Tensor Analysis & Geometry

Spherical Coordinates
X' =rsinfcosp x*=rsindsing x® =rcosl Xx* =ct

3-dimensional line dement: ds® = dr? + rz(de2 +sin 6d(p2)

Christoffel Symbols

Epgrm agrn _ agmn H
200x"  ox™  ox' O

Christoffel Symbal of the first kind: o = [mn,r] =

Christoffel Symboal of the second kind: r- = @ﬁr@: g"”

Derivation of the Riemann Curvature Tensor

In general, asecond order differentiation on a @variant vedor is independent of the order in which it is caried
out, i.e.:

o, IV,
axloxk  axkax!

However, the presence of Christoffel symboals can have an effed on this statement. We investigate this by first
finding the general second derivatives for both permutations of the differentiating parameters:

=V i« _rirkvr,j _rjrkvi,r :

i Jx
But Vi.; =V, ; —T3Vs,

or:>
O i:j);k :Vi,jk _aTI;J(Vs _rijs\/s,k - . _rrTVs]_rjrk B/i,r _rifvs]

ors
— J

- V), =V = Ve TV~ TV, + TUTEV, =TV + TV,
Now we interchange j and k (which is the other posshble way of determiningthis sscond derivative):

ar.,
(\/i:k ):j :\/i,kj - OXI' V rliv _rfv + r r V rijI r + rkj r:Vs
We now find the difference between these two. On the RHS, the first, third, fourth, sixth, and seventh terms
cancd out, thus giving the result:

_ory ar, Cor> ol [
\/i:jk _\/i:kj a ! V r rrT\/s + 9% IkV rl] rrskvs = %7':( ax r rS r|]rrrsk s
We define the Riemann (or Riemann-Christoffel) Curvature tensor by:
S
s_arii_arij 'S _['rs
ijk — i _k+ rikrrj rij rrk'
ox'  ox

The difference between the cvariant derivatives can thus be written as Vi, =V, = R} V. The Riemann

tensor used in this equation is cdled the Riemann curvature tensor of the second kind. The airvature tensor of
thefirst kind is defined as:
Rijkl

Oir Rjrkl :
Symmetry Properties:
First skew symmetry Riv = ~Rjig

Seand skew symmetry R = ~Rj
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Block symmetry R”.kl = Rk”j
Bianchi’sidentity Riu * Ry + Ry =0

The Ricci Tensor
The Ricd tensor of the first kind is simply a mntradion of the Riemann tensor:

— Dk
Rj - Rjk'
The last index can be raised to yield the Ricd tensor of the second kind:
j — ~ik
R'=g"R;.

If thistensor isfinally contraded by letting | = j, we get the Ricd curvature scdar. If it iszero, the spaceis flat.
From the first of the two equations above the Ricci tensor of the first kind can be cdculated diredly by:
ork oy
— pk — ik _ | rmk _rrrk
Rj - Rjk - axj W"'rikrrj rij rrk'

Transformation Of A Geodesic From Parameter u To v, Where v = f(u)

Given aparticular geodesic in terms of a parameter u, in this ®dion the geodesic equation will be transformed
so that it isin terms of a new parameter v.

a b c
Start with D o E d*x* +2 dx” dx

du Hdu au?z  ®du du
_ dx? dx adv
Substitute
du dv du

ddvd ox* dv  _, ox° dvadx®  ox* d’v _
then — — =T, — + 5=
du {ov du oudv du ov du du ov du
ox? dv 2 0X dx® dv _ ox* d’v
~ dudv du . ov du du  dv du?
ox? dv uduH+ ox° dx°© ded_du 6x ded_du
- — =2
oudv du [Odv adv [ av du du Jdv dv D av du? dv dv [
L0 e X dx® _ ox*d
T ™ av dv ov du’[av

Sincethe LHSisnow in terms of v, partial differentiation can be replaced by normal differentiation:

dx*  _,dx’dx® _ dx*d v/
TN _+|‘bc =
[du [

dv? dv dv dv du?

d v
By letting A = —

dx* ., dx® dx® _ . dx®
>+ =A .
dv dv dv dv

General Relativity

The Metric Tensor for Special Relativity
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m 0 0 00O
M -1 0 00
Mw=m 0 -1 0O
m 0 0 -1F

Einstein's Law of Gravitation

Simply stated, Einstein's law of gravitationis:

R, =0.

This condition holds when the locd spaceis completely devoid of all forms of matter and energy.

