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Preface

-

Overview

Why another introductory textbook on partial differential equations when so
many are already available? The question is rightly asked, and the justification
is in order.

We have found that every year an increasing number of students enter
advanced courses involving boundary value problems, which deal mostly with
numerical techniques, such as finite difference, finite element, or boundary
element methods. At the same time they are introduced to partial differential
equations as graduate students, although a few do manage to acquire some
knowledge of the subject through other courses in engineering and physics.
It is a pity than an opportunity to learn this subject at undergraduate level
is lost, because the students encounter textbooks that are graded strictly for
graduate level courses. Even when the textbooks are written for undergraduate
students, quite often that may not be the case for a majority of students. Most
of these textbooks, though written with quality material, are generally based
on hard analysis. Our textbook, written for a two—semester course, is aimed
at attracting junior and senior undergraduate students, so they get an early
training in the subject and do not miss out on elementary techniques and
simple beauty of the subject. In the pedagogical spirit of moderation we have
avoided the extreme situation where a beginner’s course is so advanced and
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severe that it is likely to break the spirit of even mature students in an attempt
to cover practically everything in the subject. On the other hand, one should
encourage textbooks on this subject which in pace and thought are graded to
undergraduate levels.

Accordingly, the authors have striven to produce a beginner’s textbook
which is mature, challenging, and instructive, and which, at the same time, is
reasonable in its demands. Certainly, it is not claimed that partial differential
equations can become easy and effortless. However, the authors’ combined
classroom experience over a number of years justifies the effort that the subject
can be made reasonably easy to understand despite its complexity, provided
that the student has a thorough background in multivariate calculus and ordi-
nary differential equations. It can impart understanding and profit even to the
undergraduate juniors and senicrs who take it only for one semester before
their graduation. The goal, then, has been to produce a textbook that provides
both the basic concepts and the methods for those who will take it only for a
semester, and a textbook which also provides adequate training and encour-
agement for those who plan to continue their studies in the subject itself or
in applied areas. The distinctive features and the scope of the book can be
determined from the table of contents.

Audience

Most of the material in this textbook, especially the first six chapters, is devel-
oped for a beginner’s course on partial differential equations. These chapters
are designed primarily for junior/senior level undergraduate students in math-
ematics, physics, and engineering who have completed at least the courses on
multivariate calculus and ordinary differential equations, and possess some
working knowledge of Mathematica in case they opt to use its versatility in
symbolic manipulation and graphics capabilities. Adequate material on other
topics from mathematical analysis is provided in the text as and when needed.

The book represents a two semester course. The first six chapters can be
taught at the earliest after the completion of multivariate calculus and ordinary
differential equations, while the remaining part definitely requires some degree
of maturity. Animportant consideration at this point is the need for engineering
and physics majors to learn the subject at an earlier stage. In most cases they
start using partial differential equations and their solutions prior to any formal
training in the subject. As a result, their understanding of applied technical
areas is hampered by the lack of familiarity with the theory and methods of
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partial differential equations. It is our hope that mathematics, physics and
engineering majors will take this course at the beginning of their junior years
and thus learn and enjoy other technical subjects with better understanding.

The book provides a comprehensive and systematic coverage of the basic
theory and applications that can readily be followed by undergraduate students
at the junior or senior level.

Salient Features

This textbook has evolved out of lecture notes developed while teaching the
course to undergraduate seniors, and graduate students in mathematics, engi-
neering, and physics at the University of New Orleans during the past three
years. Much effort has gone into the organization of the subject matter in
order to make the course attractive to students and the textbook easy to read.
Although there is a large number of classical textbooks available on the sub-
ject, there has been a need for an introductory textbook with Mathematica.
This publication, based on classroom experience, fulfills such a need. The
mathematical contents of the book are simple enough for the average student
to understand the methodology and the fine points of theory and techniques of
partial differential equations. The Mathematica component has been presented
in detail to bring out the salient features of different methods. The chapters
present a balanced two-semester course material, which can be tailored to the
needs of different levels of instructions. The following table outlines some
suggested curricula at the three levels.

Elementary/Juniors ~ Beginning Seniors ~ Beginning Graduates

Chapter 1 Chapter 1 Chapter 2

Chapter 3 Chapter 2 Chapter 7

Chapter 4 Chapter 3 Chapter 8

Chapter 5 Chapter 4 Chapter 9

Chapter 6 Chapter 5 Chapter 10
Chapter 6
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Chapter 1 provides some useful definitions, classification of second order
partial differential equations, some well-known equations, and the superposi-
tion principle. The method of characteristics for first and second order partial
differential equations is studied in Chapter 2. This topic is usually ignored in
most of the textbooks, or delayed toward the end of the book. However, it is
our opinion and experience that it helps the students understand the nature of
the solutions and form a guide for higher order partial differential equations,
provided the topic is handled with clarity and ample geometrical presenta-
tions. Mathematica is found to be very useful in achieving this perspective.
An old technique of inverse operators, borrowed from the theory of ordi-
nary differential equations, has been used in Chapter 3 to solve homogeneous
and nonhomogeneous partial differential equations with constant coefficients.
Chapter 4 puts together the concepts of orthogonality, orthonormality, or-
thogonal polynomials, series of orthogonal functions, trigonometric Fourier
series, eigenfunction expansions, and the Bessel functions. This material is
needed in Chapter 5 which deals with the method of separation of variables
for boundary and initial value problems. These problems involve the wave,
heat and Laplace equations, with homogeneous and nonhomogeneous bound-
ary conditions, in the Cartesian, polar cylindrical and spherical geometries.
The integral transforms, especially the Laplace and Fourier transforms, are
presented in Chapter 6. These techniques are powerful tools to solve different
types of boundary value problems with initial conditions.

The advanced material consists of the Green’s functions (Chapter 7);
weighted residual methods based on the theory of the variational calculus
(Chapter 8); perturbation methods (Chapter 9) applied to problems involving
partial differential equations only; and lastly the numerical methods based
on finite differences, where Mathematica unfolds the intricate details and the
beauty of these methods. We have decided not to include other numerical
methods, like the finite element and boundary element methods, which are
now fully developed into individual courses with many fine textbooks.

Although the text is rich in developing the underlying mathematical anal-
ysis with sufficient theorems and proofs, the emphasis is basically on the de-
velopment of methods. A large number of examples in every chapter presents
the techniques that are representative of virtually every concept in the book.
There are over 130 examples solved with meticulous detail. Besides, there
are over 170 exercises, spread chapterwise throughout the book. Unlike most
textbooks, the answers, hints, or sometimes detailed solution of all exercise
are provided on the spot. The authors feel that this will enhance the interest
of both the students and the instructors in the subject.
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Theicon E@ highlights the Mathematica material throughout the book,
and details are provided on the spot as how Mathematica works in the respec-
tive situations, or the reader is directed to the corresponding material on the
web site, which are identified by the chapter number, section number, and/or
example number, with platform—independent presentation.

Besides a general introduction to Mathematica in the very beginning (prior
to Chapter 1), which describes the Mathematica style and important concepts,
Mathematica functions, a glossary of Mathematica functions used in the book
are provided in Appendix C.

Although Mathematica occupies a major portion in the form of notebooks
and packages available on the CRC web server as mentioned below, it opens
up an opportunity to use the symbolic manipulation and graphics facilities.
The textbook is, however, independent of the Mathematica interface and can
be used with the same ease and advantage without Mathematica if this facility
is not available at an institution.

A word of caution: It has been our experience that some students get so
enthralled with Mathematica that they fail to learn analytical techniques and
underlying theory. This is our hope that the instructors will avoid this kind of
entrapment by an excessive infusion of the technology into their introductory
course material.

Mathematica Interface

Mathematica packages,with detailed instructions, are available via the World
Wide Web  http://www.crcpress.com/books/isbn/0-8493-7853-2. In the
sequel this web site is referred to as the CRC web server. Details about the
Mathematica material can be also found in Appendix D toward the end of
the book. This material requires at least Mathematica 2.0. The Mathematica
interface based on Mathematica version 3.0 shall be available on the above
web site soon after this version is marketed.

At times the reader will find that Mathematica code embedded in the text
is a little awkward to read. This is due to the priority for typesetting. Such
situations can be found in long Mathematica sessions presented in the book,
but do not exist in the Mathematica files and Notebooks available on the CRC
web server.



xii PREFACE

Acknowledgments

‘We thank some of our colleagues for their encouragement. The help provided
by our students, and especially by Mr. Pedro M. Jordan, is gratefully acknowl-
edged. We also thank Ms. Fleur F. Simmons for proofreading the final copy
of the manuscript, and to persons at the TechType Works, Inc., Gretna, LA,
for typesetting the manuscript.

Kythe, Puri, and Schiferkotter
New Orleans, Louisiana

Introduction to Mathematica

Introduction

Mathematica is a powerful mathematical programming environment. Math-
ematica provides numeric, symbolic, and graphical tools in order to assist
one in the mathematical aspects of problem solving. Significant uses have
been found for Mathematica in investigating and analyzing problems in engi-
neering, mathematics, and physics, as well as economics and other sciences.
Mathematica can also be used as a high level programming language. Math-
ematica will run on most of the major platforms, from Cray supercomputers
to desktop systems and laptops.

Mathematica is comprised of two parts, called the Front End and the
Kernel. The Kernel is the computation engine, which does all the calculations.
The Front End takes the form of either a notebook interface (advanced Front
End) or a command line interface, allowing the user to communicate with the
Kernel.

Mathematica Notebooks allow one to add notes, explanations, and conclu-
sions to the work in a similar fashion to a word processor. In version 3.0 one
will be able to import and export graphics in most graphic formats. Presen-
tations can be prepared and also documents for electronic publishing. Items
may be cut and pasted within notebooks or between notebooks in order to
reuse or modify text, graphics, and calculations.



xXiv INTRODUCTION TO MATHEMATICA

The Notebook Front End is a file that organizes text, graphics, and cal-
culations in cells. Many different kinds of cells comprise a Mathematica
Notebook. Input cells contain Mathematica commands and may be evaluated
by pressing SHIFT-RETURN or simply RETURN when the cell is selected. Text
cells contain text information and are not evaluated by the Kernel. Graphic
cells contain pictures of plots and graphs.

Cells can be formatted with various attributes, such as the font to use
in displaying text, font size, and color. The cells may be grouped in an
outline fashion in order to organize a document into sections containing titles,
headings, and subheadings.

A Mathematica Notebook can be transferred from one platform to another
without losing information or formatting, though some consideration should
be given in order to successfully port the notebooks. For example, one should
use the Uniform Style command to eliminate font variation within cells when
translating a Macintosh Notebook for Windows. For more information on
this subject, see the note “Notebook Conversion Tips”, which is available
on MathSource (see section below). The Notebooks may also be sent via
electronic mail since the notebooks are ASCII text files.

L paaa

Conventions

Reserved words in the Mathematica programming environment always begin
with a capital letter. The arguments of functions are delimited by brackets ([ ]),
while parentheses are used to effect grouping. Lists, which are the primary
data structure of Mathematica are delimited with braces ({ }) with the elements
of the list separated by commas,

Certain symbols should be pointed out. The multiplication symbol is
represented by  or by a space as in a * b or ab. The symbol = stands for
substitution, as in ¢t = 1, while equal is denoted by ==, as in Equal[z,t] or
T == t yields True only if = and t have the same value. The Mathematica
command Not can be rendered !, as in 2! = ¢, which is True if z and ¢ do not
have the same value. The last input is denoted %, while %n stands for In[n],
which is the input cell number n. Finally, never type the prompt In[n] := that
begins each line. Mathematica automatically puts the In and Out prompts.
Type only the text that follows the In prompt.

GETTING STARTED xv

Getting Started

After the program is running either a command line interface will appear or a
Notebook will appear. To begin, one just types and Mathematica will put the
characters into an input cell. With cursor in the input cell, press the ENTER
key or SHIFT-RETURN keys together to evaluate the input cell and generate
on output cell as shown below. The Mathematica Notebook Intro2Mma.ma,
found on the CRC web server mentioned in the Preface, is a notebook for
new users. The notebook provides explanation and examples in order to get
started.

Inf1]:=
1+1

Outfl]=

In[2]:=

x := Table[Sin[k],{k,1,5}]1//N
x

Out[3]=

{0.841471, 0.909297, 0.14112, -0.756802, —0.958924}
In[3]:=

Plot[Sin[x],{x,0,2Pi}]

Out[4]=
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-Graphics~

Occasionally, it will be necessary to interrupt or abort a Mathematica
calculation. On most systems there is a command key sequence to interrupt
and abort. For GUI (Graphical User Interface) systems, there is amenu choice,
under the Action menu, that will enable an interrupt or abort of a calculation.

File Manipulation

Mathematica can be used for file manipulation on many different computers as
well as non-Unix systems. The advantage is that one never has to learn the file
manipulation commands of different computer systems. A few of the com-
mands for file and directory manipulation follow. See the book Mathematica
(Wolfram, 1991) for other cormands and examples.

Inf4]:=
(* Give the current working directory *)
Directoryl[]

Out[5]=
Macintosh HD:Applications:Mathematica 2.2

In[5]:=

ORDINARY DIFFERENTIAL EQUATIONS xvii

(* List all files in the current working directory )
FileNames (]
Out[6]=
{Mathematica, Mathematica Kernel, MathLive, Packages}
In[6]:=

(x List all packages containing ‘‘Plot’’ in the two lev-
els of subdirectories below the current directory *)

FileNames["*Plot*.m", "%", 2]
In[7]:=

{Packages:Graphics:ContourPlot3D.m,
Packages:Graphics:FilledPlot.m,
Packages:Graphics:ImplicitPlot.m,
Packages:Graphics:MultipleListPlot.m,
Packages:Graphics:ParametricPlot3D.m,

Packages:Graphics:PlotField.m,
Packages:Graphics:PlotField3D.m,
Packages:Miscellaneous:WorldPlot.m,

Packages:ProgrammingExamples:ParametricPlot3D. m}

Ordinary Differential Equations

Differential equations are used in many areas of natural science in order
to study processes that are continuous in space or time. The Mathematica
command DSolve computes solutions to ordinary differential equations, as

well as systems of ordinary differential equations, and also first order partial
differential equations.

DSolve is a collection of algorithms that allows Mathematica to solve a
wide range of equations. Mathematica can solve various types of equations
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including linear homogeneous and inhomogeneous equations, second order
variable coefficient equations, second order non-linear equations, and first or-
der partial differential equations. A numerical approximation may be obtained
using the NDSolve function.

In[8]:=
DSolvely’'[x] == y[x],y[x],x]
Out[7]=

{{yx1 -> EXC[1]}}

A question that very often appears at this stage is, “How can the results
from DSolve be used in other calculations?” The answer is that the output
from Solve, NSolve, DSolve, or NDSolve is a list in which each element
is a list of rules. One can assign a name to the solution and easily check that
the solution is correct.

In[9]:=

flx] := y[x]/.First[%]
f[x]

Out[9]=

EXC[1]
In[10]:=

f'[x] == £[x]
Out[10]=

True

TO THE STUDENT xix

A

To the Instructor

The Mathematics Department at the University of New Orleans realized the
value in using Mathematica for the teaching of Calculus. The authors recog-
nized that the symbolic, numerical, and graphical capabilities of Mathematica
were well suited to augment the teaching of partial differential equations. Sub-
sequently, the first author taught a course on Ordinary Differential Equations
with Mathematica, and the first two authors recently gave a course in Par-
tial Differential Equations in which Mathematica was used. The third author
taught Calculus and Mathematica, and Vector Calculus using Mathematica.

The notebook concept creates a manageable interface for the student, with-
out all the headaches of programming I/O (input and output), and creating
sophisticated graphics, as well as simplifying complicated algebraic expres-
sions. It should be understood by the students that, although Mathematica will
provide the power to perform mathematical tasks, Mathematica should not be
used as a crutch to solve the problems.

We suggest that the instructor work through the examples to discover
what is to be emphasized. We also ask that the instructor realize that only
representative examples are presented in the text material. Other examples
and exercises can be worked out in an analogous fashion. Sometimes the
nature of a problem may require some variation and/or modification of the
given Mathematica code. In all cases the student should be encouraged to
explore possibilities.

It is also suggested that notebooks be downloaded from the World Wide
Web via http://www.crcpress.com/books /isbn/0-8493-7853-2, and be
made such that they cannot be erased or modified. The students should copy
the originals and modify a copy. The instructor should also become aware of
the hardware capabilities in terms of memory and speed. Mathematica is quite
capable of using substantial amounts of memory in evaluating expressions.

I —

To the Student

Currently there is a revolution involving the use of computer technology to
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facilitate the learning of mathematics as well as other sciences. The technol-
ogy, in this case takes the form of Mathematica and the associated Notebooks.
With this technology, the student can easily explore many of the graphical,
numerical, and symbolic aspects of any number of problems. You will find
that using Mathematica and the computer to learn partial differential equations
can be both exciting and frustrating at the same time! A few suggestions will
follow that will help you to maximize your experience.

Although Mathematica is a programming environment, you do not need
to learn how to program Mathematica. You can learn by example and easily
adapt the examples to solve most of the problems. We encourage you to copy,
paste, and edit whenever possible. Besides, if you have a working example
that can be slightly modified to solve your problem, then there will be less
chance for a typing mistake if you let the computer do the typing by cutting
and pasting. We recommend that you first cut and paste, and then modify the
example.

Mathematica is capable of making mistakes. So the student should be able
to verify and check some results by hand. At times, you will have to do the
entire calculation by hand in order to verify that Mathematica is providing you
with the correct answer to your problem.

Some of you will, no doubt, be interested in learning how to program Math-
ematica, or have a question about Mathematica. The moderated newsgroup
comp.soft-sys.math.mathematica is a forum which offers the opportunity
to ask questions and receive answers regarding Mathematica related issues.
Note that the standard rules of list netiquette apply.

MathSource

MathSource is a well-organized and easily accessible online database for
Mathematica materials. For information on MathSource commands, send
an email with Help Intro in the body to mathsource @ wri.com.

Introduction

In many mathematical modeling formulations, partial derivatives are required
to represent physical quantities. These derivatives always involve more than
one independent variable, generally the space variables z, ¥, . . . and the time
variable ¢. Such formulations have one or more dependent variables, which are
the unknown functions of the independent variables. The resulting equations
are called partial differential equations, which, together with the initial
and/or boundary conditions, represent physical phenomena.

1.1. Notation and Definitions

Definitions about order, linearity, homogeneity, and solutions for partial dif-
ferential equations resemble those in the case of ordinary differential equations
and are as follows: The order of a partial differential equation is the same

as the order of the highest derivative appearing in the equation. The partial
2

.. Ou Ou &*u B%u
derivatives —-

0z’ By’ 0z’ dydx and Ay?
Uzg, Ugy and iy, Or p, ¢, 7, s and ¢ respectively. The most general first order
partial differential equation with two independent variables z and y is written
in the form

are sometimes denoted by uy, u,,

F(z,y,u,p,) =0, p=u; ¢=u,. (1.1)

The most general second order partial differential equation is of the form

F(x,y,u,p,q,7,5,1) =0, T=Ugg, 8= Upy, t=1uy. (1.2)
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A partial differential equation is said to be linear if the unknown function
u and all its partial derivatives appear in an algebraically linear form, i.e., of
the first degree. For example, the equation

A11 Uzg + 2012 Ugy + Q22 Uyy + b1 Uz +bouy + cu = f, (1.3)

where the coefficients a11, @12, @22, b1, b2, and ¢ and the function f are func-
tions of x and y, is a second order linear partial differential equation in
the unknown u(z,y). An operator L is a linear differential operator iff
L(au + Bv) = aLu + BLv, where o and § are scalars, and v and v are
any functions with continuous partial derivatives of appropriate order.

A partial differential equation Lu = 0 is said to be homogeneous, whereas
Lu = g, where L is any differential operator and g # 0 is a given function of
the independent variables, is said to be nonhomogeneous. For example,

(z + 2y)uy + z?uy = cos(z? + ¢?)
is a nonhomogeneous first order linear equation, whereas
(x + 2y)uy + z%u, =0

is homogeneous. Thus, a linear homogeneous equation is such that whenever
u is a solution of the equation, then cu is also a solution where c is a constant.
A function u = ¢ is said to be a solution of a partial differential equation if
¢ and its partial derivatives, when substituted for « and its partial derivatives
occurring in the partial differential equation, reduce it to an identity in the
independent variables. The general solution of a partial differential equation
is a linear combination of all solutions of the equation with as many arbitrary
functions as the order of the equation; a partial differential equation of order
k has k arbitrary functions. A particular solution of a partial differential
equation is one that does not contain arbitrary functions or constants.

A partial differential equation is called quasi-linear if it is linear in all
the highest order derivatives of the dependent variable. For example, the most
general form of a quasi—linear second order equation is

A(z,y,u,p, Q)Uzz + B(Z,y,u,p, Q)Uzy + C(Z,Y, 4, P, Q)Uyy+
+ f(z,y,u,p,q) = 0. (1.4)

It is assumed that the reader is familiar with the theory and methods of
ordinary differential equations. Since the subject of partial differential equa-
tions is broad, we shall discuss certain well-known equations of second order
in detail.

1.2. INITTIAL AND BOUNDARY CONDITIONS 3

1.2. Initial and Boundary Conditions

A partial differential equation subject to certain conditions in the form of
initial or boundary conditions is known as an initial value or a boundary value
problem. The initial conditions, also known as Cauchy conditions, are the
values of the unknown function u and an appropriate number of its derivatives
at the initial point.

The boundary conditions fall into the following three categories:

(1) Dirichlet conditions (also known as boundary conditions of the first kind)
are the values of the unknown function u prescribed at each point of the
boundary 9D of the domain D under consideration.

(ii) Neumann conditions (also known as boundary conditions of the second
kind) are the values of the normal derivatives of the unknown function u
prescribed at each point of the boundary 0D.

(iii) Robin conditions (also known as boundary conditions of the third kind,
or mixed boundary conditions) are the values of a linear combination of
the unknown function v and its normal derivative prescribed at each point
of the boundary 9D.

The following problems are examples of each category, respectively:
U =kugy, O0<ax<l,t>0,
u(z,0) = f(z), uz,0)=g(x), 0<z <, (1.5)
u(0,t) =Ty, wu(l,t)=T3, t>0;

U =ktzy, O0<z<l, t>0,
w(z,0) = f(z), wu(z,0)=g(z), 0<x <], (1.6)
uz(0,t) =T1, wug(l,t) =T3, t > 0;

U =ktz,, 0<z<l, t>0,
u(2,0) = £(2), ua(z,0) = glx), 0 <z <1,
u(0,4) + aug(0,£) = 0, (1.7
t>0
u(l,t) + Bus(l,t) =0,
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1.3. Classification of Second Order Equations

If f = 0 in Eq (1.3), the most general form of a second order homogeneous
equation is

Q11 Uzg + 20412 Uy + agz Uyy + bl g + b2 Uy

+cu=0. (1.8)

In order to show a correspondence with an algebraic quadratic equation, we
replace ug by @, uy by B, uzz by a2, uzy by o, and uy, by #2. Then Eq
(1.8) reduces to a second degree polynomial in o and 3:

P(a, B) = a110® + 2a1208 + anf’ + ha+bf+c. (1.9
It is known from analytical geometry and algebra that the polynomial equation
P(a, B) = 0 represents a hyperbola, parabola, or ellipse according as its

discriminant a%z — ay1a92 1S positive, zero, or negative. Thus, Eq (1.8) is
classified as hyperbolic, parabolic, or elliptic according as a?, — ajia =0.

An alternate approach to classify the types of Eq (1.8) is based on the
following theorem:

THEOREM 1.1. The relation ¢(z,y) = C is a general integral of the
ordinary differential equation

all dy2 — 2a12dzx dy + a2 dz? =0 (1.10)
iff u=¢(z,y) isa particular solution of the equation

a11 U2 + 2a12 Uy Uy + a2z uf, =0. (1.11)

PROOF. Since the function u = ¢(z,y) satisfies Eq (1.11), then

2
(4351 (z—z) - 2a12 (—z—z) +a3 =0 (1.12)

holds for all z,y in the domain of definition of u = ¢(z,y) and ¢, # 0.
In order that the relation ¢(x,y) = C be the general solution of Eq
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(1.12), we must show that the function y defined implicitly by ¢(z,y) =
C satisfies Eq (1.12). Suppose that y = f(x, C) is such a function. Then

=~ 5]
| py(, ) y=§(2,C) ’

dr

Hence, in view of Eq (1.11),
dy\? d
a1 (E) —2a12 (i;—j) + ag
2
= [all (—%) - 2042 <—£z> +0,22:| =0.
Y v v=1(z,C)

(1.13)
Thus, y = f(x, C) satisfies Eq (1.12).

Conversely, let ¢(z,y) = C be a general solution of Eq (1.11). We
must show that for each point (z,y)

a1 @2 + 2a12 ¢z by + ags ¢12, =0. (1.14)
If we can show that Eq (1.14) is satisfied for an arbitrary point (z0,Y0),
then Eq (1.14) will be satisfied for all points. Since ¢(x,y) represents
a solution of Eq (1.14), we construct through (zo, ) an integral of Eq

(1.11) where we set ¢(zo, yo) = Cp, and consider the curve y = f(z, Cy).
For all points of this curve we have

dy\?
ay (%) - 2a19 <3—i) + ag
= {all (‘i—z) - 2a12 (—%) + az
Y y

If we set z = x¢ in this equation, we get

= 0.
y=f(z,Co)

a11 (]52(1170, yO) + 2a12 ¢z(x0, yO) ¢y($0,y0) + ag2 ¢)§,(.Zo, yo) =0,

where yo = f(z9,Cp). =

Eq (1.10) or (1.11) is called the characteristic equation of the par-

tial differential equation (1.3) or (1.8); the related integrals are called
characteristics.
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Eq (1.13), regarded as a quadratic equation in dy/dz, yields two

solutions: _
d_y _ a2 + \/d%z — Q110422
dx a11 .

The expression under the radical determines the type of the differential
equation (1.3) or (1.8). Thus, Eq (1.3) or (1.8) is of the hyperbolic,
parabolic, or elliptic type according as a2{2 —a1a22 2 0.

EXAMPLE 1.1. The Tricomi equation uzy + uyy +u = 0, for which
a?,—ana2; = —z, is hyperbolic if z < 0, parabolic if x = 0, and elliptic
fr>0 =

The general form of a linear second order partial differential equa-
tion in n variables z1,...,Z, is

n n
Z iUz, z; + Z biugy, +cu+ f =0, (1.15)
i,j=1 i=1

where the coefficients a;j, by, ¢, and d are real constants or functions of
Z1,...,ZTn. If we assume that the second order partial derivatives of u
are continuous, then the terms involving the highest order derivatives,
i.e., those in the first summation in (1.15), can be arranged such that
aij = aj;. If we consider the quadratic form

E Qi ViVj,
,J

then at a fixed point P® = (z9,...,z)) the coefficients a;; are con-
stants. This quadratic form can always be transformed by an affine
transformation into the canonical form

n
§ 2
Q = ai 'U),,; ’
i=1

where not all o; vanish. Then the partial differential equation (1.15) is

elliptic if all a; have the same sign;
hyperbolic if all a; except one have the same sign;
ultrahyperbolic if two or more «; have different signs; and
parabolic if one or more «; vanish.
For quasi-linear second order partial differential equations, the above

criteria still hold, since only the highest order terms are considered for
this classification.
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EXAMPLE 1.2. For the partial differential equation 4uz, + uyy +
4uy, +4u,, =0in R3, the quadratic form is

40?4+ 2 + dvy v + 403 =0,

which, by setting 2v; = wj, vy + 2v3 = ws, and vo — 2v3 = w3, reduces
to w? + w = 0. Hence the given equation is parabolic because the
coefficient of w3 is zero. =

ExAaMPLE 1.3. Consider uz; — x2yuyy =0,y > 0. Here afg —
a11a92 = :c2y > 0, so the partial differential equation is hyperbolic. =

EXAMPLE 1.4. Consider €*Yuz, + Uy, sinhz + u = 0. Here af, —
a11a22 = —e®¥ sinh z, and the partial differential equation is hyperbolic
if x < 0, parabolic if z = 0, and elliptic if z > 0. =

The classification of a given second order partial differential
equation into its type can be achieved by loading the Mathematica
package EquationType.m, and the Notebook EquationType.ma found
on the CRC web server mentioned in the Preface.

1.4. Some Known Equations

The following equations appear frequently during the analysis of phys-
ical phenomena:

1. Heat equationin R':  u; = kug,, where u denotes the temperature
distribution and & the thermal diffusivity.

2. Wave equation in R':  uy = c*ugy, where u represents the dis-
placement, e.g., of a vibrating string from its equilibrium position, and
¢ the wave speed.

3. Laplace equation in R?2: V2u = u,, + Uyy = 0, where V2 =V .V
denotes the Laplacian.

4. Transport (Traffic) equation:  us + a(u) ugy = 0.
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4a. Transport equation in RY:  w + auz =0, where a is a constant.

5. Berger’s equation in R':  w; + uu, = 0, which arises in the study
of a stream of particles or fluid flow with zero viscosity.

6. Eikonal equation in R?: u?c + uz = 0, which arises in geometric
optics.

7. Poisson’s equation in R*:  V2u = f, also known as the nonhomo-
geneous Laplace equation in R™; it arises in various field theories and
electrostatics.

8. Helmholtz equation in R (V?u + k?) = 0, which arises, e.g., in
underwater scattering.

9. Klein-Gordon equationin R%:  uy —c?V2u+m?u = 0, which arises
in quantum field theory, where m denotes the mass.

10. Telegrapher’s equation in R®:  us —c? 4-au; +m?u = 0, where o is
the damping coefficient; it arises in the study of electrical transmission
in telegraph cables when the current may leak to the ground.

11a. Schrédinger equation in R%:  u; = i[V?u + V(z)u], where V(z),
z € R®, denotes the potential; it arises in quantum mechanics.

11b. Cubic Schrédinger equation in R3:  uy = i[VZu + ou |u|?], where
o = =*1; this is a semilinear version of 1la.

12. Sine-Gordon equationin R®:  uy—c?V2u+m2u = 0, which arises
in quantum field theory.

13. Semilinear heat equation in R®:  u, — kV?u = f(z,t,u).
14a. Semilinear wave equation in R®:  uy — ¢*VZu = f(z,t,u).

14b. Semilinear Klein-Gordon equation in R%:  uy — AV +miu+
~yuP = 0, where v denotes a coupling constant, and p > 2 is an integer.

14c. Dissipative Klein—-Gordon equation in R3  wy —V%u+ ouy +
m2u +uP = 0.
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14d. Dissipative sine-Gordon equation in R®: s — ¢*VZu + auy +
sinu = 0.

15. Semilinear Poisson’s equation in R%:  V?u = f(z,u).

16. Porous medium equation in R%:  w; = k V? (u® Vu), where k > 0
and a > 1 are constants; it is a quasi-linear equation, and arises in the
seepage flows through porous media.

17. Biharmonic equation in R®:  V*u = V%(V*u) = 0; it arises in
elastodynamics.

18. Korteweg de Vries (KdV) equation in R':  u; + cuug + Ugzy = 0,
which arises in shallow water waves.

1
19a. Euler’s equations in R®:  w; + (u- V)u + ;Vp = 0, where u
denotes the velocity field, and p the pressure.

1
19b. Navier-Stokes equations in R®:  wu; + (u- V)u+ =Vp = vV?u,

where v denotes the kinematic viscosity of a fluid.

20. Maxwell’s equations in R®*: E;, -V xH =0 H; +V x E = 0,
where E and H denotes the electric and the magnetic field, respectively;
they are a system of six equations in six unknowns.

Origins of these and other equations of mathematical physics are
related to some interesting physical problems. We shall present deriva-
tion of some of them as examples which will also bring out certain
aspects of mathematical modeling of these problems.

EXAMPLE 1.5. (One-dimensional wave equation for vibrations of
a string) Consider a stretched string of length ! which is fixed at both
ends. It is assumed that (i) the string is thin and flexible, i.e., it offers
no resistance to change of form except a change in length, and (ii) the
tension Tp in the string is much larger than the force due to gravity
acting on it so that the latter can be neglected. Let the string in its
equilibrium state be situated along the z—axis. Let u(z,t) denote the
displacement of the string at time ¢ from its equilibrium position. The
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shape of the string at a fixed ¢ is represented in Fig. 1.1.

T(xy)

Y
S

Fig. 1.1. Vibrations of a string.

Let us further assume that the vibrations are small, which implies
that the displacement u(z,t) and its derivative u, are small enough
so that their squares and products can be neglected. As a result of
vibrations, let a segment (z1,x2) of the string be deformed into the

segment PQ). Then at time ¢ the length of the arc IS\Q is given by
Ty -
/ V1+u2de = zy — 2, (1.16)
z

which simply means that under small vibrations the length of the seg-
ment of the string does not change. By Hooke’s law, the tension T
at each point in the string is independent of ¢, i.e., during the motion
of the string any change in T' can be neglected in comparison with
the tension in equilibrium. We shall now show that the tension T is
also independent of xz. In fact, it is evident from Fig. 1.1 that the
z—component of the resulting tension at the points P and @ must be
in equilibrium, i.e.,

T(z1)cosa(zy) — T'(x2) cosa(zz) =0,

where a(z) denotes the angle between the tangent at a point = and the
positive x—axis at time ¢. Since the vibrations are small,

1 1
V1+tan?a(z) /1+u2

~

cosa(z) =

bl

which implies that T(z;) ~ T(x2). Since z; and z2 are arbitrary, the
magnitude of T is independent of z. Hence, if Ty denotes the tension
at equilibrium and T the tension in the vibrating string, then T = Tj
for all z and t¢.

Now, the sum of the components of tension T'(z1) at P and T'(x2)

1.4. SOME KNOWN EQUATIONS 11

at Q along the u-axis must be zero, i.e.,

0 = To [sina(z2) — sin a(z1)]

=T [ tan a(xsz) B tan a(xy)

|V1+tan?a(z;) /1 +tan?a(z;)

u u ou ou

=Ty T2 — 1 ~Ty | — - —

| V1+uZ, \/1+17?;:| 0[8:152 8:51} (1.17)

[ Ou Ju
=Ty | — -

0 _8(1) T=T2 oz z:zlJ
T2 82u

=N i

Jaxy

using (1.16). Let g(z,t) denote the external force per unit mass acting
on the string along the u—axis. Then the component of g(z,t) acting

on the segment PQ along the u-axis is given by

/ 9(z,t) dx. (1.18)
T1
Let p(z) be t}f linear density of the string. Then the inertial force on
the segment PQ is

] a2u
—/ p(z) Et_2dx' (1.19)

z1

Hence the sum of the components (1.17), (1.18), and (1.19) must be
Zero, i.e.,

2 5%y 8%u
T - —_ —_— —
/zl [ 0522 +9(z,t) — p(z) BtQ] dxr =0. (1.20)
Since x; and ; are arbitrary, it follows from (1.20) that the integrand
must be zero, which gives

8%u

( T 8%u
p ”)aTZ 052 T9(z,1). (1.21)

This represents the partial differential equation for the vibrations of
the string.

If p = const, then (1.21) reduces to

Pu 0%
52 = % g2 H (@), (1.22)
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where a = \/To/p, f(z,t) = g(x,t)/p. In the absence of external forces,
Eq (1.22) becomes
0%u 2 0%y
2~ " g2
which is the wave equation for free vibrations (oscillations) of the
string. =

(1.23)

A @ Area in equilibrium
u A’ Deformed area

Fig. 1.2. Vibrations of a membrane.

EXAMPLE 1.6. (Two-dimensional wave equation for oscillations of
a membrane) Suppose that a membrane which is a perfectly flexible
thin stretched sheet occupies a region D in the zy-plane in its equi-
librium state. Further, let the membrane be subjected to a uniform
tension T' applied on its boundary 8. This means that the force act-
ing on an element ds of the boundary 8D is equal to T'ds. We shall
examine the transverse oscillations of the membrane, which move per-
pendicular to the zy-plane at each point in the direction of the u-axis.
Thus, the displacement u at a point (z,y) € D is a function of z,y and
t. Assuming that the oscillations are small, i.e., the functions u, u,, and
uy are so small that their squares and products can be neglected, let A
denote an arbitrary area of the membrane (A € D) situated in equilib-
rium in the zy-plane and bounded by a curve L. After the membrane
is displaced from its equilibrium position, let the area A be deformed
into an area A’ bounded by a curve L’ (see Fig. 1.2.), which at time ¢
is defined by

A’://,/l—%ug—%ugdxdyz// dzdy = A.
A A

Thus we can neglect the change in A during the oscillations, and the
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tension in the membrane remains constant and equal to its initial value
T.

Note that the tension T which is perpendicular to the boundary L’
lies at all points in the tangent plane to the surface area A’. Let ds’
denote an element of the boundary L’. Then the tension acting on this

u .
element is T'ds’, and —— = cosa, where « is the angle between the

n
tension vector T and the u-axis, and n is the outward normal to the
boundary L. Then the component of the tension acting on the element

du
ds’ in the direction of the u—axis is T— ds’. Hence the component of

n
the resultant force acting on the boundary L’ along the u-axis is
T u ds' =T Ou ds
L on 6774

L
_f/ Ou | 0%
—-/A 3z2+6y2 dz dy,

by Green'’s identity, where, in view of small oscillations, we have taken
ds’ ~ ds, and replaced L’ by L. Let g(z,y,t) denote an external force
per unit area acting on the membrane along the u—axis. Then the total
force acting on the area A’ is given by

//A g(z,y,t) dr dy. (1.25)

Let p(z,y,t) be the surface density of the membrane. Then the inertial
force at all times ¢ is

(1.24)

0%u
— . 1.26
//A Py, t) 57 dody (1.26)

Since the sum of the inertial force and the total force is equal and
opposite to the resultant of the tension on the boundary L', we find
from (1.24)—(1.26) that

&%y 0%u 9%
//A [P(x,y,t)w =T (51:—2 + T?Jz) - 9($,y7t)] drdy = 0,

or, since 4 is arbitrary,
%u (0%u  O%u
pleyt) gz =T e 8_y2) +9(z,y,t). (1.27)
This is the partial differential equation for small oscillations of a mem-

brane. If the density p = const, then Eq (1.27) in the absence of
external forces reduces to

8%y 8% 8%
w:a? (5:1:_2_+_ 8_y2,>’ a = ,/T/p_- (128)
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EXAMPLE 1.7. (Heat transfer equation for a uniform isotropic body)
Let u(z,y, z,t) denote the temperature of a uniform isotropic body at a
point (z,y, z) and time ¢. If different parts of the body are at different
temperatures, then heat transfer takes place within the body. Consider
a small surface element 65 of a surface S drawn inside the body. Under
the assumption that the amount of heat §Q passing through the ele-
ment 45 in time 6t is proportional to 6t, §S, and the normal derivative

4 e get
—, we ge
on &

o
5Q = —k‘—of% 88 6t = —k 68 6t Vyu, (1.29)

where £ is the thermal conductivity of the body which depends only on
the coordinates (x, y, 2) of points in the body but is independent of the
direction of the normal to the surface S, and V,, denotes the gradient
in the direction of the outward normal to the surface element 65. Let
Q denote the heat flux which is the amount of heat passing through
the unit surface area per unit time. Then Eq (1.29) implies that

Ou
~k—.
on
Now, consider an arbitrary volume V bounded by a smooth surface

S. Then, in view of (1.30), the amount of heat entering through the
surface S in the time interval [t1,to] is

QlZ—/t:2 dt//sk(x,y,z)%ds
/tltz///vv-(kvu) av,

by divergence theorem, where n is the inward normal to the surface
S. Let 6§V denote a volume element. The amount of heat required to
change the temperature of this volume element by §u in time 6t is

Q- (1.30)

(1.31)

'§Q2 = [u(a:,y,z,t + 6t) - u(xayﬁzat)] P(x,y» Z) 6Vv (132)

where ¢(z,y, z) and p(z,y, 2) are the specific heat and density of the
body, respectively. Integrating (1.31) we find that the amount of heat
required to change the temperature of the volume V by éu = u(z, y, z,t+
6t) — u(z,y, z,t) is given by

Q2 = // v [U(xayv Z, t+ 5t) - U,(m, y'z7t)] deV

t2 Ju
= dt/// 20— dV.
[1 v ot

(1.33)
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We shall now assume that the body contains heat sources, and let
g(z,y, z,t) denote the density of such heat sources. Then the amount
of heat released by or absorbed in V' in the time interval [t,t5] is

Q3= /: dt ///v g9(z,y,z,t)dV. (1.34)

Since Q2 = Q1 + Q3, we find from (1.31)-(1.34) that

t2
/ dt /// [cp@ -V (kVu) — g(x,y,z,t)] dV =0,
t1 \% 6t

or, since the volume V' and the time interval [t;, ;] are arbitrary,

8
cpa—ztt =V (kVu) + g(z,y, 2,t)

15, ou o [ ou 0 Ou
3z ( 6x) + By \k8y> + Ep <k8z> + g9(z,y, 2,t),
(1.35)

which is the required heat transfer equation for a uniform isotropic
body. If ¢, p, and k are constant, Eq (1.35) becomes

QE = a2 62’& + 5;2u 32u :
ot - “ o2 T ap Taz) t@u ), (1.36)

where a = \/Z7c_p is known as the thermal diffusivity, and f = g/cp
denotes the heat source (sink) function. In the absence of heat sources
(ie., when g(z,y,2,t) = 0 ), Eq (1.36) reduces to the homogeneous
heat conduction equation

ou 22 2 (0%u  B%u %

—=aVu=0’ 2=+ — + — ). :

Bt <8x2 ozt az‘z) (1.37)
In the case when the temperature distribution throughout the body
reaches the steady state, i.e., when the temperature becomes indepen-
dent of time, Eq (1.37) reduces to the Laplace equation

% 0%u By

V= 4 —= + — = 0.
8z Oy? + 922 (1.38)
. For the derivation of the heat conduction equation in R! x Rt con-
sider a laterally insulated rod of uniform cross section with area A and
constant density p, constant specific heat ¢, and constant thermal con-
ductivity k. We shall assume that the temperature u(x, t) is a function
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of z and ¢ only, ¢ > 0, and use the law of conservation of energy to
derive the heat conduction equation. Consider a segment PQ of the
rod, with coordinates z and z + Az (Fig. 1.3). Let R denote the rate
at which the heat is accumulating on the segment PQ. Then, assuming
that there are no heat sources or sinks in the rod, R is given by

d¢€.

R /"”AI depAu(€, t)
&T 8t

O

| |
Q 1 I
] T
x x+Ax

Fig. 1.3. Segment PQ on a thin uniform rod.

Note that R can also be evaluated as the total flux across the boundaries
of the segment PQ, which gives R = kA[u,(z + Az, t) —uz(x,t)]. Now,
using the mean-value theorem for integrals, we get

cpAuy(z + hAz,t) Az = kA[uz(z + Az, t) — ug(z,t)], 0<h<1.

After dividing both sides by cpAAz and taking the limit as Az — 0,
we get
ui(z,t) = a® uza(z, t). =

EXAMPLE 1.8. (One-dimensional traffic low problem) Let p(z,t)
denote the traffic density which represents the number of vehicles per
mile at time t at an arbitrary yet fixed position z on a roadway. Let
q(z,t) denote the traffic flow which is a measure of number of vehicles
per hour passing a fixed position z. Consider a section of the roadway
bounded by the positions z = z; and z = =5, and assume that there are

no exits or entrances between these two positions. Then the number N
z2

of vehicles in the segment [z7,x2] is given by N = / plz,t)dt. The

1
rate of change of N with respect to time ¢ is equal to the difference
between the number of vehicles per unit time entering the position at
z =z and that leaving at the position z = x,, i.e.,

ON 9 [*
Fra 55/ plz,t)dz = q(x1,t) — q(z2, t). (1.39)

T1
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As in the case of heat conduction (Example 1.7), Eq (1.39), which is
also known as the integral representation of conservation of vehicles,
can be written as

0 o [

2
t) — =— — dr = — t
dlont) ~ae) =~ [ et =5 [ oteda

which after taking the partial derivative /0t inside the last integral
and noting that z; and z; are arbitrary leads to the required partial
differential equation

Op Oq

— 4+ == =0. 1.40

ot Oz (1.40)
Let u(z,t) denote the velocity of a vehicle. Then, since the number
of vehicles per hour passing a given position is equal to the density of
vehicles times the velocity of vehicles, we obtain

Q(m, t) = p(:l:, t)u(xa t)'

If we assume that the velocity u depends only on the density p, u =
u(p), i.e., the vehicles slow down as the traffic density increases, then
Ou
8p
the traffic density, i.e., ¢ = g(p), and Eq (1.40) then reduces to

< 0. This inequality implies that the traffic low depends only on

dp i aq_a_p —0
ot dpdx
or 6 a
9P L (2P =
5 +c(p % 0, (1.41)

where c(p) = dq/dp. Eq (1.41) is a first order homogeneous quasi-
linear partial differential equation. =

1.5. Superposition Principle

Let L denote a linear differential operator of any order and any kind.
The superposition principles for homogeneous and non-homogeneous

linear differential equations are represented by the following two theo-
rems:
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THEOREM 1.2. Let Lu = 0 be a differential equation. Suppose u,
and uz are two linearly independent solutions. Then ciu + cous is also
a solution.

PROOF. By hypotheses Lu; 3 = 0. By definition L(ciu; + coup) =
clLul + CzL’LLQ =0. n

THEOREM 1.3. If Lu = >"7 ¢;f; be a non-homogeneous linear dif-
ferential equation and if Lgr, = fi, then YT cigi is a solution of the
above differential equation.

PROOF. L3 Teigi = Y T cilgs = Y7 ¢ifi;. Thus 3.7 cig; satisfies
the differential equation. =

It is obvious from these two principles that if v is a solution of an
equation Lu = 0 and if F a solution of Lu = f, then v + F is also a
solution of Lu = f. A generalized superposition principle is defined as
follows:

THEOREM 1.4. If the functions u;, i = 1,2,..., are separately the

solutions of a linear homogeneous differential equation L(u) = 0, then
(e o)

the series u = ZC’i u; 15 also a solution of the differential equation,
i=1

provided that the derivatives appearing in L(u) can be differentiated

term-by—term.

PROOF. In fact, if the derivatives of u appearing in L(u) = 0 can
be differentiated term—by-term, we have

o™y _ ic 8”ui
dxmotn—m < 7 * ogmotn—m’
i=

and since the equation L(u) = 0 is linear and a convergent series can
be added term-by-term, we can write

i=1 i=1
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The sufficient condition for term-by-term differentiability is the uni-

e 0"y
form convergence of the series E Cim—————. n
= oxmotn—m

1.6. Exercises

Classify the partial differential equation as hyperbolic, parabolic, or
elliptic:

1.1, wpe — 3ugy +2uy, =0 ANs. Hyperbolic
1.2. Qugy — Tugy + 3uyy =0 ANs. Hyperbolic
1.3, gz +a’uy,, =0,a#0 ANs. Elliptic
1.4.  a?ug, + 20Uzy +Uyy =0, a #0 ANs. Parabolic
1.5. 4duy — 12u4 +9ug, =0 ANs. Parabolic
1.6.  2uz +3uy =0 ANs. Hyperbolic
1.7, gy + 2ugy + Suyy =0 ANs. Elliptic
1.8. BUzy — 2Ugy — SUyy =0 ANs. Hyperbolic

For what values of z and y are the following partial differential
equations hyperbolic, parabolic, or elliptic?

1.9, upz — zuy, =0.
ANs. Hyperbolic for « > 0, parabolic for z = 0, elliptic for z < 0.

1.10. uzy — 27Ugy + yuy, = 0.
ANs. Hyperbolic for 22 > y, parabolic for 22 = y, elliptic for
% < y.

111 gy + 22ugy + (1 — y?)u,, = 0.
ANs. Hyperbolic for % +y? > 1, parabolic for 22 + y2 = 1, elliptic
for 2 + 42 < 1.

1.12. zu,, + TUzy + YUyy = 0.
ANs. Hyperbolic for 22 > 4zy, parabolic for 22 = 4xy, elliptic for
z? < 4xy.

1.13. (14 y*)uge + (1 + 2%)uy, = 0.
ANs. Elliptic for all z and y.
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1.14. ugy + Tugy + Yuyy — TYUuy = 0.
ANs. Hyperbolic for z2 > 4y, parabolic for z2 = 4y, elliptic for
2
T4 < 4y.

1.15. ugq + z?uy, = 0.
ANs. Elliptic for = # 0.

1.16. ugy — 2sinx ugy — cos? Tzuy =0.
AnNs. Hyperbolic for all z.

L.17. yugze + uyy = 0.
Ans. (Tricomi) Hyperbolic for y < 0, parabolic for y = 0, and
elliptic for y > 0.

1.18. uzy — 2coszuzy — (34 sin? T) Uyy — YUy = 0.
ANs. Hyperbolic for all z.

1.19. (1 + 2%)uzy + (1 + Y2 uyy + Tug + yuy = 0.
Ans. Elliptic for all z and .

1.20. :c2um — y2uw =0z >0,y >0.
ANs. Hyperbolic.

1.21. y?u,, + 2%u,, =0, £ >0,y > 0.
Ans. Elliptic.

1.22. 2%uy, + 2TYugy + y2uyy = 0.
ANS. Parabolic for all nonzero z and y.

1.28. (1 = 2)Upy —Uyy —uz; =0, 0 < z < 1.
Ans. Hyperbolic for < 1, parabolic for = 1, and elliptic for
z > 1.

1.24. 2%u,, — y2uyy - 2yuy, = 0.
ANs. Hyperbolic for all nonzero x and y.

1.25. xzum — 2TYugy + y2uyy + Tug + yuy = 0.
ANs. Parabolic for all nonzero z and y.
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1
1.26. uzz — Yuyy — FUy = 0.
ANs. Hyperbolic for y > 0, parabolic for y = 0, and elliptic for
y <0

All of the above exercises are solved in the Mathematica Note-
book EquationType.ma found on the CRC web server mentioned in the
Preface.
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Method of Characteristics

It is customary in modern texts on partial differential equations either to com-
pletely ignore first order partial differential equations or postpone their dis-
cussion to a much later chapter. Since first order partial differential equations
are important from both physical and geometrical standpoints, their study is
essential to understand the nature of solutions and form a guide to the solutions
of higher order partial differential equations.

First Order Equations

First order partial differential equations occur in a variety of situations. Some
of the common ones are traffic flow, conservation laws, Mainardi~Codazzi
relations in differential geometry, and shock waves. In order to solve first order
linear, quasi-linear, or nonlinear partial differential equations, the method of
characteristics is very useful. This method is explained in the next six sections.
Second order equations, confined to linear equations, are discussed in §2.7.
We shall limit our discussion to problems in R?. An extension to higher
dimensions, though routine, is more complicated.

2.1. Linear Equations with Constant Coefficients

The most general form of first order linear partial differential equations with
constant coefficients is

aug +buy +ku= f(z,v). (2.1)
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If u(z, y) is a solution of (2.1) then
du = uzdzr + uydy. (2.2)
Comparing (2.1) and (2.2) one gets the auxiliary system of equations

dx_@!_ du

a b flx,y)—ku (2:3)

The solution of the left pair is bz — ay = c. The other pair

d_a: _ du
a f(x,y) — ku

can be reduced to an ordinary linear differential equation with u as the de-
pendent variable and z as the independent variable. This equation is given
by

duv  ku  f(z,(bz —c)/a)

——=" Y

dr a a

the integrating factor for which is 5%/,

This observation leads us to introduce a new dependent variable v =
uek®/e, reducing Eq (2.1) to
avs +bvy = f(z,y)eb/* = g(z,y).
Note that a reduction can also be obtained by substituting v = u e*¥/®, This
substitution will lead to av, +bv, = f(z,y) €*¥/®_ Thus, we need to consider
only the formal reduced form

auz +buy = f(z,y). (2.4)
The auxiliary system of equations for Eq (2.4) is
d_x _dy  du

a b f(zy)

(2.5)

. T dy . . .
The solution of - = Y is bx — ay = ¢, which when solved for z gives

b
ay+c . . . d .
e= ; a substitution of this value into 2 = _du_ yields

b b flz,y)
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which reduces to du = F(y, c¢)dy. Its solution is u = G(y,¢) + c1, where
Gy(y,¢) = F(y,c). Thus, the general solution is obtained by replacing ¢, by
¢(c) and c by bz — ay, thereby yielding

u(z,y) = Gy, br — ay) + ¢(bx — ay).

Egs (2.3) are known as the equations of the characteristics. The sys-
tem (2.3) has two independent equations, with two solutions of the form
F(z,y,u) = 0 and G(z,y,u) = 0. Each of these solutions represents a
family of surfaces. The curves of intersection of these two families of sur-
faces are known as the characteristics of the partial differential equation.
The projections of these curves in the (z, y)—plane are called the base char-
acteristics, which are often called characteristics for brevity when there is no
ambiguity. The general solution represents a family of surfaces, which are
called integral surfaces.

Thus, the equation bxr — ay = c represents a family of planes. The
intersection of any one of these planes with an integral surface is a curve
whose projection in the (z, y)-plane will again be given by bx — ay = ¢, but
this time this equation represents a straight line and is the base characteristic.
The solution » on a base characteristic bx — ay = c is therefore given by
u = G(y, ¢) + c1, and the general solution is the same as above.

An alternate procedure is to introduce a new set of coordinates
E=br—ay, and 7 =br+ ay. (2.6)
This substitution reduces Eq (2.4) to

f({n+€)/2b,(n—§)/2a)
2ab ’

un = F(&,m), F(&n) = (2.7)

and the solution of (2.6) is

u(€,n) = ¢(€) + G(&n), (2.8)
where G,(€,n) = F(&,n). If f(z,y) = 0 in Eq (2.4), then the auxiliary
system of equations is dz/a = dy/b, du = 0. The solutions of these equations

are bx —ay = ¢, and u = ¢; = ¢(c) = ¢(bx — ay). This procedure can also
be regarded as a problem in rotation of axes (see Exercise 2.22).

Note that Eq (2.8) is

u(z,y) = ¢(bx — ay) + G (bx — ay, bz + ay) .
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If an initial condition u(z, ¢¥(z)) = p(x) is prescribed, then
u(z,9(x)) = p(z) = ¢(bx — a(z)) + G(bz — atp(z), bz + ay(x))

can be used to determine ¢(z) uniquely. Thus, the existence of a unique
solution u for the partial differential equation (2.1) subject to the above initial
condition is established. (For the existence and uniqueness of the solution,
see end of §2.7.)

ExaAMPLE 2.1. Consider
2ug — 3uy = cos .

The auxiliary system of equations is

'Cll‘he first solution is then given by 3z + 2y = ¢. The other equation is
ac i
5 = 2 1ts solution is u = c1 + - sinz. Noting that ¢; = f(c¢) and

cos T
3z + 2y = ¢, the general solution becomes

1.
u= f(3z + 2y) + 5 sina.

Alternately, the substitution & = 3z + 2y, n = 3z — 2y reduces the
equation to

ty = 75 cos (fgn),
which yields
1 . +7
u= f(€§)+ §s1n(—£—6—7).

On replacing £ and 7 by their values in z and y, one gets the above
general solution.

In this problem the characteristics are given by the curves of in-
tlersection of the planes 3z + 2y = ¢ and the integral surfaces u =

3 sinz + c;. The projections of these curves on the (x,y)-plane v = 0
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are the base characteristics. Graphs of these characteristics are shown
in Fig. 2.1 forc=1 and ¢; = 0.

characteristic

plane 3x+2y=1

integral surface

plane 3x+2y=1

Fig. 2.1.

If a linear partial differential equation is of the form P(z,y)u, +
Q(z,y)uy = 0, then the base characteristics and the characteristics
are the same curves. We will now develop solutions for some specific
conditions prescribed on initial curves. For example, if u = 1 on the
initial curve y = 0, then

’

1(. .
u=1+§ sinz — sin

3z + 2y

3
which is an integral surface denoted in Fig. 2.2 by S;. Also, if u = z2
on the initial curve y = z, then

1 Bz +2y)?2 1, 3x+2y
u—2s1nm+——25———2—sm—5—,

which is another integral surface denoted by S,. The graphs of the
integral surfaces S; and S, and the characteristics are shown in Fig.
2.2. Note that an initial curve (or initial line) is a curve where an initial
condition on u is prescribed. =

A complete Mathematica solution for this example and the
individual plots of the integral surfaces S; and S, are available in the
Mathematica Notebook Example2.1.ma.

It is obvious that the solution of a first order linear partial differ-
ential equation represents a surface and contains an arbitrary function
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and not an arbitrary constant. Clearly, the solution represents a fam-
ily of surfaces. A unique surface is obtained if u is prescribed on an
initial curve, which is not a characteristic. The reader can observe that
the existence and uniqueness of the solution of a first order equation
are closely related to the existence and uniqueness of the solutions of
the auxiliary system (2.5) of ordinary differential equations (see end of
§2.7).

characteristics

EXAMPLE 2.2. Consider
dug +uy = 2%y.
The auxiliary system of equations is

o _dy_ du

4 1 z2y
The first solution is then given by z—4y = ¢, and the solution, following
the method of the previous example, is

3z — 4ead 3z — 4caB
A

On replacing ¢ by = — 4y, one gets the general solution

(N
w
<

zt — A(z — 4y)a3
48

=flz—dy) - = +

u=f(a:—4y)+3

[
Qo
w
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2.2. Linear Equations with Variable Coefficients

The general form of first order linear partial differential equations with
variable coefficients is

P(z,y)us + Q(z,y)uy + f(z,y)u = R(z, ). (2.9)

Once again our attempt is to eliminate the term in v from Eq (2.9).
This can be accomplished by substituting

U= Ue"g(zﬁ‘/)’
where £(z,y) satisfies the equation

P(z,y)&(x,y) + Q(z,y) &(2,9) = f(z,v).
Hence, Eq (2.9) is formally reduced to

P(:L', y)u:c + Q(xvy)uy = JR(xi y)’ (210)

where P, Q, R in (2.10) are not the same as in (2.9). The method for
solving these equations, known as Lagrange’s method, is essentially the
same as in the previous section except that now the auxiliary system
of equations is

dr _dy du

P Q R’
which becomes more complicated. This system has two solutions of the
type

(2.11)

9(z,y,u) =c1, and h(z,y,u) = ¢,

representing two families of surfaces. The curves of intersection of these
surfaces are called characteristics of the equation. The projection of a
in the plane u = 0 is called a base characteristic.

If R(z,y) = 0, then there is no difference in the base characteris-
tics and the characteristics. Frequently the word base is omitted from
the term base characteristic. These characteristics are clearly a one—
parameter family of curves. In some cases it is convenient to introduce
& parameter, say s, in the auxiliary system of equations, which are then
expressed in the form

dz _dy du

F-o =g =% (2.12)
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ExAMPLE 2.3. Consider
3ug +4uy + 14(z + y)u = 6z e (@tV)*,
The first step is to find a function {(z,y) which satisfies the equation
3¢ +4¢, = 14(z + y).

A particular solution of this equation is ¢(z,y) = (z + y)2. Then the
substitution u = ve~¢(®¥ reduces the given equation to

3uy + 4uy = 6z,
with auxiliary equations
de _dy _ d_v
3 4 6z
. dx dv
The solution of d_x = (i—y is 4 — 3y = c1, and solution of 3 = 6z

is v = 22 + c3. Now, as before, v can easily be found to be v =
2?2 4 f(4z — 3y). Let us examine these solutions a little more. If we
write ¢; = 4o —3y = g(z,y,v) and ¢; = v—x% = h(z,y,v), and consider
an expression of the form F(g, h) = 0, then
Fy = Fy(9z + goVs) + Fr(he + hyvg) =0,
which reduces to
4Fy + (vy — 22)Fy = 0.
Similarly the expression for Fy yields
—3Fg +v, F, =0.
Eliminating F, and F}, from these two equations, one gets

4 vy, —2x

det _3 v

= O’
ie.,
3vg + 4vuy = 6.
Thus, F(g,h) = 0 is also a solution of the differential equation. Of

course, we have to replace v by u e@+¥)* to obtain the solution of the
original problem. =

Solutions of the type F(g,h) = 0 or ¢ = F(h) or h = F(g) are
known as general solutions.

DEFINITION 2.1. Two C! functions g and h are said to be func-
tionally independent if Vg x Vh # 0.

We shall state an important theorem.
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THEOREM 2.1. Let g = ¢; and h = ¢y be any two functionally
independent solutions of Eq (2.9). Then g = F(h), or h = F(g), or
F(g,h) = 0 represents the general solution of Eq (2.9).

COROLLARY 2.1. If g = ¢; is a solution of Eq (2.9), then F(g) =0
is also a solution of Eq (2.9).

EXAMPLE 2.4. Let us further consider the reduced equation 3v, +
4v, = 6z from Example 2.3. The auxiliary equations in the parametric
form are

de dy dv
e S
3 4 6z
The solutions are
z=3s+c;, and y=4s+cy, (2.13)
and, therefore,
v = 9s% + 6¢;s + c3. (2.14)

dv
The last solution is obtained by first substituting z = 3s+c; in — = ds.

The values of z,y, v in terms of s represent the parametric forn:i' of the
equation of the characteristics of the given partial differential equation.
In order to find a specific characteristic, we need to have an initial
condition, e.g., £ = g, ¥ = Yo, U = vy at § = sg. By eliminating s from
(2.13) and (2.14) we get

dr —3y=4c; —3c;=a and v=z?—-cl+cz=2%4+4,

from which we get
v =%+ f(4z — 3y). »

We note here that, except for singular cases, a unique characteristic
will, in general, pass through a point in space. Thus, if a continuous
initial curve is prescribed, then a unique characteristic will pass through
every point of the initial curve. The locus of these characteristics will
form the integral surface. Hence, if the initial curve is a characteristic
itself, then the existence of an integral surface cannot be guaranteed
(see end of §2.7).
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EXAMPLE 2.5. Consider
uz +euy =y, u0,y)=1+y.
The auxiliary system of equations is

o _d_ & (2.15)
1 e* Y
Thus, the solutions of the auxiliary system are given by dy = e”dz,
which yields y = €® +¢. From the second set of Eq (2.15) one gets du =
y dz which results in du = (e” + ¢) dz. Its solution is v = e + cz + ¢y;
hence

u=e"+cr+ f(c), or u=e"+(y—e")x+ fly—e€®).

Now, in view of the initial condition, u(0,y) =1+ f(y —1) =1+ y,
which yields f(y) = y + 1. Hence the solution is

uz,y) =e*+y—-e")Jr+y—e+1l=14+y+ay —ze*.n

The plots of the surfaces y = e* + c and u = e* + (y — €*)z
for ¢ =1 are available in the Mathematica Notebook Example2.5.ma.
The intersection of these surfaces is a characteristic.

ExaMPLE 2.6. Consider

2yus +uy =z, ’U,(O, y) = f(y)
The auxiliary system of equations is

dr dy du

2 1 z’
In this example, a slightly different procedure will be demonstrated. We
will first find the equation of the characteristics through an arbitrary

point (zo,yo) on the integral surface. The left pair in the auxiliary
equations is dz = 2y dy, whose solution is the family of surfaces

S: z=vy*+c
When a surface S; passes through the point (zg,y0), its equation

becomes z = y? + zy — y2. If the initial curve is z = 0, where
u(0,y) = f(y), then the value of y on the initial curve is given by
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gjg = y(z, — Zg, Where {o is the value of y on the integral surface through
(zo,y0) at z = 0. The right pair of auxiliary equations is du = z dy,
which also represents a family of surfaces. Let us denote the integral
surface through (0, §o) by S2. The curve of intersection of S; and S, is
a characteristic. The differential equation of this characteristic is given
by du = (y* + zo — y2) dy. Its solution is

Y 2
U= ?+(xo—y0)y+c1.

