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Introduction
This book describes the structure of the classical groups� meaning general

linear groups� symplectic groups� and orthogonal groups� both over general
�elds and in �ner detail over p�adic �elds� To this end� half of the text
is a systematic development of the theory of buildings and BN�pairs� both
spherical and a�ne� while the other half is illustration by and application to
the classical groups�

The viewpoint is that buildings are the fundamental objects� used to study
groups which act upon them� Thus� to study a group� one discovers or con�
structs a building naturally associated to it� on which the group acts nicely�

This discussion is intended to be intelligible after completion of a basic
graduate course in algebra� so there are accounts of the necessary facts about
geometric algebra� re�ection groups� p�adic numbers �and other discrete val�
uation rings�� and simplicial complexes and their geometric realizations�

It is worth noting that it is the building�theoretic aspect� not the algebraic
group aspect� which determines the nature of the basic representation theory
of p�adic reductive groups�

One important source of information for this and related material is the
monumental treatise of Bruhat�Tits� which appeared in several parts� widely
separated in time� This treatise concerned mostly application of the theory of
a�ne buildings to p�adic groups of the theory of a�ne buildings� One of the
basic points made� and an idea pervasive in the work� is that buildings can be
attached in an intrinsic manner to all p�adic reductive groups� But this point
is di�cult to appreciate� making this source not congenial to beginners� pre�
suming as it does that the reader knows a great deal about algebraic groups�
and has a �rm grasp of root systems and re�ection groups� having presumably
worked all the exercises in Bourbaki	s Lie theory chapters IV�V�VI�

In contrast� it is this author	s opinion that� rather than being corollaries
of the theory of algebraic groups� the mechanism by which a suitable action
of a group upon a building illuminates the group structure is a fundamental
thing itself�

Still� much of the material of the present monograph can be found in� or
inferred from� the following items


F� Bruhat and J� Tits� Groupes Reductifs sur un Corps Local� I� Donnees
radicielles valuees� Publ� Math� I�H�E�S� �� ��
���� pp� ������

F� Bruhat and J� Tits� Groupes Reductifs sur un Corps Local� II� Schemas en
groups� existence d	une donnee radicielle valuee	� ibid �� ��
���� pp� ������
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F� Bruhat and J� Tits� Groupes Reductifs sur un Corps Local� III� Comple�
ments et applications a la cohomologie galoisienne� J� Fac� Sci� Univ� Tokyo
�� ��
���� pp� ��������

F� Bruhat and J� Tits� Schemas en groupes et immeubles des groupes clas�
siques sur un corps local� Bull� Soc� Math� Fr� ��� ��
���� pp� ��
�����

I have bene�ted from the quite readable

J� Humphreys� Re
ection Groups and Coxeter Groups� Camb� Univ� Press�
�

��

K� Brown� Buildings� Springer�Verlag� New York� �
�
�

M� Ronan� Lectures on Buildings� Academic Press� �
�
�

Even though I do not refer to it in the text� I have given as full a bibliog�
raphy as I can� Due to my own motivations for studying buildings� the bib�
liography also includes the representation theory of p�adic reductive groups�
especially items which illustrate the use of the �ner structure of p�adic reduc�
tive groups discernible via building�theory�

By �
��� after the �rst of the Bruhat�Tits papers most of the issues seem
to have been viewed as �settled in principle	� For contrast� one might see some
papers of Hijikata which appeared during that period� in which he studied p�
adic reductive groups both in a classical style and also in a style assimilating
the Iwahori�Matsumoto result


H� Hijikata� Maximal compact subgroups of some p�adic classical groups�
mimeographed notes� Yale University� �
���

H� Hijikata� On arithmetic of p�adic Steinberg groups� mimeographed notes�
Yale University� �
���

H� Hijikata� On the structure of semi�simple algebraic groups over valuation
�elds� I� Japan� J� Math� ��
���� vol� � no� �� pp� ��������

The third of these papers contains some very illuminating remarks about
the state of the literature at that time�

Having made these acknowledgements� I will simply try to tell a coherent
story�



Garrett� �Contents� iii

Contents

� Coxeter groups
��� Words� lengths� presentations of groups
��� Coxeter groups� systems� diagrams
��� Linear representation� re�ections� roots
��� Roots and the length function
��� More on roots and lengths
��� Generalized re�ections
��� Exchange Condition� Deletion Condition
��� The Bruhat order
��
 Special subgroups of Coxeter groups

� Seven important families
��� Three spherical families
��� Four a�ne families

� Complexes
��� Chamber complexes
��� The uniqueness lemma
��� Foldings� walls� re�ections
��� Coxeter complexes
��� Characterization by foldings and walls
��� Corollaries on foldings and half�apartments

� Buildings
��� Apartments and buildings
 de�nitions
��� Canonical retractions to apartments
��� Apartments are Coxeter complexes
��� Labels� links� maximal apartment system
��� Convexity of apartments
��� Spherical buildings

� BN�pairs from buildings
��� BN�pairs
 de�nitions
��� BN�pairs from buildings
��� Parabolic �special� subgroups
��� Further Bruhat�Tits decompositions
��� Generalized BN�pairs
��� The spherical case
��� Buildings from BN�pairs



iv Garrett� �Contents�

� Generic algebras and Hecke algebras
��� Generic algebras
��� Strict Iwahori�Hecke algebras
��� Generalized Iwahori�Hecke algebras

� Geometric algebra
��� GL�n� �a prototype�
��� Bilinear and hermitian forms
 classical groups
��� A Witt�type theorem
 extending isometries
��� Parabolics� unipotent radicals� Levi components

� Examples in coordinates
��� Symplectic groups in coordinates
��� Orthogonal groups O�n�n� in coordinates
��� Orthogonal groups O�p�q� in coordinates
��� Unitary groups in coordinates


 Construction for GL�n�

�� Construciton of the spherical building for GL�n�

�� Veri�cation of the building axioms

�� Action of GL�n� on the spherical building

�� The spherical BN�pair in GL�n�

�� Analogous treatment of SL�n�

�� The symmetric group as Coxeter group

�� Spherical Construction for Isometry Groups
���� Construction of spherical buildings for isometry groups
���� Veri�cation of the building axioms
���� The action of the isometry group
���� The spherical BN�pair in isometry groups
���� Analogues for similitude groups

�� The Spherical Ori�amme Complex
���� The ori�amme construction for SO�n�n�
���� Veri�cation of the building axioms
���� The action of SO�n�n�
���� The spherical BN�pair in SO�n�n�
���� Analogues for GO�n�n�



Garrett� �Contents� v

�� Re�ections� root systems� Weyl groups
���� Hyperplanes� chambers� walls
���� Re�ection groups are Coxeter groups
���� Root systems and �nite re�ection groups
���� A�ne re�ection groups� special vertices
���� A�ne Weyl groups

�� A�ne Coxeter complexes
���� Tits	 cone model of Coxeter complexes
���� Positive�de�niteness
 the spherical case
���� A lemma from Perron�Frobenius
���� Local �niteness of Tits	 cones
���� De�nition of geometric realizations
���� Criterion for a�neness
���� The canonical metric
���� The seven in�nite families

�� A�ne buildings
���� A�ne buildings� trees
 de�nitions
���� The canonical metric
���� Negative curvature inequality
���� Contractibility
���� Completeness
���� Bruhat�Tits �xed point theorem
���� Conjugacy classes of maximal compact subgroups
���� Special vertices� good compact subgroups

�� Finer combinatorial geometry
���� Minimal galleries and reduced galleries
���� Characterizing apartments
���� Existence of prescribed galleries
���� Con�gurations of three chambers
���� Subsets of apartments� strong isometries

�� The spherical building at in�nity
���� Sectors
���� Bounded subsets of apartments
���� Lemmas on isometries
���� Subsets of apartments
���� Con�gurations of chamber and sector
���� Con�gurations of sector and three chambers
���� Con�gurations of two sectors
���� Geodesic rays
���
 The spherical building at in�nity
����� Induced maps at in�nity



vi Garrett� �Contents�

�� Applications to groups
���� Induced group actions at in�nity
���� BN�pairs� parahorics and parabolics
���� Translations and Levi components
���� Filtration by sectors
 Levi decomposition
���� Bruhat and Cartan decompositions
���� Iwasawa decomposition
���� Maximally strong transitivity
���� Canonical translations

�� Lattices� p�adic numbers� discrete valuations
���� p�adic numbers
���� Discrete valuations
���� Hensel	s Lemma
���� Lattices
���� Some topology
���� Iwahori decomposition for GL�n�

�
 Construction for SL�V�
�
�� Construction of the a�ne building for SL�V�
�
�� Veri�cation of the building axioms
�
�� Action of SL�V� on the a�ne building
�
�� The Iwahori subgroup �B	
�
�� The maximal apartment system

�� Construction of a�ne buildings for isometry groups
���� A�ne buildings for alternating spaces
���� The double ori�amme complex
���� The �a�ne� single ori�amme complex
���� Veri�cation of the building axioms
���� Group actions on the buildings
���� Iwahori subgroups
���� The maximal apartment systems

Index
Bibliography



Garrett� �� Coxeter Groups �

�� Coxeter Groups
� Words� lengths� presentations of groups
� Coxeter groups� systems� diagrams
� Linear representation� re�ections� roots
� Roots and the length function
� More on roots and lengths
� Generalized re�ections
� Exchange Condition� Deletion Condition
� The Bruhat order
� Special subgroups of Coxeter groups

In rough geometric terms� a Coxeter group is one generated by re
ections�
Coxeter groups are very special among groups� but are also unusually impor�
tant� arising as crucial auxiliary objects in so many di�erent circumstances�

For example� symmetric groups �that is� full permutation groups� are Cox�
eter groups� and already illustrate the point that some of their properties are
best understood by making use of the fact that they are Coxeter groups�

What we do here is the indispensable minimum� and is completely standard�

��� Words� lengths� presentations of groups
This little section recalls some standard and elementary concepts from

general group theory�
Let G be a group with generators S� The length ��g� � �S�g� of an element

g of G with respect to the generating set S is the least integer n so that g has
an expression

g � s� � � � sn

with each si � S� Any expression

g � s� � � � sn

with n � ��g� is reduced� These expressions in terms of generators arewords
in the generators�

Let F be a free non�abelian group on generators �s� for s in a set S� Thus�
F consists of all words

�s��
m� � � � �sn�

mn

where the mi are integers and the si are in S� Let X be a set of �expressions	
of the form sm�

� � � � smn
n with all si in S� We wish to form the largest quotient

group G of the free group F in which the image of �s��
m� � � � �sn�

mn is � when�
ever �s��

m� � � � �sn�
mn is in X � As should be expected� this quotient is obtained

by taking the quotient of F by the smallest normal subgroup containing all
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words �s��
m� � � � �sn�

mn in X � By an abuse of notation� one says that the group
G is generated by S with presentation

fs� � � � sn � � 
 �sm�

� � � � smn

n � Xg
Of course� in general it is not possible to tell much about a group from a

presentation of it� In this context� we should feel fortunate that we can so
successfully study Coxeter groups� as follows�

��� Coxeter groups� systems� diagrams

This section just gives the basic de�nitions� Even the most fundamental
facts will take a little time to verify� which we will do in the following sections�

Fix a set S� and let

m 
 S � S � f�� �� �� � � � ��g
be a function so that m�s� s� � � for all s � S and so that m�s� t� � m�t� s�
for all s� t � S� For brevity� we may write

mst � m�s� t�

A Coxeter system is a pair �W�S� where S is a set of generators for a
group W � and W has presentation

s� � � �s � S

�st�m�s�t� � � �s� t � S

By convention� m�s� t� � � means that no relation is imposed� Note that if
m�s� t� � � then st � ts� since s� � � and t� � ��

We may refer to the function m as giving Coxeter data�
It is an abuse of language to then say that W is a Coxeter group� since

there are several reasons for keeping track of the choice of generating set
S� Indeed� the usual interest in a group	s being a �Coxeter group	 resides in
reference to the set S�

A dihedral group is a Coxeter group with just two generators� At many
points in the discussion below� issue are reduced to the analogues for dihedral
groups� rendering computation feasible�

A Coxeter diagram is a schematic device often convenient to keep track
of the numbersm�s� t� which describe a Coxeter system �W�S�
 for each s � S
we make a �dot	� connect the s�dot and t�dot by a line if � � m�s� t�� and label
this connecting line by m�s� t� �if m�s� t� � ��� �Thus� a Coxeter diagram is
a one�dimensional complex with vertices in bijection with the set S� etc� �
When m�s� t� � � we may omit the label on the line segment connecting the
s�dot and t�dot� The reason for this is that it turns out that �for m�s� t� � ��
the most common value of m�s� t� is �� And keep in mind that if m�s� t� � �
then st � ts�
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A Coxeter diagram is connected if� for all s� t � S� there is a sequence

s � s�� s�� s�� � � � � sn � t

so that m�si� si	�� � �� That is� the diagram is connected if and only if it is
connected as a one�dimensional simplicial complex�

Alternatively� we may say that a Coxeter system is indecomposable or
irreducible if it is connected in this sense�

��� Linear representation� re�ections� roots

Let �W�S� be a Coxeter system� One primitive goal is that of showing
that the elements of S and their pairwise products truly have the orders that
they would appear to have from the presentation of the group W � That is�
the generators should have order � �that is� not ��� and a product st should
have order m�s� t� �rather than some proper divisor of m�s� t��� In the course
of proving this we introduce Tits	 linear representation of a Coxeter group
de�ned by mapping the involutive generators S of W to suitable re
ections
in a real vectorspace� This representation is sometimes called the geometric
realization of W �

Only after we have veri�ed that the linear representation is indeed a group
homomorphism can we de�ne the roots�

Let V � VS be a real vectorspace with basis consisting of elements es for
s � S� De�ne a symmetric bilinear form h� i on V by

hes� eti � 	 cos���mst�

�For mst ��� take hes� eti � 	�� � This is the Coxeter form�
Suppose that S is �nite with cardinality n and that we have ordered S as

s�� � � � � sn� Then the Coxeter matrix associated to a Coxeter system �W�S�
is the n�n matrix indexed by pairs of elements of S� with o��diagonal entries

Bij �
�

�
hesi � esj i

for i 
� j and with diagonal entries ��
Let G be the group of isometries of this bilinear form


G � fg � GL�V � 
 hgx� gyi � hx� yi �x� y � V g
where GL�V � is the group of R�linear automorphisms of V � We may refer to
G as the orthogonal group of the form h� i even though we certainly do not
preclude the possibility that the form may be degenerate� For s � S de�ne a
re�ection �s on V by

�sv � v 	 �hv� esies
A direct computation shows that these re
ections lie in the orthogonal group
G�
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Let � be the subgroup of the orthogonal group G generated by the re�ec�
tions �s� We eventually want to see that the map

s� � � � sn � �s� � � � �sn

gives rise to a group isomorphism

W � �

Knowing that this is an isomorphism is essential for the continuation� It is
certainly not a priori clear that this map is even well�de�ned� since at the
present point we do not know that the generators really are of order �� not
that products st really are of order m�s� t�� only that these orders divide �
and m�s� t�� respectively�

One �rst step in proving this isomorphism is


Lemma� Each s � S is of order � in W �
Proof� We make a group homomorphism 	 from the free group F on gen�

erators S to f��	�g by 	�s� � 	� �with the usual abuse of notation�� Since
	 vanishes on st for all s� t � S� 	 is compatible with the de�ning relations for
the group and induces a group homomorphism W � f��	�g with 	 � 	� on
S� Thus� the generators S truly are of order �� �

Next� to see that s� �s gives rise to a group homomorphism W � �� we
need to check that

��s�t�
m�s�t� � �

Fix s 
� t � S� put m � mst� and let


 � 	 cos���m�

The Coxeter form restricted to

U � Res � Ret � V

has the matrix �
� 


 �

�
which is positive de�nite if m �� and �hence� j
j � ��

With respect to the ordered basis es� et� the re�ections �s� �t restricted to
U have matrices �respectively�� 	� 	�


� �

�
�

� 	� � cos �
m

� �

�
�

� �
	�
 	�

�
�

�
� �

� cos �
m 	�

�
Thus� �s�t restricted to U has matrix� 	� 	�


� �

��
� �
	�
 	�

�
�

� 	� � �
� �

	�
 	�

�
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One computes that for m � � the eigenvalues of �s�t restricted to U are
e���i�m�

When m � �� 
 � 	�� and �s�t restricted to U has matrix

� 	� �
	� �

�

which has Jordan form

�
� �
� �

�
so has in�nite order� as desired�

Now if m ��� the subspace U is a non�degenerate quadratic space� in the
sense of geometric algebra� ����� In that case� V is an orthogonal sum

V � U 
 U�

Since both �s and �t act trivially on U�� then the order of �s�t is exactly
the order of this product restricted to U � which we have computed already� If
m � �� then since the restriction of �s�t is of in�nite order� so must be the
product �s�t�

Thus� so far� we have shown that the group homomorphism � from the free
group F on generators �s� for s � S to �� de�ned by

�s�� � � � �sn�� �s� � � � �sn

has in its kernel all expressions

�s�� � ��s��t��m�s�t�

Thus� since the Coxeter group is de�ned to be the largest quotient of F in
which such elements are mapped to the identity� we see that � does indeed
factor through W �although we do not yet have injectivity��

In summary� so far we have proven

Proposition� The linear representation of W described by

s� � � � sn � �s� � � � �sn

is a group homomorphism� and the products st � W do indeed have orders
m�s� t�� �

It still remains to prove injectivity of this map �below��

��� Roots and the length function
The notion of root discussed here is yet another crucial yet slightly ob�

scure technical item� This notion itself� or analogues of it� comes up in many
subjects�

For brevity� write simply

wv � �wv

for v � V and w � W � That is� we identify W with its image under Tits	
linear representation�

The set of roots of �W�S� is

� � fwes 
 w � W� s � Sg
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Note that all the vectors in � are of length �� since the image � of W in
GL�V � lies in the orthogonal group of the Coxeter form� and the lengths of
all the vectors es are � by de�nition of the Coxeter form� Since ses � 	es�
we �nd

� � 	�
For � � �� we can express � uniquely as

� �
X
s

cs es

in terms of the basis es� with coe�cients cs � R� Say that a root � � � is
positive if for all s � S we have cs � �� We write this as � � �� Say that
a root � � � is negative if for all s � S we have cs � �� We write this as
� � �� Let �	 be the positive roots� and let �� be the negative roots�

Lemma�

� ��w� � ��w���
� ��ww�� � ��w� � ��w��
� ��ww�� � ��w�	 ��w��
� ��w� 	 � � ��sw� � ��w� � �
� ��w� 	 � � ��ws� � ��w� � �

Proof is easy� �
Recall that we have de�ned

	 
 W � f��g
by 	�s� � 	� for any s � S�

Lemma� For w �W and s � S�

	�w� � �	����w�

and

��ws� � ��w� � � ��sw� � ��w�� �

Proof of Lemma� Let w � s� � � � sn be a reduced expression for w� Thus�
n � ��w�� and 	�w� � �	��n� Since

	�sw� � 	�s�	�w� � 		�w�
it must be that ��sw� 
� ��w�� From this the result follows immediately� as
does the symmetrical assertion for ws� �
Theorem� For w � W and s � S�

if ��ws� � ��w� then wes � �

if ��ws� � ��w� then wes � �

Corollary� The linear representation W � GL�V � given by

s� � � � sn � �s� � � � �sn
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is injective�
Proof of corollary� If there were w � W so that wv � v for all v � V �

then certainly wes � es � � for all s � S� This implies� by the theorem� that
��ws� � ��w� for all s � S� This implies that w � �
 otherwise let s� � � � sn
be a reduced expression for w and take s � sn to obtain ��ws� � ��w��
contradiction� �

Proof of theorem� The second assertion of the theorem follows from the
�rst
 if ��ws� � ��w�� then

���ws�s� � ��w� � ��ws�

so wses � �� Then

wes � ws�	es� � 	�wses� � �

We prove the �rst assertion by induction on ��w�� If ��w� � � then w � ��
If ��w� � � then take t � S so that ��wt� � ��w� 	 �� e� g� � we could
take t � sn for w � s� � � � sn a reduced expression for w� Then s 
� t� Let
T � fs� tg� and let WT be the subgroup of W generated by T � Then WT is a
dihedral group� that is � a Coxeter group with just two generators� Let �T be
the length function on WT with respect to the set of generators T �

Consider expressions w � xy with y �WT and x � W � Let

X � fx �W 
 x��w �WT and ��w� � ��x� � �T �x
��w�g

Certainly w � w � �� so w � X � and X 
� �� Choose x � X of least length�
and let y � x��w �WT � Then w � xy and

��w� � ��x� � ��y� � ��x� � �T �y�

We claim that wt � X � Indeed�

�wt��� � w � t � WT

and

��wt� � �T �t� � ��w� 	 � � � � ��w�

as desired� Thus�

��x� � ��wt� � ��w�	 �

We can now do induction on ��w� We claim that ��xs� � ��x�� If not� then

��w� � ��xs� � ���xs���w� � ��xs� � �T �sx
��w� �

� ��x�	 � � �T �sx
��w� � ��x�	 � � �T �x

��w� � � �

� ��x� � �T �x
��w� � ��w�

Then we could conclude that

��w� � ��xs� � �T ��xs�
��w�

and that xs � X � contradicting the assumed minimal length of x among
elements of X � Thus� we conclude that ��xs� � ��x�� By induction on ��w��
xes � �� Similarly� we conclude that ��xt� � ��x� and xet � ��
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It remains to show that yes � �� e� g� � to show that

yes � aes � bet

with a� b � �� since then

wes � �xy�es � x�yes�

and we already know how x acts on es� et� This is a question referring only
to the dihedral group �Coxeter group on two generators� WT � First� we claim
that �T �ys� � �T �y�� Otherwise�

��ws� � ��xx��ws� � ��x� � ��x��ws� � ��x� � ��ys� �
� ��x� � �T �ys� � ��x� � �T �y� � ��w� � ��ws�

giving a contradiction� Thus� any reduced expression for y in WT must end
in t�

Now we claim that any element y of the dihedral group WT all of whose
reduced expressions are of the form

y � � � � t

has the property that
yes � aes � bet

with a� b � ��
If m�s� t� ��� then hes� eti � 	�� and

tes � es 	 ��	��et � es � �et

�st�es � s�es � �et� � �es � �et�	 ��� � ��	���es � �es � �et

and so on� By induction�

�st�nes � �� � �n�es � �net and t�st�nes � �� � �n�es � ��n� ��et

giving the desired positivity assertion�
Suppose now that m�s� t� � m ��� First� we note that �T �y� � m� since

the element of WT with length m can be written as

�st�m�� � �ts�m�� or �ts��m�����t � �st��m�����s

depending on whetherm is even or odd� Thus� keeping in mind that �st�m � ��
we need only consider y of the form

�m even� �st�k with k � m��

�m odd� t�st�k with k � �m	 ����

Completion of this proof now can be accomplished by direct computation�
For brevity� let 
 � e��i�m� a mth root of unity� One computes that 
��es�et
is a 
�� eigenvector for st� Thus�

�
 	 
���es � �
es � et�	 �
��es � et�

expresses es as a linear combination of eigenvectors� and

�
 	 
����st�kes � �
�k	�es � 
�ket�	 �
��k��es � 
��ket�
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From this�

�st�kes �
sin ��k	����

�m

sin ��
�m

es �
sin ��k���

�m

sin ��
�m

et

We leave the rest to the reader� �

��� More on roots and lengths
The previous section was really just preparation� Now we can proceed to

the heart of the matter�

Corollary� We have

� � �	 t ��

Proof� First� note that this assertion is not a priori clear� Recall that � is
the collection of all images wes� Given w � W and s � S� either ��ws� � ��w��
in which case �by the theorem� wes � �	� or ��ws� � ��w�� in which case �by
the theorem� wes � ��� �

Corollary� The re�ection s � GL�V � has the e�ect ses � 	es� and s
merely permutes the other positive roots� More generally�

��w� � cardf� � �	 
 w� � �g

Proof� From the de�nition of the re�ection �attached to� s� ses � 	es�
Now let � be a positive root other than es� Since h�� �i � � � hes� esi� � and
es are not collinear� Thus� in writing

� �
X

cses

with all cs � �� some ct � � for s 
� t � S� Then s� 	 � � Res �from the
de�nition of the action of the re�ection s�� so the coe�cient of et in s� is
still ct � �� Therefore� s� 
� ��� The previous corollary then implies that
s� � �	� That is�

s��	 	 fesg� � �	 	 fesg
Applying s again gives the equality asserted�

To prove the second assertion we make pointed use of the �rst� Let

��w� � card��	 � w�����

be the number of positive roots sent to negative roots� The previous assertion
shows that for s � S we do have ��s� � ��s�� Now do induction on length� It
su�ces to show that

wes � �� ��ws� � ��w� � �

and

wes � �� ��ws� � ��w� 	 �
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If wes � �� then

�	 � �ws����� � s��	 � w����� t fesg
where we use the �rst assertion to obtain the equality� This visibly has car�
dinality one greater than the cardinality of

�	 � w����

as desired� If wes � �� then

�	 � �ws����� � �s��	 � w�����	 fesg
so this set has cardinality one less than

�	 � w����

as desired� �
Corollary� If the Coxeter group W is �nite� then there is a unique

element wo in W of maximal length� this maximal length is equal to the
number of positive roots� and wo maps every positive root to a negative root�

Proof� If there were two elements which mapped every positive root to a
negative� then their product would send all positive to positive� so would have
length �� Thus� there is at most one element of W which sends all positive
roots to negative�

Let wo be a longest element in W � If wes � � for all s � S� then certainly
w�	 � ��� since all positive roots are non�negative linear combinations of the
es� If wes � � for some s � S� then �from above�� ��ws� � ��w�� contradiction�

�

��	 Generalized re�ections
This section extends our earlier discussion of Coxeter groups somewhat�

mostly for the purpose of completing our discussion of roots�
For a root � � wes of a Coxeter group� we de�ne the associated re�ec�

tion

s�v � v 	 �hv� �i�
Rewriting � � wes� we see that

s�v � v 	 �hv� wesiwes � v 	 �hw��v� esiwes
�by the W �invariance which h� i has almost by de�nition�

� w�w��v 	 �hw��v� esies� � wsw��v

That is� the �generalized	 re�ection s� is just a conjugate in W of one of the
�original	 re�ections s�

Lemma� The map � � s� is a bijection from positive roots to re�ections�
We have s�� � s� �
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Proof� The last assertion is easy to check� If s� � s� for two positive
roots� then

	� � s���� � s���� � � 	 �h�� �i�
which implies that � � h�� �i�� Since both are unit vectors and are in �	�
we must have equality� �
Lemma� If �� � are roots and � � w� for some w �W � then ws�w

�� �
s�� �The proof is direct computation� using the W �invariance of h� i�� �
Proposition� For w � W and � � �	� ��ws�� � ��w� if and only if

w� � ��

Proof� It su�ces to prove the �only if	� since we can also consider the
statement with w replaced by ws��

We do induction on the length of w� If ��w� � � then there is s � S so
that ��sw� � ��w�� Then

��sws�� � ��ws��	 � � ��w�	 � � ��sw�

By induction on length� �sw�� � �� Suppose that w� � �� The only negative
root made positive by s is 	es� so necessarily w� � 	es� Then sw� � es�
and

�sw�s��sw�
�� � s

by the previous lemma� Thus� ws� � sw� But this contradicts

��ws�� � ��w� � ��sw�

Thus� we conclude that w� � �� �

��
 Exchange Condition� Deletion Condition
The point of this section is to show that the assertion that �W�S� is a

Coxeter system is equivalent to some other somewhat less combinatorial as�
sertions� which lend themselves to a geometric reinterpretation� The execution
and exploitation of this reinterpretation will occupy much of the remainder
of the sequel�

One should note that in some sources Coxeter groups are de�ned by these
other conditions� We do indeed prove the equivalence of these conditions
 this
is J� Tit	s theorem proven just below�

The �rst of these alternative characterizations is the Strong Exchange
Condition�

Theorem� Let w � s� � � � sn� If there is a �generalized� re�ection t so
that ��wt� � ��w�� then there is an index i so that

wt � s� � � � �si � � � sn

�where the hat denotes omission�� If the expression w � s� � � � sn is reduced�
then there is a unique such index�
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Proof� Let t � s� for some positive root �� Since ��wt� � ��w� and � � ��
from the previous section we conclude that w� � �� Thus� there is an index
i so that si	� � � � sn� � � but sisi	� � � � sn� � �� Now the only positive root
sent to its negative by si is esi � so necessarily si	� � � � sn� � esi � The lemma
of the previous section then gives

�si	� � � � sn�t�si	� � � � sn�
�� � si

which can be rearranged to

wt � �s� � � � si��si	� � � � snt� � �s� � � � si�si�sn � � � si	��
��

which yields the assertion�
Suppose that n � ��w�� and that si and sj �with i � j� both could be

�deleted	 in the above sense� From

s� � � � �si � � � sn � wt � s� � � � �sj � � � sn

we cancel to obtain
si	� � � � sj � si � � � sj��

That is� we have
si � � � sj � si	� � � � sj��

so
w � s� � � � �si � � � �sj � � � sn

would be a shorter expression for w� contradiction� �
The following corollary is the Deletion Condition�

Corollary� If w � s� � � � sn with n � ��w�� then there are i � j so that

w � s� � � � �si � � � �sj � � � sn

Indeed� a reduced expression for w may be obtained from this expression by
deleting an even number of the si	s�

Proof� First we claim that there is an index j �possibly j � n� so that

��s� � � � sj� � ��s� � � � sj���

Indeed� otherwise �by induction on j�� we could prove that ��w� � n�
Then from

���s� � � � sj�sj� � ��s� � � � sj��� � ��s� � � � sj�

the Exchange Condition implies that there is an index � � i � j so that

s� � � � sj�� � �s� � � � sj�sj � s� � � � �si � � � sj��

as desired� �
The next corollary illustrates the mechanism at work� and will have some

use later�

Corollary� Given w � W and s� t � S with

��sw� � ��w� � �
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��wt� � ��w� � �

either

��swt� � ��w� � �

or swt � w�

Proof� Let w � s� � � � sn be a reduced expression for w� From the length
hypotheses� s� � � � snt is a reduced expression for wt� By the Exchange Con�
dition� either

��s�wt�� � ��wt� � � � ��w� � � � � � ��w� � �

or else we can exchange one of the letters in s� � � � snt for an s on the left end
of the expression� The hypothesis ��sw� � ��w� precludes exchange of one of
the si for s� so the exchange must be for the �nal t


ss� � � � sn � s� � � � snt

That is� sw � wt� so swt � �wt�t � w as claimed� �
Now we prove Tits	 converse�

Theorem� Any group W generated by a set S with all s � S of order �
and satisfying the Deletion Condition gives a Coxeter system �W�S��

Proof� We claim that all relations in W are �derivable	 from any relations
of the special form �st�m � � for s� t � S� That is� we claim that all relations
inW are derivable from the Coxeter�type relations among the generators �and
from the relations s�

i � ���
Given a relation s� � � � sn � � with all si � S� we must show that this

relation is implied by Coxeter�type relations� We do induction on n�
First� we claim that n must be even for there to be any such relation� To

see this� �de�ne	

	�s� � � � sn� � �	��n
We will use the Deletion Condition to show that 	 is a well�de�ned ���valued
function on W � from which it then will follow immediately that n must be
even if such a relation holds� Indeed� if

s� � � � sm � t� � � � tn

with all si� tj � S and with m � n� then t� � � � tn is not reduced� and the
Deletion Condition implies that there is a pair i� j of indices �with i � j� so
that

t� � � � tn � t� � � � �ti � � � �tj � � � tn

Thus� the length of the word is decreased� but the parity of the length stays
the same� Altogether� this gives the result�

If n � �� the condition s�s� � � immediately gives s� � s�� since always
s�
i � �� But then this is nothing but the assertion that s�

� � ��
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Before proceeding further� we make some general observations� For exam�
ple� suppose that

s� � � � sn � �

with n � �m and m � �� Then we could infer that

s�s� � � � si��si � snsn�� � � � si	�

using only that all the elements sj are of order �� by right multiplying by
snsn�� � � � si	�si	�� Further� by leftmultiplying the latter by si	�si	� � � � sn��sn
we could obtain

si	� � � � sns�s� � � � si��si � �

Thus� from a relation s� � � � sn � �� �with n � �m� we have the relation

s� � � � sm	� � sn � � � sm	�

The length of the right�hand side is necessarily � m	 �� so the left�hand side
is surely not reduced� Thus� by the Deletion Condition there are i � j � m��
so that

s� � � � sm	� � s� � � � �si � � � �sj � � � sm	�

Doing some cancellation in the last equation� we have

si	� � � � sj � si � � � sj��

which �by right multiplication by sj � � � si	�� gives

sisi	� � � � sj��sjsj�� � � � si	�si	� � �

If we are lucky enough that the latter relation involves fewer than n re�ec�
tions� then �by induction� it is derivable from the Coxeter�type relations� so
the relation

si	� � � � sj � si � � � sj��

is so derivable� Then replace si	� � � � sj by si � � � sj�� in the original s� � � � sn �
� and rewrite the latter as

� � s� � � � si�si � � � sj���sj	� � � � sn � s� � � � �si � � � �sj � � � sn

Again by induction� the relation

� � s� � � � �si � � � �sj � � � sn

is derivable from the Coxeter relations�
Therefore� in the lucky case� assuming the truth of s� � � � sn � �� we know

that the relations
si	� � � � sj � si � � � sj��

� � s� � � � �si � � � �sj � � � sn

are derivable from the Coxeter�type relations� Then we can derive s� � � � sn � �
from these relations as follows


s� � � � sn � s� � � � si�si	� � � � sj�sj	� � � � sn �

� s� � � � si�si � � � sj���sj	� � � � sn � s� � � � �si � � � �sj � � � sn � �

with all relations derivable from the Coxeter relations�
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Now consider the unlucky possibility that

sisi	� � � � sj��sjsj�� � � � si	�si	� � �

still has n factors� Thus� even though we know this relation to hold �from the
assumption that s� � � � sn � � is true�� we cannot hope to invoke induction on
length to say that we know that it is derivable from the Coxeter�type relations�
This unlucky case occurs only if i � � and j � m� � and if the relation is

s� � � � sm	� � s� � � � sm

We could just rewrite this as

s� � � � sns� � �

and try the lucky case procedure as just above on this variant�
We would succeed in showing that this variant relation is derivable from

the Coxeter ones unless we are doubly unlucky� in that we do not decrease the
number of factors by using our �rst trick on the variant relation� This second
failure will occur only if

s� � � � sm	� � s� � � � sm	�

With both failures� we now rather try to prove that the �obstacle relation	

s� � � � sm	� � s� � � � sm	�

follows from the Coxeter relations� If we can show this� then we can substitute
this relation into the original s� � � � sn � � and succeed� We can rewrite the
obstacle relation as

s��s�s� � � � sm	��sm	�sm	� � � � s
 � �

Again the left�hand side has n factors� so we could try our �rst trick� We
will succeed unless �as before�

s� � � � sm	� � s�s�s� � � � sm

Combining this with the relation

s� � � � sm	� � s� � � � sm

from above� we have s� � s��
That is� if s� 
� s� then the above scheme would work� Or� by cyclically

permuting the relation s� � � � sn � � into the form

sisi	� � � � sns�s� � � � si � �

we can succeed if s� 
� s
 or if s� 
� s�� and so on� Thus� by induction again�
we succeed unless

s� � s� � s� � � � � and s� � s
 � s� � � � �

In the latter case� the original relation itself was actually

s�s�s�s�s� � � � s�s� � �

which is a Coxeter relation� �
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��� The Bruhat order
The Bruhat ordering is a partial ordering on a Coxeter group which we will

use in an essential way in the subsequent study of �parabolic	 subgroups of a
Coxeter group�

�A subtler use� in case W is a Weyl group in a linear reductive p�adic �or
Lie� group� is in description of the topological relationships between the cells
in a Bruhat decomposition ��

For purposes of this section� let T be the set of all ��generalized	� re�ections
in a Coxeter group W �with generators S�� That is� T includes not only the
�re�ections� S� but also all conjugates in W of elements of S� For v� w � W
write v � w if there is t � T so that vt � w and ��v� � ��w�� De�ne the
Bruhat order � by saying that v � w if there is a sequence

v � wo � w� � w� � � � �� wn � w

This gives a partial ordering�

Remarks� It is not clear a priori that v � w implies that ��v� � ��w�	��
since the de�nition of v � w does not require that vs � w with s � S� but
only vt � w with t � T � Still� clearly v � w does imply that the lengths of v
and w are of opposite parity�

Remarks� Super�cially� it would appear that we could de�ne another
ordering by replacing w�t by tw� in the above� However� a moment	s re�ection
indicates that allowing t to be in the collection T of generalized re�ections�
and not just in S� makes the �left	 and �right	 de�nitions equivalent� If� by
contrast� we give the analogous de�nition with not T but S� then the distinc�
tion between vt and tv becomes signi�cant� The latter ordering is sometimes
called a weak Bruhat order�

Proposition� Let v � w and take s � S� Then either vs � w or vs � ws
or both�

Proof� First consider v � w with vt � w for t � T and ��v� � ��w�� If
s � t� then vs � w � w as desired�

Then suppose that s 
� t� If ��vs� � ��v�	�� then vs� v � w� so we have
vs � w� If ��vs� � ��v� � �� then we claim that vs � ws� Let t� � sts � T �
We have �vs�t� � ws� Thus� by the de�nition of the Bruhat order� to prove
vs � ws it su�ces to prove that ��vs� � ��ws�� Recall that v � w implies
that the lengths have opposite parities� Thus� if we do not have ��vs� � ��ws��
then we can only have ��vs� � ��ws�� Take a reduced expression v � s� � � � sn�
Still

vs � s� � � � sns

is reduced� since

��vs� � ��ws� � ��w�	 � � ��v� � �	 � � ��v�
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implies that ��vs� � ��v� � �� Then

���vs�t�� � ��ws� � ��vs�

implies� via the Strong Exchange Condition� that

vst� � s� � � � �si � � � sns

The omitted factor cannot be the last s� or else we would have

s� � � � snst
� � s� � � � sn

which would imply s � t�� that is � s � sts� that is � s � t� We supposed that
this was not so� Thus� indeed�

ws � vst� � s� � � � �si � � � sns

and

w � s� � � � �si � � � sn

which contradicts ��v� � ��w��
More generally� suppose that

v � w� � � � �� wn � w

Already we have shown that either vs � w� or vs � w�s� In the former case�
then we have �by transitivity�

vs � w� � w � vs � w

In the latter case� by induction on n� we have

vs � w�s � ws� vs � ws

This proves the proposition� �

Theorem� Let w � s� � � � sn be a �xed reduced expression of w � W �
Then v � w if and only if v can be obtained as a subexpression of s� � � � sn�
that is � if and only if v can be written in the form

v � si� � � � sim

where

� � i� � i� � � � � � im � n

Proof� If v � w with vt � w� then since ��v� � ��w� the Strong Exchange
Condition can be applied to yield

v � wt � s� � � � �si � � � sn

for some index I � If� further� u � v with ut� � v� then again the Strong
Exchange Condition gives

u � vt� � s� � � � �si � � � �sj � � � sn

or

u � vt� � s� � � � �sj � � � �si � � � sn
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for some other index j� depending upon whether j � i or j � i� This trick
can be continued� showing that v � w implies that v can be written as a
subexpression of s� � � � sn�

On the other hand� consider v � si� � � � sim � Certainly ��v� � ��w�� Do
induction on the length of w� If im � n� then apply the induction hypothesis
to the necessarily reduced expression s� � � � sn�� to obtain

si� � � � sim � s� � � � sn�� � wsn � w

If im � n� then� by induction�

si� � � � sim��
� s� � � � sn��

We apply the previous proposition to obtain either

si� � � � sim � s� � � � sn��

or

si� � � � sim � s� � � � sn � w

This proves the theorem� �

Corollary� For given w � W the set of elements of S occuring in any
reduced expression for w depends only upon w� and not upon the particular
reduced expression�

Proof� Let w be a counterexample of least length� Let w � s� � � � sm and
w � t� � � � tn be two reduced expressions with all si� tj � S� Let I �resp� J�
be the set of all si	s �resp� � tj 	s�� The expression v � s� � � � sm is necessarily
reduced� and� by the theorem� v � w� Since ��v� � ��w�� by induction the
elements of S occuring in any reduced expression for v is well�de�ned� and
equal to fs�� � � � � smg� Also by the theorem� v can be written as a subexpres�
sion of t� � � � tn� so has a reduced expression using elements of J � A similar
discussion applies to v� � s� � � � sm��� Then we see that I � J � By symmetry�
we have I � J � contradiction� �

Corollary� Let v � w in W � Then there are elements w�� � � � � wn in W
so that v � w� � � � � � wn � w and ��wi� � � � ��wi	�� for all i�

Proof� Do induction on ��v�� ��w�� If this sum of lengths is �� then v � �
and w � S�

Since w 
� �� there is some s � S so that ��ws� � ��w�� Indeed� take s � sn
for some reduced expression w � s� � � � sn� The theorem implies that v is a
subexpression

v � si� � � � sim

First consider the case that v � vs� that is � that ��v� � ��vs�� Then
necessarily im � n� Then v is a subexpression of ws � w� and induction
applies�
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Second� consider the case that v � vs� �Note that v and vs always are
comparable in the Bruhat order�� Induction on the sum of the lengths gives
a chain

vs � w� � � � �wm � w

where the lengths of successive elements di�er by �� Let i be the smallest index
for which wis � wi� Since w�s � v � vs � w� and wms � ws � w � wm�
such index does exist� Then we claim that wi � wi��s� If not� we apply the
Lemma below to

wi�� � wi��s 
� wi

to get wi � wis� contrary to the de�ning property of i� Thus� indeed� wi �
wi��s�

On the other hand� for � � j � i� we have wj 
� wj��s because wj � wjs�
Here the Lemma below is applied to

wj�� � wj��s 
� wj

to obtain wj��s � wjs�
Thus� altogether� we have a chain

v � w�s � w�s � � � � � wi��s � wi � wi	� � � � � � wm � w

This gives the corollary� �
Lemma� Let v � w with ��v� � � � ��w�� If there is s � S with v � vs

�that is � ��v� � ��vs�� and vs 
� w� then both w � ws and vs � ws�

Proof� The proposition above implies that� with our hypotheses� vs � w
or vs � ws� The �rst of these cannot occur� since ��vs� � ��w� but vs 
� w�
Since v 
� w� vs � ws implies vs � ws� Then

��w� � ��v� � � � ��vs� � ��ws�

implies that w � ws� from the de�nition of the Bruhat order� �

��� Special subgroups of Coxeter groups
A special subgroup or parabolic subgroup of a Coxeter group W with

generators S is a subgroup WT generated by a subset T of S� As is typical
here� the notion of special�ness does not make sense without implied or explicit
reference to a set of generators of the group�

Since such use of the phrase �parabolic subgroup	 is in con�ict with termi�
nology in other parts of mathematics� it is wise to refer to special subgroups
of Coxeter groups� rather than parabolic ones� reserving the latter term for
other more important uses�
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Proposition� Let �W�S� be a Coxeter system�

� For all subsets T of S� �WT � T � is a Coxeter system�
� For all subsets T of S�

�T � �jWT

That is� the length function �T of WT with respect to the generators
T of WT is the same as the length function from W with respect to
generators S� applied to elements of WT �

� For any T � S� if s� � � � sn is a reduced expression for an element of WT �
then all the si are in T �

� For any T � S� a reduced expression for w � WT is necessarily already
reduced in W �

� For any T � S� the Bruhat order on WT is the restriction of the Bruhat
order on W �

� The map WT � T is an inclusion preserving bijection

fWT 
 T � Sg � fT � Sg
� For two subsets T and T � of S� we have

WT�T � � WT �WT �

� The set S is a minimal generating set for W �

Proof� Let �W �� T � be the Coxeter system with generators T and with
Coxeter data

m� 
 T � T � f�� �� �� � � � ��g
given by the restriction to T � T of the Coxeter data m for �W�S��

The �rst assertion is not entirely trivial
 while we certainly have a group
homomorphism W � �WT arising from T � S �by the �universal property	 of
W �� that is � that it has a presentation as a Coxeter group�� it is conceivable
that this homomorphism could have a proper kernel� We give two proofs�
which illustrate di�erent ideas�

The �rst proof is as follows
 suppose some word t� � � � tn in WT is not
reduced �with respect to the generators T of WT and with respect to length
in WT with respect to these generators�� Then a fortiori it is not reduced in
W with respect to the generating set S� Thus� by the Deletion Condition in
W �

t� � � � tn � t� � � � �ti � � � �tj � � � tn

for some pair of indices i� j� Thus� we see that the group WT satis�es the
Deletion Condition with respect to the generators T � Thus� by Tits	 theorem�
�WT � T � is a Coxeter system� And we have already seen that the exponents
of products t�t� are indeed what they appear to be� Thus� the Coxeter data
for �WT � T � really is obtained from the data for �W�S�� as we desired� This
proves that �WT � T � is a Coxeter system with the expected Coxeter data�

Now we give another proof� the viewpoint of which will also be used in the
proof of the other assertions above� Let V � be the real vectorspace with basis
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e�t for t � T � and V � � V the vectorspace inclusion induced by T � S� where
V has basis es for s � S as before� Let GT be the subgroup of GL�V � of
elements stabilizing VT � the subspace of V spanned by et with t � T � Then
we have a commutative diagram

W � � GL�V ��
� �
WT � GT

where the vertical arrow on the right is restriction� as is the lower horizontal
arrow� The commutativity follows by the naturality of all our constructions�
Since the top horizontal arrow is an injection �by the previous section�� the
left vertical arrow must be injective� as well�

Note also that the set�up of the previous paragraph de�nitively establishes
that we may identify V � and VT as W � � WT �spaces� etc� This is used in the
immediate sequel�

To prove that the length functions match� we do induction on �T �w� for
w � WT � If � 
� w� then there is t � T so that �T �wt� � �T �w�� Then�
by our comparison of roots and lengths� wet � � �in V � � VT � V �� Then�
again invoking the comparison� ��wt� � ��w�� Generally� ��wt� � ��w� � �
and �T �wt� � �T �w�� �� so these two inequalities prove that

�T �w� � �T �wt� � � � ��wt� � � � ��w�

invoking the induction hypothesis�
An element v � WT has some expression as a word in elements of T � so by

the Deletion Condition has a reduced �in W � expression as a word in elements
of T � Thus� by the corollary above �from Bruhat order considerations�� every
reduced �in W � expression for v uses only elements of T � since the set of
elements in a reduced expression depends only upon v�

As a variant on the previous assertion and its proof� a reduced expression
for w � WT is necessarily already reduced in W � since the length functions
agree�

Let �� be the Bruhat order on WT � As just noted� any reduced expression
for an element w � WT involves only elements of T � Then the corollary on
subexpressions shows that

w � W and w � v �� w � WT and w �� v
To prove that

WT�T � � WT �WT �

we need only prove that

WT�T � �WT �WT �

since the opposite inclusion is clear� For w �WT �WT � � the set Sv of elements
occuring in any reduced expression for w �can be	 a subset of T and �can be	 a
subset of T �� so� by the corollary on subexpressions� Sv is a subset of T � T ��
Thus� w �WT�T � � as desired�
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Now let T and T � be distinct subsets of S and show that WT and W �
T

are distinct� By the previous assertion proven� we need only consider the case
that T � � T � Let s � T but s 
� T �� Then �by the subexpression corollary� any
reduced expression for s only involves s itself� But then certainly s 
� WT � �
Thus� WT � is strictly smaller than WT � as desired� �
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�� Seven in�nite families

� Three spherical families
� Four a�ne families

Among all possible Coxeter systems �W�S�� there are seven in�nite families
of special importance� They fall into two bunches� the �rst consisting of
three families of spherical ones� the second consisting of four families of a�ne
ones� We will describe these in terms of the Coxeter data� �The terminology
spherical and a�ne will not be described nor justi�ed until later��

The �rst bunch consists of three families of spherical Coxeter systems�
denoted An� Cn� Dn� �There is also a Bn� which for our purposes coincides
with Cn�� The second bunch consists of four families of a�ne Coxeter systems�

denoted �An� �Bn� �Cn� �Dn�
In the spherical cases the index tells the cardinality of the generating set

S� while in the a�ne cases the index is one less than this cardinality�
A suspicion that there is a connection between An and �An� �and likewise

with the other letters� is correct� and this relation will be ampli�ed and ex�
ploited in the later study of the spherical building at in�nity attached to an
a�ne building�

��� Three spherical families

We will name� give the Coxeter data� and discuss the occurrence of three
in�nite families of Coxeter systems�

The single most popular Coxeter system is the family �or type� An� This
is the system �W�S� with generators S � fs�� � � � � sng where m�si� si	�� � �
and otherwise the generators commute� That is� sisi	� is of order � while all
other products sisj with ji	 jj � � are of order ��

The Coxeter group An turns out to be identi�able as the symmetric group
permuting n � � things� where si is the transposition of the ith and �i �
��th things� This is not entirely trivial to prove
 while it is clear that these
transpositions satisfy the relations de�ning the Coxeter group An� it is not
so clear that the symmetric group is not a proper quotient of An� Anyway�
perhaps surprisingly� the identi�cation of An with a symmetric group is not
of immediate use to us�

The Coxeter system An appears later in the study of the spherical building
attached to GL�n� ��� At that point we will �nd a very indirect proof that
the Coxeter group An is the permutation group on n� � things�

The Coxeter system of type Cn has generators s�� � � � � sn with data

� � m�s�� s�� � m�s�� s�� � � � � � m�sn��� sn���
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while

� � m�sn��� sn�

and sisj � sjsi for ji	 jj � ��
The Coxeter group Cn turns out to be identi�able as the signed permu�

tation group on n things� although this observation is not so easy to check�
and in any case is completely unnecessary for the more serious applications�
This group is described as follows
 we consider con�gurations of ordered lists
of �e�g�� the numbers � through n and in addition attach a sign � to each�
A signed permutation is a change in the ordering� together with a change of
signs� It is not so hard to check that the sign change subgroup� in which no
permutations of order but only sign changes occur� is normal�

The generators si with � � i � n correspond to adjacent transpositions
�i i� �� while sn corresponds to change�sign of the last item in the ordered
list� While it is clear that these items do satisfy the relations de�ning the
Coxeter group Cn� it is not so clear that the signed permutation group is not
a proper quotient of Cn�

The Coxeter systems Cn appear in the spherical building attached to sym�
plectic groups Sp�n� �sometimes denoted Sp��n��� as well as the spherical
buildings for other isometry groups with the sole exception of certain orthog�
onal groups O�n� n�� As in the case of GL�n � �� and An� study of these
buildings will yield an indirect proof that Cn really is the signed permutation
group�

The ori
amme Coxeter system Dn has generators which we write as

s�� s�� s�� � � � � sn��� sn��� sn� s
�
n

with data

� � m�s�� s�� � m�s�� s�� � � � � � m�sn��� sn���

and

� � m�sn��� sn� � m�sn��� s
�
n�

and

� � m�sn� s
�
n� �that is� they commute�

and all other pairs commute� Thus� unlike An and Cn� the element sn��

has non�trivial relations with three other generators� and concommitantly the
Coxeter diagram has a branch�

This system occurs in the spherical buildings for orthogonal groups on
even�dimensional vectorspaces over algebraically closed �elds� for example� In
this scenario� the construction which turned out nicely for all other isometry
groups does not yield a thick building� and a slightly di�erent construction is
necessary� which engenders this Coxeter system�

In terms of somehow identifying this group in more tangible terms� the best
that can be said is that it is identi�able with a subgroup of index two inside
a signed permutation group� Luckily� such interpretations are unnecessary�
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�The terminology ori
amme comes from the drawing of the corresponding
Coxeter diagram� as well as schematic drawings of the 
ags involved in the
construction of the building� and has historical origins in heraldry��

In all these cases� the ambient situation is that in which a group acts on the
building so that the �B	 in the corresponding BN�pair is a parabolic subgroup�

��� Four a
ne families

We will name� give the Coxeter data� and discuss the occurrence of four
in�nite families of Coxeter systems in which the group W is in�nite� More
speci�cally� these systems are a�ne� in a sense only clari�ed later� The spher�
ical case had been appreciated for at least twenty years before the a�ne
phenomenon was discovered�

The simplest a�ne Coxeter system� which is also the in�nite dihedral
group� is called �A�� It is the system �W�S� with S � fs� tg having two
generators s� t and st of in�nite order �that is� not having �nite order�� This
is the only case among the families we discuss here that some Coxeter datum
m�s� t� takes the value ��� And among a�ne Coxeter groups this is the only
group recognizable in more elementary terms�

The description of �An for n � � is by generators s�� � � � � sn	� where

� � m�s�� s�� � m�s�� s�� � � � � � m�sn��� sn� � m�sn� sn	�� � m�sn� s��

and all other pairs commute�
Note that the diagram is a closed polygonwith n�� sides� in light of the last

relation �and possibly unexpected� relation m�sn	�� s�� � �� This feature is
anomalous among all spherical or a�ne systems in the families we care about
most� For that matter� this also entails that no one of the generators can be
distinguished in any way� apart from the artifact of our ordering� That is� the
Coxeter data �or diagram� has a transitive symmetry group itself�

The system �An�� appears in the a�ne building for SL�n� over a p�adic
�eld� The corresponding spherical building at in�nity� as described in the last
chapter of this book� is An���

The description of �Cn for n � � is by generators s�� � � � � sn	� where

m�s�� s�� � � � � � m�sn��� sn�

and

� � m�s�� s�� � m�sn� sn	��

and all other pairs commute� Thus� this di�ers from the spherical ��nite� An	�

only in the �rst and last bits of the Coxeter data� illustrating the sensitivity
of the phenomena to the Coxeter data�

Note� also� that the group of symmetries of the data �or of the diagram� is
just of order �� the non�trivial symmetry being reversal of the indexing� This
is much smaller than the symmetry group for �An�
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The system �Cn appears in the a�ne building for Sp�n� and unitary groups
over a p�adic �eld� The corresponding spherical building at in�nity� as de�
scribed in the last chapter of this book� is Cn�

It is usual to take �B� � �C�� For n � �� the a�ne �Bn is a kind of combi�
nation of the ori
amme mechanism with the m�s� t� � � aspect of type Cn�
as follows
 it has generators which we write as s�� s

�
�� s�� s
� � � � � sn	� with

relations
m�s�� s

�
�� � � �that is� commute�

� � m�s�� s�� � m�s��� s�� � m�s�� s
� � � � � � m�sn��� sn�

and
� � m�sn� sn	��

Thus� at the low�index end there is a branching� while at the high�index end
there is a � appearing in the data�

This a�ne single ori
amme system occurs in the a�ne building for orthog�
onal groups on odd�dimensional vectorspaces over p�adic �elds� for example�

The last in�nite a�ne family is �Dn with n � �� This is the double ori�

amme system� since for example it has the branching at both ends of the
data �or diagram�� That is� we have generators

s�� s
�
�� s�� s
� � � � � sn��� sn��� sn��� sn	�� s

�
n	�

with relations

� � m�s�� s�� � m�s��� s�� � m�s�� s
� � � � � � m�sn��� sn���

� � m�sn��� sn	�� � m�sn��� s
�
n	��

This occurs in the a�ne building for certain orthogonal groups on even�
dimensional vectorspaces over p�adic �elds�

In all these cases� the �B	 in the BN�pair is a compact open subgroup�
called a Iwahori subgroup� This will be explained in detail later when a�ne
buildings and Coxeter systems are de�ned and examined carefully�
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�� Chamber Complexes
� Chamber complexes
� The uniqueness lemma
� Foldings� half�apartments� walls� re�ections
� Coxeter complexes
� Characterization by foldings and walls
� Corollaries on foldings and half�apartments

Here our rewriting of group theory as geometry begins in earnest� We make
no genuine direct use of geometry� but rather develop a vocabulary which is
meant to evoke geometric intuition� Intuitions suggested must be justi�ed�
and this is done below and in the sequel�

Tits	 theorem �below� gives a peculiar but important method of construct�
ing Coxeter groups� or of proving that a given group is a Coxeter group �with
respect to a speci�ed set of generators�� In the context of the building the�
ory proper other situations will miraculously deliver the hypotheses of Tits	
theorem for partments in a thick building�

��� Chamber complexes

This section does no more than recall �or set up� standard terminology
about simplicial complexes and posets �partially ordered sets�� As noted
above� we do not presume any prior knowledge of these things�

In part� in order to prove rather than suggest� we talk about simplicial
complexes as if they were merely some special sort of partially ordered set
�poset�� Of course one is meant to imagine that a zero�simplex is a point� a
one�simplex is a line� a two�simplex is a triangle� a three simplex is a solid
tetrahedron� and so on� and then that these things are stuck together along
their faces in a reasonable sort of way to make up a simplicial complex�

Let V be a set� and X a set of �nite subsets of V � with the property that�
if x � X and if y � x then y � X � We also posit that every singleton subset of
V lies in X � Then we say that X is a �combinatorial� simplicial complex
with vertices V � and the elements x � X are simplices in X � The set of
vertices of a simplex x in X is nothing other than the set x itself�

Remarks� We only consider simplices of �nite dimension� These are all
we will need in subsequent applications� and there are some pointless compli�
cations without this assumption�

If y � x � X then y is a face of x� In the particular case that card�x	y� � �
then say that y is a facet of x� More generally� if y is a face of x� then the
codimension of y in x is card�x 	 y�� The dimension of y is card�y� 	 ��
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Thus� the facets of x are the codimension one faces of x� The relations y � x
holding in a simplicial complex are the face relations�

For a simplex x � X � write  x for the simplicial complex consisting of the
union of x and all faces of x� We may refer to this as the closure of x�

Two simplices x� y in a simplicial complex X are adjacent if they have a
common facet�

A simplex x in a simplicial complex X is maximal if there is no simplex
z � X of which x is a proper face� In the rest of this book� we will consider
only simplicial complexes in which every simplex is contained in a maximal
one� This property follows from an assumption of �nite�dimensionality� which
we explicitly or implicitly make throughout�

A simplicial complex X is a chamber complex if every simplex is con�
tained in a maximal simplex� and if� for all maximal simplices x� y in X � there
is a sequence x�� x�� � � � � xn of maximal simplices so that x� � x� xn � y� and
xi is adjacent to xi	� for all indices i� If these conditions hold� then maxi�
mal simplices are called chambers� and the sequence x�� � � � � xn is a gallery
connecting x to y�

A simplicial subcomplex of a simplicial complex X is a subset Y of X
which is a simplicial complex �in its own right	� that is� with the face relations
from X � A chamber subcomplex is a simplicial subcomplex which is a
chamber complex� and so that the chambers in the subcomplex were maximal
simplices in the original complex�

The distance d�x� y� from one chamber x to another chamber y is the
smallest integer n so that there is a gallery x � x�� � � � � xn � y connecting x
to y� A gallery x�� � � � � xn is said to stutter if some xi � xi	��

A chamber complex is thin if each facet is a facet of exactly two chambers�
In other words� given a chamber C and a facet F �codimension one face� of
C� there exactly one other chamber C � of which F is also a facet� A chamber
complex is thick if each facet is a facet of at least three chambers�

One fundamental �example	 of simplicial complex is that of a �ag complex
arising from an incidence geometry� the latter de�ned as follows� Let V be a
set with a symmetric and re�exive binary relation �� an incidence relation�
Then de�ne the �ag complex X by taking the vertex set to be V itself� and
the simplices to be subsets x � V so that h � h� for all h� h� � x� That is�
the simplices are sets of mutually incident elements of V � It is easy to check
that this procedure really does yield a simplicial complex� Some additional
conditions would be necessary to assure that the �ag complex arising from an
incidence geometry is a chamber complex�

A simplicial complex �with its face relations� gives rise to a partially ordered
set �poset� in a canonical manner
 the elements of the poset are the simplices�
and x � y means that x is a face of y� We will often identify a simplicial
complex and its associated poset�
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A morphism or map of simplicial complexes f 
 X � Y is a set map
on the set of vertices so that if x is a simplex in X then f�x� �image of the
set x of vertices in X� is a simplex in Y � A retraction f 
 X � Y of X to a
subcomplex Y of X is a map of simplicial complexes which� when restricted
to Y � is the identity map� If f is a simplicial complex map of X to itself� and
if x is a simplex in X � we say that f �xes x pointwise if f�v� � v for every
vertex v of x�

As an example of a morphism of simplicial complexes� if we start with a
simplicial complex X � take the canonical poset P associated to X � and then
construct the canonical simplicial complex X � associated to P � we will have a
�natural� isomorphism X � X � of simplicial complexes� This is pretty clear�

On the other hand� it is seldom the case that a poset is identi�able as that
arising from a simplicial complex� We need further hypotheses� To state the
hypotheses succinctly� and for other purposes� we need two de�nitions� Say
that a poset is simplex�like if it is isomorphic to the poset of all non�empty
subsets of some non�empty �nite set� with inclusion as the order relation� Say
that z � P is a lower bound for x� y � P if z � x and z � y� Say that z � P
is a greatest lower bound or in�mum if z is a lower bound for x� y and
z � z� for every lower bound for x� y� Note that such in�mum is unavoidably
unique if it exists�

Then we have a criterion for a poset to be a simplicial complex


Proposition� A poset P is obtained as the poset attached to a simplicial
complex if and only if two conditions hold
 �rst� that for all x � P the
sub�poset

P�x � fy � P 
 y � xg
is simplex�like! second� that all pairs x� y of elements of P with some lower
bound have an in�mum�

Proof� In one direction this is obvious
 thus� we only show that a poset
meeting these conditions can be identi�ed with a simplicial complex� Keep
in mind that we are supposing throughout that all simplices are �nite sets of
vertices� This is implicit in the de�nition of simplex�like� for example�

First we identify the vertex set� Since all sets P�x are simplex�like� we

may choose a poset isomorphism fx 
 �Sx � P�x where �Sx is the poset of
all non�empty subsets of a �nite non�empty set Sx depending upon x� Thus�
P�x has minimal elements x�
 the images of singleton subsets of Sx by fx� �If
there were any doubt� the minimality property is that if y � x� then y � x���

Then x is the supremum� at least in P�x� for the set of all the minimal
elements less than or equal it� in the sense that if z � x and z � x� for all
these minimal x� less than or equal x� then z � x� But it is unclear what
happens in the larger poset P �

Let � � P be another element so that � � x� for every minimal x� � x�
Since there are elements of P both � x and � �� the two elements x� � have
an in�mum �� Then � � x� for every one of these minimal x�� Since � � x�
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necessarily � � P�x� so actually � � x since the structure of P�x is so simple�
That is� x � �� In other words� x is the supremum of the set of all minimal
elements less than x�

Note that we did use the existence of in�ma to obtain the uniqueness of
the upper bound for the set of minimal elements x� � x�

For each minimal element x in P we take a vertex vx� and let the vertex
set be

V � fvx 
 x minimal in P g
To each x � P we associate a set Vx of vertices� consisting of vertices vy for
all minimal y � x� By the previous discussion� this map is an injection �and
the order in P is converted to subset inclusion in the set of subsets of V ��

If � 
� W � Vx for some x � P � then since P�x is necessarily isomorphic
to the set of non�empty subsets of the �nite non�empty set Vx� there must be
y � x whose vertex set Vy is W � �

A chamber complex map is a simplicial complex map from one cham�
ber complex to another which sends chambers to chambers� and which pre�
serves codimensions of faces inside chambers� �If all simplices were �nite�
dimensional� then we could equivalently require that the map preserves di�
mensions of simplices��

A labeling or typing 
 of a poset P is a poset map 
 from P to a simplex�
like poset L �the labels or types�� so that x � y in P implies 
x � 
y in
L�

We will say that a simplicial complex is labelable or typeable if the
associated poset has a labeling� Note that the condition x � y � 
x � 
y
implies that the label map viewed as a simplicial complex map preserves
dimensions� The image under a such label map is the label or type of the
simplex �or of the poset element��

Remarks� Of course� the notion of labeling or typing a simplicial com�
plex is a secondary thing� but is of technical importance� Eventually� when
discussing those chamber complexes called buildings� we will show that there
is a canonical labeling on thick buildings� Thus� at that point� the notion of
labeling can be suppressed further�

If a chamber complex X is labeled by a map 
 
 X � L� we can use a
more re�ned version of adjacency of chambers
 for � � L� say that adjacent
chambers C�� C� are ��adjacent if 
�C� � C�� � ��

One natural way in which a chamber complex X can be typed is if there
is a retraction 
 
 X �  C of X to  C for some chamber C in X 
 the poset of
simplices in the simplicial complex  C is simplex�like� This mechanism comes
into play quite often in the sequel�

Remarks� Let S be a set� Let A be the poset of subsets of S with
inclusion� and let B be the poset of subsets of S with inclusion reversed�
Then A � B as posets� by the map x� S 	 x�
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Remarks� An example of a chamber system is given by taking the
chambers in a chamber complex� with their adjacency relations� �forgetting	
the rest of the simplicial complex structure� This notion has some utility since�
after all� the cartesian product of two simplicial complexes is not a simplicial
complex �but� rather� is called polysimplicial�� Addressing the issues in this
light is not much more trouble� but is a little more trouble than we need to
take�

��� The uniqueness lemma
The proof of the following result is what is sometimes called the standard

uniqueness argument� This little result will be used over and over again� not
only throughout our discussion of chamber complexes� but also in discussion
of basic facts about buildings� and again later in our �ner discussion of the
structure of a�ne buildings and BN�pairs�

Keep in mind that a facet is a codimension�one face� Note that the hy�
pothesis on the chamber complex Y in the following is somewhat weaker than
an assumption that Y is thin� although it certainly includes that case� This
generality is not frivolous�

Lemma� LetX�Y be chamber complexes� and suppose that every facet in
Y is a facet of at most two chambers� Fix a chamber C in X � Let f 
 X � Y �
g 
 X � Y be chamber complex maps which agree pointwise on C� and both of
which send non�stuttering galleries �starting at C� to non�stuttering galleries�
Then f � g�

Proof� Let � be a non�stuttering gallery C � C�� C�� � � � � Cn � D� By
hypothesis� f� and g� do not stutter� That is� fCi 
� fCi	� for all i� and
similarly for g� Suppose� inductively� that f agrees with g pointwise on Ci�
Certainly fCi and fCi	� are adjacent along

F � fCi � fCi	� � gCi � gCi	�

By the non�stuttering assumption� fCi	� 
� fCi and gCi	� 
� gCi� Thus� by
the hypothesis on Y � it must be that fCi	� � gCi	�� since there is no third
chamber with facet F �

Since there is a gallery from C to any other chamber� this proves that f � g
pointwise on all of X � �
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��� Foldings� half�apartments� walls� re�ections
The terminology of this section is not quite as standard as the more basic

terminology regarding simplicial complexes� but is necessary for the ensuing
discussion�

We include several elementary but not entirely trivial lemmas couched in
this language� Another version of re
ection will be discussed at greater length
later in preparation for the �ner theory of a�ne buildings�

The last proposition especially will be used over and over again in the
sequel�

The theorem of J� Tits proven a little later implies that the results of this
section apply to the Coxeter complexes constructed from Coxeter systems
�W�S��

The attitude here is that we are trying to play upon our geometric intuition
for thin chamber complexes� imagining them to be much like models of spheres
or planes put together nicely from triangles�

A folding of a thin chamber complex X is a chamber complex endomor�
phism f so that f is a retraction �to its image�� and so that f is two�to�one
on chambers�

The opposite folding g to f �of X�� if it exists� is a folding of X so
that� whenever C�C � are distinct chambers so that f�C� � C � f�C �� then
g�C� � C � � g�C ��� If there is an opposite folding to f � then f is called
reversible�

Since there is little reason to do otherwise� here and in the sequel we only
concern ourselves with reversible foldings� Some of these little lemmas do
not use such a hypothesis� and some are provable without it� but the whole
program is simpler if reversibility is assumed at the outset� Use of reversibility
will be noted�

Let f be a folding of a thin chamber complex X � De�ne the associated
half�apartment to be the image

� � f�X�

of a folding� Since f is a chamber complex map� � is a sub�chamber�complex
of X � For two chambers C�D in X � let d�C�D� be the least integer n so that
there is a gallery C � Co� � � � � Cn � D connecting C and D� We will use this
notation for the following lemmas�

Lemma� There exist adjacent chambers C�D so that fC � C and
fD 
� D� For any such C�D� we have fD � C� Therefore� if � is a gallery
from A to B with fA � A and fB 
� B� then f� must stutter�

Proof� There are chambers A�B so that fA � A and fB 
� B� by
de�nition of a folding� There is a gallery A � Co� � � � � Cn � B connecting the
two� so there is a least index i so that fCi � Ci and fCi	� 
� Ci	�� Take
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C � Ci and D � Ci	�� Let F be the common facet� Since F � C� fF � F �
Then fD has fF � F as facet in common with fC � C� By the thin�ness of
X � this means that fD is either D or C� since those are the only two chambers
with facet F � Since fD 
� D� we have fD � C� �

Proposition� The half�apartment � is convex in the sense that� given
C�D both in �� every minimal gallery � � Co� � � � � Cn connecting C�D lies
entirely inside ��

Proof� Let � � Co� � � � � Cn be a minimal gallery connecting C�D� Suppose
that some Ci does not lie in �� Then there is i so that Ci � � but Ci	� 
� ��
By the previous lemma� fCi	�� Then f� is a stuttering gallery connecting
C � fC and D � fD� so can be shortened by eliminating stuttering to give
a shorter gallery than �� contradiction� �

Proposition� Let f be a reversible folding� Let C�C � be adjacent cham�
bers so that C � � and C � 
� �� Then � is the set of chambers D so that
d�C�D� � d�C �� D��

Proof� Take D � �� Let � be a minimal gallery from D to C �� Since
� crosses from � to its complement� f� stutters� by the above� And f� is a
gallery from D � fD to C � fC �� so d�C�D� � d�C �� D�� The other half of
the assertion follows by symmetry� using the opposite folding� �

Lemma� Let f be reversible� Let C�D be adjacent chambers so that
fC � C � fD� Let g be another reversible folding of X with gC � C � gD�
Then g � f �

Proof� The previous characterization of the half�spaces fX� gX shows that
fX � gX � Let � � Co� � � � � Cn be a gallery connecting C to D for D 
� ��
We do induction on n to show that f and g agree pointwise on D� If n � �
then D � C � and the agreement is our hypothesis� Take n � � and suppose
that f and g agree on Cn��� and let x be the vertex of D � Cn not shared
with Cn��� Put F � g�Cn�� � D� � f�Cn�� � D�� Then fCn�� and fD
have common facet F ! and� gCn�� � fCn�� and gD also have common facet
F � By induction� fCn�� � gCn��� By the thin�ness� there are exactly two
chambers with facet F � Since f and g are two�to�one on chambers� they must
both be injective on chambers not in �� so fD cannot be fCn��! likewise� gD
cannot be fCn��� Therefore� fD � gD� �

Lemma� Let X be a thin chamber complex� Fix a chamber Co in X �
Let f 
 X � X be a chamber complex map so that f �xes Co pointwise�
Let � be a non�stuttering gallery Co� C�� � � � � Cn starting at C� Then either
f� � fCo� � � � � fCn stutters� or else f �xes every chamber Ci pointwise�

Proof� Suppose that f� does not stutter� That is� fCi 
� fCi	� for all i�
Suppose� inductively� that f �xes Ci pointwise� Then Ci � fCi and fCi	�
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are adjacent along

Ci � fCi	� � f�Ci � Ci	�� � Ci � Ci	�

since the latter intersection is a subset of Ci� which is �xed pointwise by f �
Thus� by the thin�ness of X � and by the assumption that fCi	� 
� Ci� it must
be that fCi	� is the only chamber other than Ci with facet Ci�Ci	�� namely
Ci	�� �
Corollary� There is at most one opposite folding to f �

Proof� If there were an opposite folding f � to f � then the set of chambers
in the half�apartment f �X would have to be the complement of the set of
chambers in �� And� for a pair of adjacent chambers C 
� C � so that fC �
C � fC � �shown above to exist�� we would have f �C � C � � f �C �� by
de�nition� Then the previous lemma gives the uniqueness� �

Supposing that f is reversible� with opposite f �� we de�ne the associated
re�ection s � sf � sf � � as follows� If v is a vertex of X so that fv � v� then
de�ne sv � f �v! if v is a vertex of X so that f �v � v� then de�ne sv � fv�
This de�nes s as a map on vertices�

Proposition� The re�ection s associated to a reversible folding f is
an automorphism of X of order �� For adjacent chambers C 
� C � so that
fC � C � fC �� this s is the unique non�trivial automorphism �xing the
common facet F � C � C ��

Proof� We need to show that s is a simplicial complex map� that is� that
sx � X for every x � X � Every simplex in X lies in either � � fX or in
its complement f �X � Since f and f � agree on fX � f �X � and since f� f � are
chamber complex maps� so is s� Since f � f � is the identity on fX and f � � f
is the identity on f �X � we have s� � ��

If � were another automorphism of X �xing the common facet F pointwise
then� by the thin�ness of X � �C is either C or C �� In the former case� given
a non�stuttering gallery � starting at C� �� certainly does not stutter� since
� is injective� Thus� by the uniqueness lemma �����

� is the identity on all chambers in �� Since this holds for all galleries�
� is the identity automorphism of X � If �C � C �� then the same argument
applied to s � � implies that s � � is the identity� �

A wall in X associated to a re�ection s �associated to a reversible folding�
is the simplicial subcomplex in X consisting of simplices �xed pointwise by
s� By its de�nition� a re�ection �xes no chamber in X � The above discussion
shows that the maximal simplices in a wall are the common facets C � C �

where C�C � are adjacent chambers interchanged by s�
In this context� a facet lying in a wall is sometimes called a panel in the

wall�
If C�D are any two chambers� and if there is a reversible folding f so that

f�C� � C but f�D� 
� D� then say that C and D are separated by a wall
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�the wall attached to f and its opposite folding f ��� If C�D are adjacent� then
the common facet C � D of C�D is a panel �in the wall separating the two
chambers�� The reversibility of the foldings is what makes this a symmetrical
relation�

More generally� say that chambers C�D are on opposite sides of or are
separated by a wall �associated to a folding f and its opposite f �� if fC � C
but fD 
� D� or if fD � D but fC 
� C� The reversibility is what makes this
a symmetric relationship�

Further� the two sides of a wall �associated to a folding f and its opposite
f �� are the sets of simplices x so that fx � x and f �x� respectively�

The walls crossed by a gallery � � Co� C�� � � � � Cn are the walls �i
containing the facets Ci�Ci	�� respectively� under the assumption that these
facets really are panels in walls�

The following explicitly corroborates the intuition suggested by the termi�
nology�

Proposition� Let C�D be chambers in a thin chamber complex� If � is a
wall so that C�D are on opposite sides of �� then every minimal gallery from
C to D crosses � once and only once� If C�D are on the same side of �� then
no minimal gallery from C to D crosses ��

Proof� The convexity result proven above shows that someminimal gallery
stays on the same side of �� but we are asking for a little more�

Suppose that C�D are on the same side of a wall � associated to a �re�
versible� folding f � We may as well suppose �by the reversibility� that fC � C
and fD � D� If a minimal gallery

� � �C � Co� � � � � Cm � D�

from C to D did cross �� then for some index i it must be that Ci and Ci	� lie
on opposite sides of �� Then f� stutters� but is still a gallery from C � fC to
D � fD� But then we can make a shorter gallery by eliminating the stutter�
contradiction�

Suppose that C�D are on opposite sides of �� with associated folding f
with fC � C and fD 
� D� Let f � be the opposite folding� Then it certainly
cannot be that fCi � Ci for all chambers Ci in a gallery from C to D� not
can it be that f �Ci � Ci for all Ci� since fD 
� D and f �C 
� C� Thus� any
gallery from C to D must cross the wall � separating C from D�

Suppose � crossed � twice� Let i be the smallest index so that fCi � Ci �
fCi	�� By the assumption of double crossing� there must also be j � i so
that f �Cj � Cj � f �Cj	�� Take the least such j� Then the gallery

�Co� � � � � Ci��� Ci� fCi	�� fCi	�� � � � � fCj � Cj	�� � � � � Cn�

still runs from C to D� but now stutters twice� so can be shortened� This
shows that a minimal gallery will not cross a wall more than once� �
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��� Coxeter complexes

Let �W�S� be a Coxeter system with S �nite� In this section we will
describe a chamber complex� the Coxeter complex� associated to such a
pair� At the outset it is not clear that the complex is a simplicial complex
at all� much less a chamber complex� That this is so� and other observations�
require a little e�ort� But this e�ort is repaid now and later by our being able
to call upon geometric intuition and heuristics� �nally justi�ed by the results
of this section�

Incidentally� we also prove that �up to reasonable equivalence�� there is a
canonical labeling of a Coxeter complex� As remarked earlier� this fact allows
a certain suppression of this auxiliary notion� if desired�

Let P be the poset of all subsets of W � with inclusion reversed� The
Coxeter poset associated to �W�S� is the sub�poset of P consisting of sets
of the form whT i for a proper �possibly empty� subset T of S�

The associated Coxeter complex " � "�W�S� is de�ned to be the sim�
plicial complex associated to the Coxeter poset of �W�S�� That is� "�W�S�
has simplices which are cosets in W of the form whT i for a proper �possi�
bly empty� subset T of S� with face relations opposite of subset inclusion in
W � Of course� when attempting to de�ne a simplicial complex as a poset�
there are conditions to be veri�ed to be sure that we really have a simplicial
complex� This is done below�

Thus� the maximal simplices are of the form wh�i � fwg for w � W � and
the next�to�maximal simplices are of the form whsi � fw�wsg for s � S and
w � W �

Since "�W�S� is constructed as a collection of cosets whS�i� there is a
natural action of W on "�W�S�� that is� by left multiplication�

We say that a chamber complex is uniquely labelable if� given labelings

� 
 X � I� and 
� 
 X � I� where I�� I� are simplices� there is a set
isomorphism f 
 I� � I� so that 
� � f � 
�� where we also write f for the
induced map on subsets of I��

Theorem�

� A Coxeter complex "�W�S� is a uniquely labelable thin chamber com�
plex�

� The group W acts by type�preserving automorphisms�
� The group W is transitive on the collection of simplices of a given type�
� The isotropy group in W of the simplex whS�i is whS�iw���

Proof� Keep in mind that we are not yet justi�ed in calling things �sim�
plices	� because we have not yet proven that we have a simplicial complex
 so
far� we just have a poset�

It is clear that the maximal simplices are of the form wh�i � fwg as noted
just above� Since we have seen in discussion of special subgroups ���
�� that
the map hT i � T is a bijection� the faces of wh�i are all cosets of the form
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whT i and are in bijection with proper subsets T of S
 if vhT i � wh�i� then
v��w � hT i� Thus� we can rewrite the coset vhT i as

vhT i � v�v��w�hT i � whT i
as desired�

More generally� given w�hT �i � whT i� it follows that w�hT �i � wh�i� so by
the previous paragraph we can rewrite

w�hT �i � whT �i
Thus� whT �i � whT i� so hT �i � hT i� and then T � � T � That is� the faces of
whT i are exactly the cosets whT �i with T � � T �

Thus� the poset P of cosets whT i inW � with inclusion reversed� is labelable�
in the sense of the previous section� Further� given a coset x � whT i� we have
seen that the collection

P�x � fy � A 
 y � xg
is poset�isomorphic to

fS� � S 
 S� 
� S� S� � Tg
That is� this sub�poset is simplex�like� as desired�

Further� given w�hT�i� w�hT�i with some lower bound whT i in the Coxeter
poset� we can �nd an in�mum� as follows� Keep in mind that the ordering in
this poset is inclusion reversed� We can left�multiply everything by w��� to
assume that the lower bound is of the form hT i�

Basic facts ���
� about Coxeter groups and their special subgroups imply
that wihTii � hT i if and only if Ti � T and wi � hT i� Thus� we assume these
containments for i � �� �� and T is not allowed to be the whole set S�

Let T � be the smallest subset of T so that Ti � T � for i � �� � and so that
w��

� w� � hT �i� The existence of such a smallest subset of the �nite set T is
clear� Then take w� � w�� It is easy to check that this w�hT �i contains both
sets wihTii� so is a lower bound�

On the other hand� from the results mentioned above no smaller version
of T � will do� since wi � w�hT �i for i � �� � implies that w��

� w� � hT �i�
And with this choice of T � the condition wihTii � w�hT �i holds if and only if
�w����wi � hT �i� This determines w� uniquely up to right multiplication by
hT �i�

Thus� any other lower bound wohToi must satisfy T � � To� Thus�

w�hT �i � w�hT �i � w�hToi � wo�w
��
o w��hToi �

� wohT �ihToi � wohTpi
which establishes that w�hT �i � wohToi�

Thus� the existence of a lower bound implies that there is a greatest� �As
usual� the uniqueness follows from abstract properties of posets�� Thus� by our
criterion ����� for a poset to be a simplicial complex� the simplicial complex
A associated to P is such� Uniqueness is proven below�



�� Garrett� ��� Chamber Complexes�

To prove that A is a �connected� chamber complex� we must connect
any two maximal simplices by a gallery� It su�ces to connect an arbitrary
maximal simplex C � wh�i � fwg to a given one� say Co � f�g� Write
w � s� � � � sn with si � S� We claim that

Co� s�Co� �s�s��Co� �s�s�s��Co� � � � � �s� � � � sn�Co

is such a gallery� Note the manner in which the si appear� Since Co and
siCo are adjacent� their images �s� � � � si���Co and �s� � � � sn���siCo under left
multiplication by s� � � � si�� are adjacent� Thus� the consecutive chambers in
the alleged gallery are adjacent� so it is a gallery� Thus� A is a chamber
complex�

A next�to�maximal simplex is of the form � � whsi� This is a facet of
maximal simplices w�h�i � fw�g exactly for w� � w and w� � ws� That is�
each next�to�maximal simplex is a facet of exactly two chambers� so A is thin�

Again� our chosen labeling is

whT i � T

Then it is clear that the action of W preserves types� and is transitive on the
collection of simplices of a given type�

To compute isotropy groups� by the transitivity we may as well consider
simplices of the form hS�i� If whS�i � hS�i then w � hS�i� and the converse is
certainly clear�

Now let us show that the labeling is essentially unique� To this end� we
may as well show that any labeling 
 by subsets of S di�ers from the labeling

o 
 whT i � T by an automorphism of S� Let � be the permutation of S so
that � �
 � 
o on  C� where we identify � with the associated map on subsets
of S� We claim that � � 
 � 
o on all simplices in A�

To see this� it su�ces to suppose that � is trivial� We do an induction on
the length ��w� and consider the simplex x � whT i� It su�ces to consider the
case that x is zero�dimensional� Let w � s� � � � sn be a reduced expression for
w� and let Ci � si � � � snh�i� Then

C � Co� C�� � � � � Cn

is a gallery from C to a chamber Cn having x as face� In e�ect� the induction
hypothesis is that 
 and 
o agree on all vertices of Co� C�� � � � � Cn��� We may
as well consider only the case that x is the unique vertex of Cn not shared
with Cn��� since otherwise we are already done� by induction�

Let F � Cn���Cn� Then 
�x� must be a singleton set disjoint from 
�F ��
and 
o�x� must be a singleton set disjoint from 
o�F �� Since� by induction�

o�F � � 
�F �� it must be that 
o�x� � 
�x�� This completes the induction
step� proving that the labeling is essentially unique�

This establishes all the assertions above� �
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��� Characterization by foldings and walls
The following theorem of Tits gives a fundamental method to �make	 Cox�

eter groups� While it would be di�cult to check the hypotheses of the follow�
ing theorem without other information� it will be shown later that apartments
in thick buildings automatically satisfy these hypotheses�

The proposition which occurs within the proof is a sharpened variant of
the last proposition of the previous section� and is of technical importance in
later more re�ned considerations�

Theorem� A thin chamber complex is a Coxeter complex if and only if
any two adjacent chambers are separated by a wall�

Remarks� Speci�cally� we choose a fundamental chamber C in the cham�
ber complex X � and the �Coxeter� group W is de�ned to be the group of sim�
plicial complex automorphisms of X generated by the set S of all re�ections
through the facets of C� Then �W�S� is a Coxeter system� and the associated
Coxeter complex is isomorphic �as chamber complex� to X �

Remarks� The most interesting part of this result is the fact that Coxeter
groups can be obtained by constructing thin chamber complexes with some
additional properties� At the same time� the assertion that Coxeter complexes
have many foldings is a critical technical point which will be used very often
later�

Proof� We will show that the pair �W�S� satis�es the Deletion Condition
����� � so is a Coxeter system� At the end we will show that� conversely� a
Coxeter complex has all the foldings asserted by the theorem�

First� we show that the group W of automorphisms generated by S is
transitive on chambers in X � We make the stronger claim that� for all
s�� � � � � sn � S� the gallery

C� s�C� s�s�C� � � � � s�s� � � � snC

is non�stuttering� and that every non�stuttering gallery starting at C is of this
form� Indeed� since sC is adjacent to C along F � C�sC and w is a chamber
map� wsC is adjacent to wC along sF � This proves that this is a gallery� It
is non�stuttering since the re�ections s � S �x no chambers�

On the other hand� for D adjacent to wC along the facet w�C � sC��
w��D is adjacent to C along C � sC� so by the thin�ness of X it must be
that w��D � sC� Thus� D � wsC� By induction on length of the gallery
connecting C to D� W is transitive on chambers in X � From an expression
w � s�� � � � � sn� we get a gallery

C� s�C� s�s�C� � � � � s�s� � � � snC

from C to wC� Thus� we prove the claim above� and certainly obtain the
transitivity of W on the chambers of X �
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Next� we construct a retraction � 
 X �  C � thereby also proving that X is
labelable� where again  C is the complex consisting of C and all its faces� Let
C�� � � � � Cn be the chambers adjacent to C but not equal to C� and let fi be
foldings so that fi�C� � C � fi�Ci�� Let

� � fn � fn�� � � � � � f�

We claim that� given a chamberD 
� C� the distance �minimum gallery length�
of �D to C is strictly less than that of D to C� Granting this for the moment�
it follows that� for given D� for all su�ciently large n we have �n�D� � C�
And certainly � is the identity on C� Then de�ne

� � lim
n��

�n

Then for any �nite set Y of vertices in X there is a �nite m so that for all
n � m we have

�jY � �mjY � �njY
Thus� this � will be the desired retraction�

To prove the claim about the e�ect of � on minimal gallery lengths� it
su�ces to show that� given a minimal gallery � � C�C �� C ��� � � � � D from C to
D� �� stutters� since then there is a shorter gallery obtained by eliminating
the stutter� If f�� stutters� we are done! otherwise� the uniqueness lemma
implies that f� �xes all chambers in � pointwise� The same applies to f�� etc�
Thus� if no fi� stutters� then all the fi �x � pointwise� Then fiC

� � C � for
all i� But some one of the fi is the folding that sends C � to C� contradiction�
Thus� � must cause any gallery from C to D 
� C to stutter� as claimed�

Thus� the retraction � 
 X �  C gives a labeling of X by subsets of C�
Further� map the poset of subsets of C to the poset of subsets of S by sending
the facet F to the re�ection s through it� Extend this by

Fi� � � � � � Fim � fsi� � � � � � simg
where sij is the re�ection through the facet Fij of C� This is an inclusion�
reversing isomorphism� Let


 
 X � subsets of S

be the composition of � with this map� Then 
 is a labeling of simplices in X
by subsets of S� but now x � y implies 
�x� � 
�y��

Next� we claim that all �reversible� foldings and re�ections in X are type�
preserving �referring to 
�� From this it would follow that all elements of W
are type�preserving� and that wC and wsC are s�adjacent� Since re�ections
are pieced together from foldings �that is� from a reversible folding and its
opposite� ����� � it su�ces to prove just that foldings preserve type�

Every folding f � by de�nition� �xes pointwise some chamber Co� Let D
be the closest chamber to Co so that f might fail to preserve the type of
some simplex inside D� Let Co� � � � � Cn � D be a minimal gallery connecting
Co to D� By hypothesis� f preserves the type of simplices inside Cn��� In
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particular� f preserves the type of all the vertices in the common facet F �
Cn�� �D� Let x be the vertex of D not contained in F � Since 
 and 
 � f are
dimension�preserving simplicial complex maps to the �simplex	 �simplex�like
poset� of subsets of S with inclusion reversed� neither 
x nor 
f�x� can lie in

f�F � � 
F � There is just one vertex not in 
f�F � � 
F � so 
f�x� � 
x�
That is� f�x� and x have the same type� By induction� f preserves types�
Thus� W preserves types� as claimed�

Next� we show that W acts simply transitively on chambers� That is�
if w�w� � W and wCo � w�Co for some chamber Co� then w � w�� To
prove this� it su�ces �as usual� to prove that if wC � C then w � � � W �
Indeed� if wc � C� then since w preserves types it must be that w �xes
C pointwise� Since w� being an automorphism� can cause no non�stuttering
gallery to stutter� it must be that w �xes pointwise any gallery starting at C�
by the uniqueness lemma ����� � Thus� w �xes X pointwise�

Thus� we see that the map

w � wC

is a bijection from W to the chambers of X �
The last proposition of the last section already demonstrated that in a

minimal gallery � � Co� � � � � Cn from Co to Cn 
� Co the walls crossed by �
are distinct� and are exactly the walls separating Co from Cn� The hypothesis
that every facet is a panel in a wall assure that their number is d�Co� Cn� � n�

To see that the Deletion Condition ����� holds� a sharper version of the
latter observation is necessary�

Since X is typed� we can use the more re�ned version of adjacency available
in a typed simplicial complex� s�adjacency� Recall that for s � S two chambers
C�� C� are s�adjacent if 
�C� � C�� � s� For example� C and sC are s�
adjacent�

We de�ne the type of a non�stuttering gallery � � Co� � � � � Cn to be the
sequence �s�� � � � � sn� where Ci�� is si�adjacent to Ci� Note that knowledge of
the starting chamber of such a gallery and of its type determines it completely�

Proposition� Let � � Co � � � � Cn be a non�stuttering gallery of type
�s�� � � � � sn�� If � is not minimal �as gallery from Co to Cn�� then there is a
gallery �� from Co to Cn of type �s�� � � � � �si� � � � � �sj � � � � � sn��

Proof� The previous observation implies that the number of walls separat�
ing Co from Cn is strictly less than n� Thus� at least one of the walls crossed
by � does not separate the two chambers Co and Cn� in the sense that they
are both in the same half�apartment � � fX of some folding f � But then
this wall must be crossed another time� to return to � where Cn lies� Thus�
repeating a part of the proof of the proposition of the last section� there are
indices i � j so that Ci�� � � and Cj � � but Ck 
� � for all indices k with
i � k � j� Then fCi � Ci�� and fCj�� � Cj � Thus� the gallery f� stutters�
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since fCi�� � Ci�� and fCj � Cj � Deleting the repeated chambers gives a
strictly shorter gallery from Co to Cn� as desired� �

Finally we can prove that �W�S� has the Deletion Condition� Let w �
s� � � � sn be a non�reduced expression for w� Then

� � C� s�C� s�s�C� s�s�s�C� � � � � s� � � � snC

is a gallery � of type �s�� � � � � sn� from C to wC� Since w has a shorter
expression in terms of the generators S� there are indices i� j so that there is
a shorter gallery �� from Co to Cn of type

�s�� � � � � �si� � � � � �sj � � � � � sn�

That is� we have concluded that

s� � � � snC � wC � s� � � � �si � � � �sj � � � snC

Since the map from W to chambers of X by w� � w�C is a bijection� we
conclude that

s� � � � sn � s� � � � �si � � � �sj � � � sn

That is� the pair �W�S� satis�es the Deletion Condition� so is a Coxeter
system� �

What remains is to show that the chamber complex X is isomorphic to the
Coxeter complex "�W�S� attached to �W�S��

It is clear that  C is a �fundamental domain	 for W on X � that is� any
vertex �or simplex� in X can be mapped to a vertex �or simplex� inside  C by
an element of W �

Last� we claim that� for a subset S� of S� the stabilizer in W of the face of
C of type S� is the �parabolic subgroup	 hS�i of W � Let x be a face of type
S�� Certainly all re�ections in the facets of type s � S� stabilize x� Thus� hS�i
does stabilize x�

On the other hand� we will use induction to prove that� if wx � x� then
w � hS�i� For w 
� �� there is s � S so that ��w� � ��ws�� Since by now
we have a bijection between reduced words and minimal galleries� we obtain
a minimal gallery � � C� sC� � � � � wC from C to wC� From above� the wall �
which is the �xed point set of s separates C from wC� Thus� wx � x implies
that swx � sx� At the same time� swx � swC and swC is back in the same
half�apartment for s as C� Therefore� swx � sx lies in the �xed�point set �
for s! thus� sx � x also� and swx � x� By induction on length� sw � hS�i�
Also� s � S�� since s �xes x pointwise� Then w � s�sw� also lies in hS�i� This
completes the stabilizer computation� �

We already know that the chambers ofX are in bijection with the chambers
in the Coxeter complex� by wC � wh�i� and this bijection is compatible with
the action ofW �which is simply transitively on these chambers�� We attempt
to de�ne a chamber complex map by sending a vertex wv of wC� with v a
vertex of C of type S 	 fsg� to the vertex whS 	 fsgi of wh�i� This map
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and its obviously suggested inverse are well de�ned thanks to the stabilizer
computations just above �and earlier for the Coxeter complex�� Then this
map on vertices extends in the obvious way to a map on all simplices�

This completes the proof that thin chamber complexes wherein any adja�
cent chambers are separated by a wall are Coxeter complexes� �

Now we prove the converse� that in a Coxeter complex A any two adjacent
chambers C�C � are separated by a wall� We must show that� for all C�C ��
there is a folding f of A so that f�C� � C and f�C �� � C� We will de�ne
this f �rst just on chambers� and then see that it can thereby be de�ned on
all simplices�

We may suppose that C � f�g without loss of generality� Then C � � fsg
for some s � S� For another chamber wC � fwg de�ne fo�wC� � wC if
��sw� � ��w� � �� and de�ne fo�wC� � swC if ��sw� � ��w� 	 �� Let Ho be
the set of chambers x so that fo�x� � x� and let H �

o be the set of all other
chambers�

From the de�nition� it is clear that fo�fo � fo� It is merely a paraphrase of
the Exchange Condition ����� to assert that multiplication by s interchanges
Ho and H �

o� The latter fact then implies that fo is two�to�one on chambers�
as required�

A slightly more serious issue is proof that fo preserves t�adjacency for all
t � S� Once this is known we can obtain a simplicial complex map f extending
fo which will be the desired folding� Let wC�wtC be two t�adjacent chambers�
and show that fo sends them to t�adjacent chambers� Either ��wt� � ��w���
or we can reverse roles of w and wt�

In the case that ��sw� � ��w� � �� we are de�ning fo�wC� � wC� If
��swt� � ��wt� � �� then we are de�ning fo�wtC� � wtC� In this case the t�
adjacency is certainly preserved� since nothing moves� If still ��sw� � ��w���
but ��swt� � ��wt� 	 �� then swt � w� This was proven earlier as an easy
corollary of the Exchange Condition ����� � Then

fo�wtC� � swtC � wC � fo�wC�

so fo�wtC� is t�adjacent to fo�wC� in the degenerate sense that they are equal�
In the case that ��sw� � ��w� 	 �� the element w admits a reduced ex�

pression starting with s� as does wt� Then fo�wtC� � swtC� which is visibly
t�adjacent to fo�wC� � swC�

Now we extend the map fo �which was de�ned only on chambers� to a
simplicial complex map� using the preservation of t�adjacency� Fix a chamber
wC� Let x be a face of codimension n and of type fs�� � � � � sng� where we
use the labeling of the Coxeter complex by the set S� By the thin�ness of the
Coxeter complex� there is a unique chamber si�adjacent to wC� and in fact it
is just wsiC� We claim that

f�x� � fo�ws�C� � fo�ws�C� � � � � � fo�wsnC�
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Here we invoke the preservation of t�adjacency to be sure that fo�wsiC� is
still si�adjacent to fo�wC�� Thus� the indicated intersection is the unique
face of fo�wC� of type fs�� � � � � sng� This is all we need to be sure that this
extension preserves face relations� so is a simplicial complex map� �

Remarks� We can describe the folding f constructed in the proof more
colloquially by saying that it is a retraction to the half�apartment containing
the chambers which are closer to C than they are to C �� in terms of minimal
gallery length� That this is an accurate description follows from the lemmas
in the section ����� above on foldings and half�apartments�

��	 Corollaries on foldings and half�apartments
The corollaries below are mere repetitions of lemmas proven earlier in �����

regarding foldings and half�apartments� now invoking the theorem of the pre�
vious section which assures existence of foldings and walls in Coxeter com�
plexes�

Fix adjacent chambers C�C � in a Coxeter complex A� and let f 
 A � A
be a folding so that

f�C� � C � f�C ��

Existence of f is guaranteed by the previous theorem� Let H � f�A� be the
half�apartment consisting of all simplices in A �xed by f � We use the some�
what temporary notation d�x� y� for the length of a minimal gallery connecting
two chambers x� y in A�

Corollary� Let x� y be two chambers in A� with f�x� � x while f�y� 
� y�
Let � be a gallery from x to y� Then f� must stutter� �

Corollary� The half�apartment H is convex in the sense that� given
chambers x� y both inH � there is a minimal gallery � � Co� � � � � Cn connecting
x� y lying inside H � that is� with all Ci � H � �

Corollary� The half�apartment H can be characterized as the set of
chambers D in A so that d�C�D� � d�C �� D�� �

Corollary� Let g be another folding of X with g�C� � C � g�C ��� Then
g � f � �

The following two corollaries are of importance in later� more re�ned� study
of the geometry of buildings�

Corollary� Let C�D be chambers in a Coxeter complex� If C�D are on
opposite sides of a wall �� then every minimal gallery from C to D crosses
� exactly once� Conversely� a gallery from C to D which crosses each wall
separating C�D just once� and crosses not others� is minimal� If C�D are on
the same side of �� then no minimal gallery from C to D crosses ��
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Proof� The only new thing here �since ����� Coxeter complexes have
su�ciently many foldings� is the criterion for minimality of a gallery� But
since a minimal gallery crosses every separating wall� a gallery which crosses
only the separating walls just once and crosses no others has the same length
as a minimal gallery� Thus it is minimal� �

And we have the variant version of the latter corollary� obtained as a propo�
sition in the course of the proof of the theorem of the last section� A Coxeter
complex "�W�S� is labelable� and we may as well suppose that the collection
of labels is the generating sets S for W � In particular� let C be the funda�
mental chamber in the Coxeter complex� and for s � S and w � W say that
chambers wsC and wC are s�adjacent

As in the proof of the previous section� we de�ne the type of a non�
stuttering gallery � � Co� � � � � Cn to be the sequence �s�� � � � � sn� where Ci��

is si�adjacent to Ci� In the previous section we proved the following result for
any thin chamber complex wherein any two adjacent chambers are separated
by a wall� and we now know that this applies to Coxeter complexes


Corollary� Let � � Co � � � � Cn be a non�stuttering gallery of type
�s�� � � � � sn�� If � is not minimal �as gallery from Co to Cn�� then there is
a gallery �� from Co to Cn of type

�s�� � � � � �si� � � � � �sj � � � � � sn�

for some indices i � j� �
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�� Buildings
� Apartments and buildings
 de�nitions
� Canonical retractions to apartments
� Apartments are Coxeter complexes
� Labels� links� maximal apartment system
� Convexity of apartments
� Spherical buildings

The previous work on the group theory and geometry of Coxeter groups
was the local or relatively trivial part of the geometry of buildings� which
are made up of Coxeter complexes stuck together in rather complicated ways�
But this is not quite the de�nition we give here� in any case�

The de�nition we do give is misleadingly elementary� and its rami�cations
are unclear at the outset� The virtue of our de�nition is that it can be checked
in speci�c examples� as we will do repeatedly later�

Thus� our de�nition does not depend upon reference to the material on
Coxeter groups or Coxeter complexes� nor even upon the material concerning
foldings and re�ections� Rather� that material is used to prove that the present
de�nition does have the implications we want� such as that the apartments
are Coxeter complexes�

That is� we give the weakest de�nition possible� and prove that it still
works�

At the end� we can decisively treat the simplest abstract family of exam�
ples� called spherical� wherein by de�nition the apartments are �nite chamber
complexes� This is equivalent to the condition that the associated Coxeter
groups be �nite�

��� Apartments and buildings� de�nitions

We use the terminology of ����� concerning simplicial complexes� and give
the de�nition of building in as simple terms as possible�

A thick chamber complex X is called a �thick� building if there is a set
A of chamber subcomplexes of X � called apartments� so that each A � A is
a thin chamber complex� and

� Given two simplices x� y in X � there is an apartment A � A containing
both x and y�

� If two apartments A�A� � A both contain a simplex x and a chamber C�
then there is a chamber�complex isomorphism � 
 A � A� which �xes
both x and C pointwise� that is� not only �xes x and C but also �xes
all simplices which are faces of x or C�



Garrett� �
� Buildings� 



The set A is a system of apartments in the chamber complex X � Note
that we do not say the apartment system�

Remarks� We will prove below that each apartment in a building is
necessarily a Coxeter complex� Often �usually#$� this is made part of the
de�nition of a building� but this makes the de�nition unattractive
 from a
practical viewpoint� how would one check that a chamber complex was a
Coxeter complex# Yet the fact that the apartments are Coxeter complexes is
crucial for later developments� so the present de�nition might be viewed as
deceitful� since it does not hint at this� To the contrary� as we will see in our
explicit constructions later� our previous preparations indicate that we need
verify only some rather simple properties of a complex in order to prove that
it is a building� In particular� rather than trying to prove that a chamber
complex is a Coxeter complex� we will have this fact delivered to us as a
consequence of simpler properties�

Remarks� Sometimes half�apartments are called half�spaces�

Remarks� We might alter the axioms for a building to not necessarily
require that the chamber complex X be thick� but then we would have to
require explicitly that there be a system of apartments each of which is a
Coxeter complex� Then X would be called a weak building�

It is convenient to note that a stronger �and more memorable� and more
symmetrical� version of the second axiom follows immediately


Lemma� Let X be a thick building with apartment system A� If two
apartments A�A� � A both contain a a chamber C� then there is a chamber�
complex isomorphism � 
 A� A� which �xes A � A� pointwise�

Proof� For a simplex x � A � A�� there is an isomorphism �x 
 A � A�

�xing x and C pointwise� by the third axiom� Now our Uniqueness Lemma
����� implies that there can be at most one such map which �xes C pointwise�
Thus� we �nd that �x � �y for all simplices x� y in the intersection� �

Remarks� We can also note that� given two simplices x� y� there is an
apartment containing both� Indeed� let C be a chamber with x as a face

that is� C is a maximal simplex containing x� Let D be a chamber containing
y� Invoking the axioms� there is an apartment A containing both C and D�
Since A itself is a simplicial complex� it also contains x� y�

��� Canonical retractions to apartments

For two chambers C�D in a chamber complex Y � let dY �C�D� be the gallery
distance from C to D in Y � that is� the least non�negative integer n so that
there is a gallery C � Co� � � � � Cn � D from C to D with all Ci in Y � More
generally� de�ne the distance dY �x�D� from a simplex x to a chamber D as
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the least non�negative integer n so that there is a gallery Co� � � � � Cn � D
inside Y with x � Co�

Proposition� Let X be a building with apartment system A� Fix an
apartment A in A� For each chamber C of A there is a retraction � � �A�C 

X � A� Further


� For a chamber D in A and a face x of C�

dX �x�D� � dA�x�D�

� When restricted to any other apartment B containing C� � gives an
isomorphism �jB 
 B � A which is the identity map on the overlap
A � B�

� Let C � be another chamber in A� and let B be an apartment containing
both C�C �� Then when restricted to B� �A�C is equal to �A�C� �

� This � � �A�C is the unique chamber map X � A which �xes C point�
wise and so that for any face x of C and any chamber D in X

dX �x�D� � dX �x� �D�

Remarks� The retraction constructed in the proposition is the canonical
retraction of X to A centered at C�

Proof� Fix a chamber C in A� and consider another apartment B contain�
ing chamber C� Then� by the axioms for a building just above in ����� � there
is a chamber complex isomorphism f 
 B � A �xing C� By the uniqueness
lemma ����� � for given B there is only one such map�

We claim that� given B�B� with associated f� f �� the maps f� f � agree point�
wise on the overlap B �B�� Indeed� let g 
 B� � B be the isomorphism which
�xes B��B pointwise �by the axioms�� Then f �g must be f �� by the unique�
ness observed in the previous paragraph� On the other hand� on B� � B
the map f � g is nothing other than f itself� This proves that the various
maps constructed agree on overlaps� This completes the construction of the
retraction�

On one hand� clearly

dX �x�D� � dA�x�D�

On the other hand� let � be a minimal gallery from C to D in X � Then apply
� 
 X � A to obtain a gallery of no greater length� lying wholly within A�
This proves the assertion about distances from faces of C to chambers within
A�

Let x be any face of C� and D another chamber in X � Let � be a gallery
Co� � � � � Cn � D with x � Co� Let A� be an apartment containing both C
and D� Since by construction �above� �jA� is an isomorphism A� � A� we
certainly have dA�x� �D� � dA��x�D�� On the other hand� we just proved that
distances within apartments are the same as distances within the building� so

dX�x� �D� � dA�x� �D� � dA��x�D� � dX�x�D�
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If f 
 X � A were another chamber complex map which �xed C pointwise
and preserved gallery lengths� then �� f would be maps to a thin chamber com�
plex which agreed pointwise on a chamber and which mapped non�stuttering
galleries to non�stuttering galleries� Therefore� by the uniqueness lemma �����
� f � ��

Note that the property that � restricted to any other apartment B con�
taining C be an isomorphism follows from the construction� The equality of
�A�C with �A�C� when restricted to an apartment containing both chambers
C and C � follows from the construction� together with the uniqueness proven
above� �

��� Apartments are Coxeter complexes
The fact that the apartments in a thick building are unavoidably Coxeter

complexes is a corollary of Tits	 theorem ����� giving a criterion for a thin
chamber complex to be a Coxeter complex� This is a primary device for
�construction	 of Coxeter groups�

Corollary� The apartments in a �thick� building are Coxeter complexes�
Indeed� given an apartment system A for a thick building� there is a Coxeter
system �W�S� so that every apartment A � A is isomorphic �as chamber
complex� to the Coxeter complex "�W�S��

Proof� By Tits	 theorem ������ we need only show that� given two adjacent
�distinct� chambers C�C � in an apartment A of the building� there are foldings
f� f � so that fC � C � fC � and f �C � C � � f �C �� �From our general
discussion of foldings in ����� and ������ this would su�ce��

Invoking the thickness� let E be another chamber distinct from C�C � with
facet F � C � C �� Let A� be an apartment containing C�E� We use the
canonical retractions constructed above in ����� � and de�ne f 
 A � A to
be the restriction to A of �A�C� � �A��C � Then� from the de�nitions of these
retractions� fC � C � fC ��

We need to prove that f is a folding� Now �A�C� preserves distances from
any face of C �� and �A��C preserves distances from any face of C� Since F is the
common face of C and C �� also f preserves distances from F � In particular� if �
is a minimal gallery Co� � � � � Cn � C � with F � Co� then f� is non�stuttering�

If Co � C then dX�F�C �� � dX�C�C �� and� by the uniqueness lemma� f
�xes C � pointwise� That is� f is the identity map on the subcomplex Y of A
consisting of faces of chambers D with dX�F�D� � dX�C�D�� For D in A�
either Co � C or Co � C �� since A is thin� In either case f� starts with C�
since fC � � C� Then fD � Y � Thus� f is a retraction of A to the subcomplex
Y �

Reversing the roles of C and C �� we have a retraction f � with f �C �
C � � f �C �� preserving distances from F � and mapping to the subcomplex Y �

consisting of faces of chambers D with dX�F�D� � dX�C �� D��



�� Garrett� �
� Buildings�

Next� we show that Y and Y � have no chamber in common� so that the two
partition the chambers of A� Indeed� if D were a common chamber� then both
f and f � �x D pointwise� Let � be a minimal gallery from D to a chamber
with face F � Then f� and f �� still are galleries from D to a chamber with
face F � Since � was already minimal� these galleries cannot stutter� But then
the uniqueness lemma ����� shows that f � f �� This is certainly not possible

for example� fC � C 
� C � � f �C�

It remains to show that f maps the chambers in Y � injectively to Y � and
�symmetrically� that f � maps the chambers in Y injectively to Y �� since in
both cases this proves the two�to�one�ness� The chamber map f � f � maps
C to itself and �xes F pointwise� so unavoidably �xes C pointwise
 the map
preserves dimensions� and there is only one vertex of C not inside F � Thus� by
the uniqueness lemma ����� � f � f � is the identity map on Y � Symmetrically�
f � � f is the identity map on Y �� From this the desired result follows�

Now we prove that all apartments in a given apartment system are isomor�
phic �as simplicial complexes�� from which follows the assertion that they are
all isomorphic to a common Coxeter system "�W�S�� Indeed� if two apart�
ments have a common chamber� the building axioms assure that there is an
isomorphism from one to the other� �The fact that this isomorphism has
additional properties is of no moment right now�� Then given two arbitrary
apartments A�A�� choose chambers C�C � in A�A�� respectively� Let B be an
apartment containing C�C �� as guaranteed by the building axioms� Then B
is isomorphic to A and also to A�� by the previous remark� so A is isomorphic
to A� by transitivity of isomorphic� �

��� Labels� links� maximal apartment system
In the above there was no discussion of how anything depended upon the

apartment system� In this section we will see that many things do not depend
at all upon �choice	 of apartment system� and in fact that there is a unique
maximal apartment system� This is important for more delicate applications
later to spherical and a�ne buildings� Sometimes this maximal apartment
system is called the complete apartment system� The notion of link� intro�
duced below� is very useful in the proof�

Proposition� A thick building X is labelable in an essentially unique
way� That is� given labelings 
� 
 X � I� and 
� 
 X � I� where I�� I� are
simplex�like posets� there is a set isomorphism f 
 I� � I� so that 
� � f �
��
where we also write f for the induced map on subsets of I��

Proof� Having seen in ����� that the apartments A are Coxeter complexes�
we recall from ����� that there is a canonical retraction rC of A to the given
chamber C� in e�ect achieved by repeated foldings of A along the facets of
C� This gives one labeling of the apartment A by the simplicial complex  C�



Garrett� �
� Buildings� ��

And we have already proven ����� that the labeling of a Coxeter complex A
is essentially unique�

Now we make a labeling of the whole building� Fix a chamber C in an
apartment A in an apartment system A in X � We have the canonical retrac�
tion �A�C of X to A centered at C� as discussed earlier in ����� � Then

rC � �A�C
is a retraction of the whole buildingX to the given chamber C� which gives one
labeling of the building� extending the labeling of A since �A�C is a retraction�

To prove uniqueness� since we know the uniqueness of A� it su�ces to prove
that there is at most one extension of the labeling rC 
 A � C to a labeling

 
 X � C� Let D be a chamber in X � Invoking a building axiom �from �����
�� there exists an apartment A� containing both C and D� The essentially
unique labeling ����� of the Coxeter complex A� implies that the labeling on
C �that is� on the simplicial complex  C� completely determines that on A��
hence on D �or on  D�� Thus� any other labeling is essentially the same as
that constructed via the canonical retractions� �

Next� we observe that the maps postulated to exist between apartments
can be required to preserve labels


Corollary� For apartments A�A� in a given apartment system with a
chamber in common� there is a label�preserving chamber�complex isomor�
phism f 
 A � A� �xing A � A� pointwise� and any isomorphism f 
 A � A�

�xing A �A� pointwise is label�preserving�
Proof� The existence of a chamber�complex isomorphism is assured by

the building axioms� We need only show that any such is unavoidably label�
preserving�

Let 
 be a labeling of X � Then 
�f is a labeling on A� which agrees with 

on A�A�� which by hypothesis contains a chamber� Thus� by the uniqueness
of labelings ����� of the Coxeter complex A�� these labelings must agree� �

In a simplicial complex X � the link lkX�x� of a simplex x is de�ned to be
the subcomplex of X consisting of simplices y so that� on one hand� there is
no simplex z so that z � x and z � y� but there is a simplex w so that w � x
and w � y�

Proposition� The link of a simplex in a Coxeter complex "�W�S� is again
a Coxeter complex� In particular� supposing as we may that the simplex x
is the face x � hT i of the chamber C � h�i� then the link of x in "�W�S� is
�naturally isomorphic to� the Coxeter complex of the Coxeter system �hT i� T ��

Proof� The main point is that there is the obvious poset isomorphism of
the link of x with the set

"	x � f simplices z of "�W�S� so that z � x g
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by sending y to y�x for y a simplex in L� Thus� the link is isomorphic to the
poset of special cosets inside W contained in hT i� since the inclusion ordering
is reversed� This poset is visibly the poset "�hT i� T �� as claimed� �

Proposition� The link of a simplex in a thick building is itself a thick
building�

Proof� Fix a system A of apartments in the building X � Let X � be the
link of a simplex in X � We propose as apartment system in X � the collection
A� of links of x in apartments in A containing x� By the previous proposition
each link of x in an apartment containing it is a Coxeter complex� so is a thin
chamber complex� We must verify the thick building axioms ����� �

Given simplices y� z � X � the simplices x � y� x � z are contained in an
apartment A � A� Then the link of x in A contains y and z� This veri�es one
building axiom�

Similarly� for the other axiom� suppose that B� � A� were another �alleged�
apartment containing both y and z� Let B � A be the apartment in X so
that B� is the link of x in B� Then B contains both x � y and x � z� so �by
the building axiom for X� there is an isomorphism � 
 B � A �xing A � B
pointwise� Then the restriction �� of � to B� is an isomorphism B� � A�

�xing A� � B� pointwise� This proves the other building axiom�
Regarding thickness� let y be a codimension�one face of a chamber in X ��

As in the discussion of the link of x in a Coxeter complex� it is immediate
that as poset the complex X � is isomorphic to the set X	x of simplices in X
with face x� by the map z � x� z� Thus� the chambers in X � with face y are
in bijection with the chambers in the original X with face x � y� Thus� the
thickness of X implies the thickness of the link X �� �

Now we use links to prove that the Coxeter system attached to a building
is the same for any and all apartment systems�

Theorem� Given a thick building X � there is a Coxeter system �W�S�
so that any apartment A in any apartment system A is isomorphic to the
Coxeter complex "�W�S��

Proof� We prove that the Coxeter data is determined by the simplicial
complex structure of the building� We use a labelling 
 of the building by
taking 
 to be a retraction to a �xed chamber C in a �xed apartment A in X �
Let S be the set of re�ections in A through the facets of C� Thus� we label a
face F of C by the subset of S �xing F �

For distinct s� t � S� let F be a face of type S 	 fs� tg� that is� �xed only
by s and t among elements of S� Then the speci�c claim is that m�s� t� is the
diameter of the link lkX�F � of F in the building X �

The link lkA�F � of F in the apartment A is an apartment in the thick
building lkX�F �� This apartment lkA�F � is a Coxeter complex for a Coxeter
system whose generating set is just fs� tg� This is a one�dimensional simplicial
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complex� It is essentially by de�nition that the diameter of the apartment
lkA�F � is the Coxeter datum m�s� t��

From above� the link lkX �F � is a thick building and that lkA�F � is an
apartment in it� And the minimal galleries in the apartment are minimal in
the whole building� so the diameter of an apartment is the diameter of the
whole building�

The latter diameter certainly does not depend upon choice of apartment
system� Thus� the Coxeter invariants m�s� t� are determined by the simplicial
complex structure of the building� so are the same for any apartment system�

�
Now we can show that there is a unique maximal apartment system in any

thick building�

Corollary� Given a thick building X � there is a unique largest system of
apartments�

Proof� We make the obvious claim that� if fA� 
 � � Ig is a collection of
apartment systems A�� then the union

A �
�
�

A�

is also an apartment system� This would give the proposition� To prove the
claim� we verify the axioms ����� for apartment systems in a building


If each apartment A � A� is a thin chamber complex� then certainly the
same is true for

SA�� �We have already seen in ����� that each apartment is
in fact a Coxeter complex� This� too� is true of the union��

The condition that any two simplices lie in a common apartment is certainly
met by the union� The non�trivial axiom to check is the requirement that�
given two apartments A�A� with a common chamber C� there is a chamber�
complex isomorphism A� A� �xing every simplex in A �A��

Via the lemma� choose a label�preserving isomorphism f 
 A� � A� Since
the Coxeter group W of type�preserving automorphisms of A � "�W�S� is
transitive on chambers� we can adjust f so that f�C� � C� It is not yet clear
that this f �xes A �A��

On the other hand� let � be the retraction of X to A centered at C as
in ����� � and consider the restriction g 
 A� � A of � to A�� By de�nition
����� of retraction� g �xes A � A�� Since A and A� are not necessarily in a
common apartment system� we cannot yet conclude that g is an isomorphism
of chamber complexes�

But f and g agree on the chamber C� and map to the thin chamber complex
A� Let � be a minimal �necessarily non�stuttering� gallery in A�� The image
f��� is non�stuttering since f is an isomorphism� In our discussion of canonical
retractions to apartments ����� � we showed that � preserves gallery�distances
from C� and that � is minimal not only in the apartment but also in the
whole building� Therefore� g��� also must be non�stuttering� Thus� by the
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Uniqueness Lemma ����� � we conclude that f � g� This veri�es the last axiom
for a building and an apartment system� proving that the union of apartment
systems is an apartment system� thus showing that there is a maximal such�

�

��� Convexity of apartments
The result of this section asserts a combinatorial convexity property of

apartments�

Proposition� In a thick building X � let A be an apartment containing
two chambers C�D� Then any minimal gallery in X connecting C�D actually
lies inside A�

Proof� Let

� � �C � Co� C�� � � � � Cn � D�

be a minimal gallery from C toD� If it were not contained in the apartment A�
then there would be a chamber Ci in the gallery so that Ci � A but Ci	� 
� A�
Invoking the thin�ness of A� let E be the unique chamber in A distinct from Ci
and having facet Ci�Ci	�� Let � be the retraction �A�E of the whole building
to A� centered at E� as de�ned above in ����� � Since this retraction preserves
minimal gallery distances from E� certainly ��E�� 
� E for all chambers E�

adjacent to E �and not equal to E�� In particular� ��Ci	�� � Ci� since the
only other possibility is ��Ci	�� � E� which is denied� by the previous remark�
Therefore� ���� stutters� contradicting the minimality of �� �

��	 Spherical buildings
A building X whose apartments are �nite chamber complexes is called a

spherical building� Likewise� a Coxeter complex which is �nite is often
called a spherical complex�

The thick spherical buildings are the simplest buildings� They are also the
most important� appearing everywhere� Their theory is relatively elementary�
so we can develop much of it immediately� One of the more striking aspects of
spherical buildings is the assertion� contained in the last corollary� that there
is a unique apartment system� This is very special to the spherical case�

The diameter of a chamber complex is the supremum of the lengths of
minimal galleries �Co� � � � � Cn� connecting two chambers� Certainly a �nite
chamber complex has �nite diameter� �We always assume that chamber com�
plexes �buildings or apartments� are �nite�dimensional��

Proposition� A thick building of �nite diameter is spherical� A Coxeter
complex of �nite diameter is �nite� The diameter of a building is the diameter
of �any one of� its apartments�
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Proof� Although we have been supposing always that the generating sets
S for Coxeter groups are �nite� this deserves special emphasis here� since the
dimension of the Coxeter complex "�W�S� is one less than the cardinality of
S� So �nite�dimension of the complex is equivalent to �nite generation�

Let C be a chamber in a Coxeter complex "�W�S� with S �nite� We
already know from ����� that� for any w �W � the length of a minimal gallery
from C to wC in a Coxeter complex is the length ��w� of w� Thus� we are
asserting that there is an upper bound N to the length of elements of W � The
set S is �nite� by the �nite dimension of "�W�S�� Let jSj be the cardinality
of S� Then there are certainly fewer than

� � jSj� jSj� � jSj� � � � �� jSjN
elements in W � Thus� W is �nite�

If X is a building with �nite diameter N � then any apartment has �nite
diameter� so is a �nite chamber complex� by what we just proved�

Further� if the diameter of X is a �nite integer N � then by the axioms there
is an apartment A containing two chambers C�D so that there is a minimal
gallery in X from C to D of length N � Let � be the canonical retraction of
X to A centered at C� Then the image under � of a minimal gallery � from
C to D is certainly not greater than the length of �� Thus� the diameter of
any apartment is no greater than the diameter of X �

We have shown that all apartments are isomorphic �as chamber complexes��
Thus� all their diameters are the same� so must be the same as that of X � �

Two chambers in a spherical building are opposite or antipodal if the
length of a minimal gallery from one to the other is the diameter of the
building�

Proposition� Let C�D be two antipodal chambers in a spherical building
X � Let A be any apartment containing both C and D� Then every wall in
A separates C�D� And every chamber in A occurs in some minimal gallery
from C to D�

Proof� Of course� the axioms ����� for a building assure that there is at
least one apartment containing both C�D�

Suppose that C�D lay on the same side of a wall � associated to a folding
f and its opposite folding f �� as in ����� and ����� � Without loss of generality
we take fC � C and fD � D� We claim that f �D is further away from C
than D is� in the sense of minimal gallery distances� Indeed� a minimal gallery

� � �C � Co� � � � � Cn � f �D�

from C to f �D must cross � somewhere� in the sense that there is an index i
so that fCi � Ci � fCi	�� Then the gallery f� from C to ff �D � D must
stutter� so is strictly shorter than �� This contradicts the assumption that
C�D were antipodal� thus proving that all walls in the apartment A separate
the antipodal chambers C�D�
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Now let C�D be antipodal� and C � any other chamber in an apartment A
containing both C�D� For each wall � in A� the chamber C � must lie on the
same side of � as does one or the other of C�D� but not both� We proved
earlier in ����� that a minimal gallery crosses each separating wall exactly
once� and crosses no others� Let

� � �C � Co� � � � � Cm � C ��

be a minimal gallery from C to C � and let

� � �C � � Do� � � � � Dn � D�

be a minimal gallery from C � to D� Then the set of walls crossed by � is
disjoint from the set of walls crossed by �� and the union of the two sets is
the collection of all walls in A�

In particular� the gallery

�� � �C � Co� � � � � Cm � C � � Do� � � � � Dn � D�

crosses each wall just once� Thus� by the corollaries ����� of Tits	 theorem
����� on walls and foldings� the gallery �� is minimal� Thus� the chamber C �

appears in a minimal gallery� �
As temporary usage� for two chambers C�D in the spherical building X �

say that the convex hull of this pair is the union of all chambers which lie
in some minimal gallery from C to D �and all faces of such chambers��

Corollary� In a thick spherical building X � there is a unique apartment
system� In particular� the apartments are the convex hulls of pairs of antipodal
chambers� Indeed� there is a unique apartment containing a given pair of
antipodal chambers�

Proof� Let let C�D be any two antipodal chambers� By the combinatorial
convexity of apartments ����� � everyminimal gallery from C toD is contained
in every apartment containing the two� Thus� the convex hull is contained in
every apartment containing both C and D� On the other hand� the previous
proposition shows that every chamber which lies in some apartment containing
both C and D occurs in some minimal gallery from C to D� Thus� the convex
hull of C�D is the unique apartment containing the two antipodal chambers�

�
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�� BN�pairs from Buildings

� BN�pairs
 de�nitions
� BN�pairs from buildings
� Parabolic �special� subgroups
� Further Bruhat�Tits decompositions
� Generalized BN�pairs
� The spherical case
� Buildings from BN�pairs

The original purpose of construction and analysis of buildings was to pro�
vide a systematic geometric technique for the study of groups of certain im�
portant types�

The notion of BN�pair can be posed without mentioning buildings� and
such structures are dimly visible in many examples� Nevertheless� in the end�
veri�cation that given subgroupsB�N of a groupG have the BN�pair property
is nearly always best proven by �nding a building on which G acts nicely�

The viewpoint taken in this section is that facts about buildings are used
to make BN�pairs and prove things about them�

��� BN�pairs� de�nitions
Here we just de�ne the notion of �strict� BN�pair or Tits system� In

the next section we will see how BN�pairs arise from group actions on build�
ings� and later we will construct buildings for speci�c groups� A notion of
generalized BN�pair will be introduced a little later�

Let G be a group� Suppose that we have subgroups B�N so that T � B�N
is normal in N � Let W � N�T � and let S be a set of generators for W �

For w � W � the notation BwB will mean to choose n � N so that nT � w
in W � N�T � and then put BwB � BnB� noting that the latter does not
depend on the choice of n� but only upon the coset�

The pair B�N �more properly� the quadruple �G�B�N � S�� is a BN�pair
in G if

� �W�S� is a Coxeter system�
� Together� B�N generate G �algebraically��
� Bruhat�Tits decomposition G �

F
w
W BwB �disjoint
�

� BhS�iB �
F
w
hS�i BwB is a subgroup of G� for every subset S� of S�

where hS�i is the subgroup of W generated by S��
� BwB �BsB � BwsB if ��ws� � ��w�� for all s � S� w �W
� BwB �BsB � BwsB t BwB if ��ws� � ��w�
� For all s � S� sBs�� 
� B� That is� sBs is not contained in B�
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The subsets BwB are Bruhat�Tits cells or Bruhat cells in G� The rules
for computing BwB �BsB are the cell multiplication rules�

These assertions are stronger than the type of assertion sometimes known
as a Bruhat decomposition� in subtle but important ways�

��� BN�pairs from buildings
This section begins to make one of our main points� applying the elementary

results proven so far concerning buildings� to obtain BN�pairs from suitable
actions of groups upon buildings� In fact� further and sharper results about the
Bruhat�Tits decomposition will follow from the building�theoretic description
of it�

Fix a chamber C in an apartment A in an apartment system A in a �thick�
building X � as in ������ Assume that X is �nite�dimensional as a simplicial
complex ������ We have the canonical retraction �A�C of X to A centered at
C ������ and the canonical retraction rC of A to C ������ As noted earlier�
the composite


 � rC � �A�C
is a retraction of the whole building X to C labeling �that is� typing� X by
Co� and all other labelings are essentially equivalent to this one ������

Suppose that a group G acts on X by simplicial�complex automorphisms�
and that G is type�preserving in the sense that


 � g � 


for all g � G�
We suppose further that G acts strongly transitively on X in the sense

that G acts transitively on the set of pairs �A�D� of apartments A and cham�
bers D so that D is a chamber in A�

Remarks� In general� it is necessary to assume that the group stabilizes
the set of apartments� The following proposition notes that this hypothesis is
ful�lled if the apartment system is the maximal one� Since in our applications
we are exclusively concerned with maximal apartment systems� any more
general stabilization question is of little concern to us�

Proposition� If A is the unique maximal system A of apartments and
f 
 X � X is a simplicial complex automorphism� then for any A � A we
have fA � A�

Proof� The point is� as was shown in discussion of links� labels� and the
maximal apartment system ������ that there is a unique maximal apartment
system� It is very easy to check that

fA � ffB 
 B � Ag
is another apartment system in X � so if A was maximal then unavoidable
fA � A� In particular� fA � A� �
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Fix a chamber Co in a �xed apartment Ao� Let

W � f type�preserving automorphisms of Aog
S � f re�ections in codimension�one faces of Cog

From Tits	 theorem ������ �W�S� is a Coxeter system� and Ao is �naturally
identi�able with� the associated Coxeter complex�

De�ne some special subgroups of G


B � fg � G 
 gCo � Cog
N � fg � G 
 gAo � Aog

T � B � N
This �B�N � will be the BN�pair in G associated to the choice of chamber
and apartment �in the chosen system of apartments�� �We have yet to prove
that it has the requisite properties��

Lemma� The subgroup T acts trivially pointwise on Ao� so is the kernel
of the natural map N �W � Therefore� it is normal in N � The induced map

N � N�T �W

is surjective�

Proof� From the de�nitions� it is clear that T contains the kernel of the
natural map N �W �

Since T gives maps of the thin chamber complex Ao to itself� trivial on Co�
and not causing any non�stuttering galleries to stutter �since it is injective��
by the uniqueness lemma ����� it must be that elements of T give the trivial
map on Ao� Thus� T maps to � �W � so is equal to the kernel of N �W �

On the other hand� given w �W � by the strong transitivity there is n � N
so that nCo � wCo� Since n and w are type�preserving� they agree pointwise
on Co� so must give the same e�ect on Ao� by the uniqueness lemma ������
Also� if n � B � N then n �xes Co pointwise and so acts trivially on Ao�
Therefore�

N�T �W

as desired� �
Remarks� The hypothesis of strong transitivity assures that varying the

choice of Co � Ao merely conjugates the BN�pair� In particular� in group�
theoretic terms� this means that any other choice of apartment changes N
just by conjugation by some element of B�

Corollary� All possible groups T � N � B inside a �xed B� for varying
choices of Ao and N � are conjugate to each other by elements of B �not merely
by elements of G�� �

Keep notation as above� with �xed pair Co � Ao� For S� � S� let FS� be
the face of Co whose stabilizer in W is hS�i� Let

PS� � stabilizer of FS� in G
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This is the standard parabolic subgroup of G of type S�� Note that with
S� � S we obtain the whole group G as �improper� parabolic subgroup

G � PS

�in a degenerate sense� since W � hSi stabilizes only the empty set� and with
S� � � obtain the minimal standard parabolic subgroup

B � P�

Remarks� Yes� there is con�ict between the present use of parabolic
subgroup and the use of the same phrase for special subgroups of Coxeter
groups ���
�� This is why use of special subgroup in the Coxeter groups
situation is preferable�

Theorem� The quadruple �G�B�N � S� satis�es the axioms for a BN�pair�
Beyond what we have already noted� this explicitly includes

� Bruhat�Tits decomposition Each standard parabolic subgroup PS�

of G� including G � PW itself� has a decomposition

PS� �
G

w
hS�i

BwB

� BwB �BsB � BwsB if ��ws� � ��w�� for all s � S� w �W �
� BwB �BsB � BwsB t BwB if ��ws� � ��w��
� For all s � S� sBs�� 
� B� that is� sBs is not a subset of B�
� And for g � G the coset BwB is determined by

�Ao�Co�gCo� � wCo

where �Ao�Co is the canonical retraction of X to the apartment Ao cen�
tered at Co�

Remarks� Only the last assertion� which gives a �ner explanation of the
Bruhat�Tits decomposition� uses an explicit reference to the building and the
action of the group upon it� So if such information is not needed it is possible
to describe the group�theoretic consequences of the building�theory without
any mention of the buildings themselves�

Remarks� Of course� similar properties hold for BsB �BwB as asserted
above for BwB � BsB� Implicit in the above is that the unionsG

w
hS�i

BwB

are indeed subgroups of G� Also implicit is the assertion that

�N � PS���T � hS�i �W

Proof� First we prove the Bruhat decomposition for the standard parabolic
subgroups� Given g � PS� � choose an apartment A containing both Co and
gCo� and by strong transitivity take b � B so that bA � Ao� Then bgCo � wCo



Garrett� ��� BN�pairs from Buildings� ��

for some w � W � by the transitivity of W on the chambers in the apartment
Ao� So bg � wB� and g � BwB� Further� since g � PS� and B � PS� � this w
is in FS� � This proves that

PS� �
�

w
hS�i

BwB

To prove disjointness of the unions above� we need only prove

G �
G
w

BwB

Multiplication by the element b �in the notation above� gives an isomorphism
A � Ao �xing Co pointwise� By the uniqueness lemma� there is only one
such� the retraction � � �Ao�Co to Ao centered at Co considered earlier ������

The discussion just above shows that g � BwB where w is the uniquely
determined element w � f�g� of W so that ��gCo� � wCo� proving the very
last assertion of the theorem� �Recall the simple transitivity of W on the
apartments�� We need to show that f�BwB� � w� Take n � N so that
nT � w� For b� b� � B� letting g � bnb��

gCo � bnb�Co � bnCo � bwCo � bAo

Left multiplication by b�� gives an isomorphism of bAo to Ao �xing Co point�
wise� so it must be �by uniqueness of �� that

��gCo� � b���gCo� � wb�Co � wCo

Thus� f�bnb�� � w� This proves the disjointness in the Bruhat�Tits decompo�
sition�

Next� for s � S and w � W � we consider products

BwB �BsB � fb�wb�sb� 
 b�� b�� b� � Bg
In any group G it would be true that such a product would be a union of
double cosets BgB� since it is stable under left and right multiplication by B�
Further� certainly ws � BwB � BsB� so this product of double cosets always
contains BwsB�

Now we prove� �rst� that

BwB � BsB � BwsB � BwB
Recall that the retraction � 
 X � Ao �as just above� is type�preserving� so
also preserves s�adjacency of chambers in the sense of ������ So the function
f 
 G�W de�ned just above �in terms of �� satis�es

f�gh� � f�g�or f�g�s

for all g � G and p � Phsi� where �again�

Phsi � B t BsB
is the stabilizer in G of the face F of Co �xed by s� Thus�

f�BwB � BsB� � f�BwB� t f�BwB�s � w t ws
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so that

BwB � BsB � BwB t BwsB
as asserted�

Suppose that ��ws� � ��w�� We claim that in this case BwB � BsB �
BwsB� It su�ces to show that in this case wBs � BwsB� Take n� � � N
so that nT � w and �T � s� Given g � nb� � nB�� we must show that
��gCo� � wsCo� with the retraction � as above�

Now

gCo � nb�Co � nbsCo

is s�adjacent to nbCo � nCo � wCo and is distinct from it� Let

�o � Co� C�� � � � � wCo � nCo

be a minimal gallery from Co to nCo � wCo� and let

� � Co� C�� � � � � wCo� nbsCo

We grant for the moment that � is a minimal gallery� Since ��nb�C� is s�
adjacent to ��nbC� � ��wC� � wC� ��nb�C� is either wC or wsC� since these
are the only two chambers in Ao with facet F � If ��nb�C� � wC then ����
would stutter� contradicting the fact that � preserves distances ������ using
the minimality of �� Thus� ��nb�C� � wsC�

It remains to show that � is minimal� assuming ��ws� � ��w�� Let �� be the
retraction to Ao centered at wCo� Since �� preserves distances from wC and
nb�Co 
� Co� it must be that ���nb�Co� 
� wCo� Thus� since �

� also preserves
s�adjacency �being type�preserving�� ���nb�Co� � wsCo� Thus�

����� � ���Co�� � � � � �
��wCo�� �

��nb�Co� �

� Co� � � � � wCo� wsCo

The part ����o� of �
���� going from Co to wCo is minimal� since �� preserves

distances from wCo and �o was assumed minimal� Thus� since ��ws� � ��w��
�� the gallery ����� � Co� � � � � wCo� wsCo in Ao is minimal� where we use
the correspondence between word�length and gallery�length holding in any
Coxeter complex ������ Thus� necessarily � is minimal� since its image by ��

is minimal�
Next we show that s��Bs 
� B� Since X is thick� for every s � S there is

another chamber C � distinct from Co and sCo which is s�adjacent to Co� Let
F be the facet Co � sCo of type s� There is g � G so that gCo � C �� since G
is transitive on chambers� Since g is type�preserving g must �x F � That is�

g � Phsi � B t BsB
Since gCo 
� Co� g 
� B� so g � BsB� Also� gCo 
� sCo� so g 
� sB� Thus� we
have shown that BsB 
� sB� so that necessarily Bs 
� sB� or s��Bs 
� B�

Last� we consider the case ��ws� � ��w� 	 � and prove the other cell
multiplication rule

BwB � BsB � BwB t BwsB
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What remains to be shown in order to prove this is that w � BwB �BsB� By
the previous paragraph� we already know that sBs 
� B for s � S� so

B 
� BsB �BsB
But we have shown that

B t BsB � BsB � BsB
Thus� evidently

�BsB �BsB� � BsB 
� �
so must be all of BsB since the intersection is left and right B�stable� In
particular�

s � BsB �BsB
Assume ��ws� � ��w� 	 �� This is the same as

��ws � s� � ��ws� � �

so we can apply the earlier result in this direction� to obtain

BwsB � BsB � BwssB � BwB

Multiplying by BsB gives

BwsB � BsB � BsB � BwB � BsB
The left�hand side contains

ws �BsB �BsB � ws�B tBsB�

which contains ws � s � w� Thus� for ��ws� � ��w� 	 ��

BwB � BsB � BwB t BwsB
as claimed� �

��� Parabolic �special� subgroups
In this section we do not use any hypothesis that the BN�pair arises from

a strongly transitive action on a thick building�
The phenomena surrounding the parabolic or special subgroups described

here constitute a unifying abstraction which includes literal parabolic sub�
groups� as well as certain compact open subgroups called Iwahori and para�
horic subgroups� These speci�c instances of the general idea play a central
role in applications� �See chapter ����

Let G be a group possessing a triple B�N � S as above �forming a BN�
pair�� Again� a subgroup P of G is a �standard� �parabolic� or �standard�
�special� subgroup �with respect to B�N � if it is one of the subgroups

PS� �
G

w
hS�i

BwB
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Since study of Coxeter groups shows ���
� that S� � hS�i is an order�preserving
injective map� from the de�ning properties of a BN�pair we see that S� � PS�
is an injective map�

More generally� a subgroup of G is called a parabolic subgroup if it is
conjugate in G to one of the standard parabolic subgroups �with respect to
B�N � S��

Proposition� Let w � s� � � � sn be a reduced expression� Then the small�
est subgroup of G containing BwB contains si for all i� It is also generated
by B and w��Bw�

Proof� From the cell multiplication rules ������

Bs�B �Bs�B � � � � � BsnB � BwB

Thus� the subgroup P of G generated by B and w is contained in the subgroup
generated by B and all the si� We will prove by induction on n � ��w� that
each si is in P � which will prove both assertions of the proposition�

Since ��s�w� � ��w�� from the cell multiplication rules we know that s�Bw
meets BwB� so s�B meets BwBw��� and

s� � BwBw��B

Therefore� P certainly contains s�wBw
��s�� Applying the induction hypoth�

esis to the shorter element s�w gives the result� �
Corollary� The parabolic subgroups of G are exactly those subgroups

containing B� Every parabolic subgroup is its own normalizer in G� and no
two are conjugate in G� For a subgroup P of G containing B� let WP �
�P � N �T�T � Then we have

P � BWPB

Proof� If a subgroup P of G contains B� then it is a union of double cosets
BgB� Invoking the Bruhat�Tits decomposition� we may as well only consider
double cosets of the form BwB with w � W �or� more properly� in N �� Let

W � � fw � W 
 BwB � Pg
Then certainly P � BW �B� Since Bww�B � BwB � Bw�B and

Bw��B � fg�� 
 g � BwBg � �BwB���

we see that W � is a subgroup of W � The proposition assures that W � contains
all the elements of S occurring in any reduced expression for any of its ele�
ments� soW � is the �special	 or �parabolic	 subgroup ofW �now in the Coxeter
group sense ���
� of these words� generated by S� � S �W �� Therefore� P is
a parabolic subgroup of G �in the present sense of the word��

Suppose that gPg�� � Q for two parabolic subgroups P�Q� Let w � W so
that g � BwB� Then wPw�� � Q� so

wBw�� � wPw�� � Q
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Therefore� as B � Q� from the proposition we see that BwB � Q� Thus�
g � Q� and then P � Q� �

Remarks� This corollary shows that the notion of special or parabolic
subgroup does not depend upon the choice of S� Indeed� in light of the corol�
lary� we can now correctly refer to these subgroups P � BWPB as parabolic
subgroups containing B�

��� Further Bruhat�Tits decompositions
Now we do assume that our BN�pair in the group G is obtained from a

strongly transitive action on a thick building X � in order to give geometric
arguments rather than more purely combinatorial� We assume thatX is �nite�
dimensional� so that the set S of generators for the Coxeter system is �nite�
Keep the notation above� Let P� � BW�B and P� � BW�B be parabolic
subgroups �containing B�� where Wi � hSii for two subsets S�� S� of S�

Theorem� We have a bijection

W�nW�W� � P�nG�P�

given by W�wW� � P�wP��

Proof� Let N be the subgroup of G which� modulo T � B �N � is W � As
usual� we need not distinguish between N and W when discussing B�cosets�

Starting from the Bruhat�Tits decomposition G �
F
w BwB� given g � G

we can left multiply by some element b� of B � P� and right multiply by
some element b� of B � P� so that b�gb� � W � Then we surely may further
multiply on the left by W� and on the right by W��

On the other hand� we need to show that w� � P�wP� implies that w� �
W�wW�� Let Fi be the face of Co of type Si� that is� with stabilizer PSi � Pi�

Given g � G� let A be an apartment containing both F� and gF�� by the
axioms ������ We claim that there is an element p � P� so that pA � Ao�
Indeed� let C be a chamber of A with face F�� There is h � G so that hC � Co�
by transitivity of G on chambers in X � Since both C and Co have just the
one face �that is� F�� of type S�� necessarily hF� � F�� That is� h � P�� Then
hA and Ao both contain Co� so by strong transitivity there is b � B so that
bpA � Ao� Then bp � P� is the desired element� proving the claim�

Further� the conditions pF� � F� and pA � Ao determine p uniquely left
modulo

H � fq � G 
 qAo � Ao and qF� � F�g
Certainly T � H � and we have

H�T � hS�i � W�

Then pgF� � wF� for some w �W � since W acts transitively on simplices
in Ao of a �xed type� Let n � N be such that nT � w� Note that� given g
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and p� w is uniquely determined right modulo W� � hS�i� Then we have

g � P�nP� � P�wP�

The ambiguity in choices of p and w is that we may replace p� n by n�p� n�nn�

for n� � H and n� � W��
Therefore� if P�wP� � P�w

�P�� then both w� � P�wP� and w� � P�w
�P��

The quali�ed uniqueness just proven shows that W�wW� � W�w
�W�� as de�

sired� �

��� Generalized BN�pairs
In use� it is important to be able to drop the condition that the group acting

preserve types or labels in its action upon the building X � This entails some
complications in the previous results� which we now explain� Throughout� the
idea is to reduce the issues to the case of a strict BN�pair� that is� a BN�pair
in the sense discussed up until this point� Emphatically� we are assuming that
the set S is �nite� which is equivalent to the assumption that the building X
is �nite�dimensional as a simplicial complex�

Let X be a thick building� and let a group �G act upon it by simplicial com�
plex automorphisms� Further assume that �G stabilizes the set of apartments�

Remarks� As earlier� we need to explicitly assume that the action of
�G stabilizes the set of all apartments� Later we will show that this is often
automatic� and in any case is visibly true in most concrete examples�

Fix a chamber Co and an apartment Ao containing it� Let 
 
 X � Co be
a retraction of the building to Co� as earlier� giving a type�ing �labeling� of

X � Let G be the subgroup of �G preserving types� that is�

G � fg � �G 
 
 � g � 
g
We assume that the subgroup G of �G is itself strongly transitive�

As usual� let B be the stabilizer in G of Co� let N be the stabilizer in G of
Ao� and T � B � N � Thus� we have a strict BN�pair in G�

Also� let �B be the stabilizer in �G of Co� let �N be the stabilizer in �G of Ao�
and �T � �B � �N �

From our results on thick buildings ������ the apartment Ao is the Coxeter
complex associated to �W�S�� where W � N�T and where S consists of
re�ections through the facets of the chamber Co� �Recall that� in the course
of other proofs� we have seen that T is a normal subgroup of N and acts
pointwise trivially on all of Ao� The latter follows from the type�preserving
property and by invoking the uniqueness lemma �������

Keep in mind that the strict BN�pair properties ����� entail Bruhat�Tits
decompositions

G �
G
w
W

BwB
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We proved in ����� that this situation does arise from a group action as we
have presently� And� more generally ������

BhS�iB �
G

w
hS�i

BwB

is a subgroup of G� for every subgroup S� of S� where hS�i is the subgroup of
W generated by S�� Conversely� every subgroup of G containing B is of this
form� with uniquely determined S�� and is its own normalizer ������ For s � S
and w �W � we have cell multiplication rules �����

BwB BsB � BwsB for ��ws� � ��w�

BwBBsB � BwsB tBwB for ��ws� � ��w�

For all s � S� sBs�� 
� B�
The following theorem contains some non�trivial assertions about �G in

relation to the strict BN�pair �G�N � B�� These assertions� together with the
strict BN�pair results on �G�N � B�� tell almost everything we need about the

�generalized	 BN�pair � �G� �N � B��

Remarks� Note that although �B is de�ned here� its type�preserving
subgroup B is the item of consequence�

Theorem�

� The groupsN � B are normalized by �T � and conjugation by elements of �T
stabilizes S� as automorphisms of Ao� We have �N � �TN and �B � �TB�

� The group G is a normal subgroup of �G� of �nite index� and �G � �TG�
� With % � �T�T � �N �T is a semi�direct product % � W with normal

subgroup W � Also� �G�G � %�
� For � � % and w � W � we have �w��� � W � And �B � B� � B�B
and

�BwB � B�wB � B��w����B�

Proof�

Lemma� If g � �G has the property that it preserves types of the faces of
a chamber C�� then g � G�

Proof� Let A be any apartment containing the chamber C� on which g
preserves types� and let A� � gA and C� � gC�� Take h � G so that hC� � C�

and hA� � A� invoking the strong transitivity of G� Then the type�preserving
property of g just on C� implies that hg is the identity on C� pointwise �that
is� on all faces of C�� that is� on all vertices of C��� Then hg is a map from the
thin chamber complex A to itself which� being an automorphism of X � does
not cause any non�stuttering gallery to stutter� Thus� invoking our uniqueness
lemma ������ since hg is trivial on C�� it must be that hg is trivial on all of A�

That is� hg certainly preserves types on A� Thus� g � h���hg� as a map
A� A� preserves types on A� Now A was an arbitrary apartment containing
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C�� and any chamber lies in an apartment also containing C� �by the building
axioms ������� so g preserves types on all of X � This is the lemma� �

Next� we prove that the group �T normalizes B� Let t � �T � For b � B and
for a vertex v of Co�

t��bt�v� � t���b�tv�� � t��t�v� � v

since B acts pointwise trivially on Co� That is� t
��bt acts pointwise trivially

on Co� By the lemma� t��bt must lie in B�
Next� we show that �T normalizes T � Take to � T � Then� by a similar

computation in as the previous paragraph� t��tot acts pointwise trivially on
Co� and stabilizes Ao as well� Again invoking the lemma� we conclude that
this element lies in T �

The proofs of the other parts of the �rst assertion are postponed a little�
Now we prove that� as automorphisms of Ao� conjugation by �T stabilizes

the set S of generators of W � N�T � Take s � S� Note that for any chamber
C� adjacent to Co� t

��C� is necessarily a chamber in Ao adjacent to Co� since
t��Co � Co and since chamber complex maps preserve adjacency� Also� t��

permutes the vertices of Co� Let v be any vertex of Co �xed by the re�ection
s� Then t��st �xes the vertex t��v � t��sv of Co� On the other hand� if v is
the unique vertex of Co not �xed by s� then t��st maps the vertex t��v of Co
to t��sv �which is not a vertex of Co�� Thus� by the uniqueness lemma� t��st
must be the re�ection through the facet t��F where F is the facet of Co �xed
�pointwise� by s� That is� �T permutes the elements of S among themselves�

In particular� �T normalizesW � hSi� as automorphisms of Ao� Note that if
an automorphism � of the building agrees on Ao with the action of an element
ofW � then � necessarily preserves types on the whole building� by the lemma�
Therefore� since �T normalizes T � �T normalizes N �

Since G � BNB � BWB� it follows that �T normalizes G� Given g � �G�
by the assumed strong transitivity of G there is an element h � G so that
hgCo � Co and hgAo � Ao� Thus� hg � �T � It follows that �G � �TG � G �T �

In particular� at this point we obtain the remainder of the �rst point in the
theorem� asserting that �B � �TB and �N � �TN �

Granting the previous� the fact that �N �T is a semi�direct product of % �
�T�T and W is clear� Likewise clear� then� is the fact that

�BwB � B�wB � B��w����B�

since �T normalizes B� As in the discussion of strict BN�pairs ����� and ������
the cosets �B � B� are well�de�ned�

Last� we address the �nite index assertions� If two elements t�� t� of �T have
the same e�ect pointwise on Co� then t�t

��
� is trivial pointwise on Co� By

the lemma above� t�t
��
� preserves types� so must lie in T � �T �G� Thus� the

natural map
�T�T � f permutations of vertices of Co g
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is an injection� Since S is �nite and the vertices of Co are in bijection with
S� this permutation group is �nite� Hence� �T�T is �nite� as is �G�G since
�G � �TG� �

��	 The spherical case
Beyond the completely general results above much more can be said in case

the building is spherical� that is� the apartments are �nite complexes�
In the spherical case� we introduce parabolic subgroups of a group act�

ing strongly transitively� opposite parabolics� and Levi components of
parabolic subgroups� These are all conveniently de�ned in terms of the ge�
ometry of the building� We also can describe associate parabolics in such
terms�

For example� we have shown ����� that there is a unique apartment system�
which is therefore unavoidably maximal� In more detail� we have shown that
any apartment is the convex hull of any two antipodal chambers within it� in
the combinatorial sense that every other chamber in the apartment is in some
minimal gallery connecting the two antipodal chambers� and every chamber
occurring in such a minimal gallery is in that apartment�

Let X be a thick spherical building on which a group G acts by label�
preserving simplicial complex automorphisms� Suppose that it is strongly
transitive� that is� is transitive on pairs �C�A� where C is a chamber contained
in an apartment A�

Since the apartment system is maximal� as observed earlier ����� it fol�
lows automatically that apartments are mapped to apartments by simplicial
complex automorphisms�

Fix a chamber C in an apartment A� and identify A with a ��nite� Coxeter
complex "�W�S� in such manner that C � h�i and S is the collection of
re�ections in the facets of C� as in ������ ������

Let N be the stabilizer of A in G� Rather than using the letter B for the
stabilizer of C� in the spherical case we let P be the stabilizer of C in G� And
we call P the minimal parabolic subgroup associated to the chamber C�
Instead of the symbol T for N � P as above� we now write M � N � P � And
then W � N�M � We call M the Levi componentM of P corresponding to
choice of apartment A� And the Coxeter group W is called the �spherical�
Weyl group associated to choice of C and A�

Let Copp be the antipodal chamber to C in the apartment A ������ The
stabilizer P opp of Copp is the opposite parabolic to P � with respect to
the apartment A� That is� of all the chambers in X which are the maximal
gallery distance from C� we have speci�ed Copp by telling in which apartment
containing C it lies� As remarked just above� we proved earlier that� in e�ect�
the collection of chambers at maximal gallery distance from C is naturally in
bijection with the collection of apartments containing C� in ������
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Proposition� The Levi component M � N � P is none other than
P � P opp� The collection of all Levi components in the minimal parabolic P
is acted�upon transitively by the conjugation action of P upon itself� Equiv�
alently� the minimal parabolic acts transitively by conjugation on the set of
parabolic subgroups opposite to it� Equivalently� P acts transitively on the
set of all chambers antipodal �in any apartment� to the chamber stabilized
by P �

Proof� It is clear that M � N � P �xes Copp since it �xes the whole
apartment A in which this chamber lies� Thus M � P � P opp� On the other
hand� if g � G �xes both C and Copp� then it certainly stabilizes the collec�
tion of minimal galleries from C to Copp� Keep in mind that every minimal
gallery between these chambers lies in A� by the combinatorial convexity of
apartments in general proven above ������ Further� by the Uniqueness Lemma
������ since g �xes C and maps to the thin chamber complex A� it must be
that g is the identity on any such gallery� Thus� g is the identity map on all
of A�

The second assertion is a covert version of the strong transitivity� Indeed�
by de�nition ����� of the strong transitivity of G on X � P is transitive on
apartmentsB containing C� In each such apartment there is a unique chamber
Copp
B antipodal to C with stabilizer P opp

B � The corresponding Levi component
of P is

MB � P � P opp
B

But the transitivity and the uniqueness of antipodal chamber �to C� within a
given apartment ����� prove that P is transitive on such chambers� Thus� P
acts transitively by conjugation on the opposite parabolics P opp

B � and therefore
transitively on the Levi components MB � �

Remarks� By symmetry� the subgroup M � P � P opp is also the Levi
component of P opp corresponding to the apartment A� and M certainly sta�
bilizes the opposite chamber Copp�

Corollary� The Weyl group W opp � N��N � P opp� can be naturally
identi�ed with the Weyl group W � N��N � P ��

Proof� We have seen that

N � P � P � P opp

which gives a symmetrical expression for M � �
Now we de�ne more general parabolic subgroups and their opposite

parabolic� as well as Levi components� First� any subgroup of G �xing
some simplex � in X is said to be a parabolic subgroup� Any such group
certainly contains the �xer of a chamber of which � is a face� Thus� by
whatever de�nition� we may be sure that parabolic subgroups always contain
minimal parabolic subgroups� which are �xers of chambers�
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From the general results ������ we know that any subgroup Q containing
the minimal parabolic P is of the form

Q � PT �
G

w
hT i

PwP

where T is a subset of S and hT i is the subgroup of W generated by T � In
this notation we have P � P��

With regard to the choice A of apartment containing C� and corresponding
opposite P opp� de�ne the opposite parabolic Qopp to Q by

Qopp �
G

w
hT i

P oppwP opp

The Levi componentMQ of such a parabolic subgroup Q� corresponding
to the apartment A is

MQ � Q �Qopp

Remarks� Of course� elements w � W must be replaced by representa�
tives from N in the previous expression� The complication is that we have
W � N�M where M � N��N � P �� But there is no di�culty� since the
corollary just above shows that

N � P � P � P opp � N � P opp

Remarks� Since these opposite parabolics P opp
T contain P opp � P opp

� �
they certainly are parabolic subgroups in our present sense�

The following easy proposition displays opposite parabolics in a manner
conforming more to our earlier discussion


Proposition� Let wo be the �unique� longest element in the �nite Coxeter
group W � Then woC � Copp and P opp � woPw

��
o � We have w�

o � � � W �
Thus� in general� for a parabolic PT with T � S� we have

P opp
T � wo�

G
w
w��

o hT iwo

PwP �w��
o

Proof� From discussion of Coxeter complexes in general ����� we know
that the gallery distance from C � f�g to any other chamber fwg is the
length of w� Thus� it must be that Copp � fwog� That is�

Copp � fwog � wof�g � woC

�We already showed� in discussion of �nite Coxeter groups ������ that there
is a unique longest element wo� The present discussion appears to give another
proof��

Because wo gives a simplicial automorphism of A� a minimal gallery � from
C to Copp is mapped to a minimal gallery wo� from woC � Copp to �wo�

�C�
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Since C is the unique chamber antipodal �in A� to Copp� and since gallery
lengths are preserved by such maps� necessarily �wo�

�C � C� Thus�

f�g � C � �w��
�C � �wo�

�f�g � fw�
og

which implies that w�
o � � �W �

The last assertion is a direct computation on the Bruhat cells P oppwP opp


P oppwP opp � woPw
��
o wwoPw

��
o � wo�P �w��

o wwo�P �w��
o

giving the desired conclusion� �

Remarks� As S was identi�ed with re�ections in the facets of C� the
set w��

o Sw��
o may be identi�ed with re�ections in the facets of the opposite

chamber Copp � woC� Thus� while the Coxeter group W remains the same�
the system �W�S� should be replaced by �W�woSwo� when C is replaced by
Copp � woC�

Corollary� Let wo be the longest element in a spherical Coxeter group
W � The map w � woww

��
o gives an automorphism of W of order � which

stabilizes the generating set S�

Proof� We already saw that w�
o � �� The previous little result shows that�

among other things� for every s � S the conjugate wohsiw��
o is again a special

subgroup of W � Thus� by counting considerations� it must be of the form hs�i�
That is� wosw

��
o � s�� showing that we have an automorphism of S� �

Remarks� All minimal parabolics are conjugate to each other �from
the transitivity of G on chambers�� so in particular a minimal parabolic P is
conjugate in G to its opposite P opp� with respect to any choice of apartment
�equivalently� Levi component�� By contrast� there is no reason to expect that
non�minimal parabolics be conjugate to their opposites� although necessarily
all opposites of a given parabolic are conjugate to each other�

In certain situations involving spherical BN�pairs� minimal parabolics are
also called Borel subgroups�

��
 Buildings from BN�pairs
Under very mild hypotheses� all BN�pairs arise from group actions upon

buildings� and in an essentially unique manner� �The argument does not use
any result about a BN�pair presuming that it comes from a building��

Let B� N be a BN�pair in a group G� We assume that the generating set
S for the Coxeter group W � N��N � B� is �nite� �Note that this does not
imply that W is �nite��

For purposes of this section� a �proper� parabolic subgroup of G is any
proper subgroup of G which contains some conjugate gBg�� of B �by g � G��
The collection of all proper parabolics can be made into a poset X by taking
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the reverse of inclusion as the face relation� This poset will be shown to be a
building giving rise to the given BN�pair ������

The collection of apartments is described as follows
 �rst� let

A � fwPw�� 
 P is a special subgroup � w � Ng
be the �alleged� apartment containing the �alleged� chamber B� and then for
any g � G let

gA � fgwPw��g�� 
 P is a special subgroup � w � Ng
also be declared to be an apartment�

The action of G upon X is declared to be by conjugation of subgroups�

Theorem� Let B�N be a BN�pair� Let & be the poset of proper parabolic
subgroups of G� with inclusion reversed� as just above� and with the indicated
apartment system� Then X is a simplicial complex which is� in fact� a thick
building X upon which G acts in a label�preserving manner� with B occuring
as the stabilizer of a chamber inside an apartment stabilized by N �

Proof� The proof is made somewhat easier by replacingX by an apparently
simpler �but poset�isomorphic� object� described as follows


For present purposes� a special subgroup of G is a proper subgroup P of
G containing B� A special subset of G is a subset of the form gP for P a
special subgroup and g � G� The poset Y obtained by ordering all special
subsets with the reverse of containment is our candidate for the building�

The action of G upon special subsets is taken to be left multiplication�

Proposition� The poset Y of all special subsets of G �with inclusion
reversed� is isomorphic �as poset� to the poset X of all proper parabolic
subsets �with inclusion reversed�� by the map

f 
 gP � gPg��

Further� this map respects the action of G upon X and Y �

Proof� Each special subgroup is its own normalizer in G� and no two of
them are conjugate ������ This implies that the indicated map is well�de�ned�
and is an injection� Thus� it is certainly a bijection� since its surjectivity
follows from its well�de�ned�ness� Further� if gP � hQ for special subgroups
P � Q� then �h��g�P � Q� so

h��g � h��g � e � h��g � P � Q

and P � Q� Therefore�

P � Q � �g��h�Q�g��h����

and

gPg�� � hQh��

Thus� the poset structure is preserved by the map�
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Finally� for g� h � G is it clear that

f�g�hP �� � f��gh�P � � �gh�P �gh��� � g�hPh���g�� � g�f�hP ��

so the action of G is preserved by the map� This proves the proposition� �
Now we return to the proof of the theorem� at each moment using whichever

model of the purported building is more convenient� The candidate for the
apartment system in Y is as follows� translating from the corresponding sub�
complex of X 
 First� the collection

A � fwB 
 w � Ng
is declared to be an apartment� And for every g � G we also declare

gA � fgwB 
 w � Ng
to be an apartment�

It is necessary to prove that X �or� equivalently� Y � is a chamber complex�
To do this� it su�ces ����� to show that any two elements �alleged simplices�
x� y have a unique greatest lower bound� and that for each x � X the sub�poset

Y�x � fy � X 
 y � xg
is simplex�like �meaning that it is isomorphic to the set of subsets of some
�nite set��

Let S�� S� be two subsets of S� let

Pi �
G

w
hSii

BwB

let g�� g� be in G� and suppose that two special subsets g�P� and g�P� are
contained in a special subset gP �strictly smaller than G�� By left�multiplying
by g��� we may suppose without loss of generality that g � ��

Then giPi � P for i � �� � and

gi � gi � � � gi � Pi � P

Thus� also� Pi � P � This is true for any special subgroup P with giPi � P �
so we can take the intersection of all special subgroups containing both g�P�

and g�P� to obtain the greatest lower bound �with inclusion reversed��
Next� given a special subset gP � we classify the special subsets g�P � contain�

ing gP � By left multiplying by g��� we may assume without loss of generality
g � �� Then P � g�P � implies g���P � P �� so actually g� � P �� Thus� simply�
P � P �� Let ������ ����� So� S

� be the subsets of S so that

P �
G

w
hSoi

BwB

P � �
G

w
hS�i

BwB
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That is� the collection of all such P � is in bijection with

fS� 
 So � S� � S but S� 
� Sg
Invoking the �niteness of S� this collection is �nite� Thus� we have proven
that X � Y are simplicial complexes�

Now we begin to prove that X � Y is a thick building� upon which G acts
preserving labels� with B and N arising as the associated BN�pair�

To prove that X � Y is a chamber complex� it will su�ce to prove that
any two chambers lie in a common apartment� and that each apartment is a
chamber complex� To prove the latter� it su�ces to prove that each apart�
ment is a Coxeter complex ������ Let " � "�W�S� be the Coxeter complex
associated to the Coxeter system �W�S� ������ by de�nition being the poset
consisting of all subsets whS�i of W with S� � S and w � W � with inclusion
reversed� Consider the map

f 
 whS�i � wBWS�B

from " to the apartment A� where WS� � hS�i is as usual the subgroup of W
generated by S��

Noting that WS�B is a well�de�ned subset of the subgroup BWS�B� the
map f is well�de�ned� since replacing w by ww� with w� � WS� has the e�ect
that

f�ww�WS�� � �ww��BWS�B � w�w�BWS�B� � w�BWS�B� � f�wWS� �

For emphasis� the key point here is that for any subset S� of S the subset
BWS�B is a subgroup ������ The map is surjective� just from the de�nitions�
To prove injectivity� suppose f�w�WS�� � f�w�WS��� By left multiplying by
w��

� � we may suppose without loss of generality that w� � �� Then we have

w�BWS�B � BWS�B

Since the sets BWSiB are groups� we conclude that w� � BWS�B� and that
BWS�B � BWS�W � Since BWS�B � BWS�W implies S� � S� ������ we
have S� � S�� This proves injectivity�

Thus� the map f gives a poset isomorphism from the Coxeter complex "
to the alleged apartment A� In particular� A �and all the images gA� are thin
chamber complexes�

For one of the building axioms� given two simplices g�P�� g�P� in Y � we
must �nd an apartment containing both� We certainly may restrict our at�
tention to chambers� since by now we know that the apartments really are
simplicial complexes �and in particular contain all faces of all their simplices��
So P� � P� � B� and without loss of generality we may suppose that one of
the chambers is B itself� Let the other chamber be gB� Write g � bwb� in a
Bruhat decomposition� where b� b� � B and w �W � Then

gB � �bwb��B � b�wB� � bA
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Thus� gB � bA� and certainly B � bB � A� so the apartment bA contains the
two given chambers�

Next� we prove strong transitivity� The transitivity of G on apartments
gA in Y is clear� To prove strong transitivity� it su�ces to prove that the
stabilizer of A is transitive on chambers in A� Certainly N is contained in
the stabilizer of A� and since

W � N��N � B�

it is likewise clear that N is transitive on chambers in A� This proves that G
is strongly transitive on Y �

The labelling on Y uses the unique expression of every special subgroup P
in the form

P � BWSPB

for some subset SP of S� Then use the labelling


�gP � � S 	 SP

where the subtraction indicates set complement� �The complement is used to
comply with conventions used elsewhere$� If this labelling is well�de�ned it
is certainly preserved by the action of G� As usual� if gP � hQ for special
subgroups P�Q� then left multiply by h�� so suppose that h � � without loss
of generality� Then g � g � � � gP � Q implies that g � Q� and then P � Q�
This proves well�de�nedness of this labelling�

Now we verify that if two apartments have a common chamber� then there
is a simplicial isomorphism of the two �xing their intersection pointwise� In�
voking strong transitivity� we may assume that the common chamber is B�
that one of the two apartments is A� that the other is bA with b � B� and
thus that B itself is a chamber common to the two apartments� Consider the
map

f 
 A� bA

de�ned by f�wP � � bwP �
It remains to show that if wP � bA �in addition to wP � A� then f�wP � �

wP � That is� we must show that wP � bA implies that bwP � wP � Suppose
that wP � bw�Q for a special subgroup Q� and for some w� � W � Then

w��bw� � w��bw� � � � w��bw� �Q � P

and Q � P � Then

BwP � B � wP � B � bw�P � Bw�P

Let P � BWS�B where WS� is the subgroup of S generated by a subset S� of
S� We have

w� � BwP �
�

w�
S�

BwBw�B

For �xed w� �WS� � write

w� � s� � � � sn
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with s�� � � � � sn � S�� By iterated application of the cell multiplication rules
������ we have

BwBw�B �
�

���ldots��n

Bws��� � � � s�nn B

where the �i vary over f�� �g� In particular� we �nd that w� lies in some
Bww�B for w� � WS� � By the Bruhat decomposition for G� the double
cosets Bw�B and Bww�B are disjoint unless w� � ww�� In the latter case�
w��w� � WS� and w��w�B � P � and� thus w�P � wP �

Then
f�wP � � bwP � w�P � wP

as desired� proving that f �xes A � bA� as required by the building axioms�

Last� we verify the thickness of the building Y � That is� given a codimension�
one simplex �facet� F we must �nd at least � chambers of which it is a facet�
Invoking the transitivity of G on Y � it su�ces to consider a facet F of the
chamber B � � � B� Every such facet is of the form

Ps � B t BsB
for some s � S� In addition to B itself� we must �nd two other special subsets
gB so that gB � Ps �recalling that the partial ordering is the reverse of
containment�� One of the two is obvious
 the coset sB� To see what	s going
on generally� the point is that we want the coset space

Ps�B � �B t BsB��B

to have three or more elements� Generally for subgroups M�N of a group H
and for h � H we have a natural bijection

MhN�N �M��M � hNh���

by the map
xN � xh�M � hNh���

as is straightforward to check� Thus�

BsB�B � B��sBs � B�

Now one of the axioms for a BN�pair is that sBs 
� B� Thus�

�B 
 sBs �B� � �

and we have the desired thickness of Y �
�
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	� Hecke Algebras

� Generic algebras
� Strict Iwahori�Hecke algebras
� Generalized Iwahori�Hecke algebras

In various classical settings� in in some not�so�classical ones� there are rings
of operators called Hecke algebras which play important technical roles�

	�� Generic algebras
Let �W�S� be a Coxeter system� and �x a commutative ring R� We consider

S�tuples of pairs �as� bs� of elements of R� subject only to the requirement
that if s� � ws�w

�� for w � W and s�� s� � S� then as� � as� and bs� � bs� �
We will refer to the constants as� bs as structure constants� Let A be a free
R�module with R�basis fTw 
 w �Wg�
Theorem� Given a Coxeter system �W�S� and structure constants as� bs�

there is exactly one associative algebra structure on A so that

TsTw � Tsw if ��sw� � ��w�

T �
s � asTs � bsT� �s � S

and with the requirement that T� is the identity in A� With this associative
algebra structure� we also have

TsTw � asTw � bsTsw if ��sw� � ��w�

Further� we have the right�handed version of these identities


TwTs � Tws if ��ws� � ��w�

TwTs � asTw � bsTws if ��ws� � ��w�

Granting the theorem� for given data we de�ne the generic algebra

A � A�W�S� f�as� bs� 
 s � Sg�
to be the associative R�algebra determined according to the theorem�

Remarks� If all as � � and bs � � then the associated generic algebra is
the group algebra of the group W over the ring R� Recall that this is the free
R�module on generators �w� for w �W � and with multiplication

�r�w���r� �w��� � �rr���ww��

for r� r� � R and w�w� � W � We will not attempt to exploit the positive
attributes of such rings here�
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Remarks� When �W�S� is a�ne� as illustrated in ����� or generally below
in ������ and ������� certain less obvious choices of structure constants yield
the Iwahori�Hecke algebra in p�adic groups� Most often� this is

as � q 	 � bs � q

where q is the residue �eld of the relevant discrete valuation ring� etc�

Proof� First� we see that the �right�handed	 version of the statements
follows from the �left�handed	 ones� Suppose that ��wt� � ��w� for w � W
and t � S� Take any s � S so that ��sw� � ��w�� We certainly have

��w� � ���sw�t� � ��sw�

Then we have

TwTt � TsTswTt � TsTswt � Twt

where the �rst equality follows from ��w� � ��ssw� � ��sw�� where the second
follows by induction on length� and the third equality follows from ��sswt� �
��swt�� This gives the desired result� If ��wt� � ��w�� then by the result just
proven TwtTt � Tw� Multiplying both sides by Tt on the right yields

TwTt � TwtT
�
t � Twt�atTt � btT�� � atTwtTt � btTwt �

� atTw � btTwt

where we computed T �
t by the de�ning relation� Thus� the right�handed

versions do follow from the left�handed ones�
Next� suppose that ��sw� � ��w� and prove that

TsTw � asTw � bsTsw

If ��w� � �� then w � s� and the desired equality is just the assumed equality

T �
s � asTs � bsT�

Generally� ��s�sw�� � ��sw�� so TsTsw � Tw� Then

TsTw � T �
s Tsw � �asTs � bsT��Tsw �

� asTsTsw � bsTsw � asTw � bsTsw

as asserted� Thus� the more general multiplication rule applicable when
��sw� � ��w� follows from the rule for ��sw� � ��w� and from the formula for
T �
s �
Uniqueness is also easy� If w � s� � � � sn is reduced� then

Tw � Ts� � � � Tsn

Therefore� A is generated as an R�algebra by the Ts �for s � S and T�� Then
the relations of the theorem allow us to write down the rule for multiplication
of any two elements Tw�

and Tw�
� There is no further choice to be made� so

we have a unique algebra structure satisfying the relations indicated in the
theorem�
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Now we prove existence of this associative algebra� for given data� Let
A also denote the free R�module on elements Tw for w � W � In the ring
E � EndR�A� we have left multiplications 
s and right multiplications �s for
s � S given by


s�Tw� � Tsw for ��sw� � ��w�

�s�Tw� � Tws for ��ws� � ��w�


s�Tw� � asTw � bsTsw for ��sw� � ��w�

�s�Tw� � asTw � bsTws for ��ws� � ��w�

We grant for the moment that the 
s commute with the �t
 we will prove
this below� Let ' be the subalgebra of E generated by the 
s� Let � 
 '� A
by ���� � ��T��� Thus� for example� ���� � T� and� for all s � S� ��
s� � Ts�

Certainly � is a surjective R�module map� since for every reduced expres�
sion w � s� � � � sn we have

��
s� � � � 
sn� � �
s� � � � 
sn���� �

� 
s� � � � 
sn��
Tsn � 
s� � � � 
sn��

Tsn��sn �

� � � � Ts�			sn � Tw

To prove injectivity of �� suppose ���� � �� We will prove� by induction
on ��w�� that ��Tw� � � for all w � W � By de�nition� ���� � � means
��T�� � �� Now suppose ��w� � �� Then there is t � S so that ��wt� � ��w��
We are assuming that we already know that �t commutes with '� so

��Tw� � ��T�wt�t� � ��tTwt � �t�Twt � �

by induction on length�
Thus� ' is a free R�module with basis f
w 
 w � Wg� We note that this

R�module isomorphisms also implies that 
w � 
s� � � � 
sn for any reduced
expression w � s� � � � sn� The natural R�algebra structure on ' can be �trans�
ferred	 to A� leaving only the checking of the relations�

To check the relations
 suppose that ��sw� � ��w�� For a reduced expres�
sion w � s� � � � sn� the expression ss� � � � sn is a reduced expression for sw�
Thus�


s
w � 
s
s� � � � 
sn � 
sw

That is� we have the desired relation 
s
w � 
sw�
We check the other relation 
�

s � as
s � bs
� by evaluating at Tw � A�
For ��sw� � ��w��


�
s�Tw� � 
s�
sTw� � 
s�Tsw� � asTsw � bsTw �

� as
sTw � bs
�Tw � �as
s � bs
��Tw

If ��sw� � ��w�� then


�
s�Tw� � 
s�
sTw� � 
s�asTw � bsTsw� �

� as
sTw � bsTsTsw � as
sTw � bs
�Tw � �as
s � bs
��Tw

This proves that 
�
s � as
s � bs
�� as desired�
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The argument is complete except for the fact that the left and right mul�
tiplication operators de�ned above commute with each other� To prepare to
prove this� we need to carry out a little exercise on Coxeter groups


Proposition� Let �W�S� be a Coxeter system� Let w � W and s� t � S�
If both ��swt� � ��w� and ��sw� � ��wt�� then swt � w �and s � wtw���� In
particular� as � at and bs � bt� since s and t are conjugate�

Proof� Let w � s� � � � sn be a reduced expression� On one hand� for
��sw� � ��w��

��w� � ��s�wt�� � ��sw�

so the Exchange Condition ����� applies
 there is v �W so that sw � vt and
so that either v � ss� � � � �si � � � sn or v � w� But v � ss� � � � �si � � � sn is not
possible� since this would imply that

��wt� � ��s� � � � �si � � � sn� � ��w�

contradicting the present hypothesis

��wt� � ��sw� � ��w�

On the other hand� for ��sw� � ��w� � ��s�sw��� the hypotheses of this
claim are met by sw in place of w� so the previous argument applies� We
conclude that s�sw� � �sw�t� which gives w � swt� as desired� This proves
the proposition� �

Now we can get to the commutativity of the operators


Lemma� For all s� t � S� the operators 
s� �t � E commute�

Proof� We will prove that 
s�t 	 �t
s � � by evaluating the left�hand
side on Tw� There is a limited number of possibilities for the relative lengths
of w� sw�wt� swt� and in each case the result follows by direct computation�
although we need to use the claim in two of them


If ��w� � ��wt� � ��sw� � ��swt�� then by the de�nitions of the operators

s� �t we have


s�tT�w � 
sTwt � Tswt

In the opposite case ��w� � ��wt� � ��sw� � ��swt��


s�tTw � 
s�atTw � btTwt� � at�asTw � bsTsw� � �bt�asTwt � bsTswt�

which� by rearranging and reversing the argument with s and t and left and
right interchanged� is

� as�atTw � btTwt� � �bs�atTsw � btTswt� � �t
sTw

In the case that ��wt� � ��sw� � ��swt� � ��w�� we invoke the claim just
above
 we have as � at and bs � bt� and sw � wt� Then we compute directly



s�tTw � 
s�atTw � btTwt� �

� at�asTw � bsTsw� � btTswt �

� as�atTw � btTwt� � bsTswt � �t�asTw � bsTsw� �
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� �t
sTw

as desired�
In the case that ��wt� � ��w� � ��swt� � ��sw��


s�tTw � 
s�atTw � btTwt� � atTsw � btTswt �

� �t�
sTw�

In the case opposite to the previous one� that is� that ��sw� � ��w� �
��swt� � ��wt�� a symmetrical argument applies�

In the case that ��w� � ��swt� � ��sw� � ��wt�� we again invoke the claim
above� so that we have as � at and bs � bt� and also sw � wt� Then


s�tTw � 
sTwt � asTwt � bsTswt �

� atTsw � btTswt � �tTsw � �t
sTw

This �nishes the proof of commutativity� and thus of the theorem on generic
algebras� �

	�� Iwahori�Hecke algebras
This section demonstrates that the Iwahori�Hecke algebras do indeed qual�

ify as generic algebras in the sense above� Surprisingly� the whole line of
argument only depends upon a local �niteness property of the building�

Let G be a group acting strongly transitively on a thick building X � pre�
serving a labeling� all as in ������ �Again� the strong transitivity means that
G is transitive upon pairs C � A where C is a chamber in an apartment A
in the implicitly given apartment system�� Let �W�S� be the Coxeter system
associated to the apartments
 each apartment is isomorphic to the Coxeter
complex of this pair �W�S�� Let B be the stabilizer of C� We assume always
that S is �nite�

The local �niteness hypothesis is that we assume that for all s � S the
cardinality

qs � card�BsB�B� � card�BnBsB�

is �nite� Recall that the subgroup of G stabilizing the facet Fs of C of type
fsg for s � S is none other than

P � Ps � BhsiB � B t BsB
The subgroup B is the subgroup of P additionally stabilizing C� so BsB is
the subset of BhsiB mapping C to another chamber s�adjacent to C �that is�
with common facet Fs of type fsg�� Therefore� BsB�B is in bijection with
the set of chambers s�adjacent to C �other than C itself�� by g � gC�

That is� our local �niteness hypothesis is that every facet is the facet of
only �nitely�many chambers� Equivalently� since S is �nite we could assume
that each chamber is adjacent to only �nitely�many other chambers�
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Fix a �eld k of characteristic zero� Let

H � Hk�G�B�

be the �Iwahori�Hecke algebra	 in G over the �eld k� that is� the collection
of left and right B�invariant k�valued functions on G which are supported on
�nitely�many cosets Bg in G� As usual� the left and right B�invariance is the
requirement that f�b�gb�� � f�g� for all g � G and b�� b� � B�

We have a convolution product on H� given by

�f � ���g� �
X

h
BnG

f�gh�����h�

The hypothesis that � is supported on �nitely�many cosets Bx implies that
the sum in the previous expression is �nite� Since � is left B�invariant and
f is right B�invariant the summands are constant on cosets Bg� so summing
over BnG makes sense� Nevertheless� we must provide proof that the product
is again in H� We do this in the course of the theorem�

Generally� let chE be the characteristic function of a subset E of G� By
the Bruhat�Tits decomposition� if indeed they are in H�G�B�� the functions
chBwB form an k�basis for H�G�B�� This Hecke algebra is visibly a free
k�module�

Theorem� Each BgB is indeed a �nite union of cosets Bx� the algebra
H is closed under convolution products� and we have

chBsB � chBwB � chBswB for ��sw� � ��w�

chBsB � chBsB � aschBsB � bschB

for
as � qs 	 � and bs � qs

That is� these Iwahori�Hecke operators form a generic algebra with structure
constants as indicated� Further� for a reduced expression w � s� � � � sn �that
is� with n � ��w� and all si � S�� we have

qw � qs� � � � qsn

Proof� We �rst prove that double cosets BwB are �nite unions of cosets
Bx at the same time that we study one of the requisite identities for the generic
algebra structure� This also will prove that H is closed under convolution
products�

We do induction on the length of w �W � Take s � S so that ��sw� � ��w��
At g � G where chBsB � chBwB does not vanish� there is h � G so that
chBsB�gh

���chBwB�h� 
� �� For such h� we have gh�� � BsB and h � BwB�
Thus� by the Bruhat cell multiplication rules�

g � �gh���h � BsB �BwB � BswB

Since this convolution product is left and right B�invariant� we conclude that

chBsB � chBwB � c chBswB
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for some positive rational number c � c�s� w��
Let us compute the constant c � c�s� w�� by summing the previous equality

over BnG� This summing gives

cqsw � c card�BnBswB� � c
X

g
BnG

chBswB�g�

� c
X

g
BnG

�chBsB � chBwB��g� �
X

g
BnG

X
h
BnG

chBsB�gh
���chBwB�h�

�
XX

chBsB�g�chBwB�h� � qs qw

�the latter by replacing g by gh� interchanging order of summation��
Thus� we obtain c � qsqw�qsw and for ��sw� � ��w�

chBsB � chBwB � qsqwq
��
sw chBswB

This shows incidentally that the cardinality qsw of BnBwB is �nite for all w �
W � and therefore that the Hecke algebra really is closed under convolution�

Now we consider the other identity required of a generic algebra� Since

BsB � BsB � B t BsB
we see that we need evaluate �Ts �Ts��g� only at g � � and g � s� In the �rst
case� the sum de�ning the convolution is

�chBsB � chBsB���� �
X

h
BnG

chBsB�h
���chBsB�h� � qs �

� �qs 	 �� � � � qs � � � �qs 	 ��chBsB��� � qschB���

In the second case�

�chBsB � chBsB��s� �
X

h
BnG

chBsB�sh
���chBsB�h� �

� card�Bn�BsB � BsBs��
Let P be the parabolic subgroup P � B � BsB� This is the stabilizer of the
facet Fs� The innocent fact that P is a group allows us to compute


BsB � BsBs � �P 	B� � �P 	B�s � �P 	B� � �Ps	Bs� �

� �P 	B� � �P 	Bs� � P 	 �B t Bs�
Therefore� BsB � BsBs consists of �P 
 B�	 � left B�cosets� This number is
�qs � ��	 � � qs 	 �� Thus� altogether�

chBsB � chBsB � �qs 	 ��chBsB � qschB

Therefore� already we can see that with Tw � q��
w chBwB we obtain a generic

algebra with structure constants as � ��	 q��
s � and bs � q��

s � However� this
is a weaker conclusion than we desire
 we wish to prove further that for
��sw� � ��w� we have

qsqw � qsw
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If the latter equality were true� then our earlier computation would show that�
in fact�

chBsB � chBwB � chBswB

Then taking simply Tw � chBwB would yield a generic algebra with structure
constants as � qs 	 � and bs � qs�

On one hand� �with ��sw� � ��w�� we evaluate both sides of

chBsB � chBwB � qsqwq
��
sw chBswB

at the point sw
 the left hand side isX
h
BnG

chBsB�swh
���chBwB�h� � card�Bn�BsB�sw� � BwB�� �

� card�Bn�BsBs�BwBw���� � card�Bn�Bss�Bww���� � card�BnB� � �

The right�hand side is simply qsqwq
��
sw � so we have

qsqw � qsw

On the other hand� invoking the theorem on generic algebras� �still with
��sw� � ��w�� we have

q��
s chBsB � q��

sw chBswB � ��	 q��
s �q��

sw chBswB � q��
s q��

w chBwB

This gives

chBsB � chBswB � �qs 	 ��chBswB � qswq
��
w chBwB

Now we evaluate both sides at w
 the right side is qswq
��
w � while the left is

card�Bn�BsBw � BswB�� � card�Bn�BsB � BswBw����

� card�Bn�BsB � BsBBwB � w����

� card�Bn�BsB � BsBww����

� card�BnBsB� � qs

by invoking the cell multiplication rules� That is� we conclude that

qsw � qsqw

Combining these two computations� we have qsw � qsqw as claimed� An
induction on length gives the assertion

qs�			sn � qs� � � � qsn

for a reduced expression s� � � � sn � W � Thus� we obtain the simpler generic
algebra set�up� as claimed� �
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	�� Generalized Iwahori�Hecke algebras
Now we consider generalized BN�pairs and associated convolution algebras�

The necessity of considering a generalized �rather than strict� BN�pair occurs
already for GL�n� and the a�ne BN�pair� that is� where B is an Iwahori
subgroup�

Let G be a group acting strongly transitively on a thick building X � Let Go

be the subgroup preserving a labeling� and suppose that Go still acts strongly
transitively� Let Bo be the stabilizer of a �xed chamber C in the smaller
group Go� We assume always that S is �nite�

Fix a �eld k of characteristic zero� Let

H � Hk�G�Bo�

be the �Hecke algebra of level Bo	 in G over the �eld k� that is� the collection
of left and right Bo�invariant k�valued functions on G which are supported on
�nitely�many cosets Bog in G�

We have a convolution product on H� given by

�f � ���g� �
X

h
BonG

f�gh�����h�

The hypothesis that � is supported on �nitely�many cosets Box implies that
the sum in the previous expression is �nite� Since � is left Bo�invariant and f
is right Bo�invariant the summands are constant on cosets Bog� so summing
over BonG makes sense�

Let Ho be the subalgebra of functions in H with support inside Go� The
result of the previous section is that Ho is a generic algebra� with structure
constants as� bs having meaning in terms of the building� as indicated there�

Our goal in this section is to take the generic�algebra structure of Ho for
granted� and describe the structure of H in terms of Ho and %�

As usual� let chE be the characteristic function of a set E�
Let No be the stabilizer of a chosen apartment A in the smaller group Go

and let N be the stabilizer of A in the larger group G� Let T � N � B and
To � No � Bo� From our earlier discussion of generalized BN�pairs� Go is a
normal subgroup of G� and

G � TGo

Put

% � T�To

Then we have a semi�direct product

N�To � %��W
Thus� also G�Go � %� De�ne W � No�To as usual� For � � % and w � W �
we have

�Bo � Bo� � Bo�Bo
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�BowBo � Bo�wBo � Bo��w�
���Bo�

where we note that �w��� �W �
Let �W�S� be the Coxeter system associated to the apartments
 each apart�

ment is isomorphic to the Coxeter complex of this pair �W�S�� We assume as
in the previous section that for all s � S the cardinality

qs � card�BosBo�Bo� � card�BonBosBo�

is �nite� Again� BosBo�Bo is in bijection with the set of chambers s�adjacent
to C �other than C itself�� by g � gC�

Let k�%� be the group algebra of %� in the sense recalled in ������ Since S
is assumed �nite and since G�Go � %� % is �nite� The following proposition
reduces study of a part of the generalized Iwahori�Hecke algebra to a much
more elementary issue


Proposition� The subalgebra H� of H consisting of functions supported
on cosets of the form Bo� for � � % is isomorphic to the group algebra k�%��
by the map

chBo
Bo � chBo
 � ��� � k�%�

Proof� This is a nearly trivial exercise� using the properites of generalized
BN�pairs recalled just above� �

Now de�ne an action of % on Ho by

ch
BowBo � chBo�
��w
�Bo

for w � W � We introduce a �twisted	 multiplication in k�%��k Ho by

����� ����� � � �� � ��� �� ��� � ��
and denote the tensor product with this multiplication by

k�%��� Ho

The main point here is

Theorem� The generalized Iwahori�Hecke algebra H is

H � k�%��� Ho

with isomorphism given by the map

chB
wB � ���� chBwB

Proof� We take for granted the structural results ����� on the strict
Iwahori�Hecke algebra Ho� The key point here is that

chBo
 � chBowBo � chBo
wBo

This is direct computation
 for g � G so that the convolution does not vanish�
and for h � G so that the hth summand in the convolution does not vanish�
we have

g � �gh���h � �Bo���BowBo� � Bo�wBo
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Thus� the convolution is somemultiple of chBo
wBo � Take g � �w without loss
of generality� to compute the convolution� The summand in the convolution
is non�zero only for both ��w�h�� � Bo�Bo and h � BowBo� That is� it is
non�zero only for

h � �Bo�
��Bo�w� � �BowBo� � �Bo�

���Bow� � �BowBo� �

� Bow � BowBo � Bow

Thus� the sum over h � BonG has non�zero summand only for h � Bow� That
is� the convolution is exactly chBo
wBo � as claimed�

A similar computation shows that for w � W and � � %

chBowBo � chBo
Bo � chBow
Bo

Further� this is equal to

chBo
�
��w
�Bo � chBo
Bo � chBo�
��w
�Bo

Thus� it is easy to check that the multiplication in H is indeed the �twisted	
tensor product multiplication as de�ned above� �
Remarks� The previous theorem is to be interpreted as having success�

fully reduced study of generalized Iwahori�Hecke algebras to that of strict
ones� mediated by the relatively elementary group algebra k�%� and its action
on the strict Iwahori�Hecke algebra� But as it stands� the previous theorem
only prepares for the beginning of such study�
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Geometric Algebra

� GL�n� �a prototype�
� Bilinear and hermitian forms
 classical groups
� A Witt�type theorem
 extending isometries
� Parabolics� unipotent radicals� Levi components

In this part we set up standard geometric algebra� This is completely
independent of previous developments concerning buildings and BN�pairs�
rather being preparation for three important classes of examples of application
of the building�theory�

Note that while the terminology here is the antecedent of the Coxeter
group� building� and BN�pair nomenclature above� the connections between
the two require proof� which is given following each construction�

Regarding matrix notation
 for a rectangular matrix R� let Rij be the
�i� j�th entry� Let Rop be the transpose of R� that is� �Rop�ij � Rji� If the
entries of R are in a ring D and � is an involution on D� let R
 be the matrix
with �R
�ij � R


ji�


�� GL�n� �a prototype�

The group GL�n� is the classical group most easily studied� but already
indicates interesting and important phenomena to be anticipated in other
situations�

The general linear group GL�n� k� is the group of invertible n�n matri�
ces with entries in a �eld k� The special linear group SL�n� k� is the group
of �invertible� n�n matrices with entries in a �eld k and having determinant
��

If we wish a less coordinate�dependent style of writing� we �x an n�dimensional
k�vectorspace V and let GLk�V � be the group of k�linear automorphisms of
V �

Any choice of k�basis for V gives an isomorphism GLk�V �� GL�n� k�� by
taking the matrix of a linear transformation with respect to the chosen basis�
Let e�� � � � � en be the standard basis for kn


e� �

�
BB�

�
�
� � �
�

�
CCA e� �

�
BB�

�
�
� � �
�

�
CCA � � � en �

�
BB�

�
� � �
�
�

�
CCA

By this choice of �ordered� basis we obtain an isomorphism

GLk�k
n�� GL�n� k�
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A �ag in V is a chain

Vd� � Vd� � � � � � Vdm

of subspaces� where Vi is of dimension i and

d� � � � � � dm

We say that the type of the �ag is the sequence �d�� � � � � dm�� In kn the
standard �ag of type �d�� � � � � dm� is the �ag of type �d�� � � � � dm� with

Vdi � ke� � ke� � � � �� kedi�� � kedi

A parabolic subgroup P � PF in GLk�V � is the stabilizer of a �ag

F � �Vd� � Vd� � � � � � Vdm�

That is�
PF � fg � GLk�V � 
 gVdi � Vdi �ig

If V � kn and F is the standard �ag of type �d�� � � � � dm�� then the para�
bolic PF consists of all elements admitting a block decomposition�
BBB�

d� � d� �
�d� 	 d��� �d� 	 d��

� � �

� �dm 	 dm���� �dm 	 dm���

�
CCCA

where �as indicated� the ith diagonal entry is �di 	 di��� � �di 	 di���� the
lower entries are �� and the entries above the diagonal blocks are arbitrary�

Each g � P � PF induces a natural map on the quotients Vdi�Vdi��
�where

we de�ne Vdo � � and Vdm��
� V �� Then the unipotent radical RuP is

RuP � fp � PF 
 p � id on all Vdi�Vdi��
and on V�Vdmg

The unipotent radical RuP is a normal subgroup of P �
In the case of the standard parabolic P of type �d�� � � � � dm� on kn� the

unipotent radical consists of elements which look like�
BBBBBB�

�d� � � � �
�d� � � � �

� � � � � � �
� � � �

� �dm

�
CCCCCCA

where �d denotes the identity matrix of size d� d�
Choose subspaces V �n�di of V so that V �n�di is a complementary subspace

to Vdi in V and so that

V �n�dm � � � � � V �n�d�

is a �ag of opposite type to the �ag of Vdi 	s� Put

P � � fg � GLk�V � 
 gV �n�di � V �n�di �ig
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M � P � P �
Then M is called a Levi component or Levi complement in P � and P �
PF is the semidirect product

P � M ��RuP

of M and RuP � where M normalizes RuP �
For the standard parabolic P inGL�n� k� of type �d�� � � � � dm�� the standard

choice of the complementary spaces is

V �n�di � kedi	� � � � �� ken

Then the standard Levi component is the group of matrices of the form�
BBBBBB�

d� � d� �
d� � d�

� � �

� � �

� dm � dm

�
CCCCCCA

where �as indicated� the ith diagonal entry is di � di� and all other blocks are
zeros�

In the case of GLk�V �� the Levi components of minimal parabolics are
called maximal �k��split tori�

The following result is a prototype for the analogous results for larger
classes of groups�

Proposition�

� All parabolics of a given type are conjugate in GLk�V �
� All Levi components in a parabolic subgroup P are conjugate by ele�
ments of P �

� All maximal k�split tori are conjugate in GLk�V ��

Proof� This proof is a paradigm���
To prove the conjugacy of parabolics of a given type� it su�ces to show

that for two �ags
Vd� � � � � � Vdm
V �d� � � � � � V �dm

of the same type there is g � GLk�V � so that gVdi � V �di for all i� Choose two
bases fvig� fv�ig for V � so that

Vdi � kv� � � � �� kvdi

V �di � kv�� � � � �� kv�di
Then de�ne g by gvi � v�i� This proves the conjugacy of parabolics of a given
type�

To prove conjugacy of Levi components within a given parabolic P � let

Vd� � � � � � Vdm
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be the �ag of which P is the stabilizer� and let V �
n�di

� V �
n�di

�with � � i � m�
be two choices of families of complementary subspaces de�ning �in our present
terms� Levi components� It su�ces to �nd p � P so that pV �

n�di
� V �

n�di
for

all indices i�
For � � �� �� de�ne W �

� � � � � �W
�
m	� to be� respectively�

Vd� � Vd� � V �
n�d� � Vd� � V �

n�d� � � � � � Vdm � V �
n�dm��

� V �
n�dm

For � � �� � we have V � 
W �
i � By hypothesis� dimk W

�
j � dimk W

�
j for all

j! therefore� there are many elements g � GLk�V � so that gW �
j � W �

j for all

j� For any such g� certainly g � P � and since V �
j is a sum of W �

i 	s� certainly

pV �
n�di

� V �
n�di

for all i�
Given two maximal split tori T�� T�� choose minimal parabolics Pi contain�

ing Ti� By the �rst part of the proposition� there is h � GLk�V � so that
hP�h

�� � P�� Then hT�h
�� is another Levi component �maximal split torus�

inside P�� so by the second assertion of this proposition there is p � P� so that
p�hT�h

���p�� � T�� This gives the third assertion of the proposition� �
Now we generalize the previous in a mostly straightforward way
 replace

the �eld k of the previous section by a division ring D� We repeat the
coordinate�free version of the previous discussion! the matrix pictures are
identical to those just above�

We de�ne a �nite�dimensional vectorspace V over a division ring D to
be a �nitely�generated free module over D� The notion of dimension makes
sense� being de�ned as rank of a free module� Elementary results about linear
independence and bases are the same as over �elds�

The loss of commutativity ofD becomes relevant when consideringD�linear
endomorphisms� If D is not commutative� then the ring EndD�V � of D�linear
endomorphisms of V does not naturally contain D� Thus� a choice of D�basis
for an n�dimensional D vectorspace V gives an isomorphism

EndD�V �� fn� n matrices with entries in Doppg
where Dopp is the opposite ring to D� That is� Dopp is the same additive
group as D� but with multiplication � given by

x � y � yx

where yx is the multiplication in D�
�Sometimes this �harmless� complication is avoided by declaring V to be a

�right	 D�module� but the de�nition of �right	 module really is that of module
over the opposite ring Dopp anyway��

The general linear group GL�n�D� over D is the group of invertible
n� n matrices with entries in D� The coordinate�free version of the general
linear group is GLD�V �� the group of D�linear automorphisms of V � Choice
of D�basis for V gives an isomorphism

GLD�V �� GL�n�Dopp�
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De�nitions regarding 
ags and parabolics are identical to those in the case
that D was a �eld


A �ag in V is a chain

Vd� � Vd� � � � � � Vdm

of subspaces� where Vi is of D�dimension i and

d� � � � � � dm

The type of the �ag is the sequence �d�� � � � � dm��
A parabolic subgroup P � PF in GLD�V � is the stabilizer of a �ag

F � �Vd� � Vd� � � � � � Vdm�

That is�
PF � fg � GLD�V � 
 gVdi � Vdi �ig

Each g � P � PF induces a natural map on the quotients Vdi�Vdi��
�where

we de�ne Vdo � � and Vdm��
� V �� The unipotent radical RuP is

RuP � fp � PF 
 p � id on Vdi�Vdi��
�ig

The unipotent radical RuP is a normal subgroup of P �
Choose subspaces V �n�di of V so that V �n�di is a complementary subspace

to Vdi in V � Then
V �n�dm � � � � � V �n�d�

is a �ag of opposite type to the �ag of Vdi 	s� Put

P � � fg � GLD�V � 
 gV �n�di � V �n�di �ig
M � P � P �

Then M is called a Levi component or Levi complement in P � and P �
PF is the semidirect product

P � M ��RuP

of M and RuP � where M normalizes RuP �

Proposition�

� All parabolics of a given type are conjugate in GLD�V �
� All Levi components in a parabolic subgroup P are conjugate by ele�
ments of P �

The proofs of these assertions are identical to those for GL�n� k�� �
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�� Bilinear and hermitian forms� classical groups

In this section we introduce the classical groups de�ned as isometry or
similitude groups of �forms	 on vectorspaces� We de�ne orthogonal groups
and symplectic groups �rst� then the unitary groups� and then more general
groups including what are sometimes denoted as O� and Sp�� �This family of
descriptions could be simpli�ed� at the cost of obscuring the simpler members��

Let k be a �eld not of characteristic �� and let V be a �nite�dimensional
k�vectorspace� A �k��bilinear form on V is a k�valued function on V �V so
that� for all x� y � k and v� v�� v� � V

hv� � v�� vi � hv�� vi� hv�� vi
hv� v� � v�i � hv� v�i� hv� v�i

hxv� yv�i � xyhv� v�i
If always

hv�� v�i � hv�� v�i
then the bilinear form is symmetric� The function

Q�v� � hv� vi
is the associated quadratic form� from which h� i can be recovered by

�hv�� v�i � Q�v� � v��	Q�v� 	 v��

The associated orthogonal group is the isometry group of Q or h� i� which
is de�ned as

O�Q� � O�h� i� � fg � GLk�V � 
 hgv�� gv�i � hv�� v�i �v�� v� � V g
The associated similitude group is de�ned as

GO�Q� � GO�h� i� � fg � GLk�V � 
 � ��g� � k
 so that hgv�� gv�i �
��g� hv�� v�i �v�� v� � V g

If always

hv�� v�i � 	hv�� v�i
then the bilinear form is alternating or symplectic or skew�symmetric�
The associated symplectic group is the isometry group of h� i� which is
de�ned as

Sp�h� i� � fg � GLk�V � 
 hgv�� gv�i � hv�� v�i �v�� v� � V g
The associated similitude group is de�ned as

GSp�h� i� � fg � GLk�V � 
 � ��g� � k
 so that hgv�� gv�i �
��g� hv�� v�i �v�� v� � V g
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Let K be a quadratic �eld extension of k with non�trivial k�linear auto�
morphism �� A k�bilinear form h� i on a �nite�dimensional K�vectorspace V
is hermitian �with implicit reference to �� if

hxv�� yv�i � xy
hv�� v�i
for all x� y � K and for all v�� v� � V � The associated unitary group is the
isometry group of h� i� which is de�ned as

U�h� i� � fg � GLK�V � 
 hgv�� gv�i � hv�� v�i �v�� v� � V g
The associated similitude group is de�ned as

GU�h� i� � fg � GLK�V � 
 � ��g� � k
 so that hgv�� gv�i �
��g� hv�� v�i �v�� v� � V g

The previous groups can all be treated simultaneously� while also including
more general ones� as follows�

Let D be a division algebra with involution �� That is� � 
 D � D has
properties

���

 � � and ��� ��
 � �
 � �
 and ����
 � �
 �


for all �� � � D� Let Z be the center of D� We require that D is �nite�
dimensional over Z� Certainly � stabilizes Z� If � is trivial on Z then say
that � is an involution of �rst kind! if � is non�trivial on Z then say that
� is an involution of second kind� In either case� we suppose that

k � fx � Z 
 x
 � xg
Let V be a �nite�dimensional vectorspace over D� and �x 	 � ��� Let

h� i 
 V � V � D

be a D�valued k�bilinear �form	 on V so that

hv�� v�i � 	hv�� v�i


h�v�� �v�i � �hv�� v�i�

for all �� � � D and v�� v� � V � This is an 	�hermitian form on V � For
want of better terminology� we call V �equipped with h� i� a �D� �� 	��space�

Let Vi be �D� �� 	��spaces with forms h� ii �for i � �� ��� A D�linear map
� 
 V� � V� is an isometry if� for all u� v � V��

h�u� �vi� � hu� vi
The map � is a similitude if there is � � k so that� for all u� v � V��

h�u� �vi� � �hu� vi
Write � 
 V�

�� V� if � is an isometry�
The associated isometry group of h� i is de�ned as

fg � GLD�V � 
 hgv�� gv�i � hv�� v�i �v�� v� � V g
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The associated similitude group is de�ned as

fg � GLD�V � 
 � ��g� � k
 so that hgv�� gv�i �
��g� hv�� v�i �v�� v� � V g

A D�subspace U of a �D� �� 	��space V has orthogonal complement

U� � fu� � V 
 hu�� ui � � �u � Ug
Note that there is in general no assurance that U � U� � �� The kernel of
the whole space V is V �� The form is non�degenerate if V � � �� Often we
will suppress reference to the form and say merely that the space V itself is
non�degenerate� Such abuse of language is typical in this subject�

If V�� V� are two �D� �� 	��spaces with respective forms h� i�� h� i�� then the
direct sum V� 
 V� of D�vectorspaces is a �D� �� 	��space with form

hv� � v�� v
�
� � v��i � hv�� v

�
�i� � hv�� v

�
�i�

We call this an orthogonal sum� Generally� two subspaces V�� V� of a
�D� �� 	��space are orthogonal if

V� � V ��

or equivalently� if V� � V �� �
If hv� vi � � for v � V � then v is an isotropic vector � If hv� v�i � � for all

v� v� � U for a subspace U of V � then U is a �totally� isotropic subspace�
If no non�zero vector in U is isotropic� then U is anisotropic�

Proposition� Let V be a non�degenerate �D� �� 	��space with subspace
U � Then U is non�degenerate if and only if V � U 
U�� if and only if U� is
non�degenerate�

Proof� We map ' 
 V � HomD�U�D� by v � 
v where


v�u� � hu� vi
The non�degeneracy of V assures that ' is onto� The kernel is visibly U��
Then� by linear algebra�

dimD U� � dimDopp '�U� � dimD V

Thus� since the dimension of '�V � is the same as the dimension of U � by
dimension�counting� U �U� � � if and only if U �U� is a direct �and hence
orthogonal� sum�

Since U � U��� U degenerate implies that U � U� is non�zero� Then
U� � U�� is non�zero� since it contains U � U�� so U� is degenerate� On
the other hand� U non�degenerate implies that U � U� is a direct sum� so
dim U � dim V 	 dimU�� Since dim U�� � dim V 	 dimU� by the non�
degeneracy of V � we have U�� � U � so U�� � U� is a direct sum� and U�

is non�degenerate� �
A D�basis e�� � � � � en for a �D� �� 	��space V is an orthogonal basis if

hei� eji � � for i 
� j�
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Proposition� Let V be a �D� �� 	��space� Exclude the case that 	 �
	�� D � k� and � is trivial� If h� i is not identically zero then there is v � V
with hv� vi 
� �� If V is non�degenerate then it has an orthogonal basis�

Proof� Suppose that hv� vi � � for all v � V � Then

� � hx� y� x� yi � hx� xi� hx� yi� 	hx� yi
 � hy� yi � hx� yi� 	hx� yi


If 	 � � and h� i is not identically �� then there are x� y so that hx� yi � ��
Then we have

� � hx� yi� 	hx� yi
 � � � �

contradiction�
Suppose that 	 � 	� and � is not trivial on D� Then there is � � D so

that �
 
� �� and with � � �	 �
 � �
 � 	�� If h� i is not identically �� then
there are x� y so that hx� yi � �� Then we have

� � h�x� yi� 	h�x� yi
 � �hx� yi 	 hx� yi
�
 �

� � 	 	� � ��

contradiction�
To construct an orthogonal basis� do induction on dimension� If the dimen�

sion of a non�degenerate V is �� then any non�zero element is an orthogonal
basis� Generally� by the previous discussion� we can �nd v � V so that
hv� vi 
� �� Then Dv� is non�degenerate and V is the orthogonal direct sum
of Dv and Dv�� by the previous proposition� �

Suppose that V is two�dimensional� with an ordered basis x� y so that

hx� xi � hy� yi � � and hx� yi � �

Then V is a hyperbolic plane and x� y is a hyperbolic pair in V � A
�D� �� 	��space is hyperbolic if it is an orthogonal sum of hyperbolic planes�

Proposition� Let V and W be two hyperbolic spaces of the same di�
mension �with the same data D� �� 	�� Then there is an isometry f 
 V �W �
That is� dimension is the only invariant of hyperbolic spaces�

Proof� Match up hyperbolic pairs� �

Proposition� Take V non�degenerate with 	 � 	�� D � k� and � trivial�
Then V is hyperbolic� that is� is an orthogonal sum of hyperbolic planes�

Proof� Since � is trivial� �� � �� for all �� � � D� so D is a �eld� Since

hx� xi � 	hx� xi
and the characteristic is not �� every vector is isotropic� Fix x � V non�zero�
and take y � V so that hx� yi 
� �� Then by changing y by an element of
D we can make hx� yi � �� that is� a hyperbolic pair� Then Dx � Dy and
�Dx�Dy�� are non�degenerate� and we do induction on dimension� �
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Proposition� Let V be a non�degenerate space and 	V the same space
with the negative of the form on V � Then the orthogonal sum

W � V 
 	V
is hyperbolic�

Proof� In the case of �non�degenerate� alternating spaces �with D � k� 	 �
	�� � trivial�� V itself is already hyperbolic� and then 	V is visibly so� On
the other hand� for a �non�degenerate� non�alternating space V � we can �nd
an orthogonal basis feig �for both V and 	V �� Then we claim that in V 
	V
the subspaces

Hi � Dei 
Dei

are hyperbolic planes� for all indices i� �This would prove the proposition��
Since the characteristic is not �� we can consider the vectors

xi �
�

�
ei 
 ei yi � hei� eii�� ei 
	ei

which are linearly independent �since � 
� 	��� They are both isotropic� by
design� And the constants are such that for the form h� i on V 
	V we have
hxi� yii � �� �
Proposition� Let V be non�degenerate� and W a subspace� Let Wo be

the kernel of W � Then there is a non�degenerate subspace W� of W so that
Wo �W� � W is a direct sum� Further� for any basis x�� � � � � xn for Wo� and
for any such W�� there is a set fyig � W�

� so that the subspaces Dxi �Dyi
are mutually orthogonal hyperbolic planes� In particular�

W �
X
i

Dyi �W 
 �
iDyi�

is non�degenerate and Wo �
P

i Dyi is a hyperbolic space�

Proof� The form h� i induces a non�degenerate form of the same �type	 on
the quotient W�Wo� It is easy to see that this quotient is non�degenerate� Let
W� be any vectorspace complement to Wo in W � Then the non�degeneracy
of W�Wo implies that of W��

Since U � W� �Dx� � � � ��Dxn is a proper subspace of W �noting that
x� is missing�� and since V is non�degenerate� W� is a proper subspace of
U�� That is� there is a non�zero element y in U� but not in W�� Then
hx�� yi 
� �� Adjusting y by an element of D allows us to make hx�� yi � ��
Since hy� yi � 	hy� yi�� y� � y 	 �

� hy� yix� is the desired element to make a
hyperbolic pair x�� y��

Now Y � �Dy��
� � Wo is of codimension � in Wo� and is the kernel of

W �Dy�� Thus� induction on the dimension of Wo gives the proposition� �
Corollary� Let V be a non�degenerate space� Then there is a hyper�

bolic subspace H of V and an anisotropic subspace A of V so that V is the
orthogonal direct sum V � H 
A�
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Proof� This is by induction on the dimension of V � If V is anisotropic�
we are done� If not� let v be a non�zero isotropic vector� and by the previous
proposition �nd another vector w so that v� w is a hyperbolic pair� Then
�Dv �Dw�� is non�degenerate and of smaller dimension than V � �


�� A Witt�type theorem� extending isometries
Here we give a result including the traditional Witt theorem on extensions

of isometries in non�degenerate �formed	 spaces� The proof here is somewhat
more �element�free	 than the traditional proof� This result implies� as a spe�
cial case� that all parabolic subgroups �of the same type	 in isometry �and
similitude� groups are conjugate�

Still we exclude characteristic �� and keep the other notation and hypothesis
of previous sections�

For a �D� �� 	��space V with form h� i� let 	V denote the �D� �� 	��space
which is the same D�vectorspace but with form 	h� i� Let Vo denote the
kernel of a �D� �� 	��space V �

Theorem�

� Let U�W be subspaces of a non�degenerate space V � Every isometry
� 
 U � W extends to an isometry � 
 V � V � �That is� � restricted
to U is ���

� If U� V�W are spaces so that U 
 V �� U 
W � then V �� W �

Proof� The main technical device in the proof is consideration of a certain
con�guration which occurs elsewhere as well� We introduce this �rst� and
then proceed with the proof�

Suppose that V � X
Y with X�Y non�degenerate proper subspaces of V �
and with V hyperbolic� Let W be a maximal totally isotropic subspace of V �
From the previous section	s results it follows easily that dimD W � �

� dimD V �
Let A�B be the images of W under projection to X�Y � respectively� Since
both X�Y are proper subspaces of V � a maximal isotropic subspace of X �or
of Y � has strictly smaller dimension than W � so neither of A�B is �� Since
W is maximal isotropic and V is hyperbolic� we have W �W�� and thus the
kernel of A is

Ao � fx � A 
 hx�wi � � �w � Wg � A �W� � A �W � X �W
Similarly� the kernel of B is

Bo � Y �W
De�ne � 
 A� B�Bo by �x � y�Bo where x�y �W � Then for x� x� � A�

h�x� �x�i � h�x� x� � �x�i �
� h�x� x	 x� x� � �x�i � h	x� x� � �x�i � 	hx� x�i
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That is� � induces an isometry �also denoted by ��

A�Ao
��� 	B�Bo

Note that both A�Ao and B�Bo are non�degenerate�
From the discussion of the previous section� there are totally isotropic sub�

spaces A� of X and B� of Y so that both Ao
A� and Bo
B� are hyperbolic�
and so that A �A� � B � B� � ��

Lemma�

X � A
A� and Y � B 
B�

Proof� To prove this� let

�N � dim V � �dim W � ��dim Ao � dimB� � ��dim A� dim Bo

m � dim Ao n � dim Bo r � dim A�Ao � dim B�Bo

Then we have

�N � dim X � dim Y � �dimA� dimA�� � �dimB � dimB�� �

� �r � �m� � �r � �n� � ��m� r � n� � ��dimAo � dimB� � �N

Therefore� equality must hold� proving the claim� �

Lemma� In the above situation� suppose that X is anisotropic� and that
Y is hyperbolic� Then X � ��

Proof� The projection of W to B must be injective� since the kernel of
this projection is Ao � X �W � �� using the anisotropy of X � Thus� in the
notation of the previous lemma� A� � �� Since X � A 
 A� by the previous
lemma� we see that in the present situation X � A�

Further� we can choose B� to lie inside �X�� Then the previous lemma
shows that we have a direct sum decomposition

Y �� 	X 
 �Bo 
B��

where now Bo 
B� is hyperbolic�
Let V be the hyperbolic space of least dimension so that there is Y so that

X 
 Y �� V with Y also hyperbolic� We have

X 
 �	�Bo 
B�� �� 	Y
with 	�Bo 
 B�� hyperbolic� If X 
� �� this contradicts the minimality of V �
since X 
� � implies dimY � dimV � Thus� if X 
� � then there are no such
Y� V � �

Lemma� If

X 
 hyperbolic �� hyperbolic

then X itself is hyperbolic�
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Proof� Let X � X	 
 H with H hyperbolic and X	 anisotropic� If
X 
 Y �� V with both Y� V hyperbolic� then we have

V �� X	 
 �H 
 Y �

so by the previous lemma X	 � �� �

Lemma� If

U 
X �� U 
 Y

with U�X� Y all non�degenerate� then X 
	Y is hyperbolic�

Proof� Certainly H � U 
	U is hyperbolic� and

�X 
	Y �
H �� �X 
	Y �
 �U 
	U� �� �U 
X�
	�U 
 Y � ��
�� �U 
 Y �
	�U 
 Y � hyperbolic

by invoking the hypothesis U
X �� U
Y � �Always V 
	V is hyperbolic for
any non�degenerate V �� Thus� by the previous lemma� we have the conclusion�

�
In the situation of the last lemma� we writeX � X	
H� and Y � Y 	
H�

with Hi hyperbolic and X
	� Y 	 anisotropic� Then since X
	Y is hyperbolic

it follows from the lemma above thatX	
	Y 	 is hyperbolic� Taking a direct
sum of both sides with Y 	 gives

X	 
 �	Y 	 
 Y 	� �� Y 	 
 hyperbolic

Now 	Y 	
Y 	 is itself hyperbolic �for any non�degenerate space�� so by the
lemma above we have

X	 �� Y 	 
 hyperbolic

Symmetrically�

Y 	 �� X	 
 hyperbolic

Putting the latter two assertions together� we conclude that X	 �� Y 	�
Then the hypothesis U 
X �� U 
 Y assures that the dimensions of H�� H�

are the same� so they are isometric� being hyperbolic�
This proves the second assertion of the theorem�
We saw in the previous section that U can be orthogonally decomposed

as U �� U	 
 Uo where U	 �� U�Uo is non�degenerate� As described earlier�
for a basis x�� � � � � xn of Uo� we can choose y�� � � � � yn in �U	�� so that each
Dxi �Dyi is a hyperbolic plane� and so that

�U � U � �Dy� � � � ��Dyn�

is non�degenerate� Then W	 � �U	 is non�degenerate in W and is a com�
plement to the kernel Wo � �Uo of W � For the basis f�xig of Wo� choose
z�� � � � � zn in �W	�� so that all the D��xi��Dzi are hyperbolic planes� Then
extend � to an isometry

� 
 U � �Dy� � � � ��Dyn��W � �Dz� � � � ��Dzn�
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by de�ning �yi � zi� It is easy to verify that this really is an isometry�
By design� we have extended � to an isometry on the somewhat larger non�
degenerate space �U � thereby reducing the �rst assertion of the theorem to the
case that U �and� hence� W � are non�degenerate�

Then� using the non�degeneracy of U�W and the hypothesis � 
 U �� W �
the isometry

U 
 U� �� V ��W 
W�

implies that there is an isometry �� 
 U� �� W�� by the second assertion of
the theorem �which is already proven�� Then de�ne � on V by

��u
 u�� � ��u� � ���u��

for u � U and u� � U  � �


�� Parabolics� unipotent radicals�
Levi components

Let D� 	� � as above be �xed� and let V be a non�degenerate �formed space	
with this D� 	� �� It is important that the space be non�degenerate� Let G
be the isometry group of V � as de�ned earlier� The following discussion also
applies� with minor modi�cations� to the similitude group and other related
groups�

First we give the coordinate�independent de�nitions� and then in coordi�
nates describe the standard parabolics� unipotent radicals� and Levi compo�
nents�

An isotropic �ag F in V is a chain

V� � � � � � Vm

of totally isotropic subspaces Vi of V � The type of the �ag is the ordered
m�tuple of D�dimensions

�dimD V�� � � � � dimD Vm�

The parabolic subgroup P � PF associated to an isotropic �ag F is the
stabilizer of the �ag� that is�

PF � fg � G 
 gVi � Vi �ig
The type of the parabolic is de�ned to be the type of the isotropic �ag�

Proposition� Any two parabolic subgroups of the same �type	 are con�
jugate by an element of G�

Proof� Let P and P � be the stabilizers of two isotropic �ags

V� � � � � � Vm

V �� � � � � � V �m
where

dim Vi � dim V �i
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Invoking Witt	s theorem� there is hm in the isometry group of V so that
hmV

�
m � Vm� Since the form restricted to Vm is zero� there certainly is hom��

in AutDVm so that hom��hmV
�
m�� � Vm��� By Witt	s theorem this hom��

extends to an isometry hm�� of all of V � An induction completes the proof�
�

Note that elements of P give well�de�ned maps on the quotients Vi�Vi���
And� elements of P give well�de�ned maps on V �i���V

�
i � since

V� � � � � � Vm � V �m � V �m�� � � � � � V ��

Further� the form h� i on V gives a natural identi�cation of V �i���V
�
i with the

dual space of Vi�Vi��� by


w�v � Vi��� � hv� wi
This duality respects the action of the isometry group�

The unipotent radical RuP of a parabolic P � PF is de�ned to be the
subgroup of G consisting of elements p � P so that the maps induced by p on
all quotients Vi�Vi�� and on V �m �V �m are trivial� Note that this implies that
the natural actions on the quotients V �i���V

�
i are also trivial� since these are

dual spaces to the quotients Vi�Vi�� and this duality respects the G�action�
It is easy to see that the unipotent radical RuP of P is a normal subgroup

of P �
Fix an isotropic �ag

F � �V� � � � � � Vm�

Let

F � � �V �� � � � � � V �m�

be another isotropic �ag so that dim Vi � dim V �i and for each i

Vi � V �i � Vi 
 V �i � a non�degenerate �hyperbolic� space

The Levi component or Levi complement of the parabolic PF correspond�
ing to this choice is

M � fp � P 
 pV �i � V �i �ig � PF � PF �

Note that this implies that m �M stabilizes each Vi 
 V �i and stabilizes each
�Vi 
 V �i �

��
It is not hard to check that a parabolic subgroup is the semi�direct product

of its unipotent radical and any Levi component�
Now we claim that Levi components of parabolics of isometry groups are

products of �classical groups	� That is� we are claiming that these Levi com�
ponents are products of GL�type groups and of isometry groups�

More speci�cally� with two isotropic �ags

F � �V� � � � � � Vm�

G � �W� � � � � �Wm�
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related as above� we claim that the associated Levi component M is isomor�
phic to

H � GLd��D
opp��GLd��d��D

opp�� � � �

� � ��GLdm�dm��
�Dopp�� Iso��Vm �Wm���

where Iso��Vm � Wm��� is the isometry group of �Vm � Wm�� and where
di � dimD Vi�

Let

x� � V�� x� � V� �W�
� � x� � V� �W�

� � � � � � xm � Vm �W�
m��

x	 � V �m �W�
m

y� �W�� y� �W� � V �� � � � � � ym � Wm � V �m��

An element of the associated Levi component can be decomposed into corre�
sponding factors as

g� � � � �� gm � g	 � g�� � � � � g�m

The requirement that this be an isometry is that

hgixi� g�iyii � hxi� yii
hg	x	� g	x	i � hx	� x	i

since all other pairs of summands are pairwise orthogonal� That is� g	 is
an isometry as indicated� and g�i is completely determined by gi �as a kind of
�adjoint	�� and gi itself may be arbitrary in GLD�Vi�W�

i���� TheD�dimension

of Vi �W�
i�� is di 	 di��� so this completes the veri�cation of the claim�
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� Examples in Coordinates

� Symplectic groups in coordinates
� Orthogonal groups O�n�n� in coordinates
� Orthogonal groups O�p�q� in coordinates
� Unitary groups in coordinates

Having set up a su�cient amount of �geometric algebra	� we now use co�
ordinates to describe the standard versions of some of the classical isometry
and similitude groups� enough to suggest what can be done in all cases� Al�
though in hindsight these matrix computations are of limited use� there seems
to be considerable psychological comfort in seeing them� and operating at this
level seems an unavoidable step in development of technique and viewpoint�

Again� there will be substantial redundancy in the sort of observations we
make� with the purpose of making the phenomena unmistakable�

Regarding matrix notation
 for a rectangular matrix R� let Rij be the
�i� j�th entry� Let R� be the transpose of R� that is� �R��ij � Rji� If the
entries of R are in a ring D and � is an involution on D� let R
 be the matrix
with �R
�ij � R


ji�

��� Symplectic groups in coordinates

Among the classical groups� beyond the prototypicalGLn� symplectic groups
Sp�n� are quite �popular	� We treat the symplectic similitude groups GSp�n�
brie�y at the end of this section�

We take V � k�n� viewed as column vectors� and let

J �

�
�n 	�n
�n �n

�

where �n and �n are the n � n identity and zero matrix� respectively� For
u� v � V � put

hu� vi � v�Jv

This is a non�degenerate alternating form on V � The standard symplectic
group is

Spn � Spn�k� � isometry group of h� i �

� fg � GLk�V � 
 hgu� gvi � hu� vi �u� v � V g �
� fg � GL�n�k� 
 g

�Jg � Jg
�It is a small exercise in linear algebra to check that the last condition is
equivalent to the others�� Some authors write Sp�n � Sp�n�k� for this group�
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Now we use n � n blocks in matrices� Then� upon multiplying out the

condition g�Jg � J � the condition for g �

�
a b
c d

�
to be in Spn is

c�a	 a�c � � d�b	 b�d � � d�a	 b�c � �n

Since J� � 	J � J��� taking transpose and inverse of g�Jg � J �and
rearranging a little� gives gJgop � J � Thus� an equivalent set of conditions
for g � Spn is given by

ba� 	 ab� � � dc� 	 cd� � � da� 	 cb� � �n

The standard maximal totally isotropic subspace Vn of V is that
spanned by the vectors e�� � � � en� where fei 
 i � �� � � � � �ng is the standard
basis for k�n� The �maximal proper� parabolic subgroup P stabilizing Vn is
described in n� n blocks as

P � f
� � �

� �
�
g

This is sometimes called the Siegel parabolic or popular parabolic� The
standard Levi component M of P is

M � f
�

A �
� A���

�

 A � GLn�k�g

where A��� means inverse of the transpose of A� The unipotent radical of P
is

N � f
�

� S
� �

�

 S � S�g

where S can be any symmetric n� n matrix�
The standard minimal parabolic is

fp �

�
A �
� A���

�

 A is upper triangularg

This corresponds to the standard maximal isotropic �ag

ke� � �ke� � ke�� � �ke� � ke� � ke�� � � � � � �ke� � � � �� ken�

Note that while the matrices in this parabolic subgroup have some sort of
upper�triangular property� it is not literally so� Further� some of the zeros
in the expression appear only because the matrix is required to lie in the
symplectic group� not just because of stabilization of the indicated �ag of
subspaces�

The unipotent radical is the subgroup of such p having only �	s on the
diagonal� The standard Levi component A of this minimal parabolic is
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the subgroup of all diagonal matrices of the form�
BBBBBBBB�

a�

� � � �
an

a��
�

�
� � �

a��
n

�
CCCCCCCCA

Now we consider other maximal proper parabolics in Spn� Let V� be the
subspace ke� � � � �� ke� with � � � � n� The subgroup of Spn stabilizing V�
must consist of matrices �

BB�
� � � �
� � � �
� � � �
� � � �

�
CCA

where we use a decomposition into blocks of sizes�
BB�

�� � � � �
� �n	 ��� �n	 �� � �
� � �� � �
� � � �n	 ��� �n	 ��

�
CCA

�with compatible sizes o� the diagonal�� and where there are further conditions
which must be satis�ed for the matrix to lie in Spn� The standard Levi
component consists of matrices with block decomposition�

BB�
A � � �
� a � b
� � A��� �
� c � d

�
CCA

with

A � GL��k�

�
a b
c d

�
� Spn���k�

The unipotent radical of this parabolic consists of elements of the form�
BB�

� � � �
� � � �
� � � �
� � � �

�
CCA

with some relations among the entries� In particular� we have elements�
BB�

� x � �
� � � �
� � � �
� � 	x� �

�
CCA
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which are not in the unipotent radical of the Siegel parabolic� The veri�cation
that this is the unipotent radical� with the de�nition as above in terms of
geometric algebra� is just a computation�

All other standard parabolics are expressible as intersections of the stan�
dard maximal proper ones�

Now consider the symplectic similitude group

GSpn � GSpn�k� � similitude group of h� i �

� fg � GLk�V � 
 hgu� gvi � ��g�hu� vi �u� v � V�

for some ��g� � k
g �
� fg � GLk�V � 
 g�Jg � ��g�J� for some ��g� � k
g

It is easy to check that the map � 
 GSPn � k
 is a group homomorphism�
and that ��g�n � det�g��

The �shape	 of the standard parabolics� their unipotent radicals� and their
standard Levi components is identical to that for Spn� A standard sort of
element which is in GSpn but not in Spn is�

BBBBBBBB�



� � � �



�

�
� � �

�

�
CCCCCCCCA

on which � takes value 
 � k
� Note that these elements lie in the standard
Levi component of every standard parabolic subgroup�

��� Orthogonal groups O�n�n� in coordinates
For the �simplest	 orthogonal groups O�n� n� the discussion is almost iden�

tical to that for Spn� and we abbreviate it somewhat� The treatment of the
similitude group GO�n� n� parallels exactly that of GSpn based upon Spn� as
above�

We take V � k�n� viewed as column vectors� and let

Q �

�
�n �n
�n �n

�
For u� v � V � put

hu� vi � v�Qv

This is a non�degenerate symmetric bilinear form on V � and makes V a hy�
perbolic space� The standard orthogonal group �of signature �n� n�	 is

O�n� n� � O�n� n��k� � isometry group of h� i �

� fg � GLk�V � 
 hgu� gvi � hu� vi �u� v � V g �
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� fg � GL�n�k� 
 g
�Qg � Qg

�It is a small exercise in linear algebra to check that the last condition is
equivalent to the others��

Use n�n blocks in matrices� Upon multiplying out the condition g�Qg �

Q� the condition for g �

�
a b
c d

�
to be in O�n� n� is

c�a� a�c � � d�b� b�d � � d�a� b�c � �n

An equivalent set of conditions for g � O�n� n� is given by

ba� � ab� � � dc� � cd� � � da� � cb� � �n

The standard maximal totally isotropic subspace Vn of V is that
spanned by the vectors e�� � � � en� where fei 
 i � �� � � � � �ng is the standard
basis for k�n� The �maximal proper� parabolic subgroup P stabilizing Vn is
described in n� n blocks as

P � f
� � �

� �
�
g

This is sometimes called the Siegel parabolic or popular parabolic� The
standard Levi component M of P is

M � f
�

A �
� A���

�

 A � GLn�k�g

where A��� means inverse of the transpose of A� The unipotent radical of P
is

N � f
�

� S
� �

�

 S � 	S�g

where S can be any anti�symmetric n� n matrix�
Consider other maximal proper parabolics in O�n� n�
 Let V� be the sub�

space ke� � � � �� ke� with � � � � n� The subgroup of O�n� n� stabilizing V�
must consist of matrices �

BB�
� � � �
� � � �
� � � �
� � � �

�
CCA

with blocks of sizes�
BB�

�� � � � �
� �n	 ��� �n	 �� � �
� � �� � �
� � � �n	 ��� �n	 ��

�
CCA

�with compatible sizes o� the diagonal�� with further conditions on the entries
which must be met for the matrix to be in O�n� n�� The standard Levi
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component consists of matrices with block decomposition�
BB�

A � � �
� a � b
� � A��� �
� c � d

�
CCA

with

A � GL��k�

�
a b
c d

�
� O�n 	 �� n	 ��

The unipotent radical of this parabolic consists of elements of the form�
BB�

� � � �
� � � �
� � � �
� � � �

�
CCA

with some relations among the entries� In particular� we have elements�
BB�

� x � �
� � � �
� � � �
� � 	x� �

�
CCA

which are not in the unipotent radical of the Siegel parabolic of O�n� n��

��� Orthogonal groups O�p�q� in coordinates
Now we look at certain aspects of a somewhat more general type of orthog�

onal group� Fix integers p � q � �� and put

Q �

�
� � � �q

� �p�q �
�q � �

�
A

Then for column vectors u� v � V � kp	q we de�ne a non�degenerate sym�
metric bilinear form

hu� vi � v�Qu

The orthogonal group of interest is the corresponding group

O�p� q� � O�p� q��k� � isometry group of h� i �

� fg � GLk�V � 
 hgu� gvi � hu� vi �u� v � V g �
� fg � GLp	q�k� 
 g

�Qg � Qg
We note that� on other occasions� one might take the matrix Q associated

with p� q to be

Q �

�
� �q � �

� �p�q �
� � 	�q

�
A
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instead� However� this choice of coordinates is suboptimal for our present
purposes� Even the �straightforward� issue of getting from one coordinate
version to another is not of great moment�

In the extreme case q � �� one usually writes n � p� and

O�n� � fg � GLn�k� 
 g
�g � �ng

We will not consider this case here� since the structures we wish to investigate
�parabolic subgroups� etc�� are not visible in this choice of coordinates� In
particular� unless we know much more about the nature of k� we have no idea
whether there are any non�zero isotropic vectors�

For �p� q�� �p� q� matrices we use block decompositions of sizes�
� q � q � �

� �p	 q�� �p	 q� �
� � q � q

�
A

with corresponding sizes o� the diagonal�
It is not particularly illuminating to write out the conditions on the nine

blocks �in such decomposition� for a �p � q� � �p � q� matrix to be in the
group O�p� q�� Rather� we will examine only the standard maximal proper
parabolics� their unipotent radicals� and standard Levi components�

Let fei 
 � � �� � � � � p � qg be the standard basis for kp	q � The totally
isotropic subspace Vq of V spanned by the vectors e�� � � � eq is not maximal
isotropic� in general �since the quadratic form �p�q on kp�q may have an
isotropic vector�� Nevertheless� we have a maximal proper parabolic subgroup
P stabilizing Vq � In blocks as above� elements of P have the shape�

� � � �
� � �
� � �

�
A

with relations among the entries� which we now pursue by describing the
unipotent radical and the standard Levi component� Note indeed that the
middle zero block on the bottom row is genuine� but depends upon the fact
that the matrix is to lie in the orthogonal group�

We claim that the unipotent radical RuP of P consists of matrices of the
form �

� � x S 	 �
�xx

�

� � 	x�
� � �

�
A

where S � 	S� is q�Q skew�symmetric and x is arbitrary q� �p	 q�� That
the general �shape	 should be as indicated is fairly clear� To see that the
relations among the entries are as indicated� consider�

� � x y
� � z
� � �

�
A
�

Q

�
� � x y

� � z
� � �

�
A � Q
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Upon multiplying out in terms of the blocks� we obtain

x� z� � � y � y� � z�z � �

as claimed�
The standard Levi componentM of P consists of elements of the form�

� � � �
� � �
� � �

�
A

with relations among the entries due to the fact that these elements must lie
in O�p� q�� A straightforward computation of these relations shows that the
Levi component is exactly all elements of the form�

� A � �
� � �
� � A���

�
A

where A � GLq�k� is arbitrary and � � GLp�q�k� must satisfy ��� � � �that
is� � is in another orthogonal group��

We can consider certain other maximal proper parabolics� Let V� be the
subspace ke� � � � �� ke� with � � � � q� The subgroup of O�p� q� stabilizing
V� must consist of matrices with the shape�

BBBB�
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
CCCCA

where the blocks are of sizes�
BBBB�

�� � � � � �
� �q 	 ��� �q 	 �� � � �
� � q � q � �
� � � �� � �
� � � � �q 	 ��� �q 	 ��

�
CCCCA

�with compatible sizes o� the diagonal�� and certain relations among the en�
tries must be satis�ed for the matric to be in the orthogonal group�

The standard Levi component consists of matrices with block decom�
position �

BBBB�
A � � � �
� h�� h�� � h��

� h�� h�� � h��

� � � A��� �
� h�� h�� � h��

�
CCCCA
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with A � GL��k� and with �
� h�� h�� h��

h�� h�� h��

h�� h�� h��

�
A

in the orthogonal group O�p 	 �� q 	 �� attached to the symmetric bilinear
form with matrix �

� � � �q��
� �p�q �

�q�� � �

�
A

��� Unitary groups in coordinates
Now we look at certain aspects of unitary groups�
Fix a quadratic �eld extension K of k with non�trivial automorphism �

of K over k� Fix integers h� q � �� and �x a non�singular h � h matrix H
satisfying H
 � H � where �H
�ij � �Hji�


 � Put

Q �

�
� � � �q

� H �
�q � �

�
A

Then for column vectors u� v � V � Kh	�q we de�ne a non�degenerate ��
hermitian form

hu� vi � v
Qu

where v
 is the transpose of v with � applied to every entry�
The unitary group of interest is the corresponding group

U�Q� � isometry group of h� i �

� fg � GLK�V � 
 hgu� gvi � hu� vi �u� v � V g �
� fg � GLh	�q�K� 
 g
Qg � Qg

In the extreme case q � �� one usually writes

U�H� � fg � GLh�K� 
 g
Hg � Hg
We will not consider this case here� since parabolic subgroups are not visible
in this choice of coordinates� In particular� unless we know much more about
the nature of Q�K� k� we have no idea whether there are any non�zero isotropic
vectors�

For �h� �q�� �h� �q� matrices we use block decompositions of sizes�
� q � q � �

� h� h �
� � q � q

�
A

with corresponding sizes o� the diagonal�
As with the more general orthogonal groups� it is not particularly illumi�

nating to write out the conditions on the nine blocks in such decomposition�
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Let ei be the standard basis elements for kh	�q � The totally isotropic
subspace Vq of V spanned by the vectors e�� � � � eq may not maximal isotropic�
in general� Nevertheless� we have a maximal proper parabolic subgroup P
stabilizing Vq � In blocks as above� elements of P have the shape�

� � � �
� � �
� � �

�
A

with relations among the entries� which we now explain by describing the
unipotent radical and the standard Levi component�

We claim that the unipotent radical RuP of P consists of matrices of the
form �

� � 	z
H S 	 �
�z


Hz
� � z
� � �

�
A

where S � 	S
 is arbitrary q � Q skew�hermitian and z is arbitrary h � q
with entries in K� That the general �shape	 should be�

� � � �
� � �
� � �

�
A

as indicated is fairly clear� To see that the relations among the entries are as
indicated� consider�

� � x y
� � z
� � �

�
A



Q

�
� � x y

� � z
� � �

�
A � Q

Upon multiplying out in terms of the blocks� we obtain

x� z
H � � y � y
 � z
Hz � �

as claimed�
The standard Levi componentM of P consists of elements of the form�

� � � �
� � �
� � �

�
A

with relations among the entries due to the fact that these elements must lie
in the unitary group� Computation shows that the Levi component is exactly
all elements of the form �

� A � �
� � �
� � A
��

�
A

where A � GLq�K� is arbitrary and � lies in the smaller unitary group U�H��
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�� Spherical Construction for GL�n

� Construction of the spherical building for GL�n�
� Veri�cation of the building axioms
� The action of GL�n� on the spherical building
� The spherical BN�pair in GL�n�
� Analogous treatment of SL�n�
� The symmetric group as Coxeter group

Using notions de�ned earlier in our general discussion ����� of chamber
complexes� we describe an incidence geometry from which we obtain a 
ag
complex which is a thick building ������ whose associated BN�pair ����� has
parabolics ����� which really are the parabolic subgroups of GL�n� in the
geometric algebra sense discussed above in ������ This will be a building of
type An��� in the sense that the apartments are Coxeter complexes ����� of
type An��� where the latter data is as given in ������

Among other things� we will see that the apartments are Coxeter complexes
attached to the Coxeter system �W�S�� where W is the symmetric group on
f�� �� � � � � ng and S consists of adjacent transpositions �i for i � �� � � � � n	 ��
�That is� si interchanges i and i � � and leaves unchanged all others�� It is
certainly not clear a priori that the symmetric group is a Coxeter group� etc�
However� granting that this �W�S� is a Coxeter system� the Coxeter data is
visible
 if ji	 jj 
� �� then si and sj commute! on the other hand� sisi	� is a
��cycle� so is of order �� This is the Coxeter system of type An���

The �rst section constructs the thick building� while the second section
veri�es the necessary properties of a building� Since the apartments are �nite
complexes� they are said to be spherical� as is the building�

Then we check that GL�n� acts strongly transitively on this building� that
is� is transitive on the set of pairs �C�A� where C is a chamber contained in
an apartment A� Last� we explicitly identify the BN�pair that arises� seeing
that the �B	 really is a minimal parabolic in the geometric algebra sense�

Incidentally� we have already shown that in a spherical building there is a
unique apartment system� In particular� any apartment system we construct
is unavoidably the maximal one� Thus� while it might appear that we can
exercise volition here� we in fact cannot� in this regard�



��� Garrett� ��� Spherical Construction for GL�n��

��� Construction of the spherical building for GL�n�

We construct buildings whose apartments are of type An���
Let k be a �eld� and V an n�dimensional vectorspace over k� Let G �

GLk�V � be the group of k�linear automorphisms of V � We may often write
simply GL�n� orGL�V � for this group� �All this works as well for vectorspaces
over division rings� too� but we won	t worry about this��

Let & be the set of proper� non�trivial vector subspaces of V �that is�
subspaces x which are neither f�g nor V �� We have an incidence relation �
on & de�ned as follows
 write x � y for x� y � & if either x � y or y � x�

As de�ned earlier ������ the associated 
ag complex X is the simplicial
complex with vertices & and simplices which are mutually incident subsets of
&� That is� the simplices in X are subsets � of & so that� for all x� y � ��
x � y� Thus� in this example� the �ags in an incidence geometry are the same
things as �ags of subspaces of a vector space� as in ������

The maximal simplices inX are in bijection with sequences �maximal �ags�

V� � V� � � � � � Vn��

of subspaces Vi of V where Vi is of dimension i�
In the present context� a frame in V is an unordered n�tuple F � f
�� � � � � 
ng

of lines �one�dimensional subspaces� 
i in V so that


� 
 � � �
 
n � 
� � � � �� 
n � V

We take a set A of subcomplexes indexed by frames F � f
�� � � � � 
ng in
V 
 the associated apartment A � AF � A consists of all simplices � with
vertices which are subspaces � expressible as

� � 
i� 
 � � �
 
im

for some m�tuple i�� � � � � im�

��� Veri�cation of the building axioms
Keep all assumptions and notation of the previou section� Now we verify

the conditions ����� for a simplicial complex to be a thick building� and at the
end check the type�preserving strong transitivity ����� of the group action�

The facets Fj of a maximal simplex

C � �V� � � � � � Vn���

as above are in bijection with indices � � j � n 	 �� by omitting the jth

subspace� That is� the jth facet is

Fj � �V� � � � � � Vj�� � Vj	� � � � � � Vn���
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The other maximal simplices in X with facet Fj are �ags

V� � � � � � Vj�� � V �j � Vj	� � � � � � Vn��

where� pointedly� the only change is at the jth spot�
It is important to note that maximal simplices in the apartment A are

in bijection with choices of ordering of the lines 
�� � � � � 
n
 to an ordering

i� � � � � � 
in we associate the maximal set of mutually incident subspaces

Vj � 
i� 
 � � �
 
ij

�and the corresponding maximal �ag�� We use this in what follows�
First we prove that each simplicial complex A � A is a thin chamber

complex� Fix a frame F � f
�� � � � � 
ng specifying A�
For each index j� one must ascertain the j�dimensional subspaces V �j within

the apartment A� so that

Vj�� � V �j � Vj	�

and so that the subspace V �j is a direct sum of some of the lines 
i� On one

hand� the requirement V �j � Vj	� implies that the direct sum expression for
V �j is constrained to merely omit one of the lines in the sum expressing Vj	��

On the other hand� the requirement V �j � Vj�� implies that the direct sum

expression for V �j cannot omit the lines in the sum expressing Vj��� Thus� the
only choice remaining to describe V �j is the choice of which of the two lines

ij � 
ij��

to exclude�
As noted just above� the maximal simplices in A are in bijection with

orderings of the lines in the frame� The previous paragraph shows that the
e�ect of moving across the jth face is to interchange 
ij and 
ij��

in this
ordering� That is� the ordering corresponding to the other chamber with the
same jth face is obtained by interchanging ij and ij	��

Thus� to prove that each apartment A is indeed a chamber complex� we
must �nd a gallery from the maximal simplex speci�ed by the ordering of
lines


�� � � � � 
n

to a maximal simplex


i� � � � � � 
in
for an arbitrary permutation of the indices� We have noted that movement
across the jth facet interchanges the jth and �j � ��th lines in such an or�
dering� Since the permutation group on n things is generated by adjacent
transpositions �j� j���� there is a gallery connecting any two chambers in the
apartment� Note here that we only use the generation by adjacent transposi�
tions� and nothing more delicate�

Incidentally� above we saw above that there are only two choices �inside
an apartment A� for a j�dimensional subspace containing a given Vj�� and
contained in a given Vj	�� since the choice of this subspace is just a choice
between two lines� Thus� the apartment A is thin� as asserted�
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Now we address the thickness of the whole complex� Given �j	���dimensional
and �j����dimensional subspaces Vj��� Vj	� in V � the choice of a j�dimensional
subspace V �j between them unconstrained by restriction to an apartment is
equivalent to choice of a line in the quotient

