
Practical Applied Mathematics
Modelling, Analysis, Approximation

Sam Howison
OCIAM

Mathematical Institute
Oxford University

October 10, 2003



2



Contents

1 Introduction 9
1.1 What is modelling/why model? . . . . . . . . . . . . . . . . . 9
1.2 How to use this book . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 9

I Modelling techniques 11

2 The basics of modelling 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 What do we mean by a model? . . . . . . . . . . . . . . . . . 14
2.3 Principles of modelling . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Example: inviscid fluid mechanics . . . . . . . . . . . . 17
2.3.2 Example: viscous fluids . . . . . . . . . . . . . . . . . . 18

2.4 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Units and dimensions 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Units and dimensions . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Example: heat flow . . . . . . . . . . . . . . . . . . . . 27
3.3 Electric fields and electrostatics . . . . . . . . . . . . . . . . . 28

4 Dimensional analysis 39
4.1 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Example: advection-diffusion . . . . . . . . . . . . . . 39
4.1.2 Example: the damped pendulum . . . . . . . . . . . . 43
4.1.3 Example: beams and strings . . . . . . . . . . . . . . . 45

4.2 The Navier–Stokes equations . . . . . . . . . . . . . . . . . . . 47
4.2.1 Water in the bathtub . . . . . . . . . . . . . . . . . . . 50

4.3 Buckingham’s Pi-theorem . . . . . . . . . . . . . . . . . . . . 51

3



4 CONTENTS

4.4 Onwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Case study: hair modelling and cable laying 61
5.1 The Euler–Bernoulli model for a beam . . . . . . . . . . . . . 61
5.2 Hair modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Cable-laying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Modelling and analysis . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . . 67
5.4.2 Effective forces and nondimensionalisation . . . . . . . 67

6 Case study: the thermistor 1 73
6.1 Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 A simple model . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . 75
6.3 A thermistor in a circuit . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 The one-dimensional model . . . . . . . . . . . . . . . 78

7 Case study: electrostatic painting 83
7.1 Electrostatic painting . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Nondimensionalisation . . . . . . . . . . . . . . . . . . . . . . 87

II Mathematical techniques 91

8 Partial differential equations 93
8.1 First-order equations . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Example: Poisson processes . . . . . . . . . . . . . . . . . . . 97
8.3 Shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3.1 The Rankine–Hugoniot conditions . . . . . . . . . . . . 101
8.4 Nonlinear equations . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4.1 Example: spray forming . . . . . . . . . . . . . . . . . 102

9 Case study: traffic modelling 105
9.1 Case study: traffic modelling . . . . . . . . . . . . . . . . . . . 105

9.1.1 Local speed-density laws . . . . . . . . . . . . . . . . . 107
9.2 Solutions with discontinuities: shocks and the Rankine–Hugoniot

relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2.1 Traffic jams . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2.2 Traffic lights . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS 5

10 The delta function and other distributions 111
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.2 A point force on a stretched string; impulses . . . . . . . . . . 112
10.3 Informal definition of the delta and Heaviside functions . . . . 114
10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.4.1 A point force on a wire revisited . . . . . . . . . . . . . 117
10.4.2 Continuous and discrete probability. . . . . . . . . . . 117
10.4.3 The fundamental solution of the heat equation . . . . . 119

10.5 Balancing singularities . . . . . . . . . . . . . . . . . . . . . . 120
10.5.1 The Rankine–Hugoniot conditions . . . . . . . . . . . . 120
10.5.2 Case study: cable-laying . . . . . . . . . . . . . . . . . 121

10.6 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . 122
10.6.1 Ordinary differential equations . . . . . . . . . . . . . . 122
10.6.2 Partial differential equations . . . . . . . . . . . . . . . 125

11 Theory of distributions 137
11.1 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
11.2 The action of a test function . . . . . . . . . . . . . . . . . . . 138
11.3 Definition of a distribution . . . . . . . . . . . . . . . . . . . . 139
11.4 Further properties of distributions . . . . . . . . . . . . . . . . 140
11.5 The derivative of a distribution . . . . . . . . . . . . . . . . . 141
11.6 Extensions of the theory of distributions . . . . . . . . . . . . 142

11.6.1 More variables . . . . . . . . . . . . . . . . . . . . . . . 142
11.6.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . 142

12 Case study: the pantograph 155
12.1 What is a pantograph? . . . . . . . . . . . . . . . . . . . . . . 155
12.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12.2.1 What happens at the contact point? . . . . . . . . . . 158
12.3 Impulsive attachment . . . . . . . . . . . . . . . . . . . . . . . 159
12.4 Solution near a support . . . . . . . . . . . . . . . . . . . . . . 160
12.5 Solution for a whole span . . . . . . . . . . . . . . . . . . . . . 162

III Asymptotic techniques 171

13 Asymptotic expansions 173
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
13.2 Order notation . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.2.1 Asymptotic sequences and expansions . . . . . . . . . . 177
13.3 Convergence and divergence . . . . . . . . . . . . . . . . . . . 178



6 CONTENTS

14 Regular perturbations/expansions 183
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
14.2 Example: stability of a spacecraft in orbit . . . . . . . . . . . 184
14.3 Linear stability . . . . . . . . . . . . . . . . . . . . . . . . . . 185

14.3.1 Stability of critical points in a phase plane . . . . . . . 186
14.3.2 Example (side track): a system which is neutrally sta-

ble but nonlinearly stable (or unstable) . . . . . . . . . 187
14.4 Example: the pendulum . . . . . . . . . . . . . . . . . . . . . 188
14.5 Small perturbations of a boundary . . . . . . . . . . . . . . . 189

14.5.1 Example: flow past a nearly circular cylinder . . . . . . 189
14.5.2 Example: water waves . . . . . . . . . . . . . . . . . . 192

14.6 Caveat expandator . . . . . . . . . . . . . . . . . . . . . . . . 193

15 Case study: electrostatic painting 2 201
15.1 Small parameters in the electropaint model . . . . . . . . . . . 201

16 Case study: piano tuning 207
16.1 The notes of a piano . . . . . . . . . . . . . . . . . . . . . . . 207
16.2 Tuning an ideal piano . . . . . . . . . . . . . . . . . . . . . . . 209
16.3 A real piano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

17 Methods for oscillators 219
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Chapter 1

Introduction

Book born out of fascination with applied math as meeting place of physical
world and mathematical structures.

have to be generalists, anything and everything potentially interesting to
an applied mathematician

1.1 What is modelling/why model?

1.2 How to use this book

case studies as strands

must do exercises

1.3 acknowledgements

Have taken examples from many sources, old examples often the best. If you
teach a course using other peoples’ books and then write your own this is
inevitable.

errors all my own

ACF, Fowkes/Mahoney, O2, green book, Hinch, ABT, study groups

Conventions. Let me introduce a couple of conventions that I use in this
book. I use ‘we’, as in ‘we can solve this by a Laplace transform’, to signal
the usual polite fiction that you, the reader, and I, the author, are engaged on
a joint voyage of discovery. ‘You’ is mostly used to suggest that you should
get your pen out and work though some of the ‘we’ stuff, a good idea in view

9



10 CHAPTER 1. INTRODUCTION

of my fallible arithmetic. ‘I’ is associated with authorial opinions and can
mostly be ignored if you like.

I have tried to draw together a lot of threads in this book, and in writing
it I have constantly felt the need to sidestep in order to point out a connection
with something else. On the other hand, I don’t want you to lose track of
the argument. As a compromise, I have used marginal notes and footnotes1Marginal notes are

usually directly rel-
evant to the current
discussion, often be-
ing used to fill in de-
tails or point out a
feature of a calcula-
tion.

with slightly different purposes.

1Footnotes are more digressional and can, in principle, be ignored.
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Modelling techniques
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Chapter 2

The basics of modelling

2.1 Introduction

This short introductory chapter is about mathematical modelling. Without
trying to be too prescriptive, we discuss what we mean by the term mod-
elling, why we might want to do it, and what kind of models are commonly
used. Then, we look at some very standard models which you have almost
certainly met before, and we see how their derivation is a blend of what are
thought of as universal physical laws, such as conservation of mass, momen-
tum and energy, with experimental observations and, perhaps, some ad hoc
assumptions in lieu of more specific evidence.

One of the themes that run through this book is the applicability of all
kinds of mathematical ideas to ‘real-world’ problems. Some of these arise in
attempts to explain natural phenomena, for example models for water waves.
We will see a number of these models as we go through the book. Other ap-
plications are found in industry, which is a source of many fascinating and
non-standard mathematical problems, and a big ‘end-user’ of mathematics.
You might be surprised to know how little is known of the detailed mechanics
of most industrial processes, although when you see the operating conditions
— ferocious temperatures, inaccessible or minute machinery, corrosive chem-
icals — you realise how expensive and difficult it would be to carry out
detailed experimental investigations. In any case, many processes work just
fine, having been designed by engineers who know their job. So where does
mathematics come in? Some important uses are in quality control and cost
control for existing processes, and simulation and design of new ones. We
may want to understand why a certain type of defect occurs, or what is
the ‘rate-limiting’ part of a process (the slowest ship, to be speeded up), or
whether a novel idea is likely to work at all and if so, how to control it.

13



14 CHAPTER 2. THE BASICS OF MODELLING

It is in the nature of real-world problems that they are large, messy and
often rather vaguely stated. It is very rarely worth anybody’s while producing
a ‘complete solution’ to a problem which is complicated and whose desired
outcome is not necessarily well specified (to a mathematician). Mathemat-
ics is usually most effective in analysing a relatively small ‘clean’ subprob-
lem where more broad-brush approaches run into difficulty. Very often, the
analysis complements a large numerical simulation which, although effective
elsewhere, has trouble with this particular aspect of the problem. Its job is
to provide understanding and insight to complement simulation, experiment
and other approaches.

We begin with a chat about what models are and what they should do for
us. Then we bring together some simple ideas about physical conservation
laws, and how to use them together with experimental evidence about how
materials behave to formulate closed systems of equations; this is illustrated
with two canonical models for heat flow and fluid motion. There are many
other models embedded elsewhere in the book, and we deal with these as we
come to them.

2.2 What do we mean by a model?

There is no point in trying to be too precise in defining the term mathemati-
cal model: we all understand that it is some kind of mathematical statement
about a problem that is originally posed in non-mathematical terms. Some
models are explicative: that is, they explain a phenomenon in terms of sim-
pler, more basic processes. A famous example is Newton’s theory of planetary
motion, whereby the whole complex motion of the solar system was shown
to be a consequence of ‘force equals mass times acceleration’ and the inverse
square law of gravitation. However, not all models aspire to explain. For ex-
ample, the standard Black–Scholes model for the evolution of prices in stock
markets, used by investment banks the world over, says that the percentage
difference between tomorrow’s stock price and today’s is a normal random
variable. Although this is a great simplification, in that it says that all we
need to know are the mean and variance of this distribution, it says nothing
about what will cause the price change.

All useful models, whether explicative or not, are predictive: they allow
us to make quantitative predictions (whether deterministic or probabilistic)
which can be used either to test and refine the model, should that be neces-
sary, or for use in practice. The outer planets were found using Newtonian
mechanics to analyse small discrepancies between observation and theory,1

1This is a very early example of an inverse problem: assuming a model and given
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and the Moon missions would have been impossible without this model. Ev-
ery day, banks make billions of dollars worth of trades based on the Black–
Scholes model; in this case, since model predictions do not always match
market prices, they may use the latter to refine the basic model (here there
is no simple underlying mechanism to appeal to, so adding model features in
a heuristic way is a reasonable way to proceed).

Most of the models we discuss in this book are based on differential equa-
tions, ordinary or partial: they are in the main deterministic models of con-
tinuous processes. Many of them should already be familiar to you, and they
are all accessible with the standard tools of real and complex analysis, partial
differential equations, basic linear algebra and so on. I would, however, like
to mention some kinds of models that we don’t have the space (and, in some
cases I don’t have the expertise) to cover.

• Statistical models.

Statistical models can be both explicative and predictive, in a probabilistic
sense. They deal with the question of extracting information about cause and
effect or making predictions in a random environment, and describing that
randomness. Although we touch on probabilistic models, for a full treatment
see a text such as [33].

• Discrete models of various kinds.

Many, many vitally important and useful models are intrinsically discrete:
think, for example of the question of optimal scheduling of take-off slots
from LHR, CDG or JFK. This is a vast area with a huge range of techniques,
impinging on practically every other area of mathematics, computer science,
economics and so on. Space (and my ignorance) simply don’t allow me to
say any more.

• ‘Black box’ models such as neural nets or genetic algorithms.

The term ‘model’ is often used for these techniques, in which, to paraphrase,
a ‘black box’ is trained on observed data to predict the output of a system
given the input. The user need never know what goes on inside the black
box (usually some form of curve fitting and/or optimisation algorithm), so
although these algorithms can have some predictive capacity they can rarely
be explicative. Although often useful, this philosophy is more or less or-
thogonal to that behind the models in this book, and if you are interested
see [15].

observations of the solution, determine certain model parameters, in this case the unknown
positions of Uranus and Neptune. A more topical example is the problem of constructing
an image of your insides from a scan or electrical measurements from electrodes on your
skin. Unfortunately, such problems are beyond the scope of this book; see [10].
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2.3 Principles of modelling: physical laws and

constitutive relations

Many models, especially ones based on mechanics or heat flow (which in-
cludes most of those in this book) are underpinned by physical principles
such as conservation of mass, momentum, energy and electric charge. We
may have to think about how we interpret these ideas, especially in the case
of energy which can take so many forms (kinetic, potential, heat, chemical,
. . . ) and be converted from one to another. Although they are in the endWork is heat and

heat is work: the
First Law of
Thermodynamics,
in mnemonic form.

subject to experimental confirmation, the experimental evidence is so over-
whelming that, with care in interpretation, we can take these conservation
principles as assumptions.2

However, this only gets us so far. We can do very simple problems such
as mechanics of point particles, and that’s about it. Suppose, for example,
that we want to derive the heat equation for heat flow in a homogeneous,
isotropic, continuous solid. We can reasonably assume that at each point x
and time t there is an energy density E(x, t) such that the internal (heat)
energy inside any fixed volume V of the material is∫

V

E(x, t) dx.

We can also assume that there is a heat flux vector q(x, t) such that the rate
of heat flow across a plane with unit normal n is

q · n
per unit area. Then we can write down conservation of energy for V in the
form

d

dt

∫
V

E(x, t) dx +

∫
∂V

q(x, t) · n dS = 0,

on the assumption that no heat is converted into other forms of energy. Next,
we use Green’s theorem on the surface integral and, as V is arbitrary, the
‘usual argument’ (see below) gives us

∂E

∂t
+ ∇ · q = 0. (2.1)

At this point, we have to bring in some experimental evidence. We need to
relate both E and q to the temperature T (x, t), by what are called constitu-
tive relations. For many, but not all, materials, the internal energy is directly

2So we are making additional assumptions that we are not dealing with quantum effects,
or matter on the scale of atoms, or relativistic effects. We deal only with models for
human-scale systems.
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proportional to the temperature,3 written

E = ρcT,

where ρ is the density and c is a constant called the specific heat capac-
ity. Likewise, Fourier’s law states that the heat flux is proportional to the
temperature gradient, Ask yourself why

there is a minus
sign. The Second
Law of
Thermodynamics in
mnemonic form:
heat cannot flow
from a cooler body
to a hotter one.

q = −k∇T.

Putting these both into (2.1), we have

ρc
∂T

∂t
= k∇2T

as expected. The appearance of material properties such as c and k is a
sure sign that we have introduced a constitutive relation, and it should be
stressed that these relations between E, q and T are material-dependent and
experimentally determined. There is no a priori reason for them to have the
nice linear form given above, and indeed for some materials one or other may
be strongly nonlinear.

Another set of models where constitutive relations pay a prominent role
is models for solid and fluid mechanics.

2.3.1 Example: inviscid fluid mechanics

Let us first look at the familiar Euler equations for inviscid incompressible ‘Oiler’, not
‘Yewler’.fluid motion,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p, ∇ · u = 0.

Here u is the fluid velocity and p the pressure, both functions of position x
and time t, and ρ is the fluid density. The first of these equations is clearly
‘mass × acceleration = force’, bearing in mind that we have to calculate the
acceleration following a fluid particle (that is, we use the convective deriva-
tive), and the second is mass conservation (now would be a good moment
for you to do the first two exercises if this is not all very familiar material; a
brief derivation is given in the next section).

The constitutive relation is rather less obvious in this case. When we
work out the momentum balance for a small material volume V , we want Remember a

material volume is
one whose
boundary moves
with the fluid
velocity, that is, it
is made up of fluid
particles.

3It is an experimental fact that temperature changes in most materials are proportional
to energy put in or taken out. However, both c and k may depend on temperature,
especially if the material gradually melts or freezes, as for paraffin or some kinds of frozen
fish. Such materials lead to nonlinear versions of the heat equation; fortunately, many
common substances have nearly constant c and k and so are well modelled by the linear
heat equation.
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to encapsulate the physical law

convective rate of change of momentum in V = forces on V .

On the left, the (convective) rate of change of momentum in V is∫
V

ρ

(
∂u

∂t
+ u · ∇u

)
dV.

We then say that this is equal to the force on V , which is provided solely by
the pressure and acts normally to ∂V . This is our constitutive assumption:
that the internal forces in an inviscid fluid are completely described by a
pressure field which acts isotropically (equally in all directions) at every point.
Then, ignoring gravity, the force on V is∫

∂V

−pn dS = −
∫

V

∇p dV

by a standard vector identity, and for arbitrary V we do indeed retrieve the
Euler equations.

2.3.2 Example: viscous fluids

Things are a little more complicated for a viscous fluid, namely one whose
‘stickiness’ generates internal forces which resist the motion. This model will
be unfamiliar to you if you have never looked at viscous flow. If this is so,
you can

(a) Just ignore it: you will then miss out on some nice models for thin fluid
sheets and fibres in chapter ??, but that’s about all;

(b) Go with the flow: trust me that the equations are not only believable
(an informal argument is given below, and in any case I am assuming
you know about the inviscid part of the model) but indeed correct. As
one so often has to in real-world problems, see what the mathematics
has to say and let the intuition grow;

(c) Go away and learn about viscous flow; try the books by [28] or [2].

Viscosity is the property of a liquid that measures its resistance to shear-
ing, which occurs when layers of fluid slide over one another. In the config-
uration of Figure 2.1, the force per unit area on either plate due to viscous
drag is found for many liquids to be proportional to the shear rate U/h, and
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U

h

Figure 2.1: Drag on two parallel plates in shear, a configuration known as
Couette flow. The arrows indicate the velocity profile.

is written µU/h where the constant µ is called the dynamic viscosity. Such
fluids are termed Newtonian.

Our strategy is again to consider a small element of fluid and on the
left-hand side, work out the rate of change of momentum∫

V

ρ
Du

Dt
dV,

while on the right-hand side we have∫
∂V

F dS,

the net force on its boundary. Then we use the divergence theorem to turn
the surface integral into a volume integral and, as V is arbitrary, we are done.

Now for any continuous material, whether a Newtonian fluid or not, it
can be shown (you will have to take this on trust: see [28] for a derivation)
that there is a stress tensor, a matrix σ [NB want to get a bold greek font
here, this one is not working] with entries σij with the property that the force

We are using the
summation
convention, that
repeated indices are
summed over from
1 to 3; thus for
example

σii = σ11+σ22+σ33.

Is it clear that
∇ · u = ∂ui/∂xi,
and that

∇ · σ =
∂σij

∂xj
?

per unit area exerted by the fluid in direction i on a small surface element
with normal nj is σ · n = σijnj (see Figure 2.2). It can also be shown that
σ is symmetric: σij = σji. In an isotropic material (one with no built-in
directionality), there are also some invariance requirements with respect to
translations and rotations.

Thus far, our analysis could apply to any fluid. The force term in the
equation of motion takes the form∫

∂V

σ · n dS =

∫
∂V

σijnj dS

which by the divergence theorem is equal to∫
∂V

∇ · σ dS =

∫
∂V

∂σij

∂xj

dS,
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n = (nj)

F = (Fi)

Figure 2.2: Force on a small surface element.

and so we have the equation of motion

D(ρu)

Dt
= ∇ · σ. (2.2)

We now have to say what kind of fluid we are dealing with. That is, we
have to give a constitutive relation to specify σ in terms of the fluid velocity,
pressure etc. For an inviscid fluid, the only internal forces are those due to
pressure, which acts isotropically. The pressure force on our volume element
is ∫

∂V

−pn dS

with a corresponding stress tensor

σij = −pδij

where δij is the Kronecker delta. This clearly leads to the Euler momentum-Which matrix has
entries δij?
Interpret δijvj = vi

in matrix terms.

conservation equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p.

When the fluid is viscous, we need to add on the contribution due to viscous
shear forces. In view of the experiment of Figure ??, it is very reasonable
that the new term should be linear in the velocity gradients, and it can be
shown, bearing in mind the invariance requirements mentioned above, that
the appropriate form for σij is

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
.

For future reference we write out the components of σ in two dimensions:

σij =

⎛⎜⎜⎝ −p + 2µ
∂u

∂x
µ

(
∂u

∂y
+

∂v

∂x

)
µ

(
∂u

∂y
+

∂v

∂x

)
−p + 2µ

∂v

∂y

⎞⎟⎟⎠ . (2.3)
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Substituting this into the general equation of motion (2.2), and using the
incompressibility condition ∇ · u = ∂ui/∂xi = 0, it is a straightforward
exercise to show that the equation of motion of a viscous fluid is The emphasis mean

you should do it.
ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∇2u, ∇ · u = 0. (2.4)

These equations are known as the Navier–Stokes equations. The first of them
contains the corresponding inviscid terms, i.e.the Euler equations, with the
new term µ∇2u, which represents the additional influence of viscosity. As
we shall see later, this term has profound effects.

2.4 Conservation laws

Perhaps we should elaborate on the ‘usual argument’ which, allegedly, leads
to equation 2.1. Whenever we work in a continuous framework, and we have
a quantity that is conserved, we offset changes in its density, which we call
P (x, t) with equal and opposite changes in its flux q(x, t). Taking a small
volume V , and arguing as above, we have

d

dt

∫
V

P (x, t) dx +

∫
∂V

q · n dS = 0,

the first term being the time-rate-of-change of the quantity inside V , and
the second the net flux of it into V . Using Green’s theorem on this latter
integral,4 we have ∫

V

∂P

∂t
+ ∇ · q dx = 0.

As V is arbitrary, we conclude that

∂P

∂t
+ ∇ · q = 0,

a statement which is often referred to as a conservation law.5

In the heat-flow example above, P = ρcT is the density of internal heat
energy and q = −k∇T is the heat flux. Another familiar example is conser-
vation of mass in a compressible fluid flow, for which the density is ρ and the
mass flux is ρu, so that

∂ρ

∂t
+ ∇ · (ρu) = 0.

When the fluid is incompressible and of constant density, this reduces to This is not as silly
as it sounds: a fluid
may be
incompressible and
have different
densities in different
places, the jargon
being sstratified.

4Needless to say, this argument requires q to be sufficiently smooth, which can usually
be verified a posteriori ; in Chapter ?? we shall explore some cases where this smoothness
is not present.

5Sometimes this term is reserved for cases in which q is a function of P alone.
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∇ · u = 0 as expected.

2.5 Conclusion

There are, of course, many widely used models that we have not described in
this short chapter. Rather than give a long catalogue of examples, we’ll move
on, leaving other models to be derived as we come to them. We conclude
with an important general point.

As stressed above, the construction of a model for a complicated pro-
cess involves a blend of physical principles and (mathematical expressions
of) experimental evidence; these may be supplemented by plausible ad hoc
assumptions where direct experimental evidence is unavailable, or as a ‘sum-
mary’ model of a complicated system from which only a small number of
outputs is needed. However, the initial construction of a model is only the
first step in building a useful tool. The next task is to analyse it: does it
make mathematical sense? Can we find solutions, whether explicit (in the
form of a formula), approximate or numerical, and if so how? Then, cru-
cially, what do these solutions (predictions) have to say about the original
problem? This last step is often the cue for an iterative process in which
discrepancies between predictions and observations prompt us to rethink the
model. Perhaps, for example, certain terms or effects that we thought were
small could not, in fact, safely be neglected. Perhaps some ad hoc assump-
tion we made was not right. Perhaps, even, a fundamental mechanism in the
original model does not work as we assumed (a negative result of this kind
can often be surprisingly useful). We shall develop all of these themes as we
go onwards.

Exercises

1. Conservation of mass. A uniform incompressible fluid flows with
velocity u. Take an arbitrary fixed volume V and show that the net
mass flux across its boundary ∂V is∫

∂V

u · n dS.

Use Green’s theorem to deduce that ∇ · u = 0. What would you do if
the fluid were incompressible but of spatially-varying density (see §2.4)?

2. The convective derivative. Let F (x, t) be any quantity that varies
with position and time, in a fluid with velocity u. Let V be an arbitrary
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material volume. Show that

D

Dt

∫
V

F dV =

∫
V

∂F

∂t
dV +

∫
∂V

Fu · n dS,

where the second term is there because the boundary of V moves. Draw a picture of
V (t) and V (t + δt)
to see where it
comes from.

When the fluid is incompressible, use Green’s theorem to deduce the
convective derivative formula

dF

dt
=

∂F

∂t
+ u · ∇F,

and verify that the left-hand side of the Euler momentum equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p

is the acceleration following a fluid particle.

3. Potential flow has slip. Suppose that a potential flow of an inviscid
irrotational flow satisfies the no-slip condition u = ∇φ = 0 at a fixed
boundary. Show that the tangential derivatives of φ vanish at the
surface so that φ is a constant (say zero) there. Show also that the
normal derivative of φ vanishes at the surface and deduce from the
Cauchy–Kowalevskii theorem (see [27]) that φ ≡ 0 so the flow is static.
(In two dimensions, you might prefer to show that ∂φ/∂x − i∂φ/∂y
is analytic (= holomorphic), vanishes on the boundary curve, hence
vanishes everywhere.)

4. Waves on a membrane. A membrane of density ρ per unit area is
stretched to tension T . Take a small element A of it and use Green’s
theorem on the force balance∫∫

A

ρ
∂2u

∂t2
dA =

∫
∂A

T
∂u

∂n
ds

to derive the equation of motion

∂2u

∂t2
= c2∇2u,

where c2 = T/ρ is the wave speed.
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Chapter 3

Units and dimensions

3.1 Introduction

This chapter and the next cover some simple ideas to do with dimensional
analysis. They can be very helpful in understanding the basic physical mech-
anisms on which we will build mathematical models, but they are primarily
the first step towards our main objective, to build up a systematic frame-
work within which to assess such models of complex problems. Real-world
situations, arising in industry or elsewhere, almost always involve many cou-
pled physical processes. We may be able to write down models for each of
them individually, and so for the whole, but faced with the resulting pages
of equations, what then? Can we say anything about the ‘structure’ of the
problem? What are the pivotal points? Are all the mechanisms we have put
in equally significant? If not, how do we know, and which should we keep?
Is it safe to put the equations on a computer?

We start with some basic material on dimensions and units; in the follow-
ing chapter we move on to see how scaling reveals dimensionless parameters
which, if small (or large) can point the way to useful approximation schemes.
Along the way, we’ll see gentle introductions to some of the models that we
use repeatedly in later chapters. Almost all of these deal with reasonably
familiar material and will not trouble you too much; the only possible excep-
tion is the material on electrostatics, and we don’t have to do too much of
that.

3.2 Units and dimensions

There is just one simple idea underpinning this section. If an equation models
a physical process, then all the terms in it that are separated by +, − or =

25
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must have the same physical dimensions. If they did not, we would be saying
something obviously ludicrous like

apples + lawnmowers = light bulbs + whisky.

This is the most basic of the many consistency (error-correcting) checks whichFor example, is the
answer
real/positive/. . . when
it obviously should
be? Is it about the
right size? If we
expect the
temperature to
increase when we
increase the input
heat flux does our
formula do what it
should? Do the
accelerations point
in the same
direction as the
forces?

you should build into your mathematics.
To quantify this idea, we’ll use a fairly standard notation for the dimen-

sions of quantities, denoted by square brackets: all units will be written in
terms of the primary quantities mass [M], length [L], time [T], electric current
[I] and temperature [Θ].1 Once a specific set of unit has been chosen (we use
the SI units here), these general quantities become specific; the SI units for
our primaries are kg for kilogram, m for metre, s for second, A for ampere,
K for kelvin (or we may use ◦C).2

Given the primary quantities, we can derive all other secondary quantities
from them. Sometimes this is a matter of definition: for a velocity u we have

[u] = [L][T]−1.

In other cases we may use a physical law, as in

force F = mass × acceleration, so [F ] = [M][L][T]−2;

the SI unit is the newton, N. Other instances of secondary quantities are

pressure P = force per unit area, so [P ] = [M][L]−1[T]−2,

whose SI unit is the pascal, Pa;

energy E = force × distance moved, so [E] = [M][L]2[T]−2,

the SI unit being the joule, J;

power = energy per unit time,

giving the watt, W= J s−1, and so on. The idea extends in an obvious way
to physical parameters and properties of materials. For example,

density ρ = mass per unit volume, so [ρ] = [M][L]−3.

1There are two more primary quantities, amount of a substance (SI unit the mole) and
luminous intensity (the candela), but we don’t need them in this book.

2You might imagine that it should not be necessary to stress the importance of choosing,
and sticking to, a standard set of units for the primary quantities, and of stating what
units are used. Examples such as the imperial/metric cock-up (one team using imperial
units, another using metric ones) which led to the failure of the Mars Climate Orbiter
mission in 1999 prove this wrong. How can any scientist seriously use feet and inches in
this day and age?
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3.2.1 Example: heat flow

We are going to see a lot of heat-flow problems in this book (I assume that
you have already met the heat equation in an introductory PDE course).
Let’s begin by working out the basic dimensions of thermal conductivity k.
By Fourier’s law (an experimental fact), heat flux, which means the energy
flow in a material per unit area per unit time, is proportional to temperature
gradient: Consistency check:

why is there a
minus sign?

q = −k∇T.

Thus, noting that differentiation with respect to a spatial variable brings in

What does
integration do?

a length scale on the bottom,

[q] = [energy][L]−2[T]−1 = [M][T]−3

= [k][Θ][L]−1,

so that
[k] = [M][L][T]−3[Θ]−1.

The usual SI units of k, W m−1 K−1, are chosen to be descriptive of what this
parameter measures. It is an exercise now to check that the heat equation

ρc
∂T

∂t
= k∇2T, (3.1)

in which c is the specific heat capacity, SI units J kg−1 K−1, is dimensionally
consistent.

Note also, for future reference, that the combination

κ =
k

ρc
,

known as the thermal diffusivity, has the dimensions [L]2[T]−1. The higher κ,
the faster the material conducts heat: that is, heat put in is conducted more
and absorbed less; you can see this because κ is the ratio of heat conduction
(k) to absorption as internal energy (ρc). By way of examples, water with
its large specific heat has κ = 1.4 × 10−7 m2 s−1, while for the much less
dense air κ = 2.2 × 10−5. Amorphous solids such as glass (κ = 3.4 × 10−7

m2 s−1conduct less well than crystalline solids such as metals: for gold (an
extreme and expensive example), κ = 1.27 × 10−4.

Given a length L, we can construct a time L2/κ, which can be interpreted
as the order of magnitude of the time it takes for you to notice an abrupt Of course, the heat

equation, being
parabolic, has an
infinite speed of
propagation. What
I mean by ‘notice’
is that the
temperature change
is not small. See
the exercise
‘similarity
solution. . . ’ on
page 36.

temperature change a distance L away. Conversely, during a specified time
t, the abrupt temperature change propagates ‘noticeably’ a distance of order
of magnitude

√
κt.
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q1

r

q2
F

Figure 3.1: Force between two charges.

3.3 Electric fields and electrostatics

Several of the problems we look at in this book involve electromagnetic ef-
fects. Fortunately we only need a small subset of the wonderful edifice of
electromagnetism, and most of what we use is a reminder of school physics,
but written in more mathematical terms.

Models for electricity bring with them a stack of potentially confusing
units. A good place to start is Coulomb’s (experimental) observation that, in
a vacuum, the force between two point charges q1, q2 is inversely proportional
to the square of the distance r between them. We need a unit for charge,
and as the relevant fundamental unit is the ampere, A, which measures the
flow of electric charge per unit time down a wire, we find that it is one A s,
known as the coulomb, C.3 So, the force is

F =
q1q2

4πε0r2
,

with a sign convention consistent with ‘like charges repel’, as in Figure 3.1
in which q1 and q2 have the same sign. The constant ε0 is known as the
(electric) permittivity of free space, and the 4π is inserted to save a lot of
occurrences of this factor in other formulae. Thus,Notice that 4π,

being a number, is
omitted from this
dimensional
balance.

[ε0] =
([I][T])2

[L]2 · [M][L][T]−2
= [M]−1[L]−3[T]4[I]2,

a combination which in SI is called one farad per metre (F m−1) for a rea-
son which will become clear if (when) you do the exercise ‘capacitance’ on
page 31. The numerical value of ε0 is approximately 8.85×10−12 F m−1, from
which we see that one coulomb is a colossal amount of charge. The attractive
force between opposite charges of 1 C separated by 1 m is (4πε0)

−1; this is
more than 108 N, and it would take two teams of 2,000 large elephants, each
pulling their bodyweight, to drag them apart.

Suppose we regard charge 1 as fixed at the origin and charge 2 as a
movable ‘test charge’ at the point x. The force on it, now regarded as a
vector, is

F = q2E

whereOf course, x̂ is a
unit vector along x
and r = |x|.

3See the exercises for the definition of the ampere.
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E =
q1x̂

4πε0r2
=

q1x

4πε0r3
(3.2)

is known as the electric field due to charge 1. Since ∇ ∧ E = 0 for r �= 0, If you didn’t know
that
∇ ∧ (x/r3) = 0,
check it using the
formula

∇∧(φv) = ∇φ∧v+φ∇∧v

for scalar φ(x) and
vector v(x).

and R
3 \ {0} is simply connected, there is an electric potential

φ =
q1

ε0r
with E = −∇φ

(the minus sign is conventional). Because ∇ · E = 0 away from r = 0, we

Check this too:
∇ · (φv) =
∇φ · v + φ∇ · v.

have

∇2φ = 0, x �= 0.

Instead of point charges, we may have a distributed charge density ρ(x),
which we can think of (in a loose way for now) as some sort of limit of a large
number of point charges. Then we find that

∇2φ = − ρ

ε0

.

We will see a justification for this equation in chapter ?? (see also the exercise
‘Gauss’ flux theorem’ on page 31).4

We have strayed somewhat from our theme of units and dimensions. Re-
turning to E, we find from (3.2) that

[E] = [M][L][T]−3[I]−1;

it is measured in volts per metre, V m−1, from which the units for φ are
volts. Perhaps more usefully, since q2E is a force, the formula

work done = force × distance moved

tells us that the electric potential is the energy per unit charge expended in
moving against the electric field:

q [φ]BA = −
∫ B

A

qE · dx,

4In fact it is rather unusual to have ρ �= 0, that is not to have charge neutrality, in
the bulk of a material. The reason is that if the material is even slightly conducting,
any excess charge moves (by mutual repulsion) to form a surface layer or, if it can escape
elsewhere, it does so. If the material is a good insulator the charge cannot get into the
interior anyway. In the next chapter we describe a situation where charge neutrality does
not hold.
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a formula which serves as a definition of φ.5

Thinking now of the rate at which work is done against the electric field
(or just manipulating the definitions), we see that

1 volt × 1 ampere = 1 watt,

and hence the dimensional correctness of the formula

P = V I

for the power dissipated when a current I flows across a potential difference
V . When a current is carried by free electrons through a solid, the electric
field forces the free electrons through the more-or-less fixed array of solid
atoms, and the work done against this resistance is lost as heat at the rate
V I. In many cases, the current is proportional to the voltage, giving the
linear version of Ohm’s law

V = IR,

from which the primary units of resistance R (SI unit the ohm, Ω) canThe only SI unit
that is not a roman
letter?

easily be found. There are also many nonlinear resistors, for example diodes,
in which R depends on I.

Sources and further reading

Barenblatt’s book [4] has a lot of material about dimensional analysis, and is
the source of the exercises on atom bombs and rowing. For electromagnetism
I suggest the book by Robinson [35] if you can get hold of it, as his physical
insight was unrivalled; failing this, try . . . .

Exercises

The first set of exercises is about electromagnetism. If you have never seen
this topic before, do what you can, at least to get practice in working out
units. But I hope that they will induce to learn more about this wonderful
subject. Exercises on the rest of the chapter follow, on page 35.

5This is just the same idea as gravitational potential energy as a measure of the work
done per unit mass against the gravitational field. If you have ever studied the Newtonian
model for gravitation, which is also governed by the inverse square law, you will see the
immediate analogy between electric field and gravitational force field, charge density and
matter density, and electric and gravitational potentials. The major difference is of course
that there are two varieties of charge, whereas matter apparently never repels other matter.
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Electromagnetism

1. Gauss’ flux theorem. Consider the electric field of a point charge
(see Section 3.3). Integrate ∇ · E over a spherical annulus ε < r < R
and let ε → 0, R → ∞, to show that Note: ε is not to be

confused with ε0!

lim
ε→0,R→∞

∫∫∫
ε<r<R

∇2φdV = −q1

ε0

;

note the absence of 4π from this formula. Generalise to a finite number
of charges. Explain informally why the result is consistent with the
continuous charge density equation ∇2φ = −ρ/ε0.

2. Capacitance. A capacitor is a circuit device which stores charge. The
archetypal capacitor consists of two parallel conducting plates, each of
area A and separated by a distance d. If one of the plates is earthed and
the other raised to a voltage V , it is found that there is a proportional
charge Q on it (think of the current trying to get round the circuit and
piling up). The constant of proportionality is called the capacitance C,
so C = Q/V , measured in coulombs per volt, known as farads (F).

Work out the dimensions of the farad in terms of primary quantities.
Show that the formula

C =
ε0A

d

is dimensionally plausible. Check (for consistency) that it does what
it should as A and d vary. Thinking of A as fixed and d as varying,
explain why the units of ε0 are F m−1. (In fact ε0 ≈ 8.85 × 10−12

F m−1.) How big is a 1 µF (quite a large value) capacitor if d = 1 mm?
How big would a 1 F capacitor be? (In practice, capacitors are bulky
objects which are made smaller by rolling them up, and by filling the
space between the plates with a material of higher permittivity than
ε0.)

Based solely on this dimensional analysis, make an order of magnitude
guess at the capacitance of (a) an elephant (assumed conducting); (b)
a homemade parallel-plate capacitor made from two ten-metre rolls of
kitchen foil 30 cm wide separated by cling-film.

If you walk across a nylon carpet you may become charged with static
electricity, to a voltage of say 30 kV. (The charge appears on your
shoes and is easily transported around you, because your body is quite
a good conductor, to form a surface layer.) Estimate how much charge
you accumulate. Given that air loses its insulating property and breaks
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down into an ionised gas at electric fields of around 3 MV m−1, how
far is your finger from the door handle when you discharge?

It is quite easy to work out the capacitance of a sphere of radius a. The
electrostatic potential φ satisfies ∇2φ = 0 for r > a, where r is distance
from the centre of the sphere. If the sphere is raised to a voltage V
relative to a potential of zero at infinity, we have φ = V on r = a and
φ → 0 as r → ∞. We (you) can write down φ immediately. Now use
Gauss’ flux theorem, aka the divergence theorem, on a sphere r = a+The notation

r = a+ means do it
for r = a + ε and let
ε ↓ 0.

to show that the total charge on the sphere is

ε0

∫∫
r=a

∂φ

∂r
dS

and deduce that the capacitance of the sphere is 4πε0a.

A capacitor with capacitance C is charged up to voltage V and dis-
charged to earth (voltage 0) through a resistor of resistance R. If the
charge on the capacitor is Q and the current to earth is I, explain why

Q = V C, I =
dQ

dt
and V = IR.

Find I(t) and confirm that RC has the dimensions of time; interpret
this time physically and explain why it increases with both R and C.

3. Slow electrons. The charge on an electron is approximately 1.6 ×
10−19 C. In copper, there are about 8.5 × 1028 free electrons per cubic
metre (this calculation is based on Avogadro’s number, the density and
atomic weight of copper, and one free electron per atom). What is the
mean speed of the electrons carrying 1 A of current down a wire of
diameter 1 mm? Does the answer surprise you?

4. Forces between wires. It is another experimental observation that
the force F per unit length between infinitely long straight parallel
wires in a vacuum, carrying currents I1, I2, is inversely proportional to
the distance r between them, and directly proportional to each of the
currents. This is written

F =
µ0I1I2

2πr
; (3.3)

the factor 2π is again for convenience elsewhere. The constant µ0Can you think why
line currents get a
factor 2π but point
charges get a factor
4π?

is known as the permeability of free space; what are its fundamental
units? The SI units are henrys per metre, H m−1.
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Now recall that we have not yet defined the unit of current, the ampere.
Because µ0 and the currents in (3.3) are multiplied, there is a degree
of indeterminacy in their scales (multiply the currents by α and divide
µ0 by α2). We exploit this by arbitrarily (in fact it is a cunning choice
from the practical point of view) setting

µ0 = 4π × 10−7H m−1

and then defining the ampere as the current that makes F exactly equal
to 2 × 10−7 N m−1.

We think of a current as generating a magnetic field, denoted by B. Remember iron
filings experiments
to show the
magnetic fields of
bar magnets or
wires? The filings
line up in the
direction of B.

The Lorenz force law states that the force on a charge q moving with
velocity v in an electric field E and magnetic field B is

F = q(E + v ∧ B).

Deduce the fundamental units of B (SI unit the tesla, T). Interpreting
the currents as moving line charges, show that (3.3) is consistent with
a magnetic field

B =
µ0I

2πr
eθ

for a wire carrying current I along the z–axis of cylindrical polar coor-
dinates (r, θ, z). How would iron filings on a plane normal to the wire
line up in this case?

Show that, like the coulomb and farad, the tesla is an inconveniently
large unit by working out the current required to give a field of 1 T at
a distance of 1 m. How many 1 kW toasters would this current power
at 250 V? (Ans: 1.25 million.) Why are electromagnets made of coils?
The most powerful superconducting magnets, using coils to reinforce
the field, have only recently broken the 10 T barrier.

5. The speed of light. Show that

c = (ε0µ0)
− 1

2

is a speed, and work out its numerical value. Do you recognise it?

6. Electromagnetic waves. OK, the result of the previous exercise is
not a coincidence. We don’t have the space to derive Maxwell’s famous
equations for E and B, but here they are: in a vacuum, E and B satisfy
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•
∇ ∧ E = −∂B

∂t
.

This is Faraday’s law of induction which says that time-varying
magnetic fields generate electric fields.

•
1

µ0

∇∧ B = ε0
∂E

∂t
+ j.

When there are currents present they appear as a source term j,
the current density, on the right-hand side of this equation, which
is revealed as the model for generation of magnetic fields by cur-
rents. The term ∂E/∂t is Maxwell’s inspiration, the displacement
current.

•
∇ · B = 0, ∇ · E = 0.

The first of these says that there are no ‘magnetic monopoles’
(magnetic fields are only generated by currents, and magnetic lines
of force have no ends), and the second is a special case of ∇ ·E =
ρ/ε0, showing the generation of electric fields by charges.

Take these equations on trust and cross-differentiate them to show that
E and B satisfy wave equations:

∂2B

∂t2
= c2∇2B,

∂2E

∂t2
= c2∇2E

where c2 = (ε0µ0)
− 1

2 as above. You may need the vector identity6

∇∧∇ ∧ v = ∇ (∇ · v) −∇2v.

7. Planck’s constant and the fine structure constant. This book is
not the place for an account of quantum mechanics. We can, however,
note that underpinning it all is Schrödinger’s equation

�

i

∂ψ

∂t
− �

2

2m
∇2ψ = V ψ

for the wave function ψ of a particle of mass m moving in a potential V
(ψ is complex-valued and |ψ|2 is the probability density of the particle’s

6Curl Curl is also a surf beach town near Sydney, lat.. long. ..
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location). Find the dimensions of � (Planck’s constant is h = 2π�) and
V . Show that the combination

e2

2ε0hc
,

where e is the charge on an electron, is dimensionless. Such dimension-
less ratios of fundamental constants are not coincidences, and this one,
called the fine structure constant, plays an important role in quantum
electrodynamics. It gets its name from its influence on the fine structure
of the spectrum of light emitted by a glowing gas; crudely speaking it
is the ratio of the speed an electron would have if it orbited a hydrogen
nucleus in a circle (which it does not) to the speed of light. Its numerical
value is very close to 1/137, a source of some fascination to numerolo-
gists. For more, see its own website www.fine-structure-constant.org.

Other exercises

1. cgs units An alternative system of units to SI is the cgs system, in
which the unit of mass is the gramme (g) and the unit of length is the
centimetre. Establish the following conversion table (which is really
here for your reference), and construct the reverse table to turn SI into
cgs.

cgs SI

Velocity 1 cm s−1 10−2 m s−1

Density 1 g cm−3 103 kg m−3

Dynamic viscosity 1 poise 10−1 kg m−1s−1

Kinematic viscosity 1 cm2 s−1 10−4 m2 s−1

Pressure 1 dyne cm−2 10−1 Pa
Energy 1 erg 10−7 J
Force 1 dyne 10−5 N
Surface tension 1 dyne cm−1 10−3 N m−1

2. Imperial to metric. Establish the quite useful relation

1 mph ≈ 0.447m s−1.

Using the Web or other sources for the definitions, show that Btu=British
thermal unit, a
measure of energy;
kilocalories are
worried about by
dieters.

1 Btu = 1 calorie,

a result which might be of use if you are interested in central heating.



36 CHAPTER 3. UNITS AND DIMENSIONS

3. Atom bombs. An essentially instantaneous release of an amount
E of energy from a very small volume (see the title of the exercise)
creates a rapidly expanding high pressure fireball bounded by a very
strong spherical shock wave across which the pressure drops abruptly
to atmospheric. The pressure inside the fireball is so great that the
ambient atmospheric pressure is negligible by comparison, and the only
property of the air that determines the radius r(t) of the fireball is its
density ρ. Show dimensionally that

r(t) ∝ E
1
5 t

2
5 ρ− 1

5 .

This result is due to GI Taylor, a colossus of British applied math-
ematics in the last century; whatever branch of fluid mechanics you
look at, you will find that ‘GI’ wrote a seminal paper on it.7 It can be
used to deduce E from observations of r(t); Taylor’s publication of this
observation [40] apparently caused considerable embarrassment in US
military scientific circles where it was regarded as top secret.

4. Rowing. A boat carries N similar people, each of whom can put
power P into propelling the boat. Assuming that they each require the
same volume V of boat to accommodate them, show that the wetted
area of the boat is A ∝ (NV )

2
3 (here, as so often, the cox is ignored).

Assuming inviscid flow, why might the drag force be proportional to
ρU 2A, where U is the speed of the boat and ρ the density of water? (In
saying this, we are ignoring drag due to waves created by the boat.)
Deduce that the rate of energy dissipated by a boat travelling at speed
U is proportional to ρU 3A, and put the pieces together to show that

U ∝ N
1
9 P

1
3 ρ− 1

3 V − 2
9 .

If we suppose, very crudely, that P and V are both proportional to
body mass, is size an advantage to a rower?

This example is based on a paper by McMahon [26], described in Baren-
blatt’s book [4]; the theory agrees well with observed race times.

5. Similarity solution to the heat equation. Show that the problem

∂T

∂t
= κ

∂2T

∂x2
, x > 0, t > 0,

with
T (x, 0) = 0, T (0, t) = T0 > 0,

7Is it necessary to mention that the Taylor of Taylor’s theorem was several hundred
years earlier? One never knows these days.
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which corresponds to instantaneous heating of a cold half-space from
its boundary at x = 0, has a similarity solution

T = T0F

(
x√
κt

)
and find F in terms of the error function erf ξ = (2/

√
π)
∫ ξ

0
e−s2

ds.
Sketch F and interpret this solution in the light of the discussion at
the end of Section 3.2.1.
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Chapter 4

Dimensional analysis, scaling
and non-dimensionalisation

4.1 Nondimensionalisation and dimensionless

parameters

Like its predecessor, this chapter has one simple theme, but one with far-
reaching repercussions. The key idea is this. Any equation we write down
for a physical process models balances between physical mechanisms. Not
all of these may be equally important, and we can begin to assess how im-
portant they are by scaling all the variables with ‘typical’ values — values
of the size we expect to see, or dictated by the geometry, boundary condi-
tions etc — so that the equation becomes dimensionless. Instead of a large
number of physical parameters and variables, all with dimensional units, we
are left with an equation written in dimensionless variables. All the physical
parameters and typical values are collected together into a smaller number
of dimensionless parameters (or dimensionless groups) which, when suitably
interpreted, should tell us the relative importance of the various mechanisms.

All of this is much easier to see by working through an example than by
waffly generalities. So here’s a selection of three relatively simple physical
situations where we can see the technique in action.

4.1.1 Example: advection-diffusion

We’ll start with a combination of two very familiar models, heat conduction
and fluid flow. When you stand in front of a fan to cool down, two mecha-
nisms come into play: heat is conducted (diffuses) into the air, and is then
carried away by it. The process of heat transfer via a moving fluid is called

39
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advection, as distinct from convection, which is hot-air-rises heat transfer
due to density changes.1 Both advection and convection are major mech-
anisms for heat transfer in systems such as the earth’s atmosphere, oceans
and molten core; almost any industrial process (think of cooling towers as a
visible example); car engines; computers; you name it. Their analysis is of
enormous practical importance.

It is often easier to analyse advection because we can usually decouple the
question of finding the fluid flow from the heat-flow problem. In convection,
the buoyancy force that drives the flow is strongly temperature-dependent —
indeed, without it there would be no flow — and the problem correspondingly
more difficult. For our first example, we’ll consider two-dimensional flow of
an incompressible liquid with a given (that is, we can calculate it separately)
velocity u past a circular cylinder of radius a, with a free-stream velocity at
large distances of (U, 0). This is a simple model of, for example, the cooling
of a hot pipe.

For the moment, it doesn’t matter too much what we take for u. Let’s
just use the standard inviscid flow model u = ∇φ, where

φ = U

(
r cos θ +

a2 cos θ

r

)
in plane polar coordinates. We need to generalise the heat conduction equa-
tion to include the advection. This needs us to recognise that when we write
down conservation of energy in the form

rate of change of energy of a particle + net heat flux into it = 0,

we have to do this following a particle. Thus, the time derivative ∂ /∂t in the
usual heat equation (3.1) is replaced by the material (convective) derivative
∂ /∂t + u · ∇, givingIf you don’t quite

believe this
argument, do the
exercise
‘advection-diffusion’
on page 54.

ρc

(
∂T

∂t
+ u · ∇T

)
= k∇2T. (4.1)

Lastly we need some boundary conditions. The simplest ones are to have
one constant temperature at infinity and another on the cylinder,2 so

T → T∞ as r → ∞, T = T0 on r = a.

The problem is summarised in Figure 4.1.

1The usage is changing in the loose direction; convection is often used for both processes,
subdivided where necessary into forced convection for advection, and natural convection
for buoyancy-driven heat transport. A lot of the heat lost by a hot person in still air is by
(natural) convection.

2The conditions on the cylinder are not especially realistic; a Newton condition of the
form −k∂T/∂n + h(T − T0) = 0 would be better; see the exercises on page 55.
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ρc
“

∂T
∂t

+ u · ∇T
”

= k∇2T

T → T∞ at infinity

a

u

T = T0 on r = a

u → (U, 0) at infinity

Figure 4.1: Advection-diffusion of heat from a cylinder.

In order to see the relative importance of advection (the left-hand side
of (4.1)) and diffusion (the right-hand side), we scale all the variables with
‘typical’ values. The obvious candidate3 for the length scale is a; then we can
scale u with U and time with a/U , the order-of-magnitude residence time of
a fluid particle near the cylinder. So, we write

x = ax′, u = Uu′, t = (a/U)t′.

Only T has not yet been scaled. Clearly, we can write

T (x, t) = T∞ + (T0 − T∞) T ′(x′, t′).

