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1. INFORMATION FOR INSTRUCTORS

Many of the exercise sets in Thomas’ Calculus, Tenth Edition and Thomas’ Calculus, Early Transcendentals, Tenth Edition
contain Computer Algebra System (CAS) exercises, grouped in special sections labeled “Computer Explorations”, which can be
solved using Mathematica.  In addition to the CAS exercises, the Thomas’ Calculus CD-ROM and Web Site contain a collection
of 38 Mathematica modules designed to help students develop a geometric intuition and deeper understanding and appreciation
of calculus concepts, methodologies, and applications.  CD/Web site icons mark the locations in the text where material related
to these modules is covered.

If you plan on using (or are considering using) some of the CAS exercises or Mathematica modules associated with Thomas’
Calculus, then first spend a few minutes reading through the following information containing general advice and tips for
successfully integrating Mathematica into your course.

A. GETTING STARTED

Determine the Computing Needs of Your Students
First, you need to determine where students will complete their Mathematica assignments.  If you plan on having students
complete their work on campus, then make sure that Mathematica is installed and available in the lab where students will be
working.

For those of you who need to purchase Mathematica for a campus computer lab, consider an educational site license, which will
allow your school to install Mathematica on several machines at a discounted price.  Currently, Mathematica runs on most major
platforms and operating systems. For more information and technical requirements for the various platforms, visit
www.wolfram.com/products/mathematica/platforms/. For more information on the purchasing an academic site license, go to
www.wolfram.com/solutions/highered/academicpurchase/.

If Mathematica is not available on campus, then you will need to determine if it is feasible for students to purchase their own
copies of Mathematica.  The student version is called Mathematica for Students and it is available at greatly reduced price (about
90% off the professional version price).  Full-time students and in some cases, part-time students are eligible to purchase the
student version.  Although it is available online, you may want your campus bookstore to have copies of Mathematica for
Students available for purchase.  For more information about Mathematica for Students, go to
www.wolfram.com/products/student/mathforstudents/.  This site includes information on eligibility requirements for purchasing
Mathematica for Students along with information about the similarities and differences between the student version and
professional version of Mathematica.

Familiarize Yourself With the Student Computing Environment
If your students will be working with Mathematica on campus, then you will need to spend some time familiarizing yourself
with the computer lab. Be sure you determine how students log onto a computer, start the Mathematica program, quit a
Mathematica session and log out of a computer when a Mathematica session is completed.  Also find out where students will
save their completed electronic files and when the computer lab will be open for student use.  Keep track of all this information
and pass it on to your students.

Install Mathematica Modules and CAS Exercise Examples
Although students can access all of the Mathematica Modules on the CD/Web site, be sure you also make these files available in
an electronic folder that students can access in the computer lab. In addition, the electronic files for the CAS Computer Exercise
examples contained in this manual should also be placed in an electronic folder that students can access.  These files can only be
downloaded from the Web site, not the CD-ROM. By making this material available in the lab, students will be able to download
any files they need, even if they forget to bring their CD into the lab or if they do not have internet access.

http://www.wolfram.com/products/mathematica/platforms/
http://www.wolfram.com/solutions/highered/academicpurchase/
http://www.wolfram.com/products/student/mathforstudents/
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B. PLANNING YOUR COURSE

Student Background
It will very helpful to collect some academic information about your students and to determine if they have had previous
experience working with computers.  Knowing a little bit of academic information about your students may help you pick
appropriate Mathematica modules and CAS exercises to assign to your class.  If you plan on having students work in pairs or
groups on computer exercises, then you may want to group together students who are less experienced at working with
computers with students who have more computer experience.  If students will be doing their work in a computer lab and if there
are lab assistants working in the lab, you will probably want to provide the lab assistants with some basic information on starting
and running Mathematica.

Integrating Computer Exercises into your Syllabus
If assigning CAS exercises and/or Mathematica modules is a new experience for you, then I would recommend making the
computer exercises worth a relatively small percentage of the total points comprising the course grade.  Be very selective in
which computer exercises or modules you assign and be sensitive about the amount of time it will take for students to complete
the assigned computer labs and exercises.

Familiarize Yourself with the CAS Exercises and the Mathematica Modules
Spend some time working through some of the CAS exercises and the Mathematica modules before the semester begins.  By
doing this, you will get a better feel about which Mathematica modules and exercises are most appropriate for your students.  If
you are new to the Mathematica computing environment, I highly recommend completing the first Mathematica module, An
Overview of Mathematica, found on the Web site and/or CD-ROM.  This module will introduce you to some of the basic features
and commands of Mathematica.  In addition, read through the CAS Exercise Examples contained in this computer manual and
try some of the corresponding exercises in the text to become more comfortable with the Mathematica computing environment.

C. ASSIGNING MATHEMATICA MODULES AND CAS EXERCISES

Do the Exercise Before You Assign Them
Before assigning a CAS exercise or a Mathematica module, complete the problem or module yourself.  By working through the
exercise or module, you can determine if any additional instructions or hints are appropriate to pass on to your students.  Another
reason for completing the work first is to make sure you are ready to answer any questions your students might have about the
assigned computer exercises. It will give you the opportunity to evaluate the length and the level of difficulty of the computer
assignment.  Sometimes a given CAS exercise or module may look straightforward and easy to complete, but when you try to
solve the problem yourself, you might discover it takes more time to complete than you previously estimated.

Discuss Mathematica Assignments in Class
When you are ready to assign a CAS exercise or Mathematica module, you may want to give a brief overview of the assigned
work in class.  Discuss the relevance of the assignment to the course topics you are concurrently covering in class.  Neglecting to
discuss computer assignments during class may give your students the misconceived idea that the computer assignment is just
“busy work” with no real importance to the lecture material and/or written homework assignments.

Assign Only Portions of Certain Modules
It is not necessary to assign an entire module. You might find it appropriate to assign only portions of some of the modules
contained on the CD/Web site.  For example, in the module Take it to the Limit, the first part of the module only covers Section
1.1 in the text while the remaining parts of the module deal with Section 1.2.  Therefore, you might elect to assign only the first
part of the module to your students while you are concurrently covering Section 1.1 in the text. You may then decide to assign
the remaining parts of the module after covering Section 1.2.  There may also be times when you decide to delete parts of a given
module to shorten the completion time for students.  The key is to customize each module to fit the particular needs of your
course.
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Determine if Group Work is Allowed
Determine whether you want students to complete the computer assignments individually or in pairs or groups.  As mentioned
earlier, one advantage of allowing or encouraging group work is that you can pair up students with weak computer backgrounds
with more computer literate students in order to help the less computer literate students adjust to the computer environment. A
disadvantage of group work is the danger of having one or two students doing all the work for the rest of the group.  Whatever
you decide to do, be sure you clearly explain to students whether or not you want them to work together or individually in the
computer lab.

Determine the Acceptable Form for Completed Assignments
Be clear on how you would like students to turn in their work.  If you assign one of the modules, you will probably not want
them to turn in a hard copy of every page of the completed module.  Rather have them to print out a portion of the module.  For
example, if the module concludes with a couple of You Try It exercises for students to complete, then you might have your
students only print the last portion of the assignment.  Another possibility is have your students turn in their work electronically
on a floppy disk or to turn it in as an e-mail attachment.  If you decide to have your students turn in their work electronically, be
sure to give them clear instructions about the name they should give to their file.  For example, if you assign the module entitled
Take it to the Limit, then a good file name might be something like smith_lim indicating the last name of the student (Smith) and
a key descriptor of the assignment (lim for limits).

The Following Section Entitled Information for Students is Also For You!
Although the information in the following section is written for students, you should also read the next section to learn more
about the Mathematica computing environment.  If you are already familiar with Mathematica, then you might want to quickly
skim through the material. However, if you are a new Mathematica user, then you may want to read the contents of the following
section very carefully.
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2. INFORMATION FOR STUDENTS
The Mathematica modules and the CAS Exercise Examples contained on the CD/Web site were written in files called
Mathematica notebooks.  Information can be entered into a notebook from the keyboard or from special files called palettes.  The
purpose of this section is to discuss notebooks and palettes in more detail and to show how Mathematica commands are executed
in a notebook.

A. MATHEMATICA NOTEBOOKS

Cells
A Mathematica notebook is a file organized into a sequence of cells.  Each cell contains a specific type of information that has
either been entered by the user or has been created as the result of the execution of a Mathematica command.  Associated with
each cell is a cell bracket in the right margin (see Figure 1).

Figure 1: Example of a Mathematica Notebook

There are a variety of cell types such as title and graphics cells.  Perhaps the three most common types of cells, as shown in
Figure 2, are input cells, output cells and text cells.  Input cells contain executable Mathematica commands.  The right bracket of

Examples of Cell Brackets
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an input cell contains a little triangle on the upper end of the cell bracket.  An output cell contains the results of an input cell that
has been executed. A text cell contains information to be read by the user, but contains no executable commands.

Figure 2: Example of Cell Types

Creating New Cells
The default cell type is an input cell, which means that if you start to enter information into a Mathematica notebook, then the
input cell type is automatically chosen.  If instead, for example, you wish to create a text cell type, then pull down the Format
menu and select Style and then text (see Figure 3).  To begin a new cell, use the down arrow key or the mouse to click on the
location of a new cell.  A horizontal line will be displayed and a new cell will replace the horizontal line when you start typing
(be sure to use the Format menu before typing if you want the cell to be something else other than an input cell).

Executing Mathematica Commands
To execute the contents of an input cell, place the cursor anywhere in the input cell and left-click on the mouse button.  Then
type Shift-Enter or press Enter on the numeric key pad on the far right side of the keyboard.  When you do this, the word
“running” should appear in the upper left-hand corner of the notebook. This indicates that Mathematica is processing the
contents of the input cell.  The output should then appear in an output cell .

Title Cell

Text Cell

Graphics Cell

Output Cells

Input Cells
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Figure 3: Selecting a Cell Type

Re-executing Mathematica Commands
In a notebook, you can always reexecute the contents of an input cell or you can revise the contents of an input cell and then
reexecute the cell. Simply click on the cell, make the necessary changes and press Shift-Enter to execute the contents of the
revised cell.

Closing and Opening Cell Groups
A group of cells is either open or closed.  When a group of cells is open, all the contents of all the cells are visible to the user. If
the group is closed, only the first cell in the group is visible.  An upside-down flag indicates a closed group of cells (see Figure
4).   You can change a closed group of cells to an open group by double clicking on the upside-down flag.  A notebook is
grouped in closed cells so that you can see the outline of topics covered.

The text cell will begin at the
location of the horizontal line
once you start typing.
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Figure 4: Examples of Closed Cells in a Mathematica Notebook

Deleting Cells
To delete an entire cell, simplify click on the cell bracket and press the Delete key.

Palettes
Sometimes you can use palettes instead of the keyboard to enter information into a notebook. A palette is similar to a set of
calculator buttons, which provide you with shortcuts to entering commands and symbols into a notebook.  A palette that you
might find useful is BasicInput .  You can find it by pulling down the File menu, then selecting Palettes and then selecting
BasicInput. When the palette appears on the screen, drag it to the right side of the screen and resize the notebook so that they
both appear on the screen in non-overlapping windows (see  Figure 5).  Now, for example, suppose you want to compute the
square root of 16.  Simply click on the square root button on the palette and the square root symbol will then appear in the
notebook. Enter 16 and then type Shift-Enter to obtain the result.

Closed cells are indicated by the upside-
down flags.
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 Figure 5: A Mathematica Notebook and a Palette

B. COMMON PROBLEMS ENCOUNTERED

Storage Problems
If you plan on saving a Mathematica notebook on a floppy disk, make sure the disk has adequate storage space.  Attempting to
save your work on a floppy lacking an adequate amount of free memory space may result in your entire file becoming corrupted
and unusable!  If possible, save your work on a hard drive first and then save a backup on a floppy disk.  Be sure that the floppy
disk has adequate free storage space before saving your work.

Losing your Work
While working with Mathematica, be sure to save your notebook every few minutes to avoid losing your work in case of a power
outage or system crash.  Nothing is more frustrating that working for a long period of time only to lose your work.

Syntax Errors
Incorrectly entering a Mathematica command will result in a syntax error when the command is executed.  An error message will
be displayed on the screen as shown in Figure 6.  Since Mathematica is case-sensitive, make sure you correctly capitalize the
appropriate letters in the command before you execute it.  When possible, use palettes to enter commands and shortcuts to
commands rather than typing commands.  More information on correct Mathematica syntax can be found later on in this manual
in a section entitled An Introduction to Mathematica and in the first module, An Overview of Mathematica.

BasicInput
Palette

Click and drag here
to resize the
notebook window
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Figure 6: Example of a Syntax Error and an Error Message

Printing problems
A Mathematica notebook containing three-dimensional graphics may be very slow to print especially if you are connected to a
printer on a local network.  To speed of the printing process, hold down the Ctrl key and then click on all the brackets containing
graphics.  Then pull down the Cell menu and select Convert To followed by Bitmap.  Converting the graphics images to bitmap
images will speed up the printing process.

C. MATHEMATICA MODULES

A list of the 38 Mathematica modules contained in the CD/Web site is given below.  The title of each module is followed by a
set of parenthesis containing the name of the corresponding file on the CD/Web. The objective of each module is given along
with prerequisite reading in Thomas’ Calculus and Thomas’ Calculus, Early Transcendentals, Tenth Edition.

1. An Overview of Mathematica (ChP_intr.nb)
The objective of this first module is to introduce you to the basic features, characteristics, and language structure of
Mathematica.  This module should be completed before you begin any of the other modules. It is also strongly recommended
that you work through this module before completing any of the CAS exercises in the text.
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2. Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish and Mammals
(ChP_mod.nb)

The purpose of this module is to use Mathematica to practice a modeling process: consider a behavior, observe data, fit a model,
analyze the error, improve the model if appropriate, interpret the model, and make predictions. Prerequisite reading for this
module is Section 7 of the Preliminary Chapter.

3. Take It to the Limit (Ch1_lim.nb)
The objective of this module is to interpret the limit concept graphically and numerically.  Read Section 1.1 before completing
Part I of this module and read Section 1.2 before completing the remaining parts of this module.

4. Going to Infinity: What Happens to Functions When the Independent Variable Gets
Bigger and Bigger and Bigger? (Ch1_inf.nb)

The purpose of this module is to interpret limits going to infinity both graphically and numerically.  Read Sections 1.3 and 1.4 to
prepare for this module.

5. Convergence of Secant Slopes to the Derivative Function (Ch2_sec.nb)
This module will help you visualize the secant line between successive points on a curve, observe what happens as the distance
between successive points becomes small, compare the graph of successive secant line slopes with the graph of the derivative
function, and apply the definition of the derivative in computing it.  Read Sections 2.1 and 2.4 in your text before completing this
module.

6. Derivatives, Slopes, Tangent Lines, and Making Movies (Ch3_lin.nb)
The objective of this module is to visualize the derivative and the linearization of a function at a point. You will explore the
derivative as the slope of a nonlinear function and find the equation of the line tangent to a curve at a point. You will learn how
to plot the curve and selected tangents on the same graph. In addition, you will see how to use Mathematica to make a movie
animation by generating a sequence of plots, each showing a different tangent to the curve. When the sequence of graphs is
animated, the tangent lines appear to roll along the graph of the function.  Study Sections 2.1, 2.4, 3.6, and 3.7 in your textbook
first to prepare for working through this module.

7. Motion Along a Straight Line, Part I: Position -> Velocity -> Acceleration (Ch3_mo1.nb)
In this module, you will apply special Mathematica functions to analyze position, velocity, and acceleration simultaneously.
Three specially designed Mathematica commands are introduced here that generate animations to help you visualize the
derivative relations among the position, velocity, and acceleration functions.  Concepts from Sections 2.2, 2.4, 3.3 are covered in
this notebook.

8. Newton’s Amazing Method: Estimating ππππ to How Many Places? (Ch3_nm.nb)
The objective of this module is to use Mathematica to implement Newton's Method.  Read Section 3.7 to prepare for this
module.

9. Bending of Beams or What Does Calculus Have to Do With the Design of Structures?
(Ch4_bb.nb)

In this module, you will learn how engineers use calculus to design structures.  Structural engineers need to calculate how beams
bend, and they do so by using principles of structural mechanics and calculus. You will investigate some of the ways that
engineers use calculus to ensure that the structures they design are both safe and functional.

Before you begin this module, refer to "Maximums, Minimums, and Inflection Points," a Java applet included in the Web/CD.
This applet allows you to explore the relationship between the shape of the graph of a function and the values of its first and
second derivatives.  Read Section 4.1 before completing this module.
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10. Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Arc (Ch4_avl.nb)
In this module, Riemann sums are used to approximate areas, volumes, and lengths of arc. You will also construct accumulation
functions, and see how the accumulated quantities converge to the antiderivative in the limit. Concepts from Sections 4.3, 5.1
and 5.3 are covered in this lab.

11. Summing It up with Riemann, Definite Integrals and the Fundamental Theorem of
Calculus (Ch4_rs.nb)

The objective of this lab is to visualize the relationship among Riemann sums, the definite integral, and the Fundamental
Theorem of the Calculus. You will use each of these concepts to compute or approximate the signed area under the graph of a
function representing various applications.  Read Sections 4.4 – 4.6, and 6.1 before completing this module.

12. Rain Catchers, Elevators, and Rockets(Ch4_rc.nb)
The purpose of this module is to gain an appreciation for the importance of the Fundamental Theorem of Calculus and the Mean
Value Theorem in practical applications.  You will see the wide applicability of some of the basic ideas in calculus of single
variable functions. In addition to gaining a better understanding and appreciation for the Fundamental Theorem of Calculus and
the Mean Value Theorem. You will also see the importance of finding the areas between the graphs of functions and identifying
extreme values.  Before starting, read Sections 4.4  and 4.5 if you have not done so already.

13. Motion Along a Straight Line, Part II: Acceleration -> Velocity -> Position (Ch4_mo2.nb)
This module will help you develop an understanding of the integral relationship between acceleration and velocity, and between
velocity and position of an object moving along a straight line. Two specially designed Mathematica commands are introduced
here that animate the integral relations between acceleration and velocity, and between velocity and position of an object moving
along a straight line. A variety of motions are studied, including constant velocity, constant acceleration, harmonic oscillation,
and decaying oscillations. You can also use the specialized Mathematica commands to study other motions that may be of
interest to you.  Read  Section 4.5 before you begin this module.

14. Riemann, Trapezoids and Simpson (Ch4_rts.nb)
The objective of this module is to visualize the process of using Riemann sums, the trapezoid rule, and Simpson's rule for
approximating definite integrals, and to understand the error associated with each method. Read Section 4.7 before beginning
this module.

15. Modeling a Bungee Cord Jump: A Classroom Experiment (Ch5_bcj.nb)
In this module, you will be asked to collect data for a bungee cord (or use data collected by Carroll College students); build, test,
and refine a model for a bungee jumper; and estimate the length of bungee cord necessary to achieve a desired length of fall.
Read Section 5.4 (Section 5.5 in the Early Transcendentals Version) before beginning this module.

16. Drug Dosages: Are They Effective? Are they Safe? (Ch6_dd.nb)
The purpose of this module is to use Mathematica to solve differential equations related to drug concentrations in the blood when
the drug is administered by a single injection, intravenously, or by periodic injections.  You will learn how a simple
mathematical model and Mathematica can be used to regulate the concentration of a prescribed drug in the blood. Read Section
6.4 (Section 5.4 in the Early Transcendentals Version) before beginning this module.

17. First-Order Differential Equations and Slope Fields (Ch6_sf.nb)
The purpose of this module is to use Mathematica to visualize the slope fields and solution curves for selected first-order
differential equations. This module contains a special command that plots slope fields and selected solution curves for first-order
differential equations. You can use it to obtain solutions for related problems in the text. In addition, you can use the slope field
command to study a wide variety of first-order differential equations and to analyze the long-term behavior of solutions.  Read
Section 6.6 (Section 5.4 in the Early Transcendentals Version) before beginning this assignment.

