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In this article a symbolic Mathematica package for analysis and control of chaos in discrete and
continuous nonlinear systems is presented. We start by presenting the main properties of chaos and
describing some commands with which to obtain qualitative and quantitative measures of chaos,
such as the bifurcation diagram and the Lyapunov exponents, respectively. Then we analyze the
problem of chaos control and suppression, illustrating the different methodologies proposed in the
literature by means of two representative algorithms~linear feedback control and suppression by
perturbing the system variables!. A novel analytical treatment of these algorithms using the
symbolic capabilities of Mathematica is also presented. Well known one- and two-dimensional
maps ~the logistic and He´non maps! and flows ~the Duffing and Ro¨ssler systems! are used
throughout the article to illustrate the concepts and algorithms. ©1998 American Institute of
Physics.@S0894-1866~98!01806-9#
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INTRODUCTION

In recent years, increasing research activity in the field
nonlinear systems has shown that simple dynamical mo
can produce complex, seemingly random-looking behav
including the appearance ofdeterministic chaos. One of the
main features of deterministic chaos is its sensitive dep
dence to the initial conditions. This means that the sep
tion between two nearby orbits of the system grows ex
nentially in time and, therefore, a long-term prediction
the system is possible only in probabilistic terms, althou
the system dynamics is described by deterministic eq
tions ~deterministic chaos!. The inability to predict the be-
havior of dynamical systems in the presence of ch
makes this situation undesirable in many practical sit
tions ~electronic circuits, chemical reactions, etc.!, where
one is more interested in obtaining regular behavior. Ho
ever, the possibility of controlling chaos offers a way
avoid this problem. As we shall see, the different contr
ling algorithms proposed in the literature take advantage
the deterministic nature of chaotic systems that defi
some regularity in their inner structure.

In this article we introduce a Mathematica packa
that includes several tools both for analyzing discrete
continuous systems and for controlling the chaotic beha
appearing in these systems~this package is available
at the World Wide Web site http://ccaix3.unican.e
;gutierjm/software.html!. First, we introduce the basi
properties of nonlinear systems using the commands of
package that apply in this situation. For instance, th
commands allow us to obtain periodic points and their s
bility regions of nonlinear systems as well as some qu
tative and quantitative measures of chaos, such as the

a!E-mail: gutierjm@ccaix3.unican.es; http://ccaix3.unican.es/;gutierjm
b!E-mail: iglesias@ccaix3.unican.es; http://ccaix3.unican.es/;iglesias
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furcation diagram and the Lyapunov exponen
respectively. Next, we analyze the problems of chaos c
trol and suppression by presenting their main ideas
illustrating the different approaches by means of two re
resentative algorithms: the linear-feedback-control meth
and algorithm suppression by perturbing the system v
ables. We also present a novel analytical treatment of th
algorithms using the symbolic capabilities of Mathematic

To illustrate the concepts and algorithms presented
the article, we use well-known examples of discrete ma
~the logistic and He´non maps! and continuous flows~the
Duffing oscillator and the Ro¨ssler system!. We also give
the code of some of the commands to illustrate the p
gramming style and the symbolic and functional capab
ties of Mathematica. However, for a full understanding
these programs some knowledge on Mathematica is
quired ~see Ref. 1!.

I. SYMBOLIC ANALYSIS OF NONLINEAR SYSTEMS

One of the most popular and simple examples of the n
linear dynamical system is thelogistic map, which is given
by the quadratic mapxn115 f (r ,xn)5rxn(12xn), defined
on the unit interval~0,1!, for values of the parameterr
P@0,4#, and on the interval@2~1/2!,~3/2!# for r P@22,0#.

Logistic[r–]ªFunction[x, r x (12x)];

This map was originally used by ecologists to mod
population growth.2 Given an initial populationx0 , the
next year’s population is given byx15 f (r ,x0), where the
parameterr is a growth rate. Repeating this iterative pr
cess,x25 f (r ,x1), and so on, the sequence of populatio
corresponding to successive years is obtained. This
quence is called theorbit of the point x0 . The powerful
Mathematica functional-programming techniques help us
© 1998 AMERICAN INSTITUTE OF PHYSICS 0894-1866/98/12~6!/608/12/$15.00
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implement several algorithms for computing orbits in
intuitive and efficient form. For example, the commandOr-
bit[map, x0, n] uses theNestList functional command to
compute then-point orbits of the map associated with th
initial conditionx0. On the other hand, the commandItera-
tiveProcess[map, x0, $min,max%] illustrates the iterative pro
cess (xn ,xn11)→(xn11 ,xn11)→(xn11 ,xn12) in the delay
reconstruction phase space (xn ,xn11).

Orbit[map–,x0–,n–]ªNestList[map, x0, n];
IterativeProcess[map–,x0–,$min–,max–%]ª
Module[$fr,orb%,

orb5Orbit[map,x0,50];
fr5MapThread[Line[$$#1,#1%,$#1,#2%,$#2,#2%%]&,

$Drop[orb,21],Drop[orb,1]%];
Show[Plot[$map[x],x%,$x,min,max%], Graphics[$fr%]] ]

With the help of these commands we can analyze
different system behaviors depending on the values of
growth parameter. For certain values of this parameter,
population settles to a fixed size over the years. This
called afixed pointof the system~see Fig. 1!.

