M where M = N/(N N P). But there is no difficulty, since the
corollary just above shows that

N NP =PnNP°PP = N N PoPP

Remarks: Since these opposite parabolics Py”” contain POPP = PP,
they certainly are parabolic subgroups in our present sense.

The following easy proposition displays opposite parabolics in a manner
conforming more to our earlier discussion:

Proposition: Let w, be the (unique) longest element in the finite Coxeter
group W. Then w,C = C°P? and P°PP = w,Pw,*. We have w? =1 € W.
Thus, in general, for a parabolic Py with T'C S, we have

P7PP = w,( |_| PwP)w,*

wewy (TYw,

Proof:  From discussion of Coxeter complexes in general (3.4) we know
that the gallery distance from C = {1} to any other chamber {w} is the
length of w. Thus, it must be that C°PP? = {w,}. That is,

CP" ={w,} = w,{1} = w,C

(We already showed, in discussion of finite Coxeter groups (1.5), that there
is a unique longest element w,. The present discussion appears to give another
proof.)

Because w, gives a simplicial automorphism of A, a minimal gallery -y from
C to C°PP is mapped to a minimal gallery w,y from w,C = C°PP to (w,)%C.



72 Garrett: ‘5. BN-pairs from Buildings’

Since C' is the unique chamber antipodal (in A) to C°PP, and since gallery
lengths are preserved by such maps, necessarily (w,)2C = C. Thus,

{1} = C = (w)’C = (wo)*{1} = {w3}

which implies that w? =1¢€ W.
The last assertion is a direct computation on the Bruhat cells P°PPw P°PP;

POPPyy POPP = o, Pw, tww, Pw, ' = w,(P(w,  ww,)P)w,*

giving the desired conclusion. &

Remarks: As S was identified with reflections in the facets of C, the
set w, 1 Sw, ! may be identified with reflections in the facets of the opposite
chamber C°PP = w,C. Thus, while the Coxeter group W remains the same,
the system (W, S) should be replaced by (W, w,Sw,) when C is replaced by
C°PP = y,C.

Corollary: Let w, be the longest element in a spherical Coxeter group
W. The map w — woww, ! gives an automorphism of W of order 2 which
stabilizes the generating set S.

Proof: We already saw that w? = 1. The previous little result shows that,
among other things, for every s € S the conjugate w,(s)w; ! is again a special
subgroup of W. Thus, by counting considerations, it must be of the form (s').
That is, w,sw, ! = ', showing that we have an automorphism of S. &

Remarks:  All minimal parabolics are conjugate to each other (from
the transitivity of G on chambers), so in particular a minimal parabolic P is
conjugate in G to its opposite P°PP  with respect to any choice of apartment
(equivalently, Levi component). By contrast, there is no reason to expect that
non-minimal parabolics be conjugate to their opposites, although necessarily
all opposites of a given parabolic are conjugate to each other.

In certain situations involving spherical BN-pairs, minimal parabolics are
also called Borel subgroups.

5.7 Buildings from BN-pairs

Under very mild hypotheses, all BN-pairs arise from group actions upon
buildings, and in an essentially unique manner. (The argument does not use
any result about a BN-pair presuming that it comes from a building).

Let B, N be a BN-pair in a group G. We assume that the generating set
S for the Coxeter group W = N/(N N B) is finite. (Note that this does not
imply that W is finite).

For purposes of this section, a (proper) parabolic subgroup of G is any
proper subgroup of G' which contains some conjugate gBg~! of B (by g € G).
The collection of all proper parabolics can be made into a poset X by taking
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the reverse of inclusion as the face relation. This poset will be shown to be a
building giving rise to the given BN-pair (5.2).
The collection of apartments is described as follows: first, let

A= {wPw ' : P is a special subgroup ,w € N}

be the (alleged) apartment containing the (alleged) chamber B, and then for
any g € G let

1

gA = {gwPw g ' : P is a special subgroup ,w € N}

also be declared to be an apartment.
The action of G upon X is declared to be by conjugation of subgroups.

Theorem: Let B, N be a BN-pair. Let = be the poset of proper parabolic
subgroups of G, with inclusion reversed, as just above, and with the indicated
apartment system. Then X is a simplicial complex which is, in fact, a thick
building X upon which G acts in a label-preserving manner, with B occuring
as the stabilizer of a chamber inside an apartment stabilized by N.

Proof: The proof is made somewhat easier by replacing X by an apparently
simpler (but poset-isomorphic) object, described as follows:

For present purposes, a special subgroup of G is a proper subgroup P of
G containing B. A special subset of G is a subset of the form gP for P a
special subgroup and g € G. The poset Y obtained by ordering all special
subsets with the reverse of containment is our candidate for the building.

The action of GG upon special subsets is taken to be left multiplication.

Proposition: The poset Y of all special subsets of G (with inclusion
reversed) is isomorphic (as poset) to the poset X of all proper parabolic
subsets (with inclusion reversed), by the map

f:gP = gPg!
Further, this map respects the action of G upon X and Y.

Proof: Each special subgroup is its own normalizer in G, and no two of
them are conjugate (5.3). This implies that the indicated map is well-defined,
and is an injection. Thus, it is certainly a bijection, since its surjectivity
follows from its well-defined-ness. Further, if gP C hQ for special subgroups
P, Q, then (h~tg)P C Q, so

h~lg=h"'g-ech™'g-PCQ
and P C Q. Therefore,

PCQ=(g""mQg"'n)™")
and
gPg™' C hQh™t

Thus, the poset structure is preserved by the map.
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Finally, for g,h € G is it clear that

flg(nP)) = f((gh)P) = (gh)P(gh)~" = g(hPh™)g~" = g(f(hP))
so the action of G is preserved by the map. This proves the proposition. &

Now we return to the proof of the theorem, at each moment using whichever
model of the purported building is more convenient. The candidate for the
apartment system in Y is as follows, translating from the corresponding sub-
complex of X: First, the collection

A={wB:weN}
is declared to be an apartment. And for every g € G we also declare
gA ={gwB :w e N'}
to be an apartment.

It is necessary to prove that X (or, equivalently, Y') is a chamber complex.
To do this, it suffices (3.1) to show that any two elements (alleged simplices)
x,y have a unique greatest lower bound, and that for each z € X the sub-poset

Voo ={ye X:y <z}

is simplex-like (meaning that it is isomorphic to the set of subsets of some
finite set).
Let S1, Ss be two subsets of S, let

p= || BuwB
we (S;)

let g1, g be in G, and suppose that two special subsets g1 P, and g» P> are
contained in a special subset gP (strictly smaller than G). By left-multiplying
by ¢g~!, we may suppose without loss of generality that g = 1.

Then g;P; C P for i = 1,2 and

gi=gi-1€g;-PeP

Thus, also, P; C P. This is true for any special subgroup P with ¢g;P; C P,
so we can take the intersection of all special subgroups containing both g P,
and go P, to obtain the greatest lower bound (with inclusion reversed).

Next, given a special subset gP, we classify the special subsets ¢’ P’ contain-
ing gP. By left multiplying by ¢!, we may assume without loss of generality
g=1. Then P C ¢'P' implies ¢’ ' P C P', so actually ¢’ € P'. Thus, simply,
P cC P'. Let (5.1), (5.3) S,,S" be the subsets of S so that

P= |_| BwB
we(S,)

P = |_| BwB
we(S’)
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That is, the collection of all such P’ is in bijection with
{§'":S,cS"CcS but §'#S}

Invoking the finiteness of S, this collection is finite. Thus, we have proven
that X = Y are simplicial complexes.

Now we begin to prove that X = Y is a thick building, upon which G acts
preserving labels, with B and N arising as the associated BN-pair.

To prove that X ~ Y is a chamber complex, it will suffice to prove that
any two chambers lie in a common apartment, and that each apartment is a
chamber complex. To prove the latter, it suffices to prove that each apart-
ment is a Coxeter complex (3.4). Let ¥ = (W, S) be the Coxeter complex
associated to the Coxeter system (W, S) (3.4), by definition being the poset
consisting of all subsets w(S") of W with S’ C S and w € W, with inclusion
reversed. Consider the map

frw(S"y - wBWgs B

from ¥ to the apartment A, where Wg = (S’) is as usual the subgroup of W
generated by S'.

Noting that W B is a well-defined subset of the subgroup BWg: B, the
map f is well-defined, since replacing w by ww’ with w' € Wg: has the effect
that

flww'Wg) = (ww')BWg B = w(w' BWg B) = w(BWg B) = f(wWg)

For emphasis, the key point here is that for any subset S’ of S the subset
BWg: B is a subgroup (5.3). The map is surjective, just from the definitions.
To prove injectivity, suppose f(w1Ws,) = f(w2Ws,). By left multiplying by
wy ! we may suppose without loss of generality that w, = 1. Then we have

wlBngB = BWS2B

Since the sets BWg, B are groups, we conclude that w; € BWg, B, and that
BWs, B = BWs,W. Since BWg, B C BWgs,W implies S; C Sz (5.3), we
have S; = Ss. This proves injectivity.

Thus, the map f gives a poset isomorphism from the Coxeter complex ¥
to the alleged apartment A. In particular, A (and all the images gA) are thin
chamber complexes.

For one of the building axioms, given two simplices g1 P;, g2P> in Y, we
must find an apartment containing both. We certainly may restrict our at-
tention to chambers, since by now we know that the apartments really are
simplicial complexes (and in particular contain all faces of all their simplices).
So P, = P, = B, and without loss of generality we may suppose that one of
the chambers is B itself. Let the other chamber be gB. Write g = bwb’ in a
Bruhat decomposition, where b,b' € B and w € W. Then

gB = (bwb')B = b(wB) € bA
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Thus, gB € bA, and certainly B = bB € A, so the apartment bA contains the
two given chambers.

Next, we prove strong transitivity. The transitivity of G on apartments
gA in Y is clear. To prove strong transitivity, it suffices to prove that the
stabilizer of A is transitive on chambers in A. Certainly A is contained in
the stabilizer of A, and since

W =N/(NNB)
it is likewise clear that N is transitive on chambers in A. This proves that G
is strongly transitive on Y.

The labelling on Y uses the unique expression of every special subgroup P
in the form
P =BWs,B

for some subset Sp of S. Then use the labelling

AMgP) =S5 - Sp

where the subtraction indicates set complement. (The complement is used to
comply with conventions used elsewhere!) If this labelling is well-defined it
is certainly preserved by the action of G. As usual, if gP = hQ@ for special
subgroups P, ), then left multiply by A~! so suppose that h = 1 without loss
of generality. Then g =g -1 € gP = @ implies that g € @), and then P = Q.
This proves well-definedness of this labelling.

Now we verify that if two apartments have a common chamber, then there
is a simplicial isomorphism of the two fixing their intersection pointwise. In-
voking strong transitivity, we may assume that the common chamber is B,
that one of the two apartments is A, that the other is bA with b € B, and
thus that B itself is a chamber common to the two apartments. Consider the
map

f:A—>bA
defined by f(wP) = bwP.

It remains to show that if wP C bA (in addition to wP € A) then f(wP) =
wP. That is, we must show that wP € bA implies that bwP = wP. Suppose
that wP = bw'Q for a special subgroup @, and for some w’ € W. Then

wlbw' =w thw' -1 cw ' -Q =P
and Q = P. Then
BwP =B -wP =B-bw'P = Bw'P
Let P = BWs: B where W is the subgroup of S generated by a subset S’ of
S. We have
w' € BwuP C | ) BwBw\B

wy €S’
For fixed wy, € Wy, write



Garrett: ‘5. BN-pairs from Buildings’ 7

with s1,...,8, € S’. By iterated application of the cell multiplication rules
(5.1), we have
BwBw;B C U Bwsi'...s;"B
e1,ldots,e,

where the €; vary over {0,1}. In particular, we find that w’ lies in some
Bwws B for ws € Wg:. By the Bruhat decomposition for G, the double
cosets Bw'B and BwwsyB are disjoint unless w' = wws. In the latter case,
wtw' € Wg and wtw'B C P, and, thus w'P = wP.

Then

f(wP) = bwP = w'P =wP

as desired, proving that f fixes A NbA, as required by the building axioms.

Last, we verify the thickness of the building Y. That is, given a codimension-
one simplex (facet) F we must find at least 3 chambers of which it is a facet.
Invoking the transitivity of G on Y, it suffices to consider a facet F' of the
chamber B = 1 - B. Every such facet is of the form

P, = BU BsB

for some s € S. In addition to B itself, we must find two other special subsets
gB so that gB C P; (recalling that the partial ordering is the reverse of
containment). One of the two is obvious: the coset sB. To see what’s going
on generally, the point is that we want the coset space

P,/B = (B U BsB)/B

to have three or more elements. Generally for subgroups M, N of a group H
and for h € H we have a natural bijection

MhN/N ~ M/(M NhNh™')

by the map
zN = zh(M NhNA™")

as is straightforward to check. Thus,
BsB/B ~ B/(sBsN B)
Now one of the axioms for a BN-pair is that sBs # B. Thus,
[B:sBsnB]>2

and we have the desired thickness of Y.
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6. Hecke Algebras

e Generic algebras
o Strict Iwahori-Hecke algebras
o Generalized Iwahori-Hecke algebras

In various classical settings, in in some not-so-classical ones, there are rings
of operators called Hecke algebras which play important technical roles.

6.1 Generic algebras

Let (W, S) be a Coxeter system, and fix a commutative ring R. We consider
S-tuples of pairs (as,bs) of elements of R, subject only to the requirement
that if s; = wsew ™! for w € W and s1,s, € S, then as, = a,, and b, = bs,.
We will refer to the constants ag, bs as structure constants. Let A be a free
R-module with R-basis {T}, : w € W}.

Theorem: Given a Coxeter system (W, S) and structure constants as, bs,
there is exactly one associative algebra structure on A so that

TsTyw = Tsw it £(sw) > l(w)

T? = a,Ts + b Ty Vs€S

and with the requirement that 7} is the identity in A. With this associative
algebra structure, we also have

TsTw = asTy + bsTs i L(sw) < £(w)
Further, we have the right-handed version of these identities:
TwTs = Tys it L(ws) > L(w)
TwTs = asTy + bsTyws  if L(ws) < £(w)

Granting the theorem, for given data we define the generic algebra
A= AW, S,{(as,b;) : s € S})
to be the associative R-algebra determined according to the theorem.

Remarks: If all a; = 0 and bs; = 1 then the associated generic algebra is
the group algebra of the group W over the ring R. Recall that this is the free
R-module on generators [w] for w € W, and with multiplication

(rlw)) (r'[w']) = (rr') [ww']

for r,7’ € R and w,w' € W. We will not attempt to exploit the positive
attributes of such rings here.
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Remarks: When (W, S) is affine, as illustrated in (2.2) or generally below
in (12.4) and (13.6), certain less obvious choices of structure constants yield
the Iwahori-Hecke algebra in p-adic groups. Most often, this is

as=q—1 bs=g¢q
where ¢ is the residue field of the relevant discrete valuation ring, etc.

Proof:  First, we see that the ‘right-handed’ version of the statements
follows from the ‘left-handed’ ones. Suppose that £(wt) > ¢(w) for w € W
and t € S. Take any s € S so that £(sw) < £(w). We certainly have

L(w) = L((sw)t) > L(sw)

Then we have

Tth = TsTszt = TsTswt = th

where the first equality follows from £(w) = {(ssw) > £(sw), where the second
follows by induction on length, and the third equality follows from ¢(sswt) >
¢(swt). This gives the desired result. If /(wt) < (w), then by the result just
proven Ty, Ty = Ty,. Multiplying both sides by T} on the right yields

TwT; = Tt T} = Tuwi(a Ty + beTy) = a, T Ty + by T =
= a;Ty + b Ty
where we computed 77 by the defining relation. Thus, the right-handed

versions do follow from the left-handed ones.
Next, suppose that ¢(sw) < {(w) and prove that

TsTy = asTy + bsTsy
If £(w) = 1, then w = s, and the desired equality is just the assumed equality
T2 = a,T, + b,T}
Generally, £(s(sw)) > €(sw), s0 TsTsy = Ty. Then
T,T, = T2Tyy = (asTs + bsT1)Tse =

= asTsTw + 05T = asTy + bsTsy
as asserted. Thus, the more general multiplication rule applicable when
{(sw) < £(w) follows from the rule for {(sw) > ¢(w) and from the formula for
T2
Uniqueness is also easy. If w = s; ...s, is reduced, then
Tw=Ts,...Ts,

Therefore, A is generated as an R-algebra by the T (for s € S and T;. Then
the relations of the theorem allow us to write down the rule for multiplication
of any two elements T, and T,,,. There is no further choice to be made, so
we have a unique algebra structure satisfying the relations indicated in the
theorem.
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Now we prove existence of this associative algebra, for given data. Let
A also denote the free R-module on elements T, for w € W. In the ring
&€ = Endg(A) we have left multiplications \s and right multiplications ps for
s € S given by

As(Ty) = Ty for £(sw) > L(w)
ps(Tw) = Tys for L(ws) > L(w)
As(Ty) = asTy + bsTsy for L(sw) > l(w)
ps(Tw) = asTy + bsTys for L(ws) > L(w)

We grant for the moment that the A; commute with the p;: we will prove
this below. Let A be the subalgebra of £ generated by the A\s. Let ¢ : A — A
by ¢(a) = a(T1). Thus, for example, ¢(1) = T} and, for all s € S, ¢p(\s) = Ts.

Certainly ¢ is a surjective R-module map, since for every reduced expres-
sion w = s1...5, we have

DAsy - As,) = (Ag, - A,)(1) =
=X$1 ... s, Ts, =As1.-. X, T, 15, =
e = Tsl...sn =Ty
To prove injectivity of ¢, suppose ¢(a) = 0. We will prove, by induction
on {(w), that «(Ty) = 0 for all w € W. By definition, ¢(a) = 0 means
a(Ty) = 0. Now suppose £(w) > 0. Then there is t € S so that ¢(wt) < (w).
We are assuming that we already know that p; commutes with A, so
a(Ty) = a(T(wt)t) = apiTwt = ptaTy; = 0

by induction on length.

Thus, A is a free R-module with basis {\, : w € W}. We note that this
R-module isomorphisms also implies that A, = Ag, ...\, for any reduced
expression w = si ...S,. The natural R-algebra structure on A can be ‘trans-
ferred’ to A, leaving only the checking of the relations.

To check the relations: suppose that £(sw) > ¢(w). For a reduced expres-
sion w = s1...8,, the expression ss;...s, is a reduced expression for sw.
Thus,

AsAw = AsAsy - As, = Asw
That is, we have the desired relation AgA\; = Asw-

We check the other relation )\g = asAs + bsA1 by evaluating at T, € A.

For ((sw) > ¢(w),

A? (Tw) = As(AsTw) = As(Tsw) = asTsw + bsTy =
= asAsTy + bsM Ty = (asAs + bsA1) Ty
If ¢(sw) < £(w), then
A2 (Tw) = Xs(NsTw) = As(asTo + bsTo) =
= ATy + 05T Ty = asAToy + bs ATy = (asAs + b A1) Ty
This proves that A2 = as\s + bsA1, as desired.
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The argument is complete except for the fact that the left and right mul-
tiplication operators defined above commute with each other. To prepare to
prove this, we need to carry out a little exercise on Coxeter groups:

Proposition: Let (W, S) be a Coxeter system. Let w € W and s,t € S.
If both ¢(swt) = £(w) and £(sw) = ¢(wt), then swt = w (and s = wtw ™). In
particular, a; = a; and bs = b, since s and t are conjugate.

Proof: Let w = s1...5, be a reduced expression. On one hand, for
L(sw) > L(w),

L(w) = (s(wt)) < £(sw)
so the Exchange Condition (1.7) applies: there is v € W so that sw = vt and
so that either v = ss1...5;...sp, or v = w. But v = 881...8;...8, 18 not
possible, since this would imply that
L(wt) =L(s1...8;...8n) < L(w)
contradicting the present hypothesis
L(wt) = L(sw) > L(w)

On the other hand, for {(sw) < £(w) = {(s(sw)), the hypotheses of this
claim are met by sw in place of w, so the previous argument applies. We
conclude that s(sw) = (sw)t, which gives w = swt, as desired. This proves
the proposition. &

Now we can get to the commutativity of the operators:
Lemma: For all s,t € S, the operators Ay, p: € £ commute.

Proof:  We will prove that Agps — ptAs = 0 by evaluating the left-hand
side on T,,. There is a limited number of possibilities for the relative lengths
of w, sw,wt, swt, and in each case the result follows by direct computation,
although we need to use the claim in two of them:

If {(w) < L(wt) = £(sw) < L(swt), then by the definitions of the operators
As, pt we have

Asptir"_w = AsT‘wt = Tswt

In the opposite case {(w) > £(wt) = £(sw) > {(swt),

AsptTw = As(atiz—‘w + thwt) = at(asTw + bsTsw) + +bt(asth + bsTswt)
which, by rearranging and reversing the argument with s and ¢ and left and
right interchanged, is

= Gg (atTw + thwt) + +bs(athw + thswt) = piAs Ty
In the case that £(wt) = {(sw) < £(swt) = {(w), we invoke the claim just
above: we have as = a; and b; = b, and sw = wt. Then we compute directly:
Asptirw = >\s (atTw + thwt) =
= at(asTw + bsTsw) + b0 Tswe =
= as(atTw + thwt) + b5 Tt = pt(asTw + bsTsw) =
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= Pt Asiz—‘w

as desired.
In the case that {(wt) < £(w) = £(swt) < £(sw),

AsptTw = As(atT‘w + thwt) = athw + thswt =

= pt(AsTw)
In the case opposite to the previous one, that is, that ¢(sw) < f(w) =
{(swt) < l(wt), a symmetrical argument applies.
In the case that {(w) = {(swt) < £(sw) = £(wt), we again invoke the claim
above, so that we have as = a; and bs; = bs, and also sw = wt. Then

AsPtTw = AsTwt = asTys + bs T =
= athw + thswt = pthw = ptAsTw

This finishes the proof of commutativity, and thus of the theorem on generic
algebras. &

6.2 Iwahori-Hecke algebras

This section demonstrates that the Iwahori-Hecke algebras do indeed qual-
ify as generic algebras in the sense above. Surprisingly, the whole line of
argument only depends upon a local finiteness property of the building.

Let G be a group acting strongly transitively on a thick building X, pre-
serving a labeling, all as in (5.2). (Again, the strong transitivity means that
G is transitive upon pairs C' C A where C' is a chamber in an apartment A
in the implicitly given apartment system.) Let (W, S) be the Coxeter system
associated to the apartments: each apartment is isomorphic to the Coxeter
complex of this pair (W, S). Let B be the stabilizer of C. We assume always
that S is finite.

The local finiteness hypothesis is that we assume that for all s € S the
cardinality

gs = card(BsB/B) = card(B\BsB)

is finite. Recall that the subgroup of G stabilizing the facet Fy of C of type
{s} for s € S is none other than

P =P, = B(s)B = BUBsB

The subgroup B is the subgroup of P additionally stabilizing C', so BsB is
the subset of B(s)B mapping C' to another chamber s-adjacent to C' (that is,
with common facet Fy of type {s}). Therefore, BsB/B is in bijection with
the set of chambers s-adjacent to C' (other than C itself), by g — ¢gC.

That is, our local finiteness hypothesis is that every facet is the facet of
only finitely-many chambers. Equivalently, since S is finite we could assume
that each chamber is adjacent to only finitely-many other chambers.
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Fix a field k& of characteristic zero. Let

be the ‘Iwahori-Hecke algebra’ in G over the field k, that is, the collection
of left and right B-invariant k-valued functions on GG which are supported on
finitely-many cosets Bg in G. As usual, the left and right B-invariance is the
requirement that f(b1gbs) = f(g) for all g € G and by, b € B.

We have a convolution product on H, given by

(f*d)g)= D flgh™H(h)
hEB\G
The hypothesis that ¢ is supported on finitely-many cosets Bz implies that
the sum in the previous expression is finite. Since ¢ is left B-invariant and
f is right B-invariant the summands are constant on cosets Bg, so summing
over B\G makes sense. Nevertheless, we must provide proof that the product
is again in H. We do this in the course of the theorem.

Generally, let chg be the characteristic function of a subset E of G. By
the Bruhat-Tits decomposition, if indeed they are in H(G, B), the functions
chpyp form an k-basis for H(G, B). This Hecke algebra is visibly a free
k-module.

Theorem: FEach BgB is indeed a finite union of cosets Bz, the algebra
H is closed under convolution products, and we have

chpsp * chpywp = chpswp for {£(sw) > {(w)

chpsp * chpsp = aschpsp + bschp
for
as =¢gs—1 and bs = gs
That is, these Iwahori-Hecke operators form a generic algebra with structure
constants as indicated. Further, for a reduced expression w = s1 ...s, (that
is, with n = £(w) and all s; € S), we have

qw = (qsy ---4s,

Proof: We first prove that double cosets BwB are finite unions of cosets
Bz at the same time that we study one of the requisite identities for the generic
algebra structure. This also will prove that H is closed under convolution
products.

We do induction on the length of w € W. Take s € S so that £(sw) > {(w).
At g € G where chp,p * chp,p does not vanish, there is h € G so that
chpsp(gh t)chpwp(h) # 0. For such h, we have gh~! € BsB and h € BwB.
Thus, by the Bruhat cell multiplication rules,

g=(gh ')h € BsB - BuB = BswB
Since this convolution product is left and right B-invariant, we conclude that

chpsp * chpyp = cchpsyn
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for some positive rational number ¢ = ¢(s,w).
Let us compute the constant ¢ = ¢(s, w), by summing the previous equality
over B\G. This summing gives

cqsw = ccard(B\BswB) =c Z chpswp(9)

geB\G
=c Z (chpsp * chpywB)(g) = Z Z chpsp(gh™)chpywr(h)
9€B\G g€EB\G heB\G

=" chpalg)chpun(h) = s u
(the latter by replacing g by gh, interchanging order of summation).
Thus, we obtain ¢ = ¢squ/gsw and for £(sw) > £(w)
chpsp * chpyp = (ququ_u} chpswB

This shows incidentally that the cardinality gs,, of B\ BwB is finite for all w €
W, and therefore that the Hecke algebra really is closed under convolution.
Now we consider the other identity required of a generic algebra. Since

BsB - BsB = Bll1BsB

we see that we need evaluate (T xT5)(g) only at ¢ =1 and g = s. In the first
case, the sum defining the convolution is

(chpsp *chpep)(1) = Y chpp(h ')chpap(h) = g, =
heB\G
=(gs —1)-0+¢s-1=(gs — 1)chpsp(1) + gschp(1)
In the second case,
(CthB * CthB)(S) = Z ChBSB(Sh_l)CthB(h) =
heB\G
= card(B\(BsB N BsBs))
Let P be the parabolic subgroup P = B U BsB. This is the stabilizer of the
facet Fs. The innocent fact that P is a group allows us to compute:
BsBNBsBs=(P—-B)N(P—B)s=(P—-B)N(Ps—Bs) =
=(P-B)Nn(P—-Bs)=P—(BUBs)
Therefore, BsB N BsBs consists of [P : B] — 2 left B-cosets. This number is
(¢gs +1) — 2 = gs — 1. Thus, altogether,
chpsp * chpsp = (¢s — 1)chpsp + gschp

Therefore, already we can see that with Ty, = ¢, Lchp,, B We obtain a generic
algebra with structure constants as = (1 — ¢; ') and by = ¢; 1. However, this
is a weaker conclusion than we desire: we wish to prove further that for
{(sw) > £(w) we have

qsGuw = Gsw
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If the latter equality were true, then our earlier computation would show that,
in fact,
chpsp * chpwp = chpswn

Then taking simply T, = chp,p would yield a generic algebra with structure
constants as = ¢; — 1 and bs; = ¢s.

On one hand, (with ¢(sw) > ¢(w)) we evaluate both sides of

chpsp * chpyp = (ququ_u} chpswn
at the point sw: the left hand side is
Z chpsp(swh *)chp,p(h) = card(B\(BsB(sw) N BwB)) =
hEB\G
= card(B\(BsBsN BwBw™")) > card(B\(BssN Bww™")) = card(B\B) = 1
The right-hand side is simply ¢squ¢;,., so we have
4sqw = qsw

On the other hand, invoking the theorem on generic algebras, (still with

{(sw) > L(w)) we have
q; "chpsp * 45y chpswn = (1= 45 )5y hpswn + 65 ¢, chpwn
This gives
CthB * CthwB - (qs - ]-)CthwB + qswqqzl(:thB
Now we evaluate both sides at w: the right side is gs,q,', while the left is
card(B\(BsBw N BswB)) = card(B\(BsB N BswBw™'))
= card(B\(BsB N BsBBwB - w™'))
> card(B\(BsB N BsBww™"))
= card(B\BsB) = ¢
by invoking the cell multiplication rules. That is, we conclude that
Gsw = 4sqQuw

Combining these two computations, we have ¢s,, = ¢sqw as claimed. An

induction on length gives the assertion
qsy...sn, — sy ---4s,

for a reduced expression s; ...s, € W. Thus, we obtain the simpler generic
algebra set-up, as claimed. &
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6.3 Generalized Iwahori-Hecke algebras

Now we consider generalized BN-pairs and associated convolution algebras.
The necessity of considering a generalized (rather than strict) BN-pair occurs
already for GL(n) and the affine BN-pair, that is, where B is an Iwahori
subgroup.

Let G be a group acting strongly transitively on a thick building X. Let G,
be the subgroup preserving a labeling, and suppose that G, still acts strongly
transitively. Let B, be the stabilizer of a fixed chamber C in the smaller
group G,. We assume always that S is finite.

Fix a field k of characteristic zero. Let

H =H(G,B,)

be the ‘Hecke algebra of level B,’ in G over the field k, that is, the collection
of left and right B,-invariant k-valued functions on G which are supported on
finitely-many cosets B,g in G.

We have a convolution product on H, given by

(fx)g)= D flgh Hg(h)

heB,\G

The hypothesis that ¢ is supported on finitely-many cosets B,x implies that
the sum in the previous expression is finite. Since ¢ is left B,-invariant and f
is right B,-invariant the summands are constant on cosets B,g, so summing
over B,\G makes sense.

Let H, be the subalgebra of functions in H with support inside G,. The
result of the previous section is that #, is a generic algebra, with structure
constants as, bs having meaning in terms of the building, as indicated there.

Our goal in this section is to take the generic-algebra structure of H, for
granted, and describe the structure of H in terms of H, and 2.

As usual, let chg be the characteristic function of a set E.

Let NV, be the stabilizer of a chosen apartment A in the smaller group G,
and let A/ be the stabilizer of A in the larger group G. Let T = N'N B and
T, = N, N B,. From our earlier discussion of generalized BN-pairs, G, is a
normal subgroup of G, and

G=TG,
Put
0N=T/T,
Then we have a semi-direct product
N|T, = Q< xW

Thus, also G/G, ~ Q. Define W = N, /T, as usual. For 0 € Q and w € W,
we have
ocB, = B,o = B,oB,
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oB,wB, = B,owB, = B,(cwo™')B,o
where we note that cwo™' € W.
Let (W, S) be the Coxeter system associated to the apartments: each apart-
ment is isomorphic to the Coxeter complex of this pair (W, S). We assume as
in the previous section that for all s € S the cardinality

gs = card(B,sB,/B,) = card(B,\B,sB,)

is finite. Again, B,sB,/B, is in bijection with the set of chambers s-adjacent
to C (other than C itself), by g — gC.

Let k[Q2] be the group algebra of 2, in the sense recalled in (6.1). Since S
is assumed finite and since G/G, =~ 2,  is finite. The following proposition
reduces study of a part of the generalized Iwahori-Hecke algebra to a much
more elementary issue:

Proposition: The subalgebra Hq of H consisting of functions supported
on cosets of the form B,o for o € 2 is isomorphic to the group algebra k[(],
by the map

ChBoaBo = ChBoo— — [U] S k[ﬂ]

Proof: This is a nearly trivial exercise, using the properites of generalized
BN-pairs recalled just above. &

Now define an action of Q on H, by

chg,wp, = hp,(o-1we)B,
for w € W. We introduce a ‘twisted’ multiplication in k[Q}] ® H, by
(ol @ ¢)([r] @ ¢) = [o7] @ (¢7 * )
and denote the tensor product with this multiplication by
k[Q] @ H,
The main point here is
Theorem: The generalized Iwahori-Hecke algebra H is
H=~k[Q @ H,
with isomorphism given by the map
chpywp = [0] ® chpwBs

Proof:  We take for granted the structural results (6.2) on the strict

Iwahori-Hecke algebra H,. The key point here is that

chp,, *chp, wB, = chp suwB,

This is direct computation: for g € G so that the convolution does not vanish,
and for h € G so that the A" summand in the convolution does not vanish,
we have

9= (gh_l)h € (BOU)(BO'U)BO) = B,owB,
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Thus, the convolution is some multiple of chp, ,wp,. Take ¢ = ow without loss
of generality, to compute the convolution. The summand in the convolution
is non-zero only for both (cw)h~' € B,oB, and h € B,wB,. That is, it is
non-zero only for

h € (B,o~'B,ow) N (B,wB,) = (B,o~'oB,w) N (BywB,) =
= B,wnN B,wB, = B,w
Thus, the sum over h € B,\G has non-zero summand only for h € B,w. That
is, the convolution is exactly chp, ,wB,, as claimed.
A similar computation shows that for w € W and o € )
chp,wB, * chp,sB, = chp, woB,

Further, this is equal to

ChBOO'(O'_lwo')Bo = ChBoUBo * ChBo(a_lwa)Bo
Thus, it is easy to check that the multiplication in H is indeed the ‘twisted’
tensor product multiplication as defined above. &

Remarks: The previous theorem is to be interpreted as having success-
fully reduced study of generalized Iwahori-Hecke algebras to that of strict
ones, mediated by the relatively elementary group algebra k[(}] and its action
on the strict Iwahori-Hecke algebra. But as it stands, the previous theorem
only prepares for the beginning of such study.
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Geometric Algebra

GL(n) (a prototype)

Bilinear and hermitian forms: classical groups
A Witt-type theorem: extending isometries
Parabolics, unipotent radicals, Levi components

In this part we set up standard geometric algebra. This is completely
independent of previous developments concerning buildings and BN-pairs,
rather being preparation for three important classes of examples of application
of the building-theory.

Note that while the terminology here is the antecedent of the Coxeter
group, building, and BN-pair nomenclature above, the connections between
the two require proof, which is given following each construction.

Regarding matrix notation: for a rectangular matrix R, let R;; be the
(i,7)*™® entry. Let R°p be the transpose of R, that is, (R°p);; = Rj;. If the
entries of R are in a ring D and ¢ is an involution on D, let R” be the matrix
with (Ra)ij = R(]Tz

7.1 GL(n) (a prototype)

The group GL(n) is the classical group most easily studied, but already
indicates interesting and important phenomena to be anticipated in other
situations.

The general linear group GL(n, k) is the group of invertible n x n matri-
ces with entries in a field k. The special linear group SL(n, k) is the group
of (invertible) n x n matrices with entries in a field £ and having determinant
1.

If we wish a less coordinate-dependent style of writing, we fix an n-dimensional
k-vectorspace V and let GLi (V') be the group of k-linear automorphisms of
V.

Any choice of k-basis for V' gives an isomorphism GL;(V) — GL(n, k), by
taking the matrix of a linear transformation with respect to the chosen basis.

Let eq,... ,e, be the standard basis for £":
1 0 0
o — 0 0 — 1 o= |
L S o 0
0 0 1

By this choice of (ordered) basis we obtain an isomorphism

GL,(k") = GL(n,k)
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A flag in V is a chain
Vi, CVa, C...C Vg,
of subspaces, where V; is of dimension i and
dy <...<dp

We say that the type of the flag is the sequence (di,...,dn). In k™ the
standard flag of type (di,...,dy,) is the flag of type (di, ... ,d) with

Vi, = ker + kea + ...+ keq,—1 + keq,
A parabolic subgroup P = Pr in GL;(V) is the stabilizer of a flag
F=WVy CVyg, C...CVy,)
That is,
Pr={g€ GL,(V) : gVy, =Vy, Vi}
If V= k™ and F is the standard flag of type (di, ... ,dn), then the para-
bolic Px consists of all elements admitting a block decomposition

d1 X d1 *
(d2 — dl) X (d2 — dl)

0 (dy — A1) X (dyy = di_1)

where (as indicated) the i*® diagonal entry is (d; — d;_1) x (d; — d;_1), the

lower entries are 0, and the entries above the diagonal blocks are arbitrary.
Each g € P = Py induces a natural map on the quotients Vy, /Vy, , (where

we define Vy, =0 and Vg, ., = V). Then the unipotent radical R, P is

R,P={p€Pr:p=idonall V4, /Vy_, and on V/Vy }

The unipotent radical R, P is a normal subgroup of P.
In the case of the standard parabolic P of type (di,...,d,) on k™, the
unipotent radical consists of elements which look like

1d1 * .
1d2 *

- *
0 14
where 14 denotes the identity matrix of size d X d.
Choose subspaces V,;_; of V' so that V,;_, is a complementary subspace
to Vg, in V and so that

m

Vo_a, C...CVy_g
is a flag of opposite type to the flag of Vj,’s. Put

P ={g€GLi(V):gV,_y4 =V,_, Vi}
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M=PnP
Then M is called a Levi component or Levi complement in P, and P =
Py is the semidirect product
P =M<xR,P

of M and R, P, where M normalizes R, P.
For the standard parabolic P in GL(n, k) of type (d1, ... ,dy,), the standard
choice of the complementary spaces is

Vi a; = keap1 + ...+ kep
Then the standard Levi component is the group of matrices of the form

d1 Xd1 0
d2><d2

0 dy X dpy,

where (as indicated) the i*" diagonal entry is d; x d;, and all other blocks are
ZEros.

In the case of GL;(V'), the Levi components of minimal parabolics are
called maximal (k-)split tori.

The following result is a prototype for the analogous results for larger
classes of groups.

Proposition:
e All parabolics of a given type are conjugate in G L (V)
e All Levi components in a parabolic subgroup P are conjugate by ele-

ments of P.
e All maximal k-split tori are conjugate in GLy (V).

Proof: This proof is a paradigm...
To prove the conjugacy of parabolics of a given type, it suffices to show
that for two flags
Vi, C...CVa,

Vi C...CVy
of the same type there is g € G Li(V') so that gV, = V. for all i. Choose two
bases {v;}, {v} for V, so that
Vi, = kv + ... + kvg,
Vi, = kv + ...+ kuy,
Then define g by gv; = v}. This proves the conjugacy of parabolics of a given

type.
To prove conjugacy of Levi components within a given parabolic P, let

Vi, C...C Vg,
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be the flag of which P is the stabilizer, and let Véfdi,Vn{di (with 1 < i <m)
be two choices of families of complementary subspaces defining (in our present
terms) Levi components. It suffices to find p € P so that anlidi = Vrffdi for
all indices 7.
For ¢ = 1,2, define W{,... , WS, to be, respectively,
Vf

14 14 14
Vdu de N andlv Vds N andz) ey Vdm N andm,l) n—d,

For ¢ = 1,2 we have V = @W/. By hypothesis, dim, W} = dimy W7 for all
j; therefore, there are many elements g € GLi(V) so that gW} = W} for all
j. For any such g, certainly g € P, and since Vf is a sum of W/’s, certainly
pV;_di = Vn2_dl_ for all 7.

Given two maximal split tori 77, T>, choose minimal parabolics P; contain-
ing T;. By the first part of the proposition, there is h € GLi(V) so that
hP h~! = P,. Then hT1h~! is another Levi component (maximal split torus)
inside P», so by the second assertion of this proposition there is p € P» so that
p(hT1h=Y)p~! = T,. This gives the third assertion of the proposition. &

Now we generalize the previous in a mostly straightforward way: replace
the field k of the previous section by a division ring D. We repeat the
coordinate-free version of the previous discussion; the matrix pictures are
identical to those just above.

We define a finite-dimensional vectorspace V over a division ring D to
be a finitely-generated free module over D. The notion of dimension makes
sense, being defined as rank of a free module. Elementary results about linear
independence and bases are the same as over fields.

The loss of commutativity of D becomes relevant when considering D-linear
endomorphisms. If D is not commutative, then the ring Endp (V') of D-linear
endomorphisms of V' does not naturally contain D. Thus, a choice of D-basis
for an n-dimensional D vectorspace V' gives an isomorphism

Endp (V) — {n x n matrices with entries in D°PP}

where D°PP is the opposite ring to D. That is, D°PP is the same additive
group as D, but with multiplication * given by

where yx is the multiplication in D.

(Sometimes this (harmless) complication is avoided by declaring V' to be a
‘right’ D-module, but the definition of ‘right’ module really is that of module
over the opposite ring D°PP anyway.)

The general linear group GL(n,D) over D is the group of invertible
n X n matrices with entries in D. The coordinate-free version of the general
linear group is GLp(V), the group of D-linear automorphisms of V. Choice
of D-basis for V' gives an isomorphism

GLp(V) = GL(n, D°PP)
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Definitions regarding flags and parabolics are identical to those in the case
that D was a field:

A flag in V is a chain

Va, CVy, C...C Vg,
of subspaces, where V; is of D-dimension ¢ and
di <...<dp

The type of the flag is the sequence (di,... ,dp).

A parabolic subgroup P = Pr in GLp(V) is the stabilizer of a flag

F=Vy CVyg,C...CVa,)
That is,
Pr={ge GLp(V):gVy, =Vy, Vi}

Each g € P = Py induces a natural map on the quotients Vy, /Vy,_, (where

we define Vy;, =0 and Vy,, ., =V). The unipotent radical R, P is
R,P={p€ Pr:p=idon Vy,/Vy,_, Vi}

The unipotent radical R, P is a normal subgroup of P.

Choose subspaces V; ;. of V' so that V,; , is a complementary subspace
to Vg, in V. Then

Vo_a, C...CVy_y
is a flag of opposite type to the flag of Vj4,’s. Put
PI = {g S GLD(V) : erifdi = Vrifdi VZ}
M=PnP
Then M is called a Levi component or Levi complement in P, and P =
Pr is the semidirect product
P=M<xR,P

of M and R,P, where M normalizes R, P.

Proposition:

e All parabolics of a given type are conjugate in GLp (V')
e All Levi components in a parabolic subgroup P are conjugate by ele-
ments of P.

The proofs of these assertions are identical to those for GL(n, k). &
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7.2 Bilinear and hermitian forms, classical groups

In this section we introduce the classical groups defined as isometry or
similitude groups of ‘forms’ on vectorspaces. We define orthogonal groups
and symplectic groups first, then the unitary groups, and then more general
groups including what are sometimes denoted as O* and Sp*. (This family of
descriptions could be simplified, at the cost of obscuring the simpler members.)

Let k be a field not of characteristic 2, and let V' be a finite-dimensional
k-vectorspace. A (k-)bilinear form on V is a k-valued function on V x V' so
that, for all z,y € k and v,vy,v0 € V

(vl + ’U2,’U> = (’Ul,U> + ('U2,U>
(’U,’Ul + ’l)2> = (’U,’Ul> + (’U,’UQ)
<1"U, y'U1> = 1‘:[/(’[), ’U1>
If always
(v1,v2) = (v2,01)
then the bilinear form is symmetric. The function
Qv] = (v,v)
is the associated quadratic form, from which (,) can be recovered by
4vr,v2) = Qur + v2] — Qvr — 2]

The associated orthogonal group is the isometry group of Q or (, ), which
is defined as

0(Q) = 0((,)) = {9 € GLx(V) : (gv1, gv2) = (v1,v2) Yv1,v2 € V'}
The associated similitude group is defined as
GO(Q) = GO((,)) ={g9 € GLr(V) : w(g) € k™ so that (g1, gvs) =
v(g) (v1,v2) Yu1,v2 € V'}
If always
(v1,v2) = —(v2,v1)
then the bilinear form is alternating or symplectic or skew-symmetric.

The associated symplectic group is the isometry group of (,), which is
defined as

Sp((,) ={g € GLk(V) : (gu1, gv2) = (v1,v2) Yv1,02 € V'}
The associated similitude group is defined as
GSp((,) ={g € GL(V) : Fv(g) € k™ so that (gu1, gva) =
v(g) (v1,v2) Yui,v9 € V'}
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Let K be a quadratic field extension of & with non-trivial k-linear auto-
morphism o. A k-bilinear form (,) on a finite-dimensional K-vectorspace V'
is hermitian (with implicit reference to o) if

(zv1,yv2) = Y7 (V1, V2)

for all z,y € K and for all vy,vy € V. The associated unitary group is the
isometry group of (,), which is defined as

U((,) = {9 € GLk(V) : (gv1, gv2) = (v1,v2) Yv1,v2 € V'}
The associated similitude group is defined as
GU((,)) ={g € GLx(V) : Jv(g) € k™ so that (gv1, gv2) =

V(g) <U1,’U2> Yoy, vs € V}
The previous groups can all be treated simultaneously, while also including
more general ones, as follows.
Let D be a division algebra with involution ¢. That is, 0 : D — D has
properties

)7 =a and (a+0) =a”+ 47 and (aB)’ =37’

for all a,8 € D. Let Z be the center of D. We require that D is finite-
dimensional over Z. Certainly o stabilizes Z. If ¢ is trivial on Z then say
that o is an involution of first kind; if o is non-trivial on Z then say that
o is an involution of second kind. In either case, we suppose that

k={zxeZ:2° =z}

(a

Let V be a finite-dimensional vectorspace over D, and fix e = +1. Let
(,):VxV =D

be a D-valued k-bilinear ‘form’ on V so that
(U2,U1> = 6<U1;U2>0

(avi, Bva) = avr,v2)B7
for all «,8 € D and vy,vs € V. This is an e-hermitian form on V. For
want of better terminology, we call V' (equipped with (,)) a (D, o, ¢)-space.
Let V; be (D, o,€)-spaces with forms (,); (for ¢ = 1,2). A D-linear map
¢: Vi — Vs is an isometry if, for all u,v € V1,

(Pu, pv)2 = (u,v)
The map ¢ is a similitude if there is v € k so that, for all u,v € V1,
(pu, pv)2 = v(u,v)
Write ¢ : V1 2 V5 if ¢ is an isometry.
The associated isometry group of (,) is defined as

{9 € GLp(V) : (gu1, gv2) = (v1,v2) Yv1,v2 € V}
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The associated similitude group is defined as
{9 € GLp(V) :3v(g) € k™ so that (gvy, guva) =

v(g) (v1,v2) Yu1,v2 € V'}
A D-subspace U of a (D, o,¢)-space V has orthogonal complement

Ut ={u eV :({, uy=0YucU}

Note that there is in general no assurance that U N U+ = 0. The kernel of
the whole space V is V. The form is non-degenerate if V- = 0. Often we
will suppress reference to the form and say merely that the space V itself is
non-degenerate. Such abuse of language is typical in this subject.

If V1, Vs are two (D, o, €)-spaces with respective forms (, )1, (, )2, then the
direct sum V; @ V5 of D-vectorspaces is a (D, o, €)-space with form

(v1 + va,v] + vh) = (v, v])1 + (v2,v5)2

We call this an orthogonal sum. Generally, two subspaces Vi,V5 of a
(D, o,€)-space are orthogonal if

Vi CVy

or equivalently, if V5 C V;*.

If (v,v) =0 for v € V, then v is an isotropic vector . If (v,v') = 0 for all
v,v" € U for a subspace U of V, then U is a (totally) isotropic subspace.
If no non-zero vector in U is isotropic, then U is anisotropic.

Proposition: Let V be a non-degenerate (D, o, €)-space with subspace
U. Then U is non-degenerate if and only if V = U ® U*, if and only if U™ is
non-degenerate.

Proof: We map A : V — Homp(U, D) by v — A, where
Av(u) = (u,v)

The non-degeneracy of V assures that A is onto. The kernel is visibly U=,
Then, by linear algebra,

dimp U~ + dimperr A(U) = dimp V

Thus, since the dimension of A(V) is the same as the dimension of U, by
dimension-counting, U N U+ = 0 if and only if U + U+ is a direct (and hence
orthogonal) sum.

Since U C U+, U degenerate implies that U N U+ is non-zero. Then
UL N U+ is non-zero, since it contains U N U+, so UL is degenerate. On
the other hand, U non-degenerate implies that U + U~ is a direct sum, so
dim U = dim V — dimU*. Since dim U** = dim V — dim U* by the non-
degeneracy of V, we have U+ = U, so U+ + U* is a direct sum, and U+
is non-degenerate. &

A D-basis eq,...,e, for a (D,o,¢)-space V is an orthogonal basis if
(e;,€ej) =0 fori # j.
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Proposition: Let V be a (D,o,¢)-space. Exclude the case that €
—1,D =k, and o is trivial. If (,) is not identically zero then there is v €
with (v,v) # 0. If V is non-degenerate then it has an orthogonal basis.

< |

Proof: Suppose that (v,v) =0 for all v € V. Then
0=(z+yz+y) = (,2)+ (2,y) + {x,9)” +(y,y) = (&, ) + {z,9)7

If e = 1 and (,) is not identically 0, then there are z,y so that (z,y) = 1.
Then we have
0={(z,y) +e(z,y)’ =1+1
contradiction.
Suppose that ¢ = —1 and o is not trivial on D. Then there is a € D so

that @’ # a, and with w = a —a“, w? = —w. If {,) is not identically 0, then
there are x,y so that (z,y) = 1. Then we have
0= (wmay> + €<wx’y>0' = w(w,y) - (x’y>0'w0' =
=w—€ew=2w
contradiction.
To construct an orthogonal basis, do induction on dimension. If the dimen-
sion of a non-degenerate V is 1, then any non-zero element is an orthogonal
basis. Generally, by the previous discussion, we can find v € V so that

(v,v) # 0. Then Dv' is non-degenerate and V is the orthogonal direct sum
of Dv and Dv', by the previous proposition. &

Suppose that V' is two-dimensional, with an ordered basis z,y so that

(z,z) = (y,y) =0 and (z,y) =1

Then V is a hyperbolic plane and z,y is a hyperbolic pair in V. A
(D, o, ¢€)-space is hyperbolic if it is an orthogonal sum of hyperbolic planes.

Proposition: Let ¥V and W be two hyperbolic spaces of the same di-
mension (with the same data D, o, ¢€). Then there is an isometry f: V — W.
That is, dimension is the only invariant of hyperbolic spaces.

Proof: Match up hyperbolic pairs. &
Proposition: Take V non-degenerate with e = —1, D = k, and o trivial.
Then V is hyperbolic, that is, is an orthogonal sum of hyperbolic planes.
Proof: Since o is trivial, a8 = fBa for all a, 8 € D, so D is a field. Since
<1‘,1‘> = —<1‘,1‘>

and the characteristic is not 2, every vector is isotropic. Fix x € V non-zero,
and take y € V so that (x,y) # 0. Then by changing y by an element of
D we can make (x,y) = 1, that is, a hyperbolic pair. Then Dz + Dy and
(Dz + Dy)* are non-degenerate, and we do induction on dimension. &
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Proposition: Let V be a non-degenerate space and —V the same space
with the negative of the form on V. Then the orthogonal sum

W=Vo -V
is hyperbolic.

Proof: 1In the case of (non-degenerate) alternating spaces (with D = k, e =
—1,0 trivial), V itself is already hyperbolic, and then —V is visibly so. On
the other hand, for a (non-degenerate) non-alternating space V', we can find
an orthogonal basis {e;} (for both V' and —V'). Then we claim that in V& -V
the subspaces

H; = De; & De;
are hyperbolic planes, for all indices ¢. (This would prove the proposition).
Since the characteristic is not 2, we can consider the vectors

1 -1
T = §€i De;  yi=(ene) €D —e;

which are linearly independent (since 1 # —1). They are both isotropic, by
design. And the constants are such that for the form (,) on V @& —V we have

(wi,y:) = 1. &

Proposition: Let V' be non-degenerate, and W a subspace. Let W, be
the kernel of W. Then there is a non-degenerate subspace W; of W so that
W, + Wi = W is a direct sum. Further, for any basis 1, ... ,z, for W,, and
for any such Wi, there is a set {y;} C Wi so that the subspaces Dx; + Dy;
are mutually orthogonal hyperbolic planes. In particular,

W+ Dy =W & (&; Dy;)

is non-degenerate and W, + >, Dy; is a hyperbolic space.

Proof: The form (,) induces a non-degenerate form of the same ‘type’ on
the quotient W/W,. It is easy to see that this quotient is non-degenerate. Let
Wi be any vectorspace complement to W, in W. Then the non-degeneracy
of W/W, implies that of W;.

Since U = Wy + Dz + ...+ Dz, is a proper subspace of W (noting that
r1 is missing), and since V' is non-degenerate, W= is a proper subspace of
UL. That is, there is a non-zero element y in U+ but not in W+. Then
(z1,y) # 0. Adjusting y by an element of D allows us to make (z1,y) = 1.
Since (y,y) = e(y,y)o, y1 =y — %(y,y)ml is the desired element to make a
hyperbolic pair x1, ;.

Now Y = (Dy;)* NW, is of codimension 1 in W,, and is the kernel of
W + Dy;. Thus, induction on the dimension of W, gives the proposition. &

Corollary: Let V be a non-degenerate space. Then there is a hyper-
bolic subspace H of V and an anisotropic subspace A of V so that V is the
orthogonal direct sum V = H & A.
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Proof: This is by induction on the dimension of V. If V is anisotropic,
we are done. If not, let v be a non-zero isotropic vector, and by the previous
proposition find another vector w so that v,w is a hyperbolic pair. Then
(Dv + Dw)* is non-degenerate and of smaller dimension than V. &

7.3 A Witt-type theorem: extending isometries

Here we give a result including the traditional Witt theorem on extensions
of isometries in non-degenerate ‘formed’ spaces. The proof here is somewhat
more ‘element-free’ than the traditional proof. This result implies, as a spe-
cial case, that all parabolic subgroups ‘of the same type’ in isometry (and
similitude) groups are conjugate.

Still we exclude characteristic 2, and keep the other notation and hypothesis
of previous sections.

For a (D,o,¢)-space V with form (,), let —V denote the (D, o, €)-space
which is the same D-vectorspace but with form —(,). Let V, denote the
kernel of a (D, o,¢€)-space V.

Theorem:

o Let U,W be subspaces of a non-degenerate space V. Every isometry
¢ : U — W extends to an isometry ® : V — V. (That is, ® restricted
to U is ¢).

o If U, V,IWW are spaces so that U @V =U @ W, then V =2 W.

Proof: The main technical device in the proof is consideration of a certain
configuration which occurs elsewhere as well. We introduce this first, and
then proceed with the proof.

Suppose that V = X ®Y with X, Y non-degenerate proper subspaces of V',
and with V hyperbolic. Let W be a maximal totally isotropic subspace of V.
From the previous section’s results it follows easily that dimp W = % dimp V.
Let A, B be the images of W under projection to X,Y’, respectively. Since
both X,Y are proper subspaces of V', a maximal isotropic subspace of X (or
of V) has strictly smaller dimension than W, so neither of A, B is 0. Since
W is maximal isotropic and V is hyperbolic, we have W = W=, and thus the
kernel of A is

A,={z€A: (z,w)y=0Vw e W}=ANWt=AnW=XnW
Similarly, the kernel of B is
B,=YnW
Define ¢ : A — B/B, by ¢z = y+ B, where z+y € W. Then for z,z' € A,
(Yo, ya’) = (Y, 2" + Ya’) =
=Wz +x—z,2 + ') = (—z,2' +¢z') = —(z,2")
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That is, ¢ induces an isometry (also denoted by 1)
A/A, S5 -B/B,

Note that both A/A, and B/B, are non-degenerate.

From the discussion of the previous section, there are totally isotropic sub-
spaces A’ of X and B’ of Y so that both A, ® A’ and B, ® B’ are hyperbolic,
and so that ANA'=BnB =0.

Lemma:
X=A®A and Y=Ba¢ B

Proof: To prove this, let
2N =dim V = 2dim W = 2(dim A, 4+ dim B) = 2(dim A + dim B,
m=dim A, n=dim B, r=dim A/A,=dim B/B,
Then we have
2N =dim X +dim Y > (dim A + dim A’) + (dim B + dim B") =

=(r+2m)+ (r+2n)=2(m+r+n)=2(dim 4, + dim B) = 2N
Therefore, equality must hold, proving the claim. &

Lemma: In the above situation, suppose that X is anisotropic, and that
Y is hyperbolic. Then X = 0.

Proof: The projection of W to B must be injective, since the kernel of
this projection is 4, = X NW = 0, using the anisotropy of X. Thus, in the
notation of the previous lemma, A’ = 0. Since X = A & A’ by the previous
lemma, we see that in the present situation X = A.

Further, we can choose B’ to lie inside 1) X*. Then the previous lemma
shows that we have a direct sum decomposition

Y=-X¢(B,®B)

where now B, ® B’ is hyperbolic.
Let V be the hyperbolic space of least dimension so that there is Y so that
X @Y 2V with Y also hyperbolic. We have

X®(-(B,®B')~-Y

with —(B, @& B') hyperbolic. If X # 0, this contradicts the minimality of V,
since X # 0 implies dimY < dim V. Thus, if X # 0 then there are no such
Y, V. »

Lemma: If

~

X @ hyperbolic = hyperbolic
then X itself is hyperbolic.
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Proof: Let X = XT @ H with H hyperbolic and Xt anisotropic. If
X @Y 2V with both Y,V hyperbolic, then we have

VeXte(HaY)

so by the previous lemma X+ = 0. &

Lemma: If
UpX=2UpY
with U, X,Y all non-degenerate, then X & —Y is hyperbolic.

Proof: Certainly H = U @ —U is hyperbolic, and
Xeo-YVVeH=2(Xo-V)oUes-U)2{UsX)o-(UaY)=
=2 (UaY)®d—(UadY) hyperbolic

by invoking the hypothesis U X 2 U Y. (Always V@& —V is hyperbolic for
any non-degenerate V). Thus, by the previous lemma, we have the conclusion.

[ )

In the situation of the last lemma, we write X = XtT®H, andY = YT H,
with H; hyperbolic and X T, Y anisotropic. Then since X @ —Y is hyperbolic
it follows from the lemma above that X+ @®—Y* is hyperbolic. Taking a direct
sum of both sides with Y gives

Xta(-YtaeY™")=Y" @ hyperbolic

Now —Y T @ Yt is itself hyperbolic (for any non-degenerate space), so by the
lemma above we have

X+t =2Y"* @ hyperbolic

Symmetrically,
YT = Xt @ hyperbolic

Putting the latter two assertions together, we conclude that X+ = Y+,
Then the hypothesis U @ X =2 U @ Y assures that the dimensions of Hy, Hy
are the same, so they are isometric, being hyperbolic.

This proves the second assertion of the theorem.

We saw in the previous section that U can be orthogonally decomposed
as U 2 U" @ U, where Ut 2 U/U, is non-degenerate. As described earlier,
for a basis z1, ... ,z, of U,, we can choose 1, ... ,y, in (UT)* so that each
Dz; + Dy; is a hyperbolic plane, and so that

U=U+ Dy, + ...+ Dyy,)

is non-degenerate. Then W+ = ¢U™ is non-degenerate in W and is a com-
plement to the kernel W, = ¢U, of W. For the basis {¢z;} of W,, choose
21,0, 2n in (WT)L so that all the D(¢x;) + Dz; are hyperbolic planes. Then
extend ¢ to an isometry

®: U+ (Dyr+ ...+ Dyp) > W+ (Dz1 + ...+ Dzy)
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by defining ®y; = z;. It is easy to verify that this really is an isometry.
By design, we have extended ¢ to an isometry on the somewhat larger non-
degenerate space U, thereby reducing the first assertion of the theorem to the
case that U (and, hence, W) are non-degenerate.

