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Preface

This book isintended for arigorous introductory Ph.D. level course in econometrics, or
for usein afield course in econometric theory. It is based on lecture notes that | have developed
during the period 1997-2003 for the first semester econometrics course “ Introduction to
Econometrics’ in the core of the Ph.D. program in economics at the Pennsylvania State
University. Initially these lecture notes were written as a companion to Gallant’ s (1997)
textbook, but have been developed gradually into an alternative textbook. Therefore, the topics
that are covered in this book encompass those in Gallant’ s book, but in much more depth.
Moreover, in order to make the book also suitable for afield course in econometric theory | have
included various advanced topics as well. | used to teach this advanced material in the
econometrics field at the Free University of Amsterdam and Southern Methodist University, on
the basis of the draft of my previous textbook, Bierens (1994).

Some chapters have their own appendices, containing the more advanced topics and/or
difficult proofs. Moreover, there are three appendices with material that is supposed to be known,
but often is not, or not sufficiently. Appendix | contains a comprehensive review of linear
algebra, including all the proofs. This appendix isintended for self-study only, but may serve
well in a half-semester or one quarter course in linear algebra. Appendix Il reviews a variety of
mathematical topics and concepts that are used throughout the main text, and Appendix |11
reviews the basics of complex analysis which is needed to understand and derive the properties
of characteristic functions.

At the beginning of the first class | always tell my students: “Never ask me how. Only ask

mewhy.” In other words, don’t be satisfied with recipes. Of course, this appliesto other
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economics fields aswell, in particular if the mission of the Ph.D. program isto placeits
graduates at research universities. First, modern economicsis highly mathematical. Therefore, in
order to be able to make original contributions to economic theory Ph.D. students need to
develop a“mathematical mind.” Second, students who are going to work in an applied
econometrics field like empirical 10 or labor need to be able to read the theoretical econometrics
literature in order to keep up-to-date with the latest econometric techniques. Needless to say,
students interested in contributing to econometric theory need to become professional
mathematicians and statisticians first. Therefore, in this book | focus on teaching “why,” by
providing proofs, or at least motivations if proofs are too complicated, of the mathematical and
statistical results necessary for understanding modern econometric theory.

Probability theory is a branch of measure theory. Therefore, probability theory is
introduced, in Chapter 1, in a measure-theoretical way. The same applies to unconditional and
conditional expectationsin Chapters 2 and 3, which are introduced as integrals with respect to
probability measures. These chapters are also beneficial as preparation for the study of economic
theory, in particular modern macroeconomic theory. See for example Stokey, Lucas, and Prescott
(1989).

It usually takes me three weeks (at a schedule of two lectures of one hour and fifteen
minutes per week) to get through Chapter 1, skipping all the appendices. Chapters 2 and 3
together, without the appendices, usually take me about three weeks as well.

Chapter 4 deals with transformations of random variables and vectors, and also lists the
most important univariate continuous distributions, together with their expectations, variances,

moment generating functions (if they exist), and characteristic functions. | usually explain only
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the change-of variables formulafor (joint) densities, leaving the rest of Chapter 4 for self-tuition.

The multivariate normal distribution istreated in detail in Chapter 5, far beyond the level
found in other econometrics textbooks. Statistical inference, i.e., estimation and hypotheses
testing, is aso introduced in Chapter 5, in the framework of the normal linear regression model.
At this point it is assumed that the students have a thorough understanding of linear algebra.
This assumption, however, is often more fiction than fact. To tests this hypothesis, and to force
the studentsto refresh their linear algebra, | usually assign all the exercisesin Appendix | as
homework before starting with Chapter 5. It takes me about three weeks to get through this
chapter.

Asymptotic theory for independent random variables and vectors, in particular the weak
and strong laws of large numbers and the central limit theorem, is discussed in Chapter 6,
together with various related convergence results. Moreover, the resultsin this chapter are
applied to M-estimators, including nonlinear regression estimators, as an introduction to
asymptotic inference. However, | have never been able to get beyond Chapter 6 in one semester,
even after skipping all the appendices and Sections 6.4 and 6.9 which deals with asymptotic
inference.

Chapter 7 extends the weak law of large numbers and the central limit theorem to
stationary time series processes, starting from the Wold (1938) decomposition. In particular, the
martingale difference central limit theorem of McLeish (1974) isreviewed together with
preliminary results.

Maximum likelihood theory is treated in Chapter 8. This chapter is different from the

standard treatment of maximum likelihood theory in that special attention is paid to the problem
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of how to setup the likelihood function in the case that the distribution of the data is neither
absolutely continuous nor discrete. In this chapter only a few references to the results in Chapter
7 are made, in particular in Section 8.4.4. Therefore, Chapter 7 is not prerequisite for Chapter 8,
provided that the asymptotic inference parts of Chapter 6 (Sections 6.4 and 6.9) have been
covered.

Finally, the helpful comments of five referees on the draft of this book, and the comments
of my colleague Joris Pinkse on Chapter 8, are gratefully acknowledged. My students have
pointed out many typosin earlier drafts, and their queries have led to substantial improvements

of the exposition. Of course, only | am responsible for any remaining errors.
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Chapter 1

Probability and Measure

11. TheTexaslotto
1.1.1 Introduction

Texans (used to) play the lotto by selecting six different numbers between 1 and 50,
which cost $1 for each combination®. Twice aweek, on Wednesday and Saturday at 10:00 P.M.,
six ping-pong balls are released without replacement from a rotating plastic ball containing 50
ping-pong balls numbered 1 through 50. The winner of the jackpot (which occasionally
accumulates to 60 or more million dollars!) isthe one who has al six drawn numbers correct,
where the order in which the numbers are drawn does not matter. What are the odds of winning if
you play one set of six numbers only?

In order to answer this question, suppose first that the order of the numbers does matter.
Then the number of ordered sets of 6 out of 50 numbersis: 50 possibilities for the first drawn
number, times 49 possibilities for the second drawn number, times 48 possibilities for the third
drawn number, times 47 possibilities for the fourth drawn number, times 46 possibilities for the

fifth drawn number, times 45 possibilities for the sixth drawn number:

al

0

5 50 ) k 50|
50 - j) = [[ k= XL - -
jl_g( ) k1_4[5 0e (60 - 6)

=~
[N

The notation n!, read: n factorial, stands for the product of the natural numbers 1 through n:
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nl = 1x2x....... x(n-1)xn if n >0, O = 1.
The reason for defining 0! = 1 will be explained below.
Since a set of six given numbers can be permutated in 6! ways, we need to correct the
above number for the 6! replications of each unordered set of six given numbers. Therefore, the

number of setsof six unordered numbers out of 50 is;

50| def. g
=———— = 15,890,700.
6 6!(50-6)!

Thus, the probability of winning the Texas lotto if you play only one combination of six

numbersis 1/15,890,700. 2

1.1.2 Binomial numbers
In general, the number of ways we can draw a set of k unordered objects out of a set of n

objects without replacement is:

np det
(k] KK )

These (binomial) numbers®, read as: n choose k, also appear as coefficients in the binomial
expansion
n(n
(@ + b)" = Z akpnk, (1.2
ko \ K
The reason for defining 0! = 1 isnow that the first and last coefficientsin this binomial

expansion are always equal to 1.
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For not too large an n the binomial numbers (1.1) can be computed recursively by hand,

using the Triangle of Pascal:

1 3 3 1 (1.3)

Except for the 1's on the legs and top of the triangle in (1.3), the entries are the sums of the

adjacent numbers on the previous line, which is due to the easy equality:

+ = fornz> 2, k=1,..,n-1. (1.4)
k-1 Kk Kk

Thus, the top 1 correspondsto n =0, the second row correspondsto n = 1, the third row
corresponds to n = 2, etc., and for each row n+1, the entries are the binomial numbers (1.1) for k
=0,....,n. For example, for n=4 the coefficients of a“b" ™ in the binomial expansion (1.2) can

befoundonrow 5in (1.3): (a + b)* = 1xa* + 4xa’b + 6xa’b? + 4xab3 + 1xb%.
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1.1.3 Sample space
The Texaslotto is an example of a statistical experiment. The set of possible outcomes of
this statistical experiment is called the sample space, and is usually denoted by Q. Inthe Texas
lotto case Q2 containsN = 15,890,700 elements: Q = {,.....,o\} , Where each element o, is
aset itself consisting of six different numbers ranging from 1 to 50, such that for any pair o,
o, Withi # j, o # . Sinceinthiscasetheelements o, of Q are setsthemselves, the

J

condition o, # o, fori = j isequivalent totheconditionthat o; N o, ¢ Q.

1.1.4 Algebrasand sigma-algebras of events

A set { mjl,....,(ojk} of different number combinations you can bet on is called an event.
The collection of all these events, denoted by .7, isa“family” of subsets of the sample space
Q. Inthe Texaslotto case the collection .7 consists of al subsetsof Q, including Q itself and
the empty set .* In principle you could bet on all number combinationsif you are rich enough
(it will cost you $15,890,700). Therefore, the sample space Q itself isincludedin .7. You
could also decide not to play at all. This event can be identified as the empty set «. For the sake
of completenessitisincluded in .7 aswell.

Sincein the Texas lotto case the collection .7 containsall subsetsof Q, it
automatically satisfies the following conditions:

If Ae 7 then A = QA € 7, (15)

where A = Q\A isthe complement of the set A (relative to the set Q), i.e., the set of all elements
of Q that are not contained in A;

If A,B € .7 then AUB € .7. (1.6)
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By induction, the latter condition extends to any finite union of setsin .7 If A € 7 for | =

1,2,...n then ULA € 7.

Definition 1.1: A collection .7 of subsets of a non-empty set Q satisfying the conditions (1.5)

and (1.6) iscalled an algebra.®

In the Texas lotto example the sample space Q isfinite, and therefore the collection .7
of subsetsof Q isfinite aswell. Consequently, in this case the condition (1.6) extends to:
If A e 7 forj=12..ten ULA € 7. (1.7)
However, sincein this case the collection .7 of subsetsof Q isfinite, there are only afinite
number of distinct sets A€ 7. Therefore, in the Texas |otto case the countable infinite union
Ujilﬁﬁ in (1.7) involvesonly afinite number of distinct sets A; the other sets are replications of

these distinct sets. Thus, condition (1.7) does not require that al the sets A € 7 ae different.

Definition 1.2: A collection .7 of subsets of a non-empty set Q satisfying the conditions (1.5)

and (1.7) iscalled a 6-algebra.®

1.1.5 Probability measure
Now let us return to the Texas lotto example. The odds, or probability, of winningis1/N
for each valid combination o, of six numbers, henceif you play n different valid number

combinations{(ojl,...,mj } . the probability of winning is n/N: P({mjl,...,(oj }) = n/N. Thus, in

the Texas lotto case the probability P(A), A € .7, isgiven by the number n of elementsin the
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set A, divided by the total number N of elementsin Q. In particular we have P(QQ) = 1, and if
you do not play at all the probability of winning is zero: P(z) = 0.

Thefunction P(A), A € .7, iscalled aprobability measure: it assigns a number
P(A) € [0,1] toeachset A € .7. Not every function which assigns numbersin [0,1] to the sets

in .7 isaprobability measure, though:

Definition 1.3: Amapping P: .7 - [0,1] froma c-algebra .7 of subsetsof aset Q into the

unit interval isa probability measureon { Q, .7} if it satisfies the following three conditions:

If A e .7 then P(A) > 0, (1.8)
PQ) = 1, (1.9)
For digoint sets A, € .7, P(U; A) = X ,P(A). (1.10)

Recall that setsare digoint if they have no elementsin common: their intersections are
the empty set.

The conditions (1.8) and (1.9) are clearly satisfied for the case of the Texas lotto. On the
other hand, in the case under review the collection .7 of events contains only afinite number of
sets, so that any countably infinite sequence of setsin .7 must contain sets that are the same. At
first sight this seems to conflict with the implicit assumption that there always exist countably
infinite sequences of digoint setsfor which (1.10) holds. It istrue indeed that any countably
infinite sequence of digoint setsin afinite collection .7 of sets can only contain afinite

number of non-empty sets. Thisis no problem though, because all the other sets are then equal
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to the empty setz. The empty setisdigoint withitself: 2o = o, and with any other set:

AN = o. Therefore, if .7 isfinite then any countable infinite sequence of digoint sets
consists of afinite number of non-empty sets, and an infinite number of replications of the
empty set. Consequently, if .7 isfinitethen it issufficient for the verification of condition
(1.10) to verify that for any pair of digoint sets A, ,A, in .7, P(AJUA) = P(A) + P(A).
Sincein the Texaslotto case P(A,UA,) = (n,+n,)/N, P(A) = n/N, and P(A)) = n,/N, where
n, isthe number of elementsof A, and n, isthe number of elements of A,, the latter condition
issatisfied, and so is condition (1.10).

The statistical experiment is now completely described by thetriple {Q,.7,P}, called
the probability space, consisting of the sample space Q, i.e., the set of al possible outcomes of
the statistical experiment involved, a c-algebra .7 of events, i.e., a collection of subsets of the
sample space Q such that the conditions (1.5) and (1.7) are satisfied, and a probability measure
P. .7 - [0,1] satisfying the conditions (1.8), (1.9), and (1.10).

In the Texas lotto case the collection.7 of eventsis an algebra, but because.7 isfiniteit

isautomatically a ¢ -algebra.

1.2. Quality control
1.2.1 Sampling without replacement

As a second example, consider the following case. Suppose you are in charge of quality
control in alight bulb factory. Each day N light bulbs are produced. But before they are shipped
out to the retailers, the bulbs need to meet a minimum quality standard, say: no more than R out

of N bulbs are allowed to be defective. The only way to verify thisexactly isto try all the N
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bulbs out, but that will be too costly. Therefore, the way quality control is conducted in practice
isto draw randomly n bulbs without replacement, and to check how many bulbsin this sample
are defective.

Similarly to the Texas lotto case, the number M of different samples S of sizen you can

draw out of a set of N elements without replacement is:

)

Each sample S is characterized by a number lﬁ of defective bulbsin the sampleinvolved. Let

M:

K be the actual number of defective bulbs. Then kj e {0,1,...,min(n,K)} .
Le Q ={01,..,n}, and let the o-algebra.7 be the collection of al subsets of Q.

The number of SampIeSS] with lﬁ = k < min(n,K) defective bulbsis:

Wl

because there are ”K choose k * ways to draw k unordered numbers out of K numbers without
replacement, and “N-K choose n-k” waysto draw n - k unordered numbers out of N - K numbers
without replacement. Of course, in the case that n > K the number of samples s with lﬁ = k>

min (n,K) defective bulbsis zero. Therefore, let:

P
Pk - “KANK) it 0 < k < min(nK), P{K}) - 0 elsewhere, (1.11)

N
n
andletforeachset A = {k,....,.k } € .7, P(A) = eri'lP({ kj}). (Exercise: Verify that this

function P satisfies all the requirements of a probability measure.) Thetriple{Q,.7,P} isnow
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the probability space corresponding to this statistical experiment.

The probabilities (1.11) are known as the Hypergeometric(N,K,n) probabilities.

1.2.2 Quality control in practice’

The problem in applying this result in quality control isthat K is unknown. Therefore, in
practice the following decision rule as to whether K < R or not isfollowed. Given aparticular
number r < n, to be determined below, assume that the set of N bulbs meets the minimum
quality requirement K < R if the number k of defective bulbsin the sampleislessor equal to r.
Thentheset A(r) = {0,1,...,r} corresponds to the assumption that the set of N bulbs meets the

minimum quality requirement K < R, hereafter indicated by “accept”, with probability

PAIN) = Z PR = p(nK), (1.12)

say, whereasits complement A(r) = {r+1,...,n} corresponds to the assumption that this set of
N bulbs does not meet this quality requirement, hereafter indicated by “reject”, with
corresponding probability

PAAM) = 1 - p(nK).
Givenr, this decision rule yields two types of errors, atype | error with probability 1 - p.(n,K)

if you reject whilein reality K < R, and atype Il error with probability p,(K,n) if you accept

whileinreality K > R. The probability of atypel error has upper bound:

p,(r.) = 1 = minp(nkK), (1.13)

say, and the probability of atypell error has upper bound

p(r,n) = sz p,(n,K), (1.14)
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In order to be able to chooser, one has to restrict either p,(r,n) or p,(r,n), or both.
Usually it is former which is restricted, because atype | error may cause the whole stock of N
bulbs to be trashed. Thus, allow the probability of atypel error to be maximal o, say o = 0.05.
Then r should be chosen such that p,(r,n) < a. Since p,(r,n) isdecreasinginr because (1.12)
isincreasinginr, we could in principle chooser arbitrarily large. But since p,(r,n) isincreasing
inr, we should not choose r unnecessarily large. Therefore, choose r = r(n|o)), where r(njo) is
the minimum value of r for which p,(r,n) < a. Moreover, if we allow the type Il error to be
maximal 3, we have to choose the sample size n such that p,(r(nja),n) < B.

Aswe will seelater, thisdecision ruleis an example of a statistical test, where
H,: K < Riscalled the null hypothesisto be tested at the ax100% significance level, against
the alternative hypothesis H,: K > R. Thenumber r(n|a) iscaled the critical value of the test,

and the number k of defective bulbsin the sampleis caled the test statistic.

1.2.3 Sampling with replacement

As athird example, consider the quality control example in the previous section, except
that now the light bulbs are sampled with replacement: After testing abulb, it is put back in the
stock of N bulbs, even if the bulb involved provesto be defective. The rationale for this behavior
may be that the customers will accept maximally a fraction R/N of defective bulbs, so that they
will not complain aslong as the actual fraction K/N of defective bulbs does not exceed R/N. In
other words, why not selling defective light bulbsif it is OK with the customers?

The sample space Q and the - algebra .7 are the same as in the case of sampling
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without replacement, but the probability measure P is different. Consider again a sample s of
size n containing k defective light bulbs. Since the light bulbs are put back in the stock after
being tested, thereare K ¥ ways of drawing an ordered set of k defective bulbs, and (N - K)"
ways of drawing an ordered set of n-k working bulbs. Thus the number of ways we can draw,
with replacement, an ordered set of n light bulbs containing k defective bulbsis K XN - K)"k,
Moreover, similarly to the Texas lotto case it follows that the number of unordered sets of k
defective bulbs and n-k working bulbsis: n choose k. Thus, the total number of ways we can
choose a sample with replacement containing k defective bulbs and n-k working bulbs in any

order is:
n
KKN - K"k,
e
Moreover, the number of ways we can choose a sample of size n with replacement is N ".
Therefore,

P(K}) - (E)M _ (E)pk(l oMk k= 042..n,

N" (1.15)

where p = K/IN,

andagain foreachset A = {k,.....k } € .7, P(A) = ZjnllP({kj}). Of course, replacing
P{k}) in(1.11) by (1.15) the argument in Section 1.2.2 still applies.

The probabilities (1.15) are known as the Binomial (n,p) probabilities.
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1.2.4 Limitsof the hypergeometric and binomial probabilities
Notethat if N and K are large relative to n, the hypergeometric probability (1.11) and the

binomial probability (1.15) will be almost the same. This follows from the fact that for fixed k

and n:
(K](N-K] KI(N-K)!

Pk} - k)\n-k) _ K(K-K)!(n-K)!(N-K-n+k)!

N N!

(n] n!(N-n)!

KI(N-K)! Kl (N-K)!

_ nt  (K-KIN-K-n+k)! _ (n]x(K—k)! (N-K-n+Kk)!

k! (n-K)! NI k NI

(N-n)! (N-n)!

) ( n] X(H}‘zl(K—k+j))><(l_[j”;1k(N—K—n+k+j)>

n
- (k)pk(l—p)”k if N - « and K/IN - p.

Thus, the binomial probabilities also arise as limits of the hypergeometric probabilities.
Moreover, if in the case of the binomial probability (1.15) pisvery small and nisvery

large, the probability (1.15) can be approximated quite well by the Poisson()) probability:

P{K}) = exp(—x)%k, k=012 , (1.16)
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where A = np.Thisfollowsfrom (1.15) by choosing p = A/n for n > A, with A > 0 fixed,

and letting n - o while keeping k fixed:

P{Kk}) = ( E)pk(l Sk = T _un)L - wnp

kl(n-k)!
k _ n k
A, o x(l M) exp(—x)ﬁ for n - o,
Kl nXn-k)! (1 - An) kl
because
I, (n-K-+] '
n! = 171( i = HJ!(: 1—E+J— - HJ!(:11 =1for n - o,
n K(n-k)! nk nn
(1 - Mnk- 1forn- o,
and

(1 - A/n)" - exp(-2) for n - . (1.17)

Since (1.16) isthelimit of (1.15) for p = A/n | 0 as n - «, the Poisson probabilities (1.16)
are often used to model the occurrence of rare events.

Note that the sample space corresponding to the Poisson probabilitiesis Q ={0,1,2,....},
and the o-algebra .7 of eventsinvolved can be chosen to be the collection of all subsets of Q,
because any non-empty subset A of Q iseither countableinfinite or finite. If such asubset Ais
countableinfinite, it takestheform A = {k;,k, k;,.......... }, wherethe k’'saredistinct
nonnegative integers, hence P(A) = EjilP({ kj}) iswell-defined. The same applies of course if
Aisfinite: if A={k,...,k } then P(A) = ZjnllP({kj}). This probability measure clearly

satisfies the conditions (1.8), (1.9), and (1.10).
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1.3.  Why do we need sigma-algebras of events?

In principle we could define a probability measure on an algebra.7 of subsets of the
sample space, rather than on ac-algebra. We only need to change condition (1.10) to: For
digoint sets A, € .7 such that UL A € 7, PULA) = X,P(A). By letting al but afinite
number of these sets are equal to the empty set, this condition then reads: For digoint sets
A€ .7,i=12..n<= PUL A) = 5P(A). However, if we would confine a probability
measure to an algebra all kind of useful results will no longer apply. One of these resultsisthe
so-called strong law of large numbers. See Chapter 6.

As an example, consider the following game. Toss afair coin infinitely many times, and
assume that after each tossing you will get one dollar if the outcome it head, and nothing if the
outcome istail. The sample space Q in this case can be expressed in terms of the winnings, i.e.,
each element o of Q takesthe form of astring of infinitely many zeros and ones, for example ®
=(1,1,0,1,0,1......). Now consider the event: “ After n tosses the winningisk dollars’. This event
corresponds to the set A, of elements o of Q for which the sum of the first n elementsin the

string involved is equal to k. For example, the set A, , consists of all o of the type (1,0,......) and

(0,1,......). Similarly to the examplein Section 1.2.3 it can be shown that

P(A,) = ( E) (L/2)" for k = 0,1,2,...,n, P(A) = 0for k>nor k<0,
Next, for g = 1,2,.... consider the events: “ After n tosses the average winning k/nis contained in
theinterval [0.5-1/q, 0.5+1/q]". These events correspond tothe sets B, | = Ulff[/ﬁ,;”fﬂq)MAk’n,

where [X] denotes the smallest integer > x. Then the set ﬂ;:an’m corresponds to the event:

“From the n-th tossing onwards the average winning will stay in theinterval [0.5-1/q, 0.5+1/q]”,
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and the set U::lﬂ:]:an’m corresponds to the event: “ There exists an n (possibly depending on o)
such that from the n-th tossing onwards the average winning will stay in theinterval [0.5-1/q,
0.5+1/q]”. Finaly, the set ﬂ:leﬁzlﬂ:q:anym corresponds to the event: “The average winning
convergesto ¥z as n converges to infinity”. Now the strong law of large numbers states that the
latter event has probability 1: P[ﬂzleﬁzlﬂ:q:anynJ = 1. However, this probability is only defined
if My Ui By € 7+ Inorder to guarantee this, we need to require that .7 is a o-algebra
1.4. Propertiesof algebrasand sigma-algebras
141 General properties

In this section | will review the most important results regarding algebras, ¢-agebras,

and probability measures.

Our first result istrividl:

Theorem 1.1: If an algebra contains only a finite number of setsthen it is a o-algebra.

Consequently, an algebra of subsets of afiniteset Q is a c-algebra.

However, an agebraof subsets of an infinite set Q isnot necessarily a o-agebra. A
counter exampleisthe collection .7, of all subsetsof Q =(0,1] of the type (a,b], where
a < b arerational numbersin [0,1], together with their finite unions and the empty set .
Verify that .7, isanagebra Next, let p, =[10"x]/10" and a, = 1/ p,, where[Xx] means

truncation to the nearest integer < x. Notethat p. 1 =, hence a, | =t asn ~ «. Thenforn=

1,23,..., (@,1] € .7, but U, ,(a,1] = (n'1] ¢ 7. because n ! isirrational. Thus, .7

*
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isnota o-agebra.

Theorem 1.2 If .7 isan algebra, then AB € .7 implies A'B € .7, hence by induction,

A € F forj=1,.,n< imply N 1Aj e .7. Acoallection .7 of subsets of a nonempty set Q

isan algebra if it satisfies condition (1.5) and the condition that for any pair

ABe .7, ABe .7

Proof: Exercise.

Similarly, we have

Theorem 1.3: If .7 isa o-algebra, then for any countable sequence of sets A €7,
J 1Aj e .7. Acollection .7 of subsetsof a nonempty set Q isa o-algebraif it satisfies
condition (1.5) and the condition that for any countable sequence of sets A €7, ﬂjilﬁﬁ €

7.

These results will be convenient in caseswhereit iseasier to prove that (countable) intersections
areincluded in .7 than to prove that (countable) unions are included
If .7 isaready an algebra, then condition (1.7) alone would make it a ¢ - algebra.

However, the condition in the following theorem is easier to verify than (1.7):

Theorem 1.4: If .7 isanalgebraand A, j =1,2,3,... isa countable sequence of setsin .7, then

there exists a countable sequence of dioint sets B, in .7 such that U Uj“;lBj .
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Consequently, an algebra .7 isalsoa o- algebraif for any sequence of disoint setsB; in

7, U.B e 7.

Proof: Let A € .7. Denote B, = A, B, = A \ULA) = A ,N(,A). Itfollows

from the properties of an algebra (see Theorem 1.2) that all the B, ‘s are setsin .7 . Moreover,
itis easy to verify that the B/'s aredigoint, andthat U”,A = U_;B,. Thus,if U’,B, € .7 then

UA € 7. QED.

Theorem 1.5: Let .7, 6 € O, bea collection of o-algebras of subsets of a given set Q,

where O isa possibly uncountable index set. Then .7 = [, .7, isa c-algebra.

Proof: Exercise.

For example, let .7, = {(0,1],2,(0,6],(0,1]}, 6 € ® = (0,1]. Then N, o7,
{(0,1],2} isa o-agebra(thetrivia algebra).

Theorem 1.5 isimportant, because it guarantees that for any collection ¢ of subsets of
Q there existsasmallest ¢-algebracontaining ¢ . By adding complements and countable
unionsit ispossibleto extend ¢ toa o-algebra. Thiscan always be done, because € is
contained inthe o-agebraof all subsets of Q, but thereis often no unique way of doing this,
except inthe case where € isfinite. Thus, let .7,, 6 € ®, bethecollection of all c-algebras

7,

containing ¢ . Then .7 = N o

beo iIsthe smallest o-algebracontaining® .
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Definition 1.4: The smallest ¢-algebra containing a given collection© of setsis called the

o-algebra generated by ¢, and is usually denoted by o(€¢).

Notethat .7 = U, _o.7, isnot always a c-algebra. For example, let Q =[0,1], and let
forn > 1, - {[01],2,[01-n"],(1-n "1 1]}. Then A, = [01-n] € .7, < U, 7,
but theinterval [0,1) = U._,A, isnot contained in any of the o-algebras .7, hence
UA, ¢ U7,

However, it is always possible to extend U, .7, toa o-algebra, often in various ways,

by augmenting it with the missing sets. The smallest ¢-algebracontaining U o isusually

96@

denoted by

96@ - G(UGEG )

The notion of smallest c-algebra of subsetsof Q isawaysrelative to agiven collection
¢ of subsets of Q. Without reference to such a given collection ¢ the smallest c-algebra of
subsetsof Q is {Q,2}, whichiscalled thetrivial o-algebra.

Moreover, similarly to Definition 1.4 we can define the smallest algebra of subsets of Q
containing agiven collection ¢ of subsetsof Q, which wewill denote by a(€).

For example, let Q =(0,1], and let ¢ be the collection of all intervals of the type (a,b]
with 0 < a < b < 1. Then a(¢)consists of the setsin® together with the empty set o, and all
finite unions of digoint setsin ¢ . To seethis, check first that this collection o(€) isan agebra,
asfollows.

@ The complement of (a,b] in ¢ is (0,a]U(b,1]. If a=0 then (0,a] = (0,0] = o, and if
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b=1then (b,1] = (1,1] = 2, hence (0,a]U(b,1] isasetin¢ or afinite union of digoint setsin
¢.

(b) Let (a,b] in¢ and (c,d] in¢, where without loss of generality we may assume that a <
c. If b<cthen (a,b]U(c,d] isaunion of digoint sets in €. If c<b<d then

(ab]U(c,d] = (ad] isasetin€ itsalf, andif b> d then (a,b]U(c,d] = (a,b] isasetin€ itself.
Thus, finite unions of setsin@ are either setsin@ itself or finite unions of digoint setsin® .
(© LetA=Ul(ab],where0 <a <b <a, <b,<..<a <b <1 Then

A = UJ-”:O(bj,aM], where b, = 0 and a,,, = 1, whichisafinite union of digoint setsin¢
itself. Moreover, similarly to part (b) it iseasy to verify that finite unions of sets of the type A
can be written asfinite unions of digoint setsin ¢ .

Thus, the setsin€@ together with the empty set o and all finite unions of digoint setsin
¢ form an algebraof subsetsof Q =(0,1].

In order to verify that thisisthe smallest algebra containing ¢ , remove one of the setsin
this algebrathat does not belong to ¢ itself. Since al setsin the algebra are of the type A in part
(c), let usremove this particular set A. But then Ujr‘:l(a]. ,bj] isno longer included in the collection,
hence we have to remove each of the intervals (aj ,bj] aswell, which however is not allowed
because they belong to ¢ .

Note that the algebra o(€) is not a c-algebra, because countable infinite unions are not
dwaysincluded in a(¢). For example, U,_,(0,1-n '] = (0,1) isacountable union of setsin

a(€) which itself isnotincluded in o(¢). However, we can extend o(€) to o(a(€)), the

smallest c-algebra containing o(€), which coincideswith o(€).
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An important special case of Definition 1.4 is where Q = R, and ¢ isthe collection of
al openintervals:

¢ - {(@b): va<b, ab € R}. (1.18)

Definition 1.5: The o - algebra generated by the collection (1.18) of all openintervalsin R is

called the Euclidean Borel field, denoted by J3, and its members are called the Borel sets.

Note, however, that JB can be defined in different ways, because the c-algebras generated by

the collections of open intervals, closed intervals. {[a,b]: Va < b, ab € R}, and haf-open

intervals, {(-«~,a]: Va € R}, respectively, areall the same! We show thisfor one case only:

Theorem 1.6: B = o({(-»,a]: Va € R}).

Proof: Let
¢, = {(-=,a: Vae R}. (1.19)
@ If the collection ¢ defined by (1.18) iscontained in o(€ ), then o(€ ) isa c-algebra

containing €. But JB = o(€) isthe smallest c-agebracontaining ¢, hence JB = o(€) <

o(C¢ ).
In order to prove this, construct an arbitrary set (a,b) in ¢ out of countable unions and/or

complements of setsin ¢ _, asfollows. Let A = (-~,a] and B = (-«,b], wherea<b are
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arbitrary real numbers. Then A,B € ¢, hence AB € o(€ ), andthus

~@b] = (~~,alU(b,~) = AUB € o(€ ).
Thisimpliesthat o(¢ ) contains all sets of the type (a,b] , hence (a,b) = U,_,(a,b - (b-a)/n]
€ o(¢)). Thus, € c o(€ ).

(b) If the collection €, defined by (1.19) iscontained in JB = o(€), then o(€) isa

c-agebracontaining € ,. But o(€ ) isthe smallest o-algebracontaining € _, hence
o(¢)) c o(€) = B.

In order to provethe latter, observe that form=1.2,...., A = U _(@a-n,arm™) isa
countable union of setsin ¢, hence A_ € o(€¢), and consequently (-~,a] = ;A =

~(U:1:1'&m) € o(€). Thus, €, c o(€¢) = B.
We have shown now that J8 =c(€¢) < o(¢ ) and o(€¢ ) < o(¢) = JB. Thus, JB and

o(¢ ) arethesame. Q.E.D.°

The notion of Borel set extends to higher dimensions as well:

Definition 1.6: JB* = cs({xj!‘:l(a].,bj): Va < bj, a].,b. € R}) isthek-dimensional Euclidean

Borel field. Its members are also called Borel sets (in R¥).

Also thisisonly one of the ways to define higher-dimensional Borel sets. In particular,

similarly to Theorem 1.6 we have:

Theorem 1.7: JB* = (5({><J!(:1(—00,a]-]: Va € R}).
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1.5. Propertiesof probability measures
The three axioms (1.8), (1.9), and (1.10) imply avariety of properties of probability

measures. Here we list only the most important ones.

Theorem 1.8: Let {Q,.7,P} be a probability space. The following hold for setsin .7:
(@ P(e) =0,

(b) PA) =1 - P(A),

(c) A < B implies P(A) < P(B),

(d) P(AUB) + P(ANB) = P(A) + P(B),

(e If A, c A, forn=12.,then P(A) 1 P(U_A),

(M IfA > A, forn=12.., then P(A) ! P(_A),

(9) P(U::lAn) < Z::lp(An)-

Proof: (a)-(c): Easy exercises.
(d) AUB = (ANB) U (ANB) U (BNA) isaunion of disjoint sets, hence by axiom (1.10),
P(AUB) = P(ANB) + P(ANB) + P(BNA).Moreover, A = (ANB) U (ANB) isaunion of
disioint sets, hence P(A) = P(ANB) + P(ANB), and similarly, P(B) = P(BNA) + P(ANB).
Combining these results, part (d) follows.
() LetB, = A, B, =AW forn>2 Then A = ULA =U'B and UL,A = U B,

Since the B/‘sare digoint, it follows from axiom (1.10) that
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PULA) = YPB) = YLP(B) + X7,..P(B) = P(A) + X7, ,P(B).
Part (e) follows now from the fact that ZjimlP(Bj) I 0.
(f) This part follows from part (€), using complements.

(g) Exercise

1.6. Theuniform probability measure
1.6.1 Introduction

Fill abowl with ten balls numbered from zero to nine. Draw randomly a ball from this
bowl, and write down the corresponding number as the first decimal digit of a number between
zero and one. For example, if the first drawn number is 4, then write down 0.4. Put the ball back
in the bowl, and repeat this experiment. If for example the second ball corresponds to the number
9, then this number becomes the second decimal digit: 0.49. Repeating this experiment infinitely
many times yields arandom number between zero and one. Clearly, the sample space involved is
theunitinterval: Q = [0,1].

For agiven number x € [0,1] the probability that this random number isless or equal to
X is: X. To seethis, suppose that you only draw two balls, and that x = 0.58. If the first ball hasa
number less than 5, it does not matter what the second number is. There are 5 ways to draw a
first number less or equal to 4, and 10 ways to draw the second number. Thus, there are 50 ways
to draw a number with afirst digit lessor equal to 4. Thereisonly one way to draw afirst
number equal to 5, and 9 ways to draw a second number less or equal to 8. Thus, the total
number of ways we can generate a number less or equal to 0.58 is 59, and the total number of

ways we can draw two numbers with replacement is 100. Therefore, if we only draw two balls
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with replacement, and use the numbers involved as the first and second decimal digit, the
probability that we get a number less or equal to 0.58 is. 0.59. Similarly, if we draw 10 balls with
replacement, the probability that we get a number less or equal to, say, 0.5831420385 is:
0.5831420386. In the limit the difference between x and the corresponding probability
disappears. Thus, for x € [0,1] we have: P([0,X]) = x. By the same argument it follows that
for x € [0,1], P{x}) = P([xX]) = O, i.e, the probability that the random number involved
will be exactly equal to agiven number X iszero. Therefore, for agiven x € [0,1], P((0,X]) =
P([0,x)) = P((0,X)) = x. Moregenerally, for any interval in [0,1] the corresponding probability
isthe length of theinterval involved, regardless as to whether the endpoints are included or not:
Thus,for 0 < a < b < 1 wehave P([a,b]) = P((a,b]) = P([a,b)) = P((a,b)) =b-a. Any
finite union of intervals can be written as afinite union of digoint intervals by cutting out the
overlap. Therefore, this probability measure extends to finite unions of intervals, smply by
adding up the lengths of the digjoint intervals involved. Moreover, observe that the collection of
al finite unions of sub-intervalsin[0,1], including [0,1] itself and the empty set, is closed under
the formation of complements and finite unions. Thus, we have derived the probability measure
P corresponding to the statistical experiment under review for an algebra .7, of subsets of
[0,1], namely

7, = {(ab),[ab],(ab],[ab), Vabe[0,1], a<b, and their finite unions}, (1.20)
where [a,a] isthe singleton {a}, and each of the sets (a,a), (a,a] and [a,a) should be interpreted
astheempty set ». This probability measureis a special case of the Lebesgue measure, which
assigns to each interval its length.

If you are only interested in making probability statements about the sets in the algebra
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(1.20), then your are done. However, although the algebra (1.20) contains alarge number of sets,
we cannot yet make probability statements involving arbitrary Borel setsin [0,1], because not all
the Borel setsin [0,1] areincluded in (1.20). In particular, for a countable sequence of sets

A € 7, the probability P(UjilAj) is not always defined, because there is no guarantee that
Ujilﬁﬁ € .7,. Therefore, if you want to make probability statements about arbitrary Borel setin
[0,1], you need to extend the probability measure P on .7, to a probability measure defined on

the Borel setsin [0,1]. The standard approach to do thisisto use the outer measure:

1.6.2 Outer measure

Any subset A of [0,1] can always be completely covered by afinite or countably infinite
union of setsinthe algebra .7 ;: A < Uj“;lAj , Where A € Fy, hence the “probability” of Ais
bounded from above by ij”:lP(Aj). Taking the infimum of ZjilP(Aj) over al countable

sequences of sets A € 7, suchthat A c Uj“;lAj then yields the outer measure:

Definition 1.7: Let.7 , be an algebra of subsetsof Q. The outer measure of an arbitrary subset

Aof Qs

P'(A) = inf  X,PA).

AULA, AET, (1.21)

Note that it is not required in (1.21) that U",A € 7.
Since aunion of sets A in an algebra .7, can always be written as a union of digoint sets

inthe algebra algebra .7, (see Theorem 1.4), we may without loss of generality assume that the
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infimumin (1.21) istaken over al disoint sets A in .7, such that suchthat A < UTA This
implies that

If A e .7, then P*(A) = P(A). (1.22)
The question now arises for which other subsets of Q the outer measure is a probability
measure. Note that the conditions (1.8) and (1.9) are satisfied for the outer measure P
(Exercise: Why?), but in general condition (1.10) does not hold for arbitrary sets. See for
example Royden (1968, pp. 63-64). Nevertheless, it is possible to extend the outer measure to a

probability measure on ac-algebra .7 containing .7,

Theorem 1.9: Let P be a probability measureon {Q,.7}, where .7, isan algebra, and let
7 = o(7,) bethesmallest c-algebra containing the algebra .7 ,. Then the outer measure

P" isaunique probability measureon { Q, .7} which coincideswith Pon .7 ,.

The proof that the outer measure P’ is a probability measureon .7 = o(.7,) which
coincide with P on .7, is lengthy and therefore given in Appendix B. The proof of the
uniqueness of P’ iseven more longer and is therefore omitted.

Consequently, for the statistical experiment under review there existsa o-algebra .7 of
subsetsof Q = [0,1], containing the algebra .7, defined in (1.20), for which the outer measure
P .7 - [0,1] isaunique probability measure. This probability measure assignsin this case to
each interval in[0,1] its length as probability. It is called the uniform probability measure.

It is not hard to verify that the o -algebra .7 involved containsall the Borel subsets of

[0,1]: {[0,1]MB, for all Borel sets B} = .7. (Exercise: Why?) This collection of Borel
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subsets of [0,1] isusually denoted by [0,1] 1 &, andisa c-agebraitself (Exercise: Why?).
Therefore, we could also describe the probability space of this statistical experiment by the

probability space{[0,1], [0,1]N 3, P *}, where P * isthe same as before. Moreover, defining
the probability measure p on B as W(B) = P *([0,2]B), wecan describe this statistical
experiment also by the probability space{ R, J3,H}, wherein particular

H((-0,X]) = 0if X < O, p((-,X]) = xif 0 < x < 1, u((-,x]) = 1 if x > 1,
and more generally for intervals with endpointsa < b,

u(@b)) = u(ab]) = u(ab) = p((@bl) = u((-=bl) - u(-=al),

whereas for all other Borel sets B,
WE) = inf (@ b)). (123
B« U ,(@.b)
1.7. Lebesgue measureand L ebesgue integral
1.7.1 Lebesgue measure
Along similar lines as in the construction of the uniform probability measure we can
define the Lebesgue measure, as follows. Consider a function A which assigns to each open

interval (a,b) itslength: A((a,b)) = b - a, and definefor al other Borel setsBin R,

MB) = inf X M@.b) = inf Xb - a).

B« U y(a.b) B« U y(a.b)

Thisfunction A is called the Lebesgue measure on R, which measures the total “length” of a
Borel set, where the measurement is taken from the outside.
Similarly, let now A(x{(a,b)) = IL (b, -a,), and definefor al other Borel setsBin

Rk
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AB) = inf X (xa,b) - it I {Im, - a))

B = Ul y{x\ @b} B < U (< (@b}
Thisisthe Lebesgue measure on R¥, which measures the area (in the case k = 2) or the volume
(inthe casek > 3) of aBorel setin R, where again the measurement is taken from the outside.
Note that in general Lebesgue measures are not probability measures, because the
L ebesgue measure can be infinite. In particular, A(RY) = . However, if confined to a set with
L ebesgue measure 1 it becomes the uniform probability measure. More generaly, for any Borel
set A € R*with positive and finite Lebesgue measure, u(B) = A(ANB)/A(A)is the uniform

probability measure on (g*NA.

1.7.2 Lebesgueintegral
The Lebesgue measure gives rise to a generalization of the Riemann integral. Recall that

the Riemann integral of a non-negative function f(x) over afiniteinterval (a,b] is defined as

}f(x)dx = supfj ( inf f(x)) M)

m=1\ xel,

where the |, areintervals forming afinite partition of (a,b] , i.e., they are digoint, and their
unionis (ab]: (ab] = Uyl o Ml ) isthelengthof |, hence A(l,,) isthe Lebesgue measure
of 1, ,and the supremum istaken over al finite partitions of (a,b]. Mimicking this definition,

the Lebesgue integral of a non-negative function f(x) over a Borel set A can be defined as

fAf(x)dx = supfj( inf f(x)) MB,),

m=1\ xeB,



where now the B, ‘s are Borel sets forming afinite partition of A, and the supremum is taken
over all such partitions.
If the function f(X) is not non-negative, we can always write it as the difference of two
non-negative functions: f(x) = f . (x) - f (x), where
f.(x) = max[0,f(x)], f (x) = max[0, -f(X)].

Then the Lebesgue integral over aBorel set A isdefined as

fAf(x)dx = fAf+(x)dx - fAf,(X)dX,

provided that at least one of the right hand side integralsisfinite.

However, we still need to impose a further condition on the function f in order to be
Lebesgue integrable. A sufficient condition isthat for each Borel set B in R, the set {x: f(x) € B}
isaBorel set itself. Aswe will seein the next chapter, thisisthe condition for Borel
measurability of f.

Finally, note that if Aisan interval and f(X) is Riemann integrable over A, then the

Riemann integral and the Lebesgue integral coincide.

1.8. Random variablesand their distributions
1.81 Random variablesand vectors

Loosely speaking, arandom variableisa numerical trandation of the outcomes of a
statistical experiment. For example, flip afair coin once. Then the sample spaceis Q = {H,T},
where H stands for Head, and T stands for Tail. The c-algebrainvolved is.7 ={Q,o,{H} {T}},

and the corresponding probability measure is defined by P({H}) = P({T}}) = 1/2. Now
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definethe function X(w) = 1if ® = H, X(w) = 0if @ = T. Then X isarandom variable

which takes the value 1 with probability ¥2 and the value 0 with probability ¥2:

(short-hand notation)

P(X = 1) - P{ocQ: X() = 1}) = P{H}) = V2,

(short-hand notation)

P(X = 0) - P{oeQ: X(@) = 0}) = P{T}) = 1/2.

Moreover, for an arbitrary Borel set B we have

= P({H}) = 12 if 1B and 0 ¢ B,
= P{T}) = 12 if 1¢B and 0 € B,
P(XEB)ZP({COEQZX(LO)EB}):P({HT}): 1 if1¢B and 0 ¢ B
= P() = 0 if 1¢B and O ¢ B,

where again P(X ¢ B) isashort-hand notation® for P{ocQ: X(o) € B}).

In this particular case the set {weQ: X(w) € B} is automatically equal to one of the
elements of .7, and therefore the probability P(X € B) = P({weQ: X(w) € B}) iswell-
defined. In general, however, we need to confine the mappings X: Q - R to those for which we
can make probability statements about events of the type{ weQ: X(w) € B}, whereBisan

arbitrary Bordl set, which isonly possible if these sets are members of .7

Definition 1. 8: Let {Q,.7,P} be a probability space. Amapping X: Q - R iscalleda
random variable defined on{Q,.7,P} if X ismeasurable .7, which means that for every Borel
set B, {0eQ: X(w) € B} € .7. Smilarly, amapping X: Q - R¥ iscalled a k-dimensional
random vector defined on{Q,.7,P} if X ismeasurable .7, inthe sense that for every Borel

stB in g {0cQ: X(o) € B} € .7.
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In verifying that areal functionX: Q - R is measurable.7, it isnot necessary to verify
that for all Borel setsB, {weQ: X(w) € B} € .7, but only that this property holds for Borel

sets of the type (-« ,X] :

Theorem 1.10: Amapping X: Q - R ismeasurable.7 (hence X isarandomvariable) if and
onlyif for all x € R thesets {weQ: X(w) < X} are membersof .7. Smilarly, a mapping
X: Q - R¥ ismeasurable.7 (hence X is a random vector of dimension k) if and only if for all
% )" € R¥ the sets

MNf{0eQ: X(0) < x} = {0eQ: X(©) € X< y(-=,x]}

are members of .7, where the X;’s are the components of X.

Proof: Consider the case k = 1. Supposethat{ weQ: X(w) € (-«,X]} € .7, VX € R. Let

D bethe collection of al Borel sets B for which {weQ: X(w) € B} € 7. Then < B, and
D contains the collection of half-openintervals (-~,X], x € R. If Q) isac-agebraitsef, it

isa o -agebracontaining the half-open intervals. But .z isthe smallest ¢-algebracontaining

the half-open intervals (see Theorem 1.6), so that then JB< ), hence @ = JB. Therefore, it
sufficesto provethat Qisa o-agebra
@ Let B € . Then {0weQ: X(w) € B} € .7, hence

~{0eQ: X(®) € B} = {0weQ: X() € B} € .7

andthus B €.

(b) Next, let B e forj=1.2,... Then {0eQ: X(w) € BJ.} € .7 , hence
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U {0eQ: X(@) € B} = {0eQ: X() € U B} € 7

and thus U”,B, € D.

The proof of the casek > 1 issimilar. Q.E.D.%°
The sets {0eQ: X(w) € B} are usually denoted by X 1(B):
def.

XXB) = {0 € Q: X() € B}.

Thecollection .7, = {XB), VB € B} is ac-agebraitself (Exercise: Why?), and

iscalled the o - algebra generated by the random variable X. More generaly:

Definition 1.9: Let X be arandom variable (k=1) or a random vector (k> 1). The o-algebra

Fy= {XB), VB € B'}iscalledthe c-algebragenerated by X.

In the coin tossing case, the mapping X is one-to-one, and therefore in that case .7 isthe same
as.7, butingeneral .7, will be smaller than .7". For example, roll adice, and let X=1 if the
outcomeis even, and X = 0 if the outcome is odd. Then
7y ={{123456} ,{24,6} ,{135} , o},
whereas .7 inthis case consists of all subsetsof Q = {1,2,3,4,5,6} .
Given ak dimensional random vector X, or arandom variable X (the case k=1), define for

arbitrary Borel sets B € (B!

U(B) = PX (B)) = P{oecQ: X(0) € B}). (1.24)

Then p, () isaprobability measure on { R¥, B}
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(@ foral Be B p(B) = 0,
(b)  u(RY =1,

(© foraldigoint ¢ B* w(U,B )= nB).

Thus, the random variable X maps the probability space {Q2,.7, P} into a new probability
space, { R, J3, U}, whichinitsturnis mapped back by X 1 into the (possibly smaller)

probability space {Q,.7,,P} . Similarly for random vectors.

Definition 1.10: The probability measure L,(-) defined by (1.24) is called the probability

measure induced by X.

1.8.2 Distribution functions
For Borel sets of the type (-«,X], or xj!‘:l(—oo,xj] in the multivariate case, the vaue of the

induced probability measure |, is called the distribution function:

Definition 1.11: Let X be arandom variable (k=1) or a random vector ( k>1) with induced

probability measure p, . The function F(X) = uX(X}(:l(—oo,Xj]), X = (X, X))’ € R¥ is

called the distribution function of X.
It follows from these definitions, and Theorem 1.8 that

Theorem 1.11: A distribution function of a random variable is always right continuous:
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vx € R, limy, JF(x + &) = F(x), and monotonic non-decreasing: F(x,) < F(x,) if x; < x,,

with lim,, F(x) = 0, lim F(x) = 1.

Proof: Exercise.

However, a distribution function is not always left continuous. As a counter example,
consider the distribution function of the Binomial (n,p) distribution in Section 1.2.2. Recall that
the corresponding probability space consists of sample space Q = {0,1,2,...,n}, the c-algebra.7
of all subsetsof Q, and probability measure P({k}) defined by (1.15) . The random variable X
involved isdefined as X(k) =k, with distribution function

F(x) = 0 for x < 0,
F(X) = X, P{k}) for x € [0,n],

k<x

F(x) = 1 for x > n,

Now let for example x = 1. Thenfor 0 <6 <1, F(1 - 38) = F(0), and F(1 + &) = F(2),

hence lim. F(1 + &) = F(), but lim. F(1 - §) = F(0) < F(1).

610 610

The left limit of adistribution function F in x is usually denoted by F(x-):

def.
F(x-) = limy F(x - §).
Thusif x isacontinuity point then F(x-) = F(x), and if x is adiscontinuity point then F(x-) < F(X).
The Binomial distribution involved is an example of a discrete distribution. The uniform
distribution on [0,1] derived in Section 1.5 is an example of a continuous distribution, with

distribution function
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F(x) = 0 for x < O,
F(X) = x for x € [0,1], (1.25)
F(x) = 1 for x > 1.

In the case of the Binomial distribution (1.15) the number of discontinuity pointsof Fis
finite, and in the case of the Poisson distribution (1.16) the number of discontinuity points of F

is countable infinite. In general we have:

Theorem 1.12: The set of discontinuity points of a distribution function of a random variableis

countable.

Proof: Let D bethe set of all discontinuity points of the distribution function F(x). Every
point x in D is associated with an non-empty open interval (F(x-),F(X)) = (a,b), say, whichis
contained in [0,1]. For each of these open intervals (a,b) there exists arational number g such
a < g < b, hence the number of open intervals (a,b) involved is countable, because the rational
numbers are countable. Therefore, D is countable. Q.E.D.

The results of Theorems 1.11-1.12 only hold for distribution functions of random
variables, though. Itispossible to generalize these results to distribution functions of random
vectors, but this generalization is far from trivial and therefore omitted.

Asfollows from Definition 1.11, adistribution function of a random variable or vector
X is completely determined by the corresponding induced probability measure p,(-) . But what
about the other way around, i.e., given a distribution function F(x), is the corresponding induced

probability measure i, (-) unique? The answer is yes, but we prove the result only for the
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univariate case;

Theorem 1.13: Given the distribution function F of a random vector X € R¥, there existsa

unique probability measure p on { R¥, JZ} such that for x = (xl,....,xk)T e R, F(X)=

U(x:(:l(_"o 1Xi])-

Proof: Letk=1and let 3, bethe collection of al intervals of the type
(a,b),[a,b],(ab].[ab),(-=,a),(=,a],(b,»),[b~), a<b € R, (1.26)
together with their finite unions, where [a,a] isthe singleton {a}, and (a,a), (a,a] and [a,a)
should be interpreted as the empty set . Then each setin J, can be written as afinite union of

disoint sets of the type (1.26) (Compare (1.20) ), hence g, is an algebra. Definefor -« <a<b<

[ee]
)

w((@a) = u(@al) = ulaa) = pe) =0

u({a}) = F@ - lim; F(a-5), u((@b]) = F(b) - F(a)

u(ab)) = u(@b]) - u{b}) + p{a}), w(abl) = p((@bl) + u{at)
u(@b)) = u(@bl) - ub}), wu((-=al) = F@

u((-=.al) = F@ - u{a}), wu((be=) =1 - F(b)

(b)) = u((b,=)) + u({b})

and let for digoint sets A, ......., A, of thetype (1.26), p(UL,A)) = XLu(A). Thenthe
distribution function F defines a probability measure g on J,, and this probability measure p
coincides on S, with the induced probability measure L, . It follows now from Theorem 1.9 that

there exists a c-algebra J containing <, for which the same applies. This c-algebra I may be
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chosen equal to the c-algebra .z of Borel sets. Q.E.D.
The importance of thisresult isthat there is a one-to-one relationship between the
distribution function F of arandom variable or vector X and the induced probability measure .

Therefore, the distribution function contains all the information about .

Definition 1.12: A distribution function F on R* and its associated probability measure p on

{R¥, JB'7 are called absolutely continuous with respect to Lebesgue measureif for every

Borel set Bin R*with zero Lebesgue measure, i (B) = 0.
We will need this concept in the next section.

1.9. Density functions
An important concept is that of a density function. Density functions are usually

associated to differentiable distribution functions:

Definition 1.13: The distribution of a random variable X is called absolutely continuousiif there
exists a non-negative integrable function f, called the density function of X, such that the
distribution function F of X can be written as the (Lebesgue) integral F(x) = f :f(u)du.
Smilarly, the distribution of a random vector X € RX is called absolutely continuousiif there
exists a non-negative integrable function f on R¥ , called the joint density, such that the

distribution function F of X can be written as the integral
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The reason for calling the distribution functions in Definition 1.13 absolutely continuous
isthat in this case the distributions involved are absolutely continuous with respect to Lebesgue
measure. See Definition 1.12. To see this, consider the case F(x) = f *f(u)du, and verify

(Exercise) that the corresponding probability measure u is:

ue) = | _fegax, (1.27)

where the integral is now the Lebesgue integral over a Borel set B. Since the Lebesgue integral
over aBorel set with zero Lebesgue measure is zero (Exercise), it followsthat p(B) = 0if the
L ebesgue measure of B is zero.

For example the uniform distribution (1.25) is absolutely continuous, because we can
write (1.25) as F(X) = f :f(u)du, with density f(u) = 1for 0 <u <1 and zero elsewhere. Note
that in this case F(x) is not differentiable in 0 and 1, but that does not matter, as long as the set of
points for which the distribution function is not differentiable has zero Lebesgue measure.

Moreover, adensity of arandom variable always integrates to 1, because

1 =Ilim__F(x) = fﬁ“f(u)du. Similarly for random vectors X e R¥ :

Note that continuity and differentiability of adistribution function are not sufficient
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conditions for absolute continuity. It is possible to construct a continuous distribution function
F(x) that is differentiable on asubset D < R, with R\D a set with Lebesgue measure zero, such
that F/(xX) = 0 on D, so that in this case fiF (X)dx = 0. Such distributions functions are called
singular. See Chung (1974, pp. 12-13) for an example of how to construct a singular distribution

function on R, and Chapter 5 for singular multivariate normal distributions.

1.10. Conditional probability, Bayes rule, and independence
1.10.1 Conditional probability

Consider statistical experiment with probability space {Q,.7,P}, and suppose that it is
known that the outcome of this experiment is contained in a set B with P(B) > 0. What isthe
probability of an event A, given that the outcome of the experiment is contained in B? For
example, roll adice. Then Q ={1,2,3,4,5,6}, .7 isthe o-algebra of all subsets of Q, and P{w}) =
1/6for w =1,2,3,4,5,6. Let B be the event: "the outcomeiseven™: B={2,4,6}, and let A=
{1,2,3}. If we know that the outcome is even, then we know that the outcomes {1,3} in A will
not occur: if the outcomein contained in A, it is contained in ANB = {2} . Knowing that the
outcome is either 2,4, or 6, the probability that the outcome is contained in A istherefore 1/3 =
P(AnB)/P(B). Thisisthe conditional probability of A, given B, denoted by P(A|B). If it is
revealed that the outcome of a statistical experiment is contained in a particular set B, then the
sample space Q is reduced to B, because we then know that the outcomes in the complement of B
will not occur, the o-algebra.7 isreduced to .7 B, the collection of al intersections of the sets
in.7 with B: .7nB ={AnB, Ae.7} (Exercise: Isthis a o-agebra?), and the probability measure

involved becomes P(A|B) = P(AnB)/P(B), hence the probability space becomes



{B,.71B,P(:|B)} . See Exercise 19 below.

1.10.2 Bayes rule

Let A and B be setsin .7. Since the sets A and A form a partition of the sample space Q,

wehave B = (BN A) U (B N A), hence
P(B) = P(BNA) + P(BNA) = P(B|AP(A) + P(B|A)PA).

Moreover,

P(ANB) _ P(B|A)P(A).

P(A[B) = b
(B) P(B)

Combining these two results now yields Bayes rule:

P(B|A)P(A)
P(B|AP(A) + PB|APA)

P(A[B) =

Thus, Bayes' rule enables us to compute the conditional probability P(A|B) if P(A) and the
conditional probabilities P(B|A) and P(B|A) are given.

More generally, if A, j =1,2,....n (< «) isapartition of the sample space Q, i.e., the A’s
aredigoint setsin.7 suchthat Q = U',A, then

P(B|A)P(A)
er':lP(B|Aj)P(Aj)

P(A|B) =

Bayes' rule plays an important role in a special branch of statistics [and econometrics],

called Bayesian statistics [econometrics].
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1.10.3 Independence
If P(A|B) = P(A), then knowing that the outcome isin B does not give us any information
about A. In that case the events A and B are called independent. For example, if | tell you that the
outcome of the dice experiment is contained in the set {1,2,3,4,5,6} = Q, then you know nothing
about the outcome: P(A|Q) = P(ANQ)/P(Q) = P(A), hence Q is independent of any other event A.

Notethat P(A|B) = P(A) isequivaent to P(AnB) = P(A)P(B). Thus,

Definition 1.14: Sets A and Bin.7 are (pairwise) independent if P(AnB) = P(A)P(B).

If events A and B are independent, and events B and C are independent, are the events A

and C independent? The answer is. not necessarily. In order to give a counter example, observe

that if A and B areindependent, thensoare A and B, A and B, and A and B, because
P(ANB) = P(B) - P(AB) = P(B) - P(A)P(B) = (L-P(A)P(B) = P(A)P(B),
and similarly,
P(ANB) = P(A)P(B) and P(ANB) = P(A)P(B).
Now if C=A and 0 < P(A) < 1, then Band C= A areindependent if A and B are independent,
but
P(ANC) = P(ANA) = P(e) = 0,
whereas
P(A)P(C) = P(A)P(A) = P(A)(1-P(A)) = 0.

Thus, for more than two events we need a stronger condition for independence than pairwise
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independence, namely:

Definition 1.15: A sequence A of setsin .7 isindependent if for every sub-sequence A i =

1,2,..,n, P(" A) = H{Llp(A‘.i).

By requiring that the latter holds for all sub-sequencesrather than P(N_,A ) = I ,P(A ), we
avoid the problem that a sequence of events would be called independent if one of the eventsis
the empty set.

The independence of a pair or sequence of random variables or vectors can now be

defined as follows.

Definition 1.16: Let X, be a sequence of random variables or vectors defined on a common
probability space {Q2,.7,P}. X, and X, are pairwise independent if for all Borel sets B,, B,, the
sets A = {0eQ: X (0) € B} and A, = {0cQ: X(w) € B,} areindependent. The sequence

X; isindependent if for all Borel sets B, the sets A = {weQ: Xj((o) € BJ.} are independent.

As we have seen before, the collection T, = {{oweQ: Xj((o) € B}, BeRB}} =
{Xj’l(B), B € B}} isasub o-agebraof 7. Therefore, Definition 1.16 also reads:

The sequence of random variables X, isindependent if for arbitrary A € .7; the sequence of
sets A isindependent according to Definition 1.15.
Independence usually follows from the setup of a statistical experiment. For example,

draw randomly with replacement n balls from abowl containing R red balls and N-R white
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balls, and let X; = 1 if the j-th draw isared ball, and X; =0 if the j-th draw is awhite ball. Then

Xip-- X, @re independent (and X +...+X, hasthe Binomial (n,p) distribution, with p = R/N).

However, if we would draw these balls without replacement, then X,...,X,, are not independent.
For a sequence of random variables X it suffices to verify the condition in Definition

1.16 for Borel sets B, of thetype (-=,x], X € R, only:

Theorem 1.14: Let X,,...,.X, berandom variables, and denotefor x ¢ Rand j =1,....,n,
Aj(x) = {weQ: Xj((o) < x}. Then X,,....X, areindependent if and only if for arbitrary

X )T € R" thesets A (X,),......,A (X.) areindependent.

The complete proof of Theorem 1.14 is difficult and is therefore omitted, but the result can be
motivated as follow. Let ,%‘JO = {Q,@,Xjfl((—oo,x]),Xjfl((y,oo)), vV X, YER, together with al finite
unions and intersections of the latter two types of sets}. Then ,%‘JO is an algebra such that for
arbitrary A € 910 the sequence of sets A isindependent. Thisis not too hard to prove. Now

T, = {Xj’l(B), B € JB}} isthesmallest s-algebra containing yjo,andisalsothesmallest

monotone class containing ,%‘JO . It can be shown (but thisis the hard part), using the properties of
monotone class (see Exercise 11 below), that for arbitrary A € 7, the sequence of sets A is
independent as well

It follows now from Theorem 1.14 that:

Theorem 1.15: The random variables X,,...,X,, are independent if and only if the joint

distribution function F(x) of X = (X,,...,X,)" can be written as the product of the distribution
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functions F(x) of the X ‘s, i.e, F(x) = er':le(xj), where X = (xl,....,xn)T.

The latter distribution functions F;(x) are called the marginal distribution functions. Moreover, it
follows straightforwardly from Theorem 1.15 that if the joint distribution of X = (Xl,....,Xn)T is
absolutely continuous with joint density function f(x), then X,,...,X, areindependent if and only

if f(x) can be written as the product of the density functionsf,(x) of the X; ‘s

f) = TIL4f(x), where x = (x,....,x)".

The latter density functions are called the marginal density functions.

1.11. Exercises

1 Prove (1.4).

2. Prove (1.17) by provingthat In[(1 - w/n)" = nin(1 - wn) - -p for n - o,

3. Let .7, bethe collection of al subsetsof Q= (0,1] of the type (a,b], where a < b are
rational numbersin [0,1], together with their finite digoint unions and the empty set o. Verify
that .7, isan agebra

4. Prove Theorem 1.2.

5. Prove Theorem 1.5.

6. Let Q=(0,1], andlet ¢ bethe collection of all intervals of the type (a,b] with

0 < a< b < 1. Giveasmany distinct examples as you can of setsthat are contained in o(€¢)
(the smallest o-algebra containing this collection ¢ ), but not in o(€) (the smallest algebra

containing the collection ¢).
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7. Show that o({[a,b]: Va < b, ab € R}) = B.

8. Prove part (g) of Theorem 1.8.
0. Provethat .7, defined by (1.20) isan algebra
Prove (1.22).

11. A collection .7 of subsets of aset Q iscaled amonotone class if the following two
conditions hold:

A €7, A cA ,n=123.. implyU _A

n n

A €T, A >A

n

n=123...imply N, _A € .7.

+1?

Show that an algebrais a o-algebraif and only if it isa monotone class.

12.  Acollection .7, of subsetsof aset Q iscaled a)-systemif A € .7, implies A e .7,
and for disoint sets A, € .7,, UL,A € .7,. A collection 7 of subsetsof aset Q iscalled a
n-systemif AB € .7, impliesthat AB € .7_. Provethat if a L-systemisaso a n-system,
thenitisa o-agebra.

13. Let .7 be the smallest o-algebra of subsets of R containing the (countable) collection
of half-open intervals (-«,q] withrational endpoints g. Provethat .7 containsall the Borel
subsetsof R: g=.7.

14.  Consider thefollowing subset of R% L = {(xy) € R% y = x, 0 < x < 1}. Explain
why L isaBorel set.

15.  Consider thefollowing subset of R% C = {(xy) € R% x2 + y? < 1}. Explainwhy C

isaBorel set.

16. Prove Theorem 1.11. Hint: Use Definition 1.12 and Theorem 1.8. Determine first which
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parts of Theorem 1.8 apply.

17. Let F(X) = f 7:f(u)du be an absolutely continuous distribution function. Prove that
corresponding probability measure 1 is given by the Lebesgue integral (1.27).

18. Prove that the Lebesgue integral over a Borel set with zero Lebesgue measure is zero.

19. Let {Q,.7,P} beaprobability space, andlet B € .7 with P(B) > 0. Verify that
{B,.71B,P(-|B)} is a probability space.

20.  Aredigoint setsin .7 independent?

21.  (Application of Bayes rule): Suppose that 1 out of 10,000 people suffer from a certain
disease, say HIV+. Moreover, suppose that there exists amedical test for this disease which is
90% reliable: If you don't have the disease, the test will confirm that with probability 0.9, and the
same if you do have the disease. If arandomly selected person is subjected to this test, and the
test indicates that this person has the disease, what is the probability that this person actually has
this disease? In other words, if you were this person, would you be scared or not?

22. LetA and Bin.7 be pairwise independent. Provethat A and B are independent (and
therefore A and B areindependent and A and B are independent).

23. Draw randomly without replacement n balls from abowl containing R red balls and
N-Rwhite balls, and let X, = 1 if thej-th draw isared ball, and X; =0 if the j-th draw isawhite

ball. Show that X,,...,X,, are not independent.
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Appendices

1.A. Common structure of the proofsof Theorems1.6 and 1.10

The proofs of Theorems 1.6 and 1.10 employ a similar argument, namely the following:

Theorem 1.A.1. Let ¢ be a collection of subsets of a set 2, and let 6(€¢) be the smallest o-
algebra containing ¢ . Moreover, let p be a Boolean function on o(€), i.e, p isaset function
which takes either the value " True" or "False". Furthermore, let p(A) = Truefor all setsAin
¢ . If thecollection » of setsAin o(€©) for which p(A) = True isa o-algebra itself, then

p(A) = True for all setsA in o(€).

