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Preface

The complicated formulations of Riemannian geometry present a
daunting aspect to the student. This little book focuses on the central
concept—curvature. It gives a naive treatment of Riemannian geo-
metry, based on surfaces in R” rather than on abstract Riemannian
manifolds.

The more sophisticated intrinsic formulas follow naturally. Later
chapters treat hyperbolic geometry, general relativity, global geome-
r Jr ~ o S2J o pYRAYS TRERYEY)H YV EE B
try, and some current research on energy-minimizing curves and the
isoperimetric problem. Proofs, when given at all, emphasize the main
ideas and suppress the details that otherwise might overwhelm the
studen
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analysis at MIT in 1977 and on differential geometry at Stanford in
1987 and Princeton in 1990, and out of my own need to understand
curvature better for my work. The last chapter includes research by
Williams undergraduates. I want to thank my students, notably Alice
Underwood; Paul Siegel, my teaching assistant for tensor analysis;
and participants in a seminar at Washington and Lee led by Tim
Murdoch.

Other books I have found helpful include Laugwitz’s Differential
and Riemannian Geometry [L], Hicks’s Notes on Differential Geome-
try [Hi] (unfortunately out of print), Spivak’s Comprehensive Intro-
duction to Differential Geometry [S], and Stoker’s Differential Geo-
metry [St].

I am currently using this book and Geometric Measure Theory:
A Beginner’s Guide [M], both so happily edited by Klaus Peters and
illustrated by Jim Bredt, as texts for an advanced, one-semester
undergraduate course at Williams.

D
.
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Williamstown F.M.
Frank.Morgan@williams.edu
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between The pr1nc1pal curvatures k; and k, are the most upward
(positive) and the most downward (negative), respectively. For the
saddle of Figure 1.2, it appears that at the origin x; = % and k, =—1.
The mean curvature H =k, + k, = —%. The Gauss curvature G =
KiKy; = —3.

At the south pole of the unit sphere of Figure 1.3, k; =k, =1,
H=2,and G = 1.

Since k; and k, measure the amount that the surface is curving
in space, they could not be measured by a bug confined to the
surface. They are ‘“‘extrinsic’’ properties. Gauss made the astonishing
discovery, however, that the Gauss curvature G = k;k, can, in prin-
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Figure 1.1. Curvature « is defined as the rate of
change of the direction vector T.

ciple, be measured from within the surface. This result, known as
his Theorema Egregium or Remarkable Theorem, says that Gauss
curvature is an “intrinsic” property.

An m-dimensional hypersurface in R”"' has m principal curva-
tures ki, . . . , K, at each point. For an m-dimensional surface in R"”,
the situation is still more complicated; it is described not by numbers
or by vectors, but by the second fundamental tensor. Still, Gauss’s
Theorema Egregium generalizes to show that an associated ‘“Rie-
mannian curvature tensor’ is intrinsic.

Modern graduate texts in differential geometry strive to give
intrinsic curvatures intrinsic definitions, which ignore the ambient R”
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Figure 1.2. At the center of this saddle, the
maximum upward curvature is «; = 3 and the
maximum downward curvature is k,=—1.

Figure 1.3. At the south pole, the curvature is +1
in all directions.

from the outset. In this text, surfaces will start out sitting in R”,
where we can give concrete definitions of the second fundamental
tensor and the Riemannian curvature tensor. Only later will we
prove that the Riemannian curvature tensor actually is intrinsic.
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Curves in R”
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The central idea of Riemannian geometry —curvature — appears al-
ready for space curves in this chapter. For a parameterized curve
x(¢) in R", with velocity v = x and unit tangent T = v/|v|, the curva-
ture vector k is defined as the rate of change of T with respect to

dT/dr_ 1 4 0
ds/dt |v|

k=dT/ds =
The curvature vector k points in the direction in which T is turning,
orthogonal to T. Its length, the scalar curvature k = |k|, gives the
rate of turning. See Figure 2.1. For a planar curve with unit normal
n,

k = |dn/ds|. (2)

For a circle of radius a, k points toward the center, and k = 1/a. For
a general curve, the best approximating, or osculating, circle has
radius 1/k, called the radius of curvature.

If the curve is parameterized by arc length, then the curvature
vector k simply equals d”x/ds”. If the curve is the graph y = f(x) of

a function f: R — R"™' tangent to the x-axis at the origin 0, then
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Figure 2.1. The curvature vector k tells us which
way the unit tangent vector T is turning and how fast.
Its length || is the reciprocal of the radius of the
osculating circle.

ey

K(

— w21 —

=f(0)ER* ' CRXR".

)=f
Without the tangency hypothesis, the scalar curvature

7

k(0) = [f"(O)I/(1 + |f'(0)]%)*™.

Curvature tells how the length of a curve changes as the curve
is deformed. If an infinitesimal piece of planar curve ds is pushed a
distance du in the direction of k, the length changes by a factor of
1 — kdu. Indeed, the original arc lies to second order on a circie
of radius 1/k, and the new one on a circle of radius 1/k — du =
(1/k)(1 — k du). See Figure 2.2. More generally, if the displacement
is a vector du not necessarily in the direction of k, only the compo-
nent of du in the k direction matters, and the length changes by a
factor of 1 — k - du. Hence the initial rate of change of length of a
curve C in R" with initial velocity V= du/dt is —[k-Vds (see
Section 10.4).

2.1. The smokestack problem. One day I got a call from a company
constructing a huge smokestack, which required the attachment of
a spiraling strip, or strake, for structural support (see Figures 2.3
and 2.4). Of course they had to cut the strake pieces out of a flat
piece of metal (see Figure 2.5). The question was, What choice of
inner radius r would make the strake fit on the smokestack best?
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1/x 1/ —du

ds

Figure 2.2. An element of arc length ds pushed in
the direction of k decreases by a factor of 1 — k du.

Figure 2.3. The metal strip, or strake, spirals
around the smokestack on a helical path.
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The smokestack had radius a

h=31.5'

3.75 feet. Each revolution of the strake had a height

Figure 2.4.
of 31.5 feet.

The curve along which the strake attaches to the smokestack is

a helix:

\

)

, ht/2m),

asint

(acost,

)

(x,y,2

X =
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Figure 2.5. When pieces of strake are being cut out
of a flat piece of metal, what inner radius r will make
the strake fit best along the smokestack?

v=x=(—asint,acost, h/2m),

nemd tlha ceanand s
allu uIc Specu 1d

; / 2
as . . [ 2 n- A e
—=lv|=,/a + - = = 0.26 tfeet
g N 47*
The length of one revolution is
2
(
L= | vl dt = 2mc

By analogy with a circle, an engineer guessed that the ideal
inner cutting radius r would be L/27 = ¢ = 6.26 feet. When he built
a little model, however, he discovered that his guess was too small.
After some trial and error, he found that strake pieces cut with
r = 105 feet fit well.

The way to compute the ideal r is to require the strake to have
the right curvature. We will now compute the curvature « of the
helix and take r to be the radius of curvature 1/« (that is, the radius
of the circle with the same curvature).

The unit tangent vector T = v/|v| = v/c. Hence the curvature
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vector 1S
dT/dt vic 1 X
k=dT/ds = = =—3(—acos t, —asint, 0),
ds/dt C C
e d tha cmml e mriresr b e —_ 2 Th s thin 2 danT fevem e s i
dlll L1IC dLdldl CulvdilulcC I1d> K — d/C LIIC1IC1UIC L1IC 1UcCdl 1111ICI 1 duiud
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r=1/k = c*/a = 10.45 feet,

in close agreement with the engineer’s experiment.
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faces in R’
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This chapter studies the curvature of a C* surface S C R’ at a point

2
p €S. (C° just means that locally, the surface is the graph of a
£, “A A~ 4l Anambimiiaiia QANAT A Anaes iv rativne Camnniting tha crva
1uict Ul Wllll LUlllllluUub SCLULIIU UcClivalivod., \./Ullll.)ullllé LIIC vulva-s
ture w 311 iaavrAlaa £ fnrnnts N\ T at T C Aannta tha ta200:04
uIc lll invoive UlllClCllLlaLlllé LWILC «) O lpL’ UcClivLC uiv wunyger

[22
space of vectors tangent to S at p. Let n denote a unit normal to §
at p. To study the curvature of S, we slice S by planes containing n
and consider the curvature vector k of the resulting curves. (See Figure
3.1.) Of course each such k must be a multiple of n: k = kn. (For
now we will allow « to be positive or negative. The sign of k depends
on the choice of unit normal n.) It will turn out that the largest and
the smallest curvatures k,, k, (called the principal curvatures) occur
in orthogonal directions and determine the curvatures in all other
directions

3 itk 4ha

+ +
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at
s

o

I'iéi 1
p, 1€ p -
axis. Locally Sis the graph of a functlon z = f(x, y). Any unit vector
v tangent to S at p, together with the unit normal vector n, spans a
plane, which intersects S in a curve. The curvature « of this curve,
which we call the curvature in the direction v, is just the second
derivative
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Figure 3.1. The curvature of a surface S at a point p
is measured by the curvature of its slices by planes.

For example, if

The bilinear form (D?f), on T,S is called the second fundamental

inatac agc a2 ecymmetric ) X 2 matriv®
11iAvWwO QLU WULALAV w 7

form IT of € at n oiven in coord
Jv' rry AA UL AJ L l—” Elvvll I1X WUULNE “ UJ AALALRL et AAACALA LLN
I’ a*f  9*f
2
Il = D?f= 0x~ ox dy
| 2f o&f |
0x dy 8y2 _|

This formula is good only at the point where the surface is tangent

to the x,y-plane. For the second fundamental form, we will always
use orthonormal coordinates.

IT is



SURFACESINR® 13

et
-

I
—
o A
> o
]

Then the curvature « in the direction v = (cos 6, sin 6) is given by
Euler’s formula (1760):

k =1I(v,v) = v'IIv = K, cos® 8 + K, sin> 6,

e of x; and x,. In particular. the largest and

~i w2 a u; w;vw.“; viAL AQLpVSLY KA

smallest curvatures are k; and ks, obtamed in he orthogonal di-
rections we have chosen for the x- and y-axes.

3.1. Definitions. At a point p in a surface S C R’, the eigenvalues

nf tha coarand fiindamantal farm TIT ara ~allad tha r\v:m il
'\1, ’\2 Ul tllD oLl uvlLIu J.uuuauu.«utal 1Ullll 11 alyv uvalivu e Pl (243 Ijub

curvatures, and the corresponding eigenvectors (uniquely determined
unless k; = k) are called the principal directions or directions of
curvature. The trace of II, k; + k,, is called the mean curvature H.
The determinant of II, ik, is called the Gauss curvature G.

Note that the signs of II and H but not of G depend on the
choice of unit normal n. Some treatments define the mean curvature
ad

+
%trace II= Kl_ﬁ.

Just as the curvature k gave the rate of change of the length of
an evolving curve in Chapter 2, the mean curvature H gives the rate

n‘F h noo I\‘F fha anran nf nn a"n]"‘nn (“’I""‘Of‘a TI‘(“’ g fko r')fn nF
Vi ik 15\./ UVl Lilv aiva vl ail \/VUIVIIIE ouUuliAavue. JUOL Ao Lui1v 1awuv uil
chanoe of a function of several variables is called the directional
vl‘ul‘bv \J i A ANALAWRLANLL \Ji DWW ¥V WA il Yeiii1nauviwvo a0 WwOALAN/ NS CALAN NALA N WRULANJLAGAL

derivative and depends on the direction of change, the initial rate
of change of the area of a surface depends on its initial velocity V
and is called the first variation.

2 PO T o+ Q L, ~ 2 -....t,.,.a s m3 T
3.2. Theorem. Let S bea C sSurjace in mw . The _]Ubl variaiion oj

the area of S with respect to a compactly supported C? vectorfield V
of S is given by integrating V against the mean curvature:

8'(S) = —fV-Hn.

[N
)
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Remark. &8'(S) is defined as
d
—area (S + tV)|,=o,
dt
or, equivalently,

d% area (£4(S))le-o:

where f, is any C?> deformation of space with initial velocity V on S.
[8'(S) depends only on V and is linear in V.] If S has infinite area,
restrict attention to spt V.

Proof. Since the formula is linear in V, we may consider tan-
gential and normal variations separately. For tangential variations,
which correspond to sliding the surface along itself, 8'(S) =0,
confirming the formula. Let Vn be a small normal variation, and
consider an infinitesimal square area dxdy at p, where we may
assume the principal directions point along the axes. To first order,
the new infinitesimal area is

(1=Vk)dx(1 — Vky)dy = (1 —VH)dxdy = (1 — V- Hn)dx dy
(compare to Figure 2.2). The formula follows.

Remark. A physical surface such as a soap film would tend to
move in the normal direction of positive mean curvature in order to
decrease its area, unless balanced by an opposite pressure. The mean
curvature of a soap bubble in equilibrium is proportional to the
pressure difference across it.

3.3. Minimal surfaces. It follows from Theorem 3.2 that an area-
minimizing surface, which minimizes area in competition with sur-
faces with the same boundary, must have vanishing mean curvature.
Any surface with 0 mean curvature is called a minimal surface.

Some famous minimal surfaces are pictured in Figures 3.2
through 3.4. At each point, since the mean curvature vanishes, the
principal curvatures must be equal in magnitude and opposite in
sign.
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The plane

The catenoid

Vx?+ y* =coshz

Euler, 1740

The helicoid Scherk’s surface
ytanz=x cosye® = cosx
Meusnier, 1776 1835

Figure 3.2. Some famous minimal surfaces. (Frank
Morgan, Geometric Measure Theory, p. 68. © 1988,
Academic Press. All rights reserved. Reprinted with
permission of the publisher.)
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x = Re(w — 1w?)
y = Re(i(w + 3w?))
z=Rew?) weC

Figure 3.3. Enneper’s surface 1864.

meters

3.4. Coordinates, le metric. Local coordinates o

C R’ are provided by a C? diffeomorphism
etween a domain in the u;, u,-plane and a

Dy
gw]
)
-
)

(14
u,, u, on a C* surface
(or parameterization)
portion of S.

For example, the standard spherical coordinates ¢, 6 provide
local coordinates on all of the sphere of radius a except for the poles
(where the longitude 6 is undefined and ¢ is not differentiable). The

M PRSI S I I <2 PR

position vector determined by these coordinates is

o

x = (x,y,z) = (asin ¢ cos 0, asin ¢sin 6, a cos ¢).

In general, the position is some function of the coordinates u;. Along
<1 Jh
L

a curve, these coordinates are in turn functions of a single parameter
t

Subscripts on the position vector x will denote partial derivatives
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Figure 3.4. The newly discovered complete,
embedded minimal surface of Costa, Hoffman, and
Meeks [Cos], [HoM], [Ho]. (Courtesy of David
Hoffmann, Jim Hoffmann, and Michael Callahan.)

with respect to the u;:
e o (a_x 9. 95)
au; au,-’ au,-’ ou; '
A dot will denote differentiation with respect to ¢:

X = % =2 x;u; (the chain rule).
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The arc length of a curve in the surface with coordinates u(¢) is
given by

L=1||xldt= ' Xq1iy + Xolio| dt
) J
to 0
4
[/
_ A/rso o\ .2 Ar o\ fo o~ \ .2 1. 714\
= V(Xl‘xl)ulﬂ'ékxl‘X2) 1M2‘T‘\X2 Xo)Us at (1)

where
JxX o0x
8i=X;*X; = . (2)
ou; Ju;
Yoo el 3. T __ f I 1 __
111 OUICT WOIUS, L. — j dy, WIICIC
ds* =), g du; du,. 3)

For example, on the sphere of radius a, L = [ ds, where, as it turns
out,

ds* = a*d¢® + a*sin® ¢ d6* = (a*¢ + a” sin® ) dtz,

2 2

SO g1 =a",8»n=a sin?

g1 , 822 ¢,and g1, =g, =0 (see Exercise 3 7\
The matrix g = [g; ,] is called the first fundamental form or
metric. It is an intrinsic quantity in that it relates to measurements

inside the surface. Notice that in the formula for length,

1.1 11 1_11. 4 o__11_11

Co.11.1] o 11 A o1 o TA_TD-
d & 1] "’] 511”1“’1 ' Sl2winay 1+ J2ijuwn] ! 20824
2 .. .2
= g11U1 + 282Ul + g2oU5.

