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About This Book
This book describes the Financial Derivatives Toolbox for MATLAB , a 
collection of tools for analyzing individual financial derivative instruments and 
portfolios of instruments.

Organization of the Document

Chapter Description

“Getting Started” Describes interest rate models, bushy and 
recombinent trees, instrument types, and 
instrument portfolio construction.

“Using Financial 
Derivatives”

Describes techniques for computing prices and 
sensitivities based upon the interest rate term 
structure, the Heath-Jarrow-Morton (HJM) model 
of forward rates, and the Black-Derman-Toy (BDT) 
interest rate model.

“Hedging Portfolios” Describes functions that minimize the cost of 
hedging a portfolio given a set of target 
sensitivities, or minimize portfolio sensitivities for 
a given set of maximum target costs.

“Function 
Reference”

Describes the functions used for interest rate 
environment computations, instrument portfolio 
construction and manipulation, and for 
Heath-Jarrow-Morton and Black-Derman-Toy 
modeling.
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xi

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Used Example

Example code Monospace font To assign the value 5 to A, 
enter

A = 5

Function names/syntax Monospace font The cos function finds the 
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Keys Boldface with an initial capital 
letter

Press the Enter key.

Literal strings (in syntax 
descriptions in reference 
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions, 
operators, and constants

This vector represents the 
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with
A =

5

Menu titles, menu items, 
dialog boxes, and controls

Boldface with an initial capital 
letter

Choose the File menu.

New terms Italics An array is an ordered 
collection of information.

Omitted input arguments (...) ellipsis denotes all of the 
input/output arguments from 
preceding syntaxes. 

[c,ia,ib] = union(...)

String variables (from a 
finite list)

Monospace italics sysc = d2c(sysd,'method')
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Related Products 
The MathWorks provides several products relevant to the tasks you can 
perform with the Financial Derivatives Toolbox.

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are 
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products” 
section.

Note  The toolboxes listed below all include functions that extend the 
capabilities of MATLAB.

Product Description

Database Toolbox Tool for connecting to, and interacting with, 
most ODBC/JDBC databases from within 
MATLAB

Datafeed Toolbox MATLAB functions for integrating the 
numerical, computational, and graphical 
capabilities of MATLAB with financial data 
providers

Excel Link Tool that integrates MATLAB capabilities with 
Microsoft Excel for Windows 

Financial Time Series 
Toolbox

Tool for analyzing time series data in the 
financial markets

Financial Toolbox MATLAB functions for quantitative financial 
modeling and analytic prototyping



Related Products

xiii

GARCH Toolbox MATLAB functions for univariate Generalized 
Autoregressive Conditional Heteroskedasticity 
(GARCH) volatility modeling 

MATLAB Integrated technical computing environment 
that combines numeric computation, advanced 
graphics and visualization, and a high-level 
programming language

MATLAB Compiler Compiler for automatically converting 
MATLAB M-files to C and C++ code

MATLAB Report 
Generator

Tool for documenting information in MATLAB 
in multiple output formats

MATLAB Runtime 
Server

MATLAB environment in which you can take 
an existing MATLAB application and turn it 
into a stand-alone product that is easy and 
cost-effective to package and distribute. Users 
access only the features that you provide via 
your application’s graphical user interface 
(GUI). They do not have access to your code or 
the MATLAB command line. 

Optimization Toolbox Tool for general and large-scale optimization of 
nonlinear problems, as well as for linear 
programming, quadratic programming, 
nonlinear least squares, and solving nonlinear 
equations

Spline Toolbox Tool for the construction and use of piecewise 
polynomial functions

Statistics Toolbox Tool for analyzing historical data, modeling 
systems, developing statistical algorithms, and 
learning and teaching statistics

Product Description
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Background Reading

Black-Derman-Toy (BDT) Modeling
A description of the Black-Derman-Toy interest rate model can be found in:

Black, Fischer, Emanuel Derman, and William Toy, “A One Factor Model of 
Interest Rates and its Application to Treasury Bond Options,” Financial 
Analysts Journal, January - February 1990.

Heath-Jarrow-Morton (HJM) Modeling
An introduction to Heath-Jarrow-Morton modeling, used extensively in the 
Financial Derivatives Toolbox, can be found in:

Jarrow, Robert A., Modelling Fixed Income Securities and Interest Rate 
Options, McGraw-Hill, 1996, ISBN 0-07-912253-1.

Financial Derivatives
Information on the creation of financial derivatives and their role in the 
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Chance, Don. M., An Introduction to Derivatives, The Dryden Press, 1998, 
ISBN 0-030-024483-8

Fabozzi, Frank J., Treasury Securities and Derivatives, Frank J. Fabozzi 
Associates, 1998, ISBN 1-883249-23-6

Hull, John C., Options, Futures, and Other Derivatives, Prentice-Hall, 1997, 
ISBN 0-13-186479-3

Wilmott, Paul, Derivatives: The Theory and Practice of Financial Engineering, 
John Wiley and Sons, 1998, ISBN 0-471-983-89-6
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Introduction
The Financial Derivatives Toolbox extends the Financial Toolbox in the areas 
of fixed income derivatives and of securities contingent upon interest rates. The 
toolbox provides components for analyzing individual financial derivative 
instruments and portfolios. Specifically, it provides the necessary functions for 
calculating prices and sensitivities, for hedging, and for visualizing results.  

Interest Rate Models
The Financial Derivatives Toolbox computes pricing and sensitivities of 
interest rate contingent claims based upon:

• The interest rate term structure (sets of zero coupon bonds) 

• The Heath-Jarrow-Morton (HJM) model of the interest rate term structure. 
This model considers a given initial term structure of interest rates and a 
specification of the volatility of forward rates to build a tree representing the 
evolution of the interest rates, based upon a statistical process.

• The Black-Derman-Toy (BDT) model for pricing interest rate derivatives. In 
the BDT model all security prices and rates depend upon the short rate 
(annualized one-period interest rate). The model uses long rates and their 
volatilities to construct a tree of possible future short rates. It then 
determines the value of interest rate sensitive securities from this tree.

For information, see:

• “Pricing and Sensitivity from Interest Rate Term Structure” on page 2-17 for 
a discussion of price and sensitivity based upon portfolios of zero coupon 
bonds.

• “Pricing and Sensitivity from HJM” on page 2-35 for a discussion of price and 
sensitivity based upon the HJM model.

• “Pricing and Sensitivity from BDT” on page 2-63 for a discussion of price and 
sensitivity based upon the BDT model.

Trees
The Heath-Jarrow-Morton model works with a type of interest rate tree called 
a bushy tree. A bushy tree is a tree in which the number of branches increases 
exponentially relative to observation times; branches never recombine.
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The Black-Derman-Toy model, on the other hand, works with a recombining 
tree. A recombining tree is the opposite of a bushy tree. A recombining tree has 
branches that recombine over time. From any given node, the node reached by 
taking the path up-down is the same node reached by taking the path down-up. 
A bushy and a recombining tree are illustrated below.

This toolbox provides the data file deriv.mat that contains two trees, HJMTree, 
a bushy tree, and BDTTree, a recombining tree. The toolbox also provides the 
treeviewer function, which graphically displays the shape and data of price, 
interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of 
an HJM tree and the recombining shape of a BDT tree are apparent.

Bushy Tree

Recombining Tree
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Financial Instruments
The toolbox provides a set of functions that perform computations upon 
portfolios containing up to seven types of financial instruments.

Bond. A long-term debt security with preset interest rate and maturity, by 
which the principal and interest must be paid.

Bond Options. Puts and calls on portfolios of bonds.

Fixed Rate Note. A long-term debt security with preset interest rate and 
maturity, by which the interest must be paid. The principal may or may not be 
paid at maturity. In this version of the Financial Derivatives Toolbox, the 
principal is always paid at maturity.

Floating Rate Note. A security similar to a bond, but in which the note’s interest 
rate is reset periodically, relative to a reference index rate, to reflect 
fluctuations in market interest rates.

Cap. A contract which includes a guarantee that sets the maximum interest 
rate to be paid by the holder, based upon an otherwise floating interest rate.

Floor. A contract which includes a guarantee setting the minimum interest rate 
to be received by the holder, based upon an otherwise floating interest rate.

BDTTree (recombining)HJMTree (bushy)
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Swap. A contract between two parties obligating the parties to exchange future 
cash flows. This version of the Financial Derivatives Toolbox handles only the 
vanilla swap, which is composed of a floating rate leg and a fixed rate leg.

Additionally, the toolbox provides functions for the creation and pricing of 
arbitrary cash flow instruments based upon zero coupon bonds or upon the BDT 
or HJM models. 

Hedging
The Financial Derivatives Toolbox also includes hedging functionality, 
allowing the rebalancing of portfolios to reach target costs or target 
sensitivities, which may be set to zero for a neutral-sensitivity portfolio. 
Optionally, the rebalancing process can be self-financing or directed by a set of 
user-supplied constraints. For information, see:

• “Hedging” on page 3-2 for a discussion of the hedging process.

• “hedgeopt” on page 4-72 for a description of the function that allocates an 
optimal hedge.

• “hedgeslf” on page 4-75 for a description of the function that allocates a 
self-financing hedge.
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Creating and Managing Instrument Portfolios
The Financial Derivatives Toolbox provides components for analyzing 
individual derivative instruments and portfolios containing several types of 
financial instruments. The toolbox provides functionality that supports the 
creation and management of these instruments:

• Bonds

• Bond Options

• Fixed Rate Notes

• Floating Rate Notes

• Caps

• Floors

• Swaps

Additionally, the toolbox provides functions for the creation of arbitrary cash 
flow instruments. 

The toolbox also provides pricing and sensitivity routines for these 
instruments. (See “Pricing and Sensitivity from Interest Rate Term Structure” 
on page 2-17, “Pricing and Sensitivity from HJM” on page 2-35, or “Pricing and 
Sensitivity from BDT” on page 2-63 for information.)

Portfolio Creation 
The instadd function creates a set of instruments (portfolio) or adds 
instruments to an existing instrument collection. The TypeString argument 
specifies the type of the investment instrument: 'Bond', 'OptBond', 
'CashFlow', 'Fixed', 'Float', 'Cap', 'Floor', or 'Swap'. The input 
arguments following TypeString are specific to the type of investment 
instrument. Thus, the TypeString argument determines how the remainder 
of the input arguments is interpreted.

For example, instadd with the type string 'Bond' creates a portfolio of bond 
instruments

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face)
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In a similar manner, instadd can create portfolios of other types of investment 
instruments:

• Bond option

InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, 
ExerciseDates, AmericanOpt)

• Arbitrary cash flow instrument

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, 
Basis)

• Fixed rate note instrument
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, 
FixedReset, Basis, Principal) 

• Floating rate note instrument
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, 
Basis, Principal)

• Cap instrument
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, 
Basis, Principal) 

• Floor instrument
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, 
Basis, Principal) 

• Swap instrument

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, 
Basis, Principal, LegType)

To use the instadd function to add additional instruments to an existing 
instrument portfolio, provide the name of an existing portfolio as the first 
argument to the instadd function. 
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Consider, for example, a portfolio containing two cap instruments only.

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the 
same settlement and maturity dates, but with different strikes. In general, the 
input arguments describing an instrument can be either a scalar, or a number 
of instruments (NumInst)-by-1 vector in which each element corresponds to an 
instrument. Using a scalar assigns the same value to all instruments passed in 
the call to instadd. 

Use the instdisp command to display the contents of the instrument set. 

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal
1     Cap  0.06   08-Feb-2000 15-Jan-2003 NaN      NaN   NaN      
2 Cap  0.07   08-Feb-2000 15-Jan-2003 NaN      NaN   NaN 

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and 
the same settlement and maturity dates as the cap instruments.

CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set.

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal
1     Cap  0.06   08-Feb-2000 15-Jan-2003 NaN      NaN   NaN      
2 Cap  0.07   08-Feb-2000 15-Jan-2003 NaN      NaN   NaN 

Index Type CouponRate Settle Maturity Period Basis ...
3     Bond 0.04       08-Feb-2000 15-Jan-2003 NaN    NaN ...
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Portfolio Management
The portfolio management capabilities provided by the Financial Derivatives 
toolbox include:

• Constructors for the most common financial instruments. (See “Instrument 
Constructors” on page 1-9.)

• The ability to create new instruments or to add new fields to existing 
instruments. (See “Creating New Instruments or Properties” on page 1-10.)

• The ability to search or subset a portfolio. See “Searching or Subsetting a 
Portfolio” on page 1-12.)

Instrument Constructors
The toolbox provides constructors for the most common financial instruments.

Note  A constructor is a function that builds a structure dedicated to a certain 
type of object; in this toolbox, an object is a type of market instrument. 

The instruments and their constructors in this toolbox are listed below.

Each instrument has parameters (fields) that describe the instrument. The 
toolbox functions enable you to:

Instrument Constructor

Bond instbond

Bond option instoptbnd

Arbitrary cash flow instcf

Fixed rate note instfixed

Floating rate note instfloat

Cap instcap

Floor instfloor

Swap instswap
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• Create an instrument or portfolio of instruments

• Enumerate stored instrument types and information fields

• Enumerate instrument field data

• Search and select instruments 

The instrument structure consists of various fields according to instrument 
type. A field is an element of data associated with the instrument. For example, 
a bond instrument contains the fields CouponRate, Settle, Maturity, etc. 
Additionally, each instrument has a field that identifies the investment type 
(bond, cap, floor, etc.).

In reality the set of parameters for each instrument is not fixed. Users have the 
ability to add additional parameters. These additional fields will be ignored by 
the toolbox functions. They may be used to attach additional information to 
each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, 
in general, means that the functions using the instrument set (such as 
intenvprice or hjmprice) will use default values. At the time of pricing, an 
error occurs if any of the required fields is missing, such as Strike in a cap, or 
the CouponRate in a bond.

Creating New Instruments or Properties 
Use the instaddfield function to create a new kind of instrument or to add 
new properties to the instruments in an existing instrument collection.

To create a new kind of instrument with instaddfield, you need to specify 
three arguments: 'Type', 'FieldName', and 'Data'. 'Type' defines the type of 
the new instrument, for example, Future. 'FieldName' names the fields 
uniquely associated with the new type of instrument. 'Data' contains the data 
for the fields of the new instrument.  

An optional fourth parameter is 'ClassList'. 'ClassList' specifies the data 
types of the contents of each unique field for the new instrument.

Here are the syntaxes to create a new kind of instrument using instaddfield.

InstSet = instaddfield('FieldName', FieldList, 'Data', DataList, 
'Type', TypeString)

InstSet = instaddfield('FieldName', FieldList, 'FieldClass', 
ClassList, 'Data' , DataList, 'Type', TypeString)



Creating and Managing Instrument Portfolios

1-11

To add new instruments to an existing set, use

InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList, 
'Data', DataList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15, 
2000, and a quoted price of $104.40. Since the Financial Derivatives Toolbox 
does not directly support this instrument, you must create it using the function 
instaddfield. The parameters used for the creation of the instruments are:

• Type: Future

• Field names: Delivery and Price

• Data: Delivery is July 15, 2000, and Price is $104.40.

Enter the data into MATLAB.

Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};

Optionally, you can also specify the data types of the data cell array by creating 
another cell array containing this information.

FieldClass = {'date','dble'};

Finally, create the portfolio with a single instrument.

Port = instaddfield('Type', Type, 'FieldName', FieldName,... 
'FieldClass', FieldClass, 'Data', Data);

Now use the function instdisp to examine the resulting single-instrument 
portfolio.

instdisp(Port)

Index Type Delivery Price
1 Future 15-Jul-2000 104.4

Because your portfolio Port has the same structure as those created using the 
function instadd, you can combine portfolios created using instadd with 
portfolios created using instaddfield. For example, you can now add two cap 
instruments to Port with instadd. 
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Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';
 
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.

instdisp(Port)

Index Type Delivery Price
1 Future 15-Jul-2000 104.4
 
Index Type Strike Settle Maturity CapReset Basis Pricipal
2 Cap 0.06 08-Feb-2000 15-Jan-2003 NaN NaN NaN      
3 Cap 0.07 08-Feb-2000 15-Jan-2003 NaN NaN NaN  

Searching or Subsetting a Portfolio 
The Financial Derivatives Toolbox provides functions that enable you to:

• Find specific instruments within a portfolio 

• Create a subset portfolio consisting of instruments selected from a larger 
portfolio

The instfind function finds instruments with a specific parameter value; it 
returns an instrument index (position) in a large instrument set. The 
instselect function, on the other hand, subsets a large instrument set into a 
portfolio of instruments with designated parameter values; it returns an 
instrument set (portfolio) rather than an index.

instfind. The general syntax for instfind is

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', 
DataList, 'Index', IndexSet, 'Type', TypeList)

InstSet is the instrument set to search. Within InstSet instruments are 
categorized by type, and each type can have different data fields. The stored 
data field is a row vector or string for each instrument. 

The FieldList, DataList, and TypeList arguments indicate values to search 
for in the 'FieldName', 'Data', and 'Type' data fields of the instrument set. 
FieldList is a cell array of field name(s) specific to the instruments. DataList 
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is a cell array or matrix of acceptable values for the parameter(s) specified in 
FieldList. 'FieldName' and 'Data' (consequently, FieldList and DataList)  
parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments 
in the instrument set to check for matches; the default is all indices available 
in the instrument set. 'TypeList' is a string or cell array of strings restricting 
instruments to match one of the 'TypeList' types; the default is all types in 
the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria.  
Instruments are returned in IndexMatch if all the 'FieldName', 'Data', 
'Index', and 'Type' conditions are met. An instrument meets an individual 
field condition if the stored 'FieldName' data matches any of the rows listed in 
the DataList for that FieldName.

instfind Examples. The examples use the provided MAT-file deriv.mat. 

The MAT-file contains an instrument set, HJMInstSet, that contains eight 
instruments of seven types.

load deriv.mat
instdisp(HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis ......... Name Quantity
1  Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100     
2    Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN......... 4% bond  50     
 

Index Type UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101 -50     

 
Index Type  CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003    1 NaN   NaN       4% Fixed 80      

 
Index Type  Spread Settle Maturity FloatReset Basis Principal Name Quantity
5     Float 20 01-Jan-2000 01-Jan-2003 1 NaN   NaN 20BP Float 8       

 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      

 
Index Type  Strike Settle Maturity  FloorReset Basis Principal Name Quantity
7     Floor 0.03 01-Jan-2000 01-Jan-2004    1 NaN   NaN       3% Floor 40      

 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8     Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1  1] NaN   NaN       [NaN] 6%/20BP Swap 10 
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Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

     1
     4
     5
     8

Find all cap and floor instruments with a maturity date of January 01, 2004.

CapFloor = instfind(HJMInstSet,... 
'FieldName','Maturity','Data','01-Jan-2004', 'Type',... 
{'Cap';'Floor'})

CapFloor =

     6
     7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet,'FieldName',... 
'Quantity','Data',{'50';'-50'})

Pos50 =

     2
     3

instselect. The syntax for instselect is exactly the same syntax as for 
instfind. instselect returns a full portfolio instead of indexes into the 
original portfolio. Compare the values returned by both functions by calling 
them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a 
maturity date of January 01, 2003. 
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Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

     1
     4
     5
     8

Now use the same instrument set as a starting point, but execute the 
instselect function instead, to produce a new instrument set matching the 
identical search criteria.

Select2003 = ... 
instselect(HJMInstSet,'FieldName','Maturity','Data',... 
'01-Jan-2003')

instdisp(Select2003)

Index Type CouponRate Settle Maturity Period Basis ......... Name Quantity
1  Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100     

Index Type  CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
2 Fixed 0.04 01-Jan-2000 01-Jan-2003    1 NaN   NaN       4% Fixed 80      

 
Index Type  Spread Settle Maturity FloatReset Basis Principal Name Quantity
3 Float 20 01-Jan-2000 01-Jan-2003 1 NaN   NaN 20BP Float 8       

 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
4 Swap [0.04 20] 01-Jan-2000 01-Jan-2003 [1  1] NaN   NaN       [NaN] 4%/20BP Swap 10 



1 Getting Started

1-16

instselect Examples. These examples use the portfolio ExampleInst provided with 
the MAT-file InstSetExamples.mat. 

load InstSetExamples.mat
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        

The instrument set contains three instrument types: 'Option', 'Futures', 
and 'TBill'. Use instselect to make a new instrument set containing only 
options struck at 95. In other words, select all instruments containing the field 
Strike and with the data value for that field equal to 95.

InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95)

instdisp(InstSet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option  95     2.9  Put      0    

You can use all the various forms of instselect and instfind to locate specific 
instruments within this instrument set.
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The Financial Derivatives Toolbox provides functions for computing the price 
and sensitivities of interest rate dependent securities based upon three distinct 
models for representing interest rates:

• A set of interest rate curves computed from zero coupon bonds. (See the 
sections “Interest Rate Environment” on page 2-3 and “Pricing and 
Sensitivity from Interest Rate Term Structure” on page 2-17.)

• The Heath-Jarrow-Morton interest rate model. (See the sections 
“Heath-Jarrow-Morton (HJM) Model” on page 2-22 and “Pricing and 
Sensitivity from HJM” on page 2-35.)

• The Black-Derman-Toy interest rate model. (See the sections 
“Black-Derman-Toy Model (BDT)” on page 2-53 and “Pricing and Sensitivity 
from BDT” on page 2-63.)
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Interest Rate Environment
The interest rate term structure is the representation of the evolution of interest 
rates through time. In MATLAB, the interest rate environment is 
encapsulated in a structure called RateSpec (rate specification). This structure 
holds all information needed to identify completely the evolution of interest 
rates. Several functions included in the Financial Derivatives Toolbox are 
dedicated to the creation and management of the RateSpec structure. Many 
others take this structure as an input argument representing the evolution of 
interest rates.

Before looking further at the RateSpec structure, examine three functions that 
provide key functionality for working with interest rates: disc2rate, its 
opposite, rate2disc, and ratetimes. The first two functions map between 
discount rates and interest rates. The third function, ratetimes, calculates the 
effect of term changes on the interest rates.

Interest Rates vs. Discount Factors
Discount factors are coefficients commonly used to find the present value of 
future cash flows. As such, there is a direct mapping between the rate 
applicable to a period of time, and the corresponding discount factor. The 
function disc2rate converts discount rates for a given term (period) into 
interest rates. The function rate2disc does the opposite; it converts interest 
rates applicable to a given term (period) into the corresponding discount rates. 

Calculating Discount Factors from Rates
As an example, consider these annualized zero coupon bond rates.

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075
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To calculate the discount factors corresponding to these interest rates, call 
rate2disc using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates, 
ValuationDate)

where:

• Compounding represents the frequency at which the zero rates are 
compounded when annualized. For this example, assume this value to be 2.

• Rates is a vector of annualized percentage rates representing the interest 
rate applicable to each time interval.

• EndDates is a vector of dates representing the end of each interest rate term 
(period).

• StartDates is a vector of dates representing the beginning of each interest 
rate term.

• ValuationDate is the date of observation for which the discount factors are 
calculated. In this particular example, use February 15, 2000 as the 
beginning date for all interest rate terms.

Set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,... 
ValuationDate)

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
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By adding a fourth column to the above rates table to include the corresponding 
discounts, you can see the evolution of the discount rates.

Optional Time Factor Outputs
The function rate2disc optionally returns two additional output arguments: 
EndTimes and StartTimes. These vectors of time factors represent the start 
dates and end dates in discount periodic units. The scale of these units is 
determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the 
previous example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,... 
EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times =

     0     1
     0     2
     0     3
     0     4

0 5

Because the valuation date is equal to the start date for all periods, the 
StartTimes vector is composed of zeros. Also, since the value of Compounding is 
2, the rates are compounded semiannually, which sets the units of periodic 
discount to six months. The vector EndDates is composed of dates separated by 

From To Rate Discount

15 Feb 2000 15 Aug 2000 0.05 0.9756

15 Feb 2000 15 Feb 2001 0.056 0.9463

15 Feb 2000 15 Aug 2001 0.06 0.9151

15 Feb 2000 15 Feb 2002 0.065 0.8799

15 Feb 2000 15 Aug 2002 0.075 0.8319
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intervals of six months from the valuation date. This explains why the 
EndTimes vector is a progression of integers from one to five.

Alternative Syntax (rate2disc)
The function rate2disc also accommodates an alternative syntax that uses 
periodic discount units instead of dates. Since the relationship between 
discount factors and interest rates is based on time periods and not on absolute 
dates, this form of rate2disc allows you to work directly with time periods. In 
this mode, the valuation date corresponds to zero, and the vectors StartTimes 
and EndTimes are used as input arguments instead of their date equivalents, 
StartDates and EndDates. This syntax for rate2disc is

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously, you 
should obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

Calculating Rates from Discounts
The function disc2rate is the complement to rate2disc. It finds the rates 
applicable to a set of compounding periods, given the discount factor in those 
periods. The syntax for calling this function is

Rates = disc2rate(Compounding, Disc, EndDates, StartDates, 
ValuationDate)

Each argument to this function has the same meaning as in rate2disc. Use the 
results found in the previous example to return the rate values you started 
with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,... 
ValuationDate)
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Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

Alternative Syntax (disc2rate)
As in the case of rate2disc, disc2rate optionally returns StartTimes and 
EndTimes vectors representing the start and end times measured in discount 
periodic units. Again, working with the same values as before, you should 
obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,... 
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

Result = [StartTimes, EndTimes, Rates]

Result =

         0    1.0000    0.0500
         0    2.0000    0.0560
         0    3.0000    0.0600
         0    4.0000    0.0650
         0    5.0000    0.0750

As with rate2disc, the relationship between rates and discount factors is 
determined by time periods and not by absolute dates. Consequently, the 
alternate syntax for disc2rate uses time vectors instead of dates, and it 
assumes that the valuation date corresponds to time = 0. The times-based 
calling syntax is

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, we again obtain the original values for the interest rates.
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Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

Interest Rate Term Conversions
Interest rate evolution is typically represented by a set of interest rates, 
including the beginning and end of the periods the rates apply to. For zero 
rates, the start dates are typically at the valuation date, with the rates 
extending from that valuation date until their respective maturity dates.

Calculating Rates Applicable to Different Periods
Frequently, given a set of rates including their start and end dates, you may be 
interested in finding the rates applicable to different terms (periods). This 
problem is addressed by the function ratetimes. This function interpolates the 
interest rates given a change in the original terms. The syntax for calling 
ratetimes is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:

• Compounding represents the frequency at which the zero rates are 
compounded when annualized.

• RefRates is a vector of initial interest rates representing the interest rates 
applicable to the initial time intervals.

• RefEndDates is a vector of dates representing the end of the interest rate 
terms (period) applicable to RefRates.

• RefStartDates is a vector of dates representing the beginning of the interest 
rate terms applicable to RefRates.

• EndDates represent the maturity dates for which the interest rates are 
interpolated.
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• StartDates represent the starting dates for which the interest rates are 
interpolated.

• ValuationDate is the date of observation, from which the StartTimes and 
EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups: 

• The initial or reference interest rates, including the terms for which they are 
valid

• Terms for which the new interest rates are calculated

As an example, consider the rate table specified earlier.

Assuming that the valuation date is February 15, 2000, these rates represent 
zero coupon bond rates with maturities specified in the second column. Use the 
function ratetimes to calculate the spot rates at the beginning of all periods 
implied in the table. Assume a compounding value of 2.

% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';... 
'15-Aug-2001'; '15-Feb-2002'];
EndDates =   ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075
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% Find the new rates.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, ... 
RefRates, RefEndDates, RefStartDates, EndDates, StartDates,... 
ValuationDate);

Rates =

    0.0500
    0.0620
    0.0680
    0.0801
    0.1155

Place these values in a table similar to the one above. Observe the evolution of 
the spot rates based on the initial zero coupon rates.

Alternative Syntax (ratetimes)
The additional output arguments StartTimes and EndTimes represent the time 
factor equivalents to the StartDates and EndDates vectors. As with the 
functions disc2rate and rate2disc, ratetimes uses time factors for 
interpolating the rates. These time factors are calculated from the start and 
end dates, and the valuation date, which are passed as input arguments. 
ratetimes also has an alternate syntax that uses time factors directly, and 
assumes time = 0 as the valuation date. This alternate syntax is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the spot rates again. In this 
case, you must first find the time factors of the reference curve. Use date2time 
for this.