Proof: Since »y isacollection of setsin o(€¢) we haveyy < o(€).Moreover, by
assumption, € < Y, and Y isaoc-adgebra. But o(€) isthesmallest o-algebracontaining ¢,
hence o(€) <« ». Thus, ©» = o(€), and consequently, p(A) = True for al setsAin o(€).
Q.E.D.

This type of proof will also be used later on.

Of course, the hard part isto prove that »» is o-algebra. In particular, the collection »
is not automatically a o-algebra. Take for example the case where Q =[0,1], € isthe collection
of al intervals[a,b] withO <a<b < 1, and p(A) = True if the smallest interval [a,b] containing
A has positive length: b-a > 0, and p(A) = Fase otherwise. In this case o(€¢) consists of all the
Borel subsets of [0,1], but »» does not contain singletons whereas o(€¢) does, so »» issmaller

than o(€@), and therefore not a o-algebra.
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1.B. Extension of an outer measureto a probability measure

In order to use the outer measure as a probability measure for more general sets that those
in .7, we have to extend the algebra .7, to a c-algebra .7 of events for which the outer
measure is a probability measure. In this appendix it will be shown how .7 can be constructed,

via thefollowing lemmas..

Lemma 1.B.1: For any sequence B, of disoint setsin Q, P*(U;_,B) < X P*(B,).

Proof: Given an arbitrary € > 0 it followsfrom (1.21) that there exists a countable

sequence of sets A, in .7, suchthat B, « UL,A; and P*(B) > X ,P(A;) - €2, hence

5P B) > TaSPA,) - 52" - TLTPA,) - k. (129

Moreover, U ;B < U U",A ;, wherethe latter is acountable union of setsin .7, hence it

follows from (1.21) that

P'(UrB,) < TiaXiPA,). (1.29)

Combining (1.28) and (1.29) it follows that for arbitrary € > 0,

> PB)>PU_B) - . (1.30)

Letting ¢ | 0, thelemmafollows now from (1.30) . Q.E.D.

Thus, in order for the outer measure to be a probability measure, we have to impose
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conditions on the collection .7 of subsets of 0 such that for any sequence B, of digoint setsin

7, P*(Ujf’ilBj) Y ,P ‘(B,). Thelatter issatisfied if we choose .7 asfollows:

Lemma 1.B.2: Let .7 be a collection of subsets sets B of Q such that for any subset A of Q:
P*(A) = P*(ANB) + P*(ANB). (1.31)

Then for all countable sequences of disjoint sets A € .7, P (U LA) = Ejf’ilp*(Aﬁ).

Proof: Let A = UL,A, B = A. Then ANB = ADA, = A, and ANB = ULA are
disoint, hence
ULA) = P*(A) = P*(AB) + P*(ANB) = P'(A) + P"(ULA). (1.32)
Repeating (1.32) for P*(Uf:kA‘.) with B = A, k=2,...,n, it follows by induction that
P'ULA) = ZLP'(A) + P'ULA) > TLP(A) fordln> 1,
hence P *(U; LA) 2 Z}’ilP*(Aj). Q.E.D.

Note that condition (1.31) automatically holdsif B € .7 ,: Choose an arbitrary set A and
an arbitrary small number & > 0. Then there existsan covering A c UjilAj, where A€ Fy,
such that Z}ilP(Aj) < P*(A) + e. Moreover, since ANB < UjilAjﬂB, where A(B € .7,
and ANB < U: 1A‘ﬁB where AﬂB € 7, wehave P*(ANB) < Z}’ilP(AjﬂB) and
P*(AB) < ¥ ,P(ANB), hence P*(ANB) + P"(ANB) < P"(A) + ¢. Since ¢ isarbitrary, it
follows now that P *(A) > P *(ANB) + P *(ANB).

We show now that

Lemma 1.B.3: The collection .7 in Lemma 1.B.2 isa o-algebra of subsets of Q, containing



the algebra .7 ,.

Proof: First, it followstrivially from (1.31) that B € .7 implies B € .7. Now let
B, € .7. Itremainsto show that Ujf’ilBj e .7, which | will doin two steps. First, | will show
that .7 isanagebra, and then | will use Theorem 1.4 to show that .7 isasoa o-agebra
@ Proof that .7 isan algebra: We haveto show that B,,B, € .7 impliesthat

B,UB, € .7. Wehave

P*(ANB) = P*(ANB,NB,) + P*(ANB,NB,),

and since
AN(B,UB,) = (ANB)UANB,B)
we have
P*(AN(B,UB)) < P*(ANB,) + P (ANB,B,).
Thus:

P*(AN(B,UB)) + P*(ANB,B,) < P*(ANB) + P*(ANB, B, + P (A"B,B,)
_ (1.33)
= P"(ANB,) + P"(ANB,) = P*(A).
Since ~(B,UB,) = B,NB, and P*(A) < P*(AN(B,UB,)) + P *(AN(~(B,UB,)), it follows now
from (1.33) that P*(A) = P*(AN(B,UB,)) + P*(A'(~(B,UB,)). Thus, B,,B, € .7 impliesthat
B,UB, € .7, hence .7 isan algebra (containing the algebra .7 ).
(b) Proof that .7 isa c-algebra: Sincewe have established that .7 isan agebra, it

follows from Theorem 1.4 that in proving that .7 isaso a o-algebrait sufficesto verify that

Ujf’ilBj e .7 fordisointsets B, € .7: For such sets we have: Aﬁ(Uj”:lBj)ﬁBn = ANB,,, and
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ANU,B)NB, = ANU;B)), hence
P*(ANWUL,B)) = P (AULB)B) + P*(An(Uj’LlBj)nén) = P*(ANB,) + P*(An(Uf:’ij)).

Consequently,

P (ANULB)) = X[ ,P (ANB;). (1.34)

Next, let B = U ,B,. Then B = M, = M8, = ~(U.,B), hence

P (ANB) < P (AN(~[U,B])). (1.35)

It follows now from (1.34) and (1.35) that forall n > 1,
P*(A) = P (ANULB)) + P (AN-ULB]) > TP (ANB) + P (ANB),

hence

P*(A) > X,P'(ANB)) + P*(ANB) > P"(ANB) + P*(ANB), (1.36)

where the last inequality is due to
P*(ANB) = P*(Ujf’il(AﬂBj)) < Z}’ilP*(AﬂBj).
Since we dways have P *(A) < P *(ANB) + P “(ANB) (compare Lemma1.B.1), it follows from
(1.36) that for countable unions B = Ujf’ilBj of digoint sets B € .7,
P*(A) = P*(ANB) + P*(ANB),
hence B € .7. Consequently, .7 isa c-algebra, and the outer measure P’ is a probability

measureon{ Q,.7}. Q.E.D.

Lemma 1.B.4: The c-algebra .7 in Lemma 1.B.3 can be chosen such that P * isunique: any
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probability measure P_on {Q,7} which coincide with P on .7 is equal to the outer measure

P

The proof of Lemma 1.B.4 istoo difficult and too long [see Billingsley (1986, Theorems
3.2-3.3)], and is therefore omitted.

Combining Lemmas 1.B.2-1.B.4, Theorem 1.9 follows.

Endnotes

1 In the Spring of 2000 the Texas Lottery has changed the rules: The number of balls has
been increased to 54, in order to create alarger jackpot. The official reason for this changeisto
make playing the lotto more attractive, because a higher jackpot will make the lotto game more
exciting. Of course, the actual reason is to boost the lotto revenues!

2. Under the new rules (see note 1), this probability is: 1/25,827,165.

3. These binomial numbers can be computed using the “ Tools - Discrete distribution tools”
menu of EasyReg International, the free econometrics software package devel oped by the author.
EasyReg International can be downloaded from web page

http://econ.la.psu.edu/~hbierens EASY REG.HTM

4, Note that the latter phraseis superfluous, because Q < Q reads. every element of Q is
included in Q, whichis clearly atrue statement, and o <= Q istruebecause o < oUQ = Q.

5. Also called aField.

6. Also called a o-Field, or aBorel Field.
7. This section may be skipped.

8. See also Appendix 1.A.

0. In the sequel we will denote the probability of an event involving random variables or
vectors X as P(“expression involving X" ), without referring to the corresponding set in .7 . For
example, for random variables X and Y defined on a common probability space {Q2,.7,P} the
short-hand notation P(X > Y) should be interpreted as P({ oeQ: X(w) > Y(w)}).

10.  SeeadsoAppendix 1A.
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Chapter 2
Borel Measurability, Integration,

and M athematical Expectations

2.1.  Introduction

Consider the following situation: Y ou are sitting in a bar next to a guy who proposes to
play the following game. He will roll adice, and pay you adollar per dot. However, you have to
pay him an amount y up-front each time he rolls the dice. The question is: which amount y
should you pay him in order for both of you to play even if this game s played indefinitely?

Let X bethe amount you win in asingle play. Then in the long run you will receive X = 1
dollar in 1 out of 6 times, X =2 dollar in 1 out of 6 times, up to X = 6 dollar in 1 out of 6 times.
Thus, in average you will receive (1+2+...+6 )/6 = 3.5 dollar per game, hence the answer is. y =
35.

Clearly, X isarandom variable: X(@) = X7 j.l(@ € {j}), wherehere and in the sequel
[(.) denotes the indicator function:

I(true) = 1, I(false) = 0.
This random variable is defined on the probability space {2, .7,P}, where Q ={1,2,3,4,5,6}, .7
isthe c-algebraof al subsetsof Q, and P({w}) = 1/6foreach ® € Q. Moreover,
y = X7,i/6 = 7, jP({j}). Thisamount y is called the mathematical expectation of X, and is
denoted by E(X).

More generally, if X isthe outcome of a game with pay-off function g(X), where X is
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discrete: p, = P[X = xj] > 0 with ZJ-”lej = 1 (nispossibly infinite), and if thisgameis

repeated indefinitely, then the average pay-off will be

y = E[gX)] = Zjnzlg(xj)pj- (2.1)

Some computer programming languages, such as Fortran, Visua Basic, C++, etc., havea
build-in function which generates uniformly distributed random numbers between zero and one.
Now suppose that the guy next to you at the bar pulls out his laptop computer, and proposes to
generate random numbers and pay you X dollar per game if the random number involved is X,
provided you pay him an amount y up front each time. The question is again: which amount y
should you pay him in order for both of you to play even if this gameis played indefinitely?

Since the random variable X involved is uniformly distributed on [0,1], it has distribution
function F(x) = O for x < 0, F(X) = xfor 0 < x < 1, F(x) = 1 for x > 1, with density
function f(xX) = F/(X) = 1(0 < x < 1). Moreformally, X = X(w) = © isa non-negative

random variable defined on the probability space {Q2,.7,P} , where Q =[0,1], .7 =[0,1]nRB,

i.e.,, the o-algebraof all Borel setsin[0,1], and P is the Lebesgue measure on [0,1].

In order to determiney in this case, let
X, (o) = Ejnll[infwe(bjillbj]X(w)]I(a) e (bp,b]) = Xhb l(0 € (b b)),
whereb,=0and b, =1. Clearly, 0 < X, < X with probability 1, and similarly to the dice game

the amount y involved will be greater or equal to X";b. P((b,_;,b]) = X"ib 4(b-b ).

Taking the supremum over all possible partitions Uj”ll(bjfl,bj] of (0,1] thenyieldsthe integral
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y = E(X) = folxdx = 1/2. (2.2)

More generaly, if X isthe outcome of a game with pay-off function g(X), where X has

an absolutely continuous distribution with density f(x), then

y = E[g)] = [909f(ax. (2.3)

Now two questions arise. First, under what conditionsis g(X) awell-defined random
variable? Second, how do we determine E(X) if the distribution of X is neither discrete nor

absolutely continuous?

2.2. Boré measurability
Let g beareal function and let X be arandom variable defined on the probability space
{Q,.7,P}. Inorder for g(X) to be arandom variable, we must have that:
For all Borel sets B, {w € Q: gX(w)) € B} € .7. (2.4)

It is possible to construct areal function g and arandom variable X for which thisis not the case.
But if

For all Borel sets B, A; = {x € R: g(x) € B} is a Borel set itsdlf, (2.5)
then (2.4) is clearly satisfied, because then for any Borel set B, and A; defined in (2.5),

{0eQ: g(X(w)) € B} = {weQ: X(w) € Ag} € 7.

Moreover, if (2.5) isnot satisfied, in the sense that there exists a Borel set B for which Ag isnot a
Borel set itself, then it is possible to construct a random variable X such that the set

{0eQ: g(X(w)) € B} = {0eQ: X(w) € Ag} ¢ 7,
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hence for such arandom variable X, g(X) isnot arandom variableitself.! Thus, g(X)is
guaranteed to be arandom variable if and only if (2.5) is satisfied. Such real functions g(x) are

called Borel measurable;

Definition 2.1: Areal function g is Borel measurable if and only if for all Borel setsBin R the
sets A, = {xeR: g(X) € B}areBord setsin R . Smilarly, areal function g on R¥ isBorel
measurable if and only if for all Borel setsBin R the sets A, = {xeR¥: g(x) € B} are Borel sets

in R¥ .

However, we do not need to verify condition (2.5) for all Borel sets. It sufficesto verify it for

Borel sets of thetype (-«,y], y € R, only:

Theorem 2.1: Areal function g on R¥ isBorel measurableif and only if for all y € R the sets

A = {xcR*: g(x) < y} areBorel setsin R¥.

Proof: Let © bethe collection of all Borel setsBin R for which the sets

{xeR*: g(x) € B} areBore setsin R¥, including the Borel sets of thetype (-«,y], y € R.

Then © containsthe collection of all intervals of thetype (-«~,y], y € R.The smallest ¢-
algebra containing the collection { (-,y], y € R} isjust the Euclidean Borel field JB =

o({ (-,y], y € R}), henceif QO isac-agebrathen B < . But @ isacollection of Borel
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sets, hence @ < B. Thus, if > isac-algebrathen B =. The proof that Q) isac-agebra

isleft asan exercise. Q.E.D.

The simplest Borel measurable function is the simple function:

Definition 2.2: Areal function g on R¥ is called a simple function if it takes the form

gx) = Ej”llal.l(x € Bj), with m < oo, a € R, where the Bj’saredisjoint Borel setsin RX.

Without loss of generality we may assume that the digoint Borel sets Bj‘sform a partition of
RX: anllBj = RX, becauseif not, thenlet g(x) = Zjnlfajl(x € B), withB_, = ]R{k\(Uj”llBj)
and a.,., = 0. Moreover, without loss of generality we may assume that the a ‘s are dl different.
For example, if g(X) = Ej”lfajl(x € B)ada, = a,, then g(x) = Ej”llal.l(x € B), where
B =B forj=1..mland B, = B UB_,.

Theorem 2.1 can be used to prove that:

Theorem 2.2: Smple functions are Borel measurable.

Proof: Let g(x) = Ej”llal.l(x € Bj) be asimple function on R¥. For arbitrary y € R,
{xeR% g(¥) < y} = {xeR" Tlal(x e B) <y} = U B,
a <y

which isafinite union of Borel sets and therefore aBorel set itself. Sincey was arbitrary, it

follows from Theorem 2.1 that g is Borel measurable. Q.E.D.
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Theorem 2.3: If f(x) and g(X) are simple functions, then so are f(x) + g(x), f(x)-g(x), and f(x).g(x).

If in addition g(x) # O for all x, then f(x)/g(x) is a simple function.

Proof: Exercise

Theorem 2.1 can also be used to prove:

Theorem 2.4: Let gj(x), ] = 1,2,3,...., beasequence of Borel measurable functions. Then
@ flyn(x) = min{g,(X),.....,,(X)} and fzyn(x) = max{g,(X),.....,d,(X)} are Borel
measurable,

(b) f,(x) = inf ,0,(X) and f,(x) = sup,_,g,(X) are Borel measurable,

(c) h,(x) = liminf___g (x) and h,(X) = limsup, . g,(X) are Borel measurable,

(d) if g(x) = lim__g,(X) exists, then gisBorel measurable.

Proof: First, note that the min, max, inf, sup, liminf, limsup, and lim operations are taken
pointwisein x. | will only prove the min, inf and liminf cases, for Borel measurable real functions

on R.Again, let y € R be arbitrary. Then,

@  {xeR:f () <y} = U {xeR: g(¥) <y} € B
) {xeR: f,0 < ¥} = Ul{xeR: g() < ¥} € B.

(©  {xR:h(9) <y} - MU {xR: g0 < ¥} € B

The max, sup, limsup and lim cases are | eft as exercises. Q.E.D.

Since continuous functions can be written as a pointwise limit of step functions, and step
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functions with afinite number of steps are simple functions, it follows from Theorems 2.1 and

2.4(d) that:
Theorem 2.5: Continuous real functions are Borel measurable.

Proof: Let g be a continuous function on R. Define for natura numbersn, g.(x) = g(x)
if-n<x<n, g,(x) = 0 elsewhere. Next, defineforj =0,...mland m=12,..,
B(j,mn) = (-n + 2nj/m,-n + 2(j+1)n/m].

Then the Bj(m,n)‘sare digoint intervals such that Uj”lg)lBj(m,n) = (-n,n], hence thefunction

G = X0 (i1 cpjmey@)I(X € B(jmn)

isastep function with afinite number of steps, and thus a simple function. Since trivially

g(x) = lim__g.(x) pointwiseinx, g(x) isBorel measurableif the functions g (x) are Borel
measurable [see Theorem 2.4(d)]. Similarly, thefunctions g (X) are Borel measurableif for
arbitrary fixed n, g (x) = lim

I m(X) Pointwisein x, because the g, (x)‘s are smple functions

and thus Borel measurable. To prove g (X) = lim (X), choose an arbitrary fixed x and

m-=9nm
choose n > [x|. Then there exists a sequence of indices j, . suchthat x € B(j, ,mn) foral m,
hence

0 <9, - gn® < 90 -~ inf g mpdX.) < SUP, | oumlIX) -~ ()| ~ O
asm - «. Thelatter result follows from the continuity of g(x). Q.E.D.

Next, | will show that real functions are Borel measurable if and only if they are limits of

simple functions, in two steps:
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Theorem 2.6: A nonnegative real function g(x) is Borel measurable if and only if there exists a
non-decreasing sequence g,(X) of nonnegative simple functions such that pointwisein x, 0 < g,(X)

< g(¥),and lim_ g (X = 9(x.

Proof: The“if” case follows straightforwardly from Theorems 2.2 and 2.4. For proving
the“only if” case, let for 1 < m< n2",
g,(x) = (m-1)/2" if (m-1)/2" < g(x) < m/2", g (X) = n otherwise. Then g,(X) isasequence
of simple functions, satisfying 0 < g,(x) < g(x), and lim___g.(X) = g(x), pointwisein x.
Q.E.D.

Every real function g(x) can be written as a difference of two non-negative functions:

9¥) = 9.0 - 9.(x), where g,(x) = max{g(x),0}, 9.(x) = max{-g(x),0} . (2.6)

Moreover, if g isBorel measurable, thenso are g, and g_in (2.6). It follows therefore

straightforwardly from (2.6) and Theorems 2.3 and 2.6 that:

Theorem 2.7: Areal function g(x) is Borel measurableif an only if it isthe limit of a sequence of

simple functions.

Proof: Exercise.

Using Theorem 2.7, Theorem 2.3 can now be generalized to:

Theorem 2.8: If f(x) and g(x) are Borel measurable functions, then so are f(x) + g(x), f(x)-g(x),
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and f(x).g(x). Moreover, if g(x) = O for all x, then f(x)/g(X) is a Borel measurable function.
Proof: Exercise

2.3. Integralsof Borel measurable functionswith respect to a probability measure
If gisastep functionon (0,1], say g(x) = Zjnllajl(x € (bpqu])’ whereb,=0andb,,,, =
1, then the Riemann integral of g over (0,1] is defined as:
folg(x)dx - Yha(b.,-b) = Tan((.b.j]),
where [ is the uniform probability measure on (0,1]. Mimicking this results for ssmple functions
and more general probability measures |1, we can define the integral of a simple function with

respect to a probability measure 1 as follows:

Definition 2.3: Let p be a probability measure on { R*, 8"}, and let g(X) = Zjnllajl(xij) bea

simple function on R¥. Then the integral of g with respect to p is defined as

def. m
[909ck9 = T.au(B).*

For non-negative continuous real functions g on (0,1], the Riemann integral of g over

(0,1] isdefined as

f "g(x)dx = sup [ 'g.(x)dx,
0 0

0<g,<g

where the supremum is taken over all step functions g, satisfying0 < g,(X) < g(x) for all xin

(0,1]. Again, we may mimick this result for non-negative Borel measurable functions g and
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general probability measures i:

Definition 2.4: Let u be a probability measure on { R*, 8"}, and let g(X) be a non-negative

Borel measurable function on R¥. Then the integral of g with respect to p is defined as:
def.
[99du(d = sup (g, (a9,
0<g,<g

where the supremum is taken over all ssimple functions g, satisfying 0 < g,(x) < g(x) for all x

inaBorel set Bwith pu(B) = 1.

Using the decomposition (2.6), we can now define the integral of an arbitrary Borel

measurabl e function with respect to a probability measure:

Definition 2.5: Let u be a probability measure on { R¥, JB'}, and let g(x) be a Borel

measurable function on R¥. Then the integral of g with respect to p is defined as:

[909die9 = [9.69du(x) - (9 (), (2.7)
where g.(x) = max{g(x),0}, 9_(X) = max{-9(x),0} , provided that at |east one of the integrals

at the right hand side of (2.7) is finite.

Definition 2.6: Theintegral of a Borel measurable function g with respect to a probability

measure |1 over a Borel set A is defined as

def.
f Ag(X)dM(X) = f |(xeA)g()du(X) -



particular:

Theorem 2.9: Let f(X) and g(x) be Borel measurable functions on RX, let p be a probability

measure on { R, .8}, and let A be a Borel setin R¥. Then

(@
(b)
(©
(d)
(€)
(f)
(9)

f (ag(®) + B(X))du(X¥) = a f g(Xdu(x) + B f fedu(X) .
A A A
g()du(¥) = X7, f g(x)dp(x) .
U A A

If g(x) > Ofor all xin A, then ng(x)du(x) > 0.

For disjoint Borel sets A in R¥, fm

If g(x) > f(x) for all xin A, then f g(x)du(x) > f f)du(X) .
A A
| 960ch00) < | a0jdu.
A A
If u(A) = 0, then f g(X)du(x) = 0.
A

If [lg(ldu() < = and lim

H(A,) = O for a sequence of Borel sets A, then

N—o

lim [ 9(X)du(x) = O.
An

Then

hence

Proofs of (a)-(f): Exercise.
Proof of (g): Without loss of generality we may assume that g(x) > O. Let

C, = {xeR: k < g(x) < k+1} and B, = {xeR: g(x) > m} = U_.C,.

[, 90906 = 3= || a9kt < =

77

All the well-known properties of Riemann integrals carry over to these new integrals. In

[ 909 = Y [ at9au@) -~ 0 for m - = 28)
B, k=m “ Cy

Therefore,
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fA g()du(x) = fm

n

Bm@J(X)du(X) + fA .

n

g(x)du(x)
By

< fB g()du() + mu(A),

hence for fixed m,
li < :
imsup, fAng(x)du(x) < [Bmg(x)du(x)
Lettingm - «, part (g) of Theorem 2.9 follows from (2.8). Q.E.D.
Moreover, there are two important theorems involving limits of a sequence of Borel
measurable functions and their integrals, namely the monotone convergence theorem and the

dominated convergence theorem:

Theorem 2.10: (Monotone convergence) Let g, be a non-decreasing sequence of non-negative
Borel measurable functionson R, i.e,, for any fixed x € R¥, 0 < g.(X) < g, ,(X) for n=
1,2,3,..., and let p be a probability measure on { R, J3%}. Then

lim, . f g,()du(x) = f lim._.g,(X)du(x).

Proof: First, observe from Theorem 2.9(d) and the monotonicity of g, that f g,(¥)du(x)
is monotonic non-decreasing, and that therefore lim_ f g,(X)du(x) exists (but may be infinite),

and g(x) = lim___g (X)exists (but may be infinite), and is Borel measurable. Moreover, since

N-o
forx € R¥, g (X) < g(X), it follows easily from Theorem 2.9(d) that f g,()du(x) < f g(X)dp(x),
hence

lim,...[6,(00H( < [90IdHC9.

Thus, it remains to be shown that



79
lim, ., f 9,(x)du(x) > f 9(x)du(x) . (2.9)
It follows from the definition on the integral f g(xX)du(x) that (2.9) istrueif for any ssmple
function f(x) with 0 < f(x) < g(x),
|imnwf 9,(X)du(x) > ff(X)du(X)- (2.10)
Given such asimple function f(x), let for arbitrary €>0, A = {xeRK: g,¥) = (1-¢)f(x)}, and

let sup,f(x) = M. Notethat, since f(x) issimple, M < ~. Moreover, note that

lim_p®RANA) = lim__pl{xeR*: g () < (1-e)f()}) = . (2.12)

Furthermore, observe that

[0:09000 > [ 6,090u09 > (1-8) [ H)ckC9

(2.12)
= (1-¢) f fOJdu(¥) - (1-¢) fm\ f)du() > (1-¢) f fOYdU() — (1-e)MuU(RNA).

It follows now from (2.11) and (2.12) that for arbitrary ¢ > 0, lim___ f g,(¥du(x) >

(1-¢) f f(xX)du(x), which implies (2.10). Combining (2.9) and (2.10), the theorem follows. Q.E.D.

Theorem 2.11: (Dominated convergence) Let g, be sequence of Borel measurable functions on
R¥ such that pointwiseinx, g(x) = lim__g.,(x),andlet g(x) = sup,_,lg,(X¥)|. If
f@(x)du(x) < «,where y isa probability measure on { R¥, 8}, then

im,..[6,096109 = (XA,

Proof: Let f(X) = g(X) - sup,. .9,,(X).Then f (x) isnon-decreasing and non-negative,

and lim___f.(X) = g(X) - 9g(x).Thusit follows from the condition f g(X)du(x) < « and
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Theorems 2.9(a,d)-2.10 that

[909dueg = 1im, __ fsup, G, 04du0 > lim, _sup,, . [9,(du()
(2.13)
= limsup, . f 9,()du(x).

Next, let h (x) = g(X) + inf (X). Then h (x) is non-decreasing and non-negative, and

m> ngm

lim___h(X) =g(X) + g(X).Thusit follows again from the condition f g(X)du(x) < « and

N-oo” N

Theorems 2.9(a,d)-2.10 that

f g(¥)du() = lim___ f inf g (Qdu(x) < lim__inf_ f 9, ()du(X)
(2.14)
= liminf___ f 9,()du(x).
The theorem now follows from (2.13) and (2.14). Q.E.D.
In the statistical and econometric literature you will encounter integrals of the form

f g(X)dF(x), where F isadistribution function. Since each distribution function F(x) on R¥ is
A

uniquely associated with a probability measure p on B, one should interpret these integrals as

def.
f g(X)dF(x) = f 9(x)du(x), (2.15)
A A

where [ is the probability measure on J3* associated with F, g isaBorel measurable function

on R¥, and AisaBorel setin RK.
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2.4. General measurability, and integrals of random variables with respect to
probability measures
All the definitions and results in the previous sections carry over to mappings X: Q - R,
where Q isanonempty set, with .7 ac-agebra of subsets of Q. Recall that X isarandom
variable defined on a probability space {2, .7,P} if for al Borel setsBinR, {® € Q: X(w) € B}
€ .7. Moreover, recall that it suffices to verify this condition for Borel sets of thetype B, =
(-=,y], ¥y € R.Inthissection | will list these generalizations, with all random variables

involved defined on a common probability space{Q, .7,P}.

Definition 2.7: Arandom variable X is called simple if it takes the form

X(w) = Zjnllbjl(co € AJ.), with m < oo, bj € R,wherethe A’saredigoint setsin.7.

Compare Definition 2.2. (Verify similarly to Theorem 2.2 that a simple random variableis
indeed arandom variable.) Again, we may assume without loss of generality that the b’s are all
different.

For example, if X has a hypergeometric or binomial distribution, then X isasimple

random variable.

Theorem 2.12: If X and Y are ssmple random variables, then so are X+Y, X-Y and X.Y. Ifin

addition Y is non-zero with probability 1, then X/Y is a simple random variable.

Proof: Similar to Theorem 2.3.



82

Theorem 2.13: Let X; be a sequence of random variables. Then max, ;_, X, minkjgn X,

sup,., X, inf__, X ,limsup __ X, and liminf X arerandomvariables. If

lim . X (0) = X(0) for all  inaset Ain.7 with P(A) = 1, then X is a random variable.
Proof: Similar to Theorem 2.4.

Theorem 2.14: Amapping X: Q - R isarandomvariableif and only if there exists a sequence
X, of smplerandomvariablessuchthat lim_ X (o) = X(w) for all o inaset Ain.7 with

P(A) = 1.
Proof: Similar to Theorem 2.7.

Similarly to Definitions 2.3, 2.4, 2.5 and 2.6, we may define integrals of a random

variable X with respect to the probability measure P as follows, in four steps.

Definition 2.8: Let X be a simplerandomvariable: X(w) = Ej”llbjl(co € Aj), say. Then the

def.
integral of X with respect of P is defined as f X(@)dP(w) = XbP(A).

Definition 2.9: Let X be a non-negative random variable (with probability 1). Then the integral
def.

of X with respect of P is defined as f X(w)dP(w) = SUPy.x .x f X(w) ,dP(w), wherethe

supremum s taken over all ssimple randomvariables X. satisfying 0 < X_ < X with probability

1.
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Definition 2.10: Let X be a random variable. Then the integral of X with respect of P is defined
def.
as f X(0)dP(w) = f X, (0)dP(w) - f X (0)dP(w), whereX, = max{X,0} and X_=

max{ -X,0} , provided that at least one of the latter two integralsisfinite.

Definition 2.11: The integral of a random variable X with respect to a probability measure P

over aset Ain.7 isdefined as fAX(w)dP(co) < [N € AX(@)dP().

Theorem 2.15: Let X and Y berandomvariables, and let Abeasetin .7. Then

@ fA(aX(w) + BY(w))dP(w) = o fAX(a))dP(w) + P fAY(a))dP(w).
(b) For digoint setsA in .7, fU}”l jX(co)dP(co) = ZflfAjX(co)dP(a)).
(c) If X (w) > Ofor all ® in A, then f X(w)dP(w) > O.
A
(d) If X (0) > Y (w) forall ®inA, then f X(w)dP(w) > fY(co)dP(a)).
A A
(e) ‘ fAX(co)dP(co) < fAIX(co)|dP(a)).

() If P(A) = 0, then f X(o0)dP(w) = 0.
A

(9 If f IX(w)|dP(w) < « and for a sequence of sets A, in .7, lim__P(A) = 0, then

lim,..[ X(@)dP() = 0.
An

Proof: Similar to Theorem 2.9.

Also the monotone and dominated convergence theorems carry over:

Theorem 2.16: Let X, be a monotonic non-decreasing sequence of non-negative random

variables defined on the probability space {Q, .7,P}, i.e., thereexistsaset A € .7 with P(A) =



lsuchthatforall o € A, 0 < X (0) < X (@), n = 1,2,3,....Then
lim_ f X (0)dP(w) = f lim X (0)dP(®).

N-o™ N

Proof: Similar to Theorem 2.10.

Theorem 2.17: Let X, be a sequence of random variables defined on the probability space {2,
7,P} suchthat for all ® inaset A € .7 with P(A) = 1, Y(o) = lim__ X (®). Let

N-c” N

X = sup X . If f)?(m)dp(m) < o then lim___ an((o)dP((o) - fY((o)dP((o).

Proof: Similar to Theorem 2.11.
Finally, note that the integral of arandom variable with respect to the corresponding
probability measure P is related to the definition of the integral of a Borel measurable function

with respect to a probability measure pi:

Theorem 2.18: Let |, be the probability measure induced by the random variable X. Then
fX(w)dP(a)) = fxdux(x). Moreover, if g isa Borel measurablereal function on R¥, and Xisa
k-dimensional random vector with induced probability measure i, , then f g(X(w))dP(w) =

f g(x)du,(x). Furthermore, denoting in the latter case Y= g(X), with ., the probability

measure induced by Y, we have f Y(w)dP(0) = f g(X(o))dP(w) = f g(¥)dp, () = fyqu(y).

Proof: Let X be asimple random variable: X(w) = eri'lbjl(m € AJ.), say, and recall that

without loss of generality we may assumethat the b, ‘s are dl different. Each of the disjoint sets
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A areassociated with digoint Borel sets B, such that A = {0eQ: X(w) € Bj} (for example, let

B ={b}). Then

f X(@)dP(o) = XLbP(A) = Ybu,(B) = f 9. (X)dpy(x),
where g,(x) = Ljbl(x € B,) isasimple function such that

9.X()) = Z'bl(X(@) € B) = Elbl(o € A) = X(w).

Therefore, inthis case the Borel set C = {x: g,(x) # X} has p, measure zero: u,(C) = 0, and

consequently,

f X(0)dP(0) = fR\Cg*(x)dux(x) + fcg*(x)dux(x) = fR\deux(x) = f XA (X). (2.16)

Therest of the proof isleft asan exercise. Q.E.D.

2.5. Mathematical expectation
With these new integral s introduced, we can now answer the second question stated at the
end of the introduction: How to define the mathematical expectation if the distribution of X is

neither discrete nor absolutely continuous:

Definition 2.12: The mathematical expectation of a random variable X is defined as:
E(X) = f X(w)dP(w), or equivalently as: E(X) = f xdF(x) [cf. (2.15)], where F isthe
distribution function of X, provided that the integralsinvolved are defined. Smilarly, if g(x) is

a Borel measurable function on R* and X isa random vector in R* then equivalently,
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E[g(X)] = f g(X(®))dP(w) = f g(X)dF(X), provided that the integralsinvolved are defined.

Note that the latter part of Definition 2.12 covers both examples (2.1) and (2.3).

As motivated in the introduction, the mathematical expectation E[g(X)] may be
interpreted as the limit of the average pay-off of arepeated game with pay-off function g. Thisis
related to the law of large numbers which we will discuss later, in Chapter 7: If X, X,, Xs,.. ......
is a sequence of independent random variables or vectors each distributed the sameas X, and g is
aBorel measurable function such that E[jg(X)]| < «, then P(lim,__(Un)=",g(X) = E[g(X)]) =
1.

There are afew important special cases of the function g, in particular the variance of X,
which measures the variation of X around its expectation E(X), and the covariance of a pair of
random variables X and Y, which measures how X and Y fluctuate together around their

expectations:

Definition 2.13: The m's moment (m= 1,2,3,.... ) of arandomvariable X is defined as: E(X"),
and the m's central moment of X is defined by E(|X-p,|™), where p, = E(X). Thesecond

central moment is called the varianceof X:

var(X) = E[(X - W) = o,

say. The covariance of a pair (X,Y) of random variablesis defined as:

cov(XY) = E[(X - p)(Y - I,

where | isthe same as before, and My, = E(Y). The correlation (coefficient) of a pair (X,Y) of
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random variablesis defined as:
cov(X)Y)
var (X)y/var (Y)

corr(X,Y) = = p(X)Y),

say.

The correlation coefficient measures the extent to which Y can be approximated by a
linear function of X, and vice versa. In particular,
If exactly Y = a + BX then corr(X,Y) = 1if B > 0, corr(X)Y) = -1if $ <0. (217

Moreover,

Definition 2.14: Random variables X and Y said to be uncorrelated if cov(X,Y) = 0. A sequence

of randomvariables X isuncorrelated if for all i # j, X; and X; are uncorrelated.
Furthermore, it is easy to verify that
Theorem 2.19: If X,,.....,.Xn are uncorrelated, then var(Zjnzlxj) = X var(X).

I

Proof: Exercise.
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2.6. Someuseful inequalitiesinvolving mathematical expectations
There are afew inequalities that will prove to be useful later on, in particular Chebishev’s

inequality, Holder’ sinequality, Liapounov’s inequality, and Jensen’s inequality.

2.6.1. Chebishev’'sinequality
Let X be a non-negative random variable with distribution function F(x), and letp(x) be a

monotonic increasing non-negative Borel measurable function on [0,). Then for arbitrary

e >0,
Elo(X)] = ftP(X)dF(X) Zf o(x)dF(x) +f o(x)dF(x)
{o(¥)>0(e)} {o(¥)<o(e)} (2 ]_8)
S QR = o[ dFG) = o) dF() = o)1 - FE),
{o(¥)>0(e)} {o(¥)>¢(e)} {x>e}
hence
PIX>¢) = 1 - F(e) <« ELOX (2.19)

o(e)
In particular, it follows from (2.19) that for arandom variable Y with expected value M, = E(Y)

i 2
and variance Oy,

P({cer: Y(0)-1,| > \/037}) <e. (2.20)

2.6.2 Holder’'sinequality
Holder’ sinequality is based on the fact that In(x) is a concave function on (0,): for0<a
<b,and0< A < 1,In(Aa + (1-A)b) > AIn(a) + (1-A)In(b), hence

A+ (1-0)b > atbi ™ (2.21)
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Now let X and Y be random variables, and put a = |X|P/E(|X|P), b = |Y|9E(|Y|%, wherep

>1,and pt + g ! = 1. Thenitfollowsfrom (2.21), with A = 1/p and 1-\ = 1/q , that

X eIV ( X )"( v]° ]q Xy
E(X|?) E(Y9  LE(XP)) LE(Y9 (E(X|P)ME(] Y| 9)M
Taking expectations yields Holder’ s inequality:

E(IX.Y]) < (E(X/P)*(E(|Y|9) 9, where p > 1 and % . é -1 (2.22)

For the case p = q = 2 inequdlity (2.22) reads E(|X.Y|) < yE(X?)yE(Y?), whichisknown asthe

Cauchy-Schwartz inequality.

2.6.3 Liapounov’'sinequality
Liapounov’ s inequality follows from Holder’ sinequality (2.22) by replacing Y with 1:

E(X]) < (E(|X|?)*?, where p > 1.

2.6.4 Minkowski’sinequality
If for somep > 1, E[[XF] < «~ and E[|Y]]] < « then
E(IX + Y) < (E(X[P))P + (E(| YD), (2.23)
Thisinequality is due to Minkowski. For p = 1 theresult istrivial. Therefore, let p > 1. First note
that E[|X + YP] < E[(2max(]X],[YD))P] = 2PE[max(]XP,[YP)] < 2PE[IXP + |Y[P] < «, hence
we may apply Liapounov’sinequality:
E(IX + Y]) < (E(X + Y[P)™P. (2.24)

Next, observe that
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E([X + Y[P) = E(IX + YPYX + Y]) < E(X + YPHX]) + E(X + YPHY]). (225)
Let q=p/(p-1). Since /q + 1/p = 1 it follows from Holder’ s inequality that
E(IX + YIPYX]) < (E(X + Y[CD(EGP)P < (E(X + Y)Y (E(XP)”, (226)
and similarly,
E(IX + Y[PYY]) < (E(X + YR PP (EQYP)!P. (2.27)

Combining (2.24), (2.25), (2.26) and (2.27), Minkowski’sinequality (2.23) follows.

2.6.5 Jensen’sinequality
A real function ¢(x) onR iscalled convex if forall a,be R and 0<A < 1,
p(a + (1-Mb) < Ao(@) + (1-1)o(b).

It follows by induction that then also

oE7 ha) < _zn;qu)(a].), where 3, > 0 for j = 1,.,n, and znljxj -1 (2.28)
Consequently, it fol |OV\JI; from (2.28) that for a simple random variabIeJX,

o(E(X)) < E(o(X)) for all convex real functions ¢ on R. (2.29)

Thisis Jensen’sinequality. Since (2.29) holds for simple random variables, it holds for all
random variables. Similarly we have

¢o(E(X)) > E(e(X)) for all concave real functions ¢ on R.

2.7. Expectations of productsof independent random variables
Let X and Y be independent random variables, and let f and g be Borel measurable

functionson R. | will show now at then

E[f(X)a(M] = (EIfC)DEGM)]). (2.30)
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In general (2.30) does not hold, although there are cases where (2.30) holds for dependent
Xand Y. Asan example of acase where (2.30) does not hold, let X=U,U, and Y =U,.U,,
where U,, U, and U, are independent uniformly [0,1] distributed, and let f(x) = x, g(X) = X.
Thejoint density of U,, U, and U, is:

h(u,,u;,u,) = 1 if (uo,ul,uz)T € [0,1]x[0,1]x[0,1], h(u,,u,,u,) = O elsewhere,

hence

E[f(X)g(Y)] = E[X.Y] = E[U{U,U,] = fol fol foluozuluzduodulduz - foluozduo foluldul foluzduz

= (U3x(U2)x(1/2) = 112,

whereas
E[f(X)] = E[X] = fol fol foluoulduodulduz - foluoduo foluldul folduz = Va4,
and similarly, E[g(Y)] = E[Y] = 1/4.

As an example of dependent random variables X and Y for which (2.30) holds, let now X
= Uy(U, - 05) and Y= Uy U, - 05), where U,, U,, and U, are the same as before, and
again f(x) = X, g(X) = X. Thenitiseasy to show that E[X.Y] = E[X] = E[Y] = O.

In order to prove (2.30) for independent random variables X and Y, let f and g be simple
functions:

f) = Xhal(x € A), 9 = ZLBl(x € B),

where the A’s are disoint Borel sets, and the B's are digoint Borel sets. Then
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E[f09g(N] = BETE]0I(X € A and Y ¢ B)
- f(EirT:'ler':laile(X(m) e A and Y(o) € B,-))dP(w)
- XN BP{o € Q X(©) € A} o € Q: Y(o) € B})
- XN B P{o € Q X(©) € A}P{o € Q: Y(o) € B})
- [EMaPo € @ X©) € A})ELBP[o € @ Vo) € BY)

= (ELFCAINE[Y)]).

because by the independence of XandY, P(X € A, and Y ¢ Bj) = P(X € A)P(Y € Bj). From

thisresult it follows more generally:

Theorem 2.20: Let X and Y be random vectorsin RP and RY, respectively. Then X and Y are
independent if and only if E[f(X)g(Y)] = (E[f(X)])(E[g(Y)]) for all Borel measurable functions

fandgon RP and RY, respectively, for which the expectations involved are defined.

This theorem implies that independent random variables are uncorrelated. The reverse,
however, isin general not true. A counter example is the case | have considered before, namely
X= UyU, - 05 and Y=U,U, - 0.5), where U,, U, and U, areindependent uniformly
[0,1] distributed. Inthiscase E[X.Y] = E[X] = E[Y] = 0, hencecov(X,Y) =0, but Xand Y are
dependent, due to the common factor U,. The latter can be shown formally in different ways, but
the easiest way isto verify that, for example, E[X2.Y?] = (E[X?])(E[Y?]), so that the

dependence of X and Y follows from Theorem 2.20.
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2.8. Moment generating functions and characteristic functions
2.8.1 Moment generating functions
The moment generating function of a bounded random variable X, i.e., P[|X] < M] =1
for some positive real number M < «, is defined as the function
m(t) = E[exp(t.X)], t € R, (2.31)

where the argument t is non-random. More generally:

Definition 2.15: The moment generating function of a random vector Xin R*is defined by
m(t) = E[exp(t ™X)] for t € T c R¥, where T isthe set of non-random vectorst for which the

moment generating function exists and isfinite.

For bounded random variables the moment generating function exists and is finite for all

values of t. In particular, in the univariate bounded case we can write

m(t) - E[exp(tX)] - gtz(k - ;ZOtKEKk].
It is easy to verify that the j-th derivative of m(t) is:
, j = ki . .tk
iy - S0 - e e -y SE @32
hence the j-th moment of X is
m®(0) = E[X]]. (2.33)

Thisisthereason for calling m(t) the “moment generating function”.

Although the moment generating function is a handy tool for computing moments of a
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distribution, its actual importance is due to the fact that the shape of the moment generating
function in an open neighborhood of zero uniquely characterizes the distribution of arandom

variable. In order to show this, we need the following result.

Theorem 2.21: The distributions of two random vectors X and Y in R* are the same if and only if

for all bounded continuous functions ¢ on R¥, E[o(X)] = E[¢(Y)].

Proof: | shall only prove this theorem for the case where X and Y are random variables: k
= 1. Note that the “only if” case follows from the definition of expectation.
Let F(x) bethedistribution function of X and let G(y) be the distribution function of Y.

Let a < b be arbitrary continuity points of F(x) and G(y), and define

= 0 if X >
= 1 if X < a,
o(x) = (2.34)
_ bX 4 a < x<b.
b-a

Clearly, (2.34) is a bounded continuous function, and therefore by assumption we have E[¢(X)]
= E[(Y)]. Now observe from (2.34) that
Elo(X)] = f e()dF(x) = F(a) + f —dF(X) > F(a)
and
Elo(X)] = f ()dF(x) = F(a) + f —dF(X) F(b).
Similarly,
Elo(YV)] = f e(y)dG(y) = G(a) + f —dG(X) G(a)

and
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Elo(X)] = f e(y)dG(y) = G(a) + f —dG(X) G(b).

Combining these inequalities with E[o(X)] = E[o(Y)] it follows that for arbitrary continuity
points a<b of F(x) and G(y),
G(a) < F(b), F(a < G(b). (2.35)
Letting b | a it followsfrom (2.35) that F(a) = G(a). Q.E.D.
Now assume that the random variables X and Y are discrete, and take with probability 1
the values x,.....,x,. Without loss of generality we may assume that x =j, i.e,
P[X € {12,...n}] = P[Y € {1,2,...n}] = 1.
Suppose that all the moments of X and Y match: For k= 1,2,3,...., E[X¥] = E[Y . 1 will show
that then for an arbitrary bounded continuous function ¢ on R, E[¢(X)] = E[e(Y)].
Denoting p, = P[X = j], g = P[Y = j] we can write
Elo()] - jilcp(j)p,-, Elo(¥)] - jilcpo)q,-.
It is aways possible to construct a polynomia p(t) = Eﬂ;cl,pkt Ksuchthat ¢(j) = p(j) forj=

1,...,n, by solving

111 - 1) P) (0@
122 2% o | |o@
1 nn% . n"Ylp , o(n)

Then
n-1 n-1

E[o] = XY pd'p = P i*p = b EIX

k=0 j=1

3
H

R
N
=~
&)
=~
&)

and similarly

n-1
Elo(Y)] = % p ELYH.
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Hence, it follows from Theorem 2.21 that if all the corresponding moments of X and Y are the
same, then the distributions of X and Y are the same. Thus if the moment generating functions of
Xand Y coincide on a open neighborhood of zero, and if all the moments of X and Y arefinite,

then it follows from (2.33) that all the corresponding moments of X and Y are the same:

Theorem 2.22: If the random variables X and Y are discrete, and take with probability 1 only a
finite number of values, then the distributions of X and Y are the same if and only if the moment

generating functions of X and Y coincide on an arbitrary small open neighborhood of zero.

However, this result also applies without the conditions that X and Y are discrete and take only a
finite number of values, and for random vectors as well, but the proof is complicated and

therefore omitted:

Theorem 2.23: If the moment generating functions m,(t) and my(t) of the random vectors X and
Yin R* aredefined and finite in an open neighborhood N,©6) = {x € R*: |x| < 8} ofthe
origin of R¥, then the distributions of X and Y are the same if and only if m,(t) = myt) for all

t € Ny3).

2.8.2 Characteristic functions
The disadvantage of the moment generating function is that is may not be finitein an
arbitrarily small open neighborhood of zero. For example, if X has a standard Cauchy

distribution, i.e., X has density
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1

f(x) = :
¥ n(1+x?)

(2.36)

then
= if t =0,

m(t) = fwexp(t.x)f(x)dx {: Litt-o

(2.37)
There are many other distributions with the same property as (2.37), hence the moment
generating functions in these cases are of no use for comparing distributions.
The solution to this problem isto replacet in (2.31) with i.t, where i = /-1. The
resulting function @(t) = m(i.t) is called the characteristic function of the random variable X:
o(t) = E[exp(i.t.X)], t € R.

More generally,

Definition 2.16: The characteristic function of a random vector X in R¥is defined by

@(t) = E[exp(i.t "X)], t € R¥, where the argument t is non-random.

The characteristic function is bounded, because exp(i.x) = cos(x) + i.sin(x). See
Appendix 1. Thus, the characteristic function in Definition 2.16 can be written as
@(t) = E[cos(t ™X)] + i.E[sin(t TX)], t € R,
Note that by the dominated convergence theorem (Theorem 2.11), lim_, o(t) = 1 = ¢(0),
hence a characteristic function is always continuousint = 0.
Replacing moment generating functions with characteristic functions, Theorem 2.23 now

becomes:



98

Theorem 2.24: Random variables or vectors have the same distribution if and only if their

characteristic functions are identical.

The proof of thistheorem is complicated, and is therefore given in Appendix 2.A at the end of
this chapter. The same applies to the following useful result, which is known as the inversion

formula for characteristic functions:

Theorem 2.25: Let X be a random vector in R* with characteristic function ¢(t). If  ¢(t) is
absolutely integrable, i.e., f k|<p(t)\dt < «, then the distribution of X is absolutely continuous
R

with joint density f(x) = (2n) *[ exp(-i.t ) p(tct.
R

29. Exercises

1. Prove that the collection @ in the proof of Theorem 2.1 is ac-algebra.

2. Prove Theorem 2.3.
3. Prove Theorem 2.4 for the max, sup, limsup and lim cases.

4, Complete the proof of Theorem 2.5, by proving that g, (x) = lim (X) pointwisein

m-Fnm
x,and g(x) = lim___ g (X) pointwisein x.

5. Why isit true that if g is Borel measurable, thensoare g, and g_in (2.6)?

6. Prove Theorem 2.7.

7. Prove Theorem 2.8.

8. Let g(x) = x if xisrationa, g(x) = -x if xisirrational. Prove that g(x) isBorel

measurable.
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9. Prove parts (a)-(f) of Theorem 2.9 for ssmple functions

g = Tlalx € B), f() = Ebl(x € C).
10.  Why can you conclude from exercise 9 that parts (a)-(f) of Theorem 2.9 hold for arbitrary
non-negative Borel measurable functions?
11.  Why can you conclude from exercise 10 that Theorem 2.9 holds for arbitrary Borel
measurabl e functions, provided that the integrals involved are defined?
12. From which result on probability measures does (2.11) follow?
13. Determine for each inequality in (2.12) which part of Theorem 2.9 has been used.
14.  Why do we need the condition in Theorem 2.11 that f g(X)du(x) < «?
15. Note that we cannot generalize Theorem 2.5 to random variables, because something
missing prevents us from defining a continuous mapping X: Q - R. What is missing?
16.  Verify (2.16), and complete the proof of Theorem 2.18.
17. Prove equality (2.2).

18. Show that var(X) = E(X?) - (E(X))?, cov(X,Y) = E(X.Y) - (E(X))E(Y)), and -1 <

corr(X,Y) < 1. Hint: Derive the latter result from var(Y - AX) > O for al A.

19. Prove (2.17).

20.  Which parts of Theorem 2.15 have been used in (2.18)?

21. How does (2.20) follow from (2.19)?

22.  Why doesit follows from (2.28) that (2.29) holds for simple random variables?
23 Prove Theorem 2.19.

24. Compl ete the proof of Theorem 2.20 for thecasep=q=1.

25. Let X= UyU, - 05)and Y=Uy U, - 0.5), where U,, U,, and U, are
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independent uniformly [0,1] distributed. Show that E[X2.Y?] = (E[X?])(E[Y?]).
26. Provethat if (2.29) holds for simple random variables, it holds for all random variables.
Hint: Use the fact that convex and concave functions are continuous (See Appendix I1).
27. Derive the moment generating functions of the Binomia (n,p) distribution.
28. Use the results in exercise 27 to derive the expectation and variance of the Binomial (n,p)
distribution.
29. Show that the moment generating function of the Binomial (n,p) distribution converges
pointwise in t to the moment generating function of the Poisson (A) distributionif n- ~andp |0
such that n.p - A.
30. Derive the characteristic function of the uniform [0,1] distribution. Is the inversion
formulafor characteristic functions applicable in this case ?
31 If the random variable X has characteristic function exp(i.t), what is the distribution of X?
32. Show that the characteristic function of arandom variable X isreal-valued if and only if
the distribution of X is symmetric, i.e., X and -X have the same distribution.
33. Usethe inversion formulafor characteristic functionsto show that ¢(t) = exp(-|t|) is
the characteristic function of the standard Cauchy distribution [see (2.36) for the density
involved].
Hints: Show first, using Exercise 32 and the inversion formula, that

f(x) = nt fowcos(t.x) exp(-t)dt,

and then use integration by parts.
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Appendix
2.A. Uniqueness of characteristic functions
In order to understand characteristic functions, you need to understand the basics of
complex anaysis, which is provided in Appendix I1l. Therefore, it is recommended to read
Appendix 11 first.
In the univariate case, Theorem 2.24 is a straightforward corollary of the following link

between a probability measure and its characteristic function.

Theorem 2.A.1: Let u be a probability measure on the Borel setsin R with characteristic

function ¢, and let a < b be continuity pointsof u: p({a}) = u({b}) = 0. Then

T . .
u((@b]) - “mzi exp(—l.t.a).—exp(—l.t.b)(p(t)dt. (2.38)

o0 2T 1.t
T T

Proof: Using the definition of characteristic function, we can write

T . . T e i i
fexp(—l.t.a)i—texp(—l.t.b) o(Hdt - ff exp(i .t(x—a))i—texp(l 't'(x_b))du(x)dt

N o o (2.39)
_ [1im f exp(i.t(x-a)) -exp(i.t.(x-b)) du()dt
I M S it

Next, observe that

?exp(i.t(xa))exp(i.t.(xb))du(x)l < }exp(—i.ta)—exp(—i.t.b)l“([_lvI M])
it it ’

-M

. lexp(-i.t.a)-exp(-i.t.b)| _ J 2(1 - cog(t.(b-a)) < b-a
) t t2 )
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Therefore, it follows from the bounded convergence theorem that

}exp(—i.t.a).—exp(—i.t.b) o(®)dt - lim f feXp(l A(x- a)) exp(lt(x b))du(x)dt

T 1.t VR
(2.40)
]
. exp(i.t(x- a)) exp(lt(x b)) exp(i.t(x-a)) -exp(i.t.(x-b))
UEQ f f dtdu(x) = f f — dt|dp(x
MET S oT
The integral between square brackets can be written as
}exp(i.t(x—a))—exp(i.t.(x—b)) i - }exp(i.t(x—a))—l i }exp(i.t.(x—b))—l i
it it it
T T T
_ 1 cos{t(x-a))-1+i.sin(t(x-a)) i " cos(t(x-b)) -1 +i.sin(t(x-b)) &
fT it fT it
] ] (2.41)
_ fsin(t(x—a))dt ~ fsin(t(x—b))dt _ 2fsm(t(x a))dt(x a) - fsm(t(x b))dt(x b)
I I ((x-2) t(x-b)
T(x- a) . T(x- Tix- Tix-

_ 2 f (t)dt 2 f Sm(t)dt 25gn(x-a) f Sm(t)dt 25gn(x-h) f (t)dt

where sgn(x) = 1if x>0, sgn(0) = 0, and sgn(x) = -1if x< 0. Thelast two integralsin (2.41) are
of theform

o X

X sin(t) g Xsin(t)weXp(_t'u)dUdt = [ [sin(t)exp(-t.u)dtdu
[Foes o] d
(2.42)

o0 o0

_ o GQu . US exp(—x.u)d_
{1+u2 {[cos(x) usm(x)]—1+u2 u

where the last equality follows from integration by parts:
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}sin(t)exp(—t.u)dt = f OIC(c)ls(t)exp( tu)dt = cos(t)exp(-t.u)y - u. f cos(t)exp(-t.u)dt
0
1. o pdsin®)
= 1 - cos(X)exp(-x.u) - u. { & exp(-t.u)dt
= 1 - cos(X)exp(-x.u) - u.sin(x)exp(-x.u) - uzfsin(t)exp(—t.u)dt.

Clearly, the second integral at the right-hand side of (2.42) is bounded in x > 0, and convergesto

zero asx —e. Thefirst integral at the right-hand side of (2.42) is

oo

f du__ f darctan(u) = arctan(~) = n/2.
5 1+u?

Thus, theintegral (2.42) is bounded, hence sois(2.41), and

”mT exp(i t(x-a)) -exp(i.t.(xb)) 4 _

oo it
Tty

n[sgn(x-a) - sgn(x-b)] (2.43)

It follows now from (2.39) , (2.40), (2.43) and the dominated convergence theorem that

||m2 exp( |ta) texp( |tb) (t)dt f[sgn(x—a) - Sgn(X—b)]le.(X)
Toow 2TC s I (244)

_ L1 L1
- w(@b)) -+ Sudap) + Subh).

Thelast equality in (2.44) follow from the fact that

0 if x<aorx>Dh,
sgn(x-a) - sgn(x-b) =41 if x =aor x = b,
2 if a<x<bh.

The result (2.38) now follows from (2.44) and the condition p({a}) = p({b}) = 0. Q.E.D.

Note that (2.38) also reads as



104

F(b) - F(a) = lim- feXp( 12) "R TLD) o e, (2.45)

Tooo 20 it
where F is the distribution function corresponding to the probability measure .
Next, suppose that ¢ is absolutely integrable: f “|@(t)|dt < «. Then (2.45) can be

written as

F(b) - F(a) - 27tfexp( |ta)I texp( i.t.b) o(t)dt,

and it follows from the dominated convergence theorem that

i - e F(0) - F(a) 1-exp(-i.t.(b-a)) r
F/(a) lng——a anlbla (-2 exp(-i.t.a)e(t)dt

= —fexp( i.t.a)e(t)dt.

This proves Theorem 2.25 for the univari ate case.

In the multivariate case Theorem 2.A.1 becomes:

Theorem 2.A.2: Let p be a probability measure on the Borel setsin R* with characteristic

function @. Let B = x}‘:l(a]. ,bj], where a <D, for j = 1.2,..k andlet oB be the border of B, i.e.,

B = {x[a bIIN{x (@ b)}. If p@B) = 0 then

u(B) = lim...lim
T, Tkaoo

k lexp(-i.t.a)-exp(- |tb)
g "%

i.2nt.
(TT) J

wheret = (t,,...,t,)".

This result proves Theorem 2.24 for the general case.

e(Hdt, (2.46)
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Moreover, if f Je@)|dt < « then (2.46) becomes
R

@ - [T R ixp( 2 gy,

and by the dominated convergence theorem we may take partial derivativesinside the integral:

B _
S0, (2n)kf SXP(-I ) e, (247

wherea = (a,,...,a)". Thelatter isjust the density corresponding to . in point a. Thus, (2.47)

proves Theorem 2.25.

Endnotes
1 The actual construction of such a counter example is difficult, though, but not impossible.
2. The notation f g(X)du(x) is somewhat odd, because u(x) has no meaning. It would be

better to denote the integral involved by f g(xX)(dx) (which some authors do), where dx

represents aBorel set. The current notation, however, is the most common, and therefore adopted
here too.

3. Because «~ - « isnot defined.

4, Again, the notation f X(w)dP(w) is odd because P(w) has no meaning. Some authors use

the notation f X(w)P(dw), where do represents aset in.7. The former notation is the most

common, and therefore adopted.
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Chapter 3

Conditional Expectations

3.1. Introduction

Roll adice, and let the outcome be Y. Define the random variable X = 1 if Y iseven, and
X=0if Yisodd. The expected value of Y is E[Y] = (1+2+3+4+5+6)/6 = 3.5. But what would the
expected value of Y beif it isrevealed that the outcome is even: X = 1? The latter information
impliesthat Y iseither 2, 4 or 6, with equal probabilities 1/3, hence the expected value of Y,
conditional on the event X = 1, is E[ Y|X=1] = (2+4+6)/3 = 4. Similarly, if it isrevealed that X = 0,
then Yiseither 1, 3, or 5, with equal probabilities 1/3, hence the expected value of Y, conditional
ontheevent X =0, isE[Y|X=0] = (1+3+5)/3 = 3. Both results can be captured in asingle
Statement:

E[YIX] = 3+X. (3.1
In this example the conditional probability of Y =y, given X = x, is*

P(Y = y and X=X)

POY = yX®) = S
_ Pyin{246)) - Py U6 _ 1.0 4 and y € {2,4,6}
P({2,4,6}) P{24,6}) 12 "

_ Pyi{246}) _  Ple) _
P({2,4,6}) P({2,4,6})

_ PAYI{138) - Py W6 1.4 and y € {1,3,5)
P({1,35}) P{135) 12 o

X

=landy ¢ {24,6} (3.2
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_ PAVINKL3SY) _ P@) ity —pandy ¢ {135)
P({1,3,5}) P({1,3,5}) ”

hence

2+4+6

= =4if x =1
26: P(Y=y[X=X) 3 3 +X
y :y = = + .
v _ 1+2+5 _ 3 x 0

Thus in the case where both Y and X are discrete random variables, the conditional expectation

E[Y]X] can be defined as

E[YIX] = X yp(y[X), where p(ylx) = P(Y=y|X=x) for P(X=x) > 0
y

A second exampleiswhere X is uniformly [0,1] distributed, and given the outcome x of
X, Y israndomly drawn from the uniform [0,X] distribution. Then the distribution function F(y)

of Yis

Fly) =P(Y <y) =P(Y<yand X <y) + P(Y < yand X > )
=PX <y) +P(Y<yand X>y) =y + E[I(Y < I(X>Y)]

=y + fol( foXI(Z < y)xldz) I(x > y)dx =y + fy 1( fomin(x,y)xfl dz) i
=y + fl(y/x)dx = y(1 - In(y)) for O< y <1.
y

Hence, the density of Y is:
fly) = F'(y) = -In(y) for y € [0,], f(y) = O for y ¢ [0,1].
Thus, the expected value of Yis: E[Y] = f ! y(-In(y))dy = 1/4. But what would the expected
0

valuebeif itisrevealedthat X = x for agiven number x € (0,1) ? The latter information
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impliesthat Y is now uniformly [0,x] distributed, hence the conditional expectation involved is

E[Y[X=X] = x’lfxydy = X/2.
0

More generally, the conditional expectation of Y given Xis:
EIYP = X2 "ydy = X72. (33)

The latter example is a special case of apair (Y,X) of absolutely continuously distributed
random variables with joint density function f(y,x) and marginal density f(x) . The conditional

distribution function of Y giventheevent X € [x,x+d], 6 > O, is:

y 1x+6
f = f f(u,v)dvdu
P(Y < y and X € [xx+3]) _ ' °%
P(X € [x,x+3]) 1><+5
gffx(v)dv

P(Y < y| X € [xx+3]) =

Letting 6 | O thenyieldsthe conditional distribution function of Y giventheevent X = x:

510

y
Fiy¥) = limP(Y < y| X € [xx+3]) = f f(u,X)du /f (x), provided f (x) > O.

Note that we cannot define this conditional distribution function directly as
F(y¥) = P(Y < yand X = x)/P(X = Xx),
because for continuous random variables X, P(X=x) =0.
The conditional density of Y given the event X = x isnow
f(yX) = oF(yiX)/oy= f(yx)/f(x),

and the conditional expectation of Y given the event X = x can therefore be defined as:
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E[YX=x] = f yilyk)dy = g(x), say.

Pluggingin X for x then yields:
E[YIX] = f yf(yX)dy = 9(X). (3.4)

These examples demonstrate two fundamental properties of conditional expectations. The
first oneisthat E[Y|]X] isafunction of X, which can be trandated as follows: Let Y and X be two
random variables defined on a common probability space {Q,7,P}, and let .7, bethe
c-algebragenerated by X: .7, = {X (B), B € B}, where X*(B) is a short-hand notation for

the set {weQ: X(w) € B}, and B isthe Euclidean Borel field. Then:
Z = E[Y|X] is measurable .7, . (3.5)
which means that for all Borel sets B, {weQ: Z(o) € B} € .7,. Secondly, we have
E[(Y - E[YX])I(X € B)] = 0 for all Borel sets B. (3.6)

In particular in the case (3.4) we have

E[(Y - E[YXDI(X € B)] = f f (v - g0 (xeB)f(yx)dydx

—00—00

—oo\ —oo —oo\ —oo

= f [ f yf(y|x)dy] |(xeB)f (x)dx - f ( f f(y|x)dy] g(¥)1 (xeB)f (x)dx (3.7)

= ?g(x)l(xeB)fx(x)dx - }g(x)l(xeB)fx(x)dx = 0.
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Since .7, = {X(B), B € J3}, property (3.6) is equivalent to

f (Y(0) - Z(w))dP(w) = 0 for all A € .7,.
A
Moreover, notethat Q € .7, sothat (3.8) implies

(3.8)

E(Y) = [Y(@)dP() - [Z(o)dP(0) - EQ), (3.9)
Q Q

provided that the expectations involved are defined. A sufficient condition for the existence of

E(Y)isthat
E(]Y]) < . (3.10)

We will seelater that (3.10) is aso a sufficient condition for the existence of E(Z).

| will show now that the condition (3.6) also holds for the examples (3.1) and (3.3). Of
course, in the case (3.3) | have already shown thisin (3.7), but it isillustrative to verify it again
for the special case involved.

In the case (3.1) the random variable Y.I(X=1) takes the value O with probability %2, and
the values 2, 4, or 6 with probability 1/6, and the random variable Y.l (X=0) takes the value O with

probability ¥, and the values 1, 3, or 5 with probability 1/6, so that

E[Y.I(XeB)] = E[Y.I(X=1)] = 2 ifleBandO ¢ B,
E[Y.I(XeB)] = E[Y.I(X=0)] = 15 if 1 ¢ B and O ¢ B,
E[Y.I(XeB)] = E[Y] - 35 ifleBand0e B,
E[Y.I(XeB)] = O if 1 ¢ Band O ¢ B,

which by (3.1) and (3.6) isequal to



E[(E[VIX])I(XeB)] = 3E[I(XeB)] + E[X.I(XeB)]
- 3P(XeB) + P(X=1 and XeB)
- 3P(X=1) + P(X=1)

2 ifleBandO ¢ B,
= 3P(X=0) + P(X=1 and X=0) = 15 if 1 ¢ Band O € B,
= 3P(X=0 or X=1) + P(X=1) 35 if 1 e Band O € B,
=0 if 1 ¢ Band O ¢ B.