Then, using the non-degeneracy of U, W and the hypothesis ¢ : U = W,
the isometry

UpUt=2V=WaeWt

implies that there is an isometry ¢' : U+ = W+, by the second assertion of
the theorem (which is already proven). Then define ® on V' by

P(udu’) = (u) + ¢'(u)
forueUand v € U L. &

7.4 Parabolics, unipotent radicals,
Levi components

Let D,¢€,0 as above be fixed, and let V' be a non-degenerate ‘formed space’
with this D e,o. It is important that the space be non-degenerate. Let G
be the isometry group of V, as defined earlier. The following discussion also
applies, with minor modifications, to the similitude group and other related
groups.

First we give the coordinate-independent definitions, and then in coordi-
nates describe the standard parabolics, unipotent radicals, and Levi compo-
nents.

An isotropic flag F in V is a chain

Vic...cV,

of totally isotropic subspaces V; of V. The type of the flag is the ordered
m-~tuple of D-dimensions

(dimD Vl,... ,dimD Vm)

The parabolic subgroup P = Pr associated to an isotropic flag F is the
stabilizer of the flag, that is,

Pr={geG:gV,=V,; Vi}
The type of the parabolic is defined to be the type of the isotropic flag.

Proposition: Any two parabolic subgroups of the same ‘type’ are con-
jugate by an element of G.

Proof: Let P and P’ be the stabilizers of two isotropic flags
Vic...CVp
vic...cV,

where
dim V; = dim V/
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Invoking Witt’s theorem, there is h,, in the isometry group of V so that
hm V= Vin. Since the form restricted to V,, is zero, there certainly is h?,

in AutpV,, so that h2,_h, V) | = Vip—1. By Witt’s theorem this h?

m—1
extends to an isometry h,,—; of all of V. An induction completes the proof.

&

Note that elements of P give well-defined maps on the quotients V;/V;_;.
And, elements of P give well-defined maps on V-, /V/:, since

ViC...CVpCVrCVi C...C V-

Further, the form (,) on V gives a natural identification of V., /V.* with the
dual space of V;/V;_1, by

Aw(v + ‘/;'—1) = (v,w)

This duality respects the action of the isometry group.

The unipotent radical R, P of a parabolic P = Pg is defined to be the
subgroup of G consisting of elements p € P so that the maps induced by p on
all quotients V;/V;_1 and on V- /V.L are trivial. Note that this implies that
the natural actions on the quotients V;t, /V, are also trivial, since these are
dual spaces to the quotients V;/V;_; and this duality respects the G-action.

It is easy to see that the unipotent radical R, P of P is a normal subgroup
of P.

Fix an isotropic flag

F=WViC...CVp)
Let
F=WV/c...cV,)
be another isotropic flag so that dim V; = dim V; and for each i
Vi +V/ =V, ®V/ = anon-degenerate (hyperbolic) space

The Levi component or Levi complement of the parabolic P correspond-
ing to this choice is

M:{pEP:pV},:‘/}’V’L‘}:P}‘r\IP]ﬂ

Note that this implies that m € M stabilizes each V; @ V; and stabilizes each
Vi V)t

It is not hard to check that a parabolic subgroup is the semi-direct product
of its unipotent radical and any Levi component.

Now we claim that Levi components of parabolics of isometry groups are
products of ‘classical groups’. That is, we are claiming that these Levi com-
ponents are products of G L-type groups and of isometry groups.

More specifically, with two isotropic flags

F=WVC...CVp)
G=(W, C...CWy)
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related as above, we claim that the associated Levi component M is isomor-
phic to
H = GLd1 (Dopp) X GLd2_d1 (Dopp) X ...

...X GLq, _q, _, (D°PP) x Iso((Vin + Wi)b)
where Iso((Vi, + Wy, )1) is the isometry group of (V,, + W,,)+ and where

d; = dimp V;.
Let
1 €VI, T €VanN Wi, 23 € VsNWh, ..., 2 € Vi NWE_,
Ty EVENWE
Yy EWL, yo €WV oo Yy €W NV

An element of the associated Levi component can be decomposed into corre-
sponding factors as
gL X oo X g X gy X gy X oo gh

The requirement that this be an isometry is that
(gizi, giyi) = (i, y:)
(9+24,9124) = (T4, T4)
since all other pairs of summands are pairwise orthogonal. That is, g4 is
an isometry as indicated, and g} is completely determined by g¢; (as a kind of
‘adjoint’), and g; itself may be arbitrary in GLp(V;NW: ). The D-dimension
of V; N Wf_ 1 is d; — d;_1, so this completes the verification of the claim.
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8. Examples in Coordinates

Symplectic groups in coordinates
Orthogonal groups O(n,n) in coordinates
Orthogonal groups O(p,q) in coordinates
Unitary groups in coordinates

Having set up a sufficient amount of ‘geometric algebra’, we now use co-
ordinates to describe the standard versions of some of the classical isometry
and similitude groups, enough to suggest what can be done in all cases. Al-
though in hindsight these matrix computations are of limited use, there seems
to be considerable psychological comfort in seeing them, and operating at this
level seems an unavoidable step in development of technique and viewpoint.

Again, there will be substantial redundancy in the sort of observations we
make, with the purpose of making the phenomena unmistakable.

Regarding matrix notation: for a rectangular matrix R, let R;; be the
(i,7)™ entry. Let RT be the transpose of R, that is, (R");; = Rj;. If the
entries of R are in a ring D and ¢ is an involution on D, let R” be the matrix
with (Ra)ij = R‘]Tl

8.1 Symplectic groups in coordinates

Among the classical groups, beyond the prototypical GL,,, symplectic groups
Sp(n) are quite ‘popular’. We treat the symplectic similitude groups GSp(n)
briefly at the end of this section.

We take V = k27, viewed as column vectors, and let

_ On _]-n
=)
where 1,, and 0,, are the n x n identity and zero matrix, respectively. For
u,v € V, put
(u,v)y = v Jv
This is a non-degenerate alternating form on V. The standard symplectic
group is

Spn = Spp(k) = isometry group of (,) =
= {9 € GLL(V) : {gu, gv) = {u,0) Yu,0 € V} =
={9 € GLy, (k) : 9" Jg=J}

(Tt is a small exercise in linear algebra to check that the last condition is
equivalent to the others). Some authors write Spa, = Span (k) for this group.
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Now we use n x n blocks in matrices. Then, upon multiplying out the

condition g " Jg = J, the condition for g = ( z Z ) to be in Sp, is

cla—a'e=0 d'b-b'd=0 da—-b'c=1,

Since J' = —J = J~!, taking transpose and inverse of g'.Jg = J (and
rearranging a little) gives gJg°p = J. Thus, an equivalent set of conditions
for g € Sp, is given by

ba' —ab" =0 de' —ed" =0 da” —cb" =1,

The standard maximal totally isotropic subspace V,, of V is that
spanned by the vectors ey, ...e,, where {e; : ¢ = 1,...,2n} is the standard
basis for k?". The (maximal proper) parabolic subgroup P stabilizing V,, is
described in n x n blocks as

x %
P=((5 1)

This is sometimes called the Siegel parabolic or popular parabolic. The
standard Levi component M of P is

w={( 5 4T ) Aeanm)

where AT~! means inverse of the transpose of A. The unipotent radical of P
is

N:{(é f):sst}

where S can be any symmetric n X n matrix.
The standard minimal parabolic is

A . .
{p= ( 0 A;:l ) : A is upper triangular}
This corresponds to the standard maximal isotropic flag

kel C (k61 +k‘62) C (k61 + kes +k€3) Cc...C (k61 +...+k€n)

Note that while the matrices in this parabolic subgroup have some sort of
upper-triangular property, it is not literally so. Further, some of the zeros
in the expression appear only because the matrix is required to lie in the
symplectic group, not just because of stabilization of the indicated flag of
subspaces.

The unipotent radical is the subgroup of such p having only 1’s on the
diagonal. The standard Levi component A of this minimal parabolic is
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the subgroup of all diagonal matrices of the form

ai

n
Now we consider other maximal proper parabolics in Sp,. Let V; be the

subspace key + ... + key with 1 < ¢ < n. The subgroup of Sp, stabilizing V,
must consist of matrices

x % %k
0 *x x x
0 *x x x
0 * *x =%
where we use a decomposition into blocks of sizes
I g4 * * *
% (n—120)x(n—20) * *
* * £ x/ *
* * x (m—=4)x(n—-10

(with compatible sizes off the diagonal), and where there are further conditions
which must be satisfied for the matrix to lie in Sp,. The standard Levi
component consists of matrices with block decomposition

A 0 0 0
0 a 0 b
0 0 ATV 0
0 ¢ 0 d

with
A € GLy(k) ( ‘c’ 3 ) € Spn_e(k)

The unipotent radical of this parabolic consists of elements of the form

1 *x % x
01 = O
0 01 0
0 0 %= 1

with some relations among the entries. In particular, we have elements
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which are not in the unipotent radical of the Siegel parabolic. The verification
that this is the unipotent radical, with the definition as above in terms of
geometric algebra, is just a computation.

All other standard parabolics are expressible as intersections of the stan-
dard maximal proper ones.

Now consider the symplectic similitude group

GSp, = GSpy,(k) = similitude group of (,) =
={9 € GL(V) : (gu, gv) = v(g)(u,v) Yu,v €V,
for some v(g) € k*} =
={9€GLy(V):g"Jg=wv(g)J, for some v(g) € k*}
It is easy to check that the map v : GSP, — k* is a group homomorphism,
and that v(g)™ = det(g)-
The ‘shape’ of the standard parabolics, their unipotent radicals, and their

standard Levi components is identical to that for Sp,. A standard sort of
element which is in GSp,, but not in Sp,, is

A

1

on which v takes value A € k™. Note that these elements lie in the standard
Levi component of every standard parabolic subgroup.

8.2 Orthogonal groups O(n,n) in coordinates

For the ‘simplest’ orthogonal groups O(n,n) the discussion is almost iden-
tical to that for Sp,, and we abbreviate it somewhat. The treatment of the
similitude group GO(n,n) parallels exactly that of GSp, based upon Sp,, as
above.

We take V = k2", viewed as column vectors, and let

0, 1,
o= (o)
(u,v) =v' Qu

This is a non-degenerate symmetric bilinear form on V', and makes V a hy-
perbolic space. The standard orthogonal group ‘of signature (n,n)’ is

For u,v € V, put

O(n,n) = O(n,n)(k) = isometry group of {,) =
={g € GLL(V) : (gu, gv) = (u,v) Yu,v €V} =
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={9€ GLa(k): 9" Qg = Q}
(Tt is a small exercise in linear algebra to check that the last condition is
equivalent to the others).
Use n x n blocks in matrices. Upon multiplying out the condition ¢ ' Qg =

Q, the condition for g = < Z 2 > to be in O(n,n) is

cla+a’e=0 db+b'd=0 da+bec= 1,
An equivalent set of conditions for g € O(n,n) is given by
ba' +ab" =0 de' +ed" =0 da” +eb" =1,

The standard maximal totally isotropic subspace V,, of V is that
spanned by the vectors ey, ...e,, where {e; : i = 1,...,2n} is the standard
basis for k?". The (maximal proper) parabolic subgroup P stabilizing V,, is
described in n x n blocks as

x %
P=((5 1)

This is sometimes called the Siegel parabolic or popular parabolic. The
standard Levi component M of P is

w={( 5 4T ) Aeanm)

where AT~! means inverse of the transpose of A. The unipotent radical of P

' N:{(é f):sz—sT}

where S can be any anti-symmetric n X n matrix.

Consider other maximal proper parabolics in O(n,n): Let V; be the sub-
space key + ...+ key with 1 < £ < n. The subgroup of O(n,n) stabilizing V;
must consist of matrices

* k% %
0 *x *x =x
0 *x *x =x
0 * x =%
with blocks of sizes
{x/ * * *
% (n—120)x(n—20) * *
* * I xl *
* * * (n—120)x(n-20

(with compatible sizes off the diagonal), with further conditions on the entries
which must be met for the matrix to be in O(n,n). The standard Levi
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component consists of matrices with block decomposition

A 0 0 0
0 a 0 b
0 0 AT1 0
0 ¢ 0 d
with
A€ GLy(k) (“c‘ Z)EO(n—l,n—l)
The unipotent radical of this parabolic consists of elements of the form
1 % % x
0 1 = x
0 010
0 0 1
with some relations among the entries. In particular, we have elements
1 =z 0 0
0 1 0 0
0 0 1 0
0 0 —z" 1

which are not in the unipotent radical of the Siegel parabolic of O(n,n).

8.3 Orthogonal groups O(p,q) in coordinates

Now we look at certain aspects of a somewhat more general type of orthog-
onal group. Fix integers p > ¢ > 0, and put

0o 0 1,
Q=( 0 1,., ©
1, 0 0

Then for column vectors u,v € V = kP*? we define a non-degenerate sym-
metric bilinear form
(u,v) =v' Qu

The orthogonal group of interest is the corresponding group

O(p,q) = O(p,q)(k) = isometry group of (,) =

={g € GLx(V) : (gu, gv) = (u,v) Vu,v €V} =

={9 € GLpyq(k): 97 Qg = Q}
We note that, on other occasions, one might take the matrix @) associated

with p, q to be

, 0 0
Q=( 0 1,., ©
0o 0 -1,
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instead. However, this choice of coordinates is suboptimal for our present
purposes. Even the (straightforward) issue of getting from one coordinate
version to another is not of great moment.

In the extreme case ¢ = 0, one usually writes n = p, and

O(TL) = {g € GLn(k) :ng = ln}

We will not consider this case here, since the structures we wish to investigate
(parabolic subgroups, etc.) are not visible in this choice of coordinates. In
particular, unless we know much more about the nature of k, we have no idea
whether there are any non-zero isotropic vectors.

For (p + q) x (p+ ¢) matrices we use block decompositions of sizes

qXxq * *
* (- x(p-q =
* * qgXq

with corresponding sizes off the diagonal.

It is not particularly illuminating to write out the conditions on the nine
blocks (in such decomposition) for a (p + q) X (p + q) matrix to be in the
group O(p,q). Rather, we will examine only the standard maximal proper
parabolics, their unipotent radicals, and standard Levi components.

Let {e; : 1 = 1,...,p+ q} be the standard basis for k?*9. The totally
isotropic subspace V;, of V' spanned by the vectors ey, ...e, is not maximal
isotropic, in general (since the quadratic form 1,_, on kP~7 may have an
isotropic vector). Nevertheless, we have a maximal proper parabolic subgroup
P stabilizing V;. In blocks as above, elements of P have the shape

x k%
0 *x =x
0 0 =

with relations among the entries, which we now pursue by describing the
unipotent radical and the standard Levi component. Note indeed that the
middle zero block on the bottom row is genuine, but depends upon the fact
that the matrix is to lie in the orthogonal group.
We claim that the unipotent radical R, P of P consists of matrices of the
form
1 =z S-— %xm—r
0 1 —z'
0 0 1
where S = —ST is ¢ x () skew-symmetric and z is arbitrary ¢ x (p — ¢). That
the general ‘shape’ should be as indicated is fairly clear. To see that the
relations among the entries are as indicated, consider
! 1
Q 0
0

1
0 =Q
0

O =8
— N
S =8
— N e
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Upon multiplying out in terms of the blocks, we obtain

t+2 =0 y4+y +22=0

as claimed.
The standard Levi component M of P consists of elements of the form
* 0 0
0 = O
0 0 =

with relations among the entries due to the fact that these elements must lie
in O(p,q). A straightforward computation of these relations shows that the
Levi component is exactly all elements of the form

A 0 0
0 6 0
0 0 AT-!

where A € GL,(k) is arbitrary and § € GL,_,(k) must satisfy 76 = 1 (that
is, 0 is in another orthogonal group).

We can consider certain other maximal proper parabolics. Let V; be the
subspace kej + ...+ kep with 1 < £ < q. The subgroup of O(p, q) stabilizing
V; must consist of matrices with the shape

* k% % %
0 * % % =x
0 * % % =x
0 * % % =x
0 * % % =x
where the blocks are of sizes
I xl * * * *
* (g—0) x(g—10) * * *
x * qxq x *
* * * {x ¥l *
* * * * (g—0) x(g—1£)

(with compatible sizes off the diagonal), and certain relations among the en-
tries must be satisfied for the matric to be in the orthogonal group.

The standard Levi component consists of matrices with block decom-
position

A 0 0 0 0
0 hi1t hio 0 his
0 hor hx 0 has
0 0 0 ATl 0
0 h31 h32 0 h33
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with A € GLy(k) and with

hll h12 h13
h21 h22 h23
h31 h32 h33

in the orthogonal group O(p — ¢,q — £) attached to the symmetric bilinear
form with matrix

0 0 1,
0 1,, O
¢ 0 0

8.4 Unitary groups in coordinates

Now we look at certain aspects of unitary groups.

Fix a quadratic field extension K of k with non-trivial automorphism o
of K over k. Fix integers h,q > 0, and fix a non-singular h x h matrix H
satisfying H” = H, where (H?);; = (H;;)?. Put

1

Q

0 0
Q= 0o H
1, 0

q

o O

Then for column vectors u,v € V = K"27 we define a non-degenerate o-
hermitian form
(u,v) = v7Qu
where v7 is the transpose of v with ¢ applied to every entry.
The unitary group of interest is the corresponding group

U(Q) = isometry group of (,) =
={g€ GLk(V) : {gu, gv) = (u,v) Yu,v € V} =
= {9 € GLn42(K) : g°Qg = Q}
In the extreme case ¢ = 0, one usually writes
U(H)={g € GLy(K) : g"Hg = H}

We will not consider this case here, since parabolic subgroups are not visible
in this choice of coordinates. In particular, unless we know much more about
the nature of @, K, k, we have no idea whether there are any non-zero isotropic
vectors.

For (h + 2q) x (h + 2¢) matrices we use block decompositions of sizes

qxq * *
* h xh *
* * qgxq

with corresponding sizes off the diagonal.
As with the more general orthogonal groups, it is not particularly illumi-
nating to write out the conditions on the nine blocks in such decomposition.
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Let e; be the standard basis elements for k"2, The totally isotropic
subspace V, of V spanned by the vectors ey, ... e, may not maximal isotropic,
in general. Nevertheless, we have a maximal proper parabolic subgroup P
stabilizing V. In blocks as above, elements of P have the shape

* % %
0 *x x
0 0 =

with relations among the entries, which we now explain by describing the
unipotent radical and the standard Levi component.
We claim that the unipotent radical R, P of P consists of matrices of the

form
1 —2°H S—%ZUHZ

0 1 z
0 0 1
where S = —S7 is arbitrary ¢ X ) skew-hermitian and z is arbitrary h X ¢
with entries in K. That the general ‘shape’ should be
1 *x %
0 1 =
0 0 1

as indicated is fairly clear. To see that the relations among the entries are as

indicated, consider

7 1 z y
Q 01 2z |=Q
0 0 1

Upon multiplying out in terms of the blocks, we obtain

xr+2’H=0 y+y"+2°Hz=0

1
0
0

O =8
— N

as claimed.
The standard Levi component M of P consists of elements of the form
* 0 0
0 = O
0 0 =

with relations among the entries due to the fact that these elements must lie
in the unitary group. Computation shows that the Levi component is exactly
all elements of the form

A 0 0
0 6 0
0 0 A°!

where A € GL,(K) is arbitrary and 6 lies in the smaller unitary group U (H).
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9. Spherical Construction for GL(n)

Construction of the spherical building for GL(n)
Verification of the building axioms

The action of GL(n) on the spherical building
The spherical BN-pair in GL(n)

Analogous treatment of SL(n)

The symmetric group as Coxeter group

Using notions defined earlier in our general discussion (3.1) of chamber
complexes, we describe an incidence geometry from which we obtain a flag
complex which is a thick building (4.1), whose associated BN-pair (5.2) has
parabolics (5.3) which really are the parabolic subgroups of GL(n) in the
geometric algebra sense discussed above in (7.1). This will be a building of
type A, _1, in the sense that the apartments are Coxeter complexes (3.4) of
type A,_1, where the latter data is as given in (2.2).

Among other things, we will see that the apartments are Coxeter complexes
attached to the Coxeter system (W,S), where W is the symmetric group on
{1,2,...,n} and S consists of adjacent transpositions o; fori =1,... ,n—1.
(That is, s; interchanges i and i + 1 and leaves unchanged all others). It is
certainly not clear a priori that the symmetric group is a Coxeter group, etc.
However, granting that this (17, S) is a Coxeter system, the Coxeter data is
visible: if |i — j| # 1, then s; and s; commute; on the other hand, s;s;41 is a
3-cycle, so is of order 3. This is the Coxeter system of type Ap_1.

The first section constructs the thick building, while the second section
verifies the necessary properties of a building. Since the apartments are finite
complexes, they are said to be spherical, as is the building.

Then we check that GL(n) acts strongly transitively on this building, that
is, is transitive on the set of pairs (C, A) where C is a chamber contained in
an apartment A. Last, we explicitly identify the BN-pair that arises, seeing
that the ‘B’ really is a minimal parabolic in the geometric algebra sense.

Incidentally, we have already shown that in a spherical building there is a
unique apartment system. In particular, any apartment system we construct
is unavoidably the maximal one. Thus, while it might appear that we can
exercise volition here, we in fact cannot, in this regard.
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9.1 Construction of the spherical building for GL(n)

We construct buildings whose apartments are of type A,,_1.

Let k& be a field, and V an n-dimensional vectorspace over k. Let G =
GL(V) be the group of k-linear automorphisms of V. We may often write
simply GL(n) or GL(V') for this group. (All this works as well for vectorspaces
over division rings, too, but we won’t worry about this).

Let = be the set of proper, non-trivial vector subspaces of V (that is,
subspaces « which are neither {0} nor V). We have an incidence relation ~
on = defined as follows: write x ~ y for z,y € = if either x Cy or y C x.

As defined earlier (3.1), the associated flag complex X is the simplicial
complex with vertices = and simplices which are mutually incident subsets of
Z. That is, the simplices in X are subsets o of = so that, for all z,y € o,
x ~ y. Thus, in this example, the flags in an incidence geometry are the same
things as flags of subspaces of a vector space, as in (7.1).

The maximal simplices in X are in bijection with sequences (maximal flags)

VicW,c...CcV,,

of subspaces V; of V' where V; is of dimension i.
In the present context, a frame in V' is an unordered n-tuple F = {A1,... , A}
of lines (one-dimensional subspaces) A; in V' so that

MD...OMEM+...+ A, =V

We take a set A of subcomplexes indexed by frames F = {\y,... , A\, } in
V: the associated apartment A = Ar € A consists of all simplices o with
vertices which are subspaces ¢ expressible as

for some m-tuple i1,... ,%py.

9.2 Verification of the building axioms

Keep all assumptions and notation of the previou section. Now we verify
the conditions (4.1) for a simplicial complex to be a thick building, and at the
end check the type-preserving strong transitivity (5.2) of the group action.

The facets F}; of a maximal simplex
C:(V1 C... Canl)

as above are in bijection with indices 1 < j < n — 1, by omitting the j*™
subspace. That is, the j*" facet is

Fj=WViC...CVju1 CVjp1 C...C Vy1)
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The other maximal simplices in X with facet F}; are flags
1 C...C‘/j_l CV}-’CV}'.H C...C V1

where, pointedly, the only change is at the j spot.

It is important to note that maximal simplices in the apartment A are
in bijection with choices of ordering of the lines A1,...,\,: to an ordering
Aiyy--- 5, Aj, We associate the maximal set of mutually incident subspaces

‘/}:Ail@---@Aij

(and the corresponding maximal flag). We use this in what follows.

First we prove that each simplicial complex A € A is a thin chamber
complex. Fix a frame F = {A1,...,\,} specifying A.

For each index j, one must ascertain the j-dimensional subspaces Vj’ within
the apartment A, so that

Vie1 CVj C Vi

and so that the subspace Vj’ is a direct sum of some of the lines A;. On one
hand, the requirement Vj’ C Vj41 implies that the direct sum expression for
Vj’ is constrained to merely omit one of the lines in the sum expressing Vj;.
On the other hand, the requirement Vj’ D V;_: implies that the direct sum
expression for Vj’ cannot omit the lines in the sum expressing V;_;. Thus, the
only choice remaining to describe V} is the choice of which of the two lines
Aij» Aijq, to exclude.

As noted just above, the maximal simplices in A are in bijection with
orderings of the lines in the frame. The previous paragraph shows that the
effect of moving across the j' face is to interchange Ai; and X;,,, in this
ordering. That is, the ordering corresponding to the other chamber with the
same j'" face is obtained by interchanging i; and ij41.

Thus, to prove that each apartment A is indeed a chamber complex, we
must find a gallery from the maximal simplex specified by the ordering of
lines

Alyeoe A
to a maximal simplex

Aigyenn s A
for an arbitrary permutation of the indices. We have noted that movement
across the j' facet interchanges the j* and (j + 1)*® lines in such an or-
dering. Since the permutation group on n things is generated by adjacent
transpositions (j, 7 + 1), there is a gallery connecting any two chambers in the
apartment. Note here that we only use the generation by adjacent transposi-
tions, and nothing more delicate.

Incidentally, above we saw above that there are only two choices (inside
an apartment A) for a j-dimensional subspace containing a given V;_; and
contained in a given Vj,, since the choice of this subspace is just a choice
between two lines. Thus, the apartment A is thin, as asserted.

in
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Now we address the thickness of the whole complex. Given (j—1)-dimensional
and (j+1)-dimensional subspaces V;_1, Vj41 in V, the choice of a j-dimensional
subspace Vj’ between them unconstrained by restriction to an apartment is
equivalent to choice of a line in the quotient

Vi1 /Vie1 = k2

where k is the underlying field. If k is infinite then there certainly are
infinitely-many distinct lines in this space. If k£ has finite cardinality ¢, then
there are

(" —1)/(g—-1)=q+1>2+1=3
distinct lines. Thus, the whole flag complex is thick.

Now we show that any two maximal simplices in X lie inside one of the
subcomplexes A € A. This, together with the fact (already proven) that
the subcomplexes A € A are chamber complexes, will also prove that the
whole complex X is a chamber complex (shown to be thick in the previous
paragraph). apartment. That is, given two maximal flags

Vic...cV,1

vic...cV,_,
we must find a frame F = {A1,...,\,} so that all the V; and all the V' are

(2
sums of the )\;. To this end we reprove a quantitative version of a Jordan-

Holder -type theorem:
We view the two flags as giving composition series for V. Then for each i,
we have a filtration of V;/V;_, given by the Vj’:
VinV))+ Vi c VinV)+ Vi c VinVy)+ Vi
Vic1 Vic1 o Vic1
For all indices 7, j we have
Vi (VinVy) +Vict ong
7 g 7 01)0
Viea Vic1
onto (V; N Vyl) + Vvifl ‘/l n V;',
— A
Vi (i) S W nv) + (Vi V)
The space V;/V;_1 is one-dimensional, so for given i there is exactly one
index j for which the quotient
(VinV)) + Vi s
Vic1
is one-dimensional. With this 7, we claim that

ViN V), CVicy

If not, then
Vi=Vio + (VinV/_,)
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since the dimension of V; is just one greater than that of V;_;. But by its
definition, j is the smallest among indices £ so that

Vi=Vioi+(VinVy)

Thus, the claim is proven. Thus, given i, there is exactly one index j for
which
vinv}
VianVi)+(VinVi_)

is one-dimensional. The latter expression is symmetrical in ¢ and j, so there
is a permutation 7 so that this expression is one-dimensional only if j = 7 (%),
otherwise is 0.

By symmetry, with 4, j related by the permutation 7, we have isomorphisms

Vi vinvj
Vie © (Vi + (VinV_))nVv) —
‘/i rxlv'jl V'jl

S rwinv) TV,

i

Given the previous, choose a line A; lying in V; N Vj’ which maps onto the
one-dimensional quotients. The collection of such lines provides the desired
frame specifying an apartment containing both chambers.

To complete the verification that we have a thick building, we must show
that, if a chamber C' and a simplex z both lie in two apartments A, B, then
there is a chamber-complex isomorphism f : B — A fixing both z and C
pointwise. We will in fact give the map by giving a bijection between the
lines in the respective frames: this surely would give a face-relation-preserving
bijection between the simplices. And we will prove, instead, the apparently
stronger assertion that, given two apartments A, B containing a chamber C,
there is an isomorphism f : B — A fixing A N B pointwise.

Let F = {\1,... ,A\n} and G = {p1, ..., un} be the frames specifying the
apartments A, B, respectively. Without loss of generality, we can renumber
the lines in both of these so that the chamber C corresponds to the orderings

(A, ) and (p, .-, )
That is, the i-dimensional subspace occurring as a vertex of C' is
MF .=+
Consider the map
f:B—> A
given on vertices by
i+ oo+ N, =+,

for any m distinct indices i1 < ... < i,,. Anticipating that the Uniqueness
Lemma would imply that there is at most one such map, this must be it.
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To show that f is the identity on A N B it suffices to show that it is the
identity on all O-simplices in the intersection. If a 0-simplex z lies in AN B
then z is a subspace of V' which can be written as a sum of some of the A;
and also as a sum of some of the p;. What we will show is that, if

Ny oot iy = g1+ g,
then
i =J1, ©2=J2, ---, Im = Jm
The later equalities then would assure that all of AN B would be fixed point-
wise by f.
Suppose that we have a subspace z (a 0-simplex) in AN B given as
:L’:/\il +"'+/\im = Wi, + ot Wy,
Suppose that it is not the case that i, = j, for all v: let v be the largest
(with 1 < v < m) so that i, # j,. Without loss of generality (by symmetry),
suppose that i, < j,. By hypothesis, we have
>‘1+/\2+"'+/\ju*2+>‘ju*1 =p1+ p2 oy, -2y, 1
Summing this subspace with x, we obtain

A1 +>‘2+"'+>‘ju*1+/\iu+1 +"'+>‘im
el e ol - T e o s N Pl ol L DU w1
But the left-hand side has dimension

Gp—D+(m—-v)y=m+j,—v—-1
while the right-hand side has dimension
Uv=—D+m-v+l)=m+j,—v

This is impossible, so it must have been that i, = j, for all v. This proves
the second axiom for a building.

Thus, the complex constructed by taking flags of subspaces is a thick build-
ing, with apartment system given via frames, which themselves are decompo-
sitions of the whole space as direct sums of lines.

9.3 Action of GL(n) on the spherical building

The previous section proves that we have a thick building, which is said
to be of type A,_1 since its apartments are Coxeter complexes (3.4) of that
type (2.1). Now we need but a little further effort to check that GL(V') acts
strongly transitively (5.2) and preserves types on this building.

First, although we know (4.4) that there exists an essentially unique la-
beling on this building, a tangible labeling is available and is more helpful.
By the uniqueness, our choice of description of the labeling is of no conse-
quence. So the following intuitively appealing labeling is perfectly fine for our
purposes.



Garrett: ‘9. Spherical Construction for GL(n)’ 121

To determine the type of a simplex in X, we need only determine the type
of its vertices. In the present example, we define the type of a vertex to be
the dimension of the corresponding subspace, thereby defining a typing on all
simplices. The action of GL(V) is certainly type-preserving.

Given two apartments specified by two frames

‘7::>\1,...,>\n

I/ /
Fr=A, 5\,

there is g € GL(V') so that gA; = A,. That is, GL(V') is transitive on apart-
ments. And it is immediate that the action of GL(V) sends apartments to
apartments.

The chambers within an apartment A specified by a frame

f:Al,...,An

are in bijection with choices of ordering of the lines A;. From the previous
paragraph, we observe that the stabilizer of an apartment is the group of linear
maps which stabilize the set of lines making up the frame. This certainly
includes linear maps to give arbitrary permutations of the set of lines in the
frame. That is, we see that the stabilizer of an apartment is transitive on the
chambers within it. This, together with the previous paragraph, shows that
GL(V) is indeed strongly transitive on the building, that is, is transitive on
the set of pairs (C, A) where C is a chamber contained in an apartment A.
This completes the verification that GL(V') acts strongly transitively upon
the spherical building constructed in the previous section, and preserves types.

9.4 The spherical BN-pair in GL(n)

We emphasize that the subgroups B (stabilizers of chambers) in the BN-
pairs arising from the action of GL(n) on the thick building above really are
minimal parabolic subgroups in the geometric algebra sense (7.1). Indeed, the
construction of this building of type A,—1 was guided exactly by the aim to
have this happen. Thus, facts about parabolic subgroups appear as corollaries
to discussion of buildings and BN-pairs.

Repeating: by the very definition of this building, stabilizers of simplices
in the building are stabilizers of flags of subspaces. Thus, in particular, the
minimal parabolic subgroups of GL(n) really are obtained as stabilizers of
chambers of this thick building.

Remarks: We could reasonably assert that the collection of all chambers
in the spherical building is in natural bijection with the collection of all min-
imal parabolic subgroups in GL(n). More broadly, the collection of simplices
in the building is in bijection with all parabolics in the group, and the face
relation is inclusion reversed. Or, we could say that the set of vertices was
the collection of maximal proper parabolic subgroups, and that a collection
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of such gave a simplex if and only if their intersection were again a parabolic
subgroup.

Remarks: If we were to comply with the terminology of algebraic groups,
then we would have to say that this B is the group of k-valued points of a
minimal k-parabolic. We will not worry about adherence to this orthodoxy.

Let e1,...,e, be the standard basis for the n-dimensional k-vectorspace
V =k
1 0
0 1
61 = 0 62 = 0
0 0

The standard frame consists of the collection of lines ke;. The standard
maximal flag is

Vi=ketCVo=ker®kes C...CVp1 =ke1 ®...D ke,

By definition, the B in the BN-pair is the stabilizer B in GL(n, k) of this
flag: writing the vectors as column vectors, we find that B consists of upper
triangular matrices

0 *
This is indeed a Borel subgroup, that is, a minimal parabolic subgroup.

As described in the previous section, the apartment A, corresponding to
the standard frame has simplices whose vertices are subspaces expressible as
sums of these one-dimensional subspaces. It is elementary that the stabilizer
N of this frame consists of monomial matrices, that is, matrices with just one
non-zero entry in each row and column. The

Then the subgroup T here is

T = BN N = upper-triangular monomial matrices =

= diagonal matrices

Then the Weyl group W (which we have shown indirectly to be a Coxeter
group) is
W = N/T ~ n x n permutation matrices ~ Sy,

where S), is the permutation group on n things.

It is important to note that, while the group W is not defined to be a
subgroup of G = GL(n,k), in this example it has a set of representatives
which do form a subgroup of G.

In this example, the Bruhat-Tits decomposition (5.1), (5.4) can be put
in more prosaic terms: every non-singular n X n matrix over a field can be
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written as a product
upper-triangular x permutation x upper-triangular

This is not so hard to prove by hand.. Indeed, one can prove directly the
further fact (following from Bruhat-Tits) that the permutation matrix which
enters is uniquely determined.

Remarks: The finer details of the BN-pair and Bruhat-Tits decomposi-
tion properties are not easy to see directly. The cell multiplication rules are
inexplicable without explicit accounting for the Coxeter system. And, for ex-
ample, the fact that any subgroup of GL(n, k) containing the upper triangular
matrices B is necessarily a (standard) parabolic is not clear.

More can be said. In any case, we have successfully recovered a refined
version of seemingly elementary facts about GL(n) as by-products of the
construction of the spherical building and the corresponding BN-pair.

9.5 Analogous treatment of SL(n)

Here we make just a few remarks to make clear that the strongly tran-
sitive label-preserving action of GL(n) on the thick building of type A,
constructed above, when restricted to an action of SL(n), is still strongly
transitive. Thus, the BN-pair obtained for GL(n) has an obvious counterpart
for SL(n).

Certainly SL(n) preserves the labels, since it is a subgroup of GL(n) and
GL(n) preserves labels. To prove that SL(n) is strongly transitive, it suffices
to show that

T-SL(n)=GL(n)

where T is the stabilizer in GL(n) of an apartment A and simultaneously
of a chamber C' within A. Indeed, quite generally, if G is a group acting
transitively on a set X', and if H is a subgroup of G, and if G = OH where
O is the isotropy group of a point in X, then H is also transitive on the set.
In the present situation, we can easily arrange choice of A and C so that T is
the subgroup of all diagonal matrices in GL(n). But of course every element
g of GL(n) can be written as

1 1

det g detg™!

This expresses ¢ as a product of an element of T' and an element of SL(n), as
desired.
In fact, from this discussion we see that for any group G with

SL(n) C G € GL(n)
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we can obtain a corresponding BN-pair and all that goes with it. Of course,
for smaller groups inside SL(n) we cannot expect these properties to remain.

9.6 The symmetric group as Coxeter group

Incidental to all this is that we have given a somewhat circuitous proof of
the fact that symmetric groups S,, are Coxeter groups, generated by adjacent
transpositions

Qj = (.77.7 + 1)
It is clear that the 3-cycle ajaj41 obtained has order 3, and that a;0; = a0
if |i — j| # 1. This is the Coxeter system of type A,,_;.

But without invoking all the result above it is not entirely clear that there
are no other relations. Our discussion of GL(n) gives an indirect proof of this.

We recall the basic idea of the proof that this is a Coxeter system: we
constructed a thick building, whose apartments are (from general results)
Coxeter complexes. And, in verifying the building axioms, via our identifi-
cation of chambers with orderings of {1,... ,n}, we noted reflection through
the it" facet has the effect of interchanging the i*" and (i 4+ 1)*® items in the
ordering. Thus, by these identification, the Coxeter system (W, S) so obtained
really does give W = S, and S the set of adjacent transpositions.

So we can apply the general theorems about Coxeter groups to the sym-
metric group. Some of these conclusions are easy to reach without this general
machinery, but many are not so trivial. Since such results are not needed in
the sequel, we leave this investigation to the interested reader.

In particular, it is of some interest to verify that

1
Wy =

1

is the longest element in this Coxeter group. This is best proven by identifying
the roots, and examining the action of permutation matrices upon them.
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10. Spherical Construction
for Isometry Groups

Construction of spherical buildings for isometry groups
Verification of the building axioms

The action of the isometry group

The spherical BN-pair in isometry groups

Analogues for similitude groups and special groups

Now we carry out the natural construction of a thick building for all isom-
etry groups (7.2) with the exception of certain orthogonal groups O(n,n),
which require a different treatment given in the next section. All other types
of orthogonal groups, symplectic groups, and unitary groups are covered by
the present discussion. The present construction does give a ‘building’ even
for O(n,n), but it fails to be thick, which complicates application of general
results.

Most of the discussion will strongly resemble that for GL(n). There are
substantial simplifications possible if one specializes to the case of symplectic
groups, that is, non-degenerate alternating forms. One might execute such
simplifications an an illuminating exercise.

As in the previous discussion of GL(V'), we will construct buildings whose
apartments are finite complexes. Thus, these complexes and the building as
a whole are spherical. And recall that we have shown that in a spherical
building there is a unique (hence, maximal) apartment system.

10.1 Construction of spherical buildings for isom-
etry groups

Here we construct (spherical) buildings of type C), (2.1).

Fix a field k. Let D be a division ring with involution ¢, and suppose
that k is the collection of elements in the center of D which are fixed by the
involution.

Let V' be a finite-dimensional D-vectorspace with a non-degenerate form
(,) with the properties

(au,v + ') = (u, yva + (u,v")a’

(u,v) = e(v,u)”

for a fixed € € {£1}, for all u,v € V, and for all « € D. Let G be the isometry
group of V with the form (,):

G={g9€ GLp(V): (gu, gv) = (u,v) Yu,v}



126 Garrett: ‘10. Spherical Construction for Isometry Groups’

As was done with GL(n) earlier (2.3), now for an isometry group we de-
scribe an incidence geometry from which we obtain a flag complex which is a
thick building, whose associated BN-pair has parabolics which really are the
parabolic subgroups of G.

We suppose that the largest totally isotropic subspace of V" has D-dimension
n. By Witt’s theorem (7.3), from geometric algebra, this is the common di-
mension of all maximal totally isotropic subspaces.

Let = be the collection of non-zero totally isotropic D-subspaces of V.
Recall that a subspace V' of V' is said to be totally isotropic if {u,v) = 0 for
all u,v € V'. We define an incidence relation ~ on = by writing x ~ y if
eitherx Cy or y C .

The associated flag complex X is the simplicial complex with vertex set =
and simplices which are mutually incident subsets of =. That is, the simplices
of X are subsets o of = so that for all z,y € o0 we have z ~ y. The maximal
simplices in X are the maximal flags

Vic...CcV,

of totally isotropic subspaces V; of V', where the dimension of V; is 1.

A frame F in the present setting is an unordered 2n-tuple of lines (one-
dimensional D-subspaces) in V', which admit grouping into unordered pairs
A whose sums H; = A\f' + \;* are hyperbolic planes H; (in the sense
of geometric algebra) in V', and so that

H +...+H,

is an orthogonal direct sum.

We consider the set A (the anticipated apartment system) of subcomplexes
A of X indexed by frames F in the following manner: the associated subcom-
plex Ax (anticipated to be an apartment) consists of all simplices o with all
vertices being totally isotropic subspaces £ expressible as

E=ALD... DA

for some unordered d-tuple {i1,...,iq}, where for each i the ¢; is 1.

10.2 Verification of the building axioms
Keep the notation of the previous section.
The facets F; of a maximal simplex

C=WVcC...CV)

are in bijection with indices 1 < i < n, by omitting the i*" subspace in the
flag. The other maximal simplices in X with facet F; correspond to flags

V1C...CVi_1CVi'CVi+1C...CVn

where the only allowed change is at the " spot.
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We note that maximal simplices in an apartment A corresponding to the
frame F = {)\iﬂ} as above are in bijection with choices of orderings of the
hyperbolic planes H; = )\;H —|—/\i_1 and (further) choice of one of the two distin-
guished lines from each hyperbolic plane, as follows: to a choice Aj',... A"
we associate the totally isotropic subspaces

‘/}:Ail@---@Aij

and the flag
ic...cV,

This bijection is useful in what follows.

First, we prove that each simplicial complex A € A really is a thin chamber
complex. Fix a frame F with H; = )\;rl ® /\;1 as above, specifying A. We
consider the maximal isotropic flag

wc...cVv,
with
Va=A'DA2 D ...d A\
with fixed choice of superscripts ¢; € {£1}.

For each index i < n, we must ascertain the possibilities for an i-dimensional

subspace V/ in A so that
Vit CV{ CVip
and so that V; is a direct sum of the lines A; (in order for it to belong in the
apartment A). (The case i = n requires separate treatment).

On one hand, the requirement V; C V;y; implies that the direct sum
expression for V; is obtained by omitting one of the lines from the direct sum
expression for V;41. On the other hand, the requirement V;_; C V; implies
that the expression for V;' cannot omit any of the lines expressing V;_1. Thus,

the only choice involved in specifying V; is the choice of whether to omit )\51
€i41

or A\;'"! from the expression
Ji+1

Vitr = XL @ .. @A o\t
in the case that i < n.

If i = n, then we are concerned with choices for V!, and the constraints are
that V,,_1 C V,(and that V,! be totally isotropic. In addition to the original
Vi, the only other choice inside the subcomplex A would be to replace AS» by
the other line inside H,, that is, by A, .

Keeping in mind the identification of maximal simplices in A with orderings
of the hyperbolic planes together with choice of line within each plane, we can
paraphrase the observations of the last paragraph as asserting that the effect
of moving across the i*® facet is to interchange the i*" and (i +1)*" hyperbolic
planes if i < n, and exchanges the lines in the n*" plane if i = n. That is,
more symbolically, moving across the i*! facet exchanges H;, and Hj, 4 if
t < n, and exchanges A$? and A" in the case i = n.
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We need to describe the signed permutation group on n things in order
to finish the proof that the apartments are thin chamber complexes. Inciden-
tally, this will identify in more elementary terms the Coxeter group obtained
here. Let S,, be the permutation group on n things, and let H be the direct
sum of n copies of the group {£1}. Let 7 € S,, act on H by

(617 s 76n)7r = (67I'(1)7 s 7€7T(n))
Then we can form the semi-direct product
S* =H x <8,

This is the signed permutation group on n things.

To prove that the subcomplex A is a chamber complex, by definition we
must find a gallery connecting any two maximal simplices. By the previous
discussion, this amounts to showing that the adjacent transpositions (i i+ 1)
together with

(+1,+1,... ,+41,-1) e H

(the change-sign just at the n'® place) generate the signed permutation group
on n things. This is an elementary exercise.

Incidental to the above we did observe that there were always exactly two
choices for maximal simplices (inside A) with a given facet. Thus, indeed,
these apartments are thin chamber complexes.

Now we consider the issue of the thickness of the whole complex. This
argument would fail for an orthogonal group O(n,n).

In the context of the discussion above, for ¢ < n, given totally isotropic
subspaces V;_; C V;41 we must show that there are at least 3 possibilities for
Vi with V;_1 C V; C Vi41. In the case i = n, the issue is to show that for
given totally isotropic V,,_1 there are at least 3 choices for totally isotropic V/,
so that V,,_1 C V. For i < n, the choice is equivalent to the choice of a line
in the two-dimensional D-vectorspace V;11/V;_1, and for i = n the choice is
that of an isotropic line in the two-dimensional vectorspace V.- | /V,,_1 with
its natural non-degenerate form.

If the ring D is infinite, we certainly have 3 or more lines in a two-
dimensional vectorspace. If D is finite with ¢ elements, then the number
of lines in a two-dimensional vectorspace is

@~ D/(g-1)=g+1>2

Now we come to the delicate issue of the number of isotropic lines in
VL /Va_i. By elementary geometric algebra, this space can be written as
H @ @ where H is a hyperbolic plane and @ is anisotropic. At this point we
must consider various possibilities separately.

First, and most simply, if we have an alternating space, that is, if D = k, o
is trivial, and € = —1, then there are no non-trivial anisotropic spaces, and in
fact any one-dimensional subspace is isotropic (as long as the characteristic is
not 2). Thus, to check thickness in this case we suppose that the field & has ¢
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elements, and count the number of lines in a two-dimensional k-vectorspace:
it is

(@ -D/(g-)=q+122+1=3
so we have thickness in this case.

Second, we consider symmetric quadratic forms, so D = k, o is trivial, and
€ = +1. The isometry group is an orthogonal group. It is crucial that the
anisotropic subspace ) be non-trivial. Let z,y be in the hyperbolic plane so
that each of z,y is isotropic and (z,y) = 1. Fix a non-zero vector v, € Q.
In addition to the two obvious isotropic lines kz and ky, there is the line
generated by the isotropic vector

2u, + (Vo, Vo) (= — y)

Thus, pointedly excepting the case that the quadratic space is a sum of hy-
perbolic planes, we have the thickness of the building.

It remains to consider the case that D is strictly larger than k. The worst-
case scenario is that of a hyperbolic plane (over D). Let x,y be isotropic
vectors so that (z,y) = 1. If ¢ = —1 then the k-subspace kz + ky is a
non-degenerate alternating space, so contains at least 3 distinct anisotropic
k-one-dimensional subspaces: z,y and something of the form az + by with
neither a nor b zero. It is easy to see that no two of these three vectors are
D-multiples of each other either, so we have the desired thickness in case
e=—1.

Thus, we are left with proving the thickness in the case that D is strictly
larger than k, and ¢ = +1. Again let x,y be a hyperbolic pair as in the
previous paragraph. We wish to find at least one non-zero a € D so that
T + ay is isotropic. Written out, this condition is

0= (v +ay,o +ay) = (v,a9) + (ay,2) = a” +a

In the case that D is commutative, since the characteristic is not 2 there is
some a € D so that a” = —a. If D is non-commutative and since (af)? =
87’ there must be a € D so that a” # a. Then a — a“ is non-zero and has
the desired property. This gives the thickness in this case.

This proves the thickness (although we have not yet quite proven that the
whole complex is a chamber complex. See the next paragraph).

Now we prove that any two maximal simplices in the whole complex X lie
inside one of the subcomplexes A € A. This, together with the fact (proven
above) that each A € A is a chamber complex, will prove that the whole
complex X is a chamber complex. The previous discussion would prove that
it is thick. So, given two maximal isotropic flags

v,c...cU,

Vic...CcV,

we must find a frame F so that both flags occur in the subcomplex A = Ax €
A designated by F.
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In contrast to GL(n), where we used a Jordan-Holder theorem, here we
use the form (,) and induction on the ‘index’ n.

Thus, we consider first the ‘index 1 case’, that is, where V = H & () where
@ is anisotropic and H is a hyperbolic plane. Given two isotropic D-one-
dimensional subspaces V; and U;, we wish to find two isotropic lines AT and
A~ so that AT + A~ is a hyperbolic plane and V; = A" and U; is either A*
or A=. If V} + U; is one-dimensional, then V; = U; and we are done. If
V1 + U; is two-dimensional, then it cannot be totally isotropic, by invoking
Witt’s theorem, since a maximal totally isotropic subspace here is just one-
dimensional. Thus, by default, because the index is 1, it must be that V; +U;
is a hyperbolic plane, and we take AT = V; and A\~ = Uj.

Now we do the induction step. First, we note that we have chains of
subspaces

UyC...cU,CUFrcU-,c...cUf

Vic...cVy,cViicVi, c...cvit

If Uy C V,, then V,, C Ujt, and we can consider the space Vi-/V; with
its natural non-degenerate form, and do induction on the index n, to prove
that there is a subcomplex A € A containing both flags. In particular, let
V! = (Vi+Uy)/Uy and U} = U; /Uy, giving flags of totally isotropic subspaces.
(The temporary indexing here does not match dimension). Suppose we have
found a frame F in the quotient, given by the images of isotropic lines )\iﬂ
with 2 < i < n, so that all the quotients U] and V; are sums of (the images
of) these lines. Then take \[' = U; and for A\;* take any line in V' which
is orthogonal to all the )\i+1 for 4 > 2, and so that )\1+1 + )\1_1 is a hyperbolic
plane. The list of lines Af! with 1 < i < n is the desired frame for the
apartment containing the two given chambers.

If Uy ¢ V,, then let i, be the smallest index such that there is a line A in
Vi, so that

Vi+Adx=Vid\N

is a hyperbolic plane. Then (V; @ \)* is a non-degenerate space of smaller
dimension, and again we can do induction on dimension to prove that there
is a subcomplex A € A containing both flags. In more detail: let V/ = V;_;
for 2 <i <i, and V! = V; N Ui for i > i,, with U} = U; N A+ for i > 2.
(So the temporary indexing here does not match dimension). These are flags
of totally isotropic subspaces. Suppose we have found (for i > 2) (suitably
orthogonal) hyperbolic planes

)\;‘,—1 @ Az—l

with 2 < i < n so that all the U} and V/ are sums of the \j'. Then take
At =U; and A\{' = \. Even more simply than in the case treated in the
previous paragraph, we have the desired common apartment as designated by
this collection of lines.



Garrett: ‘10. Spherical Construction for Isometry Groups’ 131

The last thing to be done, to prove that X is a thick building, is to show
that, if a chamber C' and a simplex z both lie in two apartments A, B € A
then there is a chamber-complex isomorphism f : B — A fixing both x and
C pointwise. (Recall that the latter requirement is that f should fix z and
C and any face of either of them). As in the case of GL(n), we will give
f by giving a bijection between the lines in the frames specifying the two
apartments. This certainly will give a face-relation preserving bijection. And
it is simpler to prove the apparently stronger assertion that, given a chamber
C lying in two apartments A, B € A, there is an isomorphism f : B — A
fixing A N B pointwise.

Let F be the frame given by isotropic lines )\iﬂ forming (suitably or-
thogonal) hyperbolic planes H; = )\i+1 DA, ! and let G be the frame given
by isotropic lines pi! forming (suitably orthogonal) hyperbolic planes J; =
,ui+1 D u; 1. By relabeling and renumbering if necessary, we may suppose that
the common chamber C' corresponds to the choices of orderings

(Hy,...,Hy)
(Jiyoon s Jdn)

and lines A} and ;! for all indices i. Then the i-dimensional totally isotropic
subspace occurring as vertex of C' is

M+ AT =t !

We attempt to define a map

f:B—> A
on totally isotropic subspaces (vertices) by
L A e E S 7 i
for any distinct indices 41,...,%y. Since, by invocation of the Uniqueness
Lemma, there is at most one such map, this surely ought to be it.

But we must show that f defined in such manner really is the identity on
AN B. To accomplish this, it suffices to show that it is the identity on all
0-simplices in the intersection. If a 0-simplex z is in the intersection then x
is a totally isotropic subspace of V' which can be written as a sum of some of

the A} and also can be written as a sum of some of the p;'. What we want
to show is that, if

c=XM X =]

then in fact iy = j; for all £. This would certainly assure that A N B is
fixed pointwise by f. This argument is essentially identical to the analogous
argument for GL(n), but we can repeat it here for convenience.

Suppose that z is expressed as above but that it is not the case that i, = j,
for all v: let v be the largest (with 1 < v < m) so that i, # j,. Without loss
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of generality (by symmetry), suppose that i, < j,. By hypothesis, making
use of the fact that we have everything renumbered conveniently, we have

1 1 1 1 1 1 1 1
MU+t + A+ = e )

Summing this subspace with x, we obtain

1 1 1 1 1
D R Vi D

()
e e T T O T I 0 (rit S T2 A PO T
But the left-hand side has dimension
=D+ m—-v)=m+j,—v-1
while the right-hand side has dimension
Gy =D+ (m-—v+1)=m+j, —v

This is impossible, so it must have been that i, = j, for all v. This proves
the second axiom for a building.

Thus, we have proven that the complex constructed by taking flags of
totally isotropic subspaces of a non-degenerate space is indeed a thick building,
with an apartment system provided by frames consisting of unordered 2n-
tuples of lines which can be grouped into pairs which form hyperbolic planes
(whose sum is orthogonal).

10.3 The action of the isometry group

In the previous section we constructed a thick building. Incidental to the
proof that the apartments are thin chamber complexes, we saw that the Cox-
eter system is (W, S) with S = {s1,...,s,}, where s; and s; commute unless
li — 7] =1, and m(s;,si41) =3 for i <n — 1 and m(sp—1,s,) = 4. We also
saw a model of this W as signed permutation group. Again (2.1), this Coxeter
system is of said to be of type C),. Now we should check that G acts strongly
transitively, and preserves types (5.2).

Although we know (4.4) that there is an essentially unique labeling on this
building, a tangible labeling is available and is more helpful. This is almost
exactly as in the case of GL(n).

We define the type of a totally isotropic subspace to be its dimension,
and define the type of a flag of totally isotropic subspaces to be the list of
dimensions of the subspaces. From the definition of the incidence geometry,
it is clear that no two distinct vertices of a simplex have the same type. And
it is immediate that G preserves this notion of type.

First, we prove transitivity on apartments. Consider two apartments spec-
ified by frames

F={0N0 0 01
G={utut, ety
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with ATt 4+ /\i_1 (suitably orthogonal) hyperbolic planes, and likewise with
pit 4 ;! (suitably orthogonal) hyperbolic planes. Then there is an isometry
g € G so that

S0 = "

for all choices of sign and for all indices i. Indeed, one merely chooses z; €
Ay € A\t and then z; € pft w; € p; ! so that

(Tiyyi) = (2i, wi)

By Witt’s theorem the isometry g given by gz; = z; and gy; = w; extends
to an isometry of the whole space, so extends to an element of the isometry
group. Thus, we have the desired transitivity on apartments.

As for GL(n), the fact that images of apartments are again apartments is
immediate.

Next, we prove that the stabilizer of a given apartment acts transitively
on the chambers within that apartment. The chambers within the apartment
A specified by the flag F above are in bijection with orderings of the hy-
perbolic planes together with a choice of one of the distinguished lines from
each plane. The stabilizer of A certainly includes isometries to yield arbitrary
permutations of the hyperbolic planes, and also certainly includes isometries
switching the two lines within a given hyperbolic plane. Thus, the collection
of configurations corresponding to choice of chamber within a given apartment
is acted-upon transitively by the stabilizer of the apartment.

This proves the strong transitivity of G' on the building made from flags of
totally isotropic subspaces. As remarked just above, the preservation of types
is trivial once we realize that dimension of subspace will do.

10.4 The spherical BN-pair in isometry groups

By design, the subgroups B in the BN-pairs arising from the action of G on
the thick building of type C,, above really are minimal parabolic subgroups in
the geometric algebra sense of (7.4). Thus, once again, facts about parabolic
subgroups appear as corollaries to results about buildings and BN-pairs.

We wish to look at some aspects of the situation in coordinates. We con-
sider a D-vectorspace V' with form (,) of index n, in the sense that a maximal
totally isotropic subspace has D-dimension n. Thus, we can write

V=& H®...0H)

where there are n summands of hyperbolic planes H, and where @ is anisotropic
of dimension d.
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The standard basis for D27t ig

1 0
0 1
61 = 0 62 = 0
0 0

As described earlier in our discussion of classical groups, the standard form
(,) on V = D?"*+4 with a given anisotropic part @ is given by

(u,v) =v" Jyou

where

The standard frame F is the collection of lines
Dey, Deiygin, Des, Deayain, Des, Dezqin,--. ,Den, Denyain

where we have listed them in the pairs whose sums are hyperbolic planes
(whose sum is orthogonal).
The standard maximal isotropic flag is

Vi=Dey CVo=De;+Des C...CV,=De; +...+ De,

The B in the BN-pair is the stabilizer of this flag.

According to the general prescription, we take N to be the stabilizer in G
of the set of lines in the standard frame F. Thus, in a similar fashion as in the
case of GL(n), N consists of monomial matrices in G. The subgroup T here
consists of monomial matrices lying in the standard minimal parabolic sub-
group. As discussed earlier in our treatment of classical groups and geometric
algebra, it is not hard to check that 7" must be the standard Levi component
(7.4) of the minimal parabolic, consisting of matrices of the form

t1
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By comparison to the case of GL(n), it is not so easy in the present case to
identify the Weyl group N'/T in concrete terms. But, as also happened in the
case of GL(n), in the proof that the building is indeed a building we were led
to consider a model (W, S) of the Weyl group W and generators S wherein W
appeared overtly as a signed permutation group. This gives a good indication
of what to expect for matrix representatives for W = A//T.

For example, the subgroup of W identifiable with plain permutations (with
no sign changes) has representatives of the form

m
14 €eqG

™

where 7 is an n-by-n permutation matrix. Note that the inverse of a permu-
tation matrix is its transpose, so the indicated matrices really do lie inside
the isometry group.

The change-sign at the i*" place has a representative

1y

ln—i

where 1, denotes an m x m identity matrix, and the off-diagonal —1, +1 occur
at the (4,7 + d +n)™" and (i + d + n, i)™ places, respectively.

In a fashion similar to what happened for GL(n), here we used just a
little information about the signed permutation group in the proof that our
building really was a building. In return, our general results prove (again
circuitously) that the signed permutation group is a Coxeter group, where we
use adjacent transpositions and the change-sign on the n'" thing as special
set S of generators.

And one may prove, for example, that the Iongest elements in this Coxeter
group has representative .J,, g above.

