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Preface

The possibility of the present collection of review papers came up the last
day of IWAP 2002. The idea was to gather in a single volume a sample of the
many applications of probability.

As a glance at the table of contents shows, the range of covered topics is
wide, but it sure is far away of being close to exhaustive.

Picking up a name for this collection not easier than deciding on a criterion
for ordering the different contributions. As the word ‘advances” suggests, each
paper represents a further step toward understanding a class of problems. No
last word on any problem is said, no subject is closed.

Even though there are some overlaps in subject matter, it does not seem
sensible to order this eclectic collection except by chance, and such an order
is already implicit in a lexicographic ordering by first author’s last name: No-
body (usually, that is) chooses a last name, does she/he? So that is how we
settled the matter of ordering the papers.
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agement.



This page intentionally left blank



Acknowledgments
The editors thank the Cyted Foundation, Institute of Mathematical Statis-

tics, Latin American Regional Committee of the Bernoulli Society, National
Security Agency and the University of Simon Bolivar for co-sponsoring IWAP
2002 and for providing financial support for its participants.

The editors warmly thank Alfredo Marcano of Universidad Central de Ve-
nezuela for having taken upon his shoulders the painstaking job of rendering
the different idiosyncratic contributions into a unified format.



This page intentionally left blank



MODELING TEXT DATABASES

Ricardo Baeza-Yates
Depto. de Ciencias de la Computación
Universidad de Chile
Casilla 2777, Santiago, Chile

rbaeza@dcc.uchile.cl

Gonzalo Navarro
Depto. de Ciencias de la Computación
Universidad de Chile
Casilla 2777, Santiago, Chile

gnavarro@dcc.uchile.cl

Abstract We present a unified view to models for text databases, proving new relations
between empirical and theoretical models. A particular case that we cover is the
Web. We also introduce a simple model for random queries and the size of their
answers, giving experimental results that support them. As an example of the
importance of text modeling, we analyze time and space overhead of inverted
files for the Web.

1.1 Introduction

Text databases are becoming larger and larger, the best example being the
World Wide Web (or just Web). For this reason, the importance of the infor-
mation retrieval (IR) and related topics such as text mining, is increasing every
day [Baeza-Yates & Ribeiro-Neto, 1999]. However, doing experiments in large
text collections is not easy, unless the Web is used. In fact, although reference
collections such as TREC [Harman, 1995] are very useful, their size are sev-
eral orders of magnitude smaller than large databases. Therefore, scaling is an
important issue. One partial solution to this problem is to have good models
of text databases to be able to analyze new indices and searching algorithms
before making the effort of trying them in a large scale. In particular if our
application is searching the Web. The goals of this article are two fold: (1) to
present in an integrated manner many different results on how to model nat-
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ural language text and document collections, and (2) to show their relations,
consequences, advantages, and drawbacks.

We can distinguish three types of models: (1) models for static databases,
(2) models for dynamic databases, and (3) models for queries and their an-
swers. Models for static databases are the classical ones for natural language
text. They are based in empirical evidence and include the number of differ-
ent words or vocabulary (Heaps’ law), word distribution (Zipf’s law), word
length, distribution of document sizes, and distribution of words in documents.
We formally relate the Heaps’ and Zipf’s empirical laws and show that they
can be explained from a simple finite state model.

Dynamic databases can be handled by extensions of static models, but there
are several issues that have to be considered. The models for queries and their
answers have not been formally developed until now. Which are the correct
assumptions? What is a random query? How many occurrences of a query are
found? We propose specific models to answer these questions.

As an example of the use of the models that we review and propose, we
give a detailed analysis of inverted files for the Web (the index used in most
Web search engines currently available), including their space overhead and
retrieval time for exact and approximate word queries. In particular, we com-
pare the trade-off between document addressing (that is, the index references
Web pages) and block addressing (that is, the index references fixed size log-
ical blocks), showing that having documents of different sizes reduces space
requirements in the index but increases search times if the blocks/documents
have to be traversed. As it is very difficult to do experiments on the Web as a
whole, any insight from analytical models has an important value on its own.

For the experiments done to backup our hypotheses, we use the collections
contained in TREC-2 [Harman, 1995], especially the Wall Street Journal (WSJ)
collection, which contains 278 files of almost 1 Mb each, with a total of 250
Mb of text. To mimic common IR scenarios, all the texts were transformed to
lower-case, all separators to single spaces (except line breaks); and stopwords
were eliminated (words that are not usually part of query, like prepositions,
adverbs, etc.). We are left with almost 200 Mb of filtered text. Throughout the
article we talk in terms of the size of the filtered text, which takes 80% of the
original text. To measure the behavior of the index as grows, we index the
first 20 Mb of the collection, then the first 40 Mb, and so on, up to 200 Mb.
For the Web results mentioned, we used about 730 thousand pages from the
Chilean Web comprising 2.3Gb of text with a vocabulary of 1.9 million words.

This article is organized as follows. In Section 2 we survey the main em-
pirical models for natural language texts, including experimental results and
a discussion of their validity. In Section 3 we relate and derive the two main
empirical laws using a simple finite state model to generate words. In Sections
4 and 5 we survey models for document collections and introduce new models
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for random user queries and their answers, respectively. In Section 6 we use
all these models to analyze the space overhead and retrieval time of different
variants of inverted files applied to the Web. The last section contains some
conclusions and future work directions.

1.2 Modeling a Document
In this section we present distributions for different objects in a document.

They include characters, words (unique and total) and their length.

1.2.1 Distribution of Characters
Text is composed of symbols from a finite alphabet. We can divide the sym-

bols in two disjoint subsets: symbols that separate words and symbols that
belong to words. It is well known that symbols are not uniformly distributed.
If we consider just letters (a to z), we observe that vowels are usually more
frequent than most consonants (e.g., in English, the letter ‘e’ has the highest
frequency.) A simple model to generate text is the Binomial model. In it, each
symbol is generated with certain fixed probability. However, natural language
has a dependency on previous symbols. For example, in English, a letter ‘f’
cannot appear after a letter ‘c’ and vowels, or certain consonants, have a higher
probability of occurring after ‘c’. Therefore, the probability of a symbol de-
pends on previous symbols. We can use a finite-context or Markovian model
to reflect this dependency. The model can consider one, two or more letters to
generate the next symbol. If we use letters, we say that it is a -order model
(so the Binomial model is considered a 0-order model). We can use these mod-
els taking words as symbols. For example, text generated by a 5-order model
using the distribution of words in the Bible might make sense (that is, it can
be grammatically correct), but will be different from the original [Bell, Cleary
& Witten, 1990, chapter 4]. More complex models include finite-state models
(which define regular languages), and grammar models (which define context
free and other languages). However, finding the correct complete grammar for
natural languages is still an open problem.

For most cases, it is better to use a Binomial distribution because it is simpler
(Markovian models are very difficult to analyze) and is close enough to reality.
For example, the distribution of characters in English has the same average
value of a uniform distribution with 15 symbols (that is, the probability of
two letters being equal is about 1/15 for filtered lowercase text, as shown in
Table 1).

1.2.2 Vocabulary Size

What is the number of distinct words in a document? This set of words is re-
ferred to as the document vocabulary. To predict the growth of the vocabulary
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size in natural language text, we use the so called Heaps’ Law [Heaps, 1978],
which is based on empirical results. This is a very precise law which states that
the vocabulary of a text of words is of size where K
and depend on the particular text. The value of K is normally between 10
and 100, and is a positive value less than one. Some experiments [Araújo et
al, 1997; Baeza-Yates & Navarro,1999] on the TREC-2 collection show that
the most common values for are between 0.4 and 0.6 (see Table 1). Hence,
the vocabulary of a text grows sub-linearly with the text size, in a proportion
close to its square root. We can also express this law in terms of the number of
words, which would change K.

Notice that the set of different words of a language is fixed by a constant
(for example, the number of different English words is finite). However, the
limit is so high that it is much more accurate to assume that the size of the
vocabulary is instead of O(1) although the number should stabilize for
huge enough texts. On the other hand, many authors argue that the number
keeps growing anyway because of the typing or spelling errors.

How valid is the Heaps’ law for small documents? Figure 1 shows the evo-
lution of the value as the text collection grows. We show its value for up to
1 Mb (counting words). As it can be seen, starts at a higher value and con-
verges to the definitive value as the text grows. For 1 Mb it has almost reached
its definitive value. Hence, the Heaps’ law holds for smaller documents but the

value is higher than its asymptotic limit.

Figure 1. Value of as the text grows. We added at the end the value for the 200 Mb
collection.

For our Web data, the value of is around 0.63. This is larger than for
English text for several reasons. Some of them are spelling mistakes, multiple
languages, etc.
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1.2.3 Distribution of Words
How are the different words distributed inside each document?. An approx-

imate model is the Zipf’s Law [Zipf, 1949; Gonnet & Baeza-Yates, 1991],
which attempts to capture the distribution of the frequencies (that is, number
of occurrences) of the words in the text. The rule states that the frequency
of the most frequent word is times that of the most frequent word.
This implies that in a text of words with a vocabulary of V words, the
most frequent word appears times, where is the harmonic
number of order of V, defined as

so that the sum of all frequencies is The value of depends on the text.
In the most simple formulation, and therefore
However, this simplified version is very inexact, and the case (more
precisely, between 1.7 and 2.0, see Table 1) fits better the real data [Araújo
et al, 1997]. This case is very different, since the distribution is much more
skewed, and Experimental data suggests that a better model is

where c is an additional parameter and is such that all frequencies
add to This is called a Mandelbrot distribution [Miller, Newman & Fried-
man, 1957; Miller, Newman & Friedman, 1958]. This distribution is not used
because its asymptotical effect is negligible and it is much harder to deal with
mathematically.

It is interesting to observe that if, instead of taking text words, we take
no Zipf-like distribution is observed. Moreover, no good model is

known for this case [Bell, Cleary & Witten, 1990, chapter 4]. On the other
hand, Li [Li, 1992] shows that a text composed of random characters (separa-
tors included) also exhibits a Zipf-like distribution with smaller and argues
that the Zipf distribution appears because the rank is chosen as an indepen-
dent variable. Our results relating the Zipf’s and Heaps’ law (see next sec-
tion), agree with that argument, which in fact had been mentioned well before
[Miller, Newman & Friedman, 1957].

Since the distribution of words is very skewed (that is, there are a few hun-
dred words which take up 50% of the text), words that are too frequent, such
as stopwords, can be disregarded. A stopword is a word which does not carry
meaning in natural language and therefore can be ignored (that is, made not
searchable), such as "a", "the", "by", etc. Fortunately the most frequent
words are stopwords, and therefore half of the words appearing in a text do
not need to be considered. This allows, for instance, to significantly reduce the
space overhead of indices for natural language texts. Nevertheless, there are
very frequent words that cannot be considered as stopwords.
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For our Web data, which is smaller than for English text. This
what we expect if the vocabulary is larger. Also, to capture well the central part
of the distribution, we did not take in account very frequent and unfrequent
words when fitting the model. A related problem is the distribution of
(strings of exactly characters), which follow a similar distribution [Egghe,
2000].

1.2.4 Average Length of Words

A last issue is the average length of words. This relates the text size in
words with the text size in bytes (without accounting for punctuation and other
extra symbols). For example, in the different sub-collections of TREC-2 col-
lection, the average word length is very close to 5 letters, and the range of
variation of this average in each sub-collection is small (from 4.8 to 5.3). If
we remove the stopwords, the average length of a word increases to little more
than 6 letters (see Table 1). If we take the average length in the vocabulary, the
value is higher (between 7 and 8 as shown in Table 1). This defines the total
space needed for the vocabulary. Figure 2 shows how the average length of the
vocabulary words and the text words evolve as the filtered text grows for the
WSJ collection.

Figure 2. Average length of the words in the vocabulary (solid line) and in the text (dashed
line).

Heaps’ law implies that the length of the words of the vocabulary increase
logarithmically as the text size increases, and longer and longer words should
appear as the text grows. This is because if for large there are different
words, then their average length must be at least (count-
ing once each different word). However, the average length of the words in the
overall text should be constant because shorter words are common enough (e.g.
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stopwords). Our experiment of Figure 2 shows that the length is almost con-
stant, although decreases slowly. This balance between short and long words,
such that the average word length remains constant, has been noticed many
times in different contexts. It can be explained by a simple finite-state model
where the separators have a fixed probability of occurrence, since this implies
that the average word length is one over that probability. Such a model is con-
sidered in [Miller, Newman & Friedman, 1957; Miller, Newman & Friedman,
1958], where: (a) the space character has probability close to 0.2, (b) the space
character cannot appear twice subsequently, and (c) there are 26 letters.

1.3 Relating the Heaps’ and Zipf’s Law
In this section we relate and explain the two main empirical laws: Heaps’

and Zipf’s. In particular, if both are valid, then a simple relation between their
parameters holds. This result is from [Baeza-Yates & Navarro,1999].

Assume that the least frequent word appears O(1) times in the text (this is
more than reasonable in practice, since a large number of words appear only
once). Since there are different words, then the least frequent word has
rank The number of occurrences of this word is, by Zipf’s law,

and this must be O(1). This implies that, as grows, This equal-
ity may not hold exactly for real collections. This is because the relation is
asymptotical and hence is valid for sufficiently large and because Heaps’
and Zipf’s rules are approximations. Considering each collection of TREC-2
separately, is between 0.80 and 1.00. Table 1 shows specific values for K
and (Heaps’ law) and (Zipf’s law), without filtering the text. Notice that

is always larger than On the other hand, for our Web data, the match is
almost perfect, as

The relation of the Heapst’ and Zipt’s Laws is mentioned in a line of a paper
by Mandelbrot [Mandelbrot, 1954], but no proof is given. In the Appendix
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we give a non trivial proof based in a simple finite-state model for generating
words.

1.4 Modeling a Document Collection
The Heaps’ and Zipf’s laws are also valid for whole collections. In par-

ticular, the vocabulary should grow faster (larger and the word distribution
could be more biased (larger That would match better the relation
which in TREC-2 is less than 1. However, there are no experiments on large
collections to measure these parameters (for example, in the Web). In addi-
tion, as the total text size grows, the predictions of these models become more
accurate.

1.4.1 Word Distribution Within Documents
The next issue is the distribution of words in the documents of a collec-

tion. The simplest assumption is that each word is uniformly distributed in
the text. However, this rule is not always true in practice, since words tend to
appear repeated in small areas of the text (locality of reference). A uniform
distribution in the text is a pessimistic assumption since it implies that queries
appear in more documents. However, a uniform distribution can have different
interpretations. For example, we could say that each word appears the same
number of times in every document. However, this is not fair if the document
sizes are different. In that case, we should have occurrences proportional to
the document size. A better model is to use a Binomial distribution. That is, if

is the frequency of a word in a set of D documents with words overall, the
probability of finding the word times in a document having words

For large we can use the Poisson approximation
with Some people apply these formulas using the average for all
the documents, which is unfair if document sizes are very different.

A model that approximates better what is seen in real text collections is
to consider a negative binomial distribution, which says that the fraction of
documents containing a word times is

where and are parameters that depend on the word and the document col-
lection. Notice that if we use the average
number of words per document, so this distribution also has the problem of be-
ing unfair if document sizes are different. For example, for the Brown Corpus

8

is
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[Francis & Kucera, 1982] and the word “said”, we have and
[Church & Gale, 1995]. The latter reference gives other models derived from a
Poisson distribution. Another model related to Poisson which takes in account
locality of reference is the Clustering Model [Thom & Zobel, 1992].

1.4.2 Distribution of Document Sizes
Static databases will have a fixed document size distribution. Moreover, de-

pending on the database format, the distribution can be very simple. However,
this is very different for databases that grow fast and in a chaotic manner, such
as the Web. The results that we present next are based in the Web.

The document sizes are self-similar [Crovella & Bestavros, 1996], that is,
the probability distribution remains unchanged if we change the size scale. The
same behavior appears in Web traffic. This can be modeled by two different
distributions. The main body of the distribution follows a Logarithmic Normal
curve, such that the probability of finding a Web page of bytes is given by

where the average and standard deviation are 9.357 and 1.318, respec-
tively [Barford & Crovella, 1998]. See figure of an example in 3 (from [Crov-
ella & Bestavros, 1996]).

Figure 3. Left: Distribution for all file sizes. Right: Right tail distribution for different file
types. All logarithms are in base 10. (Both figures are courtesy of Mark Crovella).

The right tail of the distribution is “heavy-tailed”. That is, the majority of
documents are small, but there is a non trivial number of large documents.
This is intuitive for image or video files, but it is also true for textual pages. A
good fit is obtained with the Pareto distribution, that says that the probability
of finding a Web page of bytes is
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for and zero otherwise. The cumulative distribution is

where and are constants dependent on the particular collection [Barford
& Crovella, 1998]. The parameter is the minimum document size, and is
about 1.36 for textual data, being smaller for images and other binary formats
[Crovella & Bestavros, 1996; Willinger & Paxson, 1998] (see the right side of
Figure 3). Taking all Web documents into account, using we get

and 93% of all the files have a size below this value. The parameters
of these distributions were obtained from a sample of more than 50 thousand
Web pages requested by several users in a period of two months. Recent results
show that these distributions are still valid [Barford et al, 1999], but the exact
parameters for the distribution of all textual documents is not known, although
average page size is estimated in 6Kb including markup (which is traditionally
not indexed).

1.5

1.5.1

Models for Queries and Answers

Motivation

When analyzing or simulating text retrieval algorithms, a recurrent problem
is how to model the queries. The best solution is to use real users or to extract
information from query logs. There are a few surveys and analyses of query
logs with respect to the usage of Web search engines [Pollock & Hockley,
1997; Jensen et al, 1998; Silverstein et al, 1998]. The later reference is the
study of 285 million AltaVista user sessions containing 575 million queries.
Table 2 gives some results from that study, done in September of 1998. Another
recent study on Excite, shows similar statistics, and also the queries topics
[Spink et al, 2002]. Nevertheless, these studies give little information about
the exact distribution of the queries. In the following we give simple models
to select a random query and the corresponding average number of answers
that will be retrieved. We consider exact queries and approximate queries. An
approximate query finds a word allowing up to errors, where we count the
minimal number of insertions, deletions, and substitutions.

1.5.2 Random Queries
As half of the text words are stopwords, and they are not typical user queries,

stopwords are not considered. The simplest assumption is that user queries
are distributed uniformly in the vocabulary, i.e. every word in the vocabulary
can be searched with the same probability. This is not true in practice, since
unfrequent words are searched with higher probability. On the other hand,
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approximate searching makes this distribution more uniform, since unfrequent
words may match with errors with other words, with little relation to the
frequencies of the matched words. In general, however, the assumption of
uniform distribution in the vocabulary is pessimistic, at least because a match
is always found.

Looking at the results in the AltaVista log analysis [Silverstein et al, 1998],
there are some queries much more popular than others and the range is quite
large. Hence, a better model would be to consider that the queries also follow
a Zipf’s like distribution, perhaps with larger than 2 (the log data is not avail-
able to fit the best value). However, the actual frequency order of the words
in the queries is completely different from the words in the text (for example,
“sex” and “xxx” appear between the top most frequent word queries), which
makes a formal analysis very difficult. An open problem, which is related to
the models of term distribution in documents, is whether the distribution for
query terms appearing in a collection of documents is similar to that of docu-
ment terms. This is very important as these two distributions are the base for
relevance ranking in the vector model [Baeza-Yates & Ribeiro-Neto, 1999].
Recent results show that although queries also follow a Zipf distribution (with
parameter from 1.24 to 1.42 [Baeza-Yates & Castillo, 2001; Baeza-Yates &
Saint-Jean, 2002]), the correlation to the word distribution of the text is low
(0.2) [Baeza-Yates & Saint-Jean, 2002]. This implies that choosing queries at
random from the vocabulary is reasonable and even pessimistic.

Previous work by DeFazio [DeFazio, 1993] divided the query vocabulary in
three segments: high (words representing the most used 90% of the queries),
moderate (next 5% of the queries), and low use (words representing the least
used 5% of the queries). Words are then generated by first randomly choosing
the segment, the randomly picking a token within that segment. Queries are
formed by choosing randomly one to 50 words. According to currently avail-
able data, real queries are much shorter, and the generation algorithm does not
produce the original query distribution. Another problem is that the query vo-
cabulary must be known to use this model. However, in our model, we can
generate queries from the text collection.
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1.5.3 Number of Answers

Now we analyze the expected number of answers that will be obtained us-
ing the simple model of the previous section. For a simple word search, we
will find just one entry in the vocabulary matching it. Using Heaps’ law, the
average number of occurrences of each word in the text is
Hence, the average number of occurrences of the query in the text is
This fact is surprising, since one can think in the process of traversing the text
word by word, where each word of the vocabulary has a fixed probability of
being the next text word. Under this model the number of matching words
is a fixed proportion of the text size (this is equivalent to say that a word of
length should appear about times). The fact that this is not the case
(demonstrated experimentally later) shows that this model does not really hold
on natural language text.

The root of this fact is not in that a given word does not appear with a
fixed probability. Indeed, the Heaps’ law is compatible with a model where
each word appears at fixed text intervals. For instance, imagine that Zipf’s
law stated that the word appeared times. Then, the first word could
appear in all the odd positions, the second word in all the positions multiple
of 4 plus 2, the third word in all the multiples of 8 plus 4, and so on. The
real reason for the sublinearity is that, as the text grows, there are more words,
and one selects randomly among them. Asymptotically, this means that the
length of the vocabulary words must be and therefore, as the
text grows, we search on average longer and longer words. This allows that
even in the model where there are matches, this number is indeed
[Navarro, 1998]. Note that this means that users search for longer words when
they query larger text collections, which seems awkward but may be true, as
the queries are related to the vocabulary of the collection.

How many words of the vocabulary will match an approximate query? In
principle, there is a constant bound to the number of distinct words which
match a given query with errors, and therefore we can say that O(1) words
in the vocabulary match the query. However, not all those words will appear
in the vocabulary. Instead, while the vocabulary size increases, the number
of matching words that appear increases too, at a lower rate. This is the same
phenomenon observed in the size of the vocabulary. In theory, the total number
of words is finite and therefore V = O(1), but in practice that limit is never
reached and the model describes reality much better. We show
experimentally that a good model for the number of matching words in the
vocabulary is (with Hence, the average number of occurrences
of the query in the text is [Baeza-Yates & Navarro, 1999].
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1.5.4 Experiments
We present in this section empirical evidence supporting our previous state-

ments. We first measure V, the number of words in the vocabulary in terms of
(the text size). Figure 4 (left side) shows the growth of the vocabulary. Using

least squares we fit the curve The relative error is very small
(0.84%). Therefore, for the WSJ collection.

We measure now the number of words that match a given pattern in the
vocabulary. For each text size, we select words at random from the vocabulary
allowing repetitions. In fact, not all user queries are found in the vocabulary in

Figure 4. Vocabulary tests for the WSJ collection. On the left, the number of words in the
vocabulary. On the right, number of matching words in the vocabulary.
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practice, which reduces the number of matches. Hence, this test is pessimistic
in that sense.

We test and 3 errors. To avoid taking into account queries with
very low precision (e.g. searching a 3-letter word with 2 errors may match too
many words), we impose limits on the length of words selected: only words of
length 4 or more are searched with one error, length 6 or more with two errors,
and 8 or more with three errors.

We perform a number of queries which is large enough to ensure a relative
error smaller than 5% with a 95% confidence interval. Figure 4 (right side)
shows the results. We use least squares to fit the curves for

for and for In all cases the relative error
of the approximation is under 4%. The exponents are the values mentioned
later in this article. One possible model for is because for

we have and when as expected.
We could reduce the variance in the experiments by selecting once the set

of queries from the index of the first 20 Mb. However, our experiments have
shown that this is not a good policy. The reason is that the first 20 Mb will
contain almost all common words, whose occurrence lists grow faster than the
average. Most uncommon words will not be included. Therefore, the result
would be unfair, making the results to look linear when they are in fact sublin-
ear.

1.6 Application: Inverted Files for the Web

1.6.1 Motivation

Web search engines currently available use inverted files that reference Web
pages [Baeza-Yates & Ribeiro-Neto, 1999]. So, reference pointers should have
as many bits as needed to reference all Web pages (currently, about 3 billion).
The number and size of pointers is directly related with the space overhead of
the inverted file. For the whole Web, this implies at least 600 GB. Some search
engines also index word locations, so the space needed is increased. One way
to reduce the size of the index is to use fixed logical blocks as reference units,
trading the reduction of space obtained with an extra cost at search time. The
block mechanism is a logical layer and the files do not need to be physically
split or concatenated. In which follows we explain this technique in more
detail.

Assume that the text is logically divided into “blocks”. The index stores all
the different words of the text (the vocabulary). For each word, the list of the
blocks where the word appears is kept. We call the size of the blocks and

the number of blocks, so that The exact organization is shown in
Figure 5. This idea was first used in Glimpse [Manber & Sun Wu, 1994].
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Figure 5. The block-addressing indexing scheme.

At this point the reader may wonder which is the advantage of pointing to
artificial blocks instead of pointing to documents (or files), this way following
the natural divisions of the text collection. If we consider the case of simple
queries (say, one word), where we are required to return only the list of match-
ing documents, then pointing to documents is a very adequate choice. More-
over, as we see later, it may reduce space requirements with respect to using
blocks of the same size. Moreover, if we pack many short documents in a log-
ical block, we will have to traverse the matching blocks (even for these simple
queries) to determine which documents inside the block actually matched.

However, consider the case where we are required to deliver the exact posi-
tions which match a pattern. In this case we need to sequentially traverse the
matching blocks or documents to find the exact positions. Moreover, in some
types of queries such as phrases or proximity queries, the index can only tell
that two words are in the same block, and we need to traverse it in order to
determine if they form a phrase.

In this case, pointing to documents of different sizes is not a good idea
because larger documents are searched with higher probability and searching
them costs more. In fact, the expected cost of the search is directly related
to the variance in the size of the pointed documents. This suggests that if the
documents have different sizes it may be a good idea to (logically) partition
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large documents into blocks and to put together small documents, such that
blocks of the same size are used.

In [Baeza-Yates & Navarro,1999], we show analytically and experimentally
that using fixed size blocks it is possible to have a sublinear-size index with
sublinear search times, even for approximate word queries. A practical exam-
ple shows that the index can be in space and in retrieval time for ap-
proximate queries with at most two errors. For exact queries the exponent low-
ers to 0.85. This is a very important analytical result which is experimentally
validated and makes a very good case for the practical use of this kind of in-
dex. Moreover, these indices are amenable to compression. Block-addressing
indices can be reduced to 10% of their original size [Bell et al, 1993], and the
first works on searching the text blocks directly in their compressed form are
just appearing [Moura et al, 1998a; Moura et al, 1998] with very good perfor-
mance in time and space.

Resorting to sequential searching to solve a query may seem unrealistic for
current Web search engine architectures, but makes perfect sense in a near fu-
ture when a remote access could be as fast as a local access. Another practical
scenario is a distributed architecture where each logical block is a part of a Web
server or a small set of Web servers locally connected, sharing a local index.

As explained before, pointing to documents instead of blocks may or may
not be convenient in terms of query times. We analyze now the space and later
the time requirements when we point to Web pages or to logical blocks of fixed
size. Recall that the distribution has a main body which is log-normal (that we
approximate with a uniform distribution) and a Pareto tail.

We start by relating the free parameters of the distribution. We call C the cut
point between both distributions and the fraction of documents smaller than
C. Since Then the integral over the tail (from C to infinity) must be
which implies that We also need to know the value of the
distribution in the uniform part, which we call and it holds For
the occurrences of a word inside a document we use the uniform distribution
taking into account the size of the document.

1.6.2 Space Overhead

As the Heaps’ law states that a document with words has different
words, we have that each new document of size added to the collection will
insert new references to the lists of occurrences (since each different word
of each different document has an entry in the index). Hence, an index of
blocks of size takes space. If, on the other hand, we consider the Web
document size distribution, we have that the average number of new entries in
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the occurrence list per document is

where was defined in Section 1.4.2.
To determine the total size of the collection, we consider that documents

exist, whose average length is given by

and therefore the total size of the collection is

The final size of the occurrence lists is (using Eq. (6.1))

We consider now what happens if we take the average document length
and use blocks of that fixed size (splitting long documents and putting short
documents together as explained). In this case, the size of the vocabulary is

as before, and we assume that each block is of a fixed size We
have introduced a constant to control the size of our blocks. In particular, if
we use the same number of blocks as Web pages, then Then the size of
the lists of occurrences is

(using Eq. (6.3)). Now, if we divide the space taken by the index of documents
by the space taken by the index of blocks (using the previous equation and
Eq. (6.4)), the ratio is



18 RECENTS ADVANCES IN APPLIED PROBABILITY

which is independent of and C; and is about 85% for
and We approximated which corresponds to all the
Web pages, because the value for textual pages is not known. This shows that
indexing documents yields an index which takes 85% of the space of a block
addressing index, if we have as many blocks as documents. Figure 6 shows the
ratio as a function of and As it can be seen, the result varies slowly with

while it depends more on (tending to 1 as the document size distribution
is more uniform).

The fact that the ratio varies so slowly with is good because we already
know that the value is quite different for small documents. As a curiosity, see
that if the documents sizes were uniformly distributed in all the range (that is,
letting the ratio would become which is close to 0.94 for
intermediate values. On the other hand, letting (as in the simplified
model [Crovella & Bestavros, 1996]) we have a ratio near 0.83. As another
curiosity, notice that there is a value which gives the minimum ratio for
document versus block index (that is, the worst behavior for the block index).
This is for quite close to the real values (0.63 in our Web
experiments).

If we want to have the same space overhead for the document and the block
indices, we simply make the expression of Eq. (6.5) equal to 1 and obtain

for that is, we need to make the blocks larger
than the average of the Web pages. This translates into worse search times. By
paying more at search time we can obtain smaller indices (letting grow over
1.48).

1.6.3 Retrieval Time

We analyze the case of approximate queries, given that for exact queries
the result is the same by using The probability of a given word to be
selected by a query is The probability that none of the words in a
block is selected is therefore The total amount of work of an
index of fixed blocks is obtained by multiplying the number of blocks times
the work to do per selected block times the probability that some word in
the block is selected. This is

where for the last step we used that
provided

We are interested in determining in which cases the above formula is sub-
linear in Expressions of the form are whenever
(since On the other hand, if then is far
away from 1, and therefore is



Modeling Text Databases 19

Figure 6. On the left, ratio between block and document index as a function of for fixed
(the dashed line shows the actual value for the Web). On the right, the same as a

function of for (the dashed lines enclose the typical values). In both cases we use
and the standard

For the search cost to be sublinear, it is thus necessary that
When this condition holds, we derive from Eq. (6.6) that
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We consider now the case of an index that references Web pages. As we
have shown, if a block has size then the probability that it has to be traversed
is We multiply this by the cost to traverse it and integrate
over all the possible sizes, so as to obtain its expected traversal cost (recall
Eq. (6.6))

which we cannot solve. However, we can separate the integral in two parts, (a)
and (b) In the first case the traversal probability

is and in the second case it is Splitting the integral in two
parts and multiplying the result by we obtain the total amount of
work:

where since this is an asymptotic analysis we have considered
as C is constant.

On the other hand, if we used blocks of fixed size, the time complexity
(using Eq. (6.7)) would be where The ratio between
both search times is

which shows that the document index would be asymptotically slower than
a block index as the text collection grows. In practice, the ratio is between

and . The value of is not important here since it is a constant,
but notice that is usually quite large, which favors the block index.

1.7 Concluding Remarks

The models presented here are common to other processes related to human
behavior [Zipf, 1949] and algorithms. For example, a Zipf like distribution
also appears for the popularity of Web pages with [Barford et al, 1999].
On the other hand, the phenomenon of sublinear vocabulary growing is not ex-
clusive of natural language words. It appears as well in many other scenarios,
such as the number of different words in the vocabulary that match a given
query allowing errors as shown in Section 5, the number of states of the de-
terministic automaton that recognizes a string allowing errors [Navarro, 1998],
and the number of suffix tree nodes traversed to solve an approximate query
[Navarro & Baeza-Yates, 1999]. We believe that in fact the finite state model
for generating words used in Section 3 could be changed for a more general
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one that could explain why is this behavior so extended in apparently very
dissimilar processes.

By the Heaps’ law, more and more words appear as the text grows. Hence,
bits are necessary in principle to distinguish among them. However,

as proved in [Moura et al, 1998], the entropy of the words of the text remains
constant. This is related to Zipf’s law: the word distribution is very skewed
and therefore they can be referenced with a constant number of average bits.
This is used in [Moura et al, 1998] to prove that a Huffman code to compress
words will not degrade as the text grows, even if new words with longer and
longer codes appear. This resembles the fact that although longer and longer
words appear, their average length in the text remains constant.

Regarding the number of answers of other type of queries, like prefix search-
ing, regular expressions and other multiple-matching queries, we conjecture
that the set of matching words grows also as if the query is going to be
useful in terms of precision. This issue is being considered for future work.

With respect to our analysis of inverted files for the Web, our results say
that using blocks we can reduce the space requirements by increasing slightly
the retrieval time, keeping both of them sublinear. Fine tuning of these ideas
is matter of further study. On the other hand, the fact that the average Web
page remains constant even while the Web grows shows that sublinear space is
not possible unless block addressing is used. Hence, future work includes the
design of distributed architectures for search engines that can use these ideas.

Finally, as it is very difficult to do meaningful experiments in the Web, we
believe that careful modeling of Web pages statistics may help in the final
design of search engines. This can be done not only for inverted files, but also
for more difficult design problems, such as techniques for evaluating Boolean
operations in large answers and the design of distributed search architectures,
where Web traffic and caching become an issue as well.
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Appendix

Deducing the Heaps’ Law
We show now that the Heaps’ law can be deduced from the simple finite state model men-

tioned before. Let us assume that a person hits the space with probability and any other
letter (uniformly distributed over an alphabet of size with probability without hitting the
space bar twice in a row (see Figure A.1).

Since there are no words of length zero, the probability that a produced word is of length
is since we have a geometric distribution. The expected word length is
from where can be approximated since the average word length is close to 6.3 as
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Figure A.1.    Simple finite-state model for generating words.

shown later, for text without stopwords. For this case, we use which would be the
equivalent number of letters for text generated using a uniformly distributed alphabet.

On average, if words are written, of them are of length We count now how
many of these are different, considering only those of length Each of the strings of length

is different from each written word of length with probability and therefore it is
never written in the whole process with probability

from where we obtain that the total number of different words that are written is

Now we consider two possible cases

The condition is equivalent to where i.e.
large In this case, and hence the number of strings is

that is, basically all the written words are different.

In this case, is far away from 1, and therefore That is, is
small and all the different words are generated.

We sum now all the different words of each possible length generated,

and obtain that both summations are

which is of the form

that is, basically all the written words are different.
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The value obtained with and which is much higher than reality.
Consider, however, that it is unrealistic to assume that all the 15 or 26 letters are equally probable
and to ignore the dependencies among consecutive letters. In fact, not all possible combinations
of letters are valid words. Even in this unfavorable case, we have shown that the number of dif-
ferent words follows Heaps’ law. More accurate models should yield the empirically observed
values between 0.4 and 0.6.

Deducing the Zipf’s Law
We show now that also the Zipf’s law can be deduced from the same model. From the

previous Heaps’ result, we know that if we consider words of length then all the
different combinations appear, while if then all the words generated
are basically different.

Since shorter words are more probable than longer words, we know that, if we sort the
vocabulary by frequency (from most to least frequent), all the words of length smaller than
will appear before those of length

In the case the number of different words shorter than is

while, on the other hand, if the summation is split in all those smaller than L and
those between L and

which, since is
We relate now the result with Zipf’s law. In the case of small    we have that the rank of

the first word of length We also know that, since all the different words of
length appear, they are uniformly distributed, and words of length are written,
then the number of times each different word appears is

which, under the light of Zipf’s law, shows that
We consider the case of large now. As said, basically every typed word of this length is

different, and therefore its frequency is 1. Since this must be we have

where the last step considered that, as found before, the rank of this word is
Equating the first and last term yields again

Hence, the finite state model implies Zipf’s law, moreover, the value found is precisely
where is the value for Heaps’ law. As we have shown, this relation must hold when

both rules are valid. The numerical value we obtain for assuming and a uniform
model over 15 letters is which is also far from reality but is close to the Mandelbrot
distribution fitting obtained by Miller et al [Miller, Newman & Friedman, 1957] (they use

Note also that the development of Li [Li, 1992] is similar to ours regarding the Zipf’s
law, although he uses different techniques and argues that this law appears because the frequency
rank is used as independent variable. However, we have been able to relate and
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Abstract In this paper, we partially review probabilistic and time series models in finance.
Both discrete and continuous-time models are described. The characterization
of the No-Arbitrage paradigm is extensively studied in several financial market
contexts. As the probabilistic models become more and more complex to be
realistic, the Econometrics needed to estimate them are more difficult. Conse-
quently, there is still much research to be done on the link between probabilistic
and time series models.
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2.1 Introduction

Uncertainty plays a central role in financial theory and its empirical imple-
mentation. The objective of this paper is to review the connection between the
theory and the empirical analysis in the area of Finance. It is obvious that the
scope of the subject is too wide and, consequently, we will not be able to cover
all contributions in the area. Therefore, in the framework of probabilistic mod-
els, we focus on those pricing models reflecting the absence of arbitrage and
free-lunch. The problem of valuation and hedging of contingent claims (risks)
presents important difficulties when markets imperfections are met. The char-
acterization of No-Arbitrage (NA) is extensively studied in section 2. Pricing
of contingent claims when markets are subject to portfolio constraints, trans-
actions costs and taxes as well as new results for nonlinear pricing along with
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a universal framework for pricing financial and insurance risks are reviewed in
this section.

Section 3 reviews the main time series models devoted to the analysis of
financial returns. We start describing models for the conditional mean usually
fitted to test whether financial prices are predictable. In this sense, it is gener-
ally accepted that asset returns are close to be martingale difference processes.
However, they are not independent because of the often observed dependence
of some transformations related with second moments. Consequently, we then
describe models to represent the dynamic evolution of conditional variances
and covariances of high frequency returns. Finally, section 3 reviews the mod-
els recently proposed to represent the main empirical properties of ultra high
frequency (intra-daily) returns.

In section 4, we focus on the link between probabilistic models and Finan-
cial Econometrics. We show that the estimation of realistic financial models
for asset prices are, in general, difficult and much research remains to be done
in this area. In particular, in this section, we describe the empirical implemen-
tation of the CAPM as well as the estimation procedures of the term structure,
the VaR and continuous time diffusions.

The paper finishes in section 5 with a summary of the main conclusions.

2.2 Probabilistic models for finance

A classical problem in mathematical finance is the pricing of financial as-
sets. The usual solution of this problem involves the so-called Fundamental
Theorem of Asset Pricing. This result ensures that the assumption of NA is
essentially equivalent to the existence of an equivalent martingale measure, in
a perfect financial market. The NA assumption amounts to saying that there is
no plan yielding some profit without a countervailing threat of loss. It prevents
the existence of zero cost portfolios with positive return. The problem of fair
pricing of financial assets is then reduced to taking their expected values with
respect to equivalent martingale measures. Initial results on the Fundamental
Theorem of Asset Pricing hold in the case of finite number of assets and a finite
discrete time models; see Harrison and Kreps (1979) and Harrison and Pliska
(1981).

Various generalizations are now available in the literature. For discrete in-
finite or continuous time, the notion of “no free lunch” or “no free lunch with
bounded (vanishing) risk” is needed, which is a slightly stronger version of
the non-arbitrage condition; see, for example, Dalang et al. (1989), Back and
Pliska (1991) and Schachermayer (1992). In these generalizations, securities
markets are assumed to be frictionless, i.e. without considering transaction
costs. For discrete infinite case see Schachermayer (1994). For continuous
time models see Delbaen (1992) or Delbaen and Schachermayer (1994, 1998);
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see also Duffie and Huang (1986), Striker (1990) and Kabanov and Kramkov
(1994).

2.2.1 The Fundamental Theorem of Asset Pricing
The mathematical translation of this concept uses martingale theory and

stochastic analysis. Under the assumption that the price process
reflect economically meaningful ideas and does not generate arbi-

trage profits, the Fundamental Theorem of Asset Pricing allows the probability
P on the underlying probability space F, P) to be replaced by an equiva-
lent measure Q such that becomes a (local) martingale under the new
measure. The information structure is given by a filtration  Following
Delbaen and Schachermayer (1994, 1998), there should be no trading strat-
egy H for the process S, such that the final payoff described by the stochastic
integral  is a nonnegative function, strictly positive with positive prob-
ability.

A buy-and-hold strategy can be described, from the mathematical point of
view, as an integrand of the form where are stop-
ping times and is The interpretation of this integrands
is clear: when time comes up, buy units of the financial asset,
keep them until time and sell. Stopping times are interpreted as signals
coming from available information and this is one reason why, in mathemat-
ical finance, the filtration and further concepts such as predictable processes,
are so relevant. Even if the process S is not a semi-martingale, the stochastic
integral (H.S) for a buy-and-hold strategy H can be defined as the process

A linear combination of buy-and-hold
strategies is called a simple integrand. In the general case simple integrands
are not sufficient to characterize these processes that admit an equivalent mar-
tingale measure. On the other hand the use of general integrands leads the
problem of the existence of (H.S). The so called admissible integrands avoid
all of these pathologies.

Formally, if S denotes an semi-martingale, defined on the filtered
probability space an predictable process H is
called if it is S-integrable, if if the stochastic integral
satisfies and if the exists a.s.  If H is admissible
for some then is simply call admissible.

In order to characterize mathematically the NA and the No Free Lunch
(NFL) properties, we need to consider the following vector spaces. Let us
denote by the vector space of all real-valued measurable functions defined
on Endowed with the topology of convergence in probability, this space be-
comes a Fréchet space (i.e. a complete and metrisable vector space). de-
notes the subspace of of all bounded functions. It is remarkable that the two
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spaces and are, among the spaces, the only two spaces that remain
the same when the original probability measure is replaced by an equivalent
one. Let us to introduce the following sets:

In all papers dealing with the Fundamental Theorem of Asset Pricing (with
simple integrands), the assumption of NA or NFL essentially amounts to say-
ing that the set does not contain any non-negative random variable except
the null one.

Formally, we say that the process S satisfies the NA property if:

which is equivalent to the expression

The process S satisfies the NFL property if

where the bar denotes closure in the norm topology of
The NFL is an old expression used in the early days of the finance literature.

The NA postulates that the set of random variables which can be achieved by
a zero cost portfolio does not include any positive random variable. The NFL
condition, postulates the same on the topological closure of the previous set.
The following technical definition is due to Kreps (1981). Let S be a bounded
process and let us denote by the set of all outcomes with respect to bounded
simple integrands. is defined in the same way

Then, an adapted process S satisfies the NFL property, as above, if the cor-
responding set of outcomes does not contain any non-negative random variable
except the null, where the tilde denotes weak closure. Deal-
ing with the weak closure it may happen that an element of this set can only be
obtained by an unbounded generalized sequence. Unfortunately the economic
interpretation of this unbounded objects is unclear. However requirements of
NA and NFL in expressions (1) and (2) are very strong. We assume that S is a
semi-martingale and there is an equivalent martingale measure for the process
S. On the other hand we need a definition for the set of outcomes with respect
to general admissible integrands. The following theorem from Delbaen and
Schachermayer (1998), characterizes the NFL concept through a boundedness
property in
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THEOREM 1 The process S satisfies the property NFL (2) if and only if it
satisfies

1 the NA property (1) and

2 is bounded in the space

They remark that the boundedness of the set has the following economic
interpretation: for outcomes that have a maximal loss bounded by 1, the profit
is bounded in probability, this means that the probability of making a big profit
can be estimated from above, uniformly over all such outcomes.

For further characterization of the NFL property and related results for lo-
cally bounded semi-martingales S, see Delbaen and Schachermayer (1994,
1998).

A recent projective system approach to the martingale characterization of
the absence of arbitrage is provided by Balbás et al. (2002). The equivalence
between the absence of arbitrage and the existence of an equivalent martingale
measure fails when an infinite number of trading dates is considered. Thus,
enlarging the set of states of nature and the probability measure through a pro-
jective system of perfect measure space, the authors characterize the absence
of arbitrage when the time set is countable.

The martingale characterization can be extended in the context of imperfect
financial models, mainly financial models with proportional transaction costs,
short sale constraints, convex cone constraints, etc.

We can observe three main lines of research generalizing these initial results.
The first one applies in the context of imperfect financial markets for a model
with transaction costs. The second line of research expands the restricted fea-
sible portfolio case, usually cone constraints. The third research direction and
the most recent one is based on the assumption that the price is non-linear with
respect to the portfolio. Then the subaditivity property is needed and the Cho-
quet integral is a powerful tool to be used in this context. The asset pricing
problem is then solved as a Choquet integral of the future returns with respect
to a new capacity introduced by Chateaunef et al. (1994,1996).

Currently there is a pressing need for a universal framework for the determi-
nation of the fair value of financial and insurance risks. In the financial services
industry, this pressing need is evidenced by the recent Basel Accords on regu-
latory risk management that require fair value, analogous to market prices, to
be applied to all assets or losses, whether traded or not. More recently Wang
(2000, 2001) presents a universal framework for pricing financial and insur-
ance risks.
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2.2.2 Asset Pricing in Imperfect Financial Markets

In the classical setting, the financial market is modeled in a “frictionless”
way which is a clear idealization of the real world. Therefore models with
transaction costs have been increasingly studied in the literature; see Davis
and Norman (1990) or Striker (1990). Jouini and Kallal (1995a) characterize
the assumption of NFL in a model with transaction costs and give fair pricing
intervals for contingent claims in such a model. As for other imperfection,
Jouini and Kallal (1995b, 1999) consider the case of short sale constraints
or shortselling costs with possibly different rates for borrowing and lending
rates. The problem of hedging contingent claims, in continuous time, is study
by Cvitanic and Karatzas (1996). They propose a diffusion model (with one
bond and one risky asset) with proportional transaction costs, and give a dual
formulation for the so-called super-replication price of a contingent claim (i.e.
the minimum initial wealth needed to hedge the contingent claim, or in other
words, to obtain, through the investment opportunities available on the market,
at least the contingent claim). Delbaen et al. (1998) generalize this result
to the multivariate case, in discrete as well as in continuous time, and with a
semi-martingale price process. In these models too, typically there is a “bond”
which serves as numeraire asset. The usual assumption is that, at final date T,
all the positions in the other traded assets are liquidated, i.e., converted into
units of the bond.

More recently, Jouini and Napp (2002) generalize existing results in the fol-
lowing ways: first, they do not assume that there exists a numéraire available
to investors and allowing them to transfer money from one date to another; this
enables to consider any type of friction on the numéraire-like no borrowing,
different borrowing and lending rates, bonds with default risk, etc. These set-
ting also take into account the fact that all investors are not equal with regard
to borrowing and lending, namely some investors may enjoy special borrowing
facilities while others may not; second, they are led to introduce a new notion
of NFL, which is the classical concept in finite time but does not exclude a
free lunch at infinite and is therefore may be more economically meaningful;
last, they characterize the NFL assumption for very general investments, which
enables to consider investment opportunities that are not necessary related to
a market model and, to generalize the results obtained for imperfect markets
and to obtain them all in a unified way. Technically, all investment opportu-
nities are described in terms of cash flow. Therefore, separation techniques in
more complex spaces to obtain the Fundamental Theorem of Asset Pricing are
needed. Let consider their main Assumption A.

DEFINITION 2 An investment is an  process
null outside a finite number of dates, i.e. there exists such that

for all and such that is in for all
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DEFINITION 3 (ASSUMPTION A) There exists a sequence
such that for all for all in of positive probability, there exists
H in the convex cone of investment opportunities J, of the form out-
side for all for all and there exists

Roughly, Assumption A corresponds to the possibility of transferring “some
money” from any date and event to some particular date. This assumption is
not too restrictive: it is satisfied if we can buy at every date and event a bond
with a given maturity even if this bond is defaultable and even if there is no
secondary market for that bond (i.e. we have to wait until maturity in order to
recover any money with a positive probability, which may be different from 1);
this includes market models with frictions on the numeraire like no borrowing,
different borrowing and lending rates, bonds with default risk, different bor-
rowing facilities among the investors. More generally, it is satisfied if there is
at least one asset whose price cannot be negative (which is usually the case for
stocks or for options, defaultable bonds,etc.).

Then a characterization of the NA property in a model with flows is given
by Jouini and Napp (2002) in the following theorem.

THEOREM 4 Let J denote a convex cone of investments satisfying Assump-
tion A. There is NFL for J if and only if there exists a process
satisfying for all in T, for some M in ,and such that

for all
Moreover, the process can be taken
In other words, there is NFL for a convex cone of available investments

satisfying Assumption A if and only if a given convex set of “admissible” dis-
count processes is non-void. The theorem ensures the existence of a “discount
process” such that, using this process as deflator, all available investments have
non-positive present value; this means that there exists a term structure such
that the market consisting of the primitive investment opportunities and of the
additional borrowing and lending facilities is still “arbitrage-free”. Besides,
the existence of such a discount process prevents from any arbitrage opportu-
nity. Notice that Assumption A is not needed to obtain this result if the set of
investment opportunities is related to a countable set of dates.

Since most market models with frictions can fit in the model with flows for
a specific convex cone of available investments, the model in Jouini and Napp
(2002) provides a unified framework for the study of the characterization of
the absence of FL in such imperfect market models. However this model with
flows does not stand for economies with fixed transaction costs, since the set
of available investments is not a cone.

Kabanov (1999, 2001) develops a mathematical theory of currency markets
with transaction costs based on ideas of convex geometry. He proposed an
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appealing framework to model financial markets in a numeraire-free way for
both frictionless markets and markets with transaction costs. This approach
turns out to be conceptually interesting, even in the frictionless case, as it al-
lows for a new look on the wealth processes, arising in financial modelling,
without explicitly using stochastic integration: expressing portfolios in terms
of the number of physical units of the assets, as opposed to the values of the
assets in terms of some numéraire, opens new perspectives. Basically, the
financial market is modelled by a dxd matrix-valued stochastic process spec-
ifying the mutual bid and ask prices between d-assets. The terms of trade at
time are modeled via an non-negative matrix -valued map

denoting the bid and ask prices for the exchange between the as-
The entry of denotes the number of units of asset from which an

agent can trade in one unit of asset in terms of the asset bid-ask processes
are defined as adapted processes taking values in the set of bid-ask-matrices.

a.s. for all and in the frictionless case.
Kabanov et al. (2001) introduce the bid-ask process in a somewhat indirect

way. They start with a price process which models the prices
of the assets without transaction cost in terms of some numeraire (it may
be a traded asset or not). One then defines a non-negative  -matrix

of transaction cost non-negative coefficients modelling the
proportionally factor one has to pay in transaction costs, when exchanging the

into the asset. Then the bid-ask process is obtained as

where 1 denotes the unit matrix (not to be confused with the identity ma-
trix).

Schachermayer (2002) presents a direct modelization of the bid-ask process
without first defining and It seems more natural, from

an economic point of view, as in a market with friction an agent is certainly
faced with a bid-and an ask-price. But these prices are not necessarily decom-
posed into a “frictionless” price and additional transaction costs.

The notion of consistent price system (resp. strictly consistent) introduced
by Kabanov and his co-authors extends the notion of equivalent martingale
measures. Similar notions are in Schachermaver (2002).

DEFINITION 5 An adapted  valued-process is called a con-
sistent (resp. strictly consistent) price process for the bid-ask process if Z
is a martingale under P, and lies in (resp. in the relative
interior of a.s., for each t=0,...,T,.

sets.
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for is the polar
of. and is the solvency cone, i.e., the convex cone in spanned
by the unit vectors and the vectors

The cone has a nice economic interpretation, eluded by the term
“consistent price system”. A vector is in if it defines a friction-
less pricing system for the assets 1,…,d which is consistent with the bid-ask-
matrix in the following sense: if the price of asset (denoted in terms of
some numéraire) equals then the friction-less exchange rates,denoted by

clearly equal

>From the economical point of view, a consistent price system
is strictly consistent if, for all the exchange rate is in
the relative interior of the bid-ask spread

The main theorem in Kabanov et al. (2001) is the following version of the
Fundamental Theorem of Asset Pricing: under an additional assumption, a bid-
ask process satisfies the strict NA condition, if there is a strictly consistent
price system Z for The additional assumption is called “efficient friction”
and requires that a.s., for all It was asked by these
authors whether this additional assumption can be dropped. Schachermayer
(2002) gives an example of a bid-ask process with and T = 2,
showing that, in general, the answer to this question is no. In the same paper a
slight strengthening of the notion strict NA, called the robust no arbitrage
is introduced. A subsequent Fundamental Theorem of Asset Pricing as a main
result is then formulated.

2.2.3 Asset Pricing with Cone Constraints
Pham and Touzi (1999) addresses the problem of characterization of NA in

the presence of frictions in a discrete-time financial market model. They ex-
tend the Fundamental Theorem of Asset Pricing with cone constraints on the
trading strategies under a nondegeneracy assumption. In the presence of trans-
action costs and under a nondegeneracy condition on the risky assets price
process, they also prove that the NFL and the NA conditions are locally equiv-
alent i.e. when trading is restricted to some period Their main result
states the equivalence of the no local arbitrage condition and the existence of an
equivalent probability measure satisfying a further generalization of the mar-
tingale property. They do not provide a multiperiod version of this result. For
a more general setting of convex constraints see Brannath (1997).
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2.2.4 Nonlinear Asset Pricing
On financial markets without frictions, no-arbitrage pricing allows to price

non-marketed redundant assets using the equilibrium prices of the marketed
assets. Assets are then valued by a linear function of their payoffs (mathemat-
ical expectation). The equilibrium prices of the marketed assets determine a
set of risk neutral probability distributions such that the equilibrium price of a
redundant asset equals the mathematical expectation of its discounted payoff
with respect these probability distributions. This pricing rule is consistent with
equilibrium in the sense that, introducing a redundant asset at its no-arbitrage
price does not affect the equilibrium allocation; see, for example, Harrison and
Kreps (1979). In markets with frictions, pricing rules may be non-linear. Two
portfolios yielding the same payoffs need not have the same formation cost
(net of transaction cost), but the difference may not imply the existence of a
free lunch because of frictions. Consider for example bid-ask spreads or trans-
action costs. Then clearly prices (as a function of asset payoffs) are non-linear,
since the price an agent has to pay for buying an asset is strictly larger than the
price an agent receives for selling it. Therefore equilibrium asset prices cannot
be represented by the mathematical expectation of their discounted payoff with
respect to a probability measure.

Asset valuation by a Choquet integral is introduced in Chateauneuf et al.
(1996). They introduce a nonlinear valuation formula similar to the usual ex-
pectation with respect to the risk-adjusted probability measure. This formula
expresses the asset’s selling and buying prices set by dealers as the Choquet
integrals of their random payoffs. In this paper bid-ask spreads are consid-
ered. Bid-ask spreads is one of many types of friction prevailing in financial
markets which differs from the traditional formalization of proportional trans-
action costs.

Let consider the following situation pointed out by Chateauneuf et al. (1996):
assumed that a dealer sells an asset Y (defined by its flow of payoffs) at a price

and that she buys it a price such that she makes the positive
profit Then, because cannot
be linear, hence it cannot be calculated as where S is the
set of random states and is some risk-adjusted probability over S. In these
settings, the paper imposes certain axioms on prices (generalizing the usual no-
arbitrage conditions) and deduces from them a result on the structure of prices
(representation as Choquet integral: an expectation with respect to a concave
capacity). Capacities were introduced by Schmeidler (1989) in individual de-
cision theory. Formally, a capacity on a measurable space (S, is a set of
functions satisfying Furthermore is
said to be convex (resp. concave or supermodular) if
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In this context, a convex capacity is interpreted as a representation of risk
(uncertainty) aversion. This characterization of uncertainty aversion has been
used in single-agents models for which convex capacities are representations
of individual behaviors. In contrast, Chateauneuf et al. (1996) use a model for
which agents are price takers and the concave capacity is derived from prices.

Formally, the model uncertainty they consider is described by the measur-
able state space (S, where is a given of events of S. An
asset is defined by the random variable X of its payoffs. Bounded assets are
considered. These assets are sold and bought by a dealer to agents. Hence,
all traded assets have a bid and an ask price fixed by the dealer. These prices
are described by and respectively, i.e., the prices at which the
dealer sells asset Y to agents and buy asset Y from agents. Three axioms on
prices which generalize the usual NA conditions to market with a dealer are
then imposed. The first is the usual NFL. The second one, as is usually done
in pricing models, assumes no transaction costs on riskless assets. The third
axiom replaces the (usually implicit) tight markets condition. Traditionally,
two portfolios yielding the same payoffs must have the same price, implying
that price functional is linear. Taking into account potential reduction of risks
when portfolio X + Y is sold instead of X or Y alone induces the dealer to
sell X + Y at a discount to X and Y.

A typical example where hedging effects occur and X and Y are not comono-
tone (comonotonicity := for all
is the following one from Chateneauf et al. (1996). Suppose that X offers
1000 if even B occurs, 5000 otherwise, Y offers 5000 if B occurs, 1000
otherwise. Clearly X and Y are not comonotone and X (resp Y) is a hedge
against Y (resp. X) since X + Y is riskless: it offers 6000 with certainty.
So, subadditivity for is required. Notice that,
consequently, no discount will be offered by the dealer when X and Y are
comonotone; i.e., if X and Y are comonotone.
Then the third axiom (Comonotonicity Premium) expresses for all

equality holds if X and Y are comonotone. Their
main result is the so-called Choquet Sublinear Pricing Theorem. Under the
three axioms as above this theorem asserts that there exists a unique concave
capacity on the set of states S such that the value of an asset X is defined by

is an additive probability s.t. The price of
X is the Choquet integral of its payoffs: where
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and  is sublinear (i.e. subadditive and positively homogeneous, and indeed
is concave).

Application to pricing “primes” and “scores” are given in the paper of
Chateauneuf et al. (1996).

In these settings De Waegenaere et al. (1996) propose a pricing rule for the
valuation of assets on financial markets with intermediaries. They assume that
the non-linearity arises from the fact that dealers charge a price for their inter-
mediation between buyer and seller. The price of an asset equals the signed
Choquet integral of its discounted payoff with respect to a concave signed ca-
pacity. Furthermore, they show that this pricing rule is consistent with equilib-
rium and equilibria satisfy a notion of constrained Pareto optimality.

On the other hand, a universal framework for pricing financial and insurance
risks has been introduced recently by Wang (2000) who proposes a pricing
method based on the following transformation
where is the standard normal cumulative distribution. The key parameter
is called the market price of risk, reflecting the level of systematic risk. For a
given asset X with the Wang transform will produce
a “risk-adjusted” cumulative probability distribution The mean value
under will define a risk-adjusted “fair value” of X at time T, which
can be further discounted to time zero, using the risk-free interest rate. This
approach is partly inspired in the work of Venter (1991) and Butsic (1999).

2.3 Time series models
In this section, we revise the literature on the time series models usually

fitted to financial data. As this is a very broad area, the focus is only on the
main branches of the literature with special attention to the most recent devel-
opments. Campbell et al. (1997) and Tsay (2002) present excellent textbook
reviews of Financial Econometrics and Bollerslev (2001) and Engel (2001,
2002a) have very interesting discussions on past developments and future per-
spectives in this area.

Traditionally, the two main motivations to use time series models to ana-
lyze financial data are to represent the empirical properties often observed in
real prices and to estimate and test the financial models described in section 2.
In this section, we describe models proposed mainly to represent the empiri-
cal properties of financial prices while section 4 is devoted to the relationship
between time series models and Finance theory.

The empirical properties of financial prices depend crucially on the fre-
quency of observation. We consider three main classes of frequencies. First,
it is possible to observe prices at very high frequencies as, for example, tick
by tick or hourly prices. These observations are called Ultra-high-frequency
(UHF) data by Engle (2000) and they are usually characterized by unequally
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spaced and discrete-value observations. Another important property is the
presence of strong daily patterns with highest volatility at the open and toward
the close of the day. On top of this intraday volatility pattern, UHF returns are
characterized by highly persistent conditionally heteroscedastic components
along with discrete information arrival effects; see Andersen and Bollerslev
(1997a, 1997b, 1998), Müller et al. (1997) and Andersen et al. (2001). Fi-
nally, it is possible to have multiple transactions within a single second.

Prices can also be observed at high frequencies, as for example, daily or
weekly. This frequency is the most extensively analyzed in the empirical liter-
ature. There is a vast number of papers that show that high frequency returns
are nearly non-correlated although they are not independent because there are
non-linear transformations, as squares or absolute values, that have significant
autocorrelations. Furthermore, these autocorrelations are usually small and
decay very slowly towards zero. The significant autocorrelations of squared
returns are often related with the presence of volatility clustering, i.e. periods
of low volatility are usually followed by periods of low volatility and vicev-
ersa. Furthermore, the slow decay is usually interpreted as the presence of
long-memory in the volatility; see Lobato and Savin (1998) and Granger et
al. (2000) and the references therein. On the other hand, high frequency re-
turns are often leptokurtic and, consequently, non-Gaussian. The heavy tails
property of returns can also be related with the dynamic evolution of volatility.

Finally, prices are sometimes observed at very low frequencies as, for exam-
ple, monthly. Tsay (2002) shows that monthly returns still have excess kurtosis
although smaller than in lower frequencies. On the other hand, monthly returns
seem to have more serial correlations than daily returns. Given that low fre-
quencies are not in general of interest for asset pricing models, the focus in this
section is on UHF and high frequency observations.

The rest of the section is organized as follows. Subsections 3.1 to 3.3 deal
with models for high frequency observations. In subsections 3.1 and 3.2, we
describe the models usually fitted to represent expected returns and volatilities
respectively. In subsection 3.3, we consider multivariate models for systems of
returns. Finally, in subsection 3.4, we describe models for UHF data.

2.3.1 Models for the conditional mean

One of the central questions in the Financial Econometrics literature is whe-
ther financial prices are predictable and this is still a topic of controversy; see,
for example, the special issue of the Journal of Empirical Finance, 8 (2001).
In this section we describe univariate models and, consequently, the problem
is whether future prices can be predicted with information contained in their
own past. The main hypothesis that have often been tested are the martingale
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and the random walk hypothesis. The martingale hypothesis can be expressed
as follows:

Therefore, given the prices up to time the price at time is expected
to be equal to the price at time The martingale hypothesis places a re-
striction on expected returns but does not take into account the risk. However,
as said in section 2, once asset returns are properly adjusted for risk, the mar-
tingale hypothesis holds for rationally determined asset prices; see Harrison
and Kreps (1979). It is known that, the risk-adjusted martingale property is the
basis of many financial derivatives as, for example, options and swaps; see, for
example, Merton (1990) and Campbell et al. (1997).

The second hypothesis often tested in the financial literature is whether
prices are generated by a random walk plus drift model given by:

where is an independent process with zero mean and variance and is the
expected price change. In model (5), if the distribution of the errors is, for
example, Gaussian, there is a positive probability that prices can be negative,
violating limited liability. Therefore, it is usual to assume the random walk
model not for prices but for logarithmic prices, i.e.

In model (6) any arbitrary transformation of prices is unforecastable using
any arbitrary transformation of past prices. However, it is usual to assume
that the errors are merely uncorrelated instead of independent allowing, for
example, for the presence of conditional Heteroscedasticity.. As we have men-
tioned before, this is a property often observed in high frequency returns. Con-
sequently, we will focus on tests of the random walk hypothesis where is
uncorrelated.

When testing the null hypothesis that the autocorrelation coefficients of re-
turns, are all zero, it is important to take into account that

is not independent because, usually, is correlated. Therefore, the tradi-
tional tests for uncorrelatedness should be adequately modified; see Romano
and Thombs (1996) and Lobato et al. (2001) among others.

Alternatively, the random walk hypothesis can be tested using the Variance
Ratio (VR) statistic. This test is based on the property that the variance of
random walk increments is a linear function of time interval; see Campbell et
al. (1997) for a detailed description of the VR test.

The implementation of the previous tests to financial prices, seems to sug-
gest that financial asset returns are predictable; see the special issue of the
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Journal of Empirical Finance, 8 (2001) and the references therein. There are
several alternative explanations for this predictability. For example, Campbell
et al. (1997) and Lo and MacKinlay (1990) show that nonsynchronous trading
can introduce negative autocorrelations in returns. The bid-ask spread can also
introduce negative autocorrelations in asset returns; see, among others, Camp-
bell et al. (1997). Other possible explanations are time-varying risk premiums
as in Harvey (2001) and Bekaert et al. (2001), irrational behavior of market
participants in Hong and Stein (1999), Benartzi and Thaler (1995), Barberis et
al. (2001) and Epsein and Zin (2001), market frictions as transaction costs or
agency problems or fluke due to statistical inference.

2.3.2 Models for the conditional variance
Although, it is generally accepted that asset returns appear to be close to

a martingale difference process, there is an overwhelming evidence that they
are not independent due to autocorrelated squares. Assuming that returns have
zero mean and are serially uncorrelated, they can be represented by the follow-
ing model:

where is an independent and identically distributed (i.i.d.) process with zero
mean and unity variance independent of the volatility, There are two main
proposals in the literature to represent the dynamic evolution of General-
ized Autoregressive Conditional Heteroscedasticity (GARCH) and Stochastic
Volatility (SV) models.

GARCH models, originally proposed by Engle (1982) and Bollerslev (1986),
are based on modelling the volatility as the variance of returns conditional on
past observations. There is a pleyade of papers where GARCH models are
investigated from a theoretical point of view or are applied to the empirical
analysis of financial time series. The main properties of GARCH models have
been reviewed, among others, by Bollerslev et al. (1995) and Carnero et al.
(2001a). Although the original motivation of GARCH models was mainly
empirical, Nelson (1992) shows that even when mispecified, ARCH models
may serve as consistent filters for the continuous–time stochastic volatility dif-
fusions often employed in the asset pricing literature. Furthermore, Nelson
(1990, 1994) and Nelson and Foster (1994) provide some important links be-
tween GARCH and the corresponding continuous–time models.

The original GARCH model has been extended in a huge number of direc-
tions. Two of the main extensions from the empirical point of view, are models
to represent the asymmetric response of volatility to positive and negative re-
turns and to represent the effect of the volatility on the return of a stock. The
first effect is known as leverage effect and was introduced by Black (1986).
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The first model proposed to represent the leverage effect was the Exponential
GARCH (EGARCH) model of Nelson (1991). Later, Hentschel (1995), Duan
(1997) and He and Terasvirta (1999) have proposed models general enough
to unify many of the main previous ARCH-type models. With respect to the
effect of volatility on the expected return, Engle et al. (1987) introduced the
GARCH in mean (GARCH-M) model given by

The parameter c is known as the risk premium parameter. Returns generated
by the GARCH-M model are autocorrelated because of the autocorrelations of
the volatility,

There are many other generalizations of the original GARCH model. For
example, Zakodian (1994) allows for regime switching where volatility per-
sistence can take different values depending on whether returns are in a high
or a low volatility regime. To represent the long memory property of squared
returns, Baillie et al. (1996) introduce the Fractionally Integrated GARCH
(FIGARCH) model. Although the FIGARCH model has been fitted in several
empirical applications, it is not stationary in covariance and, consequently, the
properties of the corresponding estimators and tests are generally unknown.
Finally, Engle and Lee (1999) have proposed a GARCH model with two com-
ponents in volatility: one which is nearly nonstationary and another that is
much less persistent.

All GARCH models have the attractive that can be easily estimated by Max-
imum Likelihood techniques. However, Terasvirta (1996) and Carnero et al.
(2001b) show that the basic GARCH(1.1) model is not flexible enough to rep-
resent adequately the properties often observed in real time series of returns.

