


ANAR R A P H  

R A W I N G  

TEAM LinG - Live, Informative, Non-cost and Genuine !



LECTURE NOTES SERIES ON COMPUTING 
Editor-in-Chief: D T Lee (Academia Sinica, Taiwan) 

Published 

Vol. 1: 

VOl. 2: 

VOl. 3: 

VOl. 4: 

VOl. 5: 

Vol. 6: 

VOl. 7: 

Vol. 8: 

VOl. 9: 

VOl. 10: 

Vol. 11: 

Computing in Euclidean Geometry 
Eds. D-Z Du & F Hwang 
Algorithmic Aspects of VLSl Layout 
Eds. D T Lee & M Sarrafzadeh 

String Searching Algorithms 
G A Stephen 
Computing in Euclidean Geometry (Second Edition) 
Eds. D-Z Du & F Hwang 
Proceedings of the Conference on 
Parallel Symbolic Computation - PASCO '94 
Ed. H Hong 
VLSl Physical Design Automation: Theory and Practice 
S M Sait & H Youssef 
Algorithms: Design Techniques and Analysis 
Ed. M H Alsuwaiyel 
Computer Mathematics 
Proceedings of the Fourth Asian Symposium (ASCM 2000) 
Eds. X-S Gao & D Wang 
Computer Mathematics 
Proceedings of the Fifth Asian Symposium (ASCM 2001) 
Eds. K Yokoyama & K Shirayanagi 
Computer Mathematics 
Proceedings of the Sixth Asian Symposium (ASCM 2003) 
Eds. Z Li & W Sit 
Geometric Computation 
fds.  F Chen & D Wang 

TEAM LinG - Live, Informative, Non-cost and Genuine !



otes Series on Corn uting - Vol. 12 

Tohoku University, Japan 

Bangladesh University of Engineering and Technology, Bangiadesh 

NEW J E R S E Y  - L O N C O N  SINGAPORE @ BElJlNG SHANGHAI HOMG KONG a TAIPEI  * CHENNAI 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Published by 

World Scientific Publishing Co. Pte. Ltd. 
5 Toh Tuck Link, Singapore 596224 

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE 

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library. 

PLANAR GRAPH DRAWING 
Lecture Notes Series on Computing - Vol. 12 

Copyright 0 2004 by World Scientific Publishing Co. Pte. Ltd. 
All rights reserved. This book, or parts thereof; may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the Publisher. 

For photocopying of material in  this volume, please pay a copying fee through the Copyright 
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to 
photocopy is not required from the publisher. 

ISBN 981-256-033-5 

Printed by FuIsland Offset Printing (S) Pte Ltd, Singapore 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Preface 

Motivation 

This book deals with theories and algorithms for drawing planar graphs. 
Graph drawing has appeared as a lively area in computer science due to 
its applications in almost all branches of science and technology. Many 
researchers have concentrated their attention on drawing planar graphs for 
the following reasons: 

0 drawings of planar graphs have no edge crossings, and look nice; 
drawings of planar graphs have practical applications in VLSI floor- 
planning and routing, architectural floorplanning, displaying RNA 
structures in bioinformatics, etc.; and 
algorithms for drawing planar graphs can be successfully used for 
drawing a nonplanar graph by transforming it into a similar planar 
graph. 

During the last two decades numerous results have been published on 
drawing planar graphs. For example, in 1990 it was shown that every pla- 
nar graph of n vertices has a straight-line drawing on a grid of area O(n2).  
This result solved the open question for about four decades whether a pla- 
nar graph has a straight line drawing on a grid of a polynomial area. Many 
algorithms have been developed to produce drawings of planar graphs with 
different styles to fulfill different application needs. While developing these 
algorithms, many elegant theories on the properties of planar graphs have 
been discovered, which have applications in solving problems on planar 
graphs other than graph drawing problems. For example, Schnyder intro- 
duced a “realizer” to produce straight line drawings of planar graphs, but 
later a realizer is used to solve the “independent spanning tree problem” 

V 

TEAM LinG - Live, Informative, Non-cost and Genuine !



vi Planar Graph Drawing 

of a certain class of planar graphs. A “canonical ordering” which was in- 
troduced by de Fraysseix et al. is later used to  solve a “graph partitioning 
problem.” On the other hand, many established graph theoretic results 
have been successfully used to solve graph drawing problems. For exam- 
ple, the problem of orthogonal drawings of plane graphs with the minimum 
number of bends is solved by reducing the problem to a network flow prob- 
lem. 

Recently, it appeared to us that a systematic and organized book con- 
taining these many results on planar graph drawings can help students and 
researchers of computer science to  apply the results in appropriate areas. 
For example, we observed that people working with VLSI floorplanning by 
rectangular dual did not notice Thomassen’s result on rectangular drawings 
of plane graphs. In our opinion the theory and algorithms are complemen- 
tary to each other in the research of planar graph drawings. We have thus 
tried to include in the book most of the important theorems and algorithms 
that are currently known for planar graph drawing. Furthermore, we have 
tried to provide constructive proofs for theorems, from which algorithms 
immediately follow. 

Organization of the Book 

This book is organized as follows. 
Chapter 1 is the introduction of graph drawing. It introduces different 

drawing styles of planar graphs, and presents properties of graph drawing 
and some applications of graph drawing. 

Chapter 2 deals with graph theoretic fundamentals. 
Chapter 3 provides algorithmic fundamentals. 
Chapter 4 describes straight line drawings of planar graphs on an integer 

grid. We present both the famous results of de Fraysseix et al. and Schnyder 
on straight-line drawings of planar graphs in this chapter. 

Chapter 5 focuses on convex drawings of planar graphs. In this chapter 
we present the results of Tutte, Thomassen and Chiba et al. on charac- 
terization of planar graphs with convex drawings. We also include recent 
results on convex grid drawings by Kant and Chrobak, and Miura et al. 

Chapter 6 deals with rectangular drawings of planar graphs. In this 
chapter we present a technique of Miura et al. for reducing a rectangular 
drawing problem to a matching problem. We present Thomassen’s result 
on rectangular drawings of plane graphs, and describe a generalization of 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Preface vii 

Thomassen’s result given by Rahman et al. We also present a necessary 
and sufficient condition for a planar graph to have a rectangular drawing. 
Several algorithms for rectangular drawings are included in this chapter. 

Chapter 7 deals with box-rectangular drawings of plane graphs. In this 
chapter we present a necessary and sufficient condition for a plane graph to 
have a box-rectangular drawing, and present a linear algorithm for finding 
a box-rectangular drawing of a plane graph. 

Chapter 8 discusses orthogonal drawings of plane graphs. In this chapter 
we present the results of Tamassia for solving the problem of finding a bend- 
minimum orthogonal drawing of a plane graph by reducing the problem to 
a network flow problem. We explain a linear algorithm for finding a bend- 
minimum orthogonal drawing of a triconnected cubic plane graph. In this 
chapter we also include a necessary and sufficient condition for a plane 
graph to have a no-bend orthogonal drawing. 

Chapter 9 deals with octagonal drawings of plane graphs with prescribed 
face areas. In this chapter we show that every “good slicing graph” has an 
octagonal drawing where each face is drawn as a rectilinear polygon of at 
most eight corners and the area of each inner face is equal to a prescribed 
value. We also present a linear algorithm for finding such a drawing. 

Appendix A presents planarity testing and embedding algorithms. 

Use of the book 

This book is suitable for use in advanced undergraduate and graduate level 
courses on Algorithms, Graph Theory, Graph Drawing, Information Visu- 
alization, and Computational Geometry. This book will serve as a good 
reference book for the researchers in the field of graph drawing. In this 
book many fundamental graph drawing algorithms are described with il- 
lustrations, which are helpful for software developers, particularly in the 
area of information visualization, VLSI design and CAD. 

Acknowledgments 

It is a pleasure to record our gratitude to those to whom we are indebted, 
directly or indirectly, in writing this book. A book as this one owes a great 
deal, of course, to many previous researchers and writers. Without trying 
to be complete, we would like to mention the books of Nishizeki and Chiba, 
Di Battista et al., and the tutorial edited by Kaufmann and Wagner. We 

TEAM LinG - Live, Informative, Non-cost and Genuine !



... 
V l l l  Planar Graph Drawing 

also acknowledge T. C. Biedl, M. Chrobak, H. de Fraysseix, A. Garg, G. 
Kant, R. Tamassia, C. Thomassen, J. Pach, T. H. Payne, R. Pollack, W. 
Schnyder and W. T. Tutte; some of their results are covered in this book. 

A substantial part of this book is based on a series of the authors’ 
own investigations. We wish to  thank the coauthors of our joint papers: 
Norishige Chiba, Shubhashis Ghosh, Hiroki Haga, Kazuyuki Miura, Shin- 
ichi Nakano, and Mahmuda Naznin. 

This book is based on our graph drawing research project supported by 
Japan Society for the Promotion of Science (JSPS) and Tohoku University. 
We also acknowledge Bangladesh University of Engineering and Technology 
(BUET) for providing the second author necessary leave to  write this book. 
We thankfully mention the names of our colleagues Yasuhito Asano and 
Xiao Zhou at Tohoku university and Md. Shamsul Alam, Mohammad 
Kaykobad and Md. Abul Kashem Mia at BUET for their encouraging 
comments on the book. The second author wishes to  thank his parents for 
supporting him throughout his life and for encouraging him to stay in a 
foreign country for the sake of writing this book. 

We must thank the series editor D. T. Lee for his positive decision for 
publishing the book from World Scientific Publishing Co. We also thank 
Yubing Zhai and Steven Patt of World Scientific Publishing Co. for their 
helpful cooperation. 

Finally, we would like to  thank our wives Yuko Nishizeki and Mossa. 
Anisa Khatun for their patience and constant support. 

Taka0 Nishizeki 
Md. Saidur Rahman 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Contents 

Preface V 

1 . Graph Drawing 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.2 Historical Background . . . . . . . . . . . . . . . . . . . . .  2 
1.3 Drawing Styles . . . . . . . . . . . . . . . . . . . . . . . . .  3 

1.3.1 Planar Drawing . . . . . . . . . . . . . . . . . . . . .  4 
1.3.2 Polyline Drawing . . . . . . . . . . . . . . . . . . . .  5 
1.3.3 Straight Line Drawing . . . . . . . . . . . . . . . . .  5 
1.3.4 Convex Drawing . . . . . . . . . . . . . . . . . . . .  6 
1.3.5 Orthogonal Drawing . . . . . . . . . . . . . . . . . .  6 
1.3.6 Box-Orthogonal Drawing . . . . . . . . . . . . . . . .  7 
1.3.7 Rectangular Drawing . . . . . . . . . . . . . . . . . .  8 
1.3.8 Box-Rectangular Drawing . . . . . . . . . . . . . . .  8 
1.3.9 Grid Drawing . . . . . . . . . . . . . . . . . . . . . .  8 
1.3.10 Visibility Drawing . . . . . . . . . . . . . . . . . . .  9 

1.4 Properties of Drawings . . . . . . . . . . . . . . . . . . . .  10 
1.5 Applications of Graph Drawing . . . . . . . . . . . . . . . .  11 

1.5.1 Floorplanning . . . . . . . . . . . . . . . . . . . . . .  12 
1.5.2 VLSI Layout . . . . . . . . . . . . . . . . . . . . . .  13 
1.5.3 Software Engineering . . . . . . . . . . . . . . . . . .  14 

1.6 Scope of This Book . . . . . . . . . . . . . . . . . . . . . . .  15 
1.5.4 Simulating Molecular Structures . . . . . . . . . . . .  15 

2 . Graph Theoretic Foundations 19 

2.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . .  19 

ix 
TEAM LinG - Live, Informative, Non-cost and Genuine !



X Planar Graph Drawing 

2.1.1 Graphs and Multigraphs . . . . . . . . . . . . . . . .  19 
2.1.2 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . .  20 
2.1.3 Paths and Cycles . . . . . . . . . . . . . . . . . . . .  21 
2.1.4 Chains . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
2.1.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . .  22 
2.1.6 Trees and Forests . . . . . . . . . . . . . . . . . . . .  22 
2.1.7 Complete Graphs . . . . . . . . . . . . . . . . . . . .  23 
2.1.8 Bipartite Graphs . . . . . . . . . . . . . . . . . . . .  24 
2.1.9 Subdivisions . . . . . . . . . . . . . . . . . . . . . . .  24 

2.2 Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . .  24 
2.2.1 Plane Graphs . . . . . . . . . . . . . . . . . . . . . .  26 
2.2.2 Euler’s Formula . . . . . . . . . . . . . . . . . . . . .  29 
2.2.3 Dual Graph . . . . . . . . . . . . . . . . . . . . . . .  30 

2.3 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  31 

3 . Algorithmic Foundations 33 

What is an Algorithm? . . . . . . . . . . . . . . . . . . . . .  
3.2 Machine Model and Complexity . . . . . . . . . . . . . . . .  34 

3.2.1 The O( ) notation . . . . . . . . . . . . . . . . . . .  34 
3.2.2 Polynomial Algorithms . . . . . . . . . . . . . . . . .  35 
3.2.3 NP-complete Problems . . . . . . . . . . . . . . . . .  35 

3.3 Data Structures and Graph Representation . . . . . . . . .  36 
3.4 Exploring a Graph . . . . . . . . . . . . . . . . . . . . . . .  

3.4.1 Depth-First Search . . . . . . . . . . . . . . . . . . .  38 
3.4.2 Breadth-First Search . . . . . . . . . . . . . . . . . .  39 

3.5 Data Structures for Plane Graphs . . . . . . . . . . . . . . .  42 
3.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  44 

3.1 33 

38 

4 . Straight Line Drawing 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .  
4.2 Shift Method . . . . . . . . . . . . . . . . . . . . . . .  

4.2.1 Canonical Ordering . . . . . . . . . . . . . . . .  
4.2.2 Shift Algorithm . . . . . . . . . . . . . . . . . .  
4.2.3 Linear-Time Implementation . . . . . . . . . . .  

4.3 Realizer Method . . . . . . . . . . . . . . . . . . . . .  
4.3.1 Barycentric Representation . . . . . . . . . . .  
4.3.2 Schnyder Labeling . . . . . . . . . . . . . . . .  
4.3.3 Realizer . . . . . . . . . . . . . . . . . . . . . .  

45 

. . .  45 

. . .  46 

. . .  46 

. . .  50 

. . .  54 

. . .  58 

. . .  58 

. . .  62 

. . .  66 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Contents xi 

4.3.4 Drawing Algorithm with Realizer . . . . . . . . . . .  69 
4.4 Compact Grid Drawing . . . . . . . . . . . . . . . . . . . .  72 

4.4.1 Four-Canonical Ordering . . . . . . . . . . . . . . . .  74 
4.4.2 Algorithm Four-Connected-Draw . . . . . . . . . . .  77 
4.4.3 Drawing G' . . . . . . . . . . . . . . . . . . . . . . .  79 

4.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  87 

5 . Convex Drawing 89 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

5.3 Convex Testing 94 
5.2 Convex Drawing . . . . . . . . . . . . . . . . . . . . . . . .  90 

5.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . .  95 
5.3.2 Condition I1 . . . . . . . . . . . . . . . . . . . . . . .  98 
5.3.3 Testing Algorithm . . . . . . . . . . . . . . . . . . .  101 

5.4 Convex Grid Drawings of 3-Connected Plane Graphs . . . .  105 
5.4.1 Canonical Decomposition . . . . . . . . . . . . . . .  105 
5.4.2 Algorithm for Convex Grid Drawing . . . . . . . . .  110 

5.5.1 Four-Canonical Decomposition . . . . . . . . . . . .  117 
5.5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . .  119 

5.5.2.1 How to Compute 2-Coordinates . . . . . . .  119 
5.5.2.2 How to Compute y-Coordinates . . . . . . .  123 

5.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  127 

. . . . . . . . . . . . . . . . . . . . . . . . .  

5.5 Convex Grid Drawings of 4-Connected Plane Graphs . . . .  117 

6 . Rectangular Drawing 129 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
6.2 Rectangular Drawing and Matching . . . . . . . . . . . . .  130 
6.3 Linear Algorithm for Rectangular Drawings of Plane Graphs 135 

6.3.1 Thomassen's Theorem . . . . . . . . . . . . . . . . .  135 
6.3.2 Sufficiency . . . . . . . . . . . . . . . . . . . . . . . .  137 
6.3.3 Rectangular Drawing Algorithm . . . . . . . . . . . .  152 
6.3.4 Rectangular Grid Drawing . . . . . . . . . . . . . . .  156 

6.5 Rectangular Drawings of Planar Graphs . . . . . . . . . . .  161 
6.5.1 Case for a Subdivision of a Planar 3-connected Cubic 

Graph . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
6.5.2 The Other Case . . . . . . . . . . . . . . . . . . . . .  169 

6.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  173 

6.4 Rectangular Drawings without Designated Corners . . . .  159 

TEAM LinG - Live, Informative, Non-cost and Genuine !



xii Planar Graph Drawing 

7 . Box-Rectangular Drawing 

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.3 Box-Rectangular Drawings with Designated Corner Boxes . 
7.4 Box-Rectangular Drawings without Designated Corners . . 

7.4.1 Box-Rectangular Drawings of G with A 5 3 . . . . . .  
7.4.2 Box-Rectangular Drawings of G with A 2 4 . . . . . .  

7.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  

8 . Orthogonal Drawing 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8.2.1 Orthogonal Representation . . . . . . . . . . . . . . .  
8.2.2 Flow Network . . . . . . . . . . . . . . . . . . . . . .  

8.2 Orthogonal Drawing and Network Flow . . . . . . . . . . .  

8.2.3 Finding Bend-Optimal Drawing . . . . . . . . . . . .  
8.3 Linear Algorithm for Bend-Optimal Drawing . . . . . . . .  

8.3.1 Genealogical Tree . . . . . . . . . . . . . . . . . . . .  
8.3.2 Assignment and Labeling . . . . . . . . . . . . . . .  
8.3.3 Feasible Orthogonal Drawing . . . . . . . . . . . . .  
8.3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . .  

8.4 Orthogonal Grid Drawing . . . . . . . . . . . . . . . . . . .  
Orthogonal Drawings without Bends . . . . . . . . . . . . .  

8.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  
8.5 

9 . Octagonal Drawing 
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9.2 Good Slicing Graphs . . . . . . . . . . . . . . . . . . . . . .  
9.3 Octagonal Drawing . . . . . . . . . . . . . . . . . . . . . . .  

9.3.1 Algorithm Octagonal-Draw . . . . . . . . . . . . . .  
9.3.2 Embedding a Slicing Path . . . . . . . . . . . . . . .  
9.3.3 Correctness and Time Complexity . . . . . . . . . .  

9.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  

Appendix A Planar Embedding 
A. l  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A.2 Planarity Testing . . . . . . . . . . . . . . . . . . . . . . . .  

A.2.1 &Numbering . . . . . . . . . . . . . . . . . . . . . .  
A.2.2 Bush Form and PQTree . . . . . . . . . . . . . . . .  

175 

175 
175 
178 
182 
183 
193 
195 

197 

197 
198 
198 
201 
202 
208 
211 
213 
217 
224 
227 
229 
231 

233 

233 
235 
238 
239 
243 
249 
250 

253 

253 
254 
255 
259 

TEAM LinG - Live, Informative, Non-cost and Genuine !



... Contents XI11 

A.2.3 Planarity Testing Algorithm . . . . . . . . . . . . . .  
A.3 Finding Planar Embedding . . . . . . . . . . . . . . . . . .  266 

Algorithm for Extending A,  into Adj . . . . . . . . .  
A.3.2 Algorithm for Constructing A,  . . . . . . . . . . . .  271 

A.4 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . .  277 

263 

267 A.3.1 

Bibliography 281 

Index 291 

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 1 

Graph Drawing 

1.1 Introduction 

A graph consists of a set of vertices and a set of edges, each joining two 
vertices. A drawing of a graph can be thought of as a diagram consisting of 
a collection of objects corresponding to the vertices of the graph together 
with some line segments corresponding to the edges connecting the objects. 
People are using diagrams from ancient time to represent abstract things 
like ideas, concepts, etc. as well as concrete things like maps, structures of 
machines, etc. A diagram of a computer network is depicted in Fig. 1.1, 
where each component of the network is drawn by a small circle and a con- 
nection between a pair of components is drawn by a straight line segment. 
We can consider this diagram as a drawing of a graph which represents 
information regarding interconnections of the computer network. The ver- 
tices of the graph represent components of the network and are drawn as 
small circles in the diagram, while the edges of the graph represent inter- 
connection relationship among the components and are drawn by straight 
line segments. A graph may be used to represent any information, like 
interconnection information of a computer network, which can be modeled 
as objects and relationship between those objects. A drawing of a graph is 
a sort of visualization of information represented by the graph. 

The graph in Fig. 1.2(a) repre- 
sents eight components and their interconnections in an electronic circuit, 
and Fig. 1.2(b) depicts a drawing of the graph. Although the graph in 
Fig. l.2(a) correctly represents the circuit, the representation is messy and 
hard to trace the circuit for understanding and troubleshooting. Further- 
more, in this representation one cannot lay the circuit on a single layered 
PCB (Printed Circuit Board) because of edge crossings. On the other hand, 

We now consider another example. 

1
TEAM LinG - Live, Informative, Non-cost and Genuine !



2 Planar Graph Drawing 

STATION 

STATION 

STATION 

STATION STATION ’’ J 
STATION 

Fig. 1.1 A diagram of a computer network. 

the drawing of the graph in Fig. 1.2(b) looks better and it is easily traceable. 
Furthermore one can use the drawing to lay the circuit on a single layered 
PCB, since it has no edge crossing. Thus the objective of graph drawing 
is to obtain a nice representation of a graph such that the structure of the 
graph is easily understandable, and moreover the drawing should satisfy 
some criteria that arises from the application point of view. 

1.2 Historical Background 

The origin of graph drawing is not well known. Although Euler (1707-1783) 
is credited with originating graph theory in 1736 [BW76], graph drawings 
were in limited use during centuries before Euler’s time. A known exam- 
ple of ancient graph drawings is a family tree that decorated the atria of 
patrician roman villas [KMBW02]. 

The industrial need for graph drawing algorithms arose in the late 1960’s 
when a large number of elements in complex circuit designs made hand- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 3 

6 

1 2 3 

Fig. 1.2 An example of graph drawing in circuit schematics. 

drawing too complicated [Bie97, Kan93, Rah99, Sug021. Algorithms were 
developed to aid circuit design; an overview can be found in the book of 
Lengauer [LenSO]. The field of graph drawing with the objective of pro- 
ducing aesthetically pleasing pictures became of interest in the late 1980’s 
for presenting information of engineering and production process [CON85, 
TDB881. 

The field of graph drawing has been flourished very much in the last 
decade. Recent progress in computational geometry, topological graph 
theory, and order theory has considerably affected the evolution of this 
field, and has widened the range of issues being investigated. A compre- 
hensive bibliography on graph drawing algorithms [DETT94] cites more 
than 300 papers written before 1993. From 1993, an international sym- 
posium on graph drawing is being held annually in different countries 
and the proceedings of the symposium are published by Springer-Verlag 
in the LNCS series [TT95, Bra96, Nor97, Dib97, Whi98, Kra99, MarO1, 
GK02, Li0041. Several special issues of journals dedicated to graph draw- 
ing have been recently assembled [CE95, DT96, DT98, DM99, LWOO, 
Kau021. 

1.3 Drawing Styles 

In this section we introduce some important drawing styles and related 
terminologies. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



4 Planar Graph Drawing 

Various graphic standards are used for drawing graphs. Usually, vertices 
are represented by symbols such as points or boxes, and edges are repre- 
sented by simple open Jordan curves connecting the symbols that represent 
the associated vertices. From now on, we assume that vertices are repre- 
sented by points if not specified. We now introduce the following drawing 
styles. 

1.3.1 Planar Drawing 

A drawing of a graph is p lanar  if no two edges intersect in the drawing. 
Figure 1.3 depicts a planar drawing and a non-planar drawing of the same 
graph. It is preferable to find a planar drawing of a graph if the graph has 
such a drawing. Unfortunately not all graphs admit planar drawings. A 
graph which admits a planar drawing is called a p lanar  graph. 

b 

d 

Fig. 1.3 (a) A planar drawing, and (b) a non-planar drawing of the same graph. 

If one wants to find a planar drawing of a given graph, first he/she needs 
to  test whether the given graph is planar or not. If the graph is planar, 
then he/she needs to find a planar embedding of the graph, which is a data 
structure representing adjacency lists: in each list the edges incident to a 
vertex are ordered, all clockwise or all counterclockwise, according to the 
planar embedding. Kuratowski [KurSO] gave the first complete character- 
ization of planar graphs. (See Theorem 2.2.1.) Unfortunately the char- 
acterization does not lead to an efficient algorithm for planarity testing. 
Linear-time algorithms for this problem have been developed by Hopcroft 
and Tarjan [HT74], and Booth and Lueker [BL76]. Chiba et  al. [CNA085] 
and Mehlhorn and Mutzel [MM96] gave linear-time algorithms for finding 
a planar embedding of a planar graph. Shih and Hsu [SH99] gave a simple 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 5 

linear-time algorithm which performs planarity testing and finds a planar 
embedding of a planar graph simultaneously. For the interested reader, 
algorithms for planarity testing and embeddings are given in Appendix A. 
A planar graph with a fixed planar embedding is called a p lane  graph. 

1.3.2 Polyline Drawing 

A polyline drawing is a drawing of a graph in which each edge of the graph 
is represented by a polygonal chain. A polyline drawing of a graph is shown 
in Fig. 1.4. A point at which an edge changes its direction in a polyline 
drawing is called a bend. Polyline drawings provide great flexibility since 
they can approximate drawings with curved edges. However, it may be 
difficult to follow edges with more than two or three bends by the eye. 
Several interesting results on polyline drawings can be found in [BSM02, 
DDLW03, GM98]. 

Fig. 1.4 A polyline drawing of a graph 

1.3.3 Straight Line Drawing 

A straight l ine drawing is a drawing of a graph in which each edge of the 
graph is drawn as a straight line segment, as illustrated in Fig. 1.5. A 
straight line drawing is a special case of a polyline drawing, where edges 

TEAM LinG - Live, Informative, Non-cost and Genuine !



6 Planar Graph Drawing 

are drawn without bend. 

Fig. 1.5 (a) A straight line drawing, and (b) a convex drawing. 

Wagner [Wag36], FBry [Far481 and Stein [Ste51] independently proved 
that every planar graph has a straight line drawing. Many works have been 
done on straight line drawings of planar graphs [DETT94]. 

1.3.4 Convex Drawing 

A straight line drawing of a plane graph G is called a convex drawing if the 
boundaries of all faces of G are drawn as convex polygons, as illustrated in 
Fig. 1.5(b). Although not every plane graph has a convex drawing, every 
3-connected plane graph has such a drawing [TutGO]. Several algorithms 
are known for finding a convex drawing of a plane graph [CK97, CON85, 
CYN84, Kan961. 

1.3.5 Orthogonal Drawing 

An orthogonal drawing is a drawing of a plane graph in which each edge 
is drawn as a chain of horizontal and vertical line segments, as illus- 
trated in Fig. 1.6(a). Orthogonal drawings have attracted much attention 
due to their numerous applications in circuit layouts, database diagrams, 
entity-relationship diagrams, etc. Many results have been published in re- 
cent years on both planar orthogonal drawings [Bie96a, Bie96b, Kan96, 
RNN99, RNNO3, Sto84, Tam87, TTVSl] and non-planar orthogonal draw- 
ings [BK98, PT95, PT971. An orthogonal drawing is called an octagonal 
drawing if the outer cycle is drawn as a rectangle and each inner face is 
drawn as a rectilinear polygon of at most eight corners [RMN04]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing r 

1.3.6 Box-Orthogonal Drawing 

Conventionally, each vertex in an orthogonal drawing is drawn as a point, 
as illustrated in Fig. 1.6(a). Clearly a graph having a vertex of degree five or 
more has no orthogonal drawing, because at most four edges can be incident 
to  a vertex in an orthogonal drawing. A box-orthogonal drawing of a graph 
is a drawing such that each vertex is drawn as a (possibly degenerate) 
rectangle, called a box, and each edge is drawn as a sequence of alternate 
horizontal and vertical line segments, as illustrated in Fig. 1.6(b). Every 
plane graph has a box-orthogonal drawing. Several results are known for 
box-orthogonal drawings [BK97, FKK97, PTOO]. 

I 

Fig. 1.6 
drawing, and (d) a box-rectangular drawing. 

(a) An orthogonal drawing, (b) a box-orthogonal drawing, (c) a rectangular 

TEAM LinG - Live, Informative, Non-cost and Genuine !



8 Planar Graph Drawing 

1.3.7 Rectangular Drawing 

A rectangular drawing of a plane graph G is a drawing of G in which each 
vertex is drawn as a point, each edge is drawn as a horizontal or vertical line 
segment without edge-crossings, and each face is drawn as a rectangle, as 
illustrated in Fig. 1.6(c). Not every plane graph has a rectangular drawing. 
Thomassen [Tho841 and Rahman e t  al. [RNNO2] established necessary and 
sufficient conditions for a plane graph of the maximum degree three to 
have a rectangular drawing. Linear-time algorithms for finding rectangular 
drawings of such plane graphs are also known [BS88, RNN98, RNNO21. 
Recently Miura e t  al. reduced the problem of finding a rectangular drawing 
of a plane graph of the maximum degree four to a perfect matching problem 
[MHN04]. 

A planar graph G is said to  have a rectangular drawing if at least one of 
the plane embeddings of G has a rectangular drawing. Recently Rahman 
e t  al. [RNG04] gave a linear time algorithm to examine whether a planar 
graph of the maximum degree three has a rectangular drawing and to find 
a rectangular drawing if it exists. 

1.3.8 Box-Rectangular Drawing 

A box-rectangular drawing of a plane graph G is a drawing of G on the plane 
such that each vertex is drawn as a (possibly degenerate) rectangle, called 
a box, and the contour of each face is drawn as a rectangle, as illustrated in 
Fig. 1.6(d). If G has multiple edges or a vertex of degree five or more, then 
G has no rectangular drawing but may have a box-rectangular drawing. 
However, not every plane graph has a box-rectangular drawing. Rahman 
e t  al. [RNNOO] gave a necessary and sufficient condition for a plane graph 
to have a box-rectangular drawing. Linear-time algorithms are also known 
for finding a box-rectangular drawing of a plane graph if it exists [HeOl, 
RNNOO]. 

1.3.9 Grid Drawing 

A drawing of a graph in which vertices and bends are located at grid points 
of an integer grid as illustrated in Fig. 1.7 is called a grid drawing. Grid 
drawing approach overcomes the following problems in graph drawing with 
real number arithmetic. 

(i) When the embedding has to be drawn on a raster device, real vertex 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 9 

~~ .... 

. . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . 

.... 

Fig. 1.7 (a) A straight line grid drawing, and (b) a rectangular grid drawing. 

coordinates have to be mapped to integer grid points, and there is no 
guarantee that a correct embedding will be obtained after rounding. 

(ii) Many vertices may be concentrated in a small region of the drawing. 
Thus the embedding may be messy, and line intersections may not be 
detected. 

(iii) One cannot compare area requirement for two or more different draw- 
ings using real number arithmetic, since any drawing can be fitted in 
any small area using magnification. 

The size of an integer grid required for a grid drawing is measured by 
the size of the smallest rectangle on the grid which encloses the drawing. 
The width W of the grid is the width of the rectangle and the height H of 
the grid is the height of the rectangle. The grid size is usually described as 
W x H. The grid size is sometimes described by the half perimeter W + H 
or the area W . H of the grid. 

It is a very challenging problem to  draw a plane graph on a grid of the 
minimum size. In recent years, several works are devoted to this field [CN98, 
FPP90, SchSO]; for example, every plane graph of n vertices has a straight 
line grid drawing on a grid of size W x H 5 (n  - 1) x (n  - 1). 

1.3.10 Visibility Drawing 

A visibility drawing of a plane graph G is a drawing of G where each vertex 
is drawn as a horizontal line segment and each edge is drawn as a vertical 
line segment. The vertical line segment representing an edge must connect 

TEAM LinG - Live, Informative, Non-cost and Genuine !



10 Planar Graph Drawing 

points on the horizontal line segments representing the end vertices [Kan97]. 
Figure 1.8(b) depicts a visibility drawing of the plane graph G in Fig. 1.8(a). 

Fig. 1.8 
of G. 

(a) A plane graph G, (b) a visibility drawing of G, and ( c )  a 2-visibility drawing 

A %visibility drawing is a generalization of a visibility drawing where 
vertices are drawn as boxes and edges are drawn as either a horizontal 
line segment or a vertical line segment [FKK97]. Figure 1.8(c) depicts a 
2-visibility drawing of the plane graph G in Fig. 1.8(a). 

1.4 Properties of Drawings 

There are infinitely many drawings of a graph. When drawing a graph, 
we would like to  consider a variety of properties. For example, if a graph 
corresponds to a VLSI circuit, then we may be interested in a planar orthog- 
onal drawing of the graph such that the number of bends in the drawing 
is as small as possible, because bends increase the manufacturing cost of 
a VLSI chip. To avoid wasting valuable space in the chip, it is important 
to keep the area of the drawing small. Even if we are motivated to obtain 
only a nice drawing, we cannot precisely define a nice drawing, and hence 
we consider some properties of graph drawings [Bie97]. In this section we 
introduce some properties of graph drawings which we generally consider. 

Area. A drawing is useless if it is unreadable. If the used area of the 
drawing is large, then we have to use many pages, or we must decrease 
resolution, so either way the drawing becomes unreadable. Therefore 
one major objective is to ensure a small area. Small drawing area is 
also preferable in application domains like VLSI floorplanning. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 11 

Aspect Ratio. Aspect ratio is defined as the ratio of the length of the 
longest side to the length of the shortest side of the smallest rectangle 
which encloses the drawing. 

Bends. At a bend, the polyline drawing of an edge changes direction, and 
hence a bend on an edge increases the difficulties of following the course 
of the edge. For this reason, both the total number of bends and the 
number of bends per edge should be kept small. 

Crossings. Every crossing of edges bears the potential of confusion, and 
therefore the number of crossings should be kept small. 

Shape of Faces. If every face has a regular shape in a drawing, the draw- 
ing looks nice. For VLSI floorplanning, it is desirable that each face 
is drawn as a rectangle. 

Symmetry. Symmetry is an important aesthetic criteria in graph drawing. 
A symmetry of a two-dimensional figure is an isometry of the plane 
that fixes the figure [HE03]. There are two types of two-dimensional 
symmetry, rotational symmetry and reflectional symmetry. Rotational 
symmetry is a rotation about a point and reflectional symmetry is a 
reflection in an axis. 

Angular Resolution. Angular resolution is measured by the smallest an- 
gle between adjacent edges in a drawing. Higher angular resolution is 
desirable for displaying a drawing on a raster device. 

For most of the cases above, it is hard to achieve optimum. Garey and 
Johnson showed that minimizing the number of crossings is NP-complete 
[GJ83]. Kramer and van Leeuwen [KL84] proved that it is NP-complete to 
examine whether a graph can be embedded in a grid of prescribed size, and 
Formann and Wagner pointed out some corrections to the proof [FW91]. 
Garg and Tamassia showed that the problem of determining the minimum 
number of bends for orthogonal drawings is NP-complete [GTOl]. The 
problem of determining whether a given graph can be drawn symmetrically 
is also NP-complete [Lub81, ManSl]. 

1.5 Applications of Graph Drawing 

Graph drawings have applications in almost every branch of science and 
technology [JM04, KWO1, Sug021. In Section 1.1 we have seen two appli- 
cations of graph drawings in computer networks and circuit schematics. In 

TEAM LinG - Live, Informative, Non-cost and Genuine !



12 Planar Graph Drawing 

this section we will investigate a few more applications of graph drawings. 

1.5.1 Floorplanning 

Graph drawings have applications in VLSI floorplanning as well as archi- 
tectural floorplaning. In a VLSI floorplanning problem, an input is a plane 
graph F as illustrated in Fig. 1.9(a); F represents the functional entities 
of a chip, called modules, and interconnections among the modules; each 
vertex of F represents a module, and an edge between two vertices of F rep- 
resents the interconnections between the two corresponding modules. An 
output of the problem for the input graph F is a partition of a rectangular 
chip area into smaller rectangles as illustrated in Fig. 1.9(d); each module 
is assigned to a smaller rectangle, and furthermore, if two modules have in- 
terconnections, then their corresponding rectangles must be adjacent, that 
is, must have a common boundary. A similar problem may arise in archi- 
tectural floorplanning also. When building a house, the owner may have 
some preference; for example, a bed room should be adjacent to a reading 
room. The owner's choice of room adjacencies can be easily modeled by a 
plane graph F ,  as illustrated in Fig. 1.9(a); each vertex represents a room 
and an edge between two vertices represents the desired adjacency between 
the corresponding rooms. 

(a) (b) (c) ( 4  

Fig. 1.9 
angular drawing of G. 

(a) Graph F ,  (b) triangulated graph F' ,  ( c )  dual-like graph G ,  and (d) rect- 

A rectangular drawing of a plane graph may provide a suitable solution 
of the floorplanning problem described above. First, obtain a plane graph 
F' by triangulating all inner faces of F as illustrated in Fig. 1.9(b), where 
dotted lines indicate new edges added to F .  Then obtain a dual-like graph 
G of F' as illustrated in Fig. 1.9(c), where the four vertices of degree 2 
drawn by white circles correspond to the four corners of the rectangular 
area. Finally, by finding a rectangular drawing of the plane graph G, obtain 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 13 

a possible floorplan for F as illustrated in Fig. 1.9(d). 
In the floorplan above, two rectangles are always adjacent if the modules 

corresponding to them have interconnections in F .  However, two rectangles 
may be adjacent even if the modules corresponding to them have no inter- 
connections. For example, module e and module f have no interconnection 
in F ,  but their corresponding rectangles are adjacent in the floorplan in 
Fig. 1.9(d). Such unwanted adjacencies are not desirable in some other 
floorplanning problems. In floorplanning of a MultiChip Module (MCM), 
two chips generating excessive heat should not be adjacent, or two chips 
operating on high frequency should not be adjacent to  avoid malfunction- 
ing due to their interference [She95]. Unwanted adjacencies may cause a 
dangerous situation in some architectural floorplanning, too [FW74]. For 
example, in a chemical industry, a processing unit that deals with poisonous 
chemicals should not be adjacent to a cafeteria. 

We can avoid the unwanted adjacencies if we obtain a floorplan for F by 
using a box-rectangular drawing instead of a rectangular drawing, as fol- 
lows. First, without triangulating the inner faces of F ,  find a dual-like graph 
G of F as illustrated in Fig. l.lO(b). Then, by finding a box-rectangular 
drawing of G, obtain a possible floorplan for F as illustrated in Fig. l.lO(c). 
In Fig. l.lO(c) rectangles e and f are not adjacent although there is a dead 
space corresponding to a vertex of G drawn by a rectangular box. Such 
a dead space to separate two rectangles in floorplanning is desirable for 
dissipating excessive heat in an MCM or for ensuring safety in a chemical 
industry. 

1.5.2 VLSI Layout 

In this section we consider another VLSI layout problem. Modules and 
their interconnections of a VLSI circuit are given as a graph as illustrated 
in Fig. l . l l ( a ) ;  a vertex of the graph represents a module of the VLSI 
circuit and an edge represents an interconnection between two modules. 
Edges appear around a vertex in the same order as they will appear in the 
actual layout. Pin positions of the modules are shown in Fig. l . l l (b ) .  We 
want to find a layout of the circuit. One can find a layout of the circuit as 
illustrated in Fig. l . l l ( c )  by finding a box-orthogonal drawing of the graph 
in Fig. l . l l ( a )  [SAROl]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



14 Planar Graph Drawing 

a @ c  d 

I d 

Fig. 1.10 (a) F ,  (b) G, and (c) box-rectangular drawing of G. 

Fig. 1.11 
floorplan with detailed routing. 

(a) Interconnections graph, (b) pin positions of modules, and (c) a VLSI 

1.5.3 Software Engineering 

Graph drawings have applications in visualization of large scale object- 
oriented software systems to support maintenance and re-engineering pro- 
cesses in an appropriately automated way for large programs [SugO2]. Ver- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 15 

tices in such graphs represent structure entities like classes or packages. 
They are visualized by simple geometric objects (as spheres or cubes) with 
geometric properties (as color or size) representing software metric values. 
Relations are displayed as straight lines colored according to  their relation 
type (method usage, inheritance). 

1.5.4 Simulating Molecular Structures 

A common strategy in drug design and pharmacophore identification is to 
evaluate a large set of molecular structures by comparing their 2D structure 
drawings. Using suitable graph representations of molecules and drawing 
such graphs, one can simplify the chemist’s task since similarities and dif- 
ferences between drugs are revealed in the drawing. Boissonnate et  al. 
[BCFOl] gave a heuristic algorithm to compute 2D structure drawings of 
molecules which have effective applications in drug design. A promising 
application of graph drawing is found in RNA genomics for characterizing 
and analyzing RNA structures, where RNA structures are represented by 
planar graphs [GPSOS]. 

1.6 Scope of This Book 

Due to numerous practical applications of graph drawing, researchers have 
worked on graph drawing with various view-points, and as a result, the 
field of graph drawing has become very wide. Together with established 
results on graph drawing, such as spring model, barycentric method, flow 
model, etc. [DETT99, Sug021, the field has been enriched with many recent 
results on 3D drawing, dynamic drawing, proximity drawing, map labeling, 
etc [KWOl]. Different classes of graphs such as planar graphs, hierarchical 
graphs, clustered graphs, interval graphs, etc. are investigated to produce 
graph drawings having some desired properties. Therefore it would be 
difficult to cover all results of graph drawing in a single book. 

In our opinion, the concepts of drawing planar graphs are basic building 
blocks of the field of graph drawing. A drawing of a planar graph looks 
nice and algorithms for drawing planar graphs can be successfully used for 
drawing a nonplanar graph by transforming the nonplanar graph into a 
similar planar graph. Furthermore, drawings of planar graphs have practi- 
cal applications in VLSI floorplanning and routing, architectural floorplan- 
ning, displaying RNA structures in bioinformatics, etc. We thus devote 

TEAM LinG - Live, Informative, Non-cost and Genuine !



16 Planar Graph Drawing 

this book to  the theories and algorithms for drawing planar graphs. Par- 
ticularly, straight line drawings, convex drawings, rectangular drawings, 
box-rectangular drawings, orthogonal drawings and octagonal drawings of 
planar graphs are in the scope of this book. 

Exercise 

1. Find a straight line drawing of the plane graph in Fig. 1.12 on a grid, 
and determine the grid size of your drawing. Does your drawing take 
the minimum grid size? 

Fig. 1.12 Graph for Exercise 1. 

2. Find rectangular drawings of the graphs in Fig. 1.13. 
3. The graphs in Fig. 1.14 have no rectangular drawings. Explain the 

4. Find a box-rectangular drawing of the graph in Fig. 1.15. 
5. The plane graphs in Fig. 1.16 have no convex drawing. Why? 
6. Establish relationship among an orthogonal drawing, a box-orthogonal 

drawing, a rectangular drawing and a box-rectangular drawing. 
7. Find an orthogonal drawing of the plane graph in Fig. 1.17. Count 

the number of bends in your drawing. Is the number minimum for an 
orthogonal drawing of the plane graph? 

8. Find a visibility drawing and a 2-visibility drawing of the plane graph 
in Fig. 1.12. 

9. Mention some similarities and differences between a box-rectangular 
drawing and a 2-visibility drawing of a plane graph. 

reasons. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Drawing 17 

Fig. 1.13 Graphs for Exercise 2. 

Fig. 1.14 Graphs for Exercise 3. 

Fig. 1.15 Graph for Exercise 4. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



18 Planar Graph Drawing 

Fig. 1.16 Graphs for Exercise 5. 

Fig. 1.17 Graph for Exercise 7 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 2 

Graph Theoretic Foundations 

2.1 Basic Terminology 

In this section we give some definitions of standard graph-theoretical terms 
used throughout the remainder of this book. 

2.1.1 Graphs and Multigraphs 

A graph G is a tuple (V, E )  which consists of a finite set V of vertices and 
a finite set E of edges; each edge is an unordered pair of vertices. We often 
denote the set of vertices of G by V ( G )  and the set of edges by E(G).  
Figure 2.1 depicts a graph G, where each vertex in V ( G )  = (~1,212,. . . ,216) 

is drawn by a small black circle and each edge in E(G) = {e I , e2 , . . .  ,eg} 
is drawn by a line segment. The number of vertices of G is denoted by n, 
that is, n = IVI, and the number of edges of G is denoted by m, that is, 
m = IE]. Thus n = 6 and rn = 9 for the graph in Fig. 2.1. 

If a graph G has no “multiple edges” or “loops,” then G is called a 
simple graph. Multiple edges join the same pair of vertices, while a loop 
joins a vertex itself. A graph in which loops and multiple edges are allowed 
is called a multigraph. In the remainder of the book we call a simple graph 
a graph if there is no possibility of confusion. 

We denote an edge joining vertices u and u of G by (u ,v)  or simply by 
uu. If uu E E ,  then two vertices u and u are said to be adjacent in G; edge 
uv  is then said to be incident to vertices u and v; u is a neighbor of v. The 
degree d ( v ,  G) of a vertex u in G is the number of edges incident to u in G. 
We often write d(w) for simplicity. In the graph in Fig. 2.1 vertices u1 and 
u2 are adjacent, and d(v1) = 3 since three edges e1,e5 and e6 are incident 
to v1. We denote by A the maximum of the degrees of all vertices in G and 

19 
TEAM LinG - Live, Informative, Non-cost and Genuine !



20 Planar Graph Drawing 

call it the maximum degree of graph G. 

" 5  e4 

Fig. 2.1 A graph with six vertices and nine edges. 

2.1.2 Subgraphs 

A subgraph of a graph G = (V, E )  is a graph G' = (V', E')  such that V' V 
and E' c E .  If G' contains all the edges of G that join vertices in V', then 
G' is called the subgraph induced by  V'. Figure 2.2 depicts a subgraph of 
G in Fig. 2.1 induced by {u~,u~,u~,v~}. If V' = V ,  then G' is called a 
spanning subgraph of G. 

Fig. 2.2 A vertex-induced subgraph. 

We often construct new graphs from old ones by deleting some vertices 
or edges. If v is a vertex of a given graph G = (V, E ) ,  then G - u is the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 21 

subgraph of G obtained by deleting the vertex u and all the edges incident 
to v. More generally, if V' is a subset of V ,  then G - V' is the subgraph 
of G obtained by deleting the vertices in V' and all the edges incident to 
them. Thus G - V' is a subgraph of G induced by V - V'. Similarly, if 
e is an edge of G, then G - e is the subgraph of G obtained by deleting 
the edge e. More generally, if E' C E ,  then G - E' is the subgraph of G 
obtained from G by deleting all the edges in El. 

2.1.3 Paths and Cycles 

A walk, vo, e l ,  ul , . . . , ~ 1 - 1 ,  el, v1, in a graph G is an alternating sequence 
of vertices and edges of G, beginning and ending with a vertex, in which 
each edge is incident to two vertices immediately preceding and following 
it. If the vertices 210, vl, . . . ,v1 are distinct (except possibly VO, ui ) ,  then the 
walk is called a path and usually denoted either by the sequence of vertices 
U O ,  u1, . . . , ul or by the sequence of edges e l ,  e2 , .  ' . , el. The length of the 
path is 1, one less than the number of vertices on the path. A path or walk 
is closed if 00 = 01. A closed path containing at least one edge is called a 
cycle. 

2.1.4 Chains 

Let P = uo,u1,u2,..- ,ul+1, 1 2 1, be a path of a graph G such that 
d(v0) 2 3,d(u l )  = d(u2) = ...  = d(vl) = 2, and d(ul+l) 2 3. Then we 
call the subpath P' = v1, u2,. . . , u1 of P a chain of G, and we call vertices 
vo and v1+1 the supports of the chain P'. Two chains of G are adjacent if 
they have a common support. Figure 2.3 illustrates a plane graph with five 
chains PI, 4, P3, P4 and P5; only Pz and P3 are adjacent. 

Fig. 2.3 A plane graph with five chains P I ,  P2, P3, P4 and Ps drawn by thick lines. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



22 Planar Graph Drawing 

2.1.5 Connectivity 

A graph G is connected if for any two distinct vertices u and v there is 
a path between u and IJ in G. A graph which is not connected is called 
a disconnected graph. A (connected) component of a graph is a maximal 
connected subgraph. The graph in Fig. 2.4(a) is connected since there is 
a path for any two distinct vertices of the graph. On the other hand the 
graph in Fig. 2.4(b) is disconnected since there is no path between I J ~  and 
715. The graph in Fig. 2.4(b) has two connected components indicated by 
dotted lines. 

The connectivity n(G) of a graph G is the minimum number of vertices 
whose removal results in a disconnected graph or a single-vertex graph K1. 

We say that G is k-connected if n(G) 2 k. We call a set of vertices in a 
connected graph G a separator or a vertex-cut if the removal of the vertices 
in the set results in a disconnected or single-vertex graph. If a vertex-cut 
contains exactly one vertex, then we call the vertex a cut vertex. If a vertex- 
cut contains exactly two vertices, then we call the two vertices a separation 
pair. 

V 
v4 5 

Fig. 2.4 
components. 

(a) A connected graph, and (b) a disconnected graph with two connected 

2.1.6 Trees and Forests 

A tree is a connected graph without any cycle. Figure 2.5 is an example 
of a tree. The vertices in a tree are usually called nodes. A rooted tree 
is a tree in which one of the nodes is distinguished from the others. The 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 23 

distinguished node is called the root of the tree. The root of a tree is usually 
drawn at the top. In Fig. 2.5, the root is 211. If a rooted tree is regarded as 
a directed graph in which each edge is directed from top to bottom, then 
every node u other than the root is connected by an edge from some other 
node p ,  called the parent of u. We also call u a child of node p.  We draw 
the parent of a node above that node. For example, in Fig. 2.5, 211 is the 
parent of 212,213 and 214, while 212 is the parent of 215 and 216; 212, 213 and 214 

are the children of 211, while 215 anh 216 are the children of 212. A leaf is a 
node of a tree that has no children. An internal node is a node that has one 
or more children. Thus every node of a tree is either a leaf or an internal 
node. In Fig. 2.5, the leaves are 214,215,216 and 217, and the nodes v 1 , v ~  and 
213 are internal nodes. 

Fig. 2.5 A tree. 

The parent-child relationship can be extended naturally to  ancestors 
and descendants. Suppose that u1, u2, . . . , u1 is a sequence of nodes in a 
tree such that u1 is the parent of 212, which is a parent of us, and so on. 
Then node u1 is called an ancestor of ul and node u1 a descendant of u1. The 
root is an ancestor of every node in a tree and every node is a descendant 
of the root. In Fig. 2.5, all nodes are descendants of root 211, and 211 is an 
ancestor of all nodes. 

A graph without a cycle is called a forest. Each connected component 
of a forest is a tree. A spanning subgraph of a graph G is called a tree of G 
if it is a tree. A tree of a connected graph G is called a spanning tree of G. 

2.1.7 Complete Graphs 

A graph in which every pair of distinct vertices are adjacent is called a 
complete graph. A complete graph of n vertices is denoted by K,. K5 is 
depicted in Fig. 2.6(a). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



24 Planar Graph Drawing 

Fig. 2.6 (a) K5 and (b) K3,3 

2.1.8 Biparti te Graphs 

Suppose that the vertex set V of a graph G can be partitioned into two 
disjoint sets V1 and V2 in such a way that every edge of G joins a vertex 
of V1 to a vertex of V2; G is then called a bipartite graph. If every vertex 
of V1 is joined to  every vertex of V2, then G is called a complete  bipartite 
graph and is denoted by Ks,r where s = IVll and r = IV,]. Figure 2.6(b) 
depicts a complete bipartite graph K3,3 with partite sets VI = {ul ,  212, U Q }  

and V2 = {u~,v2,u3}. 

2.1.9 Subdivisions 

Subdividing a n  edge (u,  u )  of a graph G is the operation of deleting the 
edge (u, u )  and adding a path u(= W O ) ,  w1, w2, ..., W k ,  v(= W k + l )  through 
new vertices w1, wg, . . . , wk, k 2 1, of degree two. A graph G is said to  be 
a subdivision of a graph G’ if G is obtained from G’ by subdividing some 
of the edges of G’. Figure 2.7 depicts subdivisions of Ks and K3.3. 

2.2 Planar Graphs 

A graph is p lanar  if it can be embedded in the plane so that no two edges 
intersect geometrically except at a vertex to which they are both incident. 
Note that a planar graph may have an exponential number of embeddings. 
Figure 2.8 depicts four planar embeddings of the same planar graph. 

One of the most beautiful theorems in graph theory is Kuratowski’s, 
which gives a characterization of planar graphs in terms of “forbidden 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 25 

(a) (b) 

Subdivisions of (a) K5 and (b) K3,3. Fig. 2.7 

3 

Fig. 2.8 Four planar embeddings of the same graph. 

graphs,” as follows. 

Theorem 2.2.1 
contains neither a subdivision of K:, nor a subdivision of K3,S. 

(Kuratowski 1930) A graph is planar i f  and only if i t  

TEAM LinG - Live, Informative, Non-cost and Genuine !



26 Planar Graph Drawing 

2.2.1 Plane Graphs 

A plane graph G is a planar graph with a fixed embedding in the plane. 
A plane graph divides the plane into connected regions called faces. The 
unbounded region is called the outer face of G. The boundary of a face of 
a connected plane graph G is a closed walk in general, and is a cycle if G is 
2-connected and has at least three vertices. The boundary of the outer face 
of G is called the outer boundary of G and denoted by Co(G). If Co(G) is 
a cycle, then Co(G) is called the outer cycle of G. We call a vertex v of G 
an outer vertex of G if v is on Co(G); otherwise v is an inner vertex of G. 
Similarly we define an outer edge and an inner edge of G. 

Let C be a cycle of a graph G. A graph of a single edge, not in C,  joining 
two vertices in C is called a C-component of G. A graph which consists of 
a connected component of G - V ( C )  and all edges joining vertices in that 
component and vertices in C is also called a C-component. The outer cycle 
Co(G) of the plane graph G in Fig. 2.9(a) is drawn by thick lines, and the 
Co(G)-components J1, J2 and J3 of G are depicted in Fig. 2.9(b). 

Fig. 2.9 (a) Plane graph G, and (b) C,(G)-components. 

For a cycle C in a plane graph G, we denote by G(C)  the plane subgraph 
of G inside C (including C). The subgraph shaded in Fig. 2.10 is G(C) for 
a cycle C. An edge which is incident to exactly one vertex of C and located 
outside of C is called a leg of C,  and the vertex of C to which the leg is 
incident is called a leg-vertex of C. A cycle C in G is called a k-legged cycle 
of G if C has exactly k legs. A k-legged cycle C is minimal if G(C) does 
not contain any other k-legged cycle of G. The cycle C in Fig. 2.10 is a 
4-legged cycle with the legs e l ,  e2, e3 and e4. 

We say that cycles C and C' in a plane graph G are independent if G ( C )  
and G(C') have no common vertex. A set S of cycles is independent if any 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 27 

pair of cycles in S are independent. 

I 
i 

! 
Fig. 2.10 Illustration of G(C)  and legs of a cycle C. 

As mentioned before, a planar graph may have an exponential number 
of embeddings in the plane. We shall now define an equivalence relation 
among these embeddings. Two embeddings of a planar graph are equivalent 
when the boundary of a face in one embedding always corresponds to the 
boundary of a face in the other. We say that the plane embedding of a graph 
is un ique  when the embeddings are all equivalent. If G is a disconnected 
plane graph, one can obtain a new nonequivalent embedding simply by 
replacing a connected component within another face. Similarly, if G has a 
cut vertex v, one may obtain a new nonequivalent embedding by replacing 
a component of G - v (together with the edges joining v and vertices in 
the component) in another face incident to v. Thus we shall assume that 
G is 2-connected if the embedding is unique. Whitney [Whi33] proved that 
the embedding of a 3-connected planar graph is unique. Before proving the 
result, we need some definitions. 

If G has a separation pair {x, y } ,  then we often split G into two graphs 
G1 and Ga, called split graphs. Let G: = (VI, E;)  and Gh = (Vz, E;) be 
two subgraphs satisfying the following conditions (a) and (b): 

(a) V = vl u V,, Vl n V, = {x, y } ;  
(b) E = E; u E; , E; n E; = 0, IE; I 2 2, IE; I 2 2. 

Define a split graph G1 to be the graph obtained from G', by adding a 
new edge (x,y) if it does not exist; similarly define a split graph Gz. (See 
Fig. 2.11.) 

Theorem 2.2.2 
un ique  if and  on ly  if G is a subdivision of a 3-connected graph. 

The embedding of a 2-connected p lanar  graph G is 

TEAM LinG - Live, Informative, Non-cost and Genuine !



28 Planar Graph Drawing 

X X 

Y 

Fig. 2.11 
and (b) split graphs GI and G z .  

(a) A graph G with a separation pair {z ,y}  where edge (z,y) may not exist, 

Proof. Necessity: Suppose that a 2-connected planar graph G is not a 
subdivision of a 3-connected graph. Then there is a separation pair { x ,  y} 
having split graphs GI and G2 such that both G', and GL are not paths. 
(See Fig. 2.11.) Consider a plane embedding of G in which both x and y are 
outer vertices. Then a new embedding of G is obtained by a reflection or 
twist of G', or Ga. The boundary of the outer face in the original embedding 
is no longer a face boundary in the new embedding. Thus the embedding 
of G is not unique. 

Suficiency: Suppose that the embedding of a 2-connected planar graph 
G is not unique. Thus, according to the definition, the original embedding 
r ( G )  of G has a face F whose facial cycle C in r ( G )  is no longer a facial 
cycle in another embedding Y ( G )  of G. Clearly G has two C-components 
J and J'; one in the interior and the other in the exterior of C in l?'(G). 
One may assume that C is the boundary of the outer face of I'(G). Let 
x1,x2, . . . , xk be the vertices of C contained in J occurring in cyclic order. 
One may assume that all the vertices of C contained in J' are in the subpath 
of C joining x1 and 2 2  and containing no other xi,  as illustrated in Fig. 2.12. 
Then { X I ,  2 2 )  is a separation pair of G ,  for which both G', and Ga are not 

0 paths. Therefore G is not a subdivision of a 3-connected graph. 

Theorem 2.2.2 immediately implies that every 3-connected planar graph 
has a unique plane embedding. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 29 

Fig. 2.12 Illustration for the proof of Theorem 2.2.2. 

2.2.2 Euler’s Formula 

There is a simple formula relating the numbers of vertices, edges and faces 
in a connected plane graph. It is known as Euler’s formula because Euler 
established it for those plane graphs defined by the vertices and edges of 
polyhedra. In this section we discuss Euler’s formula and its immediate 
consequences. 

Theorem 2.2.3 (Euler 1750) Let G be a connected plane graph, and let 
n, m, and f denote respectively the numbers of vertices, edges and faces of 
G. Then n - m + f = 2. 

Proof. We employ an induction on m, the result being obvious for m = 0 
or 1. Assume that m 2 2 and the result is true for all connected plane 
graphs having fewer than m edges, and suppose that G has m edges. Con- 
sider first the case G is a tree. Then G has a vertex u of degree one. The 
connected plane graph G - v has n - 1 vertices, m - 1 edges and f (=  1) 
faces, so by the inductive hypothesis, (n - 1) - (m - 1) + f = 2, which 
implies that n - m + f = 2. Consider next the case when G is not a tree. 
Then G has an edge e on a cycle. In this case the connected plane graph 
G - e has n vertices, m - 1 edges, and f - 1 faces, so that the desired 

A maximal planar graph is one to which no edge can be added without 
losing planarity. Thus in any embedding of a maximal planar graph G 
with n 2 3, the boundary of every face of G is a triangle, and hence the 
embedding is often called a triangulated plane graph. Although a general 
graph may have up to n(n - 1)/2 edges, it is not true for planar graphs. 

formula immediately follows from the inductive hypothesis. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



30 Planar Graph Drawing 

Corollary 2.2.4 
then rn 5 3n - 6 .  Moreover the equality holds if G is maximal planar. 

Proof. We can assume without loss of generality that G is a maximal 
planar graph; otherwise add new edges without increasing n so that the 
resulting graph is maximal planar. Consider a plane embedding of G. Every 
face is bounded by exactly three edges, and each edge is on the boundaries 
of two faces. Therefore, counting up the edges around each face, we have 

0 

If G is a planar graph with n(> 3) vertices and m. edges, 

3f = 2m. Applying Theorem 2.2.3, we obtain m = 3n - 6 .  

2.2.3 Dual Graph 

For a plane graph G, we often construct another graph G' called the (ge- 
ometric) dual of G as follows. A vertex vf is placed in each face Fi of G; 
these are the vertices of G'. Corresponding to each edge e of G we draw an 
edge e' which crosses e (but no other edge of G) and joins the vertices vf 
which lie in the faces Fi adjoining e;  these are the edges of G'. The edge 
e' of G' is called the dual edge of e of G. The construction is illustrated 
in Fig. 2.13; the vertices v t  are represented by small white circles, and the 
edges e* of G' by dotted lines. G* is not necessarily a simple graph even if 
G is simple. Clearly the dual G' of a plane graph G is also a plane graph. 
One can easily observe the following lemma. 

Fig. 2.13 A plane graph G and its dual graph G' 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Graph Theoretic Foundations 31 

Lemma 2.2.5 Let G be a connected plane graph with n vertices, m edges, 
and f faces, and let the dual G* have n* vertices, m' edges and f* faces, 
then n* = f , m* = m, and f* = n. 

Clearly the dual of the dual of a plane graph G is the original graph G. 
However a planar graph may give rise to two or more geometric duals since 
the plane embedding is not necessarily unique. 

2.3 Bibliographic Notes 

Graph theory is an important mathematical tool which has applications in a 
wide variety of subjects, and there are several good books on graph theory. 
Readers interested in graph theory may find the books of Harary [Har72], 
West [Wes96] and Wilson [Wi196] very useful. The book of Nishizeki and 
Chiba [NC88] is devoted to the theories and algorithms for planar graphs. 

Exercise 

1. Show that m 5 2n - 4 for a planar bipartite graph of n vertices and m 

2. Show that every planar graph contains a vertex of degree at most five. 
3. Suppose G is a maximal planar graph. Prove that G* is a cubic graph, 

that is, every vertex of G' has degree three. 
4. Prove that a set of edges in a connected plane graph G forms a spanning 

tree of G if and only if the duals of the remaining edges form a spanning 
tree of G*. 

be an arbitrary plane embedding of the planar graph G. Then prove the 
following (a) - (c). 

(a) If C is a 2-legged cycle in I?, then the legs el and e2 and the leg- 
vertices ul and 212 of C are on the outer cycle Co(r), and the set of 
all vertices not in r(C) induces a chain of G on C,(r) with supports 
u1 and u2. 

(b) For any chain P on C,(f), the outer cycle of the plane graph r - 
V ( P )  is a 2-legged cycle in I?. 