Moreover, in the case (3.3) the distribution function of Y.I(XeB) is:
Fe(y) = P(Y.I(XeB) <y) = P(Y < yand X € B) + P(X ¢ B)

= P(X € BN[0y]) + P(Y <y and X € BN(y,1)) + P(X ¢ B)

y 1 1
= fl(xeB)dx + yfx’ll(x € Bydx + 1 - fl(x e B)dx
0 y 0

1 1
=1 - fl(xeB)dx + yfx’ll(x e Bdx for0<y=<l1,
y y

hence the density involved is

1
fo(y) = fx’ll(x € B)dx for y € [0,1], fy(y) = O for y ¢ [0,1].
y

Thus

1 1 1
E[VI(X € B)] = [\ [xU(x e B)dx] dy = L(yi(y ¢ B)dy,
ool 4

0

which isequal to

111
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1
EE[YIX]I(XeB)) = %E[X.I(X € B) - % [xl(x € By
0

The two conditions (3.5) and (3.8) uniquely define Z = E[Y|X], inthe sense that if there
exist two versionsof E[Y|X], say Z, = E[Y|X] andZ, = E[Y|X], satisfying the conditions (3.5)

and (3.8),then P(Z, = Z,) = 1. Tosee this, let
A={ocQ Z(n) <Z(w)}. (3.12)
Then A ¢ .7, henceit follows from (3.8) that

f (Zz(a)) - Zl(a))>dP(a)) = E[(zz—zl)l(zz—z1 > 0)] = 0.
A

The latter equality implies P(Z, - Z, > 0) = 0, as| will show in Lemma 3.1 below. Replacing
thesst Aby A = {0 € Q: Z(0) > Z,(w)}, it follows similarly that P(Z, - Z, < 0) = O.

Combining these two casesit followsthat P(Z, = Z;) = 0.
Lemma3.1: E[Z.I(Z > 0)] = O impliesP(Z>0) =0.

Proof: Choose € > 0 arbitrary. Then

0 = E[ZI(Z>0)] = E[ZI(0< Z<¢)] + E[ZI(Z > ¢)] > E[ZI(Z > ¢)]
> eE[I(Z > €)] = eP(Z > ¢),

hence P(Z > ¢) = Oforal e > 0. Nowtakee = 1/n, n = 1,2,....., and let

C, = {weQ: Z(w) > n'}.

ThenC_ < C_ ,, hence

n+1’
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Pz >0) = P[U,,C] = lim__P[C] = 0. (3.12)

Q.E.D.
The conditions (3.5) and (3.8) only depend on the conditioning random variable X via

the sub- c-algebra .7, of .7. Therefore, we can define the conditional expectation of a

random variable Y relative to an arbitrary sub-c-algebra .7, of .7, denoted by E[Y|.7 ], as

follows;

Definition 3.1: Let Y be a random variable defined on a probability space {Q,.7,P}, satisfying
E(JY) < », andlet .7, c .7 beasub-c-algebra of .7 The conditional expectation of Y
relative to the sub-c - algebra .7 ), denoted by E[Y|.7 )] = Z, say, isarandom variable Z which

0

ismeasurable.7 ,, and is such that for all setsA ¢ .7,

f Y(0)dP(w) = f Z(0)dP(w).
A A

3.2.  Propertiesof conditional expectations
As said before, the condition E(]Y]) < « isaso asufficient condition for the existence of
E(E[Y]7 (]). Thereason istwo-fold. First, | have already established in (3.9) that

Theorem 3.1: E[E(Y]7 )] = E(Y).

Second, conditional expectations preserve inequality:



114

Theorem 3.2: If P(X < Y) = 1 then P(E(X}7,) < E(Y}7y) = 1.

Proof: Let A = {0eQ: EX7)(0) > E(Y}7)(@)}. Then A € .7,

and
f X(0)dP(0) = f E(X.7 ) (w)dP(w) < f Y(o)dP(w) = f E(Y[7 ) (0)dP(w),
A A A A

hence

0 < f (E(Y|,70)(co) - E(X|370)(w))dP(w) < 0.
A
It follows now from (3.13) and Lemma 3.1 that P({ weQ: E(X|7)(®) > E(Y]7 )(w)}) = O.

(3.13)

Q.E.D.

Theorem 3.2 implies that [E(Y]7 )| < E(|Y]|#,) with probability 1, and applying
Theorem 3.1 it followsthat E[IE(Y|.7)[l < E(|Y]). Therefore, the condition E(|Y]) < « is a
sufficient condition for the existence of E(E[Y] 7] ).

Conditional expectations also preserve linearity:

Theorem 3. 3: If E[[X] < ~ and E[|Y] < = thenP[E(aX + BY}7,) = aE(X}7,) + BE(Y}7,)]

=1

Proof: Let = E(aX +BY}7,), Z, = E(X|7,), Z, = E(Y|7 ). For everyA € .7, we
0] 1 0] 2 0] 0

have:
f Z(0)dP(w) = f (oX(®) +BY(0))dP(®) = a f X(w)dP(w) + B f Y(0)dP(w),
A A A A

f Z,(0)dP(w) = f X(w)dP(w),
A A
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and

f AZz(a))dP(w) = f AY(w)dP(a)) ,

hence
fA(ZO(co) - aZ(0) - PZ(w))dP(w) = O. (3.14)

Taking A = {0eQ: Z(w) - aZ,(0) - PZ,(w) > O} it followsfrom (3.14) and Lemma 3.1 that
P(A) =0, andtaking A = {0eQ: Z(0) - aZ,(w) - BZ,(w) < O} it followssimilarly that P(A)
=0, hence P{ocQ: Z(0) - 0Z,(0) - BZ,(w) # O}) = 0. QE.D.

If we condition arandom variable Y on itself, then intuitively we may expect that E(Y]Y)

=Y, because then Y acts as a constant. More formally, this result can be stated as:
Theorem 3.4: Let E[|Y]] < «~. If Yismeasurable .7, then P(E(Y|7) = Y) = 1.

Proof: Let Z = E(Y].7). For every A € .7 we have:

[ Y@ - Z)dP() = 0. (3.15)
Take A = {0eQ: Y(o) - Z(w) > O}. Then A € .7, henceit follows from (3.15) and Lemma
3.1that P(A) = 0. Similarly, taking A = {weQ: Y(w) - Z(w) < 0O} it followsthat P(A) = 0.
Thus P 0eQ: Y(w) - Z(w) # 0}) = 0. QE.D.
In Theorem 3.4 | have conditioned Y on the largest sub- ¢ -algebra of .7, namely .7

itself. Thesmallest sub-c-algebraof .7 is77 = {Q,2} ,whichiscaled thetrivial c-agebra
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Theorem 3.5: Let E[|Y]] < «. ThenP[E(Y| 77 ) =E(Y)] = 1.

Proof: Exercise, along the same lines as the proofs of Theorems 3.2-3.4.

The following theorem, which playsa key-role in regression anaysis, follows from

combining the results of Theorems 3.3 and 3.4:
Theorem 3.6: Let E[[Y]] <~ and U =Y - E[Y|7]. Then P[E(U|7) = Q] = 1.
Proof: Exercise.

Next, let (Y, X, Z) bejointly continuously distributed with joint density function f(y,x,2)
and marginal densitiesf,,(y,x), f,,(x,2) and f,(x). Then the conditional expectation of Y given X

=xandZ=zis

E[YIXZ] = f YiyIX.2)dy = g,(X.2), say,

where f(y|x,2) = f(y,x,2)/f, (x,2) isthe conditional density of Y given X= xandZ= z The

conditional expectation of Y given X = xaloneis
E[YX] = f yf(ylX)dy = g,(X), say,

where f(y|x) = f,,(y,X)/f(x) isthe conditional density of Y given X = xalone. Denoting the

conditional density of Z given X = x by f(z|x) = f, (zX)/f,(x), it follows now that
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o0

E(E[YX,Z] [X) = f

wf = f (X
fyf(ylx z)dy]f (ZX)dz = f [ f y]‘:(y(i z; ] X{CZ((X)Z) dz

—00

}\{ f f(y,X,2)dzdy | ——

—00

—o0

[y WOy - [viymay - EIVI,

) (X) £ (X)

Thisis one of the versions of the Law of Iterated Expectations. Denoting by .7, , the c-algebra
generated by (X,2), and by .7, the c-algebragenerated by X, this result can be translated as:
X -

E(E[YL?XYZ] |7 ) E[Y]|7.

Notethat .7 because

XZ’

Ty = {{oeQ: X(o) € B}, B, € B} = {{ocQ: X(w) € B}, Z(w) € R}, B, € B}
c {{0eQ: X(0) € B, Z(0) € B}, B,,B, € B} = 7,

XZ*

Therefore, the law of iterated expectations can be stated more generaly as:

Theorem 3.7: Let E[[Y]] < «, and let .7, c .7, besub-c-algebras of .7. Then

P[E(E[Ylyl] |9‘0) - E(Y|7, 0)] _

Proof: Let Z, = E[Y|7 ], Z, = E[Y|7 ], andZ, = E[Z,|7]. It hasto be shown that

P(Z,=2) =1.LetAc .7,. Thendso A ¢ .7,. It follows from Definition 3.1 that

N
I

o = E[Y}7 ] implies

f Y(0)dP(w) = f Z(0)dP(m),
A A

N
I

. = E[Y}7] implies
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f Y(o)dP(®) = f Z,(0)dP(o),
A A

and Z, = E[Z |7 ] implies

f Z(0)dP(w) = f Z,(0)dP(o),
A A

Combining these equalitiesit follows that for al A € .7,

f (Zo(co) - Zz(co))dP(co) = 0. (3.16)

A

Now choose A = {0eQ: Z(w) - Z,(») > O} . Notethat A € .7,. Then it follows from (3.16)
and Lemma3.lthat P(A) = 0. Similarly, if we choose A = {0eQ: Z (o) - Z(w) < O}
then again P(A) = O. Therefore, P(Z, = Z)) = 1. QE.D.

The following monotone convergence theorem for conditional expectations plays a key-

rolein the proofs of Theorems 3.9 and 3.10 below.

Theorem 3.8: (Monotone convergence). Let X, be a sequence of non-negative random variables
defined on a common probability space {Q2,.7,P}, suchthat P(X, < X ;) =1and

E[sup, ,X] < . Then P(lim _E[X |7 = E[lim X |7]) = 1.

Proof: Let Z = E[X |7, and X = lim___X_ . It followsfrom Theorem 3.2 that Z, is
monotonic non-decreasing, hence Z = lim _ Z exists. Let A € .7, be arbitrary, and denote for
o€ Q, Y(0) =Z(w)llocA), Yo) = Z(o).l(o € A). Thenaso ', isnonnegative and

monotonic non-decreasing, and Y = lim___Y_, henceit followsfrom the monotone convergence
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theorem that lim,___ f Y (0)dP(w) = f Y(w)dP(o),which is equivalent to

lim_ f AZn(co)dP(a)) = f AZ(co)dP(co)- (3.17)

Similarly, denoting U (o) = X (0).l(w€A), U(®) = X(w).l(wcA), it followsfrom the
monotone convergence theorem that lim_ f U (0)dP(w) = f U(w)dP(w), which is equivalent

to

lim_ f Xol@)dP(w) = f X(@)dP(w). (3.18)

Moreover, it follows from the definition of Z = E[X |7 ] that

fAZn(co)dP(a)) = fAXn(w)dP(a)). (3.19)
It follows now from (3.17), (3.18) and (3.19) that

fAZ(co)dP(a)) = fAX(a))dP(w). (3.20)
Theorem 3.8 easily follows from (3.20). Q.E.D.

The following theorem extends the result of Theorem 3.4:

Theorem 3.9: Let X be measurable .7 ,, and let both E([Y]) and E(|XY]) befinite. Then

PIE(XYl7,) = XE(Y}7y] = 1

Proof: | will prove the theorem involved only for the case that both X and Y are non-

negative with probability 1, leaving the general case as an easy exercise.
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Denote Z = E(XY|7,), Z, = E(Y}7y). If

VAe 7 fAZ(co)dP(co) = fAX(co)Zo(co)dP(w), (3.21)

then the theorem under review holds.
€) First, consider the case that X is discrete: X(w) = Ejr‘:lﬁjl(m € Aj)w wherethe A ‘sare
digoint setsin .7, and the [3 sare non-negative numbers. Let A € .7, bearbitrary, and

observethatAﬁAj e .7, forj=1,.,n. Then by Definition 3.1,

f X(w)Zy(w)dP(w) = f Y Bl (0eA)Zy(w)dP(0) = Z B f Z()dP(w)
Alt =1 A,

= X; B f Y(o0)dP(0) = Z B f l(0eA)Y(0)dP(w) = f Zﬁl(meA)Y(m)dP(m)
N

Alt

- fX((o)Y((o)dP((o) = f Z(w)dP(),
A A

which proves the theorem for the case that X is discrete.
(b) If X isnot discrete then there exists a sequence of discrete random variables X, such that
for each ® € Q we have: 0 < X (w) < X(0) and X (o) T X(w) monotonic, hence aso

X (0)Y(®) T X(»)Y(w) monotonic. Therefore, it follows from Theorem 3.8 and part (a) that,

E[XY}7,] = limE[X Y|74] = limX E[Y}7,] = XE[Y}7]

N-oco N-oco

with probability 1. Thus the theorem under review holds for the case that both X and Y are non-
negative with probability 1.
(© Therest of the proof isleft asan exercise. Q.E.D.

We have seen for the case that Y and X are jointly absolutely continuous distributed that
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the conditional expectation E[Y[X] isafunction of X. This holds a'so more generally:

Theorem 3.10: Let Y and X be random variables defined on the probability space{ Q,.7,P},
and assume that E(|Y|) < . Then there exists a Borel measurable function g such that
P[E(YIX) = g(X)] = 1.Thisresult carriesover to the case where X is a finite-dimensional

random vector.

Proof: The proof involves the following steps:
€) Supposethat Y isnon-negative and bounded: 3K < «: P{weQ: 0 < Y(o) < K}) =1,

andlet Z= E(Y|.7, ), where .7, isthe c-algebragenerated by X. Then

P{oweQ: 0 < Z(o) < K}) = 1. (3.22)

(b) Under the conditions of part (a) there exists a sequence of discrete random variables Z,,

Z(©) = Zo @ € A, where A e 7, ANA L= o if i+, UDA L = Q,

0<a,<«fori=1.msuchtha Z (o) 1 Z(w) monotonic. For each A ,, we can find a

Borel set B, suchthat A, = X (B, ). Thus, if wetake g () = X0, J(x € B ) thenZ,
0(X) with probability 1.
Next, let g(x) = limsup_, g, (X). Thisfunction is Borel measurable, and
Z =limsup,, Z = limsup. g (X) = g(X) with probability 1.
(© LetY,=Y.I(Y<n). Then Y (o) ! Y(®) monotonic. By part (b) it follows that there
exists a Borel measurable function g,(x) such that E(Y,|.7,) = ¢,(X). Letg(x) =

limsup,,._g,,(x), whichis Borel measurable. It follows now from Theorem 3.8 that



122
E(Y|.7,) = lim_ _E(Y,|7,) = limsup  E(Y |7, = limsup __g.,(X) = 9(X).
(d) Let Y* = max(Y,0), Y = max(-Y,0). ThenY = Y" - Y, and therefore by part (c),
E(Y'[7) = 97(X), say, and E(Y"|.7,) = g (X), say. Then E(Y|.7,) = g"(X) - g°(X) =
g(X). Q.E.D.
If random variables X and Y are independent, then knowing the realization of X will not

reveal anything about Y, and vice versa. The following theorem formalizes this fact.

Theorem 3. 11: Let X and Y be independent random variables. If E[|Y]] < «~ then P(E[Y|X] =

E[|Y]]) = 1. More generally, let Y be defined on the probability space {Q2,.7,P}, let .7, bethe
o-algebra generated by Y, and let .7, be a sub-o-algebra of .7 such that .7, and.7, are

independent, i.e., forall A e .7, and B € .7, P(ANB) = P(A)P(B). If E[|Y]] < « then

P(E[Yl7d = E[IYD) = 1.

Proof: Let .7, bethe o-algebragenerated by X, and let A € .7, bearbitrary. There

existsaBorel set Bsuchthat A = {weQ: X(w) € B}. Then

f Y(o)dP(w) = f Y(o)l(o € A)dP(0)= f Y(o)I(X(0) € B)dP(w)
A Q Q
= E[YI(XeB)] = E[Y]E[I(XeB)],

where the last equality follows from the independence of Y and X. Moreover

E[Y]E[I(XeB)] = E[Y] fQI(X(w)eB)dP(co) = E[Y] fgl(weA)dP(w) = fAE[Y]dP(co).

Thus
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f Y(o)dP(w) = f E[Y]dP(w).
A A

By the definition of conditional expectation, thisimpliesthat E[Y|X] = E[Y] with probability 1.

Q.E.D.

3.3.  Conditional probability measuresand conditional independence
The notion of a probability measure relative to a sub-o-algebra can be defined similar to

Definition 3.1, using the conditional expectation of an indicator function:

Definition 3.2 Let {Q,.7,P} be a probability space, and let .7, < .7 be a c-algebra. Then for

anyset Ain.7, P(Al.7,) = E[l,|7 ], where | ,(0) = I(0 € A).

In the sequel | will use the shorthand notation P(Y € B|X) to indicate the conditional probability
P{o € Q: Y(o) € B}|7,), where BisaBorel set and .7, isthe o-algebra generated by X,
and P(Y € B|.7)toindicate P{w € Q: Y(o) € B} |.7,)for any sub-c-algebra .7, of 7. The
event Y € B involved may be replaces by any equivalent expression.

Similar to the notion of independence of sets and random variables and/or vectors (see

Chapter 1) we can now define conditional independence:

Definition 3.3: A sequence of sets A €T is conditional independent relativeto a sub-o-
algebra .7, of .7 if for any subsequencej,, P(UrA |- 7o) = HnP(ﬁ |7 ). Moreover, a

sequence Y; of random variables or vectors defined on a common probability space {Q,7,P} is
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conditional independent relativeto a sub-c-algebra .7 of .7 if for any sequence B, of
conformable Borel sets the sets A = {o e Q: Yj(co) € Bj} are conditional independent relative
to .7,.
3.4. Conditioning on increasing sigma-algebras

Consider arandom variable Y defined on the probability space {Q,.7,P}, satisfying E[|Y]]

<, and let .7, be an non-decreasing sequence of sub-o-algebrasof .7: .7 < .7 . < .7. The

n n+1
question | will addressis: What isthe limit of E[Y]7 ] for n -~? Aswill be shown below, the
answer to this question is fundamental for time series econometrics.

We have seen in Chapter 1 that the union of o-algebrasis not necessarily a o-algebra

itself. Thus, U] _,.7 may not be a o-algebra. Therefore, let
7. = Vs 7y = olUia7), (3.23)

i.e, .7 isthe smallest c-algebracontaining U,_,.7, . Clearly, .7 < .7, becausethe latter also
contains U;_,.7 .

The answer to our question is now:
Theorem 3.12: If Yismeasurable .7, E[|Y]] <~, and {.7,} isa non-decreasing sequence of
sub-c-algebrasof .7, then lim___E[Y]7 ] = E[Y]7_] with probability 1, where .7 is defined

by (3.23).

Thisresult is usually proved by using martingale theory. See Billingsley (1986), Chung
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(1974) and Chapter 7. However, in Appendix 3.A | will provide an alternative proof of Theorem

3.12 which does not require martingale theory.

3.5. Conditional expectations asthe best forecast schemes

I will show now that the conditional expectation of arandom variable Y given arandom
variable or vector X isthe best forecasting schemefor Y, in the sense that the mean square
forecast error isminimal. Let y(X) be aforecast of Y, where y isaBorel measurable function.
The mean square forecast error (MSFE) is defined by MSFE = E[(Y - y(X))?]. The question

is: for which function y isthe MSFE minimal. The answer is:

Theorem 3.13: If E[Y?] < «, then E[(Y - y(X))?] isminimal for w(X) = E[Y|X].

Proof: According to Theorem 3.10 there exists a Borel measurable function g such that
E[Y]X] = g(X) with probability 1. DenoteU = Y - E[Y|X] = Y - g(X). It followsfrom

Theorems 3.3, 3.4 and 3.9 that

E[(Y - wX))?X] = E[(U + g(¥) - w(X)*X]
= E[UAX] + 2E[(9(X) - w(XNUIXT + E[(Q(X) - w(X)*X] (3.24)
= E[UAX] + 2(g(X) - w))E[UX] + (9(X) - w(X))*,

where the last equality follows from Theorems 3.9 and 3.4. Since by Theorem 3. 6, E(U|X) = O

with probability 1, equation (3.24) becomes

E[(Y - w(X))?XT = E[UX] + (9(X) - w(X))*. (3.25)
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Applying Theorem 3.1 to (3.25), it follows now that

E[(Y - w(X)7 = E[U7] + E[(g(X) - w(X))7,

whichisminimal if E[(g(X) - w(X))]] = 0.According to Lemma 3.1, this condition is
equivalent to the condition that P[g(X) = w(X)] = 1. Q.E.D.

Theorem 3.13 isthe basis for regression analysis. In parametric regression analysis, a
dependent variable Y is "explained" by avector of explanatory (also called "independent™)
variables X according to aregression model of thetype Y = g(X,0,) + U, where g(x,0) isa
known function of x and an unknown vector 6 of parameters, and U isthe error term whichis
assumed to satisfy the condition E[U|X] = O (with probability 1). The problem isthen to
estimate the unknown parameter vector 6. For example, a Mincer-type wage equation explains
the log of the wage, Y, of aworker out of the years of education, X;, and the years of experience
on thejob, X,, by aregression model of thetype Y = a + BX; + yX, - 8X22 + U, sothatin
thiscase 0 = (aB.y,8)7, X = (X, X,)T, and g(X,8) = a + BX, + yX, - 8X;. The condition
that E[U|X] = O with probability 1 now impliesthat E[Y[|X] = g(X,0) with probability 1 for
some parameter vector 6. It follows therefore from Theorem 3.12 that 6 minimizes the mean

square error function E[(Y - g(X,0))7:

6 = argmin E[(Y - 9(X,0.))7, (3.26)

where "argmin" stands for the argument for which the function involved is minimal.

Next, consider a strictly stationary time series process Y,.
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Definition 3.4: Atime series process Y, issaid to be strictly stationary if for arbitrary integers

m, <m, <...<m, thejoint distribution of Yt*ml’ ...... ’Yt*mk does not depend on the time index t.

Consider the problem of forecasting Y, onthe basisonthepast Y, ,j >1, of Y, Usualy
we do not observe the whole past of Y, , but only Y, ; for j =1,...t-1, say. It followsfrom
Theorem 3.13 that the optimal MSFE forecast of Y, giventheinformationon,; for j=1,...m

isthe conditional expectation of Y, givenY,; for j =1,..,m. Thus, if E[Ytz] < o« then

ELY[Y, 1Y,

Y]

= agminE[(Y, - y(Y, ;Yo )

]

Similarly as before, the minimum is taken over al Borel measurable functions { on R™.
Moreover, because of the strict stationarity assumption, there exists a Borel measurable function
0, on R™which does not depend on the time index t such that with probability 1,

ELYJY, pY, ] = 9. (Y

i1 Vo) fOralt. Theorem 3.12 now tells us that

lim_ E[Y Y, Y] = M 9 (Y Yo ) = ELYUY 10 Yo Yign e 1 @327

t-17 "t-27 "t-3?

where the latter is the conditional expectation of Y, givenitswholepastY, ;, j >1. More

formaly, let .7, ¢ = o(Y,;,.....Y, ) and .7} = Vi .7, +. Then (3.27) reads

lim__E[Y}7 o] = E[Y}7' .

The latter conditional expectation is also denoted by E,_,[Y{]:

def. def.
E Y] = E[YJY, Y Yo g 1 = E[Y)7]. (3.28)

t-17 "t-27 "t-3?

In practice we do not observe the whole past of time series processes. However, it follows
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from Theorem 3.12 that if t islarge then approximately, E[Y||Y, ;,....,Y;] = E_,[Y,].

In time series econometrics the focus is often on modeling (3.28) as afunction of past
values of Y, and an unknown parameter vector 0, say. For example, an autoregressive model of
order 1, denoted by AR(1), takestheform E, ,[Y] = a + BY, ,, 6 = (a,B)", where|p| < 1.
ThenY, = a + BY,, + U,, where U, iscalled the error term. If this model istrue, then
U, = Y, - E_,[YJ], which by Theorem 3. 6 satisfies P(E, ,[U] = 0) = 1.

The condition |B| < 1 isone of the two necessary conditions for strict stationarity of Y, ,
the other one being that U, isstrictly stationary. To see this, observe that by backwards

substitution we can write Y, = o/(1-B) + X U, ;, providedthat [B| < 1. Thestrict

stationarity of Y, follows now from the strict stationarity of U,.

3.6. Exercises

1 Why is property (3.6) equivalent to (3.8)?

2. Why isthe set A defined by (3.11) contained in .7, ?

3. Why does (3.12) hold?

4, Prove Theorem 3.5.

5. Prove Theorem 3.6.

6. Verify (3.20) . Why does Theorem 3.8 follow from (3.20)7?

7. Why does (3.21) imply that Theorem 3.9 holds ?

8. Complete the proof of Theorem 3.9 for the general case, by writing X = max(0,X)
- max(0,-X) = X, - X,, say,and Y = max(0,Y) - max(0,-Y) =Y, - Y, say, and

applying the result of part (b) of the proof to each pair X;, Y.



129

9. Prove (3.22).

10.  LetYand X berandom variables, with E[|Y|] < «, and let ® be a Borel measurable
one-to-one mapping from R into R. Provethat E[Y|X] = E[Y|®(X)] with probability 1.

11.  LetYand X berandom variables, with E[Y?] < =, P(X = 1) = P(X = 0) = 0.5,

E[Y] = 0, and E[X.Y] = 1. Derive E[Y|X]. Hint: Use Theorems 3.10 and 3.13.

Appendix
3.A. Proof of Theorem 3.12
Let Z, = E[Y}7,] and Z = E[Y|7 ], andlet A € U _,.7 bearbitrary. Note that the
latter implies A € .7_. Because of the monotonicity of {.7,} there exists an index k,

(depending on A) such that for all n > k,, hence

lim__ f Z (0)dP(e) = f Y(0)dP(). (3.29)
A A

If Yisbounded: P[|Y] < M] = 1 for some positive real number M, then Z, isuniformly
bounded: [Z | = [E[Y]Z ]| < E[|Y]l7,] < M, henceit follows from (3.29), the dominated

convergence theorem and the definition of Z that

flimann(co)dP(co) - f Z(0)dP() (3.30)
A A

foralsets A e U _,.7,.
Although U _,.7, is not necessarily a o-algebra, it is easy to verify from the monotonicity

of {7,} that U _,.7 isanalgebra. Now let .7 bethe collection of all subsetsof .7
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satisfying the following two conditions:

€)) Foreachset B € .7 equality (3.30) holdswithA= B

(b)  Foreachpairof setsB, € .7, and B, € .7, equality (3.30) holdswith A = B,UB,.
Since (3.30) holds for A= Q because Q € U, _,.7,, itistrivial that (3.30) aso holds for the

complement A of A;
[lim,..Z(@)dP() = [Z()dP(@),
A A

henceif B € .7 then B € .7 _. Thus, .7 isan agebra Notethat this algebra exists, because

*

U....7, isanagebrasatisfying the conditions (a) and (b). Thus, U,_,.7 < .7 < .7_.
| will show now that .7 isa o-algebra, sothat .7 = .7, becausethe former isthe
smallest o-algebra containing U, ;.7 ,. For any sequence of disjoint sets A €7, it follows

from (3.30) that

[ lim,..Z (0)dP(o) = Z [lim,_.Z (0)dP(0) = Z [Z)dP@) = [ Z(w)dP(w).
j=1 A i=1 A

U A U A

hence U_,A € 7. Thisimpliesthat .7, isao-algebracontaining U, ;.7 , because we have
seen in Chapter 1 that an algebrawhich isclosed under countable unions of digoint setsisa o-

algebra. Hence 7 = .7

1

and consequently, (3.30) holdsfor al sets A € .7_. Thisimplies
that P[Z = lim___Z ] = 1if Yisbounded.
Next, let Y be non-negative: P[|[Y > 0] = 1, and denote for natural numbersm > 1,

B, ={oec2mlzYo)<m,Y =YIml<Y<m),z™ -gY|7] andz™

E[Y |7_]. | havejust shownthat for fixed m=> 1 and arbitrary A € .7 _,
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fnmnngm)(m)dp(m) - fZ(m)((o)dP((o) - me((o)dP((o) - fY((o)dP((o)
A A A ANB

where the last two equalities follow from the definitions of Z™ and Y, . Since

Y (o)l(® € B) = Oitfollowsthat Z™(w)l(w € B,) = 0, hence

f lim__Z™(@)dP(w) = f Y(0)dP(w)
ANB ANB

m

Moreover, it follows from the definition of conditional expectations and Theorem 3.7 that

z™ - glYI(m-1 < Y < m)|7,] = E[YBNZ,] = E[E(V}7,)B,N7,] = E[ZBN7.],

hencefor every set A € U, ,.7,,

lim,. [ ZM™(w)dP(w) = lim__ [ Z@)dP@) = [ lim, Z(0)dP) = [ Y@)dP),
ANB,, AB AB ANB

m

which by the same argument as in the bounded case carries over tothesets A € .7_. Thuswe

"

have

N-eo"N
ANB ANB

m m

[ lim,_Z (0)dP@©) = [ Y()dP)

forall sets A € .7

"

Consequently

o0

f lim  Z (0)dP(0) = i f lim _Z (0)dP(w) = Y, f Y(0)dP(w) = f Y(0)dP(o)
A ™1 AB A

m=1 AB

m

foral sets A € .7

"

This proves the theorem for the case P[|Y > O] = 1. Thegenera caseis

now easy, using the decomposition Y = max(0,Y) - max(0,-Y).
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Endnote

1 Here and in the sequel the notations P(Y = y|X=x), P(Y = y and X=x), and P(X=Xx)
(and similar notations involving inequalities) are merely short-hand notations for the
probabilities P{0eQ: Y(0) = Y}{0weQ: X(0)=X}), P(oecQ: Y(®) = yH{oeQ: X(w)=x}),
and P{weQ: X(w)=x}), respectively.
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Chapter 4

Distributions and Transformations

In this chapter | will review the most important univariate distributions and derive their
expectation, variance, moment generating function (if they exist), and characteristic function.
Quite afew distributions arise as transformations of random variables or vectors. Therefore | will
also address the problem how for a Borel measure function or mapping g(x) the distribution of Y

= g(X) isrelated to the distribution of X.

4.1. Discretedistributions

In Chapter 1 | have introduced three " natural" discrete distributions, namely the
hypergeometric, binomial, and Poisson distributions. The first two are natural in the sense that
they arise from the way the random sample involved is drawn, and the latter becauseit is alimit
of the binomial distribution. A fourth "natural” discrete distribution | will discussisthe negative

binomial distribution.

4.1.1 Thehypergeometric distribution
Recall that arandom variable X has a hypergeometric distribution if

K)( N—K)
PX - K) - (k—”‘k for k = 0,1,2,....min(nK), P(X - K) - O elsawhere, (4.1)

("
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where0<n<Nand0<K <N are natural numbers. This distribution arises, for example, if we
draw randomly without replacement n balls from a bowl containing K red balls and N -K white
balls. The random variable X is then the number of red ballsin the sample. In ailmost all
applications of thisdistribution, n < K, so that | will focus on that case only.

The moment generating function involved cannot be simplified further than its definition

my(t) = Eﬂloexp(t.k)P(X = K), and the same appliesto the characteristic function. Therefore, we

have to derive the expectation directly:

( K)( N—K) KI(N-K)!
E[X] - §kk—r\|n_k _ kz; (k‘l)!(K—k)!(nN—!k)!(N—K—n+k)!
) -

(K-1)!((N-1)-(K-1))!
i n_Ki KI(K-1)-K)!(n-1)-K)! (N-1) ~(K-1) - (n-1) +K)!
N (N-1)!
(n-1)!((N-1)-(n-1))!

( K—l)( (N—l)—(K—l))
_ KSR K (n-)-k ) _nK
N % ( N—l) N
n-1
Along similar lines it follows that
~ _ n(n-1)K(K-1)
E[X(X-1)] NN-D) (4.2)

hence

Xy - 2 _ K[ (n-1)(K-1) , , _ nK
varg = BIXT - B = S T 1- 5
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4.1.2 Thebinomial distribution

A random variable X has a binomial distribution if
P(X = K) = ( E)pk(l - p)"*for k = 0,1,2,....n, P(X = K) = O dlsewhere, 4.3)

were 0 < p < 1. Thisdistribution arises, for example, if we draw randomly with replacement n
balls from abowl containing K red balls and N- K white balls, where K/N = p. The random
variable X is then the number of red ballsin the sample.

We have seen in Chapter 1 that the binomial probabilities are limits of hypergeometric
probabilities: If both N and K converge to infinity such that K/N - p then for fixed n and k, (4.1)
convergesto (4.3). This suggests that also the expectation and variance of the binomial
distribution are the limits of the expectation and variance of the hypergeometric distribution,

respectively:

E[X] = np, (4.9)

var(X) = np(1-p). (4.5)

Aswe will seelater, in genera convergence of distributions does not imply convergence of
expectations and variances, except if the random variables involved are uniformly bounded.
Therefore, in this case the conjecture is true because the distributions involved are bounded:
P[0 < X < n] =1. However, it isnot hard to verify (4.4) and (4.5) from the moment generating
function:
n n
s(t) = kZ; exp(t-k)( E) p-p"- kZ; ( E) (Pe)( - p"* = (pe' + 1 -p". (46)

Similarly, the characteristic functionis @g(t) = (pe™t + 1 - p)".
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4.1.3 ThePoisson distribution

A random variable X is Poisson()) distributed if for k =0,1,2,3,....... , and some A > 0,
}Lk
P(X = k) = exp(—k)ﬁ. 4.7)

Recall that the Poisson probabilities are limits of the binomial probabilities (4.3) for n - « and
p | Osuchthat np - A. Itisleft asexercisesto show that the expectation, variance, moment

generating function, and characteristic function of the Poisson()) distribution are:

E[X] = A, (4.8)
var(X) = A, (4.9)
my(t) = exp[A(e' - 1)], (4.10)
and
ep(t) = exp[A(e™ - 1)], (4.11)
respectively.

4.1.4 Thenegative binomial distribution

Consider a sequence of independent repetitions of a random experiment with constant
probability p of success. Let the random variable X be the total number of failuresin this
sequence before the m-th success, where m > 1. Thus, X+misequal to the number of trials
necessary to produce exactly m successes. The probability P(X =Kk), k=0,1,2,...., isthe product

of the probability of obtaining exactly m-1 successesin the first k+m-1 trials, which is equal to
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the binomial probability

k+m-1
m-1

) P m—l(l_p)k+m—1—(m—1)

and the probability p of a success on the (k+m)-th trial. Thus

k+m-1
m-1

P(X = K = ( )pm(l—p)k, k =0123,..

This distribution is called the Negative Binomial (m,p) [shortly: NB(m,p)] distribution.
It is easy to verify from the above argument that a NB(m,p) distributed random variable
can be generated as the sum of mindependent NB(1,p) distributed random variables, i.e,, if
Xy rees Xy @€ independent NB(1,p) distributed, then X = ZJ-”lellj isNB(m,p) distributed. The
moment generating function of the NB(1,p) distribution is
Mg (® = :Z:O exp(k.t)( g) p(l-p)* = p :ZO (a-pet) - ﬁ :
provided that t < -In(1-p), hence the moment generating function of the NB(m,p) distribution is

m

P ,t < -In(1-p). (4.12)

1-(1-p)et

Mugmp(t) = (

Replacing t by i.t in (4.12) yields the characteristic function:

" ( p(1+(1—p)e‘-t)] "

Prmal) = ( : 1+(1-p)?

1-(1-p)e"
It is now easy to verify, using the moment generating function, that for a NB(m,p) distributed

random variable X,

E[X] = m(1-p)/p,
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var(X) = m(1-p)%p? + m(1-p)/p.

4.2.  Transformations of discreterandom variables and vectors

In the discrete case the question "Given arandom variable or vector X and a Borel
measure function or mapping g(x), how isthe distribution of Y = g(X) related to the distribution
of X?" iseasy toanswer. If P[X € {X,X%,, ... } =1 and g(x)),9(x,),.... aredl different, the
answer istrivia: P(Y = g(xj)) = P(X = xj). If some of the values g(x), 9(X,),...... arethe

same, let {y,,y,,.....} bethesetof distinct valuesof g(x,), 9(x,),...... Then

P(Y =y) =2 Ily, = g()IP(X = x). (4.13)

It is easy to see that (4.13) carries over to the multivariate discrete case.

For example, if X is Poisson(A) distributed and g(x) = sin®(nx) = (sin(nx))?, so that for m
=0,1,2,3,...., g(2m) = sin’(am) = 0, g(2m+1) = sin’(am+n/2) = 1, then P(Y = 0) =
e LAY and pry - 1) = e T AF Y2 1)

As an application, let X = (X;,X,)T, where X, and X, are independent Poisson()

distributed, and let Y = X, + X, . Thenfory=0,1,2,.......

P(Y = y) = f;fgl[y = i+IPX, = 0, %, = ) = exp(—zx)%)y. (4.14)
i=0 j= :

Hence, Y is Poisson(2A) distributed. More generally, we have

Theorem 4.1: If for j = 1,.....,k the random variables X; are independent Poisson(4,) distributed

then X', X, is Poisson(¥;" ) distributed.
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4.3. Transformations of absolutely continuous random variables

If X is absolutely continuoudly distributed, with distribution function F(X) = f 7:f(u)du,
the derivation of the distribution function of Y = g(X) islesstrivial. Let us assumefirst that g is
continuous and monotonic increasing: g(X) < g(2) if x < z. Note that these conditions imply that g
is differentiable’. Then g is a one-to-one mapping, i.e., for each y € [g(-~),g(«)] there exists

oneand only one x € RU{ -«}U{} such that y = g(x). Thisuniquexisdenotedby x = g (y).

Note that the inverse function g *(y) is also monotonic increasing and differentiable. Now let

H(y) be the distribution function of Y. Then:

Hy) = P(Y < y) = P@@X) <) = P(X < g™(y)) = F(g(¥))- (4.15)
Taking the derivative of (4.15) yields the density h(y) of Y:

-1
hm=WM=m%m$§ﬁ (4.16)

If g is differentiable and monotonic decreasing: g(x) < g(2) if x>z then g (y) isaso

monotonic decreasing, so that (4.15) becomes

Hly) = P(Y <y) = P@X) <y) = P(X>gy) =1 - Fg*y),
and (4.16) becomes

hm:wm=m%mL$§Q. (4.17)

Note that in this case the derivative of g (¥) is negative, because g *(y) is monotonic

decreasing. Therefore, we can combine (4.16) and (4.17) into one expression:
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. (4.18)

hy) = (g 1<y»\d9d—;(y)

Theorem 4.2: If X is absolutely continuously distributed with density f, and Y = g(X), whereg is
a differentiable monotonic real function on R, then Y is absolutely continuously distributed, with
density h(y) given by (4.18) if min[g(-e),g()] <y < max[g(-~),9(~)], and h(y) =0

elsewhere.

4.4.  Transformations of absolutely continuousrandom vectors

441 Thelinear case

Let X = (Xl,XZ)T be a bivariate random vector, with distribution function

X1 %
F(x) = f f f(u,,u,)du, du, = f f(u)du, where x = (x;,x,)", u = (u;,u,)’
—o0—00 (=00 Xq] (=2, %;]

In this section | will derive the joint density of Y = AX + b, where A is a (non-random)
nonsingular 2x2 matrix and b is a non-random 2x1 vector.

Let usfirst consider the case that A is equal to the unit matrix I, sothat Y =X+ b with

b = (bl,bz)T. Then the joint distribution function H(y) of Yis

Hly) = P(Y; <y, Y, <¥,) = P(X <y,-b, X, <y,-b) = F(y,-b;,y,-b,),

hence the density if Yis
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d”H(y)
hy) = —2* = f(y,-b,,y,-b,) = f(y-b).
aylayz 1 172 2.

Recall from linear algebra (see Appendix I) that any square matrix A can be decomposed

into

A = R1L.D.U, (4.19)

where R is a permutation matrix (possibly equal to the unit matrix I), L is alower-triangular
matrix with diagonal elements all equal to 1, U is an upper-triangular matrix with diagona
elements all equal to 1, and D isadiagonal matrix. Therefore, | will consider the four cases, A =
U,A=D,A=L, and A= R *separately, for b =0, and then apply the results involved
sequentially according to the decomposition (4.19) to X+b, which then yields the general result.

Consider the case that Y = AX, with A an upper-triangular matrix:

! a] (4.20)
01)° '

\f X, +aX,
Y, . X, ,

hence the joint distribution function H(y) of Yis

Then

Y =

H(y) = P(Y1 < y11 Y2 < yz) = P(X1+aX2 < yl’ )% < y2)

= E[l(x1 <y, - (X, < yz)] = E(E[I(Xl <y, - ax2)|x2}|(x2 < Y,)
(4.21)
Y2

food, = |

y1ma%,

f f(x,%,)dx,

—o0

dx,,,

Yo [ Yi=@X%
_ f[ [T

—00
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where f1|2(X1|X2) isthe conditional density of X; given X, = X,, and f,(x,) isthe marginal density

of X, . Taking partial derivatives, if followsfrom (4.21) that for Y = AX with A given by (4.20),

Y;

9?H(y) o B B 1
hly) = —* = — [ f(y,-ax,, = f(y,-ay.,y,) = f(A™y).
v) vy, oy, f (yy-ax,X)dx, = f(y,-ay,.y,) (A7)

o0

Along the same lines it follows that if Aisalower-triangular matrix then thejoint density of Y =
AXis

2
h(y) = LHO)

= f(y,.y,-ay,) = f(Ay). 4.22
3,3y, 1Yo ay; ( )

Next, let A be anonsingular diagonal matrix

a, 0
0 a,)
where a, # 0, a, # 0. ThenY, = a X, and Y, = aX,, hence thejoint distribution function

H(y) is:

H(y) = P(Y; < y;, Y, <y,) = P@X <y, aX, <y, =

yi/ay Yola,

yla, X, < yla) = f ff(x Xx)ax,dx, if a, > 0, a, > 0,

—o0 —00

P(X,

IN

Vila

P(X, < y/a;, X, > y,/a) = f ff(x x)dx,dx, if a, > 0, a, <0,
o Yyla, (4.23)
o Yola

P(X, > y,/a;, X, < y,Ja) = f ff(xl,xz)dxldx2 ifa, <0, a >0,

yila, -e

P(X, > y,/a,, X, > yla) = f ff(x X)dx,dx, if a, <0, a, <0,

Yi/a, yola,

IA

It isastandard calculus exercise for verify from (4.23) that in all four cases
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FHy) _ T/,
9Y,9Y, laya,

h(y) = = (A1) |det(A ). (4.24)

Finally, consider the case where A isthe inverse of a permutation matrix ( whichisa

matrix that permutates the columns of the unit matrix), say:

01" (01
A = =
10 10
Then the joint distribution function H(y) of Y =AX is

H(y) = P(Yl < Yo Yz < yz) = P(Xz < Yo X1 < y2) = F(y21y1) = F(Ay),
and the density involved is

o°H
hy) = ZH0) — fy,,y) = fay).
Y19y,
Combining these results, it is not hard to verify, using the decomposition (4.19), that for the

bivariate case (k = 2):

Theorem 4.3: Let X be k-variate absolutely continuously distributed with joint density f(x), and
let Y = AX + b, where Aisanonsingular square matrix. Then Y isk-variate absolutely

continuously distributed, with joint density h(y) = f(A 1(y-b)) [det(A ).
However, this result holds for the general case aswell
4.4.2 Thenonlinear case

If we denote G(X) = Ax+b, G }(y) = A }y-b), then the result of Theorem 4.3 reads:

h(y) = f(G Y(y)) |det(3G (y)/dy)|. This suggests that Theorem 4.3 can be generalized as
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follows.

Theorem 4.4: Let X be k-variate absolutely continuously distributed with joint density f(x),

X = (X, )", andlet Y= G(X), where G(X) = (9,(X), ....,g,(X))" is a one-to-one mapping
with inverse mapping x = G X(y) = (9, (¥),.....,gy (¥))", whose components are differentiable
in the componentsof y = (y,,....,Y)". Let J(y) = ox/dy = oG X(y)/dy, i.e,, J(y) isthe matrix
withi,j’s element agi*(y)/ayj , whichis called the Jacobian. Then Y is k-variate absolutely
continuously distributed, with joint density h(y) = f(G (y)) [det(J(y))| for y in the set

GRY = {y e Ry = G(X), f(X) > 0, x € R}, and h(y) = 0 elsewhere.

This conjecture isindeed true. Its formal proof is given in Appendix 4. B.

An application of Theorem 4.4 isthe following problem. Consider the function

f(x) = cexp(-x?/2) if x > 0,

(4.25)

0if x <0.

For which value of cisthisfunction adensity?.

In order to solve this problem, consider the joint density f(x,,x,) = c2exp[-(x.+x2)/2],
X, > 0, x, > 0, whichisthejoint distribution of X = (X,,X,)", where X, and X, are independent
random drawings from the distribution with density (4.25). Next, consider the transformation Y

= (Y, Y,)" = G(X) defined by:

Y, = X'+XZ € (O)

<
Il

, = arctan(X /X)) € (O,n/2).
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Theinverse X = G (Y) of thistransformation is

X
|

= Ysin(Y,),

X
[

= Y,co(Y,),
with Jacobian:

X, JaY, aX,/aY,

AX,JaY, aX,JaY,

sin(Y,) Y,cox(Y,)
| cos(v,) -Ysin(Y,)]

JI(Y) (

Note that det[J(Y)] = -Y,. Conseguently, the density h(y) = h(y,.y,) = f(G "X(y)) [detd(y))| is:

h(y,y,) = c?y,exp(-y;/2) for y, > 0 and 0 <y, < m/2,

0 esewhere,

hence,

o /2 ©

1= f f c?y,exp(-y;/2)dy,dy, = c¥(n/2) f y,exp(-y./2)dy, = c2u/2.
00 0

Thustheansweris ¢ = 2/x:

o0

[P gy g

o V2

Note that this result implies that

o0

fexp(—x2/2) dx - 1 (4.26)

Y2
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45. Thenormal distribution

| will now review a number of univariate continuous distributions that play akey rolein
statistical and econometric inference, starting with the normal distribution. The standard normal
distribution emerges as alimiting distribution of an aggregate of random variables. In particular,
if X,,....X, are independent random variables with expectation p and finite and positive variance
o’ then for large n the random variable Y, = (1/@)21-”:1(Xj -W/o is approximately standard
normally distributed. This result, known as the central limit theorem, will be derived in Chapter

6, and carries over to various types of dependent random variables (see Chapter 7).

45.1 Thestandard normal distribution

The standard normal distribution is an absolutely continuous distribution with density

function

exp(-x?/2)

f(x) =
() =

» X € R, (4.27)

Compare with (4.26). Its moment generating function is

exp(-x2/2) dx

Myop® = fm exp(t.)f(x)dx = fm exp(t.x) T

_ eXp(tzlz)}exp[—(x2—2t.x+t2)/2] dx - exp(t2/2)}eXp[_(X_t)2/2] dx (4.28)

Von yon

® 12
= exp(t?/2) f wdu = exp(t?/2),

2n

which existsfor all t € R, and its characteristic function is
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(PN(O,l)(t) = m(i.t) = exp(-t?2).

Consequently, if X is standard normally distributed then

E[X] = m'®)],, = 0, EIXT = var(X) = m"(0)],, = 1

Due to this the standard normal distribution is denoted by N(0,1), where the first number is the
expectation and the second number is the variance, and the statement "X is standard normally

distributed" is usually abbreviated as"X ~ N(0,1)".

452 Thegeneral normal distribution
Now let Y =+ oX, where X ~N(0,1). It isleft as an easy exercise to verify that the
density of Y takesthe form
expl-Ya(x-p)%/o?)
oy2x

with corresponding moment generating function

f(x) = , X € R,

Myuea® = Elexpt.Y)] = exp(ut)exp(c’t?/2), t € R,

and characteristic function

Pror(® = Elexp(itY)] = exp(i.pt)exp(-c’t?2).

Consequently, E[Y] = u, var(Y) = o2. Thisdistribution isthe general normal distribution,

denoted by N(i,0%). Thus, Y~ N(U,09).
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4.6. Distributionsrelated to the standard normal distribution
The standard normal distribution givesrise, via various transformations, to other
distributions, such as the chi-square, t, Cauchy, and F distribution. These distributions are

fundamental in testing statistical hypotheses, as we will see later.

4.6.1 Thechi-squaredistribution

Let X,,....X, be independent N(0,1) distributed random variables, and let

Y, = 5% (4.29)

n

The distribution of Y, is called the chi-square distribution with n degrees of freedom, denoted by

xﬁ or ¥3(n). Itsdistribution and density functions can be derived recursively, starting from the

casen=1:
, vy vy
Gy(y) = P[Y, < ¥] = P[X; <y] = P[-/y < X, < Y] = ff(x)dx = fo(x)dx
,\/)_, 0

for y > 0,
Gy(y) = Ofory < 0,

hence

0,y) - GLy) - flyy)ryy - ERYD gor 5 o,
yy2n

0,(y) = Ofor y < 0,

wheref (x) isdefined by (4.27). Thus, g,(y) isthe density of the xf distribution. The

corresponding moment generating function is
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1

mo(t) = for t < 1/2, 4.30
X1 \/m ( )
and the characteristic function is
1 y1+2.i.t
@20 = — = : (4.31)
Vi-2it /14412
It follows easily from (4.29), (4.36) and (4.31) that the moment generating and
characteristic functions of the Xﬁ distribution are
1 n/2
me(t) = | —— for t < 1/2 4.32
20 ( 1—2t) (4:32)
and
1+2it)"
o) = | =2
" 1+4.1
2
respectively. Therefore, the density of the Xn distributionis
nIZfleX _ /2
g (y) - L—_=00y2) (4.33)
r'(n/2)2
wherefor « > 0,
(o) = [x* rexp(-x)cx. (4.34)
0

The result (4.33) can be proved by verifying that for t < 1/2, (4.32) isthe moment generating

function of (4.33). The function (4.34) is called the Gamma function. Note that
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(1) =1, T2 = yr, T'(a+1) = ol (o) for o > 0. (4.35)

2
Moreover, the expectation and variance of the X» distribution are

E[Y] = n, var(Y,) = 2n. (4.36)

4.6.2 The Student t distribution
Let X~N(0,1) and Y, ~ Xﬁ where X and Y, are independent. Then the distribution of the

random variable

X

is called the (Student?) t distribution with n degrees of freedom, denoted by t...

T, =

The conditional density h.(x]y) of T,, givenY, =y isthe density of the N(1,n/y)

distribution, hence the unconditional density of T, is

oo

h(x) - fe><|o(—(><2/n)y/2)xy”’z1e><|o(—y/2)OI _ I'((n+1)/2) |
R [(n/2)2"2 Y T(n/2) (L+x3/n)0 D72

The expectation of T, does not exist if n =1, aswe will see below, and is zero for n > 2, by

symmetry. Moreover, the variance of T, isinfinitefor n= 2., whereasfor n > 3,

n

— 2 -
var(T) = E[T;] = ~

(4.37)

See Appendix 4.A .
The moment generating function of the t, distribution does not exist, but it characteristic

function does, of course:
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® (t) _ F((n+1)/2)f exp(lt X) dx = 2F((n+l)/2)f COS(t X)
" Ve T(n/2) 7 (1+x 2[p)n=r2 Jnn r(2) - (1+x 2/n)(n+1)/2

4.6.3 Thestandard Cauchy distribution

Thet, distribution is also known as the standard Cauchy distribution. Its density is:

hey - — @B 1
JrD(/2) (1+x?)  m(1+x?)

(4.38)

where the second equality follows from (4.35), and its characteristic function is

¢, (1) = exp(-t).
The latter follows from the inversion formulafor characteristic functions:

1
n(1+x?)

2_171 [exp(-i-txyexp(-Hhct = (4.39)

See Appendix 4.A. Moreover, it is easy to verify from (4.38) that the expectation of the Cauchy

distribution does not exist, and that the second moment isinfinite.

4.6.4 TheF distribution
Let X, ~ x> and Y, ~ x>, where X, and Y, are independent. Then the distribution of the
random variable

X /m
Y. /n

F =

is said to be F with mand n degrees of freedom, denoted by F .. Itsdistribution function is



['(m/2)2m?2 I'(n/2)2"2

[ MXYN_ iy o W21y
H, () = PIF < ¥ - [[ 27 e z/2)o|z] YT exp(y12) 4,
0

0

and itsdensity is

m™20(m/2+n/2)x 21

hm’”(x) T 2 meRA >0,
n™20 (M/2)0(n/2)[1+m.x/n™2 "
See Appendix 4.A
Moreover, it is shown in Appendix 4.A that
E[F] = n/(n-2) if n> 3,
= oo if n=122,
2 _
var(F) = 2nAm+n-4) if n>05,
m(n-2)*(n-4)
= oo if n=234,
= not defined if n=122.
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(4.40)

(4.41)

Furthermore, the moment generating function of the F_, distribution does not exist, and

the computation of the characteristic function is too tedious an exercise, and therefore omitted.

4.7. Theuniform distribution and itsrelation to the standard normal distribution

Aswe have seen before in Chapter 1, the uniform [0,1] distribution has density

f(x) = 1for 0 < x <1, f(X) =0 elsewhere.

More generally, the uniform [a,b] distribution (denoted by U[a,b]) has density

f(x) = bi for a < x < b, f(x) = 0 elsewhere,
-a

moment generating function

exp(t.b) -exp(t.a)
(b-ajt

Myjan® =
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and characteristic function

exp(i-bt)-exp(i.at) _ (sin(b.t)+sin(at)) - i.(cos(b.t)+cos(a.t)).

t) =
Pupen(®) i (b-a)t b-a

Most computer languages such as Fortran, Pascal, and Visual Basic have abuild-in
function which generates independent random drawings from the uniform [0,1] distribution.?
These random drawings can be converted into independent random drawings from the standard

normal distribution viathe transformation

X, = cog(2rnU,).,/-2.In(U,),
X, = sin(2zU,).,/-2.In(U,),

(4.42)

where U, and U, are independent U[0,1] distributed. Then X, and X, are independent standard

normally distributed. This method is called the Box-Muller agorithm.

4.8. TheGammadistribution
They? distribution is a special case of aGamma distribution. The density of the Gamma
distribution is

X" texp(-x/B)

, X>0,0a>0,p>0.
I'(o)p*

ax) =

This distribution is denoted by I'(«,3). Thus, thexﬁ distribution is a Gamma distribution with o =
n2and § = 2.

The Gamma distribution has moment generating function
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Mep® = [1-p %, t < 1B, (4.43)

and characteristic function (pl"((x,[’))(t) = [1-B.i.t] *. Therefore, the I'(a,pB) distribution has
expectation o and variance op?.

The T'(e,p) distribution with oo = 1 is called the exponentia distribution.

49. Exercises

1 Derive (4.2).

2. Derive (4.4) and (4.5) directly from (4.3).

3. Derive (4.4) and (4.5) from the moment generating function (4.6).

4. Derive (4.8), (4.9), and (4.10).

5. If Xisdiscreteand Y = g(X), do we need to require that g is Borel measurable?
6. Provethe last equality in (4.14).

7. Prove Theorem 4.1, using characteristic functions.

8. Provethat (4.24) holdsfor all four casesin (4.23).

9. Let X be arandom variable with continuous distribution function F(x). Derive the
distribution of Y = F(X).

10.  The standard normal distribution has density f(x) = exp(-x2/2)/y/2n, x € R.Let X, and

X, beindependent random drawings from the standard normal distribution involved, and let Y, =
X, + X, Y, =X, - X,. Derive the joint density h(y,,y,), say, of Y, and Y, , and show that Y, and
Y, areindependent. Hint: Use Theorem 4.3.

11.  Theexponentia distribution has density f(x) = 6 texp(-x/0) if x> 0, f(x) =0if x<0,
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where 0 > 0 isaconstant. Let X; and X, be independent random drawings from the exponential
distribution involved, and let Y; = X, + X,, Y, =X, - X,. Derivethejoint density h(y,,y,),say,
of Y, and Y, . Hints: Determine first the support {(y,.y,)" € R* h(y,,y,) > 0} of h(y,,y,), and
then use Theorem 4.3.

12. Let X ~ N(0,1). Derive E[X?] for k = 2,3,4, using the moment generating function.

13, Let X, X,,....X, beindependent standard normally distributed. Show that (Ly/n)X,X; is
standard normally distributed.

14. Prove (4.30).

15. Show that for t < 1/2, (4.32) is the moment generating function of (4.33).

16. Explain why the moment generating function of the t, distribution does not exist

17. Prove (4.35).

18. Prove (4.36).

19.  Let X, X,,...,X, be independent standard Cauchy distributed. Show that (1/n)2;11xj is
standard Cauchy distributed.

20.  Theclass of standard stable distributions consists of distributions with characteristic
functions of thetype o(t) = exp(-[t}f/a), where a € (0,2]. Note that the standard normal
distribution is stable with o = 2, and the standard Cauchy distribution is stable with o = 1. Show
that for arandom sample X, X,,...,X, from a standard stable distribution with parameter c, the
randomvariable Y, = n *““Z?:lxj has the same standard stable distribution (thisis the reason
for calling these distributions stable).

21. Let XandY beindependent standard normally distributed. Derive the distribution of X/Y.

22. Derive the characteristic function of the distribution with density exp(-[X|) /2, - « < X < e,
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23. Explain why the moment generating function of the F , distribution does not exist.
24. Prove (4.43).

25. Show that if U; and U, are independent U[0,1] distributed then X, and X, in (4.42) are
independent standard normally distributed.

26. If X and Y are independent I'(1,1) distributed, what is the distribution of X-Y?

Appendices
4A. Tediousderivations
Derivation of (4.37):
E[T - nl“((n+1)/2)} X’
n \/EF(NZ) 7w(1+X2/n)(n+1)/2
_ nr((n+1)/2) f 1+x? ) nl“((n+1)/2)} 1 dx
\/ﬁr(n/Z) (1+X2/n)(n+1)/2 \/ﬁr(n/Z) 7w(1+X2/n)(n+1)/2
_ n((n+1)/2) | 1 & - n - A0(n-1)/2+1) T(W2-1) = n_
JaT(n/2) f (L+x?)("-112 r(n2)  T((n-1)/2) n-2

In this derivation | have used (4.35) and the fact that

1= }hnz(x)dx _ ___ Tn-1)f2) } 1 o
= J-2x((n-2)2) = (Lxin-2) 22

_ _I((n-1)/2) f 1
\/_F((n 2)/2) (1+x2)(” 1)/2




Derivation of (4.39): For m> 0 we have:

m m m
1 . 1 . 1 .
— [ exp(-i.t.X)exp(-thdt = — [exp(-i.t.x)exp(-t)dt + — [exp(i.t.xX)exp(-t)dt
anm p(-i.t.x)exp(-[t]) 27[{ p(-i.t.x)exp(-t) +2n{ p(i.t.x)exp(-t)

= im —(1+i + im -(1-i
e { exp[ -(1+i.X)t]dt o { exp[ -(1-i.X)t]dt

iexp[—(1+i.x)t]‘m . iexp[—(l—i.x)t]‘m

o (14X |, 2t (1) |
211 011 o Lloexp[-(A+ix)m] 1 exp[-(1-i.x)m]
2n (1+iX)  2n(1-ix) 2n  (1+iX) on  (1-i)

1

- _ exp(- m)[cos(m X)-X.sn(m.x)] .
n(1+x?)  w(1+x?)

Letting m - «, (4.39) follows.

Derivation of (4.40):

p my  (mxy/m)™* 2-1

M) = Hna®) = |

0

exp(-(mx.y/(2n)  y™ "exp(-y/2) d
n I'(m/2)2m2 I'(n/2)2"?

mM™2y m2-1 ®
= f yM2 V2 dey o -[1+mx/n]y/2)dy

n™2C(M2)0(n/2)2M> 2

m Xm/2 1
_ f ZM2 V2 lex— 7dz
N™2T(MV2)T(nV2)[ 1 +mx/n]™2 "2

mw2 m2-1
i M™20(m/2+n/2)x ‘>0

N2 (MV2)T (V2)[1+mx/n]2:2”

157
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Derivation of (4.41): 1t follows from (4.40) that

oo

i XMl (m2)r(n2)

5 (Laxymamiz r(m2+n/2)
hence if k < n/2 then
}x N ()X = mm/zr(m/Zm/Z)} XM
b N™20(MV2)T(/2) 4 (1+mx/n)™2:2
_ (mpm2en2) o xEEE s E(2-R0 (2K
1“(m/2)1“(n/2){ (1+X)(M+20/2+(n-24/2 T(M2)T(n/2)
k-1 .
- (n/m)kM
[T5: (v2-)

where the last equality follows from the fact that by (4.35), T'(a+k) = F(a)H}fg(mj) for o« > 0.

Thus,
- . .
TR {th’n(x)dx e ifn>3, p,,==ifnc<2, (4.45)
i 2
[X%h, (o - _NAm2) ¢, os,
mn m(n-2)(n-4)
0 (4.46)
= o jf n < 4.

Theresultsin (4.41) follow now from (4.45) and (4.46).
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4.B. Proof of Theorem 4.4
For notational convenience | will prove Theorem 4.4 for the case k = 2 only. First note
that the distribution of Y is absolutely continuous, because for arbitrary Borel setsB in R?,
P[Y € B] = P[G(X) € B] = P[X ¢ G }B)] = f f(x)dx.
G (B)
If B has Lebesgue measure zero then, since G is a one-to-one mapping, the Borel set A= G (B)
has L ebesgue measure zero. Therefore, Y has density h(y), say, so that for arbitrary Borel sets B

inR?,
P[Y € B] = th(y)dy.

Chooseafixed y, = (¥,;.Yo2)" inthesupport G(R?) of Y suchthat x, = G (y,) isacontinuity
point of the density f of X and y, is a continuity point of the density h of Y. Let for some positive
numbers 8, and &,, Y(6,,3,) = [Yo1,Yo1*0%[Yo2:Yoo*3,] - Then, with A the Lebesgue

measure,

PLY € Y(5,,3,)] = f

G Y(Y(5,,5,)

f(x)dx < (supxeG ,1(Y(61’52»f(x)> MG HY(5,.3,))

(4.47)
= (SUPyye, 55(G TN MG HY(5,.8,)
and similarly,
PLY € Y(3,8,)] = (inf, oG 0D MG (Y (3,.:3,) (4.48)
It follows now from (4.47) and (4.48) that
-1
h(y,) = jim time YO0l f(G (y,) Tl S G ) (4.49)

3,10 5,10 9,0, 3,10 8,10 0,0,
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It remains to show that the latter limit is equal to |det[J(y,)]].

Denoting G X(y) = (9, (y),9, (¥))", it follows from the mean value theorem that for each
element g;'(y) thereexistsa ), € [0,1] dependingonyandy, suchthat g;'(y) = g, (¥, +

Jj(y0+kj(y—y0))(y—y0), where Jj(y) isthej-th row of J(y). Thus, denoting

D) ¥ M Yo) ~ L] 5 - Iy (4.50)
P B0y - o) |

say, wehave GYy) = G My, + JY(Y-Yy) + DW)(y-y,) .- Nowput A =J(y,) *and b=

yo - \](yo)ilG 71(y0)- Then

Giy) = A (y-b) + D,)(Y-Yy) (4.51)
hence

G H(Y(8,8) = {x € R% x = A{(y-b) + Dy(y)(y-Y). ¥ € Y(5,.8,)} (4.52)

The matrix A maps the set (4.52) onto
A[G 71(Y(81!82))] = {X € R% x = y - b -+ ADo(y)(y_yo)1 y € Y(Sllsz)} (4.53)

def.
where for arbitrary Borel sets B conformable with amatrix A, A[B] = {x: x=Ay,ye B}. Since

the Lebesgue measure isinvariant for location shifts (i.e., the vector bin (4.53)) , it follows that

MAIG HY(3,8,)]) = M{x € R?: x = y + ADW(Y-Y), ¥y € Y(5,.8)})  (454)

Observe from (4.50) that

ADo(y) = J(yo)ilDo(y) = J(yo)iljo(y) - |2 (455)
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and
Iimyﬁyo\](yo)’ljo(y) = 1,. (4.56)
Then

}\(A[G 71(Y(61182))]> = }\({X € R% x = Yo \](yo)iljo(y)(y_y()% y € Y(81162)}) (457)

It can be shown, using (4.56), that

imiim PALG (6.8
5,106,10 X(Y(Sl 52))

- 1. (4.58)

Recall from Appendix | that the matrix A can be written as A = QDU, where Q isan
orthogonal matrix, D isadiagona matrix, and U is an upper-triangular matrix with diagonal.
elementsall equal to 1. Let B = (0,1)%(0,1). Then it isnot hard to verify in the 2x 2 case that U
maps B onto a parallelogram U[B] with the same areaas B, hence A(U[B]) = A(B) = 1.
Consequently, the Lebesgue measure of the rectangle D[B] is the same asthe Lebesgue measure
of the set D[U[B]]. Moreover, an orthogona matrix rotates a set of point around the origin,
leaving all the angles and distances the same. Therefore, the set A[B] has the same Lebesgue
measure as the rectangle D[B]: AM(A[B]) = AM(D[B]) = |det[D]| = |det[A]|. Along the same lines

the following more general result can be shown.

Lemma 4.B.1: For a kxk matrix A and a Borel set BinR*, A(A[B]) = |det[A]|M(B), where A is

the Lebesgue measure on the Borel setsin R,



Thus, (4.58) now becomes

- -1
|im|imX<A[G 1(Y(81’82»]) = |det[A]|IimIimx(G (Y(Sl’sz»)
8,105,10 X(Y(81,82)> 5,105,10 9,0,
hence
Iimlimx(G 71(Y(81’82»> - de[A Y] = eIyl
5,105,10 9,9, |det[A]] °

Theorem 4.4 follows now from (4.49) and (4.59).

Endnotes

1 Except perhaps on a set with Lebesgue measure zero.
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(4.59)

2. Thet distribution was discovered by W. S. Gosset, who published the result under the
pseudonym Student. The reason for the latter was that his employer, an Irish brewery, did not

want its competitors to know that statistical methods were being used.

3. See for example Section 7.1 in Press, Flannery, Teukolsky, and Vetterling (1989).
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Chapter 5
The Multivariate Normal Distribution

and its Application to Statistical Inference

5.1. Expectation and variance of random vectors
Multivariate distributions employ the concepts of expectation vector and variance matrix.
The expected "value', or more precisely, the expectation vector (sometimes also called the "mean
vector") of arandom vector X = (X,,.... ,xn)T is defined as the vector of expected values:
def.
EXX) = (E(X),..... Ex)".

Adopting the convention that the expectation of arandom matrix isthe matrix of the

expectations of its elements, we can define the variance matrix of X as:*

def.
Var(X) = E[(X - EX)(X - E(X)']

COV(X, X)) COV(X,,X,) ... COV(X,,X)
coV(X,,X;)  var(x,) .. Cov(X,,X) (5.)

COV(X,, X)) COV(X,,X,) .. COV(X,,X)
Recall that the diagonal elements of the matrix (5.1) are variances: cov(xj , xj) = var (xj) .
Obviously, avariance matrix is symmetric and positive (semi-)definite. Moreover, note that (5.1)

can be written as

Var(X) = E[XXT] - (E[X])(E[X])". (5.2
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Similarly, the covariance matrix of apair of random vectors X and Y is the matrix of covariances
of their components:?
def.
Cov(X,Y) = E[(X - EX))(Y - E())T]. (5.3

Notethat Cov(Y,X) = Cov(X,Y)". Thus, for each pair X, Y there are two covariance matrices,

one being the transpose of the other.