10.5 Analogues for similitude groups

As in (7.2), the similitude group G of the form (,) is the slightly larger
group
G ={ge€GLp(V): (gu,gv) = v(g) (u,)v}
for some v(g) € k*. We wish to make the observation that this larger group

also acts strongly transitively on the thick building of type C), for G, and also
is label-preserving.
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The strong transitivity is immediate from that of G. The preservation of
type is likewise clear, if the labeling of totally isotropic subspace by dimension
is used. Then it is clear that the similitude group preserves the labeling.

While G is slightly larger, and likewise the parabolic subgroups are larger,
and likewise the group A attached to a choice of frame, the Weyl group is
naturally identifiable with that of G.

Therefore, for any group intermediate between the isometry and similitude
groups of the form (,) the previous construction gives a BN-pair, etc. Again,
this all works for any isometry group except the particular orthogonal group
O(n,n), which requires special treatment.

Last, we may consider the slightly smaller special isometry groups
groups obtained from isometry groups by further imposing the condition that
the determinant be 1. The issue is whether we still have strong transitivity,
that is, transitivity on pairs (C, A) where C' is a chamber contained in an
apartment A. There are several cases in which this is easy to check: For
symplectic groups the determinant condition is fulfilled automatically, so the
symplectic group itself is alread ‘special’. For orthogonal groups in odd di-
mensions the scalar —1 matrix has determinant —1 yet has trivial action on
flags, so from what we’ve already proven we obtain the strong transitivity.
More generally, in a space V' with a form (,), if V is of odd dimension the
same remark applies, assuring the strong transitivity.

But if the D-dimension is even more careful treatment of individual cases
is necessary, depending upon the nature of the underlying field.
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11. Spherical Oriflamme Complex

The oriflamme construction for SO(n,n)
Verificaition of the building axioms
The action of SO(n,n)

The spherical BN-pair in SO(n,n)
Analogues for GO(n,n)

Now we carry out the oriflamme construction of a thick building for spe-
cial orthogonal groups SO(n,n), that is, where in addition to an isometry
condition we require determinant one. The more obvious construction dis-
cussed above, using flags of isotropic subspaces, which works well for all other
isometry groups must be altered in a rather unexpected way to obtain a thick
building.

In the context of the non-obviousness of the ‘correct’ construction here,
use of the term ‘oriflamme’ can be explained by a combination of the word’s
etymology and medieval heraldry. The word comes from the medieval Latin
aurea flamma, meaning ‘golden flame’. In medieval times the abbey of Saint
Denis near Paris used such a golden flame as its banner. Only by coincidence,
the golden flame was branched. By the time of the Hundred Years’ War it had
come to be the battle standard of the King of France, and its meaning was
taken to be an encouragement to be courageous and not give up. Ironically,
the Coxeter diagram and the ‘shape’ of the flags retain the branchedness but
are no longer golden nor are they flames.

Still, after having dealt with this unexpected and piquant element, the
discussion will strongly resemble that for GL(n) and that for other isometry
groups.

11.1 The oriflamme construction for SO(n,n)

Here we construct the (spherical) building of type D,,. Instead of literal
flags of subspaces as used earlier, we must make a peculiar adjustment, using
configurations (of subspaces) called oriflammes, defined below. At the end of
this section we note the Coxeter data obtained incidentally.

Fix afield k. Let V be a 2n-dimensional k-vectorspace with a non-degenerate
symmetric k-bilinear form (,). The crucial hypothesis is that V is an orthog-
onal sum of n hyperbolic planes. This is equivalent to the assumption that
every maximal totally isotropic subspace of V' has dimension n, exactly half
the k-dimension 2n of V itself (7.2), (7.3).

Let G be the special isometry group of V' with the form (,):

G={g€GLV) : (gu,gv) = (u,v) Yu,v and det g =1}
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We may often write SO(n,n) for G as an emphatic reminder that we consider
only this particular case.

The simplicial complex we will describe is a peculiar variant of the com-
plexes considered earlier. Let = be the collection of non-zero totally isotropic
k-subspaces of V' of dimension not n—1. We define an incidence relation ~ on
= by writing x ~ y if either z C y or y C x or if both x,y are n-dimensional
and x Ny is (n — 1)-dimensional.

The associated flag complex X is the simplicial complex with vertex set =
and simplices which are mutually incident subsets of =. That is, the simplices
of X are subsets o of = so that for all z,y € 0 we have z ~ y. The maximal
simplices in X are flags of the form

Vic...CV,_oC Vn717Vn,2

of totally isotropic subspaces V; of V, where the dimension of V; is i, the
dimension of both V,, 1,V,, 2 is n, and where, pointedly, V,,_2 C V5,1 N V2
and the latter intersection has dimension n — 1.

At the same time, we will continue to have need of the simplicial complex
X of the sort used earlier. That is, the vertices in X are non-trivial totally
isotropic subspaces, and the incidence relation is x ~ y if and only if z C y or
yCuwx.

Remarks: For quadratic spaces of the special sort considered here, there
is a natural two-to-one map

® : chambers in X — maximal simplices in X

That is, ¢ maps maximal flags of totally isotropic subspaces (as used for all
other isometry groups) to the set of oriflammes. Indeed, let

Vic...CcV,

be a maximal totally isotropic flag of subspaces. As noted earlier in assessing
the failure of the earlier approach for these quadratic spaces, there are just
two isotropic lines in the non-degenerate two-dimensional quadratic space @) =
VL /Va—1. (This is true of any non-degenerate two-dimensional quadratic
space). Let A; be the isotropic line in @ so that V,,/V,,—1 = A1, and let A2 be
the other isotropic line. For ¢ = 1,2 put

‘/(n,i) =Vo 19N
Then
icWeC...CVpa C V(n,l) and V(n,2)
is the associated oriflamme.

A frame F in the present setting is an unordered 2n-tuple of lines (one-
dimensional D-subspaces) in V', which admit grouping into unordered pairs
/\j'l, )\i_l whose sums H; = )\;H + )\i_l are hyperbolic planes H; (in the sense
of geometric algebra) in V, so that
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is an orthogonal direct sum of all these hyperbolic planes.

We consider the set A (the anticipated apartment system) of subcomplexes
A of X indexed by frames F in the following manner: the associated subcom-
plex Ax (anticipated to be an apartment) consists of all simplices o with all
vertices being totally isotropic subspaces £ (of dimension not n—1) expressible
as

=)l @...0\!
for some unordered d-tuple {i1, ... ,i4}, where for each i the ¢; is +1.

Remarks: Note that these frames are the same as those used in treating
the complex X in the case of all other isometry groups. The two-to-one map
® on maximal simplices preserves the subcomplexes specified by frames, as
follows. Let A be the subcomplex of X consisting of simplices all of whose
vertices are sums of the lines in F. Then for any chamber C' in Az, it is
immediate that ®(C lies in the apartment Az in X.

11.2 Verification of the building axioms
Keep all the notation of the previous section.
The facets F; of a maximal simplex

C=(ViC...CVha CVp1,Vnp2)

are in bijection with the subspaces in the flag, by choice of which to omit.
In analogy with prior discussions, we will refer to the it" facet, where for
1 < i < n — 2 this specifies omission of the i*" subspace, as usual, and for
i = (n,j) with j € {1,2} this means omission of V,, ;. Thus, the index i
assumes values in the set

{1,2,3,...,n=3,n—2,(n,1),(n,2)}

The other maximal simplices in X with facet F; correspond to flags where
only allowed change is at the i*" spot.

We note that maximal simplices in an apartment A corresponding to the
frame F = {\'} as above are in bijection with choices of orderings of the
hyperbolic planes H; = /\i+1 + /\;1 and (further) choice of one of the two
distinguished lines from the first n — 1 of these hyperbolic planes, as follows:
to a choice )\;1 - ,)\ZL we associate the totally isotropic subspaces

‘/}:Ail@---@Aij
for1 <j<n-—2and
Vol =A@ @A DA

Vaz =A@ . @A @A
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Note that the only difference between V;, 1 and V,, » is in the choice of )\iinl as
last summand. Then take the flag (in the present sense)

C = (V1 Cc...CcV,.»C Vn’l,vnyz)

This bijection is useful in what follows.

First, we prove that each simplicial complex A € A really is a thin chamber
complex. Fix a frame F and flag C as just above. For each index ¢, we must
ascertain the possibilities for choices of replacements V' for the subspace V;
in the flag, where the index i is among 1,2, ... ,n—2,(n, 1), (n,2). Of course,
besides the requisite inclusion relations we require that V/ is a direct sum of
the lines \; (in order for it to belong in the apartment A). Obviously the cases
i = (n,1),(n,2) require a little special treatment, as does the case i = n — 2
since it interacts with the (n, 1), (n, 2).

Take ¢ <n — 2. On one hand, the requirement V; C V;;; implies that the
direct sum expression for V' is obtained by omitting one of the lines from the
direct sum expression for V1. On the other hand, the requirement V;_y C V}
implies that the expression for V; cannot omit any of the lines expressing V;_1 .
Thus, the only choice involved in specifying V; is the choice of whether to omit
Al or /\;f“ from the expression

i i1

Vit = A5 @ @ A5 @ AT

in the case that i < n — 2.
If ¢ = n — 2, then the constraint is that

Vs C VT:,Q C V(n, 1) n Vn72

In addition to the original V,,_5, the only other choice inside the subcomplex
A would be to replace X" , by A7

If i = (n,1), then the constraints are that V ; be totally isotropic, that
Vs C VAl NV,,2 and that the intersection VAI N Vp,2 have dimension n — 1.
In addition to the original V}, 1, the only other choice inside the subcomplex

A would be
Va1 =Vaa @ N DN

A moment’s reflection reveals that, in terms of our indexing, this effect is
achieved by simultaneously replacing A;"7' by A, and replacing )\ff" by
/\fi"l’l. A similar analysis applies to replacement of V;, 2, of course.

Let s1,...,8p—2, 8n,1, 5n,2 be the changes in indexing arising from ‘motion’
across the respective facets, as just noted. Elementary computations show
that s;s;41 is of order 3 for ¢ < n — 2, that s,,_2sy,,; is of order 3 for j =1, 2,
and that otherwise these changes commute.

As noted above, choice of chamber in the apartment specified by the frame
F corresponds to a choice of an ordering of the n hyperbolic planes H; =
M4+ A7Y, and a further choice of one of the two lines from each of the
first n — 1 of these planes. For i < n — 2, the motion across the i*" facet
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interchanges the i** and (i + 1)** hyperbolic plane. This is no different from
earlier computations.

For the last two indices one must be attentive. In particular, one must not
attach significance to notation: in fact, choice of one of the last two indices
is equivalent to a choice of a line A§® in the last hyperbolic plane H,, in the
ordering. The motion across the corresponding facet interchanges the (n—1)th
and n'® planes H,,_; and H,,, and ‘chooses’ A, ® in Hy, as distinguished line.

To prove that the subcomplex A is a chamber complex, by definition we
must find a gallery connecting any two maximal simplices. By the previous
discussion, this amounts to showing that any choice of ordering of hyperbolic
planes and choice of line from among the first n — 1 can be obtained from
a given one by repeated application of the motion-across-facets changes de-
scribed above. This is an elementary exercise, comparable to verification that
the symmetric group is generated by adjacent transpositions for type A,.

Remarks: As in the earlier examples, we need only very crude informa-
tion about the group generated by the motions-across-facets in order to prove
the building axioms.

Note that, incidental to the above we did observe that there were always
exactly two choices for maximal simplices (inside A) with a given facet. Thus,
indeed, these apartments are thin chamber complexes.

Now we consider the issue of the thickness of the whole complex. It is to
maintain the thickness that the notion of flag is altered in the present context.

We must show that there are at least 3 possibilities for each subspace
occurring in these flags, when we drop the requirement that the subspace
occur in the subcomplex corresponding to a frame. For i < n — 2 we want
subspaces V' so that

Vie1 C V) CViga
This choice is a choice of lines in a two-dimensional vectorspace Viy1/Vi—1,
allowing us at least 3, as in earlier examples. Also for i = n —2 we want V,_,
with
Vs C Vé_Q C Vn71 N Vn72
so we are to choose a line in a two-dimensional space.

The novel issue here is understanding possibilities for replacements for V, ;.
Since this part of the discussion only considers subspaces of V,.- , which con-
tain V,,_;, we may as well look at V.- ,/V,_». Thus, it suffices to consider
the case that n = 2. To replace V}, 1 with V, » given, we must find another
two-dimensional totally isotropic subspace VAI which intersects V;, » in a one-
dimensional subspace. Thus, we choose a line X inside V,, » and then choose
an isotropic line g in A+ but not in V,, ». Since AL/ is a hyperbolic plane, the
choice of mu is just that of an isotropic line in a hyperbolic plane, with one
choice excluded, that of V,, o/A. But it is elementary that there are only two
isotropic lines in a hyperbolic plane (in a non-degenerate quadratic space).
So for each choice of A there is exactly one remaining choice of u. Thus, to
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count the choices altogether, we count the choices of A. That is, we count the
number of lines in a plane. As earlier, this is at least 3 no matter what the
field k£ may be.

This proves the thickness (although we have not yet quite proven that the
whole complex is a chamber complex. See the next paragraph).

Now we prove that any two maximal simplices in the whole complex X lie
inside one of the subcomplexes A € A. This, together with the fact (proven
above) that each A € A is a chamber complex, will prove that the whole
complex X is a chamber complex. The previous discussion would prove that
it is thick. So, given two maximal flags we must find a frame F so that both
flags occur in the subcomplex A = Ax € A specified by F.

At this point we can exercise a tiny bit of cleverness. Using the two-to-one
map from maximal flags of totally isotropic subspaces to oriflammes, we can
invoke part of the earlier argument for all other quadratic spaces.

That is, given two oriflammes C, D, choose maximal isotropic flags C, D
which map to C, D, respectively. It was proven earlier, in discussion of all
other isometry groups and their buildings, that there is a frame common F
for C, D. (This did not depend upon thickness of the whole complex). Thus,
F is a common frame for the two given oriflammes, as well. That is, we
have proven that for any two maximal simplices (oriflammes) there exists a
common apartment, as required by the building axioms.

The last thing to be done, to prove that X is a thick building, is to show
that, if a chamber C' and a simplex z both lie in two apartments A, B € A
then there is a chamber-complex isomorphism f : B — A fixing both z
and C pointwise. (Recall that the latter requirement is that f should fix
xz and C and any face of either of them). As in the case of GL(n) and
general isometry groups, we will give f by giving a bijection between the
lines in the frames specifying the two apartments. This certainly will give a
face-relation preserving bijection. And it is simpler to prove the apparently
stronger assertion that, given a chamber C lying in two apartments A, B € A,
there is an isomorphism f : B — A fixing A N B pointwise.

Let F be the frame given by isotropic lines )\iﬂ forming hyperbolic planes
H; = )\;rl @ /\;1, and let G be the frame given by isotropic lines uiﬂ forming
hyperbolic planes J; = uzrl @ ,u;l. We suppose that the apartments Az, Ag
specified by these frames have a common chamber C'. Let C' be described by
the oriflamme

Vic...cV,_» C ‘/(ml) and ‘/(n,2)
Note that also the totally isotropic subspace
Vo1 = ‘/(n,l) N ‘/(n,Z)

is expressible as a sum of the lines in these frames.
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By relabeling and renumbering if necessary, we may suppose that the com-
mon chamber C' corresponds to the choices of orderings

(Hy,...,Hy)

(Ji, ey dn)
and lines )\;H and ,uj'l for indices i < n.
As was done in the treatment of general isometry groups, we attempt to
define a map
f:B—=A
on totally isotropic subspaces (vertices) by
oA N o !

for any distinct indices 41, ... ,i,. (The fact that we only consider totally
isotropic subspaces of dimension not n — 1 is not the main point just now).

But we must show that f defined in such manner really is the identity
on the whole intersection A N B. We will see that the issue here is identical
to that treated earlier. Indeed, to show that f is the identity on A N B, it
suffices to show that it is the identity on all 0-simplices in the intersection. If
a O-simplex z is in the intersection then z is a totally isotropic subspace of V'
which can be written as a sum of some of the )\i“ and also can be written as
a sum of some of the uzrl. What we want to show is that, if

c= At N = ]t
then in fact iy = jp for all £. This would certainly assure that A N B is fixed
pointwise by f.

At this point, the argument used for the complex X and other isometry
groups can be repeated verbatim. Thus, we have verified the second axiom
for a thick building, completing the oriflamme construction and verification
of its properties.

Last, we observe what Coxeter data has been obtained. Let us index re-
flections in the same manner as subspaces have been indexed above: si, ss,
-+ Sn=3, Sn—2, 8(n,1), S(n,2)- LOOking back at the discussion of what happens
when we reflect through the various facets, by an elementary computation
we find that s;s;41 is of order 3 for i < n — 2, that s,_»s,,; is of order 3
for 7 = 1,2, and that otherwise these reflections commute. That is, we have
obtained the Coxeter system of type D,,.
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11.3 The action of SO(n,n)

We have constructed a thick building X associated to a rather special
sort of non-degenerate quadratic space, expressible as a sum of n hyperbolic
planes. (Of course, if the underlying field is algebraically closed, then every
even-dimensional non-degenerate quadratic space is of this type).

Incidental to the proof that the apartments are thin chamber complexes,
we saw a fairly concrete picture of the Coxeter system of type D,. Now
we should check that G = SO(n,n) acts strongly transitively, and preserves
types.

As noted in the previous two constructions, there is an essentially unique
labeling on a thick building (4.4). So any convenient labeling we contrive is
as good as any other.

As before, it suffices to label vertices in the complex X. Totally isotropic
subspaces of dimension < n—2 we can label simply by dimension, as before. To
make sense of the phenomena surrounding the n-dimensional totally isotropic
subspaces, we need a little more preparation in the direction of geometric
algebra, now keeping track of determinants.

Let V be a 2n-dimensional quadratic space which is an orthogonal direct
sum of n hyperbolic planes. Let G = SO(n,n) be the group of isometries g
of V with det g = 1.

Lemma: Elements of the isometry group of a non-degenerate quadratic
form have determinant £1.

Proof: 1In coordinates, we imagine the vector space to consist of column
vectors, and the quadratic form to be given by

(v,0) =v"Qu

for some symmetric matrix (). Then the matrix ¢ of a linear automorphism
is actually an isometry if and only if ¢' Qg = Q. Taking determinants, we
obtain

(det g)? det Q = det Q

Since () is non-degenerate its determinant is non-zero, so det g = £1. &

Proposition: Let Y be a totally isotropic (n — 1)-dimensional subspace
of V. There are exactly two totally isotropic n-dimensional subspaces Vi, V5
contained in Y.

Proof: The quotient ) = Y+/Y is a non-degenerate two-dimensional
quadratic space. In fact, it is a hyperbolic plane, since V' was a direct sum of
hyperbolic planes. Let x,y be a hyperbolic pair in @, that is, so that

(,7) =0=(y,9)
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and
(z,y) =1=(y, )
Suppose that ax + by is an isotropic vector. Then

0 = (az + by, ax + by) = 2ab

Thus, since the characteristic is not 2, we have ab = 0. Thus, the only isotropic
vectors in () are multiples of z and multiples of y. That is, there are just two
isotropic lines in Q.

But isotropic lines in () are in bijection with n-dimensional totally isotropic
subspaces inside Y and containing Y. &

Proposition: Let Y, Z be two (n — 1)-dimensional totally isotropic sub-
spaces of V', and let f, : Y — Z be any vectorspace isomorphism. Then there
is g € G = SO(n,n) so that the restriction of g to Y is f,.

Proof: Invoking Witt’s theorem (7.3), there is an isometry f : V — V
which restricts to the map f, : Y — Z. Since it lies in an orthogonal group,
this f has determinant +1.

As just noted (and indeed as source of the necessity of considering the
oriflamme complex), there are exactly two isotropic lines A;, As in Y /Y and
exactly two isotropic lines p1, us in Z+/Z.

Of course, the isometry f maps Y+ to itself and maps Z+ to itself. Thus,
the induced map sends the A; to the p; in some order.

Choose lines ); inside Y+ which map to \;. With such choice, let ¢ be
an isometry of V which is the identity on (A; + A2)*, which interchanges the
two lines A1, A2, and so that ¢? is the identity. (There are just two such). For
example, in suitable coordinates on As + A» the matrix of one such map ¢ is

given by
0 1
(1)
Thus, det ¢ = —1.
Then either f or f¢ has determinant 1, and both restrict to f, on Y since
YCYJ‘C(/\1+/\2)L. &

Proposition: Let U be a maximal totally isotropic subspace of V. Given
an automorphism a : U — U, there is h € SO(n,n) which restricts to a on

U.

Proof:  Let U' be another maximal totally isotropic subspace so that
V =U@®U'. Then the map x X y — (z,y) on U x U’ identifies U’ with the
linear dual of U. Thus, there is an adjoint a" which is a linear automorphism
of U’ so that for all z € U and y € U’

(z,a"y) = (az,y)

Then h = a @ (a”)~! is certainly an isometry.
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Further, either by choice of coordinates in which to compute or by coordinate-
free exterior algebra computations, one finds that the determinant of this h
is 1, so actually h € SO(n,n). &

Proposition: Let Y be a totally isotropic (n — 1)-dimensional subspace
of V. Let V1, V5 be the two totally isotropic n-dimensional subspaces Vi, V5
contained in Y. Then these two spaces V;, Vs are in distinct SO(n,n)-orbits.

Proof:  Now suppose that for some g € SO(n,n) we had gVi = V.
Invoking the previous result, we may adjust g (staying within SO(n,n)) so
that g is the identity on Y. Then also gV + =Y *.

For a linear automorphism h of V stabilizing the subspaces Y, Y+ we have
well-defined linear automorphisms hy, he of the quotients Y+ /Y and V/Y+
(respectively), and by elementary linear algebra

det h = det(h|y) - det(hy) - det(h2)

The non-degenerate form (,) identifies /Y with the linear dual space of
Y. Thus, for an isometry g, if g|y is the identity on Y, then the (adjoint!)
map g» induced by g on V/Y* is also the identity. Thus, for such g,

det g = det( map induced by g on Y+/V

But then we are in the two-dimensional (hyperbolic plane) situation again.
Then it is easy to see that isometries interchanging the two isotropic lines have
determinant —1, while isometries not interchanging them have determinant
+1. L

Corollary: The special orthogonal group G = SO(n,n) is transitive on
the set of unordered pairs V{,, 1), V(5 2) of maximal totally isotropic subspaces
whose intersection is (n — 1)-dimensional. There are exactly two G-orbits of
maximal totally isotropic subspaces.

Proof: Let Vi, 1), Vin,2) and W, 1), W(,, 2) be two unordered pairs of max-
imal totally isotropic subspaces intersecting in (n — 1)-dimensional subspaces
Y, Z, respectively. Let g € SO(n,n) be a map so that gY" = Z. Again,
there are exactly two isotropic lines in Y+ /Y (respectively, in Z1/Z), so
there are exactly two n-dimensional totally isotropic subspaces containing Y
(respectively, Z). Thus, the isometry g of the first proposition must map
the unordered pair V|, 1), Vi 2) to the unordered pair W, 1), W(, ). By the
previous proposition there is not any element of SO(n,n) accomplishing the
same mapping but reversing the images. &

Thus, we can label n-dimensional totally isotropic subspaces according to
which of the two orbits they fall into. There is no canonical way to give
primacy to one of these orbits over the other if we have not chosen coordinates
on the vectorspace V.

Thus, we have arranged a labeling which is preserved by the action of
G = SO(n,n). Repeating, we label totally isotropic subspaces of dimensions
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< n — 2 by dimension, and label maximal totally isotropic subspaces by the
S)(n,n)-orbit into which they fall.

Remarks: The artifice of using oriflammes to achieve thickness of the
building necessitates shrinking the group from O(n,n) to SO(n,n) to preserve
the concommitant labeling. Since labelings are unique up to isomorphism,
we are assured that the necessity of restricting our attention to SO(n,n) is
genuine.

Now transitivity on apartments can be proven. Consider two apartments
specified by frames

F={NA0 o

G={u e gty
with A*! + ;! hyperbolic planes, and likewise with u;' + u7' hyperbolic
planes.
Then there is an isometry g € G so that

O =i
for all choices of sign and at least for indices 7 < n. (We are not obliged to

try to say more precisely what happens at ¢ = n). Indeed, one merely chooses
z; € \f1y; € A7 and then z; € pft,w; € p; ! so that

(i, yi) = (21, wi)
Invoking the proposition above, the map given by gz; = z; and gy; = w;
extends to an isometry g € SO(n,n) of the whole space. This gives the
desired transitivity on apartments.

Next, we prove that the stabilizer of a given apartment in G = SO(n,n)
acts transitively on the chambers within that apartment. The chambers
within the apartment A specified by the flag F above are in bijection with
orderings of the hyperbolic planes together with a choice of one of the distin-
guished lines from each plane except the last.

The stabilizer of A certainly includes isometries to yield arbitrary permuta-
tions of the hyperbolic planes. However, unlike the case of orthogonal groups,
the special orthogonal group G = SO(n,n) does not include an isometry ex-
changing the two lines inside a hyperbolic plane, since such have determinant
—1. But G does contain isometries which switch the isotropic lines in the ‘P
hyperbolic plan (i < n) and switch the isotropic lines in the last hyperbolic
plane. Since the lines in the last plane are not ordered, this achieves the
desired effect.

This proves the strong transitivity of G = SO(n,n) on the oriflamme build-
ing.

Remarks: Although the failure of the simpler isotropic flag construction
for O(n,n) may vaguely hint at something like the oriflamme construction,
one ought not pretend that the aptness of th oriflamme construction is obvious
a priori.
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11.4 The spherical BN-pair in SO(n,n)

Since the oriflammes appearing in the definition of the building for SO(n,n)
are not exactly flags of totally isotropic subspaces, it is not quite clear that
we have achieved the desired end of having minimal parabolics in SO(n,n)
appear as stabilizers of chambers.

That is, it is not quite clear that the resulting BN-pair will have the ‘B’
being a minimal parabolic. But this is not hard to check, as follows.

If g € G stabilizes an oriflamme

Vic...cV, o C Vv(nJ) and ‘/(n,2)
then g stabilizes the (n — 1)-dimensional intersection
Viny M Vinz2)

And since SO(n,n) preserves the notion of label appropriate here, g cannot
interchange Vi, ;.

Thus, the stabilizer of this oriflamme is contained in a minimal parabolic.
Indeed, the stabilizer of this oriflamme stabilizes two maximal flags of totally
isotropic subspaces:

Vl Cc...C Vn—Z C ‘/(n,l) N ‘/(n,2) - ‘/(nvl)

and
ic...cV, »C ‘/(TLJ) N ‘/(n,2) - ‘/(TLQ)
On the other hand, if ¢ € G = SO(n,n) stabilizes a maximal flag of totally
isotropic subspaces
ic...cVv,

then g stabilizes V.- . The latter contains exactly two n-dimensional totally
isotropic subspaces V(;, 1), V(n,2), one of which is V,,. The action of g cannot
interchange them, by the observations of the previous section concerning such
situation. Thus, g stabilizes the oriflamme, as desired.

Thus, once again, facts about parabolic subgroups will appear as corollaries
to results about buildings and BN-pairs.

Remarks: Another peculiarity of the present situation is that, as is evi-
dent from the immediately previous discussion and from the previous section,
minimal parabolics (stabilizers of oriflammes) stabilize two distinct maximal
flags of isotropic subspaces. Thus, attempting to designate minimal parabolics
by such flags would be troublesome in any case.

We wish to look at some aspects of the situation in coordinates. We con-
sider a 2n-dimensional k-vectorspace V' with form (,) of index n, in the sense
that a maximal totally isotropic subspace has k-dimension n. Thus, we can
write

V=H®..0oH
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where there are n summands of hyperbolic planes H.
The standard basis for k2" is

1 0
0 1
61 = 0 62 = 0
0 0

As described earlier in our discussion of classical groups, the standard form
(,) on V = k2" with no anisotropic part is

(u,v) =v " Jpu

where

1 0
The standard frame F is the collection of lines
kei, keiqn, kes, keayn, kes, kesyn,. .. ke, kes,

where we have listed them in the pairs whose sums are hyperbolic planes.
The standard maximal isotropic flag is

Vi=keyCVo=kei+kes C...CV,=key+...+ ke,

The standard oriflamme (much less often mentioned in the classical literature!)
is, nevertheless, the obvious thing: letting

Ving)y =Va1 te, =V,
and
Ving) = Va1t enp1
in this notation the standard oriflamme is indeed

VicWwC...CV,_sC V(n,l) and V(n,2)

The B in the BN-pair is the stabilizer of the flag, and is the stabilizer of the
oriflamme, and (as observed above) the stabilizer of another flag as well.
According to the general prescription, we take N to be the stabilizer in G
of the set of lines in the standard frame F. Thus, in a similar fashion as in the
case of GL(n), N consists of monomial matrices in G. The subgroup T here
consists of monomial matrices lying in the standard minimal parabolic sub-
group. As discussed earlier in our treatment of classical groups and geometric
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algebra, it is not hard to check that 7" must be the standard Levi component
of the minimal parabolic, consisting of matrices of the form

iy

t!
For example, the subgroup of W identifiable with plain permutations (with
no sign changes) has representatives of the form

™
14 eqG
™

where 7 is an n-by-n permutation matrix. Note that the inverse of a permu-
tation matrix is its transpose, so the indicated matrices really do lie inside
the (special) isometry group.

11.5 Analogues for GO(n,n)

The similitude group GO(n,n) of the quadratic form (,) is the slightly
larger group

GO(n,n) ={g € GL(V) : (gu, gv) = v(g) (u,v)}

for some v(g) € k>, where k is the underlying field. We wish to make the
observation that this larger group also acts strongly transitively on the thick
building of type D,, for SO(n,n), although it is not label-preserving.

The strong transitivity is immediate from that of SO(n,n). Already we
have noted that O(n,n) will not preserve the funny labels on the two sorts of
n-dimensional totally isotropic subspaces, because O(n,n) has just one orbit
on all such, while it was shown that SO(n,n) has two, whence the labeling.

While GO(n,n) is slightly larger, and likewise the parabolic subgroups are
larger, and likewise the group N attached to a choice of frame, the Weyl group
is naturally identifiable with that of SO(n,n).

Therefore, for any group intermediate between the special isometry group
SO(n,n) and the similitude group GO(n,n) the previous construction gives
a BN-pair in the generalized sense.
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12. Reflections, Root Systems
and Weyl Groups

Hyperplanes, chambers, walls

Reflection groups are Coxeter groups
Root systems and finite reflection groups
Affine reflection groups, special vertices
Affine Weyl groups

This section starts anew in development of the idea of reflection from an-
other, more literal, viewpoint. This complements the more abstract simplicial
ideas of the first chapter.

Rather than ‘make’ Coxeter groups as automorphisms of apartments in
thick buildings, we now ‘make’ them in the guise of ‘reflection groups’. We
prove that all linear and affine reflection groups are Coxeter groups.

To a great extend the things proven here are independent of our prior work.
Indeed, the present considerations are supplemental to those developments,
providing information of a different sort relevant to the affine and spherical
cases.

12.1 Hyperplanes, chambers, walls

Generally, for a subset C of a topological space X, let 0C be the boundary
of C inside X. The closure of such C inside X is denoted C.

Let X = R", with a positive definite inner product {,). Given a finite
set To,...,T,m € X and a set of real numbers t; so that Ez t; = 1, the
corresponding affine combination is

x:ZtimieX
i

The affine span of a set of points in X is the collection of all affine com-
binations taken from that set. A set of points z; is affinely independent

if
Z tiCEi = Z t;a:i
i i

implies ¢; = t} for all i. The maximal cardinality of a set of affinely indepen-
dent points is n+ 1, and any set of affinely independent points can be enlarged
to such a set with n + 1 elements.

The line through two distinct points x,y € X is the set of affine combi-
nations tx + (1 — t)y. The closed line segment [z,y] connecting z,y is the
collection of points on the line with 0 < ¢ < 1. The half-open segments
(x,y], [z,y) consist of points with 0 < ¢ < 1,0 < ¢ < 1, respectively.
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A real-valued function f on X is an affine functional if, for all ¢ € R and
for all z,y € X we have

fltz+ (1 =t)y) =tf(@) + (1 - 1)f(y)
Similarly, a map w : X — X is an affine map if
w(tr + (1 —t)y) = tw(z) + (1 — Hw(y)

for all t € R and for all z,y € X.

An affine hyperplane in X is the zero-set of a non-constant affine func-
tional.

Elementary linear algebra assures that there exist n affinely independent
points in a hyperplane 7.

On the other hand, given a hyperplane 7, up to non-zero scalar multiples
there is a unique affine functional f whose zero-set is exactly 7: Indeed,
let z1,...,x, be affinely independent points in 7 and x, not in 5 so that
Zo,... Ty affinely span X. If f vanishes on n then f(x,) determines f, since
for an affine combination y = ), t;z; we have

f(y) = Z tzf(xz) = tof(mo)

(2

Lemma: Let H be a countable collection of hyperplanes in X, and let A
be a line not contained in any n € H. Then

A (J ()

neH

Proof: Induction on the dimension n of X. If n = 1 then hyperplanes are
points, and since R is uncountable no line can be a countable union of points.
For the induction step: let ¢ be a hyperplane containing A (and necessarily
distinct from all the n € H). Then the collection H' of intersections ¢ N7 is
a countable collection of hyperplanes contained in ¢ ~ R®~!, no one of which
contains A. (Here we ignore any empty intersections). &

In terms of the inner product, an affine hyperplane n may equivalently be
described as a set of the form

{r e X :(x—x,e€,) =0}

(where then z, € n and e, is any non-zero vector orthogonal to 7).

A set H of affine hyperplanes in X is locally finite if, given a compact
subset K of X, there are only finitely-many n € H so that n N K # 0.
The set H is necessarily countable. For a locally finite collection H of affine
hyperplanes the chambers cut out by H are defined to be the connected
components of the complement of | J 1. Since H is locally finite, the
chambers are open convex sets.

neH
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An affine hyperplane 7) separates two subsets Y, Z of X if there is an affine
functional f with zero-set n so that f > O on Y and f < 0 on Z, or vice-
versa. Note that since all line segments [z,y] are compact, since chambers
are convex, and since H is locally finite, there are only finitely-many walls
separating a given pair of distinct chambers cut out by H.

A hyperplane n € H is said to be a wall of a chamber C' cut out by H if
the affine span of n N AC is . Two chambers C,C" are said to be adjacent
along the wall or to have the common wall n € H if the affine span of
nNoCNAC" is n.

Let H¢ be the set of walls of a chamber C' cut out by a locally finite set of
hyperplanes H.

e Given a point y not in the topological closure of C, there is a wall 5 of
C separating y from C.

e Conversely, for every wall 5 of C there is a point y not in the topological
closure of C' so among all walls of C' only 7 separates y from C.

e For every hyperplane n € H, there is at least one chamber of which 7 is
a wall.

Proof: Consider y € X not in the topological closure of C. Take x € C.
Consider the line segment [z,y) and the intersections n N [z,y). If all of the
intersections [z, y) N7 were empty, by continuity we would have y € 0C.

For fixed y, the collection of € X so that the segment [z,y) meets an
intersection nN#', for distinct n,n' both in H, is a subset of a countable union
of hyperplanes. Thus, by the Lemma, we can move z slightly so that points
[z,y] Ny are all distinct (or this intersection is empty).

Since one of these intersections is non-empty, there is a unique one of these
intersections z = n, N [z, y] closest to . Since

H ={nnn,:n€H,n#n}

is a locally finite set of hyperplanes in 7,, the complement in 7, of the union
of the other hyperplanes is open in n,. Thus, for 2’ sufficiently near x, the
intersection z' = [z/,y) N n, lies on no other n € H. Since [z,y] meets n,
in a single point, we can choose points x1, ... ,x, near z so that the points
z; = [z;,y]Nn, are affinely independent: Given z1, ... , z; affinely independent
with & < n, the affine span Sy of z1,..., 2,y is contained in some affine
hyperplane (i, so there is zpy; near x not in (i, and then zpy; & (i either,
since y € (. Thus, 21,... 2, affinely span n, and n, is a wall of C.

On the other hand, given a wall 5 of C, let z1,... ,z, be n affinely inde-
pendent points on nNAC which affinely span 1. For any wall ¢ of C' and affine
functional f, which is positive on C, we have f:(z;) > 0. In fact, for at least
one of the z; we have fc(z;) > 0, or else ( =n. Let

Z:Z%Z’z

i
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Then f¢(z) > 0 for { #n, z lies on 9C, and still f,(z) =0.

In some small-enough neighborhood of z there is a point 2z’ so that still
fe(z") > 0 for ¢ # 1, and f,(z') < 0. That is, only the wall n separates 2’
from C.

Now let n € H. Since n is not the union of the intersections ¢ N n for
n # ( € H, there are points z € n which lie on no other hyperplane in H. A
point z near such z but off 5 lies in some chamber cut out by H of which n
must be a wall, by arguments as just above. &

Corollary: If C,D are distinct chambers, then there is a wall of C
separating them.

Proof: The chamber C is exactly described by inequalities only involving
affine functionals whose zero-sets are walls of C'. If x € D satisfied the same
inequalities, then by the results above = € C, contradiction. &

Proposition: Given a chamber C cut out by H, and given a wall n of C,
there is exactly one other chamber D cut out by H which has common wall
n with C.

Proof: For each £ € H choose an affine functional f¢ so that f¢ vanishes on
& and is positive on C. (There exist such since C' is a connected components
of the complement of the union of all the hypersurfaces in H).

Take a wall n of C, with affinely independent z1,...,z, in n N JC. Put
z = (> z;)/n. As in the previous proof, we find that f¢(z) > 0 for £ # 7.
Then for 2’ € X near z all f¢(2') > 0 with £ # n are still positive. Thus, the
set

C'={zeX:fe(xr)>0 VE#n and f,(z) <0}

is non-empty, so is a chamber cut out by H. We have shown that there is at
least one other chamber C' sharing the wall n with C.

On the other hand, for z1, ... , z, affinely independent points in 0CNAO DNy,
let z = (3 2;)/n. The previous argument shows that for ¢ # 7, an affine
functional F; which is positive on C' (respectively, positive on D) must be
positive on z, for £ € H. Thus, the only possible difference between C' and
D can be that an affine functional f, vanishing on 7 is positive on one and
negative on the other. Thus, we have shown that there is exactly one other
chamber sharing the wall n with the given chamber C. &

A gallery of length n connecting two chambers C, D is defined to be a
sequence of chambers C = C,,C4,... ,C, = D so that C}; is adjacent to Cj4 .
The gallery

Co,C1,Cyy...,C,

crosses the wall 7 if 7 is the common wall between two chambers C;, Ciy1
for some index <.
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12.2 Reflection groups are Coxeter groups

Here we show, among other things, that reflection groups satisfy the Dele-
tion Condition (1.7), so are Coxeter groups. In fact, we derive several useful
results which will come into play later in discussion of the geometric realiza-
tion of affine Coxeter complexes and affine buildings.

Let X = R™ as above, and let H be a locally finite collection of affine
hyperplanes in X.

The (orthogonal) reflection through a hyperplane 7 is the automorphism
s = s, of X described by

2{x — xy, €0)
ST = — —————¢,
(€0, €0)
where z, is an arbitrary point on 1 and e, is any non-zero vector perpendicular
to 1. One can check that this definition does not depend upon the choices
made.

Let G be the group generated by all orthogonal reflections through hyper-
planes in H and suppose that H is stable under G, that is, that if n € H
and g € G then gn = {gz : € n} is also in H. This group G is called a
reflection group.

Remarks: Having made the assumption that the set of hyperplanes is
stable under all reflections through members of H, we can sensibly introduce
some further standard terminology: If the hyperplanes in H have non-trivial
common intersection, the reflection group generated is a linear reflection
group. If the hyperplanes in H have trivial common intersection, then the
group is called an affine reflection group and the chambers are called al-
coves.

Lemma: For two chambers C,D cut out by H, let £ = ¢(C, D) be the
number of hyperplanes in H which separate them. Then there is a gallery of
length ¢ connecting them.

Proof: Induction on the number of walls separating C, D. First, if no
walls separate the two chambers, then (e.g., by the previous section) C, D are
defined by the same collection of inequalities, so must in fact be the same
chamber. So suppose that C' # D. Let n be a wall of C separating C, D.
Let C' be the chamber obtained by reflecting C' through 7. Then n does not
separate C' from D, since we have just crossed n in going from C to C'. And
we crossed not other hyperplanes in H in going from C to C’. Thus,

¢C',D)=4(C,D) -1
By induction, C’, D are connected by a gallery
C' =0Cy,C,...,Co=D
of length ¢ — 1. Then it is easy to see that C, D are connected by the gallery

C=0,C=0,0s,...,Co=D
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of length /. &

Let C be a fixed chamber cut out by H, let S be the set of reflections
through the hyperplanes in H which are walls of C', and let W be the subgroup
of G generated by S.

Recall that a group action of a group G on a set X is simply-transitive if
the action is transitive and if for all z € X the equality gz = = implies that
g=1.

Recall that the Deletion Condition on a group W and a set S of generators
for W is that if the length of a word s ...s, is less than n, then there are
indices %, j so that

S1...8p =81...8;...8j...5q
That is, the product is unchanged by deletion of s; and s;. The least n so
that w has an expression w = s; ... s, is the length ¢(w) of w with respect to
the generators S of W.
We prove the following family of related results all together.

e The group W is transitive on chambers cut out by H, and G = W.

e The group G is simply-transitive on chambers.

e The length ¢(w) of w € W is the number ¢(C,wC) of walls separating
C from wC'. Each wall crossed by a minimal gallery from C to wC is
crossed just once, and the collection of walls crossed by such a minimal
gallery is exactly the collection of walls separating C' from wC'.

e The topological closure C' of C' is a fundamental domain for the action
of W on X, in the sense that

X = U wC =X
weWw

e The isotropy subgroup or stabilizer
We={weW:wz =z}

in W of z in the topological closure C' of C is the subgroup of W
generated by
Sy={s€S:sx=uzx}
e The pair (W, S) satisfies the Deletion Condition, so (W, S) is a Coxeter
system.

Proof:  Prove transitivity on chambers by induction on the length of a
gallery from C' to another chamber D. Let i be a wall of D separating C'
from D, and let D’ be the chamber obtained by reflecting D across . Then
£(C, D'") is one less than £(C, D), so there is w € W so that wC = D’. Then
w™ 1D is a chamber adjacent to w™!D’ = C. Let s be the reflection across
the common wall of w™'D and C. Then certainly sC = sw !D' = w™'D.
That is, D = wsC, as desired. This is the transitivity.

Let n be a wall of a chamber D, and take w € W so that wC = D. Then
w™'n is a wall of C, and the reflection ¢ through 7 is simply ¢ = wsw™"' where
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s is the reflection through w—'n. Thus, W contains all reflections through
walls, so contains G.
Let w = s185...5,, be an expression for w in terms of s; € S. Then

C = Co, Cl = 810, CQ = 81820, C3 = 8182830, . ,Cm =wC
is a gallery from C to wC'. Therefore, it is clear that
Lw) <L(C,wC)

If ¢(w) > £(C,wC) then some wall is crossed at least twice by the gallery.
The hyperplanes crossed by this gallery are described as follows. Let

w; =81...5;
Then C; = w;C, and
—1 —1
Cit1 = wit1C = wisi410 = wisiprw; w;C = wisi1w; ~ C;

Thus, C;41 is obtained from C; by reflecting by wisiﬂw;l.
The assumption that a wall is crossed twice is the assumption that for some
1<J
-1 _ -1
W;Si4+1W; ~ = szjJrle
Then, using ¢ < j, we have

Sit1 = (Si—i-l . Sj)Sj_H (Si+1 - Sj)_1
from which we obtain, upon right-multiplying by s;4+1 ... sj,

Si42++-85 = Si41-.-Sj+1
Then
Ww=51-..-8,=81---Si+1---8j41---5n

That is, we can remove s;41 and sj;1 from the expression for w as a word in
elements of S.

But we could have assumed that the original expression was already the
shortest possible, that is, was reduced. Thus, we conclude that the length
of w is equal to the number of walls separating C' from wC, and no wall is
crossed twice by a minimal gallery from C to wC. On the other hand, if a
wall 7 is not crossed by a gallery from C' to wC, then the gallery stays to one
side of the hyperplane 1, so n does not separate the two chambers.

In particular, wC = C implies that w is of length zero, so is 1. This gives
the simple-transitivity.

Every point in X is in the closure of some chamber, so C' is a fundamental
domain.

Certainly the subgroup of W generated by S, is contained in the isotropy
subgroup W,. On the other hand, given z,y € C, suppose that wzr = y. We
must show that ¢ = y and that w is in the subgroup generated by S,. This is
by induction on the length of w with respect to the generators S of W. Let
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w =81 ..., be areduced expression, that is, of minimal length with m > 0.
Then

C=0C,, s1C, 5152C, ..., (81,-.-8m-1)C, wC

is a minimal gallery from C to wC. This gallery crosses the wall 7, of C
fixed by s1, so since the gallery is minimal C,wC' are separated by the wall
11. Hence, from the definition, the intersection of their closures is contained
in 1. Then

wm:yEC_'r‘le_'Cm

Thus, as necessarily y € 1y,
(siw)r =s1y =1y

By induction on length, £ = y. Further, since we saw that y € 7, certainly
T =y € ny, so sp fixes z, and by induction w' = (s;w) is in the subgroup of
W generated by S,.

Observe that we showed that if the length of w = s;...s,, is less than m
then two factors can be deleted from this product: the Deletion Condition
(1.7) holds.

&

12.3 Root systems and finite reflection groups

If the set H of affine hyperplanes is locally finite, and if the hyperplanes
in H have a common point, then the total number of hyperplanes in H is
finite and we can change coordinates on X ~ R so that the common point is
0. Then all hyperplanes are linear, and the associated reflections are likewise
linear. The associated finite reflection group is sometimes also called spherical.

We can arrive at this situation by a slightly different route, related to our
prior discussion (1.4), (1.5) of roots, as follows.

Let @ be a finite collection of vectors in a finite-dimensional real vectorspace
V' equipped with a positive-definite inner product (,). For a € ®, let s, be
the corresponding reflection: for v € V.

Sq(v) =v —

The set ® is a (finite) root system if
S5 =@

for all @ € ®. Then the group W generated by the reflections s, for a € ®
is evidently a finite linear reflection group, since it certainly is a subgroup of
the finite group of permutations of the finite set ®.

Say that ® is a (finite) reduced root system if also

®NRa = {£a}
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for all & € ®. Given a root system ®, we might replace every a € ® by the
corresponding unit vector a/(a, a)'/?, obtaining the associated reduced root
system ®'. Visibly, this does not alter the group W obtained. Generally,
altering the lengths of roots does not affect the group W obtained, but may
affect other aspects of the situation.
The set ® of co-roots associated to roots ® is the set of elements
2a

(@, @)

a =

for a € ®. It is easy to check that this is again a root system, called the dual
root system. The associated group W is the same, again, since the collection
of hyperplanes associated to ® is the same as that for ®.

The root system is crystallographic if

2o, B)
6.8

for all a, 8 € ®. If the root system is crystallographic (and finite), then the
group W is called a Weyl group, with reference to the generators s, for
a € ® being implicit. In this definition, altering the lengths of roots certainly
does matter.

In any case, the collection H of linear hyperplanes

Ne ={v €V :{(v,a) =0}

for a € ® is a finite collection of linear hyperplanes, stable under the action
of W since ® is and since W leaves the inner product (,) invariant. Thus,
the previous discussions apply. Again, note that replacing a root system ®
by its associated reduced root system gives rise to the same collection of
hyperplanes, and the same reflection group W .

One purpose of this section is to study the ‘shape’ of the chambers cut out
by a finite reflection group: we will see that the chambers are simplicial cones
(defined below). This study is intimately related to the notion of choice of
simple roots inside the root system.

So fix a (finite) root system ® and let H be the associated finite collection
of hyperplanes. For the purposes of this section, without loss of generality we
suppose that ® is reduced, and that the roots are of length 1.

Fix a chamber C cut out by H, let S be the collection of reflections in the
walls of C', and let W be the group generated by these reflections. Let +e,
be the two unit vectors orthogonal to n € H. Given the choice of chamber C,
the positive roots ®* are those roots a € ® so that

(z,0) >0 Vz e C
From the definition of chamber it follows that
® =0t (-d")

The set A of simple roots in % is defined to be the set of @ € ®T so
that « is not expressible as a linear combination of two or more elements of
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&+ with positive coefficients. Then, using the finiteness of ® and induction,
every v € ®* is expressible as
1= ¥ o

aEA

where ¢, > 0 for all a.

From this definition it is clear that A is minimal among the collection of
subsets E of ®T so that all elements of &1 are expressible as linear combi-
nations of elements of E with non-negative coefficients: if & € A could be
omitted, then a would be expressible as a linear combination Eﬁ cgf3 over
B8 € A —{a}, with cg all non-negative. By definition of A, at most one of the
coefficients cg can be positive. But then we have an expression a = cgf3. But
this is impossible. This proves the minimality.

Lemma: A point z € X lies in the chamber C' if and only if for all & € A
we have (z,a) > 0.

Proof: If x € C, then a € A C &% gives (z,a) > 0. On the other hand, if
(z,a) > 0 for all @ € A then (z,a) > 0 for all @ € &%, since all elements of
&+ are non-negative linear combinations of elements of A (with some strictly
positive coefficient present). Then since C is a connected component of the
complement of the union of all the hyperplanes (x,a) = 0, we find that z € C.

[ )

Lemma: For distinct o, 8 € A, we have

(, ) <0

Proof: Throughout the proof, keep in mind that (z,a) > 0 for all z € C
and for all @« € ®T. And, for this proof, we may suppose without loss of
generality that a, 8 are unit vectors.

Suppose that (a,8) > 0 for a pair o, € A. Let s be the reflection in the
hyperplane orthogonal to a. Then sf is again in ®, since H was stable under
all these reflections.

Suppose s € &+. Write sf =), cqa with non-negative coefficients, and
a € A. If ¢g < 1, then we rearrange to obtain

(1—cs)B=2(B,a) + Y ¢y
Y#B
That is, 3 is expressible as a non-negative linear combination of elements from
A — {3}, contradicting the minimality of A. If ¢z > 1, then we rearrange to
obtain

0=1(cg —1)B+2(B,a)+ Z cyY
y#a,B
Taking inner product with any = € C gives 0 < 0, contradiction.
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Suppose that —s3 € ®*. Write —s3 = ) cqa with non-negative co-
efficients, summed over a« € A. If ¢, — 2(3,a) > 0, then we rearrange to
obtain

0=0+ (ca —2(B,0)) + Z cyy
gkalet
Taking inner products with any z € C' gives 0 < 0, which is impossible. If, on
other hand, ¢, — 2(f8, @) < 0, then we rearrange to obtain

(2(8,0) —ca)a=F+ Y ey
gkalet
The coefficient of « is positive, so « is expressed as a non-negative linear
combination of elements of A — {a}, contradicting the minimality of A.
This excludes all the possibilities, so the assumption (o, ) > 0 yields a
contradiction.

Corollary: The simple roots are linearly independent. The collection of
hyperplanes orthogonal to the simple roots is exactly the collection of walls
of the chamber C. The chamber C has at most n = dim X walls.

Proof: If the simple roots were not linearly independent, then we could

write
v= Z Qo0 = Z bsp

a€cl peJ
for some v € X, where I, J were disjoint subsets of A, with all a,, bg strictly
positive. Then
0< (0,0) =) aabg(e,8) <0
a,B
From this, v = 0. But then for z € C' we have

0= (z,0) = (m,z a0 = Z aq (T, o)

Since (z, ) > 0, this would force I = ). Similarly, J = 0.

Thus, there could have been no non-trivial relation, so the simple roots are
linearly independent, so there are at most n = dim X of them.

Since the simple roots are linearly independent, and since C' is the set of x
so that (z,a) > 0 for all & € A, the linear hyperplanes

Ne ={z € X :(z,a) =0}

perpendicular to & € A are exactly the walls of C. Indeed, by the linear
independence, given a € A, there is v € X so that (v,a) =1 and (v,8) =0
for a # 3 € A. Then, given ¢ € C, for suitable real numbers ¢ the point
y = x + tv yields

(v, = (z,0) +£ <0

(y, ) = (z,08) >0

That is, 74 is the only hyperplane separating C' from y. By the elementary
results on walls of chambers, this proves that 7, is a wall of C'. &
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Now let
HC = {7717"' 7nm}

be the walls of C'. Let a; be a root orthogonal to n;, and from the two
possibilities for a; choose the one so that (x, ;) > 0 for z € C. That is, from
above, the a; are the simple roots.

The group W is called essential if W has no non-zero fixed vectors on X,
that is, if wax = x for all w € W for z € X implies = 0.

A simplicial cone in X is a set of the form

{ Z tix; : Vt; > 0}
1<i<n
where eq,... , e, is a fixed R-basis for X.

Corollary:  Suppose that W is essential. Then the chamber C is a
simplicial cone.

Proof: Since W is essential, it must be that

 n={0}

neH

Since (by the previous section) all the reflections in n € H are in W, in fact

it must be that
N n={0}

n€EHc
Therefore, m > n.
On the other hand, we just showed that the number of walls is < n and the
e; are linearly independent. Thus, we can find ; so that (a;,2;) =0 for j # ¢
and (a;,z;) = 1. Then the chamber C can indeed be described as the set of
elements in X of the form Y #;2; with all ¢; > 0. That is, C is a simplicial
cone. &

Remarks: In general, if W is not necessarily essential, then we can write
X = X, ® X' where W acts trivially on X,, stabilizes X, and the action of
W on X' is essential. Then the chambers are cartesian products of the form

X, x simplicial cone in X'

Corollary: The reflections s, for & € A generate W.

Proof: The reflections attached to simple roots are the reflections in the
walls of the chosen chamber, which do generate the whole group W, by the
general results on reflection groups. &

Corollary: With ® reduced, given a root -y, there is w € W so that
wy € A.
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Proof: By replacing v by —+ if necessary, we may suppose that 7 is a
positive root. Since W is finite, there is indeed an element of W which sends
all positive roots to negative: this is the longest element of W.

Let
0= Z Ca Ot

aEA

be the element of W N &1 with the smallest height > c,. Since everything
is finite and since at least 7y itself lies in this set, we are assured that such
element exists. Then

<(5,8) = cala,0)

so certainly there is a simple root « so that («,d) > 0. If already 6 € A then
we are done.

Suppose that § is not simple. Recall, from our elementary discussion of
Coxeter groups, that for a € A the reflection s, sends the root a to —a and
merely permutes the other positive roots. (It is here that we make use of the
reduced-ness of the root system).

Thus, s,0 must still be positive. Since

the height of s,6 is no larger than that of §. We contradict the definition of
0 unless (4, @) = 0. But this must hold for every a € A, so ¢ is fixed by every
Sq- Since the latter reflections generate W, ¢ is fixed by W, contradicting the
fact that 0 is certainly not fixed by its own associated reflection s;. &

12.4 Affine reflection groups, special vertices

Let H be a locally finite set of affine hyperplanes in X ~ R"™. In contrast
to the previous section, we now suppose that there is no point common to
all the hyperplanes. Under some additional hypotheses (below), we will show
that chambers cut out by H are simplices.

We suppose that H is stable under reflections through n € H. Fix a
chamber C' cut out by H, let S be the collection of reflections in the walls of
C, and let W be the group generated by these reflections. (We have shown
that (W, S) is a Coxeter system).

Suppose also that (W, S) is indecomposable in the sense that the Coxeter
diagram is connected, that is, S cannot be partitioned into two sets Sy, .S2 so
that s182 = s9s1 for all s; € S and s» € Ss.

Let

HC :{7707"' 777m}



164 Garrett: ‘12. Reflections, Root Systems, Weyl Groups’

be the walls of C. Let e; be a unit vector orthogonal to 7;, let y; be a point
in 7;, and from the two possibilities for e; choose the one so that

(r —yi,e5) >0

for x € C.

Let Hc be the set of walls of C. For n € He, the inward-pointing unit
normal vector e = e, is the unit vector orthogonal to  so that for z € C
and z, € 7 we have

(x —xp,ep) >0

Lemma: For distinct walls n # ¢ of C' with inward-pointing unit normal
vectors e, f (respectively), we have

(e,f) <0

Proof:  First, we claim that if e, f are parallel, then ( = —n, so that
(n,¢) = —1. If { # —n, then necessarily ¢ = n. But then it is easy to see that
only one of the two hyperplanes could be a wall of C, contradiction. Thus,
( = —n as claimed.

Now consider e, f not parallel. Then n and ¢ have a common point of
intersection, which we may suppose to be 0, by changing coordinates. The
subgroup W' of W generated just by the linear reflections in 7, { has a unique
chamber C’ containing C, and 7, ( are still walls of C’, from the definition
of ‘wall’. Let H' be the collection of images of i, under W'. Since H was
locally finite, certainly H' is locally finite. Further, H' consists of hyperplanes
through 0. The results of the previous section are now applicable to W' and
H'. In particular, we have

(n,¢) <0
as desired. &

Corollary: There are only finitely-many parallelism classes of hyper-
planes in H.

Proof: If there were infinitely-many hyperplanes in H no two of which
were parallel, then the inward-pointing unit normal vectors would have an
accumulation point on the (compact!) unit sphere in X. In particular, the
cosines (e, e¢) of the angles would get arbitrarily close to 1 for distinct n,{ €
H. But the lemma shows that this is impossible.

For w € W, since w is an affine map, we can write
wr = wx + T,

where the linear part @ of w is a linear map X — X and where T,, € X
is the translation part of w. Of course, this decomposition depends upon
what point we call 0, so a change of coordinates moving 0 would change this
decomposition.
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For w € W, (implicitly depending on choice of 0) let w — @ be the map
from W to the group W of linear parts. One can readily check that this map is
a group homomorphism. The kernel W, of the map W — W is the subgroup
of translations in W. Indeed, for w € W, and z € X we have wx = x + T},
for some T, € X depending only upon w, not upon z.

Proposition: The group W is a finite (linear) reflection group. There is
at least one point € X so that the stabilizer W, maps isomorphically to W.
The translation parts Ty, of w € W lie in W.

Remarks: A point = so that W, — W is an isomorphism is called
special or good. The proof below shows that always W, — W is injective,
so the real issue is surjectivity. And we paraphrase the proposition as

Corollary: There exist special vertices in an affine Coxeter complex. &

Proof: For each n € H let 7 be a hyperplane parallel to n but through 0.
We just showed that the family

H={j:neH}
is finite; now we show that it is stable under the reflections through elements
of H. Given n,( € H, let § be the reflection through 7. Let ¢ be the reflection

through ¢, and # the reflection through (. The hyperplane ( is the fixed-point
set of £. The image of ( under 3 is the fixed-point set of

§ts—1 = sts—!
since w — @ is a group homomorphism. Since sts ! is the reflection through
s(, its fixed-point set is a hyperplane in H, so its image in H is indeed the
fixed point set of 5ts—! = sts—'. Thus, W is a finite linear reflection group,
as claimed.

Let n1,...,my be distinct elements of H so that the linear hyperplanes
7; are the distinct elements of H. Since the latter all pass through 0, there
must be some point z common to all of n,...,n,. Certainly the reflections
s; through the n; stabilize z and have images in W which generate W. Thus,
W, — W is onto. On the other hand, if w € W, has w = 1, then necessarily
w is a translation fixing x, which is impossible unless w = 1.