18. Games of Chance: Exploring the Monte Carlo Technique for Numerical Integration and
Computing Probabilities with Improper Integrals (Ch7_int.nb)

The objective of this module is to learn the Monte Carlo method for approximating an integral that cannot be integrated
symbolically, and see an application of improper integrals. How can you use a game of chance to evaluate an integral, and what
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do games of chance have to do with improper integrals? This module will give you insight into both of these issues. Read
Section 7.5 and 7.7 before beginning this module.

19. Bouncing Ball (Ch8_bb.nb)
In this module, you will use geometric series to investigate the behavior of a bouncing ball.  Properties such as distance traveled
and time bouncing will be determined.  Read Section 8.3 before beginning this module.

20. Taylor Approximations of a Function (Ch8_ts.nb)
Here you will observe an animated demonstration of the convergence of Taylor polynomials to a function that has derivatives of
all orders over some interval of its domain. Read Section 8.7 before beginning this module.

21. Use the Fourier Series to Approximate Discontinuous Functions and to Interpret Music
(Ch8_fs.nb)

The objective of this module is to use Mathematica to calculate Fourier series and to build even and odd Fourier representations
of selected functions. You will also get a chance to see how Fourier series can be used to build mathematical models of musical
tones, to look at their graphs, and even to play back the signal to hear how close our model is to the real thing. Read Sections 8.9
and 8.10 to prepare for this module.

22. Using Vectors to Represent Lines and Find Distances (Ch9_lp.nb)
Do you remember how you first learned about the equations of lines in a plane? In this module, you will gain insight into why it
is to your advantage to interpret lines in the plane using vectors. Read Sections 9.1 and 9.2 before beginning this module.

23. Radar Tracking of a Moving Object (Ch9_rdt.nb)
The objective of this module is to determine how to compute velocity and acceleration of a moving object whose position is
given in polar coordinates. Using Mathematica, you will animate the trajectory of a moving object together with its position,
velocity, and acceleration vectors.  Read Sections 9.3 and 9.5 before beginning this module.

24. Parametric and Polar Equations with a Figure Skater (Ch9_m2.nb)
Parametric equations are very powerful and the purpose of this module is to help you get used to the idea of expressing curves
using parametric equations and analyzing motion in the plane using these parametric equations. Read Sections 9.3 and 9.5 in
preparation for this module.

25. Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas (Ch10_It.nb)
The purpose of this module is to use linear transformations to map points from three dimensions onto a two-dimensional space.
A portion of this lab focuses on parallel projections that resemble a situation in which the results of X-rays demonstrate the need
for a CAT-Scan.  Section 10.3 and especially Exercise 61 in Section 10.3 are prerequisite reading for this module.

26. Getting Started in Plotting in 3D (Ch10_plt.nb)
In this module, you will learn how Mathematica can help you plot the lines, planes, cylinders, and quadric surfaces. In the
process of plotting lines and planes, you will gain insight into their vector definitions.  Read Sections 10.3 and 10.4 in
preparation for this module.

27. Moving in Three Dimensions (Ch10_m3.nb)
The objective of this module is to use Mathematica to perform calculations to analyze motion in the equations that are given
parametrically. Read Sections 10.5 and 10.6 before beginning this module.

28. Plotting Surfaces (Ch11_ps.nb)
In this module, learn how to use Mathematica to plot surfaces, contours, and level curves.  Read Section 11.1 before beginning
this module.
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29. Exploring the Mathematics Behind Skateboarding: Analysis of the Directional
Derivative (Ch11_dd.nb)

What is a directional derivative and what does it look like? To find out, this module will allow you get to put yourself in the
position of a skateboarder and explore skating on a flat ramp or inside a bowl. The graphical representation of the dot product of
the gradient of the surface function and a unit vector in the direction of motion will become clearer. Using Mathematica, you will
be able to plot the directional derivative as a function of the parameter t.  Read Section 1l.5 in preparation for completing this
module.

30. Looking for Patterns and Applying the Method of Least Squares to Real Data
(Ch11_ff.nb)

The objective of this module is to minimize the sum of squared residuals to fit an arbitrary function to a set of data. Prerequisite
reading for this module is Section 11.7.

31. Lagrange Goes Skateboarding: How High Does He Go? (Ch11_lag.nb)
How do you maximize or minimize a function subject to constraints? The skateboarder from the directional derivative project
returns, and this time it's Lagrange himself. He will use his multipliers to determine precisely where along the figure-8 he reaches
the high and low points of the surface. You will also investigate the role of the directional derivative.  Read Section 11.8 before
beginning this module.

32. How Does Heat Dissipate? (Ch11_heq.nb)
The purpose of this module is to explore the heat equation in order to see physical interpretations of the contours and level
curves. The heat equation is a partial differential equation and its solution employs the Fourier series in a meaningful way.
Review Fourier series (Section 8.9) and the last part of the additional exercises at the end of Chapter 11 in preparation for this
module.

33. Take Your Chances: Try the Monte Carlo Technique for Numerical Integration in Three
Dimensions (Ch12_mc3.nb)

How can you use a game of chance to evaluate a multiple integral? That is just what you will do with this project. Using
Mathematica, you will generate random points within a fixed region and then estimate the volume of the desired portion by
considering the percentage of random points that fall within the boundaries of the desired portion. Since this will only estimate
the exact volume, you will also explore the accuracy of this method.  Read Section 12.1 before beginning this module.

34. Means and Moments and Exploring New Plotting Techniques (Ch12_mm.nb)
The objective of this module is to extend the concept of the moments of a density function of a solid to applications in
probability and engineering. What do means and multiple integrals have to do with probabilities? How can the method of
moments be used to help determine whether or not an object will float in an upright position? These questions will be answered
as you explore this module. You will also get to practice new and interesting ways to plot functions. Read Sections 12.2 and 12.5
before beginning this module.

35. Volumes that You Can Use (Ch12_vol.nb)
The purpose of this module is to use the concept of volume to solve practical problems involving rain catchers and satellite
dishes.  Read Exercises 31 and 32 in the Additional Exercises at the end of Chapter 12 for background information relevant to
this module.

36. Work in Conservative and Non-Conservative Force Fields (Ch13_wk.nb)
In this module, you will explore integration over vector fields and experiment with both conservative and non-conservative force
functions along different paths. These explorations should help you understand line integrals, as well as better appreciate
situations when the work done is independent of the path taken.  The background reading for this module is Section 13.3.

37. How Can You Visualize Green’s Theorem? (Ch13_grn.nb)
In this module, you will explore integration over vector fields and use parameterizations to compute line integrals. You will also
explore how to determine the closed curve around which your work integral is a maximum and whether or not it makes any
difference if a force is conservative. Read Section 13.4 in preparation for this module.
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38. Visualizing and Interpreting the Divergence Theorem (Ch13_div.nb)
In this module, you will see that surface integrals are difficult to evaluate, even with the help of Mathematica. You will then see
that using parameterizations to evaluate flux surface integrals and applying the Divergence Theorem can help with integral
evaluations.  Read Section 13.8 to prepare for this module.

D. COMPUTER ALGEBRA SYSTEM EXERCISES

Study the CAS Exercise Examples
Many of the exercise sets in Thomas’ Calculus contain Computer Algebra System (CAS) exercises, which you can solve with the
help of Mathematica.  The following part of this manual contains examples of CAS exercises found in your text and then
solutions to these example exercises are found using Mathematica.  Before attempting to solve a CAS exercise in your textbook,
you will probably find it helpful to first study a relevant example found in this manual.

Note to those using the Early Transcendentals Version
The following CAS Exercise Examples correspond to the exercise sets found in the regular version of Thomas’ Calculus and
they correspond to all but three sections of the Early Transcendental version (ET) of Thomas Calculus.  CAS examples for
Section 2.8 of ET can be found in CAS Exercise Examples for Section 6.2, CAS examples for Section 5.4 of ET are contained in
CAS Exercise Examples for Section 6.4 and CAS examples for Section 6.4 of ET are found in Section 6.6 of CAS Exercise
Example.
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� Computer Algebra System (CAS) Exercises

In this manual, you will find example exercises, similar to the CAS exercises in your text, and their corresponding solutions, 
discussed and illustrated with Mathematica. To solve a given CAS exercise with Mathematica, first study the corresponding 
example exercise in this manual and then use the example to guide you in solving the CAS exercise in your text.

But before attempting to solve the CAS exercises, spend a few minutes reading through this introduction to familiarize yourself 
with the basic features, commands and structure of Mathematica.  You are also strongly encouraged to complete the first 
Mathematica module accompanying the Thomas' Calculus text entitled "An Overview of Mathematica" contained in the file 
ChP_intr.nb. 

� Mathematica Arithmetic

You can think of Mathematica as a powerful calculator which can do exact as well as approximate arithmetic.

Addition, Subtraction, Multiplication and Division

The symbols �, � and s are used for adding, subtracting and dividing numbers, respectively.  Here are three examples.  

In[1]:= 575754575849849894 � 748949854985944749598984

Out[1]= 748950430740520599448878

In[2]:= 87575750 � 489747598744894574949

Out[2]= �489747598744806999199

In[3]:= 99686868612732546598686500000000000s 5000
Out[3]= 19937373722546509319737300000000

The asterisk * or better yet, at least one space, is used to multiply numbers.

In[4]:= 6868868686
 18234987271740

Out[4]= 125253733060463458733640

In[5]:= 6868868686 18234987271740

Out[5]= 125253733060463458733640



Powers

The ^ stands for the power.  

In[6]:= 55757^22

Out[6]= 26217227822130734686061732698724649910044114252485611900573633503107377146737g

7455720035345978636911261049

Notice that the last output is such a large number that is fills up several lines!  The following input was created by typing 109 
Ctrl-^ 5.  

In[7]:= 1095

Out[7]= 15386239549

Palettes

Mathematica comes with some standard palettes containing shortcuts to entering commands from the keyboard.  A useful 
palette, called BasicInput, contains shortcuts for computing powers, square roots, summations and much more. To open this 
palette, pull down the File menu, choose Palettes and then select BasicInput.  Drag BasicInput to the side of your current 
notebook and if necessary, resize your notebook so that the notebook and palette are not overlapping.

To demonstrate how to use this palette, suppose you want to compute 
r�����������������

390625 .  In an Input cell, click on the button contain-

ing 
r����
f .  Then enter 390625 and then execute the cell.  Your input and output should look like the following.

In[8]:=
r������������������
390625

Out[8]= 625

When using any palette key which requires more than one number such as the fraction fccccc
f

 and 
r����
f

f

, use the Tab key to move 
from one number to the next.  For example, to compute 757555 s5, use the button containing fccccc

f
 in the palette.  Enter 757555, 

then press the Tab key and finally enter 5.  

In[9]:=
757555
cccccccccccccccccc

5

Out[9]= 151511

Exact vs. Approximate Calculations

Study the following input and output statements.

In[10]:=
r�������
27

Out[10]= 3 r����3

Notice that Mathematica returns an exact answer.  This may not always be helpful.  For example, the following output is 
identical to the input since Mathematica returns the exact answer in reduced from.
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In[11]:=
5899
ccccccccccccc

7

Out[11]=
5899
ccccccccccccc

7

There are several ways of obtaining an approximate answer as shown in the following cells.

Mathematica will display an approximate answer if at least one number in the calculation contains a decimal points.

In[12]:=
5899.
cccccccccccccccc

7

Out[12]= 842.714

Placing //N immediately after a calculation will produce the same result.

In[13]:=
5899
ccccccccccccc

7
ss N

Out[13]= 842.714

Instead of placing //N immediately after a calculation, you can instead place a calculation inside N[f].

In[14]:= N$
5899
ccccccccccccc

7
(

Out[14]= 842.714

Entering N[f,n] instructs Mathematica to attempt to find an n-digit approximation.

In[15]:= N$
5899
ccccccccccccc

7
, 15(

Out[15]= 842.714

Using Previous Results

The percent symbol % always represents the last output produced by Mathematica.

In[16]:=
625
cccccccccc

125

Out[16]= 5

At this point, 5 is the most recent result produced by Mathematica.  So the following example will compute 52.

In[17]:= %^2

Out[17]= 25

The command %n represents the result on output line Out[n].  For example, the following command will subtract 1 from the 
result in Out[15] (verify).

In[18]:= %15 � 1

Out[18]= 841.714

17            An Introduction to Mathematica



With Mathematica, you can perform more than one calculation in a single cell by placing two calculations on separate lines 
using the Enter key.

In[19]:=
r������������
23.1

2 � 9

Out[19]= 4.80625

Out[20]= �7

� Assigning Names

Mathematica has two commands that can be used to assign names to values.  One assignment command is called the equals 
command ( ) and the other is the delayed equals command (: ).  There is a subtle, yet very important difference between the 
two commands which will be illustrated shortly.

Suppose we want to assign x the value of 2 and y the value of 3.

In[21]:= x  2

Out[21]= 2

In[22]:= y  3

Out[22]= 3

The number of letters in a name assigned to a value can be of any length as long as it does not begin with number and as long as 
there are no spaces between any of the characters in the name.

For example,  suppose you want to compute the product of x and y and assign the name prod to the result.  Recall that the space 
appearing between the x and the y represents multiplication.

In[23]:= prod  x y

Out[23]= 6

If you wish to see the value of prod again, just type in the name and execute the cell.

In[24]:= prod

Out[24]= 6

Now suppose we change the values of x and y.

In[25]:= x  9

y  10

Out[25]= 9

Out[26]= 10

Notice that the product does not change!

In[27]:= prod

Out[27]= 6
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The reason the value of prod is still 6 is due to the use of the   command.  When = is used, the right hand side of the assign-
ment

prod=x y

is immediately executed and the resulting value is assignment to prod.  If instead you had execute the assignment 

prod:=x y

then the right hand side of the assignment statement will not actually be computed until prod appears later on in the input cell or 
in some other input cell.

The Clear command removes assignments that you have made.  It is always a good idea to clear an assigned name before 
creating a new assignment for that name. 

In[28]:= Clear#prod'

Now the delayed equals := is used to assign prod to be the product of x and y.

In[29]:= prod : x y

Since the current value of x and y are 9 and 10, respectively, then executing the following input cell produces a result of 90.

In[30]:= prod

Out[30]= 90

Now suppose you change the value of x to 4.  Then the value of prod changes as expected.

In[31]:= x  4

Out[31]= 4

In[32]:= prod

Out[32]= 40

Suppressing Output

Recall that more than one command can be placed in a single input cell as long as each new command starts on a new line.  

In[33]:= x  30

y  40

prod

Out[33]= 30

Out[34]= 40

Out[35]= 1200

Suppose you do not want the values of x and y displayed as output.  Placing a semicolon (;) at the end of a line will suppress 
the result of the current line from being displayed in the output.  
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In[36]:= x  90;

y  30;

prod

Out[38]= 2700

� Mathematica Commands

Built-In Commands and Constants

Mathematica commands consist of a string of letters beginning with a capital letter followed by a series of arguments enclosed 
in square brackets. Two commands which you have already seen in this chapter are N and Clear.  Here are a few more exam-
ples.  

If m and n are integers, Range#m, n' produces a list of all the integers from m to n inclusive.

In[39]:= Range#1.1, 10'
Out[39]= �1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1�

If list represents a list of numbers, then Min[list] will return the smallest number in list.

In[40]:= Min#%'
Out[40]= 1.1

The following Plot command will plot the function f +x/  cos+x/ � x for values of x ranging from �S to 2 S.

In[41]:= Plot#Cos#x' � x, �x, �S, 2 S�'

-2 2 4 6

-5

-4

-3

-2

-1

1

2

Out[41]= h Graphics h

Placing a semicolon after a command will suppress any output from being displayed. In studying the last output, the actual 
output was not the graph itself, but rather the word -Graphics-.  So placing a semicolon at the end of a plot command will 
only suppress -Graphics- from being displayed.
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In[42]:= Plot$Sin$
1
cccc

x
(, �x, 0,

S

cccc

2
 (;

0.25 0.5 0.75 1 1.25 1.5

-1

-0.5

0.5

1

In Mathematica, an equation such as cos+x/ � x  0 is represented in Mathematica by Cos[x]-x==0.  Since the cosine 
function is a Mathematica command, it must begin with a capital letter and also note that a double equals sign (==) is used in a 
Mathematica equation (a single equals sign represents an assignment command and therefore cannot be used).  The following 
FindRoot command locates a solution to cos(x)-x=0 near x  1.

In[43]:= FindRoot#Cos#x' � x   0, �x, 0, 2�'
Out[43]= �90 � 0.739085�

Notice that the FindRoot command consists of two words (Find and Root) which are both capitalized. Notice there is no 
space separating the two words.  Mathematica will always capitalize the first letter in each word and will never leave any spaces 
between the words in a single command.

Some Mathematica commands represent constants.  For example the command Pi is S and E is Euler's number e.  The follow-
ing commands will display their approximate values.

In[44]:= N#Pi'
N#E'

Out[44]= 3.14159

Out[45]= 2.71828

Rather than typing in commands from the keyboard, some commands can be entered from a standard palette.  For example, in 
the palette BasicInput, Pi is represented by S and E is represented by Æ.

In[46]:= N#S'
N#Æ'

Out[46]= 3.14159

Out[47]= 2.71828

As another example, the command for computing the square root of a number x is Sqrt[x]. 
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In[48]:= Sqrt#16'
Out[48]= 4

But as seen earlier, a more natural way of computing square roots is the use the button containing 
r����
f  in BasicInput.  

Command Options

Many Mathematica functions, especially the commands which produce graphs, contain options for enhancing the output.  For 
example, the option PlotStyle � Thickness#.015' adjusts the thickness of the curve being plotted.

In[49]:= Plot#Sin#x' � Cos#2 x', �x, 0, 2 S�, PlotStyle � Thickness#.015'';
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0.5

1

In the following Plot command, two functions contained in brackets� ...�, x2 and x2 sin2 x are plotted simultaneously with an 
option for changing the thickness of the first curve and the color of the second curve.

In[50]:= Plot#�x^2, x^2 Sin#x'2�, �x, �5 S, 5 S�,
PlotStyle � �Thickness#.012', RGBColor#0, 0, 1'�';
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50

100
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200

250
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Help Menu

To see information about a given Mathematica command, enter a ? followed immediately by the name of the command.

In[51]:= ? FindRoot

FindRoot#lhs  rhs, �x, x0�' searches for a numerical

solution to the equation lhs  rhs, starting with x x0.

For more detailed information use ??.

In[52]:= ?? FindRoot

FindRoot#lhs  rhs, �x, x0�' searches for a numerical

solution to the equation lhs  rhs, starting with x x0.

Attributes#FindRoot'  �HoldAll, Protected�

Options#FindRoot'  �AccuracyGoal � Automatic, Compiled � True, DampingFactor � 1,

Jacobian � Automatic, MaxIterations � 15, WorkingPrecision � 16�

Another excellent source of information is the Help menu.  You are encouraged to explore the Help menu to learn more about 
Mathematica and its features.

Standard Add-On Functions

In addition to the standard Mathematica functions which are available to you as soon as you begin a Mathematica session, there 
are over 1000 add-on functions contained in packages which must first be loaded into computer memory before being used.  For 
example, in a file named Graphics, there is a package called ImplicitPlot containing a function called Implicit-
Plot.  To use this function, you must first execute the command <<Graphics`ImplicitPlot` to load the package into 
computer memory.

In[53]:= �� Graphics`ImplicitPlot`

Once the package has been loaded into memory, the command ImplicitPlot is now defined and ready for use.  It will plot 
the graph of an equation as illustrated below.  The PlotPoints�30 option is used to make the plot the curve look less 
choppy and the AspectRatio �! 2.4

ccccccc1.6  option changes the height to width ratio of the plot.