At z =0,
%

3

and substituting the value of 3o, one gets

u(0,90) = (zo — ¥3) o + c1 = f(%o),

2
e = F((W8 — z0)/?) + g(yg — 3)*/2.

Using this value of ¢; in u, the value of u at (zg,yo) is given by

3/2

2 2
u(zo, Yo) = §(y§ —x0)** §y8 + ToYo + f((yg - D50)1/2)~

Since (2o, yo) is an arbitrary point, the expression for u{z¢, yo) is gen-
eralized to

2 , 2 i
u@y) =30 -2 = 3" oy + (07 - 0)). .

A\ EXAMPLE 2.7. Consider
(2 +29)us + (y — 2)uy = .
The auxiliary equations are

dz~_ dy dv
w+2y_y—:c Y

The first two equations can be expressed as

dy y-z
dr ~ z+2y
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This is a homogeneous ordinary differential equation of the first order.
A standard substitution for such problems is y = vz, which leads to a
first order ordinary differential equation with separable variables

(I+2v)dv _  dx
1+202 gz’

This equation can be solved to give

V2tan~! i;ﬂ +In(z? 4 2¢°) = ¢;.

The other solution can be obtained by observing that dx + dy = 3 du,

1
thus yielding u = g(a: + y) + ¢c2. Hence the general solution becomes
1 — 2
U= §(:c +y) + f[\/fZ tan™! —‘\/x—y + In(z? + 23/2)] -
The plots of the surfaces

2 1
V2tan~? % +In(z?+24%) =1, and u= §(a: +v)

are available in the Mathematica Notebook Example2.7.ma. Note that
the intersection of these two surfaces gives a particular characteristic.

2.3. First Order Quasi-linear Equations

If the coefficients P, Q, and R in Eq (2.9) are functions of z,y, and u,
but not of u, and u,, then the equation is known as quasi-linear. In
these equations the first order derivatives occur only in the first degree,
although the equation need not be linear in u. Such equations occur in
shock waves of various kinds, e.g. traffic flow, water waves. The basic
technique is the same as for first order linear equations. The starting
point is still the system of auxiliary equations (2.11).

EXAMPLE 2.8. Consider the quasi-linear equation
Uz +uuy =0, u(0,y)= f(y).
The system of auxiliary equations is

dr _ dy

1 e du = 0.
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d d
Here du = 0 implies © = ¢. Using this value of  in 2 Y one gets
y = cx + ¢1. Thus, the characteristics are given by the curves of inter-
section of the surfaces y — uz = ¢; and u = ¢, and the general solution
can be expressed as u = g(y — uz). Applying the initial condition, we
get f(y) = g(y). Hence the solution to the problem is u = f(y — uz).

; Y
f(y) =y, the solution becomes u T+ 2

If f(y) = y?, then we have u = (y—uz)?, which after some algebraic
simplification yields

"= 1 +2zy +/1F 4zy

222
A careful examination by checking the limit as ¢ — 0 shows that the

valid solution is '
14 2zy — /1 + 4y
U= ..
2x2

In the Mathematica Notebook Example2.8.ma, the following
plots are given:

(i) The graphs of y — cz = ¢; for ¢ = 1,2,3, and ¢; = 0,1,2. These
curves are characteristics and also base characteristics.

(ii) The graph of u = T ix represents an integral surface.

1422y — /14 4dzy

2z2

(iii) The graph of u =

represents another integral
surface.

EXAMPLE 2.9. Consider

us +g(u)uy =0, u(0,y) = f(y).
The system of auxiliary equations is

dx dy
—_—= =0.
] W’ du

As in Example 2.7, u = ¢, and y = g(c)z + ¢;. The general solution is
u = h(y — zg(u)). After applying the initial condition, we get f(y) =
h(y). Hence the solution to the problem is u = f(y — zg(u)). =
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EXAMPLE 2.10. Consider
ug +uy =u? +1, u(0,y) = f(y).
The auxiliary equations are then

du
dr =dy = ——.
W T
The solutions are y = z + ¢, and tan™' u = = + ¢;. Thus, the general
solution is u = tan(z + g(y — z)), and the particular solution for the
problem is
tanz + f(y — z)

T 1-f(y-2) tanz

/

/

characteristic Parabolic cylinder

x=y2
Fig. 2.3.

EXAMPLE 2.11. Consider the partial differential equation
2yug +uy =1,
where u = 1 is prescribed on the initial curve y = 0 (z—axis) for 0 <
z < 1. The auxiliary system (2.11) for this partial differential equation

is J
T
= — dy = du.
% y = du
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The solution of dz = 2y dy is the parabolic cylinder z = y? + A, while
that of du = dy is the plane u = y + B, where the parameters A and B
are constant for each characteristic. For any point (z¢, yo, o) we find
that A = z¢ — y2, and B = 25 — yp. If the point (xg, o, ug) is taken,
e.g., as the origin of the the coordinate system, then

r=1y? and u=y. (2.16)

The equation of the characteristic is the intersecting curve (in this case,
the parabola) of the solution (2.16), as shown in Fig. 2.3.

The characteristic through the point (1,0,1) is the intersection of
the parabolic cylinder z = y? + 1 and the plane u = y + 1. Moreover,
if u = z? on the initial curve y = 0, then u = y + (z — y?)? represents
the integral surface. m

ExaMPLE 2.12. Consider
Uy + 2uuy = 1.

The auxiliary equations are

dr = = = du.
e =5 u

The solutions are v = z+c¢, and u? = y+c¢;. Hence the general solution
is
w=z+f-y), or u=y+g(u—a).
It is important to choose the appropriate general solutions for the
given initial conditions. Thus, for example, if the initial line (curve)
is x = y, and the value of u on this initial line is u(y,y) = vy, then

from the first solution we get © = z. But the second solution gives
y% = y + g(0), which does not yield a value for the function g.

If the initial line is y = z, and u(y, y) = y?, then the second solution

yields
W =y+ (u-2)?+2u-z)+ u-12)y/1+4u-2),
1 1
where the plus sign corresponds to z > Y > 7 and the minus sign

1 1 .
tox < 7Y < =. Substituting y = z and u = y? in the second solution,
we have y* = y + g(y® — y). Now let z = % — y, then

1
y——-—2-(1:t\/1—i—4z), and y? —y =22+ 22421+ 4z = g(2),
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which gives the solution of the equation. But if we use the first solution
we get y*> =y + f(y* — y), which is more difficult to resolve. w

ExaMPLE 2.13. Consider
(y+u)ug +yuy =z —y.

For this problem, it is convenient to use the auxiliary equations in
parametric form (2.12), i.e.,

dx dy du

= —_— = = ds’
y+u Y T—Y
which can be rewritten as
dr tu dy du .
ds YT g TY H TV

The solution of the middle equation is y = Ae®. Addition of the first
and third equations yields

duta)
ds

Its solution is u + z = Be®. Subtracting the first equation from the
third results in
du—=z)

ds

which can be expressed as
d(u — )

ds

This equation is linear in u — z. Its solution is

T —u— 2y,
+ (u — ) = —2Ae°.

u—x=Ce®— Ae’.
Replacing e’ by % in the two solutions, we get
u+:z:—B and uv—x+ _c4
= Ay’ y= Y .

Noting that B/A and CA can be replaced by ¢; and cp, and that
¢z = f(c1), we have

(u—m+y)y=f(uzm> (2.17)

as the general solution of the given equation. =
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EXAMPLE 2.14. Consider
ryug + (22 — u?)uy = z?y.
The auxiliary equations are

dz dy du

zyu 22 —-u? 2y’

From
dx du

zyu  zly’

we get 2 — u? = ¢y, and then using this solution in
dy  du
2 —u2 22y’
we obtain
du — cidu
yay= u2 + ¢y

This equation yields
-1 Y : 2
2atan™' — + ¢, if ¢1 = a”,
a
vy = u—a 9

aln —— 4¢3, ifcy =—a“.
U+ a

The general solution can now be found. =

2.4. First Order Nonlinear Equations

The general form of a first order nonlinear equation is
F(z,y,u,usz,uy) = 0. (2.18)
Consider the two—parameter family of surfaces
f(z,y,u,a,b) =0. (2.19)

Then
fe+ fuuz =0, and f, + fuuy =0. (2.20)
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Equations (2.19) and (2.20) form a set of three equations in the two
parameters a and b. If a and b are eliminated from these equations,
one gets an equation of the type (2.18). Therefore, it is reasonable to
assume that the solution of (2.18) is of type (2.19). It is clear that any
envelope* of this family will also be a solution of equation (2.18). At
this point we state the Cauchy problem: Determine u(z,y) such that
u and its partial derivatives satisfy

F(z,y,u,usz,uy) =0,

subject to the condition u(0,y) = ¢(y). In this case u(z,y) is pre-
scribed on the initial line z = 0 (y—axis). Initial data can, however,
be prescribed on any simple curve which is not a characteristic of
Eq (2.18). Thus, for example, if the parametric form of the curve
is = z(s),y = y(s), then the initial data can be written as

u(z (), y(s)) = ¥(s)-

We will now distinguish between different kinds of solutions of equation
(2.18).

Complete integral : A two—parameter family of solutions of the type
f(z,y,u,a,b) = 0 is known as a complete integral.

General integral: If b = g(a), where g is an arbitrary function and
an envelope of the family of solutions of the complete integral is found,
then the envelope whose equation contains an arbitrary function is
known as the general integral corresponding to the solution (2.19).

Singular integral: If the two—parameter family of solutions (2.19)
has an envelope, then the equation of this envelope is known as the
singular integral of (2.18).

Cauchy’s method of characteristics: This method is similar
to the method of characteristics discussed earlier for linear and quasi—
linear partial differential equations.

Consider a first order nonlinear equation (2.18). For convenience,
we will use the notation

uz =p and wuy =gq. (2.21)

*An envelope of the family of surfaces f(z,y,u,a,b) is a surface which touches
some member of this family at every point.
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If u(z,y) = c is a solution of (2.18), then u and its partial derivatives
satisfy the equation (2.18). But the total derivative of u is given by

du = pdx + qdy. (2.22)

Differentiating (2.18) and (2.22) with respect to p, we get

dz + dq dy =0, (2.23)
dp
and p
q
F, + F, p =0. (2.24)

Equations (2.23) and (2.24) yield

de _dy pdz+qdy _ du _
F, F, pF,+qF, pF+qF,

dt. (2.25)

These are the characteristic (or auxiliary) equations of Eq (2.18). It
can be easily verified that they reduce to the characteristic equations of
a linear or a quasi-linear partial differential equation according as Eq
(2.18) is linear or quasi-linear. The parameter t introduced in (2.25) is
such that

dzx dy du
dzr _ ay _ & F +qF, 2.26
" F,, ~ F, and i 2 +qF, (2.26)
Since p is a function of t, it follows that
dp dz

o =P +pyi—f = poFp + pyFy = poFp + @:Fy, (6o =py). (2.27)
Differentiating Eq (2.18) with respect to x, we have
Fy + Fyug + Fpp + Fyqy = 0.
Using this equation and inserting the value of Fpp; + Fyq, in (2.27),

we get

dp

at = —(Fy + Fyug) = —(Fz + pF,). (2.28)
Similarly,
dg
Y (B +aF). (2.29)

Combining equations (2.25), (2.28), and (2.29) we get
dr _dy _ du dp dq

Fy Fq—_PFp‘Fqu:"(Fz'*‘PFu):_(Fy+un)

=dt. (2.30)
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This system of auxiliary equations (also known as the characteristic
equations) is used to solve a nonlinear equation by Cauchy’s method.

The difference between the equations (2.25) and the corresponding
equations (2.11) for a linear partial differential equation is that the
equations (2.25) contain p and ¢ explicitly and, therefore, in order to
solve them we need additional equations which are included in (2.30).
The solution is found by eliminating p and ¢ from the solutions of
(2.30) and the given equation. The eliminant will, in general, contain
two arbitrary constants and will represent a complete integral of the
equation. We demonstrate the method by the following examples.

ExaMPLE 2.15. Consider
u=4pq.

The auxiliary system (2.30) for this equation is

dx dy du dp dg
T = =8 S =p =g
(2.31)
Since 4 J J d
€z q Y /4
5—4—(%,‘ and $—4$,
we get
z4+c =49 and y+cy=4p. (2.32)

Substituting these values of p and ¢ into the given equation, we get the
complete solution as

u= i(x%—cl)(y-kcz). (2.33)

However, if we demand that the solution pass through a given curve,

then (2.33) may or may not yield the required solution. For example,
since the solution of

d’z dq dx
P i

is = ¢ + cp e, we can require that u = y? be the initial condition
on the initial curve z = 0, which corresponds to ¢ = 0. Then the
solution given by (2.33) fails to yield the required solution. To avoid
this situation we follow an alternate approach. The initial values for
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z, y, and u can be taken to be g = 0, yo = v, and ug = v?, where v is

0
a parameter. Let the initial value of ¢ be ¢y = (6_Z> . Thus,
0

au)
g = | =— = 2yp = 2v,
° (8?/ 0

1%
and since ug = 4poqe, we find that the initial value of p is py = s But
from equations (2.31) we note that p and ¢ can be solved in terms of t

as
p=Ae7!, and q=Be (2.34)

Substituting the initial values in (2.32) and (2.34) we find that
=8, c=-v/2, A=v/8, B =2

Then, from (2.32) and the given equation, z, y and u can be expressed
in terms of v and t as

z=8u(et—1), y= g(e_t +1), u=p2e 2 (2.35)

The required solution can now be found by eliminating v and ¢ from(2.35)
as

In the Mathematica Notebook Example2.15.ma, the plot of the
above solution represents an integral surface.

We will now consider some special cases of equation (2.18).

EXAMPLE 2.16. Consider

u=pr+qy+ f(p,q), or F=pr+qy+ f(p,g)—u=0. (2.36)

This is a special type of nonlinear equation. It always has a complete
solution which can be obtained in a simple manner. The last two of
the characteristic equations are

dp=0, and dqg=0,

which yield p = a and ¢ = b, where a and b are arbitrary constants.
Substituting these values in (2.36), one gets u = ax + by + f(a, b) as the
complete solution. Equations of the type (2.36) are known as Clairaut
equations. There are other special types of partial differential equations
which yield the complete solution in a relatively easy manner. m
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EXAMPLE 2.17. Consider

f(p,q) =0. (2.37)

Note that the characteristic equations will yield dp = 0 and dg = 0. So
p = a, and solving f(p,q) = 0 for ¢ will give ¢ = g(a); then observing
that

du = adz + g(a)dy,

we get
u=ar+g(a)y+ec

As an example, let f(p,q) = p? + ¢> — 1 = 0. The auxiliary equations
(2.30) are

dr @_

E—p, dt_q’ du=dt, dp=0, dq=0.

Using dp = 0, we get p = a and ¢ = v/1 — a2, and these two combined
with du = pdx + qdy yield

u=az+yvV1—a?+ec

This is a complete solution. Anather complete solution can be obtained
. . dzx .

by using p = a in 5 =P and noting that du = dt, thus getting
d

du = 73:’ which gives

x
uU=—4+a.
a

Similarly, du = implies that

dy
V1 —a?
___Y

V1 —a?

Thus, we can write au = x + ac, and

uVl—?:y—f—aﬂ.

Replacing aa and a8 by —c and —d, respectively, and eliminating a we
get

u

+ 8.

v’ =(z -0+ (y—d)?,

which is another complete solution. =
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EXAMPLE 2.18. Consider
F(u,p,q) =0. (2.38)
The last three terms of the system (2.30) yield

dp ——C—ig——dt or gg:ﬁ

-pF,  —qF, P q

i.e., p = aq, where a? is an arbitrary constant. This equation together

with (2.38) can be solved for p and ¢, and then we proceed as in the
previous example. Thus, let F(u,p,q) = u?+pg—4 = 0. Then following
the above procedure we have p = a?q, which gives

qzi%\/él—ﬁ and p=tav4-—u2

Therefore, since du = pdz + g dy, we have

du = +v4 —u? (adm%—édy),

d 1
4 ,):::i:(adx—{-—dy),
4 —u” a

or

which gives

sin~!

N

1
=j:(aa:+—y+c>.
a

Hence 1
u = x2sin (ax+ay+(z> ..

In the Mathematica Notebook Example2.18.ma, the plots of

1
u:2sin<az+ay+c)

for c=0,1,2, and a = 1,2 represent some particular integral surfaces.

ExAMPLE 2.19. If F(z,y,u,p,q) = 0 is independent of u and can
be expressed as ¢(x,p) = (v, q), then each of these functions must be
constant. Thus, if ¢(z,p) = ¢ and ¥(y, ¢) = c can be solved for p and g,
then a complete integral can be obtained. For example, consider

F(z,y,u,p,q) =p*(1 —2%) — ¢*(4 = ¢*) = 0.
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Then
PP(1-1%) =¢*(4-y?) =,

which gives
a

a
p_\/l—m2’ \/4~y2’

where we have ignored the negative solutions. Now since du = pdx +
g dy, we have

and ¢=

a a
du = —dr + dy,
122 Ja—g ¥

which can be integrated to give

uU=a (sin_la: +sin~! %) +b.m

In the Mathematica Notebook Example2.19.ma, the plots of
the above solution for @ = 1 and b = 0,1 represent some particular
integral surfaces.

EXAMPLE 2.20. Consider
F(z,y,u,p,q) = 2pgy — pu — 2a = 0, (2.39)
for which
F;=0, Fy=2pq, F,=-p, F,=2qy—u, and F,=2py.
The auxiliary equations are

dr ﬂ B du du  dp dq

2qy—v  2py  2pgy—pu+2pgy pu+da P2 —pq’

The last pair reduces to

d d
dp  dg _

0,
P g

which gives pg = a. Using this value of pg in (2.39), we get
20y —pu —2a =0,

which yields

pu=20y—2a, and ¢= Q(_azu—a)'
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These equations after integration yield

u? =4(ay —a)(z—p). =

2.5. Geometrical Considerations

Before we discuss the geometrical interpretation of the partial differ-
ential equation (2.18), i.e., F(z,y,u,p,q) = 0, let us recall the geo-
metrical interpretation of a first order ordinary differential equation
y' = f(z,y). Here f(z,y) represents the slope of any integral curve
at the point (z,y). This slope is unique at every point. If we graph
f(z,y) = ¢, then the curve so obtained is known as an isocline or a
curve of constant slope. Of course, the curve itself does not have con-
stant slope, but every integral curve which intersects f(z,y) = c has
the slope ¢ at the point of intersection. Since the correspondence be-
tween integral curves and the points of an isocline is one-to—one, the
number of integral curves is, in general, equal to the number of points
on the isocline, i.e., there exists a single infinity of them. However,
the exception to this rule occurs when isoclines intersect at a point, in
which case the point is a singular point of the differential equation, or
when the isocline is also a solution curve, in which case the isocline is a
straight line with slope ¢ and the isocline is an envelope of the integral

d .
curves, except for the equation d—y = ¥ Whose isoclines and the integral
A

curves are the same.

The situation for a partial differential equation is somewhat com-
plicated. In this case the values of p and ¢ are not unique at a fixed
point (x,y,u). If an integral surface is g(z,y,u) = 0, then p and ¢
represent the slopes of the curves of intersection of the surface with the
planes u = const. Moreover, p, g, —1 represent the direction ratios of
the normal to the surface at the point (z,y,u). The derivatives p and
q are constrained by Eq (2.18). Obviously, at a fixed point, p and ¢
can be represented by a single parameter. Hence, there are infinitely
many possible normals and consequently infinitely many integral sur-
faces passing through any fixed point. So, unlike the case of ordinary
differential equations, we cannot determine a unique integral surface
by making it pass through a point.
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Cauchy established that a unique integral surface can be obtained
by making it pass through a continuous twisted space curve, also known
as an initial curve, except when the curve is a characteristic of the dif-
ferential equation. Now, the infinity of normals passing through a fixed
point generates a cone known as the normal cone. The correspond-
ing tangent planes to the integral surfaces envelope a cone known as
the Monge cone. In the case of a linear equation, the normal cone
degenerates into a plane since each normal is perpendicular to a fixed
line.

Consider the equation ap + b¢ = ¢. Then the direction p,q,—1 is
perpendicular to the direction ratios a,b,c. This direction is fixed at
a fixed point. The Monge cone then degenerates into a coaxial set of
planes known as the Monge pencil. The common axis of the planes is
the line through the fixed point with direction ratios a,b,c. This line
is known as the Monge axis.

2.6. Some Theorems on Characteristics

Suppose u(x,y) = f(x,y) is an integral surface S of the partial
differential equation Eq (2.18). Then the set of numbers

0 15}
(wo,yo, uo = u(Zo, Yo), Po = <6—f> y g0 = (—a—f) ) ,
z (Jloyyo) y (fﬂo,yu)

which represents a plane with normal (po, go, —1) and passing through
the point (zo, yo, uo), is called a plane element. If the point (zo, yo, uo)
lies on S, then the element (zo, yo, uo, Do, o) satisfies Eq (2.18) and is
called an integral element of the surface. Let R be a neighborhood of
(%o, yo) in the plane u = 0. If the functions f, and fy are continuous

iSI} R, then the element (o, yo, w0, po, o) is called a tangent element of

. A curve I' with parametric equations = = z(t),y = y(t),u = u(t)
lies on the surface S if u(t) = f(x(t),y(t)) for all admissible values of t.
If a point Py on T" corresponds to the value tg of the parameter ¢, then
dr dy du This

the direction of the tangent line is given by PRI
t=to
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. L ou ou .
direction is normal to (po = (E)to,qo = (5:;7)“’ ._1> if

du (9 g (P
at), P\a), TP \a&),
0 0 0

Thus, a set of five functions z(t), y(t), u(t), p(t), ¢(t), which satisfy the

condition J J p
Yo o) & @y

defines a strip on the curve I'. If this strip is an integral element, then
it is an integral strip of the partial differential equation. If this integral
strip at each point touches a generator of the Monge cone, then the
integral strip is a characteristic strip.

We will state some theorems on the characteristics. The proofs can
be found in the references cited below.

THEOREM 2.2. A necessary and sufficient condition for a surface
to be an integral surface of a partial differential equation is that at each
point its tangent element should touch its elementary cone (tangent
cone or Monge cone) of the equation.

THEOREM 2.3. The function F(x,y,u,p,q) is constant along every
characteristic strip of the equation F(z,y,u,p,q) =0.

THEOREM 2.4. If a characteristic strip contains at least one in-
tegral element of F(z,y,u,p,q) = 0, it is an integral of the equation
F(z,y,u, Uz, uy) = 0.

For the linear partial differential equation ap + bgq = ¢, we have

THEOREM 2.5. Every surface generated by a one—-parameter family
of characteristic curves is an integral surface of the partial differential
equation.

THEOREM 2.6. Every characteristic curve which has one point in
common with an integral surface lies entirely on the integral surface.
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THEOREM 2.7. Ewvery integral surface is generated by a one—parameter
family of characteristic curves.

THEOREM 2.8. If

_dxdy dydx dy dz

“Gsdt dsar Ca b 7O

everywhere on an initial curve C, then the initial value problem has
one and only one solution. If, however, D = 0 everywhere along C,
the initial value problem cannot be solved unless C is a characteristic
curve, and then the problem has an infinity of solutions.

Proofs of Theorems 2.2, 2.3 and 2.4 can be found in Sneddon (1957,
pages 62-64), and of Theorems 2.5, 2.6, 2.7, and 2.8 in Courant and
Hilbert (1965, pages 64-66).

Second Order Equations

2.7. Linear and Quasi-linear Equations

For a linear or quasi-linear partial differential equation of second or
higher order, the characteristic equation is determined by the high-
est order terms in the partial differential equation. These terms are
known as the principal part of the partial differential equation. While
the solution of the characteristic equation leads to the solution of the
first order partial differential equation, the solution of the characteris-
tic equation of a second order partial differential equation leads to a
coordinate transformation which when applied reduces the second or-
der partial differential equation to a simpler form. This simpler form is

called the canonical form. Consider a second order partial differential
equation

411 Ugz + 2012 Ugy + Q22 Uy + F (T, Y, U, Uz, uy) = 0, (2.40)

where a11, a1 and ay, are functions of = and y only, and F' is a function
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of ,y,u, Uz, and uy. The different canonical forms of Eq (2.40) are

Elliptic : Uge + Upy + G nu, Ug, un) =0,
Ugg — Unn + G(§, M, U, ug, uy) =0,

Ugn + G(E’ 7, U, Ug, u'r))a
Parabolic : uge + G(€,n, u, ug, uy) = 0.

Hyperbolic : { (2.41)

In order to reduce Eq (2.40) to a canonical form, we introduce a
reversible transformation

§=¢&(z,y), and n=n(z,y), (2.42)
with the condition that the Jacobian
a(&,m)
= =Gz -— z . ~4

Using this transformation and noting that

Uy = Ug &g + Un N,
Uy = Ug §y + Un 1y,
Ugy = Uge 52 + 2ugn £x e + Uny 772 + ug Exz + Uy Mo,
Ugy = Uge § §y + Ugy (&2 Ny + &y M) + Uny Nz Ty + Ug Ezy + Up Ny,

Uyy = Ugg & + 2ugn Ey My + Unn M5 + g Eyy + Un Ny, (244
2.44
Eq (2.40) reduces to

Ari uge + 2410 uen + A2 Uny + G(€,m, 4, ug,upy) =0, (2.45)

where G is a function of &, 7, u, ue, and u,, and A1, A2, and Ay, are
functions of ¢ and 7, given by

An = a11€2 + 201262 &y + an2 &2,
Az =an ey +a12 (§2 & + &y ma) + a2y My, (2.46)
Agz = a1 M2 + 201272 Ty + a22 N2

The function G is linear or nonlinear according as F is linear or non-
linear.

If we now choose £ and 71 such that both satisfy the condition

a11 €3 +20128: & + a2 €] =0, (2.47)
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then Aj; = Agz = 0. Eq (2.40) will then reduce to
2412 Ugn + G(&a U, Ug, un) =0.

It can be verified (after some tedious algebra) that

A%y — Ay Ay = (ady — a11a2) (Eamy + &y ma)” (2.48)

This means that the sign of the quantity (G%Q—auazz) is invariant under
the reversible transformation (2.42), and the quantity itself is invariant
if |7} = 1. An important consequence of this result is that the partial
differential equation does not change its classification under nonsingular
transformations [see §1.3, where it was proved that if ¢ = ¢(z,v) is a
solution of Eq (2.47), then ¢(z, y) = c is a solution of Eq (1.10)]. Both
equations (1.10) and (2.47) are called characteristic equations of the
partial differential equation (2.40). Equation (1.10) has two solutions
given by

dy a1z £ +/ai; — anax

dx N 2(112 '

(2.49)

If the partial differential equation is hyperbolic, then there are two so-
lutions, resulting in two characteristics for the partial differential equa-
tion. If the partial differential equation is parabolic, then there is only
one real solution, and hence only one characteristic. In the elliptic case
there are no real solutions, and so there are no characteristics.

In order to transform the partial differential equation to its canon-
ical form, we introduce two independent variables ¢ = &(z,y) and
n = n(z,y), where £ and 7 are solutions of Eq (2.49). In the case
of a parabolic equation we have only one solution, so 7 is chosen ar-
bitrarily except that it must satisfy the condition (2.43). In the case
of an elliptic equation, the solutions are complex conjugates, and we
can use the real and imaginary parts of the solutions as the new inde-
pendent variables. It will be shown in Chapter 5 that canonical forms

are frequently necessary to solve partial differential equations by the
method of separation of variables.

We will now demonstrate the effectiveness of this technique for re-

ducing second order partial differential equations to canonical forms by
some examples.

EXAMPLE 2.21. Transform the partial differential equation

Y Uy — 4T YUgy + 4% uyy + (2% + y?) up + uy =0
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to its canonical form. This equation is parabolic and its characteristic
equation, given by

y? (dy)? + 4z y dz dy + 42? (dz)? =0,

has only one solution

d 2
9 _ ——m, which yields 22% +y? =c.
dx Y

In this case there is only one characteristic curve, and so we make the

substitution
¢=22%4+19% and n=uz.

The substitution for 7 is arbitrary in this situation, the only condition
being that the Jacobian should be nonsingular. Thus, we have

Uy = 4T Ug + Uny,

Uy = 2y Ug,
Uge = 162° uge + 8T Uen + Uy + 4,
Ugy = 8T Y Uge + 2Y Ugn,
Uyy = 4y° uge + 2ug.

Substitution of these values into the partial differential equation leads
to the canonical form

(6~ 20) wny + 42 + n(e — 1) + 2V/E = 2P g+ (€ =) up = 0.

The plots of the characteristic curves for this example are avail-
able in the Mathematica Notebook Example2.21.ma.

EXAMPLE 2.22. Transform the partial differential equation

2 3$3
y("uM — 4T Y Ugy +3x2uyy - y;um — -y—uy =0

to the canonical form. The principal part in this partial differential

equation is similar to the previous example, but it is hyperbolic and,

therefore, its characteristic equation

y? (dy)? + 4z y dz dy + 327 (dz)*> = 0
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has two independent solutions, namely,

dy 3z . .
pat Yy which yields 322 +y% = ¢;,
and
dy _

T
dr ~§, which yields %+ y2 = cy.

Hence, the new independent variables are
€=322 44y and n=z2+4%

The partial derivatives of u with respect to the new variables are given

by

Uy = 6T ug + 2T Uy,

Uy = 2y ug + 2y Uy,
Uge = 362% uge + 2427 ugy + 42° Uy + Bug + 2uy,
Ugy = 120y uge + 16Ty uey + 4T Y Uy,
Uyy = 4y° (uge + 2ugn + Uny) + 2 (ug +up) .

Substituting these values into the given partial differential equation we
get the canonical form

(E - 77)(6 - 377) Ugn = 0»

whose solution is

u=f(3z% + )+ g(a® +¢*). =

The plots of the characteristic curves for this example are avail-
ble in the Mathematica Notebook Example2.22.ma.

sz mention here an important property of hyperbolic partial dif-
ferentlal equations. They are capable of transporting a discontinuity
1n2the initial data along a characteristic. The solutions that are in
C* are called strict solutions, whereas those with discontinuity in the
ft{nction or its first two derivatives are called generalized solutions. We
will demonstrate this idea by a simple example. For more details the

reader is referred to the texts by John (1982) and by C
Hilbert (1965). (1982) y Courant and
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EXAMPLE 2.23. Solve the partial differential equation
U — Uzz =0, 0 < <00,
subject to the conditions
u(0,t) = H(t)e™, wu(z,0) = us(z,0) =0,

where H(t) is the Heaviside step function. By introducing the charac-
teristic coordinates £ = x +t, n = x —t, the partial differential equation
is reduced to

Ugn = 0.

Its solution is given by

u=f(€)+g(n) = flz+t)+g(z 1)

The term f(z + t) represents a wave traveling with a negative veloc-
ity coming from infinity. Since there are no sources or boundaries at
infinity, it is not possible for a wave to either emanate or be reflected
from infinity. (This is also known as Sommerfeld’s radiation condition.)
Therefore, the function f(x + t) must be taken to be zero. Thus, we
have from the boundary condition

g(=t) = H(t)e™,

which yields
w=H(t—z)e ¢,

The initial conditions are then automatically satisfied. In this case the
discontinuity in u propagates along the characteristic x = ¢.
EXAMPLE 2.24. Transform the partial differential equation
Y ugy — 4Ty ugy + 322 Uyy =0

to the canonical form. In this case the partial differential equation is
of the elliptic type. The characteristic equation is

v? (dy)? + 4z ydz dy + 82* (dz)? =0,

and its solution is
B (140
dz vy’
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which yields
v+ 2(1+4) 2% = ¢y .

In this situation we define the new independent coordinates as
¢=2z>+y% and n=2z2
Then, as in Examples 2.22 and 2.23, we get the canonical form

2n(€ — m) (uee + uny) + (€ +n)ue + (€ — 1) Up =0.m

The plots of the characteristic curves for this example are avail-
ble in the Mathematica Notebook Example2.24.ma.

It can be seen from these examples that canonical forms, though
more of theoretical interest, also provide in some cases the general
solution of the partial differential equations.

The well-known Cauchy-Kowalewsky theorem guarantees the unique-
ness and existence of quasi-linear partial differential equations under
certain specific conditions. A statement of this theorem for two inde-
pendent variables is as follows:

THEOREM 2.9. Consider a quasi-linear second order partial differ-
ential equation which can be solved for ugy, i. e.,

Uze = F(2,y, Uz, uy), (2.50)

where F is an analytic function of z, y, uz, and Uy in a domain Q C R?.
Let the Cauchy data on a curve ¢ = To be

U(l‘o,y) = f(y)1 and Uz(il:o,y) = g(y)v

where f and g are analytic functions in a neighborhood of a point
(To,v0). Then the Cauchy problem has an analytic solution in some

neighborhood of the point (zo,y0) and this solution is unique in the
class of analytic functions.

Simply stated, this theorem guarantees a unique solution u(z,y) in
the form of a Taylor’s series in a neighborhood of the point (zo, o). The
above statement is true if the second order partial differential equation
can be solved for Uyy OF Ugy. A similar statement holds for first order
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partial differential equations. There is, however, an exception. If the
Cauchy data is prescribed on a characteristic, a unique solution may
not exist. For example, consider u, = 0. Its solution is u = f(y). If
the Cauchy data is u(zx,0) = ¢(z), where ¢(z) is not constant, then no
solution can be found.

For a general statement of this theorem for higher order partial
differential equations, see Courant and Hilbert (1965) and Petrovskii
(1967).

2.8. Exercises

2.1. Solve the equation p + ¢ + 3u = e~3* sin(z + 2y), with the initial
condition u(z,0) = 0.
ANs. u(z,y) = (1/3)e™3%[cos(z — y) — cos(z + 2y)].

2.2. Solve the equation 2p + q + 2(2z — y)u = 6$26y2—x2.
ANs. 2y —z =¢; and ue® Y — 23 = ¢y
2
general solution: F(2y — z,ue” -y _ z3) = 0.

2.3. Solve the equation p + ¢v/1 — y2 = 0, with initial conditions (a)
u(0,y) =y, (b)u(z,0) = z*.
ANs. (a) u(x,y) = ycosz — /1 —y?sinz; (b) u= (sin"'y — 2)%
. 1 5 . L s
2.4. Solve the equation p + q = 3 with the initial condition
u(0,y) = siny.
ANs. ud(z,y) = x +sin’(y — z).

2
2.5. Find the general solution of the equation 2p + ug = Ey_

2ylny —
ANS. v = ¢; and Syny -

)
F (E’ 2ylny—mu) —0
Y u

= c2; and the general solution is

2.6. Find two functionally independent solutions of (y—u)p+(u—x)g =
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z—y.
ANS. z+y+u=cy and 2° + 3% + u® = c;,.

2.7. Find a complete solution of u = l + l

ANS. u= +£V2r +a++/2y +b,or u’+b=2a a:+a_ , where

a and b are arbitrary constants. Discuss the relationship between
the two solutions.

SOLUTION. We have
F,=F,=0,F,=-1,F,=-1/p*,F, = —1/¢%
The auxiliary equations are

dx

dy du 1 1
— =—1/p?, Z=-1/¢®? —=—Z_Z=_
dt /v dt /e dt P q u’
d_, d_
at ~Pa =7
. dp dq
Noting that p_dt = 1, and m = 1, we can express the first two
. dp d
equations as dz = —;)3, dy = —q—z. Solving these we get p? =
1
2 _

T a’ and ¢° = m Taking the positive square roots, we get

u =2z +a+ /2y +b as a solution.

Ar.l alternate approach is to note that solutions of the characteristic
equations can be expressed as u = Ae™!,p = Bel,q = Ce’. Hence,
up = AB = Aj,uqg = AC = A,. Using these values in the given
equation, we get

I S S SO S
p g A A
Integrzating up = AB = Aj,uq = AC = A, we get u? = 24,2 + g1 (),
and u® = 243y + g2 (z). Comparing these two values of u2, we find that

A -1

u? = 2(A133+A2y+A.3) =2 (A1£E+ y+A3> .

Now we will discuss the relationship between the two solutions

u=v2r+a++2y+b, and u= (Am—kA—;-ly—}-B),
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where we have suppressed the subscripts and replaced Az by B. Define
b=—-a(A-1)+ B(A-1)/A

Then

d(z,y,u) = —u++v2rx+a++/2y—a(A—-1)+B(A-1)/A=0.
Then

R A-1
22z +a 2/2y—-a(A-1)+B(A-1)/A

ba

Thus

(A—1)v2z +a=+2y—a(A—1)+B(A-1)/A,
which yields

u=v2r+a+(A-1)V2z +a

Hence i
u=AV2z +a or u?=24%+ A%.

Now solving (4 — 1)v2z +¢ = /2y —a(A - 1) + B(A—1)/A for a
and using the value so obtaired in the expression for u?, we get

u2=2<Ax+%y+B).

So clearly the second solution is the envelope of the first.

2.8. Find a solution of (1 4+ ¢?)u — pz = 0, which passes through the
curve 2u = z2,y = 0.
Ans. u? = 22(y + 22/4), or 4u? = z?(4y? + 2?).

2.9. Find a solution of F = p? + ¢ — 4u = 0, which passes through
y=0,u==zx2+1.
ANs. u=2? + (y +1)%

2.10. Find a solution of F = u — p? + ¢> = 0, which passes through
y =0, 4u 4 z2 = 0.
ANS. 4u = —(z + V2y)%

2.11. Find a general solution of the equation zp — yg = =.
ANs. u =z + f(zy), or xy = glu — x).
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2.12. Find a general solution of the equation z%p + ¢ = zu.

ANSs. u:xf<1+xy).

X

2.13. Find a complete solution of the equation F' = pgy—pu/2—cq = 0.
ANs. (ay? - 2cu)?/? — a®y® = 3ac(2cx — uy) — b.
Investigate if a solution exists at & = 0, for which the solution is a
function of y which vanishes along with ¢ for y = 0.
ANS. Yes, and b = 0 gives the required solution.

2.14. Find a general solution of the equation F = pu —aq — z = 0.

ANS. f[(u + z)e¥/?, (u — z)e"¥/%] = 0. Discuss the solution in the
neighborhood of z = 0.

2.15. Find the solution of (y +u)p+ yq = = — y, which passes through
z=0,u=y.
ANS. u+x =1y.

2.16. Find a complete solution of the equation
F = 2pz?y + 2qzy? + pq — quxy = 0.
ANs. u = az? + by? + ab.

2.17. Find a complete solution of the equation
F=1+upz+uqy—u?=0.
ANs. u? =1+ az? + by2.

2.18. Find the solution of the equation F' = pz + qy — 2u = 0,
(a) with the initial condition u = ay? — b at z = 1;
(b)u=a(l +y%) +2by, at x = 1.

ANs. (a) u = ay? — bz?%; (b)u = a(z? + y?) + 2bxy.

2.19. Find a general solution of the equation F = pry+qy*—2uy—4q =
0. Also find the particular solution subject to the initial condition
z=1au=4+b-y>
A -4 u 9 o

NS. f(— = ’P) =0, au — bz +y° = 4.
Note that both general and complete solutions are not unique.

2.20. Find a general solution of the equation F = 2pz+qy—u—z = 0.
2
ANs. y = (u—z)f (y?)
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2.21. Find a complete solution of the equation F = WP +¢2+1) -
2
a® =

ANs. u2+_____(a:c+y—ﬁ)’2_: 2

a’.
1+a?
2.22. Find the general solution of the equation 3 us + duy —5u =10,
subject to the initial condition u(z,0) = z.

SOLUTION. We first rotate the z,y axes through an angle 6; thus,
the new axes £, 7 are related to the old axes z, y by the relations

& =xzcosf +ysind, z = €£cosf —nsinb,
n = —zsinfh +ycosh, y = Esind 4+ ncosb.

Hence, we have

u(z,y) = u(§cosd —nsin 9,Esin@ +ncosh) = w(&,n),

o 0¢E o 0On o 0 .

9 _969 9T _ o5 —— —
5 = 05 O + 9z 9n cos € BE sin 6 B’
o oo omo . ,0 2
Z == L =sinf— +cosf —.
dy y 9 ' Oy On o€ on

The given partial differential equation then becomes

ow

(3 cosf +4sin6) 5

0
+ (4 cosf —3 sine)a—z:; — 5w = 10.
. ow . . .
The coefficient of 3, 0 the above equation vanishes if tan§ = 4/3,

7
ie., sinf = 4/5, and cosf = 3/5. With these values, the above
equation reduces to

——w =2,

3

which has the general solution
w(E, ) = =2+ g(n) e,

or
4
3z/5+—/5
uz,y) = -2+gBy/5—-4x/5)e Y .
Note that this is the general formal solution of the given partial
differential equation. Now, to find the particular solution subject

2.8. EXERCISES 61

to the initial condition u(z,0) = z, we have n = & when y =0

and then the above equation gives °

T =~2+g(n) e*/®,

thus,
g(n) = (z+2)e32/5 = (2 — 4n/5) 74,

Stl)lbstituting this value of g(n) into the above general solution, we
obtain

N
u(z,y) = -2+ (2 - gn) 31/4 o3z /5+4y/5

5(3 4
=—2+[2__ 3,4 ] 3/4(3y/5—42/5)+3x/5+4y/5
1 (5y 5"’) ¢ v

=-24 [2 + %(45!1 - 3y)] e%v/4,

whi'ch is the unique solution of the given partial differential equation
subject to the given initial condition u(z,0) = z.

See the Mathematica Notebook Exercise2.22.ma.

In problems (2.23)-(2.30) find the characteristics where possible and
reduce the partial differential equation to its canonical form.

2.2

2.23 (a4 2% ugq + (0% + y?)uyy + Tuy +yuy = 0. ANS. uge +uy, = 0.
HINT: Solve the characteristic equation to determine that the sub-
stitution is

¢ =log(z+ a2 +2%), and 5 =Ilog(y++/a? + g2

2.24 The Tricomi equation Uyy — YUggy = 0 for y > 0.

ANS. ugy — £ 7%
6(6 —n)
. i 2
2.25 (1+sinz)ugy — 2co8 Tugy + (1 — sin T)Uyy + “—mﬂuzuﬁ-
2coszx

1 .
5(1 —sinax)u, = 0.

ANS. dup, +u, =0,€,m = y=£log(l +sinz). The reduced form can
now be solved to yield

u = f(£) +e"g(e).
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2.26 eXuy, — 2e*Vuy, + eMuy,, + eFug + eruy =0.
TT v vy o _
ANS. Upp,=0,8=€e"+e ¥, n=e"—e"".

2.27 ¥ uy, — 5 Vug, + 462yuw + e?Pu, + 4%y, = 0.
ANS. ugp, =0, =e"*+e ¥, n=4e"" +- eV

2.28 Yugy — 12ugy + duyy + 12uy — Buy + 4u = 0.
ANS. 36Uy + 12uy +u = 0,u = [f(€) +ng(£))e"®, & n = 2z £ 3y.

2.29 3“’1:11 - 7uzy + 4Uyy +- 5u1; — 'U,y + 3u = 0.
ANS. Bugy —ug =0, f(§) +g(n)e”®, £ =2z +y,n =1z +3y.

2.30 2uyg + Ougy + Yuyy + 2ug + 3uy — 2u = 0.

3 3
ANS. 9(u5€ — u,,,,) + 6un —4qu=0,=y— 517 n= 53;

3

Linear Equations
with Constant Coefficients

We will use the inverse operator method to solve homogeneous and nonhomo-
gencous partial differential equations with constant coefficients. This method,
although basically developed and frequently used for solving ordinary dif-
ferential equations, becomes useful for finding general solutions of partial
differential equations with constant coefficients. The problem of finding the
general solutions of second order partial differential equations with constant
coefficients and determining their particular solutions under auxiliary (initial)
conditions is also discussed in a later section. Before we discuss the partial
differential equations with constant coefficients we will first review in §3.1 the
technique of inverse operators from the theory of ordinary differential equa-
tions. This review should prove useful in discussing the homogeneous and
nonhomogeneous partial differential equations with constant coefficients.

3.1. Inverse Operators

d 1
If D represents s then D is defined as the inverse operator of D, i.e.,

5@ = [ (@)

If f(D) represents a polynomial in D with constant coefficients, then f(D)
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is a linear differential operator, and we define its inverse as 1/f(D). Thus,

1

“Dﬂﬂm

o12)] = o).

Note that —}% [f(D)¢(x)] is not necessarily equal to ¢(x). However, if
[f(—lDTb(z)} = 1)(x), then 1p(z) contains arbitrary constants, and ¥(z) =
@(x) for some value of these arbitrary constants. In the sequel we will ignore

arbitrary constants. We will list some formulas for the operator pair f(D) and
1

f(D)

Lt

150|775

60)] = o(a).

_ 1 1 1 1
2 o = o (e ) = 7 (7 )

1

3. }(iDj [c1¢1(x) + c202(z)] = C1m¢1(¢”) + CTf(—lpj@(x)'

1 ar __ _i__ ar Vi 8
4. m e* = f(a)e , provided that f(a) # 0.

5. f(D)¢(z)e** = e** f(D + aYp(x).

1 1
6. . xT eaz = eaz____ xI).
7@ HEEN
1 as :L.mea:c
7. D= a)me =
8. - @ T, a0,

D-amf(D)° ~ mif(a)

cos
1 cos { in 0%
sin
9 ____{ bx:—;z—_?‘» la| # {b].
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{ cos

. ax

10. S ar = ~5m . )
f(D) L sin ~ f(—a?) , provided that f(—a?) # 0.

{ I CoS
ax

11. 1 { cos a Lz sin
(D? +a?) | sin 2a

sin

, o | €08
1 c (c—aw )  wrtbw wx
12, _—___{ 0S o = sin cos
aD? +bD + ¢ | sin (¢ — aw?)? + b2w?

1 n_ 1
D) T all+g(D)

= o [1-9D) +g*(D) = g*(D) + -+ g"(D) + -] 2™,

where the terms of degree n + 1 or higher are ignored.

'

13.

] T

PRrOOF OF FORMULA 4. If ¢(z) = €2*, we know that
De® = qe?®, D% == %%, .. D"e% — q"e%%,

Thus
f(D)e® = f(a)e®™.

1
If we take 7D) as the inverse operator of f(D), then obviously

1 azT 1 ar

TD)C = m‘-e provided f(a) # 0.

gherefore, the particular integral y,, of the equation f(D)y = Ae®® is given
y

_ L
y_m"e > f(a)#o

EXAMPLE 3.1. Consider (D? + D + 1) y = €2*. Then

1 2x 1 2z __ 1 2z

y: e — _—
P DZiD+1 2io4+1° 7% "
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ExXAMPLE 3.2. Consider (D4 + 8) y = €e*. Then

1 T ]' :Z:_eI..

TEDITE® T s T o

AN APPLICATION OF FORMULA 13. If ¢(z) = z™, then

f(D) =aoD"™ + a1 D" '+ -+ + an-1D + an
- a, 1y dn-ip On2p2 4 D)

[279) Qn Qn

which gives
1 1
(D) an(l+g(D))’

where

D)= L a0 Dt 2D b,

n

and
11 1
D) an(1+9(D)) -

Now, in order to find the particular integral y, of f(D)y = Az™, we

apply the inverse ?(lD—) of f(D) to the ordinary differential equation
and get
1
= —— (Az"
Y= D) (Az")
R S

N aﬁ [l ~ g(D) + (g(D))* = (9(D))* + -~ ] ",

n

where terms of degree n + 1 and higher in D are ignored in the above
expansion on the right side.
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ExaMPLE 3.3. Consider (192 + D+ 2) = z*. Then

Yp = 1 174_ 1 4
PTDZiD+2" T 1 T _N\°
tEA 2(1+§D+§D2>

-1

1 1 1 |
2[ +(2 +2D>_ ¢
i (I lp?) s (Soskot) - (1p4 lpe)’
=2 2773 2773 27 %3
/1 1. \*
2D+ ZD?2) ... |4
+1\2 +5D ]x
1 1.1 1 1 1 1 3
=—1-—'—D——D2 _DZ -n3 4 _ I3 _Yn4
2[ gD =D+ PP+ sD+ D - gD = 3D

1 4 5 4
+5D*+0(D )]x :

where O(D%) means terms containing D® and higher powers in D.
Thus,

Yp =

[z“—2x3—6x2+3x2+12m+6—3m——9+g

POl = KO =

[14—29:3—3x2+917—g].-

EXAMPLE 3.4. Consider (D* 4+ 2D3 + D?)y = z3. Then

z° et

YT DD 12D +1) D21+ D)

1
=5 (1+ D)7

1
= 5z [1-2D+3D* - 4D* + 0 (D*)] z°

1 2
=z [2® — 62 + 18z — 24]

— 1 5 1 4 3 2
=55 — 3% +3x° — 12z =
AN APPLICATION OF FORMULA 10. If ¢(z) = sinaz or cosaz, then

we know that
Dz{ cos ar _ —a2{ cos ax

sinax sinazx,
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and
DQ"{ cosar _ (—1)"a2"{ cos ax

sinaxr sinazx.

Thus,
f(DZ){ cosar _ f (—az) { cos ax

sinax sinax.

Even if the operator f(D) is not an even function, we can still use the
above formula; e.g.,

(D®+2D*+3D + 1) cosaz = [(—az) D+2 (—az) + 3D + 1] cosax
= [(3 - a®)D+1- 2a%] cos ax

=—(3-a*) asinaz+ (1 - 2a%) cosaz.

We, therefore, notice that when an operator of the type f(D) is applied
to cosaz or sinaz, we can set D? = —a?, and reduce f(D) to a linear
operator of first order. We shall use this observation to find particular
integrals in this case.

If f(D) happens to be of the form f (D?), i.e., if the ordinary dif-
ferential equation is

cos ax
0=
sinaz,
then
A {cosaac A {COSGI
V=70 sinaz,  f(—a?) | sinaz,

provided that f (—a?) # 0.

If f(D) is in general a polynomial containing both even and odd
degree terms, then we let D? = —a?, and reduce f(D) to a linear
operator in D of the form aD + 3, so that if

cosazx
f(D)y =A{ .
sinax,
then
_ A {cosa;z:
y= f(D) | sinaz.
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Then we let D? = —a?, which reduces f(D) to aD + 3. Thus,
A cos ax

aD+ (3 { sinaz,

_ A(aD — ) cosazr

~ (aD + B)(aD - B) {

_ AlaD - 5){ cosax

y:

sinazx,

a?D? — 32 | sinax,
A —aasinax — Bcosax
—a?a? — 32 | aacosar — Bsinaz.

EXAMPLE 3.5. Let (D? + 1)y = 2sinz. Then

Yp sinx.

2
T D2+1

Now, if we let D? = —1, then D?+1 = 0, and the above method is not
applicable. =

EXAMPLE 3.6. Let (D* + D? + 1)y = 2sinz. Then

2 .
Yp = —————sinz.

DY+ D?+1
Now, if we let D? = —1, then D*4+D?+1 = 1, and we get Yp = 2sinz. =

EXAMPLE 3.7. Let (D3 +2D?+ D+ 1) y = 3cos2z. Then

3
Y= Topro(—) s D+1
= ——— 08 2% = —3(38D —7) 2
3D -7 TBD+7@D 1)
_ -3 -3
9D2 — 49 cos2z = m(3D d 7) cos 2%

3
= —g[6s1n2x+ 7Tcos2z]. m

AN APPLICATION OF FORMULA 6. If ¢(z) = V(x)e%®, where V(z) is
a 'functlon of z of the type z™, cosbz, sinbx or z" cos bz, =" sin bz, we
will first give a heuristic justification for formula 6. Note that

D (Ve®®) = e* DV + aVe* = e**(D +a)V,
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which yields
D?(Ve®®) = D[e* - (D + a)V] = e**(D + a)V.
Similarly,
D™ (Ve®®) = e (D + a)"V,
which, in general, gives
(D) (Ves=) = e (D + a)V.
We can, therefore, assume that
1 1
— (Ve*) = ¥ ———V.
0) KR T oE
We shall use this formula to obtain the particular integral in this case,
i.e., since for the ordinary differential equation f(D)y = ¢(z) = Ve®®

1 ar __ az____.l_
B FE) T e

7

our problem reduces to finding V. If V is of the form z",

1
fD+a
cos ax or sinbz, then we can use formula 13 or 10 to obtain the solu-
tion; if V is of the form z™ cos bx or =™ sin bz, then we use de Moivre’s
theorem and write

e'?® = cos bz + isinbz,
or
cosbz = Re®*, sinbz = Je?,

so that if V = z™ cosbz, we write V = Ra"e®®, and if V = z"sinbz,
we write V = Qz"e®®. Thus,

R -z ibx
. ——.f(D+a)x e
—V =< or
f(D+a) 1 N
& _gneib®
f(D+a)

Now f(D+a) is another polynomial in D, and we can write f(D+a) =
f1(D). We consider

1 1

_pnibr xneib:c7
f(D+a) f1(D)
and using the formula (6) we get
1 n ibx ibx 1 n
"™’ = e ———— 2",
f(D) f1(D + 1b)
where ;z” can be evaluated by the use of formula 13. This

fi1(D + ib)

discussion also covers the case when f(z) = 2™ cosax or z" sinaz.
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ExAMPLE 3.8. Consider (D4 +D%®-3D*-D+ 2) y = 4e®. Then

Lot
Y= D4+D3—§D2—D+2 :4D4+D3—;D2—D+26x
:4(Di1)2D2+;D—|—2ez:4(Di1)21+{1’>+263
:%aﬁew=§eziﬁﬁ'l

= gez%-lzgezg —%xze’” "

ExXAMPLE 3.9. Consider (D® — D? +4D — 4) y = 2sin2z. Then

1 . 1 .
Yp = D3—D2+4D—42°m2x_2D3—D2+4D—4sm2x'

If we put D? = —4, f(D) =0, and, therefore, we write

1 1
2 i T =
F Y B A s s Ty, B

1 T __ 1 i
D-1) (D2 +4)62 =B o-wmo-D0D +2i)62

1 1 . 1 1 ‘
= 2% - 2z ) 2% 2ix
D -2 ((D—l)(D+2i)e ) (D — 2i) ((21'—1)(41')e )
1 1 1 . 1.1 1 ,
=& 2z _ _— 24T
2 D20 (—2-9)° 2> (2+49) (D —29) (e%%-1)
1. 2% , 1
= __S:_F__ 2ix - .
@D e 5 (1) (using the formula 6)

2ix

Yp =

=29

1. 2—4 5.1 1 )
= _-& 2ix - . _ i\ p2iT |
53¢ —(1) T (2 —1)e x

1 . . . z
= —ES‘:I:(? — i) (cos2z — isin2x) = i (cos2z — 2sin2z) .

EXAMPLE 3.10. When ¢(z) = €* and f(a) = 0, the ordinary
differential equation is of the form

f(D)y = Ae**.
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Since f(a) = 0, (D — a) must be a factor of f(D). Then f(D) =
(D —a)" f1(D), where fi(a) # 0, and

1 pr_ g L (1 .
U = A5 e )"h() “A<D—a>n<f<D> )

1 aa:
A((D ) 7o
A 1 (=),

~ file) (D—a)

and using formula 6 we can write

A1 ey Al
fi(a) (D - aj®

O ﬁ(l)
A axr ﬁ
~ 7w ()

If f(D)y = sinaz or cosaz and if f(D) becomes zero by letting D? =
, then it is convenient to consider cosaz and sinax as real and
1magmary parts of €**® and deal with the problem as for ¢%®. w

The Mathematica package InverseOperator.m can be used to
solve examples of the above type, and those in the sequel.

3.2. Homogeneous Equations

Let L be a linear partial differential operator with constant coefficients
in two variables z and y. Then Lu = f(z,y) is a partial differential

equation with constant coefficients. If we define D, = e and D, =
i

(%, so that, e.g., D} = a— then

oxt’
m,n

L= A;D.Di. (3.1)
1,j=1

We shall first discuss the homogeneous case Lu = 0, and limit ourselves

to the case where L can be expressed as a product of linear factors in
D.
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THEOREM 3.1. If uy,us,...,u, are solutions of Lu = 0, where L
n

is a linear partial differential operator, then Zciui is also a solution

i=1
of Lu =0

PROOF. Since uy;us,... ,un are solutions of Lu = 0, we have Lu, =
) k3 ’ ?

Luy = - = Lu, = 0. But then L (Z ciui> = cilu;=0. =
1 1

THEOREM 3.2. If the operator L of order n can be factored into
n linearly independent factors of the type a;D, + b;Dy + c;, then the
general solution of Lu = 0 is given by

u= Z filasy — byx) e~ i%/a:, (3.2)

i=1

PROOF. It was established in §2.1 that the solution of (a; Dy +
biDy + ci)us = 0 is u; = ¢(b;z — azy) e %¥/% . Then obviously u; are n
linearly independent solutions of Lu = 0 for i = 1,2,... ,n. Hence, by

n

Theorem 3.1, Zuz is a solution of Lu =0

THEOREM 3.3. If aD, +bD, + c is a factor of multiplicity k, then
the corresponding solution is
k-1

Z =t fi(ay — bx) e~ %/, (3.3)

i=0
A proof can be established by substitution.

EXAMPLE 3.11. Solve (4D7—16D,Dy+15D2)u = 0. This equation
can be written as (2D, — 3D,)(2D, — 5D,)u = 0, so the solution is
u = f1(3z +2y) + f2(5z + 2y). =

EXAMPLE 3.12. Solve (2D} — D, D, — 6D? + 4D, — 8D,)u = 0.
This equation can be written as (D, — 2Dy)(2D +3Dy +4)u =0, so
the solution is u = f1(2z + y) + e‘Q’fz(Ba: —2y). =
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EXAMPLE 3.13. Solve (3D +7D,)(2D, — 5Dy +3)%u = 0. In this
example the equation is already in the factored form and its solution is

u=f(7Tx—3y)+ 6_3’”/2[f1(53: +2y) + zf2(5x + 2y) + xzfg(Sa: +2y)]. =

3.3. Nonhomogeneous Equations

If the partial differential equation is Lu = f(z), then one finds the gen-
eral solution u, (complementary function) to the homogeneous equa-
tion Lu = 0 and looks for any function g(z) that satisfies Lu = f(z),
where g(z) is also known as the particular solution and sometimes de-
noted by u,. Thus, the solution of the partial differential equation is
u = U, + g(z). In this section we will discuss methods for finding the
particular solutions.

The operator technique for finding the particular solutions for ordi-
nary differential equations is applicable for the cases where the method
of undetermined coefficients for ordinary differential equations is used.
This technique is useful in finding particular solutions of partial differ-
ential equations. Thus, if f(D;, D,) is a linear partial differential oper-

ator, then the corresponding inverse operator is defined as 7 Di D))
We will state some obvious results:
1
N (3.4
1 o) = 5055 | Ty 2 V)|
7Dz, D) f2(D2, D,) % = Fi(D., Dy) | £a(Da, D) 7Y
1 1
= h 3.5
oD Fema #e) (39
f(Tj,B;j [c1 @1(z,y) + c2 p2(x,y)] = Cl(Tj,D_y)— ¢1(z,y)
+sz $2(z,y), (3.6)
1 ar+by __ 1 az+b
75 S LA A
f(Dz, Dy)p(z,y)e** T = ** W f(D, + a, Dy + b) ¢(z,y), (3.8)
1 ax+by _ _ax+b 1
f(DzyDy) ¢($ay)e +oy =e + yf(Dz +a,Dy +b) ¢($wy)

3.3. NONHOMOGENEQUS EQUATIONS 75
1 b
=e" ———— eV ¢(z,
D rany ¢ oY)
1
_ by ax
R P — L DY 3.9
D5, Dy +5) é(z,y) (3.9)

f(D2, DZ) cos(az + by) = f(—a?, —b%) cos(azx + by), (3.10)
f(DZ,D2)sin(az + by) = f(—a?, —b?)sin(az + by).  (3.11)

EXAMPLE 3.14. For a particular solution of the equation
(3D% +4D,Dy — D)) u=€""%,

note that

1
“» = (3D2+4D,D, - D,) °
(B +4(-3) - (=3)]

-3y

(3.12)

- 1.
T 3y____ez By..

EXAMPLE 3.15. For a particular solution of partial differential equa-
tion
(3D2 — D,)u = sin(az + by),

we have
u ! sin(ax + by) = L in(az + by)
p= @GDI-D ) y (32 =Dy sin(az + by
_ Dy — beos(az + by) — 3a? sin(azx + by)
= D2--9 4sm(az+b )= 52 T+ 0q8

(3.13)

EXAMPLE 3.16. To find a particular solution for the equation
(3D2 — D,)u = e®sin(z +v),
we have

Up = e e® sin(z +y) = €” !
?~ (3DI-D,) YT B 12Dy
1
=" s sin(z + y)
(3D2 16D, +3— D)

sin{z + y)
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. 1 .
=€ B(-1)Z + 6D, +3 - Dy) sin(z )
1 . (6Dy + Dy) .

oz , — % z Yy 1
=e ———(6Dz ~Dy) sin(z +y) =e€ (36DZ — D2) sin(z + y)
e 7cos(z + y)

-35
= —-:_); et COS(IE —+ y) n (314)

T

EXAMPLE 3.17. To solve us — *ugz = 0, such that u(z,0) = €7,
us(z,0) = 1 + z, note that the partial differential equation can be
written as (D; — cDg)(D; + ¢Dz)u = 0, which gives the solution as
u = f(z + ct) + g(z — ct). This solution is known as the d’Alembert’s
solution (see Eq (5.24) ). Applying the initial conditions, we get

flx) +g(x) =%, (3.15)
cf'(z) —cg'(x) =1+2 (3.16)

On integrating (3.16) with respect to x we get
f(x) - glx) = %(w + E;) +c1. (3.17)

Egs (3.15) and (3.17) yield

W

1 . 1 x c1
f(;v)_2e +%(x+-2)+-2—,
1 _, 1 z?
—_e T _ — —)—c1/2.
g@) =5 — g(e+5) —af

Hence i
uw= E e—z(ect 4+ e—ct) + (.’L‘ + 1)t. -

A general scheme for initial value problems for the wave equation is
as follows: Solve s = c*uzz, subject to the conditions u(z,0) = ¢(z),
ug(x,0) = ¥'(z). Then as in the above example

f(z) + g(x) = ¢(z),
cf!(z) —cg'(x) = ¥'(2)-
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Consequently
£(z) = 516(2) + 29(@) + a1l
1
9(z) = 318(x) — 29(2) 1),
which yields

u(z,t) = =[d(z + ct) — p(z — ct)] + %:[w(a: +ct) — Yz — ct)].

N

ExXAMPLE 3.18. It is interesting to note that we can solve the
Laplace equation by the above method. We will solve

Upg + Uyy = 0,

such that u(z,0) = ¢(z) and uy(z,0) = 9'(z). We can express g, +
Uyy = 0 as

(Dg +1Dy)(Dg — iDy)u = 0,
and, therefore, its general solution is

u= f(x +iy) + g(z — iy).

Applying the initial conditions, we get f(z)+ _ Cand if'(z)
ig'(z) = ¢'(x). Consequently (2) +9(z) = ¢(), and if'(z)
£(@) = 2 [6(z) - i (@) + d,

[6(z) + ip(z) — d].