For many surfaces in R’, it is convenient to use x, y as local
coordinates and consider z(x, y). Then

The following proposition gives useful formulas for the mean
curvature H and Gauss curvature G.
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in a C? surface in R?, the second fundamental form 11 at p is similar
to

X11°N Xpo°h
-1/ 12 — —1| X11 12
4 (D x)-n=g [ :I’
Xi2°hh Xz°N
where
2
ax X1XX2
X = and n=—
ou; du;

X; X Xp

Consequently,

H = trace g~ '(D*x)+n (1)

2 2
_ XXy — 2(X * X2)X12 T X1X22 .

X3x5 — (X1 +Xo)° ’

G = det (g”'(D*x) - n) (2)

rr ‘\/rr, 'Val
n= vii — 44U
K=
2
/M TL el ool 2 n el (. . L. -\ el
(D) 11 uUIC duiiacc ivp a g[dl)ll X=X, )Y, J\ Xy, Y)), LICI

H= (1 +f§)fxx— 2fxfyfxy + (1 +f§)fyy

, 3

A+ 12+ 1) ©

G=t=ln"ly @)
1 +fa+1y)

Proof. We may assume that S is tangent to the x, y-plane at p =

0, so S is locally a graph z = f(x, y) with f,(0) = f,(0) = 0 and n(0) =
(0,0, 1). For the particular local coordinates x, y,

x=(x,y,f(x,y)), 80)=1I
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The proposition says that II is similar to

[Fee fo],

| £

£l
Lixy Jyy-o

which is correct; indeed, they are equal.

Now let u;, u, be any local coordinates, and let J denote the
Jacobian at 0:

I_ ox  0x _l
| du; du, |
J=
oy 9y
Ui aU2 0
) ad 0z
Since 2 = =0,
NA1r. |1~ Arr_ 1~
Ouj |0 Tuz 0
o= JT7J
6 v v
. ) ox ox
Then by the chain rule, since—-n=0and —-n =0,
x ay
2 2
!'a Xn rx '!
g (D) -n =TT | F =
[ 0°x 0°x J
. n 2 . n
0x dy ay

1s indeed similar to II.

Example. We will compute the curvature of the catenoid

..... S e Vallig Latcliiot

Vx*“ + y“ = cosh z of Figure 3.2. At most points we could use x and
y as coordinates. Instead, we will use z and the polar coordinate 6.
The equation says that r = cosh z. Hence the position

x = (x,y, z) = (cosh z cos 0, cosh z sin 0, z)
x; = (sinh z cos 6, sinh z sin 6, 1)
x, = (—cosh z sin §, cosh z cos 8, 0)
x;; = (cosh z cos 6, cosh z sin 6, 0)
X2 = (—sinh z sin 6, sinh z cos 6, 0)

X2 = (—cosh z cos 6, —cosh z sin 6, 0)
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_ (cos 0, sin 0, sinh 7)

cosh z

By Proposition 3.5,

cosh? z x;; — 0 + cosh? Z X5,

H= - ‘n=0,
something
so the catenoid is indeed a minimal surface and «; = — k.
P B (1)( 1) - _ . —4
G= = —cosh™ " z.

cosh? z cosh?

Hence k; = —k, = cosh™2 z

3.6. Gauss’s Theorema Egregium. Gauss curvature G is intrinsic

Juuu 4 atp is I to
10 »1 7
&

~
-
~

Remark. To say that G = [ to first order means that g;;(p) =
822(p) = 1, gi2(p) = 0, and each
8ijk(p) = 5——1 (p) =
Uk

Proof. Locally § is the graph of a function f over its tangent
plane. Orthonormal coordinates on the tangent plane make the
metric g equal to [ to first order. We may assume that S is tangent
to the x, y-plane at p = 0. In x, y coordinates,

&” [;;f {ff]

and one computes that at 0

g1z 13822 132811

2,9y 9O Ay N 04,2
UA U.)’ ) U./\ e U

Any coordinates for which the metric at p is I to first order
agree with orthonormal coordinates on the tangent plane to first
order and hence yield the same result.
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Figure 3.5. Rolling a piece of plane into a cylinder
of radius r changes the principal curvatures «;, k;
from 0, 0 to 1/r, 0 and changes the mean curvature
H = k; + k, from 0 to 1/r. The Gauss curvature,
however, remains G = k;x, = 0, as Gauss’s Theorema

Egregium guarantees.

{
»

requires the
sic.

In R?, a flat piece of plane can be rolled, or “bent,” into a piece
of cylinder of radius r without changing anything a bug on the surface
could detect. This bending, however, does change the curvature «
of an arc of latitude of the cylinder from O in the plane to 1/r on the
cylinder; does change the principal curvatures «;, k; from 0,0 to
1/r,0; and does change the mean curvature H from O to 1/r. The
Gauss curvature, however, remains G = k;k, = 0, as the theorem
guarantees. See Figure 3.5.

No kind of curvature can be detected by a bug on a curve. But
if the bug moves to a surface, it can detect Gaussian curvature.
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3.7. Gauss curvature and area. An intrinsic definition of the Gauss
curvature G at a point p in a surface could be based on the formula
for the area of a disc of intrinsic radius r about p:
_ 2 4
area=mr-— G—r" + (1)

Other interpretations of G will appear in Sections 8.1 and 8.6.

EXERCISES

(3
-
221
=2
o

[

b. At the origin for the graph z = f(x, y) = ax* + by*

c. At the origin for the graph z = f(x, y) = 66x*> — 24xy + 59y°
d. At the origin for the graph z = f(x, y) = x + 2x* + 3y°

e. At a general point on the helicoid y tan z = x

f. At a general point on the ellipsoid 9x* + 4y + z> = 36

3.2. For the standard coordinates u; = 0, u, = ¢ on the sphere of
radius a, compute the first fundamental form [g;;]. Use it to

calculate the length of a circle of latitude ¢ = c.
> B | ™ £ VLI A AN ELAN £ e e O 1
Jd.J. DCIIVC Iormuias 5.5(95) and 5.5(%) 10T U1C curvatures ol a grapil
Lo 1N E\ ~ -1 1 £/
from 5.5(1) ana 3.5(<)

3.4. Obtain a surface of revolution in R® by revolving a curve x =
f(z) in the x,z-plane about the z-axis. Check that the surface
is parametrized by cylindrical coordinates 6, z as

x = (f(z)cos 6, f(z)sin 6, 7).

Use Proposition 3.5 to show that the inward mean curvature is
given by

|\
J
[E—
e
*
S

where « is the inward curvature of the original curve (k=
—(f"I(1 + £**?). Check formula (*) for a sphere centered at
the origin.
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2 £ TN~ &L 4 2 ,.AIA o

J.D. O i ol- yCcl caictu M}
computmg the area of polar cap of i
sphere of radius a to obtain

H
It
[
=
w
[
(@)
L]
oo
o,
Pk o
c
7]

Then verify equation 3.7(1) for this case.
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Surfaces in R”
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This chapter shows how the theory of curvature at a point p in a 2-
dlmenswnal surface S extends from R> to R”. As before, choose

PROIT I e Adimnbacs A= D cit¢lh dhhn At b 2 A € bam
1 llUllUllll COULUILIACS ULl N WILL UIC ULIELIl at p anu 0 lallgCllL
t~ tha 1 v o mwlama at 2 T ~nnlly, € 2o tha gerarmh ~AFf o 4-‘ .......
LU LT Ag, .k2'l)ld.llC al [l LUbdlly O 1D LT 51al)u Ul a llbllUll
1
[T,S—>T,S

Any unit vector v tangent to S at p, together with the vectors normal
to S at p, spans a hyperplane, which intersects S in a curve. The
curvature vector k of this curve, which we call the curvature in the

direction v, is just the second derivative
K= (sz)p(v9 U)'

(We will soon have so many tangent vectors v around that we are
now abandoning boldface notation v for them.)

The bilinear form (D?f), on T,S with values in T,S" is cailed
the second fundamental tensor 11 of § at p, given in coordinates as
a symmetric 2 X 2 matrix with entries in 7,5

A
II = ax% axl BX2 _ [au alz:l
32f ﬂ a2 a»

0x10x,  0x5
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A gain thic fAarmnla 1@ onnd Anly ot tha nAaint whara tha guirfana 1g
nsal 1, U11D 1Vllliuia EUUU U lly atl Ul lJUllll WIILVI1IC UIC Suliave 1
tanagant t~ tha mwlanma Tf 220 —= 2 thig onnnnr‘ fiinAamantal tancar
ltanpguviit v uiv Al,Az'l)lallC AL It — J4 U1 JOLLVIIU luliualliiviital eiinvl

(2

is just the second fundamental form times the unit normal n

Generally this matrix cannot be diagonalized to produce princi-
pal curvatures. The trace of II, a;; + a» € TPS*, is called the mean
curvature vector H. (If n=3, H= Hn.) The scalar quantity
a1 * Ay — apz * a2 1s called the Gauss curvature G. Neither H nor G
depends on the choice of orthonormal coordinates.

Let G; denote the Gauss curvature of the projection S; of S into

R, xRy x {0} x- - xR; x---x{0}=R2.

Mo ¢han MAaciao Azsssrntczen Y L O e - 1o
111€11 1€ Uauss LUIVdI.UIC U 0Ol O al P n

n

G=2 G

i=3
simnlv because the dot nroduct of two vectors is 1ust the sum of the
simply because the dotl proquct of two vectors 1s just the sum of the
products of the components.

4.1. Theorem. Let S be a C? surface in R". The first variation of
the area of S with respect to a compactly supported C* vectorfield V
on S is given by integrating V against the mean curvature vector:

3%9=-Jvrr

o]

7

»

D
3

R

-t

1m |

-

<@,

<

i'-rj N

e

l*

-

ctions X1, S,
which correspond to sliding the surface along 1tself 1(S ) = he
formula says. Let V be a small variation in the x3 d1rect10n, and
consider an infinitesimal square area dx; dx, at p, where we may
assume that the x3 component of II is diagonai:

[k, 0]

blér

To first order, it is displaced to an infinitesimal area

tions in the x;, x,, . . . dire

fb

1 ¥ |Vl|ky) dx; (1 F|V]|ky) dx, =~ (1 — V- H)dx, dx,.
The formula follows.

The concepts of local coordinates and the first fundamental form
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4.2. Proposition. For any local coordinates u,, u, about a point p

i o 2 crinfann € Fa DN ils oo A £im Az omtal tomeny IT 24 n o
Ui U o NY22 JMLC [O 74 n L’lC yecoonu junuulucu ai tecruvr 11 Ul 1/ D)
similar to
P(x11) P(x12)
-1 2 — —1 11 12
g P(Dx)=g [ ,
P(Xlz) P(XZZ)
where P denotes projection onto T,S* and
2
_0x
ij =
ou; ou;
Consequently,
- 2
H = trace g~ ' P(D*x) (1)
wlew Ve .w e L wle
— P)lz)lll L\x\ A2}4\12 T A1A22
2

X35 — (X * Xz

G = det (g~ 'P(D%*x)) )
(qu) (szz) - (PX12)
Xix5 — (X1 - Xo)?

Remark. T,S* and hence P change from point to point. If
T,S* is just the xs, . . ., x,-plane, then

Pla.
4\«

00
1 Ve U

N1 1 77 .
w w w 9 9

Go o o o

) =
J

~~

ur )
4,.- -Iu

Vo PN
hadC R

W

2y ’

If x;, X, give an orthogonal basis for T,S, then

W' X;

X1 —
X1 Xy

P(w) =

3| %
x|
x\
N
—~
(0
N

If x;, x, are not orthogonal, compute P by replacing x, by

X2 ' X
Xz - T Aajp.

X1 Xy

Example. Consider the surface

w »)E C? w = p%)
L\’ “~) v

|40 N— N . TV Je
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We will use x = Re z and y = Im z as coordinates. Then

X=(X,y,€ cosy,e siny)
x; = (1,0, " cos y, e* sin y)
x; =(0,1, —e*siny, e* cos y)
x11 = (0,0, € cos y, " sin y)
x12 = (0,0, —e*sin y, e* cos y)
X5, = (0,0, —€* cos y, —e*sin y)
Note that x? = x3 =1 + €%, x; - x, = 0. Hence,
H= P(O,O,O,O) —0
(1 + e*)?

This is a minimal surface. (As a matter of fact, every complex
analytic variety is a minimal surface.)
To compute G, first compute P(x;;). Since x;, X, are orthogonal,

X11 ' Xg X11 " X2
P(Xu) = X1 — X — X>
X; ' X1 X2 X
(—€*,0,e" cos y, e sin y)
1+ &%
Similarly,
. _(0,—€*, —€"siny, e* cos y)
P(xp;) == Z 2L
\“=12/ 1 L ,,ZX 5
1 T €
(22X 0 % ;e vy — oX cin u)
DI \_\C s Uy € bUD)’, € dl 1)’}
P(x2) = — :
1+e
Hence
. ax 2x . Ax 253 ~ 2%
(—e" —e7)—(e" +e7) e
T L2201 4 292 o1 (1 L 2x\3
\LTC }l_\LTC} UJ \LTC}

4.3. Gauss’s Theorema Egregium. Finally, Gauss’s Theorema
Egregium, with the same proof as in Section 3.6, says that G is
intrinsic, given in local coordinates u;, u, in which G =1 to first
order by the formula

g 10’0 10%n
ou du, 2 oui 2 ous

G =
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4.2.
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EXERCISES

Compute the mean curvature vector and the Gauss curvature
at each of the following:
a. At the origin for the graph

(z,w) = f(x,y) = (x> + 2y%, 66x> — 24xy + 59y7).

[Then compare with Exercise 3.1(b, c).]
b. At a general point of {(z, w) € C*: w = z°}.

Show that for the graph of a complex analytic function f,
{w=fpcc,
H=0,
and
G=-2f'@QPFL+If @

In particular, the graph of a complex analytic function is a

minimal surface. (Compare with the example after Proposition
4.2.)

r. D2 WN—2 2 o ot il L o A 1 I
J - KR 2K 1> a IiiliIial Suilacc i1 4i1a Ol1ily 11
(1Ll I2Ne _9f . £XNFf LA LILF 12N —n
\L Tyl ) xx AJx"Jy))xy T\L T x| ) yy v.
rpnmnqrn \ll;fh r\rmn]o Q q(Q\ {"f\?‘ 1t =3 C‘f\ﬁf‘l‘)l Nfracae n — Q ]
l\/\}lllyul\d YVilil 1viiiiuia v J\J} AV1 Ll OPU\/I“I vAOoN T J-J
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This chapter extends the theory to C* m-dimensional surfaces S in
R". As before, choose orthonormal coordinates on R” with the origin
at p and S tangent to the x;,x,,...,x,,-plane at p. Locally S is the
graph of a function

[ T,S—>T,S".

A unit vector v tangent to S at p, together with the vectors normal
to S at p, spans a plane, which intersects S in a curve. The curvature
vector k of the curve, which we call the curvature in the direction
v, is just the second derivative

N2\ (1 1n
r’ J )p\u, U}-

v
N

The bilinear form (D*f), on T,S with values in T,S* is called the
second fundamental tensor 11 of § at p, given in coordinates as a
symmetric m X m matrix with entries in 7,,5:

- A
0°J o°f
_,: J
0x1 9X1 80X,
II=
o f O*f
X1 0%, oxz,
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The trace of II is called the mean curvature vector H. [Some treat-
ments define H as (trace II)/n.]

Hypersurfaces. For hypersurfaces (n =m + 1), II is just the
unit normal n times a scalar matrix, calied the second fundamentai
form and also denoted by II. H= Hn, where H is the (scalar) mean
curvature. If we choose coordinates to make the second fundamental
form diagonal,

I' K1 . 0 -l
II = [ . J,
0 C K,
then H =k, + - - - + k,,,. If the unit normal n = (n,...,n,) is ex-
tended locally as a unit vectorfield, then dn,/dx, =0, while for
1=i=n-1, dn;/9x; = —k; [compare to equation 2.0(2)]. Hence

n

- E on;/dx; = —div n.

If the hypersurface is given as a level set {f(xy,...,x,) = c}, then
n = Vf/|Vf|, where Vf= (dn,/dx,, . .., on,/dx,), and
g
H = —div =t (1)

5.1. Theorem. Let S be a C* m-dimensional surface in R". The first
variation of the area of S with respect to a compactly supported C*

RS T

vecior f €ewu ‘V on O lb gerfl Uy lmegr‘aung V agamu me mean curvaiure

51(S)=—fV.H.