Show[GraphicsArray[
$ListPlot[Orbit[Logistic[2.6],0.1,100]],
IterativeProcess[Logistic[2.6],0.1,$0,1%]%]]

When the parameter value is increased, the sys
jumps back and forth between two different points. This
called aperiod-2 orbit ~see Fig. 2!.

Show[GraphicsArray[
$ListPlot[Orbit[Logistic[3.2],0.1,100]],
IterativeProcess[Logistic[3.2],0.1,$0,1%]%]]

In addition, the system may also evolve under an
finite number of points in a random-looking form~see Fig.
3!. This behavior is known as deterministic chaos, sin
seemingly stochastic~chaotic! behavior is obtained from
the dynamics of a deterministic system.

Figure 1. Time series (left) and first return map (right) of the fixed po
logistic map with r52.6 and x050.1

Figure 2. Time series (left) and first return map (right) of the period
logistic map with r53.2 and x050.1
Show[GraphicsArray[
$ListPlot[Orbit[Logistic[3.9],0.1,100]],
IterativeProcess[Logistic[3.9],0.1,$0,1%]%]]

The different behaviors of the system for different va
ues of the parameter can be qualitatively analyzed by us
a bifurcation diagram, which is created by plotting the
asymptotic orbits of the maps~y axis! generated for differ-
ent values of the parameter~x axis!. The commandBifurca-
tion[map, $p,pi,pf,np%, n] plots the bifurcation diagram of the
mapconsisting ofn-point orbits~after discarding an initial
transient! for np equally spaced parameters in the regi
p5pi to p f .

Bifurcation[map–, $p–, pi–, pf–, np–%, n–]ª
Module[$pp%,ListPlot[Flatten

[Table[($pp,#%)& /@ Drop[Orbit[map /. p→pp][0.5,n
150],50], $pp,pi,pf,(pf2pi)/np%],1],
Axes→False,Frame→True,
PlotStyle→$PointSize[0.003]%]]

As an example, Fig. 4 shows the complete bifurcat
diagram of the logistic map, considering all the possib
values of the parameter in the range~22,4!. Note that the
logistic map is usually defined for the parameter ran
~0,4!, where the population of the system is normaliz
~defined by the unit interval! and the parameter takes o
positive values. A detail of this region is shown in the ins
of Fig. 4.

Show[Graphics[$Rectangle[$0,0%,$1,1%,
Bifurcation[Logistic[r],$r,22,4,250%,0.5,200,]],
Rectangle[$0.3,0.5%,$0.7,1%,
Bifurcation[Logistic[r],$r,0,4,100%, 0.5,200]]%]]

The dynamics observed in Figs. 1–3 can now be be
understood with the help of the bifurcation diagram. Wh
the value of the parameterr is increased from zero, the
system dynamics follow a sequence of period-1, -2, -4

Figure 3. Time series (left) and first return map (right) of the chao
logistic map given by r53.9 and x050.1

Figure 4. Bifurcation diagram for the logistic map. The inset was crea
by zooming into the region r52–4.
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orbits calledperiod-doubling bifurcation route to chaos.
This sequence has universal properties for a large clas
maps~for further details we refer the interested reader
Ref. 12!. When the parameterr is chosen beyond the criti
cal accumulation parameterr c53.569..., the system be
comes unpredictable and exhibits deterministic cha
Therefore, in this map deterministic chaos appears as a
sequence of the accumulation of an infinite number of
stable periodic orbits resulting of the period-doubling bifu
cation process. This is another interesting property of ch
known asorbit complexity~see Ref. 4!. Orbit complexity
means that chaotic systems contain an infinite numbe
unstable periodic orbits~UPOs!, which coexist with the
strange attractor and play an important role in the sys
dynamics.5 This fact will be used later to control chaot
behavior by stabilizing some of these unstable orbits.

As we have already mentioned, the difference betw
regular and chaotic behaviors can be established in term
their dependence on the initial conditions~or perturbations
of the orbit!. As shown in Fig. 5, periodic orbits are inse
sitive to large perturbations of the initial condition
whereas chaotic orbits are very sensitive to tiny pertur
tions.

MultipleListPlot[Orbit[Logistic[3.2],#,40]& /@
$0.8, 0.810.02, 0.820.02%]

MultipleListPlot[Orbit[Logistic[3.9],#,40]& /@

$0.8, 0.8110ˆ (28), 0.8210ˆ (28)%]

Figure 5. Three different orbits, xn , yn , and zn (in different colors),
corresponding to a periodic logistic map with initial conditions 0.8, a
0.860.02 (upper panel) and to a chaotic map with initial conditions 0
and 0.861028 (lower panel).
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A quantitative measure of the sensitive dependenc
initial conditions is given by the Lyapunov exponent
which measure the exponential separation of nearby orb
In simple terms, a positive Lyapunov exponent can be c
sidered to be an indicator of chaos, whereas negative e
nents are associated with regular behavior~periodic orbits!.
The command LyapunovExp[map,x0,n] calculates the
Lyapunov exponent of the one-dimensional~1D! map
working with ann-point orbit starting atx0. In this case,
this exponent can be easily obtained by averaging the lo
rithms of the map derivatives along the orbit.3

LyapunovExp[map–,x0–,n–]ªPlus @@ (
Function[x,Evaluate[Log[Abs[D[map[x],x]]]]] /@
Drop[Orbit[map, x0, n1500],500])/n

As an example, Fig. 6 shows the Lyapunov spectr
of the logistic map in the parameter range~0,4!. If we com-
pare Fig. 6 with the bifurcation diagram shown in the ins
of Fig. 4, we can see how periodic regimes are associa
with negative Lyapunov exponents, whereas chaotic o
have positive exponents.

