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Algebra of Classes and Propositional Calculus

1.1 BOOLE

1.1.1 George Boole (1815-1864) is justly considered the founder of
mathematical logic in the sense that he was the first to develop logic
using mathematical techniques. Leibniz (1646-1716) had been aware
of this possibility, and De Morgan (1806-1878) worked in the same
direction, but Boole was the first to present logic as a mathematical
theory, which he developed following the algebraic model. His most
important contributions are found in The mathematical analysis of
logic [1847], his first work on logic, and An investigation of the laws
of thought [1854], which contains the fullest presentation of his ideas
on the subject. In what follows I will focus solely on the latter work,
to which I will refer as Laws.!

Boole’s aim is to examine the fundamental laws (i.e., the most basic
truths from which all the other laws are deduced) of the mental pro-
cesses that underlie reasoning. Boole does not challenge the validity
of the basic laws of traditional logic, but he is convinced that they
are reducible to other more basic laws of a mathematical nature; it is
these basic laws that he sets out to find.

In Boole’s opinion, the mental processes that underlie reasoning are
made manifest in the way in which we use signs. Algebra and natu-
ral language are systems of signs, and so the study of the laws that
the signs of these systems meet should allow us to arrive at the laws
of reasoning. The question of whether or not two different systems
of signs obey the same laws can only be answered a posteriori. Ap-
plied to natural language — the commonest system of signs — Boole’s
idea implies that the laws by means of which certain terms combine
to form statements or other more complex terms are the same as
those observed by the mental processes that these combinations re-

To a more detailed exposition of Boole’s work on logic see, for example,
Hailperin [1986]. There is a clear introduction to all the subjects treated in this
chapter in Lewis [1918].

The secondary bibliography on Boole and, in general, on algebraic logic pub-
lished until 1995 has been compiled by I. H. Anellis [1995].
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veal. Thus, Boole believes that it is possible to establish a theory of
reasoning by examining the laws by means of which the terms and
statements of language are combined.

Boole classifies the propositions of interest to logic into primary and
secondary (Laws, pp. 53 and 160). Primary propositions are the ones
that express a relation between things. Secondary propositions express
relations between propositions, or judgments on the truth or falsity of
a proposition. For example, “men are mortal” is a primary proposi-
tion (because it expresses a relation between men and mortal beings),
but “it is true that men are mortal” is secondary. Propositions that
result from combining propositions with the aid of connectives are
also secondary. Boole begins his study of the laws of reasoning with
the analysis of primary propositions and of the reasonings in which
they alone intervene.

1.1.2 According to Boole (Laws, p. 27), in order to formulate the laws
of reasoning, the following signs or symbols are sufficient:

(a) literal signs: z, y, z, ...;

(b) signs of operations of the mind: x, +, and —;

(c) the sign of identity: =.

This claim, however, does not have the meaning it would have today.
As we will see, Boole uses other signs and operations as well to present
and develop his theory.

A literal symbol represents “the class of individuals to which a par-
ticular name or description is applicable.”? Strictly speaking, literal
signs stand for classes, but Boole frequently speaks (the definition of
product that I will quote later on is an example of this) as if they
denoted expressions of the natural language that determine classes
(nouns, adjectives, descriptions or even proper names). The reason
for this ambiguity is that both literal signs and expressions determin-
ing classes are signs of the same conceptions of the mind. For example,
the use of the word “tree” indicates that we have performed a men-
tal operation that consists of selecting a class (the class of all trees)
that we represent by that word. Now, since the same class can also
be represented by a literal sign, Boole sees no substantial difference
between saying that = stands for the class of trees and saying that it
stands for the word “tree.”

Boole defines the product in the following way: “by the combination
xy shall be represented that class of things to which the names or

2Laws, p. 28. In The mathematical analysis of logic (p. 61) these signs represent
mental operations that consist of selecting classes, and for this reason Boole calls
them elective.
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descriptions represented by = and y are simultaneously applicable.”3
For example, if z stands for “white” and y for “horse,” xy stands for
“white horse” or for the class of white horses.

If x and y represent classes that do not have elements in common,
x + y represents the class resulting from adding the elements of = to
those of y (Laws, pp. 32-33). The sum corresponds to the mental
operation of aggregating two disjoint classes into a whole. This oper-
ation is performed when we combine two terms by means of “and” as
in “men and women,” or by “or” as in “rational or irrational.” Boole
argues for the restriction of the sum to disjoint classes by stating that
the rigorous use of these particles presupposes that the terms are mu-
tually exclusive, but, as Jevons observed, Boole himself on occasion
analyzes examples with disjunctions whose terms do not exclude each
other.*

It has been said on occasion that Boole interprets the sum x + y
as an excluding disjunction, but, as Corcoran notes, this assertion is
incorrect.® It is important to distinguish between the definition of
sum that Boole adopts and the following one: x + y is the class of
objects that belong either to x or to y (but not to z and to y). If Boole
had adopted this definition (i.e., if he really had defined the sum as an
excluding disjunction), then the sum z + y would be meaningful both
if x and y have elements in common and if they do not. However,
with Boole’s definition, x + y lacks logical significance when x and y
have elements in common. In short, Boole’s sum is the usual union,
but defined only for disjoint classes.

The difference is the inverse operation of the sum, and it consists of
separating a part from a totality. Thus, Boole says, if class y is a part
of class x, x —y is the class of things that are elements of x and not of
y. This mental operation is the one that is expressed by the word “ex-
cept” when it occurs in expressions such as, for example, “politicians
except for conservatives.”

The only sign that allows us to form statements is the sign of iden-
tity. The equality z = y means that the classes x and y have the same

3Laws, p. 28. As is customary in algebra, the sign of product is usually omitted,
and ab is written instead of a X b.

4In Pure logic, pp. 68-70, Jevons denies that the rigorous use of the disjunction
presupposes that the terms are mutually exclusive and notes that Boole himself ac-
cepts that the terms of the disjunction “either productive of pleasure or preventive
of pain” (Laws, pp. 56 and 59-60) are not mutually exclusive.

5Claims of this type regarding Boole’s sum can be seen, for example, in Smith
[1982], p. 23, Houser [1991], p. 12, and Brady [1997] p. 175. Corcoran’s criticism
is found in the review of Smith’s book (Corcoran [1986], p. 71).
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elements; this identification is expressed in language using the verb
“to be.”

Boole also introduces the symbols 0 and 1, which represent, respec-
tively, the empty class and the class of all the things to which the
discourse is limited. As is well known, the idea of limiting the uni-
verse to things that are talked about was introduced by De Morgan
in [1846]. Boole adopted this idea in Laws, but did not mention its
origin.6

To be able to refer to a nondetermined part of a class, Boole in-
troduces the symbol v which, he says, represents an indefinite class
(Laws, p. 61). The linguistic term that corresponds to this symbol is
“some.” Now, the expression “some men” is symbolized by vz (where
x represents the class of all men). Boole claims that v meets the same
laws that the literal symbols meet, but in fact this is not so. Indeed,
the interpretation of the symbol v presents numerous problems, whose
analysis is beyond the scope of this introduction.

The restrictions on the sum and the difference place limits not on
the use of the operation symbols, but on the logical interpretability of
the expressions where the symbols occur. An expression is logically
interpretable if all the sums and differences that occur in it meet
their respective restrictions no matter what classes the literal symbols
denote. Thus, both v and literal symbols are logically interpretable,
but the sum z + y is not, because it only denotes a class when x and
y are disjoint classes. The union of any two classes can be symbolized
by the sum

x4+ (1—2)y,

which is logically interpretable, since both the difference and the sum
obey their respective restrictions whatever classes x and y denote.

Boole symbolizes the four basic types of categorical propositions as
follows (Laws, p. 228):

every X isY : xz=vwy,
noXisY : z=v(l-y),
some X isY : vz =vy,
some X isnot Y : wvr=uv(l-y).