Alternatively, the volatility, can be modelled using SV models that in-
troduce an additional noise in its equation. Therefore, the volatility is a latent
variable composed of a predictable component, that depends on past returns,
plus an unexpected component. SV models were originally proposed by Taylor
(1986) and their properties have been reviewed by Taylor (1994), Ghysels et
al. (1996) and Shephard (1996). The introduction of the unobserved compo-
nent in the representation of the volatility, gives more flexibility to SV models
to represent the empirical properties often observed in real time series of re-
turns; see Carnero et al. (2001b). However, the estimation of these models
present some added difficulties over the estimation of GARCH models. The
likelihood function has not a close form and, consequently, most estimation
methods proposed in the literature are based on numerical approximations of
the likelihood or on transformations of the observations. Although, there is
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not still a consensus about which are the most adequate methods to estimate
SV models, recently there has been important progress towards methods that
are computationally feasible and, at the same time, have properties similar to
the Maximum Likelihood estimators; see Broto and Ruiz (2002) for a detailed
description of estimation methods for SV models.

Recently, Chib et al. (2002) have proposed the following SV model where
returns can contain a jump component to allow for large, transient movements,

where and are covariates and denotes the level effect. The covariate
is a non-negative process as, for example, lagged interest rates; see Ander-

sen and Lund (1997). The noises and are mutually independent Student-
t and Gaussian white noise processes respectively, both with zero mean and
variances one and Finally, with respect to the jump component, is a
Bernoulli random variable that takes value one with probability and is
the size of the jump distributed as They ar-
gue that model (9) without the jump component can be thought of as an Euler
discretization of a Student-t Lévy process with additional stochastic volatil-
ity effects. This process has been used in the continuous time options and
risk assessment literature; see, for example, Barndorff-Nielsen and Shephard
(2002b), Eberlein (2002) and Eberlein and Prause (2002). On the other hand,
models with jumps have also been frequently applied in continuous time mod-
els of financial asset pricing; see, for example, Merton (1976), Ball and Torous
(1985), Bates (1996), Duffie et al. (2000) and Barndorff-Nielsen and Shephard
(2001). From the point of view of the Financial Econometrics literature, SV
models with jumps have been previously considered by Chernov et al. (2000),
Barndorff-Nielsen and Shephard (2002a) and Eraker et al. (2003).

As in the case of GARCH models, SV models have also been extended
to represent the asymmetric response of volatility to negative and positive re-
turns and the response of expected returns to volatility by Harvey and Shephard
(1996) and Koopman and Uspensky (2002) respectively. Another extension of
SV models considered in the literature is to allow for long memory in volatility;
see Harvey (1998) and Breidt et al. (1998).

2.3.3 Models for conditional covariances

Multivariate models have been often used to represent financial series of
returns related, for example, with the Asset Pricing Theory (APT), asset al-
location, estimation of time-varying betas or Value at Risk (VaR). However,
although numerous multivariate models for returns have been proposed, there



44 RECENTS ADVANCES IN APPLIED PROBABILITY

is not jet a consensus about which models are better mainly due to a dimension-
ality problem. The literature on multivariate GARCH models is often related
with the lack of parsimony of these models and the constraints needed to guar-
antee that the conditional covariance matrix, is positive definite; see Engle
(2002a,b) who revises the most popular multivariate models proposed in the
context of GARCH. The dimensionality becomes very quickly a problem be-
cause the conditional covariance matrix of a k-dimensional return series has
k(k+1)/2 distinct quantities. To keep the number of parameters low, Boller-
slev (1990) considers a multivariate GARCH model with constant correlations
that always satisfies the positive-definite condition of The constant cor-
relation hypothesis can be tested using the Lagrange multiplier test proposed
by Tse (2000). Because of its computational simplicity, the constant correla-
tion model of Bollerslev (1990) has been widely used in the empirical analysis
of financial data. However, if the correlations evolve over time, this model is
inadequate and can give incorrect inferences. Very recently, there have been
different proposals of multivariate GARCH models with time varying condi-
tional correlations. For example, Tsay (2002) proposes two alternative ways of
dealing with the conditional covariance matrix. The first one consists of model-
ing directly the evolution of the autocorrelation and the second is based on the
Cholesky decomposition of The attractive of the second alternative is that
it does not require any constraint to ensure the positive definiteness of Al-
ternatively, Tse and Tsui (2002) propose a multivariate GARCH (MGARCH)
model with time-varying correlations where the constraints required to ensure
positive definite covariance matrix can be imposed during the optimization
procedure. Finally, Engle (2002b) proposes a nonlinear Dynamic Conditional
Correlation (DCC) model that can be estimated in two steps from univariate
GARCH models. Alternatively, Ledoit et al. (2003a) also propose a two step
estimation procedure of the original unrestricted diagonal-Vech multivariate
GARCH(1,1) model of Bollerslev et al. (1988) given by

In the first step, the parameters are estimated separately by estimating the
two-dimensional or one-dimensional equations in (10). Then, the estimated
matrices are transformed to guarantee positive semi-definiteness.

An extensive and detailed comparison between the alternative models to
represent time-varying correlations is still to be done.

Another completely different approach to simplify the dynamic structure of
a multivariate volatility process is to use factor models. Multivariate factor
models provide a way of dealing with the APT; see, for example, Campbell
et al. (1997) for a very simple exposition. Denoting by the vector of
returns at time it is given by
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where D is a diagonal matrix, B is the matrix of factor loadings and is
a K dimensional vector of factors. The APT says that, as the dimension of

increases (approximating the market), then where is the
riskless interest rate, is a vector of ones and is a vector representing the
factor risk premium associated with the factors often identified as the variances
of the factors. However, the normality assumption in (11) is usually inadequate
for high frequency series of returns. Consequently, this assumption has been
relaxed in the consequent literature. Diebold and Nerlove (1989) and King et
al. (1994) analyze factor models where the factors and idiosyncratic errors
follow their own ARCH process. Sentana and Fiorentini (2001) show that the
identifiability restrictions for conditionally heteroscedastic factor models are
less severe than in static factor models.

In the context of SV models, the first multivariate model was originally
proposed by Harvey et al. (1994) who allow the variances and covariances
to evolve through time with possibly common trends. Later, Ray and Tsay
(2000) used the same model to study common long memory components in
daily stock volatilities of groups of companies. However, the multivariate SV
model of Harvey et al. (1994) restricts the correlations to be constant over
time. Later, Jacquier et al. (1995) propose a factor SV model given by

Kim et al. (1998) generalize model (12) by allowing the idiosyncratic
noises to follow independent univariate SV models. Then, Aguilar and West
(2000) and Pitt and Shephard (1999) implement the model using two alterna-
tive Monte Carlo Markov Chain (MCMC) techniques. Finally, Tsay (2002)
presents a MCMC estimation of the multivariate SV model based on the Cho-
lesky decomposition.

2.3.4 Models for intradaily data

The analysis of UHF data is closely related with what is known as Mar-
ket Microestructure and is one of the most active research areas in Financial
Econometrics. However, traditional econometric tools may not be appropri-
ate as tick by tick observations are not equally spaced and discrete valued. In
this case, it is possible to use market point processes or continuous time meth-
ods in which the sampling frequency is determined by some notion of time
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deformation; see, for example, Andersen (1996). With respect to using UHF
data to estimate the volatility, Andersen and Bollerslev (1998) show that the
precision of volatility forecast is improved if the data are sampled more fre-
quently. However, UFH data are affected by problems as the bid-ask spread or
non-synchronous trading that, as previously mentioned, can generate autocor-
relations in returns. Andersen et al. (2001) develop new robust methods for
inference in the UHF data setting. Their approach is based on an extension of
the Fourier Flexible Form (FFF) regression framework.

Hausman et al. (1992) proposes an ordered probit model to study price
movements in transactions data where the explanatory variables are the dura-
tion between trades, the bid-ask spread, the lagged values of price change and
volume, the return of the S&P500 index and an indicator variable that depends
on the bid and ask prices. Alternatively, Rydberg and Shephard (2003) pro-
pose to decompose the price change into three components: an indicator for
the price change, the direction of the change and the size of the change.

Finally, when analyzing UHF data, it is important to model not only the
trades but also the timing between trades. In this sense, Engle and Russell
(1998) propose the Autoregressive Conditional Duration (ACD) model that
estimates the distribution of the time between events conditional on past in-
formation. Later, Dufour and Engle (2000) show that the more frequent the
transactions, the greater the volatility. Furthermore, they show that transac-
tion arrivals are predictable based on economic variables as the bid-ask spread.
Zhang et al. (2001) extend the ACD model to account for nonlinearity and
structural breaks in the data. Finally, Tsay (2002) introduces the Price Change
and Duration (PCD) model to describe the multivariate dynamics of prices
changes and associate durations.

2.4 Applications of time series to financial models

Summarizing the literature described in sections 2 and 3, it seems rather
clear that there is a gap between the theoretical asset pricing and the Finan-
cial Econometrics literature. First, although continuous time methods and
no-arbitrage arguments are prominent in the asset pricing literature, most in-
fluential contributions have been derived under very restrictive assumptions
about the underlying process. For example, the Black-Scholes option valua-
tion formula assumes constant volatility when, it is generally accepted empir-
ically, that volatility evolves over time. However, recently, some authors have
proposed more realistic continuous time processes with time varying volatili-
ties; see, for example, Hull and White (1987), Heston (1993), Duffie and Kan
(1996) and Dai and Singleton (2000). Engle (2001) suggests that the use of
UHF data potentially could provide information on the more appropriate class
of diffusion models to use for pricing both underlying and derivative assets.
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On the other hand, the Financial Econometrics literature has many challenges
to provide instruments adequate to represent the behavior of asset prices. The
econometrics of, for example, jump diffusion or affine models are difficult.
Bollerslev (2001) points out that recent research on the link between the prob-
ability distributions of actual asset prices and the corresponding risk-neutral
probability distributions implied by derivative prices has just started and that
much research remains to be done. Some relevant references in this sense
are Aït-Sahaila and Lo (2000), Andersen et al. (2002), Chernov and Ghysels
(2000) and Duffie et al. (2000). Also, it is very useful the guest editorial by
Ghysels and Tauchen (2003) and all the papers within the special issue of the
Journal of Econometrics on the intersection between Financial Econometrics
and Financial Engineering.

2.4.1 Estimation of the CAPM
Two classical pricing models arise in the financial literature. Capital Asset

Pricing Model (CAPM) is a set of predictions concerning equilibrium expected
return on assets; see, for example, Sharpe (1964) or Lintner (1965). Classic
CAPM assumes that all investors have the same one-period horizon, and asset
returns have multivariate normal distributions. For a fixed time horizon, let
and be the returns of asset and of the market portfolio M, respectively.
Classic CAPM, sometimes called Sharpe-Lintner CAPM, asserts that

where is the risk-free return and is the beta of asset

Assuming that asset returns are normally distributed and the time horizon is
one period (e.g., one year), a key concept in financial economics is the market

price of risk, given by In asset portfolio management, this is

also called the Sharpe Ratio, after William Sharpe.
In terms of market price of risk, CAPM can be restated as follows:

where is the linear correlation coefficient between and In other
words, the market price of risk for asset is directly proportional to the corre-
lation coefficient between asset and the market portfolio M.

CAPM automatically prices assets in the set of all linear combinations of
basic assets according to this linearity rule, as long as the market portfolio used
in the CAPM is the mean-variance efficient portfolio of risky assets (alternative
termed the Markowitz portfolio). CAPM provides a powerful insight regarding
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the risk-return relationship, where only systematic risk deserves an extra risk
premium in an efficient market. However, CAPM and the concept of “market
price of risk” were developed under the assumption of normal multivariate
distributions for asset returns, and in practice the underwriting beta can be
difficult to estimate.

On the other hand, a common practice pricing non-marketed assets is to
infer the price applying the CAPM formula to this asset as well, by simply
entering the random payoff B corresponding to the non-marketed asset into
the CAPM formula. Technically, the new price has a systematic relationship to
the prices of the basic assets, more precisely, it is the price of the marketed asset
that best approximates the random payoff B in the sense of minimum expected
squared error. Following geometric and statistical considerations, Luenberger
(2002a) proposes a correlation pricing formula similar to the CAPM formula,
which expresses the price of a non-marketed asset in terms of a priced asset
that is the most correlated with the non-marketed asset, rather than in terms
of the marked portfolio. The method has accuracy advantages when values in
the formula must be estimated. Beyond the NA principle, Luenberger (2002b)
derives a pricing method for non-marketed assets determining the price such
that an investor with a specific utility function will elect to include the new
asset in his/her portfolio at the zero level. The idea of zero-level pricing of a
non-marketed payoff is to find the price such that a certain investor will elect
to neither purchase nor short it. At this price the investor is indifferent to the
inclusion of the considered payoff. Conditions ensuring for such a price to be
unique are given in Luenberger (2002b).

Besides CAPM, another major financial pricing paradigm is modern option
pricing theory, first developed by Black and Scholes (1973). Unfortunately,
the Black-Scholes formula only applies to lognormal distributions of market
returns. Options pricing is performed in a world of Q-measure, where the avail-
able data consists of observed market prices for related financial assets. On the
other hand, actuarial pricing takes place in a world of P-measure, where the
available data consists of projected losses, whose amounts and likelihood need
to be converted to a “fair value” price; see Panjer (1998). Because of this dif-
ference in types of data available, modern option pricing is mostly concerned
with the minimal cost of setting up a hedging portfolio, whereas actuarial pric-
ing is based on actuarial present value of costs, with additional adjustments for
correlation risk, parameter uncertainty and cost of capital. In these setting new
research directions are proposed in the recent literature.

The statistical framework for estimation and testing for the classical CAPM
is the Maximum Likelihood (ML) approach; see Campbell et al. (1997), Gib-
bons et al. (1989) and Bollerslev et al. (1988).

Inferences when there are deviations from the assumption that returns are
jointly normal and iid through time have been developed. Tests which accom-
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modate non-normality, heteroscedasticity, and temporal dependence returns
are of interest for two reasons. First, while the normality assumption is suf-
ficient, it is not necessary to derive the CAPM as a theoretical model. Rather,
the normality assumption is adopted for statistical purposes. Without this as-
sumption, the finite sample properties of asset pricing model tests are difficult
to derive. Second, departures of monthly security returns from normality have
been documented. As we have pointed out in this review, there is also abun-
dant evidence of heteroscedasticity and temporal dependence in stock returns.
It is therefore of interest to consider the effects of relaxing these statistical hy-
pothesis. Robust tests of the CAPM can be constructed using a Generalized
Method of Moments (GMM). Within the GMM framework, the distribution
of returns conditional on the market return can be both serially dependent and
conditionally heteroscedastic. The only assumption is that excess asset returns
are stationary and ergodic with finite fourth moments. GMM procedure to es-
timate time-varying term premia and a consumption based asset pricing model
are used in Hansen and Singleton (1982) and Hansen and Scheikman (1995).

Other lines of research are also of interest. One important topic is the ex-
tension of the framework to test conditional versions of the CAPM, in which
the model holds conditional on state variables that describe the state of the
economy. Econometric methods from section 3 are suitable for testing the
conditional CAPM.

Another important subject is Bayesian analysis of mean-variance efficiency
and the CAPM. Bayesian analysis allows the introduction of prior information.
Harvey and Zhou (1990) and Kandel et al. (1995) are examples of work with
this perspective.

There is a controversy about the statistical evidence against the CAPM in
the past 30 years. Some authors argue that the CAPM should be replaced
by multifactor models with several sources of risk; others argue that the evi-
dence against the CAPM is overstated because of mismeasurement of the mar-
ket portfolio, improper neglect of conditional information, data snooping, or
sample-selection bias; and yet others claim that no risk-based model can ex-
plain the anomalies of stock-market behavior. Campbell et al. (1997) explore
multifactor asset pricing models.

2.4.2 Estimation of the term structure

There is a vast literature devoted to the estimation of dynamic models of the
term structure that describe the evolution of yields at all maturities. One of the
main problems in this area is that the theoretical models need to be complex
enough as to represent adequately the empirical complexity often observed.
However, as the complexity of the models increases, their estimation becomes
more difficult.
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Models of the term structure focus mainly on affine models, characterized
originally by Duffie and Kan (1996), that assume that the market price of risk is
a multiple of the interest rate volatility and that the state variables are indepen-
dent. Under these assumptions, ML estimation of the parameters is feasible.
However, many empirical studies have shown that this model has fundamental
limitations; see, for example, Ghysels and Ng (1998) and Dai and Singleton
(2000) between many others. To overcome these limitations, Dai and Single-
ton (2000) propose the multivariate affine term structure models while Ahn et
al. (2002) propose the quadratic term structure models. However, neither of
these models is able to track adequately the dynamic evolution of volatility.
Recently, Ahn et al. (2003) investigates whether an hybrid model between
affine, quadratic and nonlinear models is able to outperform each of the indi-
vidual models. However, they conclude that, in general, this is not the case.
Dai and Singleton (2003) is an excellent review on models of the term struc-
ture described from the point of view of their empirical implementation. They
focus on the fit of the theoretical specifications of dynamic structure models to
the historical shapes of the yield curves.

On the other hand, as we mentioned before, the estimation of these more
complex models becomes difficult as the likelihood does not have, in general,
a close form. One of the most popular methods in this context is the Efficient
Method of Moments (EMM) of Gallant and Tauchen (1996). Duffee and Stan-
ton (2003) estimate a multifactor term structure model with correlated factors,
nonlinear dynamics and flexible price of interest rate risk, using both the EMM
and an approximate Kalman filter. They conclude that the best results are ob-
tained when the latter procedure is used to estimate the model although it is
not asymptotically optimal. However, their results reveal severe biases in the
parameter estimates regardless of the estimation method; see also Duan and
Simonato (1999) and Chen and Scott (2002) for other authors that have also
used the Kalman filter to estimate the term structure.

2.4.3 Estimation of the VaR
Regulators and risk managers are interested in obtaining measures of the

Value at Risk (VaR), defined as the expected loss of a portfolio after a given
period of time (usually 10 days) corresponding to the quantile (usually
1%). This interest has motivate new methods designed to estimate the tails
of the distribution of returns. There are several methods to estimate the VaR.
The early VaR parametric models impose a known theoretical distribution to
price changes. Usually it is assumed that the density function of risk factors
influencing asset returns is a multivariate normal distribution as, for example,
in J.P. Morgan (1996). The most popular parametric methods are variance-
covariance models and Monte Carlo simulation. However, excess kurtosis of
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these factors will cause losses greater than VaR to occur more frequently and
be more extreme than those predicted by the Gaussian distribution. Conse-
quently, several authors propose to use nonparametric (historical simulation)
and semiparametric models that avoid to assume a particular distribution of
price increments although they usually assume independent increments; see,
for example, Danielsson and de Vries (1998). Finally, some authors propose
to use extreme value theory estimation of tail shapes to estimate the VaR; see,
for example, Embrechts et al. (1997) and McNeil and Frey (2000). In relation
with these methods, Pearson and Smithson (2002) describe refinements which
increase computational speed and improve accuracy.

However, as described in previous sections, financial returns are often char-
acterized by volatility clustering and non-Gaussianity. Therefore, several au-
thors have considered extensions of the previous approaches that allow for
time-varying volatilities. The most popular approach is to estimate the VaR
based on Conditional Gaussian GARCH models; see, for example, Christof-
fersen and Diebold (2000) and Christoffersen et al. (2001). Guermat and
Harris (2002) even extend further the GARCH approach to allow for kurtosis
clustering.

Recently, Engle and Manganelli (1999) have proposed a conditional quan-
tile estimation based on the CaViar model given by

Gourieroux and Jasiak (2001) describe several alternative methods to esti-
mate the VaR, focusing on their main advantages and limitations. Tsay (2002)
also describe several of these methods and compare their performance to es-
timate the VaR of daily returns of IBM stocks. In particular, he compares the
RiskMetrics methodology developed by J.P. Morgan, GARCH models, non-
parametric estimation, quantile regression and extreme value, finding substan-
tial differences among the approaches.

Given that, as we have mentioned already, the distribution of high frequency
price increments is non-Gaussian, and even in many cases the conditional
distribution of GARCH models is not Gaussian, many authors suggest us-
ing bootstrap techniques to avoid particular assumptions on the distribution
of factors beyond stationarity of the distribution of returns; see, for example,
Barone-Adessi et al. (1999), Barone-Adessi and Giannopoulos (2001) and
Vlaar (2000). Ruiz and Pascual (2002) review the use of bootstrap methods to
estimate the VaR.

Although there is a huge number of papers devoted to analyze methods to
estimate the VaR as a measure of financial risk, this measure is not without
criticisms; see, for example, Szego (2002) and the papers contained in the
especial number of the Journal of Banking and Finance, 26. There are several
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new measures of risk proposed as remedy for the deficiencies of VaR as, for
example, Conditional VaR (CVaR) and Expected Shortfall.

2.4.4 Estimation of diffusion processes

There are two relatively independent lines in financial modeling: conti-
nuous–time models typically used in theoretical finance and discrete-time mod-
els favored for empirical work. The continuous–time models are dominated by
the diffusion approach. In contrast to stochastic differential equations used in
discrete-time models, stochastic differential equations are widely used to de-
scribe continuous–time models in the theoretical finance literature. The stochas-
tic processes characterized by the stochastic differential equations are Itô pro-
cesses, and continuous–time model assumes that a security price follows
the stochastic differential equation:

where is a standard Wiener process, is called diffusion drift in proba-
bility or instantaneous mean rate of return in finance and is called diffu-
sion variance in probability or instantaneous conditional variance (or volatil-
ity). The celebrated Black-Scholes model corresponds to (16) with constants

and Given that financial time series tend to be highly heteroscedastic,
the general modelization assumes that is random and itself is governed by
another stochastic differential equation.

For continuous–time models, the “no arbitrage” condition, as we have ex-
tensively developed in section 2, can be characterized by a martingale measure,
that is, a probability law under which is a martingale. Prices of options and
derivatives are then the conditional expectation of certain functionals of S un-
der this measure. The calculations and derivations can be manipulated by tools
as the Itô lemma and Girsanov theorem; see Karatzas and Shreve (1991) or the
overviews in Dixit (1993) and Merton (1990).

The log price process after the Itô lemma and from (16)
follows the diffusion model

where the drift for has a term GARCH models are used to represent
statistically the increments of the log price process, so from the diffusion point
of view, (17) is also a natural parametrization of the GARCH drift

While the models are written in continuous–time, the available data are
mostly sampled discretely in time. Ignoring this difference can result in incon-
sistent estimators (see, e.g., Merton (1980)). A number of statistical/econome-
tric methods have been recently developed to estimate the parameters of a
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continuous–time diffusion without requiring that a continuous record of ob-
servations be available.

The methods of moments together with simulation estimations have been
used by Gouriéroux et al. (1993) and Gallant and Tauchen (1996). A forceful
criticism of simulation-based method-of-moments estimation has been that this
method does not provide a representation of the observables in terms of their
own past as do maximum likelihood based on a conditional density and time
series methods such as ARIMA, ARCH and GARCH modeling; see Jacquier
et al. (1994). Gallant and Tauchen (1998) use the notion of reprojection to let
a representation of the observed process in terms of observables that incorpo-
rates the dynamics implied by the possibly nonlinear system under consider-
ation. They propose a methodology for estimation and diagnostic assessment
of several diffusion models of the short rate expressed as a partially observed
system of stochastic differential equations. The theoretical support of the pro-
jection method was provided by Gallant and Long (1997) who showed that it
achieves the same efficiency as ML.

Nonparametric density-matching methods have been applied in Aït-Sahalia
(1996a, 1996b). Discretely observed diffusions have also been fit by estimat-
ing functions; see Kessler and Sørensen (1999) and Kessler (2000). A Monte
Carlo Markov Chain (MCMC) based method is proposed in Eraker (2001).
The method is applied to the estimation of parameters in one-factor interest-
rate models and a two-factor model with a latent stochastic volatility compo-
nent.

Elerian et al. (2001) propose a new method for dealing with the estima-
tion problem of stochastic differential equations that is likelihood based, can
handle nonstationarity, and is not dependent on finding an appropriate auxil-
iary model. As they point out, their idea is simply to treat the values of the
diffusion between any two discrete measurements as missing data and then to
apply tuned MCMC methods based on the Metropolis-Hasting algorithm to
learn about the missing data and the parameters.

As in most contexts, provided one trusts the parametric specification in the
diffusion, ML is the method of choice. The major caveat in the present context
is that the likelihood function for discrete observations generated by the para-
metric stochastic differential equation cannot be determined explicitly for most
models. Since the transition density is generally unknown, one is forced to ap-
proximate it. The simulation-based approach suggested by Pedersen (1995),
has great theoretical appeal but its implementation is computationally costly.
Durham and Gallant (2002) examine a variety of numerical techniques de-
signed to improve the performance of this approach.

If sampling of the process were continuous, the situation would be simpler.
First, the likelihood function for a continuous record can be obtained by means
of a classical absolutely continuous change of measure. Second, when the sam-
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pling interval goes to zero, expansions of the transition function “in small time”
are available in the statistical literature and some calculate expressions for the
transition function in terms of functionals of a Brownian Bridge. Available
methods to compute the likelihood function in the case of discrete-time sam-
pling, involve either solving numerically the Fokker-Plank-Kolmogorov partial
differential equation (see Lo (1988)) or simulating a large number of sample
paths along with the process is sampled very finely (see Pedersen (1995)).
Neither methods produces a closed-form expression to be maximized over the
parameter: the criterion function takes either the form of an implicit solution
to a partial differential equation, that could be approximated by a sum over the
outcome of the simulations. Using Hermite polynomials, Aït-Sahalia (2002)
provides an explicit sequence of closed-form functions. It is shown that it con-
verges to the true (but unknown) likelihood function. It is also documented
that maximizing the sequence results in an estimator that converges to the true
ML estimator and shares its asymptotic properties.

As we have pointed out in section 3, high-frequency financial data are not
only discretely sampled in time but the time separating successive observa-
tions is often random. Aït-Sahalia and Mykland (2003) analyzes the conse-
quences of this dual feature of the data when estimating a continuous–time
model. More precisely, they measure the additional effect of the randomness
of the sampling intervals over and beyond those due to the discreteness of the
data. They also examine the effect of simply ignoring the sampling random-
ness and find that in many situations the randomness of the sampling has larger
impact than the discreteness of the data.

As we have described previously, continuous–time models, dominated by
the diffusion approach, are typically favored in the theoretical finance while
discrete-time models, mainly of the ARCH type, are the focus of empirical
research. Nelson (1990) tried for the first time to reconcile both approaches,
showing that GARCH processes weakly converge to some bivariate diffusions
as the length of the discrete time interval goes to zero. Later, Duan (1997)
proposed an augmented GARCH model and derived its diffusion limit. These
authors link the two types of models by weak convergence. Consequently, it
is rather common to apply the statistical inferences derived under the GARCH
model to its diffusion limit. However, recently Wang (2002), using the Le
Cam’s deficiency distance, shows that the GARCH model and its diffusion
limit are asymptotically equivalent only under deterministic volatility. He con-
cludes that, for modelling stochastic volatility, if a diffusion model is preferred,
it is statistically more efficient to fit data directly to the diffusion model and
carry out the inference.
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2.5 Conclusions
Throughout the paper we have summarized several applications of proba-

bilistic and time series models in finance. We have specially focused on those
pricing models reflecting the absence of arbitrage and free-lunch. Almost all
of them are characterized by the existence of equivalent martingale probability
measures (or risk-neutral measures). Thus the martingale property permits to
price, hedge, speculate or compose efficient portfolios since future prices must
verify the random walk assumption.

However, there are still many open problems that will merit future research.
So, the absence of arbitrage (free-lunch) does not always lead to martingales,
even it one focuses on perfect markets. When dealing with incomplete markets
there are infinitely many risk-neutral measures and it is necessary to establish
coherent criteria in order to choose the adequate one. For imperfect markets
we will never have a unique risk-neutral measure and it is also necessary to find
appropriate instruments in order to relate risk-neutral measures and hedging or
efficient strategies.

Most of the concrete pricing models applied in practice are characterized by
stochastic differential equations reflecting the market dynamic behavior. By
manipulating the stochastic equation it is possible to obtain the partial differ-
ential equation or the risk-neutral measure leading to pricing or hedging rules,
as well as, to those usual topics of asset pricing theory. Time Series and Econo-
metric Models are the key when designing these pricing models and calibrating
or evaluating its empirical possibilities. Furthermore, the growing complexity
of real markets, characterized by more and more connections amongst them
all, higher and higher volatilities, more and more complex risks and securi-
ties, and a increasing number of investors, make it rather necessary to improve
those models usually applied when dealing with pricing issues or interest-rate
linked topics.

Summarizing, probabilistic and time series approaches play a crucial role in
finance, and it is emphasized if one focuses on arbitrage pricing theory. More-
over, the level of development of current markets makes it essential to improve
and enlarge our knowledge about all the involved fields, from theoretical foun-
dations to empirical applications.
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Abstract
The paper is a review on the problem from stochastic geometry stated in the

title. This problem concerns anisotropy quantification of fibre and surface pro-
cesses. The stereological equation connecting the rose of directions and the rose
of intersections (for a specific test system) was first attacked by means of ana-
lytical methods. Later on, an analogue from convex geometry lead to a deeper
investigation using the notion of a Steiner compact. Various estimators of the
rose of directions and their properties are reviewed in the planar and spatial
case. The methods are important for practice when quantifying real structures in
material science, biomedicine, etc.

Introduction

In the model based approach of stochastic geometry, objects are modelled
by means of random sets [Matheron, 1975]. The isotropy of a random set
can be defined by means of the invariance of its distribution with respect to
any rotation operator. The deviance from this property is called anisotropy.
Anisotropy is thus a rather broad notion. One can imagine the anisotropy of
spatial distribution of objects which may form chains of preferred orientation
violating thus the isotropy assumption. This type of anisotropy is formalized
and studied e.g. in [Stoyan & Beneš, 1991]. Special models of random sets
are fibre and surface processes where besides anisotropy of spatial distribution
a simpler type of anisotropy may be described by means of the distribution
of tangent, normal orientations of the fibres, surfaces at each point where it
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is defined, respectively. This probability distribution is called the rose of
directions and will be of main interest in this paper.

In classical stereology, the information on geometrical objects is derived
from observations on lower dimensional probes (test systems). A well-known
stereological inverse problem (first formulated in [Hilliard, 1962]) relates the
rose of directions to the rose of intersections between the process and a test
system. In its simplest form it can be derived from the Buffon needle prob-
lem formulated in geometrical probability in 1777. The rose of intersections

is defined as the mean number of intersections between the process and
a unit test system of orientation Given observed intersection numbers the
stereological relation is used to the estimation of the rose of directions. There
are several approaches to the solution of this problem. An analytical solution
of the integral equation leads to various difficulties. We review estimators of
the rose of directions separately in the planar and spatial case since the back-
ground is qualitatively different. Probably the most promising is the approach
which makes use of an analogy from convex geometry which relates the sup-
port function of a zonoid to its generating measure. Statistical properties of
the estimators such as consistency are reviewed and a comparison of methods
and models is done by means of the simulated distribution of the Prohorov dis-
tance between the estimated and true rose of directions. Various test systems
are investigated and demonstrating examples added.

3.1 An analytical approach

Consider a stationary planar fibre process which is a random element in
the measurable space of fibre systems (collections of smooth fibres), see
[Stoyan, Kendall & Mecke, 1995]. Let P be the distribution of the
intensity (mean fibre length per unit area) and the rose of directions. A
realization of is alternatively interpreted as a locally finite length
measure on i.e. is the length of fibres from in a Borel set B .
Denote the tangent orientation at a fibre point Axial orientations from

are considered.

3.1.1 A general stereological relation
First a more general stereological relation in is derived, cf. [Mecke &

Stoyan, 1980]. Let denote the Lebesgue measure. From the
Campbell theorem [Stoyan, Kendall & Mecke, 1995] it follows immediately
for an arbitrary non-negative measurable function on
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LEMMA 1 Let be a non-negative measurable function,
Then

where in

Proof: A simple argument based on the total projection is used. For a Borel set
and it holds

since the both sides correspond to the length of the total projection of onto
Using the standard measure theoretic argument, formula (1.2) is ob-

tained.

THEOREM 2 Let be a measurable non-negative function,
a stationary fibre process in For the intersection of with it holds

Proof: Let be a measurable function such that
It holds using (1.1), (1.2) and stationarity

The intersection of with forms a stationary point process de-
note its intensity Using special forms of in Theorem 2, the relations are
obtained between the fibre process and the induced structure on the test line
(here
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COROLLARY 3 In the situation of Theorem 2 let be the distribution of the
fibre tangent orientation at the point of intersection with Then it holds
for

thus

if

Proof: Putting in (1.3) one obtains (1.4) and
using this with finally (1.5) is concluded.

EXAMPLE 4 : If one can get and from and (the latter
pair of quantities can be estimated from the observation in the neighbourhood
of a linear section). From (1.4) it holds

and for specially

A simpler choice of in (1.3) leads to the well-known
formula

which corresponds to the frequent case that the information on intersection
angles is not available. This case is in fact the main object of our paper.

3.1.2 Relation between roses of directions and
intersections

Let be a stationary fibre process in as in the previous paragraph. Let
be the rose of intersections, i.e. the mean number of points

per unit length of a test straight line with orientation The
basic integral equation relating the rose of directions of to its rose of in-
tersections is obtained by a simple generalization of (1.6). Consider with
addition modulo The addition may be interpreted as a rotation of straight
lines around origin in the plane
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It holds from (1.6)

where we denote the sine transform

In the following text an equivalent expression of formula (1.7) is used. By
the unit sphere in is denoted. Characterize a test line in by its pair

of unit normal vectors define Denote the
scalar product.

Then it holds

where the cosine transform

Note that here represents a centrally symmetric probability measure on
Further by the space of finite measures, probability measures on
respectively, is denoted. If there is no danger of confusion we write

Let the test system for a fibre process in be a plane or its subset char-
acterized by a unit normal Denoting by the length intensity of a
stationary fibre process in and by the intensity of the point process
induced by in the test plane, we have

By symmetry, a stationary surface process [Stoyan, Kendall & Mecke, 1995]
of intensity (mean surface area per unit volume) with a local normal
having an orientation distribution induces on a test line of direction
a point process with intensity and similarly

The generalization to for stationary fibre and hypersurface processes with
intensity is straightforward; the form of the integral equations (1.11), (1.12)
remains intact and only the integration region is replaced by

Denote by a uniform probability measure on Note that for unknown
it is possible to estimate where can

be approximated by an average of observations systematically spread
on and is a known constant

Therefore in the following the problem of estimating can be consid-
ered equivalent to the problem of estimating
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3.1.3 Estimation of the rose of directions
Several methods based on formula (1.9) have been suggested for the estima-

tion of the rose of directions of a planar fibre process , cf. [Hilliard, 1962], [Di-
gabel, 1976], [Mecke, 1981], [Kanatani, 1984], [Rataj & Saxl, 1989], [Beneš
& Gokhale, 2000]. The aim is to estimate given estimators
of where is the observed number of inter-
sections per unit test probe of orientation This was done basically in three
ways.

First, if a continuous probability density of exists we have

which yields an explicit solution. This is in practice hardly tractable since the
second derivative has to be evaluated from discrete data. However, the
formula is useful when a parametric model for is available, cf. [Digabel,
1976].

Another natural approach to the solution of (1.7) is the Fourier analysis.
Hilliard [Hilliard, 1962] showed that for the Fourier images

and it holds

When getting from the data and using (1.15), the variances of may
tend to infinity.

The third approach is based on the convex geometry and will be described
in a separate section.

EXAMPLE 5 Consider a fibre system in Fig. 1 with four test lines of equal
length 1 and the orientations respectively. The
intersection counts First a parametric approach
is used for the estimation of the rose of directions. Using a cardioidal model
[Rataj & Saxl, 1992] for

we obtain from (1.13)
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Using the least squares method a fitted curve is obtained for see Fig.
2 and the estimated rose of directions in Fig. 3. Since the parameter was
estimated by a value which is greater than 1, the model density of
the rose of directions yields also negative values which are presented in Fig. 3
along the orientation The presence of negative values is a common problem
of analytical estimators (also those based on Fourier expansions).

Figure 1. A fibre system intersected by a system of test lines of unit lengths.

Figure 2. Polar plot of intersection counts from Fig.1 and the rose of intersections fitted
by means of the cardioidal model.
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Figure 3. Polar plot of the rose of directions estimated from data on Fig.2 using the cardioidal
model. Two small loops along have negative values of radii.

Consider further the three-dimensional situation. Because of an equal struc-
ture of integral equations (1.11), (1.12) for fibre and surface processes in
we restrict ourselves to the case of a stationary fibre process The problem
is again to estimate the rose of directions given a sample of test directions

and estimators of where is the number of inter-
sections between and a planar test probe with an area A and a normal ori-
entation Similarly to the planar case and leaving aside the procedure based
on convex geometry, there are basically two other approaches to the solution.

First a parametric approach means that a parametric type of the distribution
on the sphere is suggested and the parameters estimated from the data using
(1.11). In [Cruz-Orive et al, 1985] the axial Dimroth-Watson distribution was
used

where in spherical coordinates, being the colatitude
and the longitude. The parameter is estimated.

Secondly an inversion formula to (1.11) is available ([Hilliard, 1962], [Mecke
& Nagel, 1980]) using spherical harmonics. It is based on the fact that spher-
ical harmonics are eigenfunctions of the cosine transform (1.10). The method
in [Kanatani, 1984] approximates by a finite series of even spherical har-
monics and the inverse is then evaluated directly. An explicit inverse formula
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from [Mecke & Nagel, 1980] says

where is a Legendre polynomial of order the probability density of
(with respect to The constants are

To conclude, analytical solutions of the inverse problem (1.9) in both two
and three dimensions may lead to estimators of the rose of directions which are
not non-negative densities. Typically these methods are not useful for sharp or
multimodal anisotropies.

3.2 Convex geometry approach
In this section first some notions from convex geometry will be recalled (see

e.g. [Schneider, 1993]). Let be the system of all compact convex sets,
nonempty compact convex sets in respectively. If then for each

there is exactly one number such that the hyperplane (line
in plane in

intersects K and for each This hyperplane is
called the support hyperplane and the function is the sup-
port function (restricted to of K. Equivalently,

Its geometrical meaning is the signed distance of the support hyperplane
from the origin of coordinates, is the width of
K - the distance of the parallel support hyperplanes. The important property
of is its additivity in the first argument:

(the addition of sets on the left hand side is in the Minkowski sense).
Convex bodies with the centre of symmetry will be considered mostly in what
follows. They will be shortly called centred if this centre is in the origin of

A Minkowski sum of finitely many line segments is called a zonotope. Be-
sides its being centrally symmetric, also its two-dimensional faces are centrally
symmetric. Consequently, regular octahedron, icosahedron and pentagonal do-
decahedron are not zonotopes. On the other hand in all centrally symmetric
polygons are zonotopes.

Consider a centred zonotope
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where Its support function is given by

and, conversely, a body with the support function (2.3) is a zonotope
with the centre in the origin.

Consider the Hausdorff metric on

the corresponding convergence is denoted as H–convergence. A set
is called a zonoid if it is a H–limit of a sequence of zonotopes.

is a centred zonoid if and only if its support function has a repre-
sentation

for an even measure on is called the generating measure of Z and it
is unique as shown in [Goodey & Weil, 1993]. For the zonotope (2.2) we have
the generating measure

where and is the Dirac measure concentrated at
Zonotopes and zonoids have several interesting properties and wide appli-

cations (see [Goodey & Weil, 1993], [Schneider & Weil, 1983]), e.g. the poly-
topes filling (tiling) by translations are obligatory zonotopes (cubes, rhom-
bic dodecahedrons, tetrakaidecahedrons). The roses of intersections

are proportional to cf. (1.11), (1.12). Consequently,
they can be considered as support functions of certain zonoids the generation
measures of which are proportional to the corresponding roses of directions.
This idea has been put forward first by Matheron [Matheron, 1975] and the
corresponding zonoid Z associated to was called the Steiner compact. Be-
cause of the uniqueness of the generating measure of zonoids, the association
is unique. The problem is, as before, to estimate (in atomic form) the generat-
ing measure or its normalized version (rose of directions) from assumed
to be the support function values of a zonotope estimating Z in
(2.4). The following theorem can serve as a basis of the procedure.

THEOREM 6 For a zonoid and unit vectors there always
exists a zonotope which is the sum of at most segments and fulfills
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If a zonotope satisfying (2.6) is found its generating measure of the type
(2.5) yields after normalizing to a probability measure the desired estimator

of the rose of directions Generating measures belong to the space
The H–convergence on is equivalent to the weak convergence on with
respect to the transformation (2.4). Since the weak convergence on is
metrized by the Prohorov metric, it is possible to describe theoretically the
quality of the estimator by means of the Prohorov distance between and

The Prohorov distance between measures is defined as

This definition is for probability measures and therefore also in our situation
equivalent to a restricted condition which is used in the form

Because of (2.5) the estimator is discrete with finite support supp
so there is the following reduction to finitely many conditions, cf.

[Beneš & Gokhale, 2000]. It holds

This enables to compute the Prohorov distance which will be used in the fol-
lowing for a comparison of estimators.

The construction of a zonotope or of a sequence of zonotopes such that
when is simple only in It is sufficient to set

since every centred polygon is a zonotope in In this is not the case
thus the situation is more complicated and an optimization procedure based
on the constructive proof of Theorem 6 in [Campi, Haas & Weil, 1994] is a
partial solution. Recently the paper [Kiderlen, 2001] makes a substantial step
forwards in this problem.

Consequently, the estimation of by means of the Steiner compact will be
treated separately for the planar and spatial cases as follows.

3.2.1 Steiner compact in

The relation between a measure and the zonoid Z generated by it
has a direct consequence of geometrical nature. Let be the intersection
point of the support line (corresponding to with Z (if the intersection is a
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line segment, will be the endpoint with respect to the anti-clockwise
orientation of the boundary of Z). If are two points of by
the length of the corresponding arc of is denoted. The following result
comes from [Rataj & Saxl, 1989] and it was obtained in [Matheron, 1975] in a
more general setting.

THEOREM 7 There is a one-to-one correspondence between symmetric ele-
ments and centrally symmetric given by

Consequently, the length (per unit area) of fibres with tangents within an
interval of directions is proportional to the length of the boundary
bounded by the pair of equally oriented tangents.

For a stationary fibre process and the zonoid (Steiner compact) Z associ-
ated to the rose of directions of it holds

i.e. comparing with (1.7)
[Rataj & Saxl, 1989] suggested a graphical method of estimation of the rose

of directions by means of its related Steiner compact set. Let

be the estimators of the support function values at orientations (axial)
where is the number of intersections of the stud-

ied fibre system (realization of a fibre process) with a test segment of length
and orientation Then by (2.9), the convex polygon (2k-gon,

provides a basis to the estimation of the Steiner compact Z related to The
measure corresponding to according to Theorem 7 is

where are the lengths of edges of the polygon The have outer nor-
mals in fact may have less edges than if for some The
relation between and follows (cf.[Beneš & Gokhale, 2000], we denote
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where are anticlockwise oriented angles between and Finally, after
normalization

we obtain the desired estimator of the rose of directions

The H-convergence of is investigated by [Rataj & Saxl, 1989].

EXAMPLE 8 We continue in Example 5. This time the data from Fig.1 are
evaluated by means of the Steiner compact method. Using formula (2.12) the
zonotope in Fig.4 (left) is constructed (recall that the test lines are character-
ized by its unit normal vectors) and from (2.14) the estimator (2.13) is obtained
and plotted in Fig.4 (right). The dominant direction is recognized, however,
the second largest atom at is unrealistic as a consequence of the sparse test
system.

Figure 4. A Steiner compact (left) and the estimated rose of directions (right) for data
from Example 5. On the right a circular plot is used where in (2.16) correspond to the radii
of classes.

[Rataj & Saxl, 1989] developed a modification of Steiner compact estima-
tors of by means of the following smoothing. For integer and orientations

for integer and weights
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they construct polygons

and pi are as in (2.11). Let be the lengths of edges of and as in (2.15).
Then the estimator of is for a Borel set
cf. (2.16).

EXAMPLE 9 Again for the data from Example 5 we use the modified Steiner
compact estimator with and In Fig.5 (left) the
Steiner compact estimated from the smoothed rose of intersections is drawn,
the estimator of the rose of directions in Fig.5 (right) corresponds better to the
data at the first sight.

Figure 5. A Steiner compact (left) and the estimated rose of directions (right) for data from
Example 5 using the modified method with smoothing described in Example 9.

There is a theorem in [Rataj & Saxl, 1989] concerning the properties of the
modified Steiner compact estimator.

THEOREM 10 Let and Then there is a plan of experiment,
i.e. integers and as in (2.17), such that for a planar
fibre system and in (2.18) we have probability

under the condition that is a family of independent, centred
normally distributed random variables with variances bounded by a constant

The normality assumption seems to be quite appropriate when using indepen-
dent test lines, which can be achieved when independent realizations of a fibre
process are available.
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3.2.2 Poisson line process
Any straight line in the plane can be represented by a point

in the parametric space formed by a set Here is
the orientation of the line and its signed distance from the origin. We have
positive, negative for lines intersecting the positive, negative horizontal semi-
axis in respectively. If is positive for lines in the upper half plane.
We can thus represent a stationary line process by means of a point process

on such that the intensity measure of the process is (see [Stoyan,
Kendall & Mecke, 1995])

If the stationary line process is Poisson then the point process is Poisson
stationary with respect to coordinate. Conversely, a random point process on

stationary in defines a stationary line process in
We will investigate the intersections of a line process with test segments

of constant length and of varying orientations. Consider the unit semicircle
Denote and define the test sys-

tem of segments inscribed in the semicircle, see Fig. 6a. The segments
have centres normal orien-
tations The segments have equal lengths

The total length of converges to with Any straight
line in the plane has at most two intersections with the test system Denote
by the subsets of corresponding to lines which intersect exactly one,
two segments, respectively. In Fig. 6b these subsets are drawn in the case of

Figure 6. The test system for (a), the corresponding subsets
(b).

Consider a stationary Poisson line process with intensity and a rose
of directions Denote the independent Poisson distributed random
variables with parameters respectively, corresponding to numbers of
intersections of with given and segment, respectively. It
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holds

From a realization of the process we get estimators of support function
values

Observe that

EXAMPLE 11 The aim is to obtain the probability distribution of the Pro-
horov distance between the estimator in (2.16) and a theoretical For
a stationary Poisson line process and a special test system in Fig.6 this can
be achieved by just simulating the data from the Poisson distribu-
tion, evaluating the estimators and finally the Prohorov distance. The results
from 1000 independent simulations for uniform yield approximations
of probability density of the Prohorov distance in Fig. 7 (without
smoothing), Fig. 8 (with smoothing (2.18)), respectively.

Figure 7. Estimated probability densities functions of the Prohorov distance
for (a), (b).

3.2.3 Theoretical properties of the Prohorov distance
distribution

If the distance between a discrete and continuous distribution is measured
we observe that the distribution of the Prohorov distance (cf. Figs.7, 8) is not
concentrated near zero. Among the discrete distributions with a sup-
port T of cardinality at most the uniform discrete distribution (with ex-
actly equidistant atoms) is the nearest to in the sense of Prohorov distance.
It holds since the worst case in (2.8) is
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Figure 8. The same case as in Fig.7 after smoothing with

A larger lower bound can be obtained under a supplementary condition
[Beneš & Gokhale, 2000]:

PROPOSITION 1 For the test system an isotropic fibre process and the
Steiner compact estimator of it holds that the Prohorov distance

under the condition

Proof: Let be the index which satisfies A, assume that
Then there is a such that We use an equivalent
definition of the Prohorov distance

Put

then and for we have
and Altogether

which leads to a contradiction.
A lower bound for where the

event

3.2.4 Simulation study

In this section, the Steiner compact estimation procedure for more complex
models of fibre systems is investigated which needs a simulation of a realiza-
tion together with a chosen test system.

for some
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Figure 9. Realizations of tessellations with the approximate intensity (a) a Poisson
line process, (b) a 2D Poisson-Voronoi tessellation, (c) a planar section of a 3D Poisson-Voronoi
tessellation (not used in simulations), (d) a planar section of a 3D Johnson-Mehl tessellation.

The distribution of the Prohorov distance, given the uniform rose of direc-
tions, the test system in Fig. 6 and estimator (2.13), was evaluated for three
models in the plane, see Fig. 9. Namely they are the Poisson line process
, the Poisson-Voronoi tessellation [Stoyan, Kendall & Mecke, 1995] and the
planar intersection of the three-dimensional Johnson-Mehl tessellation [Ohser
& Mücklich, 2000] model. Using the algorithm for the Prohorov distance esti-
mation and 1000 repeated simulations the distribution of Prohorov distance is
obtained in Fig. 10. It follows that for more regular fibre processes (formed by
tessellations) the estimator is more precise.
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Figure 10. Estimated probability densities functions of the Prohorov distance
for The result for the Poisson line process is marked by the

gray dotted line, for the Poisson-Voronoi tessellation by solid line, and for the Johnson-Mehl
tessellation by the dashed line.

3.2.5 Curved test systems
We shall investigate the role of curved test systems in the estimation of the

rose of directions of a planar fibre process following [Beneš & Gokhale, 2000].
Consider a test system of arcs with finite total length and
the corresponding length measure of in B. Assume that almost surely (w.r.t.
the length measure) the tangent orientation of at is defined. Then
the orientation distribution Q of on is given by

valid for any measurable on Denote also by the rotation of
by an angle of with

[Mecke, 1981] points out that if the test system is formed by curved lines
with tangent orientation distribution then

where is the rose of intersections Further Q_ is the reflection
of Q, i.e. for any non-negative measur-
able function on and is the convolution of measures defined by

In particular for
uniform it follows from (2.20) that is a constant
denoted

Generally, comparing (1.7) and (2.20) we see that if there is a statistical
method for estimating from (1.7), the same method estimates from
(2.20) when using a curved test system. Unfortunately, the system with
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convolution operation does not posses natural inverse element to solve equation
for an unknown cf. [Heyer, 1977].

Elements provide rotation of a given mea-
sure The effect of the convolution operation of measures on Steiner
compact sets may be observed most easily when the both measures are dis-
crete:

Then the convolution is again a measure with finite sup-
port The atom in has size

Now the Steiner compact associated with a discrete measure has form
cf. (2.2), where are vectors in with orientations

and lengths
The following result comes from [Hilliard, 1962], [Mecke, 1981].

PROPOSITION 2 For the Fourier images defined by (1.14) and
for it holds

Proof: Let be a twice continuously differentiable function. Then
using two-fold integration by

parts. Then putting we get formula (1.15). Using the same idea
to and using the fact that the Fourier transform of a convolution is a
product of Fourier transforms we get (2.21).

Further we observe that the local smoothing in (2.18) can be expressed in
terms of the convolution with a discrete measure Q representing the orientation
distribution of a test system.

PROPOSITION 3 Let
Then

Proof: We have

Then

and
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Naturally it is not necessary to restrict to atomic measures Q for local smooth-
ing; diffuse measures correspond to curved test systems.

EXAMPLE 12 Let and Q_ has probability density for
and elsewhere for some Then

= sin and with ap-
parent smoothing effect for small.

It is concluded that curved test systems present an alternative to local smooth-
ing in (2.18) when estimating the Steiner compact. It should be kept in mind
that using the rose of intersections (i.e. using local smoothing) we get
estimators of which is not exactly In the convolution opera-
tion does not exists in a simple form because of the complexity of the space of
rotations on

3.2.6 Steiner compact in and in

The complications in approximating the zonoid associated to the rose of di-
rection in are consequences of the special nature of zonotopes
and zonoids. Thus the intersection of supporting halfspaces (2.9) produces a
centrally symmetric polytope but it is not a zonotope in general because its
two-dimensional faces need not be centrally symmetric. Also the interpola-
tion and smoothing procedures do not produce zonoids but only generalized
zonoids. They are centrally symmetric but their even generating measures are
not non-negative as required but only signed ones [Schneider, 1993]. Con-
sequently, the inversion of the integral equation (1.11) proposed in [Hilliard,
1962], [Kanatani, 1984] need not give a non-negative estimator of the rose of
direction as pointed out by [Goodey & Weil, 1993].

More correct solutions are based on the Theorem 6 as shown in [Kiderlen,
2001]. The basic idea is an approximation of the generating measure
by a measure concentrated on a finite support

such that is a zonotope estimating a zonoid Z corre-
sponding to The problem is a suitable choice of and of the weights
such that in H–convergence.

Let be a stationary fibre process in with intensity (specially in
we denote by and the rose of directions Consider fixed test hy-
perplanes with normals such that they do not
contain a common line. Denote the number of intersec-
tion points counted in where are the observation win-
dows of unit areas in the test hyperplanes. The set of all
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then constitutes a random vector with the mean value
where in we have

In contrast to the test system in the planar case, we assume here that are
independent which can be ensured by examining independent realizations of
for different planes This assumption is violated in the next section where
curved or polytopal probes are used for investigation of a single realization.

The idea of a maximum likelihood (ML) estimator of the measure was for-
mulated in [Mair, Rao & Anderson, 1996] and is further developed in [Kiderlen,
2001]. Assume that the fibre process is a stationary Poisson line process,
are Poisson distributed. Further assume that the observed realization of
is a non-zero vector. The ML estimator maximizes the log-likelihood func-
tion i.e.

The convex optimization problem
(i) to minimize with respect to
is shown to have a solution in [Mair, Rao & Anderson, 1996]. It is not unique
but any two solutions are tomographically equivalent, i.e. they satisfy

for all For large and regularly distributed on the
Prohorov distance of tomographically equivalent measures is small.

To solve the problem (i) numerical methods must be used searching for a
solution in the finite-dimensional subcone of measures with
support in Then the optimization problem (i) reduces to
(ii) to minimize with respect to
There is a choice of which is optimal in the sense of the following theorem.
We will specify this just for for general formulation see [Kiderlen,
2001], where the theorem is proved under assumption that is the Poisson
line process and, consequently, is multivariate Poisson distributed.

THEOREM 13 Under the above assumptions concerning the choice of test
planes and the problem (ii) has a solution. If is the set of all unit vec-
tors orthogonal to the all linearly independent pairs in then any
solution of (ii) is a solution of (i).

Clearly for Denote the ML estimator of the rose
of direction based on test orientations and as introduced in the Theorem
13: It can be shown that Theorem 13 holds for general stationary
fibre processes, too. It need not be a maximum likelihood estimator then (the
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Poisson property of may fail), but it is consistent in the following sense
[Kiderlen, 2001]. An asymptotically smooth sequence
is such that the sequence of measures converges weakly in

and the limit has a positive density.

THEOREM 14 Let be a stationary fibre process in with which
is not supported by any great circle in and be an asymptot-
ically smooth sequence in Let be non-correlated intersection
counts in unit windows in respectively, and there exists a con-

for all unitstant such that
balls

Then is estimated consistently by the ML estimator in the strong sense,
i.e. we have

almost surely.

For the numerical solution of problem (ii) the EM algorithm is proposed
in [Kiderlen, 2001].

The second approach to the estimation of [Kiderlen, 2001] is based on
an idea of [Campi, Haas & Weil, 1994] and it generalizes the 2D approach
based on (2.9). Theorem 6 implies the possibility of approximating zonoids by
zonotopes in fixed directions Next we are looking for a zonotope
Z which is contained in a polytope

need not be a zonotope in dimension Theorem 13 suggests the
choice of which should contain the set of orientations of line segments
forming the zonotope Z. Then only the lengths of its line segments have to be
determined. Using we get a linear program

It can be derived from Theorem 13 that there exists a solution of this linear pro-
gram with objective function value 0, which yields the desired zonotope and,
by optimization theory, at most of However, the substitution of  for

is dangerous in this case because the values of substantially lower
then (their presence cannot be excluded) can produce an estimate
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with a positive probability. Consequently, it is recommended to replace by
their arithmetic averages obtained by independent replicated sampling. Using
a numerical optimization procedure to the solution of linear program (LP) the
estimator of the rose of directions is obtained and a consistency theorem anal-
ogous to Theorem 14 can be formulated, see [Kiderlen, 2001], where also both
estimators (EM and LP) are compared. It is concluded that for a smaller sam-
ple size the maximum likelihood estimator is slightly better while for larger
sample sizes the linear programming should be preferred because the slightly
worse performance of the LP estimator is well compensated by its being less
time consuming.

3.2.7 Estimation of 3D fibre anisotropy; computer
simulation

A 3D analogy of the arc and polygonal test systems for the anisotropy esti-
mation in are polyhedral probes. In this subsection, the situation frequently
used in practice is examined in detail, namely that only a single realization of
the fibre process is available. Then the assumptions of the Theorem 14 are
not satisfied because of correlated intersection counts Three isotropic fibre
processes (edges of various Voronoi tessellations) were examined by means of
cubic and octahedral probes and the distribution of the Prohorov distance was
estimated in [Hlawiczková, 2001]. Its variance decreases with the growing
number of probe faces (similarly as with the number of random testing planes
in [Kiderlen, 2001]) and increases with a growing local inhomogeneity of the
process as characterized e.g. by the distribution of the tessellation cell volume
(compare with the 2D results in [V. Beneš et al, 2001]. For a more detailed
study [Hlawiczková, Ponížil & Saxl, 2001], again the processes of Voronoi
cell edges have been selected. They represent a continuous passage from a
pronounced anisotropy of linear and planar types to the complete isotropy. Be-
side these processes with diffuse roses of directions, also three processes with
atomic roses have been theoretically considered for the comparison.

The characteristics of the examined fibre processes are as follows:
i. The monoclinic point lattice with the lattice vectors

generates the isohedral tiling by regular hexagonal
prisms with the four-valent base edges (the relative weights of their three orien-
tations are 1/(3 + 2q)) of lengths and three-valent vertical edges (the relative
weight of their orientation is 2q/(3+2q)) of length The edge process
with atomic measures was examined in three particular cases: q = 0.2 (thin
plates producing nearly planar anisotropy), 10 (long rods producing nearly lin-
ear anisotropy) and 1 (intermediate case).
ii. Let be i.i.d. random vectors with the Gaussian distribution,

is a unit matrix and denotes the lattice points. The
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displaced lattice or the Bookstein model on [Stoyan & Stoyan, 1994] is
The tessellation generated by is a normal

random tessellation with three-valent edges and several its characteristics are
discontinuous at (for details see [Hlawiczková, Ponížil & Saxl, 2001]).
The edge process with a diffuse anisotropy measure was examined for

(in the units of the nearest neighbour distance in
at the values of chosen above for For high approaches the
stationary Poisson-Voronoi tessellation and is isotropic for an arbitrary q.

Figure 11. Enlarged probes in the and orientations; the embedding cubes show the
mutual orientations of the probes and of the tessellated cube but not its true size.

The tessellations have been constructed in a unit cube by means of the in-
cremental method with the nearest neighbour algorithm [Okabe, Boots & Sug-
ihara, 1977]. The number of process realizations was between 500 and 1000.
Centrally symmetric polyhedral probes (icosahedron, octahedron, dodecahe-
dron and cube; the results for the first two of them only are shown in what
follows) of the same surface area (A = 0.8617) have been placed in the centre
of the tessellated unit cube - Fig. 11. In order to suppress a possible positional
bias between the tessellation and the probes, each realization was randomly
shifted as a whole with respect to the cube centre by a random vector with
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Figure 12. The true discrete roses of directions (orientations and weights) and the corre-
sponding factors (see below, Eq. (2.25)) for fibre processes (upper row), the calculated
estimates and values for the icosahedral probe in the orientation (lower row) as ob-
tained by the EM algorithm.

the Gaussian distribution, and the value of was compa-
rable with the lattice constants of

Two orientations of the probes were examined, namely (all octahedron
diagonals parallel to the coordinate axes, one icosahedral diagonal perpendic-
ular to the and two icosahedral edges parallel with the
and obtained by rotations from (octahedron rotated by Euler angles

icosahedron rotated by - see
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Fig. 11. Their size and the intensities of tessellations were chosen in such a
way that the expected total number of intersections per the whole probe EN
was approximately constant (EN = 1840) in all considered cases and the
edge effects were considerably suppressed by confining the examination to the
central part of the unit cube.

Figure 13. The discrete roses of directions and values estimating the fibre processes
at various values of q by means of icosahedral upper row) and octahedral

lower row) probes in the orientations. Note the considerably weaker performance octahedral
probe.
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The rose of directions approximating the rose of the examined fibre
process is estimated by the ML procedure described above and the weights

are found by the iterative EM algorithm.
The atomic measures of are shown and compared with the positions

and weights of the estimate as calculated for the icosahedral probe in
Fig. 12, circle areas are proportional to the weights and their total area
is 1% of the projected sphere area). It is clearly seen that the description of
the true atomic measures by is rather unsatisfactory; discrete measures
concentrated in the polar region at q = 0.2 and in the equatorial strip at q = 10
are clearly underestimated. Moreover, the atomic measures in the equatorial
plane at q = 0.2 are approximated by a broad layer of many weaker atoms.
The result would be perhaps better for another probe orientation.

The estimation is more successful in the case of processes – Fig. 13 –
where the diffuse planar anisotropy is reflected much better even when the lack
of equatorial directions in the case of linear anisotropy in the estimate by the
icosahedral probe is again surprising. The estimation improves considerably
when approaches isotropy.

The effect of the probe orientation with respect to the fibre orientations may
be quite substantial, in particular when the number of probe faces is small.
It is shown in [Hlawiczková, Ponížil & Saxl, 2001] that cubic and octahedral
probes in the orientation are completely “blind” to the changes in anisotropy
of and the estimated roses of directions and are identical for
q = 0.2, 1, 10. Consequently, if there is no preliminary knowledge of the type
of the examined anisotropy, the combination of several probe orientations is
always unavoidable.

Frequently, a simple numerical characteristic of the degree of anisotropy is
required in practice. If there is some preliminary knowledge concerning the
type of the examined anisotropy as in the examined case (linear anisotropy
in the direction of a suitable numerical factor describing the measure
arrangement and strength can be the ratio

where is the equatorial strip of area and its complement in
For hence is high in the case of a quasi-planar anisotropy
and low if the linear anisotropy prevails. when approaching the isotropic
case. The estimated values of for and are given in Fig’s 12 and 13.
For details see [Hlawiczková, Ponížil & Saxl, 2001].



Stereological estimation of the rose of directions from the rose of intersections 93

3.2.8 Approach to the isotropy, Prohorov distance
Prohorov distance was used as a characteristic of the estimation quality of

the rose of direction in the above citied papers [V. Beneš et al, 2001], [Hlaw-
iczková, 2001], [Kiderlen, 2001]. In [Hlawiczková, Ponížil & Saxl, 2001], a
different goal is followed by means of its estimation, namely the approach to
the isotropy of the examined with growing standard deviation of lat-
tice point shifts. It will be described by the decrease of the Prohorov distance
between as estimated by the octahedral probe and uniform rose of direc-
tions with growing The estimates of the corresponding pdf’s of

are shown in Fig. 14 (Epanechnikov kernel estimator with the band
width was used).

Figure 14. The probability density functions of the Prohorov distance for as
determined by the octahedral probe.

The approach of all to an isotropic fibre process with increasing stan-
dard deviation  is clearly documented by pdf ’s of the corresponding
they shift to smaller values (slowly at and coincide at – Fig.
14. The standard deviations of distance distributions are comparable as the
local inhomogeneity of the examined tessellations is similar. The Prohorov
distances are rather high as the approximation of a quasi-linear and quasi-
planar anisotropies is difficult with a generally oriented probe. A similar result
presents the consideration of the factor (see Fig. 6 in [Hlawiczková, Ponížil
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& Saxl, 2001]), namely nearly constant values in the interval
and then a quick approach to the isotropic value However, the values
of for the process as calculated from the corresponding are biased.
The correct values are {7.5, 1.5, 0.15} and their estimates by are {3.78,
0.97, 0.08} at q = 0.2,1,10, resp., (see Fig. 12). The smaller is the number of
probe faces the greater is the bias. Note that the negative bias would describe
a more pronounced linear anisotropy at q = 10, whereas in the remaining two
cases would the estimated planar anisotropy be weaker. A further examination
should elucidate whether a greater number of probe faces or a combination of
several probe orientations would give better and more reliable results.

Conclusion

The problem of the estimation of the rose of directions of fibre and surface
processes from the rose of intersections has a long history but it is not yet
satisfactorily solved. It is unpleasant that while the basic integral equation
has the same form for any dimension, surprisingly the properties of theoretical
tools for the solution of this equation differ substantially from the planar to the
spatial case.

For analytical methods is this difference not so essential but this confirms
the fact that analytical methods are not deep enough to produce reliable solu-
tions. Typically we obtain negative values of densities in the solution. In the
stochastic approach are statistical properties of the estimators poor. This con-
cerns even the planar situation and problems increase when dealing with the
spatial case.

Convex geometry yields excellent tools for the investigation of the basic
integral equation. The analogy between the rose of intersections and the sup-
port function of a zonoid is striking. The zonotopes converging to the zonoid
corresponding to the desired rose of directions are thus already the desired es-
timators. Their construction in the plane is simple and we can say that this
approach leads to good estimators even for sharp or multimodal anisotropies.

Problems arise when applying the Steiner compact method of estimation
of the rose of directions in the space. A natural extension of the planar es-
timator is not available because of the properties of zonoids and zonotopes
in higher dimensions. Still two constructions were suggested based either on
linear programming techniques or EM-algorithm for the maximum likelihood
estimation.

The Prohorov distance between the true and estimated rose of directions is
used as a measure of quality of the estimator. It enables comparison between
various methods. Since the estimator is typically a discrete measure (based
on observations from a finite set of test line orientations) this distance is not
concentrated near zero. Simulation methods are used to verify new estimators
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and distribution of the Prohorov distance is plotted. The results presented here
are the first systematic trial and there is still a lot of work to be done in order to
understand the properties of estimators (especially in the spatial case) properly.

The survey is concentrated on a single complex problem, there are also re-
lated problems concerning anisotropy. The anisotropy of spatial distribution of
objects is mentioned in the Introduction. A more general Stereological formula
derived in Section 1 makes possible the use of a local angular information
around the Stereological probe. For surfaces of particles, there is a variant
of the rose of normal directions considering only outer normal vectors to the
particles. This rose of directions is examined in several papers, e.g. [Rataj,
1996], [Weil, 1997], [Schneider, 2001]. Several authors considered also the
anisotropy estimation for thick fibre systems modelled by Boolean models
[Molchanov & Stoyan, 1994], [Kärkkäinen, Vedel Jensen & Jeulin, 2001].
These problems, however, lead to different concepts of stochastic geometry
and were not aimed to be discussed here.
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Abstract In this article Poisson-type and compound Poisson approximations are discussed
for a multiple scan statistic for Binomial and Poisson data in one and two di-
mensions. Numerical results are presented to evaluate the performance of these
approximations. Direction for future research and open problems are also stated.

4.1 Introduction
In this article we discuss Poisson-type and compound Poisson approxima-

tions for multiple scan statistics for independent and identically distributed
(iid) integer valued random variables from a binomial or a Poisson distribu-
tion. Both one dimensional and two dimensional scan statistics are considered.
The multiple scan statistics are discussed both for the unconditional case and
for the case when the total number of the observed events is known (condi-
tional case). One dimensional multiple scan statistics for iid Bernoulli random
have been discussed in Chen and Glaz (1996) and Balakrishnan and Koutras
(2002).

One dimensional multiple scan statistics for continuous data are discussed
in Glaz, Naus and Wallenstein (2001, Ch. 17). Approximations for multi-
dimensional multiple scan statistics are discussed in Barbour and Mansson
(2000) and Mansson (1999a, 1999b and 2000).