Plot[Lyapunov[Logistic[r],0.5,500],$r,0,4%]

The rich structure of the bifurcation diagram an
hence, of the system dynamics is a consequence of
stable or unstable character of the periodic points for d
ferent values of the parameter. A fixed pointxf is stableif
and only if it attracts nearby orbits, i.e.,

u@]xf ~r ,x!#xf
u,1,

and unstable otherwise.
The commandPeriodicPoints[map, x, n] obtains the period-
n fixed points of the map and the commandStability[map, x,
r, fp, n] gives the regions for the parameterr where the
period-n points f p are stable.

FixedPoints[map–,x–,n–]ª Simplify[Solve[Nest[map,x,n]
55x,x]];
PeriodicPoints[map–,x–,n–]ª

x/. Complement[FixedPoints[map,x,n],FixedPoints[map,x,
n-1]];

Stability[map–,x–,r–,fp–,n–]ª
Module[$equ,s1,s2%,

equ5D[Nest[map,x,n],x] /. x→fp;
$s1,s2%5Solve[equ55#, r]& /@ $21,1%;
If[s1!5$% && s2!5$%, Sort /@

MapThread[List, $Flatten[r/. s1],Flatten[r/. s2]%],$%] ]

Figure 6. Lyapunov exponent lr of the logistic map.
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These commands help us to analyze the bifurca
structure of the logistic map in an analytical form. For e
ample, the period-one points of the logistic map are

p15PeriodicPoints[Logistic[r],x,1]

H 0,
r 21

r J
which remain stable within the parameter regions~21,1!
and ~1,3!, respectively, as obtained below.

Stability[Logistic[r],r,#,x,1]& /@ p1

$$$21,1%%,$$1,3%%%

Therefore, if 21,r ,1, the fixed point (r 21)/r is
unstable, whereas zero is stable. This implies that ev
trajectory of the system will asymptotically fall to zero
However, asr increases, the system presents atangent bi-
furcation where the fixed point 0 loses its stability and t
fixed point (r 21)/r becomes stable@see interval~1,3! in
Fig. 4#. For larger values of the parameter, the fixed po
(r 21)/r becomes unstable and splits up into two differe
period-2 points:
ed
er

, fo

ha

r
of
se

ts,
eir
he
p25PeriodicPoints[Logistic[r],x,2]

H 11r 2A2322r 1r 2

2r
,

11r 1A2322r 1r 2

2r J
whose stability intervals are

Stability[Logistic[r],r,#,x,2]& /@ p2

$$$21,12A6%,$3,11A6%%,$$21,12A6%,$3,11A6%%%

In this case we have two stability regions for each
the fixed points. Then, four period-4 points become stab
and so on. Note that the calculation of periodic points w
larger periodicities involves polynomials of degrees larg
than five and, therefore, in general, they can only be
tained numerically. In this case, the commandNFixed-
Points[map, x, n] gives all the periodic points of the map u
to periodn. For example, to illustrate the orbit complexit
phenomenon characteristic of chaotic systems, we can
this command to obtain all the unstable periodic points
to a given period~e.g., n58! coexisting with the chaotic
attractor of the logistic map:
NFixedPoints[Logistic[3.9],x,8]

$0.,0.00570386,0.00717971,0.0636502,0.0656863,0.0691803,0.0750764,
0.0917974,0.0919389,0.0974435,0.100562,0.104305,0.111837,0.114523,
0.121947,0.124823,0.132653,0.156816,0.180986,0.213536,0.237367,
0.289332,0.301209,0.358974,0.358974,0.385122,0.388375,0.413084,
0.43037,0.448718,0.465846,0.467459,0.476801,0.578097,0.619508,
0.697677,0.71665,0.74359,0.74359,0.74359,0.74359,0.75911,0.801914,
0.803777,0.827517,0.848259,0.897436,0.897436,0.9193,0.951213,0.964744%
on

un-
that
si-

y a
This phenomenon of creation and destruction of fix
points as a transition to chaos is also present in high
dimensional discrete and continuous systems such as
example, the He´non map:6

~xn11 ,yn11!5 f ~r ,xn ,yn!5~12rxn
21yn , 1

3xn!.