This gives
ρcU

a

(
∂T ′

∂t′
+ u′ · ∇′T ′

)
=

k

a2
∇′2T ′. (4.2)

Now comes a key point. All the terms in the original equation have the
same physical dimensions. All our ‘primed’ quantities have no dimensions:
they are just numbers. Thus, if we divide through (4.2) by one of the (still
dimensional) quantities multiplying a ‘primed’ term, we will be left with
a dimensionless term. Then, all the other terms in the equation must be
dimensionless as well: and so, the physical parameters (a, ρ, etc) must now
occur in combinations which are dimensionless too.

So, divide through (4.2) by k/a2 to get

ρcUa

k

(
∂T ′

∂t′
+ u′ · ∇′T ′

)
= ∇′2T ′.

3If the cross-section of the cylinder is another shape, we can use any measure of its
‘diameter’, although you can see an obvious difficulty here if it is, say, a long thin ellipse.
We return to this point later.
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We see that there is just one dimensionless combination in this problem,

Pe =
ρcUa

k
=

Ua

κ
,

known as the Peclet number. There is no dimensionless parameter in theWhat would have
happened if we had
used the Newton
condition?

boundary conditions because they scale linearly, to become

T ′ → 0 as r′ → ∞, T ′ = 1 on r′ = 1.

There several things to say about this analysis. The first is the simpleIt is worth noting
that there may be
more than one
possible choice for
some of the scales,
and iteration may
be needed to find
the most
appropriate one for
a given problem. In
our example, there
are two other
possible length
scales, whose
consequences are
explored in the
exercise ‘Peclet
numbers’ on
page 54. Usually,
the obvious choice
is the best.

observation that, whereas the original problem has a large ‘parameter space’
consisting of the 7 parameters U , a, ρ, c, k, T∞, T0, the reduced problem
contains the single dimensionless parameter Pe. That’s quite a reduction;
and if you think it is obvious, there are still plenty of mathematical subjects
almost untouched by the idea (economics, for example).

Next, all problems with the same value of Pe can be obtained by solving
one canonical scaled problem for that value of Pe. So, if we want to make
an experimental analogue of a very large physical set-up, we can do it in a
smaller setting as long as we achieve the same Peclet number.4

Next, and probably most important, the size of any dimensionless num-
bers in a problem tells us a great deal about the balance of the physical
mechanisms involved, and about the behaviour of solutions. In our example,
we can write

Pe =
ρcUa

k

=
ρcU(T − T∞)

k(T − T∞)/a

≈ advective heat flow

conductive heat flow
.

If Pe is large, advection dominates conduction, and vice versa if Pe is small.
A 10 cm radius hot head in an air stream (ρ ≈ 1.3 kg m−3, c ≈ 993 J kg−1

K−1, k ≈ 0.24 W m−1 K−1) moving at 1 m s−1 from a fan has a Peclet number
of about 500, undeniably large (large Peclet numbers are more common than
small ones).

Any problem with a parameter equal to 500 must surely offer scope for
judicious approximation: after all, 1

500
is tiny, and we may hope to cross out

the terms it multiplies without losing too much. If we do this in our equation

∂T ′

∂t′
+ u′ · ∇′T ′ =

1

Pe
∇′2T ′,

4We also have to ensure that the fluid velocity scales correctly. This may not be so
easy given that it has its own equations of motion which may not behave properly. In our
example, it is clear that the potential flow model does scale correctly, because it is linear.
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we see that the convective derivative of T ′ is zero. That is, as we follow
a particle its temperature does not change, and since all particles start far
upstream at x = −∞, T ′ everywhere has its upstream value of 0. Which is
fine, until we realise that we can’t satisfy T ′ = 1 on the cylinder. We shall
have to wait until we have looked at asymptotic expansions before we can
see how to get out of this jam.

A last remark is that one soon gets tired of writing primes on all scaled
variables. As soon as the scalings have been introduced, it’s usual to write the
new dimensionless equations in the original notation, a pedantically incorrect
but universal practice signalled by the phrase ‘dropping the primes’.

4.1.2 Example: the damped pendulum

Sometimes the correct scales for one or more variables can only be deduced
from the equations, as in the following example. The basic model for a
linearly damped pendulum which is displaced an angle θ from the vertical
(see Figure 4.2) is

l
d2θ

dt2
+ k

dθ

dt
+ g sin θ = 0,

and let us suppose that the initial angle and angular speed are prescribed:

θ = α0,
dθ

dt
= ω0 at t = 0.

Here k is the damping coefficient and g the acceleration due to gravity; their Check that these
units are consistent
with the equation;
remember that θ is
a number.

units are
[k] = [L][T ]−1, [g] = [L][T ]−2.

Combining the dimensional parameters l, k, g and ω0, it is easy to see that
there are three timescales built into the parameters of this problem:

t1 =

√
l

g
, t2 =

l

k
, t3 =

1

ω0

.

The first is the period of small undamped oscillations (linear theory). The
second is the time over which the damping has an effect (solve du/dt = −u/t2
and see that u decreases by a fraction 1/e in each time interval t2). The third
is prescribed by us: it tells us how long it takes the pendulum to cover one
radian at its initial angular speed if no other forces act.

Let’s scale time with t1 =
√

l/g, which we do if we are expecting to see
oscillatory behaviour. Then, writing

t = t1t
′,
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T

−kθ̇

mg

O

θ

Figure 4.2: Motion of a simple pendulum.

we have the dimensionless model

d2θ

dt′2
+

t1
t2

dθ

dt′
+ sin θ = 0,

with

θ = α0,
dθ

dt′
=

t1
t3

at t′ = 0.

It contains two obviously dimensionless parameters,

γ =
t1
t2

=

√
k2

gl
and β0 =

t1
t3

=

√
ω2

0l

g
.

The first of these, γ, is the ratio of the time over which the system responds
to the physical mechanism of gravity (the period for small oscillations) and
the timescale of damping. The second, β0, is the ratio of the initial speed
of the pendulum to the speed changes induced by gravity. There is a third
dimensionless group, α0, as angles are automatically dimensionless, and so
the dimensionless model is

d2θ

dt′2
+ γ

dθ

dt′
+ sin θ = 0,

with

θ = α0,
dθ

dt′
= β0 at t′ = 0.

We can make some immediate statements about the behaviour of the
system just by looking at the sizes of our dimensionless parameters. For
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example, if γ is small, we expect the damping to have its effect over many
cycles. If β and α0 are both small, we hope that linearised theory will be
valid; and so on. Later, in Chapter ??, we’ll see how to quantify some of
these ideas.

4.1.3 Example: beams and strings

We all know that the motion of a string made of a material with density ρ
(mass per unit volume, [ρ] = [M ][L]−3), of length L and cross-sectional area
A, stretched to tension T , can be modelled by the equation5 (a) What are the

dimensions of T?
(b) Show that√

T/ρA is a speed.
(c) Show that the
wave speed is
exactly c =

√
T/ρA

(with no numerical
prefactor) by
substituting in a
solution of the form
y(x − ct).

ρA
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

where y(x, t) is the amplitude of small transverse displacements.6

In the string model, the restoring force is provided by the component of
the tension normal to the string, T ∂y/∂x. If, on the other hand, we have a
stiff beam or rod, the restoring force is caused by its resistance to bending,
which can be shown to be proportional to −∂3y/∂x3. If in addition there is
a force perpendicular to the wire of magnitude F per unit length, we get the
equation

What is the
wavespeed?ρA

∂2y

∂t2
+ EAk2 ∂4y

∂x4
= F.

Here A is the cross-sectional area of the beam, while k is a constant with the
dimensions of length known as the radius of gyration of the cross-section of
the beam. In this model, k encapsulates the effect of the shape of the beam;
for a fixed cross-sectional area, k is smallest for a circular cross-section, while
for a standard I-beam it is large.7 A derivation of this model is given in
Section 5.1.

5You may have seen this in the form

ρ̃
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

in which ρ̃ is the mass per unit length, or line density.
6Note the engineering rule of thumb

wavespeed =

√
stiffness
inertia

,

which applies very generally to non-dissipative linear systems.
7The definition of k is: in a cross-sectional plane, take coordinates (ξ, η) with origin at

the centre of mass of the cross-section. Then,

Ak2 =
∫∫

cross-section
ξ2 + η2 dξ dη.
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The constant E is a property of the material from which the beam is
made known as the Young’s modulus. The larger it is, the more the material
resists being bent, or sheared (bending leads to shearing). Lastly, ρ is again
the underlying material density, which we use in preference to the line density
because this model takes into account not just the cross-sectional area of the
beam but also its shape).

If the force F is due to gravity we have

F = ρAg.

But we might consider other forces, such as the drag from a fluid flowing past
the beam, for example wind drag on a skyscraper, flagpole, car radio aerial
or hair (see the next chapter); water drag on a reed bending in a stream; or
the drag of gas escaping through a brush seal in a jet engine. For inviscid
flows, the pressure in the liquid has typical magnitude ρlU

2
l , where ρl is the

liquid density and Ul a measure of its speed (think of Bernoulli’s equation
p + 1

2
ρ|u|2 = constant in steady irrotational flow). Because the flow about

a cylinder (even a circular one) is not symmetrical in a real (as opposed to
ideal) flow, there is a net pressure force on the cylinder, and its magnitude
is roughly proportional to ρU 2.8

So, it is reasonable that the drag per unit length on an isolated cylinder
in a flow with free stream velocity Ul can be well approximated by

F = geometric factor × pressure × perimeter

= cd × ρlU
2
l × k.

Here the drag coefficient cd depends on the Reynolds number and the shape
and orientation of the cylinder (when we work out the drag force, we resolve
the pressure, which acts normally to the surface, in the direction of the free
stream and integrate over the perimeter; all this information is lumped intoWhat other length

might we have
used? Why is k
probably better?

the drag coefficient), and we have used k as a measure of the length of the
cross-sectional perimeter.

To summarise, we have

ρA
∂2y

∂t2
+ EAk2 ∂4y

∂x4
= cdρlU

2
l k

as the equation for a beam (flagpole, reed) subject to a fluid drag force.

That is, Ak2 is the moment of inertia of the cross-section.
8D’Alembert’s paradox says that there is no drag on a cylinder in irrotational inviscid

(potential) flow! In real life, even a very small viscosity has a profound effect, leading to
completely different flows from the ideal ones. We’ll get an idea why later on.
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This model has a huge number of physical parameters, but we can get a
lot of information from some simple scaling arguments. It is an exercise for
you to do this:

1. Make the model dimensionless using the length of the beam L to scale
x and to-be-determined scales y0 and t0 for y and t.

2. Verify that the units of E are [M ][L]−1[T ]−2.

3. Roughly how big is the steady-state displacement?

4. If the drag force is switched on suddenly at t = 0, over what timescale
does the beam initially respond?

5. What is the timescale for free oscillations?

We will return to versions of this model at several places later in the book.

4.2 The Navier–Stokes equations and Reynolds

numbers

Recall from Chapter ?? that the flow of an incompressible Newtonian viscous
fluid is governed by the Navier–Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∇2u, ∇ · u = 0, (4.3)

where u is the fluid velocity and p the pressure, both functions of position x
and time t, while the physical parameters of the fluid are its density ρ and
its dynamic viscosity µ.

Let us now look at how we should nondimensionalise the Navier–Stokes
equations. We begin by noting that it is often useful to combine µ and ρ to
form the kinematic viscosity

ν =
µ

ρ
.

Note the units of dynamic and kinematic viscosity: since, as in Figure ??,

force/area = µU/h,

we have
[µ] = [M][L]−1[T]−1

(the SI unit is the pascal-second, Pa s), and so Mnemonic: acres
per annum; the acre
is one of the old
English units of
area. Hectares per
megasecond??
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[ν] = [L]2[T]−1.

Suppose we have flow past a body of typical size L, with a free-stream
velocity Ue1. As in the advection-diffusion problem, we scale all distances
with L, time with L/U and velocities with U , writing

x = Lx′, t = (L/U∞)t′, u = Uu′.

Only p has not yet been scaled, and in the absence of any obvious exogenous
scale we let the equations tell us what the possibilities are. For now, let’s
write

p = P0p
′

and substitute all these into the momentum equation (clearly the mass con-
servation just becomes ∇′ · u′ = 0). This gives

ρU 2

L

(
∂u′

∂t′
+ u′ · ∇′u′

)
= −P0

L
∇′p′ +

µU

L2
∇′2u′. (4.4)

Now we can divide through by one of the coefficients to leave a dimensionless
term; because all the other terms must also be dimensionless, that will tell
us the pressure scale. For example, divide through by ρU 2/L, leaving the
equation

∂u′

∂t′
+ u′ · ∇′u′ = − P0

ρU 2
∇′p′ +

µ

ρUL
∇′2u′.

It is now clear that we can choose the ‘inviscid’ pressure scale

P0 = ρU 2

and when we do this we get the dimensionless equation in the form

∂u′

∂t′
+ u′ · ∇′u′ = −∇′p′ +

1

Re
∇′2u′, (4.5)

where the dimensionless combination

Re =
ρUL

µ
=

UL

ν

is known as the Reynolds number after the British hydrodynamicist Osborne
Reynolds.

So what does this tell us? The most important conclusion is that if
viscous effects are all we have to worry about,9 then all flows with the same

9For example, we don’t take account of temperature changes due to viscous dissipation,
which may themselves affect the viscosity or density of the fluid.
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Reynolds number are scaled versions of each other. This is the idea of the
wind tunnel. We don’t need to build full scale prototype aeroplanes or cars
to test for lift and drag, we can use a scale model as long as we get the
Reynolds number right. Furthermore, by forming dimensionless groups, we
reduce the dimensionality of our parameter space as far as possible. In our
example above, instead of the 4 physical parameters ρ, µ, L and U , we have
the single combination Re. So for a given shape of body, in principle all we
need to do is sweep through the Reynolds numbers from 0 to ∞ to find all
the possible flows past a body of that shape.

Thinking now of the dimensionless parameters as encapsulating the com-
peting (or balancing) physical mechanisms that led to our original equation,
we can write the Reynolds number as

Re =
ρUL

µ

=
ρU 2

µU/L
.

The top of the last fraction is clearly a measure of the pressure force due to
fluid inertia per unit area on a surface, while as we saw above, the bottom
is a measure of viscous shear forces. So, the Reynolds number tells us the
ratio of inertial forces to viscous ones. When it is large, the inertial forces
dominate, while for small Re it is viscosity that wins.

In the former case, it is tempting to cross out the term multiplied by 1/Re
in the dimensionless equation (4.5); this leaves us with the Euler equations

∂u

∂t
+ u · ∇u = −∇p, ∇ · u = 0

(we have dropped the primes), for which there is a large class of exact solu-
tions when the flow is irrotational so that ∇∧u = 0. In this case, there is a
velocity potential φ which satisfies Laplace’s equation

∇2φ = 0

in the fluid. However, we must be very careful in making this approxima-
tion. One obvious reason is that for most viscous fluids we should apply
the no-slip condition on rigid boundaries: this says that the fluid velocity
at the boundary must equal the velocity of the boundary itself, so the fluid
particles at the boundary stick to it. Most solutions of the Euler equations
do not satisfy this condition, and the reconciliation of the two ideas led to See the exercise on

page 23 where this
is proved for
potential flows.

boundary layer theory and the theory of matched asymptotic expansions, a
triumph of twentieth-century applied mathematics which we look at briefly



50 CHAPTER 4. DIMENSIONAL ANALYSIS

in Chapter ??. A second reason for proceeding with caution is the everyday
observation that very fast (very large Reynolds number) flows are turbulent
and so intrinsically unsteady. For these reasons one may worry that the in-
viscid model is one that exists in theory but is never seen in practice, but
that would be unduly pessimistic. Boundary layer theory helps, and in many
interesting flows either the Reynolds number is large but not enormous, or
the flow takes place on a short timescale, so that turbulence does not have
time to become a nuisance.

Returning to the theme of nondimensionalisation, what if Re is small, for
slow viscous flow? Is is safe to say that since ∇′2u′ is divided by Re, we
simply set it equal to zero? No, it is not. If we do this, we are saying that
pressure forces are not important, and it is common experience that they are.
In such a situation, we should check whether there is an alternative scaling
of the equations. It is not hard to see that there is a second possible pressure
scale,This is obvious

from the definition
of the
(dimensionless) Re:
why?

P̃0 =
µU

L
,

and it is an exercise to show that scaling p in this way leads to an alternative
version of (4.5),10

Re

(
∂u′

∂t′
+ u′ · ∇′u′

)
= −∇p′ + ∇′2u′.

If Re is small, maybe we can neglect the convective derivative (inertial)
terms on the left to get the Stokes Flow model for slow flow:

0 = −∇p + ∇2u, ∇ · u = 0.

As we continue, we shall see how we might justify dropping terms in this way
(and why it might go wrong).

4.2.1 Water in the bathtub

We really should do this problem; even your aunt has heard of it. Is it
true that water flows out of the bathtub with an anticlockwise swirl in the
northern hemisphere and a clockwise swirl south of the equator?

Answer: only under very carefully controlled circumstances. Here’s why.
Remember the Coriolis theorem about transferring the equations of motionThere is nothing

difficult about this:
it is just the chain
rule in disguise.

10Pedantically speaking, note that the p′ in this equation is not the same as the p in the
other dimensionless version of Navier–Stokes (4.5), as it has been scaled differently. . .
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to a rotating coordinate system: if v is a vector, and we want its time
derivative as measured in a frame rotating with angular velocity Ω, then

dv

dt

∣∣∣∣
fixed

=
dv

dt

∣∣∣∣
rotating

+ Ω ∧ v.

The Navier–Stokes equations in a rotating frame are clearly The origin is at the
centre of the earth,
and the Ω ∧ Ω ∧ r
term is
incorporated into
the gravitational
body force to give
the ‘apparent
gravity’.

ρ

(
∂u

∂t
+ Ω ∧ u + u · ∇u

)
= −∇p + µ∇2u + ρ (g − Ω ∧ Ω ∧ r) ,

where in this case Ω is the angular velocity of the earth, equal to 2π per 24
hours, about 7.3 × 10−5 radians per second, in the direction of the earth’s
axis of rotation. Now consider water moving at 1 m s−1 in a bath of size
about 1 m. Clearly, if we scale the variables with representative values based
on these figures (all of which are 1 in SI units), the ratio of the Coriolis term An exercise which

you should carry
out. . .

Ω ∧ u to the other acceleration terms is about the same as the numerical
value of |Ω| in SI units, i.e.less than 10−4. That is, the rotation effect is
tiny. In practice, other effects such as residual swirl from the way the water
was put into the bath, or asymmetry in the plughole or the way the plug
is pulled out, completely swamp the Coriolis effect unless the experiment is
carried out under very carefully controlled conditions. On the other hand,
If we look at rotating air masses on the scale of a hurricane or typhoon, the
much greater length scale means that Coriolis effect is enormously important.
As air masses leave the equator and travel north or south, they carry their
angular momentum (whose direction is along the earth’s axis of rotation)
with them, and as they move round the curve of the earth it is transformed
into rotatory motion in the tangent (locally horizontal) plane; but that is
another story.

4.3 Buckingham’s Pi-theorem

Let’s take a short detour to state the only quasi-rigorous result in the area
of dimensional analysis: the Buckingham Pi-theorem.

Suppose we have n independent physical variables and parameters Q1, . . . , Qn

(x, t, µ etc. above), and the solution of a mathematical model gives us one
of these in terms of the others:

Q1 = f(Q2, . . . , Qn).

Suppose also that there are r independent basic physical dimensions ([M], [L],
[T] etc.).

Then there are n−r dimensionless11 combinations Πi(Qj) and a function

11And eponymous.
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g such that

Π1 = g(Π2, . . . , Πn−r).

Example: the drag on a cylinder

Suppose a cylinder of length L and radius a is held in viscous fluid moving
with far-field velocity U normal to the axis of the cylinder. How does the drag
force depend on the parameters of the problem? What happens as L → ∞?

There are 6 independent physical quantities in this problem:

• L and a, which are properties of the cylinder and both have dimensions
[L];

• µ and ρ, which are properties of the fluid and have dimensions [M][L]−1[T]−1,
[M][L]−3 respectively;

• The force F on the cylinder ([M][L][T]−2) and the free stream velocity
U ([L][T]−1).

In this case, r = 3 (for [M], [L] and [T]), and so there must be n − r = 3
dimensionless quantities. One is obviously the aspect ratio L/a, and another
is the Reynolds number Re = Ua/(µ/ρ) = Ua/ν. For the third, a littleIn choosing a as the

length to appear in
Re, we are looking
ahead to when we
let L → ∞.

experimentation shows that something of the form

F

ρU 2[L]2

will do, and we need to choose which lengths to use to replace [L]2. Here it
helps to think what physical balance is expressed by this parameter. The top,
F , is a force, while the bottom is the inviscid pressure scale ρU 2 multiplied
by an area Hence it makes sense to use aL, which is a measure of theRemember pressure

= force per unit
area.

surface area of the cylinder, and our third dimensionless parameter is thus
F/(ρU 2aL).

Putting this all together, on dimensional grounds we have shown that the
drag force is related to the other parameters by an equation of the form

F = ρU 2aL × g(Re, L/a)

for some function g.
If we further assume that our pipe is very long so that we have transla-

tional invariance along it, then instead of F and L as independent physical
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quantities, we only have the force per unit length F ′ (dimensions [M][T]−2).
Then, we get

F ′ = ρU 2aCd(Re)

for some function Cd, which is just what we called a drag coefficient earlier
in the chapter.

[? approx formula for Cd, flow parallel to generators?]
There is clearly some indeterminacy in the choice of the parameters and

the representation of the drag coefficient. For example, we could have written
the Reynolds number as UL/ν, or we could have introduced more convoluted
parameters such as UL2/(νa), equal to L/a times our definition above, but
this would not have had such clear physical implications. It helps to make the
choices of parameters to correspond as closely as possible with the physical
situation, although we can’t always hope to get it right first time. Moreover,
there are often genuine alternatives. In our example, we chose ρU 2 as our
measure of the fluid pressures; this says that we expect inertia to be signif-
icant, and is the clearest way of writing the drag when the flow has large
Reynolds number. However, as we saw earlier, we could have chosen µU/a
for the pressure scale, and this would have led to

F ′ = µUC̃d(Re),

which might be more convenient if we are looking at slow flow. Of course,
the drag coefficient is uniquely determined12 as a function of the Reynolds
number, so this is merely a relabelling exercise: it is easy to see that C̃d(Re) =
ReCd(Re).

4.4 Onwards

We haven’t done anything very technical in this chapter. This whole business
of scaling is a combination of experience and plain common sense. The main
point is that sensible scalings should reveal the primary balances between
physical mechanisms in equations, leaving the remaining terms as smaller
corrections, at least at first sight (it often happens that what we thought was
a small correction rises up and hits us between the eyes: but that’s all part of
the experience). If we have the wrong scalings, it usually becomes apparent
fairly soon. In later chapters we give an introduction to asymptotic analysis,
a framework which allows us to make the idea of approximate solution more
systematic.

12At large Reynolds number the flow is turbulent and so unsteady; the drag coefficient
must be interpreted as a time average.
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Sources and further reading

Acheson’s book From Calculus to Chaos [1] has a lot more on the pendulum.
The flagpole problem was lifted from the book of Fowkes & Mahoney [12],
where many more details will be found. It is here partly as an exercise in
scaling, but also as an introduction to the beam equation.

Exercises

1. Advection-diffusion. If T (x, t) is the temperature in an incompress-
ible fluid which is moving with velocity u, explain why the heat flux
is

ρcTu − k∇T.

Take an arbitrary small volume V fixed in space, write energy conser-
vation in the form

d

dt

∫
V

ρcT dV +

∫
∂V

(ρcTu− k∇T ) · n dS = 0,

then use the divergence theorem and ∇ · u = 0 to derive (4.1). (Note
that in the derivation on page 40 we used incompressibility to say that
the density in the material volume remains constant. If the fluid is com-
pressible, we have to worry about what we mean by the specific heat,
because the density changes. That is, we have to think carefully about
the thermodynamics of the problem. Fortunately, for most liquids the
density change with temperature is small enough to be neglected in the
convective derivative (although not necessarily in the buoyancy body
force); in gas dynamics, two specific heats are considered, one at con-
stant pressure and one at constant volume.)

2. Peclet numbers. Consider the advection-diffusion problem of Fig-
ure ?? on page ??. Show that other possible length scales are

κ

U
,

k(T∞ − T0)

ρU 3
.

If we use the first, what happens to the boundary r = a, and why might
this be inconvenient? Explain why the denominator of the second is a
kinetic energy flux and hence why it is an inappropriate length scale
for this problem.
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3. The Boussinesq transformation. Consider the steady-state dimen-
sionless advection-diffusion problem

Pe

(
u
∂T

∂x
+ v

∂T

∂y

)
= ∇2T,

in which the velocity is given by potential flow past a two-dimensional
body (not necessarily a circular cylinder) with potential φ and stream-
function ψ:

u =
∂φ

∂x
=

∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x
, ∇2φ = ∇2ψ = 0.

Switch from (x, y) to (φ, ψ) as independent variables, so that

∂

∂x
=

∂φ

∂x

∂

∂φ
+

∂ψ

∂x

∂

∂ψ
= u

∂

∂φ
− v

∂

∂ψ

etcetera,13 to show that the problem becomes Note that the
left-hand side is the
directional
derivative of T
along streamlines,
which are
orthogonal; to the
equipotentials
(why?).

Pe
∂T

∂φ
=

∂2T

∂φ2
+

∂2T

∂ψ2

in the (φ, ψ) plane. If the flow is symmetric, what are to the boundary
conditions in the new variables? (This problem can be solved by the
Wiener–Hopf technique, but it is a complicated business.)

4. The Kirchhoff transformation. Suppose that the thermal conduc-
tivity of a material depends on the temperature. Show that the steady
heat equation

∇ · (k(T )∇T )) = 0

can be transformed into Laplace’s equation for the new variable u =∫ T
k(s) ds.

5. Newton’s law of cooling and Biot numbers. The process of cool-
ing a hot object is a complicated one. In addition to conduction to the
surroundings, it may involve both forced and natural convection if the
body is immersed in a liquid or gas; there may be boiling, or thermal

13A shortcut: because φ + iψ is an analytic (holomorphic) function w(z) of z = x + iy,
the Cauchy–Riemann equations let us simplify the Laplacian operator to

∂2

∂x2
+

∂2

∂y2
=
∣∣∣∣dw

dz

∣∣∣∣2( ∂2

∂φ2
+

∂2

∂ψ2

)
.
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radiation. A very widely used model lumps all these effects into a single
linear law, known as Newton’s law of cooling: the heat flux per unit
area from the body is given by

−k
∂T

∂n

∣∣∣∣
boundary

= h(T − T∞),

where h is the heat transfer coefficient and T∞ is a measure of the
ambient temperature. What are the units of h? Explain in general
terms why this law is reasonable (including the minus sign).

There are many empirical laws giving h in specific circumstances. For
the specific example of black-body radiative transfer, it can be derived
exactly. Recall that the Stefan–Boltzmann law says that the heat flux
is

KT 4 − KT 4
∞,

where T is the absolute temperature and K is a constant (what are its
units?) Show that the Newton law is a good approximation if T is not
too far from T∞ and find h in this case.

If the body has typical temperature T0 and size L, write the Newton
law in dimensionless form as

−∂T ′

∂n′ = Bi T ′

where Bi = hL/k is known as a Biot number.

6. Coffee. Alphonse takes milk in his coffee and he has to carry the cup
a long way from the machine to his desk. He wants the coffee to be
as hot as possible when he gets there. Make a simple model to decide
whether it is better to add the (cold) milk to the coffee at the machine
or at his desk.

Still on the subject of coffee, Bérénice takes sugar in hers. At time
t = 0 she puts a lump in. If V (t) is the volume and A(t) the surface
area of the undissolved lump, and the coffee is well-mixed, explain (on
dimensional grounds) why a crude model for the evolution is

dV

dt
∝ −A, A ∝ V

2
3 .

Solve the model and show that V reaches zero in finite time.

Now solve the differential equation

dV

dt
= V

2
3 , t > 0; V (0) = 0.
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I hope you found all the solutions:

V (t) =

{
0, 0 < t < t0,(

1
3
(t − t0)

)3
, t ≥ t0,

for any t0 ≥ 0; the nonuniqueness arises because the right-hand side Your opportunity
to review the
Picard theorem on
existence and
uniqueness for
first-order
differential
equations.

V
2
3 is not Lipschitz in V . (The solution V ≡ 0 of the differential

equation is tangent to all the solutions V =
(

1
3
(t − t0)

)3
.)

Hercule asks the question: if I observe the state of the sugar in Bérénice’s
coffee, can I deduce when she put it in? Show that he can do this if the
lump is only partly dissolved but he can’t if it is wholly gone. Hence
give a physical interpretation of the non-uniqueness result immediately
above. (Ivar Stakgold told me this example. I am happy to return
the favour by recommending his book on Green’s functions etc.; see
page ??.)

7. Boiling an egg. A spherical homogeneous (ie purely mathematical)
egg of radius a is placed in cold water at temperature T0, the egg being
initially at this temperature too. Over a time t0 the water temperature
Tw is increased linearly to T1, where it remains. The temperature T in
the egg is modelled by the heat conduction equation

ρc
∂T

∂t
= k∇2T,

where ρ is the density, c the specific heat capacity and k the thermal
conductivity of the egg, with the Newton boundary condition

−k
∂T

∂r

∣∣∣∣
r=a

= h(T − Tw).

Make the model dimensionless and identify the dimensionless parame-
ters. What possible regimes might there be and how can you see this
by looking at the size of your dimensionless parameters?

Is there any difference in your analysis if the egg is boiled by the tra-
ditional method of putting it into boiling water (assume the water
temperature remains constant) and leaving it there while you sing your
national anthem or some other suitable song (in England, the hymn
Onward Christian Soldiers is traditional for this purpose)?

8. Flagpole in an earthquake. Suppose a flagpole is in still air, but
that its base y = 0 is oscillated horizontally by an earthquake, so that
the condition y(0, t) = 0 is replaced by

y(0, t) = a cos ωt, (4.6)



58 CHAPTER 4. DIMENSIONAL ANALYSIS

the other boundary conditions remaining as

yx(0, t) = 0, yxx(L, t) = yxxx(L, t) = 0. (4.7)

Nondimensionalize the unsteady unforced flagpole (beam) equation

ρAytt + EAk2yxxxx = 0 (4.8)

using the timescale 1/ω implicit in the boundary condition (4.6). What
is the appropriate scale for y?

What is the radius of gyration of a circular cylinder of radius a?

A circular pole is 10 m high, and has a radius of 10 cm. It is made of
steel for which Es = 2.0 × 107 kg m−1 s−2, ρs = 7.8 × 103 kg m−3, and
the oscillations are at a frequency of 1 Hz. What is ω? It is desired to
simulate the behaviour of this pole using a wooden model of radius 1 cm
and with the same value of ω. Given that Ew ≈ Es/20, ρw ≈ ρs/13,
how long should the model be?

9. Flagpole under gravity. Show from a vertical force balance that a
vertical flagpole is subject to a compressive force C(x) which satisfies

dC

dx
= −Aρg

(g is the acceleration due to gravity), with C(L) = 0. Hence find C;
what is its value at x = 0, why?

It can be shown (see Section 5.1) that the effect of gravity is to modify
the flagpole equation to

ρAytt + (Cyx)x + EAk2yxxxx = 0

(the new term is just like the tension in the equation for waves on
a string, but it is on the other side of the equation because C is a
compression = negative tension). What is the dimensionless parameter
that measures the relative importance of gravity for the pole of question
1? How big is it in that situation?

10. Normal modes of strings and flagpoles. A string with mass den-
sity ρ per unit length is stretched between x = 0 and x = L to tension
T . The end x = L is held fixed, while the end x = 0 is oscillated
transversely at frequency ω so that its displacement there is y(0, t) =
a cos(ωt). Find the time-periodic solution y(x, t) = f(x) cos(ωt); does
it exist for all ω and if not, what happens at the exceptional value(s)?
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Show that the dimensionless unsteady flagpole equation of question
1 has solutions of the form cos / sin αx × cosh / sinh αx and find α.
(Strictly voluntary, because rather hard work: find the time-periodic
solution to question 1; you may want to use a symbolic manipulator
such as Maple.)

11. A layer of viscous fluid flowing on a surface. A uniform layer of
viscous fluid, of thickness h, flows down a plane inclined at an angle
θ to the horizontal, so that the acceleration due to gravity down the
plane is g sin θ. Show on dimensional grounds that the flux (per unit
length ‘into the page’) is proportional to h3g sin θ/ν, where ν is the
kinematic viscosity.

Explain (in terms of a force balance) why appropriate conditions at the
free surface y = h are σijnj = 0, where σij is the stress tensor.

Take coordinates x downhill along the plane and y normal to it. Show
that there is a solution u = (u(y), 0, 0) and that the free surface condi-
tions reduce to p = 0, ∂u/∂y = 0. Find u(y) and verify the dimensional

analysis for Q =
∫ h

0
u(y) dy. Show also that this solution corresponds to

one half of the Poiseuille flow of the previous question (see Figure 21.2
on page 256).

12. Dimensional analysis of Poiseuille flow. In a Poiseuille flow down
a pipe, a Newtonian viscous fluid is forced down a circular tube of
cross-sectional area A (or radius a) and length L by a pressure drop
∆P . Confirm that there are 6 independent physical quantities in this
problem, and state their dimensions: L and a (or

√
A), which are

properties of the pipe; µ and ρ, which are properties of the fluid; the
input or output variables (specify one and find the other), ∆P and
either a volume flux Q or an average velocity U . How is U related to
Q and A?

Use Buckingham to show that there are 3 independent dimensionless
quantities and find them in their most useful forms. If this problem Obviously you can

take products etc.,
but try to single
out the best
combinations.

has a steady solution show that they are related by an equation of the
form

∆P = ρU 2F (Re, L/a)

Re being the Reynolds number Ua/ν.

If we further assume that our pipe is very long so that we have trans-
lational invariance along it, then instead of ∆P and L as independent
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physical quantities, we only have the pressure gradient P ′. Show that

P ′ =
ρU 2

a
φ(Re)

for some function φ.14

Using the information in the footnote, find relations between the vol-
ume flux and the pressure drop (a) for slow flow (b) for fast flow with
Re < 2000. How does the flux depend on the radius in each case?

Why does water come out of the tap (or a garden hose) in a thin but
very fast jet when you put your finger over the end, but not when
you take it away? If your WC is refilling, and you turn on a cold tap
connected to the same water supply, why does the cistern stop making
that sshh noise?

13. Poiseuille flow: exact solution. Consider the two-dimensional ver-
sion of the flow of the previous exercise, in which a viscous liquid flows
in the x–direction between two parallel plates at y = ±a under a pres-
sure gradient P ′. Assuming that

∂

∂x
(everything except P ) = 0,

∂p

∂x
= P ′,

show that there is an exact steady solution of the Navier–Stokes equa-
tions in which the velocity is (u(y), 0) where

µ
∂2u

∂y2
= P ′.

Applying the no-slip condition at y = ±a, find u(y) and hence the flux
per unit length in the z–direction. Repeat the calculation for a circular
pipe.

14As Re → 0, we have the analytical result (see the next exercise) that φ ∼ (8Re)−1.
Even though the flow from which this is derived is an exact solution of the Navier–Stokes
equations for all Re, it is unstable. The effective drag for large Reynolds numbers is derived
from measurements of time averages of much more complicated unsteady flows. This leads
to empirical approximations such as φ ≈ 32/Re for Re< 2000, and for Re > 3000 φ is
approximately half the root of

1√
Φ

= 2 log10

(
Re

√
Φ
)
− 0.8.



Chapter 5

Case study: hair modelling and
cable laying

In the next three chapters, we look at three ‘real-world’ problems, which all
arose in industry. There are three reasons for presenting these case studies.
One is simply to give some examples of modelling in action (the only way
to get good at it is to do it). Another is to illustrate the techniques of the
previous chapter in a less academic setting. Finally, we shall use these case
studies, and others presented later in the book, to illustrate the techniques
we develop later, although we do not have room to give full details of all that
has been done on these problems (much of which is, ultimately, numerical).
References to the literature are given at the end of the chapter.

You can skip these chapters and still read much of this book. Although
you won’t have wasted your money entirely, you will miss out on some nice
applications of the methodology we describe later.

Both the models of this chapter are based on the Euler–Bernoulli beam
equation for the bending of a slender elastic beam. This is such a common
model (we have already seen it in the context of flagpoles) that it merits its
own section, following which I have included a short section on the topical
problem of modelling of hair. Then we turn to the rather harder problem of
building a model for cable laying.

5.1 The Euler–Bernoulli model for a beam

We wrote down the Euler–Bernoulli model for the displacement of a slender
nearly straight beam in Chapter ??. In fact there is no requirement for the
beam to be straight, but it must be slender for a crucial assumption in the
following model to hold. Let us therefore consider a beam, or slender elastic

61
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M(s)

fy δs

Fy(s + δs)

M(s + δs)

Fx(s + δs)

fx δs

Fy(s)

Fx(s)

Figure 5.1: Forces and moments on an element of a beam.

rod, lying along the curve r = (x(s), y(s)) in the plane (the equations are
much more complicated in three dimensions). Here s is arclength, and if we
let θ(s) be the angle between the curve and the x–axis, we have

dx

ds
= cos θ,

dy

ds
= sin θ,

dθ

ds
= κ,

where κ is the curvature.
Now look at Figure 5.1, which shows a small element of the beam, of

length δs. The forces acting on the element are the internal elastic forces act-If the beam is
nearly straight and
lies along the
x–axis, you can
think of Fx as a
ten-
sion/compression.

ing on its ends and a body force with components (fx, fy) per unit length. We
write the elastic forces at the ends as (Fx(s), Fy(s)) and (Fx(s + δs), Fy(s + δs))
respectively. In equilibrium the difference between these must cancel the
body force (fx, fy)δs, and taking δs → 0 we find the force balance equations

dFx

ds
+ fx = 0,

dFy

ds
+ fy = 0.

Unlike a string, a beam resists being bent, by generating an internal bending
moment M(s) to balance the moment of the internal forces. Resolving the
latter normal to the beam and taking moments about the left-hand end of
our element, we find the equation

dM

ds
− Fx sin θ + Fy cos θ = 0.

Let us pause for a moment and count equations and unknowns. The
unknowns are θ (from which we can find x and y by integration), Fx, Fy

and M , and we have three equations. However, we haven’t yet said anything
about the material the beam is made from. We need a constitutive relation
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to tell us something about how the forces and displacements are related. For
a beam that started off straight and is bent into a curve, a good model is
that

M = b
dθ

ds
,

that is, the bending moment is proportional to the curvature (stop and think
why this is reasonable). A systematic derivation of this condition starting
from the equations of linear elasticity is surprisingly difficult, and we will
have to wait until Chapter ?? to see how to do it. We will also see there that
the constant of proportionality b, known as the bending stiffness, is equal to
EAk2 where, as before, E is the Young’s modulus, A the cross-sectional area
of the beam, and k the radius of gyration of that cross-section. Our final
beam equation is thus

dM

ds
= EAk2 dθ

ds
.

It is easy to eliminate M , so we find the system

dFx

ds
+ fx = 0,

dFy

ds
+ fy = 0, EAk2 d2θ

ds2
− Fx sin θ + Fy cos θ = 0 (5.1)

for Fx, Fy and θ. It is a very straightforward exercise to show that when the
beam is straight and nearly along the x–axis, so that θ ≈ dy/dx, we recover
the system

EAk2 d4y

dx4
− d

dx

(
Fx

dθ

dx

)
− fy = 0,

dFx

dx
+ fx = 0

which is a generalisation of the flagpole equations to include body forces in
both directions.

5.2 Hair modelling

One of the fastest growing customers for mathematical modelling is the enter-
tainment industry. The main drivers are the demand for realistic real-time
simulation in computer games, and the trend towards photo-realistic ani-
mated characters. Long hair and clothes are notoriously difficult to model;
for example in the 2001 film Final Fantasy, about 20% of the production
time was devoted to the 60,000 strands of lead character Aki’s hair.1 In this

1Water, with its longer mathematical pedigree, has been more successfully treated, a
famous example being the ocean in Titanic, much of which was computer generated. It
is said that a mathematician pointed out that the algorithm for waves did not conserve
mass, and received the Hollywood mogul’s reply, “I don’t give a flying fish [actually, he
used another word] if it loses mass, so long as it looks good”. Ho hum.
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short section we look at a very simple model for hair, in which each strand is
treated individually and does not interact with its neighbours. This is only
one of several possible models for hair, and at the time of writing this is a
wide-open research area.

The idea is to treat the hair as an elastic rod of cross-sectional area A
and density ρ, under gravity. Thus we just use the model of the previous
section, with gravity providing the body force:

dFx

ds
= 0,

dFy

ds
+ ρgA = 0, b

d2θ

ds2
− Fx sin θ + Fy cos θ = 0,

with the constitutive relation M = b dθ/ds. Now the hair has a free end, at
which Fx = Fy = 0, so measuring s from there we can easily find fx and fy,
leaving the equation

b
d2θ

ds2
+ ρgAs cos θ = 0.

for θ. Appropriate boundary conditions are quite easy in this case, as we
can expect to prescribe θ where the hair enters the head (say normally),
and we’ll have dθ/ds = 0 at s = 0 because that end of the hair is free.
This is a relatively straightforward two-point boundary value problem to
solve numerically using any of a variety of packages, although because this
nonlinear system may have bifurcations the software must be able to handle
these. (see Exercise ...). Solutions of this equation do indeed do more or less
what real hair does, although the neglect of hair-hair interactions is a serious
defect of the model. See the exercises for further properties of this problem.

5.3 Undersea cable-laying.

Cables and pipelines have been laid under the sea since the first electric
telegraphs; nowadays they often hold optical fibres. Several factors compete
in the design of cables: for example, strength and durability dictate large
cables, while expense and speed of laying dictate thin ones. The process of
laying is a dangerous time in the life of a cable, and very precise control of the
operation is necessary to avoid damage while maximising the laying speed.
In this case study, which recurs in Chapter ??, we look at a model of the
process of laying a cable from a ship, as shown in Figure 5.2. We consider
the steady-state model, as a first step towards developing a dynamic model
to enable real-time control of the operation.

As the ship moves forward the cable is unreeled from a large drum and
passes through a ‘tensioner’, shown as a box above the stern of the ship. This
has the effect of prescribing the angle at which the cable leaves the ship. The
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Figure 5.2: Cable laying from a ship.

ship exerts a force F on the cable, which also experiences buoyancy forces as
it sinks to the sea bed. Our objective is to set up a model which allows us
to calculate the shape of the cable (where does it feel the greatest stresses?)
and the thrust needed from the ship.

5.4 Modelling and analysis

Let us now return to our cable-laying problem. Taking an origin at the point
where the cable touches the sea bed, a distance h below the surface, we
denote its position by (x(s), y(s)) for 0 < s < L, where the wetted length L
is as yet unknown. (For simplicity we are going to ignore the small length
of cable in the air astern of the ship.) The angle between the cable and the
horizontal is θ, as before, and the unit tangent and normal to the curve are
t = (cos θ, sin θ) and n = (− sin θ, cos θ) respectively.

We are going to solve the beam system (5.1), and the main difficulty is
in writing down the external forces fx and fy. There are three forces on the
cable: one is its weight, a second is buoyancy, and a third is is drag from
the water. The weight of the cable is easy, just contributing a term ρcgA
to the equation for Fy, where ρc is the density of the cable. We will focus
on the buoyancy (the drag is dealt with in an exercise). Having completed
the model, we then need to decide what boundary conditions to apply at
s = 0 and s = L. The solution of the resulting two-point boundary value
problem for a system of ordinary differential equations will almost inevitably
be carried out numerically, again using a two-point boundary value problem
solver, although in Chapter ?? we also look at an approximation for cables
with low bending stiffness.

The buoyancy force per unit length on the cable is entirely due to hydro-
static pressure, and rather surprisingly it has two components. One is the Old chestnut,

claims new victims
every year: you are
in a boat on a lake,
and you throw a
brick over the side.
Does the water
level rise, fall or
stay the same?

ordinary Archimedes force, but we have to be careful in evaluating it. Con-
sider a cylindrical element as in Figure 5.3. If the ends of the cylinder were
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θ

θ

ρwgAδs cos θ

ρwgAδs

ρwgAδs sin θ

Figure 5.3: Hydrostatic force on a cylinder.

Figure 5.4: Normals on a slightly bent cylinder.

exposed to the water, the buoyancy force would be equal to the weight of the
water displaced, namely ρwgA per unit length, acting vertically upwards (see
the exercises to prove this). Remembering that the pressure acts normally
to the surface, and resolving along and normal to the cylinder, what remains
after we have subtracted the contribution from the ends is a force per unit
length of ρwgA cos θ along the normal.

However, our cylinder is not quite straight. As shown in Figure 5.4, the
surface area on the ‘outside’ of a bend is bigger than that on the ‘inside’,
and so if a pressure p, here the hydrostatic pressure ρwg(h − y), acts on a
curved cylinder like this (but not on its endpoints), there is a net force in the
normal direction. It is fairly clear that this extra force is proportional to the
curvature — the area surplus/deficit is proportional to the rate of change of
θ with s — and it can be shown (see the exercises) that the magnitude of
this contribution to the buoyancy force is pAκ per unit length, so the total
buoyancy force is ρwgA cos θ + pAκ along n.
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In summary, our model is

dFx

ds
+ Bx = 0,

dFy

ds
+ By − ρcgA = 0, EAk2 d2θ

ds2
−Fx sin θ + Fy cos θ = 0,

(5.2)
where

(Bx, By) =

(
ρwgA cos θ + pA

dθ

ds

)
(− sin θ, cos θ). (5.3)

5.4.1 Boundary conditions

We need four boundary conditions for this system in order to fix Fx, Fy and
θ. Having done this, we will integrate dx/ds = cos θ, dy/ds = sin θ from
s = 0 to s = L, with the initial conditions x(0) = y(0) = 0. Then the
condition y(L) = h will tell us L and x(L) will tell us the horizontal distance
between touchdown of the cable and the ship. Of course, these integrations
must be carried out numerically, and on the face of it the equations are even
more nonlinear than the hair model; but read on.

Let us first think about the conditions at s = 0. We expect the cable to
leave the sea bed smoothly, so we impose

θ = 0,
dθ

ds
= 0 (5.4)

at s = 0. The second of these conditions says that the bending moment is
continuous at this point. As we shall see in Section 10.5.2, only a point force
could cause a discontinuity in M .

Nothing else obvious can be applied at s = 0, so let us look at s = L.
Here we know the angle at which the cable leaves the ship, and we know the In the language of

beam equations, we
are imposing
‘clamped’ boundary
conditions.

horizontal force Fx:
θ = θ∗, Fx = F (5.5)

at s = L.

5.4.2 Effective forces and nondimensionalisation

Before we scale these equations, we note a potentially serious difficulty, and
a neat extrication from it. Because p is hydrostatic, we have p = ρwg(h− y).
But this means that the p in (5.3) depends on y, and our scheme of only
solving for y after finding θ looks doomed: it seems that the system is fully
coupled. However, there is a deus ex machina. We first note that dp/ds =
−ρwg dy/ds = −ρwg sin θ. Then, we define effective horizontal and vertical
forces by

F e
x = Fx + pA cos θ, F e

y = Fy + pA sin θ,
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so that
dF e

x

ds
=

dFx

ds
− pA sin θ

dθ

ds
+ A cos θ

dθ

ds
,

and similarly for dF e
y /ds. When we substitute in (5.3), all the terms involving

p vanish, and as F e
x = Fx at y = 0 where p = 0, there is no problem in

applying the boundary condition (5.5). (The variables Fx and Fy are only
steps on the way to θ, which is what we really need; so there is no loss in our
not calculating them.)

Carrying out this simplification, we arrive at the system

dF e
x

ds
= 0,

dFy

ds
= ρcgA, EAk2 d2θ

ds2
− F e

x sin θ + F e
y cos θ = 0,

with the boundary conditions

θ = 0,
dθ

ds
= 0

at s = 0, and
θ = θ∗, F e

x = F

at s = L.
The scales for this system are clear. We scale x, y and s with h, and F e

x , F e
y

with ρcgAL. Immediately dropping the primes, we have the dimensionlessConsistency: check
that the scale for
F e

x is indeed a
force. It is probably
slightly preferable
to use this scale
rather than F
because F may be
an unknown.

model
dF e

x

ds
= 0,

dFy

ds
= 1, ε

d2θ

ds2
− F e

x sin θ + F e
y cos θ = 0, (5.6)

with the boundary conditions

θ = 0,
dθ

ds
= 0 (5.7)

at s = 0, and
θ = θ∗, F e

x = F ∗ (5.8)

at s = λ, where the three dimensionless parameters are

ε =
Ek2

ρcgh3
, F ∗ =

F

ρcgA
, λ = L/h;

note that λ is unknown.
We can do a little better still: we can find F e

x and F e
y explicitly, and

substituting into the equation for θ we have

ε
d2θ

ds2
− F ∗ sin θ + (F0 + s) cos θ = 0, (5.9)
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F F

Figure 5.5: The Euler strut.

in which F0 = F e
y (0) is an unknown constant. There, however, three bound-

ary conditions for this equation, namely the relevant parts of (5.7), (5.8),
and so we have an extra equation to tell us this unknown constant.

We return to this problem in Chapter ??, where we show how to construct
an approximate solution when ε is, as its name suggests, small, as is the case
when the cable is heavy or the water is deep (it is clear that ε measures
the relative importance of bending stiffness and cable weight). This kind
of boundary value problem, with a small parameter multiplying the highest
derivative, is often known as ‘stiff’ in a numerical context, and there are Even though the

beam is anything
but stiff!

many specialised ‘stiff solvers’ to handle these problems.

Sources and further reading

The cable-laying problem was proposed by (??); it is a simplifies version of
more complicated three-dimensional ‘upwinding’ problems to do with the
winding of wire onto a reel (the twist, or torsion, of the wire plays an impor-
tant role in these situations). Ref to Love.

Exercises

1. The Euler strut (i).

A thin rod of length L and bending stiffness b is clamped at each end
and is compressed by a force F , as in Figure 5.5. Adapt the analysis
of Section 5.1 to derive the dimensionless boundary value problem

d2θ

ds2
+ α2 sin θ = 0, θ(0) = θ(1) = 0,

for the angle between the rod and the x axis, where α2 = FL2/b. Show
that θ = 0 is always a solution; what does it represent?

Now suppose that θ is small. Assuming that sin θ ≈ θ (we will do
this in more detail in Exercise ... of Chapter ??), write down a linear
two-point boundary value problem and show that its only solution is
θ = 0 unless α = nπ for integral n. Deduce that as F is increased from
zero, it is first possible to have a non-trivial solution (θ �= 0) when
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FL2/b = π2 and sketch the resulting solution. What happens when
FL2/b = 4π2

This appearance of a non-trivial solution as a parameter varies is known
as a bifurcation. This one is easy to illustrate in practice with, say, a
plastic ruler. On a larger scale, when putting up a modern tent with a
carbon fibre pole, you have to bend the pole to fit it into its sockets.
As you do so by bringing the ends together, starting with a straight
pole, you initially go through the first buckling mode α = π (you may
also see the second mode if the pole is long enough).

Buckling can also occur when the pole is held vertically, so the gravity
supplies the compression, as the next example shows.

2. Groan. Take the hair model

b
d2θ

ds2
+ ρgs cos θ = 0

with the boundary conditions θ = θ0 (given) at s = 0 and dθ/ds = 0 at
s = L; explain what these conditions model. Look for a solution for a
nearly vertical hair. That is, write θ = ±π

2
+ φ and derive two versions

(related by ξ ↔ −ξ of the Airy equationThat’s ’orrible.

d2φ

dξ2
± ξφ = 0, 0 < ξ < ξ0 = L

√
ρg/b

where ξ is a suitably scaled version of s. Which of ± is for upward-
pointing hair and which for downward pointing?

Taking the − sign for the standard definition, Airy’s equation has lin-
early independent solutions Ai(ξ), Bi(ξ) which, for ξ > 0 both oscillate,
while for ξ < 0 one grows exponentially and one decays, as in Figure ??.
What sort of solutions do you expect to see for (a) upwards (b) down-Compare

y′′ + λy = 0 for
λ > 0, λ < 0.

wards pointing hair?

Show that as ξ0 varies an upward-pointing hair can buckle via a bifur-
cation away from the vertical solution, and find the shortest length at
which it does so in terms of Ai and Bi. Using the fact that for x > 0 Ai
is decreasing and Bi is increasing, show that downward-pointing hairs
cannot buckle away from the vertical solution.