5.2.  Themultivariate normal distribution
Now let the componentsof X = (x,,....,x.)" beindependent standard normally

distributed random variables. Then E(X) = 0 (¢ R") and Var(X) = | . Moreover, thejoint

n

density f(x) = f(x,,...,x,) of Xinthiscaseisthe product of the standard normal marginal densities:

f(x) = f(X,,..,X) = lﬂ[ eXp(_szlz) i exp(—ézjﬂle) ] exp(— %x TX)
R 2 (V20" V20"

The shape of this density for the case n = 2 isdisplayed in Figure 5.1:

<IN

< NV N

i..aaz‘%@ﬁ%%‘%m#\)»\‘Q@%ﬁﬁq_

Ay AN
" A\r.\"l%x%:;ﬂ;%w

Figure 5.1: The bivariate standard normal density on [-3,3] x[-3,3]
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Next, consider the following linear transformations of X: Y = i + AX, where =
(VP un)T isavector of constants and A isanon-singular n x n matrix with non-random
elements. Because A is nonsingular and therefore invertible, this transformation is a one-to-one

mapping, with inverse X = A Y(Y-p). Then the density function g(y) of Y isequa to:

gy) = f(x)|det(@xay)| = f(Aly - A )|detlo(A y-A-Tp)ay)

_LeuoinTia L\TA 1y
Ay A ldaay) - TAYA exp - 2y-(A A -1

| det(A) | (v/2n)"| det(A) |
el 2 A ) )|
(V20" || cet(AAT)|

Observe that 1 is the expectation vector of Y: E(Y) = p + AE(X)) = w. But what is
AA™ We know from (5.2) that Var(Y) = E[YY"] - uu'. Therefore, substituting Y = u + AX

yields:

Var(Y) = E[(u+AX)(U"+X TAT) — pp]

= PEXTAT + AEXMT + AEXX AT = AAT,

because E(X) =0and E[XX ] = |- Thus, AAT is the variance matrix of Y. This argument gives

rise to the following definition of the n-variate normal distribution:

Definition 5.1: Let Y be an nx1 random vector satisfying E(Y) = « and Var(Y) = X, where 2 is
nonsingular. Then Y isdistributed N,(u,) if the density g(y) of Y is of the form
exp[ —%(y—u)Til(y—u)w

- . (5.4)
ay) T )
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In the same way as before we can show that a nonsingular (hence one-to-one) linear

transformation of anormal distribution is normal itself:

Theorem 5.1: Let Z= a + BY, where Y isdistributed N,(«,2) and B is a non-singular matrix of

constants. Then Z is distributed N.(a + B, BZB').

Proof: First, observethat: Z= a+ BY impliesY = B }(Z-a). Let h(2) be the density of Z

and g(y) the density of Y. Then

h(z) = gy)|det(oyloz)| = g(B 'z-B "a)|det(d(B 'z-B "a)/7)| - %E:)Ila)

g8 i) 9 SBzaWEE e )

y/det(BB T (v/2n)" /det(Z)y/ det(BB T
exp{—%(z—a—Bu)T(BZB T)1(z—a—Bu)W
(v2m)"/det(B=B T |

Q.E.D.
I will now relax the assumption in Theorem 5.1 that the matrix B isanonsingular n x n
matrix. This more general version of Theorem 5.1 can be proved using the moment generating

function or the characteristic function of the multivariate normal distribution.

Theorem 5.2: Let Y be distributed N,(«,X). Then the moment generating function of Yis

m(t) = exp(t 'u + t 'xt/2), and the characteristic of Yis ¢(t) = exp(i.t Tu - t 'Zt/2).
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Proof: We have
exp{—%(y—u)Tzl(y—u)l
(v2m)"/det(Z)
) fexp(—é[y Toly - 2uTsly +opTE - 2t Ty])
(v2m)"/det(Z)

exp(-%[yTEly - 2B TE Yy ¢ (AE TN (eE t)])
/ (/20" 3e(D)

x exp(%[(wz DYzt - uTZlu])

m(t) = f exp[t Y]

dy

dy

) fexp(—é(y—u—i )'= Hy-p-= t))

_ (y2r)" /et

dy x exp(t Tn o+ %t TZt).

Since the last integral is equal to one, the result for the moment generating function follows. The

result for the characteristic function follows from ¢(t) = m(i.t). Q.E.D.
Theorem 5.3: Theorem 5.1 holds for any linear transformation Z = a + BY.

Proof: Let Z=a + BY, where Bism x n. It is easy to verify that the characteristic function
of Zis: @,(t) = E[exp(i.t2)] = E[exp(i.t "(a+BY))] = exp(i.t "a)E[exp(i.t 'BY)] =
expli.(a+Bp)"t - ¥ "BEB ™t). Theorem 5.3 follows now from Theorem 5.2.. Q.E.D.

Note that this result holds regardless whether the matrix BEB T is nonsingular or not. In

the latter case the normal distribution involved is called "singular":
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Definition 5.2: An n x 1 random vector Y hasa singular N, («,X) distribution if its characteristic
function is of theform @(t) = exp(i.t 'u - Y2t '=t) with X asingular positive semi-define

matrix..

Because of the latter, the distribution of the random vector Y involved is no longer absolutely
continuous, but the form of the characteristic function is the same as in the nonsingular case, and
that is all that matters.

For example, letn=2 and

=)

where ¢ > 0 but small. The density of the corresponding N,(u,2) distribution of Y = (Y1,Y2)T

is

exp(-y172) exp(-y,/(20%)
V2 o\2n

Then lim_  f(y,,y,lo) = 0if y, = 0, lim_ f(y,,y,lo) = « if y, = 0. Thus, asingular

f(y1,Yolo) = (5.5)

multivariate normal distribution does not have a density.

In Figure 5.2 the density (5.5) for the near-singular case ¢ = 0.00001 is displayed. The
height of the pictureis actually rescaled to fit in the the box [-3,3]%[-3,3] X[-3,3]. If we let o
approach zero the height of the ridge corresponding to the marginal density of Y, will increase to

infinity.
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Figure 5.2: Density of a near-singular normal distribution on [-3,3] x[-3,3]

The next theorem shows that uncorrelated multivariate normal distributed random
variables are independent. Thus, while for most distributions uncorrel atedness does not imply

independence, for the multivariate normal distribution it does.

Theorem 5.4: Let X be n-variate normally distributed, and let X, and X, be sub-vectors of
components of X. If X; and X, are uncorrelated, i.e., Cov(X;,X)) = O, then X, and X, are

independent.

Proof: Since X; and X, cannot have common components, we may without |0ss of
generdity assumethat X = (XlT,XZT)T, X, € RX, X, € R™. Partition the expectation vector

and variance matrix of X conformably as:
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My 2 X
, Var(X) = s )

2 21 Z:22

E(X) (

hence the density of Xis:

Then X,, =0 and X%,, = O because they are covariance matrices, and X, and X, are uncorrelated,
Tz, O

% Ho) | 10 Zp) (%) (Mo
) $, O
(vV2r det 0 s,

= exp(_%(xl_ul)-rzli(xl_ul)) x eXp(—%(Xz—uz)TZZ;(XZ—HZ))

(y/2n)%/det(Z ) 20" 0T,

1
2

exp[ -
fO) = f(x.x) =

Thisimplies independence of X, and X,. Q.E.D.

5.3.  Conditional distributions of multivariate normal random variables

Let Y be ascalar random variable and X be a k-dimensiona random vector. Assume that

MR o ey

where p, = E(Y), yy = E(X), and

I, = Var(Y), =, = Cov(Y,XT) = E[(Y-E(V)(X-E(X)T,

T = COv(X,Y) = EXX-E(X))(Y-E(Y)) = Zyy, Ty = Var(X).
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In order to derive the conditional distribution of Y, given X,let U = Y - o - B'X, wherea is
ascaar constant and p isak x 1 vector of constants, such that E(U) = 0and U and X are
independent. It follows from Theorem 5.1 that
U -a 1 -BT|(Y
= +
X 0 o I, J\X

N o+ My BTUX 1 _BT Z:YY Z:YX 1 07
e My |0 b J\ By T\ B T

The variance matrix involved can be rewritten as:

Var

(5.6)

X

DINVEDIVNS, _BTZXY+BTZXXB Zyx BTZXX]
ZXY_ZXXB 2xx

Next, choose 3 such that U and X are uncorrelated and hence independent. In view of (5.6) a
necessary and sufficient condition for that is: X, - Z,,8 = O, hence B = Ty Moreover,

E(U)=0if a = p, - B'H,. Then

1

o~ 2B - By BB = Ty - Ty

Ty BT = 0T, Zyy - ZuB =0,
and consequently

(5.7)

) -]

Thus U and X are independent normally distributed, and consequently E(U|X) = E(U) =0.

1 T
DINVEDINPIN IV ]

0 2ox

Since Y = a + B™X + U, wenow have E(Y|X) = a + B(E(X|X)) + E(U|X) = a + B'X.
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Moreover, it is easy to verify from (5.7) that the conditional density of Y, given X = x, is
exp[—%(y—a—BTx)zl G

fy[x) = ., where o, = Sy - TS0y

6.\/2n

Furthermore, note that 03 isjust the conditional variance of Y, given X:

def.

ox = var(Y|X) = E[Y - E(Y[X)P|X] .

Summarizing:

Theorem 5.5: Let

Y My DINVED IV
- Nk+1 !
X My DINVEDINY

where YeR, XeR¥, and X, isnonsingular. Then conditionally on X, Y is normally distributed

with conditional expectation E(Y|X) = a+p'X, where B = z;oﬁzXY and a = uY—BTuX, and

conditional variance var(Y|X) = Ty, - Z Sy

The result in Theorem 5.5 isthe basis for linear regression analysis. Suppose that Y
measures an economic activity that is partly caused or influenced by other economic variables,
measured by the components of the random vector X. In applied economics the relation between
Y, called the dependent variable, and the components of X, called the independent variables or
the regressors, is often modeled linearly as Y = « + B'X + U, where « istheintercept, B isthe

vector of slope parameters (also called regression coefficients), and U is an error term which is
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usually assumed to be independent of X and normally N(0,6?) distributed. Theorem 5.5 shows

that if Y and X arejointly normally distributed, then such alinear relation between Y and X exists.

5.4. Independence of linear and quadratic transfor mations of multivariate normal
random variables
Let X be distributed N,(0,1,), i.e., X is n-variate standard normally distributed. Consider
the linear transformations Y = BX, where B isak x n matrix of constants, and Z = CX, where C

isan m x n matrix of constants. It follows from Theorem 5.4 that

N

Then Y and Z are uncorrelated and therefore independent if and only if CB" = O. More generally

BBT BCT
CBT cCT

we have:

Theorem 5.6: Let X be distributed N(0,1,)), and consider the linear transformationsY = b + BX,
wherebisak x 1 vector and B a k x n matrix of constants, and Z= ¢+ CX, wherecisanmx 1

vector and C an m x n matrix of constants. Then Y and Z are independent if and only if BC" = O.

Thisresult can be used to set forth conditions for independence of linear and quadratic

transformations of standard normal random vectors:

Theorem 5.7: Let X and Y be defined asin Theorem 5.6, and let Z= X'CX, where Cisa

symmetric n x n matrix of constants. Then Y and Z are independent if BC = O.
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Proof: First, note that the latter condition only makes senseif C issingular, as otherwise
B=0. Thus, let rank(C) = m<n. Wecanwrite C = QAQ T, where A is adiagonal matrix with
the eigenvalues of C on the diagonal, and Q is the orthogonal matrix of corresponding
eigenvectors. Let V= Q"X, whichisN,(0,l,) distributed because QQ" = 1,.. Sincen - m
eigenvalues of C are zero, we can partition Q, A and V such that
QX

.
=1 | Z=viiAv,
Q, X

A, O
00

Vi

Vv,

Q=1(Q.Q), A= , V=

where A, isthe diagona matrix with the m nonzero eigenvalues of C on the diagonal. Then

mofe QAQ =0
= BO.A =
OO0 1771l

BC - B(Q,,Q,) ;
Q

implies BQ,A, = BQ,A,Q,'Q, = O (because QQ = I, implies Q,'Q, = 1), whichinits
turn impliesthat BQ, = O. The latter is a sufficient condition for the independence of V, and Y,
hence of the independence of Zand Y. Q.E.D.

Finally, consider the conditions for independence of two quadratic forms of standard

normal random vectors;

Theorem 5.8: Let X ~ N (0,l,), Z, = X'AX, Z, = X 'BX, where A and B are symmetric n x n

matrices of constants. Then Z, and Z, are independent if and only if AB = O.

The proof of Theorem 5.8 is not difficult but quite lengthy and therefore given in the
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Appendix 5.A.

5.5. Distributions of quadratic forms of multivariate normal random variables
Aswewill seein Section 5.6 below, quadratic forms of multivariate normal random
variables play akey-rolein statistical testing theory. The two most important results are stated in

Theorems 5.9 and 5.10:

Theorem 5.9: Let X be distributed N,(0,X), where X is nonsingular. Then X'2 *X is distributed

2
as 2.

Proof: Denote Y = (Y,,....,Y,)T = Z7X. ThenY is n-variate standard normally
distributed, hence Y,,...,Y, arei.i.d. N(0,1) and thus X=X = YTY = X' ¥ ~ 42, QED.

The next theorem employs the concept of an idempotent matrix. Recall from Appendix |
that a square matrix M isidempotent if M? = M. If M is also symmetric, we can write M = QAQ',
where A isthe diagonal matrix of eigenvalues of M and Q is the corresponding orthogonal matrix
of eigenvectors. Then M? = M implies A? = A, hence the eigenvalues of M are either 1 or 0. If all
eigenvaluesare 1, then A = |, hence M = |. Thus the only nonsingular symmetric idempotent
matrix isthe unit matrix. Consequently, the concept of a symmetric idempotent matrix is only
meaningful if the matrix involved issingular.

The rank of a symmetric idempotent matrix M equals the number of nonzero eigenvalues,
hence trace(M) = trace(QAQ") = trace(AQ'Q) = trace(A) = rank(A) = rank(M), where trace(M) is

defined as the sum of the diagonal elements of M. Note that we have used the property trace(AB)
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= trace(BA) for conformable matrices A and B.

Theorem 5.10: Let X be distributed N,(O,1), and let M be a symmetric idempotent n x n matrix of

constants with rank k. Then X'MX is distributed 2.

Proof: We can write

I, O
M - k
OO0

where Q is the orthogonal matrix of eigenvectors. Since Y = (Y,,...,Y,)" = QX ~ N (0,1) we

QT,

now have

l, O
XTMX = YT

Q.E.D.

5.6. Applicationsto statistical inference under normality
5.6.1 Estimation

Statistical inference is concerned with parameter estimation and parameter inference. The
latter will be discussed in the next subsections.

Loosely speaking, an estimator of a parameter is afunction of the data which serves as an
approximation of the parameter involved. For example, if X;, X,,...,X, isarandom sample from
the N(u,0?) distribution then the sample mean X = (1/ n)Zj'lej may serve as an estimator of the

unknown parameter U (the population mean). More formally, given adataset {X,, X,,...,X, } for
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which the joint distribution function depends on an unknown parameter (vector) 0, an estimator
of 0 isaBorel measurable function 6 = 9,(Xy,..,X,) of the data which serves asan
approximation of 0. Of course, the function g, should not depend on unknown parameters itself.
In principle we can construct many functions of the data that may serve as an
approximation of an unknown parameter. For example, one may consider using X; only asan
estimator of 1. So the question arises which function of the data should be used. In order to be
able to select among the many candidates for an estimator, we need to formulate some desirable

properties of estimators. The first one is unbiasedness:
Definition 5.3; An estimator 0 of a parameter (vector) 0 is unbiased if E[0] = 8.

The unbiasedness property is not specific to a particular value of the parameter involved, but
should hold for all possible values of this parameter, in the sense that if we draw a new data set
from the same type of distribution but with a different parameter value, the estimator should stay
unbiased. In other words, if the joint distribution function of the datais F,(x,,...,X,|0), where 0 €
© isan unknown parameter (vector) in a parameter space 0, i.e., the space of all possible values
of 9, and 0 = g, (X;s....X) isan unbiased estimator of 0, thenfgn(x yeeeeX)AF (XX [0) = 60
forall 0 € ©.

Note that in the above example both X and X, are unbiased estimators of p. Thus, we

need a further criterion in order to select an estimator. This criterion is efficiency:

Definition 5.4: An unbiased estimator  of an unknown scalar parameter 0 isefficient if for all
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other unbiased estimators 6, var(f) < var(). Inthe casethat 6 is a parameter vector the

|latter reads. Var(0) - Var(0) isa positive semi-definite matrix..

In our example, X, isnot an efficient estimator of u, because var(X,) = ¢* and
var(X) = o%/n. Butis X efficient? In order to answer this question, we need to derive the
minimum variance of an unbiased estimator, as follows. For notational convenience, stack the
data in avector X. Thus, in the univariate case, X = (X;, X,,...,X,, )", and in the multivariate case,
X= (X{ X)) . Assume that the joint distribution of X is absolutely continuous with density
f.(x|6), which for each x is twice continuously differentiable in 6. Moreover, let 0 - g,(X) bean
unbiased estimator of 6. Then

[ 9,091 (x0)dx = 6 (5.8)

Furthermore, assume for the time being that 0 isa scalar, and let
£ [0 0,0000K = (g0 (o). 59)
de n n n de n .

Conditions for (5.9) can be derived from the mean-value theorem and the dominated

convergence theorem. In particular, (5.9) istruefor all 6 in an open set O if

(1,150, %, (40)/(c0) i < .

Then if follows from (5.8) and (5.9) that

[9:9

d
g0 "(F(xI9))

fLO0)OX = [g,09-,(B)cx = 1 (510

Similarly, if
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d [ty = [ 9t (xjoydx (5.11)
doJ do " :

which istrue for all © in an open set ® for which f SUp,_, [d*f (x10)/(d6)?dx < =, then, since

f f (x|0)dx = 1, we have

/

Denoting B = dIn(f (X|0))/d9, it follows now from (5.10) that E[6.B] = 1 and from (5.12) that

d
@I n(f (x[0))

f (x0)dx = fd—defn(xw)dx _ 0. (5.12)

E[B] = 0. Therefore, cov(d,p) = E[0.8] - E[6]E[B] = 1.Sinceby the Cauchy-Schwartz
inequality, |cov(6,B)| < yvar(6)yvar(B), wenow havethat var(8) > 1/var(B):

1

0) > .
var(o) E([dm(fn(xw))/de]z)

(5.13)

Thisresult is known as the Cramer-Rao inequality, and the right-hand side of (5.13) is called the

Cramer-Rao lower bound. More generally we have:

Theorem 5.11: (Cramer-Rao) Let f (x|0) be the joint density of the data, stacked in a vector X,
where 0 isa parameter vector. Let 6 be an unbiased estimator of 6. Then Var(6) =

(E[(am(fn(xw)/aeT) (aln(fn(xw)/ae)])*1 + D, whereD isa positive semi-definite matrix.

Now let us return to our problem whether the sample mean X of arandom sample from
the N(w,0°) distribution is an efficient estimator of 1. In this case the joint density of the sample
is f (x|u,06%) = Hlllexp(—l/z(xj -W)?o?)/y/o’2r, hence aIn(f (X|u,6%)/op = Ej”:l(xj -W/o? and

thus the Cramer-Rao lower bound is
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1
E{oIn(t, (X.02) /ou |

= GZ/n. (514)

Thisisjust the variance of the sample mean X, henceX is an efficient estimator of p. This result

holds for the multivariate case as well:

Theorem 5.12: Let X, X,,...,X, be arandom sample fromthe N,[u,X] distribution. Then the

samplemean X = (1/n)Zj”:1Xj isan unbiased and efficient estimator of L.

The sample variance of arandom sample X,, X,,...,X, from aunivariate distribution with
expectation p and variance o2 is defined by
S? = (1/(n—1))Ej”:1(Xj -X)?, (5.15)

which serves as an estimator of o°>. An alternative form of the sample variance is

n-1

& = (U)X (X -X)? = -

s?, (5.16)
but as | will show for the case of arandom sample from the N(.,6%) distribution, (5.15) isan

unbiased estimator, and (5.16) is not:

Theorem 5.13: Let § be the sample variance of a random sample X;,...,X, from the N(«,0?)

distribution. Then (n-1)SYo? is distributed x> , .

The proof of Theorem 5.13 is|eft as an exercise. Since the expectation of the xﬁ,l distribution is

n-1, thisresult impliesthat E(S?) = o2, whereasby (5.16), E(6%) = ¢?(n-1)/n.Moreover,
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since the variance of thexﬁ,1 distribution is 2(n-1), it follows from Theorem 5.13 that
Var(S?) = 26%(n-1). (5.17)
The Cramer-Rao lower bound for an unbiased estimator of ¢° is 26*/n, sothat S? isnot
efficient, but itiscloseif nislarge.
For arandom sample X,, X,,...,X, from amultivariate distribution with expectation vector

W and variance matrix X the sample variance matrix takes the form

T = (U(n-1)X X X)X -X)T. (5.18)
Thisisalso an unbiased estimator of X = Var(Xj), even if the distibution involved is not

normal.

5.6.2 Confidenceintervals
Since estimators are approximations of unknown parameters, the question arises how
close they are. | will answer this question for the sample mean and the sample variance in the
case of arandom sample X, X,...,X,, from the N(.,6%) distribution.
It isalmost trivia that X ~ N(u,c%/n), hence
J/n(X-p)/c ~ N(0,1). (5.19)

Therefore, for given a € (0,1) there existsa 3 > 0 such that

PI[X-p| < poi/n] = P[|yn(X-wy/s| < p| = ?Mdu “1-a  (520)
,B \/2775 '

For example, if we choose o = 0.05 then 3 = 1.96, so that in this case
P[X-1.960/y/n < p < X+1.960//n] = 0.95

Theinterval [X-1.960/y/n,X+1.965/y/n] is called the 95% confidence interval of p. If o would be
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known, then this interval can be computed and will tell us how close X and p are, with amargin
of error of 5%. But in general o is not known, so how do we proceed then?

In order to solve this problem, we need the following corollary of Theorem 5.7:

Theorem 5.14: Let X;, X,,...,X, be a random sample from the N(u,0%) distribution. Then the

samplemean X and the sample variance S? are independent.

Proof: Observethat X, = ((X,-W)/c,(X,-W)/o,..... ,(Xn—p)/c;)T ~ N,(O,1), X =+
(o/n,...,c/n)X, = b + BX,, say, and
(Xl—)Z)/G 1
1
1@,1,.., )X, = CX,, say.
(Xn—)Z)/G .
The latterimpliesthat (n-1)S%/6? = X CTCX, = X,'C?X_ = X,/CX_, becauseCis
symmetric and idempotent, with rank(C) = trace(C) = n - 1. Therefore, by Theorem 5.7 the
sample mean and the sample variance are independent if BC = 0, which in the present caseis

equivalent to the condition CB" = 0. The latter is easily verified:

CBT =

S |a
|

Q.E.D.
It follows now from (5.19), Theorems 5.13 and 5.14, and the definition of the Student t

distribution that:
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Theorem 5.15: Under the conditions of Theorem 5.14, \/ﬁ()z -W/sS~t ..

Recall from Chapter 4 that thet,,_, distribution has density

= '(n/2)
\/m I'(n-1)/2) (1+X2/(n_1))n/2 '

h (X

n-1

(5.21)

where I'(y) = f “xYYexp(-x)dx, y > 0. Thus, similarly to (5.20), for each « € (0,1) and sample
0

size n there exists a3, > 0 such that

PIX-H| < B,SVM = [ "h, ,@du =1 - a, (5.22)

sothat [X-B,Sy/n,X+B.Sy/n] isnow the (1-«)x100% confidence interval of p
Similarly, on the basis of Theorem 5.13 we can construct confidence intervals of 2.

Recall from Chapter 4 that the x> , distribution has density

X(nfl)IZfleXp(_X/Z)
I'((n-1)/2)20v72

0, 1(X) =

For given « € (0,1) and sample size n we can choose B,, < fB,, besuch that

P[(n-1)S%B,, < o® < (n-1)S%B, ] = P[B,, < (N-1)S%c’< B,,]

5.23

= ["7g, y(Wdu = 1 - a. 529
Bl,n

There are different ways to choose 3, , and f3,, such that the last equality in (5.23) holds.

Clearly, the optimal choiceis suchthat B,;-B,y, isminimal becauseit will yield the smallest

confidence interval, but that is computationally complicated. Therefore, in practice 3,,, and B,,
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are often chosen such that

fﬁl,ngnil(u)du = a/2, fwgnil(U)du = /2. (524)
0 Ban

A practical point is how to solve the integral equationsin (5.20), (5.22) and (5.24). Most
statistics and econometrics textbooks contain tables from which you can ook op the values of the
B’sinvolved, given a.. Moreover, there are various web pages from which you can download

programs to calcul ate these values.?

5.6.3 Testing parameter hypotheses

Suppose you consider starting up abusiness to sell anew product inthe USA, say a
particular type of European car which is not yet imported in the US. In order to determine
whether there is amarket for this car in the US, you have selected randomly n persons from the
population of potential buyers of this car. Each person j in the sample is asked how much he or
she would be willing to pay for this car. Let the answer be Y;. Moreover, suppose that the cost of
importing thiscar isafixed amount Z per car. Denote X = In(Yj/Z), and assumethat X; is
N(u,0?) distributed. If . > 0 then your planned car import business will be profitable, otherwise
you should forget about thisidea.

In order to decide whether .. > 0 or « < 0, you need a decision rule based on the random
sample X = (X, X,,...,.X,)". Any decision rule takes the following form. Given a subset C of R",
to be determines below, decidethat . > 0if X € C, and decidethat .. < Oif X ¢ C. Thus, you
decide that the hypothesis . < Oistrueif I(X € C) = 0, and you decide that the hypothesis .. >

Oistrueif I(X € C) = 1. Inthiscasethe hypothesis « < Oiscalled the null hypothesis, usually
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denoted by H,: « < 0, and the hypothesis 1 > O is called the alternative hypothesis, denoted by
H,: ©«>0. The procedureitself iscalled a statistical test.

Thisdecision rule yields two types of errors. Thefirst one, caled thetypel error, isthat
you decide that H, istrue whilein reality H, istrue. The other error, called thetypell error, is
that you decide that H, istrue whilein reality H, istrue. Both errors come with costs. If the type
| error occurs you will incorrectly assume that your car import business will be profitable, so that
you will loose your investment if you start up you business. If the type I1 error occurs you will

forgo a profitable business opportunity. Clearly, the type | error is the more serious of the two.

Now choose C suchthat X ¢ C if and only if y/n(X/S) > B for somefixed B > 0. Then

PIX € C] - PI/A(IS) > ] - PI/AX-W)/S + YRS > ]
= P[yn(X-w/o + ynulc > p.90] (5.25)

= f:”P[S/c < (u + ynu/o)Blexp[-u?/2]/y2r du,

where the last equality follows from Theorem 5.14 and (5.19). If « < O this probability isthe
probability of atypel error. Clearly, the probability (5.25) is an increasing function of ., hence
the maximum probability of atypel error isobtained for g = 0. But if u = 0 then it follows from

Theorem 5.15 that /n(X/S) ~ t ,, hence

max _ P[X € C] = fl:hnfl(u)du, (5.26)

where h , isthedensity of the t_, distribution. See (5.21). The probability (5.26) is called the
size of the test of the null hypothesis involved, which is the maximum risk of atype| error, and

ax100% is called the significance level of the test. Depending on how risk averse you are, you
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have to choose asize o € (0,1), and therefore you have to choose = 3, such

thatf“hnfl(u)du = o. Thisvalue B, is called the critical value of the test involved, and sinceit is
Bn

based on the distribution of /n(X/S), the latter is called the test statistic involved.

Replacing B in (5.25) by f,, 1 minus the probability of atype Il error isafunction of p/o

>0
T exp(-u?/2)
po(W/o) = f P[So < (u + ynu/o)/B]—"—"du, u > 0. (5.27)
~/nulo V2n

Thisfunction is called the power function, which is the probability of correctly reecting the null
hypothesis H, in favor of the dternative hypothesis H,. Consequently, 1 - p (Wo), u > 0, is
the probability of atypell error.

Thetest in this exampleis called at-test, because the critical value B, isderived from
the t-distribution.

A test issaid to be consistent if the power function convergesto 1 asn - « for al values
of the parameter(s) under the aternative hypothesis. Using the resultsin the next chapter it can
be shown that the above test is consistent:

lim __p(Wo) = 1if u>0. (5.28)

Now let us consider the test of the null hypothesis H,: © = 0 against the alternative
hypothesis H,: . # 0. Under the null hypothesis, /n(X/S) ~ t , exactly. Giventhesizea €
(0,1), choose the critical value B, >0 asin (5.22). Then H, isaccepted if |/n(X/S)| < B, and

rejected in favor of H, if |y/n(X/S)| > B,. The power function of thistest is
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po(Wo) = ["PISlo < |u + y/nu/o]/B Jexp[-u?/2)/y2n du, u = O. (5.29)

Thistest isknown asis the two-sided t-test. Also thistest is consistent:

lim__p (Wo) = 1if u = 0. (5.30)

5.7. Applicationsto regression analysis
5.7.1 Thelinear regresson model

Consider arandom sample Z = (Yj ,X-T)T, j =1,2,..,n, fromak-variate nonsingular
normal distribution, where Y eR, X € R*"1. We have seen in Section 5.3 that we can write

Yj :(X+XjTB+Uj1

U - NO,6?, j = 1..n, (5.31)
where U =Y, - E[YJ.|XJ.] isindependent of X, Thisisthe classical linear regression model,
whereY; is the dependent variable, X; is the vector of independent variables, also called the
regressors, and U; is the error term. This model is widely used in empirical econometrics, evenin

the case where X; is not known to be normally distributed.

Denoting
Y, 1 X u,
(0
Y = , X = ,eoz(ﬁ),uz :
Y 1 X, U,
model (5.31) can be written in vector/matrix form as
Y = X0, + U, UX ~ NJ[0,67 ], (5.32)

where U[X is a short-hand notation for " U conditiona on X".

In the next subsections | will address the problems how to estimate the parameter vector
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0, and how to test various hypotheses about 6, and its components.

5.7.2 Least squaresestimation

Observe that

E[(Y - X0)'(Y - X0)] = E[(U + X(8,-6))"(U + X(6,-6))]
= E[U U] + 2(0,-0)"E(X TE[U[X]) + (8,-0)TE[X ™X])(0,-6) (5.33)

= n.o? + (0,-0)(E[X ™X])(0,-6).

Hence it follows from (5.33) that*

0, = agmin E[(Y - X0)"(Y - X0)] = (E[X X)) *E[X Y], (5.34)

9eRK

provided that the matrix E[X "X] is nonsingular. However, the nonsingularity of the distribution
of Z = (Y;,X T guaranteesthat E[X "X] is nonsingular, because it follows from Theorem 5.5
that the solution (5.34) is uniqueif Xy, = Var(Xj) Isnonsingular.

The expression (5.34) suggests to estimate 0, by the Ordinary® Least Squares (OLS)

estimator

0 = argmin(Y - X0)"(Y - X0) = (X X)X Y. (5.35)

0eRK

It follows easily from (5.32) and (5.35) that
6 -0, = (X™X'XTU, (5.36)
hence 6 is conditionally unbiased: E[0|X] = 6,, and therefore also unconditionally unbiased:

E[6] = 6,. More generally,
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OIX ~ N,6,,0%(X ™). (5.37)
Of course, the unconditional distribution of & isnot normal.
Note that the OLS estimator is not efficient, because o?(E[X "X]) ! is the Cramer-Rao
lower bound of an unbiased estimator of (5.37), and Var(0) = c2E[(X ™X) ] = o%(E[X "X])
However, the OLS estimator is the most efficient of all conditionally unbiased estimators 6 of
(5.37) that are linear functions of Y. In other words, the OLS estimator isthe Best Linear

Unbiased Estimator (BLUE). Thisresult is known as the Gauss-Markov theorem:

Theorem 5.16: (Gauss-Markov theorem) Let C(X) be a kxn matrix whose elements are Borel
measurable functions of the random elements of X, and let & = C(X)Y. If E[8]X] = 0, then for

some positive semi-definite kxk matrix D, Var[8]X] = c?C(X)C(X)T = 63X ™X)"* + D.

Proof: The conditional unbiasedness condition impliesthat C(X)X = I,, hence 6= 0, +

C(X)U, and thus Var(8X) = c*C(X)C(X)". Now

D = c[CX)CX)" - XX = [CX)CX)"T - COX(X X)X TC(X)MN

= ?CJ[I,, - XXX)XTCX)" = s*CX)MC(X)",

say, where the second equality follows from the unbiasedness condition CX = I,. The matrix
-1
M =1 - XX™X)*XT (5.38)
isidempotent, hence its eigenvalues are either 1 or 0. Since all the eigenvalues are non-negetive,

M is positive semi-definite, and so is C(X)MC(X)". Q.E.D.

Next, we need an estimator of the error variance o°. If we would observe the errors U,
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then we could use the sample variance S? = (JJ(n—l))Zj”:l(Uj -U)?of the U, ‘s as an unbiased

estimator. This suggeststo use OLS residuals,

A

T - 1
U, =Y, - X0, where X, - ( J (5.39)
XJ'
instead of the actual errors U; in this sample variance. Taking into account that
¥4 = o, (5.40)
the feasible variance estimator involved takes the form S° = (1/(n—1))Ej”:10j2. However, this
estimator is not unbiased, but aminor correction will yield an unbiased estimator of o2, namely
$? = (U(n-k)X U7, (5.41)
which is called the OLS estimator of 6% The unbiasedness of this estimator is a by-product of

the following more general result, which isrelated to the result of Theorem 5.13.

Theorem 5.17: Conditional on X and well as unconditionally, (n-k)S%s? ~ %>, hence

E[S? = o°.

Proof: Observe that

72 VA 5T 2
=02 = Sy, - XBY2 = U, - XT(6-6,)
n 2 n > T\,A ~ n wTe) A
- 50,02 - AL UXT)B-0,) + (B-6,)T[E,X X )6-0,) 52
=UTU - 2UTX(®-6,) + (6-6,)XX(6-6,)

=UTU - U™XX™X)XTU = U™MU,

where the last two equalities follow from (5.36) and (5.38), respectively. Since the matrix M is
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idempotent, with rank

rank(M) = trace(M) = trace(l ) - traceX(X ™X) X T) = trace(l ) - trace{(X ™X) X X)
= n-k
it follows from Theorem 5.10 that conditional on X, (5.42) divided by ¢® hasa Xﬁ,k distribution:

YU IX ~ o (5.43)
It isleft as an exercise to prove that (5.43) implies that also the unconditional distribution of
(5.42) divided by 62 is >,
LU 16? = e (5.44)
Since the expectation of the xﬁ,k distribution is n-k, it follows from (5.44) that the OLS
estimator (5.41) of o2 isunbiased. Q.E.D.
Next, observe from (5.38) that XM = O, so that by Theorem 5.7 (X"X) *X'U and U'TMU
are independent, conditionally on X, i.e.
P[XTU < xand U™U < 7ZX] = P[XTU < x]X].P[U™U < 7X], ¥ x € R, z > 0.

Consequently,
Theorem 5.18: Conditional on X, 6 and S? areindependent,
but unconditionally they can be dependent.

Theorems 5.17 and 5.18 yield two important corollaries, which | will state in the next

theorem. These results play akey rolein statistical testing.
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Theorem 5.19:
(a) Let ¢ € R*be a given nonrandom vector. Then
cT(0-0,)

S/cT(X™)1c

(b) Let R be a given nonrandom mxk matrix with rank m < k. Then

~ bk (5.45)

(0-6)"RT(RX™X) 'RT)'R(O-0,) -

< (5.46)
m.

mh-k*

Proof of (5.45): It follows from (5.37) that ¢ T(6-6,)]X ~ N[0,c% (X ™X)c], hence

cT(0-0,)

oyc (X ™X) 1c

X ~ N[0,]]. (5.47)

If follows now from Theorem 5.18 that conditional on X the random variablein (5.47) and § are
independent, hence it follows from Theorem 5.17 and the definition of the t-distribution that
(5.45) istrue conditional on X, and therefore also unconditionally.

Proof of (5.46): It follows from (5.37) that R(0-0,)[X ~ N_[0,6?R(X ™X)*R ], hence
it follows from Theorem 5.9 that

(6-0)"RT(RX ™X)*RT) "R(8-0,) 2
-y

(52

(5.48)

Again it follows from Theorem 5.18 that conditional on X the random variablein (5.48) and &
are independent, hence it follows from Theorem 5.17 and the definition of the F-distribution that

(5.46) istrue conditiona on X, and therefore also unconditionally. Q.E.D.
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Note that the resultsin Theorem 5.19 do not hinge on the assumption that the vector X; in
model (5.31) has amultivariate normal distributed. The only conditions that matter for the

validity of Theorem 5.19 arethat in (5.32), UX ~ N,(0,6% ), and P[0 < det(X X) < =] = 1.

5.7.3 Hypothesestesting

Theorem 5.19 isthe basis for hypotheses testing in linear regression analysis. First,
consider the problem whether a particular components of the vector X; of explanatory variablesin
model (5.31) has an effect on Y, or not. If not, the corresponding component of B is zero. Each
component of 3 corresponds to acomponent 6, ,, i > 0, of 6,. Thus, the null hypothesis
involvedis

Hy: 6,5 = 0. (5.49)

Let 6, be component i of 8, and let the vector e be columni of the unit matrix I,. Thenit

follows from Theorem 5.19(a) that under the null hypothesis (5.49),

. 0,
b= e (5.50)

| S/e'(X™X) e

The statistic ﬂ in (5.50) is called the t-statistic or t-value of the coefficient 6, ;. If it conceivable

that 6, , can take negative or positive values, the appropriate alternative hypothesisis

Hy: 6 # 0. (5.51)
Giventhesize « € (0,1) of the test, the critical value y correspondsto P[[T| > y] = o, where
T ~ t . Thus, the null hypothesis (5.49) is accepted if |ﬂ| < v,and rglected in favor of the
aternative hypothesis (5.51) if |ﬂ| > v. Inthelatter case we say that 6, ; is significant at the

ax100% significance level. Thistest is called the two-sided t-test.
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If the possibility that 6, , is negative can be excluded, the appropriate aternative

hypothesisis
Hy: 0, > 0. (5.52)

Given the size o the critical value vy, involved now correspondsto P[T > v ] = a, where
again T ~ t . Thusthe null hypothesis (5.49) is accepted if ﬂ < v,, and rejected in favor of
the alternative hypothesis (5.52) if ﬂ > y.. Thisistheright-sided t-test. Similarly, if the
possibility that 6, , is positive can be excluded, the appropriate alternative hypothesisis
Hy: 0, < 0. (5.53)
Then the null hypothesis (5.49) is accepted if ﬂ > -y,, and rejected in favor of the alternative
hypothesis (5.53) if ﬂ < -y,. Thisistheleft-sided t-test.

If the null hypothesis (5.49) is not true, then it can be shown, using the resultsin the next
chapter, that for n - « and arbitrary M >0, P[t, > M] ~ 1 if 6,, > 0 and P[t, < -M] - 1 if
0, o < O. Therefore, the t-testsinvolved are consistent.

Finally, consider anull hypothesis of the form

H,: RO, = d,
(5.54)
where R is a given mxk matrix with rank m<k, and q is a given mx1 vector .

For example, the null hypothesis that the parameter vector § in model (5.31) isazero
vector correspondsto R = (0,1, ,), g =0 ¢ R*1, m = k-1. This hypothesisimplies that
none on the components of X have any effect on'Y,. Inthat case Y, = . + U;, and since U, and X;
are independent, so are Y, and X;.

It follows from Theorem 5.19(b) that under the null hypothesis (5.54),
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e (RI-9"(RX™)'RT)'(Ri-9) _
m.S?

mn-k* (5-55)

Giventhesize a thecritical value y ischosensuchthat P[F >v] = o, where F ~ F_ .

Thus the null hypothesis (5.54) is accepted if F < v, and rgjected in favor of the alternative

hypothesis RO, = q if F > v .For obvious reasons, thistest is called the F test. Moreover, it can

be shown, using the results in the next chapter, that if the null hypothesis (5.54) is false then for

anyM >0, lim _P[F > M] = 1. ThustheF test is a consistent test.

5.8.

@
(b)
(©)

2.

Exercises

Let

Y
X

o E

2

Determine E(YIX).
Determine var (U), where U = Y - E(YIX).
Why are U and X independent?

Let X be n-variate standard normally distributed, and let A be a non-stochastic nxk matrix

with rank k < n. The projection of X on the column space of A isavector p such that the

following two conditions hold:

1)
)
(@
(b)

pisalinear combination of the columns of A;

the distance between X and p, |X-p| = y(X-p)"(X-p), isminimal.
Show that p = A(ATA)*ATX.

Isit possible to write down the density of p? If yes, do it. If no, why not?
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(©)  Showthat |p|?> = p "p hasay? distribution. Determine the degrees of freedom involved.
(d) Show that |X-p|? has a y? distribution. Determine the degrees of freedom involved.

(e Show that |p| and |X-p| are independent.

3. Prove Theorem 5.13.

4, Show that (5.11) istrue for 6 in an open set © if df (x|0)/(d6)? is for each x continuous
on ®, and f SUp,_, [d*f (x10)/(d6)?dx < e.Hint. Use the mean value theorem and the dominated
convergence theorem.

5. Show that for arandom sample X;, X,,...,X, from adistribution with expectation p and
variance o2 the sample variance (5.15) of is an unbiased estimator of 2, even if the distribution
involved is not normal.

6. Prove (5.17).

7. Show that or arandom sample X,, X,,...,X,, from amultivariate distribution with
expectation vector L and variance matrix X the sample variance matrix (5.18) is and unbiased
estimator of X.

8. Given arandom sample of size n from the N(it,6?) distribution, prove that the Cramer-
Rao lower bound for an unbiased estimator of o2 is 26*/n.

0. Prove Theorem 5.15.

10. Prove the second equalitiesin (5.34) and (5.35).

11. Show that the Cramer-Rao lower bound of an unbiased estimator of (5.37) isequal to
o?(E[X TX]) 2.

12. Show that the matrix (5.38) isidempotent.
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13. Whyis(5.40) true?
14, Why does (5.43) imply (5.44)7?
15. Suppose your econometric software package reports that the OL S estimate of aregression
parameter is 1.5, with corresponding t-value 2.4. However, you are only interested in whether
the true parameter valueis 1 or not. How would you test these hypotheses? Compute the test
statistic involved. Moreover, given that the sample sizeisn = 30 and that your model has 5 other
parameters, conduct the test using size 0.05. Y ou have to look up the critical value involved in

one of the statistics or econometrics textbook that contain tables of the t-distribution.®

Appendix
5.A. Proof of Theorem 5.8
Note again that the condition AB = O only makes sense if both A and B are singular, if
otherwise either A, B or both are O. Write A = QAAAQAT , B = QBABQBT, where Q, and Qg are
orthogonal matrices of eigenvectors and A, and A; are diagonal matrices of corresponding
eigenvalues. Then Z, = XTQ,A,QxX, Z, = X 'QzA Qg X. Since Aand B are both singular,

it followsthat A, and A, are singular. Thus let

Ay

A =

O
A _Az
O

o O O

O
O
where A isthe k x k diagonal matrix of positive eigenvalues, and - A, the m x m diagonal matrix

of negative eigenvalues of A, with k+ m<n. Then
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A, 0 O AZ 0 offt, 0 0 ||AZ 0 O
Z, = X™Qf 0 -A, 0[]QX = XTQ,| . A;; . 0 -l 0 . A; 0QATx.
0 00 oooOOI”’k’mooo
Similarly, denote
A, O O

Ag =| O -A, O
O O O

where A} isthe p x p diagonal matrix of positive eigenvalues, and - A isthe q x g diagonal

matrix of negative eigenvalues of B, with p + g < n. Then

(A)> 0 offl, 0 0 ||l@)> 0 0

Z =XT L 0 -l 0 Lt X
2 Q 0 (A)? O a 0 (A)2 0 Qs
0 0 g
0 0 0 0 0 0
Next, let

1 1

A; O O (A)? O O
Y, = 1 QX = MX, say, Y, = 2 |QaX = MLX, say.
'lo aAZol™ ! 2 O (A)? O] 2

O OO O O O

Then
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, O O
zZ, =Y, |0 -1, O |y, =YDy, say,
0 O In—k—m
and
I, O O
Z, =Y, O -l O |vY, =Y,D,Y,, say,
O O I, .,

where the diagonal matrices D, and D, are nonsingular but possibly different. Clearly, Z, and Z,

areindependent if Y, and Y, are. Now observe that

2
AZ 0
AB=Qul g as
2
0 0
X

1
0 A; 00
0 1 1Q.Q
0o AZ o
In—k—m 0 00
1
(A" 0 0
1
0 (A;)Z 0 QB
0 0 Infpfq

(Ap? 0 0
0 (A)2 O
0 0O O

The first three matrices are nonsingular, and so are the last three. Therefore, AB = O if and only

if

1
A2 0 0
= 1
0 AZ O
0 00

T

QaQg

1
(AD? 0 0
1
0 (A;)2 0
0 0O O
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It follows now from Theorem 5.7 that the latter impliesthat Y, and Y, are independent, hence the

condition AB = O impliesthat Y, and Y, are independent. Q.E.D.

Endnotes

1 In order to distinguish the variance of arandom variable from the variance matrix of a
random vector, the latter will be denoted by Var, with capital V.

2. The capital C in Cov indicates that this is a covariance matrix rather than a covariance of
two random variables.

3. These calculators are also included in my free econometrics software package EasyReg
International, which you can download from http://econ.la.psu.edu/~hbierenss EASY REG.HTM.

4, Recall that "argmin" stands for the argument for which the function involved takes a
minimum.

5. The OLS estimator is called "ordinary" to distinguish it from the nonlinear least squares
estimator. See Chapter 6 for the | atter.

6. Or use the author’s free econometrics software package EasyReg International. Thet-
distribution calculator can be found under "Tools".
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Chapter 6

M odes of Convergence

6.1. Introduction

Tossafair coinntimes, and let Y, = 1 if the outcome of the j-th tossing is head, and Y, =
-1if the outcome involved istail. Denote X = (1/n)Ej”:1Yj . For the case n = 10 the left-hand
side panel of Figure 6.1 displays the distribution function F (x)* of X, ontheinterval [-1.5, 1.5],

and the right-hand side panel displays atypical plot of X, for k=1,2,...,10, based on simulated

Y,'s?
| pr— Il
—_
—
T :
—r
15 1] 5 | 10

Figure 6.1. n = 10. Left: Distribution function of X,,. Right: Plot of X, for k=1,2,...,n.

Now let us see what happens if we increase n: First, consider the case n = 100, in Figure 6.2. The
distribution function F(x) becomes steeper for x close to zero, and X, seems to tend towards

Z€ex0.

-1
1 100

-1.5 0 +1.5

Figure 6.2. n = 100. Left: Distribution function of X,. Right: Plot of X, for k=1,2,...,n.
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These phenomena are even more apparent for the case n = 1000, in Figure 6.3.

'l'"'\.m---\-..--n"'—"'—'-—"'-——-"-

-1
1 100

-1.5 0 +1.5

Figure 6.3. n=1000. Left: Distribution function of X,. Right: Plot of X, for k=1,2,...,n.

What you see in Figures 6.1-6.3 is the law of large numbers: X = (1/n)Ej”:1Yj -~ E[Y;] =0in
some sense, to be discussed below, and the related phenomenon that F(X) converges pointwisein
x # 0 to the distribution function F(x) = I(x > 0) of a"random" variable X satisfying P[X = Q]
=1

Next, let us have acloser look at the distribution function of y/nX : G (x) = F (x/y/n),
with corresponding probabilities P[y/nX. = (2k-n)/y/n], k=0,1,...,n, and see what happensif n

-o0, These probabilities can be displayed in the form of a histogram:

Pl2k-1yn-yin < yix, < 2kyn-yh|

2iy/n
if x e (2(k-1)/yn-yn, 2kyn-ynl, k 0.1,.....n,
H.(X) = 0 elsewhere.

H.() =

Figures 6.4-6.6 compare G,(x) with the distribution function of the standard normal

distribution, and H,(x) with the standard normal density, for n = 10, 100 and 1000.
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2.5 1] +25 | -25 +2.5

Figure 6.4. n=10: Left: G,(x), right: H,(X), compared with the standard normal distribution.

2.5 1] +25 | -25 a +2.5

Figure 6.5. n=100: Left: G,(X), right: H,(x), compared with the standard normal distribution.

2.5 0 +2.5

Figure 6.6. n=1000: Left: G,(x), right: H,(X), compared with the standard normal distribution.

What you see in the left-hand side panelsin Figures 6.4-6.6 isthe central limit theorem:

X

limG (x) - fMdu,

o J/2n

—o0

pointwise in x, and what you see in the right-hand side panels is the corresponding fact that

IimIimG”(X+6) -G exp[-x?/2]

510 N o J2n
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The law of large numbers and the central limit theorem play akey rolein statistics and

econometrics. In this chapter | will review and explain these laws.

6.2. Convergencein probability and the weak law of large numbers
Let X, be a sequence of random variables (or vectors) and let X arandom or constant

variable (or conformable vector).

Definition 6.1: We say that X, convergesin probability to X, also denoted as plim,__X, = Xor
n

X, = X, if for an arbitrary e >0we have lim___P(|X, - X| > €) = 0, or equivalently,

lim _P(|X, - X| <& =1

In this definition, X may be arandom variable or a constant. The latter case, where P(X=c) =1
for some constant ¢, is the most common case in econometric applications. Also, this definition
carries over to random vectors, provided that the absolute value function |x| isreplaced by the
Euclidean norm ||x| = m

The right-hand side panels of Figures 6.1-6.3 demonstrate the law of large numbers. One
of the versions of thislaw isthe Weak Law of Large Numbers (WLLN), which also appliesto

uncorrelated random variables.

Theorem 6.1: (WLLN for uncorrelated randomvariables). Let X,,...,X, be a sequence of

uncorrelated random variables with E(X,) = p and var (X)) = 62 < »,andlet X = (1/n)Zj”:1Xj.
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Then plim__ X = .

Proof: Since E(X) = u and Var(X) = o?/n, it follows from Chebishev inequality that
P(|X - u| >€) < c¥(ne?) ~ 0if n -~ . QE.D.

The condition of afinite variance can be traded in for thei.i.d. condition:

Theorem 6.2: (The WLLN for i.i.d. random variables). Let X,,...,X, be a sequence of
independent identically distributed random variables with E [|X[] <~ and E(X)) = u, and let

X = (U)X, X. Then plim X = p.

Proof: Let Y, = X .I(IX| <j)andZ = X .I(X[|>]), sothat X, =Y, + Z. Then

E|(UN.(Z - E@))| < 2WnELE[Z]] = 20mELER NI > )] - 0, (6.0)

and

B[/, - B < @WNASLEYT = (NS EXAX] < )]
= /N S EXAk - 1< Xy < K]
< ()T D KEX Kk - 1< X < K] (6.2)
1/nAX, SAY L EIX G - 1< X)] < )] < (WD) SIEIX X > k - 1)

< (UnIpEPGHEPG > k - D] - 0

asn -, where the last equality in (6.2) follows from the easy equality EL:lk-ak = EL;llELkai ,



206
and the convergence resultsin (6.1) and (6.2) follow from the fact that E[X,[I([X,| > j)] - O
forj - o, because E[|X,|] < . Using Chebishev'sinequality it follows now from (6.1) and

(6.2) that for arbitrary € > 0,

P[| (U)X, (X, - E(X)| > €] < P[[(UnXL(Y, - ECY))

+ |WNEL(EZ - E@))> e
(6.3)
P[| (U)X, (Y, - E(Y))| > e/2] + P[|(UN)X,(Z, - E(Z))|> /2]

IA

IN

4E[| (Un)XL(Y, - E(Y))|2e? + 2E[|(Un)X4(Z; - EZ))|1/e - 0

asn -«. Notethat the second inequality in (6.3) follow from the fact that for non-negative
random variablesXand Y, P[X+Y > g] < P[X > ¢/2] + P[Y > €/2]. The theorem under
review follows now from (6.3), Definition 6.1 and the fact that € is arbitrary. Q.E.D.

Note that Theorems 6.1-6.2 carry over to finite-dimensiona random vectors X;, by
replacing the absolute values |.| by Euclidean norms: x| = \/xiTx and the variance by the
variance matrix. The reformulation of Theorems 6.1-6.2 for random vectorsis left as an easy
exercise.

Convergence in probability carries over after taking continuous transformations. This

resultsis often referred to as Slutky's theorem:

Theorem 6.3: (Sutsky's theorem). Let X, a sequence of random vectorsin R* satisfying X, = C,

where cisnon-random. Let ¥(x) bean R™ -valued function on R which is continuousin c.

Then ¥(X,) -, P(c).
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Proof: Consider the casem= k= 1. It follows from the continuity of ¥ that for an
arbitrary € > O thereexistsa 6 >0 suchthat |[x - c| < & implies |¥(X) - P(c)| < e, hence

P(|X, - ¢| < d) < P(|¥(X) - ¥(0)] < e).
Since lim___P(|X - c¢| < 8) =1, thetheorem follows for the case under review. The more

genera case withm> 1 and/or k > 1, can be proved aong the samelines. Q.E.D.

The condition that cis constant is not essential. Theorem 6.3 carries over to the case
where c is arandom variable or vector, aswe will seein Theorem 6.7 below.

Convergence in probability does not automatically imply convergence of expectations. A
counter-exampleis X, = X +1/n, where X has a Cauchy distribution (see Chapter 4). Then E[X]

and E(X) are not defined, but X, -, X. However,

Theorem 6.4: (Bounded convergence theorem) If X, isbounded: P(|X | < M) =1 for some

M < andall n, then X -, X implieslim, . E(X,) = E(X).

Proof: First, X hasto be bounded too, with the same bound M, because otherwise X, -,
X isnot possible. Without loss of generality we may now assume that P(X = 0) = 1 and that X, is
anon-negative random variable, by replacing X, with [X, - X|, because E[|X, - X|| - 0 implies
lim

E(X,) = E(X). Next, let F,(x) be the distribution function of X, and let € > 0 be arbitrary.

N-oo

Then

0 < EX) = fOdeFn(x) - fosxan(x) - f “xdF (%) < & + MP(X_ > g). (6.4)
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Since the latter probability convergesto zero (by the definition of convergence in probability and
the assumption that X, is nonnegative, with zero probability limit), we have 0 < limsup, . _E(X)
<eforale>0, hence lim __E(X) =0.Q.E.D.

The condition that X, in Theorem 6.4 is bounded can be relaxed, using the concept of

uniform integrability:

Definition 6.2: A sequence X, of random variablesis said to be uniformly integrable if

limy,_ sup,, E[X [ 1(X [ > M)] = 0.

Note that this Definition 6.carries over to random vectors by replacing the absolute value
|.| with the Euclidean norm ||.||. Moreover, it is easy to verify that if | X | < Y with probability 1

foral n>1, where E(Y) <, then X, isuniformly integrable.

Theorem 6.5: (Dominated convergence theorem) Let X, be uniformly integrable. Then X, -, X
implieslim, . E(X) = E(X).

Proof: Again, without loss of generality we may assume that P(X = 0) =1 and that X, isa
non-negative random variable. Let 0< ¢ <M be arbitrary. Then similarly to (6.4),

0 < E(X) = fowxan(x) = fosxan(x) - f MxdF (%) + f ;xan(x)

(6.5)
<e+ MP(XX > ¢g) + Supmlfwxan(x).
L

For fixed M the second term at the right-hand side of (6.5) converges to zero. Moreover, by
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uniform integrability we can choose M so large that the third term is smaller than €. Hence, O <
limsup, . E(X) < 2¢eforale>0,andthus lim E(X) =0.Q.E.D.
Also Theorems 6.4 and 6.5 carry over to random vectors, by replacing the absolute value

function |x| by the Euclidean norm |x| = y/x 'x.

6.3. Almost sureconvergence, and the strong law of large numbers
In most (but not all!) cases where convergence in probability and the weak law of large

numbers apply, we actually have a much stronger result:

Definition 6.3: We say that X, converges almost surely (or: with probability 1) to X, also
denoted by X, - X a.s. (or: w.p.1), if

for all € > 0, lim __P(sup, .[X, - X| < &) =1, (6.6)

or equivalently,

P(lim_X_ = X) = 1. (6.7)

The equivalence of the conditions (6.6) and (6.7) will be proved in Appendix 6.B (Theorem
6.B.1).

It follows straightforwardly from (6.6) that almost sure convergence implies convergence
in probability. The converse, however, is not true. It is possible that a sequence X, convergesin
probability but not almost surely. For example, let X, = U, /n, wherethe U sarei.i.d. non-
negative random variables with distribution function G(u) = exp(-1/u) for u>0, G(u) = 0 for

u< 0. Thenfor arbitrary € >0,
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P(X,| < €) = P(U, < ne) = G(ne) = exp(-L(ne)) ~ L asn - ,

n =

hence X, -, 0. On the other hand,

P(X,] < € for all m=>n) = P(U_ < me for all m > n) = I ,G(me)

= exp(—s’lZ;:nm’l) =0,

where the second equality follows from the independence of the U,;'s, and the last equality

follows from the fact that >, _;m™

= o, Consequently, X, does not converge to 0 amost
surely.
Theorems 6.2-6.5 carry over to the almost sure convergence case, without additional

conditions:

Theorem 6.6: (Kolmogorov's strong law of large numbers). Under the conditions of Theorem

6.2, X - M as.

Proof: See Appendix 6.B.
The result of Theorem 6.6 is actually what you see happening in the right-hand side

panels of Figures 6.1-6.3.

Theorem 6.7: (Sutsky's theorem). Let X, a sequence of random vectorsin R* converging a.s. to
a (random or constant) vector X. Let ¥(x) bean R™-valued function on R¥ whichis

continuous on an open subset * B of R* for which P(X € B) =1). Then ¥(X,) -~ ¥(X) a.s.
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Proof: See Appendix 6.B.

Since a.s. convergence implies convergence in probability, it istrivial that:

Theorem 6.8: If X, -~ X a.s., then the result of Theorem 6.4 carries over.

Theorem 6.9: If X, -~ X a.s., then the result of Theorem 6.5 carries over.

6.4. Theuniform law of large numbersand its applications
6.4.1 Theuniform weak law of large numbers

In econometrics we often have to deal with means of random functions. A random
function is afunction that is arandom variable for each fixed value of its argument. More

precisely:

Definition 6.4: Let {Q,.7,P} be the probability space. A random function f(0) on a subset ® of a
Euclidean space is a mapping f(w,0): Qx® - R such that for each Borel set Bin R and each 0

€0,{o € Q: f(w,0) € B} € .7.

Usually random functions take the form of a function g(X,0) of arandom vector X and a non-
random vector 0. For such functions we can extend the weak law of large numbersfor i.i.d.

random variablesto a Uniform Weak Law of Large Numbers (UWLLN):
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Theorem 6.10: (UWLLN). Let X;, j = 1,..,n, be a random sample from a k-variate distribution,
andlet 6 ¢ ® be non-random vectorsin a closed and bounded (hence compact?) subset

® < R™. Moreover, let g(x,0) be a Borel measurable function on R* x ® such that for each x,
g(x,0) isa continuous function on ©. Finally, assume that E[supeE@|g(Xj ,0)|] <e. Then

plim, .. sup,. | (UMYX ,9(X,0) ~ E[g(X,0)]| = 0.

Proof: See Appendix 6.A.

6.4.2 Applicationsof the uniform weak law of large numbers
6.4.2.1 Consistency of M-estimators

In Chapter 5 | have introduced the concept of a parameter estimator, and listed afew
desirable properties of estimators, i.e., unbiasedness and efficiency. Another obviously desirable
property is that the estimator gets closer to the parameter to be estimated if we use more data

information. Thisis the consistency property:

Definition 6.5: An estimator § of a parameter 6, based on a sample of size n, is called consistent

if plim__6 = 6.

Theorem 6.6 is an important tool in proving consistency of parameter estimators. A large
class of estimators are obtained by maximizing or minimizing an objective function of the form
(1/n)Ej”zlg(Xj ,0), whereg, X, and 0 are the same asin Theorem 6.10. These estimators are

called M-estimators (where the M indicates that the estimator is obtained by Maximizing or
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Minimizing aMean of random functions). Suppose that the parameter of interest is 6, =
argmax,_oE[g(X,,0)], where ® isagiven closed and bounded set. Note that "argmax" is a short-
hand notation for the argument for which the function involved is maximal. Then it seems a
natural choiceto use 6 - argmaxege)(l/n)Zj”:lg(Xj ,0) as an estimator of 6,. Indeed, under some

mild conditions the estimator involved is consistent:

Theorem 6.11: (Consistency of M- estimators) Let 6 = argmax,_,Q(6), 0, = argmax,_,Q(6),
where Q(0) = (1/n)Ejnzlg(Xj ,0), and Q(0) = E[O(0)] = E[9(X,,0)], with g, X; and 0 the same
asin Theorem 6.10. If 0, isunique, inthe sense that for arbitrary € > 0thereexistsad >0

such that Q(0,) - ST Q(0) > &, then plim__ 8 = @,.

Proof: First, notethat § € ® and 0, € ©, because g(x,0) is continuousin 6. See

Appendix II. By the definition of 0,

0 < Q) - Q) = QO - QO + QO - QO)

_ . . — . . — 6.8
< QB - Qb)) + Q(6) - Q(O) < 2§U§\Q(9) - Q)| ©9

and it follows from Theorem 6.3 that the right-hand side of (6.8) convergesin probability to zero.
Thus:

plim__ Q@) = Q). (6.9)
Moreover, the unigueness condition implies that for arbitrary € > 0 there exists a d > 0 such that
Q0 - Q) > §if |6 - 6, > e, hence

P18 - 61 > ¢) < P[QO,) - Q) = 3). (6.10)
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Combining (6.9) and (6.10), the theorem under review follows from Definition 6.1. Q.E.D.
It is easy to verify that Theorem 6.11 carries over to the "argmin” case, Ssimply by
replacing g by -g.
Asan example, let X,,..., X, be arandom sample from the non-central Cauchy
distribution, with density h(x|0,) = Jj[n(1+(x—90)2], and suppose that we know that 0, is

contained in agiven closed and bounded interval ®. Let g(x,0) = f(x-0), where f(x) =

exp(-x2/2)/y/2n isthe density of the standard normal distribution. Then

= exp(-(x+0,-0))/y/2 y
E[g(X,,0)] = f il (X(l OXZ)) ) \/_ndx = f f(x-0+0,)h(x|0)dx = y(6-0,), (6.11)
T 1+ Y

—00

say, where y(y) isadensity itself, namely thedensityof Y = U + Z, with U and Z independent
random drawings form the standard normal and standard Cauchy distribution, respectively. This
is called the convolution of the two densitiesinvolved. The characteristic function of Yis

exp(-[t|-t%2), so that by the inversion formulafor characteristic functions

v0) = - [coslty)e(-Hi-t¥2ct, (6.12)

Thisfunction is maximal iny = 0, and this maximum is unique, because for fixed y # 0 the set
{t € R: cos(t.y) = 1} iscountable and therefore has Lebesgue measure zero. In particular, it

follows from (6.12) that for arbitrary & >0,

T
supy,. . ¥(y) < > f sup,,. .lcos(t.y) lexp(~[t|-t%/2)dt < y(0). (6.13)

Combining (6.11) and (6.13) yields 5Up|efeo|2gE[9(X1!9)] < E[9(X;,0,)] . Thus, all the
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conditions of Theorem 6.11 are satisfied, hence plim__ 0 = 6,.

Another exampleis the nonlinear least squares estimator. Consider a random sample

Z - (Yj,XJ-T)T, j =12...n, with Y, € R, X, € R, and assume that:

Assumption 6. 1: For a given function f(x,0) on R¥x®, with ® a given compact subset of R™,
thereexistsa 0, € © such that P[E[Yj|Xj] = f(Xj,eo)] = 1. Moreover, for each x € R¥, f(x,0)
isa continuous function on ®, and for each 6 € ©, f(x,0) isa Borel measurable function on
R¥. Furthermore, let E[Y;] < =, E[sup,_of(X,,0)3 < =, and

infj, o ELX,.0) - £(X,,00)3 > 0 for & > O.

Denoting U =Y, - E[Yj|Xj] we can write
Y, = f(Xj,GO) U, where P(E[Uj|Xj] =0) = 1. (6.14)
Thisisthe general form of a nonlinear regression model. | will show now that under Assumption
6.1 the nonlinear least squares estimator
0 = argmin, (U)X, (Y, - f(X,0))? (6.15)
isaconsistent estimator of 0.
Let 9g(Z,0) = (Yj - f(XJ. ,0))2. Then it follows from Assumption 6.1 and Theorem 6.10
that
plim, __sup,..o/(1/N)X4[9(Z,.6) -E[9(Z, 0)]] = O.

Moreover,



216

E[9(Z,0)] - EL(U; + 10X,0) - 04,007 = E[U/ + 2E[EUIX)X;,00) ~ 10, 0)]

v EI(FX,00) - FX,0)7 = E[UT + EL(F(.09) - f(X,0),

hence it follows from Assumption 6.1 that inf||efeo||st[|9(Z119)” > 0 for 6 > 0. Therefore the
condition of Theorem 6.11 for the argmin case are satisfied, and consequently, the nonlinear least

squares estimator (6.15) is consistent.

6.4.2.2 Generalized Slutsky’stheorem
Another easy but useful corollary of Theorem 6.6 is the following generalization of

Theorem 6.3:

Theorem 6.12: (Generalized Sutsky’ s theorem) Let X, a sequence of random vectorsin R¥
converging in probability to a nonrandom vector c. Let ®,(x) be a sequence of random

functions on R¥ satisfying plim, __sup,

XxeB

|®.(X) - ©(x)| =0, whereB isa closed and bounded

subset of R¥ containing ¢, and ® is a continuous nonrandom function on B. Then o (X) b

d(C).

Proof: Exercise.
This theorem can be further generalized to the case where c = X isarandom vector, smply by
adding the condition that P[X € B] = 1, but the current result sufficesfor the applications of
Theorem 6.12.

This theorem plays a key-role in deriving the asymptotic distribution of an M-estimator,



217

together with the central limit theorem discussed below.

6.4.3 Theuniform strong law of large numbersand its applications
The results of Theorems 6.10-6.12 also hold almost surely. See Appendix 6.B for the

proofs.

Theorem 6.13: Under the conditions of Theorem 6.10, SlJp%@\(l/n)ZF:lg(Xj ,0) - E[9(X,,0)]|

-0as.

Theorem 6.14: Under the conditions of Theorems 6.11 and 6.13, 0 - 60 a.s.

Theorem 6.15: Under the conditions of Theorem 6.12 and the additional condition that X, -c¢

as, ¢©(X) - @(c) as.

