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Abstract

We present several Markov chain Monte Carlo simulation methods that have been

widely used in recent years in econometrics and statistics. Among these is the Gibbs

sampler, which has been of particular interest to econometricians. Although the paper

summarizes some of the relevant theoretical literature, its emphasis is on the presen-

tation and explanation of applications to important models that are studied in econo-

metrics. We include a discussion of some implementation issues, the use of the methods

in connection with the EM algorithm, and how the methods can be helpful in model

speci�cation questions. Many of the applications of these methods are of particular

interest to Bayesians, but we also point out ways in which frequentist statisticians may

�nd the techniques useful.
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1 Introduction

In this paper we explain Markov chain Monte Carlo (MCMC) methods in some detail and

illustrate their application to problems in econometrics. These procedures, which enable the

simulation of a large set of multivariate density functions, have revolutionized the practice

of Bayesian statistics and appear to be applicable to virtually all parametric econometric

models regardless of their complexity. Our purpose is to explain how these methods work,

both in theory and in practical applications. Since many problems in Bayesian statistics

(such as the computation of posterior moments and marginal density functions) can be

solved by simulating the posterior distribution, we emphasize Bayesian applications, but

these tools are also valuable in frequentist inference, where they can be used to explore

the likelihood surface and to �nd modal estimates or maximum likelihood estimates with

di�use priors.1

An MCMC method is a simulation technique that generates a sample (multiple obser-

vations) from the target distribution in the following way: The transition probability of

a Markov process is speci�ed with the property that its limiting invariant distribution is

the target distribution. The Markov chain is then iterated a large number of times in a

computer-generated Monte Carlo simulation, and the output, after a transient phase and

under various sets of conditions, is a sample from the target distribution. The �rst such

method, due to Metropolis et al. (1953) and Hastings (1970), is known as the Metropolis-

Hastings (MH) algorithm. In this algorithm, the next value of the Markov chain is generated

from a proposal density and then accepted or rejected according to the density at the can-

didate point relative to the density at the current point. Another MCMC method is the

Gibbs sampling algorithm, introduced by Geman and Geman (1984) and extended by Tan-

ner and Wong (1987) and Gelfand and Smith (1990), in which the next draw is obtained by

sampling sub-components of a random vector from a sequence of full conditional distribu-

tions. Other MCMC methods include hybrid versions of Gibbs sampling and MH sampling

[Tierney (1994)] and stochastic versions of the EM algorithm [Celeux and Diebolt (1985)].

1Smith and Roberts (1993) and Tanner (1993) contain valuable surveys of some of the same ideas but are

addressed to a general statistical audience. We emphasize econometric applications in the present paper.
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The generated sample can be used to summarize the target density by graphical means,

by exploratory data analysis methods, and by other means.2 For example, expectations

of integrable functions w.r.t. the target density can be estimated by taking a sample av-

erage of the function over the simulated draws. Under general conditions the ergodicity

of the Markov chain guarantees that this estimate is simulation consistent and satis�es a

central limit theorem as the length of the simulation goes to in�nity. The MCMC strat-

egy has proved extremely useful in statistical applications, much more so than traditional

independent sampling methods, which by and large are di�cult to apply in complex, high-

dimensional problems. MCMC methods can be applied without knowledge of the normaliz-

ing constant of the target density, which is very important in the Bayesian context where the

normalizing constant of the target (posterior) density is almost never known. In addition, it

is often possible to tailor an MCMC scheme such that models with an intractable likelihood

function can be simulated. This is usually achieved, particularly with Gibbs sampling, by

the device of \data augmentation" (the strategy of enlarging the parameter space to include

missing data or latent variables). Applications of this idea include models with structural

breaks at random points [Carlin, Gelfand, and Smith (1992)]; models with censored and

discrete data [Chib (1992a) and Albert and Chib (1993a,c)]; models with Markov switching

[Albert and Chib (1993b), Chib (1993b), and McCulloch and Tsay (1993)]; models with

parameter constraints [Gelfand et al. (1992)], and many others.3

The remainder of the paper proceeds as follows. In the second section we review the

theory behind generating samples by Markov chain Monte Carlo and discuss implementation

issues for the Gibbs and MH algorithms. In the third section these methods are applied to

models widely used in econometrics: the seemingly unrelated regression model, the tobit

censored regression model, binary and panel probit models, random coe�cient model, linear

regression with AR(p) errors, and state-space models. In Section 4 we explain how output

from an MCMC simulation can be used for statistical inference, and Section 5 contains

2This feature is shared by non-MCMC methods (such as those based on rejection sampling) that are
designed to sample a density [Rubinstein (1981) and Ripley (1987)].

3By contrast, Monte Carlo methods with importance sampling [Kloek and van Dijk (1978), Geweke

(1989), Koop (1994)] are di�cult to apply in these situations due to the complexity of the likelihood function.
In addition, the need to �nd a suitable importance sampling function is a limitation in high-dimensional

problems.

3



conclusions.

2 Markov chain Monte Carlo sampling methods

We begin the section with an informal presentation of some relevant material from Markov

chain theory and then discuss the Gibbs sampling algorithm and the MH algorithm. A

much more detailed discussion of Markov theory is provided by Nummelin (1984), Meyn

and Tweedie (1993), and Tierney (1994).

2.1 Markov chains

A Markov chain is a collection of random variables (or vectors) � = f�i : i 2 Tg where

T = f0; 1; 2; : : :g. The evolution of the Markov chain on a space 
 � <p is governed by the

transition kernel

P (x;A) � Pr(�i+1 2 Aj�i = x;�j; j < i); x 2 
; A � 
:

The assumption that the probability distribution of the next item in the sequence, given

the current and the past states, depends only on the current state is the Markov property.

Suppose that the transition kernel, for some function p(x; y) : 
�
! <+; is expressed as

P (x; dy) = p(x; y)v(dy)+ r(x)�x(dy) ; (1)

where p(x; x) = 0; �x(dy) = 1 if x 2 dy and 0 otherwise, r(x) = 1�
R

 p(x; y) v(dy), and �

denote a �-�nite measure on the Borel �-algebra on 
, then transitions from x to y occur

according to p(x; y) and transitions from x to x occur with probabiltiy r(x). In the case

that r(x) = 0; the integral of p(x; y) over y is 1 and the function p(x; y) may be referred to

as the transition density of the chain. Note that

P (x;A) =

Z
A
P (x; dy) : (2)

The transition kernel is thus the distribution of �i+1 given that �i = x. The n-th step

ahead transition kernel is given by

P (n)(x;A) =
Z


P (x; dy)P (n�1)(y; A) ;
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where P (1)(x; dy) = P (x; dy): Under certain conditions that are discussed below it can be

shown that the nth iterate of the transition kernel (as n ! 1) converges to the invariant

distribution, ��. The invariant distribution satis�es

��(dy) =

Z


P (x; dy)�(x)v(dx) (3)

where � is the density of �� with respect to the measure � (thus, ��(dy) = �(y)v(dy)).