From To Rate

15 Feb 2000 15 Aug 2000 0.0500

15 Aug 2000 15 Feb 2001 0.0620

15 Feb 2001 15 Aug 2001 0.0680

15 Aug 2001 15 Feb 2002 0.0801

15 Feb 2002 15 Aug 2002 0.1155
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RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

     1
     2
     3
     4
     5

RefStartTimes = date2time(ValuationDate, RefStartDates,... 
Compounding)

RefStartTimes =

     0

These are the expected values, given semiannual discounts (as denoted by a 
value of 2 in the variable Compounding), end dates separated by six-month 
periods, and the valuation date equal to the date marking beginning of the first 
period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,... 
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Rates =

    0.0500
    0.0620
    0.0680
    0.0801
    0.1155

EndTimes and StartTimes have, as expected, the same values they had as input 
arguments.
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Times = [StartTimes, EndTimes]

Times =

     0     1
     1     2
     2     3
     3     4

4 5

Interest Rate Term Structure
The Financial Derivatives Toolbox includes a set of functions to encapsulate 
interest rate term information into a single structure. These functions present 
a convenient way to package all information related to interest rate terms into 
a common format, and to resolve interdependencies when one or more of the 
parameters is modified. For information, see:

• “Creation or Modification (intenvset)” on page 2-12 for a discussion of how to 
create or modify an interest rate term structure (RateSpec) using the 
intenvset function.

• “Obtaining Specific Properties (intenvget)” on page 2-14 for a discussion of 
how to extract specific properties from a RateSpec.

Creation or Modification (intenvset)
The main function to create or modify an interest rate term structure RateSpec 
(rates specification) is intenvset. If the first argument to this function is a 
previously created RateSpec, the function modifies the existing rate 
specification and returns a new one. Otherwise, it creates a new RateSpec. The 
other intenvset arguments are property-value pairs, indicating the new value 
for these properties. The properties that can be specified or modified are:

• Compounding 
• Disc
• Rates 
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• EndDates
• StartDates
• ValuationDate
• Basis
• EndMonthRule

To learn about the properties EndMonthRule and Basis, type 
help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox 
User's Guide.

Consider again the original table of interest rates.

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';

'15-Feb-2001'; 
'15-Aug-2001';
'15-Feb-2002';
'15-Aug-2002'];

Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding,'StartDates',... 
StartDates, 'EndDates', EndDates, 'Rates', Rates,... 
'ValuationDate', ValuationDate)

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075



2 Using Financial Derivatives

2-14

rs = 

FinObj:'RateSpec'
Compounding:2

Disc:[5x1 double]
Rates:[5x1 double]

EndTimes:[5x1 double]
StartTimes:[5x1 double]
EndDates:[5x1 double]

StartDates:730531
ValuationDate:730531

Basis: 0
EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the 
call to RateSpec. The values of the automatically completed properties depend 
upon the properties that are explicitly passed. Consider for example the 
StartTimes and EndTimes vectors. Since the StartDates and EndDates vectors 
are passed in, as well as the ValuationDate, intenvset has all the information 
needed to calculate StartTimes and EndTimes. Hence, these two properties are 
read only.

Obtaining Specific Properties (intenvget)
The complementary function to intenvset is intenvget. This function obtains 
specific properties from the interest rate term structure. The syntax of this 
function is

ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter

EndTimes = intenvget(rs, 'EndTimes')

EndTimes =

     1
     2
     3
     4
     5
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To obtain Disc, the values for the discount factors that were calculated 
automatically by intenvset, type

Disc = intenvget(rs, 'Disc')

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

These discount factors correspond to the periods starting from StartDates and 
ending in EndDates.

Note  Although you can directly access these fields within the structure 
instead of using intenvget, we strongly advise against this. The format of the 
interest rate term structure could change in future versions of the toolbox. 
Should that happen, any code accessing the RateSpec fields directly would 
stop working.

Now use the RateSpec structure with its functions to examine how changes in 
specific properties of the interest rate term structure affect those depending 
upon it. As an exercise, change the value of Compounding from 2 (semiannual) 
to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a 
change in Compounding from 2 to 1 redefines the basic unit from semiannual to 
annual. This means that a period of six months is represented with a value of 
0.5, and a period of one year is represented by 1. To obtain the vectors 
StartTimes and EndTimes, enter

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
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Times = [StartTimes, EndTimes]

Times =

         0    0.5000
         0    1.0000
         0    1.5000
         0    2.0000

0 2.5000

Since all the values in StartDates are the same as the valuation date, all 
StartTimes values are zero. On the other hand, the values in the EndDates 
vector are dates separated by six-month periods. Since the redefined value of 
compounding is 1, EndTimes becomes a sequence of numbers separated by 
increments of 0.5.
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Pricing and Sensitivity from Interest Rate Term Structure
The Financial Derivatives Toolbox contains a family of functions that finds the 
price and sensitivities of several financial instruments based on interest rate 
curves. For information, see:

• “Pricing” on page 2-18 for a discussion on using the intenvprice function to 
price a portfolio of instruments based on a set of zero curves.

• “Sensitivity” on page 2-20 for a discussion on computing delta and gamma 
sensitivities with the intenvsens function.

The instruments can be presented to the functions as a portfolio of different 
types of instruments or as groups of instruments of the same type. The current 
version of the toolbox can compute price and sensitivities for four instrument 
types using interest rate curves:

• Bonds

• Fixed Rate Notes

• Floating Rate Notes

• Swaps

In addition to these instruments, the toolbox also supports the calculation of 
price and sensitivities of arbitrary sets of cash flows. 

Note that options and interest rates floors and caps are absent from the above 
list of supported instruments. These instruments are not supported because 
their pricing and sensitivity function require a stochastic model for the 
evolution of interest rates. The interest rate term structure used for pricing is 
treated as deterministic, and as such is not adequate for pricing these 
instruments. 

The Financial Derivatives Toolbox additionally contains functions that use the 
Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to 
compute prices and sensitivities for financial instruments. These models 
support computations involving options and interest rate floors and caps. See 
“Pricing and Sensitivity from HJM” on page 2-35 and “Pricing and Sensitivity 
from BDT” on page 2-63 for information on computing price and sensitivities of 
financial instruments using HJM and BDT models.
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Pricing 
The main function used for pricing portfolios of instruments is intenvprice. 
This function works with the family of functions that calculate the prices of 
individual types of instruments. When called, intenvprice classifies the 
portfolio contained in InstSet by instrument type, and calls the appropriate 
pricing functions. The map between instrument types and the pricing function 
intenvprice calls is

Each of these functions can be used individually to price an instrument. 
Consult the reference pages for specific information on the use of these 
functions.

intenvprice takes as input an interest rate term structure created with 
intenvset, and a portfolio of interest rate contingent derivatives instruments 
created with instadd. To learn more about instadd, see “Creating and 
Managing Instrument Portfolios” on page 1-6, and to learn more about the 
interest rate term structure see “Interest Rate Environment” on page 2-3.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

• RateSpec is the interest rate term structure.

• InstSet is the name of the portfolio.

Example: Pricing a Portfolio of Instruments 
Consider this example of using the intenvprice function to price a portfolio of 
instruments supplied with the Financial Derivatives Toolbox.

The provided MAT-file deriv.mat stores a portfolio as an instrument set 
variable ZeroInstSet. The MAT-file also contains the interest rate term 
structure ZeroRateSpec. You can display the instruments with the function 
instdisp.

bondbyzero: Price bond by a set of zero curves

fixedbyzero: Price fixed rate note by a set of zero curves

floatbyzero: Price floating rate note by a set of zero curves

swapbyzero: Price swap by a set of zero curves
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load deriv.mat;
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis...
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN... 
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN... 

 
Index Type  CouponRate Settle Maturity FixedReset Basis...
3     Fixed 0.04       01-Jan-2000 01-Jan-2003 1 NaN... 

 
Index Type  Spread Settle         Maturity       FloatReset Basis...
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN... 

 
Index Type LegRate    Settle         Maturity       LegReset Basis...
5     Swap [0.06 20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN...

Use intenvprice to calculate the prices for the instruments contained in the 
portfolio ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =

98.72
         97.53
         98.72
        100.55
          3.69

The output Prices is a vector containing the prices of all the instruments in the 
portfolio in the order indicated by the Index column displayed by instdisp. 
Consequently, the first two elements in Prices correspond to the first two 
bonds; the third element corresponds to the fixed rate note; the fourth to the 
floating rate note; and the fifth element corresponds to the price of the swap.
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Sensitivity 
The Financial Derivatives Toolbox can calculate two types of derivative price 
sensitivities, namely delta and gamma. Delta represents the dollar sensitivity 
of prices to shifts in the observed forward yield curve. Gamma represents the 
dollar sensitivity of delta to shifts in the observed forward yield curve. 

The intenvsens function computes instrument sensitivities as well as 
instrument prices. If you need both the prices and sensitivity measures, use 
intenvsens. A separate call to intenvprice is not required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

• RateSpec is the interest rate term structure.

• InstSet is the name of the portfolio.

Example: Sensitivities and Prices
Here is an example of using intenvsens to calculate both sensitivities and 
prices.

format long
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);

Display the results in a single matrix in long format.

All = [Delta Gamma Price]

All =

  1.0e+003 *

-0.27264034403478   1.02984451401241   0.09871593902758
  -0.34743857788527   1.62265027222659   0.09753338552637
  -0.27264034403478   1.02984451401241   0.09871593902758
  -0.00104445683331   0.00330878190894   0.10055293001355
  -0.28204045553455   1.05962355119047   0.00369230914950
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To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =

  1.0e+002 *

-0.02761867503065   0.10432403562759   0.98715939027581
  -0.03562252822561   0.16636870169834   0.97533385526369
  -0.02761867503065   0.10432403562759   0.98715939027581
  -0.00010387134748   0.00032905872643   1.00552930013547
  -0.76385926561057   2.86981265188338   0.03692309149502
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Heath-Jarrow-Morton (HJM) Model
The Heath-Jarrow-Morton (HJM) model is one of the most widely used models 
for pricing interest rate derivatives. The model considers a given initial term 
structure of interest rates and a specification of the volatility of forward rates 
to build a tree representing the evolution of the interest rates, based upon a 
statistical process. For further explanation, see the book “Modelling Fixed 
Income Securities and Interest Rate Options” by Robert A. Jarrow.

Building an HJM Forward Rate Tree
The HJM tree of forward rates is the fundamental unit representing the 
evolution of interest rates in a given period of time. This section explains how 
to create the HJM forward rate tree using the Financial Derivatives Toolbox.

The MATLAB function that creates the HJM forward rate tree is hjmtree. This 
function takes three structures as input arguments: 

• The volatility model VolSpec. (See “Specifying the Volatility Model 
(VolSpec)” on page 2-23.)

• The interest rate term structure RateSpec. (See “Specifying the Interest 
Rate Term Structure (RateSpec)” on page 2-25.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure 
(TimeSpec)” on page 2-26.)

Creating the HJM Forward Rate Tree (hjmtree)
Calling the function hjmtree creates the structure, HJMTree, containing time 
and forward rate information for a bushy tree. 

This structure is a self-contained unit that includes the HJM tree of rates 
(found in the FwdTree field of the structure), and the volatility, rate, and time 
specifications used in building this tree.

The calling syntax for hjmtree is

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
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where:

• VolSpec is a structure that specifies the forward rate volatility process. 
VolSpec is created using the function hjmvolspec. The hjmvolspec function 
supports the specification of multiple factors. It handles five models for the 
volatility of the interest rate term structure:

- Constant

- Stationary

- Exponential

- Vasicek

- Proportional

Incorporating multiple factors allows you to specify different types of shifts 
in the shape and location of the interest rate structure. A one-factor model 
assumes that the interest term structure is affected by a single source of 
uncertainty. 

• RateSpec is the interest rate specification of the initial rate curve. This 
structure is created with the function intenvset. (See “Interest Rate Term 
Structure” on page 2-12.)

• TimeSpec is the tree time layout specification. This variable is created with 
the function hjmtimespec. It represents the mapping between level times 
and level dates for rate quoting. This structure determines indirectly the 
number of levels of the tree generated in the call to hjmtree.

Specifying the Volatility Model (VolSpec) 
The function hjmvolspec generates the structure VolSpec, which specifies the 
volatility process used in the creation of the forward rate trees. In this 
context represents the starting time of the forward rate, and represents the 
observation time. The volatility process can be constructed from a combination 
of factors specified sequentially in the call to hjmvolspec. Each factor 
specification starts with a string specifying the name of the factor, followed by 
the pertinent parameters.

Consider an example that uses a single factor, specifically, a constant-sigma 
factor. The constant factor specification requires only one parameter, the value 
of . In this case, the value corresponds to 0.10.

σ t T,( )
T t

σ
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VolSpec = hjmvolspec('Constant', 0.10)

VolSpec = 

FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
FactorArgs: {{1x1 cell}}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]

Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolsSpec.NumFactors = 1, 
reveals that the number of factors used to generate VolSpec was one. The 
FactorModels field indicates that it is a 'Constant' factor, and the 
NumBranches field indicates the number of branches. As a consequence, each 
node of the resulting tree has two branches, one going up, and the other going 
down.

Consider now a two-factor volatility process made from a proportional factor 
and an exponential factor.

% Exponential factor:
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [   1   ;    2   ;    3   ];
% Build VolSpec
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,... 
1e6,'Exponential', Sigma_0, Lambda)
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VolSpec = 

FinObj: 'HJMVolSpec'
FactorModels: {'Proportional'  'Exponential'}

FactorArgs: {{1x3 cell}  {1x2 cell}}
SigmaShift: 0
NumFactors: 2
NumBranch: 3
PBranch: [0.2500 0.2500 0.5000]

Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two 
factors. The tree has three branches per node. Each branch has probabilities of 
0.25, 0.25, and 0.5, going from top to bottom.

Specifying the Interest Rate Term Structure (RateSpec) 
The structure RateSpec is an interest term structure that defines the initial 
forward rate specification from which the tree rates are derived. The section 
“Interest Rate Term Structure” on page 2-12 explains how to create these 
structures using the function intenvset, given the interest rates, the starting 
and ending dates for each rate, and the compounding value.

Consider the example

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';   

'01-Jan-2001';  
'01-Jan-2002';  
'01-Jan-2003'];

EndDates =  ['01-Jan-2001'; 
'01-Jan-2002';  
'01-Jan-2003'; 
'01-Jan-2004'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,... 
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)
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RateSpec = 

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

 EndTimes: [4x1 double]
 StartTimes: [4x1 double]
 EndDates: [4x1 double]

 StartDates: [4x1 double]
 ValuationDate: 730486

 Basis: 0
 EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable 
RateSpec. For example

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for an HJM tree. This 
structure defines the mapping between the observation times at each level of 
the tree and the corresponding dates. 

TimeSpec is built using the function hjmtimespec. The hjmtimespec function 
requires three input arguments: 

• The valuation date ValuationDate

• The maturity date Maturity 

• The compounding rate Compounding 

The syntax used for calling hjmtimespec is

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.

• Maturity is a vector of dates representing the cash flow dates of the tree. Any 
instrument cash flows with these maturities fall on tree nodes.
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• Compounding is the frequency at which the rates are compounded when 
annualized.

Calling hjmtimespec with the same data used to create the interest rate term 
structure, RateSpec builds the structure that specifies the time layout for the 
tree.

Maturity = EndDates;
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = 

FinObj: 'HJMTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

Note that the maturities specified when building TimeSpec do not have to 
coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec 
defines the time-date mapping of the HJM tree, the rates in RateSpec are 
interpolated to obtain the initial rates with maturities equal to those found in 
TimeSpec.

Example: Creating an HJM Tree
Use the VolSpec, RateSpec, and TimeSpec you have created as input to the 
HJMTree function to create an HJM tree.

% Reset the volatility factor to the Constant case
VolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = 

FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [0 1 2 3]
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TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Using HJM Trees in MATLAB
When working with the HJM model, the Financial Derivatives Toolbox uses 
trees to represent forward rates, prices, etc. At the highest level, these trees 
have structures wrapped around them. The structures encapsulate 
information needed to interpret completely the information contained in a tree. 

Consider this example, which uses the interest rate and portfolio data in the 
MAT-file deriv.mat included in the toolbox. 

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

Name Size Bytes Class

BDTInstSet         1x1 22708 struct array
BDTTree            1x1 5522  struct array
HJMInstSet         1x1 22700  struct array
HJMTree            1x1 6318  struct array
ZeroInstSet        1x1 14442  struct array
ZeroRateSpec       1x1 1580  struct array

Structure of an HJM Tree
You can now examine in some detail the contents of the HJMTree structure.

HJMTree

HJMTree = 

FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
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tObs: [0 1 2 3]
TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}

CFlowT: {[4x1 double]  [3x1 double]  [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward rate tree. It is represented in MATLAB as 
a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values 
in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec, 
which contain the volatility, time structure, and rate structure information 
respectively.

First Node. Observe the forward rates in FwdTree. The first node represents the 
valuation date, tObs = 0.

HJMTree.FwdTree{1}

ans =

1.0356
1.0468
1.0523
1.0563

Note  The Financial Derivatives Toolbox uses inverse discount notation for 
forward rates in the tree. An inverse discount represents a factor by which the 
present value of an asset is multiplied to find its future value. In general, 
these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where 
these values originate. Arrange the values in a single array.

[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes... 
HJMTree.RateSpec.Rates]
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ans =

0    1.0000    0.0356
    1.0000    2.0000    0.0468
    2.0000    3.0000    0.0523
    3.0000    4.0000    0.0563

If you find the corresponding inverse discounts of the interest rates in the third 
column, you have the values at the first node of the tree. You can turn interest 
rates into inverse discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,... 
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,... 
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc

FRates =
1.0356

    1.0468
    1.0523
    1.0563

Second Node. The second node represents the first rate observation time, tObs 
= 1. This node displays two states: one representing the branch going up and 
the other representing the branch going down. 

Note that HJMTree.VolSpec.NumBranch = 2.

HJMTree.VolSpec

ans = 

          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]
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Examine the rates of the node corresponding to the up branch.

HJMTree.FwdTree{2}(:,:,1)

ans =

1.0364
    1.0420
    1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans =

1.0574
    1.0631
    1.0672

Third Node. The third node represents the second observation time, tObs = 2. 
This node contains a total of four states, two representing the branches going 
up and the other two representing the branches going down. 

Examine the rates of the node corresponding to the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

1.0317    1.0526
    1.0358    1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans =

1.0526    1.0738
    1.0568    1.0781
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Isolating a Specific Node. Starting at the third level, indexing within the tree cell 
array becomes complex, and isolating a specific node can be difficult. The 
function bushpath isolates a specific node by specifying the path to the node as 
a vector of branches taken to reach that node. As an example, consider the node 
reached by starting from the root node, taking the branch up, then the branch 
down, and then another branch down. Given that the tree has only two 
branches per node, branches going up correspond to a 1, and branches going 
down correspond to a 2. The path up-down-down becomes the vector [1 2 2]. 

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
    1.0364
    1.0526
    1.0674

bushpath returns the spot rates for all the nodes touched by the path specified 
in the input argument, the first one corresponding to the root node, and the last 
one corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

ans =

    1.0674

As expected, this single value corresponds to the last element of the rates 
returned by bushpath. 

You can use these techniques with any type of tree generated with the 
Financial Derivatives Toolbox, such as forward rate trees or price trees.

Graphical View of Forward Rate Tree
The function treeviewer provides a graphical view of the path of forward rates 
specified in HJMTree. For example, here is a treeviewer representation of the 
rates along both the up and the down branches of HJMTree.
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treeviewer(HJMTree)

A previous example used bushpath to find the path of forward rates taking the 
first branch up and then two branches down the rate tree.

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
    1.0364
    1.0526
    1.0674

The treeviewer function displays the same information obtained by clicking 
along the sequence of nodes, as shown next.
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Note  If you are not familiar with the use of treeviewer, see the treeviewer 
reference page for complete instructions on its use.
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Pricing and Sensitivity from HJM
This section explains how to use the Financial Derivatives Toolbox to compute 
prices and sensitivities of several financial instruments using the 
Heath-Jarrow-Morton (HJM) model. For information, see:

• “Pricing and the Price Tree” on page 2-35 for a discussion of using the 
hjmprice function to compute prices for a portfolio of instruments.

• “Calculating Prices and Sensitivities” on page 2-50 for a discussion of using 
the hjmsens function to compute delta, gamma, and vega portfolio 
sensitivities.

Pricing and the Price Tree 
For the HJM model, the function hjmprice calculates the price of any set of 
supported instruments, based on an interest rate tree. The function is capable 
of pricing these instrument types: 

• Bonds

• Bond options

• Arbitrary cash flows

• Fixed-rate notes

• Floating-rate notes

• Caps

• Floors

• Swaps 

The syntax used for calling hjmprice is

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

This function requires two input arguments: the interest rate tree, HJMTree, 
and the set of instruments, InstSet. An optional argument Options further 
controls the pricing and the output displayed. 

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward rate process, 
created using hjmtree. See “Building an HJM Forward Rate Tree” on page 2-22 
to learn how to create this structure. 
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InstSet is the set of instruments to be priced. This structure represents the set 
of instruments to be priced independently using the HJM model. The section 
“Creating and Managing Instrument Portfolios” on page 1-6 explains how to 
create this variable.

Options is an options structure created with the function derivset. This 
structure defines how the HJM tree is used to find the price of instruments in 
the portfolio, and how much additional information is displayed in the 
command window when calling the pricing function. If this input argument is 
not specified in the call to hjmprice, a default Options structure is used.

hjmprice classifies the instruments and calls the appropriate pricing function 
for each one of the instrument types. The pricing functions are bondbyhjm, 
cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, and swapbyhjm. You can also 
use these functions directly to calculate the price of sets of instruments of the 
same type. See the documentation for these individual functions for further 
information.

Example: HJM Pricing 
Consider the following example, which uses the portfolio and interest rate data 
in the MAT-file deriv.mat included in the toolbox. Load the data into the 
MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from 
the MAT-file.

whos

Name Size Bytes Class

BDTInstSet         1x1            22708 struct array
  BDTTree            1x1             5522  struct array
  HJMInstSet         1x1            22700  struct array
  HJMTree            1x1             6318  struct array
  ZeroInstSet        1x1            14442  struct array
  ZeroRateSpec       1x1             1580  struct array

HJMTree and HJMInstSet are the input arguments needed to call the function 
hjmprice. 
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Use the function instdisp to examine the set of instruments contained in the 
variable HJMInstSet.

instdisp(HJMInstSet)

Note that there are eight instruments in this portfolio set: two bonds, one bond 
option, one fixed rate note, one floating rate note, one cap, one floor, and one 
swap. Each instrument has a corresponding index that identifies the 
instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument 
set.

Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

98.7159
   97.5280
    0.0486
   98.7159

Index Type CouponRate Settle Maturity Period Basis ......... Name Quantity
1  Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100     
2    Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN......... 4% bond  50     
 

Index Type UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101 -50     

 
Index Type  CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003    1 NaN   NaN       4% Fixed 80      

 
Index Type  Spread Settle Maturity FloatReset Basis Principal Name Quantity
5     Float 20 01-Jan-2000 01-Jan-2003 1 NaN   NaN 20BP Float 8       

 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      

 
Index Type  Strike Settle Maturity  FloorReset Basis Principal Name Quantity
7     Floor 0.03 01-Jan-2000 01-Jan-2004    1 NaN   NaN       3% Floor 40      

 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8     Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1  1] NaN   NaN       [NaN] 6%/20BP Swap 10 



2 Using Financial Derivatives

2-38

  100.5529
    6.2831
    0.0486
    3.6923

Note  The warning shown above appears because some of the cash flows for 
the second bond do not fall exactly on a tree node. This situation is discussed 
further in “HJM Pricing Options Structure” on page 2-44.

Price Vector
The prices in the output vector Price correspond to the prices at observation 
time zero (tObs = 0), which is defined as the valuation date of the interest 
rate tree. The instrument indexing within Price is the same as the indexing 
within InstSet. In this example, the prices in the Price vector correspond to 
the instruments in the following order.

InstNames = instget(HJMInstSet, 'FieldName','Name')

InstNames =

4% bond     
4% bond     
Option 101  
4% Fixed    
20BP Float  
3% Cap      
3% Floor    
6%/20BP Swap

Consequently, in the Price vector, the fourth element, 98.7159, represents the 
price of the fourth instrument (4% fixed-rate note); the sixth element, 6.2831, 
represents the price of the sixth instrument (3% cap).

Price Tree Structure
If you call the hjmprice function with two output arguments, e.g., 

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)

you generate a price tree along with the price information.
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The optional output price tree structure PriceTree holds all the pricing 
information. The first field of this structure, FinObj, indicates that this 
structure represents a price tree. The second field, PBush is the tree holding the 
price of the instruments in each node of the tree. The third field, AIBush is the 
tree holding the accrued interest of the instruments in each node of the tree. 
Finally, the fourth field, tObs, represents the observation time of each level of 
PBush and AIBush, with units in terms of compounding periods.

In this example the price tree looks like

PriceTree = 

FinObj: 'HJMPriceTree'
PBush: {[8x1 double]  [8x1x2 double] ...[8x8 double]}

AIBush: {[8x1 double]  [8x1x2 double] ... [8x8 double]}
tObs: [0 1 2 3 4]

Both PBush and AIBush are actually 1-by-5 cell arrays, consistent with the five 
observation times of tObs. The data display has been shortened here to fit on a 
single line.

Using the command line interface, you can directly examine PriceTree.PBush, 
the field within the PriceTree structure that contains the price tree with the 
price vectors at every state. The first node represents tObs = 0, corresponding 
to the valuation date.

PriceTree.PBush{1}

ans =

98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

With this interface you can observe the prices for all instruments in the 
portfolio at a specific time. 
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Using treeviewer to View Instrument Prices Through 
Time
You can use the function treeviewer to display a graphical representation of 
the tree, allowing you to examine interactively the prices on the nodes of the 
tree until maturity. With treeviewer you select each instrument individually 
in the instrument portfolio for display. For example, the command

treeviewer(PriceTree, HJMInstSet)

with the 4% bond instrument selected in the Instrument window shows prices 
for this bond instrument along the price tree from the valuation date until 
maturity.

Example: Valuation Date Prices
You can use treeviewer instrument-by-instrument to observe instrument 
prices through time. For the first 4% bond in the instrument portfolio, 
treeviewer indicates a valuation date price of 98.72, the same value obtained 
by accessing the PriceTree structure directly. 
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As a further example, look at the sixth instrument in the price vector, the 3% 
cap. At the valuation date its value obtained directly from the structure is 
6.2831. Use treeviewer on this instrument to confirm this price.
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Example: Additional Observation Times
The second node represents the first rate observation time, tObs = 1. This node 
displays two states, one representing the branch going up and the other one 
representing the branch going down. 

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)

ans =

100.1563
   99.7309
    0.1007
  100.1563
  100.3782
    3.2594
    0.1007
    3.5597
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As before, you can use treeviewer, this time to examine the price for the 4% 
bond on the up branch. treeviewer displays a price of 100.2 for the first node 
of the up branch, as expected.

Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)

ans =

96.3041
   94.1986
         0
   96.3041
  100.3671
    8.6342
         0
   -0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the 
down branch. The displayed price of 96.3 conforms to the price obtained from 
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direct access of the PriceTree structure. You may continue this process as far 
along the price tree as you want.

HJM Pricing Options Structure
The MATLAB structure Options provides additional input to each pricing 
function. The Options structure

• Tells pricing functions how to use the interest rate tree to calculate 
instrument prices

• Determines what additional information the command window displays 
along with instrument prices.

You provide pricing options in an optional Options argument passed to each 
pricing function. (See, for example, bondbyhjm or hjmprice.)

Default Structure
If you do not specify the Options argument in the call to a pricing function, the 
function uses a default structure. To observe the default structure, use 
derivset without any arguments.
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Options = derivset
 
Options = 
 
    Diagnostics: 'off'
       Warnings: 'on'
      ConstRate: 'on'

The Options structure has three fields: Diagnostics, Warnings, and 
ConstRate.