These are the symbolizations he prefers, but he thinks that “every X
is Y” can be symbolized in an equivalent way by z(1 —y) = 0 (and

5In The mathematical analysis of logic, p. 60, 1 denotes the class of all conceiv-
able objects whether actually existing or not.
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accordingly, “no X is Y by zy = 0) (Laws, pp. 123 and 230).7

When Boole comments on the symbolization of “every X is Y” he
warns that in x = vy it should be supposed that v and y have ele-
ments in common, and when he comments on the symbolization of
“some X is not Y” he notes that this can only be considered accept-
able if we suppose that vz # 0 (Laws, pp. 61 and 63). As we will see
later, Boole does not always interpret the products of the form vz in
this way, but it seems that at least in this context it is necessary to
suppose that v is a nonempty set that has elements in common with
the class z. Now, if this supposition holds, the two symbolizations of
“every X is Y” cannot be equivalent, in spite of what Boole thinks,
because if x = 0, then z(1 —y) = 0 is true and z = vy is false. The
same can be said of two symbolizations of “no X is Y.” Boole accepts
all the traditional laws of syllogism and, specifically, he accepts that
the universal propositions imply the corresponding particular propo-
sitions, but these two implications can only be proved if the universal
propositions are symbolized with the aid of the sign of indefinite class
(Laws, p. 229).

1.1.3 Boole obtains the basic laws of his system by reflecting on the
meaning of the signs. The following list of the main basic laws allows
us to compare Boole’s system with what today we know as Boolean
algebra:

r+y=y+uzx, TY = Yyx,
e+ y+2)=(@+y) +z  2(yz) = (2y)z
O4+z=ux, lz =,
r+(1—2)=1, r? =,

2(z+y) = zx + zy.

As can be seen, 0+ x is the only sum logically interpretable in these
laws, but I have already pointed out that the restrictions of the sum
and the difference only affect the logical interpretability of the ex-
pressions.® The law 2% = z is only applicable to logically meaningful
terms; the remaining laws hold in general, that is, the literal symbols
that occur in them can be replaced by any term, be it logically in-
terpretable or not. In Boole’s system the sum is not distributive over

"Boole’s symbolizations coincide essentially with those proposed by Leibniz in
Generales inquisitiones (a work that Boole could not have known, because it was
published for the first time in 1903, by Couturat).

8Boole does not explicitly state the associative laws, but he uses them implicitly
when he writes sequences of sums and products without brackets.
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the product. Nor are

r+r=u,
z+1=1

laws of the system; indeed, neither of these sums is logically inter-
pretable.

Boole attributes special importance to the law z= = x (that is, xa =
x) because from it the principle of noncontradiction (z(1 —z) = 0) is
deduced, but above all because he considers it to be characteristic of
the operations of the mind, as it is the only one of the basic laws that
does not hold in the algebra of numbers. Boole observes that from the
arithmetical point of view the only roots of 2 = x are 0 and 1; this
fact is enough for him to conclude that the axioms and processes of
the algebra of logic are the same as those of the arithmetic of numbers
0 and 1, and that it is only the interpretation that differentiates one
from the other (Laws, p. 37). This identification ignores the existence
of laws that hold in the arithmetic of numbers 0 and 1, but not in the
algebra of logic.”

The consequence that Boole extracts from the identification of the
algebra of logic with the arithmetic of the numbers 0 and 1 can be
read in the following quotation:

2

It has been seen, that any system of propositions may be
expressed by equations involving symbols x, y, z, which,
whenever interpretation is possible, are subject to laws
identical in form with the laws of a system of quantita-
tive symbols, susceptible only of the values 0 and 1 (II

9Examples of these laws are
2 =g,
=0 or z=1,
if z # 0 and zx = zy, then z = y.

It is slightly surprising that Boole ignores the law z3 = z, because in Laws,
p- 50, he explicitly denies that it is a logical law, arguing that neither of its
factorizations,

z(l—z)(-1—2x) =0,
z(1—z)(1+2z)=0,
has a logical interpretation. (Observe that the terms —1 and 1 + z lack logical

significance in Boole’s system.) In The mathematical analysis of logic, p. 62, Boole
had included 2™ = z among the laws of logic.
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15). But as the formal processes of reasoning depend only
upon the laws of symbols, and not upon the nature of
their interpretation, we are permitted to treat the above
symbols z, y, z, as if they were quantitative symbols of
the kind above described. We may in fact lay aside the
logical interpretation of the symbols in the given equation;
convert them into quantitative symbols, susceptible only of
the values 0 and 1; perform upon them as such all the
requisite processes of solution; and finally restore to them
their logical interpretation. (Laws, pp. 69-70; Boole’s ital-
ics)

The conclusion that Boole reaches is, as we see, that logical problems
can be solved by applying techniques of an algebraic nature. Since the
result of symbolizing a set of statements is always a system of equa-
tions, the problem of extracting consequences from a set of premises
(which is the type of logical problem that Boole considers) is merely
an algebraic problem which consists essentially of solving a system of
equations. When Boole says that we can lay aside the logical inter-
pretation, he means not merely that we can ignore the restrictions on
the sum and the difference, but also that we are allowed to use any
algebraic procedure (including those that contain operations such as,
for example, the quotient, that do not belong to logic). This is what
Boole means by “all the requisite processes of solution.”!?

10The situation is in fact even more complicated. When Boole applies algebraic
techniques he does so following the principles of symbolic algebra which allow the
manipulation of expressions devoid of algebraic interpretation. Due to this, his
working frequently contains quotients such as % or % which are not interpretable
either logically or algebraically.

The distinction between arithmetic and symbolic algebra was introduced by G.
Peacock in [1833] and was adopted by many nineteenth—century algebraists such
as D. F. Gregory, De Morgan, and Boole himself. Peacock conceived symbolic
algebra as a theory of symbols and their combinations. It was accepted that the
laws of symbolic algebra were those of arithmetic, except that the symbols of the
theory lacked interpretation and the operations were applied without restrictions.
Symbolic algebra, for example, allows the operation v/a — b to be always possible,
since if b > a, then va — b = v/—11/b — a, where all that is supposed of /—1 is
that it is merely a symbol that was necessary in order to generalize the operation
of extraction of the square roots. Since the symbols are not interpreted, it is not
considered necessary to examine the nature of v/—1.

The ideas on which symbolic algebra was based were in general rather obscure,
but they had the merit of suggesting the possibility of building a formal system that
could be interpreted in various forms. This innovatory idea is expressed clearly in
the introduction to The mathematical analysis of logic:
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The usual algebraic techniques lead, or can lead, to results that are
impossible to interpret logically. To solve this difficulty, Boole intro-
duced a highly complex algebraic procedure of reduction of systems of
equations which supposedly makes it possible to obtain logically inter-
pretable results. The transformations required to obtain these results
only rarely have a logical interpretation; Boole sees nothing wrong in
this. In his opinion, the essential issue in the resolution of a problem
of a logical nature is that both the initial equations and the conclusion
should be logically interpretable, but it is not necessary that either
the intermediate expressions or the transformations required to ob-
tain the result should be so (as, he says, in trigonometry, when /—1
intervenes in a proof) (Laws, p. 69). Nor is Boole concerned that,
on occasion, in order to interpret logically the results that he obtains
using his technique it is necessary to interpret ad hoc quotients that
are not even interpretable algebraically.!!

1.1.4 The logic of secondary propositions is the same as the logic
of primary propositions. The only difference between them concerns
the way in which the laws are interpreted. The solution that Boole
proposes in Laws to the problem of relating secondary with primary
propositions consists in associating each primary proposition with the
portion of time in which it is true (Laws, pp. 162 ff.).12 Specifically,
the universe 1 is now the whole time to which the discourse is limited

They who are acquainted with the present state of Symbolical Alge-
bra, are aware, that the validity of the processes of analysis does not
depend upon the interpretation of the symbols which are employed,
but solely upon the laws of their combination. Every system of inter-
pretation which does not affect the truth of the relations supposed, is
equally admissible, and thus the same process may, under one scheme
of interpretation, represent the solution of a question on the proper-
ties of numbers, under another, that of a geometrical problem, and
under a third, that of a problem of dynamics or optics.