In[54]:= ImplicitPlot$x2 � y4   y2 � x, �x, �1.3, .3�, �y, �1.2, 1.2�,

PlotPoints �! 30, AspectRatio �!
2.4
cccccccccc

1.6
, PlotStyle �! RGBColor#0, 0, 1'(;

Creating Functions

You can create your own Mathematica commands.  Since Mathematica commands always begin with a capital letter, you should 
get in the habit of beginning the names of your commands with a lower case letter. The name of your command can be a string 
of letters followed immediately by square brackets containing the variables in the function.  An underscore _ is placed immedi-
ately after each variable on the left-hand side of the assignment statement to alert Mathematica to the fact that the a variable has 
been declared. The assignment statement used here is  , but a :  could have also been used.  (Sometimes the delayed equals :  
will be preferred over the  .)  The following lines of input begin with a clear command since the variables used were assigned 
specific values earlier in this notebook.
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In[55]:= Clear#x, y';
f#x_'  x2 Sin#x'2;

The variable x is called a dummy variable since it can be replaced by any other variable or number.

In[57]:= f#y'

Out[57]= y2 Sin#y'2

Recall that variables can be a string of letters.  So in the following input, the dummy variable x is replaced with fred and so 
every occurrence of x in the function is replaced with fred.

In[58]:= f#fred'

Out[58]= fred2 Sin#fred'2

You can also evaluate the function for a given value such as x  S

cccc2  and you can plot a function you created.

In[59]:= f#S s2'
Plot#f#x', �x, �5 S, 5 S�';

Out[59]=
S
2

ccccccc

4
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Before redefining a function, it is always a good idea use the Clear command to clear out the current definition of the function.  
In the following, the function f is redefined to equal « x2

� 4 «.  Abs is the absolute value command.
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In[61]:= Clear#f';
f#x_'  Abs#x2 � 4';
Plot#f#x', �x, �3, 3�';
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� Lists

Definition of a List

One of the most important structures in Mathematica is a list.  A list is an ordered array of elements contained inside braces � ...�.  
Here is an example of a list of numbers.

In[64]:= �1, 2, 3, 4, 5�
Out[64]= �1, 2, 3, 4, 5�

Notice that the elements of the list are separated by commas.  As the following example shows, a list does not need to just 
contain numbers.

In[65]:= �x, �1, 2�, S�
Out[65]= �x, �1, 2�, S�

The list just created contains three elements: an unassigned variable x, a list �1, 2� and the number S.

Creating Lists 

A list can be created and assigned a name.

In[66]:= first4  �1, 2, 3, 4�
Out[66]= �1, 2, 3, 4�

The Table command can be used to create a list.  For example, suppose we want to create a list containing the first 15 positive 
integers.  The command Table[a[i],{i,1,n}] will create a list of the form {a[1], a[2], ..., a[n]}.  Here are 
couple of examples.
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In[68]:= Table#i, �i, 1, 15�'
Out[68]= �1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15�

In[69]:= pts  Table#x2, �x, 1, 10�'
Out[69]= �1, 4, 9, 16, 25, 36, 49, 64, 81, 100�

Given a list �y1, y2, y3, ..., yn}, the ListPlot command can be used to plot the points +1, y1/, +2, y2/, ..., +n, yn/.  

In[70]:= ListPlot#pts';
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The points are difficult to see, so an option is added to make the points for visible.

In[71]:= ListPlot#pts, PlotStyle �! PointSize#.02'';
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Next, the Table command is used to create a list of lists, each containing two numbers.  

In[72]:= newpts  Table$�x, r��������������
1 � x2  , �x, �1, 1, .25�(

Out[72]= ���1, 0�, ��0.75, 0.661438�, ��0.5, 0.866025�, ��0.25, 0.968246�,
�0., 1.�, �0.25, 0.968246�, �0.5, 0.866025�, �0.75, 0.661438�, �1., 0.��
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In the list newpts, each list of two points can be thought of as an ordered pair which can then be plotted.

In[73]:= ListPlot#newpts, PlotStyle �! PointSize#.02'';
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The following PlotJoined�True option will connect the points.

In[74]:= ListPlot#newpts, PlotJoined �! True';
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Extracting Elements of a List

Consider the list created earlier called pts.  

In[75]:= pts

Out[75]= �1, 4, 9, 16, 25, 36, 49, 64, 81, 100�

To extract the ith element in the list, use the command pts[[i]].

In[76]:= pts##9''
Out[76]= 81

Recall that the list newpts consists of a list of lists of length 2.
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In[77]:= newpts

Out[77]= ���1, 0�, ��0.75, 0.661438�, ��0.5, 0.866025�, ��0.25, 0.968246�,
�0., 1.�, �0.25, 0.968246�, �0.5, 0.866025�, �0.75, 0.661438�, �1., 0.��

Executing newpts[[i]] will extract the ith element of the list which itself is a list.

In[78]:= newpts##2''
Out[78]= ��0.75, 0.661438�

Executing newpts[[i,j]] will return the jth element in the ith list.  For example, the following command extracts the 2nd 
element in the fourth list contained in newpts.

In[79]:= newpts##4, 2''
Out[79]= 0.968246

Here is another example where the first element in the last is extracted.

In[80]:= newpts##9, 1''
Out[80]= 1.

Extracting Solutions to an Equation

When you use Mathematica to find the solution to an equation, the output will be displayed in list form and therefore the 
solutions can be extracted using the ideas discussed previously in this introduction.

Consider the command FindRoot[eqn, �x, x0�] which attempts to find a solution to the equation eqn near x0.  For 
example, suppose we are searching for the positive solution to x2

� 3  0. In the following input statement, the result of the 
FindRoot command is assigned the name sol.

In[81]:= sol  FindRoot#x2 � 3   0, �x, 2�'
Out[81]= �x � 1.73205�

Notice that the output is a list containing x�1.73205 and this is the only element in the list.

In[82]:= sol##1''
Out[82]= x � 1.73205

The single element in the list can be divided into two parts.  The first part is x and the second part is 1.73205.

In[83]:= sol##1, 1''
Out[83]= x

In[84]:= sol##1, 2''
Out[84]= 1.73205

Therefore the actual solution is extracted using sol[[1,2]].

Now consider the following command which finds all the solutions to a given polynomial equation.
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In[85]:= polysol  NSolve#x4 � 3 x2 � x   0, x'
Out[85]= ��x � �1.87939�, �x � 0.�, �x � 0.347296�, �x � 1.53209��

The solution consists of a list of 4 lists.  For example, to extract the third list, use the following command.

In[86]:= polysol##3''
Out[86]= �x � 0.347296�

The third element is also a list containing one element, x�0.347296 which is extracted as follows.

In[87]:= polysol##3, 1''
Out[87]= x � 0.347296

The actual third solution is the second part of x�0.347296 which can therefore be obtained by execut-
ing the following command.

In[88]:= polysol##3, 1, 2''
Out[88]= 0.347296

Here is how you can extract the last solution in polysol.

In[89]:= polysol##4, 1, 2''
Out[89]= 1.53209

� Creating Animations

The Table command used to form lists can also be used to form a list of frames in a graphics movie which can then be ani-
mated with Mathematica.

To illustrate how to create a movie, the add-on command PolarPlot contained in the Graphics package will be used.

In[90]:= �� Graphics`Graphics`

Suppose you want to graph the equation r  cos+5 T/ in the polar coordinate system.  The following input will do this where the 
option PlotRange->{{-1,1},{-1,1}} instructs Mathematica to plot the graph with the horizontal axis ranging from �1 
to 1 and the vertical axes ranging from �1 to 1.  The other option given here is Ticks->None which will leave the axes unlabeled.
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In[91]:= PolarPlot#Sin#5 T', �T, 0, S�, PlotRange �! ���1, 1�, ��1, 1��, Ticks �! None';

The following Table command will form a list of the graphs 

PolarPlot#Sin#5 T', �T, 0, T0},PlotRange->{{-1,1},{-1,1}}, Ticks->None];

for T0  
S

ccccccc12 , 2 S
cccccccc12 , 3 S

cccccccc12 , ..., S (only the first frame is shown to save space).

To animate the created frames, double click on top of any one of the given frames.  

In[92]:= polarframes  Table$PolarPlot#Sin#5 T', �T, 0, T0�,

PlotRange �! ���1, 1�, ��1, 1��, Ticks �! None', �T0,
S

ccccccc

12
, S,

S

ccccccc

12
 (;
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If you would rather just see the frames all at once on the screen, we can take the list of 12 frames just created and divide the list 
into a list of 3 lists using the Partition command.

In[93]:= framesdisplay  Partition#polarframes, 4'
Out[93]= ��h Graphics h, h Graphics h, h Graphics h, h Graphics h�,

�h Graphics h, h Graphics h, h Graphics h, h Graphics h�,
�h Graphics h, h Graphics h, h Graphics h, h Graphics h��

Then execute the following command.
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In[94]:= Show#GraphicsArray#framesdisplay'';

For a more sophisticated example, suppose you want to create a movie illustrating the relationship between the unit circle and 
the sine curve.  The purpose of the following example is to show you the power of animation, so don't worry about understand-
ing all of the details.

First, a plot of y  sin+x/ is created and given the name sincurve. The option DisplayFunction->Identity will 
suppress the graph from being displayed for now and the option AspectRatio �! 2

cccccccccc2 S�2  produces a graph whose ratio of 
height to width is 2 to 2 S � 2.   The other options have been described previously in this chapter.

In[95]:= sinecurve  Plot$Sin#x', �x, 0, 2 S�,
PlotRange �! ���2, 2 S�, ��1, 1��, DisplayFunction �! Identity,

AspectRatio �!
2

cccccccccccccccc

2 S � 2
, PlotStyle �! RGBColor#1, 0, 0'(;

Next, a unit circle is created centered at +�1, 0/ with a radius of 1 with the Circle command.  The Graphics command is 
added so that the graph of the circle can be plotted later on with the Show command.

In[96]:= cir  Graphics#Circle#��1, 0�, 1', PlotRange �! ���2, 2 S�, ��1, 1��';

In the following input cell, a list is created where each element in the list is a plot of the points 
+�1, 0/, +cos+t/ � 1, sin+t//, +t, sin+t// are joined together, for t  S

ccccccc16 , 2 S
cccccccc16 , 3 S

cccccccc16 , ..., 2 S, using the ListPlot command 
described earlier in this chapter.

In[97]:= cirptslines  Table$ListPlot$���1, 0�, �Cos#t' � 1, Sin#t'�, �t, Sin#t'��,
PlotRange �! ���2, 2 S�, ��1, 1��, DisplayFunction �! Identity,

AspectRatio �!
2

cccccccccccccccc

2 S � 2
, Ticks �! None, PlotJoined �! True(, �t,

S

ccccccc

16
, 2 S,

S

ccccccc

16
 (;

Now the Table command is used to show the frames of the movie.  Since the option DisplayFunction->Identity was 
used in the previous commands to suppress the graphics output, the command DisplayFunction->$DisplayFunction 
must now be used to instruct Mathematica to show the graphics previously hidden.  (Only the first frame of the movie is shown 
here to save space.)
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In[98]:= movieframes  Table#Show#�cirptslines##i'', cir, sinecurve�,
DisplayFunction �! $DisplayFunction', �i, 1, Length#cirptslines'�';

As described earlier, the frames of a movie can be shown together.

In[99]:= arraydisplay  Partition#movieframes, 4';
Show#GraphicsArray#arraydisplay'';

� Fours Types of Brackets in Mathematica 

Four types of brackets have been described in this chapter: + .../, � ...�, # ...' and ## ...''.

Round brackets + .../ are used for mathematical grouping of terms.

In[101]:= 7 +3 � 4/
Out[101]= 49

Curly brackets � ...� are used for creating lists.

In[102]:= mylist  �S, Æ, 1�
Out[102]= �S, Æ, 1�

Square brackets [...]  are used in defining functions and evaluating built-in, add-on and defined functions.

In[103]:= g#x_'  x � Sin#x';
g#S s2'

Out[104]= 1 �
S

cccc

2
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In[105]:= Cos$
6 S
cccccccc

5
(

Out[105]=
1
cccc

4
,�1 �r����5 0

Double square brackets [[...]] are used to extract parts of a list.

In[106]:= mylist##2''
Out[106]= Æ

Do not attempt to interchange these symbols!  For example, using round brackets instead of square brackets when defining or 
evaluating a function will produce an undesired result.

In[107]:= g +S/
Out[107]= g S

� Common Problems and How to Fix Them

Misinterpreting Warning Messages

If Mathematica thinks that you have executed a command containing an error, it will display a warning message.

In[108]:= Plot#Cos#x', �x, 0, 2 S';
Syntax::bktmcp : Expression "�x, 0, 2 S" has no closing "�".

Plot#Cos#x', �x, 0, 2 S';

In this case, a right curly bracket was forgotten and can be easily fixed.

In[108]:= Plot#Cos#x', �x, 0, 2 S�';

1 2 3 4 5 6

-1

-0.5

0.5

1

In the following example, study the warning message.  In this case, there is absolutely nothing wrong with defining a list the 
name list, but Mathematica notices that this name is nearly the same as a Mathematica command called List with a capital L.  In 
this case, you can ignore the warning message and move on.  Therefore, not all warning messages should be interpreted as 
error messages.
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In[109]:= list  �1, 2, 4�
General::spell1 : Possible spelling error: new

symbol name "list" is similar to existing symbol "List".

Out[109]= �1, 2, 4�

Using an Add-On Function Before Loading it into Memory

Problems will occur if you attempt to use an add-on command before it has been loaded into memory.

For example, the add-on command DayOfWeek[{year, month, day}] will return the day of the week on which the 
given date occurred.

In[110]:= DayOfWeek#�1962, 6, 6�'
Out[110]= DayOfWeek#�1962, 6, 6�'

The command did not work because it was not loaded into memory first.  The command is contained in a package called 
Calender inside a folder named Miscellaneous.  Now the package is loaded and a warning message occurs.

In[111]:= �� Miscellaneous`Calendar`

DayOfWeek::shdw : Symbol DayOfWeek appears in multiple contexts
�Miscellaneous`Calendar`, Global`�; definitions in context

Miscellaneous`Calendar` may shadow or be shadowed by other definitions.

Suppose you ignore the warning message and you try to execute DayOfWeek again.  Nothing happens!

In[112]:= DayOfWeek#�1962, 6, 6�'
Out[112]= DayOfWeek#�1962, 6, 6�'

In order to get the DayOfWeek command defined in the package to work correctly, you must first use a command called 
Remove.

In[113]:= Remove#DayOfWeek'

Now the command will work!

In[114]:= DayOfWeek#�1962, 6, 6�'
Out[114]= Wednesday

Using Reserved Mathematica Words

As you already know, all Mathematica commands and constants begin with a capital letter.  These commands are reserved 
words that cannot be used for anything else other than their intended purpose.  So when assigning names or creating functions, it 
is generally a good idea to use names beginning with a lower case letter to avoid reserved Mathematica words.  In the following 
example, if you try to assign the name N to the sum of one plus one, an error message will appear on the screen.

In[115]:= N  1 � 1

Set::wrsym : Symbol N is Protected.

Out[115]= 2
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If N was not a reserved word, then the output of the following input statement would be 2.  

In[116]:= N

Out[116]= N

If you wanted a quick reminder of the N command (introduced earlier),  execute ?N.

In[117]:= ? N

N#expr' gives the numerical value of expr. N#
expr, n' attempts to give a result with n�digit precision.

One way to resolve the problem would be to use a lower case letter.

In[118]:= n  1 � 1;

n

Out[119]= 2

Failing to capitalize Reserved Mathematica commands

Another common problem when using Mathematica is failing to capitalize the first letter in a Mathematica command.  In the 
following input line, sin[x] should be Sin[x] and therefore undesired results follow.
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In[120]:= Plot#sin#x', �x, 0, 2 S�'
General::spell1 : Possible spelling error:

new symbol name "sin" is similar to existing symbol "Sin".

Plot::plnr :
sin#x' is not a machine�size real number at x  2.617993877991494`*^-7.

Plot::plnr :
sin#x' is not a machine�size real number at x  0.25488992540742256`.

Plot::plnr :
sin#x' is not a machine�size real number at x  0.5328694051959509`.

General::stop :
Further output of Plot::plnr will be suppressed during this calculation.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Out[120]= h Graphics h

In the following input cell, the first letter is capitalized, but since the FindRoot command consists of two words (i.e., Find 
and Root), the letter r should instead be R.

In[121]:= Findroot#x2 � 11, �x, 2�'
General::spell1 : Possible spelling error: new symbol

name "Findroot" is similar to existing symbol "FindRoot".

Out[121]= Findroot#�11 � x2, �x, 2�'

Making the necessary correction leads to the desirable result.

In[122]:= FindRoot#x2 � 11, �x, 2�'
Out[122]= �x � 3.31662�

This concludes your brief introduction to Mathematica.  As you proceed through the following chapters, you may want to refer 
back to this chapter on occasion.  
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CAS Exercise Examples for Chapter 1: Limits and Continuity

� Section 1.1 Rates of Change and Limits

Graphical Estimates of Limits

In Exercises 47 - 50, you are asked to estimate the value of limx�x0 f �x� by plotting the graph of y � f �x� near x � x0 and to then 
evaluate the limit symbolically.  The Mathematica command 

Plot[f[x],{x,a,b}]

will plot the graph of the function f �x� on the interval �a, b�.  Adding the PlotRange option to form the command 

Plot[f[x],{x,a,b},PlotRange->{c,d}]

will plot the graph of the function f �x� with the range of y values limited to the interval �c, d�.  To compute limx�x0 f �x� symboli-
cally with Mathematica, use the command

Limit �f�x�, x �� x0�.

Example: Estimate  limx�0
sin x
�����������x  by completing the following steps:

(a) Plot the function near  the point x0 being approached and from your plot, guess the value of the limit.

(b)  Evaluate the limit symbolically.  

Part (a) First we plot the function and from the graph you can estimate  limx�0
sin x
�����������x � 1.



In[1]:= Plot�
Sin�x�
������������������

x
, �x, �2, 2�, PlotRange �� �0, 1��;

-2 -1 1 2

0.2

0.4

0.6

0.8

1

Part (b) To verify your guess in part (a), you can evaluate the limit with Mathematica.

In[2]:= Limit�
Sin�x�
������������������

x
, x � 0�

Out[2]= 1
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Finding Deltas Graphically

Executing the Mathematica command

Plot[f[x],{x,a,b},PlotRange->{{c,d},{e,f}}]

will plot the function on the interval �a, b� and will then display the graph on an portion of the xy-plane with values  of x 
ranging from x � c to x � d and values of y ranging from y � e to y � f . Adding the option  PlotStyle-
>RGBColor[0,0,1] will plot the curve in the color blue. 

To plot several functions f1, f2, ..., fn simultaneously, execute the command 

Plot��f1�x�, f2�x�, ..., fn�x��,{x,a,b}] 

and add the option 

 PlotStyle->{RGBColor[0,0,1],RGBColor[0,0,1],...,RGBColor[0,0,1]}

in order to plot each graph in the color blue.  

Another Mathematica function used here is the command 

ListPlot���x1, y1�, �x1, y1�, ..., �xn, yn��, PlotJoined �� True�

which will connect the points �x1, y1�, �x2, y2�, ..., �xn, yn�.  Adding the option PlotStyle->RGBColor[0,0,1] will 
plot the points in the color blue and/or adding the option DisplayFunction->Identity will suppress graph from being 
displayed on the screen.

Finally, the  Show command is used to plot several graphs simultaneously.  

Example: Use Mathematica to perform the following steps:

(a) Plot the function y � x5
�32

���������������x�2 near the point x0 � 2 being approached and guess the value of limx�x0 f �x�.  Then verify your 
result with Mathematica.

(b) Using the value � � 0.2, graph the bounding lines y1 � L� � and y2 � L � � together with the function y � x5
�32

���������������x�2 near x0.