S

Proof. Since the formula is linear in v, we may consider varia-
tions in the x, x,, . . . , x,, directions separately. For the x;, ..., X,
directions, which correspond to sliding the surface along itself,
8'(S) = 0, as the formula says. Let V be a small variation in the x;
direction (m <j =n), and consider an infinitesimal area dx; - dx,,,
at p, where we may assume that the X; component of II is diagonal:

1IL1G 114y tiia At vl 22
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~ (1 _ VY. .IX
m 1 v

The formula follows.

5.2. Sectional and Riemannian curvature. The sectional curvature
K of § at p assigns to every 2-plane P C T,S the Gauss curvature of
the 2-dimensional surface

SN (PO T,SY).

If v, w give an orthonormal basis for P, then by its definition the
sectional curvature is

(DY — TT(sy 13 S & 7O
1\\1 } 11\ 11

AR & FEVTRRYY)
U, U) - 11{

\ 1\
w, wj \U, W). \1)

For example, if I = [a;;] and P = e; A e, is the x;,x,-plane, then the
sectional curvature is
K(P) = 1l(ey, ;) - II(ez, e2) — Il(ey, €3) - I1(ey, €3)

=ajy; ' Az — aj2 - 4A12.

Remark. For hypersurfaces (n = m + 1), for any 2-plane P =
2 pi;ie; A e, if we choose coordinates to make the second fundamen-
tal form diagonal,

- | I
[_ 0 " Ko _J
then
K(PY= Y  p2e s
A i PR
I=i<j=m

Thus any sectional curvature K(P) is a weighted average of the
sectional curvatures «;k; of the axis 2-planes e; A e;.

For2<m<n,R"=T,S XR; X:+:XR,_,, let S; denote the
projection of § into 7,,S X R;, with sectional curvature K;. Then, by
(1), the sectional curvature K of S satisfies K = 2 K.
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Hence the sectional curvature of an m-dimensional surface S in
R" may be computed by separately diagonalizing the n — m compo-
nents of II, taking the appropriate weighted average of products
of principal curvatures for each component, and summing over all
components.

If m=n—1, then II is a symmetric bilinear form called the
second fundamental form. Its eigenvalues «, . . . , k,, are called the
principal curvatures. Since (D?f), is symmetric, in some orthogonal
coordinates it is diagonal and f takes the form

2 2
KiX1 | K2X2
= — 4 —=

! 2 2

2
+-~+5"12J—Cﬂ+o(x2).

In general, if II = (a;;), then formula (1) yields

K(P) = <2 aixV; vk> : (2 a,-,w,w,) - (2 aijij> ' <2 a;v; w,)

= 2 Rijrviwjviw, (2)

Rijkl = Qi A — Qi a4y (3)

are the 2 X 2 minors of II, corresponding to rows i, j and columns
k, 1. For example, R34 = a13* G4 — @14 * a3 comes from rows 1, 2
and columns 3, 4 of

—a,
plane.

R is called the Riemannian curvature tensor. Thus, the Rieman-
nian curvature tensor is just the 2 X 2 minors of the second funda-
mental tensor.

Immediately,

Rjitt = Riju = — Rijus 4)

(interchanging two rows or columns changes the sign of the minor),
and

Rk.’i" = K;i;
' ikl

o~
(9]
N’
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because II is symmetric. One can easily check Bianchi’s first identity
on permutation of the last three indices:

+R.,,.,+R.,. =0 (R
. \V)

To obtain a definition of R independent of the choice of or-
thonormal coordinates on 7,S, note that R is the bilinear form

IIAIIl on /\°T,S. Indeed, if {e;} gives a basis for 7,S, so that

{ex A e k <1} gives a basis for /\*T,S, then

IT A l(ex A €) =1(ex) A Il(e) = (2 a,ke,> A (Z asles>’

and
(e: ne) I All(ex A €) =aik - ay— " ais = Rijiy-

As a bilinear form on A’7T,S, R is characterized by the values
{ - R({) for unit 2-vectors { € \*T,S. Actuaily R is determined by
the sectionai curvatures P - R(P) for 2- pianes (unit simple 2-vectors).

The Ricci curvature Ric is a bilinear form on 7,5, defined as a
kind of trace of the Riemannian curvature. Just as the trace of a
matrix [c;;] is a sum Z ¢;; over a repeated subscript, the coordinates

R, of the Ricci curvature are given by
R; = 2 Rijur. (7)

If you think of R, as a matrix of matrices,

i— [Riik1]  [Rika] [Ri1krm] 1|
er, 1 e 23 1|
L [ 4\imk1] | 4\Nimk2] L Nimkm] ]

then Rj, is the corresponding matrix of traces, so the definition of
Ric as a bilinear form does not really depend on the choice of
or LIIUIIUI IIldl LUUrUlHdle IUf IPQ llb apphcauon 0 €1 leldS the sum

of the sectional curvatures of axis planes containing e;:

1° Ric (61) = Ru = 2 R1111 - 2 Rllll

i#1

K(e; A €).

~

I
I3
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Hence for any orthonormal basis vy, . . . , v, for T,S,

m
. /n N\ — V (s 7Q\
1 N\ \ 1} ed 1IN\ \Ul /\ Ul}’ \O}
i=2
and for any unit v € 7,5,
v Ric (v) = f K(v A w). 9)
wlv
wET,S

Thus the Ricci curvature has an interpretation as an average of
sectional curvatures.

The scalar curvature R is defined as the trace of the Ricci
curvature:

) o J—. V D 71N\
IN — &y I\;;. \lU}
i
Hence for any orthonormai basis vy, . . . , U,, for 7,5,

-1
R=2 3 K@ nv)="0m"1 J K(P) (11)
l=i<j=m vol #

pPe®
where 2 is the set of all 2-planes in T,S. Thus the scalar curvature
is proportional to the average of all sectional curvatures at a point.

Remark. Hlstorlcally Ric used to have the opposite 'gn Some
texts give the Riemannian curvature tensor R,‘jk, the Oppos site mgn

5.3. The covariant derivative. Let S be a C> m-dimensional surface
in R". If f is a differentiable function on S, then the derivative Vu
is a tangent vectorfield. But if f is a vectorfield (or a field of matrices
or tensors), pointwise in 7,5, then the derivative generally will have
components normal to S. The projection into TS is called the covari-
ant derivative. See Figures 5.1 and 5.2. (The name comes from
certain nice transformation properties in a more general setting; see
Chapter 6.)

In local coordinates u;, . . ., u,, in which g = I to first order at
, the coordinates of the covariant derivative of f at p are glven by

P T awrn 1 2am
I1C bCVCldl Pal lel UClllelVCb ol caalpic, lllC COOTI! ll ates _[, J Ul

S

=t e+
T‘
(@}
)
"
Y]
t
o
Y]
S
l
‘o
"
)
-
D
)

itn UUluulale_[,' arc glvcu

by
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Figure 5.1. (a) A vectorfield f on the circle, (b) its

derivative, and (c) its covariant derivative, 0.

A° Ae

® c
_ Y,
b=c=0 N
a a=b=c
c
Yo
P S A
A 4 A 4
[ | 1
b /
b=c a a c
d. € -
Y a=b=c=0
v

Figure 5.2. (a) A vectorfield f on the circle, (b) its

derivative, and (c) its covariant derivative.
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EXERCISES

5.1. This problem studies the curvature at the origin of the 3-dimen-

5.2.

sional surface in R’ given by
y1 = X3+ 2x1x, + x5 + 5x3,
y2 = 3xT + x3 + 2x,x3 + x3.
What is II (at the origin)?

What is the sectional curvature of the x;, ?

What is the sectional curvature of the plane x; + x, = 0? of
the plane x; + x, + x5 =07

d. lee all the components of the Riemannian curvature ten-
sor. Use them to recompute the answers to parts b and c.

e. Compute the Ricci and scalar curvatures.

e Fp

Consider the vectorfield on R?: f = y%i + (x + z)j + x°k.

a. Compute its derivative at a general point in R>.

b. Compute its covariant derivative at (0,0,1) on the unit
sphere.

11

L1 . .1 1 o o Lo r, wwn—1 e
oNow 1nat 1I0r tn€ grapn or a runcuon j. K - — K,

Vf QA +IVFOA - Sfifify
VI+[VfP A+|VfPR>

where f, = Bflax,-, fij = azf/ax,‘ Ox,-, VfE (fla e sfn—l)a
div(p.a ”_)Epl-i-qz-i-o--, and

N\’ 1> y G2

Af=divVf=f + frn +

H = div



deﬁned as a topologlcal
manifold covered by compatible C* coordinate charts, with a “Rie-
mannian metric’ g (any smooth positive definite matrix). This is
not really a more general setting, since J. Nash [N] has proved
that every such abstract Riemannian anlfold can be 1sometr1cally

ture G of a 2 dimensional surface in R". We proved G intrinsic by
deriving a formula for G in terms of the metric.

One may think of intrinsic Riemannian geometry as nothing
but a huge collection of such formulas, thus proving intrinsic such
quantities as Riemannian curvature, sectional curvature, and covari-
ant derivatives. The standard approach uses these formulas as defin-
itions. We have the advantage of having the simpler extrinsic defin-
itions behind us. Formulas get much more complicated in intrinsic
local coordinates.

TJer snnvtinilae Ansmmecmlinatinms asmica lhannrioa thhna Tanal A~ din nban
111 Pdl uululiai, \.«Ullll)l Ullb alle UCL«dUbC LIIC 1UCal COOLULILAleDd
fail to be orthogonal, as in Figur 6.1. The u,-axis is not perpendicu-
lar to the level set {u; = 0}; or infinitesimally, the unit vector e, =

d/du, is not perpendicular to the level set {du, = 0}. Hence the
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P1, P25 - o s Pm)

1

2 gil(glj,k + g, — gjk,l),

1

For nonorthogonal coordinates, the u;-
jk —

i

o=
« are the Christoffel symbols

J

i

where
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defined in terms of the partial derivatives of the metric g; and its
inverse g”. In particular, covariant differentiation is an intrinsic
notion.

Trn farminla (1) tha nartial darivative givece tha firet main tarm
111 1viiiiuia \1}’ |88 1w l_lal tial uviliivatllive 51V\/D Liiv lLlDI,, 111aiil Lv11ll.
There are additinnal tearmc harance the hacic veantare thamecalvac ara
L11IVIVU AiIU aAUuUiliVUiidl LUIIIID ULLAUDU LIV Udadid YULLULD WUIVIIIDVIVUD aiv

a index i. i.ork o

a h index i, j, or k on
the left occurs in the same position (as a subscript or superscript) on
the right. Note how summation runs over the index k or / which
appears as both a subscript and a superscript. By these conventions
our notation will respect covariance and contravariance.

Some treatments consider covariant differentiation I'j; on mani-
folds without metrics. Covariant differentiation is also called a con-
nection, because by providing for the differentiation of vectorfields
it gives some connection between the tangent spaces of S at different
points. Our canonical connection which comes from a Riemannian

metric (the “Levi-Civita connection’’) is symmetric, so the forsion is
0:

i _1Ti _ i _
Th =Th —Tiy=0. (3)
T =3 1M anmMniIan r\|1r‘rnf11ra 1C n;‘ron 1‘\‘7 fl"lo "‘f\‘l‘“‘\lllﬁ
A4 11V ANIVviIIAaliiiiall vul vatulv 1o 51V\.«11 (94 Liiy 1viiiiuia
i i i h i hi
Riy=—Th, +Th, + 2 (~ThTh, + Tl (4)
h
Riemannian curvature is thus intrinsic, because the connection

The . . bec ¢ C
I‘,’k is intrinsic. Note that each index on the left occurs in the same
position on the right and that summation runs over the index h
which appears as both a subscript and a superscript.

The old symmetries 5.2(4-6) still hold for the related tensor

R = N o R
ikl id § lhl\]k[.
h
Since K]kl Lh g Kh]k[,
i __ i
jik = T gy, S)

but in general R/, # —Rj-k,. For example, R3,, need not vanish. The
first Bianchi identity still holds:

i __
Rjkl + Rkl] lek - 0 (6)
TL . D~ - crmdirem te mm<rmen s 4l O 1
111€ KICCL curvauure 1s given Oy e 10I1uiad
R,= X R, (7)
3 i Jieo \"/
i
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and the scalar curvature by the formula
R= E gj’le. (8)

The sectional curvature of a plane with orthonormal basis v, w is
given by

_ ikl
KvaAw)= ) Rijiv'wvw’. 9)
ij kol
T€ C ¢ F’_A;mnﬂﬂ:r\ﬂﬂl ite £ 1anigg Arnirvatnira 1¢ £ = D/
A1 VU 1D 4&TUlllivinl ucu, I Uaudd vulvatuiy 1D U IN] &
NAtas that :f o0 — T ¢t~ Arot Ardor at » than
INULC tliat 11 5 = 1 LU 11Dl UIuCl1 atl IJ, L11IC 11
i
ij - 07
i _ vi
X, =X,
_ pi _ _ i i
Rijxt =Ry = —Tjis+ Tix,
_ i
Ry= 2 Rl
i
> _ % p
K= 4 K;,
JJ 7
PR |
and

K@ Aw)= > Riv'wiv w'.

Remark. An intrinsic definition of the scalar curvature R at a
point p in an m-dimensional surface S could be based on the formula
for the volume of a ball of intrinsic radius r about p:

1 R m R m+2 71N\
volume = «,,,r — Q,, — — T LN (1Y)
6(m + 2)

where «,, is the volume of a unit ball in R”. When m = 2, this
formula reduces to 3.7(1). The analogous formula for spheres played
a role in R. Schoen’s solution of the Yamabe problem of finding a
conformal deformation of a given Riemannian metric to one of
constant scalar curvature [Sc, Lemma 2].

£ 1 nwn manfizl Pasrmnlac Thara ara a x Ara granial far aqQ
Uesle LVAULT UdTLIUL 1VULILIIUIAD. 111010 aiC a 10w 111viv DPCblal viliiiuiad
mnandad camatinag Tha crvariant dasivation ~F o ganaral tamgns £ig
ICCUCU DUILICLLIILICD. 1110 LUvalialit uciivatuve vl a ECIICICU iUl J 15
giuvnm hy tha fasemaaala
slVCll (9] LI1C 1vlli1uia
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Ricci’s lemma says that the covariant derivative of the metric is 0:

8ij:k = gij}c =0. (2)

In general, the mixed partial covariant derivatives of a vector-
field X are not equal. Ricci’s identity gives a very nice formula for
the difference in terms of the Riemannian curvature:

Xl;j:k - Xl;k;j == ERijXh- 3)
h

Ricci’s identity thus provides an alternative description of the Rie-
mannian curvature as a failure of equality for mixed partials. In
intrinsic formulations of Riemannian geometry, Ricci’s identity is
sometimes turned into a definition of Riemannian curvature.

6.2. Proofs. There are two ways to prove the intrinsic formulas of
Riemannian geometry: either directly from the extrinsic definitions
or more intrinsically by exploiting the invariance under changes of
coordinates. As an example, we prove the formula for the covariant
derivative of a vectorfield both ways and then compare the two
methods.

Extrinsic proof of 6.0(1). Consider a differentiable vectorfield

- o - nL.m o
v_ N vi 9\ ik 0A o
AN — Lad A - A o —
i ou’ k.m au”™ ax™
™ _ 1 a1 1 4t 4 Val
11¢C UI'UlIldI'y pdrlldl acrivative SausIiics
a — a — a2,m 2
A _Nyvi Y N pyk YA Y (1)
L d AT e A \1)
qu’ i ou k.m ou’ du~ ox

by the product rule. To obtain the covariant derivative, we project
the derivative onto 7,S, the span of x;,x,...,X,,, the column



is generallv sa e and in ible.
R - J &2 b Rag sy YRE L2 4 ~ ~
In (1), the first summation over / already lies in 7,,S. We con-
sider the second summation over k, m. To get the coefficient of 3/3x"
in the nroiection we multinlv the caefficient of 3/3x” in (1) bv the
in the projection, we multiply the coefficient of 8/dx™ in (1) by the
—_ —1 r :
n,m-entry of P = Ag™ A’, which is
-— A Ay
\‘ VA ll UA
-8 >
il oU u
to obtain
S a..Nn a,.m n2..m L) — [ \ )
\' ¢ _il 9A oA vk 9 _ NYUNY i vk 9
o8 < = | g X X JXT
ou du' Ju’ du ox i \1 / dou
Therefore
vi —vi 2 YT1Ti Vk
AT AT A
k
- ____
neIc
i il
l . = o X1 * Xy
o Jjr< (3

Invariance proof of 6.0(1). In this method of proof, we first
check the formula in coordinates for which g = I to first order at
p and then check that the formula is invariant under changes of
coordinates.