1 On pp. 89-92 of Laws, Boole identifies the indefinite class v with the “indefi-
nite number” %, but, contrary to his previous comment on the meaning of v, he
now asserts that %x indicates that all, some, or none of the class x must be taken.

Boole makes this reading of % because he has shown that
if y(1—2)=0,thenz=y+ (1 —y),

and this conditional would be false if 2 (1—y) could not take the value 0. Boole does
not maintain this interpretation of % along Laws. On pp. 232-233, he implicitly
assumes that %z cannot be equal to 0 when he identifies %z with vz and reads
T = %z as “all X’s are Z’s.”

2In The mathematical analysis of logic Boole had adopted a different (and
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(which may be an hour, a day, or eternity), and if X is one of the
elementary propositions that intervene in the discourse, then x is the
time in which X is true. The equality = 1 expresses that the
proposition X is true (during all the time to which the discourse
is limited). The difference 1 — = is the time in which X is false,
and x = 0 means that X is false throughout the temporal universe.
The operations are interpreted as in the case of the logic of primary
propositions with the sole difference that now they operate between
temporal intervals.

The product zy is the time (limited to the discourse) during which
X and Y are both true. The equality xy = 1 means that “X and Y”
is true. The nonexclusive disjunction of the propositions X and Y is
symbolized by

z+(1-z)y=1,
and the exclusive disjunction by
r(l-y)+(1-a)y=1"

The conditional “if X, then Y” (or, more precisely, the proposition
“it is true that if X, then Y”) is symbolized in the same way as an
affirmative universal proposition, that is, by x = vy or z(1 —y) = 0.
If we interpreted vy as in the case of the primary propositions, then
vy # 0, and so every conditional with a false antecedent would also be
false. To avoid this difficulty, Boole warns that in this case it may be
that there is no temporal instant that is common to v and y (Laws,
p. 170). We see then that Boole admits or rejects the possibility that
vy is equal to 0 as it suits him.

more interesting) interpretation: z represented the class of all the conceivable
circumstances in which the proposition X was true. Boole had even come close
to a truth-functional concept when he observed (p. 88) that if we limit ourselves
to a proposition only two cases are conceivable: that the proposition is true and
that the proposition is false. Boole then lists the four possible cases when two
propositions intervene and the eight possible cases arising with three propositions.
None of this is mentioned in Laws.

13Boole erroneously claims that the proposition thus symbolized is “X is true
or Y is true.” The difference between this proposition and “X or Y” (which in
Boole’s system cannot be distinguished from “X or Y is true”) becomes patent if
we compare “X or not-X 7 with “X is true or not-X is true.” The former cannot
be false and is symbolized by an identity: z+ (1—xz) = 1. The latter cannot be fully
symbolized since it is not a secondary proposition, and it can be false because it
means that x = 1 or z = 0 (i.e., that X is true throughout the time delimited by 1
or false during the same period). Similar remarks can be made about conjunctions
and conditionals.
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The only aim of the temporal interpretation is to show that a sec-
ondary proposition can be symbolized by means of equations. Once
this relation is established, the temporal interpretation plays no fur-
ther role.

1.2 JEVONS

William Stanley Jevons (1835-1882) thought that Boole’s logic was
excessively complicated because it mixed two distinct perspectives:
the extensional and the intensional. In the former, a statement ex-
presses a relation between the classes determined by the terms that
occur in it; in the latter, it expresses a relation between the meanings
of the terms. In Jevons’ view, to establish the laws of the operations
between classes, Boole had been obliged to restrict the applicability
of the operations and to use algebraic techniques that did not have
a logical interpretation. The result of introducing these restrictions
and techniques had been a system that was excessively complex and
did not reflect well the processes of reasoning. Jevons believed that
the way to overcome these problems and to obtain a pure logic was to
adopt the intensional perspective and to ignore the extensional one.
This is what he set out to do in Pure logic or the logic of quality apart
from quantity.'*

Like Boole, Jevons believed that language is a tool of reasoning,
that correct thought is manifested in the correct use of language, and
that the laws by which the terms (or their meanings) combine are the
laws of reasoning, but, unlike Boole, he did not speak of classes or of
operations of the mind, but of terms (or meanings) and of the form in
which they combine or are related to each other. Thus, when in Pure
logic he introduces languages, he only says that he will use capital
letters as variables for terms and that any two terms A and B can

' The title reflects the point I have just made. The logic of quality is intensional,
and the logic of quantity extensional. Jevons’ objections to Boole can be found in
chapter XV of this book.

Jevons’ assessment of Boole’s system changed over time. While in Pure logic
(p. 67) he states that it is “consistent and perfect within itself” and “perhaps,
one of the most marvellous and admirable pieces of reasoning ever put together,”
in The principles of science (p. 113) he qualifies it as “quasi-mathematical” and
considers it to lack demonstrative force due to the use of unintelligible symbols
which only acquire significance through analogy. However, Jevons believes that
Boole’s achievement is comparable only to Aristotle’s, because, though his system
was defective, “Boole discovered the true and general form of logic, and put the
science into the form which it must hold for evermore” (The principles of science,
p. 113).
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combine to form the term AB or the term A + B, which he calls plu-
ral (Pure logic, chap. VI). Jevons considers the existential quantifier
“some” as a term whose meaning remains unknown throughout any
argument and denotes it by U. The categorical propositions can then
be symbolized as in Boole’s logic.

I will now summarize the most significant discrepancies between
Boole’s and Jevons’ systems of logic.

Jevons does without the operation of difference, but admits contrary
terms, which is essentially equivalent to replacing the difference by the
complementation. If A is a simple term, a is the term contrary to A
and signifies the absence of the quality signified by A.'® In this way,
instead of speaking of the difference between A and B, Jevons speaks
of the combination Ab. When it is necessary to negate a composite
term, it is assigned a new variable. For example, to express that the
negation of A+ B is equal to ab two equations are used: C = A+ B
and ¢ = ab.

As T said, Jevons observed that the restriction imposed by Boole
on the sum was not justified, and therefore considered that the plural
term A 4+ B was always meaningful even if A and B did not represent
excluding terms (Pure logic, pp. 67-75). The most significant conse-
quence of this change was that the equation A+ A = A became a law
of logic. As far as the basic laws are concerned, the only difference
between Jevons’ system of logic and the modern calculus of classes is
that Jevons does not accept the distributivity of sum over product as
a law of logic.

In place of Boole’s algebraic proofs, Jevons introduced others that
had the advantage of being simpler and logically interpretable. In gen-
eral, Jevons’ proofs were based on the examination of what we could
call “logical possibilities.” These possibilities depend on the simple
terms that we wish to consider. For example, if the simple terms are
A, B, and C, the logical possibilities are

ABC, ABc, AbC, Abc, aBC, aBc, abC', abc.

In this way, the universe (for which Jevons did not use a symbol) is
given in each case by the sum of all these possibilities. This conception
of the universe allows Jevons to replace Boole’s proofs with others that
bear similarities to the proofs based on diagrams.'®

5Both the terminology and the symbolism were introduced by De Morgan (see,
e.g., “On the syllogism I,” p. 3).

16 Jevons’ proofs are simpler than Boole’s and all the steps in Jevon’s proofs are
logically meaningful.
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1.3 PEIRCE

1.3.1 Charles Sanders Peirce (1839-1914) published his first papers
on logic in 1867 (Peirce [1867a] and [1867b]. His initial objective was
to complete and expand on Boole’s calculus. He distinguished be-
tween arithmetical and logical operations, and added new operations
to Boole’s calculus so that each operation had both a logical and an
arithmetical version. Peirce thought that the arithmetical operations
were useful for applying calculus to the study of probabilities, but were
of no logical interest. The logical product was the same as Boole’s,
but the logical sum was the union of classes as we understand it today
(the arithmetical sum was Boole’s sum). Initially, Peirce took credit
for being the first to eliminate the restriction on the sum, but when
he read the works of Jevons and De Morgan he acknowledged that
they had beaten him to it.'”