Henon[r–] ª

Function@x,$12r x@@1## ˆ 21x@@2##, 1/3 x@@1##%#

Depending on the values of the parameterr , this sys-
tem evolves among different behaviors associated with c
otic dynamics~transient chaos, interior crisis, etc.!.7 For
example, the system exhibits deterministic chaos for
51.282. The bifurcation diagram associated with one
the variables, sayx, can be obtained as in the previous ca
~see Fig. 7!:

Bifurcation[Henon[r],$r,0,1.3,250%,$0.5,0.5%,150]

In this case, we can also obtain the periodic poin
forming the period-doubling route to chaos, and study th
stability. For example, the period 1 and 2 points for t
Hénon map can be obtained by
-
r

-

p15PeriodicPoints[Henon[r],$x,y%,1]

H H 2
11A119r

3r
,2

11A119r

9r J ,

3H 221A4136r

6r
,

221A4136r

18r J J
p25PeriodicPoints[Henon[r],$x,y%,2]

H H 11A2319r

3r
,2

211A2319r

9r J ,

3H 2
211A2319r

3r
,

11A2319r

9r J J
In this case, the stability of the fixed points depends

the eigenvalues of the corresponding Jacobian matrix:

ev5Eigenvalues[D[Henon[r][$x,y%],#]& /@$x,y%]

$ 1
6 ~26rx2A12136r 2x2!, 1

6 ~26rx1A12136r 2x2!%

The next command shows that all these points are
stable, since they have associated a positive eigenvalue
defines an unstable manifold. Fixed points with both po
tive and negative eigenvalues are calledsaddle nodesand
define stable and unstable manifolds. These points pla
key role in the context of chaos control.8
COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998 611
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(ev //. $x→#[[1]],r→1.282%)& /@ Union[p1,p2]

$$20.2218,1.503%,$22.736,0.1218%,$20.1064,3.134%,

$21.872,0.1781%%

Figure 8 shows the strange attractor~chaotic orbit! of
the Hénon map forr 51.282 and (x0 ,y0)5(0.5,0.5). Fig-
ure 8 also shows the periodic points obtained above.

MultipleListPlot[Orbit[Henon[1.282],$0.5,0.2%,2000],
p1/.r→1.282,p2/.r→1.282]

Deterministic chaos is also present in continuous n
linear systems given by flows, i.e., systems of differen
equations. One of the most popular continuous nonlin
systems is the Duffing oscillator, which includes dampi
and periodic external forcing terms and is given by t
following second-order differential equation:9

x91ax81x32x5 f cos~vt !,

or, equivalently, by the system of three first-order differe
tial equations

H x85v
v852av2x31x1 f cos~z!,
z85v

,

wherev5x8, z5vt, a is the constant damping, andf and
v are the strength and the frequency of the external forc
respectively. By fixing the values of constant damping a
external frequency, the oscillator exhibits a great variety
behaviors as a function of the parameterf . In this example,
we takea50.5 andv51.

Duffing[f–,w–]ª$v, 21/2*v2xˆ31x1f* Cos[z], w%;

Figure 7. Bifurcation diagram of the He´non map.

Figure 8. Chaotic attractor of the He´non map with two period-one and
two period-two points labeled as3 and 1, respectively.
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,

The fixed points of a flow can be obtained using t
commandFixedPointsFlow[flow,vars]. In the case of the
nonlinear oscillator, in the absence of external forcingf
50), the system has two stable fixed points
x521 andx51 ~the positive one is shown in Fig. 9 la
beled f 50!.

fp5FixedPointsFlow[Duffing[0,w], $x,v,z%]

$$v→0,x→21%,$v→0,x→0%,$v→0,x→1%%

The stability of these fixed points is given by the e
genvalues of the corresponding Jacobian matrix:

ev5Eigenvalues[D[Duffing[0,w],#]& /@$x,v,z%]

$0, 1
4 ~212A17248x2!, 1

4 ~211A17248x2!%

The eigenvalues corresponding to each of the ab
fixed points are

Re[ev /.fp]

$$0,2 1
4 ,2 1

4%,$0, 1
4 ~212A17!, 1

4 ~211A17!%,

3$0,2 1
4 ,2 1

4%

Therefore, x521 and x51 are two stable fixed
points ~negative real parts of the eigenvalues! andx50 is
an unstable fixed point. When some forcing is applied
the system, all the points become unstable and the sys
oscillates around one of the fixed points with frequen
equal to the external frequencyv ~Fig. 9, f 50.3!. For val-
ues of the parameterf .0.321 the system goes through
period-doubling route to chaos. This period-doubling p
cess has an accumulation point atf c50.3586. Therefore,
larger values of the parameter lead to a chaotic system.
f c, f ,0.386, the chaotic orbits of the system rema
trapped at one of the wells oscillating around a fixed po
For example, Fig. 9 (f 50.37) shows a chaotic orbit oscil
lating around the unstable fixed pointx521. When in-
creasing the value of the parameter, the strange attra
encompasses both wells~Fig. 9, f 50.39!.

The commandOrbitFlow[flow, x, x0, $t0,t1,dt%] imple-
ments a fourth-order Runge-Kutta method for systems

Figure 9. Dynamics of the Duffing oscillator for different values of t
external forcing f .



in
us-

n-
r
s.

ave
ex

se

or
se
bit
cte

rbi

iod
s.

es

in
of

the
first-order differential equations. This command is used
the next example to calculate and plot several orbits, ill
trating different behaviors of the Duffing oscillator.

Show[GraphicsArray[Show[
OrbitFlow[Duffing[#,1],$x,v,z%,$0.,1.,0.%,$0,160,0.05%,
Show→Plot]& /@$0.,0.3,0.37,0.39%] ]]

II. SELECTING UNSTABLE PERIODIC ORBITS

As we have indicated in Sec. I, the infinite number of u
stable periodic orbits~UPOs! embedded in the attracto
plays an important role in the behavior of chaotic system
However, in many practical situations one does not h
access to system equations and must deal directly with
perimental data in the form of a time series.10 Here in Sec.
II we give some commands for computing some of the
orbits from a time series of the system~these commands
will be used later for controlling chaos!.