3. Waving hair and unsteady beams. Consider an unsteady version
of the Euler–Bernoulli beam model, in which the beam is parametrised
as (x(s, t), y(s, t)). Justify the model

∂Fx

∂s
+fx = ρA

∂2x

∂t2
,

∂Fy

∂s
+fy = ρA

∂2y

∂t2
,

dM

ds
−Fx sin θ+Fy cos θ = 0,



5.4. MODELLING AND ANALYSIS 71

–0.5

0.5

1

1.5

y

–10 –8 –6 –4 –2
x

Bi(x)

Ai(x)

Figure 5.6: The Airy functions. Ai(0) = 3−
2
3 /Γ(2

3
), Bi(0) = 3−

1
6 /Γ(2

3
).

provided that the rate of change of angular momentum of the element
can be ignored. Show that for a straight beam under constant tension
the equation of motion for small displacements is

ρA
∂2y

∂t2
+ b

∂4y

∂x4
− T

∂2y

∂x2
= 0,

where T is the tension (that is, Fx) and gravity has been ignored.

4. Eureka! Dot both sides with a constant vector and use the divergence
theorem to show the identity∫

∂V

Φn dS =

∫
V

∇Φ dV

for sufficiently regular scalar functions Φ and volumes V . Put

Φ = ρwg(constant − y)

to derive Archimedes’ principle: the buoyant force on a body immersed
in water of density ρw is equal to the weight of the water displaced. Well
worth jumping out of the bath for.

Inspect the first term on the right-hand side of formula 5.3 for the
buoyant force on an element of a submerged cable. What happens if
θ = π

2
? Do you believe this? Would a cylindrical stick held vertically

in water rise when let go? Resolve the apparent paradox.

5. Hydrostatic force on a bent cylinder. Consider the cylinder of
figure 5.4, and suppose that arclength measured along the centreline is
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s0 at the left-hand end and s0 +δs at the right-hand end. Suppose that
the centreline has position r0(s) = (x(s), y(s), 0) and that the cylinder
is circular in each plane normal to this line, with radius ε. SupposeThe correction due

to hydrostatic
variation in
pressure over the
element vanishes
when δs → 0.

that a constant pressure p acts normally to the curved surface of the
cylinder (but not the ends).

Show that the tangent vector to the centerline is t(s) = (cos θ(s), sin θ(s), 0)
and the normal (in the (x, y) plane) is n = (− sin θ, cos θ, 0). Show that
t, n and b = (0, 0, 1) are orthonormal. Show that a point on the sur-

This will be familiar
if you have done
the Serret–Frenet
formulae from
differential
geometry.

face can be written in the form

r = r0(s)+ε cosφn(s)+ε sin φb(s), s0 < s < s0+δs, 0 ≤ φ < 2π.

Explain why
∂r

∂s
∧ ∂r

∂φ

is normal to the surface and why the unit normal to the surface and
surface area element are

N = n cosφ + b sinφ, dS =

∣∣∣∣∂r

∂s
∧ ∂r

∂φ

∣∣∣∣ dφds = ε(1 − εκ cos φ) dφ ds,

where κ = dθ/ds is the curvature of the centreline. Deduce that∫
S

pN dS = πε2n δs,

and hence confirm formula (5.3).

6. Water drag on a cylinder. If a cylinder of radius a with axis
along a line making an angle θ with the x–axis is placed in a fluid
moving with far-field speed (U, 0, 0), the drag per unit length on it is
ρwU 2a(Cx

d (θ), Cy
d (θ), 0) (see Chapter 4). Incorporate this force into the

cable-laying model when the ship moves forward with speed U , and
identify the new dimensionless parameter which tells you the relative
importance of drag and buoyancy.



Chapter 6

Case study: the thermistor 1

6.1 Heat and current flow in thermistors

A thermistor is a temperature-dependent resistor. A typical thermistor is a
penny-shaped piece of a special ceramic material, about 1 mm thick and with
a radius of 5 mm, and with metal contacts on the flat faces. The kind we are
interested in becomes more resistive as it gets hotter, so it can be used as a
fuse: if the current through the thermistor surges for any reason, the resulting
Ohmic (I2R) heating increases the resistance and so cuts the current. The
beauty of this is that when the current goes away, the thermistor just cools
down and normal operation can resume without anybody having to replace
a fuse. Televisions have dozens of thermistors in them, and so do hairdryers
as a protection against overheating, which is why they switch themselves off
for a while if they get too hot.

There are various reasons for wanting to analyse the heat and current
flow in thermistors. One is the obvious question of design: how do the
characteristics, such as the switch-off time in response to a current surge,
depend on the physical parameters? Another is an issue of quality control:
some thermistors can crack because rapid thermal expansion caused by large
temperature gradients stresses the material too much. The full analysis of
cracking requires a model for thermoelasticity which is beyond the scope of
this book; however, even an order of magnitude estimate of the temperature
gradients could be used as an input to an ‘engineering’ rule of thumb for the
likelihood of cracking.

6.1.1 A simple model

Let us begin with a simple model for a thermistor on its own, with a voltage
V0 applied across it at t = 0; then we extend this to a thermistor in a simple

73
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0

V0

Figure 6.1: A thermistor: shaded regions are good (metallic) conductors.

circuit. We need first to think about how electric current flows through a
solid. That is, we need a generalisation of Ohm’s law I = V/R for a resistor.
This is straightforward. We assume that there is a local version of Ohm’s law
relating the current density j (units A m−2) to the electric field E linearly:

j = σ(T )E

where σ(T ) is a material property called the conductivity, whose dependenceYou may be more
familiar with this as
the resistivity
ρ(T ) = 1/σ(T ).
What are its units?

on temperature T , which is intrinsic to the proper working of the device, is
shown explicitly. Now remember that there is an electric potential φ with
E = −∇φ, and that current is conserved, so that ∇ · j = 0. Putting these
together, we have

j = −σ(T )∇φ, ∇ · (σ(T )∇φ)) = 0.

We can also easily write down boundary conditions for the potential. If, as
in Figure 6.1, the top and bottom of the thermistor are coated in an excellent
conductor, the potential is very nearly constant on each, while there is no
current through the sides. Thus, for t > 0, we have

φ = V0 on z = H, φ = 0 on z = 0

and
∂φ

∂n
= 0 on r = a

where, clearly, (r, θ, z) are cylindrical polar coordinates with origin at the
centre of the bottom face, while H is the thickness and r the radius of the
cylinder.

Now we need to write down a model for the heat generation and conduc-
tion. That means we have to find a local version of the law for the power
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generated in a resistor, V I = I2R = V 2/R. Clearly the local rate of heat
production (volumetric heating) is See the discussion

of energy and work
on page 29. You
should check that
the units are
correct at W m−3.

j · E = σ|∇φ|2.

This appears as a source term in the heat equation for the temperature
T (x, t),

Consistency: the
heating term is
positive so it acts
to make T increase
in time.

ρc
∂T

∂t
= k∇2T + σ|∇φ|2.

Boundary conditions for the heat equation are often problematical. The
isothermal or perfectly insulated conditions beloved of exam question setters
are rarely strictly applicable. It is safest to write down a Newton cooling law
(see page 55)

−k
∂T

∂n
= h(T − Ta)

on the sides of the thermistor, where Ta is the ambient temperature and h
the heat transfer coefficient. Taking some liberties, we may hope to model
the cooling effect of the conducting top and bottom surfaces, together with
the connecting wire and its solder, by a similar condition but with a larger
value of h. Finally, because the heat equation is forward parabolic, we need
an initial condition, for example

T (x, 0) = Ta(x).

6.2 Nondimensionalisation

This problem is not too hard to nondimensionalise. In the first instance, let
us scale r and z with the thickness H, and time with the heat conduction
scale H2/κ, where κ = ρc/k is the thermal diffusivity and ρ, c and k are
the density, specific heat capacity and thermal conductivity respectively. Let
us now think about the temperature scale. The conductivity must change
noticeably as the temperature varies, or the device would be pointless, and
we can identify a temperature change ∆T over which it does so. Let us,
therefore, use that as the temperature scale, writing T − Ta = ∆T u(x′, t′).
Lastly we’ll use the external voltage V0 as the scale for φ and the ‘cold’ value
of the conductivity, σ0, for σ(T ).

Scaling and immediately dropping the primes, we have the dimensionless
equations

∇ · (σ∇φ) = 0,
∂u

∂t
−∇2u = γσ(u)|∇φ|2
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for 0 < z < 1, 0 ≤ r < α = a/H. The boundary conditions are

φ = 0, 1 on z = 0, 1 respectively,
∂φ

∂r
= 0 on r = α,

and
∂u

∂n
+ β(x)u = 0

on the boundary, where the x–dependence of β models the difference between
the top/bottom and the side, β taking different values in the two cases.

There are now just three dimensionless parameters:

α =
a

H
, β =

hH

k
and γ =

σ0V
2
0

k∆T
.

Clearly, α measures the aspect ratio, β the heat transfer, and γ the com-
petition between heat generation and conduction. When we put in typical
physical values, namely

ρ = 5.6 × 103 kg m−3, c = 540 J kg−1 K−1, k = 2 W m−1 K−1,

σ0 = 2 Ω−1 m−1, ∆T = 100 K,

V0 = 250 V, r = 5 × 10−3 m, H = 10−3 m,

h = 10 (sides) to 102 (top) W m−2 K−1,

we find that

α = 5, β = 10−2 (sides) to 10−1 (top), γ = 625.

Already we have learned a lot. We know that there are just three dimen-
sionless parameters, and that two are large and one is small. The large aspect
ratio α suggests that a one-dimensional model should perform well, and this
notion is reinforced by the fact that β is especially small at the sides of the
device: most of the heat generated will be lost through the top and bottom.
The fact that γ is very large suggests that we may have chosen the wrong
timescale, at least for the initial heating-up stage. However, the device does
work, so the decrease of the conductivity as the temperature increases must
eventually switch the heating term off, large though it appears to be. If we
rescale time by writing t = γ−1τ , we find that

∂u

∂τ
= σ(u)|∇φ|2 +

1

γ
∇2u,

and with luck we can neglect the last term to simplify the problem consid-
erably. However, it is not likely that we can explain spatial variations in the
temperature without the last term, so there must be more to it than this.
The full story is outlined in Chapter ??.
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Thermistor

Switch

0
R0

V0

Figure 6.2: A thermistor in a circuit. The switch is closed at t = 0.

6.3 A thermistor in a circuit

In practice, our thermistor is likely to be part of a circuit, as shown in Fig-
ure 6.2, where the rest of the circuit is represented by a resistor of resistance
R0. This introduces some minor complications, as we no longer know the
voltage drop across the thermistor, but instead we just have a relationship
between this voltage and the current through the device. The model inside
the thermistor is much as before, and there is no need to repeat the equations
for T and φ. On the top and bottom of the thermistor, though, we have

φ = 0, z = 0, φ = V (t), z = H,

where V (t) is not yet known. However, we can use Ohm’s law for the resistor
to say that the voltage drop across it is I(t)R0, where I(t) is the current in
the circuit, and then we have

V0 = I(t)R0 + V (t)

by whichever of Kirchhoff’s laws it is that says that the voltages round a
closed circuit sum to zero.1 We also have an expression for I(t), as it is equal
to the current flowing through the thermistor, namely∫∫

z=H

σ(T )∇φ · n dS,

which is just the current density integrated over the bottom face. Thus, in Exercise: show
from the equations
that this is the
same as the current
density integrated
over the top face.

this case, the boundary condition for φ on z = H is

φ = V0 − 2πR0

∫ a

0

σ(T )
∂φ

∂z

∣∣∣∣
z=H

r dr.

1See the exercise on page 79.
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The effect of the external resistance in the dimensionless model is to bring
in another parameter, from the boundary condition for φ. It is left to you to
show that, with the same scales as above, the dimensionless model is

∇ · (σ∇φ) = 0,
∂u

∂t
−∇2u = γσ(u)|∇φ|2

for 0 < z < 1, 0 ≤ r < α = a/H. The boundary conditions are

φ = 0 on z = 0,
∂φ

∂r
= 0 on r = α,

and
∂u

∂n
+ β(x)u = 0

as before, with the new conditionCan you see why α2

is separated out,
and why we put the
2 in? φ = 1 − 2

δα2

∫ α

0

σ(u)
∂φ

∂z

∣∣∣∣
z=1

r dr,

where the 2 is for later convenience, and the new dimensionless parameter is

δ =
2

πHR0σ0α2
.

A typical value for this parameter, given R0 = 400 Ω, is 10−1, which is quite
small; note that formally setting δ = ∞ we retrieve the problem with no
external resistance.

6.3.1 The one-dimensional model

As we saw earlier, the large value of α and the small value of β on the sides
of the thermistor suggest that a one-dimensional model should be a good
approximation (we will have to wait until later in the book to see how to
justify this). In such a model, φ and u are independent of r, and so we have
the simpler problem

∂

∂z

(
σ

∂φ

∂z

)
= 0,

∂u

∂t
− ∂2u

∂z2
= γσ(u)

∣∣∣∣∂φ

∂z

∣∣∣∣2
for 0 < z < 1, while the boundary conditions are

φ = 0 on z = 0,

φ = 1 − 1

δ
σ(u)

∂φ

∂z

∣∣∣∣
z=1

,
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and
∂u

∂n
+ βu = 0 on z = 0, 1.

Notice that we can integrate the equation for φ(z, t) once: can you see the
physical interpretation of the result?

Some rather mathematical properties of this model are developed in the
exercises on page 79. In the meantime, we move on to another case study
with an electrical flavour.

Sources and further reading

The thermistor problem was brought to the Oxford Study Groups with in-
dustry by the British company STC, and has provoked a large mathematical
literature for which [13] is a starting point.

Exercises

1. Thermistor in a circuit; validity of Kirchhoff’s law. Strictly
speaking, Kirchhoff’s law of adding together voltages is not valid be-
cause the changing current generates a magnetic field which in turn
generates a ‘back emf’, a voltage which opposes the current change.
Show that the the back emf is small in our thermistor case study, as
follows. (You may want to refer back to the exercises in Chapter 3.) If
the circuit has typical length L, show that it is reasonable that a typical
magnetic field strength is B0 = µ0I0/(2πL) and that the current has
size I0 = V0/R0. If E is the electric field strength, the typical back emf
magnitude is L times the scale for E. Show from Maxwell’s equation

∇∧ E =
∂B

∂t

that the back emf scale works out as µ0I0L/(2πt0), where t0 is the
timescale for changes in I(t). If, say, L = 10 cm, V0 = 250V and R0 =
500 Ω, this is 10−8/t0; verify that t0 is a lot bigger than the timescale of
100/10−8 seconds necessary for the back emf to have magnitude 100 V.
We can thus neglect ∂B/∂t, so that ∇ ∧ E ≈ 0; show that the change
in voltage round the circuit is

∮
E · ds ≈ 0.

2. One-dimensional thermistors. Consider the steady-state version of
the one-dimensional thermistor problem, with the (not very realistic)
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boundary conditions that T = Ta on z = 0, H and with no external
resistance. Show that the dimensionless model is

∂

∂z

(
σ

∂φ

∂z

)
= 0,

∂2u

∂z2
= −γσ(u)

∣∣∣∣∂φ

∂z

∣∣∣∣2
for 0 < z < 1, with

φ = 0, 1, u = 0 on z = 0, 1 respectively.

Explain why φ = 1
2
, ∂u/∂z = 0 on z = 1

2
. Integrate the equation for φ

once to show that

σ(u)
∂φ

∂z
= I

where I is a constant (what is its physical interpretation?). Substitute
for σ∂φ/∂z in the equation for u to show that

∂u

∂z
= −γI(φ − 1

2
),

and then substitute for (∂φ/∂z)2 in the same equation to show that

1
2
γ(φ − 1

2
)2 =

∫ um

0

ds

σ(s)
,

where um = u(1
2
) is the largest value of u, attained at z = 1

2
(why?).

Deduce that there can only be a steady solution if σ(u) is such that∫ ∞

0

ds

σ(s)
<

γ

8
,

restate this inequality in dimensional terms, and interpret it physically.
Give an example of a function σ(u) for which it does not hold. What
do you think happens to the solution of an initial-value problem if the
inequality does not hold? Would we be more or less likely to have
existence of a steady state with Newton cooling conditions for u?

3. Thermistors and conformal mapping. Consider the steady-state
thermistor equations

∇ · (σ(u)∇φ) = 0, ∇2u = −σ(u)|∇φ|2

in two space dimensions but not necessarily in a rectangle. Suppose
that the boundary of the thermistor has two conducting segments, on



6.3. A THERMISTOR IN A CIRCUIT 81

which u = 0 and φ = 0, 1 respectively, separated by two insulating
segments on which ∂u/∂n = 0, ∂φ/∂n = 0.

Show that this system remains invariant under conformal maps ξ+iη =
f(x + iy) for analytic (holomorphic) f . Given that it is possible toe the chain rule

d the
uchy–Riemann
uations.

map the thermistor region onto a certain rectangle with an obvious cor-
respondence of boundary parts, show that the restriction on existence
derived in the previous question holds irrespective of the geometry.
(Note: the Riemann mapping theorem guarantees that the thermistor
can be mapped onto any rectangle we choose, and that we can map three
specified boundary points onto three specified points on the boundary
of the rectangle. For example, we can map three of the ‘changeover’
points where the boundary conditions switch onto three corners of the
rectangle. However, we can only map the fourth changeover point onto
the fourth corner if the rectangle has a specific aspect ratio. For more
on conformal mapping see [6, 9] or, for Matlab users, the Schwarz–
Christoffel Toolbox of that package.)
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Chapter 7

Case study: electrostatic
painting

7.1 Electrostatic painting

Many paints are based on organic solvents which, after application, evaporate
and contribute to air pollution and global warming, and so they are coming
under increasing regulatory pressure. A more environmentally friendly alter-
native for painting metal objects is to cover them with a layer of very small
resin paint particles which, when the workpiece is put into an oven, melt and
flow into into a smooth coating. (A similar process is used in ‘flocking’: here
an object is coated in glue and then covered with short lengths of charged
fibre. The charge makes the fibres stand on end, which is crucial to the final
grass-like effect.) The particles are ejected from a gun which gives them an
electric charge, and a potential difference is maintained between the gun and
the workpiece, so the particles feel an electrostatic force which moves them
towards the workpiece. On the other hand, they are also blown about by air
currents, both imposed and generated by their own drag on the air.

Gun

u

V

Workpiece

Figure 7.1: Electrostatic painting of an earthed metal workpiece.
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We would like to know something about the controlling parameters of this
process. In particular, we would like to get most of the particles to hit the
workpiece and not to be carried away by the air flow (which must of course
go round it). Do the particles influence the air flow, or are they passive?
How thick is the final layer of resin? An attractive feature of this method
of painting is that the electric field is strong, and so particles are especially
attracted, at outward-pointing corners, which are hard to cover well with
traditional methods. A less attractive feature is that it is very hard to see
what is happening in the cloud of paint particles. A mathematical model
may help to answer some of these questions.

7.2 Field equations

In this section, we begin to build a model of the painting process, by writ-
ing down ‘field equations’ to describe the fluid velocity. In this problem, it
helps to start with some data, as that points to a reasonable model for the
fluid/particle interaction. The workpiece has a typical size L ≈ 1 m, and the
observed air velocities have size Ug ≈ 1 m s−1. The air density and dynamic
viscosity are ρg ≈ 1.3, µg ≈ 1.8× 10−5 in SI units (the kinematic viscosity νg

is thus about 1.4×10−5). The particles are tiny: they have radius a ≈ 10−5m
and their mass is mp ≈ 10−12 kg. There is an enormous number of them, a
representative number density being n0 ≈ 109 per cubic metre of air. Lastly,
turning to the electrical aspects, each particle carries a charge qp of about
10−15C, and the applied voltage is V0 ≈ 105V.

Now because the number density of particles is so large, the average parti-
cle separation, 10−3 m, is very small compared with the workpiece dimension
L but very large compared with their mean radius a. It is reasonable to
consider them as isolated particles when we work out the force on them, but
when we work on larger length scales, we hope to get away with averag-
ing their effects. We therefore consider the evolution of their local number
density, which we think of as a continuous function n(x, t) representing the
number of particles per unit volume measured over a small volume whose
diameter is much bigger than the mean separation but much smaller than L.
We proceed similarly in assuming that there is a local average particle veloc-
ity vp(x, t), and when we calculate the force exerted by the particles on the
air: this is plausible if we can convince ourselves that neighbouring particles
all feel very similar influences from the fluid, and all all have a similar effect
on it.

We now start to write down some equations. The first is conservation of
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particles:
∂n

∂t
+ ∇ · (nvp) = 0. (7.1)

Next, we think about the particle equation of motion. Unlike our flagpoles
or cables, the particles feel a fairly slow flow past them. The ‘local’ Reynolds
number for flow at 1 m s−1 past a ten-micron radius spherical particle is

Reparticle =
Uga

νg

≈ 0.7,

and this is a considerable over-estimate since we should really use the relative
(slip) velocity, which is likely to be smaller than 1 m s−1. Now the force on
a spherical particle in slow flow can be shown to be See any good book

on viscous flow.
−6πaµg (vp − vg)

where vg is the ‘local’ gas velocity, many particle radii away (but not so far
as to be near neighbouring particles). Our particles are not spherical, but
we’ll still assume that they feel a force proportional to the slip velocity; we’ll
call it

−K (vp − vg)

where, on the basis of near-spherical particles, we expect that K ≈ 10−9

kg s−1. Lastly we need to include the electrostatic force qpE, where E is
the electric field, and the gravitational force mpg. Then, assuming that all
neighbouring particles feel the same slip velocity, and have the same particle
velocity, we can write down an equation of motion for the particles: Note that D /Dt

here is the
convective (total)
derivative.mp

Dvp

Dt
= −K (vp − vg) + qpE + mpg. (7.2)

Correspondingly, we have momentum and mass1 conservation equations
for the gas (let’s keep things simple by writing down an inviscid model,
leaving gravity out as it merely generates hydrostatic pressure):

ρg
dvg

dt
= −∇p + nK (vp − vg) , ∇ · vg = 0. (7.3)

The only potentially unfamiliar term here is the body force (force per unit
volume) on the gas due to the particles. Whereas the particle equation of

1Another simplification I’ve slipped in is that, because the volume fraction of particles
is so small, I’ve taken the gas volume fraction to equal 1. Technically, we should write
down a two-phase model and a later exercise, on page 203, justifies our approximation.
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motion is for individual particles, and thence for the averaged-out particles
because of our assumption that all nearby particles behave similarly, the force
by the particles on the gas is just the force on one representative particle,
multiplied by the number density.

It only remains to write down Poisson’s equation

∇ · (εgE) = nqp (7.4)

for the averaged electric field (here εg ≈ 10−11 in SI units is the permittivity
of air; it is very close to ε0), and we have collected all the field equations of
the model.2

7.3 Boundary conditions

For the sake of completeness, we should briefly discuss the boundary condi-
tions for our model, although we aren’t going to use them much. The main
issue we should address is the question of how to deal with the thin layer
of particles on the workpiece. There is little doubt that it is very thin —
we don’t want a centimetre-thick coating of paint! — and as far as the fluid
is concerned we can assume that the workpiece forms a rigid boundary to
complement whatever inflow conditions we impose at the gun. The particles
satisfy the first-order equation (7.1), whose characteristics are the particle
paths (see Chapter 8). Obviously we should impose an initial condition at
the gun, and that is all we need.

Lastly, consider the electric potential. we can impose φ = V0 on the gun
with a clear conscience, and likewise φ = 0 at the workpiece, but we may
worry that charge building up in the paint layer on the workpiece will alter
the ‘effective boundary condition’ felt by φ. This depends to a large extent
on the details of what happens in this layer. For example, if the charge
can ‘leak off’ the particles to the workpiece (or electrons can move onto the
particles if their charge is positive), the layer should be relatively passive and
we can ignore it. On the other hand, if the charges remain in situ, we can
still ignore the effect of this layer as long as the total charge it contains is
small enough (see the exercise on page 89). Later in the book, we shall see
how we can make this kind of ad hoc approximation more systematic.

2Caveat: we haven’t dealt properly with the thin layer of paint on the workpiece, as
shown in Figure 7.1. Clearly the particles cannot move freely in this layer and we need to
treat it separately; see the next section and the exercises.
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7.4 Nondimensionalisation

We have made great progress in producing a useful model. However, the
result is undeniably complicated. Do we really need all the terms in these
equations? Obviously we’re going to have to solve it numerically, and for
this reason if no other we should do what we can to check that the model is
robust and suitable for a numerical attack.

Let’s scale all the variables with typical values as before. Scale x with L,
t with L/Ug, vg and vp with Ug, p with ρgU

2
g , and n with n0. We have two

choices for the scale for E: one is the applied voltage V0, while the other, Check this scaling.
qpn0L/εg, is derived from the Poisson equation (7.4) once all other scalings
in it are fixed. It so happens that both are about the same size, 105 V m−1,
so let’s save ink and use V0.

Start with the particle equation of motion (7.2). Scaling and immediately It’s obvious that
the conservation of
particle mass
equation (7.1) isn’t
changed.

dropping the primes, we get

mpU
2
g

L

dvp

dt
= −KUg (vp − vg) +

qpV0

L
E − mpgk,

and, dividing by KUg,

mpUg

KL

dvp

dt
= − (vp − vg) +

qpV0

KUgL
E − mpg

KUg

k. (7.5)

We see that the dimensionless quantity

mpUg

KL
≈ 10−3

is very small. With luck, we can neglect the term it multiplies, the particle
acceleration: apart from an initial transient as they get up to speed near
the gun, their inertia is dominated by viscous drag. The final dimensionless
parameter,

mpg

KUg

≈ 2 × 10−2,

is also small. It decides the competition between gravity and viscous forces in
favour of the latter: these particles fall slowly compared to the rate at which
they are dragged about by the air. The second dimensionless parameter,

qpV0

KUgL
≈ 10−1, (7.6)

compares the electrostatic forces with the drag forces. It too is small, though
larger than the other two; we shall see some consequences of this in Chap-
ter ??.
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This simple analysis has told us quite a lot. The scaled equation says
that the particles follow the gas quite closely, with a small influence from the
electrostatic force, and very minor contributions from gravity and inertia.3

We can get a good approximation to the particle motion if we write

vp = vg +
qpV0L

KUg

ṽp, (7.7)

where, from (7.5),Remember that this
is a dimensionless
equation: we are
not directly
equating a velocity
to an electric field.

ṽp = E + smaller terms.

A preliminary conclusion from this analysis is that the device is not working
terribly well: the particles are being swept along too much by the air.

Now let’s look at the gas momentum equation. After scaling, this becomes

dvg

dt
= −∇p +

n0KL

ρgUg
n (vp − vg) .

On the face of it, the dimensionless quantity

n0KL

ρgUg

≈ 1

is not small, indicating that the particles exert a body force on the air which is
not small. However, remember that we decided above that the slip velocity
vp − vg (which this dimensionless parameter multiplies) is small. So, the
particles do after all have a small effect on the gas, confirming that it would
be a good idea to try to slow the air down to improve performance. We
return to this problem in Chapter ??.

Sources and further reading

Electrostatic painting was also a Study Group problem, from Courtaulds plc,
and is documented further in [3].

3If the parameter in (7.6) had been large, not small, that would have told us that we
had chosen a wrong scaling somewhere. There is no reason for E to be large — it has a
perfectly good equation of its own in which there are no large parameters — and so we
would have an equation with one large term in it and nothing to balance it. When the
parameter (7.6) is small, we do have the a priori plausible approximation (7.7).
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Exercises

1. Paint layer. Suppose that a thin layer of paint particles, deposited
electrostatically as in the text, is growing on y = 0, and that its thick-
ness is y = h(x, t). Show that the normal velocity of the layer boundary

is (1 + h2
x)

1
2 ht, and relate this to vp · n at the interface. How thick Subscripts indicate

partial derivatives.will the layer grow in 10 seconds? Justify the approximate boundary
condition

∂h

∂t
= vp · n

on the workpiece (we discuss this ‘linearisation’ of boundary conditions
in Chapter ??).

Derive an order of magnitude estimate for the potential drop across the
layer, assuming that the potential approximately satisfies

∂2φ

∂y2
=

ρ

ε0
,

where ρ is the density of charge in the layer. Assuming a reasonably
close packing for the particles, express this order of magnitude in terms
of the average particle radius a and charge qp, and hence assess how
thick the layer needs to be before the potential drop across it rivals the
applied voltage.
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Part II

Mathematical techniques
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Chapter 8

Partial differential equations

This chapter is a short overview of partial diferential equations partial dif-
ferential equations, with applications in view. The emphasis is largely on
first-order quasilinear equations, for which many standard treatments don’t
provide much in the way of real-life examples; we’ll see applications to e-mail
and, in a case study, to traffic. We also take a brief look at the fully nonlinear
case, with an eye to using it in Chapter ?? to see why we say that light travels
in straight lines (and other problems). Last, we have a brief run through the
standard theory of second order linear equations in two variables, for which
the canonical examples of the wave equation, the heat equation and Laplace’s
equation, and their physical interpretations, are so well known that we don’t
need to give examples here.

8.1 First-order quasilinear partial differential

equations: theory

We begin with a review of the elementary theory for the equation

a(x1, x2, u)
∂u

∂x1

+ b(x1, x2, u)
∂u

∂x2

= c(x1, x2, u),

where a, b and c are given smooth functions, with initial values given in
parametric form on a curve Γ, that is u = u0(s) on x1 = x10(s), x2 = x20(s).
This should be familiar stuff: I am assuming that you have already studied
this material. As illustrated in Figure 8.1, the partial differential equation
written in the form

(a, b, c) ·
(
− ∂u

∂x1

,− ∂u

∂x2

, 1

)
= 0
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s

x1

x2

u

(−ux1 ,−ux2 , 1)

(a, b, c)
t

Γ

Figure 8.1: Solution of a first-order quasilinear equation by characteristics.
Subscripts indicate partial derivatives.

shows that (a, b, c) is orthogonal to (−∂u/∂x1,−∂u/∂x2, 1), which itself is
normal to the solution surface u − u(x1, x2) = 0. It follows that if we solve
the characteristic equationsRemember the c

has to be on the
right-hand side of
the equation, or
you will get an
extraneous minus
sign.

dx1

dt
= a(x1, x2, u),

dx2

dt
= b(x1, x2, u),

du

dt
= c(x1, x2, u),

where t is a parameter along the characteristics, with the initial values

x1(0) = x10(s), x2(0) = x20(s), u(0) = u0(s),

the curves so generated, known as characteristics, are tangent to the solution
surface at each point. Glueing the characteristics together gives the solution
surface, written in the parametric form

(x1, x2, u) = (x1(s, t), x2(s, t), u(s, t)) ,

and in principle we are done, at least near Γ. We see immediately the cen-
tral role of characteristics (or their projections down onto the (x1, x2) plane,
known as characteristic projections). They are curves along which inform-
stion propagates: indeed, the left-hand side of the partial differential equation
is just the directional derivative of u along the characteristic projections, so
in this direction the partial differential equation reduces to an ordinary one.

There are several caveats to make about this procedure. One is that, as
is clear from the geometrical point of view, the initial curve must not be
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tangent to a characteristic; for if it is, near the point of tangency we expect
more than one value of u at each point (x1, x2); this is easily seen by showing
that if there is one characteristic projection through such a point, in general
there is another, carrying a different value of u. This insight is confirmed by
a calculation in which we try to find all the partial derivatives of u at a point
on Γ with the aim of constructing its Taylor sesries at that point. We know
by differentiating u0(s) along Γ that

dx10

ds

∂u

∂x1

+
dx20

ds

∂u

∂x2

=
du0

ds
,

and that

a(x10, x20, u0)
∂u

∂x1

+ b(x10, x20, u0)
∂u

∂x2

= c(x10, x20, u0);

regarding these as equations for ∂u/∂x1 and ∂u/∂x2, there is a unique solu-
tion provided that the determinant of coefficients∣∣∣∣∣ a b

dx10

ds

dx20

ds

∣∣∣∣∣ �= 0,

and if it does vanish, so that there is no unique Taylor series, we get precisely
the first two characteristic equations. Thus, if we require a unique solution Exercise: if it does

vanish, show that
the consistency
condition for there
to be a solution,
albeit nonunique, is
the third
characteristic
equation.

u, Γ cannot be a characteristic.
The second caveat concerns the region of existence of the solution. It is an

obvious remark that if Γ has ends, we can only hope to find the solution in a
region between the characteristics through those endpoints. Furthermore, by
standard Picard theory, the characteristic equations have a unique solution
for at least small t, that is in a small strip near Γ. How far we can go beyond
this strip depends on two things. First, the local solution must not blow
up, which it might well do for nonlinear equations. Secondly, and of more
practical importance, we must (in principle) be able to find s and t uniquely
from the solution of the first two characteristic equations in order to calculate
u uniquely. That means that the Jacobian∣∣∣∣∂(x1, x2)

∂(s, t)

∣∣∣∣
must not vanish or become infinite. That in turn means that the characteris-
tic projections are not allowed to cross, for if they did the different values of u
propagated along the different characteristic projections would lead to many
values of u at a single point. So even though we may have a perfectly good



96 CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS

parametric solution of the form above, it does not correspond to a single-
valued solution u(x1, x2). In general, one can think of this coinciding with
some kind of ‘folding over’ of the parametrised surface in x1–x2–u space. We
return to the question of what to do if this happens in Section 8.3.

The third caveat is the degree of smoothness of the solution. At first
sight, we expect the solution to have single-valued first partial derivatives,
so that the partial differential equation makes sense. However, it is possible
to extend our idea of solution by joining together smooth solution surfaces
at curves at which the first partial derivatives have jumps; such a curve
would look like a sheet slung over a rope and pulled out on either side, as
in Figure 8.2. Such a discontinuity can only occur across a characteristic.
We can see this by noting that when we showed that we can find the first
partial derivatives of u uniquely unless they are given on a characteristic, we
were in effect showing that jumps in these derivatives can only occur across a
characteristic. That is, smooth solution surfaces intersect in characteristics.
Alternatively, if (x1(t), x2(t), u(t)) is a curve in the solution surface along
which u is continuous but there are jumps in it derivatives, from left to right,
then we can differentiate the statement

[u] = 0

along the curve, where [·] means the jump across the curve, to get[
du

dt

]
=

[
∂u

∂x1

]
dx1

dt
+

[
∂u

∂x2

]
dx2

dt
= 0.

We also have the partial differential equation on either side, and taking the
difference of this across the curve givesRemember [u] = 0

so the coefficients a,
b, c are continuous. a

[
∂u

∂x1

]
+ b

[
∂u

∂x2

]
= 0.

These two homogeneous equations for [∂u/∂x1] and [∂u/∂x2] only have a
nonzero solution if the determinant of coefficients∣∣∣∣∣dx1

dt

dx2

dt
a b

∣∣∣∣∣
vanishes, and this is precisely the condition for (x1(t), x2(t)) to be a charac-
teristic projection.

We see that characteristics are curves along which gradient discontinuities
propagate from the initial curve. However, this does not let us deal with
the blow-up described above, which can happen even with perfectly smooth
initial data. In Section ??, we shall see how to do that by introducing
solutions that are themselves discontinuous, so-called shocks.
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Γ

x2

u

x1

Figure 8.2: Solution of a first-order quasilinear equation with a gradient
discontinuity.

8.2 Example: Poisson processes

First-order equations are often found in connection with various generating
functions in probability. Many of these have their roots in the Poisson pro-
cess, which is often used as a model for the number of occurrences in a given
time of independent random events such as e-mails arriving in your inbox or
calls coming to a telephone exchange. (I hesitate to propose the model for
the arrival of London buses as there are good reasons for them to arrive in
pairs or even threes.)

Suppose that we say that in a short time δt, there is a probability λ δt
that an e-mail arrives, a probability 1−λ δt that none arrive, and a negligible
probability that two or more arrive at once. The constant λ, known as the
intensity, measures your popularity (spam or otherwise). Starting with an
empty inbox, and staying online, define the Poisson counter N(t) as the
number of e-mails you have at time t. Thus,

N(t + δt) =

{
N(t) with probability 1 − λ δt,

N(t) + 1 with probability λ δt.

What is the probability distribution of N(t)? Define

pn(t) = P (N(t) = n) .

There are two, and only two, ways that N(t+δt) can equal n: either N(t) = n
and no new message arrives, or N(t) = n−1 and one message arrives. These
events are disjoint and so we have

P (N(t + δt) = n) = pn(t + δt)

= P (N(t) = n) P (no new message)

+ P (N(t) = n − 1)P (1 new message)

= pn(t)(1 − λ δt) + pn−1(t)λ δt.
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Expanding pn(t + δt) in a Taylor series,

pn(t + δt) = pn(t) + δt
dpn(t)

dt
+ · · ·

and taking δt → 0, we get the system of differential equations

dpn

dt
= −λ (pn − pn−1) , n = 1, 2, 3, . . . ,

while separately
dp0

dt
= −λp0.

The initial conditions are p0(0) = 1, pn(0) = 0 for n > 0, and although one
can, in principle, solve the equations sequentially, it’s easier to define

GN(x, t) =
∞∑

n=0

xnpn(t).

Then, summing the differential equations,

∂GN

∂t
= −λ(1 − x)GN ,

whence

GN (x, t) = e−λteλtx =
∞∑

n=0

e−λt (λt)n

n!
xn.

so the probabilities are those of the Poisson distribution with mean λt.
This generating function only satisfies an ordinary differential equation,

but now suppose that a virus is doing the rounds, spread by e-mail. Let
V (t) be the number of computers infected, and suppose that the probability
of a new infection over the next δt is λV (t) δt, that is, proportional to the
number of infected computers. With pn(t) = P (V (t) = n) as before (but
now for n = 1, 2, . . . and with p1(0) = 1 to model one source of infection), we
find

dpn

dt
= −λ (npn − (n − 1)pn−1) , n = 1, 2, 3, . . .

(here p0 = 0), and then, following the calculation above, the generating
function GV (x, t) satisfies

∂GV

∂t
+ λx(1 − x)

∂GV

∂x
= 0

with GV (x, 0) = x. The solution is easily found to beNote the
consistency check
G(1, t) = 1 for both
these examples: the
probabilities sum to
1.
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GV (x, t) =
xe−λt

1 − x (1 − e−λt)

=
∞∑

n=1

xne−λt
(
1 − e−λt

)n−1
.

The mean of this distribution,

∂GV

∂x
(1, t) =

∞∑
n=1

npn(t),

grows exponentially in t, as we would expect.

8.3 Shocks

We started our analysis of quasilinear equations such as the traffic model
above by considering smooth solution surfaces with a unique normal at each
point. Then, we realised that we can extend our class of solutions by allow-
ing gradient discontinuities, as long as they occur across (propagate along)
characteristics. However, blow-up still occurs when characteristic projections
cross, because then we may get several values of u at the same place.

To see this in action consider the equation

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
= 0.

This equation is known as a kinematic wave equation and if we think of u(x, t)
as the speed of a particle moving along the x axis, it says that the speed of
any given particle remains constant. It is easy to solve by characteristics
with initial data u(x, 0) = u0(x), say, corresponding to a snapshot at t = 0
of the speeds all along the x axis. The characteristic equations are

dt

dτ
= 1,

dx

dτ
= u,

du

dτ
= 0,

so u remains constant along a characteristic whose projection has slope
dx/dt = u. This simply repeats that the particles move along character-
istics with constant speed u. So, to construct the solution, we simply draw
all the characteristic projections through the innitial line t = 0, and read off
the value of u at any point x and later time t. This procedure works fine if
u0(x) is increasing, since then the characteristics spread out as in Figure 8.3.

But if u0(x) is dcreasing, we inevitably have a collision of characteristic
projections — and particles — after a finite time, as in Figure 8.4. It has an



100 CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS

u0(x)

x

u0(x)

x

x

t

Figure 8.3: The kinematic wave equation with increasing initial data. The
steep fall in u0(x) moves to the right and spreads out.

obvious physical interpretation that fast particles have caught up with slow
ones and are trying to occupy the same space.

We could take the defeatist view that the solution ceases to exist at the
moment when the characteristic projections first cross, and that is the end
of the matter. On the other hand, we may try to extend our notion of what
constitutes a solution, to allow not only gradient discontinuities but also
discontinuities in u itself. That is, there may be a curve (or curves) x = S(t)
across which u has a jump. These jumps are called shocks. Famous physical
examples include tidal bores1 and the shock waves created by Concorde flyingBy ‘physical

example’ we mean a
physical situation
that can be
modelled by
equations, here the
shallow water
equations and the
equations of gas
dynamics, that have
shock solutions.

supersonically.

As one might expect, a drastic step like this is fraught with dangers. It
does indeed turn out that we have generalised a bit too far, because we can
have non-uniqueness of solutions with shocks. The ideas needed to deal with
this are rather delicate and we refer to [?] for a fuller discussion. However,
when the partial differential equation is a conservation law, we can give a
heuristic derivation of a necessary condition at a shock, which in practice is
sometimes sufficient as well.

1A tidal bore is an abrupt change in water level that propagates upstream from the
river mouth, often appearing as a continually breaking wave. Prerequisites for them to
form are a large tidal range and a slowly convergent estuary. Examples include the Severn
bore and the Trent Aegir in the UK, and the Hooghly bore in India.
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u0(x)

x

u(x, t)

x

x

t

Figure 8.4: The kinematic wave equation with decreasing initial data. The
steep fall in u0(x) gets steeper until, when the characteristic projections cross,
it is vertical (solid line in the bottom graph). The dashed line in the bottom
graph shows the multivalued solution we get if we continue to larger values
of t.

8.3.1 The Rankine–Hugoniot conditions

Suppose that our quasilinear partial differential equation is in the conserva-
tion form (see Chapter 2)

∂P

∂t
+

∂Q

∂x
= 0,

where P (x, t, u) is the density and Q(x, t, u) the flux of a conserved quantity
(usually they depend only on u). Now suppose that there is a curve x =
S(t) across which u(x, t) has a discontinuity (jump). That means that P
and Q also have jumps across this curve. However, we assume that overall
conservation of the quantity, whatever it is (stuff, say). Let us do a simple-
minded ‘box’ argument to see what this implies for the jumps in P and Q. Compare this with

the (in some ways
more subtle)
argument of
Section 2.4.

Figure 8.5 sets the scene.
In a small time δt, the shock moves by a small distance

δx =
dS

dt
δt.

The net flux into the region crossed by the shock is Q+ − Q− in an obvious
notation, + referring to x > S(t). Hence the amount of stuff flowing into
this small ‘box’ is (Q+ − Q−)δt = [Q]+− δt. The amount of stuff in the box
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δx

S(t) S(t + δt) = S(t) +
dS

dt
δt

density P−, flux Q−density P+, flux Q+

Figure 8.5: Derivation of the Rankine–Hugoniot condition.

before the shock arrives is P− δx, and after it is P+ δx. The difference must
be accounted for by the net flux; thus,[

P
]+
− δx =

[
Q
]+
− δt.

Eliminating δx/δt ≈ dS/dt, we arrive at

dS

dt
=

[
Q
]+
−[

P
]+
−

.

This relation between the two jumps is known as the Rankine–Hugoniot
condition and it is necessary (but not sufficient) to give a unique solution
with a shock.

8.4 Fully nonlinear equations and Charpit’s

method

8.4.1 Example: spray forming

Further reading

See [23] for an accessible introduction to Poisson processes.

Exercises

1. Solution blow-up. Consider the equation

∂u

∂t
+ u

∂u

∂x
= 0.
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Show that the general solution is given implicitly by u(x, t) = f(x −
tu(x, t)) for arbitrary smooth f . Consider the initial value problem
in which u = u0(x) on t = 0. Show that the parametric form of the
solution is

t = τ, x = τu0(s) + s, u = f(s).

Deduce that u is constant on the characteristic projections dx/dt = u,
which are thus straight lines.

Draw the characteristic projections and sketch the solution surface (if
you can visualise it: see [27] Chapter 1) for the two kinds of ‘ramp’
initial data

u0±(x) =

⎧⎪⎨⎪⎩
0, x < 0,

±x, 0 ≤ x < 1,

±1, 1 ≤ x.

Which solution remains single-valued? (Note that the initial disconti-
nuity in slope at x = 0 remains fixed on the characteristic projection
x = 0, but the slope discontinuity at x = 1 is propagated along the
characteristic projection x = 1 ± t.)

2. Waiting times for a Poisson process. Suppose we start a Poisson
process at time 0. What is the distribution of T , the time until the
first event (clearly this is the same as the distribution of the interval
between any two events)? We find it as follows. Let FT (t) = P (T < t).
Explain why

FT (t + δt) = (1 − λδt)FT (t)

and deduce that T has the negative exponential distribution with den-
sity fT (t) = λe−λt, t > 0. Figure 8.6 shows a histogram of the inter-
arrival times of trades in the S&P 500 futures contract in Chicago (an
open outcry market) with normal and log scales for the frequency; the
latter is a good approximation to a straight line except for very short
times between trades (thanks to Rashid Zuberi for these plots).

3. Viral antidote. Suppose that N computers are infected with a virus
and, at time t = 0, I send them all an antidote which will cure the
problem as soon as they open their inbox. Also assume that if n users
are still infected at time t, then in the short time interval (t, t+ δt) one
and only one user will log on, with probability µnpn(t)δt. Why is this
a reasonable model?
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Figure 8.6: Standarda and log-linear plots of the inter-arrival time frequencies
for a stock market.

If pn(t) is the probability that there are still n infected computers at
time t, use the decomposition into disjoint events

P (n infected at t + δt) = P (n + 1 at t and one logs on)

+ P (n at t and none log on)

to show that

pn(t + δt) = µ(n + 1)pn+1(t)δt + (1 − µn δt)pn(t).

Letting δt → 0, show that the generating function GA(x, t) =
∞∑

n=0

pn(t)xn

satisfies
∂GA

∂t
+ µ(x − 1)

∂GA

∂x
= 0.

Show that if there are N victims initially, the solution is

GA(x, t) =
(
1 + (x − 1)e−µt

)N
.

What is the mean of this distribution?

Modify the argument to allow for both infection and cure.



Chapter 9

Case study: traffic modelling

9.1 Case study: traffic modelling

Mathematicians have long been interested in the problem of traffic, and the
area is one of active research. A variety of models have been suggested
with a view to understanding, for example, how and why traffic jams form,
how to maximise carrying capacity of roads, or how best to use signals, speed
limits and other controls to reduce journey times (the feedback effect whereby
quicker journeys encourage more people to take to the roads is strangely
absent from these analyses). Some models are based on discrete simulations
of the movement of individual cars; as you may imagine, such models can
be very large and complicated, and indeed they fall into the trendy area of
Complex Systems. There is, however, a strand of traffic research which treats
the cars as a continuum with a local number density and velocity which are
more or less smooth functions of space and time, much as in the treatment
of charged particles in the case study of Chapter 7. Models of this kind
are unlikely ever to forecast the fine details of gridlock in New York City
or even Oxford; but on the other hand they offer insights into the way in
which traffic can behave, and they can to some extent be calibrated to (or
at least compared with) observations. On the scale from parsimony (as few
parameters and mechanisms as possible) to complexity, they are very much
at the parsimonious end; the cost, a lack of realism, is balanced by a gain in
understanding. They fit in well with my recommended philosophy of always
trying to do the easiest problem first.

Let us, then, start with a toy model for cars travelling in one direction
down a single-lane road (no overtaking) that is long and straight. Suppose
that x measures distance along the road, and that we work on a large enough
lengthscale, or we look from far enough away, that the cars can be treated

105
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as a continuum with number density ρ(x, t) (cars per kilometer) and speed
u(x, t). Supposing further that no cars join or leave the road, we immediately
write down ‘conservation of cars’ in the form

∂ρ

∂t
+

∂ρu

∂x
= 0,

as the flux of cars is clearly equal to ρu.
Given the continuum assumption, this equation is uncontroversial; but it

is only one equation for two unknowns. We need some kind of ‘constitutive
relation’ to close the system.

Blinkered drivers

One very simple model would be to say that, as they enter the road, drivers
choose the constant speed they want to drive at, and then they drive at that
speed no matter what happens. Of course, this is ludicrously unraelistic,
but let’s see what features it predicts. If the speed u of an individual car is
constant, then the derivative of u following that car is zero:

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
= 0.

This equation is known as a kinematic wave equation and it is easy to solve
by characteristics with initial data u(x, 0) = u0(x), say, corresponding to
a snapshot at t = 0 of the speeds all along the road. The characteristic
equations are

dt

dτ
= 1,

dx

dτ
= u,

du

dτ
= 0,

so u remains constant along a characteristic whose projection has slope
dx/dt = u. This simply says that the cars move along characteristics with
constant speed u. So, to construct the solution, we simply draw all the char-
acteristic projections through the innitial line t = 0, and read off the value
of u at any point x and later time t. This procedure works fine if u0(x) is in-
creasing, since then the characteristics spread out as in Figure 9.1(a). But if
u0(x) is dcreasing, we inevitably have a collision of characteristic projections
— and cars — after a finite time, as in Figure 9.1(b). This is an example of
the solution blow-up we discussed in Chapter 8, and here it has an obvious
physical interpretation that fast cars have caught up with slow ones and are
trying to occupy the same bit of road. That is, the model predicts that cars
with different speeds will end up in the same place. Clearly, this model is
inadequate as a description of how real traffic behaves. Its predictions are
realistic within its severe limitations, but they are so far off the mark that
we need to do something more sophisticated.
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x

t

u0(x)(a)

x

u0(x)(b)

x

x

t

Figure 9.1: Initial data and characteristic projections for the kinematic wave
equation.

9.1.1 Local speed-density laws

In our quest for greater realism, we should try to describe how drivers re-
spond to the traffic around them. A simple way to do this is to propose
a (constitutive) relation between the speed of cars at a point x and their
density there. That is, we assume that

u = U(ρ)

for a suitable function U . This function should be determined experimentally
from observations of local speed and density, or at least written down in a
parametric form and the parameters calibrated (fitted) to observations of
global features of the traffic flow (an example of an inverse problem). Before
going too far down this road, let us see what happens when we put a simple
U into the model. As heavy traffic generally moves more slowly than light
traffic, we want U(ρ) to be a decreasing function of ρ. We may assume a
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maximum car speed umax, and it is reasonable to assume that cars driveAlmost certainly
umax is greater than
the speed limit. . .

at this speed on an empty road, when ρ = 0. Conversely, we can assume
a maximum bumper-to-bumper density ρmax at which the traffic comes to a
complete halt, so u = 0. This suggests that the speed-density law

u = umax

(
1 − ρ

ρmax

)
should be a reasonable qualitative description.

We can make an immediate and interesting observation. The flux of cars
is

Q = uρ = umaxρmax

(
1 − ρ

ρmax

)
ρ

ρmax

,

and it is greatest when ρ = 1
2
ρmax, so that u = 1

2
umax. In this model the free-It is an assumption

of the model that
all drivers behave in
the same way, and
that they all drive
as fast as is
consistent with the
ambient traffic
density.

market individual desire of drivers to minimise their journey time by always
driving as fast as possible does not necessarily deliver the maximum-flux
solution for drivers as a whole.

Leaving this aside, let us see whether we still have blow-up. Making the
trivial scalings u = umaxu

′, ρ = ρmaxρ
′, with suitable scalings for x and t, we

have the dimensionless equation

∂ρ

∂t
+

∂

∂x
(ρ(1 − ρ)) =

∂ρ

∂t
+ (1 − 2ρ)

∂ρ

∂x
= 0

(this is, of course, just a conservation law). The characteristic equations are

dt

dτ
= 1,

dx

dτ
= 1 − 2ρ,

dρ

dτ
= 0,

so the characteristics are again straight as ρ is constant on them. However,
bearing in mind that 0 < ρ < 1, we see that we can easily prescribe initial
data for ρ that will again lead to finite-time blow-up: the characteristic
projections can have slopes of either sign and they can easily cross.

Clearly, we must either further tinker with the model so that blow-up
is forbidden, or we must face up to the fact that it will happen in realistic
models, and decide what to do about it.

9.2 Solutions with discontinuities: shocks and

the Rankine–Hugoniot relations

We saw in Section 8.3 that the notion of a solution to a conservation law can
be extended to allow jump discontinuities across
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9.2.1 Traffic jams

9.2.2 Traffic lights

Exercises

1. Blinkered cars. Consider the kinematic wave equation

∂u

∂t
+ u

∂u

∂x
= 0.

with u(x, 0) = u0(x) a smooth decreasing function of x as in Fig-
ure 9.1(b). Find the solution in parametric form. Look at teh relevant
Jacobian to show that the earliest time at which the characteristics
cross is

tmin = − 1

min−∞<x<∞ u′
0(x)

.

