
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2

Financial Derivatives
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Financial Derivatives Toolbox User’s Guide
 COPYRIGHT 2000 - 2001 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2000 First printing New for Version 1 (Release 12)
Sept. 2001 Second printing Updated for Version 2 (Release 12.1)

i

Contents

Preface

About This Book . x
Organization of the Document . x

Typographical Conventions . xi

Related Products . xii

Background Reading . xiv
Black-Derman-Toy (BDT) Modeling . xiv
Heath-Jarrow-Morton (HJM) Modeling xiv
Financial Derivatives . xiv

1
Getting Started

Introduction . 1-2
Interest Rate Models . 1-2
Trees . 1-2
Financial Instruments . 1-4
Hedging . 1-5

Creating and Managing Instrument Portfolios 1-6
Portfolio Creation . 1-6
Portfolio Management . 1-9

ii Contents

2
Using Financial Derivatives

Interest Rate Environment . 2-3
Interest Rates vs. Discount Factors . 2-3
Interest Rate Term Conversions . 2-8
Interest Rate Term Structure . 2-12

Pricing and Sensitivity from
Interest Rate Term Structure . 2-17

Pricing . 2-18
Sensitivity . 2-20

Heath-Jarrow-Morton (HJM) Model 2-22
Building an HJM Forward Rate Tree . 2-22
Using HJM Trees in MATLAB . 2-28

Pricing and Sensitivity from HJM . 2-35
Pricing and the Price Tree . 2-35
Using treeviewer to View Instrument Prices Through Time . 2-40
HJM Pricing Options Structure . 2-44
Calculating Prices and Sensitivities . 2-50

Black-Derman-Toy Model (BDT) . 2-53
Building a BDT Interest Rate Tree . 2-53
Using BDT Trees in MATLAB . 2-58

Pricing and Sensitivity from BDT . 2-63
Pricing and the Price Tree . 2-63
BDT Pricing Options Structure . 2-71
Calculating Prices and Sensitivities . 2-71

iii

3
Hedging Portfolios

Hedging . 3-2

Hedging Functions . 3-3
Hedging with hedgeopt . 3-3

Self-Financing Hedges (hedgeslf) . 3-12

Specifying Constraints with ConSet 3-16
Setting Constraints . 3-16
Portfolio Rebalancing . 3-18

Hedging with Constrained Portfolios 3-21
Example: Fully Hedged Portfolio . 3-21
Example: Minimize Portfolio Sensitivities 3-23
Example: Under-Determined System . 3-25
Portfolio Constraints with hedgeslf . 3-26

4
Function Reference

Functions by Category . 4-2

Alphabetical List of Functions
bdtprice . 4-9
bdtsens . 4-12
bdttimespec . 4-15
bdttree . 4-17
bdtvolspec . 4-19
bondbybdt . 4-20
bondbyhjm . 4-23
bondbyzero . 4-26
bushpath . 4-29
bushshape . 4-31
capbybdt . 4-34

iv Contents

capbyhjm . 4-37
cfbybdt . 4-39
cfbyhjm . 4-41
cfbyzero . 4-43
classfin . 4-45
date2time . 4-47
datedisp . 4-49
derivget . 4-50
derivset . 4-51
disc2rate . 4-53
fixedbybdt . 4-55
fixedbyhjm . 4-57
fixedbyzero . 4-59
floatbybdt . 4-61
floatbyhjm . 4-63
floatbyzero . 4-65
floorbybdt . 4-67
floorbyhjm . 4-70
hedgeopt . 4-72
hedgeslf . 4-75
hjmprice . 4-79
hjmsens . 4-82
hjmtimespec . 4-85
hjmtree . 4-87
hjmvolspec . 4-89
instadd . 4-92
instaddfield . 4-94
instbond . 4-98
instcap . 4-100
instcf . 4-102
instdelete . 4-104
instdisp . 4-106
instfields . 4-108
instfind . 4-111
instfixed . 4-114
instfloat . 4-116
instfloor . 4-118
instget . 4-120
instgetcell . 4-124
instlength . 4-129

v

instoptbnd . 4-130
instselect . 4-132
instsetfield . 4-135
instswap . 4-139
insttypes . 4-141
intenvget . 4-143
intenvprice . 4-145
intenvsens . 4-147
intenvset . 4-149
isafin . 4-153
mkbush . 4-154
mktree . 4-156
mmktbybdt . 4-157
mmktbyhjm . 4-158
optbndbybdt . 4-159
optbndbyhjm . 4-163
rate2disc . 4-166
ratetimes . 4-170
swapbybdt . 4-174
swapbyhjm . 4-179
swapbyzero . 4-184
treepath . 4-187
treeshape . 4-189
treeviewer . 4-191

A
Glossary

vi Contents

Preface

About This Book x
Organization of the Document x

Typographical Conventions xi

Related Productsxii

Background Reading xiv
Black-Derman-Toy (BDT) Modeling xiv
Heath-Jarrow-Morton (HJM) Modeling xiv
Financial Derivatives xiv

 Preface

x

About This Book
This book describes the Financial Derivatives Toolbox for MATLAB , a
collection of tools for analyzing individual financial derivative instruments and
portfolios of instruments.

Organization of the Document

Chapter Description

“Getting Started” Describes interest rate models, bushy and
recombinent trees, instrument types, and
instrument portfolio construction.

“Using Financial
Derivatives”

Describes techniques for computing prices and
sensitivities based upon the interest rate term
structure, the Heath-Jarrow-Morton (HJM) model
of forward rates, and the Black-Derman-Toy (BDT)
interest rate model.

“Hedging Portfolios” Describes functions that minimize the cost of
hedging a portfolio given a set of target
sensitivities, or minimize portfolio sensitivities for
a given set of maximum target costs.

“Function
Reference”

Describes the functions used for interest rate
environment computations, instrument portfolio
construction and manipulation, and for
Heath-Jarrow-Morton and Black-Derman-Toy
modeling.

Typographical Conventions

xi

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Used Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names/syntax Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Keys Boldface with an initial capital
letter

Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial

p = x2 + 2x + 3

MATLAB output Monospace font MATLAB responds with
A =

5

Menu titles, menu items,
dialog boxes, and controls

Boldface with an initial capital
letter

Choose the File menu.

New terms Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

 Preface

xii

Related Products
The MathWorks provides several products relevant to the tasks you can
perform with the Financial Derivatives Toolbox.

For more information about any of these products, see either:

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section.

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB.

Product Description

Database Toolbox Tool for connecting to, and interacting with,
most ODBC/JDBC databases from within
MATLAB

Datafeed Toolbox MATLAB functions for integrating the
numerical, computational, and graphical
capabilities of MATLAB with financial data
providers

Excel Link Tool that integrates MATLAB capabilities with
Microsoft Excel for Windows

Financial Time Series
Toolbox

Tool for analyzing time series data in the
financial markets

Financial Toolbox MATLAB functions for quantitative financial
modeling and analytic prototyping

Related Products

xiii

GARCH Toolbox MATLAB functions for univariate Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) volatility modeling

MATLAB Integrated technical computing environment
that combines numeric computation, advanced
graphics and visualization, and a high-level
programming language

MATLAB Compiler Compiler for automatically converting
MATLAB M-files to C and C++ code

MATLAB Report
Generator

Tool for documenting information in MATLAB
in multiple output formats

MATLAB Runtime
Server

MATLAB environment in which you can take
an existing MATLAB application and turn it
into a stand-alone product that is easy and
cost-effective to package and distribute. Users
access only the features that you provide via
your application’s graphical user interface
(GUI). They do not have access to your code or
the MATLAB command line.

Optimization Toolbox Tool for general and large-scale optimization of
nonlinear problems, as well as for linear
programming, quadratic programming,
nonlinear least squares, and solving nonlinear
equations

Spline Toolbox Tool for the construction and use of piecewise
polynomial functions

Statistics Toolbox Tool for analyzing historical data, modeling
systems, developing statistical algorithms, and
learning and teaching statistics

Product Description

 Preface

xiv

Background Reading

Black-Derman-Toy (BDT) Modeling
A description of the Black-Derman-Toy interest rate model can be found in:

Black, Fischer, Emanuel Derman, and William Toy, “A One Factor Model of
Interest Rates and its Application to Treasury Bond Options,” Financial
Analysts Journal, January - February 1990.

Heath-Jarrow-Morton (HJM) Modeling
An introduction to Heath-Jarrow-Morton modeling, used extensively in the
Financial Derivatives Toolbox, can be found in:

Jarrow, Robert A., Modelling Fixed Income Securities and Interest Rate
Options, McGraw-Hill, 1996, ISBN 0-07-912253-1.

Financial Derivatives
Information on the creation of financial derivatives and their role in the
marketplace can be found in numerous sources. Among those consulted in the
development of the Financial Derivatives toolbox are:

Chance, Don. M., An Introduction to Derivatives, The Dryden Press, 1998,
ISBN 0-030-024483-8

Fabozzi, Frank J., Treasury Securities and Derivatives, Frank J. Fabozzi
Associates, 1998, ISBN 1-883249-23-6

Hull, John C., Options, Futures, and Other Derivatives, Prentice-Hall, 1997,
ISBN 0-13-186479-3

Wilmott, Paul, Derivatives: The Theory and Practice of Financial Engineering,
John Wiley and Sons, 1998, ISBN 0-471-983-89-6

1

Getting Started

Introduction . 1-2
Interest Rate Models 1-2
Trees . 1-2
Financial Instruments 1-4
Hedging . 1-5

Creating and Managing Instrument Portfolios 1-6
Portfolio Creation 1-6
Portfolio Management 1-9

1 Getting Started

1-2

Introduction
The Financial Derivatives Toolbox extends the Financial Toolbox in the areas
of fixed income derivatives and of securities contingent upon interest rates. The
toolbox provides components for analyzing individual financial derivative
instruments and portfolios. Specifically, it provides the necessary functions for
calculating prices and sensitivities, for hedging, and for visualizing results.

Interest Rate Models
The Financial Derivatives Toolbox computes pricing and sensitivities of
interest rate contingent claims based upon:

• The interest rate term structure (sets of zero coupon bonds)

• The Heath-Jarrow-Morton (HJM) model of the interest rate term structure.
This model considers a given initial term structure of interest rates and a
specification of the volatility of forward rates to build a tree representing the
evolution of the interest rates, based upon a statistical process.

• The Black-Derman-Toy (BDT) model for pricing interest rate derivatives. In
the BDT model all security prices and rates depend upon the short rate
(annualized one-period interest rate). The model uses long rates and their
volatilities to construct a tree of possible future short rates. It then
determines the value of interest rate sensitive securities from this tree.

For information, see:

• “Pricing and Sensitivity from Interest Rate Term Structure” on page 2-17 for
a discussion of price and sensitivity based upon portfolios of zero coupon
bonds.

• “Pricing and Sensitivity from HJM” on page 2-35 for a discussion of price and
sensitivity based upon the HJM model.

• “Pricing and Sensitivity from BDT” on page 2-63 for a discussion of price and
sensitivity based upon the BDT model.

Trees
The Heath-Jarrow-Morton model works with a type of interest rate tree called
a bushy tree. A bushy tree is a tree in which the number of branches increases
exponentially relative to observation times; branches never recombine.

Introduction

1-3

The Black-Derman-Toy model, on the other hand, works with a recombining
tree. A recombining tree is the opposite of a bushy tree. A recombining tree has
branches that recombine over time. From any given node, the node reached by
taking the path up-down is the same node reached by taking the path down-up.
A bushy and a recombining tree are illustrated below.

This toolbox provides the data file deriv.mat that contains two trees, HJMTree,
a bushy tree, and BDTTree, a recombining tree. The toolbox also provides the
treeviewer function, which graphically displays the shape and data of price,
interest rate, and cash flow trees. Viewed with treeviewer, the bushy shape of
an HJM tree and the recombining shape of a BDT tree are apparent.

Bushy Tree

Recombining Tree

1 Getting Started

1-4

Financial Instruments
The toolbox provides a set of functions that perform computations upon
portfolios containing up to seven types of financial instruments.

Bond. A long-term debt security with preset interest rate and maturity, by
which the principal and interest must be paid.

Bond Options. Puts and calls on portfolios of bonds.

Fixed Rate Note. A long-term debt security with preset interest rate and
maturity, by which the interest must be paid. The principal may or may not be
paid at maturity. In this version of the Financial Derivatives Toolbox, the
principal is always paid at maturity.

Floating Rate Note. A security similar to a bond, but in which the note’s interest
rate is reset periodically, relative to a reference index rate, to reflect
fluctuations in market interest rates.

Cap. A contract which includes a guarantee that sets the maximum interest
rate to be paid by the holder, based upon an otherwise floating interest rate.

Floor. A contract which includes a guarantee setting the minimum interest rate
to be received by the holder, based upon an otherwise floating interest rate.

BDTTree (recombining)HJMTree (bushy)

Introduction

1-5

Swap. A contract between two parties obligating the parties to exchange future
cash flows. This version of the Financial Derivatives Toolbox handles only the
vanilla swap, which is composed of a floating rate leg and a fixed rate leg.

Additionally, the toolbox provides functions for the creation and pricing of
arbitrary cash flow instruments based upon zero coupon bonds or upon the BDT
or HJM models.

Hedging
The Financial Derivatives Toolbox also includes hedging functionality,
allowing the rebalancing of portfolios to reach target costs or target
sensitivities, which may be set to zero for a neutral-sensitivity portfolio.
Optionally, the rebalancing process can be self-financing or directed by a set of
user-supplied constraints. For information, see:

• “Hedging” on page 3-2 for a discussion of the hedging process.

• “hedgeopt” on page 4-72 for a description of the function that allocates an
optimal hedge.

• “hedgeslf” on page 4-75 for a description of the function that allocates a
self-financing hedge.

1 Getting Started

1-6

Creating and Managing Instrument Portfolios
The Financial Derivatives Toolbox provides components for analyzing
individual derivative instruments and portfolios containing several types of
financial instruments. The toolbox provides functionality that supports the
creation and management of these instruments:

• Bonds

• Bond Options

• Fixed Rate Notes

• Floating Rate Notes

• Caps

• Floors

• Swaps

Additionally, the toolbox provides functions for the creation of arbitrary cash
flow instruments.

The toolbox also provides pricing and sensitivity routines for these
instruments. (See “Pricing and Sensitivity from Interest Rate Term Structure”
on page 2-17, “Pricing and Sensitivity from HJM” on page 2-35, or “Pricing and
Sensitivity from BDT” on page 2-63 for information.)

Portfolio Creation
The instadd function creates a set of instruments (portfolio) or adds
instruments to an existing instrument collection. The TypeString argument
specifies the type of the investment instrument: 'Bond', 'OptBond',
'CashFlow', 'Fixed', 'Float', 'Cap', 'Floor', or 'Swap'. The input
arguments following TypeString are specific to the type of investment
instrument. Thus, the TypeString argument determines how the remainder
of the input arguments is interpreted.

For example, instadd with the type string 'Bond' creates a portfolio of bond
instruments

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Creating and Managing Instrument Portfolios

1-7

In a similar manner, instadd can create portfolios of other types of investment
instruments:

• Bond option

InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)

• Arbitrary cash flow instrument

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,
Basis)

• Fixed rate note instrument
InstSet = instadd('Fixed', CouponRate, Settle, Maturity,
FixedReset, Basis, Principal)

• Floating rate note instrument
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset,
Basis, Principal)

• Cap instrument
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset,
Basis, Principal)

• Floor instrument
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset,
Basis, Principal)

• Swap instrument

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType)

To use the instadd function to add additional instruments to an existing
instrument portfolio, provide the name of an existing portfolio as the first
argument to the instadd function.

1 Getting Started

1-8

Consider, for example, a portfolio containing two cap instruments only.

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the
same settlement and maturity dates, but with different strikes. In general, the
input arguments describing an instrument can be either a scalar, or a number
of instruments (NumInst)-by-1 vector in which each element corresponds to an
instrument. Using a scalar assigns the same value to all instruments passed in
the call to instadd.

Use the instdisp command to display the contents of the instrument set.

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 08-Feb-2000 15-Jan-2003 NaN NaN NaN
2 Cap 0.07 08-Feb-2000 15-Jan-2003 NaN NaN NaN

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and
the same settlement and maturity dates as the cap instruments.

CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set.

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 08-Feb-2000 15-Jan-2003 NaN NaN NaN
2 Cap 0.07 08-Feb-2000 15-Jan-2003 NaN NaN NaN

Index Type CouponRate Settle Maturity Period Basis ...
3 Bond 0.04 08-Feb-2000 15-Jan-2003 NaN NaN ...

Creating and Managing Instrument Portfolios

1-9

Portfolio Management
The portfolio management capabilities provided by the Financial Derivatives
toolbox include:

• Constructors for the most common financial instruments. (See “Instrument
Constructors” on page 1-9.)

• The ability to create new instruments or to add new fields to existing
instruments. (See “Creating New Instruments or Properties” on page 1-10.)

• The ability to search or subset a portfolio. See “Searching or Subsetting a
Portfolio” on page 1-12.)

Instrument Constructors
The toolbox provides constructors for the most common financial instruments.

Note A constructor is a function that builds a structure dedicated to a certain
type of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Each instrument has parameters (fields) that describe the instrument. The
toolbox functions enable you to:

Instrument Constructor

Bond instbond

Bond option instoptbnd

Arbitrary cash flow instcf

Fixed rate note instfixed

Floating rate note instfloat

Cap instcap

Floor instfloor

Swap instswap

1 Getting Started

1-10

• Create an instrument or portfolio of instruments

• Enumerate stored instrument types and information fields

• Enumerate instrument field data

• Search and select instruments

The instrument structure consists of various fields according to instrument
type. A field is an element of data associated with the instrument. For example,
a bond instrument contains the fields CouponRate, Settle, Maturity, etc.
Additionally, each instrument has a field that identifies the investment type
(bond, cap, floor, etc.).

In reality the set of parameters for each instrument is not fixed. Users have the
ability to add additional parameters. These additional fields will be ignored by
the toolbox functions. They may be used to attach additional information to
each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which,
in general, means that the functions using the instrument set (such as
intenvprice or hjmprice) will use default values. At the time of pricing, an
error occurs if any of the required fields is missing, such as Strike in a cap, or
the CouponRate in a bond.

Creating New Instruments or Properties
Use the instaddfield function to create a new kind of instrument or to add
new properties to the instruments in an existing instrument collection.

To create a new kind of instrument with instaddfield, you need to specify
three arguments: 'Type', 'FieldName', and 'Data'. 'Type' defines the type of
the new instrument, for example, Future. 'FieldName' names the fields
uniquely associated with the new type of instrument. 'Data' contains the data
for the fields of the new instrument.

An optional fourth parameter is 'ClassList'. 'ClassList' specifies the data
types of the contents of each unique field for the new instrument.

Here are the syntaxes to create a new kind of instrument using instaddfield.

InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,
'Type', TypeString)

InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data' , DataList, 'Type', TypeString)

Creating and Managing Instrument Portfolios

1-11

To add new instruments to an existing set, use

InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,
'Data', DataList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15,
2000, and a quoted price of $104.40. Since the Financial Derivatives Toolbox
does not directly support this instrument, you must create it using the function
instaddfield. The parameters used for the creation of the instruments are:

• Type: Future

• Field names: Delivery and Price

• Data: Delivery is July 15, 2000, and Price is $104.40.

Enter the data into MATLAB.

Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};

Optionally, you can also specify the data types of the data cell array by creating
another cell array containing this information.

FieldClass = {'date','dble'};

Finally, create the portfolio with a single instrument.

Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'FieldClass', FieldClass, 'Data', Data);

Now use the function instdisp to examine the resulting single-instrument
portfolio.

instdisp(Port)

Index Type Delivery Price
1 Future 15-Jul-2000 104.4

Because your portfolio Port has the same structure as those created using the
function instadd, you can combine portfolios created using instadd with
portfolios created using instaddfield. For example, you can now add two cap
instruments to Port with instadd.

1 Getting Started

1-12

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.

instdisp(Port)

Index Type Delivery Price
1 Future 15-Jul-2000 104.4

Index Type Strike Settle Maturity CapReset Basis Pricipal
2 Cap 0.06 08-Feb-2000 15-Jan-2003 NaN NaN NaN
3 Cap 0.07 08-Feb-2000 15-Jan-2003 NaN NaN NaN

Searching or Subsetting a Portfolio
The Financial Derivatives Toolbox provides functions that enable you to:

• Find specific instruments within a portfolio

• Create a subset portfolio consisting of instruments selected from a larger
portfolio

The instfind function finds instruments with a specific parameter value; it
returns an instrument index (position) in a large instrument set. The
instselect function, on the other hand, subsets a large instrument set into a
portfolio of instruments with designated parameter values; it returns an
instrument set (portfolio) rather than an index.

instfind. The general syntax for instfind is

IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

InstSet is the instrument set to search. Within InstSet instruments are
categorized by type, and each type can have different data fields. The stored
data field is a row vector or string for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to search
for in the 'FieldName', 'Data', and 'Type' data fields of the instrument set.
FieldList is a cell array of field name(s) specific to the instruments. DataList

Creating and Managing Instrument Portfolios

1-13

is a cell array or matrix of acceptable values for the parameter(s) specified in
FieldList. 'FieldName' and 'Data' (consequently, FieldList and DataList)
parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments
in the instrument set to check for matches; the default is all indices available
in the instrument set. 'TypeList' is a string or cell array of strings restricting
instruments to match one of the 'TypeList' types; the default is all types in
the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria.
Instruments are returned in IndexMatch if all the 'FieldName', 'Data',
'Index', and 'Type' conditions are met. An instrument meets an individual
field condition if the stored 'FieldName' data matches any of the rows listed in
the DataList for that FieldName.

instfind Examples. The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HJMInstSet, that contains eight
instruments of seven types.

load deriv.mat
instdisp(HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN......... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity
3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

1 Getting Started

1-14

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

 1
 4
 5
 8

Find all cap and floor instruments with a maturity date of January 01, 2004.

CapFloor = instfind(HJMInstSet,...
'FieldName','Maturity','Data','01-Jan-2004', 'Type',...
{'Cap';'Floor'})

CapFloor =

 6
 7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet,'FieldName',...
'Quantity','Data',{'50';'-50'})

Pos50 =

 2
 3

instselect. The syntax for instselect is exactly the same syntax as for
instfind. instselect returns a full portfolio instead of indexes into the
original portfolio. Compare the values returned by both functions by calling
them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a
maturity date of January 01, 2003.

Creating and Managing Instrument Portfolios

1-15

Mat2003 = ...
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

 1
 4
 5
 8

Now use the same instrument set as a starting point, but execute the
instselect function instead, to produce a new instrument set matching the
identical search criteria.

Select2003 = ...
instselect(HJMInstSet,'FieldName','Maturity','Data',...
'01-Jan-2003')

instdisp(Select2003)

Index Type CouponRate Settle Maturity Period Basis Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
2 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
3 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
4 Swap [0.04 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 4%/20BP Swap 10

1 Getting Started

1-16

instselect Examples. These examples use the portfolio ExampleInst provided with
the MAT-file InstSetExamples.mat.

load InstSetExamples.mat
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

The instrument set contains three instrument types: 'Option', 'Futures',
and 'TBill'. Use instselect to make a new instrument set containing only
options struck at 95. In other words, select all instruments containing the field
Strike and with the data value for that field equal to 95.

InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95)

instdisp(InstSet)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0

You can use all the various forms of instselect and instfind to locate specific
instruments within this instrument set.

2
Using Financial
Derivatives

Interest Rate Environment 2-3
Interest Rates vs. Discount Factors 2-3
Interest Rate Term Conversions 2-8
Interest Rate Term Structure 2-12

Pricing and Sensitivity from
Interest Rate Term Structure 2-17

Pricing . 2-18
Sensitivity . 2-20

Heath-Jarrow-Morton (HJM) Model 2-22
Building an HJM Forward Rate Tree 2-22
Using HJM Trees in MATLAB 2-28

Pricing and Sensitivity from HJM 2-35
Pricing and the Price Tree 2-35
Using treeviewer to View Instrument Prices Through Time . 2-40
HJM Pricing Options Structure 2-44
Calculating Prices and Sensitivities 2-50

Black-Derman-Toy Model (BDT) 2-53
Building a BDT Interest Rate Tree 2-53
Using BDT Trees in MATLAB 2-57

Pricing and Sensitivity from BDT 2-63
Pricing and the Price Tree 2-63
BDT Pricing Options Structure 2-71
Calculating Prices and Sensitivities 2-71

2 Using Financial Derivatives

2-2

The Financial Derivatives Toolbox provides functions for computing the price
and sensitivities of interest rate dependent securities based upon three distinct
models for representing interest rates:

• A set of interest rate curves computed from zero coupon bonds. (See the
sections “Interest Rate Environment” on page 2-3 and “Pricing and
Sensitivity from Interest Rate Term Structure” on page 2-17.)

• The Heath-Jarrow-Morton interest rate model. (See the sections
“Heath-Jarrow-Morton (HJM) Model” on page 2-22 and “Pricing and
Sensitivity from HJM” on page 2-35.)

• The Black-Derman-Toy interest rate model. (See the sections
“Black-Derman-Toy Model (BDT)” on page 2-53 and “Pricing and Sensitivity
from BDT” on page 2-63.)

Interest Rate Environment

2-3

Interest Rate Environment
The interest rate term structure is the representation of the evolution of interest
rates through time. In MATLAB, the interest rate environment is
encapsulated in a structure called RateSpec (rate specification). This structure
holds all information needed to identify completely the evolution of interest
rates. Several functions included in the Financial Derivatives Toolbox are
dedicated to the creation and management of the RateSpec structure. Many
others take this structure as an input argument representing the evolution of
interest rates.

Before looking further at the RateSpec structure, examine three functions that
provide key functionality for working with interest rates: disc2rate, its
opposite, rate2disc, and ratetimes. The first two functions map between
discount rates and interest rates. The third function, ratetimes, calculates the
effect of term changes on the interest rates.

Interest Rates vs. Discount Factors
Discount factors are coefficients commonly used to find the present value of
future cash flows. As such, there is a direct mapping between the rate
applicable to a period of time, and the corresponding discount factor. The
function disc2rate converts discount rates for a given term (period) into
interest rates. The function rate2disc does the opposite; it converts interest
rates applicable to a given term (period) into the corresponding discount rates.

Calculating Discount Factors from Rates
As an example, consider these annualized zero coupon bond rates.

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

2 Using Financial Derivatives

2-4

To calculate the discount factors corresponding to these interest rates, call
rate2disc using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)

where:

• Compounding represents the frequency at which the zero rates are
compounded when annualized. For this example, assume this value to be 2.

• Rates is a vector of annualized percentage rates representing the interest
rate applicable to each time interval.

• EndDates is a vector of dates representing the end of each interest rate term
(period).

• StartDates is a vector of dates representing the beginning of each interest
rate term.

• ValuationDate is the date of observation for which the discount factors are
calculated. In this particular example, use February 15, 2000 as the
beginning date for all interest rate terms.

Set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];
Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)

Disc =

 0.9756
 0.9463
 0.9151
 0.8799
 0.8319

Interest Rate Environment

2-5

By adding a fourth column to the above rates table to include the corresponding
discounts, you can see the evolution of the discount rates.

Optional Time Factor Outputs
The function rate2disc optionally returns two additional output arguments:
EndTimes and StartTimes. These vectors of time factors represent the start
dates and end dates in discount periodic units. The scale of these units is
determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the
previous example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...
EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times =

 0 1
 0 2
 0 3
 0 4

0 5

Because the valuation date is equal to the start date for all periods, the
StartTimes vector is composed of zeros. Also, since the value of Compounding is
2, the rates are compounded semiannually, which sets the units of periodic
discount to six months. The vector EndDates is composed of dates separated by

From To Rate Discount

15 Feb 2000 15 Aug 2000 0.05 0.9756

15 Feb 2000 15 Feb 2001 0.056 0.9463

15 Feb 2000 15 Aug 2001 0.06 0.9151

15 Feb 2000 15 Feb 2002 0.065 0.8799

15 Feb 2000 15 Aug 2002 0.075 0.8319

2 Using Financial Derivatives

2-6

intervals of six months from the valuation date. This explains why the
EndTimes vector is a progression of integers from one to five.