This article is organized as follows. In Section 2, we present Poisson-type
and compound Poisson approximations for the one dimensional multiple scan
statistic, both conditional and unconditional case. We also derived Bonferroni-
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type inequalities for the binomial model in the unconditional case. Since these
inequalities have not performed well, we have not derived them for other cases.
In Section 3, we present Poisson-type and compound Poisson approximations
for the two dimensional multiple scan statistic, both conditional and uncondi-
tional case. In Section 4 numerical results are discussed for the approximations
derived in this article. Concluding remarks are presented in Section 5.

4.2 The One Dimensional Case

Let be iid nonnegative integer valued random variables fol-
lowing a binomial or a Poisson distribution. First we consider the uncondi-
tional case, when the total number of events is unknown. For integers

and let

and

For integers define a discrete scan statistic.

We say that a scan statistic of size has been observed if exceeds the value
Approximations for the distribution of applications and references

are given in Glaz, Naus and Wallenstein (2001, Ch. 13). In this article we are
interested in approximations for the distribution of a multiple scan statistic of
size defined as:

where is given in Equation (2.2). For a Pois-
son,approximation for is given by

where

Since the events tend to clump, the Poisson approx-
imation given in Equation (2.5) performed poorly for (Chen and
Glaz 1999). Following the approach in Chen and Glaz (1997) the following
Poisson-type approximation will be investigated. For let
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and

By defining the indicators we are not allowing the events to clump. A
Poisson-type approximation for to be examined here is given by

where

and for

Numerical results for this Poisson-type approximation are given in Section 4,
Tables 1 and 2.

A compound Poisson approximation for based on the approach in Roos
(1993, Lemma 3.3.4) is given by:

where are non-negative integers,

and
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Numerical results for this compound Poisson approximation are presented in
Section 4, Tables 1 and 2.

We now discuss Bonferroni-type inequalities for Consider the
events defined in Equation (2.1). Let be the
number of that have occurred. Then

let

It follows from Galambos and Simonelli (1996, pages 118-119) that:

for Numerical results for these
Bonferroni-type inequalities are presented in Section 4, Table 1.

We now discuss approximations for a multiple scan statistic when the total
number of events is known. For and
let

and

The conditional multiple scan statistic is defined as:

For

for and
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For set

A Poisson-type approximations for can be obtained from Equa-
tions (2.7) and (2.8) by replacing the terms and with
and respectively. Let

for

and

A compound Poisson approximation for can be obtained from
Equation (2.10) by replacing the terms and with and
respectively. Numerical results for these approximations are presented in Sec-
tion 4, Tables 3 and 4.

4.3 The Two Dimensional Case

Let and be iid nonnegative integer
valued random variables with a binomial or a Poisson distribution. Let

where and The two-dimension
scan statistic is defined as:

for
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Approximations for the distribution of applications and references are
given in Glaz, Naus and Wallenstein (2001, Ch. 16). For simplicity we assume
here that and For
define the events

Let denote the
index set of a collection of the integer valued random variables
where

We are interested in approximating the distribution of a two dimensional mul-
tiple scan statistic

For

Under quite general conditions the distribution of converges to the
Poisson distribution with mean where

(Darling and Waterman 1986). This Poisson.approximation for the special case
of has been discussed in Barbour, Chryssaphinou and Roos (1995),
Koutras, Papadopoulos and Papastavridis (1993), and Roos (1994). The Pois-
son approximation is not expected to perform well when since the
events tend to clump. Employing a local declumping
approach, Chen and Glaz (1996) derived a more accurate Poisson-type approx-
imation:

where

In this article we investigate the performance of the following Poisson-type
approximation:
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A compound Poisson approximation for presented below is
based on Roos (1993 and 1994):

where for

and

In Section 4, Tables 5 and 6, we present numerical results for these Poisson-
type and compound Poisson approximations.

We know present approximations for the multiple scan statistic given that
the total number of observed events is known. For

define the events

Let

where The conditional multiple scan statistic considered here is given
by

For let

A Poisson-type approximation for is obtained from Equa-
tions (3.9) and (3.8) by replacing the terms and with
and respectively.



104 RECENTS ADVANCES IN APPLIED PROBABILITY

For let

and

A compound Poisson approximation for is obtained from
Equation (3.10) by replacing the terms and with

and respectively. Numerical results for these approxi-
mations are given in Section 4,Tables 7 and 8.

4.4 Numerical Results

In this section we present numerical results for approximations and inequal-
ities for the multiple scan statistics discussed in this article. In Tables 1-8 the
improved Poisson-type approximations are denoted by ImPoi, while the com-
pound Poisson approximations are denoted by ComPoi. The Bonferroni-type
inequalities considered in this article have not performed well. Numerical re-
sults for these inequalities are presented in Table 1 and they are denoted by
LBound and UBound, respectively. In Tables 1-8,                is an approxi-
mation for the tail probability of an appropriate multiple scan statistic based
on a simulation with 10,000 trials. In Tables 1-2, Poisson-type and compound
Poisson approximations, as well as the Bonferroni-type inequalities, are eval-
uated using an algorithm discussed in Glaz and Naus (1991). The quantities

needed for evaluating Poisson-type and compound
Poisson-type approximations for the multiple scan statistic Tables 3-4,
are obtained from a simulation with 100,000 trials of sequences of iid
binomial or Poisson random variables. The quantities
needed for evaluating Poisson-type and compound Poisson-type approxima-
tions for the multiple scan statistics and Tables 5-8, are obtained
from a simulation with 100,000 trials of sequences of
iid binomial or Poisson random variables.
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From Tables 1-8 it is evident that compound Poisson approximations are
more accurate than the Poisson-type approximations investigated in this article.
The compound Poisson approximations have performed well, especially in the
one dimensional case. In the two dimensional case these approximations were
not as accurate as one would like them to be. There is a need for further
research to derive accurate approximations for multiple scan statistics.
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4.5 Concluding Remarks

From the numerical results presented in this article it is evident that further
research has to be conducted in the area of multiple scan statistics, especially
in the multi-dimensional case. Approximations for the distribution of multiple
scan statistics for continuous data also presents many challenging problems.
Modeling and statistical inference of spatial data is one the most active re-
search areas in probability and statistics. It has many applications in science
and technology including: anthropology, archaeology, astronomy, ecology, en-
vironmental science, epidemiology, geology, image analysis, meteorology, re-
connaissance and urban and regional planning. The use of spatial scan statis-
tics in two or higher dimensional regions have been discussed among others in
Wallenstein, Gould and Kleinman (1989), Priebe, Olson, Healy (1997), Kull-
dorff (1999), Chan and Lai (2000), Siegmund and Yakir (2000), Glaz, Naus
and Wallenstein (2001), Priebe and Chen (2001), Priebe, Naiman and Cope
(2001). Multiple scan statistics are of great importance in this area of research
as well. More work is needed to be done for deriving accurate approximations
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for the distribution of multiple scan statistics used in statistical inference for
spatial data.
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Abstract Krawtchouk matrices have as entries values of the Krawtchouk polynomials for
nonnegative integer arguments. We show how they arise as condensed Sylvester-
Hadamard matrices via a binary shuffling function. The underlying symmetric
tensor algebra is then presented.

To advertise the breadth and depth of the field of Krawtchouk polynomials / ma-
trices through connections with various parts of mathematics, some topics that
are being developed into a Krawtchouk Encyclopedia are listed in the concluding
section. Interested folks are encouraged to visit the website

http://chanoir.math.siu.edu/Kravchuk/index.html

which is currently in a state of development.

5.1 What are Krawtchouk matrices

Of Sylvester-Hadamard matrices and Krawtchouk matrices, the latter are
less familiar, hence we start with them.

DEFINITION 1 The Krawtchouk matrix is an (N+1)×(N+
1) matrix, the entries of which are determined by the expansion:

Thus, the polynomial                                                  is the generating function
for the row entries of the column of Expanding gives the explicit
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values of the matrix entries:

where matrix indices run from 0 to N.

Here are the Krawtchouk matrices of order zero, one, and two:

The reader is invited to see more examples in Table 1 of the Appendix.

The columns of Krawtchouk matrices may be considered generalized bino-
mial coefficients. The rows define Krawtchouk polynomials: for fixed order
N, the Krawtchouk polynomial takes its corresponding values from the
row:

One can easily show that can be given as a polynomial of degree in
the variable For fixed N, one has a system of N +1 polynomials orthogonal
with respect to the symmetric binomial distribution.

A fundamental fact is that the square of a Krawtchouk matrix is proportional
to the identity matrix.

This property allows one to define a Fourier-like Krawtchouk transform on in-
teger vectors. For more properties we refer the reader to [Feinsilver, 2001]. In
the present article, we focus on Krawtchouk matrices as they arise from cor-
responding Sylvester-Hadamard matrices. More structure is revealed through
consideration of symmetric tensor algebra.
Symmetric Krawtchouk matrices. When each column of a Krawtchouk
matrix is multiplied by the corresponding binomial coefficient, the matrix be-
comes symmetric. In other words, define the symmetric Krawtchouk matrix
as

where denotes the (N + 1) × (N + 1) diagonal matrix with binomial
coefficients, as its non-zero entries.
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Example. For N = 3, we have

Some symmetric Krawtchouk matrices are displayed in Table 2 of the Ap-
pendix. A study of the spectral properties of the symmetric Krawtchouk ma-
trices was initiated in work with Fitzgerald [Feinsilver & Fitzgerald, 1996].
Background note. Krawtchouk’s polynomials Krawtchouk polynomial were
introduced by Mikhail Krawtchouk in the late 20’s [Krawtchouk, 1929; Krawt-
chouk, 1933]. The idea of setting them in a matrix form appeared in the 1985
work of N. Bose [Bose, 1985] on digital filtering in the context of the Cayley
transform on the complex plane. For some further development of this idea,
see [Feinsilver, 2001].

The Krawtchouk polynomials play an important role in many areas of math-
ematics. Here are some examples:

Harmonic analysis. As orthogonal polynomials, they appear in the
classic work by Szëgo [Sze, 1959]. They have been studied from the
point of view of harmonic analysis and special functions, e.g., in work
of Dunkl [Dunkl, 1976; Dunkl, 1974]. Krawtchouk polynomials maybe
viewed as the discrete version of Hermite polynomials (see, e.g., [Atak-
ishiyev, 1997]).

Statistics. Among the statistics literature we note particularly Eagleson
[Eagelson, 1969] and Vere-Jones [Vere-Jones, 1971].

Combinatorics and coding theory. Krawtchouk polynomials are es-
sential in MacWilliams’ theorem on weight enumerators [Levenstein,
1995; MacWilliams & Sloane, 1977], and are a fundamental example in
association schemes [Delsarte, 1972; Delsarte, 1973; Delsarte, 1973a].

Probability theory. In the context of the classical symmetric random
walk, it is recognized that Krawtchouk’s polynomials are elementary
symmetric functions in variables taking values ±1. It turns out that the
generating function (1.1) is a martingale in the parameter N [Feinsilver
& Schott, 1991].
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Quantum theory. Krawtchouk matrices interpreted as operators give
rise to two new interpretations in the context of both classical and quan-
tum random walks [Feinsilver, 2001]. The significance of the latter in-
terpretation lies at the basis of quantum computing.

Let us proceed to show the relationship between Krawtchouk matrices and
Sylvester-Hadamard matrices.

5.2 Krawtchouk matrices from Hadamard matrices

Taking the Kronecker (tensor) product of the initial matrix

with itself N times defines the family of Sylvester-Hadamard matrices.

(For a review of Hadamard matrices, see Yarlagadda and Hershey [Rao &
Hershey, 1997].)

NOTATION 2 Denote the Sylvester-Hadamard matrices, tensor (Kronecker)
powers of the fundamental matrix H, by

The first three Sylvester-Hadamard matrices are and           given
by:

where, to emphasize the patterns, we use for 1 and for -1. See Table 3 of
the Appendix for these matrices up to order 5.

For N = 1, the Hadamard matrix coincides with the Krawtchouk matrix:
Now we wish to see how the two classes of matrices are re-

lated for higher N. It turns out that appropriately contracting (condensing)
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Hadamard-Sylvester matrices yields corresponding symmetric Krawtchouk ma-
trices.

The problem is that the tensor products disperse the columns and rows that
have to be summed up to do the contraction. We need to identify the right sets
of indices.

DEFINITION 3 Define the binary shuffling function as the function

giving the “binary weight” of an integer. That is, let be the
binary expansion of the number Then the number of ones
in the representation.

Notice that, as sets,

Here are the first 16 values of listed for the integers running from 0 through

The shuffling function can be defined recursively. Set

for One can thus create the sequence of values of the shuffling
function by starting with 0 and then appending to the current string of values a
copy of itself with values increased by 1:

Now we can state the result;

THEOREM 4 Symmetric Krawtchouk matrices are reductions of Hadamard
matrices as follows:

Example. Let us see the transformation for (recall that stands
for 1, and for –1). Applying the binary shuffling function to    mark the
rows and columns accordingly:

and
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The contraction is performed by summing columns with the same index, then
summing rows in similar fashion. One checks from the given matrix that in-
deed this procedure gives the symmetric Krawtchouk matrix

Now we give a method for transforming the (symmetric) Krawtchouk
matrix into the

DEFINITION 5  The square contraction of a matrix
is the matrix with entries

where the values of with or outside of the range
are taken as zero.
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THEOREM 6 Symmetric Krawtchouk matrices satisfy:

with

Example. Start with symmetric Krawtchouk matrix of order 2:

Take the tensor product with H:

surround with zeros and contract:

COROLLARY  7 Krawtchouk matrices satisfy:

where B is the diagonal binomial matrix.

Note that starting with the 2 × 2 identity matrix, I, set
Then, in fact,

Next, we present the algebraic structure underlying these remarkable prop-
erties.
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5.3 Krawtchouk matrices and symmetric tensors
Given a vector space V over R, one may construct a

space the N-fold tensor product of V, and, as well,
a symmetric tensor space There is a natural
map

which, for homogeneous tensors, is defined via

For computational purposes, it is convenient to use the fact that the symmet-
ric tensor space of order N of a vector space is isomorphic to
the space of polynomials in variables homogeneous of degree N.

Let be a basis of V. Map to replace tensor products by
multiplication of the variables, and extend by linearity. For example,

thus identifying basis (elementary) tensors in that are equivalent under
any permutation.

This map induces a map on certain linear operators. Suppose
is a linear transformation on V. This induces a linear transformation

defined on elementary tensors by:

Similarly, a linear operator on the symmetric tensor spaces is induced so that
the following diagram commutes:

This can be understood by examining the action on polynomials. We call
the symmetric representation of A in degree N. Denote the matrix elements of

by If A has matrix entries let
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It is convenient to label variables with indices from 0 to Then the
matrix elements of the symmetric representation are defined by the expansion:

with multi-indices and homogeneous of degree N.

Mapping to the symmetric representation is an algebra homomorphism, i.e.,

Now we are ready to state our result

Explicitly, in matrix notation,

PROPOSITION 4 For each N > 0, the symmetric representation of the
Sylvester-Hadamard matrix equals the transposed Krawtchouk matrix:

Proof. Writing for we have in degree N for the component:

Substituting yields the generating function (1.1) for the Krawtchouk
matrices with the coefficient of equal to Thus the result.

Insight into these correspondences can be gained by splitting the fundamen-
tal Hadamard matrix into two special symmetric 2 × 2 operators:

so that

One can readily check that
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The first of the second pair of equations may be viewed as the spectral decom-
position of F and we can interpret the Hadamard matrix as diagonalizing F
into G. Taking transposes gives the second equation of (3.1).

Now we proceed to the interpretation leading to a symmetric Bernoulli
quantum random walk ([Feinsilver, 2001]). For this interpretation, the Hilbert
space of states is represented by the tensor power of the original 2-dimen-
sional space V, that is, by the -dimensional Hilbert space . Define the
following linear operator on

each term describing a “flip” at the position (cf. [Hess, 1954; Siegert,
1949]). Analogously, we define:

From equations (3.1) we see that our X-operators intertwine the Sylvester-
Hadamard matrices:

Since products are preserved in the process of passing to the symmetric tensor
space, we get

the bars indicating the corresponding induced maps.
We have seen in Proposition 4 how to calculate from the action of H on

polynomials in degree N. For symmetric tensors we have the components in
degree N, namely for where for convenience we write
for and for Now consider the generating function for the elementary
symmetric functions in the quantum variables This is the N-fold tensor
power
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noting that the coefficient of is Similarly, define

The difficulty is to calculate the action on the symmetric tensors for operators,
such as that are not pure tensor powers. However, from and
we can recover and via

we haveFrom

with corresponding relations for the barred operators. Calculating on polyno-
mials yields the desired results as follows.

In degree N, using and as variables, we get the component for and
via

and since is diagonal,

For example, calculations for N = 4 result in
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Since is the result of diagonalizing we observe that

COROLLARY 8 The spectrum of is N, N – 2,…,2 – N, –N, coinciding
with the support of the classical random walk.

Remark on the shuffling map. Notice that the top row of is ex-
actly where is the binary shuffling function of section §5.2. Each
time one tensors with the original top row is reproduced, then concate-
nated with a replica of itself modified in that each entry picks up a factor of
(compare with equation (2.1)). And, collapsing to the symmetric tensor space,
the top row will have entries This follows as well by direct calcula-
tion of the component matrix elements in degree N, namely by expanding

We continue with some areas where Krawtchouk polynomials/matrices play
a rôle, very often not explicitly recognized in the original contexts.

5.4 Ehrenfest urn model

Ehrenfest urn model In order to explain how the apparent irreversibility of
the second law of thermodynamics arises from reversible statistical physics,
the Ehrenfests introduced a so-called urn model, variations of which have
been considered by many authors [Kac, 1947; Karlin & McGregor, 1965; Voit,
1996].

We have an urn with N balls. Each ball can be in two states represented
by, say, being lead or gold. At each time a ball is drawn at random,
changed by a Midas-like touch into the opposite state (gold lead) and placed
back in the urn. The question is of course about the distribution of states —
and this leads to Krawtchouk matrices.

Represent the states of the model by vectors in namely by the state of
gold balls by

In the case of, say, N = 3, we have 4 states
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It is easy to see that the matrix of elementary state change in this case is

and in general, we have the Kac matrix with off-diagonals in arithmetic pro-
gression 1,2,3, ... descending and ascending, respectively:

It turns out that the spectral properties of the Kac matrix involve Krawtchouk
matrices, namely, the collective solution to the eigenvalue problem
is

where is the (N+1) × (N+1) diagonal matrix with entries

the denoting blocks of zeros.

To illustrate, for N = 3 we have



128 RECENTS ADVANCES IN APPLIED PROBABILITY

To see this in general, we note that, cf. equations (3.3–3.5), these are the
same operators appearing in the quantum random walk model, namely, we

discover that Now, recalling taking
transposes in equation (3.2) yields

which is the spectral analysis of from both the left and the right. Thus,
e.g., the columns of the Krawtchouk matrix are eigenvectors of the Ehrenfest
model with N balls where the column has corresponding
eigenvalue
Remarks

1

2

3

Clearly, the Ehrenfest urn problem can be expressed in other terms. For
instance, it can be reformulated as a random walk on an N-dimensional
cube. Suppose an ant walks on the cube, choosing at random an edge
to progress to the next vertex. Represent the states by vectors in

N factors. The equivalence of the two problems comes
via the correspondence of states

where is the weight of the vector calculated in see (4.1).

The urn model in the appropriate limit as leads to a diffusion
model on the line, the discrete distributions converging to the diffusion
densities. See Kac’ article ([Kac, 1947]).

There is a rather unexpected connection of the urn model with finite-
dimensional representations of the Lie algebra Indeed,
introduce a new matrix by the commutator:

The matrix is a skew-symmetric version of A. For N = 3, it is

It turns out that the triple A, and is closed under commutation, thus
forms a Lie algebra, namely
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with commutation relations

5.5 Krawtchouk matrices and classical random walks
In this section we will give a probabilistic meaning to the Krawtchouk ma-

trices and illustrate some connections with classical random walks.

5.5.1 Bernoulli random walk
Let be independent symmetric Bernoulli random variables taking val-

ues Let be the associated random walk starting
from 0. Now observe that the generating function of the elementary symmetric
functions in the is a martingale, in fact a discrete exponential martingale:

where denotes the elementary symmetric function. The martingale
property is immediate since each has mean 0. Refining the notation by
setting to denote the elementary symmetric function in the variables

multiplying by yields the recurrence

which, with the boundary conditions for all
yields, for

that is, these are discrete or prototypical iterated stochastic integrals and thus
the simplest example of Wiener’s homogeneous chaoses.

Suppose that at time N, the number of the that are equal to –1 is
with the rest equal to +1. Then and can be expressed
solely in terms of N and or, equivalently, of N and

From the generating function for the Krawtchouk matrices, equation (1.1),
follows

for
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so that as functions on the Bernoulli space, each sequence of random variables

is a martingale.

Now we can derive two basic recurrences. From a given column of
to get the corresponding column in we have the Pascal’s triangle re-
currence:

This follows in the probabilistic setting by writing
and remarking that for to remain constant, must take the value +1. The
martingale property is more interesting in the present context. We have

since half the time is –1, increasing by 1, and half the time is
unchanged. Thus, writing for

which may be considered as a ‘reverse Pascal’.

5.5.1.1 Orthogonality. As noted above — here with a slightly simpli-
fied notation — it is natural to use variables N), with denoting the posi-
tion of the random walk after N steps. Writing N) for the Krawtchouk
polynomials in these variables, cf. equation (1.2), we have the generating func-
tion

The expansion

with yields the identification as hypergeometric func-
tions

The calculation
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exhibits the orthogonality of the if one observes that after taking expecta-
tions only terms in the product remain. Thus, the are notable for two
important features:

1

2

They are the iterated integrals (sums) of the Bernoulli process.

They are orthogonal polynomials with respect to the binomial distribu-
tion.

5.5.2 Multivariate Krawtchouk polynomials

The probabilistic approach may be carried out for general finite probability
spaces. Fix an integer and values with the convention

Take a sequence of independent identically distributed random
variables having distribution Denote the mean
and variance of the by and as usual.

For N > 0, we have the martingale

We now switch to the multiplicities as variables. Set

the number of times the value is taken. Thus the generating function

defines our generalized Krawtchouk polynomials. One quickly gets

PROPOSITION 5 Denoting the multi-index and by the
standard basis on Krawtchouk polynomials satisfy the recurrence

We also find by binomial expansion

PROPOSITION 6
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where

There is an interesting connection with the multivariate hypergeometric func-
tions of Appell and Lauricella. The Lauricella polynomials are defined by

with, e.g., for multi-index k,
also and Note that is a single variable.
The generating function of interest here is

a multivariate version of (5.1).

PROPOSITION 7  Let then,

Orthogonality follows similar to the binomial case:

PROPOSITION 8 The Krawtchouk polynomials  are orthogo-
nal with respect to the induced multinomial distribution. In fact,
with

Proof

Thus, This shows orthogonality and yields
the squared norms as well.

Proof Let
Note that

in (5.2), for
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5.6 “Kravchukiana” or the World of Krawtchouk
Polynomials

About the year 1995, we held a seminar on Krawtchouk polynomials at
Southern Illinois University. As we continued, we found more and more prop-
erties and connections with various areas of mathematics.

Eventually, by the year 2000 the theory of quantum computing had been
developing with serious interest in the possibility of implementation, at the
present time of MUCH interest. Sure enough, right in the middle of everything
there are our flip operators, su(2), etc., etc. — same ingredients making up the
Krawtchouk universe. Well, we can only report that how this all fits together
is still quite open. Of special note is the idea of a hardware implementation
of a Krawtchouk transform. A beginning in this direction may be found in the
just-published article with Schott, Botros, and Yang [Botros et al, 2002].

At any rate, for the present we list below the topics which are central to
our program. They are the basis of the Krawtchouk Encyclopedia, still in
development; we are in the process of filling in the blanks. An extensive web
resource for Krawtchouk polynomials we recommend is Zelenkov’s site:

http://www.geocities.com/orthpol/

Note that we do not mention work in areas less familiar to us, notably that
relating to q-Krawtchouk polynomials, such as in [Steele, 1997].

We welcome contributions. If you wish either to send a reference to your
paper(s) on Krawtchouk polynomials or contribute an article, please contact
one of us !

Our email: pfeinsil@math.siu.edu orjkocik@math.siu.edu.

5.6.1 Krawtchouk Encyclopedia
Here is a list of topics currently in the Krawtchouk Encyclopedia.

1

2

Pascal’s Triangle

Random Walks

Path integrals

A, K, and

Nonsymmetric Walks
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Symmetric Krawtchouk matrices and binomial expectations

3

4

5

6

Urn Model

Markov chains

Initial and invariant distributions

Symmetric Functions. Energy

Elementary symmetric functions and determinants

Traces on Grassman algebras

Martingales

Iterated integrals

Orthogonal functionals

Krawtchouk polynomials and multinomial distribution

Lie algebras and Krawtchouk polynomials

so(2,1) explained

so(2,1) spinors

Quaternions and Clifford algebras

S and so(2,1) tensors

Three-dimensional simple Lie algebras
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Lie Groups. Reflections

Reflections

Krawtchouk matrices as group elements

Representations

7

8

9

10

11

12

Splitting formula

Hilbert space structure

Quantum Probability and Tensor Algebra

Flip operator and quantum random walk

Krawtchouk matrices as eigenvectors

Trace formulas. MacMahon’s Theorem

Chebyshev polynomials

Heisenberg Algebra

Representations of the Heisenberg algebra

Raising and velocity operator. Number operator

Evolution structure. Hamiltonian.

Time-zero polynomials

Central Limit Theorem

Hermite polynomials

Discrete stochastic differential equations

Clebsch-Gordan Coefficients

Clebsch-Gordan coefficients and Krawtchouk polynomials

Racah coefficients

13 Orthogonal Polynomials

Three-term recurrence in terms of A, K, Lambda

Nonsymmetric case
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14

15

16

17

18

19

Krawtchouk Transforms

Orthogonal transformation associated to K

Exponential function in Krawtchouk basis

Krawtchouk transform

Hypergeometric Functions

Krawtchouk polynomials as hypergeometric functions

Addition formulas

Symmetric Krawtchouk Matrices

The matrix T

S-squared and trace formulas

Spectrum of S

Gaussian Quadrature

Zeros of Krawtchouk polynomials

Gaussian-Krawtchouk summation

Coding Theory

Mac Williams’ theorem

Association schemes

Appendices

K and S matrices for N from 1 to 14

Krawtchouk polynomials in the variables x,N/i,j/j,N for N from 1
to 20

Eigenvalues of S

Remarks on the multivariate case

Time-zero polynomials

Mikhail Philippovitch Krawtchouk: a biographical sketch
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5.7 Appendix

5.7.1 Krawtchouk matrices
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5.7.2 Symmetric Krawtchouk matrices
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5.7.3 Sylvester-Hadamard matrices
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We introduce coupling from the past, a recently developed method for exact
sampling from a given distribution. Focus is on rigour and thorough proofs.
We stay on an elementary level which requires little or no prior knowledge from
probability theory. This should fill an obvious gap between innumerable intuitive
and incomplete reviews, and few precise derivations on an abstract level.

Abstract
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6.1 Introduction
We introduce a recently developed method for exact sampling from a given

distribution. It is called coupling from the past. This is in contrast to Markov
chain Monte Carlo samplers like the Gibbs, sampler or the family of Metropolis-
Hastings samplers which return samples from a distribution approximating the
target distribution. The drawback is that MCMC methods apply generally and
exact sampling works in special cases only. On the other hand, it is the ob-
ject of current research and the list of possible applications increases rapidly.
Another advantage is that problems like burn in and convergence diagnostics
do not arise where exact sampling works. Exact sampling was proposed in the
seminal paper [J.G. PROPP & D.B. WILSON, 1996]. Whereas these au-
thors called the method exact sampling, some prefer the term perfect sampling
since random sampling never is exact. For background in Markov chains and
sampling, and for examples, we refer to [G. WINKLER, 1995; G. WINKLER,
2003]. The aim of the present paper is a rigorous derivation and a thorough
analysis at an elementary level. Nothing is really new; the paper consists of
a combination of ideas, examples, and techniques from various recent papers,
basically along the lines in [F. FRIEDRICH, 2003]. Hopefully, we can single
out the basic conditions under which the method works theoretically, and what
has to be added for a practicable implementation.

Coupling from the past is closely related to Markov Chain Monte Carlo
sampling (MCMC), which nowadays is a widespread and commonly accepted
statistical tool, especially in Bayesian statistical analysis. Hence we premise
the discussion of coupling to the past with some remarks on Markov Chain
Monte Carlo sampling. Let us first introduce the general framework which
simultaneously gives us the basis for coupling from the past. For background
and a detailed discussion see [G. WINKLER, 1995].

Let X be a finite set of generic elements A probability distri-
bution on X is a function on X taking values in the unit interval [0,1]
such that A Markov kernel or transition probability on X
is a function P : X × X [0,1] such that for each the function

is a probability distribution on X. A prob-
ability distribution on X can be interpreted as a row vector and a
Markov kernel P as a stochastic matrix A right Markov chain
with initial distribution and transition probability P is a sequence of
random variables the law of which is determined by and P via the finite-
dimensional marginal distributions given by

P is called primitive if there is a natural number such that for
all This means that the probability from state to state is
strictly positive for arbitrary and If P is primitive then there is a unique
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probability distribution which is invariant w.r.t. P, i.e. where
is the matrix product of the (left) row vector and the matrix P, and this

invariant probability distribution is strictly positive.
The laws or distributions of the variables of such a process converge to

the invariant distribution, i.e.

cf. [G. WINKLER, 1995], Theorem 4.3.1. Perhaps the most important statis-
tical features to be estimated are expectation values of functions on the state
space X, and the most common estimators are empirical means. Fortunately,
such stochastic processes fulfill the law of large numbers, which in its most el-
ementary version reads: For each function on X, the empirical means along
time converge in probability (and in ) to the expectation of with respect to
the invariant distribution; in formulae this reads

(cf. [G. WINKLER, 1995], Theorem 4.3.2). The symbol denotes the
expectation

of with respect to A sequence of random variables converges to the
random variable in probability if for each the probability

tends to 0 as tends to Plainly, (1.2) implies that for every natural
number averaging may be started from without destroying convergence
in probability; more precisely for each one has

In view of the law of large numbers for identically distributed and independent
variables, the step number should be large enough such that the distributions
of the variables are close to the invariant distribution in order
to estimate the expectation of with respect to properly from the samples
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In fact, according to (1.1), after some time the laws of the should be
close to the invariant distribution although they may be far from during
the initial period. The values during this burn in period are usually discarded
and an average like in (1.3) is computed. In general,
the burn in time can hardly be determined. There are a lot of suggestions rang-
ing from visual inspection of the time series to more formal tools,
called convergence diagnosticsconvergence diagnostics. In this text we are not
concerned with burn in and restrict ourselves to the illustration in Fig. 1. A
Gibbs, sampler (introduced in Section 6.4) for the Ising model is started with
a pepper and salt configuration in the left picture. A typical sample of the in-
variant distribution is the right one which appears after about 8000 steps. The
pictures in-between show intermediate configurations which are pretty improb-
able given the invariant distribution but which are quite stable with respect to
the Gibbs sampler. In physical terms, the right middle configuration is close
to a ‘meta-stable’ state. Since we are interested in a typical configuration of
the invariant distribution we should consider the burn in to be completed
if the sample from the Markov chain looks like the right hand side of Fig. 1,
i.e. after about 8000 steps of the Gibbs sampler. The curve in the next figure

Figure 1. Configurations for Ising Gibbs Sampler with starting in a pepper and salt-
configuration (left), after 150 steps (left middle), after 350 steps (right middle) and after 8000
steps (right).

Fig. 2 displays the relative frequency of equal neighbour pairs. Superficial
visual inspection of this plot suggests that the sampler should be in equilib-
rium after about 300 steps. On the other hand, comparison with Fig. 1 reveals
that the slight ascent at about 7800 steps presumably is much more relevant
for the decision whether burn is completed or not. This indicates that primitive
diagnostic tools may be misleading. The interested reader is referred to the ref-
erences in [W.R. GILKS ET AL., 1996; A. GELMAN, 1996; A.E. RAFTERY

& S.M. LEWIS, 1996], see [W.R. GILKS ET AL., 1996b]. If initial samples
from itself are available, then there is no need for a burn in, and one can
average from the beginning. This is one of the most valuable advantages of
exact sampling.

First, we indicate how a Markov chain can be simulated.
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EXAMPLE 1 (SIMULATING A MARKOV CHAIN) We denote by P the tran-
sition probability of a homogeneous Markov chain. At each time

given the previous state we want
to pick a state at random from

For each we partition
the unit interval (0,1] into intervals
of length and pick uniformly
at random from (0,1]. Given the present
state we search for the state

with and set The picture on the left illustrates this
procedure for where if was or and if

In general, the procedure can be rephrased as follows: Define a
transition rule for P by

More explicitly, enumerate and set
where is the cumulative distribution function
of and its generalized inverse. Let

be independent random variables uniformly distributed over (0,1],
and set and Then is a homogeneous
Markov chain starting at with transition probability P. For inhomogeneous
chains, replace by varying in time. Note that the exclusive source of
randomness are the independent random variables

Figure 2. Convergence Diagnostics for Ising Gibbs Sampler
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6.2 Exact Sampling
The basic idea of coupling from the past is closely related to the law of large

numbers (1.2). According to (1.1), for primitive P with invariant distribution
the corresponding Markov chain converges to ; more precisely

uniformly in all initial distributions and with respect to any norm on
Generalizing the concept of right Markov chains, let us consider now two-

sided Markov chains with transition probabilities given by a Markov kernel P,
i.e. double sequences of random variables taking values in X, and with
law determined by the marginal distributions

for where denotes the law of
If P is primitive, or more generally, if (2.1) holds uniformly, these two-sided

chains are automatically stationary. This important concept means that a time
shift does not change the law of the chain; in terms of the marginal distributions
this reads

for all and and in particular, that all in (2.2) are equal to
In fact, because of (2.2) one has for all By uniformity
in (2.1), this implies and hence in view of (2.2) the process is
stationary.

At a first glance, this does not seem to be helpful since we cannot simulate
the two-sided chain starting at time On the other hand, if we want to start
sampling at some (large negative) time there is no distinguished state to start
in, since stationarity of the chain implies that the initial state necessarily is al-
ready distributed according to The main idea to overcome this problem is to
start chains simultaneously at all states in X and at each time. This means that
a lot of Markov chains are coupled together. The coupling will be constructed
in such a fashion that if two of the chains happen to be in the same state in
X at some (random) time, they will afterwards follow the same trajectory for-
ever. This phenomenon is called coalescence of trajectories. Our definite aim
is to couple the chains in a cooperative way such that after a large time it is
very likely that any two of the chains have met each other at time 0. Then,
at time 0, all chains started simultaneously at sufficiently large negative time
have coalesced, and therefore their common state at time 0 does not dependent
on the starting points in the far past anymore. We will show that after complete
coalescence the unique random state at time 0 is distributed according to the
invariant distribution
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To make this precise we consider the following setup: Let X be a finite
space and let be a strictly positive probability distribution on X. The aim is
to realize a random variable which exactly has law or - in other words - to
sample from Since Markov chains have to be started at each time
and at each state simultaneously, a formal framework is needed into
which all these processes can be embedded. The appropriate concept is that of
iterated random maps or stochastic flows, systematically exploited in [P. DI-
ACONIS & D. FREEDMAN, 1999].

Let be the strictly positive distribution on X from which we want to sam-
ple and let P be a Markov kernel on X for which is the unique invariant
distribution. Let be the set of all maps from X  to itself:

On this space we consider distributions reflecting the action of P on X in
the sense that the that some point is mapped by the random
function to some is given by This connection between and P is
formalized by the condition

EXAMPLE 2 Such a distribution does always exist. A synchronous one is
given by It is a probability distribution since it can
be written as a product of the distributions It also fulfills Condition
(P): Let be the set of all maps from to X. Then

the sum over equals 1 since the summands again define a product measure.

Since we want to mimic Markov processes, we need measures on sets of paths,
and since we will proceed from time to finite times we introduce measures
on the set with one-dimensional marginal measures The simplest
choice are product measures The space consists of double
sequences

If J is a finite subset of then for each choice we have
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Given a double sequence of maps we consider compositions of
the components over time intervals. For each and set

Note that

REMARK Given Condition (P), for each and the process
is a Markov chain starting at and with

transition probability P. Hence the stochastic flow is a common representation
of Markov chains starting at all initial states and at all times; we shall say that
they are coupled from the past.

Coupling from the past at time will work as follows: Pick a double sequence

of maps at random, and fix a number Then decrease until
hopefully does not depend on anymore. If we are successful

and this happens then we say that all trajectories

have coalesced. We shall also say that for there is complete coalescence
at time This works if sufficiently many of the map different elements

to the same image. Going further backwards does not change anything
since holds as well for all This may
be rephrased in terms of sets as follows: Let be a map and

the image of X under For fixed   the sets
decrease as decreases. Complete coalescence means that is a single-
ton Then there is a unique with

If there is no coalescence then is not defined. Let us set

Then all are well defined on F; to complete the definition let
for some fixed if Obviously, independent of the choice of
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This indicates that the random variables have law To exploit this ob-
servation for a sampling algorithm we need almost sure complete coalescence
in finite time. We enforce this by the formal condition

Provided that (F) holds, we call successful. Condition (F) will be verified
below under natural conditions.

LEMMA 3 Under the hypothesis (P) and (F) the process is a sta-
tionary homogeneous Markov process with Markov kernel P.

Proof. Recall that is a homogeneous product measure, and hence for each
all random sequences have the same law.

Hence the stochastic flow is stationary, and the process is stationary
as well. Moreover, depends on only and each de-
pends only on Again, since is a product measure, the
variables and are independent. By (2.4) and (P),

which shows

Hence P is the transition probability of the process Let us put
things together in the first main theorem.

THEOREM 4 (EXACT SAMPLING) Suppose that is      a strictly positive prob-
ability distribution and P a primitive Markov kernel on X such that
Assume further that for all and that

is successful. Then each random variable has law more precisely:

Proof. By stationarity from Lemma 3, all one-dimensional marginal distribu-
tions coincide, and P is the transition probability of If P is primitive
then by [G. WINKLER, 1995], Theorem 4.3.1, its unique invariant distribution
is To sample from only one of the is needed.

COROLLARY 5 Under the assumptions of Theorem 4, the random variable
has law
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The next natural question concerns the waiting time for complete coales-
cence at time zero. The random times of latest coalescence before are
given by

there is such that for every }.

The numbers definitely are finite if outside F they may be finite
or equal Condition (F) is equivalent to

Such a random time is also called successful. To realize one subsequently
and independently picks maps until there is coalescence say
in This element is a sample from For computational reasons,
one usually goes back in time by powers of 2. Clearly, choosing such

that assures coalescence at time 0. Recall that such a
exists for each An example of a stochastic flow coalescing completely
at time is shown in Fig. 3. We are going now to discuss a condition

Figure 3. Latest complete coalescence time before time 0

for (F) to hold. Pairwise coalescence with positive probability is perhaps the
most natural condition and easy to check:

(C) For each pair there is an integer such that

We shall show in Theorem 9 below that (C) and (F) are equivalent. We give
now a simple example where coupling fails.
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EXAMPLE 6 Consider P with invariant    on X = {1,2} given by

Let for the identity map and the flip
map Compositions of and never will couple. On
the other hand the flow is associated to P since

regardless of and and Condition (P) holds.

We shall show now that the coupling condition (C) implies complete coales-
cence (F) (and the converse). The latter condition may be rephrased as follows:
All random times are finite almost surely. By stationarity this boils down
to: The random time is finite almost surely. The simplest, but fairly abstract
way to verify (F) is to use shift invariance of  F and ergodicity of We will
argue along these lines but in a more explicit and elementary way. The first
step is to ensure existence of a finite such that the flow coalesces completely
in less than steps with positive probability.

LEMMA 7  Under condition (C) there is a natural number  such that

Proof. Let If for some
then as well. Hence Condition (C)

implies

Therefore at least with probability if Similarly,
with probability at least if the left set is no singleton.

This holds because and the variables and
are independent and identically distributed. By induction,

at least with probability until the last cardinality becomes 1; this happens
after at most steps. Let Nothing changes if we
renumber the maps as Hence
and the lemma is proved.
The next step is a sub-multiplicativity property of probabilities for coalescence
times.

LEMMA 8 Let be negative integers. Then
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Proof. Suppose that This holds if and only if has
more than one element. Then both, and have more than
one element. Hence

To check whether holds true it is sufficient to know the maps
and similarly, to check only

are needed. Hence the respective sets are independent and the inequality holds.
The remaining identity follows from stationarity. In combination with The-
orem 4, the next result completes the derivation of exact sampling.

THEOREM 9 The Conditions (F) and (C) are equivalent. In particular, the
process governed by is successful under (C), and almost sure coalescence in
Theorem 4 is assured.

Proof. Suppose that (C) holds. By Lemma 7, we have and
Lemma 8 implies

By stationarity, this implies (F). Conversely, suppose that (F) holds, i.e. that
Since F is the intersection of the sets

each of these sets has full measure 1 as well. Fix now. Plainly, the sets

increase to as decreases to Hence there is such that
Choose now in X. Since and are equal

in law, for one has

and (C) holds. This shows that any derivation of coupling from the past
which does not explicitly or implicitly use a hypothesis like (C) or a suitable
substitute is necessarily incomplete or incorrect.

REMARK It is tempting to transfer the same idea to ‘coupling to the future’.
Unfortunately, starting at zero and returning the first state of complete coales-
cence after zero, in general does not give a sample from

The reader may want to check the following simple example from
[F. FRIEDRICH, 2003].
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EXAMPLE 10 Let X = {1,2}. Positive transition probabilities P and their
invariant distributions have the form

Start two independent chains and with transition probability P at time 0
from 1 and 2, respectively. The time of first coalescence in the future is

Denote the common law of and by We will shortly verify that
if and only if Compute first

and

Hence

This is the invariant distribution if and only if

The representation of Markov chains by stochastic flows is closely con-
nected to the actual implementation of coupling from the past. Extending
previous notation, a transition rule will be a map with
some set to be specified. Let now be independent identically
distributed random variables taking values in Then
is a stochastic flow. If, moreover, then the flow
fulfills Condition (P). The remaining problem is to construct a transition rule
such that the associated flow fulfills Condition (C) too.

EXAMPLE 11 Recall from Example 1 how a Markov chain was realized there.
Let again be a deterministic transition rule taking values in X, such that
for a random variable U with uniform distribution on the variable

has law This way we - theoretically - may for an
realize all values and check coalescence. If we go back more
steps in time we need all Since the maps are kept,
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we must work with the same random numbers i.e. realizations
of the as in the preceding run, and only independently generate
additional random numbers For this special coupling there is
complete coalescence at time 0 in finite time. The strength of coupling depends
on the special form of which in turn depends on the concrete implementation.
In Example 1, for each we partitioned [0,1] into intervals of length

and in step took that with The intervals with left end
at 0 have an intersection of length at least

This simultaneously is the probability that U falls into and all states co-
alesce in in one single step, irrespective of We may improve coupling
by a clever arrangement of the intervals. If we put the intervals for which

is maximal, to
the left end of [0,1] then we get the
lower bound for the
coalescence probability. We can im-
prove coupling even further, splitting the
intervals into pieces of length

and their rest, and arrange the
equal pieces on the left of [0,1]. This gives a bound
Note that although all these procedures realize the same Markov kernel P they
correspond to different transition rules, to different stochastic flows, and to
different couplings. Apart from all these modifications, we can summarize:

PROPOSITION 9  Suppose  that  P > 0. Then  all  stochastic  flows
from the present Example 11 fulfill Condition (C).

Note that the distribution of all these random maps definitely is not the syn-
chronous one from Example 2. For this distribution, set use inde-
pendent copies of and let
for on X × [0,1] constructed like above. Condition (C) is obviously fulfilled
and coupling from the past works also for this method.

REMARK  In Example 11 we found several lower bounds for the probability
that states coalesce in one step. An upper bound is given by

This is closely related to DOBRUSHIN’S contraction technique, which in the fi-
nite case is based on Dobrushin ’s contraction coefficient

cf. [G. WINKLER, 1995], Chapter 4. The relation is
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This upper bound is not sharp.

6.3 Monotonicity
Checking directly whether there is complete coalescence at time 0 starting at

more and more remote past times and at all possible states is time consuming,
and even impossible if the state space is large (as it is in the applications we
have in mind). If coalescence of very few states enforces coalescence of all
other states then the procedure becomes feasible. One of the concepts to make
this precise is monotonicity. We are now going to introduce this concept on an
elementary level.

DEFINITION 12   A partial order on a set X is a relation between
elements with the two properties

(ii) and implies (transitivity).

Recall that a total order requires the additional condition that any two elements
are comparable, i.e or

EXAMPLE 13  (a) The usual relation   on is a total order. In the
component-wise order on if and only if

for each It is a partial but no total order since elements like (0,1)
and (1,0) are not related, (b) If then in the component-wise or-
der from (a), the constant configurations and are maximal and
minimal, respectively, i.e. and for every This will be
exploited in exact sampling for the Ising field in Section 6.4.

Next we want to lift partial orderings to the level of probability distributions.
Call a subset I of X an order ideal if and imply

EXAMPLE 14  (a) The order ideals in with the usual order are the rays
and

(b) In the binary setting of Example 13(b), if each black pixel of is
also black in (if we agree that means that the colour of pixel is
black). The order ideals are of the form

DEFINITION 15 Let be a finite partially ordered set, and let and
be probability distributions on X. Then in stochastic order, if and only
if  for each order ideal I.

EXAMPLE 16 Let  and be distributions on with cumulative distribution
functions and respectively. Then   if  and only if

if and only if for every

(i)  for each (reflexivity)
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This means that ‘the mass of is more on the left than the mass of For
Dirac distributions if and only if

The natural extension to Markov kernels reads

DEFINITION 17 We call a Markov kernel P on a partially ordered space
stochastically monotone, if and only if whenever

In Example 11 we constructed transition rules for homogeneous Markov
chains, or rather Markov kernels P. A transition rule is called monotone if

for each whenever Plainly, a monotone transition
rule induces a monotone Markov kernel. Conversely, a monotone kernel is
not necessarily induced by a monotone transition rule, even in very simple
situations. [D.A. Ross, 1993], see [J.A. FILL & M. MACHIDA , 2001],
p. 2., gives a simple counterexample:

EXAMPLE 18 Consider the space and let and
Define a Markov kernel P by

The order ideals are and X, and
it is readily checked that P is monotone. Suppose now
that there are random variables with

almost surely and with laws and respectively.
We shall argue that

The two events are disjoint and hence in contradiction to
We finally indicate how for example the first identity can be

verified: Since one has Since
we conclude Now repeat

this argument two times.

Suppose now that the partially ordered space contains a minimal
element and a maximal element i.e. for every Suppose
further that the stochastic flow is induced by a monotone transition rule, i.e.

and if Then
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and for each as soon as
The previous findings can be turned into practicable algorithms.

PROPOSITION 10 Suppose that P is monotone and    has a minimum
and maximum Then coalescence for and enforces complete coalescence.

6.4 Random Fields and the Ising Model
Random fields serve as flexible models in image analysis and spatial statis-

tics. In particular, any full probabilistic model of textures with random fluc-
tuations necessarily is a random field. Recursive (auto-associative) neural net-
works can be reinterpreted in this framework as well, cf. e.g. [G. WINKLER,

1995]. To understand the phenomenology of these models, sampling from their
Gibbs distribution provides an important tool. In the sequel we want to show
how the concepts developed above serve to establish exact sampling from the
Gibbs distribution of a well known random field - the Ising model.

Let a pattern or configuration be represented by an array of
‘intensities’  in ‘pixels’ or ‘sites’ with finite sets and S. S
might be a finite square grid or - in case of neural networks - an undirected
finite graph. A (finite) random field is a strictly positive probability measure
on the space of all configurations Taking logarithms shows
that is of the Gibbsian form

with a function K on X. It is called a Gibbs fields with energy function K and
partition function Z. These names remind of their roots in statistical physics.

For convenience we restrict ourselves to the Gibbs,sampler with random
visiting scheme. Otherwise we had slightly to modify the setup of Section 6.2.
Let be the projection For a Gibbs field let

denote the single-site conditional probabilities. The Gibbs sampler with ran-
dom visiting scheme first picks a site at random from a probability dis-
tribution D on S, and then picks an intensity at random from the conditional
distribution (4.2) on Given a configuration this results in a new
configuration which equals everywhere except possibly at site
The procedure is repeated with the new configuration and so on and so on.
This defines a homogeneous Markov chain on X with Markov kernel
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where if and are equal off and
otherwise. These transition probabilities are called the

local characteristics. D is called the proposal or exploration distribution.
We assume that D is strictly positive; frequently it is the uniform distri-

bution on S. Then P is primitive since is strictly positive. In fact, in
each step each site and each intensity in the site has positive probability to be
chosen, and thus each can be reached from each in steps with positive
probability. It is easily checked - verifying the detailed balance equations - that

is the invariant distribution of P, and thus the invariant distribution of the
homogeneous Markov chain generated by P.

EXAMPLE 19 (THE ISING MODEL) Let us give an example for exact sam-
pling by way of the Ising model. The ferromagnetic Ising model with magnetic
field is a binary random field with and energy
function

where and indicates that and are neighbours. For
the random visiting scheme in (4.3) the Markov chain is homogeneous and fits
perfectly into the setting of Section 6.2. The formula from [G. WINKLER,
1995], Proposition 3.2.1 (see also [G. WINKLER, 1995], Example 3.1.1) for
the local characteristics boils down to

This probability increases with the set Hence
if in the component-wise partial order introduced in

Example 13. The updates and preserve all the black sites off and pos-
sibly create an additional black one at We conclude that P from (4.3) is
monotone and fulfills the hypotheses of Proposition 10. Hence for complete
coalescence one only has to check whether the completely black and the com-
pletely white patterns coalesce. For transition rules like in Example 11 the
Condition (C) on page 152 is also fulfilled and coupling from the past works.

6.5 Conclusion

The authors are not aware of other mathematical fields, where so many in-
sufficient arguments, ranging from incomplete or misleading, to completely
wrong, have been published (mainly in the Internet). In particular, Condi-
tion (C) or a substitute for it, are missing in a lot of presently available texts.
A rigorous treatment is [S.G. FOSS & R.L. TWEEDIE, 1998]. These au-
thors do not use iterated random maps. These are exploited systematically in
[P. DIACONIS & D. FREEDMAN, 1999]. [J.A. FILL, 1998] introduces ‘in-
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terruptible’ perfect sampling based on acceptance/rejection sampling. Mean-
while there is a body of papers on exact sampling. On the other hand, the
field still is in the state of flux and hence it does not make sense to give fur-
ther references; a rich and up to date source is the home-page of D.B. WIL-
SON, http://www.dbwilson.com/exact/. The connection between tran-
sition probabilities and random maps was clarified in [H.V. WEIZSCKER,
1974].
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Abstract The purpose of this paper is to review the different generalizations and exten-
sions of the ergodic theorem of information theory in terms of reference mea-
sure, state space, index set and required properties (ergodicity, stationarity, etc.)
of the process, from the original Shannon-McMillan-Breiman version to its lat-
est developments.
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7.1 Introduction

The statement of convergence of the entropy at time of a random pro-
cess divided by to a constant limit called the entropy rate of the process is
known as the ergodic theorem of information theory or asymptotic equireparti-
tion property (AEP). Its original version proven in the 50’s for ergodic station-
ary processes with a finite state space, is known as Shannon-McMillan theorem
for the convergence in mean and as Shannon-McMillan-Breiman theorem for
the almost sure convergence. Since then, numerous extensions have been
made in direction of weakening the hypothesis on the reference measure (from
the counting or product measure to Markovian or semi-Markovian measures),
state space (from a finite set to any Borel set), index set (from discrete-time to
continuous-time, product sets or groups) and required properties (ergodicity,
stationarity, etc.) of the process.

The purpose of this paper is to review these different generalizations and
extensions. Some necessary basics are given in Section 7.2 concerning entropy
definition, ergodicity, stationarity and Markovian measures and processes. Gen-
eral statement and applications of the AEP are given too. The original AEP
with hints of proof is presented in Section 7.3.1. Extensions in terms of state
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space are considered in Section 6.4, in terms of measures in Section 7.3.3 and
to continuous-time processes in Section 7.3.4. Finally, explicit expressions of
the entropy rate for Markovian and Gaussian processes are given in Section
7.4.

7.2 Basics

7.2.1 Definition of entropy
The concept of entropy is the basis of information theory. It has first been

introduced in the field of probability by Boltzman in the XIX–th century in
statistical mechanics and then by Shannon (1948) for studying communication
systems.

DEFINITION 1 The entropy of a probability distribution P with density  with
respect to a reference measure    is defined as Boltzman’s H-function, that is
to say

with the convention 0 log 0 = 0.

It inspired Shannon (1948) to define and study the entropy of a discrete distri-
bution taking values as

The function has interesting properties as measure of uncertainty in com-
munication theory, see Reza (1961), Ash (1965), Cover & Thomas (1991).
Actually, in the continuous case, these properties cannot be derived from the
discrete case. For example, the entropy of the uniform distribution U on an
interval equals but the entropy of the uniform distribution U
on a partition in values of the same interval equals The link between
these two separate notions was made by Kullback & Leibler (1951), see also
Kullback (1978).

DEFINITION 2 Let P and Q be two distributions on the same measurable
space. The Kullback-Leibler information of P relative to Q is defined as

for discrete distributions and as
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if P is absolutely continuous with respect to Q (and as if not).

The definition can be extended to two positive measures on the same measur-
able space.

In both discrete and absolutely continuous cases, we have

where the supremum is taken on all finite partitions of the space, and

The meaning of entropy appears thus as well in information theory as in statis-
tical mechanics. In the former, it measures the variation of information from
the uniform distribution to P, hence has a meaning as a measure of uncertainty
of the system. In the latter, a system is in equilibrium if the probability den-
sity (or number of particles in an infinitesimal volume) is close to the uniform
repartition.

The entropy methods can also be justified by purely probabilistic or statis-
tic arguments (large deviations principle, Bayesian statistics, properties of the
induced estimates, etc.), see Csizár (1996), Garret (2001), Grendar & Grendar
(2001), and particularly for Markov chains, Moran (1961).

Basic properties of entropy and links with communication theory are given
in Girardin & Limnios (200la). For a detailed study, see Reza (1961), Ash
(1965), Guiasu (1977), Cover & Thomas (1991).

DEFINITION 3 The entropy at time    of a discrete-time stochastic process
taking values in is by definition the entropy of its

marginal distribution, namely

where is the density of the random vector with respect
to the marginal of a reference measure on the infinite product space

The entropy at time is a nondecreasing nonnegative function of It can also
be seen as the Kullback information of the marginal distribution of
X relative to the marginal distribution of a process Y, also called relative
entropy between X and Y. For this point of view, see especially Pinsker (1960)
and Perez (1964).
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Under suitable conditions, the entropy at time divided by converges,

If the limit exists and is finite, it is called the Shannon
entropy rate of the process and we have

For simplification, let us set Set
and let be the conditional density of rel-
ative to If converges to some limit, then

is the Cezáro’s sum of the sequence and hence converges to the
same limit. The entropy rate is sometimes defined in this way, see for example
Reza (1961).

The convergence in (2.1) appears as the consequence of the convergence in
mean of the sequence of random variables The
almost sure convergence is also of interest. They constitute together the er-
godic theorem of information theory also called Shannon-McMillan-Breiman
theorem, or Asymptotic Equirepartition Property.

THEOREM 1 (ERGODIC THEOREM OF INFORMATION THEORY)
Under suitable conditions on the process X, its index-space its state space
E and the reference measure the sequence con-
verges in mean or almost surely to the entropy rate of the process.

In the following, for simplification, we will call mean AEP the convergence
in mean and strong AEP the almost sure convergence.

Similarly, for continuous-time processes, we get the following definition.

DEFINITION 4 The entropy at time T of a continuous-time process
is defined as

where is the likelihood of with respect to the restriction
to [0, T] of some reference measure

The definition of the entropy rate and the statement of the corresponding AEP
derive immediately.

This theorem has many applications. Let us list some of them.
First of all, the application which made M. McMillan call it AEP. The typical

set of a process is defined as the set of sequences such that
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and a sequence is said to be typical if its density satisfies the
above relation. From the mean AEP for a finite state space, the probability of
the typical set is proven to be nearly one; all its elements are nearly equiproba-
ble and this set contains nearly elements, see Cover & Thomas (1991)
(with application to data compression). For a Borel space, the distribution of

is proven to be asymptotically uniform on the typical set, which
has the least asymptotic volume (equal to among sets of high proba-
bility. And from the almost sure convergence, the sequences are
proven to be almost surely typical for large see Barron (1985).

The AEP has thus a prominent role in information theory together with the
linked Shannon channel coding theorem. This theory has been presented in
many books since the original exposition of Shannon (1948), see for example
Khinchin (1957), Feinstein (1958), Gallager (1968) and more recently Guiasu
(1977), Cover & Thomas (1991).

It also plays a role in finance, see for example Algoet & Cover (1988b) and
Algoet (1994) and the reference therein.

Many applications of the maximum entropy methods involving the entropy
rate exist in the literature, see, e.g., Girardin (2002) and the references therein
for applications involving Markov chains and processes.

Application to statistical inference derives too, for example through likeli-
hood maximization, often equivalent to maximization of the entropy rate.

Large deviations results derive too. See Gallager (1968) or Cover & Thomas
(1991) for results in information theory, and Ellis (1985) for a statistical me-
chanics point of view.

Linnik (1959) initiated the use of entropy for proving limit theorems in a
proof of the central limit theorem. For other examples and recent develop-
ments, see Johnson (1999) and the references therein.

7.2.2 Ergodicity, stationarity and Markov properties

The AEP involves the notions of ergodicity and stationarity. Let us recall
their definitions.

DEFINITION 5 Let be a probability space. A process taking
values in E can be defined as where X is a random vari-
able with values in E and S is a shift from to itself.

The shift (and thus the process) is said to be

stationary if for all

ergodic if SA = A implies or 1.
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For an ergodic shift, the strong law of large numbers takes the form

and implies the following Birkhoff (or individual) ergodic theorem, see Doob
(1953).

THEOREM 2 If T is an ergodic shift of and F is an integrable func-
tion on then

The following extension is due to Breiman (1957).

THEOREM 3 If is a uniformly (i.e., such that
sequence of measurable functions converging almost surely to some func-

tion F, then

Stationarity and ergodicity can equivalently be defined by considering the
state probability space, i.e., endowed with the and the law
of the process, say defined on The process is station-
ary or ergodic if the translation shift defined by (where

is thus for The ergodic theorems involve then
instead of for any integrable function defined on

The same notions can be defined and considered for a continuous-time pro-
cess with a group of shifts or a translation of the
state space

The entropy rate can also be defined in terms of shifts of the finite measure
space as follows, see Billingsley (1978) –giving many connections
between information theory and ergodic theory, or Guiasu (1977). The entropy
of a finite              is defined as

the entropy of relative to a shift S is
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where denotes the generated by and finally the entropy
(rate) of S is

See Krengel (1967) for a generalization to measure spaces.

Markovian measures and processes play a prominent part in entropy theory.
Let us recall some definitions.

The theory of Markov processes and its extensions was initiated by A.
Markov (1856-1922) through the property which bears his name: the future
of a Markov process depends on its past only through its present, see Ander-
son (1991). Several generalizations were proposed since, all of them in the
aim of weakening the Markov property, as for example the semi-Markov pro-
cesses introduced by P. Lévy (1954) and W. Smith (1955). The latter generalize
in a natural way the pure jump Markov processes and the renewal processes.
The future evolution of a semi-Markov process depends on its present state
and on the time elapsed since the latest transition, while the evolution of a pure
jump Markov process depends only on its present state, see Limnios &
(2001).

DEFINITION 6 A probability measure on the product space       is Marko-
vian of order if

It is homogeneous (or has stationary transition probabilities) if

A Markovian measure of order one is just said to be Markovian. If the order
is zero, the measure is just the product of independent measures.

A process whose distribution is a Markovian measure is a Markov chain or
discrete Markov process, is its transition
kernel and a probability such that is its stationary distribution. Gen-
eral continuous-time Markov processes are defined in a similar way.

Continuous-time jump Markov processes can also be seen as special semi-
Markov processes. The definition of semi-Markov processes is easier in terms
of Markov renewal processes, here only with a countable state space.

DEFINITION 7 Let            denote a probability space and let E be a finite
or countable set. A process is a Markov renewal process with
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semi-Markov kernel for if

The process is an E-valued Markov chain with transition kernel
where see for example Lim-

nios & (2001). And the times                  are the
jump times of the corresponding E-valued semi-Markov process

defined by

A jump Markov process is a semi-Markov process with semi-Markov kernel
where The matrix is

called its infinitesimal generator and a probability such that
is called its stationary distribution.

7.3 The theorem and its extensions

First, let us see conditions for (2.1) to hold. If E is finite,             is
bounded and hence by Fatou’s lemma is integrable. If

then, by entropy properties, If X is stationary,
then so and h e n c e i s an invariant finite
random variable. Thus, the limit of is a random variable which is
invariant by the ergodicity of the process ensures that almost surely this
entropy rate is constant. If E is not finite, finiteness of (or equivalently
up-boundedness of the sequence will be a necessary condition for
the AEP to hold.

7.3.1 The original AEP

Shannon (1948) stated the convergence in probability of
for ergodic finite processes, and proves it for i.i.d. sequences and for Markov
chains, using the law of large numbers.

McMillan (1953) proved the convergence in mean for stationary ergodic
processes with a finite state space. This constitutes the Shannon-McMillan
theorem. He writes

which is the basis of proof of most of the different extensions of the AEP. Here,
the reference measure is the counting measure, as for all finite or countable
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valued discrete-time process, and so
He uses a martingale argument to prove the almost sure convergence

of to a limit and derives its convergence in mean
from the finiteness of E. The AEP is then given by the mean ergodic theorem
applied to Gallager (1968) gave a simpler proof avoiding martin-
gale arguments.

The almost sure convergence proven by Breiman (1957,1960) constitutes
the Shannon-McMillan-Breiman theorem, also called ergodic theorem of in-
formation theory or strong AEP. He proves the almost sure convergence of

as a nonnegative lower semi-martingale and uses then Theo-
rem 3. See also Shields (1987) for an alternative proof using a sample path
covering argument.

Fig. 1: The original AEP.

7.3.2 Extensions in terms of state space

The extension to a countable state space was made by Carleson (1958) for
the convergence in mean (see also Parthasarathy (1964) for a simple proof) and
by Chung (1961) for the almost sure convergence by proving that the uniform

boundedness of the sequence still holds in this case pro-
vided that the entropy rate is finite.

Perez (1957) made the first extension of the theorem to an arbitrary state
space. He proved that if is the infinite product measure and X is stationary,
then under finiteness of convergence in mean of holds.

Moy (1960,1961) extended it to a homogeneous Markovian measure
first under finiteness of and then under finiteness of and up-
boundedness of the sequence (equivalent to finiteness of
if the reference measure is a product of independent measures).

Both proofs follow the lines of McMillan’s proof, using Doob’s martingale
theorem and embedding the process in a bilateral process. Let
denote the coordinate function defined on by and let
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be the generated by for The density of
with respect to the measure defined on by

is proven to be If is Markovian, then is an extension
of to for all And if is homogeneous, then

Following Gallager’s method, Kieffer (1974) gave a simpler proof of the
same result.

Perez (1964) reviewed, applied and generalized the previous extensions of
the AEP in terms of relative entropy between processes.

Fig.2: Extensions of the AEP in terms of state space; discrete-time processes.
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7.3.3 Extensions in terms of measures
Other extensions have been made in the direction of weakening the assump-

tions of stationarity of the process and of Markovian type of the reference
measure.

Let us set for simplification. Jacobs (1962) proved that if
and if the AEP holds for then it holds for too, for a finite state space. Gray
& Kieffer (1980) extended it to the case where is asymptotically dominated
by a stationary measure in the sense that

and the strong AEP holds for It allows them to use a generalized version
of the ergodic theorem and to prove the AEP for both in mean and almost
surely. Barron (1985) extended it to a Borel state space for the almost sure
convergence, with a Markov of order reference measure.

Klimko & Sucheston (1968) proved the mean AEP for an irreducible Markov
chain with a countable state space and an infinite invariant measure, under sev-
eral additional conditions.

Wen & Weiguo (1995,1996) proved the AEP for a non-homogeneous Markov
chain with a finite state space, using the particular form of for this case and
proving that

where are the transition probabilities of the
chain.
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Fig.3: Extensions of the AEP in terms of measures; discrete-time processes.

7.3.4 Extensions to continuous-time processes

Perez (1957) showed the mean AEP for ergodic stationary for discrete as
well as for continuous time processes with a measurable state space and for
the product reference measure, under finiteness of (or
up-boundedness of the sequence

Pinsker (1960) extended it (via a discretization procedure and using McMil-
lan’s proof) to conditions amounting to homogeneity and Markovian properties
of the reference measure for a finite state space.

Kieffer (1974) extended it to a Borel state space, using Gallager’s method.

Bad Dumitrescu (1988) showed the mean convergence for a pure jump
Markov process with a finite state space by using Perez (1957) and a con-
vergence result of Albert (1962) on the number of transitions from one state to
another. She proved the finiteness of by writing explic-
itly the likelihood of the associated renewal Markov process with respect to the
product of the Lebesgue measure and the counting measure on say

Girardin & Limnios (2001b) extended the mean and strong AEP to an ir-
reducible positive recurrent semi-Markov process with a finite state space and
a semi-Markov kernel absolutely continuous with respect to the Lebesgue mea-
sure on with derivative such that is uniformly -bounded
and with where denotes the mean sojourn time in state i.e.,

The proof uses the likelihood of the associated renewal Markov process with
respect to via a generalization to these processes of the convergence result
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of Albert (1962). Note that any irreducible positive recurrent semi-Markov
process with a finite state space is ergodic.The case of a pure jump Markov
process is derived as a particular case.

The generalization to a countable state space is straightforward under finite-
ness conditions.

Under similar hypothesis, the strong and mean AEP for the entropy of a
semi-Markov processes relative to another is proven too in Girardin& Limnios
(2001b). The reference measure is then the distribution of a semi-Markov
process too, that is to say a semi-Markovian measure.

Fig.4: Extensions of the AEP; continuous-time processes.

7.4 Explicit expressions of the entropy rate

For some kinds of processes, as the Markovian or gaussian processes, the
entropy rate has an explicit form.

It has been first defined by Shannon (1948) for an ergodic Markov chain
with a finite state set as the sum of the entropies of the transition probabilities

weighted by the probability of occurrence of each state according to the
stationary distribution, namely
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and he proved the AEP then. The entropy rate of a positive recurrent chain
with a countable state space takes this form too.

Krengel (1967) proved that the entropy rate of a null recurrent chain with a
countable state space is still given by (4.1), if denotes an invariant measure
of the chain (with

For a semi-Markov process, under suitable hypothesis, Girardin & Limnios
(2001b) showed that

where denotes the stationary distribution of
The relative entropy rate between two semi-Markov processes X and Z is

where X and Y are semi-Markov processes as above, with R denoting the
semi-Markov kernel of Y.

The entropy and relative entropy rates of irreducible ergodic finite pure jump
Markov processes X and Y defined in Bad Dumitrescu (1988) are obtained as
special cases of semi-Markov processes, namely

and

where A and B denote the respective infinitesimal generators of X and Z, and
is the stationary distribution of X (i.e.,

An process is weakly stationary if its covariance function
is invariant with respect to shifts of time. Its entropy at time is then less than
the entropy of the Gaussian process Y with the same covariance
matrix To be specific, with

see for example Choi (1987), and
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where is the spectral density of the Gaussian process. Hence for any Gaus-
sian stationary process Y,

The quantity

is the Burg entropy of Y. It is also the limit of another sequence. Indeed, if
(resp. denotes the variance of the linear prediction error of knowing the
finite past (resp. infinite), then Due
to the projection properties and to Szëgo’s theorem (see Grenander & Szegö
(1955)), this yields

Conclusion

Extensions to group index sets, different from or is possible. The AEP
is proven to hold for the same time spaces as the individual ergodic theorem
is known to hold when the state space is finite, see Ornstein & Weiss (1983)
through a proof avoiding martingale arguments.