(c) Any pair of 2-legged cycles in F are not independent. 

edges. 

5. Let G be a subdivision of a planar 3-connected cubic graph, and let 

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 3 

Algorit hrnic Foundat ions 

3.1 What is an Algorithm? 

Consider a computational problem on graphs, such as the planarity testing 
problem: given a graph, is it planar? If a given graph is small, one may 
perform the test by hand. However the problem would not be solved with- 
out the help of fast computers if a given graph has hundreds or thousands 
of vertices. Thus we need an “algorithm”: a precise method usable by a 
computer to solve a problem. An algorithm must solve any instances of a 
problem and terminate after a finite number of operations. 

Direct application of Kuratowski’s theorem (Theorem 2.2.1) provides 
the following procedure for the planarity testing problem: 

Systematically generate all (edge-induced) subgraph J of a given graph 
G, and check whether each of the J’s is a subdivision of K5 or K3,3. If 
there is at least one such J ,  G is nonplanar; otherwise G is planar. 

Clearly a graph G of m edges has 2m subgraphs, and it is easy to check 
whether each of them is a subdivision of K5 or K3,3. Thus the procedure 
above can test the planarity for any given graph and terminate within finite 
time. That is, it is indeed an algorithm, although it is not efficient. 

Let us consider the following classical question: is there a computational 
problem for which there is no algorithm? A. M. Turing [Tur36] introduced 
a mathematical model of computers, called a Turing machine, and showed 
that such an unsolvable problem does exist. A typical example is the so- 
called halting problem: given a computer program with its input, will it 
ever halt? Turing proved that there is no algorithm that solves correctly 
all instances of this problem within finite time. Thus there exist problems 
for which there is no algorithm. However, all of the problems discussed in 
this book have algorithms. 

33
TEAM LinG - Live, Informative, Non-cost and Genuine !



34 Planar Graph Drawing 

3.2 Machine Model and Complexity 

The planarity testing algorithm mentioned in Section 3.1 would require at  
least 2m steps (elementary instructions). Therefore the solution by this 
algorithm of a modestly sized graph, say having 100 edges, would require 
more than one hundred centuries, even under the most optimistic assump- 
tions about the speed of computer in the future. Thus that algorithm is 
completely useless in practice. In contrast efficient algorithms for the prob- 
lem are known. (See Appendix A.) 

In order to study the efficiency of algorithms, we need a model of compu- 
tation. The earliest and simplest one is the Turing machine. The model was 
very useful in high-level theoretical studies of computations, such as the ex- 
istence of an unsolvable problem. However the model is not realistic enough 
to allow accurate analysis of practical algorithms. In this book we use the 
so-called random-access machine (RAM) model, introduced by Cook and 
Reckhow [CR76]. The RAM is an abstraction of a general-purpose com- 
puter in which each memory cell has a unique address and can store a single 
integer or real number, and it sequentially performs an access to any cell, 
an arithmetic operation, or a Boolean operation, following a finite sequence 
of instructions, called a program. We assume that each of the operations 
requires unit time, and each of the memory cells uses unit space. That is, 
our model is the unit-cost RAM. 

The most widely accepted complexity measure for an algorithm are 
the running time and storage space. The running time is the number of 
operations it performs before producing the final answer, while the storage 
space is the number of memory cells it uses. The number of operations 
or cells required by an algorithm is not the same for all problem instances. 
For example, in the planarity testing, the number of operations required 
to test the planarity of a graph with n vertices and m edges may vary 
considerably with graphs, even if n and m are kept constant. Thus, we 
consider all inputs of a given size together, and we define the complexity 
of the algorithm for that input size to  be the worst case behavior of the 
algorithm on any of these inputs. Then the running time (or storage space) 
is a function of size n of the input. 

3.2.1 The O( ) notation 

In analyzing the complexity of an algorithm, we are often interested only 
in the “asymptotic behavior,” that is, the behavior of the algorithm when 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Algorithmic Foundations 35 

applied to very large inputs. To deal with such a property of functions we 
shall use the following notations for asymptotic running time. Let f(n) and 
g ( n )  are the functions from the positive integers to the positive reals, then 
we write f(n) = O(g(n) )  if there exists positive constants c1 and c:! such 
that f (n)  5 c l g ( n )  + c2 for all n. Thus the running time of an algorithm 
may be bounded from above by phrasing like “takes time O(n2).” 

3.2.2 Polynomial Algorithms 

An algorithm is said to be polynomially bounded (or simply polynomial) if its 
complexity is bounded by a polynomial of the size n of a problem instance. 
Examples of such complexities are O(n) ,  O(nlogn), O(nlOO), etc. The re- 
maining complexities are usually referred as exponential or nonpolynomial. 
Examples of such complexity are 0(2n), O(n!) ,  etc. 

When the running time of an algorithm is bounded by O ( n ) ,  we call it 
a linear-time algorithm or simply a linear algorithm. 

3.2.3 NP-complete Problems 

There are a number of interesting computational problems for which it has 
not been proved whether there is a polynomial-time algorithm or not. Most 
of them are “NP-complete,” which we will briefly explain in this section. 

The state of algorithms consists of the current values of all the variables 
and the location of the current instruction to  be executed. A deterministic 
algorithm is one for which each state, upon execution of the instruction, 
uniquely determines at most one of the next states. All computers, which 
exist now, run deterministically. A problem Q is in the class P if there 
exists a deterministic polynomial-time algorithm which solves Q. 

In contrast, a nondeterministic algorithm is one for which a state may 
determine many next states simultaneously. We may regard a nondetermin- 
istic algorithm as having the capability of branching off into many copies 
of itself, one for the each next state. Thus, while a deterministic algo- 
rithm must explore a set of alternatives one at a time, a nondeterministic 
algorithm examines all alternatives at the same time. A problem Q is in 
the class N P  if there exists a nondeterministic polynomial-time algorithm 
which solves Q. Clearly P 

Among the problems in NP are those that are hardest in the sense 
that if one can be solved in polynomial-time then so can every problem in 
NP. These are called NP-complete problems. The class of NP-complete 

NP. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



36 Planar Graph Drawing 

problems has the very interesting properties. 

(a) No NP-complete problem can be solved by any known polynomial al- 

(b) If there is a polynomial algorithm for any NP-complete problem, then 
gorit hm. 

there are polynomial algorithms for all NP-complete problems. 

Sometimes we may be able to show that, if problem Q is solvable in 
polynomial time, all problems in NP are so, but we are unable to argue 
that Q E NP. So Q does not qualify to be called NP-complete. Yet, 
undoubtedly Q is as hard as any problem in NP. Such a problem Q is 
called N P - h a r d .  

3.3 Data Structures and Graph Representation 

In this section we first give a brief account of basic data structures, and 
then show two methods to represent a graph in a computer. A vector or a 
set of variables is usually stored as a (1-dimensional) array, and a matrix 
is stored as a 2-dimensional  array. The main feature of an array is its 
index capability. The indices should uniquely determine the location of 
each entry, and accessing an entry is done in a constant amount of time. 

A list is a data structure which consists of homogeneous records which 
are linked together in a linear fashion. Each record contains one or more 
items of data and one or more of pointers. Figure 3.l(c) shows five singly 
linked lists; each record has a single forward pointer indicating the address 
of the memory cell of the next record. In a doubly linked list each record 
has forward and backward pointers, and we can delete a record or insert a 
record without being given the location of the previous record. 

A stack and a queue are two special types of lists. A stack is a list in 
which we are only permitted to insert and delete elements at one end, called 
the top of the stack. Thus a stack functions in a last-in, first-out manner 
with respect to insertion and deletion. A queue is a list in which we are 
only permitted to insert at one end, called the tail of the queue, and delete 
from the other end, called the head of the queue. That is, a queue functions 
in a first-in, first-out manner. Both a stack and a queue are realized by a 
list with pointers indicating the current locations of the top, head or tail. 

We measure the complexity of an algorithm as a function of the size of 
the input of an algorithm. What is the size of the input of a graph problem? 
To represent a graph by a computer, we must encode it as a sequence of 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Algorithmic Foundations 37 

symbols over some fixed alphabet such as bits or typewriter symbols. The 
size is the length of the sequence. 

A graph may be represented in many ways. For example we can asso- 
ciate with a graph G = (V, E )  its n x n adjacency matrix A = [aij] such 
that aij = 1 if (v i ,v j )  E E ,  and aij = 0 otherwise. Figure 3.l(a) illustrates 
a graph and Fig. 3.l(b) illustrates its adjacency matrix. If G is a simple 
graph, then the main diagonal of A is all zeros and A is symmetric. An 
adjacency matrix uses n2 space to represent a graph of n vertices. It is not 
economical when a graph is sparse, that is, the number m of edges is far 
less than n(n - 1)/2. In this case simply listing the edges one by one would 
be much more efficient. If A is stored in a computer as a 2-dimensional 
array, then only one step is required for the statement “Is (vi, vj) E E?” or 
“Erase the edge (vi, vj).” However, scanning all the neighbors of a vertex 
v requires n steps even if degree d(v) is far less than n. 

vI 

“2 

v3 

v4 

v5 

I 

Fig. 3.1 (a) Graph, (b) adjacency matrix, and (c) adjacency lists. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



38 Planar Graph Drawing 

Another useful way of representing a graph is by its adjacency lasts. For 
each vertex v E V ,  we record the set N ( v )  of v’s neighbors. The sets are 
stored in a computer as lists Adj(v), as illustrated in Fig. 3.l(c). The space 
requirement for the adjacency lists is 

o ( ~ ( I  + d(v))) = O(n + m). 

Thus the representation is much more economical than the adjacency ma- 
trix if a graph is sparse. Scanning the adjacency list Adj(v)  can be done in 
d(v) steps, but the statement “Is (v, w) E E?” requires d(v) steps. 

We can assume that m 2 n/2 (for instance, if our graph has no isolated 
vertices). Therefore m is a reasonable approximation to the size of a graph. 
For a planar graph we usually use n as the approximated size of an input 
graph since m < 3n by Corollary 2.2.4. Thus we analyze the complexity of 
algorithms using n (for planar graphs) or n and m (for general graphs) as 
parameters. 

A graph algorithm is said to be linear if it runs in time O ( n  + m) on a 
graph of n vertices and m edges. This is usually the best that one could 
expect for a graph algorithm. 

WE V 

3.4 Exploring a Graph 

When designing algorithms on graphs, we often need a method for exploring 
the vertices and edges of a graph. Most important are the depth-first 
search (DFS) and breadth-first search (BFS). In both methods, each edge 
is traversed exactly once in the forward and reverse directions, and all 
vertices are visited. Thus both run in linear time. The choice of which 
method to use must depend on the problem. 

3.4.1 Depth- First Search 

Consider visiting the vertices of a graph in the following way. We select 
and visit a starting vertex v. Then we select any edge (v, w) incident to v 
and visit w. In general, suppose x is the most recently visited vertex. The 
search is continued by selecting some unexplored edge (2, y) incident to  x. 
If y has been previously visited, we find another new edge incident to x. If 
y has not been previously visited, then we visit y and begin the search anew 
starting at y. After completing the search through all paths beginning at 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Algorithmic Foundations 39 

y ,  the search returns to  x, the vertex from which y was first reached. The 
process of selecting unexplored edges incident to x is continued until the 
list of these edges is exhausted. This method is called the depth-first  search 
since we continue searching deeper direction as long as possible. 

A depth-first search of an undirected graph G = (V, E )  partitions E 
into two sets T and B; T comprises a spanning forest of G in general; in 
particular, if G is connected, then T comprises a spanning tree of G. The 
edge (z,y) is placed into T if vertex y was visited for the first time from 
x. The edges in T are called tree edges. The remaining edges, called back 
edges, are placed into B. The algorithm is given below. 

Algorithm Dept h-First-Search 
begin 

Set T = 8; 
for each vertex v in V do mark v “new”; 
while there exists a vertex v in V marked “new” do 

Search(w) 
end. 

procedure Search(v); 
begin 

Mark “old”; 
for each vertex w in adjacency list Adj(v)  do 

if w is marked “new” then 

Add (v, w) to T ;  
Search (w ) ; 

begin 

end 
end: 

For example, the depth-first search starting with vertex v1 of graph 
G = (V ,E)  in Fig. 3.l(a) partitions E into a spanning tree T and a set B 
of back edges; T and B are drawn by solid and dotted lines in Fig. 3.2, 
respectively. 

3.4.2 Breadth-First Search 

In implementing the breadth-first search (BFS) we choose an arbitrary 
vertex and put it on a queue of vertices to  be visited. We repeatedly delete 
the vertex x at the head of the queue Q, and scan the adjacency list Adj(x)  

TEAM LinG - Live, Informative, Non-cost and Genuine !



40 Planar Graph Drawing 

L 

Fig. 3.2 DFS: tree edges and back edges. 

with inserting to Q all neighbors of x which have never been inserted to Q. 
For simplicity we may assume that a given graph G = (V, E )  is connected; 
otherwise repeatedly apply BFS to each component. BFS partitions the 
edges E of a connected graph into a spanning tree T and a set B of back 
edges. The algorithm is given below. 

Algorithm Breadth-First-Search 
begin 

Set T = 0; 
Set Q = empty queue; 
for each vertex v E V do mark v ‘‘not reached”; 
Choose an arbitrary vertex r E V as a starting vertex and 
add r to  queue Q; 
{ r  is a root of tree T }  
Mark r “reached” ; 
Set LEVEL(r) = 1; 
while Q is nonempty do 

begin 
Let x be the head of Q; 
Set Q = Q - x; 
Scan( x) ; 

end 
end. 

procedure Scan(x) 
begin 

for each y f Adj(x) do 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Algorithmic Foundations 41 

if y is marked ‘hot reached” then 
begin 

Add edge (2, y) to T ;  
Set LEVEL(y) =LEVEL(x) + 1; 
Add y to Q; 
Mark y “reached”; 

end 
end. 

Thus the search scans the adjacency lists of vertices in a first reached, 
first scanned manner; in this sense it is called the breadth-first search. 
The breadth-first search tree T and the vertex levels have the following 
properties: 

(a) Every edge of G, whether tree or back edge, joins two vertices whose 

(b) The level of u equals the length (i.e. number of edges) of the shortest 
levels differ by at most one; 

path from the root r to  u in G. 

As well as DFS, BFS explores each edge exactly twice, in the forward 
and backward directions, and hence runs in linear time. 

The breadth-first search starting with vertex ul of a graph G = (V ,E)  
in Fig. 3.l(a) partitions E into a spanning tree T and a set B of back edges. 
T and B are drawn by solid and dotted lines in Fig. 3.3, where the numbers 
next to vertices are levels. 

Fig. 3.3 BFS: tree edges and back edges. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



42 Planar Graph Drawing 

3.5 Data Structures for Plane Graphs 

In Section 3.3 we have seen two data structures to represent a graph: an 
adjacencey matrix representation and a list representation. The two plane 
graphs in Figs. 3.l(a) and 3.4(a) have the same adjacency matrix repre- 
sentation as illustrated in Fig. 3.l(b). This implies that the two graphs in 
Fig. 3.l(a) and 3.4(a) are the same graph. However, they are two different 
plane graphs although the adjacency list depicted in Fig. 3.l(c) represents 
both the graphs. Now the question is how can we represent a plane graph, 
i.e., a particular embedding of a planar graph? One can observe that if we 
preserve the ordering of the edges incident to a vertex in a plane embed- 
ding of a graph then that representation truely represents the embedding. 
The adjacency list representations in Figs. 3.l(c) and 3.4(b) represent the 
plane graphs in Figs. 3.l(a) and 3.4(a), respectively, since they preserve 
the clockwise ordering of the edges incident to each vertex. 

v. 

VI 

"2 

"3 

v4 

"5 

Fig. 3.4 (a) Plane graph, and (b) adjacency lists. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Algorithmic Foundations 43 

In many drawing algorithms of plane graphs we often need to traverse 
the faces of a plane graph efficiently. Assume that we want to clockwise 
traverse a face F in a plane graph G starting from a vertex v1, as illustrated 
in Fig. 3.5(a). Starting from 271 we first traverse an edge (711, v4) and reach 
at vertex 114. We then need to traverse edge (v4, v2). An efficient algorithm 
needs to find the edge (z)4,v2) in constant time. Clearly the edge (v1,vq) 
follows edge (274,712) in the clockwise ordering of edges incident to vertex v4. 

In other words, the edge (v4, v2) is counterclockwise next to edge (vl, v4) 
in the adjacent list of 714. However, we cannot find it in constant time 
using the data structure in Fig. 3.l(c). We can find the edge (214,272) in 

U 

Fig. 3.5 Illustration of a da ta  structure for traversing a face in a plane graph efficiently. 

constant time if we have a data structure of G as illustrated in Fig. 3.5(b). 
In this representation both the clockwise and counterclockwise ordering of 
edges incident to a vertex is preserved using a doubly circular linked list of 

TEAM LinG - Live, Informative, Non-cost and Genuine !



44 Planar Graph Drawing 

neighbors of the vertices; traversing the list forward and backward we get 
clockwise and counterclockwise ordering, respectively. The two entries for 
an edge in the representation are also linked so that one of them can be 
accessed from the other directly. Using the data  structure in Fig. 3.5(b) we 
can find the edge (214, u2)  as follows. From Entry 4 in the adjacency list of 
u1 go to Entry 1 in the adjacency list of 214 directly using the link between 
them. Then we can find 1.9, since Entry 2 is counterclockwise next to Entry 
1 in the adjacency list of 214. 

3.6 Bibliographic Notes 

There are several good books on data structures and algorithms. Just 
for examples we mention the book of Aho et al. [AHU74], Cormen et  al. 
[CLRSO], and Sedgewick and Flajolet [SF96]. The recent book on algorithm 
design by Goodrich and Tamassia [GT02] presents various algorithms with 
beautiful illustrations. 

Exercise 

1. Using DFS, develop an algorithm to  determine whether a given graph is 

2. Design an algorithm to find all connected components of a given graph. 
3. How can you find a cycle in a given graph using DFS if the graph has a 

cycle? 
4. Let s be a designated vertex in a connected graph G = (V, E ) .  Design 

an O(n + rn) time algorithm to find a path between s and u with the 
minimum number of edges for all vertices v E V. 

5. Design an algorithm to traverse all faces in a plane graph in linear time. 

connected or not. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 4 

Straight Line Drawing 

4.1 Introduction 

A straight lane drawing of a plane graph is a drawing in which each edge 
is drawn as a straight line segment without edge-crossings, as illustrated 
in Fig. 1.5. Wagner [Wag36], FBry [Far481 and Stein [Ste51] independently 
proved that every planar graph G has a straight line drawing. Their proofs 
immediately yield polynomial-time algorithms to  find a straight line draw- 
ing of a given plane graph. However, the area of a rectangle enclosing a 
drawing on an integer grid obtained by these algorithms is not bounded 
by any polynomial in the number n of vertices in G. In fact, it remained 
as an open problem for long time to  obtain a drawing of area bounded by 
a polynomial. In 1990, de Fraysseix et aE. [FPPSO] and Schnyder [SchSO] 
showed by two different methods that every planar graph of n 2 3 vertices 
has a straight line drawing on an integer grid of size ( 2 n  - 4) x (n - 2 )  and 
(n - 2 )  x (n - 2 ) ,  respectively. The two methods can be implemented as 
linear-time algorithms, and are well known as the “shift method” and the 
“realizer method,” respectively. We present the shift method in Section 4.2 
and the realizer method in Section 4.3. 

A natural question arises: what is the minimum size of a grid required 
for a straight line drawing? de Fraysseix et al. showed that, for each n 2 3,  
there exists a plane graph of n vertices, for example nested triangles, which 
needs a grid of size at least [2(n - 1)/31 x [2(n - 1)/3J for any grid drawing 
[CN98, FPPSO]. It has been conjectured that every plane graph of n vertices 
has a grid drawing on a [2n/31 x [ 2 n / 3 ]  grid, but it is still an open problem. 
On the other hand, a restricted class of graphs has a more compact grid 
drawing. For example, if G is a 4-connected plane graph, then G has a 
more compact grid drawing. We consider such a drawing in Section 4.4. 

45 
TEAM LinG - Live, Informative, Non-cost and Genuine !



46 Planar Graph Drawing 

4.2 Shift Method 

In this section we describe a constructive proof for the theorem by de Frays- 
seix et al. [FPPSO] that every plane graph G of n > 3 vertices has a straight 
line grid drawing of size (an - 4) x (n - 2), and present a linear-time im- 
plementation of an algorithm for finding such a drawing [CP95]. If G is 
not triangulated, then we obtain a triangulated plane graph G’ from G by 
adding dummy edges to G. From a straight line grid drawing of G’ we can 
immediately obtain a straight line grid drawing of G by deleting the dummy 
edges. Therefore it is sufficient to prove that a triangulated plane graph 
G of n vertices has a straight line grid drawing of size (2n - 4) x (n - 2). 
To construct such a drawing, de Fraysseix et al. introduced an ordering of 
vertices called a “canonical ordering” and installed vertices one by one in 
the drawing according to the ordering. 

In Section 4.2.1 we present a canonical ordering, and in Section 4.2.2 
we present the algorithm of de Fraysseix et al. We present a linear time 
implementation of the algorithm in Section 4.2.3. 

4.2.1 Canonical Ordering 

For a cycle C in a graph, an edge joining two non-consecutive vertices in 
C is called a chord of C. For a 2-connected plane graph G, we denote by 
Co(G) the outer cycle of G, that is, the boundary of the outer face of G. 
A vertex on Co(G) is called an outer vertex and an edge on C,(G) is called 
an outer edge. A plane graph is internally triangulated if every inner face 
is a triangle. 

Let G = (V ,E)  be a triangulated plane graph of n 2 3 vertices, as 
illustrated in Fig. 4.1. Since G is triangulated, there are exactly three 
vertices on C,(G). One may assume that these three vertices, denoted 
by v1, 212 and v,, appear on Co(G) counterclockwise in this order. Let 
7r = (v1, v2, . . . , v,) be an ordering of all vertices in G. For each integer 
I c ,  3 5 k 5 n,  we denote by Gk the plane subgraph of G induced by the Ic 
vertices v1, v2, . . . , V k .  Then G, = G. We call 7-r a canonical ordering of G 
if the following conditions (col)-(co3) hold for each index k, 3 5 k 5 n: 

(col) Gk is 2-connected and internally triangulated; 
(c02) (vl,v2) is an outer edge of Gk; and 
(co3) if k + 1 5 n,  then vertex Vk+l is located in the outer face of Gk, and 

all neighbors of Vk+l  in Gk appear on Co(Gk) consecutively. 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 47 

An example of a canonical ordering is illustrated for a triangulated plane 
graph of n = 16 vertices in Fig. 4.1. 

Fig. 4.1 A canonical ordering of a triangulated plane graph of n = 16 vertices. 

We now have the following lemma. 

Lemma 4.2.1 
ing.  

Proof. Obviously G has a canonical ordering if n = 3. One may thus 
assume that n 2 4. Since G = G,, clearly (col)-(co3) hold for k = n. We 
then choose the n - 3 inner vertices vn-1,v,-2,... ,v3 in this order, and 
show that (col)-(c03) hold for k = n - 1, n - 2, .  . . ,3 .  

Assume for inductive hypothesis that the vertices v,, vn--l,. . . , V k + l ,  

k + 1 _> 4, have been appropriately chosen, and that (col)-(co3) hold for 
k. If one can choose as V k  a vertex w # v1,v2 on the cycle co(Gk)  which is 
not an end of a chord of C,(Gn), as illustrated in Fig. 4.2(a), then clearly 
(col)-(co3) hold for k - 1 since Gk-1 = Gk - vk. Thus it suffices to  show 
that there is such a vertex w. 

Let Co(Gk) = w1,w2, . . .  ,w t ,  where 201 = v1 and wt = v2. If 
Co(Gk) has no chord, then any of the vertices w2,w3, . . -  ,wt-1 is such 
a vertex w. Then 
Gk has a “minimal” chord (wp,wq), p + 2 5 q, such that none of 
the vertices wp+l,  wp+2,. . . , wq-l is an end of a chord, as illustrated in 
Fig. 4.2(b) where chords are drawn by thick lines. Then any of the ver- 

E v e r y  triangulated plane graph G has  a canonical order- 

One may thus assume that Co(Gk) has a chord. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



48 Planar Graph Drawing 

tices wp+l, wp+2,. . . , wp-l is such a vertex w. 

k w = v  

Fig. 4.2 Graph Gk and chords. 

The following algorithm computes a canonical ordering of a triangulated 
plane graph G = (V, E) .  For each vertex v, we keep the following variables: 

mark(v) =true if v has been added to the ordering, and false other- 
wise; 
out(v) = true if v is an outer vertex of a current plane graph, and 
false otherwise; and 
chords(v) = the number of chords of the outer cycle whose end vertex 
is v. 

The algorithm is as follows. 

Algorithm Canonical-Ordering(G) 
begin 

Let v l ,  212 and v, be the vertices appearing on the outer 
cycle counterclockwise in this order; 
Set chords(x) = 0, out(x) = false ,  and mark( z )  = false for 
all vertices z E V ;  
Set out(v1) = true, out(v2) = true, and out(v,) = true; 
for k = n down to 3 do 

begin 
Choose any vertex x such that mark(x)  = false ,  
out(z) = true, chords(x) = 0 ,  and x # ~1,212; 

Set Vk = x and marlc(x) = true; 
Let C,(Gk-1) = w1,w2,- . .  ,w t ,  where w1 = v1 and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 49 

8 

9 

wt = v g ;  

Let wp,  w p f l  ,.. . , wq be the neighbors of Vk which 
have mark(wi) = false; 
{They are consecutive on co(Gk-l) ,  as illustrated in 
Fig. 4.3.) 
For each vertex wi, p < i < q, set out(wi) = true, and 
update the variable chords for wi and its neighbors. 
{The details will be given in the proof of Lemma 4.2.2.) 

end 
end. 

x = v, 

wl= v1 w, = v2 

Fig. 4.3 Gk. 

Lemma 4.2.2 
cal ordering of a triangulated plane graph G in time O(n) .  

Algorithm Canonical-Ordering(G) computes a canoni- 

Proof. By the proof of Lemma 4.2.1, there always exists a vertex x sat- 
isfying the conditions in Line 5. This provides the correctness of Algorithm 
Canonical-Ordering. 

To find the vertex x in Line 5 in time 0(1 ) ,  we maintain a list containing 
all vertices satisfying the conditions. 

Line 9 is implemented as follows. If q = p + 1, then we decrease 
chords(wp) and chords(w,) by one, because the edge (wp,  wq) on the cur- 
rent outer cycle C,(Gk-l) was a chord (wp,  wq) on the previous outer cycle 
co(Gk).  If q > p + 1, then we update variable chords for each vertex 
wi,p < i < q, and each neighbor z of wi. For each vertex wi, p < i < q, 
we inspect its neighbors z .  If out(z) = true and z # wi-l,wi+l, then 

TEAM LinG - Live, Informative, Non-cost and Genuine !



50 Planar Graph Drawing 

( w i , z )  is a chord of co(Gk-l)  and hence we increase chords(w;) by one. 
If out(z) = true, z # wi-l,wi+l and z # wp+l,wp+2,... ,wp--l, then we 
increase chords(z) by one. (In Fig. 4.3 new chords on Co(Gk-l) are drawn 
by thick solid lines, and chords on Co(Gk) are drawn by thick dotted lines.) 

The update for wi and its neighbors z above can be done in time 
O(d(wi) ) ,  where d(wi)  is the degree of wi in G. Since this is done only 
once for every vertex wi in G ,  the total running time of Line 9 is O(n) .  
Note that CuiEV d(wi)  = 2m 5 2 . 3 n  = O(n)  by Corollary 2.2.4. Clearly 
all other lines can be done in time O(n).  Hence Canonical-Ordering 
takes time O(n).  

4.2.2 Shift Algorithm 

In this section we describe the shift algorithm given by de Fraysseix et al. 
[FPPSO]. The algorithm embeds G, one vertex at a time in a canonical 
order K = (u1,u2, . - .  ,u,) at each stage, adjusting the current partial em- 
bedding. With each vertex ui, a set of vertices need to be moved whenever 
the position of ui is adjusted. We denote by L ( q )  the set of such vertices. 
Note that ui E L(vi). 

We denote the current position of a vertex u by P ( u ) ;  P(u)  is expressed 
by its 2- and y-coordinates as (~(zI) ,  y(u)). If PI = ( 2 1 ,  y ~ )  and P2 = ( 2 2 ,  y2) 

are two grid points whose Manhattan distance is even, then the straight 
line with slope +1 through PI and the straight line with slope -1 through 
P2 intersects at a grid point, which is denoted by p(P1, P2). Clearly 

We are now ready to describe the drawing algorithm. 
First we draw G3 by a triangle as follows. Set P(u1) = ( O , O ) ,  P(VZ)  = 

Assume that k - 1 2 3 and we have embedded Gk-1 in such a way that 
(2,O), P(u3) = (1, l), and L ( Q )  = {ui} for i = 1,2,3. (See Fig. 4.4(a).) 

the following conditions hold: 

(e l )  P ( q )  = (0,O) and P(u2) = ( 2 k  - 6,O); 
(e2) z (w1)  < ~ ( w z )  < ...  < ~ ( w t ) ,  where Co(Gk-l) = wl ,w2, . . .  ,wt ,  

(e3) each edge (wi ,  wi+l) on Co(Gk-l) is drawn by a straight line having 
w1 = u1 and wt = 712; and 

slope either fl or -1, as illustrated in Fig. 4.5(a). 

w e  now explain how to install U k  to a drawing of G k - 1 .  Let 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 51 

Fig. 4.4 (a) Graph G3, and (b) binary tree T for G3. 

wp,wp+l, . . .  ,wq be the neighbors of V I ;  on Co(GI;-l), as illustrated 
in Fig. 4.5(a). We say that the vertex VI; covers the vertices 
wp+1, wP+2,. . . , wq-l. By (e3) the Manhattan distance between wp and 
wg is even, and hence p(wp,wq)  is a grid point. However, if we installed 
V k  at p(wp ,wq) ,  then the straight line segment W p V k  would overlap with 
w p w p f l ,  because wpwp+l may have slope fl as illustrated in Fig. 4.5(a). 
We thus shift vertices w1(= v l ) ,  w2,. . . , w p  together with some inner ver- 
tices to the left by one, as illustrated in Fig. 4.5(b). Similarly we shift 
vertices wq,  wq+1,. . . , wt(= w 2 )  together with some inner vertices to the 
right by one. We then install v k  at the grid point p(wP,wq)  for the new 
positions of wp and wq. More precisely, we execute the following Steps 1-4. 

Step 1: for each v E U L(wi)  do ~ ( v )  = ~ ( w )  - 1; 

Step 2: for each v E U L(wi) do ~ ( w )  = Z(V) + 1; 

Step 3: P ( V k )  = p ( w p ,  wq) 

Step 4: L ( V k )  = {wk} u ( U L(wi ) )  

P 

i=l 
t 

s=q 

q-1 

i=p+l 

Figure 4.5(a) depicts a drawing of Gk-1, and Fig. 4.5(b) depicts a draw- 
ing of GI; obtained by Steps 1-4. The Manhattan distance between wp 
and wq was even in the drawing of G k - 1 .  Vertex w p  is moved to the 
left by one by Step 1, and wq is moved to the right by one by Step 2. 
Therefore the Manhattan distance between wp and wq is even in the draw- 
ing of Gk, and hence p ( w p , w g )  is a grid point as in Fig. 4.5(b). Ver- 
tices wl ,  202,  . . . , wp are moved to the left by one, and w q ,  w ~ + ~ ,  . . . , wt 
are moved to the right by one. However, the positions of all vertices 
wp+l, wp+2,. . . , wq-l are unchanged by Steps 1 and 2; they are indi- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



52 Planar Graph Drawing 

cated by double circles in Fig. 4.5. Therefore the slopes of all edges 
( w ~ + ~ ,  wp+2), (wp+2, wp+3), . . . , ( q - 2 ,  wq-l) have absolute value 1; these 
edges are drawn by thick solid lines in Fig. 4.5. The slopes of edges 
(wp,wy+l) and (wq-l1wq) have absolute values smaller than 1 in the draw- 
ing of Gk as illustrated in Fig. 4.5(b). Thus all the vertices w p l  wp+l l ' . - ; wq 
are visible from the point p(wplwq), and hence one can draw all edges 
(vk, wp), (wk,wp+l), ... , (vk,wq) by straight line segments without edge 
crossings as illustrated in Fig. 4.5(b). 

Clearly P(w1) = (-1,O) in Fig. 4.5(b). Replace Steps 1 and 2 above 
by the following Steps 1' and 2' to  make P ( q )  = (0,O) by translating the 
drawing in Fig. 4.5(b) to the right by one. 

Fig. 4.5 (a) Gk before Shift, and (b) Gk after Shift. 

q-1 

U L(wi) do x(v) = z(v) + 1; Step 1': for each v E 
i=p+l 

t 
Step 2': for each w E u L(wi) do z(v) = x(v) + 2. 

Then (el) ,  (e2) and (e3) hold for G k .  

graph G in Fig. 4.1. 

2=q 

Figure 4.6(a) illustrates L(wi) for all outer vertices wi of GI5 for the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 53 

I 

0 

Fig. 4.6 (a) Graph G15 for G in Fig. 4.1, (b) forest F ,  and (c) binary tree T .  

TEAM LinG - Live, Informative, Non-cost and Genuine !



54 Planar Graph Drawing 

The following lemma ensures that G k - 1 ,  3 5 k 5 n, remains to be a 
straight line grid drawing after Steps 1' and 2' are executed and hence G k  

is a straight line grid drawing. 

Lemma 4.2.3 Let Gk, 3 5 Ic 5 n, be straight line grid embedded as 
described above. Let Co(Gk) contain t' vertices, and let 61 5 6 2  5 ... 5 
be any non-decreasing sequence o f t '  non-negative integers. If, for each i, 
we shift the vertices in L(wi) by  6i to the right, then we again obtain a 
straight line grid embedding of Gk. 

Proof. The proof is by induction on k. For GS the lemma is obvious. So 
suppose that it holds for G k - 1 ,  Ic 2 4. Let Co(Gk-l) = w1, w2,. . . , wt as 
in the algorithm. We are about to add vk to the drawing of G k - 1  by Steps 
l', 2', 3 and 4. Clearly Co(Gk) = w l ,  w2, ... , w p ,  V k ,  wq ,  wq+l, ... , wt. Let 
b1 5 b2 5 ... 5 6, 5 6 5 S, 5 ... 5 6t be a fixed sequence of t' non- 
negative integers for which we translate each L(wi)  by 6i and L(vk) by 6 
for Gk. We show that Gk remains straight line grid embedded. 

Take a sequence 6; 5 6; 5 . . . 5 6; for G k - 1  as follows: 

Then 6; ,  6;, . . . ,6; is a non-decreasing sequence of t non-negative integers. 
By induction, if we translate by 6: the sets L(wi)  for the drawing of Gk-1 

before executing Steps 3 and 4 for G k - 1 ,  then G k - 1  remains straight line 
grid embedded. Thus Gk is straight line grid embedded, because 211, is 
translated by 6, L('uk) = { V k }  U (Uf:i+lL(wi)), and hence v k  moves rigidly 
with wp,wP+l, . . .  ,wq. 0 

So, in the end we have a straight line embedding of G = G, such that 
P(v1) = (0,O) and P(v2) = (an - 4,O). By (e3), P(v,) = (n - 2 , n  - 2). 
Therefore, the whole graph G is drawn in a ( 2 n  - 4) x (n - 2 )  grid, as 
illustrated in Fig. 4.7. 

It is easy to implement the drawing algorithm described above in time 
O(n2).  

4.2.3 Linear- Time Implementation 

In this section we describe a linear-time implementation of the straight line 
drawing algorithm in Section 4.2.2 [CP95]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 55 

Fig. 4.7 Grid drawing of the plane graph in Fig 4.1 

We assume that G is already triangulated and embedded in the plane, 
and that a canonical ordering T = (v1, v2, . . . , v,) of G is given. 

We view the family of sets L(wl ) ,  L(w2), . . . , L(wt)  for the outer ver- 
tices W I , W ~ , . . .  ,wt of graph Gk as a forest F in Gk consisting of trees 
L ( w l ) , L ( w 2 ) , . . .  , L ( w t )  rooted at  the vertices w1,w2;-. ,wt, For G15 in 
Fig. 4.6(a) the forest F is drawn by thick solid lines in Fig. 4.6(a) and is 
depicted also in Fig. 4.6(b). The children of root wi of a tree L(wi) are 
the vertices that wi covers, that is, its neighbors that leave the outer cycle 
when wi is installed. The forest F is represented by a binary tree T as 
illustrated in Fig. 4.6(c). The root of T is w1(= v1). The w17s right child 
is w2, the wz’s right child is 203, and so on. The set L(wi)  consists of wi 
and all nodes in the wi’s left subtree in T .  Thus, the subtree of T rooted 
at wi consists of the vertices in +iL(wj). In the left subtree of T rooted 
at wi, the left child of wi is the wi’s leftmost child in tree L(wi)  (if any), 
the left child’s right child in T is its next sibling to the right in tree L(wi)  
(if any), the left child’s right child’s right child in T is its next next sibling 
to the right in tree L(wi)  (if any), and so on. For G J  in Fig. 4.4(a), T is 
illustrated in Fig. 4.4(b). 

Since V k  is embedded at a point p(wp,  wq) ,  by Eq. (4.1) we have 

TEAM LinG - Live, Informative, Non-cost and Genuine !



56 Planar Graph Drawing 

and hence 

The crucial observation is that, when we embed Uk, it is not necessary to 
know the exact position of wp and wq. If we know only their y-coordinates 
and their relative x-coordinates, that is, x(wq) - x(wp), then by Eq. (4.3) 
we can compute y(uk) and by Eq. (4.4) we can compute the x-coordinate 
of vk relative to wp, that is, x(uk) - x(w,). 

For each vertex u # ~ 1 ,  the x-offset of ZI is defined as Ax(.) = z ( u )  - 
x(w), where w is the parent of w in T .  More generally, if w is an ancestor 
of u, then the x-offset between w and u is Ax(w,v) = x(u)  - x(w). 

With each vertex u we store the following information: 

0 Zeft(u) = the left child of u in T ;  
0 right(u) = the right child of z, in T ;  

Ax(.) = the x-offset of u from its parent in T ;  and 
0 y(u) = the y-coordinate of u. 

The algorithm consists of two phases. In the first phase, we add new ver- 
tices one by one, and each time we add a vertex we compute its x-offset and 
y-coordinate, and update the x-offsets of one or two other vertices. In the 
second phase, we traverse the tree T and compute the final x-coordinates 
by accumulating offsets. 

The first phase is implemented as follows. First we initialize the values 
stored at z,1,02, and 213 as follows (see Fig. 4.4): 

0 Az(v1) = 0; y(wl) = 0; right(u1) = 213; left(v1) = nil; 
0 Az(u3) = 1; y(u3) = 1; right(u3) = w2; Zeft(w3) = nil; and 
0 Ax(w2) = 1; y(uz)  = 0; right(v2) = nil; le f t (u2)  = nil. 

We then embed the other vertices, one by one, as follows. 

I for k = 4 to n do 
begin 

2 

3 

Let w ~ , w z , . . -  ,wt be the outer cycle Co(Gk-l) of Gk-1; 
{See Fig. 4.8(a).} 
Let wp, wpfl , .  . . , wq be the neighbors of Vk on Co(Gk-l); 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 57 

4 
5 

6 

7 

8 

9 

10 

11 
12 

13. 

Increase offset of wp+l and wq by one; {cf. Steps 1' and 2'.} 
Calculate Ax(wp,  wq) as 

Calculate Az(vk) as 

{cf. Eq. (4.4).} 
calculate !/(vk) as !/(vk) = ${Az(Wp,wq) + Y ( W q )  + y ( w p ) } ;  
{cf. Eq. (4.3).} 
Calculate Ax(wq) as Az(w, )  = Ax(wp,  wp) - Az(wk); 
if p +  1 # q then 

Set right(w,) = V k  and Tight(vk) = wq; 
if p +  1 # q then 

As(wp ,  w q )  = Ax(wp+l) + A x ( w , + ~ )  + .  . . + 

Az(vk)  = ${Az(wp,wq) f !/(wq) - Y(wp)};  

Calculate Az(wp+l) as Az(w,+l) = Ax(wp+l) - AZ(Vk); 

Set lef t (vk)  = wp+1 and right(wqPl)  = nil 
14 else 
15 

16 end 
Set le f t(vk) = nil; 

Figure 4.8 illustrates the construction of T for Gk from T for Gk-1 by the 
algorithm above. 

In the second phase, we compute the 2-coordinate Z(Q) for each vertex 
vi in G .  Let Q be the path from the root v1 to wi in tree T .  Then X ( Q )  = 
C { A ( z ) I  vertex z is on Q}. One can compute z(q)  for all vertices vi by 
invoking Accumulate-Offset (q ,O); procedure Accumulate-Offset is as 
follows. 

procedure Accumulate-Offset (v:vertex; &integer); 
begin 

if w # nil then begin 
Set Az(v) = Ax(.) + 6; 
Accumulate-Offset(left(w); Az(v)); 
Accumulate- Offset (right (w ) ; Ax (w ) ) ; 

end 
end; 

Clearly z(wi) = Az(v i )  for each vertex vi in G. 
The first phase takes linear time, since adding a vertex vk takes at most 

time O(d(vk)) .  The second phase, that is, Accumulate-Offset, takes time 
proportional to the number nodes in T .  Thus the algorithm takes linear 
time in total. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



58 Planar Graph Drawing 

w,= v 

... w, = v2 
’a 

0 0  

Fig. 4.8 (a) Graph Gk, (b) tree T for G k - 1 ,  and (c) tree T for Gk 

4.3 Realizer Method 

In this section we describe the realizer method by Schnyder for finding a 
straight line grid drawing of a plane graph on an (n - 2 )  x (n - 2 )  grid. 

Schnyder used a barycentric representation of a plane graph, which is 
obtained from a “realizer” of a triangulated plane graph G. A realizer is 
a kind of partition of the inner edges of G into three sets, each inducing 
a tree in G. Defining a labeling of a triangulated plane graph, he showed 
that every triangulated plane graph has a realizer.. We present a barycentric 
representation in Section 5.3.1, a labeling in Section 5.3.2, and a realizer in 
Section 5.3.3, and a drawing algorithm in Section 5.3.4. 

4.3.1 Barycentric Representation 

A barycentric representation of a graph G is an injective function f : v E 
V ( G )  + (v1 , ~ 2 , 2 1 3 )  E R3 satisfying the following two conditions: 

(1) v1 + 02 + 213 = 1 for all vertices v; and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Lane Drawing 59 

(2) for each edge ( z , y )  and each vertex z $! { ~ , y } ,  there is some index 
k E {1,2,3} such that X k  < Z k  and Y k  < Z k .  

One can view wl ,212 and w3 as barycentric coordinates of vertex w. Con- 
dition (1) means that each vertex w of G is mapped to a point on the 
plane spanned by three points ( l , O , O ) ,  (0,1,0) and (0,0,1) as illustrated in 
Fig. 4.9(a). Condition (2) means that, for each edge ( z , y ) ,  G has no ver- 
tex z $! {z, y }  such that max{zk, Y k }  2 Z k  for each index k E { 1,2,3}, and 
hence there is no vertex z in the triangle on the plane shaded in Fig. 4.9(b). 

Fig. 4.9 Illustration for Conditions (1) and (2). 

The following lemma holds for a barycentric representation of a graph. 

Lemma 4.3.1 A barycentric representation f of a graph G is  a planar 
straight line drawing of G in the plane spanned by three points ( l ,O,O) ,  
(0,1,0) and ( O , O , l ) ,  

Proof. Let (z, y )  be an edge in G, let z be a vertex such that z $! {z, y } .  
Then by Condition (2), Xk < Z k  and Y k  < Z k  for some index k E { 1,2,3} .  
Therefore point f ( z )  does not lie on the straight line segment f ( z ) f ( y )  
between points f (z) and f ( y ) ;  otherwise, f ( z )  = cf (z) + (1 - c) f (y) for 
some number c, 0 5 c 5 1, but then 

a contradiction. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



60 Planar Graph Drawing 

Let ( x , y )  and ( u , u )  be any two edges in G such that the four ends 
x , y , u  and v are pairwise distinct. By Condition (2) there exist indices 
i, j ,  k ,  1 E { 1,2,3}  such that 

and 

X1,Yl  < Ul- (4.8) 

Then i # k , l  by Eqs. (4.5), (4.7) and (4.8), and j # k , l  by Eqs. (4.6), 
(4.7) and (4.8). Thus i = j or k = I ;  otherwise, the four indices i , j , k  
and 1 would be distinct with each other although i , j ,  5 , l  E {1,2,3}.  One 
may hence assume that i = j = 1. Then by Eqs. (4.5) and (4.6) the two 
straight line segments f ( z ) f ( y )  and f ( u ) f ( v )  are separated by a straight 
line parallel to  the line segment ( O , l , O ) ( O , O , l ) .  Hence the two line segments 

0 

Lemma 4.3.1 implies that only a planar graph can have a barycentric rep- 
resentation. 

Using a barycentric representation, one can obtain a straight line grid 
drawing of a plane graph on a (2n - 5) x (2n - 5) grid [SchSO]. However, 
using a weak barycentric representation defined below, one can obtain a 
straight line grid drawing on an (n  - 2) x (n  - 2 )  grid. For ordered pairs 
( a ,  b )  and (c, d)  of real numbers, we write (a, b)  < l e x  (c, d) if either a < c 
or a = c and b < d.  A weak barycentric representation of a graph G is an 
injective function u E V ( G )  -+ (211,212, v3) E R3 satisfying the following two 
conditions: 

f ( z ) f (y )  and f ( u ) f ( v )  do not intersect. 

(1) 01 + u 2  + u3 = 1 for all vertices v; and 
(2) for each edge (x,y) and each vertex z # {x,y},  there is some index 

E {1,2,3}  such that ( x k , x k + l )  <lex ( z k , z k + l )  and ( Y k 7 Y k f l )  <le+ 

( 2 k 7 z k + 1 ) ,  where indices are computed as mod 3. 

Similarly to Lemma 4.3.1 one can prove the following lemma for a weak 
barycentric representation. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 61 

Lemma 4.3.2 A weak barycentric representation f of a graph G is a pla- 
nar straight line drawing of G in the plane spanned b y  three points ( l ,O,O) ,  
(O , l ,O)  and (O,O,l) .  

Proof. Let ( x , y )  be an edge in G, let z be a vertex in G such that 
z 61 {z,y}. Then by Condition (2) above, (zk,zk+l) < l e +  ( z k , z k + ~ )  and 
(yk,  yk+l) < l e z  ( z k ,  z k + l )  for some index k E {1,2,3}. Therefore the point 
f ( z )  does not lie on the straight line segment f (z) f ( y ) ;  otherwise, f ( z )  = 
c f ( z )  + (1 - c ) f ( y )  for some number c, 0 5 c 5 1, but then either 

z l , = c x k + ( 1 - c ) y k  < c z k f ( 1 - C ) z k = z k  

or 

Zk+l = CZk+l + (1 - C ) Y k + l  < C Z k + l  + (1 - .).!%+I = Z k + l ,  

a contradiction. 

there exist indices i, j ,  k, 1 E { 1 ,2 ,3}  such that 
Let ( z , y )  and (u ,v )  be any two disjoint edges in G. By Condition (2) 

(w ,w+I ) ,  (wi,vi+l) <les  (~i,xi+l)r (4.9) 

(Zk,Zk+I), (Yk,Yk+l) <les  (Uk,Uk+l), (4.11) 

and 

( z l , x l + l ) ,  (Yl,Yl+l) <lez (v l>vl+l) .  (4.12) 

Then i # k ,  1 and j # k ,  1 and hence either i = j or k = 1. One may thus 
assume that i = j = 1. Then by Eqs. (4.9) and (4.10) one can observe that 
the two straight line segments f (x) f ( y )  and f ( ~ ) f ( v )  are separated by a 
straight line parallel to (O,l,O)(O,O,l), (l,O,O)(O,O,l), f (z) f ( y )  or f (u)f(v), 
as illustrated in Fig. 4.10 where the half plane which can contain points f(u) 
and f (w) is shaded. Hence the two line segments f(z) f ( y )  and f (u)  f (w) do 
not intersect. 0 

The following Lemma 4.3.3 is an immediate consequence of 
Lemma 4.3.2. 

Lemma 4.3.3 Let v E V(G)  + (v1,vz,v3) E R3 be a weak burycentric 
representation of a graph G ,  and let a ,  p and y be any non-collinear points. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



62 Planar Graph Drawing 

t 

Fig. 4.10 Lines f(z)f(y) and f (u) f (v)  are separated by a line. 

Then the mapp ing  f : u E V(G)  -+ q a  + u2/3 + 2137 E R3 is a planar 
straight lane drawing of G an the  p lane  spanned by a ,  /3 and  y. 

4.3.2 Schnyder Labeling 

The angles of a triangulated plane graph G are the angles of all inner facial 
triangles of G. A Schnyder  labeling of G is a labeling of all angles of G with 
labels 1, 2, 3 satisfying the following conditions (a) and (b): 

(a) Each inner facial triangle of G has an angle labeled 1, an angle labeled 2 
and an angle labeled 3. The corresponding three vertices of the triangle 
appear in counterclockwise order, as illustrated in Fig. 4.11 (a). 

(b) The labels of the angles at each inner vertex of G form, in counter- 
clockwise order, a nonempty interval of 1’s followed by a nonempty 
interval of 2’s followed by a nonempty interval of 3’s, as illustrated in 
Fig. 4.11(b). 

A Schnyder labeling of a plane graph G is illustrated in Fig 4.12. We 
will show later in Lemma 4.3.6 that, in a Schnyder labeling, all angles at 
one of the three outer vertices have label 1, all angles at another have label 
2, all angles at the other have label 3, and these three outer vertices appear 
around the outer face in counterclockwise order. The following theorem 
holds for the labeling. 

Theorem 4.3.4 E v e r y  triangulated plane graph has  a Schnyder  labeling. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 63 

(4 (b) 

Fig. 4.11 Conditions (a) and (b) of Schnyder labeling. 

a 

Fig. 4.12 Illustration of a Schnyder labeling. 

To present a proof of Theorem 4.3.4 we need some preparation. We first 
review the method of edge contraction. For a vertex x of a graph G, we 
denote by N ( x )  the set of neighbors of x in G. For an edge (2 ,  y) of G, we 
denote by G / ( x ,  y) a (simple) graph obtained from G by contracting edge 
(x, y), that is, by removing the vertex y and all the edges incident to y and 
by inserting an edge (5 ,  z )  for each vertex z E N(y) - N ( z ) ,  as illustrated 
in Fig. 4.13. We say that an edge (x, y) is contractible if x and y have 
exactly two common neighbors, as illustrated in Fig. 4.13(a). Let G be a 

TEAM LinG - Live, Informative, Non-cost and Genuine !



64 Planar Graph Drawing 

triangulated plane graph of at least four vertices, then G / ( x ,  y)  remains to 
be a triangulated plane graph if and only if (2, y) is a contractible edge of G. 
The edge (2, y) in Fig. 4.13(a) is contractible since N ( x )  n N(y) = {u, u } .  
On the other hand, the edge (x,y) in Fig. 4.14(a) is not contractible since 
N ( x )  n N(y) = {u, u,  z } ,  and hence a quadrilateral face would appear in 
G / ( x ,  y) around the third common neighbor z as illustrated in Fig. 4.14(b). 
A separating triangle of a triangulated plane graph G is a triangle in G 
whose interior and exterior contain at least one vertex. The triangle x, y, z is 
a separating triangle in Fig. 4.14(a). Clearly, an edge (z, y) of a triangulated 
plane graph is contractible if and only if there is no separating triangle 
containing x and y. We now have the following lemma [Kam76]. 

Fig. 4.13 Contraction of a contractible edge (x,y).  

(4 G (b) G h ,  y )  

Fig. 4.14 Contraction of a non-contractible edge (x,y). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 65 

Lemma 4.3.5 Let G be a triangulated plane graph of n 2 4 vertices, and 
let a ,  b, and c be the outer vertices of G. Then the outer vertex a has a 
neighbor x # b,c such that edge ( a , x )  is contractible. 

Proof. The proof is by induction on the number of vertices in G. If there 
are exactly four vertices in G, then G must be K4 and we can choose the 
inner vertex as x .  Clearly edge ( a , x )  is contractible, since a and x have 
exactly two common neighbors b and c. We may thus assume that G has 
five or more vertices. Consider first the case where G has no separating 
triangle containing a. Then edge ( a , x )  is contractible for any neighbor 
x # b,c of a. Consider next the other case where G has a separating 
triangle T containing a. Then, by applying induction to the triangulated 
plane subgraph inside T ,  we get a vertex x adjacent to a inside T such that 

0 edge (a ,  x )  is contractible in the subgraph and hence in G. 

We are now ready to  give a proof of Theorem 4.3.4. 
Proof of Theorem 4.3.4 Let G be a triangulated plane graph, and let 
a be an outer vertex of G. We prove by induction on the number n of 
vertices of G that G has a Schnyder labeling in which all angles a t  a have 
label 1. The case n = 3 is trivial, and hence let n 2 4 and assume that our 
claim is true for all triangulated plane graphs having less than n vertices. 
Lemma 4.3.5 implies that there exists an inner vertex x adjacent to a such 
that edge (a ,  x )  is contractible and hence the graph G/(a,  x) obtained from 
G by contracting edge ( a , x )  is a triangulated plane graph. By induction 
hypothesis, G/(a ,  x )  has a Schnyder labeling in which all angles at a have 
label 1, as illustrated in Fig. 4.15(b). This labeling can be extended to a 
Schnyder labeling of G in which all angles at a have label 1, as illustrated 
in Fig. 4.15(a). 0 

n a 

Fig. 4.15 Extension of Schnyder labeling. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



66 Planar Graph Drawing 

Based on the proof of Theorem 4.3.4, one can construct a Schnyder label- 
ing in time O(n) as follows. First consider an initial triangle of three outer 
vertices a,  b and c in counterclockwise order, where the angles at a,  b and c 
are labeled by 1, 2 and 3, respectively. Then the vertices of G are ordered 
in an expansion sequence 2 1 ,  x2,. . . , x, where x1 = b, x2 = c and x ,  = a,  
and x3, x4, . . . , x,-1 describes an order in which the inner vertices are suc- 
cessively inserted inside, that is, edges (a ,  xn- l ) ,  (a ,  x,-z), . . . , (a ,  x3) are 
successively contracted when one obtains the initial triangle from G. (In- 
deed a canonical ordering in Section 4.2.1 can serve as an expansion se- 
quence.) Then the desired labeling is obtained by successive expansions 
leading from the triangle a,  b, c to the whole graph G, as described in the 
proof of Theorem 4.3.4. 

4.3.3 Realiaer 

Consider a Schnyder labeling of a triangulated plane graph G. Each inner 
edge of G belongs to two facial triangles. The conditions (a) and (b) of a 
Schnyder labeling imply that each inner edge has two distinct labels, say j 
and k, at one end, and have the third label i repeated twice at the other 
end. We call this distinguished label i the label of the  edge, and orient this 
edge from the end with distinct labels to  the end with the identical labels. 
(See Figs. 4.12, 4.16 and 4.17.) We thus give orientation to all inner edges 
according to a Schnyder labeling. Using the orientation of edges above, we 
can prove the following lemma. 

Fig. 4.16 Orientation of an edge. 

Lemma 4.3.6 In a Schnyder labeling of a triangulated plane graph G,  all 
angles at  one of the  three outer  vertices have label 1, all angles at another 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 67 

have label 2, all angles at the other have label 3, and these three outer 
vertices appear around the outer face in counterclockwise order. 

Proof. Since G is triangulated, by Corollary 2.2.4 G has 312-6 edges and 
hence has 3n - 9 inner edges. By Condition (b) of a Schnyder labeling, each 
of the n - 3 inner vertices has exactly three outgoing edges as illustrated in 
Fig. 4.18, and hence the number of edges outgoing from all inner vertices of 
G is 3(n-3) .  Therefore, no inner edge is outgoing from an outer vertex of G, 
and hence all inner edges incident on an outer vertex u of G are incoming to 
v ,  as illustrated in Fig. 4.17. Thus, according to the orientation of the edges, 
all angles at u have the same label in the Schnyder labeling. Therefore, by 
Condition (a) of a Schnyder labeling, all angles at one of the three outer 
vertices have label 1, all angles at another have label 2, all angles at the 
other have label 3, and the three vertices with labels 1, 2, 3 appear around 
the outer face in counterclockwise order. 0 

We are now ready to define a realizer. A realizer of a triangulated plane 
graph G is a partition of the inner edges of G into three sets of oriented 
edges of trees T I ,  T2 and T3 such that for each inner vertex v 

(a) u has an outgoing edge in each of T I ,  T2 and T3; and 
(b) the counterclockwise order of the edges incident on u is as follows: 

leaving in TI, entering in T3, leaving in T2, entering in TI, leaving in 
T3, entering in T2, as illustrated in Fig. 4.18. 

Note that u may have indegree zero in TI, T2 or T3. 
For the orientation of edges induced by a Schnyder labeling of G, let Ti, 

1 5 i 5 3 ,  consist of all oriented inner edges having label i. Then Condition 
(b) of a Schnyder labeling implies that TI, T2 and T3 satisfy Conditions (a) 
and (b) of a realizer. Therefore, by Lemma 4.3.6 each Ti, 1 5 i 5 3 ,  is a tree 
containing all inner vertices and exactly one outer vertex, and all edges of Ti 
are oriented toward this outer vertex. The outer vertices belonging to TI, T2 
and T3 are distinct and appear in counterclockwise order. Thus T I ,  T2 and 
T3 is a realizer of G. Figure 4.17 illustrates a realizer of a triangulated plane 
graph corresponding to the Schnyder labeling in Fig. 4.12. We call the outer 
vertex belonging to Ti the root ri of Ti. Note that this is the outer vertex 
all of whose angles have the label i. We call this outer vertex the root of Ti 
even when G has only three vertices, in which E(T1) = E(T2) = E(T3) = 0. 
Thus a Schnyder labeling induces a realizer. In fact a Schnyder labeling 
and a realizer are equivalent notions. We thus have the following theorem 
from Theorem 4.3.4. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



68 Planar Graph Drawing 

Fig. 4.17 Edge-orientation and realizer. 

Fig. 4.18 Edge orientations at a vertex v. 

Theorem 4.3.7 E v e r y  triangulated plane graph has  a realizer. 

Let G be a labeled triangulated plane graph with realizer T1,Tz and 
T3. For an inner vertex u of G, we define the i -pa th  Pi(,) start ing a t  v to 
be the path in Ti from to the root ri of Ti. For i # j ,  Pi(v) and Pj(v) 
share only the vertex v (Exercise 5). Therefore, Pl(v), P2(u) and P3(v) 
divide G into three regions Rl(v), &(w) and R3(v), where Ri(u) denotes 
the closed region opposite to the root ri of Ti, as illustrated in Figs. 4.19 
and 4.20. We denote also by &(u) the set of all vertices in region Ri(v). 
&(v) includes all vertices on paths Pi+l(w) and Pi-l(v), where indices are 
computed as modulo 3. We now have the following lemma. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 69 

Fig. 4.19 Regions Rl(v), Rz(v) and R3(v). 

Lemma 4.3.8 Let u and v be any two distinct inner vertices of a labeled 
triangulated plane graph G, and let 1 5 i 5 3. If u E Ri(v), then Ri(u) c 
Ri(v) where the inclusion is proper. 

Proof. It suffices to  prove the lemma for i = 1, since the proof for the 
other case is similar. We thus assume that u E Rl(v), as illustrated in 
Fig. 4.19. We consider only the case where u does not lie on the boundary 
of Rl(v); the other case is similar. Let z be the first vertex of P~(u) 
that belongs to  the boundary of R1 (v). Condition (b) of a realizer implies 
that z # P3(v). Thus z E (P~(w) - {v}). Similarly the first vertex y of 
P3(u) belonging to the boundary of Rl(v) must lie on P3(v) - {v}. Hence 
R1(u) c Rl(v). This inclusion is proper since u E (Rl(v) - RI(u)). 0 

4.3.4 Drawing Algorithm with Realizer 

Let G be a labeled triangulated plane graph of n vertices with realizer 
Tl,T2 and T3. We denote also by Pi(v) the set of all vertices in path Pi(v). 
For an inner vertex v of G, let ni(v) be the number of all vertices in region 
&(v) that are not in the path Pi-l(v), i.e. ni(v) = [Ri(v) - Pi-~(v)[. Then 
nl(v) +n2(v) +n3(v) = n -  1 since v is counted by none of n1(v) n2(v) and 
n3(v). Furthermore 1 5 nl(v),n2(v),n3(v) 5 n - 3 since ni(v) counts ri+l 
but does not count any of the three vertices v, ri and ri-1. For example, 
in Fig. 4.17, we have (nl(z),n2(z),n3(z)) = (1,1,4). This definition is 
extended to the outer vertices of G by setting ni(ri) = n - 2, ni+l (r i )  = 1 
and ni+2(ri) = 0 for the root ri of Ti. Then, for each vertex u, nl(v) + 
n2(u)  + n3(w) = n - 1 and 0 5 nl(v),n2(v),na(v) 5 n - 2. We now show 
that the following lemma holds. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



70 Planar Graph Drawing 

Lemma 4.3.9 L e t  u and v be dis t inct  vertices of a labeled triangulated 
p lane  graph G,  let  v be a n  i n n e r  uertex,  and  let  1 5 i 5 3. If u E Ri(v), 
t h e n  (ni(u), ni+l (u)) < l e x  (ni(v), ni+i (v)). 
Proof. We first claim that for any k ,  1 5 k 5 3, the following hold: 
if u E (Rk(v) - Pk-l(v)), then nk(u) < nk(v) .  Consider first the case 
where u is an outer vertex. Then u is the root T k + l  of Tk+l, and hence 
n k ( u )  = 0. Since ZI is an inner vertex, 1 5 n k ( v )  and hence nk(u) < 
nk(w). Consider next the case where u is an inner vertex. In this case 
by Lemma 4.3.8 C Rk(w). Path Pk-l(u) is in region Rk(v). Thus 
we have (Rk(u) - Pk--l(u)) c (Rk(w) - Pk-l(v)) where the inclusion is 
proper since u @ (Rk(u) - Pk-l(u)) but u E (Rk(v) - Pk-l(v)). Hence 

Suppose now that u E Ri(v).  Lemma 4.3.8 together with ni(ri+l) = 0 
and ni(ri-1) = 1 imply that ni(u) 5 ni(v). Consider first the case where 
u @ Pi-l(v), Then by the claim above with k = i we have ni(u) < ni(v) 
and hence (ni(u),  ni+l(u)) <lez (ni(w),ni+l(v)). Consider next the case 
where u E Pi-l(v). Then u E (Ri+l(v) - Pi(,)) as illustrated in Fig. 4.20. 
Therefore by the claim above with k = i + 1 we have ni+l(u) < ni+l(v) 

0 

718 (.) < nk (.I. 

and hence (ni(u),ni+l(u)) + e x  (ni(v), ni+l(v)). 