6.5. Convergencein distribution
Let X, be a sequence of random variables (or vectors) with distribution functions F(x),

and let X be arandom variable (or conformable random vector) with distribution function F(X).

Definition 6.6: We say that X, convergesto X in distribution (denoted by X, -, X) if

lim,..F.(X) = F(x), pointwise in x , possibly except in the discontinuity points of F(x).
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Alternative notation: If X has a particular distribution, for example N(0,1), then X, -, X
isalso denoted by X, -4 N(O,1).

The reason for excluding discontinuity points of F(x) in the definition of convergencein
distribution is that in these discontinuity points, lim, ..F,(X) may not be right-continuous. For
example, let X, = X+ 1/n. Then F(X) = F(x-1/n). Now if F(X) is discontinuousin x,, then
lim,. F(X,-1/n) < F(X,), hencelim,._F.(X,) < F(X,). Thus, without the exclusion of discontinuity
points, X + 1/n would not converge in distribution to the distribution of X, which would be
counter-intuitive.

If each of the components of a sequence of random vectors converge in distribution, then

the random vectors themselves may not converge in distribution. As a counter-example, let

[Xln] Z[(o] ( 1 (1)”/2]
X - N
Xon o) \{(-pv72 1

Then X, -4 N(0,1) and X,,, -4 N(0,1), but X, does not converge in distribution.

(6.16)

Moreover, in general X, -4 X doesnot imply that X, -, X. For example, if we replace
X by an independent random drawing Z from the distribution of X, then X, -4 X and X, -4Z
are equivalent statements, because these statements only say that the distribution function of X,
converges to the distribution function of X (or Z), pointwise in the continuity points of the latter
distribution function. If X, -4 X wouldimply X, -, X, then X, -, Zindistr. would imply
that X = Z, which is not possible, because X and Z are independent. The only exception is the

case where the distribution of X is degenerated: P(X = ¢) = 1 for some constant c:

Theorem 6.16: If X, convergesin distribution to X, and P(X = c¢) = 1, where c isa constant, then
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X, convergesin probability to c.

Proof: Exercise.
Note that this result is demonstrated in the left-hand side panels of Figures 6.1-6.3.

On the other hand,

Theorem 6.17: X, -, X implies X, -4 X.

Proof: Theorem 6.17 follows straightforwardly from Theorem 6.3, Theorem 6.4, and
Theorem 6.18 below. Q.E.D.
There is a one-to-one correspondence between convergence in distribution and

convergence of expectations of bounded continuous functions of random variables:

Theorem 6.18: Let X and X be random vectorsin RX. Then X, -4 X if and only if for all

bounded continuous functions @ on R¥, lim__E[¢(X)] = E[@(X)].

Proof: | will only prove this theorem for the case where X, and X are random variables.
Throughout the proof the distribution function of X, is denoted by F,(x), and the distribution
function of X by F(x).

Proof of the "only if* case: Let X, —4 X. Without loss of generality we may assume that
o(X) € [0,1] for al x. For any € > 0 we can choose continuity points a and b of F(x) such that

F(b) - F(a) > 1-&. Moreover, we can choose continuity pointsa = ¢, < ¢, <...< ¢, = b of F(x) such



that for j = 1,..,m-1,

sup o(x) - inf o(X) < e.

X€(C;,G 4] X€(C;,G 4]

Now define

y(x) = inf o(x) for x € (cj,cﬁl],j =1,..,m-1, y(X) = 0 elsewhere.

XE(C;,G 4]

Then 0 < o(X) - y(X) < € for x € (a,b], 0 < o(X) - y(X) < 1 for x ¢ (a,b], hence

limsup| E[w(X )] - Elo(X)]|

N-o

< Iimwp( [ -009IdF 0+ [ [w0)-0()|dF, (9

xe(a,b] xé(a,b]

<e+1- Iim(Fn(b) - Fn(a)) =¢ +1 - (F(b) - F@@)) < 2.

N—-o

Moreover, we have

[Elv(X)] - Ele(X)]]| < 2e,
and

lim,_ Ely(X)] = E[w(X)].
Combining (6.19), (6.20) and (6.21), the "only if" part easily follows.

Proof of the "if" case: Let a < b be arbitrary continuity points of F(x), and let

-0 if x=xb,

= 1 if X < a,
o(x) = o

- O X it a<x<b.

b-a

Then clearly (6.22) is abounded continuous function. Next, observe that

b
Elo(X)] = [0, (9 = F(@) + [DxdF, (9 > F(a

220

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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hence
E[o(X)] = |ian[(p(Xn)] > Iinlprn(a). (6.24)
Moreover,
° b-x
Elo(X)] = f o()dF(x) = F(@) + f EdF(X) < F(b). (6.25)

Combining (6.24) and (6.25) yields F(b) > limsup,__F.(a), hence, since b (> a) was arbitrary,
letting b | a it follows that.

F(@) > limsupF (a). (6.26)

N-co

Similarly, for c<awehave F(c) < liminf__F (a), henceletting ¢ 1 a it follows that

N-oco” N

F(a) < “Tw nfF (a). (6.27)
Combining (6.26) and (6.27), the "if" part now follows, i.e., F(a) = lim__F (a). Q.E.D.
Note that the "only if" part of Theorem 6.18 implies another version of the bounded

convergence theorem:

Theorem 6.19: (Bounded convergence theorem) If X isbounded: P(|X | < M) =1 for some

M < andall n, then X, -, X implies lim,._E(X,) = E(X).

Proof: Easy exercise.

Using Theorem 6.18, it is not hard to verify that the following result holds.

Theorem 6.20: (Continuous Mapping Theorem) Let X, and X be random vectorsin R* such that
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X. ~4X, andlet ®(X) be a continuous mapping from R¥ into R™. Then ®(X) -4 ®(X).

Proof: Exercise.
Examples of applications of Theorem 6.20 are:
(1)  LetX,~4X, where XisN(0,1) distributed. Then X -, 5.

(2)  LetX, - X, where X isN(0,l) distributed. Then XX~ %2.

If X, =4 X Y, =4 Y, and ®(x,y) is acontinuous function, then in general it does not follow

that ©(X,,Y,) »; D(X,Y), except if either X or Y has a degenerated distribution:

Theorem 6.21: Let X and X, be random vectorsin R¥ such that X, -, X, and let Y, be a random

vector in R™ such that plim,_..Y,, = ¢, wherec € R™ is a nonrandom vector. Moreover, let ®(x,y)

N-oco

be a continuous function ontheset R¥ x {y € R™ |y - ¢| < &} for somed > 0.5 Then

DO(X,,Y,) =g D©(X,0).

Proof: Again, we prove the theorem for the case k= m= 1 only. Let F,(x) and F(x) be the

distribution functions of X, and X, respectively, and let ®(x,y) be a bounded continuous function
on R x (c-4,c+d) for some & > 0. Without loss of generality we may assumethat |D(x,y)| < 1.

Next, let € > 0 be arbitrary, and choose continuity points a < b of F(x) such that F(b) - F(a) >

1-¢. Thenfor any y > 0,
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[E[O(X,Y)] - E[®(X,0)| < E[|O(X,Y,) - DX, 0)[1(]Y,~c|<)]
+ E[[D(X,.Y,) - ©(X,.0)[I(]Y,-c|>V)]
< E[JO(X,Y,) - ®X,0)[1(]Y,-cl<nI(X.c[abl)] (6.28)
+ 2P(X ¢[ab]) + 2P(|Y, —c|>y)
< sup o [D(xy)-D(xc)| + 2(1-F (b)+F (@) + 2P(]Y, -c|>).
xe[ab], [y-c|<y

Since a continuous function on a closed and bounded subset of an Euclidean space is uniformly

continuous on that subset (see Appendix I1), we can choose y so small that

sup | D(Xy)-D(xC)| < e. (6.29)
xe[ab], y-c|<y '

Moreover, 1-F (b) + F (@) - 1- F(b) + F(a) <e, and P(|Y,-c|>y) - 0. Therefore, it follows
from (6.28) that:
limsup| E[®(X,Y,)] - E[®(X )| < 3e. (6.30)

N-oc

The rest of the proof isleft asan exercise. Q.E.D.

Corollary 6.1: Let Z, be t-distributed with n degrees of freedom. Then Z, -, N(0,1).

Proof: By the definition of the t-distribution with n degrees of freedom we can write
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z oY

n ’

n
lz sz

Nj-1

(6.31)

where Uy, U, ,..,U, arei.i.d. N(0,1). Let X, = U, and X = U,, so that trivially X, -, X. Let
Y, = (1/n)Zj”:1U jz. Then by the weak law of large numbers (Theorem 6.2) we have: plim,_..Y, =
E(U?) = 1. Let d(x,y) = x/Vy. Notethat ®(x,y) is continuouson R x (1-g,1+¢) for 0 < e < 1. Thus

by Theorem 6.21, Z = ®(X,,Y,) -~ ®(X,1) = U, ~ N(0,1) indistribution. Q.E.D.

Corollary 6.2: Let U,...U, be a random sample from N,(«,X), where X is non-singular. Denote
U= @WnXILU;, T = (U(n-1)X4(U;-U)(U,-U)", and let Z, = n(U-p)" $(U-p). Then

Zn =4 X~

Proof: For akxk matrix A = (a,..,a,), let vec(A) be the k*x1 vector of stacked columns a,,
j=1,..k of A vec(A) = (a,,..,a.)" = b, say, withinversevec(b) = A. Let ¢ = vec(s), Y, =
vec(2), X, = y/n(U-p), X ~ N (0.Z), and P(xy) = x T(vec(y)) x. Since T is nonsingular,
there exists a neighborhood C(8) = {yeR¥*: |y-c| < &} of ¢ such that for al yin C(5), vec(y)
isnonsingular (Exercise: Why?), and consequently, W(x,y) is continuous on R¥xC(8) (Exercise:

Why?). The corollary follows now from Theorem 6.21 (Exercise: Why?). Q.E.D.
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6.6. Convergence of characteristic functions
Recall that the characteristic function of arandom vector X in R¥ is defined as
o(t) = E[exp(it "X)] = E[cos(t "X)] + i.E[sin(t TX)]
for t € R¥, wherei = /-1. Thelast equality is due to the fact that exp(i.x) = cos(x) + i.sin(x).
Also recall that distributions are the same if and only if their characteristic functions are

the same. This property can be extended to sequences of random variables and vectors:

Theorem 6.22: Let X, and X be random vectorsin R¥ with characteristic functions 9, () and

o(t), respectively. Then X, -; X ifand onlyif o(t) = lim___ o (1) forall t € RX.

Proof: See Appendix 6.C for thecase k = 1.

Note that the "only if" part of Theorem 6.22 follows from Theorem 6.18: X, -, X

impliesthat for any t € R¥,

lim__E[cos(t X )] = E[cos(t ™X)], lim___E[sin(t ™X)] = E[sin(t "X)],

hence
lim__o.(t) = lim_ _E[cos(t TXn)] + ilim__E[sin(t TXn)]
= E[cos(t X)] + i.E[sin(t ™X)] = o(t).

Theorem 6.22 plays a key-role in the derivation of the central limit theorem, in the next

section.
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6.7. Thecentral limit theorem
The prime example of the concept of convergence in distribution is the central limit

theorem, which we have seen in action in Figures 6.4-6.6:

Theorem 6.23: Let X,,....,X, bei.i.d. random variables satisfying E(X) = U, var (X)) = 62 < oo,

andlet X = (Un)X,X,. Then yn(X - p) -4 N(0,?).

Proof: Without loss of generality we may assumethat « =0and o = 1. Let ¢(t) be the
characteristic function of X. The assumptions . = 0 and o = 1 imply that the first and second
derivativesof ¢(t) att=0areequal to ¢’(0) = 0, ¢”(0) = -1, respectively, hence by Taylor's

theorem, applied to Re[¢(t)] and Im[p(t)] separately, there exists numbers A ko, € [0,1] such

that
o) = 0(0) + 19/0) + JtARelo(hy, 0] + LMl 0o, 0]) = 1 - 2t2 + AL,

say, where z(t) = (1 + Re[o”(A, )] + i.Im[o"(A,.1)])/2. Notethat z(t) is bounded and
satisfies lim,_z(t) = O.

Next, let ¢ (t) be the characteristic function of m?. Then

0.0 - [0 - (1 e w_ﬂt]

2n n

R L RN E A
(o) B T

(6.32)
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For n so large that t%(2n) < 1 we have

n- m m
m-1\ M 2n n 2lm n (633
) :
] (1 . z(m)uz) .,
n
Now observe that for any real valued sequence a, which convergesto a,
| | | _In(1+a/n) - In(2)
limlni(1+a /n)") = limnin(1+a/n) = lima_ x lim
imin((L+a/n)’) = limnin(i-a/n) = lima, x lim s
_ a x limn@+8)-In@) _ o
6-0
hence
lim,.a, =a~=liml + a/n" = e (6.34)
Nn-o

Letting a, = | z(t/y/n)|t2, which haslimit a =0, it follows from (6.34) that the right-hand side
expression in (6.33) converges to zero, and letting a, = a = -t%/2 it follows then from (6.32) that

-t32

Mo, = e (6.35)

li

na
The right-hand side of (6.35) is the characteristic function of the standard normal distribution.
The theorem follows now from Theorem 6.22. Q.E.D.

Thereis dso amultivariate version of the central limit theorem:

Theorem 6.24: Let X,....,X, bei.i.d. random vectorsin R* satisfying E(X) = W, Var(X) =

%, where X isfinite, and let X = (1/n)X],X. Then yn(X - p) -4 N,(0,%).
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Proof: Let & € R¥ be arbitrary but not azero vector. Then it follows from Theorem 6.23
that nE"(X-p) -, N(0,E"E), henceit follows from Theorem 6.22 that for al t € R,
lim___E(exp[i.t/n"(X-p)]) = exp(-t2%"£&/2).Choosing t = 1, we thus have that for arbitrary

£ e R¥, lim__E(exp[i.£Ty/n(X-p)]) = exp(-ETEE/2).Since the latter isthe characteristic

-
function of the N,(0,X) distribution, Theorem 6.24 follows now from Theorem 6.22. Q.E.D.

Next, let @ be a continuously differentiable mapping from R*to R™, and let the
conditions of Theorem 6.24 hold. The question is: What is the limiting distribution of
JN(@(X) - (), if any? In order to answer this question, assume for the time being that k = m
=1, and let var(X) = 0% sothat /n(X - p) -, N(O,c?. It follows from the mean value
theorem (see Appendix I1) that there exists arandom variable A € [0,1] such that

Y(@(X) - () = V(X - WP (U+AX-p)

Since y/n(X - ) -4 N(0,0?) implies (X - p) -, 0, which by Theorem 6.16 implies that
X -, K, itfollowsthat u + AMX - W) ~, K. Moreover, since the derivative @’ is continuous
inp it follows now from Theorem 6.3that @'(n + A(X - W) 5 ®’(n). Therefore, it follows
from Theorem 6.21 that /n(®(X) - ®(W)) -4 N[0,cX(@'(1))F . Along similar lines, applying
the mean value theorem to each of the components of ® separately, the following more general

result can be proved. This approach is known as the §-method.

Theorem 6.25: Let X, be a random vector in R* satisfying /n(X, - W) -4 N,[0,%], wherep
€ R¥ is nonrandom. Moreover, let ®(X) = (D,(X),...., @, (X))" with X = (x,....,x)" bea

mapping from R*to R™ such that the mxk matrix of partial derivatives
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oD, (X)/9x; -~ 0D, (X)/0X,
A(X) = : : (6.36)
oD _(X)/ox; - oD _(X)/0X,

existsin an arbitrary small open neighborhood of p and its elements are continuousin . Then

Vn(e(X) - () -4 N0, AWZAW)].

6.8.  Stochastic boundedness, tightness, and the O, and o, notations.
The stochastic boundedness and related tightness concepts are important for various
reasons, but one of the most important reasons is that they are necessary conditions for

convergence in distribution.

Definition 6.7: A sequence of random variables or vectors X, issaid to be stochastically

bounded if for every ¢ € (0,1) thereexists a finite M > O such that inf ,P[|X || < M] > 1-¢.

n>1
Of coursg, if X, isbounded itself, i.e., P[|X || < M] = 1 foral n, itisstochastically bounded
aswell, but the other way around may not be true. For example, if the X, are equally distributed
(but not necessarily independent) random variables with common distribution function F, then
for every € € (0,1) we can choose continuity points -M and M of F such that P[[X | < M] =
F(M)-F(-M) = 1-¢. Thus, the stochastic boundedness condition limits the heter ogeneity of the
X,‘s.

Stochastic boundedness is usualy denoted by O,(1): X, = O,(1) means that the sequence

X, isstochastically bounded. More generaly:



230
Definition 6.8: Let a, be a sequence of positive non-random variables. Then X, = O (a,) means
that X, /a, is stochastically bounded, and O,(a,) by itself represents a generic random variable or

vector X, suchthat X, = O,(a,).

The necessity of stochastic boundedness for convergence in distribution follows from the

fact that:

Theorem 6.26: Convergence in distribution implies stochastic boundedness.

Proof: Let X, and X be random variables with corresponding distribution functions F, and
F, respectively, and assumethat X, -, X.Givenan ¢ € (0,1) we can choose continuity points
-M, and M, of F suchthat F(M,) > 1-¢/4, F(-M,) < ¢/4. Since lim__F (M) = F(M,)
there exists an index n, such that |F (M,) - F(M,))| < ¢/4 if n > n;, hence F (M,) > 1-¢/2 if
n > n,. Similarly, thereexistsanindex n, suchthat F (-M,) < &/2if n > n,. Letm=

max(n ,n,). Theninf _P[IX | < M,] > 1-¢. Finaly, we can adways choose an M, so large

n>m

that min P[IX,| < M,] > 1-¢. Taking M = max(M,,M,) the theorem follows. The

l<n<m-1
proof of the multivariate case is amost the same. Q.E.D.

Note that since convergence in probability implies convergence in distribution, it follows
trivially from Theorem 6.26 that convergence in probability implies stochastic boundedness.

For example, let S, = ¥',X, where the X/'s are i.i.d. random variables with

expectation p and variance o® < . If p=0then S = O(y/n), because by the central limit

theorem, Sn/\/ﬁ convergesin distribution to N(0,0%). However, if i # 0 then only S, = Op(n),
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becausethen S/y/n - py/n -, N(0,6°), hence S/y/n = O (1) + O,(y/n) and thus
S, = Op(ﬁ) + Oy(n) = O,(n).
In Definition 6.2 | have introduced the concept of uniform integrability. It isleft asan

exercise to prove that

Theorem 6.27: Uniform integrability implies stochastic boundedness.

Tightness is the version of stochastic boundedness for probability measures:

Definition 6.9: A sequence of probability measures i, on the Borel setsin R*is called tight if for

an arbitrary ¢ € (0,1) there exists a compact subset K of R* such that inf_pu (K) >1-e.

Clearly, if X, =0,(1) then the sequence of corresponding induced probability measures
W, istight, because the sets of thetype K = {x € R¥: |X|| < M} are closed and bounded for M
< o and therefore compact.

For sequences of random variables and vectors the tightness concept does not add much
over the stochastic boundedness concept, but the tightness concept is fundamental in proving so-
called functional central limit theorems.

If X, = Oy(1) then obviously for any 8 >0, X = O,(n ®). But X /n® is now more than
stochastically bounded, because then we also have that Xn/n6 b 0. Thelatter is denoted by

X = op(ns):

n



232

Definition 6.10: Let a, be a sequence of positive non-random variables. Then X, = o,(a,) means
that X, /a, convergesin probability to zero (or a zero vector if X, is a vector), and o,(a,) by itself
represents a generic random variable or vector X, such that X, = o,(a,). Moreover, the

sequence 1/a, representsthat rate of convergence of X, .

Thus, X, b X can dso bedenoted by X = X + op(l) . Thisnotation is handy if the difference
of X, and X isacomplicated expression. For example, the result of Theorem 6.25 is due to the
fact that by the mean value theorem /n(e(X ) - ®(W)) = A (WYN(X. - 1) = AQW/n(X, - W)

+0,(1), where

0D, (X)/9x |x:u+x1,n(xn—u>

A (L) = L with & € [01], ] = 1,..k,

aq)m(X) / ax |X:Pl +}‘k n(anu)

The remainder term (An(u) - A(p))ﬁ(xn - M) can now be represented by 0,(1), because
ln(u) " A(M) and ﬁ(xn - W) -4 NJO.X], hence by Theorem 6.21 this remainder term

converges in distribution to the zero vector and thus it convergesin probability to the zero vector.

6.9. Asymptotic normality of M-estimators

In this section | will set forth conditions for the asymptotic normality of M-estimators, in
addition to the conditions for consistency. An estimator 0 of aparameter 6, ¢ R™is
asymptotically normally distributed if there exist an increasing sequence of positive numbers a,
and a positive semi-definite mxm matrix X such that ah(é—eo) -4 N [0.Z]. Usudly, a, = J/n,

but there are exceptions to thisrule.
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Asymptotic normality is fundamental for econometrics. Most of the econometric tests rely
on it. Moreover, the proof of the asymptotic normality theorem below also illustrates nicely the
usefulness of the main resultsin this chapter.

Given that the data is arandom sample, we only need a few addition conditions over the

conditions of Theorems 6.10 and 6.11:

Theorem 6.28: Let in addition to the conditions of Theorems 6.10 and 6.11 the following
conditions be satisfied:

@ © isconvex;

(b) 0, isaninterior point of ©;

(c) For each x € RX, g(x,0) istwice continuously differentiable on ©;.

(d) For each pair eil,eiz of components of 0, E[sup%®|azg(xl,9)/(89i189i2)|] < oo;

0%g(X,.0,)

(e) Themxmmatrix A = E
30,00,

isnonsingular;

Jg(X,,0 og9(X,,0
(f)  The mxmmatrix B = E( 9%, 0))[ 9%, 0)) isfinite.

893 0

Then {n(6-6,) -, N, [0,A'BA Y.
Proof: | will prove the theorem for the case m= 1 only, leaving the general case as an

exercise.

| have already established in Theorem 6.11 that 6 b 0,. Since 6, isan interior point of
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0, the probability that 0 isan interior point convergesto 1, and consequently the probability that
the first-order condition for a maximum of Q(e) = (ﬂn)Ejr'zlg(Xj ,0)In 0 = 0 holds converges
to 1. Thus:
lim__P[Q'®) = 0] = 1, (6.37)
whereasusual, Q'(0) = dO(0)/do. Next, observe from the mean val ue theorem that there exists
al € [0,1] such that
yQ'®) = ynQ'(8y) + Q"(8,+4(6-0))y/n(B-6y), (6.38)
where Q”(0) = d20(6)/(d6)?. Note that by the convexity of ©,
P[0, +(0-0,) € O] = 1, (6.39)
and by the consistency of 9,
plim___[0,+A(6-6,)] = 6, (6.40)
Moreover, it follows from Theorem 6.10 and conditions (c) and (d), with the latter adapted to the
univariate case, that
plim,,__sup,.,|Q"(®) - Q'()| = 0. (6.41)
where Q"(0) isthe second derivative of Q(0) = E[g(X,,0)] . Then it follows from (6.39), (6.40),
(6.41) and Theorem 6.12 that
plim___Q"(6,+1(6-0,)) = Q"(6,) = O. (6.42)
Notethat Q"(9,) correspondsto the matrix A in condition (€), so that Q"(6,) is positivein the
"argmin" case and negative in the "argmax" case. Therefore, it follows from (6.42) and Slutsky’'s
theorem (Theorem 6.3) that
plim__ Q"(0,44(0-0)) * = Qo) * = AL (6.43)

Now (6.38) can be rewritten as
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Yn@-0g) = -Q"(0,+1(6-00) 1/nQ (0 + Q"(8,+1(6-05)/nQ (B)

(6.44)
= -Q"(0+1(0-0,)) }YnQ'(6y) + 0 (1),
where the 0,(1) term follows from (6.37), (6.43) and Slutsky’s theorem.
Because of condition (b), the first-order condition for 0, applies, i.e.,
Q'(6,) = E[dg(X,,0,)/d8,] = 0. (6.45)
Moreover, condition (f), adapted to the univariate case, now reads as:
var [dg(X,,0,)/d6,] = B € (0,). (6.46)

Therefore, it follows from (6.45), (6.46), and the central limit theorem (Theorem 6.23) that
VnQ'(6y) = (W)X ,dg(X;,0,)/d6, ~4 N[OB]. (6.47)
Now it follows from (6.43), (6.47) and Theorem 6.21 that
~Q"(0,+1(6-0,)) Y/nQ'(6,) -4 N[0O,A'BA Y], (6.48)
hence the result of the theorem under review for the case m= 1 follows from (6.44), (6.48) and
Theorem 6.21. Q.E.D.
The result of Theorem 6.28 isonly useful if we are able to estimate the asymptotic
variance matrix A BA !consistently, because then we will be able to design tests of various

hypotheses about the parameter vector 0.

Theorem 6.29: Let

(6.49)

and
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ag9(X,,0)

20

5. %zn: ( ag(xlT ! G)J (6.50)

a0

Under the conditions of Theorem 6.28, plimnmA = A, and under the additional condition that

E[sup,_ll9(X,,0)/00T|A] < «, plim B = B. Consequently, plim A ‘BA™ = A“1BA L.

Proof: The theorem follows straightforwardly from the uniform weak law of large

numbers and various Slutsky’ s theorems, in particular Theorem 6.21.

6.10. Hypothesestesting
As an application of Theorems 6.28 and 6.29, consider the problem of testing a null
hypothesis against an alternative hypothesis of the form
Hy,: RO, = g, H;: RO, # q, (6.51)
respectively, where Risagiven rxmmatrix of rank r < m, and g isagiven rx1 vector. Under the
null hypothesis in (6.51) and the conditions of Theorem 6.2, /n(RA-q) -, N [0,RABA'RT],
and if the matrix B is nonsingular then the asymptotic variance matrix involved is nonsingular.

Then isfollows from Theorem 6.21 that:

Theorem 6.30: Under the conditions of Theorems 6.28 and 6.29, the additional condition that B
isnonsingular, and the null hypothesisin (6.51) with R of full rankr,
~ A1 AA_ -1 ~
W, - n(RH-q)RA BA 'R (Ri-q) -, . (6.52)

On the other hand, under the alternative hypothesisin (6.51),

W,/n - (Ro,-0)"(RABA 'R T} (Ro,-0) > 0. (6.53)
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The statistic W, is now the test statistic of the Wald test of the null hypothesisin (6.51).
Giventhesize « € (0,1), choose acritical value § such that for a Xf distributed random variable
Z, P[Z > B] = a, sothat under the null hypothesisin (6.51), P[W, > B] - «. Then the null
hypothesisis accepted if W < Band rejected in favor of the alternative hypothesisif W > B.
Dueto (6.53), thistest is consistent.

Inthe casethat r = 1, so that Risarow vector, we can modify (6.52) to

t - JARABA R YARI-q) -, N(0,1), (6.54)
whereas under the alternative hypothesis, (6.53) becomes
t//n -, RABART) Y*(RO,-q) = 0. (6.55)
These results can be used to construct atwo-sided or one sided test, similarly to the t-test we

have seen before in the previous chapter. In particular,

Theorem 6.31: Assume that the conditions of Theorem 6.30 hold. Let 6, , be component i of 6,

*

and let 6, be componenti of . Consider the hypotheses Hy: 6, = 6o, H,: 0,5 # 0/,
where 6, isgiven (oftenthevalue 6,, = O isof special interest). Let the vector € be columii

of the unit matrix I, Then under H,,

. 6 -0
t = LG -4 N(O,1), (6.56)

e'A'BAe)

whereas under H,,

tin -, —=—"— + 0. (6.57)
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Giventhesize « € (0,1), choose acritical value [ such that for a standard normally
distributed random variable U, P[|U| > B] = a, sothat by (6.56), P[|ﬂ| > B] - o if the null
hypothesisis true. Then the null hypothesisis accepted if |ﬂ| < Pand regected in favor of the
alternative hypothesis if |ﬂ| > B. Itisobviousfrom (6.57) that this test is consistent.

The statistic ﬂ in (6.56) isusually referred to as at-test statistic because of the similarity
of this test with the t-test in the normal random sample case. However, its finite sample
distribution under the null hypothesis may not be of thet distribution type at all. Moreover, in the
case 0, = O thestatistic t; iscaled the t-value (or pseudo t-value) of the estimator 6., and if
the test rgects the null hypothesis this estimator is said to be significant at the «x100%

significance level.

6.12. Exercises

1. Let X, = (X 4, X )" @d € = (Cy,...,¢)". Provethat plim X, = c if and only if
plim X, = ¢ fori=1.k

2, Provethat if P(|X | < M) =1andX, -, X then P(|X| < M) =1.

3. Complete the proof of Theorem 6.5.

4, Prove Theorem 6.12.

5. Explain why the random vector X, in (6.16) does not converge in distribution.

6. Prove Theorem 6.16.

7. Prove Theorem 6.17.

8. Prove (6.21).

9. Prove Theorem 6.19.
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10. Prove Theorem 6.20, using Theorem 6.18.

11. Finish the proof of Theorem 6.21.

12.  Answer the questions “Why?’ in the proof of Corollary 6.2.

13. Prove that the limit (6.35) isjust the characteristic function of the standard normal
distribution.

14. Prove the first and the last equality in (6.32).

15. Prove Theorem 6.25.

16. Prove Theorem 6.27. Hint: Use Chebishev’sinequality for first absolute moments.
17.  Adapt the proof of Theorem 6.28 for m = 1 to the multivariate case m > 1.

18. Prove Theorem 6.29.

19. Formulate the conditions (additional to Assumption 6.1 ) for the asymptotic normality of

the nonlinear least squares estimator (6.15) for the special case that P[E(U12|X1) =07 = 1.

Appendices

6.A. Proof of theuniform weak law of large numbers
First, recall that "sup" denotes the smallest upper bound of the function involved, and

similarly, "inf" isthe largest lower bound. Now let for arbitrary 6 >0and 6, € ©,0,0)) =
{6€0G: |6-0_ | < 8}. Using the fact that

sup, [ f(¥)[ < max{|sup,fLIinffL < [sup, ()| + finf f(X)],

it follows that
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sup [(Un)X,9(X.0) - E[g(X;,0)]

0e04(0,)

< | sup {@Wm006,0) - Elg(x,, 01} (6.58)

0e04(0,)
o | inf Wm0 .0 - Elg(x,.6)1}]

0e04(0,)

Moreover,

sup {(UNT],0(%,.0) - E[g(X,.0)]} = (U], sup g(X.8) - inf E[g(X,.0)]

0c05(0,) 0e04(6,) 0€05(0.)

< [(Wmx = Sup g(X 6) - E sug )g(X O] (6.59)

+ E[ sup g(X;,0)] - E[ inf g(X,0)]

0c04(6,) 0c04(6,)

and similarly,

inf {(Un)E],9(%,6) - E[g(X,,0)]} > (Un)x] N g0,0) - sp Elg(x,,0)]

0c0,(0,) 0e0,(6.)
> (U)X o Inf g(X 6) - E Ing‘ )g(X Ol (6.60)
+ E[ inf g(X;,0)] - E[ sup g(X;,0)]
0c04(60,) 0c04(6,)
Hence

| sup {(Un)E],9(X;,0)-E[g0%,. 01} < (UM, sup 0.6)-EL st 90, 0

0e04(0,) 0e04(0,) 0e04(0,)

= (Um)X N 'nf Q(X 0) - E ln{ )Q(X 0| (6.61)

+ E[ sup g(X;,0)] - E[ inf g(X,0)]

0c04(6,) 0c04(6,)
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and similarly

| int {00, 0)-Elg, O} < (UmE]y p 90X,0)-El up 60,0l

0e0;(0.) 0c0;(0.) 0e0;(0.)
+ (U)X, inf g(X;,6) - E[ inf g(X;,0)]| (6.62)
0€04(0,) 0€0,(0,)

+ E[ sup g(X;,0)] - E[ inf g(Xl,G)]
0c04(0,) 0c04(0,)

Combining (6.58), (6.61), and (6.62) it follows that

sup |(Un)X,9(X,0)-E[9(X,,0)| < 2|(Un)X] S sup g(X 0)-E[ sup g(X,,0)]|

0e04(0,) 0e04(0,)

+ 2 Un)X) 5 lnf g(X 0) - E ln{ )Q(X 0l (6.63)

. 2( E[ sup g(X,,0)] - E[ inf g(xl,e)])
0c04(0,) 0c0;(0.)
It follows from the continuity of g(x,0) in 6 and the dominated convergence theorem [ Theorem

6.5] that

limsup supE[ sup g(X;,0) - inf g(X;,0)]
310 0,60  0e040,) 0c04(6,)

< limEsup[ sup g(X;,0) - inf g(X;,0)] = 0O,
310 0,0 0e04(0,) 0e05(0.)

hence we can choose 6 so small that

SUpE[ sup g(X;,0) - |nf 9(X,,0)] < €/4.

0,.€0  0c040,) 0c04(6,) (664)

Furthermore, by the compactness of © it follows that there exist afinite number of 6.'s, say

01,...,.0ns) SUCH that
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N(3)
® c Ueyo). (6.65)
i=1

Therefore, it follows from Theorem 6.2, (6.63), (6.64), and (6.65), that

Plsup,.o [ (UNZ],00X,,0) - Elg(%,.0)]| > €]
< P(maxlgigN(é) SUPy., | (UM E119(X;,0) - E[9(X;,0)]| > 9)

< TN PSPy, )| (UNITT4006,60) - E[g0,.0]] > ¢]

< TN PN 40P, 0,906,0) - ESUPy. 006, 0]
(6.66)
+ (W) 4infy o 6,00%.0) ~ Elinfy_ o004, 0] > s/4)

< Ei’\i(f) P(Kl/ n)Zjn =1S'Jpee®§(e*)g(xj’9) - E[S'Jpee@s(e*)g(xl’e)]l > ¢l 8)

+ XN P(|(1/n)Ej”_1inf%@é(e*)g(xj,6) - Efinfyg 0,904, 0] > s/s) L 0asn - e,

6.B. Almost sureconvergence and strong laws of large numbers
6.B.1. Preliminary results

First, 1 will show the equivalence of (6.6) and (6.7) in Definition 6.3:

Theorem 6.B.1: Let X, and X be random variables defined on a common probability space
{Q,7,P}. Thenlim__ P(|X, - X| < ¢ for all m > n) =1 for arbitrarye >0 if and only if

P(lim X = X) = 1. Thisresult carries over to random vectors, by replacing |.| with the



243

Euclidean norm ||.|I.

Proof: Note that the statement P(lim___X = X) = 1reads: Thereexistsaset N € .7 with
P(N) =0suchthat lim X (o) = X(o) pointwiseinw ¢ Q\N. Such aset Niscalled anull set.

Denote

Ae) = M {o € Q: [X () - X()| < €. (6.67)

First, assume that for arbitrary € >0, lim___P(A(¢)) = 1. Since A (e) = A, ,(e) it followsthat
PlU 1A (e)] = lim _P(A(e)) = 1, hence N(e) = Q\U,_,A (e) isanull set, and so isthe
countable union N = U;_;N(1/k).Now let @ € QN. Then o € Q\U;_,N(I/K) = N_,N(1/K)=
Ne-2Un-1A(I/K), hence for each positiveinteger k, o € U, ,A (I/k).Since A (Uk) < A, (1K)
it follows now that for each positive integer k there exists a positive integer n,(®) such that
o € A (1K) foral n > n(w). Letk(e) bethesmalestinteger > 1/e, andlet ny(w,e) = nk(s)(“))-

Then for arbitrary € >0,

X (®) - X(w)| < eif n > n(w,e).Therefore, lim X (o) = X(o)
pointwisein w € Q\N, hence P(lim X = X) =1

Next, assume that the latter holds, i.e., the existsanull set N suchthat lim_ X (o) =
X(w) pointwise in w € Q\N. Then for arbitrary € >0and w € Q\N there exists a positive integer
Ny(w.€) suchthat o € A, \(e) and thereforeaso € Ui_A(e). Thus, Q\N = U,A (e) and
consequently, 1= P(Q\N) < P[U._,A (e)].Since A (e) = A, ,(e) it follows now that
lim _P(A(e)) = P[U ;A (e)] =1. Q.ED.

The following theorem, known as the Borel-Cantelli lemma, provides a convenient

condition for almost sure convergence.
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Theorem 6.B.2: (Borel-Cantelli). If for arbitrary € >0, X _,P(|X, - X| > €) < «, then

Xn - X as.

Proof: Let An(s) be the complement of the set A (g)in (6.67). Then

P(A®) = PlUp.{o € Q: X (@) - X(@)| >e}] < Iy PlX, - X| > ¢ - 0,
where the latter conclusion follows from the condition that X ,P(|X, - X| > €) < «.® Thus,
Iiman(ATn(s)) = 0, hence lim___P(A (¢)) = 1. QED.

The following theorem establishes the relationship between convergence in probability

and almost sure convergence:

Theorem 6.B.3: X, b X if and only if every subsequence n,, of n=1,2,3,... contains a further

subsequence n_(K) such that for k - «, X - X as.

(k)

Proof: Suppose that X b X isnot true, but every subsequence n,, of n=1,2,3,... contains
afurther subsequence n, (k) such that fork -, X, - X as.Then there exist numberse > 0, 5
€ (0,1) and a subsequence n,, such that S‘mez1p[|xnm - X|] < €] < 1-6. Clearly, the same holds
for every further subsequence n_(K) , which contradicts the assumption that there exists a further
subsequence n_(K) such that for k - «, Xnm(k) - X as.Thisprovesthe “only if” part.

Next, suppose that X, b X. Then for every subsequence n,, X b X. Consequently,

n

for each positiveinteger k, lim__ P[IX. - X| > k2 = 0, hencefor each k we can find a

IA
IA

positiveinteger n (k) suchthat P[[X, , - X| > k™ < k2. Thus, S, ,P[IX - X| > k7]

(k)

Yk ? < . Thelatter impliesthat X, ,P[|X ., - X| > €] < « for each e >0, hence by

Ny(K)
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Theorem 6.B.2, X, W X as. Q.E.D.

6.B.2. Slutsky’stheorem

Theorem 6.B.1 can be used to prove Theorem 6.7. Theorem 6.3 was only proved for the
special case that the probability limit X is constant. However, the general result of Theorem 6.3
follows straightforwardly from Theorems 6.7 and 6.B.3.

Let usrestate Theorems 6.3 and 6.7 together:

Theorem 6.B.4: (Sutsky's theorem). Let X, a sequence of random vectorsin R* converging a.s.
[in probability] to a (random or constant) vector X. Let ¥(x) bean R™-valued function on R*

which is continuous on an open (Borel) set Bin R* for which P(X € B) = 1). Then ¥(X,)

convergesa.s. [in probability] to P(X).

Proof: Let X, -~ X as.andlet {Q ,7,P} be the probability space involved. According to
Theorem 6.B.1 there existsanull set N, suchthat lim X (o) = X(0) pointwisein w € Q\N,.
Moreover, let N, = {o € Q: X(w) ¢ B}. ThenasoN,isanull set,andsois N = N,UN,.
Pick an arbitrary w € Q\N. Since ¥ iscontinuousin X(w)it follows from standard calculus that
lim _ ¥(X (0)) = ¥(X(»)).By Theorem 6.B.1 thisresult impliesthat ¥(X) - '¥(X) as. Since
the latter convergence result holds along any subsequence, it follows from Theorem 6.B.3 that

X, -, X implies ¥(X,) -, ¥(X). QE.D.
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6.B.3. Kolmogorov’sstrong law of large numbers
| will now provide the proof of Kolmogorov’s strong law of large numbers, based on the
elegant and relatively simple approach of Etemadi (1981). This proof (and other versions of the

proof as well) employs the notion of equivalent sequences:

Definition 6.B.1: Two sequences of random variables, X, and Y,, n >1, are said to be equivalent

it X7 PIX, # Y] < e

The importance of this concept liesin the fact that if one of the equivalent sequences obeys a

strong law of large numbers, then so does the other one:

Lemma6.B.1: If X, and Y, areequivalent and (/)XY ~ p as. then (Un)X X -~ pas.

Proof: Without loss of generality we may assumethat u = 0. Let {Q ,.7,P} bethe

probability space involved, and let
A, = U, foecQ X (o) # Y (o).

Then P(A) < X, P(X, # Y,) - 0, hence lim__P(A) = 0 andthus P(N,_,A) = 0. The
|atter impliesthat for each » € Q\{(,_,A} there exists anatural number n (o) such that
X, (0) = Y (o) fordl n > n (w), becauseif not there exists a countable infinite subsequence
N®), m = 1.23,...., suchthat X, ,(®) # Y, (0), hence » € A foralln=>1andthus
o € M,4A,.Now let N; be the null set on which (1/n)§3j”:1Yj - 0 as. falstohold, andlet N =

N,U{(;_,A} .Sincefor each ® € Q\N, X(w) and Y;(w) differ for at most afinite number of j's,
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and lim,_ (U)X ,Y,(@) = 0, it followsthat also lim__(Un)X,X(w) = 0. QED.

N-o

The following construction of equivalent sequences plays a key-role in the proof of the

strong law of large numbers.

Lemma6.B.2: Let X, n>1, bei.i.d,with E[[X]] <, andlet Y, = Xn.l(|Xj| < n). Then X,

and Y, areequivalent.

Proof: The lemmafollows from:

2oaPIXy = Y] = 2o PUX > n] = 20 PIX| > n]

< E[ fo°°|(|x1| > t)]dt] = E[ fOP(l'dt]

7N

}P[|x1| > fdt = }E[I(|X1| > t)]dt
0 0

E[lxll] < o,

Q.E.D.

Now let X,, n>1, bethe sequencein Lemma6.B.2, and suppose that (1/n)X";max(0,X;)
- E[max(0,X))] as. and (1/n)Zj”:1max(0,—Xj) - E[max(0,-X))] as. Thenitiseasy to verify from
Theorem 6.B.1, by taking the union of the null setsinvolved, that

14 max(O,Xj) E[max(0,X))]

= - as.

nj=1 | max(0, —Xj) E[max(0,-X))]

Applying Slutsky’ s theorem (Theorem 6.B.4) with ®(x,y) = x -y it follows that (1/n)2;11xj -
E[X]] as. Therefore, the proof of Kolmogorov's strong law of large numbers is completed by

Lemma 6.B.3 below.
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Lemma 6.B.3: Let the conditions of Lemma 6.B.2 hold, and assume in addition that P[X_ > Q] =

1. Then (U)X, X ~ E[X] as.

Proof: Let Z(n) = (Un)X},Y, and observe that

Var(Z(n) < (Un3TLE[YT] = Wn?)EEXA(X < j)]
(6.68)
< n XX, < n).

Next let o > 1 and € > 0 be arbitrary. It follows from (6.68) and Chebishev’ sinequality that

Y Plz(a) - E[Z(aM]| > €] < Y Var(Z([aM))e? < Y, EGT0 < Lo
N " R (6.69)

< BRI < [oDa]]

where [o" istheinteger part of o”. Let k be the smallest natural number suchthat X, < [o/],

and notethat [a"] > o"/2. Thenthelast sumin (6.69) satisfies

o n n N -n * -n - 2
Yo (X < [aT)Y[a < 2n2:|:<a B 2'(2”:00L )a < (Ot—f)Xl'

hence

20,
E x < .
1 [ 1]

EXZE (X, < [oT)[a]] <

o-

Consequently, it follows from the Borel-Cantelli lemmathat Z([a"]) - E[Z([a"]) - O as.

Moreover, it is easy to verify that E[Z([a"]) -~ E[X]. Hence, Z([o"]) - E[X]] as.



For each natural number k > o there exists anatural number n, suchthat [¢"] < k <

[a””l] , and since the X;’s are non-negative we have

[0
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19 740y < zg < 2 dzqamy) (6.70)

[o™] [0
The left-hand side expression in (6.70) converges as. toE[X]/a. as k ~ «,and the right-hand

side converges as. to oE[X,], hence we have with probability 1,
lE[Xl] < liminf,__Z(k) < limsup,_ . Z(K) < aE[X]]
o

In other words, denoting Z = liminf,__Z(k), Z = limsup, _Z(K), there existsanull set N
(depending on o) suchthat for all @ € QN , E[X J/a < Z(w) < Z(w) < oE[X,]. Taking the

union Nof N, over al rational a> 1, sothat N isalso anull set’, the same holdsfor all

o € Q\N andall rational o> 1. Letting o | 1 dong therational vaues thenyields lim, _Z(k) =

Z(w) = Z(o) = E[X] foral o € Q\N. Therefore, by Theorem 6.B.1,
(Un)X,Y, - E[X]] as, which by Lemmas 6.B.2 and 6.B.3 implies that
(Un)X,X - E[X] as.QED.

This completes the proof of Theorem 6.6.

6.B.5. Theuniform strong law of large numbersand its applications

Proof of Theorem 6.13: It follows from (6.63) , (6.64) and Theorem 6.6 that

limsup sup |(Un)E],g(X,,0) - E[g(X,.0)|
N 0€04(0,)

< Z(E[ sup g(X,,0)] - E[ inf g(Xl,G)]) < ¢/2 as.,

0c0,(0.) 0c05(0,)
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hence (6.66) can now be replaced by

limsup sup| (Wn)X1,90%;,6) ~ E[g(X;,0)]|

(6.71)

< limsup max  sup [(Un)X,9(X,6) - E[g(X;,0)]| < €/2 as.
e 1<i<N() 00,(0)

Replacing /2 with 1/m, m > 1, the last inequality in (6.71) reads:
Let {Q ,.7,P} bethe probability spaceinvolved. For m=1,2,3, ... thereexist anull setsN,,

suchthat forall o € Q\N_,

limsup sup|(U/n) X} ,9(X(),0) - E[g(X;,0)]| < U/m (6.72)

N-oo 0e®

and the same holds for all @ € Q\WU,_;N,, uniformly in m. Letting m - « in (6.72), Theorem 6.13
follows.

Note that this proof is based on a seminal paper by Jennrich (1969).

An issue that has not yet been addressed is whether sup,_g | (1/n)§3j":1g(xj ,0)-E[9(X,,0)|

is awell-defined random variable. If so, we must have that for arbitrary y > 0,
{o € Q sup,.o| (UN)E 19X (@), 0)-E[g(X,.0)| < ¥}

= Nyolo € Q [(UNXL9(X(0),0)-E[g(X;,0)| <y} € 7.

However, this set is an uncountable intersection of setsin.7 and therefore not necessarily aset in
7 itsdlf. The following lemma, which is due to Jennrich (1969), shows that in the case under

review thereis no problem.

Lemma6.B.4: Let f(x,0) beareal functionon Bx®, B ¢ R¥, ® ¢ R™, whereBisa Borel set
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and ® iscompact (hence ® isa Bore set) such that for each xin B, f(x,0) iscontinuousin
0 € ®, andfor each 6 € O, f(x,0) isBorel measurable. Then there exists a Borel measurable
mapping 6(x): B -~ ® suchthat f(x,0(x)) = inf,_f(x,0), hencethe latter is Borel measurable

itself. The same result holds for the “sup” case.

Proof: | will only prove thisresult for the special casek=m=1,B=R, ® =[0,1].
Denote O, = Ujr‘:l{o,llj 2, ....,(1-1)/j,1} , and observe that

®,c 0, and tha ©, = U, _,0, istheset of al rational numbersin[0,1]. Since @, isfinite,

n+1’

for each positive integer n there exists a Borel measurable function 0 (x): R - ©, such that

f(x,0,(x) = inf, o f(x,0). Let O(x) = liminf (X).Note that 6(x)is Borel measurable. For each x

0€0, nﬂooen

there exists a subsequence n; (which may depend on X) such that 6(x) = lim,

—00

0, (X). Hence by
]

continuity, f(x,0(x)) = lim.

Jaoo

f(x,enj(x)) = Iimjwinf%@njf(x,e). Now suppose that for somee >0
the latter is greater or equal to € + infee(a*f(x,e) .Then, since for

m<n, inf%@njf(x,e) < infe€®mf(x,9), and the latter is monotonic non-increasing in m, it follows
that for al n >1, inf%@nf(x,e) > € + infee(a*f(x,e). It is not too hard to show, using the continuity

of f(x,0) in 6, that thisisnot possible. Therefore, f(x,0(X)) = inf, . f(x,0), hence by continuity,

0e@,

f(x,0(x) = inf._f(x,0). QED.

0e®
Proof of Theorem 6.14: Let {Q ,.7,P} be the probability space involved, and denote

0, = 0..Now (6.9) becomes Q(0,) - Q(8,) as., i.e., thereexistsanull set N such that for ll

® € OWN,

lim,. Q(0,(®) = Q0. (6.73)

Suppose that for some o € Q\N there exists a subsequencen, (o) and an € > 0 such that
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inf.110, (@) = 6ol > €. Then by the uniqueness condition there existsa (w) > 0 such that

Q0 - QO (,)(®)) > 5(w) foral m > 1, which contradicts (6.73). Hence, for every

subsequence N(®) we have lim,,_ 6, (,(®) = 6,, whichimpliesthat lim,_.0.(®) = 6.

Proof of Theorem 6.15: The condition X - ¢ as. trandates as: There existsanull set N,
suchthat foral € Q\N,, lim__X (o) = c. By thecontinuity of ® on B thelatter implies that
lim __|®(X (o)) - ®(c)| = 0, and that for at most afinite number of indicesn, X (o) ¢ B.
Similarly, the uniform a.s. convergence condition involved tranglates as: There existsanull set N,
suchthat foral o € Q\N,, lim__sup, |® (x,0) - ®(x)| - 0.Take N = N,UN,. Thenfor all
® € OWN,

limsup,__|® (X (0),0) - ©(C)|
< limsup,__|® (X (0),0) - ©(X (@) + limsup, . |[®(X () - ©(C)|

< limsup, _sup, 5| @ (X,®) - @(X)| + limsup_ __ |®O(X (w)) - @(c)| = O.

6.C. Convergenceof characteristic functionsand distributions
In this appendix | will provide the proof of the univariate version of Theorem 6.22. Let F,
be a sequence of distribution functions on R with corresponding characteristic functions o,(t),
and let F be adistribution function on R with characteristic function @(t) = lim___¢,(t).Denote
E(X) = limg Jiminf__F (x+5), F(x) = limg Jimsup __F (Xx+3).
The function E(x) is right continuous and monotonic non-decreasing in x but not necessarily a

distribution function itself, because lim,, . F(x) may be less than one, or even zero. On the other
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hand, it is easy to verify that lim,,__F(x) =0. Therefore, if lim,__F(x) =1then E isa
distribution function. The same appliesto F(X): If lim__F(x) = 1then F isadistribution
function.

| will first show that lim__F(x) = lim__F(x) = 1, andthenthat F(x) = F(x).

Lemma6.C.1: Let F, be a sequence of distribution functions on R with corresponding
characteristic functions @(t), and supposethat ¢(t) = lim___¢,(t) pointwisefor eachtinR,
where ¢ iscontinuousint=0. Then E(x) = lim, Jliminf _F _(x+3) isa distribution function,

andsois F(X) = lim Jimsup, F (x+3).

Proof: For T> 0 and A > 0 we have

T T o T
1 _ 1 - 1 |
o7 fT @ (H)dt = o f f exp(i.tX)dF (¥)dt = > f f exp(i.t.X)dtdF (x)

-T -0 =T
o T o
1 % sin(TY)
- fw fT cos(t.x)dtdF (X) = fw o dF (%) (6.74)
% §n(Tx) 2 &n(Ty) " sin(Tx)
= [AT—Xan(X) + fwTan(X) + deFn(X)

Since [sin(X)/x| < 1and [Tx|* < (2TA) ! for |x| > 2A it follows from (6.74) that

T 2A oA .
T fT e Dt < ZZA dF, (9 o [dF () ¢ = ZfA dF (x)

N (6.75)
_ -1 L1 L ug- L1
_ Z(l 2AT) {A dF (%) AT 2(1 2AT) M ([-2A,2A]) AT

where |, isthe probability measure on the Borel setsin R corresponding to F,. Hence, putting
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T = A litfollowsfrom (6.75) that

VA

W ([-2A2A]) > A f @ (Ot - 1, (6.76)
-1A
which can be rewritten as
1/A
F(2A) > A f @ (bl - 1 + F (-2A) - pu({-2A}) (6.77)
-1/A

Now let 2A and - 2A be continuity points of E. Then it follows from (6.77) , the condition

that ¢(t) = lim__¢.(t) pointwisefor eachtin R, and the bounded® convergence theorem that

/A
EQA) > A [o(Ody - 1 + E(-2A) (6.78)
-1A

Since @(0)=1and ¢ iscontinuousin O theintegral in (6.78) convergesto 2 for A - .
Moreover, E(-2A) | 0 ifA - «~. Consequently, it follows from (6.78) that
lim, _F(2A) = 1.By the same argument it followsthat lim, F(2A) = 1.Thus, F and F are

distribution functions. Q.E.D.

Lemma6.C.2: Let F, be a sequence of distribution functions on R such that F(x)=
lim, Jliminf _F (x+3) and F(X) = lim Jimsup, . F (x+6) aredistribution functions. Then for
every bounded continuous function ¢ on R and every € > 0 there exist subsequences nk(s) and

n,(e) such that
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Iimsupkm’ [00ddF, ) - (p(x)dE(x)‘ <, limsup,|[9(dF; (9 - f(p(x)dﬁ(x)’ <e.

Proof: Without loss of generality we may assumethat ¢(x) € [0,1] for al x. Forany e >0
we can choose continuity pointsa < b of E(x) suchthat F(b) - F(a)> 1-&. Moreover, we can

choose continuity pointsa = ¢, < ¢, <...< ¢, = b of E(x) such that forj =1,..,m-1,

sup o(x) - inf @(X) < e. (6.79)

xe(cj,cj 2l xe(cj,cj 2l

Furthermore, there exists a subsequence n, (possibly depending €) on such that

Iimkank(cj) = E(cj) for j =1,2.,...m. (6.80)

Now define

y(¥) = inf o(x) for x € (c,c ;1. = 1,..m-1, y(X) = O elsewhere.

177+
xe(cj,cm]

(6.81)

Thenby (6.79), 0 < ¢(X) - y(X) < & for x € (ab],and 0 < o(X) - y(X) < 1 for x ¢ (a,b],

hence

limsupl[w(IOF (9 - [ (p(X)an(X)’
< lirrgs:m( [ We-0o®dF 0 + [ \v(X)—cp(X)|an(X)) 6.82)
xe(a,b] x¢(a,b]

<&+ 1 - limsuplF (b) - F(a) <& + 1 - (E(b) - F(a)) < 2e.

N-co

Moreover, if follows from (6.79) and (6.81) that

[VOIdER) ~ [o(xAEC)

< 2, (6.83)
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and from (6.80) that

lim, . f y(x)dF, (x) = f v(X)dE(X) . (6.84)

Combining (6.82), (6.83) and (6.84) it follows that

[009aF, ) - [w6IdF, ()

limsup, .,

[0(I0F, 09 - [90IdER)

< limsup, .,
(6.85)

v limsup,__ [V(IE) - f(p(X)dE(x)‘ < 4

[WOIdF, 00 ~ [WOIdE)

+ limsup, .,

A similar result holds for thecase F. Q.E.D.

Let ¢ (t) bethe characteristic function of E. Since ¢(t) = lim___ (1), it followsfrom
Lemma6.C.2 that for each t and arbitrary € > 0, |o(t) - ¢ (t)] < €, hence ¢(t) = ¢ (t). The
same result holds for the characteristic function ¢*(t) of F: @(t) = ¢*(t). Consequently, @(t) =
lim . @, (t)isthe characteristic function of both F and F, which by Lemma 6.C.1 are distribution
functions. By the uniqueness of characteristic functions (see Appendix 2.C in Chapter 2) it
follows that both distributions are equal: F(X) = F(X) = F(X), say. Thus, for each continuity
pointxof F, F(X) = lim __F (X).

Note that we have not assumed from the outset that ¢(t) = lim___ ¢ (t)isacharacteristic
function, but only that this pointwise limit exists and is continuous in zero. Consequently, the

univariate version of the “if” part of Theorem 6.22 can be restated more generally as follows.

Theorem 6.C.1: Let X, be a sequence of random variables with corresponding characteristic
functions ¢, (1).If o(t) = lim___ o (t) existsfor all t € R and o(t) iscontinuousint=0,i.e,

lim_,o(t) = 1, then:
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@ o(t) isacharacteristic function itself.

(b) X, ~q X, where X is a random variable with characteristic function o(t).

Thisresult carries over to the multivariate case, but the proof is rather complicated, and

therefore omitted. See Section 29 in Billingsley (1986).

Endnotes

1 Recal that n(X, + 1)/2 = Ej”:l(Yj + 1)/2 hasaBinomia (n,1/2) distribution, so that the
distribution function F(x) of X, is

F.(9 - PIX, < X = P[A(X +1)/2 < n(x + 1)/2] = ymoodn: 1)’2”(:)(112)“,
where [Z] denotes the largest integer < z, and the sum X, is zero if m< 0,

2. The Y, s have been generated as Y; = 2.1(U; > 0.5) - 1, where the U, ‘s are random
drawings from the uniform [0,1] distribution, and I(.) isthe indicator function.

3. Recall that open subsets of a Euclidean space are Borel sets.
4, See Appendix II.
5. Thus @ is continuousiny on alittle neighborhood of c.

6. Let a,, m>1, be asequence of non-negative numberssuch that X ,a =K < . Then

Y1 a_ ismonotonic non-decreasinginn > 2, with limit lim__ Y %a = ¥ a = K, hence
n-1

K=2Xa,=Ilim X “a +lim > a =K+Ilim_ Y  a.Thus lim Y ' a =0.

7. Note that Uae(lyw)Na is an uncountable union and may therefore not be anull set.
Therefore, we need to confine the union to all rational o > 1, which is countable.

8.  Notethat |p(t)] < 1.
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Chapter 7

Dependent Laws of Large Numbersand Central Limit Theorems

In Chapter 6 | have focused on convergence of sums of i.i.d. random variables, in
particular the law of large numbers and the central limit theorem. However, macroeconomic and
financial data are time series data, for which the independence assumption does not apply.
Therefore, in this chapter | will generalize the weak law of large numbers and the central limit

theorem to certain classes of time series.

7.1. Stationarity and the Wold decomposition
In Chapter 3 | have introduced the concept of strict stationarity, which for convenience

will berestated here:

Definition 7.1: Atime series process X, issaid to be strictly stationary if for arbitrary integers

m, <m, <...<m, thejoint distribution of Xt*ml’ ...... X_r, does not depend on the time index t.

A weaker version of stationarity is covariance stationarity, which requires that the first
and second moments of any set thml' ...... X, Of time series variables do not depend on the

timeindex t.
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Definition 7.2: Atime seriesprocess X, € R¥ is covariance stationary (or weakly stationary) if
E[[IXJF] < e, and for all integerstand m, E[X] = p and E[(X.-1)(X, ,-H)"] = ['(m) do not

depend on the time index t.

Clearly, astrictly stationary time series process X; is covariance stationary if E[|[X[F] < .

For zero-mean covariance stationary processes the famous Wold (1938) decomposition
theorem holds. Thistheorem isthe basisfor linear time series analysis and forecasting, in
particular the Box-Jenkins (1979) methodology, and vector autoregression innovation response

anaysis. See Sims (1980, 1982, 1986) and Bernanke (1986) for the | atter.

Theorem 7.1: (Wold decomposition) Let X, € R be a zero-mean covariance stationary process.
Then we canwrite X, = X7,00U, ; + W,, where o, = 1, X700 < 0, theU, sare zero-mean
covariance stationary and uncorrelated random variables, and W, is a deterministic process, i.e.,
there exist coefficients B, suchthat P[W, = X7,8W, ;] = 1. Moreover, U, = X, - XBX 4

and E[U,, W] = O for all integers m and t.

Intuitive proof: The exact proof employs Hilbert space theory, and will therefore be given
in the Appendix to this chapter. However, the intuition behind the Wold decomposition is not too
difficult.

It is possible to find a sequence B j =1,2,3,....., of real numbers such that

E[(X - X4BX ) isminimal. The random variable



X = LB

isthen called the linear projection of X, on X, ;,j > 1. Denoting

U= X - 2By
it follows from the first-order condition oE[(X; - E;ilijfj)z]/asj = 0 that

E[UX_J = 0for m=123,..
Note that (7.2) and (7.3) imply
E[U] =0, E[UU, ] =0for m=123,.

Moreover, note that by (7.2) and (7.3),
EIX] = E[(U, + ZL8% )3 = EIU + (8% ),
so that by the covariance stationarity of X,

E[U7] = o < E[X]]
and

E[X] = E[(C 48X )7 = of < E[X/]
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(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

for al t. Thusit follows from (7.4) and (7.5) that U, is a zero-mean covariance stationary time

series process itself.

Next, substitute X, , = U, ; + X4BX 4 ; in(7.1). Then (7.1) becomes

)21 = By(Upy + jilBjx[fl—j) * Ejizﬁjxtq = BU g+ Ef:z(BjJrBlBj,l)x[,j

= Blutfl + (Bfﬁi)x[fz + r:S(BjJrBlijl)x[fj-

Now replace X, , in(7.7)by U, , + Jf’ilﬁj)([fzfj. Then (7.7) becomes:

(7.7)
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Xt =B U, + (B2+Bi)(ut72 + ;ozlﬁjxtfzfj) + ZT:S(Bj“LBlijl)XH
=B U, + (Bzﬂﬁ)utfz + Tzs[(Bz“LBi)ijz“L(Bj+Blﬁj71)]x[7j
= BUy + BBV, 5 + [(By+BDBy+(Bs*BiBIX 5 + Tl (By+BOB; o+ (B BBy DIX -

Repeating this substitution m times yields an expression of the type
)21 - Ejnllajut—j j m+1 m]xt -j? (78)
say. It follows now from (7.3), (7.4), (7.5) and (7.8) that

E[)th] szla + E[(ijmﬂem'jx[fj)z]. Hence, letting m - «, we have
EIX]] = 02007 + limy E[(Z 10X )7 = 0% < .

Therefore, we can write X, as

X, = z:;o:o‘)‘jUH + W (7.9)
where oy = 1 and ¥ gef < =, with W, = plim,, X" 0% ; @remainder term which
satisfies

E[U = 0 for all integers m and t. (7.10)

t+mVVt]

Finally, observe from (7.2) and (7.9) that

Ut - ( IBJ t]) (Xt_vvt) - ZJ&:]-BJ()([’J_VVI )

- 5 Uy T Bl ) = U+ 58U, sy

(7.11)

It follows now straightforwardly from (7.4), (7.5) and (7.10) that & =0 for al j > 1, hence
W, = LBW,, (7.12)

with probability 1. Q.E.D.



262

Theorem 7.1 carries over to vector-valued covariance stationary processes:

Theorem 7.2: (Multivariate Wold decomposition) Let X, € R¥ be a zero-mean covariance
stationary process. Then we can write X, = X AU, . + W,, where A = I, 57 AATis
finite, the U;’s are zero-mean covariance stationary and uncorrelated random vectors, i.e.,
E[UtUtTm] = O for m > 1, and W, isa deterministic process, i.e., there exist matrices B, such
that P[W, = X ,BW,,] = 1. Moreover, U, = X, - ¥ ;BX ,and

E[U WT] = O for all integers m and t.
t+m" 't

Although the process W, is deterministic, in the sense that it is perfectly predictable from
its past values, it still may be arandom process. If so, let 7y, = o(W,,W, ;,W, ,,.......) bethe
o-agebragenerated by W, ,, for m> 0. Then all W, ’s are measurable y‘t\,(,m for arbitrary natural
numbers m, hence all W, ’s are measurable.7,, = M ,7,,. However, it follows from (7.2) and
(7.9) that each W, can be constructed from X, ; forj > 0,
hence. 7y = o(X;, X ;s X, ps-e) 2 Fyy, and consequently, al W, ’s are measurable
Ty = M7y Thisimpliesthat W, = E[W,|7,]. See Chapter 3.

The o-agebra .7, represents the information contained in the remote past of X.
Therefore, .7 is called the remote o-algebra, and the events therein are called the remote
events. If .7, isthetrivial o-algebra {Q,2}, so that the remote past of X, is uninformative,
then E[W|7'] = E[W], hence W, = 0. However, the same result holdsiif all the remote
events have either probability zero or one, asis easy to verify from the definition of conditional

expectations with respect to a o-algebra. This condition follows automatically from
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Kolmogorov's zero-one law if the X/’ s are independent (see Theorem 7.5 below) , but for
dependent processes thisis not guaranteed. Nevertheless, for economic time series thisis not too
farfetched an assumption, asin reality they always start from scratch somewhere in the far past,

say five hundred years ago for US time series.

Definition 7.3: Atime series process X, has a vanishing memory if the events in the remote

o-algebra .7, = MN_g0(X , X, ;,X ,,.......) have either probability zero or one.

Thus, under the conditions of Theorems 7.1 and 7.2 and the additional assumption that
the covariance stationary time series process involved has a vanishing memory, the deterministic

term W, in the Wold decomposition is zero or is a zero vector, respectively.

7.2. Weak laws of large numbersfor stationary processes
| will show now that covariance stationary time series processes with a vanishing memory
obey aweak law of large numbers, and then specialize this result to strictly stationary processes.
Let X, € R be acovariance stationary process, i.e., for al t, E[X] =, var[X] = o2,
and cov(X,,X,_,) = y(m). If X, hasavanishing memory then by Theorem 7.1 there exist
uncorrelated random variables U, € R with zero expectations and common finite variance cﬁ

suchthat X, - B = Yo ga, U, -, where ¥ % < . Then

t-m?
Y(k) - E{(E;=Oam+kut—mxzor:1:oamut—mﬂ' (7-13)
Since X, j0f, < o, it followsthat lim, ¥ o2 = 0. Henceit follows from (7.13) and

Schwarz inequality that
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(K] < 03T 0/ Zomotle ~ O @S K = o (7.14)

Consequently,

var((Un)Z) X = o%n + 2Un?T0IEn y(m) = o%n + 2Un?Eh (n-m)y(m)
(7.15)
< o?n + 2Un)X (M) - 0 as n - «.

Using Chebishev’ sinequality, it follows now from (7.15) that:

Theorem 7.3: If X, isa covariance stationary time series process with vanishing memory then

plim__(UnX X, = E[X].

This results requires that the second moment of X; isfinite. However, this condition can

be relaxed by assuming strict stationarity:

Theorem 7.4: If X, isa strictly stationary time series process with vanishing memory, and E[|X,]]

<, then plim__(UnX X = E[X].

Proof: Assumefirst that P[X, > O] = 1. For any positivereal number M, X I(X, < M)

IS a covariance stationary process with vanishing memory, hence by Theorem 7.3,

plimw(lln)z[‘:l(xt|(><t < M) - E[XI(X < M)]) =0 (7.16)

Next, observe that



265

(WMELOG - EIXD < (UMEL K < M) - EX 1%, < M)
(7.17)
= (UMELKICG > M) - EDX 104 > M)])]
Since for nonnegative random variablesY and Z, P[Y+Z > €] < P[Y > €/2] + P[Z > €/2], it

follows from (7.17) that for arbitrary € > O,

PlIUMEL (X ~ EIX])] > €]
< PII(UNZL KX, < M) - E[X (X, < M)])| > €/2] (7.18)

+ PIUNMZLOU0 > M) - EDX (X, > M| > e/2].