From the algebraic point of view, Peirce’s most important papers
are [1870] (“Description of a notation for the logic of relatives”) and
[1880] (“On the algebra of logic”). In the former Peirce lays the
foundations of the theory of binary relations that we will discuss in
the next chapter, and in [1880] he puts forward a logical calculus which
will give rise to the first axiomatization of the algebra of classes—the
subject that concerns us in this section and in this chapter as a whole.

Guided by the analogy between arithmetical and logical calculus,
in [1870] Peirce introduced the inclusion relation, which he symbol-
ized by —<, a variant of <. Peirce did not want to use the symbol
< because, he said, it could not “be written rapidly enough” and
because it mistakenly suggested that inclusion was obtained on the
basis of identity. Peirce observed ([1870], p. 360) that identity could
be defined in terms of the inclusion relation and concluded that the
simplest logical relation was not identity, as was generally accepted
at the time, but inclusion. An important consequence of this conclu-
sion was that Peirce abandoned the search for an equational basis for
calculus, although this is not yet patent in [1870].

With the exception of his first papers, Peirce does not speak of
classes, but of terms, and distinguishes between absolute and relative
terms ([1870], p. 365). The relative terms are those that are used to
express relations between objects. Thus, logic of relatives is merely
an abbreviation of “logic of relative terms.” The absolute terms are
the nonrelative terms (as Peirce frequently calls them).

17See Peirce [1870], p. 368, Peirce [1880], p. 182, note, and De Morgan’s
definition of aggregationin [1860], pp. 180-181.
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In [1880] Peirce aimed to show that it was possible to ground the
algebra of logic in the inclusion relation, which there he preferred to
call copula. Peirce began the paper with a series of general considera-
tions on the notion of correct argument and on the different types of
propositions. In this context, he showed that when the symbol —<
was interpreted as the copula, it allowed a satisfactory symbolization
of the categorical propositions that surmounts the problems created
by the Boolean treatment of the expression “some.” The symboliza-
tions that Peirce proposed for the categorical propositions were

every SisP : S —<P,
noSisP : S—<P,
some SisP : S—<P,
some Sisnot P : S—<P,

where S —< P is the negation of S —< P. Peirce noted that, according
to this interpretation, the universal propositions did not have existen-
tial import; that is, they were true when the extension of the subject
term was empty.18

In his attempt to develop a logical calculus on the basis of the new
relation, Peirce made a number of vitally important contributions to
the algebraic development of logic: he stated the basic properties of
this relation (reflexivity, antisymmetry, and transitivity); he charac-
terized 0 and 1 as the only objects of the algebra that satisfy 0 < a
and a —< 1;' he defined the operations of sum and product; he char-
acterized the operation of complementation and, with the aid of these
characterizations, demonstrated most of the basic properties of the
logical operations which until that time were considered as nondemon-
strable fundamental laws (i.e., as axioms of the theory, although that
name was not used). Among the laws that Peirce proved in [1880] are
the associative properties of the sum and the product, whose proof
Schroder considered to be one of the most beautiful results of the
paper.20

18This interpretation of universal propositions was first defended by Brentano
in [1874] (Psychologie vom empirischen Standpunkte, book II, chap. VII), Peirce
in [1880], and J. Venn in [1881] (Symbolic logic, chap. v). For a historical overview
of the subject of the existential range of categorical propositions, see Church [1965]
and Prior [1976].

9Peirce [1880], p. 182. Peirce uses co instead of 1 and he interprets the symbols
oo and 0 as “the possible” and “the impossible,” respectively. (Observe that when
the variables stand for propositions, a —< 0 not means “a is false,” but “a is
impossible.”)

20 Vorlesungen tiber die Algebra der Logik 1, p. 256.
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Peirce was in a position to axiomatize the theory that we know
today as Boolean algebra, but he did not do so, possibly due to a
rather loose conception of the axiomatic method together with an
unfortunate identification:

To say, “if A, then B” is obviously the same as to say
that from A, B follows, logically or extralogically. By
thus identifying the relation expressed by the copula with
the illation, we identify the proposition with the inference,
and the term with the proposition. This identification, by
means of which all that is found true of term, proposition,
or inference is at once known to be true of all three, is a
most important engine of reasoning, which we have gained
by beginning with a consideration of the genesis of logic.*

*[[Footnote by Peirce]] In consequence of the identification
in question, in § —< P, I speak of S indifferently as subject,
antecedent, or premiss, and of P as predicate, consequent,
or conclusion. (Peirce [1880], p. 170; Peirce’s italics.)

One of the advantages that Peirce saw in this identification was that
it helped to obtain certain basic principles of the particular calculus
of terms that he aimed to develop. On the one hand, the identifi-
cation allowed him to interpret — as the relation of consequence
whenever he considered it convenient, with the guarantee that the re-
sults that were obtained would also hold when —< were interpreted
as the copula. On the other, Peirce believed it was legitimate to use
in his arguments the characterization of the intuitive concept of con-
sequence which he had presented in the consideration on the genesis
of the logic that precedes the quotation. This belief, together with the
identification, explains why Peirce saw nothing wrong in accepting as
proofs of the calculus arguments based on the characterization of the
concept of consequence, which, strictly speaking, is a definition that
is foreign to the calculus. Consequently, certain laws such as

if a <band b < ¢, then a < ¢,
at+a=1,
axa=0
were considered by Peirce as theorems of the calculus when they

should have the status of axioms ([1880], pp. 173 and 186). The proof
of the distributive laws, which present a problem of the same type,
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gave rise to an interesting controversy between Peirce and Schroder
which I will discuss in the next section.

1.3.2 Peirce [1880] is beyond doubt a key paper in the history of
the algebraic development of logic, as Schréder himself recognized.?!
Peirce, however, always had a very low opinion of this paper, because
he thought that it contained numerous blunders, and because shortly
after writing it he became convinced that the approach he had adopted
in the early sections was mistaken.??

By 1885, when Peirce had developed his theory of quantification,
the analysis of categorical propositions he had proposed in [1880] ap-
peared to him to be totally unsatisfactory. One of the mistakes that
he acknowledged was the formal identification of the conditional with
the relation of logical consequence. Peirce distinguished between the
two notions in [1885] (“On the algebra of logic: A contribution to the
philosophy of notation”), but the idea is presented more fully in [1896]
(“The regenerated logic”).2? Peirce notes that the difference lies in
the fact that “A implies B” means

for every possible state of things i, not A; or B;,
whereas “if A then B” is true in a certain state of things 4 if
not A; or By,

where A; and B; mean that A and B, respectively, are true in the
state of things ¢. Peirce then observes that the affirmative universal
proposition “every S is P” can be stated in the following way:

for every individual object i, not S; or P,

where S; (or P;) now means that i has the property S (or the property
P). From this analysis he concludes that the difference between an
implication and a conditional resides in the universal quantifier of the
former, and that there is no formal difference between the relation of
logical consequence and the relation that exists between the subject
and the predicate in an affirmative universal proposition. At the end
of the paper Peirce explains that in [1880] he “contented” himself

21Schroder, Vorlesungen diber die Algebra der Logik 1, p. 290.

Peirce [1933], p. 104 (note 1) and p. 128 (editors’ note reproducing a letter
that Peirce wrote to Huntington on February 14, 1904; the same letter is repro-
duced by Huntington in his [1904], p. 300, footnote).

23Peirce [1885], pp. 166 and 170; Peirce [1896], 3.441 ff. (pp. 279 ff.).
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with considering only conditionals (consequences de inesse) because
he did not have the “algebra of quantifiers” at his disposal (Peirce
[1896], 3.448, p. 283).