Diagnostics indicates whether additional information is displayed if the HJM 
tree is modified. The default value for this option is 'off'. If Diagnostics is 
set to 'on' and ConstRate is set to 'off', the pricing functions display 
information such as the number of nodes in the last level of the HJM tree 
generated for pricing purposes.

Warnings indicates whether to display warning messages when the input tree 
is not adequate for accurately pricing the instruments. The default value for 
this option is 'on'. If both ConstRate and Warnings are 'on', a warning is 
displayed if any of the instruments in the input portfolio has a cash flow date 
between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is 
displayed if the tree is modified to match the cash flow dates on the 
instruments in the portfolio.

ConstRate indicates whether the interest rates should be assumed constant 
between tree dates. By default this option is 'on', which is not an 
arbitrage-free assumption. Consequently the pricing functions return an 
approximate price for instruments featuring cash flows between tree dates. 
Instruments featuring cash flows only on tree nodes are not affected by this 
option and return exact (arbitrage-free) prices. When ConstRate is 'off', the 
HJM pricing function finds the cash flow dates for all instruments in the 
portfolio. If these cash flows do not align exactly with the tree dates, a new tree 
is generated and used for pricing. This new tree features the same volatility 
and initial rate specifications of the input HJM tree but contains tree nodes for 
each date in which at least one instrument in the portfolio has a cash flow. 
Keep in mind that the number of nodes in an HJM tree grows exponentially 
with the number of tree dates. Consequently, setting ConstRate 'off' 
dramatically increases the memory and CPU demands on the computer.
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Customizing the Structure
Customize the Options structure by passing property name/property value 
pairs to the derivset function. 

As an example, consider an Options structure with ConstRate 'off' and 
Diagonistics 'on'.

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

Options = 

Diagnostics: 'on'
Warnings: 'on'
ConstRate: 'off'

To obtain the value of a specific property from the Options structure, use 
derivget.

CR = derivget(Options, 'ConstRate')

CR =
Off

Note  Use derivset and derivget to construct the Options structure. These 
functions are guaranteed to remain unchanged, while the implementation of 
the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from 
the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate;... 
HJMTree.TimeSpec.Maturity]

TreeDates =

730486
730852
731217
731582
731947
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datedisp(TreeDates)

01-Jan-2000 
01-Jan-2001 
01-Jan-2002 
01-Jan-2003 
01-Jan-2004 

All instruments in HJMInstSet settle on Jan 1st, 2000, and all have cash flows 
once a year, with the exception of the second bond, which features a period of 
2. This bond has cash flows twice a year, with every other cash flow 
consequently falling between tree dates. You can extract this bond from the 
portfolio to compare how its price differs by setting ConstRate to 'on' and 
'off'. 

BondPort = instselect(HJMInstSet, 'Index', 2);

instdisp(BondPort)

Index Type CouponRate Settle Maturity Period Basis... 
1  Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

First price the bond with ConstRate 'on' (default).

format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

BondPrice =

97.52801411736377

BondPriceTree = 
FinObj: 'HJMPriceTree'
PBush: {1x5 cell}

AIBush: {[0]  [1x1x2 double] ... [1x4x2 double]  [1x8 double]}
tObs: [0 1 2 3 4]

Now recalculate the price of the bond setting ConstRate 'off'.
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OptionsNoCR = derivset('ConstR', 'off')

OptionsNoCR = 

Diagnostics: 'off'
Warnings: 'on'
ConstRate: 'off'

[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,... 
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding 
tree.

BondPriceNoCR =

97.53342361674437

BondPriceTreeNoCR = 

FinObj: 'HJMPriceTree'
PBush: {1x9 cell}
AIBush: {1x9 cell}
tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

As indicated in the last warning, because the cash flows of the bond did not 
align with the tree dates, a new tree was generated for pricing the bond. This 
pricing method returns more accurate results since it guarantees that the 
process is arbitrage-free. It also takes longer to calculate and requires more 
memory. The tObs field of the price tree structure indicates the increased 
memory usage. BondPriceTree.tObs has only five elements, while 
BondPriceTreeNoCR.tObs has nine. While this may not seem like a large 
difference, it has a dramatic effect on the number of states in the last node.

size(BondPriceTree.PBush{end})

ans =

1 8

size(BondPriceTreeNoCR.PBush{end})
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ans =

1 128

The differences become more obvious by examining the price trees with 
treeviewer.

treeviewer(BondPriceTree, BondPort)
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treeviewer(BondPriceTreeNoCR, BondPort)

Calculating Prices and Sensitivities
The function hjmsens computes the delta, gamma, and vega sensitivities of 
instruments using an interest rate tree created with hjmtree. It also optionally 
returns the calculated price for each instrument. hjmsens requires the same 
two input arguments used by hjmprice, namely HJMTree and HJMInstSet.

hjmsens calculates the dollar value of delta and gamma by shifting the 
observed forward yield curve by 100 basis points in each direction, and the 
dollar value of vega by shifting the volatility process by 1%. To obtain the 
per-dollar value of the sensitivities, divide the dollar sensitivity by the price of 
the corresponding instrument. 

The calling syntax for the function is

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)



Pricing and Sensitivity from HJM

2-51

Use the previous example data to calculate the price of instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Note  The warning appears because some of the cash flows for the second 
bond do not fall exactly on a tree node. This situation was discussed in “HJM 
Pricing Options Structure” on page 2-44.

You can conveniently examine the sensitivities and the prices by arranging 
them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

-272.65       1029.90          0.00         98.72
       -347.43       1622.69         -0.04         97.53
         -8.08        643.40         34.07          0.05
       -272.65       1029.90          0.00         98.72
         -1.04          3.31             0        100.55
        294.97       6852.56         93.69          6.28
        -47.16       8459.99         93.69          0.05
       -282.05       1059.68          0.00          3.69

As with the prices, each row of the sensitivity vectors corresponds to the 
similarly indexed instrument in HJMInstSet. To view the per-dollar 
sensitivities, divide each dollar sensitivity by the corresponding instrument 
price.
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All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

-2.76         10.43          0.00         98.72
         -3.56         16.64         -0.00         97.53
       -166.18      13235.59        700.96          0.05
         -2.76         10.43          0.00         98.72
         -0.01          0.03             0        100.55
         46.95       1090.63         14.91          6.28
       -969.85     173969.77       1926.72          0.05
        -76.39        287.00          0.00          3.690
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Black-Derman-Toy Model (BDT)
The Black-Derman-Toy (BDT) model is an analytical model used for pricing 
interest rate derivatives. The model considers a given initial zero rate term 
structure of interest rates and a specification of the yield volatilities of long 
rates to build a tree representing the evolution of the interest rates. For further 
explanation, see the paper “A One Factor Model of Interest Rates and its 
Application to Treasury Bond Options” by Fischer Black, Emanuel Derman, 
and William Toy.

Building a BDT Interest Rate Tree
The BDT interest rate tree represents the evolution of interest rates in a given 
period of time. This section explains how to create the BDT interest rate tree 
using the Financial Derivatives Toolbox. 

The MATLAB function that creates the BDT interest rate tree is bdttree. This 
function takes three structures as input arguments: 

• The volatility model VolSpec. (See “Specifying the Volatility (VolSpec)” on 
page 2-54.)

• The interest rate term structure RateSpec. (See “Specifying the Interest 
Rate Term Structure (RateSpec)” on page 2-55.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure 
(TimeSpec)” on page 2-56.)

Creating the BDT Interest Rate Tree (bdttree)
Calling the function bdttree creates the structure, BDTTree, containing time 
and interest rate information of the recombining tree. 

This structure is a self-contained unit that includes the BDT tree of rates 
(found in the FwdTree field), and the volatility, rate, and time specifications 
used in building this tree.

The calling syntax for bdttree is

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

where:

• VolSpec is a structure that specifies the interest rate volatility process. 
VolSpec is created using the function bdtvolspec. 
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• RateSpec is the interest rate specification of the initial rate curve. This 
structure is created with the function intenvset. (See “Interest Rate Term 
Structure” on page 2-12.)

• TimeSpec is the tree time layout specification. This variable is created with 
the function bdttimespec. It represents the mapping between level times 
and level dates for rate quoting. This structure determines indirectly the 
number of levels of the tree generated in the call to bdttree.

Specifying the Volatility (VolSpec)
The function bdtvolspec generates the structure VolSpec, which specifies the 
volatility process. The function requires three input arguments: 

• The valuation date ValuationDate 

• The yield volatility end dates VolDates

• The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation 
method, can be included.

The syntax used for calling bdtvolspec is

VolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,... 
InterpMethod)

where:

• ValuationDate is the first observation date in the tree. 

• VolDates is a vector of dates representing yield volatility end dates.

• VolCurve is a vector of yield volatility values.

• InterpMethod is the method of interpolation to use. The default is 'linear'. 

Consider the example

ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation 
method is explicitly specified, the function uses the 'linear' default.
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BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = 
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

Specifying the Interest Rate Term Structure (RateSpec) 
The structure RateSpec is an interest term structure that defines the initial 
interest rate specification from which the tree rates are derived. The section 
“Interest Rate Term Structure” on page 2-12 explains how to create these 
structures using the function intenvset, given the interest rates, the starting 
and ending dates for each rate, and the compounding value.

Consider the example

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';   

'01-Jan-2001';  
'01-Jan-2002';  
'01-Jan-2003'];

EndDates =  ['01-Jan-2001'; 
'01-Jan-2002';  
'01-Jan-2003'; 
'01-Jan-2004'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,... 
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)

RateSpec = 

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]
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 EndTimes: [4x1 double]
 StartTimes: [4x1 double]
 EndDates: [4x1 double]

 StartDates: [4x1 double]
 ValuationDate: 730486

 Basis: 0
 EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable 
RateSpec. For example,

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for a BDT tree. This 
structure defines the mapping between the observation times at each level of 
the tree and the corresponding dates. 

TimeSpec is built using the function bdttimespec. The bdttimespec function 
requires three input arguments: 

• The valuation date ValuationDate

• The maturity date Maturity 

• The compounding rate Compounding 

The syntax used for calling bdttimespec is

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.

• Maturity is a vector of dates representing the cash flow dates of the tree. Any 
instrument cash flows with these maturities fall on tree nodes.

• Compounding is the frequency at which the rates are compounded when 
annualized.

Calling bdttimespec with the same data used to create the interest rate term 
structure, RateSpec builds the structure that specifies the time layout for the 
tree.
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Maturity = EndDates;
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec = 

FinObj: 'BDTTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

Note that the maturities specified when building TimeSpec do not have to 
coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec 
defines the time-date mapping of the BDT tree, the rates in RateSpec are 
interpolated to obtain the initial rates with maturities equal to those found in 
TimeSpec.

Example: Creating a BDT Tree
Use the previously computed values for VolSpec, RateSpec, and TimeSpec as 
input to the function bdttree to create a BDT Tree.

BDTTree = bdttree(BDTVolSpec, RateSpec, TimeSpec)

BDTTree = 

FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [0 1.00 2.00 3.00]
TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3.00]}

CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}
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Using BDT Trees in MATLAB
When working with the BDT model, the Financial Derivatives Toolbox uses 
trees to represent interest rates, prices, etc. At the highest level, these trees 
contain several MATLAB structures. The structures encapsulate information 
needed to interpret completely the information contained in a tree. 

Because BDT trees are essentially MATLAB structures, you can examine their 
contents manually, just as you can for HJM trees. Consider this example, 
which uses the data in the MAT-file deriv.mat included in the toolbox. 

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

Name Size Bytes Class

BDTInstSet         1x1 22708 struct array
BDTTree            1x1 5522  struct array
HJMInstSet         1x1 22700  struct array
HJMTree            1x1 6318  struct array
ZeroInstSet        1x1 14442  struct array
ZeroRateSpec       1x1 1580  struct array

Structure of a BDT Tree
You can now examine in some detail the contents of the BDTTree structure.

BDTTree 

BDTTree = 

      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {1x4 cell}
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FwdTree contains the actual rate tree. It is represented in MATLAB as a cell 
array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values 
in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec, 
which contain the volatility, rate structure, and time structure information 
respectively.

Look at the RateSpec structure used in generating this tree to see where these 
values originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes... 
BDTTree.RateSpec.Rates]

ans =

         0    1.0000    0.1000
         0    2.0000    0.1100
         0    3.0000    0.1200
         0    4.0000    0.1250

Note  The Financial Derivatives Toolbox uses inverse discount notation for 
forward rates in the tree. An inverse discount represents a factor by which the 
present value of an asset is multiplied to find its future value. In general, 
these forward factors are reciprocals of the discount factors.

Look at the rates in FwdTree. The first node represents the valuation date, 
tObs = 0. The second node represents tObs = 1. Examine the rates at the 
second, third and fourth nodes.

BDTTree.FwdTree{2}  

ans =

1.0979    1.1432

The second node represents the first observation time, tObs = 1. This node 
contains a total of two states, one representing the branch going up (1.0979) 
and the other representing the branch going down (1.1432). 
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Note  The convention in this document is to display prices going up on the 
upper branch. Consequently, when displaying rates, rates are falling on the 
upper branch and increasing on the lower.

BDTTree.FwdTree{3}

ans =

    1.0976    1.1377    1.1942

The third node represents the second observation time, tObs = 2. This node 
contains a total of three states, one representing the branch going up (1.0976), 
one representing the branch in the middle (1.1377) and the other representing 
the branch going down (1.1942). 

BDTTree.FwdTree{4}

ans =

    1.0872    1.1183    1.1606    1.2179

The fourth node represents the third observation time, tObs = 3. This node 
contains a total of four states, one representing the branch going up (1.0872), 
two representing the branches in the middle (1.1183 and 1.1606) and the other 
representing the branch going down (1.2179). 

Verifying Results with treepath
The function treepath isolates a specific node by specifying the path to the 
node as a vector of branches taken to reach that node. As an example, consider 
the node reached by starting from the root node, taking the branch up, then the 
branch down, and finally another branch down. Given that the tree has only 
two branches per node, branches going up correspond to a 1, and branches 
going down correspond to a 2. The path up-down-down becomes the vector 
[1 2 2]. 
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FRates = treepath(BDTTree.FwdTree, [1 2 2]) 

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

treepath returns the short rates for all the nodes touched by the path specified 
in the input argument, the first one corresponding to the root node, and the last 
one corresponding to the target node.

Graphical View of Interest Rate Tree
The function treeviewer provides a graphical view of the path of interest rates 
specified in BDTTree. For example, load the file deriv.mat. Here is a 
treeviewer representation of the rates along several branches of BDTTree.

treeviewer(BDTTree)
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Note  When using treeviewer with BDT trees, you must click on each node in 
succession from the beginning to the end. Because BDT trees can recombine, 
treeviewer is unable to compute the path automatically. 

A previous example used treepath to find the path of interest rates taking the 
first branch up and then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

The treeviewer function displays the same information obtained by clicking 
along the sequence of nodes, as shown next.
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Pricing and Sensitivity from BDT
This section explains how to use the Financial Derivatives Toolbox to compute 
prices and sensitivities of several financial instruments using the 
Black-Derman-Toy (BDT) model. For information, see:

• “Pricing and the Price Tree” on page 2-63 for a discussion of using the 
bdtprice function to compute prices for a portfolio of instruments.

• “Calculating Prices and Sensitivities” on page 2-71 for a discussion of using 
the bdtsens function to compute delta, gamma, and vega portfolio 
sensitivities.

Pricing and the Price Tree 
For the BDT model, the function bdtprice calculates the price of any set of 
supported instruments, based on an interest rate tree. The function is capable 
of pricing these instrument types: 

• Bonds

• Bond options

• Arbitrary cash flows

• Fixed-rate notes

• Floating-rate notes

• Caps

• Floors

• Swaps 

The syntax used for calling bdtprice is

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

This function requires two input arguments: the interest rate tree, BDTTree, 
and the set of instruments, InstSet. An optional argument Options further 
controls the pricing and the output displayed. 

BDTTree is the Black-Derman-Toy tree sampling of an interest rate process, 
created using bdttree. See “Building a BDT Interest Rate Tree” on page 2-53 
to learn how to create this structure based on the volatility model, the interest 
rate term structure, and the time layout. 
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InstSet is the set of instruments to be priced. This structure represents the set 
of instruments to be priced independently using the BDT model. The section 
“Creating and Managing Instrument Portfolios” on page 1-6 explains how to 
create this variable.

Options is an options structure created with the function derivset. This 
structure defines how the BDT tree is used to find the price of instruments in 
the portfolio, and how much additional information is displayed in the 
command window when calling the pricing function. If this input argument is 
not specified in the call to bdtprice, a default Options structure is used.

bdtprice classifies the instruments and calls appropriate pricing function for 
each of the instrument types. The pricing functions are bondbybdt, cfbybdt, 
fixedbybdt, floatbybdt, optbndbybdt, and swapbybdt. You can also use these 
functions directly to calculate the price of sets of instruments of the same type. 
See the documentation for these individual functions for further information.

BDT Pricing Example
Consider the following example, which uses the data in the MAT-file 
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from 
the MAT-file.

whos

Name Size Bytes Class

BDTInstSet         1x1            22708 struct array
  BDTTree            1x1             5522  struct array
  HJMInstSet         1x1            22700  struct array
  HJMTree            1x1             6318  struct array
  ZeroInstSet        1x1            14442  struct array
  ZeroRateSpec       1x1             1580  struct array

BDTTree and BDTInstSet are the input arguments needed to call the function 
bdtprice. 

Use the function instdisp to examine the set of instruments contained in the 
variable BDTInstSet.
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instdisp(BDTInstSet)

Note that there are eight instruments in this portfolio set: two bonds, one bond 
option, one fixed rate note, one floating rate note, one cap, one floor, and one 
swap. Each instrument has a corresponding index that identifies the 
instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument 
set.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

95.5030
   93.9079
    1.7657
   95.5030
  100.6054
    1.4863

Index Type CouponRate Settle Maturity Period Basis ......... Name Quantity
1  Bond 0.1 01-Jan-2000 01-Jan-2003 1 NaN......... 10% bond 100     
2    Bond 0.1 01-Jan-2000 01-Jan-2004 2 NaN......... 10% bond 50     
 

Index Type UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name Quantity
3     OptBond 1 call 9501 Jan-2002 NaN         Option 95 -50     

 
Index Type  CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.10 01-Jan-2000 01-Jan-2003    1 NaN   NaN       10% Fixed 80      

 
Index Type  Spread Settle Maturity FloatReset Basis Principal Name Quantity
5     Float 20 01-Jan-2000 01-Jan-2003 1 NaN   NaN 20BP Float 8       

 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
6     Cap  0.15  01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      

 
Index Type  Strike Settle Maturity  FloorReset Basis Principal Name Quantity
7     Floor 0.09 01-Jan-2000 01-Jan-2004    1 NaN   NaN       9% Floor 40      

 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8     Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [1  1] NaN   NaN       [NaN] 15%/10BP Swap 10 
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    0.0245
    7.3032

Note  The warning shown above appears because some of the cash flows for 
the second bond do not fall exactly on a tree node. This situation is discussed 
in “HJM Pricing Options Structure” on page 2-44.

Price Vector
The prices in the vector Price correspond to the prices at observation time zero 
(tObs = 0), which is defined as the valuation date of the interest rate tree. The 
instrument indexing within Price is the same as the indexing within InstSet. 
In this example, the prices in the Price vector correspond to the instruments 
in the following order.

InstNames = instget(BDTInstSet, 'FieldName','Name')

InstNames =

10% Bond     
10% Bond     
Option 95    
10% Fixed    
20BP Float   
15% Cap      
9% Floor     
15%/10BP Swap

Consequently, in the Price vector, the fourth element, 95.5030, represents the 
price of the fourth instrument (10% fixed-rate note); the sixth element, 1.4863, 
represents the price of the sixth instrument (15% cap).

Price Tree Structure
The output price tree structure PriceTree holds all the pricing information. 
The first field of this structure, FinObj, indicates that this structure represents 
a price tree. The second field, PTree is the tree holding the price of the 
instruments in each node of the tree. The third field, AITree is the tree holding 
the accrued interest of the instruments in each node of the tree. The fourth 



Pricing and Sensitivity from BDT

2-67

field, tObs, represents the observation time of each level of PTree and AITree, 
with units in terms of compounding periods.

The function treeviewer provides a graphical representation of the tree, 
allowing you to examine interactively the values on the nodes of the tree.

treeviewer(PriceTree, BDTInstSet)

Alternatively, you can directly examine the field within the PriceTree 
structure, which contains the price tree with the price vectors at every state. 
The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =

   95.5030
   93.9079
    1.7657
   95.5030
  100.6054
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    1.4863
    0.0245

7.3032

You can also use treeviewer instrument-by-instrument to observe instrument 
prices. For the first 10% bond in the instrument portfolio, treeviewer indicates 
a valuation date price of 95.5030, the same value obtained by accessing the 
PriceTree structure directly.

The second node represents the first rate observation time, tObs = 1. This 
node displays two states, one representing the branch going up and the other 
one representing the branch going down. 

Examine the prices of the node corresponding to the up branch.



Pricing and Sensitivity from BDT

2-69

PriceTree.PTree{2}(:,1)

ans =

   98.7816
   97.9770
    3.1458
   98.7816
  101.9562
    0.5008
    0.0540

5.6282

As before, you can use treeviewer, this time to examine the price for the 10% 
bond on the up branch. treeviewer displays a price of 98.7816 for the first 
node of the up branch, as expected.
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Now examine the corresponding down branch.

PriceTree.PTree{2}(:,2)

ans =

   91.3250
   88.1322
    0.7387
   91.3250
   98.9758
    2.7691

0
0.6390

Use treeviewer once again, now to observe the price of the 10% bond on the 
down branch. The displayed price of 91.3250 conforms to the price obtained 
from direct access of the PriceTree structure. You may continue this process 
as far along the price tree as you want.
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BDT Pricing Options Structure
The BDT instrument pricing functions (e.g., bondbybdt, bdtprice) use the 
same pricing options structure as their HJM counterparts. See the section 
“HJM Pricing Options Structure” on page 2-44 for a discussion of pricing 
options. You can obtain similar results from the examples in that section by 
substituting BDT functions and arguments for the corresponding HJM 
functions and arguments where required.

Calculating Prices and Sensitivities
The function bdtsens computes the delta, gamma, and vega sensitivities of 
instruments using an interest rate tree created with bdttree. It also optionally 
returns the calculated price for each instrument. bdtsens requires the same 
two input arguments used by bdtprice, namely BDTTree and BDTInstSet.

bdtsens calculates the dollar value of delta and gamma by shifting the 
observed forward yield curve by 100 basis points in each direction, and the 
dollar value of vega by shifting the volatility process by 1%. To obtain the 
per-dollar value of the sensitivities, divide the dollar sensitivity by the price of 
the corresponding instrument. 

The calling syntax for the function is

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet)

Use the previous example data to calculate the price of instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Note  The warning appears because some of the cash flows for the second 
bond do not fall exactly on a tree node. This situation was discussed in “HJM 
Pricing Options Structure” on page 2-44.
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You can conveniently examine the sensitivities and the prices by arranging 
them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =
1.0e+003 *

-0.2327    0.8037   -0.0000    0.0955
   -0.2811    1.1819   -0.0000    0.0939
   -0.0505    0.2460    0.0053    0.0018
   -0.2327    0.8037         0    0.0955
    0.0000    0.0021    0.0014    0.1006
    0.0784    0.7490    0.0135    0.0015
   -0.0044    0.3821    0.0025    0.0000
   -0.2541    0.8642   -0.0014    0.0073

As with the prices, each row of the sensitivity vectors corresponds to the 
similarly indexed instrument in BDTInstSet. To view the per-dollar 
sensitivities, divide each dollar sensitivity by the corresponding instrument 
price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

  1.0e+004 *

-0.0002    0.0008   -0.0000    0.0096
   -0.0003    0.0013   -0.0000    0.0094
   -0.0029    0.0139    0.0003    0.0002
   -0.0002    0.0008         0    0.0096
    0.0000    0.0000    0.0000    0.0101
    0.0053    0.0504    0.0009    0.0001
   -0.0178    1.5577    0.0102    0.0000
   -0.0035    0.0118   -0.0000    0.0007
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Hedging
Hedging is an important consideration in modern finance. The decision of 
whether or not to hedge, how much portfolio insurance is adequate, and how 
often to rebalance a portfolio are important considerations for traders, portfolio 
managers, and financial institutions alike.

Without transaction costs, financial professionals would prefer to rebalance 
portfolios continually, thereby minimizing exposure to market movements. 
However, in practice, the transaction costs associated with frequent portfolio 
rebalancing may be very expensive. Therefore, traders and portfolio managers 
must carefully assess the cost needed to achieve a particular portfolio 
sensitivity (e.g., maintaining delta, gamma, and vega neutrality). Thus, the 
hedging problem involves the fundamental tradeoff between portfolio 
insurance and the cost of such insurance coverage.

The major topics covered in this chapter include:

• “Hedging Functions” on page 3-3

• “Self-Financing Hedges (hedgeslf)” on page 3-12

• “Specifying Constraints with ConSet” on page 3-16

• “Hedging with Constrained Portfolios” on page 3-21
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Hedging Functions
The Financial Derivatives Toolbox offers two functions for assessing the 
fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It 
allocates an optimal hedge to satisfy either of two goals: 

• Minimize the cost of hedging a portfolio given a set of target sensitivities

• Minimize portfolio sensitivities for a given set of maximum target costs

hedgeopt allows investors to modify portfolio allocations among instruments 
according to either of the goals. The problem is cast as a constrained linear 
least squares problem. For additional information about hedgeopt, see 
“Hedging with hedgeopt” on page 3-3.

The second function, hedgeslf, attempts to allocate a self-financing hedge 
among a portfolio of instruments. In particular, hedgeslf attempts to maintain 
a constant portfolio value consistent with reduced portfolio sensitivities (i.e., 
the rebalanced portfolio is hedged against market moves and is closest to being 
self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the 
portfolio to minimize overall portfolio sensitivities. For additional information 
on hedgeslf, see “Self-Financing Hedges (hedgeslf)” on page 3-12.

Hedging with hedgeopt
To illustrate the hedging functions, consider the delta, gamma, and vega 
sensitivity measures. In the context of the Financial Derivatives Toolbox, delta 
is the price sensitivity measure of shifts in the forward yield curve, gamma is 
the delta sensitivity measure of shifts in the forward yield curve, and vega is 
the price sensitivity measure of shifts in the volatility process. Note that the 
delta, gamma, and vega sensitivities calculated by the toolbox are dollar 
sensitivities. (See “Calculating Prices and Sensitivities” on page 2-50 (HJM) 
and “Calculating Prices and Sensitivities” on page 2-71 (BDT) for details.)

Note  The numerical results in this section are displayed with the MATLAB 
bank format. Although the calculations are performed in floating-point double 
precision, only two decimal places are displayed.
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To illustrate the hedging facility, consider the portfolio HJMInstSet obtained 
from the example file deriv.mat. The portfolio consists of eight instruments: 
two bonds, one bond option, one fixed rate note, one floating rate note, one cap, 
one floor, and one swap. 

Both hedging functions require some common inputs, including the current 
portfolio holdings (allocations), and a matrix of instrument sensitivities. To 
create these inputs, load the example portfolio into memory 

load deriv.mat;

compute price and sensitivities

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

and extract the current portfolio holdings.

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a 
matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different 
instrument in the portfolio, and each column with a different sensitivity 
measure.