Alternative Syntax (rate2disc)
The function rate2disc also accommodates an alternative syntax that uses
periodic discount units instead of dates. Since the relationship between
discount factors and interest rates is based on time periods and not on absolute
dates, this form of rate2disc allows you to work directly with time periods. In
this mode, the valuation date corresponds to zero, and the vectors StartTimes
and EndTimes are used as input arguments instead of their date equivalents,
StartDates and EndDates. This syntax for rate2disc is

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously, you
should obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =

 0.9756
 0.9463
 0.9151
 0.8799
 0.8319

Calculating Rates from Discounts
The function disc2rate is the complement to rate2disc. It finds the rates
applicable to a set of compounding periods, given the discount factor in those
periods. The syntax for calling this function is

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)

Each argument to this function has the same meaning as in rate2disc. Use the
results found in the previous example to return the rate values you started
with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,...
ValuationDate)

Interest Rate Environment

2-7

Rates =

 0.0500
 0.0560
 0.0600
 0.0650
 0.0750

Alternative Syntax (disc2rate)
As in the case of rate2disc, disc2rate optionally returns StartTimes and
EndTimes vectors representing the start and end times measured in discount
periodic units. Again, working with the same values as before, you should
obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,...
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

Result = [StartTimes, EndTimes, Rates]

Result =

 0 1.0000 0.0500
 0 2.0000 0.0560
 0 3.0000 0.0600
 0 4.0000 0.0650
 0 5.0000 0.0750

As with rate2disc, the relationship between rates and discount factors is
determined by time periods and not by absolute dates. Consequently, the
alternate syntax for disc2rate uses time vectors instead of dates, and it
assumes that the valuation date corresponds to time = 0. The times-based
calling syntax is

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, we again obtain the original values for the interest rates.

2 Using Financial Derivatives

2-8

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates =

 0.0500
 0.0560
 0.0600
 0.0650
 0.0750

Interest Rate Term Conversions
Interest rate evolution is typically represented by a set of interest rates,
including the beginning and end of the periods the rates apply to. For zero
rates, the start dates are typically at the valuation date, with the rates
extending from that valuation date until their respective maturity dates.

Calculating Rates Applicable to Different Periods
Frequently, given a set of rates including their start and end dates, you may be
interested in finding the rates applicable to different terms (periods). This
problem is addressed by the function ratetimes. This function interpolates the
interest rates given a change in the original terms. The syntax for calling
ratetimes is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:

• Compounding represents the frequency at which the zero rates are
compounded when annualized.

• RefRates is a vector of initial interest rates representing the interest rates
applicable to the initial time intervals.

• RefEndDates is a vector of dates representing the end of the interest rate
terms (period) applicable to RefRates.

• RefStartDates is a vector of dates representing the beginning of the interest
rate terms applicable to RefRates.

• EndDates represent the maturity dates for which the interest rates are
interpolated.

Interest Rate Environment

2-9

• StartDates represent the starting dates for which the interest rates are
interpolated.

• ValuationDate is the date of observation, from which the StartTimes and
EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

• The initial or reference interest rates, including the terms for which they are
valid

• Terms for which the new interest rates are calculated

As an example, consider the rate table specified earlier.

Assuming that the valuation date is February 15, 2000, these rates represent
zero coupon bond rates with maturities specified in the second column. Use the
function ratetimes to calculate the spot rates at the beginning of all periods
implied in the table. Assume a compounding value of 2.

% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';...
'15-Aug-2001'; '15-Feb-2002'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

2 Using Financial Derivatives

2-10

% Find the new rates.
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, ...
RefRates, RefEndDates, RefStartDates, EndDates, StartDates,...
ValuationDate);

Rates =

 0.0500
 0.0620
 0.0680
 0.0801
 0.1155

Place these values in a table similar to the one above. Observe the evolution of
the spot rates based on the initial zero coupon rates.

Alternative Syntax (ratetimes)
The additional output arguments StartTimes and EndTimes represent the time
factor equivalents to the StartDates and EndDates vectors. As with the
functions disc2rate and rate2disc, ratetimes uses time factors for
interpolating the rates. These time factors are calculated from the start and
end dates, and the valuation date, which are passed as input arguments.
ratetimes also has an alternate syntax that uses time factors directly, and
assumes time = 0 as the valuation date. This alternate syntax is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the spot rates again. In this
case, you must first find the time factors of the reference curve. Use date2time
for this.

From To Rate

15 Feb 2000 15 Aug 2000 0.0500

15 Aug 2000 15 Feb 2001 0.0620

15 Feb 2001 15 Aug 2001 0.0680

15 Aug 2001 15 Feb 2002 0.0801

15 Feb 2002 15 Aug 2002 0.1155

Interest Rate Environment

2-11

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

 1
 2
 3
 4
 5

RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)

RefStartTimes =

 0

These are the expected values, given semiannual discounts (as denoted by a
value of 2 in the variable Compounding), end dates separated by six-month
periods, and the valuation date equal to the date marking beginning of the first
period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Rates =

 0.0500
 0.0620
 0.0680
 0.0801
 0.1155

EndTimes and StartTimes have, as expected, the same values they had as input
arguments.

2 Using Financial Derivatives

2-12

Times = [StartTimes, EndTimes]

Times =

 0 1
 1 2
 2 3
 3 4

4 5

Interest Rate Term Structure
The Financial Derivatives Toolbox includes a set of functions to encapsulate
interest rate term information into a single structure. These functions present
a convenient way to package all information related to interest rate terms into
a common format, and to resolve interdependencies when one or more of the
parameters is modified. For information, see:

• “Creation or Modification (intenvset)” on page 2-12 for a discussion of how to
create or modify an interest rate term structure (RateSpec) using the
intenvset function.

• “Obtaining Specific Properties (intenvget)” on page 2-14 for a discussion of
how to extract specific properties from a RateSpec.

Creation or Modification (intenvset)
The main function to create or modify an interest rate term structure RateSpec
(rates specification) is intenvset. If the first argument to this function is a
previously created RateSpec, the function modifies the existing rate
specification and returns a new one. Otherwise, it creates a new RateSpec. The
other intenvset arguments are property-value pairs, indicating the new value
for these properties. The properties that can be specified or modified are:

• Compounding
• Disc
• Rates

Interest Rate Environment

2-13

• EndDates
• StartDates
• ValuationDate
• Basis
• EndMonthRule

To learn about the properties EndMonthRule and Basis, type
help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox
User's Guide.

Consider again the original table of interest rates.

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000';

'15-Feb-2001';
'15-Aug-2001';
'15-Feb-2002';
'15-Aug-2002'];

Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding,'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)

From To Rate

15 Feb 2000 15 Aug 2000 0.05

15 Feb 2000 15 Feb 2001 0.056

15 Feb 2000 15 Aug 2001 0.06

15 Feb 2000 15 Feb 2002 0.065

15 Feb 2000 15 Aug 2002 0.075

2 Using Financial Derivatives

2-14

rs =

FinObj:'RateSpec'
Compounding:2

Disc:[5x1 double]
Rates:[5x1 double]

EndTimes:[5x1 double]
StartTimes:[5x1 double]
EndDates:[5x1 double]

StartDates:730531
ValuationDate:730531

Basis: 0
EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the
call to RateSpec. The values of the automatically completed properties depend
upon the properties that are explicitly passed. Consider for example the
StartTimes and EndTimes vectors. Since the StartDates and EndDates vectors
are passed in, as well as the ValuationDate, intenvset has all the information
needed to calculate StartTimes and EndTimes. Hence, these two properties are
read only.

Obtaining Specific Properties (intenvget)
The complementary function to intenvset is intenvget. This function obtains
specific properties from the interest rate term structure. The syntax of this
function is

ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter

EndTimes = intenvget(rs, 'EndTimes')

EndTimes =

 1
 2
 3
 4
 5

Interest Rate Environment

2-15

To obtain Disc, the values for the discount factors that were calculated
automatically by intenvset, type

Disc = intenvget(rs, 'Disc')

Disc =

 0.9756
 0.9463
 0.9151
 0.8799
 0.8319

These discount factors correspond to the periods starting from StartDates and
ending in EndDates.

Note Although you can directly access these fields within the structure
instead of using intenvget, we strongly advise against this. The format of the
interest rate term structure could change in future versions of the toolbox.
Should that happen, any code accessing the RateSpec fields directly would
stop working.

Now use the RateSpec structure with its functions to examine how changes in
specific properties of the interest rate term structure affect those depending
upon it. As an exercise, change the value of Compounding from 2 (semiannual)
to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a
change in Compounding from 2 to 1 redefines the basic unit from semiannual to
annual. This means that a period of six months is represented with a value of
0.5, and a period of one year is represented by 1. To obtain the vectors
StartTimes and EndTimes, enter

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');

2 Using Financial Derivatives

2-16

Times = [StartTimes, EndTimes]

Times =

 0 0.5000
 0 1.0000
 0 1.5000
 0 2.0000

0 2.5000

Since all the values in StartDates are the same as the valuation date, all
StartTimes values are zero. On the other hand, the values in the EndDates
vector are dates separated by six-month periods. Since the redefined value of
compounding is 1, EndTimes becomes a sequence of numbers separated by
increments of 0.5.

Pricing and Sensitivity from Interest Rate Term Structure

2-17

Pricing and Sensitivity from Interest Rate Term Structure
The Financial Derivatives Toolbox contains a family of functions that finds the
price and sensitivities of several financial instruments based on interest rate
curves. For information, see:

• “Pricing” on page 2-18 for a discussion on using the intenvprice function to
price a portfolio of instruments based on a set of zero curves.

• “Sensitivity” on page 2-20 for a discussion on computing delta and gamma
sensitivities with the intenvsens function.

The instruments can be presented to the functions as a portfolio of different
types of instruments or as groups of instruments of the same type. The current
version of the toolbox can compute price and sensitivities for four instrument
types using interest rate curves:

• Bonds

• Fixed Rate Notes

• Floating Rate Notes

• Swaps

In addition to these instruments, the toolbox also supports the calculation of
price and sensitivities of arbitrary sets of cash flows.

Note that options and interest rates floors and caps are absent from the above
list of supported instruments. These instruments are not supported because
their pricing and sensitivity function require a stochastic model for the
evolution of interest rates. The interest rate term structure used for pricing is
treated as deterministic, and as such is not adequate for pricing these
instruments.

The Financial Derivatives Toolbox additionally contains functions that use the
Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to
compute prices and sensitivities for financial instruments. These models
support computations involving options and interest rate floors and caps. See
“Pricing and Sensitivity from HJM” on page 2-35 and “Pricing and Sensitivity
from BDT” on page 2-63 for information on computing price and sensitivities of
financial instruments using HJM and BDT models.

2 Using Financial Derivatives

2-18

Pricing
The main function used for pricing portfolios of instruments is intenvprice.
This function works with the family of functions that calculate the prices of
individual types of instruments. When called, intenvprice classifies the
portfolio contained in InstSet by instrument type, and calls the appropriate
pricing functions. The map between instrument types and the pricing function
intenvprice calls is

Each of these functions can be used individually to price an instrument.
Consult the reference pages for specific information on the use of these
functions.

intenvprice takes as input an interest rate term structure created with
intenvset, and a portfolio of interest rate contingent derivatives instruments
created with instadd. To learn more about instadd, see “Creating and
Managing Instrument Portfolios” on page 1-6, and to learn more about the
interest rate term structure see “Interest Rate Environment” on page 2-3.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

• RateSpec is the interest rate term structure.

• InstSet is the name of the portfolio.

Example: Pricing a Portfolio of Instruments
Consider this example of using the intenvprice function to price a portfolio of
instruments supplied with the Financial Derivatives Toolbox.

The provided MAT-file deriv.mat stores a portfolio as an instrument set
variable ZeroInstSet. The MAT-file also contains the interest rate term
structure ZeroRateSpec. You can display the instruments with the function
instdisp.

bondbyzero: Price bond by a set of zero curves

fixedbyzero: Price fixed rate note by a set of zero curves

floatbyzero: Price floating rate note by a set of zero curves

swapbyzero: Price swap by a set of zero curves

Pricing and Sensitivity from Interest Rate Term Structure

2-19

load deriv.mat;
instdisp(ZeroInstSet)

Index Type CouponRate Settle Maturity Period Basis...
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN...
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

Index Type CouponRate Settle Maturity FixedReset Basis...
3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN...

Index Type Spread Settle Maturity FloatReset Basis...
4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN...

Index Type LegRate Settle Maturity LegReset Basis...
5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN...

Use intenvprice to calculate the prices for the instruments contained in the
portfolio ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices =

98.72
 97.53
 98.72
 100.55
 3.69

The output Prices is a vector containing the prices of all the instruments in the
portfolio in the order indicated by the Index column displayed by instdisp.
Consequently, the first two elements in Prices correspond to the first two
bonds; the third element corresponds to the fixed rate note; the fourth to the
floating rate note; and the fifth element corresponds to the price of the swap.

2 Using Financial Derivatives

2-20

Sensitivity
The Financial Derivatives Toolbox can calculate two types of derivative price
sensitivities, namely delta and gamma. Delta represents the dollar sensitivity
of prices to shifts in the observed forward yield curve. Gamma represents the
dollar sensitivity of delta to shifts in the observed forward yield curve.

The intenvsens function computes instrument sensitivities as well as
instrument prices. If you need both the prices and sensitivity measures, use
intenvsens. A separate call to intenvprice is not required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

• RateSpec is the interest rate term structure.

• InstSet is the name of the portfolio.

Example: Sensitivities and Prices
Here is an example of using intenvsens to calculate both sensitivities and
prices.

format long
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);

Display the results in a single matrix in long format.

All = [Delta Gamma Price]

All =

 1.0e+003 *

-0.27264034403478 1.02984451401241 0.09871593902758
 -0.34743857788527 1.62265027222659 0.09753338552637
 -0.27264034403478 1.02984451401241 0.09871593902758
 -0.00104445683331 0.00330878190894 0.10055293001355
 -0.28204045553455 1.05962355119047 0.00369230914950

Pricing and Sensitivity from Interest Rate Term Structure

2-21

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =

 1.0e+002 *

-0.02761867503065 0.10432403562759 0.98715939027581
 -0.03562252822561 0.16636870169834 0.97533385526369
 -0.02761867503065 0.10432403562759 0.98715939027581
 -0.00010387134748 0.00032905872643 1.00552930013547
 -0.76385926561057 2.86981265188338 0.03692309149502

2 Using Financial Derivatives

2-22

Heath-Jarrow-Morton (HJM) Model
The Heath-Jarrow-Morton (HJM) model is one of the most widely used models
for pricing interest rate derivatives. The model considers a given initial term
structure of interest rates and a specification of the volatility of forward rates
to build a tree representing the evolution of the interest rates, based upon a
statistical process. For further explanation, see the book “Modelling Fixed
Income Securities and Interest Rate Options” by Robert A. Jarrow.

Building an HJM Forward Rate Tree
The HJM tree of forward rates is the fundamental unit representing the
evolution of interest rates in a given period of time. This section explains how
to create the HJM forward rate tree using the Financial Derivatives Toolbox.

The MATLAB function that creates the HJM forward rate tree is hjmtree. This
function takes three structures as input arguments:

• The volatility model VolSpec. (See “Specifying the Volatility Model
(VolSpec)” on page 2-23.)

• The interest rate term structure RateSpec. (See “Specifying the Interest
Rate Term Structure (RateSpec)” on page 2-25.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure
(TimeSpec)” on page 2-26.)

Creating the HJM Forward Rate Tree (hjmtree)
Calling the function hjmtree creates the structure, HJMTree, containing time
and forward rate information for a bushy tree.

This structure is a self-contained unit that includes the HJM tree of rates
(found in the FwdTree field of the structure), and the volatility, rate, and time
specifications used in building this tree.

The calling syntax for hjmtree is

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

Heath-Jarrow-Morton (HJM) Model

2-23

where:

• VolSpec is a structure that specifies the forward rate volatility process.
VolSpec is created using the function hjmvolspec. The hjmvolspec function
supports the specification of multiple factors. It handles five models for the
volatility of the interest rate term structure:

- Constant

- Stationary

- Exponential

- Vasicek

- Proportional

Incorporating multiple factors allows you to specify different types of shifts
in the shape and location of the interest rate structure. A one-factor model
assumes that the interest term structure is affected by a single source of
uncertainty.

• RateSpec is the interest rate specification of the initial rate curve. This
structure is created with the function intenvset. (See “Interest Rate Term
Structure” on page 2-12.)

• TimeSpec is the tree time layout specification. This variable is created with
the function hjmtimespec. It represents the mapping between level times
and level dates for rate quoting. This structure determines indirectly the
number of levels of the tree generated in the call to hjmtree.

Specifying the Volatility Model (VolSpec)
The function hjmvolspec generates the structure VolSpec, which specifies the
volatility process used in the creation of the forward rate trees. In this
context represents the starting time of the forward rate, and represents the
observation time. The volatility process can be constructed from a combination
of factors specified sequentially in the call to hjmvolspec. Each factor
specification starts with a string specifying the name of the factor, followed by
the pertinent parameters.

Consider an example that uses a single factor, specifically, a constant-sigma
factor. The constant factor specification requires only one parameter, the value
of . In this case, the value corresponds to 0.10.

σ t T,()
T t

σ

2 Using Financial Derivatives

2-24

VolSpec = hjmvolspec('Constant', 0.10)

VolSpec =

FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
FactorArgs: {{1x1 cell}}
SigmaShift: 0
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]

Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolsSpec.NumFactors = 1,
reveals that the number of factors used to generate VolSpec was one. The
FactorModels field indicates that it is a 'Constant' factor, and the
NumBranches field indicates the number of branches. As a consequence, each
node of the resulting tree has two branches, one going up, and the other going
down.

Consider now a two-factor volatility process made from a proportional factor
and an exponential factor.

% Exponential factor:
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1 ; 2 ; 3];
% Build VolSpec
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...
1e6,'Exponential', Sigma_0, Lambda)

Heath-Jarrow-Morton (HJM) Model

2-25

VolSpec =

FinObj: 'HJMVolSpec'
FactorModels: {'Proportional' 'Exponential'}

FactorArgs: {{1x3 cell} {1x2 cell}}
SigmaShift: 0
NumFactors: 2
NumBranch: 3
PBranch: [0.2500 0.2500 0.5000]

Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two
factors. The tree has three branches per node. Each branch has probabilities of
0.25, 0.25, and 0.5, going from top to bottom.

Specifying the Interest Rate Term Structure (RateSpec)
The structure RateSpec is an interest term structure that defines the initial
forward rate specification from which the tree rates are derived. The section
“Interest Rate Term Structure” on page 2-12 explains how to create these
structures using the function intenvset, given the interest rates, the starting
and ending dates for each rate, and the compounding value.

Consider the example

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';

'01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003'];

EndDates = ['01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003';
'01-Jan-2004'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)

2 Using Financial Derivatives

2-26

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

 EndTimes: [4x1 double]
 StartTimes: [4x1 double]
 EndDates: [4x1 double]

 StartDates: [4x1 double]
 ValuationDate: 730486

 Basis: 0
 EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable
RateSpec. For example

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for an HJM tree. This
structure defines the mapping between the observation times at each level of
the tree and the corresponding dates.

TimeSpec is built using the function hjmtimespec. The hjmtimespec function
requires three input arguments:

• The valuation date ValuationDate

• The maturity date Maturity

• The compounding rate Compounding

The syntax used for calling hjmtimespec is

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.

• Maturity is a vector of dates representing the cash flow dates of the tree. Any
instrument cash flows with these maturities fall on tree nodes.

Heath-Jarrow-Morton (HJM) Model

2-27

• Compounding is the frequency at which the rates are compounded when
annualized.

Calling hjmtimespec with the same data used to create the interest rate term
structure, RateSpec builds the structure that specifies the time layout for the
tree.

Maturity = EndDates;
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'HJMTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

Note that the maturities specified when building TimeSpec do not have to
coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec
defines the time-date mapping of the HJM tree, the rates in RateSpec are
interpolated to obtain the initial rates with maturities equal to those found in
TimeSpec.

Example: Creating an HJM Tree
Use the VolSpec, RateSpec, and TimeSpec you have created as input to the
HJMTree function to create an HJM tree.

% Reset the volatility factor to the Constant case
VolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree =

FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [0 1 2 3]

2 Using Financial Derivatives

2-28

TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Using HJM Trees in MATLAB
When working with the HJM model, the Financial Derivatives Toolbox uses
trees to represent forward rates, prices, etc. At the highest level, these trees
have structures wrapped around them. The structures encapsulate
information needed to interpret completely the information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the
MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

Name Size Bytes Class

BDTInstSet 1x1 22708 struct array
BDTTree 1x1 5522 struct array
HJMInstSet 1x1 22700 struct array
HJMTree 1x1 6318 struct array
ZeroInstSet 1x1 14442 struct array
ZeroRateSpec 1x1 1580 struct array

Structure of an HJM Tree
You can now examine in some detail the contents of the HJMTree structure.

HJMTree

HJMTree =

FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

Heath-Jarrow-Morton (HJM) Model

2-29

tObs: [0 1 2 3]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward rate tree. It is represented in MATLAB as
a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec,
which contain the volatility, time structure, and rate structure information
respectively.

First Node. Observe the forward rates in FwdTree. The first node represents the
valuation date, tObs = 0.

HJMTree.FwdTree{1}

ans =

1.0356
1.0468
1.0523
1.0563

Note The Financial Derivatives Toolbox uses inverse discount notation for
forward rates in the tree. An inverse discount represents a factor by which the
present value of an asset is multiplied to find its future value. In general,
these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see where
these values originate. Arrange the values in a single array.

[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]

2 Using Financial Derivatives

2-30

ans =

0 1.0000 0.0356
 1.0000 2.0000 0.0468
 2.0000 3.0000 0.0523
 3.0000 4.0000 0.0563

If you find the corresponding inverse discounts of the interest rates in the third
column, you have the values at the first node of the tree. You can turn interest
rates into inverse discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc

FRates =
1.0356

 1.0468
 1.0523
 1.0563

Second Node. The second node represents the first rate observation time, tObs
= 1. This node displays two states: one representing the branch going up and
the other representing the branch going down.

Note that HJMTree.VolSpec.NumBranch = 2.

HJMTree.VolSpec

ans =

 FinObj: 'HJMVolSpec'
 FactorModels: {'Constant'}
 FactorArgs: {{1x1 cell}}
 SigmaShift: 0
 NumFactors: 1
 NumBranch: 2
 PBranch: [0.5000 0.5000]
 Fact2Branch: [-1 1]

Heath-Jarrow-Morton (HJM) Model

2-31

Examine the rates of the node corresponding to the up branch.

HJMTree.FwdTree{2}(:,:,1)

ans =

1.0364
 1.0420
 1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans =

1.0574
 1.0631
 1.0672

Third Node. The third node represents the second observation time, tObs = 2.
This node contains a total of four states, two representing the branches going
up and the other two representing the branches going down.

Examine the rates of the node corresponding to the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

1.0317 1.0526
 1.0358 1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans =

1.0526 1.0738
 1.0568 1.0781

2 Using Financial Derivatives

2-32

Isolating a Specific Node. Starting at the third level, indexing within the tree cell
array becomes complex, and isolating a specific node can be difficult. The
function bushpath isolates a specific node by specifying the path to the node as
a vector of branches taken to reach that node. As an example, consider the node
reached by starting from the root node, taking the branch up, then the branch
down, and then another branch down. Given that the tree has only two
branches per node, branches going up correspond to a 1, and branches going
down correspond to a 2. The path up-down-down becomes the vector [1 2 2].

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
 1.0364
 1.0526
 1.0674

bushpath returns the spot rates for all the nodes touched by the path specified
in the input argument, the first one corresponding to the root node, and the last
one corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

ans =

 1.0674

As expected, this single value corresponds to the last element of the rates
returned by bushpath.

You can use these techniques with any type of tree generated with the
Financial Derivatives Toolbox, such as forward rate trees or price trees.

Graphical View of Forward Rate Tree
The function treeviewer provides a graphical view of the path of forward rates
specified in HJMTree. For example, here is a treeviewer representation of the
rates along both the up and the down branches of HJMTree.

Heath-Jarrow-Morton (HJM) Model

2-33

treeviewer(HJMTree)

A previous example used bushpath to find the path of forward rates taking the
first branch up and then two branches down the rate tree.

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

1.0356
 1.0364
 1.0526
 1.0674

The treeviewer function displays the same information obtained by clicking
along the sequence of nodes, as shown next.

2 Using Financial Derivatives

2-34

Note If you are not familiar with the use of treeviewer, see the treeviewer
reference page for complete instructions on its use.

Pricing and Sensitivity from HJM

2-35

Pricing and Sensitivity from HJM
This section explains how to use the Financial Derivatives Toolbox to compute
prices and sensitivities of several financial instruments using the
Heath-Jarrow-Morton (HJM) model. For information, see:

• “Pricing and the Price Tree” on page 2-35 for a discussion of using the
hjmprice function to compute prices for a portfolio of instruments.

• “Calculating Prices and Sensitivities” on page 2-50 for a discussion of using
the hjmsens function to compute delta, gamma, and vega portfolio
sensitivities.

Pricing and the Price Tree
For the HJM model, the function hjmprice calculates the price of any set of
supported instruments, based on an interest rate tree. The function is capable
of pricing these instrument types:

• Bonds

• Bond options

• Arbitrary cash flows

• Fixed-rate notes

• Floating-rate notes

• Caps

• Floors

• Swaps

The syntax used for calling hjmprice is

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

This function requires two input arguments: the interest rate tree, HJMTree,
and the set of instruments, InstSet. An optional argument Options further
controls the pricing and the output displayed.

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward rate process,
created using hjmtree. See “Building an HJM Forward Rate Tree” on page 2-22
to learn how to create this structure.

2 Using Financial Derivatives

2-36

InstSet is the set of instruments to be priced. This structure represents the set
of instruments to be priced independently using the HJM model. The section
“Creating and Managing Instrument Portfolios” on page 1-6 explains how to
create this variable.

Options is an options structure created with the function derivset. This
structure defines how the HJM tree is used to find the price of instruments in
the portfolio, and how much additional information is displayed in the
command window when calling the pricing function. If this input argument is
not specified in the call to hjmprice, a default Options structure is used.

hjmprice classifies the instruments and calls the appropriate pricing function
for each one of the instrument types. The pricing functions are bondbyhjm,
cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, and swapbyhjm. You can also
use these functions directly to calculate the price of sets of instruments of the
same type. See the documentation for these individual functions for further
information.

Example: HJM Pricing
Consider the following example, which uses the portfolio and interest rate data
in the MAT-file deriv.mat included in the toolbox. Load the data into the
MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from
the MAT-file.

whos

Name Size Bytes Class

BDTInstSet 1x1 22708 struct array
 BDTTree 1x1 5522 struct array
 HJMInstSet 1x1 22700 struct array
 HJMTree 1x1 6318 struct array
 ZeroInstSet 1x1 14442 struct array
 ZeroRateSpec 1x1 1580 struct array

HJMTree and HJMInstSet are the input arguments needed to call the function
hjmprice.

Pricing and Sensitivity from HJM

2-37

Use the function instdisp to examine the set of instruments contained in the
variable HJMInstSet.

instdisp(HJMInstSet)

Note that there are eight instruments in this portfolio set: two bonds, one bond
option, one fixed rate note, one floating rate note, one cap, one floor, and one
swap. Each instrument has a corresponding index that identifies the
instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument
set.

Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

98.7159
 97.5280
 0.0486
 98.7159

Index Type CouponRate Settle Maturity Period Basis Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN......... 4% bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN......... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity
3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

2 Using Financial Derivatives

2-38

 100.5529
 6.2831
 0.0486
 3.6923

Note The warning shown above appears because some of the cash flows for
the second bond do not fall exactly on a tree node. This situation is discussed
further in “HJM Pricing Options Structure” on page 2-44.

Price Vector
The prices in the output vector Price correspond to the prices at observation
time zero (tObs = 0), which is defined as the valuation date of the interest
rate tree. The instrument indexing within Price is the same as the indexing
within InstSet. In this example, the prices in the Price vector correspond to
the instruments in the following order.

InstNames = instget(HJMInstSet, 'FieldName','Name')

InstNames =

4% bond
4% bond
Option 101
4% Fixed
20BP Float
3% Cap
3% Floor
6%/20BP Swap

Consequently, in the Price vector, the fourth element, 98.7159, represents the
price of the fourth instrument (4% fixed-rate note); the sixth element, 6.2831,
represents the price of the sixth instrument (3% cap).

Price Tree Structure
If you call the hjmprice function with two output arguments, e.g.,

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)

you generate a price tree along with the price information.

Pricing and Sensitivity from HJM

2-39

The optional output price tree structure PriceTree holds all the pricing
information. The first field of this structure, FinObj, indicates that this
structure represents a price tree. The second field, PBush is the tree holding the
price of the instruments in each node of the tree. The third field, AIBush is the
tree holding the accrued interest of the instruments in each node of the tree.
Finally, the fourth field, tObs, represents the observation time of each level of
PBush and AIBush, with units in terms of compounding periods.

In this example the price tree looks like

PriceTree =

FinObj: 'HJMPriceTree'
PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}

AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
tObs: [0 1 2 3 4]

Both PBush and AIBush are actually 1-by-5 cell arrays, consistent with the five
observation times of tObs. The data display has been shortened here to fit on a
single line.

Using the command line interface, you can directly examine PriceTree.PBush,
the field within the PriceTree structure that contains the price tree with the
price vectors at every state. The first node represents tObs = 0, corresponding
to the valuation date.

PriceTree.PBush{1}

ans =

98.7159
 97.5280
 0.0486
 98.7159
 100.5529
 6.2831
 0.0486
 3.6923

With this interface you can observe the prices for all instruments in the
portfolio at a specific time.