Fig. 4.20 Pi, Pi+l, Pi-1, Ri, Ri+l and Ri-1. 

We now have the following lemma. 

Lemma 4.3.10 T h e  f u n c t i o n  f : v E V ( G )  -+ &(nl(V),n2(v),n3(2))) E 
R3 is a weak barycentric representation of G. 

Proof. Since nl(w) + n2(v) + nS(v) = n - 1, Condition (1) of a weak 
barycentric representation is satisfied. There remains to verify Condition 
(2). Let ( x , y )  be an edge, and let z be a vertex other than 2 and y .  

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 71 

Consider first the case where z is an outer vertex. Then z is the root of 
Tk for some k E {1,2,3}, and hence n k ( z )  = n - 2 and n k ( ~ c ) , n k ( y )  < 

Consider next the case where z is an inner vertex. Then edge (z,y) 
is contained in & ( z )  for some k E {1,2,3}, and hence z,y E Rk(z ) .  
Therefore by Lemma 4.3.9 (nk(z),nk+l(z)) < l e i  ( n k ( z ) ,  n k + l ( z ) )  and 

n k ( z ) .  Thus (zk,zk+l) <lea: ( z k , z k + l )  and ( ~ k , y k + l )  <le+ (zkizk+l). 

(nk(y),nk+l(y)) < l e z  (nk(z), nk+l(z)). 0 

Hence, taking a = (n - 1,0,0), P = (0,n - 1 , O )  and y = (O,O,O)  in 
Lemma 4.3.3, we get a straight line grid drawing of G on the 2D plane. We 
now formally describe the algorithm. 

Algorithm Realizer-Drawing(G) 
begin 

Compute a Schnyder labeling of G; 
Construct a realizer TI , Tz,  T3 of G; 
for each vertex v E V do 

begin 
Calculate nl(v) and nz(v); 
Install v at a grid point (nl(v),n2(v)) on the 2D plane; 

end 
end 

Note that root r1 is installed at (n-2,  l), r2 at (0,n-2) and r3 at (1,O). 
Figure 4.21 illustrates a straight line drawing of the graph in Fig. 4.17 on 
the (n  - 2) x (n - 2) grid obtained by Algorithm Realizer-Drawing. 

Since 0 5 R.~(v),Tz~(v),Tz~(v) 5 n - 2, the size of the grid is (n - 2) x 
(n - 2), and hence we have the following theorem. 

Theorem 4.3.11 
straight l ine drawing ofG on a n  (n - 2) x (n  - 2) grid. 

The mapp ing  v E V(G) + (nl(v),nz(v)) E Rz is a 

To make the time complexity of Algorithm Realizer-Drawing linear 
we need to calculate nl(v) and nz(v) for all inner vertices v in linear time 
in total. This can be done as follows. 

Let IRi(u)l, 1 5 i 5 3, be the number of vertices in region Ri(v), 
and let IPi(v)[ be the number of vertices on path Pi(.), then ni(v) = 
IRi(v)I - [Pi-l(v)[. Let ti(v) be the number of vertices in the subtree of Ti 
that is rooted a t  inner vertex v, and let t i ( ~ i + l )  = ti(ri-1) = 1. Traversing 
the trees TI , Tz, and T3 by a constant number of times, we can calculate 
IPi (u)  I and ti (v) for all vertices u and all indices i. We then calculate IRi (v) I 

TEAM LinG - Live, Informative, Non-cost and Genuine !



72 Planar Graph Drawing 

Fig. 4.21 A straight line drawing obtained by Algorithm Realizer-Drawing. 

for all vertices v and all indices i ,  as follows. One can observe that, for each 
inner vertex u E Ri(v), the path Pi(u) must intersect Pi+l(v) or Pi-l(u). 
Thus u belongs to the subtree of Ti rooted at some vertex z on Pi+l(v) or 
Pi-l(v). Furthermore] each of these subtrees of Ti is entirely contained in 
Ri(v). (See Fig. 4.22.) Then the following expression holds: 

Z E R + l ( V )  2 E Pi - 1 (v)  

Thus IRi(v)I can be computed by traversing Tl1T2, and T3 by a constant 
number of times. Hence nl(v),n2(v),  and n3(v) for all inner vertices v can 
be computed in linear time in total. 

4.4 Compact Grid Drawing 

We have seen two algorithms in the previous two sections to find a straight 
line drawing on grids of sizes (an - 4) x (n - 2 )  and (n - 2 )  x (n  - 2 ) ,  
respectively. A natural question arises: what is the minimum size of a grid 
required for a straight line drawing? de Fraysseix et al. showed that, for 
each n 2 3, there exists a plane graph of n vertices] for example nested 
triangles, which needs a grid of size at least 12(n - 1)/3] x 12(n - 1)/3J for 
any grid drawing [CN98, FPPSO]. It has been conjectured that every plane 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 73 

I .  r. 1 - 1  L + 1  

Fig. 4.22 Subtrees of T,. 

graph of n vertices has a grid drawing on a [2n/31 x [2n/31 grid, but it 
is still an open problem. On the other hand, a restricted class of graphs 
has a more compact grid drawing. For example, if G is a 4-connected 
plane graph, then G has a more compact grid drawing [He97, MNNOl]. In 
this section we consider compact straight line grid drawings of 4-connected 
plane graphs. 

Let G be a 4-connected plane graph having at least four outer vertices. 
Miura et al. [MNNOl] gave a very simple algorithm which finds a grid 
drawing of G on a W x H grid such that W = [n/21 - 1 and H = [n/21 
in linear time. Their result is indeed best possible, because there exist 
an infinite number of 4-connected plane graphs, for example the nested 
quadrangles depicted in Fig. 4.23, which need grids of size at least W = 
[n/21 - 1 and H = [n/21 for any grid drawing. 

In this section we present the algorithm of Miura et al. [MNNOl]. The 
outline of the algorithm is as follows. One may assume without loss of 
generality that a given plane graph G is internally triangulated as illus- 
trated in Fig. 4.24(a). First, the algorithm finds a “4-canonical ordering” 
of G [KH97]. Using the ordering, the algorithm then divides G into two 
subgraphs G‘ and G“, each of which has about n/2 vertices as illustrated 
in Fig. 4.24(b) where G‘ and G” are shaded. Next, the algorithm draws 
the plane subgraph G’ in an isosceles right triangle whose base has length 
W’ = n/2 - 1 and whose height is H‘ = Wl/2, as illustrated in Fig. 4.24(c). 
Similarly, the algorithm draws G“ in the same triangle with its upside 

TEAM LinG - Live, Informative, Non-cost and Genuine !



74 Planar Graph Drawing 

Fig. 4.23 Nested quadrangles attaining the bounds. 

down. In Fig. 4.24(c) the two triangles are drawn by thick dotted lines. 
The algorithm places the two triangles so that their vertices opposite to 
their bases are separated by distance 1. Finally, the algorithm combines 
the drawings of G‘ and G” to obtain a grid drawing of G ,  as illustrated 
in Fig. 4.24(d). The drawing of G has sizes W = W’ = n/2 - 1 and 
H = 2H’ + 1 = W’ + 1 = n/2. 

4.4.1 Four- Canonical Ordering 

In this section we give a definition of a 4-canonical ordering of a plane graph 
G [KH97]. The 4-canonical ordering is a generalization of the “canonical 
ordering” [FPPSO] described in Section 4.2.1. Let 7r = (211, u2,. . . , v,) be 
an ordering of set V .  Figure 4.25(a) illustrates an ordering of the graph G 
in Fig. 4.24(a). Let G k ,  1 5 k 5 n, be the plane subgraph of G induced 
by the vertices in { v l , u 2 , - . -  , v k } ,  and let Gk-1 be the plane subgraph 
of G induced by the vertices in {vk,Vk+l,.” ,vn}. Thus Gk-1 = G - 
{v1,v2, ... ,?&-I}  and G = G, = Go. In Fig. 4.25(b), Gk is darkly shaded, 
while Gk-1 is lightly shaded. We say that 7r is a 4-canonical ordering of G 
if the following three conditions are satisfied: 

- 
- 

- 

- 

(col) ( ~ 1 ~ ~ 2 )  and (Vn-l,vn) are edges on C,(G); - 
(c02) for each k, 3 5 k 5 n - 2, U k  is on both c,(Gk) and Co(Gk-l); and 
(co3) for each k, 3 5 k 5 n - 2, both Gk and Gk--l are 2-connected. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 75 

A 

G 

G' 

B 'I- w f  - c" 

I f r  n 

Fig. 4.24 Drawing process of algorithm. 

,bough the definition of a 4-canonical ordering above is slightly different 
from that in [KH97], they are effectively equivalent with each other. We 
have the following lemma. 

Lemma 4.4.1 Let G be a 4-connected internally triangulated plane graph 
having at least four outer vertices. Then G has a 4-canonical ordering T, 
and T can be found in linear time. 

Proof. We first show that G has a 4-canonical ordering. Since there are 
four or more outer vertices, we can arbitrarily choose four distinct outer 
vertices v l ,  212, v, and v,-1 so that (v1, v2) and (v,, un-l) are outer edges of 
G and ul,u2, v, and v,-1 appear on Co(G) counterclockwise in this order. 
Thus (col) holds. We choose as 213 the third vertex of the inner triangular 
face containing u1 and 212. Then G3 is a triangle and hence is 2-connected. 
Since G is 4-connected, one can know that is 2-connected, 0 3  # v,, v,-1, 
and 213 is on both Co(G3) and C o ( G ) .  Thus (c02) and (co3) hold for k = 3. 
Furthermore, v3 is not an end of a chord of the cycle C O ( a ) ;  otherwise, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



76 Planar Graph Drawing 

Fig. 4.25 
and (b) an illustration for the condition (c02). 

(a) A 4-canonical ordering of a 4-connected plane graph of n = 16 vertices, 

213, the other end of the chord and either 211 or 212 would form a separator 
of G ,  contrary to  the 4-connectivity of G.  

Assume for inductive hypothesis that 3 5 k 5 n - 3, the vertices 
q, 212,. . . , 'uk have been appropriately chosen, (c02) and (co3) hold for k ,  
and ?& is not an end of a chord of the cycle c,(=). 

Suppose that there is a vertex w # un, un-l on the cycle C o ( G )  which 
has two or more neighbors in Gk and is not an end of a chord of (?,(a), 
as illustrated in Fig. 4.26. Then choose w as vk+l. Clearly w = ?&+I 

is on both Co(Gk+l) and c,(G), and Vk+l is not an end of a chord of 
co(z).  Gk+l is biconnected since Gk is biconnected and 'uk+l has two or 
more neighbors in Gk. is also biconnected because Gk--l is biconnected, 
Gk = G k - 1  - U k ,  and V k  is not an end of a chord of Co(Gk-l) .  Thus (c02) 
and (co3) hold for k + 1. Hence it suffices to show that there is such a 
vertex w. 

Let Co(G) = w ~ , w z ; . .  ,wt ,  where t 2 3, w1 = Y, and wt = ~ ~ - 1 ,  as 
illustrated in Fig. 4.27. We first consider the case where the cycle C o ( K )  
has no chord. Then there is a vertex w E { W Z ,  w3,. . . , wt-l} which has two 
or more neighbors in Gk; otherwise, all vertices w1, w2, . . . , wt would have 
a common neighbor y in Gk and hence {wl ,w t , y }  would be a separator 
of G as illustrated in Fig. 4.27(a). We next consider the other case. Then 
C o ( G )  has a "minimal" chord (wp ,  wq) ,  p + 2 5 q, such that none of the 
vertices wp+lr wP+2,". ,wq-l is an end of a chord of C o ( a ) .  There is a 
vertex w E {wp+l,  wp+2,. . . , wq-l}  which has two or more neighbors in Gk; 
otherwise, all vertices wp,  wp+l, . . . , wg would have a common neighbor y 

- -  - 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 77 

Fig. 4.26 Choosing w as t ~ k + l .  

in G k  and hence {wp, wq, y} would be a separator of G as illustrated in 
Fig. 4.27(b). 

We thus have proved that there exists a 4-canonical ordering. 
One can implement a linear algorithm to find a 4-canonical ordering of 

G based on the proof, using a data structure similar to  one for Algorithm 
Canonical-Ordering in Section 4.2.1. cl 

Fig. 4.27 Illustration for the proof of Lemma 4.4.1. 

4.4.2 Algorithm Four-Connected-Draw 

In this section we formally present the algorithm of Miura e t  al. in [MNNOl] 
as Algorithm Four-Connected-Draw. 

Procedure Four-Connected-Draw(G) 
begin 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Graph Drawing 78 

1 

2 

3 

4 
5 

6 

Find a 4-canonical ordering 7r = (v1, v2, . . ' , v,) of a given 4-connected 
plane graph G = (V, E ) ;  
Divide G into two subgraphs G' and G" where n' = [n/21, G' = Grit, 
and GI' = 
Draw G' in an isosceles right triangle A' = A'B'C' whose base 
B'C' has length W' = [n/2] - 1 and whose height is H' = W'/2; 
Draw GI' in a congruent triangle A" = A"B"C" with its upside down; 
Place the two triangles so that their vertices A' and A" opposite to  
their bases are separated by distance 1 and have the same x-coordinate; 
Draw every edge of G joining a vertex in G' and a vertex in G" by a 
straight line segment; 

end. 

We say that a curve in the plane is x-monotone if the intersection of the 
curve and any vertical line is a single point when it is nonempty. We then 
have the following lemma for the drawing of G', the proof of which will be 
given later in Section 4.4.3. 

Lemma 4.4.2 
the following conditions (a), (b)  and (c): 

One can find in linear time a grid drawing of G' satisfying 

(a) the drawing is in an isosceles right triangle A' = A'B'C' whose base 
B'C' has length W' = [n/21 - 1 and whose height is H' = W'/2; 

( b )  the absolute value of the slope of every edge on C,(G') is at most 1; 
and 

(c) the drawing of the path going clockwise on  C,(G') from v1 to v2 is 
x-monotone. 

If T = (u1 , 272, . . . , v,) is a 4-canonical ordering, then the reversed or- 
dering T' = (vn,  vn-l , . . . , vl )  is also a 4-canonical ordering. Therefore G" 
has a grid drawing in a triangle A" congruent with A'. Hence we have the 
following theorem. 

Theorem 4.4.3 Algorithm Four-Connected-Draw finds in linear tame 
a grid drawing of a given 4-connected plane graph G on a W x H grid such 
that W = [n/21 - 1 and H = W + 1 = [n/21 i f  G has four or more outer 
vertices. 

Proof. If step 6 in Four-Connected-Draw does not introduce any 
edge-intersection, then algorithm Four-Connected-Draw correctly finds 
a grid drawing of G and clearly the size of a drawing of G satisfies W = W' 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 79 

and H = H' + H' + 1. (See Fig. 4.24.) By Lemma 4.4.2(a) W' = [n/21 - 1 
and H' = W ' / 2 .  Therefore W = [ n / 2 ]  - 1 and H = W + 1 = [n /21 .  Thus 
we shall show that step 6 does not introduce any edge-intersection. 

An oblique side of each isosceles right triangle has slope fl and the 
other oblique side has slope -1. The two vertices A' and A" are separated 
by distance 1 and have the same x-coordinate: if A' has a coordinate (x, g) ,  
then A" has a coordinate (x ,g  + 1). Therefore the absolute value of the 
slope of any straight line connecting a point in A' and a point in A'' is 
greater than the slope H/W = 1 + 1/W(> 1) of a diagonal of the W x H 
rectangle. Thus, the absolute value of the slope of any edge connecting a 
vertex on Co(G') and a vertex on C0(G'') is greater than 1. (See Fig. 4.28.) 
On the other hand, by Lemma 4.4.2(b) the absolute value of the slope of 
every edge on Co(G') or C0(G") is less than or equal to 1. Furthermore] 
by Lemma 4.4.2(c) both the drawing of the path from v1 to 212 on C,(G') 
and the drawing of the path from q - 1  to  v, on CO(G'') are x-monotone. 
Therefore] the straight line drawing of any edge of G connecting a vertex on 
C,(G') and a vertex on Co(G") does not intersect the drawings of G' and 
G". Furthermore the drawings of all these edges do not intersect with each 
other since G is a plane graph and the drawings of the two paths above are 
x-monotone. Thus step 6 does not introduce any edge-intersection. 

By Lemma 4.4.1 one can execute steps 1 and 2 of procedure Four- 
Connected-Draw in linear time. By Lemma 4.4.2 one can execute steps 
3 and 4 in linear time. Clearly one can execute steps 5 and 6 in linear time. 
Thus Four-Connected-Draw runs in linear time. 0 

4.4.3 Drawing G' 

In this section, we show how to find a drawing of G' satisfying the conditions 
(a), (b) and (c) in Lemma 4.4.2. It suffices to decide only the coordinates of 
all vertices of G', because one can immediately find a straight line drawing 
from the coordinates. 

We first define some terms. Let 7r = (vl,v2,.-. ]vn) be a 4-canonical 
ordering of G. For any vertices vi, vj E V, we write vi < vj if 1 5 i < j 5 n, 
and write vi 1' vj if 1 5 i 5 j 5 n. We will later show that the following 
lemma holds. 

Lemma 4.4.4 
of vertices u and v satisfy y ( u )  5 y(v). 

If (u ,  v) is an edge in G' and u 5 v, then the y-coordinates 

TEAM LinG - Live, Informative, Non-cost and Genuine !



80 Planar Graph Drawing 

Fig. 4.28 Illustration for the proof of Theorem 4.4.3. 

We say that a vertex u in a graph G is a smaller neighbor of u if u is a 
neighbor of v and u is smaller than u, that is u 4 u. Similarly, we say that u 
is a larger neighbor of u if u is a neighbor of u and u F u. The smallest one 
among the neighbors of vertex u is called the smallest neighbor of u, and is 
denoted by ws(u). We often denote w,(v) simply by w,. The definition of a 
4-canonical ordering implies that each vertex uk, 3 5 k 5 n - 2, has at least 
two smaller neighbors and at least two larger neighbors. Let 3 5 k 5 n, 
and let C o ( G k - l )  = ~ 1 , 2 0 2 , " -  ,wt, where w1 = u1 and wt = u2. Since 
G is internally triangulated, all the smaller neighbors of u k  consecutively 
appear on Co(Gk-l). Thus one may assume that they are wp, wp+l . , wq 
for some indices p and q,  1 5 p < q 5 t ,  as illustrated in Fig. 4.29. Then 
the following lemma holds. 

w,= v 2 

Fig. 4.29 Graph Gk. 

Lemma 4.4.5 Let T = (211,112,.-. ,un) be a 4-canonical ordering of G, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 81 

and let wp, wp+l, .  .. , wq be the smaller neighbors of V k ,  3 5 k 5 n. Then 
the following (u) and (b) hold: 

(u) there is no index r such that p < r < q and wT-l 4 w, > w,+1; and 
(b) let w, = Ws(Uk), then wp wp+l . . . w, 5 . . . 5 wq and y(wp) 2 

y(wp+l) 2 ... 2 y(ws) 5 . . .  5 y(wq). (See Fig. 4.29.) 

Proof. (a) Assume for a contradiction that there is an index r such that 
p < r < q and w,-1 w, + wT+l, as illustrated in Fig. 4.30. Let wT = vi 
for an index i, 1 5 i 5 k - 1. Since Vk is adjacent to WT-1, W, and w,+1 in 
Gk, w, = vi is neither on Co(Gk) nor on Co(G) and hence 3 5 i 5 n - 2. 
Therefore by the condition (co3) of the 4-canonical ordering, w, has at 
least two larger neighbors. Let vj be the largest one among all the wT's 
neighbors other than Vk. Then w, = vi 4 vj # Vk.  Clearly vertex vj is 
either in the triangular face vk, w,, w,-1 of graph Gk or in the triangular 
face vk,wT+l,wT. Since w, 4 vj and w,-1 4 w, + wT+l, we have vj # 
wT-l, w,+1. Therefore v j  must be in the proper inside of one of the two 
faces above. Thus one may assume that vj is in the proper inside of the 
face v k ,  w,, w,-1 as illustrated in Fig. 4.30. Since vj is not on co (G) ,  we 
have 3 5 j 5 n - 2. Since vj is not in Gk-1, we have Vk-1 4 vj and hence 
vk 4 vj. Therefore vk is contained in Gj, but vj is not on Co(Gj),  contrary 
to the condition (c02) of the 4-canonical ordering. 

w1 Y 

Fig. 4.30 Graph Gk and vertex vJ. 

(b) Since w, 5 wq, by (a) we have w, 5 w,+1 5 . . .  5 wq. Therefore by 
Lemma 4.4.4 we have y(ws) 5 y(w,+,) 5 ... 5 y(wp). Similarly we have 

0 Y(WP) 2 Y(WP+l) 2 . . '  2 Y(WS). 
TEAM LinG - Live, Informative, Non-cost and Genuine !



82 Planar Graph Drawing 

We are now ready to show how to find a drawing of G'. First, we 
put vertices u1,u2,u3 on grid points (O ,O) ,  (2,O) and (1,l) so that G3 is 
drawn as an isosceles right triangle, as illustrated in Fig. 4.4(a). Clearly 
the conditions (b) and (c) in Lemma 4.4.2 hold for GS. Next, for each 
k ,  4 5 k 5 [n/21, we decide the x-coordinate x(vk) and the y-coordinate 
y ( V k )  of u k  so that the conditions (b) and (c) in Lemma 4.4.2 hold for 
Gk. One may assume that the conditions hold for G k - 1 .  Let C,,(Gk-1) = 
w1, w2, . . . , wt, and let w p ,  wp+l, . . . , wq be the smaller neighbors of U k .  

Since the condition (c) of Lemma 4.4.2 holds for Gk-1, the drawing of the 
path w p ,  wp+l,. . . , wq is x-monotone. Furthermore, by Lemma 4.4.5(b), 
we have y (wp)  2 y(wp+l) 2 . . .  2 y ( w s )  5 ... 5 y ( w q ) ,  as illustrated in 
Figs. 4.29, 4.31 and 4.32. 

We always shift a drawing of G k - 1  to the x-direction before adding 
vertex u k ,  as illustrated in Fig. 4.31. We have to  determine which vertices 
of G k - 1  must be shifted to the x-direction. Thus we will maintain a set 
L(uk )  for each vertex u k ,  1 5 k 5 [n/21. This set will contain vertices 
covered by U k  that need to be shifted whenever U k  is shifted. Initially, we 
set L(uk)  = { u k }  for k = 1,2,3. For k ,  4 5 k 5 [n/21, we set L(uk )  = 
{ u k } u ( u ~ ~ ~ + l  ~ ( w i ) ) .  Thus ail vertices in L ( ' u k )  except u k  are inner vertices 
of Gk. The shift operation on a vertex wj ,  denoted by Shi f t (w j ) ,  is achieved 
by increasing the x-coordinate of each vertex u E (J:+ L(wi)  by 1. 

We then show how to decide y ( u k )  and x(uk) .  Let ymax be the maximum 
value of y-coordinates of wp,  wp+l,. . . , wq,  then either ymaX = y (wp)  or 
ymaz = y(wq) .  There are the following six cases as illustrated in Fig. 4.32: 

(i) ~ ( w p )  < y(wq) = Ymax; 

(ii) Ymux = ~ ( w p )  > Y(wq);  
(iii) ~ ( w p )  = Y(wq) = Ymax, P < s < q and Y(wp+l) # ~ m a x ;  

(iv) ~ ( w p )  = Y(wq) = Ymax, P < s < 4 and Y ( w p + l )  = Ymax; 

(v) y (wP)  = y ( w q )  = Ymaz and s = P; and 
(vi) ~ ( w p )  = y(wq) = Ymax and s = Q. 

We first consider the three cases (i), (iii) and (v). In these cases ymax = 
y (wq) .  w e  decide Y ( ' u k )  and z (uk)  as follows. we first execute Shi f t (ws+l ) ,  

that is, we increase by 1 the x-coordinates of all vertices w,+1, w,+2, . . . , wt 
and all vertices covered by them, as illustrated in Figs. 4.31(a), (c) and (e). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 83 

We then decide 

and 

z(uk)  = ~ ( W S )  + Y(vk)  - Y(ws) .  

We denote the slope of a straight line segment uw by slope(uv). Then 
clearly we have 

Since y ( V k )  2 y(wp) 2 y(ws) and z(wp) 5 z(ws) < ~ ( v k ) ,  we have 

as illustrated in Figs. 4.31(a), (c) and (e). 
If y(w,-l) < ymas ,  then y(vk) = ymaz = y (wq)  and hence slope(vkwq) = 

0 as illustrated in Fig. 4.31(a). On the other hand, if y(wq- l )  = y m a z ,  then 
y(vk)  = y (wq)  + 1, z (uk)  5 z(w,)  - 1 and hence we have 

as illustrated in Figs. 4.31(c) and (e). 
The absolute slope of each straight line segment on Co(Gk) except Wpvk 

and vkwq is equal to its absolute slope on co(Gk- l ) ,  and hence is at most 
1. 

Thus the condition (b) in Lemma 4.4.2 holds for Gk.  
One can easily observe that the condition (c) in Lemma 4.4.2 holds for 

Gk. 

We next consider the remaining three cases (ii), (iv) and (vi). In these 
cases we decide Y( 'Uk)  and z ( U k )  in a mirror image way of the cases (i), (iii) 
and (v) above. That is, we execute Shi f t ( w s ) ,  and decide 

and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



84 Planar Graph Drawing 

(See Figs. 4.31(b), (d) and (f).) Then, similarly as in Cases (i), (iii) and 
(v) above, the conditions (b) and (c) hold for Gk. 

Since we decide the y-coordinate as above, Lemma 4.4.4 clearly holds. 
We call the algorithm described above for finding a drawing of G' Al- 

We are now ready to prove Lemma 4.4.2. 
gorithm Draw-Triangle. 

Proof of Lemma 4.4.2 As shown above, the conditions (b) and (c) 
hold for a drawing obtained by Algorithm Draw-Triangle. Therefore the 
absolute value of the slope of every edge on C,(G') is at most 1, and the 
drawing of the path going clockwise on Co(G') from q to 212 is x-monotone. 

The drawing of G3 has width 2. We execute the shift operation once 
when we add a vertex V k ,  4 5 k 5 n' = [n/21, to the drawing of Gk-1. 

Therefore the width W' of the drawing of G' is W' = 2+(n'-3) = [n/21-1. 
Since the conditions (b) and (c) hold, the height is at most W'/2. Therefore 
G' is drawn in an isosceles right triangle A' = A'B'C' whose base B'C' has 
length W' = [n/2] - 1 and whose height is H' = W'/2. Thus the condition 
(a) holds. 

We then show that the drawing of G' obtained by Algorithm Draw- 
Triangle is a grid drawing. The algorithm puts each vertex V k ,  4 < k < 
[n/2], on a grid point. Clearly each edge ( U k  , wj) ,  p 5 j 5 q, does not inter- 
sect any edge of G k - 1 .  Furthermore, similarly to the proof of Lemma 4.2.3, 
one can easily prove by induction on k that  any number of executions of 
the shift operation for Gk-1 introduce no edge-intersection in G k - 1 .  Thus 
Algorithm Draw-Triangle obtains a grid drawing of G'. 

All operations in Algorithm Draw-Triangle except the shift operation 
can be executed total in time O(n).  A simple implement of the shift op- 
eration takes time O(n) ,  and the algorithm executes the shift operation at 
most [n/21 times. Therefore a straightforward implementation would take 
time O(n2) .  However, using the data structure described in Section 4.2.3 
for representing the sets L(wi), 1 5 i 5 t ,  one can implement the shift 
operation so that the total time required by the operation is O(n) .  

Thus Algorithm Draw-Triangle finds a drawing of G' in time O(n).  
0 

By modifying step 5 of algorithm Four-Connected-Draw, one can 
slightly improve the bound H = [n/21 in Theorem 4.4.3 to a bound H = 
Ln/2J. The modification can be done on the following observation. One 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 85 

(a) Case (i) 

(b) Case (ii) 

(c) Case (iii) 

(d) Case (iv) 

(e) Case (v) 

(f) Case (vi) 

Fig. 4.31 How to put vk. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



86 Planar Graph Drawing 

(a) Case (i) 

(c) Case (iii) 

(e) Case (v) 

(b) Case (ii) 

(d) Case (iv) 

(f) Case (vi) 

Fig. 4.32 Illustration of Cases (i)-(iv). 

may assume without loss of generality that n is an odd integer, because 
[n/21 = Ln/2] if n is an even integer. We furthermore assume that n = 3 
(mod 4); the argument for the case n = 1 (mod 4) is similar to one for 
the case n = 3 (mod 4). Since G' has n' = vertices, G' has a grid 
drawing in an isosceles right triangle A' = A'B'C' whose base B'C' has 
length W' = n' - 1 = [n/21 - 1 and whose height is H' = W'/2. On 
the other hand, since G" has n" = [n/2J = n' - 1 vertices, G" has a grid 
drawing in an isosceles right triangle A" = A"B"C" which is smaller than 
A'; the base B"C" of A" has length W" = n" - 1 = Ln/2J - 1, and the 
height of A" is H" = W"/2.  Since n = 3 (mod 4), A' is not a grid point, 
but A'' is a grid point as illustrated in Fig. 4.33. Therefore G' has no vertex 
on A', but G" may have a vertex on A". Fixing the position of the triangle 
A" either as in Fig. 4.33(a) or as in Fig. 4.33(b), one can improve the bound 
H = [n/21 to a bound H = H' + H" + 1/2  = Ln/2J. See [MNNOl] for the 
detail. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Straight Line Drawing 87 

B” C” 

C’ B’ 

H’ 

I 

Fig. 4.33 Arrangement of triangles A’ and A”. 

4.5 Bibliographic Notes 

Kao et al. [KFHR94] efficiently parallelized the construction of realizers 
of triangulated planar graphs and gave an optimal parallel algorithm for 
straight line grid drawings of planar graphs. Di Battista et al. [DTV99] 
extended the definition of realizers to 3-connected planar graphs and gave 
efficient output-sensitive algorithms for performing “lc-path queries,” and 
also gave an algorithm for finding convex grid drawings of 3-connected pla- 
nar graphs. Miura et al. [MTNN99] extended the definition of realizers to  
four-connected plane graphs and used it to solve the “independent spanning 
tree problem.” Generalizing a canonical ordering and a realizer, Chiang et 
al. introduced the concept of an “orderly spanning tree” for maximal planar 
graphs, which has many applications in graph encoding and graph draw- 
ing [CLLOl]. Miura et al. showed that a Schnyder labeling, a realizer, a 
canonical decomposition, an orderly spanning tree and an “outer triangu- 
lar” convex grid drawing are notions equivalent with each other for plane 
graphs such that each vertex has degree three or more [MAN04]. 

Exercise 

1. Write a program to implement the algorithm of de Fraysseix et al. so 
that it takes time O(n2).  

2. Using the shift method, design an algorithm to find a straight line grid 
drawing of a plane graph of n vertices on an (n  - 1) x (n - 1) grid. 

3. Design and implement a linear algorithm to construct a Schnyder label- 
ing of a triangulated plane graph. 

4. Let G be a labeled triangulated plane graph with realizer T I ,  T2, T3. For 

TEAM LinG - Live, Informative, Non-cost and Genuine !



88 Planar Graph Drawing 

an inner vertex v of G, the i-path Pi(v) is defined as a path in Ti from 
v to the root of Ti. Show that for i , j  E {1,2,3},  i # j, Pi(,) and Pj(v) 
have v as only the common vertex. 

5. Design and implement a linear algorithm for computing a 4-canonical 
ordering. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 5 

Convex Drawing 

5.1 Introduction 

Some planar graphs can be drawn in such a way that each edge is drawn 
as a straight line segment and each face is drawn as a convex polygon, as 
illustrated in Figs. 1.5(b) and 5.l(b). Such a drawing is called a convex 
drawing. The drawings in Figs. 5.l(d) and (f)  are not convex drawings. 
Although not every planar graph has a convex drawing, Tutte showed that 
every 3-connected planar graph has a convex drawing, and obtained a nec- 
essary and sufficient condition for a plane graph to have a convex drawing 
[TutGO]. Furthermore, he gave a “barycentric mapping” method for finding 
a convex drawing of a plane graph, which requires solving a system of O(n)  
linear equations [Tut63]. The system of equations can be solved either 
in O(n3) time and O(n2)  space using the ordinary Gaussian elimination 
method, or in O(n1,5)  time and O(n log n) space using the sparse Gaussian 
elimination method [LRT79]. Thus the barycentric mapping method leads 
to an O(n1.5) time convex drawing algorithm for plane graphs. 

In Sections 5.2 and 5.3 we present two linear algorithms for the con- 
vex drawing problem of planar graphs: drawing and testing algorithms 
[CYN84]. The former finds a convex drawing of a given plane graph G if 
there is; it extends a given convex polygonal drawing of the outer cycle of 
G into a convex drawing of G. The latter algorithm tests the possibility for 
a given planar graph. That is, it examines whether a given planar graph 
has a plane embedding which has a convex drawing. 

A convex drawing is called a convex grid drawing if it is a grid drawing. 
Every 3-connected plane graph has a convex grid drawing on an (n  - 2) x 
(n - 2) grid, and there is an algorithm to find such a grid drawing in linear 
time [CK97]. In Section 5.3 we describe the algorithm. 

89 
TEAM LinG - Live, Informative, Non-cost and Genuine !



90 Planar Graph Drawing 

One may expect that the size of an integer grid required by a convex 
grid drawing will be smaller than (n - 2) x (n - 2) for 4-connected plane 
graphs. In Section 5.5 we present an algorithm which finds in linear time a 
convex grid drawing of any given 4-connected plane graph G on an integer 
grid such that W + H 5 n - 1 if G has four or more outer vertices [MNNOO]. 
Since W + H 5 n - 1, the area of the grid satisfies W . H 5 n2/4. 

Fig. 5.1 Plane graphs and drawings. 

5.2 Convex Drawing 

In this section we present a linear algorithm for finding a convex drawing of 
a plane graph G [CYN84]. We first define terms and illustrative examples, 
then present a necessary and sufficient condition for G to have a convex 
drawing, and finally give the algorithm. 

One may assume that a plane graph G is 2-connected. A convex draw- 
ing of G is a straight line drawing of G such that all the face boundaries 
are drawn as convex polygons. A convex drawing of the plane graph in 
Fig. 5.l(a) is depicted in Fig. 5.l(b). Not every 2-connected plane graph 
has a convex drawing. For example, the 2-connected plane graph depicted 
in Fig. 5.l(d) has no convex drawing. In a convex drawing of a plane graph 
G the outer cycle C,(G) is also drawn as a convex polygon. The polygonal 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 91 

drawing Ci of C,(G), called an outer convex polygon, plays a crucial role in 
finding a convex drawing of G. The plane graph G in Fig. 5.l(a) admits a 
convex drawing if an outer convex polygon C,t has all vertices 1, 2, 3, 4, 5, 
and 6 of Co(G) as the apices (i.e., geometric vertices) of C;, as illustrated 
in Fig. 5.l(b). However, if C,* has only apices 1, 2, 3 and 4, then G does 
not admit a convex drawing as depicted in Fig. 5.l(c). We say that an 
outer convex polygon C,* is extendible if there exists a convex drawing of G 
in which C,(G) is drawn as C:. Thus the outer convex polygon drawn by 
thick lines in Fig. 5.l(b) is extendible, while that in Fig. 5.l(c) is not. 

Tutte established a necessary and sufficient condition for an outer con- 
vex polygon to  be extendible [TutGO]. The following Theorem obtained by 
Thomassen [Tho801 is slightly more general than this result. 

Theorem 5.2.1 Let G be a 2-connected plane graph, and let C,t be an 
outer convex polygon of G. Let C,+ be a k-gon, k 2 3, and let PI, P2, . . . , Pk 

be the paths in Co(G), each corresponding to a side of the polygon C;, as 
illustrated in Fig. 5.2(a). Then C,+ is extendible if and only i f  the following 
Condition I holds. 

Condition I 

(a) For each inner vertex u with d(v) 2 3, there exist three paths disjoint 
except u, each joining u and an outer vertex; 

(b) G - V(Co(G))  has no connected component H such that all the outer 
vertices adjacent to vertices in H lie on a single path Pi, and no two 
outer vertices in each path Pi are joined by  an inner edge; and 

(c) any cycle containing no outer edge has at least three vertices of degree 
2 3. 

Proof. The situations violating Condition I(a), (b) or (c) are illustrated 
in Fig. 5.2. It is impossible to draw G so that both of the two faces marked 
by x in Fig. 5.2(a) are convex polygons. It is similar for Figs. 5.2(b) and 
(c). One can thus easily observe the necessity of Condition I. On the other 
hand, the sufficiency is implied by the algorithm below, which always finds 
a convex drawing of a plane graph G if G and C,+ satisfy Condition I. 13 

Suppose that a 2-connected plane graph G and an outer convex polygon 
C,t satisfy Condition I. The convex drawing algorithm extends C,t into a 
convex drawing of G in linear time. For simplicity, we assume that every in- 
ner vertex has degree three or more in G. Otherwise, replace each maximal 
induced path not on C,(G) by a single edge joining its ends (the resulting 

TEAM LinG - Live, Informative, Non-cost and Genuine !



92 Planar Graph Drawing 

Fig. 5.2 G and C,t violating Condition I(a), (b) or (c). 

simple graph G' satisfies Condition I); then find a convex drawing of G'; 
and finally subdivide each edge substituting a maximal induced path. 

The outline of the drawing algorithm is as follows. We reduce the convex 
drawing of G to those of several subgraphs of G as follows: delete from G 
an arbitrary apex v of the outer convex polygon C,+ together with the 
edges incident to v; divide the resulting graph G' = G - v into blocks 
B1, Bz,. . . , Bp, p 2 1, as illustrated Fig. 5.3; determine an outer convex 
polygon C,t of each block Bi so that Bi with C,t satisfies Condition I; and 
recursively apply the algorithm to each block Bi with C,t to determine the 
position of inner vertices of Bi. The detail of the algorithm is as follows. 

V P 

Fig. 5.3 Reduction of the convex drawing of G into subproblems. 

Algorithm Convex-Drawing(G, C:) 

Step 1. Assume that G has at least four vertices and is not a single cycle; 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 93 

otherwise, a convex drawing of G has been obtained. Choose an 
arbitrary apex u of C:, and let G' := G - v. Divide the plane 
graph G' into blocks Bi, 1 5 i 5 p .  Let v1 and vp+l be outer 
vertices adjacent to u, and let u i ,2  5 i 5 p ,  be the cut vertex of 
G' such that ui = V(BiPl) n V(Bi), as illustrated Fig. 5.3.  
{Every vertex vi, 1 5 i 5 p +  1, is an outer vertex of G since G and 
C: satisfy Condition I(a) and every inner vertex of G has degree 
three or more.} 

Step 2. Find a convex drawing of each block Bi, 1 5 i 5 p ,  by applying 
the following procedures. 

Step 2.1 Determine an outer convex polygon C,+ of Bi as follows. 
{Since the positions of the vertices in Co(G) have been already 
determined on C:, it remains to determine the positions of the 
vertices in Co(Bi) - C,(G).} 
Locate the vertices in Co(Bi) - Co(G) in the interior of the 
triangle u, vi, ui+l in such a way that all the vertices adjacent 
to u are apices of C: and the others are not apices of C:. 

Step 2.2 Recursively call the procedure Convex-Drawing(Bi, C:) to 
extend C,f to  a convex drawing of Bi. 
{Note that Bi and C,+ satisfy Condition I and every inner vertex 
of Bi has degree three or more.} 

We have the following result on the algorithm. 

Theorem 5.2.2 Let G be a 2-connected plane graph, and let C: be a n  
extendible outer convex polygon of G. Then  Algorithm Convex-Drawing 
extends C: into a convex drawing of G in linear time. 

Proof. We first prove that Algorithm Convex-Drawing correctly finds 
a convex drawing of G. Each inner face F containing the apex u is a convex 
polygon in a drawing obtained by the algorithm; if either F contains none 
of v2, us,. . . ,up or F contains an edge (v, ui), 2 5 i 5 p ,  then F is drawn as 
a triangle; if F contains ui, 2 5 i 5 p ,  but (v, ui) is not an edge of G, then F 
is drawn as a convex quadrilateral obtained from two triangles by patching 
them along their side vvi, which is drawn by a dotted line in Fig. 5.3.  
Therefore, in order to prove inductively the correctness of the algorithm, it 
suffices to observe that every block Bi with C: satisfies Condition I. If Bi 
violated Condition I(a) or (c) then G would do the same one, while if Bi 
violated (b) then G would do either (a), (b) or (c). 

We then prove the claim on time complexity. A path joining vertices x 
TEAM LinG - Live, Informative, Non-cost and Genuine !



94 Planar Graph Drawing 

and y is called an x - y  path.  Let P be the ul-vp+l path in the outer cycle 
Co(G') of G' = G - v which newly appears on the outer cycle. P is drawn 
by thick lines in Fig. 5.3. Traversing P ,  one can easily 

(1) find the vertices ui, 1 5 i 5 p + 1, which appear on both Co(G) and 

(2) obtain the outer cycle C,(Bi) of Bi as the union of the ui-ui+l path on 

(3) decide the positions of the vertices of C,,(Bi) as specified in Step 2.1. 

Thus we can implement the algorithm so that the required time, exclusive 
of recursive calls to itself, is proportional to the number of traversed edges 
in P, that is, the edges that newly appear on the outer cycle. Since every 
edge appears on the outer cycle at most once, the number of edges traversed 
during an execution of Convex-Drawing is at most m in total, where 
m is the number of edges in G. Thus Convex-Drawing runs in linear 
time. 

c o  (G'),  

P and the ui+l-vi path on C,(G), and 

We say that an outer convex polygon C,i of a plane graph G is str ic t  if 
every vertex of C,(G) is an apex of the polygon C,+. The outer convex poly- 
gon in Fig. 5.l(b) is strict, while that in Fig. 5.l(c) is not. Theorem 5.2.1 
implies that if there is an extendible outer convex polygon of G then any 
outer strict convex polygon of G is extendible, too. 

5.3 Convex Testing 

In this section, we present a linear algorithm to examine whether a p lanar  
graph has a plane embedding with a convex drawing [CYN84]. 

We call a cycle C of a planar graph G a facial cycle if there exist a plane 
embedding of G in which C is embedded as a boundary of a face. Thus 
if F is a facial cycle of G, then G has a plane embedding in which F is 
embedded as an outer face. A planar graph may have a convex drawing for 
a particular embedding, but may not have a convex drawing for another 
embedding. For example, although the two embeddings in Figs. 5.l(a) and 
(e) are of the same planar graph, the embedding in Fig. 5.l(a) has a convex 
drawing as illustrated in Fig. 5.l(b), while the embedding in Fig. 5.l(e) 
has no convex drawing as illustrated in Fig. 5.l(f). We say that a facial 
cycle F of a planar graph G is extendible if there is a plane embedding of 
G whose outer cycle is F and which has a convex drawing for some outer 
convex polygon F', say for an outer str ic t  convex polygon. Thus the facial 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 95 

cycle 1,2,3,4,5,6 of the graph in Fig. 5.l(a) is extendible, while 1,2,3,4 is 
not. It is rather easy to design a linear algorithm which only examines 
whether an outer convex polygon F’ of a plane graph is extendible, that 
is, satisfies Condition I. However, a planar graph may have an exponential 
number of facial cycles, so it is impractical to  test all the facial cycles of a 
graph one by one through such an algorithm. We thus modify Condition I 
in Lemma 5.2.1 into a form suitable for our purpose, which is represented 
in terms of “3-connected components.” One may easily notice that the 
existence of a convex drawing of a graph G heavily depends on the structure 
of “3-connected components” of G. 

This section is organized as follows. In Section 5.3.1 we give definitions 
of 3-connected components and separation pairs. In Section 5.3.2 we express 
Condition I in terms of 3-connected components. Section 5.3.3 gives a linear 
convex testing algorithm. 

5.3.1 Definitions 

In this subsection a “graph” means the so-called multigraph, so some terms 
defined in Chapter 2 shall be redefined. 

A pair {x,y} of vertices of a 2-connected graph G = (V,E) is called 
a separation pair if there exists two subgraphs G’, = (V1, E i )  and Gk = 
(fi, E i )  satisfying the following conditions (a) and (b): 

(a) V = V l U V 2 , V l n V ~ = { z , y } ; a n d  
(b) E = Ei U Ea,Ei n I34 = 0, lEil _> 2, IEaI 2 2. 

The graph G in Fig. 5.4(a) has six separation pairs {1,2}, {1,3},{2,3}, 

For a separation pair {z,y} of G, GI = (Vl, Ei + (z ,y))  and G2 = 
(Vz, I34 + (5 ,  y)) are called the split graphs of G. The new edges (z, y) added 
to G1 and G2 are called the virtual edges. Even if G has no multiple edges, 
GI and G2 may have. Dividing a graph G into two split graphs GI and Ga 
are called splitting. Reassembling the two split graphs GI and G2 into G is 
called merging. Merging is the inverse of splitting. Suppose that a graph G 
is split, the split graphs are split, and so on, until no more splits are pos- 
sible, as illustrated in Fig. 5.4(b) where virtual edges are drawn by dotted 
lines. The graphs constructed in this way are called the split components of 
G. The split components are of three types: triple bonds (i.e. a set of three 
multiple edges), triangles, and 3-connected graphs. The $connected com- 
ponents of G are obtained from the split components of G by merging triple 

{ 2 > 7 ) ,  (3,617 and {4,5}. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



96 Planar Graph Drawing 

bonds into a bond and triangles into a ring, as far as possible, where a bond 
is a set of multiple edges, and a ring is a cycle. The graph in Fig. 5.4(a) 
is decomposed into seven 3-connected components HI,  H2, . . . , H7 as de- 
picted in Fig. 5.4(c), where H I ,  Hz and HG are 3-connected graphs, H3, 
H:, and H7 are rings, and H4 is a bond. The split components of G are 
not necessarily unique, but the 3-connected components of G are unique 
[HT73]. 

A separation pair {x,y} is pr ime if x and y are the end vertices of 
a virtual edge contained in a 3-connected component. As known from 
Fig. 5.4(c), {1,2}, {1,3}, {2,3} and {4,5} are prime separation pairs, while 
{2,7} and {3,6} are not. 

Suppose that {x, y} is a prime separation pair of a graph G and that G 
is split at {x,y}, the split graphs are split, and so on, until no more splits 
are possible at {x,y}, as illustrated in Fig. 5.4(d). A graph constructed in 
this way is called an {x ,y} -sp l i t  component of G if it has at least one real 
(i.e. non-virtual) edge. In Fig. 5.4(d), I I ,  1 2 ,  I4 and I5 are the {2,3}-split 
components, while I3 is not. 

In some cases it can be easily known only from the {x,y}-split com- 
ponents for a single separation pair {x,y} that a graph G has no convex 
drawing. A prime separation pair {x, y} of G is called a forbidden separation 
pair if there are either 

(a) at least four {x,y}-split components, as illustrated in Fig. 5.5(a), or 
(b) exactly three {x,y}-split components each of which is neither a ring 

nor bond, as illustrated in Fig. 5.5(b). 

Note that an {x, y}-split component corresponds to an edge ( x ,  y) if it is a 
bond, and to a subdivision of an edge (x,y) if it is a ring. The graph in 
Fig. 5.4(a) has exactly one forbidden separation pair {2,3}. One can easily 
know that if a planar graph G has a forbidden separation pair then any 
plane embedding of G has no convex drawing, that is, G has no extendible 
facial cycle. 

On the other hand, the converse of the fact above is not true. In order 
to be more precise, we need one more term. A prime separation pair {x, y} 
is called a critical separation pair if there are either 

(i) exactly three {x,y}-split components including a bond or a ring, as 

(ii) exactly two {x, y}-split components each of which is neither a bond nor 
illustrated in Figs. 5.6(a) and (b), or 

a ring, as illustrated in Fig. 5.6(c). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 97 

2 

Fig. 5.4 
and (d) {2,3}-split components with one exception 13. 

(a) A 2-connected graph, (b) split components, (c) 3-connected components, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



98 Planar Graph Drawing 

X X 

Y Y 

Fig. 5.5 Planar graphs with forbidden separation pairs {z,y}. 

In the graph of Fig. 5.4(a), prime separation pairs { 1,2} and { 1,3} are 
critical, but {4,5} is neither forbidden nor critical. When a planar graph 
G has no forbidden separation pair, two cases occur: if G has no critical 
separation pair either, then G is a subdivision of a 3-connected graph, and 
so every facial cycle of G is extendible; otherwise, that is, if G has critical 
separation pairs, then a facial cycle F of G may or may not be extendible, 
depending on the interaction of F and critical separation pairs. The detailed 
criterion, called Condition 11, will be given in Section 5.3.2. 

X Y X 

Fig. 5.6 Planar graphs with critical separation pairs {z,y}. 

5.3.2 Condition 11 

We now give a condition suitable for the testing algorithm, which is equiv- 
alent to Condition I under a restriction that the outer convex polygon C,+ 
is strict, that is, every vertex of C,(G) is an apex of C: [CYN84]. 

Theorem 5.3.1 Let G = (V, E )  be a %connected plane graph with the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 99 

outer facial cycle F = C,(G), and let C: be an outer strict convex polygon 
of G. Then C: is extendible if and only if G and F satisfy the following 
Condition II. 

Condition II. 

(a) G has no forbidden separation pair; 
(b)  For each critical separation pair { x ,  y} of G ,  there is at most one { x ,  y}- 

split component having no edge of F ,  and, i f  any,  it is either a bond if 
( x , y )  E E or a ring otherwise. 

Proof. We shall show that Condition I1 is equivalent to Condition I under 
the restriction that C: is strict. 

Condition I implies Condition 11: Suppose that Condition I holds, and 
let {z, y }  be a prime separation pair of G. 

Let I1, I z , .  . . , Ik be the { x ,  y}-split components having no edge of F .  
Then we claim that k = 0 or 1 and that if k = 1 then I1 is either a bond or 
a ring. First suppose that one of the components I l , I2 ,  . . . , Ik ,  say 11, is 
neither a bond nor a ring. Then I1 has a vertex u(# x ,  y) of degree three or 
more. Since I1 has no outer edge, all vertices in I1 other than x and y are 
inner vertices of G. Therefore G has no three paths disjoint except u, each 
joining v and an outer vertex, since such a path must contain either x or y. 
This contradicts Condition I(a). Thus every component I i ,  1 5 i 5 k ,  must 
be either a bond or a ring. Next suppose that k 2 2. Then I1 together 
with I2 forms a cycle which has no outer edge of G and has exactly two 
vertices z and y of degree three or more in G, contrary to Condition I(c). 
We have thus verified the claim. 

Since at most two { x ,  y}-split components contain outer edges, the claim 
above implies that there are at most three { x ,  y}-split components and one 
of them is a bond or a ring if there are three. Thus { x ,  y} is not a forbidden 
separation pair. Hence Condition II(a) holds. 

Let {x,y} be a critical separation pair. If k = 0 as illustrated in 
Fig. 5.6(c), then Condition II(b) holds for { x ,  y}. We may hence assume 
that k = 1 as illustrated in Figs. 5.6(a) and (b). Consider first the case 
( x ,  y) @ E as illustrated in Fig. 5.6(b). Then the { x ,  y}-split component 1 1  

having no outer edge is not a bond. Therefore, the claim above implies that 
I I  must be a ring, and hence Condition II(b) holds for this case. Consider 
next the case (2 ,  y) E E ,  as illustrated in Fig. 5.6(a). If the { x ,  y}-split com- 
ponent I1 having no outer edge was a ring as illustrated in Fig. 5.7, then 
(z ,y)  would be an outer edge and the connected component I I  - { x , y }  of 

TEAM LinG - Live, Informative, Non-cost and Genuine !



100 Planar Graph Drawing 

G - V(C,(G)) would be adjacent only with the outer vertices x and y in a 
side of C:, contradicting Condition I(b). Note that edge (2, y)  is a side of 
the outer strict convex polygon C: as illustrated in Fig. 5.7(a), where C: is 
drawn by thick lines. Thus I1 must be a bond, and hence Condition II(b) 
holds for this case. 

Fig. 5.7 
II(b), and (b) {z, y}-split components. 

(a) A plane graph G with a strict outer convex polygon C: violating Condition 

Condition 11 implies Condition I: Suppose for a contradiction that Con- 
dition I1 holds but Condition I does not hold. 

First suppose that G has a vertex w of degree three or more, violating 
Condition I(a). Then, using Menger’s theorem [Wes96], one can easily 
show that there exists a prime separation pair {x, y} such that an {z, y}- 
split component Ii contains v and has no outer edge. Since G is supposed 
to satisfy II(a), {x, y} is not a forbidden separation pair. Thus {z, y} is 
a critical separation pair. Since Ii contains a vertex v of degree three or 
more, Ii is neither a bond nor a ring, contradicting Condition II(b). 

Next suppose that Condition I(b) is violated. Then G - V(C,(G)) has a 
connected component H such that only the end-vertices x and y of an edge 
(2, y) on Co(G) are adjacent with vertices in H ,  because G has no multiple 
edges and C: is strict. Clearly {z, y} is a critical separation pair, and the 
{x, y}-split component containing H has no outer edge and is not a bond. 
This contradicts Condition II(b). 

Finally suppose that there exists a cycle C in G violating Condition 
I(c). Since G is 2-connected, C has exactly two vertices x and y of degree 
three or more. Clearly {x, y} is a critical separation pair. If (2, y) E E ,  
then an {z, y}-split component having no outer edge is a ring. Otherwise, 
there are two {x,y}-split components having no outer edge. Either case 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 101 

contradicts Condition II(b). 

It should be noted that Condition I1 does not depend on the drawing 
C: of F = C,(G) at all, and hence Theorem 5.3.1 leads to the following 
theorem. 

Theorem 5.3.2 
extendible i f  and only if G and F satisfy Condition II. 

A facial cycle F of a 2-connected planar graph G is 

5.3.3 Testing Algorithm 

Condition I1 is more suitable for testing than Condition I. In this subsection, 
we show that the convex testing of a planar graph GI i.e., examining whether 
G has a facial cycle F satisfying Condition 11, can be reduced to  planarity 
testing of a certain graph constructed from G. 

Theorem 5.3.2 immediately yields the following corollaries. 

Corollary 5.3.3 
for  any  facial cycle of G i f  G has a forbidden separation pair. 

Corollary 5.3.4 A %connected planar graph G has a convex drawing 
for  any  facial cycle of G if G has neither a forbidden separation pair nor  a 
critical separation pair and hence G is  a subdivision of a 3-connected graph. 

Corollary 5.3.5 Every 3-connected planar graph G has a convex drawing 
fo r  any  facial cycle of G.  

A 2-connected planar graph G has n o  convex drawing 

Corollary 5.3.6 
extendible, then F contains every vertex of critical separation pairs of G. 

Proof. Since F is extendible, G and F satisfy Condition 11. Suppose for 
a contradiction that {x, y }  is a critical separation pair of G and that F does 
not contain x. Then exactly one of the {x, y}-split components contains all 
the edges of F .  On the other hand, Condition I1 implies that there exists 
exactly one {z, y}-split component containing no edges of F and it must 
be a bond or a ring. Thus there are exactly two {z,y}-split components, 
one of which is a bond or a ring. Then {x,y} could not be critical] a 
contradiction. 0 

If a facial cycle F of a 2-connected planar graph G is 

We will show later in Theorem 5.3.9 that the converse of Corollary 5.3.6 
is also true in a certain sense. Before presenting Theorem 5.3.9 we need the 
following two lemmas. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



102 Planar Graph Drawing 

Lemma 5.3.7 Let G be a 2-connected planar graph, and let { x ,  y }  be a 
prime separation pair of G.  I f  a facial cycle F of G contains both x and y ,  
then exactly two of the {x,y}-spli t  components contain edges of F .  

Proof. Since F is a cycle, at most two of the {x,y}-spl i t  components 
contain edges of F .  Furthermore, since the facial cycle F contains both x 
and y ,  not all the edges of F are contained in a single { x ,  y}-split component. 
Thus exactly two of the { x ,  y}-split components contain edges of F .  0 

Lemma 5.3.8 Suppose that a %connected planar graph G has no forbid- 
den separation pair and has exactly one critical separation pair. Then G 
has a convex drawing for some outer facial cycle. 

Proof. Let { x , y }  be the critical separation pair of G. By the definition 
of a critical separation pair, one can observe that G has one of the seven 
plane embeddings in Fig. 5.8; a shaded part corresponds to  an { x ,  y}-split 
component which is neither a bond nor a ring. In each case, one can easily 

0 

Thus we may concentrate on a graph having two or more critical sep- 
aration pairs. We are now ready to present Theorem 5.3.9 which plays a 
crucial role in the testing algorithm. 

Theorem 5.3.9 Suppose that a 2-connected planar graph G has no for- 
bidden separation pair and has two or more critical separation pairs as 
illustrated in Fig. 5.9(a), where all vertices in critical separation pairs are 
drawn by  white circles. Apply the following operation to every critical sep- 
aration pair { x ,  y} of G: 

(a) if ( x , y )  E E ,  then delete edge ( x , y )  from G; 
( b )  if ( x , y )  @ E and exactly one {x ,y}-spl i t  component is a ring, then 

verify that G and the outer facial cycle satisfy Condition II(b). 

delete the x-y path in the component from G. 

Let GI be the resulting planar graph, as illustrated in Fig. 5.9(b). Then F 
is an extendible facial cycle of G if and only i f  F is a facial cycle of GI and 
contains all the vertices of critical separation pairs of G. 

Proof. Necessity. Assume that F is the extendible outer facial cycle 
of a plane embedding of G, as illustrated in Fig. 5.9(a). Then, since the 
embedding and F satisfy Condition 11, all the deleted edges or paths are 
not on F ,  and hence F remains to be the outer cycle of the plane subgraph 
GI of G, as illustrated in Fig. 5.9(b). Moreover F contains all the vertices 
of critical separation pairs by Corollary 5.3.6. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 103 

X 

Y Y 

X 
X 

Y 

Y Y 

Fig. 5.8 Seven types of a plane graph having exactly one critical separation pair {z, y}. 

Suficiency. Assume that F is a facial cycle of GI which contains all 
the vertices of critical separation pairs of G, as illustrated in Fig. 5.9(b). 
Clearly F is also a facial cycle of G, as illustrated in Fig. 5.9(a). Since 
G has no forbidden separation pair, Condition II(a) holds. It thus suffices 
to show that every critical separation pair {z,y} of G satisfies Condition 
II(b). 

By Lemma 5.3.7, exactly two of the {z, y}-split components, say I1 and 
Iz, contain edges of F .  Therefore at most one of the {z, y}-split components 
contains no edges of F .  

Suppose for a contradiction that there is such a component 13 which is 
neither a bond nor a ring. Then I3 contains no vertex of critical separation 
pairs other than z and y; if 1 3  contained a vertex z ( #  x,y)  of a critical 

TEAM LinG - Live, Informative, Non-cost and Genuine !



104 Planar Graph Drawing 

separation pair, then I3 would contain an edge of F since F contains all 
the vertices of critical separation pairs, a contradiction. Since G has at 
least two critical separation pairs, there is a critical separation pair {u, v}, 
different from { x , y } ,  and vertex u or v is not contained in 1 3 .  Hence I1 or 
12, say 11, is neither a bond nor a ring. The other component I2 is a bond 
or a ring; otherwise, {x, y }  would be a forbidden separation pair. Then the 
edge (x, y )  or the x-y path in I2 should have been deleted in G I ,  and hence 
F could not be a facial cycle of G I ,  a contradiction. 

Fig. 5.9 Graphs (a) G, (b) G I ,  and (c) G2. 

We define one more term before presenting two corollaries which follow 
immediately from Theorem 5.3.9. Let v be a vertex of a 2-connected plane 
graph G2, and let G1 = G2 - v be 2-connected. Then the v-cycle  of G2 is 
the cycle of the plane subgraph G1 of G2 which bounds the face of G1 in 
which v lay. 

Corollary 5.3.10 Suppose tha t  a %connected p lanar  graph G has  n o  
forbidden separation pair  and has  t w o  or more  critical separation pairs.  
L e t  G1 be t h e  graph defined in Theorem 5.3.9. Le t  G2 be the  graph obtained 
f r o m  G1 by adding a n e w  ver t ex  v and  joining v t o  all vertices of critical 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 105 

separation pairs of G,  as illustrated in Fig. 5.9(c). Then F is an extendible 
facial cgcle of G i f  and only if 

(a) G2 is planar; and 
(b) F is the v-cycle of a plane embedding of Ga. 

Corollary 5.3.11 Suppose that a 2-connected planar graph G has no 
forbidden separation pair and has two or more critical separation pairs. 
Let G2 be the graph defined in Corollary 5.3.10. Then there is a plane 
embedding of G which has a convex drawing if and only i f  G2 is planar. 

Combining Lemma 5.3.8 and Corollaries 5.3.3, 5.3.4, 5.3.10, and 5.3.11, 
one can easily devise a linear testing algorithm (Exercise 2). It is also easy 
to find all extendible facial cycles of a given planar graph (Exercise 3) 
[CYN84]. 

5.4 Convex Grid Drawings of 3-Connected Plane Graphs 

In this section we describe a linear algorithm for finding a convex grid 
drawing of a 3-connected plane graph on an (n - 2) x (n - 2) grid [CK97]. 
The algorithm is based on a “canonical decomposition” of a 3-connected 
plane graph, which is a generalization of a canonical ordering described in 
Section 4.2.1. In Section 5.4.1 we present a canonical decomposition, and 
in Section 5.4.2 we present the algorithm. 

5.4.1 Canonical Decomposition 

We say that a plane graph G is internally 3-connected if G is 2-connected 
and, for any separation pair {u,v} of G, u and v are outer vertices and 
each connected component of G - {u, v} contains an outer vertex. In other 
words, G is internally 3-connected if and only if it can be extended to a 3- 
connected graph by adding a vertex in an outer face and connecting it to all 
outer vertices. If a 2-connected plane graph G is not internally %connected, 
then G has a separation pair {u,v} of one of the three types illustrated in 
Fig. 5.10, where the split component I contains a vertex other than u and 
v. If an internally 3-connected plane graph G is not 3-connected, then G 
has a separation pair of outer vertices and hence G has a “chord-path” 
when G is not a single cycle. 

We now define a “chord-path.” Let G be a 2-connected plane graph, 
and let w1, w2,. . . , wt be the vertices appearing clockwise on the outer cycle 

TEAM LinG - Live, Informative, Non-cost and Genuine !



106 Planar Graph Drawing 

Fig. 5.10 Biconnected plane graphs which are not internally 3-connected. 

C,(G) in this order, as illustrated in Fig. 5.11. We call a path P in G a 
chord-path of the cycle Co(G) if P satisfies the following (i)-(iv): 

(i) P connects two outer vertices wp and wq, p < q; 
(ii) {wp, wq} is a separation pair of G; 

(iii) P lies on an inner face; and 
(iv) P does not pass through any outer edge and any outer vertex other 

than the ends wp and wq. 