To summarize the portfolio information

disp([Price  Holdings  Sensitivities])

98.72 100.00 -272.65 1029.90 0.00
97.53  50.00 -347.43 1622.69 -0.04
0.05 -50.00 -8.08 643.40 34.07
98.72 80.00 -272.65 1029.90 0.00
100.55 8.00 -1.04 3.31 0
6.28 30.00  294.97 6852.56 93.69
0.05 40.00 -47.16 8459.99 93.69
3.69 10.00 -282.05 1059.68 0.00

The first column above is the dollar unit price of each instrument, the second 
is the holdings of each instrument (the quantity held or the number of 
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contracts), and the third, fourth, and fifth columns are the dollar delta, gamma, 
and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in 
the portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens =

-61910.22     788946.21       4852.91

Maintaining Existing Allocations
To illustrate using hedgeopt, suppose that you want to maintain your existing 
portfolio. The first form of hedgeopt minimizes the cost of hedging a portfolio 
given a set of target sensitivities. If you want to maintain your existing 
portfolio composition and exposure, you should be able to do so without 
spending any money. To verify this, set the target sensitivities to the current 
sensitivities.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, [], [], [], TargetSens)

Sens =

-61910.22     788946.21       4852.91

Cost =

             0

Quantity' =

        100.00
         50.00
        -50.00
         80.00
          8.00
         30.00
         40.00
         10.00
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Our portfolio composition and sensitivities are unchanged, and the cost 
associated with doing nothing is zero. The cost is defined as the change in 
portfolio value. This number cannot be less than zero because the rebalancing 
cost is defined as a nonnegative number. 

If Value0 and Value1 represent the portfolio value before and after 
rebalancing, respectively, the zero cost can also be verified by comparing the 
portfolio values.

Value0 = Holdings' * Price

Value0 =

23674.62

Value1 = Quantity * Price

Value1 =

23674.62

Partially Hedged Portfolio
Building upon the previous example, suppose you want to know the cost to 
achieve an overall portfolio dollar sensitivity of [-23000 -3300 3000], while 
allowing trading only in instruments 2, 3, and 6 (holding the positions of 
instruments 1, 4, 5, 7, and 8 fixed.) To find the cost, first set the target portfolio 
dollar sensitivity.

TargetSens = [-23000 -3300 3000];

Then, specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.
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Sens =

     -23000.00      -3300.00       3000.00

Cost =

19174.02

Quantity' =

100.00
       -141.03
        137.26
         80.00
          8.00
        -57.96
         40.00
         10.00

Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 =

      4500.60

As expected, the cost, $19174.02, is the difference between Value0 and Value1, 
$23674.62 - $4500.60. Only the positions in instruments 2, 3, and 6 have been 
changed.

Fully Hedged Portfolio
The above example illustrates a partial hedge, but perhaps the most 
interesting case involves the cost associated with a fully-hedged portfolio 
(simultaneous delta, gamma, and vega neutrality). In this case, set the target 
sensitivity to a row vector of zeros and call hedgeopt again.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], [], TargetSens);
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Examining the outputs reveals that you have obtained a fully-hedged portfolio

Sens =

         -0.00          -0.00          -0.00

but at an expense of over $20,000,

Cost =

      23055.90

The positions needed to achieve a fully-hedged portfolio

Quantity' =

        100.00
-182.36

        -19.55
         80.00
          8.00
        -32.97

40.00
         10.00

result in the new portfolio value

Value1 = Quantity * Price

Value1 =

      618.72

Minimizing Portfolio Sensitivities
The above examples illustrate how to use hedgeopt to determine the minimum 
cost of hedging a portfolio given a set of target sensitivities. In these examples, 
portfolio target sensitivities are treated as equality constraints during the 
optimization process. You tell hedgeopt what sensitivities you want, and it 
tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of 
maximum target costs. For this goal the target costs are treated as inequality 
constraints during the optimization process. You tell hedgeopt the most you 
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are willing spend to insulate your portfolio, and it tells you the smallest 
portfolio sensitivities you can get for your money. 

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities 
along the entire cost frontier. From the previous examples, you know that 
spending nothing simply replicates the existing portfolio, while spending 
$23,055.90 completely hedges the portfolio. 

Assume, for example, you are willing to spend as much as $50,000, and want 
to see what portfolio sensitivities will result along the cost frontier. Assume the 
same instruments are held fixed, and that the cost frontier is evaluated from 
$0 to $50,000 at increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds 
available (the amount you are willing to spend).

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')
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Figure 3-1:  Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
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Figure 3-2:  Funds Available for Rebalancing
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Self-Financing Hedges (hedgeslf)
Figure 3-1 and Figure 3-2 indicate that there is no benefit to be gained because 
the funds available for hedging exceed $23,055.90, the point of maximum 
expense required to obtain simultaneous delta, gamma, and vega neutrality. 
You can also find this point of delta, gamma, and vega neutrality using 
hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd);

Sens =

         -0.00
-0.00
-0.00

Value1 =

      618.72

Quantity =

        100.00
-182.36
-19.55
80.00

          8.00
        -32.97

40.00
         10.00

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and 
instrument quantities (the rebalanced holdings). However, in contrast, the 
second output parameter of hedgeslf is the value of the rebalanced portfolio, 
from which you can calculate the rebalancing cost by subtraction.

Value0 - Value1
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ans =

      23055.90

In our example, the portfolio is clearly not self-financing, so hedgeslf finds the 
best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related 
to the results shown above for hedgeslf. Suppose, instead of directly specifying 
the funds available for rebalancing (the most money you are willing to spend), 
you want to simply specify the number of points along the cost frontier. This 
call to hedgeopt samples the cost frontier at 10 equally spaced points between 
the point of minimum cost (and potentially maximum exposure) and the point 
of minimum exposure (and maximum cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, 10);

Sens =
-32784.46       2231.83     -49694.33

     -29141.74       1983.85     -44172.74
     -25499.02       1735.87     -38651.14
     -21856.30       1487.89     -33129.55
     -18213.59       1239.91     -27607.96
     -14570.87        991.93     -22086.37
     -10928.15        743.94     -16564.78
      -7285.43        495.96     -11043.18
      -3642.72        247.98      -5521.59
          0.00         -0.00          0.00

Cost =
0.00

       2561.77
       5123.53
       7685.30
      10247.07
      12808.83
      15370.60
      17932.37
      20494.14
      23055.90
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Now plot this data.

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

Figure 3-3:  Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the 
maximum cost needed to minimize the portfolio sensitivities ($23,055.90), and 
evenly samples the cost frontier between $0 and $23,055.90.

Note that both hedgeopt and hedgeslf cast the optimization problem as a 
constrained linear least squares problem. Depending upon the instruments 
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and constraints, neither function is guaranteed to converge to a solution. In 
some cases, the problem space may be unbounded, and additional instrument 
equality constraints, or user-specified constraints, may be necessary for 
convergence. See “Hedging with Constrained Portfolios” on page 3-21 for 
additional information.
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Specifying Constraints with ConSet
Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that 
allows you to specify a set of linear inequality constraints for instruments in 
your portfolio. The examples in this section are quite brief. For additional 
information regarding portfolio constraint specifications, refer to the section 
“Analyzing Portfolios” found in the Financial Toolbox User's Guide.

Setting Constraints
For the first example of setting constraints, return to the fully-hedged portfolio 
example that used hedgeopt to determine the minimum cost of obtaining 
simultaneous delta, gamma, and vega neutrality (target sensitivities all zero). 
Recall that when hedgeopt computes the cost of rebalancing a portfolio, the 
input target sensitivities you specify are treated as equality constraints during 
the optimization process. The situation is reproduced below for convenience.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully-hedged portfolio

Sens =
         -0.00          -0.00          -0.00

at an expense of over $23,000.

Cost =
      23055.90

The positions needed to achieve this fully-hedged portfolio are

Quantity' =

        100.00
-182.36

        -19.55
         80.00
          8.00
        -32.97

40.00
         10.00
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Suppose now that you want to place some upper and lower bounds on the 
individual instruments in your portfolio. You can specify these constraints, 
along with a variety of general linear inequality constraints, with the Financial 
Toolbox function portcons. 

As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and 
8 fixed as before, you want to bound the position of all instruments to within 
+/- 180 contracts (for each instrument, you cannot short or long more than 180 
contracts). Applying these constraints disallows the current position in the 
second instrument (short 182.36). All other instruments are currently within 
the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper 
bounds vectors and then calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [ 180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the 
problem, given the constraints, is not solvable. Intuitively, the results mean 
that you cannot obtain simultaneous delta, gamma, and vega neutrality with 
these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call 
hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd, ConSet);

Sens =

-352.43
         21.99
       -498.77
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Value1 =

      855.10

Quantity =

        100.00
-180.00

        -37.22
         80.00
          8.00
        -31.86

40.00
         10.00

hedgeslf enforces the lower bound for the second instrument, but the 
sensitivity is far from neutral. The cost to obtain this portfolio is

Value0 - Value1

ans =

      22819.52

Portfolio Rebalancing
As a final example of user-specified constraints, rebalance the portfolio using 
the second hedging goal of hedgeopt. Assume that you are willing to spend as 
much as $20,000 to rebalance your portfolio, and you want to know what 
minimum portfolio sensitivities you can get for your money. In this form, recall 
that the target cost ($20,000) is treated as an inequality constraint during the 
optimization process.

For reference, invoke hedgeopt without any user-specified linear inequality 
constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], 20000);

Sens =

-4345.36        295.81      -6586.64
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Cost =

      20000.00

Quantity' =

        100.00
-151.86

       -253.47
         80.00
          8.00
        -18.18 

40.00
         10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities 
Profile shown in Figure 3-3, Rebalancing Cost, on page 3-14.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before, 
you want to bound the position of all instruments to within +/- 150 contracts 
(for each instrument, you cannot short more than 150 contracts and you cannot 
long more than 150 contracts). These bounds disallow the current position in 
the second and third instruments (-151.86 and -253.47). All other instruments 
are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and 
upper bounds vectors and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [ 150  150  150  150  150  150  150  150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings,FixedInd, [], 20000, [], ConSet);

Sens =

-8818.47        434.43      -4010.79
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Cost =

      19876.89

Quantity' =

        100.00
-150.00

       -150.00
         80.00
          8.00
        -28.32
         40.00
         10.00

With these constraints hedgeopt enforces the lower bound for the second and 
third instruments. The cost incurred is $19,876.89.
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Hedging with Constrained Portfolios
Both hedging functions cast the optimization as a constrained linear least 
squares problem. (See the function lsqlin in the Optimization Toolbox for 
details.) In particular, lsqlin attempts to minimize the constrained linear 
least squares problem

where C, A, and Aeq are matrices, and d, b, beq, lb, and ub are vectors. In all 
cases of interest for the Financial Derivatives Toolbox, x is a vector of asset 
holdings (contracts).

This section provides some examples of setting constraints and discusses how 
to recognize situations when the least squares problem is improperly 
constrained. Depending upon the constraints and the number of assets in the 
portfolio, a solution to a particular problem may or may not exist. Furthermore, 
if a solution is found, the solution may not be unique. For a unique solution to 
exist, the least squares problem must be sufficiently and appropriately 
constrained.

Example: Fully Hedged Portfolio
Recall that hedgeopt allows you to allocate an optimal hedge by one of two 
goals: 

• Minimize the cost of hedging a portfolio given a set of target sensitivities 

• Minimize portfolio sensitivities for a given set of maximum target costs

As an example, reproduce the results for the fully hedged portfolio example.

TargetSens = [0 0 0];
FixedInd   = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

min1
2
--- Cx d�

2

2

x
such that A x⋅ b≤

Aeq x⋅ beq=
lb x ub≤ ≤
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Sens =

         -0.00          -0.00          -0.00

Cost =

      23055.90

Quantity' =

98.72
-182.36

        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00 

This example finds a unique solution at a cost of just over $23,000. The matrix 
C (formed internally by hedgeopt and passed to lsqlin) is the asset Price 
vector expressed as a row vector.

C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example 
maintains, as closely as possible, a constant portfolio value subject to the 
specified constraints.

Additional Constraints
In the absence of any additional constraints, the least squares objective 
involves a single equation with eight unknowns. This is an under-determined 
system of equations. Because such systems generally have an infinite number 
of solutions, you need to specify additional constraints to achieve a solution 
with practical significance. The additional constraints can come from two 
sources: 

• User-specified equality constraints

• Target sensitivity equality constraints imposed by hedgeopt



Hedging with Constrained Portfolios

3-23

The fully-hedged portfolio example specifies five equality constraints 
associated with holding assets 1, 4, 5, 7, and 8 fixed. This reduces the number 
of unknowns from eight to three, which is still an under-determined system. 
However, when combined with the first goal of hedgeopt, the equality 
constraints associated with the target sensitivities in TargetSens produce an 
additional system of three equations with three unknowns. This additional 
system guarantees that the weighted average of the delta, gamma, and vega of 
assets 2, 3, and 6, together with the remaining assets held fixed, satisfy the 
overall portfolio target sensitivity requirements in TargetSens.

Combining the least squares objective equation with the three portfolio 
sensitivity equations provides an overall system of four equations with three 
unknown asset holdings. This is no longer an under-determined system, and 
the solution is as shown.

If the assets held fixed are reduced, e.g., FixedInd = [1 4 5 7], hedgeopt 
returns a no cost, fully-hedged portfolio (Sens = [0 0 0] and Cost = 0). 

If you further reduce FixedInd (e.g., [1 4 5], [1 4], or even []), hedgeopt 
always returns a no cost, fully-hedged portfolio. In these cases, insufficient 
constraints result in an under-determined system. Although hedgeopt 
identifies no cost, fully-hedged portfolios, there is nothing unique about them. 
These portfolios have little practical significance. 

Constraints must be sufficient and appropriately defined. Additional 
constraints having no effect on the optimization are called dependent 
constraints. As a simple example, assume that parameter Z is constrained such 
that . Furthermore, assume we somehow add another constraint that 
effectively restricts . The constraint  now has no effect on the 
optimization.

Example: Minimize Portfolio Sensitivities
To illustrate using hedgeopt to minimize portfolio sensitivities for a given 
maximum target cost, specify a target cost of $20,000 and determine the new 
portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, [1 4 5 7 8], [], MaxCost);

Z 1≤
Z 0≤ Z 1≤
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Sens =

-4345.36        295.81      -6586.64

Cost =

20000.00

Quantity' =

        100.00
-151.86

       -253.47
         80.00
          8.00
        -18.18
         40.00
         10.00

This example corresponds to the $20,000 point along the cost axis in 
Figure 3-1, Figure 3-2, and Figure 3-3.

When minimizing sensitivities, the maximum target cost is treated as an 
inequality constraint; in this case, MaxCost is the most you are willing to spend 
to hedge a portfolio. The least squares objective matrix C is the matrix 
transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros, 
[0 0 0]'.

Without any additional constraints, the least squares objective results in an 
under-determined system of three equations with eight unknowns. By holding 
assets 1, 4, 5, 7, and 8 fixed, you reduce the number of unknowns from eight to 
three. Now, with a system of three equations with three unknowns, hedgeopt 
finds the solution shown. 



Hedging with Constrained Portfolios

3-25

Example: Under-Determined System
Reducing the number of assets held fixed creates an under-determined system 
with meaningless solutions. For example, see what happens with only four 
assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], MaxCost);

Sens =

         -0.00          -0.00          -0.00

Cost =

      20000.00

Quantity' =

100.00
-149.31

        -14.91
         80.00
          8.00
        -34.64
         40.00
        -32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a 
fully-hedged portfolio. 

With an increase in available funds to $50,000, you still spend all available 
funds to get another fully-hedged portfolio.

MaxCost  = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [],MaxCost);

Sens =

         -0.00          0.00          0.00
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Cost =

      50000.00

Quantity' =

        100.00
-473.78

        -60.51
         80.00
          8.00
        -18.20
         40.00
        385.60

All solutions to an under-determined system are meaningless. You buy and sell 
various assets to obtain zero sensitivities, spending all available funds every 
time. If you reduce the number of fixed assets any further, this problem is 
insufficiently constrained, and you find no solution (the outputs are all NaN).

Note also that no solution exists whenever constraints are inconsistent. 
Inconsistent constraints create an infeasible solution space; the outputs are all 
NaN.

Portfolio Constraints with hedgeslf
The other hedging function, hedgeslf, attempts to minimize portfolio 
sensitivities such that the rebalanced portfolio maintains a constant value (the 
rebalanced portfolio is hedged against market moves and is closest to being 
self-financing). If a self-financing hedge is not found, hedgeslf tries to 
rebalance a portfolio to minimize sensitivities. 

From a least squares systems approach, hedgeslf first attempts to minimize 
cost in the same way that hedgeopt does. If it cannot solve this problem (a no 
cost, self-financing hedge is not possible), hedgeslf proceeds to minimize 
sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt is 
directly applicable to hedgeslf as well.
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Functions by Category
This chapter provides detailed descriptions of the functions in the Financial 
Derivatives Toolbox.

Table 4-1:  Portfolio Hedge Allocation

Function Purpose

hedgeslf Self-financing hedge

hedgeopt Allocate optimal hedge for target costs or sensitivities

Table 4-2:  Fixed Income Pricing from Interest Term Structure

Function Purpose

bondbyzero Price bond by a set of zero curves

cfbyzero Price cash flows by a set of zero curves

fixedbyzero Price fixed rate note by a set of zero curves

floatbyzero Price floating rate note by a set of zero curves

intenvprice Price fixed income instruments by a set of zero curves

intenvsens Instrument prices and sensitivities by a set of zero 
curves

swapbyzero Price swap instrument by a set of zero curves
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Table 4-3:  Fixed Income Pricing and Sensitivity from Heath-Jarrow-Morton 
Tree

Function Purpose

hjmprice Fixed income instrument prices by HJM interest rate 
tree

hjmsens Fixed income instrument prices and sensitivities by 
HJM interest rate tree 

hjmtimespec Specify time structure for HJM interest rate tree

hjmtree Construct HJM interest rate tree

hjmvolspec HJM volatility process specification

Table 4-4:  Fixed Income Pricing and Sensitivity from Black-Derman-Toy Tree

Function Purpose

bdtprice Fixed income instrument prices by BDT interest rate 
tree

bdtsens Fixed income instrument prices and sensitivities by 
BDT interest rate tree 

bdttimespec Specify time structure for BDT interest rate tree

bdttree Construct BDT interest rate tree

bdtvolspec BDT volatility process specification



4-4

Table 4-5:  Heath-Jarrow-Morton Utilities

Function Purpose

bondbyhjm Price bond by HJM interest rate tree

capbyhjm Price cap instrument by HJM interest rate tree

cfbyhjm Price arbitrary set of cash flows by HJM interest rate 
tree

fixedbyhjm Price fixed rate note by HJM interest rate tree

floatbyhjm Price floating rate note by HJM interest rate tree

floorbyhjm Price floor instrument by HJM interest rate tree

mmktbyhjm Create money market tree from HJM

optbndbyhjm Price bond option by HJM interest rate tree

swapbyhjm Price swap instrument by HJM interest rate tree

Table 4-6:  Black-Derman-Toy Utilities

Function Purpose

bondbybdt Price bond by BDT interest rate tree

capbybdt Price cap by BDT interest rate tree

cfbybdt Price arbitrary set of cash flows by BDT interest rate 
tree

fixedbybdt Price fixed rate note by BDT interest rate tree

floatbybdt Price floating rate note by BDT interest rate tree

floorbybdt Price floor instrument by BDT interest rate tree

mmktbybdt Create money market tree from BDT
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optbndbybdt Price bond option by BDT interest rate tree

swapbybdt Price swap instrument by BDT interest rate tree

Table 4-7:  Heath-Jarrow-Morton Bushy Tree Manipulation

Function Purpose

bushpath Extract entries from node of bushy tree

bushshape Retrieve shape of bushy tree

mkbush Create bushy tree

Table 4-8:  Black-Derman-Toy Recombining Tree Manipulation

Function Purpose

mktree Create recombining tree

treepath Extract entries from node of recombining tree

treeshape Retrieve shape of recombining tree

Table 4-9:  Derivatives Pricing Options

Function Purpose

derivget Get derivatives pricing options 

derivset Set or modify derivatives pricing options

Table 4-6:  Black-Derman-Toy Utilities (Continued)

Function Purpose
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Table 4-10:  Instrument Portfolio Handling 

Function Purpose

instadd Add types to instrument collection

instaddfield Add new instruments to an instrument collection 

instbond Construct bond instrument

instcap Construct cap instrument 

instcf Constructor for arbitrary cash flow instrument 

instdelete Complement of subset of instruments by matching 
conditions

instdisp Display instruments

instfields List fieldnames

instfind Search instruments for matching conditions

instfixed Construct fixed-rate instrument

instfloat Construct floating-rate instrument

instfloor Construct floor instrument 

instget Retrieve data from instrument variable

instgetcell Retrieve data and context from instrument variable 

instlength Count instruments

instoptbnd Construct bond option

instselect Create instrument subset by matching conditions

instsetfield Add or reset data for existing instruments

instswap Construct swap instrument 

insttypes List types
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Table 4-11:  Financial Object Structures

Function Purpose

classfin Create financial structure or return financial structure 
class name

isafin True if financial structure type or financial object class

Table 4-12:  Interest Term Structure

Function Purpose

date2time Fixed income time and frequency from dates

disc2rate Interest rates from cash flow discounting factors

intenvget Get properties of interest rate environment

intenvset Set properties of interest rate environment 

rate2disc Discounting factors from interest rates

ratetimes Change time intervals defining interest rate 
environment

Table 4-13:  Date Function

Function Purpose

datedisp Display date entries
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Table 4-14:  Graphical Display Function

Function Purpose

treeviewer Display tree information
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4bdtpricePurpose Fixed income instrument prices by BDT interest rate tree

Syntax [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Arguments

Description [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options) computes 
arbitrage free prices for instruments using an interest rate tree created with 
bdttree. All instruments contained in a financial instrument variable, 
InstSet, are priced. 

Price is a number of instruments (NINST)-by-1 vector of prices for each 
instrument. The prices are computed by backward dynamic programming on 
the interest rate tree. If an instrument cannot be priced, NaN is returned. 

PriceTree is a MATLAB structure of trees containing vectors of instrument 
prices and accrued interest, and a vector of observation times for each node. 

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 
'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types. 

Related single-type pricing functions are: 

• bondbybdt: Price a bond by a BDT tree. 

• capbybdt: Price a cap by a BDT tree.

• cfbybdt: Price an arbitrary set of cash flows by a BDT tree. 

• fixedbybdt: Price a fixed rate note by a BDT tree. 

• floatbybdt: Price a floating rate note by a BDT tree. 

BDTTree Interest rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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• floorbybdt: Price a floor by a BDT tree. 

• optbndbybdt: Price a bond option by a BDT tree. 

• swapbybdt: Price a swap by a BDT tree. 

Examples Load the BDT tree and instruments from the data file deriv.mat. Price the cap 
and bond instruments contained in the instrument set. 

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period  Name ... 
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1  10% bond       
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2  10% bond      

 
Index Type Strike Settle      Maturity     CapReset...  Name ...  
3     Cap  0.15   01-Jan-2000 01-Jan-2004 1      15% Cap 

     
[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

95.5030
   93.9079
    1.4863

You can use treeviewer to see the prices of these three instruments along the 
price tree.
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See Also bdtsens, bdttree, instadd, intenvprice, intenvsens

            10% Bond          10% Bond

             15% Cap
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4bdtsensPurpose Fixed income instrument prices and sensitivities by BDT interest rate tree

Syntax [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)

Arguments

Description [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)
computes instrument sensitivities and prices for instruments using an interest 
rate tree created with bdttree. NINST instruments from a financial instrument 
variable, InstSet, are priced. bdtsens handles instrument types: 'Bond', 
'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See 
instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change of 
instrument prices with respect to changes in the interest rate. Delta is 
computed by finite differences in calls to bdttree. See bdttree for information 
on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of 
instrument deltas with respect to the changes in the interest rate. Gamma is 
computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of 
instrument prices with respect to the changes in the volatility . Vega is 
computed by finite differences in calls to bdttree. See bdtvolspec for 
information on the volatility process.

Note  All sensitivities are returned as dollar sensitivities. To find the 
per-dollar sensitivities, divide by the respective instrument price.

BDTTree Interest rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 

σ t T,( )
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Price is an NINST-by-1 vector of prices of each instrument. The prices are 
computed by backward dynamic programming on the interest rate tree. If an 
instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega 
is calculated based on a 1% shift in the volatility process.

 Examples Load the tree and instruments from a data file. Compute delta and gamma for 
the cap and bond instruments contained in the instrument set. 

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period  Name ...     
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% Bond
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% Bond       

 
Index Type Strike Settle      Maturity     CapReset...  Name ...  
3     Cap  0.15   01-Jan-2000 01-Jan-2004 1      15% Cap 
     

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Delta =

 -232.6681
 -281.0517
   78.3776
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Gamma =

  1.0e+003 *

    0.8037
    1.1819
    0.7490

See Also bdtprice, bdttree, bdtvolspec, instadd
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4bdttimespecPurpose Specify time structure for BDT interest rate tree

Syntax TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

Arguments

Description TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding) sets 
the number of levels and node times for a BDT tree and determines the 
mapping between dates and time for rate quoting.         

TimeSpec is a structure specifying the time layout for bdttree. The state 
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a 
forward rate is stored at the last observation, the tree can value cash flows out 
to Maturity.

Examples Specify a four period tree with annual nodes. Use annual compounding to 
report rates.

ValuationDate Scalar date marking the pricing date and first 
observation in the tree. Specify as serial date number or 
date string

Maturity Number of levels (depth) of the tree. A number of levels 
(NLEVELS)-by-1 vector of dates marking the cash flow 
dates of the tree. Cash flows with these maturities fall 
on tree nodes. Maturity should be in increasing order. 

Compounding (Optional) Scalar value representing the rate at which 
the input zero rates were compounded when annualized. 
Default = 1. This argument determines the formula for 
the discount factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.
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Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec = 

           FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
         Maturity: [5x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

See Also bdttree, bdtvolspec



bdttree

4-17

4bdttreePurpose Build BDT interest rate tree

Syntax BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

Arguments

Description BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates a structure 
containing time and interest rate information on a recombining tree.

Examples Using the data provided, create a BDT volatility specification (VolSpec), rate 
specification (RateSpec), and tree time layout specification (TimeSpec). Then 
use these specifications to create a BDT tree with bdttree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);

 

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

VolSpec Volatility process specification. See bdtvolspec for 
information on the volatility process.

RateSpec Interest rate specification for the initial rate curve. See 
intenvset for information on declaring an interest rate 
variable. 

TimeSpec Tree time layout specification. Defines the observation 
dates of the BDT tree and the Compounding rule for date 
to time mapping and price-yield formulas. See 
bdttimespec for information on the tree structure.
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BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer(BDTTree)

See Also bdtprice, bdttimespec, bdtvolspec, intenvset
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4bdtvolspecPurpose Specify a BDT interest rate volatility process

Syntax Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, 
InterpMethod)

Arguments

Description Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve, 
InterpMethod) creates a structure specifying the volatility for bdttree.

Examples Using the data provided, create a BDT volatility specification (VolSpec).

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = 
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

See Also bdttree, interp1

ValuationDate Scalar value representing the observation date of the 
investment horizon.

VolDates Number of points (NPOINTS)-by-1 vector of yield 
volatility end dates.

VolCurve NPOINTS-by-1 vector of yield volatility values in decimal 
form.

InterpMethod (Optional) Interpolation method. Default is 'linear'. 
See interp1 for more information.
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4bondbybdtPurpose Price bond by BDT interest rate tree

Syntax [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, 
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

Arguments BDTTree Interest rate tree structure created by bdttree.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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The Settle date for every bond is set to the ValuationDate of the BDT tree. 
The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face, Options) computes the price of a bond 
by a BDT interest rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at 
time 0. 

PriceTree is a MATLAB structure of trees containing vectors of instrument 
prices and accrued interest, and a vector of observation times for each node. 
Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Examples Price a 10% bond using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the bond.

load deriv 

Set the required values. Other arguments will use defaults.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and is followed only by the 
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default is 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price =

  95.5030

See Also bdttree, bdtprice, instbond
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4bondbyhjmPurpose Price bond by HJM interest rate tree

Syntax [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, 
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

Arguments HJMTree Forward rate tree structure created by hjmtree.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 
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The Settle date for every bond is set to the ValuationDate of the HJM tree. 
The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle, 
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face, Options) computes the price of a bond 
by an HJM forward rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at 
time 0. 