As T said, another of the reasons for Peirce’s low opinion of [1880]
was the approach he had used in the early work. He particularly
regretted following too closely the steps of the algebra of numbers.
This self-criticism has its roots in his evolution after writing this pa-
per. Between 1883 and 1885 Peirce became convinced that the algebra
of logic was not arithmetical in nature, or, put another way, that the
algebraic point of view he had adopted in [1880] was ill suited to
the treatment of the problems of logic. From 1885 onwards his criti-
cisms of the algebraic approach to logic were constant, and frequently
aimed at Schroder, in whose investigations Peirce saw an example of
the drawbacks of applying algebraic methods to logic.?* Though he
recognizes the value of the algebraic approach in the solution of cer-
tain problems, one of his most frequent criticisms is that it diverts the
attention towards results that are of no logical interest, even though
they may be of mathematical interest (in fact, Peirce disputes this as
well).

1.3.3 Peirce [1885] is the first paper in which Peirce’s renunciation of
the Boolean algebraic approach is clearly discernible, and like [1880],
it is a landmark in the history of logic. Peirce’s contributions to
propositional logic in [1885] and later papers are beyond the scope of
this brief introduction, for the very reason that they are not algebraic
in nature. Nonetheless, I will mention some important contributions
that can be found in [1885].

In this paper Peirce uses the term non-relative logic to refer to
propositional logic, which he does not identify with the logic of classes
or absolute terms (as he had done in [1880]); this allows him to in-
terpret the variables unequivocally as propositions and the symbol
—< as the conditional. Categorical propositions are analyzed within
the logic of relatives and, consequently, the logic of absolute terms is
included in that logic. His presentation of propositional logic bears
certain similarities to modern nonalgebraic presentations. Peirce be-
gins by observing that the fundamental principle of logic is that every
proposition is true or false, which, applied to the case of propositional
logic, means that the variables can take only two values. He denotes
them by v and f, and states, in order to distance himself from a pos-

248ee, for example, Peirce [1896], 3.431 (pp. 272-273) and 3.451 (p. 284), Peirce
[1897], 3.510-3.519 (pp. 320-326), and Peirce [1911], 3.619 (p. 394) and 3.643 (p.
409).
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sible algebraic interpretation, that he does not identify them with 0
and 1. According to Church ([1956], p. 25, note 67), this is the first
explicit use of truth values in logic. Peirce completely ignores the
calculus he had presented in [1880] and proposes in its place a system
of logic which can be considered as a partially successful attempt to
construct an axiomatic calculus of deduction for propositional logic.
The logical operations now do not have an algebraic interpretation,
and the expressions = + y and xy are introduced as abbreviations
for T —< y and x —< 7, respectively. Peirce concludes the section on
propositional logic by showing how to decide the validity of a formula
or the correction of an argument by substituting the variables with
truth values (Peirce [1885], p. 175). So in this paper we find the first
explicit declaration that the replacement of propositional variables by
truth values can be used as a decision procedure for validity.

1.4 SCHRODER

1.4.1 Ernst Schroder (1841-1902) was one of the most prominent logi-
cians of the end of the nineteenth century.?> His most important work
is the monumental Vorlesungen iber die Algebra der Logik (henceforth
Vorlesungen), an exhaustive logical treatise from an algebraic perspec-
tive, in which all the results known at that time in algebraic logic are
systematically and painstakingly compiled. It is sometimes said that
Vorlesungen is a mere work of systematization, but it is more than
this, as we will see. Moreover, the lengths to which Schréder goes to
quote the origin of the results of other logicians and the discussions
that frequently accompany their presentation make the Vorlesungen
a valuable source for the historian of logic.

Vorlesungen is divided into three volumes. The first focuses on the
calculus of classes, the second on the propositional calculus and the
third on the algebra of relatives.?6 In this chapter I will present the
calculus of classes and the propositional calculus, and I will discuss
certain aspects to be borne in mind in order to understand the algebra
of relatives, which I will present in detail in the following chapter.

1.4.2 The calculus of classes

1.4.2.1 Schroder’s calculus of classes is in essence the result of accu-
rately axiomatizing the calculus whose bases had been laid down by

Z5TFor the reception and influence of Schréder’s works see Dipert [1990a).
26The second part of volume IT was published after Schréder’s death by K. E.
Miiller. On Miiller’s edition of Schréder’s works, see Peckhaus [1987].
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Peirce in [1880]. As the structure of Vorlesungen indicates, Schréder
separated the logic of terms from the propositional logic and distin-
guished between the calculus of classes and propositional calculus. In
the first volume of Vorlesungen Schroder stated a number of princi-
ples, postulates and definitions which, taken together, constitute the
first complete axiomatization of the algebra of classes or, in other
words, of the theory of Boolean algebras. Schroder called this theory
identischer Kalkul in order to differentiate it from the arithmetical
calculus and from the calculus of relatives.?” His presentation has
some slight inaccuracies, but none important enough to cast doubt
upon his achievement of axiomatizing the algebra of classes.

The symbols I will use to present the axioms of the calculus of
classes are the ones that Schroder finally adopted: £, =, -, +, —, 0,
and 1.2 The symbol =€ denotes the inclusion relation that Schréder
termed subsumption. When Schroder refers to 0, 1, and the operations
of the calculus of classes he usually adds the adjective “identical”
to the noun to distinguish them terminologically from their relative
counterparts.

Unlike his predecessors, Schroder maintains that the universe must
be restricted to certain kinds of classes or manifolds. Specifically,
Schroder claims that a manifold (Mannigfaltigkeit) is acceptable as
universe if and only if (1) its elements are compatible with each other,
and (2) no element of it is a class one of whose members is some other
element of the manifold.?? I will now comment on this definition.

Schroder indiscriminately uses the terms element and individual
(and on occasion point as well) to refer to the same concept. In
the second volume of Vorlesungen, he offers a number of equivalent
definitions of it; one of them is

(a # O)Ig[(a £ 1)+ (v =<€a)| = (a is an individual),

that is, an individual is a class a other than 0 (the empty class) and
such that for every class z, a is included in z or z is included in the
complement of a. As we can see, unit classes are the only ones that
satisfy the requirements of the definition. The elements of a class are
its unit subclasses.3"

2"TBy a Gebiet Schroder understands a set of elements of a Mannifaltigkeit. The
Gebietekalkul is what today we call theory of lattices (applied to classes).

28Tn the two first volumes of Vorlesungen Schréder writes a, in place of @.

2 Vorlesungen 1, p. 213, pp. 243-248 and p. 342, and Vorlesungen III, p. 4.
For the origins of the concept of Mannigfaltigkeit, see Ferreirés [1999], ch. 2.

30 Vorlesungen 11, §47 (pp. 318 ff.); the above definition is on p. 325. The
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Schréder thinks of manifolds as aggregates of conceptually deter-
mined elements that are given in advance. More precisely, a manifold
is an (identical) sum of elements. A manifold that meets condition
(1) is a consistent manifold. According to Schréder, only a manifold
of this kind is conceivable as a whole. Schroder says that inconsistent
manifolds can only be found in the field of opinions and assertions.
He offers this example: the propositions “f(x,y) is symmetric” and
“f(x,y) is not symmetric” cannot belong to a consistent manifold
(Vorlesungen 1, p. 213).

I do not see the point of this condition. Possibly, Schroder is trying
to prevent an argument such as the following: let P be a proposition;
if P and not-P are elements of a manifold, we can assert P and not-
P, and this is a contradiction; so, the manifold does not exist (and,
therefore, no theory can be based on it). This argument is clearly un-
acceptable, because both propositions are being regarded as assertions
that retain their original meaning. If they were treated as mere ob-
jects, “P and not-P” would not be meaningful. If this interpretation
of condition (1) is right, it adds nothing to the notion of manifold and,
therefore, can be ignored. Interestingly, Frege, Bernays, and Church
do not mention this condition when discussing Schréder’s notion of
universe.3!