The case of a general Borel state space is still to be studied for semi-Markov
processes. Extension of the AEP to other families of non-stationary processes
could be considered.

The Markov nature of the reference measure seems necessary; different at-
tempts to get ride of it have failed, see both Perez (1964)’s statement and
counter-example by Kieffer (1974,1976) and Perez (1980) commented by Orey
(1985). Orey (1985) extends the strong AEP to “nearly Markovian” measures,
a notion too complicated to be developed here, but which seems to constitute
the limit of extension in this direction.

The real minimal hypothesis on the process and the reference measure for
the AEP to hold is still an open question.
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Abstract The first topic of this partial survey paper is that of the growth of adequate lists of
key phrase terms for a given field of science or thesauri for such a field. A very
rough ‘taking averages’ deterministic analysis predicts monotonic growth with
saturation effects. A much more sophisticated realistic stochatic model confirms
that.

The second, and possibly more important, concept in this paper is that of
an identification cloud of a keyphrase (or of other things such as formulas or
classification numbers). Very roughly this is (textual) context information that
indicates whether a standard keyphrase is present, or, better, should be present,
whether it is linguistically recognizable or not (or even totally absent). Identi-
fication clouds capture a certain amount of expert information for a given field.
Applications include automatic keyphrase assignment and dialogue mediated in-
formation retrieval (as discussed in this paper). The problem arises how to gen-
erate (semi-)automatically identification clouds and a corresponding enriched
weak thesaurus for a given field. A possible (updatable and adaptive) solution is
described.
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8.1 Introduction
The first topic of this paper is concerned among others with the follow-

ing question. Suppose one has made an index or thesaurus for a given (su-
per)specialism like for instance discrete mathematics (understood as combina-
torics) on the basis of a given corpus, like the two (leading?) journals ‘Discrete
Mathematics’ and ‘Applied Discrete Mathematics’. How does one tell that the
index made is more or less complete, i.e. more or less good enough to describe
the field in question. And, arising from that, are we really dealing with leading
journals (as the publisher, in this case Elsevier, believes). As a matter of fact,
indexes for the two journals named have been made, [Hazewinkel, 2000; Ha-
zewinkel, 2001] and a very preliminary analysis, [Rudzkis, 2002], indicates
that they go some way towards completeness.

One way to tackle this is to test the collection obtained against another cor-
pus. However, such a second corpus may not be available. And if it were
available one would like to use it also for key phrase extraction in order to ob-
tain an index/thesaurus that is as complete as possible and the same problem
comes back for the new index/thesaurus based on all material available.

Another way to try to deal with the question is to watch how the index/the-
saurus grows as more and more material is processed. If, as one would intu-
itively expect, eventually saturation phenomena appear, that is a good indicator,
that some sort of completeness has been reached. To deal with this not only
qualitatively but also quantitatively, a dynamic stochastic model is needed, to-
gether with appropriate estimators. This is the first topic addressed in this
paper.

The second topic deals with information retrieval and automatic indexing.
These matters seem to have reached a certain plateau. As I have argued at
some length elsewhere, see, e.g., [Marcantognini, 2000; Marcantognini, 2001;
Woerdeman, 1989; Hazewinkel, 1999b] there is only so much that can be done
with linguistic and statistical means only. To go beyond, it could be necessary
to build in some expert knowledge into search engines and the like. This has
led to the idea of identification clouds, which is one of the topics of this paper.

The same idea grew out of a rather different (though related) concern. It is
known and widely acknowledged, that a thesaurus for a given field of inquiry
is a very valuable something to have. However, a classical thesaurus according
to ISO standard 2788, see [Arocena, 1990], and various national and interna-
tional multilingual standards, is not an easily incrementally updatable struc-
ture. Indeed, keeping up to date the well known thesaurus EMBASE, [Burg,
1975; Castro, 1986], which is at the basis of Excerpta Medica, takes the full
time efforts of four people. This problem of semi-automatic incremental up-
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dating of a thesaurus has lead to the idea of an enriched weak thesaurus, [Mar-
cantognini, 2001; Hazewinkel, 1999b], and identification clouds are a central
part of that kind of structure.

In the second part of this paper I try to give some idea of what ID clouds
are and how they can be used. More applications can be found in the papers
quoted. The idea has meanwhile evolved, largely because of the use of ID
clouds in the EC project TRIAL SOLUTION, [Dahn, 1999], and in this pa-
per I also sketch the refinements that have emerged, and indicate some open
problems that need to be solved if this approach is to be really useful.

This paper is an outgrowth of the lecture I gave on (some of) these matters
at the IWAP 2002 meeting in Caracas, Venzuela, January 2002. I thank the
organizers of that meeting for that opportunity.

8.2 A First Preliminary Model for the Growth of Indexes
The problem considered in this section is how a global index, a list of terms

supposed to describe a given field of enquiry, evolves as indexing proceeds and,
simultaneously, the field develops (at a far from trivial pace). The questions
arises how does such an index evolve chronologically (assuming, for simplic-
ity, that the indexing is also done chronologically), and, most important, how
does one judge on the basis of these data whether the index generated is ade-
quate for the field in question or not.

Here is a very simple (and naive) stochastic model for this situation and a
preliminary (deterministic) analysis of it. At starting time (time zero) there is
an (unknown) collection, K(0), of key phrases that is adequate for the field in
question. In addition there is an infinite universe of potential terms that can be
dreamed up by authors and others of new (important) key phrases. Thus, from
the point of view of indexing and thesauri the field grows as:

where the union is disjoint and is the collection of new terms generated
in period These are not yet known (i.e. identified/recognized), but they do
exist in one form or another in the corpus as it exists at time

Now let indexing start. At time zero no terms have been identified. Let
stand for the set of terms recognized (found) at time Hence

A generalization would be that one starts with an existing thesaurus
and tries to bring it up-to-date; then X(0) is a known subset of K(0).

The indexing proceeds as follows. At time a set of terms is selected
(found, recognized) and added to This set consists of two parts,

Thus
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As a rule, of course, part of is already in The main problem is to
have criteria or estimates to decide whether eventually exhausts or,

for a suitable dealy or not. For instance in the form

where is the cardinality of and similarly for The (only) basic
observable is and deriving from that

Let us do some rather crude average reasoning. First, let us assume linear
growth of the field of science in question:

for some constant Also on average terms are selected (per period) with a
fraction coming from known stuff, and a fraction
new terms. There results a recursion equation for

be the fraction of terms covered by the thesaurus at this
time. Then

Assume that the differential equation

approximates the difference equation above well enough (which is certainly the
case). This differential equation is actually explicitly solvable and the solution
is:

where So

Let

and grows monotonically from 0 to the asymptotic limit value
In particular the recognized fraction of relevant (latent) index terms does not

approach one as long as the field keeps growing, and it grows slowly (compared
to the indexing rate) once one gets very close to the asymptotic limit. Note
also that the saturation phenomenon alluded to in the introduction does indeed
occur.
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Of course this is quite primitive. Frequently, replacing stochastic phenom-
ena with averages (in a nonlinear case) does not work. So a more sophisticated
anlysis of this kind of stochastic processes – apparently a new kind – is needed.
This is described in the next section.

8.3 A Dynamic Stochastic Model for the Growth of
Indexes

Using the same notations as above the basic assumptions of the model are
as follows.

The the cardinalities of the sets of key phrases identified up to and
including time    form a random Poisson process. That is, the increments

are independent random variables with a Pois-
son distribution For simplicity is assumed to be a deterministic
quantity. Let then

The key phrases are numbered consecutively as they appear in time.
A key phrase at the time of its emergence has attached to
it a random weight that reflects its relevance (= importance) at that
time. The are supposed to be i.i.d. positive random variables with a
distribution function F independent of the sequence and

As before let be the set of key phrases that were observed at time
and let The probabilities of the random events

depend on the random weights and the history so far, of the
system considered. Assume that for fixed        and the events

are conditionally independent and that the following
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equalities hold

Here is a deterministic function that reflects the importance
of the corpus used. This (3.1) is quite a weak assumption, practically
dictated by the way indexes and thesauri grow in practice.

The results to be quoted below are some of the ones in [Hazewinkel &
Rudzkis, 2001] and concentrate on the case that Obviously, much
more general models should be examined. For one thing the importance of a
key phrases is certainly not a constant and, moreover, is likely to change in
time.

Set

then, besides other asymptotic results, assuming

which in the case that is precisely the result (2.1) of the crude “taking
averages” analysis of Section 2 above. It remains to be sorted out what happens
in more general circumstances.

There is also an exhaustion result:

which means that if the observation rate is not too small compared to the
growth rate of the field then, eventually, the (latent) key phrases at time zero
will all be found.

Shifting time this means that for any time a certain amount of time later
all potential key phrases will have been recognized with probability 1.
What is still needed is an estimate of how much time that will take (depending
of course on growth and observation rates).

For a number of statistical estimators of the parameters of the model see loc.
cit.

8.4 Identification Clouds
Now suppose that we have a near perfect list of key phrases for, say, math-

ematics. That is not the case, but adequate lists do exist for certain subfields,
[Kailath, 1986; Sz-Nagy, 1970; Schur, 1986; Hazewinkel, 2000; Hazewinkel,
2001; Hazewinkel, 2001a; Hazewinkel, 2002].
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Even then there remain most serious open problems of information storage
and retrieval. To start lets look at an example. Here is a phrase that occurred
in an abstract that came my way for indexing purposes some 6 years ago:

“... using the Darboux process the complete structure of the solutions of the
equation can be obtained,”

At first sight, speaking linguistically, it looks like there is here a perfect natural
key phrase to be assigned, viz. “Darboux process”. Presumably, some sort
of stochastic process like “Cox process”, “Gallon–Watson process”, “Dirichlet
process”, or “Poisson process”.

However, there is no concept, or result, or anything else in mathematics
that goes by the name “Darboux processs”. Also the context did not look like
having anything to do with stochastics and/or statistics. Had the abstract been
classified – it wasn’t – using the MSCS (Mathematics Subject Classification
Scheme) it would have carried a number like 58F07 (1991 version) or 37J35
(2000 version), neither of which have anything to do with stochastics.

The proper name “Darboux” is also not sufficient to identify what is meant;
there are too many terms with “Darboux” in them: “Darboux surface”, “Dar-
boux Baire 1 function”, “Darboux property”, “Darboux function”, “Darboux
transformation”, “Darboux theorem”, “Darboux equation”,... (these all come
from the indexes of [Landau, 1987]).

Or take the following example from [Smeaton, 1992]. Suppose a querier
is interested in “prenatal ultrasonic diagnosis”. Then texts containing phrases
like “in utero sonographic diagnosis”, “sonographic detection of fetal ureteral
obstruction”, “obstretic ultrasound”, “ultrasonics in pregnancy”, “midwife’s
experience with ultrasound screening” should also be picked up. Or, inversely,
when assigning key-phrase metadata to documents, the documents containing
these phrases should also receive the standard controlled key phrase “prenatal
ultrasonic diagnosis”.

One way to handle such problems (and a number of other problems, see
below) is by means of the idea of identification clouds.

Basically the “identification cloud” of an item from a controlled list of stan-
dardized key phrases is a list of words and possibly other (very short) phrases
that are more or less likely to be found near that key phrase in a scientific text
treating of the topic described by the key phrase under consideration.

For instance the key phrase

Darboux transformation
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could have as (part of its) identification cloud the list

soliton
dressing transformation
Liouville integrable
completely integrable
Hamiltonian system
inverse spectral transform
Bäcklund transformation
KdV equation
KP equation
Toda lattice
conservation law

inverse spectral method
exactly solvable

(37J35, 37K (the two MSC2000 classification codes for this area of
mathematics))

And in fact this particular identification cloud solves the “Darboux process”
problem above. The surrounding text contained such words as ‘soliton’, ‘com-
pletely integrable’, and others from the list above. The appropriate index
phrase to be attached was “Darboux transformation”.

What the authors of the abstract meant was something like “repeated use of
the process ‘apply a Darboux transformation’ will give all solutions”.

A human mathematician, more or less expert in the area of completely in-
tegrable systems of differential equations, would have no difficulty in recog-
nizing the phrase “Darboux process” in this sense. Thus what identification
clouds do is to add some human expertise to the thesaurus (list of key phrases)
used by an automatic system.

The idea of an identification cloud is part of the concept of an enriched weak
thesaurus as defined and discussed in [Marcantognini, 2001; Rudin, 1979; Ha-
zewinkel, 1999b].

8.5 Application 1: Automatic Key Phrase Assignment
A first application of the idea of identification clouds is the automatic as-

signment of key phrases to scientific documents or suitable chunks of scientific
texts.

It is simply a fact that it often happens that in an abstract or chunk of text a
perfectly good key phrase for the matter being discussed is simply not present
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or so well hidden that linguistic and/or statistical techniques do not suffice to
recognize it automatically.

The idea here is simple. If enough of the identification cloud of a term
(= standard keyphrase) is present than that key phrase is a good candidate at
least for being assigned to the document under consideration.

Here are two examples.

8.5.1. Example
Two-dimensional iterative arrays: characterizations and applications.
We analyse some properties of two-dimensional iterative and cellular ar-

rays. For example, we show that arrays operating in $T(n)$ time can be sped
up to operate in time $n+(T(n)-n)/k$.

computation. Unlike previous approaches, we carry out our analyses using se-
quential machine characterizations of the iterative and cellular arrays. Con-
sequently, we are able to prove our results on the much simpler sequential
machine models.

iterative array
sequential characterization of cellular arrays
sequential characterization of iterative arrays
characterization of cellular arrays
characterization of iterative arrays

Here the available data consisted of an abstract (which is only partially repro-
duced here). In bold, in the abstract itself, are indicated the index (thesaurus)
phrases which can be picked-out directly from the text. Below the original text
are five more phrases, that can be obtained from the available data by relatively
simple linguistic means, assuming that one has an adequate list of standard key
phrases available. For instance “sequential characterization of cellular arrays”
and “sequential characterization of iterative arrays” result from the phrase in
italics in the abstract fragment above. Note that instead of doing (more or less
complicated) linguistic transformations, these could also have been obtained
by means of identification clouds. There are advantages in this because there
are so very many possible linguistic transformations.

Then, in shadow, there is the term “array of processors”. This one is more
complicated to find. But, given an adequate standard list, and with “array”,
“processors” and “machine” all in the available text, it is recognizable, using
identification clouds, as a term that belongs to this document.
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Finally, in bold-shadow, there is the key phrase “speed-up theorem” a well
known type of result in complexity theory. In the text there just occurs “sped
up”. Certainly, unless one has a good list of (standard) key phrases available,
this would be missed. Also purely linguistic means plus such a very good list
are clearly still not sufficient; there is no way that one can have a key phrase
extraction rule like ‘if “sped up” occurs “speed-up theorem” is a likely key
phrase’. However, “sped up” plus supporting evidence from the context in the
form of a sufficient number of terms from the identification cloud of “speed-up
theorem” being present, would do the job.

8.5.2. Example

Sequential and concurrent behaviour in Petri net theory.
Two ways of describing the behaviour of concurrent systems have widely

been suggested: arbitrary interleaving and partial orders. Sometimes the
latter has been claimed superior because concurrency is represented in a ‘true’
way; on the other hand, some authors have claimed that the former is sufficient
for all practical purposes. Petri net theory offers a framework in which both
kinds of semantics can be defined formally and hence compared with each
other. Occurrence sequences correspond to interleaved behaviour while the
notion of a process is used to capture partial-order semantics. This paper
aims at obtaining formal results about the

more powerful than inductive semantics using

of nets which are of finite synchronization and 1-safe.

sequential behaviour in Petri net theory
Petri net theory
axiomatic definition of processes

The style coding is the same as in the previous example. Here, the constituents
“1-safe” and “nets” of “1-safe nets” actually occur in the text. But they are so
far apart that without standard lists and identification clouds the phrase would
probably not be picked up. The same holds for the key phrase “interleaving
semantics”.

Afterwards, I checked against the full text whether these extra key phrases
were indeed appropriate. They were. Two more examples can be found in [Wo-
erdeman, 1989] or [Hazewinkel, 1999b]. These are all actual examples which
occurred in the corpora used to produce the indexes [Sz-Nagy, 1970; Schur,
1986].
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A C-program that takes as input a keyphrase list with identification clouds
and a suitably prepared corpus of documents (chunks of text or abstracts) and
that gives as output the same corpus with each item enriched with automat-
ically assigned keyphrases has been written in the context of the EC project
“TRIAL SOLUTION” (Febr. 2000–Febr. 2003), [Dahn, 1999]. It also outputs
an html file for human use which can used to check how well the program
worked. This validation test is currently (2002) under way.

It is already clear, that the idea of identification clouds needs refinements;
certainly when used on rather elementary material (as in TRIAL SOLUTION).
Two of these will be briefly touched on below.

8.6 Application 2: Dialogue Mediated Information
Retrieval

Given a keyphrase list with identification clouds, or, better, an enriched
weak thesaurus, it is possible to use a dialogue with the machine to refine
and sharpen queries. Here is an example of how part of such a dialogue could
look:

(Query:) I am interested in spectral analysis of transformations?

(Answer:) I have:

spectral decompositions of operators in Hilbert space (in do-
main 47, operator theory, 201 hits)

spectral analysis (in domain 46, functional analysis, 26 hits)

spectrum of a map (in domain 28, measure theory, 62 hits)

spectral transform (in domain 58, global analysis, 42 hits)

inverse spectral transform (in domain 58, global analysis,
405 hits)

Please indicate which are of interest to you by selecting up to five
of the above and indicating, if desired, other additional words or
key phrases.

The way this works is that the machine scans the query against the available
identification clouds (using some (approximate) string matching algorithm,
e.g., Boyer–Moore) and returns those keyphrases whose ID clouds match best,
together with some additional information to help the querier make up his
mind.
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8.7 Application 3: Distances in Information Spaces

As it is, the collection of standard keyphrases is just a set. It is a good idea to
have a notion of distance on this set: are two selected standard key phrases near,
i.e. closely related, or are they quite far from each other. Identification clouds
provide one way to get at this idea: two phrases which have large overlap in
their identification clouds are near to each other.

A use of this, again dialogue mediated, is as follows.

(Query:) I am interested in something related to <StandardKeyPhrase
1>. Please give me all standard keyphrases that are within dis-
tance x of this one.

For other ways to define distances on information spaces (such as the space of
standard key phrases) and other potential uses of distance, see [Hazewinkel,
1999b].

A distance on the space of key phrases is related to a distance on the space
of documents, see loc. cit. This is also most useful in dialogue mediated
querying. Suppose a really good document for a given query has been found.
Than a very useful option is

(Query:) I am interested in documents close to <Document 1>. Please
give me all standard documents that are within distance x of this
one and which have two or more of the following key phrases in
their key phrase metadata field.

Some search engines have a facility like this in the form of a button like ‘similar
results’ in SCIRUS of Elsevier. But not based on distances in information
spaces.

8.8 Application 4: Disambiguation

Ambiguous terms are a perennial problem in (automatic) indexing and the-
saurus building.

Identification clouds can serve to distinguish linguistically identical terms
from very different areas of the field of inquiry in question. E.g., “regular ring”
in mathematics, or the technical term “net” which has at least five completely
different meanings in various parts of mathematics and theoretical computer
science. For instance ‘transportation net’ in optimization and operations re-
search, ‘net of lines’ in differential geometry, ‘net’ in topology (which replaces
the concept of a sequence in topological spaces where the notion of sequence
is not good enough), ‘communication net’, ‘net(work) of automata’,....

Identification clouds also serve to distinguish rather different instances of
the same basic idea in different specializations. E.g., spectrum of a commu-
tative algebra in mathematics, spectrum of an operator in a different part of
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mathematics, and spectrum (of a substance) in physics or chemistry are dis-
tantly related and ultimately based on the same idea but are in practice com-
pletely different terms.

Possibly an even worse problem is caused by phrases and words which have
very specific technical meanings but also occur in scientific texts in everyday
language meanings. A nice example is the technical concept “end” as it occurs
in group theory, topology and complex function theory (three technically dif-
ferent though related concepts). Searching for “end” in a large database such
as MATH of FIZ/STN (Berlin, Karlsruhe) is completely hopeless. Searching
for “end” together with its ID cloud for its technical meaning in group theory
would be a completely different matter. Note that specifying group theory as
well in the query would not help much; there are simply too many ways in
which the word ‘end’ occurs (end of a section, to this end, end of the argu-
ment, end of proof, …). There are many more words like this; also phrases.
For instance ‘sort’ (as in many sorted languages or sorting theory) and ‘bar’
(as in bar construction). For more about the ‘story of ends’, see [Woerdeman,
1989].

8.9 Application 5. Slicing Texts

One important thing made possible by modern electronic technology, i.e.
computers and the internet, is the systematic reuse of (educational) material
and the composing of books and documents exactly taylored to the needs of an
individual user. For instance a teacher may like the introduction to the idea of
a topological space from book 1, consider the formal definition of book2 better
and may want to use some examples from book3, some exercises from book4,
and some historical comments from book5.

The question arises how to chop up a longer text into chunks (slices) that
can be efficiently recombined to form such individually taylored texts. This is
the subject of the EC Framework 5 project TRIAL SOLUTION (Febr. 2000–



194 RECENTS ADVANCES IN APPLIED PROBABILITY

Febr. 2003), [Dahn, 1999]. If the to be sliced document is well structured, for
instance composed using LaTeX2e, the structure imposed by the author is a
good guide where to slice and this is what TRIAL has so far concentrated on.

Now suppose we have a long section (slices should be relatively short; cer-
tainly not more than one computer screen) or an unstructured text, i.e. no clear
markings indicating sections, subsections, etc., the exact opposite of a good La-
TeX2e document. Suppose also that key phrases have been found and marked
in the text and that for each key phrase the evidence for including that key
phrase has also been marked; i.e. for each key phrase the corresponding items
from its identification cloud have been marked. Treating the text as a long
linear string we get a picture like the following.

The numbered fat hollow circles are key phrases in the text which is depicted
as a fat horizontal line running over four lines; the arrows connect a key phrase
to a member of its identification cloud. If the key phrase is not actually present,
the fat circle is the centre of mass of the terms indicating its virtual presence.
An arrow can run over more than one line; then labels are used to indicate how
it continues.

It is now natural to cut the text at those spots where the number of arrow
lines is smallest. For instance, at the three points indicated by fat vertical lines.
This can be done at several levels to get a hierarchical slicing. To be able to
do this optimally one needs a good stochastic model for the distribution of key
phrases through a text and also for the distribution of identification cloud items
for a key phrase.

The problem of slicing a text into suitable chunks also comes up in other
contexts. For instance in the matter of automatic generation of indexes and
identification clouds, see Section 17 below, and in the topic of text mining,
see [Visa, 2001], p. 7.

8.10 Weights

One thing that emerged out of the use of identification clouds in the project
TRIAL SOLUTION was that it is wise to give weights (numbers between 0
and 1 adding up to 1) to the elements making up an identification cloud.

Here is an example:
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This particular identification cloud is designed to find occurences of the Burg-
ers equation as it occurs in the area of completely integrable dynamical systems
(soliton equations, Liouville integrable systems). There are other areas where
it occurs; a matter which is further discussed in Section 18 below.

Of course if the phrase itself occurs that is enough as reflected by the first
item in the ‘WORD VALUE list’. Note further that the occurrence of “Burg-
ers” and of “equation” is not quite enough. There is a good reason for that. For
one thing there is also a concept called “Burgers vector” (in connection with
torsion in differential geometry); also “Burgers” is a fairly common surname.
Further “equation” is of such frequent occurence (in mathematics) that it can
turn up just about anywhere. Thus the occurence of both “Burgers” and “equa-
tion” in a chunk of text is not enough to decide that “Burgers equation” is a
suitable key phrase for that chunk. But if three or more of the sort of words
that belong to completely integrable dynamical systems are also present one
can be quite sure that it is indeed a suitable key phrase.

Of course if formula recognition, see Section 14 below, were available one
would add to the list above

(which is the Burgers equation in formula form).
How to assign weights optimally is a large problem. Obviously this cannot

be done by hand: a more or less adequate list of standard key phrases for
mathematics needs at least 150 000 terms. I propose to use, amoung other
things, something like the following adaptive procedure.
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Suppose one has an identification cloud of a term consisting of items 1, L,
with weights adding up to 1. Let a subset be

successful in identifying the phrase involved. Then the new weights are:

where is a fixed number to be chosen, (Note that the new weights
again add up to 1; note also that the increase in relative importance and
the decrease in relative importance; if nothing happens.)
This is an adaptation of a reasonably well known algorithm for communication
(telephone call) routing that works well in practice but is otherwise still quite
fairly mysterious, [Azencott, 1986; Srikantakumar & Narendra, 1982].

8.11 Application 6. Synonyms
There are a variety of things one can do with identification clouds to handle

the well known problem of synonyms.
Suppose there are two synonymous key phrases. Then providing both of

them with the same identification clouds (including both phrases themselves
also as items) will cause both of them to be assigned to those documents where
that is appropriate. This would probably the best way to handle this in most
circumstances.

Should, however, one prefer to have have just one standardized key phrase
this can be handled by having the alternative key phrases in the identification
cloud of the standardized one with a weight equal or higher than the threshold
value of the selected standardized key phrase; see Section 10 above for how
these weights would work.

8.12 Application 7. Crosslingual IR
There are a variety of applications of the idea of identification clouds when

dealing with multilingual situations in information retrieval and storage. Sup-
pose for instance one has English language key phrases supplied with German
language identification cloud items. One bit of use one can make of this is to
attach English language key phrases to German language papers and chunks of
text.

Another one is as follows. Suppose we have a German speaking querier
who is looking for English language documents as in dialogue mediated search
(Section 6 above). Then the same German identification clouds attached to
English key phrases permit the machine to handle a German language query.
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8.13 Application 8. Automatic Classification
Here “automatic classification” means assigning to a document one or more

classification numbers from the MSC2000 (Mathematics Subject Classifica-
tion Scheme, [MSC2000, 1998]), or its precursor MSC1991. For instance

14M06: linkage
54B35: spectra
55M10: dimension theory

In this setting, instead of key phrases, it is the classification numbers from
MSC2000 which are provided with information clouds. This also give these
classification numbers substance and meaning. The terse describtions like the
three above are far from sufficient to indicate adequately what is meant (even
to experts on occasion).

Certainly the mere occurrence of the word “linkage” should not be con-
sidered sufficient to assign a paper or chunk of text the classification number
14M06. First of all one would like to be sure that the document in question
is about algebraic geometry, this can be done by referring to the identification
cloud of the parent node 14 (Algebraic geometry), and second one would like
additional evidence like the presence of such supporting phrases as “complete
intersection”, “determinantal variety”, “determinantal ideal”, .. . .

Inversely, a paper may wery well be about the rather technical group of ideas
“linkage” without ever mentioning that particular word.

The other two examples just given also need more complete descriptions
as to what is really meant (disambiguation and more). For instance there are
notions of spectrum in many different parts of mathematics: combinatorics,
number theory (two different ones at least), homological algebra, ordinary and
partial differential equations, dynamical system theory, harmonic analysis, op-
erator theory, general topology, algebraic topology, global analysis, statistics,
mechanics, quantum theory, …. Most are somehow related to the original
idea of the spectrum of a substance as in physics/chemistry; but some others
are completely different.

The exact phrase “dimension theory” occurs four times in MSC2000 while
the stem “dimension” occurs no less than 94 times.

8.14 Application 9. Formula Recognition

Recognizing (or finding) formulas in scientific texts is (in any case at first
sight) a completely different matter from recognising or finding key phrases.
First because formulas are two dimensional and second because the symbols
occurring in formulas are not standardized (except a few like the integral sign
and the summation sign). Even a standard symbol like for the number
3.1415 … that gives the radius of the circumference of a circle to its diam-
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eter, is not a reliable guide. The Greek letter is also often used for, for
instance, all kinds of mappings in various kinds of geometry, for partitions in
combinatorics, and for permutations in group theory.

For instance the two expressions

mean exactly the same thing. It is the pattern rather than the actual glyphs that
occur which determine what a formula means.

And even the patterns are not all that fixed. For instance here are a few
versions of that very well known concept in mathematics and engineering, the
(one dimensional) Fourier transform (there quite a few more):

Most of the variations come from different notations for the exponential, the
insertion or deletion of normalizing factors involving the engineering tradi-
tion of writing as instead of (as in most of mathematics and physics),
different notations for integrands, and putting in or leaving out the integration
limits.

Still, it is not easy to define formally what kind of transformations are al-
lowed. On the other hand, trained mathematicians have no difficulty in rec-
ognizing any of the above (except possibly the last) as instances of a Fourier
transform. Quite generally trained mathematicians can look at a text in their
fields of expertise in a language totally unknown to them and still decide what
topics the text deals with and at what level things are treated just by looking
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at the formulas. Whether that sort of expertise can be taught to machines is an
open question. The field of formula recognition is still in its infancy – I would
say it is still in a foetal stage.

Identification clouds can help. The idea is the same as before. But instead
of a key phrase it is now a (standardized) formula which has an identifica-
tion cloud attached to it. In the present case one can imagine that the (obliga-
tory) presence of an integral sign, the (also obligatory) presence of the function
symbols ‘exp(.)’ or and an integration variable ‘d’ in the formula, plus
supporting evidence in the form of the occurrence of (some of the) words like
“transform”, “Fourier”, “spectral analysis”, “harmonic”, … in the surrounding
text would do not a bad job in identifying Fourier transform formulas.

Some preliminary work on formula recognition using identification clouds
is planned in the EC project [Choi, 1986].

8.15 Context Sensitive IR
In a very real sense the idea of identification clouds is that of context sen-

sitive approximate string recognition. Even if the string itself, that is the key
phrase in question, is not recognized the context may provide sufficient sup-
porting evidence to conclude that string should be there as a key phrase. But
the way the context is used is very much nonsophisticated. There is no (com-
plicated) grammatical analysis or anything like that. I believe that this is how
trained scientists function. They just look casually at the surrounding text of,
say, a formula, and on the basis of what they see there decide what it is all
about. I do not believe they really do any kind of grammatical analysis or
transformations. Indeed, many of us are incapable of doing anything like that,
for very often we have to work in foreign languages which are far from per-
fectly known to us.

8.16 Models for ID Clouds

So far there has been no worry about just how the supporting evidence com-
ing from identification clouds is distributed. This does not matter too much if
one is dealing with the problem of assigning key phrases to short chunks of
text or to abstracts. Say, to documents of the size of one computer screen or
one A4 page maximal.

Things change drastically if one has to deal with longer chunks of text and
expecially if one has to assign key phrases, classifications, and other metadata
to complete, full text documents. Obviously if the items of an identification
cloud for some key phrase of classification of formula or ... are spread around
very far, are very diffuse, or if they are concentrated in jsut a few lines of text,
makes an enormous difference.
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Thus what is needed for many applications touched upon in this paper is an
experimentally justified stochastic model on how the items of an identification
cloud are distributed. And for that matter, how key phrases, whether actually
present or not, are distributed over a document. This is of particular importance
for the application “slicing of documents” discussed in Section 9 above.

8.17 Automatic Generation of Identification Clouds
Take a large enough, well indexed corpus, and divide it into suitable chunks

called documents. For instance take the 700 000 abstracts of articles in the
STN/FIZ database Math (ZMG data)1, or take as documents the sections or
pages of a large handbook or encyclopaedia such as the Handbook of Theoret-
ical Computer Science, [van Leeuwen, 1990] or the Encyclopaedia of Math-
ematics, [Landau, 1987], or an index like [Schur, 1986; Hazewinkel, 2001].
Now use a parser for prepositional noun phrases (PNP’s) (or an automaton rec-
ognizing PNP’s) or a software indexing program like TExTract or CLARIT,
[Arocena, 1990A; Arov, 1983; Dym, 1988; Foias, 1990; Gabardo, 1993], to
generate from these documents a list of key phrases, keeping track of what
phrases come from what document. Now assign, as ID clouds, to the items
of the list of keyphrases, those words and phrases found by, say, the software
indexing program, which occur in the same document as the key phrase under
consideration.

8.18 Multiple Identification Clouds
Picture the set of all documents (chunks of text) in mathematics as a space.

For instance a discrete metric space as in [Hazewinkel, 1999b]. There may then
very well be several distinct regions in this space where a given key phrase,
like “Burgers equation” occurs with some frequency. In this case one may
well need several different identification clouds for the same key phrase, even
though there is no ambiguity involved. This happens in fact in the case at hand.
The Burgers equation has relations with the field of completely integrable sys-
tems: it itself has soliton solutions and it is also related to what is probably the
most famous soliton equation, the KdV equation (Korteweg–de Vries equa-
tion). The identification cloud above in Section 10 was designed to catch this
type of occurence of the concept. On the other hand it is the simplest nonlinear
diffusion equation and plays a role as such and in discussions of turbulence. To
catch those occurrences a rather different set of supporting words and phrases
is needed (like diffusion, turbulence, eddy, nonlinearity, ...). Just combining

1Though this one is not really well indexed in the sense that the key phrases assigned are not from a
controlled list. However, if the intention would be to generate the controlled list at the same time as the
correponding ID clouds, this material would be most suitable.
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the two identification clouds is dangerous because then, by accident, the vari-
ous different collections of supporting evidence phrases together may combine
to give a spurious assignment. One can also not concentrate too much on the
proper name “Burgers” for the reasons mentioned in Section 10 above.

8.19 More about Weights. Negative Weights
Another refinement that came out of the experiences with the TRIAL

SOLUTION project is that it could be a very good idea to allow negative
weights. Let’s look at an example.

“The next topic to be discussed is that of the Fibonacci numbers. The generating
formula is very simple. But all in all these numbers and their surprisingly many
applications are sufficiently complex to make the topic very interesting. Similar
things happen in the study of fractals.”

Or even worse:

“These mixed spectrum solutions must be numbered amoung the more complex
ones of the KdV equation. Still they can be not neglected.”

Both ‘complex’ and ‘numbers’ occur in the first fragment of text above (ital-
ized). But, obviously it would be totally inappropriate to assign the technical
keyphrase ‘complex numbers’ to this fragment. A negative weight on ‘Fi-
bonacci’ in the ID cloud of ‘complex numbers’ will prevent that.

For the second text fragment the technique of stemming, which needs to be
used, will give “number”, and “complex” also occurs. But here also it would
be totally inappropriate to assign the key phrase “complex numbers”. It is not
so easy to see how to avoid this.

There are still other possible sources of difficulties because “complex” is
also a technical term in algebraic topology and homological algebra so one
can have a fragment like

“The Betti numbers of this cell complex are...”

or still worse:

“The idea of a simplicial complex numbers amoung the most versatile notions
that...”

Here even the exact phrase “complex numbers” occurs and negative weights
are a must to avoid a spurious assignment.

Quite generally it seems fairly clear that the presence of the constituents of a
standard key phrase in a given chunk of text is by no means sufficient to be sure
that key phrase is indeed appropriate. This is especially the case for concepts
that are made up out of frequently occurring words like “complex numbers”
or “boundary value formula”. But we have also seen this in the case of the
“Burgers equation” above in Section 10. For the case of the phrase “complex
numbers” one needs an identification cloud like
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So that besides “complex” and “number” one needs at least 2 more bits of
supporting evidence to have a reasonable chance that the fragment in question
is indeed has to do with the field of complex numbers. On the other hand if
at least 8 of the last ten positive weight terms of the identification cloud above
are present one is also rather sure that the fragment in question has to do with
the field of complex numbers. The tentative identification cloud given above
reflects this. But it is clear that assigning weights properly is a delicate matter;
it is also clear that much can be done with weights.

Thus also in the case of occurrences of the same concept in the same part of
mathematics, more than one identification cloud may be a good idea, reflecting
different styles of presentation and different terminological traditions.

The concrete examples of Section 2 above also illustrates the possible value
of negative information.

8.20 Further Refinements and Issues
There are a good many other issues to be addressed. Here is one. It is

more or less obvious that making one keyphrase list with ID clouds for all of
science and technology is a hopeless task. What one aims at is instead an Atlas
of Science and Technology consisting of many weak thesauri that partially
overlap, may have different levels of detail, and may focus on different kinds
of interest. Much like a geographical atlas which has charts of many different
levels of detail and many different kinds (mineralogical, roads and train lines,
soil types, height, type of terrain, demographical, climatological, ...). Here
the problem arises of how to match the different ‘charts’.

Another one is how to adapt the adaptive scheme of Section 10 to a situation
with negative weights and how to handle insertion and deletion of ID cloud
members.
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In an enriched weak thesaurus a key phrase has not only words in its iden-
tification cloud but also one or more classification numbers from MSC2000.
In turn these classification numbers have identification clouds. The idea is that
once a candidate key phrase has been found these are used to check that indeed
the paper is related to the topics described by those classification numbers.
This idea of referring to other (secondary) identification clouds can be used in
all of the various applications described above. For instance it is needed of one
uses a formula to identify a key phrase as suggested at the end of Section 10.
Such referring to other identification clouds was also briefly mentioned in Sec-
tion 13 above. Just how this should be implemented stil needs to be worked
out.

Probably the most crucial issue to be addressed at this stage is the formula-
tion of a good probabilistic model of ID clouds complete with statistical esti-
mators, see Section 16. A project in this direction has been started by the CWI,
Amsterdam together with the IMI, Lithuanian Acad. of Sciences, Vilnius.

References
Jean Aitchison and Alan Gilchrist, Thesaurus construction, 2nd edn, Aslib, 1990.
H. Bego, TExtract: snelle en eenvoudige ‘back of the book index’ generatie. In: L. G. M. No-

ordman and W. A. M. de Vroomen (ed.), Derde STINFON conferentie, 1993, 214.
H. Bego, TExtraxt. Back-of-the-book index creation system, TEXYZ, Utrecht, 1997.
G. Bel, P. Chemouil, J. M. Garsia, F. Le Gall and J. Bernusso, Adaptive traffic routing in tele-

phone networks, Large Scale Systems 8 (1985), 267–282.
D. C. Champeney, A handbook of Fourier theorems, Cambridge Univ. Press, 1987.
Ian Crowlesmith, Creating a treasure trove of words, Elsevier Science World, 14–15, 1993.
Ian Crowlesmith, The development of a biomedical thesaurus, NBBI Thesaurus Seminar, 1993a.
J. Davenport, a.o., MKMNET. Mathematical knowledge management network, Project IST-

2001-37057. September 2002–December 2003, 2001.
David A. Evans, Snapshots of the Clarit text retrieval, Preprint, copies of slides, Carnegie Mel-

lon University, 1994.
D. A. Evans, K. Ginther-Webster, M. Hart, R. G. Lefferts and I. A. Monarch, Automatic indexing

using selective NLP and first-order thesauri. In: A. Lichnérowicz (ed.), Intelligent text and
image handling, Elsevier, 1991, 524–643.

David M. Evans and Robert C. Lefferts, Clarit–Trec experiments, Preprint, Carnegie Mellon
University, 1994.

Revaz V. Gamkrelidze, Franz Guenthner, Michiel Hazewinkel and Arkady I. Onishchik, ERE-
TIMA: English Russian bilingual thesaurus for Invariant theory, Lie groups, Algebraic ge-
ometry, Dynamical systems, Optimal control, Commutative algebra. INTAS project 96-0741,
2001.

Michiel Hazewinkel (ed.), Encyclopaedia of mathematics; 13 volumes including three supple-
ments, KAP, 1988–2002.

Michiel Hazewinkel, Classification in mathematics, discrete metric spaces, and approximation
by trees, Nieuw Archief voor Wiskunde 13 (1995), 325–361.



204 RECENTS ADVANCES IN APPLIED PROBABILITY

Michiel Hazewinkel, Enriched thesauri and their uses in information storage and retrieval. In:
C. Thanos (ed.), Proceedings of the first DELOS workshop, Sophia Antipolis, March 1996,
INRIA, 1997, 27–32.

Michiel Hazewinkel, Index “Artificial Intelligence”, Volumes 1–89, Elsevier, 1997. Large size.
Michiel Hazewinkel, Topologies and metrics on information spaces. In: J. Plümer and R. Sch-

wänzl (ed.), Proceedings of the workshop: “Metadata: qualifying web objects”,
http://www.mathematik.uni-osnabrueck.de/projects/workshop97/proc.html, 1997a.

Michiel Hazewinkel, Index “Theoretical Computer Science”, Volumes 1–200, Theoretical Com-
puter Science 213/214 (1999), 1–699.

Michiel Hazewinkel, Key words and key phrases in scientific databases. Aspects of guarantee-
ing output quality for databases of information. In: Proceedings of the ISI conference on
Statistical Publishing, Warsaw, August 1999, ISI, 1999a, 44–48.

Michiel Hazewinkel, Topologies and metrics on information spaces, CWI Quarterly 12:2 (1999b),
93–110. Preliminary version:
http://www.mathematik.uni-osnabrueck.de/projects/workshop97/proc.html.

Michiel Hazewinkel, Index Discrete Applied Mathematics Vols 1–95, Discrete Applied Mathe-
matics 106 (2000), 1–261.

Michiel Hazewinkel, Index Discrete Mathematics Vols 1–200, Discrete Mathematics 227/228
(2001), 1–648.

Michiel Hazewinkel, Index Information processing letters Vols 1–75, Information Processing
Letters, 78:1–6 (2001a), 1–448.

Michiel Hazewinkel, Index journal of logic and algebraic programming volumes 1–45 68,
J. Logic and Algebraic Programming 50:1–2 (2002), 1–103.

Michiel Hazewinkel and R. Rudzkis, A probabilistic model for the growth of thesauri, Acta
Appl. Math. 67 (2001), 237–252.

Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Volume 1, Springer, 1963.
Hwei P. Hsu, Outline of Fourier analysis, Unitech, 1967.
Yitzak Katznelson, An introduction to harmonic analysis, Dover reprint, 1976. Original edition:

Wiley, 1968.
Benjamin G. Levich, Theoretical physics. Volume 1, North Holland, 1970.
Editors of Mathematical Reviews and Zentralblat für Mathematik, MSC2000 classification scheme,

1998.
R. Rudzkis, Letter to M. Hazewinkel, 2002.
Laurent Schwartz, Mathematics for the physical sciences, Hermann, 1966.
Alan F. Smeaton, Progress in the application of natural language processing to information

retrieval tasks, The Computer Journal 35:3 (1992), 268–278.
P. R. Srikantakumar and K. S. Narendra, A learning model for routing in telephone networks,

SIAM J. Control and Optimization 20:1 (1982), 34–57.
Jan van Leeuwen (ed.), Handbook of theoretical computer science, Elsevier, 1990.
Ari Visa, Technology of text mining. In: Petra Perner (ed.), Machine learning and data mining in

pattern recognition. Second international workshop, Leipzig, 2001, Springer, 2001, 1–11.
Norbert Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press,

1933.
Kurt Bernardo Wolf, Integral transforms in science and engineering, Plenum, 1979.
B. Ingo Dahn, TRIAL SOLUTION. Tools for reusable integrated adaptable learning systems;

standards for open learning using tested interoperable objects and networking, Project IST-
1999-11397: Febr. 2000–May 2003, 1999.



STABILITY AND OPTIMAL CONTROL FOR
SEMI-MARKOV JUMP PARAMETER
LINEAR SYSTEMS

Kenneth J. Hochberg
Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan,
Israel
Department of Mathematics, College of Judea and Samaria, 44837 Ariel, Israel

hochbergmacs.biu.ac.il

Efraim Shmerling
Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan,
Israel

We consider continuous-time and discrete-time jump parameter linear control
systems with semi-Markov coefficients and solution jumps that coincide with
jumps of a semi-Markov random process. First, we derive stability conditions
for semi-Markov systems of differential equations. We then determine necessary
optimality conditions for the solutions of continuous-time and discrete-time con-
trol systems.
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9.1 Introduction
Jump parameter linear control systems with Markov coefficients have been

examined in many recent publications. To date, systems of equations defining
optimal control have been derived, and recent research in this field now focuses
on developing effective numerical methods for solving these systems ([Arov,
1983]-[Castro, 1986]).

In this article, we consider continuous-time and discrete-time jump param-
eter linear systems with semi-Markov coefficients. These systems represent a
generalization of those systems described above, since a semi-Markov process
that satisfies certain conditions is Markov. The well-known systems of equa-
tions which define optimal control for Markov jump parameter systems can be

Abstract

Keywords:
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obtained utilizing the systems of equations for semi-Markov control systems
that we will derive in this paper, and they can be viewed as a particular case of
these systems.

The problem of obtaining optimal control for semi-Markov control sys-
tems is closely correlated with the problem of finding necessary and sufficient

conditions for semi-Markov systems of differential equations. We
therefore also consider this other problem in this article.

In order to formulate the problems that we are going to study, we need to
introduce some notation and review some well-known facts concerning finite-
valued semi-Markov processes.

Consider a finite-valued semi-Markov process with possible states
which jumps from some state to some state at consecutive

times The random chain is a Markov chain, the
transition-probabilities matrix of which

is given. (Note the order of the indices here.)
Jump times for the semi-Markov process are defined by distribution

functions of random variables
the duration of time in which the process belongs to state before it jumps to
state provided that such a jump takes place.

The behavior of the process after any time is completely defined by
II and the probability-functions matrix

or the corresponding probability-density-functions matrix

The intensities are then defined by the formulas

and we define

Finally, we let denote the duration of time between two consecutive jump
times and provided that at time the process jumps to

Obviously, is the probability density of  Let denote the prob-
ability distribution function of and let denote the probability of the
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event that no jumps take place during the time interval provided that
at time the process jumps to Clearly,

Now, let different functions be defined at We
will call a random process a semi-Markov function if at

we have

i.e., between two jumps of the random process when the
semi-Markov function coincides with the deterministic function In
the special case when the semi-Markov function
coincides with the semi-Markov finite-valued process

Let denote the mathematical expectation of a semi-Markov func-
tion, and denote the conditional mathematical expectations by

We thus have the system of integral equations

Let be some given deterministic matrix functions,
and let denote a semi-Markov matrix function that takes values

for provided that belongs to state during
the time period

We consider the system of differential equations

Assume that the solutions of the system have jumps which take place simulta-
neously with the jumps of These jumps are defined by the formulas

where are some given matrices.
Next, we introduce the notion of for semi-Markov systems given

by (6)–(7). First, let denote the mathematical expectation E(X). Then,
the system (6)–(7) is called if, for arbitrary X(0), we have
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where and is the solution of (6).
Linear continuous-time semi-Markov control systems are introduced in a

similar way in Section 3.
In Section 4, we consider discrete-time semi-Markov control systems, the

coefficients of which depend on a discrete semi-Markov process the jumps
of which can take place at times

The notations and will be analo-
gous to and given earlier. Obviously, the following
equalities hold:

where the intensities are analogous to the intensities introduced
earlier.

9.2 Stability conditions for semi-Markov systems

We introduce the quadratic form

and define the Lyapunov function by the formula

where is the random solution of system (6) with solution jumps (7). In
order to find V, we introduce conditional stochastic Lyapunov functions

If the functions are known, then the function V in (10)
can be found from the formula
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where the symbol denotes the scalar product of matrices, and the functions
are defined by the formula

where is an arbitrary domain in the Euclidean space
In order to form a system of equations which defines the functions

we introduce auxiliary quadratic forms

We denote by the fundamental-solutions matrices for the systems of
linear differential equations

The solutions of system (14) can then be expressed in the form

Utilizing formulas (5), we derive the system of equations

This system can be rewritten as

and as
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Integrating the system of equations, we find the following equations for the
matrices

The monotonicity of the operators defined by the formula

enables us to formulate a theorem on the of the system (6).
First, we formulate (without proof) the following lemma, which asserts that

here, all norms are equivalent:

LEMMA 1 The integral

converges iff the integral

converges, where designates the Euclidean norm of

We then have the following theorem:

THEOREM 1 Assume that for the system of linear differential equations (6)
with random semi-Markov coefficients and solution jumps (7), the necessary
stability conditions are satisfied. Then the zero solu-
tion of the system is iff for some positive definite matrices
the system of equations

has a positive-definite solution
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Proof. The proof follows from the fact that the existence of a positive-definite
solution of (20) is equivalent to the convergence of the successive approxima-
tions

It can easily be shown that if for some matrices the
successive approximations converge, then they converge also for any arbitrarily
chosen positive-definite matrices

9.3 Optimization of continuous control systems with
semi-Markov coefficients

In this section, we find necessary optimality conditions for solutions of lin-
ear continuous control systems with semi-Markov coefficients and solution
jumps coinciding with jumps of a semi-Markov random process. Values of
a quadratic functional are obtained with the help of equations for Lyapunov
functions and minimized by choosing control coefficients. The necessary opti-
mality conditions can be utilized in determining the optimal control.

We consider the linear control system

with random semi-Markov coefficients. We seek a control vector which
minimizes the quadratic functional

where and are symmetric positive definite matrices. Sup-
pose that a semi-Markov process has jumps at times
where Assume that at the
following equalities hold:

where are deterministic matrices. Assume that the
optimal control has the form
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where is a matrix with semi-Markov coefficients which, at

takes values

We introduce the following notation:

We then obtain the system of linear differential equations with semi-Markov
coefficients

for which we seek the value of the quadratic functional

Assume that if there is a jump of the random process at time then
the solution of (25) also has a jump

For calculating the functional V, we utilize formula (12):

where are partial stochastic Lyapunov functions

We can now use the expression for obtained in equation (18):
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Here are fundamental-solutions matrices for the system of linear differ-
ential equations

Next we find an expression for the partial stochastic Lyapunov functions

The system of equations (31) can be written as

Suppose that there exists an optimal control (in the form (23)) for the sys-
tem (21) that minimizes the functional (22) and does not depend on the initial
value X (0 ) . We seek values for the symmetric matrices
which minimize the functional V. The problem of finding minimum values of

by choosing controls has been thoroughly in-
vestigated; see, for example, [Arocena, 1990] and [Arocena, 1990A]. For our
purposes, it is important that all matrices in formula (32)
are constants.

Thus, the problem of obtaining optimal control (23) for a continuous control
system with semi-Markov coefficients is reduced to independent problems
of obtaining optimal control for deterministic systems (33) with minimized
functionals (32).

We now apply some well-known results on finding optimal control for the
system of equations

where we seek an optimal control which minimizes the quadratic func-
tional

Optimal control is defined by the formula
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where the matrix satisfies the following matrix differential Riccati equa-
tion:

Methods for solving equation (36) are described, for example, in [Arocena,
1990].

In view of these known results, we obtain the following expression for the
optimal control which minimizes the functional for the system of
equations (32):

where matrices satisfy the following Riccati-type system
of equations:

The systems of equations (37)–(38) define necessary optimality conditions
for solutions of the system of equations (21). Matrices
defining the optimal control (23) are defined by the matrix equations

and matrices are defined by the equalities

We solve each equation of the system (38) as a parameter equation with
parameter matrices utilizing numerical methods devel-
oped for systems of type (36).

Thus, we obtain a system of matrix equations with unknown matri-
ces which enables us to find the values of

and then the values of
Now introduce new matrices

The system of equations (38) then takes the form
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and optimal control is given by the formulas

The necessary optimality conditions (40) and (41) generalize previously ob-
tained optimality conditions for control systems with coefficients dependent
on a Markov random process.

The following particular case is important in many applications. Suppose
that the semi-Markov process cannot remain in any state for a time
period greater than Assume that

We obtain the system of equations

and also the system of equations for the functions

In the system (38), we assume that

Since conditions (44) will be satisfied if the
matrices are bounded, in view of (39).
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In order to find matrices we have to integrate the
system of nonlinear matrix differential equations (40). Each equation be-
longing to the system can have a singular point where

We can obtain necessary conditions for boundedness of matri-
ces at singular points

We formulate these results as a theorem.

THEOREM 2 Assume that the optimal control in the form (23) for
a control system (21) exists. Then the optimal control that minimizes
the quadratic functional (22) is defined by the system (41), where matrices

satisfy the Riccati-type system of nonlinear differential
equations (40).

9.4 Optimization of discrete control systems with
semi-Markov coefficients

We consider the discrete control system

with semi-Markov coefficients. We seek the control vector which mini-
mizes the quadratic functional

where are symmetric positive definite matrices. Let
be jump times of a semi-Markov process which

takes a finite number of distinct values Assume that at
the matrix coefficients in system (46) and in formula (47) are defined

by the following expressions:

where are deterministic matrices.
Assume that the optimal control has the form
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where is a matrix with semi-Markov coefficients, and that at
we have the equalities

Now we introduce the matrices

We obtain the system of linear difference equations

with the minimized quadratic functional

Next, we introduce partial stochastic Lyapunov functions

If the functions are calculated, the value of V in (53)
can be obtained by the formula

Now, consider the system of linear difference equations (52). Assume that
the solution of this system is multiplied from the left by constant matrices
det at times when the random process has jumps
from state to state

Let The system of equations (52) takes the form

where

Let systems of linear difference equations
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have fundamental-solutions matrices
which implies that

Assume that if the conditions

are satisfied, then the following equalities hold:

i.e., at jump times, the solution of (52) is multiplied by a nonsingular matrix
The system of equalities

is analogous to the system (32) and can be derived in a similar way.
Assuming that

we can rewrite equalities (58) as

Minimization of the functional V in (53) is reduced to the minimization of
the functions in (54). Thus, the problem of finding optimal control is
reduced to problems of optimizing the deterministic control systems
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where the optimal control minimizes the quadratic functional
Now, we state a well-known result on optimizing systems of linear differ-

ence equations with variable coefficients

where the optimal control minimizes the quadratic functional

If an optimal control exists, it is defined by the formula

where the matrices satisfy the system of equations

Next, we find an optimal control for the system of linear difference equa-
tions (46) with minimized functional (47) by finding          which minimize the
functionals (59) for the systems of difference equations (60). We obtain the
following formulas:
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These equations can be simplified by setting

where is defined to equal 1.
We thus obtain the following system of matrix equations:

which define necessary optimality conditions for solutions of the system (46).
The system of equations (66) contains unknown matrices

Now, we utilize the known auxiliary formula

for the control system (61), where are op-
timal solutions and optimal control which minimize the functional (62). From
this formula, it follows that the matrices are symmetric and positive
semi-definite. From equality (71) and formulas (59), it follows that

We formulate the obtained result in a theorem.

THEOREM 3 Assume that the optimal control in the form (49)

for a control system (46)

exists. Then the optimal control is defined by the system (69), where matri-
ces satisfy the Riccati-type system of
difference equations (70).
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A general approach, based on covering by cells, induced by Euclidean graphs, is
developed to provide asymptotic characterizations of multivariate sample densi-
ties. This approach provides high dimensional analogs of basic results for ran-
dom partitions based on one-dimensional sample spacings. The methods used
in the proofs yield asymptotics for empirical based on
and also for the total edge length of the graphs involved.

10.1 Introduction and background
Statistics in the form of are used for several purposes includ-

ing, among others, goodness-of-fit tests and parametric estimation. The Pear-
son is a well known statistic of this type. They are in general designed for
discrete or one dimensional continuous data. Although and related methods
can be used for continuous multivariate data, they are virtually useless in high
dimensions. How to deal with empirical when the observations
are continuous and multivariate has been a long-time need. Basically, the diffi-
culty is to define suitable analogues in of spacings on the line. In this work,
we use random Euclidean graphs as adaptive schemes to define statistical dis-
tances of continuous samples in Formally, we prove strong laws for
empirical based on multidimensional spacings induced by Eu-
clidean graphs. In particular, these laws extend some basic results of sample
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Abstract
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spacing theory on the line. While this work is related to [Jiménez, 2002], the
approach taken here is considerably simpler and more general; it relies heavily
on the objective method developed in [Aizenman, 1982; Ahmed, 2000] and
more recently [Penrose, 2002A]. The methods also yield strong laws for the
empirical for

10.1.1. statistics for discrete data

Given a strictly convex function [Csiszár, 1978]
between two nonnegative n-dimensional vectors and

is

As in [Csiszár, 1967], we interpret undefined expressions by

These are properties of a distance. However, is not a distance: the triangle
inequality does not hold and is not symmetric, i.e., in general

If we additionally assume that is nonnegative, then (1.2) holds even if
On the other hand, for any strictly convex and normalized

the function defined by

is strictly convex, normalized, and nonnegative.
Moreover, if then

Thus we can and will assume without loss of generality that is strictly convex,
normalized, nonnegative, and that (1.2) holds whether or
not.

Assuming that is normalized (that is and that
then Jensen’s inequality implies
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Property (1.2) makes useful in various fields. [Csiszár, 1978]
reviews how can be used in statistics. Roughly speaking, if
are observed frequencies then can be used as loss-function
in statistical inference. Frequently used in statistics involve the
power-divergence family introduced by [Cressie, 1984]

For example, when then Thus

are the log-likelihood ratio and the Kullback-Leibler divergence respectively.
When and

is the Hellinger distance. When and the statistics

yields the statistics of Neyman and Pearson respectively. The statistics
and are one of the more important cases of statistical dis-

tances and have been used for several purposes including, among others,
goodness-of-fit tests of discrete data ( [Cressie, 1984]) and parametric esti-
mation ([Lindsay, 1994]).

For any strictly convex, normalized, and nonnegative function defined
on its adjoint function is also strictly convex, nor-
malized, and nonnegative. In particular, if then Since

without loss of generality we will only consider the sta-
tistical distance and we will omitted in the sequel its adjoint statistical
distance See [Jiménez, 2001] for some aspects related with diver-
gence statistics and its adjoints.

10.1.2. Empirical based on spacings
The use of empirical with one dimensional continuous data

is related with spacing theory as follows. Consider the order statistics
of n independent random variables with common distribu-

tion F. Let Then, the empirical estimate of the one dimensional
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transformed spacing is Thus,

can be viewed as a statistical distance between the sample distribution F and the
empirical distribution. The importance of statistical distances based on spac-
ings dates from the classic paper of [Pyke, 1965]. When F is unknown, the
statistic has been used to test the hypothesis [Darling,
1953] provided the first systematic study of this statistic. If we assume that F
is in some family of distributions then F can be estimated by minimizing

A remarkable case is given by
which corresponds to the maximum product of spacing method, introduced
by [Cheng, 1983] and later by [Ranneby, 1984]. The strong consistency of
the maximum product of spacing method and the strong consistency of the
goodness-of-fit test based on relies on the following strong law,
proved by [Shao, 1995] under mild conditions on G and F,

Here and elsewhere is an exponential random variable with mean one.
The main result of [Holst, 1979] implies, for general the asymptotic nor-

mality of the empirical based on

under the hypothesis This includes, for the particular case
the asymptotic normality of Also the asymptotic normality

of has been studied for special sequences of alternatives such
that when see [Hall, 1986] and its references. Under
stringent regularity conditions on G, F, and [Holst, 1981] proved a central
limit theorem for However the asymptotic normality of for
fixed has been an open problem dating from the 1950’s [Pyke, 1965].

10.2 The nearest neighbor and main results
We show in this work that random Euclidean graphs with a

locally defined structure provide a natural scheme for generalizing one dimen-
sional results based on spacings. We will first consider a scheme based on
nearest neighbors.
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For every sample point consider the cell centered
at with radius equal to the distance to the nearest neighbor in the sample

We will use these cells to define a high dimensional spacing
statistic analogous to the classical one-dimensional statistic. The cell is of
course a ball, but we prefer to call it a cell, since this anticipates more general
spacing statistics described in the sequel. An attractive feature of these spac-
ings is a monotonicity property identical to that for the classic one dimensional
spacings: the cell around a given point decreases in volume as the number of
points increases.

Throughout are independent random variables in with com-
mon probability density and is an arbitrary probability density function.

DEFINITION 1 For each we define for the sample spacings

and the transformed spacings

For all we have
for any functions We will measure the discrepancy between and
the sample density by comparing the transformed spacings

with
We will use

as a measure of the “distance” between and we term this the “nearest
neighbors It is a discrete version induced by the balls of the
nearest neighbors graph of [Csiszár, 1967] between and on
B, namely

If is unknown, we can replace in (2.3) by its empirical estimate

In this manner, we obtain the following statistic, which we call the “empirical
nearest neighbor and which forms one of our central objects of
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interest:

Our main purpose is to describe the a.s. behavior of We first
introduce some notation.

DEFINITION 2 Let be the class of all normalized and strictly convex func-
tions such that there exists such that for all we
have

It is easy to check that the frequently used in statistics, including the
power divergence family, are in the class

The following limit theorem, the main result of this section, establishes the
a.s. consistency of the empirical nearest neighbor We let A
denote the support of

THEOREM 1 Let be independent random variables with a density
and let be a continuous density. If and are bounded away from zero

and infinity on A and if then

The integral in (2.6) represents a divergence between and which by
Jensen’s inequality and the identity exceeds the Csiszár divergence
(2.4). Thus a small empirical nearest neighbors implies a small
Csiszár divergence.

If a.e., then the right hand side of (2.6) equals On the
other hand, if on some subset with positive Lebesgue measure, a
combined application of Fubini’s theorem and Jensen’s inequality gives

Thus, using this notation we obtain the following corollary.

COROLLARY 1 Under the same conditions of Theorem 1,

Moreover, there is strict inequality in (2.7) except for the case a.e.

In dimension Theorem 1 is closely related with the empirical
for The next theorem extends (1.4) to the context of
and general
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THEOREM 2 Let independent real valued random variables
with common density Let be a continuous density and
Let be a gamma random variable with parameters and 1. If and
are bounded away from zero and infinity on A and if then

Remark 2.1 It is a simple consequence of the uniform integrability of the left-
hand side of (2.6) and (2.8) that the limits there also hold in
Remark 2.2 [Bickel, 1983] develop central limit theorems for statistics based
on nearest neighbor distances. They consider the special case

and use the approximation

and confine attention to sums where here and else-
where denotes the volume of a set The strong consistency established
by Theorem 1 can be viewed as an initial step in extending [Bickel, 1983]
to more general From the standpoint of goodness of fit tests, it would be
desirable to supplement Theorem 1 with a central limit theorem for the empir-
ical nearest neighbors divergence and to provide an explicit formula for the
limiting variance.
Remark 2.3. (a Shannon entropy estimate) The proof of Theorem 1 describes
the large sample behavior of the sum-function of nearest neighbor spacings

These statistics provide estimates for entropy-type functionals of the sample
density. To fix this idea consider and
An elementary computation involving Theorem 1 and convention (1.1) imply

where is the well-known Shannon entropy. Es-
timates of are of general interest; see [Dudewicz, 1987] for a review of
the one-dimensional case. They can be used in the context of the maximum
entropy method which has wide applications in several fields.
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Remark 2.4. (equivalence with maximum likelihood) Suppose that the sample
density belongs to the parametric family Let
be such that The maximum likelihood (ML) estimate of is
obtained by maximizing the log-likelihood function

Let denote the Kullback-Leibler relative entropy, that is

By the strong law of large numbers, implies

On the other hand, if is bounded away from zero and infinity on the support
of then by Theorem 1 we have

Thus, under general conditions, maximizing the log-likelihood function is asymp-
totically equivalent to maximizing the left-hand side of (2.9). We will call

the minimum nearest neighbors estimate. Roughly speak-
ing, the ML estimate and are asymptotically equivalent.
Remark 2.5. (multivariate version of maximum spacing method) Under gen-
eral conditions, the ML estimate can have optimal asymptotic properties and
thus must have the same type of asymptotic properties. However, when
the likelihood function is unbounded, the ML estimate can be inconsistent.
The method is a multivariate version of the maximum product of spacing
(MPS) method, which is an alternative to the ML method when the likelihood
function is unbounded. Since the sum of the logarithm of spacings is always
upper bounded, even in the cases where the ML method fails, the MPS method
can generate asymptotically optimal estimates. This feature can be observed
for example in many mixture models, which are not necessarily restricted to
the one dimensional case. Similarly to the one dimensional case, the empiri-
cal nearest neighbors is always lower bounded. Thus, the
method can generate consistent estimates even when the ML method fails.
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Remark 2.6. (consistency of estimates) For Theorem
1 resembles the asymptotics (1.4) for the logarithm sum of one-dimensional
spacings obtained by [Shao, 1999]. Information-type inequalities such as Corol-
lary 1 play a key role in proving strong consistency of the MPS method ([Shao,
1999]) and related one-dimensional methods. In the same way, our results can
be applied to prove strong consistency of the estimate defined in (2.10). For
example, Corollary 1 implies that the estimate is always consistent for any

if is finite. General consistency theorems may be obtained assuming
regularity conditions on

10.3 Statistical distances based on Voronoi cells
Theorem 1 shows the efficacy of using random graphs based on nearest

neighbor distances to define statistical distances which generalize consistency
results for one dimensional spacings to higher dimensions. Nearest neighbor
graphs are easy to generate but in some cases it may be advantageous to con-
sider statistical distances using other graphs which have a strong locally de-
fined structure. We illustrate the possibilities by considering graphs involving
Voronoi tessellations.

Voronoi tessellations generated by random sets of points are of general inter-
est and have been used in many diverse fields ([Aurenhammer, 1991], [Obake,
1992], [Möller, 1994]). Much like nearest neighbors graphs, Voronoi tessella-
tions may be used as an adaptive scheme to compare probability densities on

Given a set of points and a Borel subset B of
consider for any the locus of points closer to than to any other
point of The intersection of this set of points with B is a Voronoi cell
and is denoted by that is

where denotes the Euclidean distance. If then we define
Thus, is a partition of B which is called the Voronoi
tessellation of B generated by and is denoted by It is understood
that if then Also, if are i.i.d. with a
density whose support is A, then we reserve the notation for

Figure 1 shows the Voronoi tessellation generated by a
uniform random sample on the unit square.

We may use the Voronoi cells to define high dimensional sample spacings
as follows.

DEFINITION 3 For each we define for the sample spacings
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Figure 1. Voronoi tessellation of the unit square.

and the transformed spacings

Exactly as in the context of the nearest neighbors graph, we will measure the
discrepancy between and the sample density by comparing the transformed
spacings with

We thus obtain the following statistic, which we call the “empirical Voronoi
and which forms the natural analog of the empirical nearest

neighbors (2.5):

The following main result is the Voronoi analog of Theorem 1. Let
denote a homogeneous Poisson point process of constant intensity 1 on let
0 denote the origin of and let denote the volume of the Voronoi cell
around 0 in the Voronoi tessellation on While Theorem 3 is similar to
Theorem 1.1 of [Jiménez, 2002], which assumes continuity of the method
of proof is much easier and follows the relatively simple proof of Theorem 1.
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THEOREM 3 Let be independent random variables with a density
and let be a continuous density. If and are bounded away from zero

and infinity on A and if  then

Other Euclidean graphs may also be used as adaptive schemes to com-
pare probability densities. For this, we must define the cells around the sam-
ple points according to the geometric characteristics of the considered graph.
Thus, empirical can be defined analogously to (3.3) and in gen-
eral they satisfy a.s. asymptotics of the form (3.4), with replaced by the
volume of the related cell around the origin induced by the graph on

10.4 The objective method

Theorem 1 is anticipated by Theorems 2.2 and 2.4 of [Penrose, 2002A],
which uses the objective method to establish a weak law of large numbers
for stabilizing functionals of random variables. Similarly Theorem 3 is an-
ticipated by Theorem 2.5 of [Penrose, 2002A]. However, neither Theorem 1
nor Theorem 3 is a consequence of [Penrose, 2002A] since neither the nearest
neighbors nor Voronoi statistic is translational invariant (translating the sam-
ple points changes the statistic according to the density Thus one needs to
modify existing methods in order to establish Theorems 1 and 3. In the first
part of this section we prove Theorem 1. Completely similar methods may be
used to prove Theorem 3.