Show that the rate at which cars get closer is ∂u/∂x and interpret the
blow-up result above in this light.

2. Traffic. Consider the traffic model of Section ??

∂ρ

∂t
+

∂Q

∂x
= 0,

where Q = uρ and u = 1 − ρ for 0 ≤ ρ ≤ 1. Show that u and ρ are
constant on the characteristics

dx

dt
= 1 − 2ρ,

and show that the Rankine–Hugoniot condition for the speed of a shock
x = S(t) is

dS

dt
=

[ρ(1 − ρ)]+−
[ρ]+−

.

(a) A tractor is travelling along the road at a quarter of the maximum
speed and a very long queue of cars travelling at the same speed has
built up behind it. At time t = 0 the tractor passes the origin x = 0
and immediately turns off the road. Sketch the characteristic diagram;
show that there is an expansion fan for ρ centered at x = 0, t = 0 and
find ρ(x, t) for t > 0.
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(b) A queue is building up at a traffic light x = 1 so that, when the
light turns to green at t = 0,

ρ(x, 0) =

{
0 for x < 0 and x > 1,

x for 0 < x < 1.

Show that the characteristics, labelled by s and starting from (s, 0),
are given by t = τ and

x − s = τ in x < τ and x > τ + 1, on which ρ = 0,

x − s = (1 − 2s)τ in τ < x < 1 − τ , on which ρ = s,

x − 1 = (1 − 2ρ0)τ in 1 − τ < x < 1 + τ , on which ρ = ρ0 = (τ − x + 1)/(2τ)

(these last ones are an expansion fan starting from the light). Draw
the characteristic projections in the (x, t) plane; show that all those
starting with 0 < s < 1 pass through one point and deduce that a
collision first occurs at x = 1/2 at t = 1/2.

Harder: show that thereafter there is a shock x = S(t) starting from
(1

2
, 1

2
) where

dS

dt
=

S + t − 1

2t
.

Write S(t) = 1 + S̃(t) to reduce this equation to one homogeneous in
S̃ and t, and hence solve it.

3. Two-lane traffic. Explain why the one-lane model above might be
extended to at two-lane model in the form

∂ρ1

∂t
+

∂

∂x
(ρ1u1) = F12(ρ1, ρ2, u1, u2),

∂ρ2

∂t
+

∂

∂x
(ρ2u2) = −F12(ρ1, ρ2, u1, u2),

and explain where F12 comes from. What general properties should F12

have, in your opinion? How would it differ for the American freeway
in which overtaking is allowed on the inside lane, as compared to the
British case in which (in principle if not in practice) it is not?



Chapter 10

The delta function and other
distributions

10.1 Introduction

In this chapter we give a very informal introduction to distributions, also
called generalised functions. We do two rather amazing things: we see how
to differentiate a function with a jump discontinuity, and we develop a math-
ematical framework for point forces, masses, charges, sources etc. Further-
more, we find that these two ideas find their expression in the same mathe-
matical object: the Dirac delta function.

When I learned proper real analysis for the first time, we spent ages ago-
nising about continuity, left and right limits, one- and two-sided derivatives,
and so on. The result was a lingering fear of pathological functions (zero
except on the rationals, that sort of thing). It came as a great relief to find
(much later on, alas) that one can make perfect sense of the derivative of the
Heaviside function1

H(x) =

{
1, x > 0,

0, x ≤ 0.

This function and its derivative are ubiquitous in whole swathes of linear
applied mathematics, not to mention continuous and discrete probability. I
think distributions are invaluable in developing an intuitive framework for
modelling and its interaction with mathematics. Don’t be inhibited about
using them: your mistakes are unlikely to do worse than lead to inconsisten-

1The value H(0) = 0 has been assigned for consistency with probability, as we shall
see; but for reasons that will shortly become clear it really doesn’t matter what value we
take.
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1

x

Figure 10.1: The Heaviside function H(x). Its derivative vanishes for all
x �= 0 but it still gets up from 0 to 1. How?

cies (which I hope you are constantly on the look out for) and plainly wrong
answers, rather than the deadly ‘plausible but fallacious’ solution.

10.2 A point force on a stretched string; im-

pulses

y

x

force F

Tension T

x = a

x = L

Figure 10.2: A string with a point force.

Let’s start with a couple of motivating physical examples. We have all
at some time worked out the displacement of a stretched string under the
influence of a point force, as sketched in Figure 10.2. Under the standard
assumptions that the string is effectively weightless, and that the force F
(measured upwards, in the same direction as y) can be considered as acting at
a point x = a and only causes a small deflection, the equilibrium displacement
y(x) of the string satisfies

d2y

dx2
= 0, 0 < x < a, a < x < L, (10.1)

with the force balance conditionConsistency check
on the signs: F > 0
and dy/dx is
negative to the
right of a, positive
to the left.

[
T

dy

dx

]x=a+

x=a−
= −F. (10.2)
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Notice the implicit assumption that y itself is continuous at x0 although its
derivative is not.

Now we might ask, can we somehow put the force on the right-hand side
of (10.1), and have the equilibrium conditions hold at x = a as well? After
all, if we have a distributed force per unit length f(x) on the string, the usual
force balance on a small element (see Figure 10.3) gives the equation2

T
d2y

dx2
= −f(x), 0 < x < L.

For example, when f = −ρg, the gravitational force on a uniform wire of line
density ρ, the displacement is a parabola (the small-displacement approxi-
mation to a catenary).

Can we devise some limiting process in which all the force becomes con- Question expecting
the answer yes.centrated near x = a, with the total force

∫ L

0
f(x) dx tending to F? A

possible way to do this would be to take

f(x) =

{
F/2ε a − ε < x < a + ε,

0 otherwise,

and then to let ε → 0. But would we get the same answer if we took the
limit of some other concentrated force density, and in any case how, exactly,
are we to interpret the result of this limiting process?

In a very similar vein, recall the concept of an impulse in mechanics.
In one-dimensional motion, the velocity v of a particle under a force f(t)
satisfies Newton’s equation

m
dv

dt
= f(t),

2You might wonder why there is a minus sign on the right. If we were to consider the
unsteady motion of the string, Newton’s Second Law in the form

mass × acceleration = force

gives

ρ
∂2y

∂t2
= T

∂2y

∂x2
+ f,

leading to the minus sign in question. Many mathematicians, writing the wave equation
as

ρ
∂2y

∂t2
− T

∂2y

∂x2
= f,

would write the equilibrium equation for the string as

−T
d2y

dx2
= f(x).

Note the absence of minus signs in the impulse example below.
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T

force fδx

δx
T

Figure 10.3: Force on an element of a string.

from which

v(t) = v(0) +
1

m

∫ t

0

f(s) ds

If the force is very large but only lasts for a short time, say

f(t) =

{
I/ε 0 < t < ε,

0 otherwise,

then we can integrate the equation of motion from t = 0 to t = ε to find

v(ε) =
1

m

∫ ε

0

I

ε
dt =

I

m
.

Letting ε → 0, we have the result of an impulse I: the velocity v changesNotice that the
wire slope has a
jump discontinuity
at a point force.

discontinuously from 0 to I/m. Again, we can ask the question, can we put
the limiting impulse directly into the equation of motion, rather than having
to smooth it out and take a limit?

10.3 Informal definition of the delta and Heav-

iside functions

Obviously the answer to all our questions above is yes. The powerful and
elegant theory of distributions allows us to model point forces and much more
(dipoles, for example). However, the intuitive view of a point force (mass,
charge,. . . ) as the limit of a distributed force turns out to be technically
very cumbersome, and nowadays a more concise and general, but physically
less intuitive, treatment is preferred. This oblique approach requires some
groundwork, and we defer a brief self-contained description until Chapter 11.
You will survive if you don’t read it, although I recommend that you do: it
is not technically demanding or complex.

In this chapter we concentrate on the intuitive approach to the delta
function. Although this is not how the theory is nowadays developed, it
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y

ε3 ε2 ε1

x

Figure 10.4: Three approximations to the delta function; ε1 > ε2 > ε3 > 0.

absolutely is how to visualise this central part of it. Taking the examples of
the previous section and stripping away the physical background, consider
the functions

fε(x) =

{
1/2ε −ε < x < ε,

0 otherwise.

They are shown in Figure 10.4 for various values of ε. The following facts
are obvious:

•
∫ ∞

−∞
fε(x) dx = 1 for all ε > 0;

• for x �= 0, fε(x) → 0 as ε → 0.

Clearly the limiting ‘function’ is very strange indeed. It has a ‘mass’, or ‘area
under the graph’, of 1, but that mass is all concentrated at x = 0. This is
just what we need to model a point force, and even though we don’t quite
know how to interpret it rogorously, we provisionally christen the limit as
the delta function, δ(x).

Two extremely useful properties of the delta function are now at least
plausible. Firstly, as ε → 0,∫ x

−∞
fε(s) ds →

{
1 x > 0,

0 x < 0,
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and the right-hand side is the Heaviside function H(x) with its jump discon-For now, let’s not
worry what its
value is at x = 0.

tinuity at x = 0. So, we should have∫ x

−∞
δ(s) ds = H(x),

at least for x �= 0. Furthermore, fingers crossed and appealing to the Funda-
mental Theorem of Calculus, we should conversely have

d

dx
H(x) = δ(x).

That is, delta functions let us differentiate functions with jump discontinu-
ities. The Heaviside function has a jump up of 1 at x = 0, and its derivative
is δ(x), and by an obvious extension, the derivative of a function with a jump
of A at x = a contains a term Aδ(x − a).

The second vital attribute of δ(x) is its ‘sifting’ property. It is intuitivelyA proof is requested
in the exercises clear that, for sufficiently smooth functions φ(x),∫ ∞

−∞
fε(x)φ(x) dx → φ(0) as ε → 0,

simply because all the mass of fε(x), and hence of the product fε(x)φ(x),
becomes concentrated at the origin. So, we conjecture that we can make
sense of the statement ∫ ∞

−∞
δ(x)φ(x) dx = φ(0) (10.3)

and, by a simple change of variable,∫ ∞

−∞
δ(x − a)φ(x) dx = φ(a)

for any real a.
These assertions are eminently plausible. However, if you stop to think

how you might make them mathematically acceptable, difficulties start to
appear. Would we get the same results if we used a different approximating
sequence gε(x)? Do we need to worry about the value of H(0)? HavingFor example,

gε(x) =
1

ε
√

2π
e−

1
2x2/ε2 ,

as discussed in
Section 10.4.2.

differentiated H(x), can we define dδ/dx? Clearly this last runs a big risk of
being very dependent on the approximating sequence we use.

For all these reasons, and more, the theory is best developed slightly
differently, without the ‘epsilonology’.3 The clue lies in the sifting property.

3See [27] page 97 for this neologism.
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Using the fact that integration is a smoothing process, we can get away from
the ‘pointwise’ view of functions which is so troublesome, and instead define
distributions via averaged properties. An example is the integral (10.3),
which leads to the definition of δ(x).4 Before looking at this idea in more
detail, we consider some examples.

10.4 Examples

10.4.1 A point force on a wire revisited

All our discussion suggests that we should model the point force F acting at
x = a by a term Fδ(x− a) in the equilibrium equation for the displacement,
and assume that the latter now holds for all x, so that

T
d2y

dx2
= −Fδ(x − a), 0 < x < L.

We now know that this means that the left-hand side is the derivative of Assuming we
believe that
differentiation still
makes sense.

a function which jumps by F at x = a. But the left-hand side is also the
derivative of T dy/dx. Thus, putting the delta function into the equilibrium
equation leads automatically to the force balance[

T
dy

dx

]a+

a−
= −F,

and there is no need to state this separately.

10.4.2 Continuous and discrete probability.

We can interpret each of the approximations fε(x) of Figure ?? as the prob-
ability density of a random variable Xε whose value is uniformly distributed
on the interval (−ε, ε). The mean of this distribution is 0 and its standard
deviation is ε/

√
3. As ε → 0, the random variable becomes equal to 1 with

certainty, because its standard deviation tends to zero, and any random vari-
able with zero standard deviation must be a constant. This suggests that
we can interpret the delta function as the probability density ‘function’ of a

4The process of generalisation by looking at a weaker (smoother) definition using an
integral, rather than a pointwise definition, is common in analysis. A famous example in
applied mathematics is the definition of weak solutions to hyperbolic conservation laws,
which leads to the Rankine–Hugoniot relations for a shock.
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y

x

Figure 10.5: Cumulative density functions for the distributions of Figure ??.

variable whose probability of being equal to zero is 1. Likewise, the cumu-
lative density function (distribution function) FXε(x) = P (Xε < x) tends to
the Heaviside function.5

In a similar vein, we can take approximations

gε(x) =
1

ε
√

2π
e−

1
2
x2/ε2,

which are the density functions of normal random variables with mean zero
and standard deviation ε. These also clearly tend to the delta function as
ε → 0.

Now suppose we have a coin-toss random variable X taking values ±1
with equal probability 1

2
. As X can only equal 1 or −1, all its probability

mass is concentrated at these values: its density function is zero for x �= ±1.
Clearly, the density of this random variable isWhat is its

distribution
function?

fX(x) = 1
2
(δ(x + 1) + δ(x − 1)) .

In this way, we can unify continuous and discrete probability — at least
when the number of discrete events is finite. The extension to infinitely
many discrete events is much more difficult, and may require the tools of
measure theory.

5In this case the strict inequality in the definition of FXε
suggests that we should

take H(0) = 0. Looking in the books on my shelf, I find that there is no consensus in
the probability world whether to use P (X < x) or P (X ≤ x) to define the distribution
function (no wonder I can never remember). It is a matter of convention only, and would
lead to corresponding conventional definitions of H(0). Another highly plausible definition
is H(0) = 1

2 , on the grounds that any Fourier series or inversion integral for a function with
a jump converges to the average of the values on either side. This sort of hair splitting is
one reason why the pointwise view of distributions is not really workable.
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10.4.3 The fundamental solution of the heat equation

If we set ε = 2t in the functions gε of the previous section, we get the function

g(x, t) =
1

2
√

πt
e−x2/4t.

It is a straightforward exercise to show by direct differentiation that g(x, t)
satisfies the heat equation. As we saw above, as t ↓ 0, g(x, t) → δ(x). In
summary, g(x, t) satisfies the initial value problem

∂g

∂t
=

∂2g

∂x2
, t > 0, −∞ < x < ∞,

g(x, 0) = δ(x).

This solution represents the evolution of a ‘hot spot’, a unit amount of heat Note the infinite
propagation speed
of the heat: t = 0 is
a (double)
characteristic of the
heat equation. Note
also the very rapid
decay in the
solution as |x|
increases.

which at t = 0 is concentrated at x = 0.
With this solution, we can solve the more general initial value problem

∂u

∂t
=

∂2u

∂x2
, t > 0, −∞ < x < ∞,

u(x, 0) = u0(x).

We first note that the initial data u0(x) can be written as

u0(x) =

∫ ∞

−∞
u0(ξ)δ(x − ξ) dξ

by the picking-out property of the delta function. Now the evolution of a
solution with initial data δ(x− ξ) is just g(x− ξ, t) where g is as above. The
integral over ξ amounts to superposing the initial data for these solutions, so
that each point contributes a delta function weighted by u0(ξ) dξ. Because
the heat equation is linear, we can superpose for t > 0 as well, so we have Confirm that u(x, t)

satisfies the heat
equation by
differentiating
under the integral
sign.

u(x, t) =

∫ ∞

−∞
u0(ξ)g(x − ξ, t) dξ

=
1

2
√

πt

∫ ∞

−∞
u0(ξ)e

−(x−ξ)2/4tdξ.

This solution has a physical interpretation as the superposition of elementary
‘packets’ of heat evolving independently.6

6There is also an interpretation in terms of random walkers following Brownian Motion:
see the exercise ‘Brownian Motion’ on page 134.
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10.5 ‘Balancing the most singular terms’

If we have an equation involving ‘ordinary’ functions, and there is a singu-
larity on one side, there must be a balancing singularity somewhere else. For
example, we could never find coefficients an such that

1

sinx
= a0 + a1x + a2x

2 + · · ·
because the left-hand side clearly has a 1/x (simple pole) singularity at x = 0.
On the other hand there is an expansionThis is just the

Laurent expansion. 1

sin x
=

a−1

x
+ a0 + a1x + a2x

2 + · · · ,

and furthermore it is obvious that a−1 = 1 because 1/ sinx ∼ 1/x as x → 0.
Thus, both sides have this singularity in their leading-order behaviour as
x → 0.

This is a simple but powerful idea, and it applies to distributions as
well. In our naive approach, a delta function is obviously a ‘function’ with
a particular singularity at x = 0. Thus, if part (for example the right-hand
side) of an equation contains a delta function as its most singular term, there
must be a balancing term somewhere else. For example, when we write

dv

dt
=

I

m
δ(t),

for the motion of a particle subject to a point force, there must be another
singularity to balance the delta function. It can only be in dv/dt, so weGo back and look at

the point force on a
string in this light.

know straightaway that v has a jump at t = 0; furthermore, we know that
the magnitude of the jump is I/m, by ‘comparing coefficients’ of the delta
functions. In this case it is trivial to find the balancing term, because there is
only one candidate. Suppose, though, that the equation has a linear damping
term:

m
dv

dt
= −mkv + Iδ(t),

where k > 0 is the damping coefficient. The balancing singularity is still
in the derivative dv/dt, simply because dv/dt always has worse singularities
than v itself. Going back, we can check: if dv/dt has a delta, then v has aDifferentiation

makes matters
worse, integration
makes them better.

jump, which is indeed less singular.

10.5.1 The Rankine–Hugoniot conditions

In Chapter 8 we looked briefly at the Rankine–Hugoniot conditions for a first
order conservation law

∂P

∂t
+

∂Q

∂x
= 0
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where, for example, P is the density ρ of traffic and Q the flux uρ. We saw
that we can construct solutions in which P and Q have jump discontinuities
across a shock at x = S(t), provided that

dS

dt
=

[Q]

[P ]
.

We can interpret this condition as a balance of delta functions. If P has
a (time-dependent) jump of magnitude [P ](t) at x = S(t), we can (very
informally) write

P (x, t) = [P ](t)H (x − S(t)) + smoother part,

and similarly for Q(x, t). Differentiating, we find

∂P

∂t
= −[P ](t)δ (x − S(t))

dS

dt
+ less singular terms,

∂Q

∂x
= [Q](t)δ (x − S(t)) + less singular terms.

Adding these and balancing the coefficients of the delta functions, the Rankine–
Hugoniot condition drops out.

10.5.2 Case study: cable-laying

In Chapter 5, we wrote down the model

dFx

ds
= −Bx,

dFy

ds
= −By + ρcgA = 0, EAk2 d2θ

ds2
−Fx sin θ + Fy cos θ = 0,

(10.4)
where

(Bx, By) =

(
ρwgA cos θ + pA

dθ

ds

)
(− sin θ, cos θ). (10.5)

for a cable being laid on a sea bed, where θ is the angle between the cable
and the horizontal. We stated, on a rather intuitive basis, that the boundary
conditions at s = 0 are θ = 0 (no worries about this one) and dθ/ds = 0,
namely continuity of θ and dθ/ds, since θ = 0 for s < 0. We can now see
why this is necessary. If dθ/ds is not continuous, then d2θ/ds2 has a delta
function discontinuity at s = 0. But then there is no balancing term in the
last equation of (10.4) since, loosely, (10.4) shows that both Fx and Fy are Because there is a

reaction force
between the sea bed
and the cable, and
maybe some
friction, we do not
expect the
right-hand sides of
the first two
of (10.4) to be
continuous at s = 0.

at least as continuous as Bx and By, and so from (10.5) they are no worse
than dθ/ds with its assumed-for-a-contradiction jump discontinuity; we have
duly obtained said contradiction.
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10.6 Green’s functions

10.6.1 Ordinary differential equations

We have all seen the definition of the Green’s function for the self-adjoint
two-point boundary value problem7

Lxy(x) =
d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), 0 < x < 1, (10.6)

y(0) = y(1) = 0. (10.7)

Provided that the homogeneous problem (f(x) ≡ 0) has no non-trivial solu-
tions, the Green’s function is the function G(x, ξ) that satisfies

LξG(x, ξ) = 0, 0 < ξ < x, x < ξ < 1, (10.8)

G(x, 0) = G(x, 1) = 0, (10.9)

with some rather opaque (if you don’t think about delta functions) conditions
at ξ = x:

[G]ξ=x+
ξ=x− = 0,

[
p(ξ)

dG

dξ

]ξ=x+

ξ=x−
= 1

(
or

[
dG

dξ

]ξ=x+

ξ=x−
=

1

p(x)

)
. (10.10)

If we can solve this problem, then we have a representation for y(x) as

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.

The point is, of course, that we need only calculate G once, and then weJust like inverting a
matrix A to solve
Ax = b; see the
exercise about this
on page 133.

have the solution whatever we take for f .8 In this way, we can think of

7The subscript to L tells you which variable to use. Strictly speaking, all the derivatives
should be partial, but it seems to be conventional to stick to ordinary derivatives.

8A very common use of the Green’s function is to turn a differential equation into an
integral equation as a prelude to an iteration scheme to prove existence, uniqueness and
regularity. Often the equation has a linear part and some nonlinearity as well, and we use
the Green’s function for the linear part. A simple example of this procedure is Picard’s
theorem for local existence and uniqueness of the solution to dy/dx = f(x,y), y(0) = y0

for a set of first-order equations, where the first step is to write

y(x) = y0 +
∫ x

0

f(ξ,y(ξ)) dξ;

the only modification needed is to adapt the Green’s function methodology to cater for
initial value problems, as described in the exercise on that topic on page 130.
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the operation of multiplying by the Green’s function and integrating as the
inverse of L and the boundary conditions.

This is all very well, but I don’t think it gives a good intuitive feel for
what the Green’s function really does. Suppose, though, that we take the
solution

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ (10.11)

and apply Lx to it. Assuming that we can differentiate under the integral,
we get

Lxy(x) =

∫ 1

0

LxG(x, ξ)f(ξ) dξ

= f(x).

We recognise this: it is the sifting property. Whatever f we take, when we
multiply f(ξ) by LxG(x, ξ) and integrate, we get f(x). Thus, as a function
of x, G(x, ξ) satisfies

LxG(x, ξ) = δ(x − ξ),

that is
d

dx

(
p(x)

dy

dx

)
+ q(x)y = δ(x − ξ),

Also, the boundary conditions y(0) = y(1) = 0 mean that we need to take

G(0, ξ) = G(1, ξ) = 0.

In summary, as a function of x, the Green’s function satisfies the differential
equation with a delta-function on the right-hand side, and with the homoge-
neous version of the original boundary conditions.

This calculation tells us several things. Thinking physically, it tells us
that the Green’s function is the response of the system to a point stimulus
(force, charge, . . . ) at x = ξ. The solution (10.11) is then just the response
to f(x), regarded as a superposition of point stimuli (the delta function at
x = ξ) weighted by f(ξ) dξ.

Looking more mathematically, if we expand the differential operator Lx

as

LxG(x, ξ) = p(x)
d2G

dx2
+ lower order derivatives,

we see by balancing the most singular terms (the highest derivatives) that
d2G/dx2 must have a delta function, scaled by p(x), at x = ξ. That is,

[G]x=ξ+
x=ξ− = 0,

[
p(x)

dG

dx

]x=ξ+

x=ξ−
= 1

(
or

[
dG

dx

]x=ξ+

x=ξ−
=

1

p(ξ)

)
.
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This should ring a bell. It is the same as the ‘opaque’ jump conditions (10.10),
except that it refers to the x–dependence of G(x, ξ) instead of the ξ–dependence.
Indeed, comparing the original definition of G given in (10.8)–(10.10) and re-
calling that G(0, ξ) = G(1, ξ) = 0, we see that the two formulations are
identical except that x and ξ are swapped. That is, we have established that

Note that δ(x − ξ)
is obviously equal
to δ(ξ − x).

G(x, ξ) = G(ξ, x)

and that
LξG(x, ξ) = δ(ξ − x).

We are now in a position to tie together the x and ξ dependence of G(x, ξ).
Consider the integral∫ 1

0

y(ξ)LξG(x, ξ) − G(x, ξ)Lξy(ξ) dξ.

Inserting the right-hand sides of the differential equations for G and y, we
get∫ 1

0

y(ξ)LξG(x, ξ) − G(x, ξ)Lξy(ξ) dξ =

∫ 1

0

y(ξ)δ(ξ − x) − G(x, ξ)f(ξ) dξ

= y(x) −
∫ 1

0

G(x, ξ)f(ξ) dξ.

On the other hand, integrating the same expression by parts, we get∫ 1

0

y(ξ)LξG(x, ξ) − G(x, ξ)Lξy(ξ) dξ =

∫ 1

0

y(ξ)

(
d

dξ

(
p(ξ)

dG

dξ

)
+ q(ξ)G(x, ξ)

)
− G(x, ξ)

(
d

dξ

(
p(ξ)

dy

dξ

)
+ q(ξ)y(ξ)

)
dξ

=

[
y(ξ)p(ξ)

dG

dξ
− G(x, ξ)p(ξ)

dy

dξ

]1

0

−
∫ 1

0

p(ξ)
dy

dξ

dG

dξ
− p(ξ)

dG

dξ

dy

dξ
dξ

= 0.

Thus we retrieve our solution

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.

This calculation is really the key to the whole procedure. It tells us thatAs a function of x
the differential
operator for G is
still L and the
boundary
conditions are the
same as those for y.
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the differential operator and boundary conditions for G as a function of ξ
must be such that we can integrate by parts and get zero (so in the second
line of our calculation, we must have zero multiplying dy/dx, about which
we know nothing at the endpoints). For a self-adjoint problem, such as the
one we have here, G is symmetric and the two operators are the same. For
more general problems, such as

Lxy(x) = a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x),

we need to find the adjoint operator L∗ which is such that

y(ξ)L∗
ξG(x, ξ) − G(x, ξ)Lξy(ξ)

is an exact derivative and so can be integrated by parts. Provided that, as a
function of ξ, G(x, ξ) satisfies

L∗
ξG(x, ξ) = δ(x − ξ),

with appropriate boundary conditions, we can integrate by parts as above
to write y(x) as an integral. For the general L just introduced, the adjoint
operator is given by

L∗v(x) =
d2

dx2
(a(x)v(x)) − d

dx
(b(x)v(x)) + c(x)v(x),

as you will find out by doing the relevant exercise on page 131.

10.6.2 Partial differential equations

Much of the theory we have just seen can be generalised to linear partial
differential equations. This is so much vaster a topic that it is only feasible
to discuss one example in detail, the Green’s function for Poisson’s equa-
tion, which is probably the closest in spirit to the two-point boundary value
problems we have been discussing so far. We then briefly mention two other
canonical problems, for the heat equation and the wave equation.

We first have to generalise the delta function. In our informal style, this
is easy: we just say that for x ∈ R

n, the delta function δ(x) is such that∫
Rn

δ(x)φ(x) dx = φ(0)

for all smooth functions φ(x). As before, we can think of this as a limiting
process in which the delta function is the limit of a family of functions whose
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mass becomes more and more concentrated near the origin.9 Thinking about
how the integral is calculated, say in two dimensions with dx = dx dy, we
may also write

δ(x) = δ(x)δ(y),

and similarly in three or more variables.
Now suppose that we have to solve the problemThink of some

physical
interpretations for
u, and then for the
Green’s function G.

Lxu(x) = ∇2u(x) = f(x)

in some region D, with the homogeneous Dirichlet boundary condition

u(x) = 0 on ∂D.

We choose the Green’s function to satisfyThe Laplacian is
self-adjoint
(L = L∗) . . . LξG(x, ξ) = δ(ξ − x)

and look at the integral∫
D

u(ξ)LξG(x, ξ) − G(x, ξ)Lξu(x) dξ =

∫
D

u(ξ)∇2
ξG(x, ξ) − G(x, ξ)∇2

ξu(x) dξ

=

∫
D

u(ξ)δ(ξ − x) − G(x, ξ)f(ξ) dξ

= u(x) −
∫

D

G(x, ξ)f(ξ) dξ.

On the other hand, using Green’s theorem, we have. . . because
u∇2G − G∇2u is a
divergence and can
be integrated (a
generalisation of
integration by
parts).

∫
D

u(ξ)∇2G(x, ξ) − G(x, ξ)∇2u(x) dξ (10.12)

=

∫
∂D

u(ξ)n · ∇ξG(x, ξ) − G(x, ξ)n · ∇ξu(x) dSξ

= 0, (10.13)

provided that we take G(x, ξ) = 0 for ξ ∈ ∂D, where we do not know the
normal derivative of u. Putting these together, we have

u(x) =

∫
D

G(x, ξ)f(ξ) dξ.

It is an easy generalisation to account for nonzero Dirichlet data u(x) = g(x)
on ∂D: we just get an extra known term in (10.13).

9They might, but need not, be radially symmetric; we might, but won’t, worry about
how to define integrals in n dimensions.
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Two more things should be said about this calculation. The first is that
we have not yet said anything about the nature of the singularity of G(x, ξ)
at x = ξ (in one space dimension, as we saw above, the first derivative of
G has a jump and G itself is continuous). Knowing as we do that line (in
two dimensions) or point (in three) charges generate electric fields which Or line/point

masses and their
gravitational
potentials, fluid
sources and their
velocity potentials,
or heat sources and
their steady-state
temperature fields.

are solutions of Laplace’s equation, we should not be surprised to see logs in
two dimensions and inverse distances in three. This is confirmed by a simple
version of the calculation we have just done.10 In R

3 for example, take ξ = 0
and suppose that

∇2G = δ(x) (10.14)

in the whole space. Clearly, then, G is radially symmetric: G = G(r) where
r = |x|. That means that

G(r) = A +
B

r

and if we want G → 0 as r → ∞, we take A = 0. Now use the divergence
theorem on (10.14), integrating over a sphere of radius r centred at x = 0.
The left-hand side gives a surface integral equal to −4πB/r and the volume
integral of the delta function on the right is equal to 1. We conclude that
the singular behaviour of G(x, ξ) near x = ξ is The meaning of ∼

and O(1) is
explained in
Chapter 13.G(x, ξ) ∼ − 1

4π|x − ξ| + O(1),

and in two dimensions the corresponding result is Can you now
answer the
marginal question
after equation (3.3)
on page 32?

G(x, ξ) ∼ 1

2π
log |x − ξ| + O(1).

The second point to make about the Green’s function for the Laplacian is
that it has a natural physical interpretation. The singular part we have just
discussed gives us the electric potential due to a point charge (or whatever)
with no boundaries. The remaining part, G + 1/(4π|x− ξ|), is known as the
regular part of the Green’s function and it gives the potential due to the image
charge system induced by the boundary condition G = 0 on ∂D. Indeed,
almost all the Green’s functions for which explicit formulas are available are
constructed by the method of images (possibly with the help of conformal
maps).

10In the more classical treatment of Green’s functions, you see essentially this calculation
when you integrate u∇2G − G∇2u over a region consisting of D with a sphere of radius
ε around x = ξ removed. There, the singulat behaviour of G is prescribed (and looks
mysterious: why this form?), whereas here it emerges naturally.
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The heat and wave equations

To round off, let’s look quickly at two other equations that you are sure toYou can safely
ignore this section,
but have a look if
you have seen the
classical treatments
of these problems.

have seen, the heat and wave equations in two space variables. We have
already seen the fundamental solution to the initial-value problem for the
heat equation on the whole line,

Lx,tu =
∂u

∂t
− ∂2u

∂x2
= 0, −∞ < x < ∞, t > 0,

u(x, 0) = u0(x).

It is no surprise that this is closely related to the Green’s function. The
adjoint to the forward heat equation is the backward heat equation, and as
a function of ξ and τ (the analogue here of ξ above), G(x, t; ξ, τ) satisfies

L∗
ξ,τG =

∂G

∂τ
+

∂2G

∂ξ2
= δ(ξ − x)δ(τ − t),

and clearly (remembering the fundamental solution of the forward heat equa-
tion and reversing time),Two minus signs

from the exponent
cancel.

G(x, t; ξ, τ) =
1

2
√

π(t − τ)
e−(x−ξ)2/4(t−τ).

The usual integration in the form∫ ∞

−∞

∫ t

0

uLξ,τG − GLξ,τu dτ dξ

then yields precisely the solution we derived earlier. It is an exercise to
generalise this result to the heat equation with a source term, Lu = f(x, t);
you will get a double integral involving the product of G and f which has the
simple physical interpretation of being a superposition of solutions of initial
value problems starting at different times. Do it and see.

For the inhomogeneous wave equation in the canonical form

Lu =
∂2u

∂x∂y
= f(x, y),

with Cauchy data u and ∂u/∂n given on a non-characteristic curve Γ, we
proceed in the same spirit but differently in detail. One of the differences of
detail is the the Green’s function is now usually called a Riemann function,
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y
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B

(x, y)

x

Γ

Figure 10.6: Domain of integration for the Riemann function for the wave
equation.

and we denote it by R(x, y; ξ, η). The differential operator ∂2 /∂x∂y is self-
adjoint, but we have to consider the direction of information flow carefully
(see Figure ??). When we solve

L∗R =
∂2G

∂ξ∂η
= δ(ξ − x)δ(η − y),

we look for a solution valid for ξ < x, η < y. The Riemann function for the
wave operator is particularly simple: Differentiate it and

see.
R(x, y; ξ, η) = H(x − ξ)H(y − η),

i.e. it is equal to 1 in the quadrant ξ < x, η < y and zero elsewhere. Then
the ‘usual’ integral ∫

uL∗R − RLu

is taken over the characteristic triangle shaded in Figure 10.6, and after
use of Green’s theorem yields the familiar D’Alembert solution (see [27]).
Unfortunately, although it is not hard to prove that the Riemann function
exists, only for a very few hyperbolic equations can it be found in closed
form.

Sources and further reading

The material on Green’s functions is just a small step into Sturm–Liouville
and Hilbert–Schmidt theory and eigenfunction expansions/transform meth-
ods. If you want to explore further, [17] gives a straightforward account of
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the theory for ordinary differential equations, [27] present an informal intro-
duction to the corresponding material for partial differential equations, and
the excellent [38] contains a more thorough account.

Exercises

1. Truncated random variables. Suppose that X is a continuous ran-
dom variable taking values in (−∞,∞), for example Normal. The
truncated variable Y is defined by

Y =

{
X if X < a

a if X ≥ a.

What are its distribution and density functions?

2. A useful identity. Interchange the order of integration (draw a pic-
ture of the region of integration) to show that∫ x

0

∫ ξ

0

f(s) ds dξ =

∫ x

0

(x − ξ)f(ξ) dξ.

Generalise to reduce an n–fold repeated integral of a function of a single
variable to a single integral.

3. Green’s function for a stretched string. Integrate twice to find
the solution of the two-point boundary value problem

y′′ = f(x), 0 < x < 1, y(0) = y(1) = 0

in the form

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ.

Verify that if you differentiate twice under the integral sign and use the
jump conditions at ξ = x you recover the original problem.

4. Green’s function for an initial value problem. Use the result of
the ante-previous exercise to show that the solution of the initial value
problem

y′′ = f(x), 0 < x < 1, y(0) = y′(0) = 0 (10.15)

is

y(x) =

∫ x

0

(x − ξ)f(ξ) dξ.
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Now pick X > x and write this answer in the form

y(x) =

∫ X

0

G(x, ξ)f(ξ) dξ;

what is G? Show that G satisfies

d2G

dξ2
= δ(x − ξ), 0 < ξ < X, G =

dG

dξ
= 0 at x = X.

Verify by differentiating under the integral sign that your answer sat-
isfies the original problem. What is the adjoint problem to the original
problem (10.15)?

This kind of Green’s function is the ordinary differential equation ana-
logue of the Riemann function for a hyperbolic equation.

5. Adjoint of a differential operator. Suppose that

Lxy = a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y.

Show that the adjoint is

L∗
xv =

d2

dx2
(a(x)v) − d

dx
(b(x)v) + c(x)v,

(a) by showing that yL∗
xv − vLxy can be integrated by parts as in the The easy way if you

know the answer.text;
(b) by writing

What you might do
if you didn’t know
the answer and
couldn’t guess it.

L∗
xv = A(x)

d2v

dx2
+ B(x)

dv

dx
+ C(x)v

and hacking away at the integration by parts (start by integrating the
highest derivatives) until everything has been integrated.

Hence verify that self-adjoint operators are of the form

Lxy =
d

dx

(
p(x)

dy

dx

)
+ q(x)y

for some functions p(x) and q(x).

Work though the calculations of Section 10.6.1 in the non-self-adjoint
case.

Suppose now that L is self-adjoint but that the boundary conditions
(known as primary boundary conditions) are α0y(0) + β0y

′(0) = 0,
α1y(1) + β1y

′(1) = 0. What are the corresponding conditions satisfied
by G(x, ξ) (a) as a function of x, (b) as a function of ξ? What if
y(0) = 0, y(1) = y′(0)?
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6. The Fredholm Alternative: linear algebra and two-point bound-
ary value problems. Suppose that A is an n×n matrix, and we want
to solve the linear equations

Ay = f

for the vector y given f. Show that, if y1 and y2 are two solutions, then
their difference is an eigenvector of A with eigenvalue 0.

We all know that if the rank of A is n, then A is invertible, its deter-
minant (equal to the product of the eigenvalues) is nonzero, and the
solution y exists and is unique. Suppose now that the rank of A is
n − 1, so that the null space of A has dimension 1 and precisely one
eigenvalue of A is zero. That is, there are vectors v and w, unique up
to multiplication by a scalar, such thatIf A is symmetric,

then v = w.
av = 0, w�a = 0�;

they are the right and left eigenvectors of A with eigenvalue 0. Put
another way, the corresponding homogeneous system Ay = 0 has the
nontrivial solution cv for any scalar c.

Premultiply Ay = f by w� to show that

• Either w�f = 0, in which case the solution exists but is only
unique up to addition of scalar multiples of v;

• Or w�f �= 0, in which case no solution exists at all.

Illustrate by finding the value of f2 for which the equations∣∣∣∣1 −1
2 −2

∣∣∣∣ ∣∣∣∣y1

y2

∣∣∣∣ =

∣∣∣∣ 1f2

∣∣∣∣
have any solution at all; interpret geometrically.

This result is known as the Fredholm Alternative. It applied, mutatis
mutandis, to two-point boundary value problems. For example, con-
sider

Ly =
d2y

dx2
+ α2y = f(x), 0 < x < 1, y(0) = y(1) = 0 (10.16)

(the analogue of Ay = f). Show that the corresponding homogeneous
problem Ly = 0 has only the trivial solution y = 0 unless α = mπ
for integral m (the analogue of A having zero for an eigenvalue). Find



10.6. GREEN’S FUNCTIONS 133

the corresponding eigenfunctions (analogous to v and w, here equal
as L is self-adjoint). Suppose that α = π. Multiply (10.16) by the
corresponding eigenfunction and integrate by parts to show that there
is only a solution to (10.16) if∫ 1

0

f(x) sin πx dx = 0.

Generalise to the case of any (not necessarily self-adjoint) second order
differential operator.

Of course, this is not a coincidence. One could take a two-point bound-
ary value problem and discretise it using finite difference approxima-
tions to the derivatives; the result would be a set of linear equations
whose solvability or otherwise should, as n → ∞, be the same as that
of the original continuous problem.

7. Matrix inversion. In this question, we develop the matrix analogue
of the calculation of Section 10.6.1 involving the Green’s function for a
two-point boundary value problem for an ordinary differential equation.
For clarity, we use the summation convention (see page 19) throughout.

Suppose that the matrix equation Ay = f (in which A is not necessarily
symmetric) is written in component form as

Aijyj = fi (identify this with Lxy = f).

Let the inverse matrix A−1 have components (A−1)ij = Gij, so that
from y = A−1f we have

yi = Gijfj (identify with y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ).

Let δij be the Kronecker delta, the discrete analogue of the delta func- That is, δij = 0 if
i �= j, δij = 1 if
i = j. What is δii?

tion. Show that A−1A = I and AA−1 = I are written

GijAjk = δik (identify with LxG = δ(x − ξ)),

AijGjk = δik.

Take the transpose of the last equation to identify it with L∗
ξG = δ(ξ− Note that, just as

δ(x − ξ) = δ(ξ − x),
so δij = δji.

x). Lastly, take the dot product with the vector (yk) to show that

0 = AijGjkyk − GijAjkyk = yi − Gijfj;

identify this with the calculation involving
∫

yL∗G − GLy.
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8. The fundamental solution of the heat equation. Show that the
heat equation

∂u

∂t
=

∂2u

∂x2

has similarity solutions of the form u(x, t) = tαf(x/
√

t) for all α and
find the ordinary differential equation satisfied by f . Show that∫ ∞

−∞
u(x, t) dx

is independent of t when α = −1
2
, use the result of the first exercise of

this chapter to show that in this case u(x, 0) ∝ δ(x), and hence find
the fundamental solution of the heat equation.

9. Brownian Motion. A particle performs the standard drunkard’s ran-
dom walk on the real line, in which in timestep i, of length δt, it moves
by Xi = ±δx with equal probability 1

2
. It starts from the origin and

the increments are independent. Define

Wn =
n∑
1

Xi.

Show that E[Wn] = 0, var[Wn] = nδX2/δt. Now let n → ∞ withThis scaling is the
simplest that allows
proper time
variation yet keeps
the variance of the
limit finite.

nδt = t fixed and δx =
√

δt. Call the limiting process (assuming it
exists!) Wt. Use the Central Limit Theorem to show that

• For each t > 0, Wt has the Normal distribution with mean zero
and variance t.

• W0 = 0.

• For each 0 ≤ s < t, Wt − Ws is independent of Ws.

The resulting distribution is called Brownian Motion and it is central
to modern analysis of financial markets. Give a heuristic argument
that the sample paths (realisations) are continuous in t but not differ-
entiable.

Now let p(x, t) be the probability density function of many such re-
andom walks (as a function of position x for each t). Go back to the
discrete random walk and, as in the discussion of Poisson processes in
Chapter ??, condition on one step to write down

p(x, t + δt) =
1

2
(p(x − δx, t) + p(x + δx, t)) .
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Expand the right-hand side in a Taylor series, use δx =
√

δt to show
that

∂p

∂t
=

1

2

∂2p

∂x2
.

Explain why p(x, 0) = δ(x) and hence find p(x, t) from the previous
exercise.

The 1
2

in front of the second derivative in the heat equation is a di-
agnostic feature for a probabilist as distinct from a ‘physical’ applied
mathematician.

10. Regular part of the Green’s function for the Laplacian. A
horizontal membrane stretched over a region D is stretched to tension
T and a normal force f per unit area is then applied. The displacement
(which, like the force, is measured vertically upwards) is zero on the
boundary ∂D. Show that the displacement u(x, y) of the membrane
satisfies

T∇2u = −f in D, u = 0 on ∂D.

Suppose that f(x, y) = δ(x − ξ) where x = (x, y) and ξ = (ξ, η) is
known. How is u(x, y; ξ, η) related to the Green’s function for the Do not worry about

the infinite
displacement!

Laplacian in D?

Now suppose that the force is due to a very heavy ball which is free to
roll around, and that it is in equilibrium at ξ. Suppose that we model
its effect by that of a point force. Take a small square centred on x = ξ Can you find a di-

mensionless param-
eter to quantify this
modelling assump-
tion?

and resolve forces in the x– and y–directions to show that the gradient
of the regular part of G vanishes at x = ξ. Do you think there is always
just one such equilibrium point? If not, when might you have one and
when more than one?
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Chapter 11

Theory of distributions

The time has come to look at the theoretical underpinning of the delta func-
tion and its relatives. You may choose not to read this section, but I promise
that it is not complex or technically demanding. We begin with a few (as
few as we can get away with) necessary definitions.

11.1 Test functions

We noted earlier that the proper way to approach δ(x) was by thinking of
the result of multiplying a suitably smooth function φ(x) and integrating to
get φ(0). The first step in setting up a robust framework is to define a class
of ‘suitably smooth’ functions, called test functions. We say that φ(x) is a
test function if

• φ(x) is a C∞ function. That is, it has derivatives of all orders at each Because every
derivative of φ is
itself differentiable,
the derivatives are
all continuous and
bounded.

point x ∈ R.

• φ(x) has compact support : that is, it vanishes outside some interval
(a, b).

The first of these requirements makes these functions very smooth indeed.1

This high degree of regularity guarantees a trouble-free ride for the theory,
the reason being that if φ(x) is a test function, then so are all its derivatives.

We should note that test functions do exist (and that we never need to
know much more than this: they are a background tool). The easiest way
to see this is to construct one, using the famous example of a function which

1Roughly speaking, only real analytic functions (defined as equal to the sum of a
convergent Taylor series) are smoother, and they can never be test functions because they
cannot have compact support (why not?).

137
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has derivatives of all orders, and hence a Taylor series, at x = 0, but which
is not equal to the sum of its Taylor series. That is, look atSee the exercise on

page 148. Perhaps
those pathological
real-analysis
examples were more
useful than I
thought.

Φ(x) =

{
0 x ≤ 0,

e−1/x x > 0,

which vanishes for x ≤ 0, is positive for x > 0, and is C∞. The only thing
wrong with this function is that it does not have compact support. To fix
this up, just multiply by, say, Φ(1 − x):

φ(x) = Φ(x)Φ(1 − x)

is a perfectly good test function with support on the interval (0, 1).
We also need a definition of convergence for a sequence of test functions

{φn(x)}. We say that φn(x) → 0 as n → ∞ if

• φn(x) and all its derivatives φ
(m)
n (x) tend to zero, uniformly in both x

and m;

• There is an interval (a, b) containing the support of all the φn.

The first of these is an incredibly strong form of convergence: the φn have no
room to wriggle at all. The second stops them from running away to infinity
as n increases.

The only other thing to say about test functions is that we shall denote
them by lower case greek letters, usually φ or ψ.

11.2 The action of a test function

Suppose that f(x) is an integrable2 function (we denote such functions by
lower case roman letters f , g, etc.). We define the action of f on a test
function φ(x) by

〈f, φ〉 =

∫ ∞

−∞
f(x)φ(x) dx.

So, this action is a kind of weighted average of f(x). If we know the action ofIt’s also a bit like
an inner product:
but note that f and
φ lie in different
spaces.

f on all test functions, we should know all about f itself (a bit like recovering
a probability distribution from its moments). It is obvious that the action,
regarded as a map from the space of test functions to R, satisfies the usual
linearity properties, such as

〈f, aφ + bψ〉 = a〈f, φ〉 + b〈f, ψ〉,
2We sidestep the question of what we mean by this, exactly. Piecewise continuous will

do for now.
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for real constants a, b. Also, if φn(x) → 0 in the sense defined above, then
〈f, φn〉 → 0 as a sequence of real numbers.

11.3 Definition of a distribution

In defining distributions, we use the very mathematical idea of taking things
we already know about, here functions, and dropping some of their properties
while retaining others in order to obtain something broader or more general.
In this way, we see that distributions are indeed ‘generalised functions’, de-
spite the inexplicable reluctance of some to use the term.

As foreshadowed above, the properties that we want to keep are those
to do with the action of a function on a test function; that is, we keep
the ‘smoothing’ idea of averaging while quietly dropping all worries about
pointwise definition. We do this is such a way that all the properties of distri-
butions are consistent with the corresponding properties of (say) piecewise
continuous functions. Then, all such functions are subsumed within the Measurable

functions would be
better, but that
requires too much
machinery.

larger class of distributions.
The two properties that we keep are those we reached at the end of the

previous section: linearity and continuity. We define: a distribution D is a
continuous linear map from the space of test functions to R, denoted by

D : φ �→ 〈D, φ〉 ∈ R.

The result of the map, 〈D, φ〉, is known as the action of D on φ. We say that
two distributions are equal if their action is the same for all test functions.

The properties of linearity and continuity are as above:

〈D, aφ + bψ〉 = a〈D, φ〉 + b〈D, ψ〉,
for real constants a, b, and

if φn(x) → 0 as n → ∞, then 〈D, φn〉 → 0.

Evidently any piecewise continuous function f(x) corresponds to a distri-
bution Df with the obvious action 〈Df , φ〉 = 〈f, φ〉. Indeed, we normally
don’t bother to write Df , but just use f itself. This is an example of the
consistency referred to above.

We shall mostly use the letter style of D, H to denote distributions, unless
they already have a name. The set of test functions is often called [script
D, need typeface for this] and the set of distributions is then written [script
D prime]. Sometimes we write D(x) to emphasise the dependence on x; the
dependence is of course in the test functions, but it’s quite OK, and indeed
a good idea, to think of distributions as depending on x as well.
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Example: the delta function. There could be no better example than
the delta distribution, δ or δ(x). It is defined as a distribution by its action
on a test function φ(x):We could also have

written

〈δ(x), φ(x)〉 = φ(0)

〈δ, φ〉 = φ(0).

You should check carefully that this action does indeed define a distribution
satisfying the properties above. Again, it is OK, and indeed a good idea, to
think intuitively of the action of the delta function as

〈δ, φ〉 =

∫ ∞

−∞
δ(x)φ(x) dx.

However, you should always use the formal definition to prove anything about
δ(x) or any other distribution.

11.4 Further properties of distributions

If our distributions are to be useful, we need to give them some more proper-
ties. We assume that, if D and E are distributions, a is a real constant, φ(x)
is a test function and Φ(x) is a C∞ function (not necessarily a test function),
then there are new distributions D + E , aD, D(x − a) and D(ax) such that

• 〈D + E , φ〉 = 〈D, φ〉 + 〈E , φ〉;

• 〈aD, φ〉 = a〈D, φ〉;

• 〈D(x − a), φ(x)〉 = 〈D(x), φ(x + a)〉;Note how we slip in
and out of stating
the x–dependence
explicitly. • 〈D(ax), φ(x)〉 =

1

|a| 〈D, φ(x/a)〉.

Watch out for the
modulus sign.

• 〈Φ(x)D(x), φ(x)〉 = 〈D(x), Φ(x)φ(x)〉.

Note that Φ(x)φ(x)
is a test function
even if Φ(x) is not.

You should check all these when D corresponds to an integrable function
f(x); it will give you intuition as to why the definitions have been made in
this way. Note in particular that from the third definition, we have

〈δ(x − a), φ(x)〉 = 〈δ(x), φ(x + a)〉
= φ(a).

As expected, we have recovered the sifting property of the delta function.
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11.5 The derivative of a distribution

One more idea completes our introduction to the distributional framework.
If we want to make sense of ideas such as d2y/dx2 = δ(x − ξ), we had
better have a definition of the derivative of a distribution. Again, consistency
with ordinary functions provides the way in. If f(x) is differentiable, with
derivative f ′(x), then integrating by parts we calculate the action of f ′(x): What properties of

test functions do we
use here?〈f ′(x), φ(x)〉 =

∫ ∞

−∞
f ′(x)φ(x) dx

= f(x)φ(x)
∣∣∞
−∞ −

∫ ∞

−∞
f(x)φ′(x) dx

= −〈f(x), φ′(x)〉.

We define the derivative D′ of a distribution D in terms of its action by

〈D′, φ〉 = −〈D, φ′〉

(note that φ′(x) is also a test function). The point is that although we do
not know about D′, we do know about D, so we can calculate 〈D, φ′〉 and
hence 〈D, φ〉.

For example, let us show that H′(x) = δ(x). We define the Heaviside
function H(x) by its action:

〈H, φ〉 =

∫ ∞

0

φ(x) dx;

this is entirely consistent with our view of H(x) as the unit step function
since

H(x)φ(x) =

{
0, x ≤ 0,

φ(x), x > 0.

Now consider the action of H′(x):

〈H′(x), φ(x)〉 = −〈H(x), φ′(x)〉
= −

∫ ∞

0

φ′(x) dx

= φ(0)

= 〈δ(x), φ(x)〉.

Since their actions are identical, we conclude that H′(x) = δ(x) (as distribu-
tions).
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We can extend this definition recursively, to give action of the m–th
derivative of D as

〈D(m)(x), φ(x)〉 = (−1)m〈D, φ(m)(x)〉

for m = 1, 2, 3, . . .. Because every derivative of a test function is a test func-
tion, we see that distributions have derivatives of all orders too, an example
of the technical simplicity of this theory.

11.6 Extensions of the theory of distributions

We conclude with an overview (a glimpse, really) of two vital extensions of
the theory just outlined.