The plane graph G in Fig. 5.11 has six chord-paths PI, P2,. . . , Ps drawn 
by thick lines. A chord-path P is minimal  if none of wp+l, wp+2,. . . , wq-l 
is an end of a chord-path. Thus the definition of a minimal chord-path 
depends on which vertex is considered as the starting vertex w1 of Co(G). 
P l ,  P 2 ,  P3 and Ps in Fig. 5.11 are minimal, while P 4  and Ps are not minimal. 

Let {v1,w2,... , u p } ,  p 2 3, be a set of three or more outer vertices 
consecutive on C,(G) such that d(v1) 2 3, d(w2) = d(w3) = . . . = d(vp-l) = 
2, and d(wp) 2 3. Then we call the set {w2,213,.-. ,vp-l} an outer chain of 
G. The graph in Fig. 5.11 has two outer chains {w4,wg} and {wg}. 

We are now ready to  define a canonical decomposition. Let G = (V, E) 
be a 3-connected plane graph of n 2 4 vertices like one in Fig. 5.13. For an 
ordered partition II = (U1, Uz, .  . . , Ul) of set V ,  we denote by Gk, 1 5 k 5 1, 
the subgraph of G induced by U1 U U2 U . . . U Uk, while we denote by a, 
0 5 k 5 1 - 1, the subgraph of G induced by uk+l U u k + 2  U . . . U Ul. Clearly 
G k = G - U k + l U U ~ + z . . . U U l , a n d G = G l =  Go. Let (vl,v2) beanouter  
edge of G. We then say that II is a canonical decomposition of G (for an 
outer edge (wl, v2)) if II satisfies the following conditions (cd1)-(cd3). 

(cdl) U1 is the set of all vertices on the inner face containing edge (v1,v2), 

(cd2) For each index k, 1 5 k 5 1, Gk is internally 3-connected. 
(cd3) For each index k, 2 5 k 5 1 ,  all vertices in u k  are outer vertices of 

and Ul is a singleton set containing an outer vertex v, $! {vl ,  w2}. 

Gk and the following conditions hold: 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 107 

Fig. 5.11 A plane graph with chord-paths Pi, P z , .  . . , p6. 

(a) if lukl = 1, then the vertex in uk has two or more neighbors 
in Gk-1 and has at least one neighbor in K when k < 1, as 
illustrated in Fig. 5.12(a); and 

(b) If IUkl  2 2, then Uk is an outer chain of Gk, and each vertex in 
uk has at least one neighbor in K, as illustrated in Fig. 5.12(b). 

Fig. 5.12 Gk with some edges joining uk and z. 
Figure 5.13 illustrates a canonical decomposition II = ( U I ,  U2,. . . , U S )  

of a 3-connected plane graph of n = 15 vertices. We now have the following 
lemma on a canonical decomposition. 

Lemma 5.4.1 
canonical decomposition II, and II can be found in linear tame. 

Every 3-connected plane graph G of n 2 4 vertices has a 

TEAM LinG - Live, Informative, Non-cost and Genuine !



108 Planar Graph Drawing 

Fig. 5.13 A canonical decomposition of a 3-connected plane graph. 

Proof. We first show that G has a canonical decomposition. Let U1 be 
the set of all vertices on the inner face containing edge ( ~ 1 ~ ~ 2 ) .  Since G 
is 3-connected and n 2 4, there is an outer vertex u, @ U1. We choose 
the singleton set {vn} as Ul. Thus (cdl) holds. Since Gl = G, (cd2) holds 
for k = 1. Since G is 3-connected and v, is on C,(G), GI-1 = G - un is 
internally 3-connected and hence (cd2) holds for k = 1 - 1. Since v, has 
degree three or more in G, (cd3) holds for k = 1. If V = U1UU1, then simply 
setting I = 2 completes the proof. One may thus assume that V 3 U1 U Ui 
and hence 1 2 3. We choose lJ-1, U1-2,. . . , U2 in this order and show that 
(cd2) and (cd3) hold. 

Assume for inductive hypothesis that 1 2 i + 1 _> 3 and the sets 
Ul, Ul-1,. . . , Ui+l have been appropriately chosen so that 

(1) (cd2) holds for each index k, 1 2 k 2 i, and 
(2) (cd3) holds for each index k, 1 >_ k 2 i + 1. 

(1) (cd2) holds for the index k = i - 1, and 
(2) (cd3) holds for the index k = i. 
Let w1,w2,- . .  ,wt be the outer vertices of Gi appearing clockwise on 

We then show that there is a set Ui of outer vertices of Gi such that 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 109 

C,(Gi) in this order, where w1 = u1 and wt = u2. There are the following 
two cases to consider. 
Case 1: Gi is 3-connected. 

Since Gi is 3-connected and a vertex in Ui+l has a neighbor in Gi,  there 
is an outer vertex w @ U1 of Gi which has a neighbor in c. We choose the 
singleton set { w }  as Ui. Since Gi is 3-connected and w is an outer vertex 
of Gi, Gi-1 = Gi - w is internally 3-connected and w has three or more 
neighbors in Gi-1. Thus (cd2) holds for k = i - 1, and (cd3) holds for 
k = i. 
Case 2: Otherwise. 

Since i 2 2, Gi is not a single cycle. Gi is internally 3-connected, but 
is not 3-connected. Therefore there is a chord-path for C,(Gi). Let P be a 
minimal chord-path for Co(G), and let wp and wq be the two ends of P such 
that p < q. Then q 2 p + 2 since Gi is internally 3-connected and {wp, wq} 
is a separation pair of Gi. We now have the following two subcases. 
Subcase 2a: {wp+l,wp+2,. .-  , wq-l}  is an outer chain of Gi 

In this case we choose {wp+l,wp+2,. . .  ,wq-l}  as Ui. Since Ui is an 
outer chain and P is a minimal chord-path, one can observe that Uin& # 8. 
Since G is %connected and each vertex w E Ui has degree two in Gi, each 
vertex w E Ui has a neighbor in 

We now claim that Gi-1 is internally 3-connected and hence (cd2) holds 
for k = i - 1. Assume for a contradiction that Gi-1 is not internally 3- 
connected. Then Gi-1 has either a cut vertex u or a separation pair {u, u }  
having one of the three types illustrated in Fig. 5.10. 

Consider first the case where Gi-1 has a cut vertex u. Then v must be 
an outer vertex of Gi and v # wp, wq;  otherwise, Gi would not be internally 
3-connected. Then the minimal chord-path P above must pass through u 
as illustrated in Fig 5.14, contrary to the Condition (iv) of the definition of 
a chord-path. 

Consider next the case where Gi-1 has a separation pair {u, v} having 
one of the three types illustrated in Fig. 5.10. Then { u , v }  would be a 
separation pair of Gi having one of the three types illustrated in Fig. 5.10, 
and hence Gi would not be internally 3-connected, a contradiction. 
Subcase 2b: Otherwise. 

In this case, any vertex w E (wp+l,  wp+2,. . . , wq-l}  has degree three 
or more in Gi;  otherwise, P would not be minimal. At least one vertex 
w E {wp+1, wP+2,”. ,wq- l}  has a neighbor in c; otherwise, { w p ,  w q }  
would be a separating pair of G and hence G would not be 3-connected. 
We choose the singleton set { w )  as Ui. Then clearly UinUl  = 0, and (cd3) 

and hence (cd3) holds for k = i. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



110 Planar Graph Drawing 

_ _ _ _ - - - - - - - _ _ _ _ _ *  

V 

Fig. 5.14 Gi in which P passes through an outer vertex v .  

holds for k = i. Since w is not an end of a chord-path of C,(Gi) and Gi is 
internally 3-connected, Gi-1 = Gi - 20 is internally 3-connected and hence 
(cd2) holds for k = i - 1. 

Thus we have proved that there exists a canonical decomposition. 
One can implement an algorithm for finding a canonical decomposition, 

based on the proof above. It maintains a data structure to keep the outer 
chains and minimal chord-paths of co(Gk).  The algorithm traverses every 

0 face at most a constant number of times, and runs in linear time. 

5.4.2 

In this section we describe a linear algorithm for finding a convex grid 
drawing of a 3-connected plane graph [CK97]. 

Let G be a 3-connected plane graph, and let II = (U1, U2,. . . , Ul) be 
a canonical decomposition of G. The algorithm will add to a drawing the 
vertices in set uk, one by one, in the order U1, U2, . . .  ,Ul, adjusting the 
drawing at every step. Before giving the detail of the algorithm we need 
some preparation. 

We say that a vertex v E u k ,  1 5 k 5 1, has rank k .  Let 2 5 k 5 1, and 
let Co(Gk-l) = w 1 , ~ 2 , . . .  , wt, where w1 = 01 and wt = 02.  The definition 
of a canonical decomposition implies that there is a pair of indices a and 
b,  1 5 a < b 5 t ,  such that each of w,  and ' w b  has a neighbor in Gk-1 

but any vertex wi, a < i < b, has no neighbor in G k - 1  and is an inner 
vertex of G, as illustrated in Fig. 5.15. (See also Fig. 5.12.) Then the path 
wa,  wa+l,. . . , W b  is a part of an inner facial cycle F of G; F also contains 
two edges connecting w, and wb with G k - 1 ,  plus possibly some edges in 
G k - 1 .  Let c,  a 5 c < b, be an index such that w, has the smallest rank 
among the vertices w,, w,+1,. . . , wb-1. If there are two or more vertices 

Algorithm for Convex Grid Drawing 

- 
- 

- 
- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 111 

with the smallest rank, then let w, be the leftmost one, that is, let c be 
the smallest index of these vertices. Intuitively, the algorithm will work in 
such a way that, for any such pair of indices a and b, either the vertex w, 
or wc+l will have the smallest y-coordinate among the vertices on the face 
F .  (See Fig. 5.15.) We denote the index c for a and b by p l ( u )  and p i ( b ) .  
Thus c = &(a) = p;(b). The superscript + indicates a 5 c, while the 
superscript - indicates c < b. We often omit the subscript k for simplicity. 
Note that if b = a + 1 then a = /.$(a) = p;(b).  

- 
Fig. 5.15 Gk-1 with some edges connecting Gk-1 and Gk-1. 

We denote the current position of a vertex w by P ( w ) ;  P(w) is expressed 
by its 2- and y-coordinates as (~(w) ,y(w)) .  With each vertex w, a set of 
vertices need to be moved whenever the position of w is adjusted. We 
denote by L(w) the set of such vertices. 

We are now ready to describe the drawing algorithm. 
First we draw C,(Gl) = w1,w2,- . -  ,wt as follows. Set P(w1) = 

(O,O),P(wt) = ( t  - 1,0) and P(wi )  = (i - 1,0) for all indices i = 
2,3, . . .  , t  - 1, as illustrated in Fig. 5.16(a) for the graph in Fig. 5.13. 
Also set L ( w i )  = {wi}  for each index i = 1,2,. . . , t .  

Then, for each index k = 2,3, . . -  ,1, we do the following. Let 
Co(Gk-l)  = w1,w2,. . .  ,wt be the outer cycle of G k - 1  where w1 = wl 
and wt = w 2 .  Let u k  = { I L ~ , u ~ ,  . . .  , u T } .  u k  is either a singleton set or an 
outer chain of G k ,  but in the algorithm we will treat both cases uniformly. 

Let wp and wq be the leftmost and rightmost neighbors of U k  in G k - 1  

as illustrated in Figs. 5.17 and 5.18. Let c1: = p + ( p ) ,  and let p = p-(q). If 
u k  is an outer chain, then all vertices w ~ + ~ ,  uiP+2,. . . , wq-l belong to the 
same inner face of Gk and none of them has a neighbor in and hence 
a = p, as illustrated in Fig. 5.18(a). If u k  is a singleton set of a vertex 211 

TEAM LinG - Live, Informative, Non-cost and Genuine !



112 Planar Graph Drawing 

.............................. . . . . . . . .  . i  .......................... i-.-: 

"I 2 

(4 

2 
"I 5 

(h) 

Fig. 5.16 Drawing process of the plane graph in Fig. 5.13. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 113 

having three or more neighbors in Gk-1, then at  least one of the vertices 
wp+l, wp+2,. . . , wq-l has a neighbor in and hence a < @; in fact, w, 
and wg will belong to two different inner faces of Gk, to the first and last 
faces among those that are created when adding u1 to  G k - 1 ,  as illustrated 
in Fig. 5.17. We thus execute the following steps. 

Update: 
Q 

Set L(wp)  = U L(wi);  

Set L(wq)  = U L(wi);  

Z=p 
q 

i=p+l 
B 

i=a+l 

t 

Set L ( u I )  = (211)  u ( U L(wi));  

Set L(ui) = {ui} for each index i, 2 5 i 5 r ;  

Shift: For each vertex v E U L(wi) ,  set X ( W )  = ~ ( v )  + r ;  

Install u k :  Let 6 be 0 if wp has no neighbor in Gk and 1 otherwise. For 
each i = 1,2;-. , r ,  we set ~ ( u i )  = x(w,) + i - 1 + E ,  and set y(ui) = 
y(wq) + x(w,) - x (wp)  - r + 1 - E .  In other words, we draw u k  horizontally 
in such a way that the slope of the segment uTwq is -45". Vertex u1 is 
placed above wp if wp has no neighbor in G, and at the next x-coordinate 
otherwise. Note that in the last equation we use the new updated value of 

r=q 

4 W q ) .  

We call the algorithm above Algorithm Convex-Grid-Drawing. Fig- 
ure 5.16 illustrates the execution of Algorithm Convex-Grid-Drawing for 
the plane graph in Fig. 5.13. The linear-time implementation of Convex- 
Grid-Drawing can be achieved by using a data structure presented in 
Section 4.2.3. 

We now verify the correctness of Algorithm Convex-Grid-Drawing. 
Let 2 5 k 5 I, and let CO(Gkp1) = W I , W ~ , . . .  , w t ,  where w1 = v1 and 
wt = 212. Then by induction on k it can be proved that in the drawing 
of G k - 1 ,  P ( v l )  = (O,O) ,  P(v2) = ( I  UFz: Uil - l , O ) ,  and any line segment 
wiwi+l, 1 5 i 5 t - 1, has slope in {-45",0"} U [45",90"] as illustrated in 
Fig. 5.15, where [45",90"] denotes the set 3f all angles 6, 45" 5 6 5 90". 
(Exercise 6.) More specifically, the following properties (a)-(c) hold on the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



114 Planar Graph Drawing 

Fig. 5.17 (a) Gk before Shift, and (b) Gk after Shift and Install with E = 0. 

slopes of line segments on Co(Gk-l) in the drawing of Gk-1 [CK97]: 
(a) Let w f ,  1 5 f 5 t ,  be the first vertex on Co(Gk-l) which has a neigh- 

bor in Gk-l, then the slope of each line segment on the path w1, w2, . . . , wf 
is 90". 

(b) Let wg, 1 5 g 5 t ,  be the last vertex on co(Gk-l) which has 
a neighbor in Gk-1, then the slope of each line segment on the path 
wg , wg+l, . . . , wt is -45". 

(c) For any triple of indices a,  b and c as defined earlier and illustrated in 
Fig 5.15, each of the first c - a line segments on the path w,, w,+1,. . . , wb 

has slope -45", while each of the last b - c - 1 segments has slope 90". The 

- 

- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 115 

, , .  

w = v  r 2  w = y  
. (3) 

1 

I .  . _ . I  . I _ .  I 

r l .  r 

w = v  f 2  w1 = v1 

(b) 

Fig. 5.18 (a) Gk before Shift, and (b) Gk after Shift and Install with c = 1. 

remaining line segment w,w,+1 has slope in { -45", O o }  U [45", 90'1, and the 
slope is not 90" if c = a. 

One can observe that, after the shift operation while adding uk, all 
neighbors of uk on Co(Gk-l) are visible from the vertices in uk. Hence 
the edges joining vertices in uk and vertices in Co(Gk-l) do not intersect 
themselves or edges on Co(Gk-l). Thus adding uk does not distroy the 
planarity. One can observe also that the newly created inner faces are 
convex polygons. 

What remains to show is that we do not destroy the planarity and 
convexity when we apply the shift operation. We will prove this in the 
following lemma, which is similar to Lemma 4.2.3 for straight line drawings 
[CK97]. We call a drawing of a plane graph internally convex if all inner 
faces are drawn as convex polygons. 

Lemma 5.4.2 (a) Each graph Gk, 1 5 k 5 I ,  is  straight-line embedded 
and internally convex. 

(b) Suppose that C,(Gk) = wi,w&,.-. ,wi,, wi = 01 and w:, = 0 2 ,  and 
that s is a n y  index, 1 5 s 5 t', and 6 is a n y  nonnegative integer. If we shift 

TEAM LinG - Live, Informative, Non-cost and Genuine !



116 Planar Graph Drawing 

all vertices an U:=,L(w:) b y  6 to the right, then Gk remains straight-line 
embedded and internally conuex. 

Proof. The proof is by induction on k .  For G1 the lemma is obvious. 
So suppose that it holds for G k - 1 ,  k 2 2. Let co(Gk-l)  = w1,w2,. .-  ,wt ,  
w1 = v l ,  and wt = 212 as in the algorithm. We are about to add Uk to  the 
drawing of G k - 1 .  Let wp and wq be the leftmost and rightmost neighbors 

Then the outer cycle of Gk is 
Of u k  in Co(Gk-l'). 

Let u k  = {u1,u2,.-. ,ur} ,  r 2 1. 
co(Gk) = w:, w i , .  . . , wi, where 

t' = t + <, 

< = r - q + p +  1, 

and 

wi if 15 i l p ;  
wz = Ui-* if p + 1 5 i 5 p - t  r ;  
' {  wi-t if p + r + l  l i l t ' .  

If s 2 p + r + 2, then u k  does not move, and the lemma follows directly 
by induction. If s 5 p ,  then the lemma also follows from the inductive 
assumption, since u k  shifts rigidly with the rest of the graph. 

Let us assume now that u k  is a singleton, that is, u k  = ( ~ 1 ) .  (The 
proof when uk is a chain of two or more vertices is similar and is left 
to  the reader.) Then it suffices to consider the two cases s = p + 1 and 
s = p + 2: wi = u1 and wi = wq. Let u1 have exactly z neighbors in Gk-1, 

z 2 2, and let F1, F2,. .. , F,-1 be the faces created when adding u l ,  as 
illustrated in Fig 5.17. 

If s = p + 1, that is, wi = u1, then we apply the induction assump- 
tion to G k - 1  with s' = p t l ( p )  + 1 = a + 1. The straight-line em- 
bedding and internal convexity are preserved in Gk-1 by induction. All 
faces F2, F3,. . . , Fz-l are shifted rigidly with GkPlr  and hence only Fl will 
be deformed. However, in FI we will only stretch the edges (wp ,u l )  and 
(ws,- l ,wsf)  (= (w,,w,+1)), and by the choice of s' this will not destroy 
the convexity of F1. 

If s = p + 2, that is, w: = wq, then the proof is similar: we apply the 
inductive assumption to G k - 1  with s" = p lp l (q )  + 1. In this case only 
Fz-l will be deformed, but by the choice of s" the convexity of Fz-l will 
be preserved. 0 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 117 

The conditions (a) and (b) on the slopes of line segments on Co(Gk) 
imply that the outer cycle C,(G) is drawn as an isosceles right triangle 
in the final drawing of G, as illustrated in Fig. 5.16(h). Clearly z(u1) = 
O,x(w2) = n - 1 and y(vn) = n - 1, and hence Algorithm Convex-Grid- 
Drawing produces a convex drawing of a 3-connected plane graph G on an 
(n  - I) x (n  - 1) grid. 

Using a canonical decomposition such that u, is adjacent to u2 and 
fixing the position of u, carefully, one can obtain a convex grid drawing 
on an (n - 2) x (n - 2) grid. The modification of the algorithm is left as 
Exercise 4. 

5.5 Convex Grid Drawings of 4-Connected Plane Graphs 

In this section we present an algorithm for finding a convex grid drawing 
of a 4-connected plane graph G with four or more outer vertices [MNNOO]. 
A “4-canonical decomposition” of a plane graph G [NRN97] plays a crucial 
role in the algorithm; it is a generalization of a canonical decomposition 
described in Section 5.4. 

In Section 5.5.1 we present a 4-canonical decomposition and in Sec- 
tion 5.5.2 we present the algorithm. 

5.5.1 Four- Canonical Decomposition 

A 4-canonical decomposition II = (U,,  U2, . . . , U12) is illustrated in 
Fig. 5.19 for a 4-connected plane graph of n = 21 vertices. We call an 
ordered partition II = (U1, U2,. . . , Ul) of set V a 4-canonical decompo- 
sition of a plane graph G = (V,E)  if the following three conditions are 
satisfied. 

(cl) U1 consists of the two ends of an edge on C,(G), and Ut consists of 

(c2) For each index k ,  2 5 k <_ 1 - 1, both Gk and Gk-1 are 2-connected 
GkPl is lightly shaded); and 

(c3) For each index k ,  2 5 k 5 1 - 1, one of the following three conditions 

the two ends of another edge on C,(G); 

(in Fig. 5.20 Gk is darkly shaded, and 

holds (the vertices in u k  are drawn 

(a) u k  is  a singleton set of a vertex u on c,(Gk) such that d(u, Gk) 2 2 

(b) u k  is a set of two or more consecutive vertices on C,(Gk) such 

- 
- 

by black circles in Fig. 5.20): 

- 
and d(u,Gk-I) 2 2 (see Fig. 5.20(a)). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



118 Planar Graph Drawing 

that d ( u , G k )  = 2 and d(u ,Gk- I )  2 3 for each vertex u E u k  (see 
Fig. 5.20(b)). 

(c) u k  is a set of two or more consecutive vertices on co(Gk) such 
that d ( u , G k )  2 3 and d ( u , G k - l )  = 2 for each vertex u E u k  (see 
Fig. 5.20(c)). 

- 

- 

Fig. 5.19 
vertices. 

A 4-canonical decomposition of a 4-connected plane graph having n = 21 

Fig. 5.20 Illustration for the three conditions (a)-(c) of (co3). 

Similarly as Lemma 5.4.1 one can prove the following lemma on a 4- 
canonical decomposition [MNNOO, NRN97]. 

Lemma 5.5.1 Let G be a 4-connected plane graph having at least four 
outer vertices. Then  G has a $-canonical decomposition 11, and II can be 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 119 

found in linear time. 

By the condition (c3), one may assume that all the vertices in U k , l  5 
k 5 1, consecutively appear clockwise on Co(Gk). We number all vertices 
of G by 1 , 2 , - . -  ,n so that they appear in U I , U ~ , . . .  ,Ul in this order, as 
illustrated in Fig. 5.19. We call each vertex in G by the number i, 1 5 i 5 n. 
Thus one can define an order < among the vertices in G. 

5.5.2 Algorithm 

In this section we describe an algorithm 4-Convex-Draw which finds a 
convex drawing of a 4-connected plane graph G having four or more outer 
vertices in a grid with W + H 5 n - 1 [MNNOO]. 

We first define some terms which are used in the algorithm. A lower 
neighbor of a vertex u is a neighbor of u which is smaller than u. An upper 
neighbor of u is a neighbor of u which is larger than u. Every upper neighbor 
v of u satisfies y(v) 2 y(u) in the drawing. The number of lower neighbors 
of u is denoted by dlow(u,G), and the number of upper neighbors of u is 
denoted by d,,(u,G). Every vertex u except vertex 1 satisfies dlow(u, G)  2 
1, and every vertex u except vertex n satisfies dUp(u, G) 2 1. For a vertex 
u, 1 5 u 5 n - 1, we denote by w*(u) the largest neighbor of u. The 
in-degree of a vertex u in a directed graph D is denoted by din(u, D ) ,  while 
the out-degree of u is denoted by dout(ur D ) .  

We are now ready to present the algorithm. The algorithm decides only 
the integer coordinates of the vertices 1 ,2 , .  . . , n of G effectively in this 
order. One can immediately find a (straight line) grid drawing of G from 
the coordinates. We first show how to compute the x-coordinates of all 
vertices, and then show how to compute the y-coordinates. 

5.5.2.1 How to Compute x-Coordinates 

We first show how to compute the x-coordinates of vertices. The algorithm 
puts vertices on the same vertical grid line as many as possible to  reduce 
the width W of a drawing. Suppose that vertex i has been put on a grid 
point. (See Fig. 5.21.) If possible, the algorithm puts an upper neighbor j 
of i on the same vertical grid line as i, that is, it decides x( j )  = x(i) and 
hence y( j )  > y(i) of course. The algorithm tries to choose as j the largest 
neighbor w*(i)  of i (this is crucial for making every face a convex polygon). 
However, it is impossible for a case where w*(i) has been already put on 
the same vertical grid line as a vertex i'(< i), which was put on a grid 

TEAM LinG - Live, Informative, Non-cost and Genuine !



120 Planar Graph Drawing 

point before i, that is, w*(i’) = w*(i). Thus, if there exist upper neighbors 
of i which have not been put on the same vertical grid line as any vertex 
i‘(< i), then the algorithm puts the largest one j among them on the same 
vertical grid line as i. If there dose not exist such an upper neighbor of i, 
then the algorithm does not put any vertex (> i )  on the same vertical grid 
line as i. In this way, the following procedure Construct-F constructs a 
directed forest F = (V, E F ) .  All vertices in each component of F have the 
same 2-coordinate; if there is a directed edge ( i , j)  in F, then ~ ( j )  = z ( i )  
and Y ( j )  > Y ( 4 .  

Fig. 5.21 Selection of an i’s upper neighbor j above i 

Procedure Construct-F 
begin { F = (V, E F ) }  

EF := 0 ; {the initial forest F = (V, 0) consists of isolated vertices} 
for i := 1 to n do 

1 
2 

3 
if vertex i has upper neighbors j such that &( j ,  F) = 0 then 

Let j be the largest one among them, and add a directed edge 
( i , j)  to  the directed graph F, that is, EF := EF U { ( i , j ) } ;  

end. 

Since &(i, F),d,,t(i,F) 5 1 for each vertex i, 1 5 i 5 n, F is a 
forest and each component of F is a directed path. Clearly &( l ,  F) = 
4,(2, F) = 0 and do,t(n-l ,  F) = dout(n,  F) = 0. Figure 5.22(b) illustrates 
the directed forest F of the graph G in Fig. 5.22(a). Both the path 1,13,20 
going clockwise on Co(G) from 1 to n - 1 = 20 and the path 2,14,21 
going counterclockwise on Co(G) from 2 to n = 21 are directed paths in 
F ,  and hence these two paths are put on vertical grid lines as depicted in 
Fig. 5.23(g). Each of the other paths in F is put on a vertical grid line, 
too. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 121 

Fig. 5.22 (a) Plane graph G, (b) forest F ,  and ( c )  tree T.  

We then show how to arrange the paths in F from left to right. The 
algorithm decides a total order among all starting vertices of paths in F .  For 
this purpose, using the following procedure Total-Order] the algorithm 
finds a directed path P going from vertex 1 to vertex 2 passing through 
all starting vertices of F .  In Fig. 5.22(c), the directed path P is drawn by 
dotted lines. 

Procedure Total-Order 
begin 

1 
2 

Let P be the path directly going from vertex 1 to vertex 2; 
for i := 3 t o  n do 

if &(i, F )  = 0 then {i is a starting vertex of a path in F.}  
begin 

3 Let j be the first lower neighbor of i in the i's adjacency list 
in which the i 's neighbors appear counterclockwise around i, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



122 Planar Graph Drawing 

. . .  .......................... .............. . . . .  . . . .  
................... ....................... . . . . . . . . .  . . . . . . . . .  

,. 
. . . . . . . . .  , , . , . , . . , 

y ( U )  ....... . : : : : : : 6 
I 2 I 2 

(a) GI (b) G, 
.. ...-. ........................... ..,... ......... , y (  U 4 )  ....___.___.-._.I__ ........ . . . . . . . . .  . . . . . . . . .  

6/+- 

...................................................... 

"( u ) ........ ...... 
- 5  

I ? I 9 

(e) G S  (0 G, 

Y (  u, ) - - -  

I 
(6) G =  G I ,  

2 

Fig. 5.23 Some of the drawing processes. 

and the first element of which is w*(i); {See Fig. 5.24(a).} 
Let j '  be the starting vertex of the path in F containing vertex 

Let k be the successor of j '  in path P;  
{The path starting from vertex k in F has been put next to 
the right of the path starting from vertex j '  as illustrated 
in Fig. 5.24(a).} 
Insert i in P between j '  and k ;  
{The path starting from i in F is put between the path starting 
from j '  and the path starting from k as illustrated in 
Fig. 5.24(b).} 

4 

5 
j ;  {a # j '  < i.} 

6 

end 
end. 

The algorithm constructs a weighted tree T rooted at vertex 1 by adding 
the path P to the forest F ;  every edge of F has weight 0, and every edge of 
P has weight 1 in T ,  as illustrated in Fig. 5.22(c). Then the x-coordinate 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 123 

1 2 

(4 

f :: 
t 
I &,.--' 
1 2 

Fig. 5.24 Illustration of Total-Order. 

z( i )  of each vertex i, 1 5 i 5 n, is equal to the length of the path from 
root 1 to i in T .  Thus z(1) = 0, and the width W = z(2) of the drawing is 
equal to the number of paths in F except one starting from vertex 1. 

5.5.2.2 How to Compute y-Coordinates 

We now show how to compute y-coordinates. For each index k ,  1 5 k 5 I, y- 
coordinates of all vertices in u k  = {u1,212,. . . , u p }  are decided as the same 
integer, which is denoted by y(uk) .  Thus the path u1, UZ, . .  . , U p  on co(Gk) 
is drawn as a horizontal line segment connecting points (z('ul),y(Uk)) and 
(z(u,.), y(uk)). (See Fig. 5.23.) Furthermore, the algorithm decides the 
y-coordinates y(Ul), y(Uz), . ' .  , y(Ul) in this order. 

The algorithm first decides the y-coordinate y(V1) of U1 = {1,2} as 
y(Ul) = 0. Thus it draws G1 = K2 as a horizontal line segment connecting 
points (z(l), 0) and ( ~ ( 2 ) ~  0), as illustrated in Fig. 5.23(a). Since y(U1) = 0, 

Suppose that y ( V l ) , y ( U 2 ) , ~ ~ ~  ,y(Uk-1), Ic 2 2, have already been de- 
cided, that is, Gk-1 has already been drawn, and one is now going to 
decide Y ( u k )  and obtain a drawing of Gk by adding the vertices in u k  to 
the drawing of Gk-1. Let Co(Gk-l) = w1,w2,... ,wt, where w1 = 1 and 
wt = 2. Let Co(Gk) = w 1 , w 2 , ~ ~ ~  , w ~ , u ~ , u ~ , ~ ~ ~  ,up ,  wq,". , w t ,  where 
1 5 p < q 5 t. Let ymaz be the maximum value of y-coordinates of vertices 
w p , w p + l , ~ ~ ~  ,wq; all these vertices were on Co(Gk-l), but they are not 

H = Y(Ul). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



124 Planar Graph Drawing 

on '?,(GI,) except wp and wq. (See Fig. 5.25.) Clearly one must decide 
y(Uk) 2 ymax to obtain a plane drawing of Gk. The algorithm decides 
y(uk)  to be either ymas or ymax + 1 so that the height H of the drawing 
becomes as small as possible. There are the following six cases. 

wl=l W I  =2 wl=l W I  =2 

(a) Case 1 (b) Case2 

w, -2 wl=l :- 
W1=l 

( c )  Case3 (d) Case4 

Fig. 5.25 Illustration for the six cases. 

Case 1: ymax > y(wp), y(wq). (See Fig. 5.25(a).) 
In this case, if one decided y(uk) = ymaz, then Gk could not be a plane 

Case 2 ymax = y(wp) = y(wq). (See Fig. 5.25(b).) 
In this case, if one decided y(uk)  = ymax, then Gk might not be a plane 

Case 9: ymax = y(wp) > y(wq), and F has a directed edge (wp,u l ) ,  

In this case, if one decided y(uk)  = ymax, then vertices wp and u1 would 

drawing. Therefore the algorithm decides y(uk)  = Ymas + 1. 

drawing. Therefore the algorithm decides y(uk)  = Ymaa: + 1. 

that is, z (wp)  = ~ ( 2 ~ 1 ) .  (See Fig. 5.25(c).) 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 125 

overlap each other. Therefore the algorithm decides y(uk) = ymax + 1. 

(wp,ul), that is, x(wp) < x(u1). (See Fig. 5.25(d).) 
Case 4: ymax = y(wp) > y(wq), and F does not have a directed edge 

In this case, the algorithm decides y ( U k )  = Ymaz. 
Case 5 ymax = y(wq) > y(wp), and F has a directed edge (wq,u,), 

In this case, if one decided y(uk) = ymax, then vertices wq and u, would 

Case 6: y,,, = y(w,) > y(wp), and F does not have a directed edge 

In this case, the algorithm decides y ( u k )  = ymax.  

that is, x(wq) = x (ur ) .  (See Fig. 5.25(e).) 

overlap each other. Therefore the algorithm decides y(Uk) = ymax + 1. 

(wq,u,), that is, x(u,) < x (wq) .  (See Fig. 5.25(f).) 

We now have the following theorem on time complexity of the algorithm. 

Theorem 5.5.2 Algorithm 4-Convex-Draw takes linear time. 

Proof. By Lemma 5.5.1, a 4-canonical decomposition can be found in 
linear time. Clearly the forest F and the rooted tree T can be found in 
linear time, and the x-coordinates of vertices can be found from T in linear 
time. Furthermore, the y-coordinates can be found in linear time as above. 

I7 Thus Algorithm 4-Convex-Draw takes linear time. 

We next show the correctness of the algorithm. The algorithm finds the 
drawing of G I ,  G 2 ,  . . . , G l (  = G )  in this order, as illustrated in Fig. 5.23. 
Thus, assuming that the drawing of G k - 1 ,  k 2 2,  is internally convex, 
we shall show that the drawing of G k  is internally convex. However, it is 
difficult to show that the drawing of G k  is internally convex for the case 
where either k = 1 or u k ,  2 _< k 5 1 - 1, satisfies the condition (c3)(c). 
Therefore, subdividing all such sets u k ,  we obtain a refined partition II‘ of 
V from II = ( U l , U 2 , . . .  ,Ul) as follows. For each u k  = {u1,u2,. . .  ,u,,} 
such that either k = 1 or u k  satisfies the condition ( c ~ ) ( c ) ,  replace u k  in 
II with singleton sets {ul}, {uz}, ... , {u,,}. We call the resulting partition 
II’ = ( U 1 , U i , U i , . . .  ,U,’”,U,’,U:,.-. , U 1 3 , . - .  , U,‘,U,”) of V a refined de- 
composition of G. If either Ic = 1 or u k  satisfies the condition (c3)(c), then 
u k  = U,’UU,”U. . .UUF,  7-k = l u k l  and IULl = 1 for each i, 15 i 5 rk. 
Otherwise, l“k = 1 and u k  = U,‘. 

For each k, 2 _< k _< 1, and for each i, 1 5 i 5 r k ,  we 

TEAM LinG - Live, Informative, Non-cost and Genuine !



126 Planar Graph Drawing 

denote by Gi the plane subgraph of G induced by the vertices in 
u1 u u2 u.. -u u k - 1  u u; u ul u.. . u u;. Moreover, for each k ,  2 5 k 5 
1,  and for each i, 0 5 i 5 rk - 1, we denote by G; the plane subgraph of G 
induced by the vertices in U;+l U U i f 2  u. . . u ULk u uk+l u . . . u Ut. For 
notational convenience, let Gi = G k - 1  and GP = G k .  

Let k 2 2 and U i  = {ul,u2,- .-  ,uh}. By the definition of 
a refined decomposition, vertices u1, u2,. . . , U h  consecutively appear 
clockwise on Co(Gi) in this order, as illustrated in Fig. 5.26. Let 
C,,(Gi-‘) = w1,w2,- . -  ,wt ,  where w1 = 1 and wt = 2. Let C,,(Gi) = 
W I , W ~ , . - .  , w P , u ~ , u ~ , . . . , ~ h , w q , . . .  , w t , w h e r e l < p < q < t .  

The following lemma holds for the drawing of G6 [MNNOO]. 

- -  

Lemma 5.5.3 
following (2)-(iii) hold: 

For each k ,  2 5 k 5 1 ,  and each i ,  0 5 i 5 rk,  the 

the path going clockwise on Co(G;-’) from vertex w1 = 1 to vertex 
wt = 2 is x-monotone, that is, x(w1) 5 x(w2) 5 ... 5 x ( w t )  (such a 
path is drawn by  thick solid lines in Fig. 5.26); 

the path going clockwise on Co(G;-’) from w p  to wq is “~nipole’~ that 
is, there is no index s such that p < s < q and y(wS-1) < y(w,) > 
y(w,+1), and w p ,  wp+l, .  .. , wq,  w p  is a convex polygon in particular i f  
u k  satisfies the condition (c3))b) (as illustrated an Fig. 5.26(a)); and 

if a vertex v on Co(Gi- l )  is an inner vertex of G, and the interior 
angle of the polygon C o ( G k l )  at vertex u is less than 180°, then v has 
at least one neighbor in Gi-l. 

- 

Fig. 5.26 Illustration for Lemma 5.5.3: (a) IVil 2 2, and (b) IVil = 1. 

Using Lemma 5.5.3, one can prove that the algorithm obtains a convex 
grid drawing [MNNOO]. Note that all inner faces newly formed in Gi are 
convex polygons as illustrated in Fig. 5.26 (all such faces are not shaded 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Convex Drawing 127 

in Fig. 5.26). Furthermore the algorithms obtains a drawing in a grid with 
W + H 5 n - 1, because either W or H is increased by one in effect 
when each vertex is drawn except for vertex 1 [MNNOO]. Thus we have the 
following theorem. 

Theorem 5.5.4 Algorithm 4-Convex-Draw f inds a convex drawing of 
a 4-connected plane graph G on an integer grid such that W + H 5 n - 1 
if G has four or more outer vertices. 

5.6 Bibliographic Notes 

Using the algorithm in Section 5.2, Chiba et al. presented a linear algo- 
rithm for producing an aesthetic drawing of any 2-connected plane graph 
that makes the resulting drawing “as convex as possible” in some sense 
[CON85]. Schnyder and Trotter [ST921 claimed that a convex drawing of 
a 3-connected plane graph can be obtained by using an extension of the 
concept of a realizer for 3-connected plane graphs. However, no proof was 
published until Di Battista et al. [DTV99] presented such an algorithm. 
Felsner [FelOl] gave an algorithm to find a convex drawing of a 3-connected 
plane graph having f faces on an (f - 1) x (f - 1) grid. 

Exercises 

1. Using Corollary 5.3.5, show that every plane graph has a straight line 

2. Devise an O ( n )  time algorithm to examine whether a planar graph has 

3. Show how to find all extendible facial cycles of a planar graph. 
4. Modify Algorithm Convex-Grid-Drawing in Section 5.4.2 to produce 

a convex grid drawing of a 3-connected plane graph on an (n - 2) x (n - 2) 
grid. 

5. Assume that each vertex of a plane graph G has degree three or more, 
and that G has a convex drawing, that is, G satisfies Condition I1 al- 
though G is not always 3-connected. Show that G has an internally 
convex grid drawing on an (n - 1) x (n - 2) grid. 

Let 1 5 k 5 1, and let C,(Gk) = w1, w2,. . . , wt, where w1 = u1 and wt = 
212. TheninthedrawingofGk,P(wl) = (0,O) , P ( w ~ )  = (lU~==,Uk]-l,O), 

drawing. 

a convex drawing or not. 

6. Prove the following claim on Algorithm Convex-Grid-Drawing. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



128 Planar Graph Drawing 

and any line segment wiwi+l has slope in {-45",0"} U [45", go"]. 
7. Prove Lemma 5.5.1. 
8. Obtain a necessary and sufficient condition for a plane graph to have a 

canonical ordering [MAN04]. 
9. Extend the concept of a realizer and a Schnyder labeling to those for 

plane graphs which are not always triangulated. Prove that a plane 
graph G has these extended realizer and Schnyder labeling if and only 
if G satisfies the condition in Exercise 8 [MAN04]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 6 

Rectangular Drawing 

6.1 Introduction 

A rectangular drawing of a plane graph G is a drawing of G in which 
each vertex is drawn as a point, each edge is drawn as a horizontal or 
vertical line segment without edge-crossings, and each face is drawn as a 
rectangle. Thus a rectangular drawing is a special case of a convex draw- 
ing. Figure 6.l(b) illustrates a rectangular drawing of the plane graph in 
Fig. 6.l(a).  In Section 1.5.1 we have seen applications of a rectangular 
drawing to VLSI floorplanning and architectural floorplanning. In a rect- 
angular drawing of G, the outer cycle C,(G) is drawn as a rectangle and 
hence has four convex corners such as a, b, c and d drawn by white circles 
in Fig. 6.1. Such a convex corner is an outer vertex of degree two and is 
called a corner of the rectangular drawing. Not every plane graph G has a 
rectangular drawing. Of course, G must be 2-connected and the maximum 
degree A of G is at most four if G has a rectangular drawing. 

Miura et al. recently showed that a plane graph G with A 5 4 has 
rectangular drawing D if and only if a new bipartite graph constructed from 
G has a perfect matching, and D can be found in time O(n1.5) whenever 
G has D [MHN04]. In Section 6.2 we present their result on rectangular 
drawings of plane graphs with A 5 4. 

Since a planar graph with A 5 3 often appears in many practical appli- 
cations, we devote most of this chapter on rectangular drawings of planar 
graphs with A 5 3. In Section 6.3 we present a necessary and sufficient con- 
dition for a plane graph G with A < 3 to have a rectangular drawing when 
four outer vertices of degree two are designated as the corners [Tho84]. We 
also present a linear-time algorithm to obtain a rectangular drawing with 
the designated corners [RNN98]. 

129 
TEAM LinG - Live, Informative, Non-cost and Genuine !



130 Planar Graph Drawing 

(4 (b) 

Fig. 6.1 
a,  6 ,  c and d. 

(a) Plane graph, and (b) its rectangular drawing for the designated corners 

The problem of examining whether a plane graph has a rectangular 
drawing becomes difficult when four outer vertices are not designated as the 
corners. In Section 6.4 we present a necessary and sufficient condition for a 
plane graph with A 5 3 to have a rectangular drawing for some quadruplet 
of outer vertices appropriately chosen as the corners, and present a key 
idea, behind a linear time algorithm to find such a quadruplet, together 
with an example [RNN02]. 

A planar graph may have many embeddings. We say that a p lanar  graph 
G has a rectangular drawing if at least one of the plane embeddings of G 
has a rectangular drawing. Since a planar graph may have an exponential 
number of embeddings, it is not a trivial problem to examine whether a 
planar graph has a rectangular drawing or not. In Section 6.5 we give a 
linear-time algorithm to examine whether a planar graph G with A 5 3 
has a rectangular drawing or not, and find a rectangular drawing of G if it 
exists [RNG04]. 

6.2 Rectangular Drawing and Matching 

In this section we consider rectangular drawings of plane graphs with A 5 4. 
We show that a plane graph G with A 5 4 has rectangular drawing D if 
and only if a new bipartite graph Gd constructed from G has a perfect 
matching, and D can be found in time O(nl.’) if D exists [MHN04]. Gd is 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 131 

called a decision graph. 
We may assume without loss of generality that G is 2-connected and 

A 5 4, and hence every vertex of G has degree two, three or four. 
An angle formed by two edges e and e' incident to a vertex v in G is 

called an angle of v if e and e' appear consecutively around v. An angle of 
a vertex in G is called an angle of G. An angle formed by two consecutive 
edges on a boundary of a face F in G is called an angle of F .  An angle of 
the outer face is called an outer  angle of G, while an angle of an inner face 
is called an inner  angle. 

In any rectangular drawing, every inner angle is 90" or 180", and every 
outer angle is 180" or 270". Consider a labeling 0 which assigns a label 1, 
2, or 3 to every angle of G, as illustrated in Fig. 6.2(c). Labels 1 ,2  and 3 
correspond to angles go", 180" and 270", respectively. Therefore each inner 
angle has label either 1 or 2, exactly four outer angles have label 3, and all 
other outer angles have label 2. 

Fig. 6.2 
regular labeling 0 of G. 

(a) Plane graph G, (b) decision graph Gd, and (c) rectangular drawing D and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



132 Planar Graph Drawing 

We call 0 a regular labeling of G if 0 satisfies the following three con- 
ditions (a)-(c): 

(a) For each vertex u of G, the sum of the labels of all the angles of u is 

(b) The label of any inner angle is 1 or 2, and every inner face has exactly 

(c) The label of any outer angle is 2 or 3,  and the outer face has exactly 

equal to  4; 

four angles of label 1; and 

four angles of label 3; 

A regular labeling 0 of the plane graph in Fig. 6.2(a) and a rectangular 
drawing D corresponding to 0 are depicted in Fig. 6.2(c). A regular labeling 
is a special case of an orthogonal representation of an orthogonal drawing 
in Section 8.2.1. 

Conditions (a) and (b) implies the following (i)-(iii): 

(i) If a non-corner vertex v has degree two, that is, d(v) = 2, then the two 

(ii) If d(v) = 3,  then exactly one of the three angles of v has label 2 and 

(iii) If d(v)  = 4, then all the four angles of v have label 1. 

labels of v are 2 and 2. 

the other two have label 1. 

If G has a rectangular drawing, then clearly G has a regular labeling. 
Conversely, if G has a regular labeling, then G has a rectangular drawing, 
as can be proved by means of elementary geometric considerations. We 
thus have the following fact. 

Fact 6.2.1 
has a regular labeling. 

A plane graph G has a rectangular drawing if and only if G 

We now assume that four outer vertices a,  b, c and d of degree two are 
designated as corners. Then the outer angles of a,  b, c and d must be labeled 
with 3,  and all the other outer angles of G must be labeled with 2, as 
illustrated in Fig. 6.2(a). Some of the inner angles of G can be immediately 
determined, as illustrated in Fig. 6.2(a). If v is a non-corner outer vertex 
of degree two, then the inner angle of u must be labeled with 2. The two 
angles of any inner vertex of degree two must be labeled with 2. If u is an 
outer vertex of degree three, then the outer angle of u must be labeled with 
2 and both of the inner angles of u must be labeled with 1. We label all the 
three angles of an inner vertex of degree three with x, because one cannot 
determine their labels although exactly one of them must be labeled with 2 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 133 

and the others with 1. We label all the four angles of each vertex of degree 
four with 1. Label x means that x is either 1 or 2, and exactly one of the 
three labels z’s attached to the same vertex must be 2 and the other two 
must be 1. (See Figs. 6.2(a) and (c).) 

We now present how to construct a decision graph Gd of G. Let all 
vertices of G attached a label x be vertices of Gd. Thus all the inner 
vertices of degree three are vertices of Gd, and none of the other vertices of 
G is a vertex of Gd. We then add to Gd a complete bipartite graph inside 
each inner face F of G, as illustrated in Fig. 6.3 where Gd is drawn by solid 
lines and G by dotted lines. Let n, be the number of angles of F labeled 
with z. For example, n, = 3 in Fig. 6.3. Let n1 be the number of angles 
of F which have been labeled with 1. Then n1 is the number of vertices u 
on F such that either u is a corner vertex or d(v) = 4. Thus n1 = 2 for the 
example in Fig. 6.3. One may assume as a trivial necessary condition that 
n1 5 4; otherwise, G has no rectangular drawing. Exactly 4 - n1 of the 
n, angles of F labeled with x must be labeled with 1 by a regular labeling. 
We add a complete bipartite graph K(4-nl),n. in F ,  and join each of the 
n, vertices in the second partite set with one of the n, vertices on F whose 
angles are labeled with x. Repeat the operation above for each inner face F 
of G. The resulting graph is a decision graph Gd of G. The decision graph 
Gd of the plane graph G in Fig. 6.2(a) is drawn by solid lines in Fig. 6.2(b), 
where G is drawn by dotted lines. The idea of adding a complete bipartite 
graph originates from Tutte’s transformation for finding an “f-factor” of a 
graph [Tut54]. 

Fig. 6.3 Construction of Gd for an inner face F of G. 

A matching of Gd is a set of pairwise non-adjacent edges in Gd. A 
maximum matching of Gd is a matching of the maximum cardinality. A 

TEAM LinG - Live, Informative, Non-cost and Genuine !



134 Planar Graph Drawing 

matching M of Gd is called a perfect matching if an edge in M is incident 
to each vertex of Gd. A perfect matching is drawn by thick solid lines in 
Figs. 6.2(b) and 6.3. 

Each edge e of Gd incident to a vertex v attached a label x corresponds 
to an angle CY of v labeled with x. A fact that e is contained in a perfect 
matching M of Gd means that the label x of CY is 2. Conversely, a fact that 
e is not contained in M means that the label 3: of a is 1. 

We now have the following theorem. 

Theorem 6.2.2 Let G be a plane graph with A 5 4 and four outer 
vertices a ,  b, c and d be designated as corners. Then G has a rectangular 
drawing D with the designated corners if and only if the decision graph Gd 
of G has a perfect matching. D can be found in time O ( 7 ~ l . ~ )  whenever G 
has D .  

Proof. Suppose that G has a rectangular drawing with the designated 
corners a,b,c and d. Then by Fact 6.2.1 G has a regular labeling 0 by 
which the outer angles of a ,  b, c and d are labeled with 3. We include in 
a set M all the edges of Gd corresponding to angles of label z = 2, while 
we do not include in M the edges of Gd corresponding to angles of label 
z = 1. For each vertex v of Gd attached a label z, the labeling 0 assigns 
2 to exactly one of the angles of v labeled with x. Therefore exactly one 
of the edges of Gd incident to u is contained in M .  The labeling 0 assigns 
1 to exactly four of the angles of each inner face F ,  and n1 angles of F 
have been labeled with 1. Therefore exactly 4 - nl  of the n, angles of F 
labeled with z must be labeled with 1 by 0, and hence all the edges of Gd 
corresponding to these angles are not contained in M .  Including in M a 
number 4 - n1 of edges in each complete bipartite graph, we can extend M 
to a perfect matching of Gd. Thus Gd has a perfect matching. 

Conversely, if Gd has a perfect matching, then G has a regular labeling 
by which the outer angles of a ,  b, c and d are labeled with 3,  and hence by 
Fact 6.2.1 G has a rectangular drawing with the designated corners a,  b, c 
and d. 

Clearly, Gd is a bipartite graph, and 4 - n1 5 4. Obviously, n, is no 
more than the number of edges on face F .  Let m be the number of edges 
in G, then we have 2m 5 4n since A 5 4. Therefore the sum 2m of the 
numbers of edges on all faces is at most 4n. One can thus know that both 
the number nd of vertices in Gd and the number md of edges in Gd are 
O(n).  Since Gd is a bipartite graph, a maximum matching of Gd can be 
found in time O(Jndmd) = O(n1.5) [HK73, MV80, PS82]. One can find a 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 135 

regular labeling 0 of G from a perfect matching of Gd in linear time. It is 
easy to find a rectangular drawing of G from 0 in linear time. (Indeed a 
rectangular grid drawing of G can be found from 0 in linear time similarly 
as we will know it for a plane graph with A 5 3 later in Section 6.3.4.) 0 

6.3 Linear Algorithm for Rectangular Drawings of Plane 
Graphs 

In this section we present Thomassen’s theorem on a necessary and suf- 
ficient condition for a plane graph G with A 5 3 to have a rectangular 
drawing when four outer vertices of degree two are designated as the cor- 
ners [Tho84], and give a linear-time algorithm to find a rectangular drawing 
of G if it exists [RNN98]. 

6.3.1 Thomassen’s Theorem 

Before presenting Thomassen’s theorem we recall some definitions. An edge 
of a plane graph G is called a leg of a cycle C if it is incident to exactly 
one vertex of C and located outside C. The vertex of C to which a leg is 
incident is called a leg-vertex of C. A cycle in G is called a k-legged cycle of 
G if C has exactly k legs in G and there is no edge which joins two vertices 
on C and is located outside C. Figure 6.4(a) illustrates 2-legged cycles 
C1 C,, C, and C4 while Fig. 6.4( b) illustrates 3-legged cycles Cs Cs C7 
and C g ,  where corners are drawn by white circles. 

If a 2-legged cycle contains at most one corner like C,,C, and C, in 
Fig. 6.4(a), then some inner face cannot be drawn as a rectangle and hence 
G has no rectangular drawing. Similarly, if a 3-legged cycle contains no 
corner like Cs and C g  in Fig. 6.4(b), then G has no rectangular drawing. 
One can thus observe the following fact. 

Fact 6.3.1 I n  any rectangular drawing D of G,  every 2-legged cycle of 
G contains two or more corners, every $legged cycle of G contains one or 
more corner, and every cycle with four or more legs may contain no corner, 
as illustrated in Fig 6.5. 

The necessity of the following Thomassen’s theorem is immediate from 
Fact 6.3.1. 

Theorem 6.3.2 Assume that G is a 2-connected plane graph with A 5 3 
and four outer vertices of degree two are designated as the corners a ,  b, c 

TEAM LinG - Live, Informative, Non-cost and Genuine !



136 Planar Graph Drawing 

(a) 2-legged cycles (b) 3-legged cycles 

Fig. 6.4 Good cycles C4,Cs and C?, and bad cycles ClrC2,C3,C5 and c a .  

the number of comers contilined in a cycle 

2-iegged cycle ~ 

0 
none 

3-legged cycie -& 

1 

none 

4 

Fig. 6.5 Numbers of corners in drawings of cycles. 

and d.  Then G has a rectangular drawing if and only i f  

(rl)  any %legged cycle contains two or more corners, and 
(r2) any %legged cycle contains one or more corners. 

A cycle of type (rl)  or (1-2) is called good. Cycles C ~ , C G  and C7 in 
Fig. 6.4 are good cycles; the 2-legged cycle C, contains two corners, and the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawuing 137 

3-legged cycles Cs and C7 contain one or two corners. On the other hand, 
a 2-legged or 3-legged cycle is called bad if it is not good. Thus 2-legged 
cycles Cl , C2 and Cs and 3-legged cycles Cs and Cg are bad cycles. Thus 
Theorem 6.3.2 can be rephrased as follows: G has a rectangular drawing if 
and only if G has no bad cycle. In particular, a 2-legged bad cycle is called 
a bad corner if it contains exactly one corner like C3. 

6.3.2 Suficiency 

In this section we present a constructive proof of the sufficiency of Theo- 
rem 6.3.2 [RNN98]. 

The union G = G' u G" of two graphs G' and G" is a graph G = 

In a given 2-connected plane graph G, four outer vertices of degree two 
are designated as the corners a ,  b, c and d. These four corners divide the 
outer cycle Co(G) of G into four paths, the north path PN,  the east path 
PE, the south path Ps, and the west path Pw, as illustrated in Fig. 6.6(a). 
We will draw the north and south paths on two horizontal straight line 
segments and the east and west paths on two vertical line segments. We 
thus fix the embedding of Co(G) as a rectangle. We call a rectangular 
embedding of Co(G) an outer rectangle. Clearly the following lemma holds. 

Lemma 6.3.3 Let 51, J 2 , - . -  , J p  be the Co(G)-components of a plane 
graph G,  and let Gi = Co(G) U Ji ,  1 5 i 5 p ,  as illustrated in Fig. 6.6. 
Then G has a rectangular drawing with corners a,  b, c and d if and only i f ,  
for each index i ,  1 5 i 5 p ,  Gi has a rectangular drawing with corners a,  b, c 
and d .  

(V(G')  u V(G"), E(G') u E(G")). 

If G has a rectangular drawing, then J1, J 2 , - . -  , J p  must be "in series" as 
illustrated in Fig. 6.6(a). If 51, J2, ... , J p  are not in series as illustrated 
in Fig. 6.7(a), then G has no rectangular drawing; Fig. 6.7(b) illustrates 
G1 which may have a rectangular drawing; Fig. 6.7(c) illustrates Gs,  which 
has no rectangular drawing since G3 has a bad 2-legged cycle indicated by 
dotted lines. 

In the remainder of this section, because of Lemma 6.3.3, we may assume 
that G has exactly one Co(G)-component J ,  as illustrated in Fig. 6.8. 

We now outline the proof. Assume that G has no bad cycle. We divide G 
into two subgraphs having no bad cycle by slicing G along one or two paths. 
For example, the graph G in Fig. 6.9(a) is divided into two subgraphs G1 
and G2, each having no bad cycle, by slicing G along a path drawn by thick 

TEAM LinG - Live, Informative, Non-cost and Genuine !



138 Planar Graph Drawing 

b 

PE 
P 
W 

C 

a P 
b 

P 
W 

d C 

a P 
b 

PE 
P 

W 

d C 

a 
P 

b 

PE 
P 
W 

d C 

Fig. 6.6 (a) G, (b) GI,  (c) G2, and (d) G,. 

lines, as illustrated in Fig. 6.9(b). We then recursively find rectangular 
drawings of the two subgraphs as illustrated in Fig. 6.9(c), and obtain a 
rectangular drawing of G by patching them, as illustrated in Fig. 6.9(d). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 139 

a b 

d C 

Fig. 6.7 (a) G, (b) G I ,  and (c) G3 

However, the problem is not so simple, because, for some graphs having no 
bad cycles like one in Fig. 6.10(a), there is no such path that the resulting 
two subgraphs have no bad cycle. For any path, one of the resulting two 
subgraphs has a bad 3-legged cycle C although C is not a bad cycle in GI  
as illustrated in Fig. 6.10(b) where a bad cycle C in a subgraph is indicated 
by dotted lines. For such a case, we split G into two or more subgraphs by 
slicing G along two paths P, and P,, having the same ends on PN and Ps. 
For example, as illustrated in Fig. 6.10(c), the graph G in Fig. 6.10(a) is 
divided into three subgraphs GI,  Gz and G3, each having no bad cycle, by 
slicing G along path P, indicated by dotted lines and path P,, drawn by 
thick lines in Fig. 6.10(a). We then recursively find rectangular drawings 
of GI ,  G2 and G3 as illustrated in Fig. 6.10(d), and slightly deform the 
drawings of GI and G2, as illustrated in Fig. 6.10(e). We finally obtain a 
rectangular drawing of G by patching the drawings of the three subgraphs 
as illustrated in Fig. 6.10(f). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



140 Planar Graph Drawing 

Fig. 6.8 Plane graph with exactly one C,(G)-component. 

We need some definitions before presenting the detail of a constructive 
proof. A cycle C in G like one in Fig. 6.10(a) is called “critical,” because 
C is not a bad cycle in G but C would become a bad cycle in a subgraph 
obtained from G by splitting G along a path P. We now give a formal 
definition of a critical cycle. A cycle C in a plane graph G is attached to a 
path P if 

(i) P does not contain any vertex in the proper inside of C ,  and 
(ii) the intersection of C and P is a single subpath of PI 

as illustrated in Fig. 6.11. Let vt be the starting vertex of the subpath, 
and let vh be the ending vertex. We then call vt the tail vertex of C for PI 
and vh the head vertex. Denote by Qc(C) the path on C turning clockwise 
around C from vt to  vh, and denote by Qcc(C) the path on C turning 
counterclockwise around C from vt to vh. A leg of c is called a clockwise 
leg for P if it is incident to a vertex in V(Qc(C))  - {v t ,Vh} .  Denote by 
n,(C) the number of clockwise legs of C for P. Similarly we define a 
counterclockwise leg and denote by n,, (C) the number of counterclockwise 
legs of C for P. A cycle C attached to P is called a clockwise cycle if 
Qcc(C) is a subpath of PI and is called a counterclockwise cycle if Qc(C) is 
a subpath of P. A cycle C is called a critical cycle if either C is a clockwise 
cycle and nc(C) 5 1 or C is a counterclockwise cycle and ncc(C) 5 1. 
Figure 6.11 illustrates a clockwise critical cycle with nc(C) = 1. 

We are now ready to give a constructive proof for the sufficiency of The- 
orem 6.3.2. Assume that G has no bad cycle. By Lemma 6.3.3, we further 
assume that G has exactly one C,(G)-component. Let PN = VO, VI,. . . , up 
where vo = a and up = b, and let Ps = U O , U ~ , - . .  ,u9 where uo = c and 
ug = d, as illustrated in Fig. 6.12(a). An NS-path P is defined to be a path 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 141 

b 

d 1 GI (C) iii.~ G2 

(df 

Fig. 6.9 
rectangular drawing of G. 

(a) G and P ,  (b) G1 and G2, (c) rectangular drawings of GI and G z ,  and (d) 

starting at a vertex vi on PN and ending at a vertex uj on Ps without 
passing through any outer edge and any outer vertex other than the ends 
vi and uj. An NS-path P divides graph G into two subgraphs G L  and Gg; 
G& is the west part of G including P and has four corners a ,vi ,uj  and 
d, and G$ is the east part of G including P and has four corners vi, b, c 
and uj. Gg and GG are illustrated in Figs. 6.12(b) and (c), respectively. 
We say that P is an NS-partitioning path if neither GG nor G$ has a bad 
cycle. Similarly we define a WE-partitioning path. If G has a partitioning 

TEAM LinG - Live, Informative, Non-cost and Genuine !



142 Planar Graph Drawang 

Fig. 6.10 (a) G, (b) splitting G along a single path P,,, ( c )  splitting G along two 
paths Pcc and P,, (d) rectangular drawings of three subgraphs, (e) deformation, and ( f )  
rectangular drawing of G. 

path, say an NS-partitioning path P,  then one can obtain a rectangular 
drawing of G by recursively finding rectangular drawings of G L  and Gg 
and patching them together along P,  as illustrated in Fig. 6.9. 

An inner face of G is called a boundary face  if its contour contains at  
least one outer edge. In Fig 6.13, Fl, F 2 , - ' .  , F5 are the boundary faces. 
A boundary path is a maximal path on the contour of a boundary face 
connecting two outer vertices without passing through any outer edge. The 
boundary path P on FI and the boundary path P' on F3 are drawn by thick 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 143 

Fig. 6.11 Clockwise critical cycle C attached to path P.  

lines in Fig. 6.13. Note that the direction of a boundary path is the same as 
the contour of the face, and hence is clockwise. For X ,  Y E { N, E ,  S, W}, 
a boundary XY-path is a boundary path starting at a vertex on path Px 
and ending at a vertex on path Py .  In Fig. 6.13 P is a boundary NS-path, 
and P' is a boundary EN-path. We easily have the following lemma, whose 
proof is left as an exercise. 

Lemma 6.3.4 If G has no  bad cycle, then every boundary NS-, SN-, 
E W -  or WE-path P of G is  a partitioning path, that is, G can be splitted 
along P into two subgraphs, each having no  bad cycle. (See Fig. 6.13.) 

Thus we may assume that G has no boundary NS-, SN-, EW- or WE- 
paths. Then the C,(G)-component J has at least one vertex on each of 
the paths PN,PE,Ps and Pw, as illustrated in Fig. 6.8. In this case we 
find a pair of partitioning paths P, and P,,, and divide G into two or more 
subgraphs having no bad cycles by splitting G along P, and P,,. Both P, 
and P,, are NS-paths which have the same ends and do not cross each other 
in the plane although they may share several edges. Thus, if P, # P,,, then 
the edge set E(P,) @ E(P,,) = E(P,) U E(P,,) - E(P,) n E(P,,) induces 
vertex-disjoint cycles GI, (22 , .  . . , Ck, 5 2 1, as illustrated in Figs. 6.14 and 
6.15 where P, and P,, are indicated by dotted lines. Thus P, and P,, share 

TEAM LinG - Live, Informative, Non-cost and Genuine !