2 Using Financial Derivatives

2-40

Using treeviewer to View Instrument Prices Through
Time
You can use the function treeviewer to display a graphical representation of
the tree, allowing you to examine interactively the prices on the nodes of the
tree until maturity. With treeviewer you select each instrument individually
in the instrument portfolio for display. For example, the command

treeviewer(PriceTree, HJMInstSet)

with the 4% bond instrument selected in the Instrument window shows prices
for this bond instrument along the price tree from the valuation date until
maturity.

Example: Valuation Date Prices
You can use treeviewer instrument-by-instrument to observe instrument
prices through time. For the first 4% bond in the instrument portfolio,
treeviewer indicates a valuation date price of 98.72, the same value obtained
by accessing the PriceTree structure directly.

Pricing and Sensitivity from HJM

2-41

As a further example, look at the sixth instrument in the price vector, the 3%
cap. At the valuation date its value obtained directly from the structure is
6.2831. Use treeviewer on this instrument to confirm this price.

2 Using Financial Derivatives

2-42

Example: Additional Observation Times
The second node represents the first rate observation time, tObs = 1. This node
displays two states, one representing the branch going up and the other one
representing the branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)

ans =

100.1563
 99.7309
 0.1007
 100.1563
 100.3782
 3.2594
 0.1007
 3.5597

Pricing and Sensitivity from HJM

2-43

As before, you can use treeviewer, this time to examine the price for the 4%
bond on the up branch. treeviewer displays a price of 100.2 for the first node
of the up branch, as expected.

Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)

ans =

96.3041
 94.1986
 0
 96.3041
 100.3671
 8.6342
 0
 -0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the
down branch. The displayed price of 96.3 conforms to the price obtained from

2 Using Financial Derivatives

2-44

direct access of the PriceTree structure. You may continue this process as far
along the price tree as you want.

HJM Pricing Options Structure
The MATLAB structure Options provides additional input to each pricing
function. The Options structure

• Tells pricing functions how to use the interest rate tree to calculate
instrument prices

• Determines what additional information the command window displays
along with instrument prices.

You provide pricing options in an optional Options argument passed to each
pricing function. (See, for example, bondbyhjm or hjmprice.)

Default Structure
If you do not specify the Options argument in the call to a pricing function, the
function uses a default structure. To observe the default structure, use
derivset without any arguments.

Pricing and Sensitivity from HJM

2-45

Options = derivset

Options =

 Diagnostics: 'off'
 Warnings: 'on'
 ConstRate: 'on'

The Options structure has three fields: Diagnostics, Warnings, and
ConstRate.

Diagnostics indicates whether additional information is displayed if the HJM
tree is modified. The default value for this option is 'off'. If Diagnostics is
set to 'on' and ConstRate is set to 'off', the pricing functions display
information such as the number of nodes in the last level of the HJM tree
generated for pricing purposes.

Warnings indicates whether to display warning messages when the input tree
is not adequate for accurately pricing the instruments. The default value for
this option is 'on'. If both ConstRate and Warnings are 'on', a warning is
displayed if any of the instruments in the input portfolio has a cash flow date
between tree dates. If ConstRate is 'off', and Warnings is 'on', a warning is
displayed if the tree is modified to match the cash flow dates on the
instruments in the portfolio.

ConstRate indicates whether the interest rates should be assumed constant
between tree dates. By default this option is 'on', which is not an
arbitrage-free assumption. Consequently the pricing functions return an
approximate price for instruments featuring cash flows between tree dates.
Instruments featuring cash flows only on tree nodes are not affected by this
option and return exact (arbitrage-free) prices. When ConstRate is 'off', the
HJM pricing function finds the cash flow dates for all instruments in the
portfolio. If these cash flows do not align exactly with the tree dates, a new tree
is generated and used for pricing. This new tree features the same volatility
and initial rate specifications of the input HJM tree but contains tree nodes for
each date in which at least one instrument in the portfolio has a cash flow.
Keep in mind that the number of nodes in an HJM tree grows exponentially
with the number of tree dates. Consequently, setting ConstRate 'off'
dramatically increases the memory and CPU demands on the computer.

2 Using Financial Derivatives

2-46

Customizing the Structure
Customize the Options structure by passing property name/property value
pairs to the derivset function.

As an example, consider an Options structure with ConstRate 'off' and
Diagonistics 'on'.

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

Options =

Diagnostics: 'on'
Warnings: 'on'
ConstRate: 'off'

To obtain the value of a specific property from the Options structure, use
derivget.

CR = derivget(Options, 'ConstRate')

CR =
Off

Note Use derivset and derivget to construct the Options structure. These
functions are guaranteed to remain unchanged, while the implementation of
the structure itself may be modified in the future.

Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from
the HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate;...
HJMTree.TimeSpec.Maturity]

TreeDates =

730486
730852
731217
731582
731947

Pricing and Sensitivity from HJM

2-47

datedisp(TreeDates)

01-Jan-2000
01-Jan-2001
01-Jan-2002
01-Jan-2003
01-Jan-2004

All instruments in HJMInstSet settle on Jan 1st, 2000, and all have cash flows
once a year, with the exception of the second bond, which features a period of
2. This bond has cash flows twice a year, with every other cash flow
consequently falling between tree dates. You can extract this bond from the
portfolio to compare how its price differs by setting ConstRate to 'on' and
'off'.

BondPort = instselect(HJMInstSet, 'Index', 2);

instdisp(BondPort)

Index Type CouponRate Settle Maturity Period Basis...
1 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN...

First price the bond with ConstRate 'on' (default).

format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

BondPrice =

97.52801411736377

BondPriceTree =
FinObj: 'HJMPriceTree'
PBush: {1x5 cell}

AIBush: {[0] [1x1x2 double] ... [1x4x2 double] [1x8 double]}
tObs: [0 1 2 3 4]

Now recalculate the price of the bond setting ConstRate 'off'.

2 Using Financial Derivatives

2-48

OptionsNoCR = derivset('ConstR', 'off')

OptionsNoCR =

Diagnostics: 'off'
Warnings: 'on'
ConstRate: 'off'

[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,...
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding
tree.

BondPriceNoCR =

97.53342361674437

BondPriceTreeNoCR =

FinObj: 'HJMPriceTree'
PBush: {1x9 cell}
AIBush: {1x9 cell}
tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

As indicated in the last warning, because the cash flows of the bond did not
align with the tree dates, a new tree was generated for pricing the bond. This
pricing method returns more accurate results since it guarantees that the
process is arbitrage-free. It also takes longer to calculate and requires more
memory. The tObs field of the price tree structure indicates the increased
memory usage. BondPriceTree.tObs has only five elements, while
BondPriceTreeNoCR.tObs has nine. While this may not seem like a large
difference, it has a dramatic effect on the number of states in the last node.

size(BondPriceTree.PBush{end})

ans =

1 8

size(BondPriceTreeNoCR.PBush{end})

Pricing and Sensitivity from HJM

2-49

ans =

1 128

The differences become more obvious by examining the price trees with
treeviewer.

treeviewer(BondPriceTree, BondPort)

2 Using Financial Derivatives

2-50

treeviewer(BondPriceTreeNoCR, BondPort)

Calculating Prices and Sensitivities
The function hjmsens computes the delta, gamma, and vega sensitivities of
instruments using an interest rate tree created with hjmtree. It also optionally
returns the calculated price for each instrument. hjmsens requires the same
two input arguments used by hjmprice, namely HJMTree and HJMInstSet.

hjmsens calculates the dollar value of delta and gamma by shifting the
observed forward yield curve by 100 basis points in each direction, and the
dollar value of vega by shifting the volatility process by 1%. To obtain the
per-dollar value of the sensitivities, divide the dollar sensitivity by the price of
the corresponding instrument.

The calling syntax for the function is

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Pricing and Sensitivity from HJM

2-51

Use the previous example data to calculate the price of instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second
bond do not fall exactly on a tree node. This situation was discussed in “HJM
Pricing Options Structure” on page 2-44.

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

-272.65 1029.90 0.00 98.72
 -347.43 1622.69 -0.04 97.53
 -8.08 643.40 34.07 0.05
 -272.65 1029.90 0.00 98.72
 -1.04 3.31 0 100.55
 294.97 6852.56 93.69 6.28
 -47.16 8459.99 93.69 0.05
 -282.05 1059.68 0.00 3.69

As with the prices, each row of the sensitivity vectors corresponds to the
similarly indexed instrument in HJMInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

2 Using Financial Derivatives

2-52

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

-2.76 10.43 0.00 98.72
 -3.56 16.64 -0.00 97.53
 -166.18 13235.59 700.96 0.05
 -2.76 10.43 0.00 98.72
 -0.01 0.03 0 100.55
 46.95 1090.63 14.91 6.28
 -969.85 173969.77 1926.72 0.05
 -76.39 287.00 0.00 3.690

Black-Derman-Toy Model (BDT)

2-53

Black-Derman-Toy Model (BDT)
The Black-Derman-Toy (BDT) model is an analytical model used for pricing
interest rate derivatives. The model considers a given initial zero rate term
structure of interest rates and a specification of the yield volatilities of long
rates to build a tree representing the evolution of the interest rates. For further
explanation, see the paper “A One Factor Model of Interest Rates and its
Application to Treasury Bond Options” by Fischer Black, Emanuel Derman,
and William Toy.

Building a BDT Interest Rate Tree
The BDT interest rate tree represents the evolution of interest rates in a given
period of time. This section explains how to create the BDT interest rate tree
using the Financial Derivatives Toolbox.

The MATLAB function that creates the BDT interest rate tree is bdttree. This
function takes three structures as input arguments:

• The volatility model VolSpec. (See “Specifying the Volatility (VolSpec)” on
page 2-54.)

• The interest rate term structure RateSpec. (See “Specifying the Interest
Rate Term Structure (RateSpec)” on page 2-55.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure
(TimeSpec)” on page 2-56.)

Creating the BDT Interest Rate Tree (bdttree)
Calling the function bdttree creates the structure, BDTTree, containing time
and interest rate information of the recombining tree.

This structure is a self-contained unit that includes the BDT tree of rates
(found in the FwdTree field), and the volatility, rate, and time specifications
used in building this tree.

The calling syntax for bdttree is

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

where:

• VolSpec is a structure that specifies the interest rate volatility process.
VolSpec is created using the function bdtvolspec.

2 Using Financial Derivatives

2-54

• RateSpec is the interest rate specification of the initial rate curve. This
structure is created with the function intenvset. (See “Interest Rate Term
Structure” on page 2-12.)

• TimeSpec is the tree time layout specification. This variable is created with
the function bdttimespec. It represents the mapping between level times
and level dates for rate quoting. This structure determines indirectly the
number of levels of the tree generated in the call to bdttree.

Specifying the Volatility (VolSpec)
The function bdtvolspec generates the structure VolSpec, which specifies the
volatility process. The function requires three input arguments:

• The valuation date ValuationDate

• The yield volatility end dates VolDates

• The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation
method, can be included.

The syntax used for calling bdtvolspec is

VolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)

where:

• ValuationDate is the first observation date in the tree.

• VolDates is a vector of dates representing yield volatility end dates.

• VolCurve is a vector of yield volatility values.

• InterpMethod is the method of interpolation to use. The default is 'linear'.

Consider the example

ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation
method is explicitly specified, the function uses the 'linear' default.

Black-Derman-Toy Model (BDT)

2-55

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec =
 FinObj: 'BDTVolSpec'
 ValuationDate: 730486
 VolDates: [5x1 double]
 VolCurve: [5x1 double]
 VolInterpMethod: 'linear'

Specifying the Interest Rate Term Structure (RateSpec)
The structure RateSpec is an interest term structure that defines the initial
interest rate specification from which the tree rates are derived. The section
“Interest Rate Term Structure” on page 2-12 explains how to create these
structures using the function intenvset, given the interest rates, the starting
and ending dates for each rate, and the compounding value.

Consider the example

Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';

'01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003'];

EndDates = ['01-Jan-2001';
'01-Jan-2002';
'01-Jan-2003';
'01-Jan-2004'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1

Disc: [4x1 double]
Rates: [4x1 double]

2 Using Financial Derivatives

2-56

 EndTimes: [4x1 double]
 StartTimes: [4x1 double]
 EndDates: [4x1 double]

 StartDates: [4x1 double]
 ValuationDate: 730486

 Basis: 0
 EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable
RateSpec. For example,

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for a BDT tree. This
structure defines the mapping between the observation times at each level of
the tree and the corresponding dates.

TimeSpec is built using the function bdttimespec. The bdttimespec function
requires three input arguments:

• The valuation date ValuationDate

• The maturity date Maturity

• The compounding rate Compounding

The syntax used for calling bdttimespec is

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.

• Maturity is a vector of dates representing the cash flow dates of the tree. Any
instrument cash flows with these maturities fall on tree nodes.

• Compounding is the frequency at which the rates are compounded when
annualized.

Calling bdttimespec with the same data used to create the interest rate term
structure, RateSpec builds the structure that specifies the time layout for the
tree.

Black-Derman-Toy Model (BDT)

2-57

Maturity = EndDates;
TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'BDTTimeSpec'
ValuationDate: 730486

Maturity: [4x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

Note that the maturities specified when building TimeSpec do not have to
coincide with the EndDates of the rate intervals in RateSpec. Since TimeSpec
defines the time-date mapping of the BDT tree, the rates in RateSpec are
interpolated to obtain the initial rates with maturities equal to those found in
TimeSpec.

Example: Creating a BDT Tree
Use the previously computed values for VolSpec, RateSpec, and TimeSpec as
input to the function bdttree to create a BDT Tree.

BDTTree = bdttree(BDTVolSpec, RateSpec, TimeSpec)

BDTTree =

FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]

TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]

tObs: [0 1.00 2.00 3.00]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3.00]}

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

2 Using Financial Derivatives

2-58

Using BDT Trees in MATLAB
When working with the BDT model, the Financial Derivatives Toolbox uses
trees to represent interest rates, prices, etc. At the highest level, these trees
contain several MATLAB structures. The structures encapsulate information
needed to interpret completely the information contained in a tree.

Because BDT trees are essentially MATLAB structures, you can examine their
contents manually, just as you can for HJM trees. Consider this example,
which uses the data in the MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

Name Size Bytes Class

BDTInstSet 1x1 22708 struct array
BDTTree 1x1 5522 struct array
HJMInstSet 1x1 22700 struct array
HJMTree 1x1 6318 struct array
ZeroInstSet 1x1 14442 struct array
ZeroRateSpec 1x1 1580 struct array

Structure of a BDT Tree
You can now examine in some detail the contents of the BDTTree structure.

BDTTree

BDTTree =

 FinObj: 'BDTFwdTree'
 VolSpec: [1x1 struct]
 TimeSpec: [1x1 struct]
 RateSpec: [1x1 struct]
 tObs: [0 1 2 3]
 TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
 CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
 FwdTree: {1x4 cell}

Black-Derman-Toy Model (BDT)

2-59

FwdTree contains the actual rate tree. It is represented in MATLAB as a cell
array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important of these are VolSpec, TimeSpec, and RateSpec,
which contain the volatility, rate structure, and time structure information
respectively.

Look at the RateSpec structure used in generating this tree to see where these
values originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes...
BDTTree.RateSpec.Rates]

ans =

 0 1.0000 0.1000
 0 2.0000 0.1100
 0 3.0000 0.1200
 0 4.0000 0.1250

Note The Financial Derivatives Toolbox uses inverse discount notation for
forward rates in the tree. An inverse discount represents a factor by which the
present value of an asset is multiplied to find its future value. In general,
these forward factors are reciprocals of the discount factors.

Look at the rates in FwdTree. The first node represents the valuation date,
tObs = 0. The second node represents tObs = 1. Examine the rates at the
second, third and fourth nodes.

BDTTree.FwdTree{2}

ans =

1.0979 1.1432

The second node represents the first observation time, tObs = 1. This node
contains a total of two states, one representing the branch going up (1.0979)
and the other representing the branch going down (1.1432).

2 Using Financial Derivatives

2-60

Note The convention in this document is to display prices going up on the
upper branch. Consequently, when displaying rates, rates are falling on the
upper branch and increasing on the lower.

BDTTree.FwdTree{3}

ans =

 1.0976 1.1377 1.1942

The third node represents the second observation time, tObs = 2. This node
contains a total of three states, one representing the branch going up (1.0976),
one representing the branch in the middle (1.1377) and the other representing
the branch going down (1.1942).

BDTTree.FwdTree{4}

ans =

 1.0872 1.1183 1.1606 1.2179

The fourth node represents the third observation time, tObs = 3. This node
contains a total of four states, one representing the branch going up (1.0872),
two representing the branches in the middle (1.1183 and 1.1606) and the other
representing the branch going down (1.2179).

Verifying Results with treepath
The function treepath isolates a specific node by specifying the path to the
node as a vector of branches taken to reach that node. As an example, consider
the node reached by starting from the root node, taking the branch up, then the
branch down, and finally another branch down. Given that the tree has only
two branches per node, branches going up correspond to a 1, and branches
going down correspond to a 2. The path up-down-down becomes the vector
[1 2 2].

Black-Derman-Toy Model (BDT)

2-61

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

 1.1000
 1.0979
 1.1377
 1.1606

treepath returns the short rates for all the nodes touched by the path specified
in the input argument, the first one corresponding to the root node, and the last
one corresponding to the target node.

Graphical View of Interest Rate Tree
The function treeviewer provides a graphical view of the path of interest rates
specified in BDTTree. For example, load the file deriv.mat. Here is a
treeviewer representation of the rates along several branches of BDTTree.

treeviewer(BDTTree)

2 Using Financial Derivatives

2-62

Note When using treeviewer with BDT trees, you must click on each node in
succession from the beginning to the end. Because BDT trees can recombine,
treeviewer is unable to compute the path automatically.

A previous example used treepath to find the path of interest rates taking the
first branch up and then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

 1.1000
 1.0979
 1.1377
 1.1606

The treeviewer function displays the same information obtained by clicking
along the sequence of nodes, as shown next.

Pricing and Sensitivity from BDT

2-63

Pricing and Sensitivity from BDT
This section explains how to use the Financial Derivatives Toolbox to compute
prices and sensitivities of several financial instruments using the
Black-Derman-Toy (BDT) model. For information, see:

• “Pricing and the Price Tree” on page 2-63 for a discussion of using the
bdtprice function to compute prices for a portfolio of instruments.

• “Calculating Prices and Sensitivities” on page 2-71 for a discussion of using
the bdtsens function to compute delta, gamma, and vega portfolio
sensitivities.

Pricing and the Price Tree
For the BDT model, the function bdtprice calculates the price of any set of
supported instruments, based on an interest rate tree. The function is capable
of pricing these instrument types:

• Bonds

• Bond options

• Arbitrary cash flows

• Fixed-rate notes

• Floating-rate notes

• Caps

• Floors

• Swaps

The syntax used for calling bdtprice is

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

This function requires two input arguments: the interest rate tree, BDTTree,
and the set of instruments, InstSet. An optional argument Options further
controls the pricing and the output displayed.

BDTTree is the Black-Derman-Toy tree sampling of an interest rate process,
created using bdttree. See “Building a BDT Interest Rate Tree” on page 2-53
to learn how to create this structure based on the volatility model, the interest
rate term structure, and the time layout.

2 Using Financial Derivatives

2-64

InstSet is the set of instruments to be priced. This structure represents the set
of instruments to be priced independently using the BDT model. The section
“Creating and Managing Instrument Portfolios” on page 1-6 explains how to
create this variable.

Options is an options structure created with the function derivset. This
structure defines how the BDT tree is used to find the price of instruments in
the portfolio, and how much additional information is displayed in the
command window when calling the pricing function. If this input argument is
not specified in the call to bdtprice, a default Options structure is used.

bdtprice classifies the instruments and calls appropriate pricing function for
each of the instrument types. The pricing functions are bondbybdt, cfbybdt,
fixedbybdt, floatbybdt, optbndbybdt, and swapbybdt. You can also use these
functions directly to calculate the price of sets of instruments of the same type.
See the documentation for these individual functions for further information.

BDT Pricing Example
Consider the following example, which uses the data in the MAT-file
deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from
the MAT-file.

whos

Name Size Bytes Class

BDTInstSet 1x1 22708 struct array
 BDTTree 1x1 5522 struct array
 HJMInstSet 1x1 22700 struct array
 HJMTree 1x1 6318 struct array
 ZeroInstSet 1x1 14442 struct array
 ZeroRateSpec 1x1 1580 struct array

BDTTree and BDTInstSet are the input arguments needed to call the function
bdtprice.

Use the function instdisp to examine the set of instruments contained in the
variable BDTInstSet.

Pricing and Sensitivity from BDT

2-65

instdisp(BDTInstSet)

Note that there are eight instruments in this portfolio set: two bonds, one bond
option, one fixed rate note, one floating rate note, one cap, one floor, and one
swap. Each instrument has a corresponding index that identifies the
instrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument
set.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

95.5030
 93.9079
 1.7657
 95.5030
 100.6054
 1.4863

Index Type CouponRate Settle Maturity Period Basis Name Quantity
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 NaN......... 10% bond 100
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 NaN......... 10% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity
3 OptBond 1 call 9501 Jan-2002 NaN Option 95 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.10 01-Jan-2000 01-Jan-2003 1 NaN NaN 10% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN 15% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.09 01-Jan-2000 01-Jan-2004 1 NaN NaN 9% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 15%/10BP Swap 10

2 Using Financial Derivatives

2-66

 0.0245
 7.3032

Note The warning shown above appears because some of the cash flows for
the second bond do not fall exactly on a tree node. This situation is discussed
in “HJM Pricing Options Structure” on page 2-44.

Price Vector
The prices in the vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the valuation date of the interest rate tree. The
instrument indexing within Price is the same as the indexing within InstSet.
In this example, the prices in the Price vector correspond to the instruments
in the following order.

InstNames = instget(BDTInstSet, 'FieldName','Name')

InstNames =

10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap
9% Floor
15%/10BP Swap

Consequently, in the Price vector, the fourth element, 95.5030, represents the
price of the fourth instrument (10% fixed-rate note); the sixth element, 1.4863,
represents the price of the sixth instrument (15% cap).

Price Tree Structure
The output price tree structure PriceTree holds all the pricing information.
The first field of this structure, FinObj, indicates that this structure represents
a price tree. The second field, PTree is the tree holding the price of the
instruments in each node of the tree. The third field, AITree is the tree holding
the accrued interest of the instruments in each node of the tree. The fourth

Pricing and Sensitivity from BDT

2-67

field, tObs, represents the observation time of each level of PTree and AITree,
with units in terms of compounding periods.

The function treeviewer provides a graphical representation of the tree,
allowing you to examine interactively the values on the nodes of the tree.

treeviewer(PriceTree, BDTInstSet)

Alternatively, you can directly examine the field within the PriceTree
structure, which contains the price tree with the price vectors at every state.
The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =

 95.5030
 93.9079
 1.7657
 95.5030
 100.6054

2 Using Financial Derivatives

2-68

 1.4863
 0.0245

7.3032

You can also use treeviewer instrument-by-instrument to observe instrument
prices. For the first 10% bond in the instrument portfolio, treeviewer indicates
a valuation date price of 95.5030, the same value obtained by accessing the
PriceTree structure directly.

The second node represents the first rate observation time, tObs = 1. This
node displays two states, one representing the branch going up and the other
one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

Pricing and Sensitivity from BDT

2-69

PriceTree.PTree{2}(:,1)

ans =

 98.7816
 97.9770
 3.1458
 98.7816
 101.9562
 0.5008
 0.0540

5.6282

As before, you can use treeviewer, this time to examine the price for the 10%
bond on the up branch. treeviewer displays a price of 98.7816 for the first
node of the up branch, as expected.

2 Using Financial Derivatives

2-70

Now examine the corresponding down branch.

PriceTree.PTree{2}(:,2)

ans =

 91.3250
 88.1322
 0.7387
 91.3250
 98.9758
 2.7691

0
0.6390

Use treeviewer once again, now to observe the price of the 10% bond on the
down branch. The displayed price of 91.3250 conforms to the price obtained
from direct access of the PriceTree structure. You may continue this process
as far along the price tree as you want.

Pricing and Sensitivity from BDT

2-71

BDT Pricing Options Structure
The BDT instrument pricing functions (e.g., bondbybdt, bdtprice) use the
same pricing options structure as their HJM counterparts. See the section
“HJM Pricing Options Structure” on page 2-44 for a discussion of pricing
options. You can obtain similar results from the examples in that section by
substituting BDT functions and arguments for the corresponding HJM
functions and arguments where required.

Calculating Prices and Sensitivities
The function bdtsens computes the delta, gamma, and vega sensitivities of
instruments using an interest rate tree created with bdttree. It also optionally
returns the calculated price for each instrument. bdtsens requires the same
two input arguments used by bdtprice, namely BDTTree and BDTInstSet.

bdtsens calculates the dollar value of delta and gamma by shifting the
observed forward yield curve by 100 basis points in each direction, and the
dollar value of vega by shifting the volatility process by 1%. To obtain the
per-dollar value of the sensitivities, divide the dollar sensitivity by the price of
the corresponding instrument.

The calling syntax for the function is

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet)

Use the previous example data to calculate the price of instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second
bond do not fall exactly on a tree node. This situation was discussed in “HJM
Pricing Options Structure” on page 2-44.

2 Using Financial Derivatives

2-72

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =
1.0e+003 *

-0.2327 0.8037 -0.0000 0.0955
 -0.2811 1.1819 -0.0000 0.0939
 -0.0505 0.2460 0.0053 0.0018
 -0.2327 0.8037 0 0.0955
 0.0000 0.0021 0.0014 0.1006
 0.0784 0.7490 0.0135 0.0015
 -0.0044 0.3821 0.0025 0.0000
 -0.2541 0.8642 -0.0014 0.0073

As with the prices, each row of the sensitivity vectors corresponds to the
similarly indexed instrument in BDTInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

 1.0e+004 *

-0.0002 0.0008 -0.0000 0.0096
 -0.0003 0.0013 -0.0000 0.0094
 -0.0029 0.0139 0.0003 0.0002
 -0.0002 0.0008 0 0.0096
 0.0000 0.0000 0.0000 0.0101
 0.0053 0.0504 0.0009 0.0001
 -0.0178 1.5577 0.0102 0.0000
 -0.0035 0.0118 -0.0000 0.0007

3

Hedging Portfolios

Hedging . 3-2

Hedging Functions 3-3
Hedging with hedgeopt 3-3

Self-Financing Hedges (hedgeslf) 3-12

Specifying Constraints with ConSet 3-16
Setting Constraints 3-16
Portfolio Rebalancing 3-18

Hedging with Constrained Portfolios 3-21
Example: Fully Hedged Portfolio 3-21
Example: Minimize Portfolio Sensitivities 3-23
Example: Under-Determined System 3-25
Portfolio Constraints with hedgeslf 3-26

3 Hedging Portfolios

3-2

Hedging
Hedging is an important consideration in modern finance. The decision of
whether or not to hedge, how much portfolio insurance is adequate, and how
often to rebalance a portfolio are important considerations for traders, portfolio
managers, and financial institutions alike.

Without transaction costs, financial professionals would prefer to rebalance
portfolios continually, thereby minimizing exposure to market movements.
However, in practice, the transaction costs associated with frequent portfolio
rebalancing may be very expensive. Therefore, traders and portfolio managers
must carefully assess the cost needed to achieve a particular portfolio
sensitivity (e.g., maintaining delta, gamma, and vega neutrality). Thus, the
hedging problem involves the fundamental tradeoff between portfolio
insurance and the cost of such insurance coverage.

The major topics covered in this chapter include:

• “Hedging Functions” on page 3-3

• “Self-Financing Hedges (hedgeslf)” on page 3-12

• “Specifying Constraints with ConSet” on page 3-16

• “Hedging with Constrained Portfolios” on page 3-21

Hedging Functions

3-3

Hedging Functions
The Financial Derivatives Toolbox offers two functions for assessing the
fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It
allocates an optimal hedge to satisfy either of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities

• Minimize portfolio sensitivities for a given set of maximum target costs

hedgeopt allows investors to modify portfolio allocations among instruments
according to either of the goals. The problem is cast as a constrained linear
least squares problem. For additional information about hedgeopt, see
“Hedging with hedgeopt” on page 3-3.

The second function, hedgeslf, attempts to allocate a self-financing hedge
among a portfolio of instruments. In particular, hedgeslf attempts to maintain
a constant portfolio value consistent with reduced portfolio sensitivities (i.e.,
the rebalanced portfolio is hedged against market moves and is closest to being
self-financing). If hedgeslf cannot find a self-financing hedge, it rebalances the
portfolio to minimize overall portfolio sensitivities. For additional information
on hedgeslf, see “Self-Financing Hedges (hedgeslf)” on page 3-12.