A manifold that meets condition (2) is a pure manifold (reine Man-
nigfaltigkeit) (Vorlesungen 1, p. 248). The purpose of this require-
ment is to prevent the possibility that a variable be interpreted as a
class having as an element the class denoted by another variable that
occurs in the same formula. Schréder thought that a contradiction
can be deduced from the assumption that any non—pure manifold is
acceptable as a universe, and he consequently restricted the notion of
universe.3?> Pure manifolds are hierarchically structured. If M is a

concept of individual was defined by Peirce in his [1880], p. 194, although the
idea is already present in [1870]. The philosophical implications of this extensional
notion of individual are analyzed by Dipert in his [1990b].

Observe that Schroder’s individuals are what in present-day terminology we call
atoms of a Boolean algebra.

31See Frege [1895], Bernays [1975], and Church [1976].

323chroder’s proof of this claim cannot be accepted, because he concludes 0 = 1
from a = {1} and 0=€a. Both Frege and Bernays discuss the proof in their
respective reviews of the first volume of Vorlesungen (Frege [1895], p. 97 and
Bernays [1975], p. 611), and they agree that Schréder confuses membership with
inclusion.

Peano ([1899], p. 299) and Padoa ([1911], p. 853) also accuse Schréder of
confusing the two relations, but they seem to base their conclusion on the fact
that he would symbolize “Peter is an apostle” as p =€ s. This criticism ignores
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pure manifold and we sum the elements associated to the subclasses
of M (i.e., the unit classes whose sole member is a subclass of M),
we obtain a “derived” pure manifold to which the calculus is equally
applicable. This process can be iterated, thus giving rise to an infinite
sequence of pure manifolds that can be used as universes.?3

An immediate consequence of condition (2) is that it is not ad-
missible to interpret 1 as the universal class (the class of all existing
things) since this class is not a pure manifold. Schréoder misinter-
preted Boole and thought that the universe of discourse (Universum
des Diskussionsfdhigen) was the universal class, and in order to dis-
tinguish terminologically between his point of view and Boole’s, he
used the expression Denkbereich to refer to the universe (the mani-
fold denoted by 1) (Vorlesungen 1, pp. 245-246).

The axioms of Schrdder’s calculus of classes are the following:

1. a=£<a.

If a =€ b and b= ¢, then a < c.
a=£band b=£aiff’* a =b.
0=<£a.

a=€1.

c=<£ab iff c=€a and c=£0b.
a+b=<£ciff a<€cand b=<€ec.

If bc = 0, then a(b+ c) <€ ab + ac.
1=<€a+a and aa <0.

1#03%
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that in this symbolization p denotes the class whose only element is Peter and
that, in Schroder’s sense, p is an element of s.

For a short account of the dispute concerning the distinction between member-
ship and inclusion, see Grattan-Guinness [1975].

33 Vorlesungen I, pp. 246-251. In [1976] Church noticed that Schroder’s hierar-
chy of manifolds anticipates Russell’s simple theory of types. (Church presented
this paper at the Fifth International Congress for the Unity of Science in 1939, but
the volume of Erkenntnis in which it should have been published never appeared.)

3441 is short for “if and only if.”

35 Axiom 1: Principle T (or of identity) in Vorlesungen I, p. 168; it had been
stated by Peirce in [1880], p. 173. Axiom 2: Principle II (or of syllogism) in
Vorlesungen 1, p. 170; it had been stated by Peirce in [1870], p. 360. Axiom 3:
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1.4.2.2 Axiom 9 and the distributive laws have the status of theorems
in Peirce [1880]. Neither Peirce nor Schréder mentions their differ-
ences of opinion regarding axiom 9, but they maintained an interesting
dispute about the distributive laws. What follows is a reconstruction
of the main aspects of this dispute.36

We saw in subsection 1.1.3 that

a(b+c) =ab+ ac

was one of the basic laws of Boole’s system. The distributivity of the
sum over the product, that is, the law

a+bc=(a+b)(a+c),

was established for the first time by Peirce in [1867a]. Peirce not only
stated the law, but also, in the same paper, proved both distributive
laws by showing in each case that the formula on the left of the equal
symbol refers to the same region of the universe as the formula on
the right.3” Peirce does not use diagrams to show the laws, but he
reasons as we do when we prove them using diagrams.

We have also seen that in [1880] Peirce aimed to develop a calculus
on the basis of the inclusion relation which he then identified with the
consequence relation (the illation) and with the copula. Peirce showed
that the most important basic laws of logic could be proved starting
from the principles of his new calculus. He did not include the proofs
of the distributive laws in the paper because, according to him, they
were straightforward and “too tedious to give” (Peirce [1880], p. 184).

When Schroder read Peirce’s paper, he tried to prove the distribu-
tive laws, but he was unable to show

a(b+ c¢) <€ ab + ac,
(a+0b)(a+c)=<€a+be

Peirce [1870], p. 360; Schroder, Vorlesungen I, p. 184. Axioms 4 and 5: Peirce
[1880], p. 182; Schroder, Vorlesungen I, p. 188. Axioms 6 and 7: Peirce [1880], p.
183; Schroder, Vorlesungen 1, p. 196. Axiom 8: Principle III in Vorlesungen 1, p.
293. Axiom 9: Peirce [1880], p. 186; Schroder, Vorlesungen I, p. 302. Schroder
does not explicitly state axiom 10 in Vorlesungen I, but he asserts that its negation
is false (Vorlesungen I, p. 445) and he explicitly mentions it in Vorlesungen II, p.
64.

36For a different view of this dispute, see Houser [1991].

3"Peirce [1867a], pp. 13 and 14. Recall that in this paper Peirce proposes to
improve Boole’s calculus and, therefore, he attributes to the symbols their standard
interpretation in the calculus of classes.
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Schroder doubted that these inclusions could be proven in Peirce’s
calculus and wrote him asking for the omitted proofs. Peirce was
unable to reproduce the proofs he had prepared for [1880] and he then
concluded that they were probably incorrect. Peirce considered this
supposed error to be one of the many blunders that, in his opinion,
the paper contained due to the bout of flu that afflicted him during
its writing.

In 1883 Schroder presented a paper to the British Association for
the Advancement of Science in which he showed that (1.1) was in-
dependent of axioms 1-7 (and 10, which is implicit). Schroéder con-
structed two models in which (1.1) was false and in contrast the first
seven axioms were true.?® I conjecture that this is the first indepen-
dence proof in the field of logic (results of this kind had already been
obtained in geometry), because in his review of Vorlesungen Peano
described it as “very remarkable” (Peano [1891], p. 116), and I sup-
pose it would not have deserved this accolade if it had not been the
first. Schroder sent this proof to Peirce, who accepted it without ex-
amining it in detail, taking it as confirmation that the proofs he had
prepared for [1880] must have been wrong. In order to solve the prob-
lem, Schroder decided to take as axiom the weakest version of (1.1)
that would allow him to prove the two distributive laws. This version
is axiom 8.

Peirce’s first reference to Schroder’s result is found in [1885] (p.
173, footnote), where he states: “I had myself independently discov-
ered and virtually stated the same thing.” Peirce refers to [1883], a
paper on the logic of relatives in which this problem is not mentioned,
and all Peirce does is to include (1.1) among “the main formulas of ag-
gregation and composition” (Peirce [1883], p. 455). Schroder’s reply
to Peirce is found in the first volume of Vorlesungen:

For the other theorem, 26) [[26x) is (1.1) and 264) is
(1.2)]], I was quite unable to obtain the missing proof.
I was instead able to demonstrate the unprovability of the
theorem —as discussed above in connection with the ap-
pendices mentioned — and correspondence with Mr. Peirce
on the subject suggested the explanation that he himself
was aware of his error — see for this the footnote on p. 190

38These models are described in appendices 5 and 6 of Vorlesungen I. The
model in appendix 5 is described by Peckhaus in [1994], and the one in appendix
6 together with other simpler ones are expound by Thiel in [1994].

Schroder left undecided the question whether (1.1) was independent of axioms
1-7 plus axioms 9-10; Huntington proved that it was in [1904].
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in the continuation of his mentioned paper, in the seventh
volume of the American Journal [[the footnote is in Peirce
[1885] and contains the claim quoted above]].