A simple algorithm for obtaining a UPO searches f
closed ‘‘orbits’’ within the time series. Suppose we choo
an arbitrary point of the time series and wait until the or
comes back again to a small neighborhood of the sele
point ~the return neighborhood!. Then, we may conclude
that the orbit obtained shadows an unstable periodic o
of the system.10 The commandUPO[timeseries, e, maxper]
obtains all the UPOs within the time series up to per
maxperconsideringe-radius balls as return neighborhood
by

ble

ies

rac
in

as
be-
ys-
tem
ore
ste
-

d

t

For example, let us consider the following time seri
obtained from the Duffing oscillator withf 50.39.

orb5Drop[#,21]&/@
OrbitFlow[Duffing[0.39,1],$x,v,z%,$0,1,0%,$0,500,0.001%];

The commandsUPO, UPOFrequencies ~to obtain the
frequencies of UPOs of different periods!, andUPOHisto-
gram ~to obtain a histogram of the frequencies, as shown
Fig. 10! help us to understand the interwoven structure
UPOs within the given series.

Figure 10. Frequency histogram of UPO periods p obtained with
UPO command.
upos5UPO[orb,0.01,500];
UPOFrequencies[upos]
UPOHistogram[orb,500]

$$50,1%,$62,1%,$78,1%,$91,1%,$100,1%,$101,1%,$105,1%,$113,1%,$119,1%,
$123,1%,$124,10%,$125,4%,$126,5%,$129,1%,$139,1%,$141,1%,$145,1%,
$149,1%,$158,1%,$183,1%,$213,1%,$218,1%,$221,1%,$222,1%,$228,1%,
$229,1%,$235,1%,$244,1%,$245,2%,$246,1%,$248,1%,$252,2%,$253,2%,
$254,4%,$255,7%,$256,1%,$259,2%,$263,1%,$264,1%,$266,1%,$275,1%,
$292,1%,$323,1%,$328,1%,$329,1%,$337,1%,$344,1%,$351,1%,$359,2%,
$360,1%,$361,1%,$363,1%,$364,1%,$366,1%,$367,1%,$368,1%,$369,3%,
$370,3%,$371,3%,$372,4%,$374,2%,$375,1%,$376,5%,$377,5%,$379,2%,
$380,3%,$382,3%,$383,1%,$385,1%,$386,1%,$387,1%,$388,1%,$390,1%%
is
r of

g
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-
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-
de.
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fo-
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Finally, some of the obtained UPOs can be plotted
using the SelectUPO[timeseries,$minper,maxper%] com-
mand, which selects from the time series all the unsta
orbits of periods in the rangep5minper to maxper. For
example, Fig. 11 shows several UPOs with periodicit
associated with the peaks of Fig. 10~124, 252, 376!.

UPOPlot[orb,SelectUPO[upo,$#,#%]]& /@ $124,252,376%

III. CONTROLLING AND SUPPRESSING CHAOS

As we have shown in Sec. II, chaotic systems are cha
terized by an exponential separation of nearby orbits
time. This feature of chaos has been traditionally seen
troublesome property, especially in practical settings,
cause even the tiniest perturbation might modify the s
tem’s behavior in an unpredictable way and lead the sys
to a catastrophic situation. Chaotic behavior is theref
undesirable in many practical settings, and one is intere
-

a

d

in controlling the system to obtain regular behavior. Th
can be done by taking advantage of the infinite numbe
UPOs coexisting with the chaotic attractor~orbit complex-
ity!. The idea of controlling chaos consists of stabilizin
some of these unstable orbits, thus leading to regular
predictable behavior.

This idea was first suggested by Ott, Grebogi a
Yorke.8 They proposed a method@known as the Ott–
Grebogi–Yorke~OGY! method# to stabilize UPOs contain
ing a saddle-node point~an unstable fixed point with stabl
and unstable manifolds!. The algorithm waits until the sys
tem comes into a small neighborhood of the saddle no
Then a small perturbation is applied to some access
system parameter leading the orbit to the stable manifold
the saddle point, thus stabilizing the UPO. This method w
experimentally applied in Ref. 11.

Since the above authors’ work, much attention has
cused on controlling chaos and several alternative meth
COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998 613
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have been proposed for a survey on controlling chaos.12,13

The possibility of controlling chaos is changing the po
reputation of chaotic systems, since they can be seen a
unlimited reservoir of different behaviors. This flexibilit
may be very advantageous in many practical situations,
thus some of the chaos-control techniques that will be m
tioned below have been applied to mechanical system11

chemical reactions,14 electronic circuits,15 chaotic lasers,16

etc.
In general, these methods can be classified into

categories: chaos-control and chaos-suppression a
rithms. On the one hand, chaos-control methods, suc
the OGY algorithm, have the common feature that the fi
controlled state is a UPO of the original system. Examp
of these methods are the proportional feedba
method,14–17the occasional proportional feedback~OPF!,14

and the small time-dependent continuous perturbations17

On the other hand, those methods that work on

Figure 11. Period-one, -two, and -three UPOs of the Duffing oscillato
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auxiliary system leading to a controlled state that does
really belong to the original system are referred to as cha
suppression algorithms. Some of them are designed to
low a prescribed goal dynamics.18–20 For instance, Hu¨bler
considers a resonant control method that modifies the o
nal system such that the goal dynamics become a st
solution of the auxiliary system. Another alternative f
chaos suppression is based on the effects of stochastic
periodic perturbations of the system.21–24 The addition of
noise25 or the addition of constant pulses to the syste
variables26 represents other ways to suppress chaotic
haviors.