If g = I to first order, 6.0(1) says that X?; = X";, which we accept
after a few moments’ reflection.

To check invariance, we must show that if u’, u’’ give coordinates
at p, then
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Xir = ou' ou" _,,
sJ . no
ou™ o'’

where we henceforth agree to sum over repeated indices. (Getting
such formulas right—knowing whether the du'’ goes on the top or

index conventions make it automatic.) This verification is something
of a mess, but here we go. First we note that
, _ou” ouw
]l—a jl a l’grs
Hence
2
, ou” ou® ou' ’u" o' ou 9w’
gjl,k = I} k rs,t : k / . k grsa
o' ou’' ou™’ o’ ou* au  ou’ ou' ou™
and cimilar amiratinne hAald fAr o o~ CAarahininag all thean wnth
11U dliliiial CLiuallUllD 11U1U 1Vl jk’[, Sk[,]. ULl 15 all L11icCccC 1til1
tha dafinitinn of T/ and
L1IIV UL 111111V Ul 1 ]k alliul
o ou au”
by 2% 7 pq
ou? ou?
yields
11 r s t
‘ 1du’ ou ou” au’ du \
LY —— Pq —_
Jk 7 A . P n qg NN k![grs,t grt,s+gts,r]+9 ’
2 ou” ou \ouw’' ou"' du /
where
2
Q o‘u”  ou’ + ou"  o*u’ o’u"  ou’
= &rs o k / P A
o’ au” ou”’ o’ au” au”™  ou' au’ ou”™
2 2 2
ou"  ou’ ou” out ou" ou’ ]
] k ! k j l k j l
o’ au™ au”’  ou™ ' au’  ou” au’ au"
2
) o‘u”  ou’
= grs ; k l b
o’ au”™' ou"’
lhanniion -~ 10 Oxrevasvantres
vcuvaudce 5,«5 n Dyl HHIIC LIV
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Therefore
: 1 au“ ou” au
L pq +
k= 8487 (8rsit = &rts T &isr)
2 ou? ou’' du our
2..r ir
+ 6 u . ou quqgm
o' au”™' u?
= = S P49 — oP49 —_
where §; =1 if s = g and 0 otherwise. Since 8,8”°g,, = g*g,, = &7,
i _ou’ ou” ou [1 %u”  ou"
r P =8 (grs,t — 8rt,s + gts,r) + T
au” ouw' au*' 12 ou'' au™' au”
ou” ou” ou' ., d*u" ou”

. rt .
ou? ou’’ au™' ouw'' au*' ou”

by changing the dummy index in the last term from r to h.
Multiplying both sides by ou”/du” and changing primes and
indices yields

2 1
a(.unr ~h autr i au 4 aunr o
— =T}, = =T )

Nes pa s Nes Ty

ou ou ou ou ou

Now

[ — d i’ i 1 ks
Xi=-X"+TiiX

ou
9 <au“ >+ ry <auk’ X’")
- Jr m
au’’ \ou™ ou
n ir 2. i l ki
m OU~ ouU L xm ou’ oJu +X,,,au ir
a’ljr r")u'" a!4ﬁi allt' aujr al—.“n jk
Der /D)
DYy \<),
: ou” ou’'
X =Xn—
ou’' ou
+Xm[rh ou" ou' _Tiy ou"" au*' au_' ) au"’}
ou” ou’ ou' ou™ ou’' ™ ou™

ou' ou" ou’ u
— ——‘_,—X,,, u u
ou™ ou'’ ou” au'’

Xm

By changing dummy variables in the second term (m —k,
h — m, [ — n), we obtain
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., ou" ou”
X;j = m jr
ou" ou

(X7 + T x<] = 20y
ou™ au’’

ns
as desired.

Remark. Of the two proofs, the first has the advantages of
being shorter and deriving the formula, whereas the second proves
a given formula.

6.3. Geodesics. Let Cbe a C? curve in a C* m-dimensional surface
S in R”, with curvature vector k at a point p € C. We define the
geodesic curvature k. as the projection of k onto the tangent space
T,S. Equivalently, k, is the covariant derivative of the unit tangent
vector. While curvature k is extrinsic, geodesic curvature K, is intrin-
sic.

A geodesic is a curve with k, = 0 at all points. For example,

A A

geOdeSICS on spneres are arcs of great circies, bu

1er circies

—
c’
S
o
-
. O
P=—N

) e
gt 8 ©
i e -
£§£9
-
R
b=
"c\ "
5] )
5 Z
[72] )
)
(@]
=
[72]
-
[
=]
=
(@]
c

Figure 6.2. On the sphere, great circles are
geodesics (k, = 0), but other circles of latitude are
not (i, ¥ 0).
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which way you go. The poles are joined by infinitely many semicircu-
lar meridians of longitude, all of the same length.

The following theorem explains why shortest paths must be
geodesics.

6.4. Theorem. A curve is a geodesic if and only if the first variation
of its length vanishes.

Proof. Let x(¢) be a local parametrization by arc length. Corre-
sponding to an infinitesimal, compactly supported change 6x in x(t)
is a variation in length

ar _o(/ -\1/2 __ (l/‘ \N—1/2A_ o
8L=8| (x-x)7"= | z(x %) 2% 5x
r r r r
=T ox=-|T 6x=-|k-0x=— |k, ox
J J J
PR e L. a1 il O 4 o4l _a e P DY S or
Uy llll. g1 at U 1 DY pdaltds dild UIC 14Ct tldt OX bl.d.yb l I tn€ suriace. oL
vanishes for all dx along the surface if and only if k, = 0 and the

curve is a geodesic.

Remark. It follows from the theory of differential equations
that 1n any C*? m-dimensional surface, through any point in any

6.5. Formula for geodesics. In local coordinates u', ..., u™, con-
sider a curve u(t) parametrized by arc length so that the unit tangent
vector T = u. The derivative of any function f(«) along the curve is

oiven hv S f.7i/ (the chain rulel The cavariant derivati
51 VNii UJ H‘, ]W \lpllv WwiiCaiil i ul\/}o A4 11 v vyaiiaiin uUwvidivauivwe AV § ailii
i .
vectorfield X* along the curve satisfies
=3 X0+ 3 n
DX =2 X+ 2T X (1)
J
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[see 6.0(1)]. Hence for a geodesic (parametrized by arc length), the
covariant derivative along the curve of the vectorfield X' = T' = u’
must vanish:

e
Il
<
+,
»
=
o~
&
<
X
/“\“)

6.6. Hyperbolic geometry. As an example in Riemannian geome-
try, we consider 2-dimensional hyperbolic space H for which global
coordinates are given by the upper halfplane

{(x,y) ER* y >0}
with metric
gi=y > &y
that is,

1 1
ds® = - dx* + - dyz.
y y
Since pointwise g is a multiple of the standard metric (g is “con-
formal’’), angles are the same in the upper halfplane as on H,
although distances are different, of course.

Now we compute the Christoffel symbols and curvature.

gij=y28ij‘
By formula 6.0(2)
J - ~ \=/?
) 1 5
rtzzréiz-‘—v‘(of.. + 05— 0.5 )
L L A7 \O12,1 81i,2 812,1)
L
1 ,0 _, -1
=Y Yy =7y
2" 9y
Similarly,
—Fﬁ ngz— —y_l
and the rest are 0.
By formula 6.0(4),
nl _ _ 1l Tl .Y‘/__r*hrl y Th Tl
N2 — 21271221 T &\™ 1210 p2T 1 221 py)
h
=—-y " +t0+(-y "ty H)=-y "
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Similarly,
R%21 = -y_z, R%n:R%zz:O,
R11=R111+R521=—y’2, Rzzz"y—2

R=-2, = -1
Thus hyperbolic space H has constant Gaussian curvature —1
and assumes its exalted place with the plane (G = 0) and the sphere
(G=1)
\~ /J

Geodesics parametrized by arc length ¢ must satisfy the equa-
tions 6.5(2):

¥=2y7%y=0 and y+y ¥ -y y’=0.
Let p = dx/dy; then

dp
_ . _ 2 .
X =Dpy, x y© +py.
dy

Substituting for j from the second equation in the first yields

dp 10,3

—=y (p"tp)

dy
Integrating by partial fractions gives

dx _ cy

= + .
dy P Cl—czy2

If ¢ = 0, we obtain vertical lines as geodesics. Otherwise, letting ¢ =
1/a and integrating yields

These geodesics are just semicircles centered on the x-axis. See
Figure 6.3.

Through any two points there is a unique geodesic, or ‘“‘straight
line,” that provides the shortest path between the points. Indeed,
Euclid’s first four postulates all hold. The notorious fifth postulate
fails. Its equivalent statement due to Playfair says that for a given
line / and a point p not on the line, there is a unique line through
p that does not intersect /. The uniqueness fails in hyperbolic geome-
try, as Figure 6.3 illustrates. Thus hyperbolic geometry proves the
impossibility of what geometers had been attempting for millenia—to
deduce the fifth postulate from the first four—and gives the premier
exampie of non-Euclidean geometry.
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3 VAT A,

Figure 6.3. Geodesics in hyperbolic space H are
semicircles centered on the x-axis and vertical lines.

It is interesting to note that the hyperbolic distance from any
point (a, b) to the x-axis, measured along a vertical geodesic, is

r
| -1 40—
} y 4y =
PN
y—vu
Hymarkhalin gmana aptnially, hag na bhaiindass it avéande infnitals
llyycl UuUlIL bpauc abLuauy ad 11V uuuuucu_y, vut CALCIIUD 11111 llLCly
far 1 all Aiwnntinng
1al 111 all UllCuLL1ulID.

6.7. Geodesics and sectional curvature. We remark that positive
sectional curvature means that parallel geodesics converge, as on the
sphere. Negative sectional curvature means that parallel geodesics
diverge, as in hyperbolic space.

EXERCISES

6.1. A rorus. Let T be the torus obtained by revolving a unit circle
parametrized by 0 = ¢ < 27 about an axis 4 units from its cen-
ter. Use the angle 0 = 6 <2 of revolution and ¢ as coordi-
nates. (See Figure 6.4.)
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The torus T
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Cross-section
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Top view

Figure 6.4. The torus T, with coordinates 6, ¢.
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a. Show that

g11 = (4 + cos <P)2, g12=821=0, 82 =1,
=% T2 =sing(4 + cos ¢),

4 + cos ¢

the rest are 0.

b. Consider the vectorfield

4+ 2cos ¢

, a? = sin ¢ cos ¢(4 + cos @),
4 + cos ¢

a,= —sing
the rest are 0.
c. Show that the length of the spiral curve 6(t) = ¢(t) =t
(0 =t=2m) is given by the integral

2

T o

| [(4+cost)”+1]" ar.
J

0

d. Of course, Ri,;; = R35, = 0. Show that
Rijs=e ——T— R%1 = cos ¢(4 + cos ¢),

Ry = cos ¢(4 + cos ¢), Ri2=R»; =0,

cos ¢ 2cos ¢ G = COoS ¢

R22= R =

4+cose 4+cose 4+cosgp

e. Conclude that there is no distance-preserving map of any
region in the torus on regions in the plane or on the sphere.

The ecnhere Thic exercice will verifu that oceondecice are arce of
A Tee L’tl' [ 2 % B " A LRIU VAVI VIOV ARL Ywi ILJ Liiaa e 5VU\JVL"VU Uiwv GUiwwo UL

great circles and that the sphere has constant Gauss curvature.
Consider a sphere S of radius a with the usual spherical

coordinates u' = 6 and u? = ¢.

a. Check that a great circle is given by the equation

W = cot ¢ = ¢; cos 0 + c,sin 0,

except for vertical great circles 6 = c¢. Hint: A nonvertical great
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circle is the intersection of a sphere with a plane

Z=01x T coy.

b. Show that the metric is given by

o = a2cin? o o~ =1() o = o2
811 “ o1y, 512 U, 822 “w .
c. Compute the Christoffel symbols
1 2

{’é+2cot<p O =

Il

Sint @ COS @
and hence ¢” — 2 cot ¢ ¢’ — sin ¢ cos ¢ = 0, where primes de
ta r]ar ‘Yﬂfl‘lat‘ with racnart tn A nnloce A — » Thiucg v ! L aa —
o€ GETivauives wiln réspell 10 U, UIilssS ¢ = €. 1us W + W

0, so
w = ¢; cos 6 + ¢, sin 6.

Therefore geodesics are indeed arcs of great circles.
d. Compute the Riemannian curvature

1 _ 1 — — 2 e atn2
R312= —Rp1 =1, R121——R112——sm @,
the rest are 0; the Ricci curvature

Ry = sin’ @, Ri2=R5 =0, Ry =1,

-2,

the scalar curvature R = 2a~°; and finally the Gauss curvature

G=a >

Remark. Actually a simple symmetry argument shows
that geodesics are arcs of great circles. We may assume that the
geodesic is tangent to the equator at a point. By umqueness it

mu ct annal 1 ¢ nuwn raflantinn ar
1114 DL U\.iucu IO UVVill 1U11uvt1u11 awv

be an arc of the equator.
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Toward the end of the nineteenth century, a puzzling inconsistency
in Mercury’s orbit was observed.

Newton had brilliantly explained Kepler’s elliptical planetary
orbits through solar gravitational attraction and calculus. His succes-
sors used a method of perturbations to compute the deviations
caused by the other planets. Their calculations predicted that the
elliptical orbit shape should rotate, or precess, some fraction of a

degree per century:

Planet Predicted Precession (per century)
Saturn 46’

Jupiter 432"

Mercury 532"

Here 60’ (60 minutes) equals 1 degree of arc, and 60" (60 seconds)
equais 1 minute of arc.

Observation confirmed the predictions for Saturn and Jupiter,
but showed that Mercury precessed 575" per century. By 1900, it
was obvious that the variance from the expected precession exceeded
any conceivable experimental error. What was causing the additional
43" per century?

(Yanaral rnl t
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/’;Q*\
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Figure 7.1. ‘“Mercury’s running slow.”
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7.1. General relativity. The theory of general relativity has three
elements. First, special relativity describes motion in free space with-
out gravity. Second, the Principle of Equivalence extends the theory,
at least in principle, to include gravity, roughly by equating gravity
with acceleration. Third, Riemannian geometry provides a mathema-
tical framework which makes calculations possible.

I first learned the derivation of Mercury’s precession from Spain
[Sp, Chapter VIII] and Weinberg [W, Chapter 9] with the help of
my friend Ira Wasserman. The short derivation given here is based
on a talk by my student Phat Vu at a mathematics colloquium at
Williams College, in turn based on Jeffery [Je, Chap. VII]. A sim-
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plified account including some dramatic episodes from the history of
astronomy appears in [M4].

7.2. Special relativity. A single particle in free space follows a
straight line at constant velocity. For example, x = at, y = bt, z = ct,
or

which is the formula for a straight line through the origin in 3-space.
This path is also a straight line in 4-dimensional space-time:

ds® = dx* + dy* + dz* + dr*. (1)

ds® = a, dx* + aydy* + as dz* + a, dt*. (2)

Einstein based special relativity on two axioms:

1. The laws of physics look the same in all inertial frames of
reference —that is, to all observers moving with constant
velocity relative to one another. (Of course, in accelerating
reference frames, the laws of physics look different. Cups
of lemonade in accelerating cars suddenl fall over, and

isb on the fl ocC t
1 the floor rock latten like pancakes.
2. The speed of a light beam is the same relative to any memal
frame. whether moving in the same or the onnosite di-

rection. (Einstein apparently guessed this surprising fact
without knowing the evidence provided by the famous
Michelson-Morley experiment. It leads to other curiosities,
such as time’s slowing down at high velocities.)

Einstein’s postulates hold for motion along geodesics in space-
time if one takes the special case of (2):

ds* = —dx* — dy* — dz* + c*dt*.

~
IS
N—
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This is the famous Lorentz metric, with c the speed of light. We will
choose units to make ¢ = 1.

The Lorentz metric remains invariant under inertial changes of
coordinates, but looks funny in accelerating coordinate systems.