SRR )

g(x) = ;
Thus,

u(z,) = (80 + i) + 6@ — )] + V(@ — iv) ~ Bz + )]

The final value of u is real. If ¢(z) = e %, and ¢ =
solution is given by

T2 the

1 ) . 1
= Ie(z+ - Y ltan— ;
u(z,y) = 3 [eFW) 4 elo—iv)] 4 E[tan Yz —iy) — tan™Y(z + iy))

2 a2

=e %cosy — 1 In M]
4 224+ (1 +y)2l
where we have used the formula
tana =1z, or a= —;— ln(i_k—z),
-z

with o = tan~!(z — iy) — tan~(z + iy). =
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ExXAMPLE 3.19. Consider
_ 2
Ut = CUzg, 0< T <1,

subject to the conditions u(0,t) = u(l,t) = 0, fort > 0, and w(z,0) =,
u(z,0) = 0. The general solution is

u=f(z+ct)+ gz —ct).
From the boundary conditions we find that
f(Ct) + g(_Ct) =0, or f(z) +- g(_z) =0,

which yields f(z) = —g(—z). Also f(l+ct)+g(l—ct) =01is equivalent
to

flet +1) — f(ct =1) =0,
which in turn gives f(z) = f(z + 21). This last equation implies that
the function f(z) is a periodic function of period 21. The solution, thus,
reduces to

u= f(ct +z)— f(ct — ).

Applying the initial conditions, we get
f@)— f(-z) ==, and f(z)-f(-2)=0,
i.e., f/(z) is an even function, which means that f (z) is an odd function,

ie., f(z) = —f(—z). Hence 2f(z) = z. Since f(z) is an odd periodic
function of period 2[, it can be expressed as a Fourier sine series. Thus

o= (=) | nrx

T .
f@) == g2 T
which yields
I (-1 o . nm
= - 2 L lsin — —_ —_— — l
u(z,t) - EO - [sin 7 (ct + 1) —sin ; (ct —1)]

~————sin —l—' COos .n

Zli (~1)™* | nrz mmct
5 n l

Other techniques from ordinary differential equations such as the
method of undetermined coefficients and the variation of parameters
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technique can also be extended to find the particular solution corre-
sponding to the nonhomogeneous term in the partial differential equa-
tions.

3.4. Exercises

Evaluate (use the inverse operator method of §3.1):
3.1. (D —3)"Y(z® + 3z - 5).

1
ANS. —2—7(9333 + 922 + 33z — 34).
3.2. (D -1)"1(2x).
ANs. —2z.
3.3. (D - 1)"Y=?).
ANs. —(z® + 2z +2).
3.4. (4D* —5D) Y (z2e™®).
—T
Ans. -%(m? + 234z + 266).
3.5. (D? —3D +2)~ ! sin2z.
3 1.
ANS. — cos2z — — sin2z.
.20 20
3.6. D7%(2sin2z).

1
ANs. ~3 sin 2z..

3.7. D3z, s
ANs. —.
24
3.8.  D7%(3e%).
€3z
ANS. 5
3.9. D7 '(2z+3).
Ans. z% + 3z.

3.10. (D® - D?)7'(2z%).
ANs. —2 m_5+:1:_4+ 3 4 322
NS. 20 1 x° +3z” }.
3.11.  (D? +3D 4 2)"}(e™®).
1-3
ANs. e*.
) 10
3.12. (D?*-3D+2)"!(3sinz).
ANS. 1—O(sin:c+3(:os:r).

3.13. (D?+3D+2)"1(84 6e® + 2sinz).
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1
ANS. 4+ €+ —(sinx — 3cosz).
3.14. (D°+2D%+ D) 1(2z + sinz + cos z).

ANs. 2% + ?(cowv —sinz).

Find the general solution of the following partial differential equations:

3.15. (3D2 — 2D, Dy, — 5D2)u = 3z + y + " V.
11 5 1 1 .y
ANS. u= f(5z +3y) + gz —¥) + ﬁx + i 2y + Sxe .

3.16. (D3 — 10D2D2 + 9D} )u = 135sin(3z + 2y).
Ans. f1(3z+ y) + fa(z = 3y) + g1(z +y) + g2(x — y) —sin(3z + 2y).

3.17. (D, — 2D, )*u = 125¢”siny.
ANs. fi(2z+y)+zfo(2r+y)+2%f3(2z+y)—e® (2cosy + 1lsiny).

3.18. Find the particular solution for the following partial differential
equations:

(a) (D% — Dy)u = 17" ¥ sin(z — 2y).
ANs. —e*t¥ {sin(z — 2y) + 4 cos(z — 2y)}.

(b) (D% + D2)u = bzy + 25€>*+4Y.
ANs. 3y + 35T,

(c) (D2 + D2 — D;)u = 37€% cos(3z + 4y).
ANs. €% sin(3z + 4y).

3.19. Show that u = f(ay - bx) e~ ¥/? is also a solution of

(aDy +bDy + c)u =0.

3.20. Find the general solution of 3u, + 4u, — 2u = 1, subject to the
initial condition u(z,0) = z2.

SoLuTION. Here tan 8 = 4/3, thus

ow 2,1
o€ 5

3.4. EXERCISES 81

whose general solution is

1
w(€,n) = —5 +9(n) /5,
or

1 3 4
u(zvy) = ‘5 +g <gy - 3x> esw/25+8y/25.

3.21. Find the general solution of u; —uy +u = 1, such that u(z,0) =

sinx.

SOLUTION. tané = —1, thus 6 = 47/4, and
ow 1 1
% YTV

whose general solution is w = 1 + g(n7) e/ V2 or
wz,y)=1+g (1 - %) eW=2)/2

Using the initial condition, we get sinz = 1 + G(-x/\/i) e—x/2’ so
that

g(n) = —(sinv2n + 1) e/ V2,
Then

u(z,y) =1 — (sinv2n + 1) e MV2E/VE 1 4 (1 -sin(z +y)|e. =

3.22. Solve ug + uy — u = 0, subject to the initial condition u(z,0) =
h(x).

SOLUTION. Here tané = 1, thus 6 = 7/4, and \/—8—5 = w, whose
general solution is w = g(n) €%/ V2 or
u(z,y) = g(n) ¥/ V2.
The initial condition yields
h(z) = 9(~2/V2) &*/? = g(n) "2,
or g(n) = h{(—v/2n) e” V2, Hence

u(z,y) = h(~v2n) e/ V% = h(z — y) e¥.

8.23. Solve uy — cPugg = 0, subject to the conditions u(z,0) = In(1 +
z?) and u,(z,0) = e~ %,
ANs.

u(@,8) = 3lin{l + (z +ct)) + Inf1 + (2 — ct)*}] + 2o~ coshet.
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Orthogonal Expansions

Unlike the ordinary differential equations, the general solution of a partial dif-
ferential equation consists of one or more arbitrary functions. It is not easy to
determine the particular form of these functions from the prescribed boundary
and initial conditions even if the general solution is known. However, it is
often possible to solve a specific boundary value or initial value problem in
the form of an infinite series of functions known as eigenfunctions or char-
acteristic functions. This chapter is devoted to developing orthogonal series,
trigonometric Fourier series, eigenfunction expansions, and Bessel functions.
Orthogonal expansions are important for the method of separation of variables
which shall be discussed in the next chapter.

4.1. Orthogonality

The inner product of two real-valued functions f; and fp defined on an
interval @ < x < bis given by

b
(i f2) = / (@) fole) da, @1)

provided the integral in (4.1) exists.

DEFINITION 4.1. The functions f; and fo are said to be orthogonal on
the interval a < z < bif < f1, f2> = 0, i.e., the integral (4.1) vanishes.
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DEFINITION 4.2. A set of real-valued functions {fi(z), fa(z), -}
defined on the interval ¢ < x < bis said to be an orthogonal set of functions
on the interval a < z < b if for each m and n, m # n,

b
<fm,fn> :/a fm(m)fn(l')dfﬂ:o, m7n=1727"' 3 (42)

provided each integral exists. Thus, for example, the orthogonality relations

. nwx
for the function cos - are

0, n#m
rt nTT mnzT {
/ cos —— cos——dz=¢ -, n=m#0 (4.3)
0 l l 2’
I, n=m=0.

DEFINITION 4.3. The norm of the functions f,(x) is denoted by || f,. ||,
and defined by

. b 1/2
W fall = v/ (frs fr) = (/ f,%(x)dx> > 0. (4.4)

DEFINITION 4.4. An orthogonal set of functions {f,(z)} is called an
orthonormal set of functions on the interval a < x < bif || f,| = 1 for all
n=12---.

Thus, if {f,(x)} is an orthonormal set of functions, then

b
(Smita) = [ Fn(@) @) do = b, (4.5)
a
1 ifm=n .
where 6, = . is the Kronecker delta. If an orthogonal set of
0 ifm#n

functions {f,,(x)} is defined on the interval @ < x < b, with || f,|| # 0, we
can always construct an orthonormal set of functions g, (z) by defining

o=@
gn(T) TAR <z<bh (4.6)

In fact, in view of (4.5),

P @), 1
(omogn) = | E o % = Tgaiza o fn) = s (47)
and hence ||g,|| = 1 for all n.
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EXAMPLE 4.1. The functions fp(z) = sinnz, n = 1,2,-.-, make
an orthogonal set of functions on the interval —7 < z <, since

v
{fm, fn) = sin mz sin nz dz

_ 1 / [cos(m — n)z — cos(m + n)z] dz (4.8)

2
. . qmT
% [sm(m —n)z  sin(m+n)z —0, mtn,

m-nmn m-+n

- =T

and

s ™
(fn) fn) =/ sinnz dz = %/ (1 — cos2nz) dx

- -
1 . sin2nz]” o
T2 2n |,

Thus, ||fa|| = /7, and the orthonormal set of functions is given by

sinnx
gn(ilf) —\/_—ﬂ_, 77/=1,2,"'.l

EXAMPLE 4.2. The set of functions
{ 1 cosz sinz cos2z sin2z }
/_27'{', ﬁ i ﬁ, \/7—\' ) \/E ’

forms an orthogonal set on the interval —m < z < 7. In Example 1.9,

sinnx
we have seen that
T

Now, to verify the orthonormality of other functions,

is orthonormal on the interval —7m < z < 7.

™ COS M COSNT

o VT VT

1
o ST [cos(m — n)x — cos(m +n)z| dz = 0, for m #n,
T

dx

1 .
> ST _[cos(m — n)x — cos(m + n)z| dx =1, for m =n.
YIS

Also,

/ sinmz sinnz 1 / [sin(m — n)z + sin(m + n)z] dr
-

—x VT T 27
N kig
_ 1 [eos(m —n)x  cos(m+n)x —0, forall m,n.
2 m-—n m+n o
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Finally,
sinnz 1 cosnz|™
—_— der = ——= =0,
x V2 2 n l-x
/ cos N 1 sinnz |~
T = =0,
Ve /2 n len

/. (*de—ﬁ"
-7 \/2—77/ 2l

ExXAMPLE 4.3. The set of functions
1, cosz, sinx, cos2z, sin2z,

forms an orthogonal set on the interval —w < x < 7, for which
s 1 m™
/ cosmz sinnz dr = 5 / sin(m + n)rz de
-7 -

- / sin(m —n)rzdx =0

-
for all m,n =0,1,2,---. The orthonormal set is

1 cosz sinx cos2x sin2x

Vol VU oym Jr T

4.2. Orthogonal Polynomials

DEFINITION 4.5. The weighted inner product of two functions f
and g, with weight w > 0, is defined by

b
(.90 = / f(@)g(z)w(z) dr. (4.9)

Some classes of orthogonal polynomials are defined for different val-
ues of a, b, w(z) forn =0,1,2,--- as follows:
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Orthogonal Polynomials a b w(z)
Chebyshev* (1st kind) T, (z) -1 1 (1—2?%)~1/2
Chebyshev (2nd kind) U,(z) -1 1 (1 —22)Y/?
Hermite H,(x) —00 o0 e
Jacobi P{*#)(z) -1 1 (1-2)*Q1-=2)°
Laguerre L,(z) 0 00 e ”
Legendre P, () -1 1 1

The Mathematica package orthonormality.m is available on
the CRC web server. It can be used to verify the orthonormality of
sets of functions.

EXAMPLE 4.4. The Legendre polynomials P,(z) are the solutions
of the Legendre equation

1-2%)y" —2cy' +n(n=1)y =0.

These polynomials are also called the zonal harmonics of the first kind.
The orthogonality relation for the Legendre polynomials P, (z) is

1 0 forn#m
/ P.(z) Pn(z)dx = 2 g o
-1 mpl orn=m

We will present a Mathematica session to evaluate the integral

/] P, (z) Pp(x) dz
-1

forn,m=0,...,10.

Inf1]:=

legendre = Table([LegendreP[n,x], {n, 0 , 10}1;

* Also written as Tchebyscheff.
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Out[l]=
1
z
-1+ 322
2
-3z +52°

2
3-3022+3524

8
152 — 7023 + 6325

8
—5+ 10522 — 31524 + 231 8

16
—35z + 31523 — 693 2° + 42927

16
35 — 1260 22 + 6930 2% — 1201228 + 643528

128
3152 — 4620 23 + 18018 z® — 2574027 + 12155 2°

128
—63 + 3465 22 — 30030 2% + 90090 28 — 109395 23 + 46189 £ 10
256

The plots of these Legendre polynomials are given below.

Graphs of P,(z), n =0,1,...,10.
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-Graphics-
In[2]:=

orthogonality =
Table[Integrate[legendre[[i]] legendre([[jl],
{x, -1, 1}1, {i, 1, 10}, {j, 1, 10}1;

MatrixForm[orthogonality]

Out[2]=
200000 0 0 0 O
020000 0 0 0 O
00200 0 0 0 0 O
00020 0 0 0 0 O
00002 0 0 0 0 O
0000032 0 0 0 O
0000O0OO0CZ 0 0 O
000000 O & 0 0
00000 O0O 0O 0 % 0
000O0O0OO O 0 0 &
L

4.3. Series of Orthogonal Functions

Some important types of series expansions are obtained from orthogonal
sets of functions.

DEFINITION 4.6. Let {g1(z),g2(z), -} be an orthogonal set of
functions on an interval @ < x < b, and let a function f(z) be repre-

sented in terms of the functions g,(z), n = 1,2, .-, by a convergent
series
oo
f@) =) cagnl@). (4.10)
n=1

This series is called a generalized Fourier series of f(z), and the coefhi-
cients ¢,, n = 1,2, -, are called the Fourier coefficients of f(x) with
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respect to the orthogonal set of functions g,(x), n =1,2,---.

In view of Definition 4.4, it is easy to determine the coefficients c,,.
If we multiply both sides of (4.10) by g..(x) for a fixed m, integrate
with respect to = over the interval [a,b], and assume term-by-term
integration, which is justified in the case of uniform convergence, we
obtain

(f:9m) =/abfgmdw=/ab (i cngn(r)> gm () da

n=1

o0 (4.11)
= > cn(9n(@), gm(®))-

n=1
Since in view of the relations (4.6) and (4.7), {(gn,gm) = 6nm, we find
that (gn,gm) = [|lgn||* for n = m, and then (4.11) yields

<fa gn> =Cn ”gn”2v

or

b
B <||];ng|7|l2> N m /a f(z)gn(z)dz. (4.12)

Cn

EXAMPLE 4.5. Using the orthogonal set of functions from Example
4.3 and formula (4.12), the representation (4.10) becomes

o0
f@)=ao+ ) _ (an cosnz + by sinnz), (4.13)
n=1
where, since ||goll = —== [lgnll = —= for n = 1,2, -, the coefficient
, ofl = —=, |lgn|l = == for n = 1,2, -+ -, the coefficients
oL VT
are given by
1 ™
ag = o . f(z) dx,
1 s
ap = = f(z) cosnzx dz, (4.14)
)
1 ™
by = p f(z) sinnz dz,

forn=1,2,-... =

We have introduced the trigonometric Fourier series of f(z) in the
above example, under the assumption that the series (4.13) converges
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and represents the function f(z). The coeflicients ag, a, and b, for
n =1,2, - are called the Fourier coefficients, and (4.14) are known as
Euler’s formulas.

4.4. Trigonometric Fourier Series

A function f(z) is said to be periodic of period p if f(z + p) = f(z),
¢ < x < ¢+ p, where ¢ is a constant. For example, the functions
sinz and cosz have period 27. More generally, each of the functions

. 2nmx . T . . -
sin and cos is periodic of period p where n is a positive

p
integer. Hence, if the infinite series

1 > 2nmx 2nmwx
- n by, si 4.15
500 + Z (a cos » + in 5 ) (4.15)

n=1

is convergent, then it represents a function of period p.

THEOREM 4.1. (Fourier Theorem I, for periodic functions) Let
f(x) be a single—valued piecewise continuous periodic function of pe-
riod p on a finite interval I = [c,c + p|, where ¢ is a constant. Then
the series (4.15) converges to f(z) at all points of continuity and to

SlF@) + f(a-)] (416)

at the points of discontinuity (and also at all points of continuity). The
coefficients ag, a, and b, are given by

2 [etP 2

an=—/ f(z) cos nre dz, (n=0,1,2,---),
pJe p
2 ct+p

(4.17)

bn=_/ f(x) Sianmdm, (n=1,2,--+).
(4

p
where ¢ is a constant such that the interval [c,c+ p] = I.

If we set p = 2L and ¢ = —L in (4.17), then these formulas become

L
4y = _2./ f@) cos o dw, (0 =0,1,2,--),
-L (4.18)

1 [ nmT
b’n:—' in —— ’ =12,---).
i3 /_L f(x) sin T dz, (n )
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EXAMPLE 4.6. Let f(z) = |z|, —7 < = < 7 (see Fig. 4.1). Note
that f(x) is an even function, since f(—z) = | —z| = |z| = f(z). Then,
from (4.18), with L = =,

1 [ 2 ("
a‘g=—/ |a:|dx==—/ zdx =,
T J_rn ™ Jo

2 [T 2 [
ap = —/ f(z) cosnzdr = ~/ T cosnzdr
™ 0 ™ 0

2 [cosnx :Issinnm}7r

Tt n? n 0
4
{ -———, n odd
= n?nw
0, n even

and b, =0 for n =1,2,-.-. Hence the Fourier series (4.15) is

T 4 o= cos(2n — 1)w
|$|=§—;Z - 7 <z<7T.n

2n—-1)2 °’

Al

n=1

0

Fig. 4.1. Graph of f(z) = |z|, —-m <z <.

The following Mathematica session illustrates this example.

In[3]:=

Clear(f,a0,a,b,fourier];
fx.]:= Abs[x]

Integrate[Abs[x],{x,-Pi,Pi}]

On::none: Message SeriesData::csa not found.
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Out[5]=
Integrate[Abs([x], {x, -Pi, Pi}]

Mathematica will not integrate |z|. Observe that the function
f(z) cosnz is even and f(z) sinnz is odd. So we proceed as follows:

In[6]:=

a0 = (2/Pi) Integrate(x,{x,0,Pi}]
Out[6]=

Pi
In[7]:=

a = Table[2 Integratelx Cos[n x],{x,0,Pi}]/Pi,{n,10}]

Out[7]=
-4 -4 -4 -4 -4
{_.1 y =50, .701 .701 ’O}
Pi 9Pi 25Pi 49Pi 81Pi
In[8]:=

b = Table[(Integrate[-x Sin[n x],{x,-Pi,0}]
+ Integrate[x Sin[n x],{x,0,Pi}])/Pi,{n,10}]

Out[8]=
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
In[9]:=

fourier[x.] = a0/2 +
Sum[al[n]] Cos[n x]+ b[[n]] Sin[n x],{n,1,10}]

Out[9]=
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Pi 4Cos[x] 4Cos[3x] 4Cos[5x]_4Cos[7x]_4Cos[9x]}
{_2__ Pi 9Pi 25Pi 49Pi 81Pi

In[10]:=
Plot [{f [x],fourier[x]},{x,-0.5,0.5}]

\ 0.5

EXAMPLE 4.7. Consider

xz =0,
O<z <2,
T =2,
, 2<zx<{4,

f(z) =

oD WoN

such that f(x +4) = f(z). This function is piecewise continuous and
is of period 4 (see Fig. 4.2). Note that f(2—) = 3 and f(2+) =1. In
this example, ¢ = 0, p = 4. Then, using (4.17) we get

1 2 4
ao=—</ 3dz+/ 1da:>=4,
2 \Jo 2
1 2 , 4
—(/ SCosw-d$+/ lcos—mrxdm)=0,
0 2 2 2
1 2 nwT 4 nwT
b = — in — in ——
n 2(/0 3sin 5 da:+/2 1sin 7 dz:)

{ 0, ifniseven,

4
—, ifnis odd.
nw

an =

[\

3 —2cosnw — cos2nw
nw
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Hence the Fourier series is a0 = (1/2) (Integrate(3,{x,0,2}] + Integratel[1,{x,2,4}])

4N 1 (2n — )7z
=2+ — i - 14]=
f(x) 2+7r22n—1 sin 5 Out[14]
n=1
1 4
Also, note that in view of (4.16), for example, f(4) = §[f(4+:)+f(4—)],
ie,2=5(3+1). » Inf15):=
v a = Table[1/2 (Integrate[3 Cos[n Pi x/4],{x,0,2}] +
3 Integrate(Cos[n Pi x/4],{x,2,4}1),{n,16}]
. . 2 . . . . .
Out[15]=
1
X {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
4 -2 0 2 4 6 8 10

Fig. 4.2. Graph of f(z). In[16]:=

The following Mathematica session illustrates this example. b = Table[1/2 (Integrate[3 Sinln Pi x/4],{x,0,2}1+

Integrate[Sin[n Pi x/4],{x,2,4}1),{n,16}]

Inf11):= Out[16]=
Clear [f,a0,a,b,fourier]; {i Y S . S . S S S . S . 0}
earil.a,a,b,lourler]; Pi’ '3Pi’ 'SPi’ '7Pi’ '9Pi’ '11Pi’ '13Pi’  15Pi’

flx] := If[x==0,2, If[0<x<2,3, If[x==2,2,

In[17]:=
If[2<x<4,1]1]1]]

fourier([x.]:= a0/2 + Sum{b[[n]] Sin[n Pi x/2],{n,1,16}]
Plot [{f[x],fourier(x]},{x,-0.5,4},
PlotRange->{{-1,5},{-1,3.5}}]

Integrate[f[x],{x,0,4}]

On::none: Message SeriesData::csa not found.
General::intinit: Loading integration packages --
please wait.

Out[18]=

Out[13]=

2
Integrate[If(x == 0, 2, If[0 < x < 2, 3, If[x == 2, 2, "J v-~—-\1
If[2 < x < 4, 11113, {x, 0, 4}]

In[14]:=
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EXAMPLE 4.8. Consider the wave equation uy = ¢ ugy, where ¢
is the wave velocity, subject to the boundary conditions u(0,t) =0 =
u(l,t) for t > 0, and the initial conditions u(z,0) = z, and u;{z,0) = 0.
We shall assume the d’Alembert’s solution of the wave equation (see
Example 3.17 and (5.24))

u(z,t) = f(z + ct) + gz — ct). (4.19)
From the boundary condition »(0,t) = 0 we find that
flct) + g(—ct) =0,

or, setting ¢t = z, we get f(2) = —g(—2z). Using the other boundary
condition u(l,t) = 0 we have

fl+cty+g(l—ct) =0,

which implies that f(ct +1) — f(ct —1) =0, i.e., f(2) = f(z+2l). This
last equation means that f is a periodic function of period 2I. The
solution thus reduces to

u(z,t) = f(et +z) — fct — ).
If we apply the initial conditions we get
f(z) - f(-2) ==, and f(z)-f(-2z)=0,

which means that f/(z) is an even function, and therefore f(z) an odd
function, i.e., f(z) = —f(—z). Hence 2 f(z) = z. Since f(z) is an
odd periodic function of period 2l, it can be expressed as a Fourier sine

series
( 'n+ 1 T

which yields

L (=) T nm(ct4x) . nm(ct —2)
u(z,t) = - Z - sin i sin ;

A X (-1 nmz nmct
== sin —— cos )
m i l l

n=1

This solution can be compared with (5.23). =

4.4. TRIGONOMETRIC FOURIER SERIES 97

EXAMPLE 4.9. Consider the wave equation us; = ¢2 ug,, where c is
the wave velocity, subject to the boundary conditions (i) u,(0,t) =0,
(ii) u(l,t) = 0, and the initial conditions (iii) u(z,0) = z, and (iv)
ut(z,0) = 0. Using the d’Alembert’s solution (4.19) we find that

ou(z,t)  Of(x+ct) Oz +ct)  Og(x —ct) Oz —ct)
0r  O(z+ect) Oz oz —ct) Oz

which, by taking ct = 2, in view of condition (i) yields u,(0,t) =
f'(z) + ¢'(—2) = 0, where ' = d/dz, i.e., f'(z) = —g'(—z) which upon
integration with respect to z yields f(z) = g(—z) + ¢1, and hence

9(2) = f(=2) + c1. (4.20)

Condition (ii) gives f(I + ct) + g(I — ct) = 0, which by using the value
of g from (4.20) becomes

fl+et)+ flat =) +c1=0.
Condition (iii} , in view of (4.20), gives
flx)+ f(—2)+ ¢ ==,

whereas condition (iv) gives
cf'(z) + cf'(-2) =0,

ie., f'(z) = —f'(—x), which implies that f’ is an odd function, and,
therefore, f(xz) is an even function, i.e., f(—z) = f(z). Hence, 2f(z) =
T — c¢;. If we define

c
(@) = f(z) + 5,
then we have
Plet +1) + (et —1) =0,
or, by taking ct — | = v, we get

P(v) + (v +2l) =

If we set v = ¢ + 2I, then

P(C+4l) = —y(C+20) = ¥(().

Eence % is a periodic function of period 4/, and ¥(z) + ¥(—z) = x.
et

A nnx )
Y(z) = sin 2% 21 z 4 B, cos ETh
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Then
u(@,t) = Ylct + ) + (et — )
= A, [sm —-(ct + z) + sin -——(ct - a:)]

21
+ B, [cos —2l—(ct + ) + cos g(ct - x)]
nmwet nwr . nwct nre
=2 [A sin 5 08— + B, cos —— cos —21—]

Using the initial condition (iv), we find that u(z,0) = 0 gives A4, = 0.

t
Again, condition (ii) yields 2B, cos ;rlc cos % = 0; thus, B, = 0 if
n =2m, and B, # 0 if n = 2m — 1, where m is a positive integer. This

gives

— D)wet 2m — 1)m
Y COS(m )z

> (2m
u(z,t) = Z 2B, 1 COS

= 21 2l
Since
u(z,0) = T 2B, co (2m —Urz =z,
m=1 2
we find that
1t @em-1nz
B,, = 7/0 T COoS 2 dx
_ { [m sin (2m — 1)7rm]l 2l
- 21 o (2m—)r
2l L o@m -1z
@m-1) / sin ————d }
2(-1)™l 4l

T @em-Dr  (2m-1)212 -

DEFINITION 4.7. A function f defined on an interval [a,b] is said
to be of bounded variation on [a, b] if its total variation var(f) on [a, b]
is finite, i.e.,

var(f) = Sl,ipz |f(t:) — f{te-1)l, (4.21)

the supremum being taken over all partiticns P

a=tg<t1 <---<th,=0b (4.22)
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of the interval [a,b], and n is an arbitrary positive integer such that
the choice of the values t1, o, -+ ,t,_1 satisfies (4.22). All functions of
bounded variation form a vector space, with norm

Il = 1£(a)| + var(f).

A monotone function f on [a,b] is of bounded variation, and its total
variation is

var(f) = |f(b) — f(a)|.

A function f of the class C? is of bounded variation on [a, b], with total
variation

b
var(f) = / (@) de,

provided f’ exists and is bounded in (a,b). A generalization of this
result is: A function f is said to satisfy the Lipschitz condition if there
exists a constant M > 0 such that

|f(z) = f(W)] < Mz -yl (4.23)

Obviously, such a function is uniformly continuous and is of bounded
variation. Some well-known results are:

A function f is of bounded variation on [a, b] is bounded on [a, b].

If f and g are of bounded variation on [a, b], then f + g and f g are of
bounded variation on [a, b].

If f is of bounded variation on [a,b] and c is a real number, then the
function cf is also of bounded variation on [a, b].

If f is of bounded variation on [a,b], then (a) var(f) is an increasing
function; (b) var(f) is an increasing function, and (c) f is continuous
at o € [a,b] iff var(f) is continuous at xy. Moreover, a function f of

bounded variation on [a, b] can be represented as a sum of two monotone
functions ¢ and A:

f(z) =g(z) + h(z), a<z <, (4.24)

such that g is nondecreasing and A is nonincreasing. Each such function
[ has the following properties:

(i) one-sided limits f(z+) and f (z—) from the interior of the interval
exist at each point;

(i) f has at most countably many discontinuities in the interval, and
(iil) f is bounded and integrable over the interval.
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THEOREM 4.2. (Fourier Theorem II) Let f(z) denote a periodic
function of period 27 whose integral from —r to © exists. If that integral
is improper, let it be absolutely convergent. Then at each point x which
1s interior to an interval on which f is of bounded variation, the Fourier
series for the function f converges to the average value (4.16).

The asymptotic behavior of the Fourier coefficients of a periodic
function f(z) is given by the following theorem:

THEOREM 4.3. As n — oo, the Fourier coefficients a, and b, al-
ways approach zero at least as rapidly as a/n where o is a constant
independent of n. If the function f(z) is piecewise continuous, then
either a, or by, and in general both, decrease no faster than a/n. In
general, if f(x) and its first k — 1 derivatives satisfy the conditions of
the Fourier theorems I and II, then the Fourier coefficients a,, and b,
approach zero as n — oo at least as rapidly as a/nF+1. Moreover,
if f®)(z) is not everywhere continuous, then either a, or by, and in
general both, approach zero no faster than a/nF+1.

This theorem implies that the smoother the function f is, the faster
its Fourier series converges. It should be noted that the Fourier series
for two— and three-dimensional functions are similar to the above anal-
ysis for one-dimensional functions.

Proofs of these theorems are available in Davis (1963), Churchill
and Brown (1978), and Walker (1988).

DEFINITION 4.8. Let f be a function defined on the interval 0 <
z < L such that the integrals

L
/ f(w)sinnLﬂdx, n=12---,
0

exist. Then the series

s nwr
Z bn sin —— (4.25)
L
n=1
where L
bn:%/o fx) sin?dm, (n=1,2,---), (4.26)

is called the Fourier sine series of f On the interval 0 < z < L.
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Note that the series expansion (4.25) is identical to the trigono-
metric Fourier series (4.15) of an odd function defined on the interval
—L <z < L, which coincides with f(z) on the interval 0 < z < L.

DEFINITION 4.9. Let f be a function defined on the interval 0 <
z < L such that the integrals

L -
/ f(w)cosn—;ﬁdm, n=0,1,2,--,
0 J

exist. Then the series

x>
ag nrx
2 + ,‘; @n COS —— (4.27)
where
2 [k '
an = —/ f@) cos 2 dz, (n=0,1,2,---), (4.28)
/o 7

is called the Fourier cosine series of f on the interval 0 < z < L.

Note that the series expansion (4.27) is identical to the trigono-
metric Fourier series (4.15) of an even function defined on the interval
—L <z < L, which coincides with f(z) on the interval 0 < z < L.

EXAMPLE 4.10. To find the Fourier cosine series of period 27 which
represents f(x) = z on the interval 0 < z < =, let L = 7 in (4.28).

Then
2 ™
aoz—/ zdr =T,
T Jo

2 (7 2 [zsinnx cosnz
ay, = — T cosnrdr = — + 3
™ 0 ™ mn n

2(cosmmr —1) 0, ifn is even,
wn? if 1 is odd.
s

n2’

Hence the Fourier cosine series is

Tr =

ST

4 = 1
— ; 1; m COS(QTL — 1).’1/'
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The graph of the right side of this series is given in Fig. 4.3. Note that
at z = 0, the right side of the series equals

4i 1 o 47r2_0
Té(2n-1)2 2 w8

ST

o o]

1 2

since Z 3= % At z = 7, the right side of the above series is
1

2

'§—=7T. L}

ST

obviously equal to g +

Fig. 4.3.

plotfourier.ma, available in the Mathematica Notebook, gen-
erates a table of the elements of a trigonometric Fourier series and plots
their graphs for a given function.

EXAMPLE 4.11. In the case of a jump discontinuity the Fourier
series leads to what is known as the Gibbs phenomenon. Consider,
e.g., the Fourier sine series for

1, 0zl
-1, —-l<zx<O.

@)= {

Then, the coefficient b, defined by (4.23) are given by

by =9
L~ on+1
n=0

sin(2n + 1)7z.
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The partial sums

k

4
Mg = Z T sin(2n + 1)7wx
n=0

define the k£ harmonics, which approximate the jump as shown in Fig.
4.4. Notice the sharp peaks in the harmonics My, Ms, Mg, Mg, and
My near 0 which is the discontinuity of f(x). Gibbs showed that the
height or overshoot of these peaks is greater than f(0+) by about 9%.
The width of the overshoot goes to zero as £ — oo, but the height
remains at 9% both at the top and the bottom such that

Jim max|f(z) — M (z)| # 0.

This phenomenon does not go away even when the number of harmonics
is increased. m

-1

0 1
V\I\NWWW——WJ M2 F——J My
Fig. 4.4. Gibbs phenomenon.

A ———

4.5. Eigenfunction Expansions

The Sturm-~Liouville problems arise in the solution of boundary value
problems when one uses the method of separation of variables. This
method, discussed in detail in the next chapter, is one of the most use-
ful methods in solving boundary value problems involving partial dif-
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ferential equations. A Sturm-Liouville problem consists of the Sturm-
Liouville equation

2 [ + @) + ru@ly =0, (4.29)

which is a linear second order ordinary differential equation defined on
a given interval a < z < b and satisfies the boundary conditions of the
form

ay y(a) + b1y'(a) =0,

azy(b) + b2y (b) =0,
where ) is a real parameter, and ay,az,b1, by are given real constants
such that a; and b, or ag and by are both not zero. It is obvious
that (4.29)-(4.30) always has a trivial solution y = 0. The nontrivial
solutions of this problem are called the eigenfunctions ¢, (z) and the
corresponding values of A the eigenvalues A, of the problem. The pair
(¢, \n) is known as the eigenpair.

(4.30)

THEOREM 4.4. Let the functions p, q, 7 and p’ in Eq (4.29) be real-
valued and continuous on the interval a < x < b. Let ¢m(x) and ¢n(z)
be the eigenfunctions of the problem (4.29)-(4.30) with corresponding
eigenvectors Ay and Ap, respectively, such that Apy # An. Then

/b Gm(z) dn(z) w(z)dz =0, m#n, (4.31)

i.e., the eigenfunctions ¢, and ¢, are orthogonal with respect to the
weight function w(z) on the interval a < z < b.

Proof of this theorem can be found in any standard textbook on
ordinary differential equations, e.g., Ross (1964), Boyce and DiPrima
(1992).

DEFINITION 4.10. The boundary conditions of the type

y(a) =y(b), y'(a) =y (b) (4.32)
are known as the periodic boundary conditions. In this case the solution
is of period b — a.

The eigenfunction expansion of an arbitrary function f(z) in the
interval a < z < b is given by

f@) = cadulz), (4.33)
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where ¢, are the eigenfunctions, with corresponding eigenvalues An of
the Sturm-Liouville (or eigenvalue) problem

d?y

— 4+ A%y =0 ,
Tzt =0, (4.34)
subject to the boundary conditions (2.25), and the coefficients c, are
determined by (4.12). '

EXAMPLE 4.12. The set of orthogonal functions 1, cosz, sinz,
cos 2z, sin2z, - -+ of Example 4.3 are the eigenfunctions of the eigen-
value problem

Y + Ay =0, y(-m)=y(r), y'(-m)=y'(m).

The corresponding eigenvalues are A, =n, (n=1,2,---). =

EXAMPLE 4.13. For the eigenvalue problem (4.34) defined on the
interval 0 < z < L, and (a) subject to the Dirichlet boundary condi-
tions y(0) = 0 = y(L), the eigenpair is

bn(x) =sinApnz, Ap=— (n=1,2,--+);

and (b) with the Neumann boundary conditions y’(0) = 0 = y'(L), the
the eigenpair is

bn(z) =cos Az, Ap=—, (n=0,1,2,---).m

eigenpair.ma, available in the Mathematica Notebook, can be
used to obtain the eigenvalues and eigenfunctions for a given boundary
value problem.

Tables 4.1 and 4.2 at the end of this chapter provide the data for
the solution of the eigenvalue problem with three types of boundary
conditions (4.32) in the Cartesian and the polar cylindrical coordinates,

respectively. Note that the Bessel equation in the polar cylindrical
coordinates

d*>y 1dy v?

d—ﬂ+;$+(/\2—;§>y=0, OSTSGH v>-——, (435)

is a Sturm-Liouville equation.
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4.6. Bessel Functions

The Bessel functions of order v are the solutions of the ordinary differ-
ential equation

d?y dy
2 2 _
T @ -y =0, v>0, (4.36)

which is known as the Bessel equation of order v. Its regular solutions
for each v > 0 are the Bessel functions of the first kind

Ju(z) = ZO né;:gr:/—)' (§)2n+u , —o0< <00, (4.37)

These power series solutions are obtained by the Frobenius method,
details of which are available in any standard book on ordinary dif-
ferential equation, e.g., Ross (1964), Boyce and DiPrima (1992). The
infinite series (4.37) is uniformly convergent and can be differentiated or
integrated term-by-term. The differentiation and integration formulas
are as follows:

Jo(—z) = (-1)" Ju(2),

%[m" Jo(z)] = z¥ Jy_1(x),
Lo Ju(a)] = o ae),
zJ(z) =vJ,(z) -z Jy41(x),
zJ(x) = —vJ,(z) + Jy-1(z),

/  J_1(t) dt = 2¥ T, (),

0
where ' = d/dz. In particular,

Jo(x) = —N(z),

(4.38)

and

T
/ t Jo(t) dt = zJ1(z).

0
The integral representation for J,(z) is

T
Ju(x) = %/0 cos(z sinf — v8) db, (4.39)
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and, in particular,
1 i 2 /2
Jo(z) = = / cos(z sinf) df = — / cos(z cosf)dh.  (4.40)
i 0 T 0

Note that Jox is an even function and Jyx41 an odd function. Moreover,
Jo(0) =1, but J,(0) = 0 for v > 1. In fact, J, has a zero of multiplicity
v at = 0. The integral representation (4.39) shows that ||J,(z)|| < 1
for all real z and v > 0.

Plots of J,(z) and J.,(z) for v = 0,1,2,3 are available in
bessel.ma in the Mathematica Notebook.

From the graphs of Jy, Ji, J2, J3 and their derivatives, it is found
that each J, decays for large x, and their zeros are almost evenly spread
and interlaced. In fact, for real v the functions J,(z) and J,(z) each
have countably many real zeros, all of which are simple except z = 0.
For nonnegative v, let the n-th positive zero of these functions be
denoted by @, and o, ,; then the zeros interlace according to the
inequalities

a1 < oyt11 <2 <0412 <03 < - -,

/ / ! 7 /
v < a1 < Qi1 < Qo < Q1,2 < Qa3 <L,

i.e., each J, possesses an increasing unbounded sequence of positive
zeros. In fact, all zeros of J, are real for v > —1. But for v < —1 and
v not an integer, the number of complex zeros of J,, is twice the integer
part of (—v). If the integer part of (—v) is odd, two of these zeros lie
on the imaginary axis. If v > 0, all zeros of J, are real (Abramowitz
and Stegun, 1965, p. 372).

By taking the limit of the integral representation (4.40) as z — oo,
it can be shown that

Ii:rn Ju(z) = 0.
In fact, in view of the Rlemann—Lebesgue lemma which states that

lim / F(z) coskrdz = Jim / F(z) sinkz dz = 0, we get

K—=00
-7

T—00 T—00 T

2 /2
lim Jp(z) = lim ——/ cos(x cos ) df
0

i 2 [ )

T—00 TU ,\/_1—__—‘

=0.
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Similarly,
Ju(z) = —17;/ cos(z sinf — v6) db
0

= —71; / [cos v8 cos(z sin ) + sinvf sin(z sin8)] df
0

tends to zero as T — Q.

EXAMPLE 4.14. Consider the polar cylindrical form of the Laplace
operator )
d 1d
L=m ™ ia

in R!. Then the corresponding eigenvalue problem is Lo+ Mg = 0.
It can be shown that the radially symmetric eigenfunctions ¢y, of the
Laplace equation subject to the Dirichlet boundary condition #(1)=0

on the unit disk U are
o = Jo(AxT), (k=12,... ),

such that
>\1<)\2<)\3<"'

are the positive zeros of Jo. These eigenfunctions form a complete
orthogonal set, i.e., for m #n

1
(Jo(Amr), Jo(Anr)) = / Jomr) Jo(Anr) T dr = 0.
0
Then, for any function f with the norm
1
112 = [ feyrar < oo
0

we have the Fourier—Bessel expansion

Fr) = en Jo(rar), (4.41)
n=1
where
cn = <f7 JO()"nQZ
" llJo(x\ng}Hz ’ (4.42)
o0 = 52

In general, we have
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THEOREM 4.4. The eigenfunctions ¢ = J,(Apr), (n = 1,2,---)
J ? b
form a complete orthogonal set of radially symmetric square integmblé

functions such that for a square integrable function ;
< funct f the F. _
erpansion g to the Fourier-Bessel

f(r) = Z en Ju(An?) (4.43)

holds, where
Cy = M
P ACWS (4.44)

and A\, are the positive zeros of J, forn=1,2,---, and

1
1, )| = /0 J2(00r) rdr

o (A)]?
2

— J3+1(’\n)
2

— Jg—l()‘n)

= __2 .

(4.45)

THEOREM 4.5. The ei ]
2 .5. genfunctions for the Laplace ;
zero Dirichlet condition on the unit disk U = {r < 21)} areopemtor v

Jo(Anr),  Ju(An7) cosvl, J,(Anr) sinvl, (4.46)

7216251, 2,:]- -, and v 2 1, with the eigenvalues A\, which are the positive
. H%‘ . Thesezezgenfunctzions form a complete orthogonal basis in
tbert space L*(U) of all square integrable functions on U.

Proofs of these theorems can be found in Watson (1944).

. TPE;(LI‘I tl:le 2‘chree types of bopndary conditions the eigenpairs are defined
. e t. Uat the end of this chapter. Hence, a function f(r,8) defined
se x (0,27) has an eigenfunction expansion of the form

flr,60)= Z [fn(r) cosnf + g,(r) sinnf], (4.47)
n=0

where each of th i
(4.43). e functions f, and g, has an expansion of the form
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T

4.7. Exercises

Show that each given set of functions is orthogonal on the given interval,
and determine the corresponding orthonormal set of functions:

4.1. {sinﬁ?—w},nzl,Q,fi,'--; “l<z<l
4.2. {cosznzm},n=0,1,2,---; —-l<zx<l
4.3. {sin2nz},n=1,2,3,--+; 0z
4.4. {cos2nz},n=1,2,3,---; 0<z <™
4.5. {sin3nz},n=0,1,2,--+; —-T<T<TW
4.6. {cos3nz},n=0,1,2,3,--; —-m<r<T
4.7. {sin2nz,cos2nz},n =1,2,3,- - lz| <7

4.8. Find the Fourier series for the function f(z) which is assumed to
have the period 2m:
1 if —r/2<z<m/2
a =
() f(a) { 1 ifr/2<z<3m/2
(b) flz)=2, —-m<z<m.

(c) flz)=2%, —-m<z<m
4 1
ANs. (a) p (cosm - % cos 3T — +z cos bz + - )

1 1 1
(b) 2 (sinm— Esin2a:+ §sin3z— Zsinfl:t—i——-«-).

2 1 1 1 ‘
(c) % -4 (cosx— Zcos;2a:+§cos3x— -Ecos4m+——v-~‘).

4.9. Find the Fourier series of the period function f(z) of period T*
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-1 f-1l<xz<0
a x) =
(2) f(=) {1 ifo<z<l, T=2
M) f(z)=1-2% -l<z<l, T=2

4/ . 1
ANs. (a)j; (smﬂ'x + 3 sin 37z + %sin S5rT + - )

2 4/ 1 1
(b) 3 +F ~cosm:— Zcos27r’:c+§c0537rm—+-~>.

4.10. Find the trigonometric Fourier series of the function f(z) = =,
—4<zx<4.

ANs. Note that f(z) is an odd function, which implies a,, = 0; and
L =4. Then

1 4 nrx 8 8(—1)"t+!
b = — in — = ——_ —_ — —
n 2/0 z sin — dx o COSNT = —_— (n=1,2,---),

and the series is
8 OC‘ _ n+1
P Z, (-1) i T

ANs. Note that L = w. The function f is neither odd nor even.
Then

1 /7
ap = — f(m)d$=3?ﬂ-’

(L

1 /7 —
Up = — f(x)cosnzdr = .1_ [M]
Fo - m n2
2
_{ ——_, foroddn,
= ™
0, for even n,

us

bp = — f(:c)sinnxdx:—l, (n=0,1,2,---).
n

-7
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The series is 4.16. Show that

f() 3n + ‘;2 ()" - cosnzT L sinnz -
—_— — — ) - . :
PP o " cosz = Jo(z) + 2 E (=)™ Jan(x),

n=1
00

sinx =2 2;(—1)" Jon+1(z).

n=1

4.12. Find the trigonometric Fourier series of the function

r, -w<zx<0, HINT: set t =4 in Exercise 4.15.
T
g(;p) = 57 x=0,

z, 0<z<m. 4.17. Show that

HINT: The function g(z) is the same as f(z) in Exercise 4.11, except
at £ = 0. Since these two functions have the same values at all

cos(z sinf) = Jo(zx) +2 Z Jon(x) cos2nb,

=1

points except a finite number (only one in this case) in the same 00 "

interval, the function g(z) has the same Fourier series as that for sin(z sin ) = 2 Z Jon+1(x) sin 2nb.
f(z) in Exercise 4.11.

n=0
. _ i0 :

4.13. Find the trigonometric Fourier series of the function f(z) HINT: set ¢ = €™ in Exercise 4.15.

a?2—z%2,0<z<a.

ANs.

4.18. From the results of Exercise 4.17, deduce that

S
|
8
I
oolw

4 xR
Q—TZL mrm.

1 T
Jon(z) = ﬂ/ cos(z sin @) cos 2né db,
0

4.14. Show that

1 T
Jon+1(z) = 5;;/ sin(z sin @) sin 2n6 db.
0

p 27 p 1
/ sin gdg = 27
0 (ni2n)?

HiNT: Use induction, or the result 4.19. Show that

/ *y)ydy = L2V @) T )’
0 5 -

/2 (
/ cos™ @ sin™ 8df =
0

HINT: Use the identity

zJy(x) (2 J,(x)) = J,(@)[g*T) (@) +2J}(2)] = (P —22) ], (z) j, ().
4.15. Show that

4.20. Show that if ) is a positive zero of J, (x), then (4.45) holds.
HINT: Set z = ar and use Exercise 4.19.

z(t 1/t)/ Z‘] (.’E tn 1)nt—n]

HiINT: Multiply the series expansions for €*/2 and e~%/(2%),
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Table 4.2: Eigenvalue Problem in Polar Cylindrical Coordinates

1

> .
vZ73

) y =0, 0<r7 < a,subject to the boundary conditions shown below, with v and h real constants,

A are the roots of

llénll®

dn(Ant)

Boundary conditionsat T = a

2
@2 T, (Ana)

Ju(Aa) =0

—

TABLE 4.2

=0t

Jo(Ana)

AJ,(Aa) + hJ,(Aa) = 0

—_
3
&
T
NN
£ 0=
= =
~y N;
N el g
=<y <!
™ N~
| g
ae ~
I +
o~
=12
N
=,
“© o
13 13
~< ~<
c -
by A
=S
—
=)
1
RO
1 >
—_ =
=+
—_
S8 =
:.a‘i'i
s TIY
g —
g £
= 8
5} =]
Z o
~ )

_a
=3

0 is also an eigenvalue for v = 0; then ¢o = 1 and [|¢o||2

tho=

Separation of Variables

The method of separation of variables is a well-established technique for
solving ordinary differential equations. This method is easily adaptable to
almost all linear homogeneous partial differential equations with constant
coefficients in canonical form, and exhibits the power of the superposition
principle to construct the general solution of such equations. Since linear
first order partial differential equations can always be solved by the method
of characteristics, the method of separation of variables is usually applied
to solve higher order partial differential equations. The basic idea of this
method is to transform a partial differential equation into as many ordinary
differential equations as the number of independent variables in the partial
differential equation by representing the solution as a product of functions
of each independent variable. After these ordinary differential equations are
solved, the method reduces to solving eigenvalue problems and constructing
the general solution as an eigenfunction expansion where the coefficients are
evaluated by using the boundary conditions and the initial conditions. In most
cases the solution is written in terms of a series of orthogonal functions.

5.1. Introduction

Consider the partial differential equation

A Uzy + DUzy + CUyy +euz + fuy +gu =0. (5.1)
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The first step in the general technique is to eliminate the term with mixed partial
derivatives by introducing a new set of coordinates z', y' (called characteristic
coordinates, see §2.7). Thus, we have

a1 Ugrgr + €L Uyry + €1 Uz + fruy +g1u=0. (5.2)
We now assume a solution of the form u = X ()Y (y') in (5.2), and obtain
alX“ Y +CXY" + elX'Y -+ f1XY, + ngY =0,

or, formally,
L1 (D;) X + Ly (Dy)Y
X Y

where L; (D,) is a linear differential operator in z’ and L3 (Dy) is a linear
differential operator in 3. Since the first term in (5.3) is a function of z’ only
and the second term is a function of ' only, while the third term is a constant,
the only way Eq (5.3) can be solved is if each of the first two terms is also
constant, thus

+01 = 07 (53)

LiX
s -

Loy

A =
* Y IJ”

suchthat A+ 1+ g1 = 0.

We shall explain this method by some examples.

[

5.2. Hyperbolic Equations

EXAMPLE 5.1. The problem of a vibrating string is defined by the
one—dimensional wave equation (§1.4). Consider the boundary value

problem
82“4 _ 28211,

22 = 32 0<z<l, (5.4)
u(0,t) =0 =u(l,t), t=>0, (5.5)
u(z,0) = f(z), w(z,0)=g(z), 0<z<l, (5.6)

where f € C! is a given function. We seek the solution of the form
u(z,t) = X(z)T(t), (5.7)

where X is a function of z only and T' a function of ¢ only. We assume
here that a solution of the form (5.7) exists. Sometimes this method
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requires some modifications, as in Example 5.3. We shall, however,
carry out the details to see if the method works for this problem. Note
that 224 o
u
8_t2 :XT”‘, and 8_1,‘2 IX”T,
where the primes denote the derivative with respect to its corresponding
independent variable. The Eq (5.4) reduces to

X qﬂ/l — CZXII T,
or, after separating the variables, it becomes

T0_ X!

T X
In Eq (5.8) we have been able to separate the variables. It is only at this
stage in the development of this method that we may either continue
or abandon the method depending on whether or not we are successful
in separating the variables.

(5.8)

Let us now fix t, and let z vary over the interval 0 < z < . The only
situation where X (z) = T'(t) for all z and ¢ is when X(z) = T(¢) =
const. Hence, from (5.8) we can write

1T X"
T = > =k, k = const. (5.9)

Thus, the set of equations (5.9) is equivalent to two ordinary differential
equations:

T —kc*T =0, (5.10)
X"-kX=0. (6.11)
Since the constant k is arbitrary, it is necessary for k to have the same
value for Egs (5.10) and (5.11) in order that Eq (5.9) be satisfied. The
general solution of Eq (5.10) is
c1eVFt 4 coe=VEt for k>0
T(t == Clt + c2 fork=0 (512)
ci1coscy/ —kt + casiney/—kt  for k <0,
and of Eq (5.11) is

dieV® 4 dye=VRe for k>0
X(x) = diz+dy fork=0 (5.13)
dy cos/—kx + dysin/—kz for k < 0.
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In view of the boundary conditions (5.5) we must have
X(0)T(t) =0=X{)T(t) forallt>0. (5.14)
Using these conditions in (5.13) for k > 0 we get the system of equations

X(O) =d;+dy =0,

5.15
X (1) = dyeV®= + dye=VF = 0. (5.15)

The system (5.15) is consistent, i.e., it has a nontrivial solution, iff the
determinant of its coefficients vanishes. But since

1 1 -
det| vk -vR|=e VR _eR 0,

a nonzero solution for X (z) in (5.13) for £ > 0 is not possible. Next, for
k = 0, the boundary conditions (5.14) imply that d; = 0 and dy = 0.
Hence there is no nonzero solution for k = 0. Finally, for k < 0, let us
set k = —AZ. Then the general solution (5.13) in this case becomes

X(z) = dy cos Az + dy sin Az,
which under the boundary conditions (5.14) yields
X(0)=d; =0, and X(I)=dysinAl =0.

In order to avoid a trivial solution in this case, we choose A such that
. e . . nm e
Al is a positive multiple of =, i.e., Al = nm, or A = —. The positive
values of A are chosen because the negative multiples give the same
eigenfunctions as the positive ones. This result leads to an infinite set

of solutions which are denoted by
nwe

Xn(z) =dansin —

where each solution corresponds to the eigenvalue

n?m?
b= (5.16)
The solutions for T'(¢) for the choice of £ < 0, as in (5.16), are then
obtained from (5.12) as

nmct . nwct
T + C2,n 81N ]

To(t) = c1,n cOs
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In view of (5.7), then the infinite set of solutions is

nmct . nmct| . nmzx
+ By, sin sin —,
l l [
(5.17)
where the constants A, and B, are determined from the boundary
conditions. The eigenfunctions are contained in the solution (5.17),
whereas the eigenvalues for this boundary value problem are given by
(5.16).

un(z,t) = Xn(x)Th(t) = |Ancos

The next step is to obtain the particular solution which satisfies
the initial conditions (5.6). At this point it may so happen that no
one solution in (5.17) will satisfy (5.6). In view of the superposition
principle (see §1.5), any finite sum of the solutions (5.17) is also a
solution of this boundary value problem. We should, therefore, find
a linear combination of these solutions which also satisfies the initial
conditions (5.6). Even if this technique fails, we can always try an
infinite series of solutions (5.17), i.e.,

> o ct t] . nnz
u(z,t) = Z Xn(2)To(t) = 24 [An €os mrT + By sin # sin ——.
n=1

(5.18)
(For convergence of the series (5.18), see Chapter 4.) But we can take
this series expansion formally and verify that the boundary conditions
(5.5) are still satisfied. We shall now satisfy the initial conditions (5.6)
and thereby obtain the solution of this problem. Using the first of the
initial conditions (5.6) we get

n=1

oo
- . NAT

M%m_gi&mnl = f(z). (5.19)
Since f € C!, the infinite series (5.19) is a Fourier sine series. Hence
f(x) can be regarded as an odd function with period 2I. Thus, we
can expand this function f(z) on the interval 0 < x < [ such that
f(=z) = —f(x) on the interval —I < z < 0, and flz +20) = f(z) for
all , where f(0) = 0. Then the coefficients A, for n = 1,2,... are
given by

1t nwL

1
An== | f(@) sin—l dr = %/ f(@) sin@dm, (5.20)
-1 0

wheﬁe the last integral representation holds because both f(z) and
. NTT
sin - are odd and their product is even. Then, taking the derivative
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of (5.18), we get

0 nmct | .
up = WTC En [Bn cos — A, sin rz7;c ] sin EZE, (5.21)
n=1

which, in view of the second of the initial conditions (5.6), gives
ug(z,0) _Ie Z nB, sin ——l— = g(z),
n=1
where

2 ! . NTT
an@/o g(x) s1n—l—dac, n=12,.... (5.22)

Hence, the solution (5.18) is completely determined.

We shall now derive the d’Alembert solution for this problem. From
(5.18) we have

1 _nm(z+ct) . nw(z—ct)
u= 52An {sm i + sin ;

i B, {cos nm(z—ct) cos nm(z + ct) } (5.23)

l l

= %[f(:z +ct)+ flz—ct)] + %[— G(z + ct) + G(z — ct)],

where

f(z)= Z A, sin - nrz

as in (5.19), and
G(z) = Z B,, cos — nre

Since
1 mc nmwz 1
! —_—— 1 = ——
G'(z) = E nB,, sin - p g(2),

we obtain from (5.23) the formal solution, known as the d’Alembert
solution for this problem, as

u(z,t) = ¢(z + ct) + ¥(z — ct), (5.24)
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where c is the wave velocity, and
oz + ct) ‘F(m +ect) -Gz + ct)] ,
Yz —ct) = E‘F(w—ct) +G(z —ct)].
An interpretation of the solution of this problem is as follows: At
each point zo of the string

NTCTo
] .

u(zo, t) = Z Ny, COS ?(t + 6,) sin
n=1

nmwexg
l L
m
=0,ie,2=— (m=12,... ,n—1), re-

This equation describes a harmonic motion with amplitudes o, sin

CXo

nm
The points where sin
n
main fixed during the entire process; these points are called the nodes
. . .. NTCTo .
of the standing wave. But the points where sin = =+1, ie,

2m+ 1)1 . . .
= (—)—, vibrate with the maximum amplitude ;. These points

7
are called the maxima of the standing wave. For any ¢ the structure of
the standing wave is described by

oo

u(z,t) = :z Chr(t) sin nTrlaro’
n=1

where
nmwe

l
For those times t when cosw,(t + 6,) = %1, the displacement reaches
its maximum value where the velocity becomes zero. =

Cn(t) = an coswy(t +8,), wp=

. We shall illustrate an example by the following Mathematica ses-
sion.

Inf1]:=
L:=1
c:=1
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f(x.]:= Sin[x]
glx]:= x~2+1
Aln.]:= Aln] = 2/(n Pi c) NIntegratelglx] Sin[n Pi x/LJ],

{x, 0, L}1//N//Chop

B[n.]:= B[n] = 2/L NIntegrate[f[x] Sin[n Pi x/L),{x,0,L}]
//Chop

Table[{n, A[n], Blnl}, {n,1,8}]//TableForm

Out[7]=
{1, 0.607927, 0.596094}
{ 2, -0.0506606, —0.27481}
{ 3, 0.0675475, 0.180599}
{ 4, -0.0126651, -0.134778}
{5, 0.0243171, 0.107575}
{ 6, -0.00562895, -0.0895348}
{ 7, 0.0124067, 0.0766867}
{ 8, -0.00316629, -0.0670683}

In[8]:=

ulx_,t_,n] := (A[n] Sin[n Pi c t/L] + B[n] Cos[n Pi ¢ t/L])
Sin[n Pi x/L];

vapprox[x_,t.] := Sum[ulx,t,k] ,{k,8}]

In[10]:=

graphs =

Table[Plot [uapprox[x,t],{x,0,1},
PlotRange->{-2,2},
Ticks->{{0,1},{-2,2}},
DisplayFunction->Identity],
{t,0,2,1/3}];

Inf11]:=

graphsarray = Partition [graphs,2];

5.3. PARABOLIC EQUATIONS 125
Inf12]:=

Show [GraphicsArray [graphsarray],
DisplayFunction->$DisplayFunction]

2 2
1 1
-2 -2
2 2
1 1
- -2
2
1 1
-2 -2
-GraphicsArray-
R

5.3. Parabolic Equations

, EXAMPLE 5.2. Consider the one-dimensional heat conduction equa-
ion
ou _ k('92u 0
ot 9z’ <z<i, (5.25)
subject to the boundary conditions

u(0,t) =0=u{l,t), t>0, (5.26)
and the initial condition
u(z,0) = f(z), 0<z<l, (5.27)

where f € C! is a prescribed function. In physical terms, this problem
represents the heat conduction in a rod when its ends are maintained
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at zero temperature while the initial temperature u at any point of the
rod is prescribed as f(x). Let us assume the solution in the form

u(z,t) = X(z)T(t),
which after substitution into Eq (5.25) yields the set of equations

1 T/ X//

—— == 5.28

kT X ( )
As in Example 5.1, the only situation where these two expressions can
be equal is for each of them to be constant, say each equal to c¢. Eq
(5.28) then yields two ordinary differential equations

T' —ckT =0, (5.29)
X" —cX =0, (5.30)

where the boundary conditions (5.26) reduce to
X0)Tt) =0=X()T(), or X(0)=0=X(), (5.31)

except for the case when the rod has zero initial temperature at every
point. This situation, being uninteresting, can be neglected. As in
the case of Example 5.1, we notice that for a nonzero solution of the
problem (5.30)—(5.31) we must choose negative values of c. Hence we
set ¢ = —A?%, and find that the eigenvalues ¢ = —n%n?/[? have the
corresponding eigenfunctions

Xn(z) = Apsin TF
Eq (5.29) then becomes
oy kn?m?
T+ 7 T=0

whose general solution for each n is given by
Tu(t) = Bue k't

Hence, we consider an infinite series of the form

un(z,t) = ) Xp()Th(t) = Z C, sin -@%rge'knz"%/ﬂ. (5.32)
n=1

n=1
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Now, we use the initial condition (5.27) in (5.32) and obtain
= nwx
Mam=2;%m_r=f@, (5.33)
n=1

which shows that f (x) can be represented as a Fourier sine series, by
extending f as an odd, piecewise continuous function of period 2! with

piecewise continuous derivatives. Equation (5.33) gives the coefficients
C,, as

5.34
Hence the solution (5.32) is completely determined for this pro(blem).
Note that the series in (5.33) converges since u(x,0) does, and the
exponential expression in (5.32) is less than 1 for each n and all ¢ > 0
and approaches zero as t — co.

In[13]:=
L:=1
k:=1
flx]:= x~2
Aln.]:= A[n] = 2/(n Pi ¢) NIntegratel[g[x] Sin[n Pi x/L] ,

{x, 0, L}1//N//Chop;

Table[{n, A[nl}, {n,1 ,8}1//TableForm

Out[17]=
{ 1,0.378607}
{ 2,-0.31831}
{ 3,0.202651}
{ 4,-0.159155}
{ 5,0.12526}
{ 6,-0.106103}
{ 7,0.0901935}
{ 8,-0.0795775}
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ulx_,t_,nJ:= A[n] Sin[n Pi x/L] Expl[-k t(n Pi/L)"2]
uapprox[x_,t.]:= Sum[ulx,t,3j],{j,5}]
In[19]:=

graphs = Table[Plot[uapprox[x,t],{x,0,1},
PlotRange->{0,1},

Ticks->{{0,1},{0,1}},
DisplayFunction->Identity],
{£,0,1/3,1/24}1;

In[20]:=
graphsarray = Partition[graphs,2];

Show [GraphicsArray[graphsarray],
DisplayFunction->$DisplayFunction]

1\ 1 1 1

[¢] 1 0 1 0 1 0 1
1 1 1 1

0 1 0 1 0 1 0 1
-GraphicsArray-

We shall now present & Mathematica session with the nonhomoge-
neous initial condition

u(z,0) = {

2?2 0<z<1/2
z+1 1/2<z<1.