(c) From your graph in part (b), estimate � � 0 such that for all x

0 	 � x� x0 � 	 � 
 � f �x�� L � 	 �.

Test you estimate by plotting f , y1 and y2 over the interval 0 	 � x� x0 � 	 �.  For your viewing window, use

x0 � 2�� � x � x0 � 2�� and L� 2�� � y � L� 2��.

Part (a) In the following input cell, the current definition of f �x� is cleared, then redefined and plotted on �1.5, 2.5�.  It appears 
that the limit is 80.
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In[3]:= Clear�f�;

f�x_� :�
x5 � 32
�����������������
x � 2

;

Plot�f�x�, �x, 1.5, 2.5��;

1.6 1.8 2.2 2.4

80

100

120

The Limit command is used to verify the limit symbolically.

In[4]:= Limit�f�x�, x � 2�

Out[4]= 80

Part (b) In the following input cell, the value of � is set equal to 0.2 and then the functions f , y1 � 80� � and y2 � 80� � are 
plotted together.

In[5]:= � :� 0.2;

y1 :� 80 � �;

y2 :� 80 � �;

Plot��f�x�, y1, y2�, �x, 1.99, 2.01�,
PlotStyle �� �RGBColor�0, 0, 0�, RGBColor�0, 0, 1�, RGBColor�0, 0, 1���;

1.99 1.995 2.005 2.01

79.25

79.5

79.75

80.25

80.5

80.75

Part (c) A new graph is now plotted over a smaller domain in order to estimate the  value of �.
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In[6]:= gr1 � Plot��f�x�, y1, y2�, �x, 1.995, 2.005�,
PlotStyle �� �RGBColor�0, 0, 0�, RGBColor�0, 0, 1�, RGBColor�0, 0, 1���;

1.996 1.998 2.002 2.004

79.6

79.8

80.2

80.4

From the graph, you can see that if we choose � � 0.002, then it appears that � f �x�� 80 � 	 � whenever � x� 2 � 	 �.  

In the following input cell, a box is defined in which the function  f  should pass through without ever crossing the top or the 
bottom of the  box.  In each of the assignment statements, a delayed equals (:=) is used so that x1, x2 and ��box are not are not  
assigned values until you call them later in the session. 

In[7]:= x1 :� 2 � �;

x2 :� 2 � �;

��box :�

ListPlot���x1, y1�, �x1, y2�, �x2, y2�, �x2, y1�, �x1, y1��, PlotJoined �� True,

PlotStyle �� RGBColor�0, 0, 1�, DisplayFunction �� Identity�;

The names gr1 and ��box were assigned to the previous two  graphs, so the command 

Show[{gr1,��box}] 

can be used to show the two graphs simultaneously.  

Suppose instead  that you had selected � to be 0.003. From the graph below, you can see that the function lies outside the  
interval �80� �, 80� ��.  
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In[8]:= � � .003;

Show��gr1, ��box�, PlotRange �� ��2 � 2 �, 2 � 2	��, �80 � 2 �, 80 � 2 ����;

1.994 1.996 1.998 2.002 2.004

79.6

79.8

80.2

80.4

In fact, � should be smaller as illustrated below.  

In[9]:= Clear���;
� � .002;

Show��gr1, ��box�, PlotRange �� ��2 � 2 �, 2 � 2	��, �80 � 2 �, 80 � 2 ����;

1.996 1.998 2.002 2.004

79.6

79.8

80.2

80.4

So if � � 0.002, then 0 	 � x� x0 � 	 � 
 � f �x�� 80 � 	 �.

� Section 1.2 Finding Limits and One-Sided Limits

In Exercises 43 & 44, you are asked to estimate limits by zooming in on  the graph of a function.  A similar example follows 
here.

Example: Graph the function f �x� � �1� x�1�x to estimate limx�0 f �x�, zooming in on the origin as necessary.
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The function is defined and plotted below.

In[10]:= Clear�f�;
f�x_� :� �1 � x�1	x;
Plot�f�x�, �x, �1, 1��;
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Choosing a smaller interval in the Plot command will lead to a better estimate of the limit.  From the following  graph, you 
can see that limx�0 f �x� 
 2.71828.

In[11]:= Plot�f�x�, �x, �.0001, .0001��;

-0.0001 -0.00005 0.00005 0.0001

2.71815

2.71825

2.7183

2.71835

2.7184

� Section 1.3 Limits involving Infinity

In Exercises 47 - 50, you are asked to graph a given curve and describe  what you see.  Consider the graph of the function 

f �x� � ln�x2�
��������������x2  plotted below.  Note that Log[x] is the Mathematica command for the function ln�x�.
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In[12]:= Clear�f�;

f�x_� :�
Log�x2�
���������������������

x2
;

Plot�f�x�, �x, �30, 30�, PlotRange � ��.5, .5��;

-15 -10 -5 5 10 15

-0.4

-0.2

0.2

0.4

From the graph it appears that limx�� f �x� � 0, limx��� � 0, limx�0 f �x� � ��.
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CAS Exercise Examples for Chapter 2: Derivatives

� Section 2.1 The Derivative of a Function

The Mathematica command Simplify[expression] will simplify an algebraic expression.  

Example: For the function f �x� � x3
� 3�x2

� 5, do the following: 

(a) Define the difference quotient q at a general point x, with general stepsize h. 

(b) Take the limit of the difference quotient as h � 0 and let m�x� represent the function obtained from computing the limit.

(c) On the  same graph, plot m�x� together with q for values of h � 1, 0.5, and 0.25.

(d) Plot y � f �x� together with the graph of the tangent line to f  at x0 � 3.

(e) Substitute various values for x larger and smaller than x0 into m�x�.  

Part (a)  Begin by defining f  and q. 

In[1]:= f�x_� � x3 � 3�x2 � 4;

q � Simplify� f�x � h� � f�x�
�������������������������������������

h
�

Out[1]= h2 � 3 h ��1 � x� � 3 ��2 � x� x

Part (b)  From the simplified form of q found in part (a), can you determine of q as h � 0?  

Your result can be verified using the Limit command.  

In[2]:= m�x_� � Limit�q, h � 0�
Out[2]= 3 ��2 � x� x

Part (c)  The difference quotient is plotted below for the specified values of h and then m�x� is plotted. 

The ReplaceAll command (/.) is used to replace q with specific values of h.  For example, q/.h->1 will output the value 
of q when h is 1. Since the option DisplayFunction�Identity is used to suppress all the individual graphs from being 
displayed, then  DisplayFunction�$DisplayFunction must be an included option in the Show command to display 
all the functions on the same graph.  The option    DisplayFunction�$DisplayFunction instructs Mathematica to 
display a previously suppressed graph. Also note that  RGBColor[1,0,0],RGBColor[0,1,0] , and RGBColor[0,0,1] represent the 
colors  red, green and blue, respectively.

Study the following input and output.  What is happening to the graph of q as h � 0?  Why?



In[3]:= p1 � Plot�q �. h �� 1, �x, 0, 5�,
PlotStyle �� RGBColor�1, 0, 0�, DisplayFunction � Identity�;

p2 � Plot�q �. h �� .5, �x, 0, 5�, PlotStyle �� RGBColor�0, 1, 0�,
DisplayFunction � Identity�;

p3 � Plot�q �. h �� .25, �x, 0, 5�, PlotStyle �� RGBColor�0, 0, 1�,
DisplayFunction � Identity�;

p4 � Plot�m�x�, �x, 0, 5�, PlotStyle �� Dashing��.02��,
DisplayFunction �� Identity�;

Show��p1, p2, p3, p4�, DisplayFunction �� $DisplayFunction�;
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Part (d) Since m�x0� represents the slope of the line tangent to y � f �x� at �x0, y0�, the equation of the tangent line at �3, f �3�� is 
easily found and plotted together with y � f �x� in the following cell.

In[4]:= y � m�3� �x � 3	 � f�3�;
Plot��f�x�, y�, �x, 0, 5��;
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Part (e)  The command Table[m[x],{x,1,5,.2}] will form a list �m�1�, m�1.2�, m�1.4�, ..., m�5��.

Compare the resulting numbers with the graph of y � f �x�.  Do these numbers make sense when compared with the graph of 
y � f �x�?
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In[5]:= Table�m�x�, �x, 1, 5, .2��
Out[5]= ��3, �2.88, �2.52, �1.92, �1.08, 0., 1.32, 2.88, 4.68, 6.72, 9.,

11.52, 14.28, 17.28, 20.52, 24., 27.72, 31.68, 35.88, 40.32, 45.�

Computing and Graphing Derivatives with Mathematica 

There are several ways of computing f '��x� with Mathematica.  Two ways are illustrated below, after first defining a new 
function.

In[6]:= Clear�f�;
f�x_� � 5�x3 � 15�x � 2;

f'�x�
Out[6]= �15 � 15 x2

Here is another way of computing f '��x�.
In[7]:= D�f�x�, x�

Out[7]= �15 � 15 x2

Computing higher order derivatives such as f ' '��x�, f ' ' '��x� and so forth are just as easy.  The command D[f[x],{x,n}] will 
compute the nth derivative of f �x�.  Study the following example.

In[8]:= f''�x�
Out[8]= 30 x

In[9]:= D�f�x�, �x, 3��
Out[9]= 30

� Section 2.2 The Derivative as a Rate of Change

Simulation of Motion on a Vertical Line 

Consider the motion of the rock in Example 5 in your textbook.  Suppose we  wish to simulate the motion of the rock.  Plotting 
the points �0, y�t�� one at a time, where y�t� � 160 t � 16 t2 for values of t � 0, .4, .8, ..., 10.0 and then animating the graphs 
will produce a simulation of the motion of  the rock.

After defining x�t� and y�t�, a table of ordered pairs �0, y�t��, which is represented with Mathematica by {0,y[t]},  is created 
for the position of the rock above the ground at time t. 

In[10]:= Clear�x, y, t�;
x�t_� � t; y�t_� � 160 t � 16 t2;

rock � Table��0, y�t��, �t, 0, 10, .4��
Out[10]= ��0, 0�, �0, 61.44�, �0, 117.76�, �0, 168.96�, �0, 215.04�, �0, 256.�, �0, 291.84�,

�0, 322.56�, �0, 348.16�, �0, 368.64�, �0, 384.�, �0, 394.24�, �0, 399.36�,
�0, 399.36�, �0, 394.24�, �0, 384.�, �0, 368.64�, �0, 348.16�, �0, 322.56�,
�0, 291.84�, �0, 256.�, �0, 215.04�, �0, 168.96�, �0, 117.76�, �0, 61.44�, �0, 0.��
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The ListPlot command is now used to plot the points one at a time.  The output (of  which only one frame is shown in the 
hard copy of this manual), can be  animated by double-clicking on any one of the frames. The option PlotStyle->Point-
Size[.02] is used to increase the displayed size of each point.  Also note that rock[[i]] represents the ith ordered pair in 
the list rock.

In[11]:= rockmotion � Table�ListPlot��rock��i���, PlotStyle �� PointSize�.02�,
PlotRange �� ��0, 10�, �0, 400���, �i, 1, Length�rock���;

2 4 6 8 10

50

100

150

200

250

300

350

400

In the following, a set of ordered pairs �x�t�, y�t�� where x�t� � t and y�t� � 160�t � 16�t2 is plotted on point at a time together with 
(0,y(t)).  Again, only the  first frame is displayed below in the hard copy of this manual. The frames  can be animated to show 
how the height of the rock corresponds to the point  of the graph of s � 160�t � 16�t2.  

In[12]:= graphpoints � Table��x�t�, y�t��, �t, 0, 10, .4��;
rockmotion �

Table�ListPlot��rock��i��, graphpoints��i���, PlotStyle �� PointSize�.02�,
PlotRange �� ��0, 10�, �0, 400���, �i, 1, Length�rock���;
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Graphing the position function s�t�, the velocity function v�t� and the acceleration function a�t�.

Here is an example of how to use Mathematica to plot a position vector with its velocity and acceleration functions.
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Example: For the position function s � 160�t � 16�t2, plot its graph together with the velocity and acceleration functions.

 The solution is a simple as defining the position function and then plotting  it with its first and second derivatives.  What 
information does the graph  reveal?

In[13]:= s�t_� � 160�t � 16 t2;

Plot��s�t�, s'�t�, s''�t��, �t, 0, 10��;

2 4 6 8 10

-100

100

200

300

400

� Section 2.5 The Chain Rule

The Derivative of Cos�x�

Recall that d
�������dx �cos�x� � limh�0

cos�x�h��cos�x�
������������������������������������h .  To verify that d

�������dx �cos�x� � �sin�x�, the difference quotient cos�x�h��cos�x�
������������������������������������h  is plotted 

below for h � 1, .5 and .2.  Examine the output of the following plot commands and explain what  appears to be happening as 
h � 0.  I.e., do the graphs appear to be converging to a familiar function?

In[14]:= Clear�q�;
q �

Cos�x � h� � Cos�x�
������������������������������������������������

h
;

p1 � Plot�q �. h � 1., �x, 0, 2 ���;
p2 � Plot�q �. h � .5, �x, 0, 2 ���;
p3 � Plot�q �. h � .2, �x, 0, 2 ���;
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Parametrized Curves

The following example is similar to Exercises 75 - 80 in your text.

Example: Consider the parametrized curve whose equations are x�t� � t � cos�t� and y�t� � t � sin�t� where 0 � t � 6��.

(a) Plot the curve over the given interval.

(b) Find dy
�������dx  and d2

�y
����������
dx2 .

(c) Find an equation for the tangent line to the curve at the point  where t0 � 4.

Part (a) The parametric curves are defined and then plotted using the following  commands.

In[15]:= Clear�x, y�;
x�t_� � t � Cos�t�; y�t_� � t � Sin�t�;
funplot � ParametricPlot��x�t�, y�t��, �t, 0, 6����;
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Part (b) Next, dy
�������dx  and d2

�y
����������
dx2  are defined.  Since dy

�������dx  is used in part (c) to find the slope of a tangent line, the derivative  is defined 

to be yprime[t] in the following cell.  

In[16]:= yprime�t_� �

y'�t�
����������������

x'�t�
Out[16]=

1 � Cos�t�
��������������������������

1 � Sin�t�

Next, the second derivative is defined and simplified.

In[17]:= Simplify� yprime'�t�
������������������������������

x'�t� �

Out[17]=
2 Sin� t

����2 �
�����������������������������������������������������

�Cos� t
����2 � � Sin� t

����2 ��
5

Part (c)  Now the tangent line is computed and then the Show command is used to show the graph of the parametrized curve 
and the  tangent line simultaneously.
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In[18]:= tanline � yprime�4.���x � x�4.�	 � y�4.�;
tanlineplot � Plot�tanline, �x, 0, 2���, DisplayFunction �� Identity�;

In[19]:= Show�funplot, tanlineplot�;
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� Section 2.6 Implicit Differentiation

The following example illustrates how to manipulate implicit equations  with Mathematica.

Example: Given the equation �x� 1�4 � x2
� y2, use Mathematica to do the following.

(a) Solve the equation of y and then differentiate the result to find dy
�������dx .

(b) Use implicit differentiation to find dy
�������dx  and verify that the result agrees the derivative found in part a.

(c)  Plot the graph of the equation together with the line tangent to the curve at  � 7
����4 ,

����������
703

���������������16 �.

Part (a)  Begin by assigning the equation the name eq and then use the Solve command to solve the equation for y. 

In[20]:= Clear�x, y, eq�;
eq � �x � 1	4 �� x2 � y2;
solutions � Solve�eq, y�

Out[20]= ��y � �

�																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4 
, �y �

�																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4 



The solutions for y can be extracted using the commands solutions[[1,1,2]] and solutions[[2,1,2]].  Next, the 
D command is used to find and simplify dy

�������dx for each solution.

In[21]:= D�solutions��1, 1, 2��, x� �� Simplify

D�solutions��2, 1, 2��, x� �� Simplify

Out[21]=
�2 � 5 x � 6 x2 � 2 x3

����������������������������������������������������������������																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4

Out[22]=
2 � 5 x � 6 x2 � 2 x3

����������������������������������������������������������������																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4
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Part (b)  The Dt command can be used to find dy
�������dx  using implicit differentiation.  The result is an equation which is  arbitrarily 

assigned the name implicitder.

In[23]:= implicitder � Dt�eq, x�
Out[23]= 4 ��1 � x�3 �� 2 x � 2 y Dt�y, x�

The Mathematica notation Dt[y,x] above represents dy
�������dx . The Mathematica command 

Solve[implicitder,Dt[y,x]] 

in the following input cell will solve the equation for Dt[y,x]. 

In[24]:= impsolution � Solve�implicitder, Dt�y, x��

Out[24]= ��Dt�y, x� � �

�2 � 5 x � 6 x2 � 2 x3
������������������������������������������������

y




To verify that the derivative obtained using implicit differentiation is the 

same as the derivative obtained earlier, replace the value of y with the 

explicit solutions found earlier.

In[25]:= impsolution �. y � solutions��1, 1, 2��
impsolution �. y � solutions��2, 1, 2��

Out[25]= ��� 4 � 10 x � 12 x2 � 4 x3
�������������������������������������������������������������������

2
�																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4

�

�2 � 5 x � 6 x2 � 2 x3
����������������������������������������������������������������																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4





Out[26]= �� 4 � 10 x � 12 x2 � 4 x3
�������������������������������������������������������������������

2
�																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4

� �

�2 � 5 x � 6 x2 � 2 x3
����������������������������������������������������������������																																																						
�1 � 4 x � 5 x2 � 4 x3 � x4





Part (c)  To plot the equation, the ImplicitPlot command found in the package called ImplicitPlot, must be loaded into 
memory first using the Needs command.
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In[27]:= 		 Graphics`ImplicitPlot`

eqgraph � ImplicitPlot�eq, �x, �4, 4��;
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To find the equation of the line tangent to the equation at � 7
����4 ,

����������
703

���������������16 �, �x0, y0� is assigned the value � 7
����4 ,

����������
703

���������������16 � and then the 
implicit solution for dy

�������dx  is replaced with this ordered pair using the ReplaceAll (/.) command.

In[29]:= x0 �
7
����

4
; y0 �


���������
703

����������������

16
;

m � impsolution��1, 1, 2�� �. �x � x0, y � y0�

Out[29]=
29

�������������������

2 �									703

Now the tangent line is formed and the plotted.  The Show command is then used to plot the implicit curve and the tangent line  
together on a single graph.
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In[30]:= Clear�x, y�;
y � m��x � x0	 � y0;
tangraph � Plot�y, �x, 0, 3�, DisplayFunction �� Identity�;
Show��eqgraph, tangraph��;
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CAS Exercise Examples for Chapter 3: Applications of Derivatives

� Section 3.1 Extreme Values of Functions

Finding Solutions of g�x� � 0

By graphing a function g�x�, the approximate locations of the roots of g�x� can be found.  Then the command 
FindRoot�g�x�, �x, x0�� can be used to find a solution to g�x� � 0 where x0 is the approximate location of the given 
root determined by observing the  graph of y � g�x�.  The FindRoot command will be useful in the following example.

Using Mathematica to locate absolute extrema on a closed interval

Example: Given the function f �x� � x2�
������������

x� 1
3

� sin�x� and the closed interval ��1, 1�, perform each of the following.

(a) Plot the function over the interval  to see its general behavior there.

(b) Find interior points where f ' � 0.

(c) Find the interior points where f ' doesn't exist.

(d) Evaluate the function at all points found in parts  (b) and (c) and at the endpoints of the interval.

(e) Find the functions  absolute extreme values on the interval and identify where they occur.

Part (a) The function is defined and plotted first.



In[1]:= f�x_� � x2�
������������
x � 1

3

� Sin�x�;
Plot�f�x�, �x, �1, 1��;
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 To see the approximate locations where f '(x)=0, plot the derivative.

In[3]:= Plot�f'�x�, �x, �1, 1��;
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The derivative is zero at about x � �0.95 and x � 0.4.  The following FindRoot command will locate the negative root.

In[4]:= sol1 � FindRoot�f'�x� �� 0, �x, �.95��
Out[4]= �x � �0.913313�

From the graph of f '��x�, it is clear that another root lies near x � 0.4.  

In[5]:= sol2 � FindRoot�f'�x� �� 0, �x, .4��
Out[5]= �x � 0.394546�
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Part (c)  From observing the function f '��x� in the following output cell, you can see that f '��x� is never undefined at point in 
the interior of ��1, 1�.

In[6]:= Simplify�f'�x��
Out[6]=

x �6 � 7 x�
����������������������������

3 �1 � x�2�3 � Cos�x�

Part (d) Now we evaluate the function at the two values of x where f '��x� � 0 and at the endpoints.  Note that N[f[x]] or 
equivalently, f[x]//N will give a numerical approximation of the value of f �x�.  Recall that the command sol1[[1,2]] 
will  extract the first solution found in part (b).

In[7]:= f�sol1��1, 2���
f�sol2��1, 2���
f��1� �� N

f�1� �� N

Out[7]= 1.1607

Out[8]= �0.210473

Out[9]= 0.841471

Out[10]= 0.41845

Part (e) From observing the output in part (d), you can see that on the interval  ��1, 1�, the function has an absolute maximum 
of approximately 1.1607 at x � �0.913313 and an absolute minimum value of about �0.210473 at x � 0.394546.

�

Section 3.2 The Mean Value Theorem and Differential Equations

Solving Differential Equations with Mathematica 

The command DSolve[eqn, y[x], x] will solve a differential equation involving y '��x� for y in terms of x. For example, 

the following input command is used to solve the  differential equation y ' � x�
������������������x� 1�23

for y in terms of x.

In[11]:= sol � DSolve�y'�x� � x�
	

















�x � 1�23

, y�x�, x


Out[11]= ��y�x� � ���1 � x�2�1�3 	


��� 9

�������

40
�

3 x
��������

20
�

3 x2
�����������

8
�


�� � C�1���

The solution is extracted using the command sol[[1,1,2]].  The value C[1] in the solution represents an arbitrary 
constant.  In the  following input cell, the command /. is used to replace C[1] with specific values and the solution is then 
plotted for these  specific values of C[1].
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In[12]:= Plot��sol��1, 1, 2�� �. C�1� � �2,

sol��1, 1, 2�� �. C�1� � �1, sol��1, 1, 2�� �. C�1� � 0,

sol��1, 1, 2�� �. C�1� � 1, sol��1, 1, 2�� �. C�1� � 2�, �x, �4, 4��;
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Now suppose you want to find and plot the solution passing through � 1
����2 , �2�.  Begin by letting y equal the solution found earlier 

with x replaced  with 1
����2 .

In[13]:= y � sol��1, 1, 2�� �. x �
1
����

2

Out[13]= �

33
��������������������

160 22�3
� C�1�

The command Solve[eqn, var] will attempt to find the solutions to the variable var in the equation eqn. Therefore you can 
use the Solve command to find the value of the constant C[1] for which y=-2. 

In[14]:= const � Solve�y �� �2, C�1��
Out[14]= ��C�1� �

1
����������

320
��640 � 33 21�3���

Now the specific solution is plotted by replacing C[1] with the constant just obtained.
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In[15]:= Plot�sol��1, 1, 2�� �. C�1� � const��1, 1, 2��, �x, �4, 4��;
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� Section 3.3 The Shape of a Graph

The following example is similar to the CAS exercise found in Section 3.3.

Example: Let f �x� � a
���������������
1�bx2 with b � 0 and a � 0.

(a) Let b � 1. On a common screen, graph f �x� for a � �1, �0.5, �0.25, 0.25, 0.5 and 1.

(b) Let b � 1. Produce a sequence of plot frames showing the graph of y � f �x� for a � �1, �0.9, �0.8, ..., 1 and then animate 
the frames.

(c) Show that f  is decreasing on ��	, 0� and increasing on �0, 	�.
(d) Find the location of the inflection point(s) of f .

Part (a)  The function f  is defined below and then the Plot command is used to graph the function for the specified values of 
a.
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In[16]:= Clear�a, b, c, f�;
f�x_� �

a x2
�������������������

1 � b x2
;

Plot��f�x� �. �a � �1, b � 1�, f�x� �. �a � �.5, b � 1�,
f�x� �. �a � �.25, b � 1�, f�x� �. �a � 0, b � 1�, f�x� �. �a � .25, b � 1�,
f�x� �. �a � .5, b � 1�, f�x� �. �a � 1, b � 1��, �x, �3, 3��;
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Part (b)  Now the frames of a movie are produced using the Table command (only the first frame of the movie is shown in the 
hard copy of  this manual).  After the frames have been produced, you can double-click on  any frame to produce an animation.  
What do the graphs tell you about the  number of inflections points and the concavity of the graph of y � f �x�?

In[19]:= Table�
Plot�f�x� �. �a � a0, b � 1�, �x, �3, 3�, PlotRange �� ��1, 1��, �a0, �1, 1, .1��;
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Part (c) The first derivative is computed and simplified in the following cell.   From observing the output, it is clear that 
f '��x� � 0 when x � 0 and since b � 0, the derivative is never undefined.  Furthermore, if a � 0, then f '��x� � 0 when x � 0 and 
f '��x� 
 0 when x 
 0. Hence f  is increasing on �0, 	� and decreasing on �0, 	� when a � 0.  What if a 
 0?

62            CAS Exercise Examples for Chapter 3



In[20]:= Simplify�f'�x��
Out[20]=

2 a x
��������������������������

�1 � b x2�2

Part (d) The second derivative is displayed in the following output and then the  candidates for inflection points are obtained 
using the Solve command.

In[21]:= g�x_� � Simplify�f''�x��

Out[21]=
a �2 � 6 b x2�
��������������������������������

�1 � b x2�3

In[22]:= Solve�g�x� �� 0, x�
Out[22]= ��x � �

1
�����������������������3 �����b

�, �x �

1
�����������������������3 �����b

��

To determine the inflection points and the concavity of the curve, the  intervals 	�	, � 1
�������������������������

3
�����

b

, 	� 1

�������������������������
3
�����

b
, 1
�������������������������

3
�����

b

 and 

	 1
�������������������������

3
�����

b
, 	
 are examined by computing the value of the second derivative at  x �

�2
�������������������3 �����b , 0, and 2

�������������������3 �����b .  

In[23]:= g� �2
�������������������������
3

�����
b




g�0�
g� 2

�������������������������
3

�����
b




Out[23]= �

162 a
��������������

343

Out[24]= 2 a

Out[25]= �

162 a
��������������

343

From the output, it can be seen that for a given value of a, the second derivative changes signs at x � � 1
�������������������������

3
�����

b
 and x � 1

�������������������������
3
�����

b
.  

So the points of inflection occur at  x � � 1
�������������������������

3
�����

b
 and x � 1

�������������������������
3
�����

b
.  If a � 0, where is the graph of f  concave up and where is it 

concave down?  How about when a 
 0?

� Section 3.6 Linearization and Differentials

Comparing Functions and their Linearizations

Example: Let f �x� � ������������
x� 1 , I � �0, 3� and let a � 1.  

(a) Find the linearization L of f  at the point a and plot f  and L on a single graph.

(b) Plot the absolute error � f �x�� L�x� � over I and find its maximum value.

(c) For the graph in part (b), estimate as  large a �>0 as possible satisfying 

� x� a � 
 � � � f �x�� f �a� � 
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for 
 � 0.01.  Then check graphically to see if your �-estimate is true.

Part (a) The function and its corresponding linearization are given below along  with a plot of their graphs.

In[26]:= Clear�f�;
f�x_� �

������������
x � 1 ;

L�x_� :� f'�1���x � 1� � f�1�;
Plot��f�x�, L�x��, �x, 0, 3��;
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Part (b) The graph of � f �x�� L�x� � is shown next.  The Mathematica command Abs[exp] represents the absolute value of an 
expression exp.

In[30]:= Plot�Abs�f�x� � L�x��, �x, 0, 3��;
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Part (c) From the graph given in part (b), it appears that � � 0.5 is needed in order for � f �x�� f �a� � 
 0.01 when � x� a � 
 �.  
To see if � is small enough, a graph of  y � � f �x�� f �a� � and y � 0.01 over the interval � x� 1 � 
 0.5 (which is equivalent to 
�0.5, 1.5� ) is given in the following output cell.
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In[31]:= Plot��Abs�f�x� � L�x��, 0.01�, �x, .5, 1.5��;
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It appears that the �-estimate needs to be a little smaller.  So  now try � � 0.45.

In[32]:= Plot��Abs�f�x� � L�x��, .01�, �x, .55, 1.45��;
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It looks like the updated �-estimate still needs to be slightly  smaller, say � � .44.
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In[33]:= Plot��Abs�f�x� � L�x��, .01�, �x, .56, 1.44��;
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So � � .44 will satisfy the following:  � x� a � 
 � � � f �x�� f �a� � 
 
 when 
 � .01.

� Section 3.7 Newton's Method

Finding Roots of an f �x� using Newton's Method

Example: Find the smallest root of f �x� � cos�5�x�� x to 5 decimal places.  

To find a rough approximation of the roots, the  Plot function is used to graph y � f �x� first.

In[34]:= Plot�Cos�5�x� � x, �x, �2, 2��;
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It appears that there are two negative roots - one near �0.8 and �0.4.  To use Newton's method, let g�x� � x� f �x�
�������������f '��x� .  

In[35]:= f�x_� � Cos�5 x� � x;
g�x_� � x �

f�x�
����������������

f'�x� ;

66            CAS Exercise Examples for Chapter 3



To find the smallest root, start with x0 � �0.8and then find x1 using x1 � x0 �
f �x0�
����������������f '��x0� which is equivalent to  x1 � g�x0�.

In[37]:= g��.8�
Out[37]= �0.769407

Therefore x1 � �0.769407.  Now we find x2 by computing g�x1�. The % symbol refers to the last output, therefore computing 
g�%� will yield the value of x2.

In[38]:= g�%�
Out[38]= �0.767502

Now the value of x3 is computed.

In[39]:= g�%�
Out[39]= �0.767493

Next, the value of x4 is computed.

In[40]:= g�%�
Out[40]= �0.767493

Since the values of x3 and x4 are identical to 6 decimal places, the smallest root approximately equals  �0.767493.  Can you find 
the other two approximate roots using Newton's method?
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CAS Exercise Examples for Chapter 4: Integration

�

Section 4.1 Indefinite Integrals, Differential Equations, and Modeling

Computing Indefinite Integrals with Mathematica 

The Mathematica command Integrate[f[x],x] will attempt to evaluate � f �x��dx.  A shortcut way of using the Inte-
grate command is to open the palette entitled BasicInput and then click on the button containing �����. Enter the function 
f�x�, then press the Tab key followed by x.  For example, to integrate ln x, the following command is executed.

In[1]:= � Log�x���x
Out[1]= �x � x Log�x�

Notice that the general form of the antiderivative is �x� x ln x�C and Mathematica does not include the constant C in the 
answer above.

Solving Initial Value Problems

Example: Use Mathematica to solve the initial value problem 

y ' � 5�e�3�x, y�0� � �10.

Begin by letting y�x� equal the antiderivative and add a c to the answer.

In[2]:= y�x_� � � 5 ��3 x��x � c

Out[2]= c �
5 E�3 x
���������������

3

The Solve command is now used to find the value of c.

In[3]:= cval � Solve�y�0� �� �10, c�
Out[3]= ��c � �

25
�������
3

��

Now the command cval[[1,1,2]] is used to extract the value of c in the following assignment statement.

In[4]:= c � cval��1, 1, 2��
Out[4]= �

25
�������
3



The Factor command can be used to factor the value of y�x�.

In[5]:= Factor�y�x��
Out[5]= �

5
����
3
E�3 x �1 � 5 E3 x�

Here is a slightly more challenging example.

Example: Solve the initial value problem 

y ' ' � e2�x
�

1
������x2 , y�1� � 2, y '��1� � 4

Study the following steps used to find the solution.

In[6]:= yprime�x_� � � �
����

�2 x
�

1
�������
x2

�
�		��x � c1

Out[6]= c1 �
E�2 x
�����������
2

�
1
����
x

In[7]:= sol � Solve�yprime�1� �� 4, c1�
Out[7]= ��c1 � 5 �

1
�����������
2 E2

��

In[8]:= c1 � sol��1, 1, 2��
Out[8]= 5 �

1
�����������
2 E2

In[9]:= Clear�y�;
y�x_� � � yprime�x���x � c2

Out[9]= c2 �
E�2 x
�����������
4

�
�1 � 10 E2� x
�������������������������������

2 E2
� Log�x�

In[10]:= sol � Solve�y�1� �� 2, c2�
Out[10]= ��c2 � �

3 �1 � 4 E2�
����������������������������

4 E2
��

In[11]:= c2 � sol��1, 1, 2��
Out[11]= �

3 �1 � 4 E2�
����������������������������

4 E2

Here is the solution:

In[12]:= y�x�
Out[12]=

E�2 x
�����������
4

�
3 �1 � 4 E2�
����������������������������

4 E2
�
�1 � 10 E2� x
�������������������������������

2 E2
� Log�x�
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� Section 4.3 Estimating with Finite Sums

The following example is similar to Exercises 25 - 28 in your text.  

Example: Let f �x� � x3
� sin x on �1, �� and use Mathematica to perform the following steps.

(a) Plot the function over the given  interval.

(b) Partition the given interval into 100 subintervals of equal  length and evaluate the function at the midpoint of each subinter-
val.

(c)  Compute the average value of the function values generated in part (b).

(d)  Solve the equation f �x� � �average value� for x using the average value calculation in part (c).

Part (a) First, the function is defined and graphed over the given interval.

In[13]:= f�x_� � x3 � Sin�x�;
Plot�f�x�, 
x, 1, ��, PlotRange �	 
0, �

3
� Sin�����;

1.5 2 2.5 3

5

10

15

20

25

30

Part (b) The value of �x is defined below where the greek letter � was entered from  the BasicInput palette.  Then the Table 
command is used to partition the interval and to evaluate the function at  the midpoint of each subinterval.
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In[14]:= 
x �
� � 1
������������
100

;

fvals � Table�f�1 � �i � .5
�
x�, 
i, 1, 100��
Out[14]= �1.87968, 1.95789, 2.03855, 2.12171, 2.20743, 2.29575, 2.38674, 2.48045, 2.57693,

2.67624, 2.77843, 2.88356, 2.99169, 3.10286, 3.21715, 3.33459, 3.45526,

3.5792, 3.70648, 3.83715, 3.97126, 4.10888, 4.25007, 4.39487, 4.54335,

4.69558, 4.85159, 5.01147, 5.17525, 5.34301, 5.5148, 5.69069, 5.87072,

6.05497, 6.24349, 6.43635, 6.63359, 6.8353, 7.04151, 7.25231, 7.46774,

7.68787, 7.91277, 8.14249, 8.37709, 8.61665, 8.86121, 9.11085, 9.36563,

9.62561, 9.89085, 10.1614, 10.4374, 10.7188, 11.0057, 11.2983, 11.5964,

11.9003, 12.21, 12.5255, 12.8469, 13.1743, 13.5077, 13.8472, 14.193, 14.5449,

14.9031, 15.2678, 15.6388, 16.0164, 16.4005, 16.7912, 17.1887, 17.5929,

18.004, 18.422, 18.8469, 19.2789, 19.718, 20.1642, 20.6177, 21.0786, 21.5467,

22.0224, 22.5055, 22.9963, 23.4947, 24.0008, 24.5147, 25.0364, 25.5661,

26.1037, 26.6495, 27.2033, 27.7654, 28.3357, 28.9143, 29.5014, 30.0969, 30.701	

Part (c) For a given list lis, the Mathematica command Plus@@lis will compute the sum of all the numbers in the lis.

In[15]:= averageval � �Plus �� fvals
 � 100
Out[15]= 11.9734

Part (d):  Solving f �x� � �average value� for x is equivalent to solving f �x�� average value � 0 for x.  You can plot the 
f �x�� �average value� first to obtain the approximate location of the root and then use the FindRoot command to obtain the 
root.

In[16]:= Plot�f�x� � averageval, 
x, 1, ���;

1.5 2 2.5 3

-10

-5

5

10
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In[17]:= r � FindRoot�f�x� � averageval, 
x, 2.2��
Out[17]= �x � 2.23651	
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� Section 4.4 Riemann Sums and Definite Integrals

In Exercises 41 - 46, you are asked to draw rectangles associated with  Riemann sums.  There is no built-in Mathematica 
function which will do this, but by executing the following command, you  will create a function 
RiemannSum�a, b, n, m� which will illustrate and compute the sum �k�1

n f �ck���x where ck  is the midpoint of the 
corresponding subinterval if m � 0.5.

In[18]:= RiemannSum�a_, b_, n_, m_� :� Module��deltax � b � a
������������
n

, recs, fungraph, intest�,

intest � deltax�
i�1

n

f�a � �i � 1 � m
�deltax�;
recs � ListPlot�Flatten�

Table�

a � �i � 1
�deltax, 0�, 
a � �i � 1
�deltax, f�a � �i � 1 � m
�deltax��,

a � i deltax, f�a � �i � 1 � m
�deltax��, 
a � i deltax, 0��, 
i, 1, n��, 1�,

PlotJoined �	 True, DisplayFunction �	 Identity, PlotRange �	 All�;
fungraph � Plot�f�x�, 
x, a, b�, DisplayFunction �	 Identity,

PlotRange �	 All�;
Show�
recs, fungraph�, DisplayFunction �	 $DisplayFunction�;
Return�intest��

This newly created command is now used in the following example.

In[19]:= f�x_� :� x3 � 1;

RiemannSum�1, 2, 6, .5�

1.2 1.4 1.6 1.8 2

2

4

6

8

Out[19]= 4.73958

The value of m in RiemannSum[a, b, n, m] can be any value between 0 and 1 inclusive.  Repeat the command above, 
but  try different values of m and describe what is happening.  For example, let m � 1 and observe how the rectangles are 
formed. What happens if you use m � 0?
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� Section 4.5 The Mean Value and Fundamental Theorems

Computing Definite Integrals with Mathematica 

The Mathematica command Integrate[f[x],{x,a,b}] will attempt to evaluate �a

b
f �x��dx.  A shortcut way of using the 

Integrate command is to open the palette entitled BasicInput and then click on the button containing �
�

�

�����. 

In[20]:= �
1

2

Log�x���x
Out[20]= �1 � Log�4�

Example: Let f �x� � �x� sin�2�x�� cos2
�x on �a, b� � �0, 1�  and use Mathematica to perform the following steps. Let 

F�x� � �a

x
f �x��dx and solve F '��x� � 0.

The solution to this example is straight forward.  First the function F is defined.

In[21]:= Clear�f�;
f�x_� � �x � Sin�2�x� � Cos�x�2;
F�x_� � �

0

x

f�t���t

Out[21]= �
1
����
2

�
1
����
4
�2 x � 2 x2 � 2 Cos�2 x� � Sin�2 x��

Now the approximate location of the root F '��x� is found after first graphing the function to determine the approximate  location 
of the root.

In[22]:= Plot�F'�x�, 
x, 0, 1��;
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In[23]:= FindRoot�F'�x�, 
x, .3��
Out[23]= �x � 0.314959	
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� Section 4.6: Substitution in Definite Integrals

Example: Let f �x� � sin2
�x and g�x� � x�x� 1���x� 3���x� 4�. Use Mathematica to complete the following steps.

(a) Plot the curves together to  determine the number of points of intersection.

(b) Determine where the  curves intersect.

(c) Integrate � f �x�� g�x� � over consecutive pairs of intersection values.

(d) Sum together the  integrals found in part (c).

Part (a) Study the following input and output.  How many points of intersection do  you see?