PriceTree is a structure of trees containing vectors of instrument prices and 
accrued interest, and a vector of observation times for each node. Within 
PriceTree:

• PriceTree.PBush contains the clean prices.

• PriceTree.AIBush contains the accrued interest.

• PriceTree.tObs contains the observation times.

Examples Price a 4% bond using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the bond.

load deriv 

Set the required values. Other arguments will use defaults.

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and is followed only by the 
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyhjm to compute the price of the bond.

Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

  97.5280

See Also hjmtree, hjmprice, instbond
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4bondbyzeroPurpose Price bond by a set of zero curves

Syntax Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face) 

Arguments RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity. 

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 



bondbyzero

4-27

All inputs are either scalars or number of instruments (NINST)-by-1 vectors 
unless otherwise specified. Dates can be serial date numbers or date strings. 
Optional arguments can be passed as empty matrix [].

Description Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face) returns a NINST-by-NUMCURVES matrix of clean bond prices. 
Each column arises from one of the zero curves.

Examples Price a 4% bond using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term 
structure needed to price the bond.

load deriv 

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyzero to compute the price of the bond.

Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

  97.5334

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and is followed only by the 
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default = 100.
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See Also cfbyzero, fixedbyzero, floatbyzero, swapbyzero
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4bushpathPurpose Extract entries from node of bushy tree

Syntax Values = bushpath(Tree, BranchList)

Arguments

Description Values = bushpath(Tree, BranchList) extracts entries of a node of a bushy 
tree. The node path is described by the sequence of branchings taken, starting 
at the root. The top branch is number one, the second-to-top is two, and so on. 
Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the 
retrieved entries of a bushy tree. 

Examples Create an HJM tree by loading the example file.

load deriv.mat; 

Then

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1]) 

returns the rates at the tree nodes located by taking the up branch, then the 
down branch, and finally the up branch again.

FwdRates = 

    1.0356
    1.0364
    1.0526
    1.0463 

You can visualize this with the treeviewer function.

Tree Bushy tree.

BranchList Number of paths (NUMPATHS) by path length 
(PATHLENGTH) matrix containing the sequence of 
branchings.
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treeviewer(HJMTree)

See Also bushshape, mkbush
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4bushshapePurpose Retrieve shape of bushy tree

Syntax [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)

Arguments

Description [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)
returns information on a bushy tree’s shape. 

NumLevels is the number of time levels of the tree. 

NumChild is a 1 by number of levels (NUMLEVELS) vector with the number of 
branches (children) of the nodes in each level. 

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in 
each level. 

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in 
each level. 

Trim is 1 if NumPos decreases by one when moving from one time level to the 
next. Otherwise, it is 0.

Examples Create an HJM tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the HJM interest rate tree.

Tree Bushy tree.
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With this tree

[NumLevels, NumChild, NumPos, NumStates, Trim] =... 
bushshape(HJMTree.FwdTree) 

returns

NumLevels  =   
     4

NumChild   =   
     2     2     2     0

NumPos     =   
     4     3     2     1

NumStates  =  
     1     2     4     8

Trim =   
     1
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You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim); 
Tree = mkbush(NumLevels, NumChild, NumPos);

See Also bushpath, mkbush
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4capbybdtPurpose Price cap instrument by BDT interest rate tree

Syntax [Price, PriceTree] = capbybdt(BDTTree,  Strike, Settle, Maturity,                       
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity,                       
Reset, Basis, Principal, Options) computes the price of a cap instrument 
from a BDT interest rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the BDT tree. The 
cap argument Settle is ignored. 

Examples Example 1. 

Price a 3% cap instrument using a BDT interest rate tree.

BDTTree Interest rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates at 
which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates 
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the cap instrument.

load deriv 

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

Price =

  28.5191

Example 2. 

Here is a second example, showing the pricing of a 10% cap instrument using 
a newly-created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility); 
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Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the cap arguments. 

CapStrike = 0.10; 
Settlement = ValuationDate; 
Maturity = '01-01-2002'; 
CapReset = 1;

Remaining arguments will use defaults.

Finally, use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,... 
CapReset)

Price =

    1.6923

See Also bdttree, cfbybdt, floorbybdt, swapbybdt
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4capbyhjmPurpose Price cap instrument by HJM interest rate tree

Syntax [Price, PriceTree] = capbyhjm(HJMTree,  Strike, Settle, Maturity,                       
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity,                       
Reset, Basis, Principal, Options) computes the price of a cap instrument 
from an HJM tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the HJM tree. The 
cap argument Settle is ignored. 

Examples Price a 3% cap instrument using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the cap instrument.

HJMTree Forward rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates at 
which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates 
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 



capbyhjm

4-38

load deriv 

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

  6.2831

See Also cfbyhjm, floorbyhjm, hjmtree, swapbyhjm
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4cfbybdtPurpose Price cash flows from BDT interest rate tree

Syntax [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, 
Settle, Basis, Options)

Arguments

Description [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, 
Settle, Basis, Options) prices cash flows from a BDT interest rate tree.

Price is an NINST-by-1 vector of expected prices at time 0. 

PriceTree is a tree structure with a vector of instrument prices at each node. 

Examples Price a portfolio containing two cash flow instruments paying interest annually 
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the instruments.

BDTTree Forward rate tree structure created by bdttree.

CFlowAmounts Number of instruments (NINST) by maximum number of 
cash flows (MOSTCFS) matrix of cash flow amounts. Each 
row is a list of cash flow values for one instrument. If an 
instrument has fewer than MOSTCFS cash flows, the end 
of the row is padded with NaNs. 

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry       
contains the date of the corresponding cash flow in 
CFlowAmounts. 

Settle Settlement date. A vector of serial date numbers or date 
strings. The Settle date for every cash flow is set to the 
ValuationDate of the HJM tree. The cash flow argument, 
Settle, is ignored. 

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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load deriv 
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947; 

730852, 731217, 731582, 731947];

Price = cfbybdt(BDTTree, CFlowAmounts, CFlowDates,... 
BDTTree.RateSpec.ValuationDate)

Price =

   74.0112
   74.3671

PriceTree = 

    FinObj: 'BDTPriceTree'
      tObs: [0 1.00 2.00 3.00 4.00]
     PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the 
treeviewer function.

treeviewer(PriceTree)

See Also bdttree, bdtprice, cfamounts, instcf
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4cfbyhjmPurpose Price cash flows from HJM interest rate tree

Syntax [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, 
Settle, Basis, Options)

Arguments

Description [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates, 
Settle, Basis, Options) prices cash flows from an HJM interest rate tree.

Price is an NINST-by-1 vector of expected prices at time 0. 

PriceTree is a tree structure with a vector of instrument prices at each node. 

Examples Price a portfolio containing two cash flow instruments paying interest annually 
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the instruments.

HJMTree Forward rate tree structure created by hjmtree.

CFlowAmounts Number of instruments (NINST) by maximum number of 
cash flows (MOSTCFS) matrix of cash flow amounts. Each 
row is a list of cash flow values for one instrument. If an 
instrument has fewer than MOSTCFS cash flows, the end 
of the row is padded with NaNs. 

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry       
contains the date of the corresponding cash flow in 
CFlowAmounts. 

Settle Settlement date. A vector of serial date numbers or date 
strings. The Settle date for every cash flow is set to the 
ValuationDate of the HJM tree. The cash flow argument, 
Settle, is ignored. 

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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load deriv 
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947; 

730852, 731217, 731582, 731947];

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,... 
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price =

  96.7805
   97.2188
PriceTree = 

    FinObj: 'HJMPriceTree'
      tObs: [0 1.00 2.00 3.00 4.00]
     PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the 
treeviewer function.

treeviewer(PriceTree)

See Also cfamounts, hjmprice, hjmtree, instcf
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4cfbyzeroPurpose Price cash flows by a set of zero curves

Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)

Arguments

Description Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)
computes Price, an NINST-by-NUMCURVES matrix of cash flows prices. Each 
column arises from one of the zero curves.

Examples Price a portfolio containing two cash flow instruments paying interest annually 
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. ZeroRateSpec contains 
the interest rate information needed to price the instruments.

load deriv 
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947; 

730852, 731217, 731582, 731947];
Settle = 730486;

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

CFlowAmounts Number of instruments (NINST) by maximum number of  
cash flows (MOSTCFS) matrix with entries listing cash 
flow amounts corresponding to each date in CFlowDates. 
Each row is a list of cash flow values for one instrument. 
If an instrument has fewer than MOSTCFS cash flows, the 
end of the row is padded with NaNs.          

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry                   
contains the serial date of the corresponding cash flow                    
in CFlowAmounts.

Settle Settlement date on which the cash flows are priced. 

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.
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Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price =

  96.7804
   97.2187

See Also bondbyzero, fixedbyzero, floatbyzero, swapbyzero



classfin

4-45

4classfinPurpose Create financial structure or return financial structure class name

Syntax Obj = classfin(ClassName) 
Obj = classfin(Struct, ClassName) 
ClassName = classfin(Obj)

Arguments

Description Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName)
create a financial structure of class ClassName.

ClassName = classfin(Obj) returns a string containing a financial 
structure’s class name.

Examples Example 1.

Create an HJMTimeSpec financial structure and complete its fields. (Typically, 
the function hjmtimespec is used to create HJMTimeSpec structures). 

TimeSpec = classfin('HJMTimeSpec'); 
TimeSpec.ValuationDate = datenum('Dec-10-1999'); 
TimeSpec.Maturity = datenum('Dec-10-2002'); 
TimeSpec.Compounding = 2; 
TimeSpec.Basis = 0; 
TimeSpec.EndMonthRule = 1;

TimeSpec = 

    FinObj: 'HJMTimeSpec'
ValuationDate: 730464

         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 1

ClassName String containing name of financial structure class.

Struct MATLAB structure to be converted into a financial 
structure.

Obj Name of a financial structure.
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Example 2.

Convert an existing MATLAB structure into a financial structure. 

TSpec.ValuationDate = datenum('Dec-10-1999'); 
TSpec.Maturity = datenum('Dec-10-2002'); 
TSpec.Compounding = 2; 
TSpec.Basis = 0; 
TSpec.EndMonthRule = 0; 

TimeSpec = classfin(TSpec, 'HJMTimeSpec')
 
TimeSpec = 

    ValuationDate: 730464
         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 0
           FinObj: 'HJMTimeSpec'

Example 3.

Obtain a financial structure’s class name. 

load deriv.mat 
ClassName = classfin(HJMTree)

ClassName =

HJMFwdTree

See Also isafin
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4date2timePurpose Fixed income time and frequency from dates

Syntax [Times, F] = date2time(Settle, Maturity, Compounding, Basis, 
EndMonthRule)

Arguments Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Compounding Scalar value representing the rate at which the input 
zero rates were compounded when annualized. This 
argument determines the formula for the discount 
factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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Description [Times, F] = date2time(Settle, Dates, Compounding, Basis, 
EndMonthRule) computes time factors appropriate to compounded rate quotes 
between Settle and Maturity dates.

Times is a vector of time factors.

F is a scalar of related compounding frequencies.

See Also cftimes in the Financial Toolbox User’s Guide

disc2rate, rate2disc
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4datedispPurpose Display date entries 

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

Description datedisp(NumMat, DateForm) displays the matrix with the serial dates 
formatted as date strings, using a matrix with mixed numeric entries and 
serial date number entries. Integers between datenum('01-Jan-1900') and 
datenum('01-Jan-2200') are assumed to be serial date numbers, while all 
other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is 
assigned, the function prints the array to the display.

Examples NumMat = [ 730730, 0.03, 1200, 730100;
           730731, 0.05, 1000, NaN]

NumMat =

   1.0e+05 *

    7.3073    0.0000    0.0120    7.3010
    7.3073    0.0000    0.0100       NaN

datedisp(NumMat)
    01-Sep-2000   0.03   1200   11-Dec-1998   
    02-Sep-2000   0.05   1000      NaN        

See Also datenum, datestr in the Financial Toolbox User’s Guide

Remarks This function is identical to the datedisp function in the Financial Toolbox.

NumMat Numeric matrix to display

DateForm (Optional) Date format. See datestr for available and default 
format flags.
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4derivgetPurpose Get derivatives pricing options

Syntax Value = derivget(Options, 'Parameter')

Arguments

Description Value = derivget(Options, 'Parameter') extracts the value of the named 
parameter from the derivative options structure Options. Parameter values 
can be 'off' or 'on'. 

Examples Create an Options structure with the value of Diagnostics set to 'on'.    

Options = derivset('Diagnostics','on')

Use derivget to extract the value of Diagnostics from the Options structure.

Value = derivget(Options, 'Diagnostics')

Value =

on

Use derivget to extract the value of ConstRate.

Value   = derivget(Options, 'ConstRate')

Value =

on

Because the value of 'ConstRate' was not previously set with derivset, the 
answer represents the default setting for 'ConstRate'.

See Also derivset

Options Existing options specification structure, probably 
created from previous call to derivset.

Parameter Must be 'Diagnostics', 'Warnings', or 'ConstRate'. It 
is sufficient to type only the leading characters that  
uniquely identify the parameter. Case is ignored for 
parameter names.
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4derivsetPurpose Set or modify derivatives pricing options

Syntax Options = derivset(Options, 'Parameter1', Value1, 'Parameter2', 
Value2,'Parameter3', Value3) 

Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset

Arguments

Description Options = derivset(Options, 'Parameter1', Value1, 'Parameter2', 
Value2,'Parameter3', Value3)  creates a derivatives pricing options 
structure Options in which the named parameters have the specified values.  
Any unspecified value is set to the default value for that parameter when 
Options is passed to the pricing function. It is sufficient to type only the leading 
characters that uniquely identify the parameter name. Case is also ignored for 
parameter names.  

If the optional input argument Options is specified, derivset modifies an 
existing pricing options structure by changing the named parameters to the 
specified values.

Options (Optional) Existing options specification structure, 
probably created from previous call to derivset.

Parametern
Valuen

Must be 'Diagnostics', 'Warnings', or 'ConstRate'. 
Parameters can be entered in any order. Parameter 
values can be 'on' or 'off'.
'Diagnostics' 'on' generates diagnostic information. 
The default is 'Diagnostics' 'off'.
'Warnings' 'on' (default) displays a warning message 
when executing a pricing function.
'ConstRate' 'on' (default) assumes a constant rate 
between tree nodes. 

OldOptions Existing options specification structure.

NewOptions New options specification structure.
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Note   For parameter values, correct case and the complete string are     
required; if an invalid string is provided, the default is used.

Options = derivset(OldOptions, NewOptions)  combines an existing 
options structure OldOptions with a new options structure NewOptions. Any 
parameters in NewOptions with nonempty values overwrite the corresponding 
old parameters in OldOptions. 

Options = derivset  creates an options structure Options whose fields are 
set to the default values.

derivset  with no input or output arguments displays all parameter names 
and information about their possible values.

 Examples Options = derivset('Diagnostics','on')

enables the display of additional diagnostic information that appears when 
executing pricing functions.

Options = derivset(Options, 'ConstRate', 'off')

changes the ConstRate parameter in the existing Options structure so that the 
assumption of constant rates between tree nodes no longer applies.

With no input or output arguments derivset displays all parameter names 
and information about their possible values.

derivset
            Diagnostics: [ on   | {off} ]
               Warnings: [ {on} | off   ]
              ConstRate: [ {on} | off   ]

See Also derivget
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4disc2ratePurpose Interest rates from cash flow discounting factors

Syntax Usage 1: Interval points are input as times in periodic units.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,  
EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input 
zero rates were compounded when annualized. This 
argument determines the formula for the discount 
factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of curves 
(NCURVES) matrix of discounts. Disc are unit bond prices 
over investment intervals from StartTimes, when the 
cash flow is valued, to EndTimes, when the cash flow is 
received. 

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units 
ending the interval to discount over.         

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in 
periodic units starting the interval to discount over. 
Default = 0. 
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Description Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes) and 
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc, 
EndDates, StartDates, ValuationDate) convert cash flow discounting 
factors to interest rates. disc2rate computes the yields over a series of 
NPOINTS time intervals given the cash flow discounts over those intervals. 
NCURVES different rate curves can be translated at once if they have the same 
time structure. The time intervals can represent a zero curve or a forward 
curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over 
the NPOINTS time intervals.   

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to 
discount over, measured in periodic units. 

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to 
discount over, measured in periodic units. 

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. 
The arguments otherwise contain values, T, computed from SIA semiannual 
time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the 
compounding frequency. 

The investment intervals can be specified either with input times (Usage 1) or 
with input dates (Usage 2). Entering ValuationDate invokes the date 
interpretation; omitting ValuationDate invokes the default time 
interpretations.

See Also rate2disc, ratetimes

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates 
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates 
starting the interval to discount over. Default = 
ValuationDate. 

ValuationDate Scalar value in serial date number form representing the 
observation date of the investment horizons entered in 
StartDates and EndDates. Required in Usage 2. Omitted 
or passed as an empty matrix to invoke Usage 1. 
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4fixedbybdtPurpose Price fixed rate note from BDT interest rate tree

Syntax [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle, 
Maturity, Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = fixedbybdt(HJMTree, CouponRate, Settle, 
Maturity, Reset, Basis, Principal, Options) computes the price of a 
fixed rate note from a BDT interest rate tree.   
Price is an NINST-by-1 vector of expected prices of the fixed rate note at time 0. 

PriceTree is a structure of trees containing vectors of instrument prices and 
accrued interest, and a vector of observation times for each node. 

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed rate note is set to the ValuationDate of the 
BDT tree. The fixed rate note argument Settle is ignored. 

BDTTree Interest rate tree structure created by bdttree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments (NINST)-by-1 
vector of dates representing the settlement dates of the 
fixed rate note.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. 
Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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Examples Price a 10% fixed rate note using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Reset = 1;

Use fixedbybdt to compute the price of the note.

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)

Price =

  92.9974

See Also bdttree, bondbybdt, capbybdt, cfbybdt, floatbybdt, floorbybdt, swapbybdt
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4fixedbyhjmPurpose Price fixed rate note from HJM interest rate tree

Syntax [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, 
Maturity, Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle, 
Maturity, Reset, Basis, Principal, Options) computes the price of a 
fixed rate note from a HJM forward rate tree.   
Price is an NINST-by-1 vector of expected prices of the fixed rate note at time 0. 

PriceTree is a structure of trees containing vectors of instrument prices and 
accrued interest, and a vector of observation times for each node. 

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed rate note is set to the ValuationDate of the 
HJM tree. The fixed rate note argument Settle is ignored. 

HJMTree Forward rate tree structure created by hjmtree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments (NINST)-by-1 
vector of dates representing the settlement dates of the 
fixed rate note.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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Examples Price a 4% fixed rate note using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyhjm to compute the price of the note.

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)

Price =

  98.7159

See Also bondbyhjm, capbyhjm, cfbyhjm, floatbyhjm, floorbyhjm, hjmtree, swapbyhjm
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4fixedbyzeroPurpose Price fixed rate note by a set of zero curves

Syntax Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, 
Basis, Principal)

Arguments

All inputs are either scalars or NINST-by-1 vectors unless otherwise                     
specified. Any date may be a serial date number or date string. An optional 
argument may be passed as an empty matrix [].

Description Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset, 
Basis, Principal)  computes the price of a fixed rate note by a set of zero 
curves. 

Price is a number of instruments (NINST) by number of curves (NUMCURVES) 
matrix of fixed rate note prices. Each column arises from one of the zero curves.

Examples Price a 4% fixed rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term 
structure needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

CouponRate Decimal annual rate.

Settle Settlement date. Settle must be earlier than or equal to 
Maturity. 

Maturity Maturity date.

Reset (Optional) Frequency of payments per year. Default = 1.

Basis (Optional) Day count basis. Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.
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CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyzero to compute the price of the note.

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

  98.7159

See Also bondbyzero, cfbyzero, floatbyzero, swapbyzero
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4floatbybdtPurpose Price floating rate note from BDT interest rate tree 

Syntax [Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity, 
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, 
Reset, Basis, Principal, Options) computes the price of a floating rate 
note from a BDT tree.  
Price is an NINST-by-1 vector of expected prices of the floating rate note at time 
0. 

PriceTree is a structure of trees containing vectors of instrument prices and 
accrued interest, and a vector of observation times for each node. 

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

BDTTree Interest rate tree structure created by bdttree.

Spread Number of instruments (NINST)-by-1 vector of number of 
basis points over the reference rate.  

Settle Settlement dates. NINST-by-1 vector of dates 
representing the settlement dates of the floating rate 
note.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual). 

Principal (Optional) NINST-by-1 vector of the notional principal 
amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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PriceTree.tObs contains the observation times.

The Settle date for every floating rate note is set to the ValuationDate of the 
BDT tree. The floating rate note argument Settle is ignored. 

Examples Price a 20 basis point floating rate note using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)

Price =

  100.6054

See Also bdttree, bondbybdt, capbybdt, cfbybdt, fixedbybdt, floorbybdt, swapbybdt
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4floatbyhjmPurpose Price floating rate note from HJM interest rate tree 

Syntax [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, 
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity, 
Reset, Basis, Principal, Options) computes the price of a floating rate 
note from an HJM tree.  
Price is an NINST-by-1 vector of expected prices of the floating rate note at time 
0. 

PriceTree is a structure of trees containing vectors of instrument prices and 
accrued interest, and a vector of observation times for each node. 

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

HJMTree Forward rate tree structure created by hjmtree.

Spread Number of instruments (NINST)-by-1 vector of number of 
basis points over the reference rate.  

Settle Settlement dates. NINST-by-1 vector of dates 
representing the settlement dates of the floating rate 
note.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual). 

Principal (Optional) NINST-by-1 vector of the notional principal 
amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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PriceTree.tObs contains the observation times.

The Settle date for every floating rate note is set to the ValuationDate of the 
HJM tree. The floating rate note argument Settle is ignored. 

Examples Price a 20 basis point floating rate note using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)

Price =

  100.5529

See Also bondbyhjm, capbyhjm, cfbyhjm, fixedbyhjm, floorbyhjm, hjmtree, swapbyhjm
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4floatbyzeroPurpose Price floating rate note prices by a set of zero curves

See Also Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, 
Basis, Principal)

Arguments

All inputs are either scalars or NINST-by-1 vectors unless otherwise                     
specified. Any date may be a serial date number or date string. An optional 
argument may be passed as an empty matrix [].

Description Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset, 
Basis, Principal)  computes the price of a floating rate note by a set of zero 
curves. 

Price is a number of instruments (NINST) by number of curves (NUMCURVES) 
matrix of floating rate note prices. Each column arises from one of the zero 
curves.

Examples Price a 20 basis point floating rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term 
structure needed to price the note.

load deriv 

Set the required values. Other arguments will use defaults.

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

Spread Number of basis points over the reference rate.  

Settle Settlement date. Settle must be earlier than or equal to 
Maturity. 

Maturity Maturity date.

Reset (Optional) Frequency of payments per year. Default = 1.

Basis (Optional) Day count basis. Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.
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Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price =

  100.5529

See Also bondbyzero, cfbyzero, fixedbyzero, swapbyzero 
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4floorbybdtPurpose Price floor instrument by BDT interest rate tree

 Syntax [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity, 
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settlement, 
Maturity, Reset, Basis, Principal, Options) computes the price of a 
floor instrument from a BDT interest rate tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Example 1. 

Price a 10% floor instrument using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and interest rate information needed to price the floor instrument.

BDTTree Interest rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates at 
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates representing 
the settlement dates of the floor. The Settle date for 
every floor is set to the ValuationDate of the BDT tree. 
The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 



floorbybdt

4-68

load deriv 

Set the required values. Other arguments will use defaults.

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbybdt to compute the price of the floor instrument.

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

Price =

   0.1770

Example 2. 

Here is a second example, showing the pricing of a 10% floor instrument using 
a newly-created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility); 

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);
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Set the floor arguments.

FloorStrike = 0.10; 
Settlement = ValuationDate; 
Maturity = '01-01-2002'; 
FloorReset = 1;

Remaining arguments will use defaults.

Finally, use floorbybdt to find the price of the floor instrument.

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,... 
FloorReset) 

Price =

    0.0431

See Also bdttree, capbybdt, cfbybdt, swapbybdt
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4floorbyhjmPurpose Price floor instrument by HJM interest rate tree

 Syntax [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity, 
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settlement, 
Maturity, Reset, Basis, Principal, Options) computes the price of a 
floor instrument from an HJM tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Price a 3% floor instrument using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the floor instrument.

HJMTree Forward rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates at 
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates representing 
the settlement dates of the floor. The Settle date for 
every floor is set to the ValuationDate of the HJM tree. 
The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity 
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. 
Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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load deriv 

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbyhjm to compute the price of the floor instrument.

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

  0.0486

See Also capbyhjm, cfbyhjm, hjmtree, swapbyhjm
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4hedgeoptPurpose Allocate optimal hedge for target costs or sensitivities

Syntax [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, 
CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens,
ConSet)

Arguments Sensitivities Number of instruments (NINST) by number of 
sensitivities (NSENS) matrix of dollar sensitivities of each 
instrument. Each row represents a different instrument. 
Each column represents a different sensitivity.  

Price NINST-by-1 vector of portfolio instrument unit prices.

CurrentHolds NINST-by-1 vector of contracts allocated to each 
instrument.

FixedInd (Optional) Number of fixed instruments (NFIXED)-by-1 
vector of indices of instruments to hold fixed. For 
example, to hold the first and third instruments of a 10 
instrument portfolio unchanged, set FixedInd = [1 3]. 
Default = [], no instruments held fixed.

NumCosts (Optional) Number of points generated along the cost 
frontier when a vector of target costs (TargetCost) is not 
specified. The default is 10 equally spaced points 
between the point of minimum cost and the point of  
minimum exposure. When specifying TargetCost, enter 
NumCosts as an empty matrix [].

TargetCost (Optional) Vector of target cost values along the cost 
frontier. If TargetCost is empty, or not entered, 
hedgeopt evaluates NumCosts equally spaced target costs 
between the minimum cost and minimum exposure. 
When specified, the elements of TargetCost should be 
positive numbers that represent the maximum amount 
of money the owner is willing to spend to rebalance the 
portfolio.
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Notes 1. The user-specified constraints included in ConSet may be created 
with the functions pcalims or portcons. However, the portcons default 
PortHolds positivity constraints are typically inappropriate for hedging 
problems since short-selling is usually required.

2. NPOINTS, the number of rows in PortSens and PortHolds and the length of 
PortCost, is inferred from the inputs. When the target sensitivities, 
TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS = NumCosts, or is  
equal to the length of the TargetCost vector.

3. Not all problems are solvable (e.g., the solution space may be infeasible       
or unbounded, or the solution may fail to converge). When a valid solution       
is not found, the corresponding rows of PortSens and PortHolds and the     
elements of PortCost are padded with NaN’s as placeholders.  

Description [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price, 
CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet)  
allocates an optimal hedge by one of two criteria:

• Minimize portfolio sensitivities (exposure) for a given set of target costs

• Minimize the cost of hedging a portfolio given a set of target sensitivities 

Hedging involves the fundamental tradeoff between portfolio insurance and 
the cost of insurance coverage. This function allows investors to modify 

TargetSens (Optional) 1-by-NSENS vector containing the target 
sensitivity values of the portfolio. When specifying 
TargetSens, enter NumCosts and TargetCost as empty 
matrices [].

ConSet (Optional) Number of constraints (NCONS) by number of 
instruments (NINST) matrix of additional conditions on 
the portfolio reallocations. An eligible NINST-by-1 vector 
of contract holdings, PortWts, satisfies all the 
inequalities A*PortWts <= b, where 
 A = ConSet(:,1:end-1) and b = ConSet(:,end).
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portfolio allocations among instruments to achieve either of the criteria. The 
chosen criterion is inferred from the input argument list. The problem is cast 
as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of portfolio 
sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the 
best hedge possible is chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.

PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each   
instrument. These are the reallocated portfolios.