In[21]:=
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L:=1
k:=1
flx]:= x"2
glxl:= x+1
In[25]:=

Aln):= A[n] = 2/(n Pi c¢) (NIntegrate[f[x] Sin[n Pi x/L],
{x, 0, 1/2}] +
NIntegrate[glx] Sin(n Pi x/L},{x, 1/2, 1}1)//N//Chop;

Table[{n, A[nl, Blnl}, {n,1,8}]//TableForm
Out[26]=

{ 1,1.14423}

{ 2,-1.06676}

{ 3,0.419635}

{ 4,-0.119366}
{ 5,0.253616}

{ 6,-0.34603}

{ 7,0.181515}

{ 8,-0.0596831}

In[27]:=
ulx_,t_,n] := A[n] Sin[n Pi x/L] Exp[-k t(n Pi/1)"2]
uapprox[x_,t_] := Sum[ulx,t,j],{j,5}]
In[29):=
graphs =
Table[Plot [uapprox[x,t],{x,0,1},
PlotRange->{0,2.5},
Ticks->{{0,1},{0,1,2,2.5}},
DisplayFunction->Identity],

{t,0,1/3,1/24}];

In(30]:=
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graphsarray = Partition[graphs,4];
In[31]:=

Show [GraphicsArray[graphsarray], )
DisplayFunction->$DisplayFunction]

2.5 2.5 2.5 2.5

2 2 2 2

1 /\ 1 1 1

¢l 1 0 1 0 1 0 1
2.5 2.5 2.5 2.5

2 2 2 2

1] 1 1 1

0 1 Q 1 0 1 0 1
-GraphicsArray-

An interesting situation arises if the function f(z) is zero in the
initial condition (5.27), but the boundary conditions are nonhomoge-
neous.

ExAMPLE 5.3. Consider the dimensionless partial differential equa-
tion governing the plane wall transient heat conduction
U = Ugg, 0< <1, (5.35)
with the boundary conditions
u(0,t) =1, wu(l,t)=0, t=>0, (5.36)
and the initial condition
u(r,0) =0, 0<z<l. (5.37)
Since the homogeneous initial condition (5.37) does not allow us com-

pute the Fourier coefficients, as in (5.34), the standard technique used in
the above examples is not directly applicable to this problem. Instead,
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we proceed as follows: First, find a partial solution of the problem;
although there is more than one way to determine the particular solu-
tion, we, e.g., take the steady state case, where the equation becomes
Ugz = 0, which after integrating twice has the general solution

w(z) = 1z + co,

with the boundary conditions @(0) = 1, @(1) = 0. Thus, ¢; = —1,
¢z = 1, and the steady state solution is

4y =1-z.

Next, formulate a homogeneous problem by writing u(z,t) as a sum of
the steady state solution #(z) and a transient term v(z, 1), i.e.,

u(z,t) = i(z) + v(z,t),
or

v(z,t) = u{z,t) — a(x). (5.38)
Hence the problem reduces to finding v(z,t). If we substitute v from

(5.38) into (5.35), we get
V¢ = VUzg, (539)

where the boundary conditions (5.36) and the initial condition (5.37)

reduce to

v(0,t) = u(0,t) — %(0) =0,
v(1,t) = u(1,t) — a(1) = 0, (5.40)

and
v(z,0) = u(z,0) — 4(z) =z — 1. (5.41)

Notice that the problem (5.39)—(5.41) is the same as in Example 5.2
with k = 1,1 =1, f(x) = z -1, and u replaced by v. Hence its general
solution from (5.32) is given by

o0
v(z,t) = Z Cpe ™™ sin nrx, (5.42)

n=1

and the coefficients C,, are determined from (5.34) as

1
Cp = 2/ (x — 1)sinnrzdr = ——2—.
0

nm
Hence,
2 w1 —n2n?t .
v(z,t) = - ‘L o sinnnz, (5.43)
n=1
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and finally from (5.38)

2=l _p209, .
u(z,t)=1-2— = Z ~e sinnmz. m (5.44)
n=1

A Mathematica session for this example can be carried out as in
the previous examples.

5.4. Elliptic Equations

EXAMPLE 5.4. We shall consider the potential problem for the rec-
tangle R: {0 <z < a,0 <y <b}:

Ugz +Uyy =0, =,y €R, (5.45)
subject to the Dirichlet boundary conditions
u(0,y) = 0 = u(a,y), u(z,0) =0, u(z,b) = f(z). (5.46)

Physically, this problem arises if three edges of a thin isotropic rectan-
gular plate are insulated and maintained at zero temperature, while the
fourth edge is subjected to a variable temperature f(z) until the steady
state conditions are attained throughout R. Then the steady state value
of u(z,y) represents the distribution of temperature in the interior of
the plate. As before, we seek a solution of the form u(z, y) = X(x)Y (y),
which, after substitution into Eq (5.45) leads to the set of two ordinary
differential equations :

X" —cX =0, (5.47)
Y'+cY =0, (5.48)

where ¢ is a constant, as in Example 5.2. Since the first three boundary
conditions in (5.46) are homogeneous, they become

X(0)=0, X(a)=0, Y(0)=0, (5.49)

but the fourth boundary condition which is nonhomogeneous must be
used separately. Now, taking ¢ = —\2, as before, the solution of (5.47)
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subject to the first two boundary conditions in (5.49) leads to the eigen-
values and the corresponding eigenfunctions as

n2n2

An = —5—, Xp(z) :sinnﬂ, n=12,...,
a a

while for these eigenvalues the solutions of (5.55) satisfying the third

boundary condition in (5.49) are

., Ny
Y, = sinh —=, =1,2,....
(y) . n ,2, (5.50)
Hence, for arbitrary constants C,, n = 1, 2,..., we get
> nrx nm
u(z,y) = Z Cp sin = sinh 2. (5.51)
o a a

The coefficients C,, are then determined by using the fourth boundary
condition in (5.46). Thus,

o0
u(z,b) = f(z) = Z Cn sin%sinh P;T—b, 0<z<a,

n=1

which, in view of the Fourier series expansion, yields
., nmb 2 [° . NTT
Cnsmh-T = ;/0 f(:r)sm—a—dm, n=12.... (5.52)
This solves the problem completely.

In particular, if f(z) = fu = const, then

a nm

Then from (5.51), we have

u(z, y) = 2fo i 1- Sl—l)" sin(nrz/a) sinh(nﬂ'y/a)l . (5.53)

T o sinh{nnb/a)

A Mathematica session for the following more general boundary
value problem is presented below:

Uzz —Uyy =0, 0<z<a, o<y<hb,
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subject to the boundary conditions In[36]:=
w(z,0) = f1(z), u(z,b) = falz) for0 <z <a, £1[x]:= x°2
f2[x]:= x+2
and the initial conditions gilyd:=y
g2[x.]:= y+1
w(0,y) = 01(y), ula,y) = galy) for0<y<b
In[40]:=
The solution is u(z,y) = u1(z,y) + uz2(z,y), where
o0 A [n_] =
ui(z,y) = Z [A, cosh(Apy) + By sinh(Any)] sin Apz, Aln] =2/L NIntegrate[fi[x] Sin[1[n] x], {x, 0, L}]//Chop;
n=1

B[n.]):=
B[n] = 1/Sinh[1[n] M]
(2/L NIntegrate[f2[x] Sin[1[n] x], {x, 0, L}]

2 [ .
Ap = E/o fi(z) sin Anz dz, -A[n] Cosh[1{n] M])//Chop;

1 2 [ .
B, = sinh \.b [; /0 f2(z) sin Anz dz — Ap cosh Anb. ’ Table({n, A[nl,B[nl}, {n,1,8}]//ColumnForm
with A, = £n7/a, and Out[43]=
o0
. . 1,0.378607,-0.366722}
= cosh(punx) + by sinh{pn,x)] sin uny, {1, ,
u2(2,y) Eg;[“” (#n) + br sinh{yina)] sinpin { 2,-0.31831,0.318308}
{ 3,0.202651,-0. 202651}
{ 4,-0.159155,0. 159155}
o b { 5,0.12626,-0.12526}
a"::'BJ/ 91(y) sin pay dy, { 6,-0.106103,0.106103}
0 \ _ { 7,0.0901935,-0.0901935}
1 [%/ 92(y) sin piny dy — an cosh pinal, { 8,-0.0795775,0.0795775}
o i

" sinhpna

with pa, = +nr/b. We shall take a = 1, b = 2, fi(z) = 22, fo(z) =

2+2, gi1(y) =y, and g2(y) =y + uilx_,y_,nJ:= (Aln] Cosh[l[n] y] + B[n] Sinh[1[n] y1)

Sin[1{n] x]
ulapprox(x_,y.]:= Sum[ul[x,y,n],{n,8}]

In[32]:=
S In[43]:=
M:= 2
1[n]:= n Pi/L//N threeDplot1=Plot3D[ulapprox[x,y],{x,0,L},{y,0,M},
nln]:= n Pi/M//N DisplayFunction->Identity];
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Show [threeDplotl,DisplayFunction->$DisplayFunction] In[51]:=

Show [GraphicsArray[{threeDplot1,contourgraphsi}],
DisplayFunction -> $DisplayFunction]

~-GraphicsArray-
In[45]:=
-GraphicsArray-
cvalsl:= Tablel[i,{i,0,1/4,1/44}]
cvals2:= Table[i,{i,1/4,3/2,5/44}] Inf52):=

contourvals:= Unionl[cvalsl,cvals2]

a[n]:= a[n] =
2/M NIntegratel[gily]l Sin[m[n] y], {y, 0, M}]1//Chop
bln.]:= b[n] = 1/Sinh(m[n] L]
(2/M NIntegrate[g2[y] Sin[m[n] yl, {y, 0, M}1-
a[n] Coshl[m[n] L])//Chop

In[48]:=

uilx_,y_,n]:= (Aln] Cosh[l[n] yl+B([n] Sinh[1[n] yI)
Sin[1[n] x]

Inf49]:= Inf54]:=

utapprox[x_,y.]:= Sum[uilx,y,n],{n,8}] w2(x_,y.,nJ:= (aln] Coshl[m[n] x]+

bln] Sinh{m[n]l x1)* Sin(m[n] y]
In[50]:=

contourgraphsi= ContourPlot[ulapprox[x,y],
{x,0,1},{y,0,2},
PlotPoints->40,
Contours->contourvals,
ContourShading -> False,
DisplayFunction-> Identityl;

u2approx[x-,y.] := Sum[u2[x,y,n],{n,1,8}]

threeDplot2= Plot3D[u2approx(x,yl,{x,0,L},{y,0,M},
DisplayFunction->Identity];

In[56]:=
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contourgraphs2=

ContourPlot [u2approx[x,yl,
{x,0,1},{y,0,2},
PlotPoints->40,
Contours->contourvals,
ContourShading->False,
DisplayFunction->Identity];

ContourShading->False,
DisplayFunction->Identity];

Show [GraphicsArray[ {threeDplot,contourgraphsu}l,
DisplayFunction->$DisplayFunction]

&

In[57]:=

Show [GraphicsArray[{threeDplot2,contourgraphs2}],
DisplayFunction->$DisplayFunction]

—_—

o

0 0.20.40.6

I¢
i

u

Al

-GraphicsArray-

(* Superpose the SurfaceGraphics plot over the
ContourGraphics plot *)

0
0.20.40.60.8 1
In[62]:=
-GraphicsArray- myCP=
ContourPlot [uapprox[x,y],
Inf58]:= {x,0,L},{y,0,M},

Contours->Union[Tableli,{i,0,1/4,1/44}],
Tableli,{i,1/4,3/2,1/8}11,
PlotPoints->30,

AspectRatio->Automatic,

PlotRange->All,

ContourLines~>True,
ContourShading->True,

ContourStyle->

uapprox [x_,y.] := ulapprox[x,y] + u2approx[x,y];

threeDplot=
Plot3D[uapprox[x,yl,{x,0,L},{y,0,M},
DisplayFunction->Identity];

In[60]:= (Map [{Hue [#,1,Random[]], Thickness[.006] }&,
Range[0,1,1/12]1),
contourgraphsu= ColorFunction->Hue,

ContourPlot [uapprox[x,yl,{x,0,1},{y.0,2},

Ticks->{Range[0,1] ,Range[0,2],{-1.5,1.5}},
PlotPoints->40,Contours->contourvals,

DisplayFunction->Identity]
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-GraphicsArray-
In[63]:=
myContourGP= First@Graphics@myCP;

myContourGP= N@myContourGP/.{x_AtomQ,y-AtomQ}->{x,y,-20};
In[65]:=

Show [
{SurfaceGraphics@myCP,GraphicsSD@myContourGP},
Axes->True,

BoxRatios->{1,1,1}, '
DisplayFunction->$DisplayFunction]

1

Surface graph overlay of contour graph.
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EXAMPLE 5.5. Consider the potential problem
Ugg T Uyy =0, O<z<m, O0<y<l, (5.54)
subject to the mixed boundary conditions

u(z,0) =ugcosz, wu(z,1)=wugsin®z,

The separation of variables technique leads to the same set of ordinary
differential equations as in (5.47)—(5.48), i.e.,

X"+XX =0, X'(0)=0=X(n), (5.56)

and
Y’ -2y =o. (5.57)
The eigenvalues and the corresponding eigenfunctions for (5.56) are
)\0 = 0, X()(.’ZI) = ].,

A =n?%  Xn(z) =cosnz, n=1,2,...,
and subsequently the solutions of (5.57) are

Ao+ Boy, n=0,

5.58
Apcoshny + B, sinhny, n=1,2,.... ( )

Yo(y) = {

Hence, using the superposition principle, we get

o0
u(z,y) = Ao + Boy + Z [4,, coshny + B, sinh ny] cosnz.  (5.59)

n=1

Now, the first boundary condition in (5.55) leads to

o0
u(z,0) = Ag + IZ Ay cosnr = ugcos z. (5.60)

n=1

By matching the coefficients of similar terms on both sides of (5.60) we
find that Ag = 0, A; = up, and A, = 0 for n > 2. Hence the solution
becomes

o0
u(z,y) = Boy + ug coshy cosz + Z B,, sinhny cosnx. (5.61)

n=1
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Similarly, using the second boundary condition in (5.55) we find from
(5.61) that

w(x,1) = Bp + upcoshl cosz + Z B, sinhn cosnx
n=1
.9 1—cos2z
=USIN™ T = Uy~
2
from which, after comparing the coefficients of similar terms on both
sides, we get

Up __ug coshl
Bo = 2 B = sinh 1
By = — Yo B,=0 forn>3.

2sinh 2’

Hence, from (5.61) the general solution is given by

cosh 1sinhy sinh 2y 9
uw(z,y) = ——y+u0 coshy — —mhl | € T Uog s €08 ST
1 sinh(1 —y) smh 2y
= — — — ——cos2x| .
uo [2y sinhl % 2sinh2 )"
(5.62)

5.5. Cylindrical Coordinates

The three-dimensional Laplacian in cylindrical coordinates is

o 10 10 &

i 5.63
or?  ror + r2 562 + 0z2 ( )

EXAMPLE 5.6. (Circular drum) If a circular drum is struck in the
center, its vibrations are radially symmetric. We shall solve the bound-
ary value problem

— =Viuz=———+-—, r<1, (5.64)
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subject to the boundary conditions

w(r,0) = f(r), r<l,

5.65
ug(r,0) =0, u(l,t)=0, t>0. (5.65)

If we take u(r,t) = T(t)R(r), then Eq (5.64) reduces to the system of
ordinary differential equations

!

14
T R" + 2
i o S 5.66
T 7 k (5.66)
Here, again, k = —\? yields nontrivial solutions. Then the system

(5.66) gives the uncoupled ordinary differential equation

T" + X°T =0,
@R _1dR ;o _ 0. (5.67)
dr2 rdr
or 2
2%—2 + r%ﬂ +A%r2R =0, (5.68)

which is the Bessel equation. The eigenvalues ), are the positive zeros
of Jo(A), with the corresponding eigenfunctions Jo(A,7). The solutions
of the first equation in (5.67) are T;, = cos A\,t. Hence,the solution of
the vibrating circular drum struck at the center is given by

o
u(x,t) = Z: Cr cos AptJo(AnT), (5.69)

n=:1
where the coefficients C), are (see Appendix B)

fo (r)Jo(Anr)rdr
fo [Jo(Anr)]2r dr -

(5.70)

Marc Kac (1966) asked the question: “Can one hear the shape of a
drum?” This means one should answer the question whether two drums
of different shapes and struck in their centers have the same eigenvalues
(Protter, 1987). This question has been resolved negatively by Gordon,
Webb and Wolpert (1992) =

For an animation notebook, see drum.ma.
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5.6. Spherical Coordinates

Using the transformation x = psing cosf, y = psing sinf, z =
p cos¢, where p > 0,0 < ¢ <7, and 0 < 0 < 27, the Laplacian
in the spherical coordinate system becomes

& 290 1 0? 1 8 cote O

2 Y L &F o4 - 7 4 4T
V =5 0o Rt 0 R 06E | 2 09

EXAMPLE 5.7. (Cooling ball) Consider the boundary value prob-
lem
=V, 0<p<l, 0<¢<m 0<6<L2m,

subject to the conditions u(p, $,0) = f(p,¢), u(1,¢,t) = 0. The prob-
Jem describes the temperature distribution in the interior of the unit
ball dropped in cold water. The first condition implies that the tem-
perature u is not uniform but depends on p and ¢ but not on 6. Thus
the solution can be assumed formally to be

u(p, ¢,1) = R(p) B(8) T(t), (5.71)

which after separating the variables gives

2
R" + ~R' " ! i
- T
R (5:722)

The left side of Eq (5.72a) can be expressed as

w1 2R
N

2 ®" + cot ¢ P’
7 —_

+a? | pt=——
P T
In order that this equation be satisfied, the terms on each side must be

constant. Thus,

R" + BRI
R

" ’
+ 012 p2 =p= _@_—F_;?t_(f)g (572b)
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It is known that u = n(n + 1) (Courant and Hilbert, 1963). Then Eq
(5.72b) yields

®" +cotp® +n(n+1)® =0,
2 pir ’ 2 2 _ (65.73)
pP°R'+20R +a°p°R—n(n+1)— R=0.
If we set * = ap in the second equation, then it becomes
?R" 4+ 2z R + (2> - (n+1)) R=0,
which under the transformation w = /z R reduces to the Bessel equa-
tion

1
2" +zw + (372 —(n+ §)Z> w =0, (5.74)

and has a bounded solution w = Jp, 1/2(z). Hence

J ap
R(p) = "2 ;_2) :
ﬁa+1/2(am/’)

The eigenfunctions ¢y, = P, (cos ¢) form an orthogonal

Vap
basis in the L?—space on the unit ball, independent of 8, where o, are
positive zeros of J,,41/2(ap). Hence the solution for the temperature
distribution in the unit ball is given by

oo A2
e” @mnl n+1/2(amnp)
u(p; $,t) = ) Cmn cos 5.75
m% T Paleosg), (579)
. 9
here, using P = ,
where, using /_1 - (z) dz o1
Cmn =
2n+1 mn
i a)\/_ / / 3/2 Jn+1/2(Cmnp) Pn(cos 0) f(p,¢) sinpdpde,
and

1
ﬁ(amn) = 2/0 pJn+1/2(amnp) [ n+1/2(amn)]

The factory/amy can be absorbed in Crp,. =
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5.7. Nonhomogeneous Problems

In the above examples we have seen that the method of separation of
variables is applicable to steady state linear problems with homoge-
neous governing equations and three homogeneous and one nonhomo-
geneous boundary conditions. Nonhomogeneity, however, occurs from
other conditions as well. For example, there may be more than one non-
homogeneous boundary conditions, or the governing equation may be
nonhomogeneous. In order to use the method of separation of variables,
a nonhomogeneous problem can be divided into finitely many simple
problems with homogeneous equations and/or homogeneous boundary
conditions. Then the solution of the given problem is obtained from
the superposition of the solutions of all these simple problems.

Y Y Y
u =j;'(x) 0 fz(x)
u=fyx)
w=f,(x = 0 0 + 0 of 4
X
0 u=rm X 7 X 0
Y Y
0 0
+ %) 0 T o0 fx)
X X
0 0
Fig. 5.1.

EXAMPLE 5.8. (with four nonhomogeneous boundary conditions)
Consider the steady state temperature distributions governed by Eq
(5.45) in the region R, with more than one nonhomogeneous boundary
conditions, viz.,

u(z,0) = f1(z), u(z,b) = fa(z), 0<z<aq,

u(o’ y) = .f3(y)’ u(a, y) = f4(y), 0< y < b. (576)
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This problem can be resolved as a superposition of the four problems,
shown in Fig. 5.1. Hence,

u(z,y) = ur(z,y) + u2(z,y) + us(z,y) + ua(z,y), (5.77)

where the solution of each simple problem is obtained as in Example
5.5. =

In certain cases with mixed boundary conditions, the method of
separation of variables can be readily used by translating the function

u(z,y) which depends on the geometry and material symmetry of the
problem.

ExXAMPLE 5.9. Consider the Laplace equation (5.45) in a half-strip
(see Fig. 5.2) subject to the boundary conditions

u(Oa 'U) = f(y)’ lim U(ﬂ%y) = Uoo
, grtoo (5.78)
uy(z,0) =0, uy(x,b) + Blu(z, b) — us) =0,

where 3 is kniown as the film coefficient.

u =fiy) T He

Fig. 5.2.

This problem has more than one nonhomogeneous boundary conditions.

By using the translation U(z,y) = u(z,y) — e, the problem (5.45)
and (5.78) reduces to

Uzz + Uyy =0,
U0,9) = f(y) —ueo = F(y),  lim U(z,y) =0, (5.79)
U(y) =0, Uy(z,b) = BU(x,b).

We can now assume that U(z,y) = X (z)Y (y), which reduces the set
of the two ordinary differential equations (with ¢ = A2):

X" XX =0, Y'+)Y =0
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These two equations lead to the general solution
Ulz,y) = (4 e 4+ Ay e’\z) (B cos Ay + By sin Ay) . (5.80)

Now, since Yy (0) = 0 and Y, (b) + 8Y (b) = 0, we obtain the eigenfunc-
tions as cos A,y with the corresponding eigenvalues A, which are the
positive roots of the equation

MtanAb=p06, n=12,.... (5.81)

Using the boundary condition lim;_,o, X(z) = 0, we obtain

[o o]

U(z,y) = »_ Cn ™" c0s Ay + Uoo- (5.82)

n=1

Then, in view of the nonhomogeneous boundary condition X (0) =
F(y), we have

F(y) = f(y) = too = Y, Cn cos Ay,
n=1

where the coefficients C), are given by

2\
B . - Any dy.
Chn )\nb-l—Sin)\anOS/\nb\/0 [f(y) uoo] cos Apy dy

(see the table in Chapter 4). Hence, the temperature distribution is

U(wiy) = U(JJ y) — Uoo

An€” T cos Apy /b
- - Ant d.
=2 Z Anb +sin Ab COS)\ b [f(ﬂ) uoo] COS Apm an
(5.83)

In particular, if f(y) = u¢ = const, the temperature distribution re-
duces to

u(z,y) ~u s sin b
A I T o g n s N
Uy — Uoo —_ Anb +sin A bcos Apb € cos Ay dy. ( )

In view of (5.81), the eigenvalues A, are the positive roots of tan§ —

Bl = 0, where £ = \;b, and Bi = b is the Biot number. Three of

these roots, denoted by &1, &2, and &3, are shown in Fig. 5.3. =
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cot&

/ !

Fig. 5.3. Distribution of the eigenvalues &,.

EXAMPLE 5.10. We shall consider a problem which is linear and
nonhomogeneous in the governing equation, with linear and homoge-
neous boundary conditions. Assume that heat is generated in a rect-
angular bar at a constant rate g per unit volume, that there is no
temperature gradient in the z—direction, and the thermal conductivity
k of the bar is constant. Then the steady state temperature distribution
is governed by the equation

k (ugz +uyy) +9=0. (5.85)
Let the linear and homogeneous boundary conditions be

uz(0,y) =0, u(a,y)=0,

“y(f’% 0) = 0, U((L‘,b): 0. (586)

Equation (5.85), being nonhomogeneous, is not separable. But, if we
assume the solution as

u(z,y) = V(z,y) + ¢(z), (5.87)
then problem (5.85)~(5.86) reduces to the following two problems:
d’¢ ¢ de(0)
@0 g =0 d@=0 (5.88)
and
Vzm + Vyy = Oa

Ve(0,y) =0=V(a,y), Vy(z,00=0, V(z,b) =—¢(z). (5.89)
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Solution of problem (5.88) is readily obtained as

o(z) = ‘12;“; (1 - $—2> . (5.90)

al

Problem (5.89) is separable and its solution is given by

2q (- 1)" €08 An cosh Ay
91
V(z.y) Z coshApb ' (5.91)
1
where the eigenvalues A, M = 0,1,.... The solution of

a
this problem is then obtained by adding (5.91) and (5.90). Note that
this problem can also be solved by taking

u(z, y) - V(fﬂ,y) + Ir/}(y) (592)

In the case when the rate is variable, say, ¢ = ¢(z), we should use the
substitution (5.87); if ¢ = ¢(y), then the substitution (5.92) will make
the equation in V separable. =

ExAMPLE 5.11. Consider the nonhomogeneous wave equation
U = C Uge + f(z,t), 0<2 <], (5.93)

with the homogeneous (Dirichlet) boundary conditions u(0,t) = 0 =
u(l,t), t > 0, and the initial conditions u(z,0) = g(z), u(z,0) = h(z),
0 < z < l. Using the Fourier series method, which is the same as the
method of separation of variables, we seek a solution in the form

u(z,t) = Z Un(t) sin _Tlrlr_m’ (5.94)

n+1

where t is regarded as a parameter. The functions f, g, h are written
as Fourier series

oS} i
fat) =Y s sin 2, fu) = [ ren s g

n+1

ad i
9(@) =Y g sin T, ga= —?—/0 g(¢) sin n_7lr§ d, (5.95)

n+1

— . ML 2 (. nm¢
h(z) = Zhn sin ——, hn = A h(¢) sde{.

n+1
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After substituting (5.95) into (5.93) we get

2,22

Z{un + B ) = fol0)  in T =,

where i = d%u/dt?. This relation is satisfied if all the coefficients of
the series are zero, i.e., if

222

iin(t) + " wn(t) = fa(?)-

The solution u,(t) of the ordinary differential equation with constant
coefficients can be easily obtained under the initial conditions

u(z,0) = g(x) = Eun(O) sin 2% _ Zgn sin m

8

n=1
o0
uy(,0) = h(z) =Z n (0) sin = = Z sin 7%

Thus, 4, (0) = gn, and u4(0) = h,,. Now, we define the solutions u,(t)
in the form

un(t) = un(t) + up(t),

where .
1 f nwe(t — 1)
1 .
U, () = —— sip ————=~
0= | — fatydr
represents the solution of the nonhomogeneous equation with the ho-
mogeneous initial conditions, and

nmct 1 . t
ul(t) = gn cos - + — hy, sin m;c

is the solution of the homogeneous equation with the prescribed initial
conditions. Hence,

le.o]

u(z,t) = 2: [un (t) + 2 (t))
n=1

Ci 1 /t . nmc(t—1) . nrx

_J —_— sy ———— sin ——

oy 1mrc 0 l l

nmet 1 nwet) nw
— — — i —
+ E (gn cos —— + — sin 7 )sm T

n=1

fn(r)dr (5.96)
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Note that the second term is the solution of the corresponding problem
with f = 0 (representing a freely vibrating string with prescribed initial
conditions; see Exercise 5.16). The first term represents the forced
vibrations of the string under the influence of an external force. =

5.8. Exercises

5.1. Solve U, + lur = uy, subject to the conditions u(r,0) = uor,
u(r,0) = 0, and u(a,t) = auo, lin%)u(r, t) < 400, where ug is a
r—
constant.
ANS. u = ZA;- Jo(ar) sinoy;t, where
i=1
f; r(r —a) Jo(aur) dr

Ai = UQ an r Jg(a%"") dr

5.2. Solve z?ugy + 3y?u = 0, such that u(z,0) = el/z,
ANS. u = vtz

5.3. Solve uzz—us = Ae™ %, A>0,a >0, where u(0,t) =0 = u(L, )
for t > 0, and u(z,0) = f(z) for 0 <z < L.

ANs.u=v—gz———1(e_°‘L—1) z

—aL
. + — e~ ", where
o’ L a2 ’

5.4. Solve u; = a?uggz + f(z,t), 0 < z < [, with the boundary con-
ditions u(0,t) = 0 = u(l,t) for 0 < z < I, and the initial condition
u(z,0) =0 for t > 0.

o0
nmT
ANs. u(z,t) = z_:lun(t) sin -5 where

t
un(t) = /0 e ma =N/ f(2) dr,
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nmé

1
fu®) = 7 [ f(6t) sin "o ae

5.5. Solve wuy = Pugy, 0<z <L, subject to the boundary con-
ditions u(0,t) = ug, u(l,t) = ug for 0 < z < I, where uy, us
are prescribed quantities, and the initial conditions u(z,0) = g(x),
ug(x,0) = h(z) for t > 0.

ANs.  u(z,t) = U(z) + v(z,t), where U(z) = u; + (ug — ul)%
describes the steady state solution (static deflection), and v(z) is
the solution of the problem in Exercise 5.10.

5.6. Find the interior temperature of the cooling ball of Example 5.7,

. (1, 0<¢<m/2

if f(p,¢) = { 0, m/2<¢<m.

ANs.

_ 2\/—;1'01 Jn+1/2(v )‘mp) dp'

Cmn 1
T Joy Jnt1/2(0mp)? pdp

5.7. Determine the steady state temperature inside a solid hemisphere
0<p<1,0<9p<7/2
(a) when the base ¢ = 7/2 is at 0° and the curved surface p = 1,
0<¢p<7/2is at 1°.
(b) when the base ¢ = m/2 is insulated, but the temperature on the

. ou ou
curved surface is f(¢). HINT: % " Bpooss 0 ON THE BASE.
1 o
ANs. (a) u(z) = 3 Z P2 Py (0) — Panio(0)] Popyr(z).
n=0
(b) u{z) = chp2" Py, (cos ¢), where

n=0

/2
tn = (4n+ 1) /0 £(9) Pan(cos ) sin ¢ dg.

5.8. Solve u; = g, —m < = < T, subject to the conditions u(z,0) =
(@), uw(—n,t) = u(m,t), and uy(—m,t) = us(m,t), where f(z) is a
periodic function of period 27. This problem describes the heat flow
inside a rod of length 27 which is shaped in the form of a closed
circular ring. HINT: ASSUME X () = Acoswz + Bsinwz.

o0

ANs. w, = n; u(z,t) = Z et (an cosnz + b, sinnz), where
n=0
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1 .« 1 .
an = ~ [T f(z) cosnzdz, by = - [T f(z) sinnzdz.

5.9. Solve the problem u; = V?u, r < 1, 0 < z < 1, such that
u(r,2,0) = 1, u(l,z,t) = 0, and u(r,0,t) = 0 = u(r,1,t). This
problem describes the temperature distribution inside a homoge-
neous isotropic solid circular cylinder.

ANs.

u(r, 2,t) Z Cpum €~ Amt*m)E Jo (N 17) sinnarz,

m, n=1
where )\, are the zeros of Jy, and

41— (1))

Cmn = A J1(Am)

5.10. Find the steady state temperature in a solid circular cylinder of
radius 1 and height 1 under the conditions that the flat faces are
kept at 0° and the curved surface at 1°.

ANs.
IO nrr) sinnmz
ulr,z) =4 Z To(nm) sinnt
nodd

5.11. Solve the steady state problem of temperature distribution in a
half-cylinder 0 <r <1,0<8<7,0<2z<1, where the flat faces
are kept at 0° and the curved surface at 1°.

ANSs.

oo

16 (nmr) sinnmz
6, —_
u(r,,2) = Z I (nm) sinnm

myn=1
mnodd
5 /
5.12. Solve % 8x< ?;L) 0 <z <1, t>0, subject to the

conditions u(z,0) = wE ) and u(1,t) = 0. HINT: SET 4z =72 AND
SOLVE AS IN EXQOMPLE 5.6.
ANS. u(z,t) = Z Cre~ 4 Jo(Anv/Z), where ), are the zeros of

n=1

J() and
fo FVE) JoAnvz)vT dz

e Omy/@)? VT dx

n
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5.13. Solve uy = ¢ (ugz + Uyy) in the rectangle R = {(z,y): 0 < z <
a, 0 <y < b}, subject to the condition v = 0 on the boundary of R
for t > 0, and the initial conditions u(z,y,0) = f(z,v), uw(z,y,0) =
g(z,y). This problem describes a vibrating rectangular membrane.

Interpret the solutions w11, Y12, u21, us2, uis, and us; for a square
membrane @ = b = 1.

ANs.
o

u(z,y,t) = Z (Amn €08 Apnt + B 8in Ay ) sin mmrx sin w,

m,n=1 b

m,n odd
where

/ / flz,y) sin 272 gin nby dx dy,
B - . mrTr . nwy
mn ab)\mn /0 ./0 g{z,y) sin L Sin—= dz dy,

for m,n =1,2,...; the eigenvalues are

m?  n?

Amn = €T a—2+b—2

The solutions uy1, u12, u21, Uge, u13, and us; are represented in Fig.
5.4.

Uy Uy

Uy Uz

Fig. 5.4.

5.14. Solve Usy = 4xyu =0, such that u(0,y) = e¥".
ANs. u =¥ Y,
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5.15. Solve uzz + Uy, = 0, under the conditions u(0,y) = 0 = u(m, Y)s
u(z,0) = sinz, lim u(z,y) < +oo.
y—00

ANS. u = e Ysinz.

5.16. Solve ugy — Ur = e~ tgin amz, subject to the conditions
u(z,0) = 0, u(x,0) = 0, and u(0,t) = u(l,t) = 0, where a is a
constant.

1 _a?7?
ANS. ———————[cosant —e

531 T D) t — amsinant]sinanz.
a*m4(l +a*m

5.17. Solve 72Uy + ru, + ugg = 0, such that u(b,0) = f(6), u(r,0 +
27} = u(r,6), and lin}) u(r,d) < 400 (circular disc problem).

HINT: Separate the variables and show that the only relevant part
of the solution reduces to

u(r,0) =co + z r*(A(a) cos af + B(a) sin ab).

Note that under the given conditions w(r,#) must have a Fourier
series representation in 6 and therefore a = n is a positive integer.

5.18. Solve ugz + Uy, = 0, under the conditions u(z,0) = 0 = u(z, 7),
u(0,y) = 0, and u(m,y) = cos?y.

ANs.
oo
U= Z C,, sinh nz sin ny,
n=1
where
C, = 2 /7T cos? y sin nydy
" msinhnrm J; )
_ 2 1—(=-1)" B (—1)"n] -
msinh nw 2n n2—4
and Cy = 0.

5.19. Solve v, + lur + —151009 = 0, subject to the conditions u = 0 for

6 =0or n/2, and u, =sinf at r = a.
ANs.

o0
U= E C,,r?" sin 2n8,

n=1
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where . [y

~ n(4n? — 1)a2- U

5.20. Solve the problem of transverse vibrations of a beam: wus; +
0% Uggey = 0, subject to the conditions u(0,t) = u(L,t) = uy;(0,t) =
Uz (L, t) = ue(z,0) = 0, and u(z,0) = f(z).

X(4) T

ANs. Let u = X(z)T(t), then we have =7 = A, where
A is a parameter. By standard arguments it can be shown that
the relevant values of A are positive values. Let A = a?. Then the
solutions for X and T are given by

X = Acosaz + Bsinaz + C cosh ax + Dsin axz,

and
T = Ecosa®t + Fsina?t.

X(0) =0 means A+ C =0, and X(L) = 0 yields
Acosal + Bsinal + CcoshalL + DsinaL = 0,

and X,.(0) = 0 implies 24 = 0, which gives A = C = 0, and
Xzz(L) = 0 which yields a*(BsinhaL — DsinaL) = 0. We thus
have a pair of two homogeneous equations:

BsinhalL — DsinaL =0, BsinhaL 4+ DsinaL = 0.
For B and D to have nontrivial values, we must have
sinhalL sinaL =0,

ie, aL = nm, and B = 0 and T(0) = 0 are equivalent to F = 0.
Absorbing E in D and using the initial condition we get

> nrr  nnt
Uy = Z D,, sin I cos Iz
n=1
9 L
where D,, = Z/O f(z)sin le—wda:

5.21. Solve rur + u, + u,, = 0, u(a,2) = up, under the conditions
u(a,0) = 0 = u(a, h), and }ir% u(r,z) < +oo (steady state tempera-
ture in a finite cylinder).

ANs.
_dug = Jo(nar) | nmz
o7 = Jo(nma) “h
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5.22. Solve ugz — U = e~ tsin wx, such that u(z,0) = 0 = u(x,0) =
w(0,t) = ug(1,t).

ANS. A particular solution is given by

2, .
e " tsinmx

U = )

Now define u = v + up. Then the problem becomes

sinmx sinmx
Ve = v =0, v(,0) = Sy w0 = ey
2
e ™ t
= 1,t) = ——.
’U(O,t) 0, U:z:( ) ) 7T(1+7I'2)
Assume v = X(z)T'(t). Then we have
X// T//
— = — = const.
X T

When the constant is zero, the solution will not make any contribu-
tion to v. So we consider two cases: (i) when const = A%, and (ii)
when const = —a?. In the first case the solution is

vy =Y e M(Acosh Az + Bsinh A\z),
X

and in the second case

vy = E (A; cos ax cos at + Az cos axsin at

(o3
+ Aszsinox cos at + Ay sin oz sinat).
Applying the boundary conditions to v + vy + v we get A = 0,
- 1
B=———— A=12,A=4;=0,a= 7, and Az, A
7T3(1+7T2) T 1 2 7a (n+2) 3 4

are to be determined from the initial conditions. Thus we have

e~™tsintzr e ™ tsinhnlz

m2(1 + 72) m3(1 + 72)
+ Z (As sin azx cos at + Agsinazx sin at).

[e]3

u =

We now apply the initial conditions

sinwx sinh 72z
m2(1 +72) w31+ 72):

u(z,0) = + ZAg sinaz =0,
pt
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— ., . sin 7z sinh 72z
Y Asgsinar = —; + =
— m2(1+72)  7w3(1 + 7w2) 91(z)
and
sinrx sinh w22
z,0) = 1 inaz =
ul®0) = [y + iy 2 edesinaz =0,
. . 2
N oAy si _ _ sin7z sinh7?z
ssinaz = - = .
‘;4 (1+72) #x(1+mx2) 92(2)
Define
1 9 Al 1\
I = / sin 7z sin (2n + l)ﬂxdx = 1) ,
0 2 (2n+3)(2n-1)

1 s ,
I :/ sinh 722 sin (2n + l)mvdw _ 4(-1)"m? cosh .
0 2 272 4 (2n + 1)2

I Iy
A3 =2
3 [72(1 + m2) * m3(1 +7r2):| '

_ 4 Il I4
A= (2n+ ) [(1 ) R} +7r2)} '

5.23. Solve the Poisson equation ug, + Uyy = =1, 0 < 2,9y < 1,
subject to the Dirichlet boundary conditions u(0,y) = 0 = u(1,y) =
u(z,0) = u(z,1).

ANs.
16 <= sinjnz sinkry
wz,y) = — —
1 j,§=:1 73k2 + j2k3
j-kodd
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Integral Transforms

The technique of integral transforms is a powerful tool for the solution of
linear partial differential equations.

A function F'(z) may be transformed by the formula

b
F(s) = / F(@)K (s, z) do

provided F(s) exists, where K (s, ) isknown as the kernel of the transform. A
transform becomes useful if we can obtain f(z) from F(s) by some inversion
formula. Some well-known integral transforms and their inversion formulas,
known as the transform pairs, are given below.

1. The Fourier cosine transform f,(c) of f(x) is defined as

FAf(@)} = fo(a) = \/g/ooo f(x) cos(za) dz, (6.1a)

and its inverse is

“1~a=a':zoo~acosma . .
FG) = o) =2 [ e costaa) (6.15)

2. The Fourier sine transform f,() of f(z) is defined as

Fo{f(@)} = fola) = \/g/ooo f(z)sin(za) dz, (6.2a)

INTEGRAL TRANSFORMS 161
and its inverse is
- 2 [ .
Ff) = 1@ =2 [ f@sneaa @)
3. The Fourier complex transform F f(z) = f(c) of f(z) is defined as
. 1 oo A
FU@)=fe) = o= [ fo)c=dz,  (630)
and its inverse is
Ff@} = f@) = —= [ flae " da. (o3
Vor J oo
4. The Laplace transform is defined as

CUF()) = F(s) = f(s) = /0 " e, (6.4)

and its inverse is

LYF(s)} = f(t) = —— / T p(s)et ds. (6.4b)

27” c—100

5. The Mellin transform is defined as

M{f(z)} = Fu(s) = /Ooof(a:)xs — ldz, (6.5a)
and its inverse is
c+ioo
M YFEup(s)} = flz) = %ﬁ ‘ Fr(s)z™% ds. (6.5b)

6. The Hankel transform of order n is defined as
HU@Y = Fuo) = [ sf@nsnd, 60
where its inverse is
HHF,(s)} = flz) = /Ooo sF(s)J,(sz) dt. (6.6b)

These definitions are not unique, particularly in the case of Fourier and Hankel
transforms which are sometimes defined in a different manner. In fact, one
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can develop an infinity of transforms. However, the six transforms defined
above are frequently used. Some of the other better—known transforms are
Meijer, Kontorowich-Lebedev, Mehler-Foch, Hilbert, and Laguerre. We will,
however, discuss only the Laplace and Fourier transforms. Once the use of
one transform is completely understood, it is a simple matter to extend one’s
understanding to another transform.

In most cases a function has to satisfy Dirichlet’s conditions in order to
possess an integral transform. These conditions in the interval (a,b) are (i) a
function has only a finite number of extremum points in (a,b), and (i) a function
has only a finite number of finite discontinuities in (a,b) and no infinite jumps.
Unless otherwise stated, it will be assumed that all the functions in the sequel
satisfy Dirichlet’s conditions.

The student who lacks the knowledge of contour integration technique
may omit all material in this chapter containing this technique.

Laplace Transforms

6.1. Notation

It is expected that the reader is familiar with the elementary theory of the
Laplace transforms. The following notation is used:

L{f(t)} = F(s) = (s) = jgw F(t)e*tdt,

and _
L7YF(s)} = L7 {f(s)} = f(®),

where s is the variable of the transform which is, in general, acomplex variable.
Note that the Laplace transform F(s) exists for s > a, if the function f(t) is
piecewise continuous in every finite closed interval 0 < ¢ < b (b > 0),and
f(t) is of exponential order ¢, i.e., there exist o, M, and to > 0 such that
e~ |f(t)] < M fort > to.

We will now state some basic properties of the Laplace transforms.
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() L{e*f(t)} = F(s - a),
and L7 {F(s — a)} = e f(t).

() L{Ht —a)f(t—a)} = e ** F(s),
and £~} {e7*F(s)} = H(t — a)f(t — a).

(iii) Convolution Theorem:

t t
£71{G(s)F(s)} = / £(t - u)g(u)du = / F(w)g(t — u)du.

. dr
@iv) £ {%r(lt)} = §"F(s) — s £(0) — s""2/(0) — - - — s f("=D)(0) —
£nD(0), and £ 5" F(s)} = O 5(t).

W £t {%F(S)} = /Ot f(u)du.

() L7} = (-1 and £ {(-1)"‘%} = " £(2).

(vii) If L {f(z,t)} = F(z,s), then

L{aféi,t)} _ ap{gz, ) d L {8F(Z,s)} _ Bf((;;,t).

. The last two results are based on the Leibniz rule and are extremely effec-
tive. The Leibniz rule states that if g(x,t) is an integrable function of ¢ for

. . . Og(z,t
each value of z, and the partial derivative % exists and is continuous in
. . . . z
the region under consideration, and if

b
f(z) = / o(a, t)dt,

then

b
Fla) = / ——a"é‘;’ D) . 6.7)
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6.2. Basic Laplace Transforms

A table of basic Laplace transform pairs is given in Appendix B. We shall show
the effectiveness of the above properties in the derivation of certain Laplace
transforms.

We start with the easily established result that

L{e) = —. (6.3)

s—a
Differentiating both sides with respect to a, we get

1
£ty = o (6.9)

and repeating this differentiation n times, we find that

n at n!
L{the®} = G (6.10)
After replacing a by tb, choosing an appropriate n, and comparing the real and
imaginary parts of both sides, we can get the Laplace transforms of functions
tP cos bt and tP sin bt, and then combining with Property (i), we can get the
Laplace transforms of functions tPe® cos bt and tPe® sin bt. For example, if
we choose n = 2, then we have

21
L{t?e™} = ———. q1
e} = oo (6.11)
Now letting a = b, we get
L{t%e®} = 2 (6.12)
(s —ib)3’ '
which yields
2(s + ib)®
L {t*(cosbt +isinbt)} = —(;‘% (6.13)
Expanding the numerator on the right side of (6.13), we get
9(s3 20 a2 13
L {t*(cosbt +isinbt)} = (s +3is b — 8sb” — ib) (6.14)

(s2 1 b2)3
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Then equating the real and imaginary parts in (6.14), we obtain

9 2(s3 — 3sb?)
L {t*cosbt} = ETEE (6.15)
and ) s
2. 2(3s%b — b°)
L{t?sinbt} = SCETOE (6.16)
In[l]:=

<<Calculus‘LaplaceTransform*
In[2]:=
LaplaceTransform(t"n Exp[a t],t,s]
Out[2]=
(-a +s)™1 7 0 Gamma[1 + n]
In[3]:=
LaplaceTransform[t~2 Expla t],t,s]
Out[3]=

2

(-a + s) 3
In[4]:=

LaplaceTransform[t~2 Exp[I b t],t,s]

Out[4]=
_—2 ——
(-Ib+ s:)3

In[5]:=
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LaplaceTransform[t~2 Cos[b t],t,s]//Simplify
Out[5]=

2s(—-3b% +s?%)
(v? + 52)3

Inf6]:=
LaplaceTransform[t~2 Sin[b t],t,s]//Simplify
Out[6]=

2b(-b% + 3s?%)
(b% +s2)

The Laplace transforms of £ {e*'t? cos bt} and Le® {t®sin bt} can now
be easily obtained.

An important Laplace inverse is

—a+/3
_1]e a
= erfc . 6.17
£ { s } er(2\/f ( )

where

erf(z) = % /r e~ du, erfc(z) = 1 — erf(z). (6.18)
T Jo

In[7]:=
(* An important formula *)
InverseLaplaceTransform[Exp{-a Sqrt[sl]l/s,s,t]

Out[8]=
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1 - Erf( ]

a
28Sqrt[t]

We can derive a large number of the Laplace inverses by using Properties

(A)—(vii).

e—a\/E
= can be obtained by differentiating

ExXAMPLE 6.1. £

formula (6.17) with respect to a. Thus,

L1 e—a"f — Le—a2/4t
YE vt

is obtained after differentiating (6.17) with respect to a and canceling
out the negative sign on both sides. Although the usual method of
—ayfs
deriving the Laplace inverse of € 7 is by contour integration, or by
S

e—ovE
using the Laplace inverse of —
s

, an interesting method is as follows

—a/s
(Churchill, 1972): Define € 7 =y and e~V® = 2. Then
s
o 1 —a\/s Q@ _avs
V="3ar°¢ 25 © ’

which yields
2sy’ +y+az=0.

Similarly, 2’ == 9 _emavs yields
2V/s

22" +ay =0.
Taking the inverse transform of these equations, we get
aG —F —2tF' =0, and aF —2tG=0,
where L~1{y} = F(t), and £L7'{z} = G(t). From these two equations
in F and G we get

1 a?F
Fl=_—_(—/—_— .
2t( 2t F), (6.19)
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The solution of (6.19) is

F = ie—a2/4t
\/z 3
which gives
— aA e—a2/4:t.
2V13
Note that if 0, th ! d F(¢) !, lies that
ote that if ¢ = 0, then y = —, an = —— implie
E Vit
1
A= ﬁ Hence
1 2 a 2
Ft)= —=e @ /% G=-——e /% 6.20
®) i T (6.20)

Vs vt

a from 0 to a and obtain £} {e } In this problem we have

. -1 e‘a\/g ]. _a2/4t .
One can then integrate £ = —¢ with respect to

—avF

8

1 e
assumed that £L— = \/— see Exercise 6.11). =
7= )

In[8]:=
Needs["Calculus‘LaplaceTransform*"]
(* An important Laplace Inverse *)
In[9]:=

fls_]:= Expl-a Sqrt(s]]/s

InverseLaplaceTransform[f [x],s,t] == Erfc[a/(2 Sqrt(t])]
Out[11]=
1 - Erfl———a ) ==Erfc[——
2 Sqrt[t] 28qrt [t]
Inf[11]:=
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RHS:= Erfcla/(2 Sqrt[t])]
In[12]:=
D[RHS, a]
Out[14]=

1
_( . )
E2/(4%) 5qrt [Pi] Sqrt [t]

In[14]:=
InverseLaplaceTransform[-D[f[s],a),s,t] == -D[RHS,a]
Out[15]=
True
EXAMPLE 6.2. £7! {e_“\/;} = 2 __mat/at g obtained by dif-
2V 3 y

ferentiating the formula in the previous example and canceling out the
negative sign. =

In[1]:=
Needs["Calculus‘LaplaceTransform‘"];
(* £[s] is defined as in Example 6.1 *)
f[s] Sqrt([s]

Out(3]=

1
g2 Sqrt[s] Sqrt[s]
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In[3]:=
D[f[s] Sqrt(s],al
Out[4]=
_E—(a Sqrt[s])
Inf4]:=
InverselaplaceTransform(-D[f[s] Sqrt[s],al,s,t]

Outf5]=

a
2 2°/(4) gqre[pi t3)

e—a\/g

EXAMPLE 6.3. If we integrate the formula £t {

= erfc—a—
J =

with respect to a from 0 to a, we get

a —1;\/5 a z
£ s d :/ fo X _dz.
A { 3 } X A ech\/E:v

Now after changing the order of integration and the Laplace inversion
and carrying out the integration on the left side, we get

a —z/s
/ ﬁ—l {e } dr = £—1(8—3/2 . 8—3/26—(1\/5)’ (621)
0 S

and the right side yields
@ T
erfc ——dz = |z erfc —— ] / e /4% dy
/0 2\f [ 2vi], | Vmt

_aerfc———Z\/7 - /4t+2\/—

Since £} {3"3/2} = 2\/%’ we get

t
£t {3'3/26_“‘/3} = 2\/;6'“2/‘“ — a erfc 2:1/2. . (6.22)
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In[l]:=
Needs["Calculus‘LaplaceTransform‘"];
(x £[s] is defined as in Example 6.1 *)
flsl/.a -> x Sqrt[s]

Out[2]=

1
E Sqrt [s]x_s

(* Change the order of operations *)

In[3]:=

LHS = Integratel f[sl/.a -> x ,{x,0,a}]

Out[3]=
s—(3/2) _ 1
ga Sqrt(s] g3/2
IH[4].':

InverselLaplaceTransform[f[s],s,t] == Erfcla/(2 Sqrt[t])]

Out[4]=

2 Sqrt[t]] Erfc[2Sqrt[t]]

(* Define a substitution *)

In[5]:=
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trans =
InverselaplaceTransform[f [s],s,t] -> Erfcla/(2 Sqrtlt])]

Outf5]=

a a
L - Bty Sqrt[t]] ErfC[zs il

In|6]:=

Integrate [Erfc[x/(2 Sqrt[t1)],{x,0,a}]

Out(6]=
tit
2Sqrt[1f] B 2 Sqrtlt] A Erf[— 2
Sqrt[Pi]  ga?/(4%) gqrt[pi] 2 Sqrtlt]
(* Collect the terms involving a

in order to apply the transformation *)
In[7]:=

RHS=
Collect [Integrate[Erfc[x/(2 Sqrt[t])], {x,0,a}],al/.trans

Out[7]=
2 Sqrt[t] 2 Sqrt[t]
Sqrt[Pi] ga*/(4t) Sqrt [Pi] +a bric [2 Sqrt [t]

(* Prevent evaluation of the InverseLaplaceTransform *)
In[8§]:=
ILT[X.]:= Hold[InverseLaplaceTransform[X,s,t]]

sexpr:=
ILT[InverseLaplaceTransform[s”(~3/2) Exp[-a Sqrt[s]l]]
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In[10]:=
Solve[
InverseLaplaceTransform[
s7(-3/2),s,t] - ILT[sexpr] == RHS,ILT[sexpr]]//Simplify

Out[8]=

1
g2 Saqrt(ls] g3/2’

{{Hold[InverseLaplaceTransform| s,t]]—>

2 Sqrt[t] . Erfe [ﬁa*]
g2?/(4t) Sqrt [Pi] 2 Sqrt[t] )

. e s+
EXAMPLE 6.4. Evaluate £~} {—s_} We know from (6.20)
that

[,_1 —a\/E} — a —a?/4t
{e e (6.23)
Hence, using Property (i),
£t {e—a\/s_-i-(f} — a —ct—a?/4t
PWers 7rt3€ . (6.24)
Using the convolution theorem with F(s) = 1 and G(s) = e~ avete
we get s ’
—a+/s+c t
[:—1 € = / a —cu—a?/4
{*S } W e “du. (6.25)
Note that
a ___a n 1 c n a 1 /¢
2vVrud  avmid 2V u  avmed 2V
and

cu+—=(\/a+7)2—a\/— \/C_—7)2+a\/_-

If we now substitute

2\/— + vcu, and y:ﬁ_
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then the integral on the right side of (6.25) can be expressed as

o< [o.¢]
2 [e“‘/z / e~ dg + e Ve e“yzdy]
\/E xT m

[eaﬁ erfc(z—a\/—Z +Vt) +e7oVe erfc(QL\/E - s/Et—)] .

h

BN =

Hence

—a+/s+c 1
£t {_e_s_} =3 [e“‘ﬁ erfe (;\17% + \/E) +

e-“¢5eﬁc(§%§-—wﬁﬁ>].u (6.26)

We will state a very useful theorem without proof.

THEOREM 6.1. IfG(s) = ZGk(s) is uniformly convergent, then
1

o

£16(s) = 9(t) = Sk (t), (6.27)

1

where L71Gx(s) = gx(t).

EXAMPLE 6.5. Since
£-1 {3-3/281/3}
1 1 1 1 1
—_— —1 —_— — —— — — PR — n Y
=L {—3_/2 [l P T RETIS Foer (5D aten + ]}

1)n r)\/— 2n+1
=L 127»‘3"‘*’3/2 - \/_Z @en+1)! - 7: n(2V7),

(6.28)
we find that this result and Property (iv) give
1
! {5—1/2‘«31/8} - \/—ﬂ__zc«os(Q\/E). . (6.29)
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(* An interesting use of the package SymbolicSum *)

Inf1]:=

175

Needs["Calculus‘LaplaceTransform","Algebra‘SymbolicSum‘"] ;

(* Compute an infinite sum *)
In[2]:=

Sum[s~(3/2) (1/s)"k/k!,{k,0,Infinity}]
Out[2]=

gl/s ¢3/2

(* Compute an infinite sum *)
In[3]:=

Sum[(-1)"k/(s" (k+3/2)k!) ,{k,0,Infinity}]
Out[3]=

1
gl/s ¢3/2

(* Compute the InverseLaplaceTransform of a term *)
In[4]:=

InverseLaplaceTransform([(-1) “k/ (s~ (k+3/2)k!),s,t]
Out[4]=

(-F /2 + k

k! Gamma[-g + k]



176 CHAPTER 6: INTEGRAL TRANSFORMS

(* Sum the infinite series ¥)
In[5]:=

1/Sqrt[Pi] Sum{((-1)"k ((2 Sqrtlt])~(2k+1)))/(2k+1)!,
{k,0,Infinity}]

Out[5]=

Sin[2Sqrt[t]]
Sqrt [Pi]

(* Compute derivative and use Property 4 *)
In[6]:=

D(1/(Sqrt[Pil) Sin[2 Sqrt[t]],t]//Simplify
Out[6]=

Cos[28qrt[t]]
Sqrt [Pi] Sqrt [t]

In[7]:=

Hold[InverseLaplaceTransform[Release[
s*1 s~(-1/2)] Expl[1/s],s,t]] ==
D[1/(Sqrt[Pi]) Sin[2 Sqrt[tl],t]//Simplify

Out[7]=

Hold[InverseLaplaceTransform [El/E;Sqrt [s],s,t]l]l==
Cos[28Sqrt(t]]

Sqrt[Pi] Sqrt [t]

(* Note Mma fails to compute the following transform *)

In[8):=
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InverseLaplaceTransform[s~(-~1/2) Expl1/s],s,t]
Out[8]=

$Failed

EXAMPLE 6.6. Consider a semi-infinite medium bounded by 0 <
z < 00, —00 < ¥y, z < 00, which is kept at an initial zero temperature,
while its face £ = 0 is maintained at a time-dependent temperature
f(t). The problem is to find the temperature for ¢t > 0. By applying
the Laplace transform to the heat conduction equation kT, = T3, we

8

get Top = }:T, where T = L{T}. The solution of this equation is
T = Ae™ + Be™™*, (6.30)
where m = % Since T remains bounded as x — oo, we find that

A = 0. The boundary condition at z = 0 in the transform domain
yields B = f(s), where f(s) is the Laplace transform of f(¢). Thus,
the solution in the transform domain is

T = f(s)e ™.

In order to carry out the inversion, we use the convolution property
and Example 6.2 and get

t T e—x2/4k'r
T=]| ——f{t—7)dr.
/0 2tV kT i )

If f(s) = 1, then the solution for T reduces to

T /t 26—12/4,67' J
= —_— T,
o 27Vmkr
This solution is the fundamental solution for the heat conduction equa-

tion for the half-space. In the special case when f(t) = 1, the solution
is given by

T
T=Tperfc{ —).
0 (wkt) -

In the above example, we have assumed a function whose Laplace
transform is 1. The question arises: Is there such a function? We shall



178 CHAPTER 6: INTEGRAL TRANSFORMS

try to answer this question in a heuristic manner. Consider the step
function H(t) which is defined by

0 fort<O
H(t)_{l fort >0

H(t)

0
Fig. 6.1.

— 1
The Laplace transform of H(t) is H(s) = 3 Then, by Property 4 of the

Laplace transforms, LH'(t) = sH(s) = 1. Let us examine H'(t) closely.
Obviously, it vanishes for |t| > 0 and does not exist for ¢t = 0. From t‘he
graph of H(t), it is clear that there is a vertical jur.np a.t’ t = 0 (see Fig.
6.1). Therefore, it is reasonable to assume that %1_{1(1) H'(t) — oco. But

€ . .
since E H'(t)dt = 1, it is obvious that a function like H'(t) does
€ - . .
not exist ig the classical sense. Such a function is called generalized

function or distribution. The function H'(t) is a generally dgnoted by
6(t) and is known as the Dirac delta function. This function is defined
such that

8(t) = { 0 forltl>0 " 4 / 8(t)dt = 1. (6.31)

oo fort=0, —e

To make this function acceptable in the classical sense, we can mod-
ify the definition as follows:

0 for |t| > ¢,
= as e — 0.
5) { L for |t| < €

5

2
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This definition is consistent with the classical definition of a function
and automatically satisfies Equation (6.31). An important consequence
of Equation (6.31) is that if f(¢) is any continuous function, then

[ swiya=m [ s 0)d = 0,

—00

To prove this assertion, we note that by definition

/ " 8(e)5(t) dt = lim i o f6)d = lim L2cf(¥) = £(0),

—00

where ¢’ is a point at which f(t) takes its average value in (—¢, €), such
that ¢’ € (—¢,¢€), and, therefore, ¢/ — 0 as ¢ — 0. For more details on
the Dirac delta function, see §7.1.1.

EXAMPLE 6.7. Consider an infinite slab bounded by 0 <z <,
—00 < Y, z < oo, with initial zero temperature. The face z = 0 is
maintained at a constant temperature Ty and the face 2 = [ is main-
tained at zero temperature. The problem is to find the temperature in
the slab for ¢ > 0. Proceeding as in the above example, the solution
in the transform domain is given by Equation (6.30). Applying the
boundary conditions in the transform domain we get

aspTo
S

and
Ae™ 4 Be ™ =,

These two equations yield

_ —Toeml _ To
" 2ssinhml’ and B = s -4

Using these values in T and simplifying, we find that

g) sinh(l — z)

T =
ssinh|
Rewriting this solution as
—_ To _ _ _ _ _ -1
T=:9, ml (em(l ) —e m(l z)) (1 —e 2ml)
S bl
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and expanding the last factor by the binomial theorem, we get

T = % e—ml (em(l—z) _ e—m(l—a;)) ie—-2nml
0

_ T i ( ~m(2ni+z) _ —m[(22n+2)l—x])
=~ d e e ,

which on inversion yields

= 2(nl+1)—z (2nl+m))
T =T, f ——————— —erf———}.
‘ ZO: <er 2Vt vk

Alternately, we can use the Cauchy residue theorem and obtain a
Fourier series type result. Thus

Toe®t sinh(l — z)

T = Z residues of P

r &9 2 2 (6.32)
=Ty [1 - == Z =g mkt/l sin(mrm/l)].-
1

EXAMPLE 6.8. Consider a solid sphere of radius a. Suppose its
initial temperature is zero and its surface is maintained at a tempera-
ture Ty for ¢ > 0. The problem is to determine the temperature of the
sphere at any subsequent time. The heat conduction equation in this
case is 5

1
T, =T, = =T;. 6.33
rr T 'l"T k t ( )

If we introduce a new independent variable u, such that u = rT, then
the heat conduction equation reduces to

1
Urr = LUt (6.34)

which can be solved as in Example 6.2. =

EXAMPLE 6.9. Solve the wave equation
Ut = C2uzza (6.35)
subject to the initial conditions

u=wu; =0, fort<O,
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and the boundary conditions
u=0 atzx=0, and wy,=T7T atz=1L
If we apply the Laplace transform to the wave equation (6.35), we get
Ugy = € “8°0.

Its solution is
i = Ae—sx/c + Besz/c'

Applying the boundary conditions in the transform domain, we get

cT

A4+ B=0, and —Ae sY/¢y Best/e= 2
s

Solving for A and B and substituting their values in the solution for &
we get

(6.36)

This equation can be expressed as

_ Tc (e —e ¥

Y=\t +e—SL> ’
where y = z/c, and L = [/c. This, after some manipulation similar to
that in Example 6.7, yields

’T o0
i= Z(_l)n (e—sl(2n+1)L—y1 _ e—s[(2n+1)L+y]) ,
0
which, after inversion, gives

u=TY (-)"[(t~ (2n + 1)L+ y)H(t - (20 + 1)L + y)~
0

(t—(@n+1)L-y)H(t— (2n+ 1)L —y)]. (6.37)
Alternately,

u= Z residues of {@ e*t}

8l o= (—1)" (2n+ V7w (2n+ 1)met
=Tlz— =Y i ™
[ w12 T g ]-'

(6.38)
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EXAMPLE 6.10. The partial differential equation for propagation
of sound waves produced by the motion of a sphere of radius ¢ in an
infinite expanse of fluid is given by

r?D?u = 2D, (r? D, )u, (6.39)
with initial conditions
u(r,0) = Dyu(r,0) = 0, (6.40)
and the boundary conditions
D,u(a,t) = f(t), and u—0 asrT — oo. (6.41)

We first introduce a new independent variable v = ru. This substi-
tution reduces the partial differential equation to the standard wave
equation

Dy = 2D?v. (6.42)

Applying the Laplace transform and using the second boundary condi-
tion, the solution in the transform domain is given by

= —sr/c
= Ae ®/°
or
- A —sr/e
uUu=—=e .
T

Applying the first boundary condition in the transform domain, we get

_ac_F(s) —s¢—a)/e
- .
s+-= T
a

i=-

By the convolution property

£t {is)} = /t e *t=2) f(z)dx = p(t), k= 2 (6.43)

S+k 0

Thus the solution is

w8 F) seaye (6.44)
s+— T
a
which by Property (ii) and Equation (6.44) yields
u=_ﬂ¢(t—’"_“)H(t—r_“). (6.45)
T C . C
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If f(t) = 8(t), then ¢(t) = e/, and the solution becomes

u = 2 g—ct/alt-(r-a)/c) <t _r- a) . (6.46)

T C

We can derive solutions for other values of f(t) by evaluating the ap-
propriate ¢ function. =

6.3. Inversion Theorem

We will now establish the inversion theorem:

THEOREM 6.2. If F(s) is the Laplace transform of f(t), then

£(t) = — / T p(s) et ds. (6.47)

2mi c—io0

In order to prove this theorem, we first state and prove a lemma.