Derivation of the Schwarzchild Solution

In this dion the line-element solution to the field equations for a quasi-static gravitational field produced by a
spherica body will be derived.
We start by setting yp ageneral line dement employing sphericd coordinates:

cdr? = Ac?dt? - Bdr2 W 2(d6? +sin® de? ).
Before we mntinue, afew assumptions neel to be made:

# The spaceisasymptotically flat. Thismeansthat A=B - lasI — o,
# The gravitational field only affectstime and radia distance, so W= 1.

We can immediately define the metric tensor:
Goo = AC”, 0y =—B, g5, = 1" and gy =T ”sin6.

Sincewe ae deding with the empty spacesurrounding the body, the Ricci tensor needs to equal zero. With this
in mind, the derivation begins. We first cdculate the Christoffel symbadls. Note that since aChristoffel symbal

of the second kind is defined as
M = Hma= 0"
we neal only cdculate them for valueswhenr = z
My = 000 = $ A0 2 [G0s + G0 ~ Gugo| = 3 AA
Moo= 9" To =% B_l[glO,O *tQo10 ~ 900,1] =$B7gg, =3BTAC’
M=9"Tu=-3 B_l[gm O~ 9111] =-3B7g;;,, =3B7B'
|—212 = g11|—221 =~ l _1[9122 +t 012 ~ 9221] ==3 B_lgzzl = _% B™ [(2r) =-rB™
M =0"T=-3B" [g133 + Ogrs — 9331] =-1B" ( 9331) -1 B‘1(2r sinze): -rB™sin’6
M =0T, =51 [gZLZ t 021 gZLZ] =—ir?f-2r)=r"
M= 9%Tas, = =3 [923,3 +t 0323 ~ 933,2] 1 7 [2r’ cosfsing = -cosdsinG
M =9%T=—3r?sin™ 6’[933’l + Q3 — 913,3] =-1r?sin?6 [(— 2r sin® 6): r
Moy =09%T s =—2r7?sin 6[933’2 + 05 — 923,3] =-1r?sin?6 [(— 2r? cos sin6)= cotd

We now solve the field equations:

Reo = [n0 =0 + (T = Fol o) (ot = Lo )+ (s = rori )+ (For s = o )

#[F-ri, + (rsar;o -rrs )+ (rglrfo ~ T+ (ars, - rara)+ (Fars - rars)

+ [rozo r020,2 + (F(?ZFOZO - F(?OFOZZ)+ (rézrlzo_ rgorfz)+ (r022r220 - rc>20r222)+ (rc?zrazo - rgorszz )]
[r030 B r030,3 + (rgsrgo - rc?oross)+ (résrlsoE)-" (F023F230 - rc)20r233)+ (r033r330 - r03or333 )]
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Ri= 10 rloj,o (rl%rc?l - rlolr(?o)-'- (rllorlol_ rlllrloo)+ (r120r201 - r121r200)+ (rfi)re?l - rlslré)o)]
[rll,l rlll,l rllrél rlolrél)-'- (rlllrlll - r111r111)+ (r121r211 - r121r;1)+ (r131r§1 - r131r;1)]

vBa-r2, +rorz - rara ) rara-rara e rarz - rara e farz - rara)

+ 13 r131,3 (r103r31 - r101r033)+ (r113r131_ r111r133)+ (r123r231 - r121r233)+ (r133r331 - r131r333)]

Ry, [rzoz r202,0 + (FZOOF(?Z - rzozrc?o)"' (rzlorloz_ rzlzrl% )+ (r220r292 - r222r200)+ (r§or3?2 - r23,2r3oo)]
+ [r212 Mooy + (Fflréz - F§2F§1)+ (r211r112_ rgzr?ﬂ:jrirzlz - F§2F§1)+ (F,le;z - F232F§1)]

[rzz 2 r222,2 + (r202r022 - r202r022)+ (rzlzrlzz - r;2r12)+ (F222F222 - r§2r§2)+ (rzgzrszz - rgzr??z )]
elra ~ra+ (ars -rars) s (ara-rars)s (ars -rars)+ ([ars - rar)

= [rgo,a - r??s,o + (ré)orc?s - r??src?o)"' (réorlg_ r§3r100 ) + (r320r203 - r323r200)+ (rsor??s - r??sr??o )]
+ [r31,3 r3131 (rsolrés - r§3r31)+ (r311r113_ r313r111 + (r321r213 - r323r211)"' (r331r§3 - r333r311)]
[r32 3 r3232 (r302r023 - r303r022)"' (r312r123_ r313r122)"' (r322r223 - r323r222)"' (r332r323 - r333r322)]