The invariance condition states that if �i is distributed according to ��, then so are all

subsequent elements of the chain. A chain is said to be reversible if the function p(x; y) in

(1) satis�es

�(x)p(x; y) = �(y)p(y; x) : (4)

A reversible chain has �� as an invariant distribution [see Tierney (1994) or Chib and

Greenberg (1994)]. An important notion is ��-irreducibility. A Markov chain is said to

be ��-irreducible if for every x 2 
, ��(A) > 0 ) P (�i 2 Aj�0 = x) > 0 for some

i � 1. This condition states that all sets with positive probability under �� can be reached

from any starting point in 
: Another important property of a chain is aperiodicity, which

ensures that the chain does not cycle through a �nite number of sets. A Markov chain is

aperiodic if there exists no partition of 
 = (D0; D1; : : : ; Dp�1) for some p � 2 such that

P (�i 2 Di mod(p)j�0 2 D0) = 1 for all i.

These de�nitions allow us to state the following (ergodicity) result [see Tierney (1994)],

which forms the basis for Markov chain Monte Carlo methods.

Proposition 1 If P (�; �) is ��-irreducible and has invariant distribution ��; then �� is the

unique invariant distribution of P (�; �). If P (�; �) is also aperiodic, then for ��-almost every

x 2 
, and all sets A

1. jPm(x;A)� ��(A)j ! 0 as m!1;

2. for all ��-integrable real-valued functions h,

1

m

mX
i=1

h(�i)!

Z
h(x)�(x)�(dx) as m!1; a:s:
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The �rst part of this theorem tells us that (under the stated conditions) the probability

density of the mth iterate of the Markov chain is, for large m, very close to its unique,

invariant density. This means that if drawings are made from Pm(x; dy), then for large m

the probability distribution of the drawings is the invariant distribution, regardless of the

initial value. The second part states that averages of functions evaluated at sample values

(ergodic averages) converge (as m ! 1, almost surely) to their expected value under the

target density. Su�cient conditions for ��-irreducibility and aperiodicity are presented

below for the Gibbs and MH algorithms.

2.2 Gibbs sampling

As noted above, the objective in MCMC simulation is to �nd a transition density that

has the target density as its invariant distribution. One strategy is the Gibbs sampling

algorithm, in which the random vector is partitioned into several blocks and the transition

density is de�ned as the product of the set of full conditional densities (the conditional

density of each block given the data and the remaining parameters).4 The next item in

the Markov chain is obtained by successively sampling the full conditional densities, given

the most recent values of the conditioning parameters. Casella and George (1992) provide

an elementary introduction. The value of this algorithm arises from the fact that in many

applications the full conditional densities (perhaps after the parameter space has been

augmented by latent data) take convenient forms and can be simulated even though the

target density is intractable.

Suppose �(x), x 2 S � <p, is the (perhaps unnormalized) target density that we wish

to sample. For some decomposition of x into x1; : : : ; xd, let the full conditional density

of the kth block be denoted by �(xkjx�k) � �(xkjx1; : : : ; xk�1; xk+1; : : : ; xd).
5 Then the

Gibbs sampling algorithm is de�ned by the following iterations:

1. Specify starting values x(0) = (x
(0)
1 ; : : : ; x

(0)

d ) and set i = 0.

4For frequentist statisticians these distributions can be regarded as proportional to the conditional like-

lihood functions of each parameter, where the conditioning is on values of all remaining parameters.
5Note that the full conditional density �(xkj x�k) is proportional to the joint density �(x). Deriving

these is often straightforward.
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2. Simulate
x
(i+1)
1 from �(x1jx

(i)
2 ; x

(i)
3 ; :::; x

(i)
d )

x
(i+1)
2 from �(x2jx

(i+1)
1 ; x

(i)
3 ; :::; x

(i)
d )

x
(i+1)
3 from �(x3jx

(i+1)
1 ; x

(i+1)
2 ; x

(i)
4 ; :::; x

(i)
d )

...

x
(i+1)
d from �(xdjx

(i+1)
1 ; x

(i+1)
2 ; :::; x

(i+1)
d�1 ):

3. Set i = i+ 1 and go to step 2.

This algorithm thus provides the next item of the Markov chain x(i+1) by simulating

each of the full conditional densities, where the conditioning elements are revised during

a cycle. Since transitions to the same point occur with probability zero, r(x) = 0 and

transitions of the chain from x � x(i) to y � x(i+1) (two distinct points) take place

according to the transition density

pG(x; y) =
dY
k=1

�(ykjy1; : : : ; yk�1; xk+1; : : : ; xd): (5)

It is not di�cult to check that this transition density satis�es (3): If � is Lebesgue measure,R
pG(x; y) �(x)d(x) is

Z dY
k=1

�(ykjy1; : : : ; yk�1)�(xk+1; : : : ; xdjy1; : : : ; yk)

�(xk+1; : : : ; xdjy1; : : : ; yk�1)
�(x1jx2; : : : ; xd) �(x2; : : : ; xd) dx

by applying Bayes theorem to each term in the transition kernel and writing �(x) as

�(x1jx2; : : : ; xd)�(x2; : : : ; xd). The calculation is completed by noting that (i) the terms

�(ykjy1; : : : ; yk�1) are independent of x, so they factor out as
Qd
k=1 �(ykjy1; : : : ; yk�1) to

give �(y); (ii) the integral over x1 is 1; (iii) the term �(x2; : : : ; xd) cancels with the denom-

inator for k = 1; and (iv) cancellation by telescoping occurs since the numerator element in

term k � 1 is p(xk+1; : : : ; xdjy1; : : : ; yk�1); which cancels with the denominator in term k.

We now turn to some issues that arise in implementing the Gibbs sampling algorithm.

First, in designing the blocks, highly correlated components should be grouped together;

otherwise the Markov chain is likely to display autocorrelations that decay slowly, resulting

in slow convergence to the target density [see Liu et al. (1994) and Section 3.4]. Second,

a tractable full conditional structure can sometimes be obtained by introducing latent or

7



missing data into the de�nition of x. The idea of adding variables to the sampler, known

as \data augmentation," was introduced by Tanner and Wong (1987) and is illustrated in

several of the examples in Section 3.6 Finally, if some of the full conditional densities are

di�cult to sample by traditional means (by the method of rejection sampling or by a known

generator, for example), that density can be sampled by the MH algorithm [M�uller (1991)]

or a method that generates independent samples [Gilks and Wild (1992)].