For us a new feature of this metric is the presence of minus
signs; the metric is not positive definite. Except for the novel fact
that the square of the length of curves in space-time can be positive
or negative, all definitions and properties remain formally the same.
In particular, positive sectional curvature means that parallel geo-
desics converge (the square of the distance between them decreases).
(See Section 6.7.)

This new distance s is often called “proper time” 7, since a
motionless particle (x, y, z constant) has ds? = dt>. If we replace
the symbol s by 7 and change to spherical coordinates, the Lorentz
metric becomes

7.3. The Princinle of Eguivalence, Special relativity handles mo-

2. 1he Frinciple of quivalence., JSpecial relativity handl €S mo
tion — nosition. velocitv. acceleration —in free snace. The remainino
..... position, velocity, acceleration —1n free space. 1ne€ remaining
auestion is how to handle oravitv. The Princinle of Eauivalence
question 18 how to handle gravity. 1he rrincCiple of bquivalence
asserts that infinitesimallv the phvsical effects of oravitv are indistin-
asserts that infima ally the physical effects of gravity are mndi stin
onichahle from those of acceleration. If vou feel nresced acainct the
guishable Irom those ol acceleration. lI you 1eel pressed against the
floor of a tiny elevator, you cannot tell whether it is because the

elevator is resting on a massive planet or because the elevator is
accelerating upward. Consequently, the effect of gravity is just like
that of acceleration: it just makes the formula for ds? look funny.
Computing motion in a gravitational field will reduce to computing
geodesics in some strange metric.

7.4. The Schwarzschild metric. The most basic example in general
relativity is the effect on the Lorentz metric of a single point mass,
such as a sun at the center of a solar system. We will assume that
the metric takes the simple form

dr* = =0 dr? — r¥(de® + sin? ¢ d6?) + e dr?, (1)

where A(r) and 1{r) are functions to be determined. This metric is
spherically symmetric and time-independent. For physical reasons,
Einstein further assumed that what is now called the Einstein tensor
vanishes:

G = g'Ry — 5R8% = 0. 2)
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To employ this assumption, we now compute the Einstein tensor for
the metric (1). We order the variables r, ¢, 60, t. We compute first

the metric
gu=—¢€", 82= 17, g33 = —r-sin” ¢, 8aa = €7,
others vanish,
11 __ —A 22 __ -2 33 _ -2 .2
g§ = —¢€ g =—-r - g~ =—r “sm ‘g,
g¥=e7", others vanish;
then the Christoffel symbois
1 — — .
I =3)\, 3= —re ?, I3 = —re *sin® ¢, (3)
1 — — .
Ti=3ve™, Thlh=r"', T3=—singcose,
™ __ ~a _ 1, 41 s 1
55 = cot ¢, I'isa=371, others vanish,

where A’ denotes dA/dr; then some components of the Riemannian
curvature tensor

2
R121

— 3 1 -1, 4 — 1, 1 ,\/1,, 142
=Ris1 =3r A/, Riy = —3v +(2V)(2)\)“4V ,

1 v/ —A 3 _ 1 _ _—A pd _ 1 ,/
=2ra’e -, N3 =1 —¢€ N4 = 3

1 ) —A 2 ) -A
=5rA'sin“gpe ", R3;s =sin“@(l —e™ "),

1

=31 (—r)e *sin? ¢,

1 o 1,2 1
=3¢ (V" + 3V —3V\),

Ruy=r'N—35v+ iv’)\’ — a2,
Ryr=1+ %re_"(/\’ —-v)—e

K33 = sin’ ¢ X,

R4 = %ev_h(v” + %V'z - 1iv’/\’ +2r '),

R=-2r"*+e Mv'=2r'\'— VN 452+ 2+ 2 2);

and finally some components of the Einstein tensor

Since G%

Fra 1 . -
— A = i
= g’Rjx —3Rdy,
=r 2 +e M=r—r?,
\ 77

— 1 1 — 1 1
Gi=e M=3v"+5r "N =5r W + 3V —

r24e M N =),

=0,e *=1- y! for some constant y (just check that

‘ \
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dvyl/dr = 0). Consideration of a test particle with 0 velocity and large
r (see Exercise 7.1) leads to the conclusion that y=2GM, where M
is the central mass and G is the gravitational constant. Therefore

e *=1-2GMr 1.

Since G! = G%=0, A + v is constant. Since the metric should look
like the Lorentz metric for r huge, we conclude that A + »=0.
Therefore

=
~
|
-
o~
o
N

Now G} = G3 = 0 automatically.
We have obtained the famous Schwarzschild metric
dr? = —(1 = 2GMr VY"1 142 — 32(dp? + cin? o 4B
d (1-2GMr ") " d (deo sin“ ¢ df”)
71 Arvyaa —1IN 1.2 72N\
+ (1 —-2GMr™ ") dt”. (5)

Notice that if M = 0, the Schwarzschiid metric (5) reduces to the
Lorentz metric 7.2(4). Notice too that as r decreases to 1/2GM, dr>
blows up: shrinking the sun to a point mass has created a black hole
of radius 1/2GM!

7.5. Relativistic celestial mechanics. Now we are ready to see what
differences general relativity predicts for Mercury’s orbit. The phys-
ics is embodied in the four equations for geodesics 6.5(2) in the
Schwarzschild metric 7.4(5). Four equations should let us solve for
r, @, 0, and ¢ as functions of 7. Actually, instead of the first equation
for geodesics involving d’r/dr*, we will use the identity dr*=

giidx' dx’:
2 2
-(1- 2GMr_1)_1<%> - r{%) @
2

dé dr\
—r¥sin® ¢ <—> +(1- 2GMr_1)<——> = 1.
dr dr
To compute the three other geodesic equations, we proceed
from 7.4(4) to compute
N =—v =-2GM(r* - 2GMr)™ %,
N=—y'= ZGM(r2 — 2GMr)_2(2r -2GM),
and then, from 7.4(3),
'y = —-GM(r* —2GMr)™!
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I, = -r(1 - 2GMr_1) =2GM —r
I'ls = (2GM — r)sin? ¢
Il =3(1-2GMr Y)(GMr™?)

™ _ 13 _ ..—
112 =113 =7

1
I3 = —sin ¢ cos ¢
™ _ s

123 =Ccot @

I, = GM(r* — 2GMr) .

Hence the last three geodesic equations [compare to 6.5(2)] are

2

d*e _,drde . <d0>
— +2r'—=——L—singcos p|{— | =0, I
dr? ardr 00 \ar (0
Fo s deds "
dr? drdr cote drdr (1)
d, 2GM _drdr_, v
dr* 1> —2GMrdrdr e

The solution of equations I through IV will give Mercury’s orbit.
Assuming that initially de/dt and cos ¢ are 0, by (II) ¢ remains
m/2. Thus, even relativistically, the orbit remains planar. The other
three equations become

/'\2 /

/ 1.\2
—a-26M Y E) - L) ra-26mr(E) =1, @)
/ \dr/ \dt/

\dr dr dr

420 _ drdf
+ —_——— =

> 2r 0, (II")
dr drdr
d*t _,drdt
— + ZGM(r2 — 2GMr) 1——=0. (Iv")
dr drdr
Integrating III" and IV’ yields
246 _ ) (a constant), (111"
dr
(1 —2CGM»— 1 ﬂ =N (a conctant) (TV™M
\.L et \ T AVET } V \u \/Ullolullt} \L v }
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Therefore I’ becomes

\
/‘.—r (1-2GMr ") + B

|

~
NN
QU l .
S

Putting r = ™" yields

2

1\

au

.01,
T oA Thutpbo

2
Ls\J LVL

GM

o~
S———
N

I/
U
\\

SN———"

uv

for some constants By, B;. The maximum and minimum values u;,
u, of u must be roots. Since the roots sum to 1/2GM, the third root

is 1/2GM — u; — u,, and hence

2
du 1
— ) =2GM(u — - ( -——tu + )
(dﬂ) (w—u)(u—u)\u GM U T Uy
deé 1

|du| - V(uy — u)(u — up)
z1+GM(u+ul+uz)
V(u, —u)(u—w)

To first approximation the orbit is the classical ellipse
u= l'l(l + e cos 6),

with u; =I7'(1 + €), u, = I"*(1 — ¢), and mean distance

1(1 1) l
a=-(—+—)= :
2\u;  uy 1-¢°

For one revolution,

1+ GMI™'(3 + ecos 6)

Af "' elsin 6] d6

U
S+
I ~—
o
5
I
Q"‘w
~
[y
|
o
Q
w
S
j—
=
(=
o
~
e
+
Q
o
(7]
S
p—

[1—2GM(u + uy + uy)]™*?
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The ellipse has precessed 6mGM/a(1 — ¢*) radians. The rate of pre-
cession in terms of Mercury’s period T is
6mGM
2 o
a(l—e)T
or, back in more standard units (in which the speed of light c is not
1),
67mGM .
S 5o radians.
ca(l1 —e)T
Now

G = gravitational constant = 6.67 x 10~ '" m’/kg sec?,
M=m
¢ = speed of light = 3.00 x 10° m/sec,
e = eccentricity of Mercury’s orbit = 0.206,
T = period of Mercury = 88.0 days,
century = 36525 days,
radian = 360/27 degrees,

= (00

oo —
A %% JUVUV .

Multiplying these fantastic numbers together, we conclude that the
rate of precession is about

in perfect agreement with observation.

EXERCISES

7.1 Consider a small mass m initially at rest a huge distance R from

the sun. Assuming that 6, ¢ remain constant, show that the
relevant equations from Section 7.5 become

|
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b
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—
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(We have not made the text’s assumption that y=2GM.) Con-
clude that

() == -pa -y,

Since we are assuming that initially dr/dt = 0, deduce that
2

fey=(2) == = A=y -y,
with f'(ro) = y(1 — yro'Y). Of course, classically 3m (dr/df)?

the kinetic energy, equals the loss of poténtial ‘energy,
GMm(1/r — 1/ry), so

o = (AN _ (1 1)

(5) = 20m(;
with f'(ro ') = 2GM. Assuming the theories agree asymptotically
for large ro, conclude that y=2GM



The Gauss-Bonnet

/ Theorem /

/

One of the most celebrated results in mathematics, the Gauss-Bonnet
Theorem, links the geometry and topology of surfaces. This chapter
provides an overview without many proofs.

8.1. The Gauss-Bonnet formula. Let R be a smooth disc in a
smooth 2-dimensional Riemannian manifold M with Gauss curvature
G. Let k, denote the geodesic curvature of the boundary. Then

JG+JK&,=27T. (1)

For example, for a disc in the plane, 0 + 27 = 2m. For the
upper half of the unit sphere, 27 + 0 = 2.

Notice that this formula implies that G is intrinsic, as announced
by Gauss’s Theorema Egregium 3.6. The proof, like that for the
Theorema Egregium, is a messy computation. It begins with a for-
mula for G in local coordinates and changes [z G into an integral
over dR by Green’s Theorem.

If 0R has corners with interior angles «;, as in Figure 8.1, then
the boundary curvature term [,z k, in (1) may be reinterpreted to
include the discrete contributions % (7 — «;). Alternatively, if the
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X

Figure 8.1. An interior angle « contributes 7 — « to
f 8R Kg-

S
1
N
3
—~~
S)
~—

In particular, for a geodesic triangle A,

JG+7T=a1+a2+a3, (3)

A

a happy variation on the familiar statement that for a planar triangle
the angles sum to 7. By using triangles shrinking down to a point,
we may compute the Gauss curvature as

a1+a2+ 3 — T

7Y 1
U = 11m

area A
On the unit sphere, [, G becomes the area A of A:

LRy

v+ s+ =74+ A (4)
oy T 0 T Q3 (/3 a)
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\\ /

Figure 8.2. For a spherical triangle, the sum of the
angles a; + a, + a3 = m+ A. Here #/2 + w/2 +
w2 =7+ wl2.

the basic formula of spherical trigonometry. For example, for the
geodesic triangle of Figure 8.2 with one vertex at the north pole,
two on the equator, and three right angles,

+t—+—=m+

SR
SR
NS
S

Gauss originally obtained formula (3) in 1827. Bonnet provided
formula (1) in 1848.

»
IS
2



Figure 8.3. The unit sphere has Euler characteristic

x=V—-—E+ F=6-12 + 8 =2. The Gauss-Bonnet
Theorem says that [ G = 47 = 2my.

is defined by y =V — E + F. The theorem says that

r the unit sphere, triangulated by the equa-
tor and two orthogonal great circles of longitude. (See Figure 8.3.)
&Y ] RS VERIDAIERET . A\POTY 2 2pRET Oy
The Euler characteristic is
=1/ _L 1 LC—4LA_1) L Q—9
X | 4 L T I — VU 14 T O — &
Hence

fG=47r=2ﬂ'X,

One remarkable consequence of (1) is that the Euler character-
istic is independent of the choice of triangulation and hence is a
topological invariant. Actually, for a surface of genus g, y =2 — 2g.

A second remarkable consequence of (1) is that [ G is indepen-
dent of the metric, depending only on the topology of M.
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Proof of Gauss-Bonnet Theorem. Fix a triangulation of M.
On each triangle A, the Gauss-Bonnet formula 8.1(2) becomes

JG=-—JK8+Eai—7T.

A EIN

__. ~313 -

ow add up the formulas for all the triangles. The first term contri-
butes ImG. SlIlCC each edge occurs twice in opposite directions, the
various [,, kg cancel. The angles around each vertex sum to 2,
so the angle term contributes 27V. The last term contributes 7F.
Fmally, smce each face has three edges and each edge lies on two
faces, F Therefore

JG=277V—7TF=277(V—%F+ F)=2m(V—-E+F) = 2my.

M

as p1ctured in Figure 8.4, tangent to the x,y plane at the origin p,,
with principal curvatures «; along the x-axis and k, along the y-axis.
For the purposes of illustration, suppose x; <0 and «, > 0.

We want to consider the derivative Dn, called the Weingarten
map. If we move in the x-direction from p; toward a point p,, n
turns in the x-direction an amount proportional to |k;|, but positive

while k; < 0. Indeed, the first column of Dn is [—OKl]. If we move

instead in the y-direction from p1 toward a point D';, n turns in

the negative y-direction an amount proportional to |k,|. The second
r n "1
g | £ ™ l U I rr
column of Dn is L J ence
— Ky
— K1 0
Dn = [ ] =—II
0 — K>

This identity holds in any orthonormal coordinates. The Jacobian of
the Gauss map equals the Gauss curvature:

det Dn = k1, = G.

f G = areaimage n = 47 = 2my.
M
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We have recovered the Gauss-Bonnet Theorem for a sphere in R”.
For general compact M in R?, n has degree x/2, and

v

-
| G=24n=2my,

~

J Z
M

the Gauss-Bonnet Theorem for any closed surface in R>.

QA Tha (laice m

Ue™Fo 4 e Taudd lllap U
R"*!, the Gauss map n: M — S". In orthonormal coordinates aligned
with the principal curvature directions at a point, the Weingarten
map is

&

=
<
=

®

%)

and the Jacobian of n is
(k1) (=Ka) = (1)°G,

if the Gauss curvature G is defined as k; - - - k, = detIl. As for
surfaces, if » is even, the degree of n is the Euler characteristic

x=V-E+F—...

and

[\ IX

[45]

]

o

¢S]
%}
S
~~
(o=
A

(6=
J

N

a generalization of Gauss-Bonnet to hypersurfaces by H. Hopf in

{\f\l" rrr

2D [l‘lOJ (II nis O(l(l X~ 0. )

8.5. The Gauss-Bonnet-Chern Theorem. Amazingly enough, a gen-
erahzat1on of the Gauss- Bonnet Theore 8.4(1) holds for any even-

If Nash’s embeddmg theorem [N] says that every M can be embed-
ded in some R", why is it not called the Gauss-Bonnet-Allendoerfer-
Fenchel Theorem? Because Nash’s theorem was not proved until
1954.
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‘lll.‘: jl‘”—in

G = Yoy (Ri212 = Ri221 — Ra112 + R2121) = Ruz12,
the Gauss curvature of the only section there is [compare to 5.2(2)].
Actually Chern used the language of differential forms and
moving frames. He defined G as the Pfaffian (a square root of the
determinant) of certain curvature forms. His pioneering work on
fiber bundles launched the modern era in differential geometry.

8.6. Parallel transport. A vectorfield on a curve is called parallel
if its covariant derivative along the curve vanishes [see 6.5(1)]. A
vector at a point on a curve can be uniquely continued “by parallel
transport” as a parallel vectorfield. In Euclidean space, a parallel
vectorfield is constant—that is, the vectors are all “parallel.”