Although I coincided with Mr. Peirce regarding this recti-
fication, I believe that I go further than he does, as I prove
the unobtainability of what he in principle believed that
he had obtained.

It will be interesting to see now in what form Peirce’s sci-
entific construction will proceed after this rectification.>”

Some years later, Peirce found the proofs he had prepared for [1880]
and they appeared to him to be correct. Peirce sent the proof of (1.1)
to Huntington, who was in the process of writing [1904]. I do not think
that Schroder ever saw this proof, as he died midway through 1902
and Peirce must have found it slightly later (he sent it to Huntington
in December 1903; this cannot have been long after he found it).
In February 1904 Peirce wrote to Huntington again to ask him to
publish the proof, thus freeing himself from a task which he had been
putting off but which, given the situation, was obviously a necessary
one.*0 Peirce now notes that Schroder thought that he had proved
the indemonstrability of (1.1), and admits that he had not in fact
examined Schroder’s independence proof in detail. Peirce does not
mention in this letter that in [1885] he claimed that he had reached
the same conclusion as Schroder (although this detail did not escape
Huntington, because he refers to Peirce’s assertion).

39 Vorlesungen I, p. 291. German text:

Fiir den andern Teilsatz 26) aber wollte es mir zunéchst durchaus
nicht gelingen, den fehlenden Beweis zu erbringen. Statt dessen
gliickte es mir vielmehr, die Unbeweisbarkeit des Satzes —wie oben
(in Verbindung mit den citirten Anhéngen) auseinandergesetzt—
darzutun, und eine dieserhalb mit Herrn Peirce gefithrte Korrespon-
denz lieferte die Aufklarung, dass derselbe seines diesbeziiglichen Ir-
rtums ebenfalls schon inne geworden war — vergleich hiezu die Fuss-
note auf p. 190 im dessen inzwischen erfolgter Fortsetzung seines
citirten Aufsatzes, im siebten Bande die American Journal.

Wenn ich auch in dieser Berichtigung mit Herrn Peirce zusammentraf,
so glaube ich doch darin iiber ihn hinauszugehen, dass ich eben die
Unerreichbarkeit des zuerst von ihm erreicht Geglaubten nachweise.
Interessant wir es nunmehr sein, zu sehen, in welcher Gestalt das von
Peirce errichtete wissenschaftliche Gebdude nach jener Berichtigung
weiterzufiihren ist.

40This letter is reproduced by Huntington in [1904], p. 300, footnote.
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As we will see, the problems derived to a large extent from Peirce’s
formal identification of the inclusion relation with the consequence
relation. Both Peirce’s and Schroder’s proofs were correct, but, nat-
urally, they proceeded from different assumptions. For the proof of
(1.1), in addition to other principles of his calculus (those correspond-
ing to the seven first axioms in Schroder’s axiomatization), Peirce used
this assumption:

(1.3)  If a < c is false, then there exists an = # 0 such that
r —<aand xr <G

In the 1903 letter, Peirce told Huntington that (1.3) followed from
the definition of P, —< C; in [1880]. The definition to which Peirce
refers is this:

The form P; —< C; implies
both, 1, that a premise of the class P; is possible,

and, 2, that among the possible cases of the truth of a
P; there is one in which the corresponding C; is not true.
(Peirce [1880], p. 166; Peirce’s italics)

For our concerns, we can think of P; and C; as single statements.*!
Now, it is clear that Peirce is speaking of the concept of consequence
and P; —< C; says that C; is not a consequence of P;. It thus emerges
that Peirce accounted for (1.3) by interpreting — as the consequence
relation and, therefore, “a —< c is false” as “c is not a consequence
of @” and x # 0 as “x is possible” (recall that Peirce interprets 1 as
“the possible”).

This case is thus analogous to that of axiom 9, which, as I said
above, Peirce obtained starting from considerations on the validity
of certain arguments. Peirce showed (1.1) with the help of (1.3) and
proved this principle using his definition of the notion of consequence.
Furthermore, this definition had to play an essential role in the proof
of (1.3), as can be inferred from the independent proofs of Schréder
and Huntington. It is not necessary to know Peirce’s proof of (1.3)

“1Tn this definition Peirce makes an implicit appeal to what he calls the leading
principle of an argument (or class of arguments). If an argument P —< C' is valid,
its leading principle is the proposition which states that any argument of the same
logical structure is valid. Thus, if the argument P —< C' is valid and ¢ is any
argument of the same logical structure as P —< C, then for every state of things
in which P; (the premise of ) is true, the corresponding conclusion C; is also true.
According to Peirce, a leading principle is the expression of a habit of inference.
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in order to assert that it cannot be reproduced in the calculus of
classes due to his dependence on the concept of consequence (and
therefore his essential dependence on a particular interpretation of
the calculus). Thus, even if Peirce had included both proofs in [1880],
Schroder would not have been able to do anything different from what
he did: to add an axiom. Knowing Peirce’s proof of (1.1), Huntington
preferred for simplicity’s sake to replace Schroder’s axiom 8 by (1.3).
In his paper Huntington reproduces Peirce’s proof of (1.1), and tedious
it is.42

1.4.3 The algebra of propositions

1.4.3.1 We have seen that Boole and Peirce in [1880] thought that the
logic of classes and propositional logic were the result of two different
interpretations of the same calculus. In [1885] Peirce observed that
propositions were characterized by being true or false, and showed how
to use the assumption that propositional variables can take only two
values to determine whether or not a formula is a theorem of proposi-
tional logic. Peirce made no attempt to relate his new considerations
on propositional logic with the class calculus that he had introduced
in [1880], because in 1885 he had already abandoned the algebraic
point of view. It was Schroder who tried to obtain a propositional
calculus starting from the calculus of classes.

According to Schroder, the propositional calculus (Aussagenkalkul)
is obtained by adding a new axiom to the calculus of classes. The
purpose of this axiom is to allow the proof of the theorem that states
that a variable can take only the values 0 or 1. Thus, what Schréder
ultimately claims is that the algebra of the propositional logic is the
Boolean algebra of 0 and 1 and that the purpose of the new axiom is
to characterize this algebra.

In the second volume of Vorlesungen Schroder presents the axioms
in this way:

0. a=(a=1).

1. a<€a.

2. (a<b)(b=€c) <€ (a<0).
3. (a€b)(b=€a) = (a =b).

“2In Huntington’s paper, the characterization of the complement of a class
(Schréder’s axiom 9) is axiom 8, and (1.3) is axiom 9. Peirce’s proof can also
be found in Lewis [1918], pp. 128-129.
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0=£a.

a=£1.

(c€ab) = (c € a)(c<€b).

(a+b=<€c)=(a<€c)(b=<0).

(bc = 0) <€ [a(b + c) =€ (ab + ac)].

aa €0, at+a=£1.

10. 1#0.43

e B A

Axiom 0 is the specific principle of the propositional calculus (as
Schroder calls it). The remaining axioms are symbolized versions of
the corresponding axioms in the calculus of classes.

The fact that the axioms are presented as formulas of a proposi-
tional language (or, more exactly, as schemata of formulas, since this
is how they are understood), does not mean that Schréder’s calcu-
lus can be viewed as an axiomatic calculus for propositional logic in
the modern sense. Strictly speaking, the axioms are not formulas of
propositional logic, and what makes it possible to use them in proofs
is that when necessary they are read in accordance with the formula-
tion that they had in the calculus of classes. This is, for example, the
way in which N. Wiener uses them in his doctoral thesis. His proof
in propositional logic of b =€ a + b illustrates quite well what I mean:
“by axiom 1, a + b= a + b; by axiom 7 and the verbal definition of
ab, b =€ a + b.”** The way in which axiom 7 is applied becomes clear
when we make explicit the steps of the proof: by axiom 7,

(a+b=<€a+b)=(a€at+b)(b=€a+b),
since (a + b) =< (a + b) (by axiom 1),
(a€a+0b)(b=€a+D),

43The specific principle of propositional calculus, which I introduce as axiom 0,
is found in Vorlesungen 11, p. 52; the remaining ones, together with a recapitulation
of the theorems of the calculus of classes, are found in Vorlesungen II, p. 28. My
numeration bears no relation to Schroder’s.