With the aim of illustrating the advantages and sho
comings of both methodologies, we describe two differe
algorithms: the linear feedback algorithm for controllin
chaos and a recently introduced suppression algorithm
works by adding constant pulses to the system variable

A. Controlling chaos: Linear-feedback methods

Feedback control has been recognized to be useful for
bilizing unstable periodic orbits.13,17In fact, linear feedback
has been extensively used within the framework of line
systems.27 Now we consider the case of nonlinear chao
systems, namely, the logistic map and the Duffing osci
tor.

Let us first consider the simple case of maps. It h
been proven13 that a linear-feedback controller of the form
un52kvn can control chaotic motion for some consta
feedback k andvn holding,vn→0 as n→`. Under certain
conditions, this linear-feedback control can lead the cha
system to stable motion. A usual and simple choice forvn

is vn5xn2p, wherep is an unstable period-one fixed poin
of the system. The commandFeedbackControl[map, upo, k,
x0, a, b] implements the above control algorithm, whe
upo is an arbitrary UPO of the system. First,a iterations of
the map are performed without applying the control meth
in order to show the original dynamics. Then, the method
switched on the nextb steps.

For example, consider the unstable period-one orbi
the logistic map forr 53.9 ~as obtained in Sec. I!.

PeriodicPoints[Logistic[3.9],x,1]
$0.,0.74359%

In this case, a controller of the formun52kvn5
20.95 (xn20.74359) stabilizes the chaotic system to t
desired fixed point~see Fig. 12!.

upo5$0.74359%;
FeedbackControl[Logistic[3.9],upo,0.95,0.1,3000,3000]

In this case, the effect of linear-feedback control c
easily be interpreted with the help of the bifurcation d
gram of the controlled system as a function of the cont
parameterk. Due to the universal character of the bifurc
tion route for unimodal maps, the controlled map also e
hibits a bifurcation route~shown in Fig. 13!, with the de-
sired period-one pointx50.74359 . . .

LogisticControl[k–]ª
Function[x, 3.9 x (12x)1 k(x20.74359)];

Bifurcation[LogisticControl[k],$k,0,1,250%,0.5,150]

This algorithm can be easily extended to deal w
UPOs with arbitrary periods. In this case, the control
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takes the formvn5xn2pmod(n,m) , wherem is the period of
the UPO$p1 , . . . ,pm%. For example, in the following we
stabilize a period-3 orbit of the chaotic logistic map~Fig.
14!.

PeriodicPoints[Logistic[3.9],x,3]
$0.132653,0.180986,0.448718,0.578097,0.74359,
0.951213,0.964744%

upo5$0.132653,0.448718,0.964744%;
FeedbackControl[Logistic[3.9],upo,0.021,0.1,3000,3000]

A similar idea is applied in Ref. 17 for controlling
nonlinear flows. The Pyragas delayed self-controlling fe
back method uses a UPO of the flow to build a feedb
controller of the formxn5xn2pmod(n,m) , wherem is the
number of sampled points contained in the UP
$p1 , . . . ,pm%. We can use here the algorithms presented
Sec. II for obtaining UPOs. For instance, consider the c
otic Duffing oscillator withf 50.39 shown in Fig. 9. Sup
pose we want to stabilize one of the period-one UPOs
tained in Sec. II~Fig. 11!. We can use theUPO and
UPOSelect commands to select the desired unstable or
as we did before:

orb5OrbitFlow[Duffing[0.39,1],$x,v,z%,$0,1,0%,
$0,500,0.001%];

upos5UPO[orb,0.01,500];
upo15First[UPOSelect[upos,$124,124%]]];

Then, the commandFeedbackFlow applies the above
feedback-control algorithm to the chaotic Duffing oscillat
in such a way that the system is controlled to the des
period-one motion~Fig. 15!.

Figure 12. Period-one controlled orbit of the logistic map. The vertic
dashed line shows the moment at which the chaos-control algorithm s
being applied.

Figure 13. Bifurcation diagram of the controlled logistic map as a fun
tion of the control parameter k.
orb5FeedbackFlow[Duffing[0.39,1],$x,v,z%,$1.,1.,1.%,
$0,150,0.05%,0.13,125,v,upo1,Show→TimeSeries];

ListPlot[First /@ orb]
ListPlot[Drop[#,21]& /@ orb]

In light of these examples we can conclude that fe
back methods for controlling chaos can be easily imp
mented, can work automatically after being designed,
can be interpreted physically. These properties make th
algorithms suitable for many practical applications.

B. Suppressing chaos: Adding pulses to the system variables

The feedback algorithms presented in Sec. III A allow us
stabilize the chaotic behavior of nonlinear systems by us
some unstable periodic orbit embedded into the chaotic
tractor. Although these methods are easy to implem
they require some knowledge about the system dynam
~especially in the case of continuous systems!. Chaos-
suppression algorithms allow us to stabilize the system
namics without being concerned with the final stabiliz
state. The following example will help us to clarify th
advantages and shortcomings between these two met
ologies.