In a Riemannian manifold M, a curve is a geodesic if and only
if its unit tangent T is parallel. If M is a 2-dimensional surface, 7 is
a curve, and 6 is the angle from a parallel vectorfield X to the unit
tangent 7, then the geodesic curvature k., = df/ds. If vy is a closed
curve, the result X(1) of parallel-transporting X around the curve
will be at some angle a from the starting vector X(0). (See Figure
8.5.) By the Gauss-Bonnet formula 8.1(1),

coo=[G ence the (zanccian curvatnire mav he internreted ac the
O\ A J NS ¢+ AAWIIVW UiilW "JUAUUDUILIGILIL VUL YULULA W lllu] U AAAL\./LHAVLV\-I AU Liiw
net amonnt a vectoar turne under narallel tranenart arnnnd a emall
AANW L CAALAN/ LAV “ YWwWwivi LAl RO SALiINAV L t’u‘ GAiivi i ul‘ot’u‘ . CRA LI A UJiiidsii
cloced curve
WINJOUOWNLE WwWlkid V Vv
ore oenerallv in a hicher-dimencinnal iamannian manifald
AVANJ AN &vllvl ull] bl AAL llléllv‘ NALALAINVAADLV AL ANINALLACALILLIACGALL iliGALiLLAVRNG
... mav he internreted ac the amount a vector turne in the
4iva L) i \ljkl 1“.“] U ARALWwA y‘- Wwiwl “uo VAN CALLAN/ ALV “ Y Wwwivi LAl iID ALR LALAN
.
2. o.-nlane under narallel tranenort aronnd a emall claced curve in
vl ,v] tllu‘l\./ SALINAW A t.luL CALAWE (28 ulAut}VA . ALV Ui L Jiiidaix WA OWNE WwWOUAL VN ALl
the o2, o2.-nlane
CAAW VK’\/I tll“‘lv
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Figure 8.5. Geodesic curvature k, = df/ds, where 6
is the angle from a parallel vectorfield X to the unit

tangent T. By the Gauss-Bonnet formula, the angle «
from the initial X(0) to the final X (1) equals f G. For
example neaamg CaS[ along a circle OI iatitude in the

Yt
0N e
-+

j= g

=4

(o

.S
S
S
=
D
~

\Y 1 p I
right, i.e., at an angle a of almost
enough, the enclosed area also is almost 277 the area
of the whole northern hemisphere.

We have already seen the infinitesimal version of this interpreta-
tion of Riemannian curvature in formula 6.1(3):

Xiwr — Xan = 2-/ RjuX'.

:1.

The left-hand side describes the

AaQRiaa Saia uvu

effects on X of movine in an infin-

aii Ja v; AAASVALE Ai2 QAL AR

itesimal parallelogram: first in the k direction, then in the / direction,
then backwards along the path that went first in the / direction, then
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in the k direction. R}, gives the amount the j component of the
original vector X contributes to the i component of the change.

8.7. A proof of Gauss-Bonnet in R®. Ambar Sengupta has shown
me a simple proof of the Gauss-Bonnet formuia 8.1(1) for surfaces
in R>. Then, of course, the Gauss-Bonnet theorem 8.2(1) foliows
easily as in Section 8.2.

The proof begins with a simple proof of the formula for a
geodesic triangle on the unit sphere 8.1(4),

gyt tas=m+A, (1)

due to Thomas Harriot (1603, see [Lo, p. 301]). The formula for a
smooth disc-type region R on the sphere follows by approximation:

area(R) + f Kg = 27T (2)

Finally, an ingenious argument deduces the formula for a smooth
disc-type region on any smooth surface M in R*:

JG+JKg=2w. 3)

To prove (1), consider a geodesic triangle A of area A and
angles a;, ap, a3, bounded by three great circles as in Figure 8.6.
Each pair of great circles bounds two congruent lunes L;, L; with
angles «;. The lunes L, intersect in A; the lunes L; intersect in a con-
gruent triangle A’ on the back. The lune L; has area proportional to
a;; consideration of the extreme case «; = 7 shows that area (L))
= 2a;. Since U L, is congruent to U L], each has area 277. Hence

27 =area(UL)) = > area(L;) — 2A = 2(a; + az + a3) — 2A.

Therefore a; + a, + a3 = w+ A, as desired.
From piecing together geodesic triangles it follows that for any
geodesic polygon on the sphere,

P W \ -
area(R) + Z(m — a;) = 2m.
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Figure 8.6. On a unit sphere, the sum o; + a; + o3
of the angles of a geodesic triangle equals 7+ A, as
may be proved by viewing the triangle as the
intersection of three lunes L,, each of area 2q;.

y'(t) =n°y(t) on the sphere, the unit normal is the same, so X(¢),
bodily moved in R to the sphere, is still parallel.

Let a be the angle from X(0) to X(1). Then [,z k; — 27 and
Jar' kg — 27 both equal —a (see Figure 8.5). Therefore

r r r~
[ [ . . | _ A
| G+ | k, —2mr=area(R' )+ | k., — 27 =10
| | & N | &
J J J
R AR R’

o () mremsrine (2)

U_y \L}, })1 A\ 15 \J}.

T D/ Py 1. f I cmAacsativra :f G

D .
N, 1Cyative 1
r
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the diameter of M from a bound on the sectional curvature. Cheeger
and Ebin provide a beautiful reference [CE] on such topics in global
Riemannian geometry.

Let M be a smooth Riemannian manifold. Recall that by the
theory of differential equations, there is a unique geodesic through
every point in every direction. Assume that M is (geodesically)
complete—that is, geodesics may be continued indefinitely. (The
geodesic may overlap itself, as the equator winds repeatedly around
the sphere.) This condition means that M has no boundary and no
missing points.

e exponential map. The exponential map F‘sm at a omt

M maps the tangent space 7,M into M by sendmg a vector v in
TpM to the point in M a dlstance |v| along the geodesic from p in
the direction v. (See Figure 9.1.)

For example, let M be the unit circle in the complex plane C,
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Figure 9.1. The exponential map Exp, maps
v € T,M to the point a distance |v| along the
geodesic in the direction v.

p =1, T,M = {iy}. Then

Expa(iy) = ¢”.
(See Figure 9.2.)

T i

As a second example, let M be the Lie group SO(n) of rotations
of R", represented as

SO(n) = {n X nmatrices A: AA' = [and det A = 1} CR™".

The tangent space at the identity matrix / consists of all skew-
symmetric matrices,

T,50(n) = {A: A" = — A},

because differentiating the defining relation AA’' =1 yields IA’
+ AI' = 0, that is, A"= —A. (See Figure 9.3.)
The exponential map on 7,.S0O(n) is siven bv the exponential
| xponential map on 7,SO(n) is given by the exponential
matrix function familiar from linear algebra
svunu
2
Neowwm AN — A T 1 A L 1
E)&P[\A}—C — 1 T AT 2""‘1'

For any point p in a smooth Riemannian manifold M, Exp, is
a smooth diffeomorphism at 0. It provides very nice coordinates
called normal coordinates in a neighborhood of p. Normal coordi-
nates have the useful property that the metric g;; = I to first order
at p. (Compare to Theorem 3.6.)
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|
|

. A iy
/ Expy)=c” (& |

3
~

[
®

Figure 9.2. For M the circle, the tangent space is
T'M = {iy}, and the exponential map is Exp;(iy) =

ev.

A small open ball in normal coordinates is simple and convex:
there is a unique geodesic between any two points. (Simple means
at most one; convex means at least one.) Moreover, that geodesic is
the shortest path in all of M between the two points.

The Hopf-Rinow Theorem says that as long as M is connected,
there is a geodesic giving the shortest path between any two points.
In particular, Exp, maps 7,,M onto M.

9.2. The curvature of SO(n). As an example, we now compute the
curvature of SO(n). In Chapter 5 we defined the second fundamental
tensor of a submanifold M of R" by the turning rate k of unit
tangents along each slice curve. As long as we take the normal
component, any curve heading in the same direction and any tangent
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voantarEaAlAd ctarting it tha caomme tanmgent vertar will givs tha oo A
VOLLULIICIU dtallllly WILL UIC >alllC tallgCllit vOLiul will give ulc >aulic

+
1CDdUIL.

Let {E;} be an orthonormal basis for 7,SO(n) = {A = —A’}. The
ij component of II may be computed as the normal component of
the derivative along the curve e*” of the vectorfield e’ E;. [Since
e*“ maps I to ¢’™, it maps E, to a tangent vector (e**)E;.] First we
compute

i (eSE'E]‘) = i (1 + SE,' + .- ')E] = EiEj.
ds ds

The projection onto the normal space of symmetric matrices is given
by

3[(E:E) + (E:E))'] = 3(E.E; + EE;).
Hence

1l = 3(E.E,; + EE;).
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The curvature of the E;, E; section is given by
K(E;, E)) = 5[2E} - 2E} — (E:E; + E;E;) - (E:E; + E;E})).
Since for matrices A - B = trace (AB") and (AB)' = B‘A’,

race (AE.E.E‘E* — E.E.E'E"
1aCl \7L; L; i a7y a7 a7 o

—— =t > wm =t w— E anl 2 ol AY

E,L,E;'— i — E,E,EE; — E;E,EE))

- EiEjEiEj EiEjEiEj E,'E,'EjE]'),

because E;= —E; and trace (AB) = trace (BA), (although trace
(ABC) # trace (CBA)). Hence

K(E;,Ej) = 4trace(EEEE E.E,E.E;

Ljaljasgaag u]u,u,ujl

EME.. EI

i “JJL‘-‘I’ =117

where [E;, E;] denotes the bracket product E;E; — E;E;. Therefore
K(E;, Ej) =:|[E:, E}P.

Indeed in any Lie group, for orthonormal vectors v, w,

K(v, w) =3 |[v, w]]>.

1 0 —1 0
E e — )
1 NG 1 0 0
0 0 0]
1 —O O _1-
Ex=—7=lo o of
V2
1 0 0]
. 10 0 07
— 1
Es=—719 0 —1
'\/2 v v P S
0 1 0]




Figure 9.4. On the sphere M, Exp, maps an open
disc diffeomorphically onto M — {g}, but maps the
whole boundary circle onto {g}. The singular point g
for Exp, is called a conjugate point.

Then
K(Ey, E) = 7 |[E1, E5)1?

0 0 O

(e}
NI=O
|
N
Il
e

Indeed, all the sectional curvatures turn out to be g Actually
SO(3) = RP is just a round 3-sphere of radius 2V2 with antipodal
points identified. )

For SO(n), 0= K =<3.

9.3. Conjugate points and Jacobi fields. Although Exp, is a diffeo-
morphism at 0, it need not be a diffeomorphism at all points
veE T,M. For example, let M be the unit sphere and let p be the
north pole. Then Exp, maps the disc {v € T,M: |v| < «} diffeomor-
phically onto M — {q}, where g is the south pole, but it maps the
whole circle {|v| = 7} onto {gq}. (See Figure 9.4.)

On the other hand, for the saddle {z = —x* + y*} of Figure 9.5,
Expo is a global diffeomorphism.

A point g = Exp,v € M is called conjugate to p if Exp, fails to
be a diffeomorphism at v—that is, if the linear map D Exp,v is
singular. This occurs when moving perpendicular to v at ve T,M
corresponds to zero velocity at g € M, or roughly when nearby
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—

Figure 9.5. For the saddle {z = —x* + y*}, Exp, is a
global diffeomorphism.

geodesics from p focus at g. Such conjugate points g are charac-
terized by a variation “Jacobi” vectorfield J along the geodesic,
vanishing at p and g, for which the second variation of length is
zero. In other words, let y,(¢) result from letting a finite piece of
geodesic yo(t) flow a distance s|J(¢)| in the direction J(¢). Let L(s) =

noth A, Than T7(0N\ f— )
L1l YS‘ P S L 8 Iy & \U} V.

AN ~tn - ~ans v

. It turns out that once a geodesic passe
onger the shortest geodesic from p.

~.
-
~.
[
S
Q
~ ™~

We state the following theorem as an early example of the
relationship between curvature and conjugate points (see [CE,
Rauch’s Thm. 1.28]).

Theorem. Let M be a smooth Riemannian manifold. If the
sectional curvature K at every point for every section is bounded above
by a constant K, then the distance from any point to a conjugate
point is at least m/ ‘vfa. In particular, if the sectional curvature K is
nonposiiive, there are no conjugate points, and EXp, is a (local)
diffeomorphism at every point. (We say that Exp, is a submersion
or a covering map.)

9.4. Cut points and injectivity radius. A cut point is the last point
on a geodesic from p to which the geodesic remains the shortest path
from p. The cut point g could be conjugate to p, as the antipodal
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Figure 9.6. Geodesics on the cylinder originating at
p stop being shortest paths at the cut point gq.

point on a sphere, where infinitesimally close geodesics focus (see
the Note on page 83). Alternatively, the cut point g could be like
the antipodal point on the cylinder of Figure 9.6, where geodesics
heading in opposite directions from p eventually meet.

Inside the locus of cut points, Exp, is injective, a diffeomorph-
ism. The infimum of distances from any point to a cut point is called
the injectivity radius of the manifold. For example, the injectivity
radius of a cylinder of radius a is ma.

Bounding the sectional curvature does not bound the injectivity
radius away from 0. A cylinder with Gauss curvature 0 can have an
arbitrarily small radius and injectivity radius. Likewise, hyperbolic
manifolds with negative curvature can have a small injectivity radius.
A common hypothesis for global theorems is bounded geometry:
sectional curvature bounded above and injectivity radius bounded
below.

9.5. Bonnet’s Theorem. Bonnet’s Theorem draws a global con-
clusion from a local, curvature hypothesis:

Let M be a smooth (connected) Riemannian manifold with sec-
tional curvature bounded below by a positive constant K. Then the
diameter of M is at most w/V K,.

The diameter of M is the greatest distance between any two
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Figure 9.7. The second variation of the Ilength of
the equator L"(0) = —[ K(T, W) = -2
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Lemma. Let vy be a finite piece of geodesic with unit tangent T.
Let W be an orthogonal, parallel unit variational vectorfield on vy.
Then the initial second variation of length is given by

r
L"(0) = —J| K(T, W). (1)

For example, let y be the equator on the unit sphere of Figure
9.7. Let W be the unit upward vectorfield. Then the circle of latitude
vs a distance s from vy has length L(s) = 27 coss. Hence

L"(0)=-2m=— ( K,
since K=1.

This lemma illustrates our earlier remark (6.7) that positive
curvature means that parallel geodesics converge (and hence cross-
sectional distance decreases).

Note that by scaling, for the variational vectorfield aW of
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length a,
L"(0) = J —a’K(T, W). (2)

The second lemma considers variational vectorfields of variable
length.

Lemma. Let y be an initial segment of the x-axis in R* of length
L(0). Consider a smooth vertical variational vectorfield f(x)j. Then
the initial second variation of length is given by

L(0)
L"(0) = ,( £/ (x)* dx. (3)
0
Dvnr\f E‘(\ "oy nf{v\: "\'I‘I\A“I'\QO (2 TVal b b of o (\F lﬂ“n“"l
4 IUUJ ;s lUWllls .)_/ \A}J IJLUUU\«UD a Lvulve Ul l\.«llslll
L(0)
[
T\ — r o 2r007..\211/2 4
LiS) = [L T8 (X)) ax
'G
L(0)
i 1 2 2
= [1+3s°f (x)"+ -] dx.
J
0

Differentiation yields (3).
The third lemma states without further proof the result of com-
bining the effects of the first two lemmas (2, 3).

Lemma. Let 7y be a finite piece of geodesic with unit tangent T.
Consider a variational vectorfield fW, where W is an orthogonal,
parallel unit variational vectorfield on y. Then the initial second vari-
ation of length is given by

L"(0) = f [f? - f2K(T, W)]. 4)

v

Proof of Bonnet's Theorem. Suppose diam M > 7/VK,. Then
there is some shortest geodesic y(¢t) of length /> 7/VK,. Hence
K= K,> 7*/12.

Assume vy is parameterized by arc length ¢. Let W be an ortho-
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(sin ™+ .

\sm—t /W, which vanishes at the endpoints of y. By (4), the initial

second variation of length is given by

l

r 2
L"(0) = (f cos ’—’r) - (sin”—’t> K(T, W)
J\1 [ [
0

!
(72 5T m? 5 T
<J — cos? —t——sm —t=0.