Schréder uses capitals for the variables and writes 1 instead of 1 (0 is only used
on pp. 345-347). Neither in the third volume of Vorlesungen nor in Abriss der
Algebra der Logik are 1 or 0 used.

“Wiener [1913], p. 52. Wiener studied Schroder’s calculus to compare it with
Russell’s. I take Wiener’s example because it is interesting to see how other logi-
cians understood and used the calculus.
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and bearing in mind the interpretation of the product as a conjunc-
tion, b <€ a + .

We see that Wiener uses axiom 7 in the same way that he would
use the following formulation of it:

a+b=<ciff a<€cand b=£c.

This is in fact the appropriate formulation if, as Schroder says, the
propositional calculus must be seen as the result of adding an axiom
to the calculus of classes.

When the calculus of classes is interpreted propositionally, %€ stands
for the consequence relation, = stands for the logical equivalence, and
1 and 0 must be regarded as propositional constants that denote the
values “true” and “false,” respectively. Schroder reads a €0 as “if a
holds, b holds” (wenn a gilt, gilt auch b) or as “from a follows b” (aus
a folgt b) and he asserts that a = 1 and a = 0 mean that a always
holds (a gilt stets) and that a never holds, respectively.*> As we see,
Schroder gives the right meanings that ¢ = 1 and a = 0 have when
the calculus of classes is propositionally reinterpreted, but the two
readings of a =€ b show that he does not clearly distinguish between
the conditional and implication (or between biconditional and logical
equivalence).

1.4.3.2 The interpretation of the axiom a = (a = 1) presents a dif-
ficulty. We cannot interpret both occurrences of the equality as the
relation of logical equivalence, nor as the biconditional of the metalan-
guage, because the result does not make sense in either case. There
remains the possibility of interpreting them as the biconditional of
the formal language, but this interpretation is not consistent with the
one we have attributed to the remaining axioms. It is therefore clear
that in this axiom the equality symbol is used in two different senses.
The occurrence outside the parentheses must be interpreted as the
equivalence relation, and the one inside the parentheses as the bicon-
ditional of the formal language, that is, as a connective. This axiom
could thus be rigorously stated in this way:

a=(a<1).

As we can see, this axiom introduces another possible interpreta-
tion of the equality symbol. Depending on the context, the equality

43 Vorlesungen 11, pp. 13 and 63. In Abriss der Algebra der Logik ( Vorlesungen
III, p. 719) Schroder reads a =1 as “a is a theorem.”
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symbol must be interpreted as the relation of logical equivalence, the
biconditional of the object language, or the biconditional of the met-
alanguage. 6

If my interpretation of axiom 0 is right, we can be sure that the
addition of this axiom to the calculus of classes will not permit the
proof of a theorem T such that T holds if and only if the algebra
of propositions consists of only two classes, because all the axioms
(including axiom 0) are true in any algebra of propositions. So when
different uses of the equality and subsumption symbols are accurately
distinguished, it becomes plain that the proofs of some basic theorems
are incorrect. For example, Schréder proves @ = (a = 0) as follows:

(a=0)= (@=0) since (a = ¢) = (@ =7¢);
(@=1) 0=1;
a by axiom 1.
I do not think that this proof can be accepted. The auxiliary theorem

(a = ¢) = (a = ¢) (proved within the calculus of classes) cannot be
applied to a = 0, because the equality symbol does not have the same

“6When T encountered the difficulties that the interpretation of axiom a = (a =
1) poses, I was surprised by the fact that logicians as L. Couturat and C. I. Lewis
did not notice them (Couturat [1905], p 84 and Lewis [1918], p. 224). I have
recently read a text of Tarski and Givant that corroborates my view:

The idea of abolishing the distinction between terms and formulas
can be traced back, in an inceptive form, to some earlier work in
mathematical logic. We recall a curious postulate which appears in
Schroder, Couturat and Lewis: A = (A = 1). Schroder seemed to
believe that what is now called the two-valued logic could be treated
as a specialized form of the theory of Boolean Algebras, and that
specialization would simply consists in adding A = (A = 1) to an
ordinary set of postulates for that theory.

For a contemporary logician the problem of clarifying the connection
between Boolean algebras and sentential logic is not as simple as it
seemed to Schroder. In Schréder’s work the theory of Boolean alge-
bras is presented as a nonformalized mathematical theory developed
in the common language. In this presentation A = (A = 1) appears
to be a meaningless expression which cannot influence in any way
the development of the theory. (Tarski and Givant [1987], p. 164)

What follows can be read as an explanation that, according to Tarski-Givant’s
remark, the axiom A = (A = 1) is of no use to characterize the Boolean algebra of
{0,1}, even if we adopt a meaningful interpretation of it like a = (a « 1). Tarski
and Givant ignore this interpretation, because it is alien to Schroder’s system. I
take it into account because it allows us a better evaluation of the relation between
the calculus of classes and that of propositions.



ALGEBRA OF CLASSES AND PROPOSITIONAL CALCULUS 29

meaning in ¢ = 0 as in a = c¢. Explicitly, the theorem to be proven
must be interpreted as @ = (a < 0) and the auxiliary theorem as

a=ciffa=c¢.

The same type of difficulty is found in, for example, the proof of
(a=€b) = (a+0b)."

Schroder claimed that the theorems of propositional calculus were
the same as those of an algebra of classes with only two classes. The
theorem in which he seems to base his claim is

(1.4) (a=1)+(a=0)=1,

which he reads as “every proposition is always true or always false”
(Vorlesungen 11, pp. 64-65). The status of this equation is under
suspicion, because its proof depends on @ = (a = 0) (it is an immediate
consequence of this equality, axiom 0, and a +a@ = 1), but let us
suppose for the sake of argument that (1.4) is really a theorem. Does
(1.4) justify Schroder’s claim?

The answer to this question depends on whether or not Schroder’s
reading of (1.4) is correct. There are two possible interpretations of
(1.4):

(1.5) (a=1)+(a=0)=1,
(1.6) a=1 or a=0,

(where + denotes the disjunction of the formal language and the equal-
ity symbol the relation of logical equivalence). Observe in addition
that Schroder’s use of the symbols does not permit us to differentiate
between (1.5) and (1.6), because both can be symbolized by (1.4).

Equation (1.5) expresses in essence that any proposition is true or
false and, in my opinion, this is what (1.4) really means. Schroder’s
claim cannot be concluded from (1.5), because (a <> 1) + (a < 0) is a
tautology and, in consequence, is true in any Lindenbaum algebra no
matter how many elements it has.*®

4"The proof of @ = (a = 0) is in Vorlesungen II, p. 66, and that of (a =€ b) =
(@+ b) on p. 68. Observe that in the latter equality the subsumption symbol
should be interpreted as the conditional of the formal language.

48 A Lindenbaum algebra is the Boolean algebra, of sentences of a formal language
modulo equivalence in a given theory. More precisely, given a possibly empty set
of sentences ¥ of a formal language L, the elements of the Lindenbaum algebra
corresponding to X are the equivalence classes of sentences of L modulo the relation
= defined by a = g iff ¥ «a < (. The Boolean operations on the equivalence
classes are defined from the logical operations on their members.



30 CHAPTER 1

Schroder identifies “a is true” with “a is always true” and his read-
ing of (1.4) is the one that corresponds to (1.6). From an algebraic
point of view, (1.6) means that the Lindenbaum algebra consists of
only two equivalence classes. Thus, (1.6) justifies Schroder’s claim,
but it cannot be proved within the calculus, because all the axioms
are true in any algebra of propositions and (1.6) is false when the al-
gebra has more than two equivalence classes. It is plain that an easy
way of achieving Schroder’s goal is to take (1.6) as an axiom in place
of a = (a = 1), but I suppose that this is not an option for someone
who uses (1.4) to express (1.6).