144 Planar Graph Drawing 

V ,  = b 
P 

a = v, v. N 

Fig. 6.12 (a) Plane graph G and NS-path P,  (b) GL, and (c) Gg 

k + 1 maximal subpaths PI ,  P2,. . . , Pk+l, as illustrated in Fig. 6.14(a). We 
assume that P, turns around cycles CI , C2,. . . , c k  clockwise, and P,, turns 
around them counterclockwise. We choose P, and P,, so that each cycle Ci 
has exactly four legs; assuming clockwise order, the first one is contained in 
Pi, 1 5 i 5 k, the second one is a clockwise leg, the third one is contained in 
Pi+l and the fourth one is a counterclockwise leg; and the four leg-vertices 
of Ci will be designated as the corners of the subgraph G(Ci) of G inside Ci. 
Thus G is divided into subgraphs G k ,  G:, G(C1), G(C2), . . . , G(Ck), as 
illustrated in Figs. 6.14(b) and 6.15(b). GG' has a,d and the two ends of 
P,, as the corners, while G; has b, c and the two ends of P, as the corners. 
Gi(Ci), 1 _< i 5 k, has the four leg-vertices of Ci as the corners. We now 
have the following lemma. 

Lemma 6.3.5 Assume that a cycle C in the C,(G)-component J has 
exactly four legs. Then the subgraph G(C) of G inside C has no bad cycle 
when the four leg-vertices are designated as corners of G(C). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 145 

R 

a 

Pw 

d 

P 
S 

Fig. 6.13 Plane graph with a boundary NS-path P .  

pcc 
W 

a 

d 

" 

b 

C 

Fig. 6.14 (a) G with partition-pair Pc and Pcc, and (b) splitting G along Pc and PCc. 

Proof. If G(C) has a bad cycle, then it is also a bad cycle in G, a 
contradiction to the 13 

By Lemma 6.3.5 we can assume that none of G(Cl),  G(C2), . . . , G(Ck) 
has a bad cycle. For each cycle Ci, 1 5 i 5 k, there are two alternative 
rectangular embeddings of Ci as illustrated in Fig. 6.16, where Ph, Pb, P& 
and P& are the four subpaths of Ci divided by the four leg-vertices. There- 
fore there are 2k different embeddings of cycles C1, (32, .  . . , c k  when PC and 

assumption that G has no bad cycle. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



146 Planar Graph Drawing 

U =  

P 
W 

b 

pE 

u,  y,=c 
4 u3 u2 

d =u 

pS  

d DY’ 
b 

c 

Fig. 6.15 
and (d) drawing of G z .  

(a) G with Pc and P,,, (b) splitting G along P, and P,,, (c) drawings of GI ,  

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Dmwing 147 

Fig. 6.16 Two alternative rectangular embeddings of cycle Ci. 

P,, are embedded as alternating sequences of horizontal and vertical line 
segments as illustrated in Fig. 6.17. We arbitrarily choose one of them. Let 
GI be the graph obtained from G$. by contracting all edges of P,, that 
are on the horizontal sides of rectangular embeddings of C1, C, , . . . , ck , as 
illustrated in Fig. 6.15(c). Note that every intermediate vertex on such a 
horizontal side has degree two in GG. We denote by Pf, the resulting path 
obtained from P,, by the contraction above. Let GI have four corners a,  d 
and the two ends of P,,. Then one can observe that if GI has a rectan- 
gular drawing, in which the path Pf, is drawn as a vertical straight line 
segment, then the rectangular drawing of GI can be easily modified to a 
drawing of GZc  fitted in the area for GZC where P,, is drawn as an alter- 
nating sequence of horizontal and vertical line segments, as illustrated in 
Figs. 6.15(b) and (c). Let Ga be the graph obtained from G 2  by contract- 
ing all edges of P, that are on the horizontal sides of rectangular embeddings 
of c1, Cz, . . . , ck, and let P,' be the resulting path obtained from P, by the 
contraction, as illustrated in Fig. 6.15(d). Then, if Ga has a rectangular 
drawing, then it can be easily modified to a drawing of G 2  fitted in the 
area for G; where P, is drawn as an alternating sequence of horizontal 
and vertical line segments, as illustrated in Figs. 6.15(b) and (d). Thus if 
we have drawings of graphs G$c,G2,G(C1),G(Cz) , . . .  ,G(Ck), then we 
can immediately patch them to get a rectangular drawing of G. One can 
observe that GI and Ga have no bad cycles if and only if G$c and G 2  have 
no bad cycles, respectively. We thus call P, and P,, a pair of partitioning 
paths or simply a partition-pair if neither G 2  nor G$c has a bad cycle. 
Especially when P, = P,,, it is a single partitioning path. 

Thus the problem is how to prove that G has a partition-pair and to 
find a partition-pair efficiently. An idea is to find a partition-pair from the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



148 Planar Graph Drawing 

P 
W 

Fig. 6.17 An example of the embedding of a partition-pair. 

LLwestmost NS-path” defined as follows. An NS-path P is westmost if 

(1) P starts at the second vertex u1 of PN, 
(2 )  P ends at the second last vertex uq-l of Ps, and 
(3) the number of edges in G& is minimum. 

The westmost NS-path is drawn in thick lines by Fig. 6.15(a). One can find 
the westmost NS-path by the “counterclockwise depth-first search” starting 
from u1, that is, a depth-first search where the edge counterclockwise next 
to the currently visited edge is searched in each step. 

Let the westmost NS-path P = w1,w2,... ,wj, where w1 = 01 and 
wj = uq- l .  There may exist critical cycles attached to  P. Clearly all 
these cycles are clockwise attached to  P,  as illustrated in Fig. 6.18 where 
the westmost path P is drawn on a vertical line. All these cycles are 
“laminar,” that is, either the proper insides of any two of the cycles are 
disjoint or one is contained in the other since every vertex has degree two 
or three in G. A cycle among them is said to  be maximal if its inside is not 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 149 

contained in the inside of any of the other cycles. Figure 6.18 illustrates 
the hierarchical structure of the cycles, the insides of seven maximal critical 
cycles C,l, C,2, . . . , C,7 are shaded. We now have the following lemma. 

Lemma 6.3.6 If G has no bad cycle and has no boundary NS-, SN-, EW- 
or WE-path, then G has a partition-pair P, and P,,. 

Proof. Assume that G has no bad cycle and has no boundary NS-, SN-, 
EW- or WE-path. Then we can find a partition-pair P, and P,, from the 
westmost NS-path P ,  as follows. In Fig. 6.18 P, and P,, are indicated by 
dotted lines. 

Firstly, we find two paths P,t and Pen so that neither G g C  nor G 2  
has a bad corner; P,t is the starting subpath shared by P, and P,,, and 
Pen is the ending subpath shared by P, and P,,. Let Q be the largest 
index among 1,2,. . . , j such that vertex w, is contained in a boundary 
NN- or EN-path &. Let Q = 91, y 2 , - . -  ,y l ,  where y1 E V ( P N ) U V ( P E )  and 
yl E ~ ( P N ) ,  and let w, = yi, 15 i 5 1, as illustrated in Fig. 6.18. Choose 
Pst = yl, yl-1, . . . , yi. Similarly, let p be the smallest index such that vertex 
WB is contained in a boundary SS- or SE-path R. Let R = 21, z2, . . . , zh, 

where z1 E V ( P . )  and zh E V ( P s )  U I f ( & ) ,  and let WB = z,, 1 5 r 5 h. 
Choose Pen = z r ,  z r - l , .  . . ,z1. Then clearly Q 5 p; otherwise, there would 
exist a boundary SN-path. Furthermore neither GG’ nor GG has a bad 
corner for any NS-path P’ whose starting subpath is P,t and ending subpath 
is Pen; otherwise, a contradiction either to the selection of PSt and Pen or 
to the assumption that G has no bad cycle would occur. 

Secondly, for each edge e on the subpath P,o of P connecting w, and 
wo, if e is not contained in any maximal critical cycle C attached to P,  
then we let both P, and P,, pass through e ,  as illustrated in Fig. 6.18. 

Lastly, we choose subpaths of P, and P,, for each of the clockwise 
maximal critical cycles C attached to the subpath P,a, as follows. (In 
Fig. 6.18 Cm3, Cm4, C,:, and C,6 are these maximal cycles.) Since n,(C) 5 
1, we have the following three cases. 
Case 1 : nc(C) = 0. 

In this case ncc(C) 2 2; otherwise, C would be a bad cycle in G, contrary 
to the assumption. We let both P, and P,, pass through Qc(C).  (In 
Fig. 6.18 nc(Cm3) = 0 and n,,(Cm3) = 2.) 
Case 2: n,(C) = 1 and ncc(C) 5 1. 

In this case ncc(C) = 1; if ncc(C) = 0, then C would be a bad 3-legged 
cycle in G. Thus C has exactly four legs. We let path P, pass through 
Qc(C) and let P,, pass through Q,,(C). Thus C is one of the cycles induced 

TEAM LinG - Live, Informative, Non-cost and Genuine !



150 Planar Graph Drawing 

a =  

Pw 

d =  

y=v, P, Y, 

face 

, = b  

Y 

zh 

$= c 

Fig. 6.18 Clockwise critical cycles attached to the westmost NS-path P. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 151 

by E(P,) @ E(Pc,). (In Fig. 6.18 nc(Cm4) = 1 and nCc(Cm4) = 1.) 
Case 3: nc(C) = 1 and ncc(C) 2 2 

In this case there are two subcases. In the first subcase where G(C) 
has no counterclockwise critical cycle attached to Qc(C),  we let both Pc 
and Pcc pass through Qc(C). (In Fig. 6.18 nC(Cm5) = 1 and ncc(Cm5) = 2 
and G(Cm5) has no counterclockwise critical cycle attached to Qc(Cm5).) 
Consider the second subcase in which G(C) has one or more counterclock- 
wise critical cycles attached to Qc(C). In this case G(C) has exactly one 
maximal counterclockwise critical cycle C’ attached to Qc(C); if G(C) has 
two maximal counterclockwise critical cycles C’ and C“ attached to Qc(C) 
as illustrated in Fig. 6.19, then one of them would be a bad cycle in G, con- 
trary to the assumption. Furthermore n,,(C‘) = 1; otherwise, ncc(C’) = 0 
and hence C’ would be a bad 3-legged cycle in G. Since ncc(C’) = 1, C’ 
has exactly four legs, and hence we let both P, and Pcc pass through edges 
in E(Q,(C)) - E(C’), let P, pass through Qc(C‘), and let P,, pass through 
Qcc(C’). Thus C’ is one of the cycles induced by E(Pc) @ E(P,,). (In 
Fig. 6.18 nc(Cm6) = 1,nc,(Cm6) = 2, G(Cm6) has exactly one maximal 
counterclockwise critical cycle C‘ attached to Qc(Cm6) which is drawn by 
thick lines, and ncc(C’) = 1.) 

If we choose P, and P,, as above, then clearly each of the cycles induced 
by E(Pc) @ E(Pcc) has exactly four legs, and hence by Lemma 6.3.5 the 
subgraph inside it has no bad cycle. Furthermore one can observe that 
both G Z  and G$ have no bad cycle. Therefore Pc and Pee are a pair of 
partitioning paths. (In Figs. 6.15 and 6.18 Case 2 and the second subcase 

cl of Case 3 have occurred, and E(P,) @ E(PcC) induces two cycles.) 

Fig. 6.19 Illustration for Case 3. 

Using Lemmas 6.3.3, 6.3.4, 6.3.5 and 6.3.6, one can recursively find a 
TEAM LinG - Live, Informative, Non-cost and Genuine !



152 Planar Graph Drawing 

rectangular drawing of a given plane graph G if G has no bad cycle. Thus 
we have constructively proved the sufficiency of Theorem 6.3.2. 

6.3.3 Rectangular Drawing Algorithm 

In this section, we assume that a given plane graph G has no bad cycle, and 
present an algorithm Rectangular-Draw to find a rectangular drawing of 
G. The algorithm outputs only the directions (vertical or horizontal) of 
edges of G. From the directions one can decide the integer coordinates of 
vertices as shown later in Section 6.3.4. It is easy to  modify the algorithm 
so that it examines whether a given plane graph has a bad cycle or not. 

We treat each Co(G)-component independently as in Lemma 6.3.3. If 
there exists a boundary NS-, SN-, WE-, or EW-path, we choose it as a 
partitioning path. Otherwise, we find a partition-pair P, and P,, from the 
westmost NS-path, and then recurse to the subgraphs divided by P, and 
P C C  . 

Algorithm Rectangular-Draw(G) 
begin 

1 Draw the outer cycle Co(G) of G as a rectangle by 
two horizontal line segments PN and Ps and two vertical 
line segments PE and Pw; 

{The directions of edges on Co(G) are decided.} 
Find all C,(G)-components JI, J z , . . .  , J p ;  {See Fig. 6.6(a).} 
for each component Ji do 

2 

3 

begin 
4 Gi = C,(G) U Ji; 

{Gi is the union of graphs Co(G) and Ji.} 
5 Draw(Gi, Ji) 

end 
end. 

Procedure Draw(G, J) 
{G has exactly one Co(G)-component J . }  
begin 

if G has a boundary NS-, SN-, EW-, or WE-path P 
then 

{ P  is a partitioning path. See Fig. 6.13.) 
begin 

1 

Assume without loss of generality that P is a boundary 2 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 153 

3 

4 

5 

6 

7 

NS-path; 
Draw all edges of P on a vertical line; 
{The directions of edges of P are decided to  be vertical.} 
if IE(P)I 2 2 then 

begin 
Let Fl , F2,. . . , Fq be the C,-components of Gg; 
{See Fig. 6.20. G& is a single cycle.} 
for each component Fi, 1 5 i 5 q,  do 

Draw(C,(G$) U Fi, Fi) 
end 

end 
else {G has no boundary NS-, SN-, EW-, or WE-path, 

as illustrated in Fig. 6.8) 

Find the westmost NS-path P ;  
Find a partition-pair P, and P,, from P as in the proof 
of Lemma 6.3.6; 
if P, = P,, then {See Fig. 6.9.) 

begin 
8 

9 

10 

11 

12 

13 

14 

15 

16 Draw(C,(Gi) U Fj, Fj)  

begin 
Draw all edges of P, on a vertical line segment; 
Let G1 = G$ and Gz = G 2  be two resulting 
subgraphs; 
for each subgraph Gi, i = 1,2, do 

begin 
Let F I ,  Fz,  ... , Fq be the C,-components of Gi; 
for each component Fj, 1 5 j 5 q, do 

end 
end 

begin 
17 

18 

else {P, # Pcc. See Fig. 6.15.) 

Draw all edges of P, and P,, on alternating sequences 
of horizontal and vertical line segments as in Fig. 6.17; 
{The directions of all edges of P, and Pcc are 
decided.} 
Let GI be the graph obtained from G$c by 
contracting all edges of P,, that are on horizontal 
sides of rectangular embeddings of C1, C2, . . . , C k ;  

Let Gz be the graph obtained from G; by 

19 

20 

TEAM LinG - Live, Informative, Non-cost and Genuine !



154 Planar Graph Drawing 

contracting all edges of P, that are on horizontal 
sides of rectangular embeddings of C1 , C2, . . . , Ck; 

Let G3 = G(Cl),Gq = G(C2),-.- ,Gk+2 = G(Ck); 
for each graph Gi, 1 5 i 5 k + 2, do 

21 

22 

23 

24 

begin 
Let F I ,  F 2 , .  . . , Fp be the Co-components of Gi; 
€or each component Fj, 1 5 j 5 q ,  do 

25 DRAW(Co(Gi) U Fj, Fj) 
end 

end 
end 

end 

8--- 
! 

I 

pw I 

__ 

P 

P 
S 

Fig. 6.20 C,-Components Fl,F2, . . .  ,F, of Gg.  

We now show that the algorithm Rectangular-Draw(G) takes linear 
time. 

We find all Co-components of G, and for each Co-component we find 
boundary NS-, SN-, EW- and WE-paths if they exist. We do this by travers- 
ing all boundary faces of G using the counterclockwise depth-first search. 
During the traversal each boundary path gets a label, NN, NE,. . . ,WW, ac- 
cording to the location of their starting and ending vertices on PN, PE, Ps 
and Pw, and every edge on a boundary path is marked according to the 
boundary path. Therefore boundary NS-, SN-, EW- and WE-paths, if they 
exist, can be readily found from the labels of the boundary paths in constant 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawuing 155 

time. 
We then need to find the westmost NS-path P if no boundary NS-, SN-, 

EW- or WE-paths exists. We find P by traversing the boundary paths 
with ends on PW using the counterclockwise depth-first search. During the 
traversal, we can find all edges that are on P and on a boundary NN-, EN-, 
SS-, or SE-path by checking the labels of boundary paths on which edges 
of P lie. Thus we can find paths Pst and Pen in the proof of Lemma 6.3.6. 
Traversing all facial cycles clockwise attached to path Pap, we detect the 
clockwise critical cycles attached to Pap if they exist. An edge, which is 
not incident to a vertex on P and is traversed twice during this traversal, 
is detected as the leg of a clockwise critical cycle. One can observe that 
the head vertices and the tail vertices of all the critical cycles attached to 
P obey the so-called parenthesis rule. Therefore, considering the parenthe- 
sis structures of the found critical cycles attached to P ,  we can find the 
maximal critical cycles attached to P .  From the found maximal critical 
cycles we find a partition-pair P, and P,, as mentioned in the proof of 
Lemma 6.3.6. One can do this by traversing the following edges a constant 
number of times: (i) the edges on P, and P,,, (ii) the edges on the facial 
cycles clockwise attached to Pea, and (iii) the edges on boundary paths 
newly created in the graphs divided by P, and Po. 

After finding a partitioning path or a partition-pair, we give labels to 
the newly created boundary paths by traversing them. The labels of some 
old boundary paths are updated for the newly found partitioning path 
or partition-pair. Clearly this can be done by traversing the respective 
boundary paths only once. 

A problem arises if a subpath of the westmost NS-path P ,  which is 
neither on P, nor on Pcc, is chosen as the westmost NS-path P' in a later 
recursive stage. If we again traversed the facial cycles attached to P' as 
mentioned before, then the time complexity of the algorithm would not be 
bounded by linear time. To overcome this difficulty, we keep the following 
information for later use when P is first constructed: 

(i) a list of all edges ei E E ( P )  contained in boundary NN- and EN-paths; 
(ii) a list of all edges ei E E(P) contained in boundary SS- and SE-paths; 

(iii) an array of length n, each element of which corresponds to a vertex 
of G and contains marks indicating whether the vertex is a head or a 
tail vertex of a clockwise critical cycle C attached to  P and whether 
ncc(C) = 1 or ncc(C) > 1. 

We use lists of (i) and (ii) to find Pst and Pen directly in later recursive 

TEAM LinG - Live, Informative, Non-cost and Genuine !



156 Planar Graph Drawing 

stages. Marks of vertices in (iii) indicate the existence of critical cycles 
attached to PI, and hence we need not to find these critical cycles again in 
a later recursive stage. 

Throughout the execution of the algorithm, every face of G become a 
boundary face and then will never become non-boundary face. Hence each 
face is traversed by a constant number of times. Therefore the algorithm 
runs in linear time. 

Theorem 6.3.7 If a %connected plane graph G with A 5 3 has n o  bad 
cycle, then the algorithm Rectangular-Draw f inds a rectangular drawing 
of G in linear t ime.  

6.3.4 Rectangular Grid Drawing 

The algorithm Rectangular-Draw(G) in the Section 6.3.3 finds only the 
directions of all edges in G. From the directions the integer coordinates of 
vertices in G can be determined in linear time as follows. In this subsection 
we assume for simplicity that all vertices other than the four corners have 
degree three. 

We now give a method of determining y-coordinates of the vertices in G; 
x-coordinates can be determined similarly. Consider a graph T, obtained 
from G by deleting all upward vertical edges of three types drawn by dotted 
lines in Fig. 6.21. Thus any upward edge drawn by a thick line in Fig. 6.22 
is not deleted. Clearly Ty is a spanning tree of G. (T, for the graph 
G in Fig. 6.15(a) is drawn by thick lines in Fig. 6.23.) A rectangular 
drawing of G is composed of several maximal horizontal and vertical line 
segments. The drawing in Fig. 6.23 is composed of 16 maximal vertical 
line segments together with 15 maximal horizontal line segments. All these 
maximal horizontal line segments are contained in Ty, and every vertex of 
G is contained in one of them. For each maximal horizontal line segment L,  
we will assign an integer y(L)  as the y-coordinate of every vertex on L. PS 
is the lowermost maximal horizontal line segment, while PN is the topmost 
one. We first set y(Ps) = 0. We then compute y(L)  from bottom to top. 
For each vertex w in G we will assign an integer t emp(w)  as a temporary 
value of the y-coordinate of w. 

For every vertex u on L there are two cases: either w has a neighbor u 
located below w or u has no neighbor u located below w. For the former case, 
we set t emp(w)  = y ( L ' )  + 1 where L' is the maximal horizontal line segment 
containing vertex u. For the latter case, we set t e m p ( v )  = 0. We then set 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 157 

Fig. 6.21 Deleted upward edges. 

Fig. 6.22 Non-deleted upward edges. 

y(L) = max{temp(v)} where the maximum is taken over all vertices v on 
L.  One can easily compute y ( L )  for all maximal horizontal line segments 
L from bottom to top using the counterclockwise depth-first search on Tg 
starting from the downward edge incident to the north-west corner a. 

Thus we have showed that the integer coordinates of all vertices in a 
rectangular grid drawing can be computed in linear time. 

We now give upper bounds on the area and half perimeter of a grid for 
a rectangular grid drawing. Let the coordinate of the south-west corner 
d be (O,O) ,  and let that of the north-east corner b be ( W , H ) .  Then our 
grid drawing is “compact” in a sense that there is at  least one vertical line 
segment of x-coordinate i for each integer i ,  0 5 i 5 W ,  and there is at least 
one horizontal line segment of y-coordinate j for each integer j ,  0 5 j 5 H .  
We have the following theorem on the sizes of a compact rectangular grid 
drawing. 

Theorem 6.3.8 If all vertices of a plane graph G have degree three except 
the four corners, then the sizes of a n y  compact rectangular grid drawing D 
of G satisfy W + H 5 5 and W . H 5 g .  
Proof. Let lh  be the number of maximal horizontal line segments, let 1, 
the number of maximal vertical h e  segments in D, and let 1 = lh + 1,. 

U 

TEAM LinG - Live, Informative, Non-cost and Genuine !



158 Planar Graph Drawing 

C 

Fig. 6.23 Illustration of Ty by thick lines. 

Each of the segments has exactly two ends. Each of the vertices except the 
four corners is an end of exactly one of the 1 - 4 maximal line segments 
other than PN, PE, Ps, and Pw. Therefore we have 

n - 4 = 2(1- 4) 

and hence 
n 

1 - 2 = - .  
2 

Since D is compact, we have 

H s l h - 1  

and 

w 5 1, - 1. 

By using Eqs. (6.1)-(6.3), we obtain 

n 
2 

W + H 5 1, + l h  - 2 = 1 - 2 = -. 

( 6 . 1 )

( 6 . 2 )

( 6 . 3

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 159 

This relation immediately implies the bound on area: W . H 5 $. 0 

The bounds above are tight, because there are an infinite number of 
examples attaining the bounds [RNN98]; finding such an example is left as 
an exercise. 

6.4 Rectangular Drawings without Designated Corners 

In Section 6.3 we considered a rectangular drawing of a plane graph G with 
A 5 3 for the case where four outer vertices of degree two are designated 
as the corners. In this section we consider a general case where corners are 
not designated in advance. Then our problem is how to examine whether 
G has four outer vertices of degree two such that there is a rectangular 
drawing of G having them as the corners, and how to efficiently find them 
if there is. 

Remember that cycles C and C‘ in a plane graph G are independent 
if G(C) and G(C‘) have no common vertex, and that a set S of cycles 
is independent if any pair of cycles in S are independent. Figure 6.24 
illustrates a 2-connected plane graph G with A 5 3. Since every vertex 
of G has degree two or three, all 3-legged cycles are “laminar” in essence. 
Some of 2-legged and 3-legged cycles are indicated by dotted lines; C1 and 
C2 are 2-legged cycles, and C3, C4, Cs and c6 are 3-legged cycles. C, and 
C4 are contained in G(Cl), C5 and Cs are contained in G(C2), and C:, 
is contained in G(C6). There are many independent sets of cycles. For 
example, S1 = {C1,C2} and S 2  = {C2,C3,C4} are independent sets of 
cycles. 

We are now ready to present a necessary and sufficient condition for the 
existence of appropriate four outer vertices as in Theorem 6.4.1 [RNN02]. 

Theorem 6.4.1 Assume that G is a %connected plane graph with A 5 3 
and has four or more outer vertices of degree two. Then four of them can 
be designated as the corners so that G has a rectangular drawing with the 
designated corners i f  and only i f  G satisfies the following three conditions: 

(a) every %legged cycle in G contains at least two outer vertices of degree 

(b)  every 3-legged cycle in G contains at least one outer vertex of degree 

(c) i f  an independent set S of cycles in G consists of c2 ,%legged cycles and 

two; 

two; and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



160 Planar Graph Drawing 

c3 3-legged cycles, then 2c2 + c3 5 4. 

G 

Fig. 6.24 Plane graph 

For the set S1 = {Cl, C2} above c2 = 2, c3 = 0 and hence 2c2 + c3 = 4, 
while for S 2  = {C2,C3,C4} c2 = 1 and c3 = 2 and hence 2c2 + c3 = 4. 

It is rather easy to prove the necessity of Theorem 6.4.1 as follows. 

Necessity of Theorem 6.4.1. Assume that G has a rectangular draw- 
ing D for four outer vertices of degree two appropriately chosen as the cor- 
ners. Then by Fact 6.3.1 every 2-legged cycle in G contains at least two 
corners of D. Similarly every 3-legged cycle contains at least one corner of 
D. 

Let an independent set S consist of c2 2-legged cycles and c3 3-legged 
cycles in G. Then each of the c2 2-legged cycles in S contains at least two 
corners of D ,  and each of the c3 3-legged cycle in S contains at least one 
corner. Since all cycles in S are independent, they are vertex-disjoint with 
each other. Therefore there are at least 2c2 + c3 corners in D. Since there 

0 are exactly four corners in D ,  we have 2c2 + c3 5 4. 

In order to prove the sufficiency of Theorem 6.4.1, it suffices to show 
that if the three conditions (a)-(c) in Theorem 6.4.1 hold then one can 
choose four outer vertices of degree two as the corners a, b, c and d so that 
the conditions ( r l )  and (r2) in Theorem 6.3.2 hold. We now outline a 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 161 

proof. See [RNN02] for the detail of a proof and a linear algorithm to find 
appropriate four outer vertices of degree two. 

Let J1, J2, .  . . , J,  p 2 1, be the Co(G)-components of G, then they must 
be “in series” as illustrated in Fig. 6.25. There are two 2-legged cycles C1 
and C2, drawn by thick lines, which are contained in GI = C,(G) U J1 

and G, = Co(G) u J,, respectively. We choose a corner from each of the 
innermost 3-legged cycles. If four corners have not been chosen, we choose 
the remaining corners from C1 and C2 so that each of the 2-legged cycles 
including C1 and C2 contains at least two corners. (In Fig. 6.24 corners 
a ,  c and d are chosen from the innermost 3-legged cycles C3,Cs and Cq, 

respectively, and the remaining corner b is chosen from a 2-legged cycle C2.) 

Fig. 6.25 Plane graph G with C,(G)-cornponents Ji, J 2 , .  . . , J p .  

6.5 Rectangular Drawings of Planar Graphs 

In Sections 6.2, 6.3 and 6.4 we considered rectangular drawings of plane 
graphs (with fixed embedding). In this section we consider rectangular 
drawings of planar graphs with A 5 3 (without fixed embedding). We 
say that a planar graph G has a rectangular drawing if at least one of the 
plane embeddings of G has a rectangular drawing. Figures 6.26(b), (c) 
and (d) depict three different plane embeddings of the same planar graph. 
The embedding in Fig. 6.26(b) has a rectangular drawing as illustrated in 
Fig. 6.26(a), and hence the planar graph has a rectangular drawing. On the 
other hand, neither the embedding in Fig. 6.26(c) nor that in Fig. 6.26(d) 
has a rectangular drawing, because there are 3-legged cycles indicated by 
dotted lines which have no outer vertex of degree two. Examining whether 
a planar graph G with A 5 3 has a rectangular drawing is not a trivial 
problem, since G may have an exponential number of plane embeddings in 
general. A straightforward algorithm checking each of all the embeddings 

TEAM LinG - Live, Informative, Non-cost and Genuine !



162 Planar Graph Drawing 

by the linear algorithm in Section 6.4 does not run in polynomial time. In 
this section we present a linear algorithm to examine whether there is a 
plane embedding of a planar graph G with A 5 3 which has a rectangular 
drawing [RNG04]. The key idea is that it is sufficient to check at most four 
embeddings of G. 

(d) ( e )  

Fig. 6.26 
the same graph which is subdivision of the graph in (e). 

A rectangular drawing (a) and three different embeddings (b),  (c) and (d) of 

Let G be a planar 2-connected graph with A 5 3, and let r be a plane 
embedding of G. We denote by F,(F) the outer face of F. For a cycle 
C of F, we call the plane subgraph of F inside C (including C) the inner 
subgraph rl(C) for C ,  and call the plane subgraph of F outside C (including 
C) the outer subgraph Fo(C) for C. A rectangular drawing of F is a convex 
drawing of G, and hence by Corollary 5.3.3 G should not have a forbidden 
separation pair, and by Corollary 5.3.6 F,(r) should contain every vertex 
of critical separation pairs. Since A 5 3, G has no forbidden separation 
pair although G may have critical separation pair. The pair of leg-vertices 
of any 2-legged cycle in F is a separation pair, but is not always a critical 
separation pair. We call a cycle C in r regular if the plane graph I? - FI(C) 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 163 

has a cycle. The 2-legged cycles C1 and Cz in Fig. 6.24 are regular, while the 
2-legged cycle indicated by thin dotted lines in Fig. 6.27(a) is not regular. 
Clearly a 2-legged cycle C in r is not regular if and only if r' - rl(C) is 
a chain on Fo(I'). Thus the pair of leg-vertices of a regular 2-legged cycle 
is a critical separation pair, and hence F,(r) should contain the pair of 
leg-vertices of every regular 2-legged cycle. In the plane graph depicted in 
Fig. 6.27(b), the cycle C drawn by thick solid lines is a regular 3-legged 
cycle, while the cycle C' indicated by thin dotted lines is not a regular 
3-legged cycle. A 3-legged cycle C is not regular if and only if I' - r r (C)  
contains exactly one vertex that has degree three in G. 

In Section 6.5.1 we consider the case where G is a subdivision of a planar 
3-connected cubic graph and in Section 6.5.2 we consider the other case. 

6.5.1 Case for a Subdivision of a Planar 3-connected Cubic 
Graph 

In this section we deal with a subdivision G of a planar 3-connected cubic 
graph. All the graphs in Figs. 6.26 and 6.27 are subdivisions of planar 3- 
connected cubic graphs. By Corollary 5.3.4 G always has a convex drawing, 
but G does not always have a rectangular drawing. We present a necessary 
and sufficient condition for G to have a rectangular drawing. 

A graph G is called cyclically 4-edge-connected if the removal of any 
three or fewer edges leaves a graph such that exactly one of the connected 
components has a cycle [Tho92]. The graph in Fig. 6.27(a) is cyclically 
4-edge-connected. On the other hand, the graph in Fig. 6.27(b) is not 
cyclically 4-edge-connected, since the removal of the three edges drawn by 
thick dotted lines leaves a graph with two connected components each of 
which has a cycle. Similarly all the graphs in Fig. 6.26 are not cyclically 
4-edge-connected. 

We call a face F of r a peripheral face for a 3-legged cycle C in r if F is 
in I'o(C) and the contour of F contains some edges on C. Clearly there are 
exactly three peripheral faces for any 3-legged cycle in I?. In Fig. 6.27(b) 
Fl , Fz and F3 are the three peripheral faces for the 3-legged cycle C drawn 
by thick solid lines. 

Let I' be an arbitrary plane embedding of a subdivision G of a planar 
3-connected cubic graph. Then F has no regular 2-legged cycle and hence 
r has no critical separation pair. However, r may have a regular 3-legged 
cycle. r has no regular 3-legged cycle if and only if G is cyclically 4-edge- 
connected. We have the following theorem on a necessary and sufficient 

TEAM LinG - Live, Informative, Non-cost and Genuine !



164 Planar Graph Drawing 

Fig. 6.27 
4-edge connected. 

(a) A cyclically 4-edge connected graph, and (b) a graph which is not cyclically 

condition for G to have a rectangular drawing [RNG04]. 

Theorem 6.5.1 
graph, and let r be an arbitrary plane embedding of G. 

Let G be a subdivision of a planar 3-connected cubic 

Suppose first that G is cyclically 4-edge-connected, that is, I? has no 
regular 3-legged cycle, as the graph in Fig. 6.27(a). Then the planar 
graph G has a rectangular drawing i f  and only i f  r has a face F such 
that 

(i) F contains at least four vertices of degree two; 
(ii) there are at least two chains on  F ;  and 

(iii) if there are exactly two chains on F ,  then they are not adjacent 
and each of them contains at least two vertices. 

(The plane embedding in Fig. 6.27(a) has four outer chains, and has a 
rectangular drawing as illustrated in Fig. 6.28.) 

Suppose next that G is  not cyclically $-edge-connected, that i s ,  I? has a 
regular 3-legged cycle C as the graphs in Figs. 6.26(b) and 6.27(b). Let 
Fl ,  F2 and F3 be the three peripheral faces for C ,  and let rl, I72 and 
r3 be the plane embeddings of G taking Fl , F2 and F3, respectively, as 
the outer face. Then the planar graph G has a rectangular drawing i f  
and only if at least one of the three embeddings I'l, F2 and I'3 has a 
rectangular drawing. (Figures 6.26(b), (c)  and (d) depict rl , r2 and r3 
for the regular $legged cycle indicated by  dotted lines in Fig. 6.26(b).) 

Before giving a proof of Theorem 6.5.1, we observe the following 
Fact 6.5.2 and Lemma 6.5.3. Fact 6.5.2 is immediate from Theorem 2.2.2. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 165 

Fig. 6.28 Rectangular drawing of the graph in Fig. 6.27(a) 

The proof for Lemma 6.5.3 is left as an exercise. 

Fact 6.5.2 Let G be a subdivision of a 3-connected planar graph. Then 
there is exactly one embedding of G for each face embedded as the outer 
face. Furthermore, for any two plane embeddings r and I?’ of G ,  any facial 
cycle in 

Lemma 6.5.3 Let G be a subdivision of a planar %connected cubic graph, 
and let I? be an arbitrary plane embedding of the planar graph G.  Then the 
following (a) - (c) hold. 

is a facial cycle in r’. 

(a) If C is a 2-legged cycle in r, then the legs and the leg-vertices 01 and 
v2 of C are on the outer face Fo(I’), and the set of all vertices not in 
rr (C)  induces a chain of G on  F0( r )  with supports 01 and v2. 

(b) For any chain P on  F0(r ) ,  the outer face of the plane graph r - P is 
a 2-legged cycle in r. 

(c) Any  pair of 2-legged cycles in r are not independent. 

We are now ready to give a proof of Theorem 6.5.1. 

Proof of Theorem 6.5.l(a): Necessity: Assume that the planar graph 
G is cyclically 4-edge-connected and has a rectangular drawing D. Then 
there is a plane embedding I” of G which has a rectangular drawing. By 
Fact 6.5.2, the outer face Fo(r‘) of r’ corresponds to a face F of I?. We 
show that F satisfies (i), (ii) and (iii) as follows. 

(i) The four corners of D have degree two in G, and hence F = F0(I”) 
contains a t  least four vertices of degree two. 

(ii) If all the four corner vertices are contained in the same chain on 
Fo(r‘) as illustrated in Fig. 6.29(a), then r‘ would not have a rectangular 
drawing. Therefore, there are at least two chains on F = Fo(F’). 

(iii) Suppose that there are exactly two chains on F = Fo(r’). Then 
TEAM LinG - Live, Informative, Non-cost and Genuine !



166 Planar Graph Drawing 

clearly each of them contains exactly two of the four corner vertices of degree 
two; otherwise, r" would not have a rectangular drawing as illustrated in 
Fig. 6.29(b). Furthermore, the two chains must be non-adjacent; otherwise, 
I" would have a 3-legged cycle C containing no vertex of degree two on 
Fo(l?'), contrary to  Theorem 6.4.l(b). In Fig. 6.29(c) C is drawn by thick 
lines. 

Fig. 6.29 
(c) adjacent chains on the outer cycle. 

(a) Single chain, (b) one of the two chains contains exactly one vertex, and 

Suficiency: We give a constructive proof for the sufficiency of Theo- 
rem 6.5.l(a). Assume that r' has a face F satisfying Conditions (i) - (iii) 
of Theorem 6.5.l(a). Let I? be an embedding of G such that F = Fo(I"). 
Then by Condition (i) in Theorem 6.5.l(a) Fo(I") = F contains at least 
four vertices of degree two. Thus it is sufficient to  prove that I" satisfies 
Conditions (a) - (c) in Theorem 6.4.1. 

(a) We now show that I" satisfies Condition (a) in Theorem 6.4.1, that 
is, every 2-legged cycle C in I" contains at least two vertices of degree two 
on Fo(r"). By Condition (ii) in Theorem 6.5.l(a) there are at least two 
chains on Fo(r ' ) ,  and hence we have the following two cases to consider. 
Case 1: there are exactly two chains PI and P2 on F 0 ( P ) .  

By Lemma 6.5.3 I" has exactly two 2-legged cycles C1 and C2 as il- 
lustrated in Fig. 6.30(a), where C1 is drawn by thick solid lines and Cz is 
indicated by dotted lines. Clearly each of the 2-legged cycles C1 and CZ 
contains exactly one chain. By Condition (iii) of Theorem 6.5.l(a) each 
of the two chains PI and P2 contains at least two vertices of degree two. 
Therefore, each 2-legged cycle contains at least two vertices of degree two 
on F0(r'). Thus I?' satisfies Condition (a) of Theorem 6.4.1. 
Case 2: there are more than two chains on F 0 ( P ) .  

Assume that there are exactly r chains on F,(T") and r 2 3. Then each 
2-legged cycle contains T - 1 (2 2) chains on Fo(r"), and hence contains at 
least two vertices of degree two on Fo(J?). Thus r' satisfies Condition (a) 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 

of Theorem 6.4.1. 

167 

W 

V 

Fig. 6.30 Illustration for the proof of Theorem 6.5.l(a). 

(b) We next show that I” satisfies Condition (b) in Theorem 6.4.1, that 
is, every 3-legged cycle C in I?’ contains at least one vertex of degree two on 
Fo(I“). Since G is cyclically 4-edge connected, C is not regular and hence 
I?’ - rl,(C) has no cycle. Therefore, C contains edges on F0(F‘), two of the 
three leg-vertices of C, say u and v,  are on F0(I”), and f‘ - rl,(C) contains 
exactly one vertex w that has degree three in G. Clearly w is on Fo(r’). 
The three vertices u, w and v divide Fo(I”) into three paths PI, P2 and 
P3; PI goes from u to w on F0(I”), PZ from w to v,  and P3 from v to  u, as 
illustrated in Figs. 6.30(b) and (c). By Condition (ii) in Theorem 6.5.l(a) 
there are at least two chains on F = Fo(I“). We now have the following 
two cases. 
Case 1: PI or P2 does not  contain a chain. 

In this case there is at least one chain on P3 since there are at least two 
chains on Fo(l?’). Therefore, C contains at least one vertex of degree two 
on Fo(I?’), as illustrated in Fig. 6.30(b). Thus I” satisfies Condition (b) in 
Theorem 6.4.1. 
Case 2: both PI and P2 contain a chain. 

In this case the two chains on PI and P2 are adjacent, as illustrated 
in Fig. 6.30(c). Therefore by Condition (iii) in Theorem 6.5.l(a) Fo(I“) 
contains three or more chains, and hence there is at least one chain on P3. 
Thus C contains at least one vertex of degree two on Fo(f’), and hence I“ 
satisfies Condition (b) in Theorem 6.4.1. 

(c) We finally show that I?‘ satisfies Condition (c) in Theorem 6.4.1. Let 
S be any independent set of cycles in I”. Then c2 5 1 by Lemma 6.5.3(c). 

We now claim that c3 5 1. Otherwise, there are two different 3-legged 
cycles C and C’ in S. Since G is cyclically 4-edge-connected, C and C’ are 
not regular and hence each of the plane graphs I?’ - I‘;(C) and f‘ - I’l,(C‘) 
contains exactly one vertex that has degree three in G. Then clearly I’l,(C) 
and rl,(C’) have common vertices, contrary to the assumption that S is an 

TEAM LinG - Live, Informative, Non-cost and Genuine !



168 Planar Graph Drawing 

independent set of cycles. 
Since c2 5 1 and c3 5 1, we have 2c2 + c3 5 3. Thus r' satisfies 

0 

Proof of Theorem 6.5.l(b): Since the proof for the sufficiency is obvious, 
we give a proof for the necessity. Suppose that I? has a regular 3-legged 
cycle C and that the planar graph G has a rectangular drawing. Then there 
is a plane embedding r' of G which has a rectangular drawing. Let F be 
the face of r corresponding to F0(I"). It suffices to show that F is one of 
the three peripheral faces F1, F 2  and F3 for C in r. 

We first consider the case where C contains an edge on Fo(I'). Let C' 
be the cycle in I? - rl(C) such that rl(C') has the maximum number of 
edges, as illustrated in Fig. 6.31(a). One can observe that C' is a 3-legged 
cycle in r, and any face of r other than F1, F 2  and F3 is in l?I(C) or 
I'I(C'). Therefore it is sufficient to  prove that F is neither in rr (C)  nor 
in l?l(C'). If F is in rI(C), then C' is a 3-legged cycle in I?' and contains 
no vertex on Fo(I") = F ,  a contradiction to  Theorem 6.4.l(b). Similarly, if 
F is in rI(C'), then C is a 3-legged cycle in r' and contains no vertex on 
Fo(l?) = F, a contradiction to Theorem 6.4.l(b). 

Condition (c) of Theorem 6.4.1. 

Fig. 6.31 Cycles C and C' in r 

We next consider the case where C does not contain any edge on Fo(r ) .  
Let C' be the cycle in r - rl(C) such that I'l(C') includes rI(C) and has 
the minimum number of edges, as illustrated in Fig. 6.31(b). Any face of I? 
other than FI ,  F2 and F3 is in I'I(C) or ro(C'). Therefore it is sufficient to 
prove that F is neither in rr (C)  nor in Fo(C'). If F is in l?I(C), then C' is 
a 3-legged cycle in I" and contains no vertex on F0(I") = F, a contradiction 
to Theorem 6.4.l(b). If F is in ro(C'), then C is a 3-legged cycle in r' and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 169 

contains no vertex on F0(r’)  = F ,  a contradiction to Theorem 6.4.l(b). 0 

Theorem 6.5.1 immediately leads to a linear algorithm to examine 
whether a subdivision G of a planar 3-connected cubic graph has a rectan- 
gular drawing. 

6.5.2 The Other Case 

In this section we assume that G is a planar 2-connected graph with A 5 3 
but is not a subdivision of a planar 3-connected cubic graph, and give a 
necessary and sufficient condition for G to have a rectangular drawing. 

Let r be an arbitrary plane embedding of G. If G has at  most two ver- 
tices of degree three, then one can easily examine whether G has a rectangu- 
lar drawing. (See Fig. 6.32.) We may thus assume that G has three or more 
vertices of degree three. Then r has a regular %legged cycle C; otherwise, 
G would be a subdivision of a 3-connected cubic graph. The pair of leg- 
vertices of C is a critical separation pair. Let ( 2 1  , yl), (za, y2),. . . , ( 2 1 , ~ ~ )  

Fig. 6.32 Plane graph exactly two vertices of degree three. 

be all critical separation pairs of G. Clearly I = O(n).  If there is a plane em- 
bedding !? of G having a rectangular drawing, then the outer face Fo(r’) 
must contain all vertices z1 , y1 , 2 2 ,  y2, .  . . ,ZL , y ~ .  Construct a graph G+ 
from G by adding a dummy vertex z and dummy edges (xi, z )  and (yi, z )  
for all indices i, 1 5 i 5 1. Then G has a plane embedding whose outer 
face contains all vertices 21 , y l  , 2 2 ,  y2 , . . . , 21, yl if and only if G+ is planar. 
(Figure 6.33(b) illustrates G+ for G in Fig. 6.33(a).) 

We may thus assume that Gf is planar. Let I?+ be an arbitrary plane 
embedding of Gf such that z is embedded on the outer face, as illustrated 
in Fig. 6.33(c). We delete from I?+ the dummy vertex z and all dummy 
edges incident to z ,  and let r’ be the resulting plane embedding of GI 

TEAM LinG - Live, Informative, Non-cost and Genuine !



170 Planar Graph Dmwing 

Fig. 6.33 G ,  r, G + ,  r+, I?* and r; 

in which F0(r*) contains all vertices x1,y1,x2,y2, ... ,xl,y~, as illustrated 
in Fig. 6.33(d). One can observe that every 2-legged cycle in I?* has the 
leg-vertices on F0(r*). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 171 

Let p be the largest integer such that a number p of 2-legged cycles 
in r* are independent with each other. Then p 2 2 since I? and hence 
I?' has a regular 2-legged cycle. I?* has a number p of minimal 2-legged 
cycles. (In Fig. 6.33(d) the p = 3 minimal 2-legged cycles C1, C2 and C3 
are shaded, which corresponds to the LLleaves" of a "3-connected component 
decomposition tree" of G.) If r; is a plane embedding obtained from r' by 
flipping r;(C) for a minimal 2-legged cycle C ,  then the leg-vertices of all 
2-legged cycles in r; are on Fo(l?:). (The embedding in Fig. 6.33(e) is 
obtained from r" in Fig. 6.33(d) by flipping I';(Cl).) One can observe that 
only the plane embeddings of G that can be obtained from r' by flipping 
r; (C) for some minimal 2-legged cycles C have X I ,  y1, x2, y2, . . . , x1 , y~ on 
the outer face. We now have p = 2; if p 2 3, then any plane embedding 
of G whose outer face contains all vertices X I ,  y1,x2, y2, . . . ,x1, y[ has three 
or more independent 2-legged cycles, and hence by Theorem 6.4.l(c) the 
embedding has no rectangular drawing, and consequently the planar graph 
G has no rectangular drawing. 

Since p = 2, I?* has exactly two independent 2-legged cycles C1 and 
C2. We may assume without loss of generality that C1 and C2 are minimal 
2-legged cycles, as illustrated in Fig. 6.34(a). By flipping rf(C1) or r;(C2) 
around the leg-vertices of C1 or C2, we have four different embeddings 
rl(= I?*), r2, r3 and r4 such that each Fo(ri), 1 5 i 5 4, contains all ver- 
tices X I ,  yl,x2, y2,. . . , x[, y[, as illustrated in Fig. 6.34. Since only the four 
embeddings rl, r2, F3 and r4 of G have all vertices XI, y1, x2, y2 , . . . , x1 , y~ 
on the outer face, G has a rectangular drawing if and only if at least one 
of rl, r2, r3 and r4 has a rectangular drawing. (None of the embeddings 
rl, r2, and r4 in Figs. 6.34(a), (b) and (d) has a rectangular drawing 
since there are no four vertices of degree two on the outer face, while the 
embedding r3 in Fig. 6.34(c) has a rectangular drawing as illustrated in 
Fig. 6.35.) We thus have the following theorem. 

Theorem 6.5.4 Let G be a planar 2-connected graph with A 5 3 which 
is not a subdivision of a planar 3-connected cubic graph. Let r be a plane 
embedding of G such that every 2-legged cycle in r has leg-vertices on Fo(I'), 
let r have exactly two independent 2-legged cycles, and let C1 and C2 be the 
two minimal %legged cycles in r. Let rl (= r), r2, r3, and r4 be the four 
embeddings of G obtained from r b y  flipping rI(C1) or rl(C2) around the 
leg-vertices of C1 and C2. Then G has a rectangular drawing if and only 
if at least one of the four embeddings rl, r2, r3, and r4 has a rectangular 
drawing. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



172 Planar Graph Drawing 

Fig. 6.34 rlrr2,r3 and r4. 

Fig. 6.35 Rectangular drawing of r3 in Fig. 6.34(c). 

Following the argument above one can easily implement a linear algo- 
rithm to examine whether a planar graph G with A 5 3 has a rectangular 
drawing and to find a rectangular drawing of G if it exists. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Rectangular Drawing 173 

6.6 Bibliographic Notes 

A drawing of a plane graph G is called an inner rectangular drawing of G if 
each vertex of G is drawn as a point, each edge of G is drawn as a horizontal 
or vertical line segment, each inner face of G is drawn as a rectangle and 
the outer cycle of G is drawn as a rectilinear polygon [MMN02]. Miura et 
al. [MHN04] reduced the problem of finding an inner rectangular drawing 
of a plane graph G with A 5 4 to a problem of finding a perfect matching 
of a new bipartite graph constructed from G. It immediately yields the 
result presented in Section 6.2 on an ordinary rectangular drawing of plane 
graphs with A 5 4. 

Kozminski and Kinnen [KK84] established a necessary and sufficient 
condition for the existence of a “rectangular dual” of an inner triangulated 
plane graph, that is, a rectangular drawing of the dual graph of an inner 
triangulated plane graph, and gave an O(n2)  algorithm to  obtain it. Based 
on the characterization of [KK84], Bhasker and Sahni [BSSS] and Xin He 
[He931 developed linear-time algorithms to find a rectangular dual. Kant 
and Xin He [KH97] presented two more linear-time algorithms. Xin He 
[He951 presented a parallel algorithm for finding a rectangular dual. Lai 
and Leinwand [LL90] reduced the problem of finding a rectangular dual 
of an inner triangulated plane graph G to a problem of finding a perfect 
matching of a new bipartite graph constructed from G. Their construction 
is different from that in Section 6.2, their bipartite graph has an O(n2)  
number of edges, and hence their method takes time O(n2.5)  to find a 
rectangular dual or a rectangular drawing of a plane graph with A 5 3. 

Exercise 

1. Show that a plane graph G with A 5 4 has a rectangular drawing for 
some quadruplet of outer vertices of degree two appropriately chosen as 
the corners if and only if a certain bipartite graph constructed from G 
has a perfect matching [LL90, MHN041. 

2. Prove Lemma 6.3.4. 
3. Find an infinite number of plane graphs G with A 5 3 such that any 

rectangular drawing of G needs area at least n2/16, where n is the num- 
ber of vertices in G. 

4. Let G be a 2-connected plane graph with A 5 3, and let k be the number 
of vertices of degree three on C,(G). Prove that a C,(G)-component J 

TEAM LinG - Live, Informative, Non-cost and Genuine !



174 Planar Graph Drawing 

contains a cycle with k or less legs if J contains a cycle. 
5. Prove that a 2-connected plane graph G with A 5 3 has a pair of 

independent 2-legged cycles if G has two or more C,(G)-components. 
6. Let G be a 2-connected plane graph such that all vertices have degree 

three or four except four outer vertices of degree two. Let G' be the graph 
obtained from G by replacing each vertex of degree four by a cycle as 
illustrated in Fig. 6.36. Then prove that G has a rectangular drawing if 
and only if G' has a rectangular drawing in which each replaced cycle 
together with its four legs has one of the two embeddings illustrated in 
Fig. 6.37. 

7. Prove Lemma 6.5.3. 
8. Implement a linear algorithm to examine whether a planar graph G with 

A 5 3 has a rectangular drawing and to find a rectangular drawing of 
G if G has. 

Fig. 6.36 Replacing a vertex of degree four with a cycle. 

Fig. 6.37 Embeddings of four legs. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 7 

Box- Rec t angular Drawing 

7.1 Introduction 

A box-rectangular drawing of a plane graph G is a drawing of G such that 
each vertex is drawn as a rectangle, called a box, and the contour of each 
face is drawn as a rectangle, as illustrated in Fig. 1.6(d). A vertex may 
be drawn as a degenerate rectangle, that is, a point. We have seen in 
Section 1.5.1 that box-rectangular drawings have practical applications in 
floorplanning of MultiChip Modules (MCM) and in architectural floorplan- 
ning. If G has multiple edges or a vertex of degree five or more, then G 
has no rectangular drawing but may have a box-rectangular drawing. How- 
ever, not every plane graph has a box-rectangular drawing. Rahman et al. 
[RNNOO] established a necessary and sufficient condition for the existence 
of a box-rectangular drawing of a plane graph, and gave a linear algorithm 
to find a box-rectangular drawing if it exists. 

In this chapter we present the results of Rahman et al. In Section 7.2 we 
presents some definitions and observations regarding box-rectangular draw- 
ings. In Section 7.3 we present a linear algorithm to find a box-rectangular 
drawing for a case where four outer vertices are designated as the “corner 
boxes” of the drawing. In Section 7.4 we present a linear algorithm to 
find a box-rectangular drawing for a general case in which no vertices are 
designated as the “corner boxes.” 

7.2 Preliminaries 

In this section we give some definitions and preliminary observations re- 
garding box-rectangular drawings. 

Throughout this chapter we assume that a graph G is a so-called multi- 

175 
TEAM LinG - Live, Informative, Non-cost and Genuine !



176 Planar Graph Drawing 

graph, which may have multiple edges, i.e., edges sharing both ends. If G 
has no multiple edges, then G is called a simple graph. For simplicity’ sake 
we assume that G has three or more vertices and is 2-connected. 

We call a box-rectangular drawing D of G a box-rectangular grid drawing 
if each edge as well as each side of a box is drawn along a grid line. A vertex 
may be drawn as a degenerate box, that is, a point, in a box-rectangular 
drawing D. We often call a degenerate box in D a point and call a non- 
degenerate box a real box. We call a rectangle corresponding to Co(G) the 
outer rectangle, which has exactly four corners. We call a corner of the 
outer rectangle simply a corner. A box in D is called a corner box if it 
contains at least one corner. A corner box may be degenerate. 

We now have the following four facts and a lemma. 

Fact 7.2.1 
corner boxes. 

Any box-rectangular drawing has either two, three, or four 

Fact 7.2.2 Any corner box contains either one or two corners. 

Figure 7.1 (a) illustrates a box-rectangular drawing having two corner 
boxes; each of them is a real box and contains two corners. Figure i’.l(b) 
illustrates a box-rectangular drawing having three corner boxes. Fig- 
ure 7.2(c) illustrates a box-rectangular drawing having four corner boxes, 
one of which is degenerate. 

Fig. 7.1 (a) Two corner boxes, and (b) three corner boxes. 

Fact 7.2.3 
two o r  three satisfies one of the following (i), (ii) and (iii). 

( i )  Vertex v is drawn as a point containing no corner; 
(i i)  v is drawn as a corner box containing exactly one corner; and 

(iii) v is drawn as a corner real box containing exactly two corners. 

I n  a box-rectangular drawing D of G, any vertex v of degree 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 177 

Fact 7.2.4 
five or more is drawn as a real box. 

Lemma 7.2.5 If G has a box-rectangular drawing, then G has a box- 
rectangular drawing in which every vertex of degree four or more is drawn 
as a real box. 

I n  any box-rectangular drawing D of G, every vertex of degree 

I v  

Fig. 7.2 Illustration for the proof of Lemma 7.2.5. 

Proof. Assume that G has a box-rectangular drawing D. By Fact 7.2.4 
every vertex of degree five or more in G must be drawn as a real box in 
D. If a vertex v of degree four in G is drawn as a point in D as illustrated 
in Fig. 7.2(a), then we modify the drawing D so that v is drawn as a real 
box, as illustrated in Fig. 7.2(b). Repeating the modification above for 
all vertices of degree four drawn as points in D, one can obtain a box- 
rectangular drawing D’ of G in which every vertex of degree four or more 

0 is drawn as a real box, as illustrated in Figs. 7.2(c) and (d). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



178 Planar Graph Drawing 

The choice of vertices as corner boxes plays an important role in finding 
a box-rectangular drawing. For example, the graph in Fig. 7.3(a) has a box- 
rectangular drawing if we choose outer vertices a,  b, c and d as corner boxes 
as illustrated in Fig. 7.3(b). However, the graph has no box-rectangular 
drawing if we choose outer vertices p ,  q, r and s as corner boxes. If all 
vertices corresponding to corner boxes are designated for a drawing, then 
it is rather easy to examine whether G has a box-rectangular drawing with 
the designated corner boxes. We deal this case in Section 7.3. In Section 7.4 
we deal with a general case where no vertices of G are designated as corner 
boxes. 

Fig. 7.3 
and d.  

A graph G and its box-rectangular drawing with four corner boxes a, b, c 

7.3 Box-Rectangular Drawings with Designated Corner 
Boxes 

In this section we present a necessary and sufficient condition for a plane 
graph G to have a box-rectangular drawing D for a case where all vertices 
of G corresponding to corner boxes are designated, and give a simple linear- 
time algorithm to find D if there exists D [RNNOO]. 

We now define two operations on a graph as follows. Let v be a vertex 
of degree two in G. We replace the two edges u1v and u2v incident to  
v with a single edge ulu2 and delete v. We call the operation above the 
removal of a vertex of degree two from G. Let v be a vertex of degree 
d in a plane graph, let el = vw1 , e2 = vwz,. . . , ed = ‘uwd be the edges 
incident to v, and assume that these edges e l ,  e2,. . . , ed appear clockwise 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 179 

around u in this order as illustrated in Fig. 7.4(a). Replace u with a cycle 
v1,2)2,. . . , U d ,  u1 , and replace edge uwi with uiwi for i = 1 , 2 , .  . . , d,  as 
illustrated in Fig. 7.4(b). We call the operation above the replacement of a 
vertex b y  a cycle. The cycle v1, v2, . . . , U d ,  u1 in the resulting graph is called 
the replaced cycle corresponding to vertex u. 

W 

W &  
5 

4 

Fig. 7.4 Replacement of a vertex by a cycle. 

By Fact 7.2.1, any box-rectangular drawing has either two, three or four 
corner boxes. However, we consider only box-rectangular drawings having 
four corner boxes for simplicity' sake, and assume that exactly four outer 
vertices a,b,c  and d in G are designated as the four corner boxes. We 
construct a new graph G" from G through an intermediate graph G', and 
reduce the problem of finding a box-rectangular drawing of G with the four 
designated vertices to a problem of finding a rectangular drawing of G". 

We first construct G' from G as follows. If a vertex u of degree two in G, 
as vertex d in Fig. 7.5(a), is designated as a corner, then u must be drawn 
as a corner point in a box-rectangular drawing of G. On the other hand, if 
a vertex u of degree two is not designated as a corner, then the two edges 
incident to v must be drawn on a straight line segment. We thus remove 
all non-designated vertices of degree two one by one from G, as illustrated 
in Fig. 7.5(b). The resulting graph is G'. Thus all vertices of degree two in 
G' are designated vertices. 

Clearly, G has a box-rectangular drawing with the four designated cor- 
ner boxes if and only if G' has a box-rectangular drawing with the four 
designated corner boxes. Figure 7.5(f) illustrates a box-rectangular draw- 
ing D' of G' in Fig. 7.5(b), and Fig. 7.5(g) illustrates a box-rectangular 
drawing D of G in Fig. 7.5(a). 

Since every vertex of degree two in G' is a designated vertex, it must 

TEAM LinG - Live, Informative, Non-cost and Genuine !



180 Planar Graph Drawing 

C 
C 

o designated comer vertex 

(a) G (b) G' 

C' 

0 dummy vertex 

(d) G" 

d d 

Fig. 7.5 Illustration of G, G', G", D", D' and D. 

be drawn as a corner point in any box-rectangular drawing of G'. Every 
designated vertex of degree three in G', as vertex a in Fig. 7.5(b), must be 
drawn as a real box since it is a corner. On the other hand, every non- 
designated vertex of degree three in G' must be drawn as a point. These 
facts together with Lemma 7.2.5 imply that if G' has a box-rectangular 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 181 

drawing then G' has a box-rectangular drawing D' in which all designated 
vertices of degree three and all vertices of degree four or more in G' are 
drawn as real boxes. 

We now construct G" from G'. Replace by a cycle each of the designated 
vertices of degree three and the vertices of degree four or more, as illustrated 
in Fig. 7.5(c). The replaced cycle corresponding to a designated vertex x 
of degree three or more contains exactly one outer edge, say e x ,  where 
x = a ,  b, c or d. Put a dummy vertex 2' of degree two on e x ]  as illustrated 
in Fig. 7.5(d). The resulting graph is G". We let 2' = z if a designated 
vertex x has degree two. GI' is a simple graph and has exactly four outer 
vertices a', b', c', and d' of degree two, and all the other vertices have degree 
three. 

We now have the following theorem. 

Theorem 7.3.1 Let G be a plane graph with four designated outer ver- 
tices a ,  b, c and d ,  and let G" be the graph transformed from G as mentioned 
above. Then G has a box-rectangular drawing with corner boxes a ,  b, c and d 
if and only if G" has a rectangular drawing with designated corners a', b', c' 
and d'. 

Proof. The necessity is trivial, and hence it suffices prove the sufficiency. 
Assume that GI' has a rectangular drawing D" as illustrated in 

Fig. 7.5(e). In D", each replaced cycle is drawn as a rectangle, since it 
is a face in G". Furthermore, the four outer vertices a', b', c' and d' of 
degree two in GI' are drawn as the corners of the rectangle corresponding 
to C,,(G"). Therefore] D" immediately gives a box-rectangular drawing D' 
of G' having the four vertices a ,  b, c and d as corner boxes, as illustrated 
in Fig. 7.5(f). Then, inserting non-designated vertices of degree two on 
horizontal or vertical line segments in D', one can immediately obtain from 
D' a box-rectangular drawing D of G having the designated vertices a ,  b, c 

0 and d as corner boxes, as illustrated in Fig. 7.5(g). 

We now have the following theorem. 

Theorem 7.3.2 Given a plane graph G of m edges and four designated 
outer vertices a ,  b, c and d ,  one can examine in time O ( m )  whether G has a 
box-rectangular drawing D with corner boxes a ,  b, c and d ,  and i f  G has D ,  
then one can find D in time O(m) .  The halfperimeter of the box-rectangular 
grid drawing is bounded by  m -t 2. 

Proof. Time Complexity. Clearly one can construct GI' from G in linear 
time. G" is a plane 2-connected graph such that all vertices have degree 

TEAM LinG - Live, Informative, Non-cost and Genuine !



182 Planar Graph Drawing 

three except the four outer vertices a’, b’, c’ and d’ of degree two. Therefore] 
by the algorithm in Section 6.3.3 one can examine in linear time whether 
G“ has a rectangular drawing D” or not and find D“ if it exists. One can 
easily obtain a box-rectangular drawing D of G from D“ in linear time. 