Several sets of su�cient conditions ensure that the Markov chain generated by the Gibbs

sampler satis�es the conditions of Proposition 1. A convenient set is due to Roberts and

Smith (1994, Theorem 2) [see also Chan (1993)].

Proposition 2 Suppose that (i) �(x) > 0 implies there exists an open neighborhood N x

containing x and � > 0 such that, for all y 2 N x; �(y) � � > 0; (ii)
R
�(x) dxk is bounded

for all k and all y in a open neighborhood of x; and (iii) the support of x is arc connected.

Then pG(x; y) satis�es the conditions of Proposition 1.

The intuition for these conditions (and their connection to �-irreducibility and aperi-

odicity) should be noted. The conditions ensure that each full conditional density is well

de�ned and that the support of the density is not separated into disjoint regions so that once

the chain moves into one such region it never leaves it. Although these are only su�cient

conditions for the convergence of the Gibbs sampler, the conditions are extremely weak and

are satis�ed in most econometric applications.

2.3 Metropolis-Hastings algorithm

The MH algorithm is another powerful MCMC method that can be used to sample an

intractable distribution ��(:). A sequence of draws from that algorithm is obtained as

follows: Given that the latest drawing has yielded the value x; the next value in the sequence

is generated by drawing a value y from a candidate generating density q(x; y) (also called a

proposal density). The y thus generated is accepted with probability �(x; y), where

�(x; y) =

(
min

h
�(y)q(y;x)
�(x)q(x;y)

; 1
i

if �(x)q(x; y)> 0;

1 otherwise :

6The idea of data augmentation also appears in maximum likelihood estimation of missing data models

by the EM algorithm [Dempster et al. (1977)].
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If the candidate is rejected, the next sampled value is taken to be the current value.

Two important points should be noted. First, the calculation of �(x; y) does not require

knowledge of the normalizing constant of �(�). Second, if the proposal density is symmetric,

i.e., q(x; y) = q(y; x), then the acceptance probability reduces to �(y)=�(x), which is the

original formulation of Metropolis et al. (1953).

To understand the basis for this algorithm �rst note that the transition kernel of this

Markov chain is given by

PMH(x; dy) = q(x; y)�(x; y)dy+

�
1�

Z


q(x; y)�(x; y)dy

�
�x(dy) ; (6)

which states that transitions from x to y (y 6= x) are made according to

pMH(x; y) � q(x; y)�(x; y); x 6= y;

The function pMH(x; y) satis�es the reversibility condition (4). To see this consider the case

where �(x; y) < 1 (which implies that �(y; x) = 1). Then, �(x) pMH(x; y) � �(x)q(x; y)�(x; y) =

�(y)q(y; x); which is equal to �(y) pMH(y; x) as was to be checked. Thus �� is an invariant

distribution for PMH(x; dy).

A useful su�cient condition for convergence of chains generated by the MH algorithm

can be based on Lemma 1.2 of Mengersen and Tweedie (1993):

Proposition 3 If �(x) and q(x; y) are positive and continuous for all (x; y) then pM (x; y)

satis�es the conditions of Proposition 1.

Further discussion of su�cient conditions may be found in Smith and Roberts (1993)

and Tierney (1994). While Proposition 2 implies convergence, it is not informative about

the speed of convergence. This aspect of the theory is under active investigation, the main

focus being on geometric ergodicity. Some results may be found in the articles mentioned

earlier in this paragraph and in Roberts and Tweedie (1994).

We now turn brie
y to the question of specifying the proposal density that drives the MH

algorithm. Several generic choices are discussed by Tierney (1994) and Chib and Greenberg

(1994). One possibility is to let the proposal density take the form q(x; y) = q(y�x), as, for
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example, when the candidate is drawn from a multivariate normal density centered at the

current value x. This is referred to as the random walk based MH chain. Another possibility,

suggested by Hastings (1970) and called the independence MH chain by Tierney (1994), is

speci�ed by letting q(x; y) = q(y); which implies that the density q(x; y) is independent of x.

This proposal density can be centered at the posterior mode (or some other suitable value)

with the form of q adjusted to ensure that the acceptance rate (the proportion of times a

candidate value is accepted) is reasonable. What is reasonable depends on the context, but

it is important that the proposal density should be chosen so that the chain travels over the

support of the target density. This may fail to occur, with a consequent undersampling of

low probability regions, if the chain is near the mode and if candidates are drawn too close

to the current value.

It is worth emphasizing that once a proposal density is speci�ed, the MH algorithm is a

straightforward method of simulating virtually any target density, including an intractable

full conditional density that may arise in implementing the Gibbs sampling algorithm. It

is easy to show that this combination of Markov chains (Metropolis-within-Gibbs) is itself

a Markov chain with the correct invariant distribution. Speci�cally, consider the case of

two blocks and suppose that the full conditional density �(y1jx2) can be sampled directly

but that �(y2jy1) requires use of the MH algorithm. Under the assumption of Lebesque

measure, the transition kernel is then the product of �(y1jx2)dy1 and the transition kernel

of the MH step, which is given by pMH(x2; y2jy1)dy2 + r(x2jy1)�x2(dy2). ThenZ Z
�(x1; x2)�(y1jx2) dy1[pMH(x2; y2jy1)dy2 + r(x2jy1)� x2(dy2)] dx1 dx2

=

Z
�(x2)�(y1jx2)dy1[pMH(x2; y2jy1)dy2 + r(x2jy1)� x2(dy2)] dx2

= �(y1)dy1

Z
�(x2jy1)pMH(x2; y2jy1)dy2 dx2 + �(y2)�(y1jy2)dy1dy2r(y2jy1)

= �(y1)�(y2jy1)dy1dy2

Z
pMH(y2; x2jy1) dx2+ �(y1; y2)dy1dy2r(y2jy1)

= �(y1; y2)dy1dy2(1� r(y2jy1)) + �(y1; y2)dy1dy2r(y2jy1);

and invariance is con�rmed. The fourth line above follows from the reversibility of the MH

step �(x2j y1)pMH(x2; y2j y1) = �(y2jy1)pMH(y2; x2jy1). It is therefore not necessary to

stop the Gibbs sampler to iterate the MH algorithm when an intractable full conditional
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density is encountered; one value is generated from the MH procedure, followed by the next

Gibbs step.

2.4 Implementation issues

Single run vs multiple run sampling: The literature has suggested two methods for

generating a sample from an MCMC algorithm|the single-chain and the multiple-chain.