Figure 14. Period-three controlled orbit of the logistic map.

Figure 15. Controlled period-one orbit of the chaotic Duffing oscillat
using the Pyragas method.
COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998 615
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As an example of a chaos-suppression algorithm
consider a recently introduced method that acts on the
tem variables.7,26 This method does not require any info
mation about the system so it is, therefore, applicable e
in situations where there is complete lack of informatio
Moreover, in many practical applications, acting on the s
tem variables is easier than acting on the system par
eters. For example, in a chemical reaction it is easy to p
form changes in the system variables~by injecting or
removing some components!, whereas performing change
in the system parameters may be hard to do.

In the case of maps, the chaos-suppression algori
applies a pulse of strengthk to the system variables ever
Dn iteration steps, either in multiplicative or additive way
in the following form:

xn→xn~11dnDnk!⇔xn5 f ~r ,xn21!~11dnDnk!,

xn→xn1dnDnk⇔xn5 f ~r ,xn21!1dnDnk,

wherednDn51, if mod(n,Dn)50, anddnDn50, otherwise.
The method can be interpreted by noting that some quan
of xn is injected into or removed from the system everyDn
iterations, depending on whetherk is positive or negative.
The difference between the two alternatives lies in the w
the pulses are introduced. In the multiplicative case,
pulse depends on the position of the system~the value of
the variable! in phase space. The additive method is a s
pler alternative that does not require any information ab
the system and, hence, is easier to apply in practical si
tions.

Using these methods, it is possible to stabilize chao
systems by appropriately choosing the strength of
pulsesk and the frequency of applicationDn. The com-
mandSuppressMap[map, k, dn, x0, a, b] applies additive or
multiplicative pulses of strengthk to the system everydn
iteration steps starting at the initial conditionx0. First, a
iterations are performed without applying the method
show the original system. Then, the method is switched
the nextb steps. For example, the first 3000 iterations
Fig. 16 show a chaotic orbit of the logistic map. Then, t
control method is switched on and a period-1 orbit is s
bilized.

SuppressMap[Logistic[3.9],20.4,1,0.5,3000,3000,
Method→Additive]

Figure 16. Stabilization of a period-one orbit with the additive chao
suppression method.
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Note that this orbit is not a true period-one orbit of th
logistic map, but a periodic stable orbit of the auxilia
system

xn1153.9xn~12xn!1k.

Then, the performance of the chaos-suppress
method can be qualitatively analyzed with the bifurcati
structure of this auxiliary system as a function of the p
rameterk. Figure 17 shows the bifurcation diagram for th
parameter values in the rangek520.5 to 0. Note that,
when the suppression method is not acting (k50), the
original chaotic orbit of the system is recovered.

AdditiveControl[k–]ªFunction[x,Logistic[39/10][x]1k];
Bifurcation[AdditiveControl[k],$k,20.5,0,250%,0.5,150]

We can use the commands introduced in Sec. I
obtain the values ofk that stabilize the chaotic system to
periodic orbit. For instance, if we wish to stabilize the ch
otic logistic map to a period-one orbit by using th
additive-suppression algorithm we can proceed as follo

p15PeriodicPoints[AdditiveControl[k],x,1]

H 1

78
~292A84111560k!,

1

78
~291A84111560k!J

s15Stability[AdditiveControl[k],k,#,x,1]& /@ p1

H $%,{{ 2
841

1560
,2

147

520
}} J

From the above calculations we know that the p
turbed system has two period-one fixed points. The first
is never stable and the second one is stable whenk is on the
interval ~2~841/1560!, 2~147/520!!.~20.539,20.283!.
Thus, by choosing a value ofk in this range (k520.4), a
period-1 orbit can be controlled~see Fig. 16!. Moreover,
we can choose among different values for the period-
point by substitutingk in p1.

The pulses can also be applied in a multiplicative wa
The above analytical study can also be performed in
case obtaining similar results. For example, by apply
multiplicative pulses of strengthk520.042, the chaotic
logistic map can be switched to a periodic window wher
period-6 orbit is controlled~Fig. 18!.

SuppressMap[Logistic[3.6],20.042,3,0.5,3000,3000,
Method→Multiplicative]

Figure 17. Bifurcation structure of the perturbed logistic map as a fun
tion of the suppression parameter k.
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Using the above chaos-control method, we can sw
the chaotic system not only to periodic orbits but also
any of the unstable behaviors coexisting with the chao
system. For example, in the logistic map the transition fr
chaos to the period-3 window is done by an intermitte
regimen. This behavior can be stabilized in the chaotic s
tem by considering the pulses valuek520.04225, as
shown in Fig. 19.

SuppressMap[Logistic[3.6],20.04225,3,0.5,1000,2000,
Method→Multiplicative]

Therefore, when no information about the system
available, the chaos-control algorithm can be applied
trying different values for the pulses. However, when t
structure of the system is known, the bifurcation struct
of the controlled system will allow us to predict whic
pulse values are needed to control different periodic orb
This analysis can also be performed in higher-dimensio
maps.

The same algorithm can be applied to tw
dimensional maps. In this case, the pulses are introduce
the system by considering the strength vectork5(k1 ,k2).
For simplicity, we considerk15k2 , although different or-
bits can be stabilized by applying different pulses to each
the variables.