11.6.1 More variables

It is a very straightforward business to define distributions in the context of
functions of several variables. We first define test functions to have compact
support and to be C∞ in all their arguments. Then, we define distributions as
continuous linear maps from this space of test functions to R. In particular,
the delta function satisfies

〈δ(x), φ(x)〉 = φ(0).

The partial derivatives of a distribution D(x) are defined recursively using
the formula

〈∂D
∂xi

, φ〉 = −〈D,
∂φ

∂xi

〉.

Again, D has derivatives of all orders, and because the mixed partial deriva-
tives of the test functions are always equal, so are the mixed partials of D.
Thus, identities such as ∇∧∇D ≡ 0 are automatically true for distributions.
The whole theory is splendidly robust, and we need have no qualms at all
about writing down equations such as ∇2G = δ(x − ξ).

11.6.2 Fourier transforms

Space does not permit a full description of the theory of Fourier transforms
of distributions in one or more variables. Nevertheless, here is an outline.
For technical reasons, we use a slightly different class of test functions, which
are still C∞ but no longer have compact support. Instead, they and all their
derivatives decay faster than any power of x as x → ±∞. In principle, this
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defines a different class of distributions (known as tempered distributions —
the compact support ones are Schwartz3 distributions), but we won’t notice
the difference.

The new test functions can be shown to have the nice property that if
φ(x) is a test function then so is its Fourier transform; this is why we use See the exercise on

page 150 to see why
this would not be
so for compact
support test
functions.

this class of test functions. We write the transform as4

φ̂(k) =

∫ ∞

−∞
φ(x)eikxdx.

This is just the usual Fourier transform; we write the inverse transform as

ψ̌(x) =
1

2π

∫ ∞

−∞
ψ(k)e−ikxdk,

and we recall the standard results

d̂φ

dx
= −ikφ̂, x̂φ = −i

dφ̂

dk
,

the first of which is established by integration by parts and the second by
differentiation under the integral sign.

Let’s see what the action of the Fourier transform of an ordinary function
is on a test function. The Fourier transform of a tempered distribution D
is then defined to be consistent with this; as ever, we look at its action and
transfer the work to the test function. A formal calculation gives You might want to

write this out,
swapping the
dummy variables x
and k in the second
line.

〈f̂ , φ〉 =

∫ ∞

−∞

(∫ ∞

−∞
f(x)eikxdx

)
φ(k) dk

=

∫ ∞

−∞

(∫ ∞

−∞
φ(k)eikxdk

)
f(x) dx

= 〈f, φ̂〉.

We therefore define

〈D̂, φ〉 = 〈D, φ̂〉,
and similarly we define the inverse by Check this one for

an ordinary
function.3Rather to my surprise, Schwartz, who invented the theory in 1944, died as recently as

the time of writing.
4Beware: notations differ, both in the signs in the exponent and in the placement of

the 2π which can appear in the exponent, or symmetrically as 1/
√

2π multiplying both the
transform and its inverse. The definition here is probably the commonest among applied
mathematicians.
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〈Ď, φ〉 = 〈D, φ̌〉.
Notice how important it is that φ̂ should be a test function too. If it were
not, we could not be confident that some of these actions are defined at all.
Notice too that the factors of 2π don’t appear here: they are all hidden in
the inverse of φ.

Using these deceptively simple formulas, we can prove that the Fourier
transform of the derivative D′ = dD/dx is −ikD̂:Line 1 is the

definition of the
transform; line 2 is
the distributional
derivative; line 3 is
a standard identity;
in line 4 we swap x
for k and shift it to
the first argument
of the action.

〈D̂′, φ〉 = 〈D′, φ̂〉
= −〈D, dφ̂/dk〉
= −〈D, îxφ〉
= 〈−ikD̂, φ〉

as required. It is an exercise for you to prove that the transform of xD is
−ikdD̂/dk.

We end this section by finding the transforms of δ(x) and 1. (Yes, 1 has
a Fourier transform in this theory; so do x, |x|, etc.).5 The transform of δ(x)
must surely be 1: informally,Very informally,

because eikx is not
a test function,
although one could
‘truncate’ it by
multiplying by a
test function which
is small for |x| > R
and taking R → ∞.

∫ ∞

−∞
δ(x)eikxdx = eik0 = 1.

Formally,

〈δ̂, φ〉 = 〈δ, φ̂〉
= φ̂(0)

=

∫ ∞

−∞
φ(x) dx

= 〈1, φ〉
so we do indeed have

δ̂(k) = 1.

For the inverse, we have

δ̌ =
1

2π

∫ ∞

−∞
δ(k)e−ikxdk

=
1

2π
,

5The transforms of sums of delta functions are the characteristic functions of discrete
random variables.
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so taking the transform of both sides, remembering that (δ̌)̂ = δ, we get

1̂(k) = 2πδ(k).

You may like to show this from the formal definitions alone, using the fact
that for test functions 〈1, φ̌〉 = 2π〈1, φ̂〉.

The heat equation

We conclude with an example: it’s one we have seen before but we do it in
a different way. Consider the initial value problem for the heat equation

∂u

∂t
=

∂2u

∂x2
, −∞ < x < ∞, t > 0,

u(x, 0) = δ(x).

This time we’ll take a Fourier transform in x. The equation for û(k, t) is

∂û

∂t
= −k2û, −∞ < k < ∞, t > 0,

u(x, 0) = δ̂(k) = 1.

The solution is
û(k, t) = e−k2t,

and inversion by any of a number of methods (see the exercise on page 151)
yields the answer

u(x, t) =
1

2
√

πt
e−x2/4t.

Sources and further reading

The theory of distributions in its modern form was developed by Schwartz [37];
the epsilonological approach is exemplified by Lighthill’s book [25]. My de-
scription of the modern theory is heavily based on the very approachable
book by Richards & Youn [34] (my main quibble with that book is the in-
trusive 2π in the exponent of the Fourier Transform). If the idea of

extending our
definition of
functions to make
sense of the result∫ 1

−1

dx

x2
= −2

appeals to you then
you should
definitely read [34].

Exercises

1. Constructing delta functions from continuous functions I: by
the Lebesgue Dominated Convergence Theorem. Suppose that
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f(x) ∈ L1 is continuous and
∫∞
−∞ f(x) dx = 1. Take a test function

φ(x) and show that, as ε → 0,

Iε =

∫ ∞

−∞

1

ε
f
(x

ε

)
φ(x) dx → φ(0),

as follows. First show that

Iε =

∫ ∞

−∞
f(s)φ(εs) ds.

Next, show that

|f(s)φ(εs)| < M |f(s)|
for some constant M > 0, that if f(s) ∈ L1 then f(s)φ(εs) ∈ L1, and
that, for each s, f(s)φ(εs) → f(s)φ(0) as ε → 0. Deduce from the
Dominated Convergence Theorem that you can justify interchanging
the limit and the integral:

lim
ε→0

∫ ∞

−∞
f(s)φ(εs) ds = φ(0).

2. Constructing delta functions from continuous functions II:
by splitting the range of integration. If you don’t know about
Lebesgue integration, derive the following slightly weaker result. Sup-
pose that f(x) is any continuous function with∫ ∞

−∞
f(x) dx = 1,

∫ ∞

−∞
|f(x)| dx < ∞,

∫ ∞

−∞
|xf(x)| dx < ∞.

Take a test function φ(x) and show that, as ε → 0,

Iε =

∫ ∞

−∞

1

ε
f
(x

ε

)
φ(x) dx → φ(0),

as follows. First write x = εs in the integral and split the range of
integration up to get

Iε =

∫ −1/
√

ε

−∞
+

∫ 1/
√

ε

−1/
√

ε

+

∫ ∞

1/
√

ε

f(s)φ(εs) ds.

Noting that |φ(x)| is bounded and using the idea that if |h| < c,
| ∫ gh| ≤ ∫ |gh| ≤ c

∫ |g|, show that the first and third integrals tend
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to zero as ε → 0 because f is integrable. For the inner integral, expand
φ(εs) using Taylor’s theorem to get∫ 1/

√
ε

−1/
√

ε

f(s)

(
φ(0) + εsφ′ (ξ(s))

)
ds

where ξ(s) lies between 0 and s. Show that the first term in this integral
tends to what we want and, noting that |φ′| is bounded, that the second
tends to zero as ε → 0.

3. Delta sequences. Consider the functions

fn =
n

π (1 + n2x2)
and gn =

sin nx

πx
.

Sketch them and show that fn tends to δ(x) as n → ∞, in the distri-
butional sense, so for any test function φ,

〈fn, φ〉 → φ(0)

as n → ∞. Use the method of the previous question, but be careful
when estimating the integrals as fn does not satisfy all the conditions
of that question. Repeat for gn.

This might suggest that if δn(x) is a sequence tending to δ(x) then
δn(0) → ∞. Construct a piecewise constant example to show that this
is false.

4. Discrete and continuous sources. Suppose that u(x) is a classical
solution of ∇2u = f(x) in R

n, n ≥ 2, where f(x) is smooth and has
compact support, and appropriate growth conditions at infinity are
assumed. Let φ(x) be a test function. Use Green’s theorem in the
form ∫

D

v∇2w − w∇2v =

∫
∂D

v
∂w

∂n
− w

∂v

∂n
, (11.1)

where D is a region containing the support of f , to show that

〈u,∇2φ〉 = 〈f, φ〉.
Now suppose that we approximate f(x) by delta functions, defining
the sequence of distributions

Fn =
n∑
1

αnδ(x − xn)
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and taking the limit n → ∞ in such a way that all the weights αn tend
to zero but

〈Fn, φ〉 → 〈f, φ〉
for all test functions φ. Also let un be the solution of ∇2un = Fn. Show
that

〈un,∇2φ〉 = 〈Fn, φ〉,
and deduce that un → u (as a distribution). Interpret this result in
terms of the gravitational potential due to a finite mass distribution
(or in electrostatic terms).

5. The function e−1/x. Consider

Φ(x) =

{
0 x ≤ 0,

e−1/x x > 0.

Show that for x > 0 its n–th derivative Φ(n)(x) is a polynomial in
1/x times e−1/x, and hence that limx↓0 Φ(n)(x) = 0. Deduce thatRemember that

Xne−X → 0 as
X → ∞ for all N .

the Taylor coefficients of this function are all zero. Does the complex
function e−1/z have a Taylor series at z = 0? If not, what does it have?

6. The distribution δ(ax). Show from the interpretation as an integral
that

δ(ax) =
1

|a|δ(x).

7. Derivatives of the delta function. Show carefully, using the def-
inition of a distributional derivative, that, if Ψ(x) is a smooth (C∞)
function and D a distribution, then (DΨ)′ = D′Ψ + DΨ′ (Leibniz).
Deduce that

xnδ(m)(x) =

⎧⎨⎩0 m < n,
(−1)nm!

(m − n)!
δ(m−n)(x) m ≥ n

(δ(m) = mth derivative). What is xδ(x)? Show that δ(x) = −xδ′(x).

8. Convergence of series of distributions. We say that a sequence
{Dn} of distributions converges to D if

〈Dn, φ〉 → 〈D, φ〉
for all test functions φ(x). This is an incredibly tolerant form of con-
vergence, because our definition of convergence of a sequence of test
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functions is so stringent: show that if Dn → D, then the same applies
to all the derivatives, so that D(m)

n → D(m). Show also that you can
differentiate a convergent series of distributions term by term.

Find the Fourier series of the sawtooth function

f(x) =

⎧⎪⎨⎪⎩
1

2
− x

2π
0 < x < π,

−1

2
− x

2π
−π < x < 0.

Now differentiate both sides, noting that the jumps of 1 in f(x) at
x = 2nπ contribute delta functions δ(x − 2nπ), to establish the result

∞∑
n=−∞

δ(x − 2nπ) =
1

2π

∞∑
m=−∞

cosmx,

an identity which makes no classical sense but perfect distributional
sense.

Note: it can be shown that every distribution D is the distributional
limit of a sequence of test functions (which are C∞). So the set of
distributions is not unboundedly diverse.

9. Derivative of a distribution. Let D(x) be a distribution. Show (by
considering its action) that Remember that

〈D(x+h), φ(x)〉 = 〈D(x), φ(
D′(x) = lim

h→0

D(x + h) −D(x)

h
.

Use the right-hand side of this equation to confirm (again by considering
the action) that δ(x) = H′(x).

10. Dipoles. The derivative of the delta function, δ′(x), is known as a
(one-dimensional) dipole, which you can think of as the limit as ε → 0
of a positive delta function at x = ε and a negative one at x = 0 (see
the previous exercise). What is its action on a test function ψ(x)?

In hydrodynamics, a mass dipole aligned with the x–axis is obtained
as the limit of point (in two dimensions, line) sources of strength q at
(±ε, 0, 0), keeping the product m = 2εq constant as ε → 0. Explain
why the velocity potential for inviscid irrotational flow with a point
source at the origin satisfies Notation clash! φ is

not a test function
here.∇2φ = qδ(x)
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and deduce that if there is a dipole as above at the origin, the potential
satisfies

∇2φ = m
∂δ

∂x
.

(The right-hand side may also be written as δ′(x)δ(y)δ(z) in three di-
mensions, or δ′(x)δ(y) in two.) Hence calculate the potential for a
dipole and sketch the streamlines in two dimensions. Show that the
potential U(r cos θ + a2 cos θ/r) for flow past a cylinder consists of a
uniform flow plus a dipole.

Interpret these results in terms of electric charges. (Whereas point
charges generate electric fields, because there are no magnetic monopoles,
the basic generator of magnetic fields is the infinitesimal current loop,
giving a dipole field with lines of force similar to those of a bar mag-
net. Higher-order derivatives, called multipoles, are important in, for
example, the analysis of the far field of radio transmitters.)

11. Vector distributions. Develop the following two ways of defining
vector-valued distributions in R

3. In both cases aim to establish the
identities ∇·∇∧D ≡ 0, ∇∧∇D ≡ 0 for vector and scalar distributions
D and D respectively. You will need to establish variants of Green’s
theorem in order to define the action of the operators div and curl by
integration by parts.

(a) Take scalar test functions φ(x) and define their action on a vector
function v(x) as the vector

〈v, φ〉 =

∫
R�

v(x)φ(x) dx.

Then define a vector-valued distribution D as a continuous linear map
from the space of test functions to R

3 consistently with this action.

(b) Use vector test functions φ and the action

〈v,φ〉 =

∫
R3

v · φ dx.

12. Open support test functions. To get an idea why compact support
test functions do not lead to a good theory for the distributional Fourier
transform, work out the Fourier transform ofIt’s not hard: just

integrate.

f(x) =

{
1 −1 < x < 1,

0 otherwise,
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and observe that, unlike f(x), f̂(k) does not have compact support.
(Although f(x) is not a test function, a similar result would hold if it
were.) Now look at the definition of the Fourier transform to see why
compact support test functions are not useful here.

13. Commutation of the Fourier transform and its inverse. Show
directly from the definitions that if D is a distribution with Fourier
transform D̂, then

(D̂)̌ = (Ď)̂ = D,

assuming that this holds for test functions.

14. The inverse of e−k2t.

Find the inverse of û(k, t) = e−k2t in the following two ways.

(a) Write down the inversion integral and complete the square in the
exponent; then, thinking of the integral as a contour integral in the com-
plex k–plane, move the integration contour to the line Im k = −x/2t
(check that the endpoint contributions vanish) and evaluate a standard
real integral, using the result

∫∞
−∞ e−s2

ds =
√

π.

(b) Show that ∂û/∂k = −2ktû, then use the standard identities for the
transforms of ∂u/∂x and xu to obtain a similar ordinary differential
equation for u; solve this and choose the ‘constant of integration’ (which
is actually a function of t) to set

∫∞
−∞ u(x, t) dx = 1 for all t (which is

easy to show from the original problem).

15. The pseudofunction 1/x. Obviously, 1/x is defined for x �= 0 as an
ordinary function. Its definition for all x ∈ R is achieved by defining
its action on a test function φ(x):

〈1/x, φ(x)〉 = lim
ε→0

〈1/x, φ(x)〉ε,

where

〈1/x, φ(x)〉ε =

∫ −ε

−∞
+

∫ ∞

ε

φ(x)

x
dx;

the limiting integral, denoted by

−
∫ ∞

−∞

φ(x)

x
dx,

is called a Cauchy principal value integral.
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Show that the limit exists for all test functions φ(x). Show directly
from the distributional definitions that

1

x
=

d

dx
log |x|;

that is, show that

〈d log |x|/dx, φ(x)〉 = −〈1/x, dφ/dx〉

by considering the same statement with 〈·, ·〉 replaced by 〈·, ·〉ε and
letting ε → 0.

Show also (for future reference) that

−
∫ 1

−1

dx

x
= 0. (11.2)

16. The Fourier transform of H(x). A distribution D(x) is called odd
if the result of its action gives D(−x) = −D(x), and even if D(−x) =
D(x). Show that δ(x) is even. Show also that xδ(x) = 0. If H(x) is

the Heaviside function, show that H̃(x) = H(x) − 1
2

is odd.

Show that the Fourier transform of a real-valued odd function is a
purely imaginary odd function of k, and deduce (or assert) that the
same applies to distributions.

Since H′(x) = δ(x), taking the Fourier transform gives

−ikĤ = δ̂ = 1.

However, before dividing through by k, we must realise that we can add
ckδ(k) (= 0) to the right-hand side, where c is an as yet unspecified
complex constant. By considering instead the transform of the odd
distribution H̃(x), and recalling that 1̂ = 2πδ(k), show that

Ĥ(k) = − 1

ik
+ πδ(k).

Note that Ĥ requires the definition of 1/k introduced in the previous
exercise.

17. The Fourier transform of H(x) again. Here are two more ways of

calculating Ĥ(k).
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(i) Consider ∫ 1/ε

0

eikxdx = − 1

ik
+

eik/ε

ik
.

The first part is already in the answer, so the second part must tend
to πδ(k) as ε → 0. Write

eik/ε

ik
=

sin(k/ε)

k
− i

cos(k/ε)

k

and note that the real part has been shown (in the exercise ‘delta
sequences’) to give πδ(k). It remains to show that the principal value
integral

−
∫ ∞

−∞

cos(k/ε)φ(k)

k
dk → 0

as ε → 0 for any test function φ. Write φ as the sum of its even and
odd parts and note that we need only consider the odd part of φ as They are

1
2 (φ(k) ± φ(−k));
show that both of
these are test
functions.

the integral of the even part vanishes by symmetry. Now proceed as
in earlier exercises, splitting the range of integration into |k| >

√
ε and

Use the decay
properties of the
test function to
justify use of the
Riemann–Lebesgue
lemma for the outer
integrals, and
expand φ in a
Taylor series for the
inner one.

|k| <
√

ε and dealing with each separately. Alternatively, don’t bother
with the odd/even split, and just use (11.2) for the inner integral.

(ii) Consider
Hε(x) = H(x)e−εx,

which clearly has a Fourier transform for ε > 0; show that it is

Note that this ‘does
the right sort of
thing’ as ε → 0: it
tends to −1/ik for
k �= 0, and to
infinity for k = 0.

Ĥε(k) =
1

ε − ik
.

Writing
1

ε − ik
+

1

ik
=

ε

ε2 + k2
− iε2

k(ε2 + k2)
,

show that as ε → 0 the action of the right-hand side on a test function
tends to that of πδ(k). (You will need to interpret the second term as
a principal value integral; use the results of the earlier exercise ‘delta
sequences’.)

18. More Fourier transforms. What are the Fourier transforms of Remember that
(̂xf) = −idf̂/dk.

x, xn, |x|,
for integral n > 0?
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Chapter 12

Case study: the pantograph

12.1 What is a pantograph?

In the late 1960s, British Rail was planning a new generation of high speed
electric trains. One question was flagged as a potential problem area: could
the waves generated in the overhead cable by the current-collecting device,
which is called a pantograph,1 build up and cause interruptions in the current
flow, in particular when the train passes a support? At about the same time
the US Air Force developed a facility in which a rocket slung from a taut
cable was accelerated along the cable, to allow flight characteristics to be
tested and to enable precise targeting for impact tests. In one such test,
the rocket was accelerated to 1.04 times the wavespeed in the wire, with the
dramatic result sketched in Figure 12.1.

The pantograph problem was one of the first to be discussed at an Oxford
Study Group with Industry and has become a minor classic of mathematical
modelling since the original paper [30]. As so often with industrial problems,
it provoked a strand of theoretical research, into the so-called pantograph
equation, which is still active.

1From the Greek, ‘universal writer’. The original pantograph was a mechanical device
whereby a series of linkages allowed a drawing to be copied exactly. The theory of linkages
was at one time intensively studied because of their importance in machinery, the prototype
problem being how to transform the up-and-down motion of a piston into circular motion
of a wheel. It is related to Ptolemy’s epicycle model of the heavens, in which the apparently
irregular motion of the planets was accounted for by the assumption that they move around
the earth in an arrangement of small circular orbits mounted on larger ones, much like
various fairground rides (teacups, waltzer, cyclone). Alas, light pollution is such that fewer
and fewer readers will have seen the planets except when they are very bright.

155
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Figure 12.1: A rocket slung from a cable and accelerated to 1.04 times the
wavespeed in the cable. Sketch based on an indistinct photograph in [36]; the
cable is fairly accurately reproduced but the rest of the diagram is schematic.

Figure 12.2: A locomotive and its power supply.

12.2 The model

Suppose, then, that a locomotive moves with constant speed U below a
cable stretched to tension T between supports at x = 0,±L,±2L, . . ., as
in Figure 12.2. We can distinguish three main parts of the system that we
should model: the motion of the cable, the dynamics of the pantograph, and
the dynamics of the supports. Some modelling assumptions are immediately
reasonable:

• The cable can be modelled as a uniform string of line density ρ, be-
cause (based on typical values) its bending stiffness is small. Also its
displacement from equilibrium is small. Thus, apart from the static
displacement due to gravity, the vertical wire displacement y(x, t) sat-
isfies the wave equation away from the pantograph and the supports.
(In a more sophisticated treatment, we may have to reconsider this
assumption near to the pantograph and supports.)

• The contact area between the pantograph and the wire is small com-
pared with L. This means that we can represent the effect of the
pantograph by a point force at the position x = Ut, with a suitable
choice of time origin.

We also make some simplifying assumptions, which can be relaxed at the
cost of some complications:
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• Although the supports can be surprisingly complex (see [30]), we as-
sume that the wire is rigidly attached to them. This has the great
advantage that what happens in one span of the cable does not affect
what happens in the others. In our discussion below, we focus on the
span 0 < x < L, into which the train enters at t = 0.

• The pantograph itself can be modelled as a linear system, so that the
force F (t) that it exerts on the wire depends linearly on its vertical
displacement Y (t) = y(Ut, t). More specifically, we may expect

– A spring force, intended to keep the pantograph in contact with
the wire. For a linear spring this would contribute a term

F0 − F1Y (t)

to the force F (t); here both F0 and F1 are positive and we expect
that the combination F0−F1Y is also positive for reasonable values
of Y .

– A damping force, which in the linear case has the form

−F2
dY

dt
.

In the case of a rocket, a separate calculation of its dynamics adds a
term proportional to d2F/dt2; see Exercise 8

Just as in our earlier examples, the point force is modelled by a delta
function; the difference now is that it is moving. The motion of the wire is
described by the inhomogenous wave equation

ρ
∂2y

∂t2
− T

∂2y

∂x2
= F (t)δ(x − Ut) − ρg,

where the last term models the gravitational force. With both spring and
damping forces, the pantograph dynamics are modelled by

F (t) = F0 − F1Y (t) − F2
dY

dt
,

where Y (t) = y(t, t). As for initial and boundary conditions, the wire starts
at rest in its equilibrium shape y0(x) = −ρgx(L−x)/2T , and its displacement
vanishes at x = 0, L.

Let us make this problem dimensionless. There are two velocities, U and
the wavespeed c =

√
T/ρ, and we use the latter for scaling purposes, which It hardly matters

which we use. The
choice of c is
governed by some
obscure aesthetic
considerations of
my own.
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with the length scale L for x gives a timescale L/c; also, we write U = cu (you
might think of u as a Mach number for the train). In order to scale y, we can
either use the maximum wire displacement under gravity, y∗ρgL2/8T , or we
can use the displacement caused by a typical pantograph force. As we want
to focus on the pantograph, let us use the latter and scale y with F ∗L/T ,
where F ∗ is a typical size for the pantograph force (it might, for example, be
equal to the constant force F0). With these scalings, you should check that,
the primes having been dropped, the dimensionless problem isIn doing the

scalings, remember
that
δ(ax) = |a|−1δ(x).

∂2y

∂t2
− ∂2y

∂x2
= f(t)δ(x − ut) − α, 0 < x < 1, (12.1)

where, retaining the notation Y (t) = y(ut, t), the dimensionless force has the
formAn exercise to work

out the
dimensionless
coefficients f0 etc in
terms of their
dimensional
parents.

f(t) = f0 − f1Y − f2
dY

dt
(12.2)

and α = ρgL/F ∗ is a dimensionless parameter measuring the ratio of the
weight of the wire to the force exerted by the pantograph.

12.2.1 What happens at the contact point?

Looking ahead to calculating the displacement of the wire, we are clearly
going to rely heavily on the general solution of the wave equation in the
usual form. That means that we will need to join solutions of this type
up across the train path x = ut, so we need to know what happens to the
gradient of y across this line. We should proceed with caution when we seeWe started this

chapter by writing
down jump
conditions on the
(static) wire slope
and went from
there to the delta
function; now the
boot is on the other
foot as we are
confident that the
delta function
should be there but
we don’t know how
to interpret it!

something unfamiliar like δ(x − ut): it is not immediately obvious what it
means. One fairly safe way to proceed is to change coordinates to reduce it
to rest. That is, we replace x by ξ = x− ut and use ξ and tb as independent
variables. When we do this, a straightforward chain rule calculation shows
that (12.1) becomes

Marginal note: as
the right-hand side
of this equation is a
distribution, so is
the left-hand side.
However, the chain
rule still applies for
smooth coordinate
changes.

∂2y

∂t2
− 2u

∂2y

∂ξ∂t
− (1 − u2)

∂2y

∂ξ2
= f(t)δ(ξ) − α.

Now we are in a position to balance the most singular terms. We know that
y is continuous at ξ = 0 and assuming smoothness in t, ∂2y/∂t2 should also

At least for U < c;
Figure 12.1 suggests
otherwise for U > c!

be continuous. The finger points at ∂2y/∂ξ2 as the most singular term, and
we see that this has for its leading order singular behaviour a delta function
of magnitude −f(t)/(1 − u2). That is, ∂y/∂ξ, which is the same as ∂y/∂x,

Please check for

has a jump of this magnitude:[
∂y

∂x

]x=ut+

x=ut−
= − 1

1 − u2
f(t), (12.3)
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which is the time-dependent generalisation of the static condition (10.2) on
page 112. A physical derivation of this condition is given in Exercise 1

12.3 Impulsive attachment for an undamped

pantograph

The simplest situation to consider is one in which gravity is neglected (α = 0)
so that the cable is initially straight, and at t = 0 the train attaches to the
cable impulsively at x = 0. In this case we expect disturbances to propagate
ahead of and behind the train with (dimensionless) speed 1 so that the cable
displacement is only nonzero for −t < x < t as shown in the characteristic
diagram of Figure 12.3.

Our strategy is to join together general solutions of the wave equation,
of the form g(t − x) + h(t + x), finding the arbitrary function involved from You may usually

write g(x − t); I do.
It turns out that
g(t − x) is more
convenient later, as
we don’t then get
negative arguments
for the function g1.

the conditions at the pantograph. Clearly the wire displacement is identi-
cally zero except in the regions 1, ut < x < t and 2, −t < x < ut, shown
in Figure 12.3. Otherwise, information would have to travel faster than the
wavespeed. Across the characteristics x = ±t, we expect to see a discontinu-
ity in the derivatives of y, as we know that these can only propagate along
charcteristics.

x = −t

y ≡ 0y ≡ 0

t

x

2 1
2

x = ut x = t

Figure 12.3: Characteristic diagram for impulsive attachment.

Bearing in mind that all the information comes from the train, the solu-
tion must have the form

y(x, t) =

{
g1(t − x) in region 1

h2(t + x) in region 2,

representing forward and backward travelling waves respectively. The func-
tions g1 and h2 are as yet unknown, except that we can say that g1(0) =
h2(0) = 0.
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At the train x = ut, we first express the continuity of the cable:

g1(t − ut) = h2(t + ut). (12.4)

Next, from (12.3), we have

−g′
1(t − ut) − h′

2(t + ut) = − 1

1 − u2
f(t).

Using (12.2) to express f(t) in terms of Y (t) = g1(t − ut) and eliminating
h2(t + ut) by differentiating (12.4), we have

g′
1(t − ut) =

1

2(1 − u)
f(t)

=
1

2(1 − u)

(
f0 − f1g1(t − ut) − (1 − u)f2g

′
1(t − ut)

)
.

That is, g1(ξ) satisfies the ordinary differential equation

(1 − u)(2 + f2)
dg1

dξ
+ f1g1 − f0 = 0,

whose solution is easily found as a constant plus a decaying exponential.
(The large-time behaviour has the pantograph displacement tending to the
value f0/f1 at which the spring force vanishes; in practice this would be very
large.)

12.4 Solution near a support

A rather more surprising thing happens when we look at what happens
shortly after the train passes a rigid support. As the characteristic dia-
gram 12.4 shows, there are again only two regions where the cable displace-
ment is not zero. Let us again neglect the static displacement of the cable
(this is even more realistic near a support where it is small). The difference
between this configuration and impulsive attachment is that waves can be
reflected off the rigid support, in region 2. Thus the cable displacement has
the form

y(x, t) =

{
g1(t − x) in region 1

g2(t − x) + h2(t + x) in region 2.

Continuity of the cable at x = ut now gives

g1(t − ut) = g2(t − ut) + h2(t + ut), (12.5)
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and the pantograph force balance is

−g′
1(t − ut)+g′

2(t − ut) − h′
2(t + ut) (12.6)

= − 1

1 − u2
f(t)

= − 1

1 − u2
(f0 − f1g1(t − ut) − f2(1 − u)g′

1(t − ut)) (12.7)

Lastly, we have the rigid support condition

g2(t) + h2(t) = 0.

y ≡ 0

12

x = tx = ut

t

x

Figure 12.4: Characteristic diagram for the train passing a support.

With three equations for three unknown functions, we proceed confi-
dently. We first eliminate h2 to find

g1(t − ut) = g2(t − ut) − g2(t + ut)

from (12.5), and

−g′
1(t − ut) + g′

2(t − ut)+g′
2(t + ut) =

− 1

1 − u2
(f0 − f1g1(t − ut) − (1 − u)f2g

′
1(t − ut))

from (12.7). Then we observe that we can eliminate g1(t − ut) throughout,
to give (after tidying up)

(1 + u)(2 + f2)g
′
2(t + ut)+f1g2(t + ut)

= −f0 + f1g2(t − ut) + (1 − u)f2g
′
2(t − ut).

(12.8)

If we can solve this equation, we will have g2 and hence g1 and the force
on the pantograph. The left-hand side of (12.8) is as expected, but the
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right-hand side is not. Because it contains the function g2 evaluated at an
earlier time than on the left-hand side, we have arrived not at an ordinary
differential equation but a kind of delay differential equation for g2. This
kind of equation has come to be known as a pantograph equation and has
given rise to a substantial literature in the last two decades.

Let us consider (12.8) in the special case f1 = 0. It can then immediately
be integrated once, to give

(2 + f2)g2(t + ut) = −f0t + f2g2(t − ut).

Writing τ = t(1 + u) and

µ =
1 − u

1 + u
< 1,

we have

(2 + f2)g2(τ) = − f0

1 + u
τ + f2g2(µτ).

We spot the particular solution g2(τ) = aτ where a is easily found, and we
claim that this is the only solution. To show this, consider the difference
between two solutions, which satisfies the homogeneous equation

g(τ) =
f2

2 + f2

g(µτ), g(0) = 0;

note that the fraction on the right is less than 1. Suppose that for a fixed
τ , g(τ) = g0 �= 0. That means that g(µτ) is bigger in modulus than g0 and,
iterating, that

g(µnτ) =

(
2 + f2

2

)n

g0.

But as n → ∞, µnτ → 0 and |g(µnτ)| → ∞, a contradiction. Hence g0 = 0
and the solution is unique.

It is possible to transform (12.8) to a delay differential equation with a
constant time lag by making an exponential substitution; see Exercise 4.

12.5 Solution for a whole span

Let us look briefly at the cable motion in a whole span. This is the case we
really need to analyse, because of the possibility that the solution will ‘pile
up’ at the far end of the span x = 1. The characteristic diagram is now
much more complicated, as indicated in Figure 12.5. The initial disturbance
propagates as a gradient discontinuity across the characteristic x = t, as
in the previous section, but then it reflects off the support at x = 1. We
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x = 1
x

t

Figure 12.5: Characteristic diagram for a whole span. If, as here, 1
3

< u < 1,
no reflections of characteristics from x = 0 reach the train.

therefore have a reflected characteristic, x = 2 − t, with another gradient
discontinuity; and this in turn is reflected off the train path and so on, to
generate an infinite series of characteristics separating regions in which the
solution is smooth.

We have already looked at the regions near the first support, and we know
from the previous section that when the pantograph force is a constant plus a
linear damping term, the pantograph displacement Y (t) = y(ut, t) is linear in
t. This solution holds up until the time t1 = 2/(1+u) at which the reflection
(x = 2 − t) of the leading characteristic (x = t) meets the train path. It
is a reasonable guess that the pantograph displacement is a piecewise linear
function of t at later times, and we can show that this is the case.

We adopt a slightly different, and more sophisticated approach to the
wave equation than simply writing down its general solution. In Figure ??,
we see the train path with its images in the supports. We intend to ex-
tend the domain of definition from 0 < x < 1 to the whole real line in the
usual way so as to satisfy the conditions at the support; this means that the
(fictitious) pantograph force from alternate, downward-sloping, parts of the
image train path is minus that from the upward-sloping parts, and so is the
pantograph displacement. The extended train path is shown in Figure 12.6,
which also shows a characteristic triangle, which we call �, for a point P
above the reflection of the leading characteristic (recall that we already know
the solution below this line).

Now suppose that we integrate the wave equation (12.1) (again with α = 0
for simplicity) over the interior of the characteristic triangle �, in the spirit
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P2

P

P1

P3 P4

x = 1
x

t

Figure 12.6: A characteristic triangle for t > 2/(1 + u). The dotted lines are
characteristics; the dashed line is the leading characteristic and its reflection.
The thick solid line is the train path with its images in the supports.

of Exercise 6. We has better be careful about the jumps across the train path,
so for safety we integrate separately over each of the polygons that make up
the triangle and consider integrals along both sides of the train path. Using
Green’s theorem, this gives∫




∂y

∂x
dt +

∂y

∂t
dx +

∫
trainpath

[
∂y

∂x

]
dt +

[
∂y

∂t

]
dx = 0,

where as before the square brackets denote the jump in their contents. The
first integral simply gives us 2y(P ) = 2y(x, t). On the train path, we know
that y itself has no jump, so[

±u
∂y

∂x
+

∂y

∂t

]
= 0,

with + on the upward-sloping parts of the path and − on the others. This
lets us eliminate [∂y/∂t], and then to use the fact that dx = ±u dt and the
pantograph jump condition to show thatA factor of 1 − u2

cancels.
2y(P ) =

∫
trainpath

±f(s) ds,

where again the ± takes account of the image forces.
The next step is to let P approach the train path, and to calculate the

t-coordinate of the points P2, P3 and P4 (P1 coincides with P ). This is easily
done, and results in

2y(ut, t) = 2Y (t)

= −
∫ µt

0

+

∫ t

0

−
∫ t/µ−2/(1−u)

0

+

∫ t−2/(1+u)

0

f(s) ds,



12.5. SOLUTION FOR A WHOLE SPAN 165

where µ = (1−u)/(1+u) is as above. If we differentiate this with respect to
t, we can eliminate dY/dt on the left-hand side in favour of the pantograph
force, using (12.2) (without the linear spring term: otherwise we get a genuine
pantograph equation). This results in

2(f0 − f(t))

f2

= −µf(µt)+f(t)− 1

µ
f

(
t

µ
− 2

1 − u

)
+f

(
t − 2

1 + u

)
, (12.9)

again a delay equation, but now with four delays.
Fortunately, there is some structure to the solution. It is easy to show

that the points at which the reflected characteristics in Figure 12.5 meet the
train path are

t = tn =
1

u
(1 − µn).

Clearly, these are the only places at which any sort of discontinuity in f(t)
can occur. Furthermore, it is easy to see that, for n > 1,

tn − 2

1 + u
= µtn−1,

tn
µ

− 2

1 − u
= tn−1.

So, if t in (12.9) is equal to one of the tn, then all the terms on the right-hand
side occur in the same equation at t = tn or t = tn−1. With all this going for
us, we need only look for piecewise smooth functions between these points,
and join them up across t = tn, using (12.9) to relate the discontinuity at tn
to that at tn−1. Simply writing (12.9) at t = tn± and subtracting the two, When you write out

the right-hand side,
you’ll get f
evaluated at tn−1±,
at µtn± and
µtn−1±. Only in
exceptional cases
could µtn be equal
to tm for some
m < n, so f is
continuous ant
these points and
contributes nothing
to the jump.

[
f(t)

]tn+

tn− =
f2

µ(2 + f2)

[
f(t)

]tn−1+

tn−1−,

and differentiating (12.9) gives the corresponding relation[
df

dt

]tn+

tn−
=

f2

µ2(2 + f2)

[
df

dt

]tn−1+

tn−1−
.

These are enough to determine a piecewise linear solution for values of t
between the tn, and it shows that the solution is well-behaved as n → ∞
provided that f2/(µ(2 + f2)) < 1.

Sources and further reading

The description of the pantograph problem closely follows that of [39], but
be careful: the notation is slightly different.
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Exercises

1. Conservation of momentum. A string of line density ρ and tension
T is pulled with speed U < c =

√
T/ρ through a small frictionless ring

as shown in Figure 12.7. Remembering that

force = rate of change of momentum,

show that for small displacements the force on the ring is

F = −ρ(c2 − U 2)

[
∂y

∂x

]+

−
.

α1 α2
U

Figure 12.7: Conservation of momentum.

2. Removing the static displacement. Show that if we calculate the
static displacement ys(x) of the cable and subtract it from y(x, t), the
difference ȳ(x, t) satisfies the α = 0 version of the problem but with an
additional known time-dependent term in the force relation (12.2).

3. Impulsive attachment of a point force. A wire of density ρ is
stretched to tension T . At time t = 0, the wire is atraight and mo-
tionless; a constant point force is implied impulsively at x = 0 and
thereafter it moves with speed U < c. Draw a characteristic diagram,
show that of the four regions in it, the wire displacement is only non-
zero in region 1 (Ut < x < ct) and region 2 (−ct < x < Ut), and
that the displacement there is of the form g1(t − x/c), h2(t + x/c) re-
spectively. Apply the pantograph conditions (with a constant force) at
x = Ut to find these functions; sketch the wire displacement at a later
time t. Repeat for U > c and comment on the results.

Repeat the exercise in the case that the wire is also subject to gravity,
so that its initial (static) displacement is ys(x) = 1

2
αx2. (Of course the

wire is held up by distant supports.)

4. Delay differential equations. Consider the equation

y′(t) = α0 − α1y(t − τ), t > 0,
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where τ > 0 is a constant, with the initial condition y = 0 for −τ ≤
t < 0 (this generalises the ‘point’ initial equation with no delay). Show
that, with this initial condition, the Laplace transform of y(t − τ) is
e−pτ ȳ(p). Hence show that

ȳ(p) =
α0

p(p + α1e−pτ )
.

Put the right-hand side into partial fractions to deduce that the solution
can be found as a constant plus a series of exponentials in t, involving
the roots of p + α1e

−pτ = 0 (when α1 > 0 it can be shown that these
have negative real parts so the associated exponentials decay). Confirm
(for quality control) that you get the expected answer when τ = 0.

Show that the substitution t = es reduces the pantograph equation (12.8)
to a more complicated constant-delay equation, defined on the whole
real line.

5. The solution for one span. Complete the details of the solution of
Section 12.5, finding the coefficients in the linear expression for f(t) in
each interval tn < t < tn+1. Include the static displacement of the wire
(this generates a particular solution of the delay equation which you
can subtract out).

6. D’Alembert’s solution to the wave equation. Consider the initial
value problem

∂2y

∂t2
− ∂2y

∂x2
= G(x, t),

with initial conditions

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = v0(x), −∞ < x < ∞.

Write the left-hand side of the wave equation in divergence form and
integrate over a characteristic triangle to derive the D’Alembert solu-
tion

y(x, t) = 1
2
(y0(x − t) + y0(x + t))+1

2

∫ x+t

x−t

v0(s) ds+1
2

∫∫
G(ξ, τ) dξ dτ,

where the double integral is taken over the characteristic triangle.

Show that this solution is unique by considering the energy

E(t) = 1
2

∫ ∞

−∞

(
∂y

∂x

)2

+

(
∂y

∂t

)2

dx.
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7. Pantograph with variable velocity.

(a) Suppose that a point force moves along the wire at x = X(t), so
that there is a jump in ∂y/∂x given by[

∂y

∂x

]
= − 1

1 − (X ′(t))2
f(t).

Bearing in mind that y is continuous, what is the corresponding jump
in ∂y/∂t? Modify the argument of Exercise 6 to show that if the wire
is initially at rest,

y(x, t) =
1

2

∫
f(τ)

1 − (X ′(τ)
)2

1 − (X ′(τ))2
dτ,

where the integral is along the part of x = X(t) lying inside the char-
acteristic triangle. (I know that the fraction is equal to 1. It’s written
like that because the two bits of it come from different places.)

Why is this solution not valid if X ′(t) > 1?

(b) If X = 1
2
at2 and f(t) = 1, show that for 0 < t < 1/a, there is a

region of the (x, t) plane in which

y(x, t) = t∗(x, t)/2,

where t∗(x, t) is the appropriate root of

x + (t − t∗) = 1
2
at∗2.

(c) Define a distribution D(x, y) = δ(x)f(y), where f(y) is smooth.
Explain why it is reasonable that∫ 1

0

∫ 1

0

D(x, y) dx dy =

∫ 1

0

f(y) dy.

How would you generalise this to D(x, y) = f(y)δ(ax−by) for constant
a and b, if the integral is over a general region? Use these ideas and
Exercise 6 to derive the result of (a) from the equation of motion with
a delta-function on the right-hand side.

8. Dynamics of a rocket. Consider a rocket of mass m slung from a
long horizontal cable in the pantograph framework. Let its horizontal
position be x = X(t). Ignoring the static displacement of the cable,
derive the dimensional model

ρ
∂2y

∂t2
− T

∂2y

∂x2
= F (t)δ(x − X(t)), 0 < x < ∞,
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y(0, t) = 0, y(x, 0) =
∂y

∂t
(x, 0) = 0,

where

F (t) = −mg − m
d2Y

dt2
, Y (t) = y(t, t).

In the case X(t) = Ut where U is constant, derive and solve an equation
for the rocket displacement. When the rocket accelerates at a constant
rate a, draw the characteristic diagram, indicating all the significant
characteristics.
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Part III

Asymptotic techniques
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Chapter 13

Asymptotic expansions

13.1 Introduction

The rest of this book deals with systematic procedures to exploit small or
large parameters in a dimensionless problem, a collection of ideas grouped
together under the umbrella of asymptotic analysis. In this chapter, we
open proceedings with the basics of what an asymptotic approximation is,
following which we look at a selection of common techniques.

We start with a very simple example. Consider the quadratic

εx2 + x − 1 = 0, (13.1)

where ε is a fixed very small positive number, say 0.0000001. Forget for the
moment that we know how to solve quadratics exactly: can we exploit the
fact that ε is small to find approximate values for the roots? If ε = 0, we have
x = 1, and furthermore if we put x = 1 into the equation for small positive
ε, the error, namely what remains on the left-hand side, is small; here it is ε.
So, a natural first try is to write

x = x0 + εx1 + ε2x2 + · · ·
where, obviously, x0 = 1 (but it is reassuring to know that, as we see below,
we can show this systematically). This kind of assumed form for an expansion
is known as an ansatz ; here we are assuming that ε crops up only in positive
integral powers. We substitute this in:

ε
(
x0 + εx1 + ε2x2 + · · · )2 + x0 + εx1 + ε2x2 + · · · − 1 = 0,

then collect terms by powers of ε:

x0 − 1 + ε
(
x1 + x2

0

)
+ ε2 (x2 + 2x0x1) + · · · = 0.

173
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Now we equate coefficients of successive powers of ε to zero. From ε0,

x0 − 1 = 0,

so x0 = 1 as expected. From ε1,

x1 + x2
0 = 0,

so x1 = −1; from ε2,
x2 + 2x0x1 = 0,

so x2 = 2, and so on. We have found x0, x1, x2 recursively, giving us the
approximation

x = 1 − ε + 2ε2 + · · · .

It is clear that we can carry on in this way to find as many terms as we like
(and you can check the answer we get against the small–ε expansion of the
quadratic formula).

But hold on! Don’t quadratics have two roots? Where did we lose the
other one? Well, one way to see is to look at what we did when we calculated
x0. In effect, we simply put ε = 0 in (13.1), and so we lost the x2 term which,
of course, being the term of highest degree, tells us how many roots there
are. Put another way, we said that the terms x and −1 must balance each
other, leaving x2 as a small correction, which we use to improve our solution
iteratively. But is that the only possible balance? We can enumerate the
other candidates:

• We might balance all three terms: this is obviously ridiculous, and in
any case it is ruled out by our analysis above.

• We might balance εx2 and −1, with x being smaller. This doesn’t look
so silly, but take it a bit further: if εx2 balances −1, then the size of |x|
is 1/

√
ε (which is large) plus a smaller correction. But then the term

x, which was supposed to be small relative to εx2 and −1, is in fact
much bigger than either. It stands head and shoulders above the other
two, with no counterbalance. We have not made the right choice.

• The only remaining possibility is to balance εx2 and x.

If, then, εx2 and x balance, we see that |x| is of size 1/ε. So we rescale,
writing

x =
1

ε
X,

after which our quadratic (13.1) becomes

X2 + X − ε = 0,
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confirming immediately that the third term (which was −1 before) is indeed
small compared withy the other two. We expand X as above:

X = X0 + εX1 + · · · ;

skipping the details (which you should work out), the lowest order terms
clearly give

X2
0 + X0 = 0,

with the two roots
X0 = −1 or X0 = 0.

One root (X0 = 0) simply reproduces the root we found earlier, while the
root X0 = −1 is the first term in the expansion of the one we did not find. It
is left to you to calculate a couple more terms and verify that the expansions
are correct by comparison with the exact solution.

Our example is mathematically trivial. However, it illustrates some im-
portant points about asymptotic approaches:

• When we equate coefficients of powers of ε to zero, we are in effect
embedding our particular problem, with a given numerical value of
ε, say 0.0000001, in a continuous set of problems for all ε in a small
interval [0, ε∗) containing 0.0000001. If, as we hope, the dependence of
the roots on ε has some smooth ‘structure’ as ε → 0, we should first be
able to extract their general behaviour for all small ε, and only then
reinstate our particular numerical value.

• Systematic approximation procedures start with the identification of
the dominant balance(s) in an equation. Physical and mathematical
intuition may both help in finding these balances as may iteration ideas
(see the exercise on page 180); and once they are found, the remaining
terms should be smaller corrections.

• It may be necessary to rescale some of the dependent or independent
variables to achieve a balance.

Now it’s time for some definitions.

13.2 Order notation

It is useful to have a way of writing down the idea that two functions are
‘about the same size’ near a point x0 (usually 0 or ∞) or ε0 (almost always
0, as ε is almost always used to denote a small parameter). We say:

f(x) = O(g(x)) as x → x0
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if there is a constant A such that

|f(x)| ≤ A |g(x)|

for all x sufficiently near x0. So, for example,

3x + x2 = O(x) as x → 0;

here any A > 3 will do. In our quadratic equation example, the roots x(1)

and x(2) satisfy

x(1)(ε) = O(1) and x(2)(ε) = O(1/ε)

as ε → 0. Successively more precise estimates for x(1) are

x(1)(ε) = 1 + O(ε) and x(1)(ε) = 1 − ε + O(ε2).

If we want a more specific estimate of the size of f(x), we may try to find
a function g(x) whose ‘leading order’ behaviour is the same as that of f(x).
We write

f(x) ∼ g(x) as x → x0

if

lim
x→x0

f(x)

g(x)
= 1.

So, 3x + x2 ∼ 3x as x → 0, and

x(1)(ε) ∼ 1 − ε + 2ε2 as ε → 0.

Lastly there is a compact notation for the idea that one function is much
smaller than another. We write

f(x) = o(g(x)) as x → x0

if

lim
x→x0

f(x)

g(x)
= 0;

this is often written f(x) � g(x). So, for example,

e−x = o(x−1) as x → ∞

and, for any n,
xn � ex as x → ∞.
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In our quadratic example,

x(1)(ε) = 1 − ε + o(ε) as ε → 0.

The order notation is most often used to quantify the error in an ap-
proximation, so that we know when we can safely use it. A good example is
the remainder of the Taylor approximation (series). If we take n + 1 terms
of a Taylor series for f(x) about x0, the error is o(x − x0)

n, and usually
O(x − x0)

n+1. For n = 0,

f(x) = f(x0) + O(x − x0) (or o(1));

for n = 1,
f(x) = f(x0) + (x − x0)f

′(x0) + O(x − x0)
2

(the error is also o(x − x0)), and for n = 2,

f(x) ∼ f(x0) + (x − x0)f
′(x0) +

(x − x0)
2

2
f ′′(x0)

with an error of O(x − x0)
3 (or o(x − x0)

2).

13.2.1 Asymptotic sequences and expansions

Suppose we are looking at a function of ε as ε → 0 (or any other limit point).
We may aim to write its asymptotic behaviour in this limit in terms of simple
functions of ε such as powers. A well-known example here is a power series
in ε, if one exists, and we note that increasing powers of ε have an important
property: each one is smaller than its predecessor, so that εn+1 = O(εn) as
ε → 0. Less specifically, we may have non-integral powers, logs and so on,
so we generalise this idea of using powers of ε by saying that a set of gauge
functions {φn(ε)}, n = 0, 1, 2, . . ., is an asymptotic sequence as ε → 0 if

φn+1(ε) = o (φn(ε))

for all n. For example, {εn}, {εn
2

}
are asymptotic sequences as ε → 0, while

{e−nx} is an asymptotic sequence as x → ∞. Making the right choice of
asymptotic sequence for a specific problem is something of an art, albeit one
in which common sense and simple iteration ideas play a large part.

Once we have an asymptotic sequence, we can expand functions. We
say that f(ε) has an asymptotic expansion with respect to the asymptotic
sequence {φn(ε)} if there are constants ak such that, for each n,

f(ε) =
n∑

k=0

akφk(ε) + o (φn(ε)) ,
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or

f(ε) ∼
n∑

k=0

akφk(ε)

as ε → 0. In our quadratic equation example, we found the expansions

x(1)(ε) = 1 − ε + 2ε2 + o(ε2)

with respect to the sequence {1, ε, ε2, . . .}, and

x(2)(ε) = ε−1 + o(ε−1)

with respect to the sequence {ε−1, 1, ε, ε2, . . .}; we were too lazy to calculate
any more terms.

We very often have a function of several independent variables, here rep-
resented by a generic x, and a small parameter ε. In such a case, we may
look for an expansion in the form

f(x; ε) ∼
n∑

k=0

ak(x)φk(ε),

and we hope that the problem of calculating the ak (sequentially) will be
easier than finding f(x; ε) all at one go. This the main reason for trying an
asymptotic expansion in the first place.

13.3 Convergence and divergence

So what’s the big deal: haven’t we just found a straightforward generalisation
of Taylor series? Well, no, not exactly. The point of a Taylor series is that,
for a fixed value of ε, or whatever we’ve called our independent variable, as
we take more and more terms the sum of the series gets closer and closer
to the function it represents. That is, the series converges as the number of
terms in the partial sums, n, tends to infinity. All Taylor series are thus de
facto asymptotic expansions.