For an arbitrary 6 € (0,1) we can choose M so large that E[X (X, > M)] < &3/8. Hence, using
Chebishev’ sinequality for first moments, the last probability in (7.18) can be bounded by 6/2:
PLL/M)Z (XX > M) - E[X (X, > M)])| > &/2] < 4E[X,I(X, > M)]/e < &/2. (7.19)
Moreover, it follows from (7.16) that there exists a natural number n(e,d) such that
PIIUMEL (X IX, < M) = E[XI(X; < M)])| > &/2] < &/2 if n > nyed). (7.20)
Combining (7.18), (7.19) and (7.20), the theorem follows for the case P[X, > 0] = 1. The
generd case follows easily from X, = max(0,X) - max(0,-X,) and Slutsky’s theorem. Q.E.D.
Most stochastic dynamic macroeconomic models assume that the model variables are
driven by independent random shocks, so that the model variables involved are functions of these
independent random shocks and their past. These random shock are said to form a base for the

model variablesinvolved:
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Definition 7.4: Atime series process U, isabasefor atime seriesprocess X, if for eacht, X, is

measurable .7

—00

=o(U, U, ;,U, 5,...).

If X, has an independent base then it has a vanishing memory, due to Kolmogorov’s zero-one

law:

Theorem 7.5: (Kolmogorov's zero-one law). Let X, be a sequence of independent random
variables or vectors, and let .7 - o(X, X_1: X _5,--..). Thenthe setsin the remote o-algebra

7 _ =7 . haveeither probability zero or one.

Proof: Denote by &Tk the o-algebra generated by X,,...., X, .. Moreover, denote by
7+ m the o-algebragenerated by X ,,...,X . Eachset A in 7, takes the form
A ={o e Q X(0),....X, ()" € B}
for some Borel set B, € R*"!. Similarly, each set A, in U .7 takes theform
A, = {o e Q (X 4(®),...%X (o) € B}
for somem > 1 and some Borel set B, ¢ R™ Clearly, A, and A, are independent.
| will now show that the same holds for sets A, in .7} = o(U5_. 71 ), the smallest
o-algebracontaining U;,_,.7; . Notethat U},_,.7, +, may not be ac-algebraitself, but it is

K with

easy to verify that it is an algebra, because .7, , = .7, -, ,. ForagivensetCin .7,
positive probability, and for all sets A in U:;:ﬂ‘ﬁ; we have P(A|IC) = P(A). Thus P(:|C) isa
probability measure on the algebra U:;:ﬂ‘ﬁ;, which has a unique extension to the smallest

o-algebra containing U:;:ﬂ‘ﬁ;. See Chapter 1. Consequently, P(AIC) = P(A) istruefor all



setsAin 94: Moreover, if C has probability zero then P(ANC) < P(C) = 0 = P(A)P(C).
Thusfor al setsCin .7, “ and all setsAin .7}, P(ANC) = P(A)P(C).

Next, let A € ﬂtyﬁj, where the intersection is taken over al integerst, and let
C e Uy .7, .. Thenfor somek, Cisasetin .7, ,,and Aisasetin 7", for al m, and
therefore A € 9“;':’1, henceP(ANC) = P(A)P(C). By asimilar argument as before it can be
shown that P(ANC) = P(A)P(C) foradl sets A € N7 and C € o(U; .7, But

7 . =NFL <o, 7., sothat wemay choose C = A. Thusfor al sets A € N7,

P(A) = P(A)?, whichimpliesthat P(A) is either zero or one. Q.E.D.

7.3.  Mixing conditions
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Inspection of the proof of Theorem 7.5 reveals that the independence assumption can be

relaxed. We only need independence of an arbitrary set A in .7 _ and an arbitrary set C in
Tix = (X1 X 12 X 5,0 X, ) fork = 1. A sufficient condition for thisis that the process X,

o—mixing or @-mixing:

Definition 7.5: Denote 7', = o(X, X 1, X, 5s-)s F7 = 6K, X115 X5, -), and let

ofm =sup  sup  |P(ANB) - P(A).P(B),

t'Aeg;,Bes "

—oo

e(m) =sup  sup IP(AIB) - P(A)|.
tac .. Be gt

If lim___o(m) = O then thetime series process X, involved is said to be «—mixing, and if

lim___o(m) = O then X issaidto be ¢-mixing.

is
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Note that in the e.- mixing case

sup |IP(ANB) - P(A).P(B)| < limsup sup sup IP(ANB) - P(A).P(B)|

Ae 7, Be7 me U Acgr , Beg k™

= limsupa(m) = O,

Mmoo
hencethesets A € %k B € .7 _ areindependent. Moreover, note that a(m) < ¢(m), so that
@-mixing implies a—mixing. Thusthe latter is the weaker condition, which is sufficient for a

zero-one law:

Theorem 7.6: Theorem 7.5 carries over for e—mixing processes.

Therefore, another version of the weak law of large numbersis:

Theorem 7.7: If X, isa strictly stationary time series process with an «.-mixing base, and E[[X,[]

<, then plim__(UnX X, = E[X].

7.4. Uniform weak laws of large numbers
7.4.1 Random functions depending on finite-dimensional random vectors

Dueto Theorem 7.7, all the convergence in probability resultsin Chapter 6 for i.i.d.
random variables or vectors carry over to strictly stationary time series processes with an
o—mixing base. In particular, the uniform weak law of large numbers can now be restated as

follows.
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Theorem 7.8(a): (UWLLN). Let X, a strictly stationary k-variate time series process with an
«-mixing base, and let 6 € ® be non-random vectorsin a compact subset ® < R™. Moreover,
let g(x,0) be a Borel measurable function on R* x ® such that for each x, g(x,0) isa
continuous function on ®. Finally, assume that E[wpe€®\g(xj,9)|] <, Then

plim, __sup,.o | (UMX,9(%,,0) - E[9(X;,0)]| = 0.

Theorem 7.8(a) can be proved along the lines asin the proof of the uniform weak law of large
numbers for thei.i.d. case in Appendix 6.A of Chapter 6, ssmply by replacing the reference to the

weak law of large numbersfor i.i.d random variables by areference to Theorem 7.7.

7.4.2 Random functions depending on infinite-dimensional random vectors

In time series econometrics we quite often have to deal with random functions that
depend on a countabl e infinite sequence of random variables or vectors. As an example, consider
the time series process:

Yo = BoYis * X with Xp =V, = vV 4, (7.21)
where the V,s arei.i.d. with zero expectation and finite variance ¢?, and the parametersinvolved
satisfy |Bo| < 1and |y, < 1. The part

Ye = BoYer * X (7.22)
isan Auto-Regression of order 1, denoted by AR(1), and the part

X = Vi ~ YoVia (7.23)
isaMoving Average process or order 1, denoted by MA(1). Therefore, model (7.21) iscalled an

ARMA(1,1) model. See Box and Jenkins (1976). The condition |,| < 1 is necessary for the strict
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stationarity of Y, because then by backwards substitution of (7.21) we can write model (7.21) as
Y= EBUV - voViry) = Ve + (Bo - 105 B0 Vi (7.24)
Thisisthe Wold decomposition of Y,. The MA(1) model (7.23) can be written asan AR(1)
model inV,:
Vi = vV, + U (7.25)
If Jyol < 1 then by backwards substitution of (7.25) we can write (7.23) as
X, = XX + Ve (7.26)
Substituting X, = Y, - B,Y,_, in(7.26), the ARMA(1,1) model (7.21) can now be written as an
infinite-order AR model:

Y, = BoYos - SaveMey - BoYea) + Vo = By - 10X ave Yo *+ Ve (7.27)

Notethat if B, = vy, then (7.27) and (7.24) reduceto Y, = V,, so that then thereisno
way to identify the parameters. Thus, we need to assume that 3, » y,. Moreover, observe from
(7.24) that Y, is strictly stationary, with an independent (hence «-mixing) base.

There are different ways to estimate the parameters B, v, in model (7.21) on the basis of
observationson Y, fort =0,1,....,n only. If we assume that the V,' s are normally distributed we
can use maximum likelihood. See Chapter 8. But it is also possible to estimate the model by
nonlinear least squares (NLLS).

If we would observe all the Y, sfor t < n then the nonlinear least squares estimator of
B, = (Borvo)' IS

0 = argmin,_o (U)X (Y, - ,(0))2, (7.28)
where

f0) = (B - NELY Y, with 0 = (B9, (7.29)
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and
® =[-1+e,1-¢]x[-1+e,1-¢], € € (0,1), (7.30)
say, where e isasmall number. If we only observe the Y, sfor t = 0,1,....,n, which is the usua
case, then westill can use NLLS by setting the Y;’sfor t <0 to zero. Thisyields the feasible
NLLS estimator
0 = argmin, (U)X (Y, - f(0))?, (7.31)
where
f©® = (@ - T Y, (7.32)
For proving the consistency of (7.31) we need to show first that
plim,__sup,_o | (UNET((Y, - fi®)? - (Y, - £(6))| = 0 (7.33)
(Exercise), and
plim, .. sup.o | WMXT4((Y, - £0))? - EL(Y, - f,(0)3)| = 0. (7.34)
(Exercise) However, the random functions g,(0) = (Y, - ft(e))2 depend on infinite-dimensional
random vectors (Y,,Y, ;Y 5, Y oseees )T, so that Theorem 7.8(a) is not applicable to (7.34).

Therefore, we need to generalize Theorem 7.8(a) in order to prove (7.34):

Theorem 7.8(b): (UWLLN). Let .7, = o(V,,V, ;,V, ,,....), where V, isatime series process with
an «-mixing base. Let g,(6) be a sequence of random function on a compact subset © of a
Euclidean space. Denotefor 6, € ® and 6 > 0, Ny(0,) = {6 € @: |[0-0 || < 5}. If for each
0, € ®andeachd > 0,

(@ SUPye, 0, 3:(0) @nd infy o 19,(8) are measurable .7, and strictly stationary,

(b) E[SupegNS(e*)gt(e)] < « and E[infeeNé(e*)gt(e)] > —oo,
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© limgloE[SupegNS(e*)gt(e)] = limgloE[infegNB(e*)gt(e)] = E[gt(e*)]1

then plim,__sup,. /(M) ,9,6) - E[g,(0)]| = O.

Theorem 7.8(b) can also be proved easily aong the lines of the proof of the uniform weak
law of large numbersin Appendix 6.A of Chapter 6.

Note that it is possible to strengthen the (uniform) weak laws of large numbers to
corresponding strong laws or large numbers by imposing conditions on the speed of convergence
to zero of «(m). See McLeish (1975).

It is not too hard (but rather tedious) to verify that the conditions of Theorem 7.8(b) apply

to the random functions g,(6) = (Y, - ft(e))2 with Y, defined by (7.21) and f,(0) by (7.29).

7.4.3 Consistency of M-estimators
Further conditions for the consistency of M-estimators are stated in the next theorem,

which is a straightforward generalization of a corresponding result in Chapter 6 for thei.i.d. case:

Theorem 7.9: Let the conditions of Theorem 7.8(b) hold, and let 0, = argmax,_oE[g,(0)],
0 = argmax, o(Un)x1g,(6). Iffor >0, sup, g o EL0,(0)] < ELg,(6,)] then plim, 6 =
0, Smilarly, if 0, = argmin,_,E[g,(0)], 6 = argmin,_,(In)X;,0,0), and for § >0,

infy_ o, 0, EL0,(0)] > E[g,(0,)], then plim, 6 = 0.

Again, it isnot too hard (but also rather tedious) to verify that the conditions of Theorem 7.9

apply to (7.28), with Y, defined by (7.21) and f(6) by (7.29). Thus the feasible NLLS estimator
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(7.31) isconsistent..

7.5. Dependent central limit theorems
7.5.1 Introduction
Similarly to the conditions for asymptotic normality of M-estimatorsin thei.i.d. case (see

Chapter 6), the crucial condition for asymptotic normality of the NLLS estimator (7.28) is that

LYot (0,)/065) ~4 N,{0,B], (7.35)
J/nt1

where
B = E[V/{0f,(6)/905 )(0f,(0,)/6, ) . (7.36)

It follows from (7.24) and (7.29) that

f0) = (Bo ~ Yo% 4B Vi, (7.37)

which is measurable .7,

1 = oV 1,V 5V, 5,..), and sois

Y By + By - vo)(-D)BLAV,
f (6,)/007 - lfo = o YO)(J o Ve . (7.38)
00 J—l
_ijlﬁo thj

Therefore, it follows from the law of iterated expectations (see Chapter 3) that

B = o’E||of,(0,)/063)(of,(65)/ 30,

SaBo + By — 1)G-DPBS P -E(By + (B - v(-D)Bg" 7 (7.39)
By + B - 1)L > gAY

=0

and
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PEIV, (109 /060) |7, 1] = 0] = 1. (7.40)
The result (7.40) makes V, (of,(0,)/ aeg) abivariate martingal e difference process, and for an
arbitrary nonrandom & € R?, & # 0, the process U, = V,ET(of,(6,)/36,) isthen aunivariate

martingal e difference process:

Definition 7.4: Let U, be a time series process defined on a common probability space {Q,.7,P},
and let .7, bea sequence of sub- c-algebraof .7 . If for eacht,

€)) U, ismeasurable.7,,

(b)) 7,7,

©  EUl< =

(d  PEU}7LI=0)=1,

then{U,, .7, } iscalled a martingale difference process.

If condition (d) isreplace by P(E[U,|7, ,] = U, ;) = 1then{U, .7} iscdled amartingale. In
that case AU, = U, - U, = U, - E[U |7, ] satisfies P(E[AU|7, |] = 0) = 1. Thisisthe
reason for calling the process in Definition 7.4 a martingale difference process.

Thus, what we need for proving (7.35) is a martingale difference central limit theorem.

7.5.2 A generic central limit theorem
In this section | will explain McLeish (1974) central limit theorems for dependent random
variables, with a specialization to stationary martingale difference processes.

The following approximation of exp(i.x) playsakey role in proving central limit
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theorems for dependent random variables.

Lemma7.1. For xe Rwith|x|<1, exp(i.X) = (L+i.x)exp(-x%2 + r(xX)), where Jr(x)| < |xF.

Proof: It follows from the definition of the complex logarithm and the series expansion of

log(1+i.x) for [x| < 1 (see Appendix I11) that

log(1+i.x) = ix + x%2 + X (D)t Mk + imm = ix + x3/2 - r(x) + i.mm,

where r(x) = -X,_o(-1)* % % ¥/k. Taking the exp of both sides of the equation for log(1+i.x)
yiddsexp(i.x) = (1+i.X)exp(-x?%/2 + r(x)). In order to prove the inequality |r(x)| < X, observe

that
() = -Xro(-DF i kx Mk = x355 o(~1)%i % XK/ (k+3)
— st::O(—l)ZKi 2k+1X2k/(2k+3) " X3E°k°:0(_1)2k+1i 2k+2X2k+1/(2k+4)

= X3, (- Y (2k+4) + ix3 o (-1)*%/(2k+3)

(7.42)
= Yo (D) (2k+4) + 1.X o (-1)*xH3(2k+3)
y* y?
f Sdy - i f 2 _dy
5 1+y? 5 1+y?
where the last equality follows from
3
Ay DX U2K) = By oD = X (H = 2 (7.42)
dx 1+x2

for [x] <1, and similarly
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X2

%EE_O(—l)"xz"*3/(2k+3) = (7.43)

1+x?

The theorem now follows from the easy inequalities

y y® " 34, - Liu 3
f dy < fy dy X < xPBry/2
0

0 :|_+y2 Z

and

X 2 x| 1
[ y Sy < [ydy = S < Ky
0 ]_+y 0 3

which hold for [x] < 1. Q.E.D.

Theresult of Lemma 7.1 plays a key-role in the proof of the following generic central

limit theorem:

Lemma7.2: Let X, t=1,2,...,n,..., be a sequence of random variables satisfying the following

four conditions:

plim__max,__ [X|/y/n =0, (7.44)
plim__(Un)Xy X7 = 6? € (0O,), (7.45)
lim,. B, (1.EXAM)| = 1, ve er, (7.46)
and
n v 2
sup,. B I, (L+&2X7In)| < =, V& € R. (7.47)

Then
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1 n
—ntzlj X, =4 N(0,67). (7.48)

Proof: Without loss of generality we may assume that % = 1, because if not we may

replace X, by X,/o. It follows from thefirst part of Lemma 7.1 that

n

IT (2+iex /i)

t=1

explie(UynET X, - expl-(€2/ W) X expZ yr(ex /yh))  (7.49)

Condition (7.45) implies that
plim, __exp-(&2/ 2)(WN)E],X7) = exp(-E2/2). (7.50)

Moreover, it follows from (7.44), (7.45) and the inequality [r(x)| < [x® for [x| <1 that

w2 rfex A lx il < 1 < EL S pilex iy < 4

ny/n

(7.51)
< kP M(anle) -0,
n
Next, observe that
Sl VA A = 1 < S ex s ) fiex vl - 1 o
752

< jghmax, . AL > 150 {ex 1A

The latter and condition (7.44) imply that

A r(ex./ Val(lex vl = 1) = o] = Pllekmax,.,. JXlivA < 1) - 1. (7.53)

Therefore, it follows from (7.44) and (7.45) that



pli mnwexp(Z[':lr(&Xt / \/ﬁ» - 1.

Thus we can write

n

[T (2+iexyn)

t=1

explie(UyMET X, = Z,(8)

n
t=1

exp(-E2/2) + [H (1+iexsvi)
where
Z,(&) = exp(-£2/2) - exp|-(/2)WNEL Xexpl =L r(eX, /i) -, 0
Since |Z, (&) < 2 with probability 1 because
lexp(-x%2 + r(x))| < 1,
it follows from (7.56) and the dominated convergence theorem that
lim,ElZ,(&A - 0.

Moreover, condition (7.47) implies (using zw = zw and |7 = y/zZz ) that

g"lpnzlE[

H?_1(1+iaxt/ﬁ)\2] = sup, B IT7 (L HEX R)(L-iEX )|

= 5Upnz1E[ H?:1(1+§2Xt2/n)] < co

Therefore, it follows from the Cauchy-Schwarz inequality that

n
lim,_ E[Zn(z“;) I1 (1+iexy/n)
t=1
=0
Finally, it follows now from (7.46), (7.55) and (7.60) that

lim,_ Elexp(iE(Lyn)ELX)] = exp(-E/2).

< Jlim, _E[Z,©P1y/sup,EL TT(1+e3X )]
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(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

Since the right-hand side of (7.61) is the characteristic function of the N(0,1) distribution, the
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theorem follows for the case 0= 1. Q.E.D.
Lemma 7.2 isthe basisfor various central limit theorems for dependent processes. See for
example Davidson’s (1994) textbook. In the next section | will specialize Lemma7.2 to

martingal e difference processes.

7.5.3 Martingale difference central limit theorems
Note that Lemma 7.2 carries over if we replace the X/'s by adouble array X, t =1,2,...,n,

n=123,..... In particular, let

Yoo = Xy Yoo = XIWNEIXE < 02+1) for t 22 (7.62)
Then by condition (7.45),
P[Y,, * X, for some t < n] < P[(UN)E X7 > 6?+1] ~ O (7.63)

hence (7.48) holds if

1 n
=Y Y., -4 NOG). (7.64)
Jnt1
Therefore, it sufficesto verify the conditions of Lemma 7.2 for (7.62).

Firgt, it follows straightforwardly from (7.63) that condition (7.45) implies

plim__(Un)X] Y, = o2 (7.65)

Moreover, if X, is strictly stationary with an e.—mixing base, and E[Xf] = 6% € (0,») thenit

follows from Theorem 7.7 that (7.45) holds, and so does (7.65).
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Next, let us have acloser look at condition (7.44). It is not hard to verify that for arbitrary

e>0,

Plmax,__ XN > €] = PLUNZLXA(XI/N > €) > €7] (7.66)

hence, (7.44) is equivalent to the condition that for arbitrary € > 0,

(UMEL XX > &/n) - 0. (7.67)

Note that (7.67) istrueif X, is strictly stationary, because then

E[UMZLXA(X] > e/m] = EIX(X,| > e/n)] - 0 (7.68)

Now consider condition (7.47) for the Y, /'s. Observe that

J

I, (1+£2Y2/n) = I |1+eX2((Un)E 22 < o2+1)/n| = [ |1+£2%2/n|, (7.69)
t=1 n,t t=1 t k=1 k =) t
where
L 2
J -1+ zzj Wi Ax2 < o2+1). (7.70)
t=
Hence
J-1
INIE (L&) = Y In1+g2%2n] + In 1+g2xfn/n]
t=1

(7.71)

31
< éZEZ X7 + In
Nt

1+g2xfn/n] < (62+1)E2+ In[1+§2X32n/n}

where the last inequality follows (7.70). Therefore,
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n>1 n>

supE[ I, (142 < expl(o” 02 - EpEDG)
1

(7.72)
< exp((o?+ 1)) L+&sup, (UM TT,ETXA).

Thus (7.72) isfiniteif

sup,, (UM E[X] <, (7.73)

which initsturnistrueif X, is covariance stationary.

Finally, it follows from the law of iterated expectations that for a martingale difference

process X,

EII (14X /)] = B, (LHEEX 7, I = 1, v& € B, (7.74)
and therefore also

ElII (L+ieY, /Y| = B ,(1HEELY, 7, JWM)] = 1, Ve € B (7.75)

We can now specialize Lemma 7.2 for martingal e difference processes:

Theorem 7.10: Let X, € R be a martingale difference process satisfying the following three
conditions:

@  (UnMILX - o € (0);

(b)  For arbitrarye >0, (Un)X, XA(X] > ey/n) -, 0;

©  sup (UN)XTLE[X]] < .

Then (y/n) XX, -4 N(O,6?).
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Moreover, it is not hard to verify that the conditions of Theorem 7.10 hold if the martingale

difference process X; is strictly stationary with an o.-mixing base, and E[Xf] = 02 € (0,):

Theorem 7.11: Let X, € R be a strictly stationary martingale difference process with an

o -mixing base, satisfying E[X;] = o® € (0,=). Then (Uyn) X X, -, N(O,6?).

7.6. Exercises

1 Let U and V beindependent standard normal random variables, and let for all integerst
and some nonrandom number A € (0,m), X, = U.cos(At) + V.sin(At). Provethat X, is covariance
stationary and deterministic.

2. Show that the process X in problem 1 does not have a vanishing memory, but that
nevertheless plim__(/n)Xl,X, = 0.

3. Let X, be atime series process satisfying E[[X/[]] < «,and suppose that the eventsin the
remote o-algebra.7 | = MN_oo(X , X, ;,X ,,.......) haveeither probability zero or one. Show
that P(E[X/}7 .] = E[X]) = 1.

4, Prove (7.33) .

5. Prove (7.34) by verifying the conditions on Theorem 7.8(b) for g,(0) = (Y, - ft(e))z,
with'Y, defined by (7.21) and () by (7.29).

6. Verify the conditions of Theorem 7.9 for g,(0) = (Y, - ft(e))z, with Y, defined by (7.21)
and f(0) by (7.29).

7. Prove (7.57).
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Prove (7.66).

Appendix

Hilbert spaces

7.A.1 Introduction

Loosely speaking, a Hilbert space is a space of elements for which similar properties hold

as for Euclidean spaces. We have seen in Appendix | that the Euclidean space R" isaspecia

case of avector space, i.e., a space of elements endowed with two arithmetic operations:

addition, denoted by "+", and scalar multiplication, denoted by adot. In particular, aspaceVisa

vector spaceif foral x,yandzinV, and al scalarsc, ¢, and c,,

(@)
(b)
(©)
(d)
(€)
(f)
(9)
(h)

Xty=y+X

Xt (y+z=(x+y)+z

Thereisa unique zero vector OinV suchthat x + 0= x;

For each x there exists a unigue vector -xinV such that x + (-x) = 0;
Ix=x;

(c,cy) X = c.(CX);

c(x+y) =cx+cy;

(c, + ¢).X=C.X+ CuX

Scalars are real or complex numbers. If the scalar multiplication rules are confined to real



284

numbers, the vector space V isarea vector space. In the sequel | will only consider real vector
spaces.
The inner product of two vectorsx and y in R" is defined by x'y. Denoting <x,y> = X'y, it

istrivial that thisinner product obeys the rules in the more genera definition of inner product:

Definition 7.A.1: Aninner product on a real vector space Visa real function <x,y> on VxV
such that for all x,y, zinVand all cinR,

(1) <Xxy>=<yx>

2 <CX,y> = C<X,y>

3 <X+y,2> = <X, 2> + <y,2>

(4 <x,x>>0when x # 0.

A vector space endowed with an inner product is called an inner product space. Thus, R"
isan inner product space. In R" the norm of avector x isdefined by |x|| = m.Tthore, the
norm on areal inner product space is defined similarly as ||| = y/<x,x>. Moreover, inR" the
distance between two vectors x and y is defined by [X-y|| = /(x-y)"(x-Y). Therefore, the
distance between two vectors x andy in areal inner product space is defined similarly as
IX-yll = y/<x-y,x-y>. Thelatter is called a metric.

Aninner product space with associated norm and metric is called a pre-Hilbert space. The
reason for the "pre" isthat still one crucial property of R" is missing, namely that every Cauchy

sequencein R" hasalimitin R".
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Definition 7.A.2: A sequence of elements x,, of a inner product space with associated norm and

metric is called a Cauchy sequence if for every € > O there exists an n, such that for all km > n,,

XXl < €.

Theorem 7.A.1: Every Cauchy sequencein R, ¢ < «, hasa limit in the space involved.

Proof: Consider first thecase R. Let x = limsup,, . x,, where X, is a Cauchy sequence. |
will show first that x < «.

There exists a subsequence n, such that x = lim,__x, - Notethat x, isalsoaCauchy
sequence. For arbitrary € > 0 there exists an index k, such that |xnk - xnm| < egifkm > k,.
Keeping k fixed and letting m - « it followsthat |x, - x| <e, hence x < . Similarly,

X = liminf___x > -c. Now we can find an index k, and sub-sequences n, and n,, such that for
km =k, [, - x| <e, k, - X <eand [x, - X |<e hence |x - x| < 3e. Sincee is

arbitrary, we must have x = x = lim Applying this argument to each component of a

nﬂooxn'
vector-valued Cauchy sequence the result for the case R’ follows. Q.E.D.
In order for an inner product space to be a Hilbert space we have to require that the result

in Theorem 7.A1 carries over to the inner product space involved:

Definition 7.A.3: A Hilbert space H isa vector space endowed with an inner product and

associated norm and metric, such that every Cauchy sequencein H hasa limitin H.
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7.A.2 A Hilbert space of random variables
Let 3¢, be the vector space of zero-mean random variables with finite second moments
defined on a common probability space {Q2,.7,P}, endowed with the inner product <X,Y> =

E[X.Y], norm ||X|| = {E[X? and metric |[X-Y]|.

Theorem 7.A.2: The space %, defined above is a Hilbert space.

Proof: In order to show that 3, isaHilbert space, we need to show that every Cauchy

sequence X, ,n > 1, hasalimitin i,. Since by Chebishev’sinequality,

P[IX -X | > ¢] < E[(X -X )3/e? = [X -X |P/e? ~ 0 as nm - o

for every ¢ > 0, it follows that [X -X_| b 0 as n,m - . In Appendix 6.B of Chapter 6 we have
seen that convergence in probability implies convergence a.s. along a subsequence. Therefore
there exists a subsequence n, such that |Xnk—Xnm| - 0 as. as nm - . Thelatter implies that
there exists anull set N such that for every @ € Q\N, Xnk(co) Isa Cauchy sequence in R, hence
Iimkwxnk(co) = X(o) existsfor every @ € Q\N. Now for every fixed m,
(X, ~X)? = (X-X)? as. as k - .

By Fatou’' s lemma (see below) and the Cauchy property the latter implies that

IX-X_IIP = E[(X-X )] < IiminkaE[(Xnk—Xm)z] ~0asm- .
Moreover, it is easy to verify that E[X] = 0 and E[X?] < «.Thus, every Cauchy sequencein

R, hasalimitin R, , hence R,isaHilbert space. Q.E.D.
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Lemma 7.A.1: (Fatou'slemma). Let X, ,n > 1, be a sequence of non-negative random variables.

Then E[liminf__X] < liminf__E[X].

Proof: Put X = liminf_ X and let ¢ beasimple function satisfying0 < ¢@(x) < x.

Moreover, put Y, = min(e(X),X)). Then Y, b ¢(X) because for arbitrary € > 0,

PIIY, - @X)| > €] = P[X < @(X)-¢] < P[X < X-¢g] - O.

Since E[@(X)] < «~ because ¢ isasimple function, and Y, < ¢(X), it followsfrom Y_ b ¢o(X)

and the dominated convergence theorem that

Ele(¥)] = lim__E[Y] = liminf__E[Y] < liminf__E[X]. (7.76)

Taking the supremum over al simple functions ¢ satisfying0 < ¢@(x) < x it followsnow from

(7.76) and the definition of E[X] that E[X] < liminf__E[X ]. QE.D.

n-o
7.A.3 Projections

Similarly to the Hilbert space R", two elements x and y in a Hilbert space H are said to be
orthogonal if <x,y> = 0, and orthonormal isin addition |[x|| = 1 and |ly|| = 1. Thus, in the Hilbert

space R, two random variables are orthogonal if they are uncorrelated.

Definition 7.A.4: Alinear manifold of a real Hilbert space H is a non-empty subset M of H such
that for each pair x, yin M and all real numbersa and B, a.x + p.y € M.Theclosure M of M

is called a subspace of H. The subspace spanned by a subset C of H is the closure of the
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intersection of all linear manifolds containing C.

In particular, if Sis the subspace spanned by a countable infinite sequence X, ,X,,X;, ..... of
vectors in H then each vector x in Stakesthe form x = X c..x_, where the coefficients ¢, are

such that |[x|| < e.

It is not hard to verify that a subspace of a Hilbert space is a Hilbert space itself.

Definition 7.A.5: The projection of an element y in a Hilbert space H on a subspace Sof H isan

element x of Ssuch that [ly-x|| = min,_¢[ly-Z]|.

For example, if Sis asubspace spanned by vectors x,,...,x inHand y € H\S then the
projection of y on Sisavector x = ¢ .X, +... +¢.X, € Swherethe coefficients ¢, are chosen

suchthat |ly - ¢ .—c.XJl isminimal. Of coursg, if y € S then the projection of y on Sisy

1 Xy T
itself.

Projections always exist and are unique:

Theorem 7.A.3: (Projection theorem) If Sis a subspace of a Hilbert space H and y is a vector in
H then there exists a unique vector x in Ssuch that |ly-x|| = min, ¢ [ly-Z||. Moreover, the residual

vector u = y-xisorthogonal toany zin S

Proof: Let y € H\Sand inf,¢|ly-Z| = &. By the definition of infimum it is possible to

select vectors x, in Ssuch that [ly-x || < 6 + 1/n.The existence of the projection x of yon S
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then follows by showing that x,, is a Cauchy sequence, as follows. Observe that

%, =X = 10, = WIE = I,V + - YIF = 2<% =YX -y>

and

A, =X J2-YIE = 1106, + %y W = X, =YIE + Xy =YIP + 2<%, -y X -y>.

Adding these two equations up yields

%, %P = 20, -YIF -+ 20,y - Al x )2-yIP (7.77)

v

Since (x,+x )/2 € Sitfollowsthat [|(x +x )/2-y|F > &, henceit follows from (7.77) that

X -x P < 2|x -YIF + 2|x -yIF - 48 < 48/n + Un? + 45/m + 1m?Z.

IN

Thus x, isaCauchy sequencein S and since Sis aHilbert space itself, x, hasalimitxinS
Asto the orthogonality of u=y-x with any vector zin S note that for every real

number c and every zin S x+c.zisavector in S so that

5% < |y-x-c.zPP = u-cz? = |ly-xIP+ |lc.2P-2<u,c.z> = §*+c?|Z]>-2c<u,z>. (7.78)

Minimizing the right-hand side of (7.78) to c yields the solution ¢, = <u,z>/||Z, and

substituting this solution in (7.78) yields the inequality (<u,z>)#|l2? < 0. Thus<u,z> = 0.
Finally, suppose that there exists another vector p in Ssuch that [ly-p|| = 6. Theny-pis

orthogonal to any vector zin S <y-p,z> = 0.But x-pisavector in S sothat <y-p,x-p> = 0

and <y-x,x-p> = 0, hence 0 = <y-p,x-p> - <y-X,Xx-p> = <x-p,x-p> = |x-p|?. Thus,
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p = x. Q.E.D.

7.A.5 Proof of the Wold decomposition

Let X, be a zero-mean covariance stationary process, and denote E[th] = ¢2.Thenthe
X.'s are members of the Hilbert space 3%, defined in Section 7.A.2. Let S"! bethe subspace
spanned by X, , j >1, and let X, bethe projection of X,on S'.*. Then U, = X, - X is

orthogonal to al X, j >1,i.e, E[UtXH.] = Oforj >1. Since Uy € Sf;lforj >1,theU, ‘sare

,j,

] = Oforj >1.

also orthogonal to each other: E[U, U,

Notethat in general X, takestheform X, = X", X, ;, where the coefficients ,; are
suchthat |IY,|F = E[Ytz] < «. However, since X, is covariance stationary the coefficients 3,; do

not depend on the time index t, because they are the solutions of the normal equations

Y(m) = E[xtXpm] = ZJ?:lBjE[thjK—m] = ZJOO:]_BJY(" _ml), m=123,......

Thus the projections )Zt = E;‘;lﬁj&j are covariance stationary, and so are the U, ‘s because

o® = [XJP = U, + XJP = UJP + [IXJP + 2<U, , X> = VP + IXIP = E[UT + E[XT,

sothat E[U] = o° < o2
Next, let Z,, = Y oU, ;, where oy = <X,,U> = E[XU,_]. Then
X-Z P = IX-Za0U P = EIX - 257 EXU, ] + E 5 a0 EUU]

= E[X] - ¥ = 0,

foradl m= 1, hence X" o < . Thelatter impliesthat ¥ 07 ~ 0 for m - «, so that for



291
fixedt, Z . isaCauchy sequencein Sf;,l, and X -Z, . isaCauchy sequencein s'..

Consequently, Z, = X ,0U, ; € sStandWw =X - YU

i € S,tw exist.

Asto the latter, it follows easily from (7.8) that W, ¢ S'" for every m, hence
W en _.S.. (7.79)
Consequently, E[U,, W] = O for all integerst and m. Moreover, it follows from (7.79) that the
projection of W, on any stm IsW, itself, hence W, is perfectly predictable from any set

{XH.,j > 1} of past values of Xt,aswellasfromanyset{V\/H.,j > 1} of past values of W,.
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Chapter 8

Maximum Likelihood Theory

8.1. Introduction

Consider arandom sample Z,,...,Z, from a k-variate distribution with density f(z|0,),
where 6, € ® < R™ isan unknown parameter vector, with © a given parameter space. Asis
well known, due to the independence of the Z's, the joint density function of the random vector
Z = (Z),....2,)" isthe product of the marginal densities: I1,4f(z|6,). Thelikelihood function
inthis case is defined as this joint density, with the non-random arguments z replaced by the

corresponding random vectors Z;, and 6, by 0:
L,(0) = IT74f(Z,6). (8.1)
The maximum likelihood (ML) estimator of 0, is now 0 = argmaxee(al:n(e), or equivalently
0= argmaxee(aln(lfn(e)), (8.2)

where "argmax" stands for the argument for which the function involved takes its maximum
value.

The ML estimation method is motivated by the fact that in this case

E[In(C,(0)] < ElIn(L, (6,)]- (8.3)

To seethis, notethat In(u) = u-1foru=1,andIn(u) < u-1for0<u<2landu> 1. Therefore,
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taking u = f(Z|0)/f(Z6,) it followsthat for all 6, In(f(ZB)/F(Z0y) < F(ZB)/F(Z8) - 1, and

taking expectationsit follows now that
El[In(f(Z,16)/1(Z16)] < E[f(Z6)/f(Z]6y] - 1

f(z|6)
= [—2f(z|6)dz - 1 = f(z|0)dz - 1 < O
J£< f(z|6,) (l60) f{ZERk: (0,)>0} (216)

Summing up, (8.3) follows.
This argument reveals that neither the independence assumption of the dataZ =

T

(Zy .. ,ZnT)T nor the absolute continuity assumption are necessary for (8.3). The only thing that

mattersis that

E[L(0)/L, (8] < 1 (8.4)

foral 6 € ® andn > 1. Moreover, if the support of Z is not affected by the parametersin 6,, i.e.,
if inthe above casetheset {z € R™ f(Z0) > O} isthesamefor all 0 € ©, then theinequality in

(8.4) becomes an equality:

E[L (0)/L,(8)] = 1 (8.5)

foral 0 € ® and n > 1. Equality (8.5) isthe most common case in econometrics .

In order to show that absolute continuity is not essential for (8.3), supposethat the Z's
are independent and identically discrete distributed with support =, i.e, foral z € E,
P[ZJ. =z >0and EHP[ZJ. = Z] = 1. Moreover, let now f(Z6,) = P[Zj = 7], where f(Z0)is
the probability model involved. Of course, f(z]0) should be specified such that 3., _f(z|6) = 1

foral 6 € ©. For example, suppose that the Z’s are independent Poisson (6,) distributed, so
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that f(z0) = e *0%z! and = ={0,1,2,.....}. Then the likelihood function involved also takes the

form (8.1), and

E[f(Z 0)(Z 0] - Z%f(zwo) - Y 1(o) - 1,
Zex 0. Zex

hence (8.5) holdsin this case as well, and therefore so does (8.3).

In this and the previous case the likelihood function takes the form of a product.
However, also in the dependent case we can write the likelihood function as a product. For
example, let Z= (Z,,....,Z,)" beabsolutely continuously distributed with joint density

f(z z9,), wherethe Z’sareno longer independent. It is always possible to decompose a

et

joint density as a product of conditional densities and an initial margina density. In particular,

denoting fort > 2,

f(zlz_1--2,,0) = £(z,....210)/f,_,(z_;....2)00),

we can write

f (Z2]0) = f,(ZIOI, f(2lZ 1-2,.0).

Therefore, the likelihood function in this case can be written as

L (0) = f(Z.,...Z,0) = T,(Z )T}, f(ZJZ, 1. Z,.0). (8.6)

It is easy to verify that in this case (8.5) holds also, and therefore so does (8.3). Moreover, it

follows straightforwardly from (8.6) and the above argument that in the time series case involved
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L(8)/L, ,(6)
Pl E|—————|4 04| < 1| = 1fort = 23,..n, (8.7)
L(0)/L, ,(6,)
hence
P(Eln(ft(e)lftl(e)) - |n([t(eo)/Et1(90))’;1,...,21} < o) =1fort=23.,n (89

Of course, these results hold in the independent case as well.

8.2. Likelihood functions

There are quite afew cases in econometrics where the distribution of the datais neither
absolute continuous nor discrete. The Tobit model discussed below is such acase. In these cases
we cannot construct alikelihood function in the way | have done here, but still we can define a

likelihood function indirectly, using the properties (8.4) and (8.7):

Definition 8.1: A sequence I:n(e), n > 1, of non-negative random functions on a parameter
space 0O is a sequence of likelihood functions if the following conditions hold:

@ There exists an increasing sequence .7, n > 0, of c-algebras such that for each 6 € ©
andn > 1, L (0) ismeasurable .7, .

(b) Thereexistsa 6, € © suchthat for all 6 € ®, P(E[L,(6)/L,(6))|-7,] < 1) = 1, and

for n > 2,
- L (0)/L, ,(6)

L (6L ,(8,)

Foal<1] =1

(0 Foral 6, #6,in®, P[L(0,) =L,0,)| 7] <1 andfor n=2,
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P[L ()L, ,0,) = LO)L, 06) 7, )<Lt

The conditionsin (c) exclude the case that I:n(e) is constant on ©. Moreover, these conditions

also guaranteethat 0, € © isunique:

Theorem 8.1: For all 6 € ®\{ 6,} andn > 1, E[In(L (0)/L (6,))] < O.

Proof: First, let n = 1. | have already established that In(L,(6)/L,(6,)) < L,(8)/L,(6,) - 1
if L (0)/L, (8, # 1. Thus, denoting Y(8) = L (0)/L_(6,) - In(L (6)/L,(6,) - 1 and X(6) =
L (0)/L (6, wehave Y(0) > 0, and Y(6) > O if and only if X(6) # 1. Now suppose that
PE[Y(0)l7] = 0) = 1. Then P[Y(0) = 0|7, = 1 as. because Y(0) > O, hence
P[X®) = 1}7, = 1 as. Condition (c) in Definition 8.1 now excludes the possibility that
0 = 0,, hence P(E[IN(L,(B)/L,(6))}7,] < 0) = Lifandonlyif 6 # 6,. Inturn this result
implies that

E[In(L,(0)/L,(0,))] < O if 6 = 0, (8.9)
By asimilar argument it follows that for n > 2,
E[IN(L,(0)/L,, ,(0)) - In(L ()L, ,(0,)] < Oif 6 = 6. (8.10)
The theorem now follows from (8.9) and (8.10). Q.E.D.

Aswe have seen for the case (8.1), if the support { z f(z0) > 0} of f(z]6) does not depend

on 6 then the inequalities in condition (b) becomes equalities, with .7 = o(Z Z) for n>1,

and .7, thetrivial o-agebra. Therefore,
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Definition 8.2: The sequence [n(e), n > 1, of likelihood functions hasinvariant support if for

all 00, PE[LO)NL(0)] 7] =1) =1, andfornz 2,

11]1.

Assaid before, thisis the most common case in econometrics.

7

o E }n(e)/En,l(O)
L(0)/L,, 4 (8,)

8.3. Examples
8.3.1 Theuniform distribution

Let Zj, j = 1,...,n,beindependent random drawings from the uniform [0,0 ] distribution,
where 6, > 0. The density function of Z; is f(Z6,) = egll(o < Z < 0,), sothat thelikelihood

function involved is:

C,0) = 210 < Z < 0). (8.12)

Inthiscase .7, = o(Z,,.....Z) for n>1,and .7, isthetrivia o-algebra{Q,z}. The conditions
(b) in Definition 8.1 now read as
E[L,(0)/L,(0)17 4 = E[L,(0)/L (0 = min(6,0)/0 < 1,

- L (0)/L, ()
L (0L, ,(0,)

F
‘/n—l

= E[L,(0)/L, (6] = min(6,6)/0 < 1 for n > 2.

Moreover, the conditions (c) in Definition 8.1 read as
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P[6,;71(0 < Z, < 8,)) = 6,1(0 < Z, < 0)] = P(Z, > max(8,,6,)) < 1if 6, = 0,

Hence, Theorem 8.1 applies. Indeed,

E[In(L(0)/L (6,)] = nin(6,/6) + nE[In(1(0

IN

Z, < 0))] - E[In(I(0 < Z, < 0y))]

—o if 0 <0,
= nin(0,/6) + nE[In(I(0 < Z, < 0))] = {nIn(6,/0) < O if 6 > 0,
0 if 0 =0,

8.3.2 Linear regression with normal errors

Let Z = (Yj,XjT)T,j = 1,...,n, beindependent random vectors such that

T 2
Y, = ap + BoX + U, UIX ~ N(O,03),

where the latter means that the conditional distribution of U, given X; isanormal N(O,GCZ,)

distribution. The conditional density of Y, given X; is

expl -Yay-ay-BoX) /o]

oyl 2

f(ylog, X) = , where 6, = (0,,B0,00)"-

Next, suppose that the X’s are absolutely continuously distributed with density g(x). Then the

likelihood function is
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exp[ Y254 (Y ~a-BTX)/o7]

o"(y2m)"

C,0) = (I74fv10, )00 = ITgx) (812

where 6 = (0,p",6%)". However, note that in this case the marginal distribution of X; does not
matter for the ML estimator 6, because this distribution does not depend on the parameter
vector6,. More precisely, the functional form of the ML estimator 0 asfunction of the datais
invariant to the marginal distributions of the X;’s, although the asymptotic properties of the ML
estimator (implicitly) depend on the distributions of the X’s. Therefore, without loss of generality
we may ignore the distribution of the X'sin (8.12) and work with the conditional likelihood

function:

exp[ Y25 (Yj~a-BTX)%/o7]

o"(y2m)"

n
L (0) = TTf(v0.X) = , where 0 = (a,pT,6)".  (8.13)
ji-1
Asto the o-algebrasinvolved, we may take .7, = o({ Xj}j“’:l) and forn>1,
7 =o({ Yj}j”:1) V.7 ,, where \V denotes the operation "take the smallest o-algebra containing the

n

two o-agebrasinvolved". 2 The conditions (b) in Definition 8.1 then read
E[L, O)/L 07l = EIRY, 10, X)/R(Y, 105, X)IX,] = 1,
- L (0)/L.°,(0)
L (0L, 1(6,)

T na| = EICYL0, XAV 106, X)IX] = 1 for n > 2.

Thus, Definition 8.2 applies. Moreover, it is easy to verify that the conditions (c) of Definition
8.1 now read as P[f(Y, [0,,X ) = f(Y, 6, X)IX] < 1 if 6, # 0,. Thisistrue, but tediousto

verify.
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8.3.3 Probit and L ogit models
Again, let Z = (Yj,XjT)T,j = 1,..,n, beindependent random vectors, but now Y, takes

only two values, 0 and 1, with conditional Bernoulli probabilities
P(Y,=1109,X) = F(ag*BeX), P(Y;=005,X) = 1 - F(ag+BeX,), (8.14)

where F isagiven distribution function and 6, = (%,sg)T. For example, let the sample be a
survey of households, where Y; indicates home ownership, and X; is avector of household
characteristics such as marital status, number of children living at home, and income.

If Fisthelogistic distribution function, F(x) = 1/[1+exp(-X)], then model (8.14) is
called the Logit model, and if F isthe distribution function of the standard normal distribution
then model (8.14) is called the Probit model.

In this case the conditional likelihood functionis

L°(0) = f[[YjF(mBTXJ.) +(1-Y)(@ - F(a+p™X))], where 6 = (a,p")". (8.15)
j-1

Also in this case the margina distribution of X; does not affect the functiona form of the ML
estimator as function of the data.
The o-algebrasinvolved are the same as in the regression case, namely .7, = o({ Xj}j";l)
andforn=1, .7 = o({Y}].;)V.7,. Moreover, note that
E[L OV O 7o = Ty olyF(@+B™) + (1-y)(L - Flap™))] = 1,
and similarly

L (0)/L,° ()
L (6)/L, 1(6,)

&

= ZhyF@p™X) + 1))@ - Fla+p™X )] = 1,
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hence the conditions (b) of Definition 8.1 and the conditions of Definition 8.2 apply. Also the

conditions (c) in Definition 8.1 apply, but again it is rather tedious to verify this.

8.34 TheTobit model
Let Z = (Yj,XjT)T,j = 1,...,n, beindependent random vectors such that
Y, = max(Y,",0), where Y, = ay + BX + U with UJX, ~ N(0,0p). (8.16)

The random variables Y;" are only observed if they are positive. Note that

PLY,=0[X] = Pla, + Bng + U < O] = P[U; > ag + [3ng|)(]_]

=1 - (o, + BEX)/oy), where ®(x) - [ "exp(-u2)i/2x du.

ThisisaProbit model. Since model (8.16) was proposed by Tobin (1958) and involves a Probit
model for thecase Y; = 0 it is called the Tobit model. For example, |et the sample be a survey of
households, where Y; is the amount of money household j spends on tobacco products, and X; is
avector of household characteristics. But there are househol ds where nobody smokes, so that for
these households Y, = 0.

In this case the setup of the conditional likelihood function is not as straightforward as in
the previous examples, because the conditional distribution of Y; given X; is neither absolutely
continuous nor discrete. Therefore, inthiscaseit is easier to derive the likelihood function
indirectly from Definition 8.1, as follows.

First note that the conditional distribution function of Y; given X andY; > 0is



302

PO<Y <yX] Plo - BoX; < U <y — o - BoXi[X]
PLY; > OX] PLY, > O[X]

P[Yj < yli!YJ>o] =

oy - oy - BIXog) — Doy ~ BIX o)

- - Ity > 0),
CI)((aO + BOXj)/Gc))
hence the conditional density function of Y; given X andY; > Ois
<P((y -0y - ﬁng)/%) exp(-x%2)

h(y0,.,%;,Y,>0) = I(y > 0), where ¢(x) =

oo®{(ag + BeX)/oy) 2n

Next, observe that for any Borel measurable function g of (Y;,X;) such that E[|g(Y;,X)[] <« we

have

EG(YX)IX] = gOXIPLY, = OX] + E[g(Y, X)I(Y; > O]

= g(0O.X)PLY; = O] ~ E(E[g(Yj,Xj)|XJ. Y, > O)X]I(Y, > 0)|xj)
= 00Xl - @l + BXeg) + [ a00n0y. X, Y0 I0Y, > O] (817
- gOX)(1 - @y + BIX)/oy) + f:g(y,xj)h(yleo,xj,Yj>0)dy.CD((a0 + BEX o)

- 901 - {0 + BPXYog) + — [awX)ely - ag — BIXVogky.
00 0

Hence, choosing

(1 - @@ + PXY(Y, = 0) + olg((Y, - o - BX)a)i(Y, > 0)
(L - oy + BXMoQJICY, = 0) + olalY, ~ ag ~ BEX)sR(Y, > 0)

o(Y, X) = (8.19

it follows from (8.17) that
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ELg(Y, K] = 1 - 0f@ + BX)io) + = [“olly ~ a - BX)io)ay

(8.19)
=1 - @f(@ + X)) + 1 - ¢(-a - BTX)/o) = 1.

In view of Definition 8.1, (8.18) and (8.19) suggest to define the conditional likelihood function

of the Tobit model as

L.0) = ,11[(1 - @f(@ + FXY)I(Y, = 0) + o((Y, - a - PX)a)I(Y, > 0)}.

The conditions (b) in Definition 8.1 now follow from (8.19), with the o-algebrasinvolved
defined similar as in the regression case. Moreover, also the conditions (c) apply.
Note that

oo9l(a + BEX /o)
CI)((aO + Bng)/GO)

ELY,IX.Y>0] = ay + BoX; + : (8.20)

Therefore, if onewould estimate alinear regression model using the observationswith Y, >0

only, the OLS estimates will be inconsistent, due to the last term in (8.20).

8.4. Asymptotic propertiesof ML estimators
8.4.1 Introduction

Without the conditions (c) in Definition 8.1 the solution 0, = argmax,_ E[In([n(e) )
may not be unique. For example, if Z; = cos(X+6,) with the X; ‘s independent absolutely
continuously distributed random variables with common density, then the density function
f(Z0,) of Z satisfies f(z6,) = f(z0,+2sm) for all integers s. Therefore, the parameter space © has

to be chosen small enough to make 6, unique.
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Also, the first and second-order conditions for a maximum of E[In(I:n(e) )] a6 =0,
may not be satisfied. The latter isfor example the case for the likelihood function (8.11): if
0 < 6, then E[In(I:n(e))] = -, andif 6 > 0, then E[In(I:n(e))] = -n.In(0), so that the left
derivative of E[In(I:n(e))] in® =6, is IimSlo(E[In(I_An(eo))] - E[In(I:n(eo—S))])IS =, and
the right-derivative is Iim510(E[In(|_An(eo+8))] - E[In(l:n(eo))])/s = -n/6,. Sincethefirst and
second-order conditions play a crucia role in deriving the asymptotic normality and efficiency of

the ML estimator (see below), the rest of this chapter does not apply to the case (8.11).

8.4.2 First and second-order conditions
The following conditions guarantee that the first and second-order conditions for a

maximum hold.

Assumption 8.1: The parameter space © is convex, and 0, isan interior point of ©. The
likelihood function I:n(e) IS, with probability 1, twice continuously differentiable in an open

neighborhood ®, of 6,, andfor i,,i, = 1,2,3,...m,

oL (0)
sup

< o0 (8.21)
0c@,| 90, 00,
1 2

and

3An(L (6
00, aeilaeiz
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Theorem 8.2: Under Assumption 8.1,

aln(L (6)) FIn(L,(6)) aln(L,(6))
T ‘e:eo = 0 and T onanT ‘e:eo = -Var T AT ‘e:eo .
30 3000 30

Proof: For notational convenience | will prove this theorem for the univariate parameter
case m= 1 only. Moreover, | will focusonthecasethat Z = (ZlT, ,ZnT)T isarandom sample
from an absolutely continuous distribution with density f(z]0,).

Observe that

Elin(L,(0))/n] = %Zl EIn(fz,0))] = [In(f(zl0))(zl0)ckz, (8.23)
o

It follows from Taylor’s theorem that for 6 € ®, and every 6 # O for which 0+6 € O, there
existsaA(z0) € [0,1] such that

ESdln(f(z\@)) . 182d2ln(f(2\9+)»(z,8)8))_

In(f(z|6+8)) - In(f(z]0)) = m 2 (d0+Mz5)3))?

(8.24)

Note that by the convexity of @, 0, + A(z6)5 € ©. Therefore, it follows from condition

(8.22), the definition of a derivative, and the dominated convergence theorem that
d din(f(z|6))
— [In(f(z|0))f(z|6,)dz = [———~2f(z|6,)dz
def (f(z/0))f(zl 6z = [ o6 (8.25)

Similarly, it follows from condition (8.21) , Taylor’s theorem and the dominated convergence

theorem that
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df(z| 0) d d
29 4, - @ rfzlo)dz = 21 - 0.
o - f (z]6) - (8.26)

Moreover,

f—dln(g(eze))f(zeo)dze_eo = fdf(fz(z—?)e’)def(zeo)dzezeo - [ dfgee)d2|e=eo (8.27)

The first part of theorem now follows from (8.23) through (8.27).
Similarly to (8.25) and (8.26) it follows from the mean value theorem and the conditions

(8.21) and (8.22) that

d2  +dn(f(z/0))
@ f In(f(z|0))f(z|6,)dz = f Wf(zeo)dz (8.28)
and
A0y, - 4 rtm6)dz - 0
/ @7 (de)zf @0z = 0. (8:29)

The second part of the theorem follows now from (8.28), (8.29) and

diiz}o) - [ e, - | Sl
[ o (26902 |y, = [ D Az oeq, - ] ooy | @002,

2
-/ d(;(—ez;e)dz lo=g, ~ [(dIn(f(z|0))/dOfH(z| 0g)lz |y,

The adaptation of the proof to the general case is pretty straightforward and is therefore left as an
exercise. Q.E.D.

The matrix
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H_ = VarldIn(C (0))/00" ‘e:e)

o (8.30)
is called the Fisher information matrix. Aswe have seen in Chapter 5, the inverse of the Fisher
information matrix is just the Cramer-Rao lower bound of the variance matrix of an unbiased

estimator of 6.

8.4.3 Generic conditionsfor consistency and asymptotic nor mality
The ML estimator isaspecia case of an M-estimator. In Chapter 6 | have derived generic
conditions for consistency and asymptotic normality of M-estimators, which in most cases apply

to ML estimators aswell. The case (8.11) is one of the exceptions, though. In particular, if
Assumption 8.2 plim__sup,_|In(C,(6)/L,(8,)) - ElIn(L (0)/C (6,)]] = 0 and
lim___sup,_o [E[IN(L,(0)/L ()] - 0(8]6,)| = O, where 0(6]6,) is a continuous function in 6,

such that for arbitrary 6 >0, sup,_. 1005 1616, < 0,

then the ML estimator is consistent:

Theorem 8.3: Under Assumption 8.2, plim__6 = 0.

The conditions in Assumption 8.2 need to be verified on a case-by-case basis. In

particular, the uniform convergence in probability condition has to be verified from the
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conditions of the uniform weak law of large numbers. The last condition in Assumption 8.2, i.e.,

SUPyce: o-o,-5 {(F10) < O, follows easily from Theorem 8.1 and the continuity of (6{6,).
Some of the conditions for asymptotic normality of the ML estimator are already listed in

Assumption 8.1, in particular the convexity of the parameter space ®, and the condition that 6, is

an interior point of ®. The other (high-level) conditions are:

Assumption 8.3: For i ,i, = 1,2,3,...m,

AnL©®)n AL ®)in

lim su 8.31
Py eg@? 06, 00, 096, 00, ( )
1 2 1 2
and
! An(C,(6))/n h ©) - o 63
im.__ suplEl———~—| + h. . =0, )
N-oo eeg aellaelz Il,I2

where hilyiz(e) is continuousin 6,. Moreover, the mxm matrix H with elements hil,iz(eo) IS non-

singular. Furthermore,

aln(L,(8,))//n
a0,

~a N.{O,H]. (8.33)
Note that the matrix H isjust the limit of H, /n, with H,, the Fisher information matrix
(8.30). Condition (8.31) can be verified from the uniform weak law of large numbers. Condition

(8.32) isaregularity condition which accommodates data-heterogeneity. In quite afew cases we

may take hil,iz(e) = -n *1E[<92|n(En(e))/(aeilaeiz)]. Finally, condition (8.33) can be verified from
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the central limit theorem.

Theorem 8.4: Under Assumptions 8.1-8.3, y/n(8 - 6,) ~, N [0,H ].

Proof: It follows from the mean value theorem (see Appendix I1) that for each i €

{1,..,m} thereexistsa A € [0,1] such that

an(C)/yn  aln(L(6))/y/n
T o6 = T -,

(8.34)
. [ An(©0)/n

2000, |70 Vn(® - 0,),

The first-order condition for (8.2) and the condition that 6, is an interior point of ® imply

plim___nYZIn(L, (6))/36,,_5 = O. (8.35)

Moreover, the convexity of © guarantees that the mean value 6,+1.(6-6,) is contained in ©. It
follows now from the consistency of 0 and the conditions (8.31) and (8.32) that
(L, (6))/n

aeael 9:90@1(@790)
(8.36)

I,
I
1
I

dn(L, (6))/n
9000 0=0,+3,(0-0,)
m

The condition that H is nonsingular allows us to conclude from (8.36) and Slutsky’ s theorem
that

pim_ H " =H, (8.37)

N-oc
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hence it follows from (8.34) and (8.35) that
Jn® - 0) = -H Y@In(L (0,))/005)/y/n + 0,(1). (8.38)
Theorem 8.4 follows now from condition (8.33) and the results (8.37) and (8.38). Q.E.D.
In the case of arandom sample Z,,...,Z, the asymptotic normality condition (8.33) can
easily be derived from the central limit theorem for i.i.d. random variables. For example, let
againthe Z'sbe k-variate distributed with density f(z|6,). Then it follows from Theorem 8.2

that under Assumption 8.1,
E[aIn(f(Z,]0,))/905] = n *E[aIn(L,(6,))/005] = O
and

Var[aIn(f(z,|0,))/365] = n Var[aln(L (0,))/005] = H,

say, so that (8.33) straightforwardly follows from the central limit theorem for i.i.d. random

Vectors.

8.4.4 Asymptotic normality in thetime series case

In the time series case (8.6) we have

aln(L,(6,))/85 n
GO 1 5hy, (8:39)
Jn ynit
where
U, = aIn(f,(Z,]0))/005, U, = AIn(f(ZJZ, 1---Z,,89)I00q for t > 2. (8.40)

The process U, isamartingale difference process (see Chapter 7): Denoting for t > 1,
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F, = o(Z,,....Z), and letting .7 jbethetrivial o-algebra{Q,o}, itiseasy to verify that fort > 1,
E[U}7, ] = 0 as. Therefore, condition (8.33) can in principle be derived from the conditions
of the martingale difference central limit theorems (Theorems 7.10-7.11) in Chapter 7.
Note that even if Z, isastrictly stationary process, the U,’s may not be strictly stationary.
In that case condition (8.33) can be proved by specializing Theorem 7.10 in Chapter 7.
An example where condition (8.33) follows from Theorem 7.11 in Chapter 7 isthe Auto-

Regressive (AR) model of order 1.

Z =a +BZ , + ¢, where g isi.i.d. N(O,c® and || < 1. (8.41)
The condition || < 1 is necessary for strict stationarity of Z,. Then for t > 2 the conditional

distribution of Z given 7, , = o(Z,,...Z, ;) is N(a + BZ _,,6%), sothat, with 6, = (a,B,69)",

(8.40) becomes

€

” a(—l/z(Zt—a—BZt,l)Z/GZ - Yn(c?) - In(\/2_7f)> _ iz eZ, 1 _ (8.42)
(¢

t d(a,B,0%) Y(elo? - 1)

Sincethe ¢, ‘sarei.i.d. N(0,6%) and e, and Z,_, are mutually independent it followsthat (8.42)
isamartingale difference process, not only with respect to .7, = o(Z,,...,Z,) but also with respect

t

to 7. = o({Z_} ). ie, E[U}7 ] =0as

By backwards substitution of (8.41) it followsthat Z, = Zj“;o[}j ((x+eH) so that the
marginal distribution of Z, is N[a/(1-B),5%/(1-p?)]. However, thereis no need to derive U, in
this case, because thisterm isirrelevant for the asymptotic normality of (8.39). Therefore, the

asymptotic normality of (8.39) in this case follows straightforwardly from the stationary

martingale difference central limit theorem, with asymptotic variance matrix
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1 — 0
1-p
H = Var(U) = 12 CH
Yo B @By 1P
0 0 1
262

8.4.5 Asymptotic efficiency of the ML estimator
As said before, the ML estimation approach is a specia case of the M-estimation
approach discussed in Chapter 6. However, the position of the ML estimator among the M-
estimatorsis aspecia one, namely the ML estimator is (under some conditions) asymptotically
efficient.
In order to explain and prove asymptotic efficiency, let
0 = argmax, o(1/n)X],9(Z,.6) (8.43)
be an M-estimator of
6y = argmax,_oE[9(Z,,0)], (8.44)
where again Z,,...,Z, isarandom sample from a k-variate absolutely continuous distribution
with density f(z[0,), and ® < R™ isthe parameter space. In Chapter 6 | have set forth
conditions such that
/n(@-6,) -, N, [0,ABA Y, (8.45)

where
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39(Z,,8,)
—
360,065

9°9(z,6,)

A=-E - ka T
90,00,

f(z0,)dz (8.46)

and
B = E|l0g(z,.6,)/063og(Z, .0,)/00,)| = ka(ag(z, 0)/000 J0u(z,00/30,)f(@0)dz (8.47)
Aswill be shown below, the matrix A 'BA 1 - H ! is positive semi-definite, hence the
asymptotic variance matrix of 6 is"larger" (or at least not smaller) than the asymptotic variance
matrix H * of the ML estimator 0. In other words, the ML estimator is an asymptotically
efficient M-estimator.
This proposition can be motivated as follows. Under some regularity conditions, similarly
to Assumption 8.1, it follows from the first-order condition for (8.44) that
ka(ag(z,eo)/aeg)f(z|eo)dz - [ oElg(zoN/a0")i(z0 )z, ,, = O (8.48)
Since equality (8.48) does not depend on the value of 0, it follows that for all 0,
ka(ag(z,e)/aeT)f(zle)dz - 0. (8.49)

Taking derivatives inside and outside the integral (8.49) again yield:

[ SYZ0) f0yciz + fk(ag(z,e)/aeT)(af(zle)lae)dz

< 30007
2 (8.50)
- | 9929 fz9)qz + [ Jeatzoya0maIn(p)G0KE0)z - O.
B 90007 R
Replacing 6 by 6, it follows from (8.46) and (8.50) that
39(Z.,0.) \[ aIn(f(Z,16.))
E - [ L)) | (8.51)
00, <L

Since the two vectorsin (8.51) have zero expectation, (8.51) also reads as



314

39(Z..0,) aln(f(Z,|o
Cov( 1T o Antlt Tll 0))] = - (8.52)

It follows now from (8.47), (8.52) and Assumption 8.3 that

99(Z,,0,)/ 893
Var =
aIn(f(Z,10,))/a8g

B -A
-A H

which of course is positive semi-definite, and therefore so is

Afl
ﬁfl

B -A
-A H

=ABBAL-H™

i

Note that this argument does not hinge on the independence and absol ute continuity
assumptions made here. We only need that (8.45) holds for some positive definite matrices A

and B, and that

B -A
-A H

L | =.00(z,0,)1005 N ”{(o
Jnl ain(C (6,100 0

8.5. Testing parameter restrictions

8.5.1 Thepseudot test and the Wald test

In view of Theorem 8.2 and Assumption 8.3 the matrix H can be estimated consistently

by the matrix H in (8.53):
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-
g oo oGO (8.53)

p
000" | ;

Denoting by e thei-th column of the unit matrix I, it follows now from (8.53), Theorem 8.4

and the results in Chapter 6 that:

Theorem 8.5: (Pseudo t-test) Under Assumptions 8.1-8.3, {, = /ne '0/,/e'"H e -, N(0,1) if

e'0, = 0.

Thus the null hypothesis H,,: eiTeo = 0, which amountsto the hypothesis that the i-th
component of 0, is zero, can now be tested by the pseudo t-value ﬂ in the same way as for M-
estimators.
Next, consider the partition
0, = (91’0) L 0,,€R™, 0, ¢ R, (8.54)
e2,0 ’ ’
and suppose that we want to test the null hypothesis 6, ; = 0. This hypothesis corresponds to the
linear restriction RO, = 0, whereR=(O,l,). It follows from Theorem 8.4 that under this null
hypothesis

VIR ~, N.(0,RH 'RT). (8.55)
Partitioning 6, H " and H * conformably to (8.54) as

A 0 A HeD |5e2 B qeD Fa2
o= " H1=[ A= , (8.56)

éz H 21 H (22 H 21 H (22)
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it followsthat 6, = R), H®? = RA 'RT, and H?? = RH 'R, henceit follows from (8.55)

thet (H (2'2))7]]2\/5@2 ~, N.(0,1,) and consequently:

Theorem 8.6; (Wald test) Under Assumptions 8.1-8.3, né;(l—i (2‘2))71?)2 ~q 1s if0,,=0.

8.5.2 ThelLikelihood Ratio test
An alternative to the Wald test is the Likelihood Ratio (LR) test, which is based on the
ratio

MaX, o o obn©®)  L,(6)

A= _ "
max, oL .(6) L.(0)

whereb is partitioned conformably to (8.54) as

and

D
1
1

é ~
' (OJ = argmex(_,(0), (857)

5 0 0€@: 0,=0

isthe restricted ML estimator. Note that 1 is always between zero and one. The intuition behind
the LR testisthat if 6, , = O then A will approach 1 (in probability) as n - because then both

the unrestricted ML estimator 6 and the restricted ML estimator § are consistent . In particular:
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Theorem 8.7: (LR test) Under Assumptions 8.1-8.3, -2In(X) -, %7 if 0,,=0

Proof: Similarly to (8.38) we have

. _ | aIn(C (0))/
i, -0y = Ak [%W ] r oD,
1

where H , isthe upper-left (m-r)x(m-r) block of H:

and consequently,

-1
V(0 - 0y) = (H“ °
O

a|n([n(eo))/¢ﬁ] o
@.