See Also hedgeslf

pcalims, portcons, portopt in the Financial Toolbox User’s Guide 

lsqlin in the Optimization Toolbox User’s Guide
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4hedgeslfPurpose Self-financing hedge

Syntax [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, 
CurrentHolds, FixedInd, ConSet)

Arguments

Description [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price, 
CurrentHolds, FixedInd, ConSet) allocates a self-financing hedge among a 
collection of instruments. hedgeslf finds the reallocation in a portfolio of 
financial instruments that hedges the portfolio against market moves and that 
is closest to being self-financing (maintaining constant portfolio value). By 
default the first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect 
hedge exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

Sensitivities Number of instruments (NINST) by number of 
sensitivities (NSENS) matrix of dollar sensitivities of each 
instrument. Each row represents a different instrument. 
Each column represents a different sensitivity. 

Price NINST-by-1 vector of instrument unit prices.

CurrentHolds NINST-by-1 vector of contracts allocated in each 
instrument.

FixedInd (Optional) Empty or number of fixed instruments 
(NFIXED)-by-1 vector of indices of instruments to hold 
fixed. The default is FixedInd = 1; the holdings in the 
first instrument are held fixed. If NFIXED instruments 
will not be changed, enter all their locations in the 
portfolio in a vector. If no instruments are to be held 
fixed, enter FixedInd = [].

ConSet (Optional) Number of constraints (NCONS)-by-NINST 
matrix of additional conditions on the portfolio 
reallocations. An eligible NINST-by-1 vector of contract 
holdings, PortHolds, satisfies all the inequalities
    A*PortHolds <= b, where 
 A = ConSet(:,1:end-1) and b = ConSet(:,end).
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PortValue is the total portfolio value (scalar). When a perfectly self-financing 
hedge exists, PortValue is equal to dot(Price, CurrentWts) of the initial 
portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each instrument. 
This is the reallocated portfolio.       

Notes 1. The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd) 
are appended to any constraints passed in ConSet. Pass FixedInd = [] to 
specify all constraints through ConSet.

2. The default constraints generated by portcons are inappropriate, since 
they require the sum of all holdings to be positive and equal to one.

3. hedgeself first tries to find the allocations of the portfolio that make it 
closest to being self-financing, while reducing the sensitivities to 0. If no 
solution is found, it finds the allocations that minimize the sensitivities. If the 
resulting portfolio is self-financing, PortValue is equal to the value of the 
original portfolio.  

Examples Example 1. 

Perfect sensitivity cannot be reached.

Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)

PortSens =

    0.0000
    0.3200

PortValue =

    0.7600
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PortHolds =

    1.0000
   -0.4400

Example 2. 

 Constraints are in conflict.

Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
ConSet = pcalims([2 2])

% O.K. if nothing fixed.

[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0,... 
[], ConSet)

PortSens =

    2.8800
    0.6400

PortValue =

    4.4000

PortHolds =

     2
     2

% W0(1) is not greater than 2.

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,... 
1, ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and 
by fixing the weight of instruments(s): 1
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Example 3. 

Constraints are impossible to meet.

Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
ConSet = pcalims([2 2],[1 1]);

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,... 
[],ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

See Also hedgeopt

lsqlin in the Optimization Toolbox User’s Guide

portcons in the Financial Toolbox User’s Guide 
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4hjmpricePurpose Fixed income instrument prices by HJM interest rate tree

Syntax [Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Arguments

Description Price = hjmprice(HJMTree, InstSet, Options) computes arbitrage free 
prices for instruments using an interest rate tree created with hjmtree. NINST 
instruments from a financial instrument variable, InstSet, are priced. 

Price is a NINST-by-1 vector of prices for each instrument. The prices are 
computed by backward dynamic programming on the interest rate tree. If an 
instrument cannot be priced, NaN is returned. 

PriceTree is a MATLAB structure of trees containing vectors of instrument 
prices and accrued interest, and a vector of observation times for each node. 

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed', 
'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types. 

Related single-type pricing functions are: 

• bondbyhjm: Price a bond by an HJM tree. 

• capbyhjm: Price a cap by an HJM tree.

• cfbyhjm: Price an arbitrary set of cash flows by an HJM tree. 

• fixedbyhjm: Price a fixed rate note by an HJM tree. 

HJMTree Heath-Jarrow-Morton tree sampling a forward rate 
process. See hjmtree for information on creating 
HJMTree. 

InstSet Variable containing a collection of instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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• floatbyhjm: Price a floating rate note by an HJM tree. 

• floorbyhjm: Price a floor by an HJM tree. 

• optbndbyhjm: Price a bond option by an HJM tree. 

• swapbyhjm: Price a swap by an HJM tree. 

Examples Load the HJM tree and instruments from the data file deriv.mat. Price the cap 
and bond instruments contained in the instrument set. 

load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HJMSubSet)

Index Type CouponRate Settle Maturity Period  Name ... 
1 Bond  0.04 01-Jan-2000 01-Jan-2003  1  4% bond       
2 Bond  0.04 01-Jan-2000 01-Jan-2004 2  4% bond      

 
Index Type Strike Settle      Maturity     CapReset...  Name ...  
3     Cap  0.03   01-Jan-2000 01-Jan-2004 1      3% Cap 

     
[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

  98.7159
   97.5280
    6.2831
PriceTree = 

    FinObj: 'HJMPriceTree'
     PBush: {1x5 cell}
    AIBush: {1x5 cell}
      tObs: [0 1 2 3 4]

You can use treeviewer to see the prices of these three instruments along the 
price tree.
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treeviewer(PriceTree, HJMSubSet)

See Also hjmsens, hjmtree, hjmvolspec, instadd, intenvprice, intenvsens

      4% Bond (Maturity 2003) 4% Bond (Maturity 2004)

3% Cap
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4hjmsensPurpose Fixed income instrument prices and sensitivities by HJM interest rate tree

Syntax [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)

Arguments

Description [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)
computes instrument sensitivities and prices for instruments using an interest 
rate tree created with hjmtree. NINST instruments from a financial instrument 
variable, InstSet, are priced. hjmsens handles instrument types: 'Bond', 
'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See 
instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change of 
instrument prices with respect to changes in the interest rate. Delta is 
computed by finite differences in calls to hjmtree. See hjmtree for information 
on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of 
instrument deltas with respect to the changes in the interest rate. Gamma is 
computed by finite differences in calls to hjmtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of 
instrument prices with respect to the changes in the volatility . Vega is 
computed by finite differences in calls to hjmtree. See hjmvolspec for 
information on the volatility process.

HJMTree Heath-Jarrow-Morton tree sampling a forward rate 
process. See hjmtree for information on creating 
HJMTree. 

InstSet Variable containing a collection of instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 

σ t T,( )
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Note  All sensitivities are returned as dollar sensitivities. To find the 
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are 
computed by backward dynamic programming on the interest rate tree. If an 
instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega 
is calculated based on a 1% shift in the volatility process.

 Examples Load the tree and instruments from a data file. Compute delta and gamma for 
the cap and bond instruments contained in the instrument set. 

load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HJMSubSet)

Index Type CouponRate Settle Maturity Period  Name ... 
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1  4% bond       
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2  4% bond     

 
Index Type Strike Settle      Maturity     CapReset...  Name ...  
3     Cap  0.03   01-Jan-2000 01-Jan-2004 1      3% Cap 

     
[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Delta =

 -272.6462
 -347.4315
  294.9700
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Gamma =

  1.0e+003 *

    1.0299
    1.6227
    6.8526

See Also hjmprice, hjmtree, hjmvolspec, instadd  
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4hjmtimespecPurpose Specify time structure for HJM interest rate tree

Syntax TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

Arguments

Description TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding) sets 
the number of levels and node times for an HJM tree and determines the 
mapping between dates and time for rate quoting.         

TimeSpec is a structure specifying the time layout for hjmtree. The state 
observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate 
is stored at the last observation, the tree can value cash flows out to Maturity.

Examples Specify an eight-period tree with semiannual nodes (every six months). Use 
exponential compounding to report rates.

ValuationDate Scalar date marking the pricing date and first 
observation in the tree. Specify as serial date number or 
date string

Maturity Number of levels (depth) of the tree. A number of levels 
(NLEVELS)-by-1 vector of dates marking the cash flow 
dates of the tree. Cash flows with these maturities fall 
on tree nodes. Maturity should be in increasing order. 

Compounding (Optional) Scalar value representing the rate at which 
the input zero rates were compounded when annualized. 
Default = 1. This argument determines the formula for 
the discount factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.
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Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = 

           FinObj: 'HJMTimeSpec'
    ValuationDate: 730135
         Maturity: [8x1 double]
      Compounding: -1
            Basis: 0
     EndMonthRule: 1

See Also hjmtree, hjmvolspec
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4hjmtreePurpose Build an HJM forward rate tree

Syntax HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

Arguments

Description HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec) creates a structure 
containing time and forward rate information on a bushy tree.

Examples Using the data provided, create a HJM volatility specification (VolSpec), rate 
specification (RateSpec), and tree time layout specification (TimeSpec). Then 
use these specifications to create a HJM tree with hjmtree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [ 1; 2; 3; 4; 5]; 

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

VolSpec Volatility process specification. Sets the number of       
factors and the rules for computing the volatility  

for each factor. See hjmvolspec for information on 
the volatility process.

RateSpec Interest rate specification for the initial rate curve. See 
intenvset for information on declaring an interest rate 
variable. 

TimeSpec Tree time layout specification. Defines the observation 
dates of the HJM tree and the Compounding rule for date 
to time mapping and price-yield formulas. See 
hjmtimespec for information on the tree structure.

σ t T,( )
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RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);

 
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer(HJMTree)

See Also hjmprice, hjmtimespec, hjmvolspec, intenvset
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4hjmvolspecPurpose Specify an HJM forward rate volatility process

Syntax Volspec = hjmvolspec(varargin)

Arguments The arguments to hjmvolspec vary according to the type and number of 
volatility factors  specified when calling the function. Factors are specified by 
pairs of names and parameter sets. Factor names can be 'Constant', 
'Stationary', 'Exponential', 'Vasicek', or 'Proportional'. The parameter 
set is specific for each of these factor types:

Constant volatility (Ho-Lee):
VolSpec = hjmvolspec('Constant', Sigma_0)

Stationary volatility:
VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)

Exponential volatility: 
VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)

Vasicek, Hull-White:
VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay, CurveTerm)

Nearly proportional stationary: 
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and parameter 
sets.

The table below defines the various arguments to hjmvolspec. 

Argument Description

Sigma_0 Scalar base volatility over a unit time.

Lambda Scalar decay factor.

CurveVol Number of curves (NCURVES) -by-1 vector of Vol values at 
sample points.

CurveDecay NCURVES-by-1 vector of Decay values at sample points.

CurveProp NCURVES-by-1 vector of Prop values at sample points.
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Description Volspec = hjmvolspec(varargin) computes VolSpec, a structure that 
specifies the volatility model for hjmtree.

hjmvolspec specifies a HJM forward rate volatility process.  Each factor is 
specified with one of the functional forms:

The volatility process is , where is the observation time and is the 
starting time of a forward rate. In a stationary process the volatility term is 

. Multiple factors can be specified sequentially.

The time values , , and Term are in coupon interval units specified by the 
Compounding input of hjmtimespec. For instance if Compounding = 2, Term = 1 
is a semiannual period (six months).

Examples Example 1.

Volatility is single-factor proportional.

CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)

 VolSpec = 
          FinObj: 'HJMVolSpec'
    FactorModels: {'Proportional'}

CurveTerm NCURVES-by-1 vector of Term sample points.

Note: See the volatility specifications formulas below for a description of 
Vol, Decay, Prop, and Term.

Argument Description

Volatility Specification Formula

Constant  = Sigma_0

Stationary  = Vol(T-t) = Vol(Term)

Exponential  = Sigma_0*exp(-Lambda*(T-t))

Vasicek, Hull-White  = Sigma_0*exp(-Decay(T-t))

Proportional  = Prop(T-t)*max(SpotRate(t), MaxSpot) 

σ t T,( )

σ t T,( )

σ t T,( )

σ t T,( )

σ t T,( )

σ t T,( ) t T

T t�
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      FactorArgs: {{1x3 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Example 2.

Volatility is two-factor exponential and constant.

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)

VolSpec = 
          FinObj: 'HJMVolSpec'
    FactorModels: {'Exponential'  'Constant'}
      FactorArgs: {{1x2 cell}  {1x1 cell}}
      SigmaShift: 0
      NumFactors: 2
       NumBranch: 3
         PBranch: [0.2500 0.2500 0.5000]
     Fact2Branch: [2x3 double]

See Also hjmtimespec, hjmtree 
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4instaddPurpose Add types to instrument collection

Syntax Bond instrument. (See also instbond.)
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period, 

Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face) 

Arbitrary cash flow instrument. (See also instcf.)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, 

Basis) 

Bond option. (See also instoptbnd.) 
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, 

ExerciseDates, AmericanOpt) 

Fixed rate note instrument. (See also instfixed.)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset, 

Basis, Principal) ) 

Floating rate note instrument. (See also instfloat.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis, 

Principal ) 

Cap instrument. (See also instcap.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis, 

Principal) 

Floor instrument. (See also instfloor.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis, 

Principal)

Swap instrument. (See also instswap.)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, 

Basis, Principal, LegType) 

To add instruments to an existing collection: 
InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...) 
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Arguments For more information on instrument data parameters, see the reference entries 
for individual instrument types. For example, see instcap for additional 
information on the cap instrument. 

Description instadd stores instruments of types 'Bond', 'CashFlow', 'OptBond', 'Fixed', 
'Float', 'Cap', 'Floor', or 'Swap'. Pricing and sensitivity routines are 
provided for these instruments.

InstSet is an instrument set variable containing the new input data.

Examples Create a portfolio with two cap instruments and a 4% bond. 

Strike = [0.06; 0.07]; 
CouponRate = 0.04; 
Settle = '06-Feb-2000'; 
Maturity = '15-Jan-2003';  

InstSet = instadd('Cap', Strike, Settle, Maturity); 
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity); 
instdisp(InstSet)
 

Index Type Strike Settle        Maturity       CapReset Basis Principal
1     Cap  0.06   06-Feb-2000   15-Jan-2003    NaN      NaN   NaN      
2     Cap  0.07   06-Feb-2000   15-Jan-2003    NaN      NaN   NaN    

  
Index Type CouponRate Settle         Maturity ...      
3     Bond 0.04       06-Feb-2000    15-Jan-2003...              

See Also instbond, instcap, instcf, instfixed, instfloat, instfloor, instoptbnd, 
instswap

InstSetOld Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 
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4instaddfieldPurpose Add new instruments to an instrument collection 

Syntax InstSet = instaddfield('FieldName', FieldList,'Data', DataList, 
'Type',TypeString)

InstSet = instaddfield('FieldName', FieldList, 'FieldClass', 
ClassList, 'Data', DataList, 'Type',TypeString)

InstSetNew = instaddfield(InstSet,'FieldName', FieldList, 'Data', 
DataList, 'Type',TypeString)

Arguments FieldList String or number of fields (NFIELDS)-by-1 cell array of 
strings listing the name of each data field. FieldList 
cannot be named with the reserved names Type or 
Index.

DataList Number of instruments (NINST)-by-M array or 
NFIELDS-by-1 cell array of data contents for each field. 
Each row in a data array corresponds to a separate 
instrument. Single rows are copied to apply to all 
instruments to be worked on. The number of columns is 
arbitrary, and data is padded along columns. 

ClassList (Optional) String or NFIELDS-by-1 cell array of strings 
listing the data class of each field. The class determines 
how DataList is parsed. Valid strings are 'dble', 
'date', and 'char'. The 'FieldClass', ClassList 
pair is always optional. ClassList is inferred from 
existing fieldnames or from the data if not entered. 

TypeString String specifying the type of instrument added. 
Instruments of different types can have different 
fieldname collections. 

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 
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Description Use instaddfield to create your own types of instruments or to append new 
instruments to an existing collection. Argument value pairs can be entered in 
any order. 

InstSet = instaddfield('FieldName', FieldList, 'Data', DataList, 
'Type', TypeString) and

InstSet = instaddfield('FieldName', FieldList, 'FieldClass', 
ClassList, 'Data', DataList, 'Type', TypeString) create an instrument 
variable.

InstSetNew = instaddfield(InstSet, 'FieldName', FieldList, 'Data', 
DataList,'Type ,TypeString) adds instruments to an existing instrument 
set, InstSet. The output InstSetNew is a new instrument set containing the 
input data.

Examples Build a portfolio around July options.

Strike Call Put  
 95 12.2 2.9 
100 9.2 4.9 
105 6.8 7.4 

Strike = (95:5:105)' 
CallP = [12.2; 9.2; 6.8] 

Enter three call options with data fields Strike, Price, and Opt.

InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'}); 
 instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Add a futures contract and set the input parsing class.

InstSet = instaddfield(InstSet,'Type','Futures',... 
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},... 
'Data' ,{'01-Jul-99',104.4 });  
instdisp(InstSet) 
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Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Add a put option. 

FN = instfields(InstSet,'Type','Option') 
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'}); 
instdisp(InstSet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 

Make a placeholder for another put.

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put') 
instdisp(InstSet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
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Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Add a cash instrument.

InstSet = instaddfield(InstSet, 'Type', 'TBill',... 
'FieldName','Price','Data',99)  
instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Index Type  Price
7     TBill 99   

See Also instdisp, instget, instgetcell, instsetfield
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4instbondPurpose Construct bond instrument

Syntax InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,                
StartDate, Face)

[FieldList, ClassList, TypeString] = instbond

Arguments InstSet Instrument variable. This argument is specified only 
when adding bond instruments to an existing 
instrument set. See instget for more information on the 
InstSet variable. 

CouponRate Decimal number indicating the annual percentage rate 
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 



instbond

4-99

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or 
empty. Fill unspecified entries in vectors with NaN. Only one data argument is 
required to create the instrument. The others may be omitted or passed as 
empty matrices []. 

Description InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,                
StartDate, Face) creates a new instrument set containing bond instruments 
or adds bond instruments to a existing instrument set.

[FieldList, ClassList, TypeString] = instbond displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a bond 
instrument, TypeString = 'Bond'.

See Also hjmprice, instaddfield, instdisp, instget, intenvprice

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and is followed only by the 
bond’s maturity cash flow date. 

StartDate Ignored.

Face (Optional) Face or par value. Default = 100.
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4instcapPurpose Construct cap instrument

Syntax InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis, 
Principal)

[FieldList, ClassList, TypeString] = instcap

Arguments

Description InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis, 
Principal) creates a new instrument set containing cap instruments or adds 
cap instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instcap displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a cap 
instrument, TypeString = 'Cap'.

InstSet Instrument variable. This argument is specified only 
when adding cap instruments to an existing instrument 
set. See instget for more information on the InstSet 
variable. 

Strike Rate at which the cap is exercised, as a decimal number.

Settle Settlement date. Serial date number representing the 
settlement date of the cap.

Maturity Serial date number representing the maturity date of 
the cap.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.  

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.
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See Also hjmprice, instaddfield, instbond, instdisp, instfloor, instswap, 
intenvprice
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4instcfPurpose Construct cash flow instrument 

Syntax InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis)
[FieldList, ClassList, TypeString] = instcf

Arguments

Only one data argument is required to create an instrument. Other arguments 
can be omitted or passed as empty matrices []. Dates can be input as serial 
date numbers or date strings.

Description InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis)
creates a new instrument set from data arrays or adds instruments of type 
CashFlow to an instrument set.

[FieldList, ClassList, TypeString] = instcf lists field meta-data for an 
instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only 
when adding cash flow instruments to an existing 
instrument set. See instget for more information on the 
InstSet variable. 

CFlowAmounts Number of instruments (NINST) by maximum number of  
cash flows (MOSTCFS) matrix of cash flow amounts. Each 
row is a list of cash flow values for one instrument. If an 
instrument has fewer than MOSTCFS cash flows, the end 
of the row is padded with NaNs. 

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry       
contains the date of the corresponding cash flow in 
CFlowAmounts. 

Settle Settlement date on which the cash flows are priced. 

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.
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ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString specifies the type of instrument added, e.g., 
TypeString = 'CashFlow'.

See Also hjmprice, instaddfield, instdisp, instget, intenvprice
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4instdeletePurpose Complement of a subset of instruments found by matching conditions

Syntax ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data', 
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order. The InstSet variable must 
be the first argument. 'FieldName' and 'Data' arguments must appear 
together or not at all.

Description The output argument ISubSet contains instruments not matching the input 
criteria. Instruments are deleted from ISubSet if all the Field, Index, and Type 
conditions are met. An instrument meets an individual Field condition if the 
stored FieldName data matches any of the rows listed in the DataList for that 
FieldName. See instfind for more examples on matching criteria.

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

FieldList String or number of fields (NFIELDS)-by-1 cell array of 
strings listing the name of each data field to match with 
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1 
cell array of acceptable data values for each field. Each 
row lists a data row value to search for in the 
corresponding FieldList. The number of columns is 
arbitrary and matching will ignore trailing NaNs or 
spaces. 

IndexSet (Optional) Number of instruments (NINST)-by-1 vector 
restricting positions of instruments to check for matches. 
The default is all indices available in the instrument 
variable. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings restricting instruments to match one of 
TypeList types. The default is all types in the 
instrument variable. 
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Examples Retrieve the instrument set variable ExampleInst from the data file. 
InstSetExamples.mat. The variable contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000  
   
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4 Put  -1000     
6     Option  95     2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Create a new variable, ISet, with all options deleted. 

ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet) 

Index Type    Delivery       F Contracts
1     Futures 01-Jul-1999    104.4 -1000 
    
Index Type Price Maturity       Contracts
2     TBill 99    01-Jul-1999   6      

See Also instaddfield, instfind, instget, instselect
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4instdispPurpose Display instruments

Syntax CharTable = instdisp(InstSet)

Arguments

Description CharTable = instdisp(InstSet) creates a character array displaying the 
contents of an instrument collection, InstSet. If instdisp is called without 
output arguments, the table is displayed in the command window.

CharTable is a character array with a table of instruments in InstSet. For 
each instrument row, the Index and Type are printed along with the field 
contents. Field headers are printed at the tops of the columns.   

Examples Retrieve the instrument set ExampleInst from the data file. 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000   
  
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0    
 
Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

InstSet Variable containing a collection of instruments. See 
instaddfield for examples on constructing the variable.
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See Also datestr in the Financial Toolbox User’s Guide 

num2str in the online MATLAB Reference 

instaddfield, instget
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4instfieldsPurpose List fields

Syntax FieldList = instfields(InstSet, 'Type', TypeList)

Arguments

Description FieldList = instfields(InstSet, 'Type', TypeList) retrieve list of fields 
stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the       
name of each data field corresponding to the listed types.

Examples Retrieve the instrument set ExampleInst from the data file. 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F      Contracts
4     Futures 01-Jul-1999    104.4  -1000     

Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0    
 
Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings listing the instrument types to query. 
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Get the fields listed for type 'Option'.

[FieldList, ClassList] = instfields(ExampleInst, 'Type',... 
'Option') 

FieldList = 

    'Strike'
    'Price'
    'Opt'
    'Contracts'

ClassList = 

    'dble'
    'dble'
    'char'
    'dble'

Get the fields listed for types 'Option' and 'TBill' .

FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'}) 

FieldList = 

'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'

Get all the fields listed in any type in the variable.

FieldList = instfields(ExampleInst) 
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FieldList = 

    'Delivery'
    'F'
    'Strike'
    'Opt'
    'Price'
    'Maturity'
    'Contracts'

See Also instdisp, instlength, insttypes
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4instfindPurpose Search instruments for matching conditions

Syntax IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', 
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order. The InstSet variable must 
be the first argument. 'FieldName' and 'Data' arguments must appear 
together or not at all.

Description IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data', 
DataList,'Index', IndexSet, 'Type', TypeList) returns indices of 
instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by-1 vector of positions of instruments matching the       
input criteria. Instruments are returned in IndexMatch if all the Field, Index, 

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

FieldList String or number of fields (NFIELDS)-by-1 cell array of 
strings listing the name of each data field to match with 
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1 
cell array of acceptable data values for each field. Each 
row lists a data row value to search for in the 
corresponding FieldList. The number of columns is 
arbitrary, and matching will ignore trailing NaNs or 
spaces. 

IndexSet (Optional) Number of instruments (NINST)-by-1 vector 
restricting positions of instruments to check for matches. 
The default is all indices available in the instrument 
variable. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings restricting instruments to match one of 
TypeList types. The default is all types in the 
instrument variable. 
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and Type conditions are met. An instrument meets an individual Field 
condition if the stored FieldName data matches any of the rows listed in the 
DataList for that FieldName.

Examples Retrieve the instrument set ExampleInst from the data file. 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Make a vector, Opt95, containing the indexes within ExampleInst of the options 
struck at 95.

Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data', 95 ) 

Opt95 =

     1
     6    
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Locate the futures and Treasury bill instruments within ExampleInst.

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Types =

     4
     7

See Also instaddfield, instget, instgetcell, instselect
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4instfixedPurpose Construct fixed-rate instrument

Syntax InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset, 
Basis, Principal)

[FieldList, ClassList, TypeString] = instfixed

Arguments

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or 
empty. Fill unspecified entries in vectors with NaN. Only one data argument is 
required to create the instrument. The others may be omitted or passed as 
empty matrices []. 

Description InstSet = instfixed(InstSet, Strike, Settle, Maturity, Reset, Basis, 
Principal) creates a new instrument set containing fixed rate instruments or 
adds fixed rate instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfixed displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only 
when adding fixed rate note instruments to an existing 
instrument set. See instget for more information on the 
InstSet variable. 

CouponRate Decimal annual rate.

Settle Settlement date. Date string or serial date number 
representing the settlement date of the fixed rate note.

Maturity Date string or serial date number representing the 
maturity date of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.
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ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a fixed rate 
instrument, TypeString = 'Fixed'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap, 
intenvprice
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4instfloatPurpose Construct floating-rate instrument

Syntax InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, 
Principal)

[FieldList, ClassList, TypeString] = instfloat

Arguments

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or 
empty. Fill unspecified entries in vectors with NaN. Only one data argument is 
required to create the instrument. The others may be omitted or passed as 
empty matrices []. 

Description InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis, 
Principal) creates a new instrument set containing floating rate instruments 
or adds floating rate instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloat displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only 
when adding floating rate note instruments to an 
existing instrument set. See instget for more 
information on the InstSet variable. 

Spread Number of basis points over the reference rate. 

Settle Settlement date. Date string or serial date number 
representing the settlement date of the floating rate 
note.

Maturity Date string or serial date number representing the 
maturity date of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.
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ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a floating 
rate instrument, TypeString = 'Float'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap, 
intenvprice
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4instfloorPurpose Construct floor instrument

Syntax InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis, 
Principal)

[FieldList, ClassList, TypeString] = instfloor

Arguments

Description InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis, 
Principal) creates a new instrument set containing floor instruments or adds 
floor instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloor displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only 
when adding floor instruments to an existing instrument 
set. See instget for more information on the InstSet 
variable. 

Strike Rate at which the floor is exercised, as a decimal 
number.

Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Reset (Optional) NINST-by-1 vector representing the frequency 
of payments per year. Default = 1.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

Principal (Optional) The notional principal amount. Default = 100.
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ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a floor 
instrument, TypeString = 'Floor'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap, 
intenvprice
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4instgetPurpose Retrieve data from instrument variable

Syntax [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', 
FieldList,  'Index', IndexSet, 'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must 
be the first argument. 

Description [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName', 
FieldList,  'Index', IndexSet, 'Type', TypeList) retrieve data arrays 
from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList. 
Each row corresponds to a separate instrument in IndexSet. Unavailable data 
is returned as NaN or as spaces. 

Data_n is an NINST-by-M array of data contents for the last field in FieldList.   

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

FieldList (Optional) String or number of fields (NFIELDS)-by-1 cell 
array of strings listing the name of each data field to 
match with data values. FieldList entries can also be 
either 'Type' or 'Index'; these return type strings and 
index numbers respectively. The default is all fields 
available for the returned set of instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector of 
positions of instruments to work on. If TypeList is also 
entered, instruments referenced must be one of       
TypeList types and contained in IndexSet. The default 
is all indices available in the instrument variable. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings restricting instruments to match one of 
TypeList types. The default is all types in the 
instrument variable. 
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Examples Retrieve the instrument set ExampleInst from the data file. 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000   
  
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Extract the price from all instruments.