There are, however, two limiting processes going on when we write down
an an asymptotic expansion, n → ∞ and ε → 0, and they need not commute.
When we do a Taylor (or Laurent) series expansion, we first take the limit
as n → ∞, and only then think what happens as ε varies. An asymptotic
expansion, on the other hand, is designed to provide an accurate approxima-
tion as ε → 0 for each n, and many useful expansions don’t converge at all
as n → ∞.
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A famous example is the incomplete exponential integral:1 evaluate

I(ε) =

∫ ∞

1/ε

x−1e−xdx.

Repeated integration by parts shows that

I(ε) = εe−1/ε
(
1 − 1!ε + 2!ε2 + · · · + (−1)nn!εn

)
+ Rn(ε),

where Rn(ε) is easily shown to be asymptotically smaller than the last re-
tained term; see the exercise on page 181.

It is quite clear that the series we have generated does not converge for What are the gauge
functions?any ε > 0. That isn’t the point, though. What is important is that as

ε → 0 the series should give us an accurate description of the behaviour
of the integral. That is, the smaller we take ε, the smaller should be the
relative error of the approximation. In fact what happens is that, if we take
a fixed value of ε, and take more and more terms in the expansion, at first
successive terms get smaller and smaller (as they would for a convergent
series); then, starting from values of n of O(1/ε), they increase again. The
best approximation is given by cutting the series off at this optimal truncation
point.2 Even for ε = 1/4, which is not particularly small, truncation of the For another

asymptotic
expansion which
works well even
when the relevant
parameter, here n,
is not small, try
putting n = 1 in
Stirling’s formula,
which says that
n! ∼ nn+ 1

2 e−n/
√

2π
as n → ∞.

series after 4 terms gives the reasonable approximation 0.00401 . . . compared
to 0.00378 . . . from numerical integration. When ε = 1/8, 8 terms of the
series give 0.112434× e−1/8 compared with ... .

In most practically (as opposed to mathematically) generated asymptotic
problems, we are unable to calculate enough terms to decide whether the
asymptotic series is divergent or not. Indeed, it’s usually next to impossible
(or at least a rather strenuous exercise in mathematical weightlifting) trying
to prove that the remainder after even one or two terms is small as it should
be. We have to live with these lacunae: we proceed knowing that experience
tells us that, mostly, things will work out.

1Approximation of integrals and special functions is a particularly happy hunting
ground for asymptoticists, although we shan’t be going that way much.

2The location of the optimal truncation point is determined by the value n(ε) at which
successive terms have the same size. This series has a ‘factorial-power’ form for the terms
in the expansion, a very general phenomenon, and it is easy to calculate that successive
terms are closest in size when n is the integer part of 1/ε. The precise behaviour of the
remaining error, and how to deal with it, is part of the trendy subject of hyperasymptotics,
also known as asymptotics beyond all orders or exponential asymptotics.
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Further reading

There are many excellent books on asymptotic expansions. A short but
intensive introduction is the book of Hinch [18], whose first chapter probably
put the quadratic example into my mind (if you think about it, εx2 + x −
1 = 0 is the irreducible minimum of that kind of problem). If you are
interested in ordinary differential equations try the book by O’Malley [32],
or for a more wide-reaching treatment the books of Kevorkian & Cole [22]
or Bender & Orszag [5]. Olver [31] is a good starting point for the analysis
of special functions and, as ever, Carrier, Krook & Pearson [6] is very well
worth reading.

Exercises

1. Roots of a cubic. Find expansions for the roots of

εx3 + x − 1 = 0

as ε → 0 with at least two and preferably three nonzero terms in each
expansion.

Repeat for the real roots of εx tanx = 1, and then for x tanx = ε.Draw graphs to see
where the roots are. In the latter case you will have to consider the first root separately, as

well as rescaling to get the large roots. In addition there is a range of
roots you can’t get approximations to; where is it?

2. Iteration.

Show that x log x → 0 as x → 0; draw its graph. Suppose we want to
find an asymptotic expansion for the solution to x log x = −ε, where
0 < ε � 1. In this case, it is not obvious what gauge functions we
should use, so we find them by iteration. Write

x(ε) ∼ x0(ε) + x1(ε) + · · · ,

where all we know is that x0 � x1 � · · · . Take logarithms of the
original equation (a key step, because it replaces multiplication of two
small terms by addition of their (large) logarithms) and substitute this
in to find

log (x0 + x1 + · · · ) + log (− log (x0 + x1 + · · · )) = log ε. (13.2)

Now ignore x1 to show that x0 = ε. Put this back into (13.2) and
expand the logarithms in powers of x1/ε, which is small, to show that
x1 = −ε/| log ε| and calculate one more term in the expansion.
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Repeat the calculation after making the simplifying initial scaling x =
εX (which you might not spot first time round).

3. The exponential integral. Show that our expression for the incom-
plete exponential integral is indeed an asymptotic expansion as follows.
Consider

I(ε) =

∫ ∞

1/ε

x−1e−xdx.

Integrate by parts n + 1 times to show that

I(ε) = εe−1/ε
(
1 − 1!ε + 2!ε2 + · · · + (−1)nn!εn

)
+ Rn(ε),

and now integrate by parts once more to get

Rn = εe−1/ε(−1)n+1(n + 1)!εn+1 + R′
n,

where a simple estimate using e−x ≤ e−1/ε for x ≥ 1/ε shows that R′
n

is at most of the same order as the first term on the right-hand side of
the expression for Rn. Conclude that, as ε → 0, Rn = o(εne−1/ε).

4. Stockmarket crashes and six-sigma quality control. The prob-
ability density function for the standard normal distribution N(0, 1)
is

fX(x) =
1√
2π

e−x2/2.

Integrate by parts to find a one-term approximation for P (X < x) as
x → −∞ and show that it is asymptotically correct (see the previous
exercise).

‘Six-sigma standards’ in manufacturing demand that the probability
that an individual component is defective is less than the probability of
being 6 or more standard deviations away from the mean of a standard
normal distribution. What is this probability, approximately? (e3 ≈
20, 2π ≈ 25

4
.) If the manufacturers use this standard, what is the Hint: which

well-known limit
lets you work out
an approximation
to (0.99)100?

probability that none of the 10,000 components in a computer or the
1,000,000 components in an aeroplane is faulty?

In the standard Black–Scholes model for financial markets, daily per-
centage changes in, say, the FTSE–100 or S&P–500 index are indepen-
dent random variables which are approximately normal with very small
mean and standard deviation of about 1%. What is the probability of
a fall of 10% or more in one day? What is the probability of two such
falls on consecutive days? (In October 1987 the UK stock market fell by
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more than 10% on both Black Monday and the day after. There have
been several other changes of this magnitude in the (roughly) 25,000
days for which stock indices have been calculated.)



Chapter 14

Regular
perturbations/expansions

14.1 Introduction

We begin our tour of asymptotic methods for simplifying complex problems
with the most straightforward idea, that of a regular asymptotic (or pertur-
bation) expansion. This is just the plain vanilla common-sense expansion you
carry out when it seems that the dominant-balance terms in your model do
indeed reflect the dominant physical mechanisms, and everything else is a
small correction. For example, the expansion

x(1)(ε) = 1 − ε + 2ε2 + o(ε2)

in our quadratic equation example of the previous chapter is beautifully
regular. In some problems, we can characterise a regular expansion by saying
that it is expected to be a uniformly valid approximation to the solution; for
example, when we consider the standard model for waves on a string, we
hope that, for all times and positions on the string, the wave equation is a
good approximation to the fully nonlinear model we could write down for
displacements that are not small. Having said this, there probably isn’t a
watertight definition of when an expansion is ‘regular’; it may be safest just
to leave it as ‘any expansion that is not one of singular, boundary layer,
multiple-scale, . . . ’ and to let your sense of the meaning of the term grow
with experience.

In the models we look at later on, we’ll see a variety of scalings and
transformations which help us to understand less straightforward situations;
but after all these contortions, we end up with a regular expansion. When
we’ve got to a regular expansion, nine times out of ten we’ve done as much

183
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simplifying as we can with asymptotic approximations. As a simple example,
to find the other root x(2)(ε) of the quadratic, we first had to introduce the
singular (as ε → 0) scaling x = X/ε, and only then find a regular expansion
for X.

There is really not much more to say of a general nature. The rest of
the chapter consists of a collection of examples of the regular perturbation
technique in action. They are necessarily in order, because this is not a
hypertext document, but they are not rigidly so: wander as you will.

14.2 Example: stability of a spacecraft in or-

bit

Many asymptotic techniques have their origin in astronomy. We begin with a
simple one: the stability of circular planetary orbits. In the classical Newto-
nian model for motion of, say, a satellite or space station orbiting the earth,
the satellite’s plane polar coordinates (r(t), θ(t)), with origin at the centre of
the earth, satisfy

r̈ − rθ̇2 = −GM

r2
,

1

r

d

dt

(
r2θ̇
)

= 0,

where ˙= d /dt, G is the universal gravitational constant and M is the mass
of the earth. Hence we retrieve Kepler’s second (?) law

r2θ̇ = h,

a constant equal to the angular momentum (per unit mass, to be pedantic).
A circular orbit is an obvious solution with

r = a, θ̇ = ω, where a3ω2 = GM,

the relation between a and ω being Kepler’s third (?) law. Suppose a booster
rocket on the satellute gives it a small radial velocity εv (note that this does
not change h). Is the orbit stable or will the satellite plunge to earth or fly
off into the deeps of space?

Write

r(t) = a + εr1(t) + · · · , θ̇(t) = ω + εθ̇1(t) + · · · ,

so that

εr̈1 + · · · − (a + εr1 + · · · )
(
ω + εθ̇1 + · · ·

)2

= − GM

(a + εr1 + · · · )2 (14.1)
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and
(a + εr1 + · · · )2

(
ω + εθ̇1 + · · ·

)
= h = a2ω. (14.2)

Expand the right-hand side of (14.1) by the binomial theorem, remember
that a3ω2 = GM , and the O(ε) terms in (14.1), (14.2) give

r̈1 − ω2r1 − 2aωθ̇1 = 0, 2aωr1 + a2θ̇1 = 0;

that is,
r̈1 + ω2r1 = 0.

We see that r1 oscillates without growing or decaying, so it looks as if the
system is neutrally stable; this is not so surprising when we recall that the
full system is conservative. The period of oscillation is equal to the original
period of orbital rotation, and the perturbed orbit is slightly elliptical with
the centre of the earth at one focus; the furthest and nearest distances from
earth (apogee and perigee) occur 1

4
and 3

4
of an orbit after the initial thrust.

Every half-orbit, the space station will return to the original location relative
to earth: if the astronauts drop a spanner before applying the thrust, they
will have two opportunities per orbit to reach out and grab it.

14.3 Linear stability

Linear stability analysis, of which the satellite problem is an example, is
an archetypal example of a regular perturbation. We take a solution u0 of
a system, often an equilibrium or a steady state such as a travelling wave,
we perturb it to u0 + εu1, write down a regular perturbation expansion to
determine u1 and see whether εu1 is small, or (in a time-dependent problem)
remains small. The perturbation may be to the initial and/or boundary data
of our problem, or to the geometry, or it may be structural via changes to
the parameters or equations of the problem.

We say that a time-dependent system is linearly stable if a suitable norm
(measure of the size) of the perturbation decays, linearly unstable if the norm
grows, and (linearly) neutrally stable if it remains the same size.

In many systems the result of linearising about u0 is a linear evolution
problem in the form

∂u1

∂t
= Lu1

where L is a linear differential operator. If we are particularly lucky, L will
have time-independent coefficients, and then the solution has the form

u1 = eλtU1
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where U1, which is independent of t, is an eigensolution of L with eigenvalue
λ:

LU1 = λU1

(we expect an eigenproblem because of the scaling invariance of a linear
problem). This is all well illustrated by the very familiar phase-plane analysis
we now briefly review.

14.3.1 Stability of critical points in a phase plane

Phase-plane analysis of critical points is a classic example of linear stabilityYou can do it in
more than two
dimensions, but two
dimensions is much
easier to analyse,
because the
dimension of the
phase paths is one
less than the
dimension of the
plane; in three or
more dimensions
the extra degree(s)
of freedom make life
much more difficult.

analysis. Take a two-dimensional autonomous dynamical system

dx

dt
= f(x), x = (x1, x2).

The critical points x0 are equilibrium points where f(x0) = 0. In order to
analyse their stability, we first write down a regular expansion for x(t) about
x0,

x ∼ x0 + εx1 + · · · ;

then, expanding f(x) in a Taylor series about x0, at O(ε) we find a linear

It is de facto an
asymptotic
expansion provided
that
|x − x0| = O(1).

equation for x1:
dx1

dt
= Jx1,

where J, a constant matrix, is the Jacobian ∂(f1, f2)/∂(x1, x2) at x0. With
a constant-coefficient equation, it is natural to look for a solution

x1 = eλtv1,

which reveals the eigenvalue equation

Jv1 = λv1.

The stability or otherwise of the fixed point is thus determined by the real
parts of the eigenvalues of J, as a positive real part for either will lead to
exponential growth and hence instability. The details of the behaviour areHere is a use for the

canonical form
reductions of linear
algebra: we see a
differential equation
interpretation of
the difference
between algebraic
and geometric
multiplicity.

surprisingly complicated, largely because of special cases when the eigenval-
ues are equal.1 When they are distinct, things are easier and we have the
familiar catalogue of possible behaviours: stable (unstable) nodes when both
λ1 and λ2 are real and negative (positive); saddles for real eigenvalues of op-
posite signs; stable (unstable) spirals for complex eigenvalues with negative

The eigenvalues are
a conjugate pair:
why?

1See [21].
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(positive) real parts; and lastly centres when the eigenvalues are pure imag-
inary. Care is needed with the latter case which, unlike the rest, is clearly
structurally unstable to small changes in the entries of J, as the following
digressionary example shows.

14.3.2 Example (side track): a system which is neu-
trally stable but nonlinearly stable (or unsta-
ble)

Consider the two systems (one for +, one for −)

ẋ = y ± x
(
x2 + y2

)
, (14.3)

ẏ = −x ± y
(
x2 + y2

)
. (14.4)

If we look for solutions near the obvious equilibrium point (0, 0), say with
x(0) = εξ0, y(0) = εη0, we can write x = εX, y = εY , and then expand

X ∼ X0 + ε2X2 + · · · , Y ∼ Y0 + ε2Y2 + · · ·

(fairly clearly the O(ε) terms vanish). Then,

Ẋ0 = Y0, Ẏ0 = −X0,

and we have neutral stability since X2
0 + Y 2

0 = ξ2
0 + η2

0 is constant. However,
at O(ε2) we find

Ẋ2 = ±X2

(
ξ2
0 + η2

0

)
, Ẏ2 = ±Y2

(
ξ2
0 + η2

0

)
,

and the + system is plainly unstable at this order, while the − system is
stable. In fact this is in accordance with the exact result since x × (14.3) +
y × (14.4) gives

d

dt

(
x2 + y2

)
= ± (x2 + y2

)2
,

and it is an exercise to solve this equation and show that there is finite-time
blow-up if we have the + sign and existence for all t with the − sign.

Clearly linear stability analysis is just the tip of the iceberg. Although
it is easy to construct examples which are linearly stable and nonlinearly
unstable, and vice versa, nonetheless as a general rule it is a good guide to
the overall behaviour.
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14.4 Example: the pendulum

Let us have a look at the pendulum model we introduced in Chapter ??.
Recall that the dimensionless pendulum model, without the primes on t, is

d2θ

dt2
+ γ

dθ

dt
+ sin θ = 0, (14.5)

with

θ = α0,
dθ

dt
= β0 at t = 0. (14.6)

Of course, we can treat this equation via the phase plane (this relatively
straightforward exercise is requested on page 195). However, the purpose of
this chapter is to let you see the modus operandi of regular perturbations,
so let’s do this problem from scratch.

Suppose that α0 is small, say α0 = εa0 where ε � 1, and β0 = 0, so that we
are releasing the pendulum from rest with only a small initial displacement.2

Can we retrieve linear theory, and how big is the error?
Write

θ ∼ θ0 + εθ1 + · · · . (14.7)

Then it is obvious that θ0 = 0: it satisfies

d2θ0

dt2
+ γ

dθ0

dt
+ sin θ0 = 0,

with

θ0 =
dθ0

dt
= 0 at t = 0,

and the zero solution is unique by standard Picard theory.
With more experience, we would have seen this straightaway, and ac-

counted for it by using the (regularly) scaled variable θ = εθ̃. However, let’s
press on. We now know that

θ ∼ εθ1 + o(ε),

and so
sin θ ∼ εθ1 + o(ε).

Putting these two into (14.5), and retaining only the terms of O(ε), we find
that

d2θ1

dt2
+ γ

dθ1

dt
+ θ1 = 0,

2I could have chosen to expand in terms of α0, instead of writing α0 = εa0, and that
might have looked less contrived. However, for continuity of exposition I want the small
parameter to be called ε wherever possible.
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while the O(ε) terms from the initial conditions (14.6) give

θ1 = a0,
dθ1

dt
= 0 at t = 0.

As promised, we have retrieved the linear theory.
As we noted in Chapter 13, what we have in effect done is to embed the

problem for our particular value of α0, say 0.001, in a family of problems
parametrised by ε, and we are looking for an expansion valid for all ε in an
interval containing (0, 0.001). We hope that the solution depends smoothly
on α0 (and hence on ε) when α0 is small, so that our procedure of expanding in
powers of ε is justified. Indeed, if the solution is differentiable with respect
to ε at ε = 0, then we are just identifying a function by its Taylor series.
Even if this is not the case, we hope that the asymptotic expansion gives a
good approximation to the solution as ε → 0, the key requirement of such a
representation.

14.5 Small perturbations of a boundary

In this section, we look at two problems in which the perturbation to a simple
solution is induced by a small irregularity in the boundary of the domain in
which we solve, rather than in the field equation itself.

14.5.1 Example: flow past a nearly circular cylinder

Suppose that we want to calculate potential flow past the slightly elliptical
cylinder whose equation in plane polar coordinates is r = a(1+ε cos θ), where A focus-directrix

representation of an
ellipse with small
eccentricity ε is

a/r = 1 − ε cos θ,

and expanding to
O(ε) gives
r = a(1 + ε cos θ).

ε � 1, and with velocity (U, 0) at infinity. The velocity potential φ satisfies

∇2φ = 0, r > a(1 + ε cos θ), (14.8)

with the boundary conditions

∂φ

∂n
= n · ∇φ = 0, r = a(1 + ε cos θ) φ ∼ Ur cos θ + o(1), r → ∞.

(14.9)
We know the solution when ε = 0, namely

φ0 = U

(
r cos θ +

a2

r
cos θ

)
, (14.10)

and it seems very likely that the solution for 0 < ε � 1 is close to this. The
only obstacle is that for ε > 0 the boundary condition ∂φ/∂n = 0 is applied
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in an inconvenient place. We deal with this by linearising it onto r = a: we
replace the exact boundary condition by an approximate one on the more
convenient location. This entails two steps. First, we expand the condition
n · ∇φ = 0 in powers of ε and discard small terms. Then, we use a second
expansion to replace the resulting approximate condition at r = a(1+ε cos θ)
by one on r = a. Again, we discard small terms, and as long as we do so
consistently we should not degrade the accuracy of our approximation. I
am going to go through this process in excruciating detail, because this is
an important technique and one which many students do not get right first
time.

Let us assume that we want to calculate the solution correct to O(ε).
That means that as we go along we can discard any O(ε2) terms (as long
as we are confident they won’t get divided by ε later). The unit normal to
r = a (1 + εf(θ)), for any smooth function f(θ), is3In polars,

∇ = er
∂

∂r
+

1
r
eθ

∂

∂θ
.

Note that a has
dimensions of
length but n is
dimensionless: the
a’s cancel in the
second line.

n =
∇(r − a (1 + εf(θ))

|∇(r − a (1 + εf(θ))|
=

er − εf ′(θ)eθ/[1 + εf(θ)](
1 + ε2 (f ′(θ))2

(1+εf(θ))2

) 1
2

= er − εf ′(θ)eθ + O(ε2).

So, we have

n · ∇φ|r=a(1+εf(θ)) =

(
er

∂φ

∂r
+

1

r
eθ

∂φ

∂θ

)
=

(
∂φ

∂r
− ε

f ′(θ)
a

∂φ

∂θ

)∣∣∣∣
r=a(1+εf(θ))

+ O(ε2). (14.11)

The next stage is to expand ∂φ/∂r and ∂φ/∂θ in (14.11) in Taylor series
about r = a. That is, we write

∂φ

∂r

∣∣∣∣
r=a(1+εf(θ))

=
∂φ

∂r

∣∣∣∣
r=a

+ εaf(θ)
∂2φ

∂r2

∣∣∣∣
r=a

+ O(ε2), (14.12)

and, as hindsight shows we only need one term for ∂φ/∂θ,

∂φ

∂θ

∣∣∣∣
r=a(1+εf(θ))

=
∂φ

∂θ

∣∣∣∣
r=a

+ O(ε). (14.13)

We can now substitute for ∂φ/∂r and ∂φ/∂θ from (14.12) and (14.13) in (14.11),Do you now see
why we only bother
with one term for
∂φ/∂θ?
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to find that

eck dimensions:
the terms should

ve dimension
/[L], which they

∂φ

∂n

∣∣∣∣
r=a(1+εf(θ))

=

(
∂φ

∂r
+ εaf(θ)

∂2φ

∂r2
− ε

f ′(θ)
a

∂φ

∂θ

)∣∣∣∣
r=a

+ O(ε2).

In our case, f(θ) = cos θ, and so instead of the exact problem (14.8)–
(14.9), we solve the approximate problem4

∇2φ = 0, r > a,

with the boundary conditions

∂φ

∂r
+εa cos θ

∂2φ

∂r2
+ε

sin θ

a

∂φ

∂θ
= 0, r = a, φ ∼ Ur cos θ+o(1), r → ∞.

We have done the hard work. The approximate problem yields immedi-
ately to a regular expansion

φ(r, θ) ∼ φ0(r, θ) + εφ1(r, θ) + O(ε2).

The leading order problem is just (as expected) the standard flow past a
circular cylinder with solution φ0 as given in (14.10). The problem for φ1 is
then

∇2φ1 = 0, r > a, φ1 = o(1), r → ∞,

with the approximate condition on r = a, More details for you
to fill in.

∂φ1

∂r
= −a cos θ

∂2φ0

∂r2
− sin θ

∂φ0

∂θ
= −2U

(
cos2 θ − sin2 θ

)
= −2U cos 2θ.

We can look up φ1 in our (mental) library of separable solutions of Laplace’s
equation, and our solution to O(ε) is

φ(r, θ) = U

(
r cos θ +

a2

r
cos θ

)
+ εUa3 cos 2θ

r2
+ O(ε2).

We can (should) run a couple of consistency checks on this solution. First,
the correction φ1 has the right dimensions, velocity × length. Second, look
at the velocity correction on the x–axis. Our cylinder sticks out beyond
the circle r = a near the downstream end θ = 0, and is inside near the
upstream end θ = π, and the flow has stagnation points on the boundary at Draw a picture.
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θ = 0, π. At the downstream stagnation point, the leading order horizontal
You can do the
same argument at
the upstream
stagnation point,
but you are more
likely to lose a
minus sign becaus
you have to
remember that
∂ /∂r = −∂ /∂x
there.

velocity ∂φ0/∂r is small and positive because the leading order flow, which
is overall left-to-right, has a stagnation point just to the left. Thus, to get
zero horizontal velocity here, ∂φ1/∂r must be small and negative, which it
is: we have got the right signs.

14.5.2 Example: water waves

For our second example of a boundary perturbation, we look at the very
classical problem of two-dimensional small-amplitude surface gravity waves
on deep water. The new feature of the problem is that the boundary that
is perturbed is itself unknown: it is called a free boundary or free surface.
You may have done this problem in an ad hoc way, ‘neglecting quadratic
terms’. By now, you probably realise that this just means constructing an
asymptotic expansion correct to O(ε), neglecting O(ε2), and that is just what
we do.

Let us build in the fact that the amplitude is small by writing the water
surface as y = εh(x, t), where ε � 1 and h = O(1) (and there is an implicit
assumption that derivatives of h are not large either). Then the full problem
to be solved for the velocity is

∇2φ = 0, y < εh(x, t),

for which the free surface conditions are the kinematic conditionParticles in the
surface stay there,
so the material
derivative of
y − εh(x, t) is zero.
It also says that the
normal velocity of
the water is equal
to the normal
velocity of the
interface.

D

Dt
(y − εh(x, t)) = 0,

namely
∂φ

∂y
= ε

(
∂h

∂t
+

∂φ

∂x

∂h

∂x

)
, y = εh(x, t), (14.14)

and the Bernoulli condition

Woe to those who
spell him Bernouilli.

∂φ

∂t
+ 1

2
|∇φ|2 + gy = 0, y = εh(x, t). (14.15)

The unknown location of the surface makes this a formidably hard problem
and even after decades of effort there are many open questions. The first
step on the road, however, is easy.

We are aiming for an asymptotic expansion in powers of ε. A quick look
at the kinematic condition (14.14) shows immediately that there is no O(1)
term in the velocity potential, and so its expansion has the formTechnically, I

suppose we should
expand h(x, t) as
well, but we only
need one term so
we don’t bother.

3Note that the expansion may be invalid if f ′(θ) is large.
4A pedant says: ‘This function φ is different from the original one, so you should use

a different notation for it.’ I reply: ‘Go away and leave me alone. There is too much
unnecessary notation in the world without adding to it.’
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φ(x, y, t) ∼ εφ1(x, y, t) + · · · .

It is now clear that the leading order terms in the kinematic and dynamic
boundary conditions are

∂φ1

∂y
=

∂h

∂t
,

∂φ1

∂t
+ gh = 0, (14.16)

which apply on y = εh(x, t) and then, by a trivial linearisation, on y = 0
without loss of accuracy to this order. The rest is history: taking a repre-
sentative wave5 h(x, t) = ei(kx−ωt) with wavenumber k and frequency ω, we Waves with k > 0

travel to the right,
k < 0 to the left; |k|
in φ ensures decay
as y → −∞. Of
course we take the
real part of h and φ
for the physical
quantities.

have from Laplace’s equation and the first of (14.16) that

φ1(x, y, t) = − iω

|k|e
|k|yei(kx−ωt),

and then from the second of (14.16) we get the dispersion relation

Check the
dimensions.

ω2 = g|k|

giving us the phase speed c = ω/|k| =
√

g/|k| in terms of the wavenumber.
This calculation can be viewed as a prototype of stability analyses of all

sorts of free boundary problems, ranging from fluid flow to solidification of
ice or steel. If we think of it in this light, it tells us that the surface of our
water is neutrally stable, because the fact that ω is purely real tells us that
small disturbances neither grow nor decay. If, on the other hand, we take Fill a glass to the

brim, slide a piece
of card across, and
hold it in place
while you invert the
glass: it will stay
there when you take
your hand away.
Why does this not
work if there is an
air gap before you
put the card on?

g < 0, equivalent to having the water above the air, ω is purely imaginary
and the linearised problem always has exponentially growing modes. Can
you see why water falls out of a glass if you turn it upside down, even though
the atmospheric pressure (about 10 m of water) is more than enough to hold
it in?

14.6 Caveat expandator

Regular expansions don’t always work. Sometimes the reasons for this are
obvious: the procedure falls flat on its face early on. For example, consider
the very easy differential equation

ε
dy

dx
= y − 1, x > 0, y(0) = 0,

5Representative because we can superpose these waves to solve any initial value prob-
lem, equivalent to taking a Fourier transform in x.
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for small ε. A starightforward regular expansion in powers of ε gives y ∼ 1,
and all other term vanish. The regular expansion completely fails to satisfy
the initial condition, and in this case inspection of the exact solution, y =
1 − e−x/ε, shows that there is a boundary layer near x = 0, in which the
solution changes too rapidly to be describable by a regular expansion. We
look at problems of this type in Chapter 18. Another example where a regular
expansion doesn’t even get to first base is

ε2 d2y

dx2
+ y = 0,

whose solutions e±ix/ε oscillate very rapidly. We look at these in Chapter 22.
There are, however, some problems where what goes wrong is more subtle.

Let us return to the undamped small-displacement pendulum equation of
Section 14.4,

d2θ

dt2
+ sin θ = 0, θ(0) = εa0,

dθ

dt
= 0 at t = 0.

We showed that we could recover linear theory as the first term in an expan-
sion

θ ∼ εa0 cos t + ε2θ2 + ε3θ3 + O(ε4).

(I’ve kept two terms after θ1 because it very soon becomes clear that θ2 = 0.).Exercise.
If, encouraged by this success, we continue, the problem for θ3 is

As we all know,

cos 3t = cos3 t−4 cos t.
d2θ3

dt2
+ θ3 =

a3
0

6
cos3 t

=
a3

0

24
(3 cos t + cos 3t) ,

with

θ3 =
dθ3

dt
= 0 at t = 0.

The solution is found after a small effort:Why no t cos t?
Because the forcing
function on the
right-hand side is
even, that’s why:
with a second
derivative and an
undifferentiated
term, and zero
initial derivative,
we are bound to get
an even solution.
There’s no point in
making work for
ourselves by putting
in odd terms. For
much the same
reason there is no
sin t term either
(which makes
fitting the initial
zero value for θ3 a
t i ial b si ess)

θ3 =
a3

0

16
t sin t − a3

0

192
(cos 3t − cos t) .

There’s just one problem with this solution. The term t sin t grows unbound-
edly as t increases. Eventually, when ε3t sin t and ε cos t are of the same size,
that is when t = O(1/ε2), the expansion is no longer valid, because successive
terms are no longer decreasing in size. Terms like this are known as secular
terms from the Latin for a century; the origin is in analysis of planetary
orbits and in particular the effect of one planet’s gravitational field on the
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motion of another, which is how the outer planets were found. (In the astro-
nomical context, a century is a good-sized unit of time, long in comparison
to our years but comparable to the years of the larger planets.)

The nonuniformity arises because we are trying to describe a periodic
function of t whose period is not quite the 2π of the base solution θ1. (Such
nonuniformities are always lurking in problems with conserved quantities
or similar structure if the functions we use to approximate are not quite
compatible with the conserved quantities.) We take a brief look at problems
of this kind in Chapter 17.

Exercises

1. Space stations. The space station is in a circular orbit about the
earth at a distance a from the centre and with angular speed ω. Its
tangential speed is increased from aω to aω + εv where ε � 1. Carry
out the linear stability analysis of the orbit (remember that the angular
momentum has to be perturbed).

2. Phase planes. Referring back to Section 14.3.1, suppose that the
Jacobian J is real and symmetric at a critical point. Show that the
linearised equations can be reduced to

d

dt

(
X1

X2

)
=

(
λ1 0
0 λ2

)(
X1

X2

)
,

where the axes of the coordinates Xi are along the eigenvectors of J.
Deduce that the orbits are locally given by the curves

|X1|λ1 |X1|−λ2 = constant,

and they look roughly like hyperbolae when λ1λ2 < 0.

Show that when J is skew-symmetric, J = −JT , the critical point is a
centre.

3. Pendulum phase planes. Consider the damped pendulum equation

lθ̈ + kθ̇ + g sin θ = 0, θ(0) = θ0, θ̇(0) = ω0,

made dimensionless with the timescale t0 =
√

l/g, so that it becomes

θ̈ + γθ̇ + sin θ = 0, θ(0) = α0, θ̇(0) = β0.
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First suppose that γ = 0. Show that there are centres in the phase
plane at (θ, θ̇) = (2nπ, 0) and saddles at ((2n + 1)π, 0). Sketch the
phase plane, indicating the direction of the trajectories. Indicate the Put one arrow on

at, say, (α0, 0) and
the rest follow by
continuity.

curves for which α0 = 0, β0 � 1. Find a suitable scaling for θ to show
that they are approximately circles.

Still with γ = 0, indicate the curves for which β0 � 1. What is the
pendulum doing on one of these? Take α0 = 0 and rescale time by
writing t = t̃/β0; show that this gives

d2θ

dt̃2
+

1

β2
0

sin θ = 0, θ(0) = 0,
dθ

dt̃
= 1.

Now write

θ = θ0 +
1

β2
0

θ1 + · · · ,

and find θ0 and θ1 by equating terms of O(1) and O(1/β2) to zero
separately. Interpret these results.

Now suppose γ > 0. Show that the saddles remain saddles but the
centres become stable spirals for 0 < γ < 2. What happens for γ > 2?
Sketch the phase plane when (a) 0 < γ � 1, (b) γ � 1.

4. Satellites. Investigate the linear stability of a satellite orbit using the
more general approach of Section 14.3.1 as follows. Write the equations
for motion of a satellite,

r̈ − rθ̇2 = −GM

r2
,

1

r

d

dt

(
r2θ̇
)

= 0,

as a first-order system ẋi = Fi(xj) for x1 = r, x2 = ṙ and x3 = θ̇.
Show that all points on the curve x3

1x
2
3 = GM , x2 = 0, are equilibrium

points. Taking a representative point (a, 0, ω) on this curve, show that
the Jacobian (∂Fi/∂xj) is⎛⎝ 0 1 0

3ω2 0 2aω
0 −2ω/a 0

⎞⎠ .

Deduce from the trace and determinant of this matrix (which you can
evaluate without detailed calculation) that at least one of the eigenval-
ues vanishes, that the remaining ones sum to zero, and so that just one
vanishes and the other two are equal and opposite (consistency check).
Confirm this by finding the eigenvalues as 0, ±iω.
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Note the zero eigenvalue, which is due to the existence of a non-isolated
set of equilibrium points (why?). What would happen if you wrote the
equations as a 4 × 4 system for r, ṙ, θ, θ̇?

5. Motion under gravity near the earth. Absolutely everybody does
motion of projectiles early in their mathematical career: mr̈ = −mg,
r(0) = (0, 0, h), ṙ(0) = v. Expand in terms of ε = h/Re, where Re is
the radius of the earth, to reconcile this with the full Newtonian model
in which the force on a particle is m∇φ, in which the gravitational
potential φ = GMe/|R|, G being the universal gravitational constant,
Me the mass of the earth and R the position vector measured from
the centre of the earth. What restriction on v is necessary for your
approximation to be valid?

6. Flagpoles again.

Look up your derivation of the dimensionless flagpole equation oscil-
lated at the base, and write it in the form

∂2y

∂t2
+ α4 ∂4y

∂y4
= 0,

with the boundary conditions

yxx = yxxx = 0 at x = 1, y = cos t, yx = 0 at x = 0,

and a condition of periodicity in time. Suppose that α � 1, and write
ε = 1/α. Find the solution correct to O(ε) by a regular perturbation
method. What is happening physically in this regime?

7. The Euler strut (ii). Recall from Chapter ?? Exercise ... that for
the Euler strut the angle with the x axis satisfies

d2θ

ds2
+ α2 sin θ = 0, θ(0) = θ(1) = 0,

where α2 = FL2/b is the bifurcation parameter. Show that if θ is small,
the procedure of that exercise is equivalent to finding the first term in
a regular expansion for θ.

Now suppose that α is just above the critical value π so that α2 = π2+ε2

where ε is small. Seek a solution in which θ is small, so that θ = δφ,
where δ � 1 (so far, we do not know how big δ should be). Show that

d2φ

ds2
+
(
π2 + ε2

)(
φ − δ2 φ3

6
+ · · ·

)
= 0, φ(0) = φ(1) = 0.
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Conclude, provisionally, that a sensible choice for δ is δ = ε (we return
to this below).

Construct a regular expansion

φ ∼ φ0 + ε2φ1 + O(ε4),

show that φ0 = A sin πs for an as yet unknown constant A, and write
down the problem satisfied by φ1. Multiply by φ0 and integrate byThis is the

Fredholm
Alternative for a
two-point boundary
value problem; see
page ...

parts to show that it only has a solution if∫ 1

0

(
π2φ0

6
− φ0

)
sin πs ds = 0,

and conclude that φ1 only exists if A = 0,±2
√

2/π.

As α varies, define a measure Mθ(α) of the size of the solution θ(s; α)
by

Mθ(α) = max
0≤s≤1

θ(s; α),

and ahow that for α near π, either Mθ(α) = 0 or

Mθ(α) = ±2
√

2
√

α2 − π2/π.

Plot the response diagram Mθ(α) against α and you will see why this
bifurcation is called a pitchfork bifurcation.

Finally, go back and convince yourself that other choices for the mag-
nitude of δ do not lead to sensible expansions. Also show (using the
analysis above) that if α is slightly below the critical value, the only
solution is φ = 0.

8. The forced logistic equation. Explain why the equation

du

dt
= ku(1 − u)

is a crude model for population dynamics supported by a finite resource
(what happens to u if it is small, or just above/below 1?). Which term
in the equation corresponds to the size of the resource? Now suppose
that the resource fluctuates seasonally so that the population equation
is

du

dt
= ku(1 + ε cos t − u)

Find a periodic solution u = 1 + εu1(t) + · · · correct to O(ε2).

Show that the equation can be solved exactly by putting u = 1/v. Does
this help matters?
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9. Electric potential of a nearly circular cylindrical annulus. Find
the electric potential φ, satisfying ∇2φ = 0 between the two cylindersre (r, θ) are plane

ar coordinates. r = a, on which φ = 0, and r = b > a, on which φ = V . Suppose
that the inner cylinder is perturbed to r = a(1 + ε sin nθ). Calculate
φ correct to O(ε); to build up your arithmetical strength, calculate it
correct to O(ε2). What restriction on n is necessary for your expansion
to be valid?
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Chapter 15

Case study: electrostatic
painting 2

15.1 Small parameters in the electropaint model

When we left this problem, we had a dimensionless model with a number of
small parameters in it. Let’s revisit it in the light of our discussion of regular
expansions.

Recall that we have a number density n of particles, with velocity vp, an
electric field E, and gas velocity vg and pressure p. There are several small
dimensionless parameters in the model, and we’ll leave them all out except
the least small, which we call

ε =
qpV0L

KUg

(and apologise for the use of ε for electrical permittivity as well). The nu-
merical value of ε is about 0.1. There is also one O(1) parameter

A =
n0KL

ρgUg

whose numerical value is about 1.
The model consists of an equation of motion for the particles1

vp − vg = εE (15.1)

and conservation of particles,

∂n

∂t
+ ∇ · (nvp) = 0; (15.2)

1Now I really do need to apologise: how, to an applied mathematician of taste, could
εE be anything but D?

201
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we have an equation for the electric field,

∇ · E = n; (15.3)

and lastly we have the equation of motion and conservation of mass for the
gas,

dvg

dt
= −∇p + An (vp − vg) , (15.4)

and
∇ · vg = 0. (15.5)

Now expandIf any of the
following steps are
not clear, take a
minute to write
them out.

vp ∼ vp0 + εvp1 + · · · ,

with similar expansions for the other variables. It’s clear from (15.1) that

v0p = v0g,

which confirms that the particles follow the gas to leading order. If we use
this on the right-hand side of (15.4), we see that v0g just satisfies an ordinary
fluid flow problem with no body force from the particles. Let’s assume that
we can solve this, and carry on.

The next thing to do is to calculate the evolution of the number density
n. The leading order terms in (15.2) are

∂n0

∂t
+ ∇ · (n0vp0) = 0.

Bearing in mind that vp0 = vg0 and ∇ · vg0 = 0, this simplifies to

∂n0

∂t
+ vg0 · ∇n0 = 0,

a first-order hyperbolic equation2 whose characteristics are, not surprisingly,
the gas particle paths.

Having found n, the last task is to find the leading order electric field as
the solution of

∇ · E0 = n0.

We can now go round the cycle again, using the equations in the same
order. First, (15.1) tells us that

vp1 − vg1 = E0, (15.6)

2If you have only studied first-order partial differential equations in two independent
variables, it is a relief to find that the extension to more independent variables is very
straightforward; see [27], Chapter 1.
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then (15.4) and (15.5) are a linear system for vg1. Thus, we know the cor-
rection to the particle velocity from (15.6); we we can also calculate n1

from (15.2) and lastly E1 from (15.3). Notice how the asymptotic expan-
sion suggests an order in which to solve the equations, which might also be a
sensible basis for an iterative numerical scheme (at least in the steady case).

You can develop this problem further by doing the exercises on it.

Exercises

1. Electrostatic painting I. In the electrostatic painting model, we
wrote down conservation of number of particles,

∂n

∂t
+ ∇ · (nvp) = 0

and conservation of mass for the gas (assumed incompressible)

∇ · vg = 0.

(Remember that this is dimensionless, and n is scaled with a typical
number density n0 ≈ 109 m−3; what is the average distance between
the particles?)

In fact that isn’t quite right, because this is a two-phase flow and
gas may be displaced by particles and vice-versa. If we take a small
(but large compared to the average particle separation) representative
volume V , show that we can nevertheless justify it as follows:

(a) Show that the proportion of V that is occupied by particles is εn,
where ε = 4πn0a

3/3 if all the particles are spherical with the same
radius a (a ≈ 10−5 m). Estimate the numerical size of ε.

(b) Deduce that the proportion of V occupied by gas is 1 − εn.

(c) Using the general form

∂(density)

∂t
+ ∇ · (flux) = 0

for a conservation law, show that conservation of mass for the gas
(remember it’s incompressible so its density is constant) is

∂(1 − εn)

∂t
+ ∇ · ((1 − εn)vg) = 0.

Show also that the conservation of particles equation given above
is correct.
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(d) Just to confirm, show that

∇ · (εnvp + (1 − εn)vg) = 0,

and interpret this flux in physical terms.

(e) Expand n and vg in powers of ε, and show that the leading order
equations are those given above.

2. Electrostatic painting II. Complete the derivation of the O(ε) equa-
tions for this problem, and verify that all the equations you obtain are
linear in vg1, n1 etc.

3. Electrostatic painting III. Consider steady-state solutions of the
leading order (O(1)) equations for this problem. Show that vg0 ·∇n0 =
0. If the flow is two-dimensional, with stream function ψ, deduce that
n0 = f(ψ) for some function f determined by the inlet conditions.

4. Space charge. A variant of the electropainting problem occurs when
the charged particles are so small that they do not exert any significant
body force on the gas. The sort of physical situation that can be
modelled in this way is the motion of charged ions from a high-voltage
DC power cable, or the electrostatic scrubbers used to clean power
station emissions.

If there is no imposed gas flow, briefly justify the model

vp = E,
∂n

∂t
+ ∇ · (nvp) = 0, ∇ · E = n.

Given that we can write E = −∇Φ (since from Maxwell’s equations on
this time scale we have ∇∧ E = 0), show that the system becomes

∂n

∂t
+ n2 −∇n · ∇Φ = 0, ∇2Φ = −n.

In the steady state, show that the characteristics of the first of these
equations have tangent −∇Φ. Deduce that they are orthogonal to
the equipotentials, and parametrising them by τ , derive the ordinary
differential equation

dn

dτ
+ n2 = 0

along them. Show also how to model a point source of charged particles
by allowing n → ∞ as τ → 0.

Now suppose that there is an imposed gas flow which is irrotational,
so that there is a velocity potential φ with vg = ∇φ, where ∇2φ = 0
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(potential flow is often a very reasonable model upstream of an obstacle,
less so downstream where the effects of boundary layers, separation and
so on are felt). Show that there are parameter ranges where the model

vp = Avg + E,
∂n

∂t
+ ∇ · (nvp) = 0, ∇ · E = n.

is valid with A an O(1) constant. Show that the results of the previous
paragraph hold but with the characteristics derived from the modified
potential Φ − Aφ.

5. Paint layer again. Suppose that a thin layer of paint particles, de-
posited electrostatically as in the text, is growing on y = 0, and that its
thickness is y = h(x, t). If ε = H/L � 1, where H and L are a typical
thickness of the layer and length scale of the workpiece respectively,
justify the approximate boundary condition

∂h

∂t
= vp · n

on the workpiece (see the exercise on this topic in Chapter 7).
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Chapter 16

Case study: piano tuning

16.1 The notes of a piano: the tonal system

of Western music

This section contains a short description of the mathematical structure of
the tonal system used for a piano. It can be omitted by those not interested.

The particular sound of a given note of a piano or other musical instru-
ment is characterised reasonably well by its fundamental frequency and a
variety of higher harmonics (damping rates also play a role). These har-
monics are often (approximately — as we shall see, that is the point of this
case study) integer multiples of the fundamental frequency f1. On stringed
instruments this is because the normal frequencies of a vibrating string are
integer multiples of the fundamental, and wind instruments either have reg-
ular vibrating cavities (for example an organ tube) with the same integer
harmonic ratios or, like a French horn, they are carefully (and expensively)
made to sound this way. See the exercise on

page 215 for why a
cymbal or gong
sounds harsh.

When two or more notes are played together, their fundamentals and
harmonics all interact. The tonal system of Western music has been strongly
influenced by the features of this interaction; the mathematical construction
we now outline goes back at least to the Pythagoreans of Ancient Greece.
Suppose we play a note, called for example A, with fundamental frequency
fA

1 ; we hear frequencies fA
1 , fA

2 = 2fA
1 , fA

3 = 3fA
1 and so on. We might expect

the note A′, with fundamental frequency fA′
1 = 2fA

1 equal to twice that of
A, to sound good with A′, because its fundamental coincides with the first
harmonic of A. It does indeed sound good, and the interval between the two,
created by doubling the lower frequency, is called an octave. In a similar way,
the note with fundamental frequency 3fA

1 , produces a harmonious blend with
A, and so does the note an octave below it, whose frequency is 3

2
fA

1 . This

207
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octave

fifth semitone

A B DC E GF A

G�E�B�
A� C� D� F� G�

A�
G�

A�D�

Figure 16.1: A section of a piano keyboard.

note is called E, and the interval corresponding to a frequency ratio of 3
2

is
called a fifth.When a violinist

tunes up by playing
the A and E strings
together and
eliminating beats
by turning a tuning
peg, the beats that
are eliminated are
probably those
between the second
harmonic of the A
string and the first
harmonic of the E
string. See below
for a discussion of
beats.

The next note to be constructed is the fourth, with frequency 4
3
fA

1 , called
D. Its frequency ratio is 4

3
, and we notice that since 3

2
× 4

3
= 2, the interval

from E to A′ is also a fourth. Following this, we have the major and minor
thirds, with ratios 5

4
and 6

5
respectively. These are the most important

And, corresponding
to the major and
minor thirds, the
minor and major
sixths, with rations
8
5 and 5

3
respectively.

intervals and they make up, for example, the harmonious-sounding chords
you hear at the ends of pieces of music.

It is apparent that we can continue this process of interval construction
indefinitely, until we have notes with all rational multiples of fA

1 ; this might
be plausible in the context of a ‘continuous’ instrument like a violin or the
human voice but it is clearly impractical for a piano. Moreover, given that
the amplitude of the harmonics of a note decreases as we go to higher har-
monics, it would be pointless because we could never hear the interactions.
In practice, therefore, the process is truncated, and Western music is built
around a tonal system consisting of 12 notes, separated by intervals called
semitones. These notes contain the fifth (7 semitones), the fourth (5 semi-
tones) and the major and minor thirds (4 and 3 semitones respectively). For
reasons lost in history, only 7 letters are used to denote notes (these are the
‘white notes’ on a piano), the remaining ones being described with the help
of two operators, � (pronounced ‘sharp’) and � (‘flat’) which, when placed
after a note move it up by a semitone for a sharp and down for a flat.1

The sequence of notes can be written

. . . ,A,A� = B�,B,C,C� = D�,D,D� = E�,E,F,F� = G�,G,G� = A�,A, . . .

repeated up and down the piano in octaves.
If we look at this scheme more closely, we see that there is a contradiction

in it. One manifestation of the inconsistency is that an octave should consist

1For musical reasons, other notations such as C� (= B) or even G�� (= F) are possible,
but they are irrelevant here.
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of three consecutive major thirds of four semitones each, for example A–C�–
F–A. However, this gives a frequency ratio of (5

4
)3 = 125

64
< 2, whereas it

should give 2 exactly. Similarly the octave should be four consecutive minor
thirds; but (6

5
)4 = 1296

625
> 2. Another famous illustration of the inconsistency

is obtained by constructing the ‘circle of fifths’, in which we go up by fifths,
dropping down an octave as convenient:

A → E → B → F� → C� = D� → A�

(this is the ‘furthest removed’ note from A)

→ E� → B� → F → C → G → D → A.

The frequency of our last A, (3
2
)12, isn’t a power of 2 as it should be. It’s

slightly sharp: 531441/4096 ≈ 129.746 > 128.
As a consequence of the inconsistency in construction, we can never tune

an instrument so that all the intervals on it are perfectly in tune. For example,
if we tune the fifths to be perfect, moving away from A in both directions,
we get two different values for the furthest removed note, A�. Going up, we
get (3

2
)6, going down we get (2

3
)6, whose ratio is not a power of 2. Any other

interval gives a similar result. How, then, are we to choose the fundamental
frequencies of our twelve notes? The sound of two notes played together
depends very strongly on the their interaction. Harmonics that are close
together can give unpleasant sounding beats and sound out of tune, especially
on an instrument like an organ in which the volume does not fall off. What
compromise system should we use?

This question of temperament caused a great deal of trouble in the past,
and I don’t want to go into great detail about it here; literally hundreds
of solutions have been proposed (see [20] for a popular history and [16] for
a more technical derivation of some popular temperaments). The currently
accepted solution2 is to insist that each interval of a semitone corresponds
to the same frequency ratio, which must terefore be 2

1
12 ≈ 1.0595. With this

compromise, called equal temperament, all notes and intervals are slightly
wrong but at least no one note is more wrong than any other.

16.2 Tuning an ideal piano

The upshot of the previous section is that the goal of tuning a piano is
to obtain certain frequency ratios between the fundamental frequencies of
pairs of notes. Because the harmonics of an ideal piano string are integer
multiples of the fundamental, they too are to be tuned in specified ratios.

2Some composers are returning to ‘microtonal’ music.
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Moreover, these ratios are close to, but (apart from the octave) not exactly
equal to, integer ratios. For example, the equal-temperament fifth has a ratio
2

7
12 ≈ 1.4983.

The easiest intervals to tune are the octaves. If we use a tuning fork
(mechanical or electronic) to tune one note of our piano, say the A above
middle C, to its standard frequency of 440 Hz, then we can tune all the other
As on our instrument to frequencies of 2±k × 440 Hz by eliminating beats
between the fundamentals and the first harmonics of notes an octave apart.
Then we can tune other notes by using intervals such as fifths, listening to
the calculable (and measurable) beat rates on the appropriate harmonics (see
Exercise 2).

Interlude: beats. How would we tune a note on a piano to be the same
as a standard tone? The standard way is to play them together, and listen
for the beats. Suppose they have the same amplitude a and phase (see
the exercises for when they are not the same), but have slightly different
frequencies ω and ω + ε where ε is small. The sum of the signals is

a cos ωt + a cos(ω + ε)t = 2a cos(ω + 1
2
ε)t cos 1

2
εt.

This is a modulated wave: it oscillates at the fast frequency ω + 1
2
ε, which is

very close to ω, and its amplitude is modulated at the slow beat frequency ε.Not 1
2ε: we hear

two amplitude
peaks for each cycle
of cos 1

2 εt.

So the aim in tuning is to get the beat frequency to zero (or another specified
rate) by tightening or loosening the piano strings (a very skilled business).3

16.3 A real piano

Now let’s look at a real piano string. An ideal string satisfies the wave
equation

ρA
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

y = 0 at x = 0, L.

and it’s a piece of classical applied mathematics to show that the normal
modes areThese are of course

angular frequencies:
the frequencies in
Hz are fn =
ωn/(2π) = nc/(2L),
so that 1/fn is the
time taken for a
signal travelling at
the wave speed c to
travel from one end
of the string and
back n times.

3Irrelevant digression: how loud do n instruments of an orchestra sound compared to
one on its own? Answer:

√
n times as loud, because the phases of the instruments are

random. The sound signal from the whole orchestra is
∑

i ai cos(ωit + φi) where ai are
the individual amplitudes, ωi the frequencies and φi the phase shifts. Even if all the ai

are the same, the φi are in practice randomly distributed so (Central Limit Theorem) the
root mean square amplitude (standard deviation) of the sum is

√
n times an individual

amplitude. This is one reason why the concerto can succeed as an art form (of course,
skillful writing by composers may have something to do with it too.
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yn = eiωnt sin
nπx

L

where ωn = nπc/L and c2 = T/(Aρ).
For later convenience, we give the dimensionless versions of these results.

Scaling x with L and t with L/c and immediately dropping the primes, the
equation is

∂2y

∂t2
− ∂2y

∂x2
= 0, 0 < x < 1,

with
y = 0 at x = 0, 1,

the normal modes are
yn = eiΩnt sin nπx

and the dimensionless frequencies are

Ωn = nπ.