As an example of the application of the method, F
20 shows the orbit that results from applying the cha
control method with a strength valuek520.00353 to the
Hénon map. With this perturbation the system pas
through an interior crisis where the strange attractor s
denly shrinks and the system is described in phase spac
seven chaotic segments. In this case, chaos appears fr
crisis route to chaos.

ControlMap2D[Henon[1.282,0.3],20.007,1,$0.5,0.5%,2000]

Figure 18. Suppressing chaos with small multiplicative pulses.

Figure 19. Switching from chaos to intermittency in the logistic map
l

n

y
a

Other behaviors can be similarly controlled as, for e
ample, the quasiperiodicity route to chaos~see Ref. 28 for a
more detailed explanation!.

Introducing pulses into the system variables of co
tinuous dynamical systems described by differential eq
tions is not so intuitive as it is in the case of maps. Nev
theless, when using a numerical method to integrate
differential equations, the continuous orbit of the system
approximated by a sequence of points sampled at gi
time steps. Then, we can take the integration step as
arbitrary time scale for the perturbations. Thus, the cha
suppression algorithm can be described as it is in the
crete case by perturbing the variables everyDn integration
steps, in both multiplicative and additive ways.

This algorithm is implemented in the comman
ControlFlow[flow, x, x0, $t0,t1,dt%, k], which applies pulses to
the system variables during the integration process.
goal here is to suppress the chaotic behavior shown in
9 ( f 50.39). For example, a period-1 orbit can be stabiliz
by applying pulses of strengthk520.025 tox ~note thatv
and z are auxiliary variables in this example! every Dn
51 integration steps~Fig. 21!.

orbs5SuppressFlow[Duffing[0.39,1],$x,v,z%,$0,1,0%,
$0,100,0.1%,$#,0,0%,1,Show→TimeSeries]& /@ $0.,20.025%;

Show[GraphicsArray[$
ListPlot[First /@ #]& /@ orbs,
ListPlot[Drop[#,21]& /@ #]& /@ orbs%]]

Figure 20. Suppressing chaos in the He´non map.

Figure 21. Time series and phase-space plot of the original chaotic (l
and the stabilized (right) orbits of the Duffing oscillator.
COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998 617
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In addition to having been found in the nonlinear o
cillators described by nonautonomous differential eq
tions, deterministic chaos has also been found in a g
variety of three-variable autonomous continuous model
practical applications. An example of this is the Ro¨ssler
model:29

H x852y2z,
y85x1ay,
z85b1z~x2c!,

which describes a chemical process. Fora50.2, b50.2
and c54.6, the Ro¨ssler model exhibits chaos appeari
through a period-doubling bifurcation route~Fig. 22!.

Rossler5$2y2z, x10.2*y, 0.21z (x24.6)%;
OrbitFlow[Rossler,$x,y,z%,$3,3,1%,$0,150,0.05%,

Show→Plot3D];

By applying the control method to this system, diffe
ent periodic orbits from the period-doubling route to cha
can be stabilized. In Fig. 23, period-2 and period-4 orb
are stabilized by using different pulse strengths:

Show[GraphicsArray [
SuppressFlow[Rossler,$x,y,z%,$1.,1.,1.%,$100,150,0.05%,

$#,#,#%,10,Show→Plot3D]& /@ $20.09,20.08% ]]

The above implementation of the chaos suppress
method for continuous systems uses an arbitrary time s
for the perturbations. However, it would be better to ap
the pulses in a natural time scale of the system. Suc
natural scale can be given by aPoincarésection. The per-

Figure 22. Chaotic attractor of the Ro¨ssler system.

Figure 23. Suppressing chaos in the Ro¨ssler system with pulses of20.09
and 20.08, respectively.
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t

e

turbations can then be introduced in the flow each time
system crosses the Poincare´ section. This technique is com
mon within the framework of chaos-control methods~for
example, it is the key concept in the OGY method!.8 Thus,
the continuous system can be controlled by simply cont
ling an associated Poincare´ map, that is, a discrete map.30

For example, the flow of the Ro¨ssler system is normal to
the planex50. This plane can be taken as a Poincare´ sec-
tion of the system. Then, in order to introduce the cont
method into a natural time scale of the system, the pu
should be applied to variablesy andz each time the system
crosses the Poincare´ section~given by the conditionx50!.
This section can be specified in Mathematica using
Boolean conditionx0,0 && x1.0, wherex0 andx1 are the
x values of two consecutive sampled points, (x0, y0, z0)
and (x1, y1, z1), that result from the integration procedur
The commandSuppressPoincare implements this algo-
rithm. Figure 24 illustrates its application to the Ro¨ssler
model.

g5SuppressPoincare[Rossler,$x,y,z%,$1,1,1%,$100,150,0.05%,
$0,20.12,20.12%,x0,0 && x1.0,$x0,y0,z0%,$x1,y1,z1%,
Show→Plot3D];

poly5$Thickness[0.02],Polygon[$$0,23,21%,$0,23,2%,
$0,210,2%, $0,210,21%,$0,23,21%%]%;
Shadow[Show[$g,Graphics3D[poly]%,Shading→True],

ZShadow→False, PlotRange→All]
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