Hedging with hedgeopt
To illustrate the hedging functions, consider the delta, gamma, and vega
sensitivity measures. In the context of the Financial Derivatives Toolbox, delta
is the price sensitivity measure of shifts in the forward yield curve, gamma is
the delta sensitivity measure of shifts in the forward yield curve, and vega is
the price sensitivity measure of shifts in the volatility process. Note that the
delta, gamma, and vega sensitivities calculated by the toolbox are dollar
sensitivities. (See “Calculating Prices and Sensitivities” on page 2-50 (HJM)
and “Calculating Prices and Sensitivities” on page 2-71 (BDT) for details.)

Note The numerical results in this section are displayed with the MATLAB
bank format. Although the calculations are performed in floating-point double
precision, only two decimal places are displayed.

3 Hedging Portfolios

3-4

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained
from the example file deriv.mat. The portfolio consists of eight instruments:
two bonds, one bond option, one fixed rate note, one floating rate note, one cap,
one floor, and one swap.

Both hedging functions require some common inputs, including the current
portfolio holdings (allocations), and a matrix of instrument sensitivities. To
create these inputs, load the example portfolio into memory

load deriv.mat;

compute price and sensitivities

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

and extract the current portfolio holdings.

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a
matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different
instrument in the portfolio, and each column with a different sensitivity
measure.

To summarize the portfolio information

disp([Price Holdings Sensitivities])

98.72 100.00 -272.65 1029.90 0.00
97.53 50.00 -347.43 1622.69 -0.04
0.05 -50.00 -8.08 643.40 34.07
98.72 80.00 -272.65 1029.90 0.00
100.55 8.00 -1.04 3.31 0
6.28 30.00 294.97 6852.56 93.69
0.05 40.00 -47.16 8459.99 93.69
3.69 10.00 -282.05 1059.68 0.00

The first column above is the dollar unit price of each instrument, the second
is the holdings of each instrument (the quantity held or the number of

Hedging Functions

3-5

contracts), and the third, fourth, and fifth columns are the dollar delta, gamma,
and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in
the portfolio.

TargetSens = Holdings' * Sensitivities

TargetSens =

-61910.22 788946.21 4852.91

Maintaining Existing Allocations
To illustrate using hedgeopt, suppose that you want to maintain your existing
portfolio. The first form of hedgeopt minimizes the cost of hedging a portfolio
given a set of target sensitivities. If you want to maintain your existing
portfolio composition and exposure, you should be able to do so without
spending any money. To verify this, set the target sensitivities to the current
sensitivities.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [], [], [], TargetSens)

Sens =

-61910.22 788946.21 4852.91

Cost =

 0

Quantity' =

 100.00
 50.00
 -50.00
 80.00
 8.00
 30.00
 40.00
 10.00

3 Hedging Portfolios

3-6

Our portfolio composition and sensitivities are unchanged, and the cost
associated with doing nothing is zero. The cost is defined as the change in
portfolio value. This number cannot be less than zero because the rebalancing
cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after
rebalancing, respectively, the zero cost can also be verified by comparing the
portfolio values.

Value0 = Holdings' * Price

Value0 =

23674.62

Value1 = Quantity * Price

Value1 =

23674.62

Partially Hedged Portfolio
Building upon the previous example, suppose you want to know the cost to
achieve an overall portfolio dollar sensitivity of [-23000 -3300 3000], while
allowing trading only in instruments 2, 3, and 6 (holding the positions of
instruments 1, 4, 5, 7, and 8 fixed.) To find the cost, first set the target portfolio
dollar sensitivity.

TargetSens = [-23000 -3300 3000];

Then, specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.

Hedging Functions

3-7

Sens =

 -23000.00 -3300.00 3000.00

Cost =

19174.02

Quantity' =

100.00
 -141.03
 137.26
 80.00
 8.00
 -57.96
 40.00
 10.00

Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 =

 4500.60

As expected, the cost, $19174.02, is the difference between Value0 and Value1,
$23674.62 - $4500.60. Only the positions in instruments 2, 3, and 6 have been
changed.

Fully Hedged Portfolio
The above example illustrates a partial hedge, but perhaps the most
interesting case involves the cost associated with a fully-hedged portfolio
(simultaneous delta, gamma, and vega neutrality). In this case, set the target
sensitivity to a row vector of zeros and call hedgeopt again.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], [], TargetSens);

3 Hedging Portfolios

3-8

Examining the outputs reveals that you have obtained a fully-hedged portfolio

Sens =

 -0.00 -0.00 -0.00

but at an expense of over $20,000,

Cost =

 23055.90

The positions needed to achieve a fully-hedged portfolio

Quantity' =

 100.00
-182.36

 -19.55
 80.00
 8.00
 -32.97

40.00
 10.00

result in the new portfolio value

Value1 = Quantity * Price

Value1 =

 618.72

Minimizing Portfolio Sensitivities
The above examples illustrate how to use hedgeopt to determine the minimum
cost of hedging a portfolio given a set of target sensitivities. In these examples,
portfolio target sensitivities are treated as equality constraints during the
optimization process. You tell hedgeopt what sensitivities you want, and it
tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of
maximum target costs. For this goal the target costs are treated as inequality
constraints during the optimization process. You tell hedgeopt the most you

Hedging Functions

3-9

are willing spend to insulate your portfolio, and it tells you the smallest
portfolio sensitivities you can get for your money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities
along the entire cost frontier. From the previous examples, you know that
spending nothing simply replicates the existing portfolio, while spending
$23,055.90 completely hedges the portfolio.

Assume, for example, you are willing to spend as much as $50,000, and want
to see what portfolio sensitivities will result along the cost frontier. Assume the
same instruments are held fixed, and that the cost frontier is evaluated from
$0 to $50,000 at increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ...
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds
available (the amount you are willing to spend).

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')

3 Hedging Portfolios

3-10

Figure 3-1: Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

Hedging Functions

3-11

Figure 3-2: Funds Available for Rebalancing

3 Hedging Portfolios

3-12

Self-Financing Hedges (hedgeslf)
Figure 3-1 and Figure 3-2 indicate that there is no benefit to be gained because
the funds available for hedging exceed $23,055.90, the point of maximum
expense required to obtain simultaneous delta, gamma, and vega neutrality.
You can also find this point of delta, gamma, and vega neutrality using
hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);

Sens =

 -0.00
-0.00
-0.00

Value1 =

 618.72

Quantity =

 100.00
-182.36
-19.55
80.00

 8.00
 -32.97

40.00
 10.00

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and
instrument quantities (the rebalanced holdings). However, in contrast, the
second output parameter of hedgeslf is the value of the rebalanced portfolio,
from which you can calculate the rebalancing cost by subtraction.

Value0 - Value1

Self-Financing Hedges (hedgeslf)

3-13

ans =

 23055.90

In our example, the portfolio is clearly not self-financing, so hedgeslf finds the
best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related
to the results shown above for hedgeslf. Suppose, instead of directly specifying
the funds available for rebalancing (the most money you are willing to spend),
you want to simply specify the number of points along the cost frontier. This
call to hedgeopt samples the cost frontier at 10 equally spaced points between
the point of minimum cost (and potentially maximum exposure) and the point
of minimum exposure (and maximum cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, 10);

Sens =
-32784.46 2231.83 -49694.33

 -29141.74 1983.85 -44172.74
 -25499.02 1735.87 -38651.14
 -21856.30 1487.89 -33129.55
 -18213.59 1239.91 -27607.96
 -14570.87 991.93 -22086.37
 -10928.15 743.94 -16564.78
 -7285.43 495.96 -11043.18
 -3642.72 247.98 -5521.59
 0.00 -0.00 0.00

Cost =
0.00

 2561.77
 5123.53
 7685.30
 10247.07
 12808.83
 15370.60
 17932.37
 20494.14
 23055.90

3 Hedging Portfolios

3-14

Now plot this data.

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)

Figure 3-3: Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the
maximum cost needed to minimize the portfolio sensitivities ($23,055.90), and
evenly samples the cost frontier between $0 and $23,055.90.

Note that both hedgeopt and hedgeslf cast the optimization problem as a
constrained linear least squares problem. Depending upon the instruments

Self-Financing Hedges (hedgeslf)

3-15

and constraints, neither function is guaranteed to converge to a solution. In
some cases, the problem space may be unbounded, and additional instrument
equality constraints, or user-specified constraints, may be necessary for
convergence. See “Hedging with Constrained Portfolios” on page 3-21 for
additional information.

3 Hedging Portfolios

3-16

Specifying Constraints with ConSet
Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that
allows you to specify a set of linear inequality constraints for instruments in
your portfolio. The examples in this section are quite brief. For additional
information regarding portfolio constraint specifications, refer to the section
“Analyzing Portfolios” found in the Financial Toolbox User's Guide.

Setting Constraints
For the first example of setting constraints, return to the fully-hedged portfolio
example that used hedgeopt to determine the minimum cost of obtaining
simultaneous delta, gamma, and vega neutrality (target sensitivities all zero).
Recall that when hedgeopt computes the cost of rebalancing a portfolio, the
input target sensitivities you specify are treated as equality constraints during
the optimization process. The situation is reproduced below for convenience.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully-hedged portfolio

Sens =
 -0.00 -0.00 -0.00

at an expense of over $23,000.

Cost =
 23055.90

The positions needed to achieve this fully-hedged portfolio are

Quantity' =

 100.00
-182.36

 -19.55
 80.00
 8.00
 -32.97

40.00
 10.00

Specifying Constraints with ConSet

3-17

Suppose now that you want to place some upper and lower bounds on the
individual instruments in your portfolio. You can specify these constraints,
along with a variety of general linear inequality constraints, with the Financial
Toolbox function portcons.

As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and
8 fixed as before, you want to bound the position of all instruments to within
+/- 180 contracts (for each instrument, you cannot short or long more than 180
contracts). Applying these constraints disallows the current position in the
second instrument (short 182.36). All other instruments are currently within
the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the
problem, given the constraints, is not solvable. Intuitively, the results mean
that you cannot obtain simultaneous delta, gamma, and vega neutrality with
these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call
hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd, ConSet);

Sens =

-352.43
 21.99
 -498.77

3 Hedging Portfolios

3-18

Value1 =

 855.10

Quantity =

 100.00
-180.00

 -37.22
 80.00
 8.00
 -31.86

40.00
 10.00

hedgeslf enforces the lower bound for the second instrument, but the
sensitivity is far from neutral. The cost to obtain this portfolio is

Value0 - Value1

ans =

 22819.52

Portfolio Rebalancing
As a final example of user-specified constraints, rebalance the portfolio using
the second hedging goal of hedgeopt. Assume that you are willing to spend as
much as $20,000 to rebalance your portfolio, and you want to know what
minimum portfolio sensitivities you can get for your money. In this form, recall
that the target cost ($20,000) is treated as an inequality constraint during the
optimization process.

For reference, invoke hedgeopt without any user-specified linear inequality
constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);

Sens =

-4345.36 295.81 -6586.64

Specifying Constraints with ConSet

3-19

Cost =

 20000.00

Quantity' =

 100.00
-151.86

 -253.47
 80.00
 8.00
 -18.18

40.00
 10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities
Profile shown in Figure 3-3, Rebalancing Cost, on page 3-14.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before,
you want to bound the position of all instruments to within +/- 150 contracts
(for each instrument, you cannot short more than 150 contracts and you cannot
long more than 150 contracts). These bounds disallow the current position in
the second and third instruments (-151.86 and -253.47). All other instruments
are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and
upper bounds vectors and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings,FixedInd, [], 20000, [], ConSet);

Sens =

-8818.47 434.43 -4010.79

3 Hedging Portfolios

3-20

Cost =

 19876.89

Quantity' =

 100.00
-150.00

 -150.00
 80.00
 8.00
 -28.32
 40.00
 10.00

With these constraints hedgeopt enforces the lower bound for the second and
third instruments. The cost incurred is $19,876.89.

Hedging with Constrained Portfolios

3-21

Hedging with Constrained Portfolios
Both hedging functions cast the optimization as a constrained linear least
squares problem. (See the function lsqlin in the Optimization Toolbox for
details.) In particular, lsqlin attempts to minimize the constrained linear
least squares problem

where C, A, and Aeq are matrices, and d, b, beq, lb, and ub are vectors. In all
cases of interest for the Financial Derivatives Toolbox, x is a vector of asset
holdings (contracts).

This section provides some examples of setting constraints and discusses how
to recognize situations when the least squares problem is improperly
constrained. Depending upon the constraints and the number of assets in the
portfolio, a solution to a particular problem may or may not exist. Furthermore,
if a solution is found, the solution may not be unique. For a unique solution to
exist, the least squares problem must be sufficiently and appropriately
constrained.

Example: Fully Hedged Portfolio
Recall that hedgeopt allows you to allocate an optimal hedge by one of two
goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities

• Minimize portfolio sensitivities for a given set of maximum target costs

As an example, reproduce the results for the fully hedged portfolio example.

TargetSens = [0 0 0];
FixedInd = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

min1
2
--- Cx d�

2

2

x
such that A x⋅ b≤

Aeq x⋅ beq=
lb x ub≤ ≤

3 Hedging Portfolios

3-22

Sens =

 -0.00 -0.00 -0.00

Cost =

 23055.90

Quantity' =

98.72
-182.36

 -19.55
 80.00
 8.00
 -32.97
 40.00
 10.00

This example finds a unique solution at a cost of just over $23,000. The matrix
C (formed internally by hedgeopt and passed to lsqlin) is the asset Price
vector expressed as a row vector.

C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example
maintains, as closely as possible, a constant portfolio value subject to the
specified constraints.

Additional Constraints
In the absence of any additional constraints, the least squares objective
involves a single equation with eight unknowns. This is an under-determined
system of equations. Because such systems generally have an infinite number
of solutions, you need to specify additional constraints to achieve a solution
with practical significance. The additional constraints can come from two
sources:

• User-specified equality constraints

• Target sensitivity equality constraints imposed by hedgeopt

Hedging with Constrained Portfolios

3-23

The fully-hedged portfolio example specifies five equality constraints
associated with holding assets 1, 4, 5, 7, and 8 fixed. This reduces the number
of unknowns from eight to three, which is still an under-determined system.
However, when combined with the first goal of hedgeopt, the equality
constraints associated with the target sensitivities in TargetSens produce an
additional system of three equations with three unknowns. This additional
system guarantees that the weighted average of the delta, gamma, and vega of
assets 2, 3, and 6, together with the remaining assets held fixed, satisfy the
overall portfolio target sensitivity requirements in TargetSens.

Combining the least squares objective equation with the three portfolio
sensitivity equations provides an overall system of four equations with three
unknown asset holdings. This is no longer an under-determined system, and
the solution is as shown.

If the assets held fixed are reduced, e.g., FixedInd = [1 4 5 7], hedgeopt
returns a no cost, fully-hedged portfolio (Sens = [0 0 0] and Cost = 0).

If you further reduce FixedInd (e.g., [1 4 5], [1 4], or even []), hedgeopt
always returns a no cost, fully-hedged portfolio. In these cases, insufficient
constraints result in an under-determined system. Although hedgeopt
identifies no cost, fully-hedged portfolios, there is nothing unique about them.
These portfolios have little practical significance.

Constraints must be sufficient and appropriately defined. Additional
constraints having no effect on the optimization are called dependent
constraints. As a simple example, assume that parameter Z is constrained such
that . Furthermore, assume we somehow add another constraint that
effectively restricts . The constraint now has no effect on the
optimization.

Example: Minimize Portfolio Sensitivities
To illustrate using hedgeopt to minimize portfolio sensitivities for a given
maximum target cost, specify a target cost of $20,000 and determine the new
portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);

Z 1≤
Z 0≤ Z 1≤

3 Hedging Portfolios

3-24

Sens =

-4345.36 295.81 -6586.64

Cost =

20000.00

Quantity' =

 100.00
-151.86

 -253.47
 80.00
 8.00
 -18.18
 40.00
 10.00

This example corresponds to the $20,000 point along the cost axis in
Figure 3-1, Figure 3-2, and Figure 3-3.

When minimizing sensitivities, the maximum target cost is treated as an
inequality constraint; in this case, MaxCost is the most you are willing to spend
to hedge a portfolio. The least squares objective matrix C is the matrix
transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros,
[0 0 0]'.

Without any additional constraints, the least squares objective results in an
under-determined system of three equations with eight unknowns. By holding
assets 1, 4, 5, 7, and 8 fixed, you reduce the number of unknowns from eight to
three. Now, with a system of three equations with three unknowns, hedgeopt
finds the solution shown.

Hedging with Constrained Portfolios

3-25

Example: Under-Determined System
Reducing the number of assets held fixed creates an under-determined system
with meaningless solutions. For example, see what happens with only four
assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);

Sens =

 -0.00 -0.00 -0.00

Cost =

 20000.00

Quantity' =

100.00
-149.31

 -14.91
 80.00
 8.00
 -34.64
 40.00
 -32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a
fully-hedged portfolio.

With an increase in available funds to $50,000, you still spend all available
funds to get another fully-hedged portfolio.

MaxCost = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [],MaxCost);

Sens =

 -0.00 0.00 0.00

3 Hedging Portfolios

3-26

Cost =

 50000.00

Quantity' =

 100.00
-473.78

 -60.51
 80.00
 8.00
 -18.20
 40.00
 385.60

All solutions to an under-determined system are meaningless. You buy and sell
various assets to obtain zero sensitivities, spending all available funds every
time. If you reduce the number of fixed assets any further, this problem is
insufficiently constrained, and you find no solution (the outputs are all NaN).

Note also that no solution exists whenever constraints are inconsistent.
Inconsistent constraints create an infeasible solution space; the outputs are all
NaN.

Portfolio Constraints with hedgeslf
The other hedging function, hedgeslf, attempts to minimize portfolio
sensitivities such that the rebalanced portfolio maintains a constant value (the
rebalanced portfolio is hedged against market moves and is closest to being
self-financing). If a self-financing hedge is not found, hedgeslf tries to
rebalance a portfolio to minimize sensitivities.

From a least squares systems approach, hedgeslf first attempts to minimize
cost in the same way that hedgeopt does. If it cannot solve this problem (a no
cost, self-financing hedge is not possible), hedgeslf proceeds to minimize
sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt is
directly applicable to hedgeslf as well.

4

Function Reference

4-2

Functions by Category
This chapter provides detailed descriptions of the functions in the Financial
Derivatives Toolbox.

Table 4-1: Portfolio Hedge Allocation

Function Purpose

hedgeslf Self-financing hedge

hedgeopt Allocate optimal hedge for target costs or sensitivities

Table 4-2: Fixed Income Pricing from Interest Term Structure

Function Purpose

bondbyzero Price bond by a set of zero curves

cfbyzero Price cash flows by a set of zero curves

fixedbyzero Price fixed rate note by a set of zero curves

floatbyzero Price floating rate note by a set of zero curves

intenvprice Price fixed income instruments by a set of zero curves

intenvsens Instrument prices and sensitivities by a set of zero
curves

swapbyzero Price swap instrument by a set of zero curves

4-3

Table 4-3: Fixed Income Pricing and Sensitivity from Heath-Jarrow-Morton
Tree

Function Purpose

hjmprice Fixed income instrument prices by HJM interest rate
tree

hjmsens Fixed income instrument prices and sensitivities by
HJM interest rate tree

hjmtimespec Specify time structure for HJM interest rate tree

hjmtree Construct HJM interest rate tree

hjmvolspec HJM volatility process specification

Table 4-4: Fixed Income Pricing and Sensitivity from Black-Derman-Toy Tree

Function Purpose

bdtprice Fixed income instrument prices by BDT interest rate
tree

bdtsens Fixed income instrument prices and sensitivities by
BDT interest rate tree

bdttimespec Specify time structure for BDT interest rate tree

bdttree Construct BDT interest rate tree

bdtvolspec BDT volatility process specification

4-4

Table 4-5: Heath-Jarrow-Morton Utilities

Function Purpose

bondbyhjm Price bond by HJM interest rate tree

capbyhjm Price cap instrument by HJM interest rate tree

cfbyhjm Price arbitrary set of cash flows by HJM interest rate
tree

fixedbyhjm Price fixed rate note by HJM interest rate tree

floatbyhjm Price floating rate note by HJM interest rate tree

floorbyhjm Price floor instrument by HJM interest rate tree

mmktbyhjm Create money market tree from HJM

optbndbyhjm Price bond option by HJM interest rate tree

swapbyhjm Price swap instrument by HJM interest rate tree

Table 4-6: Black-Derman-Toy Utilities

Function Purpose

bondbybdt Price bond by BDT interest rate tree

capbybdt Price cap by BDT interest rate tree

cfbybdt Price arbitrary set of cash flows by BDT interest rate
tree

fixedbybdt Price fixed rate note by BDT interest rate tree

floatbybdt Price floating rate note by BDT interest rate tree

floorbybdt Price floor instrument by BDT interest rate tree

mmktbybdt Create money market tree from BDT

4-5

optbndbybdt Price bond option by BDT interest rate tree

swapbybdt Price swap instrument by BDT interest rate tree

Table 4-7: Heath-Jarrow-Morton Bushy Tree Manipulation

Function Purpose

bushpath Extract entries from node of bushy tree

bushshape Retrieve shape of bushy tree

mkbush Create bushy tree

Table 4-8: Black-Derman-Toy Recombining Tree Manipulation

Function Purpose

mktree Create recombining tree

treepath Extract entries from node of recombining tree

treeshape Retrieve shape of recombining tree

Table 4-9: Derivatives Pricing Options

Function Purpose

derivget Get derivatives pricing options

derivset Set or modify derivatives pricing options

Table 4-6: Black-Derman-Toy Utilities (Continued)

Function Purpose

4-6

Table 4-10: Instrument Portfolio Handling

Function Purpose

instadd Add types to instrument collection

instaddfield Add new instruments to an instrument collection

instbond Construct bond instrument

instcap Construct cap instrument

instcf Constructor for arbitrary cash flow instrument

instdelete Complement of subset of instruments by matching
conditions

instdisp Display instruments

instfields List fieldnames

instfind Search instruments for matching conditions

instfixed Construct fixed-rate instrument

instfloat Construct floating-rate instrument

instfloor Construct floor instrument

instget Retrieve data from instrument variable

instgetcell Retrieve data and context from instrument variable

instlength Count instruments

instoptbnd Construct bond option

instselect Create instrument subset by matching conditions

instsetfield Add or reset data for existing instruments

instswap Construct swap instrument

insttypes List types

4-7

Table 4-11: Financial Object Structures

Function Purpose

classfin Create financial structure or return financial structure
class name

isafin True if financial structure type or financial object class

Table 4-12: Interest Term Structure

Function Purpose

date2time Fixed income time and frequency from dates

disc2rate Interest rates from cash flow discounting factors

intenvget Get properties of interest rate environment

intenvset Set properties of interest rate environment

rate2disc Discounting factors from interest rates

ratetimes Change time intervals defining interest rate
environment

Table 4-13: Date Function

Function Purpose

datedisp Display date entries

4-8

Table 4-14: Graphical Display Function

Function Purpose

treeviewer Display tree information

bdtprice

4-9

4bdtpricePurpose Fixed income instrument prices by BDT interest rate tree

Syntax [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Arguments

Description [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options) computes
arbitrage free prices for instruments using an interest rate tree created with
bdttree. All instruments contained in a financial instrument variable,
InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for each
instrument. The prices are computed by backward dynamic programming on
the interest rate tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed',
'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:

• bondbybdt: Price a bond by a BDT tree.

• capbybdt: Price a cap by a BDT tree.

• cfbybdt: Price an arbitrary set of cash flows by a BDT tree.

• fixedbybdt: Price a fixed rate note by a BDT tree.

• floatbybdt: Price a floating rate note by a BDT tree.

BDTTree Interest rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

bdtprice

4-10

• floorbybdt: Price a floor by a BDT tree.

• optbndbybdt: Price a bond option by a BDT tree.

• swapbybdt: Price a swap by a BDT tree.

Examples Load the BDT tree and instruments from the data file deriv.mat. Price the cap
and bond instruments contained in the instrument set.

load deriv.mat;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% bond
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% bond

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

95.5030
 93.9079
 1.4863

You can use treeviewer to see the prices of these three instruments along the
price tree.

bdtprice

4-11

See Also bdtsens, bdttree, instadd, intenvprice, intenvsens

 10% Bond 10% Bond

 15% Cap

bdtsens

4-12

4bdtsensPurpose Fixed income instrument prices and sensitivities by BDT interest rate tree

Syntax [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)

Arguments

Description [Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet, Options)
computes instrument sensitivities and prices for instruments using an interest
rate tree created with bdttree. NINST instruments from a financial instrument
variable, InstSet, are priced. bdtsens handles instrument types: 'Bond',
'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See
instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change of
instrument prices with respect to changes in the interest rate. Delta is
computed by finite differences in calls to bdttree. See bdttree for information
on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of
instrument deltas with respect to the changes in the interest rate. Gamma is
computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of
instrument prices with respect to the changes in the volatility . Vega is
computed by finite differences in calls to bdttree. See bdtvolspec for
information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

BDTTree Interest rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

σ t T,()

bdtsens

4-13

Price is an NINST-by-1 vector of prices of each instrument. The prices are
computed by backward dynamic programming on the interest rate tree. If an
instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega
is calculated based on a 1% shift in the volatility process.

 Examples Load the tree and instruments from a data file. Compute delta and gamma for
the cap and bond instruments contained in the instrument set.

load deriv.mat;
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% Bond
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% Bond

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Delta =

 -232.6681
 -281.0517
 78.3776

bdtsens

4-14

Gamma =

 1.0e+003 *

 0.8037
 1.1819
 0.7490

See Also bdtprice, bdttree, bdtvolspec, instadd

bdttimespec

4-15

4bdttimespecPurpose Specify time structure for BDT interest rate tree

Syntax TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

Arguments

Description TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding) sets
the number of levels and node times for a BDT tree and determines the
mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bdttree. The state
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash flows out
to Maturity.

Examples Specify a four period tree with annual nodes. Use annual compounding to
report rates.

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as serial date number or
date string

Maturity Number of levels (depth) of the tree. A number of levels
(NLEVELS)-by-1 vector of dates marking the cash flow
dates of the tree. Cash flows with these maturities fall
on tree nodes. Maturity should be in increasing order.

Compounding (Optional) Scalar value representing the rate at which
the input zero rates were compounded when annualized.
Default = 1. This argument determines the formula for
the discount factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

bdttimespec

4-16

Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

 FinObj: 'BDTTimeSpec'
 ValuationDate: 730486
 Maturity: [5x1 double]
 Compounding: 1
 Basis: 0
 EndMonthRule: 1

See Also bdttree, bdtvolspec

bdttree

4-17

4bdttreePurpose Build BDT interest rate tree

Syntax BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

Arguments

Description BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates a structure
containing time and interest rate information on a recombining tree.

Examples Using the data provided, create a BDT volatility specification (VolSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec). Then
use these specifications to create a BDT tree with bdttree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

VolSpec Volatility process specification. See bdtvolspec for
information on the volatility process.

RateSpec Interest rate specification for the initial rate curve. See
intenvset for information on declaring an interest rate
variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the BDT tree and the Compounding rule for date
to time mapping and price-yield formulas. See
bdttimespec for information on the tree structure.

bdttree

4-18

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer(BDTTree)

See Also bdtprice, bdttimespec, bdtvolspec, intenvset

bdtvolspec

4-19

4bdtvolspecPurpose Specify a BDT interest rate volatility process

Syntax Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod)

Arguments

Description Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod) creates a structure specifying the volatility for bdttree.

Examples Using the data provided, create a BDT volatility specification (VolSpec).

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec =
 FinObj: 'BDTVolSpec'
 ValuationDate: 730486
 VolDates: [5x1 double]
 VolCurve: [5x1 double]
 VolInterpMethod: 'linear'

See Also bdttree, interp1

ValuationDate Scalar value representing the observation date of the
investment horizon.

VolDates Number of points (NPOINTS)-by-1 vector of yield
volatility end dates.

VolCurve NPOINTS-by-1 vector of yield volatility values in decimal
form.

InterpMethod (Optional) Interpolation method. Default is 'linear'.
See interp1 for more information.

bondbybdt

4-20

4bondbybdtPurpose Price bond by BDT interest rate tree

Syntax [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

Arguments BDTTree Interest rate tree structure created by bdttree.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

bondbybdt

4-21

The Settle date for every bond is set to the ValuationDate of the BDT tree.
The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbybdt(BDTTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of a bond
by a BDT interest rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at
time 0.

PriceTree is a MATLAB structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.

• PriceTree.AITree contains the accrued interest.

• PriceTree.tObs contains the observation times.

Examples Price a 10% bond using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the bond.

load deriv

Set the required values. Other arguments will use defaults.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed only by the
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default is 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

bondbybdt

4-22

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;

Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price =

 95.5030

See Also bdttree, bdtprice, instbond

bondbyhjm

4-23

4bondbyhjmPurpose Price bond by HJM interest rate tree

Syntax [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

Arguments HJMTree Forward rate tree structure created by hjmtree.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

bondbyhjm

4-24

The Settle date for every bond is set to the ValuationDate of the HJM tree.
The bond argument Settle is ignored.