I? l
0

This contradiction of the choice of y as a shortest path completes
the proof.

Remark. In the proof of Bonnet’s Theorem, we could have
chosen any unit vector orthogonal to 7 for W at the starting point
of y (extending W by parallel transport). Averaging over all such
choices permits us to replace the bound on K by a bound on its
average, the Ricci curvature. The theorem of Myers concludes that
if Ric = (n — 1)Ko, then diam M = w/VK,.

9.6. Constant curvature, the Sphere Theorem, and the Rauch Com-
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If K = —1, M is hyperbolic space. Thus the metric and global geome-
try are completely determined for constant curvature.

The Sphere Theorem, perhaps the most famous global theorem,
draws topological conclusions from hypotheses that the curvature is
“pinched” between two values.

The Sphere Theorem. Let M be simply connected with sectional
curvature4 <K=1.Then M is a topological sphere (homeomorphic
to the standard sphere).

The theorem is sharp, since, for example, complex projective
space CP? has 4 =K=1. It was proved by H. Rauch for is K=1
in 1951, and generalized to 3 i<K=1 by M. Berger and W. Klingen-
berg in 1960.



(@Y @)
OO CHAPTER 9

The Rauch Comparison Theorem. One o
in a proof, and one of the most useful tools i

1./ WIS A AL LSS

the main ingredients

iemannian geometry,

the Rauch Comparison Theorem. It says, for example, the follow-

sectional curvatures K, = Ko = K, for some constant K. For p1 € M4,
P2 € My, identify T =T, M, = T,,M, via a linear isometry. Let B be
an open ball about 0 in T on which Exp,, and Exp,, are diffeomor-
phlsms into M, and M,. Let y be a curue in B, and let v, v, be its

“"age in lul, 1‘!’12 Tl”it’:’r"i lé’l"iguLi (A)"l} gfrl’i L y2}

In applications, either M; or M, is usually taken to be a sphere,
Euclidean space, or hyperbohc space, all of which have well-known
uxguuuuu:ulca Thus one obtains distance estimates on the other
manifold from curvature bounds.
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In nature, the energy of a path or surface often depends on direction
as well as length or area. The surface energy of a crystal, for example,
depends radically on direction. Indeed, some directions are so much
cheaper that most crystals use only a few cheap directions. (See
Figure 10.1.) This chapter applies more general costs or norms ® to
curves and presents an appropriate generalization of curvature.

10.1 Norms. A norm ® on R” is a nonnegative, convex homogen-
eous function on R”. We call ® C* if its restriction to R” — {0} is C*
(or, equivalently, if its restriction to the unit sphere 8"~ " is C*). The
convexity of ® is equivalent to the convexity of its unit ball

{x: d(x) = 1}.

urve C parametrized by a differentiable map

~9 A2z NRliivAviaanaQUAS

B(C) = Jf O(T) ds = Jr O(7) dt.
C [0,1]

If C is a straight line segment, then

d(C) = ®(T) length C.
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Figure 10.2. Since the unit ball of ® is strictly
convex, there is a linear function or 1-form ¢ such
that ¢(v) = ®(v), with equality only if v =B — A.

10.2. Proposition. Among all differentiable curves C from A to B,
the straight line L minimizes ®(C) uniquely if ® is strictly convex.

Proof. Since the unit ball of ® is convex, there is a constant-
coefficient differential form ¢ such that

PVET < TOYET
Py =Yy

b

with equality when v =B — A. (See Figure 10.2.) If ® is strictly

[

manv flat f o a
many flat { g e

of low energy. (Th first two photographs are from
Steve Smale’s Beautiful Crystals Calendar; current
version available for $12 from 69 Highgate Road,
Kensington, CA 94707. The third photograph is from
E. Brieskorn. All three appeared in Mathematics and
Optimal Form by S. Hildebrandt and A. Tromba
[HT, p. 181].)
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convex, equality holds only if v is a multiple of B — A. Let C' be
any differentiable curve from A to B. Then

®(C') = JCID(T) ds = J o ds

C’ C’
- J ods = ®(C)
C

by Stokes’s Theorem, so C is ®-minimizing. If ® is strictly convex,
the inequality is strict unless C' is also a straight line from A to B,

10 11meniialyy sz

-~ D . 1 .« . et
SU U Id ulllyucily 1iiiniiziig.

10.3. Proposition. A nonnegative homogeneous C* function ® on
R" is convex (respectively, uniformly convex) if and only if the
restrictions ®(6) of ® to circles about the origin satisfy
D"(6) + P(6) =0 (<0).
Proof. Since convexity in every plane through 0 is equivalent
to convexity, we may assume n = 2. The curvature k of any graph
r = f(6) in polar conditions is given by

_Pogfrrf?
(f2 +f/2)3/2 '

Therefore the curvature of the boundary of the unit ball r = 1/®(6)
is given by

3

<~ (Varram) @ @

The proposition follows.

10.4. Generalized curvature. Let C be a C* curve with arc length
parametrization f: [0, 1] — R” and curvature vector k. Let ® be a C*
norm. Consider variations 8f supported in (0, 1). Then the first vari-
ation satisfies

8D (f) = — J D>®(x) - 8f ds,

[0,1]
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where D*® represents the second derivative matrix evaluated at the
unit tangent vector. In particular, for the case of length (®(x) =
L(x) = |x]),

[0,1]

In general, we call D*®(k) the generalized ®-curvature vector.

Proof. Since ®(f) = [®(f'(u)) du for any parameterization
fw),

50(f) = Jf DO(f") - 5" (u) du

by integration by parts. Since for the initial arc length parametriz-
ation, f' is the unit tangent vector and f” is the curvature vector k,
initially

SD(f) = — J D>®(k) - 8f(s) ds.

1IN & Tha igcnnarimatrio nreahlam Nne famaning iecnnarimeatrie thanr.
AVedde 4 1IC IBUPCI A1LIT L1 IV lll UNJICIiL. 11V 1aliivuo lDUyUlllll\/Lll\/ L1Vl
am cave that amang all rlaced FAnirveg € in D Af Rvad lanoth tha
wilil oayo tiian auluus aAll LIUDLU LUL YLD U 111 1IN Ul 11AVU l\/llslll’ Ll
rrrla hAaninde tha manct nrao_flﬂof 1Q tha nriantad rxroo;m;n;m;'-rlnn
Viiviyv UUULIUD W11V 111VUDL aliva tiiat 15, 11V vliviliiitvu aiva lllllllllllbllls
cenirfara C Af graoatact aran (can far avamnla B 4§ 141N Tn Athar
Juliavey U VUl sl\dal\.rbl ailva \D\.r\.«, 1VU1 \/Aallll.ll\/’ ll ) "-J.L‘TJ} i1l vVl
words, an area-minimizing surface S with given boundary C satisfies
1 2
area § = — (length C)~.
47

Given a convex norm ® or R”, we seek a closed curve C, of
fixed cost ® (Cy) which bounds the most area, so any area-minimizing

ary ' catichec
(«ll)‘ s JAalioi1ivo

area S < a[®(C)]?,

cnirfare C w
iS4 3 8

with equality for C = C,.
Almgren’s methods [Alm, esp. Section 9] using geometric mea-
sure theory show that such an optimal isoperimetric curve exists.
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In the plane such curves have a nice characterization. Let ¥ be
a 90° rotation of ®, so

®(0) = [ v,

where n is the unit normal obtained by rotatmg the unit tangent T

s0 |v - w| = W(v) ¥(w). The optimal isoperimetric curve is simply the
boundary of the unit ®*-ball or “Wulff shape” (see [Wu] or [T1]).
Here we sketch a short new proof, based on Schwartz symmetriz-
ation, as recently used by Brothers [Br] and Gromov [BG, Section
6.6.9, p. 215] and earlier by Knothe [K]. The same result and proof
hold for optimal isoperimetric hypersurfaces in all dimensions.

10.6. Theorem. Let ¥ be a norm on R*. Among all curves enclos-
ing the same area, the boundary of the unit V*-ball B (Wulff shape)

\

minimizes [, ¥(n).

Proof sketch. Consider any planar curve enclosing a region B’
of the same area as B. Let f be an area-preserving map from B’ to
B carrying vertical lines linearly to vertical lines. Then det Df =1
and Df is triangular:

v

f-n= Jdivf22areaB’ = 2 area B,
aB’ B’

with equality if B’ = B.
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a

6

<

Figure 10.3. The unit ®-bail B. Any slice A by a
plane P through the origin has a vertex a; that is not
a vertex of B.

10.7. Theorem. For some convex norms ® in R>, an optimal isoperi-
metric curve is nonplanar.

Proof. Define ® by taking the unit ®-ball to be the centrally
...... bin sm~lolnadane D AL Thniion TN 2 T Aamsr svlama D ol il wxrn
SYHHICLIC PUlyllCUlUll D VUL r'igulic 1v.o. 11 all Pld 1C [, wilitll wC
manzr $tmnmclata ¢~ smaco thaoniialh tlian Al i thhn WN/..18F Alhnsn € weriels
iliay uaiisialc U pas> ul1ovugil ulc OUligil, uic vvuill lld}JC o] 1l
hnsinnAdarsy £ manvizmmigace favran Q) JARCIN2 Wa 311 ola~exs tlont sl nd:
vluiiualy U HIAAHLIIZCS (dlCa O )/W (L ) . VVC WIil JIIVUW Lilal uid 1auv
10 lnwans £FAvr cAtma mAan e lanmnr ~Azeora 7
Id 1al gl 1Ul JSUILLIC llUlll)l'dll'dl CUulIvce o

Mha clina A AF ¢lhn 2::mit A LAl D L ¢lann calanan D ancscd lan aals

11IC SHLT A1 UL UuIC ulll Ww-vaull D vy uic Plall I 11uUdL UT puly-

gonal. At least one vertex a; is not a vertex of B. The vertex a;
must lie on an edge of B, with vertices by, b;. The Wulff shape S
is the polygon formed dual to A, rotated clockwise 90°. (See Figure



Figure 10.4. In the plane P, the Wulff crystal S is
the polygon dual to A, rotated 90° clockwise.

10.4.) If C; denotes the edge dual to a, (rotated 90°), then C,
points in the a; direction. Its distance from the origin is 1/|a]|.

Let C' be the polygon in R’ obtained from C by replacing
C; by two segments in the directions by, by, in the order that keeps
the projection PC’' of C' onto P out of the interior of C. (See
Figure 10.5.) Then ®(C’) = ®(C). Let S’ be an area-minimizing
surface bounded by C’. Then

area S’ > area PS' > area S.

Consequently,

area S’ areal
>

BdIOCN2 T B2
LAY L)

P ~ PUGUS BRS | BVPRN
SIOULL alld Ciilpuc
T~ Voo el 02 1 Nim mrromm ndamn mzzasrac s el an AL o h s
ol iclgul, optildl 1SOPCIHIICLIIC CUIvEeS dalIc CIICICS O COldLlalt
....... drcaen Tomh cmimmeenl A bl e A 12 ] e cnbiian nd Vannd el O
culvatulC. rol gelicldl W, UIC golclidilZCU CUlvatulcC at 1€adt Sallslcs

10.8. Lemma. For a C* optimal isoperimetric curve Co, the gen-
eralized ®-curvature vector satisfies

P(Co)

|D*® (k)| = :
2 area Sy

(1)
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Figure 10.5. Obtain C' from C by replacing C; with
segments in the directions by, b;. Then ®(C') =
®(C), but area §’' > area S.

Remarks. For the case where @ is length and C, is the unit
circle, (1) says |k| = 1. The smoothness hypothesis on C, is unneces-
sary; still the conclusion implies that Cj is C"'. If C, bounds a
unique smooth area-minimizing surface So with n the inward normal
to Co along So, D°®(k) actually must be a constant multiple of
n. In particular, a planar optimal isoperimetric curve has constant
generalized curvature:

|D?*® (k)| = K.

Proof. Letf:[0,a] — R" be a local arc length parameterization

of Co. Consider compactly supported variations 8f. Then

N~ SMaran C _ ~dbiM2\
VU = U\cuca [ u‘i’\\/} }
. . [
> — | 18fl ds + 2a®(C,) | D*®D(w) - 8fds
' | A B \~uy l \*%/ J
J J
by 10.4. Therefore
1 d(Cy
ID2®()| = - 2(G)

2a®(Co) " 2area So

A norm @ is called crystalline if the unit ®-ball is polytope.
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120°

120° § 120°

Figure 10.6. Length-minimizing networks meet in
threes at equal angles of 120°.

10 Q CNaniactiira £ D j¢ rrvetalline thown an Antimal 1consvimotrie
AUee¢e L VUILJCRVLUL U lj XD UT YOLULLLILT y LIICTIL U vpuurrniue wwuoupcoruricir i
ruIvNIo 10 a nnlvonn
curve o u [IUP SUIL-
10.10. ®-minimizing networks. A network N is a finite collection

of line segments. Given a norm ® and a finite set of boundary points
in R”, we seek a ®-minimizing network connecting the points. For
the case where ® is length (the generalized ““Steiner”” or “Fermat”
problem [Fer, 1638, p. 153], [S1, 1835], [S2, 1837], [JK, 1934]), such
networks meet only in threes at equal 120° angles (or in twos at
boundary points at angles of at least 120°), as shown in Figure 10.6.
Soap film strips behave similarly in their quest to minimize area, as
shown in Figure 10.7 (see also [CR, pp. 354-361, 392]).

Recently there have appeared results on general norms ®. (See
the surveys [M1-3] and [A, GM].)

10.11. Theorem (A. Levy, Williams undergraduate ’88; [Le; A3]).
Let ® be a differentiable, uniformly convex norm on R*. Then
®-minimizing networks meet only in threes.

The proof shows that a junction of four or more segments is
unstable.

10.12. Theorem [LM, Theorem 4.4]. Let ® be a differentiable norm
on R". In ®-minimizing networks, n + 1 segments can meet at a
point, but never n + 2.

It turns out that all such junctions locally can be ‘“‘calibrated”
and classified.



The next theorem, in comparison with Theorem 10.11, exhibits
a surprising sensitivity to smoothness class.

10.13. Theorem (SMALL Geometry Group, Williams, summer
1988, [A3, A4]). Consider piecewise differentiable, uniformly con-
vex norms ® on R>. Then ®-minimizing networks sometimes meet

E. Cockayne [Coc] earlier studied planar norms, but did not
discuss dependence on differentiability.

10.14. Theorem (M. Conger, Williams ’89; [Con]). Consider piece-

wise differentiable, uniformly convex norms ® on R>. Then ®-
minimizing networks sometimes meet in sixes.
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The proof shows that six segments meeting along orthogonal
axes in R’ are ®-minimizing for some ®. The large number of
possible competitors requires cleverness as well as persistence in the
proof.

Conger conjectured that t

For non-uniform

A \Ji &4 e S

in R”, the network consisting of the 2" segments from the center to
the vertices is ®-minimizing, with an easy proof. This probably
exhibits the upper bound (see [FLM, Intro. and 2.1}).

More recent work by M. Alfaro (Williams '90) and others [Al,
AZ2] has studied directed networks of one-way streets.

] CONVAY NOTr
L i

AV Wwsir XL



Selected Formulas

(u', u?, . .. give parameters on surface; x; = 9x/0u’)
Inverse matrix g

Arc length of curve u(f):
J\/E gijui' i dt

(' = du'ldr)
2-dimensional surface x (', »*) in R*:

Mean curvature H = trace Il = k; + «;

2 2
i = X2Xu 20X %) Xip + XiXas

X3X5 — (X1 X2)°

Gauss curvature G = det II = k;k,

_ (%11 - 0)(X2 - n) = (X12 - n)°
G= 2.2 2
X1X2 — (X1 - X2)

v

For the graph of a function f: R®—> R,
+

(1 +fA\NF..—2F.F F (1 + FA\F
;\“ JY JJ XX ~JXJYJ XY ' \* ' Jx)JYyy
o 1 4 £2 , p2°N\3/2
(L+7xt+7Jy)
r ~ r2

(-"v —_ J x'\;’ }l}l - er}l
- (1 1L £2 4 £2)\2

\L " Jx VJy)

N
D
7~~~
P
—

3.4(1)

3.5(1)

3.5(2)

(98]
(94
7~
£
N’
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~A e 2\ . wm
2-dimensional surface x(u', ¥*) in R™:
Mean curvature vector H = trace II

2 ~s \ s 2
X2X11 — 4(X; ' X2 )Xy2 T X1 X0

H=P 4.2(1)

X1%5 — (X1 * X2)°
Gauss curvature G = det 11

_ (Pxq1) - (Pxg0) — (Px1p)’

XiX5 — (X1 * X2)?