Let A denote the support of and for all denote a Poisson point

process with intensity measure To prove Theorem 1, we start by
showing that a Poissonized version of (2.6) holds in expectation, namely we
show that if we only assume for all then

The proof of (4.1) may be established using lengthy and somewhat cumber-
some methods, as in [Jiménez, 2002], which actually requires continuity of
It is more instructive and much easier to use the following key lemma, which
further illustrates the power of the objective method [Aizenman, 1982; Ahmed,
2000].

To set the stage, we note that for fixed and for large the volume of
the cell when multiplied by is roughly the same as the volume of
the cell Here and elsewhere denotes a homogeneous Poisson
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point process on with intensity Since for all we have
this suggests the following lemma, where here and elsewhere,

denotes convergence in probability.

We defer the proof of Lemma 1 and show how to use it to deduce Theorem
1. By hypothesis we have positive finite constants and such that for all

Since has the same distribution as we need only

to show for almost all that

as Letting denote a point in the cell such that

we equivalently only need to show that

as
Now (4.5) is bounded by the sum of

and

Given a convex function let be its decreasing
part and let be its increasing part. By Lemma 1 and the
continuity of

tends to zero in probability. Since is increasing we have for all

LEMMA 1 For almost all we have as
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and thus the assumed integrability of shows that

are uniformly integrable. Thus, ([Dudley, 1989], Thm 10.3.6)

Similarly, since is decreasing

showing that

are also uniformly integrable. Thus splitting we see that the
difference (4.6) tends to zero as Similarly, by the continuity of we
have as

and together with uniform integrability arguments, this shows that the differ-
ence (4.7) also tends to zero as Thus (4.4) tends to zero as desired.

Since the cell is a nearest neighbors cell, it depends only
locally on the surrounding points and this localization, together with the mo-
ment condition makes it straightforward to
de-Poissonize the mean limit (4.1). This can be accomplished by following
verbatim Lemma 2.5 of [Jiménez, 2002].

Since the density is assumed bounded away from zero and infinity and
since the volume of the nearest neighbor cell around with high probabil-
ity depends on sample points distant from we may follow
the proof of Lemma 3.1 of [Jiménez, 2002] and use isoperimetric, arguments
to establish that the difference of our de-Poissonized statistic with its mean,
namely is almost surely of order

showing that convergence of the mean is equivalent to a.s. convergence.
We leave these details to the reader.

It only remains to prove Lemma 1. For let denote the Eu-
clidean ball of radius centered at
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Proof of Lemma 1. Given recall that denotes a homogeneous
Poisson point process on with intensity For all let
denote the nearest neighbors cell around with respect to Note that for all

we have since the volume of the nearest
neighbors cell around the origin is a mean one exponential random variable.

is locally defined in the sense (section 6 of [Penrose, 2001]) that
there is a random variable with exponentially decaying tails and
an a.s. finite random variable such that

for all locally finite outside
Given the Poisson point process with intensity for

all let be a homogeneous Poisson point process with constant

intensity We may assume that is coupled to in such a way
that for all Borel sets we have

Next, for any Lebesgue point for for all consider the
event

By (4.9) we have that is bounded by

Since is Lebesgue integrable and since is a Lebesgue point for the
integral in (4.10) tends to zero as Since has the
same distribution as which is finite a.s., it follows that if is large
enough, then the first term in (4.10) tends to zero as Therefore, for all

and for and large enough,
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Now we can prove Lemma 1 as follows. We observe

where the last equality holds since on the set we have

The above is equal in distribution to

The first term is equal in distribution to and the last two terms in
(4.11) tend to zero in probability as and This follows from the
probability estimate as well as the bounds

and for all

and all
This completes the proof of Lemma 1.
It only remains to give the proof of Theorem 2. Since the methods are very

similar, we only give a sketch.

Proof of Theorem 2. We will follow the proof of Theorem 1 closely. Let
be a homogeneous Poisson point process on with constant intensity

Let be the realization of and let be the usual order statistics. For
any let denote the length of the associated

spacing, where is the point in to the right of The proof of
Theorem 2 depends upon the following lemma.

LEMMA 2 For almost all we have as

To prove this lemma, we simply follow the proof of Lemma 1 with

replacing and note that for all we have

Now just follow the proof of Theorem 1.
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IMPLIED VOLATILITY: STATICS, DYNAMICS,
AND PROBABILISTIC INTERPRETATION

Roger W. Lee
Department of Mathematics, Stanford University;
and Courant Institute of Mathematical Sciences, NYU.

Abstract Given the price of a call or put option, the Black-Scholes implied volatility is
the unique volatility parameter for which the Black-Scholes formula recovers the
option price. This article surveys research activity relating to three theoretical
questions: First, does implied volatility admit a probabilistic interpretation? Sec-
ond, how does implied volatility behave as a function of strike and expiry? Here
one seeks to characterize the shapes of the implied volatility skew (or smile)
and term structure, which together constitute what can be termed the statics of
the implied volatility surface. Third, how does implied volatility evolve as time
rolls forward? Here one seeks to characterize the dynamics of implied volatility.

11.1 Introduction

11.1.1. Implied volatility
Assuming that an underlying asset in a frictionless market follows geomet-

ric Brownian motion, which has constant volatility, the Black-Scholes formula
gives the no-arbitrage price of an option on that underlying. Inverting this
formula, take as given the price of a call or put option. The Black-Scholes im-
plied volatility is the unique volatility parameter for which the Black-Scholes
formula recovers the price of that option.

This article surveys research activity in the theory of implied volatility. In
light of the compelling empirical evidence that volatility is not constant, it is
natural to question why the inversion of option prices in an “incorrect” formula
should deserve such attention.

To answer this, it is helpful to regard the Black-Scholes implied volatility
as a language in which to express an option price. Use of this language does
not entail any belief that volatility is actually constant. A relevant analogy is
the quotation of a discount bond price by giving its yield to maturity, which
is the interest rate such that the observed bond price is recovered by the usual
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constant interest rate bond pricing formula. In no way does the use or study
of bond yields entail a belief that interest rates are actually constant. As YTM
is just an alternative way of expressing a bond price, so is implied volatility is
just an alternative way of expressing an option price.

The language of implied volatility is, moreover, a useful alternative to raw
prices. It gives a metric by which option prices can be compared across dif-
ferent strikes, maturities, and underlyings, and by which market prices can be
compared to assessments of fair value. It is a standard in industry, to the extent
that traders quote option prices in “vol” points, and exchanges update implied
volatilty indices in real time.

Furthermore, to whatever extent implied volatility has a simple interpreta-
tion as an average future volatility , it becomes not only useful, but also natural.
Indeed, understanding implied volatility as an average will be one of the focal
points of this article.

11.1.2. Outline

Under one interpretation, implied volatility is the market’s expectation of
future volatility, time-averaged over the term of the option. In what sense does
this interpretation admit mathematical justification? In section 2 we review
the progress on this question, in two contexts: first, under the assumption that
instantaneous volatility is a deterministic function of the underlying and time;
and second, under the assumption that instantaneous volatility is stochastic in
the sense that it depends on a second random factor.

If instantaneous volatility is not constant, then implied volatilities will ex-
hibit variation with respect to strike (described graphically as a smile or skew)
and with respect to expiry (the term structure); the variation jointly in strike
and expiry can be described graphically as a surface. In section 3, we review
the work on characterizing or approximating the shape of this surface under
various sets of assumptions. Assuming only absence of arbitrage, one finds
bounds on the slope of the volatility surface, and characterizations of the tail
growth of the volatility skew. Assuming stochastic volatility dynamics for the
underlying, one finds perturbation approximations for the implied volatility
surface, in any of a number of different regimes, including long maturity, short
maturity, fast mean reversion, and slow mean reversion.

Whereas sections 2 and 3 examine how implied volatility behaves under
certain assumptions on the spot process, section 4 directly takes as primitive the
implied volatility, with a view toward modelling accurately its time-evolution.
We begin with the no-arbitrage approach to the direct modelling of stochastic
implied volatility. Then we review the statistical approach, Whereas the focus
of section 3 is cross-sectional (taking a “snapshot” of all strikes and expiries)
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hence the term statics, the focus of section 4 is instead time-series oriented,
hence the term dynamics.

11.1.3. Definitions
Our underlying asset will be a non-dividend paying stock or index with non-

negative price process Generalization to non-zero dividends is straightfor-
ward.

A call option on S, with strike K and expiry T, pays at time T.
The price of this option is a function C of the contract variables (K, T), today’s
date the underlying and any other state variables in the economy. We will
suppress some or all of these arguments. Moreover, sections 2 and 3 will for
notational convenience assume unless otherwise stated; but section 4,
in which the time-evolution of option prices becomes more important, will not
assume

Let the risk-free interest rate be a constant Write

for log-moneyness of an option at time Note that both of the possible choices
of sign convention appear in the literature; we have chosen to define log-
moneyness to be such that has a positive relationship with K.

Assuming frictionless markets, Black and Scholes [Black & Scholes, 1973]
showed that if S follows geometric Brownian motion

then the no-arbitrage call price satisfies

where the Black-Scholes formula is defined by

Here

and N is the cumulative normal distribution function.
On the other hand, given C(K,T), the implied [Black-Scholes] volatility

for strike K and expiry T is defined as the I(K, T) that solves
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The solution is unique because is strictly increasing in and as
the Black-Scholes function approaches the lower (resp.

upper) no-arbitrage bounds on a call.
Implied volatility can also be written as a function of log-moneyness and

time, so Abusing notation, we will drop the
tilde on because the context will make clear whether I is to be viewed as a
function of K or

The derivation of the Black-Scholes formula can proceed by means of a
hedging argument that yields a PDE to be solved for C(S, t):

with terminal condition Alternatively, one can appeal
to martingale pricing theory, which guarantees that in the absence of arbitrage
(appropriately defined – see for example [Delbaen & Schachermayer, 1994]),
there exists a “risk-neutral” probability measure under which the discounted
prices of all tradeable assets are martingales. We assume such conditions, and
unless otherwise stated, our references to probabilities, distributions, and ex-
pectations will be with respect to such a pricing measure, not the statistical
measure. In the constant-volatility case, changing from the statistical to the
pricing measure yields

So log is normal with mean and variance and
the Black-Scholes formula follows from

11.2 Probabilistic Interpretation
In what sense is implied volatility an average expected volatility? Some

econometric studies [Canina & Figlewski, 1993; Christensen & Prabhala, 1998]
test whether or not implied volatility is an “unbiased” predictor of future volatil-
ity, but they have limited relevance to our question, because they address the
empirics of a far narrower question in which “expected” future volatility is
with respect to the statistical probability measure. Our focus, instead, is the
theoretical question of whether there exist natural definitions of “average” and
“expected” such that implied volatility can indeed be understood – provably –
as an average expected volatility.
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11.2.1. Time-dependent volatility
In the case of time-dependent but nonrandom volatility, a simple formula

exists for Black-Scholes implied volatility.
Suppose that

where is a deterministic function. Define

Then one can show that log is normal with mean and variance
from which it follows that

and hence

Thus implied volatility is equal to the quadratic mean volatility from 0 to T.

11.2.2. Time-and-spot-dependent Volatility
Now assume that

where is a deterministic function, usually called the local volatility. We
will also treat local volatility as a function of time-0 moneyness via the
definition but abusing notation, we will suppress
the tildes.

11.2.2..1 Local volatility and implied local volatility. Under local
volatility dynamics, call prices satisfy (1.1), but with variable coefficients:

and also with terminal condition
Dupire [Dupire, 1994] showed that instead of fixing (K, T) and obtaining

the backward PDE for C(S,t), one can fix (S, t) and obtain a forward PDE
for C(K, T). A derivation (also in [Bouchouev & Isakov, 1997]) proceeds as
follows.

Differentiating (2.2) twice with respect to strike shows that
satisfies the same PDE, but with terminal data Thus G is the Green’s
function of (2.2), and it is the transition density of S. By a standard result (in
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[Friedman, 1964], for example), it follows that G as a function of the variables
(K, T) satisfies the adjoint equation, which is the Fokker-Planck PDE

Integrating twice with respect to K and applying the appropriate boundary
conditions, one obtains the Dupire equation:

with initial condition
Given call prices at all strikes and maturities up to some horizon, define

implied local volatility as

According to (2.3), this is the local volatility function consistent with the given
prices of options. Define implied local variance as

Following standard terminology, our use of the term implied volatility will,
in the absence of other modifiers, refer to implied Black-Scholes volatility, not
implied local volatility. The two concepts are related as follows: Substituting

into (2.4) yields

See, for example, Andersen and Brotherton-Ratcliffe [Andersen & Brotherton-
Ratcliffe, 1998]. Whereas the computation of I from market data poses no
numerical difficulties, the recovery of L is an ill-posed problem that requires
careful treatment; see also [Avellaneda et al, 1997; Bouchouev & Isakov, 1997;
Coleman, Li & Verma, 1999; Gzyl & Villasana, 2003]. These issues will not
concern us here, because our use of implied local volatility L will be strictly as
a theoretical device to link local volatility results to stochastic volatility results,
in section 11.2.3..1.

11.2.2..2 Short-dated implied volatility as harmonic mean local volatil-
ity. In certain regimes, the representation of implied volatility as an aver-
age expected volatility can be made precise. Specifically, Berestycki, Busca,
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and Florent ([Berestycki, Busca & Florent, 2002]; BBF henceforth) show that
in the short-maturity limit, implied volatility is the harmonic mean of local
volatility.

The PDE that relates implied volatility to local volatility is,
by substituting (2.5) into (2.3),

Let be the solution to the ODE generated by taking T = 0 in the PDE.
Thus

Elementary calculations show that the ODE is solved by

A natural conjecture is that the convergence holds. In-
deed this is what Berestycki, Busca, and Florent [Berestycki, Busca & Florent,
2002] prove. Therefore, short-dated implied volatility is approximately the
harmonic mean of local volatility, where the mean is taken “spatially,” along
the line segment on T = 0, from moneyness 0 to moneyness

The harmonic mean here stands in contrast to arithmetic or quadratic means
that have been proposed in the literature as rules of thumb. As BBF argue,
probabilistic considerations rule out the arithmetic and quadratic means; for
example, consider a local volatility diffusion in which there exists a price level

above which the local volatility vanishes, but below which it
is positive. Then the option must have zero premium, hence zero implied
volatility. This is inconsistent with taking a spatial mean of arithmetically or
quadratically, but is consistent with taking a spatial mean of harmonically.

11.2.2..3 Deep in/out-of-the-money implied volatility as quadratic mean
local volatility. BBF also show that if local volatility is uniformly continu-
ous and bounded by constants so that

and if local volatility has continuous limit(s)
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locally uniformly in then deep in/out-of-the-money implied volatility ap-
proximates the quadratic mean of local volatility, in the following sense:

The idea of the proof is as follows. Considering by symmetry only the
limit, let Note that induces, via definition
(2.4), a local variance that has the correct behavior at because the
denominator is 1 while the numerator is

To turn this into a proof, BBF show that for any one can construct a func-
tion such that and such that induces via
(2.4) a local volatility that dominates L. By a comparison result of BBF,

On the other hand, one can construct such that

Taking to 0 yields the result.

11.2.3. Stochastic volatility

Now suppose that

where is stochastic. In contrast to local volatility models, is not deter-
mined by and

Intuition from the case of time-dependent volatility does not apply directly
to stochastic volatility. For example, one can define the random variable

but note that in general

For example, in the case where the process is independent of W, the mixing
argument of Hull and White [Hull & White, 1987] shows that

However, this is not equal to because is not a linear function of
its volatility argument. What we can say is that for the at-the-money-forward
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strike, is nearly linear in because its second derivative is negative but
typically small; so by Jensen but equality nearly holds.

Note that this heuristic is specific to one particular strike, that it
assumes independence of and and that the expectation is under a risk-
neutral pricing measure, not the statistical measure. We caution against the
improper application of this rule outside of its limited context.

So is there some time-averaged volatility interpretation of I, that does hold
in contexts where fails?

11.2.3..1 Relation to local-volatility results. Under stochastic volatil-
ity dynamics, implied local variance at (K, T) is the risk-neutral conditional
expectation of given The argument of Derman and Kani [Der-
man & Kani, 1998] is as follows. Let Now take, formally,
an Ito differential with respect to T:

where H denotes the Heaviside function. Assuming that has a joint
density let denote the marginal density of Continuing, we
have

So, by definition of implied local variance,

Consequently, any characterization of I as an average expected local volatil-
ity becomes tantamount to a characterization of I as an average conditional
expectation of stochastic volatility.

APPLICATION 11.2.1 The BBF results in sections 11.2.2..2 and 11.2.2..3 can
be interpreted, under stochastic volatility, as expressions of implied volatility
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as [harmonic or quadratic] average conditional expectations of future volatil-
ity.

11.2.3..2 The path-from-spot-to-strike approach. The following rea-
soning by Gatheral [Gatheral, 2001] provides an interpretation of implied volatil-
ity as average expected stochastic volatility, without assuming short times to
maturity or strikes deep in/out of the money.

Fix K and T. Let

be the Black-Scholes gamma function.
Assume there exists a nonrandom nonnegative function such that for

all in (0,T),

where

Note that need not be a deterministic function of spot and time.
Define the function

which solves the following PDE for

We have
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using Ito’s rule, then (2.8), then (2.7). Therefore

where the final step re-interprets the definition (2.7) of as the expectation
of with respect to the probability measure defined, relative to the pricing
measure by the Radon-Nikodym derivative

So (2.9) interprets implied volatility as an average expected variance. More-
over, this expectation with respect to can be visualized as follows. Write

where the nonrandom function is defined by

and denotes the density of
Thus is integrated against a kernel which has the fol-

lowing behavior. For the approaches the Dirac function
because the factor has that behavior, while the factor approaches an
ordinary function. For the approaches the Dirac function
because the factor has that behavior, while the factor approaches an
ordinary function. At each time intermediate between 0 and T, the kernel has
a finite peak, which moves from to K, as moves from 0 to T.

This leads to two observations. First, one has the conjectural approximation

where the non-random point is the that maximizes the kernel By
(2.10), therefore,

Second, the kernel’s concentration of “mass” initially (for         at and
terminally (for at K resembles the marginal densities of the S diffusion,
pinned by conditioning on This leads to Gatheral’s observation that
implied variance is, to a first approximation, the time integral of the expected
instantaneous variance along the most likely path from to K. We leave
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open the questions of how to make these observations more precise, and how
to justify the original assumption.

APPLICATION 11.2.2 Given an approximation for local volatility, such as in
[Gatheral, 2001], one can usually compute explicitly an approximation for a
spot-to-strike average, thus yielding an approximation to implied volatility.

For example, given an approximation for local volatility linear in the
spot-to-strike averaging argument can be used to justify a rule of thumb (as
in [Derman, Kani & Zou, 1996]) that approximates implied volatility also lin-
early in but with one-half the slope of local volatility.

11.3 Statics

We examine here the implications of various assumptions on the shape of
the implied volatility surface, beginning in section 11.3.1. with only minimal
assumptions of no-arbitrage, and then specializing in 11.3.2. and 11.3.3. to the
cases of local volatility and stochastic volatility diffusions. The term “statics”
refers to the analysis of or I(K, T) for fixed.

As reference points, let us review some of the empirical facts about the
shape of the volatility surface; see, for example, [Rebonato, 1999] for further
discussion. A plot of I is not constant with respect to K (or It can take
the shape of a smile, in which I(K) is greater for K away-from-the-money
than it is for K near-the-money. The more typical pattern in post-1987 equity
markets, however, is a skew (or skewed smile) in which at-the-money I slopes
downward, and the smile is far more pronounced for small K than for large
K. Empirically the smile or skew flattens as T increases. In particular, a
popular rule-of-thumb (which we will revisit) states that skew slopes decay
with maturity approximately as indeed, when comparing skew slopes
across different maturities, practitioners often define “moneyness” as
instead of

The theory of how I behaves under various model specifications has at least
three applications. First, to the extent that a model generates a theoretical
I shape that differs qualitatively from empirical facts, we have evidence of
model misspecification. Second, given an observed volatility skew, analytical
expressions approximating in terms of model parameters can be useful
in calibrating those parameters. Third, necessary conditions on I for the ab-
sence of arbitrage provide consistency checks that can help to reject unsound
proposals for volatility skew parameterizations.

Part of the challenge for future research will be to extend this list of models
and regimes for which we understand the behavior of implied volatility.
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11.3.1. Statics under absence of arbitrage
Assuming only the absence of arbitrage, one obtains bounds on the slope of

the implied volatility surface, as well as a characterization of how fast I grows
at extreme strikes.

11.3.1..1 Slope bounds. Hodges [Hodges, 1996] gives bounds on im-
plied volatility based on the nonnegativity of call spreads and put spreads.
Specifically, if then

Gatheral [Gatheral, 1999] improves this observation to

which is evident from a comparison of the respective payoff functions. Assum-
ing the differentiability of option prices in K,

Substituting and P = Schönbucher(I) and simplifying, we
have

where the upper and lower bounds come from the call and put constraints,
respectively.

Using (as in [Carr & Wu, 2002]), the Mill’s Ratio
to simplify notation, we rewrite the inequality as

Note that proceeding from (3.1) without Gatheral’s refinement (3.2) yields the
significantly weaker lower bound

Of particular interest is the behavior at-the-money, where In the
short-dated limit, as assume that I(0, T) is bounded above. Then

Since R(0) is a positive constant, the at-the-money skew slope must have the
short-dated behavior



254 RECENTS ADVANCES IN APPLIED PROBABILITY

In the long-dated limit, as assume that I(0, T) is bounded away from
0. Then

Since as the at-the-money skew slope must have the
long-dated behavior

REMARK 11.3.1 According to (3.4), the rule of thumb that approximates the
skew slope decay rate as cannot maintain validity into long-dated ex-
piries.

11.3.1..2 The moment formula. Lee [Lee, 2002] proves the moment
formula for implied volatility at extreme strikes. Previous work, in Avellaneda
and Zhu [Avellaneda & Zhu, 1998], had produced asymptotic calculations for
one specific stochastic volatility model, but the moment formula is entirely
general, and it uncovers the key role of finite moments.

At any given expiry T, the tails of the implied volatility skew can grow no
faster than Specifically, in the right-hand tail, for sufficiently large,
the Black-Scholes implied variance satisfies

and a similar relationship holds in the left-hand tail.
For proof, write and show that for

large This holds because the left-hand side approaches 0 but the right-hand
side approaches a positive limit as

APPLICATION 11.3.2 This bound has implications for choosing functional
forms of splines to extrapolate volatility skews. Specifically, it advises against
fitting the skew’s tails with any function that grows more quickly than

Moreover, the tails cannot grow more slowly than unless has finite
moments of all orders. This further restricts the advisable choices for parame-
terizing a volatility skew. To prove this fact, note that it is a consequence of the
moment formula, which we now describe.

The smallest (infimal) coefficient that can replace the 2 in (3.5) depends, of
course, on the distribution of but the form of the dependence is notably
simple. This sharpest possible coefficient is entirely determined by in the
right-hand tail, and in the left-hand tail, where the real numbers
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can be considered, by abuse of language, the “number” of finite moments in
underlying distribution. The moment formula makes explicit these relation-
ships.

Specifically, let us write as a variable coefficient times the ratio of
absolute-log-moneyness to maturity. Consider the limsups of this coefficient
as

One can think of and as the right-hand and absolute left-hand slopes of
the linear “asymptotes” to implied variance.

The main theorem in [Lee, 2002] establishes that and both belong to
the interval [0, 2], and that their values depend only on the moment counts
and according to the moment formula:

One can invert the moment formula, by solving for and

The idea of the proof is as follows. By the Black-Scholes formula, the tail
behavior of the implied volatility skew carries the same information as the tail
behavior of option prices. In turn, the tail growth of option prices carries the
same information as the number of finite moments – intuitively, option prices
are bounded by moments, because a call or put payoff can be dominated by
a power payoff; on the other hand, moments are bounded by option prices,
because a power payoff can be dominated by a mixture, across a continuum of
strikes, of call or put payoffs.

In a wide class of specifications for the dynamics of S, the moment counts
and are readily computable functions of the model’s parameters. This oc-

curs whenever has a distribution whose characteristic function is ex-
plicitly known. In such cases, one calculates simply by extending
analytically to a strip in containing and evaluating there; if no
such extension exists, then In particular, among affine jump-
diffusions and Levy processes, one finds many instances of such models. See,
for example, [Duffie, Pan & Singleton, 2000; Lee, 2001].
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APPLICATION 11.3.3 The moment formula may speed up the calibration
of model parameters to observed skews. By observing the tail slopes of the
volatility skew, and applying the moment formula, one obtains and Com-
bined with analysis of the characteristic function, this produces two constraints
on the model parameters, and in models such as the examples below, actually
determines two of the model’s parameters. We do not claim that the moment
formula alone can replace a full optimization procedure, but it could facilitate
the process by providing a highly accurate initial guess of the optimal param-
eters.

EXAMPLE 11.3.4 In the double-exponential jump-diffusion model of [Kou,
2002; Kou & Wang, 2001], the asset price follows a geometric Brownian mo-
tion between jumps, which occur at event times of a Poisson process. Up-jumps
and down-jumps are exponentially distributed with the parameters and
respectively, and hence the means and respectively. Using the char-
acteristic function, one computes

Thus and can be inferred from and which in turn come from the
slopes of the volatility skew, via the moment formula.

The intuition of (3.6) is as follows: the larger the expected size of an up-
jump, the fatter the distribution’s right-hand tail, and the fewer the number
of positive moments. Similar intuition holds for down-jumps. Note that the
jump frequency has no effect on the asymptotic slopes.

EXAMPLE 11.3.5 In the normal inverse gaussian model of Barndorff-Nielsen
[Barndorff-Nielsen, 1998], returns have a distribution defined as follows: con-
sider two dimensional Brownian motion with constant drift and let be
the Euclidean magnitude of this drift. The NIG distribution is the distribution
of the first coordinate of the Brownian motion at the stopping time when the
second coordinate hits a specified constant barrier. Then one can calculate

which also has intuitive content: larger implies earlier stopping, hence thin-
ner tails and more moments (of both positive and negative order); larger
fattens the right-hand tail and thins the left-hand tail, decreasing the number
of positive moments and increasing the number of negative moments.

11.3.2. Statics under local volatility

Assume that the underlying follows a local volatility diffusion of the form
(2.1). Writing for the forward price, suppose that local volatil-
ity can be expressed as a function of F alone:
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Hagan and Woodward (in [Hagan & Woodward, 1999], and with Kumar and
Lesniewski in [Hagan et al, 2002]), develop regular perturbation solutions to
(2.2) in powers of assumed to be small. The resulting call price
formula then yields the implied volatility approximation

where is the midpoint between forward and strike. The same
sources also discuss alternative assumptions and more refined approximations.

REMARK 11.3.6 The reasoning of section 11.2.3..2 suggests an interpreta-
tion of the leading term in (3.8) as a midpoint approximation to the av-
erage local volatility along a path from to (K, T).

11.3.3. Statics under stochastic volatility

Now assume that the underlying follows a stochastic volatility diffusion of
the form

where Brownian motions W and Z have correlation From here one obtains,
typically via perturbation methods, approximations to the implied volatility
skew I. Our coverage will emphasize those approximations which apply to en-
tire classes of stochastic volatility models, not specific to one particular choice
of and We label each approximation according to the regime in which it
prevails.

11.3.3..1 Zero correlation. Renault and Touzi [Renault & Touzi, 1996]
prove that in the case implied volatility is a symmetric smile – symmet-
ric in the sense that

and a smile in the sense that I is increasing in for
Moreover, as shown in [Ball & Roma, 1994], the parabolic shape of I

is apparent from Taylor approximations. Expanding the function
about we have

Comparing this to a Taylor expansion of the mixing formula
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yields the approximation

which is quadratic in with minimum at

REMARK 11.3.7 To the extent that implied volatility skews are empirically
not symmetric in equity markets, stochastic volatility models with zero corre-
lation will not be consistent with market data.

11.3.3..2 Small volatility of volatility, and the short-dated limit.    Lewis

a complex Fourier transform given by where is the
transform variable and solves the PDE

with initial condition In our setting, can be viewed as the
characteristic function of the negative of the log-return on the forward price of
S.

Assuming that for some constant parameter one finds a
perturbation solution for in powers of The transform can be inverted to
produce a call price, by a formula such as

yielding a series for C in powers of From the C series and the Black-Schole
formula, Lewis derives the implied variance expansion

where are integrals of known functions.

[Lewis, 2000] shows that the forward call price, viewed as a function of has
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EXAMPLE 11.3.8 The short-time-to-expiry limit is

The leading terms agree to with the slow-mean-reversion result of section
11.3.3..5. We defer further commentary until there.

EXAMPLE 11.3.9 In the case where

we have

and while

In particular, taking produces the Heston [Heston, 1993] square-root
model. In the special case where the slope of the implied variance
skew is, to leading order in

which agrees with a computation, by Gatheral [Gatheral, 2001], that uses the
expectations interpretation of local volatility.

11.3.3..3 The long-dated limit. Given a stochastic volatility model
with a known transform Lewis solves for and such that
separates multiplicatively, for large T, into T-dependent and V-dependent fac-
tors:

Suppose that has a saddle point at where Applying
classical saddle-point methods to (3.9) yields
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By comparing this to the corresponding approximation of Lewis ob-
tains the implied variance approximation

The fact that is linear to first order in agrees with the fast-mean-
reversion result of Fouque, Papanicolaou, and Sircar [Fouque, Papanicolaou &
Sircar, 2000]. We defer further commentary until section 11.3.3..4.

EXAMPLE 11.3.10 In the case (3.11) with  (the square-root model),
Lewis finds

The sign of the leading-order at-the-money skew slope agrees
with the sign of the correlation

11.3.3..4 Fast mean reversion. Fouque-Papanicolaou-Sircar ([Fouque,
Papanicolaou & Sircar, 2000]; FPS henceforth) model stochastic volatility as a
function of a state variable that follows a rapidly mean-reverting diffusion
process. In the case of Ornstein-Uhlenbeck Y, this means that for some large

under the statistical measure, where the Brownian motions and have
correlation

Rewriting this under a pricing measure,

where the volatility risk premium is assumed to depend only on Y. Let
denote the invariant density (under the statistical probability measure) of Y,
which is normal with mean and variance Let angle brackets denote
average with respect to that density. Write
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so that is the quadratic average of volatility with respect to the invariant
distribution.

By a singular perturbation analysis of the PDE for call price, FPS show that
implied volatility has an expansion with leading terms

where

and

REMARK 11.3.11 The fast-mean-reversion approximation is particularly
suited for pricing long-dated options; in that long time horizon, volatility has
time to undergo much activity, so relative to the time scale of the option’s life-
time, volatility can indeed be considered to mean-revert rapidly.

Note that is, to first order, linear in This functional form
agrees with Lewis’s long-dated skew approximation (11.3.3..3).

REMARK 11.3.12 Today’s volatility plays no role in the leading-order coef-
ficients A and B. Instead, the dominant effects depend only on ergodic means.
Intuitively, the assumption of large mean-reversion rapidly erodes the influence
of today’s volatility, leaving the long-run averages to determine A and B.

REMARK 11.3.13 The slope of the long-dated implied volatility skew satis-
fies

As a consistency check, note that the long-dated asymptotics are consistent
with the no-arbitrage constraint (3.4). Specifically, the skew slope
decay of these stochastic volatility models achieves the bound.

APPLICATION 11.3.14 FPS give approximations to prices of certain path-
dependent derivatives under fast-mean-reverting stochastic volatility. Typi-
cally, such approximations involve the Black-Scholes price for that derivative,
corrected by some term that depends on and
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To evaluate this correction term, note that the formulas (3.12) can be solved
for and in terms of A, B, and FPS calibrate A and B to the implied
volatility skew, and estimate from historical data, producing estimates of
and which become the basis for an approximation of the derivative price.

For example, in the case of uncorrelated volatility where FPS find
that the price of an American put is approximated by the Black Scholes Amer-
ican put price, evaluated at the volatility parameter

which can be considered an “effective volatility.”

11.3.3..5 Slow mean reversion. Assuming that for a constant parame-
ter

Sircar and Papanicolaou [Sircar & Papanicolaou, 1999] develop, and Lee [Lee,
2001a] extends, a regular perturbation analysis of the PDE

satisfied by the call price under stochastic volatility. This leads to an expansion
for C in powers of which in turn leads to the implied volatility expansion

where In particular, short-dated implied volatility satisfies

REMARK 11.3.15 The slow-mean-reversion approximation is particularly
suited for pricing short-dated options; in that short time horizon, volatility
has little time in which to vary, so relative to the time scale of the option’s
lifetime, volatility can indeed be considered to mean-revert slowly.

Note that (3.13) agrees precisely with the leading terms of Lewis’s short-
dated skew approximation (3.10).

REMARK 11.3.16 In contrast to the case of rapid mean-reversion, the level
to which volatility reverts here plays no role in the leading-order coefficients.
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With a small rate of mean-reversion, today’s volatility will have the dominant
effect.

REMARK 11.3.17 For the at-the-money skew exhibits a slope whose
sign agrees with For the skew has a parabolic shape.

REMARK 11.3.18 In agreement with a result of Ledoit, Santa-Clara, and Yan
[Ledoit, Santa-Clara & Yan, 2001], we have as

APPLICATION 11.3.19 In principle, given a parametric form for the fact
that the short-dated skew has slope gives information that can simplify pa-
rameter calibration. For example, if the modelling assumption is that

for some constant parameter and known function then di-
rectly from the short-dated skew and its slope, one obtains the product of the
parameters and

APPLICATION 11.3.20 Lewis observes, moreover, that this tool facilitates
the inference of the functional form of Specifically, observe time-series of
the short-dated at-the-money data pair: (implied volatility, skew slope). As
implied volatility ranges over its support, the functional form of    is, in princi-
ple, revealed.

REMARK 11.3.21 Note that the skew slope is O(1), which is strictly
smaller than the constraint. To the extent that the short-dated volatil-
ity skew slope empirically seems to attain the upper bound instead of
the O(1) diffusion behavior, this observed skew will not be easily captured by
standard diffusion models. Two approaches to this problem, and subjects for
further research, are to remain in the stochastic-volatility diffusion framework
but introduce time-varying coefficients (as in [Fouque, Papanicolaou, Sircar &
Solna, 2002]); or alternatively to go outside the diffusion framework entirely
and introduce jump dynamics, such as in [Carr & Wu, 2002].

11.4 Dynamics

While traditional diffusion models specify the dynamics of the spot price
and its instantaneous volatility, a newer class of models seeks to specify di-
rectly the dynamics of one or more implied volatilities. One reason to take I as
primitive is that it enjoys wide acceptance as a descriptor of the state of an op-
tions market. A second reason is that the observability of I makes calibration
trivial.

In this section, today’s date is not fixed at 0, because we are now concerned
with the time evolution of I.
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11.4.1. No-arbitrage approach
11.4.1..1 One implied volatility. Consider the time-evolution of a sin-
gle implied volatility I at some fixed strike K and maturity date T. Schön-
bucher [Schönbucher, 1998] models directly its dynamics as

where W and are independent Brownian motions. The spot price has
dynamics

where is yet to be specified.
Since the discounted call price must be a martingale

under the pricing measure, we have for all I > 0 the following drift restriction
on the call price:

This reduces to a joint restriction on the diffusion coefficients of I, the drift of
I, and the instantaneous volatility

Since S, and T are observable, we have that the volatility of I, together
with the drift of I, determines the spot volatility. Other papers [Brace, Goldys,
Klebaner & Womersley, 2000; Ledoit, Santa-Clara & Yan, 2001] have arrived
at analogous results in which one fixes not (strike, expiry), but instead some
other specification of exactly which implied volatility is to be modelled, such
as (moneyness, time to maturity).

Schönbucher imposes a further constraint to ensure that I does not blow up
as He requires that

which simplifies to

This can be solved to get expiration-date implied volatility in terms of expiration-
date spot volatility. The solution is particularly simple in the zero-correlation
case, where Then, suppressing subscripts T,



265Implied Volatility: Statics, Dynamics, and Probabilistic Interpretation

Under condition (4.2), therefore, implied volatility behaves as for
small, but for large. Both limits are consistent with the statics of

sections 11.3.1..2 and 11.3.3..1.

APPLICATION 11.4.1 Schönbucher applies this model to the pricing of other
derivatives as follows. Subject to condition (4.2), the modeller specifies the
drift and volatility of I, and infers the dependence of instantaneous volatility
on the state variables according to (4.1). Then the price of
a non-strongly-path-dependent derivative satisfies the usual two-factor pricing
equation

with boundary conditions depending on the particular contract. Finite differ-
ence methods can solve such a PDE.

Care should be taken to ensure that I does not become negative.

11.4.1..2 Term structure of implied volatility. Schönbucher extends
this model M different maturities. The implied volatilities to be modelled are

for where Let

be the implied variance. One specifies the dynamics for the shortest-dated
variance as well as all “forward” variances

The spot volatility and the drift and diffusion coefficients of are jointly
subject to the drift restriction (4.1) and the no-explosion condition (4.2). Then,
given the and dynamics, specifying each diffusion coeffi-
cient determines the corresponding drift coefficient, by applying (4.1) to

APPLICATION 11.4.2 To price exotic contracts under these multi-factor dy-
namics, Schönbucher recommends Monte Carlo simulation of the spot price
(which depends on simulation of implied volatilities). Upon expiry of the
option, the option becomes the “front” contract; at that time coincides
with and at later times its evolution is linked to spot volatility via the
drift and the no-explosion conditions. Similar transitions occur at each later
expiry.

Care should be taken to avoid negative forward variances.



266 RECENTS ADVANCES IN APPLIED PROBABILITY

11.4.2. Statistical approach
Direct modelling of arbitrage-free evolution of an entire implied volatility

surface remains largely unresolved. Unlike traditional models of spot dynam-
ics, direct implied volatility models face increasing difficulty in enforcing no-
arbitrage conditions, when multiple strikes are introduced at a maturity.

Instead of demanding no-arbitrage, the modeller may have a goal more sta-
tistical in nature, namely to describe the empirical movements of the implied
volatility surface. According to Cont and da Fonseca’s [Cont & da Fonseca,
2002] analysis of SP500 and FTSE data, the empirical features of implied
volatility include the following:

Three principal components explain most of the daily variations in implied
volatility: one eigenmode reflecting an overall (parallel) shift in the level, an-
other eigenmode reflecting opposite movements (skew) in low and high strike
volatilties, and a third eigenmode reflecting convexity changes. Variations of
implied volatility along each principal component are autocorrelated, mean-
reverting, and correlated with the underlying.

To quantify these features, Cont and da Fonseca introduce and estimate a
model of the volatility surface, viewed as a function of moneyness

and time-to-maturity The following model is specified under the statistical
probability measure:

where the eigenmodes such as the three described above, can be estimated
by principal component analysis; the coefficients are specified as mean-
reverting Ornstein-Uhlenbeck processes

REMARK 11.4.3 If one takes for all then does not vary
in time. This corresponds to an ad-hoc model known to practitioners as “sticky
delta.” Balland [Balland, 2002] proves that if the dynamics of S are consistent
with such a model (or even a generalized sticky delta model in which
is time-varying but determinstic), then assuming no arbitrage, S must be the
exponential of a process with independent increments.

APPLICATION 11.4.4 A natural application is the Monte Carlo simulation
of implied volatility, for the purpose of risk management.

However, this model, unlike the theory of section 11.4.1., is not intended
to determine the consistent volatility drifts needed for martingale pricing of
exotic derivatives. How best to introduce the ideas from this model into a no-
arbitrage theory remains an open question.
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Abstract
Let be the Brownian sheet. We define the regularized

process as the convolution of and where
is a function satisfying some conditions. For  fixed we prove that

almost surely, where is the Lebesgue measure in is the standard Gaus-
sian distribution and is the usual norm in These results
are generalized to two parameter martingales M given by stochastic integrals
of the Cairoli & Walsh type. Finally, as a consequence of our method we also
obtain similar results for the normalized double increment of the processes W
and M. These results constitute a generalisation of those obtained by Wschebor
for Brownian stochastic integrals.

Keywords: Wiener process, Brownian sheet, double increment

12.1 Introduction
Several works have been recently devoted to study the problem of estima-

tion of a process when one observes the process at discrete times i.e.

or the observation is the smoothed process where
is a smooth kernel and is a window parameter. In each case the asymp-

totic behavior of the estimators is established when the step of observation
or the window respectively, tend towards zero. This type of problems

are important when the observation device allows improving the resolution.
The case where the observed process is a Brownian diffusion has been studied
by Genon-Catalot and Jacod in the discrete case and in Wschebor and Perera
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and Wschebor in the other one. In this work we consider the same type of
problems when we observe a regularization by convolution of a random field,
which is solution of a stochastic differential equation driven by a Brownian
sheet or more generally a Carioli-Walsh stochastic integral with respect to the
Brownian sheet. We restrict our study to the law large number type result, the
CLT will be considered elsewhere.
Let us introduce the problem. Wschebor has shown that, for almost every

the increments of the Wiener process as a function
of time converge in distribution towards a standard Gaussian distribution
Namely, he proved that if denotes the normalized
increments of such a process and is the Lebesgue measure in R then almost
surely when where I is any
interval in [0, 1] and Moreover he defined the process
as the convolution of and a convolution kernel that
approaches Dirac’s delta function as and he showed that almost surely

when where is the usual

norm of . By taking the result for the nor-
malized increments is a particular case of this. Finally, Wschebor generalized
these results to the class of stochastic processes N given by
where satisfies certain regularity conditions, and obtained that almost surely,

where denotes the convolution of  and      and is the distribution
function of a centered normal variable with random variance equal to

In this article we follow Wschebor’s method to generalize the above results
to the case of the Brownian sheet instead of the Brownian motion and to the
case of strong martingales, i.e., stochastic processes M given by

where the integral considered is the stochastic integral of Cairoli and Walsh
instead of the stochastic integral of Ito type. Note however that in this case the
procedure is a little more involved due to the dimensional nature of the time
parameter.
These results are interesting because they give a way to obtain nonparametric
estimators of the coefficient for two parameter stochastic differential equa-
tions:
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These models have been studied, for example, in Carmona and Nualart. We
apply our results to this case, see the Remark of Theorem 3 and Corollary 2
bellow.

12.2 Assumptions and Notations
1

2

3

On the process is a Brownian sheet. In what
follows, we shall suppose that is defined for all setting

if or

For a rectangle will denote the double incre-
ment over A, i.e.

On the process is a two parameter strong mar-
tingale given by (1.1) where is a process satisfying the conditions of
Cairoli and Walsh for this kind of integral. Also we suppose that is
defined for all setting if or Fi-
nally, M (A) will denote the double increment of M over the rectangle
A defined as before.

On the kernel is the distribution function of a
(signed) measure  which has bounded total variation and

Throughout the paper we shall consider and the regularization by con-
volution of with and respectively and

where

Note that has standard normal distribution for each and
that if Finally, will denote a standard normal
variable, C shall stand for a generic constant whose value change during a proof,

will denote the square and I, J will be arbitrary
intervals in [0, 1).

12.3 Results
THEOREM 4 If  then

almost surely for all

Remark. Taking we have that so
Theorem 1 holds for the normalized double increment of the Brownian sheet
over
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COROLLARY 2 If  are continuous functions and satisfies
then

THEOREM 5 Let If

tends to zero a.s when then

a.s when where is the distribution function of a centered normal
variable with random variance

THEOREM 6 Let
If has continuous paths and for each there exist positive constants and

such that then

a.s when

COROLLARY 3 Under the assumptions of Theorem 6 and Corollary 1,

a.s when

Remark. Theorem 6 can be applied to that is a regularization of the
process solution of the equation:

obtaining

a.s when
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a.s. where

Moreover taking and Corollary 2 gives

a.s.

12.4 Proofs
We can assume for simplicity sake that I = J = [0, 1]. The proof for

general intervals can be treated in a similar fashion, with some minor modifi-
cations.

12.4.1. Proof of Theorem 4
First, we observe that it is sufficient to prove the convergence of the moments
of as a random variable in the time parameters, to the moments of
a standard normal variable. i.e. to prove that
tends to a.s when for all
Computing covariances we can show that and are indepen-
dent if or Using this fact we can see that

splitting conveniently the integrals. Therefore, if the Borel-
Cantelli Lemma implies that a.s when To fin-
ish the demonstration we have to show that

when
Start with where

and
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As for term we have a.s

when Next we define and
and using the identity

we obtain that

By the appendix with we conclude that

and where, for

and is a constant dependent on Therefore,

For small enough when for all
So tends to zero when and this completes the proof of Theorem
1.

12.4.2. Proof of Corollary 1

Note that

where

and
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Using the Dominated Convergence Theorem we have that

Therefore, the continuity of and the boundedness of and imply that

when To see that tends to zero when it is sufficient to observe
that by Theorem 1 and the assumption on we have that

when The convergence to zero of can be obtained from Theorem 4
by a standard approximation argument.

Remark. Following the proof of Corollary 1 we can show that

a.s when Therefore, if is bounded we have by Theorem 6.1 of Cairoli
and Walsh [1] that there exists a process which
is a.s. jointly continuous in and such that

almost surely. Hence, we obtain an a.s. approximation of this kind of local
time for the Brownian sheet.

12.4.3. Proof of Theorem 5
We have

Using Theorem 4 and the remark at the end of it, we have that

a.s. Hence, if we denote by the second term in the right hand side of (4.1),
it is enough to prove that tends to zero when for almost all and

to finish the proof of Theorem 2.
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First, notice that is a stochastic integral in the plane. Therefore, it
is a martingale and a i-martingale, (see Cairoli and Walsh). Hence,
for fixed is a martingale with increasing process

Therefore, using the time change theorem, the law of iterated logarithm and
our assumptions we have the desired result.

12.4.4. Proof of Theorem 6

As in the proof of Theorem 4, it is sufficient to show the a.s convergence of
moments of order to
Using the differentiation formulas of pages 224 and 226 of Farré and Nualart
with we obtain that

Taking

and

we have that

with

Theorem 4 implies that a.s when
So, to finish the proof we have to show that the first term in the right hand side
of (4.2) tends to zero a.s when Using the inequality from Theorem 2.1
of Guyon and Prum we have that for any positive integer
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Because of the hypothesis on we obtain that
Therefore

Using the Borel-Cantelli Lemma with as in Theorem 1 we obtain
that a.s when for any positive integer So,

almost surely when Hence

a.s. when
Finally, we can obtain analogous results to those of the appendix for the process
M, and proceeding as in Theorem 1 we have the result.

Appendix
In this appendix, we show how to obtain the bounds for terms and
used in the proof of Theorem 1.

Recall that and Using
we have that

where and So, because
of the modulus of continuity of the Brownian sheet (see Csörgó and Révész or Orey and Pruitt)
and the hypothesis on we obtain that

with the total variation of Thus

Regarding the other term, we observe first that

the second term in the right hand side of the above equation can be bounded, using (A. 1), by
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and the first by

with

and

where for Using
again the modulus of continuity of the Brownian sheet, the function can be bounded by

for With respect to function it is enough to study

the shape of the rectangles and for distinct values (positive or
negatives) of and and to use the modulus of continuity to obtain that

Hence,

or equivalently
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Abstract We present Poisson,approximation results for additive functionals switched by
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13.1 Introduction

Poisson approximation is a very active research field [Aldous, 1989; Bar-
hour, 1992; Barbour, 2002]. Three kind of Poisson processes approximation
exist: standard Poisson process [Aldous, 1989; Barbour, 1992], compound
Poisson process [Barbour, 2002], and compound Poisson process with drift
[Korolyuk, 2000; Korolyuk, 2001A; Korolyuk, 2002].

A compound Poisson process with drift (CPPD) is defined as follows

where is a real i.i.d. sequence, is a time-homogeneous Poisson
process and
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The results we present here are a review of our previous results [Korolyuk,
2000; Korolyuk, 2001A; Korolyuk, 2002; Korolyuk, 2002A], and concern ap-
proximation of additive functionals by CPPDs like (1.1).

Additive functionals of stochastic processes play an important part in the-
ory and in many applications [Korolyuk, 1999; Korolyuk, 1999A; Korolyuk,
1999B; Korolyuk, 2001; Korolyuk, 2000A; Korolyuk, 2000B; Korolyuk, 2000C;
Korolyuk, 2002]. We have obtained diffusion approximation of additive func-
tionals with Markov switching with and without balance condition in [Ko-
rolyuk, 2000A; Korolyuk, 2000B; Korolyuk, 2000C], and Poisson approxi-
mation for increment processes and their stochastic exponentials with Markov
switching in [Korolyuk, 2000]. In the above cases, we have worked in the
settings of the books [Jacod, 1987] and [Ethier, 1986], where the martingale
characterization is used. We have also obtained results of CPPD approxima-
tion for integral functionals with semi-Markov switching [Korolyuk, 2002]. In
the latter case, due to the semi-Markov process, the martingale characterization
does not further works, hence a need for more adapted tools. In fact, we make
use of the compensative operator for extended Markov renewal processes, in-
troduced by Wentzel & Sviridenko [Sviridenko, 1989], from which we derive
the martingale characterization.

Consider a sequence of r.v.s and a multivariate point process
[Anisimov, 1995; Borovskikh, 1997; Jacod, 1987; Korolyuk,

1999; Liptser, 1989], with counting process The
stochastic process defined by

is called an increment process [Borovskikh, 1997; Jacod, 1987]. We study
the increment process with Markov switching as an additive semimartingale
[Çinlar, 1980]. If the r.v.s are iid and the multivariate point process

is just a renewal point process on then
(1.2) is called a compound process or a renewal reward process [Osaki, 1985].
If the r.v.s are iid and the multivariate point process

is just a Poisson point process on then (1.2) is called a compound
Poisson process [Osaki, 1985]. If is a fixed function defined on
then (1.2) is a shot noise process [Parzen, 1999], which play an important
role in the theory of noise of physical devices. In [Kluppelberg, 1995] the
authors consider the random measure and a Poisson process and
they derive asymptotic results for (1.2) with application in insurance. For a
semimartingale representation, see [Borovskikh, 1997; Çinlar, 1980; Jacod,
1987; Liptser, 1994; Liptser, 1989; Liptser, 1991].
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The Additive functionals that we consider are of the following form

where the switched process is a Markov process with locally
independent increments and the switching process is a semi-Markov pro-
cess, with state space E. This additive functional is a continuous functional.

In fact, an additive functional can also be represented by the sum of an
increment process and of another term, i.e.,

This kind of processes are widely used in applications, i.e., risk and stor-
age theory [Prabhu, 1980], reliability and maintenance theory [Osaki, 1985],
finance and insurance [Kluppelberg, 1995], noise of physical device [Parzen,
1999], etc. In applications, is the acting time of the event and is
its magnitude, its cost, etc..

In many applied problems the r.v.s depend on the environment. For
example, the cost of a damage for an insurance company depends on which
place, time, weather, etc. it happens. In the case where we have a multistate
environment, E say, we suppose that the r.v.s depend on the state
denoted

The increment process considered here is based on a multivariate point pro-
cess which corresponds to a Markov renewal representation of a Markov pro-
cess and the r.v.s depend on the states of that Markov process. The conver-
gence of the increment process towards a compound Poisson process with drift
is due to the fact that we assume the r.v.s take small values with big prob-
abilities and big values with small probabilities. Small jumps are transformed
into deterministic drift.

In Section 2, we define continuous and discontinuous additive functionals.
In Section 3, we give weak convergence results of the increment processes to-
wards compound Poisson processes with drift. In Section 4, we consider an
asymptotic split phase space for the switching Markov process and give Pois-
son,approximation results of the increment processes. In Section 5, we give
Poisson approximation results for an additive functional with semi-Markov
switching process. Finally, in Section 6, we give the main steps of proof of the
theorems.
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13.2 Preliminaries

Let us consider a time-homogeneous cadlag stochastic process
with values in a Polish space Times denote the
jump times and define the embedded process

Let be a family of homogeneous Markov
jump processes in the Euclidean space defined by the generators

The results presented here concern the following additive functionals:

and

In the first case (2.2) we suppose that the process is a Markov pro-
cess, and that it is uniformly ergodic with stationary distribution
Thus the embedded Markov chain is uniformly ergodic too, with
stationary distribution related by the following relation

In the sequel we will suppose that

In the second case (2.3), we suppose that is a semi-Markov
process with semi-Markov kernel

which defines the associated Markov renewal process by :

The semi-Markov process defined by the semi-Markov kernel (2.6) is a spe-
cial case whose does not depend on the next visited state. Nevertheless,
this is not restrictive since any semi-Markov process can be transformed into
the above form, see [Limnios, 2001].
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Here are the sojourn times given by the distri-
bution functions

The embedded Markov chain is defined by the stochastic
kernel

We suppose that the semi-Markov process is regular [Limnios,
2001], that is to say

with the counting process

The additive functional (2.3) can be represented by the sum

where
We will present Poisson,approximation results of functionals (2.2) and (2.3)

by a semimartingale approach. In both cases, the limit processes are compound
Poisson processes with drift.

The semimartingale approach used here is interesting not only because it
offers a general framework for convergence of stochastic processes but also
because the semimartingale representation of additive functionals is obtained
by using the Poisson approximation conditions for distribution functions of
jumps.

13.3 Increment Process
Let us introduce the convergence-determining class of functions

(see [Jacod, 1987], VII.2.7). This class is characterized by the following
condition: is a real-valued bounded continuous function with

as
Let us consider the additive functional given in (2.3).

Assumptions (A)

(A1:) The switching Markov jump process is uniformly ergodic
with the stationary distribution (2.4).
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(A2:) The family of random variables is uniformly
square integrable, i.e.,

(A3:) Approximation of mean value

and

(A4:) Poisson,approximation condition

and

(A5:) Square-integrability condition

where the measure is defined by the relation (see [Jacod, 1987])

The negligible terms and in the above conditions satisfy:

THEOREM 1 Under Assuptions A1-A5, the increment process (2.2) con-
verges weakly to the compound Poisson process with drift

The distribution function of the iid random variables is
defined on the measure-determining class of functions by the relation
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where

The counting Poisson process is defined by the intensity

The drift parameter      is defined by

The following corollary concerns the case where the state space E is finite.

COROLLARY 1 The increment process (2.2) with a finite number of jump
values:

converges weakly to the compound Poisson process (3.1) determined by the
distribution function of jumps:

The intensity of the counting Poisson process is defined by

and the drift parameter is given in (3.6).

Example. Let us assume that the ergodic process takes values
in E = {1,2}, and has generator matrix Q,

The transition matrix of the embedded Markov chain is
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Thus, the stationary distributions of and are respectively:

Now, suppose that, for each the random variables
take values in with probabilities depending on the state

i.e., and
for

We have

where
For the limit process, we have , thus

with
Let us now take:

Then we get and figure 1 gives two tra-
jectories in the time interval [0,4500], one for the initial process and the other
for the limit process.

13.4 Increment Process in an Asymptotic Split Phase
Space

The switching Markov process is here considered in the series
scheme with a small series parameter on an asymptotic split phase
space:

where is a compact measurable space. The case where V is a finite set
is of particular interest in applications.

The generator is given by the relation

The transition kernel has the following representation

where for and
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Figure 1. Trajectories of initial and limit processes, and of the drift.

with the stochastic kernel representation

The stochastic kernel is linked with the split phase space (4.1) as
follows

In the sequel we suppose that the kernel is of bounded variation, i.e.,

According to (4.4) and (4.5), the Markov process spends a
long time in every class and the probability of transition from one class to
another is in

The phase merging scheme [Korolyuk, 1999] is realized under the condi-
tion that the support Markov process defined by the kernel

is uniformly ergodic in every class with
the stationary distributions

Let us define the merged function
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By the phase merging scheme [Korolyuk, 1999], the merged Markov pro-
cess converges weakly

to the merged Markov process defined on the merged phase space
V by the generating kernel

The counting process of jumps, noted can be obtained as the following
limit [Korolyuk, 1995]

THEOREM 2 Under the Assumptions A2-A5, in the phase merging scheme
the increment process with Markov switching in series scheme

converges weakly to the additive semimartingale which is defined
by its predictable characteristics,

the modified second characteristic converges to

where

And the predictable measure is

where
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The semimartingale with predictable characteristics (4.12) and
(4.14), can be represented in the following form

or, in the equivalent increment form

The compound Poisson processes are defined by the generators

and are the counting Poisson processes characterized by the intensity
It is also defined explicitly by

for fixed        where are iid r.v.s with common distribution
function defined by the measure

The drift parameter is given by

In applications, the limit semimartingale (4.15) can be considered in the
following form

where is a martingale fluctuation. The predictable term in (4.17) is a lin-
ear deterministic drift between jumps of the merged switching Markov process
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13.5 Continuous Additive Functional
We consider an additive jump functional with semi-Markov switching in a

Poisson approximation scheme depending on the small series parameter
namely

where is a family of Markov jump processes in
the series scheme defined by the generators

Assumptions (C)

The switching semi-Markov process is uniformly ergodic
with the stationary distribution

(C2:) Approximation of the mean jump

and is bounded, i.e.,

(C3:) Poisson,approximation condition

for all and the kernel is bounded for all
i.e.,

The negligible terms in (5.5) and (5.6) satisfy the conditions

(C1:)
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for all

(C4:) Uniform square-integrability

where the kernel is defined on the measure-determining class
by the relation

(C5:) Cramér’s condition

THEOREM 3 Under Assumptions C1-C5, the additive functional (5.1) con-
verges weakly to the CPPD defined by the generator

where

and

The additive jump functional (5.1) in the Poisson approximation scheme
can be considered with the semi-Markov switching in the split state space (see
Section 4, Theorem 2).

Due to both the representation (5.11)–(5.13) of the limit generator, and the
approximation conditions C2 and C3, the small jumps of the initial functional
are transformed into the deterministic drift

The big jumps of the initial functional (5.1) are distributed following the
averaged distribution function
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with the intensity of jump moments The limit Markov process has
the representation where the Markov process has
the following generator

13.6 Scheme of Proofs
Let us give here the main steps of the proofs in the case of the continuous

additive functional given in (2.3).
The weak convergence for additive functionals with semi-Markov switching

is considered here as in our previous paper [Korolyuk, 2002] in the setting
of the books by Jacod & Shiryaev [Jacod, 1987] and Ethier & Kurtz [Ethier,
1986].

The semi-Markov switching requires new approach based on the compen-
sative operator of the Markov renewal process, see [Sviridenko, 1989]. The
additive jump functional (5.1) is first considered as an additive semimartingale
defined by its predictable characteristics [Jacod, 1987; Liptser, 1989; Liptser,
1991; Borovskikh, 1997; Çinlar, 1980].

The main steps of proofs include: the construction of the predictable charac-
teristics of the semimartingale the construction of compensative operator
of the extended Markov renewal process, convergence of predictable charac-
teristics, and identification of the limit process.

LEMMA 1 Under the assumptions of Theorem 3, the predictable character-
istics (see [Jacod, 1987], Theorem VI.3.31) of the semi-
martingale

are defined by the following relations:

The modified second characteristic is

The predictable measure is
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where means the transpose of vector

Note that and satisfy the negligible condition (see [Jacod, 1987],
Lemma VI.3.31],

In what follows, it is sufficient to study only the convergence of
where

In the sequel the process will denote one of the above predictable char-
acteristics

The following auxiliary processes will be used:

The extended Markov renewal process is considered as a three component
Markov chain

where and and

We are using here the notion of compensative operator introduced by Wentzel
& Sviridenko (see [Sviridenko, 1989]).

DEFINITION 1 ([Sviridenko, 1989]) The compensative operator of the
extended Markov renewal process (6.8) is defined by the following relation

where
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Let be a family of semigroups determined by the
generators

LEMMA 2 The compensative operator (6.10) of the extended Markov re-
newal process (6.8) can be defined by the relation

The proof of Lemma 2 follows directly from Definition 1.

LEMMA 3 The extended Markov renewal process (6.8) is characterized by
the martingale

In what follows the martingale property will be used for the process

where
Note that the following relations hold:

and

The random numbers are Markov moments for

LEMMA 4 The process (6.17) has the martingale property

Note that the process is not a martingale since it is not
The next lemma is basic in the proof of the compact containment

condition for the additive functionals (Compare with Lemma
3.2 [Ethier, 1986]).
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LEMMA 5 The process

has the martingale property for every i.e.,

The algorithm of Poisson,approximation given in Theorem 1 provides the
asymptotic representation of the compensative operator.

LEMMA 6 The compensative operator (6.13) applied to function
has the asymptotic representation

where

And the negligible operator is defined as follows

where

Note that the remaining term in (6.21) is computed by using the relation

LEMMA 7 A solution of the singular perturbation problem

is given by the generator
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The negligible term in (6.28) is represented as follows

The following compact containment condition together with the submartin-
gale condition (see [Korolyuk, 2000]) provides the compactness of the family

LEMMA 8 The family of processes with
bounded initial value satisfies the compact containment
condition (see [Ethier, 1986])

The completion of the proof of theorem is realized by the scheme described
in our previous paper [Korolyuk, 2000], by using Theorem VIII.2.18, in Jacod
& Shiryaev [Jacod, 1987].
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in the context of adaptive model selection and relate these results to Bayesian
estimation.

Keywords: Model selection, penalized estimation, Rosenthal type inequalities, ill-posed
problems.

14.1 Introduction
In many situations we require estimating a certain function a given

Hilbert space, based on indirect observations
when A is an ill posed operator. That is, when A does not have an inverse or
when its inverse is not continuous.

Here is assumed to be a zero mean i.i.d. sequence of generally non
bounded random variables which accounts for a perturbation of the true value

and is assumed to be a fixed set of observation
points.

As A is ill posed, searching for the solution based on the noise corrupted
observations is useless. It is usual to look instead at solu-
tions that not only adjust to the observations but are regular as defined by a
given functional Thus we search for the solution of the minimization
problem
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here and is a regularization parameter
which must be chosen according to some criteria. Typically methods such as
the L-curve methods [Engl & Grever, 1994] or Morozov’s discrepancy prin-
ciple (see for example [Frommer & Maass, 1999]) in the least squares case,
or statistical methods such as PMSE (Predictive mean square error) or cross-
validation are used (for example see [O’sullivan, 1996]). Equation (1.1) also
includes most estimation schemes based on entropy methods [Gamboa & Gas-
siat, 1997], [Gamboa, 1999].

In practice however (1.1) is hardly ever considered. Indeed solutions are
seeked for in finite dimensional closed subspaces of H.
Normally, the restricted problem is also ill conditioned and must be regular-
ized. This yields a sequence of closed subspaces indexed by a
colletion of index sets, and a sequence of regularization parameters An
important problem is thus how to choose a “correct” subspace based on the
data and how to interpret the sequence of in such a choice.

We shall refer to the penalized model selection framework developed in a se-
ries of works by Birgé and Massart [Barron, Birgé & Massart, 1999] (see also
[Birge & Massart 2001], [Birgé & Massart, 1998],[Massart, 2000]) based on
the idea of sieves due originally to Grenander [Grenander, 1981]. Related ideas
are also developed by Vapnik [Vapnik, 1998] in his Structural Risk Minimiza-
tion setting. This is a statistical point of view and solution choice is compared
to optimal rate estimation over certain classes of functions.

Basically, the idea is to penalize high dimensional spaces. Intuitively, esti-
mation will be better if is large, but then A will be harder to control (this
will be true even if the operator is not ill posed). Penalization should be chosen
in such a way as to obtain almost optimal results. That is, the chosen solution
should be the (almost) best among all possible choices of subspaces for

Many authors have addressed the problem of simultaneous discretization-
projection and regularization for ill posed problems (see for example [Kilmer
& O’Leary, 2001], [Maass et al, 2001], [Neubauer, 1998], [Solodky, 1999]). If
regularization is done by projection (truncated S.V.D.), the problem is essen-
tially that of determining a “good” subspace. This can be done by selecting
a cutoff point or by threshold methods. As will be seen this amounts to an
appropriate selection of a penalization term for the dimension. Choosing the
right subspace will be called model selection.

If regularization is done by Tikhonov [Tikhonov & Arsenin, 1998], a prob-
lem cited by many authors is whether the appropriate regularization parame-
ter for the projected solution is also appropriate for non projected one. From
a model selection point of view, the problem is stated as minimizing a cer-
tain contrast function over a certain parameter space for each dimensional
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subspace and then choosing the best subspace, corrected by the appropriate
penalization term.

The main goal of this article is to present simultaneous discretization-regula-
rization in an adaptive fashion, based on the ideas of model selection and to
interpret solutions in a Bayesian point of view, considering a prior distribution
over the family of models and a suitable prior over all possible solutions in a
given model.

We start with a short review of the main ideas of model selection, as devel-
oped by Birgé and Massart. We then describe minimax estimation bounds for
ill posed problems, and finally apply model selection techniques to ill posed
problems.

In Section 14.5 penalized minimum contrast estimation is presented in a
Bayesian framework.

In the last Section we discuss a different choice of the regularization func-
tional, namely J(·) such as as proposed by Aluffi-Pentini et al.
[Aluffi-Pentini et al, 1999]. It can be seen that this estimator, for an loss
function is actually soft thresholding [Kaliffa & Mallat, 2001].

14.2 Penalized model selection [Barron, Birgé & Massart,
1999]

Consider the direct problem of estimating a function based on
observations

where as before we assume to be a fixed design (actually we
could consider the more general problem of the white noise framework). Al-
though not specified, usually we associate the above problem to an orthonormal
basis The problem is then analogous to selecting the correct param-
eters of function     over this basis. This is usually done by minimizing a certain
discrepancy functional over the observations. Function is called the loss
function and is called the empirical risk func-
tion, so actually the idea is to find      that minimizes the empirical risk. If we as-
sume the above strategy leads to

with If is known beforehand then
where for each What happens if we do no know

One possibility is estimating for in a certain subset and compare
As is not necessarily equal to the

first term controls this error. This is the typical bias-variance decomposition.
If the function is sufficiently regular, for example if



302 RECENTS ADVANCES IN APPLIED PROBABILITY

then is known and it turns out that
This suggests searching until this bound is obtained (if is too big the
variance term will be too big, if is too small the bias term will be too big).
However, if is not known, underestimating this parameter will lead to a bad
choice of and the risk will be too big. If we overestimate we will force the
risk to be too small which is known as overfitting (we adjust our data only).

Adaptive model selection is a technique which penalizes the dimension of
the estimating subset (considering a set with

in such a way that if we choose by minimizing

for a certain loss function, then, there exists a constant K such that

Usually where and is a sequence which
is incorporated in order to control the complexity of It is chosen so that

If the number of subsets with equal dimension is small, i.e. if
then it is enough to choose

If the number of subsets with equal dimension is big, for example in the
problem of complete model selection, must be chosen non constant. In-
deed, following [Barron, Birgé & Massart, 1999] assume we choose among all
subsets of the set In this case the cardinality of all models with
dimension is equal to

as the cited authors show in Lemma 6. This implies that a good choice is
The authors further show that in fact this choice yields

the hard threshold estimator of Donoho and Johnstone [Donoho, 1995].
Actually, model selection allows for much more general contrast functions
based on the empirical distribution, which may yield the problem non lin-

ear. Think, for example, of the correct choice of a neural network, or maximum
likelihood estimation for non Gaussian error distribution. The results cited in
equation (2.1) are quite general and include these cases provided the contrast
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and the family of subspaces satisfy certain conditions (Theorem 7.1 [Bar-
ron, Birgé & Massart, 1999]).

An important issue is that equation (2.1) is non asymptotic and is useful if
the choice of the penalization term yields optimal results, i.e. minmax estima-
tion rates and constants. Based on these ideas we shall see that the bounds in
(2.1) can be obtained in the ill-posed case, and compare penalized estimation
to optimal linear and minimax estimation in this case.

As we mentioned in Section 1, we refer to the fixed point design problem.
Optimal results for this problem based on adaptive model selection in the well
posed case are given by [Baraud, 2000].