+ [r33,3 - r333,3 + (r??sros3 - r??3r§3)+ (r§3r1?§ - r§3r133)+ (r323r233 - r323r§3)+ (rsssrsss - r333r333)]
We ae left with

Roo = _réo,l + rc?lréo - réorlll - réorlzz - réorl?’@

R:Ll = rl%,l + rl%ré)l - rlllrl% + r122,1 - r111r122 + r122r221 + r133,1 - r1l1r133 + r133r§’1,

Rzz = _réLZrl(:) - rzlz,l - réLZrlll + r221r212 + r;3,2 - r;2r133 + r233r§2,

- _FlpF0 1 _rip1 3rl _ 2 _plp2 32
Ry = T aali0 = Tass = Taalin + el as = Tagp = Taal p + Mgl 55

These equations must equal zero, thus after substitution, we have:
_[BA A” AA _ AL

%_ 2 4A BB’ ®

A? A, A" _AB _BA

= , 2
R 4A 2 4B Br @)
Ar Br 1
= +=-1, 3
Rez 2AB 2B®> B 3)

DAr Br 1

_ A* A AB BA_ BA_A* A" APB
O=—+—- - O =t —- :
4A 2 4B Br Br 4A 2 4B

This can be substituted into equation 1 to give:
_ o BA A Dl BA A' B’ A
= —0 ==—-—.
H_ Br r E_ r B A
This can aso be written as:

Equation 2 becomes:
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€ 0 _ B__dAg, B—%D AB=1,

Bdr  Adr B A
upon solving the simple differential equation. We use this lution to simplify equation 3:

0=AT L AT A1 1= AT+A= AT+ A" = = (Ar)
2 2A

We now integrate:
J’dr —J' Ar dr Or+k=Ar,

where k is an integration constant. The ejuation can be rearanged to find A:

A=1+5.
r

-1
s=H+KH .
O rQ

The value of k is the last thing to oltain. In the next section on the gproximation of Newtonian gravitation,
Ooo =1+ hyy. It canimmediately be seen that the hy, is equivalent to k. In the Newtonian approximation, it

Since B= A™,

is required that the Newtonian gavitational potential V :%Czhoo. Using the Newtonian potential

V =-GM/r, this gives avalue of k = —ZGM/I’C2 . By substituting A and B badk into the original line-
element equation at the start of this ®dion, we have the Schwarzchild solution:

c2dr2 :B__ 2(3';4 Zdtz—B_ 2GM H dr2 - (d92+sin26d(p2).
[l rcc [ [l rc?

Utilising Geodesic Equation to Find GR Approximation of Newtonian Gravity
A particle travel s through spacdime dong a geodesic, given by the equation:
dx* dx” dx?
+[H

dr’ @ dr dr
T is the time experienced relative to the particle. The eguation simply states that relative to a free particle, it
experiences no net accéeration (though other objeds appear to acceerate if a gravitational field is present).

We wish to determine the motion of the particle relative to coordinate time, denoted by t. The equation would
give the path of the particle in ac@rdance to what other observers would seeif they thought they were in a
gravitational field.

With the aove said, the following equation can be immediately written, transforming from proper time to
coordinate time:

d’x* |, o d _Hd*t ot ffHoxt
dt> 7 dt dt  Hdr®/ DdrPOf ot
First, we expand and consider its gatial components:
2 ) j k ) 0 k ) 0 0 2. i
A% gy XA opy D D't ot X
dt Kodt dt dt dt dt dt Cdr? 0 Hdt
dx! dx® _ _, dx® dx*
rOk__
ot dt dt dt

CL]
(e
'~|

N

One of the Christoffel symbals has a mefficient of two since r i . Wesimplify the
eguation:
d’x'  _, dx! dx* - dxk d’ /[t X!
—2+ ;k——+2r(|)kc +C FC')O—H 2 ’:h .
dt dt ot Hdr?/ odr? O Hat
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We asaume that the gravitational field is quasi-static, i.e. that it doesn't change with resped to time. Therefore,
any derivatives of the metric tensor with resped to time @an be left out. Now we evaluate the mnnedion

coefficients:
g_'pliﬁgp,- +agp.k _agjk
2 Hox*  ox' ox°

or: =29" %o, % _ 3o, E_ e +h.p\EP 0 N _ahc)kE

[ 1 ip . . . 1
rjk _Eg I’p]k = . These derivatives are quite small, and can be negleded.