To see that all translation parts Ty, of w € W lie in W, let = be a special

point and take w, € W, so that w, = w. Then T}, = w;lw. &
Corollary:  For any special vertex z, the group W is the semidirect
product of the translation subgroup W; and the group W of linear parts:
W W, x <]W

Proof: The only thing to check is that W3 is a normal subgroup of W,
which is easy, since the group of translations is a normal subgroup of the
group of all affine automorphisms of X. &
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Now we assume that the collection of inward-pointing unit normal vectors
to the walls of a chamber C' span the vectorspace X. This assumption is
equivalent to the assumption that W is essential, that is, has no non-zero
fixed-vectors in X. For present purposes, an n-simplex in X with one vertex
at the origin is described as follows: let fi,..., fn, be a basis for the linear
dual of X, and for a positive constant ¢ define

o={x€X: fi(x) >0 Vi, and Z filz) < ¢}

This is the sort of n-simplex we will see.

Proposition: Suppose that T is essential and that W is indecomposable.
Then a chamber cut out by H is an n-simplex, where X ~ R".

Proof: Let 1,,... ,nm be the walls of C. Since W is essential, the unit
normal vectors e,, ... ,e, to the walls must span X. Further, since we are
assuming that the walls have no common intersection, m > n. Therefore,
there is a non-trivial linear relation El cie; = 0 among these vectors. Let I
be the set of indices i so that ¢; > 0 and let J be the set of indices j so that
cj < 0. Then we can rewrite the relation as

Y ciei =Y (—¢))e

el jed
Let v = Zie[ Ci€;. Then
0 < (v,v) = (Z Cieiaz (—cj)ej) =
iel jeJ
= > cil—¢)eie;) <0
iel,jed

since the inner products (e;, e;) are non-positive, from above. If neither I nor
J is empty, the indecomposability of W implies that some one of these inner
products is non-zero, yielding the impossible conclusion 0 > 0. Thus, one of
I, J must be empty.
Taking () # I, we have
0= Z C;€;
iel
If I #{0,1,... ,m}, then there is an index j ¢ I, and

0=(e;,0) = (ej, Y cies) =

iel

= Z ci(ej,ei) <0
il
Again by the indecomposability, some one of these inner products is negative,
and we again obtain the impossible 0 > 0. Thus, it must have been that I

was the whole set of indices {0,...,m}.
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Note that we have shown that the only possible non-trivial relation among
the e; must involve all of them. Therefore, it must be that m = n exactly, so
that there are exactly n + 1 walls to C.

Further, we have the relation

Z Ci€; = 0
0<i<n
with some ¢; all positive (without loss of generality). Then we can suppose
(by changing coordinates) that n, ... ,n, have common intersection {0}, and
that n, does not pass through 0.

The chamber C' is defined by inequalities (x,e;) > 0 for 1 < i < n and
(z — 0, e,) > 0 for some z, € n,. The latter can be rearranged to

(z, Z c,ter) < —(xo,e0)

Since we know that C' # (), necessarily the constant ¢ = —(x,,e,) is positive.
Since ¢, '¢; > 0, we can rewrite each (z,e;) > 0 as (w,c;'cie;) > 0. Thus,
taking
fi(z) = (z,c, tcies)

(for i > 0) the defining relations for C' become: f; > 0 for i > 0 and

Z filz) <ec

i>0
Again emphasizing that the linear functionals f; are a basis for the linear dual
of X, it is clear that C is a simplex. &

Proposition: Suppose that T is essential and that W is indecomposable.
Then the normal subgroup W; of translations in W is a discrete subgroup of
the group T' =~ R™ of all translations of X =~ R". Further, the quotient X /W,
of X by Wj is compact.

Proof: Now using the vectorspace structure of X ~ R", we identify 1
with an additive subgroup of X by w — T,.

The images wC' of the chamber C' under w € W; are disjoint. Thus, for
fixed z, € C the set

U=C—-z,={v—z,:veC}
is a neighborhood of 0 so that Wi N U = {0}. Thus, W, is discrete.
On the other hand, JwC = X. Let
vy=|J aC
wEW
Since W_is finite (from above), and since C is a simplex, the topological
closure C of C' is compact, and Y is compact. It is clear that

J wy=x
w1 EWL
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Therefore, X/W; is compact. )

12.5 Affine Weyl groups

From finite crystallographic root systems we construct affine reflection
groups W,.

The infinite Coxeter groups W, so constructed are called affine Weyl
groups and the chambers cut out by the reflecting hyperplanes are sometimes
called alcoves.

Let ® be a finite crystallographic root system, and let W be the corre-
sponding finite linear reflection group, which we have seen is necessarily a
Coxeter group. More precisely, if S is the set of reflections in the walls of a
chamber, then (W, S) is a Coxeter system.

Since ® is assumed to be crystallographic, we have

2(a, B)
(8,8)

for all roots a, 8 € ®. Again, this notion is sensitive to changes in length, so
we should not normalize roots to have length 1. Again, the coroot & associated
to a is

<Y/

2
(a, )

a =

For @ crystallographic, we have

Yo, B)(B, @)

(a,a)(B, B)
As in the usual description of Coxeter data, let m(sq, sg) be the least positive
integer m so that

€EZ

(sasp)™ =1
Let e, be the unit vector a/(c, a)/?

we know that

. From discussion of reflection groups,

— cos(m/m) = (e, ea) <0
From these observations, we see that the choices for m = m(sq,sg) (with
a # (3 are limited: we can have only

(eares) = —1,—V3/2,—/2/2,-1/2,0
with corresponding
m = 00,6,4,3,2
If the group W is assumed finite, then co cannot occur, since otherwise there
would be an infinite dihedral group occurring as a subgroup.
We further suppose that ® is reduced, so that +a are the only multiples
of a given root o which are again roots.

We may suppose without loss of generality that the action of W is essential.
Here this amounts to requiring that ® span the ambient vectorspace V.
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Fix a chamber C for ®, with corresponding choice A of simple roots and
choice S of generators for W: this choice is that « € ® is simple if and only
if the hyperplane 7, fixed by the reflection s, is a wall of C.

Let A be the collection of all integer linear combinations of simple roots.
The hypothesis that ® is crystallographic assures that A is stable under all
the reflections s, for a € ®. In our discussion of finite reflection groups
we showed that the simple roots are linearly independent. Our assumption
that W is essential assures that A spans the vectorspace. This A is the root
lattice attached to @, a terminology which is justified by the corollary below.

Lemma: If @ is crystallographic and reduced, then all roots are integer
linear combinations of simple roots.

Proof: From our discussion of finite reflection groups just above, given a
root 7y there is w € W so that wy € A. Also, the reflections s, attached to A
generate W. If - is an integer linear combination of @ € A, then for g € A
we see that

2(y, B)
sgY =7 — B
’ (3. 5)
still has that property, because of the crystallographic hypothesis. Thus,
® = WA consists of integer linear combinations of simple roots. &

Recall that a Z-lattice in a real vectorspace V ~ R" is a Z-submodule in
V' with n generators which spans V. Equivalently, a Z-submodule of V" is a
Z-lattice if the natural map

VeorR—=V

given by
VRr—rv

is an isomorphism.

Corollary: The root lattice A is a Z-lattice in V', containing the set of
roots ®, and is stable under the action of W. Similarly, the coroot lattice

A(®), consisting of Z-linear combinations of coroots, is a Z-lattice in V' and
is stable under the action of W.

Proof: In the discussion of finite reflection groups we saw that the simple
roots are linearly independent. The assumption that W is essential implies
that they span V. Thus, A is a Z-lattice. The previous lemma gives & C
A, and the definition of ‘crystallographic’ gives the stability under W. The
argument is similar for the coroot lattice. &

With fixed crystallographic (and essential) finite reflection group W, define
a set H of affine hyperplanes

Nagk ={v €V :(v,a) =k}
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for « € ® and k € Z. Let W, be the group of affine automorphisms generated
by the affine reflections

Sak(V) =v— ((v,a) — k)&
This group W, constructed from the (reduced) finite crystallographic root
system @ is an affine Weyl group. Concommitantly, we might say that W

is a spherical Weyl group when the root system is crystallographic.
For A € V we have the translation

(V) =v+ A

Via A — 7, we may identify V with a subgroup of affine automorphisms of
V.

Proposition: The collection H of affine hyperplanes 7, is locally finite
and is stable under W,. The affine Weyl group W, is the semi-direct product

W, =W < xA(®)

of the group W and the coroot lattice A(®). The group generated by reflec-
tions in the hyperplanes in H is just WW,.

Proof: Certainly W lies inside W,. Note that
Ta = Sa,185a = Sa,15a,0

so the group of translations coming from A(®) also lies inside W,.
Since also
Sak = TkaSa
we see that the generators s, for W, lie in the group generated by W and
A(D).

It is easy to check that W normalizes the translation group given by A(®).
Thus, W, is the indicated semi-direct product.

The W-invariance of the inner product and W-stability of the roots &
immediately yield the W -stability of H. Likewise, if (v, a) = k and XA = 3 for
B € ®isin A(®), then

(v+X\a)=k+ (3 a)
and (6, @) is integral, by the crystallographic assumption. Thus, the collection
of hyperplanes is A(®)-stable.

Since the group W, is the indicated semi-direct product, and since the
finite set H, of linear hyperplanes n, o is W-stable, it follows that H is the
collection of translates of H, by the discrete translation group A(®).

Suppose there were infinitely-many hyperplanes 71, ; within distance e > 0
of a point © € V. Let y = y,,1 be a point on 1, within distance € of z:

(z—y,z—y) <e
By definition of the hyperplane, we have
(y,a) =k
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Thus,
<1‘,CK> = (m_y+y7a> = (m—y,a) + <y7a>
Invoking the Cauchy-Schwartz inequality, it follows that

{2, ) — k| <elal

where |a] is the length of a. Since there are only finitely-many distinct roots
a, if there were infinitely-many hyperplanes withing distance € of x then for
some root «, there would be infinitely-many integers k so that

(7, @) = k| <elal

This is certainly impossible, contradicting the assumption that local finiteness
fails.

The reflection in 74,1, is just sq,, so the affine Weyl group W, is the group
corresponding to the locally finite collection H of affine hyperplanes. &

Corollary: This group W, is an affine reflection group, so is a Coxeter
group.
Proof: The local finiteness allows application of our earlier discussion of

affine reflection groups generated by reflections in locally finite sets of hyper-
planes, which we showed to be Coxeter groups, etc. )

As above, S is the set of generators s, of W for a € A. Recall that (W, S)
is said to be indecomposable if S cannot be partitioned into two non-empty
sets of mutually commuting generators. This assumption is equivalent to the
indecomposability of the Coxeter matrix of (W, S), and to the connectedness
of the Coxeter graph of (W, S).

Corollary: Still assume that ® is a reduced finite crystallographic root
system. If the Coxeter system (W, S) is indecomposable, then the affine re-
flection group W, is generated by n + 1 reflections, including the n linear
reflections s, = sq,0 for simple roots a. The chambers cut out are simplices.

Proof: The previous corollary’s assertion, that W, is a semi-direct product
of a translation group and of W, shows that the point 0 is a special (or good)
vertex for the affine reflection group W,. That is, as in the previous section
on affine reflection groups, the map from W, to the group of linear parts of
the maps is surjective when restricted to W.

Further, since W, contains the coroot lattice, the chambers cut out by this
affine reflection group have compact closure. Thus, by results on affine re-
flection groups, since W is indecomposable the chambers are simplices. (Note
that our present W is the W of the previous section on affine reflection groups).

Since 0 is a good vertex (with stabilizer W), from our discussion of affine
reflection groups in the previous section we know that there is a chamber C'
cut out by W, with walls ns o for s € S, and with just one more wall. &
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13. Affine Coxeter Complexes

Tits’ cone model of Coxeter complexes
Positive-definiteness: the spherical case

A lemma from Perron-Frobenius

Local finiteness of Tits’ cones

Definition of geometric realizations

Geometric realization of affine Coxeter complexes
The canonical metric

The seven infinite families

The main goal here is to give a ‘geometric realization’ of Coxeter complexes,
upon which we can put a metric structure, justifying to some degree both the
appellations ‘spherical’ and ‘affine’.

13.1 Tits’ cone model of Coxeter complexes

Here we do preparatory work, giving Tits’ construction which provides a
link between abstract Coxeter complexes on one hand and ‘concrete’ reflection
groups on the other hand. Specifically, we look further at the linear repre-
sentation (1.3) of a Coxeter group on a finite-dimensional real vectorspace V,
and follow Tits’ construction of a poset of subsets of the dual V* ‘realizing’
the Coxeter complex (3.4).

Let (W, S) be a Coxeter system (1.2) with associated Coxeter form (,) on
the real vectorspace V with basis e; for s € S. We assume that S is finite, of
cardinality n. We have the linear representation

W AT CcGcGLY)
defined on generators by
o(s)(v) = v — 2(v,es)es

where G is the isometry group of the (possibly degenerate) Coxeter form (, ).
In our earlier discussion (1.3), (1.4), (1.5) we saw that this map is an injection.
Let GL(V') have the ‘usual’ topology. This can be described in many equiv-
alent ways. For example, the real-linear endomorphisms of V' can be identified
with the n?-dimensional real vectorspace of real n x n matrices. The latter can
be given the topology of ", and then GL(V) given the subspace topology.
In any event, we give G the subspace topology it inherits from GL(V'). The
isometry group @ is, by definition, the subset of GL(V') consisting of elements
g so that
(gv,gv') = (v,v')
for all v,v". The function (,) is continuous, so these are ‘closed conditions’,
so G is an intersection of closed subsets of GL(V'), so is closed.
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Let o* be the contragredient representation of W on the (real-linear) dual
space V* of V, defined ‘as usual’ by

(0" (w)A) (v) = Mo (w™")v)

We simplify notation by writing simply wv in place of o(w)v, and also now
write wA in place of o*(A).

A problem in using the Coxeter form to talk about the geometry on V'
is that it may be degenerate, and then not give an isomorphism of V' with
its real-linear dual. Therefore, for present purposes, instead of the Coxeter
bilinear form on V x V', we use the canonical bilinear pairing

(Y:VxV"=>R
That is, for v € V and z € V*, we now use notation
(v, ) = z(v)

For s € S define walls, upper half-spaces (half-apartments), and lower
half-spaces (respectively) in V* by

Zs={x € V*:(e5,\) =0}
As={x e V" :(es,2) >0}
By, ={z e V" :(es,z) <0} =54,
and the fundamental chamber
C=[) 4.

sES

The sets As and By are open, and Z; is closed. Note that, since S is finite, C'
is a finite intersection of opens, so is open. Also, s interchanges A; and B,
and fixes Z; pointwise; indeed, Z; is visibly the fixed-point set of s.

For a subset I of S, let

E:(ﬂz&m M A4s

sel s¢1

Then Fy = C and Fs = {0}. Let W} be special subgroup (1.9) of W generated
by I. We observe that Fy # 0, as follows. Let {zs} be a basis for V* dual to
the basis {e,} for V, that is,

(es,z¢) =0 for s#t

>

sl

and (es,zs) = 1. Then

is visibly in F7.

It is easy to see that the group Wi fixes Fy pointwise: each s € [ fixes Zg
pointwise, so certainly Fy C Z; is fixed pointwise by the subgroup Wy of W
generated by I.
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On the other hand, if s € S does fix A € FT, then
(es, A) = (ses, sA\) =

= —(es,8\) = —(es, \)
so0 A € Zs. Thus, if s fixes every XA € Fj, then since the e; for ¢t € I are linearly
independent, it must be that s € I. It is not yet clear, however, that W7 is

exactly the stabilizer of every point in F7.
Define the Tits’ cone

U:UwU

wew

c=||Fm
I

where

is the topological closure of C.

Theorem: The Tits’ cone U is a convex cone in V*, and every closed line
segment in U meets only finitely-many sets of the form wFy. If wFrNFy # 0,
then I = J and w € I (so actually wFy = F; and J = I and w € Wy). The
set C is a fundamental domain for W acting on U. That is, given a point
u € U, the W-orbit Wu of u meets C in exactly one point.

Proof: First, the fact proven earlier (1.4), (1.5) that ¢(ws) > ¢(w) if and
only if wes > 0 (etc.) can be immediately paraphrased as follows: for s € S
and w € W,

L(sw) > L(w) <= wC C A
L(sw) < l(w) <= wC C Bs
Note that we consider sw rather than ws.

We first prove the assertion concerning wFr N Fy, by induction on £(w).
If ¢(w) = 0 then we are done. If £(w) > 0, then there is s € S so that
{(sw) < £(w). As just noted, this implies that wC' C sA; = B,. By continuity,
wC C B,, where By is the topological closure of B,. Since F; C C' C Ay, we
have C NwC C Z,. Therefore, s fixes each point in the assumedly non-empty
set wFr N Fy.

Since s fixes some point of Fy, from the short remarks preceding the the-
orem we have s € J. Also,

swFrNFy=s(wFrNFEy)#0

Thus, induction applied to sw implies that I = J and sw € Wy. Since
s € J =1, it must be that w € Wj.

Thus, we find that the sets wFj are disjoint for distinct cosets wW; and
distinct subsets I C S. This gives the second assertion of the theorem.

From the definition of the ‘cone’ U, each W-orbit meets C in at least one
point. Suppose that A, € C are both in the same W-orbit: take w € W so
that w\ = p. Take I,J C S sothat A\ € Fr and p € Fy. Then wFr N F; £ 0
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implies that I = J and w € W7, so A = . This proves that C is a fundamental
domain for the action of W on U.

Next show that U is a convex cone: from the definition, it is immediate
that U is closed under taking positive real multiples. Thus, it suffices to show
that, for A\, u € U, the closed line segment [\, u] connecting them lies inside
U. In fact, we will prove that it is covered by finitely-many of the (disjoint)
sets wFy.

The assertion is clear if A, ¢ are in C, which is convex and covered by the
Fy’s, of which there are finitely-many since S is finite.

Without loss of generality, take A € C and p € wC. We do induction on
{(w), considering only £(w) > 0. Now [A,u] N C = [\, v] for some v € C, so is
covered by finitely-many of the disjoint sets Fy. Since p & C, thereis I C S
so that u € B, for s € I and pu € A, for s ¢ I. If v were in A, for all s in I,
then other points on [, u] close to v would also be in A, for s € I and in A,
for s € I, since both u,v € A, for s ¢ I. But then such points near v would
also lie in C, contradicting the definition of v (and the convexity of C).

Therefore, for some s € I, v € Z,. Since p € By, wC C B,. Then
wC C By. The first remarks of this proof yield ¢(sw) < ¢(w). By induction
on length, sv = v € C and su € swC, and also [, su] has a finite cover by
sets w’'F'y. From this the assertion of the theorem follows. &

Corollary: The image I' of W in the isometry group G is a discrete
(closed) subgroup of G.

Proof: Fix X € C. The map A : w — w is continuous, so since C is
open N = A~1(C) is open. Certainly N contains 1. The theorem shows that
o*(W)NN = {1}.

This suffices to prove that the image of W in GL(V*) is discrete, as follows.
Let N’ be a neighborhood of 1 so that zy~' € N for all z,y € N'; this is
possible simply by the continuity of multiplication and inverse. If a sequence ;
of images of elements of W in GL(V*) had a limit point h, then for sufficiently
high index i, we would have yi_lh € N’ for all ¢ > i,. Then 7,'7]-_1 € N for all
t,J > i,. Since N meets the image of W just at 1, this shows that v;v; =1
for all i,j > i,. Thus, discreteness is proven.

From this, we see that the image of W in GL(V) is discrete, since the
‘adjoint’ map by g — ¢* defined by

(v,9"A) = (g0, A)
is readily seen to be a homeomorphism of GL(V) to GL(V*). &
Now let X be the poset of sets wFy, where we use the ordering that
wFr < w'Fy

if wFT is in the topological closure of w’Fy in the usual topology on V.
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Corollary: The poset of sets wF; (with I # S) with ordering just de-
scribed is isomorphic (as ‘abstract’ simplicial complex) to the Coxeter complex
of (W, S), via

(]5 : ’wF] — wWI

where W7 is the subgroup of W generated by a subset I of S. Further, this
isomorphism respects the action of W, in the sense that

p(wo) = wh(o)
for all w € W and for all simplices o.

Proof:  Again, the Coxeter complex was described as a poset and as a
simplicial complex in (3.4).

First, the requirement that I # S removes 0 from U. This is certainly
necessary for there to be such a poset isomorphism, since otherwise {0} = Fs
would be the unique minimal simplex in the complex, which is absurd.

In the theorem we showed that if two sets wFy and w'F’;y have non-empty
intersection then w = w' and I = J. Thus, certainly ¢ is well-defined. Then
it certainly is a bijection of sets, and visibly respects the action of W.

If the closure of wFy contains w' Fy, then the closure of Fy contains w™'w'F.
Then by the theorem w—'w’F} is of the form Fg for some K C S, so neces-
sarily w—tw' € Wy, the stabilizer of Fy. and w—'w'F; = Fy. Then I C J.
This shows that ¢ preserves inequalities.

On the other hand, if wW; > w'W; then by definition wW; C w'Wj.
Then Wi C w™'w'Wy. Since W7 is a subgroup of Wy C W, it must be that
wlw' € Wy, and I C J. Then the reverse of the argument of the previous
paragraph shows that wF contains w'F. &

13.2 Positive definiteness: the spherical case

Throughout this section, the standing assumption on the Coxeter system
(W, S) is that the Coxeter form is positive definite. All we want to do is prove
that this implies that the Coxeter group is a finite linear reflection group
(12.3), although one can continue easily in this vein, for example proving that
the Coxeter complex is a triangulation of a sphere.

Corollary: If the Coxeter form is positive-definite then the group W is
a finite group, and consists of linear reflections.

Proof: 1If the Coxeter form is positive-definite, then the isometry group
G of it is compact, being the orthogonal group (that is, isometry group)
attached to a positive-definite quadratic form over the real numbers. (This is
a standard sort of fact, and is a worthwhile elementary exercise to consider).
From above, the image under the linear representation ¢ of the Coxeter group
W in GL(V) is a discrete (closed) subgroup. (We saw much earlier that the
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map W — GL(V) is injective). A discrete (closed) subset of a compact set is
finite.

Since it is positive-definite, the Coxeter form gives an inner product on the
space V. By construction, the images o(s) for s € S are orthogonal reflections
with respect to the inner product arising from the positive-definite Coxeter
form. Let 7, be the linear hyperplane fixed by o(s). Since, as we have just
seen, the whole group is finite, there must be only finitely-many hyperplanes
wn, for w € W, s € S. Since, after all, W is generated by S, it must be that
o(W) is the finite linear reflection group generated by the o(s). &

Remarks: Further, since V' has basis consisting of vectors es which are
—1 eigenvalues for o(s), it is clear that the action of W on V is essential
(12.3).

13.3 A lemma from Perron-Frobenius

Here is a prerequisite to the affine case, which is a bit of peculiar elementary
linear algebra. This is a small part of what is apparently called ‘the Perron-
Frobenius theory of non-negative matrices and M-matrices’.

A symmetric n X n matrix is sometimes called indecomposable (compare
(1.2)) if there is no partition {1, ... ,n} = ILJ of the index set into non-empty
subsets so that the (i, )*® entry M;; is 0 for i € I and j € J.

In the sequel, we will concern ourselves with Coxeter systems (W, .S) whose
Coxeter matrix meets the hypotheses of the following elementary lemma,
whose conclusion will allow us to see (a little later) that the associated Coxeter
complex ‘is’ an affine space.

Recall that a symmetric bilinear form (, ) is positive semi-definite if (v,v) >
0 for all v € V', and positive-definite if (v,v) = 0 implies that v = 0.

Lemma: Let M be an indecomposable real symmetric n x n matrix which
is positive semi-definite. Assume further that A/;; < 0 for ¢ # j. Then

{veER" : Mv=0}={veR":v' Mv=0}

where v is the transpose of v and we view v as a column vector. Further,
the dimension of the kernel {v € R* : v Mv = 0} of M is 1. Finally, the
smallest eigenvalue of M has multiplicity one, and has an eigenvector with all
positive coordinates.

Proof: The inclusion
{veR" : Mv=0}C{veR" :v"Mv=0}

is clear.
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Since M is symmetric an positive semi-definite, by the spectral theorem
there is an orthogonal matrix @ so that QMQ ™ = D is diagonal with non-
negative diagonal entries Dy,... ,D,. Then

v Mv=0v'Q"DQu = (Quv)" D(Qu) = Z Diw?

where w; is the i*" coordinate of w = Qu. By the non-negativity of the D;, if
v Mv = 0, then it must be that for each index i we have D;w? = 0, so either
D; =0 or w; = 0. Then immediately Dw = 0. Thus,

0=Q"-0=Q"Dw=Q"D(Quv) = Mv

Thus, we have equality of the two sets.

Suppose that the kernel of M has positive dimension. Take 0 # v in the
kernel. Let u be the vector whose entries are the absolute values of those of
v. Since M;; <0 for ¢ # j, we obtain the second inequality in the following:

0<u"Mu<v' Mv=0

Thus, u also lies in the kernel.
Now we show that all coordinates of u are non-zero. Let J be the non-
empty set of indices so that u; # 0 for j € J, and let I be its complement.

Since
Z MijUj = Z MijUj =0
J jeJ
for all indices 7 € I, and since M;; <0, for j € J and i € I we have M;ju; <0.
Since the sum is 0, each non-positive summand M;;u; (with j € Jandi € I) is
actually 0. If I were non-empty, this would contradict the indecomposability
of M. Thus, I =0, so u has all strictly positive coordinates.

Since u was made by taking absolute values of an arbitrary vector v in the
kernel, this argument shows that every non-zero vector in the kernel of M has
all non-zero entries. This precludes the possibility that the dimension of the
kernel be larger than 1: if the dimension were two or larger, a suitable non-
zero linear combination of two linearly independent vectors can be arranged
so as to have some entry zero.

Let d be the smallest (necessarily non-negative) eigenvalue of M. Let I be
the identity matrix of the same size as M. Then M — dI still satisfies the
hypotheses of the lemma, and now has an eigenvalue zero. Thus, as we just
proved, its zero eigenspace has dimension one, so the d-eigenspace of M has
dimension one. &

Corollary: Let M be an indecomposable real symmetric n x n matrix
which is positive semi-definite. Assume further that M;; < 0for i # j. Let N
be the (n — 1) x (n — 1) matrix obtained by deleting the i*" row and column
from M. Then N is positive-definite.
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Proof:  Without loss of generality, take i, = 1. If N were not positive
definite, then there would be a non-zero vector w = (ws,... ,w,) in R*"! so
that w" Nw < 0. Let

v = (07 |U)2|, B |wn|)
Then, letting M, be the (j, k)*® entry of M,

0 S UTM’U S: Z Mij|wi||wj| S
2%
S Z Mijwiwj

1)
since M;; < 0 for ¢ # j. Thus, we have
0 S Z Mijwiw]- S ’UJTNU) S 0
i,
Thus, equality holds throughout, and by the lemma Mwv = 0. But the lemma

also asserts that M v = 0 implies that all entries of v are non-zero (if v # 0),
contradiction. Thus, IV is positive definite. &

13.4 Local finiteness of Tits’ cones

For this section, to prove the desired local finiteness properties of Tits’
cone model (13.1), we will have to assume that the Coxeter groups Wy for I
a subset of S with I # S are finite.

We will see that this hypothesis is met in the case that (W, S) is affine,
which by definition means that it has indecomposable Coxeter matrix which
is positive semi-definite but not positive definite. (Again, this terminology
will be justified a little later).

Recall (1.4) that the collection ® of all roots of (W, S) is

® = {wes; :w € W,s € S}

For present purposes, we suppose that all the roots wa = eg are ‘unit vectors’
in the sense that (@, @) =1, where (,) is the Coxeter form.

The set & of positive roots is the collection of those roots which are non-
negative real linear combinations of the roots e;. The set A of the roots e
(for s € S) is the set of simple roots. We saw earlier (1.4), (1.5) that always

¢ =0T U0

Also, for w € W, the length ¢(w) of w is equal to the number of positive roots
a so that wa is negative (that is, is the negative of a positive root).

From the earlier discussion of roots, we know that the fundamental chamber
C as defined earlier is

C={zeV*:{(a,z) >0 Yaec o'}
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And aroot f is positive if and only if (3,z) > 0 for all z € C (or, equivalently,
for one z € C).
For € V*, let v(z) < oo be the number of o € T so that

(a,z) <0
For example, the fundamental chamber C' is the subset of V* where v = 0.

Lemma: If Wy is finite for subsets I of S strictly smaller than S, then
the Tits’ cone U associated to (W, S) is

U={0tu{zeV":v(z) < oo}

Proof: Let X be the set of x with v(z) < co.
First, from the fact that £(w) is the number of positive roots taken to
negative, it follows that for z € C' and w € W we have

v(wz) = l(w) < 00

Thus, all the images wC' of the fundamental chamber C lie inside X.

Next, we check that each Fy with I # S lies inside X. Thus, there are only
finitely-many positive roots which are linear combinations of just {es : s € I'}.
Thus, since (es,x) > 0 for z € Fy and s ¢ I, generally (a,x) > 0 for positive
roots a which are not linear combinations of just {es : s € I'}. This shows
that for z € Fr with I # S we have v(x) < 0o, so F; C X, as claimed.

Last, we show that wF; C X for w € W and I # S. This argument just
is a slight extension of that for the case Fr = C. Take x € F;. For a € &1,
consider the condition

0> (a,wz) = (w ', z)

This condition requires that either w—'a be a negative root, or among the
finite number of positive roots 3 so that (8,z) = 0 on Fr. Since £(w) is finite
and is the number of positive roots sent to negative, there are altogether only
finitely-many positive roots a so that

0 > (a,wx)
That is, wFr C X for I #S. &

Remarks: The point of the following lemma is that the hypotheses of
the preceding lemma are indeed satisfied by affine systems (W, S). After all,
these affine Coxeter systems are the main object of interest here.

Lemma: For affine (I, S) the subgroups W; are finite for a proper subset
IofS.

Proof: Indeed, by the Perron-Frobenius lemma (13.3) the Coxeter matrix
for a proper subset I of S is positive definite. From our discussion (13.2) of
the case where the Coxeter matrix is positive definite (that is, ‘the spherical
case’), we know that the Coxeter group W7 is indeed a finite group, since it
is a discrete subgroup of a compact isometry group. &
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Corollary: For (W, S) so that W is finite for proper subsets I of S, the
set U — {0} (that is, the Tits’ cone with 0 removed) is an open subset of the
ambient space V*. Further, the W-stable set H of linear hyperplanes

Ns,w = {x € V™ : (es,wz) =0}

is locally finite in U —{0}, in the sense that for a compact set K inside U — {0},
there are only finitely-many n € H so that K Nn # 0.

Proof: Let ¥ be the set of subsets ®' of &t so that the difference &+ — &’
is finite. For ®' € ¥, let

U@)={zeV*:{a,z) >0, Vac d}
Then each U(®’) is visibly open, and

v-{oy=UJ v@
eV
is a union of opens, so is open.
To prove the asserted local finiteness, for elementary reasons we need only
consider compact sets K which are the closed convex hulls of n + 1 points of
U, where n = dim V*. If a linear hyperplane

n={zeV*:{v,z) =0}

meets such a set K, then there must be a pair y, z of vertices of K so that (v,y)
and (v, z) are not both > 0 and not both < 0; otherwise, taking convex com-
binations, the linear function  — (v, z) would be > 0 or < 0 (respectively)
on the whole set K. Thus, if n meets K, then n must meet a line segment
¢ connecting two vertices of K. Of course, there are only finitely-many such
line segments for a give set K of this form.

Thus, it suffices to show that a closed line segment ¢ inside U — {0} meets
only finitely-many of the hyperplanes 1, ,,. Now 15, NU is the union of sets
w' Fr. We showed that in general a line segment ¢ inside the Tits’ cone meets
only finitely-many sets w'Fr. This gives the local finiteness. &

Remarks: Without the assumption that W7 is finite for I a proper subset
of S, the lemma and corollary are false, although some parts of the arguments
still go through.

It is still true in general, by the same argument as just above, that the set
X where v is finite is open and contains all images wC', but it is not true that
Fy lies inside X if it should happen that W7 is infinite. This is because if Wy
is infinite then there must be infinitely-many positive roots which are linear
combinations of e; for s € I, so then F7 lies on infinitely-many hyperplanes
(wes, ) =0, sois not in X.

It is still true in general that the set X, which is obviously an open set even
if U may not be, is a convex W-stable cone, by the same argument as in the
section on Tits’ cones in general. But in general we do not obtain a model
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for the Coxeter complex, since we will have lost those faces F; with infinite
isotropy groups Wr.

It is still true, by the same argument as just above, that the set of hyper-
planes 75 4, is locally finite in the set X. But this is a far weaker assertion (in
general) than the assertion of local finiteness in U, which may contain limit
points of X, for example.

13.5 Definition of geometric realizations

We need a notion of geometric realization of a simplicial complex X. This
section is essentially elementary and standard, establishing some necessary
conventions.

Recall that a (combinatorial) simplicial complex is a set X of subsets (called
simplices) of a vertex set V, so that if z € X and y C x then y € X.

Define the geometric realization |X| to be the collection of non-negative
real-valued functions f on the vertex set V of X so that

> fo)=1

veV

and so that there is © € X so that f(v) # 0 implies v € z.

For example, if X is a simplex (that is, is the set of all subsets of V'), then
we imagine |z| to be the collection of ‘affine combinations’ of the vertices.

Recall that a map ¢ : X — Y is a map of the vertex sets so that for
every simplex € X the image ¢(x) is a simplex in Y. We will only consider
maps ¢ : X — Y of simplicial complexes so that for all simplices x € X
the restriction ¢, is injective. In particular, we are requiring that ¢ preserve
dimension of simplices. This is part of the definition of the chamber complex
maps we considered earlier.

For such ¢, the restriction ¢|, to a simplex € X is invertible, since it
is injective. Then we have a natural geometric realization |¢| of the map ¢,
given by

o]+ 1] = [

on the geometric realizations, defined as follows. For f € |X]|, let z € X be
such that f is 0 off . Then for v’ in the vertex set of Y, put

6(H(') = f(¢~1v') for o' € ¢(x)

81(N)W') =0 for v ¢& ()

The topology on |X| can be given by a metric, as follows. For f, g € |X|,
define the distance d(f, g) between them by

d(f,g9) = sup |f(v) —g(v)]

where V is the vertex set of X.



Garrett: ‘13. Affine Coxeter Complexes’ 183

It is immediate that the geometric realization |¢| of a simplicial complex
map ¢ : X — Y (whose restrictions to all simplices are injective) has the
property that

dx (f,9) = dy (|9[(f),14](9))

From this it is clear that the geometric realization |¢| is a continuous map of
topological spaces.

In particular, for a simplex z € X, we have a continuous inclusion |z| —
|X|. And it is clear that the geometric realization of a (‘combinatorial’) sim-
plex © = {v,,... ,un} is a (‘geometric’) simplex

{(toy- 1 tm):0<t; <1 and Y t;=1}

(3

The map is the obvious one:

= (f(to),- - ftm))

Very often one is presented with a vertex set imbedded in a real vectorspace
Z, and one wants to have the geometric realization |X| be ‘imbedded’ in
Z. Let i : V. — Z be a set map of the vertex set to Z. For a simplex
x ={vg,...,un}in X, let i(x)° denote the set of convex combinations

toi(vo) + ..+ tmi(vm)

where 0 < t; < 1 for all indices j. This is the open convex hull of the point
set i(z). We can define the ‘obvious’ map

li| - |1 X| = Z
as follows: for f € |X| which is zero off a simplex z = {vo,... ,v}, let

|l|(f) = f(vo)i(vo) + .. + f(vm)i(vo)

It is easy to check that such a map [i| is continuous.

And clearly |i| is injective if and only if for any two simplices z,y of X
if i(2)° Ni(y)° # O then x = y. In particular, this condition implies that,
for a simplex x = {v,,... ,vp} in X, the images i(v,), ... ,i(vy,) are affinely
independent. In particular, if there is such an injection |X| — Z, it must
be that the dimension of Z is greater than or equal the dimension of the
simplicial complex X.

Recall that a set Q of subsets of Z is locally finite if any compact subset of
Z meets only finitely many sets in 2.

Lemma: If |i| : | X| — Z is injective, and if the set Q of images |i|(|x])
of geometric realizations of simplices z in X is locally finite in Z, then |i| is a
homeomorphism of |X| to its image.

Proof: We must prove that the inverse of |i| (which exists because |i] is
assumed injective) is continuous on |i|(|X|). To this end, the local finiteness
allows us to assume without loss of generality that there are only finitely-many
simplices in X altogether. Then |X| is compact, since it is a finite union of
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geometric realizations |z| of its simplices, and these are compact sets. Thus,
we have a continuous injection |i| of the compact topological space | X| to the
Hausdorff topological space |i|(|X]|) C Z.

A standard and elementary point-set topology argument shows that |i] is
a homeomorphism, as follows: let U be open in |X|. Then C' = |X| - U is a
closed subset of a compact space, so is compact. Thus, the continuous image
|i](C) is compact, so is closed since |i|(]X|) is Hausdorff. &

13.6 Criterion for affineness

Here we finally prove that if the Coxeter form is affine then the geometric
realization really is a Euclidean space. Further, the Coxeter group acts as an
affine reflection group, and the chambers cut out are n-simplices.

Thus, our definition (via indecomposability and positive semi-definiteness,
etc.) is really the criterion, but what have delayed proof until now. It is only
now that justification is provided for the term affine, even though it has been
used for a while.

Remarks: Here ‘simplex’ is used in the ‘physical’ sense as in the dis-
cussion of reflection groups, rather than in the ‘combinatorial’ sense as in the
discussion of simplicial complexes).

By definition (13.4), a Coxeter system (W,S) is affine if it is indecom-
posable and if the associated Coxeter matrix is positive semi-definite but not
positive definite.

Remarks: Any Coxeter system (W, S) can be written as a ‘product’ of
indecomposables in the obvious manner, so there is no loss of generality in
treating indecomposable ones. And, the assumption of indecomposability is
necessary to obtain the cleanest results.

Let (W, S) be affine. As usual, let e; for s € S be the basis for the real
vectorspace V on which W acts by the linear representation o. We identify
w € W with its image by 0. We have the contragredient representation ¢* on
the dual space V*. In either case we identify W with its image in the group
of automorphisms. This is reasonable since we have already shown that W
injects to its image.

Let

Vi={veV:(v)y=0 W eV}

Then on the quotient V/V+ the symmetric bilinear form induced from ()
becomes positive definite. Since V= is the intersection of all hyperplanes

H,={veV:(ves) =0}
it is W-stable.
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By the Perron-Frobenius lemma (13.3), under our present hypotheses, the
subspace V1 is one-dimensional, and is spanned by a vector v, = Y s Cs€s
with all coefficients c¢s positive.

Thus, under the contragredient action ¢* of W on the dual space V*, the
group W stabilizes

Z={AeV*:(v,))=0 YoeVt}

where (,) is the canonical pairing V x V* — R. This gives a standard identi-
fication
Z =~ (V/VH)*
by z — A, with
A(v+ V) = (v,2)

Since the form (still written as (,)) induced on V/V< from (,) is non-
degenerate, it gives a natural vectorspace isomorphism of V/V+ with its dual
Z,by v+ V+t =\, with

Ao (v = (v, v)

Thus, via this natural isomorphism, the positive definite form induced by
(,) on V/V+ induces a positive definite form on Z in a natural way.

Let

E={AeV":(v5,A) =1}
This affine subspace of V* is a translate of Z by any A, so that (v,,A,) = 1.
The group W stabilizes E under the action via ¢*, since W fixes v,. The linear
automorphisms o*(w) of V* give rise to ‘affine’ automorphisms of E, simply
by restriction. In particular, W fixes A, and preserves the inner product.

We use the notation from our discussion of Tits’ cones. Since v, has all
positive coefficients when expressed in terms of the ey, v, and eg are not
parallel (noting that necessarily card(S) > 1). Thus, the set

ns=ZsNE={AeV":(e5;A) =0 and (v,,A) =1}

is an affine hyperplane in E, as opposed to being empty or being all of E.
Depending on the choice of A,, the positive definite symmetric bilinear
form (,) on Z can be ‘transported’ to a form (,)g on E by

<>‘7 /\,>E = </\ - Ao, A — /\0>

Then a direct computation shows that s € S gives the orthogonal reflection
through the affine hyperplane n, as affine automorphism of E. Note that
the group W acts by isometries on E, where the metric is that obtained from

<7>E:
d(z,y) = (& —y,x — y)}°

The images wns are evidently affine hyperplanes in E, as well. The set
H={wns:weW and se S}
is a W-stable set of affine hyperplanes in E.
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In the Tits’ cone notation, we are taking
ns =4sNE
Let U be the Tits’ cone

U=|]J wFr=| | wF
w,l w,l

Remarks: The assertion of the following lemma seems obvious, but is
false without some hypotheses. And the argument given in the proof below
is not the most general, since we use extra information available here. In
particular, we use the fact that all the proper ‘special’ subgroups of an affine
Coxeter group are finite. That this is so uses the reflection group discussion,
as well as the Perron-Frobenius lemma. (We used these same facts in a crucial
way in obtaining finer results on the Tits’ cone in this case). Still, this greatly
simplifies the proof of the lemma.

Lemma: Assuming that (W, S) is affine, the set
EnU=JwFinE=||wFNE

w, I w, I
is actually all of E.

Proof: Let o be the n-simplex which is the closure of Fy N E. We may
identify S with the collection of reflections through the affine hyperplanes
ns = ENZs in E and identify W with the group of isometries of the affine
space E generated by S. It is because of the nature of M that W acts by
affine isometries.

Thus, we are claiming that

E= U wo
weW

A more specific version of this assertion is easier to verify. Fix z, in the
interior of o. Let H be the set of all hyperplanes wns for w € W and s € S.
Take € E but not lying in any of the hyperplanes n € H, and not lying in
any of the hyperplanes which contain both z, and the intersection of two of
then e H.

Then either z € o or else the line segment [z,, z] from z, to  meets the
boundary Oo of o at a unique point z;. Let #; be the reflection through the
facet of ¢ containing x; and put o1 = wyo. Then either x € o1 or the line
segment [z1,x] meets the do; at a unique point z;. Continuing inductively,
we define 0, = Wy Tm_1-

We claim that for sufficiently large m the n-simplex o, contains x. This
would prove the lemma, for the following reasons. The collection of hyper-
planes x on which z cannot lie is countable, so the union of these hyperplanes
is nowhere dense in E. (This elementary point was made in detail in our
discussion of reflection groups). Thus, we are considering z in a dense subset
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of E. The Tits’ cone U is convex (13.1), so ENU is convex. Therefore, if we
prove this claim, we will know that E N U contains the convex closure of an
everywhere dense subset of E, hence is all of E.

To prove the claim, it suffices to show that there is a number h and a
number « > 0 so that for indices j, k with |j — k| > h the length of the line
segment [z;, ;] must be at least . Moving everything by an element of W
which takes o; back so o, we need only consider the case j = 0. Here we use
the fact that W acts by isometries of E.

Fix s, € S. We will first show that there is hs;, < oo so that if [z,,z;]
meets no wns, (for w € W) then i < hy,.

To see this, first observe that if z,,21,... ,2; lie on no image wns, of ns,
then all the reflections t,,t1,...,%¢; are actually in the subgroup W, of W
generated by Ss, =S —{s,}. That is, all the intersection points z,, z1, ... ,x;
lie on hyperplanes of the form w'n’ where w' € Wy, and ' = ns with s € S;,.

The Coxeter matrix of Wy, is positive definite, by the corollary to the
Perron-Frobenius lemma above. Therefore, from our discussion of the ‘spher-
ical’ case (13.2), the group Wy, is finite. Therefore, the number hg, of hyper-
planes w'n’ is also finite, bounded by the product of card(W,,) and card(Ss,).

Take h to be the maximum of the numbers hy, as s, ranges over S. We
have shown that if |j — k| > h then [z;, z;] touches an image by W of every
one of the hyperplanes 7, for s € S.

Next we show that there is & > 0 so that a line segment [z}, ;] which
touches an image by W of every one of the hyperplanes 7, for s € S has
length at least a. This will finish the proof of the lemma.

Let

l; = w;l[mi,xiﬂ] - w;loi =0
Putting these line segments together gives a polygonal (that is, piecewise
straight-line) path v inside o which touches each of the n + 1 facets of o.
Then there is an elementary lower bound « for the length of 7, essentially
given by the smallest ‘altitude’ of o. &

Corollary: The set H of hyperplanes of the form wn;s is locally finite in
the affine space E.

Proof: In discussion of affine Tits’ cones, we showed that compact subsets
of U — {0} meet only finitely-many hyperplanes of the form wn,. Thus, the
same property certainly holds for

E=EnNU=En(U -{0})
This is the desired local finiteness. &
Corollary: The group W is an affine reflection group generated by the
reflections S in the hyperplanes s C E. Fixing x5 € 15, the n-simplex
C={zx€E:{x—xzses) >0}
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is a chamber cut out by H in E. &

Corollary: The chambers cut out by H all have compact closure. &

So what we have proven is, in part, that the disjoint pieces wFT of the Tits’
cone U yield a partition of E:

E=|]|wFnE)
w, I

and that the sets wF; N E are the chambers cut out by the hyperplanes in E.

Consider the analogous partial ordering wFy > w'Fy if wF contains w'Fy
in its closure, restricting our attention to ¢ # S. As noted in our earlier
general discussion of the Tits’ cone, the collection of sets wF7 with this partial
ordering is isomorphic as poset to the ‘abstract’” Coxeter complex X(W,S)
attached to (W,S). The vertex set is the set of sets wFs_g,, that is, where
the subset I = S — s, has cardinality just one less than S.

As in our discussion of geometric realizations (13.5), consider the map i
from vertices of the Coxeter complex ¥(W, S) to E given by

’i(wWS_SO) =wkFs_s, NE
By our lemma and its corollaries, the set of images |i|(|z|) for simplices = €
X(W,S) is locally finite in E, so we conclude that
Corollary: The map
|i| - [Z(W, )| = E
of the geometric realization of the Coxeter complex to the affine space F is a
homeomorphism. &

Remarks: And we will continue to use the fact that the group W acts as
an affine reflection group, and cuts out a chamber which has finite diameter,
as observed above.

13.7 The canonical metric

Beyond the fact that it is possible to put a metric on an affine Coxeter
complex which makes it look like a Euclidean space, it is necessary to un-
derstand the metric aspects of simplicial complex automorphisms of these
chamber complexes, and to normalize the metric. This is a preamble to the
concommitant discussion for buildings.

Let f : My — M- be a map of metric spaces, where the metrics on M;
is d;(,). Say that f is a similitude if there is a constant A so that for all
T,y € Ml

da(f(2), () = M ()

Recall that, for an affine Coxeter system (W,S), just above we demon-
strated a homeomorphism |i| of the geometric realization |Z(W, S)| to a cer-
tain affine hyperplane F in the dual space V* of the vector space V upon
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which we have the canonical linear representation. And we gave a metric on
E so that W acts by affine isometries, and the chambers cut out by W have
compact closure, so are of finite diameter. Via |i|, define a W -invariant metric
on |[X(W,S)|.

Keep in mind that by our definition if a system (W, S) is affine then it is
indecomposable.

Theorem: Let (W,S),(W',S") be affine Coxeter systems with metrics
as just described. Let

¢:S(W,S) - X(W', S

be an isomorphism of simplicial complexes. Then the geometric realization
|¢| is a similitude
8]« [Z(W, S)] — [Z(W', 5"

Proof:  We identify the geometric realizations of the Coxeter complexes
with the affine spaces E, E' upon which W, W' act as affine reflection groups.
Let (,),(,) be the inner products on E, E', depending upon choice of base
point. The groups W, W' preserve (,), (,)’, respectively.

Fix the chamber C' in E with facets F,, F1,... ,F, described by hyper-
planes

n, ={x € By : (z,e;) =0} for i>1
Mo ={z € Ey : (x — z,,e,) =0}
for arbitrary fixed e, € n,. Here we take the e; to be inward-pointing unit
vectors orthogonal to 7;. By changing everything by a dilation of E we can
suppose without loss of generality that

(zo,60) =1
We can rewrite the defining condition for the 0" facet as
<$, 60> =-1

Note that every dilation is a similitude.

Let C' = ¢(C), and let F] = ¢(F;). Let the corresponding items for
(W', S",C',F},... F) be denoted by the same symbols as for (W, S) and C
but with primes.

Just above we observed that the Coxeter data can be recovered from the
‘geometry’ of the Coxeter complex. In particular, the number m(s,t) (if finite)
is half the cardinality of the set of chambers with face Wy, ;). Thus, the two
Coxeter matrices must be the same. Therefore,

NN EY
<ei7 ej) - <ei>ej>
since the Coxeter matrix determines these inner products.

Let ® : E — E' be the linear map defined by ®(e;) = e} just for 1 <i <n.
Then ® preserves inner products, and ®(e,) = e/, since for all ¢ we have

<607 ei) = <eloﬂ e;>l
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Then also ®(n;) = 7} since these hyperplanes are defined via the e;, and

the 0'" has been normalized by a dilation to be (z,e,) = —1. Thus, the
orthogonal reflections through these hyperplanes are related by
®s5;d ! = 5!
Then also
eWo =W
That is, we have an isomorphism ®, of simplicial complexes, with
b =D,

That is, the map ® is the geometric realization of a simplicial complex map.

Since both ¢ and the simplicial complex map @, take C to C' and take each
F; to F}, the Uniqueness Lemma (3.2) from our discussion of thin chamber
complexes implies that ®, = ¢. Thus, the ‘geometric realization’ ® = |¢| of
®, = ¢ is an isometry. Of course, we had changed the original metrics on E
and E' by similitudes. &

Corollary: Let (W,S), (W' S") be affine Coxeter systems. Let
¢:S(W,S) - (W', S

be an isomorphism of simplicial complexes. Normalize the metrics on the
geometric realizations |S(W, S), (W', S")| by dilating so that the diameter
of a chamber is 1 in both cases. Then

9] : [B(W, 9)| = [2(W', )|
is an isometry of the geometric realizations.

Proof: Note that we must know that the chambers are of finite diameter
in order to normalize the metric so that the diameter is 1. Fortunately, we
had proven earlier (13.6) that the chambers are (‘geometric’) n-simplices for
|X(W, S)| n-dimensional. Then the assertion follows from the proposition. &

We say that the metric normalized to give a chamber diameter 1, as men-
tioned in the previous corollary, is the canonical metric on the affine Coxeter
complex |X(W, S)|.

13.8 The seven infinite families

We can illustrate the criteria for spherical-ness (13.2) and affine-ness (13.4),
(13.6) of Coxeter complexes by the families A,,Cy, Dy, Ap, By, Cp, Dy, de-
scribed earlier in (2.1) and (2.2). Indeed, now we can substantiate the earlier
description of the first three as spherical and the last four as affine.

In this discussion we will often refer to removal of a vertex from the Coxeter
diagram, as being equivalent to removal of a generator from a Coxeter system.
A minor benefit of this is that some colloquial geometric adjectives can be
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applied to these diagrams. For example, indecomposability of a system is
equivalent to connectedness of the diagram.

To prove that A,,Cy,, D, are spherical, we must prove in each case that
the Coxeter matrix is positive definite. In general, to prove that a symmetric
real matrix is positive definite, one must check that all the determinants of
principal minors are positive (Recall that a principal minor is a submatrix
obtained by removal of some columns and the corresponding rows; that is,
if the iq,... ,i}@h columns are removed then also remove the iy, ... ,i%h rows,
rather than removing a more arbitrary batch of k rows).

Removal of a generator from a diagram of type A, leaves either a diagram of
type A, _1 or a disjoint union of diagrams of types Ay and A,,_r_1. Removal
of a generator from a diagram of type C), leaves either a diagram of type C,_1,
or a disjoint union of types A, and C,_,_1, or a disjoint union of diagrams
of types A,_> and A;. And removal of a vertex from a diagram of type D,
leaves either type A,_1, or type D,_1, or a disjoint union of Ay, Ay, and
Ap_s.

Thus, to prove positive definiteness of all these, it suffices to do an induc-
tion. Thus, it suffices simply to prove that the determinants of the Coxeter
matrices of these three types are positive. This computation can be done by
expansion by minors, and is omitted.

To prove that A,, B,,C,, D, are affine, since the diagrams are all con-
nected we must show that the Coxeter matrices are positive semi-definite but
not positive definite. (The connectedness of the diagrams is evident). To do
this, it would suffice to see that every (proper) principal minor is positive,
and that the determinant of the whole is zero. That is, in part we must check
that the diagrams obtained by removal of at least one vertex are all spherical.
Happily, not only is this the case, but in fact the spherical types obtained are
just the A, C), D, just discussed. One might draw pictures of what happens
to the diagrams.

The only new computation necessary is computation of the determinants,
to check that they are zero. This can be done by expanding by minors, and
we omit it.

The case of A, is somewhat special, being the infinite dihedral group, and
can be treated directly.

Removal of any generator from the system of type A, (with n > 2) leaves
a system of type A,, which we have seen is spherical. Thus, A, is affine.

There are three sorts of vertices in the system of type C,. In terms of the
Coxeter diagram, there are the two vertices at the ends, that is, generators
which commute with all but one other generator. If either of these is removed,
the system remaining is of type C),, which we have proven to be spherical.
Second, there are the two generators adjacent to the ends. Removal of either
of these yields a disconnected diagram, which is the disjoint union of a type
A; and type C),_1, so is spherical although reducible. Third, if n > 4, there
are the generators not adjacent to the ends of the diagram. Removal of these
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yields a disjoint union of diagrams C}, and C),_, for 2 < p < n — 2, which are
again both spherical. Thus, C,, is affine.

In the system of type D,, there are three types of generators. First, there
are the four extreme generators, which commute with all but one of the other
generators. Removal of any of these gives a system of spherical type D,.
Second, removal of either of the two generators adjacent to the extreme gen-
erators gives a diagram which is the disjoint union of two copies of A;, together
with a D,,_1. Last, removal of any other vertex yields a disjoint union of two
spherical types D, and D,,_,. Thus, D,, is affine.

In the system of type B, there are five types of generators. First, at the
end of the diagram with the branch (oriflamme) there are the two generators
removal of either of which leaves a diagram of spherical type C),. Second,
removal of the generator adjacent to the latter end leaves a disjoint union of
diagrams Ay, A, and Cp,_;. Third, removal of the generator at the other
end leaves a spherical D,,. Fourth, removal of the generator adjacent to the
latter one leaves a disjoint union of A; and D,,_;. Last, removal of any other
generator leaves a disjoint union of spherical C, and D,,_,. Thus, B, is affine.

Thus, granting our earlier discussion of affine and linear reflection groups,
together with the linear algebra surrounding the Perron-Frobenius lemma,
verification that these important families of Coxeter systems really are affine
is not so hard. It is unlikely that one could reliably visualize the geometric
realization of Coxeter complexes well enough to directly perceive that a given
complex had geometric realization which was a Euclidean space.
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14. Affine Buildings

Affine buildings, trees: definitions

The canonical metric

Negative curvature inequality

Contractibility

Completeness

Bruhat-Tits fixed point theorem

Conjugacy classes of maximal compact subgroups
Special vertices, compact subgroups

The canonical metrics put onto an affine Coxeter complexes in the last
section will be stuck together now, in a canonical way, to obtain a canonical
metric on an affine building, that is, a building all of whose apartments are
affine Coxeter complexes.

At the end of this part are the first truly non-trivial applications of the
building-theory to a class of groups including important families of p-adic
matrix groups.

14.1 Affine buildings, trees: definitions

In this subsection we define affine buildings, of which the one-dimensional
ones are trees. Several critical features of affine Coxeter complexes are recalled
to emphasize the facts of the situation.

Let X be a thick building with apartment system A. We have seen that
each apartment A € A is a complex X(W,S) attached to a Coxeter system
(W, S). From the discussion (4.4) using links, the chamber-complex isomor-
phism class of an apartment is independent of choice of apartment system,
and is the same for all apartments. In particular, the isomorphism class of
(W, S) is completely determined by the building X.

We say that X is an affine building if each apartment is an affine Coxeter
complex. Emphatically, this requires that the Coxeter data be indecompos-
able, that is, that the Coxeter diagram be connected.

Recall that the requirement of indecomposability is that the generators S
in (W, S) cannot be grouped into two non-empty disjoint sets Si,S2 so that
S = S1USs and so that m(s1, s2) = 2 for all s; € Sy and so € Ss. In effect, this
requires that (17, S) not be a product. This requirement of indecomposability
is not strictly necessary, but without it there are pointless complications.

Again, the affineness of the Coxeter matrix of (W,S) is the requirement
that the Coxeter matrix be positive semi-definite, but not positive definite.
(Already the indecomposability is used here to give such a simple criterion
for affineness via the Perron-Frobenius lemma (13.3)).
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It has been shown (13.6) that with these hypotheses the geometric real-
ization |X (W, S)| of the Coxeter complex X(W, S) is an affine space in which
W acts by affine reflection. And the alcoves or chambers cut out by all the
reflecting hyperplanes are (literal) simplices.

The geometric realizations of these affine Coxeter complexes have canonical
metrics (13.7), normalized so that the diameters of chambers are 1.

A tree is a one-dimensional thick affine building. That is, all the apart-
ments are one-dimensional simplicial complexes. Then the geometric realiza-
tions of the apartments in a tree are isometric to the real line. (For us trees
will play no special role).

The ‘B’ in the BN-pair attached to a group acting strongly transitively on
an affine building is often called an Iwahori subgroup.

14.2 Canonical metrics on affine buildings

Here we establish only the crudest properties of the metrics which can
be put on affine buildings. The more delicate completeness and negative
curvature inequality will be established later, in preparation for the Bruhat-
Tits fixed point theorem and its corollaries concerning maximal compact sub-
groups.

Let X be a thick affine building with apartment system .4. Recall that this
includes the implicit hypothesis of indecomposability of the Coxeter system
associated to the apartments, or, equivalently, connectedness of the Coxeter
diagram.

In discussion of affine Coxeter complexes (13.7), it was proven that a sim-
plicial complex isomorphism

¢:S(W,S) = Z(W', S

of (indecomposable) affine Coxeter complexes has geometric realization |¢|
which is a similitude

9] : [Z(W, 9)] = [Z(W', 5|

Further, if the metrics on the Coxeter complexes are normalized so that cham-
bers have diameter 1, then |¢| is an isometry.

For A € Alet |A| be the geometric realization (13.5) of A, with the canon-
ical metric. The inclusions of simplicial complexes A — X give continuous
inclusions of topological spaces |A| — | X]|.

Given z,y € |X|, choose any apartment A so that |A| contains both = and
y, and define the canonical metric dx on |X| by

dx (z,y) = da(z,y)
where d4(,) is the canonical metric (13.7) on A.

Proposition: The canonical metric on |X| is well-defined.
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Proof:  Suppose that A, A’ are two apartments both whose geometric
realizations contain the points z and y. Then by one of the building axioms
(4.1), there is a simplicial complex map f : A — A’ which is the identity on
AN A'. The fact from (13.7) mentioned above shows that this f must give
rise to an isometry |f| : |A] — |A'| between the affine spaces |A| and |A'|.
Since f is the identity map on A N A’, the geometrically realized map |f] is
the identity map on the geometric realization |A N A’|. Since the points z,y
both lie in |A N A’|, we see that

dA(.T,y) =da (:v,y)

That is, the distance between two points is independent of the choice of apart-
ment containing them. &

For a chamber C, by abuse of notation write |C| for the geometric realiza-
tion of the simplicial complex consisting of C' and all its faces.