P = instget(ExampleInst,'FieldName','Price')

P =

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

Get all the prices and the number of contracts held. 

[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'}) 
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P =

   12.2000
    9.2000
    6.8000
  Nan
    7.4000
    2.9000
   99.0000

C =

      0
      0
   1000
  -1000
  -1000
      0
      6

Compute a value V. Create a new variable ISet that appends V to ExampleInst.  

V = P.*C 
ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',... 
V); 
instdisp(ISet) 

Index Type   Strike Price Opt  Contracts Value
1     Option  95     12.2 Call    0           0 
2     Option 100      9.2 Call    0           0 
3     Option 105      6.8 Call  1000       6800 

Index Type    Delivery       F Contracts Value 
4     Futures 01-Jul-1999    104.4 -1000     NaN

Index Type   Strike Price Opt  Contracts Value
5     Option 105     7.4 Put  -1000      -7400 
6     Option  95     2.9 Put     0           0 

Index Type Price Maturity       Contracts Value
7     TBill 99    01-Jul-1999   6         594
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Look at only the instruments which have nonzero Contracts. 

Ind = find(C ~= 0) 

Ind =

     3
     4
     5
     7

Get the Type and Opt parameters from those instruments.(Only options have 
a stored 'Opt' field.) 

[T,O] = instget(ExampleInst, 'Index', Ind, 'FieldName',... 
{'Type', 'Opt'}) 

T =

Option 
Futures
Option 
TBill   

O =

Call
    
Put 

Create a string report of holdings Type, Opt, and Value. 
rstring = [T, O, num2str(V(Ind))] 

rstring =

Option Call   6800
Futures        NaN
Option Put   -7400
TBill          594

See Also instaddfield, instdisp, instgetcell
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4instgetcellPurpose Retrieve data and context from instrument variable

Syntax [DataList, FieldList, ClassList, IndexSet, TypeSet] = 
instgetcell(InstSet, 'FieldName', FieldList,  'Index', IndexSet, 
'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must 
be the first argument. 

Description [DataList, FieldList, ClassList] = instgetcell(InstSet, 
'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)  
retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell 
is an NINST-by-M array, where each row corresponds to a separate instrument 
in IndexSet. Any data which is not available is returned as NaN or as spaces.

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

FieldList (Optional) String or number of fields (NFIELDS)-by-1 cell 
array of strings listing the name of each data field to 
match with data values. FieldList should not be either 
Type or Index; these field names are reserved. The 
default is all fields available for the returned set of 
instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector of 
positions of instruments to work on. If TypeList is also 
entered, instruments referenced must be one of       
TypeList types and contained in IndexSet. The default 
is all indices available in the instrument variable. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings restricting instruments to match one of 
TypeList types. The default is all types in the 
instrument variable. 
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FieldList is an NFIELDS-by-1 cell array of strings listing the name of each       
field in DataList.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

IndexSet is an NINST-by-1 vector of positions of instruments returned in 
DataList. 

TypeSet is an NINST-by-1 cell array of strings listing the type of each       
instrument row returned in DataList.

Examples Retrieve the instrument set ExampleInst from the data file 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000     

Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0   
  
Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Get the prices and contracts from all instruments. 

FieldList = {'Price'; 'Contracts'} 
DataList = instgetcell(ExampleInst, 'FieldName', FieldList ) 
P = DataList{1} 
C = DataList{2} 
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P =

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

C =

      0
      0
   1000
  -1000
  -1000
      0
      6

Get all the option data: Strike, Price, Opt, Contracts.

[DataList, FieldList, ClassList] = instgetcell(ExampleInst,... 
'Type','Option') 

DataList = 

    [5x1 double]
    [5x1 double]
    [5x4 char  ]
    [5x1 double]

FieldList = 

    'Strike'
    'Price'
    'Opt'
    'Contracts'
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ClassList = 

    'dble'
    'dble'
    'char'
    'dble'

Look at the data as a comma separated list. Type help lists for more 
information on cell array lists. 

DataList{:} 

ans =

    95
   100
   105
   105
    95

ans =

   12.2100
    9.2000
    6.8000
    7.3900
    2.9000

ans =

Call
Call
Call

Put 
Put 
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ans =

     0
     0
   100
  -100
     0

See Also instaddfield, instdisp, instget
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4instlengthPurpose Count instruments

Syntax NInst = instlength(InstSet)

Arguments

Description NInst = instlength(InstSet) computes NInst, the number of instruments 
contained in the variable, InstSet.

See Also instdisp, instfields, insttypes

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 
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4instoptbndPurpose Construct bond option

Syntax InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, 
ExerciseDates, AmericanOpt )

[FieldList, ClassList, TypeString] = instoptbnd

Arguments InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

BondIndex Number of instruments (NINST)-by-1 vector of indices 
pointing to underlying instruments of Type 'Bond' 
which are also stored in InstSet. See instbond for 
information on specifying the bond data.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

The interpretation of the Strike and ExerciseDates arguments depends 
upon the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is 
unspecified, the option is a European or Bermuda option. If AmericanOpt = 1, 
the option is an American option.

Strike For a European or Bermuda option:
NINST by number of strikes (NSTRIKES) matrix of strike 
price values. Each row is the schedule for one option. If 
an option has fewer than NSTRIKES exercise 
opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option. 
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Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified 
entries in vectors with NaN. Only one data argument is required to create the 
instrument. The others may be omitted or passed as empty matrices []. 

Description InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, 
ExerciseDates) specifies a European or Bermuda option.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, 
ExerciseDates, AmericanOpt) specifies an American option if AmericanOpt is 
set to 1. If AmericanOpt is not set to 1, the function specifies a European or 
Bermuda option.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a bond 
instrument, TypeString = 'Bond'.

See Also hjmprice, instadd, instdisp, instget

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is  
the schedule for one option. For a European option, there 
is only one exercise date, the option expiry date. 

For an American option:
NINST-by-2 vector of exercise date boundaries. For each 
instrument, the option can be exercised on any coupon 
date between or including the pair of dates on that row. 
If only one non-NaN date is listed, or if ExerciseDates is 
NINST-by-1, the option can be exercised between the 
underlying bond Settle and the single listed exercise 
date. 
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4instselectPurpose Create instrument subset by matching conditions

Syntax InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', 
DataList,    'Index', IndexSet, 'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must 
be the first argument. 'FieldName' and 'Data' parameters must appear 
together or not at all. 'Index' and 'Type' parameters are each optional.

Description InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data', 
DataList,    'Index', IndexSet, 'Type', TypeList)  creates an 
instrument subset (InstSubSet) from an existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria. 
Instruments are returned in InstSubSet if all the Field, Index, and Type 

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

FieldList String or number of fields (NFIELDS)-by-1 cell array of 
strings listing the name of each data field to match with 
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1 
cell array of acceptable data values for each field. Each 
row lists a data row value to search for in the 
corresponding FieldList. The number of columns is 
arbitrary and matching will ignore trailing NaNs or 
spaces. 

IndexSet (Optional) Number of instruments (NINST)-by-1 vector 
restricting positions of instruments to check for matches. 
The default is all indices available in the instrument 
variable. 

TypeList (Optional) String or number of types (NTYPES)-by-1 cell 
array of strings restricting instruments to match one of 
TypeList types. The default is all types in the 
instrument variable. 
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conditions are met. An instrument meets an individual Field condition if the 
stored FieldName data matches any of the rows listed in the DataList for that 
FieldName. See instfind for examples on matching criteria.

Examples Retrieve the instrument set ExampleInst from the data file. 
InstSetExamples.mat. The variable contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Make a new portfolio containing only options struck at 95.

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
'Data', 95 ) 

instdisp(Opt95)

Opt95 = 

Index Type   Strike Price Opt  Contracts
1     Option  95     12.2 Call    0     
2     Option  95      2.9 Put     0      

Make a new portfolio containing only futures and Treasury bills.
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FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})

instdisp(FutTBill) =

Index Type    Delivery       F     Contracts
1     Futures 01-Jul-1999    104.4 -1000    
 
Index Type  Price Maturity       Contracts
2     TBill 99    01-Jul-1999    6        

See Also instaddfield, instdelete, instfind, instget, instgetcell
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4instsetfieldPurpose Add or reset data for existing instruments

Syntax InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', 
DataList)

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', 
DataList,   'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order.

Description instsetfield sets data for existing instruments in a collection variable.

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', 
DataList) resets or adds fields to every instrument.

InstSet (Required) Variable containing a collection of 
instruments. Instruments are classified by type; each 
type can have different data fields. The stored data field 
is a row vector or string for each instrument. InstSet 
must be the first argument in the list.

FieldList String or number of fields (NFIELDS)-by-1 cell array of 
strings listing the name of each data field. FieldList 
cannot be named with the reserved names Type or 
Index.

DataList Number of instruments (NINST)-by-M array or 
NFIELDS-by-1 cell array of data contents for each field. 
Each row in a data array corresponds to a separate 
instrument. Single rows are copied to apply to all 
instruments to be worked on. The number of columns is 
arbitrary, and data is padded along columns. 

IndexSet NINST-by-1 vector of positions of instruments to work on. 
If TypeList is also entered, instruments referenced must 
be one of TypeList types and contained in IndexSet. 

TypeList String or number of types (NTYPES)-by-1 cell array of 
strings restricting instruments worked on to match one 
of TypeList types. 
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InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data', 
DataList, 'Index', IndexSet, 'Type', TypeList) resets or adds fields to 
a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

Examples Retrieve the instrument set ExampleInstSF from the data file. 
InstSetExamples.mat. ExampleInstSF contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
ISet = ExampleInstSF;
instdisp(ISet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Index Type  Price
7     TBill 99   

Enter data for the option in Index 6: Price 2.9 for a Strike of 95. 

ISet = instsetfield(ISet, 'Index',6,... 
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 }); 
instdisp(ISet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
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Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option  95     2.9  Put 

Index Type  Price
7     TBill 99   

Create a new field Maturity for the cash instrument. 

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',... 
'Maturity','FieldClass', 'date', 'Data', MDate); 
instdisp(ISet) 

Index Type  Price  Maturity      
7     TBill 99     01-Jul-1999   

 Create a new field Contracts for all instruments.

ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0); 
instdisp(ISet) 

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call 0        
2     Option 100     9.2  Call 0        
3     Option 105     6.8  Call 0        

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 0        

Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  0        
6     Option  95     2.9  Put  0        

Index Type  Price  Maturity  Contracts    
7     TBill 99    01-Jul-1999 0            
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Set the Contracts fields for some instruments.

ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],... 
'FieldName','Contracts',  'Data', [1000; -1000; -1000; 6]); 

instdisp(ISet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000 
   
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    

Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    

Index Type  Price  Maturity  Contracts    
7     TBill 99    01-Jul-1999 6            

See Also instaddfield, instdisp, instget, instgetcell
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4instswapPurpose Construct swap instrument

Syntax InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset, 
Basis, Principal, LegType)

[FieldList, ClassList, TypeString] = instswap

Arguments InstSet Instrument variable. This argument is specified only 
when adding a swap to an existing instrument set. See 
instget for more information on the InstSet variable. 

LegRate Number of instruments (NINST)-by-2 matrix, with each 
row defined as:  
[CouponRate Spread] or [Spread CouponRate] 
CouponRate is the decimal annual rate. Spread is the 
number of basis points over the reference rate. The first 
column represents the receiving leg, while the second 
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date 
numbers or date strings. Settle must be earlier than or 
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing 
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset 
frequency per year for each swap. Default = [1 1].  

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal 
amounts. Default = 100. 

LegType (Optional) NINST-by-2 matrix. Each row represents an 
instrument. Each column indicates if the corresponding 
leg is fixed (1) or floating (0). This matrix defines the 
interpretation of the values entered in LegRate. Default 
is [1,0] for each instrument. 
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Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or 
empty. Fill unspecified entries in vectors with NaN. Only one data argument is 
required to create the instrument; the others may be omitted or passed as 
empty matrices []. 

Description InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset, 
Basis, Principal, LegType) creates a new instrument set containing swap 
instruments or adds swap instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instswap displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the 
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each 
field. The class determines how arguments are parsed. Valid strings are 
'dble', 'date', and 'char'. 

TypeString is a string specifying the type of instrument added. For a swap 
instrument, TypeString = 'Swap'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instfloor, 
intenvprice
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4insttypesPurpose List types

Syntax TypeList = insttypes(InstSet)

Arguments

Description TypeList = insttypes(InstSet) retrieves a list of types stored in an 
instrument variable.

TypeList is a number of types (NTYPES)-by-1 cell array of strings listing the 
Type of instruments contained in the variable.

Examples Retrieve the instrument set variable ExampleInst from the data file. 
InstSetExamples.mat. ExampleInst contains three types of instruments: 
Option, Futures, and TBill.  

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1 Option  95 12.2 Call     0     
2 Option 100 9.2 Call     0     
3 Option 105 6.8 Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

InstSet Variable containing a collection of instruments. 
Instruments are classified by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument.



insttypes

4-142

List all of the types included in ExampleInst.

TypeList = insttypes(ExampleInst)
TypeList = 
         'Futures'
         'Option'
         'TBill'

See Also instdisp, instfields, instlength
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4intenvgetPurpose Obtain properties of an interest term structure

Syntax ParameterValue = intenvget(RateSpec, 'ParameterName')

Arguments

Description ParameterValue = intenvget(RateSpec,'ParameterName') obtains the 
value of the named parameter ParameterName extracted from RateSpec. 

Examples Use intenvset to set the interest rate structure.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2000', 'EndDates', '20-Jan-2001')

Now use intenvget to extract the values from RateSpec.

[R, RateSpec] = intenvget(RateSpec, 'Rates')

R =

    0.0500

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

ParameterName String indicating the parameter name to be accessed. 
The value of the named parameter is extracted from the 
structure RateSpec. It is sufficient to type only the 
leading characters that uniquely identify the parameter. 
Case is ignored for parameter names.
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RateSpec = 

FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

See Also intenvset
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4intenvpricePurpose Price fixed income instruments by a set of zero curves

Syntax Price = intenvprice(RateSpec, InstSet)

Arguments

Description Price = intenvprice(RateSpec, InstSet) computes arbitrage free prices 
for instruments against a set of zero coupon bond rate curves.  

Price is a number of instruments (NINST) by number of curves (NUMCURVES) 
matrix of prices of each instrument. If an instrument cannot be priced, a NaN is 
returned in that entry. 

intenvprice handles the following instrument types: 'Bond', 'CashFlow', 
'Fixed', 'Float', 'Swap'. See instadd for information about constructing 
defined types.

See single-type pricing functions to retrieve pricing information.

Examples Load the zero curves and instruments from a data file.  

load deriv.mat
instdisp(ZeroInstSet)

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

InstSet Variable containing a collection of instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 

bondbyzero Price bonds by a set of zero curves.

cfbyzero Price arbitrary cash flow instrument by a set of zero curves.

fixedbyzero Fixed rate note prices by zero curves. 

floatbyzero Floating rate note prices by zero curves.

swapbyzero Swap prices by a set of zero curves.
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Price = intenvprice(ZeroRateSpec, ZeroInstSet)

Price =

  98.7159
   97.5334
   98.7159
  100.5529
    3.6923

See Also hjmprice, hjmsens, instadd, intenvsens, intenvset

Index Type CouponRate Settle         Maturity       Period ...  Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1        4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2       4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name         Quantity 
5     Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1  1]   NaN   NaN       NaN     6%/20BP Swap 10      
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4intenvsensPurpose Instrument price and sensitivities by a set of zero curves

Syntax [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

Arguments

Description [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet) computes 
dollar prices and price sensitivities for instruments using a zero coupon bond 
rate term structure.  

Delta is a number of instruments (NINST) by number of curves (NUMCURVES) 
matrix of deltas, representing the rate of change of instrument prices with 
respect to shifts in the observed forward yield curve. Delta is computed by 
finite differences. 

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of 
change of instrument deltas with respect to shifts in the observed forward yield 
curve. Gamma is computed by finite differences.

Note  Both sensitivities are returned as dollar sensitivities. To find the 
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an   
instrument cannot be priced, a NaN is returned.

intenvsens handles the following instrument types: 'Bond', 'CashFlow', 
'Fixed', 'Float', 'Swap'. See instadd for information about constructing 
defined types.

Examples Load the tree and instruments from a data file. 

RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

InstSet Variable containing a collection of instruments. 
Instruments are categorized by type; each type can have 
different data fields. The stored data field is a row vector 
or string for each instrument. 
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load deriv.mat
instdisp(ZeroInstSet)

[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)

Delta =

 -272.6403
 -347.4386
 -272.6403
   -1.0445
 -282.0405

Gamma =

  1.0e+003 *

    1.0298
    1.6227
    1.0298
    0.0033
    1.0596

See Also hjmprice, hjmsens, instadd, intenvprice, intenvset

Index Type CouponRate Settle         Maturity       Period ...  Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1        4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2       4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name         Quantity 
5     Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1  1]   NaN   NaN       NaN     6%/20BP Swap 10      
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4intenvsetPurpose Set properties of interest rate environment

Syntax [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Parameter1', Value1, 
'Parameter2', Value2, ...)

[RateSpec, RateSpecOld] = intenvset
intenvset

Arguments

Parameters may be chosen from the table below and specified in any order.

RateSpec (Optional) An existing interest rate specification 
structure to be changed, probably created from a 
previous call to intenvset.

Compounding Scalar value representing the rate at which the input 
zero rates were compounded when annualized. Default = 
2. This argument determines the formula for the 
discount factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of curves 
(NCURVES) matrix of unit bond prices over investment 
intervals from StartDates, when the cash flow is valued, 
to EndDates, when the cash flow is received. 

Rates Number of points (NPOINTS) by number of curves 
(NCURVES) matrix of rates in decimal form. For       
example, 5% is 0.05 in Rates. Rates are the yields over 
investment intervals from StartDates, when the cash 
flow is valued, to EndDates, when the cash flow is 
received.   
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It is sufficient to type only the leading characters that uniquely identify the 
parameter. Case is ignored for parameter names.

When creating a new RateSpec, the set of parameters passed to intenvset 
must include StartDates, EndDates, and either Rates or Disc.

Call intenvset with no input or output arguments to display a list of 
parameter names and possible values. 

Description [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Parameter1', Value1, 
'Parameter2', Value2, ...) creates an interest term structure (RateSpec) 
in which the input argument list is specified as parameter name /parameter 
value pairs. The parameter name portion of the pair must be recognized as a 
valid field of the output structure RateSpec; the parameter value portion of the 
pair is then assigned to its paired field. 

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates 
ending the interval to discount over.

StartDates NPOINTS-by-1 vector or scalar of serial dates starting the 
interval to discount over. 
Default = ValuationDate. 

ValuationDate (Optional) Scalar value in serial date number form 
representing the observation date of the investment 
horizons entered in StartDates and EndDates. Default = 
min(StartDates).

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.
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If the optional argument RateSpec is specified, intenvset modifies an existing 
interest term structure RateSpec by changing the named parameters to the 
specified values and recalculating the parameters dependent on the new 
values.

[RateSpec, RateSpecOld] = intenvset  creates an interest term structure 
RateSpec with all fields set to [].

intenvset with no input or output arguments displays a list of parameter 
names and possible values. 

RateSpecOld is a structure encapsulating the properties of an interest rate      
structure prior to the changes introduced by the call to intenvset.

Examples Use intenvset to create a RateSpec.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2000', 'EndDates', '20-Jan-2001')

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Now change the Compounding parameter to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)
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RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.9518
            Rates: 0.0506
         EndTimes: 1
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Calling intenvset with no input or output arguments displays a list of 
parameter names and possible values.

intenvset

            Compounding: [ 1 | {2} | 3 | 4 | 6 | 12 | 365 | -1 ]
                   Disc: [ scalar | vector (NPOINTS x 1) ]
                  Rates: [ scalar | vector (NPOINTS x 1) ]
               EndDates: [ scalar | vector (NPOINTS x 1) ]
             StartDates: [ scalar | vector (NPOINTS x 1) ]
          ValuationDate: [ scalar ]
                  Basis: [ {0} | 1 | 2 | 3 ]
           EndMonthRule: [ 0 | {1} ]

See Also intenvget
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4isafinPurpose True if financial structure type or financial object class

Syntax IsFinObj = isafin(Obj, ClassName)

Arguments

Description IsFinObj = isafin(Obj, ClassName) is True (1) if the input argument is a 
financial structure type or financial object class.

Examples load deriv.mat 
IsFinObj = isafin(HJMTree, 'HJMFwdTree')

IsFinObj =

     1

See Also classfin

Obj Name of a financial structure.

ClassName String containing name of financial structure class.
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4mkbushPurpose Create bushy tree

Syntax [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim, 
NodeVal)

Arguments

Description [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim, 
NodeVal) creates a bushy tree Tree with initial values NodeVal at each node. 
NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in 
each level.

Examples Create a tree with four time levels, two branches per node, and a vector of three 
elements in each node with each element initialized to NaN. 

NumLevels Number of time levels of the tree.

NumChild 1 by number of levels (NUMLEVELS) vector with number of 
branches (children) of the nodes in each level. 

NumPos 1-by-NUMLEVELS vector containing the length of the state 
vectors in each time level.

Trim Scalar 0 or 1. If Trim = 1, NumPos decreases by 1 when 
moving from one time level to the next. Otherwise, if 
Trim = 0 (Default), NumPos does not decrease.

NodeVal Initial value at each node of the tree. Default = NaN. 
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Tree = mkbush(4, 2, 3);
treeviewer(Tree) 

See Also bushpath, bushshape
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4mktreePurpose Create recombining tree

Syntax Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)

Arguments

Description Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree) creates a 
recombining tree Tree with initial values NodeVal at each node. 

Examples Create a recombining tree with four time levels, a vector of two elements in 
each node, each element initialized to NaN. 

Tree = mktree(4, 2) 

See Also treepath, treeshape

NumLevels Number of time levels of the tree.

NumPos 1-by-NUMLEVELS vector containing the length of the state 
vectors in each time level.

NodeVal Initial value at each node of the tree. Default = NaN. 

IsPriceTree Boolean determining if a final horizontal branch is added 
to the tree. Default = 0
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4mmktbybdtPurpose Create money market tree from BDT

Syntax MMktTree = mmktbybdt(BDTTree)

Arguments

Description MMktTree = mmktbybdt(BDTTree) creates a money market tree from an 
interest rate tree structure created by bdttree. 

Examples load deriv.mat;
MMktTree = mmktbybdt(BDTTree);
treeviewer(MMktTree)  

See Also bdttree

BDTTree Interest rate tree structure created by bdttree.
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4mmktbyhjmPurpose Create money market tree from HJM

Syntax MMktTree = mmktbyhjm(HJMTree)

Arguments

Description MMktTree = mmktbyhjm(HJMTree) creates a money market tree from a forward 
rate tree structure created by hjmtree. 

Examples load deriv.mat;
MMktTree = mmktbyhjm(HJMTree);
treeviewer(MMktTree)  

See Also hjmtree

HJMTree Forward rate tree structure created by hjmtree.
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4optbndbybdtPurpose Price bond option by BDT interest rate tree

Syntax [Price, PriceTree] = optbndbybdt(BDTree, OptSpec, Strike, 
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,  
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face, Options) 

Arguments BDTTree Forward rate tree structure created by hjmtree.

OptSpec Number of instruments (NINST)-by-1 cell array of string 
values 'Call' or 'Put'.

Strike For a European or Bermuda option:
Number of instruments (NINST) by number of strikes 
(NSTRIKES) matrix of strike price values. Each row is the 
schedule for one option. If an option has fewer than 
NSTRIKES exercise opportunities, the end of the row is 
padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option. 

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is  
the schedule for one option. A European option has only 
one exercise date, the option expiry date.
 
For an American option:
NINST-by-2 vector of exercise date boundaries. For each 
instrument, the option can be exercised on any coupon 
date between or including the pair of dates on that row. 
If only one non-NaN date is listed, or if ExerciseDates is 
NINST-by-1, the option can be exercised between the 
underlying bond Settle and the single listed exercise 
date. 

AmericanOpt NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 
(American). 

CouponRate Decimal annual rate.
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Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate Date when a bond makes its first coupon payment. When 
FirstCouponDate and LastCouponDate are both 
specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate Last coupon date of a bond prior to the maturity date. In 
the absence of a specified FirstCouponDate, a specified 
LastCouponDate determines the coupon structure of the 
bond. The coupon structure of a bond is truncated at the 
LastCouponDate regardless of where it falls and is 
followed only by the bond’s maturity cash flow date.

StartDate Ignored.
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The Settle date for every bond is set to the ValuationDate of the BDT tree. 
The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbybdt(BDTree, OptSpec, Strike, 
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,  Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face, Options) computes the price of a bond option from a BDT 
interest rate tree. 

Price is an NINST-by-1 matrix of expected prices at time 0. 

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Example 1. 

Using the BDT interest rate tree in the deriv.mat file, price a European call 
option on a 10% bond with a strike of 95. The exercise date for the option is Jan. 
01, 2002. The settle date for the bond is Jan. 01, 2000, and the maturity date 
is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time 
and forward rate information needed to price the bond.

load deriv; 

Use optbondbybdt to compute the price of the option.

Price = optbndbybdt(BDTTree,'Call','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')

Price =

    1.7657

Face Face value. Default is 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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Example 2. 

Now use optbndbybdt to compute the price of a put option on the same bond.

Price = optbndbybdt(BDTTree,'Put','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')

Price =

    0.5740

See Also bdtprice, bdttree, instoptbnd
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4optbndbyhjmPurpose Price bond option by HJM interest rate tree

Syntax [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, 
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,  
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate, 
LastCouponDate, StartDate, Face, Options) 

Arguments HJMTree Forward rate tree structure created by hjmtree.

OptSpec Number of instruments (NINST)-by-1 cell array of string 
values 'Call' or 'Put'.

Strike For a European or Bermuda option:
Number of instruments (NINST) by number of strikes 
(NSTRIKES) matrix of strike price values. Each row is the 
schedule for one option. If an option has fewer than 
NSTRIKES exercise opportunities, the end of the row is 
padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option. 

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is  
the schedule for one option. A European option has only 
one exercise date, the option expiry date.
 
For an American option:
NINST-by-2 vector of exercise date boundaries. For each 
instrument, the option can be exercised on any coupon 
date between or including the pair of dates on that row. 
If only one non-NaN date is listed, or if ExerciseDates is 
NINST-by-1, the option can be exercised between the 
underlying bond Settle and the single listed exercise 
date. 

AmericanOpt NINST-by-1 vector of flags: 0 (European/Bermuda) or 1 
(American). 

CouponRate Decimal annual rate.
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Settle Settlement date. A vector of serial date numbers or date 
strings. Settle must be earlier than or equal to 
Maturity.

Maturity Maturity date. A vector of serial date numbers or date 
strings.

Period (Optional) Coupons per year of the bond. A vector of 
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default 
= 2.

Basis (Optional) Day-count basis of the bond. A vector of 
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360, 
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies 
only when Maturity is an end-of-month date for a month 
having 30 or fewer days. 0 = ignore rule, meaning that a 
bond’s coupon payment date is always the same 
numerical day of the month. 1 = set rule on (default), 
meaning that a bond’s coupon payment date is always 
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued. 

FirstCouponDate (Optional) Date when a bond makes its first coupon 
payment. When FirstCouponDate and LastCouponDate 
are both specified, FirstCouponDate takes precedence in 
determining the coupon payment structure. 

LastCouponDate (Optional) Last coupon date of a bond prior to the 
maturity date. In the absence of a specified 
FirstCouponDate, a specified LastCouponDate 
determines the coupon structure of the bond. The coupon 
structure of a bond is truncated at the LastCouponDate 
regardless of where it falls and is followed only by the 
bond’s maturity cash flow date.

StartDate Ignored.
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The Settle date for every bond is set to the ValuationDate of the HJM tree. 
The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike, 
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,  Period, 
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate, 
StartDate, Face, Options) computes the price of a bond option from an 
HJM forward rate tree. 

Price is an NINST-by-1 matrix of expected prices at time 0. 