G

, 4.2(2)

where P denotes projection onto 7,5™.
For the graph of a function f: R"™' > R,
Y+ |VP)AF - Zfiff

H = div
1 4 |7£2)372 ’
LTV )

where f,‘ = af/axi, fij = azf/f)x,- 6x,-, VfE (fl’ o afn—l)’
div(p,q,...)=p1+qa+---,and Af=divVf=f; +fpn+---
(Exercise 5.3).

For the level set {f = ¢} of a function f:R” - R,

H= - div-—Yf— 5.0(1)
VSl
Christoffel symbols
T = 5“2148 "(8yx + 8k — Gikt) 6.0(2)

Riemannian curvature tensor:
Rj'kl =Qik Qi1 — Q" iy 5.2(3)
= =T+ Thp+ 2 (-Thlly + TAlk)  6.0(4)
h
(ajx are components of second fundamental form II in orthonormal
coordinates.)

Ricci curvature:
Ry=2 Rl 6.0(7)
Scalar curvature:

R=2¢g"R; 6.0(8)
(If S is 2-dimensional, G = R/2.)
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TR 140

( LITS vr) —
W, V) - 11\W, w)

I
pt
[

nh i j k1
ginKjppL WU w.

™M

Covariant derivative of a vectorfield X*:
X=X+ 2T X
k
Geodesics u(r), t arc length:

0=a'+ 2 Thu'uk
Jj.k

Yradiant:
\Jilauiviii.
oo _ _iir
VI —&8'J.j
Laplacian:

.. 1 0 i,
Af = g7 (f; = TEf) = ——=—(Vdet g g"f
f=g"(fi— Tifx) Vdets o etgg’f;)
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3.1.

=

Solutions to
Selected Exercises

. 1/a, 1/a, 1/a*, 2/a (or —1/a, —1/a, 1/a*, —2/a)
. 2a, 2b, 4ab, 2(a + b)

. 11=sz(0,0)=[

A 11Q
L~ 44 110

132 —24]
J’

H =132 + 118 = 250,

G =132 - 118 — 24* = 15,000,

H=+VH? - 4G

K= = 100,150.
2

. Note that the x,y-plane is not the tangent plane at 0, so use 3.5(3,4).

Ty __ AA /M Vo Y & 4 n\[ﬂ—\ '\/;:
H=4VZ, G=6. Hence, k =3V2Z, V2.

. Switch variables and use 3.5(3,4). H =0,

G=-1/(1+y*sec’2)* = —1/(1 + x* + y*),

k==*1/(1+y*sec’z) = = 1/(1 + x* + y?).

) g P
USE

PR | : 1°

£/ AN\ I B B o AR I
J(9,4) and 1mpiiCit direrentiation.

(93]

_5-3%*+10-2%" + 137
(81x* + 16y* + 79)*?
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SOLUTIONS TO SELECTED EXERCISES

3.2. 27 asinc. (It is a circle of radius asinc.)

Ea)
w

7/ £ L 1\
_fe b

- x=(x,y,f(x,y)),n —1\/—1—?7——;77,
x y

o U =2 i + A4y 1

34. x,

XZ z

P (PR, P o
n= —(cos ¢,sin @, —f

A+AA+ -2 VI+fo+f
f — £2 1

1+f24+f21+f2+f2

= (f'cos 6, f'sin 6, 1), xo= (—fsin 6, fcos 6, 0),

2N—V2 g N

c n I)(l +f )“ (inwaru),

= (f"cos 6, f"sin 6,0), x,4=(—f"sin 6, f' cos 6, 0),

Xgo = (—fcos 6, —fsin 6, 0),

H

1
35. A= | 2masingade= 21ra2<1 — cos _r_) Y

4.1. a.

i A (O 0 W U
f2(1 +f12) Vl +fr'1, f\/l +frz'

rl

Q

a a*12

0

¢
x = (x,y, x> + 2y%, 66x% — 24xy + 59y?),

x; =(1,0,0,0), x, =(0,1,0,0), x;; = (0,0,2, 132),
x12 = (0,0,0, —24), x5, = (0,0, 4, 118). Px; = x;;.
By 4.2, H = (0,0, 6, 250), G = 15,008.

Note that answers are sums of answers to Ex. 3.1(b,

. x=(x,y,x* = y*, 2xy), x, = (1,0, 2x, 2y), x, = (0, 1,

< N N N B 1 \ _ /NN NN o — N
X11 — \U, Y, 4,V), X12 —\U,U, U, L), X220 — Y,

D
N’

-
b ",

(==}

0
By 4.2, H= P— = 0. For G, we need Px;,.
something

Since x;, x, are orthogonal,

X11'X1x _X11'X2x —
— X1 Xy =
X1 X2

P(X11) = X113 —

_ (—4x,4y,2,0)

r4+.-.

).
-2y, 2x),
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(—4y, —4x,0,2) (4x, —4y, —2,0)
P = , X
(%12) 1+ 4x2 + 4y? Pla) =002 + 4y?
G=-8(1+4x*+4y)>=-8(1+ 4z

4.2. x = (z,f(2)), with z = u; + iu,.

x, = (1,f'(2)), X0 = (1, if '(2)), X1 - X, = 0 (x5, = ix,),

=(0,£"(2)), x12 = (0, if"(2)), %22 = (0, —"(2))-

P(0)
H = —————— = 0. For G, we need Px;.
something

Since x;, X, span a complex subspace, P just projects onto the ortho-
gonal complex subspace spanned by (—f'(z), 1) € C%.

P(x;;) = —P(x,) = M,
@+

I G i i)
P = e

G=-2f"Pa+1f7H~

4.3. Calculating with formula 4.2(1) yields
H=Pv(l+|f.+1f,P)7",
where

V=P e = 205 f)f ey + A+ Py

cpn—2~n2 .y pn-2
\— IN — AN /N KN .

Clearly if v =0, then H = 0 and the surface is minimal. On the other

L 1 n —1 n -~ mnn—2 o

nana M=V, VeEKEerriil K = {VU;.

[(2 ,6) (2,0) (0,0) _l
_I 2,00 (2.2) (0.2
0,00 0,2 (10,2)]

az

5.1. a. II—[

b. K(es A e2) = (2,6) - (2,2) — (2,0) - (2,0) = 12.
c. One orthonormal basis is v = (1, —1, 0)/\/2, w=(0,0,1).

K =II(v, v) - II(w, w) — II(v, w) - II(v, w)
—(0. -V2). (0, A/ =

5 vg Vo) =

(1,-1,0)

One orthonormal basis for {x; + x, + x3 = 0} is v = —F7=—,
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oL -2
6

d. Ri212 =12, Ri213 =12, Ri223 = 0, Ryz13 = 32, Ry33 = 20,
R,33 = 20. Rest by symmetries.

K=0.

C. U= —Up= 1/\/5, wsy =1, rest 0.
K= %R1313 - %R1323 - %R2313 + %R2323 =6.
v1=—0,=1/V2, 03 =0, w; = w, = /V6, w; = —2/V6.
K = 3R121> — §Riz13 — §Ria12 + 3R131s — 3R1z21 + §Rusn

1 1 1 1 1 1
— 3R1323 — B3 R2112 + 6R2113 — 3R2313 + 3 R2121 + 3R2323

=1-2-2+32/3+1-2-20/3+1-2-20/3+1+20/3
= 0.
[44 20 0'}
e. Ric=|20 32 12|, R=44+32+52=128.
0 12 52
y O
5.2. Df=[—‘zgﬂ]= 1 0 1]=(0,2y,0)i+(1,0,1)j+ (3x%0,0)k.
dx dy 0z 32 0 0

(=]

QIO O
D = O

Df(0,0,1) = I[ ]I = (0,0, 0)i + (1,0, 1)j + (0, 0, O)k.
L |

1
0

Covariant derivative = [(1) 3] = (1, 0)j.

5.3. Let g(x1,...,x,) =x, — f(x1,...,X,—1). Then the graph of f is the
level set {g = 0}. By 5.0(1),

H=—diva8 = —giyfo o fan 1)

Vel Vi+fit.-+f2,
v \Y
=diVm==.IrT—5-i‘/4 .1., = div ! =-

- rl2
Vi+|VA® ox,Vi+|Vf°
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=

Euler characteristic, 67

k times continuously differentiable, 11, 89
first variation, 13

metric, 18

exponential map, 77

Gauss curvature, 1, 13, 26, 71, 72
Einstein tensor, 58

1ot 1 4 5 O

Riemannian metric, 18

mean curvature vector, 26, 27, 32
scalar mean curvature, 1, 13, 19, 32
second fundamental form, 12, 32, 34;
second fundamental tensor, 25, 31
sectional curvature, 33, 42

curvature vector, 5

scalar curvature |k|, 1;
principal curvature, 13, 26, 34

geodesic curvature vector, 47

unit normal, 5, 11, 32;
Gauss map, 69, 71

norm, 89

scalar curvature, 36, 42

unit tangent, 5
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proper time, 58

tangent space, 11

normal space, 25

velocity, S

plane spanned by v and w, 33
position, 5

partial derivative ox/ou’, 17
time derivative dx/dt, 17
components of vectorfield, 40
covariant derivative, 40



Name Index

Alfaro, M., 100
Allendoerfer, C. B., 71
Almgren, F., v, 93

Berger, M., 87
Bianchi, L., 35
Bonnet, P.-O., 67
Bredt, J., iii, viii
Brieskorn, E., 91
Brothers, I. E., 94

Cheeger, J., 77
Chern, S.-S., 71, 72
Cockayne, E. J., 100
Collins, C., v
Conger, M. A., 100

Ebin, D. G., 77
Einstein, A., 56, 57, 58
Enneper, A., 16
Euclid, 50

Euler, L., 13, 15

Fenchel, W., 71

Gauss, C. F., 2, 21, 67
Gromov, M., 94

Harriot, T., 74
Hicks, N. J., viii
Hildebrandt, S., 91
Hopf, H., 71

Jeffery, G. B., 56

Kepler, J., 55
Klingenberg, W., 87
Knothe, H., 94

Laugwitz, D., viii
Levy, A., 98
Lorentz, G., 57

Mattuck, A., v
Meusnier, J., 15
Michelson, A., 57
Morgan, B., v
Morgan, F., v
Morley, E. W., 57

. Murdoch, T., viii

Myers, S., 87

Nash, J., 39, 71
Newton, I., 55

Peters, K., viii
Playfair, J., 50

Rauch, H., 87
Riker, M., v
Robb, D., iv

Scherk, H., 15
Schoen, R., 42
Schwarzschild, K., 58
Selemeyer, C., v
Sengupta, A., 74
Siegel, P., viii

Smale, S., 91



116 NAME INDEX

‘\, Lv.lo’ v

Stoker, J. J., viii

Taylor, J. E., 94

Tramha A a1
11VUllivad, fa.y 71




Arc length, 18, 101

Area and Ganege curvature 29
£ ‘lv“’ Gl UJAauoy v “aL A W et bt

Bending, 22

Bianchi’s first identity, 35, 41
Black hole, 60

Bonnet’s theorem, 77, 84

Catenoid, 15, 20
Chain rule, 17
Christoffel symbols '}, 40, 102
Comparison theorem of Rauch,
88
Complete, 77
Con]ugate points, 82
and sectional curvature, 83
and shortest geodesics, 83
Connection, 41
Contravariant, 40
Convex norm, 89, 92
Coordinates, 14, 39
normal, 78
Costa’s surface, 17

Covariant. 40

vy TV

Covariant derivative, 36, 42, 103
along curve, 48
Crystals, 89
Curvature, 1, 5; see aiso curves,
Gauss curvature, mean
curvature, principal

curvatures, Ricci curvature,

Riemannian curvature,
scalar curvature, sectional

Arreeratrieen

LulivaiLulc

Qiihiert ITndevw

Curvature of curves
ceneralized DZ(‘I)( )

SviiviauLca

geodesic kg, 47
radius of, 5
Curvature vector k of curve, 5,
47, 101
Curves, 5; see also curvature of
curves, geodesics
curvature vector K, 5
isoperimetric, 93, 95, 97
normal vector n, 5

93, 97

2 ’

Cylinder, 22, 84

Diameter, 77
Bonnet’s theorem, 84
Myers theorem, 87

Einstein tensor G}, 58

urface, 16
Equwalence principle, 56, 58
Euler characteristic x, 67, 71
Euler’s formuia, 13
Exponential map Exp,, 77, 82
and sectional curvature, 83

Extrinsic, 1

Fermat problem, 98
First fundamental form, 18

Gauss—-Bonnet formula, 65
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Gauss—Bonnet theorem, 65, 67—
69, 71
proof in R?, 74
Gauss—-Bonnet—Chern theorem,
71
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Gaus map n, 69 71

Gauss’s Theorema Egregium, 2,
21, 65

General relativity, 55-63

Geodesic triangle, 66, 74

Geodesics, 47, 77

converge for positive curvature,

51, 58, 85

existence and uniqueness, 48

formula for, 49, 102

hyperbolic space, 50

relativity, 57

sphere, 53, 54
Geometric measure theory, 93
Geometry

bounded, 84

global, 77

Riemannian, 1, 56
Gradient, 103
Graph

curve, 5

surface, 18, 19, 102
Gravity, 56, 58

Helicoid, 15, 23

Helix, 8

Hopf-Rinow theorem, 48, 79
Hyperbolic geometry, 49, 87
Hypersurfaces, 32, 33

Tniactivity radine Q4
Alljvviuavian i1avuiuo, OT
Intrinsic, 2, 18, 21, 22, 39-54
Isoperimetric problem, 93-98

Jacobi field, 82

Laplacian, 103
Length, 15, 18, 101
75

74
U

Aoan cuirvaturae 1 17 10 29
AVAVAILL vuili vatuil v .l..l’ L, LJ’ L/’ Jl-l,
101 102
Mean curvature vector H, 26, 27,
32, 102
A L £ N o)
viercury, o0, OU—-0L
NMatein 42 — 5 Ad:ddd 1Q &7 101
Metric as” = g;au au’, 1o, 5/, 1U1
T t rot ardear 21 A) 7R
A4 VWU 11A0Cv Uxuvx, hl’ ﬁh’ A
Lorentz, 57, 60

Schwarzschlld 58, 60
Minimal surfaces, 14-17
Myers theorem, 87

Nash embedding theorem, 39, 71
Networks, 98—-100
Non-Euclidean geometry, 50
Normal coordinates, 78
Normal n

to curve, 5

to hypersurface, 32

to surface, 11
Norms, 89-100

crystalline, 98

first variation of, 93

Manhattan, 99

rectilinear, 99

Orthogonal group SO(n), 78, 79
Osculating circle, 5

Parallel transport, 72, 74
and second variation, 85, 86
Precession, 55
Pressure, 14
Principal curvatures, 11, 13, 19,
26, 34
Prmmpal directions, 13



Ricci curvature, 35, 41, 103
Myers theorem, 87

Ricci’s identity, 43

Ricci’s lemma, 43

Riemannian curvature tensor, 34,

partlals 43
and parallel transport, 72-73

Scalar curvature R, 36, 42, 103
and volume, 42

Scherk’s surface, 15

Schwartz symmetrization, 94

Second fundamental form II, 12,

31,79
Sectional curvature, 33, 42, 77,
103
Bonnet’s theorem, 84
conjugate points, 83
constant, 50, 87
dlameter, 84

sphere theore , 87
weighted average of axis
curvatures, 33
Slice, 11

sUBJECT INDEX 119

Smokestack, 6-10

Soap films, 99

Special relativity, 55, 57

Sphere, 18, 23, 47, 53, 67, 68, 69,

Crhara anrom Q7
UPIIUL A VUL VILL, O
Cnhariral tricannmatry K7
Ul.lll.\.«l Awal i lsUllUlllU Ly s VI

Steiner problem, 98
Stokes’s theorem, 92
Strake, 6-10
Surface of revolution, 23
Surfaces

in R®, 11

in R", 25
Symmetries, 34, 41

Tangent space T,S§, 11
Tangent vector T to curve, 5
Torsion, 41

Torus, 51

Variation

of curve, 6, 7, 48, 93
second, of curve, 85, 86, 87

Weingarten map Dn, 69, 71
Wulff shape, 94

Yamabe problem, 42