In our discussion (4.2) of elementary properties of buildings, we considered
the retraction

p=pac:X—A

centered at a chamber C of the apartment A. This is a simplicial complex map
X — A which is the identity on A (hence, is a retraction). The Uniqueness
Lemma (3.2) from the discussion of chamber complexes showed that there is
at most one such retraction. Existence was a little more complicated to verify,
but was a straightforward application of the axioms (4.1) for a building.

Theorem: Let X be an affine building with ‘metric’ d = dx. Then

e The (geometric realizations of the) canonical retractions p = pac :
X — A centered at a chamber C in an apartment A do not increase
‘distance’, That is,

d(plz, |ply) < d(z,y)

As a special case, if either z or y lies in |C| then

d(|plz,|ply) = d(z,y)

e The function d satisfies the triangle inequality, so really is a metric.

e For z,y € |X|, and for any apartment A so that |A| contains both
z and y, let [z,y] be the straight line segment connecting them, in
the Euclidean geometry on |A|. Then the subset [z,y] of |X| does not
depend upon A, and has the intrinsic characterization

[z,y] = {z € |X]| : d(z,y) = d(2,2) +d(z,y)}

Proof: Again, for any other apartment A’ containing C' the restriction of
p to a function p : A” — A is a simplicial complex isomorphism, by invoca-
tion of the Uniqueness Lemma. Thus, the proposition above shows that the
geometrically realized map |A'| — |A| is an isometry.
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So if x € |C|, for any other y € |X| take an apartment A’ containing C
and so that y € |A’|. Then we have the equality

d(|pl (), |pl(y)) = d(z,y)

This is the special case of the first assertion.
And, for any chamber D in X, since by the axioms there is an apartment
A’ containing both C' and D, the restriction

ol D] = |C]
is an isometry.
Given z,y € | X|, let A’ be an apartment so that |A’| contains them both.
By the local finiteness of the set of hyperplanes cutting out the chambers
(12.1), (12.4), the line segment [z,y] inside |A’| connecting the two points

meets |D| for only finitely-many chambers D. Then we can subdivide the
interval into pieces

[1’,1‘1] - [xoymlL cee [xnflamn] - [xnflay]

so that each subinterval lies inside the geometric realization of a chamber
inside |A’|. Then using the triangle inequality inside |A| and the fact that |p|
is an isometry on chambers, we have

d(lplz, lply) <> d(lplzs, |plzi1) =

= Z d(@i, ziy1) = d(z,y)
This gives the general version of the first assertion, that |p| is distance-
decreasing (or anyway non-increasing).

To show that d satisfies the triangle inequality take z,y, z in | X|, let A be
an apartment so that |A| contains z,y, let C' be a chamber in A, and let p be
the retraction of X to A centered at C' (4.2). Using the distance decreasing
property of |p| just proven, we have

d(z,y) < d(z,|plz) + d(lplz,y) < d(z,z) +d(z,y)
Thus we have the triangle inequality, as desired.
If we have equality
d(z,y) = d(z, 2) + d(z,y)

then the inequalities in the previous paragraph must be equalities. From
Euclidean geometry we find that |p|z lies on the straight line segment [z, y]
connecting z and y. And to achieve the equalities above we must have

d(z,|plz) = d(z,2z) d(|plz,y) = d(z,y)
so we must have
Iplz =t + (1= t)y
with
t =d(z,y)/d(z,y)
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Now this holds for all chambers C' in A, so take C so that |p|z lies in |C|.
Then, from the special case of the first assertion of the theorem,

d(z,1plz) = d(|pl(2), lplz) = 0
From this,
Iolz = 2
as desired. Thus, the line segment [z, y] joining z, y has the indicated intrinsic
characterization in terms of the metric. &

14.3 Negative curvature inequality

More properly, we will prove an inequality which could be construed as
asserting that affine buildings have non-positive curvature. From this it will
follow an affine building is contractible, and complete with respect to its
canonical metric (14.2).

Let X be a thick affine building (14.1) with apartment system .A. That is,
each apartment is an affine Coxeter complex (W, S). That is, the Coxeter
matrix of (W, S) is indecomposable, positive semi-definite, but not positive
definite. We have shown that the geometric realization |E(W, S)| is an affine
space.

For a chamber C, write |C| for the geometric realization (13.5) of the
simplicial complex consisting of C' and all its faces.

Proposition: Negative Curvature Inequality Let X be an affine building
with canonical metric d = dx. For z,y,z € | X|, let

z =tz + (1 —1t)y

Then
&(2,20) <t (2,2) + (1 = ) (z,) — t(L — )d(z,y)

Proof: First we recall that the construction of this point z; makes sense
and determines a unique point. Indeed, in proving the basic properties of the
metric (14.2), we saw that the point

z=tx+ (1 —1t)y

is indeed defined intrinsically, without reference to an apartment, as being the
unique point ¢ in |X| so that

d(q) 1‘) = td(l‘, y) and d(q) y) = (1 - t)d(l’, y)
More generally, we saw that the line segment [z,y] is likewise defined inde-
pendently of choice of apartment A so that |A| contains both = and y.

Let A be an apartment so that |A| contains z,y, and hence contains the
line segment [z,y]. Fix another point ¢ € |A|. Let E = |A| be Euclidean
space taking q as origin with inner product (,) and associated norm | *|. The
choice of ¢ as origin is a minor cleverness which makes this computation much
less ponderous.



198 Garrett: ‘14. Affine Buildings’

We recall the simple identity
|z —y® = |2 = 2(z,y) + [y/?
From this we obtain
2(z,y) = [z’ + |y — |z —y|* = &*(q,2) + &*(¢,9) — & ()
This allows us to compute
d*(q,2¢) = |0 = z|* = [to + (1 - t)y|* =
= e + 2t(1 = )z, y) + (1 = 1)*|y* =
= ’d*(q, ) + t(1 = )[d*(q, 2) + (g, 9) — (2, 9)] + (1 = )*d(q,y) =
In summary, for z,y, q all in the same apartment, we have an equality
d2(q) Zt) = tdQ (q7 :L’) + (]‘ - t)dQ (q7 y) - t(l - t)dQ (1’, y)
in place of the analogous inequality asserted in the proposition.
Now consider arbitrary z € |X|. With a chamber D of |A| so that |D|
contains z;, let p be the retraction to A centered at D (4.2). Applying the
previous identity to z,y,q with ¢ = |p|z, we have

d*(Iplz, 2t) = td*(|plz, 2) + (1 = O)d*(|plz,y) — t(1 = t)d*(z,y)
By the special version of the first assertion of the theorem,
d*(z,2¢) = d*(|pl2, 2t) =
= td*(|plz, @) + (1 = )& (|plz,y) — t(1 — )d*(z,y) <
<td?(z,x) + (1= 8)d(2,y) — t(1 = t)d* (2, y)

where the last inequality follows from the general version of the distance-
decreasing assertion. That is, we have the comparison

d*(z,2) < td*(z,z) + (1 = t)d*(z,y) — t(1 — t)d*(z,y)

as asserted. &

14.4 Contractibility

Corollary: Let X be an affine building with canonical metric d = dx.
For 0 <t <1, let
z=tr+(L-t)y € [z,y]
be the indicated affine combination of z and y. The function
txzxxy—>zz=tex+ (1—1t)y
is a continuous function
[0,1] x | X] x [X| = [X]

and |X| is contractible.
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Proof: First we prove continuity of
txxXxy—zz=tex+(1—1t)y
Take t',z',y' close to t,z,y, respectively, let
z=t'r' + (1 -ty
and apply the negative curvature inequality (14.3) to 2, ', z in place of z, y, 2.
By continuity of the distance function, d(z,x) is close to
d(z,2') = [t'a’ + (1 =ty —a'| = (1 =12’ —y'| = 1 = t")d(a',¢)
and d(z,y) is close to
d(z,y') = [t'a’ + A=ty —y| =t'|2' —y'| = t'd(z",y")
Therefore, as t',2',y' go to t,z,y, we have
td*(z,2') = t(1 — t)’d*(z, x)
(1 =1)d*(z,y") = (1 - t)d*(2,y)
and trivially
t'(1—tYd* (@', y") = t(1 —t)d*(z,y)
Thus, the right-hand side of the curvature inequality goes to
t(l = t)?d*(z,x) + (1 — t)d*(z,y) — t(1 — t)d*(z,y) =0
That is,
Pt + 1=ty te+ (1 —t)y) =0

This is the desired continuity assertion.

Taking y to be fixed in |X| and considering the functions

fi(x) =tz + (1 —t)y
gives us
fi = identity map on |X|
while

fo(1X]) = {y}

which gives the desired contraction of | X| to a single point.

14.5 Completeness

Now we prove completeness of an affine building. A fixed-point theorem
would not be possible without this.

Theorem: The geometric realization |X| of an affine building X, with
its canonical metric, is complete.

Proof: Let p now be the ‘labeling’ retraction p : X — C of X to the
complex C consisting of all faces of a given chamber C (4.4).

(Recall that we constructed this p by constructing a retraction p4 to C
of each apartment A containing C, and then showing that these retractions
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had to agree on overlaps (from the building axioms (4.1)). The retractions
pa were constructed by iterating the map

f:fsnofsn71o"'°fszofs1

where f, is the folding (3.3) of the thin chamber complex A along the s
facet Fs of C, sending C' to itself, and where Fj, ,... , Fs, are all the facets of
C. For example, this folding sends the chamber sC of A to C, where sC is
the unique chamber in A with facet Fj.)

As with the retractions to apartments (4.2) considered above in proving the
negative curvature inequality (14.3), the geometric realization of this p, when
restricted to |D| for any chamber D, is an isometry, and is altogether distance-
decreasing. The only new ingredients needed to prove this are the observations
that the action of the associated Coxeter group W on the apartment ¥ =
Y(W,S) is by isometries, is transitive on chambers, and is type-preserving.

Therefore, given a Cauchy sequence {z;} in |X]|, the image {|p|z;} is a
Cauchy sequence in |C|. Since |C| is a closed subset of a complete metric
space it is complete, so {|p|z;} has a limit y.

For each z; let C; be a chamber in X so that z; € |C;|, and let y; be
the unique point in |C;| so that |p|ly; = y. Since |p| restricted to |C;] is an
isometry,

Therefore, since {x;} is Cauchy, it must be that {y;} is Cauchy.

Lemma: The inverse image in |X| by |p| of a single point y of |C] is
discrete in | X|.

Proof: Generally, given z in the geometric realization |Y| of a simplicial
complex Y, let the star of x in Y be the union st(z) of the geometric
realizations |o| for simplices o € Y so that = € |o|.

We claim that there is § > 0 so that for all z € |X| with |p|z = y the
star of z in X contains the ball of radius ¢ in |X| with center at z. It is
immediate that this star contains no other point z’ also mapping to y by |p|,
so for another point ' mapping to y we have

d(z,z') > &

This would give the desired discreteness property.

To prove the claim: take any apartment A containing C, and let H be
the locally finite collection of reflecting hyperplanes associated to the affine
reflection (Coxeter) group W acting on |A| (12.1), (12.4), (13.4). Let § be the
infimum of the distances from the point y to hyperplanes not containing it.
The local finiteness assures that this infimum is positive. Thus, for z € |A|
with d(y, z) < d the line segment [y, z] does not cross any hyperplane (although
it may lie entirely inside one or more). Thus, in the Tits’ cone notation, the
open line segment (y, z) lies inside some face Fr. Therefore, both y and z lie
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in the topological closure of Fj. Therefore, Fy is a subset of the star of y in
A, and z lies inside the star of y in A.

More generally, if d(z,2) < ¢ and |p|z = y, there is an apartment A’ so
that |A’| contains both # and z. There is a simplicial complex isomorphism
¢ A" = A so that the |¢p|z = y; we have seen that |¢| must be an isometry.
Then

d(y, 1612) = d(|6]z, |8]2) = d(z,2) < 8
By the previous paragraph, |¢|z must lie in the star of y in A. Therefore,
since ¢ was a simplicial complex isomorphism, z had to be in the star of x in
A'. This is certainly a subset of the star of = in all of X. Thus, the star of x
in X contains the ball of radius § > 0 around z, as desired. &

By this lemma, returning to the proof of the last assertion of the theorem,
we see that the Cauchy sequence {y;} must eventually be constant, equal to
some z with |p|z = y. Since d(x;,y;) — 0, it must be that ; — z. This
completes the proof. &

14.6 Bruhat-Tits fixed-point theorem

We will invoke only a special case of the negative curvature inequality
(14.3), with ¢ = 1 (in the notation there). And we abstract it a little.

Specifically, we suppose that we have a complete metric space M with
metric d so that, given x,y € M there is a point m € M so that for all z € M

1 1 1
d(zm)? < 5d(,0)* + 5d(z,y)* = Jd(@,9)°

(In the case of an affine building the point m was the midpoint of the line
segment connecting z,y). An isometry of a metric space is simply a map
¢ : M — M so that

d(¢(x), ¢(y)) = d(z,y)
for all z,y € M.
Theorem: Let G be a group of isometries of the complete metric space

(M,d). If there is a non-empty, bounded, G-stable subset of M, then G has
a fixed point on M.

Proof: Let Y be a non-empty bounded subset of M. For xz € M, let
r2(Y) = sup d(z,y)
yey
The circumradius of YV is
V)= inf r,(V
H(YV) = inf (V)
If z € X is such that r;(Y) = 7(Y), then z is a circumcenter of Y.
Clearly if f is an isometry of M and if x is a circumcenter of a set Y, then
f(z) is a circumcenter of f(Y"), since the notion of circumcenter is respected
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by distance-preserving maps. Thus, the collection of circumcenters of a G-
stable set must be G-stable. Therefore, we will be done if we show that every
non-empty bounded subset Y of M has a unique circumcenter.

With z € Y we have

PV < 5r (V) 4+ 5ry (V) = 1)

2
where the point m is as above, given z,y € M. By rearranging,

d(z,y)* < 2ra(Y)? + 2ry (Y)? — 41 (YV)? < 27y (Y)? + 21y (V)? — 4r(Y)?

DN | =

since certainly 7(Y) < 7,(Y). If both z and y were circumcenters, then
the right-hand side would be zero, so x = y. This is the uniqueness of the
circumcenter.

On the other hand, if we had a sequence of points x, so that r,, (Y) —
r(Y"), then the last inequality applied to x;,z; in place of z,y gives

d(mi,xj)Q <21, (V) + 2ry, (V)% — 4r(Y)?

The right-hand side goes to zero as the infimum of i,j goes to oo, so {z;}
is necessarily a Cauchy sequence in M. The completeness of M assures that
this Cauchy sequence has a limit, which evidently is the circumcenter. This
proves existence. &

14.7 Maximal compact subgroups

The main purpose is to classify conjugacy classes of maximal compact
subgroups of groups G acting on affine buildings (14.1). Actually, rather than
compact subgroup, the weaker and more general notion of bounded subgroup
is appropriate. This is defined just below.

The first result we give determines conjugacy classes of maximal bounded
subgroups in a group with a strict affine BN-pair obtained from an appropriate
action on a thick building (5.2). Here the group is required to act strongly
transitively and preserve types on a thick affine building. This is a cleaner
result than the more general second result, for a generalized affine BN-pair
(5.5).

At the outset we ‘recall’ the standard nomenclature for discussion of bounded
sets in a manner not depending upon a metric nor upon compactness.

A bornology on a set G is a set B of subsets of G, called the bounded
subsets of G, so that

e Every singleton set {z} is in B.

o If FC Fand E € B then F € B.

e A finite union of elements of B is again in .
Suppose further that G is a group. It is a bornological group if, in addition
to the previous requirements, we have

e For E,F € Btheset EF ={ef:e€ E,f € F}isin B.
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e f Ec Bthen E-! ={e!:ec E}isinB.

Let X be a thick affine building (14.1). Let G be a group acting upon X
by simplicial complex automorphisms, and suppose that the subgroup G of G
consisting of type-preserving elements is strongly transitive.

Inside G we have a strict BN-pair (5.2): let B be the stabilizer in G of a
chamber C, and let A" be the stabilizer in G of an apartment A containing
C. The pair (B,N) is a (strict) affine BN-pair in G. Put T = BN N.
Then W = N'/T is the associated Coxeter group, with generators S given by
reflections in the facets of C.

Let A be the stabilizer in G of C, let B be the stabilizer in G of A, and
let T = N'N B be the intersection. The general discussion (5.5) of generalized
BN-pairs showed that Q = T/T is finite, and that G = GT, for example.

(Emphatically, the assumption of affineness is that the associated Coxeter
complex X(W,S) is affine, and that this implicitly includes a hypothesis of
indecomposability, that is, connectedness of the Coxeter diagram).

Define a bornology B on G by saying that E € B if and only if E is
contained in a finite union of double cosets BwB.

The elementary facts about the Bruhat-Tits decomposition, e.g., the cell
multiplication rules (5.1), show that this set B is indeed a bornology on G, so
making G a bornological group.

Remarks: If the group G has a topology in which B is in fact compact
and open, then ‘bounded’ is equivalent to ‘having compact closure’.

We give two theorems here, the first treating the simpler case of the strict
BN-pair, the second treating the general case. As preparation we need the
comparison of notions of boundedness given by the following proposition. We
will need this again for the generalized BN-pair situation, so we give the
general version of the proposition here.

Proposition: The following three conditions on a subset E of G are
equivalent:

e E is contained in a finite union of double cosets BowB with w € W
and o € Q.

e There is a point z € | X| so that Ex = {gz : g € E} is a bounded subset
of the metric space | X|.

e For every bounded subset Y of the metric space | X|, the set EY = {gy :
g € E} is bounded in |X].

Remarks: Note that this applies as well to subsets of GG, in which case
elements o € (2 can be ignored.

Proof: To prove that the first condition implies the second, let = € |C]|
where C is the chamber fixed by B. Then for g = bowb’ € BowB,

d(z,gx) = d(z,bowb'z) = d(z,bowz) = d(b~ 'z, cwz) = d(x, cwz)
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since B fixes any x € |C| and since the whole group acts by isometries. Thus,
BowBz is contained in the closed ball of radius d(z,owz) centered at z.
From this, the first condition implies the second.

Now let Y be a bounded subset of |X| and = € |X| a point so that Ez is
bounded. In particular, let § be a bound so that d(z,gx) < § for all g € E,
and let D be a bound so that d(z,y) < D for all y € Y. Then, for y € Y and
geEL,

d(z,gy) < d(z,gz) + d(gz, gy) = d(x,gx) + d(z,y) <6+ D

Thus, the second implies the third.

Assume that EY is bounded, where Y = |C|. Let A be the apartment
containing C' whose stabilizer is . Let p : X — A be the canonical (4.2)
retraction of the whole building to A, centered at C'. As discussed earlier
(14.2), |p| does not increase distances, so |p|(E|C|) is a bounded subset of |A|.
The set of reflecting affine hyperplanes in |A| is locally finite (12.1), (12.4),
(13.4), so a bounded subset meets only finitely-many chambers.

We have shown that

Q=T/T ~G/G

is finite. Let = be a choice of representatives in 7. In our discussion of
the Bruhat decomposition (5.2) we showed that an element g in the type-
preserving subgroup G lies in BwB where w € W is such that p(gC) = wC.
Thus, for § = go; € G with g € G and 0; € Z, we have p(§C) = wC, since o;
also stabilizes C'. Since |p|(E|C]) is contained in the geometric realizations of
finitely-many chambers in A, certainly p(EC) is a finite union of chambers.
Thus, it follows that E is contained in finitely-many double cosets BwZB,
and each such is a finite union of double cosets BowB.

This proves the proposition. &

Theorem: We assume that G acts strongly transitively and preserves
types on a thick affine building X. With the bornology above, every bounded
subgroup of G is contained in a maximal bounded subgroup. The maximal
bounded subgroups of G are exactly the stabilizers of vertices of X. Each
conjugacy class of maximal bounded subgroups contains a unique one from
among the maximal bounded subgroups

K= || BuwB
wEWg

where S’ = S — {s,} for some s € S and where Wg = (S’) is the special
subgroup of W generated by S'.

Remarks: Indeed, the stabilizer of the vertex of C' of type S' = S — {s,}
is the special subgroup

K= || BwB=BWsB
UJEWSr
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From the Perron-Frobenius lemma (13.3) and its application to Coxeter groups
(13.6), the assumption of affine-ness assures that any group Wg with S’ a
proper subset of S is finite. Thus, such groups K really are bounded in the
present sense.

We will prove this theorem along with the more general version given just
below, which we state first.

Recall that in discussion (5.5) of generalized BN-pairs the following facts
were verified. The groups A, B are normalized by T, and conjugation by
elements of T stabilizes S, as automorphisms of A. And the group G is a
normal subgroup of G, of finite index, with G = TG. Let Q = T/T as above.
Then for 0 € Q and w € W, 0B = Bo = BoB and

oBwB = BowB = B(owo™')Bo

where we note that cwo™! € W. In particular, from this we see that it is
reasonable to take the bornology on G in which the bounded subsets are those
contained in finitely-many double cosets BowB, where o € Q and w € W.

Theorem: Let G act strongly transitively on a thick affine building
X, with type-preserving subgroup G acting strongly transitively. With the
bornology above, every bounded subgroup of G is contained in a maximal
bounded subgroup. Every maximal bounded subgroup K of G is the stabilizer
of a point in X. Conjugating if necessary, we may assume that B C K. The
subgroup K, = K NG is bounded in G and is of the form BWg: B for some
proper subset S’ of S. Identifying K/K, with a subgroup Qg of Q = T/T,
we have

K==QkgK,=Qk-BWgsB=BQxWgs B

Remarks: Note that it is not asserted that for every point y in | X| the
stabilizer of y is maximal, although the proposition above proves that it is
bounded. And, unlike the previous theorem where the points mentioned here
were always vertices in the simplicial complex, we no longer have any such
simplicity.

Remarks: In this generality it is not clear which subgroups of 2 are
candidates for appearance as . For example, in general there is no reason
to expect T' to be a bounded subgroup, so there is no reason to expect that
the whole group 2 could appear as an Q.

Proof: We prove both theorems at once, with two different endings to the
proof.

Since G' acts on X, it acts on its geometric realization | X|. Our discussion of
affine Coxeter complexes and affine buildings assures that the action on |X]| is
by isometries. The negative curvature inequality assures that the hypotheses
of the Bruhat-Tits Fixed-Point theorem are fulfilled. The proposition above
relates the bornology on G or G to the metric on | X|. In particular, it shows
that the stabilizer of a point is indeed a bounded subgroup.
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Conversely, given a bounded subgroup K of G, take any = € |X|. Then
K stabilizes the set Kx, which by the proposition is a bounded subset of
|X|. Thus, K has a fixed point z, € |X|, by the Bruhat-Tits fixed-point
theorem (14.6). Thus, K is surely contained in the fixer of the point z, which
is maximal bounded.

Now let K be maximal bounded, fixing a point « € |X|. Since G is transi-
tive on chambers, by conjugation by G we can assume that z is in the closure
of the fundamental chamber C' (stabilized by B), so B C K.

The type-preserving property of G yields a simple conclusion in that case.
Let 7 be the smallest simplex 7 in X so that z, € |r|. Since G is type-
preserving, g € G stabilizes the geometric realization of a simplex if and only
if it fixes all vertices of the simplex. Thus, the stabilizer K in G of z, is the
stabilizer of 7, which is the intersection of the stabilizers of the vertices of 7.
That is, the maximal bounded subgroups are exactly the stabilizers of vertices
in X. This proves the theorem for the type-preserving group G.

In particular, the bounded subgroup K N G of G must be of the form
BWg: B for some subset S’ of S. By the Perron-Frobenius theory, the subset
S’ must be a proper subset of S for Wg/ to be finite, since (W,S) is affine
(which entails indecomposability).

Let Qi = K/K,, viewed as a subgroup of the finite group Q = T'/T. Since
K, contains B D T and TG = G, we can indeed choose representatives in 7'
modulo K, for all elements of K. Then

K =QgK,
This is the second theorem. &

14.8 Special vertices, good compact subgroups

Only some of the maximal compact (or maximal bounded) subgroups of a
group acting on a thick affine building are suitable for subsequent applications.
In this subsection we give a definition of ‘good’ maximal bounded subgroup,
and see that, as a corollary of the classification of maximal bounded subgroups
there is at least one such, by relating good subgroups to special vertices.

The definition alone already requires our previous results (12.4) on affine
reflection groups.

Let G be a group acting on a thick affine building X (14.1). Let G be the
subgroup of G preserving types, and suppose that the group G acts strongly
transitively on X. Let (W,S) be the Coxeter system attached to G: by
hypothesis this system is affine (and, implicit in this is the assumption of
indecomposability, that is, connectedness of the diagram).

Fix an apartment A. Let |A| be its geometric realization (13.5) which we
view as a real vectorspace equipped with an inner product, with respect to
which the group W acts by isometries. (Recall (12.4) that W acts by affine
maps on |A|). Let w — w be the map which associates to an element w of W
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its linear part. Let W be the group of all linear parts, which we have shown
to be finite in our general discussion (12.4), (13.4) of affine reflection groups.
Fix a chamber C in A, and let B be the stabilizer in G of C.
A maximal bounded subgroup K of G containing B is good if it contains
representatives for .

Remarks: To give a useful definition of good maximal bounded subgroup
without reference to B and W is somewhat awkward, and serves no immediate
purpose.

Corollary: There exist good maximal bounded subgroups of GG, obtained
as BW, B where W, is the fixer in W of a special vertex x of the chamber
fixed by B.

Proof: From the fixed-point theorem corollaries of the previous section,
the maximal bounded subgroups are exactly stabilizers BW, B of vertices z,
where W, is the stabilizer in W of .

For a special vertex x, the fixer of z in BW,B contains representatives
for W,, which maps isomorphically to W (by definition of special). (And in
discussion (12.4) of affine reflection groups it was proven that there always
exist special vertices). &

For a vertex x of C, let S, be the subset of S consisting of those reflections
in S which fix z. That is, S, consists of all reflections in S except the reflection
through the facet of C' opposite the vertex z.

Corollary: There exist good bounded subgroups of G, obtained as V'K,
where K, is a good maximal bounded subgroup of G, and where Q' is a
bounded subgroup of T stabilizing the subset S, of S under the conjugation
action of 7. &

Remarks: While much of the interest here is in the subsequent study of
good maximal compact subgroups, the substance of the result resides in the
fact that special vertices exist in thick affine buildings. And then the fixed-
point theorem together with general facts about Bruhat-Tits decompositions
entail existence of the good maximal compact subgroups.




208 Garrett: ‘14. Affine Buildings’

15. Finer Combinatorial Geometry

Minimal galleries and reduced galleries
Characterizing apartments

Existence of prescribed galleries
Configurations of three chambers
Subsets of apartments, strong isometries

This section does not use the hypothesis of affine-ness. Rather, it is a
relatively elementary but more refined discussion of buildings in general. It
could have taken place earlier, but was not necessary for earlier use.

15.1 Minimal galleries and reduced galleries

Let X be a thick building with labeling A (4.1), (4.4). Extending the notion
discussed earlier (3.4), (3.5), (3.6) for for Coxeter complexes, the type of a
non-stuttering gallery

v=(Cy,C4,...,Cp)
is the list
A(y) = (AMCo N C1), AMC1 N C2), ..., A(Crm1 N C))

of labels of the common facets of adjacent chambers.

Fix an apartment A, in X, and fix a chamber C, in A,. Then (4.2) we
may identify A, with a Coxeter complex (W, S), and the generators S with
reflections in the facets of the fixed chamber C, in A4,. Further (4.4), we may
take the label map A to be a retraction of X to C,, thereby allowing us to
identify the labels of facets with elements of the generating set S of W.

Thus, we can view the type of a gallery v = (C,, ... ,C}) as giving a word
in the elements of S as follows: for

A(Ci—l N Cz) =s5,€S8
we have
/\(7) = (317 82y )Sn)
and we can consider the word
($1,---,5n)

thus associated to 7. Even though a word is merely a list of elements of the
set S, we may often behave as though such a word were the product sy ... s,
inside W rather than the n-tuple.

We say that « is reduced if this word is reduced, in the sense that its
length is what it appears to be, that is, if

£(s1...8,)=mn
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Proposition: Fix two chambers C,, (), in the thick building X. Let
v=(C,,...,C,) be a gallery connecting C, to C,,. Then 7 is minimal if and
only if it is reduced.

Proof: ~ Suppose that « is minimal among galleries connecting C,, C,,.
Then -~ lies in every apartment containing both these chambers, by the com-
binatorial convexity of apartments (4.5). Any such apartment A is a Coxeter
complex X(W, S). Then the labeling of a gallery corresponds to its description
as

Co,51C,,51520,,515253C0, ... ,81,... ,5,C,

where the s; are in S. That is, the label is (s, ... , s,). In our earlier study of
Coxeter complexes (3.4) we showed that such gallery inside a Coxeter complex
is minimal if and only if the word s; . ..s, is reduced, that is, has length n.
On the other hand, suppose that the type of a non-stuttering gallery v =
(Coy...,Cy) is reduced. By induction, we may suppose that the gallery
(C1,...,C,) is minimal, so lies inside an apartment A, by the combinatorial
convexity of apartments (4.5). Let p be the canonical retraction of the building
to A, centered at C; (4.2). Thus, p(C;) = C; for i > 1. The image of v under
p is a gallery with the same type, since the retraction p preserves labels (4.4).
The further crucial point is that p(C,) # Ci, since p preserves lengths of
minimal galleries from C; to other chambers in the building (4.2). Thus, p(v)
is non-stuttering and reduced inside an apartment, so is minimal. Then ~y
itself must have been minimal. &

15.2 Characterizing apartments

Now we can give a geometric characterization of apartments in the maximal
apartment system. We use the idea of type of a gallery, and the result of the
previous section that reduced type is equivalent to minimality of a gallery.

Now let X be a thick building, with maximal apartment system A. In
the course of proving that there is a maximal apartment system (4.4) it was
shown that there is a Coxeter system (W, S) so that every apartment in A is
isomorphic to the Coxeter complex (W, S) attached to (W, S). And when
two apartments A, A’ have a chamber C' in common, the isomorphism A — A’
fixing C' and its faces is unavoidably label-preserving (4.4).

Let o be a subcomplex of X which is a chamber complex itself, and whose
dimension is the same as that of X. (The last condition is that the dimension
of a maximal simplex in o is the dimension of a maximal simplex in X).

Theorem: The subcomplex ¢ is an apartment in the maximal system
A if and only if ¢ is isomorphic to X(W,S) by a simplicial complex map
preserving labels.
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Proof: The idea is to prove that adjoining o to the maximal apartment
system A still satisfies the axioms (4.1) for an apartment system, so o must
be in A.

To prove the claim, we verify that

A =AuU{c}
satisfies the axioms for apartment systems in a building:

Since each apartment A € A is a thin chamber complex (actually a Coxeter
complex), and since o is such by hypothesis, then every complex in A’ is
certainly a thin chamber complex.

The condition that any two simplices lie in a common apartment is certainly
met by A’, since this already holds for A.

The only axiom whose verification is non-trivial is the requirement that,
given two complexes x,y € A’ with a common chamber C, there is a chamber-
complex isomorphism z — y fixing every simplex in z Ny. Certainly we need
only consider the case that t =0 and y = A € A.

By hypothesis, there is a label-preserving isomorphism f : ¢ — A. Since
the Coxeter group W of type-preserving automorphisms of A ~ (W, S) is
transitive on chambers (3.4), we can adjust f so that f(C) = C. It is not yet
clear that this f fixes o N A.

On the other hand, let p be the retraction of X to A centered at C (4.2),
and consider the restriction p, : ¢ — A of p to 0. By definition of retraction
(3.1), p, fixes o N A.

Thus, f and p, agree on the chamber C, and map to the thin chamber
complex A. Let v be a minimal (necessarily non-stuttering) gallery in o
starting at C. The image f(7) is non-stuttering since f is an isomorphism. If
we can prove that p,(v) also must be non-stuttering, then by the Uniqueness
Lemma (3.2), we could conclude that f = p,, verifying the last axiom for a
building and an apartment system.

Now f(7) is minimal in 4, so (3.4), (3.6) it is of reduced type. Thus, since
f is a type preserving isomorphism, + itself is of reduced type. Thus (15.1),
it is a minimal gallery in the building.

Thus, since the retraction p preserves the lengths of galleries starting at
C, the length of p(y) must be the same as that of -y, so p(y) must be non-
stuttering. That is, the restriction p, of p to ¢ maps v to a non-stuttering
gallery.

This allows application of the Uniqueness Lemma (3.2), which yields f =
po- That is, the postulated isomorphism f really is the identity on o N A,
since p is the identity on A, by definition. This verifies the requisite axiom.

[ )
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15.3 Existence of prescribed galleries

The development here uses a continuation of the idea of type of a gallery
discussed just above. We define a sort of Coxeter-group-valued distance func-
tion § on chambers in a thick building. Very roughly put, the main result
in this section asserts that two chambers can be connected by galleries of all
plausible types.

First, an observation: In a Coxeter complex A = X(W,S) we can define a
W-valued function § on pairs of chambers of A by

d({wi}, {w2}) = wi ws

where we recall that the chambers in (W, S) are singleton subsets of W.
Note that this is a refinement of the notion of length of minimal gallery, since
here the length of the element w; Ywy € W is the length of any minimal gallery
from {w1} to {wsy}.

Let (W, S) be the Coxeter system so that the apartments of X are Coxeter
complexes X (W, S). For two chambers C,,C, in X, let v be a minimal (non-
stuttering) gallery from C, to C,,. As above (15.2), we define the type of
as follows. We have proven (4.5) that such a minimal gallery lies inside some
apartment A, which we view as identified with (1, S) (4.3). Then there is
a sequence sy, S, ... , S, of elements of S so that the gallery is

Y= (007 5100, 51,52C,,515253C,, ... , 51...5,Cp = Cn)
The type of v is the word

($1,---,5n)
We define
0(Cy,Cp)=81...8, EW

That is, while the type of a gallery is not quite an element of the group W,
but rather is just a word in the generators S, this function § does take values
in the group itself.

Lemma: The W-valued function ¢ on pairs of chambers in the thick
building X really is well-defined.

Proof:  We must show first that any identification of an apartment with
the Coxeter complex (W, S) gives the same value for § on two chambers
inside A. Second, we must show that the value 6(C,, C,) does not depend on
the choice of apartment A containing the two chambers.

It is not hard to see that two different identifications of an apartment
with ¥(W, S) differ by a label-preserving automorphism of (W, S). The
group W is certainly transitive on chambers in 3(1, S), and the Uniqueness
Lemma (3.2) shows that two label-preserving automorphisms which agree on
a chamber must be identical. Thus, as we have observed on other occasions as
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well, T itself gives all the label-preserving automorphisms of 3(W, S). Thus,
the simple computation

S(wr, wy) = witwy = (wwp) ™ (wws) = 6(ww: , ww,)
shows that § is well-defined on each apartment.

Now let A, B be two apartments both containing C,, C,,. By the building
axioms (4.1), there is an isomorphism f : A — B, and we proved that f is
unavoidably label-preserving. Thus, if we have a minimal gallery v in A from
C, to Cy, its image f(v) in B is a minimal gallery of the same type. Thus,
the value §(C,,C},) does not depend upon which of the two apartments A, B
we use to connect the two chambers by a gallery. &

Proposition:  Fix a chamber C' in an apartment A. For any other
chamber D in the thick building X, we have

5(C, D) = 8(C, pD)
where p = pa ¢ is the retraction of X to A, centered at C.

Proof: Let v be a (non-stuttering) minimal gallery from C to D. The
retraction p preserves the lengths of such galleries, and preserves types as well

(4.2), (4.4). *

Theorem: Let C,,C, be two chambers and §(C,,C,) = w € W. Then
for any reduced expression
W= 85152...8n

for w, there is a minimal gallery of type (s1,... ,s,) connecting C, to Cy,. In
fact, this can be accomplished inside any chosen apartment containing both
chambers.

Proof: By the building axioms (4.1), the two chambers do lie in some
common apartment A. Having seen that § is well-defined, we may as well
take A = £(W,S), and, for that matter, C, = {1}. Then C,, = {w}. By this
point it is clear that the gallery

C, ={1}, {51} = 510y, {s152} = 5152C5 ... ,{s1... 8.} ={w} =C,

connects the two chambers. &

15.4 Configurations of three chambers

The following discussion is important in the sequel, and is of interest in its
own right. It might be viewed as a significant exercise in understanding the
geometry of a building, especially the contrast between thickness and thinness.

The first lemma asserts something possibly already clear, but worth re-
peating for clarity.

Let X be a thick building. Let C,C’ be (distinct) adjacent chambers in
X, and let D be a third chamber, distinct from C,C’. In this section, for two
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chambers z,y in X let d(x,y) be the length of a minimal gallery from z to
y. We will call this the gallery distance from z to y. The gallery distance
d(C', D) is either d(C, D)+ 1, d(C, D) — 1, or d(C, D), just because C,C" are
adjacent.

Lemma: In a Coxeter complex A = (W, S), if C,C', D are chambers
so that C,C" are distinct and s-adjacent, then d(C’',D) = d(C',D) £ 1. In
particular, d(C', D) # d(C, D).

Proof: Without loss of generality (since W acts transitively), we may take
C ={1},C" ={s},and D = {w}. We know (3.4), (3.6) that minimal galleries
from C to D are in bijection with reduced expressions for w. In particular,
d(C, D) = £(w). More generally, for any w,w' € W, we have
d({w}, {w'}) = t(w™" ')
Then
d(C',D) = (s 'w) = l(sw) =l(w) £ 1= (C,D) £ 1

This is the result. &
Proposition: If d(C',D) = d(C, D) + 1, then there is a minimal gallery
v from C’ to D of the form
(c',C,...,D)

!
’)/ =
In the opposite case where d(C', D) = d(C, D) — 1 there is a minimal gallery
v from C to D of the form

y=(C,C',...,D)

For d(C',D) = d(C, D) £ 1, there is an apartment containing all three of the
chambers. On the other hand, if d(C, D) = d(C’, D), then there is a chamber
C so that there are minimal galleries 7y,~' from C,C’ to D of the form

v=(C,Ci,...,D)
v =(C',Cy,...,D)
In this case there is no apartment containing all three chambers.
Proof: 1f d(C;,D) = d(C,D) + 1, then for any minimal gallery
v=(C,Ci,...,D)
from C to D, the gallery
v =(C',C,Cy,...,D)

obtained by prefixing C' to v is necessarily a minimal gallery from C’ to D.
And then by convexity of apartments (4.5), the minimal gallery from C’ to D
(which happens also to contain C) lies in any apartment containing C' and
D. (There is at least one such apartment, by the building axioms (4.1)). The
case d(C',D) = d(C, D) — 1 is symmetrical.
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Now suppose that d(C', D) = d(C, D). The previous lemma shows that the
three chambers cannot lie in a common apartment. Let § be the TW-valued
function defined above on pairs of chambers in X. Put w = 6(C, D) and
s = 0(C,C"). In particular, this means that C,C’ are s-adjacent. Let

vy=(C=0C,,Ci,...,Ch=D)
be a minimal gallery from C to D, of type (s1,...,s,). We saw just above
that w = sy ...s, is a reduced expression for w since 7 is minimal. Consider
that gallery
v =(C',C,Cy,...,D)
Since it is of length n + 1, which is longer by 1 than d(C', D) = d(C, D), it is
not minimal, so (from above) the word

(s,81,---,8n)

is not reduced. That is, £(sw) < f(w). As a consequence of the Exchange
Condition (1.7), we conclude that w has some reduced expression which begins
with s; = s.

Since we have shown above (15.3) that there is a minimal gallery from C
to D of type (s1,...,sy) for every reduced expression

S1...8, =w
for w, we conclude that there is a gallery
Y= (C2007C17"' 7CTL:D)

with §(C,Cy) = s. That is, C,C; are s-adjacent. But C’ also shares the
unique facet of C of type s, so the three chambers C,C’,C; are mutually
s-adjacent. In particular, with the gallery v as just specified,

’)/’: (C,,Cl,... ,D)

is a minimal gallery from C’' to D. The point is that 7,7’ differ only in
that one begins with C' while the other begins with C’, as asserted in the
proposition. &

Proposition: Let C,C’, D be three distinct chambers, with C, C’ being s-
adjacent. Fix an apartment A containing C,C’, and let p, p' be the retractions
of X to A centered at C,C’, respectively. Let H, H' be the half-apartments
corresponding to the reflection s of A in which C,C’ lie, respectively.

e If d(C',D) > d(C,D), then pD = p'D € H.

e If d(C',D) < d(C,D), then pD = p'D € H'.

e If d(C',D) =d(C, D), then pD € H and p'D € H, and spD = p'D.
Note that in the third of these possibilities, C' and pD are in opposite half-
apartments, and C' and p’D are in opposite half-apartments.

Proof: Ifd(C', D) = d(C, D)+1, then by the previous proposition C, C’, D
lie in a common apartment B. Then B is mapped isomorphically to A by p,
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and p is the identity map on AN B: this was a fundamental property of these
retractions (4.2). Then surely
d(C, pD) = d(C, D) < d(C", D) = d(C", pD)

Thus, by our corollary of Tits’ theorem characterizing half-apartments by
gallery distances (4.6), we conclude that pD is in the half-apartment H of s
in which C lies. Further, since B contains C’, another fundamental property
of the retractions p, p’ is that p|p = pz. Thus, we have the first assertion.
The second assertion is symmetrical.

Now consider the case that d(C, D) = d(C’, D). Since p preserves gallery
distances to C' and cannot increase gallery distances to C' (4.2), we have

d(C,pD) = d(C,D) =d(C",D) > d(C", pD) # d(C,rhoD)
Thus, unavoidably d(C’, pD) < d(C, D), which implies that pD € H', again
by the corollaries (4.6) to Tits’ theorem. Symmetrically, p'D € H.
Since these retractions are type preserving (4.4), we have
§(C,pD) =6(C,D)
and
5(C",'D) = 6(C", D)
where 0 is the W-valued distance function used above in discussion of the
existence of galleries of prescribed type (15.3). Now we invoke the previous
proposition, to be sure that there is a gallery
(C1,Cs,...,Cph=D)

with Cy adjacent to both C' and C' and so that

Y= (C,Cl,CQ,... ,Cn = D)
and

’YI = (017017027--' 7C’n = D)
are both minimal galleries. From this the middle equality in the following is
obtained:

5(C",p'D) = 6(C", D) = 6(C, D) = 6(C, pD)

Thus, we deduce from the definition of ¢ that pD = wC = {w}. Similarly,
letting p'D = {w'}, as C' = {s}, we have

w=68(C",p'D) =5 tw = suw
so w' = sw. That is, p’D = spD as claimed. &

Remarks: The assertions of the previous propositions and lemma can be
strengthened a little if the things learned about the W-valued function 4 in
the course of the proofs are included. However, we will not need these sharper
statements in the sequel.
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15.5 Subsets of apartments, strong isometries

The goal of this section is to give a sharp characterization of subsets Y
of a thick building X so that Y lies inside some apartment in X (in the
maximal apartment system). This will be done in terms of the notion of
strong isometry, defined below in terms of the W-valued distance function §
used earlier (15.3) in discussion of existence of galleries of prescribed type.
Let (W, S) be a Coxeter system so that the apartments in X are isomorphic
to the Coxeter complex (W, S).

Let Y, Z be two sets of chambers in X. A strong isometry ¢:Y — Z is
a bijection so that for all C, D € Y we have

(¢C,¢D) = 6(C, D)

Theorem: Let Y be a set of chambers in a thick building X. If YV is
strongly isometric to a subset of some apartment, then Y is a subset of some
apartment in the maximal apartment system for X.

Proof:
We need some auxiliary maps:

Proposition: For a chamber C in an apartment A, and for another
chamber D, there is a unique label-preserving

p=ppca: XA

which sends D to C, and so that the restriction of p to any apartment B
containing D is an isomorphism to A.

Proof: Uniqueness follows immediately from the Uniqueness Lemma (3.2).

For fixed apartment B containing D, we define p as follows. For an apart-
ment B containing D, put

P =JB°PB,D

where pp p is the canonical retraction of X to B centered at D, and where jp
is a label-preserving isomorphism j : B — A sending D to C. The retraction
pB,p itself is an isomorphism when restricted to an apartment containing D,
so p also has this property. &

Lemma: A strong isometry f:Y — A to an apartment A is determined
by knowing fD for any single chamber D € Y. In fact, f is nothing but the
map p = pp;c,4 of the previous proposition, restricted to Y.

Proof: Fixing an identification of A with a Coxeter complex (W, S) so
that fD = {1}, the strong isometry property entails that if 6(D, D') = w then
d(fD, fD') = w. But there is exactly one chamber C' = {w'} in £(W,S) so
that

w=46({1},C")
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namely C’ = {w}, since §({1}, {w'}) = w'.

Now we check that this map f agrees with p = pp.c, 4 restricted to Y. For
this, we use the characterization of pp.c 4 in the proposition just above. For
another chamber D’ in Y, let B be an apartment containing both D and D’,
and put 6(D,D’) = w € W. Let v be a gallery in B from D to D', of type
(s1,-+-,5n). We have

81...8, =6(D,D")

The map p is a label-preserving isomorphism, so the gallery p(vy) in A from
pD to pD’ is of the same type, and we conclude that

o(pD,pD") = 6(C, pD") = w

But, again, C' = {w} is the only chamber in A so that w = §({1},C") = w.
Thus, indeed, f and p agree on Y. &

The following lemma is the crucial point here.

Lemma: Let f:Y — A be a strong isometry to an apartment A in X.
For any chamber C’ not in the image f(Y") of f but adjacent to a chamber in
the image, there is a strong isometry

g:fY)u{d} =X
extending the inverse
flafy) >y
of the map f.

Proof:  We identify A with a Coxeter complex X(W,S) in such manner
that C corresponds to the chamber {1}.

Let C be the chamber in the image f(Y) to which C' is adjacent, and
suppose that these two chambers are s-adjacent. Let D be the chamber in Y
which maps to C by f, and let D’ be any chamber in X which is s-adjacent
to D (and not equal to it). Let y be a chamber in ¥ and let z = f(y).

Let B be an apartment containing both D and D’. Existence of this is
assured by the building axioms (4.1). Let H, H' be the half-apartments for
s in A containing C,C", respectively. Let jp be the unique label-preserving
isomorphism B — A sending D, D' to C,C", respectively. Let J = j5' H and
J = jng’. These are half-apartments containing D, D', respectively.

Write

P = PD;A,C = JB © PB,D
p' = ppiac =B o pBD
From the considerations of the previous section (15.4), either pp py =
PB.D'Y OF pB.pY = $pB,p'Y, with the latter possible only if pp py € J' (and,
concommitantly, pp.py € J).

The isomorphism jp transports this to A. Thus, either py = p'y, or else
py = sp'y, with the latter possible only if py € H' and p'y € H. That is,
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invoking the previous lemma, either p'y = py = x or possibly p'y = spy = sz,
and the latter is not possible unless x € H'. Paraphrased, this is that either

(p'of () =2
or
(0o f ) (a) = 52
with the latter possible only if x € H'.
If f(Y) C H, then we have seen that

f=rly =ply
so we extend f by taking p’ on Y U D':
p:YUD — f(Y)yuc'
where C' ¢ f(Y'). Thus, we have the assertion of the lemma in this case.
On the other hand, if f(Y) does not lie entirely inside H, then we claim
that we can choose the chamber D' so that p'y = fy (rather than sf(y))
for some y € Y so that f(y) € H'. Indeed, if D’ is initially chosen so that

p'y = sfy, then (as above) it must be that there are minimal galleries -y,
from D, D' to y of the form

Y= (D7D17D2>"' 7Dn :y)

V= (D,7D1)D27"' 7Dn :y)
That is, they are the same except for beginning at D or D’. The chamber D
is adjacent to both D, D’. Replacing D’ by D; in this scenario achieves the
effect that d(D',y) = d(D,y) — 1, so (after this replacement) py = p'y € H'.
Since (from the previous lemma) f = p|y, we have succeeded in arranging
fy=pyeH".

Now we claim that necessarily fy; = p'y1 for all y; € Y. Suppose, to the

contrary, that there is y1 € Y so that (instead) sfy; = p'y1. Since all the
maps are non-increasing on gallery lengths,

d(y,y1) > d(p'y,p'y1) = d(fy.sfy1)
Let ¢ be the folding of A to itself which is a retraction to H', and maps H to
H'. Let

Y= (fy =0C,,Ch,...,Ch = Sfyl)
be a minimal gallery from fy € H' to sfy1 = p'y1 € H. Since the gallery
starts in H' and ends in H, there must be an index ¢ so that C; C H' while
Ciy1 C H. Then ¢C;11 = C}, since these two chambers are adjacent across
the wall corresponding to s. Then the gallery ¢v from fy to fy1 = sp'y:
stutters, so

d(fy,sfy) > d(fy, fy)
Putting this together, we have

d(y,y1) > d(fy, fy1)
This is impossible, since f is an isomorphism.
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We conclude in this case as well that the strong isometry
f:Y—>fY)CA
can be extended to a strong isometry
plyup :YUD' — f(Y)UC' C A
This proves the lemma. &

Now we can prove the theorem. From the last lemma, if f(Y) C A is not
the whole collection Y4 of chambers in the apartment A, then we can extend
f~! to a strong isometry on f(Y) U C' for some chamber C' adjacent to a
chamber in f(Y). Let Y4 be the set of all chambers in A, and let ® be a
maximal one among all strong isometries extending f~! to maps from some
set Y, of chambers in A. If Y, were a proper subset of Y4, then the last lemma
shows that we could further extend ®, contradicting the maximality. Thus,
this extension ® must be a strong isometry defined on the whole collection
Y4 of chambers in the apartment A.

Then Y C ®(Ya), and ®(Yy4) is strongly isometric to the set of all chambers
in an apartment via ®~!. Thus, we could have assumed at the outset that
f:Y = Y, was a strong isometry from Y to the set Y4 of all chambers in
the apartment A.

Thus, from the discussion above of apartments in the maximal apartment
system, if we can extend f to a label-preserving chamber complex map f :
Y — A on the chamber complex Y consisting of Y and all faces of chambers
inY, then we can conclude that ¥ is an apartment in the maximal apartment
system.

Fix a chamber C € Y. If we identify A with a Coxeter complex (W, S),
we may as well suppose that f(C) is the chamber {1} = ((), and identify
the facets of f(C) with the generating set S of the Coxeter group W. Since
f is a strong isometry, for each w € W there is exactly one C,, € Y so
that 0(C, Cy) = w, where ¢ is the W-valued ‘distance’ function on the whole
building.

Then for a subset T of S and w € W, we attempt to define f by

FO ) Cu)=w(T)
w'ew(T)

For each s € S and chamber f(C),) = {w} in A, there is exactly one cham-
ber in A which is s-adjacent to f(C\), namely s{w} = {ws} = f(Cys). (Note
that it is ws and not sw!) Therefore, since f respects ¢, the chamber C, is
the unique chamber in Y so that 6(Cy,, Cys) = s. Computing ¢ by taking an
apartment containing both C,, and Cys, we see that they are adjacent, and
thus that the intersection

F{w,ws} = Cyu N Cys

is a facet (codimension-one face) of both.
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Thus, we can at least extend f to facets by

f(F{w,ws}) = {w,ws} = w{17 S} = w(s)

Now any face of a chamber C',, can be expressed in a unique way as an inter-
section of facets of C,, simply because all this takes place inside a simplicial
complex. As just noted, these facets are all of the form (Fp, w53 = Cuw N Cus
for s € S. Then a face x of C, has an expression of the form

r = ﬂF{w,ws}: ﬂ Cyw N Cys =Cy N ﬂ Cus
seT seT seT
for a uniquely-determined subset 7" of S. That is, in particular, every face of
Cy has a unique expression as an intersection of chambers in Y.
Thus, for a subset T" of S, we can unambiguously define an extension by

£ Cus) = N {w, ws} = w(s)
seT seT
since the indicated intersection is in the Coxeter complex. This defines f on
every face of every chamber from Y, by remarks above. And this extension
preserves inclusions, as was verified for facets by the J-preserving property,
and then by construction for smaller faces. Thus, this extension is a simplicial-
complex map of ¥ to A.

Finally, every simplex in Y is certainly expressible in a (unique) manner
as an intersection of facets of chambers in Y, so the extended version of f is
a surjection. Thus, since the extension was already seen to be an injection
on simplices in Y. Thus, the extension really is an isomorphism of simplicial
complexes. This completes the proof of the theorem. &
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16. The Spherical Building at Infinity

Sectors

Bounded subsets of apartments

Lemmas on isometries

Subsets of apartments

Configurations of chamber and sector
Configurations of sector and three chambers
Configurations of two sectors

Geodesic rays

The spherical building at infinity

Induced maps at infinity

Affine buildings have natural spherical buildings associated to them by a
sort of ‘projectivization’ process. The relationships between the two buildings
have as consequences not only for the geometry of the affine building, but also
for groups acting upon the buildings. This idea is the culmination of the study
of affine buildings.

In the special case that the affine building is a tree (that is, is one-dimensional),
the spherical building at infinity is called the set of ends of the tree.

16.1 Sectors

This section begins a slightly technical but essential further study of affine
Coxeter complexes A, (or, more properly, of their geometric realizations |A]).
This is most important in later construction of the spherical building at in-
finity attached to an affine building.

Let A = ¥(W,S) be an affine Coxeter complex (3.4), (13.6), which we
identify with its geometric realization |A| (13.5). Let H be the collection of
all hyperplanes fixed by reflections, so the hyperplanes in H are the walls in
A (12.1), (12.4). We have shown (12.4) that there is a point z, (which may as
well be called 0) in A so that every hyperplane in H is parallel to a hyperplane
in H passing through z, = 0. Let H be the collection of hyperplanes in H
through 0. We have shown (12.4), (13.2), (13.3), (13.6) that H is finite.

Further, we have shown (12.4),(13.6) that the hyperplanes in H cut A into
simplicial cones ¢ all with vertices at ©, = 0. For € A, a translate z + ¢
of one of these simplicial cones is called a sector in A with vertex z. The
direction of the sector is ¢. If one sector z’ + ¢’ is contained in another sector
z + ¢, then ' + ¢’ is a called a subsector of z + ¢. Two sectors x + ¢,y +d
have opposite direction if d = —c.

The following lemma is essentially elementary, but we give the proof as
another example of this genre of computation.
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Lemma: The intersection
(z+ce)N(y+c)

of two sectors with the same direction c is a sector z+c¢ with the same direction
c. A subsector z' + ¢’ of z + ¢ has the same direction as = + c.

Proof: A simplicial cone ¢ in an n-dimensional vectorspace is defined by n
linear inequalities A; > 0 and that the \; are linearly independent. A sector
x + ¢ is then defined by linear inequalities A; > A;(z). Thus, the intersection
of z + ¢ and y + ¢ consists of the set of points where

Ai > sup(X;(x), Ai(y))
The fact that there are exactly n such inequalities and that the \; are linearly
independent assures that there is a point z so that

Ai(z) = sup(Xi(2), Ai(y))
Then the intersection is just z + ¢, as desired.

Then each \; has a lower bound on a subsector z’ +¢', so has a lower bound
on ¢ itself, using linearity. But the only alternatives for the behavior of each
A; on ¢ is that it be positive everywhere or negative everywhere, so every \;
must be positive on ¢’, and it must be that ¢ = ¢'. &

Lemma: Let x 4+ ¢ and y — ¢ be two sectors with opposite directions.
Suppose that z € y — ¢ (from which also follows y € x +¢). Let C,D be
chambers so that C' meets

y+e=y—z)+(z+c)
and D meets

z—c=(@-y)+{y—c
If E is a chamber so that E meets (z + ¢) N (y — ¢ then E occurs in some
minimal gallery from C' to D.

Proof: We show that no element of H separates E from both C' and D.
Let n € H be defined by a linear equation A = ¢,. By changing the sign of A
if necessary, we can suppose that A > 0 on c.

If A > 0on E, then A(y) > 0, as otherwise A < 0 on y — ¢, contradicting
the fact that A >0 on E. Then A >0ony+¢,s0 A >0o0n C C y+ c. That
is, 7 does not separate C from E if A > 0 on E.

On the other hand, if A < 0 on E, then we have the symmetrical and
opposite argument. That is, if A < 0 on E, then A(z) < 0, or else A > 0 on
z + ¢, contradicting the fact that A <Oon E. Then A< Qonz —¢,s0 A <0
on D C x — ¢. That is, n does not separate D from E if A <0 on E.

Recall that we showed that, in a Coxeter complex every minimal gallery
from one chamber to another crosses every wall separating them once and
only once, and, further, a non-minimal gallery must cross some wall twice
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(3.6). We have shown that if a wall separates E from either C' or D, then
it does not separate E from the other of the two. So if we take a minimal
gallery

Y1 = (C,Cl,... ,Cm,E)
from C to F and a minimal gallery

V2 = (E)Dla"' 7Dn7D)
from E to D, then the gallery

Y= (C)CI)"' )CmaE)Dla"' >Dn7D)

obtained by splicing them together does not cross any wall twice. Thus, the
gallery 7 contains E and is minimal. &

16.2 Bounded subsets of apartments

The main point of this section is that the property of being a bounded sub-
set of an apartment in an affine building does not depend upon the apartment
system.

Let X be an affine building (14.1) and |X| its geometric realization with
the canonical metric d(,) as constructed above (14.2). When we speak of a
bounded subset Y of | X|, we mean that there is a bound for d(z,y) as z,y
range over Y.

For two chambers C,D in X, we define H(C, D) to be the union of the
(geometric realizations of all faces of) all chambers lying in some minimal
gallery from C to D. This is a combinatorial version of a closed convex
hull of the two chambers C, D.

Theorem: A bounded subset Y of | X]| is contained in an apartment A
in a given apartment system A if and only if there is a pair C, D of chambers
in X so that Y C H(C, D).

Remarks: Recall that we proved earlier that every minimal gallery from
a chamber C to another chamber D lies inside every apartment containing
both C and D (4.5).

Proof: For notational simplicity, we may write X for the geometric real-
ization.

Let Y be a bounded subset of an apartment A in an apartment system A in
X. We certainly may enlarge Y by replacing it by the union of all (geometric
realizations of) faces of simplices (in A) which it meets.

Take an arbitrary direction ¢ in A, in the sense of the previous section.
Then we claim that there are points z,y in A so that

YC@+e)n(y—c)

Indeed, for each linear inequality A; > 0 defining the simplicial cone ¢ there
are constants a;, b; so that on Y we have a; < \; < b;. Then take the point
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x to be the point where, for all 4, \;(z) = a;. That there is any such point is
due to the fact that (as noted in the previous section) the directions are really
simplicial cones, defined by linearly independent linear inequalities. Likewise
take y to satisfy A;(y) = b;.

Then, applying the second lemma of the previous section (16.1), there are
two chambers C, D in A so that every chamber E contained in Y lies inside
H(C, D). Thus, Y lies inside #(C, D). This proves half of the desired result.