14.3 Minimax estimation for ill posed problems
Assume A to be a known, linear operator Hilbert spaces

with inner product and norm
Our aim is estimating given the set of indirect observations

for a fixed point design which are assumed to follow the
model

Here is a centered and i.i.d sequences of r.v. with finite     moment
and variance As we approximate in
terms of some orthonormal basis of can be where

stand for the Fourier coefficients of with respect to the given
basis. The choice of a finite M in a data driven fashion is part of the problem
we address here.

We assume also that there exists a basis of such that
with and This happens if, for example, A admits a

Singular Value Decomposition.
Let be a colection of index sets and let

be the sequence of closed linear subspaces of
with dimension

We also need some notation concerning the fixed point setting. For
set and Also let

be the Gram matrix associated to over Set and
define Let



304 RECENTS ADVANCES IN APPLIED PROBABILITY

Finally set and

Then the estimation problem is equivalent to estimating from

In this problem the noise is not white. If for all is diagonal
(which occurs if the basis is orthogonal for the fixed design), then it will be
uncorrelated, so that if the original noise is Gaussian then will be an inde-
pendent sequence. Let then we also have which tends
to infinity as Thus the problem is transformed into a noisy problem
with dependent and growing variance noise.

An estimator for will be called linear if with C a given
matrix.

If for restricted to is a quadratic functional, the resulting esti-
mator is linear. This relates linear estimators to quadratic regularization func-
tionals. In the rest of this Section we discuss efficient estimation for linear
estimators in the case is diagonal (for all This means assuming

In this case and we will say the estimator is linear if
We have

For fixed   the minimum risk is attained at [Tsybakov, 2000]

This factor cannot be calculated since it depends on

14.3.1. Minimax estimation over ellipsoids
An important problem is thus giving the minimum risk over a family of

functions with prescribed regularity. The next example, develops these ideas
for a specific family of functions. Set equal to the set of functions

such that
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The linear minimax risk           over is the minimum linear risk over
the worst case in this set for each case

and the minimax risk over considering all estimators linear and non linear,
is

An estimator that achieves the lower bounds is called a linear minimax estima-
tor (respectively a minimax estimator).

Let

where

The next result is due to Pinsker [Pinsker, 1980].

THEOREM 7 Let  be a non-decreasing sequence of non-negative num-
bers such that and let for each Then the linear
minimax estimator is given by and

Also, if

then

This result gives minimax rates for linear estimators for this family of func-
tions and gives conditions under which minimax linear rates are asymptoti-
cally the best possible rates. However, the above results depend on a known
sequence In general, when dealing with real data this kind of informa-
tion is not available. The problem is to develop strategies based only on the
data.
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We may consider it convenient to restrict our attention to linear estimators
over a certain subset For example, when considering Pinsker weights

with in a certain set. Or

which corresponds to the Tikhonov-Phillips weights.
In this case, in the spirit of the above results, a linear estimator will be

asymptotically efficient if

Of course, when estimating, we do not know how to choose good weights, or
for that matter a good estimating set Estimators are adaptive if, only
based on the data, they are able to achieve efficient rates.

14.4 Penalized model selection for ill posed linear
problems

To get a flavor of penalized model selection, in this Section we develop
two examples. The proofs are rather technical so they are given in the Ap-
pendix. These results say how penalization terms must be chosen, in terms of
the dimension of the underlying subspace. They also say, that under additional
technical conditions these results are good, in the sense they achieve optimal
rates. We stress that what we are doing is controlling complexity by means
of dimension. However, the ill posedness, as measured by the sequence
must be considered in this control.

The proof of Theorems 8 and 9 below are based on Ronsenthal type inequal-
ities. These results can be improved by giving exponential rates and controlling
the complexity of the spaces in terms of a “covering” number for the
and norms, but we have rather not included this additional complication.
Our proofs follow closely those of [Baraud, 2000].

We will study two situations:

(A.) When the Gram matrix (that is, when the basis is or-
thonormal for the given fixed point design). In this case a
given parameter space. Although the general case with a nondiagonal
Gram matrix could be dealt with in this situation, it complicates notation
and doesn’t really add any further insights to the problem. This case is
studied in the simpler setting below.
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(B.) When the estimation scheme corresponds to the projection estimator. In
this case, we do not require to be diagonal, but a certain restriction
is imposed on its eigenvalues. This kind of restriction is also found in
[Kaliffa & Mallat, 2001] when discussing almost diagonal estimation.

14.4.1. First case
As in the above setting, consider linear estimators defined by the expression

for Of course then For this
family of estimators we have, for fixed    and  that

The goal is then finding    and such that the solution is optimal over a
given set of parameters We assume for a given index set

and that We also assume that for each is a
subset of

For set

As in [Tsybakov, 2000] we shall consider the following contrast, based on
the risk function:

For each fixed    set

We have
We now introduce the following penalized version of given by

where will be defined below.
Set We have the following result

THEOREM 8

Assume is such that there exists with

Assume
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Assume

Assume

Set

Set

Let be such that

Assume

for

Then for a certain which depends on the distribution of  and on
constants A, B, and

REMARK 14.4.1 The assumptions over the regularizing coefficients
are technical and are given in order to control fluctuations over set

REMARK 14.4.2 The inclusion of term is necessary as the number of
terms in the sum over with the same dimension might be big.

REMARK 14.4.3 The contrast can be written as

and with for an given constant
as may be unknown. In this case however we might be over penalizing. If
is finite and sup then and can be chosen from the
data (see equation (4.12)).

REMARK 14.4.4 If   the bounds are as in the usual regression prob-
lem. Moreover if sup and
(ordered selection) the bounds are as in [Tsybakov, 2000].

REMARK 14.4.5 If the penalization term is com-
parable to the minimum risk, this yields the estimation is efficient modulo a
constant.
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14.4.2. Second case

In this section we are interested in studying projection estimators: that is
if and if

For a given linear operator define, for the usual eu-
clidean norm

Let This term will play an important role in the proof
of a result analogous to Theorem 8. Basically, we will assume that

Heuristically, we can argue that as the number of ob-
servations grows, the associated Gram matrix tends to the
identity matrix, for, as we recall is an orthonormal basis for In fact, we
shall require for the proof a stronger condition than the one suggested above,
namely that

This condition, once again can be argued by the above heuristics, as asking
tnat the Gram matrix be “almost” diagonal.

and

As before, we may consider the estimation scheme in terms of contrasts.
Let and Set,

where is defined in Section 3. Of course, minimizing is setting
and then It will be more convenient however to consider

instead, and in this case the minimum will be
Now consider,

and define

If we identify with the sequence of its Fourier coefficients over
basis the estimator of will be We have the following
result:

We also require some additional notation. Set
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THEOREM 9 Assume Assume (4.6) is satisfied.  Set
with Assume is such that there

exists with

Assume

The proof of the last result follows very much as in [Baraud, 2000], and is
given in the Appendix.

REMARK 14.4.6 The inclusion of term  is in order to assure that

Usually for non ordered selection over a finite

set of possibilities this term is chosen as (see Section 2).

REMARK 14.4.7 If is diagonal, the penalization can be writen as
This case is simpler than the one considered in Theorem

8 as the problem is really discrete, so constants can be estimated. Departure
of the penalization from the one given above depends on the eigenvalues of

This introduces the idea of almost diagonal estimation as described in
[Kaliffa & Mallat, 2001]. In the diagonal case, the problem is equivalent to
hard thresholding estimation [Barron, Birgé & Massart, 1999], which yields

the choice of index if These rates are optimal in the

Gaussian case [Kaliffa & Mallat, 2001].

REMARK 14.4.8 Assume that we look at the problem (in the diagonal case)

with and
As above, it can be seen that the minimum is obtained ([Barron, Birgé & Mas-

sart, 1999]) for In other words,
which is the solution of the problem as defined above. It is remarked that in
(4.11) the penalization is just as in the problem with direct observations. How-
ever, although we can see that both problemas are equivalent we do not have
an equivalent to Theorem 9 for the contrast

in the general case

Then,
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REMARK 14.4.9 If we assume certain regularity conditions over   namely
both the ordered selection and the truncated selection yield

efficient rates. In the first case, the choice of the penalty yields the quadratic
risk smaller than

where

14.4.3. Choosing the penalty
Following [Birgé & Massart, 2001a], [Lavielle, 2001], in the ordered selec-

tion case we can choose in the penalization function from a discrete family.
Indeed, we have the following result

LEMMA 1 There exists two sequences   and
defined by

such that

In order to choose the “correct” dimension we inspect the longest inter-
vals in a sense the most robust as they depend less on small changes
of the penalization parameter.

14.5 Bayesian interpretation

Assume, is That is to say each is If
we look at the likelihood of given we have

where ~ stands for proportional.
In terms of the discussion of Section 2, we have

So that minimizing
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is equivalent to maximizing the likelihood of the observations under an im-
proper uniform prior as suggested by Birgé and Massart [Birgé &
Massart 2001].

In a Bayesian framework selecting between two models is achieved by look-
ing at the Bayes factor (see, for example[Han & Carlin, 2000]), that is

Choosing such that for is exactly penalized estimation
as in (5.1). It is interesting to remark that in the above setting, model priors
are selected solely on the basis of their dimension: In ordered
selection typically which corresponds to a Geometric
prior. Binomial type priors, yield a heavier penalization, of order

for which corresponds to non ordered selection.
Poisson type priors yield penalizations of order

In the ill posed case, we look at the renormalized problem associated to
instead of the original problem associated to the observations This is done
in order to show the estimation scheme is correct. The priors then become
functions of instead of functions of the dimension In terms of
the contrasts, rather than looking at the discrepancy measure
we look rather at the empirical risk function associated to a linear estimator

That is, the contrast is chosen in such a way that its expectation is the
risk function plus a constant. Penalized version of these contrasts must take
into account the variance of the renormalized errors.

If we consider additionally a regularization term this amounts to
selecting that is, assuming the priors are not improper. If

must be chosen also we obtain

This is what is done in Section 14.4, Theorem 8.
We remark that in certain cases (see Remark 14.4.8) these penalizations are

equivalent to the ones given for the well posed problem based on the original
observations, that is, for the contrast Also see the discussion in
Section 14.6 below.

As shown in [Han & Carlin, 2000], improper priors for will ren-
der improper priors for as well, so that the Bayes factors are not defined.
However, a reasonable proposition seems to look instead at the ratio
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If doesn’t have to be chosen (other than its dimension which is controlled
by the problem amounts to minimizing

If is a quadratic functional of the unknown the resulting estimator
will be linear (including projection estimators). This of course corresponds to
a Gaussian prior distribution for these coefficients. From a numeric point of
view, quadratic functionals “boost” eigenvalues of by a factor of if

or by if Choosing the right is thus choosing the variance
of in such a way that the rates of optimal estimation are achieved.

This Bayesian point of view is also developed in [Loubés, 2001]. In this
work the author is interested in obtaining correct rates over ellipsoids of pre-
scribed regularity and thus chooses in order to obtain optimal
rates assuming known regularity. As regularity is not known beforehand, he
must consider a prior distribution over the set of possible regularities. This
prior, is again chosen in such a way as to assure convergence at optimal
rates.

In the next Section 14.6 we discuss and relate this with soft
thresholding estimators as in [Kaliffa & Mallat, 2001], although in this case
we consider a uniform prior over the set of all possible models

14.6 penalization

Consider, as in [Aluffi-Pentini et al, 1999] the problem of regularizing func-
tionals other than quadratic. These authors consider the problem

In the penalization context, the latter contrast assumes a uniform distribution
over the set of all possible and penalizes rather on the coefficients

associated to the Fourier expansion of over the basis
For the case this problem has an interpretation in terms of soft thresh-

old estimators [Kaliffa & Mallat, 2001].
As above, consider minimizing

for a certain which will be chosen below.
The solution to this problem for given is ([Loubés, 2001], [Loubés & Van

de Geer, 2001])
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Assume belongs to a set S, such that It can be seen
[Kaliffa & Mallat, 2001; Kaliffa & Mallat, 2001a] that in order to obtain
asymptotically minimax rates, in the Gaussian case,

where is the total number of coefficients whose variance satisfy a certain
condition [Kaliffa & Mallat, 2001].

In the penalization setup, the above is equivalent to considering
and Penalization over the dimension thus

acts to prevent indexes with big coefficients to appear. Again, in
Bayesian terms, the prior is an prior, weighted by in such a
way that it gives less weight to higher dimensions.

14.7 Numerical examples

We next show some numerical results for the projection estimator for or-
dered model selection. Examples are developed with the cosine basis over
[0,1] and the operator is defined by the sequence Noise is gaus-
sian with variance one.

In each case a series of coefficients are randomly selected for a fixed order
and then both order and coefficients are estimated from the data. The exper-
iment is repeated for order 5, 10, 15 and 20. In each case the algorithm is
allowed to select up to order 40. The number of observations is

The order is selected as discussed in section 4.3. The sequence of constants
is generated as in equation (4.12) for the whole sequence Then
the local maxima subsequence is chosen and the lower extreme of the longest
interval is selected as the appropriate constant. The selected order is the index
corresponding to the selected value. Another way is looking at the sequence
of index related to the local maxima. Typically index increase slowly and then
jump abruptly. The jump point is a good order pointer.

The figures show the original function, the observations and the reconstruc-
tion at the selected order. In the last example, the selected order is 13 although
the correct order is 20. The reconstruction for order 20 is also given. Clearly,
the reconstruction for the chosen order is better: the illposedness of the oper-
ator yields a not as good reconstruction for the correct order as for the chosen
order.
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Figure 1. Original function, observations and reconstruction. Original order is 5, selected
order is 4

Figure 2. Original function, observations and reconstruction. Original order is 10, selected
order is 9
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Figure 3. Original function, observations and reconstruction. Original order is 15, selected
order is 14

Figure 4. Original function, observations and reconstruction. Original order is 20, selected
order is 13



Penalized Model Selection for Ill-posed Linear Problems 317

Figure 5. Comparing original function to reconstruction using the correct order. Original
order is 20 (same example as Figure 3 ).

14.8 Appendix

Proof of Theorem 8:
Using standard arguments we have for any and

The basic idea behind the proof, is to bound (in probability) the fluctuations
of the random part of the contrast using adequate inequalities, which in our
case are Rosenthal type inequalities as in [Baraud, 2000].
Set fol-
lowing [Baraud, 2000] we shall bound this expression for all and

Let So that

First we deal with
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It is shown in [Tsybakov, 2000] that

Also, we have for all
Recall also that
Thus, for

On the other hand,

So that

The latter term is equal to

where, for any given is the matrix
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It is straightforward to see that

and for the usual Euclidean norm over

In Corollary 5.1, [Baraud, 2000] it is shown that for any matrix M
and

where
Let and set We have, for

Now we bound Set  and call

Set

So that for any
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It remains to bound the latter terms.
To begin with, set

the last inequality because is orthonormal under
Now set Assume is even and set

We have

Which allows us to deduce for each

With the above bounds we are ready to continue the proof. By our choice,
we have Let be such that

and set Let Choose
such that and

By our choice, we have
Then,
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Thus, if we set

By (8.1) and (8.2), for any given

and,
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Adding up, we have

Since for X positive we then have that

which yields the desired result.

Proof of Theorem 9:
The proof of this theorem is essentially as that of Theorem 8. Since there are
no weights to be chosen, the proofs are actually simpler. We follow closely the
proof of Theorem 3.1 in [Baraud, 2000].
Recall Also recall that

as defined in Section 3, where corresponds to the respective Fourier
coefficient of is an index set) in terms of the orthonormal basis Or,
in vector notation where is the projection of over
the subset Identify with its Fourier coefficients If

for some
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Thus if is the minimizer of we have, for any other

so that

Now,

where In the proof above, if is the identity for all
so that the last term does not appear. Set we have
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Thus,

with and

In order to bound this last probability we have to bound and
for any

First, remark that for any

where is the corresponding matrix
and is the original error vector. It is straightforward to check that

And because is diagonal, we have

On the other hand,

Set for any matrix M, In Corollary 5.1, [Baraud, 2000] it is
shown that
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where Now, set

The inequalities for and end the proof, very much as in
[Baraud, 2000] (see the proof ot Theorem 8).

Second, we must bound This we shall
do in several steps.

First, set Recalling the definition of rewrite

The first term in the above sum

with As before, we have
and also that

For the second term

By assumption, we have
On the other hand, for any matrix Then
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Thus,

Finally, assuming

The rest of the proof now follows as in the proof of Theorem 3.1 in [Baraud,
2000] (pg. 484-485) (see the proof of Theorem 8).
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Abstract In this paper, we use the connection between the classic trigonometric Cara-
theodory problem and the maximum entropy Burg problem for a stationary pro-
cesses to obtain from an Operator Theory point of view: Levinson’s algorithm,
Schur’s recursions and the Christoffel-Darboux formula. We deal with a func-
tional model due to Arov and Grossman, which provides a complete description
of all minimal unitary extensions of an isometry by the Schur class, in order
to describe all the solutions of the Covariance Extension Problem and then we
obtain the density that solves the maximum entropy problem of Burg.

15.1 Introduction

A common problem in practice, is to obtain, as a result of any collecting
data process in time series studies, a finite complex sequence a nat-
ural number and try to known when such a sequence constitutes the first
covariance function coefficients. The mathematical formulation of the prob-
lem is: Under what conditions over there is at least a measure on the
unit circle such that:

We realize that in such a case we have that This
problem has a long history. In 1911, Toeplitz dealed with the case that the data
sequence is of the form he proved that if a solution exists then it is
unique. Problem (1.1), can be seen as a generalization of Toeplitz’s problem,
but now the solution, if it exists doesn’t has to be unique, therefore we have
two additional problems: conditions for the uniqueness and the description of
all the solutions. In 1940, Nairmark, studied the existence of the covariance
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extension problem, using Operator Theory techniques (cf. [Sz-Nagy, 1970]).
In 1988, Dym (cf. [Dym, 1988]) and 1989, Woerdeman (cf. [Woerdeman,
1989]) described partially the solutions. Since the solution of Problem (1.1)
isn’t unique, it is important to find the one which maximizes the Burg max-
imum entropy functional (cf. [Burg, 1975], [Castro, 1986], [Choi, 1986] y
[Landau, 1987]) defined as:

where is the density of a measure which is a solution of Problem (1.1).
In this paper, we approach to this problem from the point of view of Operator

Theory: we use Arov-Grossman’s model. We associate to the given finite set
of autocorrelation coefficients of a second order centered stationary

process X, an isometry V acting on a Hilbert space, and we prove that some
minimal unitary extension of V, generate a process X such that the spectrum

verifies

We use the Arov-Grossman’s model (cf. [Arov, 1983]) to describe all different
spectrum of X, verifying (1.2). The description is given by the 1-1 corre-
spondence between such set and a subset of the open unitary ball of
the set of all analytic and essentially bounded functions. We use some ideas
of Marcantognini, Morán and Octavio (cf. ([Marcantognini, 2000], [Marcan-
tognini, 2001]).

Furthermore, the density which solves the maximum entropy problem cor-
responds to

We describe all the densities in the Wiener class that are solution to the prob-
lem obtained by Dym (cf. [Dym, 1988]) and Woerdeman (cf. [Woerdeman,
1989]).

The same approach is used to obtain Levinson’s algorithm, Schur’s algo-
rithm and the Christoffel-Darboux formula (cf. [Arocena, 1990], [Bakonyi,
1992], [Castro, 1986], [Foias, 1990], [Kailath, 1986], [Landau, 1987], [Schur,
1986]).

15.2 Notations and preliminaries
Let denote the set of complex numbers and let denote the complex unit

circle which is the boundary of the
open unit disk of We write

is Lebesgue measurable and
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and denotes the square integrable (with respect to Lebesgue’s
measure, on Lebesgue measurable functions from to with the usual
norm and inner product denoted by and respectively. Define by

and recall that they form a complete orthonor-
mal basis for the Hilbert space As usual,
(respectively denotes the Fourier coefficient of
the function (respectively of the finite measure Also, is the
set of analytic functions, on such that its norm
is finite. For we set

Finally, we recall that the Wiener algebra on the unit circle
consists of all complex valued functions on the unit circle of the form

where Let be the
manifold spanned by

A sequence is said to be strictly positive definite if and only
if

If is a strictly positive definite sequence of complex numbers,
we can introduce an inner product in by setting, for and

As a consequence of (2.1) we have that is  – dimensional
Hilbert space. We define by

Clearly, is a linear operator and We, also conclude:

LEMMA 15.2.1 Let             a strictly positive definite sequence
of complex numbers and be the -dimensional Hilbert space
defined in (2.2). Let be subspaces
of and set defined by
Then,

(a) in an isometry acting on the space

(b) The orthogonal complement of  and the orthogonal
complement of  have dimension 1. Furthermore,
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and are spanned by and re-

spectively.

(c) where is the Fourier coeffi-

cient of

Proof: (a) is immediate from (2.2). In order to prove (b), we recall that the
operator defined in (2.3) verifies and since
if we have that if and i.e.
whence This shows that is injective. Finally, since is finite
dimensional we obtain is invertible. Set Let and

then

Since there exists such that so
Therefore, is a 1-dimensional subspace of moreover,

is spanned by that is,

The result concerning can be proved in a similar fashion.
In order to prove (c), we realize that

and therefore

REMARK 1 Let We remark that is a subspace of
and

so is the compression of  to Thus if

Also, with the notation of lemma 15.2.1, it is easy to check that
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The following lemma establishes a connection between and and also
shows where the zeros of both functions lie.

LEMMA 15.2.2 Given let be a strictly positive definite
sequence of complex numbers and the -dimensional Hilbert
space defined in (2.2). If  is the operator defined in (2.3) then

(a)

(b) that is; where
is the Fourier coefficient of

(c) All the zeros of and lie in and respec-
tively.

Proof: First, (a) follows from the assumption that and it can be

written as so
(b) can be obtained as a consequence of (a) and lemma 15.2.1. Finally, let us
prove (c). Suppose is a zero of There exists such that

or equivalently,

Since is orthogonal to and is an isometry,

which yields

whence, as required. The result concerning to the
zeros of can be proved in a similar fashion.

15.3 Levinson’s Algorithm and Schur’s Algorithm
Let be a positive finite measure on and be the space of all

measurable and square functions. Let be the orthonormal
system obtained by applying the Gram-Schmidt process to It is a
classic result that for the following recurrence equations due to
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Szegö (cf. [Bakonyi, 1992], [Castro, 1986], [Choi, 1986], [Kailath, 1986]) are
verified:

where is the monic polynomial associated to
and

The following result is analogous to (3.1).

PROPOSITION 15.3.1 For each  there exists such
that

where and all members in the formulas are
the same as in lemma 15.2.1. Furthermore,

Proof: Following remark 1 we have the following decompositions

and,

hence,

Thus,

which leads the desired result:
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where The other recursion of (3.2) follows easily from
the equality

To obtain let us rewrite (3.2) in the form

thus

using the fact that is an isometry and that is orthogonal to we find

The coefficients are called the Schur parameters , this name comes from
the classical Schur algorithm (cf. [Bakonyi, 1992], [Kailath, 1986], [Landau,
1987], [Schur, 1986]). Indeed, setting and using Levinson’s
algorithm we can rewrite as

15.4 The Christoffel-Darboux formula
If then P is a polynomial function and we can evaluate

for Let and consider be defined by
Clearly, is a linear function. The next proposition shows

that is continuous, which implies that can be considered a re-
producing kernel space.

PROPOSITION 15.4.1 Let and then

where and are as in lemma 15.2.1.

Proof: If we have It is easy to check
that
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which shows that the linear function that associates to its value at
is continuous. The second equation is an easy consequence of the fact

that is an orthonormal system for
As a consequence of Proposition 15.4.1, we have:

THEOREM 15.4.2 (The Christoffel-Darboux formula)
If then

where are defined as in lemma 15.2.1 and is defined as in proposi-
tion 15.4.1.

Proof: Let and Using the definition of and the fact
that is an isometry, we obtain that

Using the fact that we obtain
the orthogonal complement of the subspace with

respect to the -dimensional space On the other hand,
and since both polynomials have different degree they

generate the at most 2-dimensional space Therefore,

By (4.1), and also,

which yields

The desired result comes easily from the fact

15.5 Description of all spectrums of a stationary process

The main result of this section is the description of the set of all measures
absolutely continuous with respect Lebesgue’s measure on and such that

where is a given strictly positive
definite complex sequence.

We require some notions of Harmonic Analysis of Operators on Hilbert
Spaces (cf. [Sz-Nagy, 1970]).
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Let be a Hilbert space, two closed subspaces of and
an isometry acting on We say that a unitary operator U acting on a Hilbert
space is a unitary extension of the isometry V if and only if is a closed
subspace of and If in addition, we say
that U is a minimal unitary extension of V. We identify two minimal uni-
tary extensions of V, U and acting respectively, on the Hilbert spaces
and if and only if there exists a unitary operator such that

and Let be two closed subspaces of the
Hilbert space denotes as usual the set of all bounded linear op-
erators from to An operator valued function is
a contractive analytic function if and only if and there ex-

ists a sequence such that

where the convergence is in the operator norm. The Schur’s class,
is the set of all contractive analytic function The Arov
and Grossman functional model (cf. [Arov, 1983], [Marcantognini, 2000])
establishes the existence of a bijection between the unitary extension of an
isometry acting on indistinguishable from the geometric
point of view, and the class of Schur where are the defect
spaces of V. Given a minimal unitary extension of the isometry V,

defined by

is a function in the Schur class, and the relation is bijective. When U and
are related as above, we denote and

We use this theory for the particular case when
and We recall that in this case and

are 1–dimensional subspaces of and therefore there exists a bijection
between the Schur class and the closed unitary ball of
In the other hand is a minimal unitary extension of if and only
if is a minimal unitary extension of Consequently, there
exists a one to one correspondence between the minimal unitary extension
of the isometry and the functions of such that in
order to recall the relation between a fixed H and a minimal unitary extension

we set and

LEMMA 15.5.1 For each and then

where is the isometry and is the function given in lemma 15.2.1.
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Proof: Let

Then thus

and

The result follows from and

We will use the following lemma, the proof can be seen in [Arov, 1983] or
[Marcantognini, 2000].

LEMMA 15.5.2 Given such that If
is the minimal unitary extension of related to H then,

The following lemma establishes a useful relation between and H.

LEMMA 15.5.3 If  then

Proof: We use that: if and and
then,

to check that
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exists. Hence

thus, we obtain

Let

therefore, if we apply to both members of equality (5.2) the operator

and take the scalar product with we obtain

>From lemma 15.5.1 we have

Therefore and

thus

The result follows easily.
As seen in the previous lemma, is simpler than the others cases. We

study such a case in the next proposition.

PROPOSITION 15.5.4 If is the spectral measure related to the
minimal unitary extension of  associated to then,

where
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Proof: As consequence of lemma 15.5.1 and lemma 15.5.2 and the Spectral
Theorem we have that

Whence and therefore

The next proposition shows that there are some spectral measures of
the minimal unitary extension of that are absolutely con-

tinuous with respect to

PROPOSITION 15.5.5 Given such that let
be the spectral measure of the minimal unitary extension of

associated to H. If then verifies:

Proof: Let then by lemma

15.5.2 we have that

We recall (5.1) and we obtain



The Arov-Grossman Model and Burg’s Entropy 341

From lemma 15.5.3 and the Spectral Theorem we conclude that

The following corollary gives a necessary and sufficient condition in order
that be absolutely continuous with respect to Lebesgue’s measure.

COROLLARY 15.5.6 Given with let the
measure defined in the previous proposition. The measure is absolutely
continuous with respect to the Lebesgue measure on with density given
by

if and only if the set has Lebesgue measure zero and

Furthermore, if H is inner then is singular with respect to Lebesgue’s
measure on

Proof: Let with We know from (5.3) that
and then the set
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has Lebesgue measure zero. Therefore, from the last proposition

Moreover, is positive a.e. if and only if the set
Lebesgue measure zero.

has

If H is inner, let

Since it results

and so is singular respect to Lebesgue’s measure on (cf. [Rudin, 1979]).

REMARK 2 a.e. then is very easy to check that the Lebesgue’s
measure of the set is null and

15.6 On covariance’s extension problem
First, we state the covariance’s extension problem: Given and

complex numbers with and
find a nonnegative finite measure on such that

From the fact; we obtain if and only if
in fact,
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The following proposition gives the conditions on in order that
there exists of a nonnegative finite measure on such that (6.1) is satisfied.

PROPOSITION 15.6.1 Let If with and
such that there exists a positive measure absolutely continuous

with respect to Lebesgue’s measure on with
Then is strictly positive definite sequence.

Proof: Since there exists a positive measure absolutely continuous with re-
spect to Lebesgue’s measure on such that for

On the other hand, denote where is a positive Lebesgue’s integrable
function, let and assume

If then a.e., that is there exists
a Lebesgue measurable set A such that (where denotes the
Lebesgue measure of A) and Let

if Q is not the null polynomial then
and so, with then

The main result of this section is the following theorem. It is important,
since characterizes a strictly positive definite sequence as a finite number of
Fourier’s coefficients of a measure which is absolutely continuous with re-
spect to Lebesgue’s measure. However, the theorem also gives the Radon-
Nikodym derivate of establishing a 1-1 correspondence between the den-
sities and a subset of the open unitary ball of Finally, we present a
factorization formula.

THEOREM 15.6.2 Let and the following condi-
tions are equivalent:

i)
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ii) There exists a positive Lebesgue ’s integrable function on such that

Moreover, given such that the set
has Lebesgue measure zero and we define

then

Furthermore, the relation (6.2) establishes a bijection between all the power
spectrum that solves the covariance extension problem and the
verifying that the set has Lebesgue measure zero and

Finally, the following factorization formula holds:

Proof: As a consequence of proposition 15.6.1 if statement (ii) is valid then (i)
is true. Assume that (i) holds and let be the isometry defined
in lemma 15.2.1. Given such that the set

has Lebesgue measure zero and let
be a minimal unitary extension of associated to H. Clearly, if
and is the spectral measure of the unitary operator then,

as a consequence of the Spectral Theorem

where The desired result is a consequence of corollary
15.5.6. The others statements of the theorem can be easily proved.

The following corollary shows that the set of all solutions of the Covariance
Extension Problem that we have obtained contains strictly the set of all densi-
ties in the Wiener class (cf. [Dym, 1988], [Woerdeman, 1989]). The proof is
very easy.

COROLLARY 15.6.3 Given such that the set
has Lebesgue measure zero and

define
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Then, if, and only if,

In 1993, Gabardo(cf. [Gabardo, 1993]) defines the function

where and is defined as in proposition 15.4.1. He proves that

Furthermore, he shows that when
the function maximizes the Burg maximum entropy functional. The
following corollary shows that the function can be obtained from (6.2) for
some H.

COROLLARY 15.6.4 Given the functions can be obtain from
(6.2), in the particular case, when H is the constant function

Proof: Let From proposition 15.4.1 and the Christoffel-Darboux
formula we obtain that

and

If we assume that are the correlations of a second order
stationary process then
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that is , the sequence is strictly positive definite. As a con-
sequence of the previous theorem there exists an integrable function such
that

In this case, is called the spectrum of the process X. According to (6.4) is
immediate that the application establishes a unitary isomor-
phism between and Whence,

Let and be a subspace of The
innovations are defined by

and they verify on account of (6.5) it is readily obtained that

The last equality is clear that the are called partial autocorrelation coeffi-
cients when they are as in formula (3.2), known as Levinson’s algorithm. We
set then

Using formula ( 3.3) it follows that

15.7 Burg’s Entropy

In this section we use the functional model of Arov-Grossman (cf. [Arov,
1983]) to find the density of a second order stationary process that solves the
maximum entropy Burg’s problem (cf. [Burg, 1975]).

The next theorem gives the solution of the main problem stated in the intro-
duction of this paper.

THEOREM 15.7.1 Let and be the first autocorre-
lations of a second order stationary process then the density
of X which maximizes Burg’s functional restricted to the conditions
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is

Proof: Let and be the first autocorrelations of a
second order stationary process We use theorem 15.6.2 to
conclude that there exists a measure absolutely continuous with respect to
the Lebesgue measure on that satisfies the conditions

Then it has a density where the density is the one stated in the last
theorem and such that the set
has Lebesgue measure zero and Therefore, if there
exists a maximum of it has to be of form with H verifying the previous
conditions. Thus, we have that

therefore

where

>From Jensen’s inequality and Cauchy’s formula we obtain
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REMARK 3 Other entropy functional different to the Burg was used by Ga-
bardo (cf. [Gabardo, 1993]). He proves that if is a singular
measure) satisfies (1.1), then

Another way to characterize the solution of the maximum entropy problem,
is the one given by Arocena (cf. ([Arocena, 1990], [Arocena, 1990A]).) We
obtain such result as an easy consequence of the fact that if is the
minimal unitary extension of the isometry associated to then,

Therefore if where is the spectral measure of the
unitary operator then

Conversely, if (7.1) is true for a minimal unitary extension U of then U
corresponds to

We know from [Azencott, 1986] that the application is
a unitary isomorphism from to where

is the spectral measure of the process X. It is a known result that if
then there exists an autoregressive process given

by

with a white noise. The latter shows that the maximum entropy solu-
tion which is obtained when and has the form and
this is the spectral density of an autoregressive process of order
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Abstract We survey recent results in geometric analysis which explicitly involve both the
geometry of Riemannian manifolds and probability. We include developments in
spectral geometry, the study of isoperimetric phenomena, comparison geometry,
minimal varieties, harmonic functions, and Hodge theory.
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16.1 Introduction

The first task of a survey concerning results in geometric analysis is to limit
the scope of the project by creating a theme which provides a focus and is of
interest to a reasonably large audience. The theme which runs throughout this
paper can be concisely stated: the material reviewed in this survey explicitly
involves both the geometry of (finite dimensional) Riemannian manifolds and
probability.

The second task of a survey concerning results which bridge a number of
topics is to choose a perspective from which to work. We choose to treat
geometric phenomena as primary in our organization of the material. Thus, the
paper is broken up into sections, each of which focusses on a specific category
of geometric problems. Inside each of these categories we discuss a variety of
related probabilistic results.

It is now common knowledge that there are a number of important con-
structions which tie together analysis, probability and geometry. For example,
associated to a Riemannian manifold there is a natural differential operator
(the Laplace-Beltrami operator), which is defined in terms of the underlying
geometry of the manifold, and in turn serves as the infinitesimal generator for
the natural diffusion process on the manifold (Brownian motion). Because the
Laplace operator is closely related to the metric, solutions of the fundamental
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partial differential equations and boundary value problems (Dirichlet problem,
heat equation, etc) and the associated constructions (spectrum, eigenfunctions,
etc) contain a great deal of geometric information related to the underlying
manifold. Because it is possible to use the path properties of Brownian mo-
tion to give probabilistic representations of the objects constructed to study
the fundamental boundary value problems, there is hope that the techniques of
modern probability can be brought to bear on questions involving the geometry
of the underlying manifold. History bears this out; the results which follow are
part of this record.

There are many connections between analysis, probability and geometry
in addition to those described above. All of these connections are united by
a common thread: The metric gives rise to objects belonging to each of the
three categories (eg, the Laplace-Beltrami operator, Brownian motion, the Rie-
mann curvature tensor). One moves between categories by constructing iden-
tities/inequalities in one category using the objects of another. We have orga-
nized the material to reflect this fundamental logic. More precisely, in each of
the sections that follow, we define a collection of geometric/analytic problems
by reference to a Riemannian metric. Citing relationships between the prob-
lems of a given section and modern probability (relationships usually afforded
by the metric), we sketch results which occur as corollaries, with implications
in both directions.

Given that all results depend on familiarity with the basic construction in
each of the categories, we include a short exposition of the material common
to all topics. It is hoped that in addition to fixing notation, this exposition
makes the paper relatively self-contained. Given that this is a survey, proofs
are for the most part omitted, with appropriate references sufficing.

The paper is organized as follows. In section 2 we establish notation that
will be used throughout the paper while reviewing the background material
in analysis, probability, and geometry. In section 3 we study the geometry of
balls and tubes in Riemannian manifolds. Much of section 3 revolves around
the study of the asymptotics of exit time moments of Brownian motion, al-
though we also review results invovling cover times and principal curves. In
section 4 we review results related to spectral geometry. While much of sec-
tion 4 is related to the relationship between Dirichlet spectrum and various
norms of exit time moments of Brownian motion, we also review material in-
volving coupling techniques and estimates for a variety of problems involving
a spectral gap. In section 5 we focus on topics related to isoperimetric phe-
nomena and comparison geometry. Again, we study results involving exit time
moments for Brownian motion, as well comparison phenomena involving tran-
sience/recurrence of Brownian motion. In section 6 we study minimal varieties
(ie varieties which arise as solutions to geometric variational problems). In sec-
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tion 7 we review material involving harmonic functions. Much of this section
is devoted to results involving the study of Martin boundaries and natural ex-
tensions to the theory of harmonic maps. Finally, in section 8 we review work
involving Hodge theory.

Because we have chosen to limit the scope and organize the material as
sketched above, we do not include many results which could certainly be
counted as explicitly involving modern probability and geometric analysis. In
particular, we have not included material involving the largely parallel theory
of random walks on graphs, nor have we included results which involve the (in-
finite dimensional) geometry of path spaces. We have not reviewed results us-
ing the Malliavin calculus, nor have we included material which involves pro-
cesses on Euclidean domains when that material does not clearly indicate that
there is an underlying geometric phenomena being studied. Most regretably,
we have not included material involving index theory where Bismut’s proba-
bilistic techniques have led to important results for both the geometry of Rie-
mannian manifolds and the geometry of their loop spaces (for those interested
in this material, see the survey [Bismut, 1986], the article [Jones, 1997] and
references therein).

As is clear from the outline of the paper, one could devote several volumes to
any one of the topics we survey (and others have). This survey is not intended
as a comprehensive review of any of the topics, let alone all of the topics.
Rather, we have attempted to provide enough information on each topic to give
the reader a feel for new results in the context of specific developmental trends.
Given limitations of space and time, decisions concerning what material to
include must be made. Given imperfect knowledge, there are bound to be, in
addition to the choices dictated by our choice of focus and obvious constraints,
a number of unintentional sins of ommision for which we apologize in advance.

16.2 Notation and Background Material

Throughout this paper, M will denote a smooth manifold
with Riemannian structure We will write for the space of smooth
functions on M. We will denote by TM the tangent bundle of M. As a point
set,

where is the space of tangent vectors to M at a vector space of dimen-
sion There is a natural (projection) map which associates to
a tangent vector the point at which it is a tangent vector
The space TM carries a natural smooth structure for which the projection map
is smooth; it is a manifold of dimension a vector bundle over M with
fiber at the vector space Smooth sections of the bundle TM are
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smooth maps which satisfy A smooth section of
the tangent bundle is just a smooth vectorfield on the manifold M.

If gives local coordinates near a point the
tangent space at is spanned by and the cotangent space at de-
noted is the dual space to and is spanned by (the collec-
tion of objects dual to We denote the cotangent bundle by it
is constructed as was the tangent bundle as a disjoint union of vector spaces:

The tangent bundle also carries a natural smooth structure; it si a manifold
of dimension

For we will denote by the exterior power of If I
is a and
then increasing} is a basis of As in the construction of the
tangent bundle, we can endow the disjoint union

making it a vector bundle of dimension We denote by

the smooth sections of the bundle of exterior powers (the on M).
Those interested in the details should consult any one of the many references
to this material, eg [Dubrovin, 1984].

Given a point the Riemannian metric is a nondegenerate quadratic
form on the space of tangent vectors at which varies smoothly in We will
often write the metric as by which we intend to communicate that it can
be viewed locally as an matrix relative to a choice of local coordinates.

Given two Riemannian manifolds and and a smooth map
we will denote by the induced map (derivative) on tangent

spaces: We say that M and N are isometric if there is
a diffeomorphism satisfying where is the pullback
operation:

We say that M and N are locally isometric if at each point we can find neigh-
borhoods of M and N which are isometric. We say that a Riemannian manifold
is locally flat if it is locally isometric to

Given a function and local coordinates as above, we can de-
fine a 1-form by the local formula This map, the exterior
derivative on functions, is defined similarly on all form bundles and denoted
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by The adjoint map (defined via the metric) will be denoted
by The Laplace-Beltrami operator is then invariantly defined
by

When the form dimension is understood, we will denote the Laplace-Beltrami
operator by

Acting on functions, with local coordinates as above, the Laplace operator
is given in terms of the metric by

where is the determinant of the metric and is the entry of the matrix of
the inverse of Riemannian metric There is a similar form for the Laplace-
Beltrami operator on forms (locally, the Laplace-Beltrami operator on forms is
given as a system).

The metric on M induces a volume form, denoted which in turn induces
a pairing on the space of compactly supported Let denote
the of the compactly supported with respect to
When M is compact, the Laplace-Beltrami operator is essentially self-adjoint
and thus admits a unique self-adjoint extension to When M is not
compact, the situation is more complicated. For those interested in the general
details the reference [Reed, 1978] provides the requisite functional analysis.

Letting act on the space of compactly supported smooth function on M,
denoted we will denote by the heat kernel on

We recall that is the smallest positive solution of the intial
value problem

where is the Dirac distribution with mass at
As is well known, Brownian motion is the diffusion process with transition

densities given by We will denote by the probability measure
weighting Brownian paths beginning at and by the corresponding expec-
tation operators. We denote by the operator semigroup acting on
continuous functions on M :
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where is the metric density. We note that gives the solution to the
Cauchy problem:

Analogous remarks hold in the case of for the operator semigroup

Given a domain with sufficient boundary regularity, we can con-
struct the heat kernel associated to D, denoted and an associated
Brownian motion on D (Brownian motion absorbed at the boundary). Follow-
ing Kakutani, we can use properties of Brownian motion to solve the funda-
mental boundary value problems associated to D. More precisely, let be
Brownian motion on M and let be the first exit time of from D :

If and then the solution of the Dirichlet problem

is given by

while the solution of the Poisson problem

is given by

More generally, if is sufficiently regular, the solution of
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is given by the Feynman-Kac formula:

There are, of course, similar formulae for the solution of boundary value prob-
lems involving the heat operator.

By choosing in (2.8) and (2.9) we obtain

There are similar expressions for the higher moments given by recursive so-
lution of the Poisson problems: Writing for as in (2.12), let

be the solution of

Then, as in [Kinateder, 1998] and [McDonald, 2002],

There are closely related parabolic results: consider the special case of (2.4)
with taken to be the constant function 1 on the interior of D, 0 on the bound-
ary of D, and the boundary held at 0 for all time. With the heat
kernel and the volume form, we set

Then is the solution to the initial value problem

In addition, gives the distribution of the exit time:
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These observations provide a well-studied means of moving between PDE and
probability.

While properly speaking it is the Riemannian metric which defines the cat-
egory of Riemannian manifolds, it is the Riemannian curvature tensor (which
measures the obstruction to the Riemannian manifold being locally isometric
to Euclidean space), and the notion of geodesic upon which much interest is
focused. Both of these objects are most easily described using the language of
connections. We recall the basic facts:

A connection on a manifold M is a differential operator

which for any satisfies

A connection which satisfies

is said to be torsion free. Given a Riemannian metric a straightforward com-
putation establishes that there always exists a unique torsion free connection,

compatible with the
metric in the sense that

where the pairing is defined by the metric. The torsion free connection sat-
isfying (2.20) is called the Levi-Civita connection. The Levi-Civita connec-
tion defines, for a curvature operator

From (2.21) it is clear that and thus the curvature
operator is a tensor that takes values in the skew-symmetric endomorphisms
of the tangent bundle. The curvature operator defines the Riemann curvature
tensor whose components relative to a basis of the tangent space

are given by

where once again the pairing is given by the metric.
We can use the Levi-Civita connection to express the Laplacian on

(the Weitzenbock decomposition):
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where the Weitzenbock curvature term, is given by certain components
of the Riemann curvature tensor (for the Ricci curvature
(2.24)). Such a decomposition was exploited by Bochner to relate the structure
of the space of harmonic forms and the underlying geometry and topology of
the manifold (cf [Goldberg, 1962] for a variety of examples).

Taking appropriate contractions of the Riemann curvature tensor, we ob-
tain well-studied invariants of the Riemannian metric. For example, the Ricci
tensor is the 2-form defined by

while the scalar curvature is defined by

The sectional curvature associated to a two-plane in is given by choosing
a spanning set for the two plane, say and defining

Sectional curvature generalizes the notion of Gauss curvature for a surface in
three space, and one can recover the Riemann curvature tensor from knowledge
of all the corresponding sectional curvatures. The relationship of sectional
curvatures to the Ricci curvature is particularly useful: Suppose that
is a unit vector and suppose that is an orthonormal basis of with

Then, from (2.24),

from which we conclude that, for any unit vector V, is the
average of the sectional curvature of all the two-planes containing V.

Given two points we denote by the collection of smooth
curves satisfying and In local coordinates
we will write Denoting the tangent vector to at
by the length of gamma is given by

where the pairing is given by the metric acting on the tangent space
The distance between and is defined by
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Fixing if is near the distance between and is realized by a smooth
curve which minimizes the length function. To obtain one can
compute the Euler-Lagrange equation associated to the length functional. This
gives a system of second order ODEs for the components of

where the functions define the Christoffel symbols. The Christoffel sym-
bols can be written in terms of the connection and, in turn, the Christoffel
symbols give a local expression for the connection (cf [Chavel, 1984]). In par-
ticular, the Christoffel symbols can be used to define the Riemann curvature
tensor:

Returing to (2.29) if we require that the curve be parameterized by arclength,
we note that, for small times, the associated initial value problem has a unique
solution. This solution is called a geodesic. We say that a Riemannian manifold
is complete if the (small time) solution of the initial value problem for (2.29)
does not explode; that is, the solution of (2.29) exists for all

Given and we will denote the geodesic with initial data
by Given of small norm, the exponential map,

defined by

is a diffeomorphism onto its image. Using the exponential map we obtain an
important set of local coordinates (geodesic normal coordinates) defined by

It is often the case that computations in geodesic normal coordinates facilitate
an understanding of both the analysis and the geometry of a given problem.
For example, if we fix and use geodesic normal coordinates near
we can expand components of the Riemannian metric. For of small
norm and an orthonormal basis of

where R is the curvature operator (this exhibits the Riemann curvature tensor
as the second order obstruction to the metric being locally Euclidean). Simi-
larly, there is an expression for the volume form:
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where Ric is the Ricci curvature (this exhibits the Ricci curvature as the second
order obstruction to the volume form being locally Euclidean).

16.3 The geometry of small balls and tubes

Let be a compact embedded submanifold of of dimension
and for let be the tube of radius around H :

where is the Euclidean distance between the points and and
In a remarkable 1939 paper which arose to

address a problem in statistics, Herman Weyl developed a formula for the vol-
ume of for small:

where denote certain curvature invariants of the submanifold H. Weyl’s
formula inspired a great many developments in geometry, statistics and proba-
bility (the book [Gray, 1990] is devoted to the topic). In this section we focus
on those developments related to probability.

We begin by noting that there is an invariant description of the tube around
H which can be obtained using the normal bundle of H. More precisely, let

be a Riemannian manifold, an embedded compact subman-
ifold of dimension Let N H be the normal bundle of H in M, that is, the
bundle over H whose fibre at is the vector space

Given a point and a unit tangent vector the small time
solution of the second order ODE for length minimizing curves (see (2.29))
gives a unique geodesic starting at with tangent vector at given by We
denote this geodesic by where Allowing to vary
in H and to vary in the unit sphere of we obtain a family of geodesics,
all defined up to some time For small enough, the pointset
defined by
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is open in M and diffeomorphic to the zero section of NH (this is the tubu-
lar neighborhood theorem and is called a tubular neighborhood of H
in M; the corresponding system of coordinates are called Fermi coordinates).
In this setting there is a result corresponding to Weyl’s formula [Gray, 1981].

16.3.1. Exit time for Brownian motion

Given that the construction of a tube is completely geometric, it is possible
to view Weyls’ formula as a special case of a more general program in which
one studies the asymptotic behavior of various geometric analogs of “volume”
of a tube. This idea was carried out by Gray and Pinsky who studied the
behavior of the mean exit time of Brownian motion (integrated over starting
points in the given submanifold) from a tube of radius There are by now a
number of surveys of this material ([Pinsky, 1991], [Pinsky, 1995]). We sketch
the main ideas and a few of the main results when the submanifold is a point.

Thus, let be a Riemannian manifold, and the geodesic
ball of radius centered at Let be Brownian motion on M, the exit
time of Brownian motion from

THEOREM 1

where the constants depend only on dimension, is the scalar curvature at
is the norm of the Ricci curvature at is the norm of the

Riemann curvature at and is the Laplace operator.

Using expansion (3.4) one has

THEOREM 2 (cf [Gray, 1983]) Suppose that is Riemannian of dimen-
sion Suppose that for all

Then M is locally flat.

The condition suggests that one can do no better. This is a result of
Hughes:

THEOREM 3 (cf [Hughes, 1992]) Let be the unit sphere in and let
be three dimensional hyperbolic space. be the product Riemannian
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manifold given by and let For any the probability law
of coincides with the probability law of the exit time of

Brownian motion from a ball of radius in

The negative result of Theorem 3.3 indicates that to obtain more geometric
information from Brownian motion in a small ball, one should consider some-
thing other than higher moments. A natural choice is the exit place of Brownian
motion. Using the exponential map, there is a simple representation of the exit
place distribution as a measure on More precisely, we have

THEOREM 4 (cf [Liao, 1988], [Pinsky, 1995]) be Riemannian,
and the exponential map at Suppose that is a

continuous map. Define by

Then,

where is Lebesgue measure, is the Ricci curvature, and is the scalar
curvature.

This expansion gives the following result:

THEOREM 5 (cf [Liao, 1988]) Suppose that and are as in Theorem 4.
Suppose that for all

Then M is Einstein. If, in addition,                                 then M is locally
flat.

16.3.2. Cover times

Let G be a finite graph, a random walk on G. Define the cover time of
G by denoted by

Cover times appear in a variety of applications in computer science, physics
and statistics (for a survey, see [Aldous, 1989]). For many such applications,
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understanding how cover time is related to the underlying structure of the walk
is an important problem. An example of particular interest is the two dimen-
sional torus with a simple random walk. In this case, there is a
conjecture of Aldous (1989) for the asymptotic behavior of the cover time for
large

This conjecture has recently been settled by Dembo, Peres, Rosen and Zeituni
using a careful analysis of Brownian excursion on the two-torus
[Dembo, 2001]. More precisely, suppose that is Brownian motion on
and let Let be the ball of radius centered at Let be the
time required for Brownian motion to come within of

Let be the time it takes for Brownian motion to come within distance of
every point of

Thus, is the time it takes the Wiener sausage (the around Brownian
motion) to cover The main result of [Dembo, 2001] is the following

THEOREM 6 ([Dembo, 2001]) Let be Brownian motion on Then

The result generalizes to two-dimensional, compact, connected Riemannian
manifolds.

To establish the theorem, the authors control using excursions be-
tween concentric disks. Their techniques as well as their results are of interest
and will be useful for attacking a wide variety of related problems; for exam-
ple, the Erdos-Taylor conjecture.

Given a simple random walk on and a point be the
number of times that the walk visits up to time Let

be the number of times that the walk visits the most frequently visited position.
It is a longstanding conjecture of Erdos and Taylor that

Using techniques closely related to those developed in [Dembo, 2001], the
conjecture is established in [Dembo, 2001 A].
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16.3.3. Principal curves
Suppose that X is a random vector in with distribution given by a smooth

density Suppose that is a smooth embedded compact curve and let
be the Euclidean distance from to the curve Define an

exceptional set, E, by

Then E is a set of Lebesgue measure zero. be the map
which associates to each the point on nearest to A curve is
called principal for the random variable X if is self-consistent:

for almost every Principal curves, first studied by Hastie-Stuetzle [Hastie,
1989], generalize the statistical notion of linear principal components and are
designed to give meaning to the idea of a “curve passing through a data set.”

Given a random vector X as above one can formulate a natural variational
problem for the “best fit principal curve by minimizing the expected dis-
tance squared between and the vector X, ie by minimizing where F is
given by

where the norm is given by the Euclidean distance. Such a program was carried
out by Duchamp-Stuetzle [Duchamp, 1996] who computed the corresponding
Euler-Lagrange equation for the functional, finding the critical curves are con-
strained to have their curvatures given in terms of the first and second moments
of the induced transverse densities along the normal fibres of the curve In
addition, they found that none of these curves are minima.

It is possible to formulate the notion of principal submanifolds for a random
vector in a Riemannian manifold. The corresponding variational problem for
the expected distant to the principal submanifold leads to constraints on the
curvature components appearing in (3.2) in terms of moments of the induced
densities along normal fibers. At present it is unclear whether the notion of
a principal submanifold can be used to effectively address problems involving
“statistical shape.” What is clear is that these calculations give rise to geometric
and probabilistic objects which warrant further study.

16.4 Spectral Geometry

be a closed Riemannian manifold (ie M is compact without
boundary), the Laplace-Beltrami operator acting on
functions. Then is essentially self-adjoint (ie it has a unique self-adjoint ex-
tension to and it spectrum is real and nonnegative. Let
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be the resolvent of at By Rellich’s theorem
is a compact operator on and it follows from the machinery of
functional analysis ([Reed, 1978]) that the spectrum of consists of discrete
eigenvalues of finite multiplicity with a unique accumulation point at infinity.
We write the spectrum of as

Since the Laplace-Beltrami operator on can be treated in the same
fashion as the Laplace operator on functions, the spectrum of the Laplace-
Beltrami operator on consists of discrete eigenvalues of finite multi-
plicity with a unique accumulation point at infinity.

When is a smoothly bounded domain with compact closure and we
impose Dirichlet boundary conditions, it is again true that the spectrum of D,
denoted spec(D), will behave as it does when M is closed. When M is not
compact, the behavior of the spectrum of the Laplacian is considerably more
involved. The majority of our comments are restricted to the case of smoothly
bounded domains with compact closure.

In both the closed case and the case of a smoothly bounded domain, the
fundamental problem of spectral geometry can be stated as follows:

What is the precise relationship between spec(M) (respectively, spec(D)) and
the geometry of M (respectively, D)?

There are a number of good surveys of spectral geometry available (cf [An-
derson, 1997], [Bérard, 1986] and references therein, [Bérard, 1986] contains
an extensive bibliography for results prior to 1985). In addition, there are a
number of texts which discuss the connections between geometry and spectral
data (cf [Chavel, 1984], [Schoen, 1994]). We focus on those topics related to
probability. Our results fall roughly into two classes: (1) results involving the
use of exit time moments to study spectral geometric objects and (2) techniques
involving the notion of coupling for studying spectral geometric objects.

16.4.1. Principal eigenvalue for planar domains and
torsional rigidity

Interest in the connection between the geometry of a Euclidean domain and
the associated Dirichlet spectrum first arose during the 19th century in studies
involving elastic bodies. In these studies the Dirichlet spectrum of a plane
domain indexed the allowable modes of vibration of a homogeneous planar
membrane with boundary held fixed. For such a model, the first Dirichlet
eigenvalue, giving the lowest allowable energy of vibration, plays a special
role as it is the dominant factor in studies involving small perturbations of the
membrane. Counted among the first results of the field is the conjecture of
Rayleigh (later proved by Faber and Krahn - Theorem 16):
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THEOREM 7 Let     be a positive real number. Then for all domains

where B is a disk of volume

The Raleigh conjecture can be viewed from a variety of perspectives. For the
present we note that (4.2) provides a lower bound for the Dirichlet spectrum in
terms of geometric data associated to the domain. In this sense the Rayleigh
conjecture is prototypical of a great many estimates for the principal eigen-
value (the idea being to bound in terms of natural geometric parameters
associated to the underlying domain). We review results for which the bounds
are probabilistic.

Let be Brownian motion on be smoothly bounded with
compact closure and let be the first exit time from D. Motivated in
part by Hayman’s bound for for planar domains in terms of the inradius of
the domain [Hayman, 1978], Banuelos and Carroll prove

THEOREM 8 (cf [Banuelos, 1994]) Let and suppose that is the exit
time of Brownian motion. Then

where is the Riemann zeta-function and is the first positive zero of
the Bessel function of the first type, If is the Schlict-Landau-Bloch
constant of D, then

Moreover, the left hand side of (4.3) is sharp.

Inequality (4.3) of Theorem 8 states that can be estimated by the
of (and inequality (4.4) indicates that there are geometric

estimates for the of There are similar statements for all
of denoted as well as estimates involving the higher

moments of It should be clear that these norms are all geometric invariants;
they do not change under the action of the isometry group of the ambient space.

The of the first moment of the exit time plays an interesting role in
the theory. Historically, interest in the                first arose in the 19th century,
again in the theory of planar elastic bodies, where it is proportional to the
torsional rigidity associated to a homogeneous cylinder with defining cross
section D. The St. Venant Torsion Conjecture, first proved by Polya [Polya,
1948], gives a natural geometric bound:
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THEOREM 9 Let    be a positive real number. Then for all domains

where B is a disk of volume

The Torsion Conjecture inspired a great deal of analysis and the correspond-
ing literature is extensive (cf [Bandle, 1986], [Iesan, 1980], and references
therein). The vast majority of the literature is written from the point of view of
elastica. Thus, there are a variety of techniques and results for dealing with tor-
sional rigidity which may be brought to bear on problems involving
of exit time and vice-versa. We provide an example concerning the fundamen-
tal result of [Serrin, 1971] in the section 6 below.

16.4.2. Dirichlet spectrum for domains with compact
closure in complete Riemannian manifolds and
exit time moments

Suppose that M is a complete Riemannian manifold, a smoothly
bounded domain with compact closure. Let be the exit time of Brownian
motion from D. For let denote the projection of the con-
stant function 1 on the eigenspace of the Dirichlet Laplacian corresponding to

Set

where is the volume form associated to the metric Let

and define

Then vp(D) describes how the volume of the domain D is partitioned amongst
eigenspaces and, in particular, Moreover, denoting
the of the moment of the exit time by

we have (cf [McDonald, (to appear)])
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where is the gamma-function (in fact, (4.10) holds for all real A
straightforward computation gives the estimate

Estimate (4.11) holds for arbitrary compact manifolds with nonempty bound-
ary and suggest that in this context, the of the exit time moments
behave like the reciprocal of the principal eigenvalue. This observation is con-
sistent with the relationship between Theorem 7 and Theorem 9, as well as
with the results of Theorem 8. The same relationship appears for a great num-
ber of comparison geometry results and will be developed below (cf Theorem
22). That the relationship holds also provides a means of studying the behavior
of the first Dirichlet eigenvalue using techniques developed for studying first
exit time moments. We provide an example:

Let be the heat kernel associated to D, a complete set of
orthonormal eigenfunctions for the Dirichlet Laplacian. Write

Let be the volume form and, as in (2.15), let be defined by

Then is the distribution of the exit time

and using (4.12), (4.13) and (4.14) we see that the first Dirichlet eigenvalue
characterizes large deviations of

When D is a small geodesic ball of radius this observation and the corre-
sponding analysis of the small asymptotics of the first exit time led Karp
and Pinsky to the small asymptotics for the first Dirichlet eigenvalue. More
precisely,

THEOREM 10 (cf [Karp, 1987]) Suppose that is a Riemannian man-
ifold, that and that is a geodesic ball of radius centered
at Let be the corresponding first Dirichlet eigenvalue. Then, as

there is an expansion of the form
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where the constants depend only on dimension, is the scalar curvature at
is the norm of the Ricci curvature at is the norm of the

Riemann curvature at and is the Laplace operator.

If M is compact, one can consider the asymptotics of the Dirichlet spectrum
for the complement of a small ball, This problem was studied
probabilistically by Kac [Kac, 1974], who considered the first time Brownian
motion hits the small ball and obtained partial results on the asymptotics of the

eigenvalue. These results were refined by Chavel and Feldman [Chavel,
1988]. The problem continues to define an active area of research.

Returning to the study of moments, we will write

Then (4.10) says that the set determines the set mspec(D).
It turns out that the converse is also true:

THEOREM 11 (cf [McDonald, (to appear)]) Suppose D,  are smoothly
bounded domains with compact closure in M. Then

The proof of this result uses the solution of the classical Stieltjes moment prob-
lem [Akhiezer, 1965] and suggests that the techniques developed in the context
of the moment problem might be useful in the context of spectral geometry.

As a corollary of Theorem 11, we obtain that the first Dirichlet eigenvalue
is determined by mspec(D).

COROLLARY  12 ([McDonald, (to appear)]) Let be a smoothly boun-
ded domain with compact closure. Let enumerate ele-
ments of spec*(D) in increasing order. Then

and

In fact, from Corollary 12 and (4.10) it is clear that the tail of the moment
spectrum gives a recursion for the elements of spec*(D) and vp(D) (cf [Mc-
Donald, (to appear)]).

Given (4.19), it is clear that the exit time moments are closely tied to the in-
tegrals of normalized eigenfunctions. Such objects have received attention for
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a variety of reasons, including their relationship to asymptotics for the spectral
counting function, the asymptotics of the spectral heat function, and the heat
content asymptotics of D. Focussing our attention on heat content, we recall
the neccesary facts:

Let be as defined in (4.13). Then is the solution of the
initial value problem

Let be the heat content of D at time

We note that is the Laplace-Stieltjes transform of the spectral heat func-
tion, defined by

where is as in (4.6). Using a Tauberian theorem, van den Berg and Watson
have determined the first two terms in an asymptotic expansion of and
used this to obtain an estimate on the rate at which the converge to zero
[van den Berg, 1999A].

It is a theorem of van den Berg and Gilkey [van den Berg, 1994] that
admits a small time asymptotic expansion:

where the coefficients are locally computable geometric invariants of D
(that is, every is given as an integral over the boundary of the domain or
an integral over the interior of the domain of a finite number of derivatives
of components of the Riemannian metric). We will refer to the coefficients
occuring on right hand side of (4.22) as the heat content asymptotics of D and
we write

We note that the invariants hca(D) are not spectral.
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The probabilistic study of heat content is by now well developed in a variety
of contexts (piecewise smooth domains, fractals domains, etc) and the identi-
fication of a number of the coefficients in the expansion has been carried out
(cf [van den Berg, 1994A], [van den Berg, 1994]; cf [Gilkey, 1999] for a re-
cent survey of results concerning heat content). For example, it is known that
the first coefficient is given by the volume of the domain (this is clear from
(4.20) and (4.21)), while the second coefficient is given by a constant multiple
of the area of the boundary of the domain, suggesting that heat content might
be useful in the study of isoperimetric phenomena (cf section 5.1 below and
[Burchard, 2002]). For polygonal domains, it is known that the asymptotics
terminate after 3 terms (cf [Burchard, 2002]); it would be interesting to know
whether similar phenomena exist in higher dimensions.

From Corollary 12 it is clear that heat content is closely related to mspec(D).
We have:

THEOREM 13 ([McDonald, (to appear)]) Let M be a complete Riemannian
manifold, a smoothly bounded domain with compact closure. Then
mspec(D) determines (and thus hca(D))

Using Theorem 4.4 and Theorem 4.5, we see that de-
termines hca(D), a geometric result proved via the analysis of a probabilistic
object (mspec(D)). This result suggests that the invariants mspec(D) may be
useful tools in studying questions involving the fine structure of isospectral do-
mains. To formulate a more precise statement, we again recall the basic facts:

In his often cited 1965 paper, Mark Kac popularized a fundamental prob-
lem of planar spectral geometry: Does spec(D) determine D up to isometry?
The problem was settled (at least in the piecewise smooth category) by Gor-
dan, Webb, and Wolpert [Gordon, 1992], who constructed a pair of nonisomet-
ric, isospectral planar polygons. In 1994 Buser, Conway, Doyle and Semmler
[Buser, 1994] gave an elegant and straightforward construction of families of
isospectral nonisometric planar polygonal pairs (we will abbreviate reference
to such pairs by INIPP). Their constructions include a simplified version of
the example of [Gordon, 1992] as a special case, as well as the first example
of a pair of isospectral planar domains all of whose normalized eigenfunctions
agree at a pair of distinguished interior points (so called homophonic domains).
These examples are generated by a “seed” triangle together with a collection
of congruent “reflection progeny” triangles produced by a sequence of reflec-
tions across edges. In particular, the construction is essentially combinatorial
and by focussing on the vertices and edges of the corresponding triangles, the
construction can be taken to occur in the category of planar graphs.

One might summarize the work of [Buser, 1994] by saying that, for piece-
wise smooth planar domains, the Dirichlet spectrum provides an incomplete
collection of geometric invariants. Such a summary suggests that to construct
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a good collection of geometric invariants, one might be well served by finding
invariants which distinguish INIPPs. In [McDonald, (to appear)A] we show
that in the category of weighted graphs and their associated combinatorial
Laplacians, there exist natural weighted graph analogs of INIPPs which are
isospectral but not isomorphic, and that these graph pairs are distinguished by
their heat content asymptotics (and thus by their moment spectra). The natural
conjecture is that heat content distinguishes the isospectral domains of [Buser,
1994].

16.4.3. Spectral gap and coupling

In the previous two subsections we have considered results which involve
exit time moments of Brownian motion and the Dirichlet spectrum. In this sec-
tion we consider estimates of the spectral gap obtained via coupling methods.
We begin by recalling the requisite material involving spectral gaps.

For clarity of exposition, suppose that are smooth with
positive definite as an matrix. Suppose there is a smooth function

V satisfying

Let

Let be the measure defined by

and note that L is symmetric with respect to the measure Let be the
norm of in

Let be the heat operator for L. Fixing in the domain of L, for
small we have

for all We are interested in studying the maximal for which (4.25)
holds (ie the rate at which converges to To this effect, we
define the spectral gap associated to L by the variational principle
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Under mild assumptions on L (eg the Dirichlet form is regular), it follows that
for all (4.25) holds.

It should be clear that the development sketched above can be carried out in
the context of ambient spaces other than It is also the case that analogous
statements hold for processes which are not diffusions (eg general reversible
Markov processes [Chen, 1994A]).

If we restrict our attention to the Dirichlet Laplacian on a compact
Riemannian manifold, it is clear that the spectral gap coincides with the first

nonzero Dirichlet eigenvalue, the variational principle being equivalent to the
Raleigh quotient. Thus, general results for estimates of the spectral gap give
rise to estimates for principle eigenvalues. It is in this context that we develop
the notion of coupling.

Coupling was originally introduced by Doeblin [Doob, 1983] to study the
rate of convergence to stationarity of a Markov chain. Lindvall is responsible
for adapting coupling techniques to Brownian motion (cf [Linvall, 1983], [Lin-
vall, 1986]). There are a number of surveys of coupling techniques available
(eg [Brin, 2001]) as well as a text ([Linvall, 1992]). We recall the basic facts:

Again, for clarity of exposition let be a diffusion process on with
generator the operator L given in (4.24). By a coupling for the process
we mean two copies of the process, denoted by which are taken
to begin at different points. More precisely, the processes and have
the same distribution as and the processes and are all
Markov with respect to the filtration generated jointly by and Define
the coupling time, T, by

Suppose that

1 it is possible to construct and such that for all

2 there is a constant v such that for generic starting points

Then one can prove that v is a lower bound for sg(L).
Thus, to apply coupling to estimate the sepctral gap we must check the above

and arrange for v to be close to sg(L) (ie the coupling should be efficient in
the language of [Brin, 2001]). This program has been carried out in a number
of interesting geometric contexts in which it produces general lower bounds
on the spectral gap (cf [Chen, 1997], [Chen, 1994]). We restrict our attention
to examples of special interest; those involving the Dirichlet spectral gap and
coupling.