In the multiple chain method a starting value is chosen and a sequence is generated from

p(x(i�1); x(i)): After a transient phase of N0 drawings, the N0 + 1 drawing is regarded as a

sample from �(�). A new starting value is then chosen, and the process is repeated. This

method generates an independent sample at the cost of discarding N0 drawings in each

cycle. In the single-run method the sequence fx(N0+1); x(N0+2); : : : ; x(N0+M)g is regarded

as a sample of size M from �(�): The resulting sample is correlated because each drawing

depends upon the previous draw (the Markov property). The sample is nevertheless useful

because the sequence converges to the invariant distribution. The Markov nature of the

sample usually introduces strong positive correlation between parameter values at successive

iterations, but the correlation often dissipates quickly so that it is close to zero between the

iterate at t and t+n1; say, for moderate n1. In that case an approximately random sample

can be found by including in the sample every n1th item in the sequence after the transient

phase has ended.

Detection of convergence: Because the length of the transient phase seems to be model

and data dependent, the question of convergence requires considerable care. If the target

density being simulated is \well behaved" (as it is in many standard econometric models),

then the simulated Markov chain usually mixes rapidly and the serial correlations die out

quickly. But with weak identi�ability of the parameters and/or multiplemodes the chain can

be poorly behaved.7 Many proposals have been made to shed light on these problems. One

class of approaches [exempli�ed by Ritter and Tanner (1992), Gelman and Rubin (1992),

7The multiple modes case can be quite deceptive. The chain may appear to mix well but may actually

be trapped in a sub-region of the support. This example indicates the importance of understanding by

analytical means the target density being simulated and then devising an algorithm to achieve a chain with

desirable properties (perhaps by combining MCMC schemes, by abandoning one MCMC algorithm in favor

of another, or by using multiple-chain sampling).
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Geweke (1992), and Zellner and Min (1993)] attempts to analyze the observed output to

determine whether the chain has converged. The Gelman and Rubin approach, which is

based on multiple-chain sampling from dispersed starting values, compares the within and

between variation in the sampled values. The Ritter and Tanner approach, which requires

a single run, monitors the ratio of the target density (up to a normalizing constant) and

the current estimate of the target density; stability of the ratio indicates that the chain has

converged. Another type of approach [for example, Raftery and Lewis (1992) and Polson

(1992)] attempts to produce estimates of the burn-in time prior to sampling by analyzing the

rate of convergence of the Markov chain to the target density. Considerable work continues

to be done in this important area, but no single approach appears to be adequate for all

problems.

3 Examples

We now show how the MCMC simulation approach can be applied to a wide variety of

econometric models, starting with a simple example in which the Gibbs sampler can be

applied without data augmentation and where simulation is from standard distributions

only. The later examples require more of the methods described above. Our objectives are

to present the logic of the method and to help the reader understand how to apply the

method in other situations.

Before presenting the examples, we introduce the assumptions for prior densities that

are used throughout this section: The vector � follows a Nk(�0; B
�1
0 ); the variance �2 is

distributed as inverted gamma IG(�0
2
; �0
2
); and the precision matrix 
�1 follows a Wishart

Wp(�0; R0) distribution. Hyperparameters of the prior densities, subscripted by a 0; are

assumed to be known. A density or distribution function is denoted by [�], a conditional

density or distribution by [�j�], and
d
= denotes equality in distribution.

3.1 The seemingly unrelated regression model

Our �rst example is the seemingly unrelated regression (SUR) model, which is widely em-

ployed in econometrics. Under the assumption of normally distributed errors, the observed
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data yit are generated by

yit = x0it�i + �it; �t = (�1t; : : : ; �pt)
0 � iidNp(0;
); 1 � i � p; 1 � t � n;

where �i : ki� 1 and 
 is a positive de�nite matrix. By stacking observations for each time

period, we rewrite the model in vector form as yt = Xt� + �t; where yt = (y1t; : : : ; ypt)
0;

Xt = diag( x01t; : : : ; x
0

pt); � = (�01; : : : ; �
0

p)
0 : k � 1; and k =

P
i ki. We obtain the single

equation Gaussian regression model when p = 1: It is well known that the maximum

likelihood estimators for a sample of data Yn = (y1; : : : ; yn) can be obtained only through an

iterative procedure and that the �nite sample distribution of these estimators is intractable.

In contrast, the Gibbs sampling algorithmprovides an exact, small sample Bayesian analysis

for this model [Percy (1992) and Chib and Greenberg (1993b)].

Suppose that prior information about (�; 
�1) is represented by the density �(�)�(
�1),

where we are assuming that � and 
�1 (the precision matrix) are independent. Then the

posterior density of the parameters (proportional to the product of the prior density and

the likelihood function) is given by

�(�)�(
�1)� j
�1jn=2 exp

"
�
1

2

nX
t=1

(yt �Xt�)
0
�1(yt �Xt�)

#
:

This is the target density (with unknown normalizing constant) that must be simulated.

Now note that if � and 
�1 are treated as two blocks of parameters, the full conditional

densities, �jYn;

�1 and 
�1jYn; � are easy to simulate. In particular, under the priors

mentioned above,

� jYn;

�1 � Nk(�̂; B

�1
n ) and 
�1jYn; � � Wp(�0 + n;Rn);

where �̂ = B�1
n (B0�0 +

Pn
t=1X

0

t

�1yt), Bn = (B0 +

Pn
t=1X

0

t

�1Xt), and Rn = [R�1

0 +Pn
t=1(yt�Xt�)(yt�Xt�)0]�1. It is not di�cult to verify the su�cient conditions mentioned

in Proposition 2. Therefore, simulating these two distributions by the Gibbs algorithm

yields a sample f�(i); 
�1(i)g such that �(i) is distributed according to the marginal density

�(�jYn), 
�1(i) � �(
�1jYn), and (�(i); 
�1(i)) is distributed according to the target (joint)

density.8 It should be noted that the sample of draws is obtained without an importance

sampling function or the evaluation of the likelihood function.

8The Wishart distribution can be simulated by the Bartlett decomposition: If W � Wp(�;G), then
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3.2 Tobit and probit regression models

In the previous example the Gibbs sampler was applied directly to the parameters of the

model. In other situations a tractable set of full conditional distributions can be obtained

only by enlarging the parameter space with latent data, as we illustrate next for the tobit

and probit models. Interestingly, while the parameter space over which the sampler is

de�ned is extremely large (in the case of the probit model it is larger than the sample size),

the number of blocks in the simulation is quite small (three in the tobit model and two in

the binary probit model).

Consider the censored regression model of Tobin (1958), in which the observation yi is

generated by

zi � N ( x0i�; �
2) and yi = max(0; zi); 1 � i � n:

Given a set of n independent observations, the likelihood function for � and �2 is

Y
i2C

[1� �( x0i�=�)]
Y
i2C0

(��2) exp

�
�

1

2�2
(yi � x0i�)

2

�
;

where C is the set of censored observations and � is the c.d.f. of the standard normal

random variable. Clearly, this function (after multiplication by the prior density) is di�cult

to simplify for use in the Gibbs sampling algorithm. Chib (1992a) shows (in one of the �rst

applications of Gibbs sampling in econometrics) that matters are simpli�ed enormously

if the parameter space is augmented by the latent data corresponding to the censored

observations.

To see why, suppose we have available the vector z = (zi); i 2 C: Let yz be a n�1 vector

with ith component yi if the ith observation is not censored and zi if it is censored. Now

consider applying the Gibbs sampling algorithmwith blocks �, �2; and z with the respective

full conditional densities [�jYn; z; �2]; [�2jYn; z; �]; and [zjYn; �; �2]: These distributions are

all tractable and the Gibbs simulation is readily applied. The �rst two distributions reduce

to

�jyz ; �
2 � Nk(�̂; (B0 + ��2X 0X)�1) and �2jyz ; � � IG(

�0 + n

2
;
�0 + �n

2
); (7)

W
d

= LTT 0L0; where T = (tij) is a lower triangular matrix with tii � �2v�i+1 and tij � N (0; 1), and L is

obtained from the Choleski factorization LL0 = G.
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where X = (x1; : : : ; xn)
0, �̂ = (B0+�

�2X 0X)�1(B0�0+�
�2X 0yz), and �n = (yz�X�)

0(yz�

X�), while the full conditional distribution of the latent data simpli�es into the product of

n independent distributions, [zjYn; �; �
2] =

Q
i2C [zijyi = 0; �; �2]; where

zijyi = 0; �; �2 � T N (�1;0](x
0

i�; �
2); i 2 C;

a truncated normal distribution with support (�1; 0].9 The simpli�cation to conditional

independence observed in this case (for example, the distributions of � and �2 are indepen-

dent of the censored data given the latent data) usually occurs with data augmentation,

which explains why data augmentation is such a useful tool [Morris (1987)].

The value of data augmentation is also clear in the probit model, where we are given n

independent observations Yn = fyig, each yi being distributed Bernoulli with Pr(yi = 1) =

�(x0i�). For this model and many others in this class, Albert and Chib (1993a) develop a

simple and powerful approach that introduces latent Gaussian data as additional unknown

parameters in a Gibbs sampling algorithm. They exploit the fact that the speci�cation

zi = x0i� + ui; ui � iidN (0; 1); and yi = I [zi > 0] (8)

produces the probit model. The Gibbs sampling algorithm (with data augmentation) is

now de�ned through the full conditional distributions

[�jYn; Zn]
d
= [�jZn] and [ZnjYn; �]

d
=

nY
i=1

[zijyi; �]:

The full conditional distribution of � has the same form as (7) with yz replaced by Zn

and �2 = 1. The full conditional [ZnjYn; �]; which factors into the product of independent

terms, depends on whether yi = 1 or yi = 0. From (8) we have zi � 0 if yi = 0 and zi > 0

if yi = 1: Thus,
zijyi = 0; � � T N (�1;0](x

0

i�; 1) and
zijyi = 1; � � T N (0;1)(x

0

i�; 1); 1 � i � n:

This MCMC algorithm can be easily modi�ed to estimate a model with an independent

student-t link function with � degrees of freedom [see Albert and Chib (1993a)]. From

9To simulate from T N (a;b)(�; �
2), we �rst simulate a uniform random variate U and then obtain the

required draw as � + ���1fp1 + U(p2 � p1)g, where ��1 is the inverse c.d.f of the normal distribution,

p1 = �[(a��)=�] and p2 = �[(b��)=�]: Alternatively, the method of Geweke (1991) can be used to sample

this distribution.
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the result that the t-distribution is a scale mixture of normals with mixing distribution

Gamma(�
2
; �
2
) it is possible to further augment the parameter space by these gamma vari-

ables, one for each observation. The full conditionals are again tractable [see also Carlin

and Polson (1991) and Geweke (1993a) for use of this idea in linear regression]. Albert and

Chib (1993a) also let � be unknown, which leads to a general robusti�cation of the probit

model.

3.3 Random coe�cient panel model

We next consider another multiple equation model that is frequently applied to panel data.

In this model the data generating equation for the ith observation unit, usually an individ-

ual, household, or �rm, over the T time periods is given by

yi = Xibi + �i; �ij�
2 � iidNT (0; �

2IT ); 1 � i � n;

where yi = (yi1; : : : ; yiT )
0; Xi = (xi1; : : : ; xiT )

0; and the individual-speci�c coe�cients are

assumed to follow the distribution bij�;
 � Nk(�;
): A sampling theory discussion of

models similar to this may be found in Hsiao (1986).

The �rst point to note in a Bayesian approach to this model is that a tractable full

conditional structure is not available from the likelihood function (obtained by integrating

out the random e�ects). It is, therefore, important to include fbig as unknown parameters

in the Gibbs sampling algorithm [see Wake�eld et al. (1994)]. The second point to note is

that the parameters � and 
 can also be treated as unknowns and included in the Gibbs

sampler without much extra e�ort.

If the Gibbs sampler is applied to the blocks fbig, �
2, �; and 
�1; the hierarchical

structure of the model allows us to deduce the following facts: (i) the full conditional

distribution [fbigjYn; �; �2;
�1] factors into a product of the distributions [bij yi; �; �
2;
�1],

depending only on the data in the ith cluster; (ii) the full conditional distribution of �2

does not depend on � and 
�1; and (iii) the full conditional distributions of � and 
�1 do

not depend on Yn: Speci�cally, under our standard prior distributions, the Gibbs sampling

algorithm is de�ned by:

bijyi; �; �
2;
�1 � Nk

�
b̂i; V

�1
i

�
; (i � n);
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�jfbig;

�1 � Nk

�
�̂;
�
B0 + n
�1

�
�1
�

�2jYn; f big � IG

�
�0 + nT

2
;
�0 +

Pn
i=1(yi �Xibi)

0(yi �Xibi)

2

�
; and


�1jfbig; � � Wk

0
@�0 + n;

 
R�1
0 +

nX
i=1

(bi � �) (bi � �)0
!
�1
1
A ;

where b̂i = (V �1
i 
�1�+��2X 0

iyi), Vi = (
�1+��2X 0

iXi), and �̂ =
�
B0 + n
�1

��1
(B0�0+


�1Pn
i=1 bi).