The other half of the assertion is true in general, without any assumption
of affine-ness, and was proven earlier (4.5): every minimal gallery connecting
two given chambers lies inside every apartment containing the two chambers.
Thus, have characterized bounded subsets of apartments in a manner inde-
pendent of the apartment system. &

16.3 Lemmas on isometries

This section contains some elementary results on isometries of Euclidean
spaces and of subsets thereof. We give careful proofs of these results, even
though they are essentially elementary exercises and eminently believable any-
way.

Let E be n-dimensional Euclidean space with the usual inner product (,),
norm

2| = (z,2)'/?
and metric
d(z,y) = |z —y|
Recall that a collection z,,...,zxy of N 4+ 1 points in E is affinely inde-

pendent if
Z S;Tj = Z tjl’j
i J

implies that
(to,... ,tN) = (So,... ,SN)

for any (N + 1)-tuples so that ), t; = 1 and ), s; = 1. Equivalently, these
points are affinely independent if and only if

Z Sil; = 0
i

for Y s; = 0 implies that all s; are 0.

Lemma: Let z,,...,z, be affinely independent points in E. For a given
list d,, ... ,d, of non-negative real numbers, there is at most one point = in
E so that d(z,z;) = d; for all indices.

Proof: Write

i = (Ti1,.. ,Tin)
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If s,t were two points satisfying all these conditions, then for all 1 <i < n
we have

2(t — X, i — o) = |t — 2P — |t — 3| — |2 —2o|? = dF — &2 — |z; — 2|
Thus, by hypothesis, for 1 <i<n
(t — o, Ti — o) = (S — To, Ty — To)
In particular, for 1 <i <n
(s—t,wi—x,) =0

By hypothesis the functions ¢ — (t,2; — x,) for 1 < i < n are linearly
independent linear functionals on E. Thus, s — ¢t = 0. This proves that there
is at most one such point. &

Lemma: Let z,,...,zx be points in E. Let M be the N-by-N matrix

with (i, 7)™ entry
(i — xo, 5 — )

Then these points are affinely independent if and only if M is of rank N.

Proof: Let Q be the n-by-N matrix with i** column z; — 2,. Then

M=Q"Q

So by elementary linear algebra the rank of M is the rank of Q. So surely
N < n if the rank of M is N, etc. And the rank of 2 is N if and only if the

x; — @, (for i > 1) are linearly independent.
Suppose that the rank is IV, so that the x; — z, are linearly independent.

If
D siwi =) tie;
i J
with )°, s; = 1and ), ¢; = 1 then we subtract
T, = Z SiTo = Z tix,
i i

from both sides and rearrange to obtain

Z si(z; — o) = Z ti(z; —xo)

i>1 i>1

The assumed linear independence yields s; = ¢; for all ¢ > 1. Since ), s; =1
and ), t; = 1it follows that also s, = t,. This proves the affine independence.
On the other hand, suppose that

Z ci(zi—z,) =0
i>1
were a non-trivial linear dependence relation. Let

CO:—E C;i

i>1
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Then we have

Z CiT; = 0

and now
Z C; = 0
i>0
Thus, the x; are not affinely independent. &
Lemma: Given affinely independent points z,,x1,...,%, and given
points y,,y1, - -- ,Yyn in Euclidean n-space E, if

for all pairs of indices i, j, then there is a unique isometry ¢ : E — E which
sends z; to y; for all indices i. Specifically, we claim that the isometry is the

function ¢ defined by
¢(Z tiwi) = Z tiyi

for all (n + 1)-tuples (t,,... ,t,) with > ¢; = 1.

Proof: The relation

2(xi — o, Tj — To) = |(T; — @) — (Tj — $0)|2 = |@i — $0|2 — |z — 5”0|2 =

= |zi — 25 * = |wi — 2o|* = |2j — zo|?
shows that the inner products of the vectors z; —z, and z; — z, is determined
by the distances between the points. Let M (z,,... ,z,) be the n-by-n matrix
whose (i,7)"™" entry is
(i — xo, 2 — )

Then the previous remark implies that
M(¢$O,¢$1,. s >¢mn) = M(mm' e 7mn)

In particular, since the z; are affinely independent the matrix M (z,, ... ,Z,)
is of rank n. And then it follows that the images ¢z; are also affinely inde-
pendent, since M (¢z,,...) is of full rank. (See lemma above).

Since the x; are affinely independent, every point in the Euclidean space
E has a unique expression as an affine combination of the z;’s, so the map ¢
is indeed defined on all of E, and is well-defined. We check that it preserves
distances: to do so, we may as well take z, = y + o = 0, since we could
translate all these points to achieve this effect. Thus, from above, we know
that

(zi, zj) = (¥i,;)

for all indices i, j.

We have

|¢(Z i) — ¢(Z tjz;)? = |(Z SiYi) — (Z tiy;)? =



Garrett: ‘16. The Spherical Building at Infinity’ 227

= |Z (si = ta)ysl> = (i — ti)(s; — ;) (Wi y;) =

i,J

= |Z (si — to)zi|” = Z(Sz —ti)(s5 — tj) (@i, ;) =
= |¢(Z SiT;) — ¢(Z tizy)> = |(Z 8iT;) — (Z tiz)|* =

by reversing the earlier steps. This verifies the distance-preserving property
of ¢.

The uniqueness follows immediately from the lemma above which noted
that there is at most one point at prescribed distances from a maximal set of
affinely independent points. &

Corollary: Any isometry of a Euclidean space E is an affine map.

Proof: Choose a maximal set z,,z1,... of affinely independent points in
E, and invoke the previous lemma. The formula there makes it clear that the
isometry is affine, to say the least. &

Corollary: Let X,Y be asubsets of a Euclidean space E. Let ¢, : X = Y
be an isometry. Then there is an isometry ¢ : E — E extending ¢,. If X
contains n + 1 affinely independent points then there is a unique extension.

Proof: If X contains n+ 1 affinely independent points z,, ... , z,, then we
are done, by defining ¢ as in the lemma just above. The uniqueness follows
as above in this situation.

If X does not contain n + 1 affinely independent points, then X lies inside
an affine hyperplane £. From the lemmas above, it follows that Y also lies
inside a hyperplane n. By translating if necessary, we may suppose that these
hyperplanes are linear, that is, pass through 0. Translating further, we may
suppose that z, = y, = 0. By induction on the dimension n, there is an
isometry ¢; : & — n extending ¢,. and ¢; is linear. Then take two unit
vectors ., y. in perpendicular to &,7n, respectively, and extend ¢; to the
desired ¢ by defining

(z1 +txi) = ¢1(21) + tys

where z; € £ and where ¢ is real. Since ¢; is a linear isometry it is easy to
check that ¢ is an isometry. &
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16.4 Subsets of apartments

Recall that in discussing the finer general geometry of buildings, we showed
that a subcomplex Y of a thick building is contained in an apartment in the
maximal apartment system if and only if it is strongly isometric to a subset of
an apartment, in a combinatorial sense (15.5). Now we will obtain a refined
analogue of this for affine buildings, involving the canonical metric (14.2) on
the geometric realization, and now using the notion of isometry in a more
literal metric sense.

Unfortunately, this theorem is substantial not only when measured by its
important, but also when measured by length of proof.

With some justification provided by the observation above (16.2) that the
notion of bounded subset of apartment is independent of the apartment system
in an affine building, we now suppose that the apartment system A is the
maximal system of apartments in a thick affine building X. (Recall that we
showed earlier that the union of two apartment systems is again an apartment
system, so there is a unique maximal apartment system (4.4)).

Let d(,) be the canonical metric (14.2) on the building. For this section,
let E be a Euclidean space isometric to any and all the (geometric realizations
of) apartments in X. Indeed, in the construction of the canonical metric we
did show that all apartments are isometric to each other.

Theorem: Suppose that a subset Y of an affine building X is either
convex or has non-trivial interior , and suppose that Y is isometric to a
subset of the Euclidean space E. Then Y is contained in some apartment in
the maximal apartment system in X.

Corollary: A subset of X is an apartment in the maximal system if and
only if it is isometric to the Euclidean space E.

Proof:  (of corollary): Suppose that a subset ¥ of X is isometric to E.
Since isometries respect straight line segments, and since E certainly is convex,
it follows that Y is convex. Then the theorem applies, so Y is contained in
an apartment B. And B itself is isometric to E.

We claim that no proper subset E’ of E is isometric to E. Indeed, in our
detailed discussion of isometries of Euclidean spaces (16.3), we showed that
for any two subsets Y, Z of E, any isometry ¢ : Y — Z has an extension to
an isometry ¢ : E — E. That is, ¢~)|y = ¢. If E' were a proper subset of
E, then an isometry ¢ : E/ — E would have an extension gz; : E — FE which
would also be an isometry. But since ¢E’ = E, this extension could not be
injective, contradiction. This proves the claim, and the corollary. &

Proof: First, as in the general discussion of the finer geometry of buildings
(15.5), for given chamber C in apartment A, and for another chamber D in
the building, there is a unique chamber-complex map ® : X — A so that
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®(D) = C, and so that the restriction of ® to any apartment containing D
is an isomorphism to A. This ® was constructed by composing the canonical
retraction of X to any apartment B containing D with the isomorphism B —
A taking D to C (and preserving labels). This map is essential in the proof.

Lemma: Suppose that the subset Y contains an open subset U of a
chamber D, and that Y is isometric to a subset of the Euclidean space E.
Let C be a chamber in an apartment A. Then there is a unique isometry
¢:Y — A so that

dlu = Ap,clu
where Ap ¢ is the geometric realization of the unique type-preserving simpli-
cial complex isomorphism D — C.

Proof: For uniqueness, let ¢ : Y — A be an isometry, whose restriction
to U is the same as the restriction of the type-preserving map Ap c. Then
¢~ maps the subset ¥ (Y) of A to itself, and fixes 1(U) pointwise. The
previous section (16.3) gives uniqueness, since U contains a maximal collection
of affinely independent points.

For existence, let o be an isometry Y — A. Then o(U) and ¢(U) are iso-
metric subsets of A, and by the previous section (16.3) any isometry o(U) —
o(U) extends to an isometry 7 of A to itself. The composite 700 is the desired
isometry. &

The following is the essential extension trick in this whole argument. We
abuse notation by writing X for the geometric realization of the thick affine
building X.

Lemma: Suppose that Y contains the closure D of a chamber D in X.
Suppose that ¢ is an isometry ¢ : Y — A of Y to an apartment A, so that ¢
restricted to D is the (geometric realization of) the type-preserving simplicial
complex isomorphism Ap ¢ of D to C. For any chamber C’ in A adjacent to
C, there is a chamber D' adjacent to D in X so that ¢ extends to an isometry

$:YUD — A
and so that the restriction of ¢~) is the isomorphism Ap: cr.

Remarks: In the preceding there is no assumption that C' is disjoint
from the image of Y.

Proof: Let ® : X — A be the map mentioned at the beginning of the proof
of the theorem, from (15.5), which takes D to C' and gives an isomorphism
B — A from any apartment B containing D. For a chamber D' adjacent to
D, let ®' be the analogous map X — A so that ®'(D') = C' and so that @’
is an isomorphism to A when restricted to any apartment containing D’.

From the previous lemma we know that ¢ is unavoidably the restriction of
® to Y. What is necessary is to make a choice of the chamber D’ adjacent
to D so that also ¢ is the restriction of ® to Y. (These maps ®,®' are
type-preserving (4.4)).
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Presuming that C' # C, let s be the label so that C' and C' are s—adjacent.
Let D' # D be a chamber in X which is s-adjacent to D. Let n be the wall
in A which separates C and C’, with H the half-apartment in which C lies
and H' the half-apartment in which C’ lies.

In our discussion of the finer geometry of buildings in general, when looking
at configurations of three chambers (15.4), we saw that for any chamber y € X
either 'y = ®y or ®'y = s®y. More precisely, letting dgai(z,y) the the
gallery distance from one chamber x to another, there are three possibilities: If
deat (D', y) = dga1(D,y)+1, then &'y = &y € H. If dgy (D', y) = dgai (D, y)—1,
then ®'y = &y € H'. If dgu(D',y) = dgai(D,y), then &'y = s®y € H.
Further, in the third case there are minimal galleries

’Y:(D7D17D27-" 7Dn:y)

7': (D’7D1>D27"' )Dn :y)

from D, D’ to y, respectively. That is, in the third case there is a chamber D
in X which is s-adjacent to both D and D', and so that the minimal galleries
agree except that one begins at D and the other at D'.

Thus, for all y € Y we do have &'y = ®y except possibly &'y = s®y, which
can only happen if ®y € H', as in the previous paragraph. We claim that we
can choose D' so that &'y = &y for all y € Y. Since ® and ¢ agree on Y, this
would prove the lemma.

If ®Y C H then we are already done, since then ®' must agree with ® on
Y, by the criteria just noted.

So suppose that the image ¢Y = ®Y is not entirely contained in H. We
need to check that in this case we can adjust D’ so that some z € Y has the
property that ®'z = ®z even though ®z € H', the half-apartment containing
C'. Indeed, if ®'z = s®z then dga1 (D', y) = dgai(D,y), then we replace D' by
the chamber D;. After this change,

dgal(Dlay) = dgal(Day) -1

and (as recalled just above) we have &'z = &z € H'.

Thus, we can suppose that we have z, € Y so that ®'z, = ®z, € H', and
can prove that ®'z = &z for all z € Y. Suppose that &'z = s®z € H for some
z € Y. Note that ® is an isometry on Y, and a fundamental property of the
map P’ is that it does not increase distances in the metric on X. (This was
proven in the course of the construction (14.2) of the canonical metric on X).
Let [2,, 2] be the straight line segment in X from z, to z. (In discussion of
the metric on X we showed that the notion of straight line segment from one
point to another makes sense and is intrinsic (13.7), (14.2)). Then

d(zo,2) > d(®'2,,®'2) = d(®z,,5P2)
Suppose that we knew that for any two points z,2’ € H' we had

d(z,sz') > d(x,z")
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Then it would follow that
d(z0,2) > d(Pz,,5P2) > d(Pz,, P2) = d(2,, 2)

contradiction.

Thus, to prove the lemma it suffices to prove that for any two points
xz,x’ € H' we have d(x,sz’) > d(z,z'). Happily, this is a very concrete
question, unlike the relatively abstract combinatorial analogue we faced ear-
lier in discussion of general buildings. That is, (geometric realization of the)
the apartment A is a Euclidean space, the half-apartments H, H' are literal
half-spaces, and the reflection s is a literal reflection.

To allay any doubts, we carry out this elementary computation: let e be a
unit vector perpendicular to the wall (hyperplane) 5, pointing in the direction
of H'. Without loss of generality, we may suppose that 0 € . Let (,) be the
inner product on A ~ E. Then since z,2’ € H' we have

(r,ey >0 (2',e)>0
The image sz’ of z' is given by
st =a' —2(z' e)e
We compute the distance:
d(z,sz')? = |z — sa'|* = (x — sz’ x — s2’) = (z,2) — 2(x, s2') + (s2',52") =
= (z,z) — 2(z, 2"y + 4(z, e}z’ e) + (z',2') =
= |z —2']* + 4z, e){z’,e) > |z — 2'|?
where we use the fact that s preserves (,).

Thus, altogether, we have obtained the desired extension of the isometry.
This proves the lemma. ]

Now we prove a special case of the theorem, to which we will reduce the
theorem afterward.

Lemma: If a subset Y of the building contains a closed chamber C and
is isometric to a subset of the Euclidean space E. Then Y is contained in
some apartment (in the maximal system).

Proof: In the general characterization of apartments in the maximal sys-
tem (4.4), we showed that any simplicial subcomplex B which is isomorphic to
an apartment by a label-preserving simplicial complex map is necessarily an
apartment in the maximal system. We must obtain such a simplicial-complex
isomorphism from the metric information we have here. And now we must ex-
ercise a little care to distinguish simplicial complex items from their geometric
realizations.

Let A be an apartment containing C'. From the lemma just above, there
is an isometry ¢ : Y — |A| fixing C pointwise. By the last lemma, we can
repeatedly extend ¢ chamber by chamber as geometric realization [¢| of a
(label-preserving) simplicial complex map 1), in a manner consistent with the
original map on Y. Thus, we obtain a label-preserving simplicial complex
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isomorphism v defined on some subcomplex ¥ of X so that ¥ C |X], |¢]
restricted to Y is ¢, and ¥¥ = A. By the result recalled in the previous
paragraph, 9) ' A is an apartment in the maximal apartment system. &

Now we treat the general case of the theorem. By the last lemma, what
needs to be shown is that the isometry ¢ : Y — E can be extended to an
isometry on a larger set containing a closed chamber.

In the case that Y has non-empty interior , necessarily Y contains an open
subset of some chamber C' lying inside an apartment A. We claim that (the
geometric realization of) the canonical retraction pa ¢ of X to A centered at
C gives an isometry of Y UC to A. Indeed, the first lemma above shows that
pa,c maps Y isometrically to A. In the basic discussion (14.2) of the metric
on an affine building we saw that such a retraction preserves distances from
points in C' (and of course is the identity on C'). This reduces this case of the
theorem to the previous lemma, as desired.

Now consider the case that Y is convex. Let A be an apartment containing
a chamber C so that a face = of C' is maximal among simplices whose geometric
realizations meet Y. Again we claim that the canonical retraction p4,c gives
the desired isometry Y U C — E. In this case the issue is to see that pA,C
preserves distances between points of Y. To this end, let y € x NY, and let
p,q be two other points in Y, distinct from y.

Recall from the basic discussion (13.7), (14.2) of the metric that straight
lines (geodesics) in | X| are intrinsically defined, and are certainly preserved
by isometries. Let p’,q' be points on the straight line segments [y, p], [y, q]-
By convexity, these geodesic line segments lie inside V.

We claim that if p' is close enough to y then p’ lies in z. Certainly p’
close enough to y cannot lie in a proper face of z. Thus, if there were no
neighborhood of y in [y, p] which lay inside z, then points on [y, p] near y
would have to lie in a simplex Z having z as proper face, contradicting the
maximality of z among simplices which meet Y. This proves the claim.

Thus, for p',q' on [y,pl, [y, q] near enough to y (but distinct from y) we
have p’,¢' € x C C. Thus, p = pa,c does not move p',¢" (in addition to not
moving y).

Since an isometry takes straight lines to straight lines, and since on Y
we have p = ¢, the points p', ¢’ still lie on the straight lines [y, ppl, [y, pql,
respectively. Further, the convex hull A of y,p,q must be mapped to the
convex hull A’ of y, pp, pg. Then the angle (inside |A|) between [y, pp], [y, pq]
must be the same as the angle between [y, p'], [y, ¢], which is the original angle
between [y, p], [y, q-

Thus, by the side-angle-side criterion for congruence of triangles in Eu-
clidean spaces (such as |A|), p must give an isometry of A to A’. In particular,
the distance from pp to pq is the same as that from p to q.

From this, we conclude that p on Y UC is an isometry, allowing invocation
of the previous lemma, and thus proving the theorem in this case as well. &
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16.5 Configurations of chamber and sector

Here the possible relationships of an arbitrary chamber and an arbitrary
sector inside a thick affine building are examined. The main point is the
theorem just below. Still we look at the maximal apartment system A (4.4)
in (the geometric realization of) an affine building X (14.1) with its canonical
metric d(,) (14.2). The existence theorem of this section is crucial in the
ensuing developments.

A sector in X is a subset C of X which is contained in some apartment
A and is a sector in A in the sense already defined (16.1).

Lemma: A sector Cin X is a sector (in our earlier sense) in any apartment
B in A which contains it.

Proof: Since C contains chambers, A N B contains at least one chamber.
Thus, from the axioms for a building (4.1), there is an isomorphism ¢ : B — A
fixing the intersection pointwise. Since C is a sector in A, ¢~'C = C is a
sector in B. (And these maps have geometric realizations which are isometries

(14.2)). *

Theorem: Given a chamber C in X and a sector C in X there is an
apartment B € A and a subsector C' of C so that both C and C' are contained
in B.

Proof: Let A be any apartment containing C. By the previous results on
isometry criteria for sets Y to lie inside apartments (16.4), it would suffice to
find a subsector C’ of C and a chamber C’ in A so that the canonical retraction
p =pa,c of X to A centered at C' (4.2) gives an isometry on C'UC'". Indeed,
the inverse image of A under this isometry would be a subset of X isometric
to an apartment, so would be an apartment itself, by the corollary to the
theorem of the previous section (16.4).

From their construction (4.2), (14.2), these retractions do not increase dis-
tance: if r > 0 is large enough so that a ball (in X) centered at some point
in A contains C, then pa c'C C A is still contained in that ball, regardless of
the choice of C'. Thus, there is a bounded subset Y of A in which the image
of C' by any retraction p4 ¢ lies.

Let D be a sector in A having direction opposite to the direction of C
and containing Y. That there is such a sector is elementary, using only the
(metric) boundedness of Y. Further, since the directions are opposite, we can
arrange this D so that its base point z lies inside C.

Take any chamber C' with € C', and take the sector C’ in the direction
of C but with base point . We claim that this C’ fulfills the requirements of
the theorem. Let D be a chamber in A which meets C’. Note in particular
that this means that there is a point in the open simplex D which lies inside
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C'. Tt will suffice to show that p = pa ¢ gives an isometry on D U C' for any
such D.

Since pa,p is an isometry on DUC, it would suffice to show that PADlc =
plc. To prove this, let v be a minimal gallery from C’ to C, and 4’ a minimal
gallery from C' to D. Let 4 be the gallery from D to C obtained by going
from D to C' via 4" and then from C’ to C via . Then p7 is a gallery from D
to pC, which consists of going from D to C' via v’ (inside A) and then along
py from C’ to pC.

Since p preserves gallery distances from C' (4.2), pvy is a minimal gallery
from C’ to pC.

Earlier, in discussing sectors inside apartments (16.1), we proved a lemma
which, as a special case, implies that some minimal gallery +,, from D (which
meets C') to pC' (which meets D) includes C", since the closure C" of C' meets
the intersection {z} =C' N D.

Certainly the part 1 of vy, which goes from C' to pC' must be a minimal
gallery from C’ to pC, and likewise the part 7y, 2 of v, which goes from D
to C' must be minimal.

The point is that the gallery p¥ must also be minimal from D to pC', since

length py = length 7' + length py =
= length 7, + length pym 2 = dga(D,C") + dgui (C”, pC)
Thus, since p cannot increase gallery distances, and preserves gallery distances
from C’, it must be that 4 is a minimal gallery from D to C.

Then, by the gallery-distance-preserving property of p4, p, the image pa,p¥
is also a minimal gallery from D to pC.

So we have two mappings p, pa,p from 4 to the (thin chamber complex) A.
Neither one sends 4 to a stuttering gallery, and they agree on +'. Thus, by
the Uniqueness Lemma (3.2), they must agree entirely. Thus, in particular,
pa,pC = pC, as desired. &

Corollary: Given a sector C in an affine building X, the union of all
apartments containing a subsector of C is the whole building X. &

Corollary: Given a sector C in an apartment A in an affine building
X, there is a unique chamber complex map pac : X — A so that on any
apartment B containing a subsector C' of C the restriction pa c|p is the iso-
morphism B — A (postulated by the building axioms).

Remarks: It is not clear (from either the statement of this corollary, or
from its proof) what the relation of this retraction may be to the canonical
retraction pa,c of X to A centered at a chamber C' (4.2). But this does not
concern us here.

Proof: Given an apartment B containing a subsector C' of C, certainly
AN B contains a chamber. Thus, by the building axioms (4.1), there is an
isomorphism ¢p : B — A which gives the identity on A N B. We must check
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that for another apartment B’ the maps ¢p and ¢p agree on BN B’. Since
both B, B' contain some subsector of C, their intersection contains a subsec-
tor, so certainly contains a chamber. Let ¢ : B — B be the isomorphism
(postulated by the axioms) which fixes B N B'.

Then ¢p o 1) is an isomorphism B’ — A, which agrees with ¢p: on a
subsector of C. By the Uniqueness Lemma (3.2), these two maps must be the
same. This proves that pa ¢ is well-defined.

The uniqueness assertion of the corollary follows from the Uniqueness
Lemma (3.2). &

Corollary: Given a sector C in an apartment A, and given a chamber C
in the affine building X, there is a subsector C’ of C so that for any chamber
C' meeting C' we have

pacC =pacC

Proof: Invoking the theorem, let C’' be a small-enough subsector of C so
that both C’ and C are contained in a common apartment B. Then
pacls =pac|B

by the Uniqueness Lemma, since these are isomorphisms which agree on the
chamber C". &

16.6 Configurations of sector and three chambers

This section develops some necessary properties of the retractions pa.c
attached to an apartment A and sector C within it, defined in the previous
section (16.5).

Let X be a thick affine building (14.1). Let E be a Euclidean space to
which all the (geometric realizations of) the apartments of X are isometric
(13.6). Let A be an apartment containing a sector C. Let p be the retraction
pa,c defined in the corollary to the theorem of the previous section. We recall
that it is characterized by the property that on any apartment A’ containing a
subsector C' of C it gives an isomorphism to A which is the identity on AN A’.

Lemma: Let A be an affine functional on an apartment A’ in the thick
affine building X which vanishes on a wall  in A’. Then either ) is bounded
above, or is bounded below on the sector C'. That is, either there is a constant
Ao 80 that A(z) < A, for all z € C’, or else there is a constant A, so that
Az) > X, forall z € C'.

Proof: (This is a reiteration of earlier ideas). Let Y be the collection of
all hyperplanes in A’ =~ X(W, S) fixed by reflections in the Coxeter group W.
Let Y be the collection of hyperplanes through a fixed point z, in A’ and
parallel to some hyperplane in Y. Then, because (W, S) is affine, Y is finite
(13.3), (13.4), (13.6). Let 7 be the hyperplane in Y parallel to the hyperplane
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n on which X vanishes. Then any one of the simplicial cones cut out by Y lies
on one side or the other of 7, so A is either positive or negative on every one.
Choose an isomorphism of A’ to E, so that an origin is specified. Writing

C'=x+c=(z—1,) + (2o +0)

where c is one of the simplicial cones cut out by Y and z is the vertex of C'.
Take ' =z + h in C' with h € ¢. If A > 0 on ¢, then we have

Az') = Mz + h) = Mz) + A(h) > ()
If A <0 on c then we have
Az') = Az +h) = A(z) + A(h) < A(x)

In either case we have the desired bound from one side. &

Corollary: Let n be a wall in an apartment A’ containing a sector
C'. Then in one of the half-apartments cut out by 7 there is a bound for the
maximum distance of any point of C’ from 7, while in the other half-apartment
there is no such bound.

Proof: In the half-apartment where A is bounded (whether from above or
from below) the distance is bounded, while in the half-apartment where X is
unbounded the distance is bounded. &

Corollary: Given a sector C in an apartment A and given a wall 5 in A,
there is a uniquely-determined half-apartment H cut out by 1 so that there
is a subsector C’ of C lying entirely inside H.

Proof: Let A be an affine function vanishing on 1. With given choice of
origin in A, let the given sector be z + ¢ with x a point in A and ¢ a simplicial
cone. Change the sign of A if necessary so that it is bounded below on C.
From the lemma, A\ is necessarily positive on c¢. Let x; be any point in the
half-apartment H where ) is positive. Then the subsector

1 +e=(z;—z)+ (z+¢)

of x + ¢ certainly lies inside H.
On the other hand, if Azs < 0 for some point x5 in A, then

x2+c¢= (2 —x1) + (21 +¢)
unavoidably meets H, since ) is unbounded positive on the sector 1 +c¢. This

proves the corollary. &

Thus, given any wall n in an apartment A containing C, we can determine
a notion of positive half-apartment cut out by n determined by C as being
the half-apartment cut out by n containing some subsector of C.

Proposition: Let C be a sector in an apartment A in the thick affine
building X. Let C’ be a subsector of C lying in the intersection AN A’ of A
with another apartment A’. Let D,, D, D’ be three chambers with a common



Garrett: ‘16. The Spherical Building at Infinity’ 237

facet F', with D,, D' lying in A'. Let p: A" — A be the retraction p = pac.
Let n be the wall in A’ separating D,, D'. Suppose that D, lies in the positive
half-apartment determined by C’ cut out by . Then pD = pD’ # pD,.

Proof: Note that the proposition is not disturbed if we shrink the subsector
C' further.

Let y; be a point in D,. Let C; be the sector in A’ with the same direction
as C (and C') with vertex at py;. Shrinking C' if necessary, we can suppose
that C’ is a subsector of C;. By a corollary to the theorem of the previous
section, we can shrink C' further so that for any chamber C in A meeting C’
we have pD, = pa,cD,.

Since we have arranged that C' lies entirely inside one half-apartment for
7, the isomorphism p : A" — A sends C' to a subset of one half-apartment
for pn. Since p is the identity map on C’, it follows that C’ is entirely within
one half-apartment for pn as well. This gives us a notion of positive half-
apartment determined by C' for both n and pn. (The image pn surely is itself
a wall, because p is an isomorphism).

So the image py; under the isomorphism p : A’ — A is in the positive
half-apartment for the wall pn, since C' C C;.

Let C be any chamber in A’ which meets C'. Note in particular that
this means that there is a point in the open simplex C' which lies inside C'.
Then C' is necessarily also on the positive side of 1. By the corollaries to
Tits’ theorem characterizing Coxeter complexes in terms of foldings ((3.6),
the minimal gallery distance from C to D, is less than the minimal gallery
distance from C to D'. Thus, a minimal gallery

Yo = (C:Cl)a"' 7Cn—1 :Do)
gives rise to a minimal gallery
’YI = (C:CO;--- ,Cn1 :DO;D,)

from C to D’ by appending D' to ,.
From the general discussion of the finer combinatorial geometry of thick
buildings, the minimal gallery 7' must be of reduced type (15.1). The gallery

7:(0:00,... ,Cnfl :DmD)

obtained by replacing D' by D is of the same type as 7/, since D,, D, and D’
have a common facet. Thus, the reduced-type gallery v must be minimal.
Then the images pa,cy and pa,c?y' are both necessarily minimal, since the
retraction p4,c to A centered at C preserves gallery distances from C' (4.2). In
particular, py and py' are both non-stuttering, so pD # pD, and pD’ # pD,.
Since the retraction p4 ¢ is also type-preserving (4.4), both pD and pD’
have common facet (codimension one face) pF with pD,. Since A is thin, we
conclude that pD = pD'. &
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16.7 Configurations of two sectors

Now the possible relationships two sectors inside a thick affine building are
considered. The configuration studies of the previous sections are used here.
The present study is the most delicate of all these.

Theorem: Given two sectors C,D in a thick affine building X, there is
an apartment A; € A and there are subsectors C’', D’ of C, D respectively so
that both C', D' lie inside A;.

Proof:  (In the course of the proof we will review some aspects of affine
Coxeter complexes which play a significant role).

Let E be a Euclidean space to which all the (geometric realizations of) the
apartments of X are isometric (13.6). Let A, B be apartments containing C, D,
respectively. We identify E with A. Let p be the retraction pa ¢ attached to
the sector C inside A (16.5). Again, it has the property that on any apartment
A’ containing a subsector C' of C it gives an isomorphism to A which is the
identity on AN A’. Write C = x + ¢ for some point © € A and a simplicial
cone c.

The simplicial cone c is a chamber in the Coxeter complex % (W,S) at-
tached to a finite Coxeter system (1W,S). We recall how this comes about
(13.2), (13.3), (13.6). Fixing a choice of origin 0 in E = A, let w — w be the
map which takes an affine transformation w € W of E to its linear part o
with respect to the choice of origin. Then W is the image of W under w — ,
and is a finite (Coxeter) group. For every hyperplane 7 fixed by one of the
reflections in W, let 77 be a hyperplane in E parallel to n but passing through
0. Then the collection S of reflections through the hyperplanes 7 is a set of
generators for W, and (W, S) is a finite Coxeter system. Let

A=x(7,9)

(We showed (13.6) that an indecomposable Coxeter system, with Coxeter
matrix positive semi-definite but not definite, gives rise to a locally finite affine
reflection group, which is the sort of Coxeter group W we are considering
at present. Indeed, this was the definition of affine Coxeter complex. The
Perron-Frobenius lemma (13.3) was what proved that W is finite.)

Given a chamber D in B, let Sp be the unique label-preserving isomorphism
B — A which takes D to pD (15.5). Then 8pD is a sector in A, which by
definition can be written as z’ + ¢’ for some vertex ' and some chamber ¢
in the finite Coxeter complex A (which here appears as simplicial cones with
vertex at z).

We say that ¢’ is the direction of D at D, and write

e(D,D)=¢

for this function.
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Let d(c,c') be the minimal-gallery-length distance between two chambers
¢, in the finite Coxeter complex A. Since W is finite, the gallery length

d(c,¢(D, D))
achieves a maximum as D varies over chambers in B which meet D. Let D, be
a chamber meeting D which realizes the maximum, and fix a point y, inside
D,. Let D' be the subsector of D with vertex y,.

By a corollary to the theorem of the section on configurations of chamber
and sector (16.5), there is a subsector C' of C so that for any chamber C in A
meeting C', we have pD, = pa,cD,. Shrinking C' further if necessary, we can
suppose that C’ is a subsector of py, + c.

By results on metric characterization of apartments (16.4), it suffices for
us to show that p is an isometry on C' UD’'. That p restricted to C' C C is an
isometry is immediate. What needs to be compared are pairs of points in D
and also pairs of points with one in C' and one in D'.

Let D be a chamber in B meeting D', and take y € D ND’. In particular,
this means that y is in the interior of the simplex D. Consider the straight
line [y,,y]. As in our discussion of reflection groups (12.1), (in effect invoking
simply the local finiteness of the set of reflecting hyperplanes (13.2), (13.4)),
it is possible to adjust y slightly so that the geodesic line [y,,y] does not
intersect any faces of codimension greater than 1. Then we can unambiguously
determine a sequence D,, D1,...,D, = D of chambers in B so that [y,,y]
passes through (the geometric realizations of) these chambers, and does so in
the indicated order. And the adjustment assures that v = (D,,... ,D,) is a
gallery from D, to D.

Since a line cannot meet a hyperplane in more than one point (unless it
is contained entirely within it), [y,,y] meets no wall twice. Thus, the gallery
crosses no wall twice. Thus, this gallery is a minimal one from D, to D.
(Recall that a minimal gallery from one chamber to another must cross all
the walls separating the two chambers, but need cross no more (3.6). This is
true in general, without the assumption that we are in an affine building).

Next we claim that pvy is non-stuttering, and that for any chamber C in C’
we have pD; = pa,cD;. We prove this by induction on the length n of the
gallery.

By induction, suppose the assertion of the claim is true for

'7’ = (Do;--- >Dn71)
Then p is an isometry on
¢E=C'uD,U...UD, 4

By the metric characterization of apartments and their subsets (16.4), since
p maps to the apartment A, £ is contained in some apartment A’. Since A’
contains a subsector of C, by its construction p gives an isometry of A’ to
A. Further, since A’ N A contains any chamber C inside C’, a fundamental
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characterization of the retraction p4 ¢ is that it gives an isomorphism of A’
to A (4.2).

If D,, already lies in A’, then we have completed the induction step. So
suppose that D,, does not lie in A'.

Let F be the common facet of D,,_1 N D,,. Since D,, is not in A’, there is a
chamber D!, in A', distinct from both D,,_1, Dy, and adjacent to D,_ along
F'. Let n be the wall in A" separating D,,_; and D).

Consider the case that D, is in the positive half-apartment determined by
C' for p in A’ (16.6). From the corollaries to Tits’ theorem characterizing
Coxeter complexes in terms of walls and foldings (3.6), it must be that D,
is also on the positive side of 7, since the gallery distance from D, to D,
is one less than the gallery distance from D, to D),.

Then we apply the proposition of the previous section (16.6) to the trio of
chambers D,_1, D,, D!, with the notation otherwise identical. We conclude
that pDy, = pD;, # pDy—_1. Since pa ¢Dy—1 = pDp_1, this verifies the claim
in case D, is on the positive side of 7.

Now we show that the choice of D, guarantees that D, is in the positive
half-apartment for n in A’.

Suppose that D, is on the negative side of 7, as determined by C’. As in
the previous case, it follows that D,,_; is also on the negative side of 7, while
D!, is on the positive side. In this case, the proposition of the previous section
(16.6) can be applied again to the trio Dy_1, Dy, D}, but now with the roles
of Dy,_1 and D), reversed from the previous case. Then we can conclude that
pD, 1 = pD,,. We will reach a contradiction from this based on our choice
of D,, thereby completing the induction step.

Assume that pD,,_1 = pD,, as in the previous paragraph. For ¢ > 0, let
yi € D;_1 N D; be the point where [y,,y] crosses the hyperplane separating
these two chambers. (Recall that we had adjusted y slightly so as to assure
that there is just one such point, etc.). We had

plYo,y1] C pDo C pyo + ¢’

for a simplicial cone ¢’ (a W-chamber).

By induction hypothesis, p is an isometry on the closure of D,U...UD,,_1,
so p maps the subsegment [y,,y,] to a straight line.

At the same time, we saw just above that pD,, = pD,,_1, so the straight
line segment [y,,—1,y] crossing from D,,_; to D, is not mapped to a straight
line segment under p. Indeed, py, lies on the part of pn touching the boundary
of pDy,_1 = pD,,, while py,_1 is on some other face, and py is in the interior

Yet p does give an isometry on the closure of each chamber, so the line
segments [¥;, Yi+1], [Yn,y] are mapped to straight line segments again.

Let s be the reflection in A across the hyperplane pn. We want to verify that
[PYn—1, pyn] U [pYn, spy] really does form the straight line [py,_1, spy]. To see
this, we let 8 be the unique label-preserving isomorphism from the apartment
B containing D,,_1 U D,, to the apartment A’ containing pD,,_1 = pD,, which
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sends D, 1 to pD,_1. Then § must map D,, to the other chamber in A’
adjacent to pD,_; along p(D,—1 N D,). We have seen, in discussing the
metric on affine buildings (14.2), that such an isomorphism must give an
isometry. Thus, [ preserves straight lines:

Blyn—1,y] = [Byn—-1, BY]
Since D,, = spDy,, it must be that sp[yn,y] = B[yn,y]. Since

BlYn—1,Yn] U B[Yn, ¥l = [BYn—1,8Y] = [pYyn-1, spy]

it must be that py,, does really lie on the straight line between py,,—1 and spy.

Thus, the line segment [py.,, spy] is a subsegment of [py,, spy]. In effect, we
had defined the simplicial cone (or W-chamber) ¢ so that py, + ¢ contains
the segment [py,, py1]. Thus, py, + ¢ contains [pyy, spy]-.

Since py, is on the hyperplane pn, and since py is on the negative side of
pn, necessarily spy is on the positive side of 7.

Let 5 be the linear part of s, that is, the image of s in the quotient group W
of W. Then the direction ¢(D, D,,) of D at Dy, is (from the definition above)
sc’, where ¢ is the direction of D at D = D,, as above.

We had assumed that the gallery distance from ¢ to ¢ was maximal ob-
tainable as ¢/ = ¢(D, D) in the spherical (that is, finite) Coxeter complex
A =%(W,S). Yet the assumption that ¢ and ¢’ are both on the same side of
the wall defined by § implies that the gallery distance from ¢ to 8¢’ is strictly
greater than the gallery distance from c to ¢’, by corollaries to Tits’ theorem
characterizing Coxeter complexes by walls and foldings (3.6).

Hence, we have arrived at a contradiction to the assumption that D, was
on the negative side of the wall . That is, we have shown that only the first
case here, wherein D, is on the positive side, can occur. Thus, the induction
step is completed, and the claim is proven.

Now we can finish the proof of the theorem. Let 8 be the unique label-
preserving isomorphism 5 : B — A and taking D, to pD,. Since p|p = 8|,
the Uniqueness Lemma (3.2) shows that 3 = p on all of D’. Thus, on D', p is
an isometry.

Further, since (by the claim) for C in C' the map p coincides with py4 ¢,
which itself preserves distances from C', we see that p preserves distances
between points of C' and points of D’. This proves the theorem. &

16.8 Geodesic rays

This section brings into play all the previous results on affine buildings,
including both combinatorial and metric structure. Throughout, the thick
affine building X is assumed equipped with the maximal (that is, complete)
system of apartments (4.4). Also, as has been done above, the distinction
between a simplicial complex and its geometric realization is suppressed.
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A ray r in the geometric realization X of a thick affine building X is a
subset of X isometric to the half-line [0, 00). Let ¢ : [0,00) — X be such an
isometry. The image ¢(0) is the basepoint or vertex or origin of r, and the
ray emanates from ¢(0).

Since a ray r is convex, we know from the metric characterization of subsets
of apartments (16.4) that a ray is contained in at least one apartment A. Since
A is a Euclidean space, we conclude that the ray must be a ray in A in the
most prosaic sense. That is, there is 2, € A and a vector v so that

r={z, +tv:t>0}

More intrinsically, if we wish to invoke only the affine structure on A rather
than using a choice of origin, we can write the ray as a set of affine combina-
tions
r={(1-t)x+ty:t>0}
for some z,y.
Before getting to the main point of this section, we look more carefully at
the elementary aspects of the geometry of geodesic line segments.

Lemma: Let z,y,z be distinct points in X. Then for y' on [z,y] close
enough to z (but y' # z) and for 2’ close enough to z on [z, z] (but 2’ # z)
there is an apartment A so that both line segments [z,y'], [z, 2] lie inside A.
Indeed, either both [z, '] and [z, 2'] lie inside the closure of a single chamber,
or there are two adjacent chambers C, D the union of whose closure contains
both [z, [z, 2]

Proof: Flrst, we claim that for y' close enough to z on [z,y] there is a
chamber C whose closure C' contains [z,3']. Let o be the (open) simplex in
which z lies. Then (by continuity) for y' sufficiently near z on [z, y] it cannot
be that y' lies in a proper face of . Thus, y’ sufficiently near x lies in a
simplex 7 of which o is a (possibly improper) face. Then the closure of
contains z and is convex, so contains [z,y']. This proves the claim.

Let C, D be chambers whose closures contain some segments [z,y'], [z, 2],
respectively. By the building axioms (4.1), there is an apartment A containing
both these chambers, so containing their closure, so containing both these line
segments. &

Proposition: Let r,s be two rays emanating from a common point
xz. Then there is an angle 6 so that for any apartment A containing line
segments [z,y], [z, z] of non-zero length inside r, s, respectively, the angle be-
tween [z,y] and [z, z] is 6. Further, let ys, z; be the points on r,s at distance
s, t(respectively) from z. A cosine inequality holds:

d?(ys, z) > s> + 2 — 2st cos 0

For each pair of values s,t, strict inequality holds unless z,ys, z; all lie in a
common apartment.
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Proof: By the previous lemma, there is at least one apartment A which
contains some line segments [z, y], [z, z] as indicated. Suppose another apart-
ment B contains some segments [z, y'], [z, z'] on both rays. By shrinking the
segments, we suppose that [z,y], [z, z] lie inside both apartments A, B.

Then also the straight line [y, z] lies inside both apartments, since quite
generally [y, z] lies inside any apartment containing both y, z. For that matter,
for any pair of points p,q on any of the three segments [z,y], [z, 2], [y, 2], the
segment [p, | lies insides both A and B. Thus, the convex hull A of z,y, 2z
lies inside both A, B.

We compute the angle 8 at the vertex = by elementary Euclidean geometry:
letting (,) be the usual inner product,

<y—1‘,2—1‘>

cosf = ~— 71— —
ly — |-z — 2|

_ly—aPtlz—a -y -2
2 ly—a|l-|lz—=
In particular, we see that once we have the triangle with vertices z, y, z inside
a Euclidean space then the angles are determined by the edge lengths. This
proves our claim that the angle is well-defined.

Thus, if the three points z,ys, 2; do lie in a common apartment, we have
the desired equality. What we must show is that the inequality holds more
generally, and that the equality only occurs for all three points in an apart-
ment.

Let C be any chamber in A whose closure contains x, and let p be the
retraction of X to A centered at C (4.2). Recall that a fundamental metric
property of p is that it preserves distances to x, and cannot increase distances
between any two points ys, z;: (14.2).

Thus, we can rearrange the inner product formula for the cosine of the
angle to obtain

d(ys, zt) > d(pys, pzt) = |py — 2| + |pz — x> = 2|py — z||pz — 2| cos 6 =
=ly—z>+|z—z)° -2y — 2||z — | cos f
~ On the other hand, if the equality does hold then p gives an isometry on
CU{ys, zt}. We proved a theorem asserting that subsets of X which are either
convex or contain an open subset of an apartment and which are isometric to
a subset of Euclidean space lie inside an apartment. While the set {z,ys, 2t}
did not meet this hypothesis, the larger set C' U {y, z} does. This finishes the
proof. &

Let d(,) be the canonical metric on X. Two rays r,s are parallel if there
is a bound b so that, for every = € r there is y € s so that d(z,y) < b, and for
every y € s there is z € r so that d(z,y) < b. This is visibly an equivalence
relation.

If two rays r and s lie in a common apartment A, then elementary Euclidean
geometry shows that they are parallel if and only if there is a translation in
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A carrying one to the other. It is not so easy to see what happens inside the
building, but we have the following (provable) analogue of a parallel postulate:

Proposition: Given x € X and given a ray r in X, there is a unique ray
s emanating from x and parallel to r.

Proof: Let A be an apartment containing r. Let C be a sector in A with
vertex the same as the vertex of r. From the discussion of configurations of
sectors and chambers (16.5) we know that there is a subsector C’ of C so that
both C' and z lie in some apartment A’.

Since C’ is a translate within A of C, its closure contains a ray r' parallel to
r. Then within A’ we can translate r’ so that its basepoint is at x, as desired.
This proves existence of the ray parallel to r emanating from x.

To prove uniqueness of this ray, suppose that r,s are distinct parallel rays
with the same origin z. Since r N's is non-empty (containing z) and closed
and convex, it is a straight line segment [z,y] for some point y. (Recall
that from the discussion of the canonical metric on X (14.2) it follows that
this straight line segment is intrinsically defined). If we replace r,s by their
subrays starting just at y, then we can suppose that rNs is just their common
basepoint y.

Now we invoke the cosine inequality

d?(z5,wg) > s + 1% — 2st cos @

proven just above, for the points z,,w; distances s,t out on the rays r,s,
respectively. For fixed s > 0, as ¢ varies, if # > /2 then the minimum value
of the right-hand side is 52 achieved when ¢t = 0. If § < 7/2, then the minimum
is s?sin? @, achieved when ¢t = s cos #. Either way, we see that there is no
absolute bound upon d(zs,s) as s — oo. This contradicts the assumption of
parallelism. This proves uniqueness. &

16.9 The spherical building at infinity

Now everything is prepared for construction of the spherical building at
infinity attached to a thick affine building X. As usual, we will also write
X for the geometric realization of X. All references to apartments are with
respect to the maximal apartment system.

A point at infinity or ideal point of X (or, most properly, an ideal point
of X) is equivalence class of rays, under the equivalence relation of parallelism
(16.8). Let X be the set of ideal points of X. By the proposition of the
last section (16.8), for each point £ at infinity, and for each z € X, there is
a unique geodesic ray with vertex z and in the parallelism class £. We will
denote this geodesic ray by

[z,€)

and sometimes say that [z, &) has direction £, or similar things.
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Let A be an apartment. We know (4.3) that A is isomorphic as chamber
complex to a Coxeter complex (W, S), and that the isomorphism class of
the latter does not depend on which apartment (4.4). Further, the geometric
realization of X(W, S) is a Euclidean space E (13.6).

Let Y be the set of walls in X(W, S), with respect to W. That is, Y is the
set of hyperplanes fixed by a (generalized) reflection in W (1.6), (12.4), (13.6).
Fix a point z in the geometric realization F, and let Y, be the collection of all
hyperplanes through = which are parallel to some hyperplane in Y. From the
basic discussion of affine Coxeter systems, Y, is finite, that is, there are only
finitely-many parallelism classes of hyperplanes in Y (13.3), (13.4), (13.6).
For each € Y;, let A, be a non-zero affine functional on E which vanishes
on 1.

As in our discussion of (finite) reflection groups (12.1), (13.2), the set

C={yeE:\y>0 Vn}

is the fundamental conical cell. (We also call it a sector as above). As
seen earlier, the hypothesis that X is affine requires implicity that (W,.S) is
indecomposable, and that this implies C is a simplicial cone (13.6).

Just as we did with geodesic rays, we first give a definition of conical cell
which does not depend on reference to apartments, but then observe that
necessarily all conical cells lie inside apartments (in the maximal apartment
system). The latter fact makes serious use of results above giving metric
characterization of subsets of apartments in the maximal system (16.4).

Generally, for a partition P = (Y;,Y_,Y,) of Y, into three (disjoint) pieces

Y,=Y,UuY,uYy.

define a conical cell ¢ = cp inside the Euclidean space E = |X(W, S)| as the
set of z € A such that

Az >0 for neyYy
Az <0 for neY_
Az=0 for ney,

A conical cell in the building X is a subset of X isometric to a conical cell
in E. Since the conical cells in E are convex, the metric characterization of
subsets of apartments (16.4) implies that a conical cell ¢ in X lies inside some
apartment A. Then inside A the conical cell can be described by analogous
inequalities specified by a partition (Yy,Y_ Y,) of Y, as just above, but now
of course with reference to affine functionals on A.

Another conical cell d in an apartment A corresponding to a partition
(Z+,Z_,Z,) is a face of this conical cell ¢, written d < ¢, if Zy C Y} and
Z_ C Y_. That is, the face relation d < ¢ holds if and only if some of the
equalities defining d are converted to inequalities in the definition of ¢, while
all inequalities defining d remain unchanged.
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The face at infinity c., of a conical cell ¢ in X with vertex x is the set of
ideal points ¢ € X, such that the open geodesic ray

(mag) = [x,f) - {1‘}
lies inside ¢. An ideal simplex or simplex at infinity inside X, is a subset
o of X so that there is some conical cell ¢ in X so that

0= Ceo

Let ¢,d be two conical cells both with vertices at z. Say that the ideal
simplex d, is a face of the ideal simplex ¢, if d is a face of c. We write
dso < Coo for this relation. This defines the face relation on ideal simplices.
(We prove that it deserves this name in the theorem below).

Recall (4.6) that a thick building in which the apartments are Coxeter
complexes (W, S) with W finite is said to be a spherical building.

For an apartment A in X, let A, be the subset of X, consisting of paral-
lelism classes of geodesic rays with representatives in A (16.8). And we also
think of A, as containing the ideal simplices which are the faces at infinity
of conical cells in A. Keep in mind that we are using the maximal apartment
system (4.4) in the affine building X.

Theorem: The ideal simplices partition X,,. The face relation is well-
defined, and the poset of ideal simplices in X, is a simplicial complex. Indeed,
X is a spherical building, in the sense that the poset given by ideal simplices
is a thick spherical building. Its apartments are in bijection with those in the
maximal apartment system of the thick affine building X.

Remarks: Recall that there is a unique system of apartments in a spher-
ical building (4.6).

Proof: This argument is broken into pieces, some of which are of minor
interest in their own right, and may be of later use.

The following proposition generalizes the analogous fact for zero-dimensional
ideal simplices, which was proven (in effect) in the previous section (16.8).

Proposition: Fix z € X. Then the map ¢ — ¢4 from conical cells with
vertex z to ideal simplices is a bijection.

Proof: Let 0 = dy be the face at infinity of the conical cell d with vertex
y lying in an apartment B. Let D be a sector in B with vertex y so that d is
a face of D. By the discussion of configurations of chamber and sector, there
is a subsector D' of D so that x (thought of as lying in the closure of some
chamber) and D' lie in a common apartment A.

Now the subsector D’ is a translate D' = t+ D of D (within the apartment
B). And such translation preserves parallelism of geodesic rays. Thus, d’' =
t+d is a face of D', and ¢ + d has the same face at infinity as does d.

By translating once more, this time inside the other apartment A, we can
move d' to a conical sector in A with vertex x and with the same face at
infinity.
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The uniqueness follows from the definitions and from the uniqueness of
rays with given direction and given vertex (16.8). &

Proposition: The ideal simplices are disjoint subsets of X,. Given two
ideal simplices o, T, there is an apartment A in the maximal system in X so
that there are two conical cells in A with faces at infinity o, 7.

Proof: The second assertion will be proven incidentally in the course of
proving the first.

Every ray with vertex z is contained in one of the conical cells with vertex
x. Thus, every point in X, lies inside some ideal simplex.

On the other hand, let o, 7 be distinct ideal simplices. Let ¢ be a conical
cell in an apartment A with vertex x whose face at infinity is o, and let d be
a conical cell in an apartment B with vertex y whose face at infinity is 7. Let
C, D be sectors in A, B of which ¢,d are faces.

There are subsectors C’, D' of C, D which lie in a common apartment (16.7).
We can write C' = u + C for some translation v in A, and D' = v + D for
some translation v in B. Then ¢ = u + ¢ and d' = v + d are conical cells in
A, B with the same faces at infinity as ¢, d, and u + ¢,v + d are faces of C', D’.
Thus, ¢’,d' lie in a common apartment. We can then translate them inside
that apartment so that they have a common vertex. This certainly gives the
second assertion of the proposition.

By the previous result, if o, 7 are distinct then so are ¢/, d’. Thus, we have
reduced the issue of disjointness to that of the disjointness of distinct conical
cells. The latter is relatively elementary, and was discussed in detail in the
discussion of reflection groups (12.1), (13.1). &

Proposition: Given two sectors C,D, we have Co, = D, if and only if C
and D have a common subsector.

Proof: The sectors may be replaced by subsectors without changing their
face at infinity, so may be taken to lie in a common apartment A, by the
result on configuration of two sectors (16.7). Then we can write C = x + ¢ and
D = y + c for some conical cell ¢ in A of maximal dimension. Changing signs
of functionals if necessary, we may suppose that c is defined by a family of
inequalities A > 0. This family is finite since A is affine. Then any z € ¢ with
Az > Az and Az > Ay lies in the intersection C ND. Thus, the intersection is
a sector itself.

On the other hand, if two sectors do have a common subsector, it is easy
to check that they have the same face at infinity. &

Now we can prove that X, (or, really, the collection of ideal simplices) is
a thick building, whose apartments are Coxeter complexes attached to finite,
that is, spherical Coxeter groups. (Thus, we call X, itself spherical).

Lemma: The set of ideal simplices in A, is a finite Coxeter complex.
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Proof:  The collection of such simplices, together with face relations, is
isomorphic as a poset to the finite Coxeter complex of conical cells with chosen
vertex. That the latter is a Coxeter complex at all is a consequence of our
study of reflection groups (12.2), (13.2). That it is finite is a consequence
of the assumption that the apartment A is an affine Coxeter complex: the
Perron-Frobenius computation shows this (13.3), (13.6). &

Lemma: The poset X (by which we really mean the poset of ideal
simplices) is a simplicial complex.

Proof:  We need to show two things (3.1). First, we show that for given
ideal simplex o the collection (X )<, of all 7 < ¢ is isomorphic to the set of
subsets of a finite set. Second, we show that any two o, 7 in this poset have a
greatest lower bound, that is, v so that v < o and v < 7 and so that if § < o
and § < 7 then § < 7.

A given o and all its faces lie in some A, which is a simplicial complex, so
(Xoo)<o = (Ax)<o certainly is isomorphic as poset to the set of all subsets
of a finite set.

And in a proposition just above we saw, in effect, that any two ideal sim-
plices o, 7 lie in a common A,. Since the latter is a simplicial complex, all ~
so that v < o or v < 7 lie inside A,. Thus, since A, is a simplicial complex,
there is a greatest lower bound inside A, which must also be the greatest
lower bound inside X . &

Corollary: Each A is a simplicial subcomplex of X .

Proof:  We already knew that A,, was a simplicial complex in its own
right, so this corollary follows from the fact that we now know the whole
building X, to be a simplicial complex, invoking the criterion (3.1) for a
poset to be a simplicial complex. &

And, the property that any two ideal simplices in X, lie in a common
apartment is one of the requirements for X, to be a building with apartment
system

Ao ={A: A€ A}
where A is the maximal apartment system in X (4.1).

Next, we must check the other axiom, that if two subcomplexes A, Bso
in Ao (obtained from apartments A, B in X) have a common chamber o,
then there is a chamber complex isomorphism ¢ : A, — By which is the
identity map on A N By. Let C be a sector (maximal dimension conical
cell) in A whose face at infinity is o, and let D be a sector in B whose face at
infinity is also 0. Just above, we saw that two sectors have the same face at
infinity if and only if they have a common subsector. Thus, the existence of
the common chamber requires there to be a common subsector C" of C and D.
Then, since X itself is a building, there is an isomorphism ® : A — B fixing
AN B (and the latter contains a sector C').
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Since ® (or its geometric realization, really) is an isometry, it must map
parallelism classes of geodesic rays in A to such in B, so we obtain a natural
map P : Ase — Boo-

We will show further that ®, fixes (the geometric realization of) Ay, N By
pointwise. Fix € AN B, and let o be a simplex in Ay, N By,. Then the set

Txo = U (z,8)

£€0

(where (z, &) is the open geodesic ray) is the conical cell in A (or in B) with
vertex = and face at infinity o. Here we pointedly use the fact that the notion
of geodesic is intrinsic, as was shown when the canonical metric on an affine
building was first introduced (14.2).

In particular, z x o is contained in A N B, so ® is trivial on x x o. Thus,
®, is trivial on o. This holds for any o in A N B. This proves the second
building axiom (in its stronger variant form (4.1)).

In particular, in the extreme case that A, = B, the previous two para-
graphs show that x x o for all o in Ay, = B,,. That is, all geodesic rays with
vertex x inside A lie also in B, and vice-versa. Thus, A = B, and we have
the asserted bijection of apartments.

Now we address the issue of thickness.

Given a simplex o with vertex y, lying inside a prescribed apartment A’,
we define an associated conical cell ¢, by extending ¢ inside A’ from y, in
the following manner. Let ¢, be the union of all the open geodesic rays (y, §)
inside A’ emanating from y and which meet ¢ in a non-trivial geodesic line
segment. Alternatively, the conical cell ¢, is the collection of all expressions
(I-t)y+tvfort>0andwv € o.

Proposition: If 0,7 are distinct simplices both with vertex y, lying
in apartments A;, Ay, respectively, then the conical cells ¢,, ¢, obtained by
extending o, 7 from y inside Ay, A have distinct faces at infinity, regardless
of choice of the apartments 4y, As.

Proof: Suppose that £ were a common point of the two faces at infinity.
Recalling the proposition of the previous section (16.8), there is a unique
(open) geodesic (y,£) emanating from y and in direction £. Its intersection
with a small enough neighborhood of y must lie inside both o and 7. Thus,
(the geometric realizations of) the simplices o and 7 have a common point.
Since these are open simplices, it must be that o = 7. &

We need the fact, proven just above, that for any fixed point x € X, every
simplex in X, occurs as the face at infinity of exactly one conical cell with
vertex .

Further, we use the fact proven earlier (12.4), (13.6) that in a given apart-
ment A = X(W,S) in an affine building X, there is at least one good (or
special vertex = in the fundamental chamber C' = (B)). More specifically,
under the natural surjection W — W we have an isomorphism W, — W,
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where W, is the subgroup of W fixing x. And under this map S,, the subset
of S of reflections fixing x, is mapped surjectively to S.