Suppose that M is a complete Riemannian manifold, a smoothly
bounded domain with compact closure. be a complete or-
thonormal family of eigenfunctions for the Dirichlet Laplacian and write the
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heat kernel as

We consider the Dirchlet spectral gap
There is a long history of estimates for the Dirichlet spectral gap in terms

of the underlying geometry of the domain. When and D is a convex
regular domain with diameter     Singer, Wong, Yau and Yau [Singer, 1985]
established

On the other hand, when D is a rectangle it is easy to check that

and thus one expects improvements of the [Singer, 1985] estimate (4.28). For
Euclidean domains as above, such an improvement was given by Yu-Zhang
[Yu, 1986] who established the estimate

Realizing that the Dirichlet spectral gap can be considered as the first eigen-
value of Brownian motion conditioned to remain forever in the domain, R.
Smits [Smits, 1996] gave a second (probabilistic) proof of the estimate (4.30).
Combining the ideas of Smits, comparison and the powerful general estimates
of [Chen, 1997], Wang has considered the analog of the problem for general
ambient manifolds. His recent results [Wang, 2000] recover and improve the
known results involving Dirichlet spectral gaps and suggest that the technique
will continue to produce improvements and new directions for further research.

16.5 Isoperimetric Conditions and Comparison Geometry
The Rayleigh Conjecture (Theorem 7 above) was established in the early

twentieth century by Faber and by Krahn who both realized that the feature of
fundamental importance in establishing a proof is the isoperimetric property
of planar domains (among planar domains of fixed area, a disk has minimum
perimeter). The first rigorous proof of the isoperimetric property for Euclidean
domains was given by Steiner in the nineteenth century using rearrangement
techniques pioneered for just this purpose. That the isoperimetric property
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holds for domains when the ambient space is a Euclidean sphere or hyperbolic
space was established by Schmidt [Schmidt, 1943]. Using Euclidean space,
Euclidean spheres, and hyperbolic space as models we can study analogs of
the isoperimetric property and other geometric phenomena in more general
ambient spaces.

16.5.1. Isoperimetric phenomena and moments of exit
times

We begin by formalizing our notion of a model:

DEFINITION 14 Let  be a real number. The constant curvature space form
with curvature denoted is

1 A sphere in Euclidean space if

2 Euclidean space if

3 A hyperbolic space if

DEFINITION 15 Suppose that M is a Riemannian manifold. We say that M
satisfies an isoperimetric condition with constant curvature comparison space

if, for all Borel

where is a geodesic ball of volume and “Area ” denotes the Minkowski
measure induced by the corresponding Riemannian metrics.

We note that there is a great deal of literature devoted to determining precise
regularity requirements for isoperimetric phenomena. For the purpose of this
section, all domains are taken to be smoothly bounded unless otherwise indi-
cated. In this case, all reasonable definitions of area will coincide.

We can now state the result of Faber-Krahn:

THEOREM 16 Suppose that M is a Riemannian manifold which satisfies an
isoperimetric condition with constant curvature comparison space Then,
for all

where is a geodesic ball of volume and is the first Dirichlet
eigenvalue.

The proof of Theorem 16 uses symmetric rearrangement. As this will play a
role in much of this section, we recall the basic facts.
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Given a Borel set of finite volume, we denote by the ball in
(centered at an appropriate origin) of volume equal to that of D. Suppose

that and suppose that the positive level sets of all have finite
volume. Suppose and let

We define the spherically symmetric decreasing rearrangement of denoted
as the radial function

It follows from the definition that and are equimeasurable. It follows
from the co-area formula (see [Chavel, 1984], [Chavel, 2001]) that symmetric
rearrangement is nonincreasing for the norm. Applying this to the
Rayleigh quotients which compute the first Dirichlet eigenvalue, we have

from whence Theorem 16 follows.
The results of the previous section (Theorem 8, (4.11)) suggest that the

norms of the exit time moments behave like the reciprocal of the principal
Dirichlet eigenvalue. This suggests the following analog of the Faber-Krahn
result:

THEOREM 17 Suppose that M is a Riemannian manifold which satisfies an
isoperimetric condition with constant curvature comparison space Let
be the first exit time of Brownian motion. Then, for all for all

where is a geodesic ball of volume

This theorem is essentially due to Aizenman and Simon in the Euclidean case
[Aizenman, 1982] (see also [Kinateder, 1998]). The general result can be
found in [McDonald, 2002].

In fact, the argument of Aizenman-Simon establishes a more general con-
clusion than the estimate on moments. Their precise theorem is

THEOREM 18 ([Aizenman, 1982]) Suppose that D is a domain in of fi-
nite volume and let be the exit time of Brownian motion. Suppose that

is nonnegative and nondecreasing. Then, if is the ball
centered at the origin with the same volume as D, we have
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The proof of this result uses a deep result of Brascamp, Lieb, and Luttinger
[Brascamp, 1974] involving symmetric rearrangement of multiple integrals.
The result of Brascamp, Lieb and Luttinger and the theorem of Aizenman and
Simon have been further refined by Burchard and Schmuckenschläger. Using
rearrangement techniques at the level of Brownian paths and a Trotter product
formula, they prove

THEOREM 19 (cf [Burchard, 2002]) Let be a constant curvature space
form, a Borel set of finite volume, an open disk of volume equal
to that of D. Let be the exit time of Brownian motion and let

Then, for all the exit time from D is dominated by the exit
time from in the sense that for every convex increasing function F,

where is uniform measure. In particular, if is the center of the disk
then

Equality in (5.1) when is nonconstant or equality in (5.2) occurs
if and only if there is a ball B where D\ B has zero volume and B\D is polar.

16.5.2. Comparison and exit time moments
The structure of Theorem 16 can be abstracted to the following form: given

a geometric restriction on a Riemannian manifold (ie it satisfies an isoperimet-
ric condition), the geometry is further constrained (ie there is a lower bound
on the principal eigenvalue of any domain of a given volume). Such structure
defines those results which comprise the field of Comparison Geometry. There
are a number of such comparison results which involve probability.

We begin with a result of Debiard, Gaveau and Mazet [Debiard, 1976] who
use path properties of Brownian motion to prove

THEOREM 20 (cf [Debiard, 1976]) Suppose that M is a Riemannian mani-
fold with sectional curvatures denoted by K. Suppose that and that

is a positive constant that is less than the injectivity radius of M at  Let
be the geodesic ball of radius centered at Let

be the geodesic ball of radius in the constant curvature space form cen-
tered at some origin Let be the heat kernel on and
denote by the heat kernel on where is the distance from
the origin to the second variable. Then,
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There is a corresponding result for Ricci curvature due to Cheeger-Yau

THEOREM 21 (cf [Cheeger, 1981]) Suppose that M is an Rie-
mannian manifold with Ricci curvatures denoted by Ric. With the notation of
Theorem 20,

From the heat kernel comparison theorems (Theorem 20 and Theorem 19)
and standard comparison techniques (eg Bishop’s volume comparison [Chavel,
1984]), it is possible to derive a number of comparison results for norms of
exit time moments. For example, the following is an analog of a well-known
comparison result of Cheng [Cheng, 1975]:

THEOREM 22 Suppose that M is an Riemannian manifold
with sectional curvatures denoted by K and Ricci curvatures denoted by Ric.
Let    denote the first exit time of Brownian motion. With the notation of Theo-
rem 20, for all and all

16.5.3. Comparison and transience/recurrence

In addition to the above results concerning the relationship of exit time to
isoperimetric phenomena and comparison geometry, there is a deep and beauti-
ful connection between isoperimetric and comparison phenomena for noncom-
pact Riemannian manifolds on the one hand and the transience or recurrence
of Brownian motion on the other. There is an excellent recent survey of this
material [Grigorýan, 1999] and we remark that the deep work of Varopoulos
has been of fundamental importance, especially in the context of groups (cf
[Varopoulos, 1992] and references therein). We present a few of the more
striking results. Let M be a complete non-compact Riemannian manifold
and let denote Brownian motion on M. Recall,

DEFINITION 23 Brownian motion on M is transient if for some open set U
and some point Brownian motion eventually leaves U with positive proba-
bility:

It is a classical result that Brownian motion in is recurrent for and
transient for Straightforward comparison results allow one to extend
this to spaces with variable curvature: In dimension 2 all nonnegatively curved
manifolds have recurrent Brownian motion while in dimension 3 and above, all
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nonpositively curved manifolds have transient Brownian motion (cf [Kendall,
1987] and references therein).

It is a result of classical potential theory (cf [Doeblin, 1938]) that transience
of Brownian motion is equivalent to M being non-parabolic:

DEFINITION 24 We say that a complete manifold M is non-parabolic if M
admits a non-constant positive superharmonic function. Otherwise, we say
that M is parabolic.

A recent typical result tying transience of Brownian motion to the geom-
etry of a non-compact manifold involves establishing sufficiency conditions
for parabolicity in terms of volume growth (for a survey containing results on
volume growth and geometry, see [Li, 2000]):

THEOREM 25 ([Grigorýan, 1999], [Karp, 1982], [Varopoulos, 1983]) Sup-
pose that M is complete and that Let be

the ball of radius centered at Suppose that

Then M is parabolic.

Similar results hold for manifolds which admit a Faber-Krahn type inequal-
ity with isoperimetric function

DEFINITION 26 Suppose that is a positive decreasing func-
tion. We say that a complete manifold M satisfies a Faber-Krahn type inequal-
ity with isoperimetric function if for all precompact

The following is a theorem of Grigoryan [Grigorýan, 1994]:

THEOREM 27 ([Grigorýan, 1994]) Suppose that M is complete and that for
all precompact open sets of large enough volume, M satisfies a Faber-Krahn
type inequality with isoperimetric function satisfying

Then M is non-parabolic.

One can also estimate the heat kernel [Grigorýan, 1994]:

THEOREM 28 ([Grigorýan, 1994]) Suppose that M is complete and that M
satisfies a Faber-Krahn type inequality with isoperimetric function Fix
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M, and suppose that there exists a non-negative function
such that

Then for all

These results follow via estimates for capacity and can be further refined
[Grigorýan, 1999 A].

Estimates for the long time behavior of the heat kernel on a complete Rie-
mannian manifold can often be parlayed into information concerning the ge-
ometry of the manifold at infinity (to make this precise, see section 6.2 below).
There are a number of excellent surveys of this theme available (cf [Grigorýan,
1999B]). That we consider a single recent result should in no way be taken to
represent activity in the field; the associated literature is volumnious.

Intuitively, given a ball of radius centered at one expects
that the faster the volume grows as a function of the radius, the
faster the heat kernel should decay. In fact, it is possible to give
a bound for the decay of the heat kernel in terms of volume growth. More
precisely, Barlow, Coulhon and Grigoryan prove [Barlow, 2001]

THEOREM 29 Let M be a geodesically complete noncompact Riemannian
manifold with bounded geometry and let be its injectivity radius. Sup-
pose that for all points and all

where is a continuous positive strictly increasing function.
Then, for all

where is defined by

where is the inverse function, and C are positive constants.
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To prove the theorem, the authors first note that their volume growth hypothesis
implies a Faber-Krahn type inequality

where D is a large enough precompact set, is the principle Dirichlet eigen-
value and is a function determined by They then establish that the
inequality (5.15) is equivalent to the required heat kernel estimates.

16.6 Minimal Varieties
For the purpose of this section, minimal varieties are geometric objects

which arise as solutions to geometric variational problems. In this section,
we review minimal varieties with ties to probability.

We begin with the proto-typical example given by the St. Venant Torsion
Problem (Theorem 9). In this case the minimal varieties are domains which
maximize the of the first exit

time moment of Brownian motion, given a volume constraint. In the cat-
egory of smooth domains, that maximizers must be spheres follows from the
work of Serrin [Serrin, 1971]. In more detail, suppose we consider the collec-
tion of all smoothly bounded domains with compact closure:

This space has a natural smooth structure with the tangent space at each
identified with smooth functions on Consider the
smooth function defined by

Smoothly perturbing D, we obtain a characterization of critical points of F : D
is critical for F if one can solve the overdetermined boundary value problem:

where is the normal derivative along the boundary and is a
constant. Serrin’s result states that it is possible to solve the overdetermined
boundary value problem (6.3) if and only if the domain is a ball. As pointed
out by Serrin, his result holds when one replaces the Laplace operator by the
Laplace operator with certain types of lower order nonlinearity. Serrin’s result,
as well as his technique, led to a great deal of progress in nonlinear PDE (cf
[Gidas, 1979], [Gidas, 1981], [Berestycki, 1991], [Berestycki, 1993]).
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If one considers in place of a constant curvature space form and in place
of F the of the moment of the exit time, one can run the same
variational argument, obtaining a characterization of critical points by overde-
termined boundary value problems(with nonlinearity in the boundary condition
as opposed to the operator). It turns out that the boundary value problems have
solutions if and only if the domain is a ball (cf [McDonald, 2002]), thus char-
acterizing the minimal varieties for the of the exit time moments for
smooth domains in constant curvature space forms. For Borel sets, the case of
equality is settled by Burchard and Schmuckenschläger [Burchard, 2002] (cf
Theorem 19).

In addition to controlling volume there are a number of other geometric con-
straints which one can impose on domains in an ambient space when studying

of exit time moments of Brownian motion. One such constraint, im-
portant in a number of applications, involves fixing the inradius of a domain.
We recall the definition:

DEFINITION 30 Suppose that M is Riemannian and that   Then in-
radius of D is the extended real number

where is the ball of radius centered at

Using conformal techniques, the following result is contained in the work of
Banuelos, Carroll, and Housworth [Banuelos, 1998]:

THEOREM 31 Suppose and let be the first exit time of Brownian
motion. Then

where S is the infinite rectangular strip

There are a variety of related recent results for unbounded domains.

16.7 Harmonic Functions

Let M be a complete Riemannian manifold, the Laplace operator acting
on functions on M. Recall, a function is harmonic if it satisfies

Equivalently, is harmonic if and only if is stationary for the Dirichlet form
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It is well known that there is a deep relationship between Brownian motion
and harmonic functions. An example of this relationship is given by the Kaku-
tani’s representation of the solution to the Dirichlet problem (2.6) in terms of
Brownian motion (2.7). In this section we survey such probabilistic

representations and their connection to the geometry of noncompact, com-
plete manifolds.

The representation (2.7) is but one instance of an extensive body of work
devoted to the representation of harmonic functions via boundary geometry.
Another such representation of harmonic function is given by the Poisson ker-
nel. More precisely, suppose for concreteness that D is a smoothly bounded
domain with compact closure in Let be the Green’s function for
D, surface measure on Define a function on D by

where is the Poisson kernel and for
some positive function on the boundary of D. Then (7.2) defines a positive
harmonic function: the solution of the Dirichlet problem with boundary data

In fact, allowing the measure to be supported and finite on (with no
other constraints) provides a representation of every positive harmonic function
on D.

It was an idea of Martin [Martin, 1941] that such a representation should be
possible for bounded but otherwise arbitrary domains in given the appro-
priate definition of “boundary.” This idea came to play an important role in po-
tential theory, both from a probabilistic and from an analytic point of view. The
material was developed by both schools (cf [Dynkin, 1965], [Dynkin, 1982],
[Doeblin, 1938], [Pinsky, 1995]).

16.7.1. Martin boundaries

To define the Martin boundary, let be an arbitrary bounded domain
and fix Let G be the minimal Green’s function for D and define

Let be a nonconvergent sequence of points in D and consider the har-
monic functions Then the sequence is uniformly boun-
ded on compact subsets of D and for all By Harnack’s inequality,
there exists a convergent subsequence, denoted which converges uni-
formly on compact subsets of D to a positive harmonic function We
call the sequence of points a Martin sequence. We say that two Martin
sequences are equivalent if and only if the have the same limiting harmonic
functions.



385Recent Results in Geometric Analysis Involving Probability

DEFINITION 32 The Martin boundary of D, denoted is the collection of
equivalence classes of Martin sequences. We say that a point is
minimal if the corresponding harmonic limit satisfies

If  is a positive harmonic function on D and  then   for some

The minimal Martin boundary of D, denoted is the collection of all min-
imal points.

The results of [Martin, 1941] contain the Martin representation theorem:

THEOREM 33 Suppose  is bounded and that  is the minimal Mar-
tin boundary of D. For let denote the corresponding positive
harmonic function. Then for each positive harmonic function there exists a
unique finite measure supported on such that

Conversely, for every finite measure supported on (7.4) defines a positive
harmonic function on D.

In providing the above representation theorem, the Martin boundary provides
a means of employing analytic techniques to study the geometry of the under-
lying domain. To see that this is the case, note that there is a natural metric

topology on (cf[Pinsky, 1995]) for which becomes a compacti-
fication of D. When D is sufficiently regular, this coincides with the Euclidean
compactification of D. We have the following theorem of Hunt-Wheedon:

THEOREM 34 (cf [Hunt, 1970]) Suppose Suppose that for each
there is a ball, centered at such that is the graph

of a Lipschitz function. Then the Martin boundary of D, the minimal Martin
boundary of D and the Euclidean boundary of D all coincide.

This result strongly suggests that the ideas surrounding the notion of a Mar-
tin boundary might be useful in the study of the geometry of complete non-
compact Riemannian manifolds near their “boundary.” Obviously, the first
step in such a program is to establish precisely what is meant by “geometry of
the boundary” in this context. There is a natural geometric approach:

DEFINITION 35 Let M be a complete Riemannian manifold. Given two
geodesic rays, and in M we say that and are asymptotic
if is a boundedfunction of

It is clear that the notion of asymptotic defines an equivalence relation on
the collection of geodesic rays.
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DEFINITION 36 Let M be a complete Riemannian manifold. We define the
sphere at infinity, denoted as the collection of equivalence classes of
geodesic rays in M.

There is a natural topology on (the cone topology) and, with re-
spect to this topology, gives a topological compactification of M. Given
this, we refer to as the geometric boundary of M.

To define the Martin boundary of a (class of) complete Riemannian mani-
folds, we model the development on Definition 32 and its motivating discus-
sion:

DEFINITION 37 Suppose that M is a complete Riemannian manifold admit-
ting a Green’s function, Let and, for let be
defined by (7.3). Let be a nonconvergent sequence of points, the cor-
responding harmonic functions, and a subsequence converging uniformly
on compacts to a harmonic limit We call the sequence a Martin se-
quence and we say that two Martin sequences are equivalent if they have the
same harmonic limit. The Martin boundary of M is the collection of equiva-
lence classes of Martin sequences.

The question of which non-compact Riemannian manifolds should be stud-
ied via Martin’s approach was clarified by the seminal work of Yau [Yau,
1975], [Yau, 1976]. Before proceeding, we need a fundamental definition:

DEFINITION 38 A manifold is said to have the Liouville property if it does
not admit any nonconstant bounded harmonic functions. A manifold is said to
have the strong Liouville property if it does not admit any nonconstant positive
harmonic functions.

Yau proved

THEOREM 39 ([Yau, 1975]) If M has nonnegative Ricci curvature, then M
has the strong Liouville property.

As the Martin boundary construction requires a rich structure of positive har-
monic functions, Yau’s result suggests that if Martin boundaries are to play
a role in the study of the geometry of a non-compact Riemannian manifold,
negative curvature will be necessary (cf also [Dynkin, 1965]). Given that the
definition of the Martin boundary involves the existence of a Green’s function,
we must further restrict to a class of manifolds andmitting Green’s functions;
for example, manifolds with pinched negative curvature. This is the setting of
the work of Anderson-Schoen [Anderson, 1985] who proved

THEOREM 40 [Anderson, 1985]) Let M be a complete simply connected
manifold with sectional curvature satisfying
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Then there is a natural homeomorphism between the Martin boundary of M
and the geometric boundary of M (the sphere at infinity).

Since the publication of [Anderson, 1985], there has been an explosion in the
study of harmonic functions on complete Riemannian manifolds, their cor-
responding Martin boundaries, and the geometry of such manifolds at infin-
ity. There are a number of informative surveys available (cf [Li, 2000]), most
focussing on the geometric/function theoretic aspects of the material. There
has also been a roughly concurrent probabilistic development of the mate-
rial (a survey can be found in [Pinsky, 1995]), with results largely parallel-
ing those obtained function theoretically (cf [Doeblin, 1938], [Dynkin, 1965],
[Kifer, 1992], [Hsu, 1985], [Cranston, 1993] [Grigorýan, 1999] and references
therein). Many such results can be inferred in the context of volume compar-
ison and potential theory (cf section 5.3 above). Reference [Grigorýan, 1999]
contains an excellent review of this material. We focus our remarks on material
of independent interest.

The probabilistic approach to Martin boundaries involves the study of the
asymptotic behavior of Brownian motion and the existence, given appropriate
assumptions on the ambient manifold, of almost sure limiting directions. Be-
cause the probabilistic approach does not require the existence of a uniquely
defined Laplace operator, it is possible to formulate a theory of Martin bound-
aries for spaces which are not manifolds, for example simplicial complexes
whose simplices are Euclidean (ie Euclidean complexes). Such a program has
recently been carried out in part by Brin and Kifer, who prove the appropriate
analog of the Anderson-Schoen result for Euclidean complexes [Brin, 2001].
This development provides a framework for a geometric function theory for
large classes of singular spaces.

Along a similar vein, given that the probabilistic development of Martin
boundaries involves specific path properties of an underlying process, one

might choose to fix the ambient manifold and investigate analogs of the Martin
constructions for processes other than Brownian motion. This has recently
been carried out by Chen and Song, who investigate the appropriate analogs of
Martin boundary for symmetric stable processes [Chen, 1998].

16.7.2. Harmonic maps

Suppose that M and N are Riemannian manifolds and We say
that is a harmonic map if is a stationary point of the Dirichlet form

where is the derivative of (the induced map between tangent spaces).
Given the relationship between Brownian motion and harmonic functions, it is
natural to expect that probability will play an interesting role in the theory of
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harmonic maps (this seems to have been first suggested by Eells and Lemaire
[Eells, 1983]). This is indeed the case; an interesting survey of recent develop-
ments can be found in [Kendall, 1998].

16.8 Hodge Theory
Let M be an differentiable manifold, the bun-

dle of smooth on the exterior derivative (see
section 2). The kth de Rham cohomology of M is the quotient space of closed

by exact

The celebrated work of de Rham provides an isomorphism between
and the Cech cohomology group of M with real coefficients. Thus, the
spaces are topological invariants of M. In this section
we survey probabilistic results which provide a means of studying
under appropriate conditions on M. These results revolve around heat flow
and the work of Hodge.

Suppose that M is a compact Riemannian manifold and let be the Laplace-
Betrami operator acting on on M. Let be the comple-
tion of the sections of the bundle with respect to the induced volume

As discussed in section 2 and section 4, the Laplace-Beltrami operator is
essentially self-adjoint and thus admits a unique self-adjoint extension to an
operator on of the bundle. It is elliptic, and thus its kernel
consists of smooth which we suggestively denote by

Let be the heat operator acting on Let Then the
solution of the Cauchy initial value problem

is given by

The operator is compact for all and admits a unique self-adjoint ex-
tension to In fact, is a contraction for all which converges
in norm to orthogonal projection on
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Suppose and write Then

where

Taking a limit, we obtain the celebrated Hodge decomposition:

where and the decomposition being
orthogonal. Given let represent and write as in
(8.8). Then since is closed, Moreover, if is another
representation of then We conclude that the evolution
smoothly deforms every representative of the class to its harmonic projec-
tion which is the element of minimal norm representing as an element
of Thus, we obtain the celebrated result of Hodge:

THEOREM 41 If M is a compact Riemannian manifold, there is a natural
isomorphism between the de Rham cohomology of M and the harmonic forms
of M:

The isomorphism is given by identifying each de Rham class with its represen-
tative of minimal norm.

When M is not compact one cannot expect the operators to be compact
and the above approach must be modified if it is to have any hope of producing
an analog of the Hodge theorem. To see how one might go about constructing
an analog, consider the case of The DeRham cohomology of is well
known:
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the zero dimensional cohomology being represented by constant functions
which are not with respect to the measure induced by the volume form (ie
Lebesgue measure). To produce a reasonable candidate for the Hodge Lapla-
cian, we rescale the volume element appropriately: and and
let be the fundamental solution of the heat equation on at time

Consider the heat kernel weighted measure

and let be the corresponding weighted The measure
induces an adjoint of the exterior derivative, denoted and a corresponding

Laplace-Beltrami operator acting on the appropriately weighted
bundles. Writing

one can compute directly [Bueler, 1999] that

In the context of Hodge theorems for finite dimensional Riemannian
manifolds these ideas seem to have been introduced by Bueler [Bueler,

1999] and further developed by Ahmed-Stroock [Ahmed, 2000]. We sketch
the results of the latter.

Suppose that M is a complete, oriented connected Riemannian manifold
with Ricci curvature bounded below and the Riemann curvature operator
bounded above. Suppose that is a smooth function satis-
fying

1

2

3

4

U has compact level sets

There exists and such that and

There exists an such that

There exists a such that for all and all

where denotes the Hessian of U and the pairing is given by the
metric.
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Then (cf [Ahmed, 2000] Lemma 6.2), for each there is a unique path
satisfying and

Moreover, is a smooth map which is a diffeomorphism
onto its image with differential a linear map everywhere bounded by In
particular, given a smooth form the pullback is bounded and if is
exact so is the pullback. Let be the orthogonal projection of onto
the space of U-weighted harmonic forms on M. Then (cf [Ahmed, 2000]
Theorem 6.4)

THEOREM 42 With M, U and as above, the map induces a linear
isomorphism between the U-weighted cohomology of M and the deRham
cohomology of M. The map is natural in the sense that is the element of
minimal U-weighted norm.

In addition to the work of Ahmed-Stroock, recent work of Gong-Wang
[Gong, 2001] involving heat kernel estimates for a class of complete Rieman-
nian manifolds containing those manifolds with Ricci curvature bounded be-
low can be used to compute Hodge cohomology for Witten-deformed Lapla-
cian in the top dimension.

Finally, we mention the work of Elworthy, Li and Rosenberg on  har-
monic forms [Elworthy, 1998].

Recall, if M is Riemannian, the Weitzenbock decomposition of the Laplace-
Beltrami operator on expresses the Laplacian in terms of the Levi-
Civita connection and certain curvature invariants (2.23). When M is com-
plete and the curvature term is positive, it is a theorem of Bochner that the
corresponding cohomology in dimension vanishes.

In [Elworthy, 1998], the authors consider Riemannian manifolds whose
Weitzenbock curvature term is strongly stochastically positive (when M is
compact, this allows the curvature term to be negative on a set of small vol-
ume). They establish a number of vanishing theorems and a variety of curva-
ture pinching results; for example, they prove that a compact manifold cannot
admit both a strongly stochastically

positive term and a metric with pinched negative curvature. Many of
their results apply to the Witten Laplacian. The approach should yield a num-
ber of additional results.

References
N. Akhiezer The Classical Moment Problem, Hafner, New York (1965).
D. Aldous An introduction to covering problems for random walks on graphs J. Theoret. Prob.

2 (1989) 87–89.
S. I. Anderson and M. L Lapidus Progress in Inverse Spectral Geometry Trends in Mathematics,

Birkhäuser, Basel, (1997)



392 RECENTS ADVANCES IN APPLIED PROBABILITY

M. Aizenman and B. Simon Brownian motion and Harnack’s inequalities for Schrodinger op-
erators Comm. Pure Appl. Math. 35 (1982) 209–273.

Z. M. Ahmed and D. W. Stroock A Hodge theory for some non-compact manifolds Jour. Diff.
Geom. 54 (2000) 177–225.

M. Anderson and R. Schoen Positive harmonic functions on complete manifolds of negative
curvature Ann. Math. 121 (1985) 429–461.

C. Bandle Isoperimetric Inequalities and Applications, Pitman, Boston, (1986).
R. Banuelos and T. Carroll Brownian motion and the fundamental frequency of a drum Duke 75

(1994) 575–602.
R. Banuelos, T. Carroll and E. Housworth Inradius and integral means for the Green’s functions

and conformal mappings Proc AMS 126 (1998) 577–585.
M. T, Barlow, T. Coulhon and A. Grigoryan Manifolds and graphs with slow heat kernel decay

Invent. Math. 144 (2001) 609–649.
H. Berestycki and L. Nirenberg On the method of moving planes and the sliding method Bol.

Soc. Brasil. Mat. 22 (1991) 1–37.
H. Berestycki, L. Caffarelli and L. Nirenberg Symmetry for elliptic equations in a half plane

In: Boundary value problems for partial differential equations and applications, RMA Res.
Notes Appl. Math 29 Masson, Paris (1993) 27–42.

M. van den Berg and E. Bolthausen Estimates for Dirichlet eigenfunctions J. London Math. Soc.
59 (1999) 607–619 .

M. van den Berg and P. Gilkey Heat content asymptotics of a Riemannian manifold with bound-
ary Jour. Funct. Anal. 120 (1994) 48–71.

M. van den Berg and J. F. Le Gall Mean curvature and the heat equation Math. Zeit. 215 (1994)
437–464.

M. van den Berg and S. Srisatkunarajah Heat flow and Brownian motion for a region in with
polygonal boundary Prob. Theor. Rel. Fields 86 (1990) 41–52.

M. van den Berg and S. P. Watson Asymptotics for the spectral heat function and bounds for
integrals of Dirichlet eigenfunctions Proc. Royal Soc. of Edin. 129 (1999) 841–854.

P. Bérard Spectral Geometry: direct and inverse problems with appendices by G. Besson, B.
Berger and M. Berger, Springer Lecture Notes in Mathematics, 1207 Berlin (1986).

J. M. Bismut Probability and geometry In: Probability and analysis (Varenna, 1985) Lecture
Notes in Math, vol 1206, Springer, Berlin (1986) 1–60.

H. J. Brascamp, E. H. Lieb and J. M. Luttinger A general rearrangement inequality for multiple
integrals Jour. Funct. Anal. 17 (1974) 227–237.

M. Brin and Y. Kifer Brownian motion, harmonic functions and hyperbolicity for Euclidean
complexes Math. Zeit. 237 (2001) 421–168.

E. L. Bueler The heat kernel weighted Hodge Laplacian on noncompact manifolds Trans. AMS
351 (1999) 683–713.

K. Burdzy and W. Kendall Efficient Markov couplings: examples and counterexamples Ann.
Appl. Prob. 10 (2000) 362–409.

A. Burchard and M. Schmuckenschläger Comparison theorems for exit times GAFA 11 (2002)
651–692.

P. Buser, J. Conway, P. Doyle, and D. Semmler Some planar isospectral domains, Intern. Math.
Res. Notices 9 (1994) 391–400.

I. Chavel Eigenvalues in Riemannian geometry, Academic Press, New York (1984).
I. Chavel Isoperimetric Inequalities , Cambridge University Press, Cambridge, (2001).



Recent Results in Geometric Analysis Involving Probability 393

I. Chavel and E. A. Feldman Spectra of manifolds less a small domain Duke Math. J. 56 (1988)
399–414.

S. Y. Cheng Eigenvalue comparison theorems and its geometric applications Math. Zeit. 143
(1975) 289–297.

M. F. Chen Optimal couplings and applications to Riemannian geometry In: Probability Theory
and Mathematical Statistics, B. Grigelionis et al, eds. VPS/TEV (1994) 121–142.

Z. Q. Chen and R. Song Martin boundary and integral representation for harmonic functions of
symmetric stable processes J. Funct. Anal. 159 (1998) 267–294.

M. F. Chen and F. Y. Wang General formula for the lower bound of the first eigenvalue on a
Riemannian manifold Sci. Sin. (A) 40 (1997) 384–394.

M. F. Chen and F. Y. Wang Applications of the coupling method to the first eigenvalue on a
manifold Sci. Sin. (A) 40 (1994) 384–394.

J. Cheeger and S. T. Yau A lower bound for the heat kernel Comm. Pure Appl. Math. 34 (1981)
465–480.

M. Cranston A probabilistic approach to Martin boundaries for manifolds with ends Prob. Th.
and Rel. 96 (1993) 319–334.

A. Debiard, B. Gavaeu, and E. Mazet Théorèrems de comparison en géométrie riemannienne
Publ. Res. Inst. Math. Sci 12 (1976/77) 391–425.

A. Dembo, Y. Peres, J. Rosen, and O Zeituni Cover times for Brownian motion and random
walks in two dimensions preprint (2001).

A. Dembo, Y. Peres, J. Rosen, and O Zeituni Thick Points of Planar Brownian Motion and the
Erods-Taylor Conjecture on Random Walk preprint (2001).

W. Doeblin Exposé de la theorie des chaines simple constantes de Markov à un nombre fini
d’etats Rev. Math. Union Interbakanique 2 (1938) 77–105.

J. Doob Classical Potential Theory and Its Probabilistic Counterpart Springer, Berlin (1983).
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov Modern Geometry - Methods and Applica-

tions, Part 1 Springer, Berlin (1984).
T. Duchamp and W. Stuetzle Extremal properties of principal curves in the plane Ann. Statist.

24 (1996)1511-1520.
E. Dynkin Markov Processes Vol 1, 2, Springer, Berlin (1965).
E. Dynkin Markov Processes and Related Problems of Analysis London Math. Soc. Let. Notes,

Vol 54, Cambridge University Press, Cambridge, UK (1982).
E. Dynkin The space of exits of a Markov process Russian Math. Surveys XXIV (1969) 89–157.
J. Eells and L. Lemaire Selected Topics in Harmonic Maps American Math. Soc. Providence,

RI, (1983).
K. D. Elworthy, X.-M. Li and S .Rosenberg Bounded and harmonic forms on universal covers

Geom. Funct. Anal 8 (1998) 283–303.
B. Gidas, W. M. Ni and L. Nirenberg Symmetry and related properties via the maximum princi-

pal Comm. Math. Phys. 68 (1979) 209–243.
B. Gidas, W. M. Ni and L. Nirenberg Symmetry of positive solutions of nonlinear elliptic equa-

tions in In: Mathematical Analysis and Applications, Part A, Adv. in Math, Suppl. Stud.
7a, Academic Press, New York, (1981) 369–342.

P. Gilkey Heat content asymptotics In: Geometric aspects of partial differential equations (Ros-
kilde, 1998), Contemp. Math 242 AMS, Providence, RI (1999) 125–133.

S. Goldberg Curvature and Homology Dover, New York, NY (1962).
F. Z. Gong and F. Y. Wang Heat kernel estimates with application to compactness of manifolds

Q. J. Math 52 (2001), 171–180.



394 RECENTS ADVANCES IN APPLIED PROBABILITY

C. Gordon, D. Webb, and S. Wolpert Isospectral plane domains and surfaces via Riemannian
orbifolds, Invent. Math. 110 (1992), 1–22.

A. Gray Tubes Addison Wesley, Redwood City, CA (1990).
A. Gray and M. Pinsky Mean exit time from a geodesic ball in Riemannian manifolds Bull. des

Sci. Math. 107 (1983) 345–370.
A. Gray and L. Vanhecke The volumes of tubes in a Riemannian manifold Rend. Sem. Math.

Politec. Torino 39 (1981) 1–50.
A. Grigorýan Analytic and geometric background of recurrence and non-explosion of the Brow-

nian motion on Riemannian manifolds Bull. AMS 36 (1999) 135–249.
A. Grigorýan Heat kernel upper bounds on a complete non-compact manifold Rev. Math.

Iberoamer. 10 (1994) 395–452.
A. Grigorýan Isoperimetric inequalities and capacities on Riemannian manifolds In: The Mazýa

anniversary collection, Vol 1 (Rostock, 1998), Oper Theory Adv. Appl., 109 Birhauser, Basel
(1999) 139–153.

A. Grigorýan Estimates of heat kernels on Riemannian manifolds In: “Spectral Theory and
Geometry. ICMS Instructional Conference, Edinburgh 1998” London Math. Soc. Lecture
Note Series 273, Cambridge Univ. Press, 1999 140–225.

W. K. Hayman Some bounds for principal frequencies Appl. Anal. 7 (1978) 247–254.
T. Hastie and W. Stuetzle Principal curves J. Amer. Statist. Assoc. 84 (1989) 502–516.
P. Hsu and P. March The limiting angle of certain Riemannian Brownian motions Comm. Pure

and Appl. 38 (1985) 755–768.
H. R. Hughes Brownian exit distributions from normal balls in Ann. Prob. 20 (1992)

655–659.
G. A. Hunt and R. L. Wheedon Positive harmonic functions on Lipschitz domains Trans AMS

132 (1970) 307–322.
D. Iesan Saint Venant’s Problem Springer Lecture Notes in Mathematics, 1279 Berlin (1980).
J. D. S. Jones and R. Léandre A stochastic approach to the Dirac operaotr over the free loop

space Proc. Steklov Inst. Math. 217 (1997) 253–282.
L. Karp Subharmonic functions, harmonic mappings and isometric immersions In: Seminar on

Differential Geometry, ed. S. T. Yau 102 Princeton University Press, Princeton (1982).
L. Karp and M. Pinsky First eigenvalue of a small geodesic ball in a Riemannian manifold Bull.

Sci. Math. 111 (1987) 222–239.
M. Kac Probabilistic methods in some problems of scattering theory Rocky Mountain J. Math.

4 (1974) 511–537.
W. S. Kendall From stochastic parallel transport to harmonic maps In: “New Directions in

Dirichlet Forms” AMS/IP Stud. Adv. Math. 8 AMS, Providence, RI (1998) 49–115.
W. S. Kendall Stochastic differential geometry: an introduction Acta Appl. Math. 9 (1987) 29–

60.
Y. Kifer Brownian motion and positive harmonic functions on complete manifolds of nonpositive

curvature In; Pitman Res. Notes in Math. 150 (1992) 187–232.
K. J. Kinateder, P. McDonald and D. Miller Exit time moments, boundary value problems and

the geometry of domains in Euclidean space Prob. Th. and Rel. 111 (1998) 469–487.
M. Liao Hitting distributions of small geodesic spheres Ann. Prob. 16 (1988) 1029–1050.
P. Li Curvature and function theory on Riemannian manifolds In: Surveys in Diff. Geom. VII

(2000) 1–58.
T. Linvall On coupling for diffusion processes J. Appl. Prob. 20 (1983) 82–93.
T. Linvall Lectures on the coupling method, John Wiley and Sons, New York, (1992).



Recent Results in Geometric Analysis Involving Probability 395

T. Linvall and L. C. G. Rogers Coupling of multidimensional diffusions by reflection Ann. Prob.
14 (1986) 860–872.

R. S. Martin Minimal positive harmonic functions Trans. AMS 49 (1941) 137–172.
P. McDonald Isoperimetric conditions, Poisson problems and diffusions in Riemannian mani-

folds Potential Analysis 16 (2002) 115–138.
P. McDonald and R. Meyers Dirichlet spectrum and heat content Jour. Funct. Anal. (to appear).
P. McDonald and R. Meyers Isospectral polygons, planar graphs and heat content Proc. AMS

(to appear).
M. Pinsky Feeling the shape of a manifold with Brownian motion - the last word in 1990 In:

Stochastic Analysis, Cambridge University Press (1991) 305–320.
M. Pinsky Can you feel the shape of a manifold with Brownian motion? In: Topics in Contem-

porary Probability and Its Applications, CRC Press, Inc (1995) 89–102.
R. Pinsky Positive Harmonic Functions and Diffusion, Cambridge University Press, Cambridge,

UK (1995).
G. Polya Torsional rigidity, principle frequency, electrostatic capacity and symmetrization Quart.

Appl. Math. 6 (1948) 267–277.
M. Reed and B. Simon Methods of Modem Mathematical Physics , Academic Press, Orlando

(1978).
E. Schmidt Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphräris-

cheschen Raum jeder Dimensionzahl Math Z., 49 (1943) 1–109.
J. Serrin.,A symmetry problem in potential theory Archiv. Rat. Mech. Anal. (1971) 304–318.
R. Smits Spectral gaps and rates to equilibrium for diffusions in convex domains Michigan

Math. J. 43 (1996) 141–157.
R. Schoen and S. T. Yau Lectures on Differential Geometry, International Press, Redwood City,

CA (1994).
I. M. Singer, B. Wong, S. T. Yau and S. S. T. Yau An estimate of the gap of the first two eigen-

values in the Schrodinger operator Ann. Scula Norm. Sup. Pisa 12 (1985) 319–333.
N. Th. Varopoulos Potential theory and diffusions in Riemannian manifolds In: Conference on

Harmonic Analysis in Honor of Antonio Zygmund, Wadsworth Math Series, Wadsworth,
Belmont. CA (1983) 821–837.

N. Th. Varopoulos, L. Saloffe-Coste and T. Coulhon Analysis And Geometry On Groups, Cam-
bridge University Press, Cambridge (1992).

F. Y. Wang On estimation of the Dirichlet spectral gap Arch. Math. 75 (2000) 450–455.
S. T. Yau Harmonic functions on complete Riemannian manifolds Comm. Pure and Appl. 28

(1975) 201–228.
S. T. Yau Some function-theoretic properties of complete Riemannian manifolds and their ap-

plications to geometry Ind. Univ. Math. J. 25 (1976) 659–670.
Q. H. Yu and J. Q. Zhong Lower bounds of the gap between the first and the second eigenvalues

of the Schrodinger operator Trans AMS 294 (1986) 341–349.



This page intentionally left blank



DEPENDENCE OR INDEPENDENCE OF THE
SAMPLE MEAN AND VARIANCE IN NON-IID
OR NON-NORMAL CASES AND THE ROLE
OF SOME TESTS OF INDEPENDENCE

Nitis Mukhopadhyay
Department of Statistics, UBox4120, University of Connecticut, Storrs, CT 06269-4120, U.S.A.

mukhop@uconnvm.uconn.edu

Abstract Let be independent and identically distributed (iid) random vari-
ables. We denote the sample mean and the sample variance

Then, it is well-known that if
the underlying common probability model for the X’s is the sam-
ple mean and the sample variance are independently distributed. On the
other hand, it is also known that if and are independently distributed, then
the underlying common probability model for the X’s must be normal (Zinger
(1958)). Theorem 1.1 summarizes these. But, what can one expect regarding
the status of independence or dependence between and when the random
variables X’s are allowed to be non-iid or non-normal? In a direct contrast
with the message from Theorem 1.1, what we find interesting is that the sample
mean and the variance may or may not follow independent probability
models when the observations are not iid or when these follow non-normal
probability laws. With the help of examples, we highlight a number of interest-
ing scenarios. These examples point toward an opening for the development of
important characterization results and we hope to see some progress on this in
the future. Illustrations are provided where we have applied the based on
Pearson-sample correlation coefficient, a traditional non-parametric test based
on Spearman-rank correlation coefficient, and the Chi-square test to “validate”
independence or dependence between the appropriate data. In a number of
occasions, the and the traditional non-parametric test unfortunately arrived
at conflicting conclusions based on same data. We raise the potential of a major
problem in implementing either a or the nonparametric test as exploratory
data analytic (EDA) tools to examine dependence or association for paired data
in practice! The Chi-square test, however, correctly validated dependence when-
ever data were dependent. Also, the Chi-square test never sided against
a correct conclusion that the paired data were independent whenever the
paired variables were in fact independent. It is safe to say that among three con-
tenders, the Chi-square test stood out as the most reliable EDA tool in validating
the true state of nature of dependence (or independence) between as ev-
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idenced by the observed paired data whether the observations
were assumed iid, not iid or these were non-normal.

Keywords: Frequency histogram, tests for independence, P-value, Chi-square test, Pearson-
sample correlation test, Spearman-rank correlation test, nonparametric
test.

17.1 Introduction

Let us suppose that are independent and identically distributed
(iid) random variables governed by a common distribution function

We denote the sample mean and the sample variance
where the sample size is held fixed.

Now, the two statistics and would be independently distributed if and
only if we can write

Now, we present two illustrations successively through data analyses.

DATA ILLUSTRATION 1.1 In order to examine whether the dependence or inde-
pendence between can be checked out when we had some available
data, we decided to generate random samples, each of size from
Normal(5,100) population. From each sample, we obtained the values of
thereby leading to the observed pairs The
respective frequency histograms for and are given in
Figure 1. A joint plot of  and  is given in Figure 2.

Figure 1. Marginal frequency histograms of and based on 500 observations
from N(5,100) distribution
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Figure 2. A plot of and based on 500 observations from N (5,100) distribution

In Figure 1, the (or frequency histogram looks fairly symmetric (or
skewed to the right). From the scatter plot in Figure 2, the and values seem
to disperse independently of each other!

For a more formal test of significance, however, we formed a 4 × 3 ta-
ble (Table 1) of count data based on the observations, indicating how many
from 500 pairs fell in each cell. Then, we simply used the customary
Chi-square test of independence for the cell categories chosen for

At this point, we like to test the null hypotheses Categories based on
are independent against the alternative hypotheses Categories based

on are dependent, with the level of significance Let and
respectively denote the observed and expected frequencies (under in the

Then, the test statistic is given by
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Now, the test statistic is

That is, the observed data does not violate the postulate of independence be-
tween values at 5% level. Incidentally, the P-value is calculated as fol-
lows:

We reject (do not reject) with the level of significance if and only if the
P-value is less (not less) than A “large” P-value indicates less evidence
against the null hypothesis
REMARK 1.1. Before one applies the Chi-square test (1.2), one needs to make
sure that the expected frequency in each cell, that is each is
five or more. Sometimes this restriction may severely impact on the number of
cells that can be chosen.
REMARK 1.2. The sample correlation coefficient leading to a   is fre-
quently used in practice to choose between the two hypotheses if

could be treated as a bivariate normal random variable. We had the
Pearson-sample correlation coefficient with the P-value =
0.072 which exceeded indicating that we should not reject the null hypothe-
ses at 5% level. But, we may not rely upon this test because the underlying
assumption of bivariate normality of does not hold here (see Figure 1).
On top of that, the P-value barely exceeded
REMARK 1.3. One may opt for a nonparametric approach to test  versus

by using the Spearman-rank correlation coefficient between the data.
Refer to Noether (1991, pp. 236-237), Lehmann (1986, pp. 350-351), or Gib-
bons and Chakraborti (1992, Chapter 12) for details. What one does first is
to rank all observations on and separately. Then, the Spearman-rank
correlation coefficient between the data, denoted by is simply the
Pearson-sample correlation coefficient between the two-dimensional vectors
of ranks. For the observed data, we found Under the prob-
ability distribution of the test statistic is approximated by a
standard normal distribution. One may refer to Noether (1991, pp. 236-237).
We obtain that is the associated which
unfortunately falls below the nominal 5% level, indicating that we should re-
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ject the null hypotheses of independence at 5% level. Thus, for the same data,
the and the nonparametric test came up with opposite conclusions!

What will be different if the data is generated using a non-normal probability
model? In order to get a feel for this, we provide the following illustration.
DATA ILLUSTRATION 1.2 We generated 500 random samples, each of size

from a model. From each sample, we ob-
tained the values of and the observed vectors
The respective frequency histograms for and are given
in Figure 3. A joint plot of and is given in Figure 4.

In Figure 3, both frequency histograms look very skewed to the right,
particularly in comparison with Figure 1. From the scatter plot in Figure 4,
the values seem to disperse in a dependent fashion. For example, if we
observe a “small” value of then it seems unlikely that we will also observe a
“large” value of or equivalently a “large” value of For a more formal test
of significance, however, we formed a 3 × 3 table (Table 2) of count data in
each cell. Then, we simply used the Chi-square test (1.2).

We may like to test if the categories based on are independent 5% level.
The test statistic from (1.2) is given by

We reject independence between values at 5% level. In order to claim
that values are dependent, note that one simply needs to contradict (1.1)
for some Borel sets A, B. In Table 2, we constructed a precise system of nine
Borel sets for which the multiplicative probability rule quoted in (1.1) does not
hold!

Figure 3. Marginal frequency histograms of and based on 500 observations
from Gamma(4,8) distribution
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Figure 4. A plot of and based on 500 observations from Gamma(4,8) distri-
bution

We had between the data with the That
is, the sides with the earlier conclusion to reject the null hypotheses of
independence between the data at 5% level. But, also see Remark 1.2.

One may again explore the nonparametric test. We found
that is the test statistic with the associated

That is, we would reject the null hypotheses of independence
between the data at 5% level.

In these illustrations, one may want to know which of the two hypothesis
was true? The following result will address this. Let us denote

and for
THEOREM  1.1 Suppose that are iid random variables governed by
a common distribution function Then, the sample mean and
the sample variance are independently distributed if and only if the common
distribution of the is that is for some

and for all
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The if part is a well-known result that may be verified easily with the help of
Helmert transformations (Mukhopadhyay (2000), pp. 197-201). See Section
2 and Remark 2.1. The only if part, however, provides a characterization of
a normal probability law which is quite hard to prove. Zinger’s (1958) proof
of the only if part requires deep analyses with an interplay of Cramér’s (1946,
pp. 151-165) fundamental results involving characteristic functions. Important
historical notes may be found in Lukacs (1960), Ramachandran (1967, Chapter
8), and Kagan et al. (1973).

In Illustration 1.1, we generated data from a normal probability model, and
hence we would have expected to favor with the help of a “large” P-value.
On the other hand, in Illustration 1.2, we generated data from a gamma proba-
bility model, and hence we would have expected to favor with the help of
a “small” P-value In the first illustration, both Chi-square and  came
up with the correct answer, but the nonparametric test gave a wrong answer.
In the second illustration, all three tests came up with the correct answer. But,
one needs to keep in mind that in situations like ours, a is not reasonable
any way! See Remark 1.2.

It is safe to say that among three contenders, the Chi-square test (1.2) thus
far stands out as the most reliable exploratory data analytic (EDA) tool in
validating the true state of nature of dependence (or independence) between

as evidenced by the observed paired data when the observations
are assumed iid. As the story unfolds, one will see that the Chi-

square test would remain most reliable in the same sense when the observations
are not iid or these are non-normal.

17.1.1. What If the Observations Are Not IID or They
Are Non-Normal?

In a direct contrast with the message from Theorem 1.1, what we find inter-
esting is that the sample mean and the variance may or may not follow
independent probability models when the observations are not iid or when
these follow some non-normal probability laws. We highlight examples depict-
ing a number of interesting scenarios including the following:

(i) follow independent probability models, each X’s follows the same
normal probability law, has a normal probability model, has a Chi-square
probability model, but the are dependent (Section 2);

(ii) follow independent probability models, the follow non-iden-
tical but dependent normal probability laws, has a normal probability model,

has a (non-central) Chi-square probability model, when (Section 3);
(iii) follow dependent and uncorrelated probability models, has a

non-normal probability model, but both follow standard normal prob-
ability laws and they are dependent when (Section 4);
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(iv) follow dependent and uncorrelated probability laws, follows
a standard normal probability law, follows a mixture-normal symmetric
probability law, has a normal probability model, but are dependent
when (Section 5);

(v) follow independent probability laws, has a normal probability
model, does not have a Chi-square probability model, even if the observa-
tions are governed by one common bi-modal mixture-normal symmet-
ric probability law when (Section 6);

(vi) follow independent probability laws, does not have a normal
probability model, has a Chi-square probability model, even if the observa-
tions are governed by one common bi-modal mixture-normal symmet-
ric probability law when (Section 6.1);

(vii) follow independent probability laws, has a normal probability
model, does not have a Chi-square probability model, even if the obser-
vations are governed by one common mixture-normal symmetric
probability law when (Section 7, Example 7.1); and

(viii) follow independent probability laws, does not have a normal
probability model, has a Chi-square probability model, even if the obser-
vations are governed by one common mixture-normal symmetric
probability law when (Section 7, Example 7.2).

Each example, except the one mentioned in Section 2, is new as far as we
know. The example cited in Section 2 was described in Rao (1973, pp. 196-
197). In the abstract, we asked the following question: What can one expect
regarding the status of independence or dependence between when the
random variables are allowed to be non-iid or non-normal? The specific
examples described in Sections 2-7 should clearly highlight the point that there
is a large array of interesting possibilities when the random variables are
allowed to be non-iid or non-normal.

In order to formulate a general result, in our opinion, one has to focus on
some particular nature of non-iid or non-normal probability model for the ob-
servations and explore necessary and/or sufficient conditions for
the independence between to hold. The examples here show that one
may expect contrasting results even within scenarios which are “close” to each
other. In other words, one would necessarily proceed on a case by case basis
with regard to differing aspects of how non-iid or how non-normal the joint
probability models are. This article points toward an opening for the develop-
ment of important characterization results and we hope to see some progress
on this in the future.

In the case of Examples (iii)-(v), illustrations through simulated data are
provided in our attempt to examine the performances of the Chi-square test,

and the nonparametric test in detecting dependence of data as well
as the dependence (or independence) of data. In a number of occasions,
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the and the nonparametric test arrived at conflicting conclusions based
on same data. We raise the potential of a major problem in implementing
either a or the nonparametric test as EDA tools to examine dependence or
association for paired data in practice! The Chi-square test, however, correctly
validated dependence under consideration in every single case, and this test
never sided against a correct conclusion when the paired variables were in fact
independent. We conclude that in this sense, the Chi-square test (1.2) stands
out as the most reliable EDA tool whether the observations are
assumed iid, or not iid, or non-normal.

17.2 A Multivariate Normal Probability Model
This interesting situation in the context of a multivariate normal probability
model was described in Rao (1973, pp. 196-197). Consider
vector-valued random variable X where We assume that X
has the normal distribution with

where
and I is the identity ma-

trix.
We may define the associated Helmert variables (Mukhopadhyay (2000),

pp. 197-201) where

This constitutes an orthogonal transformation from
to One can easily derive the joint probability model for

from the assumed joint probability model of and
hence conclude in a straightforward manner that

Obviously, we also have

since Now, we note that depends only on whereas
depends only on but is independent of Hence,
and are independently distributed statistics. It is now quite straightfor-

ward to check that is distributed as and
is distributed as We may summarize the find-

ings as follows:
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In this example, one readily notices that the if part in Theorem 1.1 does hold,
that is and are independent, when each observation follows
the same probability law so that they are identically distributed, but

are dependent as is assumed different from zero!
REMARK 2.1. A proof of the if part in Theorem 1.1 follows from the derivation
given above if we assume that

17.3 A Bivariate Normal Probability Model
Let us start with a two-dimensional random variable X where

and In
other words, we have respectively distributed as and

but they are dependent.
Now, let us define two random variables and

denote Observe that any arbitrary linear function of is
clearly a linear function of X. Now, since X is distributed as the random
variable U must have a univariate normal distribution. Thus, the random vector
Y would have a bivariate normal probability model, say where

Thus, we have and
Obviously, have independent probability models since is a diagonal
matrix so that and are independently distributed.

This example provides a different scenario from the one described in Section
2 when we fix            Here, we note that marginally have non-identical
and dependent normal probability models. But, and are independent!

17.4 Bivariate Non-Normal Probability Models: Case I

Let us denote the probability density function (pdf) of a bivariate normal prob-
ability model with

In other words, let us denote
by where

and

and let X be governed by the probability model where
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where

Now, we construct an example of a two-dimensional random variable X
with where both follow the probability law,

have dependent probability models, neither nor fol-
lows a normal probability law, but have dependent probability models.
Here, one finds an example where have identical but dependent normal
probability laws, and yet have dependent probability models.

To be specific, we consider the joint probability model for an observation
governed by the pdf

for The pdf given in (4.3) is a mixture of
two bivariate normal models.
THEOREM 4.1 Suppose that has the joint pdf from (4.3). Let us denote

and Then, for all we have the
following:

(i) Both have a standard normal probability model, but these are dependent;
(ii) The joint probability model of is governed by the pdf from (4.4), but has

a mixture normal probability model with its pdf from (4.7), and has analogous
mixture normal probability model with its pdf from (4.6);

( i i i) are dependent, and so are
(iv) are uncorrelated,
(v) are uncorrelated.

PROOF (i) From the joint pdf by integrating or out,
one easily verifies that marginally both have a standard normal prob-
ability model so that their common pdf is with

Now, observe that

whatever be Thus, the random variables have identical
but dependent probability models.

(ii) Next, we consider and then with the help of the one-to-one trans-
formation from we can write down the joint pdf of Y1,Y2.
Toward this end, we begin with

for Observe that and
hence the Jacobian matrix amounts to
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Thus, the joint probability model of is governed by the following pdf:

which simplifies to the expression

Now, by integrating or out from the joint pdf one easily
verifies that the marginal pdf’s of are respectively given by

Both happen to be mixtures of and
distributions. From (4.5), it is obvious that the probability model

for will be governed by the pdf

The pdf happens to be a mixture of and
distributions.

(iii) Next, by combining (4.4)-(4.6) we observe that

whereas

and
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In other words, we would conclude that
if and only if

since But, we have assumed that is pos-
itive! That is, we have whatever be

Hence, whatever be the random variables are
dependent, that is have dependent probability models since

(iv) We obviously have

Also, note that so that the
Pearson correlation coefficient between the observations is given by

That is, the observations
are uncorrelated whatever be

Next, using (4.4), let us evaluate the covariance between the random vari-
ables and express

whereas may be found as follows:

Also, and are both finite so that the Pearson correlation coefficient
between the observations is given by

Thus, are uncorrelated.
(v) This follows from part (iv) since and

REMARK 4.1 Recall that and Also,
we can easily write



410 RECENTS ADVANCES IN APPLIED PROBABILITY

Thus, we have

so that the Pearson correlation coefficient between the observations
is given by Hence,
whatever be the observations are uncorrelated if and only
if
DATA ILLUSTRATION 4.1 We focus on working under the pdf from (4.3) when

and compare performances of the Chi-square test, and the
nonparametric test in detecting dependence within data and within

data. Thus, we generated 500 random pairs 500
governed by the joint probability model (4.3) with Sub-

sequently, we obtained where
The frequency histograms for and are given in Fig-

ures 5-6. The plots of vs and vs are given in Figure 7.

Figure 5. Marginal frequency histograms of and obtained from observations with the
joint distribution (4.3),

Figure 6. Marginal frequency histograms of and obtained from
observations with the joint distribution (4.3),
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From Figures 5-6, we observe that the frequency histograms for and
have heavy tails on either side. In Figure 7, the two scatter plots seem to

indicate that both and data are dependent as they are expected to
be so.

For a test of significance, however, we formed a 4 × 4 table (Table 3) of
count data of how many pairs fell in each cell. Then, we used the
Chi-square test (1.2).

Next, we test whether the categories based on the data are indepen-
dent at 5% level, and the test statistic from (1.2) is given by

Since the P-value is “small”, we reject the hypothesis of independence be-
tween values at 5% level.

Figure 7. Plots of vs and vs obtained from observations with the joint
distribution (4.3),



Similarly, we formed a 4 × 4 table (Table 4) of count data of pairs
that fell in each cell and proceeded to use the Chi-square test (1.2).

Now, for testing the independent of the categories based on values at
5% level, the test from (1.2) gives

We reject independence between values at 5% level since we observe a
“small” P-value.

Next, with regard to the nonparametric test, we found and
along with test statistics

and respectively. The associated P-values were
0.044389 and 0.19511 respectively, indicating that we would (would not) re-
ject the hypotheses of independence between values values) at
5% level. That is, the nonparametric test for data leads to an incorrect
inference in this example!

17.5 Bivariate Non-Normal Probability Models: Case II
Let us repeat the earlier notation from Section 4. Now, we give an example
of a two-dimensional random variable X with where is

With regard to  we respectively found and
with associated P-values = 0.005 and 0.315. That is, the

 based on will side with the conclusion that data are depen-
dent at 5% level, but an analogous  based on unfortunately gives a
wrong message at 5% level!

RECENTS ADVANCES IN APPLIED PROBABILITY412
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normally distributed, is not normally distributed, is normally distributed,
is not normally distributed, but and are dependent random

variables.
Recall the function from (4.1). Suppose that

has its pdf given by

for
THEOREM 5.1 Suppose that has the joint pdf from (5.1). Let us denote

and Then, for all we have the
following:

(i)

(ii)

(iii)
(iv)
(v)

has the standard normal probability model, has a mixture normal probabi-
lity model governed by the pdf from (5.2), and they are dependent;
The joint probability model of is governed by the pdf from (5.3), but
has distribution with pdf from (5.4), and has a mixture normal prob-
ability model with its pdf from (5.5);

are dependent, and so are
are correlated, but are uncorrelated;
are uncorrelated.

PROOF (i) From the joint pdf by integrating or out,
one easily verifies that has the N(0,1) distribution with its pdf

for but the marginal pdf of
is given by

whatever be It is clear that happens to be a mixture of
N(0,4) and N(0,9) probability models.

Now, observe that whereas

so that we have Hence, the random
variables have the dependent probability models.

(ii) We have Then, along the line of deriva-
tion for Theorem 4.1 part (ii), we can again use transformation techniques to
express the joint pdf of as follows:
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for From (5.3), it is obvious that marginally, is dis-
tributed as N(0,7) with its pdf

whatever be However, the marginal pdf of is given by

which happens to be a mixture of N(0,3) and N(0,13) probability models.
Obviously, is distributed as

(iii) Next, by combining (5.3)-(5.5) we observe that
whereas and

In other words, we would conclude that if and
only if

which is a negative number! But, we have assumed that so that we
immediately conclude that whatever be
Hence, for all the random variables are dependent, that is

also have dependent probability models since
(iv) From (5.4)-(5.5), we obviously have

and From (5.3), we note that

which is certainly non-zero. Hence, the Pearson correlation coefficient be-
tween the observations is given by

Hence, the observations are correlated whatever be
Next, using (5.3) again, let us evaluate the covariance between the random

variables and express

whereas may be found as follows:
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Again, both are finite so that the Pearson correlation coefficient
between the observations is given by

Hence, are uncorrelated.
(v) This follows from part (iv) since and

REMARK 5.1 We note that
We can also express

Thus, we have

so that That is, the observations are
uncorrelated if and only if
DATA ILLUSTRATION 5.1 We focus on working under the pdf from (5.1) when

and compare performances of the Chi-square test, and the non-
parametric test in detecting dependence for and data. Thus,
we generated random pairs governed by the
joint probability model (5.1) with Subsequently, we obtained
where The frequency histograms
for and are given in Figures 8-9. The plots of vs and vs

are given in Figure 10.

Figure 8. Marginal frequency histograms of and obtained from observations with the
joint distribution (5.1),

From Figure 8, we observe that the frequency histograms for both are
skewed, whereas from Figure 9, the frequency histograms for both have
heavy tails on either side. In Figure 10, the two scatter plots seem to indicate
that both and are dependent as they are expected to be.

For a more formal test of significance, however, we formed a 5 × 3 table
(Table 4) of count data of how many pairs fell in each cell and used
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Figure 9. Marginal frequency histograms of and obtained from
observations with the joint distribution (5.1),

Figure 10. Plots of vs and vs obtained from observations with the joint
distribution (5.1),

the Chi-square test (1.2).
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Next, we test whether the categories based on the data are indepen-
dent at 5% level, and the test statistic from (1.2) is given by

In this example, we should have expected to see a “small” P-value which we
did. Thus, we reject independence between values at 5% level.

Also, we carry out similar analysis with the values by forming a 4 × 4
table (Table 6) of count data of how many pairs fell in each cell and
used the Chi-square test (1.2) to check whether the categories based on the

data were independent at 5% level. The test statistic from (1.2) is given
by

Here, we may have expected to see a “small” P-value which we do. Thus, we
reject independence between values at 5% level.

We mention that we found and with
the associated P-value =  0.006 and P-value 0 respectively. So, the

 based on and respectively sided with the conclusions that
the data and data were dependent at 5% level.

With regard to the nonparametric test, we observed and
along with the test statistics

and respectively. The associated P-values were 0
.066996 and nearly zero respectively for the two datasets, indicating that the
test would not (would) reject independence between values val-
ues) at 5% level. That is, the test using the Spearman-rank correlation coef-
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ficient between the data led to correct inference, but an analogous test
gave an incorrect decision for the data.

17.6 A Bivariate Non-Normal Population: Case III

We repeat the notation from Section 4 and give an example of a two-dimen-
sional random variable X with where are identically
distributed with a common non-normal distribution, is normally dis-
tributed, is not normally distributed, but are independent ran-
dom variables.

Recall the function from (4.1). Suppose that X
has its pdf given by

for
THEOREM 6.1 Suppose that has the joint pdf from (6.1). Let us denote

and Then, for all we have the
following:

(i)

(ii)

(iii)

Both have mixture normal probability models governed by the pdf from
(6.2), and they are dependent;
The joint probability model of is governed by the pdf from (6.3), but has

distribution, and has a mixture normal probability model with its pdf
from (6.5);

are independent, and so are
PROOF (i) From the joint pdf by integrating or out, one
easily verifies that and respectively have the marginal pdf ’s

whatever be It is clear that both happen to be
mixtures of N(–5,1) and N(5,1) probability models.

Next, observe that whereas
so that we have Hence, the random variables

have dependent probability models.
(ii) We have Then, along the line of deriva-

tion for Theorem 4.1 part (ii), we can again use transformation techniques to
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express the joint pdf of as follows:

for From (6.3), it is obvious that marginally, is dis-
tributed as N(0,3) with its pdf

whatever be However, the marginal pdf of is given by

which happens to be a mixture of N(–10,1) and N(10,1) probability models.
Obviously, is distributed as

(iii) From (6.3) it is clear that for all the random variables
are independent, that is also have independent probability models since

REMARK 6.1 It is clear that both have identical mixture normal and
bi-modal probability models governed by the pdf

when
REMARK 6.2 We note that

We can also express

Thus, we have

so that That is, the ob-
servations are uncorrelated if and only if

or
DATA ILLUSTRATION 6.1 We focus on working under the pdf from (6.1) when

and compare performances of the Chi-square test, and the non-
parametric test in detecting dependence for and data. Thus,
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we generated random pairs governed by the
joint probability model (6.1). Subsequently, we obtained where

The frequency histograms
for and are given in Figures 11-12. The plots of vs and
vs are given in Figure 13.

Figure 11. Marginal frequency histograms of and obtained from observations with the
joint distribution (6.1),

Figure 12. Marginal frequency histograms of and obtained from
observations with the joint distribution (6.1),

Figure 13. Plots of vs and vs obtained from observations with the joint
distribution (6.1),

From Figure 11, we observe that the frequency histograms for both
are fairly similar and these are bi-modal. Refer to Remark 6.1. We also note
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from Figure 12 that the frequency histogram for resembles the shape of
the N(0,3) probability model (6.4), and that for resembles the shape of

given by (6.5) which is clearly bi-modal. In Figure 13, the scatter
plot for seem to indicate that data are dependent whereas the
scatter plot for indicates that data are independent.

For a test of significance, however, we formed a 2 × 3 table (Table 7) of count
data of how many pairs fell in each cell and used the Chi-square test
(1.2).

For testing whether the categories based on data are independent at
5% level, the test statistic from (1.2) is given by

Since the P-value is “small”, we reject independence between values
at 5% level.
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Similarly, we formed a 6 × 4 table (Table 8) of count data of pairs
that fell in each cell and proceeded with the Chi-square test (1.2) for the cells.
For testing whether the categories based on data are independent at 5%
level, the test statistic from (1.2) is given by

Thus, we do not reject independence between values at 5% level. In this
example, we should have expected to see a “large” P-value which we did.

With regard to we respectively found and
with associated and That

is, the based on and respectively sides with the conclusions
that the data are dependent at 5% level, and that the data are in-
dependent at 5% level. See Remark 1.2.

Next, with regard to the nonparametric test, we found
and along with the test statistics

and respectively. The associated P-value
amounts to nearly zero and 0.77151 respectively for the two datasets, indicat-
ing that we would (would not) reject the hypotheses of independence between

values values) at 5% level. That is, the nonparametric test leads
to correct inferences in this example for both the and data. See
Remark 1.3.

17.6.1. Another Example

Here, we list a slightly different example. Instead of (6.1), suppose that X has
its pdf given by

for Now, whatever be
we have the following:

(i) are identically distributed with a common mixture normal distribution,
(ii) is not normally distributed,
(iii) is normally distributed with mean zero and variance

Again, we can conclude that
(iv) and are independent random variables, and
(v) distributed as Chi-square with one degree of freedom.