Vj	��Vj�� � k�

where k is the underlying �eld� If k is in�nite then there certainly are
in�nitely�many distinct lines in this space� If k has �nite cardinality q� then
there are

�q� 	 ����q 	 �� � q � � � � � � � �

distinct lines� Thus� the whole �ag complex is thick�
Now we show that any two maximal simplices in X lie inside one of the

subcomplexes A � A� This� together with the fact �already proven� that
the subcomplexes A � A are chamber complexes� will also prove that the
whole complex X is a chamber complex �shown to be thick in the previous
paragraph�� apartment� That is� given two maximal �ags

V� � � � � � Vn��

V �� � � � � � V �n��

we must �nd a frame F � f
�� � � � � 
ng so that all the Vi and all the V �i are
sums of the 
i� To this end we reprove a quantitative version of a Jordan�
Holder �type theorem


We view the two �ags as giving composition series for V � Then for each i�
we have a �ltration of Vi�Vi�� given by the V �j 


�Vi � V �o � � Vi��

Vi��
� �Vi � V ��� � Vi��

Vi��
� � � � � �Vi � V �n� � Vi��

Vi��

For all indices i� j we have

Vi
Vi��

�! �Vi � V �j � � Vi��

Vi��

onto�

onto� �Vi � V �j � � Vi��

Vi�� � �Vi � V �j���
� Vi � V �j

�Vi�� � V �j � � �Vi � V �j���

The space Vi�Vi�� is one�dimensional� so for given i there is exactly one
index j for which the quotient

�Vi � V �j � � Vi��

Vi��

is one�dimensional� With this j� we claim that

Vi � V �j�� � Vi��

If not� then

Vi � Vi�� � �Vi � V �j���
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since the dimension of Vi is just one greater than that of Vi��� But by its
de�nition� j is the smallest among indices � so that

Vi � Vi�� � �Vi � V �� �
Thus� the claim is proven� Thus� given i� there is exactly one index j for
which

Vi � V �j
�Vi�� � V �j � � �Vi � V �j���

is one�dimensional� The latter expression is symmetrical in i and j� so there
is a permutation � so that this expression is one�dimensional only if j � ��i��
otherwise is ��

By symmetry� with i� j related by the permutation �� we have isomorphisms

Vi
Vi��

� Vi � V �j
�Vi�� � �Vi � V �j���� � V �j

�

� Vi � V �j
�Vi�� � V �j � � �Vi � V �j���

� V �j
V �j��

Given the previous� choose a line 
i lying in Vi � V �j which maps onto the
one�dimensional quotients� The collection of such lines provides the desired
frame specifying an apartment containing both chambers�

To complete the veri�cation that we have a thick building� we must show
that� if a chamber C and a simplex x both lie in two apartments A�B� then
there is a chamber�complex isomorphism f 
 B � A �xing both x and C
pointwise� We will in fact give the map by giving a bijection between the
lines in the respective frames
 this surely would give a face�relation�preserving
bijection between the simplices� And we will prove� instead� the apparently
stronger assertion that� given two apartments A�B containing a chamber C�
there is an isomorphism f 
 B � A �xing A � B pointwise�

Let F � f
�� � � � � 
ng and G � f��� � � � � �ng be the frames specifying the
apartments A�B� respectively� Without loss of generality� we can renumber
the lines in both of these so that the chamber C corresponds to the orderings

�
�� � � � � 
n� and ���� � � � � �n�

That is� the i�dimensional subspace occurring as a vertex of C is


� � � � �� 
i � �� � � � �� �i

Consider the map

f 
 B � A

given on vertices by


i� � � � �� 
im � �i� � � � �� �im

for any m distinct indices i� � � � � � im� Anticipating that the Uniqueness
Lemma would imply that there is at most one such map� this must be it�
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To show that f is the identity on A � B it su�ces to show that it is the
identity on all ��simplices in the intersection� If a ��simplex x lies in A � B
then x is a subspace of V which can be written as a sum of some of the 
i
and also as a sum of some of the �i� What we will show is that� if


i� � � � �� 
im � �j� � � � �� �jm

then
i� � j�� i� � j�� � � � � im � jm

The later equalities then would assure that all of A�B would be �xed point�
wise by f �

Suppose that we have a subspace x �a ��simplex� in A �B given as

x � 
i� � � � �� 
im � �j� � � � �� �jm

Suppose that it is not the case that i� � j� for all �
 let � be the largest
�with � � � � m� so that i� 
� j� � Without loss of generality �by symmetry��
suppose that i� � j� � By hypothesis� we have


� � 
� � � � �� 
j��� � 
j��� � �� � �� � � � �� �j��� � �j���

Summing this subspace with x� we obtain


� � 
� � � � �� 
j��� � 
i���
� � � �� 
im �

� �� � �� � � � �� �j��� � �j� � �j���
� � � �� �jm

But the left�hand side has dimension

�j� 	 �� � �m	 �� � m� j� 	 � 	 �

while the right�hand side has dimension

�j� 	 �� � �m	 � � �� � m� j� 	 �

This is impossible� so it must have been that i� � j� for all �� This proves
the second axiom for a building�

Thus� the complex constructed by taking �ags of subspaces is a thick build�
ing� with apartment system given via frames� which themselves are decompo�
sitions of the whole space as direct sums of lines�

��� Action of GL�n� on the spherical building
The previous section proves that we have a thick building� which is said

to be of type An�� since its apartments are Coxeter complexes ����� of that
type ������ Now we need but a little further e�ort to check that GL�V � acts
strongly transitively ����� and preserves types on this building�

First� although we know ����� that there exists an essentially unique la�
beling on this building� a tangible labeling is available and is more helpful�
By the uniqueness� our choice of description of the labeling is of no conse�
quence� So the following intuitively appealing labeling is perfectly �ne for our
purposes�
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To determine the type of a simplex in X � we need only determine the type
of its vertices� In the present example� we de�ne the type of a vertex to be
the dimension of the corresponding subspace� thereby de�ning a typing on all
simplices� The action of GL�V � is certainly type�preserving�

Given two apartments speci�ed by two frames

F � 
�� � � � � 
n

F � � 
��� � � � � 

�
n

there is g � GL�V � so that g
i � 
�i� That is� GL�V � is transitive on apart�
ments� And it is immediate that the action of GL�V � sends apartments to
apartments�

The chambers within an apartment A speci�ed by a frame

F � 
�� � � � � 
n

are in bijection with choices of ordering of the lines 
i� From the previous
paragraph� we observe that the stabilizer of an apartment is the group of linear
maps which stabilize the set of lines making up the frame� This certainly
includes linear maps to give arbitrary permutations of the set of lines in the
frame� That is� we see that the stabilizer of an apartment is transitive on the
chambers within it� This� together with the previous paragraph� shows that
GL�V � is indeed strongly transitive on the building� that is� is transitive on
the set of pairs �C�A� where C is a chamber contained in an apartment A�

This completes the veri�cation that GL�V � acts strongly transitively upon
the spherical building constructed in the previous section� and preserves types�

��� The spherical BN�pair in GL�n�
We emphasize that the subgroups B �stabilizers of chambers� in the BN�

pairs arising from the action of GL�n� on the thick building above really are
minimal parabolic subgroups in the geometric algebra sense ������ Indeed� the
construction of this building of type An�� was guided exactly by the aim to
have this happen� Thus� facts about parabolic subgroups appear as corollaries
to discussion of buildings and BN�pairs�

Repeating
 by the very de�nition of this building� stabilizers of simplices
in the building are stabilizers of �ags of subspaces� Thus� in particular� the
minimal parabolic subgroups of GL�n� really are obtained as stabilizers of
chambers of this thick building�

Remarks� We could reasonably assert that the collection of all chambers
in the spherical building is in natural bijection with the collection of all min�
imal parabolic subgroups in GL�n�� More broadly� the collection of simplices
in the building is in bijection with all parabolics in the group� and the face
relation is inclusion reversed� Or� we could say that the set of vertices was
the collection of maximal proper parabolic subgroups� and that a collection
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of such gave a simplex if and only if their intersection were again a parabolic
subgroup�

Remarks� If we were to comply with the terminology of algebraic groups�
then we would have to say that this B is the group of k�valued points of a
minimal k�parabolic� We will not worry about adherence to this orthodoxy�

Let e�� � � � � en be the standard basis for the n�dimensional k�vectorspace
V � kn


e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA � � �

The standard frame consists of the collection of lines kei� The standard
maximal 
ag is

V� � ke� � V� � ke� 
 ke� � � � � � Vn�� � ke� 
 � � �
 ken

By de�nition� the B in the BN�pair is the stabilizer B in GL�n� k� of this
�ag
 writing the vectors as column vectors� we �nd that B consists of upper
triangular matrices �

B�
� � � � �

� � �
���

� �

�
CA

This is indeed a Borel subgroup� that is� a minimal parabolic subgroup�
As described in the previous section� the apartment Ao corresponding to

the standard frame has simplices whose vertices are subspaces expressible as
sums of these one�dimensional subspaces� It is elementary that the stabilizer
N of this frame consists of monomial matrices� that is� matrices with just one
non�zero entry in each row and column� The

Then the subgroup T here is

T � B � N � upper�triangular monomial matrices �

� diagonal matrices

Then the Weyl group W �which we have shown indirectly to be a Coxeter
group� is

W � N�T � n� n permutation matrices � Sn

where Sn is the permutation group on n things�
It is important to note that� while the group W is not de�ned to be a

subgroup of G � GL�n� k�� in this example it has a set of representatives
which do form a subgroup of G�

In this example� the Bruhat�Tits decomposition ������ ����� can be put
in more prosaic terms
 every non�singular n � n matrix over a �eld can be
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written as a product

upper�triangular � permutation � upper�triangular

This is not so hard to prove by hand�� Indeed� one can prove directly the
further fact �following from Bruhat�Tits� that the permutation matrix which
enters is uniquely determined�

Remarks� The �ner details of the BN�pair and Bruhat�Tits decomposi�
tion properties are not easy to see directly� The cell multiplication rules are
inexplicable without explicit accounting for the Coxeter system� And� for ex�
ample� the fact that any subgroup of GL�n� k� containing the upper triangular
matrices B is necessarily a �standard� parabolic is not clear�

More can be said� In any case� we have successfully recovered a re�ned
version of seemingly elementary facts about GL�n� as by�products of the
construction of the spherical building and the corresponding BN�pair�

��� Analogous treatment of SL�n�
Here we make just a few remarks to make clear that the strongly tran�

sitive label�preserving action of GL�n� on the thick building of type An��

constructed above� when restricted to an action of SL�n�� is still strongly
transitive� Thus� the BN�pair obtained for GL�n� has an obvious counterpart
for SL�n��

Certainly SL�n� preserves the labels� since it is a subgroup of GL�n� and
GL�n� preserves labels� To prove that SL�n� is strongly transitive� it su�ces
to show that

T � SL�n� � GL�n�

where T is the stabilizer in GL�n� of an apartment A and simultaneously
of a chamber C within A� Indeed� quite generally� if G is a group acting
transitively on a set X � and if H is a subgroup of G� and if G � (H where
( is the isotropy group of a point in X � then H is also transitive on the set�
In the present situation� we can easily arrange choice of A and C so that T is
the subgroup of all diagonal matrices in GL�n�� But of course every element
g of GL�n� can be written as

g �

�
BBB�

�
� � �

�
det g

�
CCCA
�
BBB�
�
BBB�

�
� � �

�
det g��

�
CCCA g

�
CCCA

This expresses g as a product of an element of T and an element of SL�n�� as
desired�

In fact� from this discussion we see that for any group G with

SL�n� � G � GL�n�
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we can obtain a corresponding BN�pair and all that goes with it� Of course�
for smaller groups inside SL�n� we cannot expect these properties to remain�

��	 The symmetric group as Coxeter group
Incidental to all this is that we have given a somewhat circuitous proof of

the fact that symmetric groups Sn are Coxeter groups� generated by adjacent
transpositions

�j � �j� j � ��

It is clear that the ��cycle �j�j	� obtained has order �� and that �i�j � �j�i
if ji	 jj 
� �� This is the Coxeter system of type An���

But without invoking all the result above it is not entirely clear that there
are no other relations� Our discussion of GL�n� gives an indirect proof of this�

We recall the basic idea of the proof that this is a Coxeter system
 we
constructed a thick building� whose apartments are �from general results�
Coxeter complexes� And� in verifying the building axioms� via our identi��
cation of chambers with orderings of f�� � � � � ng� we noted re
ection through
the ith facet has the e�ect of interchanging the ith and �i� ��th items in the
ordering� Thus� by these identi�cation� the Coxeter system �W�S� so obtained
really does give W � Sn and S the set of adjacent transpositions�

So we can apply the general theorems about Coxeter groups to the sym�
metric group� Some of these conclusions are easy to reach without this general
machinery� but many are not so trivial� Since such results are not needed in
the sequel� we leave this investigation to the interested reader�

In particular� it is of some interest to verify that

w� �

�
BBBB�

�
�

� � �
�

�

�
CCCCA

is the longest element in this Coxeter group� This is best proven by identifying
the roots� and examining the action of permutation matrices upon them�
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��� Spherical Construction

for Isometry Groups

� Construction of spherical buildings for isometry groups
� Veri�cation of the building axioms
� The action of the isometry group
� The spherical BN�pair in isometry groups
� Analogues for similitude groups and special groups

Now we carry out the natural construction of a thick building for all isom�
etry groups ����� with the exception of certain orthogonal groups O�n� n��
which require a di�erent treatment given in the next section� All other types
of orthogonal groups� symplectic groups� and unitary groups are covered by
the present discussion� The present construction does give a �building	 even
for O�n� n�� but it fails to be thick� which complicates application of general
results�

Most of the discussion will strongly resemble that for GL�n�� There are
substantial simpli�cations possible if one specializes to the case of symplectic
groups� that is� non�degenerate alternating forms� One might execute such
simpli�cations an an illuminating exercise�

As in the previous discussion of GL�V �� we will construct buildings whose
apartments are �nite complexes� Thus� these complexes and the building as
a whole are spherical� And recall that we have shown that in a spherical
building there is a unique �hence� maximal� apartment system�

���� Construction of spherical buildings for isom�
etry groups

Here we construct �spherical� buildings of type Cn ������
Fix a �eld k� Let D be a division ring with involution �� and suppose

that k is the collection of elements in the center of D which are �xed by the
involution�

Let V be a �nite�dimensional D�vectorspace with a non�degenerate form
h� i with the properties

h�u� v � v�i � hu� iv�� hu� v�i��

hu� vi � 	hv� ui

for a �xed 	 � f��g� for all u� v � V � and for all � � D� Let G be the isometry
group of V with the form h� i


G � fg � GLD�V � 
 hgu� gvi � hu� vi �u� vg
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As was done with GL�n� earlier ������ now for an isometry group we de�
scribe an incidence geometry from which we obtain a 
ag complex which is a
thick building� whose associated BN�pair has parabolics which really are the
parabolic subgroups of G�

We suppose that the largest totally isotropic subspace of V hasD�dimension
n� By Witt	s theorem ������ from geometric algebra� this is the common di�
mension of all maximal totally isotropic subspaces�

Let & be the collection of non�zero totally isotropic D�subspaces of V �
Recall that a subspace V � of V is said to be totally isotropic if hu� vi � � for
all u� v � V �� We de�ne an incidence relation � on & by writing x � y if
either x � y or y � x�

The associated 
ag complex X is the simplicial complex with vertex set &
and simplices which are mutually incident subsets of &� That is� the simplices
of X are subsets � of & so that for all x� y � � we have x � y� The maximal
simplices in X are the maximal �ags

V� � � � � � Vn

of totally isotropic subspaces Vi of V � where the dimension of Vi is i�
A frame F in the present setting is an unordered �n�tuple of lines �one�

dimensional D�subspaces� in V � which admit grouping into unordered pairs

	�
i � 
��

i whose sums Hi � 
	�
i � 
��

i are hyperbolic planes Hi �in the sense
of geometric algebra� in V � and so that

H� � � � ��Hn

is an orthogonal direct sum�
We consider the set A �the anticipated apartment system� of subcomplexes

A of X indexed by frames F in the following manner
 the associated subcom�
plex AF �anticipated to be an apartment� consists of all simplices � with all
vertices being totally isotropic subspaces � expressible as

� � 

�i� 
 � � �
 

did

for some unordered d�tuple fi�� � � � � idg� where for each i the 	i is ���

���� Veri�cation of the building axioms
Keep the notation of the previous section�

The facets Fi of a maximal simplex

C � �V� � � � � � Vn�

are in bijection with indices � � i � n� by omitting the ith subspace in the
�ag� The other maximal simplices in X with facet Fi correspond to �ags

V� � � � � � Vi�� � V �i � Vi	� � � � � � Vn

where the only allowed change is at the ith spot�
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We note that maximal simplices in an apartment A corresponding to the
frame F � f
��

i g as above are in bijection with choices of orderings of the

hyperbolic planesHi � 
	�
i �
��

i and �further� choice of one of the two distin�
guished lines from each hyperbolic plane� as follows
 to a choice 

�i� � � � � � 



n
in

we associate the totally isotropic subspaces

Vj � 
i� 
 � � �
 
ij

and the �ag

V� � � � � � Vn

This bijection is useful in what follows�
First� we prove that each simplicial complex A � A really is a thin chamber

complex� Fix a frame F with Hi � 
	�
i 
 
��

i as above� specifying A� We
consider the maximal isotropic �ag

V� � � � � � Vn

with

Vn � 

�� 
 

�� 
 � � �
 

nn

with �xed choice of superscripts 	i � f��g�
For each index i � n� we must ascertain the possibilities for an i�dimensional

subspace V �i in A so that

Vi�� � V �i � Vi	�

and so that V �i is a direct sum of the lines 
i �in order for it to belong in the
apartment A�� �The case i � n requires separate treatment��

On one hand� the requirement V �i � Vi	� implies that the direct sum
expression for V �i is obtained by omitting one of the lines from the direct sum
expression for Vi	�� On the other hand� the requirement Vi�� � V �i implies
that the expression for V �i cannot omit any of the lines expressing Vi��� Thus�
the only choice involved in specifying Vi is the choice of whether to omit 

�ji
or 



i��

ji��
from the expression

Vi	� � 

�i� 
 � � �
 

iji 
 


i��

ji��

in the case that i � n�
If i � n� then we are concerned with choices for V �n� and the constraints are

that Vn�� � V �n�and that V �n be totally isotropic� In addition to the original
Vn� the only other choice inside the subcomplex A would be to replace 

nn by
the other line inside Hn� that is� by 
�
nn �

Keeping in mind the identi�cation of maximal simplices in A with orderings
of the hyperbolic planes together with choice of line within each plane� we can
paraphrase the observations of the last paragraph as asserting that the e�ect
of moving across the ith facet is to interchange the ith and �i���th hyperbolic
planes if i � n� and exchanges the lines in the nth plane if i � n� That is�
more symbolically� moving across the ith facet exchanges Hji and Hji��

if
i � n� and exchanges 

nn and 
�
nn in the case i � n�
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We need to describe the signed permutation group on n things in order
to �nish the proof that the apartments are thin chamber complexes� Inciden�
tally� this will identify in more elementary terms the Coxeter group obtained
here� Let Sn be the permutation group on n things� and let H be the direct
sum of n copies of the group f��g� Let � � Sn act on H by

�	�� � � � � 	n�
� � �	����� � � � � 	��n��

Then we can form the semi�direct product

S�n � H ��Sn
This is the signed permutation group on n things�

To prove that the subcomplex A is a chamber complex� by de�nition we
must �nd a gallery connecting any two maximal simplices� By the previous
discussion� this amounts to showing that the adjacent transpositions �i i���
together with

������� � � � ����	�� � H

�the change�sign just at the nth place� generate the signed permutation group
on n things� This is an elementary exercise�

Incidental to the above we did observe that there were always exactly two
choices for maximal simplices �inside A� with a given facet� Thus� indeed�
these apartments are thin chamber complexes�

Now we consider the issue of the thickness of the whole complex� This
argument would fail for an orthogonal group O�n� n��

In the context of the discussion above� for i � n� given totally isotropic
subspaces Vi�� � Vi	� we must show that there are at least � possibilities for
Vi with Vi�� � Vi � Vi	�� In the case i � n� the issue is to show that for
given totally isotropic Vn�� there are at least � choices for totally isotropic Vn
so that Vn�� � Vn� For i � n� the choice is equivalent to the choice of a line
in the two�dimensional D�vectorspace Vi	��Vi��� and for i � n the choice is
that of an isotropic line in the two�dimensional vectorspace V �n���Vn�� with
its natural non�degenerate form�

If the ring D is in�nite� we certainly have � or more lines in a two�
dimensional vectorspace� If D is �nite with q elements� then the number
of lines in a two�dimensional vectorspace is

�q� 	 ����q 	 �� � q � � � �

Now we come to the delicate issue of the number of isotropic lines in
V �n���Vn��� By elementary geometric algebra� this space can be written as
H 
Q where H is a hyperbolic plane and Q is anisotropic� At this point we
must consider various possibilities separately�

First� and most simply� if we have an alternating space� that is� if D � k� �
is trivial� and 	 � 	�� then there are no non�trivial anisotropic spaces� and in
fact any one�dimensional subspace is isotropic �as long as the characteristic is
not ��� Thus� to check thickness in this case we suppose that the �eld k has q
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elements� and count the number of lines in a two�dimensional k�vectorspace

it is

�q� 	 ����q 	 �� � q � � � � � � � �

so we have thickness in this case�
Second� we consider symmetric quadratic forms� so D � k� � is trivial� and

	 � ��� The isometry group is an orthogonal group� It is crucial that the
anisotropic subspace Q be non�trivial� Let x� y be in the hyperbolic plane so
that each of x� y is isotropic and hx� yi � �� Fix a non�zero vector vo � Q�
In addition to the two obvious isotropic lines kx and ky� there is the line
generated by the isotropic vector

�vo � hvo� voi�x 	 y�

Thus� pointedly excepting the case that the quadratic space is a sum of hy�
perbolic planes� we have the thickness of the building�

It remains to consider the case that D is strictly larger than k� The worst�
case scenario is that of a hyperbolic plane �over D�� Let x� y be isotropic
vectors so that hx� yi � �� If 	 � 	� then the k�subspace kx � ky is a
non�degenerate alternating space� so contains at least � distinct anisotropic
k�one�dimensional subspaces
 x� y and something of the form ax � by with
neither a nor b zero� It is easy to see that no two of these three vectors are
D�multiples of each other either� so we have the desired thickness in case
	 � 	��

Thus� we are left with proving the thickness in the case that D is strictly
larger than k� and 	 � ��� Again let x� y be a hyperbolic pair as in the
previous paragraph� We wish to �nd at least one non�zero � � D so that
x� �y is isotropic� Written out� this condition is

� � hx� �y� x� �yi � hx� �yi� h�y� xi � �
 � �

In the case that D is commutative� since the characteristic is not � there is
some � � D so that �
 � 	�� If D is non�commutative and since ����
 �
�
�
 there must be � � D so that �
 
� �� Then �	 �
 is non�zero and has
the desired property� This gives the thickness in this case�

This proves the thickness �although we have not yet quite proven that the
whole complex is a chamber complex� See the next paragraph��

Now we prove that any two maximal simplices in the whole complex X lie
inside one of the subcomplexes A � A� This� together with the fact �proven
above� that each A � A is a chamber complex� will prove that the whole
complex X is a chamber complex� The previous discussion would prove that
it is thick� So� given two maximal isotropic �ags

U� � � � � � Un

V� � � � � � Vn

we must �nd a frame F so that both �ags occur in the subcomplex A � AF �
A designated by F �
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In contrast to GL�n�� where we used a Jordan�Holder theorem� here we
use the form h� i and induction on the �index	 n�

Thus� we consider �rst the �index � case	� that is� where V � H 
Q where
Q is anisotropic and H is a hyperbolic plane� Given two isotropic D�one�
dimensional subspaces V� and U�� we wish to �nd two isotropic lines 
	 and

� so that 
	 � 
� is a hyperbolic plane and V� � 
	 and U� is either 
	

or 
�� If V� � U� is one�dimensional� then V� � U� and we are done� If
V� � U� is two�dimensional� then it cannot be totally isotropic� by invoking
Witt	s theorem� since a maximal totally isotropic subspace here is just one�
dimensional� Thus� by default� because the index is �� it must be that V��U�

is a hyperbolic plane� and we take 
	 � V� and 
� � U��
Now we do the induction step� First� we note that we have chains of

subspaces

U� � � � � � Un � U�n � U�n�� � � � � � U��

V� � � � � � Vn � V �n � V �n�� � � � � � V ��

If U� � Vn� then Vn � U�� � and we can consider the space V �� �V� with
its natural non�degenerate form� and do induction on the index n� to prove
that there is a subcomplex A � A containing both �ags� In particular� let
V �i � �Vi�U���U� and U �i � Ui�U�� giving �ags of totally isotropic subspaces�
�The temporary indexing here does not match dimension�� Suppose we have
found a frame  F in the quotient� given by the images of isotropic lines 
��

i

with � � i � n� so that all the quotients U �i and V �i are sums of �the images
of� these lines� Then take 
	�

� � U� and for 
��
� take any line in V which

is orthogonal to all the 
	�
i for i � �� and so that 
	�

� � 
��
� is a hyperbolic

plane� The list of lines 
��
i with � � i � n is the desired frame for the

apartment containing the two given chambers�
If U� 
� Vn� then let io be the smallest index such that there is a line 
 in

Vio so that

V� � 
 � V� 
 
�

is a hyperbolic plane� Then �V� 
 
�� is a non�degenerate space of smaller
dimension� and again we can do induction on dimension to prove that there
is a subcomplex A � A containing both �ags� In more detail
 let V �i � Vi��

for � � i � io and V �i � Vi � U�� for i � io� with U �i � Ui � 
� for i � ��
�So the temporary indexing here does not match dimension�� These are �ags
of totally isotropic subspaces� Suppose we have found �for i � �� �suitably
orthogonal� hyperbolic planes


	�
i 
 
��

i

with � � i � n so that all the U �i and V �i are sums of the 
	�
i � Then take


	�
� � U� and 
��

� � 
� Even more simply than in the case treated in the
previous paragraph� we have the desired common apartment as designated by
this collection of lines�
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The last thing to be done� to prove that X is a thick building� is to show
that� if a chamber C and a simplex x both lie in two apartments A�B � A
then there is a chamber�complex isomorphism f 
 B � A �xing both x and
C pointwise� �Recall that the latter requirement is that f should �x x and
C and any face of either of them�� As in the case of GL�n�� we will give
f by giving a bijection between the lines in the frames specifying the two
apartments� This certainly will give a face�relation preserving bijection� And
it is simpler to prove the apparently stronger assertion that� given a chamber
C lying in two apartments A�B � A� there is an isomorphism f 
 B � A
�xing A �B pointwise�

Let F be the frame given by isotropic lines 
��
i forming �suitably or�

thogonal� hyperbolic planes Hi � 
	�
i 
 
��

i � and let G be the frame given

by isotropic lines ���
i forming �suitably orthogonal� hyperbolic planes Ji �

�	�
i 
���

i � By relabeling and renumbering if necessary� we may suppose that
the common chamber C corresponds to the choices of orderings

�H�� � � � � Hn�

�J�� � � � � Jn�

and lines 
	�
i and �	�

i for all indices i� Then the i�dimensional totally isotropic
subspace occurring as vertex of C is


	�
� � � � �� 
	�

i � �	�
� � � � �� �	�

i

We attempt to de�ne a map

f 
 B � A

on totally isotropic subspaces �vertices� by

f 
 
	�
i�

� � � �� 
im � �	�
i�

� � � �� �	�
im

for any distinct indices i�� � � � � im� Since� by invocation of the Uniqueness
Lemma� there is at most one such map� this surely ought to be it�

But we must show that f de�ned in such manner really is the identity on
A � B� To accomplish this� it su�ces to show that it is the identity on all
��simplices in the intersection� If a ��simplex x is in the intersection then x
is a totally isotropic subspace of V which can be written as a sum of some of
the 
	�

i and also can be written as a sum of some of the �	�
i � What we want

to show is that� if

x � 
	�
i�

� � � �� 
	�
im

� �	�
j�

� � � �� �	�
jm

then in fact i� � j� for all �� This would certainly assure that A � B is
�xed pointwise by f � This argument is essentially identical to the analogous
argument for GL�n�� but we can repeat it here for convenience�

Suppose that x is expressed as above but that it is not the case that i� � j�
for all �
 let � be the largest �with � � � � m� so that i� 
� j� � Without loss
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of generality �by symmetry�� suppose that i� � j� � By hypothesis� making
use of the fact that we have everything renumbered conveniently� we have


	�
� � 
	�

� � � � �� 
	�
j��� � 
	�

j��� � �	�
� � �	�

� � � � �� �	�
j��� � �	�

j���

Summing this subspace with x� we obtain


	�
� � 
	�

� � � � �� 
	�
j��� � 
	�

i���
� � � �� 
	�

im
�

� �	�
� � �	�

� � � � �� �	�
j��� � �	�

j�
� �	�

j���
� � � �� �	�

jm

But the left�hand side has dimension

�j� 	 �� � �m	 �� � m� j� 	 � 	 �

while the right�hand side has dimension

�j� 	 �� � �m	 � � �� � m� j� 	 �

This is impossible� so it must have been that i� � j� for all �� This proves
the second axiom for a building�

Thus� we have proven that the complex constructed by taking �ags of
totally isotropic subspaces of a non�degenerate space is indeed a thick building�
with an apartment system provided by frames consisting of unordered �n�
tuples of lines which can be grouped into pairs which form hyperbolic planes
�whose sum is orthogonal��

���� The action of the isometry group
In the previous section we constructed a thick building� Incidental to the

proof that the apartments are thin chamber complexes� we saw that the Cox�
eter system is �W�S� with S � fs�� � � � � sng� where si and sj commute unless
ji	 jj � �� and m�si� si	�� � � for i � n 	 � and m�sn��� sn� � �� We also
saw a model of thisW as signed permutation group� Again ������ this Coxeter
system is of said to be of type Cn� Now we should check that G acts strongly
transitively� and preserves types ������

Although we know ����� that there is an essentially unique labeling on this
building� a tangible labeling is available and is more helpful� This is almost
exactly as in the case of GL�n��

We de�ne the type of a totally isotropic subspace to be its dimension�
and de�ne the type of a �ag of totally isotropic subspaces to be the list of
dimensions of the subspaces� From the de�nition of the incidence geometry�
it is clear that no two distinct vertices of a simplex have the same type� And
it is immediate that G preserves this notion of type�

First� we prove transitivity on apartments� Consider two apartments spec�
i�ed by frames

F � f
	�
� � 
��

� � � � � � 
	�
n 
��

n g
G � f�	�

� ���
� � � � � � �	�

n ���
n g
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with 
	� � 
��
i �suitably orthogonal� hyperbolic planes� and likewise with

�	�
i ����

i �suitably orthogonal� hyperbolic planes� Then there is an isometry
g � G so that

g�
��
i � � ���

i

for all choices of sign and for all indices i� Indeed� one merely chooses xi �

	�
i � yi � 
��

i and then zi � �	�
i � wi � ���

i so that

hxi� yii � hzi� wii

By Witt	s theorem the isometry g given by gxi � zi and gyi � wi extends
to an isometry of the whole space� so extends to an element of the isometry
group� Thus� we have the desired transitivity on apartments�

As for GL�n�� the fact that images of apartments are again apartments is
immediate�

Next� we prove that the stabilizer of a given apartment acts transitively
on the chambers within that apartment� The chambers within the apartment
A speci�ed by the �ag F above are in bijection with orderings of the hy�
perbolic planes together with a choice of one of the distinguished lines from
each plane� The stabilizer of A certainly includes isometries to yield arbitrary
permutations of the hyperbolic planes� and also certainly includes isometries
switching the two lines within a given hyperbolic plane� Thus� the collection
of con�gurations corresponding to choice of chamber within a given apartment
is acted�upon transitively by the stabilizer of the apartment�

This proves the strong transitivity of G on the building made from �ags of
totally isotropic subspaces� As remarked just above� the preservation of types
is trivial once we realize that dimension of subspace will do�

���� The spherical BN�pair in isometry groups

By design� the subgroups B in the BN�pairs arising from the action of G on
the thick building of type Cn above really are minimal parabolic subgroups in
the geometric algebra sense of ������ Thus� once again� facts about parabolic
subgroups appear as corollaries to results about buildings and BN�pairs�

We wish to look at some aspects of the situation in coordinates� We con�
sider a D�vectorspace V with form h� i of index n� in the sense that a maximal
totally isotropic subspace has D�dimension n� Thus� we can write

V � Q
 �H 
 � � �
H�

where there are n summands of hyperbolic planesH � and whereQ is anisotropic
of dimension d�
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The standard basis for D�n	d is

e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA � � �

As described earlier in our discussion of classical groups� the standard form
h� i on V � D�n	d with a given anisotropic part Q is given by

hu� vi � v�Jn�Qu

where

Jn�Q �

�
BBBBBBBBBB�

� 	�
� � �

� � �

� 	�
Q

� �
� � �

� � �

� �

�
CCCCCCCCCCA

The standard frame F is the collection of lines

De�� De�	d	n� De�� De�	d	n� De�� De�	d	n� � � � � Den� Den	d	n

where we have listed them in the pairs whose sums are hyperbolic planes
�whose sum is orthogonal��

The standard maximal isotropic 
ag is

V� � De� � V� � De� �De� � � � � � Vn � De� � � � ��Den

The B in the BN�pair is the stabilizer of this �ag�
According to the general prescription� we take N to be the stabilizer in G

of the set of lines in the standard frame F � Thus� in a similar fashion as in the
case of GL�n�� N consists of monomial matrices in G� The subgroup T here
consists of monomial matrices lying in the standard minimal parabolic sub�
group� As discussed earlier in our treatment of classical groups and geometric
algebra� it is not hard to check that T must be the standard Levi component
����� of the minimal parabolic� consisting of matrices of the form�

BBBBBBBBB�

t�
� � �

tn
�d

t��
�

t��
n

�
CCCCCCCCCA
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By comparison to the case of GL�n�� it is not so easy in the present case to
identify the Weyl group N�T in concrete terms� But� as also happened in the
case of GL�n�� in the proof that the building is indeed a building we were led
to consider a model �W�S� of the Weyl groupW and generators S wherein W
appeared overtly as a signed permutation group� This gives a good indication
of what to expect for matrix representatives for W � N�T �

For example� the subgroup of W identi�able with plain permutations �with
no sign changes� has representatives of the form�

� �
�d

�

�
A � G

where � is an n�by�n permutation matrix� Note that the inverse of a permu�
tation matrix is its transpose� so the indicated matrices really do lie inside
the isometry group�

The change�sign at the ith place has a representative�
BBBBBBBB�

�i��

� 	�
�n�i

�d
�i��

� �
�n�i

�
CCCCCCCCA

where �m denotes anm�m identity matrix� and the o��diagonal	���� occur
at the �i� i� d� n�th and �i� d� n� i�th places� respectively�

In a fashion similar to what happened for GL�n�� here we used just a
little information about the signed permutation group in the proof that our
building really was a building� In return� our general results prove �again
circuitously� that the signed permutation group is a Coxeter group� where we
use adjacent transpositions and the change�sign on the nth thing as special
set S of generators�

And one may prove� for example� that the longest elements in this Coxeter
group has representative Jn�Q above�

���� Analogues for similitude groups

As in ������ the similitude group �G of the form h� i is the slightly larger
group

�G � fg � GLD�V � 
 hgu� gvi � ��g� hu� ivg
for some ��g� � k
� We wish to make the observation that this larger group
also acts strongly transitively on the thick building of type Cn for G� and also
is label�preserving�
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The strong transitivity is immediate from that of G� The preservation of
type is likewise clear� if the labeling of totally isotropic subspace by dimension
is used� Then it is clear that the similitude group preserves the labeling�

While �G is slightly larger� and likewise the parabolic subgroups are larger�
and likewise the group N attached to a choice of frame� the Weyl group is
naturally identi�able with that of G�

Therefore� for any group intermediate between the isometry and similitude
groups of the form h� i the previous construction gives a BN�pair� etc� Again�
this all works for any isometry group except the particular orthogonal group
O�n� n�� which requires special treatment�

Last� we may consider the slightly smaller special isometry groups
groups obtained from isometry groups by further imposing the condition that
the determinant be �� The issue is whether we still have strong transitivity�
that is� transitivity on pairs �C�A� where C is a chamber contained in an
apartment A� There are several cases in which this is easy to check
 For
symplectic groups the determinant condition is ful�lled automatically� so the
symplectic group itself is alread �special	� For orthogonal groups in odd di�
mensions the scalar 	� matrix has determinant 	� yet has trivial action on
�ags� so from what we	ve already proven we obtain the strong transitivity�
More generally� in a space V with a form h� i� if V is of odd dimension the
same remark applies� assuring the strong transitivity�

But if the D�dimension is even more careful treatment of individual cases
is necessary� depending upon the nature of the underlying �eld�
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��� Spherical Ori�amme Complex

� The ori�amme construction for SO�n�n�
� Veri�caition of the building axioms
� The action of SO�n�n�
� The spherical BN�pair in SO�n�n�
� Analogues for GO�n�n�

Now we carry out the ori�amme construction of a thick building for spe�
cial orthogonal groups SO�n� n�� that is� where in addition to an isometry
condition we require determinant one� The more obvious construction dis�
cussed above� using �ags of isotropic subspaces� which works well for all other
isometry groups must be altered in a rather unexpected way to obtain a thick
building�

In the context of the non�obviousness of the �correct	 construction here�
use of the term �ori�amme	 can be explained by a combination of the word	s
etymology and medieval heraldry� The word comes from the medieval Latin
aurea 
amma� meaning �golden �ame	� In medieval times the abbey of Saint
Denis near Paris used such a golden 
ame as its banner� Only by coincidence�
the golden �ame was branched� By the time of the Hundred Years	 War it had
come to be the battle standard of the King of France� and its meaning was
taken to be an encouragement to be courageous and not give up� Ironically�
the Coxeter diagram and the �shape	 of the �ags retain the branchedness but
are no longer golden nor are they 
ames�

Still� after having dealt with this unexpected and piquant element� the
discussion will strongly resemble that for GL�n� and that for other isometry
groups�

���� The ori�amme construction for SO�n�n�

Here we construct the �spherical� building of type Dn� Instead of literal
�ags of subspaces as used earlier� we must make a peculiar adjustment� using
con�gurations �of subspaces� called ori
ammes� de�ned below� At the end of
this section we note the Coxeter data obtained incidentally�

Fix a �eld k� Let V be a �n�dimensional k�vectorspace with a non�degenerate
symmetric k�bilinear form h� i� The crucial hypothesis is that V is an orthog�
onal sum of n hyperbolic planes� This is equivalent to the assumption that
every maximal totally isotropic subspace of V has dimension n� exactly half
the k�dimension �n of V itself ������ ������

Let G be the special isometry group of V with the form h� i

G � fg � GLkV � 
 hgu� gvi � hu� vi �u� v and det g � �g
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We may often write SO�n� n� for G as an emphatic reminder that we consider
only this particular case�

The simplicial complex we will describe is a peculiar variant of the com�
plexes considered earlier� Let & be the collection of non�zero totally isotropic
k�subspaces of V of dimension not n	�� We de�ne an incidence relation � on
& by writing x � y if either x � y or y � x or if both x� y are n�dimensional
and x � y is �n	 ���dimensional�

The associated 
ag complex X is the simplicial complex with vertex set &
and simplices which are mutually incident subsets of &� That is� the simplices
of X are subsets � of & so that for all x� y � � we have x � y� The maximal
simplices in X are �ags of the form

V� � � � � � Vn�� � Vn��� Vn��

of totally isotropic subspaces Vi of V � where the dimension of Vi is i� the
dimension of both Vn��� Vn�� is n� and where� pointedly� Vn�� � Vn�� � Vn��
and the latter intersection has dimension n	 ��

At the same time� we will continue to have need of the simplicial complex
�X of the sort used earlier� That is� the vertices in �X are non�trivial totally
isotropic subspaces� and the incidence relation is x � y if and only if x � y or
y � x�

Remarks� For quadratic spaces of the special sort considered here� there
is a natural two�to�one map

� 
 chambers in �X � maximal simplices in X

That is� � maps maximal 
ags of totally isotropic subspaces �as used for all
other isometry groups� to the set of ori
ammes� Indeed� let

V� � � � � � Vn

be a maximal totally isotropic �ag of subspaces� As noted earlier in assessing
the failure of the earlier approach for these quadratic spaces� there are just
two isotropic lines in the non�degenerate two�dimensional quadratic spaceQ �
V �n���Vn��� �This is true of any non�degenerate two�dimensional quadratic
space�� Let 
� be the isotropic line in Q so that Vn�Vn�� � 
�� and let 
� be
the other isotropic line� For i � �� � put

V�n�i� � Vn�� 
 
i

Then

V� � V� � � � � � Vn�� � V�n��� and V�n���

is the associated ori
amme�
A frame F in the present setting is an unordered �n�tuple of lines �one�

dimensional D�subspaces� in V � which admit grouping into unordered pairs

	�
i � 
��

i whose sums Hi � 
	�
i � 
��

i are hyperbolic planes Hi �in the sense
of geometric algebra� in V � so that

V � H� 
 � � �
Hn
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is an orthogonal direct sum of all these hyperbolic planes�
We consider the set A �the anticipated apartment system� of subcomplexes

A of X indexed by frames F in the following manner
 the associated subcom�
plex AF �anticipated to be an apartment� consists of all simplices � with all
vertices being totally isotropic subspaces � �of dimension not n	�� expressible
as

� � 

�i� 
 � � �
 

did

for some unordered d�tuple fi�� � � � � idg� where for each i the 	i is ���
Remarks� Note that these frames are the same as those used in treating

the complex �X in the case of all other isometry groups� The two�to�one map
� on maximal simplices preserves the subcomplexes speci�ed by frames� as
follows� Let �AF be the subcomplex of �X consisting of simplices all of whose
vertices are sums of the lines in F � Then for any chamber �C in �AF � it is
immediate that �� �C lies in the apartment AF in X �

���� Veri�cation of the building axioms

Keep all the notation of the previous section�

The facets Fi of a maximal simplex

C � �V� � � � � � Vn�� � Vn��� Vn���

are in bijection with the subspaces in the �ag� by choice of which to omit�
In analogy with prior discussions� we will refer to the ith facet� where for
� � i � n 	 � this speci�es omission of the ith subspace� as usual� and for
i � �n� j� with j � f�� �g this means omission of Vn�j � Thus� the index i
assumes values in the set

f�� �� �� � � � � n	 �� n	 �� �n� ��� �n� ��g
The other maximal simplices in X with facet Fi correspond to �ags where

only allowed change is at the ith spot�
We note that maximal simplices in an apartment A corresponding to the

frame F � f
��
i g as above are in bijection with choices of orderings of the

hyperbolic planes Hi � 
	�
i � 
��

i and �further� choice of one of the two
distinguished lines from the �rst n	 � of these hyperbolic planes� as follows

to a choice 

�i� � � � � � 



n
in

we associate the totally isotropic subspaces

Vj � 
i� 
 � � �
 
ij

for � � j � n	 � and

Vn�� � 

�i� 
 � � �
 


n��

in��

 

nin

Vn�� � 

�i� 
 � � �
 


n��

in��

 
�
nin
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Note that the only di�erence between Vn�� and Vn�� is in the choice of 
��
in

as
last summand� Then take the �ag �in the present sense�

C � �V� � � � � � Vn�� � Vn��� Vn���

This bijection is useful in what follows�
First� we prove that each simplicial complex A � A really is a thin chamber

complex� Fix a frame F and �ag C as just above� For each index i� we must
ascertain the possibilities for choices of replacements V �i for the subspace Vi
in the �ag� where the index i is among �� �� � � � � n	�� �n� ��� �n� ��� Of course�
besides the requisite inclusion relations we require that V �i is a direct sum of
the lines 
i �in order for it to belong in the apartment A�� Obviously the cases
i � �n� ��� �n� �� require a little special treatment� as does the case i � n	 �
since it interacts with the �n� ��� �n� ���

Take i � n	 �� On one hand� the requirement V �i � Vi	� implies that the
direct sum expression for V �i is obtained by omitting one of the lines from the
direct sum expression for Vi	�� On the other hand� the requirement Vi�� � V �i
implies that the expression for V �i cannot omit any of the lines expressing Vi���
Thus� the only choice involved in specifying Vi is the choice of whether to omit


�ji or 



i��

ji��
from the expression

Vi	� � 

�i� 
 � � �
 

iji 
 


i��

ji��

in the case that i � n	 ��
If i � n	 �� then the constraint is that

Vn�� � V �n�� � V�n� �� � Vn��
In addition to the original Vn��� the only other choice inside the subcomplex
A would be to replace 

nn�� by 



n��

n�� �
If i � �n� ��� then the constraints are that V �n�� be totally isotropic� that

Vn�� � V �n�� �Vn�� and that the intersection V �n�� �Vn�� have dimension n	 ��
In addition to the original Vn��� the only other choice inside the subcomplex
A would be

V �n�� � Vn�� 
 

�
n��

n�� 
 
�
nn

A moment	s re�ection reveals that� in terms of our indexing� this e�ect is
achieved by simultaneously replacing 



n��

n�� by 
�
nn and replacing 
�
nn by



�
n��

n�� � A similar analysis applies to replacement of Vn��� of course�
Let s�� � � � � sn��� sn��� sn�� be the changes in indexing arising from �motion	

across the respective facets� as just noted� Elementary computations show
that sisi	� is of order � for i � n	 �� that sn��sn�j is of order � for j � �� ��
and that otherwise these changes commute�

As noted above� choice of chamber in the apartment speci�ed by the frame
F corresponds to a choice of an ordering of the n hyperbolic planes Hi �

	�
i � 
��

i � and a further choice of one of the two lines from each of the
�rst n 	 � of these planes� For i � n 	 �� the motion across the ith facet
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interchanges the ith and �i� ��th hyperbolic plane� This is no di�erent from
earlier computations�

For the last two indices one must be attentive� In particular� one must not
attach signi�cance to notation
 in fact� choice of one of the last two indices
is equivalent to a choice of a line 

nn in the last hyperbolic plane Hn in the
ordering� The motion across the corresponding facet interchanges the �n	��th

and nth planes Hn�� and Hn� and �chooses	 
�
nn in Hn as distinguished line�
To prove that the subcomplex A is a chamber complex� by de�nition we

must �nd a gallery connecting any two maximal simplices� By the previous
discussion� this amounts to showing that any choice of ordering of hyperbolic
planes and choice of line from among the �rst n 	 � can be obtained from
a given one by repeated application of the motion�across�facets changes de�
scribed above� This is an elementary exercise� comparable to veri�cation that
the symmetric group is generated by adjacent transpositions for type An�

Remarks� As in the earlier examples� we need only very crude informa�
tion about the group generated by the motions�across�facets in order to prove
the building axioms�

Note that� incidental to the above we did observe that there were always
exactly two choices for maximal simplices �inside A� with a given facet� Thus�
indeed� these apartments are thin chamber complexes�

Now we consider the issue of the thickness of the whole complex� It is to
maintain the thickness that the notion of �ag is altered in the present context�

We must show that there are at least � possibilities for each subspace
occurring in these �ags� when we drop the requirement that the subspace
occur in the subcomplex corresponding to a frame� For i � n 	 � we want
subspaces V �i so that

Vi�� � V �i � Vi	�

This choice is a choice of lines in a two�dimensional vectorspace Vi	��Vi���
allowing us at least �� as in earlier examples� Also for i � n	� we want V �n��

with

Vn�� � V �n�� � Vn�� � Vn��
so we are to choose a line in a two�dimensional space�

The novel issue here is understanding possibilities for replacements for Vn�j �
Since this part of the discussion only considers subspaces of V �n�� which con�

tain Vn��� we may as well look at V �n���Vn��� Thus� it su�ces to consider
the case that n � �� To replace Vn�� with Vn�� given� we must �nd another
two�dimensional totally isotropic subspace V �n�� which intersects Vn�� in a one�
dimensional subspace� Thus� we choose a line 
 inside Vn�� and then choose
an isotropic line � in 
� but not in Vn��� Since 


��
 is a hyperbolic plane� the
choice of mu is just that of an isotropic line in a hyperbolic plane� with one
choice excluded� that of Vn���
� But it is elementary that there are only two
isotropic lines in a hyperbolic plane �in a non�degenerate quadratic space��
So for each choice of 
 there is exactly one remaining choice of �� Thus� to
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count the choices altogether� we count the choices of 
� That is� we count the
number of lines in a plane� As earlier� this is at least � no matter what the
�eld k may be�

This proves the thickness �although we have not yet quite proven that the
whole complex is a chamber complex� See the next paragraph��

Now we prove that any two maximal simplices in the whole complex X lie
inside one of the subcomplexes A � A� This� together with the fact �proven
above� that each A � A is a chamber complex� will prove that the whole
complex X is a chamber complex� The previous discussion would prove that
it is thick� So� given two maximal �ags we must �nd a frame F so that both
�ags occur in the subcomplex A � AF � A speci�ed by F �

At this point we can exercise a tiny bit of cleverness� Using the two�to�one
map from maximal �ags of totally isotropic subspaces to ori�ammes� we can
invoke part of the earlier argument for all other quadratic spaces�

That is� given two ori�ammes C�D� choose maximal isotropic �ags �C� �D
which map to C�D� respectively� It was proven earlier� in discussion of all
other isometry groups and their buildings� that there is a frame common F
for �C� �D� �This did not depend upon thickness of the whole complex�� Thus�
F is a common frame for the two given ori�ammes� as well� That is� we
have proven that for any two maximal simplices �ori�ammes� there exists a
common apartment� as required by the building axioms�

The last thing to be done� to prove that X is a thick building� is to show
that� if a chamber C and a simplex x both lie in two apartments A�B � A
then there is a chamber�complex isomorphism f 
 B � A �xing both x
and C pointwise� �Recall that the latter requirement is that f should �x
x and C and any face of either of them�� As in the case of GL�n� and
general isometry groups� we will give f by giving a bijection between the
lines in the frames specifying the two apartments� This certainly will give a
face�relation preserving bijection� And it is simpler to prove the apparently
stronger assertion that� given a chamber C lying in two apartments A�B � A�
there is an isomorphism f 
 B � A �xing A � B pointwise�

Let F be the frame given by isotropic lines 
��
i forming hyperbolic planes

Hi � 
	�
i 
 
��

i � and let G be the frame given by isotropic lines ���
i forming

hyperbolic planes Ji � �	�
i 
 ���

i � We suppose that the apartments AF � AG
speci�ed by these frames have a common chamber C� Let C be described by
the ori�amme

V� � � � � � Vn�� � V�n��� and V�n���

Note that also the totally isotropic subspace

Vn�� � V�n��� � V�n���

is expressible as a sum of the lines in these frames�
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By relabeling and renumbering if necessary� we may suppose that the com�
mon chamber C corresponds to the choices of orderings

�H�� � � � � Hn�

�J�� � � � � Jn�

and lines 
	�
i and �	�

i for indices i � n�
As was done in the treatment of general isometry groups� we attempt to

de�ne a map
f 
 B � A

on totally isotropic subspaces �vertices� by

f 
 
	�
i�

� � � �� 
im � �	�
i�

� � � �� �	�
im

for any distinct indices i�� � � � � im� �The fact that we only consider totally
isotropic subspaces of dimension not n	 � is not the main point just now��

But we must show that f de�ned in such manner really is the identity
on the whole intersection A � B� We will see that the issue here is identical
to that treated earlier� Indeed� to show that f is the identity on A � B� it
su�ces to show that it is the identity on all ��simplices in the intersection� If
a ��simplex x is in the intersection then x is a totally isotropic subspace of V
which can be written as a sum of some of the 
	�

i and also can be written as

a sum of some of the �	�
i � What we want to show is that� if

x � 
	�
i�

� � � �� 
	�
im

� �	�
j�

� � � �� �	�
jm

then in fact i� � j� for all �� This would certainly assure that A � B is �xed
pointwise by f �

At this point� the argument used for the complex �X and other isometry
groups can be repeated verbatim� Thus� we have veri�ed the second axiom
for a thick building� completing the ori�amme construction and veri�cation
of its properties�

Last� we observe what Coxeter data has been obtained� Let us index re�
�ections in the same manner as subspaces have been indexed above
 s�� s��
� � � � sn��� sn��� s�n���� s�n���� Looking back at the discussion of what happens
when we re�ect through the various facets� by an elementary computation
we �nd that sisi	� is of order � for i � n 	 �� that sn��sn�j is of order �
for j � �� �� and that otherwise these re�ections commute� That is� we have
obtained the Coxeter system of type Dn�
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���� The action of SO�n�n�
We have constructed a thick building X associated to a rather special

sort of non�degenerate quadratic space� expressible as a sum of n hyperbolic
planes� �Of course� if the underlying �eld is algebraically closed� then every
even�dimensional non�degenerate quadratic space is of this type��

Incidental to the proof that the apartments are thin chamber complexes�
we saw a fairly concrete picture of the Coxeter system of type Dn� Now
we should check that G � SO�n� n� acts strongly transitively� and preserves
types�

As noted in the previous two constructions� there is an essentially unique
labeling on a thick building ������ So any convenient labeling we contrive is
as good as any other�

As before� it su�ces to label vertices in the complex X � Totally isotropic
subspaces of dimension� n	� we can label simply by dimension� as before� To
make sense of the phenomena surrounding the n�dimensional totally isotropic
subspaces� we need a little more preparation in the direction of geometric
algebra� now keeping track of determinants�

Let V be a �n�dimensional quadratic space which is an orthogonal direct
sum of n hyperbolic planes� Let G � SO�n� n� be the group of isometries g
of V with det g � ��

Lemma� Elements of the isometry group of a non�degenerate quadratic
form have determinant ���

Proof� In coordinates� we imagine the vector space to consist of column
vectors� and the quadratic form to be given by

hv� vi � v�Qv

for some symmetric matrix Q� Then the matrix g of a linear automorphism
is actually an isometry if and only if g�Qg � Q� Taking determinants� we
obtain

�det g�� det Q � det Q

Since Q is non�degenerate its determinant is non�zero� so det g � ��� �

Proposition� Let Y be a totally isotropic �n	 ���dimensional subspace
of V � There are exactly two totally isotropic n�dimensional subspaces V�� V�

contained in Y ��

Proof� The quotient Q � Y ��Y is a non�degenerate two�dimensional
quadratic space� In fact� it is a hyperbolic plane� since V was a direct sum of
hyperbolic planes� Let x� y be a hyperbolic pair in Q� that is� so that

hx� xi � � � hy� yi
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and

hx� yi � � � hy� xi
Suppose that ax� by is an isotropic vector� Then

� � hax� by� ax� byi � �ab

Thus� since the characteristic is not �� we have ab � �� Thus� the only isotropic
vectors in Q are multiples of x and multiples of y� That is� there are just two
isotropic lines in Q�

But isotropic lines in Q are in bijection with n�dimensional totally isotropic
subspaces inside Y � and containing Y � �

Proposition� Let Y� Z be two �n	 ���dimensional totally isotropic sub�
spaces of V � and let fo 
 Y � Z be any vectorspace isomorphism� Then there
is g � G � SO�n� n� so that the restriction of g to Y is fo�

Proof� Invoking Witt	s theorem ������ there is an isometry f 
 V � V
which restricts to the map fo 
 Y � Z� Since it lies in an orthogonal group�
this f has determinant ���

As just noted �and indeed as source of the necessity of considering the
ori�amme complex�� there are exactly two isotropic lines 
�� 
� in Y ��Y and
exactly two isotropic lines ��� �� in Z��Z�

Of course� the isometry f maps Y � to itself and maps Z� to itself� Thus�
the induced map sends the 
i to the �j in some order�

Choose lines �
i inside Y
� which map to 
i� With such choice� let � be

an isometry of V which is the identity on �
� � 
��
�� which interchanges the

two lines 
�� 
�� and so that �� is the identity� �There are just two such�� For

example� in suitable coordinates on �
� � �
� the matrix of one such map � is
given by �

� �
� �

�
Thus� det � � 	��

Then either f or f� has determinant �� and both restrict to fo on Y since
Y � Y � � �
� � 
��

�� �

Proposition� Let U be a maximal totally isotropic subspace of V � Given
an automorphism � 
 U � U � there is h � SO�n� n� which restricts to � on
U �

Proof� Let U � be another maximal totally isotropic subspace so that
V � U 
 U �� Then the map x � y � hx� yi on U � U � identi�es U � with the
linear dual of U � Thus� there is an adjoint �� which is a linear automorphism
of U � so that for all x � U and y � U �

hx� ��yi � h�x� yi
Then h � �
 ������ is certainly an isometry�
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Further� either by choice of coordinates in which to compute or by coordinate�
free exterior algebra computations� one �nds that the determinant of this h
is �� so actually h � SO�n� n�� �
Proposition� Let Y be a totally isotropic �n	 ���dimensional subspace

of V � Let V�� V� be the two totally isotropic n�dimensional subspaces V�� V�

contained in Y �� Then these two spaces V�� V� are in distinct SO�n� n��orbits�

Proof� Now suppose that for some g � SO�n� n� we had gV� � V��
Invoking the previous result� we may adjust g �staying within SO�n� n�� so
that g is the identity on Y � Then also gY � � Y ��

For a linear automorphism h of V stabilizing the subspaces Y� Y � we have
well�de�ned linear automorphisms h�� h� of the quotients Y ��Y and V�Y �

�respectively�� and by elementary linear algebra

det h � det�hjY � � det�h�� � det�h��

The non�degenerate form h� i identi�es V�Y � with the linear dual space of
Y � Thus� for an isometry g� if gjY is the identity on Y � then the �adjoint$�
map g� induced by g on V�Y � is also the identity� Thus� for such g�

det g � det� map induced by g on Y ��Y

But then we are in the two�dimensional �hyperbolic plane� situation again�
Then it is easy to see that isometries interchanging the two isotropic lines have
determinant 	�� while isometries not interchanging them have determinant
��� �
Corollary� The special orthogonal group G � SO�n� n� is transitive on

the set of unordered pairs V�n���� V�n��� of maximal totally isotropic subspaces
whose intersection is �n 	 ���dimensional� There are exactly two G�orbits of
maximal totally isotropic subspaces�

Proof� Let V�n���� V�n��� and W�n����W�n��� be two unordered pairs of max�
imal totally isotropic subspaces intersecting in �n	 ���dimensional subspaces
Y� Z� respectively� Let g � SO�n� n� be a map so that gY � Z� Again�
there are exactly two isotropic lines in Y ��Y �respectively� in Z��Z�� so
there are exactly two n�dimensional totally isotropic subspaces containing Y
�respectively� Z�� Thus� the isometry g of the �rst proposition must map
the unordered pair V�n���� V�n��� to the unordered pair W�n����W�n���� By the
previous proposition there is not any element of SO�n� n� accomplishing the
same mapping but reversing the images� �

Thus� we can label n�dimensional totally isotropic subspaces according to
which of the two orbits they fall into� There is no canonical way to give
primacy to one of these orbits over the other if we have not chosen coordinates
on the vectorspace V �

Thus� we have arranged a labeling which is preserved by the action of
G � SO�n� n�� Repeating� we label totally isotropic subspaces of dimensions
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� n 	 � by dimension� and label maximal totally isotropic subspaces by the
S��n� n��orbit into which they fall�

Remarks� The arti�ce of using ori�ammes to achieve thickness of the
building necessitates shrinking the group from O�n� n� to SO�n� n� to preserve
the concommitant labeling� Since labelings are unique up to isomorphism�
we are assured that the necessity of restricting our attention to SO�n� n� is
genuine�

Now transitivity on apartments can be proven� Consider two apartments
speci�ed by frames

F � f
	�
� � 
��

� � � � � � 
	�
n 
��

n g
G � f�	�

� ���
� � � � � � �	�

n ���
n g

with 
	� � 
��
i hyperbolic planes� and likewise with �	�

i � ���
i hyperbolic

planes�
Then there is an isometry g � G so that

g�
��
i � � ���

i

for all choices of sign and at least for indices i � n� �We are not obliged to
try to say more precisely what happens at i � n�� Indeed� one merely chooses
xi � 
	�

i � yi � 
��
i and then zi � �	�

i � wi � ���
i so that

hxi� yii � hzi� wii
Invoking the proposition above� the map given by gxi � zi and gyi � wi
extends to an isometry g � SO�n� n� of the whole space� This gives the
desired transitivity on apartments�

Next� we prove that the stabilizer of a given apartment in G � SO�n� n�
acts transitively on the chambers within that apartment� The chambers
within the apartment A speci�ed by the �ag F above are in bijection with
orderings of the hyperbolic planes together with a choice of one of the distin�
guished lines from each plane except the last�

The stabilizer of A certainly includes isometries to yield arbitrary permuta�
tions of the hyperbolic planes� However� unlike the case of orthogonal groups�
the special orthogonal group G � SO�n� n� does not include an isometry ex�
changing the two lines inside a hyperbolic plane� since such have determinant
	�� But G does contain isometries which switch the isotropic lines in the ith

hyperbolic plan �i � n� and switch the isotropic lines in the last hyperbolic
plane� Since the lines in the last plane are not ordered� this achieves the
desired e�ect�

This proves the strong transitivity of G � SO�n� n� on the ori�amme build�
ing�

Remarks� Although the failure of the simpler isotropic �ag construction
for O�n� n� may vaguely hint at something like the ori�amme construction�
one ought not pretend that the aptness of th ori�amme construction is obvious
a priori�
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���� The spherical BN�pair in SO�n�n�
Since the ori
ammes appearing in the de�nition of the building for SO�n� n�

are not exactly 
ags of totally isotropic subspaces� it is not quite clear that
we have achieved the desired end of having minimal parabolics in SO�n� n�
appear as stabilizers of chambers�

That is� it is not quite clear that the resulting BN�pair will have the �B	
being a minimal parabolic� But this is not hard to check� as follows�

If g � G stabilizes an ori�amme

V� � � � � � Vn�� � V�n��� and V�n���

then g stabilizes the �n	 ���dimensional intersection

V�n��� � V�n���

And since SO�n� n� preserves the notion of label appropriate here� g cannot
interchange V�n�i��

Thus� the stabilizer of this ori�amme is contained in a minimal parabolic�
Indeed� the stabilizer of this ori�amme stabilizes two maximal �ags of totally
isotropic subspaces


V� � � � � � Vn�� � V�n��� � V�n��� � V�n���

and

V� � � � � � Vn�� � V�n��� � V�n��� � V�n���

On the other hand� if g � G � SO�n� n� stabilizes a maximal �ag of totally
isotropic subspaces

V� � � � � � Vn

then g stabilizes V �n��� The latter contains exactly two n�dimensional totally
isotropic subspaces V�n���� V�n���� one of which is Vn� The action of g cannot
interchange them� by the observations of the previous section concerning such
situation� Thus� g stabilizes the ori�amme� as desired�

Thus� once again� facts about parabolic subgroups will appear as corollaries
to results about buildings and BN�pairs�

Remarks� Another peculiarity of the present situation is that� as is evi�
dent from the immediately previous discussion and from the previous section�
minimal parabolics �stabilizers of ori�ammes� stabilize two distinct maximal
�ags of isotropic subspaces� Thus� attempting to designate minimal parabolics
by such �ags would be troublesome in any case�

We wish to look at some aspects of the situation in coordinates� We con�
sider a �n�dimensional k�vectorspace V with form h� i of index n� in the sense
that a maximal totally isotropic subspace has k�dimension n� Thus� we can
write

V � H 
 � � �
H
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where there are n summands of hyperbolic planes H �
The standard basis for k�n is

e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA e� �

�
BBBBB�

�
�
�
���
�

�
CCCCCA � � �

As described earlier in our discussion of classical groups� the standard form
h� i on V � k�n with no anisotropic part is

hu� vi � v�Jnu

where

Jn �

�
BBBBBBBB�

� 	�
� � �

� � �

� 	�
� �

� � �
� � �

� �

�
CCCCCCCCA

The standard frame F is the collection of lines

ke�� ke�	n� ke�� ke�	n� ke�� ke�	n� � � � � ken� ke�n

where we have listed them in the pairs whose sums are hyperbolic planes�
The standard maximal isotropic 
ag is

V� � ke� � V� � ke� � ke� � � � � � Vn � ke� � � � �� ken

The standard ori
amme �much less often mentioned in the classical literature$�
is� nevertheless� the obvious thing
 letting

V�n��� � Vn�� � en � Vn

and

V�n��� � Vn�� � en	�

in this notation the standard ori
amme is indeed

V� � V� � � � � � Vn�� � V�n��� and V�n���

The B in the BN�pair is the stabilizer of the �ag� and is the stabilizer of the
ori�amme� and �as observed above� the stabilizer of another �ag as well�

According to the general prescription� we take N to be the stabilizer in G
of the set of lines in the standard frame F � Thus� in a similar fashion as in the
case of GL�n�� N consists of monomial matrices in G� The subgroup T here
consists of monomial matrices lying in the standard minimal parabolic sub�
group� As discussed earlier in our treatment of classical groups and geometric
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algebra� it is not hard to check that T must be the standard Levi component
of the minimal parabolic� consisting of matrices of the form�

BBBBBBBBB�

t�
� � �

tn
�d

t��
�

t��
n

�
CCCCCCCCCA

For example� the subgroup of W identi�able with plain permutations �with
no sign changes� has representatives of the form�

� �
�d

�

�
A � G

where � is an n�by�n permutation matrix� Note that the inverse of a permu�
tation matrix is its transpose� so the indicated matrices really do lie inside
the �special� isometry group�

���� Analogues for GO�n�n�
The similitude group GO�n� n� of the quadratic form h� i is the slightly

larger group

GO�n� n� � fg � GL�V � 
 hgu� gvi � ��g� hu� vig
for some ��g� � k
� where k is the underlying �eld� We wish to make the
observation that this larger group also acts strongly transitively on the thick
building of type Dn for SO�n� n�� although it is not label�preserving�

The strong transitivity is immediate from that of SO�n� n�� Already we
have noted that O�n� n� will not preserve the funny labels on the two sorts of
n�dimensional totally isotropic subspaces� because O�n� n� has just one orbit
on all such� while it was shown that SO�n� n� has two� whence the labeling�

While GO�n� n� is slightly larger� and likewise the parabolic subgroups are
larger� and likewise the groupN attached to a choice of frame� the Weyl group
is naturally identi�able with that of SO�n� n��

Therefore� for any group intermediate between the special isometry group
SO�n� n� and the similitude group GO�n� n� the previous construction gives
a BN�pair in the generalized sense�
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��� Re�ections� Root Systems
and Weyl Groups

� Hyperplanes� chambers� walls
� Re�ection groups are Coxeter groups
� Root systems and �nite re�ection groups
� A�ne re�ection groups� special vertices
� A�ne Weyl groups

This section starts anew in development of the idea of re
ection from an�
other� more literal� viewpoint� This complements the more abstract simplicial
ideas of the �rst chapter�

Rather than �make	 Coxeter groups as automorphisms of apartments in
thick buildings� we now �make	 them in the guise of �re�ection groups	� We
prove that all linear and a�ne re�ection groups are Coxeter groups�

To a great extend the things proven here are independent of our prior work�
Indeed� the present considerations are supplemental to those developments�
providing information of a di�erent sort relevant to the a�ne and spherical
cases�

���� Hyperplanes� chambers� walls
Generally� for a subset C of a topological spaceX � let �C be the boundary

of C inside X � The closure of such C inside X is denoted  C �

Let X � Rn � with a positive de�nite inner product h� i� Given a �nite
set xo� � � � � xm � X and a set of real numbers ti so that

P
i ti � �� the

corresponding a	ne combination is

x �
X
i

tixi � X

The a	ne span of a set of points in X is the collection of all a�ne com�
binations taken from that set� A set of points xi is a	nely independent
if X

i

tixi �
X
i

t�ixi

implies ti � t�i for all i� The maximal cardinality of a set of a�nely indepen�
dent points is n��� and any set of a�nely independent points can be enlarged
to such a set with n� � elements�

The line through two distinct points x� y � X is the set of a�ne combi�
nations tx � �� 	 t�y� The closed line segment �x� y� connecting x� y is the
collection of points on the line with � � t � �� The half�open segments
�x� y�� �x� y� consist of points with � � t � �� � � t � �� respectively�
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A real�valued function f on X is an a	ne functional if� for all t � R and
for all x� y � X we have

f�tx� ��	 t�y� � tf�x� � ��	 t�f�y�

Similarly� a map w 
 X � X is an a	ne map if

w�tx � ��	 t�y� � tw�x� � ��	 t�w�y�

for all t � R and for all x� y � X �
An a	ne hyperplane in X is the zero�set of a non�constant a�ne func�

tional�
Elementary linear algebra assures that there exist n a�nely independent

points in a hyperplane ��
On the other hand� given a hyperplane �� up to non�zero scalar multiples

there is a unique a�ne functional f whose zero�set is exactly �
 Indeed�
let x�� � � � � xn be a�nely independent points in � and xo not in � so that
xo� � � � � xn a�nely span X � If f vanishes on � then f�xo� determines f � since
for an a�ne combination y �

P
i tixi we have

f�y� �
X
i

tif�xi� � tof�xo�

Lemma� Let H be a countable collection of hyperplanes in X � and let 

be a line not contained in any � � H � Then


 
�
�
�
H

�
 � ��

Proof� Induction on the dimension n of X � If n � � then hyperplanes are
points� and since R is uncountable no line can be a countable union of points�
For the induction step
 let 
 be a hyperplane containing 
 �and necessarily
distinct from all the � � H�� Then the collection H � of intersections 
 � � is
a countable collection of hyperplanes contained in 
 � Rn�� � no one of which
contains 
� �Here we ignore any empty intersections�� �

In terms of the inner product� an a�ne hyperplane � may equivalently be
described as a set of the form

fx � X 
 hx	 xo� eoi � �g
�where then xo � � and eo is any non�zero vector orthogonal to ���

A set H of a�ne hyperplanes in X is locally �nite if� given a compact
subset K of X � there are only �nitely�many � � H so that � � K 
� ��
The set H is necessarily countable� For a locally �nite collection H of a�ne
hyperplanes the chambers cut out by H are de�ned to be the connected
components of the complement of

S
�
H �� Since H is locally �nite� the

chambers are open convex sets�
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An a�ne hyperplane � separates two subsets Y� Z of X if there is an a�ne
functional f with zero�set � so that f � � on Y and f � � on Z� or vice�
versa� Note that since all line segments �x� y� are compact� since chambers
are convex� and since H is locally �nite� there are only �nitely�many walls
separating a given pair of distinct chambers cut out by H �

A hyperplane � � H is said to be a wall of a chamber C cut out by H if
the a�ne span of � � �C is �� Two chambers C�C � are said to be adjacent
along the wall or to have the common wall � � H if the a�ne span of
� � �C � �C � is ��

Let HC be the set of walls of a chamber C cut out by a locally �nite set of
hyperplanes H �

� Given a point y not in the topological closure of C� there is a wall � of
C separating y from C�

� Conversely� for every wall � of C there is a point y not in the topological
closure of C so among all walls of C only � separates y from C�

� For every hyperplane � � H � there is at least one chamber of which � is
a wall�

Proof� Consider y � X not in the topological closure of C� Take x � C�
Consider the line segment �x� y� and the intersections � � �x� y�� If all of the
intersections �x� y� � � were empty� by continuity we would have y � �C�

For �xed y� the collection of x � X so that the segment �x� y� meets an
intersection ����� for distinct �� �� both in H � is a subset of a countable union
of hyperplanes� Thus� by the Lemma� we can move x slightly so that points
�x� y� � � are all distinct �or this intersection is empty��

Since one of these intersections is non�empty� there is a unique one of these
intersections z � �o � �x� y� closest to x� Since

H � � f� � �o 
 � � H� � 
� �og
is a locally �nite set of hyperplanes in �o� the complement in �o of the union
of the other hyperplanes is open in �o� Thus� for x� su�ciently near x� the
intersection z� � �x�� y� � �o lies on no other � � H � Since �x� y� meets �o
in a single point� we can choose points x�� � � � � xn near x so that the points
zi � �xi� y���o are a�nely independent
 Given z�� � � � � zk a�nely independent
with k � n� the a�ne span Sk of z�� � � � � zk� y is contained in some a�ne
hyperplane 
k � so there is xk	� near x not in 
k� and then zk	� 
� 
k either�
since y � 
k� Thus� z�� � � � � zn a�nely span �� and �o is a wall of C�

On the other hand� given a wall � of C� let x�� � � � � xn be n a�nely inde�
pendent points on ���C which a�nely span �� For any wall 
 of C and a�ne
functional f� which is positive on C� we have f��xi� � �� In fact� for at least
one of the xi we have f��xi� � �� or else 
 � �� Let

z �
X
i

�

n
xi
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Then f��z� � � for 
 
� �� z lies on �C� and still f��z� � ��
In some small�enough neighborhood of z there is a point z� so that still

f��z
�� � � for 
 
� �� and f��z

�� � �� That is� only the wall � separates z�

from C�
Now let � � H � Since � is not the union of the intersections 
 � � for

� 
� 
 � H � there are points z � � which lie on no other hyperplane in H � A
point x near such z but o� � lies in some chamber cut out by H of which �
must be a wall� by arguments as just above� �

Corollary� If C�D are distinct chambers� then there is a wall of C
separating them�

Proof� The chamber C is exactly described by inequalities only involving
a�ne functionals whose zero�sets are walls of C� If x � D satis�ed the same
inequalities� then by the results above x � C� contradiction� �

Proposition� Given a chamber C cut out by H � and given a wall � of C�
there is exactly one other chamber D cut out by H which has common wall
� with C�

Proof� For each � � H choose an a�ne functional f� so that f� vanishes on
� and is positive on C� �There exist such since C is a connected components
of the complement of the union of all the hypersurfaces in H��

Take a wall � of C� with a�nely independent z�� � � � � zn in � � �C� Put
z � �

P
zi��n� As in the previous proof� we �nd that f��z� � � for � 
� ��

Then for z� � X near z all f��z
�� � � with � 
� � are still positive� Thus� the

set

C � � fx � X 
 f��x� � � �� 
� � and f��x� � �g
is non�empty� so is a chamber cut out by H � We have shown that there is at
least one other chamber C � sharing the wall � with C�

On the other hand� for z�� � � � � zn a�nely independent points in �C��D���
let z � �

P
zi��n� The previous argument shows that for � 
� �� an a�ne

functional F� which is positive on C �respectively� positive on D� must be
positive on z� for � � H � Thus� the only possible di�erence between C and
D can be that an a�ne functional f� vanishing on � is positive on one and
negative on the other� Thus� we have shown that there is exactly one other
chamber sharing the wall � with the given chamber C� �

A gallery of length n connecting two chambers C�D is de�ned to be a
sequence of chambers C � Co� C�� � � � � Cn � D so that Ci is adjacent to Ci	��

The gallery

Co� C�� C�� � � � � Cn

crosses the wall � if � is the common wall between two chambers Ci� Ci	�

for some index i�
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���� Re�ection groups are Coxeter groups
Here we show� among other things� that re�ection groups satisfy the Dele�

tion Condition ������ so are Coxeter groups� In fact� we derive several useful
results which will come into play later in discussion of the geometric realiza�
tion of a�ne Coxeter complexes and a�ne buildings�

Let X � Rn as above� and let H be a locally �nite collection of a�ne
hyperplanes in X �

The �orthogonal� re�ection through a hyperplane � is the automorphism
s � s� of X described by

sx � x	 �hx	 xo� eoi
heo� eoi eo

where xo is an arbitrary point on � and eo is any non�zero vector perpendicular
to �� One can check that this de�nition does not depend upon the choices
made�

Let G be the group generated by all orthogonal re�ections through hyper�
planes in H and suppose that H is stable under G� that is� that if � � H
and g � G then g� � fgx 
 x � �g is also in H � This group G is called a
re�ection group�

Remarks� Having made the assumption that the set of hyperplanes is
stable under all re�ections through members of H � we can sensibly introduce
some further standard terminology
 If the hyperplanes in H have non�trivial
common intersection� the re�ection group generated is a linear re�ection
group� If the hyperplanes in H have trivial common intersection� then the
group is called an a	ne re�ection group and the chambers are called al�
coves�

Lemma� For two chambers C�D cut out by H � let � � ��C�D� be the
number of hyperplanes in H which separate them� Then there is a gallery of
length � connecting them�

Proof� Induction on the number of walls separating C�D� First� if no
walls separate the two chambers� then �e�g�� by the previous section� C�D are
de�ned by the same collection of inequalities� so must in fact be the same
chamber� So suppose that C 
� D� Let � be a wall of C separating C�D�
Let C � be the chamber obtained by re�ecting C through �� Then � does not
separate C � from D� since we have just crossed � in going from C to C �� And
we crossed not other hyperplanes in H in going from C to C �� Thus�

��C �� D� � ��C�D�	 �

By induction� C �� D are connected by a gallery

C � � C�� C�� � � � � C� � D

of length �	 �� Then it is easy to see that C�D are connected by the gallery

C � Co� C
� � C�� C�� � � � � C� � D
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of length �� �
Let C be a �xed chamber cut out by H � let S be the set of re�ections

through the hyperplanes inH which are walls of C� and letW be the subgroup
of G generated by S�

Recall that a group action of a group G on a set X is simply�transitive if
the action is transitive and if for all x � X the equality gx � x implies that
g � ��

Recall that the Deletion Condition on a group W and a set S of generators
for W is that if the length of a word s� � � � sn is less than n� then there are
indices i� j so that

s� � � � sn � s� � � � �si � � � �sj � � � sn

That is� the product is unchanged by deletion of si and sj � The least n so
that w has an expression w � s� � � � sn is the length ��w� of w with respect to
the generators S of W �

We prove the following family of related results all together�

� The group W is transitive on chambers cut out by H � and G � W �
� The group G is simply�transitive on chambers�
� The length ��w� of w � W is the number ��C�wC� of walls separating
C from wC� Each wall crossed by a minimal gallery from C to wC is
crossed just once� and the collection of walls crossed by such a minimal
gallery is exactly the collection of walls separating C from wC�

� The topological closure  C of C is a fundamental domain for the action
of W on X � in the sense that

X �
�
w
W

w  C � X

� The isotropy subgroup or stabilizer

Wx � fw �W 
 wx � xg
in W of x in the topological closure  C of C is the subgroup of W
generated by

Sx � fs � S 
 sx � xg
� The pair �W�S� satis�es the Deletion Condition� so �W�S� is a Coxeter
system�

Proof� Prove transitivity on chambers by induction on the length of a
gallery from C to another chamber D� Let � be a wall of D separating C
from D� and let D� be the chamber obtained by re�ecting D across �� Then
��C�D�� is one less than ��C�D�� so there is w � W so that wC � D�� Then
w��D is a chamber adjacent to w��D� � C� Let s be the re�ection across
the common wall of w��D and C� Then certainly sC � sw��D� � w��D�
That is� D � wsC� as desired� This is the transitivity�

Let � be a wall of a chamber D� and take w � W so that wC � D� Then
w��� is a wall of C� and the re�ection t through � is simply t � wsw�� where
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s is the re�ection through w���� Thus� W contains all re�ections through
walls� so contains G�

Let w � s�s� � � � sm be an expression for w in terms of si � S� Then

C � Co� C� � s�C� C� � s�s�C� C� � s�s�s�C� � � � � Cm � wC

is a gallery from C to wC� Therefore� it is clear that

��w� � ��C�wC�

If ��w� � ��C�wC� then some wall is crossed at least twice by the gallery�
The hyperplanes crossed by this gallery are described as follows� Let

wi � s� � � � si

Then Ci � wiC� and

Ci	� � wi	�C � wisi	�C � wisi	�w
��
i wiC � wisi	�w

��
i Ci

Thus� Ci	� is obtained from Ci by re�ecting by wisi	�w
��
i �

The assumption that a wall is crossed twice is the assumption that for some
i � j

wisi	�w
��
i � wjsj	�w

��
j

Then� using i � j� we have

si	� � �si	� � � � sj�sj	��si	� � � � sj�
��

from which we obtain� upon right�multiplying by si	� � � � sj �

si	� � � � sj � si	� � � � sj	�

Then

w � s� � � � sn � s� � � � �si	� � � � �sj	� � � � sn

That is� we can remove si	� and sj	� from the expression for w as a word in
elements of S�

But we could have assumed that the original expression was already the
shortest possible� that is� was reduced� Thus� we conclude that the length
of w is equal to the number of walls separating C from wC� and no wall is
crossed twice by a minimal gallery from C to wC� On the other hand� if a
wall � is not crossed by a gallery from C to wC� then the gallery stays to one
side of the hyperplane �� so � does not separate the two chambers�

In particular� wC � C implies that w is of length zero� so is �� This gives
the simple�transitivity�

Every point in X is in the closure of some chamber� so  C is a fundamental
domain�

Certainly the subgroup of W generated by Sx is contained in the isotropy
subgroup Wx� On the other hand� given x� y �  C � suppose that wx � y� We
must show that x � y and that w is in the subgroup generated by Sx� This is
by induction on the length of w with respect to the generators S of W � Let
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w � s� � � � sm be a reduced expression� that is� of minimal length with m � ��
Then

C � Co� s�C� s�s�C� � � � � �s�� � � � sm���C� wC

is a minimal gallery from C to wC� This gallery crosses the wall �� of C
�xed by s�� so since the gallery is minimal C�wC are separated by the wall
��� Hence� from the de�nition� the intersection of their closures is contained
in ��� Then

wx � y �  C � w  C � ��

Thus� as necessarily y � ���

�s�w�x � s�y � y

By induction on length� x � y� Further� since we saw that y � ��� certainly
x � y � ��� so s� �xes x� and by induction w� � �s�w� is in the subgroup of
W generated by Sx�

Observe that we showed that if the length of w � s� � � � sm is less than m
then two factors can be deleted from this product
 the Deletion Condition
����� holds�

�

���� Root systems and �nite re�ection groups
If the set H of a�ne hyperplanes is locally �nite� and if the hyperplanes

in H have a common point� then the total number of hyperplanes in H is
�nite and we can change coordinates on X � Rn so that the common point is
�� Then all hyperplanes are linear� and the associated re�ections are likewise
linear� The associated �nite re
ection group is sometimes also called spherical�

We can arrive at this situation by a slightly di�erent route� related to our
prior discussion ������ ����� of roots� as follows�

Let � be a �nite collection of vectors in a �nite�dimensional real vectorspace
V equipped with a positive�de�nite inner product h� i� For � � �� let s� be
the corresponding re�ection
 for v � V

s��v� � v 	 �hv� �i
h�� �i �

The set � is a ��nite� root system if

s�� � �

for all � � �� Then the group W generated by the re�ections s� for � � �
is evidently a �nite linear re�ection group� since it certainly is a subgroup of
the �nite group of permutations of the �nite set ��

Say that � is a ��nite� reduced root system if also

� � R� � f��g
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for all � � �� Given a root system �� we might replace every � � � by the
corresponding unit vector ��h�� �i���� obtaining the associated reduced root
system ��� Visibly� this does not alter the group W obtained� Generally�
altering the lengths of roots does not a�ect the group W obtained� but may
a�ect other aspects of the situation�

The set )� of co�roots associated to roots � is the set of elements

)� �
��

h�� �i
for � � �� It is easy to check that this is again a root system� called the dual
root system� The associated group W is the same� again� since the collection
of hyperplanes associated to )� is the same as that for ��

The root system is crystallographic if

�h�� �i
h�� �i � Z

for all �� � � �� If the root system is crystallographic �and �nite�� then the
group W is called a Weyl group� with reference to the generators s� for
� � � being implicit� In this de�nition� altering the lengths of roots certainly
does matter�

In any case� the collection H of linear hyperplanes

�� � fv � V 
 hv� �i � �g
for � � � is a �nite collection of linear hyperplanes� stable under the action
of W since � is and since W leaves the inner product h� i invariant� Thus�
the previous discussions apply� Again� note that replacing a root system �
by its associated reduced root system gives rise to the same collection of
hyperplanes� and the same re
ection group W �

One purpose of this section is to study the �shape	 of the chambers cut out
by a �nite re�ection group
 we will see that the chambers are simplicial cones
�de�ned below�� This study is intimately related to the notion of choice of
simple roots inside the root system�

So �x a ��nite� root system � and let H be the associated �nite collection
of hyperplanes� For the purposes of this section� without loss of generality we
suppose that � is reduced� and that the roots are of length ��

Fix a chamber C cut out by H � let S be the collection of re�ections in the
walls of C� and let W be the group generated by these re�ections� Let �e�
be the two unit vectors orthogonal to � � H � Given the choice of chamber C�
the positive roots �	 are those roots � � � so that

hx� �i � � �x � C

From the de�nition of chamber it follows that

� � �	 t �	�	�

The set * of simple roots in �	 is de�ned to be the set of � � �	 so
that � is not expressible as a linear combination of two or more elements of
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�	 with positive coe�cients� Then� using the �niteness of � and induction�
every � � �	 is expressible as

� �
X
�
�

c��

where c� � � for all ��
From this de�nition it is clear that * is minimal among the collection of

subsets E of �	 so that all elements of �	 are expressible as linear combi�
nations of elements of E with non�negative coe�cients
 if � � * could be
omitted� then � would be expressible as a linear combination

P
� c�� over

� � *	f�g� with c� all non�negative� By de�nition of *� at most one of the
coe�cients c� can be positive� But then we have an expression � � c��� But
this is impossible� This proves the minimality�

Lemma� A point x � X lies in the chamber C if and only if for all � � *
we have hx� �i � ��

Proof� If x � C� then � � * � �	 gives hx� �i � �� On the other hand� if
hx� �i � � for all � � * then hx� �i � � for all � � �	� since all elements of
�	 are non�negative linear combinations of elements of * �with some strictly
positive coe�cient present�� Then since C is a connected component of the
complement of the union of all the hyperplanes h�� �i � �� we �nd that x � C�

�

Lemma� For distinct �� � � *� we have

h�� �i � �

Proof� Throughout the proof� keep in mind that hx� �i � � for all x � C
and for all � � �	� And� for this proof� we may suppose without loss of
generality that �� � are unit vectors�

Suppose that h�� �i � � for a pair �� � � *� Let s be the re�ection in the
hyperplane orthogonal to �� Then s� is again in �� since H was stable under
all these re�ections�

Suppose s� � �	� Write s� �
P

� c�� with non�negative coe�cients� and
� � *� If c� � �� then we rearrange to obtain

��	 c��� � �h�� �i �
X
� ���

c��

That is� � is expressible as a non�negative linear combination of elements from
*	 f�g� contradicting the minimality of *� If c� � �� then we rearrange to
obtain

� � �c� 	 ��� � �h�� �i �
X
� �����

c��

Taking inner product with any x � C gives � � �� contradiction�
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Suppose that 	s� � �	� Write 	s� �
P

� c�� with non�negative co�
e�cients� summed over � � *� If c� 	 �h�� �i � �� then we rearrange to
obtain

� � � � �c� 	 �h�� �i�� �
X
� ���

c��

Taking inner products with any x � C gives � � �� which is impossible� If� on
other hand� c� 	 �h�� �i � �� then we rearrange to obtain

��h�� �i 	 c��� � � �
X
� ���

c��

The coe�cient of � is positive� so � is expressed as a non�negative linear
combination of elements of *	 f�g� contradicting the minimality of *�

This excludes all the possibilities� so the assumption h�� �i � � yields a
contradiction� �
Corollary� The simple roots are linearly independent� The collection of

hyperplanes orthogonal to the simple roots is exactly the collection of walls
of the chamber C� The chamber C has at most n � dimX walls�

Proof� If the simple roots were not linearly independent� then we could
write

v �
X
�
I

a�� �
X
�
J

b��

for some v � X � where I� J were disjoint subsets of *� with all a�� b� strictly
positive� Then

� � hv� vi �
X
���

a�b�h�� �i � �

From this� v � �� But then for x � C we have

� � hx� �i � hx�
X

a��i �
X

a�hx� �i
Since hx� �i � �� this would force I � �� Similarly� J � ��

Thus� there could have been no non�trivial relation� so the simple roots are
linearly independent� so there are at most n � dimX of them�

Since the simple roots are linearly independent� and since C is the set of x
so that hx� �i � � for all � � *� the linear hyperplanes

�� � fx � X 
 hx� �i � �g
perpendicular to � � * are exactly the walls of C� Indeed� by the linear
independence� given � � *� there is v � X so that hv� �i � � and hv� �i � �
for � 
� � � *� Then� given x � C� for suitable real numbers t the point
y � x� tv yields

hy� �i � hx� �i � t � �

hy� �i � hx� �i � �

That is� �� is the only hyperplane separating C from y� By the elementary
results on walls of chambers� this proves that �� is a wall of C� �
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Now let

HC � f��� � � � � �mg
be the walls of C� Let �i be a root orthogonal to �i� and from the two
possibilities for �i choose the one so that hx� �ii � � for x � C� That is� from
above� the �i are the simple roots�

The group W is called essential if W has no non�zero �xed vectors on X �
that is� if wx � x for all w � W for x � X implies x � ��

A simplicial cone in X is a set of the form

f
X

��i�n

tixi 
 �ti � �g

where e�� � � � � en is a �xed R�basis for X �

Corollary� Suppose that W is essential� Then the chamber C is a
simplicial cone�

Proof� Since W is essential� it must be that�
�
H

� � f�g

Since �by the previous section� all the re�ections in � � H are in W � in fact
it must be that �

�
HC

� � f�g

Therefore� m � n�
On the other hand� we just showed that the number of walls is � n and the

ei are linearly independent� Thus� we can �nd xi so that h�j � xii � � for j 
� i
and h�i� xii � �� Then the chamber C can indeed be described as the set of
elements in X of the form

P
tixi with all ti � �� That is� C is a simplicial

cone� �

Remarks� In general� if W is not necessarily essential� then we can write
X � Xo 
X � where W acts trivially on Xo� stabilizes X�� and the action of
W on X � is essential� Then the chambers are cartesian products of the form

Xo � simplicial cone in X �

Corollary� The re�ections s� for � � * generate W �

Proof� The re�ections attached to simple roots are the re�ections in the
walls of the chosen chamber� which do generate the whole group W � by the
general results on re�ection groups� �

Corollary� With � reduced� given a root �� there is w � W so that
w� � *�
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Proof� By replacing � by 	� if necessary� we may suppose that � is a
positive root� Since W is �nite� there is indeed an element of W which sends
all positive roots to negative
 this is the longest element of W �

Let

� �
X
�
�

c��

be the element of W� � �	 with the smallest height
P

c�� Since everything
is �nite and since at least � itself lies in this set� we are assured that such
element exists� Then

� � h�� �i �
X
�

c�h�� �i

so certainly there is a simple root � so that h�� �i � �� If already � � * then
we are done�

Suppose that � is not simple� Recall� from our elementary discussion of
Coxeter groups� that for � � * the re�ection s� sends the root � to 	� and
merely permutes the other positive roots� �It is here that we make use of the
reduced�ness of the root system��

Thus� s�� must still be positive� Since

s�� � � 	 �h�� �i
h�� �i �

the height of s�� is no larger than that of �� We contradict the de�nition of
� unless h�� �i � �� But this must hold for every � � *� so � is �xed by every
s�� Since the latter re�ections generate W � � is �xed by W � contradicting the
fact that � is certainly not �xed by its own associated re�ection s�� �

���� A
ne re�ection groups� special vertices

Let H be a locally �nite set of a�ne hyperplanes in X � Rn � In contrast
to the previous section� we now suppose that there is no point common to
all the hyperplanes� Under some additional hypotheses �below�� we will show
that chambers cut out by H are simplices�

We suppose that H is stable under re�ections through � � H � Fix a
chamber C cut out by H � let S be the collection of re�ections in the walls of
C� and let W be the group generated by these re�ections� �We have shown
that �W�S� is a Coxeter system��

Suppose also that �W�S� is indecomposable in the sense that the Coxeter
diagram is connected� that is� S cannot be partitioned into two sets S�� S� so
that s�s� � s�s� for all s� � S� and s� � S��

Let

HC � f�o� � � � � �mg
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be the walls of C� Let ei be a unit vector orthogonal to �i� let yi be a point
in �i� and from the two possibilities for ei choose the one so that

hx	 yi� eii � �

for x � C�
Let HC be the set of walls of C� For � � HC � the inward�pointing unit

normal vector e � e� is the unit vector orthogonal to � so that for x � C
and x� � � we have

hx	 x� � e�i � �

Lemma� For distinct walls � 
� 
 of C with inward�pointing unit normal
vectors e� f �respectively�� we have

he� fi � �

Proof� First� we claim that if e� f are parallel� then 
 � 	�� so that
h�� 
i � 	�� If 
 
� 	�� then necessarily 
 � �� But then it is easy to see that
only one of the two hyperplanes could be a wall of C� contradiction� Thus�

 � 	� as claimed�

Now consider e� f not parallel� Then � and 
 have a common point of
intersection� which we may suppose to be �� by changing coordinates� The
subgroupW � of W generated just by the linear re�ections in �� 
 has a unique
chamber C � containing C� and �� 
 are still walls of C �� from the de�nition
of �wall	� Let H � be the collection of images of �� 
 under W �� Since H was
locally �nite� certainly H � is locally �nite� Further� H � consists of hyperplanes
through �� The results of the previous section are now applicable to W � and
H �� In particular� we have

h�� 
i � �

as desired� �

Corollary� There are only �nitely�many parallelism classes of hyper�
planes in H �

Proof� If there were in�nitely�many hyperplanes in H no two of which
were parallel� then the inward�pointing unit normal vectors would have an
accumulation point on the �compact$� unit sphere in X � In particular� the
cosines he�� e�i of the angles would get arbitrarily close to � for distinct �� 
 �
H � But the lemma shows that this is impossible� �

For w �W � since w is an a�ne map� we can write

wx �  wx� Tw

where the linear part  w of w is a linear map X � X and where Tw � X
is the translation part of w� Of course� this decomposition depends upon
what point we call �� so a change of coordinates moving � would change this
decomposition�
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For w � W � �implicitly depending on choice of �� let w �  w be the map
fromW to the groupW of linear parts� One can readily check that this map is
a group homomorphism� The kernel W� of the map W �W is the subgroup
of translations in W � Indeed� for w � W� and x � X we have wx � x� Tw
for some Tw � X depending only upon w� not upon x�

Proposition� The group W is a �nite �linear� re�ection group� There is
at least one point x � X so that the stabilizer Wx maps isomorphically to W �
The translation parts Tw of w �W lie in W �

Remarks� A point x so that Wx � W is an isomorphism is called
special or good� The proof below shows that always Wx � W is injective�
so the real issue is surjectivity� And we paraphrase the proposition as

Corollary� There exist special vertices in an a�ne Coxeter complex� �

Proof� For each � � H let  � be a hyperplane parallel to � but through ��
We just showed that the family

 H � f � 
 � � Hg
is �nite! now we show that it is stable under the re�ections through elements
of  H � Given �� 
 � H � let  s be the re�ection through  �� Let t be the re�ection
through 
� and  t the re�ection through  
 � The hyperplane  
 is the �xed�point
set of  t� The image of  
 under  s is the �xed�point set of

 s t  s�� �  sts��

since w �  w is a group homomorphism� Since sts�� is the re�ection through
s
� its �xed�point set is a hyperplane in H � so its image in  H is indeed the
�xed point set of  s t  s�� �  sts��� Thus� W is a �nite linear re�ection group�
as claimed�

Let ��� � � � � �m be distinct elements of H so that the linear hyperplanes
 �i are the distinct elements of  H � Since the latter all pass through �� there
must be some point x common to all of ��� � � � � �m� Certainly the re�ections
si through the �i stabilize x and have images in W which generate W � Thus�
Wx � W is onto� On the other hand� if w � Wx has  w � �� then necessarily
w is a translation �xing x� which is impossible unless w � ��

To see that all translation parts Tw of w � W lie in W � let x be a special
point and take wx �Wx so that  wx �  w� Then Tw � w��

x w� �

Corollary� For any special vertex x� the group W is the semidirect
product of the translation subgroup W� and the group W of linear parts


W �W� ��W

Proof� The only thing to check is that W� is a normal subgroup of W �
which is easy� since the group of translations is a normal subgroup of the
group of all a�ne automorphisms of X � �
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Now we assume that the collection of inward�pointing unit normal vectors
to the walls of a chamber C span the vectorspace X � This assumption is
equivalent to the assumption that W is essential� that is� has no non�zero
�xed�vectors in X � For present purposes� an n�simplex in X with one vertex
at the origin is described as follows
 let f�� � � � � fn be a basis for the linear
dual of X � and for a positive constant c de�ne

� � fx � X 
 fi�x� � � �i� and
X
i

fi�x� � cg

This is the sort of n�simplex we will see�

Proposition� Suppose thatW is essential and thatW is indecomposable�
Then a chamber cut out by H is an n�simplex� where X � Rn �

Proof� Let �o� � � � � �m be the walls of C� Since W is essential� the unit
normal vectors eo� � � � � em to the walls must span X � Further� since we are
assuming that the walls have no common intersection� m � n� Therefore�
there is a non�trivial linear relation

P
i ciei � � among these vectors� Let I

be the set of indices i so that ci � � and let J be the set of indices j so that
cj � �� Then we can rewrite the relation asX

i
I

ciei �
X
j
J

�	cj�ej

Let v �
P

i
I ciei� Then

� � hv� vi � h
X
i
I

ciei�
X
j
J

�	cj�eji �

�
X

i
I�j
J

ci�	cj�hei� eji � �

since the inner products hei� eji are non�positive� from above� If neither I nor
J is empty� the indecomposability of W implies that some one of these inner
products is non�zero� yielding the impossible conclusion � � �� Thus� one of
I� J must be empty�

Taking � 
� I � we have

� �
X
i
I

ciei

If I 
� f�� �� � � � �mg� then there is an index j 
� I � and

� � hej � �i � hej �
X
i
I

cieii �

�
X
i
I

cihej � eii � �

Again by the indecomposability� some one of these inner products is negative�
and we again obtain the impossible � � �� Thus� it must have been that I
was the whole set of indices f�� � � � �mg�
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Note that we have shown that the only possible non�trivial relation among
the ei must involve all of them� Therefore� it must be that m � n exactly� so
that there are exactly n� � walls to C�

Further� we have the relationX
��i�n

ciei � �

with some ci all positive �without loss of generality�� Then we can suppose
�by changing coordinates� that ��� � � � � �n have common intersection f�g� and
that �o does not pass through ��

The chamber C is de�ned by inequalities hx� eii � � for � � i � n and
hx	 xo� eoi � � for some xo � �o� The latter can be rearranged to

hx�
X

c��
o eii � 	hxo� eoi

Since we know that C 
� �� necessarily the constant c � 	hxo� eoi is positive�
Since c��

o ci � �� we can rewrite each hx� eii � � as hx� c��
o cieii � �� Thus�

taking
fi�x� � hx� c��

o cieii
�for i � �� the de�ning relations for C become
 fi � � for i � � andX

i��

fi�x� � c

Again emphasizing that the linear functionals fi are a basis for the linear dual
of X � it is clear that C is a simplex� �
Proposition� Suppose thatW is essential and thatW is indecomposable�

Then the normal subgroup W� of translations in W is a discrete subgroup of
the group T � Rn of all translations of X � Rn � Further� the quotient X�W�

of X by W� is compact�

Proof� Now using the vectorspace structure of X � Rn � we identify W�

with an additive subgroup of X by w � Tw�
The images wC of the chamber C under w � W� are disjoint� Thus� for

�xed xo � C the set

U � C 	 xo � fv 	 xo 
 v � Cg
is a neighborhood of � so that W� � U � f�g� Thus� W� is discrete�

On the other hand�
S
wC � X � Let

Y �
�

�w
W

 wC

Since W is �nite �from above�� and since C is a simplex� the topological
closure C of C is compact� and Y is compact� It is clear that�

w�
W�

w�Y � X
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Therefore� X�W� is compact� �

���� A
ne Weyl groups
From �nite crystallographic root systems we construct a�ne re�ection

groups Wa�
The in�nite Coxeter groups Wa so constructed are called a	ne Weyl

groups and the chambers cut out by the re�ecting hyperplanes are sometimes
called alcoves�

Let � be a �nite crystallographic root system� and let W be the corre�
sponding �nite linear re�ection group� which we have seen is necessarily a
Coxeter group� More precisely� if S is the set of re�ections in the walls of a
chamber� then �W�S� is a Coxeter system�

Since � is assumed to be crystallographic� we have

�h�� �i
h�� �i � Z

for all roots �� � � �� Again� this notion is sensitive to changes in length� so
we should not normalize roots to have length �� Again� the coroot )� associated
to � is

)� �
��

h�� �i
For � crystallographic� we have

�h�� �ih�� �i
h�� �ih�� �i � Z

As in the usual description of Coxeter data� let m�s�� s�� be the least positive
integer m so that

�s�s��
m � �

Let e� be the unit vector ��h�� �i���� From discussion of re�ection groups�
we know that

	 cos���m� � he�� e�i � �

From these observations� we see that the choices for m � m�s�� s�� �with
� 
� � are limited
 we can have only

he�� e�i � 	��	
p
����	p����	���� �

with corresponding
m ��� �� �� �� �

If the group W is assumed �nite� then � cannot occur� since otherwise there
would be an in�nite dihedral group occurring as a subgroup�

We further suppose that � is reduced� so that �� are the only multiples
of a given root � which are again roots�

We may suppose without loss of generality that the action ofW is essential�
Here this amounts to requiring that � span the ambient vectorspace V �
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Fix a chamber C for �� with corresponding choice * of simple roots and
choice S of generators for W 
 this choice is that � � � is simple if and only
if the hyperplane �� �xed by the re�ection s� is a wall of C�

Let ' be the collection of all integer linear combinations of simple roots�
The hypothesis that � is crystallographic assures that ' is stable under all
the re�ections s� for � � �� In our discussion of �nite re�ection groups
we showed that the simple roots are linearly independent� Our assumption
that W is essential assures that * spans the vectorspace� This ' is the root
lattice attached to �� a terminology which is justi�ed by the corollary below�

Lemma� If � is crystallographic and reduced� then all roots are integer
linear combinations of simple roots�

Proof� From our discussion of �nite re�ection groups just above� given a
root � there is w �W so that w� � *� Also� the re�ections s� attached to *
generate W � If � is an integer linear combination of � � *� then for � � *
we see that

s�� � � 	 �h�� �i
h�� �i �

still has that property� because of the crystallographic hypothesis� Thus�
� �W* consists of integer linear combinations of simple roots� �

Recall that a Z�lattice in a real vectorspace V � Rn is a Z�submodule in
V with n generators which spans V � Equivalently� a Z�submodule of V is a
Z�lattice if the natural map

V �ZR � V

given by

v � r � rv

is an isomorphism�

Corollary� The root lattice ' is a Z�lattice in V � containing the set of
roots �� and is stable under the action of W � Similarly� the coroot lattice
'�)��� consisting of Z�linear combinations of coroots� is a Z�lattice in V and
is stable under the action of W �

Proof� In the discussion of �nite re�ection groups we saw that the simple
roots are linearly independent� The assumption that W is essential implies
that they span V � Thus� ' is a Z�lattice� The previous lemma gives � �
'� and the de�nition of �crystallographic	 gives the stability under W � The
argument is similar for the coroot lattice� �

With �xed crystallographic �and essential� �nite re�ection groupW � de�ne
a set H of a�ne hyperplanes

���k � fv � V 
 hv� �i � kg
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for � � � and k � Z� Let Wa be the group of a�ne automorphisms generated
by the a�ne re�ections

s��k�v� � v 	 �hv� �i 	 k�)�

This group Wa constructed from the �reduced� �nite crystallographic root
system � is an a	ne Weyl group� Concommitantly� we might say that W
is a spherical Weyl group when the root system is crystallographic�

For 
 � V we have the translation

���v� � v � 


Via 
 � �� we may identify V with a subgroup of a�ne automorphisms of
V �

Proposition� The collection H of a�ne hyperplanes ���k is locally �nite
and is stable under Wa� The a�ne Weyl group Wa is the semi�direct product

Wa � W ��'�)��
of the group W and the coroot lattice '�)��� The group generated by re�ec�
tions in the hyperplanes in H is just Wa�

Proof� Certainly W lies inside Wa� Note that

��� � s���s� � s���s���

so the group of translations coming from '�)�� also lies inside Wa�
Since also

s��k � �k��s�

we see that the generators s��k for Wa lie in the group generated by W and

'�)���
It is easy to check that W normalizes the translation group given by '�)���

Thus� Wa is the indicated semi�direct product�
The W �invariance of the inner product and W �stability of the roots �

immediately yield the W �stability of H � Likewise� if hv� �i � k and 
 � )� for
� � � is in '�)��� then

hv � 
� �i � k � h)�� �i
and h)�� �i is integral� by the crystallographic assumption� Thus� the collection
of hyperplanes is '�)���stable�

Since the group Wa is the indicated semi�direct product� and since the
�nite set Ho of linear hyperplanes ���� is W �stable� it follows that H is the

collection of translates of Ho by the discrete translation group '�)���
Suppose there were in�nitely�many hyperplanes ���k within distance 	 � �

of a point x � V � Let y � y��k be a point on ���k within distance 	 of x


hx	 y� x	 yi � 	

By de�nition of the hyperplane� we have

hy� �i � k
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Thus�
hx� �i � hx 	 y � y� �i � hx	 y� �i� hy� �i

Invoking the Cauchy�Schwartz inequality� it follows that

jhx� �i 	 kj � 	j�j
where j�j is the length of �� Since there are only �nitely�many distinct roots
�� if there were in�nitely�many hyperplanes withing distance 	 of x then for
some root �o there would be in�nitely�many integers k so that

jhx� �i 	 kj � 	j�j
This is certainly impossible� contradicting the assumption that local �niteness
fails�

The re�ection in ���k is just s��k� so the a�ne Weyl group Wa is the group
corresponding to the locally �nite collection H of a�ne hyperplanes� �
Corollary� This group Wa is an a�ne re�ection group� so is a Coxeter

group�

Proof� The local �niteness allows application of our earlier discussion of
a�ne re�ection groups generated by re�ections in locally �nite sets of hyper�
planes� which we showed to be Coxeter groups� etc� �

As above� S is the set of generators s� of W for � � *� Recall that �W�S�
is said to be indecomposable if S cannot be partitioned into two non�empty
sets of mutually commuting generators� This assumption is equivalent to the
indecomposability of the Coxeter matrix of �W�S�� and to the connectedness
of the Coxeter graph of �W�S��

Corollary� Still assume that � is a reduced �nite crystallographic root
system� If the Coxeter system �W�S� is indecomposable� then the a�ne re�
�ection group Wa is generated by n � � re�ections� including the n linear
re�ections s� � s��� for simple roots �� The chambers cut out are simplices�

Proof� The previous corollary	s assertion� thatWa is a semi�direct product
of a translation group and of W � shows that the point � is a special �or good�
vertex for the a�ne re�ection group Wa� That is� as in the previous section
on a�ne re�ection groups� the map from Wa to the group of linear parts of
the maps is surjective when restricted to W �

Further� since Wa contains the coroot lattice� the chambers cut out by this
a�ne re�ection group have compact closure� Thus� by results on a�ne re�
�ection groups� since W is indecomposable the chambers are simplices� �Note
that our presentW is theW of the previous section on a�ne re�ection groups��

Since � is a good vertex �with stabilizer W �� from our discussion of a�ne
re�ection groups in the previous section we know that there is a chamber C
cut out by Wa with walls �s�� for s � S� and with just one more wall� �
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��� A�ne Coxeter Complexes
� Tits	 cone model of Coxeter complexes
� Positive�de�niteness
 the spherical case
� A lemma from Perron�Frobenius
� Local �niteness of Tits	 cones
� De�nition of geometric realizations
� Geometric realization of a�ne Coxeter complexes
� The canonical metric
� The seven in�nite families

The main goal here is to give a �geometric realization	 of Coxeter complexes�
upon which we can put a metric structure� justifying to some degree both the
appellations �spherical	 and �a�ne	�

���� Tits� cone model of Coxeter complexes
Here we do preparatory work� giving Tits	 construction which provides a

link between abstract Coxeter complexes on one hand and �concrete	 re�ection
groups on the other hand� Speci�cally� we look further at the linear repre�
sentation ����� of a Coxeter group on a �nite�dimensional real vectorspace V �
and follow Tits	 construction of a poset of subsets of the dual V � �realizing	
the Coxeter complex ������

Let �W�S� be a Coxeter system ����� with associated Coxeter form h� i on
the real vectorspace V with basis es for s � S� We assume that S is �nite� of
cardinality n� We have the linear representation

W

� � � G � GL�V �

de�ned on generators by

��s��v� � v 	 �hv� esies
where G is the isometry group of the �possibly degenerate� Coxeter form h� i�
In our earlier discussion ������ ������ ����� we saw that this map is an injection�

Let GL�V � have the �usual	 topology� This can be described in many equiv�
alent ways� For example� the real�linear endomorphisms of V can be identi�ed
with the n��dimensional real vectorspace of real n�n matrices� The latter can

be given the topology of Rn� � and then GL�V � given the subspace topology�
In any event� we give G the subspace topology it inherits from GL�V �� The

isometry group G is� by de�nition� the subset of GL�V � consisting of elements
g so that

hgv� gv�i � hv� v�i
for all v� v�� The function h� i is continuous� so these are �closed conditions	�
so G is an intersection of closed subsets of GL�V �� so is closed�
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Let �� be the contragredient representation of W on the �real�linear� dual
space V � of V � de�ned �as usual	 by

����w�
��v� � 
���w���v�

We simplify notation by writing simply wv in place of ��w�v� and also now
write w
 in place of ���
��

A problem in using the Coxeter form to talk about the geometry on V
is that it may be degenerate� and then not give an isomorphism of V with
its real�linear dual� Therefore� for present purposes� instead of the Coxeter
bilinear form on V � V � we use the canonical bilinear pairing

h� i 
 V � V � � R

That is� for v � V and x � V �� we now use notation

hv� xi � x�v�

For s � S de�ne walls� upper half�spaces �half�apartments�� and lower
half�spaces �respectively� in V � by

Zs � fx � V � 
 hes� 
i � �g
As � fx � V � 
 hes� xi � �g

Bs � fx � V � 
 hes� xi � �g � sAs

and the fundamental chamber

C �
�
s
S

As

The sets As and Bs are open� and Zs is closed� Note that� since S is �nite� C
is a �nite intersection of opens� so is open� Also� s interchanges As and Bs�
and �xes Zs pointwise! indeed� Zs is visibly the �xed�point set of s�

For a subset I of S� let

FI �

��
s
I

Zs

	
�
�
��
s�
I

As

�
A

Then F� � C and FS � f�g� LetWI be special subgroup ���
� ofW generated
by I � We observe that FI 
� �� as follows� Let fxsg be a basis for V � dual to
the basis fesg for V � that is�

hes� xti � � for s 
� t

and hes� xsi � �� Then X
s�
I

xs

is visibly in FI �
It is easy to see that the group WI �xes FI pointwise
 each s � I �xes Zs

pointwise� so certainly FI � Zs is �xed pointwise by the subgroup WI of W
generated by I �
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On the other hand� if s � S does �x 
 � FI � then

hes� 
i � hses� s
i �
� 	hes� s
i � 	hes� 
i

so 
 � Zs� Thus� if s �xes every 
 � FI � then since the et for t � I are linearly
independent� it must be that s � I � It is not yet clear� however� that WI is
exactly the stabilizer of every point in FI �

De�ne the Tits� cone

U �
�
w
W

wC

where

C �
G
I

FI

is the topological closure of C�

Theorem� The Tits	 cone U is a convex cone in V �� and every closed line
segment in U meets only �nitely�many sets of the form wFI � If wFI �FJ 
� ��
then I � J and w � I �so actually wFJ � FI and J � I and w � WI�� The
set C is a fundamental domain for W acting on U � That is� given a point
u � U � the W �orbit Wu of u meets C in exactly one point�

Proof� First� the fact proven earlier ������ ����� that ��ws� � ��w� if and
only if wes � � �etc�� can be immediately paraphrased as follows
 for s � S
and w �W �

��sw� � ��w� �� wC � As

��sw� � ��w� �� wC � Bs

Note that we consider sw rather than ws�
We �rst prove the assertion concerning wFI � FJ � by induction on ��w��

If ��w� � � then we are done� If ��w� � �� then there is s � S so that
��sw� � ��w�� As just noted� this implies that wC � sAs � Bs� By continuity�
wC � Bs� where Bs is the topological closure of Bs� Since FI � C � As� we
have C �wC � Zs� Therefore� s �xes each point in the assumedly non�empty
set wFI � FJ �

Since s �xes some point of FJ � from the short remarks preceding the the�
orem we have s � J � Also�

swFI � FJ � s�wFI � FJ � 
� �
Thus� induction applied to sw implies that I � J and sw � WI � Since
s � J � I � it must be that w �WI �

Thus� we �nd that the sets wFI are disjoint for distinct cosets wWI and
distinct subsets I � S� This gives the second assertion of the theorem�

From the de�nition of the �cone	 U � each W �orbit meets C in at least one
point� Suppose that 
� � � C are both in the same W �orbit
 take w � W so
that w
 � �� Take I� J � S so that 
 � FI and � � FJ � Then wFI � FJ 
� �
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implies that I � J and w � WI � so 
 � �� This proves that C is a fundamental
domain for the action of W on U �

Next show that U is a convex cone
 from the de�nition� it is immediate
that U is closed under taking positive real multiples� Thus� it su�ces to show
that� for 
� � � U � the closed line segment �
� �� connecting them lies inside
U � In fact� we will prove that it is covered by �nitely�many of the �disjoint�
sets wFI �

The assertion is clear if 
� � are in C� which is convex and covered by the
FI 	s� of which there are �nitely�many since S is �nite�

Without loss of generality� take 
 � C and � � wC � We do induction on
��w�� considering only ��w� � �� Now �
� �� �C � �
� �� for some � � C � so is
covered by �nitely�many of the disjoint sets FI � Since � 
� C � there is I � S
so that � � Bs for s � I and � � As for s 
� I � If � were in As for all s in I �
then other points on ��� �� close to � would also be in As for s � I and in As

for s 
� I � since both �� � � As for s 
� I � But then such points near � would
also lie in C� contradicting the de�nition of � �and the convexity of C��

Therefore� for some s � I � � � Zs� Since � � Bs� wC � Bs� Then
wC � Bs� The �rst remarks of this proof yield ��sw� � ��w�� By induction
on length� s� � � � C and s� � swC � and also ��� s�� has a �nite cover by
sets w�FJ � From this the assertion of the theorem follows� �

Corollary� The image � of W in the isometry group G is a discrete
�closed� subgroup of G�

Proof� Fix 
 � C� The map ' 
 w � w
 is continuous� so since C is
open N � '���C� is open� Certainly N contains �� The theorem shows that
���W � �N � f�g�

This su�ces to prove that the image ofW in GL�V �� is discrete� as follows�
Let N � be a neighborhood of � so that xy�� � N for all x� y � N �! this is
possible simply by the continuity of multiplication and inverse� If a sequence �i
of images of elements ofW in GL�V �� had a limit point h� then for su�ciently
high index io we would have ���

i h � N � for all i � io� Then �i�
��
j � N for all

i� j � io� Since N meets the image of W just at �� this shows that �i�j � �
for all i� j � io� Thus� discreteness is proven�

From this� we see that the image of W in GL�V � is discrete� since the
�adjoint	 map by g � g� de�ned by

hv� g�
i � hgv� 
i
is readily seen to be a homeomorphism of GL�V � to GL�V ��� �

Now let X be the poset of sets wFI � where we use the ordering that

wFI � w�FJ

if wFI is in the topological closure of w�FJ in the usual topology on V �
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Corollary� The poset of sets wFI �with I 
� S� with ordering just de�
scribed is isomorphic �as �abstract	 simplicial complex� to the Coxeter complex
of �W�S�� via

� 
 wFI � wWI

where WI is the subgroup of W generated by a subset I of S� Further� this
isomorphism respects the action of W � in the sense that

��w�� � w����

for all w �W and for all simplices ��

Proof� Again� the Coxeter complex was described as a poset and as a
simplicial complex in ������

First� the requirement that I 
� S removes � from U � This is certainly
necessary for there to be such a poset isomorphism� since otherwise f�g � FS
would be the unique minimal simplex in the complex� which is absurd�

In the theorem we showed that if two sets wFI and w�FJ have non�empty
intersection then w � w� and I � J � Thus� certainly � is well�de�ned� Then
it certainly is a bijection of sets� and visibly respects the action of W �

If the closure of wFI containsw
�FJ � then the closure of FI containsw

��w�FJ �
Then by the theorem w��w�FJ is of the form FK for some K � S� so neces�
sarily w��w� � WJ � the stabilizer of FJ � and w��w�FJ � FJ � Then I � J �
This shows that � preserves inequalities�

On the other hand� if wWI � w�WJ then by de�nition wWI � w�WJ �
Then WI � w��w�WJ � Since WI is a subgroup of WJ � W � it must be that
w��w� � WJ � and I � J � Then the reverse of the argument of the previous
paragraph shows that wFI contains w�FJ � �

���� Positive de�niteness� the spherical case

Throughout this section� the standing assumption on the Coxeter system
�W�S� is that the Coxeter form is positive de�nite� All we want to do is prove
that this implies that the Coxeter group is a �nite linear re�ection group
������� although one can continue easily in this vein� for example proving that
the Coxeter complex is a triangulation of a sphere�

Corollary� If the Coxeter form is positive�de�nite then the group W is
a �nite group� and consists of linear re�ections�

Proof� If the Coxeter form is positive�de�nite� then the isometry group
G of it is compact� being the orthogonal group �that is� isometry group�
attached to a positive�de�nite quadratic form over the real numbers� �This is
a standard sort of fact� and is a worthwhile elementary exercise to consider��
From above� the image under the linear representation � of the Coxeter group
W in GL�V � is a discrete �closed� subgroup� �We saw much earlier that the
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map W � GL�V � is injective�� A discrete �closed� subset of a compact set is
�nite�

Since it is positive�de�nite� the Coxeter form gives an inner product on the
space V � By construction� the images ��s� for s � S are orthogonal re
ections
with respect to the inner product arising from the positive�de�nite Coxeter
form� Let �s be the linear hyperplane �xed by ��s�� Since� as we have just
seen� the whole group is �nite� there must be only �nitely�many hyperplanes
w�s for w � W� s � S� Since� after all� W is generated by S� it must be that
��W � is the �nite linear re
ection group generated by the ��s�� �

Remarks� Further� since V has basis consisting of vectors es which are
	� eigenvalues for ��s�� it is clear that the action of W on V is essential
�������

���� A lemma from Perron�Frobenius

Here is a prerequisite to the a�ne case� which is a bit of peculiar elementary
linear algebra� This is a small part of what is apparently called �the Perron�
Frobenius theory of non�negative matrices and M�matrices	�

A symmetric n � n matrix is sometimes called indecomposable �compare
������ if there is no partition f�� � � � � ng � ItJ of the index set into non�empty
subsets so that the �i� j�th entry Mij is � for i � I and j � J �

In the sequel� we will concern ourselves with Coxeter systems �W�S� whose
Coxeter matrix meets the hypotheses of the following elementary lemma�
whose conclusion will allow us to see �a little later� that the associated Coxeter
complex �is	 an a�ne space�

Recall that a symmetric bilinear form h� i is positive semi�de�nite if hv� vi �
� for all v � V � and positive�de�nite if hv� vi � � implies that v � ��

Lemma� LetM be an indecomposable real symmetric n�n matrix which
is positive semi�de�nite� Assume further that Mij � � for i 
� j� Then

fv � Rn 
 Mv � �g � fv � Rn 
 v�Mv � �g

where v� is the transpose of v and we view v as a column vector� Further�
the dimension of the kernel fv � Rn 
 v�Mv � �g of M is �� Finally� the
smallest eigenvalue of M has multiplicity one� and has an eigenvector with all
positive coordinates�

Proof� The inclusion

fv � Rn 
 Mv � �g � fv � Rn 
 v�Mv � �g

is clear�
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Since M is symmetric an positive semi�de�nite� by the spectral theorem
there is an orthogonal matrix Q so that QMQ� � D is diagonal with non�
negative diagonal entries D�� � � � � Dn� Then

v�Mv � v�Q�DQv � �Qv��D�Qv� �
X
i

Diw
�
i

where wi is the i
th coordinate of w � Qv� By the non�negativity of the Di� if

v�Mv � �� then it must be that for each index i we have Diw
�
i � �� so either

Di � � or wi � �� Then immediately Dw � �� Thus�

� � Q� � � � Q�Dw � Q�D�Qv� � Mv

Thus� we have equality of the two sets�
Suppose that the kernel of M has positive dimension� Take � 
� v in the

kernel� Let u be the vector whose entries are the absolute values of those of
v� Since Mij � � for i 
� j� we obtain the second inequality in the following


� � u�Mu � v�Mv � �

Thus� u also lies in the kernel�
Now we show that all coordinates of u are non�zero� Let J be the non�

empty set of indices so that uj 
� � for j � J � and let I be its complement�
Since X

j

Mijuj �
X
j
J

Mijuj � �

for all indices i � I � and sinceMij � �� for j � J and i � I we haveMijuj � ��
Since the sum is �� each non�positive summandMijuj �with j � J and i � I� is
actually �� If I were non�empty� this would contradict the indecomposability
of M � Thus� I � �� so u has all strictly positive coordinates�

Since u was made by taking absolute values of an arbitrary vector v in the
kernel� this argument shows that every non�zero vector in the kernel of M has
all non�zero entries� This precludes the possibility that the dimension of the
kernel be larger than �
 if the dimension were two or larger� a suitable non�
zero linear combination of two linearly independent vectors can be arranged
so as to have some entry zero�

Let d be the smallest �necessarily non�negative� eigenvalue of M � Let I be
the identity matrix of the same size as M � Then M 	 dI still satis�es the
hypotheses of the lemma� and now has an eigenvalue zero� Thus� as we just
proved� its zero eigenspace has dimension one� so the d�eigenspace of M has
dimension one� �

Corollary� Let M be an indecomposable real symmetric n � n matrix
which is positive semi�de�nite� Assume further that Mij � � for i 
� j� Let N
be the �n	 ��� �n	 �� matrix obtained by deleting the itho row and column
from M � Then N is positive�de�nite�
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Proof� Without loss of generality� take io � �� If N were not positive
de�nite� then there would be a non�zero vector w � �w�� � � � � wn� in R

n�� so
that w�Nw � �� Let

v � ��� jw�j� � � � � jwnj�
Then� letting Mjk be the �j� k�th entry of M �

� � v�Mv ��
X
i�j

Mij jwijjwj j �

�
X
i�j

Mijwiwj

since Mij � � for i 
� j� Thus� we have

� �
X
i�j

Mijwiwj � w�Nw � �

Thus� equality holds throughout� and by the lemma Mv � �� But the lemma
also asserts that Mv � � implies that all entries of v are non�zero �if v 
� ���
contradiction� Thus� N is positive de�nite� �

���� Local �niteness of Tits� cones
For this section� to prove the desired local �niteness properties of Tits	

cone model ������� we will have to assume that the Coxeter groups WI for I
a subset of S with I 
� S are �nite�

We will see that this hypothesis is met in the case that �W�S� is a	ne�
which by de�nition means that it has indecomposable Coxeter matrix which
is positive semi�de�nite but not positive de�nite� �Again� this terminology
will be justi�ed a little later��

Recall ����� that the collection � of all roots of �W�S� is

� � fwes 
 w �W� s � Sg
For present purposes� we suppose that all the roots w� � es are �unit vectors	
in the sense that h�� �i � �� where h� i is the Coxeter form�

The set �	 of positive roots is the collection of those roots which are non�
negative real linear combinations of the roots es� The set * of the roots es
�for s � S� is the set of simple roots� We saw earlier ������ ����� that always

� � �	 t	�	

Also� for w �W � the length ��w� of w is equal to the number of positive roots
� so that w� is negative �that is� is the negative of a positive root��

From the earlier discussion of roots� we know that the fundamental chamber
C as de�ned earlier is

C � fx � V � 
 h�� xi � � �� � �	g
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And a root � is positive if and only if h�� xi � � for all x � C �or� equivalently�
for one x � C��

For x � V �� let ��x� � � be the number of � � �	 so that

h�� xi � �

For example� the fundamental chamber C is the subset of V � where � � ��

Lemma� If WI is �nite for subsets I of S strictly smaller than S� then
the Tits	 cone U associated to �W�S� is

U � f�g � fx � V � 
 ��x� ��g
Proof� Let X be the set of x with ��x� ���
First� from the fact that ��w� is the number of positive roots taken to

negative� it follows that for x � C and w �W we have

��wx� � ��w� ��
Thus� all the images wC of the fundamental chamber C lie inside X �

Next� we check that each FI with I 
� S lies inside X � Thus� there are only
�nitely�many positive roots which are linear combinations of just fes 
 s � Ig�
Thus� since hes� xi � � for x � FI and s 
� I � generally h�� xi � � for positive
roots � which are not linear combinations of just fes 
 s � Ig� This shows
that for x � FI with I 
� S we have ��x� ��� so FI � X � as claimed�

Last� we show that wFI � X for w � W and I 
� S� This argument just
is a slight extension of that for the case FI � C� Take x � FI � For � � �	�
consider the condition

� � h��wxi � hw���� xi
This condition requires that either w��� be a negative root� or among the
�nite number of positive roots � so that h�� xi � � on FI � Since ��w� is �nite
and is the number of positive roots sent to negative� there are altogether only
�nitely�many positive roots � so that

� � h��wxi
That is� wFI � X for I 
� S� �
Remarks� The point of the following lemma is that the hypotheses of

the preceding lemma are indeed satis�ed by a�ne systems �W�S�� After all�
these a�ne Coxeter systems are the main object of interest here�

Lemma� For a�ne �W�S� the subgroupsWI are �nite for a proper subset
I of S�

Proof� Indeed� by the Perron�Frobenius lemma ������ the Coxeter matrix
for a proper subset I of S is positive de�nite� From our discussion ������ of
the case where the Coxeter matrix is positive de�nite �that is� �the spherical
case	�� we know that the Coxeter group WI is indeed a �nite group� since it
is a discrete subgroup of a compact isometry group� �
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Corollary� For �W�S� so that WI is �nite for proper subsets I of S� the
set U 	 f�g �that is� the Tits	 cone with � removed� is an open subset of the
ambient space V �� Further� the W �stable set H of linear hyperplanes

�s�w � fx � V � 
 hes� wxi � �g
is locally �nite in U	f�g� in the sense that for a compact setK inside U	f�g�
there are only �nitely�many � � H so that K � � 
� ��

Proof� Let + be the set of subsets �� of �	 so that the di�erence �		��

is �nite� For �� � +� let

U���� � fx � V � 
 h�� xi � �� �� � ��g
Then each U���� is visibly open� and

U 	 f�g �
�

��
�

U����

is a union of opens� so is open�
To prove the asserted local �niteness� for elementary reasons we need only

consider compact sets K which are the closed convex hulls of n� � points of
U � where n � dim V �� If a linear hyperplane

� � fx � V � 
 hv� xi � �g
meets such a setK� then there must be a pair y� z of vertices ofK so that hv� yi
and hv� zi are not both � � and not both � �! otherwise� taking convex com�
binations� the linear function x � hv� xi would be � � or � � �respectively�
on the whole set K� Thus� if � meets K� then � must meet a line segment
� connecting two vertices of K� Of course� there are only �nitely�many such
line segments for a give set K of this form�

Thus� it su�ces to show that a closed line segment � inside U 	 f�g meets
only �nitely�many of the hyperplanes �s�w� Now �s�w � U is the union of sets
w�FI � We showed that in general a line segment � inside the Tits	 cone meets
only �nitely�many sets w�FI � This gives the local �niteness� �

Remarks� Without the assumption thatWI is �nite for I a proper subset
of S� the lemma and corollary are false� although some parts of the arguments
still go through�

It is still true in general� by the same argument as just above� that the set
X where � is �nite is open and contains all images wC� but it is not true that
FI lies inside X if it should happen that WI is in�nite� This is because if WI

is in�nite then there must be in�nitely�many positive roots which are linear
combinations of es for s � I � so then FI lies on in�nitely�many hyperplanes
hwes� xi � �� so is not in X �

It is still true in general that the set X � which is obviously an open set even
if U may not be� is a convex W �stable cone� by the same argument as in the
section on Tits	 cones in general� But in general we do not obtain a model
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for the Coxeter complex� since we will have lost those faces FI with in�nite
isotropy groups WI �

It is still true� by the same argument as just above� that the set of hyper�
planes �s�w is locally �nite in the set X � But this is a far weaker assertion �in
general� than the assertion of local �niteness in U � which may contain limit
points of X � for example�

���� De�nition of geometric realizations

We need a notion of geometric realization of a simplicial complex X � This
section is essentially elementary and standard� establishing some necessary
conventions�

Recall that a �combinatorial� simplicial complex is a setX of subsets �called
simplices� of a vertex set V � so that if x � X and y � x then y � X �

De�ne the geometric realization jX j to be the collection of non�negative
real�valued functions f on the vertex set V of X so thatX

v
V

f�v� � �

and so that there is x � X so that f�v� 
� � implies v � x�
For example� if X is a simplex �that is� is the set of all subsets of V �� then

we imagine jxj to be the collection of �a�ne combinations	 of the vertices�
Recall that a map � 
 X � Y is a map of the vertex sets so that for

every simplex x � X the image ��x� is a simplex in Y � We will only consider
maps � 
 X � Y of simplicial complexes so that for all simplices x � X
the restriction �x is injective� In particular� we are requiring that � preserve
dimension of simplices� This is part of the de�nition of the chamber complex
maps we considered earlier�

For such �� the restriction �jx to a simplex x � X is invertible� since it
is injective� Then we have a natural geometric realization j�j of the map ��
given by

j�j 
 jX j � jY j
on the geometric realizations� de�ned as follows� For f � jX j� let x � X be
such that f is � o� x� Then for v� in the vertex set of Y � put

j�j�f��v�� � f����v�� for v� � ��x�

j�j�f��v�� � � for v� 
� ��x�

The topology on jX j can be given by a metric� as follows� For f� g � jX j�
de�ne the distance d�f� g� between them by

d�f� g� � sup
v
V

jf�v�	 g�v�j

where V is the vertex set of X �
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It is immediate that the geometric realization j�j of a simplicial complex
map � 
 X � Y �whose restrictions to all simplices are injective� has the
property that

dX�f� g� � dY �j�j�f�� j�j�g��
From this it is clear that the geometric realization j�j is a continuous map of
topological spaces�

In particular� for a simplex x � X � we have a continuous inclusion jxj �
jX j� And it is clear that the geometric realization of a ��combinatorial	� sim�
plex x � fvo� � � � � vmg is a ��geometric	� simplex

f�to� � � � � tm� 
 � � ti � � and
X
i

ti � �g

The map is the obvious one


f � �f�to�� � � � � f�tm��

Very often one is presented with a vertex set imbedded in a real vectorspace
Z� and one wants to have the geometric realization jX j be �imbedded	 in
Z� Let i 
 V � Z be a set map of the vertex set to Z� For a simplex
x � fv�� � � � � vmg in X � let i�x�o denote the set of convex combinations

toi�vo� � � � �� tmi�vm�

where � � tj � � for all indices j� This is the open convex hull of the point
set i�x�� We can de�ne the �obvious	 map

jij 
 jX j � Z

as follows
 for f � jX j which is zero o� a simplex x � fv�� � � � � vmg� let
jij�f� � f�vo�i�vo� � � � �� f�vm�i�vo�

It is easy to check that such a map jij is continuous�
And clearly jij is injective if and only if for any two simplices x� y of X

if i�x�o � i�y�o 
� � then x � y� In particular� this condition implies that�
for a simplex x � fvo� � � � � vmg in X � the images i�vo�� � � � � i�vm� are a�nely
independent� In particular� if there is such an injection jX j � Z� it must
be that the dimension of Z is greater than or equal the dimension of the
simplicial complex X �

Recall that a set % of subsets of Z is locally �nite if any compact subset of
Z meets only �nitely many sets in %�

Lemma� If jij 
 jX j � Z is injective� and if the set % of images jij�jxj�
of geometric realizations of simplices x in X is locally �nite in Z� then jij is a
homeomorphism of jX j to its image�

Proof� We must prove that the inverse of jij �which exists because jij is
assumed injective� is continuous on jij�jX j�� To this end� the local �niteness
allows us to assume without loss of generality that there are only �nitely�many
simplices in X altogether� Then jX j is compact� since it is a �nite union of
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geometric realizations jxj of its simplices� and these are compact sets� Thus�
we have a continuous injection jij of the compact topological space jX j to the
Hausdor� topological space jij�jX j� � Z�

A standard and elementary point�set topology argument shows that jij is
a homeomorphism� as follows
 let U be open in jX j� Then C � jX j 	 U is a
closed subset of a compact space� so is compact� Thus� the continuous image
jij�C� is compact� so is closed since jij�jX j� is Hausdor�� �

���	 Criterion for a
neness

Here we �nally prove that if the Coxeter form is a�ne then the geometric
realization really is a Euclidean space� Further� the Coxeter group acts as an
a�ne re�ection group� and the chambers cut out are n�simplices�

Thus� our de�nition �via indecomposability and positive semi�de�niteness�
etc�� is really the criterion� but what have delayed proof until now� It is only
now that justi�cation is provided for the term a�ne� even though it has been
used for a while�

Remarks� Here �simplex	 is used in the �physical	 sense as in the dis�
cussion of re�ection groups� rather than in the �combinatorial	 sense as in the
discussion of simplicial complexes��

By de�nition ������� a Coxeter system �W�S� is a	ne if it is indecom�
posable and if the associated Coxeter matrix is positive semi�de�nite but not
positive de�nite�

Remarks� Any Coxeter system �W�S� can be written as a �product	 of
indecomposables in the obvious manner� so there is no loss of generality in
treating indecomposable ones� And� the assumption of indecomposability is
necessary to obtain the cleanest results�

Let �W�S� be a�ne� As usual� let es for s � S be the basis for the real
vectorspace V on which W acts by the linear representation �� We identify
w � W with its image by �� We have the contragredient representation �� on
the dual space V �� In either case we identify W with its image in the group
of automorphisms� This is reasonable since we have already shown that W
injects to its image�

Let

V � � fv � V 
 hv� v�i � � �v� � V g
Then on the quotient V�V � the symmetric bilinear form induced from h� i
becomes positive de�nite� Since V � is the intersection of all hyperplanes

Hs � fv � V 
 hv� esi � �g
it is W �stable�
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By the Perron�Frobenius lemma ������� under our present hypotheses� the
subspace V � is one�dimensional� and is spanned by a vector vo �

P
s cses

with all coe�cients cs positive�
Thus� under the contragredient action �� of W on the dual space V �� the

group W stabilizes

Z � f
 � V � 
 �v� 
� � � �v � V �g
where �� � is the canonical pairing V � V � � R� This gives a standard identi�
�cation

Z � �V�V ���

by z � 
z with


z�v � V �� � �v� z�

Since the form �still written as h� i� induced on V�V � from h� i is non�
degenerate� it gives a natural vectorspace isomorphism of V�V � with its dual
Z� by v � V � � 
v with


v�v
�� � hv�� vi

Thus� via this natural isomorphism� the positive de�nite form induced by
h� i on V�V � induces a positive de�nite form on Z in a natural way�

Let

E � f
 � V � 
 �vo� 
� � �g
This a�ne subspace of V � is a translate of Z by any 
o so that �vo� 
o� � ��
The groupW stabilizes E under the action via ��� sinceW �xes vo� The linear
automorphisms ���w� of V � give rise to �a�ne	 automorphisms of E� simply
by restriction� In particular� W �xes 
o and preserves the inner product�

We use the notation from our discussion of Tits	 cones� Since vo has all
positive coe�cients when expressed in terms of the es� vo and es are not
parallel �noting that necessarily card�S� � ��� Thus� the set

�s � Zs � E � f
 � V � 
 �es� 
� � � and �vo� 
� � �g
is an a�ne hyperplane in E� as opposed to being empty or being all of E�

Depending on the choice of 
o� the positive de�nite symmetric bilinear
form h� i on Z can be �transported	 to a form h� iE on E by

h
� 
�iE � h
	 
o� 

� 	 
oi

Then a direct computation shows that s � S gives the orthogonal re
ection
through the a�ne hyperplane �s� as a�ne automorphism of E� Note that
the group W acts by isometries on E� where the metric is that obtained from
h� iE 


d�x� y� � hx	 y� x	 yi���
E

The images w�s are evidently a�ne hyperplanes in E� as well� The set

H � fw�s 
 w �W and s � Sg
is a W �stable set of a�ne hyperplanes in E�
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In the Tits	 cone notation� we are taking

�s � Zs � E
Let U be the Tits	 cone

U �
�
w�I

wFI �
G
w�I

wFI

Remarks� The assertion of the following lemma seems obvious� but is
false without some hypotheses� And the argument given in the proof below
is not the most general� since we use extra information available here� In
particular� we use the fact that all the proper �special	 subgroups of an a�ne
Coxeter group are �nite� That this is so uses the re�ection group discussion�
as well as the Perron�Frobenius lemma� �We used these same facts in a crucial
way in obtaining �ner results on the Tits	 cone in this case�� Still� this greatly
simpli�es the proof of the lemma�

Lemma� Assuming that �W�S� is a�ne� the set

E � U �
�
w�I

wFI � E �
G
w�I

wFI � E

is actually all of E�

Proof� Let � be the n�simplex which is the closure of F� � E� We may
identify S with the collection of re�ections through the a�ne hyperplanes
�s � E � Zs in E and identify W with the group of isometries of the a�ne
space E generated by S� It is because of the nature of M that W acts by
a�ne isometries�

Thus� we are claiming that

E �
�
w
W

w�

A more speci�c version of this assertion is easier to verify� Fix xo in the
interior of �� Let H be the set of all hyperplanes w�s for w � W and s � S�
Take x � E but not lying in any of the hyperplanes � � H � and not lying in
any of the hyperplanes which contain both xo and the intersection of two of
the � � H �

Then either x � � or else the line segment �xo� x� from xo to x meets the
boundary �� of � at a unique point x�� Let t� be the re�ection through the
facet of � containing x� and put �� � w��� Then either x � �� or the line
segment �x�� x� meets the ��� at a unique point x�� Continuing inductively�
we de�ne �m � wm�m���

We claim that for su�ciently large m the n�simplex �m contains x� This
would prove the lemma� for the following reasons� The collection of hyper�
planes x on which x cannot lie is countable� so the union of these hyperplanes
is nowhere dense in E� �This elementary point was made in detail in our
discussion of re�ection groups�� Thus� we are considering x in a dense subset
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of E� The Tits	 cone U is convex ������� so E �U is convex� Therefore� if we
prove this claim� we will know that E � U contains the convex closure of an
everywhere dense subset of E� hence is all of E�

To prove the claim� it su�ces to show that there is a number h and a
number � � � so that for indices j� k with jj 	 kj � h the length of the line
segment �xj � xk� must be at least �� Moving everything by an element of W
which takes �j back so �� we need only consider the case j � �� Here we use
the fact that W acts by isometries of E�

Fix so � S� We will �rst show that there is hso � � so that if �xo� xi�
meets no w�so �for w �W � then i � hso �

To see this� �rst observe that if xo� x�� � � � � xi lie on no image w�so of �so
then all the re�ections to� t�� � � � � ti are actually in the subgroup Wso of W
generated by Sso � S	fsog� That is� all the intersection points xo� x�� � � � � xi
lie on hyperplanes of the form w��� where w� � Wso and �� � �s with s � Sso �

The Coxeter matrix of Wso is positive de�nite� by the corollary to the
Perron�Frobenius lemma above� Therefore� from our discussion of the �spher�
ical	 case ������� the group Wso is �nite� Therefore� the number hso of hyper�
planes w��� is also �nite� bounded by the product of card�Wso� and card�Sso��

Take h to be the maximum of the numbers hso as so ranges over S� We
have shown that if jj 	 kj � h then �xj � xk� touches an image by W of every
one of the hyperplanes �s for s � S�

Next we show that there is � � � so that a line segment �xj � xk � which
touches an image by W of every one of the hyperplanes �s for s � S has
length at least �� This will �nish the proof of the lemma�

Let

�i � w��
i �xi� xi	�� � w��

i �i � �

Putting these line segments together gives a polygonal �that is� piecewise
straight�line� path � inside � which touches each of the n � � facets of ��
Then there is an elementary lower bound � for the length of �� essentially
given by the smallest �altitude	 of �� �

Corollary� The set H of hyperplanes of the form w�s is locally �nite in
the a�ne space E�

Proof� In discussion of a�ne Tits	 cones� we showed that compact subsets
of U 	 f�g meet only �nitely�many hyperplanes of the form w�s� Thus� the
same property certainly holds for

E � E � U � E � �U 	 f�g�
This is the desired local �niteness� �

Corollary� The group W is an a�ne re
ection group generated by the
re�ections S in the hyperplanes �s � E� Fixing xs � �s� the n�simplex

C � fx � E 
 hx	 xs� esi � �g
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is a chamber cut out by H in E� �
Corollary� The chambers cut out by H all have compact closure� �
So what we have proven is� in part� that the disjoint pieces wFI of the Tits	

cone U yield a partition of E


E �
G
w�I

w�FI �E�

and that the sets wFI �E are the chambers cut out by the hyperplanes in E�
Consider the analogous partial ordering wFI � w�FJ if wFI contains w�FJ

in its closure� restricting our attention to i 
� S� As noted in our earlier
general discussion of the Tits	 cone� the collection of sets wFI with this partial
ordering is isomorphic as poset to the �abstract	 Coxeter complex "�W�S�
attached to �W�S�� The vertex set is the set of sets wFS�so � that is� where
the subset I � S 	 so has cardinality just one less than S�

As in our discussion of geometric realizations ������� consider the map i
from vertices of the Coxeter complex "�W�S� to E given by

i�wWS�so � � wFS�so � E
By our lemma and its corollaries� the set of images jij�jxj� for simplices x �
"�W�S� is locally �nite in E� so we conclude that

Corollary� The map

jij 
 j"�W�S�j � E

of the geometric realization of the Coxeter complex to the a�ne space E is a
homeomorphism� �
Remarks� And we will continue to use the fact that the group W acts as

an a�ne re�ection group� and cuts out a chamber which has �nite diameter�
as observed above�

���
 The canonical metric
Beyond the fact that it is possible to put a metric on an a�ne Coxeter

complex which makes it look like a Euclidean space� it is necessary to un�
derstand the metric aspects of simplicial complex automorphisms of these
chamber complexes� and to normalize the metric� This is a preamble to the
concommitant discussion for buildings�

Let f 
 M� � M� be a map of metric spaces� where the metrics on Mi

is di�� �� Say that f is a similitude if there is a constant 
 so that for all
x� y �M�

d��f�x�� f�y�� � 
d��x� y�

Recall that� for an a�ne Coxeter system �W�S�� just above we demon�
strated a homeomorphism jij of the geometric realization j"�W�S�j to a cer�
tain a�ne hyperplane E in the dual space V � of the vector space V upon
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which we have the canonical linear representation� And we gave a metric on
E so that W acts by a�ne isometries� and the chambers cut out by W have
compact closure� so are of �nite diameter� Via jij� de�ne aW �invariant metric
on j"�W�S�j�

Keep in mind that by our de�nition if a system �W�S� is a�ne then it is
indecomposable�

Theorem� Let �W�S�� �W �� S�� be a�ne Coxeter systems with metrics
as just described� Let

� 
 "�W�S�� "�W �� S��

be an isomorphism of simplicial complexes� Then the geometric realization
j�j is a similitude

j�j 
 j"�W�S�j � j"�W �� S��j
Proof� We identify the geometric realizations of the Coxeter complexes

with the a�ne spaces E�E� upon which W�W � act as a�ne re�ection groups�
Let h� i� h� i� be the inner products on E�E�� depending upon choice of base
point� The groups W�W � preserve h� i� h� i�� respectively�

Fix the chamber C in E with facets Fo� F�� � � � � Fn described by hyper�
planes

�i � fx � E� 
 hx� eii � �g for i � �

�o � fx � E� 
 hx	 xo� eoi � �g
for arbitrary �xed eo � �o� Here we take the ei to be inward�pointing unit
vectors orthogonal to �i� By changing everything by a dilation of E we can
suppose without loss of generality that

hxo� eoi � �

We can rewrite the de�ning condition for the �th facet as

hx� eoi � 	�
Note that every dilation is a similitude�

Let C � � ��C�� and let F �i � ��Fi�� Let the corresponding items for
�W �� S��� C �� F �o� � � � � F

�
n be denoted by the same symbols as for �W�S� and C

but with primes�
Just above we observed that the Coxeter data can be recovered from the

�geometry	 of the Coxeter complex� In particular� the numberm�s� t� �if �nite�
is half the cardinality of the set of chambers with face Wfs�tg� Thus� the two
Coxeter matrices must be the same� Therefore�

hei� eji � he�i� e�ji�
since the Coxeter matrix determines these inner products�

Let � 
 E � E� be the linear map de�ned by ��ei� � e�i just for � � i � n�
Then � preserves inner products� and ��eo� � e�o since for all i we have

heo� eii � he�o� e�ii�
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Then also ���i� � ��i since these hyperplanes are de�ned via the ei� and
the �th has been normalized by a dilation to be hx� eoi � 	�� Thus� the
orthogonal re�ections through these hyperplanes are related by

�si�
�� � s�i

Then also

�W��� � W �

That is� we have an isomorphism �� of simplicial complexes� with

� � j��j
That is� the map � is the geometric realization of a simplicial complex map�

Since both � and the simplicial complex map �� take C to C � and take each
Fi to F �i � the Uniqueness Lemma ����� from our discussion of thin chamber
complexes implies that �� � �� Thus� the �geometric realization	 � � j�j of
�� � � is an isometry� Of course� we had changed the original metrics on E
and E� by similitudes� �

Corollary� Let �W�S�� �W �� S�� be a�ne Coxeter systems� Let

� 
 "�W�S�� "�W �� S��

be an isomorphism of simplicial complexes� Normalize the metrics on the
geometric realizations j"�W�S�� j"�W �� S��j by dilating so that the diameter
of a chamber is � in both cases� Then

j�j 
 j"�W�S�j � j"�W �� S��j
is an isometry of the geometric realizations�

Proof� Note that we must know that the chambers are of �nite diameter
in order to normalize the metric so that the diameter is �� Fortunately� we
had proven earlier ������ that the chambers are ��geometric	� n�simplices for
j"�W�S�j n�dimensional� Then the assertion follows from the proposition� �

We say that the metric normalized to give a chamber diameter �� as men�
tioned in the previous corollary� is the canonical metric on the a�ne Coxeter
complex j"�W�S�j�

���� The seven in�nite families
We can illustrate the criteria for spherical�ness ������ and a�ne�ness �������

������ of Coxeter complexes by the families An� Cn� Dn� �An� �Bn� �Cn� �Dn de�
scribed earlier in ����� and ������ Indeed� now we can substantiate the earlier
description of the �rst three as spherical and the last four as a�ne�

In this discussion we will often refer to removal of a vertex from the Coxeter
diagram� as being equivalent to removal of a generator from a Coxeter system�
A minor bene�t of this is that some colloquial geometric adjectives can be
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applied to these diagrams� For example� indecomposability of a system is
equivalent to connectedness of the diagram�

To prove that An� Cn� Dn are spherical� we must prove in each case that
the Coxeter matrix is positive de�nite� In general� to prove that a symmetric
real matrix is positive de�nite� one must check that all the determinants of
principal minors are positive �Recall that a principal minor is a submatrix
obtained by removal of some columns and the corresponding rows! that is�
if the i�� � � � � i

th
k columns are removed then also remove the i�� � � � � i

th
k rows�

rather than removing a more arbitrary batch of k rows��
Removal of a generator from a diagram of type An leaves either a diagram of

type An�� or a disjoint union of diagrams of types Ak and An�k��� Removal
of a generator from a diagram of type Cn leaves either a diagram of type Cn���
or a disjoint union of types Ap and Cn�p��� or a disjoint union of diagrams
of types An�� and A�� And removal of a vertex from a diagram of type Dn

leaves either type An��� or type Dn��� or a disjoint union of A�� A�� and
An���

Thus� to prove positive de�niteness of all these� it su�ces to do an induc�
tion� Thus� it su�ces simply to prove that the determinants of the Coxeter
matrices of these three types are positive� This computation can be done by
expansion by minors� and is omitted�

To prove that �An� �Bn� �Cn� �Dn are a�ne� since the diagrams are all con�
nected we must show that the Coxeter matrices are positive semi�de�nite but
not positive de�nite� �The connectedness of the diagrams is evident�� To do
this� it would su�ce to see that every �proper� principal minor is positive�
and that the determinant of the whole is zero� That is� in part we must check
that the diagrams obtained by removal of at least one vertex are all spherical�
Happily� not only is this the case� but in fact the spherical types obtained are
just the An� Cn� Dn just discussed� One might draw pictures of what happens
to the diagrams�

The only new computation necessary is computation of the determinants�
to check that they are zero� This can be done by expanding by minors� and
we omit it�

The case of �A� is somewhat special� being the in�nite dihedral group� and
can be treated directly�

Removal of any generator from the system of type �An �with n � �� leaves

a system of type An� which we have seen is spherical� Thus� �An is a�ne�
There are three sorts of vertices in the system of type �Cn� In terms of the

Coxeter diagram� there are the two vertices at the ends� that is� generators
which commute with all but one other generator� If either of these is removed�
the system remaining is of type Cn� which we have proven to be spherical�
Second� there are the two generators adjacent to the ends� Removal of either
of these yields a disconnected diagram� which is the disjoint union of a type
A� and type Cn��� so is spherical although reducible� Third� if n � �� there
are the generators not adjacent to the ends of the diagram� Removal of these
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yields a disjoint union of diagrams Cp and Cn�p for � � p � n	 �� which are

again both spherical� Thus� �Cn is a�ne�
In the system of type �Dn there are three types of generators� First� there

are the four extreme generators� which commute with all but one of the other
generators� Removal of any of these gives a system of spherical type Dn�
Second� removal of either of the two generators adjacent to the extreme gen�
erators gives a diagram which is the disjoint union of two copies of A�� together
with a Dn��� Last� removal of any other vertex yields a disjoint union of two

spherical types Dp and Dn�p� Thus� �Dn is a�ne�

In the system of type �Bn there are �ve types of generators� First� at the
end of the diagram with the branch �ori�amme� there are the two generators
removal of either of which leaves a diagram of spherical type Cn� Second�
removal of the generator adjacent to the latter end leaves a disjoint union of
diagrams A�� A�� and Cn��� Third� removal of the generator at the other
end leaves a spherical Dn� Fourth� removal of the generator adjacent to the
latter one leaves a disjoint union of A� and Dn��� Last� removal of any other

generator leaves a disjoint union of spherical Cp and Dn�p� Thus� �Bn is a�ne�
Thus� granting our earlier discussion of a�ne and linear re�ection groups�

together with the linear algebra surrounding the Perron�Frobenius lemma�
veri�cation that these important families of Coxeter systems really are a�ne
is not so hard� It is unlikely that one could reliably visualize the geometric
realization of Coxeter complexes well enough to directly perceive that a given
complex had geometric realization which was a Euclidean space�
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��� A�ne Buildings

� A�ne buildings� trees
 de�nitions
� The canonical metric
� Negative curvature inequality
� Contractibility
� Completeness
� Bruhat�Tits �xed point theorem
� Conjugacy classes of maximal compact subgroups
� Special vertices� compact subgroups

The canonical metrics put onto an a�ne Coxeter complexes in the last
section will be stuck together now� in a canonical way� to obtain a canonical
metric on an a�ne building� that is� a building all of whose apartments are
a�ne Coxeter complexes�

At the end of this part are the �rst truly non�trivial applications of the
building�theory to a class of groups including important families of p�adic
matrix groups�

���� A
ne buildings� trees� de�nitions

In this subsection we de�ne a�ne buildings� of which the one�dimensional
ones are trees� Several critical features of a�ne Coxeter complexes are recalled
to emphasize the facts of the situation�

Let X be a thick building with apartment system A� We have seen that
each apartment A � A is a complex "�W�S� attached to a Coxeter system
�W�S�� From the discussion ����� using links� the chamber�complex isomor�
phism class of an apartment is independent of choice of apartment system�
and is the same for all apartments� In particular� the isomorphism class of
�W�S� is completely determined by the building X �

We say that X is an a	ne building if each apartment is an a�ne Coxeter
complex� Emphatically� this requires that the Coxeter data be indecompos�
able� that is� that the Coxeter diagram be connected�

Recall that the requirement of indecomposability is that the generators S
in �W�S� cannot be grouped into two non�empty disjoint sets S�� S� so that
S � S��S� and so thatm�s�� s�� � � for all s� � S� and s� � S�� In e�ect� this
requires that �W�S� not be a product� This requirement of indecomposability
is not strictly necessary� but without it there are pointless complications�

Again� the a�neness of the Coxeter matrix of �W�S� is the requirement
that the Coxeter matrix be positive semi�de�nite� but not positive de�nite�
�Already the indecomposability is used here to give such a simple criterion
for a�neness via the Perron�Frobenius lemma ��������
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It has been shown ������ that with these hypotheses the geometric real�
ization j"�W�S�j of the Coxeter complex "�W�S� is an a�ne space in which
W acts by a�ne re�ection� And the alcoves or chambers cut out by all the
re�ecting hyperplanes are �literal� simplices�

The geometric realizations of these a�ne Coxeter complexes have canonical
metrics ������� normalized so that the diameters of chambers are ��

A tree is a one�dimensional thick a�ne building� That is� all the apart�
ments are one�dimensional simplicial complexes� Then the geometric realiza�
tions of the apartments in a tree are isometric to the real line� �For us trees
will play no special role��

The �B	 in the BN�pair attached to a group acting strongly transitively on
an a�ne building is often called an Iwahori subgroup�

���� Canonical metrics on a
ne buildings

Here we establish only the crudest properties of the metrics which can
be put on a�ne buildings� The more delicate completeness and negative
curvature inequality will be established later� in preparation for the Bruhat�
Tits �xed point theorem and its corollaries concerning maximal compact sub�
groups�

Let X be a thick a�ne building with apartment system A� Recall that this
includes the implicit hypothesis of indecomposability of the Coxeter system
associated to the apartments� or� equivalently� connectedness of the Coxeter
diagram�

In discussion of a�ne Coxeter complexes ������� it was proven that a sim�
plicial complex isomorphism

� 
 "�W�S�� "�W �� S��

of �indecomposable� a�ne Coxeter complexes has geometric realization j�j
which is a similitude

j�j 
 j"�W�S�j � j"�W �� S��j
Further� if the metrics on the Coxeter complexes are normalized so that cham�
bers have diameter �� then j�j is an isometry�

For A � A let jAj be the geometric realization ������ of A� with the canon�
ical metric� The inclusions of simplicial complexes A � X give continuous
inclusions of topological spaces jAj � jX j�

Given x� y � jX j� choose any apartment A so that jAj contains both x and
y� and de�ne the canonical metric dX on jX j by

dX�x� y� � dA�x� y�

where dA�� � is the canonical metric ������ on A�

Proposition� The canonical metric on jX j is well�de�ned�
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Proof� Suppose that A�A� are two apartments both whose geometric
realizations contain the points x and y� Then by one of the building axioms
������ there is a simplicial complex map f 
 A � A� which is the identity on
A � A�� The fact from ������ mentioned above shows that this f must give
rise to an isometry jf j 
 jAj � jA�j between the a�ne spaces jAj and jA�j�
Since f is the identity map on A � A�� the geometrically realized map jf j is
the identity map on the geometric realization jA � A�j� Since the points x� y
both lie in jA � A�j� we see that

dA�x� y� � dA��x� y�

That is� the distance between two points is independent of the choice of apart�
ment containing them� �

For a chamber C� by abuse of notation write jCj for the geometric realiza�
tion of the simplicial complex consisting of C and all its faces�

In our discussion ����� of elementary properties of buildings� we considered
the retraction

� � �A�C 
 X � A

centered at a chamber C of the apartment A� This is a simplicial complex map
X � A which is the identity on A �hence� is a retraction�� The Uniqueness
Lemma ����� from the discussion of chamber complexes showed that there is
at most one such retraction� Existence was a little more complicated to verify�
but was a straightforward application of the axioms ����� for a building�

Theorem� Let X be an a�ne building with �metric	 d � dX � Then

� The �geometric realizations of the� canonical retractions � � �A�C 

X � A centered at a chamber C in an apartment A do not increase
�distance	� That is�

d�j�jx� j�jy� � d�x� y�

As a special case� if either x or y lies in jCj then
d�j�jx� j�jy� � d�x� y�

� The function d satis�es the triangle inequality� so really is a metric�
� For x� y � jX j� and for any apartment A so that jAj contains both
x and y� let �x� y� be the straight line segment connecting them� in
the Euclidean geometry on jAj� Then the subset �x� y� of jX j does not
depend upon A� and has the intrinsic characterization

�x� y� � fz � jX j 
 d�x� y� � d�x� z� � d�z� y�g

Proof� Again� for any other apartment A� containing C the restriction of
� to a function � 
 A� � A is a simplicial complex isomorphism� by invoca�
tion of the Uniqueness Lemma� Thus� the proposition above shows that the
geometrically realized map jA�j � jAj is an isometry�
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So if x � jCj� for any other y � jX j take an apartment A� containing C
and so that y � jA�j� Then we have the equality

d�j�j�x�� j�j�y�� � d�x� y�

This is the special case of the �rst assertion�
And� for any chamber D in X � since by the axioms there is an apartment

A� containing both C and D� the restriction

j�j 
 jDj � jCj
is an isometry�

Given x� y � jX j� let A� be an apartment so that jA�j contains them both�
By the local �niteness of the set of hyperplanes cutting out the chambers
������� ������� the line segment �x� y� inside jA�j connecting the two points
meets jDj for only �nitely�many chambers D� Then we can subdivide the
interval into pieces

�x� x�� � �xo� x��� � � � � �xn��� xn� � �xn��� y�

so that each subinterval lies inside the geometric realization of a chamber
inside jA�j� Then using the triangle inequality inside jAj and the fact that j�j
is an isometry on chambers� we have

d�j�jx� j�jy� �
X

d�j�jxi� j�jxi	�� �

�
X

d�xi� xi	�� � d�x� y�

This gives the general version of the �rst assertion� that j�j is distance�
decreasing �or anyway non�increasing��

To show that d satis�es the triangle inequality take x� y� z in jX j� let A be
an apartment so that jAj contains x� y� let C be a chamber in A� and let � be
the retraction of X to A centered at C ������ Using the distance decreasing
property of j�j just proven� we have

d�x� y� � d�x� j�jz� � d�j�jz� y� � d�x� z� � d�z� y�

Thus we have the triangle inequality� as desired�
If we have equality

d�x� y� � d�x� z� � d�z� y�

then the inequalities in the previous paragraph must be equalities� From
Euclidean geometry we �nd that j�jz lies on the straight line segment �x� y�
connecting x and y� And to achieve the equalities above we must have

d�x� j�jz� � d�x� z� d�j�jz� y� � d�z� y�

so we must have

j�jz � tx� ��	 t�y

with

t � d�z� y��d�x� y�
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Now this holds for all chambers C in A� so take C so that j�jz lies in jCj�
Then� from the special case of the �rst assertion of the theorem�

d�z� j�jz� � d�j�j�z�� j�jz� � �

From this�
j�jz � z

as desired� Thus� the line segment �x� y� joining x� y has the indicated intrinsic
characterization in terms of the metric� �

���� Negative curvature inequality
More properly� we will prove an inequality which could be construed as

asserting that a�ne buildings have non�positive curvature� From this it will
follow an a�ne building is contractible� and complete with respect to its
canonical metric �������

Let X be a thick a�ne building ������ with apartment system A� That is�
each apartment is an a�ne Coxeter complex "�W�S�� That is� the Coxeter
matrix of �W�S� is indecomposable� positive semi�de�nite� but not positive
de�nite� We have shown that the geometric realization j"�W�S�j is an a�ne
space�

For a chamber C� write jCj for the geometric realization ������ of the
simplicial complex consisting of C and all its faces�

Proposition� Negative Curvature Inequality LetX be an a�ne building
with canonical metric d � dX � For x� y� z � jX j� let

zt � tx� ��	 t�y

Then
d��z� zt� � td��z� x� � ��	 t�d��z� y�	 t��	 t�d��x� y�

Proof� First we recall that the construction of this point zt makes sense
and determines a unique point� Indeed� in proving the basic properties of the
metric ������� we saw that the point

zt � tx� ��	 t�y

is indeed de�ned intrinsically� without reference to an apartment� as being the
unique point q in jX j so that

d�q� x� � td�x� y� and d�q� y� � ��	 t�d�x� y�

More generally� we saw that the line segment �x� y� is likewise de�ned inde�
pendently of choice of apartment A so that jAj contains both x and y�

Let A be an apartment so that jAj contains x� y� and hence contains the
line segment �x� y�� Fix another point q � jAj� Let E � jAj be Euclidean
space taking q as origin with inner product h� i and associated norm j � j� The
choice of q as origin is a minor cleverness which makes this computation much
less ponderous�
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We recall the simple identity

jx	 yj� � jxj� 	 �hx� yi� jyj�
From this we obtain

�hx� yi � jxj� � jyj� 	 jx	 yj� � d��q� x� � d��q� y�	 d��x� y�

This allows us to compute

d��q� zt� � j�	 ztj� � jtx� ��	 t�yj� �

� t�jxj� � �t��	 t�hx� yi � ��	 t��jyj� �

� t�d��q� x� � t��	 t��d��q� x� � d��q� y�	 d��x� y�� � ��	 t��d��q� y� �

� td��q� x� � ��	 t�d��q� y�	 t��	 t�d��x� y�

In summary� for x� y� q all in the same apartment� we have an equality

d��q� zt� � td��q� x� � ��	 t�d��q� y�	 t��	 t�d��x� y�

in place of the analogous inequality asserted in the proposition�
Now consider arbitrary z � jX j� With a chamber D of jAj so that jDj

contains zt� let � be the retraction to A centered at D ������ Applying the
previous identity to x� y� q with q � j�jz� we have

d��j�jz� zt� � td��j�jz� x� � ��	 t�d��j�jz� y�	 t��	 t�d��x� y�

By the special version of the �rst assertion of the theorem�

d��z� zt� � d��j�jz� zt� �
� td��j�jz� x� � ��	 t�d��j�jz� y�	 t��	 t�d��x� y� �

� td��z� x� � ��	 t�d��z� y�	 t��	 t�d��x� y�

where the last inequality follows from the general version of the distance�
decreasing assertion� That is� we have the comparison

d��z� zt� � td��z� x� � ��	 t�d��z� y�	 t��	 t�d��x� y�

as asserted� �

���� Contractibility

Corollary� Let X be an a�ne building with canonical metric d � dX �
For � � t � �� let

zt � tx� ��	 t�y � �x� y�

be the indicated a�ne combination of x and y� The function

t� x� y � zt � tx� ��	 t�y

is a continuous function

��� ��� jX j � jX j � jX j
and jX j is contractible�
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Proof� First we prove continuity of

t� x� y � zt � tx� ��	 t�y

Take t�� x�� y� close to t� x� y� respectively� let

z � t�x� � ��	 t��y�

and apply the negative curvature inequality ������ to x�� y�� z in place of x� y� z�
By continuity of the distance function� d�z� x� is close to

d�z� x�� � jt�x� � ��	 t��y� 	 x�j � ��	 t��jx� 	 y�j � ��	 t��d�x�� y��

and d�z� y� is close to

d�z� y�� � jt�x� � ��	 t��y� 	 y�j � t�jx� 	 y�j � t�d�x�� y��

Therefore� as t�� x�� y� go to t� x� y� we have

t�d��z� x��� t��	 t��d��z� x�

��	 t��d��z� y��� t���	 t�d��z� y�

and trivially
t���	 t��d��x�� y��� t��	 t�d��x� y�

Thus� the right�hand side of the curvature inequality goes to

t��	 t��d��z� x� � t���	 t�d��z� y�	 t��	 t�d��x� y� � �

That is�
d��t�x� � ��	 t��y�� tx� ��	 t�y�� �

This is the desired continuity assertion�
Taking y to be �xed in jX j and considering the functions

ft�x� � tx� ��	 t�y

gives us
f� � identity map on jX j

while
f��jX j� � fyg

which gives the desired contraction of jX j to a single point�

���� Completeness
Now we prove completeness of an a�ne building� A �xed�point theorem

would not be possible without this�

Theorem� The geometric realization jX j of an a�ne building X � with
its canonical metric� is complete�

Proof� Let � now be the �labeling	 retraction � 
 X � C of X to the
complex C consisting of all faces of a given chamber C ������

�Recall that we constructed this � by constructing a retraction �A to C
of each apartment A containing C� and then showing that these retractions
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had to agree on overlaps �from the building axioms ������� The retractions
�A were constructed by iterating the map

f � fsn � fsn��
� � � � � fs� � fs�

where fs is the folding ����� of the thin chamber complex A along the sth

facet Fs of C� sending C to itself� and where Fs� � � � � � Fsn are all the facets of
C� For example� this folding sends the chamber sC of A to C� where sC is
the unique chamber in A with facet Fs��

As with the retractions to apartments ����� considered above in proving the
negative curvature inequality ������� the geometric realization of this �� when
restricted to jDj for any chamberD� is an isometry� and is altogether distance�
decreasing� The only new ingredients needed to prove this are the observations
that the action of the associated Coxeter group W on the apartment " �
"�W�S� is by isometries� is transitive on chambers� and is type�preserving�

Therefore� given a Cauchy sequence fxig in jX j� the image fj�jxig is a
Cauchy sequence in jCj� Since jCj is a closed subset of a complete metric
space it is complete� so fj�jxig has a limit y�

For each xi let Ci be a chamber in X so that xi � jCij� and let yi be
the unique point in jCij so that j�jyi � y� Since j�j restricted to jCij is an
isometry�

d�xi� yi� � d�j�jxi� y�� �

Therefore� since fxig is Cauchy� it must be that fyig is Cauchy�

Lemma� The inverse image in jX j by j�j of a single point y of jCj is
discrete in jX j�

Proof� Generally� given x in the geometric realization jY j of a simplicial
complex Y � let the star of x in Y be the union st�x� of the geometric
realizations j�j for simplices � � Y so that x � j�j�

We claim that there is � � � so that for all x � jX j with j�jx � y the
star of x in X contains the ball of radius � in jX j with center at x� It is
immediate that this star contains no other point x� also mapping to y by j�j�
so for another point x� mapping to y we have

d�x� x�� � �

This would give the desired discreteness property�
To prove the claim
 take any apartment A containing C� and let H be

the locally �nite collection of re�ecting hyperplanes associated to the a�ne
re�ection �Coxeter� group W acting on jAj ������� ������� ������� Let � be the
in�mum of the distances from the point y to hyperplanes not containing it�
The local �niteness assures that this in�mum is positive� Thus� for z � jAj
with d�y� z� � � the line segment �y� z� does not cross any hyperplane �although
it may lie entirely inside one or more�� Thus� in the Tits	 cone notation� the
open line segment �y� z� lies inside some face FI � Therefore� both y and z lie
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in the topological closure of FI � Therefore� FI is a subset of the star of y in
A� and z lies inside the star of y in A�

More generally� if d�z� x� � � and j�jx � y� there is an apartment A� so
that jA�j contains both x and z� There is a simplicial complex isomorphism
� 
 A� � A so that the j�jx � y! we have seen that j�j must be an isometry�
Then

d�y� j�jz� � d�j�jx� j�jz� � d�x� z� � �

By the previous paragraph� j�jz must lie in the star of y in A� Therefore�
since � was a simplicial complex isomorphism� z had to be in the star of x in
A�� This is certainly a subset of the star of x in all of X � Thus� the star of x
in X contains the ball of radius � � � around x� as desired� �

By this lemma� returning to the proof of the last assertion of the theorem�
we see that the Cauchy sequence fyig must eventually be constant� equal to
some z with j�jz � y� Since d�xi� yi� � �� it must be that xi � z� This
completes the proof� �

���	 Bruhat�Tits �xed�point theorem
We will invoke only a special case of the negative curvature inequality

������� with t � �
� �in the notation there�� And we abstract it a little�

Speci�cally� we suppose that we have a complete metric space M with
metric d so that� given x� y �M there is a point m �M so that for all z �M

d�z�m�� � �

�
d�z� x�� �

�

�
d�z� y�� 	 �

�
d�x� y��

�In the case of an a�ne building the point m was the midpoint of the line
segment connecting x� y�� An isometry of a metric space is simply a map
� 
 M �M so that

d���x�� ��y�� � d�x� y�

for all x� y �M �

Theorem� Let G be a group of isometries of the complete metric space
�M�d�� If there is a non�empty� bounded� G�stable subset of M � then G has
a �xed point on M �

Proof� Let Y be a non�empty bounded subset of M � For x �M � let

rx�Y � � sup
y
Y

d�x� y�

The circumradius of Y is

r�Y � � inf
x
M

rx�Y �

If x � X is such that rx�Y � � r�Y �� then x is a circumcenter of Y �
Clearly if f is an isometry of M and if x is a circumcenter of a set Y � then

f�x� is a circumcenter of f�Y �� since the notion of circumcenter is respected
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by distance�preserving maps� Thus� the collection of circumcenters of a G�
stable set must be G�stable� Therefore� we will be done if we show that every
non�empty bounded subset Y of M has a unique circumcenter�

With z � Y we have

rm�Y �� � �

�
rx�Y �� �

�

�
ry�Y �� 	 �

�
d�x� y��

where the point m is as above� given x� y �M � By rearranging�

d�x� y�� � �rx�Y �� � �ry�Y �� 	 �rm�Y �� � �rx�Y �� � �ry�Y �� 	 �r�Y ��

since certainly r�Y � � rm�Y �� If both x and y were circumcenters� then
the right�hand side would be zero� so x � y� This is the uniqueness of the
circumcenter�

On the other hand� if we had a sequence of points xn so that rxn�Y � �
r�Y �� then the last inequality applied to xi� xj in place of x� y gives

d�xi� xj�
� � �rxi�Y �� � �rxj �Y �� 	 �r�Y ��

The right�hand side goes to zero as the in�mum of i� j goes to �� so fxig
is necessarily a Cauchy sequence in M � The completeness of M assures that
this Cauchy sequence has a limit� which evidently is the circumcenter� This
proves existence� �

���
 Maximal compact subgroups
The main purpose is to classify conjugacy classes of maximal compact

subgroups of groups G acting on a�ne buildings ������� Actually� rather than
compact subgroup� the weaker and more general notion of bounded subgroup
is appropriate� This is de�ned just below�

The �rst result we give determines conjugacy classes of maximal bounded
subgroups in a group with a strict a�ne BN�pair obtained from an appropriate
action on a thick building ������ Here the group is required to act strongly
transitively and preserve types on a thick a�ne building� This is a cleaner
result than the more general second result� for a generalized a�ne BN�pair
������

At the outset we �recall	 the standard nomenclature for discussion of bounded
sets in a manner not depending upon a metric nor upon compactness�

A bornology on a set G is a set B of subsets of G� called the bounded
subsets of G� so that

� Every singleton set fxg is in B�
� If F � E and E � B then F � B�
� A �nite union of elements of B is again in B�

Suppose further that G is a group� It is a bornological group if� in addition
to the previous requirements� we have

� For E�F � B the set EF � fef 
 e � E� f � Fg is in B�
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� If E � B then E�� � fe�� 
 e � Eg is in B�
Let X be a thick a�ne building ������� Let �G be a group acting upon X

by simplicial complex automorphisms� and suppose that the subgroup G of �G
consisting of type�preserving elements is strongly transitive�

Inside G we have a strict BN�pair �����
 let B be the stabilizer in G of a
chamber C� and let N be the stabilizer in G of an apartment A containing
C� The pair �B�N � is a �strict� a	ne BN�pair in G� Put T � B � N �
Then W � N�T is the associated Coxeter group� with generators S given by
re�ections in the facets of C�

Let �N be the stabilizer in �G of C� let �B be the stabilizer in �G of A� and
let �T � �N � �B be the intersection� The general discussion ����� of generalized

BN�pairs showed that % � �T�T is �nite� and that �G � G �T � for example�
�Emphatically� the assumption of a�neness is that the associated Coxeter

complex "�W�S� is a�ne� and that this implicitly includes a hypothesis of
indecomposability� that is� connectedness of the Coxeter diagram��

De�ne a bornology B on G by saying that E � B if and only if E is
contained in a �nite union of double cosets BwB�

The elementary facts about the Bruhat�Tits decomposition� e�g�� the cell
multiplication rules ������ show that this set B is indeed a bornology on G� so
making G a bornological group�

Remarks� If the group G has a topology in which B is in fact compact
and open� then �bounded	 is equivalent to �having compact closure	�

We give two theorems here� the �rst treating the simpler case of the strict
BN�pair� the second treating the general case� As preparation we need the
comparison of notions of boundedness given by the following proposition� We
will need this again for the generalized BN�pair situation� so we give the
general version of the proposition here�

Proposition� The following three conditions on a subset E of �G are
equivalent


� E is contained in a �nite union of double cosets B�wB with w � W
and � � %�

� There is a point x � jX j so that Ex � fgx 
 g � Eg is a bounded subset
of the metric space jX j�

� For every bounded subset Y of the metric space jX j� the set EY � fgy 

g � Eg is bounded in jX j�

Remarks� Note that this applies as well to subsets of G� in which case
elements � � % can be ignored�

Proof� To prove that the �rst condition implies the second� let x � jCj
where C is the chamber �xed by B� Then for g � b�wb� � B�wB�

d�x� gx� � d�x� b�wb�x� � d�x� b�wx� � d�b��x� �wx� � d�x� �wx�
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since B �xes any x � jCj and since the whole group acts by isometries� Thus�
B�wBx is contained in the closed ball of radius d�x� �wx� centered at x�
From this� the �rst condition implies the second�

Now let Y be a bounded subset of jX j and x � jX j a point so that Ex is
bounded� In particular� let � be a bound so that d�x� gx� � � for all g � E�
and let D be a bound so that d�x� y� � D for all y � Y � Then� for y � Y and
g � E�

d�x� gy� � d�x� gx� � d�gx� gy� � d�x� gx� � d�x� y� � � �D

Thus� the second implies the third�
Assume that EY is bounded� where Y � jCj� Let A be the apartment

containing C whose stabilizer is N � Let � 
 X � A be the canonical �����
retraction of the whole building to A� centered at C� As discussed earlier
������� j�j does not increase distances� so j�j�EjCj� is a bounded subset of jAj�
The set of re�ecting a�ne hyperplanes in jAj is locally �nite ������� �������
������� so a bounded subset meets only �nitely�many chambers�

We have shown that

% � �T�T � �G�G

is �nite� Let & be a choice of representatives in �T � In our discussion of
the Bruhat decomposition ����� we showed that an element g in the type�
preserving subgroup G lies in BwB where w � W is such that ��gC� � wC�

Thus� for �g � g�i � �G with g � G and �i � &� we have ���gC� � wC� since �i
also stabilizes C� Since j�j�EjCj� is contained in the geometric realizations of
�nitely�many chambers in A� certainly ��EC� is a �nite union of chambers�
Thus� it follows that E is contained in �nitely�many double cosets Bw&B�
and each such is a �nite union of double cosets B�wB�

This proves the proposition� �

Theorem� We assume that G acts strongly transitively and preserves
types on a thick a�ne building X � With the bornology above� every bounded
subgroup of G is contained in a maximal bounded subgroup� The maximal
bounded subgroups of G are exactly the stabilizers of vertices of X � Each
conjugacy class of maximal bounded subgroups contains a unique one from
among the maximal bounded subgroups

K �
G

w
WS�

BwB

where S� � S 	 fsog for some s � S and where WS� � hS�i is the special
subgroup of W generated by S��

Remarks� Indeed� the stabilizer of the vertex of C of type S� � S	fsog
is the special subgroup

K �
G

w
WS�

BwB � BWS�B
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From the Perron�Frobenius lemma ������ and its application to Coxeter groups
������� the assumption of a�ne�ness assures that any group WS� with S� a
proper subset of S is �nite� Thus� such groups K really are bounded in the
present sense�

We will prove this theorem along with the more general version given just
below� which we state �rst�

Recall that in discussion ����� of generalized BN�pairs the following facts

were veri�ed� The groups N � B are normalized by �T � and conjugation by
elements of �T stabilizes S� as automorphisms of A� And the group G is a
normal subgroup of �G� of �nite index� with �G � �TG� Let % � �T�T as above�
Then for � � % and w � W � �B � B� � B�B and

�BwB � B�wB � B��w����B�

where we note that �w��� � W � In particular� from this we see that it is
reasonable to take the bornology on �G in which the bounded subsets are those
contained in �nitely�many double cosets B�wB� where � � % and w �W �

Theorem� Let �G act strongly transitively on a thick a�ne building
X � with type�preserving subgroup G acting strongly transitively� With the
bornology above� every bounded subgroup of �G is contained in a maximal
bounded subgroup� Every maximal bounded subgroupK of �G is the stabilizer
of a point in X � Conjugating if necessary� we may assume that B � K� The
subgroup Ko � K � G is bounded in G and is of the form BWS�B for some
proper subset S� of S� Identifying K�Ko with a subgroup %K of % � �T�T �
we have

K �� %KKo � %K � BWS�B � B%KWS�B

Remarks� Note that it is not asserted that for every point y in jX j the
stabilizer of y is maximal� although the proposition above proves that it is
bounded� And� unlike the previous theorem where the points mentioned here
were always vertices in the simplicial complex� we no longer have any such
simplicity�

Remarks� In this generality it is not clear which subgroups of % are
candidates for appearance as %K � For example� in general there is no reason
to expect �T to be a bounded subgroup� so there is no reason to expect that
the whole group % could appear as an %K �

Proof� We prove both theorems at once� with two di�erent endings to the
proof�

Since �G acts onX � it acts on its geometric realization jX j� Our discussion of
a�ne Coxeter complexes and a�ne buildings assures that the action on jX j is
by isometries� The negative curvature inequality assures that the hypotheses
of the Bruhat�Tits Fixed�Point theorem are ful�lled� The proposition above
relates the bornology on G or �G to the metric on jX j� In particular� it shows
that the stabilizer of a point is indeed a bounded subgroup�
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Conversely� given a bounded subgroup K of G� take any x � jX j� Then
K stabilizes the set Kx� which by the proposition is a bounded subset of
jX j� Thus� K has a �xed point xo � jX j� by the Bruhat�Tits �xed�point
theorem ������� Thus� K is surely contained in the �xer of the point x� which
is maximal bounded�

Now let K be maximal bounded� �xing a point x � jX j� Since G is transi�
tive on chambers� by conjugation by G we can assume that x is in the closure
of the fundamental chamber C �stabilized by B�� so B � K�

The type�preserving property of G yields a simple conclusion in that case�
Let � be the smallest simplex � in X so that xo � j� j� Since G is type�
preserving� g � G stabilizes the geometric realization of a simplex if and only
if it �xes all vertices of the simplex� Thus� the stabilizer K in G of xo is the
stabilizer of � � which is the intersection of the stabilizers of the vertices of � �
That is� the maximal bounded subgroups are exactly the stabilizers of vertices
in X � This proves the theorem for the type�preserving group G�

In particular� the bounded subgroup K � G of �G must be of the form
BWS�B for some subset S� of S� By the Perron�Frobenius theory� the subset
S� must be a proper subset of S for WS� to be �nite� since �W�S� is a�ne
�which entails indecomposability��

Let %K � K�Ko� viewed as a subgroup of the �nite group % � �T�T � Since

Ko contains B � T and �TG � �G� we can indeed choose representatives in �T
modulo Ko for all elements of K� Then

K � %KKo

This is the second theorem� �

���� Special vertices� good compact subgroups
Only some of the maximal compact �or maximal bounded� subgroups of a

group acting on a thick a�ne building are suitable for subsequent applications�
In this subsection we give a de�nition of �good	 maximal bounded subgroup�
and see that� as a corollary of the classi�cation of maximal bounded subgroups
there is at least one such� by relating good subgroups to special vertices�

The de�nition alone already requires our previous results ������ on a�ne
re
ection groups�

Let �G be a group acting on a thick a�ne building X ������� Let G be the

subgroup of �G preserving types� and suppose that the group G acts strongly
transitively on X � Let �W�S� be the Coxeter system attached to G
 by
hypothesis this system is a�ne �and� implicit in this is the assumption of
indecomposability� that is� connectedness of the diagram��

Fix an apartment A� Let jAj be its geometric realization ������ which we
view as a real vectorspace equipped with an inner product� with respect to
which the group W acts by isometries� �Recall ������ that W acts by a�ne
maps on jAj�� Let w �  w be the map which associates to an element w of W
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its linear part� Let  W be the group of all linear parts� which we have shown
to be �nite in our general discussion ������� ������ of a�ne re�ection groups�

Fix a chamber C in A� and let B be the stabilizer in G of C�
A maximal bounded subgroup K of G containing B is good if it contains

representatives for  W �

Remarks� To give a useful de�nition of good maximal bounded subgroup
without reference to B and  W is somewhat awkward� and serves no immediate
purpose�

Corollary� There exist good maximal bounded subgroups of G� obtained
as BWxB where Wx is the �xer in W of a special vertex x of the chamber
�xed by B�

Proof� From the �xed�point theorem corollaries of the previous section�
the maximal bounded subgroups are exactly stabilizers BWxB of vertices x�
where Wx is the stabilizer in W of x�

For a special vertex x� the �xer of x in BWxB contains representatives
for Wx� which maps isomorphically to  W �by de�nition of special�� �And in
discussion ������ of a�ne re�ection groups it was proven that there always
exist special vertices�� �

For a vertex x of C� let Sx be the subset of S consisting of those re�ections
in S which �x x� That is� Sx consists of all re�ections in S except the re�ection
through the facet of C opposite the vertex x�

Corollary� There exist good bounded subgroups of �G� obtained as %�Ko

where Ko is a good maximal bounded subgroup of G� and where %� is a
bounded subgroup of �T stabilizing the subset Sx of S under the conjugation
action of �T � �
Remarks� While much of the interest here is in the subsequent study of

good maximal compact subgroups� the substance of the result resides in the
fact that special vertices exist in thick a�ne buildings� And then the �xed�
point theorem together with general facts about Bruhat�Tits decompositions
entail existence of the good maximal compact subgroups�
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��� Finer Combinatorial Geometry

� Minimal galleries and reduced galleries
� Characterizing apartments
� Existence of prescribed galleries
� Con�gurations of three chambers
� Subsets of apartments� strong isometries

This section does not use the hypothesis of a�ne�ness� Rather� it is a
relatively elementary but more re�ned discussion of buildings in general� It
could have taken place earlier� but was not necessary for earlier use�

���� Minimal galleries and reduced galleries
Let X be a thick building with labeling 
 ������ ������ Extending the notion

discussed earlier ������ ������ ����� for for Coxeter complexes� the type of a
non�stuttering gallery

� � �Co� C�� � � � � Cn�

is the list


��� � �
�Co � C��� 
�C� � C��� � � � � 
�Cn�� � Cn��
of labels of the common facets of adjacent chambers�

Fix an apartment Ao in X � and �x a chamber Co in Ao� Then ����� we
may identify Ao with a Coxeter complex �W�S�� and the generators S with
re�ections in the facets of the �xed chamber Co in Ao� Further ������ we may
take the label map 
 to be a retraction of X to Co� thereby allowing us to
identify the labels of facets with elements of the generating set S of W �

Thus� we can view the type of a gallery � � �Co� � � � � Cn� as giving a word
in the elements of S as follows
 for


�Ci�� � Ci� � si � S

we have


��� � �s�� s�� � � � � sn�

and we can consider the word

�s�� � � � � sn�

thus associated to �� Even though a word is merely a list of elements of the
set S� we may often behave as though such a word were the product s� � � � sn
inside W rather than the n�tuple�

We say that � is reduced if this word is reduced� in the sense that its
length is what it appears to be� that is� if

��s� � � � sn� � n
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Proposition� Fix two chambers Co� Cn in the thick building X � Let
� � �Co� � � � � Cn� be a gallery connecting Co to Cn� Then � is minimal if and
only if it is reduced�

Proof� Suppose that � is minimal among galleries connecting Co� Cn�
Then � lies in every apartment containing both these chambers� by the com�
binatorial convexity of apartments ������ Any such apartment A is a Coxeter
complex "�W�S�� Then the labeling of a gallery corresponds to its description
as

Co� s�Co� s�s�Co� s�s�s�Co� � � � � s�� � � � � snCo

where the si are in S� That is� the label is �s�� � � � � sn�� In our earlier study of
Coxeter complexes ����� we showed that such gallery inside a Coxeter complex
is minimal if and only if the word s� � � � sn is reduced� that is� has length n�

On the other hand� suppose that the type of a non�stuttering gallery � �
�Co� � � � � Cn� is reduced� By induction� we may suppose that the gallery
�C�� � � � � Cn� is minimal� so lies inside an apartment A� by the combinatorial
convexity of apartments ������ Let � be the canonical retraction of the building
to A� centered at C� ������ Thus� ��Ci� � Ci for i � �� The image of � under
� is a gallery with the same type� since the retraction � preserves labels ������
The further crucial point is that ��Co� 
� C�� since � preserves lengths of
minimal galleries from C� to other chambers in the building ������ Thus� ����
is non�stuttering and reduced inside an apartment� so is minimal� Then �
itself must have been minimal� �

���� Characterizing apartments

Now we can give a geometric characterization of apartments in the maximal
apartment system� We use the idea of type of a gallery� and the result of the
previous section that reduced type is equivalent to minimality of a gallery�

Now let X be a thick building� with maximal apartment system A� In
the course of proving that there is a maximal apartment system ����� it was
shown that there is a Coxeter system �W�S� so that every apartment in A is
isomorphic to the Coxeter complex "�W�S� attached to �W�S�� And when
two apartments A�A� have a chamber C in common� the isomorphism A� A�

�xing C and its faces is unavoidably label�preserving ������
Let � be a subcomplex of X which is a chamber complex itself� and whose

dimension is the same as that of X � �The last condition is that the dimension
of a maximal simplex in � is the dimension of a maximal simplex in X��

Theorem� The subcomplex � is an apartment in the maximal system
A if and only if � is isomorphic to "�W�S� by a simplicial complex map
preserving labels�
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Proof� The idea is to prove that adjoining � to the maximal apartment
system A still satis�es the axioms ����� for an apartment system� so � must
be in A�

To prove the claim� we verify that

A� � A � f�g
satis�es the axioms for apartment systems in a building


Since each apartment A � A is a thin chamber complex �actually a Coxeter
complex�� and since � is such by hypothesis� then every complex in A� is
certainly a thin chamber complex�

The condition that any two simplices lie in a common apartment is certainly
met by A�� since this already holds for A�

The only axiom whose veri�cation is non�trivial is the requirement that�
given two complexes x� y � A� with a common chamber C� there is a chamber�
complex isomorphism x� y �xing every simplex in x � y� Certainly we need
only consider the case that x � � and y � A � A�

By hypothesis� there is a label�preserving isomorphism f 
 � � A� Since
the Coxeter group W of type�preserving automorphisms of A � "�W�S� is
transitive on chambers ������ we can adjust f so that f�C� � C� It is not yet
clear that this f �xes � � A�

On the other hand� let � be the retraction of X to A centered at C ������
and consider the restriction �o 
 � � A of � to �� By de�nition of retraction
������ �o �xes � �A�

Thus� f and �o agree on the chamber C� and map to the thin chamber
complex A� Let � be a minimal �necessarily non�stuttering� gallery in �
starting at C� The image f��� is non�stuttering since f is an isomorphism� If
we can prove that �o��� also must be non�stuttering� then by the Uniqueness
Lemma ������ we could conclude that f � �o� verifying the last axiom for a
building and an apartment system�

Now f��� is minimal in A� so ������ ����� it is of reduced type� Thus� since
f is a type preserving isomorphism� � itself is of reduced type� Thus �������
it is a minimal gallery in the building�

Thus� since the retraction � preserves the lengths of galleries starting at
C� the length of ���� must be the same as that of �� so ���� must be non�
stuttering� That is� the restriction �o of � to � maps � to a non�stuttering
gallery�

This allows application of the Uniqueness Lemma ������ which yields f �
�o� That is� the postulated isomorphism f really is the identity on � � A�
since � is the identity on A� by de�nition� This veri�es the requisite axiom�

�
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���� Existence of prescribed galleries
The development here uses a continuation of the idea of type of a gallery

discussed just above� We de�ne a sort of Coxeter�group�valued distance func�
tion � on chambers in a thick building� Very roughly put� the main result
in this section asserts that two chambers can be connected by galleries of all
plausible types�

First� an observation
 In a Coxeter complex A � "�W�S� we can de�ne a
W �valued function � on pairs of chambers of A by

��fw�g� fw�g� � w��
� w�

where we recall that the chambers in "�W�S� are singleton subsets of W �
Note that this is a re�nement of the notion of length of minimal gallery� since
here the length of the element w��

� w� � W is the length of any minimal gallery
from fw�g to fw�g�

Let �W�S� be the Coxeter system so that the apartments of X are Coxeter
complexes "�W�S�� For two chambers Co� Cn in X � let � be a minimal �non�
stuttering� gallery from Co to Cn� As above ������� we de�ne the type of �
as follows� We have proven ����� that such a minimal gallery lies inside some
apartment A� which we view as identi�ed with "�W�S� ������ Then there is
a sequence s�� s�� � � � � sn of elements of S so that the gallery is

� � �Co� s�Co� s�� s�Co� s�s�s�Co� � � � � s� � � � snCn � Cn�

The type of � is the word

�s�� � � � � sn�

We de�ne

��Co� Cn� � s� � � � sn �W

That is� while the type of a gallery is not quite an element of the group W �
but rather is just a word in the generators S� this function � does take values
in the group itself�

Lemma� The W �valued function � on pairs of chambers in the thick
building X really is well�de�ned�

Proof� We must show �rst that any identi�cation of an apartment with
the Coxeter complex "�W�S� gives the same value for � on two chambers
inside A� Second� we must show that the value ��Co� Cn� does not depend on
the choice of apartment A containing the two chambers�

It is not hard to see that two di�erent identi�cations of an apartment
with "�W�S� di�er by a label�preserving automorphism of "�W�S�� The
group W is certainly transitive on chambers in "�W�S�� and the Uniqueness
Lemma ����� shows that two label�preserving automorphisms which agree on
a chamber must be identical� Thus� as we have observed on other occasions as
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well� W itself gives all the label�preserving automorphisms of "�W�S�� Thus�
the simple computation

��w�� w�� � w��
� w� � �ww��

�� �ww�� � ��ww�� ww��

shows that � is well�de�ned on each apartment�
Now let A�B be two apartments both containing Co� Cn� By the building

axioms ������ there is an isomorphism f 
 A � B� and we proved that f is
unavoidably label�preserving� Thus� if we have a minimal gallery � in A from
Co to Cn� its image f��� in B is a minimal gallery of the same type� Thus�
the value ��Co� Cn� does not depend upon which of the two apartments A�B
we use to connect the two chambers by a gallery� �
Proposition� Fix a chamber C in an apartment A� For any other

chamber D in the thick building X � we have

��C�D� � ��C� �D�

where � � �A�C is the retraction of X to A� centered at C�

Proof� Let � be a �non�stuttering� minimal gallery from C to D� The
retraction � preserves the lengths of such galleries� and preserves types as well
������ ������ �
Theorem� Let Co� Cn be two chambers and ��Co� Cn� � w � W � Then

for any reduced expression

w � s�s� � � � sn

for w� there is a minimal gallery of type �s�� � � � � sn� connecting Co to Cn� In
fact� this can be accomplished inside any chosen apartment containing both
chambers�

Proof� By the building axioms ������ the two chambers do lie in some
common apartment A� Having seen that � is well�de�ned� we may as well
take A � "�W�S�� and� for that matter� Co � f�g� Then Cn � fwg� By this
point it is clear that the gallery

Co � f�g� fs�g � s�Co� fs�s�g � s�s�Co � � � � fs� � � � sng � fwg � Cn

connects the two chambers� �

���� Con�gurations of three chambers
The following discussion is important in the sequel� and is of interest in its

own right� It might be viewed as a signi�cant exercise in understanding the
geometry of a building� especially the contrast between thickness and thinness�

The �rst lemma asserts something possibly already clear� but worth re�
peating for clarity�

Let X be a thick building� Let C�C � be �distinct� adjacent chambers in
X � and let D be a third chamber� distinct from C�C �� In this section� for two
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chambers x� y in X let d�x� y� be the length of a minimal gallery from x to
y� We will call this the gallery distance from x to y� The gallery distance
d�C �� D� is either d�C�D� � �� d�C�D�	 �� or d�C�D�� just because C�C � are
adjacent�

Lemma� In a Coxeter complex A � "�W�S�� if C�C �� D are chambers
so that C�C � are distinct and s�adjacent� then d�C �� D� � d�C �� D� � �� In
particular� d�C �� D� 
� d�C�D��

Proof� Without loss of generality �since W acts transitively�� we may take
C � f�g� C � � fsg� and D � fwg� We know ������ ����� that minimal galleries
from C to D are in bijection with reduced expressions for w� In particular�
d�C�D� � ��w�� More generally� for any w�w� �W � we have

d�fwg� fw�g� � ��w��w��

Then

d�C �� D� � ��s��w� � ��sw� � ��w� � � � ��C�D� � �

This is the result� �

Proposition� If d�C �� D� � d�C�D� � �� then there is a minimal gallery
� from C � to D of the form

�� � �C �� C� � � � � D�

In the opposite case where d�C �� D� � d�C�D� 	 � there is a minimal gallery
� from C to D of the form

� � �C�C �� � � � � D�

For d�C �� D� � d�C�D� � �� there is an apartment containing all three of the
chambers� On the other hand� if d�C�D� � d�C �� D�� then there is a chamber
C� so that there are minimal galleries �� �� from C�C � to D of the form

� � �C�C�� � � � � D�

�� � �C �� C�� � � � � D�

In this case there is no apartment containing all three chambers�

Proof� If d�C! � D� � d�C�D� � �� then for any minimal gallery

� � �C�C�� � � � � D�

from C to D� the gallery

�� � �C �� C� C�� � � � � D�

obtained by pre�xing C � to � is necessarily a minimal gallery from C � to D�
And then by convexity of apartments ������ the minimal gallery from C � to D
�which happens also to contain C� lies in any apartment containing C � and
D� �There is at least one such apartment� by the building axioms ������� The
case d�C �� D� � d�C�D� 	 � is symmetrical�



��
 Garrett� ���� Finer Combinatorial Geometry�

Now suppose that d�C �� D� � d�C�D�� The previous lemma shows that the
three chambers cannot lie in a common apartment� Let � be the W �valued
function de�ned above on pairs of chambers in X � Put w � ��C�D� and
s � ��C�C ��� In particular� this means that C�C � are s�adjacent� Let

� � �C � Co� C�� � � � � Cn � D�

be a minimal gallery from C to D� of type �s�� � � � � sn�� We saw just above
that w � s� � � � sn is a reduced expression for w since � is minimal� Consider
that gallery

�� � �C �� C� C�� � � � � D�

Since it is of length n��� which is longer by � than d�C �� D� � d�C�D�� it is
not minimal� so �from above� the word

�s� s�� � � � � sn�

is not reduced� That is� ��sw� � ��w�� As a consequence of the Exchange
Condition ������ we conclude that w has some reduced expression which begins
with s� � s�

Since we have shown above ������ that there is a minimal gallery from C
to D of type �s�� � � � � sn� for every reduced expression

s� � � � sn � w

for w� we conclude that there is a gallery

� � �C � C�� C�� � � � � Cn � D�

with ��C�C�� � s� That is� C�C� are s�adjacent� But C � also shares the
unique facet of C of type s� so the three chambers C�C �� C� are mutually
s�adjacent� In particular� with the gallery � as just speci�ed�

�� � �C �� C�� � � � � D�

is a minimal gallery from C � to D� The point is that �� �� di�er only in
that one begins with C while the other begins with C �� as asserted in the
proposition� �

Proposition� Let C�C �� D be three distinct chambers� with C�C � being s�
adjacent� Fix an apartment A containing C�C �� and let �� �� be the retractions
of X to A centered at C�C �� respectively� Let H�H � be the half�apartments
corresponding to the re�ection s of A in which C�C � lie� respectively�

� If d�C �� D� � d�C�D�� then �D � ��D � H �
� If d�C �� D� � d�C�D�� then �D � ��D � H ��
� If d�C �� D� � d�C�D�� then �D � H � and ��D � H � and s�D � ��D�

Note that in the third of these possibilities� C and �D are in opposite half�
apartments� and C � and ��D are in opposite half�apartments�

Proof� If d�C �� D� � d�C�D���� then by the previous proposition C�C �� D
lie in a common apartment B� Then B is mapped isomorphically to A by ��
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and � is the identity map on A�B
 this was a fundamental property of these
retractions ������ Then surely

d�C� �D� � d�C�D� � d�C �� D� � d�C �� �D�

Thus� by our corollary of Tits	 theorem characterizing half�apartments by
gallery distances ������ we conclude that �D is in the half�apartment H of s
in which C lies� Further� since B contains C �� another fundamental property
of the retractions �� �� is that �jB � ��B � Thus� we have the �rst assertion�
The second assertion is symmetrical�

Now consider the case that d�C�D� � d�C �� D�� Since � preserves gallery
distances to C and cannot increase gallery distances to C � ������ we have

d�C� �D� � d�C�D� � d�C �� D� � d�C �� �D� 
� d�C� rhoD�

Thus� unavoidably d�C �� �D� � d�C�D�� which implies that �D � H �� again
by the corollaries ����� to Tits	 theorem� Symmetrically� ��D � H �

Since these retractions are type preserving ������ we have

��C� �D� � ��C�D�

and
��C �� ��D� � ��C �� D�

where � is the W �valued distance function used above in discussion of the
existence of galleries of prescribed type ������� Now we invoke the previous
proposition� to be sure that there is a gallery

�C�� C�� � � � � Cn � D�

with C� adjacent to both C and C � and so that

� � �C�C�� C�� � � � � Cn � D�

and
�� � �C �� C�� C�� � � � � Cn � D�

are both minimal galleries� From this the middle equality in the following is
obtained


��C �� ��D� � ��C �� D� � ��C�D� � ��C� �D�

Thus� we deduce from the de�nition of � that �D � wC � fwg� Similarly�
letting ��D � fw�g� as C � � fsg� we have

w � ��C �� ��D� � s��w� � sw�

so w� � sw� That is� ��D � s�D as claimed� �
Remarks� The assertions of the previous propositions and lemma can be

strengthened a little if the things learned about the W �valued function � in
the course of the proofs are included� However� we will not need these sharper
statements in the sequel�
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���� Subsets of apartments� strong isometries
The goal of this section is to give a sharp characterization of subsets Y

of a thick building X so that Y lies inside some apartment in X �in the
maximal apartment system�� This will be done in terms of the notion of
strong isometry� de�ned below in terms of the W �valued distance function �
used earlier ������ in discussion of existence of galleries of prescribed type�
Let �W�S� be a Coxeter system so that the apartments in X are isomorphic
to the Coxeter complex "�W�S��

Let Y� Z be two sets of chambers in X � A strong isometry � 
 Y � Z is
a bijection so that for all C�D � Y we have

���C� �D� � ��C�D�

Theorem� Let Y be a set of chambers in a thick building X � If Y is
strongly isometric to a subset of some apartment� then Y is a subset of some
apartment in the maximal apartment system for X �

Proof�
We need some auxiliary maps


Proposition� For a chamber C in an apartment A� and for another
chamber D� there is a unique label�preserving

� � �D�C�A 
 X � A

which sends D to C� and so that the restriction of � to any apartment B
containing D is an isomorphism to A�

Proof� Uniqueness follows immediately from the Uniqueness Lemma ������
For �xed apartment B containing D� we de�ne � as follows� For an apart�

ment B containing D� put

� � jB � �B�D
where �B�D is the canonical retraction of X to B centered at D� and where jB
is a label�preserving isomorphism j 
 B � A sending D to C� The retraction
�B�D itself is an isomorphism when restricted to an apartment containing D�
so � also has this property� �

Lemma� A strong isometry f 
 Y � A to an apartment A is determined
by knowing fD for any single chamber D � Y � In fact� f is nothing but the
map � � �D�C�A of the previous proposition� restricted to Y �

Proof� Fixing an identi�cation of A with a Coxeter complex "�W�S� so
that fD � f�g� the strong isometry property entails that if ��D�D�� � w then
��fD� fD�� � w� But there is exactly one chamber C � � fw�g in "�W�S� so
that

w � ��f�g� C ��
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namely C � � fwg� since ��f�g� fw�g� � w��
Now we check that this map f agrees with � � �D�C�A restricted to Y � For

this� we use the characterization of �D�C�A in the proposition just above� For
another chamber D� in Y � let B be an apartment containing both D and D��
and put ��D�D�� � w � W � Let � be a gallery in B from D to D�� of type
�s�� � � � � sn�� We have

s� � � � sn � ��D�D��

The map � is a label�preserving isomorphism� so the gallery ���� in A from
�D to �D� is of the same type� and we conclude that

���D� �D�� � ��C� �D�� � w

But� again� C � � fwg is the only chamber in A so that w � ��f�g� C �� � w�
Thus� indeed� f and � agree on Y � �

The following lemma is the crucial point here�

Lemma� Let f 
 Y � A be a strong isometry to an apartment A in X �
For any chamber C � not in the image f�Y � of f but adjacent to a chamber in
the image� there is a strong isometry

�g 
 f�Y � � f  C �g � X

extending the inverse

f�� 
 f�Y �� Y

of the map f �

Proof� We identify A with a Coxeter complex "�W�S� in such manner
that C corresponds to the chamber f�g�

Let C be the chamber in the image f�Y � to which C � is adjacent� and
suppose that these two chambers are s�adjacent� Let D be the chamber in Y
which maps to C by f � and let D� be any chamber in X which is s�adjacent
to D �and not equal to it�� Let y be a chamber in Y and let x � f�y��

Let B be an apartment containing both D and D�� Existence of this is
assured by the building axioms ������ Let H�H � be the half�apartments for
s in A containing C�C �� respectively� Let jB be the unique label�preserving
isomorphism B � A sending D�D� to C�C �� respectively� Let J � j��

B H and

J � � j��
B H �� These are half�apartments containing D�D�� respectively�

Write

� � �D�A�C � jB � �B�D
�� � �D��A�C� � jB � �B�D�

From the considerations of the previous section ������� either �B�Dy �
�B�D�y or �B�Dy � s�B�D�y� with the latter possible only if �B�Dy � J � �and�
concommitantly� �B�D�y � J��

The isomorphism jB transports this to A� Thus� either �y � ��y� or else
�y � s��y� with the latter possible only if �y � H � and ��y � H � That is�
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invoking the previous lemma� either ��y � �y � x or possibly ��y � s�y � sx�
and the latter is not possible unless x � H �� Paraphrased� this is that either

��� � f����x� � x

or
��� � f����x� � sx

with the latter possible only if x � H ��
If f�Y � � H � then we have seen that

f � �jY � ��jY
so we extend f by taking �� on Y �D�


�� 
 Y �D� � f�Y � � C �
where C � 
� f�Y �� Thus� we have the assertion of the lemma in this case�

On the other hand� if f�Y � does not lie entirely inside H � then we claim
that we can choose the chamber D� so that ��y � fy �rather than sf�y��
for some y � Y so that f�y� � H �� Indeed� if D� is initially chosen so that
��y � sfy� then �as above� it must be that there are minimal galleries �� ��

from D�D� to y of the form

� � �D�D�� D�� � � � � Dn � y�

� � �D�� D�� D�� � � � � Dn � y�

That is� they are the same except for beginning at D or D�� The chamber D�

is adjacent to both D�D�� Replacing D� by D� in this scenario achieves the
e�ect that d�D�� y� � d�D� y� 	 �� so �after this replacement� �y � ��y � H ��
Since �from the previous lemma� f � �jY � we have succeeded in arranging
fy � ��y � H ��

Now we claim that necessarily fy� � ��y� for all y� � Y � Suppose� to the
contrary� that there is y� � Y so that �instead� sfy� � ��y�� Since all the
maps are non�increasing on gallery lengths�

d�y� y�� � d���y� ��y�� � d�fy� sfy��

Let � be the folding of A to itself which is a retraction to H �� and maps H to
H �� Let

� � �fy � Co� C�� � � � � Cn � sfy��

be a minimal gallery from fy � H � to sfy� � ��y� � H � Since the gallery
starts in H � and ends in H � there must be an index i so that Ci � H � while
Ci	� � H � Then �Ci	� � Ci� since these two chambers are adjacent across
the wall corresponding to s� Then the gallery �� from fy to fy� � s��y�

stutters� so
d�fy� sfy�� � d�fy� fy��

Putting this together� we have

d�y� y�� � d�fy� fy��

This is impossible� since f is an isomorphism�
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We conclude in this case as well that the strong isometry

f 
 Y � f�Y � � A

can be extended to a strong isometry

��jY �D� 
 Y �D� � f�Y � � C � � A

This proves the lemma� �
Now we can prove the theorem� From the last lemma� if f�Y � � A is not

the whole collection YA of chambers in the apartment A� then we can extend
f�� to a strong isometry on f�Y � � C � for some chamber C � adjacent to a
chamber in f�Y �� Let YA be the set of all chambers in A� and let � be a
maximal one among all strong isometries extending f�� to maps from some
set Yo of chambers in A� If Yo were a proper subset of YA� then the last lemma
shows that we could further extend �� contradicting the maximality� Thus�
this extension � must be a strong isometry de�ned on the whole collection
YA of chambers in the apartment A�

Then Y � ��YA�� and ��YA� is strongly isometric to the set of all chambers
in an apartment via ���� Thus� we could have assumed at the outset that
f 
 Y � YA was a strong isometry from Y to the set YA of all chambers in
the apartment A�

Thus� from the discussion above of apartments in the maximal apartment
system� if we can extend f to a label�preserving chamber complex map �f 

�Y � A on the chamber complex �Y consisting of Y and all faces of chambers
in Y � then we can conclude that �Y is an apartment in the maximal apartment
system�

Fix a chamber C � Y � If we identify A with a Coxeter complex "�W�S��
we may as well suppose that f�C� is the chamber f�g � h�i� and identify
the facets of f�C� with the generating set S of the Coxeter group W � Since
f is a strong isometry� for each w � W there is exactly one Cw � Y so
that ��C�Cw� � w� where � is the W �valued �distance	 function on the whole
building�

Then for a subset T of S and w �W � we attempt to de�ne f by

f�
�

w�
whT i

Cw� � whT i�

For each s � S and chamber f�Cw� � fwg in A� there is exactly one cham�
ber in A which is s�adjacent to f�Cw�� namely sfwg � fwsg � f�Cws�� �Note
that it is ws and not sw$� Therefore� since f respects �� the chamber Cws is
the unique chamber in Y so that ��Cw� Cws� � s� Computing � by taking an
apartment containing both Cw and Cws� we see that they are adjacent� and
thus that the intersection

Ffw�wsg � Cw � Cws
is a facet �codimension�one face� of both�
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Thus� we can at least extend f to facets by

f�Ffw�wsg� � fw�wsg � wf�� sg � whsi
Now any face of a chamber Cw can be expressed in a unique way as an inter�

section of facets of Cw� simply because all this takes place inside a simplicial
complex� As just noted� these facets are all of the form �Ffw�wsg � Cw �Cws
for s � S� Then a face x of Cw has an expression of the form

x �
�
s
T

Ffw�wsg �
�
s
T

Cw � Cws � Cw �
�
s
T

Cws

for a uniquely�determined subset T of S� That is� in particular� every face of
Cw has a unique expression as an intersection of chambers in Y �

Thus� for a subset T of S� we can unambiguously de�ne an extension by

f�
�
s
T

Cws� �
�
s
T

fw�wsg � whSi

since the indicated intersection is in the Coxeter complex� This de�nes f on
every face of every chamber from Y � by remarks above� And this extension
preserves inclusions� as was veri�ed for facets by the ��preserving property�
and then by construction for smaller faces� Thus� this extension is a simplicial�
complex map of �Y to A�

Finally� every simplex in Y is certainly expressible in a �unique� manner
as an intersection of facets of chambers in Y � so the extended version of f is
a surjection� Thus� since the extension was already seen to be an injection
on simplices in �Y � Thus� the extension really is an isomorphism of simplicial
complexes� This completes the proof of the theorem� �
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�	� The Spherical Building at In�nity

� Sectors
� Bounded subsets of apartments
� Lemmas on isometries
� Subsets of apartments
� Con�gurations of chamber and sector
� Con�gurations of sector and three chambers
� Con�gurations of two sectors
� Geodesic rays
� The spherical building at in�nity
� Induced maps at in�nity

A�ne buildings have natural spherical buildings associated to them by a
sort of �projectivization	 process� The relationships between the two buildings
have as consequences not only for the geometry of the a�ne building� but also
for groups acting upon the buildings� This idea is the culmination of the study
of a�ne buildings�

In the special case that the a�ne building is a tree �that is� is one�dimensional��
the spherical building at in�nity is called the set of ends of the tree�

�	�� Sectors

This section begins a slightly technical but essential further study of a�ne
Coxeter complexes A� �or� more properly� of their geometric realizations jAj��
This is most important in later construction of the spherical building at in�
�nity attached to an a�ne building�

Let A � "�W�S� be an a�ne Coxeter complex ������ ������� which we
identify with its geometric realization jAj ������� Let H be the collection of
all hyperplanes �xed by re�ections� so the hyperplanes in H are the walls in
A ������� ������� We have shown ������ that there is a point xo �which may as
well be called �� in A so that every hyperplane in H is parallel to a hyperplane
in H passing through xo � �� Let  H be the collection of hyperplanes in H
through �� We have shown ������� ������� ������� ������ that  H is �nite�

Further� we have shown ������������� that the hyperplanes in  H cut A into
simplicial cones c all with vertices at xo � �� For x � A� a translate x � c
of one of these simplicial cones is called a sector in A with vertex x� The
direction of the sector is c� If one sector x��c� is contained in another sector
x� c� then x� � c� is a called a subsector of x� c� Two sectors x� c� y � d
have opposite direction if d � 	c�

The following lemma is essentially elementary� but we give the proof as
another example of this genre of computation�
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Lemma� The intersection

�x� c� � �y � c�

of two sectors with the same direction c is a sector z�c with the same direction
c� A subsector x� � c� of x� c has the same direction as x� c�

Proof� A simplicial cone c in an n�dimensional vectorspace is de�ned by n
linear inequalities 
i � � and that the 
i are linearly independent� A sector
x� c is then de�ned by linear inequalities 
i � 
i�x�� Thus� the intersection
of x� c and y � c consists of the set of points where


i � sup�
i�x�� 
i�y��

The fact that there are exactly n such inequalities and that the 
i are linearly
independent assures that there is a point z so that


i�z� � sup�
i�x�� 
i�y��

Then the intersection is just z � c� as desired�
Then each 
i has a lower bound on a subsector x��c�� so has a lower bound

on c� itself� using linearity� But the only alternatives for the behavior of each

i on c� is that it be positive everywhere or negative everywhere� so every 
i
must be positive on c�� and it must be that c � c�� �

Lemma� Let x � c and y 	 c be two sectors with opposite directions�
Suppose that x � y 	 c �from which also follows y � x � c�� Let C�D be
chambers so that  C meets

y � c � �y 	 x� � �x� c�

and  D meets

x	 c � �x	 y� � �y 	 c�

If E is a chamber so that  E meets �x �  c� � �y 	  c then E occurs in some
minimal gallery from C to D�

Proof� We show that no element of H separates E from both C and D�
Let � � H be de�ned by a linear equation 
 � co� By changing the sign of 

if necessary� we can suppose that 
 � � on c�

If 
 � � on E� then 
�y� � �� as otherwise 
 � � on y 	  c� contradicting
the fact that 
 � � on E� Then 
 � � on y � c� so 
 � � on C � y � c� That
is� � does not separate C from E if 
 � � on E�

On the other hand� if 
 � � on E� then we have the symmetrical and
opposite argument� That is� if 
 � � on E� then 
�x� � �� or else 
 � � on
x�  c� contradicting the fact that 
 � � on E� Then 
 � � on x	 c� so 
 � �
on D � x	 c� That is� � does not separate D from E if 
 � � on E�

Recall that we showed that� in a Coxeter complex every minimal gallery
from one chamber to another crosses every wall separating them once and
only once� and� further� a non�minimal gallery must cross some wall twice
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������ We have shown that if a wall separates E from either C or D� then
it does not separate E from the other of the two� So if we take a minimal
gallery

�� � �C�C�� � � � � Cm� E�

from C to E and a minimal gallery

�� � �E�D�� � � � � Dn� D�

from E to D� then the gallery

� � �C�C�� � � � � Cm� E�D�� � � � � Dn� D�

obtained by splicing them together does not cross any wall twice� Thus� the
gallery � contains E and is minimal� �

�	�� Bounded subsets of apartments
The main point of this section is that the property of being a bounded sub�

set of an apartment in an a�ne building does not depend upon the apartment
system�

Let X be an a�ne building ������ and jX j its geometric realization with
the canonical metric d�� � as constructed above ������� When we speak of a
bounded subset Y of jX j� we mean that there is a bound for d�x� y� as x� y
range over Y �

For two chambers C�D in X � we de�ne H�C�D� to be the union of the
�geometric realizations of all faces of� all chambers lying in some minimal
gallery from C to D� This is a combinatorial version of a closed convex
hull of the two chambers C�D�

Theorem� A bounded subset Y of jX j is contained in an apartment A
in a given apartment system A if and only if there is a pair C�D of chambers
in X so that Y � H�C�D��

Remarks� Recall that we proved earlier that every minimal gallery from
a chamber C to another chamber D lies inside every apartment containing
both C and D ������

Proof� For notational simplicity� we may write X for the geometric real�
ization�

Let Y be a bounded subset of an apartment A in an apartment system A in
X � We certainly may enlarge Y by replacing it by the union of all �geometric
realizations of� faces of simplices �in A� which it meets�

Take an arbitrary direction c in A� in the sense of the previous section�
Then we claim that there are points x� y in A so that

Y � �x � c� � �y 	 c�

Indeed� for each linear inequality 
i � � de�ning the simplicial cone c there
are constants ai� bi so that on Y we have ai � 
i � bi� Then take the point
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x to be the point where� for all i� 
i�x� � ai� That there is any such point is
due to the fact that �as noted in the previous section� the directions are really
simplicial cones� de�ned by linearly independent linear inequalities� Likewise
take y to satisfy 
i�y� � bi�

Then� applying the second lemma of the previous section ������� there are
two chambers C�D in A so that every chamber E contained in Y lies inside
H�C�D�� Thus� Y lies inside H�C�D�� This proves half of the desired result�

The other half of the assertion is true in general� without any assumption
of a�ne�ness� and was proven earlier �����
 every minimal gallery connecting
two given chambers lies inside every apartment containing the two chambers�
Thus� have characterized bounded subsets of apartments in a manner inde�
pendent of the apartment system� �

�	�� Lemmas on isometries
This section contains some elementary results on isometries of Euclidean

spaces and of subsets thereof� We give careful proofs of these results� even
though they are essentially elementary exercises and eminently believable any�
way�

Let E be n�dimensional Euclidean space with the usual inner product �� ��
norm

jxj � �x� x����

and metric

d�x� y� � jx	 yj
Recall that a collection xo� � � � � xN of N � � points in E is a�nely inde�

pendent if X
i

sixi �
X
j

tjxj

implies that

�to� � � � � tN � � �so� � � � � sN �

for any �N � ���tuples so that
P

i ti � � and
P

i si � �� Equivalently� these
points are a�nely independent if and only ifX

i

sixi � �

for
P

si � � implies that all si are ��

Lemma� Let xo� � � � � xn be a�nely independent points in E� For a given
list do� � � � � dn of non�negative real numbers� there is at most one point x in
E so that d�x� xi� � di for all indices�

Proof� Write

xi � �xi��� � � � � xi�n�
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If s� t were two points satisfying all these conditions� then for all � � i � n
we have

��t	 xo� xi 	 xo� � jt	 xij� 	 jt	 xoj� 	 jxi 	 xoj� � d�
i 	 d�

o 	 jxi 	 xoj�
Thus� by hypothesis� for � � i � n

�t	 xo� xi 	 xo� � �s	 xo� xi 	 xo�

In particular� for � � i � n

�s	 t� xi 	 xo� � �

By hypothesis the functions t � �t� xi 	 xo� for � � i � n are linearly
independent linear functionals on E� Thus� s	 t � �� This proves that there
is at most one such point� �
Lemma� Let xo� � � � � xN be points in E� Let M be the N �by�N matrix

with �i� j�th entry
�xi 	 xo� xj 	 xo�

Then these points are a�nely independent if and only if M is of rank N �

Proof� Let % be the n�by�N matrix with ith column xi 	 xo� Then

M � %�%

So by elementary linear algebra the rank of M is the rank of %� So surely
N � n if the rank of M is N � etc� And the rank of % is N if and only if the
xi 	 xo �for i � �� are linearly independent�

Suppose that the rank is N � so that the xi 	 xo are linearly independent�
If X

i

sixi �
X
j

tjxj

with
P

i si � � and
P

i ti � � then we subtract

xo �
X
i

sixo �
X
i

tixo

from both sides and rearrange to obtainX
i	�

si�xi 	 xo� �
X
j	�

tj�xj 	 xo�

The assumed linear independence yields si � ti for all i � �� Since
P

i si � �
and
P

i ti � � it follows that also so � to� This proves the a�ne independence�
On the other hand� suppose thatX

i	�

ci�xi 	 xo� � �

were a non�trivial linear dependence relation� Let

co � 	
X
i	�

ci
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Then we have X
i

cixi � �

and now X
i	�

ci � �

Thus� the xi are not a�nely independent� �

Lemma� Given a�nely independent points xo� x�� � � � � xn and given
points yo� y�� � � � � yn in Euclidean n�space E� if

d�xi� xj� � d�yi� yj�

for all pairs of indices i� j� then there is a unique isometry � 
 E � E which
sends xi to yi for all indices i� Speci�cally� we claim that the isometry is the
function � de�ned by

��
X
i

tixi� �
X
i

tiyi

for all �n� ���tuples �to� � � � � tn� with
P

ti � ��

Proof� The relation

��xi 	 xo� xj 	 xo� � j�xi 	 xo�	 �xj 	 xo�j� 	 jxi 	 xoj� 	 jxj 	 xoj� �

� jxi 	 xj j� 	 jxi 	 xoj� 	 jxj 	 xoj�
shows that the inner products of the vectors xi	xo and xj	xo is determined
by the distances between the points� Let M�xo� � � � � xn� be the n�by�n matrix
whose �i� j�th entry is

�xi 	 xo� xj 	 xo�

Then the previous remark implies that

M��xo� �x�� � � � � �xn� � M�xo� � � � � xn�

In particular� since the xi are a�nely independent the matrix M�xo� � � � � xn�
is of rank n� And then it follows that the images �xi are also a�nely inde�
pendent� since M��xo� � � � � is of full rank� �See lemma above��

Since the xi are a�nely independent� every point in the Euclidean space
E has a unique expression as an a�ne combination of the xi	s� so the map �
is indeed de�ned on all of E� and is well�de�ned� We check that it preserves
distances
 to do so� we may as well take xo � y � o � �� since we could
translate all these points to achieve this e�ect� Thus� from above� we know
that

�xi� xj� � �yi� yj�

for all indices i� j�
We have

j��
X
i

sixi�	 ��
X
j

tjxj�j� � j�
X
i

siyi�	 �
X
j

tjyj�j� �
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� j
X
i

�si 	 ti�yij� �
X
i�j

�si 	 ti��sj 	 tj� �yi� yj� �

� j
X
i

�si 	 ti�xij� �
X
i�j

�si 	 ti��sj 	 tj� �xi� xj� �

� j��
X
i

sixi�	 ��
X
j

tjxj�j� � j�
X
i

sixi�	 �
X
j

tjxj�j� �

by reversing the earlier steps� This veri�es the distance�preserving property
of ��

The uniqueness follows immediately from the lemma above which noted
that there is at most one point at prescribed distances from a maximal set of
a�nely independent points� �
Corollary� Any isometry of a Euclidean space E is an a�ne map�

Proof� Choose a maximal set xo� x�� � � � of a�nely independent points in
E� and invoke the previous lemma� The formula there makes it clear that the
isometry is a�ne� to say the least� �
Corollary� LetX�Y be a subsets of a Euclidean spaceE� Let �o 
 X � Y

be an isometry� Then there is an isometry � 
 E � E extending �o� If X
contains n� � a�nely independent points then there is a unique extension�

Proof� If X contains n�� a�nely independent points xo� � � � � xn� then we
are done� by de�ning � as in the lemma just above� The uniqueness follows
as above in this situation�

If X does not contain n�� a�nely independent points� then X lies inside
an a�ne hyperplane �� From the lemmas above� it follows that Y also lies
inside a hyperplane �� By translating if necessary� we may suppose that these
hyperplanes are linear� that is� pass through �� Translating further� we may
suppose that xo � yo � �� By induction on the dimension n� there is an
isometry �� 
 � � � extending �o� and �� is linear� Then take two unit
vectors x�� y� in perpendicular to �� �� respectively� and extend �� to the
desired � by de�ning

��x� � tx�� � ���x�� � ty�

where x� � � and where t is real� Since �� is a linear isometry it is easy to
check that � is an isometry� �



��� Garrett� ���� The Spherical Building at In�nity�

�	�� Subsets of apartments
Recall that in discussing the �ner general geometry of buildings� we showed

that a subcomplex Y of a thick building is contained in an apartment in the
maximal apartment system if and only if it is strongly isometric to a subset of
an apartment� in a combinatorial sense ������� Now we will obtain a re�ned
analogue of this for a�ne buildings� involving the canonical metric ������ on
the geometric realization� and now using the notion of isometry in a more
literal metric sense�

Unfortunately� this theorem is substantial not only when measured by its
important� but also when measured by length of proof�

With some justi�cation provided by the observation above ������ that the
notion of bounded subset of apartment is independent of the apartment system
in an a�ne building� we now suppose that the apartment system A is the
maximal system of apartments in a thick a�ne building X � �Recall that we
showed earlier that the union of two apartment systems is again an apartment
system� so there is a unique maximal apartment system �������

Let d�� � be the canonical metric ������ on the building� For this section�
let E be a Euclidean space isometric to any and all the �geometric realizations
of� apartments in X � Indeed� in the construction of the canonical metric we
did show that all apartments are isometric to each other�

Theorem� Suppose that a subset Y of an a�ne building X is either
convex or has non�trivial interior � and suppose that Y is isometric to a
subset of the Euclidean space E� Then Y is contained in some apartment in
the maximal apartment system in X �

Corollary� A subset of X is an apartment in the maximal system if and
only if it is isometric to the Euclidean space E�

Proof� �of corollary�� Suppose that a subset Y of X is isometric to E�
Since isometries respect straight line segments� and sinceE certainly is convex�
it follows that Y is convex� Then the theorem applies� so Y is contained in
an apartment B� And B itself is isometric to E�

We claim that no proper subset E� of E is isometric to E� Indeed� in our
detailed discussion of isometries of Euclidean spaces ������� we showed that
for any two subsets Y� Z of E� any isometry � 
 Y � Z has an extension to
an isometry �� 
 E � E� That is� ��jY � �� If E� were a proper subset of

E� then an isometry � 
 E� � E would have an extension �� 
 E � E which
would also be an isometry� But since �E� � E� this extension could not be
injective� contradiction� This proves the claim� and the corollary� �

Proof� First� as in the general discussion of the �ner geometry of buildings
������� for given chamber C in apartment A� and for another chamber D in
the building� there is a unique chamber�complex map � 
 X � A so that
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��D� � C� and so that the restriction of � to any apartment containing D
is an isomorphism to A� This � was constructed by composing the canonical
retraction of X to any apartment B containing D with the isomorphism B �
A taking D to C �and preserving labels�� This map is essential in the proof�

Lemma� Suppose that the subset Y contains an open subset U of a
chamber D� and that Y is isometric to a subset of the Euclidean space E�
Let C be a chamber in an apartment A� Then there is a unique isometry
� 
 Y � A so that

�jU � 
D�C jU
where 
D�C is the geometric realization of the unique type�preserving simpli�
cial complex isomorphism D � C�

Proof� For uniqueness� let � 
 Y � A be an isometry� whose restriction
to U is the same as the restriction of the type�preserving map 
D�C � Then
���� maps the subset ��Y � of A to itself� and �xes ��U� pointwise� The
previous section ������ gives uniqueness� since U contains a maximal collection
of a�nely independent points�

For existence� let � be an isometry Y � A� Then ��U� and ��U� are iso�
metric subsets of A� and by the previous section ������ any isometry ��U��
��U� extends to an isometry � of A to itself� The composite � �� is the desired
isometry� �

The following is the essential extension trick in this whole argument� We
abuse notation by writing X for the geometric realization of the thick a�ne
building X �

Lemma� Suppose that Y contains the closure  D of a chamber D in X �
Suppose that � is an isometry � 
 Y � A of Y to an apartment A� so that �
restricted to  D is the �geometric realization of� the type�preserving simplicial
complex isomorphism 
D�C of D to C� For any chamber C � in A adjacent to
C� there is a chamber D� adjacent to D in X so that � extends to an isometry

�� 
 Y �  D� � A

and so that the restriction of �� is the isomorphism 
D��C� �

Remarks� In the preceding there is no assumption that C � is disjoint
from the image of Y �

Proof� Let � 
 X � A be the map mentioned at the beginning of the proof
of the theorem� from ������� which takes D to C and gives an isomorphism
B � A from any apartment B containing D� For a chamber D� adjacent to
D� let �� be the analogous map X � A so that ���D�� � C � and so that ��

is an isomorphism to A when restricted to any apartment containing D��
From the previous lemma we know that � is unavoidably the restriction of

� to Y � What is necessary is to make a choice of the chamber D� adjacent
to D so that also � is the restriction of �� to Y � �These maps ���� are
type�preserving �������
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Presuming that C � 
� C� let s be the label so that C � and C are s	adjacent�
Let D� 
� D be a chamber in X which is s�adjacent to D� Let � be the wall
in A which separates C and C �� with H the half�apartment in which C lies
and H � the half�apartment in which C � lies�

In our discussion of the �ner geometry of buildings in general� when looking
at con�gurations of three chambers ������� we saw that for any chamber y � X
either ��y � �y or ��y � s�y� More precisely� letting dgal�x� y� the the
gallery distance from one chamber x to another� there are three possibilities
 If
dgal�D

�� y� � dgal�D� y���� then ��y � �y � H � If dgal�D
�� y� � dgal�D� y�	��

then ��y � �y � H �� If dgal�D
�� y� � dgal�D� y�� then ��y � s�y � H �

Further� in the third case there are minimal galleries

� � �D�D�� D�� � � � � Dn � y�

�� � �D�� D�� D�� � � � � Dn � y�

from D�D� to y� respectively� That is� in the third case there is a chamber D�

in X which is s�adjacent to both D and D�� and so that the minimal galleries
agree except that one begins at D and the other at D��

Thus� for all y � Y we do have ��y � �y except possibly ��y � s�y� which
can only happen if �y � H �� as in the previous paragraph� We claim that we
can choose D� so that ��y � �y for all y � Y � Since � and � agree on Y � this
would prove the lemma�

If �Y � H then we are already done� since then �� must agree with � on
Y � by the criteria just noted�

So suppose that the image �Y � �Y is not entirely contained in H � We
need to check that in this case we can adjust D� so that some z � Y has the
property that ��z � �z even though �z � H �� the half�apartment containing
C �� Indeed� if ��z � s�z then dgal�D

�� y� � dgal�D� y�� then we replace D� by
the chamber D�� After this change�

dgal�D
�� y� � dgal�D� y�	 �

and �as recalled just above� we have ��z � �z � H ��
Thus� we can suppose that we have zo � Y so that ��zo � �zo � H �� and

can prove that ��z � �z for all z � Y � Suppose that ��z � s�z � H for some
z � Y � Note that � is an isometry on Y � and a fundamental property of the
map �� is that it does not increase distances in the metric on X � �This was
proven in the course of the construction ������ of the canonical metric on X��
Let �zo� z� be the straight line segment in X from zo to z� �In discussion of
the metric on X we showed that the notion of straight line segment from one
point to another makes sense and is intrinsic ������� �������� Then

d�zo� z� � d���zo��
�z� � d��zo� s�z�

Suppose that we knew that for any two points x� x� � H � we had

d�x� sx�� � d�x� x��
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Then it would follow that

d�zo� z� � d��zo� s�z� � d��zo��z� � d�zo� z�

contradiction�
Thus� to prove the lemma it su�ces to prove that for any two points

x� x� � H � we have d�x� sx�� � d�x� x��� Happily� this is a very concrete
question� unlike the relatively abstract combinatorial analogue we faced ear�
lier in discussion of general buildings� That is� �geometric realization of the�
the apartment A is a Euclidean space� the half�apartments H�H � are literal
half�spaces� and the re�ection s is a literal re�ection�

To allay any doubts� we carry out this elementary computation
 let e be a
unit vector perpendicular to the wall �hyperplane� �� pointing in the direction
of H �� Without loss of generality� we may suppose that � � �� Let h� i be the
inner product on A � E� Then since x� x� � H � we have

hx� ei � � hx�� ei � �

The image sx� of x� is given by

sx� � x� 	 �hx�� eie
We compute the distance


d�x� sx��� � jx	 sx�j� � hx	 sx�� x	 sx�i � hx� xi 	 �hx� sx�i� hsx�� sx�i �
� hx� xi 	 �hx� x�i� �hx� eihx�� ei� hx�� x�i �

� jx	 x�j� � �hx� eihx�� ei � jx	 x�j�
where we use the fact that s preserves h� i�

Thus� altogether� we have obtained the desired extension of the isometry�
This proves the lemma� �

Now we prove a special case of the theorem� to which we will reduce the
theorem afterward�

Lemma� If a subset Y of the building contains a closed chamber  C and
is isometric to a subset of the Euclidean space E� Then Y is contained in
some apartment �in the maximal system��

Proof� In the general characterization of apartments in the maximal sys�
tem ������ we showed that any simplicial subcomplex B which is isomorphic to
an apartment by a label�preserving simplicial complex map is necessarily an
apartment in the maximal system� We must obtain such a simplicial�complex
isomorphism from the metric information we have here� And now we must ex�
ercise a little care to distinguish simplicial complex items from their geometric
realizations�

Let A be an apartment containing C� From the lemma just above� there
is an isometry � 
 Y � jAj �xing  C pointwise� By the last lemma� we can
repeatedly extend � chamber by chamber as geometric realization j�j of a
�label�preserving� simplicial complex map �� in a manner consistent with the
original map on Y � Thus� we obtain a label�preserving simplicial complex
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isomorphism � de�ned on some subcomplex " of X so that Y � j"j� j�j
restricted to Y is �� and �" � A� By the result recalled in the previous
paragraph� ���A is an apartment in the maximal apartment system� �

Now we treat the general case of the theorem� By the last lemma� what
needs to be shown is that the isometry � 
 Y � E can be extended to an
isometry on a larger set containing a closed chamber�

In the case that Y has non�empty interior � necessarily Y contains an open
subset of some chamber C lying inside an apartment A� We claim that �the
geometric realization of� the canonical retraction �A�C of X to A centered at
C gives an isometry of Y �  C to A� Indeed� the �rst lemma above shows that
�A�C maps Y isometrically to A� In the basic discussion ������ of the metric
on an a�ne building we saw that such a retraction preserves distances from
points in  C �and of course is the identity on  C�� This reduces this case of the
theorem to the previous lemma� as desired�

Now consider the case that Y is convex� Let A be an apartment containing
a chamber C so that a face x of C ismaximal among simplices whose geometric
realizations meet Y � Again we claim that the canonical retraction �A�C gives
the desired isometry Y �  C � E� In this case the issue is to see that �A�C
preserves distances between points of Y � To this end� let y � x � Y � and let
p� q be two other points in Y � distinct from y�

Recall from the basic discussion ������� ������ of the metric that straight
lines �geodesics� in jX j are intrinsically de�ned� and are certainly preserved
by isometries� Let p�� q� be points on the straight line segments �y� p�� �y� q��
By convexity� these geodesic line segments lie inside Y �

We claim that if p� is close enough to y then p� lies in x� Certainly p�

close enough to y cannot lie in a proper face of x� Thus� if there were no
neighborhood of y in �y� p� which lay inside x� then points on �y� p� near y
would have to lie in a simplex �x having x as proper face� contradicting the
maximality of x among simplices which meet Y � This proves the claim�

Thus� for p�� q� on �y� p�� �y� q� near enough to y �but distinct from y� we
have p�� q� � x �  C� Thus� � � �A�C does not move p�� q� �in addition to not
moving y��

Since an isometry takes straight lines to straight lines� and since on Y
we have � � �� the points p�� q� still lie on the straight lines �y� �p�� �y� �q��
respectively� Further� the convex hull * of y� p� q must be mapped to the
convex hull *� of y� �p� �q� Then the angle �inside jAj� between �y� �p�� �y� �q�
must be the same as the angle between �y� p��� �y� q�� which is the original angle
between �y� p�� �y� q��

Thus� by the side�angle�side criterion for congruence of triangles in Eu�
clidean spaces �such as jAj�� � must give an isometry of * to *�� In particular�
the distance from �p to �q is the same as that from p to q�

From this� we conclude that � on Y �  C is an isometry� allowing invocation
of the previous lemma� and thus proving the theorem in this case as well� �



Garrett� ���� The Spherical Building at In�nity� ���

�	�� Con�gurations of chamber and sector

Here the possible relationships of an arbitrary chamber and an arbitrary
sector inside a thick a�ne building are examined� The main point is the
theorem just below� Still we look at the maximal apartment system A �����
in �the geometric realization of� an a�ne building X ������ with its canonical
metric d�� � ������� The existence theorem of this section is crucial in the
ensuing developments�

A sector in X is a subset C of X which is contained in some apartment
A and is a sector in A in the sense already de�ned �������

Lemma� A sector C inX is a sector �in our earlier sense� in any apartment
B in A which contains it�

Proof� Since C contains chambers� A � B contains at least one chamber�
Thus� from the axioms for a building ������ there is an isomorphism � 
 B � A
�xing the intersection pointwise� Since C is a sector in A� ���C � C is a
sector in B� �And these maps have geometric realizations which are isometries
�������� �

Theorem� Given a chamber C in X and a sector C in X there is an
apartment B � A and a subsector C� of C so that both C and C� are contained
in B�

Proof� Let A be any apartment containing C� By the previous results on
isometry criteria for sets Y to lie inside apartments ������� it would su�ce to
�nd a subsector C� of C and a chamber C � in A so that the canonical retraction
� � �A�C� of X to A centered at C � ����� gives an isometry on C� �C� Indeed�
the inverse image of A under this isometry would be a subset of X isometric
to an apartment� so would be an apartment itself� by the corollary to the
theorem of the previous section �������

From their construction ������ ������� these retractions do not increase dis�
tance
 if r � � is large enough so that a ball �in X� centered at some point
in A contains C� then �A�C�C � A is still contained in that ball� regardless of
the choice of C �� Thus� there is a bounded subset Y of A in which the image
of C by any retraction �A�C� lies�

Let D be a sector in A having direction opposite to the direction of C
and containing Y � That there is such a sector is elementary� using only the
�metric� boundedness of Y � Further� since the directions are opposite� we can
arrange this D so that its base point x lies inside C�

Take any chamber C � with x �  C �� and take the sector C� in the direction
of C but with base point x� We claim that this C� ful�lls the requirements of
the theorem� Let D be a chamber in A which meets C�� Note in particular
that this means that there is a point in the open simplex D which lies inside
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C�� It will su�ce to show that � � �A�C� gives an isometry on  D � C for any
such D�

Since �A�D is an isometry on  D�C� it would su�ce to show that �A�DjC �
�jC � To prove this� let � be a minimal gallery from C � to C� and �� a minimal
gallery from C � to D� Let �� be the gallery from D to C obtained by going
from D to C � via �� and then from C � to C via �� Then ��� is a gallery from D
to �C� which consists of going from D to C � via �� �inside A� and then along
�� from C � to �C�

Since � preserves gallery distances from C � ������ �� is a minimal gallery
from C � to �C�

Earlier� in discussing sectors inside apartments ������� we proved a lemma
which� as a special case� implies that some minimal gallery �m from D �which
meets C�� to �C �which meets D� includes C �� since the closure  C � of C � meets
the intersection fxg � C� � D�

Certainly the part �m�� of �m which goes from C � to �C must be a minimal
gallery from C � to �C� and likewise the part �m�� of �m which goes from D
to C � must be minimal�

The point is that the gallery ��� must also be minimal from D to �C� since

length ��� � length �� � length �� �

� length ��m�� � length ��m�� � dgal�D�C
�� � dgal�C

�� �C�

Thus� since � cannot increase gallery distances� and preserves gallery distances
from C �� it must be that �� is a minimal gallery from D to C�

Then� by the gallery�distance�preserving property of �A�D� the image �A�D��
is also a minimal gallery from D to �C�

So we have two mappings �� �A�D from �� to the �thin chamber complex� A�
Neither one sends �� to a stuttering gallery� and they agree on ��� Thus� by
the Uniqueness Lemma ������ they must agree entirely� Thus� in particular�
�A�DC � �C� as desired� �
Corollary� Given a sector C in an a�ne building X � the union of all

apartments containing a subsector of C is the whole building X � �
Corollary� Given a sector C in an apartment A in an a�ne building

X � there is a unique chamber complex map �A�C 
 X � A so that on any
apartment B containing a subsector C� of C the restriction �A�C jB is the iso�
morphism B � A �postulated by the building axioms��

Remarks� It is not clear �from either the statement of this corollary� or
from its proof� what the relation of this retraction may be to the canonical
retraction �A�C of X to A centered at a chamber C ������ But this does not
concern us here�

Proof� Given an apartment B containing a subsector C� of C� certainly
A � B contains a chamber� Thus� by the building axioms ������ there is an
isomorphism �B 
 B � A which gives the identity on A � B� We must check
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that for another apartment B� the maps �B and �B� agree on B � B�� Since
both B�B� contain some subsector of C� their intersection contains a subsec�
tor� so certainly contains a chamber� Let � 
 B� � B be the isomorphism
�postulated by the axioms� which �xes B � B��

Then �B � � is an isomorphism B� � A� which agrees with �B� on a
subsector of C� By the Uniqueness Lemma ������ these two maps must be the
same� This proves that �A�C is well�de�ned�

The uniqueness assertion of the corollary follows from the Uniqueness
Lemma ������ �
Corollary� Given a sector C in an apartment A� and given a chamber C

in the a�ne building X � there is a subsector C� of C so that for any chamber
C � meeting C� we have

�A�CC � �A�C�C

Proof� Invoking the theorem� let C� be a small�enough subsector of C so
that both C� and C are contained in a common apartment B� Then

�A�C jB � �A�C� jB
by the Uniqueness Lemma� since these are isomorphisms which agree on the
chamber C �� �

�	�	 Con�gurations of sector and three chambers

This section develops some necessary properties of the retractions �A�C
attached to an apartment A and sector C within it� de�ned in the previous
section �������

Let X be a thick a�ne building ������� Let E be a Euclidean space to
which all the �geometric realizations of� the apartments of X are isometric
������� Let A be an apartment containing a sector C� Let � be the retraction
�A�C de�ned in the corollary to the theorem of the previous section� We recall
that it is characterized by the property that on any apartment A� containing a
subsector C� of C it gives an isomorphism to A which is the identity on A�A��
Lemma� Let 
 be an a�ne functional on an apartment A� in the thick

a�ne building X which vanishes on a wall � in A�� Then either 
 is bounded
above� or is bounded below on the sector C�� That is� either there is a constant

o so that 
�z� � 
o for all z � C�� or else there is a constant 
o so that

�z� � 
o for all z � C��

Proof� �This is a reiteration of earlier ideas�� Let Y be the collection of
all hyperplanes in A� � "�W�S� �xed by re�ections in the Coxeter group W �
Let  Y be the collection of hyperplanes through a �xed point xo in A� and
parallel to some hyperplane in Y � Then� because �W�S� is a�ne�  Y is �nite
������� ������� ������� Let  � be the hyperplane in  Y parallel to the hyperplane
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� on which 
 vanishes� Then any one of the simplicial cones cut out by  Y lies
on one side or the other of  �� so 
 is either positive or negative on every one�

Choose an isomorphism of A� to E� so that an origin is speci�ed� Writing

C� � x� c � �x	 xo� � �xo � c�

where c is one of the simplicial cones cut out by  Y and x is the vertex of C��
Take x� � x� h in C� with h � c� If 
 � � on c� then we have


�x�� � 
�x � h� � 
�x� � 
�h� � 
�x�

If 
 � � on c then we have


�x�� � 
�x � h� � 
�x� � 
�h� � 
�x�

In either case we have the desired bound from one side� �
Corollary� Let � be a wall in an apartment A� containing a sector

C�� Then in one of the half�apartments cut out by � there is a bound for the
maximum distance of any point of C� from �� while in the other half�apartment
there is no such bound�

Proof� In the half�apartment where 
 is bounded �whether from above or
from below� the distance is bounded� while in the half�apartment where 
 is
unbounded the distance is bounded� �
Corollary� Given a sector C in an apartment A and given a wall � in A�

there is a uniquely�determined half�apartment H cut out by � so that there
is a subsector C� of C lying entirely inside H �

Proof� Let 
 be an a�ne function vanishing on �� With given choice of
origin in A� let the given sector be x� c with x a point in A and c a simplicial
cone� Change the sign of 
 if necessary so that it is bounded below on C�
From the lemma� 
 is necessarily positive on c� Let x� be any point in the
half�apartment H where 
 is positive� Then the subsector

x� � c � �x� 	 x� � �x� c�

of x� c certainly lies inside H �
On the other hand� if 
x� � � for some point x� in A� then

x� � c � �x� 	 x�� � �x� � c�

unavoidably meets H � since 
 is unbounded positive on the sector x��c� This
proves the corollary� �

Thus� given any wall � in an apartment A containing C� we can determine
a notion of positive half�apartment cut out by � determined by C as being
the half�apartment cut out by � containing some subsector of C�
Proposition� Let C be a sector in an apartment A in the thick a�ne

building X � Let C� be a subsector of C lying in the intersection A � A� of A
with another apartment A�� Let Do� D�D

� be three chambers with a common
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facet F � with Do� D
� lying in A�� Let � 
 A� � A be the retraction � � �A�C �

Let � be the wall in A� separating Do� D
�� Suppose that Do lies in the positive

half�apartment determined by C� cut out by �� Then �D � �D� 
� �Do�

Proof� Note that the proposition is not disturbed if we shrink the subsector
C� further�

Let y� be a point in Do� Let C� be the sector in A� with the same direction
as C �and C�� with vertex at �y�� Shrinking C� if necessary� we can suppose
that C� is a subsector of C�� By a corollary to the theorem of the previous
section� we can shrink C� further so that for any chamber C in A meeting C�
we have �Do � �A�CDo�

Since we have arranged that C� lies entirely inside one half�apartment for
�� the isomorphism � 
 A� � A sends C� to a subset of one half�apartment
for ��� Since � is the identity map on C�� it follows that C� is entirely within
one half�apartment for �� as well� This gives us a notion of positive half�
apartment determined by C� for both � and ��� �The image �� surely is itself
a wall� because � is an isomorphism��

So the image �y� under the isomorphism � 
 A� � A is in the positive
half�apartment for the wall ��� since C� � C��

Let C be any chamber in A� which meets C�� Note in particular that
this means that there is a point in the open simplex C which lies inside C��
Then C is necessarily also on the positive side of �� By the corollaries to
Tits	 theorem characterizing Coxeter complexes in terms of foldings �������
the minimal gallery distance from C to Do is less than the minimal gallery
distance from C to D�� Thus� a minimal gallery

�o � �C � Co� � � � � Cn�� � Do�

gives rise to a minimal gallery

�� � �C � Co� � � � � Cn�� � Do� D
��

from C to D� by appending D� to �o�
From the general discussion of the �ner combinatorial geometry of thick

buildings� the minimal gallery �� must be of reduced type ������� The gallery

� � �C � Co� � � � � Cn�� � Do� D�

obtained by replacing D� by D is of the same type as ��� since Do� D� and D�

have a common facet� Thus� the reduced�type gallery � must be minimal�
Then the images �A�C� and �A�C�

� are both necessarily minimal� since the
retraction �A�C to A centered at C preserves gallery distances from C ������ In
particular� �� and ��� are both non�stuttering� so �D 
� �Do and �D

� 
� �Do�
Since the retraction �A�C is also type�preserving ������ both �D and �D�

have common facet �codimension one face� �F with �Do� Since A is thin� we
conclude that �D � �D�� �
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�	�
 Con�gurations of two sectors

Now the possible relationships two sectors inside a thick a�ne building are
considered� The con�guration studies of the previous sections are used here�
The present study is the most delicate of all these�

Theorem� Given two sectors C�D in a thick a�ne building X � there is
an apartment A� � A and there are subsectors C��D� of C�D respectively so
that both C��D� lie inside A��

Proof� �In the course of the proof we will review some aspects of a�ne
Coxeter complexes which play a signi�cant role��

Let E be a Euclidean space to which all the �geometric realizations of� the
apartments ofX are isometric ������� Let A�B be apartments containing C�D�
respectively� We identify E with A� Let � be the retraction �A�C attached to
the sector C inside A ������� Again� it has the property that on any apartment
A� containing a subsector C� of C it gives an isomorphism to A which is the
identity on A � A�� Write C � x � c for some point x � A and a simplicial
cone c�

The simplicial cone c is a chamber in the Coxeter complex "�  W�  S� at�
tached to a �nite Coxeter system �  W�  S�� We recall how this comes about
������� ������� ������� Fixing a choice of origin � in E � A� let w �  w be the
map which takes an a�ne transformation w � W of E to its linear part  w
with respect to the choice of origin� Then  W is the image of W under w �  w�
and is a �nite �Coxeter� group� For every hyperplane � �xed by one of the
re�ections in W � let  � be a hyperplane in E parallel to � but passing through
�� Then the collection  S of re�ections through the hyperplanes  � is a set of
generators for  W � and �  W�  S� is a �nite Coxeter system� Let

 A � "�  W�  S�

�We showed ������ that an indecomposable Coxeter system� with Coxeter
matrix positive semi�de�nite but not de�nite� gives rise to a locally �nite a�ne
re
ection group� which is the sort of Coxeter group W we are considering
at present� Indeed� this was the de�nition of a�ne Coxeter complex� The
Perron�Frobenius lemma ������ was what proved that  W is �nite��

Given a chamberD in B� let �D be the unique label�preserving isomorphism
B � A which takes D to �D ������� Then �DD is a sector in A� which by
de�nition can be written as x� � c� for some vertex x� and some chamber c�

in the �nite Coxeter complex  A �which here appears as simplicial cones with
vertex at x��

We say that c� is the direction of D at D� and write

c�D� D� � c�

for this function�
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Let  d�c� c�� be the minimal�gallery�length distance between two chambers
c� c� in the �nite Coxeter complex  A� Since  W is �nite� the gallery length

 d�c� c�D� D��

achieves a maximum as D varies over chambers in B which meet D� Let Do be
a chamber meeting D which realizes the maximum� and �x a point yo inside
Do� Let D� be the subsector of D with vertex yo�

By a corollary to the theorem of the section on con�gurations of chamber
and sector ������� there is a subsector C� of C so that for any chamber C in A
meeting C�� we have �Do � �A�CDo� Shrinking C� further if necessary� we can
suppose that C� is a subsector of �yo � c�

By results on metric characterization of apartments ������� it su�ces for
us to show that � is an isometry on C� �D�� That � restricted to C� � C is an
isometry is immediate� What needs to be compared are pairs of points in D
and also pairs of points with one in C� and one in D��

Let D be a chamber in B meeting D�� and take y � D � D�� In particular�
this means that y is in the interior of the simplex D� Consider the straight
line �yo� y�� As in our discussion of re�ection groups ������� �in e�ect invoking
simply the local �niteness of the set of re�ecting hyperplanes ������� ��������
it is possible to adjust y slightly so that the geodesic line �yo� y� does not
intersect any faces of codimension greater than �� Then we can unambiguously
determine a sequence Do� D�� � � � � Dn � D of chambers in B so that �yo� y�
passes through �the geometric realizations of� these chambers� and does so in
the indicated order� And the adjustment assures that � � �Do� � � � � Dn� is a
gallery from Do to D�

Since a line cannot meet a hyperplane in more than one point �unless it
is contained entirely within it�� �yo� y� meets no wall twice� Thus� the gallery
crosses no wall twice� Thus� this gallery is a minimal one from Do to D�
�Recall that a minimal gallery from one chamber to another must cross all
the walls separating the two chambers� but need cross no more ������ This is
true in general� without the assumption that we are in an a�ne building��

Next we claim that �� is non�stuttering� and that for any chamber C in C�
we have �Di � �A�CDi� We prove this by induction on the length n of the
gallery�

By induction� suppose the assertion of the claim is true for

�� � �Do� � � � � Dn���

Then � is an isometry on

� � C� �Do � � � � �Dn��

By the metric characterization of apartments and their subsets ������� since
� maps to the apartment A� � is contained in some apartment A�� Since A�

contains a subsector of C� by its construction � gives an isometry of A� to
A� Further� since A� � A contains any chamber C inside C�� a fundamental
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characterization of the retraction �A�C is that it gives an isomorphism of A�

to A ������
If Dn already lies in A�� then we have completed the induction step� So

suppose that Dn does not lie in A��
Let F be the common facet of Dn���Dn� Since Dn is not in A�� there is a

chamber D�
n in A�� distinct from both Dn��� Dn� and adjacent to Dn�� along

F � Let � be the wall in A� separating Dn�� and D�
n�

Consider the case that Do is in the positive half�apartment determined by
C� for � in A� ������� From the corollaries to Tits	 theorem characterizing
Coxeter complexes in terms of walls and foldings ������ it must be that Dn��

is also on the positive side of �� since the gallery distance from Do to Dn��

is one less than the gallery distance from Do to D�
n�

Then we apply the proposition of the previous section ������ to the trio of
chambers Dn��� Dn� D

�
n� with the notation otherwise identical� We conclude

that �Dn � �D�
n 
� �Dn��� Since �A�CDn�� � �Dn��� this veri�es the claim

in case Do is on the positive side of ��
Now we show that the choice of Do guarantees that Do is in the positive

half�apartment for � in A��
Suppose that Do is on the negative side of �� as determined by C�� As in

the previous case� it follows that Dn�� is also on the negative side of �� while
D�
n is on the positive side� In this case� the proposition of the previous section

������ can be applied again to the trio Dn��� Dn� D
�
n� but now with the roles

of Dn�� and D�
n reversed from the previous case� Then we can conclude that

�Dn�� � �Dn� We will reach a contradiction from this based on our choice
of Do� thereby completing the induction step�

Assume that �Dn�� � �Dn as in the previous paragraph� For i � �� let
yi � Di�� � Di be the point where �yo� y� crosses the hyperplane separating
these two chambers� �Recall that we had adjusted y slightly so as to assure
that there is just one such point� etc��� We had

��yo� y�� � �Do � �yo � c�

for a simplicial cone c� �a  W �chamber��
By induction hypothesis� � is an isometry on the closure of Do� � � ��Dn���

so � maps the subsegment �yo� yn� to a straight line�
At the same time� we saw just above that �Dn � �Dn��� so the straight

line segment �yn��� y� crossing from Dn�� to Dn is not mapped to a straight
line segment under �� Indeed� �yn lies on the part of �� touching the boundary
of �Dn�� � �Dn� while �yn�� is on some other face� and �y is in the interior
� Yet � does give an isometry on the closure of each chamber� so the line
segments �yi� yi	��� �yn� y� are mapped to straight line segments again�

Let s be the re�ection in A across the hyperplane ��� We want to verify that
��yn��� �yn�� ��yn� s�y� really does form the straight line ��yn��� s�y�� To see
this� we let � be the unique label�preserving isomorphism from the apartment
B containing Dn���Dn to the apartment A� containing �Dn�� � �Dn which
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sends Dn�� to �Dn��� Then � must map Dn to the other chamber in A�

adjacent to �Dn�� along ��Dn�� � Dn�� We have seen� in discussing the
metric on a�ne buildings ������� that such an isomorphism must give an
isometry� Thus� � preserves straight lines


��yn��� y� � ��yn��� �y�

Since �Dn � s�Dn� it must be that s��yn� y� � ��yn� y�� Since

��yn��� yn� � ��yn� y� � ��yn��� �y� � ��yn��� s�y�

it must be that �yn does really lie on the straight line between �yn�� and s�y�
Thus� the line segment ��yn� s�y� is a subsegment of ��yo� s�y�� In e�ect� we

had de�ned the simplicial cone �or  W �chamber� c� so that �yo � c� contains
the segment ��yo� �y��� Thus� �yn � c� contains ��yn� s�y��

Since �yn is on the hyperplane ��� and since �y is on the negative side of
��� necessarily s�y is on the positive side of ��

Let  s be the linear part of s� that is� the image of s in the quotient group  W
of W � Then the direction c�D� Dn� of D at Dn is �from the de�nition above�
 sc�� where c� is the direction of D at D � Do as above�

We had assumed that the gallery distance from c to c� was maximal ob�
tainable as c� � c�D� D� in the spherical �that is� �nite� Coxeter complex
 A � "�  W�  S�� Yet the assumption that c and c� are both on the same side of
the wall de�ned by  s implies that the gallery distance from c to  sc� is strictly
greater than the gallery distance from c to c�� by corollaries to Tits	 theorem
characterizing Coxeter complexes by walls and foldings ������

Hence� we have arrived at a contradiction to the assumption that Do was
on the negative side of the wall �� That is� we have shown that only the �rst
case here� wherein Do is on the positive side� can occur� Thus� the induction
step is completed� and the claim is proven�

Now we can �nish the proof of the theorem� Let � be the unique label�
preserving isomorphism � 
 B � A and taking Do to �Do� Since �j�D � �j�D�
the Uniqueness Lemma ����� shows that � � � on all of D�� Thus� on D�� � is
an isometry�

Further� since �by the claim� for C in C� the map � coincides with �A�C �
which itself preserves distances from C� we see that � preserves distances
between points of C� and points of D�� This proves the theorem� �

�	�� Geodesic rays

This section brings into play all the previous results on a�ne buildings�
including both combinatorial and metric structure� Throughout� the thick
a�ne building X is assumed equipped with the maximal �that is� complete�
system of apartments ������ Also� as has been done above� the distinction
between a simplicial complex and its geometric realization is suppressed�
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A ray r in the geometric realization X of a thick a�ne building X is a
subset of X isometric to the half�line ������ Let � 
 ����� � X be such an
isometry� The image ���� is the basepoint or vertex or origin of r� and the
ray emanates from �����

Since a ray r is convex� we know from the metric characterization of subsets
of apartments ������ that a ray is contained in at least one apartment A� Since
A is a Euclidean space� we conclude that the ray must be a ray in A in the
most prosaic sense� That is� there is xo � A and a vector v so that

r � fxo � tv 
 t � �g
More intrinsically� if we wish to invoke only the a�ne structure on A rather
than using a choice of origin� we can write the ray as a set of a�ne combina�
tions

r � f��	 t�x� ty 
 t � �g
for some x� y�

Before getting to the main point of this section� we look more carefully at
the elementary aspects of the geometry of geodesic line segments�

Lemma� Let x� y� z be distinct points in X � Then for y� on �x� y� close
enough to x �but y� 
� x� and for z� close enough to x on �x� z� �but z� 
� x�
there is an apartment A so that both line segments �x� y��� �x� z�� lie inside A�
Indeed� either both �x� y�� and �x� z�� lie inside the closure of a single chamber�
or there are two adjacent chambers C�D the union of whose closure contains
both �x� y��� �x� z���

Proof� FIrst� we claim that for y� close enough to x on �x� y� there is a
chamber C whose closure  C contains �x� y��� Let � be the �open� simplex in
which x lies� Then �by continuity� for y� su�ciently near x on �x� y� it cannot
be that y� lies in a proper face of �� Thus� y� su�ciently near x lies in a
simplex � of which � is a �possibly improper� face� Then the closure of �
contains x and is convex� so contains �x� y��� This proves the claim�

Let C�D be chambers whose closures contain some segments �x� y��� �x� z���
respectively� By the building axioms ������ there is an apartment A containing
both these chambers� so containing their closure� so containing both these line
segments� �

Proposition� Let r� s be two rays emanating from a common point
x� Then there is an angle � so that for any apartment A containing line
segments �x� y�� �x� z� of non�zero length inside r� s� respectively� the angle be�
tween �x� y� and �x� z� is �� Further� let ys� zt be the points on r� s at distance
s� t�respectively� from x� A cosine inequality holds


d��ys� zt� � s� � t� 	 �st cos �

For each pair of values s� t� strict inequality holds unless x� ys� zt all lie in a
common apartment�
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Proof� By the previous lemma� there is at least one apartment A which
contains some line segments �x� y�� �x� z� as indicated� Suppose another apart�
ment B contains some segments �x� y��� �x� z�� on both rays� By shrinking the
segments� we suppose that �x� y�� �x� z� lie inside both apartments A�B�

Then also the straight line �y� z� lies inside both apartments� since quite
generally �y� z� lies inside any apartment containing both y� z� For that matter�
for any pair of points p� q on any of the three segments �x� y�� �x� z�� �y� z�� the
segment �p� q� lies insides both A and B� Thus� the convex hull * of x� y� z
lies inside both A�B�

We compute the angle � at the vertex x by elementary Euclidean geometry

letting h� i be the usual inner product�

cos � �
hy 	 x� z 	 xi
jy 	 xj � jz 	 xj �

�
jy 	 xj� � jz 	 xj� 	 jy 	 zj�

� � jy 	 xj � jz 	 xj
In particular� we see that once we have the triangle with vertices x� y� z inside
a Euclidean space then the angles are determined by the edge lengths� This
proves our claim that the angle is well�de�ned�

Thus� if the three points x� ys� zt do lie in a common apartment� we have
the desired equality� What we must show is that the inequality holds more
generally� and that the equality only occurs for all three points in an apart�
ment�

Let C be any chamber in A whose closure contains x� and let � be the
retraction of X to A centered at C ������ Recall that a fundamental metric
property of � is that it preserves distances to x� and cannot increase distances
between any two points ys� zt �������

Thus� we can rearrange the inner product formula for the cosine of the
angle to obtain

d�ys� zt� � d��ys� �zt� � j�y 	 xj� � j�z 	 xj� 	 �j�y 	 xjj�z 	 xj cos � �
� jy 	 xj� � jz 	 xj� 	 �jy 	 xjjz 	 xj cos �

On the other hand� if the equality does hold then � gives an isometry on
 C�fys� ztg� We proved a theorem asserting that subsets of X which are either
convex or contain an open subset of an apartment and which are isometric to
a subset of Euclidean space lie inside an apartment� While the set fx� ys� ztg
did not meet this hypothesis� the larger set  C � fy� zg does� This �nishes the
proof� �

Let d�� � be the canonical metric on X � Two rays r� s are parallel if there
is a bound b so that� for every x � r there is y � s so that d�x� y� � b� and for
every y � s there is x � r so that d�x� y� � b� This is visibly an equivalence
relation�

If two rays r and s lie in a common apartmentA� then elementary Euclidean
geometry shows that they are parallel if and only if there is a translation in
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A carrying one to the other� It is not so easy to see what happens inside the
building� but we have the following �provable� analogue of a parallel postulate


Proposition� Given x � X and given a ray r in X � there is a unique ray
s emanating from x and parallel to r�

Proof� Let A be an apartment containing r� Let C be a sector in A with
vertex the same as the vertex of r� From the discussion of con�gurations of
sectors and chambers ������ we know that there is a subsector C� of C so that
both C� and x lie in some apartment A��

Since C� is a translate within A of C� its closure contains a ray r� parallel to
r� Then within A� we can translate r� so that its basepoint is at x� as desired�
This proves existence of the ray parallel to r emanating from x�

To prove uniqueness of this ray� suppose that r� s are distinct parallel rays
with the same origin x� Since r � s is non�empty �containing x� and closed
and convex� it is a straight line segment �x� y� for some point y� �Recall
that from the discussion of the canonical metric on X ������ it follows that
this straight line segment is intrinsically de�ned�� If we replace r� s by their
subrays starting just at y� then we can suppose that r�s is just their common
basepoint y�

Now we invoke the cosine inequality

d��zs� wt� � s� � t� 	 �st cos �

proven just above� for the points zs� wt distances s� t out on the rays r� s�
respectively� For �xed s � �� as t varies� if � � ��� then the minimum value
of the right�hand side is s� achieved when t � �� If � � ���� then the minimum
is s� sin� �� achieved when t � s cos �� Either way� we see that there is no
absolute bound upon d�zs� s� as s � �� This contradicts the assumption of
parallelism� This proves uniqueness� �

�	�� The spherical building at in�nity
Now everything is prepared for construction of the spherical building at

in�nity attached to a thick a�ne building X � As usual� we will also write
X for the geometric realization of X � All references to apartments are with
respect to the maximal apartment system�

A point at in�nity or ideal point of X �or� most properly� an ideal point
of X� is equivalence class of rays� under the equivalence relation of parallelism
������� Let X� be the set of ideal points of X � By the proposition of the
last section ������� for each point � at in�nity� and for each x � X � there is
a unique geodesic ray with vertex x and in the parallelism class �� We will
denote this geodesic ray by

�x� ��

and sometimes say that �x� �� has direction �� or similar things�
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Let A be an apartment� We know ����� that A is isomorphic as chamber
complex to a Coxeter complex "�W�S�� and that the isomorphism class of
the latter does not depend on which apartment ������ Further� the geometric
realization of "�W�S� is a Euclidean space E �������

Let Y be the set of walls in "�W�S�� with respect to W � That is� Y is the
set of hyperplanes �xed by a �generalized� re�ection inW ������ ������� �������
Fix a point x in the geometric realization E� and let Yx be the collection of all
hyperplanes through x which are parallel to some hyperplane in Y � From the
basic discussion of a�ne Coxeter systems� Yx is �nite� that is� there are only
�nitely�many parallelism classes of hyperplanes in Y ������� ������� �������
For each � � Yx� let 
� be a non�zero a�ne functional on E which vanishes
on ��

As in our discussion of ��nite� re�ection groups ������� ������� the set

C � fy � E 
 
�y � � � �g
is the fundamental conical cell� �We also call it a sector as above�� As
seen earlier� the hypothesis that X is a�ne requires implicity that �W�S� is
indecomposable� and that this implies C is a simplicial cone �������

Just as we did with geodesic rays� we �rst give a de�nition of conical cell
which does not depend on reference to apartments� but then observe that
necessarily all conical cells lie inside apartments �in the maximal apartment
system�� The latter fact makes serious use of results above giving metric
characterization of subsets of apartments in the maximal system �������

Generally� for a partition P � �Y	� Y�� Yo� of Yx into three �disjoint� pieces

Yx � Y	 t Yo t Y�
de�ne a conical cell c � cP inside the Euclidean space E � j"�W�S�j as the
set of z � A such that


�z � � for � � Y	


�z � � for � � Y�


�z � � for � � Yo

A conical cell in the building X is a subset of X isometric to a conical cell
in E� Since the conical cells in E are convex� the metric characterization of
subsets of apartments ������ implies that a conical cell c in X lies inside some
apartment A� Then inside A the conical cell can be described by analogous
inequalities speci�ed by a partition �Y	� Y�� Yo� of Yx� as just above� but now
of course with reference to a�ne functionals on A�

Another conical cell d in an apartment A corresponding to a partition
�Z	� Z�� Zo� is a face of this conical cell c� written d � c� if Z	 � Y	 and
Z� � Y�� That is� the face relation d � c holds if and only if some of the
equalities de�ning d are converted to inequalities in the de�nition of c� while
all inequalities de�ning d remain unchanged�
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The face at in�nity c� of a conical cell c in X with vertex x is the set of
ideal points � � X� such that the open geodesic ray

�x� �� � �x� �� 	 fxg
lies inside c� An ideal simplex or simplex at in�nity inside X� is a subset
� of X� so that there is some conical cell c in X so that

� � c�

Let c� d be two conical cells both with vertices at x� Say that the ideal
simplex d� is a face of the ideal simplex c� if d is a face of c� We write
d� � c� for this relation� This de�nes the face relation on ideal simplices�
�We prove that it deserves this name in the theorem below��

Recall ����� that a thick building in which the apartments are Coxeter
complexes �  W�  S� with  W �nite is said to be a spherical building�

For an apartment A in X � let A� be the subset of X� consisting of paral�
lelism classes of geodesic rays with representatives in A ������� And we also
think of A� as containing the ideal simplices which are the faces at in�nity
of conical cells in A� Keep in mind that we are using the maximal apartment
system ����� in the a�ne building X �

Theorem� The ideal simplices partition X�� The face relation is well�
de�ned� and the poset of ideal simplices inX� is a simplicial complex� Indeed�
X� is a spherical building� in the sense that the poset given by ideal simplices
is a thick spherical building� Its apartments are in bijection with those in the
maximal apartment system of the thick a�ne building X �

Remarks� Recall that there is a unique system of apartments in a spher�
ical building ������

Proof� This argument is broken into pieces� some of which are of minor
interest in their own right� and may be of later use�

The following proposition generalizes the analogous fact for zero�dimensional
ideal simplices� which was proven �in e�ect� in the previous section �������

Proposition� Fix x � X � Then the map c� c� from conical cells with
vertex x to ideal simplices is a bijection�

Proof� Let � � d� be the face at in�nity of the conical cell d with vertex
y lying in an apartment B� Let D be a sector in B with vertex y so that d is
a face of D� By the discussion of con�gurations of chamber and sector� there
is a subsector D� of D so that x �thought of as lying in the closure of some
chamber� and D� lie in a common apartment A�

Now the subsector D� is a translate D� � t�D of D �within the apartment
B�� And such translation preserves parallelism of geodesic rays� Thus� d� �
t� d is a face of D�� and t� d has the same face at in�nity as does d�

By translating once more� this time inside the other apartment A� we can
move d� to a conical sector in A with vertex x and with the same face at
in�nity�
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The uniqueness follows from the de�nitions and from the uniqueness of
rays with given direction and given vertex ������� �

Proposition� The ideal simplices are disjoint subsets of X�� Given two
ideal simplices �� � � there is an apartment A in the maximal system in X so
that there are two conical cells in A with faces at in�nity �� � �

Proof� The second assertion will be proven incidentally in the course of
proving the �rst�

Every ray with vertex x is contained in one of the conical cells with vertex
x� Thus� every point in X� lies inside some ideal simplex�

On the other hand� let �� � be distinct ideal simplices� Let c be a conical
cell in an apartment A with vertex x whose face at in�nity is �� and let d be
a conical cell in an apartment B with vertex y whose face at in�nity is � � Let
C�D be sectors in A�B of which c� d are faces�

There are subsectors C��D� of C�D which lie in a common apartment �������
We can write C� � u � C for some translation u in A� and D� � v � D for
some translation v in B� Then c� � u� c and d� � v � d are conical cells in
A�B with the same faces at in�nity as c� d� and u� c� v� d are faces of C��D��
Thus� c�� d� lie in a common apartment� We can then translate them inside
that apartment so that they have a common vertex� This certainly gives the
second assertion of the proposition�

By the previous result� if �� � are distinct then so are c�� d�� Thus� we have
reduced the issue of disjointness to that of the disjointness of distinct conical
cells� The latter is relatively elementary� and was discussed in detail in the
discussion of re�ection groups ������� ������� �

Proposition� Given two sectors C�D� we have C� � D� if and only if C
and D have a common subsector�

Proof� The sectors may be replaced by subsectors without changing their
face at in�nity� so may be taken to lie in a common apartment A� by the
result on con�guration of two sectors ������� Then we can write C � x�c and
D � y� c for some conical cell c in A of maximal dimension� Changing signs
of functionals if necessary� we may suppose that c is de�ned by a family of
inequalities 
 � �� This family is �nite since A is a�ne� Then any z � c with

z � 
x and 
z � 
y lies in the intersection C � D� Thus� the intersection is
a sector itself�

On the other hand� if two sectors do have a common subsector� it is easy
to check that they have the same face at in�nity� �

Now we can prove that X� �or� really� the collection of ideal simplices� is
a thick building� whose apartments are Coxeter complexes attached to �nite�
that is� spherical Coxeter groups� �Thus� we call X� itself spherical��

Lemma� The set of ideal simplices in A� is a �nite Coxeter complex�
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Proof� The collection of such simplices� together with face relations� is
isomorphic as a poset to the �nite Coxeter complex of conical cells with chosen
vertex� That the latter is a Coxeter complex at all is a consequence of our
study of re�ection groups ������� ������� That it is �nite is a consequence
of the assumption that the apartment A is an a�ne Coxeter complex
 the
Perron�Frobenius computation shows this ������� ������� �

Lemma� The poset X� �by which we really mean the poset of ideal
simplices� is a simplicial complex�

Proof� We need to show two things ������ First� we show that for given
ideal simplex � the collection �X���
 of all � � � is isomorphic to the set of
subsets of a �nite set� Second� we show that any two �� � in this poset have a
greatest lower bound� that is� � so that � � � and � � � and so that if � � �
and � � � then � � ��

A given � and all its faces lie in some A�� which is a simplicial complex� so
�X���
 � �A���
 certainly is isomorphic as poset to the set of all subsets
of a �nite set�

And in a proposition just above we saw� in e�ect� that any two ideal sim�
plices �� � lie in a common A�� Since the latter is a simplicial complex� all �
so that � � � or � � � lie inside A�� Thus� since A� is a simplicial complex�
there is a greatest lower bound inside A�� which must also be the greatest
lower bound inside X�� �

Corollary� Each A� is a simplicial subcomplex of X��

Proof� We already knew that A� was a simplicial complex in its own
right� so this corollary follows from the fact that we now know the whole
building X� to be a simplicial complex� invoking the criterion ����� for a
poset to be a simplicial complex� �

And� the property that any two ideal simplices in X� lie in a common
apartment is one of the requirements for X� to be a building with apartment
system

A� � fA� 
 A � Ag
where A is the maximal apartment system in X ������

Next� we must check the other axiom� that if two subcomplexes A�� B�
in A� �obtained from apartments A�B in X� have a common chamber ��
then there is a chamber complex isomorphism � 
 A� � B� which is the
identity map on A� � B�� Let C be a sector �maximal dimension conical
cell� in A whose face at in�nity is �� and let D be a sector in B whose face at
in�nity is also �� Just above� we saw that two sectors have the same face at
in�nity if and only if they have a common subsector� Thus� the existence of
the common chamber requires there to be a common subsector C� of C and D�
Then� since X itself is a building� there is an isomorphism � 
 A � B �xing
A � B �and the latter contains a sector C���
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Since � �or its geometric realization� really� is an isometry� it must map
parallelism classes of geodesic rays in A to such in B� so we obtain a natural
map �� 
 A� � B��

We will show further that �� �xes �the geometric realization of� A��B�
pointwise� Fix x � A �B� and let � be a simplex in A� �B�� Then the set

x � � �
�
�



�x� ��

�where �x� �� is the open geodesic ray� is the conical cell in A �or in B� with
vertex x and face at in�nity �� Here we pointedly use the fact that the notion
of geodesic is intrinsic� as was shown when the canonical metric on an a�ne
building was �rst introduced �������

In particular� x � � is contained in A � B� so � is trivial on x � �� Thus�
�� is trivial on �� This holds for any � in A � B� This proves the second
building axiom �in its stronger variant form �������

In particular� in the extreme case that A� � B�� the previous two para�
graphs show that x � � for all � in A� � B�� That is� all geodesic rays with
vertex x inside A lie also in B� and vice�versa� Thus� A � B� and we have
the asserted bijection of apartments�

Now we address the issue of thickness�
Given a simplex � with vertex y� lying inside a prescribed apartment A��

we de�ne an associated conical cell c
 by extending � inside A� from y� in
the following manner� Let c
 be the union of all the open geodesic rays �y� ��
inside A� emanating from y and which meet � in a non�trivial geodesic line
segment� Alternatively� the conical cell c
 is the collection of all expressions
��	 t�y � tv for t � � and v � ��

Proposition� If �� � are distinct simplices both with vertex y� lying
in apartments A�� A�� respectively� then the conical cells c
 � c� obtained by
extending �� � from y inside A�� A� have distinct faces at in�nity� regardless
of choice of the apartments A�� A��

Proof� Suppose that � were a common point of the two faces at in�nity�
Recalling the proposition of the previous section ������� there is a unique
�open� geodesic �y� �� emanating from y and in direction �� Its intersection
with a small enough neighborhood of y must lie inside both � and � � Thus�
�the geometric realizations of� the simplices � and � have a common point�
Since these are open simplices� it must be that � � � � �

We need the fact� proven just above� that for any �xed point x � X � every
simplex in X� occurs as the face at in�nity of exactly one conical cell with
vertex x�

Further� we use the fact proven earlier ������� ������ that in a given apart�
ment A � "�W�S� in an a�ne building X � there is at least one good �or
special vertex x in the fundamental chamber C � h�i�� More speci�cally�
under the natural surjection W �  W we have an isomorphism Wx �  W �
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where Wx is the subgroup of W �xing x� And under this map Sx� the subset
of S of re�ections �xing x� is mapped surjectively to  S�

Since this was not emphasized earlier� note that x is good in any apartment
B containing the chamber C in A of which x is a vertex� Indeed� by the
building axioms there is an isomorphism � 
 B � A �xing C and x� That
is� � gives an isomorphism of these two Coxeter complexes� so any intrinsic
property x has in one it will have in the other�

The following proposition illustrates the importance of special vertices
 the
fact that there exist special vertices implies that conical cells are geometric
realizations of simplicial objects�

Proposition� Let c be a conical cell with vertex x� a special vertex� Let
A be an apartment whose geometric realization jAj contains c� Then there is
a simplicial subcomplex � of A whose geometric realization j� j is c�

Proof� We use Tits	 cone model ������� ������� ������ of the geometric
realization of the a�ne Coxeter complex A� Choose a hyperplane � through x
inside jAj in each parallelism class� and let 
� be a non�zero a�ne functional
which is � on ��

As in ������� ������� the geometric realizations j� j of simplices � of which x
is a vertex are described by all choices of equalities 
��y� � � or inequalities

��y� � � or 
��y� � � as � ranges over hyperplanes through x� together with
an additional inequality 
o�y� � �� where 
o is a non�zero a�ne functional
vanishing on the opposite facet to x in some chamber in A of which x is a
vertex�

If the latter condition 
o�y� � � de�ning j� j is dropped� then we obtain
the conical cell extending the simplex � from x inside A� in the sense above�

On the other hand� suppose we are given a conical cell c with vertex x�
By de�nition� c is described by some inequalities and equalities employing all
the functionals 
� � If all inequalities are changed to strict inequalities� and
equalities 
��y� � � changed to strict inequalities 
��y� � �� then the subset
C� of jAj so de�ned is non�empty ������� being a chamber for the spherical
Coxeter group Wx in Tits	 cone model�

Since the chambers cut out by the whole a�ne Coxeter group are literal
simplices� there must be some other hyperplane �o which cuts C� into two
pieces� one of which is a literal simplex jC �j for some chamber C � in A� Let

o be a non�zero a�ne functional which vanishes on �o and is positive on C ��

Now change all the strict inequalities back to their original forms which
de�ned c� but adjoin the inequality 
o�y� � �� The set jtauj so de�ned is the
geometric realization of a face � of C � ������� ������� �������

Thus� when a special vertex is used as vertex for conical cells� the coni�
cal cells are geometric realizations of simplicial subcomplexes of the ambient
apartment� �

Returning to the proof of the theorem
 Let d be a codimension one conical
cell with vertex at the special vertex x� whose face at in�nity is therefore a
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facet F� in X�� Since x is good� d contains a facet �codimension one simplex�
F with vertex x in X � Since X is thick� there are at least three chambers
C�� C�� C� in X with facet F �

Invoking the proposition a little above� we see that these three chambers
give rise to sectors with distinct faces at in�nity �possibly in a variety of ways��
Thus� X� with the apartment system A� is a thick spherical building�

Thus� the theorem is proven� �
Remarks� It may be observed that the previous discussion blurs some�

what the distinction between the spherical building at in�nity and its geo�
metric realization� and between simplicial complex maps and their geometric
realizations� Indeed� the collection of points at in�nity� which is the geomet�
ric realization� was constructed �rst� Yet in the end the faces at in�nity of
conical cells� as subsets of the collection of points at in�nity� and with the
face relations inherited from the conical cells� really does constitute a poset
which is the desired simplicial complex�

Remarks� It is not di�cult to investigate the situation wherein the
apartment system A in the a�ne building is not maximal� The bijection of
apartments proven above� with the fact that spherical buildings have unique
apartment systems� is an indicator that the building at in�nity itself� not
merely its apartment system� must be smaller to accommodate this� Indeed�
the only hope is to take

X��A �
�
A
A

A�

with apartment system
A� � fA� 
 A � Ag

with A� the subcomplex of X� as above� Yet this X��A will not satisfy
the building axioms unless we further explicitly require of A that any two
sectors in X have subsectors which lie in a common apartment in A� But for
applications to p�adic groups there is scant reason to consider any other than
the maximal system�

�	��� Induced maps at in�nity
Not surprisingly� in broad terms� automorphisms of a thick a�ne build�

ing give rise to automorphisms of the associated thick spherical building at
in�nity� This section makes the idea precise� An important corollary at the
end compares the stabilizer of an apartment in the a�ne building with the
stabilizer of the corresponding apartment in the spherical building�
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Proposition� If � is an isometry of the geometric realization jX j of the
thick a�ne building X � then � preserves parallelism classes of geodesic rays�
so it gives a well�de�ned map �� on the geometric realization jX�j of the
building at in�nity� by

���x� ��� � ��x� ����

where � is a point at in�nity and x is any point in jX j�
Proof� Let

�� � 
 ������ jX j
be two geodesics in a parallelism class � � jX�j� as above ������� That is�
these maps are isometries� and the supremums

sup
s

sup
t

d��s� �t�

sup
t

sup
s

d��s� �t�

are both �nite� Having thus unraveled the de�nition� it is immediate that an
isometry preserves this property� The notational style of the assertion of the
proposition is merely a paraphrase of this� �

But the map �� does not directly give a simplicial complex map on X��
The following theorem and its corollary address the simplicial complex issue�
including labeling�

Theorem� Let f 
 X � X be a simplicial�complex automorphism of
the thick a�ne building X � with its maximal apartment system� Then the
geometric realization jf j of f maps conical cells to conical cells in jX j� and
de�nes a simplicial�complex automorphism f� of X� by

f��c�� � �fc��

where c is a conical cell and c� is its face at in�nity� If f is label�preserving�
then so is the induced map f��

Proof� First� as in the discussion of labels� links� and maximal apartment
system� we know that there is a unique maximal apartment system A ������
Since the collection fA of images fA for A � A is certainly another apartment
system� inevitably fA � A� Thus� f maps apartments to apartments�

From the discussion of the canonical metric on a�ne Coxeter complexes
������� since f gives a simplicial complex isomorphism A� fA on apartments
A� the geometric realization jf j of f is an isometry from jAj to jf�A�j� By
the building axioms ����� any pair of points in jX j is contained in a common
apartment� so jf j is an isometry on the whole building� Thus� by the previous
little proposition� jf j gives a well�de�ned map on points in jX�j�

And f certainly maps walls in A to walls in f�A�� since apartments are
Coxeter complexes� and since every pair of adjacent chambers in a Coxeter
complex is separated by a wall ������ Therefore� from the de�nition of conical
cells ����
�� the geometric realization jf j of f preserves the collection of conical
cells in jX j�
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Further� since f is a simplicial complex map� it preserves the face relations
among conical cells�

Thus� we can attempt to de�ne f� on X�� by

f��c�� � �f�c���

If this map is well�de�ned� then we have what we want�
Since jf j has been shown to preserve parallelism classes of geodesic rays� we

already have a partial result in the direction of well�de�nedness
 for a conical
cell c in an apartment A� and for a translation t inside A�

f��c�� � f���t� c���

Indeed� the geodesic rays in t� c are visibly parallel to corresponding rays in
c� and parallelism is respected by jf j�

Now treat the general case
 the argument recapitulates some ideas used
just above� Given two conical cells c� d with the same face at in�nity� we
choose sectors C�D of which c� d are faces� Let A�B be apartments containing
C�D� respectively� From above ������� there are subsectors C��D� of C�D
�respectively� which lie in a common apartment A�� Writing C� � C � u and
D� � D � v for some translations u� v in A�B� respectively� we have conical
cells c � u and d � v which are translates �in A�B respectively� of c� d and
now lie in a common apartment A�� Finally� we translate �c� u� inside A� to
arrange that the two conical cells have the same vertex
 let �c � u� � w be
this translate� �The extreme ambiguity of notation here is harmless��

In the previous section ����
� it was shown that� for given vertex in jX j
there is a unique conical cell having that vertex and having prescribed face at
in�nity� Thus� in the present situation� it must be that

�c� u� � w � d� v

Note that translation �in any apartment� does not change parallelism classes
of geodesic rays� so does not change faces at in�nity�

Since we have noted that jf j respects parallelism� we can compute


f��c�� � �jf jc�� � �jf j�c� u��� � �jf j��c� u� � w���

Since �c� u� � w � d� v� this is the same as

�jf j�d� v��� � �jf jd�� � f��d��

This proves the well�de�nedness�
It remains to check that labels in X� are preserved by f��
Recall that buildings and Coxeter complexes both are uniquely labelable

�up to isomorphism of labelings�� and that the maps required to exist by the
building axioms are all label�preserving ������ This is as explicit as we need
to be about the labeling�

Consider �rst the easy case that A and fA have a sector C in common�
and that f 
 A � fA is the isomorphism � �xing A � fA as required by the
building axioms� Then A� and �fA�� have the common chamber C�� Let
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� be the isomorphism A� � �fA�� from the building axioms� As noted
earlier� this isomorphism preserves labels ������

On the other hand� from the Uniqueness Lemma ����� it is easy to see that
there is a unique simplicial�complex isomorphism A� � �fA�� trivial on the
chamber C�� Since fC � C� by de�nition f��� � �� for every conical cell
� which is a face of C� so f� has this property� Therefore� it must be that
f� � �� so f� preserves labels in this easy case�

In the general case� given A and fA� let C�D be sectors in these apartments�
respectively� Shrink these sectors to subsectors small enough so that without
loss of generality both C�D lie in a common apartment B ������� Let � 

A � B and � 
 B � fA be the isomorphisms trivial on A � B and B � fA�
respectively� as postulated by the axioms� Let � be the composite � � �� By
the easy case just treated�

�� � ���� � ����

is label�preserving on X��
The composite ����f onX thus gives a label�preserving simplicial�complex

automorphism of the Coxeter complex A� Choosing an identi�cation of A with
a literal Coxeter complex "�W�S�� there is w � W so that the restriction of
��� � f to A is just multiplication by w�

Fix a special vertex x in A� and suppose that jAj is given a real vectorspace
structure with x � �� Identify the simplicial complex A� with the collection
of conical cells with vertex x� For w � W � write w �  wwT where wT is
the translation part of w and  w is the linear part ������� ������� Since the
translation part certainly preserves parallelism classes� wT acts trivially on
faces at in�nity� Thus� the induced action of w � W on the faces at in�nity
of such conical cells in A is just by its linear part  w lying inside the �nite
Coxeter group  W �

Thus� by construction of A� in terms of conical cells�  W is likewise identi�
�ed with the label�preserving simplicial�complex automorphisms of the apart�
ment A� inside X�� Thus�

f� � �� �  w

is label�preserving� as desired� �
Finally� we have

Corollary� Let f be a simplicial�complex automorphism of the thick
a�ne building X � Then f stabilizes the apartment A in X if and only if the
map induced by f on the spherical building X� stabilizes the corresponding
apartment A� at in�nity�

Proof� The apartment A� is the collection of simplices in X� obtained
as faces at in�nity of conical cells in A� And the conical cells with vertex a
special vertex x are geometric realizations of simplicial subcomplexes of the
apartment� So if f stabilizes A it certainly stabilizes A��
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The other containment is non�trivial� Given a chamber D in A� let y be
a point and y � c a sector so that D � y � c� Choose a point z � y � c so
that D � z	 c� Then� as proven in the discussion of sectors in a�ne Coxeter
complexes ������� for any two chambers C� � z�c and C� � y	c the chamber
D occurs in some minimal chamber � from C� to C��

Let f stabilize A�� Then for any sector D in A its image fD contains a
subsector lying in A� by the de�nition of A� and by the de�nition of induced
maps at in�nity� For given f � choose C�� C� in y�c� z	c so that fC� and fC�

both lie in A� Then f� is still a minimal gallery connecting fC�� fC�� and
containing fD� By the combinatorial convexity of apartments in any thick
building ������ it follows that f� and hence fD lie inside A�

That is� if f stabilizes A� then f stabilizes the collection of chambers in
A� so �being a simplicial complex map� f necessarily stabilizes the apartment
A� �
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��� Applications to Groups

� Induced group actions at in�nity
� BN�pairs� parahorics and parabolics
� Translations and Levi components
� Filtration by sectors
 Levi decompositions
� Bruhat and Cartan decompositions
� Iwasawa decompositions
� Maximally strong transitivity
� Canonical translations

Now consider a group G acting on a thick a�ne building X � so that the
subgroup Go of G preserving labels is strongly transitive� �We will be con�
cerned almost entirely with just the maximal apartment system�� �Earlier
������ when we talked about generalized BN�pairs� we used a di�erent nota�

tion
 �G was the large group and G the label�preserving subgroup��

This situation gives rise to a �strict� BN�pair in Go� and to a generalized
BN�pair in G ������ These are the a	ne BN�pairs in Go and G� The spherical
building at in�nity yields spherical BN�pairs in Go and in G� A new and
important thing is the interaction of the a�ne and spherical BN�pairs�

�
�� Induced group actions at in�nity
The point here is to show that a good group action on a thick a�ne building

gives rise to a reasonable group action on the �thick� spherical building at
in�nity�

Let G be a group acting on a thick a�ne building X by simplicial�complex
automorphisms� Suppose that the subgroupGo ofG acting by label�preserving
automorphisms is strongly transitive� in the usual sense that it is transitive
on pairs �C�A� where C is a chamber contained in an apartment A� where
A lies in the maximal apartment system� Here and in the sequel we only
consider the maximal apartment system ����� in X � and �unavoidably� the
unique apartment system ����� in the spherical building X��

Theorem� Under the induced maps� Go acts strongly transitively on the
thick spherical building X� at in�nity� and preserves labels�

Proof� This is mostly a corollary of prior results ����
� about the spher�
ical building at in�nity� and about induced maps on the building at in�nity
�������� together with a review of more elementary facts�

From the uniqueness of the maximal apartment system ����� it follows that
G unavoidably stabilizes the set A of apartments in X � From the discussion
of induced maps at in�nity �������� elements of G induce simplicial�complex
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automorphisms of X�� Further� we have already shown ������� that label�
preserving maps on X induce label�preserving maps on X�� Thus� the issue
is the transitivity of Go on pairs �C�� A�� where C� is a chamber in the
apartment A� in X��

By the main theorem on the building at in�nity ����
�� the apartments A�
are in bijection with the apartments A in the maximal system A in X � so the
transitivity of Go on A gives transitivity on the system A� in X�� And�
again� the fact that Go stabilizes the set of apartments in X� follows from
the fact that that apartment system is unavoidably the maximal one �being
unique ������ since the building at in�nity is spherical��

Let "�W�S� be a Coxeter complex isomorphic to apartments A in X ������
�From the discussion of links they are all isomorphic ������� Let x be a special
vertex in A ������� ������� and give jAj a real vectorspace structure so that
x � �� We have shown that the faces at in�nity of conical cells in jAj are in
bijection with conical cells with vertices at x ����
��

Every w � W can be written as w �  wwT where  w is the linear part of
w and wT is the translation part� This is essentially the de�nition of special�
ness of the vertex x � �� Translations do not move geodesic rays out of their
parallelism classes� so faces at in�nity are not altered by wT � Thus� the only
e�ect w has on faces at in�nity is by  w�

Then the image complex �  W�  S� under the map w �  w is the �nite
Coxeter system whose associated complex gives the isomorphism class of
the apartments at in�nity ������� ������� ������� For any choice of isomor�
phism A � "�W�S� we obtain an identi�cation of W � Wa� with the label�
preserving automorphisms of A� and of  W � Wsph with the label�preserving
automorphisms of A��

Let N o be the stabilizer in Go of a �xed apartment A in X � By hypothesis�
N o is transitive on chambers in A� From the Uniqueness Lemma ������ a label�
preserving automorphism of a Coxeter complex is determined completely by
what it does to one chamber� Thus� as noted already in the basic discussion
of BN�pairs ������ the natural map N o �W is a surjection�

The action of N o on chambers in A� is by way of the composite

N o � W �  W �Wsph

so is transitive on chambers in the given apartment� as claimed� �

Let C� � A� be a choice of chamber in an apartment in the associated
spherical building X� at in�nity� Let

N o
sph � stabilizer in Go of the apartment A�

Bo
sph � stabilizer in G of the chamber C�

Corollary� The pair N o
sph� B

o
sph is a �strict� spherical BN�pair� �
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�
�� BN�pairs� parahorics and parabolics
Throughout this section we continue to suppose that G is a group acting

on a thick a�ne building X with the hypothesis that the label�preserving
subgroup Go of G is strongly transitive �with respect to the maximal apart�
ment system�� We will begin to see what things can be said about the group
in terms of the �obvious	 geometry of the a�ne building and the spherical
building at in�nity�

This section sets up notation which will be used throughout the rest of this
chapter�

Fix a chamber C in an apartment A in X � let x be a vertex of C which
is special ������� and �x a sector C inside A with vertex x and containing C
����
�� Let C� be the face at in�nity of C and let A� be the apartment at
in�nity consisting of all faces at in�nity of conical cells inside A ����
��

Let

Na� � stabilizer in G of the apartment A
B � stabilizer in G of the chamber C
T � N � B
P � stabilizer in G of the chamber C�
Nsph � stabilizer in G of the apartment A�
M � Nsph � P

N o
a� � stabilizer in Go of the apartment A

Bo � pointwise �xer in Go of the chamber C
T o � B �N o � pointwise �xer in Go of the apartment A
P o � stabilizer in Go of the chamber C�
N o

sph � stabilizer in Go of the apartment A�
Mo � N o

sph � P o � pointwise �xer in Go of the apartment A�

Recall that T normalizes N o� Bo� and Go� and that T and Go together
generate G ������ Thus� Go is a normal subgroup of G� and is of �nite index
����� since the building X is �nite�dimensional� Let

% � G�Go � Na��N o
a� � T�T o

be the quotient�

The Weyl groups are

W � Wa� � a�ne Weyl group � N o��N o �Bo�
 W � Wsph � spherical Weyl group � N o�N o

trans

where N o
trans is the subgroup of N o consisting of elements whose restrictions

to A are translations� Also� by de�nition� for a special vertex x in A

Wsph �Wx

where Wx is the subgroup of W �xing x�



Garrett� ��
� Applications to groups� ���

From the demonstrated strongly transitive action on the spherical building
at in�nity ������� we also have a strict spherical BN�pair P o�N o

sph and a
generalized spherical BN�pair P�Nsph�

Note� While we are assured that the action at in�nity of Go is label�
preserving �������� it is not clear how much larger than Go the subgroup of
G preserving labels at in�nity might be� In some cases� the whole group G
preserves labels at in�nity� but there are natural examples where this is not
so�

Note that� to distinguish the two cases� The �B	 in the spherical case will
be denoted P and P o �in G and Go� respectively�� and called a minimal
parabolic or Borel subgroup� while the �B	 in the a�ne case is denoted B
and Bo �in G and Go� respectively�� and will be called an Iwahori subgroup�
The subgroups M and Mo inside P and P o are Levi components of P and
P o �respectively��

Any subgroup of G containing Bo is called a parahoric subgroup of G�
Any subgroup of G containing P is called a parabolic subgroup of G�

Apart from setting up notation� the point of this section is to note that the
�N	 is the same in both the a�ne and spherical BN�pairs


Theorem� We have
Na� � Nsph

N o
a� � N o

sph

Proof� This is the obvious corollary of the fact that a simplicial complex
automorphism of X stabilizes A if and only if it stabilizes A� �������� �

Therefore� we write simply

N � Na� � Nsph

N o � N o
a� � N o

sph

Remarks� It is not generally true that the induced maps given by Go

constitute exactly the label�preserving subgroup of the group of maps induced
by G on X�� To the contrary� in many natural examples all induced maps
from G on X� are label�preserving�

And the usual terminology is

Wa� � N o�T o � a�ne Weyl group

Wsph � N o�Mo � spherical Weyl group

Note that these Weyl groups are de�ned in terms of the type�preserving group
Go rather than the whole groupG� The fact that the type�preserving subgroup
at in�nitymay be larger than Go is irrelevant to determination of the spherical
Weyl group� since the strong transitivity of Go at in�nity follows from that
on the a�ne building ������� And the isomorphism class of the apartments
at in�nity is uniquely determined ������
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�
�� Translations and Levi components
Keep the notation from the previous section�

For this section� we suppose that G preserves labels� so in previous notation
G � Go� B � Bo� N � N o� and so on� Let Ntrans be the subgroup ofN
consisting of those group elements whose restriction to the apartment A are
translations of A�

Let A� be the apartment at in�nity corresponding to the apartment A
����
�� Let x be a special vertex of the chamber C in A whose stabilizer is B�
Let C be the sector in A with vertex x and containing C� Let C� be the face
at in�nity of C�
Theorem� Assuming that G preserves labels� the Levi component M �

N � P of the minimal parabolic P in G with respect to the apartment A� is
the subgroup of translations

M � Ntrans

in M �

Proof� We use the fact that N is the �N	 in both the a�ne and spherical
BN�pairs ������� and similarly for N in the generalized BN�pairs�

On one hand� we must show that Ntrans � P � Since Ntrans acts on A by
translations� the action of Ntrans preserves parallelism� so preserves faces at
in�nity of conical cells� Thus� Ntrans � P �

On the other hand� if g � P then gC has a subsector in common with C
����
�� and if also g � N � then the image gC lies entirely within A� The image
gx of the vertex x of C has the same label as does x� since g � G� and gx is a
vertex of gC�

Since N preserves labels and is transitive on chambers in A� it is necessarily
transitive on pairs �x�� C �� where x� is a special vertex with the same label
as x and C � is a chamber of which x� is a vertex� Thus� there is a unique
w � Wa� so that wC � gC and wx � gx� Let Wx be the subgroup of Wa�

�xing the special vertex x� Since the composite map

Wx �W � Wsph

is an isomorphism� we can write w � w�wx with wx � Wx and w� a translation
in Wa� � Then w�x � gx� Such translations w� preserve parallelism in A� so
w�C � gC� Thus� g��w� stabilizes the apartment A� stabilizes the sector C�
and �xes its vertex x� By the uniqueness lemma ������ g��w� acts trivially
on A� as desired� �

Remarks� The analogous assertion for a non�necessarily label�preserving
group G is not as simple as this� One half the argument still works� namely�
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that

Ntrans � N � P
�where Ntrans is the subgroup of N of elements whose restrictions to A are
translations�� However� in general this containment is strict�

�
�� Filtration by sectors� Levi decomposition
Under the hypothesis that the group G preserves labels� there is a decom�

position result for minimal parabolics P

P � M �N�

whereM � Ntrans is the subgroup of the stabilizer N of the chosen apartment
A containing the chamber C of which P is the stabilizer� In the previous
section this subgroup M was identi�ed with a Levi component of P �

The subgroup N� will be shown to be a normal subgroup of P � and is
a �thickened	 form of the unipotent radical �often denoted �N 	� of P 
 see
������������ ������� for descriptions for the classical groups� If it were exactly
the unipotent radical then this decomposition would be the standard p�adic
Levi decomposition�

The description of this N� in terms of the a�ne building is immediately
useful in at least one way
 for the classical groups this will make it easy
to verify that the spherical building at in�nity is the same as the spherical
building constructed directly earlier� In broader terms� the fact that such
a description is possible in this context �as opposed to a more Lie�theoretic
scenario� bodes well for the general utility of our approach�

More generally� let Sx be the re�ections in A �xing the vertex x� let S� � Sx
and let cS

�

be the conical cell with vertex x extending the face FS� of type S�

of the chamber C� We have the corresponding parahoric subgroup

BS� � BS�B � pointwise �xer of the face of C �xed by S�

and parabolic subgroup

PS� � P S� P � pointwise �xer of the face of C� �xed by S�

Proposition� Assume that G preserves labels� The intersection B �P is
the pointwise �xer of the whole sector C�

Proof� On one hand� if g �xes pointwise �xes a sector C with vertex x and
containing the chamber C� then it certainly �xes C� and also �xes the face
at in�nity C� of C� That is� B � P is contained in the pointwise �xer of the
sector C�

On the other hand� if g is in B � P then it �xes C and face at in�nity
C�� Every chamber at in�nity is the face at in�nity of a unique sector with
vertex x ����
�� Thus� if g stabilizes C �necessarily pointwise� since it is label�
preserving�� then gC is another sector with vertex x� since g is a simplicial
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automorphism of X and engenders an isometry on jX j ������� On the other
hand� g stabilizes C�� so gC must be C� �

Now we can describe a subgroup N� of the minimal parabolic P which
is nearly the unipotent radical of P ������������ �������� As usual� let M �
Ntrans be the subgroup of G consisting of elements which stabilize the �xed
apartment A and induce translations on A� Let C� be the �xed chamber in
the associated apartment at in�nity A�� For any sector D �in any apartment�
with face at in�nity being the �xed chamber C�� let

No
D � pointwise �xer of D

Then de�ne

N� �
�
D

No
D

Proposition� This set N� is a subgroup of G� It is equal to

N� �
�
D�A

ND

and is normalized by M �

Proof� That N� contains the identity and is closed under inverses is clear�
From ����
�� two sectors D�D� have a common face at in�nity if and only if
they have a common subsector D�� Thus� for g �xing D and g� �xing D�� the
product gg� surely �xes D�� That is� N� is a subgroup�

Further� again from ����
�� every sector with face at in�nity being the
speci�ed C� has a subsector lying inside A� This proves the second assertion�

The subgroupM of the stabilizerN of A consisting of translations certainly
maps sectors D to sectors D� having a common subsector with D� so M �xes
C�� Given n � N�� let D be a subsector of A �xed by n� invoking the earlier
part of this proposition� Then for m � M the element mnm� of G certainly
stabilizes the sector m��D inside A� This sector still has face at in�nity C��
so we have proven that M normalizes N�� �
Theorem� Assume that G preserves labels on the a�ne building� We have

the decomposition

P � M �N�

and N� is normal in P �

Proof� On one hand� by its de�nition� N� also �xes C�� Thus� M �N� �
P � This is the easy direction of containment�

On the other hand� by the strong transitivity� the subgroup N which sta�
bilizes the apartment A is transitive on chambers inside A� Since N preserves
labels and is transitive on chambers in A� it is necessarily transitive on pairs
�x�� C �� where x� is a special vertex with the same label as x and C � is a
chamber of which x� is a vertex� Thus� there is a unique w � Wa� so that
wC � gC and wx � gx�
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Let p � P � Then pC still has the same face at in�nity� so has a common
subsector C� with C� by ����
�� Without loss of generality� C� has vertex a
special vertex x� �which need not be of the same type as x�� Let

C� � p��C� � p���pC � C� � A

This has vertex x�� which is necessarily a special vertex� Then

pC� � A

and its vertex px� is a special vertex in A of the same type as x�� Let w � N
be such that wx� � px�� By the de�nition of special� the a�ne Weyl group
W is a semi�direct product

W � Wx� �M � M �Wx�

where Wx� is the subgroup of W �xing x�� Thus� there is m � M so that
mx� � px��

Therefore� we �nd that m��p �xes x� and stabilizes the chamber C� at
in�nity� From ����
�� there is a unique sector with vertex x� with face at
in�nity C�� which must be C�� Thus� m

��p � N��
Since we have already seen that M normalizes N�� it now follows that N�

is a normal subgroup of P � �

�
�� Bruhat and Cartan decompositions
Keep the notation from above�

For the sake of completeness of the present line of discussion� we recall here
the simplest parts of the Bruhat�Tits decomposition results as applied to both
the a�ne and spherical BN�pairs�

Assuming that G preserves labels on the building at in�nity� the traditional
Bruhat decomposition ����� is

G �
G

�w
Wsph

P  wP

Again� let
% � T�T o � �N � B���N o � Bo�

be as earlier� The Cartan decomposition� another example of a Bruhat�
Tits decomposition ������ is

G �
G

w
Waff 

�

Bow�Bo
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�
�	 Iwasawa decomposition
The Iwasawa decomposition is not simply a Bruhat�Tits decomposition�

spherical or a�ne� Indeed� the very statements refer simultaneously to parabol�
ics and parahorics
 the interaction of the a�ne building and the spherical
building at in�nity play a signi�cant role in the proof� We keep the notation
from just above�

Theorem�
Go �

G
�w
Wsph

P o  wBo

and
Go �

G
�w
Wsph 

�

P o  w�Bo

Proof� We have shown that there is a subsector gC� of gC �with C� a sub�
sectorof C� so that both gC� and the chamber C lie in a common apartment
A� ������� The strong transitivity of Go on X assures that Bo itself is transi�
tive on apartments containing C� Thus� there is b � Bo so that bA� � A� so
bgC� � A�

Recall that a group H is said to act simply transitively on a set ( if� for
any � � (� h� � � implies h � �� �If this property holds for a single � � (�
then it holds for every element of (��

Since Wsph is simply transitive on chambers in the Coxeter complex A�� it
must be that Wsph is simply transitive on parallelism classes of sectors in A�
where for sectors parallel means possessing a common subsector ����
�� Thus�
there is a unique  w in Wsph so that  wbgC� has a subsector in common with C�

Then the larger sector  wbgC �though perhaps not lying entirely inside A�
has a common subsector with C� so  wbg � p � P o� since P o is the stabilizer
of the face at in�nity C� of C� Thus� g � b��  w��p� yielding the existence
assertion of the theorem for Go�

To prove that the indicated union is disjoint we must prove that the element
 w occurring above is uniquely determined as an element of the quotient

Wsph � N o
sph�N o

trans

Consider two elements b�� b� � Bo mapping subsectors gC�� gC� �respectively�
of gC to A� We may as well replace these two sectors by their intersection gCo�
Now any minimal gallery from C to a chamber in gCo lies in every apartment
containing both C and gCo� by the combinatorial convexity of apartments
������ The automorphisms of X given by b�� b� send non�stuttering galleries to
non�stuttering galleries� agree pointwise on C� so on any apartment containing
C and gCo must be equal� by the Uniqueness Lemma ������

That is� the actual images b�gCo� b�gCo are the same� In particular� the
parallelism classes of bigCo are the same� Thus� the corresponding element  w
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must be the same for any choice of b � Bo mapping a subsector of gC back to
A� This proves the uniqueness part of the theorem for Go�

Now we address G itself� We already know that G � Go � T ������ so by
invoking the theorem for Go we have

G � Go � T �
�

�w
Wsph

P o  wBo � T

�
�

�w
Wsph

P o  wBo � �T onT � �
�

�w
Wsph

P o  wBo%

�
�

�w
Wsph�

�

P o  w�Bo

since T normalizes Bo ������
For disjointness
 if P ow�B

ot� meets P ow�B
ot� for wi � Wsph and ti � T �

then surely Got� � Got�� Then T ot� � T ot�� so the images of t� and t� must
be the same� This �nishes the proof� �

Corollary� Let K � Kx be the good �maximal compact	 subgroup

K �
G

�w
Wx

Bo  wBo �%

in G� �We assume throughout that S is �nite� so an assumption that Bo is
compact su�ces to assure that this K is literally maximal compact� Then

G � P o �K

Proof� We have

G �
G
�w�


P o  w�Bo �
G
�w

P oBo  w�Bo �

� P o �
G
�w�


Bo  w�Bo � P oK

as desired� �

�
�
 Maximally strong transitivity
The point of this section is to see that when the Iwahori subgroup B is

a compact open subgroup of G� then Go acts strongly transitively on the
maximal apartment system� Of course� this presumes that there is a topology
on G so that this makes sense� A small ampli�cation of the de�nition of
topological group is appropriate�

A group G is a topological group if it has a topology in which the multi�
plication and inverse operations are continuous� That is� the maps G�G� G
by g � h � gh and G � G by g � g�� are both continuous� Most often a
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topological group is also required to be Hausdor� and locally compact� as
well�

Of course� this de�nition has rami�cations which are not obvious� A few
simple observations are necessary for the sequel� For one� it follows that
for every �xed g � G the maps h � gh and h � hg are continuous maps
G � G� Since these have the obvious inverses� they are homeomorphisms�
As a consequence of this� for any open neighborhood U of the identity in G�
gU and Ug are open neighborhoods of the point g � G� Conversely� for any
open neighborhood V of g� the sets g��V and V g�� are open neighborhoods
of the identity�

To relate this to the Iwahori subgroup B� suppose that B is open and
compact� Because of the Bruhat�Tits decomposition ������ the assumption of
open�ness implies that B is closed� since its complement is a union of sets Bg
which are open� being continuous images �under the map x� xg� of the open
set B�

Proposition� Let Y be a subset of X which is contained in the union of
�nitely�many simplices in X � Suppose that Y contains at least one chamber�
Then the pointwise �xer

GY � fg � G 
 gy � y � y � Y g
of Y is open and compact in G�

Proof� The hypothesis that Y contains a chamber C � entails that GY

consists of label�preserving automorphisms� since every g � GY certainly pre�
serves the labels on C �� and by the Uniqueness Lemma ����� must preserve
labels on any apartment containing that chamber� But by the building ax�
ioms ����� every chamber lies in some apartment containing C �� so necessarily
g preserves labels on the whole building�

If Y contains a point y in the closure of some chamber D� since GY � Go�
it must be that GY �xes the whole closure  D pointwise� Thus� the pointwise
�xer of Y is the same as the pointwise �xer of the smallest union of closed
chambers containing Y �

Let C�� � � � � Cn be the list of chambers whose closures contain Y � By
hypothesis this list is �nite� Invoking the transitivity of the label�preserving
subgroup Go of G on chambers� there is hi � Go so that hiCi � C� where C
is the chamber whose pointwise �xer is B� Then

GY �
�
i

hiBh
��
i

This �nite intersection of opens is open� and is certainly compact since each
hiBh

��
i is so� �

Theorem� With the hypothesis that B is compact and open in G� the
group Go of type�preserving maps in G acts strongly transitively on pairs
C � � A� for chambersC � and apartmentsA� in themaximal apartment system�



Garrett� ��
� Applications to groups� ��


Proof� Let A� be an apartment in the maximal apartment system� We �rst
reduce to the case that C � A�� Indeed� A� contains some chamber C �� and
by the mere transitivity of Go on chambers there is h � Go so that hC � � C�
So now C � hA�� and if hA� � gA for g � Go then A� � h��gA� This is the
desired reduction�

Now suppose that C � A�� where C is the distinguished chamber whose
�xer is B� It su�ces to �nd b � B so that bA� � A� where A is the distin�
guished apartment whose stabilizer in Go is N �

The simplicial complex A� is certainly the union of all its �nite subcom�
plexes� so we can easily write it as a union A� �

S
i Yi where

C � Y� � Y� � � � � � Yi �
and each Yi is a �nite chamber complex inside A�� �Note that this requires
only that the Coxeter group W be countable� which is certainly assured by
the uniform hypothesis that the generating set S be �nite��

It was shown earlier ������ that the collection of bounded subsets of apart�
ments does not depend upon the apartment system� Thus� each Yi must lie in
an apartment Ai in whatever apartment system A we start with� upon which
Go acts strongly transitively� by hypothesis�

Invoking the strong transitivity of Go� there is bi � B so that biAi � A�
For indices i � j we have an isomorphism

b��
i bj 
 Aj � Ai

which gives the identity when restricted to Yi� Thus� the sequence b��
� bi lies

inside the compact set B� so has a convergent subsequence b��
� bij with limit

��
The obvious claim is that the element b � b�� has the property that bA� �

A� To prove this� let D be an arbitrary chamber in A� Choose i large enough
so that the closure of D is contained in Yi� Invoking the proposition� we can
choose a small�enough neighborhood U of � in G so that U � Yi� Choose j
large enough so that ij � i and so that b��

� bij � �U � Then likewise

� � b��
� bijU � b��

� bijYi

and

b � b�� � bijYi � bi�b
��
i bij �Yi

Since ij � i� we have b��
i bij � GYi � so

b � biYi � Yi � biYi � A

by the de�ning property of bi�
Then

bD � b��Yi � A

That is� the element b � B maps every chamber of A� to A� Thus� bA� �
A� This proves that B is transitive on apartments in the maximal system
containing C� This is the asserted strong transitivity� �
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Corollary� If B is compact and open in G� then any apartment system A
stable under the action of G is unavoidably the maximal apartment system�

�
Remarks� The format of the previous theorem does not make clear what

properties of the building might allow the Iwahori subgroup B to be compact
and open� in some reasonable topology on G� However� in practice� often this
is not the issue because the group G is presented with a topology arising from
some other source�

�
�� Canonical translations
Keep notation as above� For this section we suppose that G preserves

labels�

With �xed choice of apartment A and chamber C� let S denote the set of
re�ections through the facets of C� With �xed special vertex x of C� let Sx
be the subset of S consisting of those re�ections which �x x� and let Wx be
the subgroup of W �xing x�

Attached to each w �Wx there is a canonical translation� usually denoted
aw� in the Levi componentM of the minimal parabolic P � described as follows�

For s � Sx� let Fs be the facet of C �xed by s � S� and let �s be the
hyperplane which is the a�ne span of Fs� Thus� s is the re�ection through
�s� Let Fo be the facet of C which does not contain x� and let �o be the corre�
sponding hyperplane� The chamber C is a simplex cut out by the hyperplanes
�s �s � S� and �o ������� ������� �������

Let Wtrans be the subgroup of translations in W � The group W is the
semi�direct product of Wx and Wtrans� For each w � Wx� write a semi�direct
product decomposition

wso � aw � w�
with aw � Wtrans and w� � Wx� That is� aw is the �uniquely�determined�
translation so that

�wso�x � awx

Thus� since w � Sx� we also have

�wsow
���x � awx

One notes that wsow
�� is the re�ection through the facet wFo of the chamber

wC� Thus� aw is a non�trivial translation in the direction orthogonal to the
hyperplane wFo�

Proposition� The translations faw 
 w �Wxg generate a group � of �nite
index inside the group Wtrans of all translations on A�

Proof� From prior discussion of the subgroupW� of translations of an a�ne
Coxeter group W ������� to prove the �nite�index assertion it su�ces to show
that the collection of all directions of the translations aw span the space jAj�
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Given any direction �� consider a ray from the special vertex x in direction
�� An initial segment of � must lie in �the closure of� some one of the chambers
wC� w �Wx� since the union of these is a neighborhood of x inside A� Thus�
� must intersect some facet wFo for w � Wx� where Fo is the facet of C
opposite to x� Since the hyperplane w�o does not contain x� it must be that �
meets w�o at a non�zero angle� Thus� since the direction of aw is orthogonal
to w�o� it cannot be that the direction of aw and � are orthogonal�

This proves that the collection of directions of all the translations aw for
w � Wx spans jAj� �
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�
� Lattices� p�adic Numbers�
Discrete Valuations

� p�adic numbers
� Discrete valuations
� Hensel	s lemma
� Lattices
� Some topology
� Iwahori decomposition for GL�n�

As linear and geometric algebra formed the backdrop for the construction
and application of spherical buildings� there is a corresponding bit of alge�
bra which both motivates and is illuminated by the �ner structure of a�ne
buildings�

Fundamentally� the more delicate study of a�ne buildings is aimed at ap�
plication to p�adic groups� the archetype for which is GL�n�Qp �� Thus� some
exposition of the rudimentary properties of the p�adic integers Zp and the
p�adic numbers Qp is appropriate� We need very little beyond the de�nitions�

On the other hand since many versions of this discussion take place in a
broader context� we also introduce discrete valuations which generalize in a
straightforward manner the p�adic numbers�

���� p�adic numbers
The de�nitions and simplest properties of p�adic numbers are all we need

for later applieactions� Most of this material is really just an example of
the discrete valuation scenario of the next subsection� but does deserve extra
emphasis as the prototypical example�

The discussion of this section immediately generalizes to the more general
case in which Z is replace by a principal ideal domain o� the rational numbers
Q are replace by the fraction �eld k of the principal ideal domain� and the
prime number p is replaced by a generator � for a prime ideal in the principal
ideal domain o�

Let p be a prime number� The p�adic valuation is de�ned on the ordinary
integers Z by

ord a pn � ordp a p
n � n

where a is an integer not divisible by p� and where n is a non�negative integer�
Note that the fact that Z is a unique factorization domain entails that there
is no ambiguity in the integer n appearing as exponent of p� By convention�

ord � � ��
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De�ne the p�adic norm j jp on Z by

jxj � jxjp � p�ord x

and j�jp � �� The p�adic metric on Z is given by

dp�adic�x� y� � jx	 yjp � jx	 yj

The ring of p�adic integers Zp is the completion of the ordinary integers
Z with respect to the p�adic metric on Z�

One de�nition of the �eld of p�adic numbers Qp is as the �eld of fractions
of this completion Zp� This is pointlessly indirect� however� It is better to
de�ne the p�adic ord function and norm and metric directly on Q� and de�ne
Qp to be the completion of Q with respect to this metric� To be sure that
these two constructions yield the same thing one should check that the ring
operations in Q are continuous with respect to the topology from the p�adic
metric�

To directly de�ne the p�adic valuation and norm on Q
 de�ne ordp on Q
by

ord
a

b
pn � ordp�

a

b
pn� � n

where a� b � Z are both prime to p and b is non�zero� �And the ord of � is
��� again�� Then the p�adic norm is

jxj � jxjp � p�ord x

Again� the fact that Z is a unique factorization domain implies that there is
no ambiguity in the integer n appearing as exponent of p� The p�adic metric
on Q is

d�x� y� � dp�adic�x� y� � jx	 yj � jx	 yjp
There is the visible multiplicative property

jxyjp � jxjp jyjp
�which is what justi�es calling this p�adic norm a norm�� That this is so
follows from the more elementary fact that if a prime p divides neither of two
integers a� b� then p cannot divide the product ab�

That this is indeed a metric is easy to check
 the symmetry is obvious� and
an even stronger result� the ultrametric inequality� is obtained in place of
the triangle inequality� as follows


Proposition� For rational numbers x� y we have

jx� yjp � max�jxjp� jyjp�
with equality holding unless jxjp � jyjp�
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Proof� Write x � pm�a�b�� y � pn�c�d� with none of a� b� c� d divisible by
p� Without loss of generality� by symmetry� we may suppose that m � n�
Then

x� y � pm
ad� pn�mbc

bd
If m � n then� since p divides neither a nor d� surely p does not divide the
numerator� That is� if m � n then equality holds in the statement of the
proposition�

If m � n� then

x� y � pm
ad� bc

bd
and it may happen that p does divide the numerator� so that all we can
conclude is that

ordp�x� y� � m

This gives the proposition� �
The e�ect of this completion is to annihilate information about any prime

in Z other than p


Proposition� Let x be any integer not divisible by a prime p� Then x is
a unit in the p�adic integers Zp�

Remark� Further� the proof yields a �formula	 for the inverse of x�

Proof� Since the ideal pZ is maximal� the ideal pZ�xZmust be the whole
ring Z� Thus� since � � Z� there are a� b � Z so that

ax� bp � �

Evidently neither a nor b is divisible by p� Rearranging this� we have

ax � �	 bp

and
a

�	 bp
x � �

So far this computation could take place inside the ordinary rational numbers
Q� But now we rewrite

a

�	 bp
� a�� � �bp� � �bp�� � �bp�� � � � � �

with the assurance that the latter geometric series converges in Qp � since

jbpj � jbj � jpj � jpj � �

p
� �

�since b is an integer prime to p�� Then

x�� � a�� � �bp� � �bp�� � �bp�� � � � � � � Zp
since all the summands are ordinary integers� �
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As a consequence of the last proposition� the p�adic integers Zp contain
all rational numbers of the form a�b with p not dividing the denominator b�
Another paraphrase concerning this phenomenon is as follows


Proposition� Let x � Zp and suppose that

jx	 �j � �

Then x is a unit in Zp�

Proof� As in the last proof� we use the convergence of suitable geometric
series� Supposing that jx	 �j � �� we have a convergent series

x�� � ��	 ��	 x���� � � � ��	 x� � ��	 x�� � ��	 x�� � � � �

Every summand is in Zp� so the convergent in�nite sum yields an element of
Zp� �
Corollary� Given a non�zero element x in Zp� for y � Zp su�ciently close

to x� y � � � x for some unit � in Zp� Speci�cally� this holds if for y so that

jx	 yj � jyj
And� in this situation� x and y necessarily generate the same ideal


xZp � yZp

Proof� We have

y � x� �y 	 x� � x�� �
y 	 x

x
�

By the previous proposition� � � y�x
x is a unit� so by elementary ring theory

x and y generate the same ideal� �
Proposition� The ring Zp is a principal ideal domain with only one

non�zero prime ideal� namely the ideal m � pZp generated by p� Further�
m is the set of elements x � Zp so that jxjp � �� and Zp itself is the set of
elements x � Qp so that jxjp � �� The group of units Z
p in Zp is the set of
elements x so that jxjp � ��

Proof� First� let	s prove that the units are exactly the things in Qp with
norm �� On one hand� if � is a unit� then ��� lies in Zp� so j���j � � �as well
as j�j � ��� Then

� � j�j � j� � ���j � j�j � j���j
implies that j�j � ��

On the other hand� suppose that j�j � � for some � � Qp � Take x� y � Z
so that j� 	 x

y j � j�j� Then� by the proposition above� there is a unit � in

Zp so that � � � � xy � Thus� since j�j � �� it must be that jxy j � �� Thus�

the power of p dividing x must be identical to the power of p dividing y� We
could have assumed that x� y are relatively prime� so then we conclude that
neither x nor y is divisible by p� Thus� from above� they are both units in Zp�
And then � itself must have been a unit�
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Next� suppose that j�j � �� If j�j � �� then we have just seen that � is a
unit in Zp� On the other hand� if j�j � �� then there is a power pn of p �with
� � n � Z� so that j��pnj � �� so ��pn is a unit� and certainly � � pnZp�
This proves that Zp �de�ned to be the completion of Z with respect to the
p�adic metric� is exactly the set of elements in Qp with norm less than or
equal ��

Now let I be a non�zero ideal in Zp� Let x � I be an element of I with
maximal norm jxj among all elements of I � This maximum really does occur�
since the only possible values of the norm are

��
�

p
�
�

p�
�
�

p�
� � � �� �

�In particular� for any value of jx�j� there are only �nitely�many possible
values above jx�j assumed on Zp�� Then we claim that I is generated by
this x� Indeed� for any other y � I � jy�xj � jyj�jxj � �� so by the previous
argument y�x � Zp and y � x � Zp�

And� in particular� for any x � Qp � there is some integer power pn of p so
that x � � � pn with unit � in Zp� �

���� Discrete valuations

The object of this section is to run the ideas of the previous section in
reverse� beginning with a �discrete valuation	 on a �eld� and from that con�
structing the �discrete valuation ring	� with properties analogous to Zp above�

Just as in the p�adic case� there are two basic equivalent items
 the �dis�
crete� valuation and a norm �which engenders a metric�� The norm is an
exponentiated version of the valuation� The norm seldom has a canonical
normalization� but this is usually not important�

A discrete valuation ord on a �eld k is an integer�valued function written
x� ordx on k
 so that

ord�xy� � ord�x� � ord�y�

ord�x� y� � inf�ord�x�� ord�y��

where we de�ne ord��� � �� compatibly� Very often the function ord is also
called an �ord�function	 or ordinal�

We assume that this ord function is not identically zero� Because of the
multiplicative property� the collection of values of ord form a non�trivial ad�
ditive subgroup of Z� Thus� the collection of values is of the form nZ for some
positive integer n� By replacing ord by �

nord� we may assume without loss of
generality that

ordk
 � Z
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For any real constant c � � there is a norm r � jrj on k associated to the
valuation by

jrj � c�ord r

From the inequality ord�x � y� � inf�ord�x�� ord�y�� we easily obtain the
ultrametric inequality


jx� yj � max�jxj� jyj�
The �eld k is a complete discretely�valued �eld if it is complete as a
metric space� with the obvious metric

d�x� y� � jx	 yj
The associated discrete valuation ring is

o � fx � k 
 jxj � �g
And de�ne

m � fx � k 
 jxj � �g
An element � � o so that

ord� � �

is a local parameter�

Proposition� The valuation ring o really is a subring of k� The group of
units o
 in o is

o
 � fx � k 
 jxj � �g
The ring o is a principal ideal domain with unique non�zero prime ideal m�
And the sharp form of the ultrametric inequality holds
 we have

jx� yj � max�jxj� jyj�
with equality holding unless jxj � jyj�

Proof� Given x� y with jxj � � and jyj � �� we must show that jxyj � � and
jx�yj � �� The multiplicative case is immediate� and the additive case follows
because we have the ultrametric �rather than mere triangle� inequality� Thus�
o really is a ring�

If x � o has jxj � �� then from

� � j�j � jx � x��j � jxj � jx��j
we �nd that also jx��j � �� Thus� x is a unit� The converse is clear�

Let I be a non�zero proper ideal� Let x be an element in I so that ordx is
minimal among the values assumed by ord on I � �If the value � were assumed�
then there would be units in I � contradiction�� Then

ord�x��ordx� � �

so x��ordx is a unit in o� Thus�

I � o ��ordx

This proves that o is a principal ideal domain�
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Further� since every ideal is of the form o�n for some non�negative integer
n� it is clear that m � o �� is the only non�zero prime ideal�

To prove the sharp form of the ultrametric inequality� take jyj � jxj� Then
jxj � j�x� y�	 yj � max�jx � yj� jyj�

since j 	 yj � jyj� Since jyj � jxj� for this relation to hold it must be that

max�jx� yj� jyj� � jx� yj
Putting this together� using the �plain	 ultrametric inequality� we have

jxj � jx� yj � max�jxj� jyj � jxj
Then we have jxj � jx� yj as asserted� �

���� Hensel�s Lemma
For the present section we only need assume that k is a �eld with a non�

negative real�valued norm

x� jxj
which has the multiplicative property

jx � yj � jxj � jyj
and the ultrametric property

jx� yj � max�jxj� jyj�
The associated metric is

d�x� y� � jx	 yj
Such k is an ultrametric �eld� We assume that the norm j j is non�trivial�
meaning that j�j � �� and also there is an element � � k with j�j � �� We
assume that k is complete with respect to this metric�

Proposition� There is the sharp ultrametric property
 for x� y � k

jx� yj � max�jxj� jyj�
unless jxj � jyj�

Proof� This follows by the same proof as just above
 take jyj � jxj� Then
jxj � j�x� y�	 yj � max�jx � yj� jyj�

which forces the maximum to be jx� yj� so
jxj � jx� yj � max�jxj� jyj � jxj

and jxj � jx� yj as asserted� �
The associated �not necessarily discrete� valuation ring is

o � fx � k 
 jxj � �g
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As in previous sections� it is the fact that we have the ultrametric inequality�
rather than merely the triangle inequality� that makes o closed under addition�

In this context the analogue of Newton	s Method works much more simply
than would be the case if only the ordinary triangle inequality held for this
norm�

Let f be a non�constant polynomial with coe�cients in k� Write

f�x� � anx
n � an��x

n�� � � � �� a�x
� � a�x� ao

with the ai in k� The derivative f ��x� can be de�ned purely algebraically� by
the usual formula

f ��x� � nanx
n����n	��an��x

n����n	��an��x
n���� � ���a�x

���a�x�a�

without taking any limits�

The usual Newton	s method for iterative approximation of a root of a
polynomial uses the formula

xn	� � xn 	 f�xn�

f ��xn�

starting from an initial approximation xo� to determine a sequence of points
x��x��x�� � � � which presumably approach a root of f � that is� presumably

lim
n

f�xn� ��

In the usual case of the real numbers� there is no simple hypothesis which will
guarantee that this procedure yields a root� By contrast� in the ultrametric
case things work out very nicely� As a simple but su�cient illustration� we
have


Theorem� Let k be a complete ultrametric �eld with valuation ring o�
Let f�x� be a non�constant polynomial with coe�cients in o� Let xo � o so
that

jf�xo�j � �

while

jf ��x�j � �

holds� Then the sequence x�� x�� x�� � � � de�ned recursively by

xn	� � xn 	 f�xn�

f ��xn�

converges to a root of the equation f�x� � ��

Proof� For any positive integer n

jnj � j� � � � � � �� �j � j�j � � �with n summands�
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Also� j 	 �j� � j�	���j � j�j � �� so j 	 �j � �� Thus� �the image of� n in
k lies in the valuation ring o� For any positive integer � and for any positive
integer n

�

�$
�
d

dx
�� xn � �n��n	 ���n	 �� � � � �n	 ��	 ���xn��

In particular� the coe�cient is an integer� Therefore� if f is a polynomial with
coe�cients in o� then all the polynomials �

i f
�i� also have coe�cients in o�

On purely algebraic grounds we have a �nite Taylor expansion

f�x� � f�xo� � f ��xo��x 	 xo� �
f ����xo�

�$
�x	 x�� � � � ��

f �m��xo�

m$
�x	 xo�

n

where m is the degree of f and f �i� indicates ith derivative� �If the charac�
teristic is positive� we must write the ratios f �i��i$ in a more sophisticated
manner�� The remarks just made assure that f �i��i$ has coe�cients in o�

Let xo be as in the statement of the proposition� We will prove by induction
that

� xn lies in o
� jf ��xn�j � �
� jf�xn�j � jf�xo�j�n
First� using a Taylor expansion for f �� we have

f ��xn	�� � f ��xn� � f ����xn��
	f�xn�
f ��xn�

� � � � ��
f �m����xn�

�m	 ��$
�
	f�xn�
f ��xn�

�m��

The �rst summand is a unit� while all the other summands have norm strictly
less than �� Thus� by the sharp ultrametric inequality� we conclude that
jf ��xn�j � ��

Then� if xn is in o� since f�xn� is unavoidably in o� it surely must be that
xn	� is again in o�

By the Taylor expansion for f itself�

f�xn	�� � f�xn��f
��xn��

	f�xn�
f ��xn�

��
f ����xn�

�$
�
	f�xn�
f ��xn�

���� � ��
f �n��xn�

n$
�
	f�xn�
f ��xn�

�n

which cancels to give

f�xn	�� �
f ����xn�

�$
�
	f�xn�
f ��xn�

�� � � � ��
f �m��xn�

m$
�
	f�xn�
f ��xn�

�m

Again using the fact that f �i��i$ has coe�cients in o� we have

jf�xn	��j � jf�xn�j�
This proves the induction� �
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���� Lattices
The notion of lattice which is relevant in this context is at some remove

from more elementary and �physical	 concepts to which this word commonly
refers� although the present version has its origins in the elementary ones�

Let k be the �eld of fractions of a discrete valuation ring o� Let V be a
�nite�dimensional vectorspace over k� An o�submodule ' of V is an o�lattice
if

� ' is �nitely�generated
� ' contains a k�basis for V

For example� for any k�basis e�� � � � � en for V � the o�module

' � oe� � oe� � � � �� oen

is certainly an o�lattice� In fact� every lattice is of this form


Proposition� Every o�lattice ' in an n�dimensional k�vectorspace V is
of the form

' � oe� � oe� � � � �� oen

for some k�basis e�� � � � � en for V �

Proof� Let e�� � � � � eN be a minimal generating set for the o�module '�
�The existence of a minimal generating set follows from the �nite generation��
We will show that these elements are linearly independent over k� Let

� � ��e� � � � �� �NeN

be a relation� with �i � k not all zero� By renumbering if necessary� we may
assume that ord�� is minimal among all the ord�i� Then� dividing through
by ��� we have

m� � �	������ �m� � � � �� �	�N���� �mN

with all coe�cients �i��� having non�negative ord � so lying in o� by the
previous section�

Since ' is required to contain a k�basis for V � the elements of which would
be expressible as o�linear combinations of e�� � � � � eN � it must be that the
e�� � � � � eN themselves form a k�basis� �

���� Some topology
Let k be a �eld with a discrete valuation ord �with associated norm j j� on

it� Let o be the valuation ring� with maximal idealm� We give k the topology
from the metric

d�x� y� � jx	 yj
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associated to the valuation� And assume that k is locally compact� �This
entails that k is complete� as well�� Some features of this topology may be a
little unexpected


Proposition� The valuation ring o� the group of units o
� and the maxi�
mal ideal m are all simultaneously open and closed as subsets of k�

Proof� Let jxj � c�ordx be the norm attached to the ord�function ord on
k� Then

o � fx � k 
 jxj � cg
which shows that it is open� while at the same time its complement is

k 	 o � fx � k 
 jxj � �g
which shows that o is closed as well� A nearly identical argument applies to
the maximal ideal� Similarly�

o
 � fx � k 

�

c
� jxj � cg

so o
 is open� and its complement has a similar description� so o
 is closed
as well� �

We would also give the k�vectorspace kn the product topology� which is
readily seen to be equivalent to the sup�norm topology de�ned via

j�x�� � � � � xn�j � sup
i
jxij

and the metric

d�x� y� � jx	 yj
Let GL�n� k� be the group of invertible n�by�n matrices with entries in k�

We will specify a natural topology on GL�n� k� so that the matrix multipli�
cation of vectors

GL�n� k�� kn � kn

is continuous� so that matrix multiplication itself is continuous� and so that
taking the inverse of a matrix is a continuous operation�

The most convenient description of the topology on GL�n� k� is as follows�
LetM�n� be the n��dimensional k�vectorspace of n�by�nmatrices with entries
in k� with the product topology� Map

f 
 GL�n� k��M�n��M�n�

by

f�g� � �g� g���

and giveGL�n� k� the subspace topology from the product topology onM�n��
M�n�� On the other hand� it will be convenient to know


Proposition� For �xed g � GL�n� k�� another element h in GL�n� k� is
close to g if and only if all the entries of h are close to those of g�
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Proof� The �only if	 part follows from the de�nition of the topology on
GL�n� k��� Note that this statement is not made uniformly in g� but only
pointwise in g�

De�ne another sup�norm� now on matrices� by

jgj � sup
i�j
jgij j

where gij is the �i� j�th entry of g� The associated metric topology on the
space M�n� of n�by�n matrices is the same as the product topology on M�n��

We �rst have a sub�multiplicativity property


jghj � sup
i��
j
X
j

gijhj�j � sup
i��

sup
j
jgijhj�j � sup

i�j�i��j�
jgij j � jhi�j� j � jgj � jhj

where use is made of the ultrametric inequality� This computation proves
that matrix multiplication is continuous is this topology� A nearly identical
computation proves that matrix multiplication of vectors are continuous in
this topology�

What we must show is that� for �xed g� given 	 � � there is � so that
jg 	 hj � � implies that jg�� 	 h��j � 	�

Let h � g 	*� Then

h�� � �g 	*��� � ���	*g���g���

� g���� � �*g��� � �*g���� � �*g���� � � � � �

if the latter series converges� This matrix�valued in�nite series is entry�wise
convergent in k if

j*g��j � �

In that case� also

j�*g��� � �*g���� � �*g���� � � � � j � j*g��j
by the strict ultrametric inequality� Assuming j*g��j � ��

h�� 	 g�� � g����*g��� � �*g���� � �*g���� � � � � �

gives� by previous remarks and by the submultiplicativity�

jh�� 	 g��j � jg��j � j*g��j � jg��j � j*j � jg��j
This gives the desired continuity� �

The �standard� Iwahori subgroup B of GL�n� k� is the set of matrices
with

� Above�diagonal entries in o
� Diagonal entries in o


� Below�diagonal entries in m
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Proposition� The Iwahori subgroup really is a subgroup� and for k locally
compact� it is compact and open inside GL�n� k��

Proof� The usual formula for the inverse of a matrix� as generally useless
as it be� does su�ce in this case to prove that the inverse of a matrix in B
is again in B� More directly� the closure under matrix multiplication is easy
to check� Note that the condition that the below�diagonal entries are in m is
used in proving closure under matrix multiplication �and taking inverse��

Let gij be the �i� j�th entry of a matrix g� In M�n�� the set �B of matrices
with diagonal entries units� above�diagonal entries in o� and below�diagonal
entries in m� is a compact and open set� from the analogous observations on
k itself� just above� Thus� the product of two copies of �B inside M�n��M�n�
is compact and open in the product topology� Thus� the intersection B of
�B � �B with the copy f�GL�n� k�� of GL�n� k� is compact and open in B� �

���	 Iwahori decomposition for GL�n�k�

The decomposition result proven in this section for the Iwahori subgroup
of GL�n� k� has no analogue in more classical contexts�

As in the last section� B is the Iwahori subgroup of GL�n� k� consisting
of matrices whose diagonal entries are units in the valuation ring o� whose
above�diagonal entries are in o� and whose below�diagonal entries are in the
maximal ideal m of o�

Let N be the subgroup of GL�n� k� of upper�triangular matrices with �	s on
the diagonal and �	s below the diagonal� Let Nopp be the subgroup of lower�
triangular matrices with �	s on the diagonal and �	s above the diagonal� Let
M be the subgroup of diagonal matrices in GL�n� k�� It bears emphasizing
that these are subgroups� and not merely subsets�

Theorem �Iwahori decomposition�� Given an element b of the Iwahori
subgroup B of GL�n� k�� there are uniquely�determined u� � Nopp � B� m �
M �B� and u � N � B so that

b � u� �m � u
That is� B decomposes as

B � �Nopp �B� � �M � B� � �N � B�

and uniquely so�

Proof� We do an induction on the size n of the matrices involved� Speci��
cally� we claim that for a given b � B� we can �nd u� � Nopp�B and u � N�B
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so that u� � b � u is of the form

u� � b � u �

�
BBB�
� � � � � �
� � � � � �
���

� � �

� � � � � �

�
CCCA

Indeed� if

b �

�
BBB�

b�� b�� � � � b�n

b�� � � � � �
���

� � �

bn� � � � � �

�
CCCA

then take

u� �

�
BBBBB�

� � � � � �
	b��

�� b�� � � � � � �
	b��

�� b�� � �
���

���
� � �

	b��bn� � �

�
CCCCCA

and

u �

�
BBBBBB�

� 	b��
�� b�� 	b��

�� b�� � � � 	b��
�� b�n

� � � � � � �
��� � �

���
� � �

� � �

�
CCCCCCA

That is� u� di�ers from the identity matrix only in its left column� where
the entries are designed to cancel the corresponding entries of b upon left
multiplication by u�� Likewise� u di�ers from the identity matrix only in its
�rst row� where the entries are designed to cancel the corresponding entries
of b upon right multiplication by u� All the entries of u and u� are in o since
b�� is a unit in o� It is immediate that u� � b � u has the desired form�

The induction proceeds by viewing the lower right �n	 ���by��n	 �� block
of an n�by�n matrix as a matrix in its own right� recalling that matrix multi�
plication behaves well with respect to blocks
�

A �
� D

�
�
�

A� �
� D�

�
�

�
AA� �
� DD�

�
where the �	s denote appropriately�shaped blocks of zeros� A and A� are square
matrices of the same size� and D and D� are square matrices of the same size�

�
Remarks� Note that neither completeness nor local compactness played

a role in this argument�
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��� A�ne Constructions for SL�n


� Construction of the a�ne building for SL�V�
� Veri�cation of the building axioms
� Action of SL�V� on the a�ne building
� The Iwahori subgroup �B	
� The maximal apartment system

Here we give a construction which is the simplest example of an a�ne
building and BN�pair� The material objects involved in the construction were
appreciated long before their roles in an a�ne building construction were
understood at all�

The a�ne building constructed here is attached to a vectorspace V over
the fraction �eld k of a discrete valuation ring o� For the �ner results it
will be assumed that the discrete valuation ring is complete �with respect to
the metric attached to the valuation�� and probably locally compact� These
hypotheses certainly hold in the p�adic case� which is the case of fundamental
practical importance�

The corresponding group which will act nicely on the building is G �
SL�V �� the group of k�linear automorphisms of V which have determinant ��

We will see that the apartments are Coxeter complexes attached to the
Coxeter system �W�S� of type �An�� described earlier ������ The fact that
this truly is a�ne� veri�ed in terms of the Coxeter data criterion ������� was
done in ������� so all we need to do here is to check that the Coxeter data is
as claimed�

This standard notation does suggest� among other things� that omission of
the generator so from the Coxeter system leaves us with a group of type An���
that is� a symmetric group on n things� From looking at the Coxeter data�
this is indeed the case� And thus the spherical building at in�nity is of type
An��� which is to say that the Coxeter complexes which are the apartments
are of that type�

���� Construction of the a
ne building for SL�V�

Here we construct the simplest example of a thick a�ne building� It hap�
pens that the apartment system we describe here is the maximal one if the
discrete valuation ring involved is complete�

As in every other case� the procedure is that we describe an incidence
geometry from which we obtain a 
ag complex which we verify is a thick
building by checking the axioms� Once we identify the Coxeter data as being
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�An��� computations already done ������ assure that the building is indeed
a�ne�

Let o be a discrete valuation ring with fraction �eld k and unique non�zero
prime idealm� Let � � o�m be the residue �eld� Let � be a local parameter�
that is� a generator for m�

Let V be an n�dimensional vectorspace over k� Take G � SL�V �� the k�
linear automorphisms of V which act trivially on the nth exterior power of V
�that is� which have determinant one� as matrices��

A homothety f 
 V � V is a k�linear map v � �v for some � � k
�
That is� a homothety is a non�zero scalar multiplication� Two �o��lattices
'�'� are homothetic if there is a homothety v � �v so that �' � '��
Being homothetic is an equivalence relation! we write �'� for the homothety
�equivalence� class of a lattice '�

Take the set of vertices & for our incidence geometry to be the set of
homothety classes of lattices in V � We have an incidence relation � on
& de�ned as follows
 write � � � for �� � � & if there are x � � and y � � so
that y � x and on the quotient o�module x�y we have m � x�y � �� �Thus�
the quotient has a natural structure of vectorspace over the residue �eld ���

Let	s check that this relation really is symmetric
 with representatives x� y
as just above� let y� �my� Then

mx � y� � x

where mx � y� follows from x � y by multiplying by m�
It is important to realize that if two homothety classes �L�� �M � are incident

then any two representatives L�M have the property that either L � M or
L � M � To see this� �rst take representatives L�M so that mM � L � M �
Let m�n be arbitrary integers� Certainly if m � n then

mmL �mmM �mnM

On the other hand� if m � n then n	 � � m and

mnM �mn���mM� �mn��L �mmL

Thus� one or the other of the two inclusions must hold� Things are not this
simple for arbitrary homothety classes�

As de�ned earlier� the associated 
ag complex X is the simplicial complex
with vertices & and simplices which are mutually incident subsets of &� that
is� subsets � of & so that� for all x� y � �� x � y�

In the present context� a frame is an unordered set 
�� � � � � 
n of lines
�one�dimensional k�subspaces� in V so that


� � � � �� 
n � V

We take a set A of subcomplexes indexed by frames F � f
�� � � � � 
ng in V
as follows
 the associated apartment A � AF � A consists of all simplices �
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with vertices �'� which are homothety classes of lattices with representative
' expressible as

' � L� � � � �� Ln

where Li is a lattice in the line �one�dimensional vector space� 
i�

It will be very convenient to know that the maximal simplices in the sim�
plicial complex X are in bijection with ascending chains of lattices

� � � � '�� � '� � '� � � � � � 'n�� � 'n � � � �

�indexed by integers� where there is the periodicity

'i	n �m'i

for all indices i� and where for all i the quotient 'i	��'i is annihilated by
m and is a one�dimensional ��vectorspace� This corresponds to the maximal
mutually incident set

�'��� �'��� � � � � �'n���

of homothety classes of lattices�
Indeed� we claim that if �x��� � � � � �xn� are mutually incident then� re�ordering

�renumbering� if necessarys� there are representatives x�� � � � � xn so that

� � � �mxn � x� � x� � x� � � � � � xn �m��x� � � � �

This is proven by induction on n� Suppose that we already have

� � � �mxn � x� � x� � x� � � � � � x� �m��x� � � � �

and are given another homothety class �y� incident to all the �xi�� Choose a
representative y for this class so that

my � x� � y

invoking the fact that y � x��
If it should happen that my � x�� then we are done� since

� � � �my � x� � � � � � x� � y � � � �

is the desired con�guration�
Otherwise� there is a minimal index i so that my � xi� And i � � since

my � x�� Since �xi��� and �y� are incident� it follows that xi�� � my� But
then we replace the representative y by the better representative my and the
con�guration

� � � �mx� � x� � � � � � xi�� �my � xi � � � � � x� �m��x� � � � �

is as desired�

It is easy to go in the other direction� from such an in�nite periodic �ag
to a maximal mutually incident collection of homothety classes� Thus� we
have proven that maximal families of mutually incident homothety classes
are essentially the same things as in�nite periodic �ags�
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���� Veri�cation of the building axioms
Keep all the notation of the previous section�

Given a maximal simplex C� the ith facet Fi is obtained by omitting 'i
and also omitting all 'i	�n for � � Z� Any other maximal simplex with facet
Fi is obtained by choice of lattices '�i	�n meeting three conditions


'�i	�n �m�'�i

and

'i��	�n � '�i	�n � 'i	�	�n

and where '�i�'i�� is a one�dimensional subspace of the two�dimensional �
vectorspace 'i	��'i��

Let A be the apartment corresponding to the frame 
�� � � � � 
n� Let C be
a maximal simplex in A corresponding to a periodic �ag � � � � 'i � � � � of
lattices� as above� For a �xed index i� let Fi be the facet of C corresponding
to omission of the lattices 'i	�n� As just noted� the question of �nding all
other maximal simplices in A with facet Fi is just the question of �nding
other families '�i	�n with which to replace 'i	�n� Since 'i	��'i�� is two�
dimensional over �� there are exactly two indices j�� j� so that 
j� �'i	� and

j� � 'i	� map surjectively to 'i	��'i��� Then between the two lattices

'i�� � �
j� � 'i	�� 'i�� � �
j� � 'i	��

one must be 'i� and the other is the unique other candidate '�i to replace 'i�
Thus� if the apartment A is a chamber complex then it is thin�

Likewise� it is easy to see the thickness of the building
 in the building� the
choices for replacement '�i are in bijection with one�dimensional ��subspaces
of the two�dimensional ��vectorspace 'i	��'i��� other than 'i�'i��� If � is
in�nite we are surely done� If � is �nite with cardinality q� then there are

�q� 	 ����q 	 �� � q � � � �

maximal simplices with facet Fi� This proves the thickness of the whole
building �granting that it is a chamber complex��

Now we show that the apartment A is a chamber complex by showing that
there is a gallery from C to any other maximal simplex� To see this� we
consider the e�ect of �re�ecting	 across the facets of maximal simplices�

Choose lattices Mi in 
i so that

'o � M� � � � ��Mn

'� � m��M� �M� � � � ��Mn

� � �
'i � m���M� � � � ��Mi� �Mi	� � � � ��Mn

� � �
'n�� � m���M� � � � ��Mn��� �Mn
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where the lattices 'i are those appearing in the �ag describing the maximal
simplex C� Note that the set of vertices of simplices in A consists of homothety
classes of lattices which can be expressed as

mm�M� � � � ��mmnMn

for some n�tuple of integers �m�� � � � �mn��
As above� let Fi be the facet of C obtained by omitting 'i	�n� As in the

discussion of thin�ness and thick�ness above� for � � i � n� the unique other
maximal simplex with facet Fi is obtained by replacing

'i �m���M� � � � ��Mi� �Mi	� � � � ��Mn

by

'�i �m���M� � � � ��Mi��� �Mi �m��Mi	� � � � ��Mn

That is� re
ecting through Fi has the e�ect of reversing the roles of Mi and
Mi	� �for � � i � n��

If i � �� then the analogous conclusion is that re�ection through Fi � Fo
causes M�� � � � �Mn to be replaced by M �

�� � � � �M
�
n with

M �
� �mMn

M �
n �m��M�

M �
i � M �

i for � � i � n

As noted in our prior discussion of the spherical building for GL�n� over a
�eld� it is elementary that the collection of interchanges of i and i�� generate
the group of permutations of �� �� �� � � � � n� Thus� by such interchanges� we
can go from the ordering

M�� � � � �Mn

to the ordering

M�� � � � � �Mi� � � � �Mn�Mi

that is� move a chosen Mi to the right end of this ordering� The re�ection
through Fo turns this into the ordering

mMi�M�� � � � � �Mi� � � � �Mn�m
��M�

The adjacent interchanges can be used to permute this back to

m��M��M�� � � � �Mi���mMi�Mi	�� � � � �Mn

By a composition of such re�ections� we can replace any Mi �with i � ��
by mmiMi� at the cost of replacing M� by m�miM�� We can then arbitrarily
permute the resulting lattices� by use of the adjacent interchanges� Up to
homothety� such manipulations can give an arbitrary �ag of lattices� Thus�
the apartments are �thin� chamber complexes�

Next� we will prove that any two maximal simplices lie inside a common
apartment� �In light of the previous paragraph� this will also prove that the
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whole building really is a chamber complex�� Let C�D be two chambers
corresponding to periodic �ags

F � �� � � � 'i � � � � �

F � � �� � � � '�i � � � � �

where the successive quotients are one�dimensional ��vectorspaces� as above�
The �ltration of V given by F � gives a �ltration of each quotient 'i	��'i at�

tached to F � permitting application of a Jordan�Holder�type argument nearly
identical to the argument used for the spherical construction for GL�n�
 that
is For each i� we have a �ltration of 'i�'i�� given by the '�j 


� � � � �'i � '�j� � 'i��

'i��
� � � �

For all indices i� j we have

'i
'i��

�! �'i � '�j� � 'i��

'i��

onto� �'i � '�j� � 'i��

'i�� � �'i � '�j���
� 'i � '�j

�'i�� � '�j� � �'i � '�j���

The space 'i�'i�� is one�dimensional over �� so for given i there is a �rst
index j for which the quotient

�'i � '�j� � 'i��

'i��

is one�dimensional over �� With this j� we claim that

'i � '�j�� � 'i��

If not� then

'i � 'i�� � �'i � '�j���

since the dimension of 'i�'i�� is one� But by its de�nition� j is the smallest
among indices � so that

'i � 'i�� � �'i � '���

Thus� the claim is proven�
Thus� given i� there is exactly one index j for which

'i � '�j
�'i�� � '�j� � �'i � '�j���

is one�dimensional� The latter expression is symmetrical in i and j� so there is
a permutation � of the set of integers so that this expression is one�dimensional
only if j � ��i� and otherwise is ��

For some maximal index io� for all i � io we have '�i � 'o� since for all
indices m we have the periodicity '�m�n � m'�m� The �ag F has the same
periodicity property 'm�n � m'm� Requiring preservation of this periodic�
ity� the permutation � is completely determined by ����� ����� � � � � ��n	 ���
which must lie among io� io � �� � � � � io � n	 ��
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At this point it is possible to give a frame specifying an apartment con�
taining both chambers� as follows
 For i � �� �� � � � � n 	 � let Mi be a free
rank�one o�module in 'i �'���i� which maps onto the ��one�dimensional quo�

tients� Then put


i � kMi

The unordered set of lines 
�� � � � � 
n is the desired frame� Thus� we have ver�
i�ed one building axiom� that any two chambers lie in a common apartment�

Also� since we have proven that the �alleged� apartments really are cham�
ber complexes� we have proven that the whole complex really is a chamber
complex� that is� any two maximal simplices are connected by a gallery�

Last� we verify the other building axiom
 given a simplex x and a cham�
ber C both lying in two apartments A�B� show that there is an isomorphism
B � A �xing both x and C pointwise� We will in fact give the map by giving a
bijection between rank�one o�modules describing the respective frames� possi�
bly changing by homothety� This surely would give a face�relation�preserving
bijection between the simplices� And� as in all other examples� it turns out to
be simpler to prove the apparently stronger assertion that� given two apart�
ments A�B containing a chamber C� there is an isomorphism f 
 B � A
�xing A �B pointwise�

Let F � f
�� � � � � 
ng and G � f��� � � � � �ng be unordered lists of lines
specifying the apartments A�B� respectively� Without loss of generality� we
can renumber so that the chamber C corresponds to orderings

�M�� � � � �Mn� and �N�� � � � � Nn�

where Mi� Ni are rank�one o�modules inside 
i� �i� respectively� That is� the
lattice homothety classes occurring as vertices of C are

�'i� � �m���M� � � � ��Mi� �Mi	� � � � ��Mn� �

� �m���N� � � � ��Ni� �Ni	� � � � ��Nn�

Since these homothety classes must be the same for all indices i� it is easy to
see that �changing by a homothety� we can suppose that

'i �m���M� � � � ��Mi� �Mi	� � � � ��Mn

�m���N� � � � ��Ni� �Ni	� � � � ��Nn

Consider the map

f 
 B � A

given on lattices by

mm�M� � � � ��mmnMn �mm�N� � � � ��mmnNn

for any integers m�� � � � �mn� By its nature� this map respects homothety
classes� as required�

To show that f is the identity on A � B it su�ces to show that it is the
identity on all ��simplices in the intersection� If a ��simplex �x� lies in A � B
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then �x� is a homothety class of lattices which has a representative x which
can be written as

x �mm�M� � � � ��mmnMn

and also as

x �m��N� � � � ��m�nNn

We will show that mi � �i for all indices i� thereby certainly assuring that
all of A � B is �xed pointwise by f �

Let io be the largest index so that mio � minfmig� and let jo be the largest
index so that �jo � minf�jg� On onte hand� if mio � �jo � then

�mm�M� � � � ��mmnMn��m
�jo'o

requires at least one generator as o�module� but� on the other hand�

�m��N� � � � ��m�nNn��m
�jo'o � �

so needs zero generators as o�module� contradicting the hypothesis that these
two modules are simply di�erent expressions for x�m�jo'o� Thus� by sym�
metry� it must be that mio � �jo �

Further� to show that io � jo� suppose that io � jo� and consider

x�mmio	�'io

Viewed in the Mi coordinates� this quotient module is �� that is� has zero
generators� Viewed in the Nj coordinates� this quotient needs at least one
generator� contradiction� Thus� io � jo�

This is the beginning of an induction which proves that mi � �i for all
indices i� That is� f is the identity map on A � B� This completes the proof
that we have constructed a building�

Review of this discussion makes clear that the Coxeter data is as indicated
at the beginning of this section
 Let si be the re�ection through the ith facet
Fi� with i � �� �� �� � � � � n 	 �� Designate a chamber in an apartment by an
ordered set �M�� � � � �Mn� of free rank�one o�modules in V so that the sum
spans V over k�

If n � �� then in the notation above�

�M��M��
so� �mM��m

��M��
s�� �m��M��mM��

by our earlier computations� Thus� s�so is of in�nite order�

If n � � and i	 j is not �� modulo n� then si and sj certainly commute�
If � � i � n	 � and j � i� �� then

�� � � �Mi�Mi	��Mi	�� � � � �
si� �� � � �Mi	��Mi�Mi	�� � � � �

si��� �� � � �Mi	��Mi	��Mi� � � � �

by earlier computations� Thus� si	�si is of order �� as asserted at the begin�
ning of this section�



��� Garrett� ���� A�ne Constructions for SL�n��

Thus� not only have we veri�ed that this construction gives a thick build�
ing� but we also have determined the Coxeter data so as to con�rm �in light
of earlier computations for our seven families of Coxeter systems� that this
system is a�ne�

���� The action of SL�V� on the a
ne building
Now we check that the natural group action of SL�V � on the �a�ne� build�

ing just constructed is type�preserving and strongly transitive� Thus� we ob�
tain an a�ne BN�pair which is discussed in the next subsection�

Remarks� In fact� although GL�V � will not preserve labels� the sub�
group G	 of GL�V � consisting of automorphisms whose determinant has ord
divisible by n� the dimension� does preserve the labeling� �As usual the ord
function is de�ned by ord� � n where �o �mn�

As in the earlier discussions of examples of spherical buildings� as soon as
we have a congenial notation the proofs become easy�

As in the case of the spherical buildings earlier� it is convenient to use a
concrete labeling� as follows� Fix one vertex �'o� of C� where 'o is a lattice
and �'o� is its homothety class� Given any other homothety class �'�� we
may choose a representative ' so that 'o � '� The quotient '�'o is a
�nitely�generated torsion o�module isomorphic to

o�md� 
 � � �
 o�mdn

with some non�negative integers d� � � � � � dn� De�ne a labeling by

���'�� �
X
i

di mod n

This function � certainly gives a labeling of vertices� and thereby a labeling
of simplices� Now the action of elements of G � SL�V � actually preserves not
only �� but in fact preserves

P
i di without reducing modulo n� Thus� the

action of G � SL�V � preserves this labeling�

Remarks� At this point it is also clear that the funny subgroup G	

of GL�V � consisting of those automorphisms with determinant having ord
divisible by n is the label�preserving subgroup of GL�V �� Proving the strong
transitivity for G � SL�V � certainly su�ces to prove it for this G	�

The ordinary transitivity of the group on apartments is straightforward

apartments are designated by unordered n�tuples �frames� F � f
� � � � � 
ng
of lines in V so that V �

P

i� Certainly SL�V � is transitive on these� as

was already used in the discussion of the spherical examples�
We must check that the stabilizer of an apartment acts transitively on the

set of chambers within that apartment�
The stabilizer N of an apartment A speci�ed by a frame

F � f
�� � � � � 
ng
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is the group of linear maps which stabilize the set of lines 
i making up
the frame� Thus� the stabilizer N certainly includes linear maps to give
arbitrary permutations of the lines 
�� � � � � 
n� Further� for any n�tuple � �
���� � � � � �n� of elements of k
 so that ,i �i � �� we have the map g � g� �
SL�V � given by multiplication by �i on 
i�

A chamber in an apartment can be described by a �periodic� �ag

� � � � 'o � '� � � � � � 'n�� � � � �

of lattices 'i in V � where� possibly renumbering the 
i�

'o �M� � � � ��Mn

and generally

'i �m���M� � � � ��Mi��� �Mi � � � ��Mn

and there is the periodicity
'i�n �m'i

Keep in mind that we must allow ambiguity by homotheties� and that we can
let 'o have whatever type we choose�

The action of g � g� in this notation is

g��M�� � � � �Mn� � ���M�� � � � � �nMn�

And arbitrary permutations of the lines can be achieved by determinant�one
matrices� Thus� with the type restriction and allowing for homotheties� we
have the desired strong transitivity�

���� The Iwahori subgroup �B�
Now we want to identify the Iwahori subgroup �B	� de�ned as being the

stabilizer of a chamber in the a�ne building�
We will see that� with suitable choices and coordinates� the Iwahori sub�

group B is the collection of matrices in SL�n�o� which modulo m are upper�
triangular� That is� if gi�j is the �i� j�th entry of an element g � SL�n�o��
then we require that

gi�j � o for i � j

gi�j �m for i � j

�Of course� for such a matrix to be in SL�n�o� it is necessary that the diagonal
entries lie in the group of units o
 of o�� We will make choices of coordinates
and of chamber in the a�ne building� so that the stabilizer is as indicated�

Let V � kn� and let e�� � � � � en be the usual k�basis

e� �

�
BBBB�

�
�
�
� � �
�

�
CCCCA e� �

�
BBBB�

�
�
�
� � �
�

�
CCCCA e� �

�
BBBB�

�
�
�
� � �
�

�
CCCCA � � � en �

�
BBBB�

�
� � �
�
�
�

�
CCCCA



��
 Garrett� ���� A�ne Constructions for SL�n��

Take lattices
Lo � oe� � � � �� oen

L� �m��e� � oe� � � � �� oen

L� �m���oe� � oe�� � oe� � � � �� oen

� � �

Ln�� �m���oe� � � � �� oen��� � oen

We obtain a periodic �ag of lattices as before by taking

Li�n� �m�Li

The stabilizer of this �ag of lattices is� by the construction� the subgroup
B stabilizing a chamber in the a�ne building� To see what B is� observe
�rst that the stabilizer of Lo is the group SL�n�o� of all matrices in SL�n�
having entries in o� using the ei coordinates to write matrices� And this group
SL�n�o� also stabilizes m��Lo�

All the quotients Li�Lo for � � i � n are vectorspaces over the residue
�eld � � o�m� and are ��subspaces of m��Lo�Lo� The �ag

L��Lo� L��Lo� L��Lo� � � � � Ln���Lo

is a maximal �ag of ��subspaces of �m��Lo��Lo� Using the images of mei
as ��basis for this space� this �ag is none other than the standard �ag of
subspaces in that vectorspace�

Observe that if a matrix g � SL�n�o� has entries which di�er by elements
of the ideal m from the entries of the identity matrix� then for v �m��Lo we
have

g�v � Lo� � �gv� � Lo

To see this� write g � � �mT with T a matrix having entries in o� Then

g�v � Lo� � �� �mT �v � gLo � v �mTv � Lo �

� v �mT �m��Lo� � Lo � v � TLo � Lo � v � Lo

That is� matrices of this form act trivially on the quotient �m��Lo��Lo�

There is a little hazard here� since the chambers are de�ned by homothety
classes of lattices� not just by the lattices themselves� Thus� elements g �
SL�n� k� which map Lo to any lattice m�Lo �in the homothety class of Lo�
certainly stabilize the homothety class �Lo� of Lo� But the determinant of
such g would have ord equal to n�� For g to be in SL�n� k� it must be that
� � �� Thus� after all� if g � SL�n� k� stabilizes the homothety class of a
lattice� then g actually stabilizes the lattice itself�

Thus� it is clear that the Iwahori subgroup B is the collection of matrices
in SL�n�o� which modulo m are upper�triangular elements of SL�n� ���
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���� The maximal apartment system
In order to apply results of ����� and chapter �� which use the spherical

building at in�nity� it is necessary to know that SL�V � acts strongly tran�
sitively with respect to the maximal apartment system� This is not so for
arbitrary discrete valuation rings o


Theorem� If the discrete valuation ring o is complete and its fraction
�eld k is locally compact then we have strong transitivity of SL�V � with
reference to the maximal apartment system in the thick a�ne building X
constructed above�

And as noted in ������ the proposition has a corollary bearing upon the
apartment system constructed above


Corollary� If k is locally compact then the apartment system A con�
structed above is the maximal one�

Proof of corollary� By its de�nition� the strong transitivity implies ordinary
transitivity on the collection of apartments� �
Remarks� The truth of this corollary is certainly not clear a priori� and

does indeed depend upon completeness of the discrete valuation ring� which
was in no way used up to this point�

Proof of proposition� In fact this result does not depend much upon the
particulars of this situation� Rather� quite generally� if the Iwahori subgroup
�B	 in an a�ne BN�pair is compact and open in a group Go acting strongly
transitively on an a�ne building �and preserving types�� then Go is strongly
transitive with the maximal apartment system �������

In terms of the previous section� B is the intersection of SL�n� k� with the
subset U of the space of n�by�n matrices described as follows� Let the �i� j�th

entry of a matrix x be xi�j � Then consider the conditions

ord�xi�j� � 	� for i � j

ord�xi�j� � � for i � j

where as usual ord � n on mn� This describes U as an open set� Since
B � U � SL�n� k�� this shows that B is open�

The open�ness of B implies that any translate Bw� of B by w� � G is open�
so any union BwB of sets Bw� is open� By the Bruhat�Tits decomposition�
G is a disjoint union of sets of the form BwB� Thus� the complement of B is
open� so B is closed�

Then the compactness of the closed set B follows from the local compact�
ness of SL�n� k�� which follows from the local compactness of V � which follows
from the assumed local compactness of k because V is �nite�dimensional� �
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��� Construction of A�ne Buildings
for Isometry Groups

� A�ne buildings for alternating spaces
� The double ori�amme complex
� The �a�ne� single ori�amme complex
� Veri�cation of the building axioms
� Group actions on the buildings
� The maximal apartment systems

The buildings constructed here are attached to non�degenerate alternat�
ing or quadratic forms on vectorspaces over the fraction �eld k of a discrete
valuation ring o� For the �ner results it must be assumed that the discrete
valuation ring is locally compact with respect to the metric associated to the
valuation� Just as for SL�V � ��
���� the notion of o�lattice ������ plays a cen�
tral role� comparable to the role played by subspaces and isotropic subspaces
in construction of spherical buildings�

In the three families of examples here� the apartments are Coxeter com�
plexes attached to the Coxeter systems �W�S� of types �Bn� �Cn� and �Dn ������
The veri�cation that these buildings truly are a�ne� via the Coxeter data cri�
terion ������� was done in ������� a�neness would follow from checking that
in each case the Coxeter data is as claimed�

The �rst construction �type �Cn�� for alternating spaces� is a synthesis of
ideas from the spherical construction for isometry groups� together with ideas
from the a�ne construction for �An in the last chapter� By contrast� the
second family �type �Dn�� for quadratic spaces which are orthogonal sums
of hyperbolic planes� requires use of the ori�amme trick ������ twice� The

third example �type �Bn�� encompassing most other quadratic spaces� combines

elements of both the a�ne �Cn and the double ori�amme complex�

After the construction� viewpoints and methods already illustrated in the
spherical examples and for the a�ne �An su�ce to verify that the complexes
are buildings as claimed� and that the groups act strongly transitively� By this
point� the detailed descriptions of the buildings suggest most of the details
of this veri�cation� Thus� by now the main point is the construction� after
which the rest is just mopping�up�

In all these cases the Iwahori subgroup �B	� by de�nition the stabilizer of
a chamber� has a simple description in suitable coordinates
 it consists of
matrices in the group which have entries in o and which� reduced modulo
m� lie in a minimal parabolic subgroup of the corresponding alternating or
orthogonal group over the residue �eld�
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���	 A
ne buildings for alternating spaces
Here we construct a �thick� a�ne building for a non�degenerate alternating

space V of dimension �n over the fraction �eld k of a discrete valuation ring
o�

As in every other example� the procedure is that we describe an incidence
geometry from which we obtain a 
ag complex which one veri�es is a thick
building by checking the axioms� Once the Coxeter data is identi�ed as �Cn�
the computations already done assure that the building is indeed a�ne �������

Let m be the unique non�zero prime ideal m in o� Let � � o�m be the
residue �eld� Let V be given a non�degenerate alternating form h� i ������

We need the notion of primitive o�lattice or simply primitive lattice
for the form h� i� Say that a lattice ' inside V is primitive if h� i is o�
valued on ' � '� and so that h� i�modulo�m is a non�degenerate ��valued
alternating form on the ��vectorspace '�m'� The existence of primitive
lattices is straightforward
 let e�� f�� e�� f�� � � � � en� fn be n hyperbolic pairs
so that V is an orthogonal sum

V �
M

�kei � kfi�

Then

' �
X
i

oei � ofi

is readily seen to be a primitive lattice�

The collection & of vertices for our incidence geometry is the set of ho�
mothety classes �'� of lattices ' in V which possess a representative ' with
the following property
 �rst� there must be a lattice 'o so that m��'o is a
primitive lattice� and so that

'o � ' �m��'o

and so that

h'�'i "m

where as usual

h'�'i � fhv� v�i 
 v� v� � 'g
The condition on ' can be paraphrased in a helpful form
 it demands that
'�'o be a totally isotropic ��subspace of the ��vectorspacem��'o�'o which
has the non�degenerate ��valued alternating form h� i�mod�m�

De�ne an incidence relation � on & as follows
 write � � �� for �� �� � & if
there are lattices x � � and y � �� and a lattice 'o so thatm��'o is primitive�
so that

'o � x �m��'o

m � 'o � y �m��'o

and also either x � y or y � x�
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As in general ������ the associated 
ag complex X is the simplicial complex
with vertices & and simplices which are mutually incident subsets of &� i�e��
subsets � of & so that� for all x� y � �� x � y�

The apartment system in X is identi�ed as follows� First� a frame is an
unordered n�tuple

f
�
�� 


�
�g� � � � � f
�

n� 

�
ng

of unordered pairs f
�
i � 


�
i g of lines so that

V � �
�
� � 
�

�� � � � �� �
�
n � 
�

n�

and so that

�
�
i � 
�

i �  �
�
j � 
�

j � for i 
� j

and so that each 
�
i � 
�

i is a hyperbolic plane �in the sense of geometric
algebra� ������� �As usual� for two vector subspaces V�� V�� V�  V� means
hx� yi � � for all x � V� and for all y � V���

A vertex �'� lies inside the apartment A speci�ed by the frame

f
�
�� 


�
�g� � � � � f
�

n� 

�
ng

if there are free o�modules M j
i inside 
ji so that

' �
M
i�j

M j
i

for some �hence� every� representative ' in the homothety class�

The maximal simplices are unordered �n� ���tuples

�'o�� �'��� � � � � �'n�

of homothety classes of lattices with representatives 'i so that m��'o is a
primitive lattice� so that

'o � 'i �m��'o for � � i � n

and so that

'��'o � '��'o � � � � � 'n�'o

is a maximal isotropic 
ag of ��subspaces in the alternating ��vectorspace
m��'o�'o with h� i�mod�m�

The maximal simplices are in bijection with ascending chains of lattices

� � � � '�� � 'o � '� � '� � � � � � 'n � 'n	� � '�n�� �
� � � � '�n�� � '�� � '�n � � � �

�indexed by integers� where for a lattice '

'� � fv � V 
 hv� 
i �m� for all 
 � 'g
and where we require

� that m��'o be a primitive lattice
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� the periodicity property

'i	�n �m��'i

for all indices i
�

'��'o � '��'o � � � �'n�'o

is a maximal �ag of totally�isotropic ��spaces inside the non�degenerate
alternating ��vectorspace m��'o�'o

Remarks� The de�nition of x� above would be the same as taking all vec�
tors whose reduction mod m is orthogonal to all vectors in x�mod�m� More
precisely� for any primitive lattice xo such that mxo � x � xo� the quo�
tient x��mxo is the orthogonal complement of x�mxo in the non�degenerate
quadratic space xo�mxo�

���
 The double ori�amme complex
The building constructed here is attached to a non�degenerate quadratic

form h� i on a �n�dimensional vectorspace V over the fraction �eld k of a
discrete valuation ring o� under the further speci�c hypothesis that V is an
orthogonal direct sum of hyperbolic planes �in the geometric algebra sense��
and that n � ��

As in every other example� whether spherical or a�ne� we describe an
incidence geometry from which we obtain a 
ag complex which is a building�

One will see that the apartments are Coxeter complexes attached to the
Coxeter system �W�S� of type �Dn described earlier ����� �for n � ��� The
checking that this Coxeter system truly is a�ne� via the Coxeter data criterion
������� was done in ������� so all that needs to be checked is that the Coxeter
data is as claimed�

Exactly as with the alternating case of the last section� a lattice ' is prim�
itive if h� i is o�valued on '� and if h� i�modulo�m is a non�degenerate ��valued
symmetric bilinear form on the ��vectorspace '�m'� The existence of prim�
itive lattices is as straightforward as in the alternating space case� since as in
that case V is a sum of hyperbolic planes
 let fe�� f�g� fe�� f�g� � � � � fen� fng
be hyperbolic pairs so that V is an orthogonal sum

V �
M

�kei � kfi�

Then

' �
X
i

oei � ofi

is a primitive lattice�

The collection & of vertices for the incidence geometry is the set of ho�
mothety classes �'� of lattices ' in V which possess a representative ' with
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the following property
 �rst� there must be a lattice 'o so that m��'o is
primitive� so that

'o � ' �m��'o

and so that
h'�'i "m

where
h'�'i � fhv� v�i 
 v� v� � 'g

Also� the ��vectorspace '�m' must not be either ��dimensional or �n 	 ���
dimensional� �This is where the restriction n � � enters��

The incidence relation � on & will have the same quirk as did that for the
spherical ori�amme complex ������� by contrast to the spherical construction
for all other isometry groups ������


First� write � � �� for �� �� � & if there are lattices x � � and y � �� and a
lattice 'o so that m��'o is primitive� and so that

'o � x �m��'o

'o � y �m��'o

and also either x � y or y � x�
And� also write � � �� if x � x�m � 'o and y � y�m � 'o are both ��

dimensional or are both n�dimensional� and if all of

x��x � y� y��x � y� �x� y��x �x � y��y

are one�dimensional ��vectorspaces�

As de�ned earlier� as in general� the associated 
ag complex X is the
simplicial complex with vertices & and simplices which are mutually incident
subsets of &� that is� subsets � of & so that x � y for all x� y � ��

The apartment system in X is identi�ed as follows� First� a frame is an
unordered n�tuple

f
�
�� 


�
�g� � � � � f
�

n� 

�
ng

of unordered pairs f
�
i � 


�
i g of isotropic lines so that

V � �
�
� � 
�

�� � � � �� �
�
n � 
�

n�

and so that
�
�

i � 
�
i �  �
�

j � 
�
j � for i 
� j

and so that each 
�
i � 
�

i is a hyperbolic plane �in the sense of geometric
algebra� ������� As usual� for two vector subspaces V�� V�� V�  V� means
hx� yi � � for all x � V� and for all y � V��

A vertex �'� lies inside the apartment speci�ed by such a frame if there are

free rank�one o�modules M j
i inside 
ji so that

' �
X
i j

M j
i

for one �hence� for all� representatives ' for the homothety class�
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The maximal simplices are unordered �n� ���tuples

�'�
o�� �'

�
o�� �'��� �'��� � � � � �'n���� �'n���� �'

�
n�� �'

�
n�

of homothety classes of lattices with representatives so that m��'�
o and

m��'�
o both are primitive lattices� so that

'jo � 'i � 'j
�

n �m��'o for � � i � n	 �

for j� j� � f�� �g� so that
'i�'

j
o

is a j�dimensional totally isotropic ��subspaces in the ��vectorspacem��'jo�'
j
o

with h� i�mod�m for � � i � n	 �� and so that

'j
�

n �'
j
o

is an n�dimensional totally isotropic ��subspaces in the ��vectorspacem��'jo�'
j
o

with h� i�mod�m� �Note that� indeed� the indices � and n	 � are suppressed�
while the indices � and n are �doubled	��

Remarks� As in the case of the spherical ori�amme complex constructed
for such quadratic spaces� the peculiar details are necessary to arrange that
the building be thick�

In a manner just slightly more complicated than that for alternating spaces�
the maximal simplices are in bijection with certain more�or�less �periodic	
in�nite families of lattices� as follows�

We consider in�nite families of lattices in V

� � � � '�
o�'

�
o � '� � '� � � � � � 'n�� � '�

n�'
�
n � 'n	� � '�n�� �

� � � � '�n�� � '�� � '�
�n �m��'�

o�'
�
�n �m��'�

o � � � �

with some further conditions� We require also the periodicity conditions

'i	�n� �m��'i �� � i � n	 � or n� � � �n	 �

'j�n� �m��'jo 'jn	�n� �m��'jn
for j � �� � and for all � � Z� And we require

'�n�i � '�i �� � i � n	 ��

where for a lattice x we use notation

x� � fv � V 
 hx� vi �mg
as was used in the case of alternating spaces�

That is� we have an in�nite �n�periodic chain of lattices with the n��n�rmth

and �n�th items doubled� and the � � �n�th� �n	 �� � �n�th� �n� �� � �n�th�
and ��n	 �� � �n�th items suppressed� with additional conditions as above�
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���� The �a
ne� single ori�amme complex
The building constructed here is attached to a non�degenerate quadratic

form h� i on a vectorspace V over the fraction �eld k of a discrete valuation
ring o� We suppose that V is the orthogonal direct sum of n hyperbolic planes
and an anisotropic subspace of some positive �but otherwise unspeci�ed� di�
mension� �By Witt	s theorem ����� the isometry class of such anisotropic
summand is uniquely determined��

This pointedly excludes the special case� just treated� in which the qua�
dratic space V is an orthogonal direct sum of hyperbolic planes� On the other
hand� we must now postulate the existence of a primitive lattice� unlike the
cases of alternating spaces and �hyperbolic	 quadratic spaces just treated�

The apartments are Coxeter complexes attached to the Coxeter system
�W�S� of type �Bn ������ The a�neness was veri�ed in ������ via the Coxeter
data criterion ������� so all we need to do here is to check that the Coxeter
data is as claimed�

A primitive lattice �if one exists� is a lattice ' in V so that h� i is o�valued
on '� and so that h� i�mod�m is a non�degenerate ��valued quadratic form on
the ��vectorspace '�m'� where � � o�m is the residue �eld�

We assume that primitive lattices exist� In the most important examples
this can be veri�ed directly� For example� the single most important family is
the following� Consider a quadratic form given in coordinates �x�� � � � � xn� y�� � � � � yn� z�
by

x�y� � � � �� xnyn � �z�

with � a unit in o� In this example� the set of points where all the xi� yi� and
z are in o is certainly a lattice� and is primitive�

The other case of general importance is the following� Consider a quadratic
form given in coordinates �x�� � � � � xn� y�� � � � � yn� z� w� by

x�y� � � � �� xnyn � z� 	 �w�

with � a non�square unit in o� The set of points where all the xi� yi� and z� w
are in o is a lattice� and is primitive�

These two examples cover almost all the situations that occur in practice�

The vertices & of the incidence geometry are homothety classes �'� of lat�
tices with representatives ' so that there is a primitive lattice 'o so that

m'o � ' � 'o

and so that
'�m'o

is a totally isotropic ��subspace of the non�degenerate quadratic ��space

'o�m'o
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�with ��valued quadratic form h� i�mod�m�� And we require that the ��
dimension of '�m'o not be ��

De�ne an incidence relation � on & as follows
 two vertices � and �� can
be incident in two ways� First� � � �� if there are lattices x � � and y � ��

and a lattice 'o so that m��'o is primitive� and

'o � x �m��'o

'o � y �m��'o

and also either x � y or y � x� Second� � � �� if there are representatives
x � �� y � �� both of which are primitive lattices� and if all the quotients

x��x � y� y��x � y� �x� y��x �x� y��y

are one�dimensional ��spaces�

As de�ned earlier in general ������ the associated 
ag complex X is the
simplicial complex with vertices & and simplices which are mutually incident
subsets of &� i�e�� subsets � of & so that� for all x� y � �� x � y�

The apartment system in X is identi�ed as follows� First� a frame is an
unordered n�tuple

f
�
�� 


�
�g� � � � � f
�

n� 

�
ng

of unordered pairs 
�
i � 


�
i of isotropic lines so that Hi � 
�

i �
�
i is a hyperbolic

plane� and so that the hyperbolic planes spacesHi are mutually orthogonal� A
vertex �'� lies inside the apartment given by such a frame if there are rank�one

o�modules M j
i in 
ji so that

' � �
M
i j

M j
i �
 '	

where '	 is the unique maximal o�lattice on which h� i is o�valued �������
inside the anisotropic quadratic k�vectorspace

�
M
i j


ji �
�

�We invoke Witt	s theorem ����� to know that this orthogonal complement is
anisotropic��

The following lemma is necessary in order to be sure of adequate uniqueness
for lattices in anisotropic spaces� In the important examples where the V is
a sum of hyperbolic planes and an additional one�dimensional space� a much
more elementary proof can be given� For more general purposes� however� it
seems that no very much weaker hypothesis than that the �eld k is a �non�
trivial� complete discretely�valued �ultrametric� �eld ������ will su�ce� For
simplicity� we suppose that � is a unit in o�
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Lemma� Let V 	 be an anisotropic quadratic space over k� Suppose that k
is a complete discretely�valued �eld� Suppose that � is a unit in the valuation
ring o� Then there is a unique maximal lattice on which h� i has values in the
valuation ring o�

Proof� More speci�cally� we claim that

'	 � fv � V 	 
 hv� vi � og
is the unique maximal lattice as described in the statement of the lemma�
The issue is veri�cation that '	 is closed under sums�

Suppose that there are x� y in '	 so that z � x�y is not contained in '	�
and reach a contradiction to the condition of anisotropy�

Certainly we may suppose that x and y are primitive in '	� meaning that
neither ���x nor ���y are in '	� This entails that h���x����xi is not in
o� while hx� xi itself is in o� Thus�

ord hx� xi � � or �

and similarly for y� On the other hand� since z is not in '	� and since

hz� zi � hx� xi� �hx� yi� hy� yi
we conclude that

ord hx� yi � 	�
�and using the hypothesis that � is a unit��

By symmetry� we may suppose that ord hy� yi � ord hx� xi� Let �n be the
smallest power of the local parameter � so that

hx��nyi
hx� xi � o

and de�ne
f��� � h�x��ny� �x��nyh�ix� xi

Rearranging� this is

f��� � �� � �� � hx��
nyi

hx� xi �
h�ny��nyi
hx� xi

By the choice of n �and the assumption that � is a unit�� the coe�cient of the
linear term is a unit� Since z was assumed not to lie in '	� it must be that
n � �� so the constant term has ord strictly positive�

Thus� by Hensel	s Lemma ������� there is a root in k of f��� � �� But this
would imply that there is an � so that

h�x��ny� �x��nyh� �

which would contradict the assumption of anisotropy� Thus� it must have
been that x� y lay in '	 after all� �

The maximal simplices are unordered �n� ���tuples

�'�
o�� �'

�
o�� �'��� �'��� � � � � �'n���� �'n�
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of homothety classes of lattices with representatives '�
o�'

�
o�'��'�� � � � �'n so

that m��'�
o and m��'�

o are primitive lattices� so that for both j � �� �

'jo � 'i �m��'jo for � � i � n

so that
'��'

j
o � '��'

j
o � � � � � 'n�'

j
o

in the ��vectorspacem��'jo�'
j
o and so that 'i�'

j
o is an i�dimensional totally

isotropic subspace of m��'jo�'
j
o �with h� i�mod�m��

Remarks� As in the case of the spherical ori�amme complex constructed
for quadratic spaces which are orthogonal sums of hyperbolic planes� the
peculiar details are necessary to arrange that the building be thick�

We consider in�nite families of lattices in V

� � � � '�
o�'

�
o � '� � '� � � � � � 'n�� � 'n � 'n	� � '�n�� �

� � � � '�n�� � '�� � '�
�n �m��'�

o�'
�
�n �m��'�

o � � � �

with some further conditions� We require also the periodicity conditions

'i	�n� �m��'i �� � i � �n	 � and � � Z�
'j�n� �m��'jo

for j � �� � and for all � � Z� And for a lattice x we use the notation

x� � fv � V 
 hx� vi �mg
as in the previous two sections�

That is� we have an in�nite �n�periodic chain of lattices with the �n�th

items doubled� and the � � �n�th and ��n	 �� � �n�th items suppressed� and
with additional conditions�

���� Veri�cation of the building axioms
Methods already illustrated su�ce to prove that the three families of con�

structions just above yield thick a�ne buildings� Keep the notation of the
previous three sections�

As in all previous examples� the program of the proof is


� Granting that the apartments are chamber complexes� show that they
are thin

� Granting that the whole thing is a chamber complex� show it is thick
� Show that the apartments are chamber complexes� by studying re�ec�
tions across facets

� Show that any two maximal simplices lie inside a common apartment
�thereby also showing that the whole is a chamber complex� in light of
the previous point�

� Show that two apartments with a common chamber are isomorphic� by
a simplicial isomorphism �xing their intersection pointwise�
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� Determine Coxeter data by reviewing re�ections across facets

In all three examples� we think of a maximal simplex as being a more�or�less
in�nite periodic chain of lattices �with additional properties varying among
the three examples�� as done above� and refer to that viewpoint throughout�
The ori�amme trick� which amounts to suppressing an index while doubling
an adjacent index� should be viewed as a technical modi�cation of the basic
idea of using in�nite periodic lattices�

Indeed� the spherical ori�amme construction ������ was merely a variant
upon the idea of using �ags of isotropic subspaces� as employed for isometry
groups in general �������

We address the indicated issues roughly in order� taking advantage of the
details worked out in previous examples� A little terminology is handy
 in
the double ori�amme construction� we would say that � and n are doubled
indices� while � and n 	 � are suppressed indices �re�ecting the ori�amme
construction	s deviation from the analogue for alternating spaces�� In the
case of alternating spaces� there are no doubled and no suppressed indices�
In the case of the a�ne single ori�amme complex� � is suppressed� while � is
doubled�

First� consider the other chambers with facet Fi� the latter obtained by
omitting the ith lattice 'i� where

� � � i	 � � i� � � n
� None of i	 �� i� i� � is suppressed or doubled�

Finding other chambers with this facet amounts to choice of another � vector
subspace of 'i���'i	�� That is� the issue here is identical to the analogous
issue for the a�ne building for lattices� treated in chapter �
� For that matter�
that issue itself really was equivalent to the analogous issue for the spherical
building for �unadorned� vectorspaces over the residue �eld ��

Thus� by computations we	ve already done� in a �xed apartment� there are
only two choices for such intermediate space� depending upon the two lines
�in the frame� along which 'i�� di�ers from 'i	�� And in the whole building�
the choice of a one�dimensional subspace in a two�dimensional space o�ers at
least

�q� 	 ����q 	 �� � q � � � � � � � �

choices even for � �nite with q elements�

Now consider the case that i	 � � �� so i	 � is a suppressed index� Then
i	 � � � is doubled� and in fact choice of another chamber '�i with facet Fi
corresponds to choice of another one�dimensional � vector subspace inside

'���'
�
o �'�

o�

which itself is two�dimensional over �� Thus� the thin�ness and thick�ness
hold� Similarly� if i�� � n� so that i�� is suppressed� then we look at other
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��lines in

�'�
n � '�

n��'n��

The two tricks are combined if both i � � are suppressed �in the n � � case
for the double ori�amme complex��

Next� consider i � n in the alternating case� The choice of another cham�
ber with facet Fi is equivalent to choice of another ��line inside the two�
dimensional ��space '�n���'n��� That is� the issue reverts to the analogue in
the spherical building for an alternating space ������� Thus� in a �xed apart�
ment� there are altogether two choices� while in the whole building there are
q � � for a �eld � of cardinality q�

And� as it happens� the case of i � � in the alternating�space case is nearly
identical to the i � n�

Consider the facet F �
n corresponding to dropping 'jn in the double ori�

�amme case� �The case of F �
n is of course completely symmetrical�� This is

nearly identical to the spherical ori�amme case� The choice of another cham�
ber with this facet is equivalent to choice of a totally isotropic � subspace of
the four�dimensional space '�n���'n�� whose intersection with '�

n�'n�� is
one�dimensional� As in the case of the spherical ori�amme complex �������
within a speci�ed apartment there are only two possibilities �including the
original�� while in the whole building there are at least three�

Less obvious is the case of F �
o �and F �

o � in both the single and double
ori�amme complexes� But in fact the argument is a minor variant of the F �

n

and F �
o discussion �which is essentially identical to the spherical ori�amme

case ��������
Thus� in all three families� granting that the apartments are chamber com�

plexes� they are thin! and� granting that the building is a chamber complex�
it is thick

Next� we will see that each apartment is a chamber complex� there is a
gallery from any maximal simplex to any other maximal simplex in the same
apartment� To see this� we consider the e�ect of moving �inside the given
apartment� across the facets of maximal simplices�

First� we consider the chambers in a �xed apartment having a common
vertex �x�� with x � 'o in the alternating space case� and x � '�

o in the
quadratic�space case� Thus� m�� is a primitive lattice� Looking at �ags of
lattices modulo x converts the question into one about �ags of vectorspaces
over the residue �eld �� The latter question is exactly that already treated
in discussion of spherical buildings in chapters �� and ��� That is� we have
already shown that the movements across facets with vertex x connect all the
chambers with vertex �x� �in a �xed apartment� by galleries�

Next� consider two vertices �x� and �x�� in a �xed apartment� with x and
x� primitive lattices� In light of the previous paragraph� to prove that the
apartments really are chamber complexes� it would su�ce to show that some
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maximal simplex with vertex �x� is connected by a gallery to some maximal
simplex with vertex �x��� In all three examples� this follows by a straightfor�

ward adaptation of the analogous argument used for �An ��
����
This completes the outline of the argument that apartments are chamber

complexes�

Next� we see that any two maximal simplices lie in a common apartment�
This is one of the building axioms� and in light of the previous bit of discussion�
upon completion of this item we will also know then that the whole complex
is a chamber complex�

Since all three families of examples have apartments speci�ed by frames�
meaning certain families of isotropic lines occuring in pairs� the goal would
be to �nd a common frame to �t two given maximal simplices� This is made
slightly more complicated by the quite real possibility that there be more
than one apartment containing the two chambers� so that there is no unique
characterization of �the	 common apartment�

Rather� we turn again to the description of maximal simplices in terms
of in�nite periodic chains of lattices� and compare two such via a Jordan�
Holder�type argument� In the case of the spherical An and the a�ne �An� the
argument was literally that of Jordan�Holder� while in the cases of spherical
Cn and the spherical ori�amme� geometric algebra was used to more sharply
describe the comparison� Either of these approaches succeeds here� and we
will not repeat them further� Thus� we grant ourselves this building axiom�
and also grant that the building is a chamber complex�

Now we consider the other building axiom� given a simplex x and a chamber
C both lying in two apartments A�B� show that there is an isomorphism
B � A �xing both x and C pointwise� As in all other examples� it turns
out to be simpler to prove the apparently stronger assertion that� given two
apartments A�B containing a chamber C� there is an isomorphism f 
 B � A
�xing A �B pointwise�

As in all earlier examples� in these three families of a�ne buildings there is
a unique isomorphism f 
 B � A describable in terms of the de�ning frames
and �xing C pointwise� and this unique isomorphism is readily proven to �x
all of A � B�

Finally� we consider the Coxeter data�
In the case of �Cn� the computations in the spherical case Cn ������ deter�

mine all the Coxeter data except those bits regarding the re�ection so through
the facet Fo obtained by omitting the �th lattice in a �ag� But� in fact� the
interaction of so with the re�ection s� through F� is identical to the interac�
tion of the re�ection through Fn with the re�ection through Fn��� and and

commutes with all others� Thus� the �Cn system is obtained from the Cn sys�
tem by adjoining another re�ection so� with m�so� s�� � � and m�so� si� � �
for i � � �where the indices are arranged so that also m�sn� sn��� � ���
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In the case of the a�ne single ori�amme complex �Bn and the double ori�
�amme complex �Dn� most of the Coxeter data is determined just as in the
spherical case ������� ������� This is true of the ori�amme�doubling of the
�th index in both cases� in addition to the previously�considered doubling of
index already present in the spherical ori�amme complex ������� Thus� we

have re�ections s
���
o � s

���
o � s�� s�� � � � � suppressing the index � in both cases�

And m�s
�i�
o � s�� � �� while both s

���
o and s

���
o commute with everything else

�including each other�� The rest of the relations are identical to the spherical

cases Cn and Dn for �Bn and �Dn� respectively�

These remarks should be a su�cient indication of all the proofs� which can
be almost entirely reconstituted from previous arguments�

����� Group actions on the buildings

Keep the previous notation used in this chapter�

In some slightly mysterious way� most of the labor in the larger story of
construction of a building and examination of a group action upon it goes into
being sure that the building is as claimed� after which the requisite properties
of the group action are most often relatively easy to check� In particular� in
all the examples we have considered� all that is needed is a su�cient supply
of monomial matrices� meaning that in suitable coordinates there is just one
non�zero matrix entry in each row and column� The �suitable coordinates	
invariably refer to a maximal orthogonal direct sum of hyperbolic planes in�
side the space� ignoring whatever anisotropic orthogonal complement �if any�
remains afterward�

It is also slightly mysterious� but as well fortuitous� that showing that the
stabilizer of an apartment is transitive on chambers within it is always easy�
By contrast� showing directly that the stabilizer of a chamber is transitive
on apartments containing it appears to be non�trivial� As it is� the �label�
preserving� stabilizer of an apartment always is essentially a group of mono�
mial matrices� in coordinates which refer to a maximal family of mutually
orthogonal hyperbolic planes�

In the case of �non�degenerate� alternating spaces V � every such space is
an orthogonal direct sum of hyperbolic planes� Thus� the only invariant is
dimension� which must be even� If V is of dimension �n� the correspond�
ing isometry group �symplectic group� Sp�V � is often denoted simply Sp�n�
�or� in some circles� Sp��n��� The tangible labelling on the associated a�ne
building should be constructed in the same manner as that for SL�V �
 �x
one vertex �'o� with 'o a primitive lattice� and for any other class �'� choose
a representative ' so that m'o � ' � 'o� and let the type of ' be the
��mod��n where '�'o is a ��vectorspace of dimension ��
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Then� since always Sp�V � � SL�V �� unavoidably this symplectic group
preserves labels�

Witt	s theorem assures that any two frames �speci�ed by n�tuples of pairs
of lines� pairwise forming hyperbolic planes� etc�� as above� can be mapped to
each other by an isometry� This is the transitivity of the group on apartments
�speci�ed by frames��

Using the coordinates from the isotropic lines making up a given frame�
it is immediate that the stabilizer of the corresponding apartment consists of
all isometries whose matrix has exactly one non�zero entry in each row and
column� �These are the so�called monomial matrices��

To prove �in the alternating space case� that apartment stabilizers are tran�
sitive on chambers within the apartment� we use the description of chambers
in terms of periodic in�nite chains of lattices �with some further conditions
�������� Indeed� we further paraphrase this description� as follows�

Let the frame specifying the apartment be

ff
�
�� 


�
�g� � � � � f
�

n� 

�
ngg

This is an unordered n�tuple of unordered pairs of lines� so that the sum
Hi � 
�

i � 
�
i of each pair of lines is a hyperbolic plane� and so that the

hyperbolic planes Hi are mutually orthogonal� Some notation is necessary

for � � f�� �g� let �� be the other of the two elements of the set f�� �g� Fix an
ordering

Hi� � Hi� � � � � � Hin

of the hyperbolic planes� together with a choice of line 
�ii from among
f
�

i � 

�
i g� and a choice of rank one lattice Mij inside 


�j
ij
� Put

M �
ij � fv � 


��j
ij


 hv� wi � o for all w �Mijg
Then put

'o �Mi� �Mi� � � � ��Min �M �
in��

�M �
in��

� � � ��M �
i�

Thus� by construction� this 'o is a primitive lattice� Generally� for � � j � n�
put

'j � m���Mi� �Mi� � � � ��Mij��
�

�Mij � � � ��Min �M �
in��

�M �
in��

� � � ��M �
i�

The extend the chain of lattices

'o � � � �'n

�rst by the usual condition

'�n�j � '�j

and then by the periodicity condition

'j	�n� �m��'j
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where as above

'� � fv � V 
 hv� xi �m for all x � 'g

Each of the n choices of a line 
�ii can be reversed by use of a monomial
matrix inside the isometry group� And choice of rank one module inside 
�ii
can be altered by a monomial matrix inside the isometry group �simulataneous

with adjustment of the corresonding module inside 

��i
i ��

This is the desired transitivity� giving the strong transitivity in the case of
symplectic groups�

The issues for both double ori�amme and single ori�amme complex are
nearly identical to the above� except for the slight increase in notational com�
plexity due to the suppression and doubling of indices� just as with the spher�
ical ori�amme �������

With regard to the latter� there is one signi�cant complication� just as in the
spherical ori�amme case ������
 the modi�cation of the labeling necessitated
by the ori�amme trick causes the whole orthogonal �isometry� group not to
preserve labels� Rather� the label�preserving group inside the isometry group
is only the special orthogonal group� consisting of isometries with determinant
��

����� Iwahori subgroups
In this section we choose convenient coordinate systems in which to describe

the Iwahori subgroups �pointwise �xers of chambers� in our three examples�
In all these cases� in suitable coordinates� the Iwahori subgroup �B	 consists
of matrices which have entries in o and which� reduced modulo m� lie in a
minimal parabolic subgroup of the corresponding alternating or orthogonal
group over the residue �eld�

In the �rst place� in each of the three families under consideration� the
�label�preserving� stabilizer of a chamber must �x all the vertices of the cham�
ber� which are homothety classes of lattices� So the Iwahori subgroup associ�
ated to the chamber is contained in the subgroup �xing the homothety class
of some lattice '�

Let e�� � � � � eN be an o�basis for '� Then� for an isometry g of V �xing the
homothety class �'�� let � � k
 be so that

g' � � � '
Since g is an isometry� it must be that

fhv� wi 
 v� w � 'g � fhv� wi 
 v� w � � � 'g � ��fhv� wi 
 v� w � 'g
Thus� � must be a unit� and not only is the homethety class preserved� but
in fact that lattice itself


g' � '
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Then

gei �
X
j

! cijej

with cij � o� On the other hand� g�� has the same property� since g' � '
rather than merely g' � '� Thus� det g is necessarily a unit� That is� the
matrix for such g has entires in o and has determinant in the units of the ring
o�

Now suppose� as occurs in the three constructions� that g �xes a primitive
lattice m��'o� In the alternating space case� such a chamber �xes an in�nite
periodic chain of lattices

� � � � 'o � '� � � � �

and the chain

'��'o � '��'o � � � �

is a maximal �ag of totally isotropic ��subspaces in the non�degenerate ��
vectorspacem��'o�'o with the form h� i�mod�m� Thus� with suitable choice
of o�basis for 'o� modulo m the matrices in the Iwahori subgroup are in the
minimal parabolic subgroup attached to this maximal �ag modulo ��

For the double ori�amme complex� with two primitive lattices '�
o and '�

o�
the con�guration of totally isotropic subspaces �xed by an element of an
Iwahori subgroup is of the form

�'�
o �'�

o��'
�
o � '��'

�
o � � � � � 'n���'

�
o � � � � � 'n�� � '�

n�'
�
o� '

�
n�'

�
o

This is the same as the con�guration for the spherical ori�amme complex
������� over the residue �eld �� Note that we had to create a ��one�dimensional
isotropic subspace

�'�
o �'�

o��'
�
o

in order to match not only the content� but the form of the description�

The issue is essentially identical for the single ori�amme complex�

����� The maximal apartment systems
To be sure that the earlier study of the interaction of the a�ne building

and the spherical building at in�nity is applicable in the present settings� we
must be sure that the apartment systems here are the maximal ones�

Quite generally� when the Iwahori subgroup �stabilizer of a chamber in the
a�ne building� is compact and open� the apartment system is the �unique
������ maximal one ������� To prove that the Iwahori subgroup is compact
and open� we assume that the discrete valuation ring o is locally compact�

In each of our three families of examples� as was noted in the last section�
in suitable coordinates the Iwahori subgroup consists of matrices in the group
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which have entries in o� and which modulo m lie in the minimal parabolic of
the corresponding isometry group over the residue �eld ��

Thus� as with SL�V � ������� ��
���� ��
���� local compactness of the �eld k
assures that the Iwahori subgroup is compact and open� This assures that the
apartment systems constructed above are the maximal apartment systems�
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good ���


complete
apartment system ���
discrete valuation ring �����

complex
chamber ���
Coxeter ���
simplicial ���

con�gurations of
chamber and sector �	��
sector and three chambers �	�	
three chambers ����
two sectors �	��

conical cell �	��
conjugacy classes of
maximal compacts ����

parabolics ��	
connected
Coxeter diagram ���

convexity
of apartments ���
of half�apartments ��	

convolution product 	��

coroot ����
cosine inequality ����
Coxeter
complex ���
data ���
diagram ���
form ���
group ���

poset ���
system ���

cross
a wall ���

crystallographic
root system ����
Weyl group ����

deletion condition ���
dihedral group ���

diameter of
chamber ����
chamber complex ��	

���
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building ��	
dimension
of simplex ���
of simplicial complex ���

discrete
valuation �����
valuation ring �����

ends
of tree �	��

essential
re
ection group ����

face
of simplex ���
at in�nity �	��
relation ���

facet ���
�nite
Coxeter group ���
re
ection group ����

�xed�point theorem ���	

ag
complex ���
of totally isotropic subspaces ����

folding ���
reversible ���

gallery ���
non�stuttering ���
stuttering ���

generic algebra 	��
geodesic ray �	�

geodesics ����� ����
geometric realization

of simplicial complex ����
of simplicial map ����

good
maximal bounded subgroup ���

maximal compact subgroup ���

vertex ����� ���


greatest lower bound
in poset ���

group
algebra 	��� 	��
dihedral ���

general linear ���
orthogonal ���
special linear ���
special orthogonal ���
symplectic ���
unitary ���

half�apartment ���

half�space ���
Hecke algebra 	��
hermitian form ���
hermitian space ���

homothety �����
homothety class �����
hyperbolic
pair ���
plane ���
space ���

hyperplane ����

ideal point �	��
incidence geometry ���
indecomposable ���� ����� ����� ����
in�mum
in poset ���

involution ���

isometry
group ���
strong ����

isotropic
vector ���
subspace ���

Iwahori
decomposition ����
�Hecke algebra 	��
subgroup ����� ����

Iwasawa decomposition ���	

kernel
of formed space ���

label of
simplex ���

simplicial complex ���
canonical of Coxeter complex ���

lattice �����
length of word ���
Levi component ��	� ���� ����
linear
part of a�ne map ����� ���
� �	��
re
ection group ����

link ���
local �niteness of
building 	��

hyperplanes ����
Tits� cones ����

map
of simplicial complexes ���

maximal
apartment system ���
bounded subgroup ����
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compact subgroup ����
length element in

�nite Coxeter group ���
metric on
a�ne building ����
a�ne complex ����

minimal
gallery ���
parabolic subgroup ��	� ���� ����

monomial matrix ���� ����

mutually incident ���

negative curvature inequality ����
non�degenerate
formed space ���

opposite
chamber ��	
folding ���
parabolic ��	

side of wall ���
ori
amme
spherical complex ���� ����
double a�ne complex ���� �����

single a�ne complex ���� ��	��

p�adic
integers �����
metric �����

numbers �����
panel in wall ���
parabolic subgroup ���� ��	� ���� ����� ����
parahoric subgroup ����� ����
Perron�Frobenius lemma ����

poset ���
positive half�apartment
with respect to sector �	�	

presentation of group ���

product
convolution 	��
twisted tensor 	��

quadratic

form ���
space ���

reduced
gallery ����

root system ����
word ���

re
ection ���� ���� ����
associated to folding ���

retraction ���
to apartment

centered at chamber ���

attached to sector �	��
reversible folding ���

root ���� ����
negative ���

positive ���
simple ����

root system ����

a�ne ����
crystallographic ����

spherical ����

s�adjacent ���� ��	
sector

in apartment �	��
in building �	��

separated by
a wall ���

similitude ����� ����
group ���

simple root ����
simplex ���

simplicial
complex ���

cone ����
simplex�like poset ���

special subgroup of
Coxeter group ���
BN�pair ���� ���

special
vertex ����� ���
� ����

subgroup of
Coxeter group ���

group with BN�pair ���
spherical

Coxeter complex ��	� ����
buildings ��	

re
ection group ����
Weyl group ���� ��	� ����� ����

strong
exchange condition ���

transitivity ���
structure constants 	��

subcomplex ���
subexpression ���
symplectic group ���

system� Coxeter ���

thick
building ���

chamber complex ���
thin

chamber complex ���



Garrett� ���� Construction of A�ne Buildings for Isometry Groups� ���

Tits� cones ����
Tits system ���
topological group ����
totally isotropic subspace ���
tree ����
twisted
multiplication 	��
tensor product 	��

type
of 
ag
in vectorspace ���� ���
of isotropic subspaces ����

of gallery ���� ����
of parabolic

in GL�n� ���
of simplex ���
An� Cn�Dn ���
�An� �Bn� �Cn� �Dn ���

typing
of simplicial complex ���

unipotent radical ���
unitary group ���
uniqueness lemma ���

vertex
in simplicial complex ���
in incidence geometry ���

wall ���� ����
crossed by gallery ���

Weyl group
a�ne ����� ���
� ����
crystallographic ����
spherical ���� ����� ���
� ����

Witt theorem ���
word ���


