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In this article a symbolic Mathematica package for analysis and control of chaos in discrete and
continuous nonlinear systems is presented. We start by presenting the main properties of chaos and
describing some commands with which to obtain qualitative and quantitative measures of chaos,
such as the bifurcation diagram and the Lyapunov exponents, respectively. Then we analyze the
problem of chaos control and suppression, illustrating the different methodologies proposed in the
literature by means of two representative algorithifimear feedback control and suppression by
perturbing the system variab)esA novel analytical treatment of these algorithms using the
symbolic capabilities of Mathematica is also presented. Well known one- and two-dimensional
maps (the logistic and Heon map$ and flows (the Duffing and Resler systemsare used
throughout the article to illustrate the concepts and algorithms.1988 American Institute of
Physics[S0894-18668)01806-9

INTRODUCTION furcation diagram and the Lyapunov exponents,
) ) L i respectively. Next, we analyze the problems of chaos con-
In recent years, increasing research activity in t_he field of tyo] and suppression by presenting their main ideas and
nonlinear systems has shown that simple dynamical models;jystrating the different approaches by means of two rep-
can produce complex, seemingly random-looking behavior, resentative algorithms: the linear-feedback-control method
including the appearance déterministic chaasOne of the  5nq algorithm suppression by perturbing the system vari-
main features of deterministic chaos is its sensitive depen-gples. We also present a novel analytical treatment of these
dence to the initial conditions. This means that the separa-5|gorithms using the symbolic capabilities of Mathematica.
tion between two nearby orbits of the system grows expo- To illustrate the concepts and algorithms presented in
nentially in time and, therefore, a long-term prediction of {pe article, we use well-known examples of discrete maps
the system is possible only in probabilistic terms, although (the logistic and Heon map$ and continuous flowsthe
the system dynamics is described by deterministic equa-pyffing oscillator and the [ssler system We also give
tions (deterministic chags The inability to predict the be-  the code of some of the commands to illustrate the pro-
havior of dynamical systems in the presence of chaos gramming style and the symbolic and functional capabili-
makes this situation undesirable in many practical situa- tieg of Mathematica. However, for a full understanding of

tions (electronic circuits, chemical reactions, ¢tavhere these programs some knowledge on Mathematica is re-
one is more interested in obtaining regular behavior. How- qyired (see Ref. 1

ever, the possibility of controlling chaos offers a way to

avoid this problem. As we shall see, the different control-

ling algorithms proposed in the literature take advantage of I. SYMBOLIC ANALYSIS OF NONLINEAR SYSTEMS

the deterministic nature of chaotic systems that defines .

some regularity in their inner structure. One of the most popular_ and S|_m_ple examples_of t_he non-
In this article we introduce a Mathematica package linear dynamical system is thegistic map which is given

that includes several tools both for analyzing discrete and by the quadratic mag,,1=f(r,X,) =rx,(1—x,), defined

continuous systems and for controlling the chaotic behavior on the unit interval(0,1), for values of the parameter

appearing in these systemhis package is available <[0,4], and on the intervdl—(1/2),(3/2)] for r e[ —2,0].

at the World Wide Web site http://ccaix3.unican.es/

~gutierjm/software.html First, we introduce the basic ) o .

properties of nonlinear systems using the commands of the ~ This map was originally used by ecologists to model

package that apply in this situation. For instance, these population growtf. Given an initial populationx, the

commands allow us to obtain periodic points and their sta- next year's population is given by, =f(r,xq), where the

bility regions of nonlinear systems as well as some quali- parameter is a growth rate. Repeating this iterative pro-

tative and quantitative measures of chaos, such as the bi-cess,xzzf(r,xl), and so on, the sequence of populations

corresponding to successive years is obtained. This se-

3E-mail: gutiejm@ccaix3.unican.es; http:/ccaix3.unican-gsitierjm quence iS. called therbit of the inntXO- The powerful
YE-mail: iglesias@ccaix3.unican.es; http://ccaix3.unicaniggésias Mathematica functional-programming techniques help us to

Logistic[r_]:=Function[x, r x (1—x)];
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Figure 1. Time series (left) and first return map (right) of the fixed point
logistic map with r=2.6 and %=0.1

implement several algorithms for computing orbits in an
intuitive and efficient form. For example, the commabd
bitfmap, x0, n] uses theNestList functional command to
compute then-point orbits of the map associated with the
initial conditionx0. On the other hand, the commaiueta-
tiveProcess[map, x0, {min,max}] illustrates the iterative pro-
cess Kn,Xn+1) = (Xn+1:Xn+1) = (Xn+1,Xn+2) in the delay
reconstruction phase space, (Xp+1)-
Orbit[map_,x0_,n_]:=NestList[map, x0, nJ;
IterativeProcess[map_,x0_,{min_,max_}]:=
Module[{fr,orb},

orb=0Orbit[map,x0,50];

fr=MapThread[Line[{{#1,#1}{#1,#2} {#2 #2}}]&,

{Drop[orb,—1],Drop[orb,1]}];
Show[Plot[{map[x],x},{x,min,max}], Graphics[{fr}]] ]

With the help of these commands we can analyze the
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Figure 3. Time series (left) and first return map (right) of the chaotic
logistic map given by #3.9 and % =0.1

Show[GraphicsArray[
{ListPlot[Orbit[Logistic[3.9],0.1,100]],
IterativeProcess|[Logistic[3.9],0.1,{0,1}]}]]

The different behaviors of the system for different val-
ues of the parameter can be qualitatively analyzed by using
a bifurcation diagram which is created by plotting the
asymptotic orbits of the mafy axis) generated for differ-
ent values of the parametésaxis). The commandBifurca-
tion[map, {p,pi,pf,np}, n] plots the bifurcation diagram of the
map consisting ofn-point orbits(after discarding an initial
transient for np equally spaced parameters in the region
p=pi to pf.

Bifurcation[map_, {p_, pi_, pf_, np_}, n_]:=
Module[{pp},ListPlot[Flatten
[Table[({pp.#})& /@ Drop[Orbitimap /. p—pp][0.5,n
+50],50], {pp,pipf,(pf—pi)/npj],1],

different system behaviors depending on the values of the Axes—False,Frame—True,
growth parameter. For certain values of this parameter, the PlotStyle—{PointSize[0.003]}]]

population settles to a fixed size over the years. This is

called afixed pointof the system(see Fig. L

Show[GraphicsArray[
{ListPlot[Orbit[Logistic[2.6],0.1,100]],
IterativeProcess|[Logistic[2.6],0.1,{0,1}]}]]

As an example, Fig. 4 shows the complete bifurcation
diagram of the logistic map, considering all the possible
values of the parameter in the range2,4). Note that the
logistic map is usually defined for the parameter range
(0,4), where the population of the system is normalized

When the parameter value is increased, the system(defined by the unit intervaland the parameter takes on

jumps back and forth between two different points. This is
called aperiod-2 orbit(see Fig. 2
Show[GraphicsArray[
{ListPlot[Orbit[Logistic[3.2],0.1,100]],
IterativeProcess|[Logistic[3.2],0.1,{0,1}]}]]

In addition, the system may also evolve under an in-

finite number of points in a random-looking forfree Fig.

positive values. A detail of this region is shown in the inset
of Fig. 4.

Show[Graphics[{Rectangle[{0,0},{1,1},
Bifurcation[Logistic[r],{r,—2,4,250},0.5,200,]],
Rectangle[{0.3,0.5},{0.7,1},
Bifurcation[Logistic[r],{r,0,4,100}, 0.5,200]]}]]

The dynamics observed in Figs. 1-3 can now be better

3). This behavior is known as deterministic chaos, since understood with the help of the bifurcation diagram. When

seemingly stochasti¢chaotig behavior is obtained from
the dynamics of a deterministic system.
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Figure 2. Time series (left) and first return map (right) of the period-2
logistic map with r=3.2 and %=0.1

the value of the parameter is increased from zero, the
system dynamics follow a sequence of period-1, -2, -4,...

Figure 4. Bifurcation diagram for the logistic map. The inset was created
by zooming into the region+2-4.
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Figure 6. Lyapunov exponent of the logistic map.
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Figure 5. Three different orbits, % y,, and z, (in different colors),
corresponding to a periodic logistic map with initial conditions 0.8, and
0.820.02 (upper panel) and to a chaotic map with initial conditions 0.8

and 0.8+10°8 (lower panel).

orbits calledperiod-doubling bifurcation route to chaos
This sequence has universal properties for a large class of
maps (for further details we refer the interested reader to
Ref. 12. When the parameteris chosen beyond the criti-
cal accumulation parameter.=3.569..., the system be-

A quantitative measure of the sensitive dependence to
initial conditions is given by the Lyapunov exponents,
which measure the exponential separation of nearby orbits.
In simple terms, a positive Lyapunov exponent can be con-
sidered to be an indicator of chaos, whereas negative expo-
nents are associated with regular behayaariodic orbits.

The command LyapunovExp[map,x0,n] calculates the
Lyapunov exponent of the one-dimensiondD) map
working with ann-point orbit starting aix0. In this case,
this exponent can be easily obtained by averaging the loga-
rithms of the map derivatives along the orbit.
LyapunovExp[map_,x0_,n_]:=Plus @@ (

Function[x,Evaluate[Log[Abs[D[map[x],x]]l]] /@

Drop[Orbitmap, x0, n+500],500])/n

As an example, Fig. 6 shows the Lyapunov spectrum
of the logistic map in the parameter ran@e4). If we com-
pare Fig. 6 with the bifurcation diagram shown in the inset
of Fig. 4, we can see how periodic regimes are associated
with negative Lyapunov exponents, whereas chaotic ones
have positive exponents.

Plot[Lyapunov[Logistic[r],0.5,500],{r,0,4}]

The rich structure of the bifurcation diagram and,
hence, of the system dynamics is a consequence of the

comes unpredictable and exhibits deterministic chaos. Stable or unstable character of the periodic points for dif-
Therefore, in this map deterministic chaos appears as a conferent values of the parameter. A fixed poxgtis stableif

sequence of the accumulation of an infinite number of un- and only if it attracts nearby orbits, i.e.,

stable periodic orbits resulting of the period-doubling bifur-
cation process. This is another interesting property of chaos
known asorbit complexity(see Ref. 4 Orbit complexity
means that chaotic systems contain an infinite number of
unstable periodic orbit§UPOsg, which coexist with the

dynamics> This fact will be used later to control chaotic

, ; and unstable otherwise.
strange attractor and play an important role in the systempq commanderiodicPoints[map

Lot (r )1 | <1,

X, n] obtains the period-

behavior by stabilizing some of these unstable orbits.

As we have already mentioned, the difference between
regular and chaotic behaviors can be established in terms o
their dependence on the initial conditiof@ perturbations
of the orbiy. As shown in Fig. 5, periodic orbits are insen-
sitive to large perturbations of the initial conditions,
whereas chaotic orbits are very sensitive to tiny perturba-

tions.

MultipleListPlot[Orbit[Logistic[3.2],#,40]& /@
{0.8, 0.8+0.02, 0.8—0.02}]
MultipleListPlot[Orbit[Logistic[3.9],#,40]& /@

{0.8,0.8+10 (—8), 0.8—10 (—8)}]
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n fixed points of the map and the commastdbility[map, x,
r, fp, n] gives the regions for the parameterwhere the

IperiodJn pointsfp are stable.

FixedPoints[map_,x_,n_]:= Simplify[Solve[Nest[map,x,n]
::X’X:l];
PeriodicPoints[map_,x_,n_]:=
x/. Complement[FixedPoints[map,x,n],FixedPoints[map,Xx,
n-11J;
Stability[map_,x_,r_,fp_,n_]:=
Module[{equ,s1,s2},
equ=DI[Nest[map,x,n],x] /. x—fp;
{sl1,s2}=Solve[equ==H#, r|& /@ {—1,1};
If[s1!={} && s2!={}, Sort /@
MapThread|List, {Flatten[r/. s1],Flatten[r/. s2]}],{}] ]



These commands help us to analyze the bifurcation p2=PeriodicPoints[Logistic[r],x,2]
structure of the logistic map in an analytical form. For ex-

ample, the period-one points of the logistic map are 1+r—\=3-2r+r® 1+r+—3-2r+r?
pl=PeriodicPoints[Logistic[r],x,1] 2r ' 2r
[O r— 1] whose stability intervals are
o Stability[Logistic[r],r,#x,2]& /@ p2
which remain stable within the parameter regidnsl,1)
and(1,3), respectively, as obtained below. {{{-1.1- V6}.{3.1+ B} { - 1.1 V6}.{3.1+ 6} }}
Stability[Logistic[r].r.#.x,1]& /@ pl In this case we have two stability regions for each of
{{-1,13},{{1,3}} the fixed points. Then, four period-4 points become stable,
. _ i ) and so on. Note that the calculation of periodic points with
Therefore, if —1<r<1, the fixed point (~1)fr is larger periodicities involves polynomials of degrees larger

unstable, whereas zero is stable. This implies that everythan five and, therefore, in general, they can only be ob-
trajectory of the system will asymptotically fall to zero. tained numerically. In this case, the commangixed-

However, ag increases, the system presentsiagent bi- Points[map, x, n] gives all the periodic points of the map up
furcation where the fixed point O loses its stability and the to periodn. For example, to illustrate the orbit complexity
fixed point  —1)/r becomes stablgsee interval(1,3) in phenomenon characteristic of chaotic systems, we can use

Fig. 4]. For larger values of the parameter, the fixed point this command to obtain all the unstable periodic points up
(r—1)r becomes unstable and splits up into two different to a given periode.g.,n=28) coexisting with the chaotic
period-2 points: attractor of the logistic map:

NFixedPoints[Logistic[3.9],%,8]

{0.,0.00570386,0.00717971,0.0636502,0.0656863,0.0691803,0.0750764,
0.0917974,0.0919389,0.0974435,0.100562,0.104305,0.111837,0.114523,
0.121947,0.124823,0.132653,0.156816,0.180986,0.213536,0.237367,
0.289332,0.301209,0.358974,0.358974,0.385122,0.388375,0.413084,
0.43037,0.448718,0.465846,0.467459,0.476801,0.578097,0.619508,
0.697677,0.71665,0.74359,0.74359,0.74359,0.74359,0.75911,0.801914,
0.803777,0.827517,0.848259,0.897436,0.897436,0.9193,0.951213,0.964744}

i
This phenomenon of creation and destruction of fixed pl=PeriodicPoints[Henon([r],{x,y},1]

points as a transition to chaos is also present in higher- H 1+Itor 1+ \/1+—9r]

dimensional discrete and continuous systems such as, for
example, the Heon map® 3r or

—2+VJ4+36r —2+.4+36r
>< )
6r 18
— —(1—rx2 1
(Xn+1:Yn+2) = T X0, Yn) = (1= 1XG+ Y, 5Xn). p2=PeriodicPoints[Henon[r],{x,y},2]
{1+\/—3+9r —l+\/—3+9r}
Henon[r_] = 3r ’ or ’
Function[ x,{1—r x[[11] "2+ xX[[2]], 1/3 x[[1]11}] —1+ \/—3+9r 1+ \/—3+9r
Depending on the values of the parametethis sys- 1~ 3r ' 9r

tem evolves among different behaviors associated with cha-
otic dynamics(transient chaos, interior crisis, oté. For
example, the system exhibits deterministic chaos rfor _
=1.282. The bifurcation diagram associated with one of €V~ Eigenvalues[D[Henonr]{x.y}].#]& /@{x.y}]
Efswgglia:rig;\bly.es, say, can be obtained as in the previous case {L(—6rx— J12+36r23), L—6rx+ \/m)}
Bifurcation[Henon(r]{r,0,1.3,250},{0.5,0.5},150] The next command shows that all these points are un-
. ] o ] stable, since they have associated a positive eigenvalue that

In this case, we can also obtain the periodic points, defines an unstable manifold. Fixed points with both posi-
forming the period-doubling route to chaos, and study their tive and negative eigenvalues are calzdidle nodesand
stability. For example, the period 1 and 2 points for the define stable and unstable manifolds. These points play a
Henon map can be obtained by key role in the context of chaos contfbl.

In this case, the stability of the fixed points depends on
the eigenvalues of the corresponding Jacobian matrix:
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(ev /. {x—#[[1]].,r—1.282})& /@ Union[p1,p2] 0 >0 t1°° 150 0 50 t1°° 150
{{—0.2218,1.508{—2.736,0.121B{—0.1064,3.134,
{—1.872,0.178}} Figure 9. Dynamics of the Duffing oscillator for different values of the

. . . external forcing f.
Figure 8 shows the strange attractohaotic orbi} of J

the Henon map forr =1.282 and Xg,Yo) = (0.5,0.5). Fig-
ure 8 also shows the periodic points obtained above. The fixed points of a flow can be obtained using the

MuItlif)leLilstnggt[C;r/bit[lﬂleggg[l.282],{0.5,0.2},2000], command FixedPointsFlow[flow,vars]. In the case of the
p1/.r—1.282,p2/.r—1.282] nonlinear oscillator, in the absence of external forcirig (
Deterministic chaos is also present in continuous non- =Q), the system has two stable fixed points at

linear systems given by flows, i.e., systems of differential y_ _1 angx=1 (the positive one is shown in Fig. 9 la-
equations. One of the most popular continuous nonlinear beledf =0)

systems is the Duffing oscillator, which includes damping _ ; ]

and periodic external forcing terms and is given by the fP=FixedPointsFlow[Duffing[0,w], {x.v,z]]

following second-order differential equatidn: {{lv—0x——1} {v—0x—0},{v—0x—1}}

x"+ax' +x3—x=f cogwt), The stability of these fixed points is given by the ei-
or, equivalently, by the system of three first-order differen- 9€nvalues of the corresponding Jacobian matrix:
tial equations ev=Eigenvalues[D[Duffing[0,w],#]& /@{x,v,z}]

x'=v {0, §(—1-17-48¢%), ;(— 1+ J17-48¢%)}

Z’IZ —av—x*+x+f cog2),, The eigenvalues corresponding to each of the above

= fixed points are

wherev=x’, z= wt, a is the constant damping, arficand Relev /.fp]

w are the strength and the frequency of the external forcing, 11 1 1
respectively. Bg fixing the valﬂes ofyconstant damping ang {{0— 5= {0, (- 1-V17), 3 (- 1+V17)},
external frequency, the oscillator exhibits a great variety of x{0~ 1 - h

behaviors as a function of the parametetn this example, a4
we takea=0.5 andw=1. Therefore,x=—1 and x=1 are two stable fixed
points (negative real parts of the eigenvalyesdx=0 is

an unstable fixed point. When some forcing is applied to
the system, all the points become unstable and the system
oscillates around one of the fixed points with frequency

Duffing[f_,w_]:={v, —1/2*v—x 3+x+f* Cos[z], w};

Vn equal to the external frequeney(Fig. 9, f=0.3). For val-
ues of the parametdr>0.321 the system goes through a
0.4 -—w\\_'s — period-doubling route to chaos. This period-doubling pro-
0.2 - \”‘:\x\ cess has an accumulation pointfat=0.3586. Therefore,
IO T larger values of the parameter lead to a chaotic system. For
0 /,/ > f.<f<0.386, the chaotic orbits of the system remain
0.2 - * trapped at one of the wells oscillating around a fixed point.
oa % T ) For example, Fig. 9f(=0.37) shows a chaotic orbit oscil-
lating around the unstable fixed poirt= —1. When in-
T 05 0 05 1 1s5%m creasing the value of the parameter, the strange attractor
encompasses both wellBig. 9, f=0.39.
Figure 8. Chaotic attractor of the Hen map with two period-one and The commandOrbitFlow[flow, x, x0, {t0,t1,dt}] imple-
two period-two points labeled a& and +, respectively. ments a fourth-order Runge-Kutta method for systems of

612  COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998



first-order differential equations. This command is used in £

the next example to calculate and plot several orbits, illus- 20

trating different behaviors of the Duffing oscillator. 17.5

Show[GraphicsArray[Show[ 15

OrbitFlow[Duffing[#,1] {x,v,z},{0.,1.,0.},{0,160,0.05}, 12.5

Show—Plot]& /@{0.,0.3,0.37,0.39}] ] 10

7.5

5

Il. SELECTING UNSTABLE PERIODIC ORBITS 5 s
As we have indicated in Sec. I, the infinite number of un- 100 200 360 400~ s00°

stable periodic orbit§UPO9 embedded in the attractor
plays an important role in the behavior of chaotic systems. rig e 10, Frequency histogram of UPO periods p obtained with the
However, in many practical situations one does not have ;p~ command.
access to system equations and must deal directly with ex-
perimental data in the form of a time serf@dere in Sec.
Il we give some commands for computing some of these
orbits from a time series of the systefthhese commands
will be used later for controlling chaps

A simple algorithm for obtaining a UPO searches for
closed “orbits” within the time series. Suppose we choose
an arbitrary point of the time series and wait until the orbit orb=Drop[#,-1]&/@
comes back again to a small neighborhood of the selected OrbitFlow[Duffing[0.39,1],{x,v,z},{0,1,0},{0,500,0.001}};

For example, let us consider the following time series
obtained from the Duffing oscillator with=0.39.

point (the return neighborhogd Then, we may conclude The command&JPO, UPOFrequencies (to obtain the
that the orbit obtained shadows an unstable periodic orbit frequencies of UPOs of different perigdsind UPOHisto-
of the systent® The commandJPO[timeseries, €, maxper] gram (to obtain a histogram of the frequencies, as shown in

obtains all the UPOs within the time series up to period Fig. 10 help us to understand the interwoven structure of
maxperconsideringe-radius balls as return neighborhoods. UPOs within the given series.

upos=UPO[orb,0.01,500];

UPOFrequencies[upos]

UPOHistogram[orb,500]
{{50,1},{62,1},{78,1},{91,1},{100,1},{101,1},{105,1},{113,1},{119,1},
{123,1},{124,10},{125,4},{126,5},{129,1},{139,1},{141,1} {145,1},
{149,1},{158,1},{183,1},{213,1},{218,1},{221,1},{222,1},{228,1},
{229,1},{235,1},{244,1},{245,2},{246,1},{248,1},{252,2},{253,2},
{254,4}{255,7},{256,1},{259,2},{263,1},{264,1},{266,1},{275,1},
{292,1},{323,1},{328,1},{329,1},{337,1},{344,1},{351,1},{359,2},
{360,1},{361,1},{363,1},{364,1},{366,1},{367,1},{368,1},{369,3},
{370,3},{371,3},{372,4},{374,2},{375,1},{376,5},{377,5},{379,2},
{380,3},{382,3},{383,1},{385,1},{386,1},{387,1},{388,1},{390,1}}

I
Finally, some of the obtained UPOs can be plotted by in controlling the system to obtain regular behavior. This

using the SelectUPO[timeseries,{minper,maxper}] com- can be done by taking advantage of the infinite number of
mand, which selects from the time series all the unstable UPOs coexisting with the chaotic attract@rbit complex-
orbits of periods in the range=minper to maxper For ity). The idea of controlling chaos consists of stabilizing
example, Fig. 11 shows several UPOs with periodicities some of these unstable orbits, thus leading to regular and
associated with the peaks of Fig. (14, 252, 37h predictable behavior.

UPOPIot[orb,SelectUPO[upo, {# #]]& /@ {124,252,376} This idea was first suggested by Ott, Grebogi and

Yorke® They proposed a methofknown as the Ott—
Grebogi—YorkelOGY) method to stabilize UPOs contain-
lil. CONTROLLING AND SUPPRESSING CHAOS ing a saddle-node poirian unstable fixed point with stable

As we have shown in Sec. II, chaotic systems are charac-and unstable manifoldsThe algorithm waits until the sys-
terized by an exponential separation of nearby orbits in t€m comes into a small neighborhood of the saddle node.
time. This feature of chaos has been traditionally seen as aThen a small perturbation is applied to some accessible
troublesome property, especially in practical settings, be- System parameter leading the orbit to the stable manifold of
cause even the tiniest perturbation might modify the sys- the saddle point, thus stabilizing the UPO. This method was
tem’s behavior in an unpredictable way and lead the systemexperimentally applied in Ref. 11.

to a catastrophic situation. Chaotic behavior is therefore Since the above authors’ work, much attention has fo-
undesirable in many practical settings, and one is interestedcused on controlling chaos and several alternative methods
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Figure 11. Period-one, -two, and -three UPOs of the Duffing oscillator.

have been proposed for a survey on controlling cHads.
The possibility of controlling chaos is changing the poor

reputation of chaotic systems, since they can be seen as a

unlimited reservoir of different behaviors. This flexibility

auxiliary system leading to a controlled state that does not
really belong to the original system are referred to as chaos-
suppression algorithms. Some of them are designed to fol-
low a prescribed goal dynami¢&:2° For instance, Holer
considers a resonant control method that modifies the origi-
nal system such that the goal dynamics become a stable
solution of the auxiliary system. Another alternative for
chaos suppression is based on the effects of stochastic and
periodic perturbations of the systéiT?* The addition of
nois&€° or the addition of constant pulses to the system
variableg® represents other ways to suppress chaotic be-
haviors.

With the aim of illustrating the advantages and short-
comings of both methodologies, we describe two different
algorithms: the linear feedback algorithm for controlling
chaos and a recently introduced suppression algorithm that
works by adding constant pulses to the system variables.

A. Controlling chaos: Linear-feedback methods

Feedback control has been reco7gnized to be useful for sta-
bilizing unstable periodic orbits!”In fact, linear feedback
has been extensively used within the framework of linear
systems’ Now we consider the case of nonlinear chaotic
systems, namely, the logistic map and the Duffing oscilla-
tor.

Let us first consider the simple case of maps. It has
been provet? that a linear-feedback controller of the form
u,= —kv, can control chaotic motion for some constant
feedback k and,, holding,v,—0 as nr—. Under certain
conditions, this linear-feedback control can lead the chaotic
system to stable motion. A usual and simple choiceuvfpr
isv,=X,— p, wherep is an unstable period-one fixed point
of the system. The commarr@edbackControl[map, upo, k,
x0, a, b] implements the above control algorithm, where
upo is an arbitrary UPO of the system. Firatjterations of
the map are performed without applying the control method
in order to show the original dynamics. Then, the method is
switched on the nexb steps.

For example, consider the unstable period-one orbit of
the logistic map forr = 3.9 (as obtained in Sec).l

PeriodicPoints[Logistic[3.9],x,1]
{0.,0.74359}

In this case, a controller of the form,=—kv,=
—0.95 (x,—0.74359) stabilizes the chaotic system to the

rc]jesired fixed pointsee Fig. 12

upo={0.74359};

may be very advantageous in many practical situations, andFeedbackControl[Logistic[3.9],upo,0.95,0.1,3000,3000]

thus some of the chaos-control techniques that will be men-

tioned below have been applied to mechanical systéms,
chemical reaction¥* electronic circuits? chaotic lasers®
etc.

In this case, the effect of linear-feedback control can
easily be interpreted with the help of the bifurcation dia-
gram of the controlled system as a function of the control
parametek. Due to the universal character of the bifurca-

In general, these methods can be classified into two tion route for unimodal maps, the controlled map also ex-

categories: chaos-control and chaos-suppression algo+ibits a bifurcation routéshown in Fig. 13, with the de-
rithms. On the one hand, chaos-control methods, such assjred period-one point=0.74359. . .

the OGY algorithm, have the common feature that the final
controlled state is a UPO of the original system. Examples
feedback

of these methods are the proportional
method**~1"the occasional proportional feedba@Pp,*
and the small time-dependent continuous perturbatibns.

LogisticControl[k_]:=
Function[x, 3.9 x (1—x)+ k(x—0.74359)];
Bifurcation[LogisticControl[k],{k,0,1,250},0.5,150]

This algorithm can be easily extended to deal with

On the other hand, those methods that work on an UPOs with arbitrary periods. In this case, the controller

614  COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998



1000 2000 3000 4000 5000 60000

Figure 12. Period-one controlled orbit of the logistic map. The vertical
dashed line shows the moment at which the chaos-control algorithm starts
being applied.

takes the formv, =X, — Pmodm) » Wherem is the period of
the UPO{p4, ... .pm}. For example, in the following we
stabilize a period-3 orbit of the chaotic logistic mégg.
14).

PeriodicPoints[Logistic[3.9],x,3]
{0.132653,0.180986,0.448718,0.578097,0.74359,
0.951213,0.964744}

upo={0.132653,0.448718,0.964744};

FeedbackControl[Logistic[3.9],up0,0.021,0.1,3000,3000]

A similar idea is applied in Ref. 17 for controlling

1000 2000 3000 4000 5000 60001’l

Figure 14. Period-three controlled orbit of the logistic map.

orb=FeedbackFlow[Duffing[0.39,1],{x,v,z},{1.,1.,1.},
{0,150,0.05},0.13,125,v,upol,Show—TimeSeries];

ListPlot[First /@ orb]

ListPlot[Drop[#,—1]& /@ orb]

In light of these examples we can conclude that feed-
back methods for controlling chaos can be easily imple-
mented, can work automatically after being designed, and
can be interpreted physically. These properties make these
algorithms suitable for many practical applications.

B. Suppressing chaos: Adding puises to the system variables

The feedback algorithms presented in Sec. Ill A allow us to

nonlinear flows. The Pyragas delayed self-controlling feed- stabilize the chaotic behavior of nonlinear systems by using
back method uses a UPO of the flow to build a feedback some unstable periodic orbit embedded into the chaotic at-
controller of the formx,=X,—Pmodn,m)» Wherem is the tractor. Although these methods are easy to implement,
number of sampled points contained in the UPO they require some knowledge about the system dynamics
{p1,...,pm}- We can use here the algorithms presented in (e€specially in the case of continuous systemShaos-
Sec. Il for obtaining UPOs. For instance, consider the cha- suppression algorithms allow us to stabilize the system dy-
otic Duffing oscillator withf =0.39 shown in Fig. 9. Sup- namics without being concerned with the final stabilized

pose we want to stabilize one of the period-one UPOs ob- state. The following example will help us to clarify the
tained in Sec. II(Fig. 11). We can use theJPO and advantages and shortcomings between these two method-

UPOSelect commands to select the desired unstable orbit, 0logies.
as we did before:

orb=COrbitFlow[Duffing[0.39,1],{x,v,z},{0,1,0},

{0,500,0.001}];
upos=UPO[orb,0.01,500]; 1
upol=FirstflUPOSelect[upos,{124,124}]];
Then, the commanéeedbackFlow applies the above % g
feedback-control algorithm to the chaotic Duffing oscillator
in such a way that the system is controlled to the desired
period-one motior(Fig. 15. ’1
0 50 100 150
t
1
0. 0.5 f\
0.
-1
-1.5 -1 -0.5 0 0.5 1 1.5
X

Figure 13. Bifurcation diagram of the controlled logistic map as a func-
tion of the control parameter k.

Figure 15. Controlled period-one orbit of the chaotic Duffing oscillator
using the Pyragas method.
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Figure 16. Stabilization of a period-one orbit with the additive chaos- Figure 17. Bifurcation structure of the perturbed logistic map as a func-
suppression method. tion of the suppression parameter k.

As an example of a chaos-suppression algorithm we Note that this orbit is not a true period-one orbit of the
consider a recently introduced method that acts on the sys-logistic map, but a periodic stable orbit of the auxiliary
tem variable<:?® This method does not require any infor- System
mation about the system so it is, therefore, applicable even — 3.0k (1—x.) 4k
in situations where there is complete lack of information. Xn+1=3-Hn(1=Xp) Tk
Moreover, in many practical applications, acting on the sys- Then, the performance of the chaos-suppression
tem variables is easier than acting on the system param-method can be qualitatively analyzed with the bifurcation
eters. For example, in a chemical reaction it is easy to per-structure of this auxiliary system as a function of the pa-
form changes in the system variablésy injecting or  rameterk. Figure 17 shows the bifurcation diagram for the
removing some componenfsvhereas performing changes ,arameter values in the range=—0.5 to 0. Note that,

" th?ns%sgecngsp;a(r)afmmeatle;s mgycazohs&};% toriZéion al oritthhen the suppression method is not actiig=0), the
PS, PP 9 original chaotic orbit of the system is recovered.

applies a pulse of strengthto the system variables every o _ o
An iteration steps, either in multiplicative or additive ways, AdditiveControl[k_]:=Function[x,Logistic[39/10][x] +k];

in the fo”OW|ng form Blfurcatlon[AddItIVECOI’]tI‘Ol[k],{k,*05,0,250},05,150]
We can use the commands introduced in Sec. | to
Xn—Xn(1+ Snank) X =F(r, X, 1) (1+ 5ya0K), obtain the values dk that stabilize the chaotic system to a
periodic orbit. For instance, if we wish to stabilize the cha-
Xn—Xn+ OnankeEXn=f(r,X,_1) + Snank, otic logistic map to a period-one orbit by using the

additive-suppression algorithm we can proceed as follows:

wheredpa,=1, if mod(n,An)=0, andé,,,= 0, otherwise. p1=PeriodicPoints[AdditiveControl[k],x,1]

The method can be interpreted by noting that some quantity

of x,, is injected into or removed from the system evary [i(zg— 841+ 156(K) i(29+ \/m)]
iterations, depending on whethleris positive or negative. 78 ‘78

The difference between the two alternatives lies in the way

the pulses are introduced. In the multiplicative case, the s1=Stability[AdditiveControl[k].k #x1]& /@ p1

pulse depends on the position of the syst@he value of 841 147

the variabl¢ in phase space. The additive method is a sim- [{},{{ ~ 1560 ﬁ}} ]

pler alternative that does not require any information about

the system and, hence, is easier to apply in practical situa-  From the above calculations we know that the per-
tions. turbed system has two period-one fixed points. The first one

Using these methods, it is possible to stabilize chaotic s never stable and the second one is stable vidtisron the
systems by appropriately choosing the strength of the jnterval (—(841/1560, —(147/520)=(—0.539,—0.283.

pulsesk and the frequency of applicatioan. The com- Thus, by choosing a value &fin this range k= —0.4), a
mandSuppressMap[map, k, dn, x0, a, b] applies additive or  peripd-1 orbit can be controlletsee Fig. 16 Moreover,
multiplicative pulses of strengtk to the system evergn we can choose among different values for the period-one
iteration steps starting at the initial conditio®. First, a point by substituting in p1.

iterations are performed without applying the method to The pulses can also be applied in a multiplicative way.

show the original system. Then, the method is switched on The above analytical study can also be performed in this
the nextb steps. For example, the first 3000 iterations in case obtaining similar results. For example, by applying
Fig. 16 show a chaotic orbit of the logistic map. Then, the multiplicative pulses of strength=—0.042, the chaotic

control method is switched on and a period—l orbit is sta- |Ogistic map can be switched to a periodic window where a

bilized. period-6 orbit is controlledFig. 18.
SuppressMap[Logistic[3.9],—0.4,1,0.5,3000,3000, SuppressMap[Logistic[3.6],—0.042,3,0.5,3000,3000,
Method— Additive] Method— Multiplicative]
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. . , N Figure 20. Suppressing chaos in thé @ map.
Figure 18. Suppressing chaos with small multiplicative pulses. o Uppressing ! P

Using the above chaos-control method, we can switch Other behaviors can be similarly controlled as, for ex-
the chaotic system not only to periodic orbits but also to ample, the quasiperiodicity route to chgese Ref. 28 for a
any of the unstable behaviors coexisting with the chaotic more detailed explanation
system. For example, in the logistic map the transition from Introducing pulses into the system variables of con-
chaos to the period-3 window is done by an intermittent tinuous dynamical systems described by differential equa-
regimen. This behavior can be stabilized in the chaotic sys-tions is not so intuitive as it is in the case of maps. Never-
tem by considering the pulses vallde=—0.04225, as theless, when using a numerical method to integrate the

shown in Fig. 19. differential equations, the continuous orbit of the system is
SuppressMap[Logistic[3.6], —0.04225,3,0.5,1000,2000, approximated by a sequence of points sampled at given
Method— Multiplicative] time steps. Then, we can take the integration step as an

arbitrary time scale for the perturbations. Thus, the chaos-
suppression algorithm can be described as it is in the dis-
crete case by perturbing the variables evaryintegration
steps, in both multiplicative and additive ways.

This algorithm is implemented in the command
ControlFlow[flow, x, x0, {t0,t1,dt}, k], which applies pulses to
the system variables during the integration process. Our
goal here is to suppress the chaotic behavior shown in Fig.
9 (f=0.39). For example, a period-1 orbit can be stabilized
by applying pulses of strengtt= —0.025 tox (note thatv

Therefore, when no information about the system is
available, the chaos-control algorithm can be applied by
trying different values for the pulses. However, when the
structure of the system is known, the bifurcation structure
of the controlled system will allow us to predict which
pulse values are needed to control different periodic orbits.
This analysis can also be performed in higher-dimensional
maps.

The same algorithm can be applied to two-
dimensional maps. In this case, the pulses are introduced in

the system by considering the strength vedter(k, ,K.). and_z are ayxiliary vqriables in this examplevery An
For simplicity, we considek,=k,, although different or- =1 integration stepgFig. 21).

bits can be stabilized by applying different pulses to each of orbs=SuppressFlow[Duffing[0.39,1],{x,v,z},{0,1,0},

the variables. {0,100,0.1},{#,0,0},1,Show— TimeSeries]& /@ {0.,—0.025};

As an example of the application of the method, Fig. Show[GraphicsArray({
20 shows the orplt that results from applying the chaos- ListPIot[ﬁ):irst '@ ﬁl]& /@ orbs,
cqntrol method vynh a'strength va!lk-:c —0.00353 to the ListPlot{Drop[#, — 1] /@ #]& /@ orbs}]]
Henon map. With this perturbation the system passes
through an interior crisis where the strange attractor sud-
denly shrinks and the system is described in phase space by

seven chaotic segments. In this case, chaos appears from &

crisis route to chaos. L 0
ControlMap2D[Henon[1.282,0.3],—0.007,1,{0.5,0.5},2000] ) . N\M

0 30 60 90 ) 30 60 90

-1 -
-1.5 -1 -0.5 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5

500 1000 1500 2000 2500 30000

Figure 21. Time series and phase-space plot of the original chaotic (left)
Figure 19. Switching from chaos to intermittency in the logistic map.  and the stabilized (right) orbits of the Duffing oscillator.
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Figure 22. Chaotic attractor of the Reler system.

In addition to having been found in the nonlinear os-
cillators described by nonautonomous differential equa-

Figure 24. Suppressing chaos in thesRler system by introducing pulses
in the Poincaresection (indicated by the rectangle).

tions, deterministic chaos has also been found in a greatturbations can then be introduced in the flow each time the
variety of three-variable autonomous continuous models in system crosses the Poincaeztion. This technique is com-

practical applications. An example of this is the Rier
model?°

X'=—-y-z,
y'=x+ay,
zZ'=b+z(x—c),

which describes a chemical process. For0.2, b=0.2
and c=4.6, the Rasler model exhibits chaos appearing
through a period-doubling bifurcation routgig. 22.

Rossler={—y—z, x+0.2*y, 0.2+z (x—4.6)};
OrbitFlow[Rossler {x,y,z},{3,3,1},{0,150,0.05},
Show—Plot3D];

By applying the control method to this system, differ-
ent periodic orbits from the period-doubling route to chaos
can be stabilized. In Fig. 23, period-2 and period-4 orbits
are stabilized by using different pulse strengths:
Show[GraphicsArray

SuppressFlow[Rossler,{x,y,z}{1.,1.,1.},{100,150,0.05},

{#,##,10,Show—Plot3D]& /@ {—0.09,—0.08} ]]

The above implementation of the chaos suppression

mon within the framework of chaos-control methodesr
example, it is the key concept in the OGY methdhus,

the continuous system can be controlled by simply control-
ling an associated Poincaneap, that is, a discrete map.
For example, the flow of the Rsler system is normal to
the planex=0. This plane can be taken as a Poincsge-
tion of the system. Then, in order to introduce the control
method into a natural time scale of the system, the pulses
should be applied to variablgsandz each time the system
crosses the Poincasection(given by the conditiorx=0).
This section can be specified in Mathematica using the
Boolean conditiorx0<0 && x1>0, wherex0 andx1 are the

x values of two consecutive sampled pointg0,y0, z0)

and x1,y1,z1), that result from the integration procedure.
The commandSuppressPoincare implements this algo-
rithm. Figure 24 illustrates its application to the $Réer
model.

g=SuppressPoincare[Rossler {x,y,z},{1,1,1},{100,150,0.05},

{0,-0.12,-0.12},x0<0 && x1>0,{x0,y0,z0},{x1,y1,z1},
Show—Plot3D];

method for continuous systems uses an arbitrary time scalepoly={Thickness[0.02],Polygon[{{0,—3,—1},{0,—3,2},

for the perturbations. However, it would be better to apply

the pulses in a natural time scale of the system. Such a

natural scale can be given byPamincaresection The per-

Figure 23. Suppressing chaos in thesRfer system with pulses 6f0.09
and —0.08, respectively.
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{0,-10,2}, {0,-10,-1}{0,—3,—1}}]};
Shadow[Show[{g,Graphics3D[poly]},Shading—True],
ZShadow—False, PlotRange—All]
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