Description [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options) computes the price of a bond
by an HJM forward rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected prices at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices and
accrued interest, and a vector of observation times for each node. Within
PriceTree:

• PriceTree.PBush contains the clean prices.

• PriceTree.AIBush contains the accrued interest.

• PriceTree.tObs contains the observation times.

Examples Price a 4% bond using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the bond.

load deriv

Set the required values. Other arguments will use defaults.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed only by the
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

bondbyhjm

4-25

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyhjm to compute the price of the bond.

Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

 97.5280

See Also hjmtree, hjmprice, instbond

bondbyzero

4-26

4bondbyzeroPurpose Price bond by a set of zero curves

Syntax Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arguments RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

CouponRate Decimal annual rate.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

bondbyzero

4-27

All inputs are either scalars or number of instruments (NINST)-by-1 vectors
unless otherwise specified. Dates can be serial date numbers or date strings.
Optional arguments can be passed as empty matrix [].

Description Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) returns a NINST-by-NUMCURVES matrix of clean bond prices.
Each column arises from one of the zero curves.

Examples Price a 4% bond using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term
structure needed to price the bond.

load deriv

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyzero to compute the price of the bond.

Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

 97.5334

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed only by the
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face value. Default = 100.

bondbyzero

4-28

See Also cfbyzero, fixedbyzero, floatbyzero, swapbyzero

bushpath

4-29

4bushpathPurpose Extract entries from node of bushy tree

Syntax Values = bushpath(Tree, BranchList)

Arguments

Description Values = bushpath(Tree, BranchList) extracts entries of a node of a bushy
tree. The node path is described by the sequence of branchings taken, starting
at the root. The top branch is number one, the second-to-top is two, and so on.
Set the branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the
retrieved entries of a bushy tree.

Examples Create an HJM tree by loading the example file.

load deriv.mat;

Then

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1])

returns the rates at the tree nodes located by taking the up branch, then the
down branch, and finally the up branch again.

FwdRates =

 1.0356
 1.0364
 1.0526
 1.0463

You can visualize this with the treeviewer function.

Tree Bushy tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

bushpath

4-30

treeviewer(HJMTree)

See Also bushshape, mkbush

bushshape

4-31

4bushshapePurpose Retrieve shape of bushy tree

Syntax [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)

Arguments

Description [NumLevels, NumChild, NumPos, NumStates, Trim] = bushshape(Tree)
returns information on a bushy tree’s shape.

NumLevels is the number of time levels of the tree.

NumChild is a 1 by number of levels (NUMLEVELS) vector with the number of
branches (children) of the nodes in each level.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in
each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in
each level.

Trim is 1 if NumPos decreases by one when moving from one time level to the
next. Otherwise, it is 0.

Examples Create an HJM tree by loading the example file.

load deriv.mat;

With treeviewer you can see the general shape of the HJM interest rate tree.

Tree Bushy tree.

bushshape

4-32

With this tree

[NumLevels, NumChild, NumPos, NumStates, Trim] =...
bushshape(HJMTree.FwdTree)

returns

NumLevels =
 4

NumChild =
 2 2 2 0

NumPos =
 4 3 2 1

NumStates =
 1 2 4 8

Trim =
 1

bushshape

4-33

You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim);
Tree = mkbush(NumLevels, NumChild, NumPos);

See Also bushpath, mkbush

capbybdt

4-34

4capbybdtPurpose Price cap instrument by BDT interest rate tree

Syntax [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options) computes the price of a cap instrument
from a BDT interest rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the BDT tree. The
cap argument Settle is ignored.

Examples Example 1.

Price a 3% cap instrument using a BDT interest rate tree.

BDTTree Interest rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

capbybdt

4-35

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the cap instrument.

load deriv

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

Price =

 28.5191

Example 2.

Here is a second example, showing the pricing of a 10% cap instrument using
a newly-created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

capbybdt

4-36

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the cap arguments.

CapStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
CapReset = 1;

Remaining arguments will use defaults.

Finally, use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...
CapReset)

Price =

 1.6923

See Also bdttree, cfbybdt, floorbybdt, swapbybdt

capbyhjm

4-37

4capbyhjmPurpose Price cap instrument by HJM interest rate tree

Syntax [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options) computes the price of a cap instrument
from an HJM tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the HJM tree. The
cap argument Settle is ignored.

Examples Price a 3% cap instrument using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the cap instrument.

HJMTree Forward rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

capbyhjm

4-38

load deriv

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

 6.2831

See Also cfbyhjm, floorbyhjm, hjmtree, swapbyhjm

cfbybdt

4-39

4cfbybdtPurpose Price cash flows from BDT interest rate tree

Syntax [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

Arguments

Description [Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options) prices cash flows from a BDT interest rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Price a portfolio containing two cash flow instruments paying interest annually
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the instruments.

BDTTree Forward rate tree structure created by bdttree.

CFlowAmounts Number of instruments (NINST) by maximum number of
cash flows (MOSTCFS) matrix of cash flow amounts. Each
row is a list of cash flow values for one instrument. If an
instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry
contains the date of the corresponding cash flow in
CFlowAmounts.

Settle Settlement date. A vector of serial date numbers or date
strings. The Settle date for every cash flow is set to the
ValuationDate of the HJM tree. The cash flow argument,
Settle, is ignored.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

Options (Optional) Derivatives pricing options structure created
with derivset.

cfbybdt

4-40

load deriv
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;

730852, 731217, 731582, 731947];

Price = cfbybdt(BDTTree, CFlowAmounts, CFlowDates,...
BDTTree.RateSpec.ValuationDate)

Price =

 74.0112
 74.3671

PriceTree =

 FinObj: 'BDTPriceTree'
 tObs: [0 1.00 2.00 3.00 4.00]
 PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

See Also bdttree, bdtprice, cfamounts, instcf

cfbyhjm

4-41

4cfbyhjmPurpose Price cash flows from HJM interest rate tree

Syntax [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)

Arguments

Description [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options) prices cash flows from an HJM interest rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Price a portfolio containing two cash flow instruments paying interest annually
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the instruments.

HJMTree Forward rate tree structure created by hjmtree.

CFlowAmounts Number of instruments (NINST) by maximum number of
cash flows (MOSTCFS) matrix of cash flow amounts. Each
row is a list of cash flow values for one instrument. If an
instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry
contains the date of the corresponding cash flow in
CFlowAmounts.

Settle Settlement date. A vector of serial date numbers or date
strings. The Settle date for every cash flow is set to the
ValuationDate of the HJM tree. The cash flow argument,
Settle, is ignored.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

Options (Optional) Derivatives pricing options structure created
with derivset.

cfbyhjm

4-42

load deriv
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;

730852, 731217, 731582, 731947];

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price =

 96.7805
 97.2188
PriceTree =

 FinObj: 'HJMPriceTree'
 tObs: [0 1.00 2.00 3.00 4.00]
 PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer(PriceTree)

See Also cfamounts, hjmprice, hjmtree, instcf

cfbyzero

4-43

4cfbyzeroPurpose Price cash flows by a set of zero curves

Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)

Arguments

Description Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle, Basis)
computes Price, an NINST-by-NUMCURVES matrix of cash flows prices. Each
column arises from one of the zero curves.

Examples Price a portfolio containing two cash flow instruments paying interest annually
over the four year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. ZeroRateSpec contains
the interest rate information needed to price the instruments.

load deriv
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;

730852, 731217, 731582, 731947];
Settle = 730486;

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

CFlowAmounts Number of instruments (NINST) by maximum number of
cash flows (MOSTCFS) matrix with entries listing cash
flow amounts corresponding to each date in CFlowDates.
Each row is a list of cash flow values for one instrument.
If an instrument has fewer than MOSTCFS cash flows, the
end of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry
contains the serial date of the corresponding cash flow
in CFlowAmounts.

Settle Settlement date on which the cash flows are priced.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

cfbyzero

4-44

Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price =

 96.7804
 97.2187

See Also bondbyzero, fixedbyzero, floatbyzero, swapbyzero

classfin

4-45

4classfinPurpose Create financial structure or return financial structure class name

Syntax Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)

Arguments

Description Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName)
create a financial structure of class ClassName.

ClassName = classfin(Obj) returns a string containing a financial
structure’s class name.

Examples Example 1.

Create an HJMTimeSpec financial structure and complete its fields. (Typically,
the function hjmtimespec is used to create HJMTimeSpec structures).

TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002');
TimeSpec.Compounding = 2;
TimeSpec.Basis = 0;
TimeSpec.EndMonthRule = 1;

TimeSpec =

 FinObj: 'HJMTimeSpec'
ValuationDate: 730464

 Maturity: 731560
 Compounding: 2
 Basis: 0
 EndMonthRule: 1

ClassName String containing name of financial structure class.

Struct MATLAB structure to be converted into a financial
structure.

Obj Name of a financial structure.

classfin

4-46

Example 2.

Convert an existing MATLAB structure into a financial structure.

TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002');
TSpec.Compounding = 2;
TSpec.Basis = 0;
TSpec.EndMonthRule = 0;

TimeSpec = classfin(TSpec, 'HJMTimeSpec')

TimeSpec =

 ValuationDate: 730464
 Maturity: 731560
 Compounding: 2
 Basis: 0
 EndMonthRule: 0
 FinObj: 'HJMTimeSpec'

Example 3.

Obtain a financial structure’s class name.

load deriv.mat
ClassName = classfin(HJMTree)

ClassName =

HJMFwdTree

See Also isafin

date2time

4-47

4date2timePurpose Fixed income time and frequency from dates

Syntax [Times, F] = date2time(Settle, Maturity, Compounding, Basis,
EndMonthRule)

Arguments Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. This
argument determines the formula for the discount
factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

date2time

4-48

Description [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule) computes time factors appropriate to compounded rate quotes
between Settle and Maturity dates.

Times is a vector of time factors.

F is a scalar of related compounding frequencies.

See Also cftimes in the Financial Toolbox User’s Guide

disc2rate, rate2disc

datedisp

4-49

4datedispPurpose Display date entries

Syntax datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

Arguments

Description datedisp(NumMat, DateForm) displays the matrix with the serial dates
formatted as date strings, using a matrix with mixed numeric entries and
serial date number entries. Integers between datenum('01-Jan-1900') and
datenum('01-Jan-2200') are assumed to be serial date numbers, while all
other values are treated as numeric entries.

CharMat is a character array representing NumMat. If no output variable is
assigned, the function prints the array to the display.

Examples NumMat = [730730, 0.03, 1200, 730100;
 730731, 0.05, 1000, NaN]

NumMat =

 1.0e+05 *

 7.3073 0.0000 0.0120 7.3010
 7.3073 0.0000 0.0100 NaN

datedisp(NumMat)
 01-Sep-2000 0.03 1200 11-Dec-1998
 02-Sep-2000 0.05 1000 NaN

See Also datenum, datestr in the Financial Toolbox User’s Guide

Remarks This function is identical to the datedisp function in the Financial Toolbox.

NumMat Numeric matrix to display

DateForm (Optional) Date format. See datestr for available and default
format flags.

derivget

4-50

4derivgetPurpose Get derivatives pricing options

Syntax Value = derivget(Options, 'Parameter')

Arguments

Description Value = derivget(Options, 'Parameter') extracts the value of the named
parameter from the derivative options structure Options. Parameter values
can be 'off' or 'on'.

Examples Create an Options structure with the value of Diagnostics set to 'on'.

Options = derivset('Diagnostics','on')

Use derivget to extract the value of Diagnostics from the Options structure.

Value = derivget(Options, 'Diagnostics')

Value =

on

Use derivget to extract the value of ConstRate.

Value = derivget(Options, 'ConstRate')

Value =

on

Because the value of 'ConstRate' was not previously set with derivset, the
answer represents the default setting for 'ConstRate'.

See Also derivset

Options Existing options specification structure, probably
created from previous call to derivset.

Parameter Must be 'Diagnostics', 'Warnings', or 'ConstRate'. It
is sufficient to type only the leading characters that
uniquely identify the parameter. Case is ignored for
parameter names.

derivset

4-51

4derivsetPurpose Set or modify derivatives pricing options

Syntax Options = derivset(Options, 'Parameter1', Value1, 'Parameter2',
Value2,'Parameter3', Value3)

Options = derivset(OldOptions, NewOptions)
Options = derivset
derivset

Arguments

Description Options = derivset(Options, 'Parameter1', Value1, 'Parameter2',
Value2,'Parameter3', Value3) creates a derivatives pricing options
structure Options in which the named parameters have the specified values.
Any unspecified value is set to the default value for that parameter when
Options is passed to the pricing function. It is sufficient to type only the leading
characters that uniquely identify the parameter name. Case is also ignored for
parameter names.

If the optional input argument Options is specified, derivset modifies an
existing pricing options structure by changing the named parameters to the
specified values.

Options (Optional) Existing options specification structure,
probably created from previous call to derivset.

Parametern
Valuen

Must be 'Diagnostics', 'Warnings', or 'ConstRate'.
Parameters can be entered in any order. Parameter
values can be 'on' or 'off'.
'Diagnostics' 'on' generates diagnostic information.
The default is 'Diagnostics' 'off'.
'Warnings' 'on' (default) displays a warning message
when executing a pricing function.
'ConstRate' 'on' (default) assumes a constant rate
between tree nodes.

OldOptions Existing options specification structure.

NewOptions New options specification structure.

derivset

4-52

Note For parameter values, correct case and the complete string are
required; if an invalid string is provided, the default is used.

Options = derivset(OldOptions, NewOptions) combines an existing
options structure OldOptions with a new options structure NewOptions. Any
parameters in NewOptions with nonempty values overwrite the corresponding
old parameters in OldOptions.

Options = derivset creates an options structure Options whose fields are
set to the default values.

derivset with no input or output arguments displays all parameter names
and information about their possible values.

 Examples Options = derivset('Diagnostics','on')

enables the display of additional diagnostic information that appears when
executing pricing functions.

Options = derivset(Options, 'ConstRate', 'off')

changes the ConstRate parameter in the existing Options structure so that the
assumption of constant rates between tree nodes no longer applies.

With no input or output arguments derivset displays all parameter names
and information about their possible values.

derivset
 Diagnostics: [on | {off}]
 Warnings: [{on} | off]
 ConstRate: [{on} | off]

See Also derivget

disc2rate

4-53

4disc2ratePurpose Interest rates from cash flow discounting factors

Syntax Usage 1: Interval points are input as times in periodic units.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,
EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. This
argument determines the formula for the discount
factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of curves
(NCURVES) matrix of discounts. Disc are unit bond prices
over investment intervals from StartTimes, when the
cash flow is valued, to EndTimes, when the cash flow is
received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units
ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in
periodic units starting the interval to discount over.
Default = 0.

disc2rate

4-54

Description Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes) and
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,
EndDates, StartDates, ValuationDate) convert cash flow discounting
factors to interest rates. disc2rate computes the yields over a series of
NPOINTS time intervals given the cash flow discounts over those intervals.
NCURVES different rate curves can be translated at once if they have the same
time structure. The time intervals can represent a zero curve or a forward
curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over
the NPOINTS time intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to
discount over, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to
discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days.
The arguments otherwise contain values, T, computed from SIA semiannual
time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency.

The investment intervals can be specified either with input times (Usage 1) or
with input dates (Usage 2). Entering ValuationDate invokes the date
interpretation; omitting ValuationDate invokes the default time
interpretations.

See Also rate2disc, ratetimes

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over. Default =
ValuationDate.

ValuationDate Scalar value in serial date number form representing the
observation date of the investment horizons entered in
StartDates and EndDates. Required in Usage 2. Omitted
or passed as an empty matrix to invoke Usage 1.

fixedbybdt

4-55

4fixedbybdtPurpose Price fixed rate note from BDT interest rate tree

Syntax [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = fixedbybdt(HJMTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price of a
fixed rate note from a BDT interest rate tree.
Price is an NINST-by-1 vector of expected prices of the fixed rate note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and
accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed rate note is set to the ValuationDate of the
BDT tree. The fixed rate note argument Settle is ignored.

BDTTree Interest rate tree structure created by bdttree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments (NINST)-by-1
vector of dates representing the settlement dates of the
fixed rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree.
Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

fixedbybdt

4-56

Examples Price a 10% fixed rate note using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Reset = 1;

Use fixedbybdt to compute the price of the note.

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)

Price =

 92.9974

See Also bdttree, bondbybdt, capbybdt, cfbybdt, floatbybdt, floorbybdt, swapbybdt

fixedbyhjm

4-57

4fixedbyhjmPurpose Price fixed rate note from HJM interest rate tree

Syntax [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price of a
fixed rate note from a HJM forward rate tree.
Price is an NINST-by-1 vector of expected prices of the fixed rate note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices and
accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

The Settle date for every fixed rate note is set to the ValuationDate of the
HJM tree. The fixed rate note argument Settle is ignored.

HJMTree Forward rate tree structure created by hjmtree.

CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments (NINST)-by-1
vector of dates representing the settlement dates of the
fixed rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

fixedbyhjm

4-58

Examples Price a 4% fixed rate note using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyhjm to compute the price of the note.

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)

Price =

 98.7159

See Also bondbyhjm, capbyhjm, cfbyhjm, floatbyhjm, floorbyhjm, hjmtree, swapbyhjm

fixedbyzero

4-59

4fixedbyzeroPurpose Price fixed rate note by a set of zero curves

Syntax Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset,
Basis, Principal)

Arguments

All inputs are either scalars or NINST-by-1 vectors unless otherwise
specified. Any date may be a serial date number or date string. An optional
argument may be passed as an empty matrix [].

Description Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity, Reset,
Basis, Principal) computes the price of a fixed rate note by a set of zero
curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES)
matrix of fixed rate note prices. Each column arises from one of the zero curves.

Examples Price a 4% fixed rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term
structure needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

CouponRate Decimal annual rate.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

Reset (Optional) Frequency of payments per year. Default = 1.

Basis (Optional) Day count basis. Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

fixedbyzero

4-60

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use fixedbyzero to compute the price of the note.

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price =

 98.7159

See Also bondbyzero, cfbyzero, floatbyzero, swapbyzero

floatbybdt

4-61

4floatbybdtPurpose Price floating rate note from BDT interest rate tree

Syntax [Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity,
Reset, Basis, Principal, Options) computes the price of a floating rate
note from a BDT tree.
Price is an NINST-by-1 vector of expected prices of the floating rate note at time
0.

PriceTree is a structure of trees containing vectors of instrument prices and
accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.

PriceTree.AITree contains the accrued interest.

BDTTree Interest rate tree structure created by bdttree.

Spread Number of instruments (NINST)-by-1 vector of number of
basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating rate
note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

floatbybdt

4-62

PriceTree.tObs contains the observation times.

The Settle date for every floating rate note is set to the ValuationDate of the
BDT tree. The floating rate note argument Settle is ignored.

Examples Price a 20 basis point floating rate note using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)

Price =

 100.6054

See Also bdttree, bondbybdt, capbybdt, cfbybdt, fixedbybdt, floorbybdt, swapbybdt

floatbyhjm

4-63

4floatbyhjmPurpose Price floating rate note from HJM interest rate tree

Syntax [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle, Maturity,
Reset, Basis, Principal, Options) computes the price of a floating rate
note from an HJM tree.
Price is an NINST-by-1 vector of expected prices of the floating rate note at time
0.

PriceTree is a structure of trees containing vectors of instrument prices and
accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

HJMTree Forward rate tree structure created by hjmtree.

Spread Number of instruments (NINST)-by-1 vector of number of
basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating rate
note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

floatbyhjm

4-64

PriceTree.tObs contains the observation times.

The Settle date for every floating rate note is set to the ValuationDate of the
HJM tree. The floating rate note argument Settle is ignored.

Examples Price a 20 basis point floating rate note using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)

Price =

 100.5529

See Also bondbyhjm, capbyhjm, cfbyhjm, fixedbyhjm, floorbyhjm, hjmtree, swapbyhjm

floatbyzero

4-65

4floatbyzeroPurpose Price floating rate note prices by a set of zero curves

See Also Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset,
Basis, Principal)

Arguments

All inputs are either scalars or NINST-by-1 vectors unless otherwise
specified. Any date may be a serial date number or date string. An optional
argument may be passed as an empty matrix [].

Description Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset,
Basis, Principal) computes the price of a floating rate note by a set of zero
curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES)
matrix of floating rate note prices. Each column arises from one of the zero
curves.

Examples Price a 20 basis point floating rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term
structure needed to price the note.

load deriv

Set the required values. Other arguments will use defaults.

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

Spread Number of basis points over the reference rate.

Settle Settlement date. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date.

Reset (Optional) Frequency of payments per year. Default = 1.

Basis (Optional) Day count basis. Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

floatbyzero

4-66

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price =

 100.5529

See Also bondbyzero, cfbyzero, fixedbyzero, swapbyzero

floorbybdt

4-67

4floorbybdtPurpose Price floor instrument by BDT interest rate tree

 Syntax [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price of a
floor instrument from a BDT interest rate tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Example 1.

Price a 10% floor instrument using a BDT interest rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and interest rate information needed to price the floor instrument.

BDTTree Interest rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates representing
the settlement dates of the floor. The Settle date for
every floor is set to the ValuationDate of the BDT tree.
The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

floorbybdt

4-68

load deriv

Set the required values. Other arguments will use defaults.

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbybdt to compute the price of the floor instrument.

Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

Price =

 0.1770

Example 2.

Here is a second example, showing the pricing of a 10% floor instrument using
a newly-created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...
'EndDates', EndDates,...
'Rates', Rates);
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

floorbybdt

4-69

Set the floor arguments.

FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002';
FloorReset = 1;

Remaining arguments will use defaults.

Finally, use floorbybdt to find the price of the floor instrument.

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,...
FloorReset)

Price =

 0.0431

See Also bdttree, capbybdt, cfbybdt, swapbybdt

floorbyhjm

4-70

4floorbyhjmPurpose Price floor instrument by HJM interest rate tree

 Syntax [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

Description [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price of a
floor instrument from an HJM tree.

Price is an NINST-by-1 vector of the expected prices of the floor at time 0.

PriceTree is the tree structure with values of the floor at each node.

Examples Price a 3% floor instrument using an HJM forward rate tree.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the floor instrument.

HJMTree Forward rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates representing
the settlement dates of the floor. The Settle date for
every floor is set to the ValuationDate of the HJM tree.
The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree.
Default = 0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

floorbyhjm

4-71

load deriv

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbyhjm to compute the price of the floor instrument.

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)

Price =

 0.0486

See Also capbyhjm, cfbyhjm, hjmtree, swapbyhjm

hedgeopt

4-72

4hedgeoptPurpose Allocate optimal hedge for target costs or sensitivities

Syntax [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price,
CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens,
ConSet)

Arguments Sensitivities Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities of each
instrument. Each row represents a different instrument.
Each column represents a different sensitivity.

Price NINST-by-1 vector of portfolio instrument unit prices.

CurrentHolds NINST-by-1 vector of contracts allocated to each
instrument.

FixedInd (Optional) Number of fixed instruments (NFIXED)-by-1
vector of indices of instruments to hold fixed. For
example, to hold the first and third instruments of a 10
instrument portfolio unchanged, set FixedInd = [1 3].
Default = [], no instruments held fixed.

NumCosts (Optional) Number of points generated along the cost
frontier when a vector of target costs (TargetCost) is not
specified. The default is 10 equally spaced points
between the point of minimum cost and the point of
minimum exposure. When specifying TargetCost, enter
NumCosts as an empty matrix [].

TargetCost (Optional) Vector of target cost values along the cost
frontier. If TargetCost is empty, or not entered,
hedgeopt evaluates NumCosts equally spaced target costs
between the minimum cost and minimum exposure.
When specified, the elements of TargetCost should be
positive numbers that represent the maximum amount
of money the owner is willing to spend to rebalance the
portfolio.

hedgeopt

4-73

Notes 1. The user-specified constraints included in ConSet may be created
with the functions pcalims or portcons. However, the portcons default
PortHolds positivity constraints are typically inappropriate for hedging
problems since short-selling is usually required.

2. NPOINTS, the number of rows in PortSens and PortHolds and the length of
PortCost, is inferred from the inputs. When the target sensitivities,
TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS = NumCosts, or is
equal to the length of the TargetCost vector.

3. Not all problems are solvable (e.g., the solution space may be infeasible
or unbounded, or the solution may fail to converge). When a valid solution
is not found, the corresponding rows of PortSens and PortHolds and the
elements of PortCost are padded with NaN’s as placeholders.

Description [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities, Price,
CurrentHolds, FixedInd, NumCosts, TargetCost, TargetSens, ConSet)
allocates an optimal hedge by one of two criteria:

• Minimize portfolio sensitivities (exposure) for a given set of target costs

• Minimize the cost of hedging a portfolio given a set of target sensitivities

Hedging involves the fundamental tradeoff between portfolio insurance and
the cost of insurance coverage. This function allows investors to modify

TargetSens (Optional) 1-by-NSENS vector containing the target
sensitivity values of the portfolio. When specifying
TargetSens, enter NumCosts and TargetCost as empty
matrices [].

ConSet (Optional) Number of constraints (NCONS) by number of
instruments (NINST) matrix of additional conditions on
the portfolio reallocations. An eligible NINST-by-1 vector
of contract holdings, PortWts, satisfies all the
inequalities A*PortWts <= b, where
 A = ConSet(:,1:end-1) and b = ConSet(:,end).

hedgeopt

4-74

portfolio allocations among instruments to achieve either of the criteria. The
chosen criterion is inferred from the input argument list. The problem is cast
as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of portfolio
sensitivities. When a perfect hedge exists, PortSens is zeros. Otherwise, the
best hedge possible is chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.

PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each
instrument. These are the reallocated portfolios.

See Also hedgeslf

pcalims, portcons, portopt in the Financial Toolbox User’s Guide

lsqlin in the Optimization Toolbox User’s Guide

hedgeslf

4-75

4hedgeslfPurpose Self-financing hedge

Syntax [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price,
CurrentHolds, FixedInd, ConSet)

Arguments

Description [PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities, Price,
CurrentHolds, FixedInd, ConSet) allocates a self-financing hedge among a
collection of instruments. hedgeslf finds the reallocation in a portfolio of
financial instruments that hedges the portfolio against market moves and that
is closest to being self-financing (maintaining constant portfolio value). By
default the first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect
hedge exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

Sensitivities Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities of each
instrument. Each row represents a different instrument.
Each column represents a different sensitivity.

Price NINST-by-1 vector of instrument unit prices.

CurrentHolds NINST-by-1 vector of contracts allocated in each
instrument.

FixedInd (Optional) Empty or number of fixed instruments
(NFIXED)-by-1 vector of indices of instruments to hold
fixed. The default is FixedInd = 1; the holdings in the
first instrument are held fixed. If NFIXED instruments
will not be changed, enter all their locations in the
portfolio in a vector. If no instruments are to be held
fixed, enter FixedInd = [].

ConSet (Optional) Number of constraints (NCONS)-by-NINST
matrix of additional conditions on the portfolio
reallocations. An eligible NINST-by-1 vector of contract
holdings, PortHolds, satisfies all the inequalities
 A*PortHolds <= b, where
 A = ConSet(:,1:end-1) and b = ConSet(:,end).

hedgeslf

4-76

PortValue is the total portfolio value (scalar). When a perfectly self-financing
hedge exists, PortValue is equal to dot(Price, CurrentWts) of the initial
portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each instrument.
This is the reallocated portfolio.

Notes 1. The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd)
are appended to any constraints passed in ConSet. Pass FixedInd = [] to
specify all constraints through ConSet.

2. The default constraints generated by portcons are inappropriate, since
they require the sum of all holdings to be positive and equal to one.

3. hedgeself first tries to find the allocations of the portfolio that make it
closest to being self-financing, while reducing the sensitivities to 0. If no
solution is found, it finds the allocations that minimize the sensitivities. If the
resulting portfolio is self-financing, PortValue is equal to the value of the
original portfolio.

Examples Example 1.

Perfect sensitivity cannot be reached.

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)

PortSens =

 0.0000
 0.3200

PortValue =

 0.7600

hedgeslf

4-77

PortHolds =

 1.0000
 -0.4400

Example 2.

 Constraints are in conflict.

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
ConSet = pcalims([2 2])

% O.K. if nothing fixed.

[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0,...
[], ConSet)

PortSens =

 2.8800
 0.6400

PortValue =

 4.4000

PortHolds =

 2
 2

% W0(1) is not greater than 2.

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...
1, ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and
by fixing the weight of instruments(s): 1

hedgeslf

4-78

Example 3.

Constraints are impossible to meet.

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
ConSet = pcalims([2 2],[1 1]);

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,...
[],ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

See Also hedgeopt

lsqlin in the Optimization Toolbox User’s Guide

portcons in the Financial Toolbox User’s Guide

hjmprice

4-79

4hjmpricePurpose Fixed income instrument prices by HJM interest rate tree

Syntax [Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)

Arguments

Description Price = hjmprice(HJMTree, InstSet, Options) computes arbitrage free
prices for instruments using an interest rate tree created with hjmtree. NINST
instruments from a financial instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices are
computed by backward dynamic programming on the interest rate tree. If an
instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.

PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'Fixed',
'Float', 'Cap', 'Floor', 'Swap'. See instadd to construct defined types.

Related single-type pricing functions are:

• bondbyhjm: Price a bond by an HJM tree.

• capbyhjm: Price a cap by an HJM tree.

• cfbyhjm: Price an arbitrary set of cash flows by an HJM tree.

• fixedbyhjm: Price a fixed rate note by an HJM tree.

HJMTree Heath-Jarrow-Morton tree sampling a forward rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

hjmprice

4-80

• floatbyhjm: Price a floating rate note by an HJM tree.

• floorbyhjm: Price a floor by an HJM tree.

• optbndbyhjm: Price a bond option by an HJM tree.

• swapbyhjm: Price a swap by an HJM tree.

Examples Load the HJM tree and instruments from the data file deriv.mat. Price the cap
and bond instruments contained in the instrument set.

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});

instdisp(HJMSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4% bond
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4% bond

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 3% Cap

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

 98.7159
 97.5280
 6.2831
PriceTree =

 FinObj: 'HJMPriceTree'
 PBush: {1x5 cell}
 AIBush: {1x5 cell}
 tObs: [0 1 2 3 4]

You can use treeviewer to see the prices of these three instruments along the
price tree.

hjmprice

4-81

treeviewer(PriceTree, HJMSubSet)

See Also hjmsens, hjmtree, hjmvolspec, instadd, intenvprice, intenvsens

 4% Bond (Maturity 2003) 4% Bond (Maturity 2004)

3% Cap

hjmsens

4-82

4hjmsensPurpose Fixed income instrument prices and sensitivities by HJM interest rate tree

Syntax [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)

Arguments

Description [Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet, Options)
computes instrument sensitivities and prices for instruments using an interest
rate tree created with hjmtree. NINST instruments from a financial instrument
variable, InstSet, are priced. hjmsens handles instrument types: 'Bond',
'CashFlow', 'OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See
instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change of
instrument prices with respect to changes in the interest rate. Delta is
computed by finite differences in calls to hjmtree. See hjmtree for information
on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of change of
instrument deltas with respect to the changes in the interest rate. Gamma is
computed by finite differences in calls to hjmtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of
instrument prices with respect to the changes in the volatility . Vega is
computed by finite differences in calls to hjmtree. See hjmvolspec for
information on the volatility process.

HJMTree Heath-Jarrow-Morton tree sampling a forward rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

σ t T,()

hjmsens

4-83

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices are
computed by backward dynamic programming on the interest rate tree. If an
instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points. Vega
is calculated based on a 1% shift in the volatility process.

 Examples Load the tree and instruments from a data file. Compute delta and gamma for
the cap and bond instruments contained in the instrument set.

load deriv.mat;
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});

instdisp(HJMSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4% bond
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4% bond

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 3% Cap

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Delta =

 -272.6462
 -347.4315
 294.9700

hjmsens

4-84

Gamma =

 1.0e+003 *

 1.0299
 1.6227
 6.8526

See Also hjmprice, hjmtree, hjmvolspec, instadd

hjmtimespec

4-85

4hjmtimespecPurpose Specify time structure for HJM interest rate tree

Syntax TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

Arguments

Description TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding) sets
the number of levels and node times for an HJM tree and determines the
mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for hjmtree. The state
observation dates are [Settle; Maturity(1:end-1)]. Because a forward rate
is stored at the last observation, the tree can value cash flows out to Maturity.

Examples Specify an eight-period tree with semiannual nodes (every six months). Use
exponential compounding to report rates.

ValuationDate Scalar date marking the pricing date and first
observation in the tree. Specify as serial date number or
date string

Maturity Number of levels (depth) of the tree. A number of levels
(NLEVELS)-by-1 vector of dates marking the cash flow
dates of the tree. Cash flows with these maturities fall
on tree nodes. Maturity should be in increasing order.

Compounding (Optional) Scalar value representing the rate at which
the input zero rates were compounded when annualized.
Default = 1. This argument determines the formula for
the discount factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

hjmtimespec

4-86

Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

 FinObj: 'HJMTimeSpec'
 ValuationDate: 730135
 Maturity: [8x1 double]
 Compounding: -1
 Basis: 0
 EndMonthRule: 1

See Also hjmtree, hjmvolspec

hjmtree

4-87

4hjmtreePurpose Build an HJM forward rate tree

Syntax HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

Arguments

Description HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec) creates a structure
containing time and forward rate information on a bushy tree.

Examples Using the data provided, create a HJM volatility specification (VolSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec). Then
use these specifications to create a HJM tree with hjmtree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [1; 2; 3; 4; 5];

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

VolSpec Volatility process specification. Sets the number of
factors and the rules for computing the volatility

for each factor. See hjmvolspec for information on
the volatility process.

RateSpec Interest rate specification for the initial rate curve. See
intenvset for information on declaring an interest rate
variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the HJM tree and the Compounding rule for date
to time mapping and price-yield formulas. See
hjmtimespec for information on the tree structure.

σ t T,()

hjmtree

4-88

RateSpec = intenvset('Compounding', Compounding,...
 'ValuationDate', ValuationDate,...
 'StartDates', StartDate,...
 'EndDates', EndDates,...
 'Rates', Rates);

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer(HJMTree)

See Also hjmprice, hjmtimespec, hjmvolspec, intenvset

hjmvolspec

4-89

4hjmvolspecPurpose Specify an HJM forward rate volatility process

Syntax Volspec = hjmvolspec(varargin)

Arguments The arguments to hjmvolspec vary according to the type and number of
volatility factors specified when calling the function. Factors are specified by
pairs of names and parameter sets. Factor names can be 'Constant',
'Stationary', 'Exponential', 'Vasicek', or 'Proportional'. The parameter
set is specific for each of these factor types:

Constant volatility (Ho-Lee):
VolSpec = hjmvolspec('Constant', Sigma_0)

Stationary volatility:
VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)

Exponential volatility:
VolSpec = hjmvolspec('Exponential', Sigma_0, Lambda)

Vasicek, Hull-White:
VolSpec = hjmvolspec('Vasicek', Sigma_0, CurveDecay, CurveTerm)

Nearly proportional stationary:
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, MaxSpot)

You can specify more than one factor by concatenating names and parameter
sets.

The table below defines the various arguments to hjmvolspec.

Argument Description

Sigma_0 Scalar base volatility over a unit time.

Lambda Scalar decay factor.

CurveVol Number of curves (NCURVES) -by-1 vector of Vol values at
sample points.

CurveDecay NCURVES-by-1 vector of Decay values at sample points.

CurveProp NCURVES-by-1 vector of Prop values at sample points.

hjmvolspec

4-90

Description Volspec = hjmvolspec(varargin) computes VolSpec, a structure that
specifies the volatility model for hjmtree.

hjmvolspec specifies a HJM forward rate volatility process. Each factor is
specified with one of the functional forms:

The volatility process is , where is the observation time and is the
starting time of a forward rate. In a stationary process the volatility term is

. Multiple factors can be specified sequentially.

The time values , , and Term are in coupon interval units specified by the
Compounding input of hjmtimespec. For instance if Compounding = 2, Term = 1
is a semiannual period (six months).

Examples Example 1.

Volatility is single-factor proportional.

CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)

 VolSpec =
 FinObj: 'HJMVolSpec'
 FactorModels: {'Proportional'}

CurveTerm NCURVES-by-1 vector of Term sample points.

Note: See the volatility specifications formulas below for a description of
Vol, Decay, Prop, and Term.

Argument Description

Volatility Specification Formula

Constant = Sigma_0

Stationary = Vol(T-t) = Vol(Term)

Exponential = Sigma_0*exp(-Lambda*(T-t))

Vasicek, Hull-White = Sigma_0*exp(-Decay(T-t))

Proportional = Prop(T-t)*max(SpotRate(t), MaxSpot)

σ t T,()

σ t T,()

σ t T,()

σ t T,()

σ t T,()

σ t T,() t T

T t�

T t

hjmvolspec

4-91

 FactorArgs: {{1x3 cell}}
 SigmaShift: 0
 NumFactors: 1
 NumBranch: 2
 PBranch: [0.5000 0.5000]
 Fact2Branch: [-1 1]

Example 2.

Volatility is two-factor exponential and constant.

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)

VolSpec =
 FinObj: 'HJMVolSpec'
 FactorModels: {'Exponential' 'Constant'}
 FactorArgs: {{1x2 cell} {1x1 cell}}
 SigmaShift: 0
 NumFactors: 2
 NumBranch: 3
 PBranch: [0.2500 0.2500 0.5000]
 Fact2Branch: [2x3 double]

See Also hjmtimespec, hjmtree

instadd

4-92

4instaddPurpose Add types to instrument collection

Syntax Bond instrument. (See also instbond.)
InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,

Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Arbitrary cash flow instrument. (See also instcf.)
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle,

Basis)

Bond option. (See also instoptbnd.)
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike,

ExerciseDates, AmericanOpt)

Fixed rate note instrument. (See also instfixed.)
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, Reset,

Basis, Principal))

Floating rate note instrument. (See also instfloat.)
InstSet = instadd('Float', Spread, Settle, Maturity, Reset, Basis,

Principal)

Cap instrument. (See also instcap.)
InstSet = instadd('Cap', Strike, Settle, Maturity, Reset, Basis,

Principal)

Floor instrument. (See also instfloor.)
InstSet = instadd('Floor', Strike, Settle, Maturity, Reset, Basis,

Principal)

Swap instrument. (See also instswap.)
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset,

Basis, Principal, LegType)

To add instruments to an existing collection:
InstSet = instadd(InstSetOld, TypeString, Data1, Data2, ...)

instadd

4-93

Arguments For more information on instrument data parameters, see the reference entries
for individual instrument types. For example, see instcap for additional
information on the cap instrument.

Description instadd stores instruments of types 'Bond', 'CashFlow', 'OptBond', 'Fixed',
'Float', 'Cap', 'Floor', or 'Swap'. Pricing and sensitivity routines are
provided for these instruments.

InstSet is an instrument set variable containing the new input data.

Examples Create a portfolio with two cap instruments and a 4% bond.

Strike = [0.06; 0.07];
CouponRate = 0.04;
Settle = '06-Feb-2000';
Maturity = '15-Jan-2003';

InstSet = instadd('Cap', Strike, Settle, Maturity);
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)

Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 06-Feb-2000 15-Jan-2003 NaN NaN NaN
2 Cap 0.07 06-Feb-2000 15-Jan-2003 NaN NaN NaN

Index Type CouponRate Settle Maturity ...
3 Bond 0.04 06-Feb-2000 15-Jan-2003...

See Also instbond, instcap, instcf, instfixed, instfloat, instfloor, instoptbnd,
instswap

InstSetOld Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

instaddfield

4-94

4instaddfieldPurpose Add new instruments to an instrument collection

Syntax InstSet = instaddfield('FieldName', FieldList,'Data', DataList,
'Type',TypeString)

InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data', DataList, 'Type',TypeString)

InstSetNew = instaddfield(InstSet,'FieldName', FieldList, 'Data',
DataList, 'Type',TypeString)

Arguments FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field. FieldList
cannot be named with the reserved names Type or
Index.

DataList Number of instruments (NINST)-by-M array or
NFIELDS-by-1 cell array of data contents for each field.
Each row in a data array corresponds to a separate
instrument. Single rows are copied to apply to all
instruments to be worked on. The number of columns is
arbitrary, and data is padded along columns.

ClassList (Optional) String or NFIELDS-by-1 cell array of strings
listing the data class of each field. The class determines
how DataList is parsed. Valid strings are 'dble',
'date', and 'char'. The 'FieldClass', ClassList
pair is always optional. ClassList is inferred from
existing fieldnames or from the data if not entered.

TypeString String specifying the type of instrument added.
Instruments of different types can have different
fieldname collections.

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

instaddfield

4-95

Description Use instaddfield to create your own types of instruments or to append new
instruments to an existing collection. Argument value pairs can be entered in
any order.

InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,
'Type', TypeString) and

InstSet = instaddfield('FieldName', FieldList, 'FieldClass',
ClassList, 'Data', DataList, 'Type', TypeString) create an instrument
variable.

InstSetNew = instaddfield(InstSet, 'FieldName', FieldList, 'Data',
DataList,'Type ,TypeString) adds instruments to an existing instrument
set, InstSet. The output InstSetNew is a new instrument set containing the
input data.

Examples Build a portfolio around July options.

Strike Call Put
 95 12.2 2.9
100 9.2 4.9
105 6.8 7.4

Strike = (95:5:105)'
CallP = [12.2; 9.2; 6.8]

Enter three call options with data fields Strike, Price, and Opt.

InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'});
 instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Add a futures contract and set the input parsing class.

InstSet = instaddfield(InstSet,'Type','Futures',...
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},...
'Data' ,{'01-Jul-99',104.4 });
instdisp(InstSet)

instaddfield

4-96

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Add a put option.

FN = instfields(InstSet,'Type','Option')
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'});
instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put

Make a placeholder for another put.

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put')
instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

instaddfield

4-97

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Add a cash instrument.

InstSet = instaddfield(InstSet, 'Type', 'TBill',...
'FieldName','Price','Data',99)
instdisp(InstSet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Index Type Price
7 TBill 99

See Also instdisp, instget, instgetcell, instsetfield

instbond

4-98

4instbondPurpose Construct bond instrument

Syntax InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

[FieldList, ClassList, TypeString] = instbond

Arguments InstSet Instrument variable. This argument is specified only
when adding bond instruments to an existing
instrument set. See instget for more information on the
InstSet variable.

CouponRate Decimal number indicating the annual percentage rate
used to determine the coupons payable on a bond.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

instbond

4-99

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or
empty. Fill unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed as
empty matrices [].

Description InstSet = instbond(InstSet, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face) creates a new instrument set containing bond instruments
or adds bond instruments to a existing instrument set.

[FieldList, ClassList, TypeString] = instbond displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond
instrument, TypeString = 'Bond'.

See Also hjmprice, instaddfield, instdisp, instget, intenvprice

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed only by the
bond’s maturity cash flow date.

StartDate Ignored.

Face (Optional) Face or par value. Default = 100.

instcap

4-100

4instcapPurpose Construct cap instrument

Syntax InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal)

[FieldList, ClassList, TypeString] = instcap

Arguments

Description InstSet = instcap(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal) creates a new instrument set containing cap instruments or adds
cap instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instcap displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a cap
instrument, TypeString = 'Cap'.

InstSet Instrument variable. This argument is specified only
when adding cap instruments to an existing instrument
set. See instget for more information on the InstSet
variable.

Strike Rate at which the cap is exercised, as a decimal number.

Settle Settlement date. Serial date number representing the
settlement date of the cap.

Maturity Serial date number representing the maturity date of
the cap.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

instcap

4-101

See Also hjmprice, instaddfield, instbond, instdisp, instfloor, instswap,
intenvprice

instcf

4-102

4instcfPurpose Construct cash flow instrument

Syntax InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis)
[FieldList, ClassList, TypeString] = instcf

Arguments

Only one data argument is required to create an instrument. Other arguments
can be omitted or passed as empty matrices []. Dates can be input as serial
date numbers or date strings.

Description InstSet = instcf(InstSet, CFlowAmounts, CFlowDates, Settle, Basis)
creates a new instrument set from data arrays or adds instruments of type
CashFlow to an instrument set.

[FieldList, ClassList, TypeString] = instcf lists field meta-data for an
instrument of type CashFlow.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only
when adding cash flow instruments to an existing
instrument set. See instget for more information on the
InstSet variable.

CFlowAmounts Number of instruments (NINST) by maximum number of
cash flows (MOSTCFS) matrix of cash flow amounts. Each
row is a list of cash flow values for one instrument. If an
instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry
contains the date of the corresponding cash flow in
CFlowAmounts.

Settle Settlement date on which the cash flows are priced.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

instcf

4-103

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString specifies the type of instrument added, e.g.,
TypeString = 'CashFlow'.

See Also hjmprice, instaddfield, instdisp, instget, intenvprice

instdelete

4-104

4instdeletePurpose Complement of a subset of instruments found by matching conditions

Syntax ISubSet = instdelete(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order. The InstSet variable must
be the first argument. 'FieldName' and 'Data' arguments must appear
together or not at all.

Description The output argument ISubSet contains instruments not matching the input
criteria. Instruments are deleted from ISubSet if all the Field, Index, and Type
conditions are met. An instrument meets an individual Field condition if the
stored FieldName data matches any of the rows listed in the DataList for that
FieldName. See instfind for more examples on matching criteria.

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field to match with
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1
cell array of acceptable data values for each field. Each
row lists a data row value to search for in the
corresponding FieldList. The number of columns is
arbitrary and matching will ignore trailing NaNs or
spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector
restricting positions of instruments to check for matches.
The default is all indices available in the instrument
variable.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings restricting instruments to match one of
TypeList types. The default is all types in the
instrument variable.

instdelete

4-105

Examples Retrieve the instrument set variable ExampleInst from the data file.
InstSetExamples.mat. The variable contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Create a new variable, ISet, with all options deleted.

ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet)

Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000

Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6

See Also instaddfield, instfind, instget, instselect

instdisp

4-106

4instdispPurpose Display instruments

Syntax CharTable = instdisp(InstSet)

Arguments

Description CharTable = instdisp(InstSet) creates a character array displaying the
contents of an instrument collection, InstSet. If instdisp is called without
output arguments, the table is displayed in the command window.

CharTable is a character array with a table of instruments in InstSet. For
each instrument row, the Index and Type are printed along with the field
contents. Field headers are printed at the tops of the columns.

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

InstSet Variable containing a collection of instruments. See
instaddfield for examples on constructing the variable.

instdisp

4-107

See Also datestr in the Financial Toolbox User’s Guide

num2str in the online MATLAB Reference

instaddfield, instget

instfields

4-108

4instfieldsPurpose List fields

Syntax FieldList = instfields(InstSet, 'Type', TypeList)

Arguments

Description FieldList = instfields(InstSet, 'Type', TypeList) retrieve list of fields
stored in an instrument variable.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field corresponding to the listed types.

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings listing the instrument types to query.

instfields

4-109

Get the fields listed for type 'Option'.

[FieldList, ClassList] = instfields(ExampleInst, 'Type',...
'Option')

FieldList =

 'Strike'
 'Price'
 'Opt'
 'Contracts'

ClassList =

 'dble'
 'dble'
 'char'
 'dble'

Get the fields listed for types 'Option' and 'TBill' .

FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'})

FieldList =

'Strike'
'Opt'
'Price'
'Maturity'
'Contracts'

Get all the fields listed in any type in the variable.

FieldList = instfields(ExampleInst)

instfields

4-110

FieldList =

 'Delivery'
 'F'
 'Strike'
 'Opt'
 'Price'
 'Maturity'
 'Contracts'

See Also instdisp, instlength, insttypes

instfind

4-111

4instfindPurpose Search instruments for matching conditions

Syntax IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order. The InstSet variable must
be the first argument. 'FieldName' and 'Data' arguments must appear
together or not at all.

Description IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',
DataList,'Index', IndexSet, 'Type', TypeList) returns indices of
instruments matching Type, Field, or Index values.

IndexMatch is an NINST-by-1 vector of positions of instruments matching the
input criteria. Instruments are returned in IndexMatch if all the Field, Index,

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field to match with
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1
cell array of acceptable data values for each field. Each
row lists a data row value to search for in the
corresponding FieldList. The number of columns is
arbitrary, and matching will ignore trailing NaNs or
spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector
restricting positions of instruments to check for matches.
The default is all indices available in the instrument
variable.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings restricting instruments to match one of
TypeList types. The default is all types in the
instrument variable.

instfind

4-112

and Type conditions are met. An instrument meets an individual Field
condition if the stored FieldName data matches any of the rows listed in the
DataList for that FieldName.

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Make a vector, Opt95, containing the indexes within ExampleInst of the options
struck at 95.

Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data', 95)

Opt95 =

 1
 6

instfind

4-113

Locate the futures and Treasury bill instruments within ExampleInst.

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Types =

 4
 7

See Also instaddfield, instget, instgetcell, instselect

instfixed

4-114

4instfixedPurpose Construct fixed-rate instrument

Syntax InstSet = instfixed(InstSet, CouponRate, Settle, Maturity, Reset,
Basis, Principal)

[FieldList, ClassList, TypeString] = instfixed

Arguments

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or
empty. Fill unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed as
empty matrices [].

Description InstSet = instfixed(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal) creates a new instrument set containing fixed rate instruments or
adds fixed rate instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfixed displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only
when adding fixed rate note instruments to an existing
instrument set. See instget for more information on the
InstSet variable.

CouponRate Decimal annual rate.

Settle Settlement date. Date string or serial date number
representing the settlement date of the fixed rate note.

Maturity Date string or serial date number representing the
maturity date of the fixed rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

instfixed

4-115

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a fixed rate
instrument, TypeString = 'Fixed'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap,
intenvprice

instfloat

4-116

4instfloatPurpose Construct floating-rate instrument

Syntax InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis,
Principal)

[FieldList, ClassList, TypeString] = instfloat

Arguments

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or
empty. Fill unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument. The others may be omitted or passed as
empty matrices [].

Description InstSet = instfloat(InstSet, Spread, Settle, Maturity, Reset, Basis,
Principal) creates a new instrument set containing floating rate instruments
or adds floating rate instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloat displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only
when adding floating rate note instruments to an
existing instrument set. See instget for more
information on the InstSet variable.

Spread Number of basis points over the reference rate.

Settle Settlement date. Date string or serial date number
representing the settlement date of the floating rate
note.

Maturity Date string or serial date number representing the
maturity date of the floating rate note.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) The notional principal amount. Default = 100.

instfloat

4-117

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floating
rate instrument, TypeString = 'Float'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap,
intenvprice

instfloor

4-118

4instfloorPurpose Construct floor instrument

Syntax InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal)

[FieldList, ClassList, TypeString] = instfloor

Arguments

Description InstSet = instfloor(InstSet, Strike, Settle, Maturity, Reset, Basis,
Principal) creates a new instrument set containing floor instruments or adds
floor instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instfloor displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

InstSet Instrument variable. This argument is specified only
when adding floor instruments to an existing instrument
set. See instget for more information on the InstSet
variable.

Strike Rate at which the floor is exercised, as a decimal
number.

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Reset (Optional) NINST-by-1 vector representing the frequency
of payments per year. Default = 1.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

Principal (Optional) The notional principal amount. Default = 100.

instfloor

4-119

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a floor
instrument, TypeString = 'Floor'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instswap,
intenvprice

instget

4-120

4instgetPurpose Retrieve data from instrument variable

Syntax [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName',
FieldList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must
be the first argument.

Description [Data_1, Data_2,...,Data_n] = instget(InstSet, 'FieldName',
FieldList, 'Index', IndexSet, 'Type', TypeList) retrieve data arrays
from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList.
Each row corresponds to a separate instrument in IndexSet. Unavailable data
is returned as NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in FieldList.

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

FieldList (Optional) String or number of fields (NFIELDS)-by-1 cell
array of strings listing the name of each data field to
match with data values. FieldList entries can also be
either 'Type' or 'Index'; these return type strings and
index numbers respectively. The default is all fields
available for the returned set of instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector of
positions of instruments to work on. If TypeList is also
entered, instruments referenced must be one of
TypeList types and contained in IndexSet. The default
is all indices available in the instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings restricting instruments to match one of
TypeList types. The default is all types in the
instrument variable.

instget

4-121

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Extract the price from all instruments.

P = instget(ExampleInst,'FieldName','Price')

P =

 12.2000
 9.2000
 6.8000
 NaN
 7.4000
 2.9000
 99.0000

Get all the prices and the number of contracts held.

[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'})

instget

4-122

P =

 12.2000
 9.2000
 6.8000
 Nan
 7.4000
 2.9000
 99.0000

C =

 0
 0
 1000
 -1000
 -1000
 0
 6

Compute a value V. Create a new variable ISet that appends V to ExampleInst.

V = P.*C
ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',...
V);
instdisp(ISet)

Index Type Strike Price Opt Contracts Value
1 Option 95 12.2 Call 0 0
2 Option 100 9.2 Call 0 0
3 Option 105 6.8 Call 1000 6800

Index Type Delivery F Contracts Value
4 Futures 01-Jul-1999 104.4 -1000 NaN

Index Type Strike Price Opt Contracts Value
5 Option 105 7.4 Put -1000 -7400
6 Option 95 2.9 Put 0 0

Index Type Price Maturity Contracts Value
7 TBill 99 01-Jul-1999 6 594

instget

4-123

Look at only the instruments which have nonzero Contracts.

Ind = find(C ~= 0)

Ind =

 3
 4
 5
 7

Get the Type and Opt parameters from those instruments.(Only options have
a stored 'Opt' field.)

[T,O] = instget(ExampleInst, 'Index', Ind, 'FieldName',...
{'Type', 'Opt'})

T =

Option
Futures
Option
TBill

O =

Call

Put

Create a string report of holdings Type, Opt, and Value.
rstring = [T, O, num2str(V(Ind))]

rstring =

Option Call 6800
Futures NaN
Option Put -7400
TBill 594

See Also instaddfield, instdisp, instgetcell

instgetcell

4-124

4instgetcellPurpose Retrieve data and context from instrument variable

Syntax [DataList, FieldList, ClassList, IndexSet, TypeSet] =
instgetcell(InstSet, 'FieldName', FieldList, 'Index', IndexSet,
'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must
be the first argument.

Description [DataList, FieldList, ClassList] = instgetcell(InstSet,
'FieldName', FieldList, 'Index', IndexSet, 'Type', TypeList)
retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell
is an NINST-by-M array, where each row corresponds to a separate instrument
in IndexSet. Any data which is not available is returned as NaN or as spaces.

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

FieldList (Optional) String or number of fields (NFIELDS)-by-1 cell
array of strings listing the name of each data field to
match with data values. FieldList should not be either
Type or Index; these field names are reserved. The
default is all fields available for the returned set of
instruments.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector of
positions of instruments to work on. If TypeList is also
entered, instruments referenced must be one of
TypeList types and contained in IndexSet. The default
is all indices available in the instrument variable.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings restricting instruments to match one of
TypeList types. The default is all types in the
instrument variable.

instgetcell

4-125

FieldList is an NFIELDS-by-1 cell array of strings listing the name of each
field in DataList.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

IndexSet is an NINST-by-1 vector of positions of instruments returned in
DataList.

TypeSet is an NINST-by-1 cell array of strings listing the type of each
instrument row returned in DataList.

Examples Retrieve the instrument set ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Get the prices and contracts from all instruments.

FieldList = {'Price'; 'Contracts'}
DataList = instgetcell(ExampleInst, 'FieldName', FieldList)
P = DataList{1}
C = DataList{2}

instgetcell

4-126

P =

 12.2000
 9.2000
 6.8000
 NaN
 7.4000
 2.9000
 99.0000

C =

 0
 0
 1000
 -1000
 -1000
 0
 6

Get all the option data: Strike, Price, Opt, Contracts.

[DataList, FieldList, ClassList] = instgetcell(ExampleInst,...
'Type','Option')

DataList =

 [5x1 double]
 [5x1 double]
 [5x4 char]
 [5x1 double]

FieldList =

 'Strike'
 'Price'
 'Opt'
 'Contracts'

instgetcell

4-127

ClassList =

 'dble'
 'dble'
 'char'
 'dble'

Look at the data as a comma separated list. Type help lists for more
information on cell array lists.

DataList{:}

ans =

 95
 100
 105
 105
 95

ans =

 12.2100
 9.2000
 6.8000
 7.3900
 2.9000

ans =

Call
Call
Call

Put
Put

instgetcell

4-128

ans =

 0
 0
 100
 -100
 0

See Also instaddfield, instdisp, instget

instlength

4-129

4instlengthPurpose Count instruments

Syntax NInst = instlength(InstSet)

Arguments

Description NInst = instlength(InstSet) computes NInst, the number of instruments
contained in the variable, InstSet.

See Also instdisp, instfields, insttypes

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

instoptbnd

4-130

4instoptbndPurpose Construct bond option

Syntax InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt)

[FieldList, ClassList, TypeString] = instoptbnd

Arguments InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

BondIndex Number of instruments (NINST)-by-1 vector of indices
pointing to underlying instruments of Type 'Bond'
which are also stored in InstSet. See instbond for
information on specifying the bond data.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

The interpretation of the Strike and ExerciseDates arguments depends
upon the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is
unspecified, the option is a European or Bermuda option. If AmericanOpt = 1,
the option is an American option.

Strike For a European or Bermuda option:
NINST by number of strikes (NSTRIKES) matrix of strike
price values. Each row is the schedule for one option. If
an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.

instoptbnd

4-131

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill unspecified
entries in vectors with NaN. Only one data argument is required to create the
instrument. The others may be omitted or passed as empty matrices [].