LEMMA 6.1. If f(2) is analytic and of order O(z~%) in the half-
plane Rz > v, where v and k are real constants, then

. 1 ) v+i8
flz0) = o ﬂlingo / - % dz, Rz > . (6.48)
Jy—i,

PRrOOF. Consider the rectangle in Fig. 6.2. Choose 3 > |vy| and
such that zp lies in this rectangle. By the Cauchy integral formula

f_(z)_ dz = 2mif(zp), (6.49)
r<—2o

where I is the contour ABCDA. Let S denote the contour ABCD, then

1) &) 4. [ 1)

———dz= ——dz.
Jrz—=2o DA% — 20 s 2~ 20



184 CHAPTER 6: INTEGRAL TRANSFORMS

f_(z)_dzz_/ —fﬁdz,
DA% 20 AD % — 2

_/7+2ﬁ 1(2) -dz —I—/ S a'z—?mf(zo). (6.50)

y—ig % 720

Since

we have

Imaginary Axis

Y+ B+iP
. <«

Real Axis

B
y-iP B-ip
Fig. 6.2.

\

f(z)
S 2 — 20
|z| = oo on S. Thus |z| > 3 for points on S. If we take 5 large enough

Now consider dz as 3 — oo. Obviously, 8 — oo implies that

1 1 20 [
so that 8 > 2|z, then |zo| < —ﬂ < —|z| or ‘—\ < = 1m]phes that

’1— ‘ > 1—} ‘ > =. Noting that |f(z)| < M|z|~* for large z, we
get
flz) 1 M 2M
[ ) e e

It now follows that

1) dz~< 2M /|dz|
S

sz — 20 Bh+1

3k+1 (length of S)

_2M 4ﬂ—27>__g{(4_g1).
"ﬂk( g T opk 8
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Thus,
AR
s <=2

Hence, from (6.50),

—/‘YHB f(z) dz = 2mif(2),

iB £~ 20
or
1+iB @
F(s) = i/ EAC. (6.51)
2mi Jy_ig 8 —2

The proof of Theorem 6.2 for the Laplace transform is now elemen-

tary. By taking the Laplace inverse of both sides of the above equation,
we have

ft)=L7'F(s) = — F(z)e**dz.m

21 Jyip §—2z 278 Jy—ip
(6.52)

1 /”*"" [ F@ 1 e

LEMMA 6.2. If f(z) < CR™*, 7 = Re¥ —mn <0< mR> Ry,
where Ry, C and k are constants, then e**f(2)dz — 0 as R — 00,

r
provided t > 0, where I is the arc BB'C or CA’A, and R is the radius
of the circular arc with chord AB (Fig. 6.3).

PROOF. C01151der the integral over the arc BB’. Since for BB, we
have o = cos™ R’ where « is the angle BOB', we get

/BB’ e*tf(2)dz| < /:/2

= CR—k+1 /ﬂ'/2 ’ethosol de
a

CR*eRte” Riei| 49

/2
< CR7*+1 / et dg

a

= CR™*(71/2 — a)e

= CR*+lgrtgin—! % —0 as R— oo.
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Similarly, / e* f(z)dz — 0 as R — cc.
AA

O
o
(=Y

Fig. 6.3.

Let us now consider the integral over the arc B’C A’. By following
the above procedure, we get

3n/2
<C]El_k+1 //2 IeRtCOSBI dé

/ e** f(z)dz
BB'C

s
= CRk+! / e Ftsindgs  where § = /2 4+ ¢
0
/2
— 2C7R_k+l/ / e—Rt sin¢d¢
0

w/2
< QC«R—k+1/ e—thdJ/w d¢
0

Y Rr+1
=7T—(J}: (e —-1) =0 as R— oo.

Hence / e**f(z)dz — 0 as R — oo, provided t > 0. =
r

1 y+i0
This result enables us to convert the integral o / F(z)e*tdz
v—iB

into an integral over the contour —I'.
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e~ aVs

EXAMPLE 6.11. Evaluate £} { } by contour integration. If

_ e~avs
fi)y=, ! { — }, then, by the Laplace inversion theorem, we have

1 c+ico —a+/5
fO) = 5= / S etds. (6.53)
2mi Je—i00 S
/_ s
TS
D >——\C//J
,///
v/
/"/

Fig. 6.4.

Consider the Bromwich contour LABC;CDL (Fig. 6.4). Then by
Cauchy’s theorem

c+100 e_a\/g
I=/ - estds = F(s) ds+/ F(s)ds+
— s e

=100 LD

/01 F(s) ds+/BA F(s)ds+/AMF(s)ds.

Now, as established in Lemma 6.2,

/ F(s)ds + F(s)ds =0,
LD AM

where

e~avs
F(s) = - et
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The integral over the circle C; can be easily shown tq be 27i. Tgis can
be done by taking the radius to be ¢ and substituting s = ee””. On
BA, s =ue'™, and

R—oo 4 in/2tutei™
—a+4/ue T
Iga :/ e Vu e du
£

4T
-0 ue

/oo 1 —iav/u—ut
= —€ du
0

(72

oo -
= / -l—e_“‘(cos av/u — isinay/u) du
0o U
o0 1 2 o
= 2/ —e~V"t(cosav — isinav) dv,
0

v

where u = v?. Similarly

R - .
/ = —2/ —e V" *(cosav + isinav) dv.
cD o v

oo 1 2
/ +/ = —41'/ ~e V' tsinav dv.
cD BA o v

1 e, .
In order to evaluate the integral / o ¥t sin av dv, we consider the
0

Hence

o o]
integral / e~""t cos av dv. Then
0
o0 o0 .
/ et cosavdv = §R/ e~vittiav gy
0 0
2 * \/E—m/2\/2)2
=Re™® /‘“/ e~ dv
0

— Re o 4t /00 e~*" du where u = vVt — iaz/2x/¥

—ia/2Vt
—a?/4 oo Y
= §Re /t / e du +/ e du} .
\/E 0 —ia/2Vt
H _
o T vt dv = Vre s/t (6.54)
/0 e cosavdv = WA

Integrating both sides of this equation with respect to a from 0 to a,

we get
1 2 . ™ [* —502/4td - — f_i_
1 —v dv = ] — e T = erf ~—=.
/0 Ue smavdv——ﬂélt/o 2 oVi
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Thus
_\/‘;
—1 e @ 1 . LT a Qa
- \_ - — 45— erf — | = erfc ——. 6.55
L { p } 2m[27m 412er Wi erc2\/fl ( )
L

6.4. Exercises

1
6.1. Using the techniques shown above and £ { e} = Py derive

the Laplace transform of sinat, cosat, esinat, e cosat, t" e,
and sinh bt.

6.2. Show that £ {e-a\/?} - - ats emat/4t,
VT

6.3. Using the Laplace transform method, solve the partial differential
equation u; = u,, — Mu, given that u(z,0) = 0, and u(0,t) = ug,
xli)ngo u(z,t) — 0 for ¢ > 0. [This problem corresponds to the flow of
a viscous fluid on an infinite moving plate under the influence of a
constant magnetic field applied perpendicular to the plate.] Derive
the solution when M = 0.

ANS.

u=1 {ezm erfc (21\/5 N w/Mt) + e~ VM grfe (5% ~ \/Mt> } .

6.4. Using the Laplace transform method, solve the partial differential
equation in the transform domain u; = u,, + ku,,, given that
u(2,0) = 0, and u(0,t) = ug, lim u(z,t) —» 0 for t > 0. Expand

F2amde o]

the solution in the transform domain in the form @ = —2 e VS 4

powers of k|. Invert the first two terms of this expansion.
u z kz (22 2
ANS. — =erfc 4+ — - (2. _ 1) ¢2/4,
up 2Vt dt/mt \ 2t
This problem corresponds to the flow of a viscoelastic fluid on an
infinite moving plate. Obtain the exact solution in terms of definite

integrals by using the contour integration.

1 /1
ANS. u(z,t) =1- —/ —e " sin AT dz, where 1_ k.
m™Jo X )\ — X )\
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6.5. Using the Laplace transform method, solve the partial differential
equation u; = Uy, with the initial condition u(x,0) = 0 and the
boundary conditions u;(0,t) = 0, and u;(1,t) = 1.

cosh z4/s

s3/2sinh /s’
Find two different inverses of this solution, by expanding the solu-
tion in a series of the type shown in Example 6.7 and by the residue
theorem. Thus,

ANS. The solution in the transform domain is @ =

o<
u = Z{z t/ﬂ' + (e“(2n+1—1})2/4t + e-—(2n+1+x)2/4t)

n=0
n+1-— n+l4z
n+l1—-zx)erfc——— - (2n+1+4¢z erfc———-—},
—( ) 2\/E ~ ) AZ\/E
and
2(-1)
= — + t-—-—=— Z ;27r2 —n*m’t cosnrz.

6.6. Using the Laplace transform method, solve the partial differ-

ential equation ug = ugy, with the initial conditions u(z,0) =
1-1x)2 .
—(————z—)—, u4(z,0) = 0, and the boundary conditions u,(0,t) =1
and u,(1,t) = 0.
1 (1 —x)?
ANs. u = =t? — 2
“=3 2

6.7. Using the Laplace transform method, solve the partial differential
equation u; = ugz,, with the initial condition u(x,0) = 0 and the
boundary conditions u;(0,t) = 0 and u(1,t) = 1.

cosh z+/s

scosh+/s

Find two different inverses of this solution, by expanding the solu-
tion in a series of the type shown in Example 6.7 and by the residue

ANs. The solution in the transform domain is & =

theorem.
> 2n+1 — 2n+1l+zx
ANS. u = 1"ef———+3rfc———,or
Y T
S ndcos(2n + 1)mz/2 o (2na1)?ntt/a.
=1- 1 nt1)e
“ 20:( T

6.8. Using the Laplace transform method, solve the partial dlfferentlgl
(-2)”

equation ¥y = Uz, with the initial condition u(z,0) = 5 ,
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ut(z,0) = 0, and the boundary conditions u(0,t) = 1, uz(1,t) = 0.
Ans.

= Z:(—l)“g{H( —2n—2+2z)+ H(t - 2n — 2)}

-2+ z)°H(t-2n—2+1)
o

+(t—2n—2)?H(t—2n — 2)] — 1(1 _)2H(t) - —H(t)

6.9. Using the Laplace transform method, solve the partial differential
equation

w2t

Ugz — Uy = € 'sinmz,
u(z,0) =0, u(2,0) =0, wu(0,t)=u.(1,t)=0.
ANs. Applying Laplace transform to the partial differential equa-

1
tion, we get (D? — s%)a = P sinz. Its solution is given by

1
(s +m2)(s? + 72)
Applying the boundary conditions we get A + B = 0, and

Ae® — Be™* T
s(de et (s +72)(s2 + 72)

= Ae*” + Be™** ~

sin 7.

cosm = 0.

These two equations yield

A=-B=— il
2s(s + 72)(s?2 + n2)sinh s’
Thus,
. wsinh sz 1 )
(s 72)(s2 +72)sinhs (s + 72)(s2 + 72) s
1 { 1 1 1 7sinhsz
== : + R
mla2(1+72)(s+72) (L + m2)(s2 + 72) (s+1) s} sinh s
1 [ 1 s w2 ,
m(1+72)ls+72  s2+72 @ §2 ¢ 7r2} Smme
_ l[ 1 ] s+1 1
Tl (14 72) (s +72) (1 + 72)(s2 + n2) Tzs]
x
[Z (e(@=2k=1)s _ e-—(2k+l+a:).5):| _ 1 [ 1 s
0 m2(1+72) ls + 72 52 4 72
2
+ m] sin7x.
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On inversion we find

1 = —n?(t+z—2k—1)
I G
™4 w2(1 + 72)
cos(t+x —2k—1)+sin(t+z -2k -1
+
1+ 72)
1 & (e (t-r—2k-1)
_;20:{ m2(1+72)
cos(t —x—2k—1)+sin(t—z—-2k-1) 1
T - S5 pH(E -z -2%k-1)
1 B
m2(1 -}-7r2)[e

) —;12-}H(t—1-z~2k—1)

+

— cos 7t + wsint] sin .

6.10. Solve the diffusion equation
Ut = AUz, O0<zT <7, >0,

subject to the boundary conditions u(0,t) = 1 — e~* and u(m,t) = 0
for t > 0, and the initial condition u(z,0) =0 for 0 < z < 7.
ANSs. By the Laplace transform method, we get

with @(0, s) = , and @(m, s) = 0, which has the solution
s

_r
(s+1)

1 sinh+/s/a(m —2)
s(s+1)  siny/s/ar

u(z,s) =

Then the inversion formula gives

ey gk [ S [T ),
27 Je—ioo 8(s+ 1) sinhy/s/ar

where ¢ is any positive constant. Assuming that a is not of the form
n~2, the integrand has simple poles at s = 0,~1, and —an?, n =
1,2,---. The contour is completed by an infinite left side semicircle
with Rs = ¢ as diameter, which is defined as the limit of a sequence
of semicircles T',, that cross the negative s-axis between the poles at
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—an? and —a(n + 1)2. The limit of the integrand around T',, is zero as
n — 00. The residue at the pole s = 0is (7 —z)/7, and at s = —1 it is

o sinl(r )/

sin(7/+/a)

The residue at s = —an? is given by
im St n? oot sinh /s/a(m — z) __2sinnz .
s—an? S(S + 1) sinh + /s/aﬂ' 71/71'((1712 - 1)
Hence

T—2z _,sinf(r—-z)/v/al 2= sinnzx __ .2
,t — t = an t.
wz,?) T ° sin(7/+/a) + s Z n ¢

-
Note that u — — as t — oo, which gives the steady state temper-
ature in the interval 0 < z <.

6.11. Show that
I(p+1)

L{tP} = st

oo
where I'(x) is the gamma function defined by I'(z) = / 2P e " dx.
0

t
ANs. In L{tP} = / tPe~*" dt, let st = x. Then
0

oo 1 i L'lp+1)
p ,~—st _ p+1 —zx _
/0 tPe tdt = ¥ |, Pt e " dy = —

6.12. Solve the nonhomogeneous Cauchy problem in R! x R*:

Uy — aUz, = f(z,t), 2z € R,
u(z,0) = g(z), t>0,

where g{(x) is prescribed.
SOLUTION. Using the Laplace transform we get

2t
T~ si=—f(@),
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with the boundary conditions %(0, s) = 0 = @(l, s). The solution of
the above homogeneous equation is given by

1
Vs sinh(l,/5)

+ sinh(z+/3) / ' sinh((L = Y)VE) £ (1) dy.

T

(z,s) =

[siun((t - 2)v5) [ " sinh(yv3)(y) dy

By inversion, the solution of this problem becomes

1 u+iR
u(z,t) = lim —/ eti(z, s)ds| .

R—oo | 211 u—iR

The integrand in this solution has simple poles at s = 0, —k?2, where

kn = nn/l,n = 1,2,--- . We choose a contour of integration that
avoids these poles and take u > 0. Then it can be shown that the
residue at the pole s = 0 is zero, while at the poles s = —k2 it is
given by

!
%e*kitsin knx/ f(y)sinkny dy.
0

Hence the final formal solution of the problem is given by

u(z,t) =Y

Alternately, if we use the series representation

!
E/ ) Sinknydy} e~kut sin k.
[ Jo

1\ o
1-z

n=0

for |z| < 1, then we can write

o<
sinh(ly/s) = 2¢7V° z: e~ 2nVs,

n=0

where Rs is chosen such that e™2V® < 1. Then expressing the
hyperbolic functions in terms of exponentials, using the formula

. e—z\/; el—zz/4t
Sl RV v
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where z is independent of s and ¢ (see §A.2), and interchanging the
orders of summation and integration when needed, we obtain the
solution for |z} < 1.

Fourier Transforms

We will not discuss the underlying theory of Fourier transforms. We
will only define and discuss their properties and applications. From the
definitions of the transform pairs (6.1a,b) and (6.2a,b) we note that the
Fourier cosine and sine transforms and their inverses are symmetric.
But the Fourier complex transform and its inverse are related in the
following manner: If Ff(z) = f(a), then Ff(z) = f(-a). Various
authors have defined the Fourier transform in different ways, but we
shall follow the notation used by Sneddon (1957). A table of basic
Fourier transform pairs is given in Appendix B.

R R
6.5. Fourier Integral Theorems
THEOREM 6.3 (FOURIER INTEGRAL THEOREM). If f(x) satisfies

the Dirichlet’s conditions on the entire real line and is absolutely inte-
grable on (—o0, ), then

%[f(m +0)+ f(x —0)] = % /00 e doy /_Z fw)e™ du. (6.56)

—0o0

THEOREM 6.4 (FOURIER COSINE THEOREM). If f(x) satisfies the
Dirichlet’s conditions on the non-negative real line and is absolutely
integrable on (0, 00), then

%[f(m+0)+f‘(z—0)] = %/Ooo da /000 f(u) cos(au) cos(az) du. (6.57)

THEOREM 6.5 (FOURIER SINE THEOREM). If f(x) satisfies the
Dirichlet’s conditions on the non-negative real line and is absolutely
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integrable on (0,00), then

%[f(w+0)+f(z—o)} = % /0 ” da /) ” f(u)sin(ou) sin(azx) du. (6.58)

If f(z) is continuous then é[f(a: +0) + f(z — 0)] = f(x). These

three integrals form the basis of the Fourier transforms.*

6.6. Properties of Fourier Transforms

We will use the following notation: Let Ff(z) = f(c). Then
(1) Ff(z —a) = € f(a).

(2) Ff(az) = ﬁf(a/a)

(3) Fe'* f(z) = f(a+a).
(4) Ff(z) = f(~a).

(5) Fanf(z) = (~1)"— f(a).

da™

© Fflan)e - f (252,

la| a

6.6.1. Fourier transforms of the derivatives of a func-
tion. Assuming that f(z) is differentiable n times and the function
and its derivatives approach zero as |z| -+ oo, then it can be easily
established that

fP(a) = (—ia)f(”“l),
where f®) is the Fourier transform of f (P)(z), which is the p-th deriv-
ative of f(z) for 0 <p < n.

*See Sneddon (1957) for proof.
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If lim f®(z) =0, and lin%J P (z) = \/gcp, then
T—>00 ZT=—

fc(p) =—cp_1+ afs(”_l), (6.59)
and
fs(P) = _afc(P—l)_ (6.60)

6.6.2. Convolution theorems for Fourier transform. The
convolution or Faltung of f(¢) and g(t) over (—o0, o0) is defined by

fra=—=[ Z fnla(z~mdn = —= [ : f(@=m)g(n) du. (6.61)

THEOREM 6.6. Let f(a) and §(a) be the Fourier transforms of f(z)
and g(x), respectively. Then the inverse Fourier transform of f(c) (o)

s
i} == [ s -nan

ProoF. Consider

/ fmg(z —n)dn = — / f(n)dn/ Gla)e@@=m dqo

- = /_ §(a)e " da / Fmee=n di

= | fl@ja)e " da,
-
which proves the theorem. =

THEOREM 6.7. Let f() and §(a) be the Fourier transforms of f(x)
and g(z), respectively, then

/ " f(@)i(a)da = / " f(=n)g(n) dn. (6.62)

PROOF. Consider
[ jeite)da= [~ f(a)da\/; I

= /_ g(n)dn —= / fla)e*nda

= / g(m)f(—m)dn, by Property 4.m
—oQ
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6.6.3 Some Fourier transform formulas.

EXAMPLE 6.12. Find the Fourier transform of f(z) = e~*I2| k > 0.
- 1 ©  klalL
Fflx) = flo) = —= e "ITler ™ dy
f(@) = 1(e) V2T /_oo

1 0 kx izca /oo kx i ]
= — e“TeT dr + e e dx
V 27r [/—oo JO

1(1 1)_ kv2

T Vor \k+ia —k+ia)  m(k®+0?)
Now by Property 4, the Fourier Transform of f(z) = _ k2
w by Property 4, the Fou : = FE

should be f(a) =e* lel 1t is interesting as well as instructive to check
if this is the case. Since f(zx) = f(—x), f(a) = f(—a), we have

V2 1 /°° kv2
VE(k?2 +22)  V2r J_o VT(K? +2%)
/oo keima i
J oo (K2 4+ 22)

0 keiza 0 Leiza
[/_m It ], wee d”}
oo ke—ima o0 kez‘ma
[ wrme @ =

/°° kcoszo da
0 (k2+l'2)

/°° kcosza dx
Jooo (K2 +22)

ezxa dm

F

Nl A0 A= A= A=

The standard method of evaluating this integral is by contour integra-
tion. The contour is the upper half-circle with radius R and center at
the origin if o > 0 and the lower half—circle if & < 0. Its value is ek
if @ > 0, and € if @ < 0. Thus the value can be expressed as e~ klad,

A number of other Fourier transforms can be found by differenti-

kV2

—\/7_1_(74‘_—(% with respect to k. For

ating both sides of Fe~ k=l =

2 k?2-0o?

—klz| 4 X -
T s 7 (k2 + a?)?’ -

example, the Fourier transform of jz|e
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(* Load the package *)
In[1]:=
Needs["Calculus‘FourierTransform"];
In[2]:=
?$FourierQverallConstant
Out[2]=

$FourierOverallConstant is the default setting for the
option FourierOverallConstant (an option to FourierTrans-
form and related functions).

In[3]:=
$FourierOverallConstant

Out[3]=

(* Reset the constant *)
In[4]:=

$FourierOverallConstant = 1/Sqrt[2 Pi]
Out[4]=

1
2 Sqrt[Pil

In[5]:=
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FourierTransform[Exp[-k Abs[x]],x,w]
Out[5]=
k Sqrt [%]
k2 + w2
(* Alternate calculation; takes time x)
In[6]:=

intl:= Integrate[Exp[k x] Exp[I x al],x,-Infinity,0]
int2:= Integrate[Exp(-k x] Exp[I x a],x,0,Infinity]

In[8]:=
result = 1/Sqrt[2 Pi] (intl + int2)//Simplify

General::intinit: Loading integration packages -- please
wait.

Out[7]=

2

k Sqrt[—
qr [Pi]

k2 + a2

ExAMPLE 6.13. Find the Fourier transform of f(z) = e=%** Then

- 1 oo 2
f(a) _ ?/ e—kx P
vV —o0
_ 1 /"°° o~ k(a?~iza/k—a® 4k +a? [4k?) g
vV 2 —00
—k(z—ia/k)?—o?/4k dx

1 oo
= —— e
vV 2T /—oo
- e—o’/4k /oo e du
\ 27Tk ’ —00
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1 2
— e~ @ /4k T
27k '

— 1 e—a2/4k:.

Ve

Inf1]:=
Needs["Calculus‘FourierTransform"] ;
In[2]:=
FourierTransform[Exp[-k t2°],t,w]
Out[2]=

1
Sqrt [2] E¥?/(4K) Sqrt (k]

EXAMPLE 6.14. Find the Fourier transform of f(z) = 0 for z < 0
and f(z) = ze™% for z > 0.

Fflz) = \/—% /—: f(z)e*® dx

1 e )
— 5 / Te~ el Jo
V4T Jo

xe—az-}-iaz o0 1 o0 )
o . - / e~ 9% laT 1.
Ver(ia —a)lo  V2r(ia —a) Jo
oo

1 )
= ——— e—aa: oz d
V2r(ia — a) /0 € *
1

V27 (ia — a)?’ -
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EXAMPLE 6.15. Find the Fourier transform of f(z) = 0if z < b
and f(z) = e~ if 0 < b < z.

3 . 1 oo —a%z? ixad,
fla)y= T ), e e dx

— 1 /oo e—a2(1—ia/2a2)2—a2/4a2 dr
V2 Jy
2 /4.2 o0
e /4a 2
= —_— / e_u du
a\/27r
(ab—ia/2a)
1 R 7o'
= 2a\/§e_°‘2/4“2 erfc <ab - %> .=

Inf1]:=

<<Declare.m
Out[l]=

{Declare, NewDeclare, NonPositive, RealQ}
In[2]:=

Declarel[a,Positive];

flx_]:= Exp[-a~2 x~2]

int:= Integrate[f[x] Exp[I x alpha),{x,b,Infinity}]
sub[X_]:= 1 - Erf[X] -> Erfc[X//Together]
Simplify[1/Sqrt[2 Pil int]/.sublax((-I/2*alpha)/a”2 + b)]

Out[6]=
-I alpha + 2 a2 b

2a ]
2Sqre[2] a Ealpha®/(4a2)

Erfcl

EXAMPLE 6.16. Solve the partial differential equation u; + uy +
kyu = f(z), in the domain |z| < 0,y > 0, with the boundary conditions
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u(z,0) = 0, lirqf u(z,y) = 0, where f(z) is a function such that
f(z) — 0 as |z| — oco.

The partial differential equation in the domain of the Fourier trans-
form with respect to x is

(e, y)y + (—ia + ky) a(a,y) = f(a), (6.63)

where i = Fu and f(a) = Ff. The differential equation in @ is a linear
equation of first order and its solution subject to the given boundary
conditions is

i = eV k2 f(q) / T miathket/2 gy (6.64)
0
This solution on inversion yields
Y 2
u=e k2 / flez—y+t)ek /24t (6.65)
0

Note that by using Property 1, F~1f(a)e %) = f(z —y +¢). =

EXAMPLE 6.17. Find the solution of the Laplace’s equation uy, +
Uyy = 0 in the domain |z| < oo and y > 0, with the conditions that
u — 0 as |z| — oo or as y — oo and u(x,0) = §(x). After applying the
Fourier transform to the partial differential equation with respect to z,
we get

fiy, — &’ = 0.
The appropriate solution is
i = Ae~lolv,

Applying the boundary condition at ¥y = 0 in the transform domain

- 1 . 1 . .
we get 4(a,0) = A = E Hence @& = Nor e~ 1*lv. On inverting, we
™
obtain
Y
u(x,y) = ————.
@y) =L

We can now use Duhamel’s principle to obtain the solution to the prob-
lem with arbitrary condition u(z,0) = f(x). Then the solution is

wz,y) = % ‘/_w % dn, (6.66)

which is known as the Poisson integral representation for the Dirichlet
problem in the half-plane. =
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EXAMPLE 6.18. Find the general solution of the diffusion equation
us = kugg for the homogeneous initial condition u(z,0) = f(z), sub-
ject to the conditions that lilil f(z),u(z,t) — 0. Applying Fourier

T—T00

transform to the partial differential equation we get

with the initial condition @(c,0) = f(). Hence, the solution after

applying the initial condition is
ia,t) = fa)e ™
which on inversion yields

wat) = / F(n)e=E=m?/4kt gy

where we have used the convolution property and Example 6.13. =

6.7. Fourier Sine and Cosine Transforms
We shall discuss Fourier sine and Fourier cosine transform simultane-

ously. This is because most of the time they are used simultaneously
to solve any problem.

6.7.1. Properties of Fourier sine and cosine transforms.

Fof(@) = fola), Fsf(2) = fo(a), (6.67)
fcfc(x) = f(a)’ fsfs(x) = f(a)v (6'68)
Fof(kz) = %fc(%), k>0, (6.69)

Fuf(ka) = 2F(3), k>0, (6.70)
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Fef(kzx) cosbx-i[f;( ) f <a—b>}’ k>0,
k (6.71)
F.f (ka)smbx_2—115[3<a ) <°‘—_13>] k>0,
k (6.72)
Fsf(kz) cosbm—é%[s(a:b>+fs<a_b)], k>0,
k (6.73)
Fsf(kx) smbx—-;—k[c(a ) (a+b)]’ k>0,
k (6.74)
1 ndznfc
Fox? flz)=(-1) sza)’ (6.75)
. nd2n+1 ~s
Fatmif(a) = (- £ 10, (6.76)
n ndQn "s
Fatnf(@) = (-1 L), (6.7
. " d2n+1 "c
Foa®™1f(z) = (-1) +1—__dafn("‘). (6.78)

6.7.2. Convolution theorems for Fourier sine and cosine
transforms.

THEOREM 6.8. Let f.(a) and (o) be the Fourier cosine trans-

forms of f(a:) and g(z), respectively, and let fs(a) and gs(a) be the
Fourier sine transforms of f(z) and g(z), respectively. Then
o

o fe(@)ge(a)] = \/— gm)f(lz = nl) + f(z +n)]dn.  (6.79)

PRrROOF. We have
o] - . 2 o . (e}
/0 fe(a) gc(a)c;sa:cia: %F/O fela) cosoa::doz/0 9(n) cosandn

= 7=, g9(n) dn/0 fe(@) cos az cos anda
— 1 2 A bt ray
=375, stan [7 fu@eosalz — ni + cosa(z + 1) da

1 oC
=3 [ stz )+ s+ midr.
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THEOREM 6.9.

oo 1 oo
a) §s(a) sinaxda = = z—n|)— flz dn,
| o) auteysinanda =5 [ gl (e ~n) — fGa + midn

(6.80)

and

| fi@a@rsinazda = 3 [~ oot =n - ote + midn.
0 0
(6.81)

THEOREM 6.10.

[ i@ adarda= | " smatmdn) = [ fu@lau(a)da. (652)
0 0 0

The proofs for these theorems are left as exercises.

We will now derive Fourier sine and cosine transforms of some func-
tions.

EXAMPLE 6.19. Define

o0 [ele)
I = / e ®sinbrdr, I,= / e~ * cosbx dx.
0 0

Then Iy = 1 gll, and I; = 212. Solving for I; and I3, we get
a

b a
IR and I =

s 2 b
fc(a) - \/;QQ T b:fv
'y 2 «
)=y zavp

These two results yield on inversion

/oo cosax do = ll'_e_bz1
o o+ b2 2b

I

If f(x) = e, then

and
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and

> asin oz T b
— gy da= e %
0 « +b 2

An interesting integral is obtained by defining

f(z):{l for 0 <z < b,

0 forb<z.

. 2 sinab
Then f.(a) = \/;su;a . Also, define g(z) = e=%*. Then

) = \F o
I =\ T 1 et
Thus, we have

0 : 9 00 . b o
J) F@aayda=2 [T 4 S g0 7 gty an

b —ab
1_ a
=/ e‘“”"dnz——e .=
0 a

(6.83)

EXAMPLE 6.20. Show that,

o0

1
2 sin Aasin Abd\ = ~ min(a, b).
0 2

In fact, if we define

[1 for0<z<a 1 for0<z<bd
flz) = o g(@) =
L0 fora<z 0 forb<z,

then
/0 TR0 dr = / " f @) 9(a) de.

This, on using (6.83), yields

2 [*1 . , *
-7;/0 3z sin Aa sin \bd) = /0 f(z)g(z) dxr = min(a,b). w
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EXAMPLE 6.21. Find the Fourier cosine transform of f(z), where

"z for0<z<l,
fz)=< 2—2 forl<zx<2,
0 for2<z<oo.

Here,

Felf(z)] = \/g [/lecosxdx-i- /12 (2 —as)cosxdm}

i O Y 2 — r)sinox|?
= E[M‘ ——/ sinaxdm%—%—
0

T 1] ‘ 1

2
l / sin ax da;]
a Jq

|:2COSO¢ -1 cos2a}
. n

0 (¢4

2
™ a?

In[1]:=

Needs[
"Calculus‘FourierTransform‘","Algebra‘Trigonometry‘"];

In[2]:=

Clear[f];
flx]:= If[o< x <1, x ,If[1< x < 2, 2-x ,0]]

In[4]:=
FourierCosTransform[f [t],t,w]

On::none: Message SeriesData::csa not found.
On::none: Message SeriesData::csa not found.
On::none: Message SeriesData::csa not found.
General::stop: Further output of On::none
will be suppressed during this calculation.

Out[4]=
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FourierCosTransform[f[t],t,w]

In[5]:=
intl:= Integrate(x Cos[alpha x],{x,0,1}]
int2:= Integrate[(2-x) Cos[alpha x],{x,1,2}]

result= Sqrt[2/Pi] (intl + int2)//Simplify
Out[7]=

alpha] 2

2 .
4 Sqrt [iq] Cos [alphal Sln[T

alpha2

EXAMPLE 6.22. We shall now use the Fourier transform to solve
Example 6.7, which was earlier solved by the Laplace transform. The

partial differential equation along the boundary and initial conditions
are

kuze = ug,

u=0, vu—0asx—0fort<0, u=1T; fort>0.
Applying Fourier sine transform to the partial differential equation, we
get
Ot
ot

where @, is the Fourier sine transform of . Its solution is given by

+ ka’iy = ka Ty,

2 T
Gy = Aeke™t 4 /220
T «
By applying the initial condition at ¢t = 0, we get

2Ty
A+/22 =0

™ &

Us = \/é% (1 — eka2t) .

Hence
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Thus, u(z,t) is given by

u(z, t) = 2TO (1 —e* ) sinazda

™ 0o
ETO [/‘X’ sin ax dor — /°° sinaxe_kaztda
™ 0 « 0 0%

_ 2T T T

I R R W

=Toerfc——.m

2vkt

6.8. Finite Fourier Transforms

When the domain of the physical problem is finite, it is generally not
convenient to use the transforms with an infinite range of integration.
In many cases, finite Fourier transform can be used with advantage.

We define
fon) = /0 * f(a)sin (ﬂ;f) dz (6.84)

as the finite Fourier sine transform of f(z). The function f(z) is then
given by

oo

2 i nwT

f@)== ; ( ) . (6.85)
Similarly, the finite Fourier cosine transform is defined as

- e nwT

fen) = / f(z) cos (———) dz, (6.86)

0 a
and the inverse is
0) 2 — T
flz) = +o 21: n)cos( ) . (6.87)
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EXAMPLE 6.23. Consider the Laplace equation for a rectangle
Uzg + Uyy = 0, (6.88)
with the boundary conditions
u(0,y) = u(a,y) = u(z,b) =0, and wu(z,0) = f(z).

Applying the finite Fourier sine transform to u(z,y) with respect to
from 0 to a, we have

. @ . nmzx
() 5y (1) = / Uzz SiN—— dr
0

22 (6.89)
n i
= 2 u(0,8) - (-1 ule, 1)) - -y (n).
Then Equation (6.88) becomes
d? n272] _
W is(n,y) = 0.

Solving for @,(n,y), we get
fis(n,y) = Ae"™V/a 4 Be~nm/a,
Since 4 (n, b) = 0, we can express is(n,y) as
s(n,y) = An(emr(y—b)/a — e—mr(y—b)/a).
Applying the boundary condition at y = 0, we get
An(e™ /% — &%) = i (m),
which, after solving for A,, and substituting its value in iy (n, y), yields

sinh[nw(y — b)/a]

ts(m,y) = - sinh(nwb/a) fo(n).
Hence,
. sinh[n7w(b - y)/a] -
u(z,y) = %Z S siL;(Snb/ztlz))/ ] fs(n)sin(nrz/a),
where

fum = [ " £(€) sin(nme /a)de. =
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EXAMPLE 6.24. Solve the wave equation
Uy = c2um, 0<x<l,

subject to the conditions

u(0,t) =g(t) and u(l,t)=0 for0<z <,
u{z,0)=0 fort>0.

Taking the finite Fourier sine transform with the boundary conditions
at z = 0,1, and using (6.89), we get

d?a, n?r2c? . nnc?
s = —— g(t

a2 7 9(0)-

The general solution of this equation is

is(n) = A cos nT +Bs —-l—— + @, p(n),

where @5 p(n) is the particular solution which can be obtained by the
variation of parameters as

nme(t

ts,p(n) =c /0t g(7) sin ———ﬂ dt

nwcrT

t
= ‘c/ g(t —7) sin - dr.
0 !

With this choice of @5, p(n), the constants A and B become zero because
of the initial condition @s(n,0) = 0. Hence iis(n) = @, p(n). Thus, by
(6.85)

2¢ ¢
u(z,t) = Tc Z sin mlr_x /0 g{t —7) sin m;cr dr.

n=1
Alternately, by applying the Laplace transform, we have
d’a  s?

i

which, when solved with the boundary conditions @(0, s) = g(s), a(l,s) =

0, gives

ia,s) = g(s) T 2,
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This can be inverted for different values of g(t). Note that as t — oo,
ie., as s — 0, we get

—sz/c
b

a(z,s) =g(s)e
which on inversion gives
uw(z,t) = H(t —z/c) g(t — z/c).
This solution also follows from d’Alembert general solution (5.24) of

the wave equation. =

Note that the finite cosine transforms for the derivatives of a func-
tion u can be obtained analogous to (6.89) (see Exercise 6.23).

6.9. Exercises

6.13. Find the complex Fourier transform of of the following functions:

0 forz<O
a =
(2) £(@) { e % forzxz > 0.
1
ANS. —————.
V27(a —ia)
0 forz <0,
b ) = 1
(b) f(z) { —[e“”— e ] forx>0andb>a>0.
HinT: Use part (a) and integrate with respect to a.
ANs L n b-ia
V2 a—ida’
0 for |z| > a,
(c) flz) =
) 1—m for |z| < a.

2 1
ANs. \/i—(l — cosaa).

T aq
(d) f(z) = cosaz? and f(z) = sinaz?.
HINT: Us<= ExameIe 6.13 and define & as ia.

2 2 2
ANS 2\/_ (sma +cosa)and2\/_(s1na cosZ—a).
1 for |z| <1

© 5@ ={y o

0 for |z| > 1.
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ANs.

V2o
aﬁsma.
@ 1) = {
7
ANS'\/z—w[
-1— forz >0

(&) fz) =4 V=
=0 forz <0
HINT: Substitute azx = v?e™/2,
T
ANs.

\/%’ 1
(h) f2) = { VIl

0 forxz>0.

sinkz for jz| <1

0 for|z| > 1.

sin(k —a) sin(k +a)
k-« k+a |

a>0.

forz<0

e—z’7r/4
ANs.

a > 0.

3

() f(z) = —=.
1

N

6.14. Solve the partial differential equation (a2D? — D?)u = 0, subject
to the conditions u(x,0) = f(z) + g(z) and Diu(z,0) = a(f'(z) —
g'(x)), where u(z,t), f(z), 9(2), v(,t), f'(z), and ¢'(z) all go to
zero as |z| — oo.

ANs. u = f(z + at) + g(z — at).

3

ANs.

6.15. Solve the following system: Dyu — v = —D h, Div+u = 0,
D;h + 2D u = 0, subject to the conditions u(z,0) = v(z,0) = 0
and h(z,0) = k if |z] < a and h(z,0) = 0 if |z| > a; in addition
u(z,t),v(z,t) and h(z,t) approach 0 as |z| — co. This problem is
connected with shallow water waves.

ANs.

] cos{ax)dz.

2k /°° sin(aa) [1 + a?c? cos(tV1 + a2c?)
-0

h(z,t) = T o 1+ a2c?

6.16. Solve the partial differential equation r?D%y = D, (r*D,)u,
with initial conditions u(r,t) = Dsu(r,t) = 0 for t < 0 and the
boundary condition D,u(a,t) = H(t)f(t), by using Fourier trans-
form with respect to t.
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1
ANs. See Example 5.10. HINT. f_lm = —V2rH(t)e " and
eiak(r—a)
F1= = —V2rH[t — k(r — a)]e =5~ Use the convo-
ia -
lution theorem.
1
6.17. Find the Fourier sine and cosine transforms of f(z) = %e"”
JaZ raZ V2 + o —
ANs. F.f(z) = vvetatra Fof(z) = vyaitaol—a
VaZ + a? Va2 +a?

1
6.18. Find the Fourier cosine transform of ;[e"‘” —e7%), Ra, Rb > 0.

1 a® +o?
ANS. —In{ ——— ).
N 27rn<b2+a2>

\ 1
6.19. Find the Fourier sine transform of —e~%*, Ra > 0.
T

2 o
ANS. \/: tan"! =,
T a

6.20. Derive additional formulas for Fourier sine and cosine transforms
from Examples 5.5 and 5.6 by differentiating or integrating with
respect to a.

1

6.21. Find the Fourier sine and cosine transforms of f(z) = ﬁe_‘”,
a>0.
- Va2 + a2 s V@ L o? —
ANS. fu(a) = “—+O‘f_a7 and f,(a) = vva'ta—a
va? + a? Va? + a?

6.22. Find Fourier sine and cosine transforms of f(z) = y/ze %, a >
0.

ANS. fo(a) +ifs(a) =

e3i arctan(a/a)
2v2(a? + a2)3/4
- ~ 1
HINT: fe(a)+ifs(a) = ; then express (a —ia) in polar

72((1 — )3’

form.

6.23. Derive the formulas for the finite sine and cosine transforms for
the first, second, and third derivatives of a function u(x) in the
interval [0,1].
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ANs. For the finite sine transform
(%) -
(%) sis given by (6.89),

3 3,3
(%)s = —%— (-1)"u'(I) — u'(0)] — nl_3 fie(n).

For the finite cosine transform

(;i;)c = [(=1)"u(l) — u(0)} + PIE iis(n),

2u nz!ﬂ.2
(%) = 0w (@) - St

d*u " " n2r? n .
(&) = 0 - wo) - 5= [(=0ruth) = o)
- ﬁ;ﬁ ts(n).

l

7

Green’s Functions

The solution of a given linear partial differential equation due to a unit point
source in the region under consideration subject to homogeneous boundary
conditions is generally called a Green’s function. This solution enables us
to generate solutions for the partial differential equation subject to a range
of boundary conditions and internal sources. This technique is of great im-
portance in a variety of physical problems. For the derivation of the Green’s
functions one can assume the presence of an internal source or a certain bound-
ary condition which results in the same effect as the point source. The point
source, represented by the Dirac delta function, belongs to a class of functions
known as generalized functions or distributions. With this in mind, we shall
first study certain elementary aspects of the distribution theory. The definition
and construction of Green’s functions for different types of boundary value
problems are carried out through various examples and exercises.

Refer to the Mathematica Notebook Greens .ma for this chapter.

7.1. Definitions

Let R™ denote the Euclidean n—space, and R the set of nonnegative real
numbers. Then |z — y| defines the Euclidean distance between points z and
y in R™. An open ball of radius r centered at a point 2o € R™ is defined by
{z : |z — zo| < r}, and denoted by B(zo,r). The boundary (surface) of
the open ball B(xg,r) will be denoted by S(zg,7)= {z : |z — zo| = r},
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271.11/2

where S, (1) = T(n/2) is the surface area of the unit ball in R". The e-

neighborhood of a set A C R™ is A, = UyeaB(x,€). The complement of
a set B with respect to a set A will be denoted by A\B, the product of the
sets A and B by A x B, and the closure of a set A by A. The characteristic
1, ze€A
0, z¢ A’
A complex—valued function f is said to belong to the class CP() if it is
continuous together with the derivatives D* f(z), |k| < p, 0 < p < o0, in
a domain 2. The function f in the class CP(Q2), for which all derivatives
Dk f(z), |k| < p, admit continuous continuations in the closure C}, form the
class of functions CP(Q). The class C*(£2) consists of functions f which are
infinitely differentiable on €, i.e., continuous partial derivatives of all orders
exist. These classes are linear sets; thus, every linear combination A f + ug,
where X and p are arbitrary complex numbers, also belongs to the respective
class.

(or indicator) function of the set A is defined by x4(z) = {

A function defined on R is said to belong to the class C§°(R™) if it is
infinitely differentiable on R™ and vanishes outside some bounded region.

The support of a continuous function f (written supp f) is the closure
of the set {x € R™ : f(x) 7 0}. Then the class C5(R") denotes the set of
functions in CP( R™) that have compact support.*

The Hilbert space L?[a, b] is a complete inner product space with the norm
defined by

b 1/2
||f||=</ [f(t)]zdt) , t€lab],

and is obtained from the inner product defined by

b
<f,9> =/ F(t)g(t) dt.

Complex—valued functions which form a complex vector space become an
inner product space if we define

b [EEN—
<ﬁg%:L.ﬂﬂﬂﬂw,

*A complex—valued function f on R™ is said to have compact support if there
exists a compact set K such that f(x) = 0 for each x not in K.
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where t € [a, b] is kept real, and the bar denotes the complex conjugate. The

norm is then defined by
b 1/2
IVH=</|ﬂﬂFﬁ> ,
va

since f(t)f(t) = |f ()%

We shall now discuss some basic concepts and results from the theory
functionals, generalized functions, and distributions. Proofs for most of the
results can be easily found in the literature (see Friedlander (1982), Gelfand and
Shilov (1964), Kythe (1995, 1996), Rubinstein (1969), and Stakgold (1979)).

DEFINITION 7.1. Let a real number/ fx)p(x)dx = (f,¢) be
R»

associated with each x € R"™ for every function ¢ € C§° (R™). Then f is
said to be a functional on R™. The function ¢ is known as the test function.

Thus, e.g., the Fourier series of f € C'[0, ], defined by

I ks
flz) = Z bnsinnz, where b, = % /0 f(z) sinnzx dz,

n=1

is a functional on R, with test functions in the set {sinx, sin 2z, - - - }. Some
useful properties of test functions are

(i) if ¢1(x) and @2 (x) are test functions on R™, so is their linear combination
c161(x) + co¢p2(x), where ¢; and c; are real numbers;

(i) if ¢(x) € Cg° (R™), so do all partial derivatives of ¢(x) belong to the
class C§° (R™);

(i) if (x) € C§° (R™) and a(x) are infinitely differentiable, then the product
a(x)¢(x) belongs to the class C™ (R™); and

(V) if ¢ (z1,-+- ,zm) € C5° (R™) and ¢ (Tm1,- - ,2n) € C5° (R*™),
then ¢($1, e a$m) 17Z’Y(:l:m«l—la e a$n> € Cgo (Rn)

DEFINITION 7.2. A functional f on R is said to be linear if ( fy A1 +

ppa) = M(f, ¢1)+u(f, ¢2) forallreal numbers \, gandall ¢; 5 € C° (R™).
Note that (£,0) = 0,and (£, > andn) = > _ an(f, ¢n)-
n=1

n=1
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DEFINITION 7.3. A linear functional f on C§° (R™) is said to be con-
tinuous if the numerical sequence (f, ¢m) — 0 as m — oo, where {¢m(x)}
is a null sequence in C™ (R™), i.e., supp ¢m, m = 1,2, - -, is contained in a
sufficiently large ball, and mlgnoo moax | DX (x)| = O for every multi-index

k, |k] < n.

DEFINITION 7.4. A continuous linear functional f on C§° (R™) is said
to be a distribution. The number ( 5 ¢>> is called the value of f at ¢, or the
action of f on ¢.

The space D’ of all distributions on C§° (R™) is a linear space. A locally
integrable function f(x) in R™ generates an n—dimensional distribution f
such that for all ¢ € C§° (R™)

(£.0) = [ 10000 d

=/_o:o---/_o;f(m1,~-,xn)qs(.zl,--- \2y) day -+ dTn.

(7.1)
Hence, every locally integrable function f can be regarded as a distribu-
tion. Let f1(x) and f2(x) be two different continuous functions. Then each
generates a different distribution such that there exists a ¢ in C§° (R™) for
which (f1,¢) # (f2,8), i.e., (fi — fa,#) # 0. Two functions f; and f>

are said to be equal almost everywhere (a.e.) on a bounded domain  if
|fi — f2] dx = 0. Hence, two locally integrable functions that are equal
Q

a.e. generate the same distribution. A distribution of the form (7.1), where
f(x) is locally integrable, is said to be regular. All other distributions are
called singular, although formula (7.1) can be used formally for such distri-
butions.

EXAMPLE 7.1. The functional (xq,¢) = /¢(x) dx, Q@ ¢ R",
Q

where xq is the indicator function of the domain €, generates a linear,
piecewise continuous and regular distribution. Note that xo(z) = H(x)
. 1, z>0
in R!, where H(z) = 0

Q as the interval (0,00). =

is the Heaviside unit function with

7.1.1. Dirac distribution. Let x’ be a fixed point in R". Con-
sider the functional 6x defined by (6x/,¢) = ¢(x'), which assigns to
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each test function ¢ its value at x’. The functional 8,/ is linear and
continuous on C§° (R™), and hence a distribution with pole x’. We
shall show that & (denoted simply by §) is a singular distribution.
The proof is by contradiction: Assume that é is regular. Then there
exists a locally integrable function f(x) such that

o F(x)o(x)dx = ¢(0) for every ¢ € C*™ (R"). (7.2)

The functional ¢(0) is taken as the definition of the density §(x) which
is known as the Dirac delta function. Hence,

(6x,x),000) = [ sxxX)o)dx=0(x). (73

R™

In the classical sense the Dirac delta function is defined as

0, ifx#2z
8(z,z') & { ’ 7.4
(z,2) 0, ifz=1. (7.4)
This function is a generalized function defined by
H !
§(z,z') = 1 im sm(”(m—m)), (7.5)

T n—00 rx—x

which, in the limit, is zero at every point z # z’ and infinite at = = z’.
Thus, the Dirac delta function represents a point singularity at the
source point z’, i.e.,

— 00 asx —z

6(z,z’){ (7.6)

=10, otherwise.

This function is used in defining a concentrated impulsive force in solid
and fluid mechanics, a point mass in the theory of gravitational poten-
tial, a point charge in electronics, an impulsive force in acoustics and
other similar situations in physics and mechanics.

A consequence of (7.3) defines a basic property of this function as

[ffsevnar {20 X o

where x,x" € 2 C R?, and ¢ € C(). If ¢(x) = 1 in (7.7), we get

///Q 5(x, %) dV = { (1) ﬁ z Z g (7.8)
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///Qé(k(x,x'))dx = ///Q %5(x, x') dx. (7.9)

For (a,b) € R! the basic property (7.7) becomes

Also,

b
/ 8(z, z")p(z) dz = ¢('), (7.10)
a
where a,b can be —oo or +00 for unbounded intervals.

Note that 6(z,z’) has the units [L71], and é(¢,t') has the units
[T~1] if t, and t' denote time, where L denotes the unit of length
and T the unit of time. In general, §(z,2’) has the units such that

/ 8(z,z')dV = 1. Also, we often write §(z) for §(z,0), and é(x, t)
Q
for 6(x) é(t).

The Dirac delta function on a region {? is defined in terms of the
complete orthonormal set of eigenfunctions f, for the region €2, as

ba(x,x') an(x ) Fn (% (7.11)
where x and x’ are the field and the source point, respectively, in €.

EXAMPLE 7.2. Inview of Example 5.2, the spatial orthogonal eigen-
functions f,(z) for the one—dimensional problem u; = kuz,, —a < z <
a, subject to the initial and boundary conditions u(x,0) = F(z) for

—a < z < a, and u(-a,t) = 0 = u(a,t) for t > 0, are given by
1

nrT
% sin —— which in complex form are
a a

i eimrx/a. (712)

f":2a

Hence the Dirac delta function in the region —a < x < a for the steady
state (as t — oo) one~dimensional Laplace equation is represented by

1 Ye ol inw(z—x’)/a f
v e , or |r| < a,
6(z,z') —_{ 7 imoo =

(7.13)
0, for|z|> a.
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Fig. 7.1. Dirac delta function with 5,10, and 25 terms, respectively.

The graphs of the real part of this function for the basic interval
—a < z < a are shown in Fig. 7.1, using 5, 10, and 25 terms in (7.13),
with @ = 3, and ' = 0. They show that the peak becomes infinitely
higher and narrower as n increases. =

ExAMPLE 7.3. To determine the Fourier transform of the Dirac
delta function 6(x), consider the function

1
—, x| < &,

fn(z>={2n &

0, |z|>&.

Note that lirrb fx(z) = 6(z). Also, e79* f.(z) € Li(—o00, 00) for all real
K

a, which implies that F f(z) = F(c) is analytic in the entire a—plane
of the transform domain. Then

Fola) = / fol(z) e dz
/ iaz dr = 1 eiaa:o
\/ vV 2r '
by means of the mean-value theorem with —x < z¢ < k. Hence

1

23 Pl = T
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which implies that

Fb(zx) = and F{1} =V2ré(z). =

1
Vor

7.1.2. Heaviside function. The Heaviside function H(x) defines
o
the distribution in <H , qS) = / ¢(z) dz, and so, in the distributional
0
sense (7.1}, its derivative is defined by
H'(z) = é(z). (7.14)

Note that since H(z) is not differentiable at z = 0 in the classical sense,
the distributional definition (7.14) for H'(x) when formally integrated

gives
z 0, <0
H(z) = 6(x)dx =
@) /o (z) d {1, z > 0.

7.1.3. Harmonic functions. The functions whose Laplacian is
zero are known as harmonic functions.

LEMMA 1. The function

= \/(CE —20)2 + (y — %0)2 + (z — 20)2 (7.15)

s harmonic in a domain that does not contain the point xg =(zo, yo, 20)-

1 1
T

LEMMA 2. Let u(x) be in class C%(2), and let its first derivatives
be continuous up to the boundary S of the domain Q. Let xq be a fized
point in §, and X any other point in Q. Then

= [ (2 sk ] T

where v is defined in LEMMA 1, and n is the outward normal vector to
the surface S = 09Q.

PRrOOF. The proof will also establish a very basic technique in the

1 .. . L
case when r = 0, i.e., when x = x¢. Let v = =. Since this function is
r
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undefined when x = x¢, we cannot apply Green’s identity (A.7) to the
entire domain Q2. So we indent the point xg by a sphere 2. centered at
the point xo and with a small enough radius €. Let S, be the surface of

Q., and Q; = Q\Q.. Then both functions u and v = % are in the class
C?%(Q), and Green’s identity (A.7) is valid in Q. Thus, from (A.7)

S = ) G -5 ase

+ //S (%%_u%@> ds. (7.17)

Fig. 7.2.

Let € — 0. The surface integral over S in (7.17) is independent of
€. So we consider the second integral over S.. Since r = £ = const, and
the normal n is directed inward on the boundary S, (see Fig. 7.2), we

get
9(3)
on

1

r=¢e 62

_oQ/r)

Se or

?

which gives

//su?((;r/br) 7 udS = S xe) dre? (7.18)

= 4ru (x.) — 4d7u (xo) ase — 0,

where X, is a point on S, which satisfies the mean—value theorem for
the surface integral over S, in (7.17) and approaches x4 as € — 0. Since
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u € C%(Q), the first derivatives of u are bounded in & = QU S. Hence,
there exists a positive number K such that |0u/0n} < K. Then

1 .
\// —-@dS‘ // dS:£47r52:47rK5—+0 as e — 0.
s, Ton Js. €

Thus, as € — 0, we get

// _dV // <71"ZZ /T)> dS — Amu (xo),

which gives (7.16). m

NOTE. In a finite domain € in R?, with boundary T, the identities
analogous to (A.7) and (7.16) are

Ou
2, o2 ov _ ou
// uVy —vV?u) dA = / <u8n U8n> ds. (7.19)
and
_ 1 10u  8ln(l/r) 9
u<x0)_27r/r<l o TV, ) //ln =V udA,

(7.20)
where xXg = (29, y0), dA = dx dy, and s is an arc-length along the curve

1
I'. The proof follows by using the technique of Lemma 2 with v = In -
and indenting the point xg by a circle I';; then V2v = 0, and

Oln(1/r) _Oln(1/r
on r. or

r=¢

/ uMO— ds = l/ uds = lu(xE)Qﬂ's
r. on e Jr, €

— 2mu (x9) ase— 0.

Thus,

1
/lnl@dl Klnl/ ds:Klnl=27r€ln——>O ase — 0,
r, ro e Jr, € €

where

Ou 1 < K. The result follows as ¢ — 0. m
n

Some important properties of harmonic functions are defined by the
following theorems:
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THEOREM 7.1. Let the function u(x) € C? be harmonic in ). Then
/ / ugh dS > 0. (7.21)

In fact, if we let v = u in Green’s first identity (A.5), we get

/// [(Z:Z) (%) ( ) v = //u—dS (7.22)

Since the volume integral (left side) in (7.22) > 0, we get (7.21). =

THEOREM 7.2. The integral of the normal derivative of a harmonic
function over the boundary of the domain is zero, t.e.,

u-——— dS =0. (7.23)
J#3

The result follows by applying Green’s identity (A.7)tou=v=1.u=

THEOREM 7.3. The value of a harmonic function at an interior
point of a finite domain can be expressed in terms of its values and the
values of its normal derivative on the surface of the domain, i.e.,

u (x0) = // (igz 8(1:)) ds. (7.24)

This result is obtained by applying (7.16) to the harmonic function
U.m

NOTE that there are no second order derivatives in (7.21), (7.23),
or (7.24). Thus, to ensure that these three results are valid we must
assume that the harmonic function u € C?(S). Consider a domain
Q C Q. Then we apply (7.16) to 2, and by taking the limit process
) — Q we find that the above analysis need not assume that the second
derivatives of u are continuous up to the boundary S.
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THEOREM 7.4. A function u(x) harmonic in the domain Q has
derivatives of all orders inside 2.

PROOF. Consider an arbitrary point xo € Q and surround this
point by a domain Q' bounded by its surface S’ such that ' US’ C Q.
Since v is harmonic in €, so it is harmonic in @’ and u € C?(€’). Then

by (7.24)
- _1; // (%Z_Z _ u?_((;é_r)> ds. (7.25)

Since the point xy does not lie on S’, we find that

1 1
T V(@ —z0)2+ [y — )+ (z — 2)?

is continuous and has continuous derivatives of all orders at the point
Xo. Hence the right side of (7.25) can be differentiated any number of
times under the integral sign. =

THEOREM 7.5. The value of a harmonic function at the center of

a sphere s equal to the arithmetic mean of its value on the surface of
this sphere.

PRrROOF. Let u(x9) be harmonic inside the sphere |x — x| = R.

Then by (7.24)
u(x0) = — //S G% - ua((;T/LT)> ds. (7.26)

.o a(1/r) 1
Now, since wlsn = or ler = B2 get from (7.26)
u(xo) = L // ds = ! w/mr R,6 infdéd
0) = Snu _47rR2/0 A u(R, 8, ¢) sin ..

(7.27)

THEOREM 7.6 (MAXIMUM PRINCIPLE). A non-constant function
which is harmonic inside a bounded domain Q with boundary S and
continuous in the closed domain Q = QU S attains its mazimum and
minimum values only on the boundary of the domain.
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PROOF. Assume that u(x) attains its maximum value at an interior
point xo € 2. Draw a sphere S, : |x — Xo| = p such that S, C Q. Then
by Theorem 7.5,

u(xp) = // < 471_ — //s upds = up®, (7.28)

p
where equality holds only if u = u (x¢) = const on S,. Since u(x) at-
tains its maximum value in Q, we must have u(xo) < u,;'**, which means
that we must have the equality sign in (7.28). Thus, u (x) becomes con-
stant both inside and on the boundary of the sphere S,. We shall now
show that u(x) is constant throughout Q: Let X be any other interior
point of Q. Then we show that u (X) = u (x¢). Join the points xp and X
by a line L which may be a polygonal (broken) line inside €, and let d
be the shortest distance between L and S. Then by (7.28), u (x) has the
constant value u (xo) in the sphere Sy : |x — xo| = d?/4, where d is the
diameter of the sphere. Suppose that x; is the last point at the inter-
section of this sphere and the line L. Then we have u (x1) = u (Xo), and
thus, we have u (x) = u (xo) on the sphere S : |x — x| = d?/4. Again,
suppose that x; is the last point at the intersection of the sphere S;
and the line L. Then, u(x) = u (xo) on the sphere S : |x — xa| = d?/4.
Continuing this process of constructing spheres the entire line L can
be covered by a finite number of these spheres, and the point X will lie
inside one of these spheres, and therefore, u (X) = u (x0). An analogous
argument can show that a harmonic function cannot attain its mini-
mum value inside . Hence, the function u (x) attains its maximum
and minimum values in a closed bounded domain €, and in particular,
it attains them on the boundary of 2, since a harmonic function cannot
attain them inside (2. m

COROLLARY 1. Ifu and U are continuous in QU S, and harmonic
in Q such that u < U on S, then u < U also at all points inside Q.

In fact, the function U — u is continuous in §2, and harmonic in
Q; hence U —u > 0 on S. Then, in view of the maximum principle
(Theorem 7.6), we must have U — u > 0 at all points inside Q. =

COROLLARY 2. Ifu and U are continuous in QU S and harmonic
in Q for which |ul < U on S, then |u| < U also at all points inside Q.

In fact, the three harmonic functions —U, u, and U satisfy the re-
lation —U < u < U on S. If we apply Corollary 1 twice, we find that
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—U <4 < U at all points inside Q, or |u| < U inside . m

7.1.4. The concept of a Green’s function. Consider the heat
conduction problem in a region @ C R? with the boundary surface
S = UL S;, defined by

1 1
V2U(X, t) + %f(x1t) = _au_(a):'—t‘}', for t > 0,
‘ ¢ (7.29a)
o
kia—z+hiu=g(x,t) on S;, t >0,
: (7.29b)
u(x,0) = F(x), (7.29¢)

0 .. .
where o denotes the derivative with respect to the outward normal

n to the tz)oundary surface S;, the coefficients k; and h; are constant,
and the function g(x,t) is the prescribed mixed boundary condition on
each S;. Note that with k; = 0 the boundary condition reduces to the
Dirichlet type, and with h; = 0 to the Neumann type. In order to solve
problem (7.29) we consider the auxiliary problem

k
8G (7.30)

k‘l—‘}'th:O onSi,t>0,
8n,-

1
V2G(x, ;%' t') + —6(x,x') 6(t, 1) = %aa—f inQ,t>0,

such that
G(x, t;x,t")=0 ¢t <t, (7.31)

where §(x,x") = 6(z,2") 6(y,y’) §(2,2') is the Dirac delta function in
R? for the space coordinates x = (z,y,2) and x' = (z/,3/,7’), and
6(t,t') is the Dirac delta function for the time coordinate ¢ > t. Note
that the function G(x,t;x’,t'), known as Green’s function for problem
(7.29), satisfies the auxiliary problem (7.30) with homogeneous bound-
ary conditions and zero initial condition (7.31), and has an impulsive
heat source at the space-time source point (x’,#').

DEFINITION 7.5. Green’s function G(x,t;x/,t') in R3, which is a
solution of problem (7.30)—(7.31), represents the temperature distribu-
tion in the region 2 which initially at zero temperature is subjected to
the homogeneous boundary conditions due to an impulsive heat source
of unit strength situated at the space-time point (x’,t').
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The notation G(x,t;x’,t') is composed of two parts in its argument.
The first part x,t denotes the field point where the effect of the impul-
sive heat source located at the source point signifies the temperature at
the point x at time ¢. The second part x’, ¢’ denotes the cause which is
the impulsive heat source situated at the point x’ generating an instan-
taneous (impulsive) heat at an earlier time t’. The combined notation
has the physical significance of an entire space-time process which can
be visualized as G (effect; cause) = G(x,t;x’,t').