Grid size. Let 722 be the non-designated vertices of degree two in G. 
Let n’ = IV(G’)l and m’ = lE(G’)/. Then m’ = m - 722. We replace 
some vertices of G‘ by cycles and add at most four dummy vertices to 
construct G” from G’. Therefore G” has at most 2m’ + 4 vertices. From 
Theorem 6.3.8, the half perimeter of the produced rectangular drawing D“ 
is bounded by = m‘ + 2. The insertion of each of the 722 vertices of 
degree two on a horizontal line segment or a vertical line segment increases 
the half perimeter of the box-rectangular drawing by at most one. Thus the 
half perimeter of the produced box-rectangular drawing D of G is bounded 
b y m ’ + 2 + n 2  = m + 2 .  0 

There are infinitely many examples for which half perimeter of any box- 
rectangular drawing is m - 2. Finding such examples is left for an exercise. 

7.4 Box-Rectangular Drawings without Designated 
Corners 

In Section 7.3 we considered a case where a set of outer vertices of a plane 
graph G are designated as corner boxes. In this section we consider a 
general case where no vertices are designated as corner boxes in advance. 
Then our problem is how to examine whether G has some set of outer 
vertices such that there is a box-rectangular drawing of G having them as 
the corner boxes, and how to find them if there are. We present a necessary 
and sufficient condition for G to have a box-rectangular drawing D for some 
set of outer vertices. The characterization leads to a linear-time algorithm 
to find D. 

In Section 7.4.1, we first derive a necessary and sufficient condition for 
a plane graph G with A 5 3 to have a box-rectangular drawing D, and 
then give a linear-time algorithm to find D if it exists. In Section 7.4.2 
we reduce the box-rectangular drawing problem of a plane graph G with 
A > 4 to that of a new plane graph J with A 5 3. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 183 

7.4.1 

Let G be a plane graph with the maximum degree A at most three. The 
following theorem is a main result of Section 7.4.1. 

Theorem 7.4.1 A plane graph G with A 5 3 has a box-rectangular draw- 
ing (for some set of outer vertices designated as corner boxes) if and only 
if G satisfies the following two conditions: 

Box-Rectangular Drawings of G with A 5 3 

(brl) every &-legged or 3-legged cycle in G contains an outer edge; and 
(br2) 2c2 + c3 5 4 for  any independent set S of cycles in G, where c2 

and c3 are the numbers of %legged cycles and 3-legged cycles an S ,  
respectively. 

Before proving the necessity of Theorem 7.4.1, we observe the following 
fact. 

Fact 7.4.2 I n  a box-rectangular drawing D of G,  any %legged cycle of G 
contains at least two corners of the outer rectangle, any $legged cycle of 
G contains at least one corner, and any cycle with four or more legs may 
contain no corner. (See Fig. 6.5.)  

We now prove the necessity of Theorem 7.4.1. 

[Necessity of Theorem 7.4.1.1 
Assume that G has a box-rectangular drawing D. By Fact 7.4.2 any 

2-legged or 3-legged cycle in D contains a corner of the outer rectangle, and 
hence contains an outer edge. 

Let S be any independent set of cycles in G. Then by Fact 7.4.2 each 
of the c2 2-legged cycles in S contains at least two corners, and each of the 
c3 3-legged cycles in S contains at least one corner. Since all cycles in S are 
independent, they are vertex-disjoint with each other. Therefore there are 
at least 2cz + c3 corners of the outer rectangle. Since the outer rectangle 

I3 has exactly four corners, we have 2c2 + c3 5 4. 

In the rest of this section we give a constructive proof for the sufficiency 
of Theorem 7.4.1, and show that the proof leads to a linear-time algorithm 
to find a box-rectangular drawing of G if it exists. 

One can easily prove the following lemma (Exercise 3). 

Lemma 7.4.3 Let G be a plane graph with A 5 3 .  Assume that G 
satisfies Conditions (brl)  and (br2) in Theorem 7.4.1, and that G has at 

TEAM LinG - Live, Informative, Non-cost and Genuine !



184 Planar Graph Drawing 

most three outer vertices of degree three. Then G has a box-rectangular 
drawing. 

By Lemma 7.4.3 we may assume that G has four or more outer vertices 
of degree three. In this case, we can choose four distinct outer vertices of 
degree three as the corner boxes. Since any vertex v of degree two is not 
chosen as corner boxes, the two edges incident to v are drawn on a common 
straight line segment in a box-rectangular drawing of G. Let G' be a plane 
cubic graph obtained from G by removing all vertices of degree two one by 
one. Then one can immediately construct a box-rectangular drawing of G 
from any box-rectangular drawing of G'. We may thus assume that our 
input graph G itself is a plane cubic graph with four or more outer vertices. 

We now recall some definitions from Chapter 2. For a graph G and 
a set V' V(G), G - V' denotes a graph obtained from G by deleting 
all vertices in V' together with all edges incident to them. For a plane 
graph G, we define a Co(G)-component as follows. A subgraph J of G is 
a Co(G)-component if J consists of a single inner edge joining two outer 
vertices. The graph G - V(Co(G)) may have a connected component. Add 
to  the component all edges of G, each joining a vertex in the component 
and an outer vertex. The resulting subgraph J of G is a Co(G)-component, 
too. All these subgraphs J of G and only these are the C,(G)-components. 
The Co(G)-components 51, J2 and J3 of G in Fig. 2.9(a) are depicted in 
Fig. 2.9(b). We say that cycles C and C' in a plane graph G are independent 
if G(C)  and G(C') have no common vertex. A k-legged cycle C is minimal 
if G(C) does not contain any other k-legged cycle of G. We now have the 
following lemmas. 

Lemma 7.4.4 Let G be a plane cubic graph. Assume that G satisfies 
Condition (brl)  in Theorem '7.4.1, that G has four or more outer vertices, 
and that there is exactly one Co(G)-component. Then 

(a) G has a 3-legged cycle; and 
(b) if G has two or more independent 3-legged cycles, then the set of all 

minimal 3-legged cycles in G is independent. 

Proof. (a) Let w be any outer vertex, and let e be the inner edge which 
is incident to w .  Let x be the other end of e.  Then x is an inner vertex, 
because G has exactly one Co(G)-component and G has four or more outer 
vertices. The edge e is contained in the contours of exactly two faces of G, 
say FI and F2. Since the cubic graph G has exactly one Co(G)-component, 
the contour of Fl contains exactly two outer vertices: 20 and another vertex, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 185 

say, y. Similarly, the contour of F2 contains exactly two outer vertices: 20 
and another vertex, say, z .  Clearly y # z since d ( y )  = d ( z )  = 3. Thus G 
has a 3-legged cycle C with leg-vertices x, y and z .  

(b) Assume for a contradiction that G has two or more independent 
3-legged cycles but two minimal 3-legged cycles C and C' of G are not 
independent. Then G(C) and G(C') share a common vertex. Let e1,e2 
and e3 be the legs of C ,  and let el,, e!, and ei be the legs of C'. 

We now claim that G(C) and G(C') do not share any common face. 
Suppose for a contradiction that G(C) and G(C') share a common face. 
Then, since both C and C' contain an outer edge by Condition (brl), 
exactly two of the three legs of C ,  say el and e2, are outer edges, and 
exactly two of the three legs of C', say ei and e!,, are outer edges. Since 
both C and C' are minimal 3-legged cycles, e l ,  e2 and e3 share a same end 
and e i ,  e!, and e; share a same end. Furthermore G has four faces F1, F2, 
F3 and F4; their contours contain el and e3, e2 and e3, e: and e i ,  and e!, 
and e i ,  respectively; and any of the four contours is not a 3-legged cycle, 
since both C and C' are minimal 3-legged cycles. Thus G has a subgraph 
illustrated in Fig. 7.6(a), where C and C' are drawn by thick solid lines and 
thick dotted lines, respectively. All edges of C and C' not in the shaded 
region in Fig. 7.6(a) are on C,(G). There is no 3-legged cycle other than C 
and C'; if there was a 3-legged cycle other than C and C', then it would be 
contained in the shaded region in Fig. 7.6(a) and C would not be a minimal 
3-legged cycle. Since there is no 3-legged cycle other than C and C', G does 
not have two or more independent 3-legged cycles, a contradiction. 

Fig. 7.6 Illustration for the proof of Lemma 7.4.4(b). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



186 Planar Graph Drawing 

Since G is cubic, C and C' are 3-legged cycles and G(C) and G(C') do 
not share any common face, one can observe that G(C) and G(C') share 
an edge e on C and C', as illustrated in Fig. 7.6(b). Since G has exactly 
one Co(G)-component J ,  J contains all edges of C and C' that are inner 
edges of G. The cycle C is a contour of a face in G; otherwise, either C 
would not be a minimal 3-legged cycle or G would have two or more Co(G)- 
components. Similarly, C' is a contour of a face in G. Moreover, every edge 
of J is on C or C'; otherwise, C or C' would have four or more legs. Hence 
J has exactly three outer vertices, and G is K4 as illustrated in Fig. 7.6(b). 
Therefore G has exactly three outer vertices, a contradiction. 13 

We are now ready to prove the following lemma. 

Lemma 7.4.5 Let G be a plane cubic graph. Assume that G satisfies 
Conditions (brl)  and (br2) an Theorem 7.4.1, and that G has four or more 
outer vertices. Then G has a box-rectangular drawing. 

Proof. We first claim that if G has a 2-legged cycle C then G has a pair 
of independent 2-legged cycles. By Condition (br l )  C contains an outer 
edge, and hence the two legs of C are outer edges, say (v, u') and (w, w'). 
One may assume that u and w are the leg-vertices of C. Clearly u' # w' 
and G has a 2-legged cycle C' which has v' and w' as the leg-vertices. C 
and C' are independent. 

Thus we shall consider the following two cases. 
Case 1: 

In this case G has exactly one Co(G)-component; otherwise, G would 
have a 2-legged cycle. Then by Lemma 7.4.4(a) G has a 3-legged cycle. We 
choose four outer vertices as the four corner boxes for a box-rectangular 
drawing of G,  as follows. 

We first consider the case where G has no pair of independent 3-legged 
cycles. We arbitrarily choose four outer vertices and regard them as the 
four designated vertices for a box-rectangular drawing of G. We now claim 
that every 3-legged cycle C in G has a t  least one designated vertex. Since 
C has an outer edge, exactly two of the three legs of C are outer edges 
of G. Let x and y be the two leg-vertices of the two legs. Let P be the 
path on Co(G) starting at x and ending at  y without passing through any 
edge on C. Then P has exactly one intermediate vertex, say z :  otherwise, 
either G would have more than one Co(G)-components or G would have a 
pair of independent 3-legged cycles, a contradiction. Thus one can easily 
know that all three legs of C are incident to z .  Therefore, all the outer 
vertices except z lie on C. Hence, regardless of whether z is one of the four 

G has no 2-legged cycle. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 187 

designated vertices or not, C contains at  least one of the four designated 
vertices. 

We then consider the case where G has a pair of independent 3- 
legged cycles. Let M be the set of all minimal 3-legged cycles in G. By 
Lemma 7.4.4(b) M is independent. Let k = /MI ,  then k 5 4 by Condition 
(br2). For each 3-legged cycle Cj , 1 5 j 5 k ,  in M ,  we arbitrarily choose an 
outer ‘vertex on Cj . If k < 4, we arbitrarily choose 4 - k outer vertices which 
are not chosen so far. Thus we have chosen exactly four outer vertices, and 
we regard them as the four designated vertices for a box-rectangular draw- 
ing of G. In Fig. 7.7(a) four outer vertices a,b,e and d are chosen as the 
designated vertices; vertices a,  b and d are chosen on three independent min- 
imal 3-legged cycles indicated by dotted lines, whereas vertex e is chosen 
arbitrarily on Co(G). We now claim that every 3-legged cycle C of G has 
at least one designated vertex. Clearly C contains a designated vertex if C 
is minimal, that is, C E M .  Thus one may assume C is not minimal. Then 
G(C) contains a minimal 3-legged cycle Cj E M ,  and Cj has a designated 
outer vertex. Of course, the vertex is also on C. 

Thus we have chosen four designated outer vertices. We now give a 
method to find a box-rectangular drawing of G with the four designated 
vertices. We replace each of the four designated vertices by a cycle, and put 
a dummy vertex of degree two on the edge of the cycle that is contained in 
the outer cycle. Let G’ be the resulting graph. (See Fig. 7.7(b) where the 
dummy vertices of degree two are drawn by white circles.) G’ has exactly 
four outer vertices of degree two, and all other vertices of G’ have degree 
three. One can easily observe that G’ satisfies Conditions ( r l )  and (r2) 
of Theorem 6.3.2 with the four vertices of degree two designated as the 
four corners of a rectangular drawing of G’. Thus by Theorem 6.3.2 G’ 
has a rectangular drawing D’ as illustrated in Fig. 7.7(c). Regarding the 
four faces in D’ corresponding to the replaced cycles as boxes, we obtain a 
box-rectangular drawing D of G from D‘ as illustrated in Fig. 7.7(d). 
Case 2: G has a pair of independent 2-legged cycles. 

Let C1 and C2 be independent 2-legged cycles in G. One may assume 
that both C1 and C2 are minimal 2-legged cycles. By Condition (br2) at 
most two 2-legged cycles of G are independent. Therefore, for any other 
2-legged cycle C’(# CI, CZ) ,  G(C’) contains either C1 or C2. 

Let ki,  i = 1 or 2, be the number of all minimal (not always independent) 
3-legged cycles in G’(Ci). Then we claim that ki 5 2. First consider the 
case where Ci has exactly three outer vertices. Then G(Ci) has exactly two 
inner faces; otherwise, G(Ci) would have a cycle which has two or three legs 

TEAM LinG - Live, Informative, Non-cost and Genuine !



188 Planar Graph Drawing 

Fig. 7.7 Illustration for Case 1. 

and has no outer edge, contrary to Condition (brl) .  The contour of the two 
faces are minimal 3-legged cycles, and there is no other minimal 3-legged 
cycle in G(Ci). Thus ki = 2 in this case. We next consider the case where 
Ci has four or more outer vertices. Then we can show, similarly as in the 
proof of Lemma 7.4.4(b), that the set of all minimal 3-legged cycles of G in 
G(Ci) is independent. Therefore, ki 5 2 in this case; otherwise, Condition 
(br2) would not hold for the independent set S of ki + 1 cycles: the ki (2  3) 
3-legged cycles in G( Ci) and the 2-legged cycle Cj , j = 1 or 2 and j # i. 

We choose two vertices on each Ci, 1 5 i 5 2, as follows. For each of 
the ki minimal 3-legged cycle in G(Ci), we arbitrarily choose exactly one 
outer vertex on it. If Ici < 2, then we arbitrarily choose 2 - ki outer vertices 
on Ci which have not been chosen so far. This can be done because Ci has 
at  least two outer vertices. Thus we have chosen four outer vertices, and 
we regard them as the designated vertices for a box-rectangular drawing 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 189 

of G. In Fig. 7.8(a) G has a pair of independent 2-legged cycles C1 and 
C2, k1 = 2, k2 = 1, and four outer vertices a ,  b, c and d are chosen as the 
designated vertices. Vertices a and d are chosen from the vertices on C1; 
each on a minimal 3-legged cycle in G(C1). Vertices b and c are chosen 
from the vertices on C2; b is on a minimal 3-legged cycle in G(Cz), and c 
is an arbitrary outer vertex on C2 other than b. 

Fig. 7.8 Illustration for Case 2. 

We now claim that any 2-legged cycle C in G has two designated ver- 
tices. If C is C1 or C2, then clearly C has exactly two designated vertices. 
Otherwise, G(C) contain either cycle C1 or C2, and hence C has exactly 
two designated vertices. We then claim that any 3-legged cycle C3 in G has 
a designated vertex. By Condition (br2) {C,, (72, C3) is not independent, 
and hence either G(C3) contains C1 or C2, or C3 is contained in G(C1) or 
G(C2). If G(C3) contains C1 or C2, then C3 contains a designated vertex. 
Otherwise, C, is contained in either G(C1) or G(C2). In this case C, con- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



190 Planar Graph Drawing 

tains a designated vertex, since we have chosen a designated vertex on each 
minimal 3-legged cycle inside G(C1) and G(C2). 

We can find a box-rectangular drawing of G as follows. We replace 
each of the four designated vertices by a cycle, and put a dummy vertex 
of degree two on the edge of the cycle which is on the contour of the outer 
face, as illustrated in Fig. 7.8(b). Let G’ be the resulting graph, then G’ 
has exactly four outer vertices of degree two, and all other vertices of G’ 
have degree three. One can easily observe that G’ satisfies Conditions ( r l )  
and (r2) of Theorem 6.3.2 with the four vertices of degree two designated as 
the four corners of a rectangular drawing of G’. Thus G‘ has a rectangular 
drawing D’ by Theorem 6.3.2, as illustrated in Fig. 7.8(c). Regarding the 
four faces in D’ corresponding to the replaced cycles as boxes, we obtain a 
box-rectangular drawing D of G from D’ as illustrated in Fig. 7.8 (d). 0 

Using Lemmas 7.4.3 and 7.4.5, one can find a box-rectangular drawing 
of G if G satisfies the conditions in Theorem 7.4.1. Thus we have construc- 
tively proved the sufficiency of Theorem 7.4.1. 

The proof of Lemma 7.4.5 imply the following corollary. 

Corollary 7.4.6 
drawing i f  and only if G satisfies the following four conditions: 

A plane graph G with A 5 3 has a box-rectangular 

( c l )  every %legged or 34egged cycle in G has an outer edge; 
(c2) at most two %legged cycles of G are independent of each other; 
(c3) at most four 3-legged cycles of G are independent of each other; and 
(c4) if G has a pair of independent 2-legged cycles C1 and C2, then 

{C1,C2,C3} is not independent f o r  any 3-legged cycle C3 in G,  and 
neither G(C1) nor G(C2) has more than two independent 3-legged cy- 
cles of G. 

We now have the following theorem. 

Theorem 7.4.7 Given a plane graph with A 5 3, one can examine in 
time O(m)  whether G has a box-rectangular drawing D or not, and if G 
has D ,  one can find D in time O ( m ) ,  where m is the number of edges in 
G. 

Proof. One can find all 2-legged and 3-legged cycles in G, as follows. We 
first traverse the contour of each inner face of G containing an outer edge 
as illustrated in Fig. 7.9, where the traversed contours of faces are indicated 
by dotted lines. Clearly each outer edge is traversed exactly once, and each 
inner edge is traversed at most twice. The inner edges traversed exactly 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 191 

Fig. 7.9 Finding all 2-legged and 3-legged cycles. 

once form cycles, called singly traced cycles, the insides of which have not 
been traversed. In Fig. 7.9 C4,C8 and Cg are singly traced cycles, the 
insides of which are shaded. During this traversal one can easily find all 
2-legged and all 3-legged cycles that contain outer edges; CI, C, and C, 
drawn by thick lines in Fig. 7.9 are some of these cycles. (Note that a 
3-legged cycle containing outer edges has two legs on Co(G) and the other 
leg is an inner edge which is traversed twice; if an end of a doubly traversed 
inner edge is an inner vertex, then it is a leg-vertex of such a 3-legged cycle.) 
Any of the remaining 2-legged and 3-legged cycles either is a singly traced 
cycle or is located inside a singly traced cycle. One can find all 2-legged 
and 3-legged cycles inside a singly traced cycle by recursively applying the 
method to  the singly traced cycle. The method traverses the contour of 
each face by a constant number of times. Hence we can examine in time 
O(m)  whether G satisfies Condition (cl)  in Corollary 7.4.6 or not. 

We examine Condition (c2) in Corollary 7.4.6 as follows. Assume that 
G satisfies Condition (cl) .  Then each 2-legged cycle must have an outer 
edge, and hence has the two leg-vertices on Co(G). By traversing the faces 
of G containing an outer edge, one can detect the leg-vertices of all 2-legged 
cycles of G on Co(G). While detecting the leg-vertices of 2-legged cycles, we 
give labels to  the two leg-vertices of each 2-legged cycle; the labels indicate 
the name of the cycle. In Fig. 7.10, the leg-vertices of 2-legged cycles are 

TEAM LinG - Live, Informative, Non-cost and Genuine !



192 Planar Graph Drawing 

drawn by white circles, and their labels are written next to them. It  is 
clear that if G has k 2-legged cycles which are independent of each other 
then G has k minimal 2-legged cycles which are independent of each other. 
A 2-legged cycle C is minimal if and only if no intermediate vertex of 
the maximal subpath of C on C,(G) is a leg-vertex of any other 2-legged 
cycle. Therefore, traversing the outer vertices and checking the labels of 
leg-vertices, we can find all minimal 2-legged cycles, and we can also know 
whether two 2-legged cycles are independent or not. In Fig. 7.10 C,,C, 
and C, are minimal 2-legged cycles, and they are independent. Thus we 
can examine Condition (c2) by traversing the edges on the contours of faces 
containing an outer edge by a constant number of times, and hence we can 
examine Condition (c2) in linear time. 

Fig. 7.10 Illustration for minimal 2-legged cycles. 

We can examine Condition (c3) in linear time using a similar technique 
used to examine Condition (c2). One can easily examine Condition (c4) 
by checking the labels of the leg-vertices of minimal 2-legged cycles and 
minimal 3-legged cycles. 

If G satisfies the conditions in Corollary 7.4.6, then a box-rectangular 
drawing of G can be found by the algorithm described in the proof of 
Lemma 7.4.5. One can find all minimal 2-legged cycles and all minimal 
3-legged cycles in linear time by the technique used to examine Conditions 
(c2) and (c3), and hence one can choose the four designated vertices in 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 193 

linear time. Thus one can find a box-rectangular drawing of G in linear 
time. 

7.4.2 

In this section we give a necessary and sufficient condition for a plane 
graph with A 2 4 to have a box-rectangular drawing when no vertices are 
designated as corner boxes. 

Let G be a plane graph with A 2 4. We construct a new plane graph J 
from G by replacing each vertex u of degree four or more in G by a cycle. 
Figures 7.11(a) and (b) illustrate G and J ,  respectively. A replaced cycle 
corresponds to a real box in a box-rectangular drawing of G. We do not 
replace a vertex of degree two or three by a cycle since such a vertex may 
be drawn as a point by Fact 7.2.3. Thus A ( J )  5 3. Then the following 
theorem holds. 

Box-Rectangular Drawings of G with A 2 4 

Theorem 7.4.8 Let G be a plane graph with A 2 4, and let J be the 
graph transformed f rom G as above. Then  G has a box-rectangular drawing 
if and only if J has a box-rectangular drawing. 

We present a proof for the necessity of Theorem 7.4.8. We omit the 
proof for the sufficiency, which can be found in [RNNOO]. 

[Necessity of Theorem 7.4.8.1 
Assume that G has a box-rectangular drawing. Then by Lemma 7.2.5 

G has a box-rectangular drawing D in which every vertex of degree four 
or more is drawn as a real box, as illustrated in Fig. 7.11(c) for the graph 
G in Fig. 7.11(a). For simplicity’ sake, we assume that D has four corner 
boxes. Then, as illustrated in Fig. 7.11(d), one can obtain a box-rectangular 
drawing D J of J from D by the following transformation: 

(i) regard each non-corner real box in D as a face in D J ;  
(ii) if a corner box in D is a vertex of degree three in G, then regard it as 

a corner box in D J ;  and 
(iii) if a corner box in D is a vertex of degree four or more in G, then 

transform it to a drawing of a replaced cycle with one real box as 
illustrated in Fig. 7.11(e). I7 

Figures 7.11(c) and (d) illustrate D and D J ,  respectively. Box f in D 
is a non-corner real box, and it is regarded as a face in D J .  Corner boxes 

TEAM LinG - Live, Informative, Non-cost and Genuine !



194 Planar Graph Drawing 

C 

(4 

Fig. 7.11 Illustration of G ,  J ,  D J ,  D and a transformation. 

a and b in D are vertices of degree three in G, and they remains as boxes 
in DJ. Corner boxes c and d in D are vertices of degree four or more in G, 
and are transformed to a drawing of a replaced cycle with one real box in 
DJ as illustrated in Fig. 7.11(e). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Box-Rectangular Drawing 195 

7.5 Bibliographic Notes 

A similar concept of a box-rectangular drawing, called a strict 2-box draw- 
ing, is presented by Thomassen in [Tho86]. A polynomial time algorithm 
can be designed for finding a strict 2-box drawing of a graph by following 
his method. 

A box-rectangular drawing of G is called a proper box-rectangular draw- 
ing if every vertex of G is drawn as a real box, i.e., no vertex of G is drawn 
as a degenerate box. Xin He [HeOl] presents a necessary and sufficient con- 
dition for a plane graph G to have a proper box-rectangular drawing and 
gives a linear algorithm for finding a proper box-rectangular drawing of G 
if it exists. 

Exercise 

1. Find an infinite number of plane graphs for which the half perimeter of 
any box-rectangular grid drawing is m - 2, where m is the number of 
edges. 

2. Obtain an algorithm to find a box-rectangular drawing of a given plane 
graph G for a case where exactly two or three outer vertices are desig- 
nated as the corner boxes [RNNOO]. 

3. Give a proof of Lemma 7.4.3. 
4. Show that if a plane graph G has a proper box-rectangular drawing then 

G has no non-corner vertex of degree two or three. 
5. Show that the algorithms presented in this chapter always find a proper 

box-rectangular drawing of a plane graph G if G has no vertex of degree 
two or three. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 8 

Orthogonal Drawing 

8.1 Introduction 

An orthogonal drawing of a plane graph G is a drawing of G, with the 
given embedding, in which each vertex is mapped to a point, each edge 
is drawn as a sequence of alternate horizontal and vertical line segments, 
and any two edges do not cross except at their common end, as illustrated 
in Fig. 8.1. Orthogonal drawings have numerous practical applications in 
circuit schematics, data flow diagrams, entity relationship diagrams, etc., 
as mentioned in Chapter 1. Clearly the maximum degree A of G is at most 
four if G has an orthogonal drawing. Conversely, every plane graph with 
A 5 4 has an orthogonal drawing, but may need bends, that is, points 
where an edge changes its direction in a drawing. For the cubic plane 
graph in Fig. 8.l(a), two orthogonal drawings are depicted in Figs. 8.l(b) 
and (c), which have six and five bends, respectively. If a graph corresponds 
to a VLSI circuit, then one may be interested in an orthogonal drawing such 
that the number of bends is as small as possible, because bends increase the 
manufacturing cost of a VLSI chip. However, for a given planar graph G, if 
one is allowed to choose its planar embedding, then finding an orthogonal 
drawing of G with the minimum number of bends is NP-complete [GTOl]. 
On the other hand, Tamassia [Tam871 and Garg and Tamassia [GT97] 
presented algorithms which find an orthogonal drawing of a given plane 
graph G with the minimum number b(G) of bends in time O(n2 logn) and 
O ( n 7 l 4 f i )  respectively, where G has a fixed planar embedding and one 
is not allowed to alter the planar embedding. Such a drawing is called 
a bend-optimal orthogonal drawing of a plane graph G. They reduce the 
problem of finding a bend-optimal orthogonal drawing of G to a minimum 
cost flow problem. Rahman et  al. gave a linear algorithm to find a bend- 

197 
TEAM LinG - Live, Informative, Non-cost and Genuine !



198 Planar Graph Drawing 

optimal orthogonal drawing for 3-connected cubic plane graphs [RNN99], 
and Rahman and Nishizeki gave a linear algorithm to find a bend-optimal 
orthogonal drawing for plane graphs with A 5 3 [RN02]. 

Fig. 8.1 
orthogonal drawing of G with 5 bends. 

(a) A plane graph G, (b) an orthogonal drawing of G with 6 bends, and (c) an 

In Section 8.2 we describe a network flow model for finding a bend- 
optimal orthogonal drawing of a plane graph with A < 4 [Tam87, GT97]. In 
Section 8.3 we give a linear algorithm for finding a bend-optimal orthogonal 
drawing of plane 3-connected cubic graphs [RNN99], which depicts the key 
idea behind the linear algorithm for plane graphs with A 5 3 [RN02]. In 
Section 8.4 we deal with orthogonal grid drawings. In Section 8.5 we present 
a necessary and sufficient condition for a plane graph with A 5 3 to have 
an orthogonal drawing without any bends [RNN03]. 

8.2 Orthogonal Drawing and Network Flow 

In this section we describe a network flow model for an orthogonal drawing 
of a plane graph. In Section 8.2.1 we describe an orthogonal representation 
of an orthogonal drawing of a plane graph, in Section 8.2.2 we give some 
definitions related to a flow network, and in Section 8.2.3 we give a network 
flow model for finding a bend-optimal orthogonal drawing of a plane graph. 

8.2.1 Orthogonal Representation 

Let G be a plane connected graph with A 5 4. The topological structure 
of G can be described by listing edges that appear on the contour of each 
face, and by specifying the outer face. A p lanar  representat ion P of a plane 
graph G is a set of circularly ordered edge lists P ( F ) ,  one for each face F .  

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 199 

Edges in a list P ( F )  appear as they are encountered when going around the 
contour of F in the "positive" direction, i.e. having the face at one's right. 
Note that every edge of G appears exactly twice in lists. If this happens in 
the same list P ( F ) ,  the edge is called a bridge. For the plane graph G in 
Fig. 8.2(a), a planar representation P is depicted in Fig. 8.2(c), and edge 
e7 is a bridge in G. 

Let D be an orthogonal drawing of G like one in Fig. 8.2(b). Then each 
face of G is drawn in D as a rectilinear polygon. Note that a facial polygon 
is not always a simple polygon. There are two types of angles in D. We call 
an angle formed by two edges incident to a vertex a vertex-angle, and call 
an angle formed by two line segments at a bend a bend-angle. Clearly both 
a vertex-angle and a bend-angle are k .90° for some integer k, 1 5 k 5 4. 
We now have the following two facts. 

Fact 8.2.1 The sum of the vertex-angles around any vertex is 360". 

Fact 8.2.2 The sum of the angles inside any facial polygon is (2p-4)90°, 
and the sum of the angles of the outer facial polygon is ( 2 p  + 4)90°, where 
p is the number of angles of the polygon. 

We now introduce a concept of an orthogonal representation R of an 
orthogonal drawing D in terms of bends occurring along edges and of angles 
formed by edges. This orthogonal representation is obtained by enriching 
the lists of the planar representation with information about bends and 
angles formed by edges. An orthogonal representation R of D is a set of 
circularly ordered lists R ( F ) ,  one for each face F of G. Each element r of 
a list is a triple (e,,s,,a,); e ,  is an edge, s, is a bit string, and a,  is an 
integer in the set (90,180,270,360). The bit string s, provides information 
about the bends along edge e,; the kth bit of s, describes the kth bend on 
the right side of e,; bit 0 indicates a 90" bend, and bit 1 indicates a 270" 
bend. An empty string 6 is used to characterize a straight line edge. The 
number a,  specifies the angle formed in face F by edges e,  and e,!, where 
r' is the element following T in the circular list R ( F ) .  Figure 8.2(d) depicts 
an orthogonal representation R of the orthogonal drawing D in Fig. 8.2(b). 
Clearly R preserves only the shape of D without considering lengths of line 
segments, and hence describes actually an equivalence class of orthogonal 
drawings of G with "similar shape," that is, with the same lists of triples r 
for the edges of G. 

For a set R of circular lists to be an orthogonal representation of an 
orthogonal drawing D of a plane graph G, the following properties are 

TEAM LinG - Live, Informative, Non-cost and Genuine !



200 Planar Graph Drawing 

Fig. 8.2 
sentation P of G, and (d) an orthogonal representation R of D. 

(a) A plane graph G, (b) an orthogonal drawing D of G, (c) a planar repre- 

necessary and sufficient, as can be proved by means of elementary geometric 
considerations. 

There is some planar graph whose planar representation is given by 
the e-fields of the lists in R. 

For each pair of elements r and r’ in R with e, = e,!, string sT/ can 
be obtained by applying bitwise negation to the reversion of s,. 

For each element T in R, define the rotation P ( T )  as follows: 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 

p ( r )  = I S T I 0  - l S T l l  + 

201 

(8.1) 

where 1sT10 is the number of zeros in string sT and lsT1l the number 
of ones. Then 

(8.2) 
if F is an inner face; 
if F is the outer face F,. '(') = { :: 

r E R ( F )  

(p4) For each vertex v E V ,  the sum of the vertex-angles around v given 
by the a-fields in R is equal to 360". 

Property (p2) means that each edge must have consistent descriptions 
in the faces in which it appears. Fact 8.2.2 implies Property (p3), which 
means that every face described by R is a rectilinear polygon. Fact 8.2.1 
implies Property (p4). 

We say that an orthogonal drawing D of a plane graph G realizes an 
orthogonal representation R if R is a valid description for the shape of D. 
Figure 8.2(d) depicts an orthogonal representation R of the plane graph G 
in Fig. 8.2(a), and Fig. 8.2(b) depicts an orthogonal drawing D realizing 
R. Note that the number b(R) of bends in any orthogonal drawing D that 
realizes R is 

where Is,] is the number of bits in string sT and F is the set of all faces in 
G. 

8.2.2 Flow Network 

A flow network N is a directed graph such that N has two disjoint non- 
empty sets of distinguished nodes called its sources and sinks, and each arc 
e of N is labeled with three nonnegative integers 

a lower bound X(e) ,  
a capacity p ( e ) ,  and 
a cost c(e) .  

A flow 4 in N associates a nonnegative integer $(e )  with each arc e;  
$(e) is called a flow of arc e.  The flow 4 ( e )  of each arc e must satisfy 
X(e) 5 $(e)  5 p ( e ) .  Furthermore, (p must satisfy the so-called conservation 

( 8 . 3 )

TEAM LinG - Live, Informative, Non-cost and Genuine !



202 Planar Graph Drawing 

law as follows. For each node u of N that is neither a source nor a sink, the 
sum of the flows of the outgoing arcs from u must be equal to the sum of the 
flows of the incoming arcs to u. Each source u has a production ~ ( u )  2 0 
of flow, and each sink u has a consumption -o(u) 2 0 of flow. That is, for 
each u of the sources and sinks, the sum of the flows of the outgoing arcs 
from u minus the sum of the flows of the incoming arcs to u must be equal 

The total amount of production of the sources is equal to the total 
amount of consumption of the sinks. 

The cost COST(4)  of a flow 4 in N is the sum of c (e )d (e )  over all the 
arcs e of N .  The minimum cost flow problem is stated as follows. Given a 
network N ,  find a flow 4 in N such that the cost of 4 is minimum. 

to C(U). 

8.2.3 Finding Bend-Optimal Drawing 

In this section, we present a flow network N for an orthogonal drawing of 
a plane graph G [Tam87, GT971. All angles in a drawing of G are viewed 
as commodities that are produced by the vertices, are transported between 
faces by the edges through their bends, and are eventually consumed by the 
faces in N .  The nodes of N are vertices and faces of G. Since all angles we 
deal with have measure k .  90" with 1 5 k 5 4, we establish the convention 
that a unit of flow represents an angle of 90". We shall see Facts 8.2.1 and 
8.2.2 express the conservation of flow at vertices and faces, respectively. 
The formal description of N is given below. 

Let G = (V, E )  be a plane graph of maximum degree A 5 4 with face set 
F. We construct a flow network N from G as follows. The nodes of N are 
the vertices and faces of G. That is, the node set U of N is U = UF U UV. 
Each node U F  E UF corresponds to a face F of G, while each node u, E UV 
corresponds to a vertex v of G. Each node u, E UV is a source and has a 
production 

a(u,) = 4. 

Each node U F  E UF is a sink and has a consumption 

(8.5) 2 p ( F )  - 4 
2 p ( F )  + 4 

if F is an inner face; 
if F is the outer face F, -O(Ui?) = 

where p ( F )  is the number of vertex-angles inside face F .  (See Figs. 8.3(a) 

( 8 . 4 )

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 203 

and (b).) Thus every node in N is either a source or a sink. Clearly the 
total production is 4n, and the total consumption is 

(2p(F)  - 4) + 2p(F0) + 4 = 4m - 4f + 8 
F#Fo 

where n, m and f are the numbers of vertices, edges and faces of G, respec- 
tively. The total consumption is equal to the total production 4n, according 
to Euler's formula in Theorem 2.2.3. 

The arc set of network n/ is A = Av U A.F. 

(i) Av consists of all arcs of type (u,, u ~ )  such that vertex v is on face F 
(see Fig. 8.3(c)); the flow 4(uU, U F )  in arc (u,, U F )  represents the sum 
of vertex-angles at vertex w inside face F ,  the lower bound X(uu, U P )  is 
equal to the number of vertex-angles at v inside face F ,  the capacity is 
p ( u v , u ~ )  = 4, and the cost is c(uv,up) = 0 (see Fig. 8.4); and 

(ii) A7 consists of all arcs of type ( u F , u ~ )  such that face F shares an 
edge with face F' (see Fig. 8.3(d)); the flow ~ ( u F ,  U F ' )  in arc ( U F ,  U P ' )  

represents the number of bends with an angle of 90" inside face F 
along the edges which are common to F and F' ,  and the lower bound 
is X(up,up) = 0, the capacity is ~ ( ' L L F , u ~ )  = +co, and the cost is 
c ( u ~ , u p )  = 1 (see Fig. 8.5). 

The conservation rule implies that for each source uU E UV 

F E 7  

and for each sink U F  E U 3  

A plane graph G together with a transformation into a network N is 
illustrated in Fig. 8.3. The intuitive interpretation of the assignment above 
to the arcs is as follows. 

(1) Each unit of flow in network N represents an angle of 90"; for each 
arc (u,,uF) E Av,  flow ~ ( u , , u F )  represents the sum of the vertex- 
angles formed inside face F by the edges incident to v ,  which is given 
by d ( u , , u ~ )  . 90" (see Fig. 8.4); for each arc (u~,up) E A.F, flow 

( 8 . 6

TEAM LinG - Live, Informative, Non-cost and Genuine !



204 Planar Graph Drawing 

+ 4  

- 12 
0 

+ 4  

Fig. 8.3 
(c) arcs in A v ,  and (d) arcs in A F .  

(a) A plane graph G ,  (b) nodes of N with their productions and consumptions, 

$(up, U F O  represents the number of bends with an angle of 90" inside 
face F that appear along the edges separating face F from face F' (see 
Fig. 8.5). 

(2) The conservation rule at a vertex-node, Eq. (8.6), means that the sum 
of vertex-angles around each vertex must be equal to 360". The con- 
servation rule at  a face-node, Eq. (8.7), means that each face must be 
a rectilinear polygon, as shown in the proof of Theorem 8.2.3 below. 

(3) The cost COST($) of the flow $ is equal to the number of bends of an 
orthogonal representation corresponding to 4. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 205 

Fig. 8.4 Face F and flows in arcs in A ” .  

Fig. 8.5 Faces F and F’, and arcs e = ( u F , u ~ , )  and e’ = ( u ~ , u F )  in  A F .  

It is easy to see that every orthogonal representation R of G yields a 
feasible flow Cp in network N. Conversely, every feasible flow Cp can be 
used to construct an orthogonal representation R of G as in the following 
theorem. 

Theorem 8.2.3 Let G be a plane graph, and let N be the network con- 
structed from G. For each integer flow 4 in network N, there is an orthog- 
onal representation R that represents an orthogonal drawing D of G and 
whose number of bends is equal to the cost of the flow Cp. I n  particular, 
the minimum cost flow can be used to construct a bend-optimal orthogonal 
drawing of G. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



206 Planar Graph Drawing 

Proof. We construct an orthogonal representation R of G by computing 
the a- and s-fields from the values taken by q5 in arcs of A" and AF, 
respectively, as follows. 

We first set the values of a-fields using flows through arcs in Av . A flow 
q5(uvl U F )  in arc (u,, UF) E Av corresponds to the vertex-angles formed at 
vertex u inside face F ,  and each unit of flow corresponds to an angle of 90". 
Note that there can be more than one vertex-angles at u inside F .  (See for 
example Fig. 8.6 where vertex u builds three vertex-angles inside face F . )  
For arc (u,, U F )  E Av,  let 

R(u,  F )  = {r E R ( F )  : both the edges e ,  and e,! are incident to vertex 
u, and r' follows r in the list R ( F ) } ,  

let 1 = (R(u ,F) I ,  and let R ( u , F )  = (T~,TZ,..- ,rl}, where 15  15 4. (For 
the example in Fig. 8.6,1 = 3 and R ( u , F )  = {T~,TZ,TQ}.) We then set 

and 

aTi = 90 for each i , 2  5 i 5 1. (8.9) 

\ F 

Fig. 8.6 Face F and angles a,, ,a,, and a T 3 ,  where I = 3. 

We next set the values of s-fields using flows through arcs in AT. Let 
F and F' be any pair of faces in G. A unit of flow in arc ( U F , U F ~ )  E 
A 3  represents a bend-angle of 90" inside face F appearing along edges 
separating F from F' .  Let E ( F , F ' )  be the set of edges which appear 

( 8 . 8

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 207 

in both planar representations P ( F )  and P ( F ' )  of faces F and F' ,  that is, 
E ( F ,  F ' )  is the set of edges which are common to F and F'. Let R ( F ,  F ' )  = 
{ r  E R ( F )  : e, E E ( F , F ' ) } .  Let r1,r2,-..  ,rl be the elements of R ( F , F ' ) ,  
and let r i ,  rh, . . . ,TI be the corresponding elements in R ( F ' ,  F ) .  Figure 8.5 
illustrates an example for which R ( F ,  F ' )  = { e T l , e T 2 , e T s }  and 1 = 3. (If 
F = F' ,  then r1 and ri are the pair of elements in R ( F )  corresponding to 
the two sides of the same bridge.) We denote by Ox a sequence of a number 
5 of O's, and by 1" a sequence of a number z of 1's: 

X - 
Ox = OO-.-O and 

1" = 1 1 . ' . 1 .  
X - 

We then set 

and 

(8.10) 

(8.11) 

(8.12) 

For the example in Fig. 8.5 +(u~,up) = 2 and + ( u p , u ~ )  = 1, and hence 
s,, = 001 and s,, = s,, = E .  

We now need to show that R ( F )  satisfies Properties (p1)-(p4) of an or- 
thogonal representation. Property (p l )  is automatically satisfied, since we 
have built the orthogonal representation R from a planar representation P. 
Property (p2) easily follows from Eqs. (8.10), (8.11) and (8.12). Property 
(p4) follows from Eq. (8.6). Property (p3) follows from Eqs. (8.1), (8.2), 

TEAM LinG - Live, Informative, Non-cost and Genuine !



208 Planar Graph Drawing 

(8.5) and (8.7)-(8.12), as follows. For each inner face F ,  we have 

TER(F,)  

By Eqs. (8.3) and (8.10)-(8.12) the number b(R) of bends of an orthog- 
onal representation R satisfies 

eEA 

= COST(q4). 

Vice versa, it can be shown that the number of bends in each orthogonal 
0 

Garg and Tamassia [GT97] have shown that the minimum cost flow 
problem in this specific network can be solved in time O ( n 7 I 4 m ) .  Fig- 
ure 8.7 depicts a minimum cost flow in the network constructed in Fig. 8.3 
and a realizing grid embedding for the derived bend-optimal orthogonal 
representation. 

representation of G is equal to the cost of some feasible flow in h/. 

8.3 Linear Algorithm for Bend-Optimal Drawing 

One can find a bend-optimal orthogonal drawing of a plane graph with A 5 
4 in time O ( n ' / ' m )  as explained in Section 8.2. In a VLSI floorplanning 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 209 

Fig. 8.7 
corresponding orthogonal grid drawing of G. Arcs with zero flow are omitted. 

Minimum cost flow in network N associated with G in Fig. 8.7(a) and the 

problem, an input is often a plane graph with A 5 3 [LenSO]. In this section 
we present a linear algorithm to find a bend-optimal orthogonal drawing 
of a 3-connected cubic plane graph G [RNN99], which depicts the key idea 
behind a linear algorithm for plane graphs with A 5 3 [RN02]. 

Let G be a plane 3-connected cubic graph. We assume for simplicity' 
sake that G has four or more outer edges. Since G is 3-connected, G has no 
1- or 2-legged cycle. In any orthogonal drawing of G, every cycle C of G is 
drawn as a rectilinear polygon, and hence has at least four convex corners, 
i.e., polygonal vertices of inner angle 90". Since G is cubic, such a corner 
must be a bend if it is not a leg-vertex of C. Thus we have the following 
facts for any orthogonal drawing of G. 

Fact 8.3.1 
G. 

Fact 8.3.2 

At least four bends mus t  appear on  the outer cycle C,(G) of 

At least one bend must appear on each 3-legged cycle in G. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



210 Planar Graph Drawing 

The algorithm is outlined as follows. 
Let G' be a graph obtained from G by adding four dummy vertices 

a,  b, c and d of degree two, as corners, on any four distinct outer edges, one 
for each. Then the resulting graph G' has exactly four outer vertices of 
degree two designated as corners, and all other vertices of G' have degree 
three. Figure 8.8(b) iIlustrates G' for the graph G in Fig. 8.8(a). If G' 
has a rectangular drawing D' with the designated corners a ,  b, c and d as 
illustrated in Fig. 8.8(c), that is, G' satisfies the condition in Theorem 6.3.2, 
then from D' one can immediately obtain an orthogonal drawing D of G 
with exactly four bends by replacing the four dummy vertices with bends 
a t  the corners a,  b,c and d as illustrated in Fig. 8.8(d). By Fact 8.3.1 D is 
a bend-optimal orthogonal drawing of G. 

amb tt I 
d L C 

Fig. 8.8 G, G', D' and D.  

One may thus assume that G' does not satisfy the condition in Theo- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 21 1 

rem 6.3.2. Then G' has a bad cycle, that is, a 2-legged cycle containing 
a t  most one corner or a 3-legged cycle containing no corner. Since G is 
3-connected, G has no 2-legged cycle. However, G' has four 2-legged cy- 
cles, each passing through all outer vertices except one of the four corners. 
(One of them is drawn by thick lines in Fig. 8.8(b).) Clearly all these four 
%legged cycles in G' are not bad, because each of them contains three cor- 
ners. Thus every bad cycle in G' is a 3-legged cycle containing no corner. 
A bad cycle C in G' is defined to be maximal if C is not contained in 
the subgraph G'(C') of G' inside C' for any other bad cycle C' in GI. In 
Fig. 8.9(a) C1, C2, ... , CG are the bad cycles, C1, ( 3 2 , .  .. , C d  are the maxi- 
mal bad cycles in G', and C5 and CG are not maximal bad cycles since they 
are contained in G'(C4). The 3-legged cycle C7 indicated by a dotted line in 
Fig. 8.9(a) is not a bad cycle in G' since it contains a corner a. As defined 
in Section 2.2.1, we say that cycles C and C' in G' are independent if G'(C) 
and G'(C') have no common vertex. Since G is a plane 3-connected cubic 
graph, all maximal bad cycles in G' are independent of each other. (Exer- 
cise 2.) Let C1, ( 7 2 , .  . . , Ci be the maximal bad cycles in GI. (In Fig. 8.9(a) 
1 = 4.) Let GI' be the graph obtained from G' by contracting G'(Ci) into a 
single vertex zti for each maximal bad cycle Ci, 1 5 i 5 1, as illustrated in 
Fig. 8.9(b). Clearly GI' has no bad cycle, and hence by Theorem 6.3.2 G" 
has a rectangular drawing. We first find a rectangular drawing of G", and 
then recursively find a suitable orthogonal drawing of G'(Ci), 1 5 i 5 1, 
with the minimum number of bends, called a feasible drawing, and finally 
patch them to get an orthogonal drawing of G. (See Figs. 8.9 and 8.17.) 

This completes an outline of the algorithm. 
The remainder of Section 8.3 is organized as follows. In Section 8.3.1 

we present a hierarchical structure called a genealogical tree of bad cycles 
in G(C)  and in Section 8.3.2 we give an assignment and labeling scheme for 
the edges on a bad cycle C based on the genealogical tree. The assignment 
and labeling will be useful in Section 8.3.3 for finding a feasible drawing of 
G(C).  Finally, in Section 8.3.4 we present a linear algorithm for finding a 
bend-optimal orthogonal drawing of G. 

8.3.1 Genealogical Tree 

Let C be a 3-legged cycle in a plane 3-connected cubic graph G. We denote 
by CC the set of all 3-legged cycles of G that are contained in G(C).  Clearly 
C E C c .  For the cycle C in Fig. 8.10(a) Cc = {C,C1,C2,... ,C7}, where 
all cycles in C c  are drawn by thick lines. For any two 3-legged cycles C' and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



212 Planar Graph Drawing 

0 dummy vertex 
originalvertex (a) G' 

(3 contracted vertex 

Fig. 8.9 G' and G" 

C" in Cc, we say that C" is a descendant cycle of C' and C' is an ancestor 
cycle of C" if C" is contained in G(C'). We also say that a descendant 
cycle C" of C' is a child-cycle of C' if C" is not a descendant cycle of any 
other descendant cycle of C'. In Fig. 8.10(a) cycles C1, C2,. . . , C7 are the 
descendant cycles of C ,  cycles C1, C2, . . . , Cs are the child-cycles of C ,  and 
cycles Ce and C7 are the child-cycles of C,. We now have the following 
lemma. 

Lemma 8.3.3 
graph G. T h e n  the child-cycles of C are independent of each other. 

Proof. Suppose for a contradiction that a pair of distinct child-cycles C1 
and C2 of C are not independent. Then C1 and C2 have a common vertex. 
However, either cannot be a descendant cycle of the other since both are 
child-cycles of C. Therefore C2 has a vertex in G(C1) and a vertex not 
in G(C1). Thus C2 must pass through two of the three legs of C1. Let Y 
be the leg-vertex of the other leg of C1. Similarly, C1 must pass through 
two of the three legs of C2. Let w be the leg-vertex of the other leg of ( 7 2 .  

Then the removal of two vertices Y and w disconnects G, contrary to the 

Let C be a 3-legged cycle in a 3-connected cubic plane 

3-connectivity of G. 

Lemma 8.3.3 implies that the containment relation among cycles in CC 
is represented by a tree as illustrated in Fig. 8.10(b); the tree is called the 
genealogical tree of C and denoted by Tc. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 213 

Fig. 8.10 (a) Cycles in CC and (b) genealogical tree Tc. 

Using the method described in the proof of Theorem 7.4.7, we have the 
following lemma. 

Lemma 8.3.4 
graph G. T h e n  the genealogical tree TC can be found in linear t ime.  

Le t  C be a 3-legged cycle in a plane 3-connected cubic 

8.3.2 Assignment  and Labeling 

We define the following terms for each 3-legged cycle C in a plane 3- 
connected cubic graph G in a recursive manner based on a genealogical 
tree Tc. Each 3-legged cycle C in G is divided into three paths PI, P2 and 
P3 by the three leg-vertices x , y  and z of C as illustrated in Fig. 8.11. These 
three paths P I ,  P2 and P3 are called the contour paths of C. Each contour 
path of C is classified as either a green path or a red path. In addition, we 
assign an integer b c ( C ) ,  called the bend-count of C, to each 3-legged cycle 
C in G. We will show later that G(C) has an orthogonal drawing with 
b c ( C )  bends and has no orthogonal drawing with fewer than b c ( C )  bends, 
that is, the minimum number B(G(C)) of bends in an orthogonal drawing 
of G(C) is equal to the bend-count b c ( C ) .  Furthermore we will show that, 
for any green path of C, G(C) has an orthogonal drawing with b c ( C )  bends 
including a bend on the green path. On the other hand, for any red path of 
C, G(C) does not have any orthogonal drawing with b c ( C )  bends including 

TEAM LinG - Live, Informative, Non-cost and Genuine !



214 Planar Graph Drawing 

a bend on the red path. We define bc(C), red paths and green paths in a 
recursive manner based on a genealogical tree Tc, as follows. 

Let C be a 3-legged cycle in G, and let C1, C2,. . . ,Cl in CC be the 
child-cycles of C. Assume that we have already defined the classification 
and the assignment for all child-cycles of C and are going to define them 
for C. There are three cases. 

p2 

3 C 

(b) Case2 (c)  Case 3 

Fig. 8.11 G(C) with three legs. 

Case 1: C has no child-cycle, that is, 1 = 0. 

In this case, Tc consists of a single vertex (see Fig. 8.11(a)). We classify 
all the three contour paths of C as green paths, and set 

bc(C) = 1. (8.13) 

(By Fact 8.3.2 we need at least one bend on C. In Fig. 8.11(a) the three 
green paths of C are indicated by dotted lines.) 

Case 2: C has child-cycles C1, C,, . . . , Cl, 1 2 1, but none of them has a 
green path on C. 

In this case, we classify all the three contour paths of C as green paths, 
and set 

1 

bc(C) = 1 + CbC(Ci) .  (8.14) 

(In Fig. 8.11 (b) the child-cycles of C are C1 , C2, . . . , CS, and all green paths 
of them, drawn by thick lines, do not lie on C. Since none of C1 , C2, . . . , Cl 

and their descendant 3-legged cycles has a green path on C as known later, 
the bend-optimal orthogonal drawings of G(Cl), G(C2), . . . , G(C1) have no 

i= 1 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 215 

bend on C and hence we need to introduce a new bend on C in an orthogonal 
drawing of G(C).  In Fig. 8.11(b) the three green paths of C are indicated 
by dotted lines.) 

Case 3: Otherwise (see Fig. 8.11(c)). 

In this case at least one of the child-cycles C1, C2, . . . , Cl, for example 
C,,C, and C5 in Fig. 8.11(c), has a green path on C. Classify a contour 
path Pi, 1 5 i 5 3, of C as a green path if a child-cycle of C has its green 
path on Pi. Otherwise, classify Pi as a red path. Thus at least one of PI, P2 
and P3 is a green path. We set 

1 

bc(C)  = C bc(Ci). (8.15) 
i=l 

(In Fig. 8.11(c) PI and P2 are green paths, while P3 is a red path. For a 
child-cycle Cj having a green path on C, G(Cj) has an orthogonal drawing 
with bc(Cj)  bends including a bend on the green path, and hence we need 
not to introduce any new bend on C.) 

We have the following lemmas. 

Lemma 8.3.5 
under the classification above. 

Every 3-legged cycle C in G has at least one green path 

Proof. Immediate. 0 

Lemma 8.3.6 Let C be a 3-legged cycle in G. Then  the classification 
and assignment for all descendant cycles of C can be done in linear time, 
that is, in time O(n(G(C)) ) ,  where n(G(C)) is the number of vertices in 
graph G(C) .  

Proof. By Lemma 8.3.4 Tc can be found in linear time. Using Tc, the 
classification and assignment €or all descendant cycles of C can be done in 
linear time. 0 

Lemma 8.3.7 Let C be a 3-legged cycle in G,  then G ( C )  has at least 
bc(C) vertex-disjoint 3-legged cycles o f G  which do not contain any edge on  
red paths of C .  

Proof. 
We first assume that C has no child-cycle. According to the classifica- 

tion and assignment, all the three contour paths of C are green paths, and 
bc(C) = 1 by Eq. (8.13). Clearly G(C)  has a 3-legged cycle C of G, which 
does not contain any edge on red paths of C. Thus the claim holds for C. 

We will prove the claim by induction based on Tc. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



216 Planar Graph Drawing 

We next assume that C has at least one child-cycle, and suppose induc- 
tively that the claim holds for all child cycles C1, Cz, . . . , Ci of C.  Then the 
hypothesis implies that, for each Ci, 1 5 i 5 1, G(Ci) has at least bc(Ci) 
vertex-disjoint 3-legged cycles of G which do not contain any edge on red 
paths of Ci. There are the following two cases to consider. 

Case 1: None of the child-cycles of C has a green path on C (see 
Fig. 8.11(b)). 

In this case, all the three contour paths of C are green, and bc(C) = 
1 + Cf=, bk(Ci) by Eq. (8.14). For each i, 1 5 i 5 I ,  a child-cycle Ci of C 
has no green path on C ,  and hence all Ci's contour paths on C are red. By 
the induction hypothesis G(Ci) has bc(Ci) vertex-disjoint 3-legged cycles 
which do not contain any edge on red paths of Ci. Therefore, these bc(Ci) 
cycles do not contain any edge on C. Furthermore by Lemma 8.3.3 the 
child-cycles C1, C,, . . . , Cl of C are independent of each other. Therefore 
G(C)  has xi=, bc(Ci) vertex-disjoint 3-legged cycles of G which do not 
contain any edge on C. Since G is cubic, C and these I",=, bc(Ci) 3-legged 
cycles are vertex-disjoint with each other. Trivially C does not contain any 
edge on red paths of C since all the contour paths of C are green. Thus 
G(C)  has at least bc(C) = 1 + xi==, bc(Ci) vertex-disjoint 3-legged cycles 
of G which do not contain any edge on red paths of C. 

Case 2: At least one of the child-cycles of C has a green path on C (see 
Fig. 8.11(c)). 

In this case, bc(C) = C",=, bc(Ci) by Eq. (8.15). By the induction 
hypothesis each cycle Ci, 1 5 i 5 1, has bc(Ci) vertex-disjoint 3-legged 
cycles which do not contain any edge on red paths of Ci. Furthermore by 
Lemma 8.3.3 the child-cycles Ci, 1 5 i 5 I ,  are independent of each other. 
Therefore G(C)  has &=, bc(Ci) vertex-disjoint 3-legged cycles which do 
not contain any edge on red paths of any child-cycle Ci. These &=, bc(Ci) 
cycles may contain edges on green paths of Ci, but any green path of Ci 
is not contained in a red path of C by the classification of contour paths. 
Therefore, G(C)  has a t  least bc(C) = C",,, bc(Ci) vertex-disjoint 3-legged 

0 cycles which do not contain any edge on red paths of C. 

Lemma 8.3.8 For every 3-legged cycle C of G ,  b(G(C)) 2 bc(C). 

Proof. By Lemma 8.3.7 G(C)  has at least bc(C) vertex-disjoint 3-legged 
cycles. By Fact 8.3.2 at  least one bend must appear on each of the 3-legged 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 217 

cycles. Therefore any orthogonal drawing of G(C)  has at least bc(C) bends, 
0 

Conversely proving b(G(C)) 5 bc(C) in Section 8.3.3, we have 
b(G(C)) = bc(C) for any 3-legged cycle C in G. Indeed we will prove 
a stronger claim later in Lemmas 8.3.9 and 8.3.10 in Section 8.3.3 after 
introducing the definition of a feasible orthogonal drawing. 

that is, b(G(C)) 2 bc(C). 

0.3.3 Feasible Orthogonal Drawing 

In this section we define a feasible orthogonal drawing of G ( C )  for a 3- 
legged cycle C in a plane 3-connected cubic graph G and give Algorithm 
Feasible-Draw for finding a feasible orthogonal drawing of G(C)  in linear 
time. 

Let x, y and z be the three leg-vertices of C in G. One may assume that 
x,y and z appear on C in clockwise order, as illustrated in Fig. 8.12. For 
a green path P with ends x and y on C,  an orthogonal drawing of G(C) 
is defined to  be feasible for P if the drawing has the folIowing properties 
(fl)-(f3): 

( f l )  The drawing of G(C) has exactly bc(C) bends. 
(f2) At least one bend appears on the green path P. 
(f3) The drawing of G(C)  intersects none of the the following six open 

halflines. 

the vertical open halfline with the upper end at x. 
the horizontal open halfline with the right end at x. 
the vertical open halfline with the lower end at  y. 
t,he horizontal open halfline with the left end at y. 
the vertical open halfline with the upper end at z .  
the horizontal open halfline with the left end at z .  

The property (f3) implies that, in the drawing of G ( C ) ,  any vertex 
of G(C) except x,y and z is located in none of the following three areas 
(shaded in Fig. 8.12): the third quadrant with the origin x, the first quad- 
rant with the origin y, and the fourth quadrant with the origin z .  It should 
be noted that each leg of C must start with a line segment on one of the 
six open halflines above if an orthogonal drawing of G is extended from 
an orthogonal drawing of G(C) feasible for P. Figure 8.12 illustrates an 
orthogonal drawing feasible for a green path P. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



218 Planar Graph Drawing 

P 

/ 

X bendon p 
- 3-legged cycle C 
.... the six halflines in property (f3) 

Fig. 8.12 An example of a feasible drawing. 

We will often call an orthogonal drawing of G(C)  feasible for a green 
We have the path of C simply a feasible orthogonal drawing of G(C). 

following lemma. 

Lemma 8.3.9 
C, G(C)  has a n  orthogonal drawing feasible f o r  P .  

Proof. 
G(C) feasible for P,  as follows. There are three cases to consider. 

Case 1: C has no child-cycle (see Fig. 8.11(a)). 

For a n y  3-legged cycle C of G and a n y  green path  P of 

We give a recursive algorithm to find an orthogonal drawing of 

In this case b c ( C )  = 1 by Eq. (8.13). We insert, as a bend, a dummy 
vertex t of degree two on an arbitrary edge on the green path P in graph 
G(C) ,  and let J be the resulting graph. (See Figs. 8.13(a) and (b).) Then 
every vertex of J has degree three except the four vertices of degree two: 
the three leg-vertices x ,  y and z ,  and the dummy vertex t .  We regard x ,  t ,  y 
and z as the corners. Since G is a plane 3-connected cubic graph and C has 
no child-cycle, one can know that J has no bad cycle with respect to the 
four corners x ,  t ,  y and z ,  that is, J has neither a 2-legged cycle containing 
at most one corner nor a 3-legged cycle containing no corner. Therefore by 
Algorithm Rectangular-Draw in Section 6.3.3 one can find a rectangular 
drawing D ( J )  of J with four corners on x , t ,  y and z ,  as illustrated in 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 219 

Fig. 8.13(c). The drawing D ( J )  immediately yields an orthogonal drawing 
D(G(C))  of G ( C )  having exactly one bend at t ,  in which C is a rectangle, 
as illustrated in Fig. 8.13(d). Thus the drawing has the properties (f1)-(f3), 
and hence is feasible for P. 

t 

Fig. 8.13 Graphs G ( C )  and J and their drawings D ( J )  and D ( G ( C ) )  

Case 2: None of the child-cycles of C has a green path on C (see 
Fig. 8.11(b)). 

Let CI,C2,-.. ,Cl be the child-cycles of C,  where I 2 1. First, for 
each i, 1 5 i 5 I ,  we choose an arbitrary green path of Ci, and find an 
orthogonal drawing D(G(Ci)) of G(Ci) feasible for the green path in a 
recursive manner. 

Next, we construct a plane graph J from G(C) by contracting each 
G(Ci) ,  1 5 i 5 1, to a single vertex zti. Figure 8.14(a) illustrates J for 
the graph G(C)  in Fig. 8.11(b) where the green path P is assumed to be 

TEAM LinG - Live, Informative, Non-cost and Genuine !



220 Planar Graph Drawing 

PI .  One or more edges on P are contained in none of Ci, 1 5 i 5 1 ,  and 
hence these edges remain in J .  Add a dummy vertex t on one of these 
edges of P as illustrated in Fig. 8.14(b), and let K be the resulting plane 
graph. All vertices of K have degree three except the four vertices x, y, z 

(a) J 

V1 t 
Y 

X 
. . ... . . . . . . . . 