However, a real piano string has a small bending stiffness. A combination
of the string model above and the beam models we used earlier (see Exercise 3
on page 70) gives us the dimensionless equation

ρA
∂2y

∂t2
− T

∂2y

∂x2
+ EAk2 ∂4y

∂x4
= 0

for the string displacement. We can assess the size of the fourth-derivative
term by scaling x and t as above, to get the dimensionless equation

∂2y

∂t2
− ∂2y

∂x2
+ ε

∂4y

∂x4
= 0,

where

ε =
Ek2

ρL2c2
=

EAk2

TL2
.

Note the very sensitive dependence on the string thickness, as the fourth
power of the radius since, roughly, k ∝ a and A ∝ a2.

Now for a circular string of radius a, k2 = 1
2
a2, so if a = 1 mm, k2 =

1
2
× 10−6 m2. If the string is made of steel, it has E ≈ 2× 1011 and ρ = 7800

in SI units. Suppose that the string is 1 m long and has a tension of 1 000 N
(this is quite typical: the combined force of all the strings on a grand piano How many newtons

in a tonne weight?is several tonnes worth). Then

ε =
EAk2

TL2
=

2 × 1011 × π × 10−6 × 1
2
× 10−6

103 × 12
≈ 3.1 × 10−4,
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which is small indeed, but nevertheless has a noticeable effect, as we shall
see. The frequency of this string is c/(2L) is about 280 Hz, say the C� above
middle C.

Now let’s calculate the normal modes of a string. In order to do this we
need boundary conditions, two at each end. The simplest are that y = 0
(obviously) and that ∂2y/∂x2 = 0, so-called simply supported conditions,
which are probably not a bad approximation to the truth as the string passes
over a ‘bridge’ at each end. We shortcut the process of finding normal modes,
which you would usually do by looking for separable solutions yn(x, t) =
eiΩntYn(x), by noting that with our choice of boundary conditions, there are
solutions

yn = eiΩnt sin nπx

provided that

Ω2
n = n2π2 + εn4π4.

So, the normal frequencies are

Ωn = nπ
(
1 + εn2π2

) 1
2

∼ nπ
(
1 + 1

2
εn2π2 + o(ε)

)
.

The fundamental frequency of our string is thus

Ω1 ∼ π
(
1 + 1

2
επ2
)

and so the (n − 1)th harmonic has frequency

Ωn ∼ nπ
(
1 + 1

2
εn2π2

)
∼ nΩ1

1 + 1
2
εn2π2

1 + 1
2
επ2

∼ nΩ1

(
1 + 1

2
επ2
(
n2 − 1

))
,

using the binomial expansion to simplify the fraction.

We see that the higher harmonics have slightly larger frequencies than
the theoretical integer multiples of the fundamental, a property known as
inharmonicity. So, if we tune the string A′, one octave above our A, by
eliminating beats between its fundamental and the first harmonic of the lower
A string, the fundamental frequency of the higher string will be 2(1 + 3

2
επ2)

times that of the lower one, not the theoretical twice. This phenomenon
is known as octave stretch; over the 8 octaves of a piano, making the very
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crude assumption that the inharmonicities of the strings are all the same,
the stretch is by a factor

(1 + 3
2
επ2)7 ∼ 1 +

21

2
επ2

≈ 1.033.

This may not look much, but it is more than half a semitone; in fact the
inharmonicities on pianos can add up to as much as a whole semitone (the
higher strings especially are very short and so have larger values of ε, and
there are other effects due to the ends of the strings). It is not at all well
known, even among pianists, that the treble strings of a piano are this much
sharp of ‘theoretical’ values; fortunately there are no other instruments with
a similar range that might accompany it. In the exercises you can work out
how to deduce the inharmonicity by measuring beat rates, a first step in
calculating the optimal tuning for a given instrument.

Sources and further reading

This case study describes joint work in progress with Paul Duggan, who tunes
my piano while I do the calculations. There is a huge amount of fascinating
stuff about musical instruments in [11].

Exercises

1. Beats. Suppose that we combine two signals

a cos(ωt + φ1), a cos(ωt + ε + φ2).

Show that the beats analysis is unaffected.

Now combine signals with different amplitudes:

a1 cos ωt, a2 cos(ω + ε)t.

Show that the output consists of a constant-amplitude signal at fre-
quency ω, together with a signal that beats at frequency ε. To see this
in detail, suppose a1 > a2 and write the combined signal as

(a1 − a2) cos ωt + 2a2 cos
(
ω + 1

2
ε
)
t cos 1

2
εt.

Then work out the average of the squared amplitude over a ‘moving
window’ time interval which is large compared with the period of the
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fast oscillation at frequency ω, but small compared with the period of
the slow modulation at frequency ε. [Making the substitution εt = τ ,
you should get an integral something like∫ τ+δ

τ

[
(a1 − a2) cos

(
ωτ ′

ε

)
+ 2a2 cos

(
ω

ε
+

1

2

)
τ ′ cos

1

2
τ ′
]2

dτ ′

where ε � δ � 1. The squares of the first and second terms in the
brackets average over many periods to a constant and a modulated
amplitude respectively, and after a bit of diddling around the cross
term is found to average to zero. Try it and see; use the Riemann–
Lebesgue lemma if you want to be more rigorous.]

2. Equal temperament. Assume for this question that the harmonics
of a string are integer multiples of the fundamental. A piano tuner
tunes concert A at 440 Hz, and wishes to tune the E a fifth above,
using equal temperament. This is to be done by counting the beat rate
between the second harmonic of the A and the first harmonic of the
E (in practice, it might be done with the sixth and fourth harmonics).
Find a formula for the required beat rate and evaluate it numerically.
Repeat for the sixth/fourth pair.

3. Pianos and harpsichords Suppose that you have a solution y(x, t) of
the wave equation

∂2y

∂t2
= c2 ∂2y

∂x2
, 0 < x < L,

that is periodic in time with period T . Assuming sufficient smoothness,
show that ∫ T

0

∫ L

0

c2

(
∂y

∂x

)2

dx dt =

∫ T

0

∫ L

0

(
∂y

∂t

)2

dt dx

and interpret this statement in terms of energy. If the solution to a
general initial value problem for this string is expanded in a fourier
series in x, in the form

y(x, t) =
∞∑
1

(an cos(nπct/L) + Bn sin(nπct/L)) sin(nπx/L),

what is the ratio of the energy in each harmonic to that in the funda-
mental?
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A piano string is set in motion by a hammer which imparts an instan-
taneous velocity V to the small segment x0 < x < x0+h, the remainder
of the string string initially being at rest. Calculate the energy in each
mode relative to the fundamental. Repeat for a harpsichord (or gui-
tar) which is plucked by being let go from the piecewise linear static
displacement you get when you displace the point x0 by a distance a.

(The sound you hear is considerable modified by the soundboard and
other parts of the instrument.)

4. Waves on a circular membrane. Recall from the exercises of Chap-
ter ?? that waves on a circular membrane of radius a and density ρ per
unit area, stretched to tension T , satisfy

∂2u

∂t2
= c2∇2u,

where c2 = T/ρ is the wave speed.

Show that there are solutions

u(r, θ, t) = e−iωteimθR(r)

where
d2R

dr2
+

1

r

dR

dr
+

(
k2 − m2

r2

)
R = 0.

Putting x = kr = ωr/c, reduce this to Bessel’s equation of order m,

d2R

dx2
+

1

x

dR

dx
+

(
1 − m2

x2

)
R = 0.

Perform a local (Frobenius-style) analysis near x = 0 to show that Or just look for a
solution R ∼ xα as
x → 0 and find
possible values of α
by balancing the
most singular
terms.

there is only one solution that is bounded at x = 0; it is called Jm(x).
Deduce that the normal frequencies for a membrane clamped at its
edges are ωm,n where n labels the roots of Jm(ωm,na/c) = 0. (It can
be shown that there are infinitely many roots of Jm(x)0 and that they
are asymptotic to (n + 1

4
)π as n → ∞. However, the low harmonics

are far from being integer multiples of the fundamental.) Sketch some
nodal lines (lines where R = 0) for low values of m and n. Timpani
(kettledrums) are much more complicated than this membrane because
of the coupling with the air chamber.)

5. Cymbals and gongs. A simple model for a cymbal or gong is to
treat it as a circular elastic plate. It can be shown that the equation
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of motion for small displacements u(x, t) of such a plate is

ρ
∂2u

∂t2
+

Eh2

12(1 − ν)2
∇4u = 0,

where ρ is the density, E is the Young’s modulus, h the thickness;
the parameter ν, called Poisson’s ratio, is a material property whose
numerical value is often about 1

3
. Compare this equation with that of a

beam and convince yourself that it is plausible (Poisson’s ratio appears
because the geometry of a plate is different from that of a beam).

To save real estate, define

cL =

√
E

ρ(1 − ν)2
,

which is the wavespeed for longitudinal waves in a plate. Show that
time-periodic solutions u(x, t) = e−iωtU(x) satisfy

∇4U − 12ω

hcL
U = ∇4U − k4U = 0.

Deduce that one-dimensional waves for which u = ei(kx−ωt) are disper-
sive, with wavenumber and frequency related byCheck the

dimensions.

ω =
cLhk2

√
12

.

Now consider a circular plate and look for a solution

U(r, θ, t) = R(r) cosmθ.

Noting that ∇4 − k4 = (∇2 − k2)(∇2 + k2), show that the general
bounded solution for R(r) is

R(r) = AJm(kr) + BIm(kr)

where Im(kr) = i−mJm(ikr) is sometimes called a modified Bessel func-
tion of order m.

Write down (but do not attempt to solve) the normal frequency equa-
tion when the plate is clamped at its edges (u = 0 and ∂u/∂r = 0).
It is fairly clear that the roots are not in a harmonic progression, so
the higher harmonics will clash with the fundamental. It is possible
(but not recommended, on account of the heavy arithmetic) to find
the normal frequencies for the more realistic case of free edges, with a
similar lack of harmonicity.

This model is also useful in analysing flat-panel loudspeakers.
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6. Piano tuning. Suppose we don’t know the properties of our piano
strings, but we believe that the frequencies of the harmonics (in Hz) of
string k are given approximately by the formula

fk,n = nfk,1

(
1 + εk(n

2 − 1)
)
,

where the inharmonicity coefficient εk may vary from string to string. A
good piano tuner can hear the beats not just between the fundamental
of one string, but also between pairs of harmonics. For example, if
we have strings A, E, A′, where A′ is an octave above A and E is in
between, the beats between fA,3 and fE,2 can be used to tune the E
relative to the A, and then the beat rate between fA,6 and fE,4 can be
measured. Show how to take measurements between pairs of harmonics
(at most two per string) to determine the inharmonicity coefficients. (In
practice, A and E are taken in the middle of the piano, and the beat
rate between fA,3 and fE,2 is set to be ‘narrow’ by about 1 Hz in order
to achieve equal temperament. That is, the frequency of the higher
string is lowered from the beat-free 3

2
times that of the lower string

until beats occur at 1 per second.)
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Chapter 17

Multiple scales and other
methods for nonlinear
oscillators

17.0.1 Poincaré–Linstedt for the pendulum

Let’s go back to our original expansion (14.7) and write θ(t) = εφ(t) as we
should have done in the first place. Then, the first two terms in the expansion
give

d2φ

dt2
+ φ =

ε2

6
φ3 + o(ε2),

or, writing δ = ε2/6 to save arithmetic,

d2φ

dt2
+ φ = δφ3 + o(δ),

with

φ = a0,
dφ

dt
= 0 at t = 0.

The trick here is to expand the period (or frequency) in powers of δ as
well as expanding φ. So, we seek a solution φ(t) such that

φ(t + 2π/ω) = φ(t)

for all t, where φ and ω both have expansions

φ ∼ φ0 + δφ1 + · · · , ω ∼ ω0 + δω1 + · · · ;

obviously ω0 = 1 but we’ll derive this en route to more useful results.

219
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We introduce a scaled time τ = ωt, so that we have 2π-periodicity in τ :
φ(τ + 2π) = φ(τ). This gives us

ω2 d2φ

dτ 2
+ φ = δφ3.

Substituting for the expansions for ω and φ and collecting terms of O(1) and
terms of O(δ), we get

ω2
0

d2φ0

dτ 2
+ φ0 = 0,

so the periodicity gives ω0 = 1 and then φ0 = a0 cos τ : no surprises there.
At O(δ), we find

d2φ1

dτ 2
+ φ1 = φ3

0 − 2ω1
d2φ0

dτ 2

= a3
0 cos3 τ + 2ω1 cos τ

= 1
4
a3

0 cos 3τ +
(

3
4
a3

0 + 2ω1a0

)
cos τ.

This time, we can eliminate the secular terms, which arise from the reso-
nance between cos τ on the right-hand side, with cos τ which is also a solution
of the homogeneous equation. We just set its coefficient equal to zero, and
so we take

ω1 = −3a2
0

8
.

It’s then straightforward to show that

φ1 =
a3

0

32
(cos τ − cos 3τ) .

If you want, you can verify this result by integrating the full pendulum
equation exactly and then expanding the period for small initial amplitude.

Exercises

1. Exact pendulum.

Multiply the undamped pendulum equation

d2θ

dt2
+ sin θ = 0

by dθ/dt and integrate, using the initial conditions θ = εa0 and dθ/dt =
0. Separate the variables in this first order equation to get an expression
for half the period (if you want to look it up, it’s an elliptic integral).
Expand the integrand for small ε and integrate to confirm the Poincaré–
Linstedt result.
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2. Precession of the perihelion of Mercury. Recall that under New-
tonian theory the planets move around the sun under the central force
−GM/r2 per unit mass, where M is the sun’s mass and G is the univer-
sal gravitational constant (the forces due to other planets are ignored).
Suppose that when it is nearest the sun (perihelion), Mercury is at a
distance a from the sun and is travelling with speed v. Show that the
equations of motion in plane polar coordinates,

r̈ − rθ̇2 = −GM/r2, r2θ̇ = av,

and the substitution u = 1/r, lead to

d2u

dθ2
+ u = GM/a2v2, with u = 1/a,

du

dθ
= 0 at θ = 0,

and show that u = A + B cos θ for some A and B which you should
find. Sketch the orbit and note that it is 2π–periodic in θ. Why is there no

sin θ term?
The theory of general relativity gives the modified equation

d2u

dθ2
+ u =

GM

a2v2

(
1 +

3v2a2

c2
u2

)
,

where c is the speed of light. Writing ε = v2/c2, find the solution up
to O(ε) with the same initial conditions, and show that it is not 2π-
periodic in θ (it may be periodic in t though). Show that the next
perihelion (i.e the next value of θ at which du/dθ = 0) occurs at θ ∼
2π + 2π × 3(GM/av2)2ε. (Note that if u(θ; ε) ∼ u0(θ) + εu1(θ) + · · · ,
and u′

0(θ0) = 0, then the value of θ at which u′ = 0 is found by writing
it as θ ∼ θ0 + εθ1 + · · · , and expanding the equation u′

0(θ0 + εθ1 + · · · )+
εu′

1(θ0 + · · · ) = 0 to O(ε). Here θ0 = 2π.)

Confirm your analysis by carrying out the Poincaré–Lindstedt expan-
sion.

This result has been used as a test of general relativity. If a = 46
million km, v ≈ 60 km/s, G = 6.6710−11 N m2 kg−1, how big is the
shift per (Mercury) year?

3. Van der Pol and Rayleigh. The Van der Pol equation is

ẍ + ε(x2 − 1)ẋ + x = 0, ε > 0.

It was written down as a model for a spontaneously oscillating valve
circuit: by considering the damping term explain why this is plausible.



222 CHAPTER 17. METHODS FOR OSCILLATORS

Where (for what values of x and ẋ) is energy taken out and where is it
put in?

Rayleigh’s equation

ẍ + ε(ẋ2/3 − 1)ẋ + x = 0

was written down in connection with a model for a violin string. Show
that it can be transformed into the Van der Pol equation by differenti-
ation.

Take ε � 1 in the Van der Pol equation, and show that the periodicYou may need one
or other of the
expressions sin3 θ =
1
4 (3 sin θ − sin 3θ),
cos3 θ =
1
4 (3 cos θ + cos 3θ).

solution of the form A cos τ + εu1(τ) + · · · , where τ = ωt and ω ∼
1 + εω1 + · · · , is only possible if A = 2 and ω1 = 0.

Harder: draw the phase plane, noting the existence of this periodic
solution (known as a limit cycle).



Chapter 18

Boundary layers

18.1 Introduction

When might we not be able to construct a regular perturbation expansion for
a function in terms of a parameter ε → 0? Or, if we have one, where might it
not be valid? One thing that might go wrong is that either the function we are
approximating, or the approximation itself, may have singularities. Another
is that the approximation may slowly drift away from the true solution, as
we saw for the second term of the small-amplitude regular expansion for the
pendulum. A third possibility is that our function oscillates very rapidly,
with a period of, say, O(ε): we look at this case in Chapter ??. A fourth
possibility is that the function changes rapidly in a very small layer, say
of width O(ε), but is smooth elsewhere. Such a small layer is known as a
boundary layer if attached to the boundary of the solution interval or domain,
and an interior layer if it is internal; see Figure 18.1.

x x

Figure 18.1: A function with a boundary layer at the origin, and one with
an internal layer.
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18.2 Functions with boundary layers; match-

ing

Some functions come with built-in boundary layers. A prototype example,
which crops up all over the place in applications, is

f(x; ε) = e−x/ε for 0 < x < 1, ε → 0.

This function starts off with a value of 1 at x = 0, and becomes negligibly
small, certainly smaller than any power of ε, by the time x � O(ε). All its
effort is concentrated in a boundary layer of thickness O(ε) near the origin.
This example is rather trivial, but it is fairly clear that if f is a bit more
complicated, say

f(x; ε) = e−x/εg(x) + h(x),

where g(x) and h(x) are O(1) functions, then we don’t need to know all the
details of g and h to have a pretty good idea of what f does. When x = O(1),
the term e−x/ε is so small that we can forget about it, and we have the outer
expansion

f(x; ε) ∼ h(x) + exponentially small correction

(the exponentially small correction often goes by the name of transcendentally
small terms). On the other hand, when x is small, we expect g(x) and h(x)Notice that the

limit as x → 0 of
the outer solution,
h(0), is not in
general equal to
f(0; ε). It is the job
of the boundary
layer to
accommodate this
discrepancy.

to be close to their initial values g(0) and h(0), so that

f(x; ε) ∼ g(0)e−x/ε + h(0),

although here it is not quite so obvious how big the error is.
The real point of this discussion is not to tell us how to expand functions

which we already know. It is that we can often describe a function with a
boundary layer with two expansions, one outer expansion valid away from
the boundary layer, and one inner expansion valid in the boundary layer. In
an application, the full function may be the solution of some horrendously
difficult problem;1 but if we can identify where the boundary layers are we
may be able to formulate simpler problems for the inner and outer expansions,
and thereby get a good description of the full solution without actually having
to find it.

Before we plunge into a series of examples, we should first look a bit
more closely at the question of how we ‘join up’, or match, the inner and
outer expansions. We’ll do this first assuming we know the full function,

1The Navier–Stokes equations spring to mind: the viscous boundary layer in high
Reynolds number flow is an early and classic example of the technique in action.
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so that we just verify that we can do it. Later, we use the matching to
convey information between the two regions so as to complete the solution.
For example, we may have undetermined constants as the result of solving a
differential equation, and we fix these by matching.

18.2.1 Matching

There are various ways of joining together inner and outer expansions, and it
is in the nature of the subject that none is universal: there are examples for
which any method fails. However, the Van Dyke rule, which we now discuss,
is as robust as any, and it certainly works for all the problems in this book.2

Let us return to the example we have just discussed, but with a slightly I strongly suggest
that you work
through the
discussion; I have
put some stepping
stones of the
calculation in the
margin.

more complicated function

f(x; ε) = e−x/εg(x; ε) + h(x; ε)

where g(x; ε) and h(x; ε) have regular expansions

g(x; ε) ∼ g0(x) + εg1(x) + · · · , h(x; ε) ∼ h0(x) + εh1(x) + · · · ,

valid in the whole domain, here the interval [0, 1]. For example, take

g(x; ε) = x + εx2, h(x; ε) = 1 + εex.

We can investigate this more closely by rescaling x in the boundary layer,
writing x = εX. This gives

f(x; ε) = F (X; ε)

= g(εX)e−X + h(εX).

Now it should be safe to construct a regular expansion of g(εX) and h(εX),
to give

F (X; ε) ∼ e−X (g(0) + εXg′(0) + · · · ) + h(0) + εXh′(0) + · · · .

∼ F0(X) + εF1(X) + · · ·
Clearly the O(1) term in this expansion, F0(X), agrees with the intuitive
interpretation above. Moreover, as we go out of the boundary layer, that is

2A popular alternative is matching via an ‘intermediate region’ between the boundary
layer and the outer solution; see the exercise on page 228. Much cruder is ‘patching’ in
which we simply equate the values of the inner and outer expansions at a set value of (say)
x: this cannot inform us about the structure of the problem but it can be a useful part of
a numerical attack.
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as X becomes very large (i.e. X � ε), the term e−X becomes exponentially
small and can be neglected, so we have

lim
X→∞

F0(X) = h(0)

which is the ‘inner’ limit of the outer solution.
f(x) = e−x/εh(x).
Simple ODE example such as

εy′ + y = x, y(0) = 1;

inner and outer expansions, matching, Van Dyke. Not too much detail.
Simple pde example:

∂u

∂t
= ε2∂2u

∂x2
, u(x, 0) = 0, u(0, t) = 1

Here there is a similarity solution.
Lastly

∂T

∂x
= ε2

(
∂2T

∂x2
+

∂2T

∂y2

)
with T → 0 as |x| → ∞ and T = 1 on y = 0, x > 0.

Then large Pe flow past cylinder? Boussinesq.
Travelling wave soln of burgers (traffic)?

18.3 Case study: cable laying

Recall that in our case study of laying an undersea cable (see Section 5.3),
we wrote down a model in which the angle θ between the cable and the
horizontal satisfies

ε
d2θ

ds2
− F ∗ sin θ + (F0 + s) cos θ = 0,

in which F0 is an unknown constant (equal to the dimensionless vertical force
on the sea bed at the point where the cable touches down), F ∗ is a known
dinensionless constant, and ε is a small dimensionless constant measuring
the relative importance of cable rigidity and cable weight. The boundary
conditions for the problem are

θ = 0,
dθ

ds
= 0 at s = 0,

and θ is prescribed at s = λ.
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This problem is ideally suited to a boundary layer expansion, with a
small parameter multiplying the highest derivative. The leading order outer
solution θ0(s) satisfies

tan θ0 =
s + F0

F∗ ,

and it clearly does not satisfy the conditions at s = 0. Before investing too
much energy in it, let us look at the possibility of a boundary layer near
s = 0. Clearly θ is small in such a layer, and a little playing around, starting
with the obvious guess that the boundary layer is for s = O(ε

1
2 ), suggests

the scalings

s = ε
1
2 ξ, θ = ε

1
2 φ, F0 = ε

1
2 f0,

following which the leading order term in a regular expansion for φ satisfies

d2φ0

dξ2
− F ∗φ0 + s + f0 = 0.

Because there can be no exponentially growing term, the two boundary con-
ditions at ξ = 0 tell us both φ0 and f0:

φ0(ξ) =
ξ

F ∗ − 1

(F ∗)
3
2

(
1 − e−ξ(F ∗)

1
2

)
, f0 = − 1

(F ∗)
1
2

. (18.1)

It is easy to see that this matches with the outer solution, since substituting
for F0 and writing s = ε

1
2 ξ in our expression for θ0, we see that the inner

limit of the outer solution is

ε
1
2
ξ + f0

F ∗ ,

which is just the same as the outer limit of the inner solution, obtained by
neglecting the exponential term in (18.1).

We have also learned that F0 is small, so away from the boundary layer
the outer solution satisfies

tan θ0 =
s

F ∗ .

See the exercises for a demonstration that the solution of this equation is a
catenary, as we might expect if bending stiffness is negligible.

Exercises

1. A simple expansion near a singularity. Consider the function

f(x; ε) =
1

x + ε
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as ε → 0. If x = O(1), expand by the binomial theorem to show that Of course, the seri
in powers of x/ε
does not converge
|x| < ε (what is th
correct series
representation in
this case?), but
pretend we don’t
know this.

f(x; ε) ∼ 1

x
− ε

x2
+ · · · .

Clearly this expansion is invalid near x = 0, as the first term is singular
and the second term is larger than the first. Rescale x = εX to find a
valid approximation for small x. (This technique is useful for integrals

of the form
∫ 1

0
g(x)/(x + ε) dx.)

2. Matching by intermediate regions. The idea behind this matching
principle is to choose a range of values of the independent variable(s)
that is large compared to the boundary layer but small compared to the
outer region. For example, in the problem described in Section 18.2.1,
the intermediate region might be x = O(ε

1
2 ). Then both inner and outer

expansions are written in terms of an intermediate variable x = ε
1
2 ξ,

re-expanded as asymptotic series in this new variable, and compared:
they should be the same. Carry out this procedure for the example of
Section 18.2.1.

[MORE DETAILS HERE]

3. y′ + εy2 = 0.

4. An artificial example. Find an approximate solution to

εu′′ + u′ =
u + u3

1 + 3u2
, u(0) = 0, u(1) = 1.

First find the outer solution: which boundary condition will it satisfy,
and why? Then do the boundary layer near x = 0 and carry out the
matching. (The right-hand side of this example is selected (a) so thatYou may need to

convince yourself by
drawing a graph
that the equation
u + u3 = a has a
unique real root for
each a.

it gives an easy solution to the outer problem and (b) is uniformly
Lipschitz in u, so there is no question of blow-up. I very much doubt
that the full equation can be solved explicitly, but the approximation
tells you all about the structure of the solution.)

5. Singular expansion for a linear algebra problem. Consider the
problem (

1 + ε ε
1 − ε 2ε

)(
x
y

)
=

(
p
q

)
,

where 0 < ε � 1 and p, q are given. Draw the two lines whose inter-
section is the solution of these equations (a) when p = q = 1, (b) when
p = 1, q = 2. What happens as ε → 0? Calculate the exact solution
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and verify that it is consistent with your graphical analysis, and that
it is large when ε is small unless p = q + O(ε).

Write the problem as

Ax = b.

Recall the Fredholm Alternative theorem for the linear equations Ax =
b (page 132):

• If A is invertible (in particular if none of its eigenvalues vanishes,
so the homogeneous problem Ax = 0 has only the trivial solution
x = 0), the solution is unique.

• Suppose on the other hand that A is not invertible, so that there
is a vector v such that Av = 0. That is, 0 is an eigenvalue of
A and v the corresponding (right) eigenvector; we’ll assume for
clarity that 0 is a simple eigenvalue. Then there is also a nontrivial
(left eigen) vector w such that A�w = 0 and

– If w�b �= 0, then there is no solution to the original problem;

– If on the other hand w�b = 0, there is a solution but it is not
unique: the difference between any two solutions is a multiple
of v.

Now we find an asymptotic expansion for the solution of our problem.
Write

A = A0 + εA1, x ∼ x0 + εx1 + · · · .

Show that A0 has 0 for an eigenvalue and calculate the corresponding
right and left eigenvectors v0 and w0. Deduce that the leading-order
problem A0x0 = p only has a solution if p − q = O(ε).

From now on, take p = q = 1. Write down the general solution of
A0x0 = p in the form ‘particular solution + complementary solution’, The analogy with

linear ordinary
differential
equations suggested
by this terminology
is exact: see the ex-
ercise...(page 132).

where the latter is a multiple α of v0 which is not determined at this
order in the expansion. Write down the problem from the O(ε) terms
in the expansion, and use the Fredholm alternative to show that it only
has a solution if α = 2. Noting that x0 is now uniquely determined,
verify that it agrees with the small-ε expansion of the exact solution.

6. Cable laying with small bending stiffness. In Section 18.3, we
derived the equation

tan θ0 =
s

F ∗ .
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for the leading order gradient of a cable with small bending stiffness.
Remembering that tan θ0 = dy/dx = y′ and that

ds

dx
=
(
1 + (y′)2

)1
2 ,

show that the solution consistent with y(0) = 0 and y′(0) = 0 (because
θ0(0) = 0) is

y = F ∗ (cosh(x/F ∗) − 1) .

Deduce that the ship’s dimensionless position is at

x∗ = F ∗ cosh−1(1 + 1/F ∗)

and that the tensioner angle θ∗ and dimensionless thrust F ∗ are related
by

tan2 θ∗ =
1 + 2F ∗

(F ∗)2
.



Chapter 19

’Lubrication theory’ analysis:
heat flow in long thin domains

19.1 ‘Lubrication theory’ approximations: slen-

der geometries

We now turn to a class of approximation which derives its name from the
classical theory of lubricated bearings in machinery, associated with Reynolds
(the end of the 19th century was a great time to be a hydrodynamicist: there
were indeed giants on the earth in those days). The distinguishing feature
of problems to which it can be applied is that the physical domain is ‘long
and thin’ in at least one direction, like a plate or rod. One might think of
a lubrication solution as being ‘all boundary layer’; moreover, the geometry
tells us where the boundary layer is. We scale the coordinate(s) in the ‘thin’
direction differently from the rest, and thereby hope to formulate a simpler
problem by exploiting the smallness of the slenderness parameter

ε =
typical thickness

typical length
.

Indeed, the full problem is usually very hard if not impossible to solve ei-
ther explicitly or numerically, and even if we could solve it we would not
necessarily gain understanding. As so often, it is usually very difficult even
to prove that the lubrication approximation converges to the full solution in
the appropriate limit (one variety of ‘rigorous asymptotics’).

This chapter is longer than most in the book. You can find excellent de-
scriptions of most of the earlier material in other standard texts, but although
lubrication expansions are common in practice and in research papers, they
don’t feature prominently in textbooks. We’ll see applications to sheets and
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jets of fluids, as well as the original Reynolds problem, but we’ll start with
some simple problems in heat flow.

19.2 Heat flow in a bar of variable cross-section

We start with a very simple example: heat flow in a bar of variable cross-
section, with insulated sides. Only in very rare cases can this problem be
solved exactly, and a geometry of this kind does not lend itself very readily
to a simple numerical discretisation. However, we can find a very good
approximation to the solution with relatively little effort.

Consider steady heat flow in the domain 0 < x < L, −h(x) < y < h(x),
where

ε =
H0

L
� 1,

in which H0 is a ‘typical size’ for the bar thickness h(x); this means that we
can write

h(x) = H0H(x/L)

for some O(1) function H. Let us also impose a temperature drop from
T = Ti at the inlet x = 0 to x = L, and have perfectly insulated sides. The
temperature T satisfies

∂2T

∂x2
+

∂2T

∂y2
= 0, 0 < x < L, −h(x) < y < h(x),

with
T (0, y) = Ti, T (1, y) = 0,

and

n · ∇T =
∂T

∂n
= 0 on y = ±h(x).

Let us first see what the answer is, by a physical argument. Then we’ll derive
it more mathematically. We argue as follows:

1. The heat flux is approximately unidirectional, along the bar, because
no heat is lost through the sides. Thus, T (x, y) is approximately in-
dependent of y (that is, it is approximately equal to its average across
the bar; see the exercises), and we write T (x, y) ≈ T0(x).

2. The heat flux Q(x) across any line x = constant is exactly equal to∫ h(x)

−h(x)

−k
∂T

∂x
dy.
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Because ∂T/∂y ≈ 0, we have

Q(x) ≈ −2hk
∂T

∂x
, that is .Q(x) ≈ −2hk

dT0

dx
.

3. Heat is conserved, so dQ/dx = 0, that is

d

dx

(
h(x)

dT0

dx

)
≈ 0,

and the solution of this ordinary differential equation, with T0(0) = Ti,
T0(L) = 0, gives the ‘leading order’ behaviour of T (x, y).

There is nothing at all wrong with this argument. However, we would like
to be able to do a bit better. We would like to know how big the error is, when
the approximation is valid and, most of all, how to attack more complicated
long-thin problems where the physical argument is less clear-cut. This is
what lubrication theory, in its general sense, does.

The crux of the lubrication approach is to exploit the slenderness by
scaling x and y differently. We write

x = LX, y = H0Y ;

that is, we scale each variable with its own natural length scale. This is the
distinctive feature of the lubrication approach. Making the trivial scaling of
T with Ti and dropping the primes, we find that Recall that

h(x) = H0H(X).

ε2 ∂2T

∂X2
+

∂2T

∂Y 2
= 0, 0 < X < 1, −H(X) < Y < H(X),

with
T = 1 on X = 0, T = 0 on X = 1.

The conditions on y = ±h(x) take a little more work to scale. We have

n =
(±1, h′(x))

(1 + (h′(x))2)
1
2

for y = ±h(x) respectively,

and so n · ∇T = 0, namely ± ∂T/∂y − h′(x) ∂T/∂x = 0, becomes

±∂T

∂Y
− ε2H ′(X)

∂T

∂X
= 0 on Y = ±H(X).

Notice that the solution domain is now O(1)×O(1), but the small parameter
ε has been moved into the field equation and boundary conditions.
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Let us try writing It is easy to see
that the expansion
is only in powers o
ε2. But you shoul
write it all out to
get a feel for how
works.

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · .

Then we find that
∂2T0

∂Y 2
= 0,

which together with the leading order approximation

∂T0

∂Y
= 0 on Y = ±H(X)

means that
T0 = T0(X),

a function of X which is as yet unknown. That is all the information we get
from the leading order equations and boundary conditions.

In order to find T0, we have to look at the problem for T1. This is

∂2T0

∂Y 2
+ ε2

∂2T0

∂X2

+ ε2
∂2T1

∂Y 2
+ · · · = 0.

∂2T1

∂Y 2
= −∂2T0

∂X2
,

whose solution is clearly

T1(X,Y ) = −1
2
Y 2 ∂2T0

∂X2
+ an arbitrary function of X.

The O(ε2) terms in the boundary conditions areAide-arithmétique:

±
(

∂T0

∂Y
+ ε2

∂T1

∂Y

)
−ε2H ′ ∂T0

∂X
+ · · · = 0.

Notice that the
arbitrary function
of X disappears; it
is only found at
O(ε4).

±∂T1

∂Y
− H ′(X)

d2T0

dX2
= 0 on Y = ±H(X),

and putting these together we find that

−H(X)
d2T0

dX2
− H ′(X)

dT0

dX
= 0,

which is
d

dX

(
H(X)

dT0

dX

)
= 0

in confirmation of our intuitive argument. We have found out more, though:
we now know that the error is O(ε2) (and we could calculate it if we felt
strong enough). We also know that the expansion will not work if any of
the terms that we have assumed are O(1) are large. In particular, it is not
guaranteed to work if H ′(X) is large.
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Remarks

Note the following features of the analysis, which are very common in this
and other approximation schemes:

• The full problem (which here is an elliptic partial differential equation,
Laplace’s equation) has a unique solution.

• The leading-order approximate problem (here the ordinary differential
equation ∂2T0/∂Y 2 = 0) does not have a unique solution.

• We eliminate the non-uniqueness by going to higher order, O(ε2), in
the expansion, and find a solvability condition which resolves the in-
determinacy in the lowest order solution. This condition is essentially
the Fredholm Alternative theorem. In the exercises you can see the
the process of introducing indeterminacy at one order in an expansion,
then resolving it at the next, for the very simple linear algebra problem(

1 + ε ε
1 − ε 2ε

)(
x
y

)
=

(
1
1

)
.

19.3 Heat flow in a long thin domain with

cooling

Let us more briefly look at a variation on this problem. Consider steady heat
flow in the rectangular domain 0 < x < L, −H0 < y < H0, where

H0

L
= ε � 1,

with a temperature drop from Ti at x = 0 to 0 x = L, but now with Newton
cooling at the sides, with a background temperature of 0 and heat transfer
coefficient Γ. The temperature T (x, y) satisfies

∂2T

∂x2
+

∂2T

∂y2
= 0,

with

T (0, y) = Ti, T (L, y) = 0,

and

±k
∂T

∂y
+ ΓT = 0 on y = ±H0.
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Of course we can solve this problem by an eigenfunction expansion (see
the exercises). But in a more complicated problem we might not be so clever,
so let’s see what the lubrication approach has to say.

We first find the answer by an elementary physical argument. If the heat
flux is mostly in the x-direction (which is not quite so obvious as before),
so that we can still work with the average of the temperature across the
bar, and if the heat loss is proportional to this average temperature, then a
straightforward ‘box’ argument shows that

gradient of heat flux = rate of cooling,

or, again writing T0(x) for the approximate temperature,

−k
d2T0

dx2
) ≈ ΓT,

an ordinary differential equation for the approximate temperature, to be
solved with T0 = Ti at x = 0 and T0 = 0 at x = L. However, there is more
prima facie doubt about this argument: for example, it requires heat to flow
out of the bar, so ∂T/∂y cannot vanish, while maintaining that it is OK to
work with the averaged value of T . Is this consistent? We know that it works
when Γ = 0, the insulated case treated above, and it would be nice to know
the other values of the heat transfer coefficient for which this approximation
is valid, and to know the approximate temperature profile within the material
(so we can verify that it is indeed nearly one-dimensional).

As above, we write
x = LX, y = H0Y,

and scale T (x, y) with Ti, to find that

ε2 ∂2T

∂X2
+

∂2T

∂Y 2
= 0, 0 < X < 1, −1 < Y < 1,

with
T (0, Y ) = 1, T (1, Y ) = 0,

and
∂T

∂Y
± γT = 0 on Y = ±1;

here γ = εLΓ/k is the dimensionless heat transfer coefficient, also called a
Biot number (see page 55).

As the analysis below confirms, the most interesting case is when γ =
O(ε2), say γ = ε2α2, where α2 = O(1) and the square is for later convenience,
so we will proceed on that basis. If α2 � O(1/ε2) then there is no heat loss
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through the sides y = ±H0 to leading order: that is, almost all the heat
is conducted linearly from X = 0 to X = 1. (The small correction can
be calculated by a regular perturbation expansion.) On the other hand, if
α � O(1/ε2), then almost all the heat is lost in a small region near X = 0
(see the exercises).

As above, we expand

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · .

Then we find, as before,
T0 = T0(X),

as yet unknown. So, we move on to the problem for T1,

∂2T1

∂Y 2
= −d2T0

dX2
, (19.1)

with
∂T1

∂Y
± α2T0(X) = 0 on Y = ±1. (19.2)

The solution of (19.1) is clearly

T1(X,Y ) = −1
2

d2T0

dX2
Y 2 + an arbitrary function of X

and then from the boundary condition (19.2) we find an equation for T0(X):

−d2T0

dX2
+ α2T0 = 0,

which, after undoing the scalings, is exactly what we derived by a physical
argument earlier. Incorporating the boundary conditions at X = 0 and
X = 1, we have

T0(X) =
sinh α(1 − X)

sinh α
,

and we can of course construct higher order corrections if we want.

19.4 Advection-diffusion in a long thin do-

main

Let’s look at an extension of our previous examples, to include advection
along the domain. Suppose that the material of our domain 0 < x < L,
−H0 < y < H0 is moving with speed U in the x-direction (think of modelling
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heat lost by hot water flowing through a radiator). The model for the steady
temperature field is

ρcU
∂T

∂x
= k∇2T,

and let’s take boundary conditions

T = Ti on x = 0,

modelling a specified inlet temperature,

T = 0 on y = ±H0,

modelling excellent heat transfer to the surroundings, and

∂T

∂x
= 0 at x = L.

This last condition is not in fact an insulating boundary condition (re-
member the heat flux is ρcT (U, 0) − k∇T ), but rather a rough guess at a
plausible outflow condition; it’s always hard to know what to prescribe on an
outflow boundary of this kind. But in any case the message of our analysis
below is that it doesn’t much matter what we do at this downstream end.
We can even impose the condition T = 0, which is physically more or less im-
possible to realise, and the solution upstream won’t be enormously affected
(this case is dealt with in the exercises).

As in the previous examples, we scale x with L, y with H0 = εL, and T
with Ti, to get

ρcUH2
0

kL

∂T

∂X
=

∂2T

∂Y 2
+ ε2 ∂2T

∂X2

with boundary conditions

T (0, Y ) = 1, T (X,±1) = 0, T (1, Y ) = 0.

The dimensionless number

Pe =
ρcUH2

0

kL

is a Peclet number, measuring the relative effects of advection in the x-
direction and conduction in the y-direction. We assume that it is O(1) and,
just for clarity, that it is equal to 1. As in the previous example, this is
the only balance for which interesting action happens over all the length of
our domain. Put another way, this is the balance for which the system can
effectively transfer heat from the interior to the exterior.
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We could of course again use an eigenfunction expansion (see the exer-
cises). But again, this is messy. Instead, write

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · ,

and it is soon clear that the leading order problem is

∂T0

∂X
=

∂2T0

∂Y 2
, 0 < X < 1, (19.3)

with
T0 = 0 on Y = ±1.

We now have to choose whether to impose T0 = 1 at X = 0 or ∂T0/∂X = 0
at X = 1. We can’t have both, as (19.3) is a parabolic equation with X as
the ‘timelike’ direction. This gives us the clue: the equation is forward from
X = 0 and backward from X = 1, and only the former gives us a well-posed
problem. So, we take T0 = 1 at X = 0.

The solution with T0(0, Y ) = 1 is easily found in the form

T0(X,Y ) =
∞∑

n=0

2(−1)n

n + 1
2

cos
(
(n + 1

2
)πY

)
e−(n+ 1

2
)2π2X ,

and of course it does not satisfy the condition at X = 1. We deal with this
by introducing a boundary layer there. We want to rescale X − 1 so as to
bring back the neglected term ∂2T0/∂X2. So, we write X − 1 = δξ, where
ξ < 0, to give

1

δ

∂T0

∂ξ
=

ε2

δ2

∂2T0

∂ξ2
+

∂2T0

∂Y 2
.

Clearly the only plausible choice is to balance the first two terms, taking

δ = ε2

(so this boundary layer is very small); then, writing Tb for the temperature
in the boundary layer, we have

∂Tb

∂ξ
=

∂2Tb

∂ξ2
+ ε2 ∂2Tb

∂Y 2
, ξ < 0,

with

Tb(ξ,±1) = 0,
∂Tb

∂ξ
(0, Y ) = 0.

The leading order term in a regular expansion in powers of ε2 is easily found
to be The condition at

ξ = 0 rules out the
exponential solution
of the differential
equation.
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Tb0(ξ, Y ) = A(Y ),

where all we know about the arbitrary function A is that A(±1) = 0. So
how do we find it?

We have not yet exploited the information coming into our boundary layer
from the main flow. That is, we have to match with the ‘outer’ solution. At
leading order, this is easy. We use the Van Dyke rule with one term in the
inner and outer expansions. This tells us that

A(Y ) = T0(1, Y ) =
∞∑

n=0

2(−1)ne−(n+ 1
2
)2π2

n + 1
2

cos
(
(n + 1

2
)πY

)
.

This is almost trivial, but perhaps counterintuitively it shows that the
matching at leading order is between the values of the temperature and not
its gradient, even though the boundary condition we have imposed is on
the latter. We have to go to higher order to see this matching too; this is
requested in the exercises, and here we just note that it is very plausible that
the O(ε2) term in the inner expansion, ε2Tb(ξ, Y ) can match with an O(1)
outer temperature gradient because ε2∂ /∂ξ = ∂ /∂X.

Notice again that, where the full problem is elliptic, requiring boundary
conditions all round the domain, the approximate problem is parabolic and
we cannot impose a condition at x = L. The deficit is made up by the
boundary layer, which allows the outer solution to accommodate to whatever
we want at x = L (because the boundary layer is very thin, it might not be
easy to resolve numerically). Again, the approximate analysis tells us a lot
about the structure of the problem, in both qualitative and quantitative
terms.

Exercises

1. Heat flow in a bar of variable cross-section: I. In the problem of
Section 19.2, define

T̄ (x) =

∫ h(x)

−h(x)

T (x, y) dy.

Show that T̄ (x) exactly satisfies the equation

d

dx

(
h(x)

dT̄

dx

)
= 0

and interpret this physically.
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2. Heat flow in a bar of variable cross-section: II. In this exercise we
find an exact solution for steady heat flow in a long thin bar of variable
cross-section, exploiting the fact that Laplace’s equation is invariant
under conformal maps.

Consider the long thin rectangle 1 < ξ < e, −ε < η < ε, ε � 1. Show
that its image under the conformal map x + iy = log(ξ + iη), with the
branch cut out of the way on the negative real axis, is very close to
the region between the curves y = ±εe−x, 0 < x < 1. Show that the How big is the

error?solution for steady heat flow in the rectangle, with T = 0 at ξ = 1,
T = 1 at ξ = e, and insulated sides, is T = (ξ−1)/(e−1). Writing this
in terms of x and y, verify that this exact solution is consistent with
the approximate solution derived in Section 19.2. Use other conformal
maps to construct similar examples.

3. Heat flow in a long thin domain. Consider eigenfunction expansion
solution to the problem

∂2T

∂x2
+

∂2T

∂y2
= 0, 0 < x < L, −H < y < H,

with
T (0, y) = 1, T (L, y) = 0,

and

±k
∂T

∂y
+ ΓT = 0 on y = ±H.

Separate the variables to find eigenfunctions of the form

Tn(x, y) = cosαny sinh αn(L − x)

and show that the homogeneous boundary conditions on x = L, y =
±H are all satisfied provided that

αn tan(αnH) = Γ/k

(note that αn is dimensional, 1/length). Verify that the eigenfunctions
are orthogonal in y, and hence use the condition on x = 0 to calculate
the coefficients in the expansion

T (x, y) =
∑

n

anTn(x, y).

Verify that as H/L → 0, this solution is accurately approximated by
the ‘lubrication’ model of the text; consider all cases for the size of Γ.
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4. More heat flow in a long thin domain. Suppose that the domain
of the previous exercise is

0 < x < L, −H0 (1 + f(x/L)) < y < H0 (1 + f(x/L)) ,

where f(0) = 0, f(1) = 1, and f is smooth. Suppose that the heat
transfer boundary condition is

kn · ∇T + ΓT = 0

on the lateral boundaries, where n is the unit normal. Would you be
able to write down an eigenfunction expansion now? Show that the
dimensionless model is

ε2 ∂2T

∂X2
+

∂2T

∂Y 2
= 0, 0 < X < 1, −1 − f(X) < Y < 1 + f(X),

with
T = 1 on X = 0, T = 0 on X = 1

and

∂T

∂Y
∓εf ′(X)

∂T

∂X
±ε2α2

(
1 + ε2f ′2(X)

)1
2
T = 0 on Y = ± (1 + f(X))

(α is as defined in the text on page 236). Deduce that there is now a
term of O(ε) in the expansion for T and find the ordinary differential
equation for T0.

5. Still more heat flow in a long thin domain. Consider the model
above, but for a rectangular domain, namely

ε2 ∂2T

∂X2
+

∂2T

∂Y 2
= 0, 0 < X < 1,−1 < Y < 1,

with
T = 1 on X = 0, T = 0 on X = 1

and
∂T

∂Y
± ε2α2T = 0 on Y = ±1.

Suppose that ε2α2 = 1/δ, where δ ≤ O(ε) (by which I mean that
δ = O(ε) or δ = o(ε)), so that the heat transfer coefficient is large and
hence ε2α2 � 1. Show that scaling X with ε via X = εξ leads to the
problem

∂2T

∂ξ2
+

∂2T

∂Y 2
= 0, 0 < ξ < 1/δ, −1 < Y < 1,
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with boundary conditions

T = 1 on X = 0, T = 0 on X = 1/δ

and

T ± δ
∂T

∂Y
= 0 on Y = ±1.

Show that the leading order term in a regular expansion in powers of
δ satisfies

∂2T0

∂ξ2
+

∂2T0

∂Y 2
= 0, 0 < ξ < ∞, −1 < Y < 1,

with boundary conditions

T0 = 1 on X = 0, T0 → 0 as X → ∞
and

T0 = 0 on Y = ±1.

Solve this problem by conformal mapping, an eigenfunction expansion,
or a Fourier sine transform in ξ. Verify that the solution decays expo-
nentially as ξ → ∞, thereby justifying the replacement of the condition
at ξ = 1/δ by one at ξ = ∞.

Show further that ∂T/∂Y becomes very large as ξ → 0 on Y = ±1.
Deduce that the expansion is not valid near the two corners (0,±1).
Consider an inner expansion near (0,−1): show that in coordinates

ξ = δξ̃, Y = −1 + δỸ

and, with T0(ξ, Y ) ∼ T̃0(ξ̃, Ỹ ) + · · · , the inner problem is to leading
order

∂2T̃0

∂ξ̃2
+

∂2T̃0

∂Ỹ 2
= 0, 0 < ξ̃, Ỹ < ∞,

with

T̃0 = 1 on ξ̃ = 0,
∂T̃0

∂Ỹ
− T̃0 = 0 on Ỹ = 0

and the matching condition

T̃0 → 2θ

π
as ξ̃2 + Ỹ 2 → ∞,

where θ is the local polar angle. This problem is not easy to solve (the
Mellin transform may be best).
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6. Heat flow with convection in a long thin domain. Suppose that
T (x, y) satisfies

ρcU
∂T

∂x
= k

(
∂2T

∂x2
+

∂2T

∂y2

)
+ Q, 0 < x < L, −H < y < H,

where Q is a constant, with the boundary conditions

T = 0 on x = 0, y = 0, h,
∂T

∂x
= 0 on x = L.

What is being modelled here? Now suppose that H/L = ε � 1. Make
the equation dimensionless by scaling x with L and y with H, and
suppose that the Peclet number ρcUH2/kL turns out to be equal to 1.
What is the appropriate scale for T?

You should have arrived at the dimensionless equation

∂T

∂X
= ε2 ∂2T

∂X2
+

∂2T

∂Y 2
+ 1 0 < X < 1, 0 < Y < 1,

with the boundary conditions

T = 0 on X = 0, Y = 0, 1,
∂T

∂X
= 0 on X = 1.

Is this equation elliptic, parabolic or hyperbolic? Briefly indicate how
you would find a separation-of-variables solution in the form

T (X,Y ) =
∑

aneλnX sin nπY

where

ε2λ2
n − λn − n2 = 0.

For each O(1) value of n, find expressions for the positive and neg-
ative roots of this equation as ε → 0. Find the leading order terms
in an approximate solution to the original problem, and explain why
the positive roots of the eigenvalue equation for λn correspond to the
boundary layer contribution to the approximate solution.

7. And still more on heat conduction in a long thin domain. Find
terms up to O(ε2) in the outer and inner expansions of the solution of

∂T

∂x
=

∂2T

∂Y 2
+ ε2 ∂2T

∂X2
, 0 < X < 1,
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with boundary conditions

T (0, Y ) = 1, T (X,±1) = 0, T (1, Y ) = 0,
∂T

∂X
(1, Y ) = 0

(you will have to go to O(ε4) in the outer solution; save ink by writing
bn for the Fourier coefficients). Now carry out the matching to second
order using Van Dyke’s matching principle

2-term inner expansion of 2-term outer expansion =

2-term outer expansion of 2-term inner expansion.

That is, write the outer expansion in terms of the inner variable ξ =
(X − 1)/ε2. Expand the result, keeping terms of O(ε2). Repeat this
procedure for the inner expansion (notice how terms involving eξ are
neglected in this expansion, being exponentially small). Compare the
two expansions to identify all the unknown functions in the inner ex-
pansion.

Repeat the whole problem for the (physically unrealistic) condition
T = 0 at X = 1 (if you are feeling tired by now, just do the O(1)
terms).

Can you see physically why we may have to do something different if
we try to impose a zero-heat-flux condition at x = L?
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Chapter 20

Case study: continuous casting
of steel

20.1 Continuous casting of steel

One way of producing a continuous bar, or ‘strand’, of steel is to cast it
continuously. Molten steel is poured into a large ‘tundish’ from which it
emerges through a mould slot in the bottom. It is cooled by water pipes in
the sides of the slot and, once it has emerged, by water sprays and jets (see
Figure 20.1). When the steel emerges, it has a thin solid skin, which becomes
thicker as the steel moves down. Nevertheless, the liquid steel extends far
down the strand.

It is important to be able to control the location of the solid-liquid bound-
ary, for safety reasons (the molten steel must not be allowed to spill out) and
in order to get the metallurgy right. The former involves a very complicated
situation near to the mould, which we do not attempt to model here. Instead,
we write down a simple two-dimensional model for the latter (we don’t tackle
the problem of controlling the heat fluxes to achieve a desired solidification
rate).