DEFINITION 7.6. The reciprocity relation for Green’s function G(x, t;
x',t') which satisfies the auxiliary problem (7.30)—(7.31) is defined by
G(x, t;x',t') = G(x', —t'; x, —t). (7.32)

The physical significance of this relation is that the effect at x,t due
to a cause at x',t for t < t is the same as the effect at x’, —t' due to
a cause at x, —1.

Green’s function G(x, t; x’,t') is singular at the source point x’ € €,
such that
LG(x,t;x',t') = §(x,x'), (7.33)

where L is a differential operator.

7.2. Parabolic Equations

Before we determine Green’s functions for parabolic equations, we will
solve problem (7.29). In view of the reciprocity relation (7.32), Eq
(7.30) is written for the function G(x’, —t';x, —t) as

1 10G
2 _ .
VOG + E&(X, X,) 6(t, t/) = _;W mn Q, (734)
62
where V32 denotes the Laplacian in the variable x/, i.e., Vg = 3072 +
x
02 82
——5 + =3, and the minus sign on the right side results because ¢ has
oy’ oz

been replaced by —t’. Similarly, if we replace x by x’ and t by t’ in
(7.29a), we get

1 9u(x/, )

1
Viu+ E f( ) = R

in Q. (7.35)
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Then, if we multiply (7.34) by u and (7.35) by G, subtract, and inte-
grate the resulting equation with respect to x’ over the region Q and
with respect to ¢’ from 0 to ¢ = t + &, where € > 0 is arbitrarily small,
we find that

/0 " 4 / / (GV2u - uV3G) d9+% / ° / / / (¢, )G

——6(x x) (¢, t) // [Gu]\_,d. (7.36)

In view of Green’s identity (A.7), the first volume integral is changed
to the surface integral; thus,

//Q(Gvgu—uv2 G) d = Z// <F§%—uZTG)ds

Also, in view of the property (7.7) of the Dirac delta distribution, the
second term in the second volume integral in (7.36) is

/Oto dt’ //A ub(x', %) 8(t', to) dQ = u(x, to);

and the integrand on the right side of (7.36) in the limit as ¢ — 0
becomes

F / —— !
po T =-G| _ F(x),

[Gu] ;?z() = G‘ ‘ u(to) —

t'=tg

since G

e = G(x,t;x',tg) = G(x,t;x',t +€) = 0 for t < to because
=to

the time for the effect precedes the time for the cause (impulse). Hence,
Eq (7.36) gives

u(x,t)=/// al_, F(x’)dQ+2/t dt’ // G f(x,t') dO
+a/ dt’Z// (F‘ 5 gf) ds;, (7.37)

where G ‘:'—0 = G(x,t;x’,0). If we multiply the boundary condition
(7.29b) by G and (7.30) by u and subtract, we get

Ou G 1
G on " Usm = % Gl 9000, (7.38)
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where G}s = G(x,t;x;,t') denotes Green’s function evaluated on the

boundary surfaces Si, 1 = 1,2,--+,n. After substituting (7.38) into
(7.37), we obtain the solution of the problem (7.29) in terms of Green’s
function G(x,t;x’,t') as

u(x,t) =///Q G(x,t;x',0) F(x') dQ
+%/0t dt’ // [ Gx,t, %5 t') F(x, ) dOY

t n
+a / 'y - / / Glx, 6%, ) f(x', ) dSi.  (7.39)
0 ok s,

Now we will derive Green’s functions for some parabolic equations.
Without loss of generality, we will translate the source point to the
origin, i.e., we will take x = 0 and t’ = 0, and denote G(x,t;0,0) by
G(x,t). The results so obtained can then be translated again to the
source point at (x’,t') by replacing x by x—x’ and ¢ by t—¢'. This will,
however, yield G(x — x';t —t') which in our notation is G(x, t; x', ).

EXAMPLE 7.4. Green’s function G(z,t;z’,t) for the homogeneous
diffusion operator in R! satisfies the equation

oG 62G

S~ g = 8@ =28t~ 1), (7.40)

Assuming that G = 0 for t < t/, we apply the Laplace transform to Eq
(4.40) and get

sG — d2(’ e §(z — z').

@ ar?

The solution of this equation under the condition that G — 0 as z —
Foo is
—st’ 1
eV =z -7,

— €
G(z,z';s,t) =
(L‘x787 ) 2 \/ﬁ

which on inversion gives

G(z,z';t,t) = _HM elz=2)?/4a(t—t")
2y/ma(t — t')
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EXAMPLE 7.5. For the diffusion operator in R", Green’s function
G(x,t) satisfies the equation

0G(x,t)

e aV2G(x,t) = 8(x,t) = 6(x) 6(t). (7.41)

We apply the Fourier transform F, to both sides of Eq (7.41). Then,

Fa (%g) — aFo[V?G] = F,[8(z, ).
Since
Fulo(e, 0] = F215(@) - 66)] = Flel(e) - 8() = i -0),

where 1 is the identity function, and

- [0G 7]

F:[V2G] = Fu[V?G] = —|af* £[G],
Eq (7.41) is transformed into

0 2 _ 1(a)
a—tsz(Ol,t) + a|Cl| sz(a,t) = _(27-(')71/2 . (5(t),
which has the solution
o HE) e
fo(\a, t) = W e .

If we apply the inverse Fourier transform .1, we obtain

G(x,t) = F; ' [G(a,t)]
_HO) [ alafe-iten gy H(t) /40t (7.42)

@ Jan = (dmat)n/?
which, on translating to the source point (x’,t'), yields

H(t -t ne ,
Y A —lx—x'{*/4a(t—t")
G(x,t;x',t') = Tralt —0)"72 t’)]"/2€ . (7.43)
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The graphs for G(x,t) for 0 < #; < t3 < t3 are shown in Fig. 7.3.

Fig. 7.3. Graphs of G(x,t) in R

EXAMPLE 7.6. We will solve the Cauchy problem in R!, i.e., solve
the initial value problem
U = QUgy, (7.44a)

u(z,0) = f(z), —-co<z <00, t>0, (7.44b)

where f(z) is a bounded and continuous function on the r—axis. Eq
(7.44a) is also known as the transient Fourier equation in R!. We shall
prove that the function

1 o0 2
1) = ——— —(y=2)"/dat g, 7.45
u(@,t) = = /_oof(y)e y (7.45)

which belongs to the class C* with respect to z and ¢ for t > 0, satisfies
Eq (7.44a) such that tli%1+ u(z,t) = f(z), —o0o<z < 00.

METHOD 1: We use the method of separation of variables in the
form u(z,t) = X (z)T(t). Then we find that T'(¢) = e**"* and X (z) =
Acos A\z+ B sin Az, where A, A, B are arbitrary. If we assume A = A(})),
B = B(A), then

ux(z,t) = [A(A) cos Az + B(\) sin )\a:]e““)‘nt

is a solution of Eq (7.44a). Moreover,

/ ux(z,t) dA,

— 00
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with proper choice of A()) and B(}), is also a solution of Eq (7.44a).
Now, in view of the initial condition (7.44b)

f(z) = /_°° ux(z,0)d\ = /jo [A(X) cos Az + B(A) sin Az]dX. (7.46)

The function f(z), being continuous and bounded, has the Fourier
integral representation

1

flz)y= - /_oo dX /_0; f(y)cos A(y — z) dy. (7.47)

Comparing (7.46) and (7.47), we find that
L [~ L [ ¢ sinyd
AN =g [ seosivdy, BOY =5 [ s sinway
Thus,

u(z,t) = /oo ux(z,t) dA

—00

_1 /oo dA /00 f(y)cos Ay — x) et dy
2m J-oo —oo

1 o o . —ar%t
:Er-/_oof(y)dy/oo(,os)\(y—x)e dX

1 * (y—z)?
—00

METHOD 2: We apply a Fourier transform in space (with o as the
transform variable) and a Laplace transform in time (with s as the
transform variable). Then Eq (7.44a) with the initial condition (7.44b)
is transformed into

(s + aa?)a(a, s) — f(a) =0, (7.48)
where @ = Flu), and f = F[f]. Since i(a,s) = si((;())z?’

@, ) has a simple pole at s = —ac?. Hence, by applying the inverse
Fourier and Laplace transforms, we get the solution of the Cauchy
problem (7.44) as

the function

00 u+iR  f .
u(z,t) = —1—/ I lim [—-1—/ —La)ges” ds] e " da.
V2 J—oo lR—»oo 2mi Jy—ip S tac
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A direct inversion of the Laplace transform yields
e, t) = " f(a),

which, after the inversion of the Fourier transform, gives
1 & :
u(z,t) = 2—/ (o, t)e™ " do

T J -0
_ 1 oo }2-'( ) —(iaz+aa’t) d
= o - a)e O,

If we identify g(a) = e‘“"‘zt, then for the convolution of the product
f(a)g(a), we have

\/%—ﬂ_ /_Oo f(a)g(a)e_mx da = \/% /—00 F@Wg(z —y)dy. (7.49)

Since f (a) is identified with the Fourier component of the Cauchy data
f(z) in (7.44b), we find that f(y) in (7.49) corresponds to the initial

condition and 1

vdmat

and hence by the convolution theorem we get the solution of the Cauchy
problem from (7.49).

gl —y) = e~ (=) /dat,

If f(z) = é(x) in (7.44b), then the solution of the Cauchy problem
(7.44) is given by

1 2
u(z,t) = ———e /% t50.m
(z,t) Tiat ,

EXAMPLE 7.7. (Schrodinger equation) If we consider the non-homo-
geneous case, then the Fourier heat equation

10

(ZE _ V2> u(z,t) = f(x,t) (7.50)

has two interpretations:
(i) If @ > 0 is a real constant depending on specific heat and thermal

conductivity of the medium, then u(z,t) determines the temperature
distribution. The function f(z,t) on the right side describes local heat
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production minus absorption.
(i) The function u(z,t) defines a particle density and a is the diffusion

ih
coefficient. If a is purely imaginary such that a = 2 where m is the

mass of the quantum particle, and i = 1.054 x 10~%7 erg-sec is Planck’s
constant, then Eq (7.50) defines the Schrédinger equation

L Ou(z,t) A,
—_—+ — t) = . 7.51
et 1 e, t) = (a1 (7.51)
In view of (7.42) we have a = %/2im, and Green’s function for Eq (7.50)
in R! is given by

1+ m sima? 2kt -

G(z,t) = H(t) 5 7 €

(7.52)

7.3. Elliptic Equations

We will consider the Laplace and the Helmholtz operators and derive
Green’s functions for them.

EXAMPLE 7.8. Assuming that the source point G(x’) is at the ori-
gin, Green’s function G(x) = G(x,0) for the Laplacian V2 in R" sat-
isfies the equation R

V2G(x) = §(x). (7.53)

Then, in view of the property (7.11),

/ /S V3G(x)dS = / /S 5(x)dS = 1. (7.54)

We shall first consider the case n = 3. Since the operator V? is invari-
ant under a rotation of coordinate axes, we shall seek a solution that
depends only on r = |z|. For r > 0, G(r) will satisfy the homogeneous
equation V2G = 0, i.e., in spherical coordinates

L2 (42 <
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A
which has a solution G(r) = —+ B. If we require the potential to vanish

at infinity, then B = 0, and G(r) = A/r. In order to determine A, we
take into account the magnitude of the source at z = 0. Integrating
(7.53) over a small sphere S; of radius € and center at x = 0, we obtain

// V3Gdz =1,
S::

which, by using (A.4), gives

/.5
8S. 87“

where 88, is the surface of the sphere S¢. Physically, Eq (7.55) ex-
presses the conservation of charge, i.e., the flux of the electric field
through the closed surface 8S. (of area 4me?) is equal to the charge in
the interior of S.. Now, substituting G = A/r in (7.55), we find that
A = 1/(4r), and hence Green’s function for the three-dimensional
Laplace equation is

ds =1, (7.55)

r=&

1 1
=T x| (7.56)

For n = 2, we have

10/ 0G
;5(7‘.—87):0, T=|X|:\/m2+y2,

which has a solution G(r) = C'lnr+ D. We set D = 0 to ensure a zero
value at infinity, and use a result similar to (7.55) for the flux of an
electric charge through the boundary 8C: (of length 27¢) of a circle of
radius . Then C = —1/2x, and

il t

1
Tty T o T —x

G(x,x') = (7.57)

In general, Green'’s function for the free-space Laplacian in R™ is given
by

1
(n—2)S,(1)r"=2’

where S,,(1) = 27"/2/T'(n/2) is the surface area of a sphere of radius
unity, and r = |x —x’|. Note that the notation for this Green’s function
is not standard; it is sometimes defined with a minus sign, or without
the factor 1/27. =

G(x,x') = n>2, (7.58)
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EXAMPLE 7.9. (Method of images) The problem of finding Green’s
function G(x,x’) = G(z,y;z’,y’) inside some region Q bounded by a
closed curve I' with the homogeneous boundary condition G = 0 on
I' amounts to that of finding the electrostatic potential due to a point
charge at the point (z/,y’) inside a grounded conductor in the shape
of the boundary I'. Consider, for example, the region 2 as the half-
plane y > 0. Then Green’s function is given by the point charge of
strength 1/27 at (z',y’) together with an equal but opposite charge
(of strength —1/27) at the point (z’, —y’) which is the image of the
point (z’,4') in the z—axis (Fig. 7.4). Thus, Green’s function for the
half-plane such that G = 0 on the r—axis and G — 0 as r — o0, where
r=|x—x'|=+/(z—2')?+ (y—y)?, is given by

(z—2)P+@y-vy)*
(x-2) 4+ (y+v)*

1
szl y)=—1 7.59
Glz,y;7',y) = o= In (7.59)

12r 12r
o o
(x,¥) (x\¥)
7 X
-12n -1/2n
(=3 =]
(-x', -y') ) -y
Fig. 7.4.

Since the algebraic sum of the charges over the entire (z,y)-plane
is zero, the condition G — 0 as r — o0 becomes possible because any
nonzero residual charge will make Green’s function behave like Inr.
This means that we cannot determine a Green’s function for the half-
plane y > 0 subject to the conditions G = 0 on the z-axis and G — 0
as r — 00, because in this case that charge at each (z’,¢’) and (z’, —y')
are of the same sign and their algebraic sum is not zero. However, we
can determine Green’s function for the quarter-plane z > 0, y > 0,
subject to the conditions G =0 ony =0 and Gy, =0on z = 0. As
seen in Fig. 7.4, we have the charge of strength 1/27 at each (z’,y’)
and (—z',%’), and the charge of strength —1/27 at each (z’, —y') and
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(=2',y’). Thus, Green’s function in this case is

oy L lE=2)?+ -y + ) + (g —y)”
G(x,y,x Y ) =i 1 [(a: — z/)2 + (y+y’)2][(x+a:’)2 + (y +y/()72]60)

ExAMPLE 7.10. Green’s function for the Helmholtz equation in R™
satisfies

(V2+w)G(r)=6(r), or (V*—-h*)G(r)=6(r), r=[x~-x]
(7.61)
where h* = —pu, and /& is defined such that it has a nonnegative
imaginary part, i.e., \/ = a+i8, with 8 > 0, and 8 = 0 iff p € [0, o0).
We will therefore take h = —i /i, so that h is real positive when u is
real negative. We will assume that Green’s function G(r) is spherically
symmetric. Then for x # 0, the function G(r) must satisfy in spherical

coordinates p i
(122 n—lg = Q. 7.62
dr (T dr ) FurtG (7.62)
If we substitute G = wr!=("/2) then Eq (7.62) can be reduced to an

equation of the Bessel type of order (n/2) — 1 with parameter p, ie.,

£(%)-20-3) oo

whose general solution can be written in terms of the Hankel functions
as

w(r) = CLH{y )y ((VAT) + CoH (D) (VET), n>2.  (7.63)

If p ¢ [0,00), then (/i has positive imaginary part and the Hankel
function H ((j)/z)q(\/l—‘ r) becomes exponentially large as r — oo, but
H ((711)/2)_1(\/_ i,7) is exponentially small. Since G vanishes at r = co, we

must have Cy = 0, and then from (7.63) we get

—
G =C1H() (Var). (7.64)
As in Example 7.8, we apply (A.3) to (7.61) and obtain

oG
Srds=1,

Se
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or
oG
i n—l ——
}m})r Sr(1) 5 1, (7.65)

where S, (1) is the surface area of a sphere of unit radius. For small r,
we have the asymptotic expansion

i2n(n — 1)!
e

HP(r) ~ -

Thus, substituting (7.64) into (7.65) and using (7.65) we find that

YT T (n/2) —1]1S, (1) 4

ey
2r )

Hence, for n > 2 and p ¢ [0, 00), the required Green’s function is given
by

i/l (/21
Glr, ) = Z(%) HY, (VAT), n22 (7.66)

or, writing h? = —p, i.e., h = —i\/@i, or \/fi = ih, we have

, 2
Hi)ay(VET) = H{)y_y (ihr) = /-1 (A),

where K, /2)_1 are the modified Bessel functions, thereby yielding

Glr,~h?) = h )("/2"1

= o K(n/2)-1(hr), n > 2, (7.67)

2nr

which holds whenever —h? ¢ [0,0), i.e., for all A with Rh > 0. For
n = 2, Green’s functions (7.66) and (7.67) become

1 1
G(r.p) = 7Hy (VET) = 5= Ko(hr). (7.68)
1,2,1/2 e
For n = 3, by using Hf}é(‘z) = g(;)l/zﬁi, we get

G(r, p) = - (7.69)
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(d)

Fig. 7.5. Green’s functions of the Helmholtz operator, with p = 1.2:
(a), (b): Real and imaginary parts of one-dimensional solution;
(), (d): Real and imaginary parts of two—dimensional solution.
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The one-dimensional Green’s function is found directly, and it is
ietvilzl  g—h|z|

Clon) = = ==

(7.70)

Note that if the Helmholtz equation is taken as (V2 + k?)u = 0,
where the wave number £ > 0 is real, then Green’s function in R? is
given by

i 77(2) ; 2
—-1H, , R#,
Glr by = { &0 VR, n (7.71)
'64? in R3.

It is obvious from Fig. 7.5 that the real and the imaginary parts of
Green’s functions of the Helmholtz equation in one— and two—dimensional
cases exhibit wave structure. =

I
7.4. Hyperbolic Equations

82
We shall denote Green’s function for the wave operator 0, = — —c2V?2

at?
in R" by Gp(x,t). It satisfies the equation
O Gr(x,t) = 8(x, 1), (7.72)

where x € R" and t € (0,t) C R*. We will use the Laplace transform
method and derive Green’s functions for n = 1,2 and 3.

EXAMPLE 7.11. In R!, Green’s function Gi{z,x';t,t') satisfies the
equation
°G, ,0°¢4

C =
ot? 0z?
Taking the Laplace transform with zero initial data, we get

8(x —z")6(t —t').

= d’G oy
$2G1 — A==t = e §(z — ).
dz? ‘
Assuming that G is finite at 2 = +00, the solution of the above equa-
tion is

e—st
2cs

7
e—s|a}—x |/c,

Gi(z,s;2',t') =
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which on inversion gives

1
— — forc(t—t)>|z—2x
Gi(z,t;2',t) = { 2% o )> |z =2

0 fore(t—t) <|z—2a| (7.73)

= o H(c(t—t) ~ [z~ /). =

EXAMPLE 7.12. In R?, Green’s function G satisfies the equation

Gy 2 (32G2 G,

at? o2 oy ) =6(z —z")6(y — y)b(t — t').

Applying the Laplace transform we get

- 26 a:Z_G‘ o
R e e L e )

or using the axial symmetry with r2 = (z — 2')? + (y — ¥)?,

8, | 105,

= <W ¥ ) =e™*"6(z - ')8(y — ¥')-

The solution of this equation is

_ e—st’ c
Ga(r, s;t') = — o Ko (;T> ;

where Ky is the modified Bessel function of the third kind and zero
order. Since

_ H(t—«a)
LY Ko(as)} = \/t(Q—_—Ot2

(see Erdelyi et al., 1954, or Abramowitz and Stegun, 1965), on inversion
we get

— —1 for r <c(t—1t)
G(r,t;t') = e/t — t')2 — r2
0 forr>e(t—t) (7.74)
Hc(t—t')—r7)

2mer/c2(t — t')2 — r2
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EXAMPLE 7.13. In R?® Green’s function G3 satisfies the equation

a2G3_c2(a2G3 %G 8203)

ot2 9x2 2 | 822

=6b(z—a")6(y — y)6(z — 2')6(t — t').
Applying the Laplace transform we get
— 0?G3  0°Gs %G
2 2 3 3 3
Gaq —
Tl ( 92 T oy T oy >

= e *"6(e - 2)6(z — )8y — v),

or using the axial symmetry with r? = (z — 2")? + (y — ¢')% + (z — )2,

— d?G; 193G :
$*Gs — c? (}Tzs + ?'a_:) =" §(z —2')6(y — y')6(z - 2),

which has the solution (neglecting the other solution e5™/¢ since G5 — 0
as r — 00)

—st’ e—sr/c

— e
Gs(r,s;t') = — , r=|x—-x']

4drr

On inversion this gives
! 1 / T
Ga(r,t;t')y = —6 (t—t - —) )
4mr c
or
G3(x, Y, 2, t; wla y/’ Z,7t,)

8 (t —t - %\/(:r -2+ (y-y)2+(z— z’)z)

4rr

.m (7.75)

The graphs of Green’s functions G, G3, and G5 are presented in Figs.
7.6, 7.7, and 7.8.

|
|
|
172¢ ————— ! 8
|
1
I
|
|
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In the above solutions (7.73)—(7.75), we find that the impulsive point
source at X’ at time t’ affects the position of the field point x at time
tif |x — x'| = |t — t|, i.e., when the distance from the source to the
field (or observation) point is ¢ times the time. The source generates
a wave propagating in all directions with velocity ¢. After a duration
of time |t — t/| the effect of the source is located at a distance c|t —t/|
away. The wave structure, and the non-occurrence of diffusion in wave
propagation, which is known as Huygens’ principle, in the three cases,
represented by Green’s functions (7.73)—(7.75) is as follows:

undisturbed

x=ct

-ct o / Xo 7
- =ct~
£ S
X2

Figs. 7.9. Wave propagation in R!.

In R!, the solution (7.73) shows that the wave that originates in-
stantaneously at a point source §(x,t) at time ¢t > 0 will cover the
interval —ct < z < ct, where there exist two edges defined by z = *ct
that move forward with velocity ¢. This wave is observed behind the
front edge and has amplitude 1/2¢. Hence, wave diffusion occurs in
this case. A three—dimensional representation of Green’s function in
R! is shown in Fig. 7.9. It can be viewed as that of a wave starting
at the point source and propagating as a plane wave |z| < ct whose
front edgelx| = ct moves with the velocity ¢ perpendicular to the plane
z = 0. There does not exist a rear edge of the wave in this case.

In R?, Green’s function defined by (7.74) shows that the disturbance
originates instantaneously at the point source §(z,t), and at time ¢ > 0
it occupies the entire circle |z] < ct (see Fig. 7.10). The wavefront at
|x| = ct propagates throughout the plane with velocity c¢. But wave
propagation exists behind the front edge at all subsequent times, and
the wave has no rear edge. The wave diffusion occurs in this case, and
Huygens’ principle does not apply.
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X
’ undisturbed
AN 4«“” ﬁ7777>> b
p &\ ! )}
AN s
£ 2
iy 2
— %\fx 1
” I
2 ;
< N

Fig. 7.10. Wave propagation in R2.

In R3, Green’s function (7.75) implies that the disturbance that
originates at a point source é(z,t) at time t > 0 occupies a spherical
surface of radius ¢t and center at the origin. The wave propagates as a
spherical wave with wavefront at |z| = ¢t and velocity ¢, and after the
wave has passed there will be no disturbance (see Fig. 7.11). Huygens’
principle is applied in this case. The amplitude of the wave decays like
r~! as the radius increases.

There is a significant difference between the two— and three-dimen-
sional cases. If a stone is dropped in a calm shallow pond, the leading
water wave spreads out in a circular form with its radius increasing
uniformly with time, but the water contained by this wave continues
to move after its passage. This is because of the Heaviside function in
the solution (7.74) which leaves a wake behind it. On the other hand,
in the three—dimensional case if a shot fired suddenly at time £ = ¢’ in
still air is heard only on expanding spherical surfaces with center at the
firing gun and radius c|t — t'|, where ¢ is the sound velocity. But the air
does not continue to reverberate after the passage of this wave. This
is because of the presence of the Dirac delta function in the solution
(7.75), which represents a sharp bang and no tail effect.

Huygens’ principle accounts for the simplicity of communications in
our three-dimensional world. If it were two dimensional, the commu-
nications would have been impossible since utterances could be hardly
distinguished from one another.
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X3

undisturbed
undistyrbed

» X1

’

Figs. 7.11. Wave propagation in R3.

7.5. Applications

An important application of Green’s functions for a differential operator
L with homogeneous boundary conditions is in finding the solution of
nonhomogeneous boundary value problems. Since a Green’s function
G(x,x';t,t'), or G(x,x’) in steady state problems, is required to satisfy
the equation

LIG] = 6(x —x") 6(t — t'), (7.76)

together with certain prescribed homogeneous boundary conditions, we
can use the linear superposition principle to determine the solution of
the nonhomogeneous equation

Liu(x,t)] = F(x,t), (7.77)

which satisfies the same boundary conditions. The solution in a region
Q C R"™ is given by

u(x,t)=/QG'(x,x’;t,t’)F(x,t)dx’. (7.78)

We will consider only two—dimensional boundary value problems.

Consider the nonhomogeneous equation

V2u(z,y) = F(z,y) in Q C R?, (7.79)
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which is subject to certain nonhomogeneous boundary conditions on
the boundary I of the region . Then, in view of (7.19) where we take
v = G, we have

Y AN R A oG 8_'(1,
u(x,y)-/QG<x,y,x,y>F<x,y>ds+/( 0 %) us
(7.80)

ou
The boundary conditions on both u and — are, in general, not pre-

scribed at all points of T, but those on G are prescribed precisely, i.e.,
the boundary conditions on G are such that they annul whichever val-

Ju
ues of u or o e unknown. For example, let u be known (but not

u
%) on a portion I'; of I'; then, if u = 0 is prescribed on I';, we must

have G = 0 on I';, because only then will the integrals in (7.80) vanish.
We will consider the following three types of boundary conditions:
(a) (Dirichlet) u is prescribed on T’

(b) (Neumann) Z—Z is prescribed on I';

du
(¢) (Mixed) u is prescribed on I'; and a—u is prescribed on ', where
n
r,ur,=r.
In each case Green’s function G must satisfy the same homogeneous
boundary condition as that satisfied by wu.

In the case when F(z,y) = 0, Eq (7.80) with the Dirichlet boundary
condition (a) becomes

u(z’,y’ =/Pu—8% ds, (7.81)

where G = 0 on I". But if % is prescribed on I' (Neumann condition
(b)), Eq (7.80) becomes

5
/ G2 ds, (7.82)
where @ =Q0onT.
on

EXAMPLE 7.14. Let © be the half-plane y > 0. Then Green’s
function associated with the Dirichlet boundary condition u© = 0 on the
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boundary y = 0 is given by (7.59). Hence, for u(z,0) = f(z) we find
from (7.81) that

., n &=+ -y)?
U(IL’ Y ) = / f( ) (l‘ /)2 (y+y’)2]y=odx

/ flz —z)?2 4+ y’2 de
_v f(ﬂ) .
“n /_oo TEFIEERT A

EXAMPLE 7.15. Let I' be the circle r = a, and let u(a,6) = f(G)

In this case Green’s function is given in Exercise 7.15. Since — =

on 5
on the circle ', we find from (7.81) that
1 2 0 a2[r? — 2rr' cos(6 — 0') + %)
gy =— — 11 adf
u(r’, ) dr 0 16) or [ T cos(f — 0') + a*lr=a
1 —2r' cos(6 — ¢')
= [ 0[5 s
T —2rr'cos(6 —0") +r

2rr'? — 2421’ cos(8 — 8')
212 — 2rr'a2 cos(f — ') + a4

_ (12 12 /21r f(9)
2r  Jo  a2[r? —2rr' cos(6 — 6') + r'*

]r_ adé

EXAMPLE 7.16. To find the harmonic function ¢ in the quarter—
plane z > 0, y > 0, subject to the boundary conditions

#(2,0)= f(z), 0<z<oo, and 30(0,3)=g(r), 0<y<oo,

note that in view of (7.80), the solution is given by

oG 0
¢(zay)_/< an ga_i> dS,

where G is defined by Eq (7.60) (Example 7.8), and I is boundary of
the quarter—plane {z > 0,y > 0}. Then

o)== [T r@ (5] ao+ [ (6], sy

/ L + ! ]dx
= — T

7 Jo (z—z)+y?  (z+2)2+y?
00ln E’ﬂ + (y—vy')?

dy.
27r B 9(y) dy
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Note that the signs in the two integrals above result from the fact that
0

= _a_y and = B for the quarter-region. =

7.6. Exercises

7.1. Find a harmonic function ¢ in the semicircular domain r < a,
0 < 6 < m, such that ¢(r,0) =0, ¢(r,7) = k = ¢(a,0), where k is a
constant.

¢(r,0) = A0 + B + E ( ) [cn sinnf + d,, cosnb] is the

n=1
general solution of the Laplace equation in polar cylindrical coordi-

0% 1 3¢> 1 8%
nates Or? s ror + r2 002"
are satisfied if we take

Y R— r\" .
o(r,8) = P + ;cn 1(5) sin nf.

The boundary conditions on § =0, 7

From the last boundary condition on 7 = a we get
kO
k=—+ Cn, Sinné,
™
n=1

which gives

T
cnzgﬁ/ (1—g> siLnn0d9=~2—k.
T Jo ™ nm

Thus, the required harmonic function is

o n . 0
6(r,6) zg"'g:‘Zl(g) smnn .

Note that this solution represents the stream function for the two—
dimensional flow of a jet liquid from a Borda mouthpiece (Mackie,
1989).
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7.2. Show that Green’s function (7.42) satisfies the condition (7.41).
ANs. The function G(z,t) is locally integrable in R"+! and

/ G(x7t)dx:ETa1t)—n/2/ e"|13|2/4atdx
A Y R
=] —= ~% da; = 1.
g N /w e day

Ift >0, then G € C*. Thus,

oG lz? n
e (m ") @

__Ti (7.84)
ox; 2at G,

*G (= 1 G
8r;2 ~ \4a2t2 2at

oG 2 |av|2 n |x| n _
ot ‘NG—(4at2“2t C-\@e5)¢=0

Let ¢ € D(R™*!). Then, using (7.84), we have

¢>

(7.83)

<% aV?G,¢) = ~(G, 5= +aV’¢)

/ /n (x,t) <—+av2¢) dz dt

= —lim G(x,t) ( + aV2¢> dx dt
e—0 Rn

= lim [./ G(x,&)¢(z,€) dz+

HO/ /( 20) qﬁdmdt}

= lim G(x,e)¢(z,€) dz+
Rn

e—0
+ hm / G(x,e)[¢(x,€) — ¢(z,0)] dz

=lim [ G(x,e)(z,0)ds,
¢=0 JRn
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which, in view of (7.83), gives

[ G0l ) - o0z, 0)) do

< Ke/ G(z,e)dz = Ke.
RTL

We will now show that G(x,t), defined by (7.42), converges to 6(x)
ast — 0+ in D/(R™). Let ¢(x) € D. Since

G(x, — d R ~|z|?/4at
[ c0l6t0) - o0as| < e [ et

_ KS. (1) [
(4mat)™* Jo

— ZKSn(l)\/a/ une—u2 du = C\/Z,
0

/2

.2
rte=" /4dat dr

then, as t — 0+, we have

(G(x,t),6) = /
+ /Rn G(x,t)[¢(z) — #(0)}dz — ¢(0) = <6, ¢>,

G(x, )p(z)dz = H(0) /R Glx,t)do+

n

ie., G(x,t) — 6(z) as t — 0+ in D'(R™).

7.3. Set at = ¢ > 0 in (7.42) for n = 1, and consider the sequence of
1
functions f.(z) e="" /4 Show that the sequence {f.(z)}

21
converges to §(z) in R! as ¢ — 0.
ANSs. Notice from Fig. 7.2 that the peak profile for Green’s function
(7.42) smoothes out gradually as ¢ increases. Hence, the functions
fe(z) vary appreciably over successively smaller intervals about the
origin as € — 0. Thus, for any ¢ € C*(R?),

(@ o) = [ @ fa)ds = o= [ sy ds

_ 1y n/zﬂﬁ/w ne-2* g,
=7 7;0(46) .’ . 2"e”% dz,

(7.85)
where we have used the Maclaurin series expansion for ¢(x) and
then the substitution z = 24/. An evaluation of the integral on the
right side of (7.85) shows that
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Thus, the functions fe(x) approach §(z) as € — 0.

oo
7.4. Show that / G(x,t)dt = |x|*>™", n > 3, with

1
(n —2)Sn(1)

a=1.
ANs.
= S S
G(X, t)dt = ——j€ dt
oo o (2v/7t)
—n 2—-n
_ |$!2 [ n/2-2 —u _ 2 _ l.'L'|
_W/o w2t du =1 (5 -1) T
1 2—n
- _|z*™, n>3.
o 25m

7.5. The complex conjugate of the Schrédinger equation in R'x R is

00 | B0
Yot T am ozt

Find its Green’s function.

ANS. Set a = QZ—ZL in (7.42).

7.6. Find Green’s function for the Fokker-Planck equation in R!

%——i _Q__*_z' u
ot oz \ Oz ’

ANS. Green’s function satisfies

é) 3 8 ) !t 4t ! '3
_— - | =+ Gz, t:z = 6(xz,x)6(¢,t").
l::dt 9 (9 1}})] ( 7t7 7t) 5( ? ) ( ’ )

Let £ = X e, u = vel. Then the Fokker-Plank equation becomes

v 4 0

=e* —5.
at 8x2
If we set 2T = e?t, then the above equation reduces to

@_ 8?v
or  9x?’
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which, in view of (7.45), has Green’s function

G(.’E t: [L" tl) — H(t - t/) e—(x—wle_(t_t/))2/2(1__6—2&-1’)).

V2r(1 — e-20-1))

7.7. Find the axisymmetric solution of the equation

1d

V3G (r) = —— (r dGe

dr

= . p2
~a ) = A.(r) in R?,

such that G.(a) = 0 and GL(r) is finite at r = 0, where r > a > 0,

1 .2 1 2,2
for the (a) Ac(r) = —e™" /416, and (b) A(r) = —5e7" /€7,
Show that G(r) = liné Ge(r)y= o Inr for any fixed r = |x| > 0.

E—
ANs. (a) Integrating the given equation with respect to r, and
taking the constant of integration zero since GL(r) is finite at r = 0,
we get

Hence

1 1 r o ,—z%/4e
Gs(r):§ln2——/ ¢ —dz, T>a>0,
a

where the integral on the right side tends to zero as ¢ — 0 for a
fixed 7 > 0. Hence
‘ . 1 r

G(r)= g%Ge(r) =5 In o
Without loss of generality, we can take a = 1 since r extends to
the entire R? plane, and the result follows. Part (b) can be solved
similarly. Note that the function A.(r) reduces to the delta function
as € — 0. Thus what we have shown is that V2G(r) = 6(r), which
is true in view of the property (7.8).

7.8. Find Green’s function for the Laplacian in R!.
ANs. For Green’s function of the one—dimensional Laplace equa-
d*G
tion, we note that (7.53) becomes = 6(z,z’), whose general
solution for a fixed z’ is ’

Glz) = —%p: _ 2|+ Az + B.
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If we require spherical symmetry, i.e., G = G(|z — z'|), then A =0,
and we set B = 0. Then Green’s function is given by G(z) =

1 /
—'2-|iL'—.’L' I

7.9. Prove that Green’s function G(x,x") for the Laplacian, defined by
(7.56), satisfies the following properties: (a) G (x,x’} > 0 through-
out the domain Q C R3, and (b) Green’s function is symmetric, i.e.,
G(x,x") = G(x',x).

ANs. (a) G(x,x’) = 0 on S and G(x,x’) > 0 on the surface
of a small enough sphere centered at x’ since G (x,x’) — +o00 as
x — x'. In view of Theorem 7.6 (maximum principle), it follows
that G (x,x’) > 0 throughout Q. Since G (x,Xo) |s = —1/4nr, we
find that G (x,x’) < 0 in the closed domain 2, which implies that

1
! —
0<G(x,x) < yp

inside ©. (b) Apply Green’s second identity (A.7) to u = G (x,x1),
v = G (x,x2), where the integration domain Q2 is chosen as the
domain Q minus the two small spheres S1 and S3, centered, respec-
tively, at x; and x5, each with radius €. Then

/// (G (x,%1) V3G (x,%2) — G (x,%2) V3G (x,%1)] dV
Q2
<[ () )y P

or

= oGt xa) 8G (x,x1)
0= //5:1 (G (%, %1) on G (x,x2) o dS+

A s

Ase — 0, the integral over S (centered at x;) will tend to G (x1, x2)),
and similarly the integral over Ss (centered at x) will tend to
G (x2,x1), which proves the symmetry of Green’s function.

7.10. Find Green’s function for the Laplace operator in a sphere of
radius R.
ANs. In Fig. 7.12, we note that the point M with coordinates
x = (z,y,z) is inside , p = [OM], p; = |OM;|, where the point
My = x1 = (21, ¥1,21) is the inverse point to M such that

pp1 = R?.
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Let P = § = (&,71,() be an arbitrary point on the surface S of
the sphere. Then, since the triangles OM P and OM, P are similar
(having a common angle « at the origin), we find that r/r; = p/R,
ie.,

1_ER1

r opry
Hence, Green’s function for the sphere is

1 1R1

Fig. 7.12.

7.11. Find Green’s function for the operator V2 — k2, where k > 0 is
real.

ANs. Follow the method of Example 7.10 and deduce that Green’s
function is

1 . bl
% sinh(kr) in RY,

1
G(r)=¢{ — i 2
(r) o Ko(kr) in R?
1 ikr 3
Tnr e in R?,

where r = |x — x’|. Green’s functions are used in the problems of
neutron diffusion.

7.12. Show that Green’s function (7.71) satisfies Eq (7.61).

sin
ANs. Since the functions cos k|z| and

| k:|x belong to the class
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C>®(R"), and since, in view of Exercise 7.4,

a1 = 0 itjz) _ KTi ki
——=—— , € = e ,
dz; |z| |z| Oz; |z|
VL yetklal = T iklal
|z \e®
vﬂﬁ = —4ré(z) (by (2.13)),
x

v2eiklzl 2ik _ g2 eiklel,
Jxf

we apply the Leibniz formula V3(af) = fV%a +2Va-Vf + aV?f,
and find that

tklel 1 , 1.,
24 2\8 L _ giklel g2 iklzl) | L o2 iklal
(V2 + k?) o =Y +2( = l) (Ve )+|x|Ve

2 2
L 2K kgl _ B kel BT ikl
|z [ |z|

7.13. Show that Green’s function for the Cauchy-Riemann operator

7] 0 0
3= 92 Hay,z—aH—zylsG(z) pv |
ANs. We will show that G(z) defined above satisfies the equation
9
0z
Let C be the boundary of a region D C R?, and let f € C*(D) be
such that f(z) = f(z,y) = 0 and z € R®\D. Let us assume that
the (closed) contour C is piecewise smooth and is traversed in the
positive sense such that the region D remains to the left. Then,

since
oo

G(2) = 2-G(&1) = 6(z,).

oz~ |oz

(FLooy= [ (152 +5L0) oy

= —]{ f[cosnz + i cosny|ds
2Jc

1 o
— 3 § 1oty —ida) = =5 ¢ soa,

] - —g— [cosnz + i sinnz] b,

and



260 CHAPTER 7: GREEN’S FUNCTIONS

we have

0 i
[ gttordody =3 § rode

Fig. 7.13.

Since the function 1/z is locally integrable in R?, we take 1/z and

D = {z : ¢ < |2| < R} (see Fig. 7.13, where C is the same as Cg).

Then for all ¢ € D such that supp ¢ C Ugr, we have, using the above
result,

0 10¢
(G =G == [, S5 dets

= — lim ——a—q—sdzdg
e—0 <|z[<Rz8z

:lim[/ qS——dxdu—F (/ / ) dz]
e—0 e<|z|<R 0z 2 CR .

= -1 1lim / 9(z) dz = i lim 4 ¢S(aeia) dé
2 |ZI_E 2

z e—0 0
= 16(0) =< 16, > .

7.14. Use the method of images to determine Green’s function for a
disk of radius a. HINT: The image of a charge at a point P’ inside
the disk has an equal but opposite charge at the inverse point Q’
(Fig. 7.14). Note that if the coordinates of P’ are (r’,6"), then
those of @' are (a?/r',6’).
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(@¥r'e’")

;
L

Fig. 7.14.
ANSs. In polar coordinates
1 PP’
G(r,0;7",0") = — ln PQ’ C,
where C is a constant whi,ch is added to ensure that G = 0 on the
boundary. Since iz Q S = T when P is on the boundary, we have on
a
the boundary 2— In T— + C =0, which gives C = 2— In —, and hence

C;’(’]"7 g: ,,./ 9/) - _}_ In a2[r2 _ 2,,.7,1 COS(0 _ 0/) + 7~, ]
o 47 3

2ra’® a
2
! [rz - Tcos(& -6+ 7"_2]

1 In a2[r? — 2rr' cos(6 — 0') + 7

dm " r2p1? — 2rr'a2 cos(f — 6) + a4’

7.15. Solve the Laplace equation

82u+13u+ 1 0%u

or?2  r or 1?2 062
subject to the conditions u(r,0) = f(r) and u(r,7) = 7 for r > 0.
ANs. This is the well-known problem of solving the Laplace equa-

tion in the half-plane y > 0. Taking the Fourier sine transform
defined by

=0,

a(r,n) =,/ u(r, 8) sinnf db,
0
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we get
d*u di
2 2 -
r¥ == +r—-—n“u=-nf(r).
dr? dr 1)

This equation is solved such that the solution is finite at r = 0 and
tends to zero as r — oo. To do this, first we determine Green’s
function associated with the above problem. The solutions for the
homogeneous equation are r*", and thus

T\"
A(5) . rer

G(r,r") = AT
A (—) , r>1,

where A is such that G(r.r’) has a discontinuity of derivative of
amount 1/r'% at r =1/, i.e., A = —1/2nr. Then

@=—n /°° G(r,r') f(r') dr,
0

and

sem =3l (F) o [ G o)

which gives

(;)nsmnequdw
()" sinng 5"y ar']

- H/OT %si (%a“’)n £y dr’

,eie)” f('r') dTI:I

+
—
8
3~
&
e
N
=

1 T rsind
:;[/0 7-2 ,2f(1")d7‘/
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4 /°° rsin £0r1) dr']

r'% — 2rr' cos @ + 12
1 [ iné f(r
L[ remere)
0

s r2 — 2rr! cos 6 4 '

:g/""_ ) g
0

m (z—7r)2 49?2

in Cartesian coordinates. Note that if we remove the restriction on
u being zero on half of the z—axis, and take u = f(z) on the entire

z—axis, then we must add the solution for z < 0, i.e., ffoo to the
above solution, which will give the solution under this condition as

u(z,y) = 2/OQ —ﬂde’.

T J-x (.’):—T')2+y2

7.16. Let a function u. be defined by
1
u(z,y) = o In(r +¢), r=+z?+y%

Show that V2u,. gives a function which tends to the delta function
8(x)é(y) as € — 0.

1
ANS. Since V?u, =0, and u, — o InT as € — 0, we find that u,

behaves like Green’s function for the Laplacian in R? in the limit
as € — 0. Using the requirement (7.53), then

Vue(z,y) = 8(z,y) = 8(x)6(y).

7.17. Show that for the wave operator

o0
/ G3(x9 Y, Z,t;(E’, yly Z’,t’) dzl = GQ(J;’ yvty xlv y/y t’)
—00
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o

ANSs. Since / 8(z — 2')dz' = 1, we find from (7.75) that

-0

o
/ Gs(z,y,z,t;2',y', 2/, t') d2’

-0

| g b (1t - VE TG )

) S TRiG - vEiG P
1 oo5<t—t’—%\/(z—m’)i’+(y—y’)2+u2>
I N (N R
where z — 2/ = u
__c _ m&(t—-t’—v)dv

21 Jrse VEUE =12

where 72 +u? =02, r2 = (z — 2')? + (y — ¢')?

— ¢ —
Ry fort—t' <r/c

= GZ(:E7 Y.t 37/, ylv tl)'

7.18. Show that for the wave operator
o0
/ Ga(z,y,t; 7,y t') d2' = Gi(=z, t; 2, t').
-0

ANSs. Follow the method in Exercise 7.19.

7.19. Use Fourier transform method to derive the Green’s function

Gi(z,t;2’,t'), for the wave operator (..
ANs. Apply the Fourier transform F, to the equation
0°Gy  ,9*Gy

oz € B2

6(z —2)6(t —t').

For the sake of simplicity, let us translate the source point to the
origin, take ¢’ = 0, and denote F;[G1(x,t)] by G1(«,t). Then after

an application of this Fourier transform we get

d? 4 A

EC1@t) + PlafGilat) = 1a) - 5(),
which has the solution

sin c|a|t

Gi(a,t) = H(t)

ol
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X1
———
X2 S~——
Fig. 7.15.
Since in claft .
_1[sinc|a
b L
(see Fig. 7.15), we find that
Cr(,t) = —— 65..(x) = —— H{(ct — z)2nt
U= et 5\ T
_H(t—2)
B 2¢c

265
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Weighted Residual Methods

Variational formulation of boundary value problems originates from the fact
that weighted variational methods provide approximate solutions of such prob-
lems. Variational methods for solving boundary value problems are based on
the techniques developed in the calculus of variations. They deal with the prob-
lem of minimizing a functional, and thus reducing the given problem to the
solution of Euler-Lagrange differential equations. If the functional to be min-
imized has more than one independent variable, the Euler-Lagrange equations
are partial differential equations. Conversely, a boundary value problem can
be formulated as a minimizing problem. The functional which corresponds
to the partial differential equation is generally known as the energy function.
In the case when the solution is not available in a simple form, an approxi-
mate solution such that it minimizes the energy equation can be found. The
oo

approximating function is a linear combination of the form Z Py o = 1,
of specially chosen functions ¢; which are known as the tes; flomctions or in-
terpolation functions. The function ¢ satisfies the same boundary conditions
as the original unknown function, while the remaining functions ¢;, ¢ # 0,
satisfy the homogeneous boundary conditions. The constants ¢;, i # 0, are
then determined by minimizing the energy function.

The weak variational formulation is defined in §8.4, and the problem of
constructing an appropriate functional for a given partial differential equation
is discussed there. The Galerkin and the Rayleigh-Ritz weighted residual
methods are examined, with examples, in §8.5 and §8.6, and some less fre-
quently used weighted residual methods, like the collocation method, the
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least—square method, and the method of moments, are outlined in §8.9.

Refer to the Mathematica Notebook galerkin.ma for this chapter.

8.1. Line Integrals

In many types of boundary value problems, the variational methods are used to
provide precise formulations which can be applied in any prescribed system
of coordinates. We shall derive the Euler equation which is the necessary
condition for the solution of the following problem: Find a function u(z) for
which the integral

I(u) = /b F(z,u,v')dz (8.1)

is a minimum, where F is twice—differentiable with respect to x, u,u’. Let
two fixed points A{a,c) and B(b,d) in the zy—plane be joined by a curve
[ : z > u(x) (see Fig. 8.1(a)). Then ¢ = u(a), d = u(b), and v’ =
du/dz = u'(x) at each point @ of I. Thus, the curve I" determines a value
of the integral in (8.1). The value of the integral I will, however, change if
we replace I by a new curve joining A and B. In order to investigate the
variation of I with T', i.e., to determine as to for what curve I the integral 1
has a minimum (or a maximum) value, we shall confine to a set of curves I',,
which are defined as follows: First we select any curve 4 = ¢(z) such that

$(a) =0 = ¢(b) (8.2)

(see Fig. 8.1(b)). Then for any value of the parameter «, the curve I, is, in
view of (8.2), defined by

U=U(z)=ulz)+ap(z), Ula)=¢c, Ud)=d. (8.3)
Hence it passes through A and B. From (8.3) we find that on the curve I',

' _ au 0 ’
U= prl (z) + ad'(z). (8.4)
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u
7 u
2 A QT |
u=¢(x
0 a X ol a y
Fig. 8.1(a). Fig. 8.1(b).

For any value of a, we thus have a curve I',, and may form the value of I
along I, by substituting the values from (8.3) and (8.4) as

I(u,@) = /b F(z,U,U’)dx. (8.5)

Using the differentiation formula

OF 0OFO0U  OF oU’

da ~ U da ' AU’ da’

ou’

and noting from (8.3) and (8.4) that ou = ¢(x), B = ¢'(z), we find that

Oo 1o}
8F . 8F , OF
B = ¢($)W +¢ (‘x)w-
Hence,
oI b oF ., OF
%_/ [d)(m)—a—v——}-qﬁl\x) 6U’} dz. (8.6)

If we integrate by parts the second term in the integrand in (8.6), and use (8.2),
we get

o1 _ [° oF d (OF

= 2 (== )\a

e = ). @ [8U dz (aw)]
Let us assume that there is a twice—differentiable curve, say I', for which the
value of I is a minimum. Then, the value of I on T will be less than the
value of I on any other curve I',,. Thus, I(a) will assume a minimum value
for o = 0, since 81 /8« is continuous. But, then U = u and U’ = v’ when
o = 0. Hence, taking @ = 0 in (8.7), and I'(0) = 0, we find that

/ab o(z) [ 20 %(%)] dz = 0. (8.8)

(8.7)
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} | L X
o' a *1 Xo X2 b
Fig. 8.2.

Since the solution ¢(x) is arbitrary, except for the conditions (8.2), the factor
in the square brackets in (8.8) is continuous, which implies that

o0 1z (w) 9

for all z € [a,b]. In fact, if the expression within the square brackets in
(8.8) were nonzero at any point, say xg, there would be some small interval
including this point, say 1 < z¢ < 2, in which it remains nonzero; then,
by taking the function ¢(z) in Fig. 8.2, the integrand in (8.9) would be zero
except for the interval (x, z2) where it is nonzero. Thus, we have proved:
If the integral I, defined by (8.1), has a minimum (or a maximum) along any
sufficiently smooth curve I joining A and B, then v = u(z) will be a solution
of the differential Eq (8.9). This is known as the Euler-Lagrange equation,
and its solution u(z) as the extremal. Note that the derivative d/dz in (8.9) is
computed by recalling that v = u(z) and v’ = v/(z) = du/dzx are functions
of z. After this differentiation is carried out, Eq (8.9) becomes

OF °F _ O°F du  9°Fd%u
Ou  Oxdu  Oubu' dx  Ou'? dx?

=0, (8.10)

which is a second order differential equation, and its solution contains two
arbitrary constants which must be determined from the conditions that the
curve passes through A and B.

Similarly, by following the above procedure and using integration by parts
twice in the third term appearing in the integrand of

dI b oF  , OF .,  O°F
= [ o5+ @5 + o @gm) e 61
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and taking the additional requirement that ¢’(a) = 0 = ¢’(b), we find that the
Euler equation which provides a necessary condition for the functional

I(u) = /b F(z,u,v ,v")dz (8.12)

to be a minimum is

OF d (0F d* ;/OF
= _ (= —_— = 8.13
ou  dx (8u’ ) dx? ( ou” ) (8.13)
(see Exercise 8.1.).
If the integral I depends on two functions u and v, i.e., if
b
I(u,v) = / F(z,u,v,u,v)dz, (8.14)
then there are two Euler equations:
OF d /0F OF d (OF
— e — | —— = —_—— | :0 815
Ou dz (i)u’) " ov  dx (81)’) (8.15)

To derive (8.15), introduce two functions ¢(z) and () and two parameters
a and B such that U = u + ad(z), V = v + B(z). Then 81/0a = 0 and
8I/9B = 0.

8.2. Variational Notation

Eq (8.3) implies that the difference U — u = a¢(z), or QQ, in Fig. 8.1, is the
change in U, starting from « and the value of « = 0. Hence a¢(z) = U —uis
called the (first) variation in u and is denoted by §u. It may also be regarded
as the differential dU, since do = o — 0 = a at & = 0; then dU/do = ¢(x)

so that dU
dU = ( -

Q

)da = ¢(z)a = Su. (8.16)
Also, Eq (8.4) may be rewritten as U’ = v/ + a¢’(z), or

U - =ad'(z). (8.17)
The term ¢/ (x) = U’ — o/ is the variation of v’ and is denoted by du’. It is

also the differential

auv’

do

au’ = ( )da = ¢'(x)a = su'. (8.18)
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d
From (8.16) and (8.18) it follows that d(ow) = 6(—u),or
dx dz

(bu) = 6(u'), (8.19)

i.e., the operator 6 and d/dz are commutative. The variation of " and higher
derivatives of u are defined analogously.

If w is changed to u + éu = u + aw, then the corresponding change in a
function F' = F(x,u,u') at u is defined by
oF oF

6F = -‘% bu+ = 5u. (8.20)

Since 6 behaves like a differential operator, it has the following properties:

W) 6(f1 £ fo) = 6f1 £ 8fo,

(i) 6(f1 f2) = fréfa + f26f1,

(iii) 6(f1/f2) = (f26f1 — f16f2)/ 13,
(V) 8(f)™ = n(f)*~1 6f,

(v) D(6u) = §(Du),

(vi) 6 f:u(x) dr = fab Su(z)dz,

where ' = D = d/dz, and f1, f, are functions of x, u,’. Note that (v) and
(vi) are commutative properties under differential and integral operators. The
above six properties (i)—(vi) can be easily proved by using (8.20).

Now, we find from (8.7) that

s1— (4 - /a ’ O A e, (so)

where the variations at the end points are zero. Similarly, for I defined by
(8.12) we have

b
SNSRI T

where the variations are restricted by the conditions: ¢'(a) = 0 = ¢'(b).

For the integral [ in (8.14) whose integrand F'(z, u, u’, v, v’) contains two
independent variables v and v, we define the variations as total differentials
so that

Su = ap(z), bu' = ad'(x), bv = ay(z), 6v' = o)/ (z).
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Then the definition in this case becomes

_OF_ OF _, OF _ OF _,
6F_%6u+5—,6 +'5—(5 +F5 (823)

For the integral I in (8.14) we have
b
o1 = [ (e (5o ewas [ [ - g ()] v 20

In the parametric case, we can introduce a new parameter ¢ as the indepen-
dent variable and regard = and u (or z, v and v) as the dependent variables.
For example, let us consider the integrand F'(z,u,u’). Using the hat to de-
note differentiation with respect to the parameter t, we have: v’ = /%, and
F(z,u,v)dz = F(z,u,4/2)idt. Letz = a when t = t;, and z = b when
t = to, and denote F(z,u,4/%)% by G(x,u,Z,4). Then, the integral (8.1)
can be written as

b to
I:/ F(z,u,v)dx =/ G(z,u,,4) dt,
a t

1

and (8.21) becomes (using (8.24) with z, u, v replaced by ¢, x, u, respectively)

1= [ (5 - a(@) e [ (52 -5 (o) owa 629

where éx and du are zero at ¢, and ¢5.

EXAMPLE 8.1. Show that in R?
1 2
V(éu)-Vu = 56]Vu| . (8.26)
A direct computation shows that
V(6u) - Vu = ('3(5 Y32 (6u)) - (e +juy)
U u—\lamu Jay“ 1Uzp T ) Uy,
=(lug +juy) -6 (fuz +juy)
1. . . .
= 55 [Gug +juy) - (Tug +juy)

= 16|vul*.=
L
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. Multiple Integrals

Let F(a,y,u,p,q) be a twice~differentiable function of five variables,
where the dependent variable u is a function of z and y and p = u; =
O0u/0z, ¢ = uy = Ou/0y. We shall study the variation of the integral

I(u) = ././s F(z,y,u,p,q)dS (8.27)

over a surface S which passes through a fixed boundary curve B and
determine for which surface S the integral I(u) is a minimum. Following
the method of §8.1, we first choose any surface S defined by u = ¢(z,y)
such that ¢(z,y) = 0 on the curve I, where I is the projection of the
boundary curve B in the zy-plane. Since u(z,y) passes through I', we
define a surface S, for any a by

Ulz,y) = u(z,y) + ad(z,y).
The surface S, also passes through I". On this surface
P=U,=p+ap,, Q=U,=q+ap,,

so that the integral I is written as

= // F(z,y,U,P,Q)dxdy. (8.28)
Sa
Hence dI OF OF , OF
- // (550 + 550e + %qsy} de dy. (8.29)
Using (A.3) we find from (8.29) that
8F 8 OF
do« a=0 // BP) 8 3Q]¢d z dy,

since U = u, P = p, @ = ¢ when o = 0. If we multiply the value
of dI/da|Q=0 by da = a — 0 = a and write éu for a¢, we find, as in
(8.21), that

6T = // ?;;) ;;(ZFﬂ&udxdy (8.30)
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If u(z,y) is the surface for which I is a minimum, then éI = 0 for
arbitrary éu. Since the expression in the square brackets in (8.30) is
continuous, it must be zero. This gives a necessary condition for I to
be a minimum as
OF
9F _ 9 (8_F) _ i(‘_) —0. (8.31)
Oou Oz \0Op oy \ Og
This is the Euler equation for (8.27), and any surface corresponding to
a solution of this equation is an extremal.

If F = F(z,y,u4,p,q,7,5,t), where p and ¢ are defined above and
T = Ugg, § = Ugy, and t = uy,, then the Euler equation to minimize

the integral I = // F(z,y,u,p,q,r,s,t) dz dy is given by

OF 8<8F) 6(8F‘) 8? (8F) 4 (aF) 0? ‘(835):0

Bu 9z\0p) oy\og) T2\ ar ) Y azay \ a5 ) T g2

EXAMPLE 8.2. The condition that the Dirichlet integral

0w\ [ou)’
I(u)://[<$> +<EE> | dzdy
be a minimum is
&y 0%

2 _vu gu _
vu_8x2+8y2 0,

which is the Laplace equation. =

8.4. Weak Variational Formulation

The weak variation formulation of boundary value problems is derived
from the fact that variational methods for finding approximate solu-
tions of boundary value problems, viz., Galerkin, Rayleigh-Ritz, col-
location, or other weighted residual methods, are based on the weak
variational statements of the boundary value problems. In fact, the
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weak formulations are more general than the corresponding strong for-
mulations, since even the irregular boundary conditions are easily man-
aged in the weak formulation. We shall not discuss the evolution of the
strong formulations, but rather explain the method of the weak varia-
tional formulation, which will in turn define the underlying concept.

We shall consider a general form of a second order mixed boundary
value problem, defined by Eq (8.31), in a two—dimensional region
with the prescribed boundary conditions

u=wup onl}y, (8.33a)
and OF  OF
é
—ap ng + -(,;q—'ﬂy =go onTy, (8.33b)

where F' = F(z,y,u,p,q), and ng, n, are the direction cosines of the
unit vector fi normal to the boundary I' = T'; UT'2 of the region Q such
that 'y N Ty = 0.

For example, a special case of (8.31) is when F' is defined as

1 Ou\2 Ou\?
F=sla(G) +R(z)]-ro
2"\ oz + i dy fu
This equation arises in heat conduction problems in a two-dimensional

region with ki, ko as thermal conductivities in the z,y directions, and
f being the heat source (sink). Here

OF ou OF du OF

M B¢ oy Bu
and Eq (8.31) becomes

0 ou 0 ou .
If ki = ko = 1, then we get the Poisson equation —V2u = f with
appropriate boundary conditions.

=1,

The weak variational formulation for Eq (8.31) can be obtained by
the following three steps:

STEP 1: Multiply Eq (8.31) by a test function w (= éu) and integrate
the product over the region Q:

//Q [aa—i - (‘%(Z—i) - %(%{—)} wdzdy =0. (8.34)
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The test function w is arbitrary, but it must satisfy the homogeneous
essential boundary conditions (8.33a) on u.

STEP 2: Use formula (A.3) componentwise to the second and third
terms in (8.34), in order to transfer the differentiation from the de-
pendent variable u to the test function w, and identify the type of the
boundary conditions admissible by the variational form:

Ox Op Oy Oq 4
oF oF
— —Ng + —ny lwds=0. (8.35
/1“:1“1u1“2 ( op oq y) ( )

Note that the formula (A.3) does not apply to the first term in the
integrand in (8.34).

Notice that this step also yields boundary terms which determine
the nature of the essential and natural boundary conditions for the
problem. The general rule to identify the essential and natural bound-
ary conditions for (8.31) is as follows: The essential boundary condition
is prescribed on the dependent variable (u in this case), i.e.,

U =1Uuy On Fl

is the essential boundary condition for (8.31). The test function w in
the boundary integral (8.35) satisfies the homogeneous form of the same
boundary condition as that prescribed on u. The natural boundary
condition arises by specifying the coefficients of w and its derivatives
in the boundary integral in (8.35). Thus,

oF OF

(,)—p'nz + a—qny =qo on [y

is the natural boundary condition in a Neumann boundary value prob-
lem. In one-dimensional problems, use integration by parts instead of
the divergence formula (A.3).

In order to equalize the continuity requirements on u and w, the
differentiation in the divergence formula (A.3) has been transferred
from F to w. It imparts weaker continuity requirements on the solution
u in the variational problem than in the original equation.

STEP 3: Simplify the boundary terms by using the prescribed bound-
ary conditions. This will affect the boundary integral in (8.35) which
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is split into two terms, one on I'; and the other on T'y:

// 8F 6w3F+8w6F]dd
Ox Op Oy Oq y

oF oF
- - + — ds=0. (8.36
/I‘lul‘z ( dp Ne auy ny) was ( )

The integral on T'; vanishes since w = du = 0 on I';. The natural
boundary condition is substituted in the integral on I';. Then (8.36)
reduces to

3F OwdF OwdF
// Bz 3p+ay 3q]d zdy — /szqodszo. (8.37)

This is the weak variational form for the problem (8.31). We can write
(8.37) in terms of the bilinear and linear differential forms as

b(w,u) = l(w), (8.38)

8w6F 8w8F
blw,u) = // % op By a]dxdy’
l(w) = // w—dzdy+/ wqo ds.
I,

Formula (8.38) defines the weak variational form for Eq (8.31) subject
to the boundary conditions (8.33). The quadratic functional associated
with this variational form is given by

where

(8.39)

I(u) = %b(u, u) - U(u). (8.40)

EXAMPLE 8.3. Consider the system of Navier-Stokes equations for
a two—dimensional flow of a viscous, incompressible fluid (pressure—
velocity fields):

du 6u 19p 8u 8%
(W + @)

v 8U 10p v 0%
- V(a—xf + a—yz)
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in a region 2, with boundary conditions u = ug, v = vy on 'y, and

ou ou 1 -
1/(—1% + —ny) - —ppnz =tg,

Ox Jy

0 N
u(l'nx + @ny) — lpny = ty,

ox Oy P

on 'y, where (u,v) denotes the velocity field, p the pressure, and f,, fy
the prescribed values of the secondary variables. Let wq, ws, ws be the
test functions, one for each equation, such that w; and ws satisfy the
essential boundary conditions on u and v, respectively, and w3 does not
satisfy any essential condition. Then

ou ou p Ow ow, Ou  Owy du
// Wit TV @y)_p_67+1/( 5z 5z | Oy ay)] dz dy

- / wity ds,
Ir2

B ov ov p Ows Owy Ov Owq OV
0_//9 [w2(u8w+v@y) > By (G et 5, 5y oy 5] dwdy
—/ wzfyds,
'
du Ov
020//511”3(%4_8_‘1;) d.’L‘dy

Then
b((w1, w2, ws), (u,v))
// w u%+v@)+ 8v+ ?—v + @+v@ ]dzd
! 5y ) T2\ "8z T8y ) T \Yaz T Vay Y

8w1 ou Bwl Ou Owy Ov  Bwy Ov
owz v dzd
// Bz 0z 8y8y+8x8m+8y8) Y

[ (20 oy
p.)

w1, w2, ws) =/ (w1t +waty) ds.
T2

Note that the boundary integral in the linear form [{w;, w2, w3) has no
term containing w3. =
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We shall now discuss the Galerkin and the Rayleigh-Ritz methods,
which are the two most widely used weighted residual methods for ob-
taining approximate numerical solutions of boundary value problems.
It will be found that these two methods give the same results for homo-
geneous boundary value problems. In fact it can be proved that they
are similar for homogeneous problems.