Description InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates) specifies a European or Bermuda option.

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike,
ExerciseDates, AmericanOpt) specifies an American option if AmericanOpt is
set to 1. If AmericanOpt is not set to 1, the function specifies a European or
Bermuda option.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a bond
instrument, TypeString = 'Bond'.

See Also hjmprice, instadd, instdisp, instget

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is
the schedule for one option. For a European option, there
is only one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon
date between or including the pair of dates on that row.
If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the
underlying bond Settle and the single listed exercise
date.

instselect

4-132

4instselectPurpose Create instrument subset by matching conditions

Syntax InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Parameter value pairs can be entered in any order. The InstSet variable must
be the first argument. 'FieldName' and 'Data' parameters must appear
together or not at all. 'Index' and 'Type' parameters are each optional.

Description InstSubSet = instselect(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList) creates an
instrument subset (InstSubSet) from an existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria.
Instruments are returned in InstSubSet if all the Field, Index, and Type

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field to match with
data values.

DataList Number of values (NVALUES)-by-M array or NFIELDS-by-1
cell array of acceptable data values for each field. Each
row lists a data row value to search for in the
corresponding FieldList. The number of columns is
arbitrary and matching will ignore trailing NaNs or
spaces.

IndexSet (Optional) Number of instruments (NINST)-by-1 vector
restricting positions of instruments to check for matches.
The default is all indices available in the instrument
variable.

TypeList (Optional) String or number of types (NTYPES)-by-1 cell
array of strings restricting instruments to match one of
TypeList types. The default is all types in the
instrument variable.

instselect

4-133

conditions are met. An instrument meets an individual Field condition if the
stored FieldName data matches any of the rows listed in the DataList for that
FieldName. See instfind for examples on matching criteria.

Examples Retrieve the instrument set ExampleInst from the data file.
InstSetExamples.mat. The variable contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

Make a new portfolio containing only options struck at 95.

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',...
'Data', 95)

instdisp(Opt95)

Opt95 =

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0

Make a new portfolio containing only futures and Treasury bills.

instselect

4-134

FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})

instdisp(FutTBill) =

Index Type Delivery F Contracts
1 Futures 01-Jul-1999 104.4 -1000

Index Type Price Maturity Contracts
2 TBill 99 01-Jul-1999 6

See Also instaddfield, instdelete, instfind, instget, instgetcell

instsetfield

4-135

4instsetfieldPurpose Add or reset data for existing instruments

Syntax InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
DataList)

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList)

Arguments

Argument value pairs can be entered in any order.

Description instsetfield sets data for existing instruments in a collection variable.

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
DataList) resets or adds fields to every instrument.

InstSet (Required) Variable containing a collection of
instruments. Instruments are classified by type; each
type can have different data fields. The stored data field
is a row vector or string for each instrument. InstSet
must be the first argument in the list.

FieldList String or number of fields (NFIELDS)-by-1 cell array of
strings listing the name of each data field. FieldList
cannot be named with the reserved names Type or
Index.

DataList Number of instruments (NINST)-by-M array or
NFIELDS-by-1 cell array of data contents for each field.
Each row in a data array corresponds to a separate
instrument. Single rows are copied to apply to all
instruments to be worked on. The number of columns is
arbitrary, and data is padded along columns.

IndexSet NINST-by-1 vector of positions of instruments to work on.
If TypeList is also entered, instruments referenced must
be one of TypeList types and contained in IndexSet.

TypeList String or number of types (NTYPES)-by-1 cell array of
strings restricting instruments worked on to match one
of TypeList types.

instsetfield

4-136

InstSet = instsetfield(InstSet, 'FieldName', FieldList, 'Data',
DataList, 'Index', IndexSet, 'Type', TypeList) resets or adds fields to
a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

Examples Retrieve the instrument set ExampleInstSF from the data file.
InstSetExamples.mat. ExampleInstSF contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
ISet = ExampleInstSF;
instdisp(ISet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call

Index Type Delivery F
4 Futures 01-Jul-1999 104.4

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option NaN NaN Put

Index Type Price
7 TBill 99

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.

ISet = instsetfield(ISet, 'Index',6,...
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 });
instdisp(ISet)

Index Type Strike Price Opt
1 Option 95 12.2 Call
2 Option 100 9.2 Call
3 Option 105 6.8 Call
Index Type Delivery F
4 Futures 01-Jul-1999 104.4

instsetfield

4-137

Index Type Strike Price Opt
5 Option 105 7.4 Put
6 Option 95 2.9 Put

Index Type Price
7 TBill 99

Create a new field Maturity for the cash instrument.

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',...
'Maturity','FieldClass', 'date', 'Data', MDate);
instdisp(ISet)

Index Type Price Maturity
7 TBill 99 01-Jul-1999

 Create a new field Contracts for all instruments.

ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0);
instdisp(ISet)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 0

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 0

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put 0
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 0

instsetfield

4-138

Set the Contracts fields for some instruments.

ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],...
'FieldName','Contracts', 'Data', [1000; -1000; -1000; 6]);

instdisp(ISet)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

See Also instaddfield, instdisp, instget, instgetcell

instswap

4-139

4instswapPurpose Construct swap instrument

Syntax InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType)

[FieldList, ClassList, TypeString] = instswap

Arguments InstSet Instrument variable. This argument is specified only
when adding a swap to an existing instrument set. See
instget for more information on the InstSet variable.

LegRate Number of instruments (NINST)-by-2 matrix, with each
row defined as:
[CouponRate Spread] or [Spread CouponRate]
CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The first
column represents the receiving leg, while the second
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset
frequency per year for each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amounts. Default = 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an
instrument. Each column indicates if the corresponding
leg is fixed (1) or floating (0). This matrix defines the
interpretation of the values entered in LegRate. Default
is [1,0] for each instrument.

instswap

4-140

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or
empty. Fill unspecified entries in vectors with NaN. Only one data argument is
required to create the instrument; the others may be omitted or passed as
empty matrices [].

Description InstSet = instswap(InstSet, LegRate, Settle, Maturity, LegReset,
Basis, Principal, LegType) creates a new instrument set containing swap
instruments or adds swap instruments to an existing instrument set.

[FieldList, ClassList, TypeString] = instswap displays the classes.

FieldList is a number of fields (NFIELDS)-by-1 cell array of strings listing the
name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of strings listing the data class of each
field. The class determines how arguments are parsed. Valid strings are
'dble', 'date', and 'char'.

TypeString is a string specifying the type of instrument added. For a swap
instrument, TypeString = 'Swap'.

See Also hjmprice, instaddfield, instbond, instcap, instdisp, instfloor,
intenvprice

insttypes

4-141

4insttypesPurpose List types

Syntax TypeList = insttypes(InstSet)

Arguments

Description TypeList = insttypes(InstSet) retrieves a list of types stored in an
instrument variable.

TypeList is a number of types (NTYPES)-by-1 cell array of strings listing the
Type of instruments contained in the variable.

Examples Retrieve the instrument set variable ExampleInst from the data file.
InstSetExamples.mat. ExampleInst contains three types of instruments:
Option, Futures, and TBill.

load InstSetExamples;
instdisp(ExampleInst)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 100 9.2 Call 0
3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts
5 Option 105 7.4 Put -1000
6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

InstSet Variable containing a collection of instruments.
Instruments are classified by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

insttypes

4-142

List all of the types included in ExampleInst.

TypeList = insttypes(ExampleInst)
TypeList =
 'Futures'
 'Option'
 'TBill'

See Also instdisp, instfields, instlength

intenvget

4-143

4intenvgetPurpose Obtain properties of an interest term structure

Syntax ParameterValue = intenvget(RateSpec, 'ParameterName')

Arguments

Description ParameterValue = intenvget(RateSpec,'ParameterName') obtains the
value of the named parameter ParameterName extracted from RateSpec.

Examples Use intenvset to set the interest rate structure.

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')

Now use intenvget to extract the values from RateSpec.

[R, RateSpec] = intenvget(RateSpec, 'Rates')

R =

 0.0500

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

ParameterName String indicating the parameter name to be accessed.
The value of the named parameter is extracted from the
structure RateSpec. It is sufficient to type only the
leading characters that uniquely identify the parameter.
Case is ignored for parameter names.

intenvget

4-144

RateSpec =

FinObj: 'RateSpec'
Compounding: 2
Disc: 0.9518
Rates: 0.0500
EndTimes: 2
StartTimes: 0
EndDates: 730871
StartDates: 730505
ValuationDate: 730505
Basis: 0
EndMonthRule: 1

See Also intenvset

intenvprice

4-145

4intenvpricePurpose Price fixed income instruments by a set of zero curves

Syntax Price = intenvprice(RateSpec, InstSet)

Arguments

Description Price = intenvprice(RateSpec, InstSet) computes arbitrage free prices
for instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES)
matrix of prices of each instrument. If an instrument cannot be priced, a NaN is
returned in that entry.

intenvprice handles the following instrument types: 'Bond', 'CashFlow',
'Fixed', 'Float', 'Swap'. See instadd for information about constructing
defined types.

See single-type pricing functions to retrieve pricing information.

Examples Load the zero curves and instruments from a data file.

load deriv.mat
instdisp(ZeroInstSet)

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

bondbyzero Price bonds by a set of zero curves.

cfbyzero Price arbitrary cash flow instrument by a set of zero curves.

fixedbyzero Fixed rate note prices by zero curves.

floatbyzero Floating rate note prices by zero curves.

swapbyzero Swap prices by a set of zero curves.

intenvprice

4-146

Price = intenvprice(ZeroRateSpec, ZeroInstSet)

Price =

 98.7159
 97.5334
 98.7159
 100.5529
 3.6923

See Also hjmprice, hjmsens, instadd, intenvsens, intenvset

Index Type CouponRate Settle Maturity Period ... Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4% bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4% bond 50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN NaN 6%/20BP Swap 10

intenvsens

4-147

4intenvsensPurpose Instrument price and sensitivities by a set of zero curves

Syntax [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

Arguments

Description [Delta, Gamma, Price] = intenvsens(RateSpec, InstSet) computes
dollar prices and price sensitivities for instruments using a zero coupon bond
rate term structure.

Delta is a number of instruments (NINST) by number of curves (NUMCURVES)
matrix of deltas, representing the rate of change of instrument prices with
respect to shifts in the observed forward yield curve. Delta is computed by
finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of
change of instrument deltas with respect to shifts in the observed forward yield
curve. Gamma is computed by finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an
instrument cannot be priced, a NaN is returned.

intenvsens handles the following instrument types: 'Bond', 'CashFlow',
'Fixed', 'Float', 'Swap'. See instadd for information about constructing
defined types.

Examples Load the tree and instruments from a data file.

RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

InstSet Variable containing a collection of instruments.
Instruments are categorized by type; each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

intenvsens

4-148

load deriv.mat
instdisp(ZeroInstSet)

[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)

Delta =

 -272.6403
 -347.4386
 -272.6403
 -1.0445
 -282.0405

Gamma =

 1.0e+003 *

 1.0298
 1.6227
 1.0298
 0.0033
 1.0596

See Also hjmprice, hjmsens, instadd, intenvprice, intenvset

Index Type CouponRate Settle Maturity Period ... Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4% bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4% bond 50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN NaN 6%/20BP Swap 10

intenvset

4-149

4intenvsetPurpose Set properties of interest rate environment

Syntax [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Parameter1', Value1,
'Parameter2', Value2, ...)

[RateSpec, RateSpecOld] = intenvset
intenvset

Arguments

Parameters may be chosen from the table below and specified in any order.

RateSpec (Optional) An existing interest rate specification
structure to be changed, probably created from a
previous call to intenvset.

Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. Default =
2. This argument determines the formula for the
discount factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of curves
(NCURVES) matrix of unit bond prices over investment
intervals from StartDates, when the cash flow is valued,
to EndDates, when the cash flow is received.

Rates Number of points (NPOINTS) by number of curves
(NCURVES) matrix of rates in decimal form. For
example, 5% is 0.05 in Rates. Rates are the yields over
investment intervals from StartDates, when the cash
flow is valued, to EndDates, when the cash flow is
received.

intenvset

4-150

It is sufficient to type only the leading characters that uniquely identify the
parameter. Case is ignored for parameter names.

When creating a new RateSpec, the set of parameters passed to intenvset
must include StartDates, EndDates, and either Rates or Disc.

Call intenvset with no input or output arguments to display a list of
parameter names and possible values.

Description [RateSpec, RateSpecOld] = intenvset(RateSpec, 'Parameter1', Value1,
'Parameter2', Value2, ...) creates an interest term structure (RateSpec)
in which the input argument list is specified as parameter name /parameter
value pairs. The parameter name portion of the pair must be recognized as a
valid field of the output structure RateSpec; the parameter value portion of the
pair is then assigned to its paired field.

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates
ending the interval to discount over.

StartDates NPOINTS-by-1 vector or scalar of serial dates starting the
interval to discount over.
Default = ValuationDate.

ValuationDate (Optional) Scalar value in serial date number form
representing the observation date of the investment
horizons entered in StartDates and EndDates. Default =
min(StartDates).

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

intenvset

4-151

If the optional argument RateSpec is specified, intenvset modifies an existing
interest term structure RateSpec by changing the named parameters to the
specified values and recalculating the parameters dependent on the new
values.

[RateSpec, RateSpecOld] = intenvset creates an interest term structure
RateSpec with all fields set to [].

intenvset with no input or output arguments displays a list of parameter
names and possible values.

RateSpecOld is a structure encapsulating the properties of an interest rate
structure prior to the changes introduced by the call to intenvset.

Examples Use intenvset to create a RateSpec.

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'20-Jan-2000', 'EndDates', '20-Jan-2001')

RateSpec =

 FinObj: 'RateSpec'
 Compounding: 2
 Disc: 0.9518
 Rates: 0.0500
 EndTimes: 2
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1

Now change the Compounding parameter to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

intenvset

4-152

RateSpec =

 FinObj: 'RateSpec'
 Compounding: 1
 Disc: 0.9518
 Rates: 0.0506
 EndTimes: 1
 StartTimes: 0
 EndDates: 730871
 StartDates: 730505
 ValuationDate: 730505
 Basis: 0
 EndMonthRule: 1

Calling intenvset with no input or output arguments displays a list of
parameter names and possible values.

intenvset

 Compounding: [1 | {2} | 3 | 4 | 6 | 12 | 365 | -1]
 Disc: [scalar | vector (NPOINTS x 1)]
 Rates: [scalar | vector (NPOINTS x 1)]
 EndDates: [scalar | vector (NPOINTS x 1)]
 StartDates: [scalar | vector (NPOINTS x 1)]
 ValuationDate: [scalar]
 Basis: [{0} | 1 | 2 | 3]
 EndMonthRule: [0 | {1}]

See Also intenvget

isafin

4-153

4isafinPurpose True if financial structure type or financial object class

Syntax IsFinObj = isafin(Obj, ClassName)

Arguments

Description IsFinObj = isafin(Obj, ClassName) is True (1) if the input argument is a
financial structure type or financial object class.

Examples load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree')

IsFinObj =

 1

See Also classfin

Obj Name of a financial structure.

ClassName String containing name of financial structure class.

mkbush

4-154

4mkbushPurpose Create bushy tree

Syntax [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim,
NodeVal)

Arguments

Description [Tree, NumStates] = mkbush(NumLevels, NumChild, NumPos, Trim,
NodeVal) creates a bushy tree Tree with initial values NodeVal at each node.
NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in
each level.

Examples Create a tree with four time levels, two branches per node, and a vector of three
elements in each node with each element initialized to NaN.

NumLevels Number of time levels of the tree.

NumChild 1 by number of levels (NUMLEVELS) vector with number of
branches (children) of the nodes in each level.

NumPos 1-by-NUMLEVELS vector containing the length of the state
vectors in each time level.

Trim Scalar 0 or 1. If Trim = 1, NumPos decreases by 1 when
moving from one time level to the next. Otherwise, if
Trim = 0 (Default), NumPos does not decrease.

NodeVal Initial value at each node of the tree. Default = NaN.

mkbush

4-155

Tree = mkbush(4, 2, 3);
treeviewer(Tree)

See Also bushpath, bushshape

mktree

4-156

4mktreePurpose Create recombining tree

Syntax Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree)

Arguments

Description Tree = mktree(NumLevels, NumPos, NodeVal, IsPriceTree) creates a
recombining tree Tree with initial values NodeVal at each node.

Examples Create a recombining tree with four time levels, a vector of two elements in
each node, each element initialized to NaN.

Tree = mktree(4, 2)

See Also treepath, treeshape

NumLevels Number of time levels of the tree.

NumPos 1-by-NUMLEVELS vector containing the length of the state
vectors in each time level.

NodeVal Initial value at each node of the tree. Default = NaN.

IsPriceTree Boolean determining if a final horizontal branch is added
to the tree. Default = 0

mmktbybdt

4-157

4mmktbybdtPurpose Create money market tree from BDT

Syntax MMktTree = mmktbybdt(BDTTree)

Arguments

Description MMktTree = mmktbybdt(BDTTree) creates a money market tree from an
interest rate tree structure created by bdttree.

Examples load deriv.mat;
MMktTree = mmktbybdt(BDTTree);
treeviewer(MMktTree)

See Also bdttree

BDTTree Interest rate tree structure created by bdttree.

mmktbyhjm

4-158

4mmktbyhjmPurpose Create money market tree from HJM

Syntax MMktTree = mmktbyhjm(HJMTree)

Arguments

Description MMktTree = mmktbyhjm(HJMTree) creates a money market tree from a forward
rate tree structure created by hjmtree.

Examples load deriv.mat;
MMktTree = mmktbyhjm(HJMTree);
treeviewer(MMktTree)

See Also hjmtree

HJMTree Forward rate tree structure created by hjmtree.

optbndbybdt

4-159

4optbndbybdtPurpose Price bond option by BDT interest rate tree

Syntax [Price, PriceTree] = optbndbybdt(BDTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments BDTTree Forward rate tree structure created by hjmtree.

OptSpec Number of instruments (NINST)-by-1 cell array of string
values 'Call' or 'Put'.

Strike For a European or Bermuda option:
Number of instruments (NINST) by number of strikes
(NSTRIKES) matrix of strike price values. Each row is the
schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is
the schedule for one option. A European option has only
one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon
date between or including the pair of dates on that row.
If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the
underlying bond Settle and the single listed exercise
date.

AmericanOpt NINST-by-1 vector of flags: 0 (European/Bermuda) or 1
(American).

CouponRate Decimal annual rate.

optbndbybdt

4-160

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate Date when a bond makes its first coupon payment. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate Last coupon date of a bond prior to the maturity date. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate regardless of where it falls and is
followed only by the bond’s maturity cash flow date.

StartDate Ignored.

optbndbybdt

4-161

The Settle date for every bond is set to the ValuationDate of the BDT tree.
The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbybdt(BDTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face, Options) computes the price of a bond option from a BDT
interest rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Example 1.

Using the BDT interest rate tree in the deriv.mat file, price a European call
option on a 10% bond with a strike of 95. The exercise date for the option is Jan.
01, 2002. The settle date for the bond is Jan. 01, 2000, and the maturity date
is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time
and forward rate information needed to price the bond.

load deriv;

Use optbondbybdt to compute the price of the option.

Price = optbndbybdt(BDTTree,'Call','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')

Price =

 1.7657

Face Face value. Default is 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

optbndbybdt

4-162

Example 2.

Now use optbndbybdt to compute the price of a put option on the same bond.

Price = optbndbybdt(BDTTree,'Put','95','01-Jan-2002',...
'0','0.10','01-Jan-2000','01-Jan-2003','1')

Price =

 0.5740

See Also bdtprice, bdttree, instoptbnd

optbndbyhjm

4-163

4optbndbyhjmPurpose Price bond option by HJM interest rate tree

Syntax [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face, Options)

Arguments HJMTree Forward rate tree structure created by hjmtree.

OptSpec Number of instruments (NINST)-by-1 cell array of string
values 'Call' or 'Put'.

Strike For a European or Bermuda option:
Number of instruments (NINST) by number of strikes
(NSTRIKES) matrix of strike price values. Each row is the
schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

For an American option:
NINST-by-1 vector of strike price values for each option.

ExerciseDates For a European or Bermuda option:
NINST-by-NSTRIKES matrix of exercise dates. Each row is
the schedule for one option. A European option has only
one exercise date, the option expiry date.

For an American option:
NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon
date between or including the pair of dates on that row.
If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the
underlying bond Settle and the single listed exercise
date.

AmericanOpt NINST-by-1 vector of flags: 0 (European/Bermuda) or 1
(American).

CouponRate Decimal annual rate.

optbndbyhjm

4-164

Settle Settlement date. A vector of serial date numbers or date
strings. Settle must be earlier than or equal to
Maturity.

Maturity Maturity date. A vector of serial date numbers or date
strings.

Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default
= 2.

Basis (Optional) Day-count basis of the bond. A vector of
integers.
0 = actual/actual (default), 1 = 30/360, 2 = actual/360,
3 = actual/365.

EndMonthRule (Optional) End-of-month rule. A vector. This rule applies
only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that a bond’s coupon payment date is always
the last actual day of the month.

IssueDate (Optional) Date when a bond was issued.

FirstCouponDate (Optional) Date when a bond makes its first coupon
payment. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure.

LastCouponDate (Optional) Last coupon date of a bond prior to the
maturity date. In the absence of a specified
FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon
structure of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed only by the
bond’s maturity cash flow date.

StartDate Ignored.

optbndbyhjm

4-165

The Settle date for every bond is set to the ValuationDate of the HJM tree.
The bond argument Settle is ignored.

Description [Price, PriceTree] = optbndbyhjm(HJMTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face, Options) computes the price of a bond option from an
HJM forward rate tree.

Price is an NINST-by-1 matrix of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at each node.

Examples Using the HJM forward rate tree in the deriv.mat file, price a European call
option on a 4% bond with a strike of 96. The exercise date for the option is Jan.
01, 2003. The settle date for the bond is Jan. 01, 2000, and the maturity date
is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. HJMTree contains the time
and forward rate information needed to price the bond.

load deriv;

Use optbondbyhjm to compute the price of the option.

Price = optbndbyhjm(HJMTree,'Call','96','01-Jan-2003',...
'0','0.04','01-Jan-2000','01-Jan-2004')
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

 2.2410

See Also hjmprice, hjmtree, instoptbnd

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options structure created
with derivset.

rate2disc

4-166

4rate2discPurpose Discounting factors from interest rates

Syntax Usage 1: Interval points are input as times in periodic units.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,
EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. This
argument determines the formula for the discount
factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Rates Number of points (NPOINTS) by number of curves
(NCURVES) matrix of rates in decimal form. For
example, 5% is 0.05 in Rates. Rates are the yields over
investment intervals from StartTimes, when the cash
flow is valued, to EndTimes, when the cash flow is
received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units
ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in
periodic units starting the interval to discount over.
Default = 0.

rate2disc

4-167

Description Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes) and
[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,
EndDates, StartDates, ValuationDate) convert interest rates to cash flow
discounting factors. rate2disc computes the discounts over a series of NPOINTS
time intervals given the annualized yield over those intervals. NCURVES
different rate curves can be translated at once if they have the same time
structure. The time intervals can represent a zero curve or a forward curve.

Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal
form representing the value at time StartTime of a unit cash flow received at
time EndTime.

StartTimes is an NPOINTS-by-1 column vector of times starting the interval to
discount over, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the interval to
discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days.
The arguments otherwise contain values, T, computed from SIA semiannual
time factors, Tsemi, by the formula T = Tsemi/2*F, where F is the compounding
frequency.

The investment intervals can be specified either with input times (Usage 1) or
with input dates (Usage 2). Entering ValuationDate invokes the date
interpretation; omitting ValuationDate invokes the default time
interpretations.

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over.
Default = ValuationDate.

ValuationDate Scalar value in serial date number form representing the
observation date of the investment horizons entered in
StartDates and EndDates. Required in Usage 2. Omitted
or passed as an empty matrix to invoke Usage 1.

rate2disc

4-168

Examples Example 1.

Compute discounts from a zero curve at six months, 12 months, and 24 months.
The time to the cash flows is 1, 2, and 4. We are computing the present value
(at time 0) of the cash flows.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)

Disc =
0.9756
0.9426
0.8799

 Example 2.

Compute discounts from a zero curve at six months, 12 months, and 24 months.
Use dates to specify the ending time horizon.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97';
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)

Disc =
0.9756
0.9426
0.8799

Example 3.

Compute discounts from the one-year forward rates beginning now, in six
months, and in 12 months. Use monthly compounding. The times to the cash
flows are 12, 18, 24, and the forward times are 0, 6, 12.

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

rate2disc

4-169

Disc =
0.9513
0.9609
0.9419

See Also disc2rate, ratetimes

ratetimes

4-170

4ratetimesPurpose Change time intervals defining interest rate environment

Syntax Usage 1: ValuationDate not passed; third through sixth arguments are
interpreted as times.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes)

Usage 2: ValuationDate passed and interval points input as dates.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)

Arguments Compounding Scalar value representing the rate at which the input
zero rates were compounded when annualized. This
argument determines the formula for the discount
factors:
Compounding = 1, 2, 3, 4, 6, 12
Disc = (1 + Z/F)^(-T), where F is the compounding

frequency, Z is the zero rate, and T is the time in
periodic units, e.g. T = F is one year.

Compounding = 365
Disc = (1 + Z/F)^(-T), where F is the number of days

in the basis year and T is a number of days
elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

RefRates NREFPTS-by-NCURVES matrix of reference rates in decimal
form. RefRates are the yields over investment intervals
from RefStartTimes, when the cash flow is valued, to
RefEndTimes, when the cash flow is received.

RefEndTimes NREFPTS-by-1 vector or scalar of times in periodic units
ending the intervals corresponding to RefRates.

RefStartTimes (Optional) NREFPTS-by-1 vector or scalar of times in
periodic units starting the intervals corresponding to
RefRates. Default = 0.

ratetimes

4-171

Description [Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes) and
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)
change time intervals defining an interest rate environment.

ratetimes takes an interest rate environment defined by yields over one
collection of time intervals and computes the yields over another set of time
intervals. The zero rate is assumed to be piecewise linear in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the reference
interest rate structure and sampled at new intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the new
intervals where rates are desired, measured in periodic units.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units
ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in
periodic units starting the interval to discount over.
Default = 0.

RefEndDates NREFPTS-by-1 vector or scalar of serial dates ending the
intervals corresponding to RefRates.

RefStartDates (Optional) NREFPTS-by-1 vector or scalar of serial dates
starting the intervals corresponding to RefRates.
Default = ValuationDate.

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates
ending the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over.
Default = ValuationDate.

ValuationDate Scalar value in serial date number form representing the
observation date of the investment horizons entered in
StartDates and EndDates. Required in usage 2. Omitted
or passed as an empty matrix to invoke usage 1.

ratetimes

4-172

EndTimes is an NPOINTS-by-1 column vector of times ending the new
intervals, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days.
The arguments otherwise contain values, T, computed from SIA semiannual
time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency.

The investment intervals can be specified either with input times (Usage 1) or
with input dates (Usage 2). Entering the argument ValuationDate invokes the
date interpretation; omitting ValuationDate invokes the default time
interpretations.

Examples Example 1.

The reference environment is a collection of zero rates at six, 12, and 24
months. Create a collection of one year forward rates beginning at zero, six, and
12 months.

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,...
StartTimes)

Rates =
0.0600
0.0688
0.0700

Example 2.

Interpolate a zero yield curve to different dates. Zero curves start at the default
date of ValuationDate.

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates = [730241; 730486];
ValuationDate = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],...
ValuationDate)

ratetimes

4-173

Rates =
0.0520
0.0520

See Also disc2rate, rate2disc

swapbybdt

4-174

4swapbybdtPurpose Price swap instrument by BDT interest rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

Arguments BDTTree Interest rate tree structure created by bdttree.

LegRate Number of instruments (NINST)-by-2 matrix, with each
row defined as:
[CouponRate Spread] or [Spread CouponRate]
CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The first
column represents the receiving leg, while the second
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset
frequency per year for each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amounts. Default = 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an
instrument. Each column indicates if the corresponding
leg is fixed (1) or floating (0). This matrix defines the
interpretation of the values entered in LegRate. Default
is [1 0] for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

swapbybdt

4-175

The Settle date for every swap is set to the ValuationDate of the BDT tree.
The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the
swap is initially zero. To do this enter CouponRate as NaN.

Description [Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType) computes the
price of a swap instrument from a BDT interest rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at
time 0.
PriceTree is the tree structure with a vector of the swap values at each node.

CFTree is the tree structure with a vector of the swap cash flows at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that
the swaps’ values are zero at time 0. This rate is used in calculating the swaps’
prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is
padded with NaN for those instruments in which CouponRate is not set to NaN.

Examples Example 1.