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Using the HJM forward rate tree in the deriv.mat file, price a European call 
option on a 4% bond with a strike of 96. The exercise date for the option is Jan. 
01, 2003. The settle date for the bond is Jan. 01, 2000, and the maturity date 
is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time 
and forward rate information needed to price the bond.

load deriv; 

Use optbondbyhjm to compute the price of the option.

Price = optbndbyhjm(HJMTree,'Call','96','01-Jan-2003',...
'0','0.04','01-Jan-2000','01-Jan-2004')
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

    2.2410

See Also hjmprice, hjmtree, instoptbnd

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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4rate2discPurpose Discounting factors from interest rates

Syntax Usage 1: Interval points are input as times in periodic units.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, 
EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input 
zero rates were compounded when annualized. This 
argument determines the formula for the discount 
factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Rates Number of points (NPOINTS) by number of curves 
(NCURVES) matrix of rates in decimal form. For       
example, 5% is 0.05 in Rates. Rates are the yields over 
investment intervals from StartTimes, when the cash 
flow is valued, to EndTimes, when the cash flow is 
received.   

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units 
ending the interval to discount over.         

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in 
periodic units starting the interval to discount over. 
Default = 0. 
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Description Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes) and 
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates, 
EndDates, StartDates, ValuationDate) convert interest rates to cash flow 
discounting factors. rate2disc computes the discounts over a series of NPOINTS 
time intervals given the annualized yield over those intervals. NCURVES 
different rate curves can be translated at once if they have the same time 
structure. The time intervals can represent a zero curve or a forward curve.

Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal 
form representing the value at time StartTime of a unit cash flow received at 
time EndTime.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to 
discount over, measured in periodic units.    

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to 
discount over, measured in periodic units.      

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. 
The arguments otherwise contain values, T, computed from SIA semiannual 
time factors, Tsemi, by the formula T = Tsemi/2*F, where F is the compounding 
frequency. 

The investment intervals can be specified either with input times (Usage 1) or 
with input dates (Usage 2). Entering ValuationDate invokes the date 
interpretation; omitting ValuationDate invokes the default time 
interpretations.

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates 
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates 
starting the interval to discount over. 
Default = ValuationDate. 

ValuationDate Scalar value in serial date number form representing the 
observation date of the investment horizons entered in 
StartDates and EndDates. Required in Usage 2. Omitted 
or passed as an empty matrix to invoke Usage 1. 
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Examples Example 1. 

Compute discounts from a zero curve at six months, 12 months, and 24 months.     
The time to the cash flows is 1, 2, and 4. We are computing the present value 
(at time 0) of the cash flows.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes   = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)

Disc =
0.9756
0.9426
0.8799

 Example 2. 

Compute discounts from a zero curve at six months, 12 months, and 24 months. 
Use dates to specify the ending time horizon. 

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97'; 
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)

Disc =
0.9756
0.9426
0.8799

Example 3. 

Compute discounts from the one-year forward rates beginning now, in six 
months, and in 12 months. Use monthly compounding. The times to the cash 
flows are 12, 18, 24, and the forward times are 0, 6, 12. 

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)
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Disc =
0.9513
0.9609
0.9419

See Also disc2rate, ratetimes
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4ratetimesPurpose Change time intervals defining interest rate environment

Syntax Usage 1: ValuationDate not passed; third through sixth arguments are 
interpreted as times.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Usage 2: ValuationDate passed and interval points input as dates.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input 
zero rates were compounded when annualized. This 
argument determines the formula for the discount 
factors: 
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding 

frequency, Z is the zero rate, and T is the time in 
periodic units, e.g. T = F is one year.

Compounding = 365 
Disc = (1 + Z/F)^(-T), where F is the number of days 

in the basis year and T is a number of days 
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

RefRates NREFPTS-by-NCURVES matrix of reference rates in decimal 
form. RefRates are the yields over investment intervals 
from RefStartTimes, when the cash flow is valued, to 
RefEndTimes, when the cash flow is received.   

RefEndTimes NREFPTS-by-1 vector or scalar of times in periodic units 
ending the intervals corresponding to RefRates. 

RefStartTimes (Optional) NREFPTS-by-1 vector or scalar of times in 
periodic units starting the intervals corresponding to 
RefRates. Default = 0. 
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Description [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndTimes, RefStartTimes, EndTimes, StartTimes) and          
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates, 
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)
change time intervals defining an interest rate environment.

ratetimes takes an interest rate environment defined by yields over one     
collection of time intervals and computes the yields over another set of time 
intervals. The zero rate is assumed to be piecewise linear in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the reference 
interest rate structure and sampled at new intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the new       
intervals where rates are desired, measured in periodic units.    

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units 
ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in 
periodic units starting the interval to discount over. 
Default = 0. 

RefEndDates NREFPTS-by-1 vector or scalar of serial dates ending the 
intervals corresponding to RefRates.

RefStartDates (Optional) NREFPTS-by-1 vector or scalar of serial dates 
starting the intervals corresponding to RefRates. 
Default = ValuationDate. 

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates 
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates 
starting the interval to discount over. 
Default = ValuationDate. 

ValuationDate Scalar value in serial date number form representing the 
observation date of the investment horizons entered in 
StartDates and EndDates. Required in usage 2. Omitted 
or passed as an empty matrix to invoke usage 1. 
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EndTimes is an NPOINTS-by-1 column vector of times ending the new       
intervals, measured in periodic units. 

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. 
The arguments otherwise contain values, T, computed from SIA semiannual 
time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the 
compounding frequency. 

The investment intervals can be specified either with input times (Usage 1) or 
with input dates (Usage 2). Entering the argument ValuationDate invokes the 
date interpretation; omitting ValuationDate invokes the default time 
interpretations.

Examples Example 1.

The reference environment is a collection of zero rates at six, 12, and 24 
months. Create a collection of one year forward rates beginning at zero, six, and 
12 months.

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes   = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,... 
StartTimes)

Rates =
0.0600
0.0688
0.0700

Example 2.

Interpolate a zero yield curve to different dates. Zero curves start at the default 
date of ValuationDate.

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates    = [730241; 730486];
ValuationDate   = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],... 
ValuationDate)
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Rates =
0.0520
0.0520

See Also disc2rate, rate2disc
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4swapbybdtPurpose Price swap instrument by BDT interest rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, 
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

Arguments BDTTree Interest rate tree structure created by bdttree.

LegRate Number of instruments (NINST)-by-2 matrix, with each 
row defined as:  
[CouponRate Spread] or [Spread CouponRate] 
CouponRate is the decimal annual rate. Spread is the 
number of basis points over the reference rate. The first 
column represents the receiving leg, while the second 
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date 
numbers or date strings. Settle must be earlier than or 
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing 
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset 
frequency per year for each swap. Default = [1 1].  

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal 
amounts. Default = 100. 

LegType (Optional) NINST-by-2 matrix. Each row represents an 
instrument. Each column indicates if the corresponding 
leg is fixed (1) or floating (0). This matrix defines the 
interpretation of the values entered in LegRate. Default 
is [1 0] for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 
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The Settle date for every swap is set to the ValuationDate of the BDT tree. 
The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the 
swap is initially zero. To do this enter CouponRate as NaN.

Description [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate, 
Settle, Maturity, LegReset, Basis, Principal, LegType) computes the 
price of a swap instrument from a BDT interest rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at 
time 0. 
PriceTree is the tree structure with a vector of the swap values at each node.  

CFTree is the tree structure with a vector of the swap cash flows at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that  
the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ 
prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is 
padded with NaN for those instruments in which CouponRate is not set to NaN.

Examples Example 1.

Price an interest rate swap with a fixed receiving leg and a floating paying leg. 
Payments are made once a year, and the notional principal amount is $100. 
The values for the remaining parameters are: 

• Coupon rate for fixed leg: 0.15 (15%) 

• Spread for floating leg: 10 basis points 

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003 

Based on the information above, set the required parameters and build the 
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
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LegReset = [1 1]; % Payments once per year 

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree 
contains the time and forward rate information needed to price the instrument. 

load deriv; 

Use swapbybdt to compute the price of the swap. 

Price  = swapbybdt(BDTTree, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType) 

Price =

  7.3032

Example 2.

Using the previous data, calculate the swap rate, the coupon rate for the fixed 
leg such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price =

 -2.8422e-014

PriceTree = 

    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

CFTree = 

    FinObj: 'BDTCFTree'
      tObs: [0 1 2 3 4]
    CFTree: {1x5 cell}
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SwapRate =

    0.1210

Example 3. 

Calculate the cash flows from a pair of swaps and display the result.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate= [0.15 10; 0.15 0]; % [CouponRate Spread] 
LegType = [1 0; 1 0];
LegReset = [1 1; 1 1]; 

load deriv 

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType);

Continuing on, provide names for the swaps. Then use treeviewer to observe 
the cash flow data graphically. 

Names ={'Swap1', 'Swap2'};
treeviewer(CFTree, Names)
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You can use treeviewer to display cash flow data at all observation times and 
along all branches of the tree.

See Also bdttree, capbybdt, cfbybdt, floorbybdt
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4swapbyhjmPurpose Price swap instrument by HJM interest rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, 
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

Arguments HJMTree Forward rate tree structure created by hjmtree.

LegRate Number of instruments (NINST)-by-2 matrix, with each 
row defined as:  
[CouponRate Spread] or [Spread CouponRate] 
CouponRate is the decimal annual rate. Spread is the 
number of basis points over the reference rate. The first 
column represents the receiving leg, while the second 
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date 
numbers or date strings. Settle must be earlier than or 
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing 
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset 
frequency per year for each swap. Default = [1 1].  

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal 
amounts. Default = 100. 

LegType (Optional) NINST-by-2 matrix. Each row represents an 
instrument. Each column indicates if the corresponding 
leg is fixed (1) or floating (0). This matrix defines the 
interpretation of the values entered in LegRate. Default 
is [1 0] for each instrument. 

Options (Optional) Derivatives pricing options structure created 
with derivset. 



swapbyhjm

4-180

The Settle date for every swap is set to the ValuationDate of the HJM tree. 
The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the 
swap is initially zero. To do this enter CouponRate as NaN.

Description [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate, 
Settle, Maturity, LegReset, Basis, Principal, LegType) computes the 
price of a swap instrument from an HJM interest rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at 
time 0. 
PriceTree is the tree structure with a vector of the swap values at each node.  

CFTree is the tree structure with a vector of the swap cash flows at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that  
the swaps’ values are zero at time 0. This rate is used in calculating the swaps’ 
prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is 
padded with NaN for those instruments in which CouponRate is not set to NaN.

Examples Example 1. 

Price an interest rate swap with a fixed receiving leg and a floating paying leg. 
Payments are made once a year, and the notional principal amount is $100. 
The values for the remaining parameters are: 

• Coupon rate for fixed leg: 0.06 (6%) 

• Spread for floating leg: 20 basis points 

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003 

Based on the information above, set the required parameters and build the 
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
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LegReset = [1 1]; % Payments once per year 

Price the swap using the HJMTree included in the MAT-file deriv.mat. HJMTree 
contains the time and forward rate information needed to price the instrument. 

load deriv; 

Use swapbyhjm to compute the price of the swap. 

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

3.6923 

PriceTree = 

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {1x5 cell}

CFTree = 

    FinObj: 'HJMCFTree'
      tObs: [0 1 2 3 4]

CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

Using the function treeviewer, you can examine CFTree graphically and see 
the cash flows from the swap along both the up and the down branches. A 
positive cash flow indicates an inflow (income -  payments > 0), while a negative 
cash flow indicates an outflow (income -  payments < 0).
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treeviewer(CFTree)

Note  treeviewer price tree diagrams follow the convention that increasing 
prices appear on the upper branch of a tree and, consequently, decreasing 
prices appear on the lower branch. Conversely, for interest rate displays, 
decreasing interest rates appear on the upper branch (prices are rising)  and 
increasing interest rates on the lower branch (prices are falling).

In this example you have sold a swap (receive fixed and pay floating). At time 
t = 3, if interest rates go down, your cash flow is positive ($2.63), meaning that 
you will receive this amount. But if interest rates go up, your cash flow is 
negative(-$1.58), meaning that you owe this amount.

Example 2. 

Using the previous data, calculate the swap rate, the coupon rate for the fixed 
leg such that the swap price at time = 0 is zero.
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LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

0

PriceTree = 

FinObj: 'HJMPriceTree' 
tObs: [0 1 2 3 4] 
PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

CFTree = 

FinObj: 'HJMCFTree' 
tObs: [0 1 2 3 4] 

CFBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

SwapRate = 

0.0466

See Also capbyhjm, cfbyhjm, floorbyhjm, hjmtree
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4swapbyzeroPurpose Price swap instrument by a set of zero curves

Syntax [Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity, 
LegReset, Basis,  Principal, LegType)

Arguments RateSpec A structure encapsulating the properties of an interest 
rate structure. See intenvset for information on 
creating RateSpec.

LegRate Number of instruments (NINST)-by-2 matrix, with each 
row defined as:  
[CouponRate Spread] or [Spread CouponRate] 
CouponRate is the decimal annual rate. Spread is the 
number of basis points over the reference rate. The first 
column represents the receiving leg, while the second 
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date 
numbers or date strings representing the settlement 
date for each swap. Settle must be earlier than or equal 
to Maturity. 

Maturity Maturity date. NINST-by-1 vector of dates representing 
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset 
frequency per year for each swap. Default = [1 1].  

Basis (Optional) NINST-by-1 vector representing the basis used 
when annualizing the input forward rate tree. Default = 
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal 
amounts. Default = 100. 

LegType (Optional) NINST-by-2 matrix. Each row represents an 
instrument. Each column indicates if the corresponding 
leg is fixed (1) or floating (0). This matrix defines the 
interpretation of the values entered in LegRate. Default 
is [1 0] for each instrument. 
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Description [Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity, 
LegReset, Basis, Principal, LegType) prices a swap instrument by a set of  
zero coupon bond rates.

Price is a NINST by number of curves (NUMCURVES) matrix of swap prices. Each 
column arises from one of the zero curves.

SwapRate is an NINST-by-NUMCURVES matrix of rates applicable to the fixed leg 
such that the swap’s values are zero at time 0. This rate is used in calculating 
the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN. 
SwapRate is padded with NaN for those instruments in which CouponRate is not 
set to NaN.

Examples Example 1. 

Price an interest rate swap with a fixed receiving leg and a floating paying leg. 
Payments are made once a year, and the notional principal amount is $100. 
The values for the remaining parameters are: 

• Coupon rate for fixed leg: 0.06 (6%) 

• Spread for floating leg: 20 basis points 

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003 

Based on the information above, set the required parameters and build the 
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year 

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term 
structure needed to price the bond.

load deriv 

Use swapbyzero to compute the price of the swap. 
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Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType) 

Price = 
3.6923 

Example 2. 

Using the previous data, calculate the swap rate, the coupon rate for the fixed 
leg such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,... 
Maturity, LegReset, Basis, Principal, LegType) 

Price = 
0

SwapRate = 
0.0466

See Also bondbyzero, cfbyzero, fixedbyzero, floatbyzero
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4treepathPurpose Extract entries from node of recombining tree

Syntax Values = treepath(Tree, BranchList)

Arguments

Description Values = treepath(Tree, BranchList) extracts entries of a node of a 
recombining tree. The node path is described by the sequence of branchings 
taken, starting at the root. The top branch is number one, the second-to-top is 
two, and so on. Set the branch sequence to zero to obtain the entries at the root 
node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the 
retrieved entries of a recombining tree. 

Examples Create a BDT tree by loading the example file.

load deriv.mat; 

Then

FwdRates = treepath(BDTTree.FwdTree, [1 2 1]) 

returns the rates at the tree nodes located by taking the up branch, then the 
down branch, and finally the up branch again.

FwdRates = 

    1.1000
    1.0979
    1.1377
    1.1183 

You can visualize this with the treeviewer function.

Tree Recombining tree.

BranchList Number of paths (NUMPATHS) by path length 
(PATHLENGTH) matrix containing the sequence of 
branchings.
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treeviewer(BDTTree)

See Also mktree, treeshape
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4treeshapePurpose Retrieve shape of a recombining tree

Syntax [NumLevels, NumPos, IsPriceTree] = treeshape(Tree)

Arguments

Description [NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns 
information on a recombining tree’s shape. 

NumLevels is the number of time levels of the tree. 

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in 
each level. 

IsPriceTree is a Boolean determining if a final horizontal branch is present in 
the tree. 

Examples Create a BDT tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the BDT interest rate tree.

Tree Recombining tree.
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treeviewer(BDTTree)

With this tree

[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree) 

returns

NumLevels  =   
     4

NumPos     =   
     1     1     1     1

IsPriceTree =
     0

See Also mktree, treepath
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4treeviewerPurpose Display tree information

Syntax treeviewer(Tree)
treeviewer(PriceTree, InstSet)
treeviewer(CFTree, InstSet)

Arguments

Description treeviewer(Tree) displays an interest rate or money market tree.

treeviewer(PriceTree, InstSet) displays a tree of instrument prices. If you 
provide the name of an instrument set (InstSet) and you have named the 
instruments using the field Name, the treeviewer display identifies the 
instrument being displayed with its name. (See Example 3 below for a 
description.) If you do not provide the optional InstSet argument, the 
instruments are identified by their sequence number in the instrument set. 
(See Example 6 below for a description.) 

Tree Tree can be a Black-Derman-Toy (BDTTree) or 
Heath-Jarrow-Morton (HJMTree)  interest rate tree or a 
money market tree (MMktTree). See bdttree for 
information on creating BDTTree. See hjmtree for 
information on creating HJMTree. The functions 
mmktbybdt and mmktbyhjm create money market trees.

PriceTree PriceTree is a Black-Derman-Toy (BDTPriceTree) or 
Heath-Jarrow-Morton (HJMPriceTree) tree of 
instrument prices.

CFTree CFTree is a BDT (BDTCFTree) or HJM (HJMCFTree) tree of 
swap cash flows. You create cash flow trees when 
executing the functions swapbybdt and swapbyhjm. 

InstSet (Optional) Variable containing a collection of  
instruments whose prices or cash-flows are contained in 
a tree. The collection can be created with the function 
instadd or as a cell array containing the names of the 
instruments. To display the names of the instruments, 
the field Name should exist in InstSet. If InstSet is not 
passed, treeviewer uses default instruments names 
(numbers) when displaying prices or cash flows. 
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treeviewer(CFTree, InstSet) displays a cash flow tree that has been created 
with swapbybdt or swapbyhjm. If you provide the name of an instrument set 
(InstSet) containing cash flow names, the treeviewer display identifies the 
instrument being displayed with its name. (See Example 3 below for a 
description.) If the optional InstSet argument is not present, the instruments 
are identified by their sequence number in the instrument set. See Example 6 
below for a description.)

treeviewer price tree diagrams follow the convention that increasing prices 
appear on the upper branch of a tree and, consequently, decreasing prices 
appear on the lower branch. Conversely, for interest rate displays, decreasing 
interest rates appear on the upper branch (prices are rising) and increasing 
interest rates on the lower branch (prices are falling).

treeviewer provides an interactive display of prices or interest rates. The 
display is activated by clicking on the nodes along the price or interest rate 
path shown in the left panel when the function is called. For HJM trees you 
select the end points of the path, and treeviewer displays all data from 
beginning to end. With BDT trees you must click on each node in succession 
from the beginning (t = 1) to the last node (t = n). Do not include the root 
node, the node at t = 0. If you do not click on the nodes in the proper order, you 
are reminded with the message:

Parent of selected node must be selected.



treeviewer

4-193

Examples Example 1. 
Display an HJM interest rate tree.

load deriv.mat
treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the left 
panel. The tree visualization in the right panel is blank. 
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To visualize the actual interest rate tree, go to the Tree Visualization panel 
and click on Path (the default) and Diagram. Now, select the first path by 
clicking on the last node (t = 3) of the upper branch.

Note that the entire upper path is highlighted in red.
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To complete the process, select a second path by clicking on the last node 
(t = 3) of another branch. The second path is highlighted in purple. The final 
display looks like
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Alternative Forms of Display
The Tree Visualization panel allows you to select alternative ways to display 
tree data. For example, if you select Path and Table as your visualization 
choices, the final display above instead appears in tabular form.
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To see a plot of interest rates along the chosen branches, choose Path and Plot 
in the Tree Visualization panel.

Note that with Plot selected rising interest rates are shown on the upper 
branch and declining interest rates on the lower.
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Finally, if you choose Node and Children under Tree Visualization, you 
restrict the data displayed to just the selected parent node and its children. 

With Node and Children selected, the choices under Visualization are 
unavailable.
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Example 2. 
Display a BDT interest rate tree.

load deriv.mat
treeviewer(BDTTree)

The treeviewer function displays the structure of a BDT tree in the left panel. 
The tree visualization in the right panel is blank. 

To visualize the actual interest rate tree, go to the Tree Visualization panel 
and click on Path (the default) and Diagram. Now, select the first path by 
clicking on the first node of the up branch (t = 1). Continue by clicking on the 
down branch at the next node (t = 2). The two figures below show the 
treeviewer path diagrams for these selections.
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Continue clicking on all nodes in succession until you reach the end of the 
branch. Note that the entire path you have selected is highlighted in red.

Select a second path by clicking on the first node of the lower branch (t = 1). 
Continue clicking on lower nodes as you did on the first branch. Note that the 
second branch is highlighted in purple. The final display looks like

t = 1 t = 2
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Example 3. 
Display an HJM price tree for named instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

HJM Instrument Set
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Example 4. 
Display a BDT price tree for named instruments.

load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)

BDT Instrument Set
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Example 5. 
Display an HJM price tree with renamed instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',... 
'Floor', 'Swap'};
treeviewer(PriceTree, Names)
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Example 6.
 Display an HJM price tree using default instrument names (numbers).

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)

See Also bdttree, hjmtree, instadd, mmktbybdt, mmktbyhjm, swapbybdt, swapbyhjm 
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American option - An option that can be exercised any time until its 
expiration date. Contrast with European option.

arbitrary cash flow instrument - A set of generic cash flow amounts for which 
a price needs to be established.

beta - The price volatility of a financial instrument relative to the price 
volatility of a market or index as a whole. Beta is most commonly used with 
respect to equities. A high-beta instrument is riskier than a low-beta 
instrument.

binomial model - A method of pricing options or other equity derivatives in 
which the probability over time of each possible price follows a binomial 
distribution. The basic assumption is that prices can move to only two values 
(one higher and one lower) over any short time period.

Black-Derman-Toy (BDT) model - A model for pricing interest rate 
derivatives where all security prices and rates depend upon the short rate 
(annualized one-period interest rate).

bond - A long-term debt security with fixed interest payments and fixed 
maturity date.

bond option - The right to sell a bond back to the issuer (put) or to redeem a 
bond from its current owner (call) at a specific price and on a specific date.

bushy tree - A tree of prices or interest rates in which the number of branches 
increases exponentially relative to observation times; branches never 
recombine. Opposite of a recombining tree.

call - a. An option to buy a certain quantity of a stock or commodity for a 
specified price within a specified time. See put. b. A demand to submit bonds 
to the issuer for redemption before the maturity date. 

callable bond - A bond that allows the issuer to buy back the bond at a 
predetermined price at specified future dates. The bond contains an embedded 
call option; i.e., the holder has sold a call option to the issuer. See puttable 
bond.

cap - Interest-rate option that guarantees that the rate on a floating-rate loan 
will not exceed a certain level.

delta - The rate of change of the price of a derivative security relative to the 
price of the underlying asset; i.e., the first derivative of the curve that relates 
the price of the derivative to the price of the underlying security.
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derivative - A financial instrument that is based on some underlying asset.  
For example, an option is a derivative instrument based on the right to buy or 
sell an underlying instrument.

deterministic model - An interest rate model in which the values of the rates 
in the next time step are determined solely by the values of the rates in the 
current time step.

discount factor - Coefficient used to compute the present value of future cash 
flows. 

European option - An option that can be exercised only on its expiration date.  
Contrast with American option.

exercise price - The price set for buying an asset (call) or selling an asset (put).  
The strike price.

fixed rate note - A long-term debt security with preset interest rate and 
maturity, by which the interest must be paid. The principal may or may not be 
paid at maturity.

floating rate note - A security similar to a bond, but in which the note’s 
interest rate is reset periodically, relative to a reference index rate, to reflect 
fluctuations in market interest rates.

floor - Interest-rate option that guarantees that the rate on a floating-rate loan 
will not fall below a certain level.

forward curve - The curve of forward interest rates vs. maturity dates for 
bonds.

forward rate - The future interest rate of a bond inferred from the term 
structure, especially from the yield curve of zero-coupon bonds, calculated from 
the growth factor of an investment in a zero held until maturity.

gamma - The rate of change of delta for a derivative security relative to the 
price of the underlying asset; i.e., the second derivative of the option price 
relative to the security price.

Heath-Jarrow-Morton (HJM) model - A model of the interest rate term 
structure that works with a type of interest rate tree called a bushy tree.

hedge - A securities transaction that reduces or offsets the risk on an existing 
investment position.

instrument set - A collection of financial assets. A portfolio.
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inverse discount - A factor by which the present value of an asset is multiplied 
to find its future value. The reciprocal of the discount factor.

least squares method - A mathematical method of determining the best fit of 
a curve to a series of observations by choosing the curve that minimizes the 
sum of the squares of all deviations from the curve.

long rate - The yield on a zero-coupon Treasury bond.

option - A right to buy or sell specific securities or commodities at a stated price 
(exercise or strike price) within a specified time. An option is a type of 
derivative.

per-dollar sensitivity - The dollar sensitivity divided by the corresponding 
instrument price.

portfolio - A collection of financial assets. Also called an instrument set.

price tree structure - A MATLAB structure that holds all pricing information.

price vector - A vector of instrument prices.

pricing options structure - A MATLAB structure that defines how the price 
tree is used to find the price of instruments in the portfolio, and how much 
additional information is displayed in the command window when the pricing 
function is called.

put - An option to sell a stipulated amount of stock or securities within a 
specified time and at a fixed exercise price. See call.

puttable bond - A bond that allows the holder to redeem the bond at a 
predetermined price at specified future dates. The bond contains an embedded 
put option; i.e., the holder has bought a put option. See callable bond.

rate specification - A MATLAB structure that holds all information needed to 
identify completely the evolution of interest rates.

recombining tree - A tree of prices or interest rates whose branches recombine 
over time. Opposite of a bushy tree.

self-financing hedge - A trading strategy whereby the value of a portfolio after 
rebalancing is equal to its value at any previous time.

sensitivity - The “what if” relationship between variables; the degree to which 
changes in one variable cause changes in another variable. A specific synonym 
is volatility.
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short rate - The annualized one-period interest rate.

spot curve, spot yield curve - See zero curve.

spot rate - The current interest rate appropriate for discounting a cash flow of 
some given maturity.

spread - For options, a combination of call or put options on the same stock 
with differing exercise prices or maturity dates.

stochastic model - Involving or containing a random variable or variables; 
involving chance or probability.

strike - Exercise a put or call option.

strike price - See exercise price.

swap - A contract between two parties to exchange cash flows in the future 
according to some formula.

time specification - A MATLAB structure that represents the mapping 
between times and dates for interest rate quoting.

under-determined system - A set of simultaneous equations in which the 
number of independent variables exceeds the number of equations in the set, 
leading to an infinite number of solutions.

vanilla swap - A swap agreement to exchange a fixed rate for a floating rate.

vega - The rate of change in the price of a derivative security relative to the 
volatility of the underlying security. When vega is large the security is 
sensitive to small changes in volatility. 

volatility specification - A MATLAB structure that specifies the forward rate 
volatility process.

zero curve, zero-coupon yield curve - A yield curve for zero-coupon bonds; 
zero rates versus maturity dates. Since the maturity and duration (Macaulay 
duration) are identical for zeros, the zero curve is a pure depiction of supply/
demand conditions for loanable funds across a continuum of durations and 
maturities. Also known as spot curve or spot yield curve.

zero-coupon bond, or Zero - A bond that, instead of carrying a coupon, is sold 
at a discount from its face value, pays no interest during its life, and pays the 
principal only at maturity.
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