Since this was not emphasized earlier, note that z is good in any apartment
B containing the chamber C in A of which z is a vertex. Indeed, by the
building axioms there is an isomorphism ¢ : B — A fixing C and z. That
is, ¢ gives an isomorphism of these two Coxeter complexes, so any intrinsic
property z has in one it will have in the other.

The following proposition illustrates the importance of special vertices: the
fact that there exist special vertices implies that conical cells are geometric
realizations of simplicial objects.

Proposition: Let ¢ be a conical cell with vertex z, a special vertex. Let
A be an apartment whose geometric realization |A| contains ¢. Then there is
a simplicial subcomplex 7 of A whose geometric realization |7| is c.

Proof:  We use Tits’ cone model (13.1), (13.5), (13.6) of the geometric
realization of the affine Coxeter complex A. Choose a hyperplane 5 through x
inside |A| in each parallelism class, and let A, be a non-zero affine functional
which is 0 on 7.

As in (13.1), (13.5), the geometric realizations |7| of simplices 7 of which z
is a vertex are described by all choices of equalities A,(y) = 0 or inequalities
An(y) > 0or A, (y) < 0 as n ranges over hyperplanes through x, together with
an additional inequality A,(y) > 0, where ), is a non-zero affine functional
vanishing on the opposite facet to z in some chamber in A of which z is a
vertex.

If the latter condition A,(y) > 0 defining |7| is dropped, then we obtain
the conical cell extending the simplex 7 from x inside A, in the sense above.

On the other hand, suppose we are given a conical cell ¢ with vertex x.
By definition, c¢ is described by some inequalities and equalities employing all
the functionals A,. If all inequalities are changed to strict inequalities, and
equalities A, (y) = 0 changed to strict inequalities A,(y) > 0, then the subset
C' of |A] so defined is non-empty (13.1), being a chamber for the spherical
Coxeter group W, in Tits’ cone model.

Since the chambers cut out by the whole affine Coxeter group are literal
simplices, there must be some other hyperplane 7, which cuts C' into two
pieces, one of which is a literal simplex |C'| for some chamber C’ in A. Let
Ao be a non-zero affine functional which vanishes on 1, and is positive on C’.

Now change all the strict inequalities back to their original forms which
defined ¢, but adjoin the inequality A,(y) > 0. The set |tau| so defined is the
geometric realization of a face 7 of C' (13.1), (13.5), (13.6).

Thus, when a special vertex is used as vertex for conical cells, the coni-
cal cells are geometric realizations of simplicial subcomplexes of the ambient
apartment. &

Returning to the proof of the theorem: Let d be a codimension one conical
cell with vertex at the special vertex x, whose face at infinity is therefore a
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facet Foo in Xo. Since x is good, d contains a facet (codimension one simplex)
F with vertex z in X. Since X is thick, there are at least three chambers
C1,C5,C3 in X with facet F.

Invoking the proposition a little above, we see that these three chambers
give rise to sectors with distinct faces at infinity (possibly in a variety of ways).
Thus, X with the apartment system 4., is a thick spherical building.

Thus, the theorem is proven. &

Remarks: It may be observed that the previous discussion blurs some-
what the distinction between the spherical building at infinity and its geo-
metric realization, and between simplicial complex maps and their geometric
realizations. Indeed, the collection of points at infinity, which is the geomet-
ric realization, was constructed first. Yet in the end the faces at infinity of
conical cells, as subsets of the collection of points at infinity, and with the
face relations inherited from the conical cells, really does constitute a poset
which is the desired simplicial complex.

Remarks: It is not difficult to investigate the situation wherein the
apartment system A in the affine building is not maximal. The bijection of
apartments proven above, with the fact that spherical buildings have unique
apartment systems, is an indicator that the building at infinity itself, not
merely its apartment system, must be smaller to accommodate this. Indeed,
the only hope is to take

Xoo,A: U Aoo

with apartment system

Ao ={Ax : A€ A}
with Ay the subcomplex of X, as above. Yet this X, 4 will not satisfy
the building axioms unless we further explicitly require of A that any two
sectors in X have subsectors which lie in a common apartment in A. But for
applications to p-adic groups there is scant reason to consider any other than
the maximal system.

16.10 Induced maps at infinity

Not surprisingly, in broad terms, automorphisms of a thick affine build-
ing give rise to automorphisms of the associated thick spherical building at
infinity. This section makes the idea precise. An important corollary at the
end compares the stabilizer of an apartment in the affine building with the
stabilizer of the corresponding apartment in the spherical building.
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Proposition: If ¢ is an isometry of the geometric realization |X| of the
thick affine building X, then ¢ preserves parallelism classes of geodesic rays,
so it gives a well-defined map ¢ on the geometric realization |X| of the
building at infinity, by

8([2,€)) = [62, doo)

where ¢ is a point at infinity and z is any point in |X|.
Proof: Let
7,6 :[0,00) = |X]|
be two geodesics in a parallelism class ¢ € | X|, as above (16.8). That is,
these maps are isometries, and the supremums

sup sup d(vs,dt)
s t

sup sup d(vs,dt)
t s

are both finite. Having thus unraveled the definition, it is immediate that an
isometry preserves this property. The notational style of the assertion of the
proposition is merely a paraphrase of this. &

But the map ¢, does not directly give a simplicial complex map on X.
The following theorem and its corollary address the simplicial complex issue,
including labeling.

Theorem: Let f: X — X be a simplicial-complex automorphism of
the thick affine building X, with its maximal apartment system. Then the
geometric realization |f| of f maps conical cells to conical cells in |X|, and
defines a simplicial-complex automorphism f., of X, by

foo(coo) = (fc)oo
where ¢ is a conical cell and ¢ is its face at infinity. If f is label-preserving,
then so is the induced map f.

Proof: First, as in the discussion of labels, links, and maximal apartment
system, we know that there is a unique maximal apartment system A (4.4).
Since the collection fA of images fA for A € A is certainly another apartment
system, inevitably fA = A. Thus, f maps apartments to apartments.

From the discussion of the canonical metric on affine Coxeter complexes
(13.7), since f gives a simplicial complex isomorphism A — fA on apartments
A, the geometric realization |f| of f is an isometry from |A]| to |f(A4)|. By
the building axioms (4.1) any pair of points in |X| is contained in a common
apartment, so | f| is an isometry on the whole building. Thus, by the previous
little proposition, |f| gives a well-defined map on points in | X|-.

And f certainly maps walls in A to walls in f(A), since apartments are
Coxeter complexes, and since every pair of adjacent chambers in a Coxeter
complex is separated by a wall (3.6). Therefore, from the definition of conical
cells (16.9), the geometric realization | f| of f preserves the collection of conical
cells in | X]|.
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Further, since f is a simplicial complex map, it preserves the face relations
among conical cells.
Thus, we can attempt to define fo, on X, by

foo(eoo) = (f(€))o

If this map is well-defined, then we have what we want.

Since |f| has been shown to preserve parallelism classes of geodesic rays, we
already have a partial result in the direction of well-definedness: for a conical
cell ¢ in an apartment A, and for a translation ¢ inside A,

foo(€o) = foo((t + €)oo)

Indeed, the geodesic rays in t + ¢ are visibly parallel to corresponding rays in
¢, and parallelism is respected by |f].

Now treat the general case: the argument recapitulates some ideas used
just above. Given two conical cells ¢,d with the same face at infinity, we
choose sectors C, D of which ¢, d are faces. Let A, B be apartments containing
C, D, respectively. From above (16.7), there are subsectors C', D’ of C,D
(respectively) which lie in a common apartment A’. Writing C' = C + u and
D' = D + v for some translations u,v in A, B, respectively, we have conical
cells ¢ + u and d + v which are translates (in A, B respectively) of ¢,d and
now lie in a common apartment A’. Finally, we translate (¢ + u) inside A’ to
arrange that the two conical cells have the same vertex: let (¢ + u) + w be
this translate. (The extreme ambiguity of notation here is harmless).

In the previous section (16.9) it was shown that, for given vertex in |X]|
there is a unique conical cell having that vertex and having prescribed face at
infinity. Thus, in the present situation, it must be that

(ctu)+w=d+v

Note that translation (in any apartment) does not change parallelism classes
of geodesic rays, so does not change faces at infinity.
Since we have noted that |f| respects parallelism, we can compute:

foo(Coo) = (If]€)oc = (If](c + u))oo = (|f]((c + 1) + w))oo

Since (¢ 4+ u) +w = d + v, this is the same as

(I£1(d + v)oo = (|f|d) oo = Foo(doo)

This proves the well-definedness.

It remains to check that labels in X, are preserved by fuo.

Recall that buildings and Coxeter complexes both are uniquely labelable
(up to isomorphism of labelings), and that the maps required to exist by the
building axioms are all label-preserving (4.4). This is as explicit as we need
to be about the labeling.

Consider first the easy case that A and fA have a sector C in common,
and that f: A — fA is the isomorphism ¢ fixing AN fA as required by the
building axioms. Then Ay and (fA)s have the common chamber Cy,. Let
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¢ be the isomorphism A, — (fA)w from the building axioms. As noted
earlier, this isomorphism preserves labels (4.4).

On the other hand, from the Uniqueness Lemma (3.2) it is easy to see that
there is a unique simplicial-complex isomorphism A, — (fA)s trivial on the
chamber Cy,. Since fC = C, by definition f,,0. = 04 for every conical cell
o which is a face of C, so f, has this property. Therefore, it must be that
foo = @, 80 foo preserves labels in this easy case.

In the general case, given A and fA, let C, D be sectors in these apartments,
respectively. Shrink these sectors to subsectors small enough so that without
loss of generality both C,D lie in a common apartment B (16.7). Let ¢ :
A — B and ¢ : B — fA be the isomorphisms trivial on A N B and BN fA,
respectively, as postulated by the axioms. Let ® be the composite 1) o ¢. By
the easy case just treated,

Qo = (1/}00) o (¢00)

is label-preserving on X.

The composite ® 1o f on X thus gives a label-preserving simplicial-complex
automorphism of the Coxeter complex A. Choosing an identification of A with
a literal Coxeter complex (W, S), there is w € W so that the restriction of
&~ 'o f to A is just multiplication by w.

Fix a special vertex z in A, and suppose that |A| is given a real vectorspace
structure with z = 0. Identify the simplicial complex A, with the collection
of conical cells with vertex . For w € W, write w = wwy where wr is
the translation part of w and @ is the linear part (12.4), (13.6). Since the
translation part certainly preserves parallelism classes, wr acts trivially on
faces at infinity. Thus, the induced action of w € W on the faces at infinity
of such conical cells in A is just by its linear part @ lying inside the finite
Coxeter group W.

Thus, by construction of A, in terms of conical cells, W is likewise identi-
fied with the label-preserving simplicial-complex automorphisms of the apart-
ment A, inside X. Thus,

foo =P 0w

is label-preserving, as desired. &

Finally, we have

Corollary: Let f be a simplicial-complex automorphism of the thick
affine building X. Then f stabilizes the apartment A in X if and only if the
map induced by f on the spherical building X, stabilizes the corresponding
apartment A, at infinity.

Proof: The apartment A, is the collection of simplices in X, obtained
as faces at infinity of conical cells in A. And the conical cells with vertex a
special vertex x are geometric realizations of simplicial subcomplexes of the
apartment. So if f stabilizes A it certainly stabilizes 4.
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The other containment is non-trivial. Given a chamber D in A, let y be
a point and y 4 ¢ a sector so that D C y 4+ ¢. Choose a point z € y + ¢ so
that D C z —¢. Then, as proven in the discussion of sectors in affine Coxeter
complexes (16.1), for any two chambers C; C z+cand Cy C y—c the chamber
D occurs in some minimal chamber v from C; to Cs.

Let f stabilize As. Then for any sector D in A its image fD contains a
subsector lying in A, by the definition of A, and by the definition of induced
maps at infinity. For given f, choose C,C5 in y+¢, z—cso that fC; and fCy
both lie in A. Then f+ is still a minimal gallery connecting fCi, fC5, and
containing fD. By the combinatorial convexity of apartments in any thick
building (4.5), it follows that f~ and hence fD lie inside A.

That is, if f stabilizes A, then f stabilizes the collection of chambers in
A, so (being a simplicial complex map) f necessarily stabilizes the apartment

&
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17. Applications to Groups

Induced group actions at infinity
BN-pairs, parahorics and parabolics
Translations and Levi components
Filtration by sectors: Levi decompositions
Bruhat and Cartan decompositions
Iwasawa decompositions

Maximally strong transitivity

Canonical translations

Now consider a group G acting on a thick affine building X, so that the
subgroup G° of G preserving labels is strongly transitive. (We will be con-
cerned almost entirely with just the maximal apartment system). (Earlier
(5.5), when we talked about generalized BN-pairs, we used a different nota-
tion: G was the large group and G the label-preserving subgroup).

This situation gives rise to a (strict) BN-pair in G°, and to a generalized
BN-pair in G (5.5). These are the affine BN-pairs in G° and G. The spherical
building at infinity yields spherical BN-pairs in G° and in G. A new and
important thing is the interaction of the affine and spherical BN-pairs.

17.1 Induced group actions at infinity

The point here is to show that a good group action on a thick affine building
gives rise to a reasonable group action on the (thick) spherical building at
infinity.

Let G be a group acting on a thick affine building X by simplicial-complex
automorphisms. Suppose that the subgroup G° of G acting by label-preserving
automorphisms is strongly transitive, in the usual sense that it is transitive
on pairs (C, A) where C is a chamber contained in an apartment A, where
A lies in the maximal apartment system. Here and in the sequel we only
consider the maximal apartment system (4.4) in X, and (unavoidably) the
unique apartment system (4.6) in the spherical building X .

Theorem: Under the induced maps, G° acts strongly transitively on the
thick spherical building X, at infinity, and preserves labels.

Proof: This is mostly a corollary of prior results (16.9) about the spher-
ical building at infinity, and about induced maps on the building at infinity
(16.10), together with a review of more elementary facts.

From the uniqueness of the maximal apartment system (4.4) it follows that
G unavoidably stabilizes the set A of apartments in X. From the discussion
of induced maps at infinity (16.10), elements of G induce simplicial-complex



Garrett: ‘17. Applications to groups’ 257

automorphisms of X,. Further, we have already shown (16.10) that label-
preserving maps on X induce label-preserving maps on X.,. Thus, the issue
is the transitivity of G° on pairs (Cx, Asy) Where Cy is a chamber in the
apartment A, in Xo.

By the main theorem on the building at infinity (16.9), the apartments A
are in bijection with the apartments A in the maximal system A in X, so the
transitivity of G° on A gives transitivity on the system A, in X,. And,
again, the fact that G° stabilizes the set of apartments in X, follows from
the fact that that apartment system is unavoidably the maximal one (being
unique (4.6), since the building at infinity is spherical).

Let (W, S) be a Coxeter complex isomorphic to apartments A in X (4.3).
(From the discussion of links they are all isomorphic (4.4)). Let x be a special
vertex in A (12.4), (13.6), and give |A| a real vectorspace structure so that
x = 0. We have shown that the faces at infinity of conical cells in |A| are in
bijection with conical cells with vertices at z (16.9).

Every w € W can be written as w = wwyp where @ is the linear part of
w and wy is the translation part. This is essentially the definition of special-
ness of the vertex x = 0. Translations do not move geodesic rays out of their
parallelism classes, so faces at infinity are not altered by wr. Thus, the only
effect w has on faces at infinity is by w.

Then the image complex (W,S) under the map w — @ is the finite
Coxeter system whose associated complex gives the isomorphism class of
the apartments at infinity (12.4), (13.3), (13.6). For any choice of isomor-
phism A ~ X (W, S) we obtain an identification of W = W,g with the label-
preserving automorphisms of A, and of W = Wsph with the label-preserving
automorphisms of A.

Let A/° be the stabilizer in G° of a fixed apartment A in X. By hypothesis,
N is transitive on chambers in A. From the Uniqueness Lemma (3.2), a label-
preserving automorphism of a Coxeter complex is determined completely by
what it does to one chamber. Thus, as noted already in the basic discussion
of BN-pairs (5.2), the natural map N'° — W is a surjection.

The action of N'° on chambers in A, is by way of the composite

NO—)W—)W:WSPh

so is transitive on chambers in the given apartment, as claimed. &

Let Co C Ao be a choice of chamber in an apartment in the associated
spherical building X, at infinity. Let
N = stabilizer in G° of the apartment A,

B¢, = stabilizer in G of the chamber C

Corollary: The pair /\/'S‘;h, Bg,, is a (strict) spherical BN-pair. &
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17.2 BN-pairs, parahorics and parabolics

Throughout this section we continue to suppose that G is a group acting
on a thick affine building X with the hypothesis that the label-preserving
subgroup G° of G is strongly transitive (with respect to the maximal apart-
ment system). We will begin to see what things can be said about the group
in terms of the ‘obvious’ geometry of the affine building and the spherical
building at infinity.

This section sets up notation which will be used throughout the rest of this
chapter.

Fix a chamber C' in an apartment A in X, let  be a vertex of C' which
is special (14.8), and fix a sector C inside A with vertex  and containing C
(16.9). Let C be the face at infinity of C and let A be the apartment at
infinity consisting of all faces at infinity of conical cells inside A (16.9).

Let

Nag = stabilizer in G of the apartment A4
B = stabilizer in G of the chamber C'
T = NNB
P = stabilizer in G of the chamber C
Ngph =  stabilizer in G of the apartment A,
M = -/\/sph NP
% = stabilizer in G° of the apartment A
B° = pointwise fixer in G° of the chamber C
T° = BNN°= pointwise fixer in G° of the apartment A
Ppe° = stabilizer in G° of the chamber C
on = stabilizer in G° of the apartment A
M° = sph NP2 = pointwise fixer in G of the apartment A

Recall that T normalizes N°, B°, and G°, and that T and G° together
generate G (5.5). Thus, G° is a normal subgroup of G, and is of finite index
(5.5) since the building X is finite-dimensional. Let

N =G/G° = Nag /Ny = T/T*
be the quotient.

The Weyl groups are

W = Wag = affine Weyl group = N°/(N° N B?)
W = Wspn = spherical Weyl group ~ N°/NZ.us

where N, is the subgroup of N'” consisting of elements whose restrictions

to A are translations. Also, by definition, for a special vertex x in A
Wsph ~ Wx
where W, is the subgroup of W fixing x.
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From the demonstrated strongly transitive action on the spherical building
at infinity (17.1), we also have a strict spherical BN-pair P",./\/'s‘;)h and a
generalized spherical BN-pair P, Nyph.

Note: While we are assured that the action at infinity of G° is label-
preserving (16.10), it is not clear how much larger than G° the subgroup of
G preserving labels at infinity might be. In some cases, the whole group G
preserves labels at infinity, but there are natural examples where this is not
SO.

Note that, to distinguish the two cases, The ‘B’ in the spherical case will
be denoted P and P° (in G and G°, respectively), and called a minimal
parabolic or Borel subgroup, while the ‘B’ in the affine case is denoted B
and B° (in G and G°, respectively), and will be called an Iwahori subgroup.
The subgroups M and M?° inside P and P° are Levi components of P and
Pe° (respectively).

Any subgroup of G containing B is called a parahoric subgroup of G.
Any subgroup of G containing P is called a parabolic subgroup of G.

Apart from setting up notation, the point of this section is to note that the
‘N’ is the same in both the affine and spherical BN-pairs:

Theorem: We have
Nage = Nsph
N;ff = s(;.)h
Proof: This is the obvious corollary of the fact that a simplicial complex
automorphism of X stabilizes A if and only if it stabilizes A (16.10). &
Therefore, we write simply
N = Nag = Nspn
N? =Njr = sph
Remarks: It is not generally true that the induced maps given by G°
constitute exactly the label-preserving subgroup of the group of maps induced

by G on X,,. To the contrary, in many natural examples all induced maps
from G on X, are label-preserving.

And the usual terminology is
Wag = N°/T° = affine Weyl group
Wepn = N?/M?° = spherical Weyl group
Note that these Weyl groups are defined in terms of the type-preserving group
G° rather than the whole group G. The fact that the type-preserving subgroup
at infinity may be larger than G is irrelevant to determination of the spherical
Weyl group, since the strong transitivity of G° at infinity follows from that

on the affine building (17.1). And the isomorphism class of the apartments
at infinity is uniquely determined (5.6).
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17.3 Translations and Levi components
Keep the notation from the previous section.

For this section, we suppose that G preserves labels, so in previous notation
G =G° B = B° N = N° and so on. Let Nyans be the subgroup of A/
consisting of those group elements whose restriction to the apartment A are
translations of A.

Let Ao, be the apartment at infinity corresponding to the apartment A
(16.9). Let z be a special vertex of the chamber C' in A whose stabilizer is B.
Let C be the sector in A with vertex x and containing C. Let C, be the face
at infinity of C.

Theorem: Assuming that G preserves labels, the Levi component M =
N N P of the minimal parabolic P in G' with respect to the apartment A, is
the subgroup of translations

M = -/\/trans
in M.

Proof: We use the fact that A is the ‘N’ in both the affine and spherical
BN-pairs (17.2), and similarly for A in the generalized BN-pairs.

On one hand, we must show that AMipans C P. Since Nians acts on A by
translations, the action of Nirans preserves parallelism, so preserves faces at
infinity of conical cells. Thus, Nirans C P.

On the other hand, if g € P then gC has a subsector in common with C
(16.9), and if also g € N, then the image gC lies entirely within A. The image
gz of the vertex x of C has the same label as does z, since g € G, and gz is a
vertex of gC'.

Since N preserves labels and is transitive on chambers in A, it is necessarily
transitive on pairs (z',C') where 2’ is a special vertex with the same label
as x and C’ is a chamber of which z’ is a vertex. Thus, there is a unique
w € Weug so that wC' = gC and wr = gz. Let W, be the subgroup of Weug
fixing the special vertex z. Since the composite map

W, C W — Wipn

is an isomorphism, we can write w = wyw, with w, € W, and w; a translation
in Wag. Then wix = gx. Such translations w; preserve parallelism in A, so
w1C = gC. Thus, g 'w; stabilizes the apartment A, stabilizes the sector C,
and fixes its vertex z. By the uniqueness lemma (3.2), g tw; acts trivially
on A, as desired. &

Remarks: The analogous assertion for a non-necessarily label-preserving
group G is not as simple as this. One half the argument still works, namely,
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that
-/\/trans C N nr

(where Nirans is the subgroup of A/ of elements whose restrictions to A are
translations). However, in general this containment is strict.

17.4 Filtration by sectors: Levi decomposition

Under the hypothesis that the group G preserves labels, there is a decom-
position result for minimal parabolics P

P=M-N¥#

where M = Nians is the subgroup of the stabilizer A of the chosen apartment
A containing the chamber C' of which P is the stabilizer. In the previous
section this subgroup M was identified with a Levi component of P.

The subgroup N# will be shown to be a normal subgroup of P, and is
a ‘thickened’ form of the unipotent radical (often denoted ‘N’) of P: see
(7.1),(7.4), (8.1-4) for descriptions for the classical groups. If it were exactly
the unipotent radical then this decomposition would be the standard p-adic
Levi decomposition.

The description of this N# in terms of the affine building is immediately
useful in at least one way: for the classical groups this will make it easy
to verify that the spherical building at infinity is the same as the spherical
building constructed directly earlier. In broader terms, the fact that such
a description is possible in this context (as opposed to a more Lie-theoretic
scenario) bodes well for the general utility of our approach.

More generally, let S, be the reflections in A fixing the vertex z, let S’ C S,
and let ¢ be the conical cell with vertex z extending the face F° of type S’
of the chamber C. We have the corresponding parahoric subgroup

Bs: = BS' B = pointwise fixer of the face of C fixed by S’
and parabolic subgroup
Ps: = PS' P = pointwise fixer of the face of Cy, fixed by S’

Proposition: Assume that G preserves labels. The intersection BN P is
the pointwise fixer of the whole sector C.

Proof: On one hand, if ¢ fixes pointwise fixes a sector C with vertex x and
containing the chamber C, then it certainly fixes C, and also fixes the face
at infinity Co, of C. That is, B N P is contained in the pointwise fixer of the
sector C.

On the other hand, if ¢ is in B N P then it fixes C' and face at infinity
Coo. Every chamber at infinity is the face at infinity of a unique sector with
vertex z (16.9). Thus, if g stabilizes C' (necessarily pointwise, since it is label-
preserving), then gC is another sector with vertex z, since g is a simplicial
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automorphism of X and engenders an isometry on |X| (13.7). On the other
hand, g stabilizes C,, so gC must be C. )

Now we can describe a subgroup N# of the minimal parabolic P which
is nearly the unipotent radical of P (7.1),(7.4), (8.1-4). As usual, let M =
Nirans be the subgroup of G consisting of elements which stabilize the fixed
apartment A and induce translations on A. Let C, be the fixed chamber in
the associated apartment at infinity A.,. For any sector D (in any apartment)
with face at infinity being the fixed chamber C,, let

N2 = pointwise fixer of D

Then define
N* ={ ] Np
D
Proposition: This set N# is a subgroup of G. It is equal to
N*= () Np
DCA

and is normalized by M.

Proof- That N# contains the identity and is closed under inverses is clear.
From (16.9), two sectors D, D’ have a common face at infinity if and only if
they have a common subsector D”. Thus, for g fixing D and ¢’ fixing D', the
product gg' surely fixes D”. That is, N# is a subgroup.

Further, again from (16.9), every sector with face at infinity being the
specified C», has a subsector lying inside A. This proves the second assertion.

The subgroup M of the stabilizer A/ of A consisting of translations certainly
maps sectors D to sectors D' having a common subsector with D, so M fixes
Cs. Given n € N#_ let D be a subsector of A fixed by n, invoking the earlier
part of this proposition. Then for m € M the element mnm' of G certainly
stabilizes the sector m 1D inside A. This sector still has face at infinity Coo,
so we have proven that M normalizes N #, &

Theorem: Assume that G preserves labels on the affine building. We have
the decomposition
and N# is normalin P .

Proof: On one hand, by its definition, N# also fixes Ci,. Thus, M - N# C
P. This is the easy direction of containment.

On the other hand, by the strong transitivity, the subgroup N which sta-
bilizes the apartment A is transitive on chambers inside A. Since N preserves
labels and is transitive on chambers in A, it is necessarily transitive on pairs
(2',C") where z' is a special vertex with the same label as x and C' is a
chamber of which 2’ is a vertex. Thus, there is a unique w € Wyg so that
wC = gC and wx = gx.
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Let p € P. Then pC still has the same face at infinity, so has a common
subsector C' with C, by (16.9). Without loss of generality, C' has vertex a
special vertex z' (which need not be of the same type as z). Let

Ci=p'C’cpt(pcnC)c A
This has vertex z;, which is necessarily a special vertex. Then
pC1 CcA

and its vertex pz; is a special vertex in A of the same type as ;. Let w € N
be such that wz; = px;. By the definition of special, the affine Weyl group
W is a semi-direct product

W =W, -M=M-W,,

where W, is the subgroup of W fixing 1. Thus, there is m € M so that
mr; = pri.

Therefore, we find that m~!p fixes 2; and stabilizes the chamber C,, at
infinity. From (16.9), there is a unique sector with vertex z; with face at
infinity Cu, which must be C;. Thus, m~'p € N#.

Since we have already seen that M normalizes N#, it now follows that N #
is a normal subgroup of P. &

17.5 Bruhat and Cartan decompositions
Keep the notation from above.

For the sake of completeness of the present line of discussion, we recall here
the simplest parts of the Bruhat-Tits decomposition results as applied to both
the affine and spherical BN-pairs.

Assuming that G preserves labels on the building at infinity, the traditional
Bruhat decomposition (5.1) is
G= || PwpP
WE Wiph
Again, let
Q=T/T°=(NnNB)/(N°NB°)
be as earlier. The Cartan decomposition, another example of a Bruhat-
Tits decomposition (5.5), is
G = |_| B°woB°
wEWagr 0€Q
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17.6 Iwasawa decomposition

The Iwasawa decomposition is not simply a Bruhat-Tits decomposition,
spherical or affine. Indeed, the very statements refer simultaneously to parabol-
ics and parahorics: the interaction of the affine building and the spherical
building at infinity play a significant role in the proof. We keep the notation
from just above.

Theorem:
G'= || PwB
wWEWsph
and
G° = | | P°woB°

DEWepn 0EQ

Proof: We have shown that there is a subsector gC; of gC (with C; a sub-
sectorof C) so that both gC; and the chamber C' lie in a common apartment
Ap (16.5). The strong transitivity of G° on X assures that B itself is transi-
tive on apartments containing C. Thus, there is b € B° so that bA; = A, so
bgCy C A.

Recall that a group H is said to act simply transitively on a set © if, for
any 0 € ©, hf = 6 implies h = 1. (If this property holds for a single § € O,
then it holds for every element of ©).

Since Wsp, is simply transitive on chambers in the Coxeter complex Ao, it
must be that Wipp is simply transitive on parallelism classes of sectors in A,
where for sectors parallel means possessing a common subsector (16.9). Thus,
there is a unique w in Wpp so that wbgCy has a subsector in common with C.

Then the larger sector wbgC (though perhaps not lying entirely inside A)
has a common subsector with C, so wbg = p € P?, since P? is the stabilizer
of the face at infinity Co of C. Thus, g = b~ 1w !p, yielding the existence
assertion of the theorem for G°.

To prove that the indicated union is disjoint we must prove that the element
w occurring above is uniquely determined as an element of the quotient

WSph = '/V‘si)h/ tt;"ans

Consider two elements by, by € B° mapping subsectors gCy, gCo (respectively)
of gC to A. We may as well replace these two sectors by their intersection gC,.
Now any minimal gallery from C' to a chamber in gC, lies in every apartment
containing both C and gC,, by the combinatorial convexity of apartments
(4.5). The automorphisms of X given by b1, b2 send non-stuttering galleries to
non-stuttering galleries, agree pointwise on C, so on any apartment containing
C and gC, must be equal, by the Uniqueness Lemma (3.2).

That is, the actual images b1gC,, b2gC, are the same. In particular, the
parallelism classes of b;gC, are the same. Thus, the corresponding element w



Garrett: ‘17. Applications to groups’ 265

must be the same for any choice of b € B° mapping a subsector of gC back to
A. This proves the uniqueness part of the theorem for G°.

Now we address G itself. We already know that G = G° - T (5.5), so by
invoking the theorem for G° we have
G=G"-T= (] PwB°-T
WEWsph
= |J PwB°-(1°\T)= |J P°wB°Q
BEWaph DEW,ph
= U P°woB°
WEW,ph,0 EQ

since T normalizes B° (5.5).

For disjointness: if P°w;B°t; meets P°w; Bty for w; € Wypn and ¢; € T,
then surely G°t; = G°ty. Then T°t; = T°t,, so the images of t; and ¢, must
be the same. This finishes the proof. &

Corollary: Let K = K, be the good ‘maximal compact’ subgroup
K= || BwB® -0
DEW,

in G. (We assume throughout that S is finite, so an assumption that B is
compact suffices to assure that this K is literally maximal compact. Then

G=P° - K

Proof: We have
G=|| PwoB° C| | P°B°woB° =
=p°. |_| B°woB° = P°K
w,0

as desired. &

17.7 Maximally strong transitivity

The point of this section is to see that when the Iwahori subgroup B is
a compact open subgroup of GG, then G° acts strongly transitively on the
maximal apartment system. Of course, this presumes that there is a topology
on G so that this makes sense. A small amplification of the definition of
topological group is appropriate.

A group G is a topological group if it has a topology in which the multi-
plication and inverse operations are continuous. That is, the maps GxG — G
by g x h = gh and G — G by g — ¢! are both continuous. Most often a
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topological group is also required to be Hausdorff and locally compact, as
well.

Of course, this definition has ramifications which are not obvious. A few
simple observations are necessary for the sequel. For one, it follows that
for every fixed g € G the maps h — gh and h — hg are continuous maps
G — @. Since these have the obvious inverses, they are homeomorphisms.
As a consequence of this, for any open neighborhood U of the identity in G,
gU and Ug are open neighborhoods of the point g € GG. Conversely, for any
open neighborhood V of g, the sets ¢g~'V and V¢g~! are open neighborhoods
of the identity.

To relate this to the Iwahori subgroup B, suppose that B is open and
compact. Because of the Bruhat-Tits decomposition (5.1), the assumption of
open-ness implies that B is closed, since its complement is a union of sets Bg
which are open, being continuous images (under the map z — zg) of the open
set B.

Proposition: Let Y be a subset of X which is contained in the union of
finitely-many simplices in X. Suppose that Y contains at least one chamber.
Then the pointwise fixer

Gy ={9€G:gy=y VyeY}
of Y is open and compact in G.

Proof:  The hypothesis that ¥ contains a chamber C’ entails that Gy
consists of label-preserving automorphisms, since every g € Gy certainly pre-
serves the labels on C’, and by the Uniqueness Lemma (3.2) must preserve
labels on any apartment containing that chamber. But by the building ax-
ioms (4.1) every chamber lies in some apartment containing C', so necessarily
g preserves labels on the whole building.

If Y contains a point y in the closure of some chamber D, since Gy C G°,
it must be that Gy fixes the whole closure D pointwise. Thus, the pointwise
fixer of Y is the same as the pointwise fixer of the smallest union of closed
chambers containing Y.

Let C4,...,C, be the list of chambers whose closures contain Y. By
hypothesis this list is finite. Invoking the transitivity of the label-preserving
subgroup G° of G on chambers, there is h; € G° so that h;C; = C, where C
is the chamber whose pointwise fixer is B. Then

Gy =) hiBh;'

This finite intersection of opens is open, and is certainly compact since each
hiBhi_1 is so. &

Theorem: With the hypothesis that B is compact and open in G, the
group G° of type-preserving maps in GG acts strongly transitively on pairs
C'" c A’ for chambers C' and apartments A’ in the maximal apartment system.
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Proof: Let A’ be an apartment in the maximal apartment system. We first
reduce to the case that C' C A’. Indeed, A’ contains some chamber C', and
by the mere transitivity of G° on chambers there is h € G° so that hC' = C.
So now C C hA’, and if hA' = gA for g € G° then A' = h~'gA. This is the
desired reduction.

Now suppose that C C A’, where C is the distinguished chamber whose
fixer is B. It suffices to find b € B so that bA’ = A, where A is the distin-
guished apartment whose stabilizer in G° is N.

The simplicial complex A’ is certainly the union of all its finite subcom-
plexes, so we can easily write it as a union A’ = J; ¥; where

ccyicy,Cc...cy, cC

and each Y; is a finite chamber complex inside A’. (Note that this requires
only that the Coxeter group W be countable, which is certainly assured by
the uniform hypothesis that the generating set S be finite).

It was shown earlier (16.2) that the collection of bounded subsets of apart-
ments does not depend upon the apartment system. Thus, each Y; must lie in
an apartment A; in whatever apartment system A we start with, upon which
G° acts strongly transitively, by hypothesis.

Invoking the strong transitivity of G°, there is b; € B so that b;4; = A.
For indices ¢ < j we have an isomorphism

b;lbj:Aj —)Al

which gives the identity when restricted to Y;. Thus, the sequence bl_lbi lies
inside the compact set B, so has a convergent subsequence b; 1bij with limit
8.

The obvious claim is that the element b = b1 8 has the property that bA' =
A. To prove this, let D be an arbitrary chamber in A. Choose i large enough
so that the closure of D is contained in Y;. Invoking the proposition, we can
choose a small-enough neighborhood U of 1 in G so that U C Y;. Choose j
large enough so that i; > i and so that b; 'b;, € BU. Then likewise

ICXS b;lleU C b;lleY;

and
b=0153 € b;,Y; = bi(b; 'b;,)Y;

Since 7; > 4, we have b;lbi]. € Gy;, so

bebY; - Y;=bY, CA
by the defining property of b;.

Then
bD C b1BY; C A

That is, the element b € B maps every chamber of A’ to A. Thus, bA' =
A. This proves that B is transitive on apartments in the maximal system
containing C'. This is the asserted strong transitivity. &
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Corollary: If B is compact and open in GG, then any apartment system A
stable under the action of G is unavoidably the maximal apartment system.

&

Remarks: The format of the previous theorem does not make clear what
properties of the building might allow the Iwahori subgroup B to be compact
and open, in some reasonable topology on G. However, in practice, often this
is not the issue because the group G is presented with a topology arising from
some other source.

17.8 Canonical translations

Keep notation as above. For this section we suppose that G preserves
labels.

With fixed choice of apartment A and chamber C, let S denote the set of
reflections through the facets of C. With fixed special vertex z of C, let S,
be the subset of S consisting of those reflections which fix z, and let W, be
the subgroup of W fixing .

Attached to each w € W, there is a canonical translation, usually denoted
@, in the Levi component M of the minimal parabolic P, described as follows.

For s € S;, let Fys be the facet of C fixed by s € S, and let ns be the
hyperplane which is the affine span of Fs. Thus, s is the reflection through
ns. Let F, be the facet of C' which does not contain z, and let 7, be the corre-
sponding hyperplane. The chamber C' is a simplex cut out by the hyperplanes
ns (s € S) and 7, (13.1), (13.6), (13.7).

Let Wirans be the subgroup of translations in W. The group W is the
semi-direct product of W, and Wi,ans. For each w € W, write a semi-direct
product decomposition

WSy = Gy * W
with gy € Wirans and w' € W,. That is, a, is the (uniquely-determined)
translation so that
(wso)x = ayx
Thus, since w € S;, we also have
(wsow™ Nz = apr

One notes that ws,w ™! is the reflection through the facet wF, of the chamber
wC'. Thus, a,, is a non-trivial translation in the direction orthogonal to the
hyperplane wF,.

Proposition: The translations {a,, : w € W, } generate a group I' of finite
index inside the group Wi apns of all translations on A.

Proof: From prior discussion of the subgroup W of translations of an affine
Coxeter group W (12.4), to prove the finite-index assertion it suffices to show
that the collection of all directions of the translations a,, span the space |A|.
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Given any direction v, consider a ray from the special vertex z in direction
v. An initial segment of v must lie in (the closure of) some one of the chambers
wC, w € Wy, since the union of these is a neighborhood of z inside A. Thus,
v must intersect some facet wF, for w € W,, where F, is the facet of C
opposite to x. Since the hyperplane wn, does not contain z, it must be that v
meets wn, at a non-zero angle. Thus, since the direction of a,, is orthogonal
to wn,, it cannot be that the direction of a,, and v are orthogonal.

This proves that the collection of directions of all the translations a,, for
w € W, spans |A|. &
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18. Lattices, p-adic Numbers,
Discrete Valuations

p-adic numbers

Discrete valuations

Hensel’s lemma

Lattices

Some topology

Iwahori decomposition for GL(n)

As linear and geometric algebra formed the backdrop for the construction
and application of spherical buildings, there is a corresponding bit of alge-
bra which both motivates and is illuminated by the finer structure of affine
buildings.

Fundamentally, the more delicate study of affine buildings is aimed at ap-
plication to p-adic groups, the archetype for which is GL(n, Q). Thus, some
exposition of the rudimentary properties of the p-adic integers Z, and the
p-adic numbers Q, is appropriate. We need very little beyond the definitions.

On the other hand since many versions of this discussion take place in a
broader context, we also introduce discrete valuations which generalize in a
straightforward manner the p-adic numbers.

18.1 p-adic numbers

The definitions and simplest properties of p-adic numbers are all we need
for later applieactions. Most of this material is really just an example of
the discrete valuation scenario of the next subsection, but does deserve extra
emphasis as the prototypical example.

The discussion of this section immediately generalizes to the more general
case in which Z is replace by a principal ideal domain o, the rational numbers
Q are replace by the fraction field k of the principal ideal domain, and the
prime number p is replaced by a generator 7 for a prime ideal in the principal
ideal domain o.

Let p be a prime number. The p-adic valuation is defined on the ordinary
integers Z by
ord ap” =ord,ap” =n
where a is an integer not divisible by p, and where n is a non-negative integer.

Note that the fact that 7Z is a unique factorization domain entails that there
is no ambiguity in the integer n appearing as exponent of p. By convention,

ord 0 = +00
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Define the p-adic norm | |, on Z by

] = |z, = p~o

and |0|, = 0. The p-adic metric on Z is given by
dp—adic(may) = |z — y|p = [z —y

The ring of p-adic integers Z, is the completion of the ordinary integers
7, with respect to the p-adic metric on Z.

One definition of the field of p-adic numbers Q), is as the field of fractions
of this completion Z,. This is pointlessly indirect, however. It is better to
define the p-adic ord function and norm and metric directly on QQ, and define
Q, to be the completion of Q with respect to this metric. To be sure that
these two constructions yield the same thing one should check that the ring
operations in Q are continuous with respect to the topology from the p-adic
metric.

To directly define the p-adic valuation and norm on Q: define ord, on Q
by

ord gp” = ord,,,(g p*)=n
b b
where a,b € Z are both prime to p and b is non-zero. (And the ord of 0 is
+00, again). Then the p-adic norm is

o] = |z, = p~

Again, the fact that Z is a unique factorization domain implies that there is
no ambiguity in the integer n appearing as exponent of p. The p-adic metric
on Q is

d(z,y) = dpadic(z,y) = |z —yl =z -yl
There is the visible multiplicative property

lzylp = |=lp ylp

(which is what justifies calling this p-adic norm a norm). That this is so
follows from the more elementary fact that if a prime p divides neither of two
integers a, b, then p cannot divide the product ab.

That this is indeed a metric is easy to check: the symmetry is obvious, and
an even stronger result, the ultrametric inequality, is obtained in place of
the triangle inequality, as follows:

Proposition: For rational numbers z,y we have
|z + ylp < max(|zlp, |ylp)

with equality holding unless |z|, = |y|p-
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Proof: Write z = p™(a/b),y = p™(c/d) with none of a, b, c,d divisible by
p. Without loss of generality, by symmetry, we may suppose that m < n.
Then
ad + p™ "bc

bd

If m < n then, since p divides neither a nor d, surely p does not divide the
numerator. That is, if m < n then equality holds in the statement of the
proposition.

If m = n, then

m

T+y=p

m ad +be

bd
and it may happen that p does divide the numerator, so that all we can
conclude is that

T+y=p

ordy(z +y) >m
This gives the proposition. &

The effect of this completion is to annihilate information about any prime
in Z other than p:

Proposition: Let z be any integer not divisible by a prime p. Then z is
a unit in the p-adic integers Z,,.

Remark: Further, the proof yields a ‘formula’ for the inverse of z.
Proof: Since the ideal pZ is maximal, the ideal pZ + x7Z must be the whole
ring Z. Thus, since 1 € Z, there are a,b € Z so that
ar +bp=1
Evidently neither a nor b is divisible by p. Rearranging this, we have
axr=1—"Dbp

and
a J—
1-— bpx N
So far this computation could take place inside the ordinary rational numbers
Q. But now we rewrite
a
1—0bp

with the assurance that the latter geometric series converges in Q,, since

=a(1+ (bp) + (bp)® + (bp)®> +...)

1
lbp| = [b] - |p| = [p| = = <1
p
(since b is an integer prime to p). Then
b =a(l+ (bp) + (bp)* + (bp)* +...) € Z,

since all the summands are ordinary integers. &
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As a consequence of the last proposition, the p-adic integers Z, contain
all rational numbers of the form a/b with p not dividing the denominator b.
Another paraphrase concerning this phenomenon is as follows:

Proposition: Let = € Z, and suppose that
lz—1] <1
Then z is a unit in Z,,.

Proof: As in the last proof, we use the convergence of suitable geometric
series. Supposing that |z — 1| < 1, we have a convergent series

rl=1-(1-2)'=14+0-2)+1 -2 +0-2)*+...
Every summand is in Z, so the convergent infinite sum yields an element of

Z, &

Corollary: Given a non-zero element z in Z,, for y € Z, sufficiently close
to z, y = n - = for some unit n in Z,. Specifically, this holds if for y so that

|z —yl <yl
And, in this situation, x and y necessarily generate the same ideal:
2Ly = Y7y
Proof: We have
y—x
y=a+ (-2 =a(+ L5

By the previous proposition, 1 + =% is a unit, so by elementary ring theory
z and y generate the same ideal. &

Proposition:  The ring Z, is a principal ideal domain with only one
non-zero prime ideal, namely the ideal m = pZ, generated by p. Further,
m is the set of elements x € Z, so that |z|, < 1, and Z, itself is the set of
elements = € Q, so that |z], < 1. The group of units Z; in Z, is the set of
elements z so that |z|, = 1.

Proof: First, let’s prove that the units are exactly the things in @@, with
norm 1. On one hand, if 7 is a unit, then n~! lies in Z,, so [p~| < 1 (as well
as [n| <1). Then

=l o]

L=[]=ln-n nl - In
implies that || = 1.

On the other hand, suppose that |a| = 1 for some o € Q,. Take z,y € Z
so that |a — %| < |a|. Then, by the proposition above, there is a unit n in
Zyp so that a =1 - . Thus, since |a| = 1, it must be that || = 1. Thus,
the power of p dividing x must be identical to the power of p dividing y. We
could have assumed that x,y are relatively prime, so then we conclude that
neither x nor y is divisible by p. Thus, from above, they are both units in Z,,.

And then « itself must have been a unit.
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Next, suppose that |a| < 1. If |o| = 1, then we have just seen that « is a
unit in Z,. On the other hand, if |a| < 1, then there is a power p™ of p (with
0 < n € Z) so that |a/p™| = 1, so a/p™ is a unit, and certainly o € p"Z,,.
This proves that Z, (defined to be the completion of Z with respect to the
p-adic metric) is exactly the set of elements in @, with norm less than or
equal 1.

Now let I be a non-zero ideal in Z,. Let € I be an element of I with
maximal norm |z| among all elements of I. This maximum really does occur,
since the only possible values of the norm are

11 1

) p7 p2 ) p3 b

(In particular, for any value of |z;|, there are only finitely-many possible

values above |z;| assumed on Z,). Then we claim that I is generated by

this z. Indeed, for any other y € I, |y/x| = |y|/|z| < 1, so by the previous
argument y/x € Zp and y € x - Zy,.

And, in particular, for any z € Q,, there is some integer power p" of p so

that £ = n - p" with unit n in Z,,. )

.—0

18.2 Discrete valuations

The object of this section is to run the ideas of the previous section in
reverse, beginning with a ‘discrete valuation’ on a field, and from that con-
structing the ‘discrete valuation ring’, with properties analogous to Z, above.

Just as in the p-adic case, there are two basic equivalent items: the (dis-
crete) valuation and a norm (which engenders a metric). The norm is an
exponentiated version of the valuation. The norm seldom has a canonical
normalization, but this is usually not important.

A discrete valuation ord on a field k is an integer-valued function written
x — ordz on k™ so that

ord(zy) = ord(z) + ord(y)

ord(z + y) > inf(ord(z), ord(y))

where we define ord(0) = 400 compatibly. Very often the function ord is also
called an ‘ord-function’ or ordinal.

We assume that this ord function is not identically zero. Because of the
multiplicative property, the collection of values of ord form a non-trivial ad-
ditive subgroup of Z. Thus, the collection of values is of the form nZ for some
positive integer n. By replacing ord by %ord, we may assume without loss of
generality that

ordk* =7
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For any real constant ¢ > 1 there is a norm r — |r| on k associated to the

valuation by

|T| — cfordr

From the inequality ord(z + y) > inf(ord(z),ord(y)) we easily obtain the
ultrametric inequality:
|+ y| < max(|z, [y[)
The field k£ is a complete discretely-valued field if it is complete as a
metric space, with the obvious metric
d(z,y) = |z —y|
The associated discrete valuation ring is
o={zek:|z|<1}
And define
m={zeck:|z| <1}
An element w € o so that
ordw =1
is a local parameter.
Proposition: The valuation ring o really is a subring of k. The group of
units o* in o is
o ={zeck:|z|=1}
The ring o is a principal ideal domain with unique non-zero prime ideal m.
And the sharp form of the ultrametric inequality holds: we have
|7+ y| < max(|z, y[)
with equality holding unless |z| = |y|.

Proof: Given z,y with |z| <1 and |y| < 1, we must show that |zy| < 1 and
|z+y| < 1. The multiplicative case is immediate, and the additive case follows
because we have the ultrametric (rather than mere triangle) inequality. Thus,
o really is a ring.

If z € o has |z| =1, then from

L=l =]z a7} = |z] - |27
we find that also |[#71| = 1. Thus, z is a unit. The converse is clear.

Let I be a non-zero proper ideal. Let x be an element in I so that ord x is
minimal among the values assumed by ord on I. (If the value 0 were assumed,
then there would be units in I, contradiction). Then

ord(z/w4%) =0
s0 2/w°? is a unit in o. Thus,

I:O_wordx

This proves that o is a principal ideal domain.
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Further, since every ideal is of the form o™ for some non-negative integer
n, it is clear that m = o - w is the only non-zero prime ideal.

To prove the sharp form of the ultrametric inequality, take |y| < |z|. Then
|z| = [(z +y) — y| < max(|z + yl, [y])
since | — y| = |y|- Since |y| < |z|, for this relation to hold it must be that
max(|z +y|, lyl) = |z + |
Putting this together, using the ‘plain’ ultrametric inequality, we have
|z| < |z + y| < max(|z], |y| = |z|

Then we have |z| = |z + y| as asserted. &

18.3 Hensel’s Lemma

For the present section we only need assume that & is a field with a non-
negative real-valued norm
T — |z
which has the multiplicative property
|z -yl = |2| - |y|
and the ultrametric property
|z +y| < max(|z], |y|)

The associated metric is

d(z,y) = |z —y|
Such k is an ultrametric field. We assume that the norm || is non-trivial,
meaning that |1| = 1, and also there is an element 8 € k with |3] > 1. We
assume that k is complete with respect to this metric.

Proposition: There is the sharp ultrametric property: for z,y € k
|+ y| = max(|z], |y[)

unless |z| = |y|.

Proof: This follows by the same proof as just above: take |y| < |z|. Then

|z = [(z +y) — y| < max(|z +yl,y)
which forces the maximum to be |z + y|, so
|z < |2+ y| < max(|z], ly| = |=|

and |z| = |z + y| as asserted. &

The associated (not necessarily discrete) valuation ring is

o={zeck:|z|<1}
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As in previous sections, it is the fact that we have the ultrametric inequality,
rather than merely the triangle inequality, that makes o closed under addition.

In this context the analogue of Newton’s Method works much more simply
than would be the case if only the ordinary triangle inequality held for this
norm.

Let f be a non-constant polynomial with coefficients in k. Write
f(z) = apz™ + 12" P+ Fapr? 4 aix 4 a,
with the a; in k. The derivative f'(z) can be defined purely algebraically, by
the usual formula
fl(z) = nanz™ '+ (n— 1)an,1xn_2 +(n— 2)an,2m"_3 +...+3a32% +2a22+ay
without taking any limits.

The usual Newton’s method for iterative approximation of a root of a
polynomial uses the formula

f(an)

Tp4l = Tpn — f’(.’lf )
n

starting from an initial approximation z,, to determine a sequence of points
T1,T2,T3,-.. which presumably approach a root of f, that is, presumably

lirrln f(zy) =)

In the usual case of the real numbers, there is no simple hypothesis which will
guarantee that this procedure yields a root. By contrast, in the ultrametric
case things work out very nicely. As a simple but sufficient illustration, we
have:

Theorem: Let k be a complete ultrametric field with valuation ring o.
Let f(z) be a non-constant polynomial with coefficients in o. Let z, € o so
that

|f(zo)| <1
while
[f'(@)] =1
holds. Then the sequence 1,2, x3,... defined recursively by

Tpn4l = Tn — f’(:L’ )
n
converges to a root of the equation f(z) = 0.
Proof: For any positive integer n

Inj=1+1+...+1|<|1|=1 (with n summands)



278 Garrett: ‘18. Lattices, p-adic numbers, discrete valuations’

Also, | — 1)> = |(=1)?| = |1] = 1, so | — 1] = 1. Thus, (the image of) n in
k lies in the valuation ring o. For any positive integer ¢ and for any positive
integer n

1, d
0! (d:r
In particular, the coefficient is an integer. Therefore, if f is a polynomial with
coefficients in o, then all the polynomials % f also have coefficients in o.

)a" = (m)(n -1 =2)... (- (€~ 1)a""

On purely algebraic grounds we have a finite Taylor expansion

(2) xT (m) T
f(m):f(mo)+fl(xo)(1'_1'o)+f 2(' O) 2+---+fT(!O)(£L’—1'O)n

where m is the degree of f and £ indicates i*" derivative. (If the charac-
teristic is positive, we must write the ratios f(i)/i! in a more sophisticated
manner). The remarks just made assure that f(¥) /i! has coefficients in o.

Let z, be as in the statement of the proposition. We will prove by induction
that

e 1, liesin o

o [f'(an)l =1

o |flan)| < |f(zo)*

First, using a Taylor expansion for f’, we have

" . (2) (4 —f(xn) —f(zn) m—1
P anin) = £'n) + SO ) G .+ LTl (ST

The first summand is a unit, while all the other summands have norm strictly
less than 1. Thus, by the sharp ultrametric inequality, we conclude that
()] = 1.

Then, if z,, is in o, since f(x,) is unavoidably in o, it surely must be that
Tp+1 1S again in o.

By the Taylor expansion for f itself,

(z — =)

f(m_l)(wn)

_ ’ _f(mn) f(2) (xn) —f(l'n) 2 f(n) (mn) _f(mn) n
Flann) = Flon)+f (@) (G5 + 7 (e e ()
which cancels to give
@) (z,) —f(z ™) (z,) —f(z
f($n+1):f (n)( f( n))2++f (n) f( n))m

20 Flwm) ml ()

Again using the fact that £ /i! has coefficients in o, we have

|f (@ny )] < |f(2n)]?
This proves the induction. &
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18.4 Lattices

The notion of lattice which is relevant in this context is at some remove
from more elementary and ‘physical’ concepts to which this word commonly
refers, although the present version has its origins in the elementary ones.

Let k£ be the field of fractions of a discrete valuation ring o. Let V be a
finite-dimensional vectorspace over k. An o-submodule A of V' is an o-lattice
if

e A is finitely-generated

e A contains a k-basis for V

For example, for any k-basis ey, ... ,e, for V, the o-module
A =oe; +o0ey + ...+ 0e,
is certainly an o-lattice. In fact, every lattice is of this form:

Proposition: Every o-lattice A in an n-dimensional k-vectorspace V is

of the form
A =oe; +o0ey + ...+ 0e,
for some k-basis ey, ... e, for V.

Proof: Let ey,...,enx be a minimal generating set for the o-module A.
(The existence of a minimal generating set follows from the finite generation).
We will show that these elements are linearly independent over k. Let

0=aje1 +...+ayen

be a relation, with a; € k not all zero. By renumbering if necessary, we may
assume that ord a; is minimal among all the ord ;. Then, dividing through
by ai, we have

my = (—ae/ay) -mo+...+ (—any/ay) -mpy

with all coefficients «;/aq having non-negative ord, so lying in o, by the
previous section.

Since A is required to contain a k-basis for V', the elements of which would
be expressible as o-linear combinations of e,...,en, it must be that the
e1,...,en themselves form a k-basis. &

18.5 Some topology

Let k be a field with a discrete valuation ord (with associated norm ||) on
it. Let o be the valuation ring, with maximal ideal m. We give k the topology
from the metric

d(z,y) = |z —y|
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associated to the valuation. And assume that k is locally compact. (This
entails that k is complete, as well). Some features of this topology may be a
little unexpected:

Proposition: The valuation ring o, the group of units 0o*, and the maxi-
mal ideal m are all simultaneously open and closed as subsets of k.

Proof: Let |z| = ¢=°"4% be the norm attached to the ord-function ord on
k. Then
o={z€k:|z|<c}
which shows that it is open, while at the same time its complement is
k—o={zeck:|z| >1}

which shows that o is closed as well. A nearly identical argument applies to
the maximal ideal. Similarly,

1
oX:{xEk:E<|x|<c}

so 0* is open, and its complement has a similar description, so 0o* is closed
as well. &

We would also give the k-vectorspace k™ the product topology, which is
readily seen to be equivalent to the sup-norm topology defined via

(@1, 2n)| = sup |z
(2

and the metric
d(z,y) = |z —y|

Let GL(n, k) be the group of invertible n-by-n matrices with entries in k.
We will specify a natural topology on GL(n,k) so that the matrix multipli-
cation of vectors

GL(n,k) x k™ — k"
is continuous, so that matrix multiplication itself is continuous, and so that
taking the inverse of a matrix is a continuous operation.

The most convenient description of the topology on GL(n, k) is as follows.
Let M (n) be the n2-dimensional k-vectorspace of n-by-n matrices with entries
in k, with the product topology. Map

f:GL(n,k) = M(n) x M(n)
by
fl9) =(9,97")

and give G L(n, k) the subspace topology from the product topology on M (n) x
M (n). On the other hand, it will be convenient to know:

Proposition: For fixed g € GL(n, k), another element h in GL(n, k) is
close to g if and only if all the entries of h are close to those of g.
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Proof: The ‘only if’ part follows from the definition of the topology on
GL(n,k)). Note that this statement is not made uniformly in g, but only
pointwise in g.

Define another sup-norm, now on matrices, by

lg| = sup |gi]
2,7

where g;; is the (i,5)*™ entry of g. The associated metric topology on the

space M (n) of n-by-n matrices is the same as the product topology on M (n).
We first have a sub-multiplicativity property:

lgh| < sup | gijhjel < sup sup |gijhjel < sup |gij| - hirje] = |g| - |B]
il 5 ol j NN

where use is made of the ultrametric inequality. This computation proves
that matrix multiplication is continuous is this topology. A nearly identical
computation proves that matrix multiplication of vectors are continuous in
this topology.

What we must show is that, for fixed g, given € > 0 there is d so that
lg — h| < & implies that |[g7* — h™!| <e.

Let h =g — A. Then

hl=(g-A)"=[1-Ag "'

=g "1+ (Ag™) + (Ag™) + (Ag™)P + .. ]

if the latter series converges. This matrix-valued infinite series is entry-wise
convergent in k if

Ag7 <1
In that case, also
((Ag™) + (Ag™)? + (Ag™)° +...| = |Ag™|
by the strict ultrametric inequality. Assuming |[Ag—!| < 1,
ht—g =g (Ag ™) + (Ag™)? + (Ag ) +..]
gives, by previous remarks and by the submultiplicativity,
Wt =g <lg7' 1A < g7 A9

This gives the desired continuity. &

The (standard) Iwahori subgroup B of GL(n, k) is the set of matrices
with

e Above-diagonal entries in o

e Diagonal entries in o*

e Below-diagonal entries in m
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Proposition: The Iwahori subgroup really is a subgroup, and for k locally
compact, it is compact and open inside GL(n, k).

Proof: The usual formula for the inverse of a matrix, as generally useless
as it be, does suffice in this case to prove that the inverse of a matrix in B
is again in B. More directly, the closure under matrix multiplication is easy
to check. Note that the condition that the below-diagonal entries are in m is
used in proving closure under matrix multiplication (and taking inverse).

Let g;; be the (i,7)"™ entry of a matrix g. In M (n), the set B of matrices
with diagonal entries units, above-diagonal entries in o, and below-diagonal
entries in m, is a compact and open set, from the analogous observations on
k itself, just above. Thus, the product of two copies of B inside M (n) x M (n)
is compact and open in the product topology. Thus, the intersection B of
B x B with the copy f(GL(n,k)) of GL(n, k) is compact and open in B. &

18.6 Iwahori decomposition for GL(n,k)

The decomposition result proven in this section for the Iwahori subgroup
of GL(n, k) has no analogue in more classical contexts.