Z Z 

(d) W G ( c ) )  
~ v2 

(c) D(K) 
3 contracted vertex 

original vertex 
0 dummyvertex 
x bend 

Fig. 8.14 Graphs J and K and drawings D ( K )  and D ( G ( C ) )  for Case 2. 

and t on C,(K) of degree two, and K has no bad cycle for the four corners 
x, t ,  y and 2 .  Therefore, by Rectangular-Draw in Section 6.3.3, one can 
find a rectangular drawing D ( K )  of K with four corners on x, t ,  y and z .  
D ( K )  immediately yields an orthogonal drawing D( J )  of J with exactly 
one bend at t. Figure 8.14(c) illustrates a rectangular drawing of K for C 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 22 1 

and P = PI in Fig. 8.11(b). 
Finally, as explained below, patching the draw- 

ings D(G(CI)), D(G(C2)),- . .  , D(G(Cl)) into D ( J ) ,  we can construct 
an orthogonal drawing of G(C) with bc(C) = 1 + xi=, bc(Ci) bends (see 
Fig. 8.14). As illustrated in Fig. 8.15(b), there are twelve distinct embed- 
dings of a contracted vertex ui and the three legs incident to ui, depending 
on both the directions of the three legs and the chosen green path of Ci, 
whose ends are denoted by x and y. For each of the twelve cases, we can 
replace a contracted vertex ui with an orthogonal drawing of G(Ci) feasi- 
ble for the green path or a rotated one shown in Fig. 8.15(c), where the 
drawing of G(Ci) is depicted as a rectangle for simplicity. For example, the 
embedding of the contracted vertex v1 with three legs in Fig. 8.14(c) is the 
same as the middle one of the leftmost column in Fig. 8.15(b) (notice the 
green path of C1 drawn by a thick line in Fig. 8.11(b)); and hence v1 in 
D ( J )  is replaced by D(G(C1)), the middle one of the leftmost column in 
Fig. 8.15(c). Clearly t is a bend on P ,  and C is a rectangle in the drawing 
of G(C).  Thus the drawing is feasible for P. We call the replacement above 
a patching operation. 

Fig. 8.15 
incident to vi, and (c) twelve feasible orthogonal drawings of G(Ci) and rotated ones. 

(a) A 3-legged cycle, (b) twelve ernbeddings of a vertex vi and three legs 

TEAM LinG - Live, Informative, Non-cost and Genuine !



222 Planar Graph Drawing 

Case 3: Otherwise (see Fig. 8.11(c)). 

Let C1, (72,. . . , CL be the child-cycles of C,  where 1 >_ 1. In this case, 
for any green path P on C,  at least one of C1, C2, . . . , Cl has a green path 
on P. One may assume without loss of generality that C1 has a green path 
Q on the green path P of C ,  that the three leg-vertices 51, y1 and z1 of C1 
appear on C1 clockwise in this order, and that x1 and y1 are the ends of Q 
as illustrated in Fig. 8.11(c). 

We first construct a plane graph J from G(C) by contracting each 
G(Ci),l 5 i 5 1, to  a single vertex w i .  Figure 8.16(a) illustrates J for 
G(C) in Fig. 8.11(c). Replace w1 in J with a quadrangle zltylzl as illus- 
trated in Fig. 8.16(b) where t is a dummy vertex of degree two, and let 
K be the resulting plane graph. Thus all vertices of K have degree three 
except four vertices on C,(K) of degree two: the dummy vertex t and the 
three leg-vertices x,y and z of C. Furthermore K has no bad cycle for 
the four corners z, t, y and z .  Therefore, by Rectangular-Draw in Sec- 
tion 6.3.3, one can find a rectangular drawing D ( K )  of K with four corners 
on x, t, y and z, in which the contour xltylzl of a face is drawn as a rectan- 
gle. Figure 8.16(c) illustrates a rectangular drawing D ( K )  of K for G(C) 
in Fig. 8.11(c). 

We next find feasible orthogonal drawings D(G(Cl)), D(G(C2)), . . . , 
D(G(Cl)) in a recursive manner; D(G(C1)) is feasible for the green path 
Q, and D(G(Ci)) is feasible for an arbitrary green path of Ci for each 
i , 2  5 i 5 1. 

Finally, patching the drawings D(G(Cl)), D(G(Cz)), . . . , D(G(C1)) 
into D ( K ) ,  we can construct an orthogonal drawing D(G(C)) of G(C) 
feasible for P;  we replace the rectangle xltylzl of D ( K )  by D(G(C1)), and 
replace each vertex wi, 2 5 i 5 1, by D(G(Ci)). In this case C is not al- 
ways a rectangle in D(G(C)). One can observe with the help of Fig. 8.15 
that each of the replacement above can be done without introducing any 
new bend or edge-crossing and without any conflict of coordinates of ver- 
tices as illustrated in Fig. 8.16(d). Note that the resulting drawing always 
expands outwards, and hence has the property (f3) of a feasible drawing. 
Since we replace the rectangle x1ty1zl in D ( K )  by D(G(C1)) and we have 
already counted the bend corresponding to  t for C1, we need not count 
it for C. Thus one can observe that the drawing D(G(C)) has exactly 
bc(C) = Cf=, bc(Ci) bends. Since a bend of D(G(C1)) appears on Q ,  the 
bend appears on the green path P of C in D(G(C)).  Hence D(G(C) )  is an 

0 orthogonal drawing feasible for P. 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 223 

Y 

v4 

v2 

Fig. 8.16 Graphs J and K and drawings D ( K )  and D(G(C))  for Case 3. 

The definition of a feasible orthogonal drawing and Lemmas 8.3.8 
and 8.3.9 immediately imply the following Lemma 8.3.10. 

Lemma 8.3.10 For any 3-Zegged cycle C in G ,  b(G(C)) = bc(C), and a 
feasible orthogonal drawing of G(C) has the minimum number b(G(C)) of 
bends. 

The algorithm for finding a feasible orthogonal drawing of G(C) de- 
scribed in the proof of Lemma 8.3.9 above is hereafter called Feasible- 
Draw. It is not difficult to prove the following lemma on Feasible-Draw 
(Exercise 4). 

Lemma 8.3.11 Algorithm Feasible-Draw finds a feasible orthogonal 

TEAM LinG - Live, Informative, Non-cost and Genuine !



224 Planar Graph Drawing 

drawing of G(C) for a 3-legged cycle C in linear time, that is, in time 
O(n(G(C)))-  

8.3.4 Algorithm 

In this section we first present Algorithm Orthogonal-Draw(G) to find 
an orthogonal drawing of a plane 3-connected cubic graph G with at most 
b(G) + 4 bends, and then we present an idea behind Algorithm Minimum- 
Bend(G) to  find an orthogonal drawing of G with b(G) bends. 

We now present Algorithm Orthogonal-Draw(G). 

Algorithm Orthogonal-Draw( G) 
begin 

1 Add four dummy vertices of degree two on four distinct outer edges 
as the corners; 
Let G' be the resulting graph; {See Fig. 8.9(a).} 
Let C1, C2, . . . , Cl be the maximal bad cycles in G'; 
for each i ,  1 5 i 5 I, construct a genealogical tree Tci and determine 
green paths and red paths for every cycle in Tci ; 
for each i, 1 5 i 5 I, find an orthogonal drawing D(G(Ci)) of G(Ci) 
feasible for an arbitrary green path of Ci by Feasible-Draw; 
Let G" be a plane graph derived from G' by contracting each G(Ci), 
1 5 i 5 I ,  to a single vertex vi; {See Fig. 8.9(b). G" has no bad cycle.} 
Find a rectangular drawing D(G") of G" by Rectangular-Draw; 
Patch the drawings D(G(Cl)), D(G(Cz)),  . . . , D(G(C1)) into D(G") 
to get an orthogonal drawing D(G') of GI; 
Obtain an orthogonal drawing D(G) of G by replacing the four dummy 
vertices a ,  b, c and d in D(G')  with bends 

2 

3 

4 

5 

6 

7 

8 

9 

end. 

Figure 8.17(a) illustrates a rectangular drawing of G" in Fig. 8.9(b). 
The specified green path of each of the maximal bad cycles C1, C2, C, and 
C, of G' is drawn by a thick line in Fig. 8.9(a). Figure 8.17(b) illustrates 
an orthogonal drawing of G' in Fig. 8.9(a). 

We now have the following theorem. 

Theorem 8.3.12 Let G be a plane 3-connected cubic graph, let G' be 
a graph obtained from G by  adding four dummy vertices as in Algorithm 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 225 

Fig. 8.17 
D(C' )  of G'. 

(a) A rectangular drawing D(G") of G", and (b) an orthogonal drawing 

Orthogonal-Draw, and let C1, C2, ... , Cl be the maximal bad cycles 
in G'. Then Orthogonal-Draw finds an orthogonal drawing of G with 
exactly 4+'&, bc(Ci) bends in linear time. Furthermore 4+C1,, bc(Ci) 5 
4 + b(G). 

Proof. (a) Number of bends. 

Case 1: G' has no bad cycle. 

By Fact 8.3.1 it is a bend-optimal orthogonal drawing. 
Case 2: Otherwise. 

For each i, 
1 5 i 5 1 ,  an orthogonal drawing D(G(Ci)) feasible for an arbitrary 
green path of Ci has exactly bc(Ci) bends. Furthermore the rectan- 
gular drawing D(G") has exactly four bends corresponding to  the four 
dummy vertices. Algorithm Orthogonal-Drawing patches the drawings 
D(G(C1)), D(G(C2)), . . . , D(G(Cl)) into D(G") to get an orthogonal draw- 
ing D(G') of G', and replace the four dummy vertices with bends to  get an 
orthogonal drawing D(G)  of G. Therefore D(G) has exactly 4+Cf=, bc(Ci) 
bends. Since the 3-legged cycles C1, C2,. . . , Cl are independent of each 
other, by Lemma 8.3.7 G has at least C;=, bc(Ci) vertex-disjoint 3-legged 
cycles. Therefore Fact 8.3.2 implies that C",=, bc(Ci) 5 b(G). Thus we 
have 4 + C",, bc(Ci) 5 4 + b(G). 

There are two cases. 

In this case we have a drawing with exactly four bends. (See Fig. 8.8.) 

Let C1,C2,.-. ,Cl be the maximal bad cycles in G'. 

(b) Time complexity. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



226 Planar Graph Drawing 

By a method similar to one in the proof of Theorem 7.4.7 we can find 
all maximal bad cycles in G‘ in linear time. Orthogonal-Draw calls 
Rectangular-Draw for G” and Feasible-Draw for G(Ci), 1 5 i 5 1. 
Both Rectangular-Draw and Feasible-Draw run in linear time. Since 
cycles C i , l  5 i 5 I, are independent of each other, Cf=,n(G(Ci)) 5 n. 
Therefore the total time needed by Feasible-Draw is O(n).  Furthermore 
all contraction operations and all patching operations can be done in time 
O(n) in total. Therefore Orthogonal-Draw runs in linear time. 

Modifying Orthogonal-Draw, one can design a linear-time algorithm 
Minimum-Bend t o  find a bend-optimal orthogonal drawing of a plane 
3-connected cubic graph G [RNN99]. The idea is as follows. 

If a 3-legged cycle C in G has a green path on Co(G), then we can save 
one of the four bends mentioned in Fact 8.3.1, because a bend on the green 
path can be a bend on Co(G) and a bend on the 3-legged cycle C at the 
same time; hence one of the four bends mentioned in Fact 8.3.1 has been 
accounted for by the bends necessitated by Fact 8.3.2. We therefore want 
to find as many such 3-legged cycles as possible, up to  a total number of 
four. We had better to find a 3-legged cycle which has a green path on 
Co(G) but none of whose child-cycles has a green path on Co(G), because 
a bend on such a cycle can play also a role of a bend on its ancestor cycle. 
We call such a cycle a (‘corner cycle”, that is, a corner cycle is a 3-legged 
cycle C in G such that C has a green path on Co(G) but no child-cycle of 
C has a green path on Co(G). (In Fig. 8.18 C; and Ci drawn in thick lines 
are corner cycles. On the other hand, the two 3-legged cycles indicated by 
dotted lines are not corner cycles since Ci is their descendant cycle.) If 
G has k(  5 4) independent corner cycles Ci , C;, . . . , Ci ,  then we can save 
k bends. By a method similar to one given in the proof of Theorem 7.4.7 
one can find independent corner cycles of G as many as possible in linear 
time. Let Ci, Ck,. . . , Ci,  k 5 4, be the independent corner cycles of G, 
and let Pi‘ be the green path of C: on Co(G). We add a dummy vertex of 
degree two on any edge on each of the k paths P:, and add 4 - k dummy 
vertices of degree two on any 4 - k outer edges other than the k edges. 
Then there are exactly four vertices of degree two on Co(G). Executing 
Steps 2-8 of Algorithm Orthogonal-Draw, one can find a bend-optimal 
orthogonal drawing of G. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawzng 227 

Fig. 8.18 Illustration for corner cycles. 

8.4 Orthogonal Grid Drawing 

An orthogonal drawing is called an orthogonal grid drawing if all vertices 
and bends are located on integer grid points. Given an orthogonal repre- 
sentation R of a plane graph G, one can obtain an orthogonal grid drawing 
of G in linear time, as follows. We first augment G to a new graph G’ by 
adding dummy vertices and edges so that G‘ has a rectangular drawing D’, 
as illustrated in Fig. 8.19 where dummy edges are drawn by dotted lines and 
dummy vertices by white circles. From R we then construct an orthogonal 
representation R’ of G’ corresponding to the rectangular drawing D’ of G’. 
R’ is called a rectangular refinement of R. One can obtain R’ in linear time 
by considering left turns and right turns in each facial polygon [Tam87, 
DETT99, KWOl]. Using a method similar to that in Section 6.3.4, one 
can find a rectangular grid drawing Di from D’, where each of the vertices 
and bends has integer coordinates. D; immediately gives an orthogonal 
grid drawing D, of G. D, is “compact” in a sense that there is at least 
one vertical line segment of x-coordinate i for each integer i, 0 5 i 5 W ,  
and there is a t  least one horizontal line segment of y-coordinate j for each 
integer j ,  0 5 j 5 HI where W and H are the width and height of the 
grid, respectively. We have the following theorem on the size of a compact 
orthogonal grid drawing [Bie96b]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



228 Planar Graph Drawing 

D 
g 

Fig. 8.19 (a) Orthogonal grid drawing of G, and (b) rectangular grid drawing of G'. 

Theorem 8.4.1 Let D, be a compact orthogonal grid drawing of a plane 
graph G with b bends. Let W be the width of a grid, and let H be the height 
of a grid. Then W + H 5 b + 2n - m - 2. 

Proof. We call the four grid segments incident to a grid point the ports 
of the grid point and call them according to  their direction as top, bottom, 
right, and left. Let Top(D,) be the number of vertices of G whose top 
ports are not used in D,. Similarly we define Bottom(D,), Right(D,), and 

We first claim that W $ ( b  + Top(D,) + Bottom(Dg))  - 1. Let p be 
any of the W + 1 columns in the grid. 

We first consider the case where p is used by a vertex of G. Let u be 
the top-most vertex, and let w be the bottom-most vertex in column p.  
If the top port of u is used, then it must contain a bend, since there is 
no vertex above u in the column p .  So we either have a bend above u, 
or u contributes to Top(D,). Similarly, we either have a bend below w, 
or w contributes to Bottom(D,). Hence, p contributes at least two to the 
expression b + Top(D,) + Bottorn(D,). 

We now consider the case where p is not used by any vertex. Then 
it contains a vertical line of an edge, and there are two bends at the end 
points of this line. Hence, p contributes at least two to the expression 
b + Top(D,) + Bottom(D,). 

L e f t P , ) .  

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 229 

Since each of the W + 1 columns contributes at least two to the ex- 
pression b + Top(D,) + Bottom(D,), we have 2(W + 1) < b + Top(D,) + 
Bottom(D,) and hence W 5 i ( b  + Top(D,) + Bottom(D,)) - 1. 

Similarly we have H 5 i ( 6  + Right(D,) + Left (D,))  - 1. 
Each vertex w of G has 4 - d(v) unused ports, and hence Top(D,) + 

Bottom(D,) + Right(D,) + Left(D,) = CvEV (4 - d(v)) = 4n - 2m. There- 
fore 

1 
2 

+-(6  + Right(D,) + Lef t (D, ) )  - 1 

1 
2 

W + H 5 - ( b  + Top(D,) + Bottom(D,)) - 1 

1 
2 

= - ( 2 b + 4 ~ ~ - 2 m ) - 2  

= b +  2n-  m - 2. 
0 

Theorem 8.4.1 relates the number of bends with the grid size of a com- 
pact orthogonal grid drawing of a plane graph. Using Theorem 8.4.1 we 
can estimate the half perimeter W + H of the grid required for a bend- 
optimal orthogonal grid drawing D, of a plane 3-connected cubic graph G 
as follows: W + H 5 b(G) + 2n - m - 2 = b(G) + i n  - 2, since 2m = 3n. 

Using Theorem 6.3.8 on a rectangular grid drawing, one can prove that 
any orthogonal drawing produced by the algorithm Minimum-Bend in 
Section 8.3 can be transformed to an orthogonal grid drawing on a grid 
such that W 5 5 and H 5 5 [RNN99]. The proof is left for an exercise. 

8.5 Orthogonal Drawings without Bends 

In a VLSI floorplanning problem, an input is often a plane graph with 
A 5 3 [LenSO]. Such a plane graph G may have an orthogonal drawing 
without bends. The graph in Fig. 8.20(a) has an orthogonal drawing with- 
out bends as shown in Fig. 8.20(b). Not every plane graph with A < 3 has 
an orthogonal drawing without bends. For example, the cubic plane graph 
in Fig. 8.l(a) has no orthogonal drawing without bends, since any orthog- 
onal drawing of an outer cycle has at least four convex corners which must 
be bends in a cubic graph. One may thus assume that there are four or 
more outer vertices of degree two. It is interesting to know which classes of 
such plane graphs have orthogonal drawings without bends. The following 
theorem states a simple necessary and sufficient condition for a plane 2- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



230 Planar Graph Drawing 

connected graph with A 5 3 to have an orthogonal drawing without bends 
[RNNOS]. 

Fig. 8.20 (a) A plane graph G and (b) an orthogonal drawing of G without bends. 

Theorem 8.5.1 Assume that G is a plane 2-connected graph with A 5 3 
and there are four or more outer vertices of degree two. Then G has an 
orthogonal drawing without bends if and only if every 2-legged cycle contains 
at least two vertices of degree two and every $legged cycle contains at least 
one vertex of degree two. 

The 2-legged cycle indicated by a dotted line in Fig. 8.20 contains two 
vertices of degree two, and the 3-legged cycle drawn by thick lines contains a 
vertex of degree two. Theorem 8.5.1 is a generalization of Thomassen’s con- 
dition for rectangular drawings in Theorem 6.3.2; applying Theorem 8.5.1 
to a plane 2-connected graph G in which all vertices have degree three 
except the four outer vertices of degree two, one can derive the condition. 

It is easy to prove the necessity of Theorem 8.5.1, as follows. 

[Necessity of Theorem 8.5.11 
Assume that a plane 2-connected graph G has an orthogonal drawing 

D without bends. 
Let C be any 2-legged cycle. Then the rectilinear polygonal drawing 

of C in D has at least four convex corners. These convex corners must be 
vertices since D has no bends. The two leg-vertices of C may serve as two 
of the convex corners. However, each of the other convex corners must be 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Orthogonal Drawing 231 

a vertex of degree two. Thus C must contain at least two vertices of degree 
two. 

One can similarly show that any 3-legged cycle C in G contains at least 
one vertex of degree two. 

Rahman et al. [RNNOS] gave a constructive proof for the sufficiency of 
Theorem 8.5.1 and showed that the proof leads to  a linear-time algorithm to 
find an orthogonal drawing without bends if it exists. They also extended 
their result on 2-connected graphs in Theorem 8.5.1 to arbitrary (not always 
2-connected) graphs with A 5 3 as in the following theorem. 

Theorem 8.5.2 Let G be a plane graph with A 5 3. Then G has an  
orthogonal drawing without bends i f  and only i f  every k-legged cycle C in G 
contains at least 4 - k vertices of degree two for  any integer k ,  0 5 k 5 3. 

8.6 Bibliographic Notes 

Recently Rahman and Nishizeki [RN02] gave a linear algorithm for finding 
a bend-optimal orthogonal drawing of a plane graph G with A 5 3 by 
extending the ideas in Section 8.3. They classify the contour paths of each 
2-legged or 3-legged cycle C into three types: blue, green and red paths. A 
blue path may have two or more bends, a green path may have one or more 
bends and a red paths does not have a bend in a bend-optimal orthogonal 
drawing of G(C).  

For a planar graph G with A 5 3, where the embedding of G is not 
fixed, Di Battista et al. [DLV98] gave an O(n5 logn) time algorithm to find 
a bend-optimal orthogonal drawing of G. Rahman et al. presented a linear 
algorithm to examine whether a subdivision G of a planar 3-connected cubic 
graph has a no-bend drawing and to find one if G has [REN04]. 

Several linear-time algorithms are known for finding orthogonal draw- 
ings of plane graphs with a presumably small number of bends although 
they do not always find bend-optimal orthogonal drawings [Bie96b, Kan96, 
BK98]. Garg and Liotta [GL99] gave an O(n2) time algorithm for finding 
orthogonal drawings of planar 2-connected graphs with at  most three bends 
more than the minimum number of bends. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



232 Planar Graph Drawing 

Exercise 

1. Show that an orthogonal representation R of a plane graph G does not 
represent a bend-optimal orthogonal drawing of G if s, = 10 for an 
element T of a list R ( F ) .  

2. Let G be a plane 3-connected cubic graph, and let G' be a graph obtained 
from G by adding four dummy vertices a,  b, c and d of degree two on four 
distinct outer edges. Then show that all maximal bad cycles in G' are 
independent of each other. 

3. Let C be a 3-legged cycle in a plane 3-connected cubic graph G. Then 
prove that 

ICcl I n(G(C))I2,  

where n(G(C))  is the number of vertices in G(C).  
4. Prove Lemma 8.3.11. 
5. Write a program to find an orthogonal grid drawing of a plane graph G 

from an orthogonal representation R of G. 
6. Modifying Orthogonal-Draw, design a linear-time algorithm to find a 

bend-optimal orthogonal drawing of a plane 3-connected cubic graph G. 
Prove the correctness of your algorithm [RNN99]. 

7. Find an infinite number of plane connected graphs G with A 5 3 such 
that any orthogonal grid drawing of G needs a grid of size at least (Zn - 
1) x ( i n  - 1) and needs at least gn - 1 bends [Bie98]. 

8. Prove that a bend-optimal orthogonal drawing of a plane 3-connected 
cubic graph G has a corresponding orthogonal grid drawing on a grid 
such that W 5 F and W 5 [RNN99]. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Chapter 9 

Octagonal Drawing 

9.1 Introduction 

In Chapters 6 and 8 we have studied rectangular drawings and orthogo- 
nal drawings of plane graphs, respectively. In this chapter we study an 
octagonal drawing which is an extension of a rectangular drawing and is 
a special type of an orthogonal drawing. An orthogonal drawing D of a 
plane graph G is called an octagonal drawing (with prescribed face areas) 
if (i) the outer cycle of D is a rectangle, (ii) each inner face has at most 
eight corners, and (iii) the area of each inner face is equal to  a prescribed 
number. Figure 9.l(b) illustrates an octagonal drawing of the plane graph 
in Fig. 9.l(a), where a prescribed number is written inside each inner face. 

a b P 26 I 

Fig. 9.1 (a) Plane graph and (b) its octagonal drawing. 

An octagonal drawing of a plane graph G has practical applications in 
VLSI floorplanning. As we have seen in Section 1.5.1, a VLSI floorplan is 
often considered as a subdivision of a rectangle into a finite number of non- 
overlapping smaller rectangles, each of which corresponds to a functional 

233 
TEAM LinG - Live, Informative, Non-cost and Genuine !



234 Planar Graph Drawing 

entity called a module [LenSO, SY991. A “slicing floorplan” is often used 
by VLSI design [Shi96, YS93, YS95]. Divide a rectangle into two smaller 
rectangles by slicing it vertically or horizontally, divide any subrectangle 
into two smaller subrectangles by slicing it vertically or horizontally, and 
so on, as illustrated in Figs. 9.2(a)-(e). The resulting floorplan like one 
in Fig. 9.2(e) is called a slicing floorplan. An underlying plane graph of a 
slicing floorplan such as one illustrated in Fig. 9.2(f) is called a dicing graph 
G, where the four vertices a ,  b, c and d of degree two on the outer face of G 
represent the corners of the outer rectangle. (Note that the plane graph in 
Fig. 9.2(f) is isomorphic with that in Fig. 9.l(a).) Thus every vertex of a 
slicing graph G has degree two or three, and a slicing floorplan is a rectan- 
gular drawing of G. Since each module needs some physical area, each face 
of G in the drawing should satisfy some area requirements. However, when 
the area of each face is prescribed, there may not exist a rectangular draw- 
ing of G; one example is illustrated in Fig. 9.3; the two faces of prescribed 
area 1 are adjacent in the plane graph in Fig. 9.3(a), but cannot be adjacent 
in any prescribed-area rectangular drawing as illustrated in Fig. 9.3(b). A 
floorplan using an octagonal drawing can overcome this problem. We say 
that a slicing graph is good if either the upper subrectangle or the lower 
one obtained by any horizontal slice will never be vertically sliced. All the 
graphs in Figs. 9.l(a), 9.2(f) and 9.3(a) are good slicing graphs. 

b 

d amc if) 

Fig. 9.2 Illustration of a slicing floorplan. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 235 

Fig. 9.3 
graph, and ( c )  a prescribed-area octagonal drawing of G. 

(a) A slicing graph G, (b) a prescribed-area rectangular drawing of another 

In this chapter we show that every good slicing graph has an octagonal 
drawing (with prescribed face areas) [RMN04]. We also present a linear 
algorithm for finding such a drawing. 

In Section 9.2 we formally define good slicing graphs. In Section 9.3 we 
present a linear algorithm to obtain an octagonal drawing of a good slicing 
graph. 

9.2 Good Slicing Graphs 

In this section we define the class of good slicing graphs. 
Assume that G is a 2-3 plane graph. That is, G is 2-connected, every 

vertex of G has degree two or three, and there are four or more outer 
vertices of degree two, and exactly four of them, a,  b, c and d, are designated 
as corners. The four corners a,  b, c and d divide the outer cycle C, into four 
paths, the north path PN, the east path PE, the south path Ps, and the 
west path Pw, as illustrated in Fig. 9.4. A path P in G is called an NS- 
path if P starts at a vertex on PN, ends at a vertex on Ps, and does not 
pass through any other outer vertex and any outer edge. An NS-path P 
naturally divides G into two 2-3 plane graphs G L  and GE; G& is the west 
subgraph of G including P,  and Gg is the east subgraph of G including P. 
We call G L  and Gg the two subgraphs corresponding to P.  Similarly, we 
define a WE-path P ,  the north subgraph GE, and the south subgraph G;. 

We now present a formal recursive definition of a slicing graph. We call 
a 2-3 plane graph G a slicing graph if either it has exactly one inner face 
or it has an NS- or WE-path P such that each of the two subgraphs corre- 
sponding to P is a slicing graph. An NS- or WE-path P in a slicing graph 

TEAM LinG - Live, Informative, Non-cost and Genuine !



236 Planar Graph Drawing 

Fig. 9.4 Division of G into two subgraphs G k  and G g  by an NS-path P .  

G is called a slicing path  of G if each of the two subgraphs corresponding 
to P is a slicing graph. All the 2-3 plane graphs in Figs. 9.l(a), 9.2(f) and 
9.3(a) are slicing graphs, while the 2-3 plane graph in Fig. 9.5 is not. 

d C 

Fig. 9.5 A 2-3 plane graph which is not a slicing graph. 

If G is a slicing graph, then all slicing paths appearing in the recursive 
definition can be represented by a binary tree T ,  called a slicing tree, as 
illustrated in Fig. 9.6 for the graph in Fig. 9.2(f). Each internal node u of T 
represents a slicing path, which is denoted by P,. Each leaf u of T represents 
an inner face F, of G. Each node u of T corresponds to a subgraph G, of 
G induced by all inner faces that are leaves and are descendants of u in T .  
Thus G = G, for the root r of T .  Figure 9.7 depicts a subgraph G, of G 
in Fig. 9.6(a) for node z of T in Fig. 9.6(b). We classify the internal nodes 
of T into two types: (i) V-node and (ii) H-node. A V-node u represents an 
NS-slicing path P, of G,, while an H-node u represents a WE-slicing path 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 237 

root r 

G 

Fig. 9.6 (a)A slicing plane graph G, and (b) a good slicing tree T of G. 

P, of G,. 
We then give a formal definition of a good slicing graph. A face path of 

G is a WE-path on the contour of a single inner face of G. The graph G in 
Fig. 9.6(a) has no face path, while G, in Fig. 9.7 has two face paths P3 and 
P4, drawn by thick lines; P3 is on face F3 and P4 is on face Fl1. Any face 
path P of a slicing graph G is a slicing path, and either the north subgraph 
G$ or the south subgraph Gg corresponding to P will never be vertically 
sliced. We call a slicing tree T a good slicing tree if P, is a face path of G, 
for every H-node u in T .  The tree in Figure 9.6(b) is a good slicing tree of 
the graph G in Fig. 9.6(a). We call a plane graph a good slicing graph if it 
has a good slicing tree for an appropriate labeling of designated corners as 
a,  b,c and d. 

The definitions above imply that every vertical slice of a good slicing 
graph is an arbitrary “guillotine cut’’ but every horizontal slice must be a 
“guillotine cut’’ along a face path. All the graphs in Figs. 9.l(a), 9.2(f), 
9.3(a), 9.6(a) and 9.7 are good slicing graphs. A good slicing tree plays a 
crucial role in the algorithm for octagonal drawings. As we will show later 
in Section 9.3, the algorithm draws every vertical slice as a single vertical 

TEAM LinG - Live, Informative, Non-cost and Genuine !



238 Planar Graph Drawing 

Fig. 9.7 Subgraph G ,  of G for node z of T with two face paths P3 and P4 

line segment, and draws every horizontal slice as either a single horizontal 
line segment or a sequence of three line segments, horizontal, vertical and 
horizontal ones, as illustrated in Figs. 9.l(b) and 9.3(c). 

9.3 Octagonal Drawing 

In this section we present a linear algorithm for finding an octagonal draw- 
ing of a good slicing graph G. We in fact give a proof of the following 
theorem [RMN04]. 

Theorem 9.3.1 A good slicing graph G has an octagonal drawing D ,  and 
the drawing D can be found in linear time if a good slicing tree T is given. 

In the rest of this section we give a constructive proof of Theorem 9.3.1. 
Let G be a good slicing graph. One may assume without loss of generality 
that all vertices of G have degree three except for the four outer vertices 
a,  b, c and d of degree two. We will show that every inner face of G is drawn 
as a rectilinear polygon of at most eight corners whose shape is one of the 
nine's in Fig. 9.8. We call a rectilinear polygon of shape like in Fig. 9.8 
an octagon throughout the paper. Thus a rectangle is an octagon in our 
terminology, because the polygon in Fig. 9.8(i) is a rectangle. We denote 
by A(R)  the area of an octagon R, and by A(G) the sum of the prescribed 
areas of all inner faces of a plane graph G. 

The rest of this section is organized as follows. We give our Algorithm 
Octagonal-Draw in Section 9.3.1. In Section 9.3.2 we give the details for 
embedding a slicing path. In Section 9.3.3 we complete a proof of Theo- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 239 

rem 9.3.1 by verifying correctness and time complexity of the algorithm. 

9.3.1 Algorithm Octagonal-Draw 

In this section we give an algorithm for finding an octagonal drawing of a 
good slicing graph G. 

An outline of the algorithm is as follows. Let T be a good slicing tree 
of G. Let u be an internal node of T ,  let u be the right child of u, and let 
w be the left child of u. One may assume that if u is a V-node then its 
right subtree rooted at u represents the east subgraph G? of G and its left 
subtree rooted at  w represents the west subgraph G$ and hence G, = G P  
and G, = G G ,  and that if u is an H-node then G, = G: and G, = G P ,  
as illustrated in Fig. 9.6. We now traverse T by reverse preorder traversal, 
that is, we first traverse the root T of T ,  then traverse the right subtree and 
finally traverse the left subtree. We thus draw the inner faces F I ,  F2,. . . , 
FI1 of G in Fig. 9.6(a) in this order, from east to west and north to south. 

Before starting the traversal from root r ,  we choose an arbitrary rectan- 
gle R, of area A(G). Thus A(G) = H x W where H and W are the height 
and width of R,. The outer cycle C,(G) is drawn as R,. (See Fig. 9.9.) In 
general, when we traverse a node u of T ,  we have an octagon R, of area 
A(G,); C,(G,) is drawn as R,. If u is an internal node, then we embed 
the slicing path P, inside R, so that P, divides R, into two octagons R, 
and R, so that A(R,) = A(G,) and A(R,) = A(G,), where u is the right 
child and w is the left child of u. 

We start to traverse T from root r with the following initialization. We 
fix the positions of four designated vertices a,  b, c and d of G as the corners 
of the initial rectangle R,, as illustrated in Fig. 9.9. We then arbitrarily fix 
the positions of all vertices on the east path P& of G, = G with preserving 
their relative positions. The positions of all other vertices on C,(G), drawn 
by black circles in Fig. 9.9, are not fixed. 

When we traverse an internal node u of T ,  we have an octagon R, 
such that A(R,) = A(G,). Four vertices of degree two on Co(G,) have 
been designated as the four corner vertices a,  b, c and d of G, as illustrated 
in Fig. 9.8. Let a ,  X N I ,  X N 2 ,  b,c,  xs1, xs2, d be the corners of octagon R,, 
some of which may not exist. Note that a,  b, c and d are vertices of G, and 
X N ~ , X N ~ , ~ S ~ , X S ~  are bends. We denote by P,$ both the north side of R, 
and the north path of C,(G,) which connects a and b. Similarly we use the 
notation Pg, Pz and P$,. The positions of vertices a ,  b,c and d together 
with all the vertices on Pg have been fixed, but the positions of all vertices 

TEAM LinG - Live, Informative, Non-cost and Genuine !



240 Planar Graph Drawing 

I .  

. .  . .  

. 'bu ' 

n b 

Fig. 9.8 Octagons. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 24 1 

on P$, and P; except a,  d and c have not been fixed. 

Fig. 9.9 Initial rectangle R,. 

We now describe the operations performed at each internal node u of 
T .  Let v be the right child of u in T ,  and let w be the left child. We 
first consider the case where u is a V-node. One may assume that the NS- 
slicing path P, connects a vertex YN on P$ and a vertex ys on P,". (See 
Fig. 9.10.) As we will show later, the positions of corners a, b, c and d of R, 
together with all vertices on Pg have been fixed, but the position of all other 
vertices of G, have not been fixed. The goodness and the traversal order of 
T are crucial in the argument. We now fix the positions of YN and ys and 
divide R, into two octagons R, and R, by embedding P, as a vertical line 
segment so that A(R,) = A(G,) and A(R,) = A(G,). Indeed R, is always 
a rectangle, as illustrated in Fig. 9.10. We will give the detail of this step 
later in Section 9.3.2. We now designate YN, b, c and ys as the four corner 
vertices of G,, and designate a, YN, ys, and d as the four corner vertices of 
G,. We then consider the case where u is an H-node. Assume that the face 
path P, connects a vertex yw on P& and a vertex YE on P& as illustrated 
in Fig. 9.11. The positions of all vertices on Pg including YE have been 
fixed. We appropriately fix the position of yw on P& and divide R, into 
two octagons R, and R, so that A(R,) = A(G,) and A(R,)  = A(G,) by 
embedding P, as either a single horizontal line segment or a sequence of 
three line segments, horizontal, vertical and horizontal ones, as illustrated 
in Fig. 9.11. We will give the detail of this step later in Section 9.3.2. We 
now designate a,  b, YE and yw as the corner vertices of G,, and designate 

TEAM LinG - Live, Informative, Non-cost and Genuine !



242 Planar Graph Drawing 

yw, YE, c, and d as the corner vertices of G,. 

Fig. 9.10 Embedding of P, in R, for a V-node u. 

Fig. 9.11 Embedding of P, in R, for an H-node u. 

We finally consider the case where we traverse a leaf ZL of T .  In this 
case u corresponds to an inner face F,, and the embedding of F, has been 
already fixed as an octagon R,. (See Fig. 9.12.) The positions of a, b, c and 
d and all vertices on PE and P$ have been fixed. We arbitrarily fix the 
positions of all vertices on P& other than a and d, preserving their relative 
positions on P&. If there are vertices on Pz other than c and d, then their 
positions will be fixed in some later steps. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 243 

We call the algorithm described above Algorithm Octagonal-Draw. 

Fig. 9.12 R, for a leaf ?I. 

9.3.2 Embedding a Slicing Path 

In this section we give the details of embedding a slicing path P, inside an 
octagon R,. 

A polygonal vertex of R, is called a corner of R,. A corner of R, has 
an interior angle 90" or 270". A corner of an interior angle 90" is called 
a convex corner of R,, while a corner of an interior angle 270" is called a 
concave corner. Let p and q be two consecutive polygonal vertices of R,. 
We denote by pq the polygonal edge of R, connecting p and q. We also 
denote by pq the straight line segment connecting two points p and q. 

Let Amin be the area of an inner face whose prescribed area is the 
smallest among all inner faces of G. Let H be the height of the whole 
drawing, that is, the height of the initial rectangle R,. (See Fig 9.9.) Let 
f be the number of inner faces in G, and let 

Since A(G) = W H ,  we have A = L i Z  f A ( G )  . 
TEAM LinG - Live, Informative, Non-cost and Genuine !



244 Planar Graph Drawing 

Let u be a node in T .  Let It, be the length of line segment x ~ 2 b  of an 
octagon R,, and let lbu. be the length of line segment MSI, as illustrated 
in Fig. 9.8. If x N 2  does not exist then let I t ,  = 0, and if zs1 does not exist 
then let lb, = 0. Let 1, = max{ltu,lbu}. Thus 1, = 0 if and only if R, is a 
rectangle. Let fg be the number of inner faces in G, each of which has an 
edge on the east path Pg of G,. We call an octagon R, a feasible octagon 
if the following eight conditions (i)-(viii) hold: 

(i) 48,) = A(G,); 
(ii) 1, < f X ;  
(iii) if X N 2  is a concave corner as in Figs. 9.8(a), (c) and (f), then 

It ,  < (f - f g p ;  
(iv) if zs1 is a concave corner as in Figs. 9.8(b), (c) and (g), then 

(v) if x N 2  is a convex corner as in Figs. 9.8(b), (d) and (h), then l t ,  2 fgX; 
(vi) if zs1 is a convex corner as in Figs. 9.8(a), (d) and (e), then lbu 2 fgX; 
(vii) if both X N 2  and 2.5-2 are concave corners as in Fig. 9.8(a), then 

lbu - It ,  2 fgX; 
and 

(viii) if both X N ~  and zs1 are concave corners as in Fig. 9.8(b), then 

It, - lbu 2 fgx. 
The initial octagon R, for the root T of T is a rectangle of area A(G,), 

where G, = G. Since R, is a rectangle, x N 1 ,  x N 2 ,  xs1, xs2 do not exist and 
hence 1, = l t ,  = lau = 0. Therefore the rectangle R, is a feasible octagon. 

We now have the following lemma on the embedding of P, for a V-node 
U .  

Lemma 9.3.2 Let u be a V-node of T ,  let v be the right child of u,  and 
let w be the left child. If R, is a feasible octagon, then  the NS-slicing path 
P, can be embedded inside R, as a single vertical line segment so that R, 
i s  divided into two feasible octagons R, and R,. 

Proof. We first show that P, can be embedded as a vertical line segment 
inside R, so that A(R,) = A(G,) and A(R,) = A(G,), and hence R, and 
R, satisfies Condition (i). One may assume that P, connects a vertex YN 

on PE and a vertex ys on Pz. Since T is a good slicing tree, the north 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 245 

path P$ of G, is either on the north path P& of G, = G or on a face path 
P, of G, for some H-node z which is an ancestor of u in T .  Thus the part 
of G either above P$ or below P z  is a face of G. If the part of G below P z  
were a face, then u could not be a vertical node. Hence the part of G' above 
P$ is a face. Therefore the positions of all vertices on P$ other than a and 
b have not been fixed although the face above P$ has been drawn. Since 
the part of G below P$ has not been drawn, the position of all vertices on 
Pz other than c and d have not been fixed. We can therefore embed P, 
as a vertical line by sliding YN along P$ together with ys along P$ until 
the equations A(R,) = A(G,) and A(R,) = A(G,) hold, as illustrated in 
Fig. 9.13. 

b 

Fig. 9.13 Sliding P, in R, 

We then show that both R, and R, are octagons. Since R, is a feasible 
octagon, by Condition (ii) 1, < fX, and hence by Eq. (9.1) 1,H < fXH = 
Amin. This implies that each shaded rectangular area of width I, and height 
- < H in Fig. 9.14 is smaller than the area Amin of the smallest inner face in 
G regardless of the shape of octagon R,. Since the east subgraph G, of G, 
contains at least one inner face of G,  we have Amin 5 A(G,). Thus sliding 
P, above stops as in Fig. 9.13(a), and P, is embedded so that R, is drawn 

TEAM LinG - Live, Informative, Non-cost and Genuine !



246 Planar Graph Drawing 

as a rectangle as illustrated in Fig. 9.14 for all nine shapes. Thus R, has a 
shape of the same type as R,, and hence both R, and R, are octagons. 

Since R, is a rectangle, R, satisfies condition (ii)-(viii). 
We finally show that R, satisfies Conditions (ii)-(viii). R, satisfies 

Conditions (ii)-(viii). R, has a shape of the same type as R,. Furthermore, 
I t ,  = It,, lbv  = lb,, I ,  = 1, and f; = f;. Therefore R, also satisfies 
Conditions (ii)-(viii). 0 

Fig. 9.14 Dividing R, to R, and R, by P,. 

We now have the following lemma on an embedding of P, for an H-node 
U .  

Lemma 9.3.3 Let u be an H-node of T ,  let u be the right child of u, and 
let w be the left child. If R, is a feasible octagon, then the WE-slicing path 
P, can be embedded inside R, as either a single horizontal line segment or 
a sequence of three line segments, horizontal, vertical and horizontal ones, 
so that R, is divided into two feasible octagons R, and R,. 

Proof. One may assume that the face path P, connects a vertex yw 
on P$ and a vertex Y E  on P;. We assume that the shape of R, is as 
in Fig. 9.8(a). (The proof for the other shapes is similar.) In this case 
both x N 2  and x s 2  of R, are concave corners, and hence by Condition (vii) 
lb,-ltu 2 f;X > 0. Since X N 2  is concave, by Condition (iii) l t ,  5 (f - f;)X. 
Also 1, < fX by Condition (ii). The position of vertex Y E  has been fixed 
on P; when the part of G to the right of bc was drawn. The horizontal line 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 247 

L passing through YE intersects either ad or xs2xs1, and hence there are 
the following two cases. 
Case 1: L intersects ad. 

Let L intersect ad at a point y', as illustrated in Figs. 9.15(a), (b) 
and (c), and let Q be the polygon a,  x N 1 ,  X N 2 ,  b, YE, y', then we have the 
following three subcases. 
Subcase l(a): A(G,) = A(Q). 

In this case we fix the position of vertex yw at point y' and embed 
the path P, as a single horizontal line segment Y W Y E ,  as illustrated in 
Fig. 9.15(a). R, is the octagon a ,  x N 1 ,  x N 2 ,  b, YE, yw,  and R, is the octagon 
Y W , Y E , C , ~ ~ ~ , X ~ ~ , ~ .  R, has the shape of a type as in Fig. 9.8(f), and R, 
has the shape of type in Fig. 9.8(e). 

We first show that R, is feasible. Since A(R,) = A(G,), Condition (i) 
holds for R,. Furthermore, = 0,  I t ,  = It,, and hence 1, = I t ,  < 1, = 
l b u  < f X .  Thus Condition (ii) also holds for R,. Since fg < fg, we have 
It, = It, 5 (f - f g ) X  < (f - &)A and hence Condition (iii) also holds 
for R,. Since xs1 and xs2 of R, do not exist and x N 2  of R, is concave, 
Conditions (iv)-(viii) also hold. Thus R, is feasible. 

We then show that R, is feasible. Since A(R,) = A(G,), Condition 
(i) holds for R,. Furthermore lt, = 0, l b w  = l bu ,  and hence I ,  = l b u  = 
1, < fX. Thus Condition (ii) also holds for R,. Since 251 is a convex 
corner of R,, lb, 2 f g X  by Condition (vi). Clearly fg < fg. Therefore we 
have lbw = l b u  2 f g X  > &'A, and hence Condition (vi) also holds for R,. 
Since xN1 and x N 2  of R, do not exist and xs1 of R, is convex, the other 
conditions also hold for R,. Therefore R, is feasible. 
Subcase l (b):  A(G,) < A(Q). 

Clearly fg < fg. We first fix a corner x i l  of R, on L so that the 
horizontal line segment Y E X ~ ~  has length ltu+ f g X  and hence Ibv = It,+ f;X, 
as illustrated in Fig. 9.15(b). We then fix the positions of xk2 and yw so 
that A(R,) = A(G,). We now claim that y w x i 2  is below axN1. By 
Condition (vii) lbu 2 f g X + l t u ,  and hence 1, = lb, 2 fgX+lt,  > f g X + & ,  = 
k,v. Since 1, < f X  by Condition (ii), we have lb,H < 1,H < f X H  = Amin 
by Eq. (9.1) and hence the shaded rectangular area of width l b v  and height 
< H in Fig. 9.15(b) is smaller than Amin. Since G, has at least one inner 
face, we have Amin 5 A(G,). Therefore ywxk2 is below axN1, and hence R, 
is a (simple) octagon a ,  X N 1 ,  X N 2 ,  b, YE, x k l ,  x i 2 ,  yw, and R, is an octagon 
yw,  x i 2 ,  xis1, YE, C ,  xs1, xs2,  d.  Both R, and R, have a shape in Fig. 9.8(a). 

We now show that R, is feasible. Since A(R,) = A(G,), Condition (i) 
holds for R,. Clearly, lt, = It,, 16, < !bu, and hence 1, = lb, < 1, < f X .  

TEAM LinG - Live, Informative, Non-cost and Genuine !



248 Planar Graph Drawing 

y' = 

a 

5 2  

1 
C 

Fig. 9.15 Division of R, to R, and R, by horizontal slice P, 

Thus Condition (ii) also holds for R,. Since l t ,  = lt, 5 (f - fg)X < 
(f - fg)X, Condition (iii) also holds for R,. Since 16, = lt, + fgX 2 fgX, 
Condition (vi) holds for R,. Since 16, - l t ,  = lbu - lt, = fgX, Condition 
(vii) also holds. Since x ~ 1  and zkl of R, are convex corners, the other 
conditions also hold. Thus R, is feasible. 

Similarly one can show that R, is a feasible octagon. 
Subcase l (c):  A(G,) > A(Q). 

Clearly fg < fg. We first fix xkl on L so that Ibv = fgX, and then 
fix the positions of zk2 and yw so that A(R,) = A(G,), as illustrated 
in Fig. 9.15(c). Since A(Q) < A(G,), zk2 is below xkl. We now claim 
that ywxk, is above dxs2. By Condition (vi) 16% 2 fgX and hence 1, = 
16, 2 fgX > fgX = 16,. Since 1,H < f X H  = Amin, the shaded area in 
Fig. 9.15(c) is smaller than Amin. Since Amin 5 A(G,), ywxk2 is above 
dxsz. Thus R, is a simple octagon a, X N 1 ,  X N 2 ,  b, YE, xi1, xk2, yw and R, 
is an octagon yw, XIS,, zkl, YE, c,  xs1, xs2, d. R, has a shape in Fig. 9.8(c), 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 249 

and R, has a shape in Fig. 9.8(d). 
We then show that R, is feasible. Since A(R,) = A(G,), Condition (i) 

holds for R,. Since Ibv < 1, and It ,  = It ,  I 1,, we have 1, = max{lbu, I t u }  < 
I, < f X .  Hence Condition (ii) also holds for R,. Since It, < (f - fg)X 
by Condition (iii) for R,, we have l t ,  = It,  5 (f - fg)X < (f - fg)X 
and hence Condition (iii) also holds for R,. Since fg = fg + fz, we have 
Ibv = fzX = (fg - fg)X 5 (f - fg)X and hence Condition (iv) also holds 
for R,. Since X N ~  and xs2 of R, are convex corners and X N 2  and xs1 are 
concave corners, the other conditions also hold for R,. Thus R, is feasible. 

We finally show that R, is feasible. Since A(R,) = A(G,), Condition 
(i) holds for R,. Since lbw = I, > 1bv = It,, we have I, = lbw = 1, < f X and 
hence Condition (ii) also holds for R,. Since It ,  = lbu = fgX, Condition 
(v) also holds for R,. Since lbu 2 fgX by Condition (vi) for R,, we have 
lbw = lbu = 1, 2 fgX > and hence Condition (vi) also holds for R,. 
Since X N 2  and xsl of R, are convex corners, the other conditions also hold 
for R,. Thus R, is feasible. 
Case 2: L intersects xs2xs1 as illustrated in Fig. 9.15(d). 

Let L intersect xs2xsl at a point y' as illustrated in Fig. 9.15(d). Clearly 
1 I fg < fg. We first fix a corner xkl of R, on L so that the horizontal line 
segment Y E X ~ ~  has length It,+ fgX and hence l b ,  = l t ,+ fix. By Condition 
(vii) lb, 2 It,+ fgX for R,. We thus have lbv = It,+ fgX < It,+ fgX 5 lb,, 
and hence Y E X ; ~  is shorter than YEY'. We then fix the positions of xk2 and 
yw so that A(R,) = A(G,). Since 1,H < f X H  = Amin, the shaded 
area in Fig. 9.15(d) is smaller than Amin.  Since Amin 5 A(G,), ywxk, 
is above dxs2. Similarly one can show that ywxk, is below axN1. Thus 
R, is an octagon a ,  X N ~ ,  xN2, b, Y E ,  xkl,  xk2, yw , and R, is an octagon 
yw, xk2, xkl, Y E ,  c,  xs1, xs2, d.  Both R, and R, have a shape in Fig. 9.8(a). 

Similarly to the proof of Subcase l(b), one can show that both R, and 
R, are feasible. 0 

9.3.3 Correctness and Time Complexity 

In this section we verify the correctness and time complexity of Algorithm 
Octagonal-Draw, and mention some remarks on the algorithm. 

We first prove the following lemma on the correctness of Algorithm 
Octagonal-Draw . 

Lemma 9.3.4 
of a good slicing graph G. 

Algorithm Octagonal-Draw finds an octagonal drawing 

TEAM LinG - Live, Informative, Non-cost and Genuine !



250 Planar Graph Drawing 

Proof. The initial rectangle R, a t  the root r of T is a feasible octagon. 
Assume inductively that u is an internal node of T and R, is a feasible 
octagon. Let u and w be the right child and left child of u, respectively. By 
Lemmas 9.3.2 and 9.3.3 one can embed P, inside R, so that R, and R, are 
feasible octagons. Thus, after the execution of the algorithm, each inner 
face of G corresponding to a leaf of T is a feasible octagon. Of course, 
the contour of the outer face of G is the rectangle R,. Thus Algorithm 

0 Octagonal-Draw finds an octagonal drawing of G. 

We now have the following lemma on the time complexity of Algorithm 
Octagonal- Draw. 

Lemma 9.3.5 Algorithm Octagonal-Draw runs in linear time. 

Proof. Since A(G,) for each leaf u in T is known, using a bottom-up 
computation one can compute A(G,) for each node u in T .  This operation 
takes linear time in total. One can compute the number j g  for all nodes u of 
T in linear time. From R,, A(G,), A(G,), A(G,), fg, fg and fg, one can 
decide R, and R, in constant time. Thus the algorithm Octagonal-Draw 
runs in linear time. 0 

Lemmas 9.3.4 and 9.3.5 complete the proof of Theorem 9.3.1. 

9.4 Bibliographic Notes 

A cycle C in a plane graph G is called a proper inner cycle if C does not 
contain any outer edge. Obviously every slicing graph is a 2-3 plane graph 
which has a rectangular drawing. Conversely, Rahman et al. showed that 
if a 2-3 plane graph G has a rectangular drawing and every proper inner 
cycle in G has at least five legs, then G is a good slicing graph and a good 
slicing tree T of G can be found in linear time [RMN04]. 

A connected graph is cyclically Ic-edge connected if the removal of any 
set of less than k edges leaves a graph such that exactly one of the connected 
components has a cycle. Let G be plane graph obtained from a cyclically 
5-edge connected plane cubic graph by inserting four vertices a,  b, c and d 
of degree two on the outer cycle. Thomassen [Tho921 showed that such a 
graph G has a drawing in which each edge is drawn as a single straight line 
segment which is not always horizontal or vertical, each inner face attains its 
prescribed area, and the outer cycle is a rectangle having the four vertices 
as corners. His proof is based on a proof for a result in [Tho84], and a 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Octagonal Drawing 251 

straightforward implementation of his method takes time 0(n3) ,  where n 
is the number of vertices in G. 

Exercise 

1. Find an example of a slicing graph which is not good. 
2. Find an example of a good slicing graph in which a proper inner cycle 

3. Rewrite the proof of Lemma 9.3.3 for the shape of R, as in Fig. 9.8(c). 
4. Let A,,, be the area of an inner face whose prescribed area is the largest 

among all inner faces of a good slicing graph G, and let k = Amax/A,i,. 
Then show that X defined by Eq. (9.1) satisfies X 2 &, where W is the 
width of the initial rectangle R,. (See Fig. 9.9.) 

has less than five legs. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



This page intentionally left blank

TEAM LinG - Live, Informative, Non-cost and Genuine !



Appendix A 

Planar Embedding 

A.l  Introduction 

There are many practical situations in which one may wish to examine 
whether a given graph is planar, and if so, to find a planar embedding of 
the graph. For example, in the layout of printed or VLSI circuits, one is 
interested in knowing whether a graph G representing a circuit is planar and 
also in finding a planar embedding of G if it is planar. In this appendix we 
present a linear algorithm for the problem, due to [LEC67, BL76, CNA0851. 

There are two typical algorithms which test planarity in linear time: 
one by Hopcroft and Tarjan [HT74], and the other by Booth and Lueker 
[BL76]. We present the latter called the “vertex addition algorithm” in 
Section A.2, because it is conceptually simpler than the former. The vertex 
addition algorithm was first presented by Lempel et al. [LEC67], and later 
improved to a linear algorithm by Booth and Lueker [BL76] employing an 
“&numbering” algorithm and a data structure called a “PQ-tree.” The al- 
gorithm adds one vertex in each step. Previously embedded edges incident 
on this vertex are connected to it, and new edges incident on it are embed- 
ded and their ends are left unconnected. Sometimes whole pieces have to 
be reversed (flipped) around or permuted so that some ends occupy consec- 
utive positions. If the representation of the embedded subgraph is updated 
with each alternation of the embedding, then the final representation will 
be an actual embedding of a given whole graph. Thus it is not difficult to 
derive an O(n2)  time embedding algorithm from the testing algorithm. 

In Section A.3 we present a linear algorithm for embedding planar 
graphs, which is based on the vertex addition algorithm. The embedding 
algorithm, due to Chiba et al. [CNA085], runs in two phases. In the first 
phase the algorithm embeds a digraph obtained from a given planar (undi- 

253 
TEAM LinG - Live, Informative, Non-cost and Genuine !



254 Planar Graph Drawing 

rected) graph by assigning a direction to every edge from the end having a 
greater st-number to the other end. In the second phase the algorithm ex- 
tends the embedding of the digraph into an embedding of the given planar 
(undirected) graph. 

A.2 Planarity Testing 

We first define some terms and concepts and then present the vertex addi- 
tion algorithm for testing planarity. 

Let G = (V, E )  be a graph with vertex set V and edge set E.  A graph 
is represented by a set of n lists, called “adjacency lists;” the list Adj(v) 
for vertex u E V contains all the neighbors of u. For each u E V ,  an actual 
drawing of a planar graph G determines, within a cyclic permutation, the 
order of u’s neighbors embedded around u. Embedding a planar graph G 
means constructing adjacency lists of G such that, in each list Adj(u), all 
the neighbors of u appear in clockwise order with respect to an actual 
drawing. Such a set Adj of adjacency lists is called an embedding of G. An 
example is illustrated in Fig. A.l(b) which is an embedding of a graph G 
in Fig. A.l(a). 

Planarity testing examines whether a given graph is planar or not, that 
is, whether a given graph has an embedding on the plane without edge 
crossings. A graph G is planar if and only if all the 2-connected components 
of G are planar [Har72]. Moreover, one can easily obtain an embedding of 
an entire graph G from embeddings of all the 2-connected components 
of G. We hence assume that a given graph G is 2-connected. Due to 
Corollary 2.2.4 we may further assume that G satisfies m < 3n; otherwise 
G is nonplanar. 

Fig. A.l (a) An st-numbering, and (b) adjacency lists. 

A numbering of vertices in a graph, called an “st-numbering,” plays a 
TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 255 

crucial role in the testing algorithm. In Section A.2.1 we study an “st- 
numbering” of a graph. We present the data structure called a “PQ-tree” 
in Section A.2.2 and a planarity testing algorithm in Section A.2.3. 

A.2.1 st - Numbering 

A numbering of vertices of a graph G by 1,2, . . . , n is called an st-numbering 
if the two vertices “1” and “n” are necessarily adjacent and each j of the 
other vertices is adjacent to  two vertices i and k such that i < j < k.  
The vertex “1” is called a source and is denoted by s, while the vertex 
“n” is called a sink and is denoted by t .  Figure A.l(a) illustrates an st- 
numbering of a graph. Every 2-connected graph G has an st-numbering 
and an algorithm given by Even and Tarjan [ET76] finds an st-numbering 
in linear time as described below. 

We first present a procedure DFS which executes the depth-first search 
with choosing an arbitrary edge (t, s) as the first edge, and computes, for 
each vertex u, its depth-first number DFN(w), its father FATH(u), and its 
lowpoint LOW(v). These values are used in the st-numbering algorithm. 
The lowpoint is defined as follows: 

LOW(w) = min({w} U {w[ there exists a back edge (u, w) such that 
u is a descendant of u and w is an ancestor 
of u in a DFS tree T } ) ,  

where we assume that the vertices u are named by their depth-first numbers 
DFN(u). This definition is equivalent to 

LOW(v) = min({v} u {LOW(z)lz is a son of u} 
U {wl(v, w) is a back edge}). 

Figure A.2 illustrates these values. The following depth-first search algo- 
rithm DFS, a variant of one in Chapter 3, computes the required values. 

procedure DFS(G) 
begin 

Set T = 8; {T is a DFS tree} 
Set COUNT = 1; 
Mark each vertex of G “new”; 
Let u be any vertex of G; 

TEAM LinG - Live, Informative, Non-cost and Genuine !



256 Planar Graph Drawing 

Search(v) 
end. 

procedure Search(v); 

Mark u “old”; 
Set DFN(w) = COUNT;  
Set COUNT = COUNT fl; 
Set LOW(v) = DFN(w); 
for each vertex w in Adj(v) 

do if w is marked “new” 

begin 

then begin 
Add (v,w) to T ;  
Set FATH(w) = w; 
Search( w ) ; 
Set LOW(v) = min{LOW(v), LOW(w)} 

end 
else if w is not FATH(w) 

then set LOW(v) = min{LOW(v), DFN(w)} 
end; 

Figure A.2(b) illustrates a DFS Tree, DFN(w) and LOW(w). 

a 

Fig. A.2 (a) Graph G, and (b) DFS tree T ,  DFN and LOW; tree edges are drawn by 
solid lines, and back edges by dotted lines; DFS numbers are attached to vertices, and 
LOW numbers are written in circles. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 257 

We next present a function PATH. Initially, the two vertices t and s 
together with the first searched edge ( t , s )  are marked “old,” and all the 
other vertices and edges are marked “new.” Note that DFS(t) = 1 and 
DFS(s) = 2. Path(v) takes as the value a path going from TJ to an “old” 
vertex. The procedure PATH(v) is as follows: 

Case 1: there is a “new” back edge (v,w). 
Mark (v, w) “old”; 
Set PATH = vw; 
return. 

Let WO(= w)w1w2 ..-Wk(= LOW(w)) be the path which defined 
LOW(w), that is, it runs up the tree and ends with a back edge into 
a vertex u such that DFN(u) = LOW(w); 
Set PATH = vwow1 - . .wk;  
Mark all the vertices and edges on the path “old”; 
return. 

{DFN(w) > DFN(u) in this case}; 
Let WO( = W ) W ~ W ~  . . . wk be the path going backward on 
tree edges to an ‘‘old” vertex; 
(We can trace the path using father pointers FATH.} 
Set PATH = vwowl . . . W k ;  

Mark all vertices and edges “old”; 
return. 

Set PATH = 0; 
return. 

Case 2: there is a “new” tree edge (v, w). 

Case 3: there is a “new” back edge (w,v). 

Case 4: otherwise, that is, all edges (u,  w) incident to TJ are 

We now give one example. Mark vertices a and c and edge (a ,c )  of 
G in Fig. A.2(b) “old,” and repeatedly apply the function PATH(c) until 
PATH(c)= 0, then we successively get paths 

PATH(c) = cda, (A.1) 

PATH(c) = cbd, (A.2) 

PATH(c) = c e f d ,  (A.3) 
TEAM LinG - Live, Informative, Non-cost and Genuine !



258 Planar Graph Drawing 

and 

PATH(c) = cf, 

as illustrated in Fig. A.3. Then applying PATH(b), we get 

PATH(b) = ba. (A.5) 

The path (A.l) applies to  Case 2, and paths (A.2), (A.3), and (A.4) 
to Case 3, and the path (A.5) to Case 1. Thus such iterative applications 
of PATH partition the edges of a graph into several paths. 

We are now ready to present the st-numbering algorithm. 

Algorithm ST-NUMBER(G); 
begin 

Mark t ,  s and (t, s )  “old” and all the vertices and edges “new”; 
Push down t and s into stack S in this order; 

{ s  is over t} 
Set COUNT = 1; 
Pop up the top entry ‘u from S; 
while v # t 

do begin 
if PATH(v) = 0 

then begin 
Set STN(w) = COUNT and COUNT = COUNT + 1 

end 
else begin 

Let PATH(v) = vu1u2...Ukw; 
Push down the vertices Uk, Uk-1,. . . , u1, v into S 
in this order 
{v is a top entry of S} 

end; 
Pop up the top entry v from S 

end; 
Set STN(t) = COUNT 

end. 

Assume that we apply ST-NUMBER to G in Fig. A.2 with letting s = c 
and t = a and that iterative calls for PATH in the algorithm produce a 
sequence of paths (A.l)  - (A.5). Then the stack will become as illustrated 

(A.4)

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 259 

in Fig. A.3(b) just after the path (A.3) is processed, and st-numbers will be 
assigned as in Fig. A.3(a). We have the following theorem on the algorithm. 