Price an interest rate swap with a fixed receiving leg and a floating paying leg.
Payments are made once a year, and the notional principal amount is $100.
The values for the remaining parameters are:

• Coupon rate for fixed leg: 0.15 (15%)

• Spread for floating leg: 10 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required parameters and build the
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]

swapbybdt

4-176

LegReset = [1 1]; % Payments once per year

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree
contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbybdt to compute the price of the swap.

Price = swapbybdt(BDTTree, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =

 7.3032

Example 2.

Using the previous data, calculate the swap rate, the coupon rate for the fixed
leg such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

 -2.8422e-014

PriceTree =

 FinObj: 'BDTPriceTree'
 tObs: [0 1 2 3 4]
 PTree: {1x5 cell}

CFTree =

 FinObj: 'BDTCFTree'
 tObs: [0 1 2 3 4]
 CFTree: {1x5 cell}

swapbybdt

4-177

SwapRate =

 0.1210

Example 3.

Calculate the cash flows from a pair of swaps and display the result.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate= [0.15 10; 0.15 0]; % [CouponRate Spread]
LegType = [1 0; 1 0];
LegReset = [1 1; 1 1];

load deriv

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType);

Continuing on, provide names for the swaps. Then use treeviewer to observe
the cash flow data graphically.

Names ={'Swap1', 'Swap2'};
treeviewer(CFTree, Names)

swapbybdt

4-178

You can use treeviewer to display cash flow data at all observation times and
along all branches of the tree.

See Also bdttree, capbybdt, cfbybdt, floorbybdt

swapbyhjm

4-179

4swapbyhjmPurpose Price swap instrument by HJM interest rate tree

Syntax [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType, Options)

Arguments HJMTree Forward rate tree structure created by hjmtree.

LegRate Number of instruments (NINST)-by-2 matrix, with each
row defined as:
[CouponRate Spread] or [Spread CouponRate]
CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The first
column represents the receiving leg, while the second
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings. Settle must be earlier than or
equal to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset
frequency per year for each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amounts. Default = 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an
instrument. Each column indicates if the corresponding
leg is fixed (1) or floating (0). This matrix defines the
interpretation of the values entered in LegRate. Default
is [1 0] for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

swapbyhjm

4-180

The Settle date for every swap is set to the ValuationDate of the HJM tree.
The swap argument Settle is ignored.

This function also calculates the SwapRate (fixed rate) so that the value of the
swap is initially zero. To do this enter CouponRate as NaN.

Description [Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree, LegRate,
Settle, Maturity, LegReset, Basis, Principal, LegType) computes the
price of a swap instrument from an HJM interest rate tree.

Price is number of instruments (NINST)-by-1 expected prices of the swap at
time 0.
PriceTree is the tree structure with a vector of the swap values at each node.

CFTree is the tree structure with a vector of the swap cash flows at each node.

SwapRate is a NINST-by-1 vector of rates applicable to the fixed leg such that
the swaps’ values are zero at time 0. This rate is used in calculating the swaps’
prices when the rate specified for the fixed leg in LegRate is NaN. SwapRate is
padded with NaN for those instruments in which CouponRate is not set to NaN.

Examples Example 1.

Price an interest rate swap with a fixed receiving leg and a floating paying leg.
Payments are made once a year, and the notional principal amount is $100.
The values for the remaining parameters are:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required parameters and build the
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]

swapbyhjm

4-181

LegReset = [1 1]; % Payments once per year

Price the swap using the HJMTree included in the MAT-file deriv.mat. HJMTree
contains the time and forward rate information needed to price the instrument.

load deriv;

Use swapbyhjm to compute the price of the swap.

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,...
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

3.6923

PriceTree =

 FinObj: 'HJMPriceTree'
 tObs: [0 1 2 3 4]
 PBush: {1x5 cell}

CFTree =

 FinObj: 'HJMCFTree'
 tObs: [0 1 2 3 4]

CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

Using the function treeviewer, you can examine CFTree graphically and see
the cash flows from the swap along both the up and the down branches. A
positive cash flow indicates an inflow (income - payments > 0), while a negative
cash flow indicates an outflow (income - payments < 0).

swapbyhjm

4-182

treeviewer(CFTree)

Note treeviewer price tree diagrams follow the convention that increasing
prices appear on the upper branch of a tree and, consequently, decreasing
prices appear on the lower branch. Conversely, for interest rate displays,
decreasing interest rates appear on the upper branch (prices are rising) and
increasing interest rates on the lower branch (prices are falling).

In this example you have sold a swap (receive fixed and pay floating). At time
t = 3, if interest rates go down, your cash flow is positive ($2.63), meaning that
you will receive this amount. But if interest rates go up, your cash flow is
negative(-$1.58), meaning that you owe this amount.

Example 2.

Using the previous data, calculate the swap rate, the coupon rate for the fixed
leg such that the swap price at time = 0 is zero.

swapbyhjm

4-183

LegRate = [NaN 20];

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,...
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price =

0

PriceTree =

FinObj: 'HJMPriceTree'
tObs: [0 1 2 3 4]
PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

CFTree =

FinObj: 'HJMCFTree'
tObs: [0 1 2 3 4]

CFBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

SwapRate =

0.0466

See Also capbyhjm, cfbyhjm, floorbyhjm, hjmtree

swapbyzero

4-184

4swapbyzeroPurpose Price swap instrument by a set of zero curves

Syntax [Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,
LegReset, Basis, Principal, LegType)

Arguments RateSpec A structure encapsulating the properties of an interest
rate structure. See intenvset for information on
creating RateSpec.

LegRate Number of instruments (NINST)-by-2 matrix, with each
row defined as:
[CouponRate Spread] or [Spread CouponRate]
CouponRate is the decimal annual rate. Spread is the
number of basis points over the reference rate. The first
column represents the receiving leg, while the second
column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date
numbers or date strings representing the settlement
date for each swap. Settle must be earlier than or equal
to Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing
the maturity date for each swap.

LegReset (Optional) NINST-by-2 matrix representing the reset
frequency per year for each swap. Default = [1 1].

Basis (Optional) NINST-by-1 vector representing the basis used
when annualizing the input forward rate tree. Default =
0 (actual/actual).

Principal (Optional) NINST-by-1 vector of the notional principal
amounts. Default = 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an
instrument. Each column indicates if the corresponding
leg is fixed (1) or floating (0). This matrix defines the
interpretation of the values entered in LegRate. Default
is [1 0] for each instrument.

swapbyzero

4-185

Description [Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,
LegReset, Basis, Principal, LegType) prices a swap instrument by a set of
zero coupon bond rates.

Price is a NINST by number of curves (NUMCURVES) matrix of swap prices. Each
column arises from one of the zero curves.

SwapRate is an NINST-by-NUMCURVES matrix of rates applicable to the fixed leg
such that the swap’s values are zero at time 0. This rate is used in calculating
the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
SwapRate is padded with NaN for those instruments in which CouponRate is not
set to NaN.

Examples Example 1.

Price an interest rate swap with a fixed receiving leg and a floating paying leg.
Payments are made once a year, and the notional principal amount is $100.
The values for the remaining parameters are:

• Coupon rate for fixed leg: 0.06 (6%)

• Spread for floating leg: 20 basis points

• Swap settlement date: Jan. 01, 2000

• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required parameters and build the
LegRate, LegType, and LegReset matrices.

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0;
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread]
LegType = [1 0]; % [Fixed Float]
LegReset = [1 1]; % Payments once per year

Load the file deriv.mat, which provides ZeroRateSpec, the interest rate term
structure needed to price the bond.

load deriv

Use swapbyzero to compute the price of the swap.

swapbyzero

4-186

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,...
LegReset, Basis, Principal, LegType)

Price =
3.6923

Example 2.

Using the previous data, calculate the swap rate, the coupon rate for the fixed
leg such that the swap price at time = 0 is zero.

LegRate = [NaN 20];

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)

Price =
0

SwapRate =
0.0466

See Also bondbyzero, cfbyzero, fixedbyzero, floatbyzero

treepath

4-187

4treepathPurpose Extract entries from node of recombining tree

Syntax Values = treepath(Tree, BranchList)

Arguments

Description Values = treepath(Tree, BranchList) extracts entries of a node of a
recombining tree. The node path is described by the sequence of branchings
taken, starting at the root. The top branch is number one, the second-to-top is
two, and so on. Set the branch sequence to zero to obtain the entries at the root
node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the
retrieved entries of a recombining tree.

Examples Create a BDT tree by loading the example file.

load deriv.mat;

Then

FwdRates = treepath(BDTTree.FwdTree, [1 2 1])

returns the rates at the tree nodes located by taking the up branch, then the
down branch, and finally the up branch again.

FwdRates =

 1.1000
 1.0979
 1.1377
 1.1183

You can visualize this with the treeviewer function.

Tree Recombining tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

treepath

4-188

treeviewer(BDTTree)

See Also mktree, treeshape

treeshape

4-189

4treeshapePurpose Retrieve shape of a recombining tree

Syntax [NumLevels, NumPos, IsPriceTree] = treeshape(Tree)

Arguments

Description [NumLevels, NumPos, IsPriceTree] = treeshape(Tree) returns
information on a recombining tree’s shape.

NumLevels is the number of time levels of the tree.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in
each level.

IsPriceTree is a Boolean determining if a final horizontal branch is present in
the tree.

Examples Create a BDT tree by loading the example file.

load deriv.mat;

With treeviewer you can see the general shape of the BDT interest rate tree.

Tree Recombining tree.

treeshape

4-190

treeviewer(BDTTree)

With this tree

[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree)

returns

NumLevels =
 4

NumPos =
 1 1 1 1

IsPriceTree =
 0

See Also mktree, treepath

treeviewer

4-191

4treeviewerPurpose Display tree information

Syntax treeviewer(Tree)
treeviewer(PriceTree, InstSet)
treeviewer(CFTree, InstSet)

Arguments

Description treeviewer(Tree) displays an interest rate or money market tree.

treeviewer(PriceTree, InstSet) displays a tree of instrument prices. If you
provide the name of an instrument set (InstSet) and you have named the
instruments using the field Name, the treeviewer display identifies the
instrument being displayed with its name. (See Example 3 below for a
description.) If you do not provide the optional InstSet argument, the
instruments are identified by their sequence number in the instrument set.
(See Example 6 below for a description.)

Tree Tree can be a Black-Derman-Toy (BDTTree) or
Heath-Jarrow-Morton (HJMTree) interest rate tree or a
money market tree (MMktTree). See bdttree for
information on creating BDTTree. See hjmtree for
information on creating HJMTree. The functions
mmktbybdt and mmktbyhjm create money market trees.

PriceTree PriceTree is a Black-Derman-Toy (BDTPriceTree) or
Heath-Jarrow-Morton (HJMPriceTree) tree of
instrument prices.

CFTree CFTree is a BDT (BDTCFTree) or HJM (HJMCFTree) tree of
swap cash flows. You create cash flow trees when
executing the functions swapbybdt and swapbyhjm.

InstSet (Optional) Variable containing a collection of
instruments whose prices or cash-flows are contained in
a tree. The collection can be created with the function
instadd or as a cell array containing the names of the
instruments. To display the names of the instruments,
the field Name should exist in InstSet. If InstSet is not
passed, treeviewer uses default instruments names
(numbers) when displaying prices or cash flows.

treeviewer

4-192

treeviewer(CFTree, InstSet) displays a cash flow tree that has been created
with swapbybdt or swapbyhjm. If you provide the name of an instrument set
(InstSet) containing cash flow names, the treeviewer display identifies the
instrument being displayed with its name. (See Example 3 below for a
description.) If the optional InstSet argument is not present, the instruments
are identified by their sequence number in the instrument set. See Example 6
below for a description.)

treeviewer price tree diagrams follow the convention that increasing prices
appear on the upper branch of a tree and, consequently, decreasing prices
appear on the lower branch. Conversely, for interest rate displays, decreasing
interest rates appear on the upper branch (prices are rising) and increasing
interest rates on the lower branch (prices are falling).

treeviewer provides an interactive display of prices or interest rates. The
display is activated by clicking on the nodes along the price or interest rate
path shown in the left panel when the function is called. For HJM trees you
select the end points of the path, and treeviewer displays all data from
beginning to end. With BDT trees you must click on each node in succession
from the beginning (t = 1) to the last node (t = n). Do not include the root
node, the node at t = 0. If you do not click on the nodes in the proper order, you
are reminded with the message:

Parent of selected node must be selected.

treeviewer

4-193

Examples Example 1.
Display an HJM interest rate tree.

load deriv.mat
treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the left
panel. The tree visualization in the right panel is blank.

treeviewer

4-194

To visualize the actual interest rate tree, go to the Tree Visualization panel
and click on Path (the default) and Diagram. Now, select the first path by
clicking on the last node (t = 3) of the upper branch.

Note that the entire upper path is highlighted in red.

treeviewer

4-195

To complete the process, select a second path by clicking on the last node
(t = 3) of another branch. The second path is highlighted in purple. The final
display looks like

treeviewer

4-196

Alternative Forms of Display
The Tree Visualization panel allows you to select alternative ways to display
tree data. For example, if you select Path and Table as your visualization
choices, the final display above instead appears in tabular form.

treeviewer

4-197

To see a plot of interest rates along the chosen branches, choose Path and Plot
in the Tree Visualization panel.

Note that with Plot selected rising interest rates are shown on the upper
branch and declining interest rates on the lower.

treeviewer

4-198

Finally, if you choose Node and Children under Tree Visualization, you
restrict the data displayed to just the selected parent node and its children.

With Node and Children selected, the choices under Visualization are
unavailable.

treeviewer

4-199

Example 2.
Display a BDT interest rate tree.

load deriv.mat
treeviewer(BDTTree)

The treeviewer function displays the structure of a BDT tree in the left panel.
The tree visualization in the right panel is blank.

To visualize the actual interest rate tree, go to the Tree Visualization panel
and click on Path (the default) and Diagram. Now, select the first path by
clicking on the first node of the up branch (t = 1). Continue by clicking on the
down branch at the next node (t = 2). The two figures below show the
treeviewer path diagrams for these selections.

treeviewer

4-200

Continue clicking on all nodes in succession until you reach the end of the
branch. Note that the entire path you have selected is highlighted in red.

Select a second path by clicking on the first node of the lower branch (t = 1).
Continue clicking on lower nodes as you did on the first branch. Note that the
second branch is highlighted in purple. The final display looks like

t = 1 t = 2

treeviewer

4-201

Example 3.
Display an HJM price tree for named instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

HJM Instrument Set

treeviewer

4-202

Example 4.
Display a BDT price tree for named instruments.

load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)

BDT Instrument Set

treeviewer

4-203

Example 5.
Display an HJM price tree with renamed instruments.

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',...
'Floor', 'Swap'};
treeviewer(PriceTree, Names)

treeviewer

4-204

Example 6.
 Display an HJM price tree using default instrument names (numbers).

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)

See Also bdttree, hjmtree, instadd, mmktbybdt, mmktbyhjm, swapbybdt, swapbyhjm

A

Glossary

A Glossary

A-2

American option - An option that can be exercised any time until its
expiration date. Contrast with European option.

arbitrary cash flow instrument - A set of generic cash flow amounts for which
a price needs to be established.

beta - The price volatility of a financial instrument relative to the price
volatility of a market or index as a whole. Beta is most commonly used with
respect to equities. A high-beta instrument is riskier than a low-beta
instrument.

binomial model - A method of pricing options or other equity derivatives in
which the probability over time of each possible price follows a binomial
distribution. The basic assumption is that prices can move to only two values
(one higher and one lower) over any short time period.

Black-Derman-Toy (BDT) model - A model for pricing interest rate
derivatives where all security prices and rates depend upon the short rate
(annualized one-period interest rate).

bond - A long-term debt security with fixed interest payments and fixed
maturity date.

bond option - The right to sell a bond back to the issuer (put) or to redeem a
bond from its current owner (call) at a specific price and on a specific date.

bushy tree - A tree of prices or interest rates in which the number of branches
increases exponentially relative to observation times; branches never
recombine. Opposite of a recombining tree.

call - a. An option to buy a certain quantity of a stock or commodity for a
specified price within a specified time. See put. b. A demand to submit bonds
to the issuer for redemption before the maturity date.

callable bond - A bond that allows the issuer to buy back the bond at a
predetermined price at specified future dates. The bond contains an embedded
call option; i.e., the holder has sold a call option to the issuer. See puttable
bond.

cap - Interest-rate option that guarantees that the rate on a floating-rate loan
will not exceed a certain level.

delta - The rate of change of the price of a derivative security relative to the
price of the underlying asset; i.e., the first derivative of the curve that relates
the price of the derivative to the price of the underlying security.

A-3

derivative - A financial instrument that is based on some underlying asset.
For example, an option is a derivative instrument based on the right to buy or
sell an underlying instrument.

deterministic model - An interest rate model in which the values of the rates
in the next time step are determined solely by the values of the rates in the
current time step.

discount factor - Coefficient used to compute the present value of future cash
flows.

European option - An option that can be exercised only on its expiration date.
Contrast with American option.

exercise price - The price set for buying an asset (call) or selling an asset (put).
The strike price.

fixed rate note - A long-term debt security with preset interest rate and
maturity, by which the interest must be paid. The principal may or may not be
paid at maturity.

floating rate note - A security similar to a bond, but in which the note’s
interest rate is reset periodically, relative to a reference index rate, to reflect
fluctuations in market interest rates.

floor - Interest-rate option that guarantees that the rate on a floating-rate loan
will not fall below a certain level.

forward curve - The curve of forward interest rates vs. maturity dates for
bonds.

forward rate - The future interest rate of a bond inferred from the term
structure, especially from the yield curve of zero-coupon bonds, calculated from
the growth factor of an investment in a zero held until maturity.

gamma - The rate of change of delta for a derivative security relative to the
price of the underlying asset; i.e., the second derivative of the option price
relative to the security price.

Heath-Jarrow-Morton (HJM) model - A model of the interest rate term
structure that works with a type of interest rate tree called a bushy tree.

hedge - A securities transaction that reduces or offsets the risk on an existing
investment position.

instrument set - A collection of financial assets. A portfolio.

A Glossary

A-4

inverse discount - A factor by which the present value of an asset is multiplied
to find its future value. The reciprocal of the discount factor.

least squares method - A mathematical method of determining the best fit of
a curve to a series of observations by choosing the curve that minimizes the
sum of the squares of all deviations from the curve.

long rate - The yield on a zero-coupon Treasury bond.

option - A right to buy or sell specific securities or commodities at a stated price
(exercise or strike price) within a specified time. An option is a type of
derivative.

per-dollar sensitivity - The dollar sensitivity divided by the corresponding
instrument price.

portfolio - A collection of financial assets. Also called an instrument set.

price tree structure - A MATLAB structure that holds all pricing information.

price vector - A vector of instrument prices.

pricing options structure - A MATLAB structure that defines how the price
tree is used to find the price of instruments in the portfolio, and how much
additional information is displayed in the command window when the pricing
function is called.

put - An option to sell a stipulated amount of stock or securities within a
specified time and at a fixed exercise price. See call.

puttable bond - A bond that allows the holder to redeem the bond at a
predetermined price at specified future dates. The bond contains an embedded
put option; i.e., the holder has bought a put option. See callable bond.

rate specification - A MATLAB structure that holds all information needed to
identify completely the evolution of interest rates.

recombining tree - A tree of prices or interest rates whose branches recombine
over time. Opposite of a bushy tree.

self-financing hedge - A trading strategy whereby the value of a portfolio after
rebalancing is equal to its value at any previous time.

sensitivity - The “what if” relationship between variables; the degree to which
changes in one variable cause changes in another variable. A specific synonym
is volatility.

A-5

short rate - The annualized one-period interest rate.

spot curve, spot yield curve - See zero curve.

spot rate - The current interest rate appropriate for discounting a cash flow of
some given maturity.

spread - For options, a combination of call or put options on the same stock
with differing exercise prices or maturity dates.

stochastic model - Involving or containing a random variable or variables;
involving chance or probability.

strike - Exercise a put or call option.

strike price - See exercise price.

swap - A contract between two parties to exchange cash flows in the future
according to some formula.

time specification - A MATLAB structure that represents the mapping
between times and dates for interest rate quoting.

under-determined system - A set of simultaneous equations in which the
number of independent variables exceeds the number of equations in the set,
leading to an infinite number of solutions.

vanilla swap - A swap agreement to exchange a fixed rate for a floating rate.

vega - The rate of change in the price of a derivative security relative to the
volatility of the underlying security. When vega is large the security is
sensitive to small changes in volatility.

volatility specification - A MATLAB structure that specifies the forward rate
volatility process.

zero curve, zero-coupon yield curve - A yield curve for zero-coupon bonds;
zero rates versus maturity dates. Since the maturity and duration (Macaulay
duration) are identical for zeros, the zero curve is a pure depiction of supply/
demand conditions for loanable funds across a continuum of durations and
maturities. Also known as spot curve or spot yield curve.

zero-coupon bond, or Zero - A bond that, instead of carrying a coupon, is sold
at a discount from its face value, pays no interest during its life, and pays the
principal only at maturity.

A Glossary

A-6

I-1

Index

A
arbitrary cash flow instruments 1-5

B
bdtprice 4-9
bdtsens 4-12
bdttimespec 4-15
bdttree 4-17

input arguments 2-53
bdtvolspec 4-19
Black-Derman-Toy (BDT) model 2-53
bond

defined 1-4
bondbybdt 4-20
bondbyhjm 4-23
bondbyzero 4-26
bushpath 4-29

example 2-32
bushshape 4-31
bushy tree 1-2

C
cap, defined 1-4
capbybdt 4-34
capbyhjm 4-37
cfbybdt 4-39
cfbyhjm 4-41
cfbyzero 4-43
classfin 4-45
constraints 3-23

dependent 3-23
inconsistent 3-26

constructor 1-9
convbyzero 4-47

D
date2time 4-47
datedisp 4-49
delta 2-20

defined 3-3
dependent constraints 3-23
deriv.mat 1-3
derivget 4-50
derivset 4-51
deterministic model 2-17
disc2rate 4-53

purpose 2-3
syntax 2-6

discount factors 2-3

F
field 1-10
fixed rate note, defined 1-4
fixedbybdt 4-55
fixedbyhjm 4-57
fixedbyzero 4-59
floatbybdt 4-61
floatbyhjm 4-63
floatbyzero 4-65
floating rate note, defined 1-4
floor, defined 1-4
floorbybdt 4-67
floorbyhjm 4-70

G
gamma 2-20

defined 3-3

Index

I-2

H
Heath-Jarrow-Morton (HJM) model 2-22
Heath-Jarrow-Morton tree 2-35
hedgeopt 4-72

purpose 3-3
hedgeslf 4-75

purpose 3-3
hedging

considerations 3-2
functions 3-3
goals 3-3

HJM pricing options structure 2-44
hjmprice 4-79
hjmsens 4-82
hjmtimespec 4-85
HJMTree 2-35
hjmtree 4-87

input arguments 2-22
hjmvolspec 4-89

forms of volatility 2-23

I
inconsistent constraints 3-26
instadd 4-92

creating an instrument 1-6
instaddfield 4-94

creating new instruments 1-10
instbond 4-98
instcap 4-100
instcf 4-102
instdelete 4-104
instdisp 4-106
instfields 4-108
instfind 4-111

purpose 1-12
syntax 1-12

instfixed 4-114
instfloat 4-116
instfloor 4-118
instget 4-120
instgetcell 4-124
instlength 4-129
instoptbnd 4-130
instrument

creating 1-10
instrument constructor 1-9
instrument index 1-12
instselect 4-132

purpose 1-12
instsetfield 4-135
instswap 4-139
insttypes 4-141
intenvget 4-143

purpose 2-14
intenvprice 4-145
intenvsens 4-147
intenvset 4-149

purpose 2-12
interest rate models 1-2
interest rate term structure, defined 2-3
inverse discount 2-29, 2-59
isafin 4-153

L
least squares problem 3-21

M
mkbush 4-154
mktree 4-156
mmktbybdt 4-157
mmktbyhjm 4-158

Index

I-3

model
Black-Derman-Toy (BDT) 2-53
Heath-Jarrow-Morton (HJM) 2-22
interest rate 1-2

O
object 1-9
observation time zero

BDT 2-66
HJM 2-38

optbndbybdt 4-159
optbndbyhjm 4-163
Options

BDT 2-64
HJM 2-36

P
per-dollar sensitivities

calculating 2-51, 2-72
example 2-21

portfolio 1-6
creation 1-6
management 1-9

price tree structure 2-39
BDT 2-66
HJM 2-38

Price vector
BDT 2-66
HJM 2-38

pricing options
default structure 2-44
structure 2-44

pricing options structure
BDT 2-71
HJM 2-44

R
rate specification 2-3
rate2disc 4-166

creating inverse discounts 2-30
purpose 2-3

RateSpec

BDT 2-54
defined 2-3
HJM 2-23
using in BDT 2-55
using with HJM 2-25

ratetimes 4-170
purpose 2-3

recombining tree 1-3
root node 4-192

S
sensitivities

per-dollar, example of 2-72
per-dollar, viewing 2-51

short rate 1-2
stochastic model 2-17
swap, defined 1-5
swapbybdt 4-174
swapbyhjm 4-179
swapbyzero 4-184

T
TimeSpec

BDT 2-54
HJM 2-23
using 2-26, 2-56

tree
bushy 1-2
recombining 1-3

Index

I-4

treepath 4-187
treeshape 4-189
treeviewer 4-191

displaying BDT trees 4-199
displaying HJM trees 4-194
examining values with 2-40
purpose 1-3
using 2-40

TypeString argument 1-6
typographical conventions (table) xi

U
under-determined system 3-22

V
vanilla swaps 1-5
vega, defined 3-3
volatility

process 2-23
VolSpec

BDT 2-53
HJM 2-23
using 2-23

	Preface
	About This Book
	Organization of the Document

	Typographical Conventions
	Related Products
	Background Reading
	Black-Derman-Toy (BDT) Modeling
	Heath-Jarrow-Morton (HJM) Modeling
	Financial Derivatives

	Getting Started
	Introduction
	Interest Rate Models
	Trees
	Financial Instruments
	Hedging

	Creating and Managing Instrument Portfolios
	Portfolio Creation
	Portfolio Management

	Using Financial Derivatives
	Interest Rate Environment
	Interest Rates vs. Discount Factors
	Interest Rate Term Conversions
	Interest Rate Term Structure

	Pricing and Sensitivity from Interest Rate Term Structure
	Pricing
	Sensitivity

	Heath-Jarrow-Morton (HJM) Model
	Building an HJM Forward Rate Tree
	Using HJM Trees in MATLAB

	Pricing and Sensitivity from HJM
	Pricing and the Price Tree
	Using treeviewer to View Instrument Prices Through Time
	HJM Pricing Options Structure
	Calculating Prices and Sensitivities

	Black-Derman-Toy Model (BDT)
	Building a BDT Interest Rate Tree
	Using BDT Trees in MATLAB

	Pricing and Sensitivity from BDT
	Pricing and the Price Tree
	BDT Pricing Options Structure
	Calculating Prices and Sensitivities

	Hedging Portfolios
	Hedging
	Hedging Functions
	Hedging with hedgeopt

	Self-Financing Hedges (hedgeslf)
	Specifying Constraints with ConSet
	Setting Constraints
	Portfolio Rebalancing

	Hedging with Constrained Portfolios
	Example: Fully Hedged Portfolio
	Example: Minimize Portfolio Sensitivities
	Example: Under-Determined System
	Portfolio Constraints with hedgeslf

	Function Reference
	Functions by Category
	bdtprice
	bdtsens
	bdttimespec
	bdttree
	bdtvolspec
	bondbybdt
	bondbyhjm
	bondbyzero
	bushpath
	bushshape
	capbybdt
	capbyhjm
	cfbybdt
	cfbyhjm
	cfbyzero
	classfin
	date2time
	datedisp
	derivget
	derivset
	disc2rate
	fixedbybdt
	fixedbyhjm
	fixedbyzero
	floatbybdt
	floatbyhjm
	floatbyzero
	floorbybdt
	floorbyhjm
	hedgeopt
	hedgeslf
	hjmprice
	hjmsens
	hjmtimespec
	hjmtree
	hjmvolspec
	instadd
	instaddfield
	instbond
	instcap
	instcf
	instdelete
	instdisp
	instfields
	instfind
	instfixed
	instfloat
	instfloor
	instget
	instgetcell
	instlength
	instoptbnd
	instselect
	instsetfield
	instswap
	insttypes
	intenvget
	intenvprice
	intenvsens
	intenvset
	isafin
	mkbush
	mktree
	mmktbybdt
	mmktbyhjm
	optbndbybdt
	optbndbyhjm
	rate2disc
	ratetimes
	swapbybdt
	swapbyhjm
	swapbyzero
	treepath
	treeshape
	treeviewer

	Glossary
	A���
	B���
	C���
	D���
	F���
	G���
	H���
	I���
	L���
	M���
	O���
	P���
	R���
	S���
	T���
	U���
	V���

	Index