= (8.58)
O 90,
Subtracting (8.58) from (8.34) and using condition (8.33) yield
. — . |[H T ol|[ an( (6.))//n
@ -8 =t — +0,(1) ~4 N, (0,4), (8.59)
O O a0,
where
T-1 T-1 -1
a=lato| ™ Olalar M O g O (8:60
O O O O O O

Thelast equality in (8.60) follows straightforwardly from the partition (8.56).

Next, it follows from the second-order Taylor expansion around the unrestricted ML
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estimator 6 that for some fj € [0,1],

. A o ~ ~ alnlL (6
In®) = InL,@) - In(C,®) = (e-e>'(”(—'f)> 9:@)
3An(C (0))/ X (5.561)
~ A n n ~ A ~ A — ~ A
+;ﬁ(e-e){ o e:@ﬂﬁ(aa)] /n(@-0) = - %ﬁ(e-ef Hy/n(8-6) + o,(1),
where the last equality in (8.61) follows from the fact that ssimilarly to (8.36),
3An(L(0))/n m
— -, ~H. (8.62)
9600" 0=0+7(6-0) i
Thus we have
-2n() = (A 2/n@-8)av2HA? A ¥2/n@-8)) + o,(D). (8.63)

Since by (8.59), A ¥2/n(6-6) ~ N,(0,1.) isdistr., and by (8.60) the matrix AVZHAY? is
idempotent with rank( AY2HAY?) = trace{ AY?’HAY?) = r, the theorem follows from the resultsin

Chapters5and 6. Q.E.D.

8.5.3 ThelLagrange Multiplier test
The restricted ML estimator § can also be obtained from the first-order conditions of the
Lagrange function <(0,u) = In([n(e)) - Ggu, where 4 € R" isavector of Lagrange

multipliers. These first-order conditions are:
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3L(8), )/6] - anlC(®))0; |, = O,

-3, =i

(0, p)/o0) - aIn(l'())/a0 |, 5 - ft = O,

-3, =i

OL(O, W/OKT |o5 o = 6, = 0.

Hence

1[0) _ anlC@®)yn |
\/ﬁ( ﬁ) ‘e:e- (8.64)

a0’

Again, using the mean value theorem we can expand this expression around the unrestricted ML

estimator 6, which then yields

o .
%( ﬁ) - RG-6) + o). ©69
n
hence
~T1 7 (22)~ _ _
B Lor it | 0| - VRE-DTRGD) ¢ 0,0 - £ (866)
n n fi P

Replacing H in this expression by a consistent estimator on the basis of the restricted ML
estimator 0, say:

g (L, (8))/n

= (8.67)
00007

0-0

and partitioning H * similarly to (8.56) as
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7@y (732
3 HEY H
H = (8.68)

H 21 H 22

we have

Theorem 8.8: (LM test) Under Assumptions 8.1-8.3, {i"H“?fi/n -, 47 if 0,,=0.

8.5.4 Which test to use?
TheWald, LR and LM tests basically test the same null hypothesis against the same

alternative, so which one should we use? The Wald test employs only the unrestricted ML

estimator 0 , S0 that this test is the most convenient if we have to conduct unrestricted ML

estimation anyhow. The LM test is entirely based on the restricted ML estimator é, and there are

situations where we start with restricted ML estimation, or where restricted ML estimation is
much easier to do than unrestricted ML estimation, or even where unrestricted ML estimation is
not feasi ble because without the restriction imposed the model isincompletely specified. Then

the LM test is the most convenient test. Both the Wald and the LM tests require the estimation of
the matrix H. That may be a problem for complicated models because of the partial derivatives
involved. In that case use the LR test.

Although | have derived the Wald, LR and LM tests for the special case of anull

hypothesis of the type 6, , = 0, the resultsinvolved can be modified to general linear hypotheses



of theform RO, = g, whereRisar x mmatrix of rank r, by reparametrizing the likelihood

function, as follows. Specify a(mr) x mmatrix R. such that the matrix

isnonsingular. Then define new parameters by
B, R0 g q
Substituting

6-Q7% - Ql(o]
q

in the likelihood function, the null hypothesisinvolved isequivaent to B, = O.

8.6. Exercises

1. Derive § = argmax,L (6) for the case (8.11), and show that if Z,,...,Z, isarandom
sample then the ML estimator involved is consistent.

2. Derive § = argmax,L (6) for the case (8.13).

3. Show that the log-likelihood function of the Logit model isunimodal, i.e., the matrix
d2In[L (6)]/(9090T) is negative-definite for all 6.

4, Prove (8.20).

5. Extend the proof of Theorem 8.2 to the multivariate parameter case.

321
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6. Let (Y ,X)),...,(Y,,X,) be arandom sample from a bivariate continuous distribution with

conditional density

f(y|x,0,) = (xleo)exp(—y.x/eo) if x> 0andy > 0; f(y|x,0,) = O elsewhere,

where 6, > 0 is an unknown parameter. The marginal density h(x) of X; is unknown, but we do
know that h does not depend on 0, and h(x) = 0 for x < O.

@ Specify the conditional likelihood function |_“n°(e).

(b) Derive the maximum likelihood estimator § of 0,

() Show that 6 isunbiased.

(d) Show that the variance of 8 is equal to 93/ n.

(e Verify that this variance is equal to the Cramer-Rao lower bound.

H Derivethe test statistic of the LR test of the null hypothesis 6, = 1, in the form for which
it has an asymptotic Xi null distribution.

(9) Derive the test statistic of the Wald test of the null hypothesis 6, = 1.

(h) Derive the test statistic of the LM test of the null hypothesis 0, = 1.

() Show that under the null hypothesis 6, = 1 the LR test in part (f) has alimiting Xi
distribution.

7. Let Z,,....,Z, be arandom sample from the (nonsingular) N,[u,X] distribution. Determine
the maximum likelihood estimators of p and X.

8. In the case where the dependent variable Y is a duration, for example an unemployment
duration spell, the conditional distribution of Y given avector X of explanatory variablesis often

modeled by the proportional hazard model
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PIY < yiX = o = 1 - exp[-9()/A0ck), y > 0, (8.70)
where A(t) is apositive function on (0,) such that /yA(t)dt = «, and ¢ isa positive function.
The reason for calling this model a proportional hazard model is the following. Let f(y[x)
be the conditional density of Y given X =x, and let G(y)) = expl-@(X/u(t)ct), y > 0. The
latter function is called the conditional survival function. Then f(y[x)/G(yjx) = @e(X)A(y)iscalled
the hazard function, because for asmall 6 > 0, &f(y|x)/G(y|X) is approximately the conditional
probability (hazard) that Y € (y,y+d], giventhat Y>yand X =x.

Convenient specifications of A(t) and ¢(X) are:

Mt) = yt*1, vy > 0 (Weibull specification)
(8.71)
@) = exp(a + BX)

Now consider arandom sample of size n of unemployed workers. Each unemployed
worker j isinterviewed twice. Thefirst time worker j tells the interviewer how long he or she has
been unemployed, and reveals his or her vector X; of characteristics. Call thistime Y- A fixed
period of length T later the interviewer asks worker j whether he or sheis still (uninterruptedly)
unemployed, and if not how long it took during this period to find employment for the first time.
Call thisduration Y,;- In the latter case the observed unemployment duration is Y, =Y+ Y,
but if the worker is still unemployed we only know that Y, > Y, +T. The latter iscalled

censoring. Assuming that the X’s do not change over time, setup the conditional likelihood

function for this case, using the specifications (8.70) and (8.71).
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Endnotes
1 See Chapter 3 for the definition of these conditional probabilities.

2. Recall from Chapter 1 that the union of o-algebrasis not necessarily a o-algebra.
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Appendix |
Review of Linear Algebra

.1.  Vectorsin aEuclidean space
A vector isaset of coordinates which locates a point in a Euclidean space. For example,

in the two-dimensional Euclidean space R? the vector

).

isthe point which location in a plane is determined by moving a, = 6 units away from the

a =

origin along the horizontal axis (axis 1), and then movinga, = 4 units away parallel to the

vertical axis (axis 2), asdisplayed in Figurel.l.

Figurel.1: A vector in R?

The distances a, and a, are caled the components of the vector a involved.
An alternative interpretation of the vector a isaforce pulling from the origin (the
intersection of the two axes). Thisforce is characterized by its direction (the angle of the linein

Figurel.1) and its strength (the length of the line piece between point a and the origin). Asto the
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latter, it follows from Pythagoras’ Theorem that this length is the square root of the sum of the
squared distances of point a from the vertical and horizontal axes: \/af+a22 = {6%+4? = 3/6,

and is denoted by |al|. More generdly, the length of a vector

= (1.2)

in R" isdefined by

def.

IXI = yE . (1.3)

There are two basic operations that apply to vectorsin R". Thefirst basic operation is

scalar multiplication:

C.X;

def. | C.
C.X Xz , (1.4)

C.X

wherec € R isascalar. Thus, vectorsin R"are multiplied by a scalar by multiplying each of the
components by this scalar. The effect of scalar multiplication is that the point x is moved a factor
c aong the line through the origin and the original point x. For example, if we multiply the vector

ainFigurel.1l by c = 1.5, the effect is the following:



Figure |.2: Scalar multiplication

The second operation is addition: Let x be the vector (1.2), and let

Then

Y1
Y>

Yn

X1 *Yq

X%*Y,

XI’I +yn
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(1.5)

(1.6)

Thus, vectors are added by adding up the corresponding components. Of course, this operation is

only defined for conformable vectors, i.e., vectors with the same number of components.

As an example of the addition operation, let a be the vector (1.1), and let
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(-0
SNCRERER

say. Thisresult isdisplayed in Figure 1.3 below. We see from Figure 1.3 that the origin together

Then

with the pointsa, b and ¢ =a + b form a parallelogram (which is easy to prove). In terms of
forces, the combined forces represented by the vectors a and b result in the force represented by

thevectorc=a+ b.

-

Figurel.3:c=a+b

The distance between the vectorsa and b in Figure 1.3 is |a - b|. To seethis, observe
that the length of the horizontal line piece between the vertical line through b and point ais
a,-b,, and similarly the vertical line piece between b and the horizontal line through a has
length b,-a,. These two line pieces, together with the line piece connecting the points a and b,

form atriangle for which Pythagoras' Theorem applies: The squared distance betweenaand b is
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equal to (a,-b,)* + (a,-b,)* = |a-b|>. More generally,

The distance between the vector x in (1.2) and the vector yin (1.5) is

Ix =yl = XL - v)> (1.9)

Moreover, it follows from (1.9) and the Law of Cosines' that:

The angle ¢ between the vector xin (1.2) and the vector y in (1.5) satisfies

2 2 vll2 Y oxv.
cos(g) = Ix[= + [yl IX=yl© _ leXJyJ_ (1.10)
2|IX]I.1yI IXI. 1yl

[.2.  Vector spaces
The two basic operations, addition and scalar multiplication, make a Euclidean space R"

aspecial case of avector space:

Definition 1.1: Let V be a set endowed with two operations, the operation "addition", denoted
by "+", which maps each pair (x,y) in VxV into V, and the operation "scalar multiplication”,
denoted by a dot (.), which maps each pair (¢,Xx) in R x V intoV. Theset Viscalled a vector
gpaceif the addition and multiplication operations involved satisfy the following rules, for all x,
yandzinV, and all scalarsc, c,andc,in R:

(@ x+ty=y+Xx

(b)) x+@y+=x+y)+z

(c) Thereisa unique zero vector 0inV suchthat x + 0= x;

(d) For each x there exists a unique vector -xinV such that x + (-x) = 0;
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(e 1x=x;
) (CC)x=cu(CX);
(9 c.(x+y) =cx+vcy;

(h) (c, + ¢).X=C.X+ CuX

Itistrivial to verify that with addition "+" defined by (1.6) and scalar multiplication c.x
defined by (1.4) the Euclidean space R" is a vector space. However, the notion of avector space
is much more general. For example, let V be the space of all continuous functionson R, with
pointwise addition and scalar multiplication defined the same way as for real numbers. Thenitis
easy to verify that this space is a vector space.

Another (but weird) example of avector space isthe space V of positive rea numbers
endowed with the "addition" operation x + y = x.y and the "scalar multiplication" c.x = X°. In this

case the null vector O isthe number 1, and -x = 1/x.

Definition 1.2: A subspace V, of a vector space V is a non-empty subset of VV which satisfies the
following two requirements:
@ For any pair X, yinV,, x+ yisinV,;

(b) For any xinV, and any scalar c, c.xisinV,.

It isnot hard to verify that a subspace of avector space is avector space itself, because
the rules (a) through (h) in Definition 1.1 are inherited from the "host" vector space V. In

particular, any subspace contains the null vector 0, as follows from part (b) of Definition 1.2 with
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¢ = 0. For example, the line through the origin and point ain Figure 1.1, extended indefinitely in
both directions, is a subspace of RZ. This subspace is said to be spanned by the vector a. More

generdly,

Definition |.3: Let X;,X,,....,X, be vectorsin a vector space V. The space V, spanned by x,,%,,....,X,
isthe space of all linear combinations of x;,x,,....,X, , i.e., each y in V, can be written as
y = X 1¢%; for some coefficients ¢; in R
Clearly, this space V, is a subspace of V.
For example, the two vectors a and b in Figure |.3 span the whole Euclidean space R?,

because any vector x in R? can be written as,
X, 6 3 6c, +3c,
X = = ) + C, = ,
X, 4 7 4c,+7c,

where

Ty

2
- = c:——x+—

- 15

The same appliesto the vectors a, b and c in Figure 1.3: They also span the whole Euclidean
space R?. However, in this case any pair of a, b and ¢ does the same, so one of these three
vectorsis redundant, because each of the vectors a, b and ¢ can aready be written as alinear

combination of the other two. Such vectors are called linear dependent:
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Definition |.4: A set of vectors x,,X,,....,X, in avector space Vislinear dependent if one or more
of these vectors can be written as a linear combination of the other vectors, and the set is called
linear independent if none of them can be written as a linear combination of the other vectors.

n

In particular, X;,X,,....,x, arelinear independent if and only if Zchxj = 0 implies that

C]_ = C2 = = Cn = 0

For example, the vectorsa and b in Figure .3 are linear independent, because if not then
there would exists ascalar ¢ such that b = c.a, hence 6 = 3c and 4 = 7¢, which isimpossible. A

set of such linear independent vectorsis called abasis for the vector space they span:

Definition 1.5: A basis for a vector spaceis a set of vectors having the following two properties:
@ Itislinear independent;

(b) The vectors span the vector space involved.

We have seen that each of the subsets{a,b}, {a,c} and {b,c} of theset{a, b, ¢} of
vectorsin Figure 1.3 islinear independent, and span the vector space R?. Thus, there arein
genera many bases for the same vector space, but what they have in common is their number:

This number is called the dimension of V.

Definition 1.6: The number of vectorsthat form a basis of a vector spaceis called the dimension

of this vector space.
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In order to show that this definition is unambiguous, let {Xx;,X,.....x,} and {y,,Y,,.....y} be
two different bases for the same vector space, and let m= n +1. Each of they,'s can be written as
alinear combination of X, X,,.....x,: y; = Ej”:lci‘jxj. If {y1.Yor---sYreq} IS linear independent then
Yizy = Ej”:lZileici‘jxj =0 ifandonlyif z = ...... =z, = 0. Butsince{X;X,....X} is
linear independent we must also have that ijllzici‘j = 0 forj=1,..,n. Thelatter isasystem of
n linear equations in n+1 unknown variables z and therefore has anon-trivial solution, in the
sense that there exists asolution z,,...,z, , such that |least one of the Z'sis non-zero. Consequently,
{Y1:Yor---Yae 1} CANNOL be linear independent.

Note that in principle the dimension of avector space can be infinite. For example,
consider the space R™ of al countable infinite sequences X = (X;,X,, X5, ceveeenes ) of red
numbers, endowed with the addition operation

X+ Y = (X, X, Xgs e ) (Y Yo Yareenn ) = (XY X% Yo X Y e )
and the scalar multiplication operation

CX = (CX[,CXy,CXgyrrrnrnnnnne, ).
Let y, be acountable infinite sequence of zeros, except for the i-th element in this sequence,
whichisequal to 1. Thus, y, = (1,0,0,-), y, = (0,1,0,-), etc. Then {y,,y,.ys,...} isabasis
for R, with dimension «. Also in this case there are many different bases; for example, another

basisfor R is y, = (1,0,0,0,-),y, = (1,1,0,0,-),y, = (1,1,1,0,~), etc.
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.3.  Matrices
In Figure 1.3 the location of point ¢ can be determined by moving nine units away from

the origin along the horizontal axis 1, and then moving eleven units away from axis 1 parallel to
the vertical axis 2. However, given the vectors a and b an alternative way of determining the
location of point cis: Move |a| units away from the origin along the line through the origin and
point a (the subspace spanned by a), and then move ||b|| units away parallel to the line through
the origin and point b (the subspace spanned by b). Moreover, if we take |a| as the new distance
unit along the subspace spanned by a, and ||b|| as the new distance unit along the subspace
spanned by b, then point ¢ can be located by moving one (new) unit away from the origin along
the new axis 1 formed by the subspace spanned by a, and then move one (new) unit away from
this new axis 1 parallel to the subspace spanned by b (which is now the new axis 2). We may
interpret this as moving the point (i) to anew location: point c. Thisis precisely what a matrix
does: moving pointsto a new location by changing the coordinate system. In particular, the
matrix

A = (ab) = (6 3) (1.12)

4 7

moves any point

X = (Xl] (1.12)
%

to anew location, by changing the original perpendicular coordinate system to a new coordinate
system, where the new axis 1 is the subspace spanned by the first column, a, of the matrix A,

with new unit distance the length of a, and the new axis 2 is the subspace spanned by the second
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column, b, of A, with new unit distance the length of b. Thus, this matrix A moves point x to

point
~ AX - b-x)° I 113
y = = X.a + X.b =X 4 X 2] - ax 7%, . (1.13)
In general, an m x n matrix
.
A= : -~ (1.14)
An1 " 8mn

moves the point in R" corresponding to the vector xin (1.2) to apoint in the subspace of R™

spanned by the columns of A, namely to point

& PE IR Y1
y = AX = ij N : =1 . (1.15)
%mi X aanX Y

1,m

B-| : - | (1.16)

,m

and let y be given by (1.15). Then

11 b1,m z:jnzl""1,jxj ZJ'n=1(ernzlbl,sasj)xj
By = BAX) = | : =~ ; = : = CX, (1.17)

i Bem) | T, % Zle(Ers":lbk,sasj%

where
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C=|: =~ :|withg; =Xlba,. (1.18)
C1 " Cin
Thismatrix C is caled the product of the matrices B and A, and is denoted by BA. Thus, with A

given by (1.14) and B given by (1.16),

by byl & &, Yob ag, - Xb A,
BA =| @ -~ oo = : : , (1.19)

by = B\ By Ann)  (EMboa, - ST A,

whichisa k x n matrix. Note that the matrix BA only existsif the number of columnsof B is
egual to the number of rows of A. Such matrices are called confor mable. Moreover, note that if
A and B are also conformable, so that AB is defined?, then the commutative law does not hold,
i.e., ingeneral AB = BA. However, the associative law (AB)C = A(BC) does hold, asis easy to

verify.

Let Abethe m x n matrix (1.14), and let now B be another m x n matrix:

B-| : - . (1.20)

As argued before, Amapsapoint x € R" toapointy=Ax € R™ and B mapsxtoapoint z=Bx e
R™. It iseasy to verify that y+z = Ax + Bx = (A+B)x = Cx, say, where C= A+ B isthe m x n

formed by adding up the corresponding elements of A and B:
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&g A b, - b, a thy, - a by,
A+B=|: -~ |+ ~ :]-= : : : (1.22)

CH- W bus B RS I

Thus, conformable matrices are added up by adding up the corresponding el ements.
Moreover, for any scalar ¢ we have A(c.x) = ¢.(AX) = (c.A)x, where c.A is the matrix

formed by multiplying each element of A by the scalar c:

1 v Y4 Ca, ~ Ca,
CA=c| : =~ | = T (1.22)

8n1 " 8@mn Can, ~ Cay,
Now with addition and scalar multiplication defined in thisway, it is easy to verify that

al the conditionsin Definition .1 hold for matricesaswell, i.e., the set of al m x n matricesis
avector space. In particular, the "zero" element involved isthe m x n matrix with al elements

equal to zero:

O =|: ~ :]. (1.23)

.4. Theinverseand transpose of a matrix

The question | now will address is whether for agiven m x n matrix A thereexistsa
n x m matrix B such that, withy = Ax, By = x. If so, the action of Aisundone by B, i.e.,, B
movesy back to the original position x.

If m< nthereisno way to undo the mappingy = Ax, i.e., there does not existsan n x m

matrix B such that By = x. To seethis, consider the 1 x 2 matrix A= (2,1). Thenwith xasin
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(1.12), Ax=2x, + X, =y, but if we know y and A, then we only know that x islocated on the line
X, = Y - 2X;, but there is no way to determine where on thisline.

If m= nin (1.14), so that the matrix A involved isa square matrix, we can undo the
mapping A if the columns® of the matrix A are linear independent. Take for example the matrix A

in (1.11) and the vector y in (1.13), and let

A
30 10
B - (1.24)
2 1
15 5
Then
1
30 10([6x+3 X
By - I (1.25)
_ 2 1M X
15 5

so that this matrix B moves the point y = Ax back to x. Such amatrix is called the inver se of A,
and isdenoted by A 1. Notethat for aninvertible n x n matrix A, A'A = l,, where | isthe

N X n unit matrix:

100 -0
010 -0

=001 - 0. (1.26)
000 -~ 1

Note that aunit matrix is a special case of adiagonal matrix, i.e., asquare matrix with all off-
diagonal elements equal to zero.

We have seen that the inverse of Aisamatrix A 1 suchthat A A = |.4But what about
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AA 1?2 Does the order of multiplication matter? The answer is no:

Theorem |.1; If Aisinvertible then AA Y= I,i.e, Aistheinverseof A,

becauseitistrivia that

Theorem |.2: If A and B are invertible matricesthen (AB) ' =B 'A%,

Now let us give aformal proof of our conjecture that:

Theorem |.3: A square matrix isinvertible if and only if its columns are linear independent.

Proof: Let Abe n x n the matrix involved. | will show first that:
@ The columns a,,....,a, of Aarelinear independent if and only if for every b € R" the
system of n linear equations AXx = b has a unique solution.

To see this, suppose that there exists another solutiony: Ay = b. Then A(x-y) =0 and
x-y # 0, which imply that the columns a,,....,a, of A arelinear dependent. Similarly, if for every
b € R" thesystem Ax = b hasaunique solution, then the columns a,,....,a, of A must be
linear independent, because if not then there existsavector ¢ # 0 in R" such that Ac = 0, hence
if xisasolution of Ax= bthensoisx+ c.

Next, | will show that:
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(b) Aisinvertibleif and only if for every b € R" the system of n linear equations Ax = b
has a unique solution.

First, if Aisinvertible then the solution of Ax= bisx = A"'b, whichforeach b € R"is
unique. Second, let b = g be the i-th column of the unit matrix |,,, and let x, be the unique
solution of Ax; = e. Then the matrix X with columns x,,...,x, satisfies

AX = A(X, %) = (AX,—,AX) = (e,~,e) =1,
hence Aistheinverse of X: A= X, It follows now from Theorem I.1 that X is the inverse of A:
X=A"! QED.

If the columns of a square matrix A are linear dependent, then Ax maps point x into a
lower-dimensional space, namely the subspace spanned by the columns of A. Such amapping is
called asingular mapping, and the corresponding matrix A is therefore called singular.
Consequently, a square matrix with linear independent columnsis called non-singular. It
follows from Theorem 1.3 that a non-singularity is equivalent to invertibility, and singularity is
equivalent to absence of invertibility.

If m> nin (1.14), so that the matrix A involved has more rows than columns, we can also
undo the action of A if the columns of the matrix A are linear independent, as follows. First,
consider thetranspose® AT of the matrix Ain (1.14):

a‘l,l am,l
AT =| + -~ |, (1.27)

a1,n am,n

i.e,, AT isformed by filling its columns with the elements of the corresponding rows of A. Note

that
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Theorem |.4: (AB)" = B'A". Moreover, if A and B are square and invertible then
AT =AY, (AR L) =BA L) = (A )BL) = (ATYBT)?, and similarly,
1 _ _ 1

(AB)T)* = B7AT)T = (AT)HBT) " = (A t)TB )"

Proof: Exercise.
Since avector can aso beinterpreted as a matrix with only one column, the transpose
operation also applies to vectors. In particular, the transpose of the vector xin (1.2) is:
XT = (X, %, X,), (1.28)
which may be interpreted as a 1xn matrix.
Now if y = Axthen A'y= ATAx, where A"Aisan n x n matrix. If ATAisinvertible, then
(A'A) 'Aly = x, so that then the action of the matrix A isundone by the n x m matrix (ATA) *A'.

Thus, it remains to be shown that:
Theorem |.5: A"Aisinvertibleif and only if the columns of the matrix A are linear independent.

Proof: Let a,,....,a, bethe columnsof A. Then A'a,,....,A"a, are the columns of ATA.
Thus, the columns of AA are linear combinations of the columns of A. Suppose that the columns
of A'A are linear dependent. Then there exists coefficients ¢, not all equal to zero such that
cA'a, +-+ cATa = 0.Thisequation can berewrittenas A™(c,a, +-+ c.a) = 0. Since
a,,....,a, arelinear independent, we have c;a, +-+ ca, # 0, hencethe columnsof A'are
linear dependent. However, thisisimpossible, because of the next theorem. Therefore, if the

columns of A are linear independent, then so are the columns of ATA. Thus, the theorem under
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review follows from Theorem 1.3 and Theorem 1.6 below.

Theorem |.6: The dimension of the subspace spanned by the columns of a matrix A is equal to

the dimension of the subspace spanned by the columns of its transpose A'.

The proof of Theorem 1.6 has to be postponed, because we need for it the resultsin the

next sections. In particular, Theorem 1.6 follows from Theorems1.11, 1.12 and 1.13 below.

Definition 1.7: The dimension of the subspace spanned by the columns of a matrix A is called the

rank of A.

Thus, asguare matrix isinvertible if and only if its rank equalsits size, and if amatrix is

invertible then so isits transpose.

[.5. Elementary matrices and permutation matrices

Let Abethe m x n matrix in (1.14). An elementary m x m matrix E isamatrix such
that the effect of EA isthat amultiple of onerow of A isadded to another row of A. For
example, let E;;(c) be an elementary matrix such that the effect of E;;(c)Aisthat ctimesrow j is

addedtorowi <j:



Q. o A,
a171,1 ai—l,n
870, - ,TCa
E,©QA=| a.,;, ~ &, |- (1.29)
aj,l a]',n
1 7 Gnn

Then E ’j(c)ﬁ isequal to the unit matrix I, (compare (1.26)), except that the zero in the (i,))'s
position is replaced with anonzero constant c. In particular, if i=1 and j = 2in (1.29), so that
E,,(C)A adds c timesrow 2 of Ato row 1 of A, then

1 cO0+-0

0100
E,() =|001 - 0.

000 1
This matrix isaspecia case of an upper-triangular matrix; that is a square matrix with al the

elements below the diagonal equal to zero. Moreover, E, ,(C)A adds c timesrow 1 of Ato row 2

of A:
100 -0
cl1l0.-0
Ezyl(c) =10 01 - 0f, (1.30)
00O -1
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which isaspecia case of alower-triangular matrix, i.e., asquare matrix with all the elements
above the diagonal equal to zero.
Similarly, if Eisan elementary n x nmatrix, then the effect of AE isthat one of the

columns of A, times a nonzero constant, is added to another column of A. Thus,

Definition 1.8: An elementary matrix isa unit matrix with one off-diagonal element replaced

with a nonzero constant.

Note that the columns of an elementary matrix are linear independent, hence an
elementary matrix isinvertible. The inverse of an elementary matrix is easy to determine: If the
effect of EAisthat ctimesrow j of Aisadded to row i of A, then E * is an elementary matrix
such that the effect of E 'EAisthat -ctimes row j of EAisadded torow i of A, so that then

E 'EA restores A. For example, the inverse of the elementary matrix (1.30) is:

100 - 0)" 1 00 -0
c10-0 100
E,©'=[001 -0 =/001- 0|-=E,(0.
000 -1 0 00 -1

We now turn to permutation matrices:

Definition 1.9: An elementary permutation matrix is a unit matrix with two columns or rows
swapped. A permutation matrix isa matrix whose columns or rows are permutations of the

columns or rows of a unit matrix.
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In particular, the elementary permutation matrix that is formed by swapping the columnsi
and j of aunit matrix will be denoted by P;;.

The effect of an (elementary) permutation matrix on A is that PA swaps two rows, or
permutates the rows, of A. Similarly, AP swaps or permutates the columns of A. Whether you
swap or permutate columns or rows of a unit matrix does not matter, because the resulting

(elementary) permutation matrix isthe same. An example of an elementary permutation matrix is

0100
100 -0
P,=|001- 0.
000 -1

Note that a permutation matrix P can be formed as a product of elementary permutation matrices,
....... P. . . Moreover, note that if an elementary permutation matrix P, is applied to
klk i

itself, i.e.,, P;;P;;, then the swap is undone, and the result is the unit matrix: Thus, the inverse of

i
an elementary permutation matrix P,; is P, itself. Thisresult holds only for elementary

permutation matrices, though. In the case of the permutation matrix P = P, . ....... P.k’.k we have

Pl =P ... Pilyil' Since elementary permutation matrices are symmetric: P = P”-T, it

followsthat P = P, T

Ik!Jk ....... i]_ij]_

= P T. Moreover, if Eisan elementary matrix and P;; an

elementary permutation matrix then PE = EP,. Combining these results, it follows:

Theorem |.7: If E isan elementary matrix and P is a permutation matrix, then PE = EPT.

Moreover, Pt = P T,
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.6. Gaussian elimination of a square matrix, and the Gauss-Jordan iteration for
inverting a matrix
.6.1 Gaussian elimination of a square matrix

The results in the previous section are the tools we need to derive the following result:

Theorem |.8: Let A be a square matrix.

@ There exists a permutation matrix P, possibly equal to the unit matrix I, a lower-
triangular matrix L with diagonal elements all equal to 1, a diagonal matrix D, and an upper-
triangular matrix U with diagonal elements all equal to 1, such that PA = LDU.

(b) If Aisnon-singular and P = | this decompositionisunique, i.e., if A = LDU = L.D.U.,

thenL, =L, D, =D,andU, = U.

The proof of part (b) isasfollows: LDU = L.D.U. implies

LL.D, = buu,*’ (1.31)
It is easy to verify that the inverse of alower triangular matrix islower triangular, and that the
product of lower triangular matricesislower triangular. Thus the left-hand side of (1.31) islower
triangular. Similarly, the right-hand side of (1.31) is upper triangular. Consequently, the off-
diagonal elementsin both sides are zero: Both matricesin (1.31) are diagonal. Since D, is
diagonal and non-singular, it follows from (1.31) that L L, = DUU,le,j1 isdiagonal.
Moreover, since the diagona elementsof L * and L, areall equal to one, the same appliesto
L, ,ie, L™, =1,hencelL =L, . Similalywehave U = U,. Then D = L 'AU !

and D, = L AU .
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Rather than giving aformal proof of part (a) of Theorem 1.8, | will demonstrate the result
involved by two examples, one for the case that A is non-singular, and one for the case that A is
singular.
Example 1: Aisnonsingular.

Let

=N

2
3. (1.32)
1

P N A

We are going to multiply A by elementary matrices and elementary permutation matrices such
that the end-result will be a upper-triangular matrix. Thisis called Gaussian elimination.

First, add -¥2timesrow 1 torow 2in (1.32). Thisis equivalent to multiplying A by the

elementary matrix E,,(-%2). (Compare (1.30), with c = -%2)). Then

1 00|[2 4 2 2 4 2
E,(-»JA=[-0510[|1 2 3| =00 2. (1.33)
0 01){-11 -1 -11 -1

Next, add Y2 timesrow 1 to row 3, which is equivalent to multiplying (1.33) by the elementary
matrix E;,(Y2):

1 00| 2 4 2 2 4 2

E,,(WE,,(-¥»A =] 0 10| 0 0 2| =[00 2.
0501\-11-1 (030

(1.34)

Now swap the rows 2 and 3 of the right-hand side matrix in (1.34). Thisis equivalent to

multiplying (1.34) by the elementary permutation matrix P, , formed by swapping the columns 2



and 3 of the unit matrix |,. Then

100|242 (2402
P, Es (AE,,(-¥)A = |0 0 1[0 0 2| =|0 3 0

010/\030 002

(1.35)
200|121

=10 3 0/|0 1 O] = DU,

002001
say. Moreover, since P, isan elementary permutation matrix, we have that Pz’é = P, ., hence

2,37

it follows from Theorem 1.7 and (1.35) that

P, B, ()E, (-2)A = E; ()P, E, (-7AA = E;,(Y2)E, (-72)P, A = DU. (1.36)

Furthermore, observe that

1 00/f1 00 1 00
E,.(AE,,(-¥) = |-05 1 0|| 0 10/ =|-0510 (1.37)
o 01/)lo501 05 01
hence
-1
1 00 1 00
(Es (B, (-¥)) 1 =| -05 1 0 -] 05 10| -L, (1.38)
05 01 0501

say. Combining (1.36) and (1.38), it follows now that P, ,A = LDU.
Example 2: Aissingular.
Theorem 1.8 aso holds for singular matrices. The only difference with the non-singular

caseisthat if Aissingular then the diagonal matrix D will have zeros on the diagonal. To

demonstrate this, let now
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= N
R N A

2
1. (1.39)
1

Since thefirst and last column of this matrix A are equal, the columns are linear dependent,

hence A issingular. Now (1.33) becomes

1 00|(2 4 2 2 4 2
E,(-»A=[-0510(12 1| -= 0 0], (1.40)
0O O01i\-11 -1 -11 -1
(1.34) becomes
1 ol 2 4 2 2 4 2
E,,(QE,(-»A=| 0 1 0//0 0 0| =|0 0 O, (1.41)
050 1){-11 -1 030
and (1.35) becomes
100|[2 42
P, E;,(DE,,(-2A = |0 0 0|0 O O] = 3
010030 00O
(1.42)
200|121
=103 0|0 10| =
000001

The formal proof of part (a) of Theorem 1.8 issimilar to the argument in these two
examples, and is therefore omitted.

Note that the result (1.42) demonstrates that:
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Theorem 1.9: The dimension of the subspace spanned by the columns of a square matrix A is

egual to the number of non-zero diagonal elements of the matrix D in Theorem 1.8.

Example 3: A is symmetric and nonsingular

Next, consider the case that A is symmetric, that is, A" = A. For example, let

2
A=(40 1]. (1.43)
2 _
Then
E, ,(-3/8)E; ,(-1)E, ,(-2)AE, ,(-2)E, ,(-1)E, ,(-3/8)
20 0 (1.44)
-0 -8 0 - D,
0 0 -15/8
hence
A = (E&Z(—3/8)E3’1(—1)E2’1(—2)>’1D(E1’2(—2)E1’3(—1)E213(—3/8))’1 - LDLT. (1.45)

Thus, in the symmetric case we can eliminate each pair of non-zero elements opposite of the
diagona jointly by multiplying A from the left by an appropriate elementary matrix and
multiplying A from the right by the transpose of the same elementary matrix.
Example 4: A is symmetric and singular
Although | have demonstrated this result for a non-singular symmetric matrix, it holds for
the singular case as well. For example, let now
242

A=|40 4. (1.46)
2 42



351
Then

0 0
E3,1( B l) Ez}]_( _Z)AE]_,z( _2) E1,3( - 1) = -8 0| =D. (| 47)
0 0

O O N

Example 5: A is symmetric and has azero in apivot position
If thereisazeroin apivot position’, then we need arow exchange. In that case the result

A=LDL" will nolonger bevalid. For example, let

042
A=[40 4|. (1.48)
2 42
Then
40 4 40 0|f10 1
E,(-DE; (-V2P,,A=|104 2| =|04 0|01 12| =DU
00 -2 00 -2)l00 1
(1.49)
100
L = (Eg(-DE;,(-U2)) " = E5,(V2E;,(1) =| 0 1 0 = UT.
12 11

Thus, examples 3, 4 and 5 demonstrate that:

Theorem 1.10: If Ais symmetric and the Gaussian elimination can be conducted without need
for row exchanges, then there exists a lower triangular matrix L with diagonal elements all equal

to one, and a diagonal matrix D, such that A= LDL".
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.6.2 The Gauss-Jordan iteration for inverting a matrix

The Gaussian elimination of the matrix A in the first example in the previous section
suggests that this method can also be used to compute the inverse of A, as follows. Augment the

matrix Ain (1.32) to a3 x 6 matrix, by augmenting the columns of A with the columns of the unit
matrix |

2 42 100
B-(Aly)=|123 010|. (1.50)
11 -1 001

Now follow the same procedure asin Example 1, up to (1.35), with A replaced by B. Then (1.35)
becomes:

P2,3E3,1(1/2)E2,1(71/2)B - (P2,3E3,1(1/2)E2,1(71/2)A’ P2,3E3,1(1/2)E2,1(71/2))
242 1 00O

(1.51)
=030 05 01| =(U,C),
002 -0510

say, where U. in (1.51) follows from (1.35) and

1 00
C = Py3E,("9)E, (-2 = | 05 0 1.

-0510

(1.52)

Now multiply (1.51) by elementary matrix E 5(-1), i.e., subtract row 3 from row 1:
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(E1,3( -1) P2,3E3,1(1/2) E2,1(7 V2)A, E1,3( -1 P2,3E3,1(1/2) Ez,l(f ¥2) )

240 15 -10 (1.53)
-jo3o o5 0 1f,
002 -0510

multiply (1.53) by elementary matrix E,,(-4/3), i.e., subtract 4/3 times row 3 from row 1:

(Ellz(—4/3)E1’3(—1)P2’3E3’1(1/2)E2’1(71/2)A, Elyz(—4/3)E1’3(—1)P2’3E3’1(1/2)E2’1(71/z))

200 56 -1 -4/3 (1.54)
-lo30 05 0 1|,
002 -051 0

and finaly, dividerow 1 by 2, row 2 by 3, and row 3 by 2, or equivalently, multiply (1.54) by the

diagonal matrix D. with diagona elements 1/2, 1/3 and 1/2:

(D.E, J(-413)E, o(-1)P, ;E, (VAE,, (- YA, D E, (-4/3E, 5(-1)P, ;E;,(HAE, (-12))
= (13, D.E, (-4/3)E, 5(-1)P, jE5,(DE, (- ¥2) )

100 512 -12 -2/3 (155)

=({010 6 0 13
001 -4 12 O

Observe from (1.55) that the matrix (A,l,) has been transformed into a matrix of the type (1,,A) =
(AAA),where A* = D E, (-4/3)E, ,(-1)P,E, ,(AE,,(-¥) isthe matrix consisting of the
last three columns of (1.55). Consequently, A = A1,

Thisway of computing the inverse of amatrix is caled the Gauss-Jordan iteration. In
practice the Gauss-Jordan iteration isdonein adlightly different but equivalent way, using a

sequence of tableaus. Take again the matrix Ain (1.32). The Gauss-Jordan iteration then starts
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from theinitial tableau:

Tableau 1

A I

4 100

2 010
-11 -1 001

If thereisazeroin apivot position, you have to swap rows, as we will see below. In the
case of Tableau 1 thereis not yet a problem, because the first element of row 1 is non-zero.
Thefirst step isto make all the non-zero elementsin the first column equal to one, by

dividing all the rows by their first element, provided that they are non-zero. Then we get:

Tableau 2
1 21 1200
1 2 3 0O 10
1-11 0O 0 -1

Next, wipe out the first elements of rows 2 and 3, by subtracting row 1 from them:

Tableau 3
1 21 2 0 O
0 02 -1210
0 30 -120 -1

Now we have a zero in apivot position, namely the second zero of row 2. Therefore, swap rows

2and 3:
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Divide row 2 by -3 and row 3 by 2:

Tableau 5
121 2 0 O
010 6 0 1/3
001 -1412 O

The left 3x3 block is now upper-triangular.

Next, we have to wipe out, one by one, the elementsin this block above the diagonal.

Thus, subtract row 3 from row 1:

Tableau 6
120 34 -12 0
010 6 0 13
001 -4 12 O

Finally, subtract 2 times row 2 from row 1:

Tableau 7
| Al
100 512 -1/2 -2/3
010 %6 0 13
001 -1/4 12 O

Thisisthefinal tableau. The last three columns now form A ™.
Once you have calculated A%, you can solve the linear system Ax = b by computing x =
A 'h. However, you can also incorporate the latter in the Gauss-Jordan iteration, as follows. Let

again A bethe matrix in (1.32), and let for example
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1
b=1]1].
1
Insert this vector in Tableau 1:
Tableau 17
A b I
4 1 100
2 1 010
-1 1 -1 1 001

and perform the same row operations as before. Then Tableau 7 becomes:

Tableau 7*
| Ab Al
100 -512 512 -12 -2/3
010 1/2 16 0 13
001 1/4 -4 12 O

Thisis how matrices were inverted and system of linear equations were solved fifty and
more years ago, using only a mechanical calculator. Nowadays of course you would use a
computer, but the Gauss-Jordan method is still handy and not too time consuming for small

matrices like the one in this example.

[.7.  Gaussian elimination of a non-square matrix
The Gaussian elimination of a non-square matrix is similar to the square case, except that

in the final result the upper-triangular matrix now becomes an echelon matrix:
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Definition 1.10: An m x n matrix U isan echelon matrix if for i = 2,...,m the first non-zero

element of row i isfarther to the right than the first non-zero element of the previousrow i-1.
Theorem 1.8 can now be generalized to:

Theorem |.11: For each matrix A there exists a permutation matrix P, possibly equal to the unit
matrix |, a lower-triangular matrix L with diagonal elements all equal to 1, and an echelon
matrix U, such that PA = LU. If Aisa square matrix then U is an upper-triangular matrix.
Moreover, in that case PA = LDU, where now U is an upper-triangular matrix with diagonal

elements all equal to 1, and D is a diagonal matrix.?
Again, | will only prove the genera part this theorem by examples. The parts for square
matrices follow trivialy from the general case.

First, let

1
1]. (1.56)
0

1 00|24 21
P,sE (AE,(-Y9A =| 05 0 1|1 2 3 1
-0510/{-11-10
(1.57)
242 1

=10 3 0 12| =U,
002 V2
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where U is now an echelon matrix.

As another example, take the transpose of the matrix A in (1.56):

AT = (1.58)

PN AN
B W N R

-1

1
_1 )
0
Then

P2'3E4’2(—1/6)E4’3(1/4)E2'1(—2)E3’1(—1)E4’1(—1/2)AT =
where again U is an echelon matrix.

1.8.  Subspaces spanned by the columns and rows of a matrix

Theresult in Theorem 1.9 also reads as; A = BU, where B = P! isanon-singular matrix.
Moreover, note that the size of U isthe same asthesize of A, i.e.,, if Aisan m x n matrix, then
soisU. Denoting the columnsof U by u,...,u,, it follows therefore that the columns a,...,a,, of
A are equal to Bu,,...,Bu,, respectively. This suggests that the subspace spanned by the columns
of A has the same dimension as the subspace spanned by the columns of U. To prove this
conjecture, let V, be the subspace spanned by the columns of A, and let V;, be the subspace
spanned by the columns of U. Without loss or generality we may reorder the columns of A such
that the first k columns a,,...,a, of A form abasisfor V, . Now suppose that u,,...,u, are linear
dependent, i.e., there exist constants c,,...,c, not all equal to zero such that E}‘zlcjuj = 0.But then

aso E}‘zlchuj = Z}‘zlcja]. = 0, which by the linear independence of a,,...,a, impliesthat al the
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¢'sare equal to zero. Hence, u,,...,u, are linear independent, and therefore the dimension of V,,
is greater or equal to the dimension of V, . But since U = B*A, the same argument applies the
other way around: the dimension of V, isgreater or equal to the dimension of V, . Thuswe

have:

Theorem |.12: The subspace spanned by the columns of A has the same dimension as the

subspace spanned by the columns of the corresponding echelon matrix U in Theorem1.9.

Next, | will show that

Theorem 1.13: The subspace spanned by the columns of A" is the same as the subspace spanned

by the columns of the transpose U of the corresponding echelon matrix U in Theorem1.9.

Proof: Let Abean m x n matrix. The equality A= BU impliesthat AT = U BT. The
subspace spanned by the columns of A" consists of all vectors x € R™ for which there exists a
vector ¢, € R" suchthat x = ATcl, and similarly the subspace spanned by the columnsof UT
consists of all vectors x € R™ for which there existsavector ¢, € R" suchthat x = U Tc2.
Letting ¢, = B 'c, thetheorem follows. Q.E.D.

Now let us have a closer look at atypical echelon matrix:
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o - x % x % x % *
o - x % x % *
o - 0
U - o, (1.60)
o - 00 - 0@ *

where each smiley face © (called a pivot) indicates the first nonzero elements of the row
involved, and the *’sindicate possible nonzero elements. Since the elements below the pivot in
each column with asmiley face © are zero, the columnsinvolved are linear independent. In
particular, it isimpossible to write the last column with a pivot as a linear combination of the
other ones. Moreover, it is easy to see that all the columns without a pivot can be formed as
linear combinations of the columns with a pivot. Consequently, the columns of U with a pivot
form abasis for the subspace spanned by the columns of U. But the transpose U™ of U isalso an
echelon matrix, and the number of rows of U with a pivot is the same as the number of columns

with a pivot, hence:

Theorem |.14: The dimension of the subspace spanned by the columns of an echelon matrix U is

the same as the dimension of the subspace spanned by the columns of its transpose U".

Combining Theorems1.11, 1.12 and 1.13, it follow now that Theorem 1.6 holds..
The subspace spanned by the columns of amatrix A is called the column space of A, and

is denoted by 2(A). The row space of A isthe space spanned by the columns of A, i.e., the row

space of Ais 2(A"). Theorem .14 implies that the dimension of 2(A) isequal to the
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dimension of 2(A").

There is also another space associated with amatrix A, namely the null space of A,

denoted by (W(A). This the space of all vectors x for which Ax = 0, which is also a subspace of a
vector space. If Ais square and non-singular, then (A/(A) = {0}, but if not it follows from
Theorem 1.12 that  A'(A) = WV(U), where U is the echelon matrix in Theorem 1.12.

In order to determine the dimension of  A'(U), suppose that A isan m x n matrix with

rank r, and thus U isan m x n matrix with rank r. Let R be an n x n permutation matrix such that

thefirst r columns of UR are ther columns of U with a pivot. Clearly, the dimension of (A/(U) is
the same as the dimension of  #(UR). We can partition UR as (U,, U, ), whereU, isthem x r

matrix consisting of the columns of U with apivot, and U, , isthem % (n-r) matrix consisting
of the other columns of U. Partitioning a vector x in (A(UR) accordingly, i.e., x = (er,an,r)T,
we have

URX = Ux +U_x =0, (1.61)
It follows from Theorem 1.5 that UrTUr isinvertible, henceit follows from (1.61) and the

partition x = (x.',x, )7 that

~(U U)W, U
X = SRR (1.62)

n-r

Therefore, WV(UR) is spanned by the columns of the matrix in (1.62), which hasrank n-r, and

thus the dimension of (A#(A) is n-r. By the same argument it follows that the dimension of
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MN(AT) is m-r.
The subspace ( N'(A') is called the left null space of A, because it consists of all vectorsy

for which y TA = 0'.

Summarizing, it has been shown that the following results hold.

Theorem 1.15: Let A be an m x n matrix with rank r. Then 2(A) and 2(A") have dimensionr,

UV(A) hasdimension n-r, and (A/(A") hasdimension m-r.

Note that in general the rank of a product AB is not determined by the ranksr and s of A
and B, respectively. At first sight one might guess that the rank of AB is min(r,s), but that isin
general not true. For example, let A= (1,0) and B" = (0,1). Then A and B haverank 1, but AB =
0, which hasrank zero. The only thing we know for sure isthat the rank of AB cannot exceed
min(r,s). Of course, if A and B are conformable invertible matrices, then AB isinvertible, hence
the rank of AB isequal to the rank of A and the rank of B, but that is a special case. The same

appliesto the case in Theorem I.5.

1.9.  Projections, projection matrices, and idempotent matrices

Consider the following problem: Which point on the line through the origin and point ain
Figure 1.3 isthe closest to point b? The answer is: point p in Figure 1.4 below. The line through b
and p is perpendicular to the subspace spanned by a, and therefore the distance between b and

any other point in this subspaceis larger than the distance between b and p. Point p is called the
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projection of b on the subspace spanned by a. In order to find p, let p = c.a, wherecisascaar.
The distance between b and pisnow |b - c.a|, so the problemisto find the scalar c which
minimizesthis distance. Since|b - c.a| isminimal if and only if

Ib - cal? = (b-ca)'(b-ca) =b'™ - 2ca'b + c?a'a

isminimal, the answer is: ¢ = a "b/a "a, hence p = (a "b/a Ta).a.

Figure I.4: Projection of b on the
subspace spanned by a

Similarly, we can project avector yin R" on the subspace of R" spanned by abasis
{Xs,.... X}, asfollows. Let X be the nx k matrix with columns x,...,X. Any point p in the column

space 2(X) of X can bewritten as p = Xb, where b € R¥. Then the squared distance between y

andp= Xbis
ly - Xb|? = (y - Xb)'(y - Xb) =yTy - b'™XTy - y'™Xb + b™XXb
(1.63)
=yly - 20™XTy + b ™X ™Xb,

where the last equality follows from the fact that y "™Xb isascalar (or equivalently, al1x1

matrix), hence y 'Xb = (y ™Xb)" = b "X Ty.Given X and y, (1.63) is a quadratic function of b.
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The first-order condition for a minimum of (1.63) is given by

~ 2
dly - Xp|* _ 2XTy + 2X™Xb = 0, (1.64)
ob T

which has solution
b =X™X1XTy. (1.65)

Thus, the vector pin 2(X) closesttoy is

p = X(X™X) Xy, (1.66)

which isthe projection of yon 2(X) .

Matrices of the typein (1.66) are called projection matrices:
Definition 1.11: Let Abe an nx k matrix with rank k. Thenthe nx n matrix P = A(ATA) AT
is called a projection matrix: For each vector xin R", Pxisthe projection of x on the column

space of A.

Note that this matrix P issuchthat PP = A(ATA)ATAATA)IAT) = AATA) AT = P. This

is not surprising, though, because p = Pxisalready in 2(A), hence the point in 2(A) closest to

pisp itsef.
Definition 1.12: An nx n matrix M is called idempotent if MM = M.

Thus, projection matrices are idempotent.
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[.10. Inner product, orthogonal bases, and orthogonal matrices
It follows from (1.10) that the cosines of the angle ¢ between the vectorsxin (1.2) andy
in (1.5)is

Y xv T,
cos(p) - D XY (1.67)
IXILIyl Iy

Definition 1.13: The quantity x y is called the inner product of the vectors x and y.

If xTy = 0 then cos(¢) = 0, hence ¢ = n/2 or ¢ = 3n/4. This corresponds to an angle of
90 degrees and 270 degrees, respectively, hence x and y are then perpendicular. Such vectors are

said to be orthogonal.

Definition |.14: Conformable vectors x and y are orthogonal if their inner product x Ty is zero.

Moreover, they are orthonormal if in addition their lengthsare 1. x| = |y| = 1.

If weflipin Figurel.4 point p over to the other side of the origin along the line through
the origin and point &, and add b to -p, then the resulting vector c = b - pis perpendicular to the

line through the origin and point a. Thisisillustrated in Figure 1.5. More formally,

a'c=a'(b-p) =a'(b - (@a'™/|aj?)a = a'™d - (a/|a|?)|al? = 0.
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Figure |.5: Orthogonalization

This procedure can be generalized to convert any basis of a vector space into an
orthonormal basis, asfollows. Let a,,......, a,, k < n,beabasisfor asubspace of R", and let
q, = ||a1||’1.a1. The projectionof a, on g, isnow p = (qlTaz).ql, hence
a, = a, - (9,'a,).q, isorthogonal to q,. Thus, let d, = |a, | *a, . Thenext step isto erect
a, perpendicular to g, and q,, which can be done by subtracting from a, its projectionson q,

and q,: a; = a; - (a3Tq1)q1 - (a3Tq2)q2. Using the facts that by construction,

%'a =1 q'q =1 0'a, =0, gq =0,
we haveindeed that ¢,'a; = g,'a, - (3,0,)0,'0, -~ (@3 0,)04'q, = 05'a, - a5, = O and

similarly, qua; = 0. Thus, letnow g, = |a; | a; . Repeating this procedure yields:

Theorem 1.16: Let a,,......,a, be abasisfor a subspace of R", and construct g;,......,q,

recursively by:
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i1
o = laylta anda’ - a - Z;(a]-Tqi)qi, g = la"l % for j = 23,..k (1.68)

Then q,,......,d, isan orthonormal basis for the subspace spanned by a.......,a, .

has already been shown, but it still has to be shown that q,,......,q, Spans the same subspace as
a,......,a . To show thelatter, observe from (1.68) that a,,......,a, isrelated to q,......,q, by

J
a =) ug. = 12..k, (1.69)

i=1
where
u; = la’l, u; = g'a fori<j,u, =0fori>jij=1..k. (1.70)

with a," = a,. It follows now from (1.69) that a,,......,a, arelinear combinations of g_,......,q,
and it follows from (1.68) that q,,......,q, arelinear combinationsof a,,......,a,, hence the two
bases span the same subspace.

Observe from (1.70) that the kxk matrix U with elements u;; is an upper triangular matrix
with positive diagonal elements. Moreover, denoting by A the nxk matrix with columns

a,,......,a and by Q the nxk matrix with columns q.......,q, it follows from (1.69) that A= QU.

Thusit follows from Theorem 1.16, (1.69) and (1.70):
Theorem 1.17: Let A bean nxk matrix with rank k. There exists an nxk matrix Q with
orthonormal columns, and an upper triangular kxk matrix U with positive diagonal elements,

such that A= QU.

In the case k = n the matrix Q in Theorem 1.17 is called an orthogonal matrix:
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Definition 1.15: An orthogonal matrix Q is a square matrix with orthonormal columns; Q'Q = 1.

In particular, if Q is an orthogonal nxn matrix with columns g, ,......,q,, then the elements
of the matrix Q'Q are qiqu = I(i = j), wherel(\) istheindicator function’, hence Q'Q =1,
Thus Q"= Q. It follows now from Theorem I.1 that also QQ" = 1., i.e, the rows of an
orthogonal matrix are also orthonormal.

Orthogonal transformations of vectors leave the angles between the vectors, and their

lengths, the same. In particular, let x and y be vectorsin R", and let Q be an orthogonal nxn

matrix. Then (Q®)"(Qy) = x"Q™Qy = xTy, Qx| = Y(QYT(QX) = yx x = x|, henceit
follows from (1.67) that the angle between Qx and Qy is the same as the angle between x and y.
In the case n = 2 the effect of an orthogonal transformation is arotation. A typical

orthogonal 2x2 matrix takes the form

) (cos(e) sin(o) ) 07D

sin(6) -cos(0)
This matrix transforms the unit vector e, = (1, 0)" into the vector ¢, = (cos(6) ,sin(0))", and it
follows from (1.67) that 6 is the angle between the two. By moving 6 from O to 2 the vector g

rotates anti-clockwise from the initial position e, back to e,.
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[.11. Determinants. Geometric interpretation and basic properties
The area enclosed by the parallelogram in Figure 1.3 has a special meaning, namely the

deter minant of the matrix

a, b 6 3
A - (ab) - (az bz] _ (4 7). (1.72)

The determinant is denoted by det(A). This areais two times the area enclosed by the triangle
formed by the origin and the points aand b in Figurel.3, which initsturnisthe sum of the
areas enclosed by the triangle formed by the origin, point b, and the projection

p = (a'b/aTa).a = (a'b/|al?).a
of bon a, and the triangle formed by the pointsp, a, and b, in Figure 1.4. Thefirst triangle has
area Y2|b - p| timesthe distance of p to the origin, and the second triangle has area equal to

|lb - plltimes the distance between p and a, hence the determinant of Ais:

det(A) = [b - pl.lal = |b - (@"o/|al?)].lal = Val?lb|? - (aTb)?

- (& +al)(b{+b)) - (ab,+abh,? - (@b, - ba,)? - t|ab, - bay| (173)
= ab, - ba,.

The latter equality is a matter of normalization, as -(a,b, - b,a,) would also fit (1.73), but the
chosen normalization is appropriate for (1.72), because then

det(A) = ab, - bja, = 6x7 - 3x4 = 30. (1.74)
However, as | will show below, a determinant can be negative or zero.

Equation (1.73) readsin words:
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Definition 1.16: The determinant of a 2x2 matrix is the product of the diagonal elements minus

the product of the off-diagonal elements.

We can aso express (1.73) in terms of the angles ¢, and ¢, of the vectorsa and b,

respectively, with the right hand side of the horizontal axis:

lalsin(e,),

a, = |ajcos(e,), a,
b, = [blcos(e,), b,

Iblsin(ey),
hence
det(A) = ab, - b,a, = |al.|b]{cos(g,)sin(p,) - sin(p,)cos(y)
. (1.75)
= lal.lbl.sin(e, - )
Sincein Figurel.3, 0 < ¢, - ¢, < m, wehavetha sin(e, - ¢,) > O.

As an example of anegative determinant, let us swap the columns of A, and call the result

matrix B:
b, a 36
B =AP, = (ba) = [bz az] = (7 4), (1.76)
where
01
Pz 71 o

isthe elementary permutation matrix involved. Then
det(B) = b,a, - ajb, = -30. (1.77)
At first sight thislooks odd, because it seems that the area enclosed by the paralelogramin

Figure 1.3 has not been changed. However, it has! Recall the interpretation of amatrix asa
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mapping: A matrix moves a point to a new location, by replacing the original perpendicular
coordinate system by a new system formed by the columns space of the matrix involved, with
new units of measurement the lengths of the columns. In the case of the matrix B in (1.76) we

have:

Unit vectors
Axis Original New

Thus, bisnow thefirst unit vector, and a is the second. If we adopt the convention that the
natural position of unit vector 2 is above the line spanned by the first unit vector, asisthe case
for e, and e,, then we are actually looking at the parallelogram in Figure 1.3 from the backside, as

in Figure1.6:

Figure |.6: Backside of Figure 1.3

Thus, the effect of swapping the columns of the matrix Ain (1.72) isthat Figurel.3 isflipped
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over vertically 180 degrees. Since we are now looking at Figure 1.3 from the back, which isthe
negative side, the area enclosed by the parallelogram is negative too! Note that this corresponds
to (1.75): If we swap the columns of A, then we swap the angles ¢, and ¢, in (1.75), and

consequently the determinant flips sign.

Figurel.7: det(a,b) >0

Figure|.8: det(a,b) <0
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As another example, let a be as before, but now position b in the south-west quadrant, as
in Figure 1.7 and Figure 1.8. The fundamental difference between these two casesis that in Figure
1.7 point b is above the line through a and the origin, so that ¢, - ¢, <, whereasin Figurel.8
point bisbelow that line: ¢, - ¢, > ©. Therefore, the area enclosed by the parallelogram in
Figure .7 is positive, whereas the area enclosed by the paraelllogram in Figure 1.8 is negative.
Hence in the case of Figure 1.7, det(a,b) > 0, and in the case of Figure 1.8, det(a,b) < 0. Again, in
Figure 1.8 we are looking at the backside of the picture; you haveto flip it vertically to see the
front side.

What | have demonstrated here for 2x2 matricesisthat if the columns are interchanged
then the determinant changes sign. It is easy to see that the same applies to the rows. This

property holds for general nxn matrices as well, in the following way.

Theorem 1.18: If two adjacent columns or rows of a square matrix are swapped™ then the

determinant changes sign only.

Next, let us consider determinants of special 2x2 matrices. The first special caseisthe
orthogonal matrix. Recall that the columns of an orthogonal matrix are perpendicular, and have
unit length. Moreover, recall that an orthogonal 2x2 matrix rotates a set of points around the
origin, leaving angles and distances the same. In particular, consider the set of pointsin the unit
square formed by the vectors (0,0)", (0,1)", (1,0)" and (1,1)". Clearly, the area of this unit square
equals 1, and since the unit square corresponds to the 2x2 unit matrix |,., the determinant of 1,

equals 1. Now multiply I, by an orthogonal matrix Q. The effect is that the unit square is rotated,
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without affecting its shape or size. Therefore,

Theorem 1.19: The determinant of an orthogonal matrix is either 1 or -1, and the determinant of

aunit matrixis 1.

The "either-or" part follows from Theorem 1.18: swapping adjacent columns of an orthogonal
matrix preserves orthonormality of the columns of the new matrix, but switches the sign of the
determinant. For example, consider the orthogona matrix Q in (1.71). Then it follows from

Definition 1.16 that

det(Q) = -cos’(0) - sin?(9) = -1.

Now swap the columns of the matrix (1.71):
sin(6) -cos(0)
) ( cos(0) ~ sin(0) ) |
Then it follows from Definition 1.16 that
det(Q) = sin®(0) + cos’(h) = 1.
Note that Theorem 1.19 is not confined to the 2x2 case: it istrue for orthogonal and unit
matrices of any size.
Next, consider the lower-triangular matrix
(29
b c

According to Definition 1.16, det(L) = a.c - 0.c = a.c, so that in the 2x2 case the determinant of a
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lower-triangular matrix is the product of the diagonal elements. Thisisillustrated in Figure 1.9
below. The determinant of L isthe areain the paralelogram, which is the same as the areain the
rectangle formed by the vectors (a,0)" and (0,c)" . Thisareaisa.c. Thus, you can move b fregly
along the vertical axis without affecting the determinant of L. If you would flip the picture over
vertically, which corresponds to replacing a by -a, the parallelogram will be viewed from the

backside, hence the determinant flips sign.

™,

Figure 1.9: det(L)

The same result applies of course to upper-triangular and diagonal 2x2 matrices. Thus we have:

Theorem 1.20: The determinant of a lower-triangular matrix is the product of the diagonal

elements. The same applies to an upper-triangular matrix and a diagonal matrix.

Again, thisresult is not confined to the 2x2 case, but holdsin general.
Now consider the determinant of atranspose matrix. Inthe 2x2 case the transpose A" of
A can be formed by first swapping the columns and then swapping the rows. Then it follows

from Theorem 1.18 that in each of the two steps only the sign flips, hence
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Theorem |.21: det(A) = det(A").

The same applies to the general case: the transpose of A can be formed by a sequence of column
exchanges and a corresponding sequence of row exchanges, and the total number of column and
row exchanges is an even number.

It follows from Theorem .11 that in the case of a square matrix A there exist a
permutation matrix P, possibly equal to the unit matrix I, alower-triangular matrix L with
diagonal elements all equal to 1, adiagonal matrix D, and an upper-triangular matrix U with
diagonal elements all equal to 1, such that PA = LDU. Moreover, recall that a permutation
matrix is orthogonal, because it consists of permutations of the columns of the unit matrix. Thus
we can write A= P'LDU.

Now consider the parallelogram formed by the columns of U. Since the diagonal elements
of U are 1, the area of this paralelogram is the same as the area of the unit square: det(U) =
det(l). Therefore, the effect of the transformation P'LD on the area of the parallelogram formed
by the columns of U isthe same as the effect of P'LD on the area of the unit square, and
consequently det(P'LDU) = det(P'LD). The effect of multiplying D by L isthat the rectangle
formed by the columns of D istilted and squeezed, without affecting the areaitself. Therefore,
det(LD) = det(D), and consequently det(P'LDU) = det(P'D). Next, PT permutates the rows of D,
so the effect on det(D) is a sequence of sign switches only. The number of sign switches involved
is the same as the number of column exchanges of P™ necessary to convert P'into the unit
matrix. If this number of swapsis even, then det(P) = det( P") = 1, else det(P) = det(P") = -1.

Thus, in the 2x2 case (aswell asin the genera case) we have.
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Theorem |.22: det(A) = det(P).det(D), where P and D are the permutation matrix and the

diagonal matrix, respectively, in the decomposition PA = LDU in Theorem1.11 for the case of a

square matrix A.

Thisresult yields two important corollaries. First:

Theorem 1.23: The determinant of a singular matrix is zero.

To seethis, observe from the decomposition PA = LDU that Aissingular if and only if D is

singular. If D issingular then at least one of the diagona elements of D is zero, hence det(D) = 0.

Second, for conformable square matrices A and B we have

Theorem 1.24: det(AB) = det(A).det(B).

This result can be shown in the same way as Theorem 1.22, i.e., by showing that det(A) =

det(P'LDUB) = det(P).det( DB) and det(DB) = det(D).det(B).

Moreover, Theorems1.20 and 1.24 imply that

Theorem 1.25: Adding or subtracting a constant times a row or column to another row or

column, respectively, does not change the determinant.

The reason is that this operation is equivalent to multiplying a matrix by an elementary matrix,
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and that an elementary matrix is triangular with diagonal elements equal to 1.

Furthermore, we have:

Theorem |.26: Let A be an nxn matrix and let ¢ be a scalar. If one of the columns or rowsis
multiplied by c, then the determinant of the resulting matrix is c.det(A). Consequently, det(c.A) =

" det(A).

This theorem follows straightforwardly from Theorems 1.20 and 1.24. For example, let B be a
diagonal matrix with diagonal elements 1, except for one element, say diagonal element i, which
equals c. Then BA isthe matrix A with the i-th column multiplied by c. Since by Theorem 1.20,
det(B) = c, thefirst part of Theorem 1.26 for the "column" case follows from Theorem 1.24, and
the "row" case follows from det(AB) = det(A).det(B) = c.det(A). The second part follows by
choosingB = c.l,..

The results in this section merely serve as amotivation for what a determinant is, and its
geometric interpretation and basic properties. All the results so far can be derived from three
fundamental properties, namely the resultsin Theorems|1.18, 1.20 and 1.21. If we would assume
the that the resultsin Theorems 1.18, 1.20 and 1.21 hold, and treat these properties as axioms, al
the other results follow from these properties and the decomposition PA = LDU. Moreover, the
function involved is unique.

Asto the latter, suppose that 6(A) is afunction satisfying
@ If two adjacent rows or columns are swapped then 0 switches sign only.

(b) If Aistriangular then 0(A) isthe product of the diagonal elements of A.
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() O(AB) =5(A). 6(B)
Then it follows from the decomposition A = PTLDU and axiom (c) that
8(A) = 8(P"d(L)6(D)s(V).
Moreover, it follows from axiom (b) that 6(L) = 6(U) =1 and 6(D) = det(D). Finaly, it follows
from axiom (b) that the functions &(.) and det(.) coincide for unit matrices, so that by axiom (a),
&(P") = 8(P) = det(P). Thus, 6(A) = det(A), hence, the determinant is uniquely defined by the

axioms (@), (b) and (c). Therefore,

Definition 1.17: The determinant of a square matrix is uniquely defined by three fundamental
properties:

@ If two adjacent rows or columns are swapped then the determinant switches sign only.
(b) The determinant of a triangular matrix is the product of the diagonal elements.