A full Bayes analysis of this important model is thus accomplished by simulating the

four distributions presented above. It should be noted that an extremely useful by-product

of the Gibbs algorithm is the posterior distribution of the random e�ects. This distribution

can be used to study the extent of heterogeneity present in the data [Allenby and Rossi

(1993)].

Additional complexity can be introduced into this model without destroying tractability.

For example, suppose yit is a binary random variable such that Pr(yit = 1jbi) = F ( x0itbi),

where F is a known c.d.f. For the logistic c.d.f., a Gibbs analysis of this model is de-

veloped by Zeger and Karim (1991). For the probit c.d.f., introduce latent variables

zit � iidN (x0itbi; 1); 1 � i � n; 1 � t � T; into the Gibbs sampler, simulating each

from the truncated normal distribution T N (0;1)(x
0

itbi; 1) if yit = 1 and T N (�1;0](x
0

itbi; 1)

if yit = 0 [Albert and Chib (1993c)]. Then, given values of fzitg, the model reduces to the

one presented above.

3.4 State-space model

In the state-space model [Harvey (1981)], the observation vector yt is generated by

yt = Xt�t + �t; �t � iidNp(0;
); 1 � t � n;

and the state vector �t : m� 1 evolves according to the Markov process

�t = G�t�1 + �t; �t � iidNm(0;	): (9)

In the frequentist approach the unknown parameters (
; G;	) are estimated by maxi-

mum likelihood, and inferences on the states are conducted through the Kalman �lter and
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smoothing recursions, given the estimated parameters. A full Bayes approach for the non-

linear version of this model is developed by Carlin, Polson, and Sto�er (1992) and for the

present linear case by Carter and Kohn (1992), Chib (1992b), and Chib and Greenberg

(1993b). We illustrate the case of known G; but the procedure can be extended to deal

with an unknown G.

From the previous examples it is clear that the �t should be included in the Gibbs

sampler, but this may be done either through the distributions

[�tjYn;
;	; �s(s 6= t)]; [
jYn; f�tg;	]; [	jYn; f�tg;
]; (10)

or through the distributions

[�0; : : : ; �njYn;
;	]; [
jYn; f�tg;	]; [	jYn; f�tg;
]: (11)

The two samplers di�er in the way they simulate the �t's. In (10) the states are simulated

from their individual full conditional distributions, while in (11) they are sampled from

their joint full conditional distribution. Because the �t are correlated (they follow a Markov

process), the blocking in (11) will lead to faster convergence to the target distribution and

is therefore preferred.

The Gibbs sampler proceeds as follows: If the state vectors are known, the full condi-

tional distributions for 
�1 and 	�1 are given by


�1jYn; f�tg � Wp

0
@�0 + n;

"
R�1
0 +

nX
t=1

(yt �Xt�t)(yt �Xt�t)
0

#�11A ;

	�1jYn; f�tg � Wm

0
@�0 + n;

"
D�1
0 +

nX
t=1

(�t � G�t�1)(�t � G�t�1)
0

#�11A ;
where �0 and D0 :m�m are the parameters of the Wishart prior for 	�1. These are both

standard distributions.

For the simulation of the f�tg; let  = (
;	) and Yt = (y1; : : : ; yt). By writing the

joint density of f�tg in reverse time order,

p(�njYn;  )� p(�n�1jYn; �n;  )� : : :� p(�0jYn; �1; : : : ; �n;  ); (12)
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we can see how to obtain a draw from the joint distribution: Draw ~�n from [�njYn;  ], then

draw ~�n�1 from [�n�1jYn; ~�n;  ], and so on, until ~�0 is drawn from [�0jYn; ~�1; : : : ; ~�n;  ]:We

now show how to derive the density of the typical term in (12), p(�tjYn; �t+1; : : : ; �n;  ):

Let �s = (�s; : : : ; �n) and Y
s = (ys; : : : ; yn) for s � n. Then

p(�tjYn; �
t+1;  ) / p(�tjYt;  ) p(�t+1jYt; �t;  ) f(Y

t+1; �t+1jYt; �t; �t+1;  )
/ p(�tjYt;  ) p(�t+1j�t;  );

(13)

from (9) and the fact that (Y t+1; �t+1) is independent of �t given (�t+1;  ). The �rst density

is Gaussian with moments �̂tjt and Rtjt, which are obtained by running the recursions

�̂tjt = G�̂tjt�1 + Kt( yt � Xt�̂tjt�1) and Rtjt = (I � KtXt)Rtjt�1; where �̂tjt�1 = G�̂t�1jt�1;

Ftjt�1 = XtRtjt�1X
0
t + 
; Rtjt�1 = GRt�1jt�1G

0 +	; and Kt = Rtjt�1X
0
tF

�1
tjt�1

. The second

density is Gaussian with moments G�t and 	. Completing the square in �t leads to the

following algorithm to sample f�tg:

1. Run the Kalman �lter and save its output f�̂tjt; Rt;Mtg; where Rt = Rtjt�MtRt+1jtM
0

t

and Mt = RtjtR
�1
t+1jt:

2. Simulate ~�n from Nm(�̂njn; Rnjn); then simulate ~�n�1 from Nm(�̂n�1; Rn�1); and so

on, until ~�0 is simulated from Nm(�̂0; R0); where �̂t = �̂tjt +Mt

�
~�t+1 � �̂tjt

�
:

3.5 Regression models with AR(p) errors

This subsection illustrates a simulation in which the MH algorithm is combined with the

Gibbs sampling algorithm. A detailed analysis of the regression model with ARMA(p; q)

errors may be found in Chib and Greenberg (1993a) and Marriott et al. (1993).

Consider the model

yt = x0t� + �t; 1 � t � n; (14)

where yt is a scalar observation. Suppose that the error is generated by the stationary

AR(p) process

�t � �1�t�1 � : : :� �p�t�p = ut or �(L)�t = ut; (15)

where ut � iidN (0; �2) and �(L) = 1��1L� : : :��pL
p is a polynomial in the lag operator

L: The stationarity assumption implies that the roots of �(L) lie outside the unit circle;
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this constrains � = (�1; : : : ; �p) to lie in a subset (say S�) of <p. To conform to this

constraint, we take the prior of � to be Np(�j�0;�
�1
0 )IS� ; a normal distribution truncated

to the stationary region (and assume the standard prior distributions for � and �2). The

likelihood function for this model can be expressed as

f(Ynj�; �; �
2) = 	(�)� (�2)�(n�p)=2 exp

2
4� 1

2�2

nX
t=p+1

(y�t � x�0t �)
2

3
5 ;

where, for t � p+ 1, y�t = �(L)yt, x
�

t = �(L)xt; and

	(�) = (�2)�p=2j�pj
�1=2 exp

�
�

1

2�2
(Yp �Xp�)�

�1
p (Yp �Xp�)

�
(16)

is the (stationary) density of the �rst p observations. In the above, Yp = (y1; : : : ; yp)0;

Xp = (X1; : : : ; Xp)
0; and �p = ��p�

0 + e1(p) e1(p)
0, with

� =

"
��p �p
Ip�1 0

#
;

e1(p) = (1; 0; : : : ; 0)0; and ��p = (�1; : : : ; �p�1)0:

How can the posterior density be simulated? The answer lies in recognizing three facts.