17.7 Multivariate Non-Normal Probability Models
EXAMPLE 7.1 Let  us recall the   normal distribution
that was used in Section 2. Suppose that the associated pdf is denoted by
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for Next, let us define a random vector
X whose pdf is given by

with some fixed         Clearly, each has
a common non-normal distribution which happens to be a mixture of
and probability models.

Now, we may visualize the Helmert variables from (2.1) and
pretend applying that orthogonal transformation separately under the
probability models and for x. From the
summary results stated in (2.2), under the probability model for
x, we conclude that are iid with the common probability
model.

Similarly, under the probability model for x, we con-

clude that and are iid with the common
distribution.

Hence, whatever be once we implement the
transformation under the probability model for x from (7.1),
we can immediately claim that

(i) so that

(ii) are iid with the common pdf which is a mixture of  and
probability models,

(iii) is distributed independently of the random vector

But, refennnr to (2.3) and recall that we can express which
clearly implies that

have independent probability models.

EXAMPLE 7.2 Here is another example. Along the line of (7.1), suppose that
we have a slightly different random vector X whose pdf given
by

(iv)

for Clearly, each has a com-
mon non-normal distribution which happens to be a mixture of and

probability models.
Again, we may visualize the Helmert variables from (2.1) and

pretend applying that transformation separately under the probability
models and for x. From summary results in
(2.2), under the probability model for x, recall that are
iid with the common probability model. Also, under the probability
model for x, we conclude that and

are iid with the common probability model.



424 RECENTS ADVANCES IN APPLIED PROBABILITY

has the pdf

for

17.8 Concluding Thoughts

By allowing the observations to be non-iid or non-normal, we have
provided a number of specific examples where different scenarios developed
with regard to dependence or independence between the sample mean and
the sample variance In these examples, we assigned fixed values for some
of the “parameters” primarily because they made the analyses simpler and
yet they drove the point home. In Sections 4-7, we could clearly envision
population models (or defined as mixtures of three or more
appropriate bivariate (or multivariate) normal probability models instead of
focusing only on mixtures of simply two bivariate (or multivariate) normal
probability models time after time. But, we must admit that we have deliber-
ately stayed away from “generalizing” the examples too much because such
additional frills, in our opinion, will harm both beauty and simplicity of the
message.

Five major illustrations through simulated data have been provided where
we applied the customary based on Pearson-sample correlation coeffi-
cient as well as the traditional nonparametric test based on Spearman-rank
correlation coefficient and the Chi-square test to “validate” independence or
dependence between the two variables under consideration. We have included
the because practitioners often rely upon some routine statistical pack-
ages to come up with Pearson-sample correlation coefficient and the associated

with the intent to check “dependence” or “association” for paired data.
A succinct summary of our findings follows.
Data Illustration 1.1: were independent. The Chi-square and did
not side against the correct conclusion that the data were independent.
The nonparametric test came up with a wrong conclusion.
Data Illustration 1.2: were dependent. The Chi-square test, and
nonparametric test sided with the correct conclusion that the data were
dependent.

Hence, once we implement the transformation under the probability
model for x from (7.2), we can immediately claim that

which is a mixture of and
probability models, and

Then, obviously we also have
(iii) has a mixture normal probability model,
(iv) has the distribution,
(v) is distributed independently of the random vector so that

have independent probability models.

are iid

(i)

(ii)
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Data Illustration 4.1: were dependent with The Chi-
square and sided with the correct conclusion that the data were
dependent. The nonparametric test came up with a wrong conclusion.

were dependent with The Chi-square test sided with
the correct conclusion that the data were dependent. Both and
nonparametric test came up with wrong conclusions.
Data Illustration 5.1: were dependent with The
Chi-square and sided with the correct conclusion that the data
were dependent. The nonparametric test came up with a wrong conclusion.

were dependent with The Chi-square test,
and nonparametric test sided with the correct conclusion that the

data were dependent.
Data Illustration 6.1: were dependent with The
Chi-square test, and nonparametric test sided with the correct conclusion
that the data were dependent.

were independent. The Chi-square test, and nonparametric test
did not side against the correct conclusion that the data were indepen-
dent.

From this summary, it is clear that in some instances the and the non-
parametric test behaved erratically in their “validation” of independence or
dependence in question. In a number of occasions, the and the nonpara-
metric test unfortunately arrived at conflicting conclusions based on same data.
When we had or significantly away from zero, we noted correct
decisions regardless of which test was used for the and data. On
the other hand, whenever we found that or was zero or nearly
zero, we noted that these tests using the and data gave mixed
signals. We realize that if the paired data were independent, then would be
zero, whereas even if the paired data were dependent, again might be zero or
nearly zero. Given this, the present investigation raises the potential of a major
problem in implementing either a or the nonparametric test as EDA tools
to examine dependence or association for paired data in practice!

The Chi-square test, however, correctly validated dependence under consid-
eration in every case, and the same test never sided against the correct con-
clusion that the paired data were independent when the paired variables were
in fact independent. This exercise suggests that among three contenders, the
Chi-square test is certainly more reliable.
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Abstract The first part of this paper summarizes the essential facts on general optimal
stopping theory for time-homogeneous diffusion processes in The results
displayed are stated in a little greater generality, but in such a way that they are
neither too restrictive nor too complicated. The second part presents equations
for the value function and the optimal stopping boundary as a free-boundary
(Stefan) problem and further presents the principle of smooth fit. This part is
illustrated by examples where the focus is on optimal stopping problems for the
maximum process associated with a one-dimensional diffusion.

18.1 Introduction
This paper reviews some methodologies used in optimal stopping problems

for diffusion processes in The first aim is to give a quick review of the
general optimal stopping theory by introducing the fundamental concepts of
excessive and superharmonic functions. The second aim is to introduce the
common technique to transform the optimal stopping into a free-boundary
(Stefan) problem, such that explicit or numerical computations of the value
function and the optimal stopping boundary are possible in specific problems.

Problems of optimal stopping have a long history in probability theory and
have been widely studied by many authors. Results on optimal stopping were
first developed in the discrete case. The first formulations of optimal stopping
problems for discrete time stochastic processes were in connection with se-
quential analysis in mathematical statistics, where the number of observations
is not fixed in advance (that is a random number) but terminated by the be-
haviour of the observed data. The results can be found in [Wald, 1947]. [Snell,
1952] obtained the first general results of optimal stopping theory for stochas-
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tic processes in discrete time. For a survey of optimal stopping for Markov
sequences see [Shiryaev, 1978] and the references therein. The first general
results on optimal stopping problems for continuous time Markov processes
were obtained by [Dynkin, 1963] using the fundamental concepts of excessive
and superharmonic functions. There is an abundance of work in general opti-
mal stopping theory using these concepts, but one of the standard and master
reference is the monograph of [Shiryaev, 1978] where the definite results of
general optimal stopping theory are stated and it also contains an extensive list
of references to this topic. (Another thorough exposition is founded in [Karoui,
1981]). This method gives results on the existence and uniqueness of an op-
timal stopping time, under very general conditions, of the gain function and
the Markov process. Generally, for solving a specific problem the method is
very difficult to apply. In a concrete problem with a smooth gain function and
a continuous Markov process, it is a common technique to formulate the opti-
mal stopping problem as a free-boundary problem for the value function and
the optimal stopping boundary along with the non-trivial boundary condition
the principle of smooth fit (also called smooth pasting ([Shiryaev, 1978]) or
high contact principle ([Øksendal, 1998])). The principle of smooth fit says
that the first derivatives of the value function and the gain function agree at the
optimal stopping boundary (the boundary of the domain of continued observa-
tion). The principle was first applied by [Mikhalevich, 1958] (under leadership
of Kolmogorov) for concrete problems in sequential analysis and later inde-
pendently by [Chernoff, 1961] and [Lindley, 1961]. [McKean, 1965] applied
the principle to the American option problem. Other important papers in this
respect are [Grigelionis & Shiryaev, 1966] and [van Moerbeke, 1974]. For a
complete account of the subject and an extensive bibliography see [Shiryaev,
1978]. [Peskir, 2000] introduced the principle of continuous fit solving se-
quential testing problems for Poisson processes (processes with jumps).

The background for solving concrete optimal stopping problems is the fol-
lowing. Before and in the seventies the investigated concrete optimal stopping
problems were for one-dimensional diffusions where the gain process con-
tained two terms: a function of the time and the process, and a path-dependent
integral of the process (see, among others, [Taylor, 1968], [Shepp, 1969] and
[Davis, 1976]). In the nineties the maximum process (path-dependent func-
tional) associated with a one-dimensional diffusion was studied in optimal
stopping. [Jacka, 1991] treated the case of reflected Brownian motion and
later [Dubins et al, 1993] treated the case of Bessel processes. In both papers
the motivation was to obtain sharp maximal inequalities and the problem was
solved by guessing the nature of the optimal stopping boundary. [Graversen
& Peskir, 1998] formulated the maximality principle for the optimal stopping
boundary in the context of geometric Brownian motion. [Peskir, 1998] showed
that the maximality principle is equivalent to the superharmonic characteriza-
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tion of the value function from the general optimal stopping theory and led to
the solution of the problem for a general diffusion ([Peskir, 1998] also contains
many references to this subject). In recent work, Graversen, [Graversen, Peskir
& Shiryaev, 2001] formulated and solved an optimal stopping problem where
the gain process was not adapted to the filtration.

Optimal stopping problems appear in many connections and have a wide
range of applications from theoretical to applied problems. The following ap-
plications illustrate this point.

Mathematical finance
The valuation of American options is based on solving optimal stopping

problems and is prominent in the modern optimal stopping theory. The liter-
ature devoted to pricing American options is extensive; for an account of the
subject see the survey of Myneni [Myneni, 1992] and the references therein.
The most famous result in this direction is that of McKean [McKean, 1965]
solving the standard American option in the Black-Scholes model. This exam-
ple can further serve to determine the right time to sell the stocks ([Øksendal,
1998]). In [Shepp & Shiryaev, 1993] the valuation of the Russian option is
computed in the Black-Scholes model (see Example 7). The payoff of the
option is the maximum value of the asset between the purchase time and the
exercise time.

Optimal prediction

The development of optimal prediction of an anticipated functional of a con-
tinuous time process was recently initiated in [Graversen, Peskir & Shiryaev,
2001] (see Example 8). The general optimal stopping theory cannot be ap-
plied in this case since, due to the anticipated variable, the gain process is
not adapted to the filtration. The problem under consideration in [Graversen,
Peskir & Shiryaev, 2001] is to stop a Brownian path as close as possible to
the unknown ultimate maximum height of the path. The closeness is measured
by a mean-square distance. This problem was extended in [Pedersen, 2003] to
cases where the closeness is measured by a distance and a probability dis-
tance. These problems can be viewed as an optimal decision that needs to be
based on a prediction of the future behaviour of the observable motion. For ex-
ample, when a trader is faced with a decision on anticipated market movements
without knowing the exact date of the optimal occurrence. The argument can
be carried over to other applied problems where such a prediction plays a role.

Sharp inequalities
Optimal stopping problems are a natural tool to derive sharp versions of

known inequalities, as well as to deduce new sharp inequalities. By this method
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Davis [Davis, 1976] derived sharp inequalities for a reflected Brownian mo-
tion. [Jacka, 1991] and [Dubins et al, 1993] derived sharp maximal inequali-
ties for a reflected Brownian motion and for Bessel processes, respectively. In
the same direction see [Graversen & Peskir, 1997] and [Graversen & Peskir,
1998a] (Doob’s inequality for Brownian motion and Hardy-Littlewood inequal-
ity, respectively) and [Pedersen, 2000] (Doob’s inequality for Bessel processes).

Mathematical statistics
The Bayesian approach to sequential analysis of problems on testing two

statistical hypotheses can be solved by reducing the initial problems to optimal
stopping problems. Testing two hypotheses about the mean value of a Wiener
process with drift was solved by [Mikhalevich, 1958] and [Shiryaev, 1969].
Peskir & Shiryaev [Peskir, 2000] solved the problem of testing two hypotheses
on the intensity of a Poisson process. Another problem in this direction is the
quickest detection problem (disruption problem). Shiryaev [Shiryaev, 1961]
investigated the problem of detecting (alarm) a change in the mean value of a
Brownian motion with drift with a minimal error (false alarm). Again, a thor-
ough exposition of the subject can be found in [Shiryaev, 1978].

The remainder of this paper is structured as follows. The next section in-
troduces the formulation of the optimal stopping problem under consideration.
The concepts of excessive and superharmonic functions with some basic re-
sults can be found in Section 18.3. The main theorem on optimal stopping of
diffusions is the point of discussion in Section 18.4. In Section 18.5, the op-
timal stopping problem is transformed into a free-boundary problem and the
principle of smooth fit is introduced. The paper concludes with some exam-
ples in Section 18.6, where the focus is on optimal stopping problems for the
maximum process associated with a diffusion.

18.2 Formulation of the problem
Let be a time-homogeneous diffusion process with state space
associated with the infinitesimal generator

for where and are continuous and
further is non-negative definite. See [Øksendal, 1998] for conditions on

and that ensure existence and uniqueness of the diffusion process.
Let be a diffusion process depending on both time and space (and hence
is not time-homogeneous diffusion) given by whichunder
starts at Thus is a diffusion process in associated
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with the infinitesimal generator

for
The optimal stopping problem to be studied in later sections is of the follow-

ing kind. Let be a gain function, which will be specified
later. Consider the optimal stopping problem for the diffusion with the
value function given by

where the supremum is taken over all stopping times for At the
elements where set to be There are
two problems to be solved in connection with the problem (2.1). The first
problem is to compute the value function and the second problem is to
find an optimal stopping time that is, a stopping time for such that

Note that optimal stopping times may not exist, or be
unique if they do.

18.3 Excessive and superharmonic functions
This section introduces the two fundamental concepts of excessive and super-
harmonic functions that are the basic concepts in the next section for a char-
acterization of the value function in (2.1). For the facts presented here and a
complete account (including proofs) of this subject, consult [Shiryaev, 1978].

In the main theorem in the next section it is assumed that the gain function
belongs to the following class of functions. Let be the class consisting
of all lower semicontinuous functions satisfying
either of the following two conditions

for all If the function H is bounded from below then condition
(3.2) is trivial fulfilled. The following two families of functions are crucial in
the sequel presentation of the general optimal stopping theory.

DEFINITION 1 (Excessive functions). A function is called ex-
cessive for if

for all and all
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DEFINITION 2 (Superharmonic functions). A function is
called superharmonic for if

for all stopping times for and all

The basic and useful properties of excessive and superharmonic functions
are stated in [Shiryaev, 1978] and [Øksendal, 1998]. It is clear from the two
definitions that a superharmonic function is excessive. Moreover, in some
cases, the converse also holds – which is not obvious. The result is stated
in the next proposition.

PROPOSITION 1 Let satisfy condition (3.2). Then H is exces-
sive for if and only if H is superharmonic for

The above definitions play a definite role in describing the structure of the
value function in (2.1). The following definition is important in this direction.

DEFINITION 3 (The least superharmonic (excessive) majorant). Let
be finite. A superharmonic (excessive) function H is called a super-

harmonic (excessive) majorant of G if A function is called the
least superharmonic (excessive) majorant of G if

(i) is a superharmonic (excessive) majorant of G .

(ii) If H is an arbitrary superharmonic (excessive) majorant of G then

To complete this section, a general iterative procedure is presented for con-
structing the least superharmonic majorant under the condition (3.2).

PROPOSITION 2 Let satisfy condition (3.2) and Define
the operator

and set

where is the power of the operator Then the function

is the least superharmonic majorant of G .

There is a simple iterative procedure for the construction of } when the
Markov process and the gain function are “nice”.
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COROLLARY 1  Let be a Feller process and let be continu-
ous and bounded from below. Set

for and Then

is the least superharmonic majorant of G .

REMARK 1 Proposition 2 and Corollary 1 are both valid under condition
(3.2) and excessive and superharmonic functions are the same in this case,
according to Proposition 1. When condition (3.2) is violated, the least exces-
sive majorant may differ from the least superharmonic majorant. In this case,
the least excessive majorant is smaller than the least superharmonic majorant,
since there are more excessive functions than superharmonic functions. The
construction of the least superharmonic majorant follows a similar pattern but
is generally more complicated (see [Shiryaev, 1978]).

REMARK 2 The iterative procedures to construct the least superharmonic
majorant are difficult to apply to concrete problems. This makes it necessary
to search for explicit or numerical computations of the least superharmonic
majorant.

18.4 Characterization of the value function

The main theorem of general optimal stopping theory of diffusion processes is
contained in the next theorem. The result gives existence and uniqueness of an
optimal stopping time in problem (2.1). The result could have been stated in a
more general setting, but is stated with a minimum of technical assumptions.
For instance, the theorem also holds for a larger class of Markov process such
as Lévy processes. For details of this and the main theorem consult [Shiryaev,
1978].

THEOREM 1 Consider the optimal stopping problem (2.1) where the gain
function G is lower semicontinuous and satisfies either (3.1) or (3.2).

(I). The value function is the least superharmonic majorant of the gain
function G with respect to the process that is,

for all
(II). Define the domain of continued observation



434 RECENTS ADVANCES IN APPLIED PROBABILITY

and let be the first exit time of from C , that is,

If for all then is an optimal stopping time for the
problem (2.1), at least when G is continuous and satisfies both (3.1) and (3.2).

(III). If there exists an optimal stopping time in problem (2.1), then
for all and is also an optimal stopping time for problem

(2.1).

REMARK 3 Part (II) of the theorem gives the existence of an optimal stopping
time. The conditions could have been stated with a little greater generality;
again, for more details cf. [Shiryaev, 1978].

Part (III) of the theorem says that if there exists an optimal stopping time
then is also an optimal stopping time and is the smallest among all

optimal stopping times for problem (2.1). This extremal property of the optimal
stopping time characterizes it uniquely.

REMARK 4 Sometimes it is convenient to consider “approximate” optimal
stopping times. An example is given in the setting of Theorem 1(II), if the
stopping time does not satisfy Then the following
approximate stopping times are available. For let

Let be the first exit time of from
that is, Then and is
approximated optimal in the following sense for
all Furthermore, as

At first glance, it seems that the initial setting of the optimal stopping prob-
lem (2.1) and Theorem 1 only cover the cases where the gain process is a
function of time and the state of the process But the next two exam-
ples illustrate that Theorem 1 also covers some cases where the gain process
contains path-dependent functional of where it is a matter of properly
defining

For simplicity, let in the examples below and assume, moreover,
that solves the stochastic differential equation

where is a standard Brownian motion.

EXAMPLE 1 (Optimal stopping problems involving an integral). Let
and be continuous functions. Consider the

optimal stopping problem
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The integral term might be interpreted as an accumulated cost. This problem
can be reformulated to fit in the setting of problem (2.1) and Theorem 1 by the
following simple observations.

for Let be a gain function and consider
the new optimal stopping problem

This problem fits into the setting of Theorem 1 and it is clear that
. Note that the gain function G is linear in

Another approach is by Itô formula to reduce the problem (4.1) to the setting
of the initial problem (2.1). Assume that the function is smooth
and satisfies Itô formula yields that

where is a continuous local martingale. The
optional sampling implies that (by localization and some
uniform integrable conditions) and hence

Therefore, the problem (4.1) is equivalent to solving the initial problem (2.1)
with the gain function

EXAMPLE  2 (Optimal stopping problems for the maximum process).
Peskir [Peskir, 1998] made the following observation. Denote the maximum
process associated with by It can be ver-
ified that the two-dimensional process with state space

(see Figure 1) is a continuous Markov process as-
sociated with the infinitesimal generator

Set and denote Thus
is a diffusion process in associated with the infinitesimal generator



436 RECENTS ADVANCES IN APPLIED PROBABILITY

Figure 1. A simulation of a path of the two-dimensional process
where is a Brownian motion.

with given in Section 18.2. Hence the optimal stopping problem

for fits in the setting of Theorem 1.

18.5 The free-boundary problem and the principle of
smooth fit

For solving a specific optimal stopping problem the superharmonic charac-
terization is not easy to apply. To carry out explicit computations of the value
function another methodology therefore is needed. This section considers the
optimal stopping problem as a free-boundary (Stefan) problem. This is also
important for computations of the value function from a numerical point of
view. First, the notation of characteristic generator (see [Øksendal, 1998])
is introduced and is an extension of the infinitesimal generator. Let be
the diffusion process given in Section 18.2. For any open set
associate to be the first exit time from U of

DEFINITION 4 (Characteristic generator). The characteristic generator
of      is defined by

where the limit is to be understood in the following sense. The open sets
decrease to the point that is, and If
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for all open sets then set Let
be the family of Borel functions for which the limit exists.

REMARK 5 As already mentioned above the characteristic generator is an
extension of the infinitesimal generator in the following sense that

and for any

Assume in the sequel that the value function in (2.1) is finite. Let
be the domain of continued observa-

tion (see Theorem 1). Then the following result gives equations for the value
function in the domain of continued observation.

THEOREM 2 Let the gain function G be continuous and satisfy both condi-
tions (3.1) and (3.2). Then the value function for belongs to

and solves the equation

for

REMARK 6 Since the gain function G is continuous and the value function
is lower semicontinuous, the domain of continued observation C is an

open set in If then it follows from Theorem 1 that

Then the general Markov process theory yields that the value function solves
the equation (5.1) and Theorem 2 follows directly. In other words, one is led
to formulate equation (5.1).

If the value function is in the domain of continued observation, the char-
acteristic generator can be replaced by the infinitesimal generator according to
Remark 5. This has the advantage that the infinitesimal generator is explicitly
given.

Equation (5.1) is referred to as a free-boundary problem. The domain of
continued observation C is not known a priori but must be found along with
unknown value function Usually, a free-boundary problem has many so-
lutions and further conditions must be added (e.g. the principle of smooth fit)
which the value function satisfies. These additional conditions are not
always enough to determine In that case, one must either guess or find
more sophisticated conditions (e.g. the maximality principle, see Example 5 in
the next section).

The famous principle of smooth fit is one of the most frequently used non-
trivial boundary conditions in optimal stopping. The principle is often applied
in the literature (see, among others, [McKean, 1965], [Jacka, 1991] and [Du-
bins et al, 1993]).
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The principle of smooth fit

If the gain function G is smooth then a non-trivial boundary condition for
the free-boundary problem for might be the following

A result in [Shiryaev, 1978] states that the principle of smooth fit holds
under fairly general assumptions. The principle of smooth fit is a very fine
condition in the sense that the value function often is often precisely at
the boundary of the domain of continued observation. This is demonstrated in
the examples in the next section.

The above results can be used to formulate the following method for solving
a particular stopping problem.

A recipe to solve optimal stopping problems
Step 1. First one tries to guess the nature of the optimal stopping boundary and

then, by using ad hoc arguments, to formulate a free-boundary prob-
lem with the infinitesimal generator and some boundary conditions. The
boundary conditions can be trivial ones (e.g. the value function is contin-
uous, odd/even, normal reflection etc.) or non-trivial, such as the princi-
ple of smooth fit and the maximality principle.

Step 2. One solves the formulated free-boundary system and maximizes over
the family of solutions if there is no unique solution.

Step 3. Finally, one must verify that the guessed at candidates for the value func-
tion and the optimal stopping time are indeed correct, (e.g., using Itô
formula).

The methodology has been used in, among others, [Dubins et al, 1993],
[Graversen & Peskir, 1998], [Pedersen, 2000] and [Shepp & Shiryaev, 1993].

It is generally difficult to find the appropriate solution of the (partial) differ-
ential equation It is therefore of most interest to formulate the
free-boundary problem such that the dimension of the problem is as small as
possible. The two examples below present cases where the dimension can be
reduced. For simplicity let and assume, moreover, that solves
the stochastic differential equation
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where is a standard Brownian motion.

EXAMPLE 3 (Integral and discounted problem). The general Markov pro-
cess theory states that the free-boundary problem is one-dimensional in some
special cases.

1. Let F : and be continuous functions and let
the gain function be given by which is linear in (see
Example 1). Let where and consider
the two-dimensional optimal stopping problem

At first glance, it seems to be a two-dimensional problem, but the Markov pro-
cess theory yields that the free-boundary problem can formulated as

for in the domain of continued observation, which is also clear from the last
part of Example 1. This is a one-dimensional problem.

2. Given the gain function where is a
constant. Let and consider the “two-dimensional” optimal
stopping problem

In this case, the free-boundary problem can be formulated as

for in the domain of continued observation. Again, this is a one-dimensional
problem.

EXAMPLE 4 (Deterministic time-change method). This example uses a de-
terministic time-change to reduce the problem. The method is described in
[Pedersen & Peskir, 2000]. Consider the optimal stopping problem

where is a smooth non-linear function. Thus, the value function might
solve the following partial differential equation

for in the domain of continued observation.
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The time-change method transforms the original problem into a new optimal
stopping problem, such that the new value function solves an ordinary differ-
ential equation. The problem is to find a deterministic time-change
which satisfies following two conditions:

(i) is continuous and strictly increasing.

(ii) There exists a one-dimensional time-homogeneous diffusion with
infinitesimal generator such that for some

The condition (i) ensures that is a stopping time for if and only
if is a stopping time for Substituting (ii) in the problem, the new
(time-changed) value function becomes

As in Example 3 the new problem might solve the ordinary differential equation

in the domain of continued observation. Given the diffusion the crucial
point is to find the process and the time-change fulfilling the two
conditions above. By ltô calculus it can be shown that the time-change given
by

where satisfies that the two terms

do not depend on will fulfill the above two conditions. This clearly imposes
the following conditions on to make the method applicable

where and are functions required to exist. For more in-
formation and remaining details of this method see [Pedersen & Peskir, 2000]
(see also [Graversen, Peskir & Shiryaev, 2001]).
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18.6 Examples and applications
This section presents the solutions of three examples of stopping problems
which illustrate the method established in the previous section and some ap-
plications. The focus will be on optimal stopping problems for the maximum
process associated with a one-dimensional diffusion.

Let Assume that is a non-singular diffusion with state space
that is and solves the stochastic differential equation

where is a standard Brownian motion. The infinitesimal generator of
is given by

Let denote the maximum process associated with
and let it start at under The scale function and speed

measure of are given by

for
The first example is important from the general optimal stopping theory

point of view.

EXAMPLE 5 (The maximality principle). The results of this example are
found in [Peskir, 1998]. Let be a continuous (cost) function.
Consider the optimal stopping problem with the value function

where the supremum is taken over all stopping times for satisfying

for all The recipe from the previous section is applied to solve the
problem.

1. The process with state space changes
only in the second coordinate when it hits the diagonal in (see
Figure 1). It can be shown that it is not optimal to stop on the diagonal. Due
to the positive cost function the optimal stopping boundary might be a
function which stays below the diagonal. Thus, the stopping time might be on
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the form for some function
to be found. In other words, the domain of continued observation is on the
form It is now natural to formulate
the following free-boundary problem that the value function and the optimal
stopping boundary is a solution of

Note that (6.4) and (6.5) follow from Example 2 and Example 3. The condition
(6.6) is clear and since the setting is smooth the principle of smooth fit should
be satisfied, that is condition (6.7) holds. (The theorem below shows that the
guessed system is indeed correct).

2. Define the function

for and set for Further, define the
first order non-linear differential equation

For a solution of equation (6.9) the corresponding function
in (6.8) solves the free-boundary problem in the region

The problem now is to choose the right optimal stopping boundary
To do this a new principle is needed and it will be the maximality

principle. The main observations in [Peskir, 1998] are the following.

(i) is increasing.

(ii) The function is superharmonic for the Markov
process (for stopping times satisfying (6.3))
where

The superharmonic characterization of the value function in Theorem 1 and
the above two observations lead to the formulation of the following principle
for determining the optimal stopping boundary.
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The maximality principle
The optimal stopping boundary for the problem (6.2) is the

maximal solution of the differential equation (6.9) which stays strictly below
the diagonal in (and is simply called the maximal solution in the sequel).

3. In [Peskir, 1998] it was proved that this principle is equivalent to the
superharmonic characterization of the value function. The result is formulated
in the next theorem and is motivated by Theorem 1.

THEOREM 3 Consider the optimal stopping problem (6.2).
(I). Let denote the maximal solution of (6.9) which stays below

the diagonal in Then the value function is given by

(II). The stopping time is optimal
whenever it satisfies condition (6.3).

(III). If there exists an optimal stopping time in (6.2) satisfying (6.3),
then  for all             and is also an optimal stopping time.

(IV). If there is no maximal solution of (6.9) which stays strictly below the
diagonal in then for all and there is no optimal
stopping time.

For more information and details see [Peskir, 1998]. A similar approach
was used in [Pedersen & Peskir, 1998] to compute expectation of Azéma-Yor
stopping times.

The theorem extends to diffusions with other state spaces in The non-
negative diffusion version of the theorem is particularly interesting to derive
sharp maximal inequalities, which will be applied in the next example.

Peskir [Peskir, 1998] conjectured that the maximality principle holds for the
discounted version of problem (6.2). In Shepp & Shiryaev [Shepp & Shiryaev,
1993] and Pedersen [Pedersen, 2000a] the principle is shown to hold in spe-
cific cases. A technical difficulty arises in verifying the conjecture because the
corresponding free-boundary problem may have no simple solution and the
(optimal) boundary function is thus implicitly defined.

EXAMPLE 6 (Doob’s inequality for Brownian motion). This example is an
application of the previous example (see also [Graversen & Peskir, 1997]).
Consider the optimal stopping problem (6.2) with and

Then is a non-negative diffusion having 0
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as an instantaneously reflecting boundary point and the infinitesimal generator
of in is given in (6.1) with and

If , it follows from Theorem 3
that the value function is given by

where is the maximal solution of the differential equation

The maximal solution (see Figure 2) can be found to be where
is the greater root of the equation (the maximality principle)

The equation admits two roots if and only if Further,
the stopping time

satisfies if and only if By
an extended version of Theorem 3 for non-negative diffusions and an obser-
vation in Example 3, it follows by the definition of the value function for

that

for all stopping times for satisfying Letting
the Doob’s inequality follows.

THEOREM 4 Let           be a standard Brownian motion started at     under
for let be given and fixed, and let be any stopping time

for such that Then the following inequality is sharp

The constants and are the best possible and the
equality is attained through the stopping times

for

For details see [Graversen & Peskir, 1997]. The results are extended to
Bessel processes in [Dubins et al, 1993] and [Pedersen, 2000].
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Figure 2. A computer drawing of solutions of the differential equation (6.10). The bold line is
the maximal solution which stays below and never hits the diagonal in By the maximality
principle, this solution equals

EXAMPLE 7 (Russian option). This is an example of pricing an Ameri-
can option with infinite time horizon in the framework of the standard Black-
Scholes model. The option under consideration is the Russian option (see
[Shepp & Shiryaev, 1993]). If is the price process of a stock then the
payment function of the Russian option is given by

where the expiration time is infinity. Thus, it is a perpetual Lookback option
(see [Conze & Viswanathan, 1991]). Assume a standard Black-Scholes model
with a dividend paying stock; under the equivalent martingale measure the
price process is thus the geometric Brownian motion

with the dividend yield, the interest rate and the
volatility. The infinitesimal generator of on is given in (6.1)
with and

Under these assumptions, the fair price of the Russian option is – according
to the general pricing theory – is the value of the optimal stopping problem

where the supremum is taken over all stopping times for To solve
this problem, the idea is to apply Example 3 and the maximality principle for
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this discounted optimal stopping problem. The recipe from the previous section
is applied to solve the problem.

1. As in Example 5, and using an observation in Example 3, it is natural to
formulate the following free-boundary problem that the value function and the
optimal stopping boundary is a solution of

Since the setting is smooth, the principle of smooth fit should be satisfied.
The theorem below shows that this system is indeed correct.

2. Let and be the two roots of the quadratic equation

and set

The solutions to the free-boundary problem are

where satisfies the nonlinear differential equation

The maximality principle says that maximal solution of the differential equa-
tion is the optimal stopping boundary. It can be shown that is
the one.

3. The standard procedure of applying Itô formula, Fatou’s lemma etc. can
be used to verify that the estimated candidates are indeed correct. The result
on the fair price of the Russian option is stated below.

THEOREM 5 The fair price of the Russian option is given by
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and the optimal stopping time is given by

The fair price of the Russian option was calculated by [Shepp & Shiryaev,
1993] which also should be consulted for more information and details. The
result is extended in [Pedersen, 2000a] to Lookback options with fixed and
floating strike.

EXAMPLE 8 (Optimal prediction of the ultimate maximum of Brownian
motion). This example presents solutions to the problem of stopping a Brow-
nian path as close as possible to the unknown ultimate maximum height of
the path. The closeness is first measured by a mean-square distance and next
by a probability distance. The optimal stopping strategies can also be viewed
as selling strategies for stock trading in the idealized Bachelier model. These
problems do not fall under the general optimal stopping theory, since the gain
process is not adapted to the natural filtration of the process.

In this example the diffusion Let

for denote the distribution function of a standard normal variable. Let
be the family of all stopping times for satisfying

Mean-square distance

This problem was formulated and solved by [Graversen, Peskir & Shiryaev,
2001] and in [Pedersen, 2003] the problem is solved for all Con-
sider the optimal stopping problem with value function

The idea is to transform problem (6.11) into an equivalent problem that can be
solved by the recipe presented in the previous section.

To follow the above plan, note that is square integrable; then in accor-
dance with Itô-Clark representation theorem formula

where is a unique adapted process satisfying
Furthermore, it is known that
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If denote the square integrable martingale then the
martingale theory gives that for all

Problem (6.11) can therefore be represented as

where By Lévy’s theorem and general optimal stopping
theory, the problem (6.11) is equivalent to

The form of the gain function indicates that the deterministic time-change
method introduced in Example 4 can be applied successfully. Let
be the time-change and let be the time-changed process given by

It can be shown by Itô formula that solves the
stochastic differential equation

where is a Brownian motion. Hence is a diffusion with the
infinitesimal generator

for Substituting the time-change yields that

Hence the initial problem (6.11) reduces to solving

where the infimum is taken over all stopping times a for and
This is a problem that can be solve with the recipe from Sec-

tion 18.5.
1. The domain of continued observation is a symmetric interval around zero,

that is and the value function is an even
function or equivalent From the observation in Example 3 one is
led to formulate the corresponding free-boundary system of the problem (6.12)
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2. The solution of the free-boundary problem is given by

for where is the unique solution of the equation (6.13).
3. By Itô formula it can be proved that is the value function and

is an optimal stopping time. Transforming the
value function and the optimal strategy back to the initial problem (6.11) the
following result ensues (for more details see [Graversen, Peskir & Shiryaev,
2001]).

THEOREM 6 Consider the optimal stopping problem (6.11). Then the value
function is given by

where is the unique root of the equation

The following stopping time is optimal (see Figure 3)

Figure 3. A computer drawing of the optimal stopping strategy (6.14).
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Probability distance

The problem was formulated and solved in [Pedersen, 2003]. Consider the
optimal stopping problem with value function

for Furthermore, in this case, the gain process is discontinuous. Using
the stationary independents increments of yields that

where is the distribution function of By Lévy’s
theorem and the general optimal stopping theory the stopping problem (6.15)
is equivalent to solving

for and It can be shown that it is only optimal to stop if
on the set This observation – together with the

Figure 4. A computer drawing of the optimal stopping strategy (6.16) when and
Then and respectively.
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Brownian scaling property – indicates that the optimal stopping time is of the
form

where the boundary function if and elsewhere
for some to be found. This shows that the principle of smooth fit is
not satisfied in the sense that the value function is not at all points
of the boundary of the domain of continued observation. More precisely, the
smooth fit breaks down in the state variable because of the discontinuous
gain function. However, due to the definition of the gain function the smooth
fit should still hold in the time variable and this implies – together with
Itô formula and the shape of the domain of continued observation – that the
principle of smooth fit at a single point should hold. This approach provides a
method to determine

Set

For fixed is in general only continuous at
Let be the point satisfying that is differentiable
at The result is the following theorem.

THEOREM 7 Consider the optimal stopping problem (6.15).     Set

(i) If then the value function is given by (see Figure 5)

(ii) If then the value function is given by (see Figure 5)
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where

for and

for
In both cases, the optimal stopping time is given by (see Figure 4)

Figure 5. A drawing of the value function as a function of
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19.1 Introduction

The universality of critical phenomena in phase transitions has attracted
physicists for more than 25 years [Stanley, 1971]. Soon after also the rele-
vance for epidemiological and in general birth-death processes was recognized
([Grassberger & de la Torre, 1979],[Grassberger, 1983]). For a recent popu-
lar account of universality and its applications in various scientific fields see
[Warden, 2001].

Two case studies will be presented to demonstrate the various aspects of crit-
icality in epidemiology. In our first case studies we will show how an epidemic
system can display huge variability while crossing a critical threshold: Measles
in decreasing vaccination levels caused by a loss of confidence in vaccines in
an originally highly vaccinated population (e.g. due to ongoing discussions
on vaccine side effects, especially the combined measles, mumps and rubella
vaccine MMR claimed to cause autism, as discussed in Great Britain).

Not only criticality as such but development of a system towards this crit-
icality has been postulated for physical systems ([Bak et al, 1987], [Bak et
al, 1988]) with the paradigmatic system of a sand pile (see for an overview
[Jensen, 1998]).

In our second case study we present a system consisting of host classes in-
fected with different mutants of a pathogenic agent leading the epidemic sys-
tem towards criticality: bacterial meningitis. This system is of much broader
interest, since it potentially provides an explanation for uncertainties and huge
fluctuations for more general models in evolutionary biology. This approach
is more realistic than previous attempts in oversimplified evolutionary models
([Bak & Sneppen, 1993], [Flyvbjerg et al, 1993]). We show explicitly that a
parameter is automatically driven towards its critical value. The pathogenicity
evolves to small values near its critical value of zero. In the analysis it evolves
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to zero, since for analytic treatability we use reasonable approximations that
show correct qualitative behaviour. In the full system the pathogenicity will
evolve to small values, in the order of magnitude of the mutation rate where
competing strains can replace each other.

Epidemics with critical fluctuations have been described in the literature be-
fore ([Rhodes & Anderson, 1996], [Rhodes et al, 1997]) in forest fire like sce-
narios ([Jensen, 1998], p. 68). We present a non-spatial stochastic model, espe-
cially a master equation (time-continuous Markov process), leading in critical-
ity to power laws with exponents of mean field type (essentially the branching
process exponent 3/2), confirming that the system under investigation really
establishes critical fluctuations with fat tail behaviour.

A spatial system analysis would require a renormalization approach to path
integrals which are derived from the spatial master equation. This method is
still under controversial debate, even in chemical systems’ analysis ([Cardy,
1996], [Wijland, 2001], [Park et al, 2000]), and can only be scetched here.

19.2 Basic epidemiological model

In this section we describe the basic epidemiological model which will un-
derlie in modifications the following sections. It describes a non-spatial homo-
geneous mixing population of hosts in different states of infection. A corre-
sponding spatial model will be given and analyzed in the final sections.

Since we will describe fluctuations near critical states we have to consider
stochastic models, Markov processes explicitly formulated in master equa-
tions, as used in physics and chemistry (see e.g. [van Kampen, 1992]).

19.2.1. The SIR-model

The basic SIR-model for a host population of size N devided in subclasses
of susceptible, infected and recovered hosts [Anderson & May, 1991] is con-
struced as follows: With a rate a resistent host becomes susceptible, or as a
reaction scheme Then, susceptible meet infected with a transition
rate and proportional to the number of infected (devided by N to make the
model scale invariant with population size, since we obtain a quadratic term
in the variables, as opposed to the linear term in the previous transition). As a

reaction scheme we have Finally, infected hosts can recover
and become temporally resistent with rate hence

We could call this basic SIR-model also SIRS-model, since transitions from R to S are allowed, but stick
to SIR, since later in an SIRYX-model, with additional classes of hosts to be introduced later, parallel
transitions prohibit a simple way of labelling. Hence, here SIR just means that we have three classes of
hosts, S, I and R to deal with, as opposed to 5 classes in the more complicated model.
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The corresponding deterministic ordinary differential equation (ODE) sys-
tem reads

and describes merely the dynamic of the mean values for the total number
of susceptibles, infected and recovered under the assumptions of mean field
behaviour and homogeneous mixing, hence mean values of products can be
replaced by products of means in the nonlinear contact term

19.2.2. Stochastic modelling
We include demographic stochasticity into the description of the epidemic.

As such, for the basic SIR-model we consider the dynamics of the probability
of the system to have S susceptibles, I infected and R recov-

ered at time which is governed by a master equation ([van Kampen, 1992],
[Gardiner, 1985], and in a recent application to a plant epidemic model [Stol-
lenwerk & Briggs, 2000], [Stollenwerk, 2001]). For state vectors here for
the SIR-model the master equation reads

with transition probabilities corresponding to the ones described above for the
ODE-system. Here the rates are

from which the rates follow immediately as

This formulation defines the stochastic process completely and will be the basis
for modified models, e.g. additional terms for vaccination in the next section.
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19.3 Measles around criticality
Measles epidemics in human populations have been a subject of investiga-

tions for a long time ([London & Yorke, 1973], [London & Yorke, 1973a],
[Dietz, 1976]), since rather good empirical time series are available, and var-
ious aspects of recent paradigmatic theories like deterministic chaos in pre-
vaccination dynamics ([Schwartz & Smith, 1983], [Schenzle, 1984], [Aron &
Schwartz, 1984], [Schaffer, 1985], [Schaffer & Kott, 1985], [Olsen & Schaf-
fer, 1990], [May & Sugihara, 1990], [Rand & Wilson, 1991], [Grenfell, 1992],
[Bolker & Grenfell, 1993], [Drepper et al, 1994]) and criticality in island pop-
ulations have been investigated ([Rhodes & Anderson, 1996], [Rhodes et al,
1997]).

Here we investigate a vaccinated population, i.e. the only stable station-
ary state is the disease-free population and any invading disease cases lead to
quickly extinct epidemics, in which the vaccination level drops below the crit-
ical threshold, where epidemics can take off. The consideration of dropping
vaccination levels is motivated by the observation that in the United Kingdom
of Great Britain a discussion on side-effects of vaccines led to a dramatic drop
in vaccine uptake [Jansen et al, 2002].

19.3.1. The ODE system for the SIR-model with
vaccination

The ODE system for the SIR-model with vaccination reads

with the vaccination rate. Here is a time rate for the vaccination
and the proportion of vaccinated susceptibles. Only the product of both has
importance in the model.

19.3.2. Stationary state and vaccination threshold
From Equ. (3.1), defining functions and as
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we obtain the stationary state by the conditions
and Since we have quadratic terms

we find two equilibria.
In the stationary state (no epidemics) we find

Stability analysis gives the condition for the vaccination threshold. The
Jacobian matrix around the stationary state is given by

hence

The characteristic polynomial is given by

One eigenvalues is simply and after some calculation two further
eigenvalues are: and

those two being interesting for the further considerations. The requirement
gives the threshold value or critical vaccination value,
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19.3.3. Definition and expression for the reproduction
number

In the endemic stationary state where the disease is always present,
we find

With the heuristic definition of the reproduction level, called measured in
stationarity

we obtain

Then the critical vaccination threshold can be expressed as function of

19.3.4. Vaccination level at criticality

At the criticality threshold we obtain the classical results for the vaccina-
tion threshold [Anderson & May, 1991], namely where is
the critical value of the vaccination level when writing the ODE for S in the
form

as opposed to

Explicitly the argument goes as follows: At criticality and
from the definition we obtain

hence

>From
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we therefore have in stationarity

With Equ. (3.16) we finally get the analogous form of Equ. (3.13)

from which it follows directly that

19.3.5. Parameters for measles epidemics
Rough estimates for measles parameters are average life time

years, average infection period years from an estimate of around
1 week.

Mean age of infection years, with I*/N in endemic
equilibrium without vaccination, gives

The average age of vaccination can be year to 3 years. Since it
only varies the percentage of to-be-vaccinated sucseptibles we do not have
to specify this parameter very accurately, taking years.

19.3.6. Stochastic simulations

Simulations are done in the frame work of master equations to capture the
population noise, using Gillespie’s algorithm [Gillespie, 1976]. The Gille-
spie algorithm, often also called minimal process algorithm, is a Monte Carlo
method, in which after an event, i.e. a transition from state to another state
the exponential waiting time is calculated as a random variable from the sum
of all transition rates, after which the next transition is chosen randomly from
all now possible transitions, according to their relative transition rates.

In analogy to the SIR-model described previously, using Equ. (2.2), the
rates for our model with vaccination are
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from which the rates follow immediately as

19.3.7. Bifurcation diagram for vaccine uptake

We plot for each value for the vaccine uptake the size of several epidemics
after 3 years, when starting with one infected at the starting time. This shows
that for high uptake rates only small epidmics are found, but for low values
either the epidemic takes off with high epidemic levels or still dies out quickly
(bifurcation diagram). Large fluctuations are visible around the deterministic
threshold value for

Figure 1. Bifurcation diagram for vaccine uptake

At the equilibrium without infected (see above), we have



Criticality in epidemics:... 463

or in terms of instead of

hence

or

In Fig. 1 we show stochastic simulations for various values of recalculat-
ing for the simulations and starting each in the stationary values for S, R
and one infected I = 1. The simulations are done for 3 years of epidemics.
This summarizes the previous plots.

19.3.8. Epidemics when dropping the vaccine uptake

We consider the size of epidemics when lowering the uptake from 96% to
80%, introducing one infected at time

Figure 2. a) with and starting at
but with (respectively all the time, b) Size of epidemics when dropping the uptake
from 96% to 80%, introducing one infected at t

From

with and no infected around in the system, we obtain with
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For the Fig. 2 b) we take as starting conditions for a stochastic
simulation for 1 year of epidemics introducing exactly one infected at time
into the system. For the stochastic simulations and we have to consider
the dynamics of the fast vaccination time scale with instead of c itself. So
we start with

giving

with and
equally if expressed in or This results in the faster time

scale for with in the exponential instead of the slow only.
In summary this shows that the decrease in vaccine uptake to low levels

shows only after some time, during which the number of susceptibles is built
up, large epidemics are becoming more and more likely. Translated into the
situation in the UK, large outbreaks of measles are to be expected soon, since
the vaccination level, varying regionally, has dropped from around 96% to as
low as 85% and in some parts of London even below 80%.

19.4 Meningitis around criticality

This section is based on previous work [Stollenwerk & Jansen, 2002], but
also includes later results. Though meningitis and septicaemia are only rarely
observed diseases, and often in linked smaller or larger epidemics, the bacteria
causing the disease can be detected in as many as 30 or 40 % of the host
population as harmless comensals. Rarely, mutations in these bacteria occur
and from time to time they make the severe mistake to harm their hosts heavily,
in former times almost always fatally.

We model the host dynamics for meningitis and septicaemia as a simple
SIR-model for the harmless strain of bacteria, and additional classes for the
infection with mutant bacteria, called Y hosts, and heavily diseased cases X.
With this model we can show that huge fluctuations appear when the chance of
a mutant causing a diseased case, called pathogenicity, is small. Furthermore,
we can show that in systems with mutations of various values of pathogenicity
only those with small pathogenicity are present for significant periods of time.
For such small values of the pathogenicity we can furthermore show power law
behaviour of the size distribution of epidemics (see [Stollenwerk & Jansen,
2002] for details), hence demonstrate that the system is in criticality. The
aspect of evolution towards criticality is first described here.

and
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19.4.1. The meningitis model
In order to describe the behaviour of pathogenic strains added to the basic

SIR-system we include a new class Y of individuals infected with a potentially
pathogenic strain. We will assume that such strains arise by e.g point mutations
or recombination through a mutation process with a rate in the “reaction
scheme” ( For symmetry, we also allow the mutants to
backmutate with rate hence

The major point here in introducing the mutant is that the mutant has the
same basic epidemiological parameters and as the original strain and
only differs in its additional transition to pathogenicity with rate

These mutants cause disease with rate which will turn out to be small later
on, hence the reaction scheme is This sends susceptible
hosts into an X class, which contains all hosts who develop the symptomatic
disease. These are the cases wich are detectable as opposed to hosts in classes

and who are asymptomatic carriers who cannot be detected easily.
The state vector in the extended model is now The

mutation transition                                             fixes the master equation transition rate
In order to denote the total

contact rate still with the parameter we keep the balancing relation

and obtain for the ordinary infection of normal carriage the transition rate
Respectively, to denote

the total rate of contacts a susceptible host can make with any infected, either
normal carriage or mutant carriage by we obey the balancing equation

for With the above mentioned transitions this fixes the
master equation rate

For completeness, we introduce a recovery from the severe meningitis re-
spectively septicaemia with rate hence With regard to meningitis
and septicaemia in many cases the disease is fatal, hence With medi-
cation the sufferers often survive, but are hospitalized for a long time and then
suffer from resulting impairments. So for the theoretical analysis we will still
keep which might be changed when analysing more realistic situations
or recent data.

For the SIRYX-system the transition probabilities are then given (omit-
ting unchanged indices in with respect to by
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along with the respective reaction schemes. Again from the rates
follow immediately. This defines the master equation for the full SIRYX-
system.

19.4.2. The invasion dynamics of mutant strains
Before we proceed with further theoretical analysis of the model we now

demonstrate basic properties of our SIRYX-model in simulations of the master
equation, using the Gillespie algorithm, also known as minimal process algo-
rithm [Gillespie, 1976]. This is a Monte Carlo method, in which after an event,
i.e. a transition from state to another state the exponential waiting time
is calculated as a random variable from the sum of all transition rates, after
which the next transition is chosen randomly from all now possible transitions,
according to their relative transition rates.

To investigate the dynamics of the infection with mutants, class Y, in re-
lation to the normal carriage I with harmless strains, we first fix the basic
SIR-subsystem’s parameters to the values and

The endemic equilibrium of the SIR-system is given by

as can be seen from Equs. (2.1) setting the left hand side of each subequation
to zero and This equilibrium would correspond to labelling 2, hence

etc., in previous chapters. As for the parameters used, we find in equilib-
rium a normal level of carriage of harmless infection of about 25% in our total
population of size N. This is in agreement with reported levels of carriage
for Neisseria meningitidis. Average duration of carriage is in the order of 10
months, hence we choose We assume the duration of immunity to be
the same as the duration of carriage. In equilibrium this results in the ratio of
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However, the qualitative results are not affected by
these first guesses of parameter values, but rather the order of magnitude.

Interesting behaviour is observed when the pathogenicity is too large for
the hyperinvasive strain to take over but small enough to create large outbreaks
of mutant infecteds Y before becoming extinct again. In Fig. 3 we show two
simulations in this              first  Fig. 3 a), b), then a ten times
smaller Fig. 3 c), d). For high pathogenicity we find relatively low levels
of mutants Y, in Fig. 3 a) less than 20 cases, and at the end of the simulation
roughly between 15 and 80 hospital cases X, Fig. 3 b). For smaller pathogenic-
ity Fig. 3 c), we find much larger fluctuations in the number of mutants Y
with peaks of more than 80 mutant infected hosts. Though the probability rate
to cause disease is ten times smaller than in the previous simulation we find
at the end of this simulation similar numbers of disease cases X, Fig. 3 d). We
observed larger fluctuations and sometimes much more outbreaks of diseased
cases though the probability to create disease is smaller.

This counter-intuitive result can be understood by considering the dynamics
of the hyperinvasive lineage in detail. We will do so by analyzing a simplified
version of our SIRYX-model analytically.

19.4.3. Divergent fluctuations for vanishing pathogenicity

For pathogenicity larger than the mutation rate the hyperinvasive lineage
normally does not attain very high densities compared to the total population
size. Therefore, we can consider the full system as composed of a dominating
SIR-system which is not really affected by the rare Y and X cases, calling it
the SIR-heat bath, and our system of interest, namely the Y cases and their
resulting pathogenic cases X, considered to live in the SIR-heat bath.

Taking into account Equs. (4.4) for the stationary values of the SIR-system
we obtain for the transition rates (compare Equs. (4.3) ) of the remaining YX-
system

All terms not involving Y or X vanish from the master equation, since the
gain and loss terms cancel each other out for such transitions. If we neglect
the recovery of the disease cases to susceptibility, as is reasonable for
meningitis, we are only left with Y-dependent transition rates. Hence for the
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Figure 3. a) Time series of ten runs showing the mutant carriage Y for pathogenicity
b) Number of seriously diseased cases X for pathogenicity c) and d)

as a) and b) with pathogenicity ten times smaller, hence Although the pathogenicity
is of the factor ten smaller, the damage in the number of seriously diseased cases X remains

high and even varies more than for larger

YX-system we obtain the master equation

This gives for the marginal distribution the master
equation for a simple birth-death process with birth rate
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death rate and a migration rate In the definition of the
marginal distribution we take the upper limit of the summation to infinity, since
we assume numbers of X and Y cases to be well below the stationary values
of the SIR-system, i.e. they will not be affected by any finite upper boundary.
We will check the validity of this assumption later with simulations of the full
SIRYX-system.

Hence we have for

and for Y = 0 as boundary equation

For the ensemble mean we obtain, using the above
master equation,

And for the variance, we obtain

We neglect the mutation and backmutation terms, setting and
in the definition for In this case

is proportional to We set and the ODEs for mean
and variance then read

with initial conditions The solutions are
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19.4.4. Evolution towards criticality
We show now that in a population of equally distributed pathogenicity

after some time the hosts with mutants of low pathogenicity remain in the
system. We assume initially one infected with a mutant of pathogenicity
for all possible pathogenicities, and then consider the relative frequency of
infected with certain pathogenicity.

with

and This is derived from the with
The result is

with initial distribution for For time going to-
wards infinity hence all mass at

19.4.5. Simulation for the full SIRYX model

In simulations of the full SIRYX-system we consider a variety of pathogenic-
ities and for each of those we perform a large number of runs recording
the number of mutant infected over time. Hence the distribution of
pathogenicities in an ensemble of hosts infected with different mutant strains
is given by

with the length of the considered -interval times the number of -values.
We compare the simulation results with the previous theoretical results in Fig. 5.

19.4.6. Power law at criticality
We have shown previously [Stollenwerk & Jansen, 2002] that the size of

the epidemics, once the epidemics have died out, follows a power law as ob-
served in branching processes. These power laws are a characteristic sign for
criticality.

In a simplified model, where the SIR-subsystem is assumed to be station-
ary (due to its fast dynamics), we can show analytically divergence of variance
and power law behaviour for the size of the epidemics as soon as the
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Figure 4. Times t = 1, horizontal line, t = 20, slightly tilted line, and t = 100, where all the
probability is going towards small pathogenicity values.

pathogenicity is going towards zero. Hence the counter-intuitively large num-
ber of disease cases in some realizations of the process can be understood as
large scale fluctuations in a critical system with order parameter towards zero.

The master equation for YX in stationary SIR results in a birth-death process

Considering and large X, we obtain power law behaviour for the size
distribution of the epidemic

This was obtained by approximations to a solution with the hypergeometric
function
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Figure 5. Comparison of simulations of the complete SIRYX-system with the theoretical
curve from the YX-subsystem and assumption of SIR in stationarity. Here time is
shown.

Such behaviour near criticality is also observed in the ful SIRYX-system in
simulations where the pathogenicity is small, i.e. in the range of the mutation
rate

In spatial versions of this model it is expected that the critical exponents are
those of directed percolation (private communication, H.K. Jansen, Duessel-
dorf, see also [Janssen, 1981]). We will discuss the directed percolation and its
relation to birth-death processes in a subsequent section.

19.5 Spatial stochastic epidemics
Non-spatial stochastic processes, as described e.g. in [van Kampen, 1992]

for chemical and physical processes, have been applied to biology for a long
time [Goel & Richter-Dyn, 1974], whereas spatial aspects have more recently
enjoyed considerable attention among biologists, especially ecologists and epi-
demiologists (e.g. [Keeling et al, 1997], for an overview of the development
during the 1990s see [Rand, 1999], and recently [Dieckmann et al, 2000]).

As a starting point we use the master equation approach for a spatial system
as for example used in [Glauber, 1963] and derive from it equations for the
dynamics of moments, which under additional assumptions give closed ODE-
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systems (moment closure methods). Such ODE-systems have very recently
been used to manage real world epidemics [Ferguson et al, 2001]. In the eas-
iest moment closure, the mean field assumption, the usual ODEs are found
back which classically were used as starting points for deterministic models.
We will show this explicitly for the easiest SIS-model. The approach can be
applied easily to more complicated models with some more writing effort.

The spatial master equation as used here will also be applied to investi-
gate the fluctuations around critical points, a situation in which the simple
moment closure assumptions do not hold any more. For detailed analysis see
[Cardy & Täuber, 1998], [Brunel et al, 2000]) and related [Grassberger, 1983],
[Grassberger & Scheunert, 1980], [Peliti, 1985]. The basic procedure will be
described in the following section.

19.5.1. Spatial master equation

One of the simplest and best studied spatial processes is the birth-death pro-
cess with birth rate and death rate on N sites, of which each can be either
inhabited I := 1, or empty or solo S := 1, hence I = 0 (in general S := I – 1).

Translated into epidemiology, I is the infected, S the susceptible class,   the
infection rate, the recovery. We refer to it as SIS-system. (In this section we
use letters  and etc. as is conventional for spatial birth-death processes with
no reference to notations used in previous sections.) The master equation for
the spatial SIS-system is for N lattice points

where and transition rates

and

with birth or infection rate and death or recovery rate. Here is the ad-
jacency matrix containing 0 for no connection and 1 for a connection between
sites and hence for and
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Define the number of clusters with certain shapes, for total number

and respectively

and for pairs

and triples

or triangles

and so on.
These space averages, e.g depend on the ensemble

which changes with time. Hence we define the ensemble average,
e.g.

or more generally for any function of the state variables we
define the ensemble average as

We will consider mainly functions like etc.. Then the time
evolution is determined by

where the master equation is to be inserted again giving terms of the form
and other expressions
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By defining marginal distributions

and respectively

one obtains for its realizations useful expressions like

which we will consider extensively in the subsequent text. The crossed out

summation signs in indicate summation with re-

spect to all sites     to only excluding summation over
Hence it follows

and with

with

for the number of neighbours to site here assumed
to be constant



476 RECENTS ADVANCES IN APPLIED PROBABILITY

In more general, terms of the form

will appear with any power of the adjacency matrix, e.g.
and respectively

and so on.

19.5.2. Time evolution of marginals and local expectations

For the marginals we can put forward some rules which are rigorous but also
intuitively obtained from the master equation.

The birth-death process (or equivalently the SIS-epidemics, and for a more
general class of processes specified below) presents the following expressions
for the dynamics of local quantities (like etc.)

using the definition for the ensemble average and
by inserting the master equation for the time derivative of the probability.

For any function we have



Criticality in epidemics:... 477

This is obtained from the elementary consideration

and results in

For the variable we obtain the equations and
and hence so that for the birth-death process

with a function with additive birth and subtractive death term.
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The equation

holds for general transition probabilities of the functional form

with arbitrary functions for birth terms and for death terms and defined
as

Hence we obtain

where in the last line we used again This provides an easy and
intuitive way to calculate generally such dynamics of local expectation values.

19.5.3. Moment equations

For the total number we obtain the dynamics
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Hence

with To obtain the dynam-
ics for the total number of pairs

we have to calculate first         from the rules given above and using the
master equation. We thereby have
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Hence for the dynamics of nearest neighbour pairs we obtain

Here is the matrix squared and then taken the element of that
matrix This last term gives a contribution of the form see equation
(5.17).

In total we obtain for the pair dynamics

with Again the ODE
for the nearest neighbours pair involves higher moment terms like
and

We now try to approximate the higher moments in terms of lower in order
to close the ODE system. The quality of the approximation will depend on
the actual parameters of the birth-death process, i.e. and We first inves-
tigate the mean field approximation, expressing in terms of Then
other schemes to approximate higher moments are shown, like the BBGKY-
approximation (after Bogolyubov, Born, Green, Kirkwood, Yvon).

19.5.4. Mean field behaviour
In mean field approximation, in the interaction term the exact number of

inhabited neighbours is replaced by the average number of inhabitants in the
full system, acting like a mean field on the actually considered site. Hence we
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set

and get for in equation (5.35)

hence

For homogeneous mixing, i.e. the number of neighbours equals the total pop-
ulation size Q = N, we obtain the logistic equation for the total number of
inhabited sites

or for the proportion

and hence



482 RECENTS ADVANCES IN APPLIED PROBABILITY

19.5.5. Pair approximation
For the simplest pair approximation scheme we obtain the closed ODE sys-

tem

where the tripple appearing originally in the second ODE is approximated by
pairs and singles. For further details on approximation schemes and simulation
evaluations (see e.g. [Rand, 1999]) and references there.

19.6 Directed percolation and path integrals
For a long time it has been numerically established that simple birth-death

processes for mutually excluding particles on a lattice belong in criticality to
the universality class of directed percolation [Grassberger & de la Torre, 1979].
But only recently, attempts have started to describe such hard-core particles in
a field theory [Park et al, 2000] and even more recently in a formalism easily
treated analytically to obtain such field theories, i.e. bosonic theories [Wijland,
2001]. Van Wijland uses built from bose operators.

We show that the used by [Wijland, 2001] can mimic the spin 1/2
operators used in [Grassberger & de la Torre, 1979] and derive a path integral
which can be compared to those analysed for directed percolation [Janssen,
1981]. To make the link between such hard-core processes and directed perco-
lation precise is especially important for modelling epidemics, which naturally
happen in entities of uninfected or single infected individuals, e.g. in plant epi-
demics plants on regular lattice points (see e.g. [Stollenwerk & Briggs, 2000]),
or in animal and human epidemics on social network lattices (e.g. [Rand,
1999]).

19.6.1. Master equation of the birth-death-process

One of the simplest and best studied spatial processes is the birth-death pro-
cess with birth rate and death rate on N sites, of which each can be either
inhabited I := 1, or empty or solo S := 1, hence I = 0 (in general S := I–1).
In this section, and will stand for death respectively birth rate, since will
be used for annihilators, as is convention in particle and stochastical physics.

Translated into epidemiology, I is the infected, the susceptible class, the
infection rate, the recovery. We refer to it as SIS-system. The master equa-
tion for the spatial SIS-system is for N lattice points using the master equation
approach for a spatial system in a form as for example used in [Glauber, 1963]
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for a spin dynamics,

for and transition rate

and

with birth or infection rate and death or recovery rate. Here is the ad-
jacency matrix containing 0 for no connection and 1 for a connection between
sites and   hence            for           and

The master equation can be transformed into a Schrodinger-like equation us-
ing operators common in quantum theory ([Grassberger & Scheunert, 1980],
[Peliti, 1985]), from which a path integral can be derived for the renormaliza-
tion analysis.

19.6.2. Schrödinger-like equation

The master equation (6.1) can be written in the following form of a linear
operator equation

for a Liouville operator L to be calculated from the master equation (Equ.
(5.1)) and with state vector defined by
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and vacuum state The creation and annihilation operators are defined by
and and and hence

and We have anti-commutator rules on single lattice
sites

and ordinary commutators for different lattice sites

respectively

These are exactly the raising and lowering operators in [Brunel et al, 2000]
with

for vectors

respectively product spaces of it for many particle systems as considered here.
[Brunel et al, 2000] then use the Jordan-Wigner transformation to change to
pure Fermi operators with anti-commutation on single sites and on different
sites to obtain their path integrals. We use a different way.

The dynamics is expressed by

where the master equation has to be used to obtain the specific form of the
operator L. The explicit calculations, here only denoted by ..., will be shown
below.

For the birth-death process (Equ. (5.1)) the Liouville operator is after some
calculation

The term guarantees the normalization of the master equation solution
and creates one infected at site from a neighbour which is
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itself not altered. is simply the number operator on site Furtheron,
removes a particle from site again ensuring normalization with

This form Equ. (6.4) and Equ. (6.14) is exactly the form given as well in
([Grassberger & de la Torre, 1979], there pp. 392–394, Appendix A), hence
using the raising and lowering operators.

However, it seems not an easy task to construct from such a Liouville opera-
tor the path integral since no coherent states are constructed for the raising and
lowering operators. Therefore, [Brunel et al, 2000] proceed from these spin
1/2 operators to ferminon operators, using Grassman variables for the coher-
ent states, whereas [Cardy & Täuber, 1998], use bose operators from the start
for which coherent states are easily available (e.g. [Le Bellac, 1991], [Zinn-
Justin, 1989]) hoping that rarely more than one particle will appear at a single
site. But [Park et al, 2000] have emphasized once again the need for a rigorous
fomulation in terms of hard core particles for which the exclusion principle on
a single site is guaranteed and commutation on different sites as well.

This aim can be achieved by constructing for bosons [Wijland,
2001], as will be demonstrated for our birth-death process now.

19.6.3. for hard-core particles
Defining Bose operators a+ and a for states with particles on

one site by

and

and the number operator with

we can use functions

with a suitable representation, e.g.

[Wijland, 2001]. is the ordinary Kroneker delta whereas is an opera-
tor defined by Equation (6.18).

Then we obtain for the birth-death process the following Liouville operator
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which can be understood easily when replacing in the bosonic theory by
in the spin 1/2 theory, and by and simply replacing by

and by Then evaluating the resulting Liouville operator in terms of
the spin 1/2 commutation rules results exactly in Equ. (6.14) again.

19.6.4. Path integral for hard-core particles in a
birth-death process

The path integral follows from integrating (6.4)

Hence with and the finite time interval we
obtain for any expectation value defined as

with a Felderhof projection state [Felderhof, 1971 ] the path
integral

with

again in the limit and The field variables and
are introduced by coherent state integrals and replace the creation and anni-
hilation operators by complex scalar variables. Here the Lagrange function
is

This compares well with the path integrals used as a starting point for further
analysis of directed percolation [Janssen, 1981] when we only use the lowest
order of in Taylor’s expansion. Higher orders are expected to give irrelevant
renormalization fields.

The path integral is now ready for a further renormalization analysis (see
[Cardy & Täuber, 1998]). On the numerical side the real space renormaliza-
tion as initially described by [Ma, 1976] is promising for further progress in
understanding the spatial birth-death process near criticality. In the following
we give the derivations in more detail:
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19.6.5. Product space for spin 1/2 many particle systems
With single particle creation and annihilation operators

and single particle state vectors

the corresponding two-particle system would be constructed as a product space
with 4-dimensional state vectors and 4×4- matrices. Hence the vacuum state
is

and a state containing one particle at site 1 and no particle at site 2, hence the
state is

being created from Hence the creation operators
for the two particles are the 4×4-matrices built from 2×2-matrices

with 2×2-unit matrix or written out e.g.

The other operators and follow directly from this, and commutation rules
e.g. can be shown easily.

19.6.6. Path integral using coherent states for hard-core
bosons

The Schrödinger-like equation
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with the Liouville operator

can be integrated formally using from the quotient of differences

showing

and for several subsequent time steps

where is the starting time of the stochastic process.
With the Felderhof projection operator [Felderhof, 1971]

and the definition for the state vector

any measurable quantity A as a function of the state variables in the master
equation formulation, respectively number operator

using he notation has for its expectation value

the following expressions

Again we use
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The path integral for an expectation value is then expressed by

with final time and starting time and times such that and

With coherent states and its completeness relation

and abbreviation we have for N site with operators
the completeness relation

with
We now can introduce unit operators in between every time slice of the

path integral and then insert the completeness relations for the coherent states
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considering the non-boundary terms

further in the following.
It is

with

and

with

et cetera using the coherent state definition

In this way we obtain completely the path integral as given above.

19.7 Summary
We have described epidemic processes near criticality, and have given anal-

ysis for mean field models under homogeneous mixing conditions. In one case
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we found that an epidemiological system evolves on its own towards critical-
ity, hence self-organizes itself towards the critical state. For spatial systems we
have presented the basic description of the master equation and have shown the
connection with the previous sections under the explicit analysis of mean field
assumptions. A complete analysis of the spatial system would reveal qualita-
tively the same behaviour, in particular again power laws for the distributions
of epidemics, but with different exponents. The detailed analysis via renormal-
ization is still under debate. criticality,self organized
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