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Tensor Analysis & Geometry

Spherical Coordinates

φθ cossin1 rx = , φθ sinsin2 rx = , θcos3 rx = , ctx =4

3-dimensional l ine element: ( )222222 sin φθθ ddrdrds ++=

Christoffel Symbols

Christoffel Symbol of the first kind: [ ] 
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Derivation o f the Riemann Curvature Tensor
In general, a second order differentiation on a covariant vector is independent of the order in which it is carried
out, i.e.:
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However, the presence of Christoffel symbols can have an effect on this statement.  We investigate this by first
finding the general second derivatives for both permutations of the differentiating parameters:
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Now we interchange j and k (which is the other possible way of determining this second derivative):
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We now find the difference between these two. On the RHS, the first, third, fourth, sixth, and seventh terms
cancel out, thus giving the result:
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We define the Riemann (or Riemann-Christoffel) Curvature tensor by:
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The difference between the covariant derivatives can thus be written as s
s
ijkkjijki VRVV =− :: .  The Riemann

tensor used in this equation is called the Riemann curvature tensor of the second kind.  The curvature tensor of
the first kind is defined as:

r
jklirijkl RgR = .

Symmetry Properties:
First skew symmetry jiklijkl RR −=
Second skew symmetry ijlkijkl RR −=



GENERAL RELATIVITY, TENSOR ANALYSIS AND GEOMETRY

Courtney James Mewton Page 2 GR, Tensor Analysis & Geometry

Block symmetry klijijkl RR =
Bianchi’s identity 0=++ iljkikljijkl RRR

The Ricc i Tensor
The Ricci tensor of the first kind is simply a contraction of the Riemann tensor:

k
ijkij RR = .

The last index can be raised to yield the Ricci tensor of the second kind:
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ikj

i RgR = .

If this tensor is finally contracted by letting I = j, we get the Ricci curvature scalar.  If it is zero, the space is flat.
From the first of the two equations above the Ricci tensor of the first kind can be calculated directly by:
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Transformation Of A Geodesic From Parameter u To v, Where v = f(u)
Given a particular geodesic in terms of a parameter u, in this section the geodesic equation will be transformed
so that it is in terms of a new parameter v.
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Since the LHS is now in terms of v, partial differentiation can be replaced by normal differentiation:
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General Relativity

The Metric Tensor for Special Relativity
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Einstein's Law of Gravitation
Simply stated, Einstein's law of gravitation is:

0=µνR .

This condition holds when the local space is completely devoid of all forms of matter and energy.

Derivation o f the Schwarzchild Solution
In this section the line-element solution to the field equations for a quasi-static gravitational field produced by a
spherical body will be derived.
We start by setting up a general l ine element employing spherical coordinates:

( )222222222 sin φθθτ ddWrBdrdtAcdc +−−= .

Before we continue, a few assumptions need to be made:

�
 The space is asymptotically flat.  This means that 1→= BA  as ∞→r .�
 The gravitational field only affects time and radial distance, so W = 1.

We can immediately define the metric tensor:
2

00 Acg = , Bg −=11 , 2
22 rg −=  and θ22

33 sinrg −= .

Since we are dealing with the empty space surrounding the body, the Ricci tensor needs to equal zero.  With this
in mind, the derivation begins.  We first calculate the Christoffel symbols.  Note that since a Christoffel symbol
of the second kind is defined as
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we need only calculate them for values when r = z.
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We now solve the field equations:
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These equations must equal zero, thus after substitution, we have:
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This can also be written as:
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upon solving the simple differential equation.  We use this solution to simplify equation 3:
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The value of k is the last thing to obtain.  In the next section on the approximation of Newtonian gravitation,
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Utili sing Geodesic Equation to Find GR Approximation o f Newtonian Gravity
A particle travels through spacetime along a geodesic, given by the equation:
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τ is the time experienced relative to the particle.  The equation simply states that relative to a free particle, it
experiences no net acceleration (though other objects appear to accelerate if a gravitational field is present).

We wish to determine the motion of the particle relative to coordinate time, denoted by t.  The equation would
give the path of the particle in accordance to what other observers would see if they thought they were in a
gravitational field.
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First, we expand and consider its spatial components:

dt

dx

d

dt

d

td

dt

dx

dt

dx

dt

dx

dt

dx

dt

dx

dt

dx

dt

xd i
i

k
i
k

kj
i
jk

i
















=Γ+Γ+Γ+

2

22

200

00

0

02

2

2
ττ

.

One of the Christoffel symbols has a coefficient of two since 
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We assume that the gravitational field is quasi-static, i.e. that it doesn't change with respect to time.  Therefore,
any derivatives of the metric tensor with respect to time can be left out.  Now we evaluate the connection
coeff icients:
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Now we need to evaluate the RHS of the equation.  We start by first looking at the following line element:
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terms involving the spatial components, which are small in comparison to the temporal components, we get:
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This is negligible since it involves temporal derivatives of the gravitational field.

By plugging everything into our equation, we get:
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Through multiplying by mass m and rearranging the equation, we get:
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The term on the left is the force that the particle appears to experience.  The first term on the right is some kind
of potential of the field, since its temporal component is involved.  The last term, which involves perpendicular
velocities, is indicative of some sort of Coriolis force.  We are not interested in the Coriolis effects, so we shall
assume that we are in a non-rotating frame, so we get:
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If we denote a potential by 00
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1 hcV = , then the equation simply becomes VmF ∇−= , or
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.  We want the metric tensor to be flat when there is no gravitational field present.  The

                                                          
1 The metric tensor µνµνµν η hg +≈ , where µνη  is the famili ar metric tensor of Special Relativity, and

µνh are small terms which include the action of any gravitational fields which may be present, and are small in

comparison to the µνη  in weak gravitational fields, as opposed to the awesome sucking power of a black hole!
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equation for the potential leads us to the expression 2
000000 21 cVhg +=+=η .  To finally get the actual

expression for the potential in terms of mass, we need to use the line element from the Schwarzchild solution.

The temporal component gives rGMV −= .  With this expression, we can easily obtain an approximation of

the gravitational force:
2rGMmVmF −=∇−= .

Field Equations in the Presence of Matter: The Poisson Approximation
Let us write the equation:

µνµνµν κTgR =− 2
1 ,

or, more compactly as:
µνµν κTG = ,

where G is the Einstein tensor.

As a test for General Relativity, at velocities which are small in comparison to the speed of light, there must be

an approximation to Poisson’s equation: ρπGV 42 =∇ .  To achieve this requires the weak field

approximation by leaving out negligible terms in the Ricci tensor.2

µνµν κTG =
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We substitute this back into our original equation:
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We are approximating that the material energy tensor has a negligible value in for all µ, ν except when µ = ν =
0, so we get:
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We now make the Ricci tensor covariant:
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Weak field approximation.
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The particles are traveling at the travelling at the speed of light through time, so we get:
4

2
12 cV κρ=∇

This must equal Poisson’s equation, stated earlier

This gives a value 
4

8

c

Gπκ = .

                                                          
2 Note that this particular calculation would be shorter if we took the Einstein tensor and the material energy
tensor to be covariant as opposed to contravariant, but due to the actual form of the material energy tensor, I
prefer it to be contravariant.