Fig. A.3 (a) st-numbering of vertices of G and (b) stack S. 

Theorem A.2.1 
numbering for a 2-connected graph G. 

The algorithm ST-NUMBER computes correctly an st- 

Proof. Every vertex v is numbered and permanently removed from stack 
S only after all the edges incident to u become LLold.” Since G is 2- 
connected, every verex v is reachable from s by a path not passing through 
t. Therefore every vertex is placed on S before t is removed, and hence 
every vertex is numbered. Thus we shall show that the numbering is in- 
deed an st-numbering. Clearly STN(s) = 1 and STN(t) = n. Every other 
vertex u is placed on S, for the first time, as an intermediate vertex on a 
path. Moreover, the last vertex w of the path marked “old” has already 
been pushed and yet stays in S ,  since w has been incident to a “new” edge. 
Thus, two neighbors of v are stored in S below and above v, and hence 
one above u is assigned a lower number and one below u a higher number. 

0 Thus the numbering is indeed an st-numbering. 

A.2.2 Bush Form and PQ-Dee 

In this section we present a partial embedding and its related data structure 
required for planarity testing. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



260 Planar Graph Drawing 

From now on, we refer to the vertices of a graph G by their st- 
numbers. Let Gk = ( v k ,  E k )  be the subgraph induced by the vertices 
v k  = {1,2, .  . . , k}. If k < n, then there must exist an edge of G with one 
end in v k  and the other in V - v k .  Let GL be the graph formed by adding 
to Gk all these edges, in which the ends in V - v k  of added edges are kept 
separate. These edges are called virtual edges, and their ends in V - vk are 
called virtual vertices and labeled as their counterparts in G, but they are 
kept separate. Thus there may be several virtual vertices with the same 
label, each with exactly one entering edge. Let B k  be an embedding of GL 
such that all the virtual vertices are placed on the outer face. B k  is called 
a bush form of GL. The virtual vertices are usually placed on a horizontal 
line. G, Gk, and B k  are illustrated in Fig. A.4. The following lemma implies 
that every planar graph G has a bush form B k  for 1 5 k 5 n. 0 3&2m 4 4 

5 
5 6 6  5 5 6 

6= t 

(4 (b) (c) 

Fig. A.4 (a) An st-numbered graph G, (b) G4, and (c) bush form B4. 

Lemma A.2.2 [Eve791 Let 1 5 k 5 n. If edge ( s , t )  is drawn on the 
boundary of the outer face in an embedding of a planar graph G,  then all 
vertices and edges of G - Gk are drawn in the outer face of the plane 
subgraph Gk of G. 

Proof. Assume that some vertices of G - Gk lie on a face F of Gk. Since 
all these vertices are higher than the vertices on F ,  the highest one must 
be sink t(= n). Thus the face F must be the outer face of the plane 
graph Gk. 0 

An upward digraph D,  is defined to be a digraph obtained from G by 
assigning a direction to  every edge so that it goes from the larger end to the 
smaller. An upward embedding A, of G is an embedding of the digraph D,. 
In an embedding of an undirected graph G, a vertex v appears in list Adj(w) 
and w appears in list Adj(v) for every edge (v, w). However, in an upward 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar  Embedding 261 

embedding A, of G, the head w appears in adjacency list A,(v), but the 
tail z1 does not appear in A,(w) for every directed edge (v,w). Figure A.5 
depicts an upward digraph D, and an upward embedding A,.for the graph 
G in Fig. A.l(a). 

@ 
6 

6 1 1  4 - 4 3  j 

Fig. A.5 
Fig. A.l(a). 

(a) Upward digraph D,, and (b) upward embedding A ,  for a graph G in 

We use a special data structure “PQ-tree” to represent Bk. A PQ-tree 
consists of “P-nodes,” “Q-nodes” and “leaves.” A P-node represents a cut 
vertex of Bk, so the sons of a P-node can be permuted arbitrarily. A Q- 
node represents a 2-connected component of Gk, and the sons of a Q-node 
are allowed only to reverse (flip over). A leaf indicates a virtual vertex of 
Bk. In an illustration of a PQ-tree, a P-node is drawn by a circle and a 
Q-node by a rectangle. A bush form Bk and a PQ-tree representing Bk 
are illustrated in Fig. A.6. Thus a PQ-tree represents all the permutations 
and reversions possible in a bush form Bk. 

Fig. A.6 (a) Bush form Bk, and (b) PQ-tree. 

The key idea of the vertex addition algorithm is to reduce the planarity 
testing of Gk+1 to the problem which asks for permutations and reversions 
to make all the virtual vertices labeled “kf 1” occupy consecutive positions. 
The following lemma guarantees that this reduction is possible. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



262 Planar Graph Drawing 

Lemma A.2.3 [Eve791 Let Bk be any bush fo rm of a subgraph Gk of 
a planar graph G. Then there exists a sequence of permutations and re- 
versions to make all the virtual vertices labeled “k + 1 )) occupy consecutive 
positions on  the horizontal line. 

Proof. We prove a more general proposition: if B and B‘ are two sub- 
bush forms, having the same vertices, of any distinct bush forms of Gk, then 
there exists a sequence of permutations and reversions which transforms the 
sub-bush form B‘ into a sub-bush form B“ such that the virtual vertices 
appear on the horizontal line in the same order as in B. 

The proof is by induction on the number of vertices in the sub-bush 
forms B and B‘. If each of the sub-bush forms consists of only one vertex 
and one virtual vertex, then clearly the proposition is true. 

Let w be the smallest vertex of the sub-bush forms B and B‘. Consider 
first the case where w is a cut vertex of the sub-bush forms. Then there 
exist components (sub-bush forms) of B and B‘, which can be decomposed 
a t  w. If the components of B’ are not in the same order as in B ,  then 
by permuting them, one can put them in the same order as in B. Then, 
applying the inductive hypothesis to each of the components (sub-bush 
forms), we can get a sub-bush form B“ whose virtual vertices are in the 
same order as in B. 

Consider next the case where w is not a cut vertex. Let H be 
the 2-connected component of the sub-bush forms containing w, and let 
u1 , u2,. . . , uk be the cut vertices of B contained in H which appear on the 
outer cycle of H in this order. These vertices in B‘ appear on the outer cy- 
cle of H in the same or reversed order. If the order is reversed, then reverse 
H about w in B’. Thus we can put the sub-bush forms of B’ rooted with 
ui) 1 5 i 5 k, in the same order as in B. Applying the inductive hypothesis 
to each of the sub-bush forms, we can get B” whose virtual vertices are in 
the same order as in B. 

Booth and Lueker [BL76] showed that the permutations and reversions 
mentioned in Lemma A.2.3 can be found by repeatedly applying the nine 
transformation rules called the template matchings to the PQ-tree. A leaf 
labeled “k + 1)’ is said to be pertinent in a PQ-tree corresponding to Bk. 
The pertinent subtree is the minimal subtree of a PQ-tree containing all the 
pertinent leaves. A node of a PQ-tree is said to be full if all the leaves among 
its descendants are pertinent. In Figs. A.7, A.8, and A.9 the template 
matchings are illustrated. A pattern at  the left hand side is a PQ-tree to 
be transformed and a pattern at the right hand side is a resulting PQ-tree. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 263 

A full node or subtree is hatched, and a Q-node which roots a pertinent 
subtree is hatched partially. The template matchings (c) and (e) are for the 
case when the root of a PQ-tree is a P-node and is the root of a pertinent 
subtree. 

We now present an example of a reduction on a PQ-tree performed 
by using these template matchings. Assume that the PQ-tree shown in 
Fig. A.lO(a) represents a bush form B13 of a given graph whose pertinent 
leaves are labeled “14.” Then the PQ-tree is transformed as follows. The 
PQ-tree in Fig. A.lO(b) is obtained by applying to  a P-node PI the template 
matching of Type (d) in Fig. A.7. (Since PI has only one full son and 
one non-full son, P-nodes in the template matching (d) are not created.) 
Then a template matching of type (h) in Fig. A.9 applied to the PQ-tree 
in Fig. A.lO(b) at a Q-node Q1 produces the PQ-tree in Fig. A.lO(c). A 
matching of Type (h) in Fig. A.9 to Q2 in Fig. A.lO(c) produces the PQ-tree 
in Fig. A.lO(d). A matching of Type (g) in Fig. A.8 to P 2  in Fig. A.lO(d) 
produces the PQ-tree in Fig. A.lO(e). In order to construct B14, the PQ-  
tree in Fig. A.lO(f) is formed from the PQ-tree in Fig. A.lO(e) by replacing 
all the full nodes by a single P-node having sons which correspond to the 
neighbors of vertex 14 having st-numbers larger than 14. One can easily 
observe that the next reduction for the vertex 15 will fail, that is, GI5 is 
nonplanar. 

A.2.3 Planarity Testing Algorithm 

In this section we formally present Algorithm Planar for planarity testing 
of a given graph as follows. 

Algorithm Planar(G) 
{G is a given graph} 
begin 

Assign st-numbers to all the vertices of G; 
Construct a PQ-tree corresponding to Gi; {a single 
P-node with virtual edges incident on source s = 1) 
for u = 2 to n 

do begin 
{reduction step} 
Try to gather all the pertinent leaves by repeatedly applying 
the template matchings from the leaves to the root of 
the pertinent subtree; 

TEAM LinG - Live, Informative, Non-cost and Genuine !



264 Planar Graph Drawing 

(e) 

Fig. A,? The template matchings of Types (a)-(e). 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 265 

Fig. A.8 The template matchings of Types (f) and (g). 

if the reduction fails 
then begin 

G is nonplanar; 
return 

end 
{vertex addition step} 
Replace all the full nodes of the PQ-tree by a new P-node 
(which corresponds to a cut vertex u in GL); 
Add to the PQ-tree all the neighbors of 2, larger than u 
as sons of the P-node 

end; 
G is planar 

end. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



266 Planar Graph Drawing 

Fig. A.9 The template matching5 of Types (h) and (i). 

Figure A. l l  illustrates a sequence of bush forms together with the cor- 
responding PQ-trees which appeared in the execution of Planar for the 
graph G in Fig. A.l(a). B(, is a bush form just after the “reduction step” 
for vertex Ic + 1. 

Clearly the time spent by the vertex addition step for v is proportional 
to  the degree of v. Therefore the step spends time O ( m )  = O(n)  in total. 
On the other hand the time spent by the reduction step for v is proportional 
to the number of pertinent leaves plus the number of unary nodes in the 
pertinent tree. It is not straightforward to show but was shown by Booth 
and Lueker that all reduction steps spend time O(n)  in total. Thus the 
algorithm spends time O(n) in total. 

A.3 Finding Planar Embedding 

One can easily have the following naive embedding algorithm: first write 
down the partial embedding of the graph corresponding to B,; and, with 
each reduction of the PQ-tree, rewrite (the adjacency lists of) the bush 
form. Clearly the final bush form is indeed an embedding of the graph. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 267 

/ 
56 

Fig. A.10 An example of a reduction of a PQ-tree. 

Unfortunately the algorithm spends time O(n2) ,  since it takes time O ( n )  
per reduction step of the PQ-tree to update the adjacency lists of the bush 
form. 

In this section, we present a linear-time embedding algorithm Embed 
[CNA085]. The algorithm Embed runs in two phases: in the first phase 
procedure Upward-Embed determines an upward embedding A, of a pla- 
nar graph G; in the second phase procedure Entire-Embed constructs an 
entire embedding Adj of G from A,. We will show that Embed takes linear 
time, by giving a linear algorithm Entire-Embed in Section A.3.1 and a 
linear algorithm Upward-Embed in Section A.3.2. 

A.3.1 

In this subsection we describe an algorithm for the second phase. One can 
easily observe the following Iemma. 

Algorithm for Extending A,  into Adj 

TEAM LinG - Live, Informative, Non-cost and Genuine !



268 Planar Graph Drawing 

1 4 5 3 5  

6 4 5 3 3  5 

A 
6 4 5 4 6 5  

B I  

6 4 5 3 3  5 

6 m 4 5 4 6 s  

A m  
6 5 5 6 6 5  6 5 5 6 6  5 

6 6 6  5 5 5  

8, 

6 6 6 6  

8 ,  

6 5 4 4  6 5  6 5 4 4 6  5 
G = Gn= B 

0 

Fig. A . l l  Reduction process of Planar for the graph G in Fig. A.l (a) .  

Lemma A.3.1 Let Adj be an embedding of a planar graph G obtained by 
the naive algorithm above, and let v be a vertex of G. Then all the neighbors 
smaller than v are embedded consecutively around v. (See Fig. A.12.) That 
is, Adj(v)  does not contain four neighbors 201, w2, 203 and 204 appearing in 
this order and satisfying W I ,  w3 < u and 2 0 2 ,  w4 > v. 

Proof. Immediate from Lemmas A.2.2 and A.2.3. 0 
As shown later in Section 4.3.2, Embed finds an upward embedding A, 

of G such that, for each vertex v E V ,  the neighbors x1,x2,-.- ,xi smaller 
than u appear in A,(v) in this order as indicated by a dotted arrow in 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 269 

Fig. A.12. That is, the uys neighbors embedded around v counterclockwise 
next to the top entry x1 of A,(v) is greater than o. In particular, the top 
entry of list A,(t) for the sink t(= n) is the source s(=1). We now present 
the algorithm Entire-Embed for extending such an upward embedding 
A,  into an embedding Adj of a given graph. The algorithm executes once 
the depth-first search starting at the sink t on an upward digraph D,. The 
algorithm adds vertex yk to the top of the list Au(w) when the directed 
edge ( y k ,  v) is searched. 

Fig. A.12 
u, and y1, y2,. . . , y j  are greater than w.) 

Embedding of the neighbors of w. (Number z1,zg,. . . ,z, are smaller than 

procedure Entire-Embed; 
begin 

Copy the upward embedding A,  to  the lists Adj; 
Mark every vertex “new”; 
T := 0; 
{A DFS-tree T is constructed only for analysis of the algorithm.) 
DFS(t); 

procedure DFS(y); 
end; 

begin 
Mark vertex y “o ld ;  
for each vertex o E A,(y) 

TEAM LinG - Live, Informative, Non-cost and Genuine !



270 Planar Graph Drawing 

do begin 
Insert vertex y to the top of A,(v); 
if w is marked “new” 

then begin 
Add edge (y,w) to T ;  
DFS(v); 

end 
end 

end; 
We have the following result on the algorithm. 

Lemma A.3.2 Let  D, be a n  upward digraph of a given graph G,  and let 
A, be a n  upward embedding of D,. T h e n  the algorithm Entire-Embed 
extends A, in to  a n  embedding Adj  of G in linear t ime.  

Proof. Clearly the algorithm terminates in linear time since the algo- 
rithm merely executes the depth-first search once. Thus we concentrate on 
the correctness. The definition of an st-numbering implies that there exists 
a directed path from t to every vertex. Therefore D F S ( t )  traverses all the 
vertices and so all the directed edges of D,. (This is not necessarily true 
for an arbitrary digraph.) Hence the final list Adj(v) contains not only the 
neighbors of w larger than w but also those smaller than w. That is, the final 
lists Adj are surely adjacency lists of a given (undirected) graph G. Hence 
we shall prove that all the entries of Adj are stored correctly in clockwise 
order. 

By Lemma A.3.1 all w’s neighbors ~1,222, . . . , xi smaller than ‘u appear 
in A,(v) in this order. The algorithm first copies list A,(v) to list Adj(v) 
and then adds each neighbor y of w larger than w to the top of Adj(v) 
in the order of the directed edge (y,v) being searched. Therefore it is 
suffices to show that directed edges (y1 , w), (y2, v), . . . , (y j  , w) are searched 
in this order. (See Fig. A.12.) Assume on the contrary that (Yk,w) and 
( y l , ~ )  are searched in this order although k > 1. Let p k  be the path from 
t to Y k ,  and let 8 be the path from t to yl in the DFS-tree T .  (See 
Fig. A.13.) Let z be the vertex at which Pl leaves 9, and let (z,yk) E P k  

and (z,yi) E 8. Thus the vertex yI, precedes yi in A,(z). Moreover the 
subpaths PL = z ,  yk,-.. ,Yk of P k  and 6‘ = z ,y / I , . - .  , y1 of Pl have no 
common vertices other than z .  Therefore the two paths PA and Pi together 
with two edges (yl, w )  and (Yk, v) form a cycle c. All the vertices of A,(v) 
must lie in the interior of the cycle; otherwise, Lemma A.3.1 would be 
violated. Since source s(=l) is located on the boundary of the outer face, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 271 

the vertex v is not s. By the definition of an st-numbering the DFS-tree 
T contains a descending path P from v to s, all the vertices of which are 
smaller than or equal to v. Since s lies in the exterior of the cycle C ,  P 
must intersect the cycle C. However all the vertices of C are larger than or 

0 equal to v. This is a contradiction. 

t = n  

Fig. A.13 Illustration for the proof of Lemma A.3.2. 

A.3.2 Algorithm for  Constructing A,, 

In this subsection we give an algorithm for constructing A,. One can easily 
obtain list A,(v) or its reversion by scanning the leaves labeled “w” in the 
vertex addition step for ZI. If A,(v) is correctly determined in the step, 
then, counting the number of subsequent w’s reversions, one can correct the 

TEAM LinG - Live, Informative, Non-cost and Genuine !



272 Planar Graph Drawing 

direction of A,(v) simply by reversing A,(v) if the number is odd. However 
a naive counting algorithm takes time O(n2).  Moreover, the information 
on may disappear from the PQ-tree. Thus an appropriate device is 
necessary to trace v’s reversions. 

The root T of 
the pertinent subtree can be found by “bubble up” procedure [BL76]. Let 
b l ,  ba,. . . , b, be the maximal sequence of full brothers that are sons of T .  

(See Fig. A.l4(a).) To obtain A,(v), we scan the subtree rooted at bi by 
the depth-first search for i = 1 , 2 , .  . . , m in this order. In a schematic illus- 
tration of a PQ-tree, one can easily recognize the direction of the maximal 
sequence, that is, whether b l ,  ba t .  . . , b, are in left-to-right or right-to-left 
order. However in the data structure of a PQ-tree, a Q-node is doubly 
linked only with the endmost sons, and a son of a Q-node has pointers 
only to the immediate brothers [BL76]. Therefore we must traverse sons 
of a Q-node from a full son to one of the endmost sons, and then check 
the direction of the sequence by using the pointer between the endmost son 
and the Q-node. Thus such a straightforward method requires time O(n)  
to determine the direction of the sequence, that is, to know whether the 
constructed list is either A,(v) or its reversion. 

The algorithm does not determine the direction of A,(v) at the vertex 
addition step for v, but adds a new special node to the PQ-tree as one 
of r’s sons at an arbitrary position among them. The new node is called 
a “direction indicator”, also labeled “u” and depicted by a triangle, as 
illustrated in Fig. A.l4(b). The indicator “u” plays two roles. The first is 
to trace the subsequent reversions of v. The indicator will be reversed with 
each reversion of its father. (No physical action is taken in the indicator’s 
reversion - it is only done implicitly.) The second is to  bear the relative 
direction of node u to its brothers. When the rightmost or leftmost brother 
of “u” is subsequently scanned together with the indicator “u” , the direction 
of the constructed A,(v) is known and so is corrected if necessary. 

In the template matching algorithm, we ignore the presence of the di- 
rection indicators. When we access an immediate brother b of a node v ,  
we skip the direction indicators between u and b if any. When we change 
pointers of a PQ-tree in a reduction step, we treat a direction indicator 
as a usual node of a PQ-tree. Note that all the direction indicators in a 
PQ-tree are necessarily leaves: none of the direction indicators has a son. 
Now we redefine a node to be full if all the leaves of its descendants that 
are not indicators are labeled “d’ . 

Thus we modify the vertex addition step in Planar as follows and call 

We first show how to scan all the leaves labeled “u”. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 273 

Fig. A.14 (a) Direction of a scanning, and (b) direction indicator “v.” 

the modified algorithm Upward-Embed. 

{Vertex addition step} 
begin 

Let l l , 1 2 , + . -  , l j  be the leaves labeled %”, and let f l ,  f2,... , fk be 
the direction indicators scanned (using the DFS procedure just 
described) in this order; 
{It is not necessary to recognize here whether 11, la, . . . , l j  are in the 

left-to-right order.} 
Au(v) = { 1 1 , E 2 , . . .  ,ij}; 
if root T of the pertinent subtree is not full 

{The subtree has a leaf which is not an indicator and not 
labeled “u” } 

begin 
then {the root T is a Q-node } 

Add an indicator “v” directed from l j  to 11 to the PQ-tree 
as a son of the Q-node T at an arbitrary position among 
the sons; 
Add the direction indicators fl , f2, . . . , fk as sons 
of the Q-node T at arbitrary positions among the sons 

end 

begin {The pertinent subtree corresponds to a reversible 
component in an embedding of G, that is, the cut vertex of G 
corresponding to root T forms a “separation pair” with 
vertex u. Therefore we may assume that Au(v) is correctly in 
clockwise order.} 
Delete fl, f2,. . . , fk from the PQ-tree; 

else 

TEAM LinG - Live, Informative, Non-cost and Genuine !



274 Planar Graph Drawing 

for i = 1 to Ic do 
if indicator f i  is directed from 11 to l k  

then reverse the adjacency list Au(f i ) ;  
{The order of A,(fi) is corrected with the assumption 
that A,(u) is in clockwise order.} 

end; 
if root r is not full 
then replace all the full sons of r by a P-node 

{which corresponds to a cut vertex v of GL} 
else replace the pertinent subtree by a P-node; 
Add all the virtual vertices adjacent to u (i.e. all neighbors of w 
in G greater than u )  to  the PQ-tree as the sons of the P-node 

end; 

We have the following result on Upward-Embed. 

Lemma A.3.3 
ding A, of a g i ven  p lanar  graph G. 

Proof. Let w E V .  Clearly the list A,(v) obtained by Upward-Embed 
contains all the neighbors of u smaller than u. Furthermore these vertices 
appear in either clockwise or counterclockwise order around u. Therefore 
we shall show that the vertices in each A,(v) appear in clockwise order. It 
suffices to consider the following two cases. 
Case  1: the direction indicator “u” is not added to the PQ-tree. 

The leaves of the pertinent subtree which are not indicators are all 
labeled “2)” at the vertex addition step for u. Such a pertinent subtree 
corresponds to  a reversible component in a plane embedding of G. (See 
Fig. A.15.) Therefore one may assume that the vertices in A,(u) appear in 
clockwise order even in the final embedding. 
Case  2: the direction indicator “u” is added to the PQ-tree. 

When the algorithm terminates, the PQ-tree consists of exactly one 
isolated P-node, and hence has no direction indicators in particular. That 
is, every indicator will be eventually deleted. Therefore one can assume 
that the indicator “v” is deleted in the vertex addition step for a vertex 
w(> u). The direction indicator “u” follows reversions of the Q-node which 
is the father of node “u” as long as w remains in a PQ-tree. Therefore if 
the direction of indicator “u” is opposite relative to the scanning of the 
leaves 1 1 , l z , .  . . , l j  labeled LLw”, then either the order (clockwise or counter- 
clockwise) of AU(w) is the same as A,(w) and vertex v is reversed an odd 

T h e  algori thm Upward-Embed obtains  a n  upward embed- 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 275 

number of times, or the order of A,(u) is opposite to that of A,(w) and the 
vertex u is reversed an even number of times. In either case, we can correct 
adjacency list A,(w) simply by reversing it. Since the pertinent subtree for 
w corresponds to a reversible component of G, the direction indicator “w” 
is not added to  the PQ-tree. Hence the adjacency lists A,(v)  and A,(w) 
are never reversed after the vertex addition step for w. Thus A,(v) remains 
correctly in clockwise order. 0 

V v v  v v  

Fig. A.15 Reversible component. (a) pertinent subtree, (b) &,-I, and (c) G,. 

However, Algorithm Upward-Embed, as it is, requires time O(n2) 
since it may scan the same indicator many times, say O(n)  times. Thus we 
shall refine the algorithm so that it takes time O(n).  

Now consider the role of a direction indicator in detail. Assume that 
root T of a pertinent subtree is not full, and define indicators ‘lu” and 

TEAM LinG - Live, Informative, Non-cost and Genuine !



276 Planar Graph Drawing 

f1, f2  , . . . ~ f k  as in the algorithm. After the direction indicator “u” is added 
to a PQ-tree, indicators “d’ and fi, f 2 , .  . . , fk are reversed all together. 
Therefore it suffices to remember the directions of f1, f2,. . . , f k  relative 
to that of “u”. Thus we delete the indicators f l ,  f2 , . . .  , fk from the PQ- 
tree and store them in A,(v) together with vertices 11,12,. . . , l j .  Once 
the correct order of adjacency list A,(v) is known, we can easily correct 
the orders of adjacency lists A,(fi), 1 5 i 5 k, simply by checking the 
direction of indicator fi in A,(v). We execute such a correction for each u, 
u = n, n - 1,. . . ,1, in this order. 

The following is the algorithm Upward-Embed refined as above. 
Figure A.16 illustrates an Upward-Embed applied to the graph in 
Fig. A.5(a). 

procedure Upward-Embed( G); 
{G is a given planar graph.} 
begin 

Assign st-numbers to all the vertices of G; 
Construct a PQ-tree corresponding to Gi; 
for u = 2 to n 

do begin 
(reduction step} 
Apply the template matchings to the PQ-tree, ignoring the 
direction indicators in it, so that the leaves labeled u occupy 
consecutive positions; 
{vertex addition step} 
Let 1 1 ,  12, . . . , lk be the leaves labeled u and direction 
indicators scanned in this order; 
Delete 11,12,. . . , lk from the PQ-tree and store them in A,(v); 
if root r of the pertinent subtree is not full 

then begin 
Add an indicator “u”, directed from lk to 11, to the 
PQ-tree as a son of root r at an arbitrary 
position among the sons; 
Replace all the full sons of r by a new P-node 

end 
else 

Replace the pertinent subtree by a new P-node; 
Add to the PQ-tree all the virtual edges adjacent to u as 
the sons of the P-node 

end; 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 277 

{correction step} 
for v = n down to 1 

do for each element x in A,(v) 
do if x is a direction indicator 

then begin 
Delete x from A,(u); 
Let w be the label of x; 
if the direction of indicator x is 

opposite to that of A,(v) 
then reverse list A,(w); 

end 
end; 

Lemma A.3.4 
ding A, of a given planar graph in linear time. 

Proof. Noting the role of a direction indicator, one can easily verify the 
correctness of the algorithm. Therefore we consider the time required by 
the algorithm. At most O(n)  direction indicators are generated during an 
execution of the algorithm. A direction indicator scanned in a reduction 
step will be necessarily deleted from a PQ-tree in a succeeding vertex addi- 
tion step. Therefore each direction indicator is scanned at most once. Thus 
Upward-Embed requires time O(n)  in addition to the time required by 
the linear testing algorithm Planar. Therefore Upward-Embed runs in 
linear time. 0 

Algorithm Upward-Embed obtains the upward embed- 

A.4 Bibliographic Notes 

A detailed description of the embedding phase of the Hopcroft and Tarjan 
planarity testing algorithm can be found in [MM96]. Shih and Hsu [SH92, 
SH99] presented a simple algorithm for planarity testing and embedding 
based on a depth-first search tree. Another linear algorithm for planarity 
testing based on depth-first search is presented in [BM99, BCPD041. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



278 Planar Graph Drawing 

6 4 5 4  6 5  6 4 5 4 6 5  

Fig. A.16 
forms and corresponding PQ-trees and list A,. 

Process of Upward-Embed applied to graph G in Fig. A.5(a); (a)-(d) bush 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Embedding 279 

6 5 4  4 6  5 6 5 4 4 6 5  

B ;  

6 6 6  5 5 5  6 6 6 5  5 5  

Fig. A.17 
of Fig. A.16); (e)-(g) bush forms and corresponding PQ-trees and list A,.  

Process of Upward-Embed applied to graph G in Fig. A.5(a) (continuation 

TEAM LinG - Live, Informative, Non-cost and Genuine !



280 Planar Graph Drawing 

6 6 6 6  6 6 6 6  

G = G = B  
6 6  

Fig. A.18 Process of Upward-Embed applied to graph G in Fig. A.5(a) (continuation 
of Figs. A.16 and A.17); (h)-(i) bush forms and corresponding PQ-trees and list A, ,  
and (j) corrected lists A,. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Bibliography 

[AHU74] 

[BCPD04] 

[Bie96a] 

[Bie96b] 

[Bie97] 

[Bie98] 

[BCFOl] 

[BK97] 

[BK98] 

[BL76] 

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Anal- 
ysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974. 

J. M. Boyer, P. F. Cortese, M. Patrignani and G. Di Battista, Stop 
minding your P’s and Q’s: implementing a fast and simple DFS- 
based planarity testing and embedding algorithm, Proc. of Graph 
Drawing 2003, Lect. Notes in Compt. Sci., Springer, 2912, pp. 25- 
36, 2004. 

T. C. Biedl, New lower bounds for orthogonal graph drawings, Proc. 
Graph Drawing ’95, Lect. Notes in Compt. Sci., Springer, 1027, pp. 
28-39, 1996. 

T. C. Biedl, Optimal orthogonal drawings of triconnected plane 
gruphs, Proc. Scandinavian Workshop on Algorithm Theory, SWAT 
’96, Lect. Notes in Compt. Sci., Springer, 1097, pp. 333-344, 1996. 

T. C. Biedl, Orthogonal Graph Visualization: The Three-Phase 
Method with Applications, Ph. D. Thesis, RUTCOR, Rutgers Uni- 
versity, 1997. 

T. C. Biedl, Relating bends and size i n  orthogonal graph drawings, 
Information Processing Letters, 65, pp. 111-115, 1998. 

J.  D. Boissonnat, F. Cazals, and J. Flototto, 2D-structure drawings 
of similar molecules, Proc. of Graph Drawing 2000, Lect. Notes in 
Compt. Sci., Springer, 1984, pp. 115-126, 2001. 

T. C. Biedl and M. Kaufmann, Area-efficient static and incremental 
graph drawings, Proc. of 5th European Symposium on Algorithms, 
Lect. Notes in Compt. Sci., Springer, 1284, pp. 37-52, 1997. 

T. C. Biedl and G. Kant, A better heuristic for orthogonal graph 
drawings, Comp. Geom. Theo. Appl., 9, pp. 159-180, 1998. 

K. S. Booth and G. S. Lueker, Testing the consecutive ones property, 

281 
TEAM LinG - Live, Informative, Non-cost and Genuine !



282 

[BM99] 

[ Br a961 

[BS88] 

[BSMOZ] 

[BW76] 

[CE95] 

[CK97] 

[CLLOl] 

[CLRSO] 

[CN98] 

[CNA085] 

[CON851 

[CP95] 

[CR76] 

Planar Graph Drawing 

interval graphs, and graph planarity using PQ-tree algorithms, J. 
Comput. Syst. Sci., 13, pp. 335-379, 1976. 

J. Boyer and W. Myrvold, Stop minding your P’s and Q’s: A sim- 
plified O(n)  planar embedding algorithm, Proc. of SIAM-ACM Sym- 
posium on Discrete Algorithms, pp. 140-146, 1999. 

F. J. Brandenburg (editor), Graph Drawing (Proc. of GD ’95), Lect. 
Notes in Computer Science, Springer, 1027, 1996. 

J. Bhasker and S. Sahni, A linear algorithm to find a rectangular 
dual of a planar triangulated graph, Algorithmica, 3, pp. 247-278, 
1988. 

N. Bonichon, B. L. Saec, and M. Mosbah, Optimal urea algorithm 
for  planar polyline drawings, Proc. of WG 2002, Lect. Notes in 
Computer Science, Springer, 2573, pp. 35-46, 2002. 

N. L. Biggs and L. Wilson, Graph Theory 1736-1936, Clarendon 
Press, Oxford, 1976. 

I. F. Cruz and P. Eades (editors), Special Issue on Graph Visual- 
ization, J. Visual Languages and Computing, 6 (3), 1995. 

M. Chrobak and G. Kant, Convex grid drawings of 3-connected 
planar graphs, Inter. J. of Compu. Geom. and Appl., 7 (3), pp. 
211-223, 1997. 

Y.-T. Chiang, C.-C. Lin and H.-I. Lu, Orderly spanning trees with 
applications to graph encoding and graph drawing, Proc. of SODA 
2001, pp. 506-515, 2001. 

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to 
Algorithms, Cambridge, MIT Press, MA, 1990. 

M. Chrobak and S. Nakano, Minimum-width grid drawings of plane 
graphs, Comp. Geom. Theory and Appl., 11, pp. 29-54, 1998. 

N. Chiba, T. Nishizeki, S. Abe and T. Ozawa, A linear algorithm 
for embedding planar graphs using PQ-trees, J. Comput. Syst. Sci., 
30, pp. 54-76, 1985. 

N. Chiba, K. Onoguchi, and T. Nishizeki, Drawing planar graphs 
nicely, Acta Informatica, 22, pp. 187-201, 1985. 

M. Chrobak and T. H. Payne, A linear-time algorithm for drawing 
a planar graph on a grid, Information Processing Letters, 54, pp. 
241-246, 1995. 

S. A. Cook and R. A. Reckhow, Time bounded random access ma- 
chines, J. Comput. Syst. Sci., 7, pp. 354-375, 1976. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Bibliography 283 

[CYN84] 

[DDLWOS] 

[DETT94] 

[DETT99] 

[Dib97] 

[DLV98] 

[DM991 

[DT96] 

[DT98] 

[DTV99] 

[ET76] 

[Eve791 

[Far481 

[FelOl] 

[FKK97] 

N. Chiba, T. Yamanouchi, and T. Nishizeki, Linear algorithms for  
convex drawings of planar graphs, (Eds.) J. A. Bondy and U. S. 
R. Murty, Progress in Graph Theory, Academic Press Canada, pp. 
153-173, 1984. 

E. Di Giacomo, W. Didimo, G. Liotta and S. K. Wismath, Drawing 
planar graphs on a curve, Proc. WG '03, Lect. Notes in Computer 
Science, Springer, 2880, pp. 192-204, 2003. 

G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Algorithms 
for  drawing graphs: an annotated bibliography, Comp. Geom. The- 
ory and Appl., 4, pp. 235-282, 1994. 

G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Graph Draw- 
ing:  Algorithms for  the Visualization of Graphs, Prentice-Hall Inc., 
Upper Saddle River, New Jersey, 1999. 

G. Di Battista (editor), Graph Drawing (Proc. of G D  '97), Lect. 
Notes in Computer Science, Springer, 1353, 1997. 

G. Di Battista, G. Liotta and F. Vargiu, Spirality and optimal or- 
thogonal drawings, SIAM J. Comput., 27(6), pp. 1764-1811, 1998. 

G. Di Battista and P. Mutzel (editors), New Trends in Graph Draw- 
ing: Special Issue on Selected Papers f rom the 1997 Symposium on 
Graph Drawing, Journal of Graph Alg. and Appl., 3(4), 1999. 

G. Di Battista and R. Tamassia (editors), Special Issue on Graph 
Drawing, Algorithmica, 16 (l), 1996. 

G. Di Battista and R. Tamassia (editors), Special Issue on Geomet- 
ric Representations of Graphs, Comput. Geom. Theory and Appl., 
9 (1-2), 1998. 

G. Di Battista, R. Tamassia and L. Vismara, Output-sensetive re- 
porting of disjoint paths, Algorithmica, 23, pp. 302-340, 1999. 

S. Even and R. E. Tarjan, Computing an st-numbering, Theor. 
Comput. Sci., 2, pp. 339-344, 1976. 

S. Even, Graph Algorithms, Computer Science Press, Potomac, 
1979. 

I. FAry, O n  straight line representations of planar graphs, Acta Sci. 
Math. Szeged, 11, pp. 229-233, 1948. 

S. Felsner, Convex drawings of planar graphs and order dimension 
of .?-polytopes, Order, 18, pp. 19-37, 2001. 

U. Fopmeier, G. Kant and M. Kaufmann, 2-visibility drawings of 
plane graphs, Proc. of Graph Drawing '96, Lect. Notes in Computer 
Science, Springer, 1190, pp. 155-168, 1997. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Planar Graph Drawing 284 

[FPPSO] 

[FW74] 

[FW91] 

[GJ83] 

[GK02] 

[GL99] 

[GM98] 

[GPS03] 

[GT02] 

[GTOl] 

[GT97] 

[Har72] 

[HE031 

[HeOl] 

[He931 

H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph 
on a grid, Combinatorica, 10, pp. 41-51, 1990. 

R. L. Francis and J. A. White, Facility Layout and Location, 
Prentice-Hall, New Jersey, 1974. 

M. Formann and F. Wagner,The VLSI layout problem in various 
embedding models, Proc. International Workshop on Graph The- 
oretic Concepts in Computer Science (WG '91), Lect. Notes in 
Compt. Sci., Springer, 484, pp. 130-139, 1991. 

M. R. Garey and D. S. Johnson, Crossing number is NP-complete, 
SIAM J. Alg. Disc. Methods, 4 (3), pp. 312-316, 1983. 

M. T. Goodrich and S. G. Kobourov (editors), Graph Drawing 
(Proc. GD 'OZ), Lect. Notes in Computer Science, Springer, 2528, 
2002. 

A. Garg and G. Liotta, Almost bend-optimal planar orthogonal 
drawings of biconnected degree-3 planar graphs in quadratic time, 
Proc. of Graph Drawing '99, Lect. Notes in Compt. Sci., Springer, 
1731, pp. 38-48, 1999. 

C. Gutwenger and P. Mutzel, Planar polyline drawings with good an- 
gular resolution, Proc. of Graph Drawing '98, Lect. Notes in Compt. 
Sci., Springer, 1547, pp. 167-182, 1998. 

H. H. Gan, S. Pasquali and T. Schlick, Exploring the repertoire of 
R N A  secondary motifs using graph theory; implications for R N A  
design, Nucleic Acids Research, 31 ( l l ) ,  pp. 2926-2943, 2003. 

M. T. Goodrich and R. Tamassia, Algorithm Design, John Wiley & 
Sons, New York, 2002. 

A. Garg and R. Tamassia, On the computational complexity of up- 
ward and rectilinear planarity testing, SIAM J. Comput., 31(2), pp. 
601-625, 2001. 

A. Garg and R. Tamassia, A new minimum cost pow algorithm with 
applications to graph drawing, Proc. of Graph Drawing '96, Lect. 
Notes in Compt. Sci., Springer, 1190, pp. 201-216, 1997. 

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1972. 

S.-H. Hong and P. Eades, Drawing trees symmetrically in three di- 
mensions, Algorithmica, 36(2), pp. 153-178, 2003. 

X. He, A simple linear time algorithm for proper box rectangular 
drawings of plane graphs, Journal of Algorithms, 40(1), pp. 82-101, 
2001. 

X. He, On Ending the rectangular duals of planar triangular graphs, 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Bibliography 285 

[He951 

[He971 

[HK73] 

[HT73] 

[HT74] 

[JM04] 

[Kam76] 

[Kan93] 

[ K an961 

[Kan97] 

[Kau02] 

[KFHR94] 

[KH97] 

[KK84] 

[KL84] 

SIAM J. Comput., 22(6), pp. 1218-1226, 1993. 

X. He, A n  efficient parallel algorithm for finding rectangular duals 
of plane triangulated graphs, Algorithmica, 13, pp. 553-572, 1995. 

X. He, Grid embedding of 4-connected plane graphs, Discrete Com- 
put. Geom., 17, pp. 339-358, 1997. 

J. E. Hopcroft and R. M. Karp, A n  n5I2 algorithm for maximum 
matching in bipartite graphs, SIAM J. Comput., 2, pp. 225-231, 
1973. 

J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected 
components, SIAM J. Compt., 2(3), pp. 135-158, 1973. 

J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. As- 
soc. Comput. Mach., 21, pp. 549-568, 1974. 

M. Junger and P. Mutzel (editor), Graph Drawing Software, 
Springer, Berlin, 2004. 

G. R. Kampen, Orienting planar graphs, Discrete Mathematics, 14, 
pp. 337-341, 1976. 

G .  Kant, Algorithms for Drawing Planar Graphs, Ph. D. Thesis, 
Faculty of Information Science, Utrecht University, 1993. 

G. Kant, Drawing planar graphs using the canonical ordering, Al- 
gorithmica, 16, pp. 4-32, 1996. 

G. Kant, A more compact visibility representation, Int. J. Comput. 
Geometry Appl., 7 (3), pp. 197-210, 1997. 

M. Kaufmann (editor), Special Issue on Selected Papers from the 
2000 Symposium on Graph Drawing, Journal of Graph Alg. and 
Appl., 6(3), (2002). 

M. Y .  Kao, M. Fiirer, X. He and B. Raghavachari, Optimal parallel 
algorithms for straight-line grid embeddings of planar graphs, SIAM 
J. Discrete Math., 7 (4), pp. 632-646, 1994. 

G. Kant and X. He, Regular edge labeling of 4-connected plane 
graphs and its applications in graph drawing problems, Theo. Com- 
put. Sci., 172, pp. 175-193, 1997. 

K. Kozminski and E. Kinnen, A n  algorithm for finding a rectangular 
dual of  a planar graph for  use in area planning for VLSI  integrated 
circuits, Proc. 21st DAC, Albuquerque, pp. 655-656, 1984. 

M. R. Kramer and J. van Leeuwen, The complexity of wire rout- 
ing and finding minimum area layouts for arbitrary VLSI circuits, 
(Eds.) F. P. Preparata, Advances in Computing Research, vol. 2: 

TEAM LinG - Live, Informative, Non-cost and Genuine !



286 Planar Graph Drawing 

[KMBW02] 

[ Kr a991 

[KurSO] 

[KWOl] 

[LEC67] 

[Len901 

[LioO4] 

[LL90] 

[ LRT791 

[Lub81] 

[LWOO] 

[Man911 

[MAN041 

[MarOl] 

VLSI Theory, JAI Press, Reading, MA, pp. 129-146, 1984. 

E. Kruja, .I. Marks, A. Blair and R. Waters, A short note on the 
history of graph drawing, Proc. of Graph Drawing 2001, Lect. Notes 
in Compt. Sci., Springer, 2265, pp. 272-286, 2002. 

J. Kratochvh (editor), Graph Drawing (Proc. of GD '99), Lect. 
Notes in Computer Science, Springer, 1731, 1999. 

C. Kuratowski, Sur le proble'me des courbes gauches e n  topologie, 
Fundamenta Math., 15, pp. 271-283, 1930. 

M. Kaufmann and D. Wagner (Eds.), Drawing Graphs: Methods 
and Models, Lect. Notes in Compt. Sci., Springer, 2025, Berlin, 
2001. 

A. Lempel, S. Even and I. Cederbaum, A n  algorithm for  planarity 
testing of graphs, Int. Symposium on Theory of Graphs 1966, Ed. 
P. Rosenstiehl, (Gordon and Breach, New York, 1967), pp. 215-232, 
1967. 

T. Lengauer, Combinatorial Algorithms for  Integrated Circuit Lay- 
out, John Wiley & Sons, Chichester, 1990. 

G. Liotta (editor), Graph Drawing (Proc. of GD '03), Lect. Notes 
in Computer Science, Springer, 2912, 2004. 

Y.-T. Lai and S. M. Leinwand, A theory of rectangular dual graphs, 
Algorithmica, 5, pp. 467-483, 1990. 

R. J. Lipton, D. J. Rose, and R. E. Tarjan, Generalized nested 
dissections, SIAM J. Numer. Anal., 16(2), pp. 346-358, 1979. 

A. Lubiw, Some NP-complete problems similar to graph isomor- 
phism, SIAM J. on Computing, 10(1), pp. 11-21, 1981. 

G. Liotta and S. H. Whitesides (editors), Special Issue on Selected 
Papers from the 1998 Symposium on Graph Drawing, Journal of 
Graph Alg. and Appl., 4(3), 2000. 

J. Manning, Computational complexity of geometric symmetry de- 
tection in graphs, Proc. of Great Lakes Computer Science Confer- 
ence '89, Lecture Notes in Computer Science, 507, pp.1-7, 1991. 

K. Miura, M. Azuma and T. Nishizeki, Canonical decomposi- 
tion, realizer, Schnyder labeling and orderly spanning trees of plane 
graphs, Proc. of COCOON 2004, Lecture Notes in Computer Sci- 
ence, to appear. 

3. Marks (editor), Graph Drawing (Proc. of GD'UU), Lect. Notes in 
Computer Science, Springer, 1984, 2001. 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Bibliography 287 

[MHN04] 

[MM96] 

[MMN02] 

[MNNOl] 

[MNNOO] 

[MTNN99] 

[MV80] 

[NC88] 

[Nor971 

[NRN97] 

[PS82] 

[PTOO] 

[PT95] 

[PT97] 

K. Miura, H. Haga and T. Nishizeki, Inner rectangular drawings of 
plane graphs, Working paper, 2004. 

K. Mehlhorn and P. Mutzel, O n  the embedding phase of the Hopcroft 
and Tarjan planarity testing algorithm, Algorithmica, 16, pp. 233- 
242, 1996. 

K. Miura, A. Miyazawa and T. Nishizeki, Extended rectangular 
drawings of plane graphs with designated corners, Proc. of GD '02, 
Lect. Notes in Compt. Sci., Springer, 2528, pp. 256-267, 2002. 

K. Miura, S. Nakano and T. Nishizeki, Grid drawings of 4-connected 
plane graphs, Discrete & Computational Geometry, 26(1), pp. 73- 
87, 2001. 

K. Miura, S. Nakano and T. Nishizeki, Convex grid drawings of 
four-connected plane graphs, Proc. 1 l t h  Annual International Sym- 
posium on Algorithms and Computation (ISAAC '00), Lect. Notes 
in Compt. Sci., Springer, 1969, pp. 254-265, 2000. 

K. Miura, D. Takahashi, S. Nakano and T. Nishizeki, A linear-time 
algorithm to f ind four independent spanning trees in four-connected 
planar graphs, International Journal of Foundation of Computer 
Science, 10(2), pp. 195-210, 1999. 

S. Micali and V. V. Vazirani, A n  O( m. I E I) algorithm for finding 
maximum matching in general graphs, Proc. 21st Annual Sympo- 
sium on Foundations of Computer Science, pp. 17-27, 1980. 

T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, 
North-Holland, Amsterdam, 1988. 

S. North (editor), Graph Drawing (Proc. of GD '96), Lect. Notes 
in Computer Science, Springer, 1190, 1997. 

S. Nakano, M. S. Rahman and T. Nishizeki, A linear-time algo- 
rithm for four-partitioning four-connected planar graphs, Informa- 
tion Processing Letters, 62, pp. 315-322, 1997. 

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, 
Prentice Hall, Englewood Cliffs, New Jersey, 1982. 

A. Papakostas and I. G. Tollis, Efficient orthogonal drawings of high 
degree graphs, Algorithmica, 26, pp. 100-125, 2000. 

A. Papakostas and I. G. Tollis, Improved algorithms and bounds 
for  orthogonal drawings, Proc. of GD '94, Lect. Notes in Computer 
Science, Springer, 894, pp. 40-51, 1995. 

A. Papakostas and I. G. Tollis, A pairing technique for area efficient 
orthogonal drawings, Proc. of GD '96, Lect. Notes in Computer 

TEAM LinG - Live, Informative, Non-cost and Genuine !



288 Planar Graph Drawing 

Science, Springer, 1190, pp. 355-370, 1997. 

M. S. Rahman, Eficient Algorithms for Drawing Planar Graphs, 
Ph. D. Thesis, Graduate School of Information Sciences, Tohoku 
University, Sendai, Japan, 1999. 

M. S. Rahman, N. Egi and T. Nishizeki, No-bend orthogonal draw- 
ings of subdivisions of planar triconnected cubic graphs, Proc. of GD 
'03, Lect. Notes in Computer Science, Springer, 2912, pp. 387-392, 
2004. 

M. S. Rahman, K. Miura and T. Nishizeki, Octagonal drawings of 
plane graphs, Proc. International Workshop on Graph Theoretic 
Concepts in Computer Science (WG '04), Lect. Notes in Computer 
Science, Springer, 2004 (to appear). 

M. S. Rahman and T. Nishizeki, Bend-minimum orthogonal draw- 
ings of plane %graphs, Proc. International Workshop on Graph 
Theoretic Concepts in Computer Science (WG '02), Lect. Notes 
in Computer Science, Springer, 2573, pp. 367-378, 2002. 

M. S. Rahman, T. Nishizeki, and S. Ghosh Rectangular drawings of 
planar graphs, Journal of Algorithms, 50, pp. 62-78, 2004. 

M. S. Rahman, S. Nakano and T. Nishizeki, Box-rectangular draw- 
ings of plane graphs, Journal of Algorithms, 37, pp. 363-398, 2000. 

M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular drawings 
of plane graphs without designated corners, Comp. Geom. Theo. 
and Appl., 21(3), pp. 121-138, 2002. 

M. S. Rahman,T. Nishizeki and M. Naznin, Orthogonal drawings 
of plane graphs without bends, Journal of Graph Alg. and Appl., 
http://jgaa.info, 7(4), pp. 335-362, 2003. 

M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid draw- 
ings of plane graphs, Comp. Geom. Theo. Appl., 10(3), pp. 203-220, 
1998. 

M. S. Rahman, S. Nakano and T. Nishizeki, A linear algorithm 
for bend-optimal orthogonal drawings of triconnected cubic plane 
graphs, Journal of Graph Alg. and Appl., http://jgaa.info, 3(4), 
pp. 31-62, 1999. 

S. Saha, A. K. M. Azad and M. S. Rahman, A linear algorithm for 
automated VLSI floorplanning and routing, Proc. of ICCIT 2001, 
pp. 165-170, 2001. 

W. Schnyder, Embedding planar graphs on the grid, Proc. First 
ACM-SIAM Symp. on Discrete Algorithms, San Francisco, pp. 138- 
148, 1990. 

[Rah99] 

[RENO41 

[RMN04] 

[RN02] 

[RNG04] 

[RNNOO] 

[RNNOP] 

[RNN03] 

[RNN98] 

[RNN99] 

[ S ARO 1 ] 

[SchSO] 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Bibliography 289 

[SF961 

[SH92] 

[SH99] 

[She951 

[Shi96] 

[ST921 

[Ste51] 

[St0841 

[Sug021 

[SY99] 

[Tam871 

[TDB88] 

[Tho801 

[Tho841 

[Tho861 

[Tho921 

[TT95] 

R. Sedgewick and P. Flajolet, A n  Introduction to the Analysis of 
Algorithms, Addison-Wesley, Reading, Mass., 1996. 

W. K. Shih and W.-L. Hsu, A simple test for  planar graphs, Proc. 
of Sixth Workshop on Discrete Mathematics and Theory of Com- 
putations, pp. 35-42, 1992. 

W. K. Shih and W.-L. Hsu, A new planarity test, Theoretical Com- 
puter Science, 223, pp. 179-191, 1999. 

N. Sherwani, Algorithms for  VLSI Physical Design Automation, 2nd 
edition, Kluwer Academic Publishers, Boston, 1995. 

W. Shi, A fast algorithm for area minimization of slicing fioorplans, 
IEEE Transactions on Computer-Aided Design of Integrated Cir- 
cuits and Systems, 15(12), pp. 1525-1532, 1996. 

W. Schnyder and W. Trotter, Convex drawings of planar graphs, 
Abstracts of the AMS, 92T-05-135, 1992. 

K. S. Stein, Convex maps, Proc. Amer Math. SOC., 2, pp. 464-466, 
1951. 

J. A. Storer, On minimal node-cost planar embeddings, Networks, 
14, pp. 181-212, 1984. 

K. Sugiyama, Graph Drawing and Applications for  Software and 
Knowledge Engineers, World Scientific, Singapore, 2002. 

S. M. Sait and H. Youssef, VLSI Physical Design Automation: The- 
ory and Practice, World Scientific, Singapore, 1999. 

R. Tamassia, On embedding a graph i n  the grid with the minimum 
number of bends, SIAM J. Computing, 16(3), pp. 421-444, 1987. 

R. Tamassia, G. Di Battista, and C. Batini, Automatic graph draw- 
ing and readability of diagrams, IEEE Trans. on Syst., Man, and 
Cybern., SMC-18, pp. 61-79, 1988. 

C. Thomassen, Planarity and duality of finite and infinite graphs, 
J. Combinat. Theory, Series B, 29, pp. 244-271, 1980. 

C. Thomassen, Plane representations of graphs, (Eds.) J. A. Bondy 
and U. S. R. Murty, Progress in Graph Theory, Academic Press 
Canada, pp. 43-69, 1984. 

C. Thomassen, Interval representations of planar graphs, J. of Com- 
binat. Theory, Series B, 40, pp. 9-20, 1986. 

C. Thomassen, Plane cubic graphs with prescribed face areas, Com- 
binatorics, Probability and Computing, 1, pp. 371-381, 1992. 

R. Tamassia and I. G. Tollies (editors), Graph Drawing (Proc. of 

TEAM LinG - Live, Informative, Non-cost and Genuine !



290 Planar Graph Drawing 

[TTVSl] 

[ Tur 361 

[Tut54] 

[TutGO] 

[Tut63] 

[Wes96] 

[Whi33] 

[Whig81 

[Wi196] 

[YS93] 

[YS95] 

GD '94), Lect. Notes in Computer Science, Springer, 894, 1995. 

R. Tamassia, I. G. Tollis and J. S. Vitter, Lower bounds for planar 
orthogonal drawings of graphs, Inf. Proc. Letters, 39, pp. 35-40, 
1991. 

A. M. Turing, O n  computable numbers, with an application to the 
Entscheidungs problem, Proc. London. Math. SOC. 2-42, pp. 230- 
265; Correction, ibid, 2-43, pp. 544-546, 1936. 

W. T. Tutte, A short proof of the factor theorem for  finite graphs, 
Canad. J. Math, 6, pp. 347-352, 1954. 

W. T. Tutte, Convex representations of graphs, Proc. London Math. 
SOC., 10, pp. 304-320, 1960. 

W. T. Tutte, How to draw a graph, Proc. of London Math. SOC., 
13, pp. 743-768, 1963. 

K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresber. 
Deutsch. Math-Verien., 46, pp. 26-32, 1936. 

D. B. West, Introduction to Graph Theory, Prentice-Hall, 1996. 

H. Whitney, 2-isomorphic graphs, Amer. J. Math., 55, pp. 245-254, 
1933. 

S. H. Whiteside (editor), Graph Drawing (Proc. of G D  '98), Lect. 
Notes in Computer Science, Springer, 1547, 1998. 

R. J. Wilson, Introduction to Graph Theory, 4th edition, Longman, 
1996. 

K. Yeap and M. Sarrafzadeh, Floor-planning b y  graph dualization: 
2-concave rectilinear modules, SIAM J. Comput., 22(3), pp. 500- 
526, 1993. 

G. K. H. Yeap and M. Sarrafzadeh, Sliceable floorplanning b y  graph 
dualization, SIAM J. Disc. Math., 8(2), pp. 258-280, 1995. 

[Wag36]

TEAM LinG - Live, Informative, Non-cost and Genuine !



Index 

A(G),  239 
C-component, 26 
Co(G), 26 
Dg, 228 
E(G) ,  19 

G(C) ,  26 
wr), 162 

G - E',  21 
G - V' ,  21 
G;, 141, 235 
G i ,  235 
G;, 235 
GL, 141, 235 
G,, 236 
Gd, 133 
Knt 23 
Ks,,, 24 
O( ), 34 
PQ-tree, 259 

full, 262 
PE, 137 
PN, 137 
Ps, 137 
Pw, 137 
Pu, 236 
Qc(C),  140 
R ( F ) ,  199 
Tc, 212 
V ( G ) ,  19 
W + H , 9  
A,  19, 129, 197 
r, 162 

r (G) ,  28 
rr (C) ,  162 
ro(c), 162 
0, 132 

a,, 199 
bc(C), 213 
e,, 199 
f, 29 

4,201 

m, 19, 29 
n, 19, 29 
nc(C), 140 
S r ,  199 
st-numbering, 255 
cc, 211 
Jv, 201 
NP-complete, 35 
3-connected component, 95 
4-canonical decomposition, 117 
4-canonical ordering, 74 

Qcc(C), 140 
ncc(C), 140 
RT, 239 
W . H , 9  
W x H , 9  

Adj, 254 
adjacency list, 38, 254 
adjacency matrix, 37 
algorithm 

4-Convex-Draw, 119 

291 
TEAM LinG - Live, Informative, Non-cost and Genuine !



292 Planar Graph Drawing 

Canonical-Ordering, 48 
Convex-Drawing, 92 
Convex-Grid-Drawing, 113 
deterministic, 35 
Feasible-Draw, 217 
Four-Connected-Draw, 77 
linear-time, 35 
Minimum-Bend, 226 
nondeterministic, 35 
Octagonal-Draw, 238 
Orthogonal-Draw, 224 
polynomial, 35 
Realizer-Drawing, 71 
Rectangular-Draw , 152 
running time, 34 
Shift Algorithm, 50 
storage space, 34 

ancestor, 23 
ancestor cycle, 212 
angular resolution, 11 
apex, 91 
architectural floorplanning, 13 
area, 10 
array, 36 
aspect ratio, 11 

back edge, 39 
bad corner, 137 
bad cycle, 137 
barycentric representation, 58 
bend, 11, 197 
bend-angle, 199 
bend-count, 213 
bipartite graph, 24 

complete, 24 
bond, 96 
boundary face, 142 
boundary path, 142 
box-orthogonal drawing, 7 
box-rectangular drawing, 8, 175 
breadth-first search, 39 
bridge, 199 
bush form, 259, 260 

canonical decomposition, 106 
canonical ordering, 46 

chain, 21 
adjacent, 21 
support, 21 

child-cycle, 212 
chord, 46 
chord-path, 105 

minimal, 106 
clockwise leg, 140 
complete graph, 23 
component, 22 
concave corner, 243 
connected, 22 
connected component, 22 
connectivity, 22 
contour path, 213 
convex corner, 243 
convex drawing, 6, 89 
convex grid drawing, 89 
counterclockwise leg, 140 
cover, 51 
critical cycle, 140 
crossing, 11 
cut vertex, 22 
cycle, 21 

k-legged cycle, 26 
attached, 140 
chord, 46 
clockwise, 140 
counterclockwise, 140 
independent, 26 
leg, 26 
maximal, 148 
minimal, 26 

cyclically k-edge connected, 250 
cyclically 4-edge-connected, 163 

decision graph, 131, 133 
degree, 19 
depth-first search, 39, 255 
descendant, 23 
descendant cycle, 2 12 
dual edge, 30 
dual graph, 30 
dual-like, 13 

edge, 19 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Index 293 

multiple edges, 19 
edge contraction, 63 
embedding, 254 
equivalent embedding, 27 
Euler’s formula, 29 
expansion sequence, 66 
extendible polygon, 91 

face path, 237 
facial cycle, 94 
feasible octagon, 244 
feasible orthogonal drawing, 217 
floorplanning, 12, 15 
flow network, 201 

cost, 202 
minimum cost, 202 

forest, 23 

genealogical tree, 212 
good cycle, 136 
good slicing floorplan, 234 
good slicing graph, 235, 237 
good slicing tree, 237 
graph, 19 

connected, 22 
cycle, 21 
disconnected, 22 
path, 21 
planar, 24 
simple, 19 
subgraph, 20 
tree, 22 
walk, 21 

graph drawing 
box-orthogonal drawing, 7 
box-rectangular drawing, 8, 175 
convex drawing, 6, 89 
grid drawing, 8 
octagonal drawing, 6, 233 
orthogonal drawing, 6 
planar drawing, 4 
polyline drawing, 5 
properties, 10 
rectangular drawing, 8, 129 
straight line drawing, 5, 45 
visibility drawing, 9 

green path, 213 
grid drawing, 8 

area, 9 
convex, 89 
half perimeter, 9 
height, 9 
size, 9 
width, 9 

head vertex, 140 

in-degree, 119 
inner angle, 131 
inner edge, 26 
inner vertex, 26 
internally 3-connected, 105 
internally triangulated, 46 

Kuratowski’s theorem, 25, 33 

larger neighbor, 80 
leg, 26 
leg-vertex, 26 
list, 36 
loop, 19 

matching, 133 
maximum, 133 
perfect, 134 

maximal planar graph, 29 
maximum matching, 133 
MCM, 13 
merging, 95 
minimum cost flow, 202 
modules, 12 
molecular structures, 15 
multichip module, 13 

neighbor, 19 
larger, 80 
smaller, 80 

network flow, 198 
NS-path, 140 

octagon, 238 
octagonal drawing, 6, 233 

TEAM LinG - Live, Informative, Non-cost and Genuine !



294 Planar Graph Drawing 

orthogonal drawing, 6, 197 
bend, 197 
bend-optimal drawing, 202 
box-orthogonal, 7 

orthogonal grid drawing, 227 
orthogonal representation, 198, 199 
out-degree, 119 
outer angle, 131 
outer boundary, 26 
outer cycle, 46 
outer edge, 26, 46 
outer face, 26 
outer vertex, 26, 46 

partition-pair, 147 
partitioning path, 141 
patching operation, 221 
path, 21 
perfect matching, 134 
peripheral face, 163 
pertinent, 262 
planar graph, 24 
planar representation, 198 
planarity testing, 254 

plane graph, 26 
port, 228 
PQ-tree, 261 
proper inner cycle, 250 

algorithm, 263 

queue, 36 
head, 36 
tail, 36 

random-access machine, 34 
realizer, 66, 67 
rectangular drawing, 8, 129 
rectangular dual, 173 
rectangular grid drawing, 156 
rectangular refinement, 227 
red path, 213 
refined decomposition, 125 
regular labeling, 132 
ring, 96 
RNA, 15 
routing, 15 

running time, 34 

Schnyder labeling, 62, 67 
separating triangle, 64 
separation pair, 22, 95 

critical, 96 
forbidden, 96 
prime, 96 

separator, 22 
shape of faces, 11 
slicing floorplan, 234 

good, 234 
slicing graph, 235 

good, 237 
slicing path, 236 
slicing tree, 236 

good, 237 
smaller neighbor, 80 
spanning subgraph, 20 
spanning tree, 23 
split component, 95 
split graph, 95 
splitting, 95 
stack, 36 
storage space, 34 
straight line drawing, 45 

realizer method, 45, 58 
shift method, 45, 46 

strict convex polygon, 94 
subdivision, 24 
symmetry, 11 

tail vertex, 140 
template matching, 262 
tree, 22 

ancestor, 23 
child, 23 
descendant, 23 
internal node, 23 
leaf, 23 
parent, 23 
rooted, 22 
spanning, 23 

tree edge, 39 
triangulated plane graph, 29 
Turing machine, 33 

TEAM LinG - Live, Informative, Non-cost and Genuine !



Index 295 

unique embedding, 27 
upward digraph, 260 
upward embedding, 260 

vertex, 19 
cut, 22 
degree, 19 

vertex cut, 22 
vertex-angle, 199 
virtual edge, 95, 260 
virtual vertex, 260 
visibility drawing, 9 

2-visibility, 10 

walk, 21 
weak barycentric representation, 60 
westmost NS-path, 148 

x-monotone, 78 

TEAM LinG - Live, Informative, Non-cost and Genuine !