First, the Gibbs strategy is useful for this problem by taking �; �; and �2 as blocks.10

Second, the full conditional distributions of � and �2 can be obtained easily after combining

the two exponential terms in the sampling density. Third, the full conditional of � can be

simulated with the MH algorithm. We next provide some of the details.

De�ne Y �
p = Q�1 Y p and X�

p = Q�1Xp; where Q satis�es QQ0 = �p. Let y� =

(y�1; : : : ; y
�

n)
0 and likewise for X�. Finally let e = (ep+1; : : : ; en)

0 and let E denote the

n� p� p matrix with tth row given by (et�1; : : : ; et�p), where et = yt � x0t�, t � p+ 1. It

is now not di�cult to show that the full conditional distributions are

�jYn; �; �
2 � Nk

�
�̂; B�1

n

�
�jYn; �; �

2 / 	(�)�Np

�
�̂;��1

n

�
IS� ; and

�2jYn; �; � � IG
�
�0+n
2
; �0+d1

2

�
;

(17)

where �̂ = B�1
n (B0�0 + ��2X�

0

y�); Bn = (B0 + ��2X�
0

X�); d� = ky� � X��k2; �̂ =

�̂�1
n (�0�0 + ��2E0 e), and �̂n = (�0 + ��2E0E).

10In the analysis of the AR(p) model conditioned on Yp; Chib (1993) shows that all full conditional

distributions take standard forms.
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The full conditionals of � and �2 are easily simulated. To simulate � we can employ the

MH independence chain with Np

�
�̂;��1

n

�
IS� as the candidate generating density. Then

the MH step is implemented as follows. At the ith iteration of the Gibbs cycle, draw a

candidate �(i+1) from a normal density with mean �̂ and covariance �2(i)��1
n ; if it satis�es

stationarity, we move to this point with probability

min

(
	(�(i+1))

	(�(i))
; 1

)

and otherwise set �(i+1) = �(i). Chib and Greenberg (1993a) verify the su�cient conditions

for the convergence of this algorithm and provide several empirical examples.

3.6 Other models

Other models in addition to those illustrated above lend themselves to MCMC methods

and to Gibbs sampling with data augmentation in particular. In the regression framework,

missing data can be added to the sampler to generate samples from distributions of the

parameters. The important class of multinomial probit models can be analyzed by MCMC

simulation (through data augmentation), as discussed by Albert and Chib (1993a), Mc-

Culloch and Rossi (1993), and Geweke, Keane, and Runkle (1993). Another important

area is that of mixture models, in which each observation in the sample can arise from

one of K di�erent populations. Two types of models have been investigated. In the �rst,

the populations are sampled independently from one observation to the next [Diebolt and

Robert (1994)]. In the second, the populations are sampled according to a Markov process,

which is the Markov switching model [Albert and Chib (1993b), and Chib (1993c)]. New

econometric applications that illustrate the versatility of MCMC methods continue to ap-

pear: reduced rank regressions [Geweke (1993b)], stochastic volatility models [Jacquier et

al. (1994)], cost function models [Koop et al. (1994)], censored autocorrelated data [Zangari

and Tsurumi (1994)], and many others.

4 Inference with MCMC methods

We next examine ways in which a sample generated by MCMC methods can be used for

statistical inference, including estimation of moments and marginal densities, prediction,
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sensitivity, model adequacy, and estimation of modes.

4.1 Estimation of moments and numerical standard errors

An implication of Proposition 1 is that output from the MCMC simulation can be used to

estimate moments, quantiles, and other summaries of the target density. With  denoting

parameters and latent data and Yn denoting the sample data, the target density is the

posterior density �( jYn) and the MCMC sample is the collection f (i) : i � Mg. The

MCMC estimate of the quantity �h =
R
h( )�( jYn) d (for integrable h) is given by the

ergodic average

ĥ =M�1
MX
i=1

h( (i)): (18)

This expression can be used to estimate the posterior mean by letting h( ) =  and the

posterior second moment matrix by letting h( ) =   0. It should be noted, however, that

the estimate of (18) di�ers from that of other Monte Carlo methods (importance sampling,

for example) because the f (i)g are not independent. In particular, the estimate of the

Monte Carlo standard error (numerical standard error), which indicates the variation that

can be expected in ĥ if the simulation were to be repeated, is a�ected. Following Ripley

(1987, Ch. 6), let Zi = h( (i)). Under regularity conditions, since fZig is an ergodic time

series with autocorrelation sequence �s = corr(Zi; Zi�s) and variance �2 = var(Zi); we have

var(ĥ) = M�2P
j;k cov(Zj ; Zk)

= �2M�2
PM
j;k=1 �jj�kj

= �2M�1
h
1 + 2

PM
s=1(1�

s
M
)�s
i
;

which is larger than �2=M (the variance under independent sampling) if all the �s > 0,

as is frequently the case. The variance equals �2=M , where �2 = 2�f(0) and f(�) is the

spectral density of fZig. Many methods have been proposed to estimate the variance

e�ciently; Geweke (1992), for example, estimates the spectral density at frequency zero,

while McCulloch and Rossi (1993) use the approach of Newey and West (1987) [see also

Geyer (1992)]. An equivalent, more traditional approach is based on the method of \batch

means." The data fZig are batched or sectioned into k subsamples of length m with means

fBig and the variance of ĥ estimated as [k(k � 1)]�1
P
(Bi � �B)2: The batch length m is
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chosen large enough that the �rst order serial correlation between batch means is less than

0.05.

4.2 Marginal density estimates

Along with moments, the marginal and joint density functions of components of  are

important summaries of the target density. To obtain such densities, for example the

marginal density of  1, it is possible to compute the histogram of the simulated values

f 
(i)
1 g since these are samples from the marginal posterior �( 1jYn). More generally, the

histogram estimate can be smoothed by standard kernel methods. In the context of the

Gibbs sampling algorithm, however, another density estimate is available. Suppose there

are d blocks and we wish to compute the marginal density of the �rst block, �( 1jYn) =R
�( 1jYn;  2; : : : ;  d) �( 2; : : : ;  djYn) d 2 : : :d d: Because f 

(i)
2 ; : : : ;  

(i)
d g is a sample from

the marginal density �( 2; : : : ;  djYn), an estimate of this density at the point  �1 is

�̂( �1jYn) =M�1
MX
i=1

�( �1jYn;  
(i)
2 ; : : : ;  

(i)
d ): (19)

Gelfand and Smith (1990) refer to (19) as \Rao-Blackwellization," and Liu et al. (1994)

show that this mixture approximation to the marginal density generally produces estimates

with smaller numerical standard error than the empirical estimator. They also �nd that

it is preferable to calculate
R
h( 1)�( jYn) d by averaging E(h( 1)jYn;  2; : : : ;  d) (if the

latter is available) over the simulated draws of ( 2; : : : ;  d).

4.3 Predictive inference

Consider the question of obtaining the density of a set of future observations yf given the

current model. This is the predictive density f(yf jYn) =
R
f(yf jYn;  )�( jYn) d , where

f(yf jYn;  ) is the conditional density of the future observations given  . Even though the

integral cannot generally be evaluated it is possible to simulate (by the method of composi-

tion) a sample of draws from f(yf jYn) given a sample from �( jYn) : For each  (i), simulate

the vector y
(i)
f from the density f(yf jYn;  

(i)). Then fy
(i)
f g constitutes the desired sam-

ple. The simulated forecast values can be summarized in the usual ways. Albert and Chib
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(1993b) use this approach to obtain the 4-step ahead prediction density for autoregressive

models with Markov switching.

4.4 Sensitivity analysis

It is often of interest to determine the sensitivity of the estimate in (18) to changes in

the prior distribution. This can be done by the method of sampling-importance-resampling

(SIR) without re-running the MCMC simulation [Rubin (1988)]. Speci�cally, given a sample

 (1); : : : ;  (M) from �( jYn), a sample of m draws from a posterior density p( jYn) that

corresponds to a di�erent prior density can be obtained by resampling the original draws

with weights w( i) /
p( (i)jYn)

�( (i)jYn)
; i = 1; : : : ;M: The resampled values, which are distributed

according to p(�j�) as M=m!1, can be used to recompute ĥ. Other model perturbations

can also be similarly analyzed [Gelfand and Smith (1992)].

4.5 Evaluation of model adequacy

The marginal (integrated) likelihood is a central quantity in the comparison of Bayesian

models. If the models are de�ned as Hk = ff(Ynj k); �( k)g, where  k is the parameter

vector for the kth model, then the marginal likelihood for model (or hypothesis) Hk is

de�ned as

m(YnjHk) =

Z
f(Ynj k) �( k) d k;

which is the integral of the sampling density w.r.t. to the prior density. The evidence

in the data for any two models Mk and Ml is summarized by the Bayes factor Bkl =

m(YnjHk)=m(YnjHl), or by the posterior odds Okl = Bkl � (pk=pl) where pk is the prior

probability of Mk [Leamer (1978), Zellner (1984)].

Two distinct methods have been used to compute Bkl [see Kass and Raftery (1994) for

a comprehensive review]. In the �rst approach [Newton and Raftery (1994), Chib (1994)],

m(YnjHk) is computed directly from the MCMC output corresponding to model Mk . In

the second approach [Carlin and Chib (1993)], a model indicator M , M 2 f1; : : : ; Kg;

is de�ned, and a Gibbs sampler is constructed from the full conditional distributions

[ 1; : : : ;  KjYn;M ] and [M jYn;  1; : : : ;  K]. The posterior relative frequencies of M are
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used to compute posterior model probabilities and thence the Bayes factors for any two

models. A related approach for models with a common parameter  is considered by Carlin

and Polson (1991) and George and McCulloch (1993).

4.6 Modal estimates

Markov chain methods can be used to �nd the modal estimates in models with missing or

latent data. This is achieved by sampling the latent or missing data and then evaluating

the E step in the EM algorithm using the simulated draws [Celeux and Diebolt (1985), Wei

and Tanner (1990), and Ruud (1991)].

Given the current estimate of the maximizer �(i), de�ne

Q(�; �(i)) =
Z
Zn

log (�(�jYn; Zn)) d[ZnjYn; �
(i)];

where Yn is the observed data and Zn is the latent data. To avoid what is usually an

intractable integration, given parameter values we can draw a sample Zn;j ; j � N , by

MCMC and approximate Q by Q̂(�; �(i)) = N�1
P
j log (�(�jYn; Zn;j)) : In the M-step, Q̂

is maximized over � to obtain the new parameter �(i+1). These steps are repeated until

the di�erence



�(i+1) � �(i)




 is negligible. When producing the sequence f�(i)g it is usual

to begin with a small value of N and let the number of replications of Zn increase as

the maximizer is approached. This procedure is applied to �nite mixture distributions

with Markov switching in Chib (1993b) and to partial non-Gaussian state-space models in

Shephard (1994).

5 Conclusions

Our survey of developments in the theory and practice of Markov chain Monte Carlo meth-

ods, with an emphasis on applications to econometric problems, has shown how Gibbs and

Metropolis-Hastings sampling, combined with data augmentation, can be used to organize

a systematic approach to Bayesian inference. We have illustrated the ideas in the context

of models with censoring, discrete responses, panel data, autoregressive errors, and random

and time-varying parameters, but the ideas can be applied to many other econometric mod-

25



els. For frequentist econometricians, we have shown how Monte Carlo versions of the EM

algorithm can be used to �nd the posterior mode.

One of the considerable arguments in favor of MCMCmethods (and for simulation-based

inference in general) is that they make possible the analysis of models that are di�cult

to analyze by other means. No longer is analysis in the Bayesian context restricted to

tightly speci�ed models and prior distributions. As we have shown, many models, including

those with intractable likelihood functions, can be simulated by MCMC methods. Various

inference questions, especially those relating to prediction, model and prior perturbations,

and model adequacy can be addressed e�ectively using the output of the simulation.

MCMC methods have already proved extremely useful in econometrics, and more ap-

plications continue to appear at a rapid rate. These developments have been enormously

aided by signi�cant improvements in computer hardware and software. Great opportunities

remain for the work that still needs to be done, especially in the form of applications to new

and existing problems and theoretical developments on the speed of convergence, su�cient

conditions for validity, and tuning of methods.
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