In[24]:= Clear�f, g�;
f�x_� � Sin�x�2;
g�x_� � x��x � 1
��x � 3
��x � 4
;
Plot�
f�x�, g�x��, 
x, �1, 5��;
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Part (b) Solving f �x� � g�x� is equivalent to solving f �x�� g�x� � 0.  By plotting f �x�� g�x�, you can see the approximate 
locations of the roots.  One of the roots is  0 (why?) and the remaining roots can be found using the FindRoot command.
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In[25]:= Plot�f�x� � g�x�, 
x, �1, 5��;

-1 1 2 3 4 5
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In[26]:= int2 � FindRoot�f�x� � g�x�, 
x, 1.1��
int3 � FindRoot�f�x� � g�x�, 
x, 3��
int4 � FindRoot�f�x� � g�x�, 
x, 4��

Out[26]= �x � 1.13558	

Out[27]= �x � 2.99652	

Out[28]= �x � 4.04794	

Parts (c) and (d) Now you can integrate � f �x�� g�x� � over consecutive pairs of intersection values and sum up the values  
obtained.

In[29]:= area1 � �
0

int2��1,2��
�f�x� � g�x�
��x

Out[29]= 1.78766

In[30]:= area2 � �
int2��1,2��

int3��1,2��
�g�x� � f�x�
��x

Out[30]= 3.81784

In[31]:= area3 � �
int3��1,2��

int4��1,2��
�f�x� � g�x�
��x

Out[31]= 1.6636

In[32]:= area1 � area2 � area3

Out[32]= 7.26909
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� Section 4.7 Numerical Integration

Numerical Integration

The Mathematica command NIntegrate[f[x],{x,a,b}] will numerically integrate �a

b
f �x��dx.  

In[33]:= NIntegrate���x2, 
x, �1, 1��
Out[33]= 1.49365

If you want a command that will estimate �a

b
f �x��dx with the Trapezoidal rule for a given value of n, then execute the following 

command to create the function. A picture is  given illustrating the trapezoids formed by the Trapezoidal rule.  The  command 
TrapPic�a, b, n� will use n subintervals to estimate �a

b
f �x��dx

In[34]:= TrapPic�a_, b_, n_� :� Module��h � b � a
������������
n

, traps, fungraph, intest�,

intest �
h
����
2
�
�
�
�����f�a� � 2�

i�1

n�1

f�a � i h� � f�b��
�
					;

traps � ListPlot�Flatten�Table�

a � i h, 0�, 
a � i h, f�a � i h��,

a � �i � 1
�h, f�a � �i � 1
�h��, 
a � �i � 1
 h, 0��, 
i, 0, n � 1��, 1�,

PlotJoined �	 True, DisplayFunction �	 Identity, PlotRange �	 All�;
fungraph � Plot�f�x�, 
x, a, b�, DisplayFunction �	 Identity,

PlotRange �	 All�;
Show�
traps, fungraph�, DisplayFunction �	 $DisplayFunction�;
Return�intest��

If you don't care to see a picture, use the following command instead.

In[35]:= TrapRule�a_, b_, n_� :� Module��h �
b � a
������������
n

, intest�,

intest �
h
����
2
�
�
�
�����f�a� � 2�

i�1

n�1

f�a � i h� � f�b��
�
					;

Return�intest��
Here is an example.
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In[36]:= Clear�f�;
f�x_� � �

�x2;

N�TrapPic��1, 1, 8��

-1 -0.5 0.5 1
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Out[36]= 1.48597

Here is the same thing without a displayed picture

In[37]:= N�TrapRule��1, 1, 8��
Out[37]= 1.48597
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CAS Exercise Examples for Chapter 5: Applications of Integration

� Section 5.3 Lengths of Plane Curves

Determining the Arc Length of a Smooth Curve

To determine the length of a curve, you can first try to integrate using  �a
b�������������������������

1 � f'�x�2 ��x and if this fails to produce an 

answer, then use the numerical  integration command  NIntegrate[
�������������������������
1 � f'�x�2 ,{x,a,b}]. In the following example, 

both commands  produce the desired  result.

In[1]:= f�x_� �
4
�����
2

��������������
3

x
3
����2 � 1;

�
0

1�������������������������
1 � f'�x�2 ��x

Out[1]=
13
�������
6

In[2]:= NIntegrate��������������������������
1 � f'�x�2 , 	x, 0, 1
�

Out[2]= 2.16667

Comparing the Length of the Polygonal Path with the Length of a Curve

The following example is similar to Exercises 31 - 36.

Example: Let f �x� � x3, 0 � x � 2.

(a) Plot the curve together with the polygonal path approximation for n � 3.

(b) Find the corresponding approximate length of the curve by summing  the lengths of the line segments and then evaluate the 
actual length using an  integral.

Part (a) Given that �x is defined as b�a
����������n  where a � 0, b � 2 and n � 3, the command 

Table[{a+i �x,f[a+i �x]},{i,0,n}]

will form a table of ordered pairs representing the endpoints of each  straight line in the polygonal path.  You can then use the 
ListPlot command to plot the polygonal path.  Study the following input and  output.



In[3]:= f�x_� � x3;

a � 0; b � 2; n � 3;

�x �
b � a
������������
n

;

pts � Table�	a � i �x, f�a � i �x�
, 	i, 0, n
�;
polypath � ListPlot�pts, PlotJoined �� True, PlotRange �� All,

DisplayFunction �� Identity, PlotStyle �� RGBColor�1, 0, 0��;
fungraph � Plot�f�x�, 	x, a, b
, DisplayFunction �� Identity, PlotRange �� All�;
Show�	fungraph, polypath
, DisplayFunction �� $DisplayFunction�;
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Part (b) The command Table�����������������������������������������������������������������������������������������
�x2 � �f�a � i �x� � f�a � �i � 1���x��2 , 	i, 1, n
� will form a table whose 

entries are the lengths of each line segment  making up the polygonal path.  Then we can add these lengths together using 
Plus@@.

In[4]:= Plus 		 Table���������������������������������������������������������������������������������������
�x2 � �f�a � i �x� � f�a � �i � 1
��x�
2 , 	i, 1, n
� �� N

Out[4]= 8.57709

Compare this value to the actual length of the curve.

In[5]:= NIntegrate��������������������������
1 � f'�x�2 , 	x, 0, 2
�

Out[5]= 8.63033
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CAS Exercise Examples for Chapter 6: Transcendental Functions and 
Differential Equations

�

Section 6.2 Exponential Functions (Section 2.8 Derivatives of Inverse 
Trigonometric Functions in Early Transcendentals Version)

Plotting Functions and their Inverses on One Graph

The purpose of the following example is it explore a function and its inverse 

together with their derivatives.  

Example: Let f �x� � cos x, 0 � x � �
����2  and x0 �

�
����6 .  Complete each of the following with Mathematica.

a) Plot y � f �x� and y � f '��x� together on one graph.

b) Find the equation of the line tangent to f  at x � x0.  Plot the tangent line together with f .

c) Find the inverse (call it g) of f  and then find the line tangent to g at � f �x0�, x0�.  (Use Theorem 1.)

d) Plot f , g, the two tangent lines, the identity and the line segment joining the  points �x0, f �x0�� and � f �x0�, x0�.

Part (a) Study the following input and output.



In[1]:= f�x_� � Cos�x�;
Plot��f�x�, f'�x��, �x, 0, � � 2��;

0.25 0.5 0.75 1 1.25 1.5
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Part (b) The following two input cells show how to create a tangent line along  with the graph of the tangent line and the 
function.

In[2]:= L�x_� � f�� � 6� � f'�� �6���x � � � 6�
Out[2]=

�����3
���������

2
�
1
����

2
� �
����

6
� x�

In[3]:= fplot � Plot�f�x�, �x, 0, � � 2�, DisplayFunction �� Identity�;
ftanplot � Plot�L�x�, �x, 0, ��, DisplayFunction �� Identity�;
Show��fplot, ftanplot�, DisplayFunction �� $DisplayFunction�;

0.5 1 1.5 2 2.5 3
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1

Part (c) The Solve command is now used to find the inverse of f  (ignore the warning message in the following output).
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In[4]:= invsol � Solve�y �� f�x�, x�
Solve::ifun� : �Inverse functions are

being used by Solve, so some solutions may not be found.

Out[4]= ��x � �ArcCos�y��, �x � ArcCos�y���

A function g is now created for the inverse.

In[5]:= g�y_� � invsol��2, 1, 2��;
g�x�

Out[5]= ArcCos�x�

The tangent line to the inverse is now created.

In[6]:= m �
1

������������������������
f'�� �6� ;

LInv�x_� � � �6 � m��x � f�� �6��;
The inverse, its tangent line and the identity y � x are all plotted for later use.  Ignore the warning messages.

In[7]:= gplot � Plot�g�x�, �x, 0, 1�,
PlotStyle �� RGBColor�0, 0, 1�, DisplayFunction �� Identity�;

gtanplot � Plot�LInv�x�, �x, 0, 2�, PlotStyle �� RGBColor�0, 0, 1�,
DisplayFunction �� Identity�;

identityplot � Plot�x, �x, 0, 2�, PlotStyle �� RGBColor�1, 0, 0�,
DisplayFunction �� Identity�;

General::spell1� : �Possible spelling error: new

symbol name "gplot" is similar to existing symbol "fplot".

General::spell1� : �Possible spelling error: new symbol

name "gtanplot" is similar to existing symbol "ftanplot".

The line segment joining the points �x0, f �x0�� and � f �x0�, x0� is now created and then the required graph is displayed.

In[8]:= segment � ListPlot�		 �
����
6
, f� �

����
6

�, 	f� �

����
6

, �

����
6
��, PlotJoined �� True,

PlotStyle �� Thickness�.01�, DisplayFunction �� Identity
;
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In[9]:= Show��fplot, ftanplot, gplot, gtanplot, identityplot, segment�,
PlotRange �� ��0, 1.2�, �0, 1.2��, AspectRatio �� 1,

DisplayFunction �� $DisplayFunction�;
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�

Section 6.4 First-Order Separable Differential Equations (Section 5.4 in 
Early Transcendentals Version)

Slope Fields

A package called PlotField, contained in a file called Graphics, contains a command called PlotVectorField which can 
be used to plot the slope field of a differential equation.

In[10]:= �� Graphics`PlotField`

Example: Obtain a slope field for the differential equation y ' �
�������

xy  and a graph of the solution curve passing through �0, 1�.

First, the solution is found by first noting that the differential  equation is equivalent to 1
���������������

y
�dy �

����
x �dx.  So you can begin by 

assigning an arbitrary name (such as eq) to the equation after the antiderivative of each side has been  computed.

In[11]:= eq � � 1 
�����
y �	y �� � �����

x �	x � c

Out[11]= 2 �����y �� c �
2 x3	2
���������������

3
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Now the value of c is obtained using the Solve and /. commands.

In[12]:= cval � Solve�eq �. �x 
 0, y 
 1�, c�
Out[12]= ��c � 2��

In[13]:= cval��1, 1, 2��
Out[13]= 2

The Solve command is used again to find the solution for y in terms of x.

In[14]:= sol � Solve�eq �. �c 
 cval��1, 1, 2���, y�
Out[14]= 

y �

1
����

9
�9 � 6 x3	2 � x3�



Now you can create a function y � f �x� representing the solution just found.

In[15]:= Clear�f�;
f�x_� � sol��1, 1, 2��

Out[15]=
1
����

9
�9 � 6 x3	2 � x3�

The Mathematica command PlotVectorField[{1,f[x,y]},{x,xmin,xmax},{ymin,ymax}] will plot the slope 
field of the differentiable equation y ' � f �x, y�.  The option AspectRatio->1 makes the graph height to width ratio equal to 
one.  The option 

PlotStyle �� �Thickness�.015�, RGBColor�0, 0, 1�� 

is used to increase the thickness of the solution curve and to display  the curve in color blue.

In[16]:= dirfield � PlotVectorField�	1, ��������
x y �, �x, 0, 1�,

�y, 1, 2�, AspectRatio �� 1, DisplayFunction �� Identity
;
In[17]:= solgraph � Plot�f�x�, �x, 0, 1�, AspectRatio �� 1, PlotStyle ��

�Thickness�.015�, RGBColor�0, 0, 1��, DisplayFunction �� Identity�;
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In[18]:= Show��solgraph, dirfield�, DisplayFunction �� $DisplayFunction�;
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�

Section 6.6 Euler's Method; Population Models (Section 6.4 in Early 
Transcendentals Version)

Using Mathematica to Perform Euler's Method

Using Mathematica, you can define the functions x[i] to represent xi,  y[i] to represent yi and f[x,y] to equal f �x, y�.  
Then, after defining x[0] and y[0] to equal the given values of x0 and y0 and setting dx to equal the step size, let 

x[i_]:=x[i-1] + dx and y[i_]:=y[i-1] + f[x[i-1],y[i-1]] dx

Notice also that delayed equals (:�) are used for these two assignment statements since we do not want to  evaluate the right 
hand side of the equations until a specific value of i is used.

When Mathematica is then asked to compute y[3] for example, it will first compute y[0], y[1] and y[2] using the 
assignment statements above.  If you then have Mathematica compute y[4], it will first recompute all the previous values 
y[0] through y[3] again.  To let Mathematica remember the previous values of x and y, use the following  assignment 
statements instead: 

x[i_]:=x[i]=x[i-1]+dx and 

y[i_]:=y[i]=y[i-1]+f[x[i-1],y[i-1]] dx

Consider the following example.
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Example: Use Euler's method to estimate the value of the solution to the initial  value problem y ' � 1 � x ey, y�0� � 1 at the 
point x� � 2 using the step size dx � 0.1. Compare the accuracy of your solution with the exact solution.

Here are the necessary assignment statements for Euler's method.

In[19]:= Clear�f, x, y�;
f�x_, y_� � 1 � x2 y;

x�0� � 1.; y�0� � 2.; dx � 0.1;

x�i_� :� x�i� � x�i � 1� � dx
y�i_� :� y�i� � y�i � 1� � f�x�i � 1�, y�i � 1�� dx

The command Table[{x[i],y[i]},{i,0,n}]  will  form ��x0, y0�, �x1, y1�, ..., �xn, yn��.

In[21]:= eulervals � Table��x�i�, y�i��, �i, 0, 10��
Out[21]= ��1., 2.�, �1.1, 2.3�, �1.2, 2.6783�, �1.3, 3.16398�,

�1.4, 3.79869�, �1.5, 4.64323�, �1.6, 5.78796�,
�1.7, 7.36967�, �1.8, 9.59951�, �1.9, 12.8097�, �2., 17.5341��

A nice command for better visualization of the list of order pairs is the  TableForm command and the additional option 
TableHeadings, appearing in the following input cell, will place appropriate headings  on each column.

In[22]:= TableForm�eulervals, TableHeadings �� �None, �"xi", "yi"���
Out[22]//TableForm=

xi yi
1. 2.
1.1 2.3
1.2 2.6783
1.3 3.16398
1.4 3.79869
1.5 4.64323
1.6 5.78796
1.7 7.36967
1.8 9.59951
1.9 12.8097
2. 17.5341

From the table, it appears that y � 17.5341 when x � 2.

If you want, you can now take the ordered pairs in the table and plot  them to get an approximation of the solution curve.
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In[23]:= eulerplot � ListPlot�eulervals, PlotJoined �� True�;
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The exact solution to y ' � f �x, y� where y�x0� � y0 can be found using the command 

DSolve��y'�x� �� f�x, y�, y�x0� �� y0�, y�x�, x�.

In[24]:= Clear�x, y�;
sol � DSolve��y'�x� �� 1 � x2 y�x�, y�1� �� 2�, y�x�, x�

Out[24]= 

y�x� �

E
x3
������3 �3 �x3�1	3 � 2

��������E1s3 �
Gamma� 1

����3 ,
1
����3 �

�������������������������32s3 � � 31	3 x Gamma� 1
����3 ,

x3
�����3 ��

��������������������������������������������������������������������������������������������������������������������������������������������

3 �x3�1	3




Now the exact value of y when x � 2 is found.

In[25]:= exactyval � sol��1, 1, 2�� �. x �� 2.

Out[25]= 25.6527

To see why our approximation is so far off,  a plot of the approximate  solution and the exact solution are displayed in the 
following output cell.   To obtain a better approximation, a smaller value of dx should be used.  
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In[26]:= exactplot � Plot�sol��1, 1, 2��, �x, 1, 2�, DisplayFunction �� Identity�;
Show�eulerplot, exactplot�;
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Improved Euler's Method

If you replace the previous code for Euler's method with the following 

improved Euler's method, much better results will usually be obtained.  Study 

the following input cell.

In[27]:= Clear�f, x, y�;
f�x_, y_� � 1 � x2 y;

x�0� � 1.; y�0� � 2.; dx � 0.1;

x�i_� :� x�i� � x�i � 1� � dx;
z�i_� :� z�i� � y�i � 1� � f�x�i � 1�, y�i � 1�� dx;
y�i_� :� y�i� � y�i � 1� � f�x�i � 1�, y�i � 1�� � f�x�i�, z�i��

���������������������������������������������������������������������������������������������
2

dx;

In[28]:= improvedEulervals � Table��x�i�, y�i��, �i, 0, 10��
Out[28]= ��1., 2.�, �1.1, 2.33915�, �1.2, 2.77667�,

�1.3, 3.35345�, �1.4, 4.1308�, �1.5, 5.20266�, �1.6, 6.71654�,
�1.7, 8.9097�, �1.8, 12.1739�, �1.9, 17.1734�, �2., 25.0678��

From the table, it appears that y�25.0678 when x=2. Much better!   The plot of the graphs show how good the approximate 
solution is compared to  the exact solution.

In[29]:= improvedeplot �

ListPlot�improvedEulervals, PlotJoined �� True, DisplayFunction �� Identity�;
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In[30]:= Show��improvedeplot, exactplot�, DisplayFunction �� $DisplayFunction�;
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89            CAS Exercise Examples for Chapter 6



CAS Exercise Examples for Chapter 7: Integration Techniques, L'Ho
�

pital's 
Rule and Improper Integrals

�

Section 7.5 Integral Tables, Computer Algebra Systems, and Monte Carlo 
Integration

Integration with a Computer Algebra System

The command Integrate[f[x],x] or � f�x���x can be used to find indefinite integrals.  See the following examples.

In[1]:= � x �
x
��x

� x �
2�x

��x

� x �
3�x

��x

� x �
4�x

��x

Out[1]= Ex ��1 � x�

Out[2]= E2 x �� 1
����
4

�
x
����
2
�

Out[3]= E3 x �� 1
����
9

�
x
����
3
�

Out[4]= E4 x �� 1
�������
16

�
x
����
4
�

Here is the general result found with Mathematica.

In[5]:= � x �
n x

��x

Out[5]= En x �� 1
�������
n2

�
x
����
n
�

� Section 7.7 Improper Integrals

Here are a couple examples of improper integrals computed directly with Mathematica.



In[6]:= �
1

�

x �
�x
��x

Out[6]=
2
����
E

In[7]:= �
0

2 1
����������������������������������
4 � x2

��x

Out[7]=
�
����
2
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CAS Exercise Examples for Chapter 8: Infinite Series

� Section 8.1 Limits of Sequences of Numbers

Mathematica is a great tool for exploring sequences as the following example  illustrates.

Example: Suppose an � 2 arctan�n3�.  

(a) Calculate and then plot the first 35 terms of the sequence.   Determine the limit L of the sequence.

(b) Find an integer N such that � an � L � � 0.0001.

Part (a)  The sequence is defined and then the Table command is used to display the first 35 terms in the sequence.