8.5. Galerkin Method

Consider the boundary value problem
Lu=f in Q, (8.41)
subject to the boundary conditions

u=g(s) onTI'y, (8.42)

.g_” +k(s)u=h(s) onTy, (8.43)

where I' = I'y UT; is the boundary of the region Q. Let us choose an
approximate solution @ of the form

N
= cidi. (8.44)
i=1

An approximate solution does not, in general, satisfy the system (8.41)—
(8.43). The residual (error) associated with an approximate solution is

defined by
N
r@)=Li—f= L(Z ci¢i> _f (8.45)
i=1

Note that if up is an exact solution of (8.41)—(8.43), then r(ug) = 0.
The Galerkin method requires that the residual be orthogonal with

respect to the basis functions ¢; (also called the trial functions) used
in (8.44), i.e

(r,¢:) = 0. (8.46)

Hence

/ {L(@) — f}¢pidzdy =0, i=1,---,N, (8.46a)
Q
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or jz:;cj //r' ¢; Lojdrdy = //n foi d dy,

which in the matrix form is written as
[4] {c} = {b}, (8.46b)

where

A = /Qqﬁi Lo¢; dz dy, b = J//n foidz dy. (8.46¢)

In the examples given below, we shall choose different values of
N in (8.34) for the trial function @. There is some guidance from
geometry for such choices; moreover, they should satisfy the essential
conditions and exhibit the nature of the approximation solutions vis-a-
vis the exact solutions (see §8.7 for some choices). However, the larger
the N, the better the approximation becomes.

ExAMPLE 8.4. Consider the Poisson equation
Sy B%u
2, —
_§7u=—<ax2+ay2>—c, O<zr<a, 0<y<hb,

such that u = 0 at x = 0, and y = 0,b. First we choose the first order
approximate solution as

ﬁgk) = azy(z — a)(y — b).

Note that this choice satisfies all four Dirichlet boundary conditions.
The Galerkin equation (8.46a) gives

// 2ay — by +z? —az)-—c]ay(x—a)(y b)dzdy =0

which simplifies to

33
QX1 33302 12 _ﬁbcz

Thus,
_ 5c

~ 2(a? + b2)
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Hence
b =
1 2(0L2 + b2)

zy(z — a)(y — b).

Alternately, we can solve this problem by choosing the first order
approximate solution as

=(2) _ k7ry
N E o sm — sx
1 ik b
Jik=1

which is an orthogonal trigonometric series with a finite number of

terms. Note that u( ) satisfies the boundary conditions. Also note the
orthogonality (ondltlon

¢ mmz . nrz 0, m#n
sin
a

sin — dx
JQ a (1,/2, m = n.

The Galerkin equation (8.46a) in this case gives

j2r? k22 g kmy
// ,:a,k< + 2 )sstm b +c

j k
X sin JTZ sin dzdy =0.

a b

Hence

2 /2 2
e (] k c )
k- (ﬁ + b_2) = :yk?(l —cos jm)(1 — coskm),
or

4c(1 — cos jm)(1 — cos km)a2b?
745k (6252 + a2k?)

Qi =

Thus, this approximate solution is

~<2) z 4a%b%c(1 — cos jm)(1 — cos kx) sin jrz sin kmy
- jkm(a2k? + b252) a b’

Jk=1

If the number of terms in each sum is infinite, then @ ® pecomes the
exact solution wyg.
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At the center point (a/2,b/2), we have

@) _ N, 4a2b2c(1 — cos jm)(1 — cos k) in jm ¢in 51
He = 20 T ki (a?k? + b252) 2 172
jok=

If a = b, then at the center point (a/2,a/2)

4a?c(l — cos jm)(1 — coskm) . jm . km
(2
ug) E E s

Jkmi(j2 + k%) sy
a“c 8 8 8
—ﬂ[“ﬁ*“ﬁ%ﬁ ] =
36.64 ra\?2
T (5)

For the N—th approximation, the trial functions are chosen as ¢, (z,y) =

fi(z) gk (y), where
filz) =2 (z —a), gr(y) =y (y—b)

Then the N-th approximate solution is

N
in(z,y) = Y ok dir(e,y),

Gk=1
and the residual is
N
r=—c— Y [f(@ey) + fi(@)gi ()] -
k=1

Hence, since the Galerkin method requires that {¢mn,r) = 0 for m,n =
1,2,---,N, we get

o= /ob{‘c - ‘i [} @k ®) + £i()ok w)] }

fm(z)gn(y) dz dy,
which after integration yields
N
S aji 905, m, a) q(k, 1, b) + kp(k, n, b) g(j,m, a)]
7.k=1

+ ca™t? pnt? h(m,n) =0, (m,n=1,2,---,N),
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where
p(j,m,a) = o7 [Jj;ll_ 1 jfm ]j;i 1]
q(k,n, b) = b e [k+:t+1 h k+721+2 - k+7ll+3]
1
h(m,n) = (m+)(m+2)m+1)(n+2)
The coeflicients oy for j,k = 1,2,---, N can be determined from the

above system of equations. The result for i; found earlier follows from
this general case.

The trial functions ¢;x(z,y) = sin — T2 sin Ty, used in the ap-

a
proximation a?’, belong to the set of orthogonal functions obtained by
solving the given boundary value problem by the separation of variables

method (see Table 4.1, Dirichlet-Dirichlet case, and Exercise 5.28). =

8.6. Rayleigh—Ritz Method

Consider the Poisson equation —V?u = f, with the homogeneous
boundary conditions v = 0 on I'; and du/On = 0 on I's. Then, the
weak variational formulation leads to

I(u) =/A{%qu]2—fu}dzdy=O. (8.47)

A generalization of the result in (8.47) for the case of the system u Lu =
f with the above homogeneous boundary conditions, where L is a linear
self-adjoint and positive definite operator, leads to the functional

I(u) = %/(;{uLu —2fu}dzdy. (8.48)

THEOREM 8.1. If the operator L is self-adjoint and positive defi-
nite, then the unique solution of Lu = f with homogeneous boundary
conditions occurs at a minimum value of I(u).
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An application of Theorem 8.1 is the Rayleigh-Ritz method, where
we find the direct solution of the variational problem for the system
Lu = f by constructing minimizing sequences and securing the approx-
imate solutions by a limiting process based on such sequences. Thus,
we choose a complete set of linearly independent basis (test) functions
@i, i = 1,--+, and then approximate the exact solution uo by taking
the approximate solution @ in the form

o= citi, (8.49)
i=1

where the constants c; are chosen such that the functional I{%) is min-
imized at each stage. If i — up as n — oo, then the method yields
a convergent solution. At each stage the method reduces the problem
to that of solving a set of linear algebraic equations. The details for
the boundary value problem —V2u = f with homogeneous boundary
conditions are as follows: Using (8.49) in the functional (8.48) we get

I(@) =I(cy,--- ’f")
://{(ZD (%_y) —2af}da:;iy
R >y -2/ Yo} dody

thus

-2 {8 +5) s

345, ‘9¢] 3451 8(}5] /
E — 2¢; of dx dy.
+2#]ch//(81 e 6y 8 dx dy c; quf x dy

Hence

2 =2Ac;i +2 Z AijCj — 2h;, (850)
des i%5

0¢i 9¢; a¢i%)
Ay = //n<aa: dz ' 9y Oy dz dy, (8.51)

h; -—-/ oif dz dy. (8.52)
o)

and
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Now, if we choose ¢; such that I(c;) is a minimum (i.e., 8I/8¢; = 0),
then from (8.50) we get

> Ayci=hi, i=1,--,n, (8.53)

which in the matrix notation is

[Al{c} = {h}, (8.54)
where the matrix [A] has elements A;; given by (8.51), {h} has elements
h; given by (8.52), and {c} = [cy, -+ ,cn]T. Note that (8.54) is a system

of linear algebraic equations to be solved for the unknown parameter
¢i, and [4] is non-singular if L is positive definite.

The Rayleigh-Ritz method can be developed, alternately, by solving
for u the equation (8.38), where we require that w satisfy the homo-
geneous essential conditions only. Then this problem is equivalent to
minimizing the functional (8.40). In other words, we will find an ap-
proximate solution of (8.38) in the form

n
Un =Y c;b; + do, (8.55)
j=1
where the coefficients c¢; are chosen such that Eq (8.38) is true for
w=¢,t=1---,n,ie,

b((buun) - [(¢z)7 1= ]-a Y (B

or
b(6, D cs65+ b0 ) = U0,
Jj=1
thus,
> eib(i, d5) = Ui) — b(di, o). (8.56)
J=1

This equation is a system of n linear algebraic equations in n unknowns
c¢; and has a unique solution if the coefficient matrix in (8.56) is non-
singular and thus has an inverse.

The functions ¢; must satisfy the following requirements: (i) ¢;
should be well-defined such that b(¢;,#;) # 0, (ii) ¢; must satisfy
at least the essential homogeneous boundary condition, (iii) the set
{¢:}7_, must be linearly independent, and (iv) the set {¢;}?_; must be
complete
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ExAMPLE 8.5. Consider the Bessel equation
o2 fazu + (22— Du=0, u(l)=1,u(2)=2.

Put v = v+ z. Then the given equation and the boundary conditions
become

220" + v’ + (22 — 1w+ 23 =0, v(1)=0=1uv(2).
In the self-adjoint form this equation is written as

z2 -1

zv" + v+ v+2?=0.
For the lst approximation, we take
v =a1¢1 = ai(z — 1)(z - 2).

Then using (8.46) we get ff(Lvl — f}é1 dz = 0, which gives

/12 [Qalx—(3—2x)a1+m—zz_—l(z—l)(z—Q)al+$2] (z—1)(z—2)dz = 0,

which, on integration, yields a; = —0.811, and thus,
ur =v1 +2=-0811(z - 1){z — 2) + z.

The exact solution is u = ¢1J1(x) + c2Y1(z), where ¢; = 3.60756, ¢y =
0.75229. A comparison with the exact solution in the following table
shows that u; is a good approximation:

X Uy Uezact
1.3 1.4703 1.4706
1.5 1.7027 1.7026
1.8 1.9297 1.9294
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ExXAMPLE 8.6. Consider the 4th-order equation
(z+20)u")"+bu—kz =0, O0<z<lI,

with the boundary conditions: u(l) = 0 = v/(l), (z + 20)u"(0) =
0, [(z + 20)u"]'(0) = 0. We choose the test functions

é1(x) = (z — 1)?(x? + 2z + 31?)
b2(x) = (z — 1)*(32? + dlz + 312).

For the 1st approximation, we have u; = a;¢i1(z). Then fé(Lul —
f)é1(z) dz = 0, which gives

(241 + 57.6 + 161b1* /315 + 9qI*/5) + kl/3 = 0.
If, e.g., we take | = b =1, and k = 3, then a; = 0.011917, and
u; = 0.011917(zx — 1)%(2? + 2z + 3).

For the 2nd approximation, we take us = a1¢1(x) + az¢2(x). Then

!

l
/ (Lug — f)p1dx =0, and / (Lug — f)p2(z)dz =0
0 0

which, with [ = b =1, k = 3, yield

83.911a; — 67.313a, = 1
67.213a; — 91.882a, = 0.7143.

Thus a; = 0.013743, a; = 0.002279, and
up = 0.013743(x — 1)%(2? + 2z + 3) + 0.002279(z — 1)3(32* + 4z + 3).
Instead of determining the exact solution, we can compare u; and us.

Thus, e.g., u;1(0.5) = 0.012662, and u2(0.5) = 0.012964, which give
good results. =

8.7. Choice of Test Functions

Note that a suitable choice of the test functions ¢;(z, y) can be made by
taking linear combinations of polynomials, or trigonometric functions,
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such that they satisfy the boundary conditions. For example, we can
choose a system of functions

$o=9, $1=gx, ¢2=gy, ¢3=g2’, ¢a=gay,..., (8.57)
where g = g(z,y). It can be shown that the system (8.57) is complete.
Y

Fig. 8.3. Fig. 8.4.

Some practical rules for constructing the functions g(z,y) in (8.57)
are as follows:
(i) For the rectangle [—a, a; —b, b]:

9(z,y) = (2% — a®)(y* ~ b%).
(ii) For a circle of radius r and center at origin:
9(z,y) =r? —2? — ¢,

(iii) If the boundary T of a region € is defined by F(z,y) = 0, where
F e C™, then

g(z,y) = +F(z,y).
See (ii) above if T is a circle.

(iv) For the case of a convex polygon whose sides are defined by a1z +
biy+c1=0,-- ,amz + by + ¢ =0, we have

9(z,y) = £z + by + ¢1) - (@mT + by + Cm)-

See (i) above for a rectangle.

(v) The choice in (iv) is also suitable in different types of regions
bounded by curved lines; e.g., for a sector formed by the circles of
radii r and r/2, as in Fig. 8.3, we have

o(z,9) = (2~ y?)(a? ~rz +9).
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(vi) For nonconvex polygons, the function g(z,y) must be assigned
piecewise in different parts of the region, and we must introduce moduli
for any re—entrant angles. Thus, for the region in Fig. 8.4,

9(z,y) = (Je| +yl —z —v) @ + )y + Q) — z)(h — y)
-2y(z +p)(y + ¢)(l — z)(h —y), in [0,1; —q,0]
=4 2 +y)z+p)y+ 9 -z)(h-y), in[-p,0;—q,0]
—2z(z +p)(y + @) —z)(h - y) in [-p,0;0,A].

We can also take (2nd choice)
9(z,y) = (2° +y* —zla| - ylyl) (@ + )y + @) — 2)(h — y)-

In this case g € C!. A third choice is to assign the functions u,(z,y)
separately in the three parts of the corner region of Fig. 8.4:

((z+p)z(h —y)(ar +ax + agy + - - + any™)

in [-p,0;0, A
(x + p)(y + q) (b1 + box + b3y + - - + bpy™)
Un(Z,y) = )
in [—p, 0; —q,0]

+a)l—2)(c1+coz+esy+-- +eay™)
\ in [09 la —4q, 0]7

where ag, bg,cx (k = 1,- -+ ,n) are parameters which must be connected
by the following condition on the axes x = 0 and y = 0:

(z +p)zh(a; + azx + agz® +---) = (x + p)q(by + box + baz® +---)
P+ @) (b1 +boy+ -+ by™) = (y + Qyl(c1 +c2y + -+ + cuy™).

In view of the above considerations, the test functions ¢;(z,y) are also
called the shape functions for the region €.

EXAMPLE 8.7. Torsion of a prismatic rod of rectangular cross—
section of length 2a and width 2b is defined by

Vu=2, u=0 onl.
For the rectangle shown in Fig. 8.5, we choose

$(z,y) = (a® ~2?)(V* - y?),
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and seek an approximate solution of the form
un(wa y) = (a2 - 12)(b2 - yz)(Al + A25C2 + A3y2 +eee 4+ Ana:Ziij)'

First, for n = 1, we use (8.46a) with f = 2 and find that (with ¢(z) =
(a? — 2?)(b* — z7))

52u1 6 u1
// 82 B )¢dzdy

=2/ / [1_A1((12—.’E2)~A (b —y )](a —$2)(b2--y2)dyd:c
—aJ—-b

128 5,
50
Thus, Ay = 5/4(a” + °), and

2
= (a2 + bz)Al + 3Ka2b3‘.

5 (a® —z%)(b* — 3%
4 a? 4+ b2

U =

2a
Fig. 8.5.

The torsional moment

40 G6a3b3
_QGB/_Q/_ uldyda:-— praCE

where G is the shear modulus, and 6 is the angle of twist per unit
length. The tangential stresses 7,; and T, are given by
8u1 8u1
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For a = b, we find that M = 20G6@a*/9 ~ 0.1388(2a)*GH. The exact
classical solution is given by

u=azr—z°— 8a cosh M (2n — Uz

—1 (2n — 1)3 cosh M a ’

which gives

a’h  32a* < — 1 (2n — )b
M =2G6 - h .
{ e 7{:1 @n— 15 M g }

For a = b, the exact value of M is 0.1406(2a)*G6, which compares
very well with the approximate value obtained above by the Galerkin
method. =

EXAMPLE 8.8. Solve V4u = 0 on the rectangle [—a,a; —b,b] (Fig.
8.5) under the boundary conditions

9%u 0%u y2
5@ =0, a—yz = C(l_b_z) at:r::ta,
2 2
_aaxauyzo’ 22_0 at y = b,

where ¢ is a constant. This problem pertains to the expansion of a
rectangular plate under tensile forces.

First, we will reduce the above boundary conditions to homogeneous
boundary conditions: The function

(1~ 3)

obviously satisfies the given boundary conditions (it follows by inte-
grating each one of the above boundary conditions). Set u = uy + 4.
Then V%4 = 2¢/b2, and the boundary conditions become

Ug =

on 0 _311 -0 atz—4
dzdy 0 oz ETTES
%4 0%

5@20, ‘@IO at y = +b.
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These boundary conditions will be satisfied if the following conditions
are met: Py
U

4 =0, £=O at x = +a,
o4
4 =0, a—z=0 at y = +b.
Thus, the given problem reduces to that of minimizing the integral
I{u) = / V2 ] dz dy.

Then, by Rayleigh-Ritz (or Galerkin) method

// (Viu, — f) ¢jdzdy =0, j=1,...,n, (8.58)
Q

where u,, is the n—th approximate solution, which, in view of the geo-
metric symmetry of the rectangle, is taken as

= (2 — a®)*(y* — 0%)(a1 + agz® + azy® + - --).
For n =1, we find from (8.58) that

a b
/ / [24a; (y? — b%)? + 164, (32 — a?)(3y? — b?)
—aJ-b

0 2
+24a1($2 _ a2)42 _ Tc](‘rz _ a2)2(y2 _ b2)2 dyda: — 07
or
(L LU PR
7749 a2 T T at) M T gagz

which gives a; = 0.043253¢c/a®, and

wi = g + i (1__2) 0042330
1=Up+ Uy = 62

Zl? _ a2)2(y2 _ b2)2. -

8.8. Transient Problems

For time-dependent problems the semi-discrete formulation is used to
choose the basis functions. Thus, for one-dimensional problems the
N-th approximate solution is taken as

N
N (@, t) = o+ D c;(t) p5(x), (8.59)

j=1
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where, as before, the functions ¢; satisfy the homogeneous boundary
conditions and ¢q is chosen as in (8.55). Then, using the Galerkin or
Rayleigh—Ritz method such that the residual is orthogonal to the first N
basis functions ¢;, 7 = 1,2,--- , N, we obtain the N first order ordinary
differential equations in ¢. For example, for the diffusion equation u; =
V24, this system is

N

z:éj(t ¢]7¢z Z ¢]a¢z>+<¢]7¢0>

j=1 j=1

2

where the dot denotes the time derivative. The initial conditions for
this system are subject to another Galerkin approximation such that
its residual R = u(z,0) — dn(x,0) is orthogonal to the first N basis
functions ¢;. This yields the system of N algebraic equations

N
3" ¢i(0) (85, 65) = (5, u(z,0) — go(r)),
j=1

which is generally solved for the unknowns ¢;(0) by numerical methods.

ExAMPLE 8.9. Consider the heat conduction equation

du _ &%u N 10u
ot~ ox2  ror’
subject to the boundary conditions u,(0,t) = 0, u(1,t) = 0, and the
initial condition u(r,0) = Inr. For the first order approximation, we
can take the basis function as ¢;(r) = co + c17 + cor?. To determine
the coefficients cp, ¢1, and c; we require that ¢, satisfy the boundary

0<r«<li,

conditions of the problem. Thus, ¢1(1) = ¢y + ¢1 + c2 =0, and % =
¢1 + 2coa = 0. By solving these two equations in terms of ¢y, we
find that ¢; = 2ace/(1 — 2a), and ¢z = —co/(1 — 2a). If we take
¢y = 1—2a, then ¢; = 2a, and ¢y = —1, and the basis function becomes
$1(r) =1—2a+2ar —r% or ¢1(r) = 1 —b+br —r?, with b = 2a. This
suggests that for the N-th approximation we should choose the basis
functions as

¢j(T)=1%bj+bj1"—7‘j+l, bJ:(]+1)a3) j=1,2,"',N,

with ¢9 = 0. The N—-th order approximate solution is then taken in
the semi-discrete form as

N
an(rt) =) ¢;(t) ¢5(r)-

=1
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The residual is given by

N

> {éj(t) ¢; +¢;(t) [(j +1)297t - -(ZTJ—] } .

j=1

Then for the Galerkin method
o—z &) 65 + ¢t |+ 12t = 2L
3 T Cj r
(1= b; + by — riti} rdr

N

fori =1,2,---,N, where

S (=b)(1—b;)  bitby—bibj  bibj 1-b;
fG,5) = 2 + 3 T T s
1—b1'_ bj _ bz 1
i+3 i+4 j+4 i+j+d
1-b; b; 1 bib;
o s 2 1 1 _ — b .
9(i,7) = (G +1) [j—}-l j+2 i+j+2] 2 z+2

The initial condition is, in general, satisfied approximately. This is
accomplished by requiring that the residual

N
R=Y¢;(0)¢;(r) —Inr

=1

be orthogonal to the basis functions ¢;(r), i-e., <¢i,R> = 0 for ¢ =
1,2,---,N. This means that

1
lim Rei(r)rdr=0 for i=1,2,---,N,

e—0 €

since R has a logarithmic singularity at » = 0. After evaluating this
improper integral, we obtain a system of IV algebraic equations:

1 5 1
c+2hid ———, i=1,2,---,N,
0fG) =7+ 3% G *

u'Mz
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which can be solved for the unknowns ¢;(0). =

8.9. Other Methods

There are other weighted residual methods, which we will mention in
the sequel. These methods are are not frequently used, and so we
will not present any examples. Interested readers will find detailed
information on these methods in Connor and Brebbia (1973), Davies
(1980), Kantorovitch and Krylov (1958), and Reddy (1984).

8.9.1. Collocation method. In this method, the trial function

= ZQ@'

is chosen to satisfy the boundary conditions, and the parameters c;
are determined by forcing u, to satisfy the differential equation at a
prescribed set of points, i.e., the residual r vanishes at these points.

8.9.2. Least—square method. This method is applied directly
to the residual. The trial functions are chosen to satisfy the boundary
conditions. The residual is minimized by choosing the parameters c;
such that the functional

I(w) = / [ ) dedy

is a minimum. Thus 8I/9¢; =0, i = 1,--- ,n. Since

e, - en) = // (Feiss) - }d:cdy

and L is linear, we get

dI
2 e

which implies

;ci‘/‘/n{LfbiL@}dxa!y=/QfL¢idxdy, i=1,---,n.
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8.9.3. Method of moments. Inthe equation (r,w;) =0, where r
is the residual and w; are the weight functions, we can use any linearly
independent and complete set of weight functions w;. The simplest
choice for 1-D problems is the set {1,z, 22,23, - - - }. Then the successive
higher moments of the residual are forced to vanish, i.e.,

<rz>=0, i=0,1,2,---.

This scheme is called the method of moments.

8.10. Exercises
8.1. Fill in the details in the derivation of the Euler equation (8.13).
b

ANs. From (8 11), integrating by parts twice and using ¢(z)

d OF
0, ¢ (:L') BU’ — Pz ) <6U”> ‘ =0, we get

oI _ [° OF d (OF\  d® (OF
0= 34 / ¢(@) [au & (5—) t iz (517)] da.
8.2. Fill in the details in the derivation of the Euler equation (8.15).
ANs. Introduce two functions ¢(z) and ¥(z), and two parameters

o and 3, respectively, such that U = u + a¢(z), V = v + B¢(z).
Then 8I/8a =0 and 8I/95 = 0 lead to (8.15).

8.3. Find the geodesics for the following problems:
(a) On the zy—plane, take I = /ds = / vV1+ y'?dz.

(b) On the zy-plane, take I = /ds = /\/1 T r2(d6]dr)? dr.
(c) On the cylinder 22 + y? = a?, —0 < z < o0, take z = acost,
y =asint, and I = / ds = / Va2 + (dz/dt)? dt.

ANs. (a) Straight lines y = cjz+cz; (b) Straight lines r cos(6—c1) =
co; (€) z =cit + ca.

5.

8.4. A ray of light moves between two fixed points in the zy-plane
with variable velocity v(z,y). By Fermat’s law, its travel time is

A/ IE
/ ds = / Vity” dz. Show that the paths for a minimum travel
v v

time are given by

vy’ v , Ov

_Y Py
Tire? s’ Ty

8.10. EXERCISES 297

8.5. Find the extremal when the following integral is minimized:
@ [+ da.
b) [+ de
ANs. (a)y = c1e¥+cee™%; (b)) y = (clez/‘/§ + C2€_z/ﬁ) cos(y/v2)+
(6361/\/5 + C4e'z/‘/§) sin(y/v/2).

8.6. If the end points are not fixed, derive

b
+ [ e~ = (o) we

8.7. Take éu = a¢(z) + B(z) in the integral (8.1), and let 61 denote

the total differential of I at « = 0 = 3, where da = ¢, 63 = 3. Set
_OF d (BF

OF b

/ F(.ruu)dm—éu,? -
a

T Ou . dx\ou
can be written as

) and show that the variation 67 in this case

b b
6I=da/ H¢dx+dﬁ/ Hydz.
a a

8.8. Find the extremal for the problem of determining a curve I' of
prescribed length ! joining AB and maximizing the area A = [ydaz,
bounded by T", x—axis and two fixed ordinates.

Ans. (z —¢1)? + (y — c2)? = k?, where c1,c2, and k make the arc
I' pass through A and B and have length [.

Derive the variational formulation for the boundary value problems
8.9-8.14 (here a, b, f, g are functions of x; ug, ho, Mo, g0, Teo, Yoo are
constants):

d s du du
8.9. ——(a—) — f = = 20 =
. (ada:) f =0, u(0) = u, a (1) = g0, 0 <z < (one-
dimensional heat conduction).
ANs.

1
dw du
h = et
b(w,u) /0 a dz,

l(w):/olwfdx—w(ﬂ) [aj—';] + qow(l).

=0

d / du 2
8.10. —E(aa)—cuA—z = 0; u(0) =0, a (1)—1 0<zr<l

(one-dimensional deformation of a bar).
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ANs.

Ly dwdu v,
b(w,u)—/0 (CLEEE —cwu) dz, l(w)= —/0 wz® dz +w(l).

8.11. —%(q{?y@ 12?“) aay gy
(c

dx
ou ou
boundary conditions u = ug onI'y, and ¢, = {cj1— E +cC1o0— 3 ) g+
Y
Ju

ou
(czl Er + ¢ca9 6y>ny = go, on [y, where ¢;;, up, and ¢o are pre-

(Czlg + Co9 )+f—0 in  with

scribed.
ANs.

dw du du® dw du du
B(w,u) = i +C12dy) 72\ +022d—y

+ wf] dzx dy,
tw) = [ wgads,
r

where —c@+cgy—n+cd+cdun
qn = Hd:r 12dy z Ad 22dy y-

insulated C

4
kuy = qq(y) kuy=-h(u-uy,)

Fig. 8.6.

8*T 8T

8.12. —k( 5 + =

as shown in Fig. 8.6. The following boundary conditions are pre-

scribed: ku; = go(y) on HA; kuy = —h(u — us) on BC; u = up(x)

on AB, and 8u/8n = gy = 0 on CDEFGH (insulated), where k

is the thermal conductivity of the material of the region Q, h and

Uoo are ambient quantities, and du/On = —Ou/dx = —u, on HA
(two—dimensional heat conduction).

) = f in the region Q with boundary conditions
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d*T  d°T
// (dw2 )wdwdy,
dw dT dw dT dr daTr

dzx - .
// (dz dr " dy dg) dy - / hw (dzn - dyny> ds
The boundary conditions on C; = AB (prescribed temperature Tp):
ng =0, ny = —1; on C, = BC (convective boundary, To): ng =1,
ny=0;0onCs = C’DEFGH (insulated boundary): ¢ = 0T/0n = 0,

and on Cy = HA (prescribed conduction ¢o(y)): ny = -1, ny, = 0.
Thus,

dwdl  dwdT b
b(w,u) // (dz " dydy )d dy +h/ w(a, y)T (a,y) dy,

ANs.

0

b
w) = ~ /0 (0, 9)a0(y) dy + hTwe /0 w(a, ) dy.

v Ll 3(2)7) oo

%(’%) ‘%{“Z‘Z [3‘5*1(%)2]}+f=0;
u = Oatac_Ol‘jU [biz
azx dx

deflection bending of a beam).

ANS. Let w; and ws be the two test functions, one for each equation,
such that they satisfy the essential boundary conditions on u and
v. Then

0-—/l ﬂd_u+ld_vz+w
= Jo |Ydz Ydz T2 \dz 9

=0

] _, = Mo (large-

dz,

l 2 2
. d“wy d*v dwz dv | du dv
__/0 {b dz? d? * “dz dz {dx T3 (d:r) }+w2f de
de
—m0~dx—(l).

(w1, 2, (. v)) =/0 P o+ 1 ()} e
<2 E 3 (F) )] e
dw2

!
I((wy,w2)) = —/0 <w19+w2f> dfc+mod—(l)-,



300 CHAPTER 8: WEIGHTED RESIDUAL METHODS

l du vy 2 U (v a (av
nwol= [ [Ha(e) +o(5) +ea (@) +1(@)
dws

+wig + wzf] dz — moa-(l)

8.14. Find the functional I(u) for the transverse deflection u of a
membrane stretched across a frame, in the shape of a curve C,
subjected to a pressure loading f(z,y) per unit area. Assume that
the tension T in the membrane is constant. Note that u satisfies
the equation ;

2 = .
-V4u 7

ANS. The variation of the total work done by the force f/T is

fffp o

= //Q f—;ﬁ dz dy

— // V2ubudz dy
Q

_ / V- (Vusu) — V(6u) - Vu] dz dy
Q

g) // 5[Vu|2da:dy—/ @&Ads,
“ Q C on

Iu) = %/Q{Wul2 —2fu} dzdy.

Il

which leads to

Note that Example 8.1 is used. Thus,
3 - 0 ABU :0u
V- (Vubu) = (1 8y/' < 52 ‘]5?;511)
= V2ubu = —%éu.

8.15. Consider the Poisson boundary value problem: —V2u=finQ,
with the boundary conditions v = 0 on Cy and Ou/dn = 0 on Co.

Show that

I(u) = %//Q{(g%)z + (g—;)z —2fu} dx dy.
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ANs.
Owodu Owou
bw,u) /[7(8:581‘ aa)dd
/j fwdxdy — /wg—ds

8.16. Use the Galerkin method, and the Rayleigh—Ritz method, to

d?u
solve: Ez: (EIdz)+f_0 0<z<l!l, EI >0, f = const,

where E1T is called the flexural rigidity of the beam, with
d*u d d*u
Tl = M0 7 (PTg)

[Take w = ¢; = z**!. The exact solution is

fit 8 Mo f
Elu= a—? x4+ 21172'—%“—17)4.]

=0.

du
%(0) =0= E(O)’ EI .

ANs.

2,
b(w,u)—/ EIdng —— dx,

1
l(w) = -/0 wf de + w(0) [% (EIZZ 33)} -
z=0

d d
- [d_:] =0 liEIﬁ] z=0 - fOU)(l) o [Zw]z

Exact solution is obtained by direct integration.

8.17. —VZu=1in Q = {(z,y) : 0 < z,y < 1} such that

=l

o o
wly) =0=ulz,1), 7=(0,y)=0=3=(z,0).

ANs. If we take w = ¢; = (1 — 2*)(1 — 9%),i = 1,--- ,n, then this
choice satisfies the essential boundary conditions, but not the nat-
ural boundary conditions. Hence, we assume the first approximate
solution as u; = a¢y, ¢; = (1 — 22)(1 — y?). Alternatively, we
(2t - 1)z (20— 1)mwy .

cos ,i=1,---,n. The

can take w = ¢; = cos
b 5 5

exact solution is

u(z,y) = %{(1 -y
2 o= (—1)* cos[(2k — 1)y /2] cosh[(2k — 1)7z/2] }

w3 — (2k — 1)3 cosh[(2k — 1)x /2]
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8.18. Find the N-th approximate solution of Example 8.4 by taking

; k
the basis functions as ¢;x(z,y) = sin %— sin %
ANs.

ﬁ’: abm? (j2 N k2> dcab
Gk \ 3 T3 | T s
Py} a b jkm

for both j, k odd.

8.19. Find the approximate solution by the Galerkin method for the
nonlinear problem wu; = u,; + cu? on 0 < = < 1, subject to the
boundary conditions u(0,t) = 0 = u(1,¢)4 and the initial condition
u(z,0) = 1.

HINT. Choose ¢;(x) = sin jrz.
ANs.

N .
1, 1., , 2(1 —cosjm) o
> {zu0+ 2] 7y (t) — e[ Fg ()

Jk=1

Z (t)fmn]]} mn=12---,N,

where
. 1—cos(m—n+j)mr 1—cos(m—n—j)m
fimyn, j) = ( o) _ ( —J)
m-n+) m-n-—7j
_l—cos(m+n+j)7r 1-cos(m+n—j)w
m+n+j m+n—j
N
To find ¢;(0), solve (¢;, R) = 0, where R = Z ¢;(0) ¢;(z) — 1.
3,k=1

8.20. Use the Galerkin method to solve the Poisson equation V?u = 2
subject to the Dirichlet condition v = 0 along the boundary of the
square {—a < z, y < a} (Fig. 8.5).

HINT: Use the basis functions ¢(z,y) = (a® — z%)(a? — y?), and
consider the approximate solution

in(z,y) = (a® —2)(a® — y?) (A1 + A2a® + Az’ + - + Apz®y?).

ANs. For N =1, we have

/a ’ [—2(a®—y?) A1 —2(a?—2?) A1 +2)(a*—2?)(a®*~y*) dzdy = O

-—a v —a
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This yields

5 5@ -ad)@ -y
8a2’ 8a2 '

uy =
We must have Ay = Az. Then for N = 3, take

= (a” - 2%)(@® — y?)[A1 + A2(2” + 7)),

A =

where
A 1205 525
17 1416627 T 443247

and

. 35 15
(@,1) = gm0 — )@ = 9?) [T+ D 4]

. . . i TT
Alternately, if we choose the basis functions as ¢ = cos JQ— cos

j,k odd, then 4

which leads to

// Z j2m? 1627r2 jrx szy]
e (G R ) e e,

Hence for j = m and k =

128a2(_1)j+k—2)/2
Jk(5% + k)

Qi =

8.21. Use the Galerkin method to solve the eigenvalue problem VZ2u +
Au = 0 in the cylindrical polar coordinates for 0 < rA.

HiNT: Solve-i du +Au=0,0<r<a.
rdr dr

T
ANs. Take ¢;(r) = cos ZE For the first approximation, ¢; =

Tr - wr .
cos —, and %; = a3 cos —, which leads to
2a 2a

ZWJOQ{%(% [;—Z (—sin %)] @1 + Aoy cos %}rdr =0.

kmy

’
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This gives the equation for the eigenvalue A as
2
e (1 2 1 2
— {2+ ) -2 (== ) =0
4 (2 " 1r2) ¢ (2 1r2)

. m%(x? +4)  5.8304
17 102(r2—4) a2

Hence,

5.779 . .
The exact value is A\; = ——. For the second order approximation
a
- r 3rr . . 5.792
Uy = Q1 COS — + Qg COS , which gives Ay = 5
2a 2a a

8.22. Use the Galerkin method to determine the lowest frequency
(fundamental tone) of the vibration of a homogeneous circular plate
Q of radius a and center at at the origin of cylindrical coordinates,
clamped at the entire edge, i.e., solve V4u = Au subject to the
conditions u(a) = 0 = u,(a).

HINT: Minimize the variational problem I{u) = / / Vudz dy,
Q

such that / / u? dz dy = 1, subject to the given conditions.

Q
d2+li dZ_u_{.!’_.d_u = \u
dr? * rdr dre " rdr) T
2

N j+1
Take iy = Z o (1 — Z—2> . Then, e.g., for %z, we have
j=1

192 aafy (144 Al
“\T9 T 2\ "6 )77

144 by 96 _ ety _
“\79 T 76 @2\F "7 )T

and the equation for A is

ANSs. Solve

(Aa)? — 9% Aa? + 435456 = 0,
104.387654 ] .
which has the smaller root as A = — . Using this value of

) in the above system of two equations,‘ we find ag = 0.325 3, and

3 [\’ r2\?
iy = [1\1—5) +0.325(1—$> :

where a; can be found from the above system of two equations.

9

Perturbation Methods

The perturbation methods provide approximate solutions for boundary value
and initial value problems. These methods are used when such problems
contain a small parameter, say &, and the solution for € = 0 is known. This
parameter occurs, in general, in a partial differential equation of the form

Lu+eNu=0, (9.1)

where L is a linear partial differential operator, and N is either a nonlinear
or a linear differential operator which makes the solution of Eq (9.1) diffi-
cult. If ¢ = 0 reduces Eq (9.1) to an ordinary differential equation, then the
perturbation method will fail.

Another kind of perturbation problems arises by perturbing the boundary.
In this case the parameter £ will appear in the boundary conditions. The two
common perturbation methods discussed here are
(1) series expansion in powers of ¢, and
(2) successive approximations.
These methods apply when the partial differential equation or the boundary is
perturbed.

Quite often these two methods will yield the same approximate solution.
Frequently the perturbation solution is equivalent to the iterative solution of the
corresponding integral equation. For the perturbation method to be successful,
itis assumed that u is a continuous function of the perturbation parameter and
that the differences in the two problems (perturbed and unperturbed) are not
singular in character. These methods are thus applied to problems in which
the solution to an ideal simple problem is known and, for a more realistic
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situation, the differential equation or the boundary conditions or the region is
perturbed.

There are other more complicated methods which deal with singular per-
turbation problems. We shall, however, not discuss such methods in this book.
For more information about them the reader is referred to Kevorkian (1990).

Refer to the Mathematica Notebook perturbation . ma for this chap-
ter.

9.1. Taylor Series Expansions

The general scheme for this method is as follows: Consider Eq (9.1) subject
to some prescribed boundary conditions and/or initial conditions. Assume
that the solution of the homogeneous equation Lu = 0 subject to the same
prescribed conditions is known. Then, in order to solve the given problem we
shall assume that u possesses a series expansion in powers of ¢ of the form

00
u=1up+eu; +Eug+ - = Ze" Un. (9.2)
n=0

If we substitute this power series for u into Eq (9.1), we get

L (i e” un) +eN (ie" Uy = 0> . (9.3)
n=0

n=0

Assuming that ug satisfies the prescribed conditions and that u,, n # 0,
satisfy homogeneous conditions, we can obtain a system of partial differential
equations by comparing coefficients of various powers of € on both sides of
Eq (9.3). These partial differential equations are such that a partial differential
equation in u, will depend only on ug, u1, -+ ,%n—1. The solutions to uo,
U1, ,Un_1 are known successively, i.e., one solves first for ug, which
enables one to solve for u; and so on, and one can finally solve for u,. We
will demonstrate this method by some specific examples.

ExAMPLE 9.1. Consider

Viu+ef(u) =0, u(l,8)=g(b), 11}_1% u(r,8) — 0. (9.4)
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We will consider two cases:
(a) For f(u) = u, let us assume the power series (9.2). The partial
differential equation and the boundary conditions for each u,, n =
0,1,2,3,---, are given by
V2’U.0 = O', U()(l,e) = g(G),
VZu; +up =0, wuy(1,8) =0, (9.5)
VUpi1 +Un =0, upsp1(1,68) =0.

The general solution for V?uy = 0, by the method of separation of
variables, is

Uy = Z r™(Ap, cosnb + By, sinné), (9.6)
0
where -
Z(An cosnb + B, sinnf) = ¢(0). (9.7)
n=0

If g(0) is a periodic Dirichlet function, then A, and B, can be deter-
mined, and the subsequent equations for u,, can be solved. For example,
let g(8) = cos6. In this case ug = rcosé, and the partial differential
equation for u; becomes

V2u; +rcosf = 0. (9.8)

Since the particular integral for a partial differential equation of the
type .
V2u + c1r™ cos pb + cor™ singh = 0

is of the form

+

vp = 117" 2 cos ph + cor™ % sin g6,

the solution for u, is given by
1 )
up = =7(1 —r*) cosf. (9.9)
Similarly, the solution for u, is given by

_ 1 2, .4
Up = 1927(2—37" +r%) cosé. (9.10)

Other terms can be obtained similarly.
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(b) For f(u) = u?, we use the series (9.2) for u in powers of €, where
ug satisfies the boundary condition uy(1,0) = cosf, and u, satisfies
the homogeneous boundary condition. Thus, the partial differential
equations for ug,u;, us,- - are given by

1 1
Uorr + —Uor + —2U009 = 07
T T
1 1 )
utpr + —ur + 5166 + g =0, (9.11)
1 1
Ugrr + ~Uar + U200 + 2uou; =0,

and so on. The solution for ug is clearly ug = 7 cosé, and the equation
for u; becomes

1 1 9 9
Uipr + ;ul,« + r—zuwg +r“cos“8 =0,

whose solution is then given by

1 1
up = éa(]t -+ ﬁ“j —74)cos 2. (9.12)
We can continue the process to find ug,uz, --. =

ExAMPLE 9.2. To solve
1 1
Upr + ;ur + ;—2-u99 + euug = 0,u(1,6) = cos b, (9.13)

up to the first three terms of the power series solution, we use the series
(9.2) for u. Substituting this series into the partial differential equation
and comparing coefficients of different powers of ¢ on both sides, we
get

1
Uorr + —Uor + —Uose =0,
T T
1 1
Uirr + Zutr + 21100 + ugupe = 0, (9.14)

1 1
Uy + ~uar + 31200 + uquge + uot19 = 0.

The new boundary conditions are ug(1,8) = cos@, and u,(1,6) = 0,
n > 1. It is easy to see that ug(1,6) = r cosf, and the partial differen-
tial equations for u; is

1
Uirr + lulr + —1§u199 =72 cosfsinf = ~r?sin 26. (9.15)
T T 2
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1
Its solution is u; = ﬁr2(r2 —1)sin 26. The partial differential equation

for up becomes

1 1 1
Ugryr + ~Uar + ﬁumg = 51"3(7‘2 —1)(sin 26 sin @ — 2 cos 26 cos ),

and its solution is given by

_ L 3.2 1 4
Uz = oot (r®* —1)cos 30 + 1152r(r 1) cosd
- L1'3(7'4 —1)cos 30 — L'r(1"6 —1)cosf.m (9.16)

640 2304

We can continue the process as long as we need to obtain the re-
quired degree of accuracy. There will, of course, be the question of
convergence, but one observes that the coefficients are getting fairly
small, so convergence for values of € < 1 appears likely.

9.2. Successive Approximations

The general scheme for this method is as follows: We assume the first
approximation to be ug, which satisfies the given boundary and initial
conditions and the homogeneous equation Lu = 0. The second approx-
imation is then u1, which satisfies the equation Luj +eNug = 0 and the
given boundary and initial conditions. The process is continued until
the required degree of accuracy is achieved. It is obvious that the order
of difficulty is directly proportional to the order of approximation. We
will demonstrate this method by solving the above examples.

EXAMPLE 9.3. We now solve Example 9.1(b) for f(u) = u? by the
method of successive approximations. The partial differential equation
for ug is the same as in (9.11), i.e.,

1
Uorr + ~Uor + —3Uogp = 0,

and its solution is ug = r cosf. But the partial differential equation for
uy is

1 1
Uirr + U1y + 3100 + er?cos? 8 = 0,u;(1,0) = cos . (9.17)
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Its solution is
1 1
U1 =T’COSO+E§;(1 -+ ﬁ(ﬂ —74) cos 26. (9.18)

Notice that here u; is actually the sum ug + £u; of Example 9.1. =

EXAMPLE 9.4. We now solve the Example 9.2 by the method of suc-
cessive approximations. Obviously, the solution for ug is ug = r cosé.
Now the next approximation u; satisfies the given boundary condition
and the partial differential equation

1 1
Uiprr + ;ulr + T—zulao + eupugg = 0, (9.19)
or 1 1
Ulpr + —ULr + — U160 — ir2 sin26 = 0. (920)
T T 2

The solution for u; is easily seen to be
u; =rcosf + %(r" —7%)sin 26. (9.21)

The next approximation us once again satisfies the same boundary
conditions but the new partial differential equation is

1 1
Uzrr + ~Uar + —5uzgs + Uity = 0. (9.22)

Since
r2 2
Uity =~ sin 26+—8r (r?—1)(cos 6+3 cos 9)+ 4(r2-—1) sin 46,
(9.23)
the equation for us becomes

1 1
Ugprr + —Ugy + —5 U260
T r
2

2
= % sin 260 — 4—%7‘3(7‘2 1)(cos @ + 3cosf) — %r (r? —1)%sin44.

(9.24)
Its solution is
&2

= = e2 _ 4 9

Uug = rcos0+ r (r? —1)sin20 + — 1153 r(r* — 1) cos
il e 36 — S r3(r4 1) cos 30

- 2304r(r —1)cosf + %r 3(r? — 1) cos 30 — " (r* — 1) cos
_ .3 Pt 1) 402 _ 1y sin 48.

© [48384 ( 13824 (=1 + {1557 (" ~ 1)) sin

(9.25)
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It is clear that the solution (9.25) is almost similar to the one ob-
tained in Example 9.2. These two solutions would be exactly the same
if enough terms in the series solution and a large enough number of
approximations are taken. m

9.3. Boundary Perturbations

For problems involving boundary perturbation the series (9.2) for u is
used. The following examples illustrate this method.

EXAMPLE 9.5. Solve the harmonic (Laplace’s) equation
Ugg + Uyy = 0,
such that
u(esinwy,y) =0, u(my)=0, u(z,0)=sinz,
and ylln;o u(z,y) is bounded. Assuming the series (9.2) for u, we find

that Vu,, = 0 for all n. Moreover,

u(esinwy, y) = u(0,y) + esinwyu,(0,y) + = (e sin wy)?ug,(0,y) +
(9 26)

u(esinwy, y) = uo(0,y) + eu1(0,y) + uz(0,y) + - --
+ esinwy [uo,s(0,y) + eu1,5(0,y) + °uz,2(0,y) + -]

1
+ '2‘(5 sin wy)2[u0,zz (07 y) + UL 22 (07 y)
+ U 00 (0,y) 4+ -]+ (9.27)

By comparing (9.26) and (9.27) we find that uo(z,y) must satisfy the
conditions

up(0,¥) =0, wp(m,y) =0, and wue(z,0)=sinz, (9.28)
whereas u1(z,y) must satisfy the conditions

u1(0,y) = —e Ysinwy, and wuyi(my) =0,ui(z,0)=0. (9.29)
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Note that ug(z,y) = e ¥ sinz. Since the solution for u; is complicated,
we will separate it into two parts: The first part will satisfy Laplace’s
equation and the boundary conditions at x = 0,7, while the second
part, though satisfying Laplace’s equation, will satisfy homogeneous
boundary conditions at £ = 0, 7; then the sum of both parts will satisfy
the conditions at y = 0. Thus, let u; = v +v2, where Vuv; = 0, subject
to the conditions v;(0,y) = —e™Ysinwy, v1 (7, y) = 0. Then

v = [f(z) coswy + g(z) sinwy] e,

f(0) = f(m)=g(x)=0, ¢(0)=-1. (9.30)

Then substituting v; into Laplace’s equation and comparing the coef-
ficients of sinwx and coswx on both sides, we get

Fl+(1-w)f —2wg =0,

9.31
g+ (1 -whg+2wf=0. (9:31)

Let z = f + ig. Then, multiplying the second equation by 4 in (9.31)
and adding it to the first we get

2"+ (1 + 2iw — w?)z =0,

or
2"+ (1+iw)z =0, (9.32)
with the boundary conditions z(0) = —%,2(7) = 0. Its solution can be
expressed as
z = Aeitiw)e 4 pelitiw)s, (9.33)

On applying the boundary conditions, we find that

_,ie—i(l—t—iw)'/r iei(l-}—iw)ﬂ'
A= e—i(ltiw)m _ gil+i)m’ B= e—iltw)r _ gi(ltaw)r (9.34)

Now solving for the real and imaginary parts of z, we find that

sinz coshw(m — )

cosz sinhw(m — x)
sinh wm '

sinh wn

fz) =

(9.35)

, o g(z) =—

Next, we determine vp by the separation of variables method with ho-
mogeneous boundary conditions with respect to . The solution is of
the form

[o o]
vy = Z Ape ™sinnz. (9.36)
0
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Then adding the solutions (9.30) and (9.36), and using (9.35), the com-
plete solution for u; is given by

0
U = Z Ane ™ sinnz + [coshw(r — z) sinz coswy
0
h e’
— si - i . (9.
sinhw(r — z) cos zsinwy] prn— (9.37)

On applying the condition u;(z,0) = 0, we get from (9.37)

A = _ 1 _ 1 w
" ln-12+w?  (n+1)?+w?] sinhwr

Hence the solution for the problem is

uy(z,y) = [coshw(r — z) sinz coswy
eV

— sinhw(m — z) cos z sinwy] vy
wm

00
' 1 1 wsinnz _..
zo: [(n —1)24+w? (n+1)? +w2] sinhwr ¢ " (0.38)

EXAMPLE 9.6, Consider
V2u = 0,u(l + ¢sin 8, 8) = f(6). (9.39)

By expanding u(r,8),7 =1+ esin§ about r = 1 in a Taylor series, we
have

1
u(l4+esiné,0) = f(8) = u(l,9)-{-e:si1f19ur(1,9)+§52 sin? Qupr(1,0)+- - - .

(9.40)

We also assume that u has a series expansion in powers of € of the form
(9.2), ie.,

w(r, 8) = ug +euq +2ug + - - . (9.41)

Combining (9.40) and (9.41), we get

uo(1,0) = £(6),

u1(1,6) + sinBuor(1,6) = 0, (9.42)

1
ug(1, 8) + sinOuy, + 3 sin? Qug,(1,8) = 0,
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and so on. The partial differential equation to be satisfied by uy, for all
n is V2u,, = 0. Using the general solution and applying the boundary
conditions for ug, we get

up(1,6) = f(6) =) _(Ancosnf + By sinnb). (9.43)
0

If £(6) is a periodic Dirichlet function, then

s 1 us
Ay = % f(6)do, A,= - f(8) cosné dé,
-7 1 . - (944)
B, =— f(9)sinnb db.
s —1
Case 1. If f(8) = cosf, then
1, .
ug =rcosf,u; = —57' sin 260,
) (9.45)
Uy = §(r3c050 —rcosb).
Case 2. If f(0) = sin§, then
ug = rsinf,
1 .
uy = §(r2 cosf —1), (9.46)
Uy = %(r sin @ — 3 sin 36.

For the solution of this example by the method of successive approxi-
mations see Exercise 9.4 below. m

9.4. Exercises

9.1. Obtain a perturbation solution for the problem:
Up = Uyy + Ky,

where u(y,t) = 0 for 0 < ¢t and »(0,£) =1 for ¢ > 0.
(a) By successive approximation (2 approximations).
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(b) By expansion in powers of k (up to the first power of k).

HINT. Use Laplace transforms. [Compare with Exercise 6.4.]
2

k 2
ANs. u = erfc L) +— Y _q) ¥/t
<2\/Z at/mt \ 't ¢

9.2. Obtain a steady state perturbation solution for the problem:

U + Ktyys = Ktyyy + uyy +uy,  u(0,t) = e™*,

l‘ t:‘ i —_—
Jm u(y,t) =0, limu(y,t,k) = u(y,¢,0).

Steady state in this case implies that the initial conditions are to
be ignored.

HINT: Assume a solution of the form u(y,t) = F(y)e™®. Instead of

assuming a perturbation solution for u(y,t), assume a perturbation

solution for the roots of the characteristic equation.
ANs.

u(y,t) — §Re—ay+i(wt+by)’

where
1 2
0= 1(14ag)— Ak _ Ck ’
2 214+ 16w?2 /1 + 16w2
1 Bk 2
b = __/HO + Dk )
2 21+ 16w? /1 + 16w?

aoz\/%[\/1+16w2+1],
ﬂoz\/l[\/1+16w2—1],

2
A=op+ ag + B2 — 2w ap + 4wfy,
B = dway + 2wad + 2w 6o + 2wBE — Bo,
C = pag + qBo, D = gag — pPo,

H A2 . B2)
(2w*Bo — 3(1 + ap))A + (8w + 2wap + 36g)B — “@-B5)
p= ( ot 3008 - ATes
44/1 + 16w? !
9 2AB
(2w*Bo — 3(1 + a0))B — (Qwap — 38y — dw)A — ——
= (2wao =300 - 4) 17 16w
41 + 16w? '

9.3. Solve VZu + ef(u) = 0,u(l,8) = ¢(8), for f(u) = u,u?,u + u?,

respectively, and g(8) = sin 6, sin? 8, respectively. Find the first two
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terms in each case.

ANs. For f(8) =sin6:

u~Tsing - —;-r(l - 1‘2) sin 8,

1

Z(l_r4) 3 2(1 —r2) cos 20

€
uzrsin9+§{

2
urTsing+ < {(1—1") r(l—r2)sm9—?(1—r)00520}.

For f(0) = sin2 6

l\JIl—-‘

r
(1—72 cos29)+8{ . g(l—rz)cos%}

1 2 _ T 2y cos 20
(1—r cos268) + = {5(1—7‘ )—E(l—r ) cos

l\DIP—‘

4 %(1 -+ 2—0(1 —r2%) cos 49},
2
1 ) €13 2y _ 2 12y os20
uzi(l—r c0520)+§{2(1 %) 3( r¥)e
4
+ ?16(1 — r4) + %(1 — r2) wcos46}.

1 1
9.4. Solve U, + ;ur + ;Euf;g + eu,ug = 0,u(1,8) = cosé.

SOLUTION. Substituting the series (9.2) into the partial differential
equation and comparing coefficients of different powers of € on both

sides we get
1 1
Ugrr + —Uor + —5Uo0s0 = 0,
T T
1 1 —0
Urpr + —Ulr + ﬁuwe + ugruog = U,
r

1 1 —0
Uorr + —U2r + T—2uzoo + uiruog + Uortleg = V.
T

The new boundary conditions are ug(1,8) = cos 6, and un(1, 8) =0.

It is easy to see that
ug(1,8) = rcos 8,

U1 (T, 0) = l('7‘3 — ’l”2) sin 20,

1, 1.5 29 4
ug(r,0)—m(r —-r)cos&+<35 Ty ~ 2210" cos 36.
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Alternately, we will now solve this problem by the method of suc-
cessive approximations: Note that the solution for ug is r cos§. The
next approximation u; satisfies the given boundary condition and
the partial differential equation

1
Utrr + ~u1r + — U190 + Ettorugg = 0.

The solution for u; is
1
up =7rcosf + €E(T3 — 72) sin 26.

The next approximation u, once again satisfies the same boundary
conditions but the new partial differential equation is

1 1
Ugryr + ~ugr + ~3l260 T EULULY = 0,
whose solution is

1
Ug = 'rco:9+€E(r3 —r?)sin 20
1

L 4 5 29 3 )}
r° — 1) cosf 4 (357” 64 2240r cos 30
e 7 p8  2r5  oppd
_ = - =+ = 40.
100(11 T+t " 3g) "

+&

2[480(

1 1
9.5. Solve up, + ;ur + T—zuf;g + eurg = 0,u(1,8) = sinf. Find the first
three terms.
SOLUTION. Substituting the series (9.2) into the partial differential

equation and comparing coefficients of different powers of ¢ on both
sides we get

1 1
Ugrr + —Uor + S Uosg = 0,
r T
1 1
Ulry + ;ulr + T_2U109 + uorg = 0,
1 1
Ugrr + ~Uzr + —3Unge + U1re = 0.
The new boundary conditions are ug(1,6) = sin6, and u,(1,6) =
0,n > 1. Clearly, uo(1,6) = rsiné, and the partial differential

equations for u; is

1 1
Ulrr + ULy + — U199 = — CcOSH.
r T



318 CHAPTER 9: PERTURBATION METHODS

Its solution is

up = %r(l —r)coséb.

The partial differential equation for u; becomes

1 1 1 .
Ugpr + ~Ugr + U209 = 7 (1 — 2r)sind,
r T 3

whose solution is given by

1
Up = —gér(l — 4r + 3r%)sin .

9.6. In Example 9.6, choose f(6) = sin? 6, and solve the problem.
ANs.

Uy = %(1 — 12 c0s26),
Uy = §(r3 cos§ — rcosb),
1, 3 1,
Uy = = + =rcosf — yil cos 20 — 5c0s30+ =r*cos 46.

8 2

9.7. Solve V2u = 0,u(l + £cos8,0) = f(8), for (a) f(6) = cosé, and

(b) f(8) =sinb.
ANs.

ug = rcosf,

1
(a) U = —5(1—+—r2 cos 26),
ug = %(T3 cos 36 + 7 cos §).
ug = rsiné,

1
(b) Uy = —57‘2 sin 2(9,

Uz = %(TB‘ sin 3¢ — rsin 6).

9.8. Find the exact solution of yug + (z + cu)u, = 0,u(x,1) = x, by
the methods of Chapter 2, and then find an approximate solution
(up to three terms of a series solution or three approximations by
the method of successive approximation) of this partial differential
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equation by perturbation methods. Make relevant comparisons.
ANS.

(14 26)u? - 2euz +y? — 22— 1=0,

yw 5B VI + 22 —y?) + 2e(1 + 22 — y?) 4 £222]
B 1+2¢ '

The series solution is

u:l+—x2——y2+(:c—‘\/1+x2—y2)€
+ (3m2 —-2y2+2——3x\/1+x2—y2)62+---

9.9. Find the exact solution of

%xyz + (z +eu)uy, =0, u(z,0) =z,

by the methods of Chapter 2, and then find an approximate solution
(up to three terms of a series solution or three approximations by
the method of successive approximation) of the partial differential
equation by perturbation techniques.

ANs.

u? + 2eu’(u — z) = 2% — 2tan"Y,

uw=+z2—2tan"Y + 8\/:1:2 —2tan™Y (:r — \/3:2 - Ztan“y)

- 2
+e2v/2? — 2tan™¥ (m - Va2 - 2tan‘y) +

9.10. Solve V2u = 0,0 < x < m, y > ez, 0 < ¢ <€ 1, such that
w(0,y) = u(m,y) =0, and u(z,ex) = sinz.
SoruTiOoN. Using (9.2), we have

> T
u(z,ex) = Y etz Fr (:0)
0 Y

Hence

> = Ou 0
sinx = 2_{ e un (, 0)+e:c:>_d e” B_yn (z, 0)621‘22 en
0 0 0

2
Un
(@ O
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Comparing powers of € on both sides we get

uo(z,0) = sinz,

o
u1(z,0) + m-—a-l;—o(z,O‘) =0,
8u1 (L‘2 6’2’11.0

] £ 2% 0)=0,
uz(z,0) +z By (x,0) + 5 By? (z,0)

and conditions on u,(z,0) can be derived similarly. All u, satisfy
Laplace’s equation. The solution for ug is clearly given by ug =
e~ Ysinz, and u; satisfies the following conditions:

u1(0,y) = va(m,y) =0, wu;i(z,0) =zsinz.

Assuming a solution of the form

we find that

. a1+ (=17
Al - 5’ An - ﬂ_(nz _ ])2 ? n # 1'

Thus u; is completely determined. We can continue the process and
determine u,, for higher values of n.

10

Finite Difference Methods

The development of high—speed digital and personal computers has made it
possible to effectively use different numerical techniques for solving boundary
and initial value problems involving partial differential equations. Among
different methods available, the finite difference method is widely used. It has
a straightforward structure which is derived from truncated Taylor’s series,
also known as Taylor’s formula. We shall discuss difference schemes for
first and second order partial derivatives, and then apply them to numerically
solve boundary and initial value problems for second order partial differential
equations.

In finite difference methods we replace the given differential equation and
the boundary/initial conditions by a set of algebraic equations which are then
solved by various well-known numerical techniques including sparse matrix
methods and adaptive grid generation schemes. Although the finite difference
method is just one of many numerical methods, it has advantages over other
methods in its simplicity of analysis and computer codes in solving problems
with complex geometries. It is used extensively in the area of computational
fluid dynamics allowing the modeling of complex flows. It is also used along
with finite element method in the solution of time—dependent problems.

R

10.1. Finite Difference Schemes

Consider a single—valued, finite function u(x) which belongs to the class
C°°(R'). Then by Taylor’s theorem
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h B
u(z + h) :u(z)+h;u’(z)+§u”(z)+ETu” () +-,
' : (10.1)
h? h3
u(z — h) = u(z) — hu'(z) + o u’(z) — 3 u(z) + -
: : (10.2)
Y
‘ : X
o x-h x x+h
Fig. 10.1.
If we subtract (10.2) from (10.1), we get
u(z + h) — u(z — h) = 2hu'(z) + O(h®).
e (@+h) (e~ )
€ —u(z - 10.3
u'(x) 5 ) (10.3)

with a truncation error of O(h?). The approximation formula (10.3) is known
as the first order central difference formula, and geometrically it represents
the slope of the chord AB (Fig. 10.1). Similarly,

u(z) —u(z —h)

= (10.4)

v (z) =

e (z+h) — u(z)
PN U\T — u\x
W) == (1035)
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each with a truncation error of O(h?), are known as the backward and forward

difference formulas, respectively, representing the slope of the chord P4 and
BP, respectively (Fig. 10.1).

If we add (10.1) and (10.2), we get
u(z + h) + u(z — h) = 2u(x) + K2 v (z) + O(h?),
which yields the second order central difference formula
u(z + h) - 2u(z) +u(z —h
) = HEER =2 e =h)

with a truncation error of O(h4). In fact, based on the Taylor series expansion,
the truncation error is approximately A f"/(x) for both forward and backward

(10.6)

1
schemes, and 3 h2f 4 (z) for the central scheme.