2 2 Hox*  ax°  ox? ax° ox”’
_ oh
( s h'p\‘l:p Op %( ONoc H. -0" Oks Hon neglecting terms involving —=
E ox-  ox” (10X ax 0 ox°

rl _glK Epgxo agOK _69005 5iz ahoo
T2 gaxY  ax® ax g 2 ox?

Now we nedd to evaluate the RHS of the equation We start by first looking at the following line dement:

dx* dx” 1 dx* dx”
c’dr? =g, dx“dx’ Ed— - = =—{+h )|/——. Negledi
i g T * ) dt dt 02( “”) dt dt egeding

termsinvolving the spatial components, WhICh are small in comparison to the temporal components, we get:
T g dr
E& =(1+h D——1+h 1+1h,,).
Ddt |:| ( OO d ( OO) ( 2 00)

d?r _dh, __dn

Now e = o :Cdooo , S0 the RHS of our mgjor equation becomes:
X
| L |
dx' L%t /mdt U " g0 dx dh00 Y
o G2/ e T thy d ~Cao &g
g 200

Thisis negligible sinceit involvestemporal derivatives of the gravitational field.

By plugging everything into our equation, we get:
d*x’ _5is hos  0hy, dek r 2 6'Z Ohy _

dt? oxk  ox® dt 2 o
Throughmultiplying by massm and rearranging the egquation, we get:
mdz)z(l - —mC 5IZ ah00 +m |s EphOS _ Ok EUXK
dt 2 ox’* oxk  ox® [dt

The term on the left is the force that the particle gppeasto experience. The first term on the right is some kind
of patential of the field, sinceits temporal component isinvolved. The last term, which involves perpendicular
velocities, isindicaive of some sort of Coriolis force We ae not interested in the Coriolis effects, so we shall
assume that we aein a non-rotating frame, so we get:

d’x' 5'Z ahoo
> ITE
dt P%
If we denote a potential by VZ%CZhOO, then the eguation simply bewmes F =-midV, or
2.,i
X iy OV
d 2 :_5lza_z
dt 0X

. We want the metric tensor to be flat when there is no gravitational field present. The

! The metric tensor g*¥ =n*’ +h*", where N*" is the familiar metric tensor of Spedal Relativity, and

h*" are small terms which include the adion of any gravitational fields which may be present, and are small in
comparison to the 1 *"in weak gravitational fields, as oppased to the awesome sucking power of a blad hole!
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equation for the potential leads us to the expresson Qyy =g + Ny =1+ 2\//C2 . Tofinaly get the adual
expresson for the potential in terms of mass we need to use the line dement from the Schwarzchild solution.
The temporal component gives V. = —GM /r . With this expression, we can easily obtain an approximation of
the gravitational force

F=-mOV =-GMm/r?.

Field Equations in the Presence of Matter: The Poisson Approximation
Let us write the equation:
RV _%guv = KT,
or, more cmpadly as:
G =kT"
where G isthe Einstein tensor.
As atest for General Relativity, at velocities which are small in comparison to the speed of light, there must be

an approximation to Poison's equation: nRY; =4rGp. To adieve this requires the weak field
approximation by leaving out negligible termsin the Ricd tensor.?

G" =kT"
R —1g"WR=KTH
9., R" -30,9"R=kT"g,,
R-2R=kT"g,,

OR=-kT*"g,,
We substitute this bad into our original equation:
RY =kT* +39" R=kT" -39"kT"g,,
We ae goproximating that the material energy tensor has anegligible valuein for all u, v except when u=v =
0, so we get:
00 00 00 00 — 00
R™ =kT™ =39 KT gy, =3KT .
We now make the Ricd tensor covariant:
00 — 00 —_
J0090oR™ = 3KT oo = Roo = 5KTgo
We field approximation.
Ruv = %( aa ,uv - gva,ua - gya,va + gyv,aa ): % gyv,aa
1
~ ~ 2 _ 2
0 Ry ~%g00,aa “%D Yoo _C_2D \

1
C2
The particles are traveling at the travelling at the speed of light through time, so we get:

0% =4ikpc*
This must equal Poisn’s equation, stated ealier

0= 0% =1KT,, = 1Kkpv,V,

Thisgivesavaue K = —
Cc

Z Note that this particular caculation would be shorter if we took the Einstein tensor and the material energy
tensor to be mvariant as opposed to contravariant, but due to the acual form of the material energy tensor, |
prefer it to be mntravariant.
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