In[1]:= a�n_� � 2 ArcTan�n3�;
seq � Table�N�a�n�, 10�, �n, 1, 35��

Out[1]= �1.570796327, 2.892882664, 3.067552422, 3.110345196, 3.125592995, 3.13233346,

3.135761766, 3.137686409, 3.138849171, 3.139592654, 3.140090024, 3.140435246,

3.140682321, 3.140863791, 3.141000061, 3.141104372, 3.14118557, 3.141249718,

3.141301066, 3.141342654, 3.141376694, 3.141404825, 3.141428275, 3.141447978,

3.141464654, 3.141478862, 3.141491043, 3.141501546, 3.141510649, 3.14151858,

3.141525519, 3.141531618, 3.141537001, 3.141541768, 3.141546006�

It appears that the sequence converges to L � �.

Next, the ListPlot command is used to plot the sequence.  The option PlotRange�All is added to make sure all the 
points appear in the plot of the sequence.   The option AxesLabel �� �n, an� is added to give appropriate labels to the 
horizontal and vertical axes.  



In[2]:= seqplot � ListPlot�seq, PlotStyle �� PointSize�.02�, AxesLabel �� �"n", "an"��;

5 10 15 20 25 30 35
n

3.128

3.132

3.134

3.136

3.138

3.14

an

Part (b) To determine n such that � an � � � � 0.0001, the horizontal lines y � � � 0.0001 are plotted first.

In[3]:= band � Plot��� � .0001, � � .0001�, �n, 0, 35�, DisplayFunction �� Identity�;
Show��band, seqplot�, DisplayFunction �� $DisplayFunction�;

5 10 15 20 25 30 35

3.14025

3.1405

3.14075

3.141

3.14125

3.1415

The sequences begins to lie inside the lines y � � � .0001 somewhere between 25 and 30.  Next, the graph is magnified to get a  
better view.
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In[4]:= Show��band, seqplot�, PlotRange �� ��20, 35�, �� � .0002, � � .0002��,
DisplayFunction �� $DisplayFunction�;

22 24 26 28 30 32 34

3.14145

3.1415

3.14155

3.1416

3.14165

3.1417

3.14175

It is now clear that � an � � � � 0.0001 for n � 28.  To verify this, the value � an � � � is computed for n � 27 and n � 28.

In[5]:= Abs�a�27� � �� �� N

Abs�a�28� � �� �� N

Out[5]= 0.000101611

Out[6]= 0.0000911079

Therefore it appears that N � 28.  

�

Section 8.2 Subsequences, Bounded Sequences, and Picard's Method

Example: Let a1 � 1 and an�1 �
1

������������1�an
.  

(a) Use Mathematica to calculate and plot the first 25 terms of the sequence.  Does the  sequence appear to converge and if so, 
to what value L?  

(b) If the sequences does converge, find an integer N  such that � an � L � � 0.00001 for n � N .

Part (a) The following input cell defines an recursively and then uses the Table command to display the first 25 terms of the 
sequence.
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In[7]:= Clear�a�;
a�1� � 1;

a�n_� :� a�n� �
1

������������������������������

1 � a�n � 1� ;

seq � Table�N�a�n�, 10�, �n, 1, 25��
Out[7]= �1., 0.5, 0.6666666667, 0.6, 0.625, 0.6153846154, 0.619047619,

0.6176470588, 0.6181818182, 0.6179775281, 0.6180555556,

0.6180257511, 0.6180371353, 0.6180327869, 0.6180344478,

0.6180338134, 0.6180340557, 0.6180339632, 0.6180339985, 0.618033985,

0.6180339902, 0.6180339882, 0.618033989, 0.6180339887, 0.6180339888�

Now the Plot command is used to obtain a graph of the sequence.

In[8]:= seqplot � ListPlot�seq, PlotStyle �� PointSize�.02�, AxesLabel �� �"n", "an"��;

5 10 15 20 25
n

0.6178

0.6182

0.6184

an

Part (b) From part (a), it appears that L 	 0.618033989.  The value of N  needed so that � an � L � � 0.00001 for n � N  is 
determined by plotting the horizontal lines y � L� 0.00001 with the sequence.
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In[9]:= L � 0.618033989;

band � Plot��L � .00001, L � .00001�, �x, 0, 25�, DisplayFunction �� Identity�;
Show��seqplot, band�, DisplayFunction �� $DisplayFunction,

PlotRange �� ��10, 15�, �L � .00002, L � .00002���;

11 12 13 14 15
n

0.61803

0.61804

0.61805

an

It appears that N � 12.  To verify this, the value � an � L � is computed for n � 12.

In[10]:= Abs�a�12� � L�
Out[10]= 8.23793�10�6

Section 8.4 Series of Nonnegative Terms

� Computing Infinite Series with Mathematica 

There are several ways of attempting to find the sum of an infinite series  with Mathematica.  

The first method is to define the nth partial sum of the series.  For  example, to find the value of �n�1

 1

����������������n�n�1� , the following nth 

partial sum can be defined.

In[11]:= s�n_� :� �
i�1

n 1
����������������������

i �i � 1�

Now the value of limn�
 sn is computed.

In[12]:= Limit�s�n�, n � ��
Out[12]= 1

However, if this same method is applied to �n�1

 1

������n2 , the limit is not found.
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In[13]:= Clear�s�;

s�n_� :� �
i�1

n 1
�������

i2
;

Limit�s�n�, n � ��

Out[13]= Limit� �
2

�������

6
� PolyGamma�1, 1 � n�, n � ��

Another way of evaluating an infinite series to enter  �n�1

 an.  Here are a couple of examples.

In[14]:= �
n�1

� 1
�������

n2

Out[14]=
�
2

�������

6

In[15]:= �
n�1

� 1
����������������������

n2 � n � 1

Out[15]=
4 Sec� �����5 �

����������2 � 	�����5 Cos� �����5 �
����������2 � � � Sin� �����5 �

����������2 �

�����������������������������������������������������������������������������������������������������������������5 	�1 �

�����5 
 	1 �
�����5 


Use the N command to see the numerical approximation of the last output.  The value  of the last output is represented by %.

In[16]:= N�%�
Out[16]= 1.54625

Sometimes Mathematica will produce the output of an infinite series in terms of a nonelementary  function as seen in the 
following cells.

In[17]:= �
n�1

� 1
��������������

n3 � 1

Out[17]=
1 � EulerGamma

�����������������������������������������������������������������������

��1 � ��1�1
3� �1 � ��1�1
3�2
�

1
����

3
�PolyGamma�0, 1 � ��1�1
3� � ��1�2
3 PolyGamma�0, 1 � ��1�1
3� �

��1�2
3 PolyGamma�0, 1 � ��1�2
3��

In this case, either execute the command N[%] or use NSum command as shown next.

In[18]:= NSum	 1
��������������

n3 � 1
, �n, 1, ��


Out[18]= 0.686503
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� Section 8.7 Taylor and Maclaurin Series

Finding Taylor Polynomials with Mathematica 

The Mathematica command Series�f�x�, �x, a, n�� is used to produce the Taylor series generated by f  at x � a.  
Terms up to a power of �x� a�n will be displayed.  Here is an example.

In[19]:= Series	 x
������������

1 � x
, �x, 2, 3�


Out[19]= �2 � �x � 2� � �x � 2�2 � �x � 2�3 � O�x � 2�4

The notation O�x � 1�4 represents terms of �x� 1� to powers of 4 and higher, which are not explicitly displayed.  

The Mathematica command Normal[Series[f[x],{x,a, n}]] will produce the Taylor polynomial of order n, Pn�x�, 
generated by f  at x � a.  

In[20]:= Normal	Series	 x
������������

1 � x
, �x, 2, 3�



Out[20]= �4 � ��2 � x�2 � ��2 � x�3 � x

� Cubic Approximations

Example: Let f �x� � x
�������������������������������

1�x2
. Complete each of the following.

(a) Find the Taylor polynomial P3�x� at x � 0 and plot P3�x� together with f �x� over the interval ��1, 1�.

(b) Calculate the fourth derivative f �4��c� associated with the remainder term for P3�x�.  Plot the derivative as a function of c 
over the interval ��1, 1� and estimate the maximum absolute value M .

(c) Calculate the remainder R3�x� over the interval ��1, 1�, using the value of M  found in part (b) in place of f �4��c�.  Plot R3�x� 
over the interval ��1, 1�.  Use the plot to determine the values of x for which the function f �x� can be replaced by P3�x� with an 
error of less than 0.01.

(d) Compare the estimated error R3�x� with the actual error E3�x� � � f �x�� P3�x� � over the interval found in part (c).

Part (a) As previously described, the Normal and Series commands can combined to obtain the Taylor polynomial.

In[21]:= f�x_� �
x

����������������������������������
1 � x2

;

p3�x_� � Normal�Series�f�x�, �x, 0, 3���

Out[21]= x �
x3
�������

2

The function and the Taylor polynomial can now be plotted.
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In[22]:= Plot��f�x�, p3�x��, �x, �1, 1��;

-1 -0.5 0.5 1

-0.6

-0.4

-0.2

0.2

0.4

0.6

Part (b) The Mathematica command D[f[x],{x,n}] will compute f �n��x�.  After computing the fourth derivative,, a graph 
is obtained using the Plot command.

In[23]:= g�x_� � D�f�x�, �x, 4�� �� Simplify

Plot�g�c�, �c, �1, 1�, AxesLabel �� �c, "f�6��c�"�, PlotRange �� All�;

Out[23]= �
15 x ��3 � 4 x2�
��������������������������������������

�1 � x2�9
2

-1 -0.5 0.5 1
c

-7.5

-5

-2.5

2.5

5

7.5

f�6��c�

The maximum value of � f �4��c� � is obtained near x � �0.3.  Zooming in on the graph reveals that M � 9 is a reasonable esti-
mate of M .
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In[25]:= Plot�g�c�, �c, .2, .4�, AxesLabel �� �c, "f�4��c�"�, PlotRange �� All�;

0.25 0.3 0.35 0.4
c

7.2

7.4

7.6

7.8

f�4��c�

Part (c): An approximation of R3�x� can now be formed and plotted.

In[26]:= M � 9;

R3�x_� �
M x4
�����������

4	
;

Plot�R3�x�, �x, �1, 1�, PlotRange �� All�;

-1 -0.5 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The goal now is to zoom in on the graph by trial and error to the point  where  � R3�x� � � 0.01 for all values of x in the graph.
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In[27]:= Plot��0.01, R3�x��, �x, �.5, .5�, PlotRange �� All�;

-0.4 -0.2 0.2 0.4

0.005

0.01

0.015

0.02

In[28]:= Plot��0.01, R3�x��, �x, �.4, .4�, PlotRange �� All�;

-0.4 -0.2 0.2 0.4
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0.004

0.006

0.008

0.01

From the last graph just obtained, it is clear that � R3�x� � � 0.01on ��0.4, 0.4� implying that � f �x�� P3�x� � � 0.01 on this 
interval.  

Part (d) As the following output shows, the actual error � f �x�� P3�x� � is much smaller than 0.01 on [-0.4,0.4].
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In[29]:= Plot�Abs�f�x� � p3�x��, �x, �.4, .4�, PlotRange �� All�;
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CAS Exercise Examples for Chapter 9: Vectors in the Plane and Polar 
Functions 

� Section 9.5 Polar Coordinates and Graphs

Polar Graphing

The Mathematica command PolarPlot[r[�],{�,�min,�max}] will plot the graph of a polar function.  But before 
using this command,  it must be loaded into memory first using the �� Graphics`Graphics` command.  Study the follow-
ing example.

In[1]:= �� Graphics`Graphics`

In[2]:= PolarPlot�Sin�3 �� � Cos�2���, ��, 0, 2 ���;
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The following is an example of plotting two functions simultaneously in  different colors in a way completely analogous to the 
Plot command.  The option PlotStyle�{RGBColor[1,0,0],RGBColor[0,0,1]} will plot the graph of cos�2��� in 
red and the graph of sin�2��� in blue.

In[3]:= PolarPlot��Cos�2 ��, Sin�2 ���, ��, 0, 2���,
PlotStyle � �RGBColor�1, 0, 0�, RGBColor�0, 0, 1���;
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-1

-0.5

0.5

1

Finding Simultaneous Intersections

In the last part of Section 9.5 in the textbook, the simultaneous  intersections of r � cos2� and r � sin2� are discussed.  To 
visualize these intersections with Mathematica, the Table command can be used to plot frames of a movie showing the  graphs 
being formed.  Study the following input and output (only the first  frame of the movie is shown in the hard copy of this man-
ual).  Double click  on any frame to animate the frames.  How many times do the graphs intersect  simultaneously?

In[4]:= Table�PolarPlot��Cos�2 ��, Sin�2 ���,
��, 0, �0�, PlotStyle � �RGBColor�1, 0, 0�, RGBColor�0, 0, 1��,

PlotRange �� ���1, 1�, ��1, 1���, ��0,
�
							
24

, 2 �,
�
							
24

��;
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CAS Exercise Examples for Chapter 10: Vectors and Motion in Space

� Section 10.4 Cylinders & Quadric Surfaces

As indicated at the end of Section 10.4 in the textbook, quadric surfaces  can be plotted using a CAS such as Mathematica after 
first describing the equation in parametric form.  In the following  examples, quadric surface equations of the form 
x2
������a2 �

y2

�������b2 � f �z� are given where f  is a function of z.  By letting x � a�
����������

f �z� �cos��� and y � b�
����������

f �z� �sin���, then 
�a������������

f �z� �cos����2
���������������������������������������a2 �

�b������������
f �z� �sin����2

��������������������������������������b2 �
a2
� f �z��cos2���

��������������������������������a2 �
b2
� f �z��sin2���

�������������������������������b2 � f �z���cos2
�� � sin2

��� � f �z� 
and therefore the equation x2

������a2 �
y2

�������b2 � f �z� is satisfied.  To display the graph of the quadric surface, use the Mathematica 
command 

ParametricPlot3D��a��������������f�z� �Cos���, b��������������f�z� �Sin���, z�, ��, 0, 2���, �z, zmin, zmax�� .

Example: Use Mathematica to plot the following surfaces.

(a) x2
������4 �

y2

�������16 �
z2
������9

(b) y2

�������25 �
z2
�������16 �

x2
������9 � 1

Part (a)  In this case, a2
� 4, b2

� 16 and f �z� � z2
������9 .  Therefore, let x �2 �������z2

������9 �cos���= 2 z
�������3 �cos��� and let 

y � 4�������z2
������9 sin��� � 4�z

�������3 �sin���.  



In[1]:= ParametricPlot3D�� 2 z
��������
3

�Cos���, 4 z
��������
3

Sin���, z�, ��, 0, 2 ��, �z, �5, 5��;
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Part (b) Rearrange the equation y2

�������25 �
z2
�������16 �

x2
������9 � 1 to get x2

������9 �
z2
�������16 �

y2

�������25 � 1.  This is a hyperboloid of two sheets (why?).  In 

this case, the equation  is satisfied if x � 3�cos�������������������y2
�������25 � 1 , z � 4�sin�������������������y2

�������25 � 1 .  Notice that x and z are defined only when 
y � �5 or y � 5 which corresponds to the two parts of the graph.  Study the following  input commands. The option Box-
Ratios�{1,1.5,1} scales the plot so that the length in the y direction is 1.5 times as  long as the lengths in the other two 
directions.
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In[2]:= backpart � ParametricPlot3D��3 Cos����	















y2
�������
25

� 1 , y, 4 Sin����	















y2
�������
25

� 1 �,
��, 0, 2 ��, �y, 5, 15�, DisplayFunction �� Identity�;

frontpart � ParametricPlot3D��3 Cos����	















y2
�������
25

� 1 , y, 4 Sin����	















y2
�������
25

� 1 �,
��, 0, 2 ��, �y, �15, �5�, DisplayFunction �� Identity�;

Show��frontpart, backpart�, DisplayFunction �� $DisplayFunction, BoxRatios ���1, 1.5, 1�, ViewPoint �� �1.442, �1.680, 2.559�, AxesLabel �� �x, y, z��;
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� Section 10.5 Vector-Valued Functions and Space Curves

Here is an example similar to CAS exercises found in Section 10.5.

Example: Let r�t� � 	�4 � sin�10 t�� cos�t�
i�	�4 � sin�10 t�� cos�t�
�j� �2�cos�10 t��k and complete each of the following.

(a) Plot the space curve traced out  by the position vector for 0 � t � 2�	.

(b) Find the components of the velocity vector dr �dt.

(c) Evaluate the velocity vector at t � 	
����6 and determine the equation of the tangent line to the curve at r� 	����6 �.

(d) Plot the tangent line together with the curve.

Part (a) First, the x, y and z components of the curve are defined parametrically and then the curve is  plotted.
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In[3]:= x�t_� � �4 � Sin�10 t�� Cos�t�;
y�t_� � �4 � Sin�10 t�� Sin�t�;
z�t_� � 2�Cos�10 t�;
spacecurve � ParametricPlot3D��x�t�, y�t�, z�t��,�t, 0, 2���, PlotPoints �� 250, AxesLabel �� �x, y, z��;
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Part (b): Now the derivative of each component is computed to obtain the velocity  vector.

In[4]:= v�t_� � �x'�t�, y'�t�, z'�t��
Out[4]= �10 Cos�t� Cos�10 t� � Sin�t� 	4 � Sin�10 t�
,

10 Cos�10 t� Sin�t� � Cos�t� 	4 � Sin�10 t�
, �20 Sin�10 t��

Part (c)  Next, the velocity vector is evaluated and the parametric equations of  the tangent line are computed.

In[5]:= v� �
����
6
� 

 N

Out[5]= �2.76314, 5.2141, 17.3205�

In[6]:= xl�t_� :� x� �
����
6
� � x'� �

����
6
� t;

yl�t_� :� y� �
����
6
� � y'� �

����
6
� t;

zl�t_� :� z� �
����
6
� � z'� �

����
6
� t;

Part (d)  The space curve and the tangent line are displayed in the following  output cell.  Instead of plotting the curve for 
values of t from 0 to 2�	, a smaller interval of values is used so that the tangent line is easier  to see.
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In[7]:= tanline � ParametricPlot3D��xl�t�, yl�t�, zl�t��,
�t, ��

��������
4

,
�
����
4
�, DisplayFunction �� Identity�;

spacecurve � ParametricPlot3D��x�t�, y�t�, z�t��, �t, 0,
�
����
4
�,

PlotPoints �� 250, AxesLabel �� �x, y, z�, DisplayFunction �� Identity�;
Show��spacecurve, tanline�, PlotRange �� ��2, 6�, ��3, 3�, ��2, 5��,
DisplayFunction �� $DisplayFunction�;
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�

Section 10.7 The TNB Frame; Tangential and Normal Components of 
Acceleration

Example: Let r�t� � �cos t�i� �2� 1
����2 �sin t�j, 0 � t � 2�	 and let t0 �

	
����4 .  Complete each of the following steps.

(a) Plot the plane curve over  the specified interval.

(b) Calculate the curvature 
 of the curve at the given point t0.

(c) Find the unit normal vector N at t0.

(d) If C � ai�bj is the vector from the origin to the center �a, b� of the osculating circle, find the center C from the vector 
equation 

C=r�t0�� 1
�����������

�t0� N�t0�.  The point P�x0, y0� on the curve is given by the position vector r�t0�.

(e) Plot the curve and the osculating circle together.

Part (a) The curve is plotted parametrically with Mathematica.

In[8]:= x�t_� � Cos�t�; y�t_� � 2 �
1
����
2
�Sin�t�;

curve �

ParametricPlot��x�t�, y�t��, �t, 0, 2���, AspectRatio �� 1, PlotRange �� �1, 3��;
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Part (b) Using the formula found in Exercise 24 in your text, the value of  
 is computed.
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In[9]:= 	�t_� �
Abs�x'�t� y''�t� � y'�t� x''�t��
������������������������������������������������������������������������������������������x'�t�2 � y'�t�2� 3

����2

;

	� �
����
4
� 

 N

Out[9]= 1.01193

Part (c) Since N is a reserved Mathematica word, you can instead use n to represent the unit normal vector. See Exercise 25 to 
see why the  following formula was used to compute the normal vector.  Is this the formula  you should always use to find the 
unit normal vector?  Why or why not?