In the case of a function u(z, t) of two independent variables x and ¢, we
partition the z—axis into intervals of equal length A, and the t—axis into intervals
of equal length k. The (z, t)-plane is divided into equal rectangles of area hk
by the grid lines parallel to Ot, defined by z; = ih, 1 = 0,£1,42,..., and
by the grid lines parallel to Oz, defined by y; = ih, j = 0,£1, %2, ... (Fig.
10.2). We will use the following notation: Let up = u(ih, jk) = u; ; denote
the value of the function u(z, t) at a mesh point (node) P (ih, jk).

t
i, j+1
P (ih k)
i1, j ij i+1, ]
i, Jj-1
k
X
o
]

Fig. 10.2. Grid lines.
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Then, in view of (10.6), we have the following three central difference schemes:

82u\ _0%u| u((i+1)h, k) — 2u(ih, jk) + u (i — 1)j, jk)
dz2lp  Ox2liy; h2
_Uit1; =20 + Uiy
= 3
277, .
= 5th;’J, i=12,...,n—1,
(10.7)
2
with a truncation error —1—2—umu(i, t), where z;_1 < T < 3}
32u‘ _ 8211, Ui,j-f—l - QUi)j + Uz',j—l
a2 lp ~ Ot2li; k? (10.8)
STy 1
2377 J=44,m— L
2
with a truncation error —-ﬁumt(il?,t'), where t;_; <t <t;;and
Pu | _ Uirjer = Ui = Uiy + Uic1 5 (10.9)
Oxdtlp 4hk ’

h? - k2 .
with a truncation error —?umzt(i, t) - Fumt(z’ ,t"). Note that the dif-

ference operators 62 and &7 are the finite difference analogs of the partial
2 82

differential operators ) and Frt respectively. Moreover, from (10.3) we

have the first order central difference formula

dup  u((i+1)h,jk) —u((i = Dh, jk)

ozlp h (10.10)
U1, = Ui—ayy

= h ,

h? _
with a truncation error — —é—umz (z,t), and

Oup _ Uige1=Uijoy (10.11)
otlp k ’

2
with a truncation error — %um(x, t'). The first order backward and forward

difference formulas for u(z, t) can be similarly derived from (10.4) and (10.5).
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The second order forward and backward difference schemes are respectively
defined by

8u Uiya; — 2Ui1,; + U j

Y = > > ’ ) = 2,... —2 12

Erelig o) , 1=0,1,2, \N , (10.12)
and

0%u U; j— 2Ui_1j + Ui_gj

) =— ; - =0,1,2,... ,n—2. 10.13

0x2 1 h? » 1=0,1,2, n ( )
———

10.2. First Order Equations

Consider the first order quasi-linear partial differential equation of the form
auz +buy=c, or ap+bg=c (10.14)

where a, b, and c are functions of z,y, and u only (see §2.3). This equation
yields the auxiliary system of ordinary differential equations

do_dy _du

== (10.15)

It was shown in Chapter 2 that at each point of the solution domain of Eq
(10.14) there exists a direction, known as the characteristic, along which the
solution of this partial differential equation coincides with the solutions of the
ordinary differential equations (10.15). We shall denote the projection in the
(z, y)-plane of this characteristic by C. Let us assume that the solution of u
is known at every point of the characteristic C' in the (z, y)—plane such that C
is distinct from the initial curve I" on which the initial value of u is prescribed.

C
base
characteristc

P (xP’ yp)

0
(XQ, yQ) r

initial curce

Fig. 10.3.
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Let u be prescribed on the initial curve I" which does not coincide with any
characteristic C for the partial differential equation (10.14). Let P (zp,yp)
be a point on the characteristic C' which passes through a point Q (zq, yq)
on I such that P and @ are close to each other, i.e., |tp — ¢/ is small (Fig.
10.3).

We shall denote the m~th approximation of u by w(™, and of y by y(™
form =1,2,... . Let us assume that zp is known. Then, in view of (10.3)
and (10.4), the first approximation of a dy = bdz is given by

aQ (yg" - yQ) =bg (xp — zq), (10.16)
which yields yg) , and from a du = cdx we have
aQ ( 1) _ UQ) =CQ (:Ep —IQ), (1017)

which yields u( ). For the second approximation we have, by using average
values,

(1) (1)
Q10 (@) _yo) =R (p-g),  (1048)

which yields y( ) ,and

(1) (1)
@I (o) —ug) = 2LE (@p-ag),  (10.9)

which yields ug). Subsequent (higher) approximations can be similarly ob-
tained.

EXAMPLE 10.1. Consider the quasi-linear partial differential equa-~
tion
3y, —uuy = u?,

where u = 1 on the initial line y = 0, 0 < £ < 0o. The auxiliary system
of equations is

dr dy @‘.
32—y u?
1 .
Solving dg/: = iu, we find that % =" A, where A is constant

on a particular characteristic C. Thus, at a point (zg,0) on the initial
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curve I, we know that v = 1, and that gives A = 1 — L, which

VIQ
yields the solution along the base characteristic Cg as
1142 2 (10.20
u T JZg -20)
. . dy du
Similarly, solving T2 we have y = — In Bu, and the solution on
the characteristic Cq is
u=-e Y. (10.21)

Thus, the solution along a characteristic Cq is given by (10.20) or
(10.21). Eliminating u between Egs (10.20) and (10.21), we find the
equation of the characteristic Cq as

=In (1 + % - \/i_Q> . (10.22)

Now we will find the first and the second approximations at the
point P(1.1,y). Let zg = 1, z = 1.1. Then dz = zp — z¢ = 0.1,
yg =0, and ug = 1.

First approximation: In view of (10.18) and (10.19), from z%/2dy =
—udx we have z?é/z (yg) - 0) = —uq dx, which gives

1 U
y§3)=-— 3?2da:~ —0.1.

Ty

Also from xQ 2du = uQ dzx, we have
:172’2/2 (ug) - 1) = u} da,
which yields

2
u® =14 29 gp 14 L —1.01.

3/2 (1)3/2 (0.1)
Second approximation: The equation udx = —z3/2 dy gives
uQ + ug) do = — 3Q/2 +z 3/2 ( 2 _
2 2 yQ)
1 +21.01 (0.1) = - (1)%/2 +2(1.1)3/2 y@
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which yields ) = —0.097507.

Also, from z%/2 du = u? dz, we have
3/2 3/2 2 2
o t+T ug +u
9 P (ug) — uq) =9 P dz,
2 2
3/2 . 3/2 1 2 1.1 2
(1) +2(1 1) (ug) _ 1) _ M +2( ) iz,

which yields u{Z = 1.10261.
The exact values from (10.22) and (10.20) are

2 9
—n (14— —2) = —0.0076953,
vp =" ( Vil 1)

up = e ¥P = 0.91485.

Higher order approximations can be continued until the computed val-
ues differ from each other within the preassigned tolerance. =

10.3. Second Order Equations

Let a region Q in the (z,t)-plane be partitioned into a grid (z;,t;),
0<i<n,and 0<j<m,asin Fig. 10.2. By replacing all derivatives
in a given partial differential equation

Lu=f, forz,teQ, (10.23)

by their respective difference quotients, we obtain a finite difference
equation of the form

DUi; = fi; for (zit;) € Q, (10.24)

where D denotes the difference operator. Note that Eq (10.24) is the
discretized form of the given equation (10.23) such that the solution
U, ; approximates u(z,t) at the grid nodes.

DEFINITION 10.1. The local truncation error €; ; is the amount by
which the solution U; ; fails to satisfy Eq (10.23), i.e.,

i, = D Ui,j - fi,j- (10.25)
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DEFINITION 10.2. The difference equation (10.24) is said to be
consistent with the given partial differential equation (10.23) if

h}iIEO Ei,j =0. (1026)

DEFINITION 10.3. The discretization error V; ; is defined as V; ; =
Ui,j — us,5, where U ; is the exact solution of Eq (10.24), and wu, ; is
the solution of Eq (10.23) evaluated at (z;,¢;).

DEFINITION 10.4. The difference scheme, defined by Eq (10.24), is
said to be convergent if

h}licrilvo |Vh]‘ = h}licrllv() iUi:j - ui,j| =0 for (ﬂfi,tj) €. (1027)

In some cases the difference method may not be convergent, although
it may be consistent. There are examples discussing these issues in
Abbott and Basco (1990). Also, an example suggested by Du Fort and
Frankel is

Uijr1—-Usj-1 o2 Uiv1 = Uijr1 - U5 -1

T = Ui —1,jh%

which is always stable, where a is a constant, but is not consistent
unless k/h — 0 as k and h — 0 (Carrier and Pearson, 1988, p. 263).

The concept of stability of a finite difference scheme is based on
the propagation of the error E; o = V; ¢ — U; ¢ with increasing j, where
Ui,o denote the initial values for the difference equation (10.24), and
Vi,o are the initial values obtained from the solution of a perturbed
difference system. For a partial differential equation with a bounded
solution, the difference scheme (10.24) is said to be stable if the errors
E;j = Vi ; — U; ; are uniformly bounded in i as j — oo, i.e.,

| Ei g

<M forj>J,

where M is a positive constant and J a positive integer. A theorem,
known as the Lax equivalence theorem, states that stability of a solution
is both a necessary and sufficient condition for the convergence of a
finite difference problem which is consistent with a well-posed initial
and boundary value problem.

In order to illustrate the finite difference method for second order
equations, we shall first consider a very simple example.
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EXAMPLE 10.2. Let a one—dimensional steady state heat conduc-
tion problem be defined by

v'=-2% 0<z<l, u0)=1 u(l)=2 (10.28)
A partition of the interval [0, 1] into equally spaced points is given by

O=zxp <1< - <2y =1,

1
with the step size h = 2,41 —z; = —. Now, using the forward difference
scheme (10.12) on the problem (10.28), we have
Uip2 =2Ui 1 + U,

52 =—z;, 1=0,12,...,n—-1L

In particular, say, for n = 4, we get the system of equations

16 (Uy — 2Uy + Up) =0,
. 1
16 (Us — 2U, + Uy) = 16’
. 1
16 (Uy —2U3 + Us) = T

In view of the boundary conditions, we have Uy = 1, and Uy = 2. Then
the above system yields

o) — U =1,
1
U1 —2U2 + U3 = —ER,
129
Uy - 20 = -,

which, by using the Gauss elimination method, gives

643 387 903
=-— =1 Jo = — =1. 2, Us=— =1.736T.
U, =19 1.25586, U, 556 51172, 3= o

Alternately, since only 4" occurs in problem (10.28), we can use the
central difference scheme (10.7). Thus,

i1 — 22U, + Ui .
Uins h;—*— =l g2 i=1,2,...,n— 1L
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Then, with n = 4, we get the system of equations

16(U2 —2U; + Uo) = —%6,

16(U3 —2U2—|—U1) = —%,

16 (Us — 2U3 + Up) = —i

16’
or
257
22U, —Up = ——
951 2 2567
1
Uy =20 + U3 = ——
1 2+ U3 61’
) 521
Uy -2U3 = ——
2 3 2567
which gives
325 393 457
Uy = — =1.29653, U;=— =1. =—=1. .
1= 500 , 2= 5o 1.53516, Us; 56 1.7816
The exact solution is
13 2z
u(r) =1+ 5% 13

A comparison with the exact solution shows that the central difference
scheme gives a better approximation for problem (10.22). The results
are shown in the following table.

T Forward Difference Central Difference Exact
0.0 1.0 1.0 1.0
0.25 1.25586 1.26953 1.27051
0.5 1.51172 1.53516 1.53646
0.75 1.76367 1.78516 1.78613
1.0 2.0 2.0 20 =

Note that if the interval is [a, b], then we use the transformation

r—a

| —
s — ’

b-a

to reduce this interval to [0, 1].
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10.3.1. Diffusion equations. Consider the one-dimensional dif-
fusion equation
U = a% Ugy, (10.29)

where a? denotes the diffusivity. For the grid (z;,t;) = (ih, jk), we
shall discuss the following three finite difference schemes:

Forward Difference (Explicit Scheme):

Uijr1 = Uiy o2 Uit1,; —2Usj+ Uiv,j
k - h2 '
or -
Ui jr1 = (1+782) Uij, (10.30)

where 7 = a%k/h%.

Backward Difference (Implicit Scheme):

Uijr1—Us; 2 Uit1,j41 —2U; j41 +Us1 541
= a 5
k h2
or
Crank-Nicolson (Implicit Scheme):

Uijr1 —Usj 2 63Ui; +62Ui 11
k - B2 ’

> (1- gagi) Uijer = (1 + gag) Uij. (10.32)

Note that the Crank-Nicolson scheme is derived by averaging the finite
differences at the points (i,5) and (3,7 + 1) (see Exercise 10.2). Note
that the above forward difference scheme (10.30) is conditionally stable
iff » < 1/2, but the other two schemes (10.31) and (10.32) are always
stable.

ExAaMPLE 10.3. Consider the boundary value problem
Up = Uge, O0<T <1, t>0
u(0,t) =0=u(l,t), fort>0, (10.33)
u(z,0) = f(z), for0<z <1

This problem has been studied in Example 5.2 by the separation of
variables method. Since the space derivative is of second order, we shall
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use the central difference scheme (10.7), where U; ; = u(z;, t;) denotes
the temperature at a point z; at time t;. For the time derivative we
shall use the forward difference scheme
up = i1 = Ui,j’
k
where k = t;11 —t;. Then Eq (10.33) is approximated by

7 [Ussr,5 = 2Uij + Uizr5] = Uy j1 = Uy,

10.34
i=1,2...,n—-1, and j=0,1,2,..., (10.34)

where r = k/h?, and the boundary and initial conditions become

Uoj=0=Up;, forj=12,...,
Uio = f(z:) = fi, fori=0,1,2,...,n.

After rearranging the terms in Eq (10.34), we get
Uz’,j+1 =’I‘U,'_1’j + (1 —2'[‘) Ui,j +TU7;+1’]'. (10.35)

This difference equation allows us to compute Ui j+1 from the values
of U computed for earlier times. Note that the value Uio=fiisa
prescribed value of u at time t =0 and z = z;.

We shall take n = 4, i.e., h = 1/4. The value of r in Eq (10.35)
must be chosen properly so that the solution remains stable. It has
been determined that for a stable solution the value of r must be such
that the coefficients of u on the right side of Eq (10.35) remains non—

1
negative (Smith, 1985, Ch. 3). Hence, we must have 0 < r < 3 Then,

. . . 1 .
in view of this restriction, we must have k < rh%? = —. In the marginal

case when r = 1/2, we get k = 1/32. With these values of + and k,
system (10.35) reduces to

1 .
Ui,j+1 = 3 [Ui—l,j + Ui+1,j], 7=0,1,2,....

Since Up,j = U,,; =0 for all j, we find
For j=0:

1,
Uig = 3 [Uiz1,0 + Uit1,0],



334 CHAPTER 10: FINITE DIFFERENCE METHODS

or, successively,
Ui =y Usi=2(fi+ ), Usi=sfo
L1 = 5 /2 21 = 51 2), 31 = 5J2
For j=1:

1 1 1
Uy = §U2,1, U = §(U1,1 +Usq), Usp= ~2‘U2,1,

and so on. The values of U; ; for f(z) = cosnz are listed below in a
tabular form for some successive values of t.

t =0 2=025 =05 2=075 z=1
1 1

0 1 — 0 —— -1
Y2 Y2

1 - -

/320 5 0 5 0
1/16 0 0 0 0 0
3/32 0 0 0 0 0
1/8 0 0 0 0 0

Notice that the values average out in the outer columns. This will
happen if r = 1/2 is chosen. The solution for problem (10.33) for
different values of ¢ with r = 0.1 is presented in the following table:

t r=0 z=0.25 =05 z =0.75 z=1
1 1

0 1 7 0 7 1

1/32 0 0.665685 0 —0.665685 0

1/16 0 0.5632548 0 -0.532548 0O

3/32 0 0.426039 0 —0.426039 0

1/8 0 0.340831 0 —0.340831 0 =

10.3.2. Wave equation. To approximate the solution of the wave
equation
Uy = ¢ Uga, (10.36)

we can use the difference schemes (10.30)-(10.32) discussed earlier
for the diffusion equation, but more frequently used schemes are the
forward difference and the Crank-Nicolson. Let (z;,t;) = (ih, jk),
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(i, =0,1,...). Then
(a) Explicit Scheme (Forward Difference):
Uiji1 = 2Uij + Uijor _ 2 Uirsj = 2Uij + Uinay

k2 h? '

or
5? U; = c?p? 52 Ui ;, (10.37)

where p = k/h.

(b) Implicit Scheme (Crank—Nicolson):

Uijr1 —2Ui5 + Uiy & [Ui+1,j+1 = 2U; j4+1 +Ui1,5+1

k2 9 h2
Uipr,j—1 —2Us 1+ Ui—15-1
+ h2 J
or
02P2 2 2
82U = 5 (62U 41+ 62Us 5] - (10.38)

Note that the central difference schemes (10.7) and (10.8) are sometimes
also used (see Example 10.5).

EXAMPLE 10.4. In order to use a finite difference scheme to solve
the wave equation (10.36) with the Neumann initial conditions, i.e., for

u(z,0) = f(z),
uy(z,0) = g(x),
we take U, o = f(z;) = f;. Now we will find the start-up value of U;;

as follows: Under the assumption that f € C?, we have by Taylor’s
theorem

I

k2
u(zi, to) = u(w, 0) + kwg(z4,0) + > et (zi,0) + O(k?)

I

2
u(z;,0) + k g(z;) + %— A f"(z;) + O(k®)

2 2
= u(:,0) + kgi + =2 [firs ~ 2i + fim1] + O(K?h? + k),

where g; = g(z;), fi = f(x;), and (10.6) is used to approximate f"(x;).
The above expansion gives
Uipg-Uyo 1

9 = A : 50202 [fi+1 — 2fs + fiza],
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where U, o = f;. Then the start—up value U, ; is given by

1
Ujp=fi+k|g+ 562172 (fiyr —2fi + fi—l)] ..

ExaMPLE 10.5. Consider the wave equation us = Uz, 0 <z <1,
t > 0, subject to the boundary conditions

u(0,t) =0 =wu(l,t) fort >0,
and the initial conditions
u(z,0) = f(z), wu(z,0)=g(x) forO<z <1l
This problem is solved in Example 5.1 by the separation of variables
method. We shall use the central difference schemes (10.7) and (10.8)

for both uy, and uy. Thus,

_ Uit =2 + Uiy

Ugz 2 )
_ Uijy1 = 2U;j + Uija
Ut = k2 .

Then the wave equation, the boundary and the initial conditions reduce
to

Uij+1 = p*Uiz1j +2(1 = p*)i; + p°Uis1,5 — Uij-1,
i=12....n—1, j=01,2,...,
Upj=0=U,; forj=12...,
Uwo=Ffi, Ui1-Uipo=kg fori=0,1,...,n,

(10.39)

where p = k/h, and the forward difference scheme is used for the initial
condition u(x,0) = g(z).

Let f(x) = sinz, and g(z) = 1 — z. Then, with h = k = 1/4, the
initial conditions become

U@o = f,, = sinxi for i = 0‘y 1, 2,3,4,

Uiy —Uio=kgi = %(1 — ;) fori=0,1,2,34.
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Then the first equation in (10.39) becomes

Uy j+1 =Ug; + Uz j — Uo,j-1,
Ugj+1 =Ur; + Usj — Uzj-1,
Us,j+1 =Uz; +Usj = Usj-1.
Since the boundary conditions are Up ; = 0 = Uy j, we get the solution

for successive values of j = 1,2,..., which is presented in the following
table.

t =0 =025 =05 x=0.75 =1
0 0 0 0 0 0

0.25 0.2474  0.4272 0.3421 0.5728 0.6579
0.5 0.4794  0.5895 0.6707 0.7526 0.9021
0.75 0.6816  0.7230 —0.0921 —0.0522 0.8447
1.0 0 0 0 0 0 =

EXAMPLE 10.6. Solve usy = 4ugzg, 0 <z <1, t > 0, subject to the
initial conditions u(x,0) = sin7z, us(x,0) = 0 for 0 < x < 1, and the
boundary conditions u(0,t) = 0 = u(1,t) for ¢ > 0, by using (a) the
explicit scheme (10.37), and (b) the implicit scheme (10.38). Note that
the exact solution is

u(z,t) = sinmx cos2nt,
and d’Alembert’s solution is
1
u(x,t) = 3 [sin(7rz + 27t) + sin(mz — 27t)].

The Mathematica program for (a) is given below, and the corresponding
output is presented in a tabular form.

In[1]:=
Clear[u,n,m,i,j,r,k,h];
n:= 5
m:= 5
c:= 2
h:= 1/(n-1)
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k:= 1/(m-1)
r:= ¢ k/h;
u = Table[1,{n},{m}];

In[9]:=

f£f{i]:= Sin[Pi 1/(n-1) (i-1)]
glil:= 0

In[11]:=

Dol ulli,11] = £[i] ;
ulli,2]] = (1-r*2) f[i) + k gli] +
r~2/2 (£li+1)+£[i-11);,{i,1,n} J;

In[13]:=

Dol

ull1,j1]1 =
uln,jl]
{i,1.n} 1;

wnon
[l =)

In[14]:=

Do[

ulli,jl] = r°2 ulli-1,j-111 + 2(1-r"2) ulli,j-11] +

r-2 u[[i+1,j-1]] - u[[i,j-Z]], {i:2)n-1}s
{3,3,m}1;

u//N//Chop//Transpose//TableForm

Out[15]=
0 0 0 0 0
0.707107 —0.12132 -0.665476 8.11418 —44.0196
1. —0.171573 —0.941125 7.15642 —5.54069
0.707107 —0.12132 —0.665476 0.349676 27.1931
0 0 0 0 0
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(* The exact values follow *)
In[15]:=

Table[Sin[Pi h (i-1)] Cos[2 Pi k (j-1)1,
{i,iyn},{j,1,m}]//N//TableForm

Out[20]=
0 0 0 0 0
0.707107 0 -0.707107 O 0.707107
1. 0 -1. 0 1.
0.707107 0 -0.707107 0 0.707107
0 0 0 0 0

(* Note the value of r and the instability *)

It is instructive to experiment with different values for k and & in order to
study stability of solutions and find better approximations.

Part (b) can be similarly done by modifying the Mathematica code in (a)
and using (10.38). =

10.3.3. Poisson’s equation. Consider Poisson’s equation in a rec-
tangle = {0 < z < a, 0 < y < b} with boundary I':

Uzz + Uyy = f(2,Y), (10.40)

subject to the Dirichlet boundary condition

uv=g(z,y) onl. (10.41)

For f = 0, Eq (10.40) becomes Laplace’s equation. We shall analyze the
simple case when a = b, with the uniformly spaced grid lines of size h = a /4.
The nodes are then given by (z,, ¥») = (mh,nk), wherem,n = 0,1,2,3,4
(see Fig. 10.4). By using the central difference scheme (10.7), Eq (10.40)
reduces to the finite difference equation

612': Umyn + 65 Um,n = h2 fm,n, (1042)
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where frn = f(Zm,yn). The boundary condition (10.41) then becomes
Unn = Gmn = 9(Tm,yn) form,n=0,1,2,3,4.

Y
Ya * ¢ * (a a)
Q
Y. ¢ ° [ [ 3
3 7 8 9
y~® L] ° ° >
2 4 5 6
Yy 3 . . . >
1 2 3
Yo TS . . X
X0 X1 x2 X3 Xy

Fig. 10.4. Grid lines on the square 2.

By reordering Eq (10.42), we get
4Um,n - Um+1,n - Um—].,n - Um,n+1 - Um,n—l = _h2 fm,n~ (10-43)

The unknown values of u are at the nodes 1,2,...,9 (Fig. 10.4). We shall
use the notation:

Up=Us, U1 =U; Us;1=Us,
U2 =Us, Uz2=Us, Usp="Us,
Uiz =Us, Uz3=Us, Uss="Us.
Then Eq (10.43) can be written in the form of a system of algebraic equation
4] {U} = {F}, (10.44)
where the matrix [4] is a9 X 9 symmetric matrix

r4 -1 0 -1 0 O 0 0 07
4 -1 0 -1 0o 0 O O
4 -1 0 -1 0 O O
4 -1 0 -1 0 O
4] = 4 -1 0 -1 0|, (1045)
4 0 0 -1
4 -1 0
4 -1
L sym 4 ]

™
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and
( Uy ) (—h? f11+ 9o +91,0W
Us ~h? fa1 + 920
Us ~h% f31+ 930
U, —h% f12 + 9oz
{Uy=(Us p, {F}= —h% fa2 . (10.46)
Us —h® f31 + 942
Uyq ~h? fi3+go3+91a
Us ~h% fa3+ 924
\ Us J { —h2 f2,3+ 943+ 934/

The order of the matrix [A] is ({/h — 1) x (I/h — 1). The dimensions of the
vectors {U'} and {F'} are (I/h — 1). The difference method explained above
has a truncation error of O(h?). If the boundary value problem (10.40)-
(10.41) has a unique solution, / is small and [A] is nonsingular, then system
(10.44) has a unique solution. The system (10.44) can be easily solved.

In the case of a curved boundary I, consider a node in €2, which has at
least one adjacent node outside Q2 (see Fig. 10.5).

)
N\l Lo /

[~ 7

h

Fig. 10.5. Curved boundary T'.

Let P = (2, y») be a point inside Q and near the boundary I'. Then the
coordinates of the adjacent points g and 7 on the boundary I are:

g = (ZTms1,Yn) = (Tm + ah,yn),
T = (Tm,Yn+1) = (Tmh, Yn + Bh),

where 0 < a, 8 < 1. Moreover, the values of u(g) and u(r) are known, since
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u is prescribed on the boundary I'. By Taylor’s theorem

2h2

u(q) = u(P) + a hug(P) + —— Uz (P) + O(h®),

h?
u(Q) = wP) = hug(P) + 5 uzz(P) + O(R?).
After eliminating u,( P) from these two expansions, we obtain

_ 2[u(g) — (1 + a)u(P) + au(Q)]
Uaa(P) = a(l +a)

+ O(h).
Similarly,

2[u(r) - (1 + B)u(P) + Bu(R)]
Uyy (P
w(P) = B(1+B)

Hence the finite difference approximation for Poisson’s equation (10.40) de-

fined on a region with a curved boundary I is

U@ UK _(1. 1 Ulg) U(r) 2

-\=+=)UP

1+a 1+ a+[3 ( )+a(1+a)+ B+ B) Zh F(P).

(10.47)

+O(h).

ExAMPLE 10.7. To find finite difference solutions of Laplace’s equa-
tion uzz +uyy = 0 on the quarter—circular region Q = {I2 +y¥ <1,y >
0}, subject to the boundary conditions u(z,y) = 10 on 22 +3y% =1,y >
0}, and u(z,y) =0on0<z <l,y=0andu, =0onz =0,0<y < 1,
we choose the grid with h = 1/2 (see Fig. 10.6).

\r

uy,y=0

=

Fig. 10.6.
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From the boundary conditions we have Up o =0 = U, o and Uz =
10 = u{q) = u(r). The only unknown values of u are at the nodes
P = (z1,41), and Q = (2o,y1). From (10.43) the difference equation
centered at Q is

4Uo,1 ~ U1 —U—1,1 — Up2 — U = 0. (10.48)

Note that the coordinates of ¢ = (v/3 h, h), and of r = (h,v/3 k). Hence

a = f =+/3 —1. Also, the boundary conditions yields Uy ; = 0. Thus,
from (10.48) we have

2Up,1 — U1 = 5. (10.49)
Then the difference equation (10.47) gives

(Q) U(R) 2U(P) Ve _,
/_ V3 V3- V3(V3-1)

or )
Uo1  Uio 201, U(g)

VsV T VE-1 VAW D)

which yields
(1—v3) Vs, +2v3U11 = 20. (10.50)

By solving (10.49) and (10.50), we get

20 + 10f

U 35+ 5v/3
0.1 = 3\/_

=6.02317, U, =
1,1 WS

= 7.046349. w

The Notebook fd.ma can be found on the CRC web server.
This will help not only to solve problems but also generate Mathematica
codes for difference schemes.

10.4. Exercises

10.1. Use the central difference scheme, with n = 4, to solve

"

v —u=-2 0<z<l, (0)=0 wu(l)=1

BEiNT: 16(U;41 — 2U; + Ui—l) —-U;=-2fori=1,2,3,4, h = 1/4,
and the boundary conditions give U;41 = Uy, and Uy = 1.
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10.2. Derive the Crank-Nicolson scheme (10.32).
ANs. The central difference at the point (7, 7) is

_Uip1; —2Uij + Uicay _ 62U,
uz:c - h2 - h2 bl

and at the point (i, + 1) it is given by

U1 — 22U + Uiy 62Us 510

The result follows by taking the average of these two differences.

10.3. (a) Show that the forward difference scheme (10.30) has a trun-
cation error of O(k + h?); (b) Show that the local truncation error
is of O(k? + ) if r = 1/6.
SOLUTION. (a) Note that for (2;,t;) = (¢h,jk), we have

Ui i1 —U; 62U,
2 _ g+l 4J 2 Y%¥i,g
(ug —a um)w, = k —a’ =
k - a’h? _
-3 w24, t5) + 7 Uzzes(Tisti),
where z;_1 < & < z; and t; < t; < t;41. Then the truncation error
is given by

212
gutt(xivt_) - Ei—;i' uzrmz(ziiytj) = O(k + h2),

provided uy; and uzy4, are bounded.
(b) If r = 1/6, then (u; — a® uzy) ;=0 leads to

7:)

Ui j+1 — Uij 2 (ﬁUij k = a2h2 _
: = —q 2 = | —ug(z,t) - ——u (xZ;,t5)
k h‘z 2 2 12 TTTT (2 7 ’L’]
= O(k?) + O(hY).

10.4. Show that the forward scheme (10.30) is convergent for the
problem u; = a?ug;, 0 < < 1, t > 0, subject to the Dirichlet
boundary conditions u(0,t) = f(¢), u(1,t) = g(t) for ¢ > 0, and the
initial condition u(z,0) = F(z) for 0 <z < 1.

SoLuTION. With (z;,t;) = (th,jk) for ¢ = 0,1,...,n and j =
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0,1,...,m, and with nh = 1, jm = to, where ty is a prescribed
value, 0 < t < tg, we have
Uijs1 = Uiy + 162U,
Uio =F(z:) = Fi, Uoj=f(t;)=fj, Unj=glt;) = g;.

Let V;; = U ; — u;; be the discretization error, as in Definition
10.3. Then

k2 _
Vijger=rVicy; + (1~ 2")Vi,j +r Vi, + -5 uge (24, t5)
a?kh? B
+ _1'2— uzzzx(mi, tj);
where z;_1 < Z; < z; and t; < ¥; < tj41. Since r < 1/2, we have
[Vij+1| <7 |Viens| + (1 = 2r)|Vi ;| + Ak + Bkh?
< max |V; ;| + Ak? + Bkh?,
0<i<n
where
1 a?
A = max Butt(ﬂ%t)l, B =max ﬁumm(w,tﬂ,
since both u;; and uy... are assumed continuous. The above in-

equality gives

IViaall < V3]l + AR + BER2,

where ||V;|| = Or??(xn [VM, or, since ||Vp|| =0,

<

Vil < j (Ak® + Bkh?) < to (Ak + Bh?),

i.e., ||Vj|| — 0O uniformly in the domain of definition of the problem
as h,k — 0 for 0 <t <ty

10.5. Derive the matrix form of the system of difference equations
for the problem in Example 10.5 if the backward scheme (10.31) is
used.

Ans. The matrix equation is [4] {U} = {B}, where

"14+2r  -2r 0 - 0 0 0
—r 1+2r -r e 0 0 0
[A]——— —Tr 1+27‘ e 0 0 0

-r 1+2r -—r
- Sym e 0 =2r 142r
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Uo,j+1 Uo; — 2hrfj41
Uy,5+1 L,j
wy=4 P m=f
Un-1,j+1 Un-1,;
Un,jt+1 Un,; +2hrgji1 )

10.6. Solve the heat equation u; = Uy, 0 <<z < 1,t > 0, with n =4,
r=1/2, k =1/32, subject to the boundary and initial conditions
u(0,t) = 0 = u(1,t) for t > 0, and u(z,0) = z.

= 2(=1)"

ANs. Exact solution: u = Z 22 sinnrze ™t
nm
n=1

t =0 z =0.25 z=0.5 x =0.75 r=1
0 0 1/4 1/2 3/4 1
1/32 0 0.25 0.5 0.75 0
1/16 0 0.25 0.5 0.25 0
3/32 0 0.25 0.25 0.25 0
1/8 0 0.125 0.25 0.125 Om

10.7. Solve us = uze + 1,0 < x < 1, t > 0, subject to the boundary
and initial conditions u(0,t) = 0 = u(1,t) for t > 0 and the initial
condition u({z,0) = 0 for 0 < z < 1, with r = 1/2, k = 1/32, and
n=4.

ANs.
t z=0 x=0.25 z=0.5 x=0.75 r=1
0 0 0 0 0 0
1/32 0 0.03125 0.03125 0.03125 0
1/16 0 0.046875 0.0625 0.046875 0
3/32 0 0.0625 0.078125 0.0625 0
1/8 0 0.0703125 0.09375 0.0703125 0 =

10.8. Solve the wave equation uy; = ugze, 0 < x < 1, t > 0, with
r=1/2, k = 1/32, and n = 4, subject to the boundary and the
initial conditions:

(a) u(0,t) = 0 = u(1,t) for t > 0, and u(z,0) = 0, us(z,0) =1 for
O0<z<l.
(b) u(0,t) = 0 = u(1,t) for t > 0, and u(z,0) = sinnwz, u(z,0) =0
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for0<z<1.

ANs. (a)
t z=0 =025 =05 =075 zx=1
0 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.25 0.25 0.25 0.0
0.5 0.0 0.25 0.5 0.25 0.0
0.7 0.0 0.25 0.25 0.25 0
1.0 0.0 0.0 0.0 0.0 0.0 =

(b)
t z=0 z=025 =zx=0.5 z=07 z=1
0 0.0 0.7071 1.0 0.7071 0.0
0.25 0.7071 1. 0.7071 0.0
0.5 0.0 0.2929 0.4142 0.2929 0.0
0.75 0.0 —0.2929 —-0.4142  —0.2929 0.0
1.0 0.0 -0.7071 -1.0 -0.7071 0.0 =

10.9. Find the system of equations [A] {U} = {F} for the Neumann

boundary value problem

Ugg + Uyy = f(a?, y)H

in £,

Qti
on

=g(z,y) onT,

where () is the rectangle {0 < z < a,0 < y < b}. Choose the nodes
(mh,nh) for m = 0,1,2,... ,M and n = 0,1,2,... , N, such that

Nh=hb.

ANs. Eq (10.43) for m = 0,1,2,... ,M and n = 0,1,2,... ,N

leads to

Umsi,Nn —Unpm-1,n = 2h gmon,

Umnt1 = Unmn-1 = 2hgm N,

and the boundary condition gives

U—l,n - Ul,'n = tho,nv

Um,—l - Um,l = thm,o,

m=1,2,..

’

n=12,...,N—-1,
M -1,

n=12,...,N-1,
m=1,2,...,M~1.

At a corner node where the outward normal n is undefined, we
shall take the normal derivative as the average value of the two
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normal derivatives at the two adjacent boundary nodes. Thus, the
boundary conditions reduce to
U_10+ Up,—1 =Ur0+ Uo,1 +4hgo,
U1+ Unm+1,0 = Un + Unm-1,0 + 4hgno,
Ups+1,N +Umn=1 = Un-1,8n +Umn-1 +4hgm N,
Uon+1+U-1,v = Uopn-1+Usn +4hgon.

10.10. In Exercise 10.9, take M = N = 3, and g = 0. Determine the
matrix [A] and the vectors {U} and {F}.

ANs.
r 4 -2 0 -2 0 0 0 0 0 1
4 -1 0 -2 0 0 0 0
4 0 0o -2 0 0 0
4 -2 0 -1 O 0
(4] = 4 -1 0 -1 0]/,
4 0 0o -1
4 -2 0
4 =1
Lsym 4 |
and
(Us ) ( f1,1 W
Us f21
Us f31
U, L fi,2
{U}= ﬁ Us }, {F}=—h* ¢ f22
Us fa1
Uz f1,3
Us f2.3
L Ug L f2,3 7

10.11. Let Q be the square region {0 < z,y < 1} with boundary I'.
Find the finite difference equation for the boundary value problem
Ugg + Uyy +cu = fz,y) in,

subject to the Dirichlet boundary condition u = g(z,y) on T'.
ANS. (C - 4)Um’n + Um,n—l + Um‘—]"n + Um,n—l + Um+1,'n. = fm’n'

10.12. Find the finite difference equation for the boundary value prob-
lem

(auz), + (buy), =0, in Q={0<z,y<l1},
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where a and b are positive functions of z, ¥ and u.
ANs. On the square grid (2., yn) = (mh, nk), the difference equa-

tion is given by
Om+1/2,n Um+1»"_(“m+1/2,n + am—1/2,n) Um,n+am—1/2,n Un-1n
+bmnt1/2 Umns1— (Bmn+1/2 + Omn=1/2) Unn+bmn-1/2 Unn—t
=R’ fm,n-



A

Green’s Identities

A.1. Green’s Identities

Let € be a finite domain in R™ bounded by a piecewise smooth orientable

surface 0f2, and let w and F be scalar functions and G a vector function in
the class C%(€2). Then

Gradient Theorem: / VFdfl = ]{ nkFdSs,
Divergence Theorem: / V-GdQ = 7( n-Gds,
a0

Stokes Theorem: / VxGdQ = G- tdS,
Q o0

where n is the outward normal to the surface 89, t is the tangent vector at a
point on 0%, }{ denotes the surface or line integral, and d.S denotes the surface

or line element depending on the dimension of Q. The divergence theorem
in the above form is also known as the Gauss theorem. Stokes’ theorem is a
generalization of Green’s theorem which in R? states that if G = (G1, G3)
is a continuously differentiable vector field defined on a region containing
QU IQ C R? such that 95 is a smooth closed contour, then

8Gy  8G,

/ <°—~ - ) d.’L'1 d.’E2 = Gl dazl + G2 d.’EQ.
Q 61‘1 812 a0
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The above theorems lead to the following two useful identities:

= — n S, Al
J()(VG)wdQ— /Q(Vw)GdQ—&—/aQ wGd (A1)

oG
— | (Yw)- - — wdS, A2
- /Q (V2G)wdQ = /Q (V) - (VG) d }i o w (A.2)

where i =V -n= an 0 ,i=1,---,n, is the normal derivative
on
operator. The i—th component of the formula (A.1) can be written in a useful
form as
/ 74 ng, wGdS. (A.3)
8x, c%l 80

In R? let the functions M (z), N (z),and P(z), z = (21, 22,23) = (2,9, z) €
Q, be the components of the vector G. Then, by the divergence theorem

oM ON P
on 0
/Q(ax Ty T 6z> ‘

= ?{ [M cos(n, z) + N cos(n,y) + P cos(n, z)] dS, (A4)
N

ov
with the direction cosines cos nz, cos ny and cos nz. If we take M = Ua
N = u8 ,and P = ua— then (A.4) yields
oy 0z
budy  Oudv QE@) aQ = / W2 as - / uV2v dQ,
q\0zdzx 0Oydy O0z0z aq On Q A5)

which is known as Green’s first identity. Moreover, if we interchange u and v
in (A.4), we get

/(@-@Jra“a“rgﬁa—”) dQ:/ g“ ds - /UV2udQ
q\dzdx Oydy 0z0z s On (A6)
If we subtract (A.5) from (A.6), we obtain Green’s second identity:

v ou
2y — vV? - Xy ds AT
/Q(u 2y —w u)dQ—/aQ<uan van)d, (A7)

which is also known as Green’s reciprocity theorem. Note that Green’s identi-
ties are valid even if the domain € is bounded by finitely many closed surfaces;
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however, in that case the surface integrals must be evaluated over all surfaces
that make the boundary of Q. If we take v = 1 in (A.5), then

———dS /V2 dQ. A8
aq On (4.8)

If we take u = v in (A.5), then

% s = / (uV?u + |Vul?) dQ. (A.9)
aq On 0

A.2. Exercises

A.1. Use Green’s formulas to show that

// Vzuvzwdxa!y=// V4uwdxdy+/ Vzu?ﬂds
R R c on
/—Vzuwds

ANs.

/ V2uViwdzdy =
R

-1, [ax\ ViG) + (V)| et

SR DA EAD)

// e 2V2u+%vz )da:dy

// V4u)wda:dy+/V2 a“’d —%:—d)
-/ w(2T0 a(Z%) )

//Vu1udmdy+/v2u—ds /—Vzuwds

A.2. EXERCISES

A.2. Prove that uV - (hVv) =V - (uh Vv) —

ANs. Using V = 18/0z +j8/0y + k /02,

the right side

0
[ (5) v (0) *

L0 .0 0
=:u(zb——+ja—y+k

9z

) - (3 +

=uV - (hVv) = the left side.

A.3. Show that uV?v = V - (u Vv) —

ANS. Take h = 11in A.2.

Vu - V.

(h

Vu - hVou.

7))
”h? + kh—

ov
0z

)

353



Tables of Transform Pairs

Some basic formulas for the pairs of the Laplace, complex (exponential)
Fourier, Fourier sine, Fourier cosine, finite sine, and finite cosine transforms
are provided below in tabular forms. Definitions of these transforms are given

in §6.1 and §6.8.

B.1. Laplace Transform Pairs

f(®) F(s) = f(s)
1
1. 1 -, §>0
s
2. et ! , $>a
s—a
3 i a 0
. sin at o s>
s
4, cos at 1 s>0
5. sinh at sziay s>0
6. cosh at s2ja2’ s>0
b
t.
7. e?t sin bt mﬁ,

o

__g-;:e

B.1. LAPLACE TRANSFORM PAIRS

f(t)
8. €% coshbt
9. t* (n=1,2,-")
10. te* (n=12-)
1. H(t-a)
12.  H(t—a) f(t—a)
13. €% f(t)

14 f(t)*g(t)

15, f™(t)
16.  f(at)

17. [ f(t)dt

18.  é(t—a)
9. tf(t)
a
20 fc ——
€ric 2\/'2

21.  f(t) withperiod =T *

F(s) = f(s)
5 s>a
(s — a)? +b%’
n!
s—n_i'_—l, S>0
n!
_—_(s—a)""'l’ s>a
—as
¢ , §>0
s

e~ F(s) = e~ f(s)
F(s—a)=f(s—a)

F(s)G(s) = f()3(s)

s" F(s) —s""! f(0) —

(D), oo
> F(s) = < (5

e—as

2 Fes)
e~ave
S
S et f(t) dt
1—eTs

355

O

The command <<Calculus‘LaplaceTransform‘ loads the Mathemat-
ica package concerning Laplace transforms.

* f(t) is continuous in [0, T) and periodic with period T', T > 0.
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B.2. Fourier Cosine Transform Pairs

10.

11.

12.

13.

14.

15.

f()
f(az)
pman
1/

a
z? 4 a?

a? f(z)

sin ax
T

f(x)

é(z)
H(a —2x)

vzt +a?+a
z? 4 o?
{ 22 — a?)V/2,

0, z>a

{ (a2 _ :c2)_1/2,
0, z<a

sin (a?z?)

cos (a?z?)

9

z<a

xTr>a

Felf(@)} = fela)

2
T
? sinaa
T o«
ﬂ\/ae_w
2
3/2
" s

B.3. FOURIER SINE TRANSFORM PAIRS

357

_—

B.3. Fourier Sine Transform Pairs

10.

11.

12.

13.

f(z)
f(az)

o172

X
1-2 + a2

arctan(a/x)

a? f(x)

z
erfc ——, a>0

2v/a’
f"(x)

H(a - 1z)

T cosax
b2 + x2

Fo{fl@)} = fol@)

2 «
~fi(a)
21—e 9%

-
3
Q

—o? fy(a) + \/gaf(o)

21— cosacx
\7r «o

T e_a2/402

4243
_T_ =V (cos v/2aa + sin v2aa)
2\/a

(-
L

3/2 s
) e~ cosh acq,

3/2
(g) e % sinhaa, a<a
T
2
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B.4. Complex Fourier Transform Pairs

10.

11.

12.

13.

14.

15.

16.

f(z)

™ (z)

flaz), a>0

f(z —a)

6(x — a)

e—alxl

e_azz2

{ 1, |z|<a
0, |z|>a

{ 1, |z|<1
0, |z|>1

f(z)*g(z)

H(z+a)— H(x—a)

ze a2zl 450

a

z2 + a?
az

@+ )

cosaxr

sinaz

{ cosar, |r|<7/2a
0, l|z|>rw/2a

F{f(z)} = f(a)
(i)™ f(c)
l -/
2F3)
e f(a)
1

27
2

—ma

a2+02
1

a2
2 sinao

us

2 i 1.
—_ - COsSa — — sln«o
T «

1 -
Wor f(@) §(a)

e—a2/4a

2 sinaa
T «
2 2iax

™ (02 + a2)?

\/ge-aial
—% \/gae_“l"‘|
\/g [6(c +a) + 6(a — a)]

z\/g [6(c+a) — 6(a — a)]

2 a
\/g PR cos(ma/2a)
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1

17. —
1+ x2

1- |$|a |.’L'|<1
18.
0, lz{>1

\/g el

B.5. Finite Sine Transform Pairs

The tables are for the interval [0, 7]. If the interval is [a, ], then it can be
transformed into [0, ] by

y::
f(z)
1 sinmz, =1,2
2 > ap sinnz
n=1
3 T —2a
4, x
5.
{ e, T<a
6.
T—2x, IT>a
{ T—-a), z<a
7.
a(rr—a: T>a

sinh am

10.  f"(z)

sinha(m — z)

m(z—a) (B.1)

Sl 30 8

S
—

—

|

(-1)"]

3
3

cosna, O0<a<m

o 31w

sinna, 0<a<mw

3
[¥]

2n
|1
m(a? 4 n?) [
2n
m(a? + n?)

728, + 22 [£(0) = (=1)* £()]

_ (_1)11 ea'rr]
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B.6. Finite Cosine Transform Pairs

The tables are for the interval [0, 7]. If the interval is [a, ], then it can be C

transformed into [0, 7] by (B.1). ——

Glossary of Mathematica Functions

f(z) fe(n)
1, n=m
1. cosmzx, m=12,-.-
0, n#m
2. il + 3 an sinnz an
2 n=1 9
3. f(ﬂ' - CIJ) (_1)n ; Cn
4 1 2, n=0
0, n=12,-

{L O<z<a
-1, a<z<7T

ea:c

a

—1In(2sinz/2)

f(z)

= (=)™ f(m)]

A1l Allis a setting used for certain
options.

Apart Apart[expr] rewrites a rational
expression as a sum of terms with
minimal denominators. Apart[expr,
var] treats all variables other than var
as constants.

Append Append[expr, elem] gives
expr with elem appended.

Apply Apply[f, expr] or f @@ expr
replaces the head of expr by f.
Apply[f, expr, levelspec] replaces
heads in parts of expr specified by lev-
elspec.

Bessell Bessell[n, z] gives the mod-
ified Bessel function of the first kind
I(n, ).

BesselJ Bessell[n, z] gives the
Bessel function of the first kind J(n,
z).

BesselK BesselK[n, z] gives the

modified Bessel function of the sec-
and Lind Kin 7\

Binomial Binomial[n, m] gives the
binomial coefficient.

Blank _ or Blank[ ] is a pattern
object that can stand for any
Mathematica expression. _h or
Blank[h] can stand for any expression
with head h.

C C[i] is the default form for the i-th
constant of integration produced in
solving a differential equation with
DSolve.

Cancel Cancel[expr] cancels out
common factors in the numerator and
denominator of expr.

CForm CForm[expr] prints as a C lan-
guage version of expr.

CharacteristicPolynomial
CharacteristicPolynomial[m, x] gives
the characteristic polynomial defined
by the square matrix m and the vari-
able x. The result is normally equiva-
lent to Det[m - x
IdentityMatrix[Length[m]]].
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Chop Chop[expr] replaces approxi-
mate real numbers in expr that are
close to zero by the exact integer 0.
Chop[expr, tol] replaces approximate
real numbers in expr that differ from
zero by less than tol with 0.

Clear Clear[symboll, symbol2, ...]
clears values and definitions for the
specified symbols. Clear[\pattern1\,
\pattern2\, ...] clears values and defini-
tions for all symbols whose names
match any of the specified string pat-
terns.

Collect Collect[expr, x] collects
together terms involving the same
power of x. Collect[expr, {x1, X2, ...}]
collects together terms that involve the
same powers of x1, x2, ...

ColumnForm ColumnForm[{el, e2,
...}] prints as a column with el above
€2, etc. ColumnForm(list, horiz] speci-
fies the horizontal alignment of each
element. ColumnForm[list, horiz, vert]
also specifies the vertical alignment of
the whole column.

ComplexExpand
ComplexExpand[expr] expands expr
assuming that all variables are real.
ComplexExpand[expr, {x1, x2, ...}]
expands expr assuming that variables
matching any of the xi are complex.

Conjugate Conjugate[z] gives the
complex conjugate of the complex
number z.

Continuation Continuation[n] is
output at the beginning of the nth line

in a multiline printed expression.

ContourPlot ContourPlot[f,{x,xmin,

xmax}, {y, ymin, ymax}] generates a
contour plot of f as a function of x and
y.

Cos Cos(z] gives the cosine of z.

D Dff, x] gives the partial derivative
of f with respect to x. D[f, {x, n}]
gives the nth partial derivative with
respect to x. D[f, x1, x2, ...] gives a
mixed derivative.

Denominator Denominator[expr]
gives the denominator of expr.

DensityPlot DensityPlot(f, {x,
Xxmin, xmax}, {y, ymin, ymax}] makes
a density plot of f as a function of x
and y.

Derivative f’ represents the deriva-
tive of a function f of one argument.
Derivative[n], n2, ...][f] is the general
form, representing a function obtained
from f by differentiating nl times with
respect to the first argument, n2 times
with respect to the second argument,
and so on.

Det Det[m] gives the determinant of
the square matrix m.

Dot a.b.c or Dot[a, b, c] gives prod-
ucts of vectors, matrices and tensors.

DSolve DSolve[eqn, y[x], x] solves
a differential equation for the func-
tions y[x], with independent variable
x. DSolve[{egnl, eqn2, ...}, {yl[x1,
], -3 {x1, .. }] solves a list of dif-
ferential equations.

Dt Dt[f, x] gives the total derivative
of f with respect to x. Dt[f] gives the
total differential of f. Dt[f, {x, n}]
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gives the nth total derivative with
respect to x. Dt[f, x1, X2, ...] gives a
mixed total derivative.

E E is the exponential constant e (base
of natural logarithms), with numerical
value 2.71828....

Eigensystem Eigensystem[m] gives
a list {values, vectors} of the eigenval-
ues and eigenvectors of the square
matrix m.

Eigenvalues Eigenvalues[m] gives a
list of the eigenvalues of the square
matrix m.

Eigenvectors Eigenvectors(m]
gives a list of the eigenvectors of the
square matrix m.

Equal lhs == rhs returns True if lhs
and rhs are identical.

Erf Erf[z] gives the error function
erf(z). Erf[z0, z1] gives the general-
ized error function erf(z1) - erf(z0).

Erfc Erfc[z] gives the complemen-
tary error function erfc(z) == 1 -
erf(z).

Exp Exp[z] is the exponential func-
tion.

Expand Expand[expr] expands out
products and positive integer powers in
expr. Expand[expr, patt] avoids
expanding elements of expr which do
not contain terms matching the pattern
patt.

False False is the symbol for the
Boolean value false.
FindRoot FindRoot[lhs == rhs, {x,

x0}] searches for a numerical solution
to the equation lhs == rhs, starting
with x == x0.

Flatten Flatten{list] flattens out
nested lists. Flatten[list, n] flattens to
level n.

FortranForm FortranForm[expr]
prints as a Fortran language version of
expr.

Fourier Fourier{list] finds the dis-
crete Fourier transform of a list of
complex numbers.

Gamma Gamma[a] is the Euler gamma
function Gamma(a). Gamma[a, z] is
the incomplete gamma function
Gamma(a, z). Gammafa, z0, z1] is the
generalized incomplete gamma func-
tion Gammaqa, z0) - Gamma(a, z1).

Gradient Gradient is an option for
FindMinimum, which can be used to
specify the gradient of the function
whose minimum is being sought. With
Gradient-> Automatic, the gradient is
computed symbolically. A typical set-
ting is Gradient -> {2 x, Sign[y]}.

Greater x >y yields True if x is
determined to be greater than y. x1 >
x2 > x3 yields True if the xi form a
strictly decreasing sequence.

GreaterEqual x >=y yields True if
x is determined to be greater than or
equal to y. x1 >= x2 >= x3 yields True
if the xi form a non-increasing
sequence.

Hold Hold[expr] maintains expr in an
unevaluated form.
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I Irepresents the imaginary unit
Sqrt[-1].

Im Im[z] gives the imaginary part of
the complex number z.

In In[n] is a global object that is
assigned to have a delayed value of the
n-th input line.

Infinity Infinity is a symbol that
represents a positive infinite quantity.

Integrate Integrate[f,x] gives the
indefinite integral of f with respect to
x. Integrate[f, {x,xmin,xmax}] gives
the definite integral.

Integrate[f, {x,xmin,xmax},{y,ymin,ym
ax}] gives a multiple integral.

InverseFourier InverseFourier[list]
finds the discrete inverse Fourier trans-
form of a list of complex numbers.

Jacobian Jacobian is an option for
FindRoot. Jacobian -> Automatic
attempts symbolic computation of the
Jacobian of the system of functions
whose root is being sought. A typical
setting is Jacobian -> {{2 x, Sign[y]},
{y, x}}.

Join Join[listl, list2, ...] concatenates
lists together. Join can be used on any
set of expressions that have the same
head.

LegendreP LegendreP[n, x] gives the
n-th Legendre polynomial.
LegendreP[n, m, x] gives the associat-
ed Legendre polynomial.

Less x <y yields True if x is deter-
mined to be less than y. x1 <x2 <x3
yields True if the xi form a strictly

increasing sequence.

LessEqual x <=y yields True if x is
determined to be less than or equal to
y. x1 <= %2 <= x3 yields True if the xi
form a non-decreasing sequence.

Limit Limit[expr, x->x0] finds the
limiting value of expr when x
approaches x0.

ListPlot ListPlot[{yl, y2,...}]
plots a list of values. The x coordinates
for each point are takento be 1, 2, ....
ListPlot[{ {x1, y1}, {x2, y2}, ...}]
plots a list of values with specified x
and y coordinates.

ListPlot3D ListPlot3D[array] gener-
ates a three-dimensional plot of a sur-
face representing an array of height
values. ListPlot3D[array, shades] gen-
erates a plot with each element of the
surface shaded according to the speci-
fication in shades.

Log Log[z] gives the natural loga-
rithm of z (logarithm to base E).
Log[b, z] gives the logarithm to base
b.

Map Mapl[f, expr] or f /@ expr
applies f to each element on the first
level in expr. Map[f, expr, levelspec]
applies f to parts of expr specified by
levelspec.

MatrixForm MatrixForm[list] prints
with the elements of list arranged in a
regular array.

Max Max[x1, x2, ...] yields the numer-
ically largest of the xi. Max[{x1, x2,
.} {yl, ...}, ...] yields the largest ele-
ment of any of the lists.

GLOSSARY 365

Min Min[x1, x2, ...] yields the numer-
ically smallest of the xi. Min[{x1, x2,
23 {yl, ), -] yields the smallest
element of any of the lists.

N N[expr] gives the numerical value
of expr. N[expr, n} does computations
to n-digit precision.

NDSolve NDSolve[eqns, y, {x, xmin,
xmax}] finds a numerical solution to
the differential equations eqns for the
function y with the independent vari-
able x in the range xmin to xmax.
NDSolve[eqns, {y1, ¥2, ...}, {X, xmin,
xmax}] finds numerical solutions for
the functions yi. NDSolve[eqns, y, {x,
x1, x2, ...}] forces a function evalua-
tion at each of x1, X2, ... The range of
numerical integration is from Min[x1,
x2, ...] to Max[x1, x2, ...].

Needs Needs[\context', \file\] loads
file if the specified context is not
already in $Packages. Needs[\con-
text'\] loads the file specified by
ContextToFilename[\context'\] if the
specified context is not already in
$Packages.

Negative Negative[x] gives True if x
is a negative number.

Nintegrate Nintegrate[f, {X, xmin,

xmax}] gives a numerical approxima-
tion to the integral of f with respect to
x over the interval xmin to xmax.

NonNegative NonNegative[x] gives
True if X is a non-negative number.

Not !expr is the logical NOT func-
tion. It gives False if expr is True, and
True if it is False.

NSolve NSolve[eqns, vars] attempts
to solve numerically an equation or set
of equations for the variables vars.
Any variable in eqns but not vars is
regarded as a parameter.

NSolve[eqns] treats all variables
encountered as vars above.
NSolve[eqns, vars, prec] attempts to
solve numerically the equations for
vars using prec digits precision.

NullSpace NullSpace[m] gives a list
of vectors that forms a basis for the
null space of the matrix m.

Number Number represents an exact
integer or an approximate real number
in Read.

0ff Off[symbol tag] switches off a
message, so that it is no longer print-
ed. Off[s] switches off tracing mes-
sages associated with the symbol s.
Offfm1, m2, ...] switches off several
messages. Off] ] switches off all trac-
ing messages.

On On[symbol tag] switches on a
message, so that it can be printed.
On([s] switches on tracing for the sym-
bol s. On[m1, m2, ...] switches on sev-
eral messages. On[ ] switches on trac-
ing for all symbols.

Out %n or Out[n] is a global object
that is assigned to be the value pro-
duced on the n-th output line. % gives
the last result generated. %% gives the
result before last. %%...% (k times)
gives the k-th previous result.

ParametricPlot
ParametricPlot[{fx, fy}, {t, tmin,
tmax}] produces a parametric plot
with x and y coordinates fx and fy
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generated as a function of t.
ParametricPlot[{{fx, fy}, {gx, gy},
...}, {t, tmin, tmax}] plots several
parametric curves.

ParametricPlot3D
ParametricPlot3D[{fx, fy, fz}, {t, tmin,
tmax}] produces a three-dimensional
space curve parameterized by a vari-
able t which runs from tmin to tmax.
ParametricPlot3D[{fx, fy, fz}, {t, tmin,
tmax}, {u, umin, umax}] produces a
three-dimensional surface parame-
trized by t and u.
ParametricPlot3D[{fX, fy, fz, s}, ...]
shades the plot according to the color
specification s.
ParametricPlot3D[{{fx, fy, fz}, {gx,
gy, gz}, ...}, ...] plots several objects
together.

Part expr[[i]] or Part{expr, i] gives
the i-th part of expr. expr[[-i]] counts
from the end. expr[[0]] gives the head
of expr. expr{[i, j, ...]] or Part[expr, i, j,
...] is equivalent to expr[[i]] [[i]] ....
expr[[ {il, i2, ...} ]] gives a list of the
parts il, i2, ... of expr.

Partition Partition[list, n] partitions
list into non-overlapping sublists of
length n. Partition{list, n, d] generates
sublists with offset d. Partitionflist,
{n1, n2, ...}, {dl1, d2, ...}] partitions
successive levels in list into length ni
sublists with offsets di.

Pi Piis pi, with numerical value
3.14159....

Plot Plot[f, {x, xmin, xmax}] gener-
ates a plot of f as a function of x from
xmin to xmax. Plot[{f1, f2, ...}, {x,
xmin, xmax }] plots several functions
fi.

Plot3D Plot3D[f, {x, xmin, Xmax},
{y, ymin, ymax}] generates a three-
dimensional plot of f as a function of x
and y. Plot3D[{f, s}, {x, xmin, xmax},
{y, ymin, ymax}] generates a three-
dimensional plot in which the height
of the surface is specified by f, and the
shading is specified by s.

Print Print[exprl, expr2, ...] prints
the expri, followed by a new line (line
feed).

Quit Quit[ ] terminates a
Mathematica session.

Range Range[imax] generates the list
{1, 2, ..., imax}. Range[imin, imax]
generates the list {imin, ..., imax}.

Re Re[z] gives the real part of the
complex number z.

Remove Remove[symboll, ...]
removes symbols completely, so that
their names are no longer recognized
by Mathematica. Remove[\form1\,
\form2\, ...} removes all symbols
whose names match any of the string
patterns formi.

Replace Replace[expr, rules] applies
a rule or list of rules in an attempt to
transform the entire expression expr.

Rest Rest[expr] gives expr with the
first element removed.

Rule lhs -> rhs represents a rule that
transforms lhs to rhs.

SameQ lhs === rhs yields True if the
expression lhs is identical to rhs, and
yields False otherwise.
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Series Series[f, {x, x0, n}] generates
a power series expansion for f about
the point x = x0 to order (x - x0)"n.
Series(f, {x, x0, nx}, {y, y0, ny}] suc-
cessively finds series expansions with
respect to y, then x.

Set lhs = rhs evaluates rhs and
assigns the result to be the value of
lhs. From then on, lhs is replaced by
rhs whenever it appears. {11, 12, ...} =
{r1, r2, ...} evaluates the ri, and
assigns the results to be the values of
the corresponding li.

Show Show[graphics, options] dis-
plays two- and three-dimensional
graphics, using the options specified.
Show(gl, g2, ...] shows several plots
combined. Show can also be used to
play Sound objects.

Simplify Simplify[expr] performs a
sequence of transformations on expr,
and returns the simplest form it finds.

Sin Sin[z] gives the sine of z.

Solve Solve[eqns, vars] attempts to
solve an equation or set of equations
for the variables vars. Any variable in
eqns but not vars is regarded as a para-
meter. Solve[eqns] treats all variables
encountered as vars above. Solve[eqns,
vars, elims] attempts to solve the equa-
tions for vars, eliminating the variables
elims.

Sqrt Sqrt[z] gives the square root of
z.

Table Table[expr, {imax}] generates
a list of imax copies of expr.
Table[expr, {i, imax}] generates a list
of the values of expr when i runs from

1 to imax. Table[expr, {i, imin, imax}]
starts with i = imin. Table[expr, {i,
imin, imax, di}] uses steps di.
Table[expr, {i, imin, imax}, {j, jmin,
jmax}, ...] gives a nested list. The list
associated with 1 is outermost.

Tan Tan[z] gives the tangent of z.

TeXForm TeXForm[expr] prints as a
TeX language version of expr.

Times x*y*z orxy zrepresents a
product of terms.

Together Together[expr] puts terms
in a sum over a common denominator,
and cancels factors in the result.

Transpose Transpose[list] transpos-
es the first two levels in list.
Transpose[list, {nl, n2, ...}] transposes
list so that the nk-th level in list is the
k-th level in the result.

True True is the symbol for the
Boolean value true.

VectorQ VectorQ[expr] gives True if
expr is a list, none of whose elements
are themselves lists, and gives False
otherwise. VectorQ[expr, test] gives
True only if test yields True when
applied to each of the elements in
€Xpr.
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Mathematica Packages
and Notebooks

A list of Mathematica packages and notebooks available on the CRC web
server is given below. The numbers refer to the pages in the text of this book.

EquationType.m,7
EquationType.ma,7, 21
Example2.1.ma, 26
Example2.5.ma, 31
Example2.8.ma, 34
Example2.15.ma, 42
Example2.18.ma, 44
Example2.19.ma,45
Example2.21.ma,52
Example2.22.ma,53
Example2.24.ma, 55
Exercise2.22.ma, 61
Inverselperator.m,72
orthonormality.m, 86
plotfourier.m, 102
eigenpair.ma, 105
bessel .ma, 107
drum.ma, 143
Greens.ma, 217
galerkin.ma, 267
perturbation.ma, 306
fd.ma, 343
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