(c) The determinant of AB is the product of the determinants of A and B.

These three axioms can be used to derive a general expression for the determinant, together with

the results below regarding determinants of block-triangular matrices.
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[.12. Determinantsof block-triangular matrices

Consider a square matrix A partitioned as

A1,1 A1,2
Ao Ao

where A, ; and A, , are sub-matrices of size kxk and mxm, respectively, A, , isakxmmatrix

. (1.79)

and A, , isan mxk matrix. This matrix Aisblock-triangular if either A, , or A, isazero

matrix, and it is block-diagonal if both A, , andA, , are zero matrices. In the latter case

A O
O Ay

where the two O blocks represent zero elements. For each block A, and A,, we can apply

, (1.80)

Theorem I.11,i.e. A, = P{L,D,U,, A,, = P,'L,D,U,, hence

P,LDU, O P, O\"(L, O) (D, O\(U, O
A - - . .
@] PZTLZDZU2 O P, OL,)|0O D)0 U, (1.82)
- PTLDU,

say. Then det(A) = det(P).det(D) = det(P,).det(P,).det(D,).det(D,) = det(A, ,).det(A, ). More

generally, we have that

Theorem |.27: The determinant of a block-diagonal matrix is the product of the deter minants of

the diagonal blocks.

Next, consider the lower block-diagonal matrix
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A O
Aor Aoy

whereagain A, ; and A, , are kxk and mxm matrices, respectively, and A, , isan mxk matrix.

A = . (1.82)

Then it follows from Theorem 1.25 that for any kxmmatrix C,

A1’1 O
Az,l_CA1,1 Az,z

If A, isnonsingular, then we can choose C = AﬁAz‘1 sothat A,,-CA;;, = O. Inthat caseit

det(A) = det : (1.83)

follows from Theorem 1.27 that det(A) = det(A, ,).det(A, ). If A, issingular, then the rows of
A, , arelinear dependent, and so are the first k rows of A. Hence, if A , issingular then Ais

singular, so that by Theorem 1.23, det(A) = det(A, ,).det(A,,) = 0. Thus

Theorem |.28: The determinant of a block-triangular matrix is the product of the determinants

of the diagonal blocks.

.13. Determinantsand co-factors

Consider the n x n matrix

&1 7
A=| : - (1.84)

T

and define the following matrix-valued function of A:

Definition 1.18: The transformation p(Ali,,i,,.....,i.) isamatrix formed by replacing in rows k
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=1,..,nof matrix (1.84) all but thei,’ s element akyikby zeros. Smilarly, the transformation

k(A 1) isamatrix formed by replacing in columnsk = 1,..,n of matrix (1.84) all but the

1rlpgeee

I selement & | by zeros.

For example, in the 3x3 case,

0 a 0 0 O a3
p(Al2,31) =| 0 0 a,|, xA2,31) =|a, 0 O
a, 0 O 0 a, O

Recall that a permutation of the numbers 1,2,....,n is an ordered set of these n numbers,
and that there are n! of these permutations, including the trivial permutation 1,2,...,n. Moreover,
it is easy to verify that for each permutation i, ,i,,.....,i, of 1,2,....,n there existsaunique
permutationj,,j,,......J,, suchthat p(Ali ,i,,.....,i.) = k(Alj,]5,......,J,,) and vice versa. Now
define the function

S(A) = Y det[p(Aliy,iy,eesi)] = Y det[i(Aliy,ipyeeyi )], (1.85)
where the summation is over all permutations i ,i,,.....,i, of 1,2,...,n.

Note that det[p(Ali,,i,,.....,i )] = a8, ey where the sign depends on how
many row or column exchanges are needed to convert p(Ali,i,,.....,i ) into adiagonal matrix. If
the number of exchangesis even, thesignis+ and thesignis - if thisnumber isodd. Clearly,
this sign is the same as the sign of the determinant of the permutation matrix p(E, |i ,i,,.....,i )],

where E, isthe n x n matrix with all elements equal to 1.

| will show now that &(A) in (1.85) satisfies the axiomsin Definition .17, so that:
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Theorem [.29: The function (A) in (1.85) isthe determinant of A: d(A) = det(A).

Proof: First, exchange rows of A, say rows 1 and 2. The new matrix is P,,A, where P,, is
the elementary permutation matrix involved, i.e., the unit matrix with the first two columns
exchanged. Then p(P,Aliy,igeyi) = Pop(Aliyis,.....iiy), hence 3(P,A) = det(P, ,)3(A)=

-8(A).Thus, 8(A) satisfies axiom (a) in Definition 1.17.
Second, let A be lower-triangular. Then p(Ali

N 1) islower-triangular, but has at

least one zero diagond element for adl permutations i, i,,.....,i, except for thetrivial

n
permutation 1,2,....,n. Thusinthiscase 6(A) = det[p(A|1,,2,....,n) = det(A).The same applies
of course to upper-triangular and diagonal matrices. Consequently 6(A) satisfies axiom (b) in
Definition 1.17.
Findly, observethat p(ABli,,i,,.....,i,) isamatrix with elements Eﬂzlamkbk’im in position
(mji,), m=1,....,n, and zeros el sewhere. Hence
P(ABiy iy yeeeyi) = ApBliy,ig i),
which implies that
3(AB) = det(A).3(B). (1.86)
Now write BasB = P'LDU , and observe from (1.86) and axiom (b) that
8(B) = 8((PLD)U) = det(P "LD)3(U) = det(P 'LD)det(U) = det(B).
The same appliesto A. Thus,
3(AB) = det(A).det(B) = 5(A).3(B). (1.87)
Q.E.D.

Next, consider the transformation:
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Definition 1.19: The transformation t(Alk,m) isa matrix formed by replacing all elementsin

row k and column m by zeros, except element a, = itself.

For example, in the 3x3 case,

a, &, 0
w(A12,3) =| 0 0 a,,l. (1.88)

8, 8, 0
Then it follows from (1.85) and Theorem 1.29 that
det[t(Alkm)] = Z det[p(Ali,, iy, i)] = le(det[K(AHl,iz ...... )] (1.89)

hence:

Theorem 1.30: For nxn matrices A, det(A) = Z”mzldet[r(A|k,m)] for k = 1,2,....,n, and

det(A) = X, ,det[t(Akk,m)] for m = 1,2,....n.

Now let us evaluate the determinant of the matrix (1.88). Swap rows 1 and 2, and then
swap recursively columns 2 and 3 and columns 1 and 2. The total number of row and column

exchanges is 3, hence

a8, 0 0
det[T(A|2,3)] = (_1)3det 0 a1,1 a1’2 - a23(_1)2+3det al’l alxz]}
| 831 93, (1.90)
0 &, a,
= a2,3cof2’3(A),

say, where cof, ,(A) isthe co-factor of element a, , of A.Note that the second equality follows
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from Theorem 1.27. Similarly, we need k-1 row exchanges and m-1 column exchanges to convert

T(Alk,m) into ablock-diagona matrix. More generaly:

Definition 1.20: The co-factor cof,  (A) of an nxnmatrix A isthe determinant of the

(n-1)x(n-1) matrix formed by deleting row k and column m, times (-1)<™.

Thus, Theorem 1.30 now reads as:

Theorem 1.31: For nxn matrices A, det(A) = X cof, (A) for k = 1,2,....,n, and also
m 1ak,m k,m

det(A) = X8, ,cof, (A) for m = 1,2,...n.

[.14. Inverseof amatrixintermsof co-factors
Theorem 1.31 now enables us to write the inverse of amatrix A in terms of co-factors and

the determinant, as follows. Define

Definition 1.20: The matrix

cof, ,(A) - cof ,(A)
Asdioint = : : (1.91)
cof, ,(A) - cof (A

is called the adjoint matrix of A.

Note that the adjoint matrix isthe transpose of the matrix of co-factorswith typical (i,j)’s
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element cofiyj(A).
Now observe from Theorem |.31 that det(A) = X ;& cof; (A) isjust diagonal element i

of AA

adjoint- MOreover, suppose that row j of Aisreplaced by row i, and call thismatrix B. This
has no effect on cof; (A), but X _;a, cof, (A) = X cof, (B) isnow the determinant of B,
and since the rows of B are linear dependent, det(B) = 0. Thus we have:

Yiaa,cof (A) = det(A) if i =,
(1.92)

oifi=j,
hence:

:i

Theorem 1.32: If det(A) # Othen At
det(A)

Aadj oint*

Note that the co-factors cofj‘k(A) do not depend on ;. It follows therefore from Theorem

1.31 that

Odet(A) _ cof, (A). (1.93)

&
Using the well-known fact that din(x)/dx = 1/x it follows now from Theorem 1.32 and (1.93)

that

Theorem 1.33: If det(A) > 0 then



387

dln[det(A)]  aln[det(A)]
i 0y ; S
aln[det(A)] :' : : — A—l_ (|94)
oA dln[det(A)]  aln[det(A)]
oa, 98,

Note that Theorem 1.33 generalizes the formula dIn(x)/dx = 1/x to matrices. Thisresult will be
useful in deriving the maximum likelihood estimator of the variance matrix of the multivariate

normal distribution.

1.15. Eigenvaluesand eigenvectors
[.15.1 Eigenvalues

Eigenvalues and eigenvectors play akey role in modern econometrics, in particular in
cointegration analysis. These econometric applications are confined to eigenvalues and
eigenvectors of symmetric matrices, i.e., square matrices A for which A= A'. Therefore, | will

mainly focus on the symmetric case.

Definition 1.21: The eigenvalues™ of an nxn matrix A are the solutions for A of the equation

det(A-Al) = 0.

verify that det(A - Al,) isapolynomial of order nin A: det(A - Al) = X, , ckkk,wherethe
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coefficients ¢, are functions of the elements of A.

(a1,1 a1,2)
A =
&Gy &,

a; - A a, ]
&, 32,2_7‘

W (gt ah a8y, - a,d, ),

which has two roots, i.e., the solutions of A% - (A, + A + a3y, — 3,3, =0

For example, in the 2x2 case

we have

det(A - Al,) = det = (a; ~ M@y, 2) - a8,

8y Ty, \/(31,1 - a2,2)2 + 4,8,

! 2
- A * Ay T \/(al,l B a2,2)2 + 48,8,
2 .
2

There are three cases to be distinguished. If (a,;, - az,2)2 + 4a,,8,,>0then &, and %, are
different and real valued. If (a , - azyz)2 +4a,,8,, =0 then 1, = X, and real valued.

However, if (a,, - &,,)* + 4a,,8,,< 0 then i, and A, aredifferent but complex valued:

Qi P&t i'\/_(al,l - a2,2)2 - 43,8,

! 2
- A A, - i'\/_(al,l - a2,2)2 - 4a, 3,
2 > ,

wherei = {/~1.Inthiscase A, and L, are complex conjugate: &, = A,.*> Thus, eigenvalues can

be complex-valued!
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Note that if the matrix A involved is symmetric:a,, = a,,, then

o Ty, \/(al,l - a2,2)2 * 4a12,2
1 5 ’

2\ = Qg T8, \/(81,1 - ‘5‘2,2)2 * 4‘5‘12,2
2 > ,

so that in the symmetric 2x2 case the eigenvalues are always real valued. It will be shown below

that thisistrue for all symmetric nxn matrices.

1.15.2 Eigenvectors

By Definition 1.21 it follows that if A isan eigenvalue of an nxn matrix A, then A -Al, is
asingular matrix (possibly complex-valued!). Suppose first that A isreal valued. Since the rows
of A-Al, arelinear dependent there exists avector x € R" such that (A -Al )x=0 (¢ R"),
hence Ax = Ax. Such avector x is called an eigenvector of A corresponding to the eigenvalue A.

Thusin therea eigenvalue case:

Definition 1.22: An eigenvector®® of an nxn matrix A corresponding to an eigenvalue A isa

vector x such that Ax = AX.

However, this definition aso applies to the complex eigenvalue case, but then the eigenvector x
has complex-valued components: x € C". To show the latter, consider the casethat A is
complex-valued: A =a +i.p, o,p € R, p # 0. Then

A-Al = A-al, -ipl,
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is complex-valued with linear dependent rows, in the following sense. There exist a vector x =

a+i.bwithab e R"andlength®* |x| = yaTa + b b >0, such that

(A-al, -ipl)@+ ib) =[(A-al )a+pb] + i.[(A-al )b -Ba] = O(c R").

Consequently, (A-al,)a+pb=0and (A-al,)b - fa=0, and thus,

) (7)o
ol 1o € . (1.95)

Therefore, in order for the length of x to be positive, the matrix in (1.95) has to be singular, and

A-al Bl
Bl A-al,

then (Z) can be chosen from the null space of this matrix.
[.15.3 Eigenvalues and eigenvector s of symmetric matrices
Onthebasisof (1.95) it is easy to show that in the case of a symmetric matrix A, =0

andb=0:

Theorem 1.34: The eigenvalues of a symmetric nxn matrix A are all real valued, and the

corresponding eigenvectors are contained in R".

Proof: First, notethat (1.95) impliesthat for arbitrary £ € R,
b

)
ta b (1.96)
= ¢a'Ab + bTAa -abTa-goa b+ b b - &paTa

TA-al Bl

Bl A-al,

Next observethat b Ta = a b and by symmetry, b TAa = (b TAa)" = aTA b = a "Ab, where

the first equality follows from the fact that b TAa isascalar (or 1x1 matrix). Then we have for
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arbitrary £ € R,

(E+a'Ab - a(é+Da'™ + p(b b - ga'a) = 0. (1.97)
If we choose £=-1in(1.97) then B(b'™b + a'a) = B.|x|?> = 0, sothat p=0andthusA =«
€ R. It isnow easy to see that b no longer matters, so that we may choose b = 0. Q.E.D.

There is more to say about the eigenvectors of symmetric matrices, namely:

Theorem 1.35: The eigenvectors of a symmetric nxn matrix A can be chosen orthonormal.

Proof: First assumethat all the eigenvalues A, A,, ..... , A, of Aaredifferent. Let
1%, -, X, DE the corresponding eigenvectors. Thenfor i # j, xiTij = ijiij and
X'AX = Ax'x, hence (, -A)x'x = 0, because by symmetry,

xiTij - (xiTij)T = x'ATx = XA
Since %, # xj, it follows now that xiij = 0. Upon normalizing the eigenvectors as
q = Ix \|’1xj the result follows.
The case where two or more eigenvalues are equal requires a completely different proof.
First, normalize the eigenvectors as q = ij \|’1xj. Using the approach in Section 1.10 we can
always construct vectors vy, ...,y,€ R" suchthat q,,y,, ...,Y,isan orthonorma basis of R".
Then Q, = (9,,Y,, -..,Y,) isan orthogonal matrix. The first column of QlTAQ1 IS
QlTAq1 = lequ. But by the orthogonality of Q,,
WQ, = 6 (G Yor oY) = (@0 Yyn 2 GLY,) = (1,0,0,.....0)

hence the first column of QlTAQ1 is (A,0,0,...... ,0)" and by symmetry of QlTAQ1 the first

rowis (A,,0,0,..... ,0). Thus QlTAQ1 takes the form
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O
! ] . (1.98)

Q'AQ, =
1 1 0 An,l

Next, observe that

det(Q,'AQ, - M) = det(Q,'AQ, - AQ,'Q)

= det[Q;(A - M)Q,] = det(Q,")det(A - Al )det(Q,) = det(A - Al )

so that the elgenvalues of QlTAQ1 are the same as the eigenvalues of A, and consequently the
eigenvaluesof A, ; are A,, .....,A,. Applying the same argument as aboveto A, , , there exists an

orthogonal (n-1)x(n-1) matrix Q, such that

* T * }\'2 OT (I 99)
QZ AnleZ = . .
0 A,
Hence, denoting
1 0"
Q, = A (1.100)
0 Q,

which an orthogonal nxn matrix, we can write

A, O
O A,

where A, is adiagonal matrix with diagonal elements A, and A,. Repeating this procedure n-3

Q,'Q'AQQ, - (1.101)

more timesyields

Q' Q,Q'AQQ,Q, = A (1.102)
where A isthe diagonal matrix with diagonal elements 1, ,A,, ..... ,A

ne

Notethat Q = Q,Q,-Q, isan orthogonal matrix itself, and it is now easy to verify that
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the columns of Q are the eigenvectors of A. Q.E.D.

In view of this proof, we can now restate Theorem 1.35 as:

Theorem 1.36: A symmetric matrix A can be written as A = QAQT, where A isa diagonal matrix
with the eigenvalues of A on the diagonal, and Q is the orthogonal matrix with the

corresponding eigenvectors as columns.

This theorem yields a number of useful corollaries. The first oneistrivial:

Theorem 1.37: The determinant of a symmetric matrix is the product of its eigenvalues.

The next corollary concerns idempotent matrices [see Definition 1.12]:

Theorem 1.38: The eigenvalues of a symmetric idempotent matrix are either O or 1.

Consequently, the only nonsingular symmetric idempotent matrix is the unit matrix I.

Proof: Let the matrix A in Theorem 1.36 be idempotent: AA= A. Then A= QAQ"'=AA
= QAQ'QAQ" = QA*Q", hence A = A% Since A is diagonal, each diagonal element A, satisfies
A = ka, hence kj(l - kj) = 0.Moreover, if Aisnon-singular and idempotent then none of the
eigenvalues can be zero, hencethey areall equal to 1: A =1. Then A= QIQ"=A=QQ" =1.

Q.E.D.
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1.16. Positive definite and semi-definite matrices
Another set of corollaries of Theorem 1.36 concern positive [semi-] definite matrices.
Most of the symmetric matrices we will encounter in econometrics are positive [semi-] definite
or negative [semi-]| definite. Therefore, the results below are of utmost importance to

econometrics.

Definition 1.23: An nxn matrix A is called positive definite if for arbitrary vectorsx e R"
unegual to the zero vector, xX'Ax > 0, and it is called positive semi-definite if for such vectorsx,

X"Ax > 0. Moreover, A is called negative [semi-] definiteif -A is positive [semi-] definite.

Note that symmetry is not required for positive [semi-] definiteness. However, x'Ax can dways

be written as

XTAX = XT(%A R %AT)X - xTAX, (1.103)

say, where A, is symmetric, so that A is positive or negative [semi-] definiteif and only if A is

positive or negative [semi-] definite.

Theorem 1.39: A symmetric matrix is positive [semi-] definiteif and only if all its eigenvalues

are positive [non-negative.

Proof: This result follows easily from x’"Ax = xX"QAQ'™x = y'Ay = ijjyjz, wherey = Q'x

with componentsy.. Q.E.D.
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Due to Theorem 1.39, we can now define arbitrary powers of positive definite matrices:

Definition 1.24: If Aisa symmetric positive [semi-]definite nxn matrix, thenfor « € R [o > Q]
the matrix A to the power o is defined by A* =QA“Q", where A* is a diagonal matrix with
diagonal elements the eigenvalues of A to the power a: A“= diag(Ay,.....,A;),and Q isthe

orthogonal matrix of corresponding eigenvectors.

The following theorem is related to Theorem 1.8.

Theorem 1.40: If Ais symmetric and positive semi-definite then the Gaussian elimination can be
conducted without need for row exchanges. Consequently, there exist a lower triangular matrix

L with diagonal elements all equal to one, and a diagonal matrix D, such that A= LDL".

Proof: First note that by Definition 1.24 with « = 1/2, A¥2is symmetric and (AY%)"AY? =
A2 A¥2 = A Second, recall that according to Theorem 1.17 there exist an orthogonal matrix Q
and an upper-triangular matrix U such that AY2 = QU, hence A = (A¥?)TAY2 =U'Q'QU = U'U. The
matrix U" is lower-triangular, and can be written as U™ = LD., where D. isadiagona matrix and
L isalower-triangular matrix with diagonal elements all equal to 1. Thus, A = LD.D.L"=LDL",

where D = D.D.. Q.E.D.
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[.17. Generalized eigenvalues and eigenvectors

The concepts of generalized eigenvalues and elgenvectors play akey role in cointegration
analysis. Cointegration analysis is an advanced econometric time series topic, and will therefore
likely not be covered in an introductory Ph.D. level econometrics course for which this review of
linear algebraisintended. Nevertheless, to conclude thisreview | will briefly discuss what
generalized eigenvalues and eigenvectors are, and how they relate to the standard case.

Given two nxn matrices A and B, the generalized eigenvalue problem is: Find the values
for A for which

det(A - AB) = 0. (1.104)

Given asolution A, which iscaled the generalized eigenvalue of A and B, the corresponding
generalized eigenvector (relativeto B) isavector x in R" such that Ax = ABx.
However, if B issingular then the generalized eigenvalue problem may not have n

solutions as in the standard case, and may even have no solution at all. To demonstrate this,

(a1,1 a1,2] (bm b1,2]
A = , B = .
Gy &, b,, b,,

consider the 2x2 case:

Then
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a,,-Ab;; a,-Ab,,
det(A - AB) - det

P _}‘bZ,l &, _)‘bz,z
= (a1,1 _}‘bl,l) (az,z _kbz,z) - (a1,2 _}‘bl,Z) (az,l _kbz,l)

= A48, ,8y, * (850,780, -8y 10, ,th, 8 ) + (b1,1bz,2_bz,1b1,2)7‘2

If Bissingular then b, ,b,,-b, b, , = 0, sothat then the quadratic term vanishes. But things can
even be worse! It is possible that also the coefficient of A vanishes, whereas the constant term

a,,a,,-a,,8,, remansnonzero. In that case the generalized eigenvalues do not exist at all.

SR

Thisisfor example the case if

Then

1
det(A - 2B) = def

R UV
N —1—x) = (102 - A% = -1,

so that the generalized eigenvalue problem involved has no solution.

Therefore, in general we need to require that the matrix B is non-singular. In that case the
solutions of (1.104) are the same as the solutions of the standard eigenvalue problems
det(AB - Al) =0 and det(B *A-Al) = 0.

The generalized eigenvalue problems that we shall encounter in advanced econometrics
alwaysinvolve apair of symmetric matrices A and B, with B positive definite. Then the solutions
of (1.104) are the same as the solutions of the symmetric standard eigenval ue problem

det(B Y?°AB Y2 - Al) = 0. (1.105)

The generalized eigenvectorsrelative to B corresponding to the solutions of (1.104) can be
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derived from the eigenvectors corresponding to the solutions of (1.105):

B Y2AB V?x = Ax = ABY?2B Y?x = A(B V%) = AB(B Y%) (1.106)
Thusif x is an eigenvector corresponding to asolution A of (1.105) theny =B Y*xisthe
generalized eigenvector relative to B corresponding to the generalized eigenvalue A.

Finally, note that generalized eigenvectors are in general not orthogonal, even if the two
matrices involved are symmetric. However, in the latter case the generalized eigenvectors are
"orthogonal with respect to the matrix B", in the sense that for different generalized eigenvectors
y, andy,, leBy2 = 0. Thisfollows straightforwardly from the link y = B ¥?x between

generalized eigenvectorsy and standard eigenvectors x.

.18. Exercises

1. Consider the matrix

2 11
A=(4 -6 0f.
-2 7 2

@ Conduct the Gaussian elimination by finding a sequence E; of elementary matrices such
that (E  E, .... E, . E;) A= U = upper triangular.

(b) Then show that by undoing the elementary operations E; involved one gets the LU
decomposition A = LU, with L alower triangular matrix with all diagonal elements equal to 1.
(c) Finally, find the LDU factorization.

2. Find the 3x3 permutation matrix that swaps rows 1 and 3 of a 3x3 matrix.
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3 Let
1v, 00
Ov, 00
A = )
Ov; 10
Ov, 01
wherev, #0.
@ Factorize Ainto LU.
(b)  Find A, which has the same form as A.
4. Compute the inverse of the matrix
120
A=|26 4
by any method. 041l
5. Consider the matrix
1 2 0 2 1
A=|l-1-21 1 0].
1 2 -3 -7 -2

@ Find the echelon matrix U in the factorization PA = LU.
(b) What isthe rank of A?
(c) Find abasisfor the null space of A.

(d) Find abasis for the column space of A.
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6. Find a basis for the following subspaces of R*:
(@  Thevectors (x;,X,,%;,%,)" for whichx, = 2x,.
(b)  Thevectors (x;,X,,%;,%,)" for whichx, + x, + x; = O and X, + X, = 0.
(©) The subspace spanned by (1,1,1,1)", (1,2,3,4)", and (2,3,4,5)".
1. Let

12 0 3

b
A=(00 0 0| adb =|b,f.
240 1 b

1

3
@ Under what conditions on b does Ax = b have a solution?
(b) Find abasis for the nullspace of A.
(c) Find the general solution of Ax = b when a solution exists.
(d) Find abasis for the column space of A.
()  Whatistherank of A™?

8. Apply the Gram-Smidt process to the vectors

and write theresult in the form A = QU, where Q is an orthogona matrix and U is upper
triangular.
9. With a, b and c asin problem 8, find the projection of ¢ on the space spanned by a and b.

10. Find the determinant of the matrix A in problem 1.
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11. Consider the matrix
1 a
A =
-1 1

@ two different real valued eigenvalues?

For which values of a has this matrix

(b) two complex valued eigenvalues?

(c) two equal real valued eigenvalues?

(d) at least one zero eigenvalue?

12. For the case a = -4, find the eigenvectors of the matrix A in problem 11 and standardized
them to unit length.

13. Let A be amatrix with eigenvalues 0 and 1 and corresponding eigenvectors (1,2)" and
2-1".

@ How can you tell in advance that A is symmetric?

(b) What is the determinant of A?

(© What is A?

14, The trace of a square matrix isthe sum of the diagonal elements. Let A be a positive
definite kxk matrix. Prove that the maximum eigenvalue of A can be found as the limit of the

ratio trace(A"/trace(A™ ) for n - .
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Endnotes

1 Law of Cosines: Consider atriangle ABC, let ¢ be the angle between the legs C~A and
C-B, and denote the lengths of the legs opposite to the points A, B and C by «, 3, and v,

respectively. Then y? = o + B? - 20Bcos(p).

2. In writing a matrix product it is from now on implicitly assumed that the matrices
involved are conformable.

3. Here and in the sequel the columns of a matrix are interpreted as vectors.

4, Here and in the sequel | denotes a generic unit matrix.

5. The transpose of amatrix A is also denoted in the literature by A’.

6. The notation E;;(c) will be used for a specific elementary matrix, and a generic
elementary matrix will be denoted by "E".

7. A pivot is an element on the diagonal to be used to wipe out the elements below that
diagonal element.

8. Note that the diagonal elements of D are the diagonal elements of the former upper-
triangular matrix U.

9. I(true) = 1, I(false) = 0.

10.  The operation of swapping a pair of adjacent columns or rowsis also called a column or
row exchange, respectively.

11. Eigenvalues are also called characteristic roots. The name "eigen” comes from the
German word "Eigen” , which means "inherent”, or "characteristic”.

12. Recall that the complex conjugateof x=a+i.b, ab €R, isx = a - i.b. See
Appendix II1.

13. Eigenvectors are also called characteristic vectors.

14.  Recdl (see Appendix Il) that the length (or norm) of acomplex number x=a+i.b, ab
c R, isdefinedas [x| = /(a +i.b).(a - i.b) = ya?+b?. Similarly, in the vector case x=a +
i.b, ab eR" thelengthof xisdefined as |x| =y/(a + i.b)T(a - i.b) = yaTa+bb.
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Appendix 11

Misceallaneous M athematics

In this appendix | will review various mathematical concepts, topics and related results

that are used throughout the main text.

[1.1. Setsand set operations
[1.1.1 General set operations

The union AuB of two sets A and B is the set of elements that belong to either A or B or to
both. Thus, denoting "belongsto” or "is element of" by the symbol €, x e AuB impliesthat x e
Aor xe B, orinboth, and viceversa. A finite union Uj”:ﬁ of sets A,,....,A, isthe set with the
property that for each x € UJ-”ZlAJ. thereexistsanindex i, 1 <i < n, forwhich x € A, andvice
versa: If x € A forsomeindexi,1<i<n, thenx ¢ anzlAj. Similarly, the countable union
Ujiﬁ of an infinite sequence of sets A, j =1,2,3,....., isaset with the property that for each
X € Ujiﬁ there existsafiniteindex i > 1 for which x € A, andviceversa: If x € A for some
finiteindex i > 1then x € U_,A.

The intersection AnB of two sets A and B is the set of elements which belong to both A
and B. Thus, x eAnB impliesthat x € Aand x € B, and vice versa. The finite intersection ﬂjnzlAj
of setsA,,...,A, isthe set with the property that if x € ﬂjnzlAj thenforal i=1,..,n, x € A, and
viceversa If x € A fordli=1,..n, thenx ¢ ﬂj”ﬁ Similarly, the countable intersection

ﬂ;":ﬁ of aninfinite sequence of sets A, j = 1,2,..., isaset with the property that if x € ﬂ;":ﬁ
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thenfor all indicesi > 1, x € A, andviceversa If x € A foralindicesi > 1then x € ﬂjf’ilAj.

A set Aisasubset of aset B, denoted by AcB, if all the elements of A are contained in B.
If AcBand BcAthen A=B.

The difference A\B (also denoted by A-B) of sets A and B is the set of elements of A that
are not contained in B. The symmetric difference of two sets A and B is denoted and defined by
AAB = (A/B)U(B/A).

If AcB thentheset A =B/A (aso denoted by ~A) is called the complement of A with
respect to B. If A forj=123,... aresubsatsof Bthen ~UA = NA and ~NA = UA, for
finite as well as countable infinite unions and intersections.

Sets A and B are digoint if they do not have elementsin common: AnB = ¢, where ¢
denotes the empty set, i.e., a set without elements. Note that Aue = A and Ane = o. Thusthe
empty set o isasubset of any set, including o itself. Consequently, the empty set is digoint with
any other set, including o itself. In general, afinite or countable infinite sequence of setsis
digoint if their finite or countable intersection isthe empty set .

For every sequence of sets A , j = 1,2,3,....., thereexistsasequence B, j = 1,2,3,....., of
digoint sets such that for eachj, BicA, and UA = UB,. Inparticular, let B, = A and B, =
ANUA forn=234,....

The order in which unions are taken does not matter, and the same applies to
intersections. However, if you take unions and intersections sequentially it matters what is done
first. For example, (AuB)NC = (ANC)u(BNC), which isin general different from Au(BNC),
except if AcC. Similarly, (AnB)u C = (AuC)n(BuC), whichisin general different from

AN(BuC), except if AcB.
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[1.1.2 Setsin Euclidean spaces
An open e-neighborhood of apoint x in a Euclidean space R¥is a set of the form
N, = {y € R¥: [y-x| <&}, & >0,
and aclosed e-neighborhood is a set of the form
N(X) = {y € R*: |y-X| < €}, ¢ > 0.

A set Aiscalled open if for every x € Athere existsasmall open e-neighborhood N, (x)
contained in A. In short-hand notation: Vx € A Je > 0: N (X) = A, where V stands for “for all”
and 3 stands for “there exists’. Note that the ¢’s may be different for different x.

A point x called a point of closure of a subset A of R¥ if every open e-neighborhood
N.(X) containsapointin A aswell as a point in the complement A of A. Note that points of
closure may not exist, and if one exists it may not be contained in A. For example, the Euclidean
space RX itself has no points of closure because its complement is empty. Moreover, the
interval (0,1) has two points of closure, 0 and 1, both not included in (0,1). The boundary of a
set A, denoted by 0A, isthe set of points of closure of A. Again, 0A may be empty. A set Ais
closed if it contains all its points of closureif they exist. In other words, A is closed if and only if
9A =2 and 9A —A. Similarly, aset Aisopen if either A= o or 9A <A. Theclosure of aset A,
denoted by A, isthe union of A and its boundary 0A: A = AUGA. Theset A\Aistheinterior
of A.

Finally, if for each pair x, y of pointsinaset Aand an arbitrary A € [0,1] the convex

combination z = Ax + (1-A)y isasoapointin Athentheset Aiscalled convex.
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[1.2.  Supremum and infimum

The supremum of a sequence of real numbers, or areal function, is akin to the notion of a
maximum value. In the latter case the maximum value is taken at some element of the sequence,
or in the function case some value of the argument. Take for example the sequence a, = (-1)"/n
forn=12,.....,1.e,a,=-1,a,=12, a;=-1/3,a,=1/4, ..... Then clearly the maximum valueis
%, which is taken by a,. The latter is what distinguishes a maximum from a supremum. For
example, thesequence a,=1-1/n forn=1.2,....... isbounded by 1: a, < 1 for al indicesn >1,
and the upper bound 1 is the lowest possible upper bound, but there does not exist afinite index
nfor which a, = 1. More formaly, the (finite) supremum of asequence a, (n=1,2,3,....... ) isa
number b, denoted by sup,.,a, , such that a, < b for all indices n >1, and for every arbitrary
small positive number € there exists afinite index n such that a, > b-¢. Clearly, this definition
fits amaximum as well: amaximum is a supremum, but a supremum is not a'ways a maximum.

If the sequence a, is unbounded from above, in the sense that for every arbitrary large
real number M there exists an index n >1 for which a, > M, then we say that the supremum is
infinite: sup,.,a, = c°.

The notion of a supremum aso applies to functions. For example the function f(x) =
exp(-x?) takes its maximum 1 at x = 0, but the function f(x) = 1-exp(-x?) does not have a
maximum,; it has supremum 1 because f(x) < 1 for all x but there does not exists afinite x for
which f(x) = 1. Asanother example, let f(x) = x on theinterval [a,b]. Then b is the maximum of

f(x) on [a,b] but b isonly the supremum f(x) on [a,b) because b is not contained in [a,b). More

generdly, the finite supremum of areal function f(x) on aset A, denoted by sup

XeA

f(x), isarea

number b such that f(x) < bfor all xin A, and for every arbitrary small positive number ¢ there
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existsan xin Asuch that f(x) > b-e. If f(xX) = b for some x in A then the supremum coincides
with the maximum. Moreover, the supremum involved isinfinite, sup, ,f(X) = «, if for every
arbitrary large real number M there existsan xin A for which f(x) > M.

The minimum versus infimum cases are similar: inf,_,a, = -sup,.,(-a,) and inf_,f(x) =

XeA
-sup, 5 (-f(x)).
The concepts of supremum and infimum apply to any collection {c,, & € A} of real

numbers, where the index set A may be uncountable, as we may interpret c, as areal function on

theindex set A, say ¢, = f(«).

[1.3.  Limsup and liminf

Leta, (n=1,2,.......) be asequence of real numbers, and define the sequence b, as

b, = sup.,ap, (11.2)
Then b, isanon-increasing sequence: b, > b,,, becauseif a,is greater than the smallest upper

boundof & .,,a,,,,8,.3: then a isthemaximumof a ,a,,,.a,,,,a, 3,....., hence

b,=a,>b

n

andif notthenb_ = b Non-increasing sequences always have alimit,

n+1’ n+1°

although the limit may be -«. Thelimit of b, in (11.1) is called the [imsup of a, :

.
limsupa, = lim(sup,,a,)- (1.2)

N-oo N-o

Note that since b, is non-increasing, the limit of b, is equal to the infimum of b, . Therefore, the

limsup of a, may also be defined as
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de.
limsupa, = inf(sup,.,a,)- (1.3)

n>1

Note that the limsup may be +« or -, for exampleinthecases a,= nand a,= -n,
respectively.

Similarly, the liminf of a, isdefined by

def
liminfa, = lim(inf_ a ) (1.4)
N-oco N-co
or equivalently by
.
liminfa, = sup(nf_ a). (11.5)
n-oo n>1

Again, it is possible that the [iminf is +e Or —co.
Notethat liminf_ __a < limsup,__a,, becauseinf _a < sup, ,a, foralindicesn

>1, and therefore the inequality must hold for the limits as well.

Theorem I1.1:
€)) If liminf _a = limsup, __a, thenlim _a = limsupa,, andif liminf _a <
Moo
limsup, . a, then the limit of a, does not exist.
(b) Every sequence a,, contains a sub-sequence a, suchthat lim, a, = limsup,..a,, and

a, also containsa sub-sequence a, suchthat lim___a = liminf __a .

m

Proof: The proof of (a) follows straightforwardly from (11.2), (11.4) and the definition of a

limit. The construction of the sub-sequence a, in part (b) can be done recursively, asfollows.
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Let b = limsup, . a, < . Choosen, =1, and suppose that we have aready constructed anj for
J=1,....k >1. Then there exists an index n,,, > n, such that a, > b - 1/(k+1), because
otherwise a < b - 1/(k+1) for al m> n,, whichwould imply that limsup, . a, <b-1/(k+1).
Repeating this construction yields a sub-sequence a, such that from large enough k onwards,
b - k< a, < b. Letting k-, the limsup case of part (b) follows. If limsup,._a, 6 = «~ then
for each index n, we can find an index n,,; > n, such that a, > k+1, hencethen lim,__ a, =
. Thesub-sequenceinthecase limsup,__a, = -« andinthe liminf case can be constructed
similarly. Q.E.D.
The concept of a supremum can be generalized to sets. In particular, the countable union
U}’iﬁ may be interpreted as the supremum of the sequence of sets A, i.e., the smallest set
containing al the sets A. Similarly, we may interpret the countable intersection ﬂ;":ﬁ asthe
infimum of the sets A, i.e., the largest set contained in each of the sets A. Now let for n=
1,23,.., B, = ULA Thisisanon-increasing sequence of sets: B,,, < B, , hence M',B, = B,
The limit of this sequence of setsisthe limsup of A, for n -, i.e,, similarly to (11.3) we have
def. o [ o
limsupA, = ﬂ(UAJ]
n-oo n=1\ j=n
Next, letforn=123,..., C = ﬂjf’inAj . Thisis anon-decreasing sequence of sets. C,, c C,.,,
hence UJ-":1Cn = C,. Thelimit of this sequence of setsisthe liminf of A, for n -, i.e. similarly

to (11.5) we have

o[ ia).

def.
limi ann =
N—-o
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[1.4. Continuity of concave and convex functions

A real function ¢ on a subset of a Euclidean space is convex if for each pair of points a,b
andevery A € [0,1], o(ra+(1-1)b) > Ap(@) + (1-V)o(b). For example, ¢(x) = x? isaconvex
function on thereal line, and sois ¢(X) = exp(X). Similarly, ¢ isconcave if for each pair of
pointsa,b and every A € [0,1], o(Aa+(1-1)b) < Ap(a) + (1-L)o(b).

| will prove the continuity of convex and concave functions by contradiction. Suppose

that ¢ isconvex but not continuousin apoint a. Then

+) = li #
p(a+) ggw(b) o(a) (11.6)
or
=) =i +*
p(@-) tl)gw(b) o(a) (11.7)

or both. In the case (11.6) we have

o(a+) = limp(a + 0.5(b-a)) = lime(0.5a+0.5b)
bla

bla

< 0.5¢(a) + 0.5lime(b) = 0.5¢(a) + 0.5¢(a+),

bla

hence p(a+) < ¢(a) and thereforeby (11.6), p(a+) < ¢(a). Similarly, if (11.7) istrue then
o(a-) < ¢(a). Now let & > 0. By the convexity of ¢ it followsthat
o(@) = ¢(0.5(@-8) + 0.5(a+d8)) < 0.5¢9(a-6) + 0.5¢(a+d),
and consequently, letting 6 | 0, and using the fact that p(a+) < ¢(a), or p(a-) < ¢(a), or
both, we have ¢(a) < 0.5¢(a-) + 0.5¢p(a+) < ¢(a). Sincethisresult isimpossible, it follows
that (11.6) and (11.7) areimpossible, henceo is continuous.
If ¢ isconcave, then -¢ isconvex and thus continuous, hence concave functions are

continuous.
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I1.5. Compactness

An (open) covering of asubset ® of a Euclidean space R¥ is a collection of (open)
subsets U(a), a € A, of R, where A is a possibly uncountable index set, such that
©® < U _,U(a). A setiscalled compact if every open covering has afinite sub-covering, i.e., if
U(a), @ € A, isan open covering of ® and © is compact then there exists afinite subset B of A
suchthat ® = U, _;U(a).

The notion of compactness extends to more general spaces than only Euclidean spaces.

However,

Theorem 11.2: Closed and bounded subsets of Euclidean spaces are compact.

Proof: | will prove theresult for sets® in R only. First note that boundednessis a
necessary condition for compactness, because a compact set can always be covered by afinite
number of bounded open sets.

Next let ® isaclosed and bounded subset of the real line. By boundedness, there exists
pointsa and b in such that ® iscontained in[a,b]. Since every open covering of ® can be
extended to an open covering of [a,b], we may without loss of generality assume that ® = [a,b].
For notational convenience, let ® =[0,1]. There always exists an open covering of [0,1], because
for arbitrary € >0, [0,1] < U,_,_,(x-g,x+g). Let U(a), a € A, be an open covering of [0,1].
Without loss of generality we may assume that each of the open sets U(a) takes the form
(a(a),b(a)). Moreover, if for two different indices a and B, a(a) = a(B), then either (a(a),b(a)) <

(a(B).b(B)), sothat (a(a),b(w)) is superfluous, or (a(a),b(a)) = (a(B).b(B)), so that (a(B).b(B)) is
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superfluous. Thus, without loss of generality we may assume that the a(a)’ s are al distinct and
can be arranged in increasing order. Consequently, we may assume that the index set A is the set
of the a(a)’'sthemselves, i.e., U(a) = (a,b(a)), a € A, where A is a subset of R such that

[0,1] < U_,(ab(a)).Furthermore, if a, < a, then b(a,) < b(a,), asotherwise (a,,b(a))) is
superfluous. Now let O € (a,,b(a))), and defineforn=23,4,..., a, = (a,_;+b(a, ;))/2. Then
[0,1] = U;_,(a,b(a,).Thisimpliesthat 1 € U,_,(a,b(a)), hence there existsan n such that

1 € (a,b(a,). Consequently, [0,1] = Uj”zl(a].,b(a].)). Thus, [0,1] is compact. This argument
extendsto arbitrary closed and bounded subsets of a Euclidean space. Q.E.D.

A limit point of a sequence x, of real numbersisapoint x. such that for every & > 0 there
existsanindex nfor which [x -x | < . Consequently, alimit point isalimit along a
subsequence. Sequences x, confined to an interval [a,b] always have at |east one limit point, and
these limit points are contained in [a,b], because limsup,__x and liminf___x_ are limit points

contained in [a,b], and any other limit point must lie betweenliminf and limsup, . X, . This

n*wxn

property carries over to general compact sets:

Theorem I1.3: Every infinite sequence 0, of pointsin a compact set ® has at least one limit

point, and all the limit points are contained in @.

Proof: Let ©. be acompact subset of a Euclidean spaceand let ©,, k = 1,2,...., bea
decreasing sequence of compact subsets of ® each containing infinitely many 0 ‘s, to be
constructed asfollows. Let ®, = ® and k > 0. There exist afinite number of points

e;j, j = 1,...,m, suchthat, which U, (67) = {6: [l0-67] < 2%, O, iscontainedin
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Uj"}luk(e;,j). Then at least one of these open sets contains infinity many points 6, , say U, (6, ,).
Next, let
0., = {0: I0-0,1l < 2908,
which is compact, and contains infinity many points 0. Repeating this construction it is easy to
verify that (,_,®, isasingleton, and that this singleton isalimit point contained in © . Finally,
if alimit point 6" is located outside © then for somelargek, U (6")1 ® = o, which contradicts

the requirement that U, (0") containsinfinitely many 6, ‘s. Q.E.D.

Theorem I1.4: Let 0, be a sequence of pointsin a compact set ©. If all the limit pointsof 0 are

the same, then lim___6, existsandisa pointin @.

Proof: Let 8, € ® bethecommon limit point. If the limit does not exists, then there
existsad > 0 and an infinite subsequence enk such that |6nk—9*| > 6 foral k. But enk has also

limit point 6, so that there exists a further subsequence 6 which convergesto 0. Therefore,

n(m)

the theorem follows by contradiction. Q.E.D.

Theorem I1.5: For a continuous function g on a compact set ®, sup,_,9(9) = max,_,9(6) and

inf,_59(0) = min,_,9(0). Consequently, argmax,_,g(0) € ® and argmin,_,9(0) € ©.

Proof: It follows from the definition of sup,_,9(0) that or each k > 1 there exists a point
0, € ® suchthat g(0,) > sup,_,9(0) - 2%, hence lim,_9(6,) = sup,_o9(6). Since® is

compact the sequence 6, hasalimit point 0, € O (see Theorem I1.3), hence by the continuity
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of g, 9(®,) = sup,_(9(0).Consequently, sup,_,9(0) = max,_,d(0) = g(6,). Q.E.D.

[1.6.  Uniform continuity
A function g on R¥ is called uniformly continuousif for every € > O there existsa & >0

suchthat |g(X) - g(y)| < e if [x - y| < 3.In particular,

Theorem 11.6: If afunction g is continuous on a compact subset ® of R then it isuniformly

continuous on ©.

Proof: Let € > 0 be arbitrary, and observe from the continuity of g that for each xin ®
thereexistsa 6(x) > 0suchthat |g(x) - g(y)| < €/2if |x - y| < 256(X). Now let U(x) =
{y € R% |y - x| < 8(xX)}.Then the collection {U(X), x € ®} isan open covering of ®, hence
by compactness of © there exists afinite number of points 9,,.....,0, in © such that

0 c U}‘:1U(ej). Next, let 5 = min,_;_5(6,). Eachpointx e © belongsto at least one of the

1<j<n
open sets U(ej): X € U(ej) for somej. Then |x - 9j|| < 8(ej) < 28(6j), hence |g(X) - g(ej)| <
e/2. Moreover, if |x - y| < & then

ly =61 =1y —x+x -6 <x -yl +Ix-6]<8+306) < 258),
hence g(y) - 9(6,)| < /2. Consequently, [g(x) - g¥)| < 19() - 9(®)I + [a(y) - 9(6)] < ¢

if[x -yl <8.Q.ED.
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I1.7. Derivatives of functions of vectors and matrices
Consider areal function f(x) = f(x,.....,x ) on R", where x = (xl,.....,xn)T. Recall that

the partial derivative of f to acomponent x; of x is denoted and defined by
of(x) _ of(Xy s s X) dif- Iimf(xl’"’)%’1’Xi+8’)%*1""’x”) = FX X X X g e s X))
OX. OX: 5-0 0 .

For example, let f(x) = p'x = x™B = Bx, + ... B,x,. Then

of(x)/ox, B,

of(x)/ox, B,

This result could also have been obtained by treating x™ as a scalar and taking the derivative of
f(x) = x B to x": 3(x B)/ox T = B. This motivates the convention to denote the column vector
of partial derivative of f(x) by of(x)/ox . Similarly, if we treat x as a scalar and take the

derivative of f(X) = p'x tox, thentheresult isarow vector: J(B'™X)/ox = BT.Thusin general,

of(x)/ox,

% Sl I IR (¢S B0V, ..., OF(IX ).
X

of(x)/ox,

If the function H is vector-valued, say H(X) = (hl(x),.....,hm(x))T, x € R", then applying

the operation 0/0x to each of the components yields an mxn matrix:

oh,(x)/ox oh,(X)/ox; - dJh,(X)/ox,
OH(K) **

oh_(X)/ox oh_(X)/ox, - oh_(X)/ox

Moreover, applying the latter to a column vector of partial derivatives of areal functionf yields



416

9%(X) 9%(X)
0X,0%, 0X,0X,,
AEfIaXT) L _ 94(¥)
ox axox T’
) )
0X,0%, 0X,0X,,

In the case of an mxn matrix X with columns x,......x, € R, X = (x1’j I ,me.) ,anda
differentiable function f(X) on the vector space of kxn matrices, we may interpret X = (X, ...,X)

asa‘“row” of column vectors, so that

3F(X)/ox AF/Ax, , ~ f(X)I9
1 e 1,1 Xm,l

oHx) _ o
oX O(Xy yerenrX)

Sf(X)lox_ A (X)ax,, - Of(X)ox,,,

def.
isan nxm matrix. For the same reason, of(X)/oX T = (af(X)/0X)". An example of such a

derivative to amatrix is given by Theorem 1.33 in Appendix |, which states that if X isasquare
nonsingular matrix then dln[det(X)]/oX = X 1.

Next, consider the quadratic function f(x) = a + x"b + X'Cx, where

x=|:{,b=]:],C-= oL ,Withciyj:c”.

Thus, C isasymmetric matrix. Then
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8xk
n_ ox n.n oXxc X n
:Zbi_IJFZZ ] b +20kkxk ZXIIK+ZijXj

i1 OX, i 0% j-1
|¢k j#k

n

b, + chkd o k=1,..,n,
=1

hence, stacking these partial derivativesin a column vector yields

of(x)/ox ™ = b + 2Cx. (11.8)
If Cisnot symmetric, we may without loss of generality replace C in the function f(x) by the
symmetric matrix (C + C")/2, because x'Cx = (X'Cx)" = X'Cx, so that then

of(X)/oxT = b + Cx + C'x.

Theresult (11.8) for the case b = 0 can be used to give an interesting aternative
interpretation of eigenvalues and eigenvectors of symmetric matrices, namely as the solutions of
a quadratic optimization problem under quadratic restrictions. Consider the optimization problem

max or minx 'Ax st. x 'x = 1, (11.9)
where A is a symmetric matrix, and “max” and “min” include local maximaand minima, and
saddle-point solutions. The Lagrange function for solving this problem is

Lx,A) = X TAX + A1 - xTX),
with first-order conditions
OL(X,A\)/0x T = 2Ax - 2Ax = 0 = AX = AX, (11.10)
oL(X, Ao =1 - x™x = 0= |x| = 1. (11.12)

Condition (11.10) defines the Lagrange multiplier . as the eigenvalue and the solution for x as the
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corresponding eigenvector of A, and (11.11) isthe normalization of the eigenvector to unit length.

Combining (11.10) and (11.11) it followsthat A = x"Ax.

[1.8. Themean valuetheorem

Consider adifferentiable real function f(x), displayed as the curved line in the following

figure:

a c b
Figure I1.1. The mean value theorem

We can aways find a point c in the interval [a,b] such that the slope of f(X) at x = ¢, whichis
equal to the derivative f'(c), isthe same as the slope of the straight line connecting the points
(a,f(a)) and (b,f(b)), smply by shifting the latter line parallel to the point where it be comes
tangent to f(x). The slope of this straight line through the points (a, f(a)) and (b,f(b)) is:

(f(b) -f(a))/(b-a). Thus, at x= cwehave f/(c) = (f(b) - f(a))/(b - &), or equivaently



419

f(o) = f(a) + (b - a)f’(c).Thiseasy result is called the mean value theorem. Since this point ¢

canalsobeexpressedasc = a + Mb - a), with0O < A = (c - a)/(b - @) < 1, wecan now

state the mean value theorem as;

Theorem 11.7(a): Let f(x) be a differentiable real function on aninterval [a,b], with derivative

f/(x). For any pair of points X,X, € [a,b]thereexistsa A € [0,1] suchthat f(x) =

f(x) + (X = x)f (%, + AMX-Xp)).

This result carries over to real functions of more than one variable:

Theorem 11.7(b): Let f(X) be a differentiable real function on a convex subset C of RX. For any

pair of points X, X, € C thereexistsa A € [0,1] such that

() = 100) + (x = %)Y Oy -

[1.9. Taylor’stheorem

The mean value theorem implies that if for two pointsa<b, f(a) = f(b), then there

existsapoint ¢ € [a,b] suchthat f/(c) = 0.Thisfact isthe core of the proof of Taylor's

theorem:

Theorem 11.8(a): Let f(x) be an n-times continuoudly differentiable real function on an interval

[a,b], with the n-th derivative denoted by f™(x).For any pair of points X,X, € [a,b] thereexists
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a A € [0,1] such that

=}

-1 - k _ n
09 = 0 + 2 o 0y + I g0 o)

ko1 k!

Proof: Let a < X, < X < b befixed. We can awayswrite

n-1 _ k
0 - fog) - 3o

k1 k!

where R, istheremainder term. Now let a < X, < X < b befixed, and consider the function

f®(x) + R, (11.12)

o) - ) - 1) - 3 & Wraagy - RO
k=1 k! (X _ XO)n
with derivative
n-1 k-1 n-1 K _ n-1
(u) = -/ K= W cwg) - Y X W e hR(x - u)
= -f + f f R L —
g'(u) (u) kz; D) (U) k§; - ) —
i - 30 Wy - 36 Wy, MR W
k=0 k! k=1 k! (X _ XO)n

- (x - u)n—lf(n)(u) . an(X - U)”*l.
(n-1)! (X = x)"

Then g(x) = g(x,) = 0, hencethereexistsapoint ¢ € [x,X] suchthat g’(c) = O:

Therefore,

n

R = %f(n)(c) = %f(m(xo + x(x—x0)>, (11.13)

where ¢ = X, + AX-X,). Combining (11.12) and (11.13) the theorem follows. Q.E.D.



421

Also Taylor’ s theorem carries over to real functions of more than one variable, but the
result involved is awkward to display for n > 2. Therefore, we only state the second-order Taylor

expansion theorem involved:

Theorem 11.8(b): Let f(x) be a twice continuously differentiable real function on a convex

subset = of R". For any pair of points x, X, € Z thereexistsa A € [0,1] such that

_ of(y) 1 o*(y)
f) = f0x) + (X = %) (X = %)
" " { oy’ on] 20 ® { oy Ttxw(xxo)

[1.10. Optimization

(X - %) (.14

Theorem 11.8(b) shows that the function f(x) involved islocally quadratic. Therefore, the
conditions for amaximum or aminimum of f(x) inapoint x, € = can be derived from (11.14)

and the following theorem.

Theorem 11.9: Let C be a symmetric nxn matrix, and let f(x) = a + x'b + x'Cx, x € R",
whereaisagiven scalar and b isa given vector in R". If Cis positive [negative] definite then

f(x) takes a unique minimum [maximum], at x = -%C b.

Proof: The first-order condition for a maximum or minimum is of(x)/ox T = 0 (¢ R,
hence x = -%C 'b. Asto the uniqueness issue, and the question whether the optimum is a
minimum or amaximum, recall that C = QAQ', where A isthe diagonal matrix of the

eigenvalues of C and Q isthe corresponding matrix of eigenvectors. Thus we can write f(x) as
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f(x) =a+x QQ b+ x"QAQ"x. Lety=Q"x= (y;,....y,) andp= Q" b= (B,,...5,)" . Then
f(Qy)=a+y B+y Ay= a + X By, + Ay,). Thelatter isasum of quadratic functionsin
one variable which each has a unique minimum if 3, > 0 and aunique maximum if 2, <0.
Q.ED.

It follows now from (11.14) and Theorem I1.9 that:

Theorem 11.10: The function f(x) in Theorem 11.8(b) takes a local maximum [minimum] in a
point x, € Z, i.e, X, iscontained in an open subset =, of = suchthat for all x e Z\{x},
f(X) < f(xy) [f(X) > f(xy)], if and only if af(xo)/axoT = 0 (¢ R"), and the matrix azf(xo)/(axoaxoT)

IS negative [positive] definite.

A practical application of the Theorems 11.8(a), 11.9 and 11.10 is the Newton iteration for
finding a minimum or a maximum of a function. Suppose that the function f(x) in Theorem

11.8(b) takes a unique global maximum at x, € =. Starting from an initial guessx, of x., let for

k>0,

(x| [ (%)
Xk+1 = Xk h T T )
09X, 9%, OXy,

Thus, the Newton iteration maximizes or minimized the local quadratic approximation of fin x,.

Theiteration is stopped if for some small threshold € > O, X, - Xl < €.
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Appendix I 11

A Brief Review of Complex Analysis

[11.1. Thecomplex number system

Complex numbers have many applications. The complex number system allows to
conduct computations that would be impossible to perform in the real world. In probability and
statistics we mainly use complex numbers in dealing with characteristic functions, but in time
series analysis complex analysis plays a key-role. See for example Fuller (1996). Therefore, in
this appendix | will review the basics of complex analysis.

Complex numbers are actually two-dimensional vectors endowed with arithmetic
operations that make them act as numbers. Therefore, | will introduce the complex numbersin
their "real" form, as vectorsin R?.

Next to the usual addition and scalar multiplication operators on the elementsof R? (see

Appendix I), define the vector multiplication operator "x" by:

(a) (c) def. (a.c—b.d)
x = . (111.2)
b d b.c+a.d

(z (Z] ] (Z](Z] (n.2)

Moreover, define the inverse operator “-1" by

Observe that
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a 1 def. 1 a
= , provided that a?+b? > 0, (111.3)
b a2+p2\ -b

50 that

OG-S

The latter vector plays the same role as the number 1 in the real number system. Furthermore, we

can now define the division operator “/” by

a) (c) def. (a) (c 1 1 (a) ( c) 1 (a.c+b.d)
/ N y _ x _ , (111.5)
b) \d b) \d c2+d?\b) \ -d c?+d2\ b.c-ad

provided that c?+d? > 0. Note that
~ 1 Cc ~ Cc
 ¢2.g2 -d) \d

Rl

In the subspace Rf = { (x,0)7, x € R} these operators work the same as for real

B A A W R A

provided that ¢ = O. Therefore, all the basic arithmetic operations (addition, subtraction,

-1

(111.6)

numbers:

multiplication, division) of the real number system R apply to Rf, and viceversa.

In the subspace R = { (0,X)T, x € R} the multiplication operator x yields

-

In particular, note that
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MLz
A PG R

and interpret a +i.0 as the mapping

Now denote

'O'a .11
a+|..o~a. (1r.12)

Then it follows from (111.1) and (111.10) that

, : aj |c
(a+i.b)x(c+i.d) = (b) x(d) =

However, the same result can be obtained by using standard arithmetic operations, treating the

a.c-b.d
b.c+a.d

) = (ac-b.d) + i.(b.c+a.d). (1.12)

identifier i as /-1:
(a+i.b)x(c+i.d) = as+iZb.d+ib.c+i.ad = (as-b.d)+i.(b.c+a.d) (1.13)

In particular, it followsfrom (111.9), (111.10) and (111.11) that

NGRE

which can also be obtained by standard arithmetic operations, treating i as /-1 and i.0 as 0.

- -1+i.0 - -1 (111.14)

Similarly, we have

(a+i.b)/(c+i.d) =

al [c a.c+b.d _
/ _ 1 _ a.c+b.d +i.b'C a.d (111.15)
b) \d c2+d2\ b.c-ad c2+d? c2+d?

provided that c?+d? > 0. Again, this result can aso be obtained by standard arithmetic
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operations, treating i as y/-1:

a+i.bxc—i.d _ (a+i.b)x(c-id) _ a.c+b.d+i b.c-ad
c+id c-i.d  (cHi.d)x(c-i.d)  c2+d2  c2+g2

(a+i.b)/(c+i.d) = (111.16)

The Euclidean space R? endowed with the arithmetic operations (111.1), (111.3) and (111.5)
resembles a number system, except that the “numbers’ involved cannot be ordered. However, it

is possible to measure the distance between these “numbers’, using the Euclidean norm:

def.
la+ib| =

(Z] ” = ya%+b? = y/(a+i.b)x(a-i.b). (111.17)

If the “numbers’ in this system are denoted by (111.10), and standard arithmetic operations are
applied, treating i as /-1 and i.0 as 0, the results are the same as for the arithmetic operations
(111.1), (111.3) and (111.5) on the elements of R2. Therefore, we may interpret (111.10) asa
number, bearing in mind that this number has two dimensions if b= 0.

From now on | will use the standard notation for multiplication, i.e., (a+i.b)(c+i.d)
instead of (111.13).

The part a of a+i.b iscalled thereal part of the complex number involved, denoted by
Re(a+i.b) = a, and biscalled the imaginary part, denoted by Im(a+i.b) = b. Moreover, a-i.b
is called the complex conjugate of a+i.b and vice versa. The complex conjugateof z = a+i.b is
denoted by abar:z = a-i.b. It followsfrom (111.12) that for z = a+i.b andw=c+i.d,

zw = z.w. Moreover, |7 = yzz . Findly, the complex number systemitself is denoted by C.
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[11.2. Thecomplex exponential function

Recall that for real-valued x the exponential function e*, also denoted by exp(x), has

the series representation

i X? (111.18)

The property € = e”e” corresponds to the equality

o YK o K K k-m ,m
5 - Zﬁz(J VB i

klm 0
0 k!

The first equality in (111.19) is due to the binomial expansion, and the last equality follows easily

(111.19)

by rearranging the summation. It is easy to see that (111.19) also holds for complex valued x and y.

Therefore, we can define the complex exponential function by the series expansion (111.18):

def. K > Ak 2 ©
ea+|b — (a+|-b) - a_ -
I P 2o
(111.20)
z"’: ( 1)m b2m . hd (_1)m_b2m+1 .
m=0 (2m)l m=0 (2m+1)l
Moreover, it follows from Taylor’ s theorem that
l) b . i ( 1)mb2m+1
cos(b) = (GO , sin(b) = ~— .21
O - ,;o (2m)! DT (1h.21)
so that
e®1® = e?3[cos(b) + i.sin(b)]. (111.22)

Setting a = 0, the latter equality yields the following expressions for the cosines and sinusin
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terms of the complex exponential function:

ib,g-ib

ib_aib
cos(b) = GT’ e -e-

sin(b) = =—

(111.23)

These expressions are handy in recovering the sinus-cosines formulas:

sin(a)sin(b) = [cos(a - b) - cos(a + b)]/2

sin(a)cos(b) = [sin(a + b) + sin(a - b)]/2

cos(@)sin(b) = [sin(a + b) - sin(a - b)]/2

cos(a)cos(b) = [cos(a + b) + cos(a - b)]/2 1124
sin(a + b) - sin(a)cos(b) + cos(a)sin(b) (111.24)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

sin(a - b) = sin(a)cos(b) - cos(a)sin(b)

cos(a - b) = cos(a)cos(b) + sin(a)sin(b

Moreover, it follows from (111.22) that for natural numbersn,
e'""® = [cog(b) + i.sin(b)]" = cos(n.b) + i.sin(n.b). (111.25)

Thisresult is known as DeMoivre s formula. It also holds for real numbers n, as we will see

below.

Finally, note that any complex number z=a + i.b can be expressed as

z=a+ b=pg—2_ +i b |_ |zl.[cos(2np) + i.sin(2n)]
ya2+b? JaZ+b? (111.26)
= |2.exp(i.2no),

where ¢ € [0,1] issuch that 2ne = arccos(alya?+b?) = arcsin(b/y/a?+b?).

[11.3. Thecomplex logarithm
Similarly to the natural logarithm In(.), the complex logarithm log(z), z € C, isacomplex

number a+i.b = log(z) such that exp(a+i.b) = z, henceit follows from (111.25) that z=
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exp(a)[cos(b) + i.sin(b)] and consequently, since

lexp(-a).2] = |cos(b)+ i.sin(b)| = y/cosi(b)+sin¥(b) = 1,
we have that exp(a) = |z and exp(i.b) = Z/|z]. The first equation has a unique solution, a = In(|z]),
aslong as z # 0. The second equation reads as
cos(b) + i.sin(b) = (Re(2) + i.Im(2))/|z, (111.27)
hence cos(b) = Re(2)/|z], sin(b) = Im(2)/|z|, so that b = arctan(Im(z)/Re(2)). However, equation
(111.27) aso holds if we add or subtract multiples of w to or from b, because tan(b) = tan(b+m.m)
for arbitrary integers m, hence
log(2) = In(|lz)) + i.[arctan(Im(z2)/Re(2)) + mm], m = 0,£1,+2,+3,..... (111.28)
Therefore, the complex logarithm is not uniquely defined.
The imaginary part of (111.28) is usually denoted by
arg(2) = arctan(iIm(2/Re(2)) + me, m = 0,£1,£2,+3,..... (11.29)
It isthe anglein radians indicated in Figure 1, eventually rotated multiples of 180 degrees

clockwise or anticlockwise:

Fe

Irm

Figurelll.1: arg(z)
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Note that Im(z)/Re(2) is the tangents of the angle arg(2), hence arctan(Im(z)/Re(2)) is the angle
itself.

With the complex exponential function and logarithm defined, we can now define the
power 2" as the complex number a+i.b such that a+i.b = exp(w.log(z)), which existsif |7 > 0.
Consequently, DeMoivre’ s formula carries over to al real-valued powers n:

[cos(b) + i.sin(b)]" = (e"®)" = ™ - cos(nb) + i.sin(n.b). (111.30)

[11.4 Seriesexpansion of the complex logarithm
For thecase x € R, [x| < 1, it follows from Taylor’ s theorem that In(1+x) has the series
representation
In(1+X) = kf; (-D)* Ix ¥k, (111.31)
The question | will address now is whether ghis series representation carries over if we replace x
by i.x, because thiswill yield a useful approximation of exp(i.x) which plays akey role in proving
central limit theorems for dependent random variables.* See Chapter 7.

If (111.31) carries over we can write, for arbitrary integers m,
log(1+i.x) = Y (D% kxKk + imm
k=1
= Y (-D)Z U2 2Kk) + Y (-1 A AL (2k-1) + i (111.32)
k=1 k=1

= Z(—l)"’lx2k/(2k) + i.z (- %Y (2k-1) + i.mn
k=1 k=1
On the other hand, it follows from (111.28) that

log(1+i.X) = §|n(1+x2) + i.[arctan(x) + n]. (111.33)
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Therefore, we need to verify that for x e R, x| <1,

00

%In(1+x2) = Y (-DKX(2K) (111.34)
k=1
and
arctan(x) = fj (-1)* Ix2Y(2k-1). (111.35)
k=1

Equation (111.34) follows from (111.31) by replacing x with x2. Equation (111.35) follows from

o0

ii (_1)k—lx2k—1/(2k_1) _ Zw: (_1)k—1X2k—2 _ Z(_Xzy _ 1 (|||.36)
dXi1 ko1 k=0 1+x2

and the facts that arctan(0) = 0 and

darctan(x) _ 1
dx 1+X

> (111.37)

Therefore, the series representation (111.32) istrue.

[11.5. Complex integration
In probability and statistics we encounter complex integrals mainly in the form of
characteristic functions, which for absolutely continuous random variables are integrals over
complex-valued functions with real-valued arguments. Such functions take the form
fx) = o(X) + i.y(X), x € R, (111.38)
where ¢ and | are real-valued functions on R. Therefore, we may define the (Lebesgue) integral

of f over aninterva [a,b] simply as
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b b b
ff(x)dx = f(p(x)dx - i.f\u(x)dx, (111.39)

provided of course that the latter two integrals are defined. Similarly, if | isa probability
measure on the Borel setsin R* and Re(f(x)) and Im(f(x)) are Borel measurable real functions on
R¥, then
f fOdu(x) = f Re(f(x))dp(x) + i. f Im(f(x))du(x) , (111.40)
provided that the latter two integrals are defined.
Integrals of complex-valued functions of complex variables are much trickier, though.
See for example Ahlfors (1966). However, these types of integrals have limited applicability in

econometrics, and are therefore not discussed here.

Endnote

1. For xe Rwith x| <1, exp(i.x) = (1+i.X)exp(-x%2 + r(x)), where [r(X)| < [xJ.
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