In[10]:= n�t_� � �y'�t�, �x'�t�� � ��������������������������������������
x'�t�2 � y'�t�2 ;

n� �
����
4
�

Out[10]= �� 1
��������������5

,
2

��������������5
�

Part (d) The center of the osculating circle is found using the following input  cell.

In[11]:= r�t_� � �x�t�, y�t��;
c � r� �

����
4
� � 1

���������������

	� �
����
4
� n� �

����
4
� 

 N

Out[11]= �0.265165, 2.53033�

Part (e) The Mathematica command 

ContourPlot[f[x,y],{x, xmin, xmax},{y, ymin,  ymax},ContourShading->False, Contours-
>{c}]

will plot the graph of f �x, y� � c.  Therefore the following command is used to graph the osculating  circle.
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In[12]:= osccir � ContourPlot��x � c��1���2 � �y � c��2���2, �x, �1, 2�,
�y, 1, 4�, ContourShading �� False, Contours �� � 1

�����������������

	� �
����
4
�2 ��;
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Now the curve and circle are shown together.
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In[13]:= Show��curve, osccir�, PlotRange �� ���1, 1.6�, �1, 3.6��, AspectRatio �� 1�;
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CAS Exercise Examples for Chapter 10           114



CAS Exercise Examples for Chapter 11: Multivariable Functions and Their 
Derivatives

� Section 11.1 Functions of Several Variables

Explicit Surfaces

In this section, you are asked to plot surfaces and level curves.  The  first example below uses the command 

Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax}] 

to plot the surface of f �x, y� over the rectangle xmin � x � xmax, ymin � y � ymax.  The Mathematica command 

ContourPlot[f[x,y],{x,xmin,xmax},{y,ymin,ymax},ContourShading �False]

will plot level curves of f �x, y� in the rectangle xmin � x � xmax, ymin � y � ymax.  Deleting the option ContourShading�-
False will result in the level curves being shaded, with lighter  shading corresponding to higher parts of the surface of 
f �x, y�.  Adding the option Contours � �c1, c2, ...�cn� will instruct Mathematica to plot the level curves corresponding 
to f �x, y� � ci for i � 1, 2, ..., n.

Example: Consider the function f �x, y� � e�x2
�y2

 over the rectangle �2 � x � 2, �2 � y � 2.

(a) Plot the surface over the given rectangle.

(b) Plot several level  curves in the rectangle.

(c) Plot the level curve of f  though the point �1, 1�.
Part (a) The graph of the surface is obtained using the Plot3D command.  The option PlotPoints->20 increases the 
resolution of the displayed graph (the default value is PlotPoints->15).



In[1]:= f�x_, y_� � �
�x2�y2;

surface � Plot3D�f�x, y�, �x, �2, 2�, �y, �2, 2�, PlotPoints �� 20�;
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Part (b) Before plotting some level curves of the surface, you might find it  helpful to see the three-dimensional images repre-
sented by level curves.  For  example, the following Plot3D commands are used to display the level curves corresponding to 
the  horizontal planes z � .25, z � .5 and z � .75.  The ViewPoint option (found under the Input menu), contained in the 
Show command, allows you to control the angle at which you view the image.

In[2]:= plane1 � Plot3D�.25, �x, �2, 2�,
�y, �2, 2�, PlotPoints �� 2, DisplayFunction �� Identity�;

plane2 � Plot3D�.5, �x, �2, 2�, �y, �2, 2�, PlotPoints �� 2,

DisplayFunction �� Identity�;
plane3 � Plot3D�.75, �x, �2, 2�, �y, �2, 2�, PlotPoints �� 2,

DisplayFunction �� Identity�;
Show��surface, plane1, plane2, plane3�, DisplayFunction �� $DisplayFunction,

ViewPoint �� �0.072, �3.303, 0.730��;
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Now to show the actual level curves, the following ContourPlot command is executed.  
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In[3]:= ContourPlot�f�x, y�, �x, �2, 2�, �y, �2, 2�,
PlotPoints �� 50, ContourShading � False, Contours � �.25, .5, .75��;
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2

Deleting the Contours option allows Mathematica to choose the level curves to be plotted.

In[4]:= ContourPlot�f�x, y�, �x, �2, 2�,
�y, �2, 2�, PlotPoints �� 50, ContourShading � False�;
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Part (c) The following graph plots the level curve passing through �1, 1�. Why?
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In[5]:= ContourPlot�f�x, y�, �x, �2, 2�, �y, �2, 2�,
PlotPoints �� 50, ContourShading � False, Contours � �f�1, 1���;
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Implicit Surfaces

The package ContourPlot3D contains the command 

ContourPlot3D[f[x,y,z],{x, xmin, xmax},{y, ymin,  ymax},{z,zmin,zmax},Contours->{c)]

which will plot the level surface f �x, y, z� � c.

Example: Plot the level surface x2
� y� 3�z2

� 1.

First, the package containing ContourPlot3D must be loaded.

In[6]:= �� Graphics`ContourPlot3D`

Now the surface is plotted where the options Axes->True and AxesLabel->{x,y,z} are added so that the x, y and z 
axes are labeled.
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In[7]:= ContourPlot3D�x2 � y � 3�z2, �x, �4, 4�, �y, �4, 4�,
�z, �4, 4�, Contours �� �1�, Axes �� True, AxesLabel �� �x, y, z��;
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Parametrized Surfaces

The Mathematica command 

ParametricPlot3D��f�u, v�, g�u, v�, h�u, v��, �u, umin, umax�, �v, umin, umax��

can be used to plot a surface described by the parametric equations

x � f �u, v�, y � g�u, v� and z � h�u, v�.  Consider the following example.
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In[8]:= ParametricPlot3D�
�u Cos�v�, u Sin�v�, u2 �Cos�v�2 � Sin�v�2��, �u, 0, 1�, �v, 0, 2 	��;
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� Section 11.2 Limits and Continuity in Higher Dimensions

Using the Plot3D command, some interesting surfaces can be plotted such as  the graph of f �x, y� � sin�������������x y�5 �
�������������������������������������x y�5 .

In[9]:= Plot3D�
Sin��																				

Abs�x y�5 











































�																				

Abs�x y�5
, �x, �1, 1�, �y, �1, 1�
;
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The ViewPoint option (under the Input menu) can be used to view a surface from a  different angle.

In[10]:= Plot3D�
Sin��																				

Abs�x y�5 











































�																				

Abs�x y�5
, �x, �1, 1�, �y, �1, 1�,

PlotPoints �� 60, ViewPoint �� ��2.377, 2.363, 0.464�
;
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� Section 11.7 Extreme Values and Saddle Points

Computing Partial Derivatives

The command �x f�x, y� or D[f[x,y],x] can be used to compute fx�x, y� and the command �x,y f�x, y� or 
D[f[x,y],x] can be used to find fxy�x, y�.

In[11]:= �x Sin�x2 y�
Out[11]= 2 x y Cos�x2 y�

In[12]:= �x,y Sin�x2 y�
Out[12]= 2 x Cos�x2 y� � 2 x3 y Sin�x2 y�

In[13]:= D�Sin�x2 y�, x, y�
Out[13]= 2 x Cos�x2 y� � 2 x3 y Sin�x2 y�

Example: Consider the function f �x, y� � x3
� y2

�3xy on �5 � x � 5, �5 � y � 5.  Plot the function over the given rectangle 
and then find and classify  the critical points.

Here is a plot of the function.
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In[14]:= Clear�f�;
f�x_, y_� � x3 � y2 � 3�x y ;

Plot3D�f�x, y�, �x, �5, 5�, �y, �5, 5�, PlotPoints �� 25�;
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Now the first partial derivatives are found. (Ignore the warning messages.)

In[15]:= xparder � �x f�x, y� �� Simplify

yparder � �y f�x, y� �� Simplify

Out[15]= 3 �x2 � y�
General::spell1� : �Possible spelling error: new symbol

name "yparder" is similar to existing symbol "xparder".

Out[16]= �3 x � 2 y

The command Solve[{m[x,y]==0,n[x,y]==0},{x,y}] can be used to simultaneously solve 
m�x, y� � 0 and n�x, y� � 0.

In[17]:= sol � Solve��xparder �� 0, yparder �� 0�, �x, y��

Out[17]= ��y � 0, x � 0�, �y �
9
����
4
, x �

3
����
2
��

Now the second partial derivatives of the function are computed. (Ignore the 

warning messages.)
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In[18]:= xxparder � �x,x f�x, y� �� Simplify;

yyparder � �x,y f�x, y� �� Simplify;

xyparder � �x,y f�x, y� �� Simplify;

discrim � xxparder yyparder � xyparder2;

General::spell1� : �Possible spelling error: new symbol

name "xxparder" is similar to existing symbol "xparder".

General::spell1� : �Possible spelling error: new symbol

name "yyparder" is similar to existing symbol "yparder".

General::spell� : �

Possible spelling error: new symbol name "xyparder" is similar

to existing symbols �xparder, xxparder, yparder, yyparder�.

From the following work, you can conclude that both critical points are 

saddle points.

In[19]:= xxparder �. sol��1��
discrim �. sol��1��

Out[19]= 0

Out[20]= �9

In[21]:= xxparder �. sol��2��
discrim �. sol��2��

Out[21]= 9

Out[22]= �36

� Section 11.8 Lagrange Multipliers

Example: Minimize the function f �x, y� � xz� xy subject to the constraints x2
� z2

� 4 � 0 and x2
� y2

� 5 � 0. 

Step one: First the functions f , g1, g2 and h are defined as shown in the following input cell.

In[23]:= Clear�f, h�;
f � x z � x y;

g1 � x2 � z2 � 4;

g2 � x2 � y2 � 5;

h � f � �1 g1 � �2 g2;

Step two: The partial derivatives are then computed and placed in equations which  all have zero on the right side.
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In[24]:= eq1 � �x h �� 0;

eq2 � �y h �� 0;

eq3 � �z h �� 0;

eq4 � ��1 h �� 0;

eq5 � ��2 h �� 0;

Step Three: The Solve command is used to solve the system of equations formed in step two.

In[25]:= sol � Solve��eq1, eq2, eq3, eq4, eq5�, �x, y, z, �1, �2��

Out[25]= ���1 � �
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Step Four: The function f  is then evaluated at each solution to determine the extreme values  subject to the constraints asked 
for in the exercise.  What are the extreme  values based upon the following work?

In[26]:= f �. sol��1��
f �. sol��2��
f �. sol��3��
f �. sol��4��

Out[26]= �2 	



5

Out[27]= �2 	



5

Out[28]= 2 	



5

Out[29]= 2 	



5
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CAS Exercise Examples for Chapter 12: Multiple Integrals

� Section 12.1 Double Integrals

Example: Integrate �0

1
��y

1
�

sin x
�����������x �dx �dy using Mathematica.

The easiest way to compute double integrals is to open the BasicInput palette and then click on the button containing �
�

�

����.  
Enter 0, then the Tab key and then enter 1.  Press the Tab key again  and then click on �

�

�

���� in the BasicInput palette.  Enter 
y, then press the Tab key and then  enter 1. Press the Tab key, enter the function Sin�x�

��������������x , then press the tab key and enter x.  Enter 
y after pressing the Tab key.   You can then let Mathematica compute the integral.

In[18]:= �
0

1

�
y

1 Sin�x�
������������������

x
��x��y

Out[18]= 1 � Cos�1�

If you want to compute a double integral by entering all your keystrokes from 

the keyboard, enter the following.

In[19]:= Integrate�Integrate�Sin�x� � x, �x, y, 1��, �y, 0, 1��
Out[19]= 1 � Cos�1�

� Section 12.3 Double Integrals in Polar Form

Example: Given the double integral �0
1
��
�y�5
y�5

x
����������������
x2 � y2 �dx dy, complete each of the following.

(a) Plot the cartesian region of  integration in the xy-plane.

(b) Change each boundary curve of the Cartesian  region in part (a) to its polar representation by solving its Cartesian  equation 
for r and �.

(c) Using part (b), plot the polar region of integration in the r�-plane.

(d) Change the integrand from Cartesian to polar coordinates.   Determine the limits of integration from your plot in part (c) and 
evaluate  the polar integral using Mathematica.

Part (a)  Since x � � y �5 is equivalent to y � �5�x, the following Plot command can be used to plot the cartesian region of 
integration.



In[20]:= Plot��5�x, 1, �5�x�, �x, �1
�������
5

,
1
����
5
	, PlotRange �� �0, 1�
;

-0.2 -0.1 0.1 0.2

0.2

0.4

0.6

0.8

1

Part (b) Replacing y with r sin� and x with r cos�, the Solve command can then be used to find the values of r and �. (Ignore 
the warning messages.)

In[21]:= Solve�r Cos��� �� �r Sin��� � 5, ��
Solve�r Cos��� �� r Sin��� � 5, ��
Solve�r Sin��� �� 1, r�
Solve::ifun� : �Inverse functions are

being used by Solve, so some solutions may not be found.

Out[21]= ��� � ArcCos�� 1
�������������������26

	
, �� � �ArcCos� 1
�������������������26

	



Solve::ifun� : �Inverse functions are

being used by Solve, so some solutions may not be found.

Out[22]= ��� � �ArcCos�� 1
�������������������26

	
, �� � ArcCos� 1
�������������������26

	



Out[23]= ��r � Csc�����

Part (c): The command PolarPlot is contained in the Graphics package and the package ComplexMap contains the 
command PolarMap used to plot a portion of the polar coordinate system.

In[24]:= �� Graphics`Graphics`

�� Graphics`ComplexMap`

The following command will plot the polar coordinate system for r � 0 to 1.5.
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In[26]:= PolarMap�Identity, � 0, 1.5��;

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Since our region of integration is bounded by the lines � �ArcCos� 1
����������������26

	 and �=ArcCos� �1
����������������26

	, the next command is used 

to plot the portion of the polar coordinate  system of interest.
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In[27]:= polargr � PolarMap�Identity, � 0, 1.1, 1.1�,
� ArcCos� 1

��������������������
26


, ArcCos�� 1
��������������������
26


, ArcCos� �1
��������������������
26


 � ArcCos� 1
��������������������
26


 	,
AspectRatio �� 1.1, Ticks �� None, GridLines �� None
;

The upper bound on the region of integration is r � csc � and the corresponding graph of this function can be found using the 
PolarPlot command.
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In[28]:= upperbd � PolarPlot�Csc���, ��, ArcCos� 1
��������������������
26


, ArcCos�� 1
��������������������
26


	,
PlotRange 	 ���.25, .25�, �0, 1.1��, AspectRatio �� 1
;

-0.2 -0.1 0.1 0.2

0.2

0.4

0.6

0.8

1

The region of integration can now be displayed in the polar coordinate 

system.
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In[29]:= Show��upperbd, polargr�, PlotRange �� �0, 1��;

-0.2 -0.1 0.1 0.2

0.2

0.4

0.6

0.8

1

Part (d) The integral is now converted to polar form and evaluated.

In[30]:= �
ArcCos� 1

�����������r�������
26



ArcCos� �1

�����������r�������
26



�
0

1
��������������Sin#T'

r4 Cos���2��r���

Out[30]= �

169 
� 7
����������������26

� Cos�3 ArcCos�� 1
����������������26

		�
������������������������������������������������������������������������������������������

25000
�

169 
 7
����������������26

� Cos�3 ArcCos� 1
����������������26

		�
������������������������������������������������������������������������������������

25000
�

1
�������
40

Log�Cos� 1
����
2
ArcCos�� 1

�������������������26
			 �

1
�������
40

Log�Cos� 1
����
2
ArcCos� 1

�������������������26
			 �

1
�������
40

Log�Sin� 1
����
2
ArcCos�� 1

�������������������26
			 �

1
�������
40

Log�Sin� 1
����
2
ArcCos� 1

�������������������26
			

Now the numerical approximation of the integral is obtained.

In[31]:= N�%�
Out[31]= 0.00107938
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In order to check the answer, suppose you attempt to integrate in Cartesian 

coordinates.

In[32]:= �
0

1

�
�y
������5

y
����5

x2
����������������
x2 
 y2 ��x��y

Integrate::gener� : �Unable to check convergence

Out[32]=
54 �������26 � 625 Log��1 �

�������26 	 � 625 Log�1 �
�������26 	

���������������������������������������������������������������������������������������������������������������������
25000

Despite the warning message, the solution obtained with Mathematica agrees with the earlier answer when the N command is 
used.

In[33]:= N�%�
Out[33]= 0.00107938

� Section 12.4 Triple Integrals in Rectangular Coordinates

Evaluating triple integrals with Mathematica is completely analogous to computing double integrals.  For example, the  triple 
integral found in Example 3 in your textbook, is evaluated below.

In[34]:= �
0

1

�
x

1

�
0

y�x

1��z��y��x

Out[34]=
1
����
6
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CAS Exercise Examples for Chapter 13: Integration of Vector Fields

� Section 13.1 Line Integrals

Example: Let f �x, y, z� ������������������������
1� x2 � y2  and r�t� � ti� t2j� t3k, 0 � t � �

����2 .  Evaluate �C
f ds using Equation (2) in the text.

First, the function f  is defined along with the components of r�t�.

In[1]:= f�x_, y_, z_� �
�����������������������
1 � x2 � y2 ;

�g�t_�, h�t_�, k�t_�� � �t, t2, t3�;
Next, the integrand is formed and simplified.

In[3]:= integrand � f�g�t�, h�t�, k�t�� ����������������������������������������������������������
g'�t�2 � h'�t�2 � k'�t�2 		 Simplify

Out[3]=
������������������������
1 � t2 � t4

�������������������������������
1 � 4 t2 � 9 t4

If you try to evaluate the integral with Mathematica, an answer is not found.  Therefore the NIntegrate command is used 
instead to obtain a numerical answer.

In[4]:= 

0

S

����2

integrand��t

Out[4]= �
0

S

����2 ������������������������
1 � t2 � t4

�������������������������������
1 � 4 t2 � 9 t4 ��t

In[5]:= NIntegrate�integrand, �t, 0, 2��
Out[5]= 27.5197

� Section 13.2 Vector Fields, Work, Circulation, and Flux

Example: Find the work done by the force F � xz i�zj�yz k over the curve r�t� � t2i�tj�t3k, 0 � t � 1.

The package VectorAnalysis contains the command DotProduct which will compute the dot product of two lists of equal 
size.  Study the  following input and output used to solve the work problem.

In[6]:= �� Calculus`VectorAnalysis`



In[7]:= F�x_, y_, z_� � �x z, z, y z�;
�g�t_�, h�t_�, k�t_�� � �t2, t, t3�;
r�t_� � �g�t�, h�t�, k�t��;

In[10]:= F�g�t�, h�t�, k�t��
Out[10]= �t5, t3, t4�
In[11]:= r'�t�

Out[11]= �2 t, 1, 3 t2�
In[12]:= integrand � DotProduct�F�g�t�, h�t�, k�t��, r'�t��

Out[12]= t3 � 5 t6

In[13]:= 

0

1

integrand��t

Out[13]=
27
�������
28

� Section 13.4 Green's Theorem in the Plane

Example: Find the counterclockwise circulation of the field F � �x� 2 y�i��3�x� y�j around the simple closed curve C: 
4�x2

� y2
� 16.

ContourPlot is used to see the C.

In[14]:= ContourPlot�4�x2 � y2, �x, �4, 4�,
�y, �4, 4�, Contours �� �16�, ContourShading �� False�;

-4 -2 0 2 4
-4

-2

0

2

4
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The second form of Green's Theorem in equation (4) in your text is used here 

to compute the circulation.

In[15]:= m�x_, y_� � x � 2�y; n�x_, y_� � 3�x � y;

In[16]:= integrand � 	x n�x, y� � 	y m�x, y�
Out[16]= 5

In[17]:= 

�2

2



�
�������������������
16�4 x2

�������������������
16�4 x2

integrand��y��x

Out[17]= 40 �
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