This kind of model can also be used for other solidification processes such
as a Bridgeman crystal grower, in which a continuous strand of silicon is
solidified very slowly (in order to minimise defects) by being passed along a
conveyor belt and cooled from above and below.

Before proceeding, we remind ourselves of the Stefan model for solidi-
fication of a pure material. It is an experimental observation that a fixed
amount of energy per unit mass is required to melt a pure1 solid without
changing its temperature, and the same amount of energy must be removed

1In this case study, we are going to ignore the complication that steel is an alloy.
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Mould

Tundish

Strand

U

Figure 20.1: Continuous casting of steel

to solidify it. This heat is supplied or removed by the difference between the
heat fluxes into and out of the solid-liquid interface. In one space dimension,
we can carry out a ‘box’ argument for the configuration of Figure 20.2, in
which solid is to the left of the interface.

Liquid

Heat flux −k
∂T

∂x

∣∣∣∣
L

Solid

Heat flux −k
∂T

∂x

∣∣∣∣
S

Interface at t + δt

δx

Interface at t

Figure 20.2: The Stefan problem

If the interface moves a distance δx in time δt, the latent heat absorbed
(for melting, δx < 0) or released (for solidification, δx > 0) by that amount
of material in changing phase is

ρλ δx.

This must be balanced by the difference in heat fluxes over time δt,[
−k

∂T

∂x

]L

S

δt.

Hence we derive the Stefan condition for the speed of the interface,

ρλ
dx

dt
=

[
−k

∂T

∂x

]L

S

.
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The right-hand side of this condition is the net rate at which heat is supplied
to the interface, while the left-hand side is the rate at which it used up or
produced as the interface moves. In more dimensions, this argument is simply
generalised so that for an interface with unit normal n from solid to liquid,
and normal velocity Vn in that direction,

ρλVn = [−kn · ∇T ]LS .

If this reminds you of the Rankine–Hugoniot condition (it should), see Ex-
ercise ?? for more details.

We are now in a position to write down a model for steady heat flow in the
strand of steel. We straighten the strand out, modelling it by a rectangle,
thus assuming that the effects of curvature are small, as can be verified
later. We write U for the speed of the strand, and we immediately note that
the Peclet number is very small, so the temperature approximately satisfies
Laplace’s equation. We make the further simplification that the liquid steel
is exactly at its melting temperature, so we only have to find the temperature
in the solid (a one-phase problem). We’ll also take Newton cooling with a
background temperature of T∞ as a crude model for the effect of the water
cooling.

It is important to notice that the liquid-solid interface is unknown: we
have to find it as part of the solution. Let’s write it as y = ±f(x) (see
Figure 20.3). The solid temperature TS(x, y) satisfies

∂2TS

∂x2
+

∂2TS

∂y2
= 0

in the solid region, with

±k
∂TS

∂y
+ Γ (TS − T∞) = 0

on the edges y = ±H.
On the liquid-solid interface y = ±f(x), we have

TS = Tm,

the melting/solidification temperature, and the Stefan condition in the form

−k
∂TS

∂n
= ρλU cos θ,

where θ is the angle between the normal to the interface and the x–axis, so
that the normal velocity of the interface is U cos θ. This condition can also Some details for

checking.
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−k∂TS/∂y + Γ(TS − T∞) = 0

TL ≡ TM

k∂TS/∂y + Γ(TS − T∞) = 0

∇2TS = 0

TS = TM , −k∂TS/∂n = ρλU cos θ

θ

Figure 20.3: Model for continuous casting

be written

−k

(
∂TS

∂y
− df

dx

∂TS

∂x

)
= −ρλU

df

dx
.

For large x, we impose that TS → T∞, and we won’t be too specific about
the inlet conditions at this stage.

Now let’s make the problem dimensionless. Obviously we’ll scale y and
f with H, but the length scale L for x is less obvious. We could of course
use the length of the strand but a better idea is to derive the length scale
from the balance between latent heat release and cooling. This also has the
merit of telling us directly when our approximation is valid, and how long the
molten region is expected to be. So, we write x = LX and y = HY , where
L is yet to be found but as usual ε = H/L � 1, and we write y = ±f(x) as
Y = ±F (X). We also need a scale for the temperature; this is built into the
problem as

TS = TM + (TM − T∞) T (X,Y ).

So, dropping the primes, we have the dimensionless model

∂2T

∂Y 2
+ ε2 ∂2T

∂X2
= 0

in the solid, with the interface conditions

T = 0,
∂T

∂Y
+ εF ′(X)

∂T

∂X
= ελ̃F ′(X) (20.1)

on Y = ±F (X), where

λ̃ =
ρλU

((k(TM − T∞)/H))

is a dimensionless number which is written in this way to show that it mea-
sures the balance between latent heat release from an interface moving with
speed U and conduction due to a temperature difference of TM −T∞ across a
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distance of O(H). The factor ε on the right-hand side of (20.1) arises because
the interface only has a very small normal velocity.

Lastly the scaled cooling conditions are

∂T

∂Y
± α(T + 1) = 0 on Y = ±1, (20.2)

with α = ΓH (TM − T∞). Bearing in mind the previous examples, we need
the cooling rate to be small, so α � 1, and we also need it to balance the
rate of latent heat loss. We therefore determine L by making the choice

ε = α,

and check later that is it consistent.
Let’s concentrate on the part of the strand where the liquid has not all

solidified, and expand

T (X,Y ) ∼ T0(X,Y ) + εT1(X,Y ) + · · · .

By symmetry, we need only focus on the top half of the strand. We easily
have Details which

should be worked
through.

T0 = A0(X) + B0(X)Y,

where from the cooling condition (20.2) at lowest order B(X) = 0, and then
from the melting temperature condition A(X) = 0 as well. So,

T (X,Y ) ∼ εT1(X,Y ) + · · · ,

telling us that the temperature is everywhere within O(ε) of the melting
temperature. Continuing, we have Automatically

incorporating the
melting
temperature, much
more economical
than grinding out
T1 = A1Y + B1.

T1(X,Y ) = C1(X) (Y − F (X)) ,

and now the ‘1’ in the cooling condition (20.2) comes in to give

C1(X) = −1.

Lastly we use the hitherto unexploited latent heat condition (20.1) to find
that

F ′(X) = −1

λ̃
,

so that, if the interface starts off from Y = 1 at X = 0,

F (X) = 1 − X

λ̃
.
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2

3
1 4

5 6

Figure 20.4: Regions for the continuous casting problem.

We have thus predicted the length of the liquid region (Lλ̃) and the shape
of the interface to lowest order (linear).

Clearly this analysis is not valid near the tip of the strand, where the up-
per and lower free surfaces meet, as the heat flow is obviously two-dimensional
there. In fact one can carry out a more detailed analysis involving at least 6
regions (see Figure 20.4). Region 1 is an inlet region, from which all we need
to know is a starting value for the interface. We have just analysed Region 2,
which matches into Region 3, centred on the tip of the liquid region. This is
essentially the problem of a half-line at temperature 0 with temperature of
−1 on Y = ±1. Region 4 is necessary to resolve the singularity at the end
of the half-line, and it shows that the tip of the liquid region is parabolic.
Returning to Region 3, it matches into the intermediate Region 5, an inter-
mediate region of length O(H/ε

1
2 ), which enables the transition into Region 6

in which we finally have an eigenfunction expansion decaying exponentially
as x → ∞. Further details are given in the exercises.

Exercises

1.



Chapter 21

Lubrication theory for fluids

21.1 Thin fluid layers: classical lubrica-

tion theory

In this chapter, we describe the lubrication theiry analysis of a va-
riety of thin fluid flows. Having done the heat conduction problems
of Chapter 19, we shouldn’t have too much trouble with the original
(eponymous) lubrication theory model of flow of a viscous fluid in a thin
bearing bounded by rigid surfaces. Then we’ll generalise the approach
to find equations for thin viscous sheets with free surfaces.

The simplest configuration is that of a slider bearing, in which one
rigid surface slides over another as in Figure 21.1. These bearings are
common in machinery ranging from the head floating over the hard
disc of a computer1 to enormous pumps and other engines. When the
bearing is wrapped round into a circle, so that a rotating shaft can be
supported, it is known as a journal bearing.

1Nowadays the gap between the head and the disc is so small that it is not clear that
ordinary continuum models can safely be used for the fluid.

U

Figure 21.1: A slider bearing.
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We’ll look at two-dimensional flows only. Let us call the upper surface
y = H0H(x/L), where L is the length of the bearing and H0 a rep-
resentative value for the separation; as usual, ε = H0/L � 1. Let us
also take axes in a frame in which the upper surface is stationary and
the lower surface y = 0 moves to the right with velocity (U, 0). The
idea behind this bearing is to choose the shape H(x/L) of the upper
surface so that fluid dragged into the bearing (remember the no-slip
condition on the lower surface) generates a high load-bearing pressure
as it is forced through the converging part of the gap.

We’ll start from the Navier–Stokes equations for the velocity u = (u, v)
and the pressure p:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∇2u, ∇ · u = 0,

with the no-slip boundary conditions

(u, v) = (U, 0) on y = 0,

(u, v) = (0, 0) on y = H0H(x/L).

Following our long-thin analysis above, and in contrast to our scaling
when we last used these equations, we’ll scale x and y differentially, x
with L and y with H0. When we come to the velocity u = (u, v), we
have to scale its two components differentially as well, or we will not
conserve mass. Obviously we want to scale u with U , and since (in
unscaled variables)

∂u

∂x
+

∂v

∂y
= 0,

we need to scale v with εU . In the absence of any forced unsteady
motion of the upper surface, the natural time scale is then L/U . Lastly,
we need a scale P for the pressure p. In the absence of any obvious
‘exogenous’ scale, we’ll work this out from the equations.

As in our analysis above, we use X and Y for the scaled coordinates, but
we ‘drop the primes’ and stick with lower case letters for the dependent
variables. It’s a nasty hybrid notation, but capitals are so much harder
to read, and we’ll also be using dimensional equations later in the
chapter so we want to be able to distinguish them at a glance.

The X–component of the scaled momentum equation is

ρU 2

L

(
∂u

∂t
+ u

∂u

∂X
+ v

∂u

∂Y

)
= −P

L

∂p

∂X
+

µU

H2
0

(
ε2 ∂2u

∂X2
+

∂2u

∂Y 2

)
.
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If viscous shear forces are to do their job in generating pressure,2 we
have to choose P to balance terms on the right-hand side of this equa-
tion. Thus, P = µUL/H2

0 We now have the back-of-the-envelope esti- Compare with the
scaling µU/L we
used in deriving the
slow flow equations
earlier: here we
have (1/ε2)µU/L,
indicating the
effectiveness of the
long thin geometry
in generating high
pressures.

mate LP = µUL3/H2
0 of the load per unit distance in the z-direction

that this bearing can support.

This scaling for p leaves one dimensionless parameter in the problem,

Re′ = ε2UL

ν
= ε2Re,

known as the reduced Reynolds number. We’ll assume it is small; that
is, the model is valid when it is small. This means in particular that
all the inertial terms, some of which are nonlinear, are neglected.

Crossing off lots of small terms, our leading order model is then Exercise. . .

∂2u

∂Y 2
=

∂p

∂X
,

∂p

∂Y
= 0,

∂u

∂X
+

∂v

∂Y
= 0

for 0 < Y < H(X), with

u = 1, v = 0 on Y = 0, u = v = 0 on Y = H(X).

It is straightforward to integrate these equations, firstly noting that
p = p(X), then finding The flow is a

combination of a
Couette shear (the
first two terms) and
a Poiseuille flow
with pressure
gradient dp/dX, so
with hindsight we
could have written
this down.

u = 1 − Y

H(X)
− 1

2
Y (H(X) − Y )

dp

dX
,

and lastly using the continuity equation integrated with respect to Y ,

d

dX

∫ H(X)

0

u(X,Y ) dY = 0,

to find Reynolds’ equation

d

dX

(
H3 dp

dX

)
= 6

dH

dX

for the pressure. Given H(X), we solve this with ambient-pressure
conditions at each end, and we can then calculate the load our bearing
can support.

2At the other end of the viscosity range, one can make a model of an inviscid skimmer
held up over a thin layer of water by inertial forces only.
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(a)

(b)

y
y = h(x, t)

x

Figure 21.2: (a) Viscous layer spreading under gravity. (b) Velocity profile
for Poiseuille flow.

21.2 Thin viscous fluid sheets on solid sub-

strates

For our next application of the lubrication theory approach, we’ll derive
approximate equations for the evolution of thin sheets and fibres of
a viscous fluid. These problems are a little more difficult, because
the fluid has one or more free surfaces, whose locations have to be
determined as part of the solution of the problem. We start with the
case of a thin layer spreading out on a horizontal surface, a situation
which arises in applications ranging in lateral scale from microns (layers
of conductor applied in liquid form to a printed circuit board before
being baked solid) through centimetres (paint on a wall, honey spilled
on a table) to kilometres (magma flow from a volcano). We also briefly
describe the corresponding model for flow on a vertical surface, before
looking at free sheets, such as the glass sheets you would find when
making a bottle by blowing, or a window by the float glass process.
Lastly we look more briefly at manufacture of fibres, for example of
glass (optical fibres) or polymer (artificial fabrics).

21.2.1 Viscous fluid spreading horizontally under
gravity: intuitive argument

Imagine you spill a puddle of honey on a table. How does it spread out?
Assume that the depth is much smaller than the spread, and for now
take the two-dimensional situation sketched in Figure 21.2(a). Here is
a physical argument, in four steps (all variables are dimensional).
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(a) The flow is slow, so we use the Stokes equations (uncontroversial).

(b) The flow is driven by hydrostatic pressure and resisted by viscous
shear forces (uncontroversial). The pressure is approximately hy-
drostatic, because vertical velocities are small enough that the
viscous contribution to the forces in that direction is small (not
so obvious; believe it for now). Thus

p(x, y, t) = ρg (h(x, t) − y) .

(c) The horizontal velocity u is much greater than the vertical velocity
v and the free surface is almost horizontal. Moreover, on the free
surface the shear stress, which is approximately µ∂u/∂y, vanishes
(uncontroversial, although we might want to check later). We can
also regard this as a symmetry condition and thus, locally, the flow
looks like the bottom half of flow between two parallel plates sepa-
rated by 2h under a pressure gradient ∂p/∂x (see Figure 21.2(b)).
The velocity profile is therefore parabolic:

u(x, y, t) = − 1

2µ
y (2h(x, t) − y)

∂p

∂x
,

and the horizontal flux is

Q(x, t) =

∫ h(x,t)

0

u(x, y, t) dy

= − 1

3µ
h3 ∂p

∂x

= −ρg

3µ
h3 ∂h

∂x
.

(d) Mass conservation (uncontroversial) in the form

∂h

∂t
+

∂Q

∂x
= 0,

gives us a nonlinear diffusion equation for h(x, t):

∂h

∂t
=

ρg

3µ

∂

∂x

(
h3 ∂h

∂x

)
. (21.1)

Note that this dimensional equation tells us the timescale for the spread-
ing out. If x is scaled with L, h with a representative initial value H0,
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then the timescale emerges immediately as µL2/(ρgH3
0). This looks

reasonable: stickier fluids (larger µ) spread out more slowly, as do thin
layers or fluids in regions of low g.

If, instead of gravity, surface tension at the interface drives the motion
(as would be appropriate for thin layers of paint or conductor on a
PCB), a very similar argument (see the exercises) shows that we get
the fourth-order nonlinear diffusion equation

∂h

∂t
+

γ

3µ

∂

∂x

(
h3 ∂3h

∂x3

)
= 0. (21.2)

Not surprisingly, these equations with their evident structure have at-
tracted a lot of theoretical analysis; natural questions to ask include
‘if we start with a solution that is positive, does it remain so?’ (yes
for (21.1) and (21.2), but if h3 in (21.2) had been h the answer would
have been no) or ‘if we have a dry patch where h = 0, what do we say
at its edges?’ (conserving mass is not too hard, but the extra condi-
tion for the fourth-order equation (21.2) is rather more problematic).
Suggestions for further reading are given at the end of the chapter.

21.2.2 Viscous fluid spreading under gravity: sys-
tematic argument

You may be convinced by the derivation just given (I think I am). How-
ever, there are situations where a more precise approach is essential,
so let’s warm up for that by rederiving equation (21.1) by a systematic
asymptotic approach.

Let’s start with the slow flow equations

∇2u = ∇p − ρg, ∇ · u = 0 (21.3)

for the velocity u = (u, v), for which we have the no-slip condition

u = v = 0 on y = 0.

The big new feature in this problem is the free surface y = h(x, t).
It is unknown — we have to find it as part of the solution — and the
boundary conditions applied on it are more complicated. The kinematic
condition

v =
∂h

∂t
+ u

∂h

∂x
on y = h(x, t)
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is easy enough,3 and the other conditions, which say that no stresses
act at the free surface, are written

σijnj = 0,

where

n = (nj) =

(
−∂h

∂x
, 1

)/(
1 +

(
∂h

∂x

)2
)1

2

is the unit normal to the surface and

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
is the stress tensor for a Newtonian viscous fluid. We recall from Chap-
ter ?? that the components of σ are

σij =

⎛⎜⎜⎝ −p + 2µ
∂u

∂x
µ

(
∂u

∂y
+

∂v

∂x

)
µ

(
∂u

∂y
+

∂v

∂x

)
−p + 2µ

∂v

∂y

⎞⎟⎟⎠ .

Thus, the two components of the zero-stress condition,

σ11n1 + σ12n2 = 0, σ12n1 + σ22n2 = 0,

are

−∂h

∂x

(
−p + 2µ

∂u

∂x

)
+ µ

(
∂u

∂y
+

∂v

∂x

)
= 0, (21.4)

−µ

(
∂u

∂y
+

∂v

∂x

)
∂h

∂x
− p + 2µ

∂v

∂y
= 0 (21.5)

Scale x = LX, y = H0Y = εLY as usual. Since we expect the flow to be
driven by hydrostatic pressure, scale p with ρgH0. Then the horizontal
component of the momentum, balancing µ∂2u/∂y2 with ∂p/∂x, tells us
the scale for u, namely U0 = ρgH3

0/µL, and the scale for v is εU0 so that
mass conservation is not violated (it never is). Lastly our timescale is
L/U0 (or H0/εU0). You should check that we get the equations Again in our hybrid

notation in which
independent
variables are
capitalised and
dependent ones
lower case.

3Either think of this as
D

Dt
(y − h(x, t)) = 0

to express the fact that a particle in the surface remains there, or show that the normal
to any curve f(x, y, t) = 0 is n = ∇f/|∇f |, the normal velocity of a point on the curve is
−(∂f/∂t)/|∇f |, and equate this to n · u.
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∂2u

∂Y 2
+ ε2 ∂2u

∂X2
=

∂p

∂X
, (21.6)

ε2 ∂2v

∂Y 2
+ ε4 ∂2v

∂X2
=

∂p

∂Y
− 1, (21.7)

∂u

∂X
+

∂v

∂Y
= 0, (21.8)

(the −1 in (21.7) is gravity) with the no-slip condition

u = v = 0 on Y = 0, (21.9)

and, on Y = h(X,T ), the kinematic condition

v =
∂h

∂T
+ u

∂h

∂X
(21.10)

(note that unlike, say, water waves, our different scalings for u and v
mean that we keep the term u ∂h/∂X), and the stress-free conditions

− ∂h

∂X

(
−p + 2ε2 ∂u

∂X

)
+

∂u

∂Y
+ ε2 ∂v

∂X
= 0, (21.11)

−ε2

(
∂u

∂Y
+ ε2 ∂v

∂X

)
∂h

∂X
− p + 2ε2 ∂v

∂Y
= 0. (21.12)

We’ve done the hard work. Now we expand u, v, p in regular expan-
sions4

u ∼ u0 + ε2u1 etcetera,

and we decide what order to solve the equations in. Clearly from (21.7)
the pressure is hydrostatic to leading order, and from (21.12) it vanishes
on Y = h, so we put a tick against those two equations, as we won’t
use them again at this order, and write down

p0 = h(X,T ) − Y.

Now we find u0 using (21.6), with (21.9) and (21.11) for boundary
conditions:

u0(X,Y, T ) = −1

2

∂h

∂X
Y (2h − Y ).

Next integrate (21.11) with respect to Y and use the other part of (21.9)
to find v0, and substitution into (21.10) gives, as promised,A quicker way to do

this is to note that
the leading order
flux is

Q0(X, T ) =
∫ h(X,T )

0

u0(X, Y, T ) dY,

and to leading
order mass
conservation is

∂h

∂T
+

∂Q0

∂X
= 0.

∂h

∂T
=

1

3

∂

∂X

(
h3 ∂h

∂X

)
.

Undoing the non-dimensionalisation leads immediately to the equation
derived above.

4Strictly speaking, we should expand h as well, but as we only ever find the leading
order terms we won’t bother, sticking with h(X, T ).
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21.2.3 A viscous fluid layer on a vertical wall

Suppose that our layer of fluid is on a vertical wall (or an inclined plane
that is not almost horizontal). In this case gravity acts along the film, Think paint.
with the result that it balances the shear forces directly, rather than
being transmitted through the pressure. The intuitive argument to
derive the equation of motion is:

(a) The flow is approximately unidirectional with velocity u(x, y, t) in
the x–direction, down the wall (y is measured out from the wall).

(b) The pressure is everywhere very small (because of zero-stress on
the free surface y = h(x, t)). Instead, the body force ρg in the
x–momentum equation drives the flow.

(c) Remembering that we have no-slip at y = 0, that is u = 0, and
no-stress at y = h(x, t), that is approximately ∂u/∂y = 0, the flow
is the same as half of a Poiseuille flow between y = 0 and y = 2h,
driven by a pressure gradient ρg.

(d) The flux is therefore (standard calculation) gh3/(3ν) and conser-
vation of mass as above gives

∂h

∂t
+

g

ν
h2 ∂h

∂x
= 0.

A systematic derivation of this equation by scaling techniques is asked
for in the exercises. Notice that the new equation is first-order, not
second order as for nearly horizontal flow.

21.3 Thin fluid sheets and fibres

For our last example in this series of models for of thin layers of a
viscous fluid, we consider the evolution of a long thin viscous sheet
stretched from its ends x = 0, L with a characteristic speed U . Now
we have not one free surface but two, which adds some complexity to the
analysis, as we shall see. This configuration is not very easy to realise,
nor is it common in practice, although pizza makers come close (not
that dough is anything close to a Newtonian fluid). The best example
is probably the float glass process in which a layer of glass, which may
be some hundreds of metres long and tens of metres wide but only a
few millimetres thick, is floated on a bath of much less viscous molten
tin. As it travels from one end to the other, it should reach a state
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y = H(x, t) − 1
2h(x, t)

y = H(x, t) + 1
2h(x, t) y = H(x, t)

U

x

y

Figure 21.3: Drawing a thin sheet of viscous fluid.

of absolutely smooth pellucid perfection, so it is of vital importance to
glass manufacturers to be able to control this process. However, the
corresponding axisymmetric situation of a thread or fibre of fluid, which
has only one free surface but still no fixed surfaces, is very common.
Examples are manufacture of optical fibres from glass and artificial
fabric fibres from polymers, both of which involve solidification of a
liquid thread (so does making candy floss).5

There is a simple physical argument which leads to the correct answer
(more or less). Much of it is familiar:

(a) The sheet is nearly flat and the velocity is approximately unidi-
rectional, in the x–direction (along the sheet).

(b) The surfaces are stress-free so the x–velocity does not vary signif-
icantly across the sheet: it has the form u(x, t).

(c) The stretching is resisted by viscous stresses (force per unit area)This will be the σ11

stress component,
the force per unit
area in the
x–direction across a
plane with normal
in the same
direction.

which, for a Newtonian fluid are proportional to the velocity gra-
dient ∂u/∂x. Thus the total force (per unit length perpendicular
to the page) is proportional to h ∂u/∂x, where h(x, t) is the thick-
ness of the sheet. As there are no external forces, this must be
constant along the sheet:

∂

∂x

(
h
∂u

∂x

)
= 0. (21.13)

(d) The second equation for h and u is mass conservation:

∂h

∂t
+

∂(hu)

∂x
= 0,

and this completes the model. An identical argument holds for a
thin fibre, with h(x, t) replaced by the cross-sectional area A(x, t).

5We should really include temperature-dependent viscosity in the model for both these
fibres, and non-Newtonian fluid effects for the polymer. We’ll keep things simple.
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As ever, this analysis raises as many questions as it answers. In partic-
ular, it says nothing about the constant of proportionality in the rela-
tionship between the resistive stress and the velocity gradient. Clearly
this constant is some sort of viscosity, and indeed it has a name, the
Trouton viscosity, but how is it related to the usual dynamic viscosity
µ? We don’t need to know this if no forces (such as air drag) act at
the surfaces of our sheet, because we cancel from both sides of the mo-
mentum balance equation (21.13), but it is crucial otherwise. In any
case, if we integrate (21.13) we find

h
∂u

∂x
∝ T (t),

where T (t) is the tension applied to our sheet, so we need the constant Or, replacing h by
A, fibre.if we are to calculate the total tension needed to stretch the sheet. Only

a more detailed analysis can tell us.

21.3.1 The viscous sheet equations by a systematic
argument

Let us call the surfaces of the sheet y = h̄(x, t) ± 1
2
h(x, t), so that the

centreline of the sheet is at y = h̄(x, t): we don’t know a priori that
it is symmetrical. The dimensional equations that we must solve are
very similar to those of the previous section, but with gravity removed
and the no-slip condition replaced by zero-stress conditions on both
surfaces. We have the slow flow equations

∇2u = ∇p, ∇ · u = 0

for the velocity u = (u, v), with the kinematic and dynamic (zero-
stress) conditions

v =
∂

∂t

(
h̄ ± 1

2
h
)

+ u
∂

∂x

(
h̄ ± 1

2
h
)
, σijnj = 0

on y = h̄(x, t) ± 1
2
h(x, t).

The scaling of x with L, y, h̄ and h with a typical thickness H0, and u,
v with U , εU is much as before. It’s not so easy to see a pressure scale This scale is O(ε2)

smaller than the
slider bearing scale
because there are
no solid surfaces to
generate high
pressures.

here, so let’s use the standard slow flow scale µU/L as a first guess and
let the equations tell us how (if at all) that should be corrected. The
scaled equations are pretty much a cut-and-paste job too:

The ε’s crop in
different places
because of our
different pressure
scale, so you may
want to work
through the details,
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∂2u

∂Y 2
+ ε2 ∂2u

∂X2
= ε2 ∂p

∂X
, (21.14)

∂2v

∂Y 2
+ ε2 ∂2v

∂X2
=

∂p

∂Y
, (21.15)

∂u

∂X
+

∂v

∂Y
= 0, (21.16)

with the kinematic condition

v =
∂

∂T

(
h̄ ± 1

2
h
)

+ u
∂

∂X

(
h̄ ± 1

2
h
)

(21.17)

on y = h̄ ± 1
2
h. The stress-free conditions become

−ε2

(
−p + 2

∂u

∂X

)
∂

∂X

(
h̄ ± 1

2
h
)

+
∂u

∂Y
+ ε2 ∂v

∂X
= 0, (21.18)

−
(

∂u

∂Y
+ ε2 ∂v

∂X

)
∂

∂X

(
h̄ ± 1

2
h
)− p + 2

∂v

∂Y
= 0. (21.19)

Now we expand

u ∼ u0 + ε2u1 + · · · , v ∼ v0 + ε2v1 + · · · , p ∼ p0 + ε2p1 + · · · ,

h̄ ∼ h̄0 + ε2h̄1 + · · · , h ∼ h0 + ε2h1 + · · · ,

take a deep breath and insert.6

At O(1), equation (21.14) tells us that ∂2u0/∂Y 2 = 0, so

u0 = u0(X,T ),

and so to leading order the flow is unidirectional (extensional) as promised.
Looking through our equations, we see that (21.18) is also satisfied at
this order, and so we tick it off and move on to the continuity equa-
tion (21.16), which tells us that

v0 = −Y
∂u0

∂X
+ V0(X,T ),

where V0 is found from the kinematic condition (21.17) as

V0(X,T ) =
∂

∂T

(
h̄0 ± 1

2
h0

)
+

∂

∂X

(
u0

(
h̄0 ± 1

2
h0

))
.

6Warning: in this problem we are going to go to O(ε2). If we are to be consistently
accurate, at each stage we have to remember to expand the location where the free surface
conditions are applied about the leading-order location Y = h̄0± 1

2h0 (as in Section 14.5.1).
Fortunately, we don’t have to do that here.
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This is true for both + and − signs and so, subtracting, we find

∂h0

∂T
+

∂(u0h0)

∂X
= 0,

which is conservation of mass to leading order. Lastly we see from (21.15)
that ∂p0/∂Y = 0, and so from (21.19) and the expression we have just
found for v0,

p0(X,T ) = −2
∂u0

∂X
.

Let us pause and take stock. We have shown that, to leading order,
the flow is extensional, and that mass is conserved, but this is only one
equation for u0, h̄0 and h0. On the other hand, we have also shown
that, in scaled terms,

(σ11)0 = −p0 + 2
∂u0

∂X
= 4

∂u0

∂X
,

and so we expect the leading order tension to be

(hσ11))0 = 4h0
∂u0

∂X
.

Thus, we anticipate that

∂

∂X

(
4h0

∂u0

∂X

)
= 0,

a second relation between h0 and u0, but not h̄0. In dimensional terms,
this says that

σ11 ∼ 4µ
∂u

∂x

and so the Trouton viscosity for a sheet is 4µ, a result we could never
have guessed. (For a slender fibre it is an even less likely 3µ.)

This is encouraging, so let us press on to the O(ε2) equations. We
solve them in the same order as the O(1) equations, namely (21.14)
with (21.18), then (21.16) with (21.17), and lastly (21.15) with (21.19). Hic opus, hic labor

est.We have reached the stage at which the arithmetical details become
unedifying and are best dealt with in private; here is a sketch.

From (21.14),
∂2u1

∂Y 2
= −3

∂2u0

∂X2
,
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which, with (21.18) on Y = h̄0(X,T ) ± 1
2
h0(X,T ), gives

∂u1

∂Y

∣∣∣∣Y =h̄0+
1
2

h0

Y =h̄0−1
2

h0

= −3Y
∂2u0

∂X2

∣∣∣∣Y =h̄0+
1
2

h0

Y =h̄0−1
2

h0

= a lot of terms involving u0, h̄0, h0.

After simplification, we do indeed find that

∂

∂X

(
4h0

∂u0

∂X

)
= 0. (21.20)

The other equations are integrated in a similar way and lead, eventually,
to the equation

∂

∂X

(
4h0

∂u0

∂X

∂h̄0

∂X

)
= 0.

Bearing in mind the equation (21.20) just found, this shows that

∂2h̄0

∂X2
= 0,

and so the sheet is, to lowest order, straight (the same applies to a
fibre). This should not be taken to mean that all viscous sheets and
fibres are straight, but rather that if they are being stretched on the
timescale L/U of our analysis they must be straight. If the ends of a
curved sheet are pulled apart, another model must be used, as they
must when the sheet is being stretched so rapidly that the slow flow
assumption does not hold.

I cannot leave this topic without pointing out that the nonlinear equa-
tions we have derived,

∂h0

∂T
+

∂(u0h0)

∂X
= 0,

∂

∂X

(
4h0

∂u0

∂X

)
= 0,

can be reduced to a linear system. You can find out about this by
doing the exercise on page 275.

21.4 The beam equation (?)

Further reading

There is much more on the derivation of models for thin sheets and
fibres in the papers [19], [8].
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Exercises

(a) Tilting pad bearings. Calculate the pressure in a slider bearing
of (dimensionless) thickness H(X) = 1 + αX. Write down an
integral for the load.

Now suppose that the upper surface of the bearing is pivoted freely
at a point X0 (0 < X0 < 1). Write down a moment condition for
the bearing to be in equilibrium, and deduce a relation between
the load and the angle α of the upper ‘tilting pad’. (Don’t try
to simplify the integrals without a symbolic manipulator such as
Maple.) This kind of bearing is self-adjusting: the pad tilts to
accommodate whatever load is imposed.

(b) Two-dimensional bearings. Extend the analysis of the slider
bearing to a rectangular upper surface above a flat lower surface,
to derive a two-dimensional version of Reynolds’ equation.

(c) Squeeze films. Suppose that the upper surface of a slider bearing
is time-varying with characteristic frequency ω, for example by
the imposition of a periodic load, so that the gap is H(X,T ) in
dimensionless variables, in which t is scaled with 1/ω. Show that
mass conservation is

∂

∂X

∫ H(X)

0

u(X,Y ) dY + σ
∂H

∂T
= 0,

where σ = ωL/U is a dimensionless parameter known as the bear-
ing number, and that Reynolds’ equation becomes

∂

∂X

(
H3 ∂p

∂X

)
= 6

∂H

∂X
+ 12σ

∂H

∂T
.

Now suppose that U = 0 for the configuration of a slider bearing,
but that the upper surface is oscillated up and down with fre-
quency ω and amplitude a, thus forming a squeeze film. Scaling
t with 1/ω and v with aω, what are the appropriate scales for u
and p? Show that the appropriate version of Reynolds’ equation
is

∂

∂X

(
H3 ∂p

∂X

)
= 12

∂H

∂T
.

Show that by oscillating a suitably-shaped upper surface normal
to the lower surface it is possible to generate a non-zero pressure
(averaged over one cycle of oscillation) even if U = 0. This effect
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is used to move silicon chips around semiconductor plants on os-
cillating tracks with saw-tooth shaped surfaces (asymmetry in the
surfaces generates a longitudinal pressure gradient which induces
motion in that direction).

Show that if a constant load is applied normal to two flat parallel
plates initially a distance H0 apart, they take an infinite time to
make contact. (In practice, no surface is absolutely flat, and small
asperities in the surfaces make contact well before t = ∞. It is
almost impossible to pull apart two optically flat surfaces that
have been put together, and it can be surprisingly hard to lift a
sheet of paper normal to a smooth surface. The trick is of course
to slide the optically flat surfaces, and to lift the paper from the
edge.)

(d) Surface tension driven thin horizontal film. Consider the
evolution of a thin nearly flat horizontal fluid layer under the
action of surface tension. Assume that the effect of surface tension
is to give a jump in the normal stress across the fluid surface of

γ × curvature,

where γ is the surface tension coefficient. Show that the curvatureWhat are the
dimensions of γ? of a nearly flat interface y = h(x, t) is approximately ∂2h/∂x2 and

hence that the pressure in the flow is
If s measures
arclength along the
curve y = f(x) and
ψ is the angle
between the
tangent and the
x–axis, then the
curvature is
κ = dψ/ds, which I
hope you can show
is equal to
f ′′/(1 + (f ′)2)3/2.

p(x, y, t) ∼ γ
∂2h

∂x2
.

Deduce that the thickness satisfies

∂h

∂t
+

γ

3µ

∂

∂x

(
h3 ∂3h

∂x3

)
= 0.

What is the timescale for the flow? What is the equation when we
also consider variations in the third (‘into the paper’) direction?

Repeat the systematic asymptotic derivation in this case, imposing
the stress conditions

σijninj = γκ, σijnitj = 0,

where κ is the curvature with the appropriate sign, and t = (ti)
the unit tangent to the free surface.,



21.4. THE BEAM EQUATION (?) 269

(e) Similarity solution for thin fluid layer. Show that the equa-
tion

∂h

∂t
=

1

3

∂

∂x

(
h3 ∂h

∂x

)
(the dimensionless version of (21.1)) has similarity solutions of the
form

h(x, t) = t−αf(x/tα)

and find α and the ordinary differential equation satisfied by f(ξ),
where ξ = x/tα. Show further that this equation has solutions of
the form

f(ξ) =

{
A(c2 − ξ)β, |ξ| < c,

0, |ξ| > c,

and find the constants A, c, β. (Although this solution, which has
compact support, does not have continuous derivatives at ξ = ±c,
it represents the evolution of a blob of fluid whose extent is always
finite; the mass flux at x = ±ctα is bounded. This property is
generated by the nonlinearity and in particular the fact that the
‘diffusion coefficient’ (the h3 multiplying ∂2h/∂x2) vanishes at h =
0. A linear diffusion equation, or one whose diffusion coefficient
is bounded away from zero, could never produce such a solution.
Notice also that this solution tends to δ(x) as t → 0. Although
the thin-film assumption is not valid if h is a delta function, one
can still think of this solution as being the large-time asymptotic
behaviour of any initial blob with compact support.)

(f) Viscous liquid on an inclined plane Give a careful asymptotic
derivation of the equation Note that this is

dimensional.
∂h

∂t
+

g sin θ

ν
h2 ∂h

∂x
= 0

for the spreading down an inclined plane at an angle θ to the
horizontal of a thin viscous fluid sheet. What model is appropriate
if θ = O(ε), where ε is the slenderness parameter of the sheet?

Harder: if the flow is over the surface z = f(x, y), show that the
generalisation is

∂h

∂t
− g

3ν
F∇ · (h3F∇f

)
= 0,

where F (x, y) = (1 + |∇f(x, y)|)− 1
2 and h(x, y, t) is the layer thick-

ness measured normal to the surface.



270 CHAPTER 21. LUBRICATION THEORY FOR FLUIDS

(g) Liquid paint flow. A thin layer of viscous paint flows down
a vertical wall. Taking x downwards along the wall, write its
thickness as y = h(x, t), and work through the following alterna-
tive derivation of the equation for h. Because the layer is thin,
its velocity may be taken to be approximately u(x, y, t) in the
x–direction. Gravity is resisted by the viscosity of the paint, re-
sulting in a shearing force, which we assume to be approximately
equal to µ∂u/∂y, where µ is the viscosity of the fluid and ∂u/∂y is
the velocity gradient. Use a force balance on a small fluid element
to show that ∂2u/∂y2 = −ρg/µ. Using the boundary conditions
u = 0 on y = 0 (no-slip) and ∂u/∂y = 0 on y = h(x, t) (no shear
at the free surface), deduce that

u =
ρg

2µ
y(2h − y).

Show that mass conservation requires that

∂h

∂t
+

∂

∂x

∫ h

0

u dy = 0,

that is,
∂h

∂t
+

ρg

µ
h2 ∂h

∂x
= 0.

Assume a length scale L for variations in h, and a typical thickness
H. Make the equation dimensionless and write it in conservation
form

∂h

∂t
+

∂(1
3
h3)

∂x
= 0.

Write down the characteristic equations and draw the character-
istic projections in the (x, t) plane (a) when h(x, 0) = h0(x) is an
increasing function of x, and (b) when it is decreasing. InterpretYou may want to

refer back to the
exercise on page 59
to remind yourself
of the dimensional
analysis of this
problem.

the results. Which flows quicker, a thick layer or a thin one?

Antonio, Bruno and Carlo are cooking. They have a very small
amount of olive oil (a nice Newtonian fluid, unlike many liquids in
the kitchen) in the bottom of one of those square bottles. Carlo

OK, a cylinder of
square
cross-section. . .

turns the bottle upside down and holds it vertically while Bruno
holds it flat side down at an angle to the horizontal. Assuming
that the oil flows down the sides of the bottle rather than simply
falling to the neck, who will wait longer, and why? Antonio,
who has done the first part of this exercise, has a simple twist on
Bruno’s method which improves it significantly: what, and why?
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Returning to the equation for h(x, t) on a vertical wall, show that
there is a similarity solution of the form h(x, t) = t−αf(x/tα) and
find α (put this form into the equation and show that it works.)
Show that the total mass of this solution is constant, and note
that h(x, 0) = δ(x). Find f if we assume that h(0, t) = 0 and
only solve for x > 0. Show that if h is equal to this similarity
solution for 0 < x < S(t), and is zero elsewhere so that there is
a discontinuity (shock) at x = S(t), then the Rankine–Hugoniot
(shock) condition

dS

dt
=

[
1
3
h3
]

[h]

is satisfied provided that S = At1/3 for constant A. How should
this solution be interpreted?

Suppose now that the film thickness is nearly constant and look
for small perturbations by finding solutions of the dimensionless
equation in the form h = 1 + εei(kx+ωt) where ε � 1 (like doing
water waves). What is the relation between k and ω? Which
direction do these waves travel in? (Note that there is only one
direction of travel; water waves have two.) What is their dimen-
sional speed? Show that the only smooth travelling wave solutions
(i.e. solutions of the form h(x, t) = g(x − Ut) for constant U) to
the full equation are h = constant. However, the linearised solu-
tion you have just found looks like a travelling wave. How do you
reconcile these facts?

(h) Linear stability of thin films on horizontal surfaces. In-
vestigate the linear stability of thin films under gravity or surface
tension, by writing

h(x, t) ∼ h0 + εeikxeλt

in the dimensional equations and finding λ in terms of k. Note
how the sign in front of the space derivatives changes when we go
from second order to fourth order and relate to the linear stability
result.

(i) Marangoni effects in a thin layer. Some flows are driven by
variations in the surface tension coefficient γ. This may be due to
temperature variations, or because there is a surfactant chemical
in the fluid, or because some other effect such as evaporation of a
solvent changes γ. The net effect is to induce a tangential (shear) Paint drying, that

riveting example.stress at the interface which acts to drag the fluid from low surface
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tension regions to those where it is high. Foams are a particularly
important practical example; the thin fluid sheets that form the
bubble faces are stabilised by surfactants which counteract the
tendency of the fluid to drain into the lower pressure regions where
fluid sheets meet (known as Plateau borders; the pressure is lower
there because of the curvature of the surface, as a sketch will
show).

Suppose that we have a thin fluid layer as above and that the
surface tension coefficient γ(x) varies in a known way by an O(1)
amount (i.e. ∆γ/γ = O(1)) over a horizontal distance L. Assum-
ing that the Marangoni force translates into the (dimensional)
boundary condition

µ
∂u

∂y

∣∣∣∣
y=h(x,t)

=
dγ

dx
,

explain why the flow is locally equivalent to Couette flow with a
linear velocity profile, and derive the equation

∂h

∂t
+

1

2µ

∂

∂x

(
h
dγ

dx

)
= 0.

What is the timescale of the motion? How small would the surface
tension variation with x have to be for the normal force (surface
tension × curvature) to be significant? What is the equation for
h in this case?

(j) Tides. Consider water waves in a basin 0 < x < L, −H < y < 0.
The velocity potential φ(x, y, t) and surface elevation η(x, t) for
small-amplitude waves satisfy

∂2φ

∂x2
+

∂2φ

∂y2
= 0, 0 < x < L, −H < y < 0,

with

∂φ

∂y
= 0 on y = −H,

∂φ

∂y
=

∂η

∂t
,

∂φ

∂t
+ gη = 0 on y = 0,

with suitable boundary conditions on x = 0, L. Make the problem
nondimensional, scaling x with L and y with H, and using the
timescale

√
L2/gH, show that in the dimensionless version of the

problem φ(x, y, t) satisfies the elliptic equation

∂2φ

∂y2
+ ε2 ∂2φ

∂x2
= 0 in − 1 < y < 0,
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with

∂φ

∂y
(x,−1, t) = 0,

∂φ

∂y
(x, 0, t) + ε2∂2φ

∂t2
(x, 0, t) = 0.

Show that an expansion in which

φ ∼ φ0(x, y, t) + ε2φ1(x, y, t) + · · ·
satisfies the equation and boundary condition up to terms of O(ε2)
if φ0 = φ0(x, t), where the O(ε2) equation shows that φ0 satisfies
the hyperbolic equation

∂2φ0

∂x2
− ∂2φ0

∂t2
= 0.

What (in dimensional terms) is the wavespeed?

This example, which is a very simple model for the tidal flows (it
does not even have the daily periodicity built in, nor the rotation
of the earth!), shows that the solution of an elliptic equation can
sometimes be consistently approximated by that of a hyperbolic
equation. The development of mathematical models for tide pre-
diction preoccupied many famous minds — Newton and Laplace
among them — and is described in [7]. One approach was to
expand the water depth (as a function of time) as a series of har-
monic terms, to reflect the periodic influence of the sun, moon
etc. The summation of such a series by hand was a tedious and
error-prone business, which was greatly facilitated by the inven-
tion by Lord Kelvin of a mechanical analogue based on pulleys.
These machines were used until well into the twentieth century,
and one of them can be seen in Liverpool Museum.

(k) Shallow water equations. There is no need only to consider
sticky fluids in thin layers. In this question we derive the famous
shallow water model for inviscid flow, starting with an intuitive
derivation.

i. Write down the two-dimensional Euler equations

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂x
− ρg,

∂u

∂x
+

∂v

∂y
= 0.

for unsteady flow of an inviscid liquid under gravity.
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ii. Assume that there is a base at y = 0 and a free surface at
y = h(x, t), that the layer is long and thin, and the flow fast
enough that the velocity is approximately unidirectional and
independent of depth, and hence of the form (u(x, t), 0).

iii. Assume further that the pressure is approximately hydro-
static; show that

p(x, y, t) = ρg (h(x, t) − y) .

iv. Write down mass conservation.

v. Put these assumptions into the Euler equations to derive

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0,

∂h

∂t
+

∂(uh)

∂x
= 0.

Linearise the system about the constant solution u = 0, h = h0

and find the speed of propagation of small disturbances; compare
with the previous exercise.

This hyperbolic system can describe all sorts of phenomena such
as the Severn Bore or its less well known cousin the Trent Aegir
(and a host of other bores around the world); they appear as
shocks in the solutions. See [29] for lots more about the shallow
water equations and their properties.

Now derive these equations by a lubrication scaling of the Eu-
ler equations, to justify the (very reasonable) assumptions made
above. Scaling x with L, y with εL = H0, t with L/U and p with
ερgL, you should get at lowest order in ε

∂u0

∂T
+ u0

∂u0

∂X
+ v0

∂u0

∂Y
= − 1

F 2

∂p0

∂X
,

∂p0

∂Y
= −1,

∂u0

∂X
+

∂v0

∂Y
= 0,

together with the kinematic and dynamic free surface conditions
on Y = h(X,T ). Here F 2 = U 2/gH0 is a dimensionless parameter
called the Froude (rhymes with crowd) number, measuring the
inertia/gravity balance. Notice that the X-momentum equation
is not quite the same as Now make the additional assumption that
∂u0/∂Y = 0 at the inlet or beginning of the flow. Calculate p0

and deduce that ∂u0/∂Y = 0 throughout the flow. Write down the
condition for irrotationality at leading order and compare; relate
this to Kelvin’s theorem in fully two-dimensional flow. Hence
derive the shallow-water equations.
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Harder: derive these equations starting from potential flow; you
will not now have to assume irrotationality.

(l) Boussinesq flow in a porous medium. Suppose water flows
in a porous rock (an aquifer) under the action of gravity. The
French sewage engineer Darcy established the law Consistency: why a

minus sign?
u = −K∇(p + ρgy)

giving the fluid velocity u as proportional to the gradient of the
pressure (after subtracting off the hydrostatic head); here y is ver-
tically upwards and K is called the mobility. Assuming that water
is essentially incompressible, show that this model is equivalent to
potential flow with potential Φ = −K(p + ρgy).

A thin layer of water (called a water mound in the trade) lies
above a horizontal impermeable base at y = 0. Either intuitively,
or by scaling, or both, derive the nonlinear diffusion equation

∂h

∂t
= Kρg

∂

∂x

(
h
∂h

∂x

)
.

Find the similarity solution corresponding to a delta-function ini-
tial data.

(m) Linearising the viscous sheet equations. Take the viscous
sheet equations in the form

∂h

∂t
+

∂(uh)

∂x
= 0,

∂

∂x

(
4h

∂u

∂x

)
= 0

and integrate to get

h
∂u

∂x
= f(t)

for some f(t) (proportional to the tension). Define

τ(t) =

∫ t

0

f(s) ds

and set u(x, t) = f(t)v(x, τ). Show that

h
∂v

∂x
= 1,

Dh

Dτ
= −1, where

D

Dτ
=

∂

∂τ
+ v

∂

∂x
.

Change the independent variables to h, τ (a partial hodograph Differentiate
h = h(x, τ)
implicitly with
respect to x and τ
to show that
1 = hxxh,
0 = hxxτ + hτ , then
show that
v = xτ − xh, and
differentiate again
with respect to x to
get v
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transformation) to show that x(h, τ) satisfies

∂2x

∂h∂τ
− ∂2x

∂h2
=

1

h

∂x

∂h
.

By solving this linear equation for ∂x/∂h, deduce that

∂x

∂h
= (hF (h + τ))−1

for arbitrary F , and hence that

∂h

∂x
= hF (h + τ).

Notice that F can now be determined from the initial data for h,
so the whole system can be solved explicitly.



Chapter 22

Ray theory and other
‘exponential’ approaches

22.1 Introduction

In this short final chapter we look at some problems which can be
tackled using a different kind of singular scaling, via an exponent.

Exercises

(a) String art. Consider the family of lines generated by joining the
point (t, 0) to (0, 1− t). Find its envelope ((x−y)2 +1 = 2(x+y);
why is this obviously a parabola?).

[There was a fortunately short lived phase of string art made
by hammering lines of nails into a board and stretching highly-
coloured shiny string between them, the endpoints of successive
lengths of string being related as in the example above. The re-
sult was a complicated web with (a discrete approximation to) an
envelope, often in the shape of a sailing boat or similar object.
They can occasionally be seen in charity shops and holiday cot-
tages even now and will doubtless at some point become highly
collectable.)

(b) Rays in an ellipse. Consider the ray equations for u2
x + u2

y = 1
inside the ellipse x2/a2 + y2/b2 = 1, with u = 0 on its boundary
(x0(s), y0(s)). Show that the direction of a ray is (p0(s), q0(s)),
and by differentiating the condition u = 0 on the ellipse with

277
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respect to s, show that the rays are normal to the boundary. Use
the parametric form (a cos s, b sin s) for the boundary to show that
the normals are

ax sin s − by cos s = (a2 − b2) sin s cos s,

deduce that there is a caustic on the envelope of these curves,
namely

x =
a2 − b2

a
cos3 s, y =

a2 − b2

b
sin3 s;

sketch this curve.

(c) The nephroid in a mug of milky tea. Consider a semicircular
reflector x2 + y2 = 1, x < 0, with a plane wave −eikx incident
from x = +∞. Solve the ray equations with u = −x on the circle
(corresponding to a zero field on the reflector): show that the
ray passing through (cos s, sin s), π/2 < s < 3π/2, has direction
(p0, q0), where p0 = cos 2s, q0 = sin 2s, and is therefore

x = cos s + t cos 2s, y = sin s + t sin 2s.

Eliminate t and find the envelope in the form

x = sin s sin 2s+1
2
cos s cos 2s, y = − sin s cos 2s+1

2
sin 2s cos s.

This curve is shown below: when you put a mug of milky coffee
in the sun, you see a bright caustic in this shape. It is called a
nephroid from its resemblance to a kidney. From the picture below
you can see that there are 4 rays through each point outside the
nephroid, just two inside.

Show that the ray above has the equation x sin 2s−y cos 2s = sin s,
and hence that it meets the circle again at the point (cos α, sin α)
where α = 3s − π. Hence explain how to make a string art
nephroid.

(d) Sand. Suppose I pile up dry sand on top of a horizontal flat rock
until I can put no more on. Assume that the particles of sand
on the surface are in limiting frictional equilibrium, that is the
frictional force on them is equal to µ times the normal reaction
where µ is the coefficient of friction. Assume also that all the
particles of sand in the interior are also in equilibrium. Draw
a force diagram for a surface particle and deduce that, with a
suitable scaling, the height u(x, y) of the sand satisfies

u2
x + u2

y = 1, u = 0 on the boundary.
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Figure 22.1: Rays and the caustic inside a cup of tea.

Write down the ray equations and show the rays are normal to
the boundary. If the rock is circular, show that the rays all meet
at the centre where ∂(x, y)(s, t) = 0; what is the surface? What
do you think you get if the rock is square, rectangular, elliptic?

Note that in this problem the interpretation of u is quite differ-
ent from that in geometric optics. Here, u must be single valued.
There, it was quite acceptable to have more than one ray through
a single point; this just said that the overall field was the superpo-
sition of several waves propagating through that point in different
directions (of course some of them may have small amplitude).
The generic singularity of geometric optics is a caustic, while for
sandpiles it is a ridgeline.

Note also that if the sand is wet it may have an internal ‘cohesion’
i.e. the grains may stick together.This is much more difficult to
model.
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Chapter 23

Case study: the thermistor 2

281
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