As in the last section, B is the Iwahori subgroup of GL(n, k) consisting
of matrices whose diagonal entries are units in the valuation ring o, whose
above-diagonal entries are in o, and whose below-diagonal entries are in the
maximal ideal m of o.

Let N be the subgroup of GL(n, k) of upper-triangular matrices with 1’s on
the diagonal and 0’s below the diagonal. Let N°PP be the subgroup of lower-
triangular matrices with 1’s on the diagonal and 0’s above the diagonal. Let
M be the subgroup of diagonal matrices in GL(n, k). It bears emphasizing
that these are subgroups, and not merely subsets.

Theorem (Iwahori decomposition): Given an element b of the Iwahori
subgroup B of GL(n, k), there are uniquely-determined u' € N°°P N B, m €
M N B, and u € NN B so that

b=u-m-u
That is, B decomposes as
B=(N°°’NB)-(MNB)-(NNB)

and uniquely so.

Proof: We do an induction on the size n of the matrices involved. Specifi-
cally, we claim that for a given b € B, we can find v’ € N°°°’NB andu € NNB
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so that u' - b - u is of the form

* 0 0
0 = *
uwbou=
0 = *
Indeed, if
bir b1z bin
b21 * ES
b= .
bnl * ES
then take
1 0 ... 0
—bi'by 1 0 ... 0
u = —b;11b31 0 1
—by1bpr O 1
and ) ) )
1 —biybiz —biybiz ... —=bybi,
0 1 0 0
w=| : 0 1
0 0 1

That is, «' differs from the identity matrix only in its left column, where
the entries are designed to cancel the corresponding entries of b upon left
multiplication by u'. Likewise, u differs from the identity matrix only in its
first row, where the entries are designed to cancel the corresponding entries
of b upon right multiplication by u. All the entries of 4 and u' are in o since
bi1 is a unit in o. It is immediate that «' - b - u has the desired form.

The induction proceeds by viewing the lower right (n — 1)-by-(n — 1) block
of an n-by-n matrix as a matrix in its own right, recalling that matrix multi-
plication behaves well with respect to blocks:

A0 (A 0)\_ (A4 0
0 D o o)~ o DD

where the 0’s denote appropriately-shaped blocks of zeros, A and A’ are square
matrices of the same size, and D and D’ are square matrices of the same size.

&

Remarks: Note that neither completeness nor local compactness played
a role in this argument.
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19. Affine Constructions for SL(n)

Construction of the affine building for SL(V)
Verification of the building axioms

Action of SL(V) on the affine building

The Iwahori subgroup ‘B’

The maximal apartment system

Here we give a construction which is the simplest example of an affine
building and BN-pair. The material objects involved in the construction were
appreciated long before their roles in an affine building construction were
understood at all.

The affine building constructed here is attached to a vectorspace V over
the fraction field k of a discrete valuation ring o. For the finer results it
will be assumed that the discrete valuation ring is complete (with respect to
the metric attached to the valuation), and probably locally compact. These
hypotheses certainly hold in the p-adic case, which is the case of fundamental
practical importance.

The corresponding group which will act nicely on the building is G =
SL(V), the group of k-linear automorphisms of V' which have determinant 1.

We will see that the apartments are Coxeter complexes attached to the
Coxeter system (W, S) of type A,_; described earlier (2.2). The fact that
this truly is affine, verified in terms of the Coxeter data criterion (13.6), was
done in (13.8), so all we need to do here is to check that the Coxeter data is
as claimed.

This standard notation does suggest, among other things, that omission of
the generator s, from the Coxeter system leaves us with a group of type 4, _1,
that is, a symmetric group on n things. From looking at the Coxeter data,
this is indeed the case. And thus the spherical building at infinity is of type
A1, which is to say that the Coxeter complexes which are the apartments
are of that type.

19.1 Construction of the affine building for SL(V)

Here we construct the simplest example of a thick affine building. It hap-
pens that the apartment system we describe here is the maximal one if the
discrete valuation ring involved is complete.

As in every other case, the procedure is that we describe an incidence
geometry from which we obtain a flag complex which we verify is a thick
building by checking the axioms. Once we identify the Coxeter data as being
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A,_1, computations already done (13.8) assure that the building is indeed
affine.

Let o be a discrete valuation ring with fraction field £ and unique non-zero
prime ideal m. Let k = o/m be the residue field. Let w be a local parameter,
that is, a generator for m.

Let V be an n-dimensional vectorspace over k. Take G = SL(V), the k-
linear automorphisms of V' which act trivially on the n'" exterior power of V
(that is, which have determinant one, as matrices).

A homothety f : V — V is a k-linear map v — awv for some a € k*.
That is, a homothety is a non-zero scalar multiplication. Two (o-)lattices
A,A’ are homothetic if there is a homothety v — av so that oA = A’
Being homothetic is an equivalence relation; we write [A] for the homothety
(equivalence) class of a lattice A.

Take the set of vertices = for our incidence geometry to be the set of
homothety classes of lattices in V. We have an incidence relation ~ on
= defined as follows: write £ ~ n for £, € Z if there are x € £ and y € n so
that y C « and on the quotient o-module z/y we have m - z/y = 0. (Thus,
the quotient has a natural structure of vectorspace over the residue field «.)

Let’s check that this relation really is symmetric: with representatives z,y
as just above, let ¥y’ = my. Then

mz Cy' Cux

where mz C y' follows from z C y by multiplying by m.

It is important to realize that if two homothety classes [L], [M] are incident
then any two representatives L, M have the property that either L C M or
L D M. To see this, first take representatives L, M so that mM C L C M.
Let m,n be arbitrary integers. Certainly if m > n then

m”LCm™M Cm"M
On the other hand, if m < n then n — 1 > m and
m"M = m"'(mM) C m""'L C m™L

Thus, one or the other of the two inclusions must hold. Things are not this
simple for arbitrary homothety classes.

As defined earlier, the associated flag complex X is the simplicial complex
with vertices = and simplices which are mutually incident subsets of Z, that
is, subsets ¢ of = so that, for all z,y € o, z ~ y.

In the present context, a frame is an unordered set Ai,..., A, of lines
(one-dimensional k-subspaces) in V' so that

We take a set A of subcomplexes indexed by frames F = {A1,... , Ay} in V
as follows: the associated apartment A = Ar € A consists of all simplices o
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with vertices [A] which are homothety classes of lattices with representative
A expressible as
A=L+...+L,

where L; is a lattice in the line (one-dimensional vector space) A;.

It will be very convenient to know that the maximal simplices in the sim-
plicial complex X are in bijection with ascending chains of lattices

..CA CMANCANC...CA, 1 CA,C...
(indexed by integers) where there is the periodicity
Aiyn =mA;

for all indices i, and where for all ¢ the quotient A;;1/A; is annihilated by
m and is a one-dimensional k-vectorspace. This corresponds to the maximal
mutually incident set

[AU]a [Al]a te [Anfl]
of homothety classes of lattices.
Indeed, we claim that if [z1], ... , [z,] are mutually incident then, re-ordering
(renumbering) if necessarys, there are representatives zy, ... ,z, so that

. Cmz, C2 C2yCx3C...Cx,, Cm ™ty C ...
This is proven by induction on n. Suppose that we already have
.Cmz, Cx, CryCa3C...CxpCm ‘o C...

and are given another homothety class [y] incident to all the [z;]. Choose a
representative y for this class so that

myCux Cy
invoking the fact that y ~ z,.
If it should happen that my C z;, then we are done, since
..CmyCz1 C...Cx¢e CyC...

is the desired configuration.

Otherwise, there is a minimal index ¢ so that my C z;. And ¢ < £ since
my C zy. Since [z;—1] and [y] are incident, it follows that z;—1 C my. But
then we replace the representative y by the better representative my and the
configuration

.CmzyC2 C...Cxi  CmyCa; C...CxpCm Loy C...
is as desired.

It is easy to go in the other direction, from such an infinite periodic flag
to a maximal mutually incident collection of homothety classes. Thus, we
have proven that maximal families of mutually incident homothety classes
are essentially the same things as infinite periodic flags.
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19.2 Verification of the building axioms
Keep all the notation of the previous section.

Given a maximal simplex C, the i*! facet Fj is obtained by omitting A;
and also omitting all Ay, for £ € Z. Any other maximal simplex with facet
F} is obtained by choice of lattices A}, meeting three conditions:

! _ Al
Ai+ln =m'A;
and

Aic1yem CAign CAivigim

and where A}/A;_; is a one-dimensional subspace of the two-dimensional &
vectorspace Aji1/Ai—1

Let A be the apartment corresponding to the frame Ay,... ,\,. Let C be
a maximal simplex in A corresponding to a periodic flag ... C A; C ... of
lattices, as above. For a fixed index ¢, let F; be the facet of C' corresponding
to omission of the lattices A;1¢,. As just noted, the question of finding all
other maximal simplices in A with facet F; is just the question of finding
other families A}, ,, with which to replace A;i¢,. Since Ajy1/A; 1 is two-
dimensional over k, there are exactly two indices ji, j» so that A\j, NA;y; and
Aj, N Ajr1 map surjectively to A;41/A;—1. Then between the two lattices

A+ (Nj, NA) A+ (A, N AG)

one must be A;, and the other is the unique other candidate A} to replace A,;.
Thus, if the apartment A is a chamber complex then it is thin.

Likewise, it is easy to see the thickness of the building: in the building, the
choices for replacement A} are in bijection with one-dimensional k-subspaces
of the two-dimensional k-vectorspace A;+1/A;_1, other than A;/A; 1. If K is
infinite we are surely done. If k is finite with cardinality ¢, then there are

@~ D/(g-1)=g+1>2

maximal simplices with facet F;. This proves the thickness of the whole
building (granting that it is a chamber complex).

Now we show that the apartment A is a chamber complex by showing that
there is a gallery from C' to any other maximal simplex. To see this, we
consider the effect of ‘reflecting’ across the facets of maximal simplices.

Choose lattices M; in A; so that

A, = My +...+M,
Ay = m*1M1+M2+...+Mn

A1 = mfl(Ml ++Mn,1)+Mn
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where the lattices A; are those appearing in the flag describing the maximal
simplex C'. Note that the set of vertices of simplices in A consists of homothety
classes of lattices which can be expressed as

m™M, +...+m™M,

for some n-tuple of integers (my,... ,my).

As above, let F; be the facet of C' obtained by omitting A;4¢,. As in the
discussion of thin-ness and thick-ness above, for 1 < ¢ < n, the unique other
maximal simplex with facet F; is obtained by replacing

by
ANi=m Y (M +...+M; )+ M;+m "My +...+ M,
That is, reflecting through F; has the effect of reversing the roles of M; and
Mi+1 (fOI‘ 1 S 1< n)
If ¢ = 0, then the analogous conclusion is that reflection through F; = F,
causes Mj,. .., M, to be replaced by M{,... , M), with

M{ =mM,
M! =m~'M,;
M;=M] for 1<i<n
As noted in our prior discussion of the spherical building for GL(n) over a
field, it is elementary that the collection of interchanges of i and i+ 1 generate
the group of permutations of 1,2,3,...,n. Thus, by such interchanges, we
can go from the ordering
My,..., M,
to the ordering
My,...,M;,... ,M,,M,;
that is, move a chosen M; to the right end of this ordering. The reflection
through F, turns this into the ordering
mM;, M, ... M, ..., M, m ‘M
The adjacent interchanges can be used to permute this back to
m71M17 MZ: v 7Mi717 mMi; Mi+1) e >Mn

By a composition of such reflections, we can replace any M; (with i > 1)
by m™i M;, at the cost of replacing M; by m~"™i M;. We can then arbitrarily
permute the resulting lattices, by use of the adjacent interchanges. Up to
homothety, such manipulations can give an arbitrary flag of lattices. Thus,
the apartments are (thin) chamber complexes.

Next, we will prove that any two maximal simplices lie inside a common
apartment. (In light of the previous paragraph, this will also prove that the
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whole building really is a chamber complex). Let C,D be two chambers
corresponding to periodic flags

F=(..CANC..))

F=(..cAcC...)
where the successive quotients are one-dimensional k-vectorspaces, as above.
The filtration of V' given by F' gives a filtration of each quotient A;11 /A; at-
tached to F, permitting application of a Jordan-Holder-type argument nearly
identical to the argument used for the spherical construction for GL(n): that
is For each i, we have a filtration of A;/A;—1 given by the A’:

c (AN A} + A c

Ay
For all indices 7, j we have
A; 2 (AN AL + A onto (AN AL + A N Ain A
Ay Ay Aoy + (A0 A;fl) (A1 N A;) + (AN A}q)

The space A;/A;—1 is one-dimensional over k, so for given i there is a first
index j for which the quotient

(AinA}) + A
Ay
is one-dimensional over k. With this j, we claim that

AN A;’-l C A

If not, then

A=A+ (AZ N A;’—l)
since the dimension of A;/A;_; is one. But by its definition, j is the smallest
among indices ¢ so that

A=A + (Al N A%)

Thus, the claim is proven.
Thus, given i, there is exactly one index j for which

AinA
(Ai—l N A;) + (Az N A;?l)

is one-dimensional. The latter expression is symmetrical in ¢ and j, so there is
a permutation 7 of the set of integers so that this expression is one-dimensional
only if j = 7(i) and otherwise is 0.

For some maximal index 14,, for all i < i, we have A} C A,, since for all
indices m we have the periodicity Al,_, = mA!,. The flag F has the same
periodicity property A,,_, = mA,,. Requiring preservation of this periodic-
ity, the permutation 7 is completely determined by #(0),7(1),..., m(n — 1),
which must lie among i,,%, + 1,..., i, +n — 1.
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At this point it is possible to give a frame specifying an apartment con-
taining both chambers, as follows: For i = 0,1,..., n — 1 let M; be a free
rank-one o-module in A; NA! (i) which maps onto the k-one-dimensional quo-
tients. Then put

Ai = kEM;
The unordered set of lines Ay, ..., A, is the desired frame. Thus, we have ver-
ified one building axiom, that any two chambers lie in a common apartment.

Also, since we have proven that the (alleged) apartments really are cham-
ber complexes, we have proven that the whole complex really is a chamber
complex, that is, any two maximal simplices are connected by a gallery.

Last, we verify the other building axiom: given a simplex z and a cham-
ber C both lying in two apartments A, B, show that there is an isomorphism
B — A fixing both x and C' pointwise. We will in fact give the map by giving a
bijection between rank-one o-modules describing the respective frames, possi-
bly changing by homothety. This surely would give a face-relation-preserving
bijection between the simplices. And, as in all other examples, it turns out to
be simpler to prove the apparently stronger assertion that, given two apart-
ments A, B containing a chamber C|, there is an isomorphism f : B — A
fixing A N B pointwise.

Let F = {A\1,..., Az} and G = {p1,...,pupn} be unordered lists of lines
specifying the apartments A, B, respectively. Without loss of generality, we
can renumber so that the chamber C' corresponds to orderings

(Ml,... ,Mn) and (Nl,... ,Nn)

where M;, N; are rank-one o-modules inside \;, u;, respectively. That is, the
lattice homothety classes occurring as vertices of C' are

=m (N +...+N)+Nig1 +... + N,

Since these homothety classes must be the same for all indices i, it is easy to
see that (changing by a homothety) we can suppose that

=m YNy +...+N)+Niy1 +...+ N,
Consider the map
f:B—> A
given on lattices by
m™mM +...+m™M, - m"™ N, +...+m"™N,

for any integers mgy,...,m,. By its nature, this map respects homothety
classes, as required.

To show that f is the identity on A N B it suffices to show that it is the
identity on all 0-simplices in the intersection. If a 0-simplex [z] lies in AN B
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then [z] is a homothety class of lattices which has a representative z which
can be written as

c=m"'M; +...+m"™ M,
and also as
r=m"' Ny +...+m" N,

We will show that m; = pu; for all indices i, thereby certainly assuring that
all of AN B is fixed pointwise by f.

Let i, be the largest index so that m;, = min{m;}, and let j, be the largest
index so that p;, = min{p;}. On onte hand, if m;, < p;,, then

(m™M; + ...+ m"™ M,)/mti-A,
requires at least one generator as o-module, but, on the other hand,
(m"*N; + ...+ m" N,)/mtie A, =0

so needs zero generators as o-module, contradicting the hypothesis that these
two modules are simply different expressions for x/m*ioA,. Thus, by sym-
metry, it must be that m;, = pu;, .

Further, to show that i, = j,, suppose that i, < j,, and consider

.T/mmi°+1Aio
Viewed in the M; coordinates, this quotient module is 0, that is, has zero
generators. Viewed in the IN; coordinates, this quotient needs at least one
generator, contradiction. Thus, i, = j,.

This is the beginning of an induction which proves that m; = p; for all
indices ¢. That is, f is the identity map on A N B. This completes the proof
that we have constructed a building.

Review of this discussion makes clear that the Coxeter data is as indicated
at the beginning of this section: Let s; be the reflection through the i*" facet
F;, with ¢+ = 0,1,2,...,n — 1. Designate a chamber in an apartment by an
ordered set (Mi,...,My) of free rank-one o-modules in V' so that the sum
spans V over k.

If n = 2, then in the notation above,

(Ml,M2) 54 (mMg,mflMl) 3 (mflMl,mMg)
by our earlier computations. Thus, s;s, is of infinite order.

If n > 2 and ¢ — j is not £1 modulo n, then s; and s; certainly commute.
Ifi1<i<n-—1and j=14+1, then

(oo s My, Mgy, Miyo, o) 35 (o, Myga, My, Mg, )
(. Mg, Miys, M, . ..)

by earlier computations. Thus, s;115; is of order 3, as asserted at the begin-
ning of this section.
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Thus, not only have we verified that this construction gives a thick build-
ing, but we also have determined the Coxeter data so as to confirm (in light
of earlier computations for our seven families of Coxeter systems) that this
system is affine.

19.3 The action of SL(V) on the affine building

Now we check that the natural group action of SL(V') on the (affine) build-
ing just constructed is type-preserving and strongly transitive. Thus, we ob-
tain an affine BN-pair which is discussed in the next subsection.

Remarks: In fact, although GL(V) will not preserve labels, the sub-
group G of GL(V) consisting of automorphisms whose determinant has ord
divisible by n, the dimension, does preserve the labeling. (As usual the ord

function is defined by ord @ = n where co = m"™.

As in the earlier discussions of examples of spherical buildings, as soon as
we have a congenial notation the proofs become easy.

As in the case of the spherical buildings earlier, it is convenient to use a
concrete labeling, as follows. Fix one vertex [A,] of C, where A, is a lattice
and [A,] is its homothety class. Given any other homothety class [A], we
may choose a representative A so that A, C A. The quotient A/A, is a
finitely-generated torsion o-module isomorphic to

o/md1 D...D o/md"

with some non-negative integers d; < ... < d,. Define a labeling by
v([A]) = Z d; mod n
i

This function v certainly gives a labeling of vertices, and thereby a labeling
of simplices. Now the action of elements of G = SL(V') actually preserves not
only v, but in fact preserves ). d; without reducing modulo n. Thus, the
action of G = SL(V') preserves this labeling.

Remarks: At this point it is also clear that the funny subgroup G+
of GL(V) consisting of those automorphisms with determinant having ord
divisible by n is the label-preserving subgroup of GL(V'). Proving the strong
transitivity for G = SL(V) certainly suffices to prove it for this G¥.

The ordinary transitivity of the group on apartments is straightforward:
apartments are designated by unordered n-tuples (frames) F = {A,...,\,}
of lines in V so that V' = 3 A;. Certainly SL(V') is transitive on these, as
was already used in the discussion of the spherical examples.

We must check that the stabilizer of an apartment acts transitively on the
set of chambers within that apartment.

The stabilizer A" of an apartment A specified by a frame

.7::{>\1,... 7>\n}
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is the group of linear maps which stabilize the set of lines A; making up
the frame. Thus, the stabilizer A/ certainly includes linear maps to give
arbitrary permutations of the lines Ay,...,\,. Further, for any n-tuple a =
(a1, .. ,ap) of elements of k> so that IT; a; = 1, we have the map g = g4 €
SL(V) given by multiplication by a; on ;.

A chamber in an apartment can be described by a (periodic) flag

...CA,CAiC...CA,_1C...
of lattices A; in V', where, possibly renumbering the A;,
ANo=M +...+ M,
and generally
ANj=m ' (My+ ...+ M)+ M;+...+ M,

and there is the periodicity
Aiip =mA;
Keep in mind that we must allow ambiguity by homotheties, and that we can
let A, have whatever type we choose.
The action of g = g, in this notation is

ga(Mla “e 7Mn) = (OélMl, .. ,OénMn)
And arbitrary permutations of the lines can be achieved by determinant-one

matrices. Thus, with the type restriction and allowing for homotheties, we
have the desired strong transitivity.

19.4 The Iwahori subgroup ‘B’

Now we want to identify the Iwahori subgroup ‘B’, defined as being the
stabilizer of a chamber in the affine building.

We will see that, with suitable choices and coordinates, the Iwahori sub-
group B is the collection of matrices in SL(n,0) which modulo m are upper-
triangular. That is, if g; ; is the (i,4)'" entry of an element g € SL(n,o),
then we require that

gij€o for 1<y

gij €Em for i>j
(Of course, for such a matrix to be in SL(n, o) it is necessary that the diagonal
entries lie in the group of units 0* of 0). We will make choices of coordinates
and of chamber in the affine building, so that the stabilizer is as indicated.

Let V = k™, and let ey, ... , e, be the usual k-basis
1 0 0 0
0 1 0
el = 0 ey = 0 ez = 1 . ep = 0
0

o
o
o
—
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Take lattices
L,=o0e; +...+o0¢,
Li=m e +o0ey+ ...+ o0e,
L, = m '(oe; + oes) +0e3 + ...+ oe,

L, 1 =m '(oe; +...+o0e, 1) +oe,
We obtain a periodic flag of lattices as before by taking
Line=m'L;

The stabilizer of this flag of lattices is, by the construction, the subgroup
B stabilizing a chamber in the affine building. To see what B is, observe
first that the stabilizer of L, is the group SL(n,o) of all matrices in SL(n)
having entries in o, using the e; coordinates to write matrices. And this group
SL(n,o0) also stabilizes m'L,.

All the quotients L;/L, for 0 < i < n are vectorspaces over the residue
field Kk = o/m, and are k-subspaces of m'L,/L,. The flag

Ll/Lm L2/L0> LB/LO; ter Lnfl/La

is a maximal flag of k-subspaces of (m~'L,)/L,. Using the images of me;
as k-basis for this space, this flag is none other than the standard flag of
subspaces in that vectorspace.

Observe that if a matrix g € SL(n, o) has entries which differ by elements
of the ideal m from the entries of the identity matrix, then for v € m~'L, we
have

g(v+ Lo) = (gv) + Lo
To see this, write ¢ = 1 + mT with T a matrix having entries in o. Then
gv+L,)=14+mTv+gL,=v+mTv+ L, =
=v+mT(m 'L,)+L,=v+TL,+ L, =v+ L,
That is, matrices of this form act trivially on the quotient (m~'L,)/L,.

There is a little hazard here, since the chambers are defined by homothety
classes of lattices, not just by the lattices themselves. Thus, elements g €
SL(n, k) which map L, to any lattice m‘L, (in the homothety class of L,)
certainly stabilize the homothety class [L,] of L,. But the determinant of
such g would have ord equal to nf. For g to be in SL(n,k) it must be that
¢ = 0. Thus, after all, if g € SL(n,k) stabilizes the homothety class of a
lattice, then g actually stabilizes the lattice itself.

Thus, it is clear that the Iwahori subgroup B is the collection of matrices
in SL(n,0) which modulo m are upper-triangular elements of SL(n, ).
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19.5 The maximal apartment system

In order to apply results of (4.6) and chapter 17 which use the spherical
building at infinity, it is necessary to know that SL(V) acts strongly tran-
sitively with respect to the maximal apartment system. This is not so for
arbitrary discrete valuation rings o:

Theorem: If the discrete valuation ring o is complete and its fraction
field k is Iocally compact then we have strong transitivity of SL(V) with
reference to the maximal apartment system in the thick affine building X
constructed above.

And as noted in (17.7) the proposition has a corollary bearing upon the
apartment system constructed above:

Corollary: If k is locally compact then the apartment system A con-
structed above is the maximal one.

Proof of corollary: By its definition, the strong transitivity implies ordinary
transitivity on the collection of apartments. &

Remarks: The truth of this corollary is certainly not clear a priori, and
does indeed depend upon completeness of the discrete valuation ring, which
was in no way used up to this point.

Proof of proposition: In fact this result does not depend much upon the
particulars of this situation. Rather, quite generally, if the Iwahori subgroup
‘B’ in an affine BN-pair is compact and open in a group G, acting strongly
transitively on an affine building (and preserving types), then G, is strongly
transitive with the maximal apartment system (17.7).

In terms of the previous section, B is the intersection of SL(n, k) with the
subset U of the space of n-by-n matrices described as follows. Let the (i, j)*™®
entry of a matrix x be z; ;. Then consider the conditions

ord(z; ;) > -1 for i<j

ord(z; ;) >0 for i>j
where as usual ord = n on m"”. This describes U as an open set. Since
B =UnNSL(n, k), this shows that B is open.

The open-ness of B implies that any translate Bw' of B by w’ € G is open,
so any union BwB of sets Bw' is open. By the Bruhat-Tits decomposition,
G is a disjoint union of sets of the form BwB. Thus, the complement of B is
open, so B is closed.

Then the compactness of the closed set B follows from the local compact-
ness of SL(n, k), which follows from the local compactness of V', which follows
from the assumed local compactness of k£ because V' is finite-dimensional. &
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20. Construction of Affine Buildings
for Isometry Groups

Affine buildings for alternating spaces
The double orilamme complex

The (affine) single oriflamme complex
Verification of the building axioms
Group actions on the buildings

The maximal apartment systems

The buildings constructed here are attached to non-degenerate alternat-
ing or quadratic forms on vectorspaces over the fraction field k£ of a discrete
valuation ring o. For the finer results it must be assumed that the discrete
valuation ring is locally compact with respect to the metric associated to the
valuation. Just as for SL(V') (19.1), the notion of o-lattice (18.3) plays a cen-
tral role, comparable to the role played by subspaces and isotropic subspaces
in construction of spherical buildings.

In the three families of examples here, the apartments are Coxeter com-
plexes attached to the Coxeter systems (W, S) of types B, Cy,, and D,, (2.2).
The verification that these buildings truly are affine, via the Coxeter data cri-
terion (13.6), was done in (13.8), affineness would follow from checking that
in each case the Coxeter data is as claimed.

The first construction (type C'n), for alternating spaces, is a synthesis of
ideas from the spherical construction for isometry groups, together with ideas
from the affine construction for A, in the last chapter. By contrast, the
second family (type Dn), for quadratic spaces which are orthogonal sums
of hyperbolic planes, requires use of the oriflamme trick (11.1) twice. The
third example (type E’n), encompassing most other quadratic spaces, combines

elements of both the affine C,, and the double oriflamme complex.

After the construction, viewpoints and methods already illustrated in the
spherical examples and for the affine A, suffice to verify that the complexes
are buildings as claimed, and that the groups act strongly transitively. By this
point, the detailed descriptions of the buildings suggest most of the details
of this verification. Thus, by now the main point is the construction, after
which the rest is just mopping-up.

In all these cases the Iwahori subgroup ‘B’, by definition the stabilizer of
a chamber, has a simple description in suitable coordinates: it consists of
matrices in the group which have entries in o and which, reduced modulo
m, lie in a minimal parabolic subgroup of the corresponding alternating or
orthogonal group over the residue field.
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19.6 Affine buildings for alternating spaces

Here we construct a (thick) affine building for a non-degenerate alternating
space V of dimension 2n over the fraction field k of a discrete valuation ring
o.

As in every other example, the procedure is that we describe an incidence
geometry from which we obtain a flag complex which one verifies is a thick
building by checking the axioms. Once the Coxeter data is identified as C,,,
the computations already done assure that the building is indeed affine (13.8).

Let m be the unique non-zero prime ideal m in o. Let kK = o/m be the
residue field. Let V' be given a non-degenerate alternating form (,) (7.2).

We need the notion of primitive o-lattice or simply primitive lattice
for the form (,). Say that a lattice A inside V is primitive if (,) is o-
valued on A x A, and so that (,)}-modulo-m is a non-degenerate rk-valued
alternating form on the k-vectorspace A/mA. The existence of primitive
lattices is straightforward: let ey, f1, es, f2, ..., en, fn be n hyperbolic pairs
so that V' is an orthogonal sum

V = P(kei + kf:)
Then
A= Z oe; +of;

is readily seen to be a primitive lattice.

The collection = of vertices for our incidence geometry is the set of ho-
mothety classes [A] of lattices A in V' which possess a representative A with
the following property: first, there must be a lattice A, so that m~'A, is a
primitive lattice, and so that

A, CACm A,

and so that
(A,A) Cm
where as usual
(A, A) = {{(v,v") 1 v,0" € A}
The condition on A can be paraphrased in a helpful form: it demands that
A/A, be a totally isotropic k-subspace of the k-vectorspace m~tA,/A, which
has the non-degenerate x-valued alternating form (, )-mod-m.

Define an incidence relation ~ on Z as follows: write £ ~ &' for £,&' € 2 if
there are lattices x € £ and y € ¢ and a lattice A, so that m~!A, is primitive,
so that

A, Cz Cm A,

m-A, CyCm™'A,

and also either z Cy or y C z.
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As in general (3.1), the associated flag complex X is the simplicial complex
with vertices = and simplices which are mutually incident subsets of Z, i.e.,
subsets o of = so that, for all z,y € 0, z ~ y.

The apartment system in X is identified as follows. First, a frame is an
unordered n-tuple
AT AL
of unordered pairs {\}, \?} of lines so that
V= +X)+...+ AL+ A2)
and so that
(Af + A7) L(Aj+ A7) fori#j

and so that each A} + A? is a hyperbolic plane (in the sense of geometric
algebra, (7.2)). (As usual, for two vector subspaces Vi, V2, Vi L V2 means
(z,y) =0 for all z € V] and for all y € V3).

A vertex [A] lies inside the apartment A specified by the frame
{ALATH - A

if there are free o-modules Mf inside )\g so that
A= M
i,j
for some (hence, every) representative A in the homothety class.
The maximal simplices are unordered (n + 1)-tuples

[Ao]v [Al]v R [An]

of homothety classes of lattices with representatives A; so that m A, is a
primitive lattice, so that

A, CA;cm™A, forO<i<n

and so that
Ai/Ay CA2/A, C ..o CALJA,

is a maximal isotropic flag of k-subspaces in the alternating k-vectorspace
m~!A,/A, with (,)-mod-m.

The maximal simplices are in bijection with ascending chains of lattices
. CA L CACACAC..CALC A=A, C
o C Aoy =ATCA C e

(indexed by integers) where for a lattice A
AN ={veV:(wA em, foral \eA}
and where we require

e that m~'A, be a primitive lattice
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e the periodicity property
Aipon =m™'A;

for all indices 7

A1/Ay C Ay/Ay C .. Ap/A,

is a maximal flag of totally-isotropic k-spaces inside the non-degenerate
alternating k-vectorspace m~—'A,/A,

Remarks: The definition of z* above would be the same as taking all vec-
tors whose reduction mod m is orthogonal to all vectors in z-mod-m. More
precisely, for any primitive lattice z, such that mz, C =z C z,, the quo-
tient z* /mz, is the orthogonal complement of z/mz, in the non-degenerate
quadratic space z,/mz,.

19.7 The double oriflamme complex

The building constructed here is attached to a non-degenerate quadratic
form (,) on a 2n-dimensional vectorspace V over the fraction field k of a
discrete valuation ring o, under the further specific hypothesis that V' is an
orthogonal direct sum of hyperbolic planes (in the geometric algebra sense),
and that n > 4.

As in every other example, whether spherical or affine, we describe an
incidence geometry from which we obtain a flag complex which is a building.

One will see that the apartments are Coxeter complexes attached to the
Coxeter system (W,S) of type D,, described earlier (2.2) (for n > 4). The
checking that this Coxeter system truly is affine, via the Coxeter data criterion
(13.6), was done in (13.8), so all that needs to be checked is that the Coxeter
data is as claimed.

Exactly as with the alternating case of the last section, a lattice A is prim-
itive if (,) is o-valued on A, and if (, }-modulo-m is a non-degenerate k-valued
symmetric bilinear form on the k-vectorspace A/mA. The existence of prim-
itive lattices is as straightforward as in the alternating space case, since as in
that case V' is a sum of hyperbolic planes: let {e1, fi}, {e2, f2}, .-+, {€n, fn}
be hyperbolic pairs so that V' is an orthogonal sum

V = P(kei + kf:)
Then
A= Z oe; +of;
i
is a primitive lattice.

The collection = of vertices for the incidence geometry is the set of ho-
mothety classes [A] of lattices A in V' which possess a representative A with
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the following property: first, there must be a lattice A, so that m~tA, is
primitive, so that
A, CACm A,
and so that
(A,A) Cm
where
(A, A) = {{(v,0") 1 v,0" € A}

Also, the k-vectorspace A/mA must not be either 1-dimensional or (n — 1)-
dimensional. (This is where the restriction n > 4 enters).

The incidence relation ~ on Z will have the same quirk as did that for the
spherical oriflamme complex (11.1), by contrast to the spherical construction
for all other isometry groups (10.1):

First, write £ ~ £ for £,&' € Z if there are lattices z € £ and y € ¢’ and a
lattice A, so that m~'A, is primitive, and so that
A, Cz CmA,
A, CyCm A,
and also either z C y or y C .
And, also write { ~ ¢ if ¢ = ¢/m - A, and y = y/m - A, are both 0-
dimensional or are both n-dimensional, and if all of

z/(xny) y/(@ny) (@+y)/z (x+y)/y
are one-dimensional k-vectorspaces.

As defined earlier, as in general, the associated flag complex X is the
simplicial complex with vertices = and simplices which are mutually incident
subsets of =, that is, subsets ¢ of = so that x ~ y for all z,y € o.

The apartment system in X is identified as follows. First, a frame is an
unordered n-tuple
{A%7 A%}’ et {A’:rllﬂ A?’l}
1

of unordered pairs {\}, \?} of isotropic lines so that

V= +X)+...+ AL+ A2)
and so that

(AF A7) L(Aj+ X)) fori#j
and so that each A} + A\? is a hyperbolic plane (in the sense of geometric
algebra, (7.2)). As usual, for two vector subspaces Vi, Vo, Vi L V5 means
(z,y) =0 for all z € V] and for all y € V5.

A vertex [A] lies inside the apartment specified by such a frame if there are

free rank-one o-modules M inside A} so that

A:ZMij
%]

for one (hence, for all) representatives A for the homothety class.
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The maximal simplices are unordered (n + 1)-tuples
[Ai]a [Ag]a [A2]7 [A3]7 te [An*?)]: [An*2]> [A;L [A12’l]
of homothety classes of lattices with representatives so that m~'A! and
m A2 both are primitive lattices, so that
AMcAcA cm A, for2<i<n-—2
for j,j' € {1,2}, so that _
Ai/A
is a j-dimensional totally isotropic k-subspaces in the k-vectorspace m='AJ /AJ
with (,)-mod-m for 2 < i <n — 2, and so that
AL /A
is an n-dimensional totally isotropic k-subspaces in the k-vectorspace m~tAJ /AJ

with (,)-mod-m. (Note that, indeed, the indices 1 and n — 1 are suppressed,
while the indices 0 and n are ‘doubled’).

Remarks: As in the case of the spherical oriflamme complex constructed
for such quadratic spaces, the peculiar details are necessary to arrange that
the building be thick.

In a manner just slightly more complicated than that for alternating spaces,
the maximal simplices are in bijection with certain more-or-less ‘periodic’
infinite families of lattices, as follows.

We consider infinite families of lattices in V

W CALAZC A CA3C. . C A CAL A2 C A2 =A%, C

s C Ao =A5C AL, =m ™AL AL, =m™'AZ C ..
with some further conditions. We require also the periodicity conditions

Aijone=m A; (2<i<n—-2 or n+2<2n—2

A=m™A] A, =mTA]
for j = 1,2 and for all £ € Z. And we require
Aowi=A; 2<i<n—2)
where for a lattice x we use notation
¥ ={veV:(r,v) € m}

as was used in the case of alternating spaces.

That is, we have an infinite 2n-periodic chain of lattices with the n+2n¢mt?

and 2n/'" items doubled, and the 1+ 2nf*" (n — 1) + 2n*", (n + 1) + 2nth,
and (2n — 1) + 2nl*® items suppressed, with additional conditions as above.
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19.8 The (affine) single orilamme complex

The building constructed here is attached to a non-degenerate quadratic
form (,) on a vectorspace V over the fraction field k of a discrete valuation
ring o. We suppose that V is the orthogonal direct sum of n hyperbolic planes
and an anisotropic subspace of some positive (but otherwise unspecified) di-
mension. (By Witt’s theorem (7.3) the isometry class of such anisotropic
summand is uniquely determined).

This pointedly excludes the special case, just treated, in which the qua-
dratic space V' is an orthogonal direct sum of hyperbolic planes. On the other
hand, we must now postulate the existence of a primitive lattice, unlike the
cases of alternating spaces and ‘hyperbolic’ quadratic spaces just treated.

The apartments are Coxeter complexes attached to the Coxeter system
(W, S) of type B,, (2.2). The affineness was verified in (13.8) via the Coxeter
data criterion (13.6), so all we need to do here is to check that the Coxeter
data is as claimed.

A primitive lattice (if one exists) is a lattice A in V' so that (, ) is o-valued
on A, and so that (,}-mod-m is a non-degenerate x-valued quadratic form on
the k-vectorspace A/mA, where kK = o/m is the residue field.

We assume that primitive lattices exist. In the most important examples
this can be verified directly. For example, the single most important family is

the following. Consider a quadratic form given in coordinates (z1, ... , Tpn, Y1, - - -

by
1y + ... +TpYn + nz2
with 1 a unit in o. In this example, the set of points where all the z;, y;, and
z are in o is certainly a lattice, and is primitive.
The other case of general importance is the following. Consider a quadratic
form given in coordinates (z1,...,%n,Y1,--- »Yn,2,w) by
r1Y1 +...+:1:nyn+z2 —nw2

with 1 a non-square unit in o. The set of points where all the z;,y;, and z,w
are in o is a lattice, and is primitive.
These two examples cover almost all the situations that occur in practice.

The vertices E of the incidence geometry are homothety classes [A] of lat-
tices with representatives A so that there is a primitive lattice A, so that

mA, CACA,

and so that
A/mA,

is a totally isotropic k-subspace of the non-degenerate quadratic x-space
Ao/mA,

,yn,Z)
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(with k-valued quadratic form (,)-mod-m). And we require that the -
dimension of A/mA, not be 1.

Define an incidence relation ~ on = as follows: two vertices £ and &' can
be incident in two ways. First, £ ~ &' if there are lattices z € £ and y € &
and a lattice A, so that m~'A, is primitive, and

A, Cz Cm™A,
A, CycCcm™'A,

and also either  C y or y C x. Second, £ ~ ¢ if there are representatives
xz €&,y € & both of which are primitive lattices, and if all the quotients

af(xny) y/leny) (z+y)/z (z+y)ly
are one-dimensional k-spaces.

As defined earlier in general (3.1), the associated flag complex X is the
simplicial complex with vertices 2 and simplices which are mutually incident
subsets of =, i.e., subsets ¢ of = so that, for all z,y € 0, x ~ y.

The apartment system in X is identified as follows. First, a frame is an
unordered n-tuple
LA AT
of unordered pairs A}, A? of isotropic lines so that H; = A} +\? is a hyperbolic
plane, and so that the hyperbolic planes spaces H; are mutually orthogonal. A
vertex [A] lies inside the apartment given by such a frame if there are rank-one

o-modules M7 in A/ so that

A= (P M)eA"
ij
where AT is the unique maximal o-lattice on which (,) is o-valued (18.3),
inside the anisotropic quadratic k-vectorspace

@

(We invoke Witt’s theorem (7.3) to know that this orthogonal complement is
anisotropic).

The following lemma is necessary in order to be sure of adequate uniqueness
for lattices in anisotropic spaces. In the important examples where the V' is
a sum of hyperbolic planes and an additional one-dimensional space, a much
more elementary proof can be given. For more general purposes, however, it
seems that no very much weaker hypothesis than that the field k is a (non-
trivial) complete discretely-valued (ultrametric) field (18.3) will suffice. For
simplicity, we suppose that 2 is a unit in o.
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Lemma: Let VT be an anisotropic quadratic space over k. Suppose that k
is a complete discretely-valued field. Suppose that 2 is a unit in the valuation
ring o. Then there is a unique maximal lattice on which (,) has values in the
valuation ring o.

Proof: More specifically, we claim that
AT ={veV*t:(vv) € o}

is the unique maximal lattice as described in the statement of the lemma.
The issue is verification that AT is closed under sums.

Suppose that there are x,y in AT so that z = = +y is not contained in AT,
and reach a contradiction to the condition of anisotropy.

Certainly we may suppose that = and y are primitive in AT, meaning that
neither !z nor w1y are in A*. This entails that (w 'z, 'z) is not in
o, while (z,z) itself is in o. Thus,

ord(z,z) =0 or 1
and similarly for y. On the other hand, since z is not in A™, and since

(2,2) = (z, ) + 2z, y) + (y,y)
we conclude that
ord (z,y) < —1

(and using the hypothesis that 2 is a unit).

By symmetry, we may suppose that ord (y,y) > ord {x, z). Let w™ be the
smallest power of the local parameter w so that

T, w"y
7< (@ 2) ) €o
and define
fla) = {ax + @"y, ax + w"y{- )z, x)

Rearranging, this is

n

(o, a"y) | (@"y, @"y)
(z, ) (x, )
By the choice of n (and the assumption that 2 is a unit), the coefficient of the
linear term is a unit. Since 2z was assumed not to lie in A", it must be that
n > 0, so the constant term has ord strictly positive.
Thus, by Hensel’s Lemma (18.3), there is a root in &k of f(«) = 0. But this
would imply that there is an « so that

fla) =a® +2a-

(az + "y, az + w"y(=0
which would contradict the assumption of anisotropy. Thus, it must have
been that z + y lay in A1 after all. &

The maximal simplices are unordered (n + 1)-tuples
[Aé]a [Ag]a [A2]7 [A3]7 cee [An—l]: [An]
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of homothety classes of lattices with representatives AL, A2 Az, A3, ..., A, so
that m Al and m1A2 are primitive lattices, so that for both j = 1,2

AMcAhcm™ Al forl<i<n
so that . . _
Ao /A CA3/A C ... C AL /A
in the s-vectorspace m~'AJ /AJ and so that A;/AJ is an i-dimensional totally
isotropic subspace of m~1AJ/AJ (with (,)-mod-m).

Remarks: As in the case of the spherical oriflamme complex constructed
for quadratic spaces which are orthogonal sums of hyperbolic planes, the
peculiar details are necessary to arrange that the building be thick.

We consider infinite families of lattices in V'
L CALAZCACA3C...CAp i CALC A=A, C
e C A=A C Ay, =m AL AL, =m 'AZC ..
with some further conditions. We require also the periodicity conditions
Nivone = m ‘A (2<i<2n-2 and (€Z)
A, =m A
for j = 1,2 and for all £ € Z. And for a lattice x we use the notation
z*={veV:(r,v) € m}

as in the previous two sections.

That is, we have an infinite 2n-periodic chain of lattices with the 2n¢th
items doubled, and the 1 + 2nf*" and (2n — 1) 4+ 2nlt" items suppressed, and
with additional conditions.

19.9 Verification of the building axioms

Methods already illustrated suffice to prove that the three families of con-
structions just above yield thick affine buildings. Keep the notation of the
previous three sections.

As in all previous examples, the program of the proof is:

e Granting that the apartments are chamber complexes, show that they
are thin

e Granting that the whole thing is a chamber complex, show it is thick

e Show that the apartments are chamber complexes, by studying reflec-
tions across facets

e Show that any two maximal simplices lie inside a common apartment
(thereby also showing that the whole is a chamber complex, in light of
the previous point)

e Show that two apartments with a common chamber are isomorphic, by
a simplicial isomorphism fixing their intersection pointwise.
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o Determine Coxeter data by reviewing reflections across facets

In all three examples, we think of a maximal simplex as being a more-or-less
infinite periodic chain of lattices (with additional properties varying among
the three examples), as done above, and refer to that viewpoint throughout.
The oriflamme trick, which amounts to suppressing an index while doubling
an adjacent index, should be viewed as a technical modification of the basic
idea of using infinite periodic lattices.

Indeed, the spherical oriflamme construction (11.1) was merely a variant
upon the idea of using flags of isotropic subspaces, as employed for isometry
groups in general (10.1).

We address the indicated issues roughly in order, taking advantage of the
details worked out in previous examples. A little terminology is handy: in
the double oriflamme construction, we would say that 0 and n are doubled
indices, while 1 and n — 1 are suppressed indices (reflecting the oriflamme
construction’s deviation from the analogue for alternating spaces). In the
case of alternating spaces, there are no doubled and no suppressed indices.
In the case of the affine single oriflamme complex, 1 is suppressed, while 0 is
doubled.

First, consider the other chambers with facet Fj, the latter obtained by
omitting the i*" lattice A;, where

e 0<i—-1<i+1<n

e None of i — 1, ¢, ¢ + 1 is suppressed or doubled.
Finding other chambers with this facet amounts to choice of another « vector
subspace of A;_1/A;y1. That is, the issue here is identical to the analogous
issue for the affine building for lattices, treated in chapter 19. For that matter,
that issue itself really was equivalent to the analogous issue for the spherical
building for (unadorned) vectorspaces over the residue field k.

Thus, by computations we’ve already done, in a fixed apartment, there are
only two choices for such intermediate space, depending upon the two lines
(in the frame) along which A;_; differs from A;y;. And in the whole building,
the choice of a one-dimensional subspace in a two-dimensional space offers at
least

(@ -D/(g-D=qg+1>2+1=3
choices even for k finite with g elements.
Now consider the case that i —1 =0, so ¢ — 1 is a suppressed index. Then

i —2 = 0 is doubled, and in fact choice of another chamber A} with facet F;
corresponds to choice of another one-dimensional x vector subspace inside

Aa/(Ag + A7)

which itself is two-dimensional over k. Thus, the thin-ness and thick-ness
hold. Similarly, if ¢ + 1 = n, so that ¢+ 1 is suppressed, then we look at other
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k-lines in

(Ap AT/ Aps
The two tricks are combined if both i + 1 are suppressed (in the n = 4 case
for the double oriflamme complex).

Next, consider i = n in the alternating case. The choice of another cham-
ber with facet F; is equivalent to choice of another k-line inside the two-
dimensional k-space Af_;/An—1. That is, the issue reverts to the analogue in
the spherical building for an alternating space (10.2). Thus, in a fixed apart-
ment, there are altogether two choices, while in the whole building there are
q + 1 for a field x of cardinality q.

And, as it happens, the case of i = 0 in the alternating-space case is nearly
identical to the ¢ = n.

Consider the facet F! corresponding to dropping A in the double ori-
flamme case. (The case of F? is of course completely symmetrical). This is
nearly identical to the spherical oriflamme case. The choice of another cham-
ber with this facet is equivalent to choice of a totally isotropic k subspace of
the four-dimensional space A% ,/A,_» whose intersection with A2/A,_» is
one-dimensional. As in the case of the spherical oriflamme complex (11.1),
within a specified apartment there are only two possibilities (including the
original), while in the whole building there are at least three.

Less obvious is the case of F} (and F?) in both the single and double
oriflamme complexes. But in fact the argument is a minor variant of the F!
and F? discussion (which is essentially identical to the spherical oriflamme
case (11.1)).

Thus, in all three families, granting that the apartments are chamber com-
plexes, they are thin; and, granting that the building is a chamber complex,
it is thick

Next, we will see that each apartment is a chamber complex: there is a
gallery from any maximal simplex to any other maximal simplex in the same
apartment. To see this, we consider the effect of moving (inside the given
apartment) across the facets of maximal simplices.

First, we consider the chambers in a fixed apartment having a common
vertex [z], with # = A, in the alternating space case, and * = Al in the
quadratic-space case. Thus, m~! is a primitive lattice. Looking at flags of
lattices modulo = converts the question into one about flags of vectorspaces
over the residue field k. The latter question is exactly that already treated
in discussion of spherical buildings in chapters 10 and 11. That is, we have
already shown that the movements across facets with vertex z connect all the
chambers with vertex [z] (in a fixed apartment) by galleries.

Next, consider two vertices [z] and [2'] in a fixed apartment, with 2 and
z' primitive lattices. In light of the previous paragraph, to prove that the
apartments really are chamber complexes, it would suffice to show that some
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maximal simplex with vertex [z] is connected by a gallery to some maximal
simplex with vertex [z]. In all three examples, this follows by a straightfor-
ward adaptation of the analogous argument used for A, (19.2).

This completes the outline of the argument that apartments are chamber
complexes.

Next, we see that any two maximal simplices lie in a common apartment.
This is one of the building axioms, and in light of the previous bit of discussion,
upon completion of this item we will also know then that the whole complex
is a chamber complex.

Since all three families of examples have apartments specified by frames,
meaning certain families of isotropic lines occuring in pairs, the goal would
be to find a common frame to fit two given maximal simplices. This is made
slightly more complicated by the quite real possibility that there be more
than one apartment containing the two chambers, so that there is no unique
characterization of ‘the’ common apartment.

Rather, we turn again to the description of maximal simplices in terms
of infinite periodic chains of lattices, and compare two such via a Jordan-
Holder-type argument. In the case of the spherical A,, and the affine A4,,, the
argument was literally that of Jordan-Holder, while in the cases of spherical
C,, and the spherical oriflamme, geometric algebra was used to more sharply
describe the comparison. Either of these approaches succeeds here, and we
will not repeat them further. Thus, we grant ourselves this building axiom,
and also grant that the building is a chamber complex.

Now we consider the other building axiom: given a simplex x and a chamber
C both lying in two apartments A, B, show that there is an isomorphism
B — A fixing both x and C pointwise. As in all other examples, it turns
out to be simpler to prove the apparently stronger assertion that, given two
apartments A, B containing a chamber C, there is an isomorphism f: B — A
fixing A N B pointwise.

As in all earlier examples, in these three families of affine buildings there is
a unique isomorphism f : B — A describable in terms of the defining frames
and fixing C' pointwise, and this unique isomorphism is readily proven to fix
all of AN B.

Finally, we consider the Coxeter data.

In the case of C,, the computations in the spherical case C), (10.3) deter-
mine all the Coxeter data except those bits regarding the reflection s, through
the facet F, obtained by omitting the 0'! lattice in a flag. But, in fact, the
interaction of s, with the reflection s; through Fj is identical to the interac-
tion of the reflection through F), with the reflection through F,_;, and and
commutes with all others. Thus, the C), system is obtained from the C,, sys-
tem by adjoining another reflection s,, with m(s,, s1) = 4 and m(s,,s;) = 2
for i > 1 (where the indices are arranged so that also m(s,, sp—1) = 4).
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In the case of the affine single oriflamme complex B,, and the double ori-
flamme complex D,,, most of the Coxeter data is determined just as in the
spherical case (10.2), (11.2). This is true of the oriflamme-doubling of the
0*" index in both cases, in addition to the previously-considered doubling of
index already present in the spherical oriflamme complex (11.2). Thus, we
have reflections 5(01), 322), S2, S3,..., suppressing the index 1 in both cases.
And m(sgi),SQ) = 3, while both s(ol) and 3(02) commute with everything else
(including each other). The rest of the relations are identical to the spherical
cases C,, and D, for B,, and ]jn, respectively.

These remarks should be a sufficient indication of all the proofs, which can
be almost entirely reconstituted from previous arguments.

19.10 Group actions on the buildings
Keep the previous notation used in this chapter.

In some slightly mysterious way, most of the labor in the larger story of
construction of a building and examination of a group action upon it goes into
being sure that the building is as claimed, after which the requisite properties
of the group action are most often relatively easy to check. In particular, in
all the examples we have considered, all that is needed is a sufficient supply
of monomial matrices, meaning that in suitable coordinates there is just one
non-zero matrix entry in each row and column. The ‘suitable coordinates’
invariably refer to a maximal orthogonal direct sum of hyperbolic planes in-
side the space, ignoring whatever anisotropic orthogonal complement (if any)
remains afterward.

It is also slightly mysterious, but as well fortuitous, that showing that the
stabilizer of an apartment is transitive on chambers within it is always easy.
By contrast, showing directly that the stabilizer of a chamber is transitive
on apartments containing it appears to be non-trivial. As it is, the (label-
preserving) stabilizer of an apartment always is essentially a group of mono-
mial matrices, in coordinates which refer to a maximal family of mutually
orthogonal hyperbolic planes.

In the case of (non-degenerate) alternating spaces V', every such space is
an orthogonal direct sum of hyperbolic planes. Thus, the only invariant is
dimension, which must be even. If V is of dimension 2n, the correspond-
ing isometry group (symplectic group) Sp(V) is often denoted simply Sp(n)
(or, in some circles, Sp(2n)). The tangible labelling on the associated affine
building should be constructed in the same manner as that for SL(V): fix
one vertex [A,] with A, a primitive lattice, and for any other class [A] choose
a representative A so that mA, C A C A,, and let the type of A be the
¢-mod-2n where A/A, is a k-vectorspace of dimension £.
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Then, since always Sp(V) C SL(V), unavoidably this symplectic group
preserves labels.

Witt’s theorem assures that any two frames (specified by n-tuples of pairs
of lines, pairwise forming hyperbolic planes, etc., as above) can be mapped to
each other by an isometry. This is the transitivity of the group on apartments
(specified by frames).

Using the coordinates from the isotropic lines making up a given frame,
it is immediate that the stabilizer of the corresponding apartment consists of
all isometries whose matrix has exactly one non-zero entry in each row and
column. (These are the so-called monomial matrices).

To prove (in the alternating space case) that apartment stabilizers are tran-
sitive on chambers within the apartment, we use the description of chambers
in terms of periodic infinite chains of lattices (with some further conditions
(20.1)). Indeed, we further paraphrase this description, as follows.

Let the frame specifying the apartment be

{0 D AR

This is an unordered n-tuple of unordered pairs of lines, so that the sum
H; = A} + A2 of each pair of lines is a hyperbolic plane, and so that the
hyperbolic planes H; are mutually orthogonal. Some notation is necessary:
for e € {1,2}, let &’ be the other of the two elements of the set {1,2}. Fix an
ordering

Hil’ i27"'7Hi

of the hyperbolic planes, together with a choice of line A;' from among
{\, A7}, and a choice of rank one lattice M;; inside ;7. Put

n

M ={ve )\Z’ :(v,w) €0 forall we M}
Then put

ANo=M; + My, +...+M;, + M  +M;  +...4+M

2

Thus, by construction, this A, is a primitive lattice. Generally, for 0 < j < n,
put
Aj = 1’1’1_1(]\41'1 +M12 + "'+Mi]'_1)
+Mi, 4. A+ M, + M+ M+ M
The extend the chain of lattices
Ao C ... A,

first by the usual condition
A2n7j - A;
and then by the periodicity condition

—¢
Ajyone =m™'A,;
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where as above

AN ={veV:(vz)em forall zeA}

Each of the n choices of a line A’ can be reversed by use of a monomial
matrix inside the isometry group. And choice of rank one module inside A’
can be altered by a monomial matrix inside the isometry group (simulataneous

with adjustment of the corresonding module inside A}*).
This is the desired transitivity, giving the strong transitivity in the case of
symplectic groups.

The issues for both double oriflamme and single oriflamme complex are
nearly identical to the above, except for the slight increase in notational com-
plexity due to the suppression and doubling of indices, just as with the spher-
ical oriflamme (11.3).

With regard to the latter, there is one significant complication, just as in the
spherical oriflamme case (11.3): the modification of the labeling necessitated
by the oriflamme trick causes the whole orthogonal (isometry) group not to
preserve labels. Rather, the label-preserving group inside the isometry group
is only the special orthogonal group, consisting of isometries with determinant
1.

19.11 Iwahori subgroups

In this section we choose convenient coordinate systems in which to describe
the Iwahori subgroups (pointwise fixers of chambers) in our three examples.
In all these cases, in suitable coordinates, the Iwahori subgroup ‘B’ consists
of matrices which have entries in o and which, reduced modulo m, lie in a
minimal parabolic subgroup of the corresponding alternating or orthogonal
group over the residue field.

In the first place, in each of the three families under consideration, the
(label-preserving) stabilizer of a chamber must fix all the vertices of the cham-
ber, which are homothety classes of lattices. So the Iwahori subgroup associ-
ated to the chamber is contained in the subgroup fixing the homothety class
of some lattice A.

Let e,... ,en be an o-basis for A. Then, for an isometry g of V fixing the
homothety class [A], let « € k* be so that
gA=a-A

Since g is an isometry, it must be that
{(v,w) :v,w € A} = {{v,w) : v,w € a- A} = *{{v,w) : v,w € A}

Thus, a must be a unit, and not only is the homethety class preserved, but
in fact that lattice itself:

gh =A
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Then

gei = E 3 Cij€j
J

with ¢;; € 0. On the other hand, g~' has the same property, since gA = A
rather than merely gA C A. Thus, detg is necessarily a unit. That is, the
matrix for such g has entires in o and has determinant in the units of the ring
o.

Now suppose, as occurs in the three constructions, that g fixes a primitive
lattice m—'A,. In the alternating space case, such a chamber fixes an infinite
periodic chain of lattices

...CA, CAC...

and the chain

Ay/A, CA/A, C ...
is a maximal flag of totally isotropic x-subspaces in the non-degenerate k-
vectorspace m~'A,/A, with the form (,)-mod-m. Thus, with suitable choice
of o-basis for A,, modulo m the matrices in the Iwahori subgroup are in the
minimal parabolic subgroup attached to this maximal flag modulo k.

For the double oriflamme complex, with two primitive lattices A} and A2,
the configuration of totally isotropic subspaces fixed by an element of an
Iwahori subgroup is of the form

(AL + A% /AL C Ay/AL .. C Apa/AL C oo C Ao CALJAL A2 /AL
This is the same as the configuration for the spherical oriflamme complex
(11.1), over the residue field k. Note that we had to create a k-one-dimensional
isotropic subspace

(Ag +A2)/A;
in order to match not only the content, but the form of the description.

The issue is essentially identical for the single orilamme complex.

19.12 The maximal apartment systems

To be sure that the earlier study of the interaction of the affine building
and the spherical building at infinity is applicable in the present settings, we
must be sure that the apartment systems here are the maximal ones.

Quite generally, when the Iwahori subgroup (stabilizer of a chamber in the
affine building) is compact and open, the apartment system is the (unique
(4.4)) maximal one (17.7). To prove that the Iwahori subgroup is compact
and open, we assume that the discrete valuation ring o is locally compact.

In each of our three families of examples, as was noted in the last section,
in suitable coordinates the Iwahori subgroup consists of matrices in the group
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which have entries in o, and which modulo m lie in the minimal parabolic of
the corresponding isometry group over the residue field «.

Thus, as with SL(V') (18.4), (19.4), (19.5), local compactness of the field k
assures that the Iwahori subgroup is compact and open. This assures that the
apartment systems constructed above are the maximal apartment systems.
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